diff --git a/multi_pixel_plots.py b/multi_pixel_plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..5cb02cdcad09153f9c4acb5d6c219399a72f03b0
--- /dev/null
+++ b/multi_pixel_plots.py
@@ -0,0 +1,417 @@
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import os
+import json
+import pickle
+
+from sklearn.preprocessing import PolynomialFeatures
+from sklearn.linear_model import LinearRegression
+
+q = 15
+if q == 25:
+    exrange = [220, 550]
+else:
+    exrange = [220, 425]
+nl1a = 3200
+countlim = .98*nl1a
+callim = 5000000
+path = 'results/multipix_compiled/'
+pixels = [f for f in os.listdir(path) if not '.' in f]#[:15]
+df = pd.DataFrame()
+temp = []
+for pix in pixels:
+    i = int(pix.split('c')[0][1:])
+    j = int(pix.split('c')[1])
+    pixpath = path + pix + f'/Qinj_scan_L1A_504_{q}.pkl'
+    if os.path.exists(pixpath):
+        try:
+            data = pickle.load(open(pixpath, 'rb'))
+            if len(np.unique(data.hits)) > 1:
+                data['row'] = [i]*len(data)
+                data['col'] = [j]*len(data)
+                df = pd.concat([df, data])
+                print(f'Successfully pulled data for Row {i} Col {j}.')
+                temp.append(pix)
+        except:
+            print(f'Found but failed to retrieve data for Row {i} Col {j}.')
+pixels = temp
+print(df[df.hits > 0].head())
+
+fitdata = {}
+fig, ax = plt.subplots(figsize = (9,7))
+if len(pixels) <= 5:
+    subset = pixels
+else:
+    #subset = np.random.choice(pixels, 5, replace = False)
+    subset = ['r2c5', 'r3c8', 'r13c11', 'r1c15', 'r8c9']
+calgrid = np.zeros([16, 16])
+calstdgrid = np.zeros([16, 16])
+calgridtxt = [[i for i in range(16)] for i in range(16)]
+calstdgridtxt = [[i for i in range(16)] for i in range(16)]
+for i in range(16):
+    for j in range(16):
+        data = df[(df.row == i)&(df.col == j)]
+        cal = []
+        for n in range(len(data)):
+            if data.hits.iloc[n] == nl1a:
+                cal += data.cal.iloc[n]
+        print(i, j, len(cal))
+        if len(cal) == 0:
+            calgrid[i, j] = 5000
+            calstdgrid[i, j] = 5000
+            calgridtxt[j][i] = '-'
+            calstdgridtxt[j][i] = '-'
+        else:
+            cals = np.unique(cal)
+            calcounts = [cal.count(c) for c in cals]
+            calgrid[i, j] = cals[np.argsort(-np.array(calcounts))[0]]
+            #calgrid[i, j] = np.mean(cal)
+            calstdgrid[i, j] = np.std(cal)
+            calgridtxt[j][i] = str(int(np.mean(cal)))
+            calstdgridtxt[j][i] = str(np.round(np.std(cal), 2))
+
+for i in range(16):
+    for j in range(16):
+        if calgridtxt[i][j] == '-':
+            calgrid[j, i] = np.min(calgrid)
+            calstdgrid[j, i] = np.min(calstdgrid)
+
+fig, ax = plt.subplots(figsize = (9, 7))
+ax.set_title(f'CAL Code Means Qinj = {q}')
+ax.set_xlabel('Col')
+ax.set_ylabel('Row')
+clim = .6*(np.max(calgrid) - np.min(calgrid)) + np.min(calgrid)
+im = ax.imshow(calgrid, cmap = 'Purples')
+for i in range(16):
+    for j in range(16):
+        if calgrid[j, i] > clim:
+            color = 'white'
+        else:
+            color = 'black'
+        ax.text(i, j, calgridtxt[i][j], fontsize = 8, ha = 'center', va = 'center', color = color)
+cbar = ax.figure.colorbar(im, ax = ax)
+plt.savefig(path + f'DAC_v_CAL_{q}.pdf')
+plt.savefig(path + f'DAC_v_CAL_{q}.png')
+
+fig, ax = plt.subplots(figsize = (9, 7))
+ax.set_title(f'CAL Code STD Qinj = {q}')
+ax.set_xlabel('Col')
+ax.set_ylabel('Row')
+clim = .6*(np.max(calstdgrid) - np.min(calstdgrid)) + np.min(calstdgrid)
+im = ax.imshow(calstdgrid, cmap = 'Purples')
+for i in range(16):
+    for j in range(16):
+        if calstdgrid[j, i] > clim:
+            color = 'white'
+        else:
+            color = 'black'
+        ax.text(i, j, calstdgridtxt[i][j], fontsize = 8, ha = 'center', va = 'center', color = color)
+cbar = ax.figure.colorbar(im, ax = ax)
+plt.savefig(path + f'DAC_v_CALSTD_{q}.pdf')
+plt.savefig(path + f'DAC_v_CALSTD_{q}.png')
+plt.close()
+
+fig, ax = plt.subplots(figsize = (9, 7))
+ax.set_title(f'Time of Arrival Standard Deviation v. Threshold DAC\nQinj = {q}')
+ax.set_xlabel('Threshold DAC')
+ax.set_ylabel('TOA Std. Dev.')
