diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 8ca25820ca8a8d562a71858eca13ad287c2f746e..a5ca2d3c9cf936e6f5bf2fc1c64623a605014f40 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -1,7 +1,15 @@ -build_image: - script: - - docker build -t gitlab-registry.cern.ch/chweber/zx_postprocessingplotter:zx_limit_container . - - docker push gitlab-registry.cern.ch/chweber/zx_postprocessingplotter:zx_limit_container_test +stages: + - build + - pipeline + +build zx_postprocessingplotter: + image: + name: gitlab-registry.cern.ch/ci-tools/docker-image-builder + entrypoint: [""] + stage: build + variables: + GIT_SUBMODULE_STRATEGY: recursive + script: + - echo "{\"auths\":{\"$CI_REGISTRY\":{\"username\":\"$CI_REGISTRY_USER\",\"password\":\"$CI_REGISTRY_PASSWORD\"}}}" > /kaniko/.docker/config.json + - /kaniko/executor --context $CI_PROJECT_DIR --dockerfile $CI_PROJECT_DIR/Dockerfile --destination $CI_REGISTRY_IMAGE:$CI_COMMIT_TAG - tags: - - docker-image-build # we need a ci runner that has the special docker image building ability diff --git a/Dockerfile b/Dockerfile index 75c927c3de98b71bf966ce71f8373df2192b8c6a..920113b2590ef08d3fa13d151eb283c9cddc325e 100644 --- a/Dockerfile +++ b/Dockerfile @@ -15,13 +15,12 @@ FROM atlas/athanalysis:21.2.94 AS centosContainer - -WORKDIR /workdir +ARG PROJECT=workdir #ARG CACHEBUST=1 # with this the command below will run without cache -RUN git clone https://gitlab.cern.ch/chweber/ZX_PostProcessingPlotter.git - +COPY . /$PROJECT/ZX_PostProcessingPlotter/ +#RUN sudo yum install -y vim -WORKDIR /workdir +WORKDIR /$PROJECT diff --git a/limitSetting/limitSetting.py b/limitSetting/limitSetting.py index ed76399726b214e2e49d4ecd2efa67d3b3e1b1c9..40f0999d25c5c6da4539cf6d09f5001e0309715a 100644 --- a/limitSetting/limitSetting.py +++ b/limitSetting/limitSetting.py @@ -835,6 +835,22 @@ def writeLimitsToCSV( limitDict ): writer.writerow(headerList) for csvLine in csvMetaList: writer.writerow(csvLine) + + limit = 0 + with open ('limits.csv') as f: + reader = csv.DictReader(f) + for row in reader: + for (k,v) in row.items(): + if k == 'bestEstimate': + limit = float(v) + import json + import numpy as np + result = {} + with open('output.json', 'w') as f: + result['loss'] = np.square(limit-1) # assuming limit is in fb, this is to find out the parameters that gives close limit to 1fb + print(result) + json.dump(result, f, indent=2) + return None