README.md 29.3 KB
Newer Older
1
2
# Notebooks for Circuit Analysis of HWC Tests and Events during Operation
Although, as the project name indicates, our primary goal is the development of signal monitoring applications, we realized that the analysis modules developed so far can be pieced together into HWC test and operation analysis notebooks.
Michal Maciejewski's avatar
Michal Maciejewski committed
3

4
Even though, we develop the analyses system by system, each analysis was developed in a general way to account for all circuits in which the system was present. Thus, by taking a perpendicular view of the analysis table, a circuit analysis for this stance was possible.
5

Michal Maciejewski's avatar
Michal Maciejewski committed
6
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/monitoring-vs-hwc.png" width=50%></center>
7

8
In particular, those notebooks are suited for HWC tests: 
9
10
11
12
- can be adjusted on-the-fly for new requirements while performing a test; 
- can immediately generate a report for storage and distribution among a team of domain experts; 
- provide a sequential way of testing each system in a given order.

13
The list of supported circuits is provided under the User Guide.
14

Michal Maciejewski's avatar
Michal Maciejewski committed
15
16
17
18
19
20
# User Guide
The execution of notebooks is carried out with SWAN service (http://swan.cern.ch) and requires three steps:
1. Getting NXCALS Access (once only)
2. Logging to SWAN
3. Setting up an appropriate environment script (done at each login)
4. Running an appropriate notebook
21

Michal Maciejewski's avatar
Michal Maciejewski committed
22
23
24
## 1. NXCALS Access
The NXCALS database requires an assignment of dedicated access rights for a user. 
If you want to query NXCALS with the API, please follow a procedure below on how to request the NXCALS access.
25

Michal Maciejewski's avatar
Michal Maciejewski committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1. Go to http://nxcals-docs.web.cern.ch/current/user-guide/data-access/nxcals-access-request/ for most updated procedure
2. Send an e-mail to mailto:acc-logging-support@cern.ch with the following pieces of information:
 - your NICE username
 - system: WinCCOA, CMW
 - NXCALS environment: PRO
 
Optionally one can mention that the NXCALS database will be accessed through SWAN.
Once the access is granted, you can use NXCALS with SWAN.

## 2. Logging to SWAN
The following steps should be followed in order to log-in to SWAN
1. Go to http://swan.cern.ch
2. Login with your NICE account
  - SWAN is tightly integrated with CERNBox service (in fact, files created in SWAN are accessible in CERNBox). In case you have not used CERNBox, the following error message will be displayed in- dicating that your CERNBox account has not been activated yet. In order to activate your CERNBox account, please login on the website: http://cernbox.cern.ch. Afterwards, please login to SWAN service again. In case the error persists, please contact the SWAN support (see Section Help and Feedback at the bottom).
 
Michal Maciejewski's avatar
Michal Maciejewski committed
41
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-inactive-cernbox-error.png" width=50%></center>
42

Michal Maciejewski's avatar
Michal Maciejewski committed
43
44
45
## 3. Setting an Environment Script
In order to execute the HWC notebooks, one requires `lhc-sm-api` package and HWC notebooks. To this end, we created a dedicated environment script to prepare the SWAN project space.
The script sets a path to a virtual environment with the necessary packages (for more details, cf. https://lhc-sm-api.web.cern.ch/lhc-sm-api/user_install.html#preinstalled-packages) as well as makes a copy of HWC notebooks to `hwc` notebooks. **Note that in order to ensure compatibility between package and notebook versions, the `hwc` folder is deleted each time the script is executed'.**
46
Firstly, contact the Signal Monitoring team (<a href="mailto:lhc-signal-monitoring@cern.ch">lhc-signal-monitoring@cern.ch</a>) in order to get read access to the EOS folder with pre-installed packages and HWC analysis notebooks.
47

Michal Maciejewski's avatar
Michal Maciejewski committed
48
49
Once the access is granted, at every log-in to SWAN, please provide the following environment script:
`/eos/project/l/lhcsm/public/packages_notebooks.sh`
50

Michal Maciejewski's avatar
Michal Maciejewski committed
51
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan_environment_script.png" width=25%></center>
52