+for pix in subset:
+    i = int(pix.split('c')[0][1:])
+    j = int(pix.split('c')[1])
+    data = df[(df.row == i)&(df.col == j)]
+    
+    x = []
+    y = []
+    for n in range(len(data)):
+        subtoa = np.array(data.toa.iloc[n])
+        subcal = np.array(data.cal.iloc[n])
+        if len(subtoa) > countlim:
+            subtoa = subtoa[(np.abs(subcal - calgrid[i, j]) < callim).nonzero()[0]]
+            if len(subtoa) > countlim and np.std(subtoa) < 2:
+                x.append(data.vth.iloc[n])
+                y.append(np.std(subtoa))
+    if len(x) > 10:
+        transformer = PolynomialFeatures(degree = 4)
+        model = LinearRegression()
+        X = transformer.fit_transform(np.array(x).reshape(-1, 1))
+        model.fit(X, y)
+        X = transformer.fit_transform(np.array(data.vth).reshape(-1, 1))
+        fitdata[pix] = {'x': data.vth, 'y':model.predict(X), 'ydat':y}
+        ax.plot(x, y, 'o', label = f'Row {i} Col {j}')
+
+
+plt.plot(exrange, [0.5, 0.5], label = 'TOA SD = 0.5')
+plt.plot(exrange, [1, 1], label = 'TOA SD = 1')
+
+ax.set_ylim([0, 2])
+ax.set_xlim(exrange)
+plt.legend()
+plt.savefig(path + f'DAC_v_TOASD_multi_{q}.png')
+plt.savefig(path + f'DAC_v_TOASD_multi_{q}.pdf')
+plt.close()
+
+plt.figure(figsize = (9,7))
+plt.title(f'Hits v. Threshold DAC\nQinj = {q}')
+plt.xlabel('Threshold DAC')
+plt.ylabel('Hits')
+
+fig, ax = plt.subplots(figsize = (9,7))
+
+ax.set_title(f'Time of Arrival Standard Deviation Fits v. Threshold DAC\nQinj = {q}')
+ax.set_xlabel('Threshold DAC')
+ax.set_ylabel('TOA Std. Dev. Prediction')
+
+for pix in fitdata:
+    i = pix.split('c')[0][1:]
+    j = pix.split('c')[1]
+    ax.plot(fitdata[pix]['x'], fitdata[pix]['y'], label = f'Row {i} Col {j}')
+ax.set_ylim([0, 2])
+ax.set_xlim(exrange)
+plt.plot(exrange, [0.5, 0.5], label = 'TOA SD = 0.5')
+plt.plot(exrange, [1, 1], label = 'TOA SD = 1')
+
+plt.legend()
+plt.savefig(path + f'DAC_v_TOTSD_Fit_multi_{q}.png')
+
+fig, ax = plt.subplots(figsize = (9,7))
+
+ax.set_title(f'CAL Code v. Threshold DAC\nQinj = {q}')
+ax.set_xlabel('Threshold DAC')
+ax.set_ylabel('TOA Std. Dev. Prediction')
+
+for pix in fitdata:
+    i = int(pix.split('c')[0][1:])
+    j = int(pix.split('c')[1])
+    data = df[(df.row == i)&(df.col == j)]
+    x = []
+    y = []
+    err = []
+    for n in range(len(data)):
+        if data.hits.iloc[n] > 10:
+            x.append(data.vth.iloc[n])
+            y.append(np.mean(data.cal.iloc[n]))
+            err.append(np.std(data.cal.iloc[n]))
+    ax.errorbar(x, y, err, capsize = 5, alpha = 0.7, label = f'Row {i} Col {j}')
+#ax.set_ylim([0])
+ax.set_xlim(exrange)
+#ax2 = ax.secondary_yaxis('right', functions = (forward, backward))
+#ax2.set_ylabel('Jitter (ps)')
+#plt.plot(exrange, [0.5, 0.5], label = 'TOA SD = 0.5')
+#plt.plot(exrange, [1, 1], label = 'TOA SD = 1')
+
+plt.legend()
+plt.savefig(path + f'DAC_v_CAL_multi_{q}.png')
+plt.savefig(path + f'DAC_v_CAL_multi_{q}.pdf')
+
+mins = np.zeros([16, 16]) - 50000
+minstxt = [['u' for i in range(16)] for i in range(16)]
+minsconv = np.zeros([16, 16]) - 50000
+minsconvtxt = [['u' for i in range(16)] for i in range(16)]
+widths = np.zeros([16, 16]) + 5000
+widthstxt = [['u' for i in range(16)] for i in range(16)]
+datmin = np.zeros([16, 16]) - 50000
+dattxt = [['u' for i in range(16)] for i in range(16)]
+
+for i in range(16):
+    for j in range(16):
+        data = df[(df.row == i)&(df.col == j)]
+        pix = f'r{i}c{j}'
+        if pix in pixels and not pix in fitdata:
+            x = []
+            ydat = []
+            for n in range(len(data)):
+                subtoa = np.array(data.toa.iloc[n])
+                subcal = np.array(data.cal.iloc[n])
+                if len(subtoa) > countlim:
+                    subtoa = subtoa[(np.abs(subcal - calgrid[i, j]) < callim).nonzero()[0]]
+                    if len(subtoa) > countlim and np.std(subtoa) < 2:
+                        x.append(data.vth.iloc[n])
+                        ydat.append(np.std(subtoa))
+            if len(x) > 10:
+                transformer = PolynomialFeatures(degree = 4)
+                model = LinearRegression()
