
POSIX XSI Compatible Operating System

14th International Conference on Accelerator & Large Experimental Physics Control Systems
 October 6-11, 2013 San Francisco, California

CMX – A GENERIC SOLUTION TO EXPOSE MONITORING METRICS

IN C AND C++ APPLICATIONS

Felix Ehm, Yves Fischer, Georgia-Maria Gorgogianni, Steen Jensen, Peter Jurcso
CERN, Geneva, Switzerland

The knowledge of the internal state of processes is essential for problem diagnostic as well as for constant monitoring for pre-failure

recognition. The CMX library provides monitoring capabilities for C/C++ similar to the Java Management Extensions (JMX). It allows

registering and exposing runtime information as floating point numbers and character data. This can be subsequently used by diagnostics

tools for checking thresholds, sending alerts and trending. CMX uses shared-memory for low latency read/update actions, which is an

important requirement in real-time processes.

With the new CMX library, a software developer has a simple and intuitive API which offers a time-saving way to expose internal information on (real-time) C/C++ processes.

For the first time, it is possible to inspect these programs – without using debugging tools – during their execution. CMX is fully integrated into DIAMON, and thus, allows

inspecting information remotely in the same way as it is now for Java processes using one central interface.

Pre-failure recognition and detailed diagnostics, which are essential for running complex infrastructures, are now possible and the first experiences within CERN’s accelerator

controls group show that it enhances the monitoring and diagnostic capabilities of C/C++ programs.

ICALEPCS'13

Conclusions

THPPC014

Abstract

C
M

X
 L

ib
ra

ry

Computer

Architecture

Future

● Integration of CMX into the majority of CERN’s

accelerator control system components

● Use of CMX to monitor about 2000 server processes on

1000 computers of CERN’s accelerator control system

● Experience collected in production environment may lead

to further extensions

● Elaborate other usage domains and scenarios

● CMX is a public project:

http://cern.ch/cmx

Component

.component_name = “stats”

.no_metrics = 20

.no_properties = 10

.size_property_value = 30

{ H
e

a
d

e
r }

1
3

2
 B

y
te

{ M
e

tric
s
 }

n
o
_

m
e

tric
s
 * 4

8
 B

y
te

{ P
ro

p
e

rtie
s
 }

n
o

_
p

ro
p

e
rtie

s
 *

(4
8

 B
y
te

 +
 s

iz
e

o
f(v

a
lu

e
))

.name = “counter”

.value = 10.123

.name = “hostname”

.value = “pcbe15008”

….

Component
….

….

…
.

Pre-failure detection

Monitoring

Trending

· CMX has no external dependencies

· Lightweight: <100kB code, only 3100 SLOC

· Simple and intuitive C API

· Object-oriented C++ API available

· Portable by POSIX conformance

Maintenance

Diagnostics

Debugging

 Administrative Tools

 CMX Agent

STOMP

HTTP

Shared Memory

● Current number of threads

● Thread dead-lock detection

● Network connection tracking

● Transaction per second

Manifest Data of an Executable
$Manifest: product=p3;version=DEV;... $
$Manifest: depOf=p3;product=p2;version=DEV;... $
$Manifest: depOf=p3;product=p1;version=DEV;... $
$Manifest: depOf=p3.p2;product=p1;version=1.0;...$

· Low latency operations

· Supported data types: numerical values and strings

· Flexible memory model: number of metrics can be specified

· Components: metric groups created on demand during runtime

· Automatic timestamp for updates

 ProcessC++

 ProcessC

 ProcessC++

 ProcessC

CMX Main-Registry
// Keeps track of all Components

7
4
K

B

C
C

M
X

cmx_property_add("hostname")

cmx_property_set("hostname","pcbe15008")

 CMX HTTP agent

 CMX diamon agent

System V Shared Memory (SHM)

p3

p2-DEV p1-DEV

p1-DEVIs
 b

u
ilt

 w
it
h

Is linked with Is linked with

Features Integration

STOMP

HTTP

cmx_metric_add("counter")

cmx_metric_set("counter", 10.123)

cmx_comp_register("stats",20,10,30)

Implementation Details

● Current memory consumption

● Current working directory

● Current number of threads

● Communication errors

CMX - Gain control over your C/C++ processes !

CMX Remote Viewer

Example: expose build-time informationC+
+

C
M

X

Example Use Cases

Monitoring System

Write-access protected

with SysV Semaphores

clients=10
packets_lost=0

commits=failed=0
txns_per_s=1000
no_threads=10

Browser

Command Line

Exposes

Exposes

Reads

Inspects via

Inspects via

Computer

….
Component

….
Main-Registry

….
Component

….
ComponentRemote Access

Local Access
Software

Engineer

Operator

	Copy (1) of poster.vsd
	Poster