Michal Maciejewski's avatar
Michal Maciejewski committed
53
54
55
56
57
58
59
Note the following settings while configuring environment:
- Software stack: `NXCals Python3`
- Platform: `CentOS 7 (gcc7)` - default
- Environment script: `/eos/project/l/lhcsm/public/packages_notebooks.sh`
- Number of cores: `4`
- Memory: `16`
- Spark cluster: `BE NXCALS (NXCals)`
60

Michal Maciejewski's avatar
Michal Maciejewski committed
61
62
## 4. Running Notebook
### 4.1. Open notebook 
63

Michal Maciejewski's avatar
Michal Maciejewski committed
64
To do so simply click its name and a new page will be opened. The top of the notebook is presented in Figure below.
65

Michal Maciejewski's avatar
Michal Maciejewski committed
66
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-rb-fpa-analysis-intro.png" width=50%></center>
67
68


Michal Maciejewski's avatar
Michal Maciejewski committed
69
### 4.2. Connect to the NXCALS Spark Cluster
70
71
Once a notebook is opened, please click a star button as shown in Figure below in order to open the Spark cluster configuration in a panel on the right side of an active notebook.

Michal Maciejewski's avatar
Michal Maciejewski committed
72
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-open-spark-cluster-configuration.png" width=50%></center>
73
74
75
76
77
78
79

Figure below shows a three-step procedure of Spark cluster connection. The first step involves providing the NICE account password. The second step allows setting additional settings for the connection. In order to connect with NXCALS please make sure to enable the following options:
- Include NXCALS options - to connect to the cluster
- Include SparkMetrics options - to enable statistics helpful for analysing NXCALS queries 

The last step is a confirmation of a successful connection to the cluster.

Michal Maciejewski's avatar
Michal Maciejewski committed
80
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-spark-cluster-connection.png" width=75%></center>
81

Michal Maciejewski's avatar
Michal Maciejewski committed
82
### 4.3. Analysis Notebook Execution
83
84
A notebook is composed by cells.  A cell contains either a markdown text with description or python code toexecute. Cells with markdown text have white background and can contain text, tables, figures, and hyperlinks.Cells with code have gray background and are executed by clicking a run icon in the top bar highlighted in Figure below. Alternatively, one can put a cursor in a cell with code an press a keyboard shortcut Ctrl+Enter.

Michal Maciejewski's avatar
Michal Maciejewski committed
85
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-execute-cell.png" width=50%></center>
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

A state of a cell is indicated by square brackets located on the left to a cell. Execution of a cell is indicatedby a star in the square brackets. Once cell execution is completed the star changes into a number representingthe order of cell execution. A cell can execute for too long due to connection problems, issues with a databasequery, kernel problems. In this case, two actions are recommended:
1.  Select from the top menu: Kernel -> Interrupt and execute the problematic cell again (either a run button (cf. Figure above) or Ctrl+Enter).
2.  In case the first option does not help, select from the top menu Kernel -> Restart & Clear Output.  Thenall cells prior to the problematic one have to be executed again (multiple cell selection is possible byclicking on the left of a cell to select it and afterwards selecting others with pressed Shift button).  After this operation one needs to reconnect to the NXCALS Spark cluster.

# Analysis Notebook for Operation
Quench analysis assumptions:
1. We consider standard analysis scenarios, i.e., all signals can be queried from the respective databases. Depending on what signal is missing, an analysis can raise a warning and continue or an error and abort the analysis.
2. In case an analyzed signal can’t be queried, a particular analysis is skipped. In other words, all signals have to be available in order to perform an analysis.
3. It is recommended to execute each cell one after another. However, since the signals are queried prior to an analysis, any order of execution is allowed. In case an analysis cell is aborted, the following ones may not be executed (e.g. I_MEAS not present).

# Analysis Workflow

An FPA analysis workflow consists of four steps: (i) finding of an FGC Post Mortem timestamp (ii) executing analysis cells on the cluster (iii); (iv) storing output files on EOS; see Figure below.