+                X = transformer.fit_transform(np.array(x).reshape(-1, 1))
+                model.fit(X, ydat)
+                X = transformer.fit_transform(np.array(data.vth).reshape(-1, 1))
+                y = model.predict(X) 
+
+        elif pix in pixels and pix in fitdata:
+            y = fitdata[pix]['y']
+            ydat = fitdata[pix]['ydat']
+
+        if pix in pixels:
+            try:
+                ydiff = [y[n] - y[n-1] for n in range(1, len(y))]
+                lim = 0.05
+                starter = [diff > -lim for diff in ydiff]
+                ender = [diff < lim for diff in ydiff]
+                startidx = starter.index(True)
+                ender.reverse()
+                endidx = len(ender) - ender.index(True)
+                if np.min(y) > 2 or np.min(y) < 0:
+                    stupidshittodosomenign
+                mins[i, j] = np.min(y)
+                minstxt[j][i] = f'{np.round(mins[i, j], 2)}'
+                widths[i, j] = int(data.vth.iloc[endidx] - data.vth.iloc[startidx])
+                widthstxt[j][i] = f'{int(widths[i, j])}'
+                datmin[i, j] = np.min(ydat)
+                dattxt[j][i] = f'{np.round(datmin[i, j], 2)}'
+                print(mins[i, j], minstxt[j][i], widths[i, j], widthstxt[j][i])
+            except:
+                minstxt[j][i] = 'F'
+                widthstxt[j][i] = 'F'
+                dattxt[j][i] = 'F'
+
+        else:
+            minstxt[j][i] = 'M'
+            widthstxt[j][i] = 'M'
+            dattxt[j][i] = 'M'
+
+minmin = np.max(mins)
+widthmin = np.min(widths)
+datminmin = np.max(datmin)
+for i in range(16):
+    for j in range(16):
+        if minstxt[j][i] == 'M' or  minstxt[j][i] == 'F':
+            mins[i, j] = minmin
+            widths[i,j] = widthmin
+            datmin[i, j] = datminmin
+
+fig, ax = plt.subplots(figsize = (9, 7))
+ax.set_title(f'TOA Std Dev Fit Minima Qinj = {q}')
+ax.set_xlabel('Col')
+ax.set_ylabel('Row')
+im = ax.imshow(mins, cmap = 'RdYlGn_r')#, cmap = 'Purples')
+clim = .6*(np.max(mins) - np.min(mins)) + np.min(mins)
+for i in range(16):
+    for j in range(16):
+        if mins[j, i] > clim:
+            color = 'white'
+        else:
+            color = 'black'
+        print(mins[i, j], clim, color)        
+        ax.text(i, j, minstxt[i][j], fontsize = 8, ha = 'center', va = 'center')#, color = color)
+cbar = ax.figure.colorbar(im, ax = ax)
+plt.savefig(path + f'DAC_v_TOASD_Fit_Minima_{q}.pdf')
+plt.savefig(path + f'DAC_v_TOASD_Fit_Minima_{q}.png')
+
+fig, ax = plt.subplots(figsize = (9, 7))
+ax.set_title(f'TOA Std Dev Fit Widths Qinj = {q}')
+ax.set_xlabel('Col')
+ax.set_ylabel('Row')
+clim = .6*(np.max(widths) - np.min(widths)) + np.min(widths)
+im = ax.imshow(widths, cmap = 'RdYlGn')#, cmap = 'Purples')
+for i in range(16):
+    for j in range(16):
+        if widths[j, i] > clim:
+            color = 'white'
+        else:
+            color = 'black'
+        ax.text(i, j, widthstxt[i][j], fontsize = 8, ha = 'center', va = 'center')#, color = color)
+cbar = ax.figure.colorbar(im, ax = ax)
+plt.savefig(path + f'DAC_v_TOASD_Fit_Widths_{q}.pdf')
+plt.savefig(path + f'DAC_v_TOASD_Fit_Widths_{q}.png')
+
+fig, ax = plt.subplots(figsize = (9, 7))
+ax.set_title(f'TOA Std Dev Data Minima Qinj = {q}')
+ax.set_xlabel('Col')
+ax.set_ylabel('Row')
+clim = .6*(np.max(widths) - np.min(widths)) + np.min(widths)
+im = ax.imshow(datmin, cmap = 'RdYlGn_r')#, cmap = 'Purples')
+for i in range(16):
+    for j in range(16):
+        if widths[j, i] > clim:
+            color = 'white'
+        else:
+            color = 'black'
+        ax.text(i, j, dattxt[i][j], fontsize = 8, ha = 'center', va = 'center')#, color = color)
+cbar = ax.figure.colorbar(im, ax = ax)
+plt.savefig(path + f'DAC_v_TOASD_Data_Minima_{q}.pdf')
+plt.savefig(path + f'DAC_v_TOASD_Data_Minima_{q}.png')
+
+tmins = mins*0x3/calgrid*1000
+tminstxt = [['-' if minstxt[i][j] == '-' else str(np.round(tmins[j, i], 2)) for i in range(16)] for j in range(16)]
+twidths = widths*0x3/calgrid*1000
+twidthstxt = [['-' if widthstxt[i][j] == '-' else str(np.round(twidths[j, i], 2)) for i in range(16)] for j in range(16)]
