AnalysisTimingATLASpix.cpp 41.6 KB
Newer Older
1
2
3
/**
 * @file
 * @brief Implementation of [AnalysisEfficiency] module
4
5
 *
 * @copyright Copyright (c) 2017-2020 CERN and the Corryvreckan authors.
6
7
8
9
10
 * This software is distributed under the terms of the MIT License, copied verbatim in the file "LICENSE.md".
 * In applying this license, CERN does not waive the privileges and immunities granted to it by virtue of its status as an
 * Intergovernmental Organization or submit itself to any jurisdiction.
 */

11
#include "AnalysisTimingATLASpix.h"
12
13
14
15
16
17
18
19
20
21

#include "objects/Cluster.hpp"
#include "objects/Pixel.hpp"
#include "objects/Track.hpp"

#include "TF1.h"
#include "TFile.h"

using namespace corryvreckan;

22
AnalysisTimingATLASpix::AnalysisTimingATLASpix(Configuration config, std::shared_ptr<Detector> detector)
23
24
    : Module(std::move(config), detector) {

25
26
27
    // Backwards compatibilty: also allow timing_cut to be used for time_cut_abs
    m_config.setAlias("time_cut_abs", "timing_cut", true);

28
29
    using namespace ROOT::Math;
    m_detector = detector;
30
31
32
33
34
35
36
37
    if(config.count({"time_cut_rel", "time_cut_abs"}) > 1) {
        throw InvalidCombinationError(
            m_config, {"time_cut_rel", "time_cut_abs"}, "Absolute and relative time cuts are mutually exclusive.");
    } else if(m_config.has("time_cut_abs")) {
        m_timeCut = m_config.get<double>("time_cut_abs");
    } else {
        m_timeCut = m_config.get<double>("time_cut_rel", 3.0) * m_detector->getTimeResolution();
    }
38
    m_chi2ndofCut = m_config.get<double>("chi2ndof_cut", 3.);
39
    m_timeCutFrameEdge = m_config.get<double>("time_cut_frameedge", static_cast<double>(Units::convert(20, "ns")));
40
41
42
43
44
45
46

    if(m_config.has("cluster_charge_cut")) {
        m_clusterChargeCut = m_config.get<double>("cluster_charge_cut");
    }
    if(m_config.has("cluster_size_cut")) {
        m_clusterSizeCut = m_config.get<size_t>("cluster_size_cut");
    }
47
    m_highTotCut = m_config.get<int>("high_tot_cut", 40);
48
    m_highChargeCut = m_config.get<double>("high_charge_cut", static_cast<double>(m_highTotCut));
49
    m_leftTailCut = m_config.get<double>("left_tail_cut", static_cast<double>(Units::convert(-10, "ns")));
50
51
52

    if(m_config.has("correction_file_row")) {
        m_correctionFile_row = m_config.get<std::string>("correction_file_row");
53
        m_correctionGraph_row = m_config.get<std::string>("correction_graph_row");
54
55
56
57
58
59
        m_pointwise_correction_row = true;
    } else {
        m_pointwise_correction_row = false;
    }
    if(m_config.has("correction_file_timewalk")) {
        m_correctionFile_timewalk = m_config.get<std::string>("correction_file_timewalk");
60
        m_correctionGraph_timewalk = m_config.get<std::string>("correction_graph_timewalk");
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        m_pointwise_correction_timewalk = true;
    } else {
        m_pointwise_correction_timewalk = false;
    }

    m_calcCorrections = m_config.get<bool>("calc_corrections", false);
    m_totBinExample = m_config.get<int>("tot_bin_example", 3);

    total_tracks_uncut = 0;
    tracks_afterChi2Cut = 0;
    tracks_hasIntercept = 0;
    tracks_isWithinROI = 0;
    tracks_afterMasking = 0;
    total_tracks = 0;
    matched_tracks = 0;
76
    tracks_afterClusterChargeCut = 0;
77
78
79
    tracks_afterClusterSizeCut = 0;
}

80
void AnalysisTimingATLASpix::initialise() {
81
82
83
84
85
86

    auto pitch_x = static_cast<double>(Units::convert(m_detector->pitch().X(), "um"));
    auto pitch_y = static_cast<double>(Units::convert(m_detector->pitch().Y(), "um"));

    std::string name = "hTrackCorrelationTime";
    hTrackCorrelationTime =
87
        new TH1F(name.c_str(), name.c_str(), static_cast<int>(2. * m_timeCut), -1 * m_timeCut, m_timeCut);
88
    hTrackCorrelationTime->GetXaxis()->SetTitle("Track time stamp - cluster time stamp [ns]");
89
    hTrackCorrelationTime->GetYaxis()->SetTitle("# events");
90
91
92

    name = "hTrackCorrelationTimeAssoc";
    hTrackCorrelationTimeAssoc =
93
        new TH1F(name.c_str(), name.c_str(), static_cast<int>(2. * m_timeCut), -1 * m_timeCut, m_timeCut);
94
    hTrackCorrelationTimeAssoc->GetXaxis()->SetTitle("track time stamp - cluster time stamp [ns]");
95
    hTrackCorrelationTimeAssoc->GetYaxis()->SetTitle("# events");
96

97
98
99
100
    name = "hTrackCorrelationTimeAssocVsTime";
    hTrackCorrelationTimeAssocVsTime = new TH2F(name.c_str(), name.c_str(), 3e3, 0, 3e3, 1e3, -5, 5);
    hTrackCorrelationTimeAssocVsTime->GetYaxis()->SetTitle("track time stamp - cluster time stamp [us]");
    hTrackCorrelationTimeAssocVsTime->GetXaxis()->SetTitle("time [s]");
101
    hTrackCorrelationTimeAssocVsTime->GetZaxis()->SetTitle("# events");
102

