"<h1><center>Analysis of a PLNO.a8 HWC Test in an IPD Circuit</center></h1>\n",
"<h1><center>Analysis of a PNO.a8 HWC Test in an IPD Circuit</center></h1>\n",
"\n",
"Superconducting beam separation dipoles of four different types are required in the Experimental Insertions (IR 1, 2, 5 and 8) and the RF insertion (IR 4). Single aperture dipoles D1 (MBX) and twin aperture dipoles D2 (MBRC) are utilized in the Experimental Insertions. They bring the two beams of the LHC into collision at four separate points then separate the beams again beyond the collision point. In the RF Insertions two types of twin aperture dipoles, each type with two different aperture spacings are used: D3 (MBRS) and D4 (MBRB). The D3 and D4 magnets increase the separation of the beams in IR 4 from the nominal spacing 194 mm to 420 mm. D2 and D4 are the twin apertures magnets with common iron core for both apertures. D3 is a twin apertures magnet with independent iron cores for each aperture.\n",
"\n",
...
...
%% Cell type:markdown id: tags:
<h1><center>Analysis of a PLNO.a8 HWC Test in an IPD Circuit</center></h1>
<h1><center>Analysis of a PNO.a8 HWC Test in an IPD Circuit</center></h1>
Superconducting beam separation dipoles of four different types are required in the Experimental Insertions (IR 1, 2, 5 and 8) and the RF insertion (IR 4). Single aperture dipoles D1 (MBX) and twin aperture dipoles D2 (MBRC) are utilized in the Experimental Insertions. They bring the two beams of the LHC into collision at four separate points then separate the beams again beyond the collision point. In the RF Insertions two types of twin aperture dipoles, each type with two different aperture spacings are used: D3 (MBRS) and D4 (MBRB). The D3 and D4 magnets increase the separation of the beams in IR 4 from the nominal spacing 194 mm to 420 mm. D2 and D4 are the twin apertures magnets with common iron core for both apertures. D3 is a twin apertures magnet with independent iron cores for each aperture.
The MBRC dipole consists of two individually powered apertures assembled in a common yoke structure.
- MBX – D1
Single aperture of the magnet powered with one power supply.
<center>IPD currents during PNO.a8. Note: the actual parameters are listed in Appendix 1.</center>
Offline analyses are listed below:
|Responsible|Type of Analysis|Criteria|
|-----------|----------------|--------|
|MP3|Check if QPS tripped.||
| |Check if PM file was created.||
|MP3|Quench analysis|The signals have to be compared to the reference signals, and should agree within the limits given below:|
| |Check heater voltages (U_HDS_1; U_HDS_2) during the discharge, and their decay time constant | U_HDS: +/- 5%|
| | | $\tau$_HDS +/- 5%|
| |Check the heater delay from the quench signal | t_delay +/- 5 ms|
%% Cell type:markdown id: tags:
# Analysis Assumptions
- We consider standard analysis scenarios, i.e., all signals can be queried. If a signal is missing, an analysis can raise a warning and continue or an error and abort the analysis.
- In case a signal is not needed for the analysis, a particular analysis is skipped. In other words, all signals have to be available in order to perform an analysis.
- It is recommended to execute each cell one after another. However, since the signals are queried prior to analysis, any order of execution is allowed. In case an analysis cell is aborted, the following ones may not be executed (e.g. I\_MEAS not present).
# Plot Convention
- Scales are labeled with signal name followed by a comma and a unit in square brackets, e.g., I_MEAS, [A].
- If a reference signal is present, it is represented with a dashed line.
- If the main current is present, its axis is on the left. Remaining signals are attached to the axis on the right. The legend of these signals is located on the lower left and upper right, respectively.
- The grid comes from the left axis.
- The title contains timestamp, circuit name, and signal name allowing to re-access the signal.
- The plots assigned to the left scale have colors: blue (C0) and orange (C1). Plots presented on the right have colors red (C2) and green (C3).
- Each plot has an individual time-synchronization mentioned explicitly in the description.
- If an axis has a single signal, then the color of the label matches the signal's color. Otherwise, the label color is black.
The analysis for MP3 consists of checking the existence of PM file and of consistency of the PM timestamps (PC, QPS). The criterion of passing this test described in detail in 600APIC2.