+tdatmin = datmin*0x3/calgrid*1000
+tdattxt = [['-' if dattxt[i][j] == '-' else str(np.round(tdatmin[j, i], 2)) for i in range(16)] for j in range(16)]
+
+fig, ax = plt.subplots(figsize = (9, 7))
+ax.set_title(f'True TOA Std Dev Data Minima Qinj = {q}')
+ax.set_xlabel('Col')
+ax.set_ylabel('Row')
+clim = .6*(np.max(tdatmin) - np.min(tdatmin)) + np.min(tdatmin)
+im = ax.imshow(tdatmin, cmap = 'RdYlGn')#, cmap = 'Purples')
+for i in range(16):
+    for j in range(16):
+        if widths[j, i] > clim:
+            color = 'white'
+        else:
+            color = 'black'
+        ax.text(i, j, tdattxt[i][j], fontsize = 8, ha = 'center', va = 'center')#, color = color)
+cbar = ax.figure.colorbar(im, ax = ax)
+plt.savefig(path + f'DAC_v_TTOASD_Data_Minima_{q}.pdf')
+plt.savefig(path + f'DAC_v_TTOASD_Data_Minima_{q}.png')
+
+
+fig, ax = plt.subplots(figsize = (9, 7))
+ax.set_title(f'True TOA Std Dev Minima Qinj = {q}')
+ax.set_xlabel('Col')
+ax.set_ylabel('Row')
+clim = .6*(np.max(tmins) - np.min(tmins)) + np.min(tmins)
+im = ax.imshow(twidths, cmap = 'RdYlGn')#, cmap = 'Purples')
+for i in range(16):
+    for j in range(16):
+        if widths[j, i] > clim:
+            color = 'white'
+        else:
+            color = 'black'
+        ax.text(i, j, tminstxt[i][j], fontsize = 8, ha = 'center', va = 'center')#, color = color)
+cbar = ax.figure.colorbar(im, ax = ax)
+plt.savefig(path + f'DAC_v_TTOASD_Fit_Minima_{q}.pdf')
+plt.savefig(path + f'DAC_v_TTOASD_Fit_Minima_{q}.png')
+
+
+fig, ax = plt.subplots(figsize = (9, 7))
+ax.set_title(f'True TOA Std Dev Fit Widths Qinj = {q}')
+ax.set_xlabel('Col')
+ax.set_ylabel('Row')
+clim = .6*(np.max(twidths) - np.min(twidths)) + np.min(twidths)
+im = ax.imshow(twidths, cmap = 'RdYlGn')#, cmap = 'Purples')
+for i in range(16):
+    for j in range(16):
+        if widths[j, i] > clim:
+            color = 'white'
+        else:
+            color = 'black'
+        ax.text(i, j, twidthstxt[i][j], fontsize = 8, ha = 'center', va = 'center')#, color = color)
+cbar = ax.figure.colorbar(im, ax = ax)
+plt.savefig(path + f'DAC_v_TTOASD_Fit_Widths_{q}.pdf')
+plt.savefig(path + f'DAC_v_TTOASD_Fit_Widths_{q}.png')
+
+
+
+for i in range(16):
+    for j in range(16):
+        tmins = 17
+
+plt.figure(figsize = (9,7))
+plt.title(f'Hits v. Threshold DAC\nQinj = {q}')
+plt.xlabel('Threshold DAC')
+plt.ylabel('Hits')
+
+
+for pix in fitdata:
+    i = int(pix.split('c')[0][1:])
+    j = int(pix.split('c')[1])
+    
+    data = df[(df.row == i)&(df.col==j)]
+    x = data.vth
+    y = data.hits
+    plt.plot(x, y, 'o', label = f'Row {i} Col {j}')
+plt.ylim([0, 2])
+plt.legend()
+plt.savefig(path + f'DAC_v_Hits_multi_{q}.png')
+
+
diff --git a/single_pixel_plots.py b/single_pixel_plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..7bffd6c77c35d92962d3fb9df9e20a5043aa76ce
--- /dev/null
+++ b/single_pixel_plots.py
@@ -0,0 +1,474 @@
+import numpy as np
+import matplotlib.pyplot as plt
+import pandas as pd
+import awkward as ak
+
+from sklearn.preprocessing import PolynomialFeatures
+from sklearn.linear_model import LinearRegression
+
+import pickle
+import json
+import os
+from tqdm import tqdm
+import argparse
+from scipy import stats
+
+parser = argparse.ArgumentParser()
+parser.add_argument('--loc', action = 'store', default = '4,3')
+args = parser.parse_args()
+
+if args.loc == 'broadcast':
+    loc_title = 'Broadcasted'
+    pix_path = 'broadcast/'
+else:
+    i = int(args.loc.split(',')[0])
+    j = int(args.loc.split(',')[1])
+    loc_title = f'Row {i} Col {j}'
+    pixpath = f'r{i}c{j}/'
+
+#loc_title = ''
+delay = 504
+nl1a = 3200
+nbins = 10
+fileform = f'Qinj_scan_L1A_{delay}'
+low_cut = 0
+high_cut =  500
+labfontsize = 20
+titfontsize = 25
+#path = 'results/08072023_roberto/'
+path = 'results/multipix_compiled/' + pixpath
+store = path + 'full_qinj_plots/'
+files = [f for f in os.listdir(path) if fileform in f]
+if not os.path.isdir(store):
+    os.mkdir(store)
+interest = []#[250, 255, 260, 292, 299, 340]
+#interest = [815, 820, 825, 873]
+figsize = (9, 7)
+errorbarsize = (12, 7)
+
+#Loading In Data
+if len(files) == 0:
+    print('No files here.')
