README.md 24.5 KB
Newer Older
1
2
# Notebooks for Circuit Analysis of HWC Tests and Events during Operation
Although, as the project name indicates, our primary goal is the development of signal monitoring applications, we realized that the analysis modules developed so far can be pieced together into HWC test and operation analysis notebooks.
Michal Maciejewski's avatar
Michal Maciejewski committed
3

4
5
Even though, we develop the analyses system by system, they were developed in a general way to account for all circuits in which the system was present. Thus, by taking a perpendicular view of the analysis table, a circuit analysis for this stance was possible.

Michal Maciejewski's avatar
Michal Maciejewski committed
6
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/monitoring-vs-hwc.png" width=50%></center>
7
8
9
10
11
12
13
14

In particular, thotebooks are suited for HWC tests: 
- can be adjusted on-the-fly for new requirements while performing a test; 
- can immediately generate a report for storage and distribution among a team of domain experts; 
- provide a sequential way of testing each system in a given order.

# Supported Circuits
## 1. RB - Main Dipole Circuit
Michal Maciejewski's avatar
Michal Maciejewski committed
15
<center><img src = "https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/rb/RB.png" width=75%></center>
16
17
18
19
20

<p>source: Powering Procedure and Acceptance Criteria for the 13 kA Dipole Circuits, MP3 Procedure, <a href="https://edms.cern.ch/document/874713/5.1">https://edms.cern.ch/document/874713/5.1</a></p>

|Type|Test|Current|Description|Notebook|Example report|
|----|----|-------|-----------|--------|--------------|
21
|HWC|PIC2|I\_MIN\_OP|Interlock tests with PC connected to the leads|[AN\_RB\_PIC2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PIC2.ipynb)|[AN\_RB\_PIC2](https://sigmon.web.cern.ch/node/47)|
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|HWC|PLI1.a2|I\_INJECTION|Current cycle to I\_INJECTION|[AN\_RB\_PLI1.a2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI1.a2.ipynb)|[AN\_RB\_PLI1.a2](https://sigmon.web.cern.ch/node/48)|
|HWC|PLI1.b2|I\_INJECTION|Energy Extraction from QPS|[AN\_RB\_PLI1.b2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI1.b2.ipynb)|[AN\_RB\_PLI1.b2](https://sigmon.web.cern.ch/node/49)|
|HWC|PLI1.d2|I\_INJECTION|Unipolar Powering Failure|[AN\_RB\_PLI1.d2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI1.d2.ipynb)|[AN\_RB\_PLI1.d2](https://sigmon.web.cern.ch/node/50)|
|HWC|PLI2.s1|I\_INTERM\_1|Splice Mapping|[AN\_RB\_PLI2.s1](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI2.s1.ipynb)|[AN\_RB\_PLI2.s1](https://sigmon.web.cern.ch/node/52)|
|HWC|PLI2.b2|I\_INTERM\_1|Energy Extraction from PIC during the ramp|[AN\_RB\_PLI2.b2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI2.b2.ipynb)|[AN\_RB\_PLI2.b2](https://sigmon.web.cern.ch/node/51)|
|HWC|PLIM.b2|I\_SM\_INT\_4|Energy Extraction from QPS|[AN\_RB\_PLIM.b2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLIM.b2.ipynb)|[AN\_RB\_PLIM.b2](https://sigmon.web.cern.ch/node/55)|
|HWC|PLIS.s2|I\_SM|Splice Mapping|[AN\_RB\_PLIS.s2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLIS.s2.ipynb)|[AN\_RB\_PLIS.s2](https://sigmon.web.cern.ch/node/56)|
|HWC|PLI3.a5|I\_INTERM\_2|Current cycle to I\_INTERM\_2|[AN\_RB\_PLI3.a5](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI3.a5.ipynb)|[AN\_RB\_PLI3.a5](https://sigmon.web.cern.ch/node/53)|
|HWC|PLI3.d2|I\_INTERM\_2|Unipolar Powering Failure|[AN\_RB\_PLI3.d2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI3.d2.ipynb)|[AN\_RB\_PLI3.d2](https://sigmon.web.cern.ch/node/54)|
|HWC|PNO.b2|I\_PNO+I\_DELTA|Energy Extraction from QPS|[AN\_RB\_PNO.b2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PNO.b2.ipynb)|[AN\_RB\_PNO.b2](https://sigmon.web.cern.ch/node/58)|
|HWC|PNO.a6|I\_PNO|Energy Extraction from QPS|[AN\_RB\_PNO.a6](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PNO.a6.ipynb)|[AN\_RB\_PNO.a6](https://sigmon.web.cern.ch/node/57)|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_RB\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_FPA.ipynb)|[AN\_RB\_FPA](https://sigmon.web.cern.ch/node/59)|