In short the following criteria should be checked:
- The PC timestamp (51_self) is QPS timestamp +-20 ms.
- The difference between QPS board A and B timestamp = 1ms.
If one or more of these conditions are not fulfilled, then an in-depth analysis has to be performed by the QPS team.
A current cycle up and down from I_MIN_OP to I_INJECTION is performed with a short plateau (typically 10 minutes) at highest current. The aim of this test is to check the magnet performance and the QPS calibration at that current level. The current to earth and the current error from the power convertor are checked during the sequence.
The required analysis and signatures are listed below.
|Responsible|Type of analysis|Criterion|
|-----------|----------------|---------|
|MP3|Splice signals|U_res < 500$\mu$V if the inductive voltage of the bus-bar segments is compensated|
|-|Automatic analysis on earth current and error current|I_EARTH_PLI1_A2 < I_EARTH_MAX and I_ERR_PLI1_A2 < I_ERR_MAX|
source: Powering Procedure and Acceptance Criteria for the 13 kA Dipole Circuits, MP3 Procedure, <ahref="https://edms.cern.ch/document/874713/5.1">https://edms.cern.ch/document/874713/5.1</a> (Please follow this link for the latest version)
%% Cell type:markdown id: tags:
# Analysis Assumptions
- We consider standard analysis scenarios, i.e., all signals can be queried. If a signal is missing, an analysis can raise a warning and continue or an error and abort the analysis.
- In case a signal is not needed for the analysis, a particular analysis is skipped. In other words, all signals have to be available in order to perform an analysis.
- It is recommended to execute each cell one after another. However, since the signals are queried prior to analysis, any order of execution is allowed. In case an analysis cell is aborted, the following ones may not be executed (e.g. I\_MEAS not present).
# Plot Convention
- Scales are labeled with signal name followed by a comma and a unit in square brackets, e.g., I_MEAS, [A].
- If a reference signal is present, it is represented with a dashed line.
- If the main current is present, its axis is on the left. Remaining signals are attached to the axis on the right. The legend of these signals is located on the lower left and upper right, respectively.
- The grid comes from the left axis.
- The title contains timestamp, circuit name, and signal name allowing to re-access the signal.
- The plots assigned to the left scale have colors: blue (C0) and orange (C1). Plots presented on the right have colors red (C2) and green (C3).
- Each plot has an individual time-synchronization mentioned explicitly in the description.
- If an axis has a single signal, then the color of the label matches the signal's color. Otherwise, the label color is black.
"The current in the circuit is increased to I_INJECTION and shortly maintained constant. A quench simulation from one current lead is performed provoking a discharge of the energy through the EE system. The aim of the test is to check at a low current level the performance of the QPS and EE systems.\n",
The current in the circuit is increased to I_INJECTION and shortly maintained constant. A quench simulation from one current lead is performed provoking a discharge of the energy through the EE system. The aim of the test is to check at a low current level the performance of the QPS and EE systems.
From 2010 on, a time delay is implemented between the switch opening and the FPA signal received (300 ms at the odd point, 600 ms at the even point).
The required analysis and signatures are listed below.
|Responsible|Type of analysis|Criterion|
|-----------|----------------|---------|
|PC|PC voltage check|PC voltage ~ -1.5 V ± 0.5 V, 1 s after the EE activation. The current decay time constant should be within 20% of Decay_Time_const. Smooth exponential waveform on the PC voltage and current during the whole decay|
|PC|Earth Current Analysis|The maximum earth current <50 mA during EE activation disregarding the peak at the opening of the EE system.|
|EE|Energy discharge|Maximum voltage on EE resistance ($R*I$±10%) and maximum temperature of the EE resistance (±10% from theoretical value)|
|EE|Energy discharge|Time delay on switch opening (300±50ms at odd point and 600±50ms at even point)|
source: Powering Procedure and Acceptance Criteria for the 13 kA Dipole Circuits, MP3 Procedure, <ahref="https://edms.cern.ch/document/874713/5.1">https://edms.cern.ch/document/874713/5.1</a> (Please follow this link for the latest version)
%% Cell type:markdown id: tags:
# Analysis Assumptions
- We consider standard analysis scenarios, i.e., all signals can be queried. If a signal is missing, an analysis can raise a warning and continue or an error and abort the analysis.