+    stupid.phrase.to.stop.code
+
+print(f'Loading the following files from {path}')
+
+df = pd.DataFrame()
+for f in files:
+    print(f)
+    charge = int(f.split('_')[4].split('.')[0])
+    sub = pickle.load(open(path+f, 'rb'))
+    sub['charge'] = [charge]*len(sub.vth)
+    if not len(np.unique(sub.hits)) == 1:
+        df = pd.concat([df, sub])
+
+print()
+print(df.head())
+if df.empty:
+    stupid.phrase.to.stop.code
+
+#Slide 3 S Curve Plots
+#Hits v. Threshold DAC Values, All QSel
+
+print('Working on Hits v. Threshold DAC')
+fig = plt.figure(figsize = figsize)
+plt.title(f'Hits v. Threshold DAC {loc_title}\nDelay = {delay}, # of L1A triggers: {nl1a}', fontsize = titfontsize)
+plt.xlabel('Threshold DAC Values', fontsize = labfontsize)
+plt.ylabel('Hits',  fontsize = labfontsize)
+
+for q in tqdm(np.unique(df.charge)):
+    idx = df.charge == q
+    x = df.vth[idx]
+    y = df.hits[idx]
+    plt.plot(x, y, 'o-', label = f'Qinj = {q}')
+#plt.ylim([3100, 3300])
+plt.legend()
+plt.savefig(f'{store}/DAC_v_Hits.pdf')
+plt.savefig(f'{store}/DAC_v_Hits.png')
+plt.close()
+
+#Slide 4 S Curve Plots
+#Hits v. Threshold DAC, Individual QSel
+
+for q in tqdm(np.unique(df.charge)):
+    fig = plt.figure(figsize = figsize)
+    plt.title(f'Hits v. Threshold DAC for Qinj = {q} {loc_title}\nDelay = {delay}, # of L1A triggers: {nl1a}')
+    plt.xlabel('Threshold DAC Values')
+    plt.ylabel('Hits')
+
+    idx = df.charge == q
+    x = df.vth[idx]
+    y = df.hits[idx]
+    plt.plot(x, y, 'o-')
+    plt.savefig(f'{store}/DAC_v_Hits_q{q}.pdf')
+    plt.savefig(f'{store}/DAC_v_Hits_q{q}.png')
+    plt.close()
+
+
+temp = pd.DataFrame()
+for q in np.unique(df.charge):
+    sub = df[df.charge == q]
+    lim = np.max(sub.hits)*.9
+    idx = [df.charge.iloc[i] == q and df.vth.iloc[i] < high_cut and df.vth.iloc[i] > low_cut for i in range(len(df.hits))]
+    #idx = [df.charge.iloc[i] == q and df.hits.iloc[i] > lim and df.vth.iloc[i] < high_cut and df.vth.iloc[i] > low_cut for i in range(len(df.hits))]
+    sub = df[idx]
+    temp = pd.concat([temp, sub])
+
+del df
+df = temp
+
+print('Working on Hits v. Threshold DAC Redux')
+fig = plt.figure(figsize = figsize)
+plt.title(f'Hits v. Threshold DAC {loc_title}\nDelay = {delay}, # of L1A triggers: {nl1a}')
+plt.xlabel('Threshold DAC Values')
+plt.ylabel('Hits')
+
+for q in tqdm(np.unique(df.charge)):
+    idx = df.charge == q
+    x = df.vth[idx]
+    y = df.hits[idx]
+    plt.plot(x, y, 'o-', label = f'Qinj = {q}')
+
+plt.legend()
+plt.savefig(f'{store}/DAC_v_Hits_redux.pdf')
+plt.savefig(f'{store}/DAC_v_Hits_redux.png')
+plt.close()
+
+for q in tqdm(np.unique(df.charge)):
+    fig = plt.figure(figsize = figsize)
+    plt.title(f'Hits v. Threshold DAC for Qinj = {q} {loc_title}\nDelay = {delay}, # of L1A triggers: {nl1a}')
+    plt.xlabel('Threshold DAC Values')
+    plt.ylabel('Hits')
+
+    idx = df.charge == q
+    x = df.vth[idx]
+    y = df.hits[idx]
+    plt.plot(x, y, 'o-')
+    plt.savefig(f'{store}/DAC_v_Hits_q{q}_redux.pdf')
+    plt.savefig(f'{store}/DAC_v_Hits_q{q}_redux.png')
+    plt.close()
+
+
+fig, ax = plt.subplots(figsize = figsize)
+charges = []
+firstbest = []
+for q in np.unique(df.charge):
+    data = df[df.charge == q]
+    best = np.max(data.hits)
+    if best == nl1a:
+        charges.append(q)
+        firstbest.append(data.vth[data.hits == np.max(data.hits)].iloc[-1])
+
+ax.scatter(charges, firstbest, label = 'Data', color = 'r')
+model = stats.linregress(charges, firstbest)
+x = np.linspace(np.min(charges), np.max(charges), 1000)
+y = x*model.slope + model.intercept
+ax.plot(x, y, label = 'Fit', color = 'b')
+
+'''
+p = 0.05
+ts = np.abs(stats.t.ppf(p/2, len(charges) - 2))
+slopeerr = ts*model.slope
+interr = ts*model.intercept
+print(model.slope, model.intercept, ts)
+high = x*(model.slope + slopeerr) + (model.intercept+interr)
+low = x*(model.slope - slopeerr) + (model.intercept-interr)
+ax.fill_between(x, low, high, label = '95% Conf. Int.', alpha = 0.4, color = 'c')
+'''
+
+ax.set_title('S-Curve End Points')
+ax.set_xlabel('Qinj')
+ax.set_ylabel('Threshold DAC')
+plt.savefig(f'{store}/Threshold_DAC_Limit.png')
+plt.savefig(f'{store}/Threshold_DAC_Limit.png')
+
+
+#Slide 5 TOT, etc. Distributions at indivudial QSel, 5 different Threshold DACs
+
+print('Working on TOT, TOA, and Cal hists for individual settings')
+for q in tqdm(np.unique(df.charge)):