103
104
105
    name = "hTrackCorrelationTime_rowCorr";
    std::string title = "hTrackCorrelationTime_rowCorr: row-by-row correction";
    hTrackCorrelationTime_rowCorr =
106
        new TH1F(name.c_str(), title.c_str(), static_cast<int>(2. * m_timeCut), -1 * m_timeCut, m_timeCut);
107
    hTrackCorrelationTime_rowCorr->GetXaxis()->SetTitle("track time stamp - cluster time stamp [ns]");
108
    hTrackCorrelationTime_rowCorr->GetYaxis()->SetTitle("# events");
109
110
111

    name = "hTrackCorrelationTime_rowAndTimeWalkCorr";
    hTrackCorrelationTime_rowAndTimeWalkCorr =
112
        new TH1F(name.c_str(), name.c_str(), static_cast<int>(2. * m_timeCut), -1 * m_timeCut, m_timeCut);
113
    hTrackCorrelationTime_rowAndTimeWalkCorr->GetXaxis()->SetTitle("track time stamp - cluster time stamp [ns]");
114
    hTrackCorrelationTime_rowAndTimeWalkCorr->GetYaxis()->SetTitle("# events");
115
116
117

    name = "hTrackCorrelationTime_rowAndTimeWalkCorr_l25";
    hTrackCorrelationTime_rowAndTimeWalkCorr_l25 =
118
        new TH1F(name.c_str(), name.c_str(), static_cast<int>(2. * m_timeCut), -1 * m_timeCut, m_timeCut);
119
120
    hTrackCorrelationTime_rowAndTimeWalkCorr_l25->GetXaxis()->SetTitle(
        "track time stamp - cluster time stamp [ns] (if seed tot < 25lsb)");
121
    hTrackCorrelationTime_rowAndTimeWalkCorr_l25->GetYaxis()->SetTitle("# events");
122
123
124

    name = "hTrackCorrelationTime_rowAndTimeWalkCorr_l40";
    hTrackCorrelationTime_rowAndTimeWalkCorr_l40 =
125
        new TH1F(name.c_str(), name.c_str(), static_cast<int>(2. * m_timeCut), -1 * m_timeCut, m_timeCut);
126
127
    hTrackCorrelationTime_rowAndTimeWalkCorr_l40->GetXaxis()->SetTitle(
        "track time stamp - cluster time stamp [ns] (if seed tot < 40lsb)");
128
    hTrackCorrelationTime_rowAndTimeWalkCorr_l40->GetYaxis()->SetTitle("# events");
129
130
131

    name = "hTrackCorrelationTime_rowAndTimeWalkCorr_g40";
    hTrackCorrelationTime_rowAndTimeWalkCorr_g40 =
132
        new TH1F(name.c_str(), name.c_str(), static_cast<int>(2. * m_timeCut), -1 * m_timeCut, m_timeCut);
133
134
    hTrackCorrelationTime_rowAndTimeWalkCorr_g40->GetXaxis()->SetTitle(
        "track time stamp - cluster time stamp [ns] (if seed tot > 40lsb)");
135
    hTrackCorrelationTime_rowAndTimeWalkCorr_g40->GetYaxis()->SetTitle("# events");
136
137
138
139
140

    name = "hTrackCorrelationTime_totBin_" + std::to_string(m_totBinExample);
    hTrackCorrelationTime_example = new TH1D(name.c_str(), name.c_str(), 20000, -5000, 5000);
    hTrackCorrelationTime_example->GetXaxis()->SetTitle(
        "track time stamp - pixel time stamp [ns] (all pixels from cluster)");
141
    hTrackCorrelationTime_example->GetYaxis()->SetTitle("# events");
142
143
144
145

    // 2D histograms:
    // column dependence
    name = "hTrackCorrelationTimeVsCol";
146
147
    hTrackCorrelationTimeVsCol = new TH2F(
        name.c_str(), name.c_str(), 20000, -5000, 5000, m_detector->nPixels().X(), -0.5, m_detector->nPixels().X() - 0.5);
148
149
150
151
    hTrackCorrelationTimeVsCol->GetYaxis()->SetTitle("pixel column");
    hTrackCorrelationTimeVsCol->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");
    // row dependence
    name = "hTrackCorrelationTimeVsRow";
152
153
    hTrackCorrelationTimeVsRow = new TH2F(
        name.c_str(), name.c_str(), 20000, -5000, 5000, m_detector->nPixels().Y(), -0.5, m_detector->nPixels().Y() - 0.5);
154
155
156
    hTrackCorrelationTimeVsRow->GetYaxis()->SetTitle("pixel row");
    hTrackCorrelationTimeVsRow->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");
    name = "hTrackCorrelationTimeVsRow_1px";
157
158
    hTrackCorrelationTimeVsRow_1px = new TH2F(
        name.c_str(), name.c_str(), 20000, -5000, 5000, m_detector->nPixels().Y(), -0.5, m_detector->nPixels().Y() - 0.5);
159
160
161
162
    hTrackCorrelationTimeVsRow_1px->GetYaxis()->SetTitle("pixel row");
    hTrackCorrelationTimeVsRow_1px->GetXaxis()->SetTitle(
        "track time stamp - seed pixel time stamp [ns] (single-pixel clusters)");
    name = "hTrackCorrelationTimeVsRow_npx";
163
164
    hTrackCorrelationTimeVsRow_npx = new TH2F(
        name.c_str(), name.c_str(), 20000, -5000, 5000, m_detector->nPixels().Y(), -0.5, m_detector->nPixels().Y() - 0.5);
165
166
167
168
169
170
    hTrackCorrelationTimeVsRow_npx->GetYaxis()->SetTitle("pixel row");
    hTrackCorrelationTimeVsRow_npx->GetXaxis()->SetTitle(
        "track time stamp - seed pixel time stamp [ns] (multi-pixel clusters)");

    // control plot: row dependence after row correction
    name = "hTrackCorrelationTimeVsRow_rowCorr";
171
172
    hTrackCorrelationTimeVsRow_rowCorr = new TH2F(
        name.c_str(), name.c_str(), 20000, -5000, 5000, m_detector->nPixels().Y(), -0.5, m_detector->nPixels().Y() - 0.5);
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    hTrackCorrelationTimeVsRow_rowCorr->GetYaxis()->SetTitle("pixel row");
    hTrackCorrelationTimeVsRow_rowCorr->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");

