diff --git a/Scintillator/ScintDigiAlgs/python/ScintDigiAlgsConfig.py b/Scintillator/ScintDigiAlgs/python/ScintDigiAlgsConfig.py index ddf3074618aff121e704b2214309a14952436837..031fdd92eca1f89b2148cfcb170c6f0714d56611 100644 --- a/Scintillator/ScintDigiAlgs/python/ScintDigiAlgsConfig.py +++ b/Scintillator/ScintDigiAlgs/python/ScintDigiAlgsConfig.py @@ -11,12 +11,15 @@ from WaveformConditionsTools.WaveformCableMappingConfig import WaveformCableMapp # Crystalball function Parameters estimated from Deion's slides uploaded at # https://indico.cern.ch/event/1099652/contributions/4626975/attachments/2352595/4013927/Faser-Physics-run3933-plots.pdf (20/01/2022) # Parameters are per scintillator source, but not per channel. +# Updated aamplitudes (norm) to match testbeam response +# Make everything except VetoNu look like the preshower dict_CB_param = {} -dict_CB_param["Trigger"]=dict(CB_alpha=-0.38, CB_n=25, CB_mean=815, CB_sigma=7.7, CB_norm = 500 ) -dict_CB_param["Timing"]=dict(CB_alpha=-0.32, CB_n=65, CB_mean=846, CB_sigma=5.3, CB_norm = 500) # copy from Preshower; Timing was not in TestBeam -dict_CB_param["Veto"]=dict(CB_alpha=-0.38, CB_n=25, CB_mean=815, CB_sigma=7.7, CB_norm = 1000) # copy from Trigger; Veto was not in TestBeam, but in sim "Veto" is the TestBeam Trigger component -dict_CB_param["VetoNu"]=dict(CB_alpha=-0.38, CB_n=25, CB_mean=815, CB_sigma=7.7, CB_norm = 1000) # copy from Trigger; Veto was not in TestBeam, but in sim "Veto" is the TestBeam Trigger component -dict_CB_param["Preshower"]=dict(CB_alpha=-0.32, CB_n=65, CB_mean=846, CB_sigma=5.3, CB_norm = 500) +dict_CB_param["VetoNu"]=dict(CB_alpha=-0.38, CB_n=25, CB_mean=815, CB_sigma=7.7, CB_norm = 13300) + +dict_CB_param["Preshower"]=dict(CB_alpha=-0.32, CB_n=65, CB_mean=846, CB_sigma=5.3, CB_norm = 330) +dict_CB_param["Trigger"]=dict(CB_alpha=-0.32, CB_n=65, CB_mean=815, CB_sigma=5.3, CB_norm = 330 ) +dict_CB_param["Timing"]=dict(CB_alpha=-0.32, CB_n=65, CB_mean=815, CB_sigma=5.3, CB_norm = 330) +dict_CB_param["Veto"]=dict(CB_alpha=-0.32, CB_n=65, CB_mean=815, CB_sigma=5.3, CB_norm = 330) dict_baseline_params = { "Trigger" : {"mean" : 15000, "rms" : 3},