+    idx = [df.charge.iloc[i] == q and df.hits.iloc[i] > 0 for i in range(len(df.hits))]
+    for d in tqdm(interest, leave = False, desc = f'Working on QSel = {q}'):
+        #if not d in df.vth: d = np.random.choice(df.vth, 1)
+        idx = [df.charge.iloc[i] == q and df.vth.iloc[i] == d for i in range(len(df.vth))]
+
+        fig = plt.figure(figsize = figsize)
+        tot = df.tot[idx].iloc[0]
+        plt.hist(tot, bins = nbins, density = True)#bins = range(np.min(tot), np.max(tot) + 1), density = True)
+        plt.title(f'TOT Values for Threshold DAC = {d} {loc_title}\nEntries: {nl1a}, Delay = {delay}, Qinj = {q}')
+        plt.xlabel('TOT Values')
+        plt.ylabel('Frequency')
+        plt.yscale('log')
+        plt.savefig(f'{store}/TOT_vth_{d}_q{q}.pdf')
+        plt.savefig(f'{store}/TOT_vth_{d}_q{q}.png')
+        plt.close()
+
+        fig = plt.figure(figsize = figsize)
+        toa = df.toa[idx].iloc[0]
+        plt.hist(toa, bins = nbins, density = True)#bins = range(np.min(toa), np.max(toa) + 1), density = True)
+        plt.title(f'TOA Values for Threshold DAC = {d} {loc_title}\nEntries: {nl1a}, Delay = {delay}, Qinj = {q}')
+        plt.xlabel('TOA Values')
+        plt.ylabel('Frequency')
+        plt.yscale('log')
+        plt.savefig(f'{store}/TOA_vth_{d}_q{q}.pdf')
+        plt.savefig(f'{store}/TOA_vth_{d}_q{q}.png')
+        plt.close()
+
+        fig = plt.figure(figsize = figsize)
+        cal = df.cal[idx].iloc[0]
+        plt.hist(cal, bins = nbins, density = True)#bins = range(np.min(cal), np.max(cal) + 1), density = True)
+        plt.title(f'CaL Values for Threshold DAC = {d} {loc_title}\nEntries: {nl1a}, Delay = {delay}, Qinj = {q}')
+        plt.xlabel('CAL Values')
+        plt.ylabel('Frequency')
+        plt.savefig(f'{store}/CAL_vth_{d}_q{q}.pdf')
+        plt.savefig(f'{store}/CAL_vth_{d}_q{q}.png')
+        plt.close()
+
+#Slide ^
+
+print('Working on TOA v. DAC')
+
+for q in tqdm(np.unique(df.charge)):
+    chargeidx = df.charge == q
+    hitsidx = df.hits[chargeidx] > 100
+
+    vth = df.vth[chargeidx][hitsidx]
+
+    toa = df.toa[chargeidx][hitsidx]
+    toaavg = [np.mean(dat) for dat in toa] 
+    toastd = [np.std(dat) for dat in toa]
+
+    tot = df.tot[chargeidx][hitsidx]
+    totavg = [np.mean(dat) for dat in tot]
+    totstd = [np.std(dat) for dat in tot]
+
+    cal = df.cal[chargeidx][hitsidx]
+    calavg = [np.mean(dat) for dat in cal]
+    calstd = [np.std(dat) for dat in cal]
+    
+    fig = plt.figure(figsize = errorbarsize)
+    plt.errorbar(vth, toaavg, toastd, fmt = 'o-', capsize = 3)
+    plt.xlabel('Threshold DAC', fontsize = labfontsize)
+    plt.ylabel('TOA Mean', fontsize = labfontsize)
+    plt.title(f'Mean TOA vs. Theshold DAC for Delay = {delay} {loc_title}, Qinj = {q}', fontsize = titfontsize) 
+    plt.savefig(f'{store}/DAC_v_TOA_q{q}.pdf')
+    plt.savefig(f'{store}/DAC_v_TOA_q{q}.png')
+    plt.close()
+
+    fig = plt.figure(figsize = errorbarsize)
+    plt.errorbar(vth, totavg, totstd, fmt = 'o-', capsize = 3)
+    plt.xlabel('Threshold DAC', fontsize = labfontsize)
+    plt.ylabel('TOA Mean', fontsize = labfontsize)
+    plt.title(f'Mean TOA vs. Theshold DAC for Delay = {delay} {loc_title}, Qinj = {q}', fontsize = titfontsize)
+    plt.savefig(f'{store}/DAC_v_TOT_q{q}.pdf')
+    plt.savefig(f'{store}/DAC_v_TOT_q{q}.png')
+    plt.close()
+
+    fig = plt.figure(figsize = errorbarsize)
+    plt.errorbar(vth, calavg, calstd, fmt = 'o-', capsize = 3)
+    plt.xlabel('Threshold DAC', fontsize = labfontsize)
+    plt.ylabel('CAL Mean', fontsize = labfontsize)
+    plt.title(f'Mean CAL vs. Theshold DAC for Delay = {delay} {loc_title}, Qinj = {q}', fontsize = labfontsize)
+    plt.savefig(f'{store}/DAC_v_CAL_q{q}.pdf')
+    plt.savefig(f'{store}/DAC_v_CAL_q{q}.png')
+    plt.close()
+
+
+fig = plt.figure(figsize = errorbarsize)
+for q in tqdm(np.unique(df.charge)):
+    chargeidx = df.charge == q
+    hitsidx = df.hits[chargeidx] > 10#== nl1a
+    vth = df.vth[chargeidx][hitsidx]
+    toa = df.toa[chargeidx][hitsidx]
+    toaavg = [np.mean(dat) for dat in toa]
+    toastd = [np.std(dat) for dat in toa]
+    if len(toa) > 2:
+        plt.errorbar(vth, toaavg, toastd, alpha = 0.7, capsize = 5, label = f'Qinj = {q}')
+plt.xlabel('Threshold DAC', fontsize = labfontsize)
+plt.ylabel('TOA Mean', fontsize = labfontsize)