    // control plot: time walk dependence, not row corrected
    name = "hTrackCorrelationTimeVsTot";
    hTrackCorrelationTimeVsTot = new TH2F(name.c_str(), name.c_str(), 20000, -5000, 5000, 512, 0, 512);
    hTrackCorrelationTimeVsTot->GetYaxis()->SetTitle("pixel ToT [ns]");
    hTrackCorrelationTimeVsTot->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");

    name = "hTrackCorrelationTimeVsTot_1px";
    hTrackCorrelationTimeVsTot_1px = new TH2F(name.c_str(), name.c_str(), 20000, -5000, 5000, 512, 0, 512);
    hTrackCorrelationTimeVsTot_1px->GetYaxis()->SetTitle("seed pixel ToT [ns] (if clustersize = 1)");
    hTrackCorrelationTimeVsTot_1px->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");

    name = "hTrackCorrelationTimeVsTot_npx";
    hTrackCorrelationTimeVsTot_npx = new TH2F(name.c_str(), name.c_str(), 20000, -5000, 5000, 512, 0, 512);
    hTrackCorrelationTimeVsTot_npx->GetYaxis()->SetTitle("seed pixel ToT [ns] (if clustersize > 1)");
    hTrackCorrelationTimeVsTot_npx->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");

    name = "hClusterTimeMinusPixelTime";
    hClusterTimeMinusPixelTime = new TH1F(name.c_str(), name.c_str(), 2000, -1000, 1000);
    hClusterTimeMinusPixelTime->GetXaxis()->SetTitle(
        "cluster timestamp - pixel timestamp [ns] (all pixels from cluster (if clusterSize>1))");

    // timewalk after row correction
    name = "hTrackCorrelationTimeVsTot_rowCorr";
    hTrackCorrelationTimeVsTot_rowCorr = new TH2F(name.c_str(), name.c_str(), 20000, -5000, 5000, 512, 0, 512);
    hTrackCorrelationTimeVsTot_rowCorr->GetYaxis()->SetTitle("pixel ToT [ns]");
    hTrackCorrelationTimeVsTot_rowCorr->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");

    name = "hTrackCorrelationTimeVsTot_rowCorr_1px";
    hTrackCorrelationTimeVsTot_rowCorr_1px = new TH2F(name.c_str(), name.c_str(), 20000, -5000, 5000, 512, 0, 512);
    hTrackCorrelationTimeVsTot_rowCorr_1px->GetYaxis()->SetTitle("pixel ToT [ns] (single-pixel clusters)");
    hTrackCorrelationTimeVsTot_rowCorr_1px->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");

    name = "hTrackCorrelationTimeVsTot_rowCorr_npx";
    hTrackCorrelationTimeVsTot_rowCorr_npx = new TH2F(name.c_str(), name.c_str(), 20000, -5000, 5000, 512, 0, 512);
    hTrackCorrelationTimeVsTot_rowCorr_npx->GetYaxis()->SetTitle("pixel ToT [ns] (multi-pixel clusters)");
    hTrackCorrelationTimeVsTot_rowCorr_npx->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");

    // final plots with both row and timewalk correction:
    name = "hTrackCorrelationTimeVsRow_rowAndTimeWalkCorr";
215
216
    hTrackCorrelationTimeVsRow_rowAndTimeWalkCorr = new TH2F(
        name.c_str(), name.c_str(), 20000, -5000, 5000, m_detector->nPixels().Y(), -0.5, m_detector->nPixels().Y() - 0.5);
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    hTrackCorrelationTimeVsRow_rowAndTimeWalkCorr->GetYaxis()->SetTitle("row");
    hTrackCorrelationTimeVsRow_rowAndTimeWalkCorr->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");

    name = "hTrackCorrelationTimeVsTot_rowAndTimeWalkCorr";
    hTrackCorrelationTimeVsTot_rowAndTimeWalkCorr = new TH2F(name.c_str(), name.c_str(), 20000, -5000, 5000, 512, 0, 512);
    hTrackCorrelationTimeVsTot_rowAndTimeWalkCorr->GetYaxis()->SetTitle("pixel ToT [ns]");
    hTrackCorrelationTimeVsTot_rowAndTimeWalkCorr->GetXaxis()->SetTitle("track time stamp - seed pixel time stamp [ns]");

    name = "hClusterSizeVsTot_Assoc";
    hClusterSizeVsTot_Assoc = new TH2F(name.c_str(), name.c_str(), 20, 0, 20, 512, 0, 512);
    hClusterSizeVsTot_Assoc->GetYaxis()->SetTitle("pixel ToT [ns] (all pixels from cluster)");
    hClusterSizeVsTot_Assoc->GetXaxis()->SetTitle("clusterSize");

    hHitMapAssoc = new TH2F("hitMapAssoc",
231
                            "hitMapAssoc; x_{track} [px]; x_{track} [px]; # entries",
232
                            m_detector->nPixels().X(),
233
234
                            -0.5,
                            m_detector->nPixels().X() - 0.5,
235
                            m_detector->nPixels().Y(),
236
237
                            -0.5,
                            m_detector->nPixels().Y() - 0.5);
238
239
240
    hHitMapAssoc_highCharge = new TH2F("hitMapAssoc_highCharge",
                                       "hitMapAssoc_highCharge; x_{track} [px]; x_{track} [px]; # entries",
                                       m_detector->nPixels().X(),
241
242
                                       -0.5,
                                       m_detector->nPixels().X() - 0.5,
243
                                       m_detector->nPixels().Y(),
244
245
                                       -0.5,
                                       m_detector->nPixels().Y() - 0.5);
246
    hHitMapAssoc_inPixel = new TH2F("hitMapAssoc_inPixel",
247
                                    "hitMapAssoc_inPixel; in-pixel x_{track} [#mum]; in-pixel y_{track} [#mum]",
248
                                    static_cast<int>(pitch_x),
249
250
                                    -pitch_x / 2.,
                                    pitch_x / 2.,
251
                                    static_cast<int>(pitch_y),
252
253
                                    -pitch_y / 2.,
                                    pitch_y / 2.);
254
255
    hHitMapAssoc_inPixel_highCharge =
        new TH2F("hitMapAssoc_inPixel_highCharge",
256
                 "hitMapAssoc_inPixel_highCharge;  in-pixel x_{track} [#mum]; in-pixel y_{track} [#mum]",
257
                 static_cast<int>(pitch_x),
258
259
                 -pitch_x / 2.,
                 pitch_x / 2.,
260
                 static_cast<int>(pitch_y),
261
262
                 -pitch_y / 2.,
                 pitch_y / 2.);
263
    hClusterMapAssoc = new TH2F("hClusterMapAssoc",
264
                                "hClusterMapAssoc; x_{cluster} [px]; x_{cluster} [px]; # entries",
265
                                m_detector->nPixels().X(),
266
267
                                -0.5,
                                m_detector->nPixels().X() - 0.5,
268
                                m_detector->nPixels().Y(),
269
270
                                -0.5,
                                m_detector->nPixels().Y() - 0.5);
271