## 2. RQ - Main Quadrupole Circuit
Michal Maciejewski's avatar
Michal Maciejewski committed
36
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/rq/RQ.png" width=75%></center>
37
38
39
40
41

<p>source: Test Procedure and Acceptance Criteria for the 13 kA Quadrupole (RQD-RQF) Circuits, MP3 Procedure, <a href="https://edms.cern.ch/document/874714/5.1">https://edms.cern.ch/document/874714/5.1</a></p>

|Type|Test|Current|Description|Notebook|Example report|
|----|----|-------|-----------|--------|--------------|
42
|HWC|PIC2|I\_MIN\_OP|Powering Interlock Controller|[AN\_RQ\_PIC2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PIC2.ipynb)|[AN\_RQ\_PIC2](https://sigmon.web.cern.ch/node/61)|
43
44
45
46
47
48
49
50
51
52
53
54
|HWC|PLI1.b3|I\_INJECTION|Energy Extraction from QPS|[AN\_RQ\_PLI1.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI1.b3.ipynb)|[AN\_RQ\_PLI1.b3](https://sigmon.web.cern.ch/node/62)|
|HWC|PLI1.d2|I\_INJECTION|Unipolar Powering Failure|[AN\_RQ\_PLI1.d2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI1.d2.ipynb)|[AN\_RQ\_PLI1.d2](https://sigmon.web.cern.ch/node/63)|
|HWC|PLI2.s1|I\_INTERM\_1|Splice Mapping|[AN\_RQ\_PLI2.s1](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI2.s1.ipynb)|[AN\_RQ\_PLI2.s1](https://sigmon.web.cern.ch/node/65)|
|HWC|PLI2.b3|I\_INTERM\_1|Energy Extraction from QPS|[AN\_RQ\_PLI2.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI2.b3.ipynb)|[AN\_RQ\_PLI2.b3](https://sigmon.web.cern.ch/node/64)|
|HWC|PLIM.b3|I\_SM\_INT\_4|Energy Extraction from QPS|[AN\_RQ\_PLIM.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLIM.b3.ipynb)|[AN\_RQ\_PLIM.b3](https://sigmon.web.cern.ch/node/68)|
|HWC|PLIS.s2|I\_SM|Splice Mapping at I_SM|[AN\_RQ\_PLIS.s2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLIS.s2.ipynb)|[AN\_RQ\_PLIS.s2](https://sigmon.web.cern.ch/node/69)|
|HWC|PLI3.a5|I\_SM, I\_INTERM_2|Current cycle to I\_INTERM_2|[AN\_RQ\_PLI3.a5](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI3.a5.ipynb)|[AN\_RQ\_PLI3.a5](https://sigmon.web.cern.ch/node/66)|
|HWC|PLI3.b3|I\_INTERM\_2|Energy Extraction from QPS|[AN\_RQ\_PLI3.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI3.b3.ipynb)|[AN\_RQ\_PLI3.b3](https://sigmon.web.cern.ch/node/67)|
|HWC|PNO.b3|I\_PNO+I\_DELTA|Energy Extraction from QPS|[AN\_RQ\_PNO.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PNO.b3.ipynb)|[AN\_RQ\_PNO.b3](https://sigmon.web.cern.ch/node/71)|
|HWC|PNO.a6|I\_PNO|Current cycle to I\_PNO|[AN\_RQ\_PNO.a6](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PNO.a6.ipynb)|[AN\_RQ\_PNO.a6](https://sigmon.web.cern.ch/node/70)|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_RQ\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_FPA.ipynb)|[AN\_RQ\_FPA](https://sigmon.web.cern.ch/node/60)|

