
CMX - A GENERIC SOLUTION TO EXPOSE MONITORING METRICS
IN C AND C++ APPLICATIONS

Felix Ehm, Yves Fischer, Georgia-Maria Gorgogianni, Steen Jensen, Peter Jurcso,
CERN, Geneva, Switzerland

Abstract
CERN’s Accelerator Control System is built upon a

large number of C, C++ and Java services that are
required for daily operation of the accelerator complex.
The knowledge of the internal state of these processes is
essential for problem diagnostic as well as for constant
monitoring for pre-failure recognition. The CMX library
follows similar principles as JMX (Java Management
Extensions) and provides similar monitoring capabilities
for C and C++ applications. It allows registering and
exposing runtime information as simple counters, floating
point numbers or character data. This can be subsequently
used by external diagnostics tools for checking
thresholds, sending alerts or trending. CMX uses shared-
memory to ensure non-blocking read/update actions,
which is an important requirement in real-time processes.
This paper introduces the topic of monitoring C/C++
applications and presents CMX as a building block to
achieve this goal.

INTRODUCTION
CERN’s accelerator control system [1] is essential for

operating the accelerator complex; hence its availability,
performance and correct functioning are critical.
Consequently, a pro-active approach to problem
resolution is desirable, where anomalies are detected and
corrected even before operation is affected.

In terms of software, the control system is comprised of
some 3500 processes written in Java, C and C++. The
latter two are in comparison to Java rather “black boxes”
with very limited support for identification and diagnostic
of problems. Simple process existence checks, and
probing their functionality regularly (e.g. ”they do what
they supposed to do”) as well as a manual core dump
after a problem is suspected, are the usual ways.

However, blocked threads for example cannot be
automatically detected. Another example is a “delayed
problem”: software is updated during working hours
which introduces faulty code. Although working in the
beginning it eventually stops in the night, for example, as
an internal message queue has filled up. The
consequence: Experts have to be called in and the
resolution of the situation takes much longer than during
the day. Both problem types negatively impact running
costs and overall service availability.

To overcome such situations and to improve pro-

activeness, the detailed “health” (state) of each process
must be known at any time, which in turn requires two
mechanisms:

1) Each process exposes internal numeric values and
character data (metrics) indicative of its state.

2) A centralized system for monitoring, offering the
full range of features like history, trending, status
displays and notification in case of values
breaching pre-configured thresholds.

DIAMON [2] is such a centralized system at CERN and
currently monitors computers and the presence of
required processes. For Java services it additionally
accesses metrics exposed via the Java Management
Extensions (JMX) [3] and uses this information to further
determine the overall health state. For C/C++ programs in
contrary, we found no suitable equivalent to JMX or a
similar technology which fits the requirements for our
(real-time) processes.

Consequently, we set out to implement a light-weight
library, providing a sub-set of JMX’s extensive
functionality, and accordingly named the library CMX.
The current state of CMX is presented in this article.

REQUIREMENTS
The following high-level requirements were identified

for CMX:
- Exposure of numeric values and character data

outside the process context.
- Low latency operations for reading or updating

metrics, actions must deterministically finish
independently from their result within 10
milliseconds.

- Operable in a disk-less environment.
- Lightweight dependencies and minimal memory

footprint, < 200 Kilobytes.
- User-friendly C and C++ API, which allows

dynamic registration of metrics.
- Simple integration with existing monitoring

systems.
- Portable to Microsoft Windows, Linux and

LynxOS [4] operating systems.

Why can’t we use existing solutions?
The search for existing generic solutions showed that

this area is quite uncovered. The only promising
technology is the Simple Network Management Protocol
SNMP [5]. It is an IETF protocol for managing devices
on IP networks. Devices that typically support SNMP
include routers, switches, servers, workstations, printers,
modem racks and more. It is being widely used by many
hardware vendors to allow remote monitoring of their
network devices and supported by the majority of

monitoring solutions on the market (NAGIOS, ZABBIX,
MRTG, etc.).