272
273
274
    hTotVsTime = new TH2F("hTotVsTime", "hTotVsTime", 64, 0, 64, 1e6, 0, 100);
    hTotVsTime->GetXaxis()->SetTitle("pixel ToT [lsb]");
    hTotVsTime->GetYaxis()->SetTitle("time [s]");
275
    hTotVsTime_high = new TH2F("hTotVsTime_high", "hTotVsTime_high", 64, 0, 64, 1e6, 0, 100);
276
277
    hTotVsTime_high->GetXaxis()->SetTitle("pixel ToT [lsb] if > high_tot_cut");
    hTotVsTime_high->GetYaxis()->SetTitle("time [s]");
278

279
    // control plots for "left tail" and "main peak" of time correlation
280
    hClusterMap_leftTail = new TH2F("hClusterMap_leftTail",
281
                                    "hClusterMap_leftTail; x_{cluster} [px]; x_{cluster} [px]; # entries",
282
                                    m_detector->nPixels().X(),
283
284
                                    -0.5,
                                    m_detector->nPixels().X() - 0.5,
285
                                    m_detector->nPixels().Y(),
286
287
                                    -0.5,
                                    m_detector->nPixels().Y() - 0.5);
288
289
    hClusterMap_mainPeak = new TH2F("hClusterMap_mainPeak",
                                    "hClusterMap_mainPeak; x_{cluster} [px]; x_{cluster} [px]; # entries",
290
                                    m_detector->nPixels().X(),
291
292
                                    -0.5,
                                    m_detector->nPixels().X() - 0.5,
293
                                    m_detector->nPixels().Y(),
294
295
                                    -0.5,
                                    m_detector->nPixels().Y() - 0.5);
296
297
298
299
300
301
302
303
    hClusterSize_leftTail = new TH1F("clusterSize_leftTail", "clusterSize_leftTail; cluster size; # entries", 100, 0, 100);
    hClusterSize_mainPeak = new TH1F("clusterSize_mainPeak", "clusterSize_mainPeak; cluster size; # entries", 100, 0, 100);
    hTot_leftTail = new TH1F("hTot_leftTail", "hTot_leftTail; pixel ToT [lsb]; # events", 2 * 64, -64, 64);
    hTot_mainPeak = new TH1F("hTot_mainPeak", "hTot_mainPeak; pixel ToT [lsb]; # events", 2 * 64, -64, 64);
    hPixelTimestamp_leftTail =
        new TH1F("pixelTimestamp_leftTail", "pixelTimestamp_leftTail; pixel timestamp [ns]; # entries", 2050, 0, 2050);
    hPixelTimestamp_mainPeak =
        new TH1F("pixelTimestamp_mainPeak", "pixelTimestamp_mainPeak; pixel timestamp [ns]; # entries", 2050, 0, 2050);
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

    // /////////////////////////////////////////// //
    // TGraphErrors for Timewalk & Row Correction: //
    // /////////////////////////////////////////// //

    gTimeCorrelationVsRow = new TGraphErrors();
    gTimeCorrelationVsRow->SetName("gTimeCorrelationVsRow");
    gTimeCorrelationVsRow->SetTitle("gTimeCorrelationVsRow");
    gTimeCorrelationVsRow->GetXaxis()->SetTitle("row");
    gTimeCorrelationVsRow->GetYaxis()->SetTitle("time correlation peak [ns]");

    // !!!!also fix these:!!!!
    int nBinsToT = hTrackCorrelationTimeVsTot_rowCorr->GetNbinsY();
    gTimeCorrelationVsTot_rowCorr = new TGraphErrors(nBinsToT);
    gTimeCorrelationVsTot_rowCorr->SetName("gTimeCorrelationVsTot");
    gTimeCorrelationVsTot_rowCorr->SetTitle("gTimeCorrelationVsTot");
    gTimeCorrelationVsTot_rowCorr->GetXaxis()->SetTitle("pixel ToT [ns]");
    gTimeCorrelationVsTot_rowCorr->GetYaxis()->SetTitle("time correlation peak [ns]");

    nBinsToT = hTrackCorrelationTimeVsTot_rowCorr_1px->GetNbinsY();
    gTimeCorrelationVsTot_rowCorr_1px = new TGraphErrors(nBinsToT);
    gTimeCorrelationVsTot_rowCorr_1px->SetName("gTimeCorrelationVsTot_1px");
    gTimeCorrelationVsTot_rowCorr_1px->SetTitle("gTimeCorrelationVsTot_1px");
    gTimeCorrelationVsTot_rowCorr_1px->GetXaxis()->SetTitle("pixel ToT [ns] (single-pixel clusters)");
    gTimeCorrelationVsTot_rowCorr_1px->GetYaxis()->SetTitle("time correlation peak [ns]");

    nBinsToT = hTrackCorrelationTimeVsTot_rowCorr_npx->GetNbinsY();
    gTimeCorrelationVsTot_rowCorr_npx = new TGraphErrors(nBinsToT);
    gTimeCorrelationVsTot_rowCorr_npx->SetName("gTimeCorrelationVsTot_npx");
    gTimeCorrelationVsTot_rowCorr_npx->SetTitle("gTimeCorrelationVsTot_npx");
    gTimeCorrelationVsTot_rowCorr_npx->GetXaxis()->SetTitle("pixel ToT [ns] (multi-pixel clusters");
    gTimeCorrelationVsTot_rowCorr_npx->GetYaxis()->SetTitle("time correlation peak [ns]");