Michal Maciejewski's avatar
Michal Maciejewski committed
55
56
57
58
## 3. 600A Circuits
The 600-A circuits come in one of two main variants: 
- circuits with 
- and without EE. 
59

60
Each variant may or may not be equipped with a DC contactor ensuring the effectiveness of the crowbar in case of a PC short circuit. Moreover, the magnets of several circuits are equipped with parallel resistors, in order to decouple the current decay in a quenching magnet from that in the rest of the circuit. Figure below shows a generic circuit diagram, equipped with EE and parallel resistor, as well as lead resistances and a quench resistance.
61

Michal Maciejewski's avatar
Michal Maciejewski committed
62
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/raw/master/figures/600A/600A.png" width=75%></center>
63

Michal Maciejewski's avatar
Michal Maciejewski committed
64
source: Test Procedure and Acceptance Criteria for the 600 A Circuits, MP3 Procedure, <a href="https://edms.cern.ch/document/874716/5.3">https://edms.cern.ch/document/874716/5.3</a>
65
66


Michal Maciejewski's avatar
Michal Maciejewski committed
67
Table below provides a list of circuits to be used with these analysis notebooks
68

Michal Maciejewski's avatar
Michal Maciejewski committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|RCBX family|RCD/O family|Remaining 600A circuits with EE|Remaining 600A circuits without EE|
|-----------|------------|-------------------------------|----------------------------------|
|RCBXH1|RCD|RCS|RQS (RQS.L)|
|RCBXH2|RCO|RSS|RQSX3|
|RCBXH3| |ROD|RQT12|
|RCBXV1| |ROF|RQT13|
|RCBXV2| |RQTL9|RQTL7|
|RCBXV3| |RQS (RQS.A)|RQTL8|
| | |RQTD|RQTL10|
| | |RQTF|RQTL11|
| | |RSD1|
| | |RSD2|
| | |RSF1|
| | |RSF2|
| | |RU|
84

Michal Maciejewski's avatar
Michal Maciejewski committed
85
Another useful resource to find out which 600 A circuits belong to which category is the circuit tree on the MP3 website http://cern.ch/mp3
86

Michal Maciejewski's avatar
Michal Maciejewski committed
87
88
89
90
91
|Type|Test|Current|Description|Notebook|Example report|
|----|----|-------|-----------|--------|--------------|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_600A\_with\_without\_EE\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/600A/AN_600A_with_without_EE_FPA.ipynb)|-|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_600A\_RCDO\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/600A/AN_600A_RCDO_FPA.ipynb)|-|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_600A\_RCBXHV\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/600A/AN_600A_RCBXHV_FPA.ipynb)|-|
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
## 4. IT - Inner Triplet Circuits

The main quadrupole magnet circuits of the 8 Inner Triplet (IT) systems in the LHC are composed of four single aperture quadrupole magnets in series and have a particular powering configuration, consisting of three nested power converters (PC), see Figure below.

<img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/raw/master/figures/it/IT.png" width=75%>
Main quadrupole magnet circuit of the Inner Triplet system for IT’s at points 1 and 5 (left) and IT’s at points 2 and 8 (right).

Note that the configuration for the IT’s in points 1 and 5 is different from the configuration in points 2 and 8. An earth detection system is present at the minus of the RTQX2 converter. Detailed information concerning the converters is given in EDMS 1054483.

The two magnets Q1 and Q3 are type MQXA and the two combined magnets Q2a and Q2b are type MQXB. Q1 is located towards the interaction point.