+plt.legend()
+plt.title(f'Mean TOA vs. Theshold DAC for Delay = {delay} {loc_title}', fontsize = titfontsize)
+plt.savefig(f'{store}/DAC_v_TOA.pdf')
+plt.savefig(f'{store}/DAC_v_TOA.png')
+plt.close()
+
+fig = plt.figure(figsize = errorbarsize)
+for q in tqdm(np.unique(df.charge)):
+    chargeidx = df.charge == q
+    hitsidx = df.hits[chargeidx] > 10#== nl1a
+    vth = df.vth[chargeidx][hitsidx]
+    tot = df.tot[chargeidx][hitsidx]
+    totavg = [np.mean(dat) for dat in tot]
+    totstd = [np.std(dat) for dat in tot]
+    if len(tot) > 2:
+        plt.errorbar(vth, totavg, totstd, alpha = 0.7, capsize = 5, label = f'Qinj = {q}')
+plt.xlabel('Threshold DAC', fontsize = labfontsize)
+plt.ylabel('TOT Mean', fontsize = labfontsize)
+plt.legend()
+plt.title(f'Mean TOT vs. Theshold DAC for Delay = {delay} {loc_title}', fontsize = titfontsize)
+plt.savefig(f'{store}/DAC_v_TOT.pdf')
+plt.savefig(f'{store}/DAC_v_TOT.png')
+plt.close()
+
+fig = plt.figure(figsize = errorbarsize)
+for q in tqdm(np.unique(df.charge)):
+    chargeidx = df.charge == q
+    hitsidx = df.hits[chargeidx] > 100
+    vth = df.vth[chargeidx][hitsidx]
+    cal = df.cal[chargeidx][hitsidx]
+    calavg = [np.mean(dat) for dat in cal]
+    calstd = [np.std(dat) for dat in cal]
+    if len(cal) > 2:
+        plt.errorbar(vth, calavg, calstd, alpha = 0.7, capsize = 5, label = f'Qinj = {q}')
+plt.xlabel('Threshold DAC', fontsize = labfontsize)
+plt.ylabel('CAL Mean', fontsize = labfontsize)
+plt.title(f'Mean CAL vs. Theshold DAC for Delay = {delay} {loc_title}', fontsize = titfontsize)
+plt.savefig(f'{store}/DAC_v_CAL.pdf')
+plt.savefig(f'{store}/DAC_v_CAL.png')
+plt.close()
+
+
+# Polynomial Regression of TOA SD data
+
+for q in np.unique(df.charge):
+    idx = df.charge == q
+    vth = df.vth[idx]
+    toa = df.toa[idx]
+    x = []
+    y = []
+    
+    for i in range(len(vth)):
+        print(df.hits[idx].iloc[i], len(toa.iloc[i]))
+        if len(toa.iloc[i]) > .98*nl1a:# and np.std(toa.iloc[i]) < 2:#> .98*nl1a :
+            x.append(vth.iloc[i])
+            y.append(np.std(toa.iloc[i]))
+    
+    if len(x) > 10: 
+        fig = plt.figure(figsize = figsize) 
+
+        transformer = PolynomialFeatures(degree = 4)
+        model = LinearRegression(fit_intercept = True)
+
+        plt.plot(x, y, 'o-', alpha = 0.8, label = 'Data')
+        
+        X = transformer.fit_transform(np.array(x).reshape(-1, 1))
+        model.fit(X, y)
+         
+        x = np.array(vth).reshape(-1, 1)
+        X = transformer.fit_transform(x)
+        y = model.predict(X)
+        
+        plt.plot(x, y, label = 'Fit')
+
+        ydiff = [y[i] - y[i-1] for i in range(1, len(y))]
+        lim = 0.05
+        starter = [diff > -lim for diff in ydiff]
+        ender = [diff < lim for diff in ydiff]
+        startidx = starter.index(True)
+        ender.reverse()
+        endidx = len(ender) - ender.index(True)
+        x = [vth[startidx]]*10 + [np.nan] + [vth[endidx]]*10
+        y = np.linspace(0, 2, 10).tolist() + [0] + np.linspace(0, 2, 10).tolist()
+        plt.plot(x, y, label = 'Boundaries')
+        
+        plt.plot([x[0], x[len(x) - 1]], [0.5, 0.5], label = 'TOA SD = 0.5')
+        plt.plot([x[0], x[len(x) - 1]], [1, 1], label = 'TOA SD = 1')
+        
+        plt.ylim([0, 2])
+        plt.xlabel('Threshold DAC')
+        plt.ylabel('CAL Std Dev.')
+        plt.legend()
+        plt.title(f'Standard Deviation of TOA vs. Theshold DAC for Delay = {delay}\n {loc_title}, Qinj = {q}')
+        plt.savefig(f'{store}/DAC_v_TOASD_q{q}.pdf')
+        plt.savefig(f'{store}/DAC_v_TOASD_q{q}.png')
+        plt.close()
+        
+
+
+fig = plt.figure(figsize = figsize)
+for q in np.unique(df.charge):
+    idx = df.charge == q
+    vth = df.vth[idx]
+    toa = df.toa[idx]
+    x = []
+    y = []
+
+    for i in range(len(vth)):
+        print(df.hits[idx].iloc[i], len(toa.iloc[i]))
+        if len(toa.iloc[i]) > .98*nl1a:# and np.std(toa.iloc[i]) < 2:#> .98*nl1a :
+            x.append(vth.iloc[i])
+            y.append(np.std(toa.iloc[i]))
+
+    if len(x) > 10:
+        plt.plot(x, y, 'o-', alpha = 0.8, label = f'Qinj = {q}')
+        
+plt.plot([x[0], x[len(x) - 1]], [0.5, 0.5], label = 'TOA SD = 0.5')
+plt.plot([x[0], x[len(x) - 1]], [1, 1], label = 'TOA SD = 1')
+
+plt.ylim([0, 2])
+plt.xlabel('Threshold DAC')
+plt.ylabel('CAL Std Dev.')