    LOG(INFO) << "calcCorrections = " << m_calcCorrections;

    if(m_pointwise_correction_row) {
        // Import TGraphErrors for row corection:
341
342
343
344
345
346
        TFile file(m_correctionFile_row.c_str());
        if(!file.IsOpen()) {
            throw InvalidValueError(m_config,
                                    "correction_file_row",
                                    "ROOT file doesn't exist. If no row correction shall be applied, remove this parameter "
                                    "from the configuration file.");
347
        }
348
349

        gRowCorr = static_cast<TGraphErrors*>(file.Get(m_correctionGraph_row.c_str()));
350
        // Check if graph exists in ROOT file:
351
        if(!gRowCorr) {
352
353
354
            throw InvalidValueError(
                m_config, "correction_graph_row", "Graph doesn't exist in ROOT file. Use full/path/to/graph.");
        }
355
356
357
358
359
    } else {
        LOG(STATUS) << "----> NO POINTWISE ROW CORRECTION!!!";
    }
    if(m_pointwise_correction_timewalk) {
        // Import TGraphErrors for timewalk corection:
360
361
362
363
364
365
366
        TFile file(m_correctionFile_timewalk.c_str());
        if(!file.IsOpen()) {
            throw InvalidValueError(m_config,
                                    "correction_file_timewalk",
                                    "ROOT file doesn't exist. If no row correction shall be applied, remove this parameter "
                                    "from the configuration file.");
        }
367
368

        gTimeWalkCorr = static_cast<TGraphErrors*>(file.Get(m_correctionGraph_timewalk.c_str()));
369
        // Check if graph exists in ROOT file:
370
        if(!gTimeWalkCorr) {
371
372
            throw InvalidValueError(
                m_config, "correction_graph_timewalk", "Graph doesn't exist in ROOT file. Use full/path/to/graph.");
373
374
375
376
377
378
        }
    } else {
        LOG(STATUS) << "----> NO POINTWISE TIMEWALK CORRECTION!!!";
    }
}

379
StatusCode AnalysisTimingATLASpix::run(std::shared_ptr<Clipboard> clipboard) {
380
381

    // Get the telescope tracks from the clipboard
382
    auto tracks = clipboard->getData<Track>();
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    if(tracks == nullptr) {
        LOG(DEBUG) << "No tracks on the clipboard";
        return StatusCode::Success;
    }

    // Loop over all tracks
    for(auto& track : (*tracks)) {
        bool has_associated_cluster = false;
        bool is_within_roi = true;
        LOG(DEBUG) << "Looking at next track";
        total_tracks_uncut++;

        // Cut on the chi2/ndof
        if(track->chi2ndof() > m_chi2ndofCut) {
            LOG(DEBUG) << " - track discarded due to Chi2/ndof";
            continue;
        }
        tracks_afterChi2Cut++;

        // Check if it intercepts the DUT
        if(!m_detector->hasIntercept(track, 1.)) {
            LOG(DEBUG) << " - track outside DUT area";
            continue;
        }
        tracks_hasIntercept++;

        // Check that track is within region of interest using winding number algorithm
        if(!m_detector->isWithinROI(track)) {
            LOG(DEBUG) << " - track outside ROI";
            is_within_roi = false;
        }
        tracks_isWithinROI++;

        // Check that it doesn't go through/near a masked pixel
        if(m_detector->hitMasked(track, 1.)) {
            LOG(DEBUG) << " - track close to masked pixel";
            continue;
        }
        tracks_afterMasking++;

        // Get the event:
424
        auto event = clipboard->getEvent();
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

        // Discard tracks which are very close to the frame edges
        if(fabs(track->timestamp() - event->end()) < m_timeCutFrameEdge) {
            // Late edge - eventEnd points to the end of the frame`
            LOG(DEBUG) << " - track close to end of readout frame: "
                       << Units::display(fabs(track->timestamp() - event->end()), {"us", "ns"}) << " at "
                       << Units::display(track->timestamp(), {"us"});
            continue;
        } else if(fabs(track->timestamp() - event->start()) < m_timeCutFrameEdge) {
            // Early edge - eventStart points to the start of the frame
            LOG(DEBUG) << " - track close to start of readout frame: "
                       << Units::display(fabs(track->timestamp() - event->start()), {"us", "ns"}) << " at "
                       << Units::display(track->timestamp(), {"us"});
            continue;
        }

        // Count this as reference track:
        total_tracks++;

        // Get the DUT clusters from the clipboard
445
        auto clusters = clipboard->getData<Cluster>(m_detector->name());
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        if(clusters == nullptr) {
            LOG(DEBUG) << " - no DUT clusters";
        } else {

            // Loop over all DUT clusters to find matches:
            for(auto* cluster : (*clusters)) {
                LOG(DEBUG) << " - Looking at next DUT cluster";

                hTrackCorrelationTime->Fill(track->timestamp() - cluster->timestamp());

                auto associated_clusters = track->associatedClusters();
                if(std::find(associated_clusters.begin(), associated_clusters.end(), cluster) != associated_clusters.end()) {
                    LOG(DEBUG) << "Found associated cluster " << (*cluster);
                    has_associated_cluster = true;
                    matched_tracks++;

462
                    if(m_config.has("cluster_charge_cut") && cluster->charge() > m_clusterChargeCut) {
463
                        LOG(DEBUG) << " - track discarded due to clusterChargeCut";
464
465
                        continue;
                    }
466
                    tracks_afterClusterChargeCut++;
467

468
                    if(m_config.has("cluster_size_cut") && cluster->size() > m_clusterSizeCut) {
469
470
471
472
473
474
475
                        LOG(DEBUG) << " - track discarded due to clusterSizeCut";
                        continue;
                    }
                    tracks_afterClusterSizeCut++;

                    double timeDiff = track->timestamp() - cluster->timestamp();
                    hTrackCorrelationTimeAssoc->Fill(timeDiff);
476
477
                    hTrackCorrelationTimeAssocVsTime->Fill(static_cast<double>(Units::convert(cluster->timestamp(), "s")),
                                                           static_cast<double>(Units::convert(timeDiff, "us")));
478

