// -*- C++ -*- // $Id: ThreeVector.icc,v 1.2 2010/06/16 17:15:57 garren Exp $ // --------------------------------------------------------------------------- // // This file is a part of the CLHEP - a Class Library for High Energy Physics. // // This is the definitions of the inline member functions of the // Hep3Vector class. // #include namespace CLHEP { // ------------------ // Access to elements // ------------------ // x, y, z inline double & Hep3Vector::operator[] (int i) { return operator()(i); } inline double Hep3Vector::operator[] (int i) const { return operator()(i); } inline double Hep3Vector::x() const { return dx; } inline double Hep3Vector::y() const { return dy; } inline double Hep3Vector::z() const { return dz; } inline double Hep3Vector::getX() const { return dx; } inline double Hep3Vector::getY() const { return dy; } inline double Hep3Vector::getZ() const { return dz; } inline void Hep3Vector::setX(double x1) { dx = x1; } inline void Hep3Vector::setY(double y1) { dy = y1; } inline void Hep3Vector::setZ(double z1) { dz = z1; } inline void Hep3Vector::set(double x1, double y1, double z1) { dx = x1; dy = y1; dz = z1; } inline double Hep3Vector::operator () (int i) const { switch(i) { case X: return x(); case Y: return y(); case Z: return z(); default: return 0.; } } inline double & Hep3Vector::operator () (int i) { static double dummy; switch(i) { case X: return dx; case Y: return dy; case Z: return dz; default: return dummy; } } // -------------- // Global methods // -------------- inline Hep3Vector operator + (const Hep3Vector & a, const Hep3Vector & b) { return Hep3Vector(a.x() + b.x(), a.y() + b.y(), a.z() + b.z()); } inline Hep3Vector operator - (const Hep3Vector & a, const Hep3Vector & b) { return Hep3Vector(a.x() - b.x(), a.y() - b.y(), a.z() - b.z()); } inline Hep3Vector operator * (const Hep3Vector & p, double a) { return Hep3Vector(a*p.x(), a*p.y(), a*p.z()); } inline Hep3Vector operator * (double a, const Hep3Vector & p) { return Hep3Vector(a*p.x(), a*p.y(), a*p.z()); } inline double operator * (const Hep3Vector & a, const Hep3Vector & b) { return a.dot(b); } // -------------------------- // Set in various coordinates // -------------------------- inline void Hep3Vector::setRThetaPhi ( double r1, double theta1, double phi1 ) { setSpherical (r1, theta1, phi1); } inline void Hep3Vector::setREtaPhi ( double r1, double eta1, double phi1 ) { setSpherical (r1, 2*std::atan(std::exp(-eta1)), phi1); } inline void Hep3Vector::setRhoPhiZ ( double rho1, double phi1, double z1) { setCylindrical (rho1, phi1, z1); } // ------------ // Constructors // ------------ inline Hep3Vector::Hep3Vector() : dx(0.), dy(0.), dz(0.) {} inline Hep3Vector::Hep3Vector(double x1) : dx(x1), dy(0.), dz(0.) {} inline Hep3Vector::Hep3Vector(double x1, double y1) : dx(x1), dy(y1), dz(0.) {} inline Hep3Vector::Hep3Vector(double x1, double y1, double z1) : dx(x1), dy(y1), dz(z1) {} inline Hep3Vector::Hep3Vector(const Hep3Vector & p) : dx(p.dx), dy(p.dy), dz(p.dz) {} inline Hep3Vector::~Hep3Vector() {} inline Hep3Vector & Hep3Vector::operator = (const Hep3Vector & p) { set(p.x(), p.y(), p.z()); return *this; } // ------------------ // Access to elements // ------------------ // r, theta, phi inline double Hep3Vector::mag2() const { return x()*x() + y()*y() + z()*z(); } inline double Hep3Vector::mag() const { return std::sqrt(mag2()); } inline double Hep3Vector::r() const { return mag(); } inline double Hep3Vector::theta() const { return x() == 0.0 && y() == 0.0 && z() == 0.0 ? 0.0 : std::atan2(perp(),z()); } inline double Hep3Vector::phi() const { return x() == 0.0 && y() == 0.0 ? 