diff --git a/part2/part2_compression.ipynb b/part2/part2_compression.ipynb
index 1ad207095206a4f03223625d764231db4b6f2429..afa6302649c76ea80a98ab580021293d54538e1a 100644
--- a/part2/part2_compression.ipynb
+++ b/part2/part2_compression.ipynb
@@ -27,7 +27,7 @@
     "\n",
     "Below you can see an example of a tensor with a (symmetric) dynamic range of $x_{f}$ $[-amax, amax]$ mapped through quantization to a an 8 bit integer, $2^8=256$ discrete values in the interval $[-128, 127]$ (32-bit floating-point can represent ~4B numbers in the interval $[-3.4e38, 3.40e38]$).\n",
     "\n",
-    "<img src=\"images/8-bit-signed-integer-quantization.png\" width=\"800\"/>\n",
+    "<img src=\"https://gitlab.cern.ch/fastmachinelearning/cms_mlatl1t_tutorial/-/raw/master/part2/images/8-bit-signed-integer-quantization.png?ref_type=heads\" width=\"800\"/>\n",
     "\n",
     "Quantization of floating point numbers can be achieved using the quantization operation\n",
     "\n",
@@ -37,7 +37,7 @@
     "\n",
     "On FPGA, we do not use int8 quantization, but fixed-point quantization, bu the idea is similar. Fixed-point representation is a way to express fractions with integers and offers more control over precision and range. We can split the $W$-bits making up an integer (in our case $W=8$) to represent the integer part of a number and the fractional part of the number. We usually reserve 1-bit representing the sign of the digit. The radix splits the remaining $W-1$ bits to $I$ most significant bits representing the integer value and $F$ least significant bits representing the fraction. We write this as $<W,I>$, where $F=W-1-I$.  Here is an example for an unsigned $<8,3>$:\n",
     "\n",
-    "<img src=\"images/fixedpoint.png\" width=\"400\"/>\n",
+    "<img src=\"https://gitlab.cern.ch/fastmachinelearning/cms_mlatl1t_tutorial/-/raw/master/part2/images/fixedpoint.png?ref_type=heads\" width=\"400\"/>\n",
     "\n",
     "\n",
     "This fixed point number corresponds to $2^4\\cdot0+2^3\\cdot0+2^2\\cdot0+2^1\\cdot1+2^0\\cdot0+2^{-1}\\cdot1+2^{-2}\\cdot1+2^{-3}\\cdot0=2.75$.\n",