479
                    hTrackCorrelationTimeVsTot->Fill(timeDiff, cluster->getSeedPixel()->raw());
480
481
482
                    hTrackCorrelationTimeVsCol->Fill(timeDiff, cluster->getSeedPixel()->column());
                    hTrackCorrelationTimeVsRow->Fill(timeDiff, cluster->getSeedPixel()->row());
                    // single-pixel and multi-pixel clusters:
483
                    if(cluster->size() == 1) {
484
                        hTrackCorrelationTimeVsTot_1px->Fill(timeDiff, cluster->getSeedPixel()->raw());
485
                        hTrackCorrelationTimeVsRow_1px->Fill(timeDiff, cluster->getSeedPixel()->row());
486
                    } else {
487
                        hTrackCorrelationTimeVsTot_npx->Fill(timeDiff, cluster->getSeedPixel()->raw());
488
                        hTrackCorrelationTimeVsRow_npx->Fill(timeDiff, cluster->getSeedPixel()->row());
489
490
491
492
493
494
495
496
497
                    }

                    // Calculate in-pixel position of track in microns
                    auto globalIntercept = m_detector->getIntercept(track);
                    auto localIntercept = m_detector->globalToLocal(globalIntercept);
                    auto inpixel = m_detector->inPixel(localIntercept);
                    auto xmod = static_cast<double>(Units::convert(inpixel.X(), "um"));
                    auto ymod = static_cast<double>(Units::convert(inpixel.Y(), "um"));
                    hHitMapAssoc_inPixel->Fill(xmod, ymod);
498
499
                    if(cluster->charge() > m_highChargeCut && cluster->size() == 1) {
                        hHitMapAssoc_inPixel_highCharge->Fill(xmod, ymod);
500
501
502
                    }

                    // 2D histograms: --> fill for all pixels from cluster
503
                    for(auto& pixel : cluster->pixels()) {
504
505
506
507
508
509

                        // to check that cluster timestamp = earliest pixel timestamp
                        if(cluster->size() > 1) {
                            hClusterTimeMinusPixelTime->Fill(cluster->timestamp() - pixel->timestamp());
                        }

510
                        hClusterSizeVsTot_Assoc->Fill(static_cast<double>(cluster->size()), pixel->raw());
511
                        hHitMapAssoc->Fill(pixel->column(), pixel->row());
512
                        hTotVsTime->Fill(pixel->raw(), static_cast<double>(Units::convert(pixel->timestamp(), "s")));
513
514
515
                        if(pixel->raw() > m_highTotCut) {
                            hHitMapAssoc_highCharge->Fill(pixel->column(), pixel->row());
                            hTotVsTime_high->Fill(pixel->raw(),
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
                                                  static_cast<double>(Units::convert(pixel->timestamp(), "s")));
                        }
                    }
                    hClusterMapAssoc->Fill(cluster->column(), cluster->row());

                    // !!! Have to do this in the end because it changes the cluster time and position!!!
                    // row-by-row correction using points from TGraphError directly instead of fit.

                    // point-wise correction:
                    if(m_pointwise_correction_row) {
                        correctClusterTimestamp(cluster, 0); // mode=0 --> row correction
                        hTrackCorrelationTime_rowCorr->Fill(track->timestamp() - cluster->timestamp());
                        // for(auto& pixel : (*cluster->pixels())) {
                        hTrackCorrelationTimeVsRow_rowCorr->Fill(track->timestamp() - cluster->getSeedPixel()->timestamp(),
                                                                 cluster->getSeedPixel()->row());
                        hTrackCorrelationTimeVsTot_rowCorr->Fill(track->timestamp() - cluster->getSeedPixel()->timestamp(),
532
                                                                 cluster->getSeedPixel()->raw());
533
534
                        if(cluster->size() == 1) {
                            hTrackCorrelationTimeVsTot_rowCorr_1px->Fill(
535
                                track->timestamp() - cluster->getSeedPixel()->timestamp(), cluster->getSeedPixel()->raw());
536
537
538
                        }
                        if(cluster->size() > 1) {
                            hTrackCorrelationTimeVsTot_rowCorr_npx->Fill(
539
                                track->timestamp() - cluster->getSeedPixel()->timestamp(), cluster->getSeedPixel()->raw());
540
541
542
543
544
545
546
                        }
                        //} for(auto& pixels : ...)
                    }
                    // point-wise timewalk correction on top:
                    if(m_pointwise_correction_timewalk) {
                        correctClusterTimestamp(cluster, 1); // mode=1 --> timewalk correction
                        hTrackCorrelationTime_rowAndTimeWalkCorr->Fill(track->timestamp() - cluster->timestamp());
547
                        if(cluster->getSeedPixel()->raw() < 25) {
548
549
                            hTrackCorrelationTime_rowAndTimeWalkCorr_l25->Fill(track->timestamp() - cluster->timestamp());
                        }
550
                        if(cluster->getSeedPixel()->raw() < 40) {
551
552
                            hTrackCorrelationTime_rowAndTimeWalkCorr_l40->Fill(track->timestamp() - cluster->timestamp());
                        }
553
                        if(cluster->getSeedPixel()->raw() > 40) {
554
555
556
557
558
559
                            hTrackCorrelationTime_rowAndTimeWalkCorr_g40->Fill(track->timestamp() - cluster->timestamp());
                        }

                        hTrackCorrelationTimeVsRow_rowAndTimeWalkCorr->Fill(
                            track->timestamp() - cluster->getSeedPixel()->timestamp(), cluster->getSeedPixel()->row());
                        hTrackCorrelationTimeVsTot_rowAndTimeWalkCorr->Fill(
560
                            track->timestamp() - cluster->getSeedPixel()->timestamp(), cluster->getSeedPixel()->raw());
561
562