Michal Maciejewski's avatar
Michal Maciejewski committed
101
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/fpa-analysis-workflow.png" width=75%></center>
102

103
The RB FPA Analysis notebook is organized into 10 chapters (Note that for the remaining circuits, some analyses may not be present.):
104
105
106
107
0. Initialise the working environment
Loads external packages as well as lhcsmapi classes required to perform analysis and plot results.
1. Select FGC Post Mortem Entry
After executing this cell, a FGC Post Mortem GUI with default settings is displayed.
Michal Maciejewski's avatar
Michal Maciejewski committed
108

Michal Maciejewski's avatar
Michal Maciejewski committed
109
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-rb-fpa-analysis-fgc-pm-browser-empty.png" width=75%></center>
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

The GUI consists of 8 widgets described in Table below.

|Widget|Description|
|------|-----------|
|Circuit name|Circuit name|
|Start|Start date and time|
|End|End date and time|
|Analysis|Automatic (each cell executed without user input); Manual (some analysis steps take expert comment)|
|Done by|NICE login of a person executing the analysis|
|Find FGC PM entries|Button triggering a search of FGC PM entries|
|Query progress bar|Displays progress of querying days in between indicated datesFGC PM EntriesList of FGC PM timestamps|

**Please note that in order to execute any of the following cells, there should be at least one entry in the FGC PM Entries list. The list is populated after clicking [Find FGC PM entries button].**

Figure below shows the GUI after clicking button [Find FGC PM entries] with the default settings. Note that the list only contains FGC PM timestamps surrounded by QPS timestamps (1 minute before and 5 minutes after an FGC PM timestamp).

Michal Maciejewski's avatar
Michal Maciejewski committed
127
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-rb-fpa-analysis-fgc-pm-browser.png" width=75%></center>
128
129
130
131
132
133
134
135

2. Query All Signals Prior to Analysis  
In order to avoid delays between analyses, the necessary signals are queried prior to performing the analysis.
3. Timestamps  
Table of timestamps main systems representing the sequence of events for a given analysis.
4. Schematic  
Interactive schematic of the RB circuit composed of: power converter, two energy extraction systems, current leads, magnets, and nQPS crates. Hovering a mouse over a center of a box representing a system provides additional pieces of information. Location of quenched magnets is highlighted. Slider below the schematic enables its scrolling.

Michal Maciejewski's avatar
Michal Maciejewski committed
136
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/rb-schematic.png" width=75%></center>
137
138
139
140
141
142

5. PIC  
Check of PIC timestamps
6. Power Converter  
Analysis of the main power converter as well as earth currents.  
7. Energy Extraction Analysis of the energy extraction voltage and temperature
143
144
145
8. Quench Protection System Analysis of the quench detection system, quench heaters, diode, voltage feelers, diode leads resistance, current leads voltage (resistive and HTS).
9. Plot of Energy Extraction after 3 h from an FPA
10. Final Report  
146
147
148
149
150
Saving of the CSV results table and HTML report to EOS folder.
The RQ analysis notebook follows the same structure except for the lack of schematic. Typically, there is only a single main quadrupole magnet quenching and the schematic does not provide more information as compared to the timestamps table in point 3.

### Notebook Output

151
152
153
154
155
156
157
158
159
160
161


The notebook creates three output files in the folder (path with Windows convention)
```
\\cernbox-smb\eos\project\l\operation\$circuit_type$\$circuit_name$\
```
e.g., 
```
\\cernbox-smb\eos\project\l\lhcsm\operation\RB\RB.A12\
```

162
163
164
165
- HTML report file with the snapshot of the entire notebook - [fgc-timestamp]-[analysis-execution-date]-[notebook-name]\_report.html;
- CSV file with MP3 results table with a subset analysis results - [fgc-timestamp]-[analysis-execution-date]-[notebook-name]\_mp3\_results\_table.csv};
- CSV file with full results table - [fgc-timestamp]-[analysis-execution-date]-[notebook-name]\_results_table.csv};

Michal Maciejewski's avatar
Michal Maciejewski committed
166

167
168
169
170
171
# Analysis Notebook for HWC
## Analysis Workflow

A HWC analysis workflow consists of four steps: (i) finding of start and end time of an HWC test (ii) executing analysis cells on the cluster (iii); (iv) storing output files on EOS; see Figure below.