Note that the IT’s at points 2 and 8 have a slightly higher nominal operating current than the IT’s at points 1 and 5, see Table 1.


|Circuit|I\_PNO RQX|I\_PNO RTQX2|I\_PNO RTQX1|
|-------|----------|------------|------------|
|RQX.L2, RQX.R2, RQX.L8, RQX.R8|7180 A| 4780 A|550 A|
|RQX.L1, RQX.R1, RQX.L5, RQX.R5|6800 A| 4600 A|550 A|


Nominal operating currents for 7 TeV of the three PC’s as given in the LHC design report volume I. For the nominal current during HWC see EDMS 1375861.


source: Test Procedure and Acceptance Criteria for the Inner Triplet Circuits in the LHC, MP3 Procedure, <a href="https://edms.cern.ch/document/874886/2.1">https://edms.cern.ch/document/874886/2.1</a>

|Type|Test|Current|Description|Notebook|Example report|
|----|----|-------|-----------|--------|--------------|
|HWC|PCC.T4|~|Power Converter Configuration part 2|AN\_IT\_PCCT4|-|
|HWC|PIC|~|Powering Interlock Controller check with standby current|AN\_IT\_PIC|-|
|HWC|PNO.D12|10% of I\_PNO|Powering Failure at +10% of nominal current|AN\_IT\_PNO.D12|-|
|HWC|PNO.D13|10% of I\_PNO|Powering Failure at -10% of nominal current|AN\_IT\_PNO.D13|-|
|HWC|PLI3.F6|I_PLI3|Heater Discharge Request at 2nd intermediate current (Note that I\_RTQX1=0A|AN\_IT\_PNO.F6|-|
|HWC|PNO.D14|50% of I\_PNO|Powering Failure at +50% of nominal current during a SPA|AN\_IT\_PNO.D14|-|
|HWC|PNO.D15|50% of I\_PNO|Powering Failure at -50% of nominal current|AN\_IT\_PNO.D15|-|
|HWC|PNO.A9|I\_PNO+I\_DELTA|Training and plateau at nominal current|AN\_IT\_PNO.A9|-|
|HWC|PNO.D16|90% of I\_PNO|Powering Failure at +90% of nominal current|AN\_IT\_PNO.D16|-|
|HWC|PNO.D17|90% of I\_PNO|Powering Failure at -90% of nominal current|AN\_IT\_PNO.D17|-|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_IT\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/it/AN_IT_FPA.ipynb)|-|


Michal Maciejewski's avatar
Michal Maciejewski committed
133
134
135
136
137
138
# User Guide
The execution of notebooks is carried out with SWAN service (http://swan.cern.ch) and requires three steps:
1. Getting NXCALS Access (once only)
2. Logging to SWAN
3. Setting up an appropriate environment script (done at each login)
4. Running an appropriate notebook
139

Michal Maciejewski's avatar
Michal Maciejewski committed
140
141
142
## 1. NXCALS Access
The NXCALS database requires an assignment of dedicated access rights for a user. 
If you want to query NXCALS with the API, please follow a procedure below on how to request the NXCALS access.
143

Michal Maciejewski's avatar
Michal Maciejewski committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
1. Go to http://nxcals-docs.web.cern.ch/current/user-guide/data-access/nxcals-access-request/ for most updated procedure
2. Send an e-mail to mailto:acc-logging-support@cern.ch with the following pieces of information:
 - your NICE username
 - system: WinCCOA, CMW
 - NXCALS environment: PRO
 
Optionally one can mention that the NXCALS database will be accessed through SWAN.
Once the access is granted, you can use NXCALS with SWAN.

## 2. Logging to SWAN
The following steps should be followed in order to log-in to SWAN
1. Go to http://swan.cern.ch
2. Login with your NICE account
  - SWAN is tightly integrated with CERNBox service (in fact, files created in SWAN are accessible in CERNBox). In case you have not used CERNBox, the following error message will be displayed in- dicating that your CERNBox account has not been activated yet. In order to activate your CERNBox account, please login on the website: http://cernbox.cern.ch. Afterwards, please login to SWAN service again. In case the error persists, please contact the SWAN support (see Section Help and Feedback at the bottom).
 