                        // control plots to investigate "left tail" in time correlation:
563
                        if(track->timestamp() - cluster->timestamp() < m_leftTailCut) {
564
                            hClusterMap_leftTail->Fill(cluster->column(), cluster->row());
565
                            hTot_leftTail->Fill(cluster->getSeedPixel()->raw());
566
                            hPixelTimestamp_leftTail->Fill(cluster->getSeedPixel()->timestamp());
567
568
                            hClusterSize_leftTail->Fill(static_cast<double>(cluster->size()));
                        }
569
                        if(track->timestamp() - cluster->timestamp() > m_leftTailCut) {
570
571
572
573
                            hClusterMap_mainPeak->Fill(cluster->column(), cluster->row());
                            hTot_mainPeak->Fill(cluster->getSeedPixel()->raw());
                            hPixelTimestamp_mainPeak->Fill(cluster->getSeedPixel()->timestamp());
                            hClusterSize_mainPeak->Fill(static_cast<double>(cluster->size()));
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
                        }
                    }
                }

            } // for loop over all clusters
        }     // else (clusters != nullptr)

        LOG(DEBUG) << "is_within_roi = " << is_within_roi;
        LOG(DEBUG) << "has_associated_cluster = " << has_associated_cluster;

    } // for loop over all tracks

    return StatusCode::Success;
}

589
void AnalysisTimingATLASpix::finalise() {
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
    LOG(STATUS) << "Timing analysis finished for detector " << m_detector->name() << ": ";

    if(m_calcCorrections) {

        /// ROW CORRECTION ///
        std::string fitOption = "q"; // set to "" for terminal output
        int binMax = 0;
        double timePeak = 0.;
        double timePeakErr = 0.;
        int nRows = hTrackCorrelationTimeVsRow->GetNbinsY();

        for(int iBin = 0; iBin < nRows; iBin++) {
            TH1D* hTemp = hTrackCorrelationTimeVsRow->ProjectionX("timeCorrelationInOneTotBin", iBin, iBin + 1);

            if(hTemp->GetEntries() < 500) { // too few entries to fit
                                            // if(hTemp->GetEntries() < 100) { // too few entries to fit
                delete hTemp;
                timePeak = 0;
                timePeakErr = 0;
                continue;
            } else {
                binMax = hTemp->GetMaximumBin();
                timePeak = hTemp->GetXaxis()->GetBinCenter(binMax);

                // fitting a Gaus for a good estimate of the peak positon:
                // NOTE: initial values for Gaussian are hard-coded at the moment!
                TF1* fPeak = new TF1("fPeak", "gaus");
                fPeak->SetParameters(1, 100, 45);
                double timeInt = 50;
                hTemp->Fit("fPeak", fitOption.c_str(), "", timePeak - timeInt, timePeak + timeInt);
                fPeak = hTemp->GetFunction("fPeak");
                timePeak = fPeak->GetParameter(1);
                timePeakErr = fPeak->GetParError(1);
                delete fPeak;
                delete hTemp;
            }
            // TGraphErrors should only have as many bins as it has sensible entries
            // (If it has multiple x=0 entries, the Spline interpolation will fail.
            int nBins = gTimeCorrelationVsRow->GetN();
            LOG(STATUS) << "nBins = " << nBins << ", x = " << iBin << ", y = " << timePeak;
            gTimeCorrelationVsRow->SetPoint(nBins, iBin, timePeak);
            gTimeCorrelationVsRow->SetPointError(nBins, 0., timePeakErr);

        } // for(iBin)

        /// TIME WALK CORRECTION on top of ROW CORRECTION: ///
        fitOption = "q"; // set to "" if you want terminal output
        binMax = 0;
        timePeak = 0.;
        timePeakErr = 0.;
        int nBinsToT = hTrackCorrelationTimeVsTot_rowCorr->GetNbinsY();
        LOG(DEBUG) << "nBinsToT = " << nBinsToT;

        for(int iBin = 0; iBin < nBinsToT; iBin++) {
            TH1D* hTemp = hTrackCorrelationTimeVsTot_rowCorr->ProjectionX("timeCorrelationInOneTotBin", iBin, iBin + 1);

            // if(hTemp->GetEntries() < 500) { // too few entries to fit
            if(hTemp->GetEntries() < 1000) { // too few entries to fit
                delete hTemp;
                timePeak = 0;
                timePeakErr = 0;
                continue;
            } else {
                binMax = hTemp->GetMaximumBin();
                timePeak = hTemp->GetXaxis()->GetBinCenter(binMax);

                // fitting a Gaus for a good estimate of the peak positon:
                // initial parameters are hardcoded at the moment!
                TF1* fPeak = new TF1("fPeak", "gaus");
                fPeak->SetParameters(1, 100, 45);
                double timeInt = 50;
                hTemp->Fit("fPeak", fitOption.c_str(), "", timePeak - timeInt, timePeak + timeInt);
                fPeak = hTemp->GetFunction("fPeak");
                timePeak = fPeak->GetParameter(1);
                timePeakErr = fPeak->GetParError(1);

                delete fPeak;
                delete hTemp;
            }
            gTimeCorrelationVsTot_rowCorr->SetPoint(iBin, iBin, timePeak);
            gTimeCorrelationVsTot_rowCorr->SetPointError(iBin, 0, timePeakErr);

        } // for(iBin)

        // SAME FOR SINGLE-PIXEL CLUSTERS:
        nBinsToT = hTrackCorrelationTimeVsTot_rowCorr_1px->GetNbinsY();
        for(int iBin = 0; iBin < nBinsToT; iBin++) {
            TH1D* hTemp = hTrackCorrelationTimeVsTot_rowCorr_1px->ProjectionX("timeCorrelationInOneTotBin", iBin, iBin + 1);

            // if(hTemp->GetEntries() < 500) { // too few entries to fit
            if(hTemp->GetEntries() < 1000) { // too few entries to fit
                delete hTemp;
                timePeak = 0;
                timePeakErr = 0;
                continue;
            } else {
                binMax = hTemp->GetMaximumBin();
                timePeak = hTemp->GetXaxis()->GetBinCenter(binMax);