For investigating SNMP we used the commonly known
net-snmp [6] package. Metrics are exposed via a build-in
Agent and a Management Information Base file (MIB) [7]
indicates what metrics can be read.

Apart from the fact that it is not directly designed to be
used within (complex) software, the result of the
evaluation showed that the management of MIB files is
not trivial. It requires thorough understanding of SNMP
concepts and the implementation of the agent calls is not
straight forward, e.g. metrics cannot be added/remove
easily at runtime. During tests, the memory footprint
exceeded our limits and update roundtrip times were too
slow for real-time processes.

CMX ARCHITECTURE
Enabling inter-process communication

The requirements in terms of low-latency and
availability on low-performance machines lead to the
decision to use Shared Memory (SHM) technology for
inter-process communication.

POSIX.1-2008 [8] defines the UNIX System V (SysV)
SHM Interface (part of X/Open System Interface) as well
as the user space utilities for managing SysV shared
memory. SysV SHM is supported on all target platforms
(Linux, LynxOS, Microsoft Windows).

SHM segments can be created and attached to the
program’s memory space using system calls and are
identified by system generated (and unique) numerical
Segment Identifiers (SIDs).

To access the very same segment across several
applications the user can define a static user key.
However, the usage of keys should be reduced to the
minimum to avoid key collisions between unrelated
applications. Therefore, CMX uses only one such user
key as explained in the following.

Shared memory structures in CMX
Within CMX, an internal look-up data structure

provides information on all registered processes. It is
stored in a SHM segment and called the Main Registry.

At initialization time, CMX will try to access the main
registry and in case it was not created before (SHM
segment with common key ‘100’ does not exist)
automatically instantiates it.

Metrics and other information of a process are stored
separately as Component data structures. For their SHM
segment only system generated SIDs are used instead of
keys because, as mentioned before, they may not be
unique. The SID is saved in the registry as illustrated in
Figure 1. In general, an executable can have more than
one Component. At program initialization, CMX creates
one by default (with empty component_name), to store a
standard set of process related information like owner,
start-up time and operating system, etc. (see Figure 1).

With each entry in the main registry, the Component’s
layout version is stored to allow backward compatibility

in case it changes. An example here is to be able to read
SHM segments from processes that use different
Component layouts from older (but not newer) versions
of CMX. This is of significant operational advantage, as it
is not necessary to upgrade all programs by a newer
version of CMX on one computer at the same time and
thus, supports the idea of “smooth upgrades” [7].

A cleanup procedure executed with each Component
creation makes sure old entries (process is non-existent)
are properly deleted.

A Component can store two types of metrics: characters
(strings) and numbers. The allowed amount of each
metric has to be set at the creation time of the Component
and cannot be modified afterwards. In this range,
however, metrics can be added and removed as
demanded. The characteristics of the two types are:
• Numbers: 64-Bit floating point.
• Strings: “dynamic” length, predefined size (default

255) at Component creation applies to all strings
within.

Figure 1: CMX's data structures in System V Shared Memory

Locking and data integrity
While CMX is virtually non-blocking and has a very

low execution overhead, it is required to protect internal
data structures against race conditions. This is
implemented using POSIX semaphores and timed
operations (semtimedop()). The timeout can be configured
by the user via the API and hence, can be optimized to the
characteristics of the local environment. CMX uses 100
milliseconds as default semaphore timeout.

There are three mechanisms in CMX to ensure data
integrity:

1. Only one process at a time is able to modify the
main registry. This is independent from a process
updating a metric as Components can be
referenced directly (see 2).

2. Each Component is protected against concurrent
access (read and write) using locks: only one
process can update or read data from a Component
at a time (see Performance Analysis section for
more details on the consequences).

3. CMX ensures that changes to a Component are
restricted to the owner process only. This is
achieved through the update function which checks
if the caller has the same process id as the one
stated in the Component field.