Michal Maciejewski's avatar
Michal Maciejewski committed
172
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/hwc-analysis-workflow.png" width=75%></center>
173
174
175
176
177

## Notebook Structure

Each notebook is composed of initial part with a circuit schematic, test current profile, and table summarising test criteria. This part is followed by package import instructions, display and the browser of HWC tests; see Figure below.

Michal Maciejewski's avatar
Michal Maciejewski committed
178
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-hwc-browser.png" width=75%></center>
179
180
181
182
183

The remainder of each notebook depends on the particular test to be performed. At the end of an HWC notebook there are instructions for saving the output files.

## Notebook Output

184
The notebook creates three output files in the folder (path with Windows convention)
185
```
186
\\cernbox-smb\eos\project\l\lhcsm\hwc\$circuit_type$\$circuit_name$\$hwc_test$\$hwc_campaign$\, 
187
188
189
```
e.g., 
```
190
\\cernbox-smb\eos\project\l\lhcsm\hwc\RB\RB.A12\PNO.b2\HWC_2014\:
191
192
193
194
```

- HTML report file with the snapshot of the entire notebook - [test-start]-[test-end]\_report.html;

Michal Maciejewski's avatar
Michal Maciejewski committed
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Help and Feedback
Despite thorough testing, while using LHC-SM quench analysis notebooks two types of issues can occur, related to: 
- analysis (e.g., wrong analysis results, corrupted plots, etc.); 
- SWAN (e.g., package installation problems, connection errors, service unavailability, etc.).

## 1. LHC Signal Monitoring
In order to provide feedback and ask for help regarding the analysis modules, you are cordially invited to contact the LHC Signal Monitoring team (mailto:lhc-signal-monitoring@cern.ch).

## 2. SWAN
There are three ways to contact SWAN support for help related to the service:
- Asking SWAN Community through a dedicated user forum: https://swan-community.web.cern.ch
- Creating a support SNOW ticket: https://cern.service-now.com/service-portal/function.do?name=swan
- Reporting a bug on dedicated JIRA platform: https://its.cern.ch/jira/projects/UCA/issues/UCA-359?filter=allopenissues

Michal Maciejewski's avatar
Michal Maciejewski committed
210
All three links are also available in the footer of SWAN website as shown below.
211

Michal Maciejewski's avatar
Michal Maciejewski committed
212
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/swan-help.png" width=75%></center>
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

# Supported Circuits
## 1. RB - Main Dipole Circuit
<center><img src = "https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/rb/RB.png" width=75%></center>

<p>source: Powering Procedure and Acceptance Criteria for the 13 kA Dipole Circuits, MP3 Procedure, <a href="https://edms.cern.ch/document/874713/5.1">https://edms.cern.ch/document/874713/5.1</a></p>

