diff --git a/Control/AthOnnxruntimeUtils/AthOnnxruntimeUtils/ATLAS_CHECK_THREAD_SAFETY b/Control/AthOnnxruntimeUtils/AthOnnxruntimeUtils/ATLAS_CHECK_THREAD_SAFETY new file mode 100644 index 0000000000000000000000000000000000000000..584871312ff47294e79fe6b60a5656ef2df1202b --- /dev/null +++ b/Control/AthOnnxruntimeUtils/AthOnnxruntimeUtils/ATLAS_CHECK_THREAD_SAFETY @@ -0,0 +1 @@ +Control/AthOnnxruntimeUtils diff --git a/Control/AthOnnxruntimeUtils/AthOnnxruntimeUtils/FlattenInput.h b/Control/AthOnnxruntimeUtils/AthOnnxruntimeUtils/FlattenInput.h new file mode 100644 index 0000000000000000000000000000000000000000..0a4abfaf797012965de5ee8461d28d8c6c2c45af --- /dev/null +++ b/Control/AthOnnxruntimeUtils/AthOnnxruntimeUtils/FlattenInput.h @@ -0,0 +1,29 @@ +// Dear emacs, this is -*- c++ -*- +// Copyright (C) 2002-2021 CERN for the benefit of the ATLAS collaboration +#ifndef FlattenInput_H +#define FlattenInput_H + +#include <string> +#include <iostream> +#include <fstream> +#include <arpa/inet.h> +#include <vector> +#include <iterator> + + +namespace AthONNX { + template<typename T> + inline std::vector<T> FlattenInput2D_1D( std::vector<std::vector<T>> features, int size){ + std::vector<float> Flatten1D(size); + for(std::size_t r=0;r<features.size();++r){ + int n_cols = features[r].size(); + for(int c=0;c<n_cols;++c){ + float a = float(features[r][c]); + Flatten1D[r*n_cols+c] = a; + } + } + return Flatten1D; + } + +} +#endif diff --git a/Control/AthOnnxruntimeUtils/CMakeLists.txt b/Control/AthOnnxruntimeUtils/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..4889ec32ea928507ae6a10b6d9e9c247fd37107e --- /dev/null +++ b/Control/AthOnnxruntimeUtils/CMakeLists.txt @@ -0,0 +1,11 @@ +# Copyright (C) 2002-2021 CERN for the benefit of the ATLAS collaboration + +# Declare the package's name. +atlas_subdir( AthOnnxruntimeUtils ) + +# Component(s) in the package. +atlas_add_library( AthOnnxruntimeUtilsLib + INTERFACE + PUBLIC_HEADERS AthOnnxruntimeUtils + LINK_LIBRARIES AthenaKernel GaudiKernel ) + diff --git a/Control/AthenaExamples/AthExOnnxRuntime/CMakeLists.txt b/Control/AthenaExamples/AthExOnnxRuntime/CMakeLists.txt index 2cf4c6266bf76455785f1d518a18c77a02562daf..5aa822732907986932fb9b7c2ca0fa696234cb17 100644 --- a/Control/AthenaExamples/AthExOnnxRuntime/CMakeLists.txt +++ b/Control/AthenaExamples/AthExOnnxRuntime/CMakeLists.txt @@ -13,7 +13,7 @@ atlas_add_library( AthExOnnxRuntimeLib atlas_add_component( AthExOnnxRuntime src/*.h src/*.cxx src/components/*.cxx INCLUDE_DIRS ${ONNXRUNTIME_INCLUDE_DIRS} - LINK_LIBRARIES ${ONNXRUNTIME_LIBRARIES} AthExOnnxRuntimeLib AthenaBaseComps GaudiKernel PathResolver AthOnnxruntimeServiceLib) + LINK_LIBRARIES ${ONNXRUNTIME_LIBRARIES} AthExOnnxRuntimeLib AthenaBaseComps GaudiKernel PathResolver AthOnnxruntimeServiceLib AthOnnxruntimeUtilsLib) # Install files from the package. atlas_install_joboptions( share/*.py ) diff --git a/Control/AthenaExamples/AthExOnnxRuntime/share/AthExOnnxRuntime_jobOptions.py b/Control/AthenaExamples/AthExOnnxRuntime/share/AthExOnnxRuntime_jobOptions.py index ac1beaef5aeb13e9bd1ac3bf12cb308e5face1a4..65db94b13e03e60151e2bcb8e3b65565ba1195b2 100644 --- a/Control/AthenaExamples/AthExOnnxRuntime/share/AthExOnnxRuntime_jobOptions.py +++ b/Control/AthenaExamples/AthExOnnxRuntime/share/AthExOnnxRuntime_jobOptions.py @@ -20,6 +20,7 @@ AthONNX.TestSample = randint(0, 9999) AthONNX.DoBatches = False AthONNX.NumberOfBatches = 1 AthONNX.SizeOfBatch = 1 +AthONNX.OutputLevel = DEBUG # Run for 10 "events". theApp.EvtMax = 2 diff --git a/Control/AthenaExamples/AthExOnnxRuntime/src/EvaluateModel.cxx b/Control/AthenaExamples/AthExOnnxRuntime/src/EvaluateModel.cxx index 90bcb63839f9de589f086631310ee8b0b796fff1..98edd86c7d1951bd0c00afe4e472459081556c5c 100644 --- a/Control/AthenaExamples/AthExOnnxRuntime/src/EvaluateModel.cxx +++ b/Control/AthenaExamples/AthExOnnxRuntime/src/EvaluateModel.cxx @@ -5,15 +5,17 @@ // Framework include(s). #include "PathResolver/PathResolver.h" +#include "AthOnnxruntimeUtils/FlattenInput.h" +//class AthONNX::FlattenInput; namespace AthONNX { //******************************************************************* // for reading MNIST images - std::vector<std::vector<float>> read_mnist_pixel(const std::string &full_path) //function to load test images + std::vector<std::vector<std::vector<float>>> read_mnist_pixel_notFlat(const std::string &full_path) //function to load test images { - std::vector<std::vector<float>> input_tensor_values; - input_tensor_values.resize(10000, std::vector<float>(28*28*1)); + std::vector<std::vector<std::vector<float>>> input_tensor_values; + input_tensor_values.resize(10000, std::vector<std::vector<float> >(28,std::vector<float>(28))); std::ifstream file (full_path.c_str(), std::ios::binary); int magic_number=0; int number_of_images=0; @@ -29,15 +31,15 @@ namespace AthONNX { n_cols= ntohl(n_cols); for(int i=0;i<number_of_images;++i) { - for(int r=0;r<n_rows;++r) + for(int r=0;r<n_rows;++r) { for(int c=0;c<n_cols;++c) { unsigned char temp=0; file.read((char*)&temp,sizeof(temp)); - input_tensor_values[i][r*n_cols+c]= float(temp)/255; + input_tensor_values[i][r][c]= float(temp)/255; } - } + } } return input_tensor_values; } @@ -95,9 +97,9 @@ namespace AthONNX { modelFileName.c_str(), sessionOptions ); ATH_MSG_INFO( "Created the ONNX Runtime session" ); - m_input_tensor_values = read_mnist_pixel(pixelFileName); - m_output_tensor_values = read_mnist_label(labelFileName); - + m_input_tensor_values_notFlat = read_mnist_pixel_notFlat(pixelFileName); + std::vector<std::vector<float>> c = m_input_tensor_values_notFlat[0]; + m_output_tensor_values = read_mnist_label(labelFileName); // Return gracefully. return StatusCode::SUCCESS; } @@ -164,17 +166,18 @@ namespace AthONNX { output_node_dims[0] = 1; /***************** Choose an example sample randomly ****************************/ - std::vector<float> input_tensor_values = m_input_tensor_values[m_testSample]; + std::vector<std::vector<float>> input_tensor_values = m_input_tensor_values_notFlat[m_testSample]; + std::vector<float> flatten = AthONNX::FlattenInput2D_1D(input_tensor_values, 784); // Output label of corresponding m_input_tensor_values[m_testSample]; e.g 0, 1, 2, 3 etc int output_tensor_values = m_output_tensor_values[m_testSample]; // For a check that the sample dimension is