+plt.legend()
+plt.title(f'Standard Deviation of TOA vs. Theshold DAC for Delay = {delay}\n {loc_title}')
+plt.savefig(f'{store}/DAC_v_TOASD.pdf')
+plt.savefig(f'{store}/DAC_v_TOASD.png')
+plt.close()
+
+
+'''
+# TOA v. TOT 
+
+for q in np.unique(df.charge):
+    x = []
+    y = []
+    a = []
+    idx = [df.hits.iloc[i] > 0 and df.charge.iloc[i] == q for i in range(len(df.hits))]
+    keptvths = []
+    for d in np.unique(df.vth[idx]):
+        idx = [df.charge.iloc[i] == q and df.vth.iloc[i] == d for i in range(len(df.charge))]
+        lim = np.max(df.hits[idx])
+        idx =  [df.charge.iloc[i] == q and df.vth.iloc[i] == d and df.hits.iloc[i] == lim for i in range(len(df.charge))]
+        if any(idx):
+            x.append([np.mean(df.tot[idx].iloc[0])])
+            y.append([np.mean(df.toa[idx].iloc[0])])
+            a.append(len(df.toa[idx].iloc[0]))
+            keptvths.append(d)
+    a = np.array(a)
+    a = a - np.min(a)
+    a = a/np.max(a)
+    fig, ax = plt.subplots(figsize = figsize)
+    color = plt.cm.get_cmap('winter')
+    c = [i/len(x) for i in range(len(x))]
+    pos = ax.scatter(x, y, c = c, vmin = 0, vmax = 1, alpha = a, cmap = color)
+    cbar = plt.colorbar(pos, ax = ax, label = 'Threshold DAC')
+    cbar.set_ticks([0, 1])
+    cbar.set_ticklabels([np.min(keptvths), np.max(keptvths)])
+    ax.set_title(f'Mean TOT values v. Mean TOA Values {loc_title}\nDelay = {delay}, Qinj = {q}')
+    ax.set_xlabel('Mean TOT')
+    ax.set_ylabel('Mean TOA')
+    plt.savefig(f'{store}/TOT_v_TOA_{q}.png')
+    plt.savefig(f'{store}/TOT_v_TOA_q{q}.pdf')
+    plt.close()
+
+fig, ax = plt.subplots(figsize = figsize)
+for q in np.unique(df.charge):
+    x = []
+    y = []
+    idx = [df.charge.iloc[i] == q for i in range(len(df.hits))]
+    lim = np.max(df.hits[idx])
+    idx = [df.charge.iloc[i] == q and df.hits.iloc[i] == lim for i in range(len(df.hits))]
+    sub = df[idx]
+    for i in range(len(sub.vth)):
+        if np.abs(sub.hits.iloc[i] -  np.max(sub.hits))/np.max(sub.hits) < 0.05:
+            x += sub.tot.iloc[i]
+            y += sub.toa.iloc[i]
+    plt.plot(x, y, 'o-', label = f'Qinj = {q}')
+    
+ax.set_title(f'TOT values v. TOA Values {loc_title}\nDelay = {delay}')
+ax.set_xlabel('Time over Threshold')
+ax.set_ylabel('Time of Arrival')
+plt.legend()
+plt.savefig(f'{store}/TOT_v_TOA_full.png')
+plt.savefig(f'{store}/TOT_v_TOA_full.pdf')
+plt.close()
+'''
diff --git a/test_ETROC.py b/test_ETROC.py
index eb0494e50a18594ef6a604580404f045ba1c44e2..ce1b75b08c934d35047db9075754f68b5573b1ea 100644
--- a/test_ETROC.py
+++ b/test_ETROC.py
@@ -147,6 +147,8 @@ if __name__ == '__main__':
     argParser.add_argument('--scan', action='store', default=['full'], choices=['none', 'full', 'simple', 'internal'], help="Which threshold scan to run with ETROC2")
     argParser.add_argument('--mode', action='store', default=['dual'], choices=['dual', 'single'], help="Port mode for ETROC2")
     argParser.add_argument('--internal_data', action='store_true', help="Set up internal data generation")
+    argParser.add_argument('--loc', action = 'store', default = '')
+    argParser.add_argument('--temp', action = 'store_true')
     args = argParser.parse_args()
 
 
@@ -372,6 +374,19 @@ if __name__ == '__main__':
                         print('Link not good, but continuing')
                         rb_0.get_link_status(link, slave=slave)
                         break
+        if args.temp:
+            N_temps = 10000
+            temps = {'time':[], 'temp':[]}
+            starttime = time.time()
+            for t in tqdm(range(N_temps)):
+                try:
+                    temps['temp'].append(etroc.rb.SCA.read_adc(0x02))
+                    temps['time'].append(time.time() - starttime)
+                except:
+                    print('Failed at {time.time() - starttime}s')
+            with open('results/temp_data.json', 'w') as outfile:
+                json.dump(temps, outfile)
+                
 
         ## Bloc below to be retired
         ## Keeping it for one more iteration
@@ -807,14 +822,20 @@ if __name__ == '__main__':
         if args.qinj_vth_scan:
             fifo.reset()
             delay = 10
-            i = 4
-            j = 3
+            if len(args.loc) == 0:
+                i = 4
+                j = 3
+            else:
+                i = int(args.loc.split('c')[0][1:])
+                j = int(args.loc.split('c')[1])
+
             L1Adelay = 501
             
-            vth_axis    = np.linspace(415, 820, 406)
+            vth_axis    = range(220, 500)#np.linspace(415, 820, 406)
             #charges = [1,5,10,15,20,25,30,32]
             #charges = [5,10,15,20,25,30,32]
-            charges = [4,6,8,12]
+            #charges = [4, 6, 8, 12, 15, 20, 25, 30]#[4,6,8,12]
+            charges = [8]
             results =[[] for i in range(0,len(charges))]
             TOA = [[] for i in range(0,len(charges))]
             TOT =  [[] for i in range(0,len(charges))]
@@ -855,7 +876,8 @@ if __name__ == '__main__':
                                         'tot' : TOT[k-1],
                                         'cal' : CAL[k-1]})
                 #print(scan_df.info())
-                scan_df.to_pickle(f"results/Qinj_scan_L1A_504_{q}.pkl")
+                store = f'results/09052023_multipix_uptd/r{i}c{j}/'
+                scan_df.to_pickle(f"{store}Qinj_scan_L1A_504_{q}.pkl")
                 
             fig, ax = plt.subplots()