|Type|Test|Current|Description|Notebook|Example report|
|----|----|-------|-----------|--------|--------------|
|HWC|PIC2|I\_MIN\_OP|Interlock tests with PC connected to the leads|[AN\_RB\_PIC2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PIC2.ipynb)|[AN\_RB\_PIC2](https://sigmon.web.cern.ch/node/47)|
|HWC|PLI1.a2|I\_INJECTION|Current cycle to I\_INJECTION|[AN\_RB\_PLI1.a2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI1.a2.ipynb)|[AN\_RB\_PLI1.a2](https://sigmon.web.cern.ch/node/48)|
|HWC|PLI1.b2|I\_INJECTION|Energy Extraction from QPS|[AN\_RB\_PLI1.b2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI1.b2.ipynb)|[AN\_RB\_PLI1.b2](https://sigmon.web.cern.ch/node/49)|
|HWC|PLI1.d2|I\_INJECTION|Unipolar Powering Failure|[AN\_RB\_PLI1.d2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI1.d2.ipynb)|[AN\_RB\_PLI1.d2](https://sigmon.web.cern.ch/node/50)|
|HWC|PLI2.s1|I\_INTERM\_1|Splice Mapping|[AN\_RB\_PLI2.s1](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI2.s1.ipynb)|[AN\_RB\_PLI2.s1](https://sigmon.web.cern.ch/node/52)|
|HWC|PLI2.b2|I\_INTERM\_1|Energy Extraction from PIC during the ramp|[AN\_RB\_PLI2.b2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI2.b2.ipynb)|[AN\_RB\_PLI2.b2](https://sigmon.web.cern.ch/node/51)|
|HWC|PLIM.b2|I\_SM\_INT\_4|Energy Extraction from QPS|[AN\_RB\_PLIM.b2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLIM.b2.ipynb)|[AN\_RB\_PLIM.b2](https://sigmon.web.cern.ch/node/55)|
|HWC|PLIS.s2|I\_SM|Splice Mapping|[AN\_RB\_PLIS.s2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLIS.s2.ipynb)|[AN\_RB\_PLIS.s2](https://sigmon.web.cern.ch/node/56)|
|HWC|PLI3.a5|I\_INTERM\_2|Current cycle to I\_INTERM\_2|[AN\_RB\_PLI3.a5](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI3.a5.ipynb)|[AN\_RB\_PLI3.a5](https://sigmon.web.cern.ch/node/53)|
|HWC|PLI3.d2|I\_INTERM\_2|Unipolar Powering Failure|[AN\_RB\_PLI3.d2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PLI3.d2.ipynb)|[AN\_RB\_PLI3.d2](https://sigmon.web.cern.ch/node/54)|
|HWC|PNO.b2|I\_PNO+I\_DELTA|Energy Extraction from QPS|[AN\_RB\_PNO.b2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PNO.b2.ipynb)|[AN\_RB\_PNO.b2](https://sigmon.web.cern.ch/node/58)|
|HWC|PNO.a6|I\_PNO|Energy Extraction from QPS|[AN\_RB\_PNO.a6](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_PNO.a6.ipynb)|[AN\_RB\_PNO.a6](https://sigmon.web.cern.ch/node/57)|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_RB\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rb/AN_RB_FPA.ipynb)|[AN\_RB\_FPA](https://sigmon.web.cern.ch/node/59)|

## 2. RQ - Main Quadrupole Circuit
<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/raw/master/figures/rq/RQ.png" width=75%></center>

<p>source: Test Procedure and Acceptance Criteria for the 13 kA Quadrupole (RQD-RQF) Circuits, MP3 Procedure, <a href="https://edms.cern.ch/document/874714/5.1">https://edms.cern.ch/document/874714/5.1</a></p>

|Type|Test|Current|Description|Notebook|Example report|
|----|----|-------|-----------|--------|--------------|
|HWC|PIC2|I\_MIN\_OP|Powering Interlock Controller|[AN\_RQ\_PIC2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PIC2.ipynb)|[AN\_RQ\_PIC2](https://sigmon.web.cern.ch/node/61)|
|HWC|PLI1.b3|I\_INJECTION|Energy Extraction from QPS|[AN\_RQ\_PLI1.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI1.b3.ipynb)|[AN\_RQ\_PLI1.b3](https://sigmon.web.cern.ch/node/62)|
|HWC|PLI1.d2|I\_INJECTION|Unipolar Powering Failure|[AN\_RQ\_PLI1.d2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI1.d2.ipynb)|[AN\_RQ\_PLI1.d2](https://sigmon.web.cern.ch/node/63)|
|HWC|PLI2.s1|I\_INTERM\_1|Splice Mapping|[AN\_RQ\_PLI2.s1](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI2.s1.ipynb)|[AN\_RQ\_PLI2.s1](https://sigmon.web.cern.ch/node/65)|
|HWC|PLI2.b3|I\_INTERM\_1|Energy Extraction from QPS|[AN\_RQ\_PLI2.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI2.b3.ipynb)|[AN\_RQ\_PLI2.b3](https://sigmon.web.cern.ch/node/64)|
|HWC|PLIM.b3|I\_SM\_INT\_4|Energy Extraction from QPS|[AN\_RQ\_PLIM.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLIM.b3.ipynb)|[AN\_RQ\_PLIM.b3](https://sigmon.web.cern.ch/node/68)|
|HWC|PLIS.s2|I\_SM|Splice Mapping at I_SM|[AN\_RQ\_PLIS.s2](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLIS.s2.ipynb)|[AN\_RQ\_PLIS.s2](https://sigmon.web.cern.ch/node/69)|
|HWC|PLI3.a5|I\_SM, I\_INTERM_2|Current cycle to I\_INTERM_2|[AN\_RQ\_PLI3.a5](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI3.a5.ipynb)|[AN\_RQ\_PLI3.a5](https://sigmon.web.cern.ch/node/66)|
|HWC|PLI3.b3|I\_INTERM\_2|Energy Extraction from QPS|[AN\_RQ\_PLI3.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PLI3.b3.ipynb)|[AN\_RQ\_PLI3.b3](https://sigmon.web.cern.ch/node/67)|
|HWC|PNO.b3|I\_PNO+I\_DELTA|Energy Extraction from QPS|[AN\_RQ\_PNO.b3](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PNO.b3.ipynb)|[AN\_RQ\_PNO.b3](https://sigmon.web.cern.ch/node/71)|
|HWC|PNO.a6|I\_PNO|Current cycle to I\_PNO|[AN\_RQ\_PNO.a6](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_PNO.a6.ipynb)|[AN\_RQ\_PNO.a6](https://sigmon.web.cern.ch/node/70)|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_RQ\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/rq/AN_RQ_FPA.ipynb)|[AN\_RQ\_FPA](https://sigmon.web.cern.ch/node/60)|