Code example
Figure 2 shows an example of how a metric is exposed

using the CMX API (for better readability the error
handling has been removed).

Figure 2: Code example for enabling CMX in C

Operating system implications
The use of SysV SHM segments and semaphores in

CMX is regulated by the operating system limits.
The most interesting setting is SHMSEG, which is the

number of maximum allowed shared memory segments
per process and defaults to 4096 on Linux. This is
sufficient for our environment, but should be known as a
limitation if more Components have to be created. It is
still possible to raise it by changing the system
configuration.

Figure 3: Latency effects on updating metrics at high frequency

PERFORMANCE ANALYSIS
Figure 3 shows the latency effect of concurrent access

on one component for a raising number of threads. For
this test*, 100 numerical metrics are registered in one
Component and each thread tries to update each of them
with an arbitrary value as fast as possible. One update can
either end successfully or return with a lock timeout error.

In this scenario the locking timeout is set to the very
low value of 4 milliseconds (dashed line in Figure 3).
When running, each thread tries to acquire the shared lock
of the Component and measures the time after the lock
was acquired, to update all 100 numbers and to release the
lock. Each failed lock is recorded. The percentage of
successful updates per test is shown with the solid line in
Figure 3. Up to six threads, the latency raises, but all

* Test machine used: HP G7 with 2 x Intel X5660 (12 physical cores),
running Scientific Linux CERN 6.4 with Linux 2.6.32-358

locks are acquired in-time. With more threads, the update
success rate decreases as the line indicates.

A call resulting in locking error takes 4 to 6
milliseconds before returning with an error code. The
additional 1-2 milliseconds overhead is considered as a
consequence of the operating system thread-scheduler.

The tests have shown that CMX provides very low
latency for updating metrics and shows deterministic and
real-time behaviour and therefore satisfies the
corresponding requirements.

USAGE AND NEW POSSIBILITIES
Meaningful information

The fact that CMX enables exposure of process
metrics, has little value unless the data provides useful
information e.g. indications that problems are building up.

Developers possess detailed knowledge about the
processes they support. However,
as C/C++ process metrics is an as
of yet relatively unexplored
domain for them, they will need
to learn in an iterative process
what constitutes meaningful
metrics for the particular process
they’re responsible for.

Simplified root cause identification
As CMX enables establishing a more detailed state of
individual C/C++ processes, it becomes easier to identify
the root cause of problems in cases where multiple
services are involved – which in turn will help decrease
downtime.

Exposure of runtime and build information
CMX is able to provide runtime (see Figure 4) and

compile time information of the executable. The latter is
possible via its built-in Manifest file, which is
automatically inserted into the final binary during build
time and which includes information like code version,
compiler version, platform and more. The very same is
also available for all statically linked libraries.

This new feature enables dependency tracking and
enriches the diagnostic tools for developers.

Figure 4: CMX command line tool showing information

on the program

// Register process
fb_process_register();
// add a new component
comp_uuid = fb_comp_register("component");
// add a new metric in the component
fb_metric_add(comp_uuid, "counter1");
// set the new metric
fb_metric_set(comp_uuid, "counter1", my_number);
// free cmx resources
fb_process_unregister();

User abcdefgh
Processname cmxctl
PID 32772
Hostname computer.cern.ch
OS Linux
OS Kernel 2.6.32-358.14.1.el6.x86_64
Version Level #1 SMP Wed Jul 17 08:30:19 CEST 2013
Hardware type x86_64

Expose

Monitor

Verify

Modify

Figure 5: Integration of CMX into the

DIAMON monitoring system

Integration with monitoring systems
With programs exposing internal information via CMX
library it is now possible to utilize this data further on.
The CLIC monitoring agent is part of the DIAMON
service and can obtain metric information via its CMX
plugin and subsequently provide them on its network
interface to external services. Due to its very low memory
footprint of less than 2 Megabytes it also runs on
hardware with small resources and the limited
dependencies allows porting it to various platforms. In
fact, it is installed on all real-time computers, high end
servers, operational consoles and around 500 virtual
machines. In total more than 2000 machines are
monitored through the CLIC agent.

