diff --git a/Core/include/Acts/Fitter/GainMatrixSmoother.hpp b/Core/include/Acts/Fitter/GainMatrixSmoother.hpp index f0f489224b712894b1d48ac1447c8a36c0a1c5fe..31e4e1c3dcd301b4486dec6a4f5849e8965891bf 100644 --- a/Core/include/Acts/Fitter/GainMatrixSmoother.hpp +++ b/Core/include/Acts/Fitter/GainMatrixSmoother.hpp @@ -77,11 +77,25 @@ class GainMatrixSmoother { assert(prev_ts.hasSmoothed()); assert(prev_ts.hasPredicted()); + ACTS_VERBOSE("Calculate smoothing matrix:"); + ACTS_VERBOSE("Filtered covariance:\n" << ts.filteredCovariance()); + ACTS_VERBOSE("Jacobian:\n" << ts.jacobian()); + ACTS_VERBOSE("Prev. predicted covariance\n" + << prev_ts.predictedCovariance() << "\n, inverse: \n" + << prev_ts.predictedCovariance().inverse()); + // Gain smoothing matrix G = ts.filteredCovariance() * ts.jacobian().transpose() * prev_ts.predictedCovariance().inverse(); - ACTS_VERBOSE("Gain smoothing matrix is:\n" << G); + ACTS_VERBOSE("Gain smoothing matrix G:\n" << G); + + ACTS_VERBOSE("Calculate smoothed parameters:"); + ACTS_VERBOSE("Filtered parameters: " << ts.filtered().transpose()); + ACTS_VERBOSE( + "Prev. smoothed parameters: " << prev_ts.smoothed().transpose()); + ACTS_VERBOSE( + "Prev. predicted parameters: " << prev_ts.predicted().transpose()); // Calculate the smoothed parameters ts.smoothed() = @@ -89,6 +103,10 @@ class GainMatrixSmoother { ACTS_VERBOSE("Smoothed parameters are: " << ts.smoothed().transpose()); + ACTS_VERBOSE("Calculate smoothed covariance:"); + ACTS_VERBOSE("Prev. smoothed covariance:\n" + << prev_ts.smoothedCovariance()); + // And the smoothed covariance ts.smoothedCovariance() = ts.filteredCovariance() -