## 3. 600A Circuits
The 600-A circuits come in one of two main variants: 
- circuits with 
- and without EE. 

Each variant may or may not be equipped with a DC contactor ensuring the effectiveness of the crowbar in case of a PC short circuit. Moreover, the magnets of several circuits are equipped with parallel resistors, in order to decouple the current decay in a quenching magnet from that in the rest of the circuit. Figure below shows a generic circuit diagram, equipped with EE and parallel resistor, as well as lead resistances and a quench resistance.

<center><img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/raw/master/figures/600A/600A.png" width=75%></center>

source: Test Procedure and Acceptance Criteria for the 600 A Circuits, MP3 Procedure, <a href="https://edms.cern.ch/document/874716/5.3">https://edms.cern.ch/document/874716/5.3</a>


Table below provides a list of circuits to be used with these analysis notebooks

|RCBX family|RCD/O family|Remaining 600A circuits with EE|Remaining 600A circuits without EE|
|-----------|------------|-------------------------------|----------------------------------|
|RCBXH1|RCD|RCS|RQS (RQS.L)|
|RCBXH2|RCO|RSS|RQSX3|
|RCBXH3| |ROD|RQT12|
|RCBXV1| |ROF|RQT13|
|RCBXV2| |RQTL9|RQTL7|
|RCBXV3| |RQS (RQS.A)|RQTL8|
| | |RQTD|RQTL10|
| | |RQTF|RQTL11|
| | |RSD1|
| | |RSD2|
| | |RSF1|
| | |RSF2|
| | |RU|

Another useful resource to find out which 600 A circuits belong to which category is the circuit tree on the MP3 website http://cern.ch/mp3

|Type|Test|Current|Description|Notebook|Example report|
|----|----|-------|-----------|--------|--------------|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_600A\_with\_without\_EE\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/600A/AN_600A_with_without_EE_FPA.ipynb)|-|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_600A\_RCDO\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/600A/AN_600A_RCDO_FPA.ipynb)|-|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_600A\_RCBXHV\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/600A/AN_600A_RCBXHV_FPA.ipynb)|-|

## 4. IT - Inner Triplet Circuits

The main quadrupole magnet circuits of the 8 Inner Triplet (IT) systems in the LHC are composed of four single aperture quadrupole magnets in series and have a particular powering configuration, consisting of three nested power converters (PC), see Figure below.

<img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/raw/master/figures/it/IT.png" width=75%>
Main quadrupole magnet circuit of the Inner Triplet system for IT’s at points 1 and 5 (left) and IT’s at points 2 and 8 (right).

Note that the configuration for the IT’s in points 1 and 5 is different from the configuration in points 2 and 8. An earth detection system is present at the minus of the RTQX2 converter. Detailed information concerning the converters is given in EDMS 1054483. 