fully flatten (1x28x28 = 784) - ATH_MSG_DEBUG("Size of Input tensor: "<<input_tensor_values.size()); + ATH_MSG_DEBUG("Size of Flatten Input tensor: "<<flatten.size()); /************** Create input tensor object from input data values to feed into your model *********************/ Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, - input_tensor_values.data(), - input_tensor_values.size(), /*** 1x28x28 = 784 ***/ + flatten.data(), + flatten.size(), /*** 1x28x28 = 784 ***/ input_node_dims.data(), input_node_dims.size()); /*** [1, 28, 28] = 3 ***/ @@ -226,14 +229,15 @@ namespace AthONNX { output_node_dims[0] = m_sizeOfBatch; /************************** process multiple batches ********************************/ + int l =0; /****** variable for distributing rows in m_input_tensor_values_notFlat equally into batches*****/ for (int i = 0; i < m_numberOfBatches; i++) { ATH_MSG_DEBUG("Processing batch #" << i); std::vector<float> batch_input_tensor_values; - - for (int j = 0; j < m_sizeOfBatch; j++) { - + for (int j = l; j < l+m_sizeOfBatch; j++) { + + std::vector<float> flattened_input = AthONNX::FlattenInput2D_1D(m_input_tensor_values_notFlat[j],784); /******************For each batch we need a flattened (5 x 28 x 28 = 3920) 1D array******************************/ - batch_input_tensor_values.insert(batch_input_tensor_values.end(),m_input_tensor_values[j].begin(),m_input_tensor_values[j].end()); + batch_input_tensor_values.insert(batch_input_tensor_values.end(), flattened_input.begin(), flattened_input.end()); } Ort::Value batch_input_tensors = Ort::Value::CreateTensor<float>(memory_info, @@ -263,9 +267,9 @@ namespace AthONNX { float* floatarr = batch_output_tensors.front().GetTensorMutableData<float>(); // show true label for the test input - for(int i = 0; i<m_sizeOfBatch; i++){ + for(int i = l; i<l+m_sizeOfBatch; i++){ ATH_MSG_INFO("Label for the input test data = "<<m_output_tensor_values[i]); - int k = i*10; + int k = (i-l)*10; float max = -999; int max_index = 0; for (int j =k ; j < k+10; j++){ @@ -276,8 +280,8 @@ namespace AthONNX { } } ATH_MSG_INFO("Class: "<<max_index-k<<" has the highest score: "<<floatarr[max_index]); - } - + } + l = l+m_sizeOfBatch; } } // else/m_doBatches == True codition ends // Return gracefully. diff --git a/Control/AthenaExamples/AthExOnnxRuntime/src/EvaluateModel.h b/Control/AthenaExamples/AthExOnnxRuntime/src/EvaluateModel.h index 59e0fc5933e604e5a793aeb88479fe107d8989a9..e4a3c0424cee7c433e1f18044e9b1804d3851322 100644 --- a/Control/AthenaExamples/AthExOnnxRuntime/src/EvaluateModel.h +++ b/Control/AthenaExamples/AthExOnnxRuntime/src/EvaluateModel.h @@ -5,7 +5,6 @@ // Local include(s). #include "AthOnnxruntimeService/IONNXRuntimeSvc.h" - // Framework include(s). #include "AthenaBaseComps/AthReentrantAlgorithm.h" #include "GaudiKernel/ServiceHandle.h" @@ -79,7 +78,7 @@ namespace AthONNX { /// The "session" of ONNX Runtime that we'll be using std::unique_ptr< Ort::Session > m_session; - std::vector<std::vector<float>> m_input_tensor_values; + std::vector<std::vector<std::vector<float>>> m_input_tensor_values_notFlat; std::vector<int> m_output_tensor_values; }; // class EvaluateModel