- In case a signal is not needed for the analysis, a particular analysis is skipped. In other words, all signals have to be available in order to perform an analysis.
- It is recommended to execute each cell one after another. However, since the signals are queried prior to analysis, any order of execution is allowed. In case an analysis cell is aborted, the following ones may not be executed (e.g. I\_MEAS not present).
# Plot Convention
- Scales are labeled with signal name followed by a comma and a unit in square brackets, e.g., I_MEAS, [A].
- If a reference signal is present, it is represented with a dashed line.
- If the main current is present, its axis is on the left. Remaining signals are attached to the axis on the right. The legend of these signals is located on the lower left and upper right, respectively.
- The grid comes from the left axis.
- The title contains timestamp, circuit name, and signal name allowing to re-access the signal.
- The plots assigned to the left scale have colors: blue (C0) and orange (C1). Plots presented on the right have colors red (C2) and green (C3).
- Each plot has an individual time-synchronization mentioned explicitly in the description.
- If an axis has a single signal, then the color of the label matches the signal's color. Otherwise, the label color is black.
"The current in the circuit is increased to I_INJECTION and shortly maintained constant. A powering failure is then generated. After a minute the EE system is activated to rapidly extract the energy of the circuit. The aim of this test is to verify the correct functionality of the PC when a powering failure occurs.\n",
"The required analysis and signatures are listed below.\n",
The current in the circuit is increased to I_INJECTION and shortly maintained constant. A powering failure is then generated. After a minute the EE system is activated to rapidly extract the energy of the circuit. The aim of this test is to verify the correct functionality of the PC when a powering failure occurs.
The required analysis and signatures are listed below.
The required analysis and signatures are listed below.
|Responsible|Type of analysis|Criterion|
|-----------|----------------|---------|
|PC|PC voltage check|PC voltage ~ -1.5 V ± 0.5 V, 1 s after the EE activation. The current decay time constant should be within 20% of Decay_Time_const. Smooth exponential waveform on the PC voltage and current during the whole decay|
|PC|Earth Current Analysis|The maximum earth current <50 mA during EE activation disregarding the peak at the opening of the EE system.|
|EE|Energy discharge (if the discharge was provoked by the operator)|Maximum voltage on EE resistance ($R*I$±10%) and maximum temperature of the EE resistance (±10% from theoretical value)|
|EE|Energy discharge (if the discharge was provoked by the operator)|Time delay on switch opening (300±50ms at odd point and 600±50ms at even point)|
source: Powering Procedure and Acceptance Criteria for the 13 kA Dipole Circuits, MP3 Procedure, <ahref="https://edms.cern.ch/document/874713/5.1">https://edms.cern.ch/document/874713/5.1</a> (Please follow this link for the latest version)
%% Cell type:markdown id: tags:
# Analysis Assumptions
- We consider standard analysis scenarios, i.e., all signals can be queried. If a signal is missing, an analysis can raise a warning and continue or an error and abort the analysis.
- In case a signal is not needed for the analysis, a particular analysis is skipped. In other words, all signals have to be available in order to perform an analysis.
- It is recommended to execute each cell one after another. However, since the signals are queried prior to analysis, any order of execution is allowed. In case an analysis cell is aborted, the following ones may not be executed (e.g. I\_MEAS not present).
# Plot Convention
- Scales are labeled with signal name followed by a comma and a unit in square brackets, e.g., I_MEAS, [A].
- If a reference signal is present, it is represented with a dashed line.
- If the main current is present, its axis is on the left. Remaining signals are attached to the axis on the right. The legend of these signals is located on the lower left and upper right, respectively.
- The grid comes from the left axis.
- The title contains timestamp, circuit name, and signal name allowing to re-access the signal.
- The plots assigned to the left scale have colors: blue (C0) and orange (C1). Plots presented on the right have colors red (C2) and green (C3).
- Each plot has an individual time-synchronization mentioned explicitly in the description.
- If an axis has a single signal, then the color of the label matches the signal's color. Otherwise, the label color is black.