The two magnets Q1 and Q3 are type MQXA and the two combined magnets Q2a and Q2b are type MQXB. Q1 is located towards the interaction point.

Note that the IT’s at points 2 and 8 have a slightly higher nominal operating current than the IT’s at points 1 and 5, see Table 1.


|Circuit|I\_PNO RQX|I\_PNO RTQX2|I\_PNO RTQX1|
|-------|----------|------------|------------|
|RQX.L2, RQX.R2, RQX.L8, RQX.R8|7180 A| 4780 A|550 A|
|RQX.L1, RQX.R1, RQX.L5, RQX.R5|6800 A| 4600 A|550 A|


Nominal operating currents for 7 TeV of the three PC’s as given in the LHC design report volume I. For the nominal current during HWC see EDMS 1375861.


source: Test Procedure and Acceptance Criteria for the Inner Triplet Circuits in the LHC, MP3 Procedure, <a href="https://edms.cern.ch/document/874886/2.1">https://edms.cern.ch/document/874886/2.1</a>

|Type|Test|Current|Description|Notebook|Example report|
|----|----|-------|-----------|--------|--------------|
|HWC|PCC.T4|~|Power Converter Configuration part 2|AN\_IT\_PCCT4|-|
|HWC|PIC|~|Powering Interlock Controller check with standby current|AN\_IT\_PIC|-|
|HWC|PNO.D12|10% of I\_PNO|Powering Failure at +10% of nominal current|AN\_IT\_PNO.D12|-|
|HWC|PNO.D13|10% of I\_PNO|Powering Failure at -10% of nominal current|AN\_IT\_PNO.D13|-|
|HWC|PLI3.F6|I_PLI3|Heater Discharge Request at 2nd intermediate current (Note that I\_RTQX1=0A|[AN\_IT\_PLI3.F6](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/it/AN_IT_PLI3.F6.ipynb)|-|
|HWC|PNO.D14|50% of I\_PNO|Powering Failure at +50% of nominal current during a SPA|[AN\_IT\_PNO.D14](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/it/AN_IT_PNO.D14.ipynb)|-|
|HWC|PNO.D15|50% of I\_PNO|Powering Failure at -50% of nominal current|AN\_IT\_PNO.D15|-|
|HWC|PNO.A9|I\_PNO+I\_DELTA|Training and plateau at nominal current|[AN\_IT\_PNO.A9](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/it/AN_IT_PNO.A9.ipynb)|-|
|HWC|PNO.D16|90% of I\_PNO|Powering Failure at +90% of nominal current|[AN\_IT\_PNO.D16](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/it/AN_IT_PNO.D16.ipynb)|-|
|HWC|PNO.D17|90% of I\_PNO|Powering Failure at -90% of nominal current|AN\_IT\_PNO.D17|-|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_IT\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/it/AN_IT_FPA.ipynb)|-|


## 5. IPD - Beam Separation Dipoles D1-D4
This section is a copy of a document created by Alexandre Erokhin (https://twiki.cern.ch/twiki/pub/MP3/General_Info_IPD/separation_dipole.pdf)


|Magnets in the Circuit|Temperature|Position|General information|
|----------------------|-----------|--------|-------------------|
|MBX (D1)|1.9 K| RD1.R2, RD1.R8|I Nominal: 5800A, I_Ultimate: 6100A|
| | | |L tot: 26 mH, L per aperture: 26 mH|
| | | |max(di/dt): 17.453 A/s|
|MBRC (D2)|4.5 K| RD2.L1, RD2.R1, RD2.L5, RD2.R5|I Nominal: 4400A, I_Ultimate: 4670A|
| | | RD2.L2, RD2.R2, RD2.L8, RD2.R8|I Nominal: 6000A, I_Ultimate: 6500A|
| | | |L tot: 52 mH, L per aperture: 26 mH|
| | | |max(di/dt): 18.147 A/s|
|MBRS (D3)|4.5 K| RD3.L4, RD3.R4|I Nominal: 5520A, I_Ultimate: 6000A|
| | | |L tot: 26 mH, L per aperture: 26 mH|
| | | |max(di/dt): 18.147 A/s|
|MBRB (D4)|4.5 K| RD4.L4, RD4.R4|I Nominal: 5520A, I_Ultimate: 6000A|
| | | |L tot: 26 mH, L per aperture: 26 mH|
| | | |max(di/dt): 18.147 A/s|

