diff --git a/Short-Range_paper/results_paper.py b/Short-Range_paper/results_paper.py index 685a69fc183774e11257d230aae70e49230be529..1f7ae3d671d929444f1ac9c85dfe24098dcd8a50 100644 --- a/Short-Range_paper/results_paper.py +++ b/Short-Range_paper/results_paper.py @@ -10,11 +10,16 @@ from model_scenarios_paper import * ############# Data ############ -## Short range emission rate for a given physical activity (jet origin concentration * breathing rate) +# Short range emission rate for a given physical activity (jet origin concentration * breathing rate) # short_range_emission_rate_values(physical_activity='Standing', expiratory_activity='Breathing') # short_range_emission_rate_values(physical_activity='Standing', expiratory_activity='Speaking') # short_range_emission_rate_values(physical_activity='Standing', expiratory_activity='Shouting') +# Emission rate comparisson between different physical activitites +# short_range_emission_rate_physical_activity_comparison(first_physical_activity='Heavy exercise', +# second_physical_activity='Standing', +# expiratory_activity='Speaking') + # C0_sr, C_sr @ 1m # short_range_values(activity='Standing', expiration='Shouting', distance=1., room_humidity = 0.5) # short_range_values(activity='Standing', expiration='Speaking', distance=1., room_humidity = 0.5) diff --git a/Short-Range_paper/scripts_paper.py b/Short-Range_paper/scripts_paper.py index d76838facc7ede88da710a73c81e0498d3a89181..017c30f4a64a270d13edbad1a4119523db0e1e89 100644 --- a/Short-Range_paper/scripts_paper.py +++ b/Short-Range_paper/scripts_paper.py @@ -62,8 +62,8 @@ def define_colormap(factors): def define_colormap_linear(cns): - min_val, max_val = 0., 1 - n = 100 + min_val, max_val = 0.25, 0.85 + n = 10 orig_cmap = mpl.cm.Reds colors = orig_cmap(np.linspace(min_val, max_val, n)) @@ -337,13 +337,11 @@ def short_range_concentration(long_range_concentration: float, activity: str, ex def dilution_factor(activity: str, max_distance: float, full: bool = False) -> None: distances: models._VectorisedFloat = np.linspace(0, max_distance, 100) - activity_dist: models._VectorisedFloat = activity_distributions(data_registry)[activity].build_model( - SAMPLE_SIZE) + activity_dist: models._VectorisedFloat = activity_distributions(data_registry)[activity].build_model(SAMPLE_SIZE) if full == True: - velocities: models._VectorisedFloat = np.linspace(0.5, 5.8, 200) cmap = define_colormap_linear(velocities) - for u0 in tqdm(velocities): + for index, u0 in enumerate(tqdm(velocities)): dilutions: list = [] for d in distances: short_range: SimpleShortRangeModel = short_range_model( @@ -359,6 +357,15 @@ def dilution_factor(activity: str, max_distance: float, full: bool = False) -> N dilutions.append(current_dilution) plt.plot(distances, dilutions, color=cmap.to_rgba(u0_new), linewidth=1) + + # Transition point xstar (first one, lowest velocity) + if index == 0: + closest_index_xstar = np.argmin(np.abs(np.array(distances) - xstar)) + plt.scatter(distances[closest_index_xstar], dilutions[closest_index_xstar], label='Transition point (lowest velocity)', zorder=10,) + + # Transition point xstar (last one, highest velocity) + closest_index_xstar = np.argmin(np.abs(np.array(distances) - xstar)) + plt.scatter(distances[closest_index_xstar], dilutions[closest_index_xstar], label='Transition point (highest velocity)', zorder=10) # Use these lines to add the colorbar cmap = plt.colorbar(cmap, ticks=[1, 2, 3, 4, 5], ax=plt.gca()) @@ -391,14 +398,21 @@ def dilution_factor(activity: str, max_distance: float, full: bool = False) -> N presence=((8, 12),), # Not relevant distance=d ) - dilutions.append(short_range.dilution_factor()[0]) + dilution_factor_output = short_range.dilution_factor() + dilutions.append(dilution_factor_output[0]) + + xstar = dilution_factor_output[1] + # Transition point xstar + closest_index_xstar = np.argmin(np.abs(np.array(distances) - xstar)) + plt.scatter(distances[closest_index_xstar], dilutions[closest_index_xstar], color='black', label='Transition point', zorder=10) plt.yscale('log') plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.xlabel('Distance (m)', fontsize=13) plt.ylabel('Dilution factor', fontsize=13) - plt.plot(distances, dilutions) + plt.plot(distances, dilutions, label='Dilution factor') + plt.legend() plt.show() return None @@ -870,8 +884,7 @@ def statistics_for_random_variable(physical_activity: bool = False, def short_range_emission_rate_values(physical_activity: str, expiratory_activity: str, virus_dist: typing.Optional[models.Virus] = None, - print_results: bool = True, - ): + print_results: bool = True): if virus_dist: SAMPLE_SIZE = len(virus_dist.viral_load_in_sputum) @@ -995,4 +1008,22 @@ def present_vl_er_histograms(physical_activity: str, expiratory_activities: typi plt.tight_layout() plt.show() - return None \ No newline at end of file + return None + +def short_range_emission_rate_physical_activity_comparison(first_physical_activity: str, + second_physical_activity: str, + expiratory_activity=str): + + first_emission_rate, _ = short_range_emission_rate_values(first_physical_activity, expiratory_activity) + second_emission_rate, _ = short_range_emission_rate_values(second_physical_activity, expiratory_activity) + + print( + 'Expiratory Activity:', expiratory_activity, + '\nFirst Physical Activity: ', first_physical_activity, + '\nSecond Physical Activity: ', second_physical_activity, + '\nvR_sr_1 (first activity): ', np.mean(first_emission_rate), + '\nvR_sr_2 (second activity): ', np.mean(second_emission_rate), + f'\nvR_sr_1 / vR_sr_2 ({expiratory_activity}): {np.mean(first_emission_rate)/np.mean(second_emission_rate):.0f} -fold' + '\n>>>>>>>' + '\n' + )