                // fitting a Gaus for a good estimate of the peak positon:
                // initial parameters are hardcoded at the moment!
                TF1* fPeak = new TF1("fPeak", "gaus");
                fPeak->SetParameters(1, 100, 45);
                double timeInt = 50;
                hTemp->Fit("fPeak", fitOption.c_str(), "", timePeak - timeInt, timePeak + timeInt);
                fPeak = hTemp->GetFunction("fPeak");
                timePeak = fPeak->GetParameter(1);
                timePeakErr = fPeak->GetParError(1);

                delete fPeak;
                delete hTemp;
            }
            gTimeCorrelationVsTot_rowCorr_1px->SetPoint(iBin, iBin, timePeak);
            gTimeCorrelationVsTot_rowCorr_1px->SetPointError(iBin, 0, timePeakErr);
        } // for(iBin)

        // SAME FOR MULTI-PIXEL CLUSTERS:
        nBinsToT = hTrackCorrelationTimeVsTot_rowCorr_npx->GetNbinsY();
        for(int iBin = 0; iBin < nBinsToT; iBin++) {
            TH1D* hTemp = hTrackCorrelationTimeVsTot_rowCorr_npx->ProjectionX("timeCorrelationInOneTotBin", iBin, iBin + 1);

            // if(hTemp->GetEntries() < 500) { // too few entries to fit
            if(hTemp->GetEntries() < 1000) { // too few entries to fit
                delete hTemp;
                timePeak = 0;
                timePeakErr = 0;
                continue;
            } else {
                binMax = hTemp->GetMaximumBin();
                timePeak = hTemp->GetXaxis()->GetBinCenter(binMax);

                // fitting a Gaus for a good estimate of the peak positon:
                // initial parameters are hardcoded at the moment!
                TF1* fPeak = new TF1("fPeak", "gaus");
                fPeak->SetParameters(1, 100, 45);
                double timeInt = 50;
                hTemp->Fit("fPeak", fitOption.c_str(), "", timePeak - timeInt, timePeak + timeInt);
                fPeak = hTemp->GetFunction("fPeak");
                timePeak = fPeak->GetParameter(1);
                timePeakErr = fPeak->GetParError(1);

                delete fPeak;
                delete hTemp;
            }
            gTimeCorrelationVsTot_rowCorr_npx->SetPoint(iBin, iBin, timePeak);
            gTimeCorrelationVsTot_rowCorr_npx->SetPointError(iBin, 0, timePeakErr);
        } // for(iBin)

        /// END TIME WALK CORRECTION ///

    } // if(m_calcCorrections)

    // Example Slice to investigate quality of Gaussian fit:
    hTrackCorrelationTime_example = hTrackCorrelationTimeVsTot_rowCorr->ProjectionX(
        ("hTrackCorrelationTime_totBin_" + std::to_string(m_totBinExample)).c_str(), m_totBinExample, m_totBinExample + 1);

    int binMax = hTrackCorrelationTime_example->GetMaximumBin();
    double timePeak = hTrackCorrelationTime_example->GetXaxis()->GetBinCenter(binMax);

    TF1* fPeak = new TF1("fPeak", "gaus");
    fPeak->SetParameters(1, 100, 45);
    double timeInt = 50;
    std::string fitOption = "q"; // set to "q" = quiet for suppressed terminial output
    hTrackCorrelationTime_example->Fit("fPeak", fitOption.c_str(), "", timePeak - timeInt, timePeak + timeInt);
    delete fPeak;

    // hTrackCorrelationTime_example->Write();
    gTimeCorrelationVsRow->Write();
    gTimeCorrelationVsTot_rowCorr->Write();
    gTimeCorrelationVsTot_rowCorr_1px->Write();
    gTimeCorrelationVsTot_rowCorr_npx->Write();

    LOG(INFO) << "matched/total tracks: " << matched_tracks << "/" << total_tracks;
    LOG(INFO) << "total tracks (uncut):\t" << total_tracks_uncut;
    LOG(INFO) << "after chi2 cut:\t" << tracks_afterChi2Cut;
    LOG(INFO) << "with intercept:\t" << tracks_hasIntercept;
    LOG(INFO) << "withing ROI:\t\t" << tracks_isWithinROI;
    LOG(INFO) << "frameEdge cut:\t\t" << matched_tracks;
768
    LOG(INFO) << "after clusterTotCut:\t" << tracks_afterClusterChargeCut;
769
770
771
    LOG(INFO) << "after clusterSizeCut:\t" << tracks_afterClusterSizeCut;
}

772
void AnalysisTimingATLASpix::correctClusterTimestamp(Cluster* cluster, int mode) {
773

774
    /*
775
776
777
778
779
780
     * MODE:
     *  0 --> row correction
     *  1 --> timewalk correction
     */

    // Get the pixels on this cluster
781
782
    auto pixels = cluster->pixels();
    auto first_pixel = pixels.front();
783
    double correction = 0;
784
785

    if(mode == 0) {
786
        correction = gRowCorr->Eval(first_pixel->row());
787
    } else if(mode == 1) {
788
        correction = gTimeWalkCorr->Eval(first_pixel->raw());
789
790
791
792
793
794
795
    } else {
        LOG(ERROR) << "Mode " << mode << " does not exist!\n"
                   << "Choose\n\t0 --> row correction \n\t1-->timewalk correction";
        return;
    }

    // Initial guess for cluster timestamp:
796
    double timestamp = first_pixel->timestamp() + correction;
797
798

    // Loop over all pixels:
799
800
801
    for(auto& pixel : pixels) {
        // FIXME ugly hack
        auto px = const_cast<Pixel*>(pixel);
802
803
804
805

        if(mode == 0) {
            correction = gRowCorr->Eval(pixel->row());
        } else if(mode == 1) {
806
            correction = gTimeWalkCorr->Eval(pixel->raw());
807
808
809
810
811
        } else {
            return;
        }

        // Override pixel timestamps:
812
        px->setTimestamp(pixel->timestamp() + correction);
813
814
815
816
817
818
819
820
821

        // timestamp = earliest pixel:
        if(pixel->timestamp() < timestamp) {
            timestamp = pixel->timestamp();
        }
    }

    cluster->setTimestamp(timestamp);
}