Michal Maciejewski's avatar
Michal Maciejewski committed
159
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-inactive-cernbox-error.png" width=50%></center>
160

Michal Maciejewski's avatar
Michal Maciejewski committed
161
162
163
164
## 3. Setting an Environment Script
In order to execute the HWC notebooks, one requires `lhc-sm-api` package and HWC notebooks. To this end, we created a dedicated environment script to prepare the SWAN project space.
The script sets a path to a virtual environment with the necessary packages (for more details, cf. https://lhc-sm-api.web.cern.ch/lhc-sm-api/user_install.html#preinstalled-packages) as well as makes a copy of HWC notebooks to `hwc` notebooks. **Note that in order to ensure compatibility between package and notebook versions, the `hwc` folder is deleted each time the script is executed'.**
Firstly, contact the Signal Monitoring team (mailto:lhc-signal-monitoring@cern.ch) in order to get read access to the EOS folder with pre-installed packages and HWC analysis notebooks.
165

Michal Maciejewski's avatar
Michal Maciejewski committed
166
167
Once the access is granted, at every log-in to SWAN, please provide the following environment script:
`/eos/project/l/lhcsm/public/packages_notebooks.sh`
168

Michal Maciejewski's avatar
Michal Maciejewski committed
169
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan_environment_script.png" width=25%></center>
170

Michal Maciejewski's avatar
Michal Maciejewski committed
171
172
173
174
175
176
177
Note the following settings while configuring environment:
- Software stack: `NXCals Python3`
- Platform: `CentOS 7 (gcc7)` - default
- Environment script: `/eos/project/l/lhcsm/public/packages_notebooks.sh`
- Number of cores: `4`
- Memory: `16`
- Spark cluster: `BE NXCALS (NXCals)`
178

Michal Maciejewski's avatar
Michal Maciejewski committed
179
180
## 4. Running Notebook
### 4.1. Open notebook 
181

Michal Maciejewski's avatar
Michal Maciejewski committed
182
To do so simply click its name and a new page will be opened. The top of the notebook is presented in Figure below.
183

Michal Maciejewski's avatar
Michal Maciejewski committed
184
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-rb-fpa-analysis-intro.png" width=50%></center>
185
186


Michal Maciejewski's avatar
Michal Maciejewski committed
187
### 4.2. Connect to the NXCALS Spark Cluster
188
189
Once a notebook is opened, please click a star button as shown in Figure below in order to open the Spark cluster configuration in a panel on the right side of an active notebook.

Michal Maciejewski's avatar
Michal Maciejewski committed
190
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-open-spark-cluster-configuration.png" width=50%></center>
191
192
193
194
195
196
197

Figure below shows a three-step procedure of Spark cluster connection. The first step involves providing the NICE account password. The second step allows setting additional settings for the connection. In order to connect with NXCALS please make sure to enable the following options:
- Include NXCALS options - to connect to the cluster
- Include SparkMetrics options - to enable statistics helpful for analysing NXCALS queries 

The last step is a confirmation of a successful connection to the cluster.

Michal Maciejewski's avatar
Michal Maciejewski committed
198
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-spark-cluster-connection.png" width=75%></center>
199

Michal Maciejewski's avatar
Michal Maciejewski committed
200
### 4.3. Analysis Notebook Execution
201
202
A notebook is composed by cells.  A cell contains either a markdown text with description or python code toexecute. Cells with markdown text have white background and can contain text, tables, figures, and hyperlinks.Cells with code have gray background and are executed by clicking a run icon in the top bar highlighted in Figure below. Alternatively, one can put a cursor in a cell with code an press a keyboard shortcut Ctrl+Enter.