Superconducting beam separation dipoles of four different types are required in the Experimental Insertions (IR 1, 2, 5 and 8) and the RF insertion (IR 4). Single aperture dipoles D1 (MBX) and twin aperture dipoles D2 (MBRC) are utilized in the Experimental Insertions. They bring the two beams of the LHC into collision at four separate points then separate the beams again beyond the collision point. In the RF Insertions two types of twin aperture dipoles, each type with two different aperture spacings are used: D3 (MBRS) and D4 (MBRB). The D3 and D4 magnets increase the separation of the beams in IR 4 from the nominal spacing 194 mm to 420 mm. D2 and D4 are the twin apertures magnets with common iron core for both apertures. D3 is a twin apertures magnet with independent iron cores for each aperture.


The MBRC dipole consists of two individually powered apertures assembled in a common yoke structure.

- MBX – D1  
Single aperture of the magnet powered with one power supply.
<img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/raw/master/figures/ipd/IPD_MBX_D1.png" width=75%>

- MBRC – D2  
- MBRB – D4  
Apertures B1 and B2 of the magnet are powered in series with one power supply.
<img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/raw/master/figures/ipd/IPD_MBRC_D2_MBRB_D4.png" width=75%>

- MBRS - D3  
Apertures B1 and B2 of the magnet are powered in series with one power supply but series connection done in the DFBA.
<img src="https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/raw/master/figures/ipd/IPD_MBRS_D3.png" width=75%>

## Quench Detection System

**Quench Detector Type**  
DQQDC - current leads quench detector  
DQAMG - controller attached to global protection  

**Current Leads:**
- Typical resistance for U_RES: 7 uOhm
- Threshold for U_HTS: 3 mV, 1s
- Polarity convention: Arrows show how signals are measured. If I > 0, LD1: U_RES > 0, LD2: U_RES < 0
- PM file
  - Buffer range 0 to 250, event at point 50
  - Time range: -10 to 40 s
  - Frequency: 5 Hz (dt = 200 ms)
  
**Magnet:**
- See polarity convention in the circuit schematics
- U_RES_B1 = U_1_B1 + U_2_B1
- Threshold on U_RES_B1: 100 mV, 10 ms
- U_RES_B2, U_1_B2, U_2_B2 and U_INDUCT_B2 are given for diagnostics only
- Signals are measured with -2.5 V offset and with the gain factor = 0.0012
- *Attention: B1 signals and B2 singals can be shifted by 4 ms from each other*
- If pure inductive signal and di/dt < 0:
  - U_1_B1 = L di/dt < 0
  - U_2_B1 = -L di/dt < 0
  
- PM file
  - Buffer range 501 to 1500, event at point 1000
  - Time range: -2 to 2 s
  - Frequency: 250 Hz (dt = 4 ms)

|Type|Test|Current|Description|Notebook|Example report|
|----|----|-------|-----------|--------|--------------|
|HWC|PLI1.C2|I\_INJECTION|Fast Power Abort at injection current.|[AN\_IPD\_PLI1.C2]|-|
|HWC|PLI2.F2|I\_INTERM\_1|Heater Provoked Quench|[AN\_IPD\_PLI2.F2]|-|
|HWC|PLI3.C5|I\_INTERM\_3|Measurement of splice resistance and Fast Power Abort at intermediate current|[AN\_IPD\_PLI3.C5]|-|
|HWC|PNO.A8|I\_PNO+I\_DELTA|Powering to I\_PNO + I\_DELTA|[AN\_IPD\_PNO.A8]|-|
|HWC|PNO.C6|I\_PNO|Fast Power Abort at Nominal Current and Lead Test|[AN\_IPD\_PNO.C6]|-|
|Operation|FPA|I\_PNO|FPA during operation with magnets quenching|[AN\_IPD\_FPA](https://gitlab.cern.ch/LHCData/lhc-sm-hwc/-/blob/master/ipd/AN_IPD_FPA.ipynb)|-|