0.0 : std::atan2(y(),x()); } inline double Hep3Vector::getR() const { return mag(); } inline double Hep3Vector::getTheta() const { return theta(); } inline double Hep3Vector::getPhi() const { return phi(); } inline double Hep3Vector::angle() const { return theta(); } inline double Hep3Vector::cosTheta() const { double ptot = mag(); return ptot == 0.0 ? 1.0 : z()/ptot; } inline double Hep3Vector::cos2Theta() const { double ptot2 = mag2(); return ptot2 == 0.0 ? 1.0 : z()*z()/ptot2; } inline void Hep3Vector::setR(double r1) { setMag(r1); } inline void Hep3Vector::setTheta(double th) { double ma = mag(); double ph = phi(); setX(ma*std::sin(th)*std::cos(ph)); setY(ma*std::sin(th)*std::sin(ph)); setZ(ma*std::cos(th)); } inline void Hep3Vector::setPhi(double ph) { double xy = perp(); setX(xy*std::cos(ph)); setY(xy*std::sin(ph)); } // perp, eta, inline double Hep3Vector::perp2() const { return x()*x() + y()*y(); } inline double Hep3Vector::perp() const { return std::sqrt(perp2()); } inline double Hep3Vector::rho() const { return perp(); } inline double Hep3Vector::eta() const { return pseudoRapidity();} inline double Hep3Vector::getRho() const { return perp(); } inline double Hep3Vector::getEta() const { return pseudoRapidity();} inline void Hep3Vector::setPerp(double r1) { double p = perp(); if (p != 0.0) { dx *= r1/p; dy *= r1/p; } } inline void Hep3Vector::setRho(double rho1) { setPerp (rho1); } // ---------- // Comparison // ---------- inline bool Hep3Vector::operator == (const Hep3Vector& v) const { return (v.x()==x() && v.y()==y() && v.z()==z()) ? true : false; } inline bool Hep3Vector::operator != (const Hep3Vector& v) const { return (v.x()!=x() || v.y()!=y() || v.z()!=z()) ? true : false; } inline double Hep3Vector::getTolerance () { return tolerance; } // ---------- // Arithmetic // ---------- inline Hep3Vector& Hep3Vector::operator += (const Hep3Vector & p) { dx += p.x(); dy += p.y(); dz += p.z(); return *this; } inline Hep3Vector& Hep3Vector::operator -= (const Hep3Vector & p) { dx -= p.x(); dy -= p.y(); dz -= p.z(); return *this; } inline Hep3Vector Hep3Vector::operator - () const { return Hep3Vector(-x(), -y(), -z()); } inline Hep3Vector& Hep3Vector::operator *= (double a) { dx *= a; dy *= a; dz *= a; return *this; } // ------------------- // Combine two Vectors // ------------------- inline double Hep3Vector::diff2(const Hep3Vector & p) const { return (*this-p).mag2(); } inline double Hep3Vector::dot(const Hep3Vector & p) const { return x()*p.x() + y()*p.y() + z()*p.z(); } inline Hep3Vector Hep3Vector::cross(const Hep3Vector & p) const { return Hep3Vector(y()*p.z()-p.y()*z(), z()*p.x()-p.z()*x(), x()*p.y()-p.x()*y()); } inline double Hep3Vector::perp2(const Hep3Vector & p) const { double tot = p.mag2(); double ss = dot(p); return tot > 0.0 ? mag2()-ss*ss/tot : mag2(); } inline double Hep3Vector::perp(const Hep3Vector & p) const { return std::sqrt(perp2(p)); } inline Hep3Vector Hep3Vector::perpPart () const { return Hep3Vector (x(), y(), 0); } inline Hep3Vector Hep3Vector::project () const { return Hep3Vector (0, 0, z()); } inline Hep3Vector Hep3Vector::perpPart (const Hep3Vector & v2) const { return ( *this - project(v2) ); } inline double Hep3Vector::angle(const Hep3Vector & q) const { return std::acos(cosTheta(q)); } inline double Hep3Vector::theta(const Hep3Vector & q) const { return angle(q); } inline double Hep3Vector::azimAngle(const Hep3Vector & v2) const { return deltaPhi(v2); } // ---------- // Properties // ---------- inline Hep3Vector Hep3Vector::unit() const { double tot = mag2(); Hep3Vector p(x(),y(),z()); return tot > 0.0 ? p *= (1.0/std::sqrt(tot)) : p; } inline Hep3Vector Hep3Vector::orthogonal() const { double xx = x() < 0.0 ? -x() : x(); double yy = y() < 0.0 ? -y() : y(); double zz = z() < 0.0 ? -z() : z(); if (xx < yy) { return xx < zz ? Hep3Vector(0,z(),-y()) : Hep3Vector(y(),-x(),0); }else{ return yy < zz ? Hep3Vector(-z(),0,x()) : Hep3Vector(y(),-x(),0); } } } // namespace CLHEP