Michal Maciejewski's avatar
Michal Maciejewski committed
203
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-execute-cell.png" width=50%></center>
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

A state of a cell is indicated by square brackets located on the left to a cell. Execution of a cell is indicatedby a star in the square brackets. Once cell execution is completed the star changes into a number representingthe order of cell execution. A cell can execute for too long due to connection problems, issues with a databasequery, kernel problems. In this case, two actions are recommended:
1.  Select from the top menu: Kernel -> Interrupt and execute the problematic cell again (either a run button (cf. Figure above) or Ctrl+Enter).
2.  In case the first option does not help, select from the top menu Kernel -> Restart & Clear Output.  Thenall cells prior to the problematic one have to be executed again (multiple cell selection is possible byclicking on the left of a cell to select it and afterwards selecting others with pressed Shift button).  After this operation one needs to reconnect to the NXCALS Spark cluster.

# Analysis Notebook for Operation
Quench analysis assumptions:
1. We consider standard analysis scenarios, i.e., all signals can be queried from the respective databases. Depending on what signal is missing, an analysis can raise a warning and continue or an error and abort the analysis.
2. In case an analyzed signal can’t be queried, a particular analysis is skipped. In other words, all signals have to be available in order to perform an analysis.
3. It is recommended to execute each cell one after another. However, since the signals are queried prior to an analysis, any order of execution is allowed. In case an analysis cell is aborted, the following ones may not be executed (e.g. I_MEAS not present).

# Analysis Workflow

An FPA analysis workflow consists of four steps: (i) finding of an FGC Post Mortem timestamp (ii) executing analysis cells on the cluster (iii); (iv) storing output files on EOS; see Figure below.

Michal Maciejewski's avatar
Michal Maciejewski committed
219
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/fpa-analysis-workflow.png" width=75%></center>
220
221
222
223
224
225

The RB FPA Analysis notebook is organized into 11 chapters:
0. Initialise the working environment
Loads external packages as well as lhcsmapi classes required to perform analysis and plot results.
1. Select FGC Post Mortem Entry
After executing this cell, a FGC Post Mortem GUI with default settings is displayed.
Michal Maciejewski's avatar
Michal Maciejewski committed
226

Michal Maciejewski's avatar
Michal Maciejewski committed
227
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-rb-fpa-analysis-fgc-pm-browser-empty.png" width=75%></center>
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

The GUI consists of 8 widgets described in Table below.

|Widget|Description|
|------|-----------|
|Circuit name|Circuit name|
|Start|Start date and time|
|End|End date and time|
|Analysis|Automatic (each cell executed without user input); Manual (some analysis steps take expert comment)|
|Done by|NICE login of a person executing the analysis|
|Find FGC PM entries|Button triggering a search of FGC PM entries|
|Query progress bar|Displays progress of querying days in between indicated datesFGC PM EntriesList of FGC PM timestamps|

**Please note that in order to execute any of the following cells, there should be at least one entry in the FGC PM Entries list. The list is populated after clicking [Find FGC PM entries button].**

Figure below shows the GUI after clicking button [Find FGC PM entries] with the default settings. Note that the list only contains FGC PM timestamps surrounded by QPS timestamps (1 minute before and 5 minutes after an FGC PM timestamp).

Michal Maciejewski's avatar
Michal Maciejewski committed
245
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-rb-fpa-analysis-fgc-pm-browser.png" width=75%></center>
246
247
248
249
250
251
252
253

2. Query All Signals Prior to Analysis  
In order to avoid delays between analyses, the necessary signals are queried prior to performing the analysis.
3. Timestamps  
Table of timestamps main systems representing the sequence of events for a given analysis.
4. Schematic  
Interactive schematic of the RB circuit composed of: power converter, two energy extraction systems, current leads, magnets, and nQPS crates. Hovering a mouse over a center of a box representing a system provides additional pieces of information. Location of quenched magnets is highlighted. Slider below the schematic enables its scrolling.