From this point on service managers of C/C++services
can profit from the full range of features, like value
history trending, status displays and notification in case of
values breaching pre-configured thresholds.

Planning and preventive maintenance
By following the history of metric values over time it is

possible to make statements about their future
development. Software and hardware can be better tuned
or earlier upgraded to changed requirements, e.g. more
clients start to demand data from a server.

Discover service dependencies
With CMX’s support for exposing strings, it is possible

to capture patterns of how processes connect to each other
by exposing host/process names of clients. This can, for
example, being used to inform if the service will be
modified or taken down for maintenance.

FUTURE
For our domain we have identified the following plans

for the future:
• Collect more experience in production

environment.
• Integrate CMX into the majority of CERN’s

control system components.
• Development of a alternative read-out tool to the

CLIC agent, e.g. based on HTTP.
• Make the project public: e.g. open source project.
• Elaborate usage for other domains, and continue

to improve CMX in respect to new requirements.

CONCLUSIONS
With the new CMX library, a software developer has a

simple and intuitive API which offers a time-saving way
to expose internal information on (real-time) C/C++
processes. For the first time, it is possible to inspect these
programs – without using debugging tools – during their
execution.

CMX is fully integrated into DIAMON, and thus,
allows inspecting information remotely in the same way
as it is now for Java processes using one central interface.

Pre-failure recognition and detailed diagnostics, which
are essential for running complex infrastructures, are now
possible and the first experiences within CERN’s
accelerator controls group show that it enhances the
monitoring and diagnostic capabilities of C/C++
programs.

The challenge of providing minimal latency operations
with guaranteed data integrity was an important aspect in
the design. Hence, its careful implementation as well as
thorough testing resulted in a major part of the
development. Although the name is derived from JMX,
CMX provides only a subset of the functionality in JMX.
A built-in agent acting to incoming network requests, for
example, was not in scope of the CMX as this implied
adding complexity for proper handling and ensuring
security aspects.

A main factor in this chain, however, is the quality of
the metrics which has to be ensured by the developer of
the application.

References
[1] CERN's Accelerator Control Group, http://cern.ch/be-

dep-co.
[2] W. Buczak, M. Buttner, F. Ehm, P. Jurcso and M.

Mitev, "DIAMON - Improved Monitoring of CERN's
Accelerator Controls Infrastructure," 2013.

[3] Oracle, "JMX Interface Technology,"
http://www.oracle.com/.

[4] LynxWorks, "LynxOS, Real-Time Operating
System," http://www.lynuxworks.com/.

[5] IETF, "SNMP Protocol,"
http://www.ietf.org/rfc/rfc1157.txt.

[6] "Net-SNMP," http://net-snmp.sourceforge.net/.
[7] IETF, "Management Information Base, RFC-1156,"

http://www.ietf.org/rfc/rfc1156.txt, 1990.
[8] Posix.1 2008, IEEE Std 1003.1™, 2013.
[9] V.Baggiolini, D.Csikos, P.Tarasenko, Z.Zaharieva,

M.Arruat and R.Gorbonosov, Backward Compatibility
As A Key Measure For Smooth Upgrades To The LHC
Control System, CERN, 2011.

	CMX - A Generic solution to expose monitoring metrics in C and C++ Applications
	Introduction
	REquirements
	Why can’t we use existing solutions?

	CMX architecture
	Enabling inter-process communication
	Shared memory structures in CMX
	Locking and data integrity
	Code example
	Operating system implications

	Performance Analysis
	Usage and NEW POSSIBILITIES
	Meaningful information
	Simplified root cause identification
	Exposure of runtime and build information
	Integration with monitoring systems
	Planning and preventive maintenance
	Discover service dependencies

	Future
	Conclusions

