From c3a08a4a2e3dd9104aa6df31b87472774fdad659 Mon Sep 17 00:00:00 2001 From: Engin Eren <engin.eren@desy.de> Date: Mon, 11 Jul 2022 14:06:09 +0200 Subject: [PATCH] Still RFF but with different emb size config --- models/criticFull.py | 16 ++++++++-------- models/generatorFull.py | 10 +++++----- wganHCAL.py | 6 +++--- 3 files changed, 16 insertions(+), 16 deletions(-) diff --git a/models/criticFull.py b/models/criticFull.py index 16333c3..4051212 100644 --- a/models/criticFull.py +++ b/models/criticFull.py @@ -5,13 +5,13 @@ import torch.nn.functional as F class CriticEMB(nn.Module): - def __init__(self, isize_1=30, isize_2=48, nc=2, ndf=64): + def __init__(self, isize_1=30, isize_2=48, nc=2, ndf=32, size_embed=16): super(CriticEMB, self).__init__() self.ndf = ndf self.isize_1 = isize_1 self.isize_2 = isize_2 self.nc = nc - self.size_embed = 16 + self.size_embed = size_embed self.conv1_bias = False @@ -42,14 +42,14 @@ class CriticEMB(nn.Module): #self.conv_HCAL_3 = torch.nn.Conv3d(ndf, ndf, kernel_size=4, stride=(2,2,2), padding=(1,1,1), bias=False) - self.conv_lin_ECAL = torch.nn.Linear(7*7*7*ndf, 64) - self.conv_lin_HCAL = torch.nn.Linear(7*7*7*ndf, 64) + self.conv_lin_ECAL = torch.nn.Linear(7*7*7*ndf, size_embed) + self.conv_lin_HCAL = torch.nn.Linear(7*7*7*ndf, size_embed*3) - self.econd_lin = torch.nn.Linear(1, 64) # label embedding + self.econd_lin = torch.nn.Linear(1, size_embed) # label embedding - self.fc1 = torch.nn.Linear(64*3, 128) # 3 components after cat - self.fc2 = torch.nn.Linear(128, 64) - self.fc3 = torch.nn.Linear(64, 1) + self.fc1 = torch.nn.Linear(size_embed*5, size_embed) # 3 components after cat + self.fc2 = torch.nn.Linear(size_embed, size_embed / 2) + self.fc3 = torch.nn.Linear(size_embed / 2, 1) def forward(self, img_ECAL, img_HCAL, E_true): diff --git a/models/generatorFull.py b/models/generatorFull.py index 029b553..b1ab6da 100644 --- a/models/generatorFull.py +++ b/models/generatorFull.py @@ -24,13 +24,13 @@ class Hcal_ecalEMB(nn.Module): self.ln_ECAL_2 = torch.nn.LayerNorm([14,14,14]) self.conv_ECAL_3 = torch.nn.Conv3d(ndf, ndf, kernel_size=4, stride=(2,2,2), padding=(1,1,1), bias=False) - self.conv_lin_ECAL = torch.nn.Linear(7*7*7*ndf, 64) + self.conv_lin_ECAL = torch.nn.Linear(7*7*7*ndf, 8) - self.econd_lin = torch.nn.Linear(1, 64) # label embedding + self.econd_lin = torch.nn.Linear(1, 16) # label embedding - self.fc1 = torch.nn.Linear(64*2, 128) # 2 components after cat - self.fc2 = torch.nn.Linear(128, 64) - self.fc3 = torch.nn.Linear(64, emb_size) + self.fc1 = torch.nn.Linear(24, 16) # 2 components after cat + self.fc2 = torch.nn.Linear(16, 16) + self.fc3 = torch.nn.Linear(16, emb_size) ## HCAL component of convolutions diff --git a/wganHCAL.py b/wganHCAL.py index 8f35c47..9526a71 100644 --- a/wganHCAL.py +++ b/wganHCAL.py @@ -161,8 +161,8 @@ def parse_args(): parser.add_argument('--kappa', type=float, default=0.001, metavar='N', help='weight of label conditioning (default: 0.001)') - parser.add_argument('--ndf', type=int, default=64, metavar='N', - help='n-feature of critic (default: 64)') + parser.add_argument('--ndf', type=int, default=32, metavar='N', + help='n-feature of critic (default: 32)') parser.add_argument('--ngf', type=int, default=32, metavar='N', help='n-feature of generator (default: 32)') @@ -274,7 +274,7 @@ def run(args): ## HCAL Generator and critic - mCrit = CriticEMB().to(device) + mCrit = CriticEMB(args.ndf).to(device) mGen = Hcal_ecalEMB(args.ngf, 32, args.nz, emb_size=16).to(device) ## ECAL GENERATOR -- GitLab