Michal Maciejewski's avatar
Michal Maciejewski committed
254
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/rb-schematic.png" width=75%></center>
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

5. PIC  
Check of PIC timestamps
6. Power Converter  
Analysis of the main power converter as well as earth currents.  
7. Energy Extraction Analysis of the energy extraction voltage and temperature
8. Quench Protection System Analysis of the quench detection system, quench heaters, diode, voltage feel- ers, and diode leads.
9. Current Leads Analysis of the current leads voltage (resistive and HTS).
10. Plot of Energy Extraction after 3 h from an FPA
11. Final Report  
Saving of the CSV results table and HTML report to EOS folder.
The RQ analysis notebook follows the same structure except for the lack of schematic. Typically, there is only a single main quadrupole magnet quenching and the schematic does not provide more information as compared to the timestamps table in point 3.

### Notebook Output

The notebook creates three output files in the folder //cern.ch/eos/project/l/lhcsm/operation/RB/circuit_name/\*}, e.g., //cern.ch/eos/project/l/lhcsm/operation/RB/RB.A12/\*:
- HTML report file with the snapshot of the entire notebook - [fgc-timestamp]-[analysis-execution-date]-[notebook-name]\_report.html;
- CSV file with MP3 results table with a subset analysis results - [fgc-timestamp]-[analysis-execution-date]-[notebook-name]\_mp3\_results\_table.csv};
- CSV file with full results table - [fgc-timestamp]-[analysis-execution-date]-[notebook-name]\_results_table.csv};

Michal Maciejewski's avatar
Michal Maciejewski committed
275

276
277
278
279
280
# Analysis Notebook for HWC
## Analysis Workflow

A HWC analysis workflow consists of four steps: (i) finding of start and end time of an HWC test (ii) executing analysis cells on the cluster (iii); (iv) storing output files on EOS; see Figure below.

Michal Maciejewski's avatar
Michal Maciejewski committed
281
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/hwc-analysis-workflow.png" width=75%></center>
282
283
284
285
286

## Notebook Structure

Each notebook is composed of initial part with a circuit schematic, test current profile, and table summarising test criteria. This part is followed by package import instructions, display and the browser of HWC tests; see Figure below.

Michal Maciejewski's avatar
Michal Maciejewski committed
287
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-hwc-browser.png" width=75%></center>
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

The remainder of each notebook depends on the particular test to be performed. At the end of an HWC notebook there are instructions for saving the output files.

## Notebook Output

The notebook creates three output files in the folder 
```
//cern.ch/eos/project/l/lhcsm/hwc/RB/ circuit_name/hwc_test/hwc_campaign/*, 
```
e.g., 
```
//cern.ch/eos/project/l/lhcsm/hwc/ RB/RB.A12/PNO.b2/HWC_2014/*:
```

- HTML report file with the snapshot of the entire notebook - [test-start]-[test-end]\_report.html;

Michal Maciejewski's avatar
Michal Maciejewski committed
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Help and Feedback
Despite thorough testing, while using LHC-SM quench analysis notebooks two types of issues can occur, related to: 
- analysis (e.g., wrong analysis results, corrupted plots, etc.); 
- SWAN (e.g., package installation problems, connection errors, service unavailability, etc.).

## 1. LHC Signal Monitoring
In order to provide feedback and ask for help regarding the analysis modules, you are cordially invited to contact the LHC Signal Monitoring team (mailto:lhc-signal-monitoring@cern.ch).

## 2. SWAN
There are three ways to contact SWAN support for help related to the service:
- Asking SWAN Community through a dedicated user forum: https://swan-community.web.cern.ch
- Creating a support SNOW ticket: https://cern.service-now.com/service-portal/function.do?name=swan
- Reporting a bug on dedicated JIRA platform: https://its.cern.ch/jira/projects/UCA/issues/UCA-359?filter=allopenissues

Michal Maciejewski's avatar
Michal Maciejewski committed
319
All three links are also available in the footer of SWAN website as shown below.
320

Michal Maciejewski's avatar
Michal Maciejewski committed
321
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-help.png" width=75%></center>