From 145d8bb7c4398f05fc41ae340e337c656c10f1e5 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 04:27:49 +0100
Subject: [PATCH 01/30] load parquet files

---
 LHCb_Pipeline/Processing/utils/preprocessing.py | 9 ++++++---
 1 file changed, 6 insertions(+), 3 deletions(-)

diff --git a/LHCb_Pipeline/Processing/utils/preprocessing.py b/LHCb_Pipeline/Processing/utils/preprocessing.py
index f19baa09..34fa374e 100644
--- a/LHCb_Pipeline/Processing/utils/preprocessing.py
+++ b/LHCb_Pipeline/Processing/utils/preprocessing.py
@@ -27,8 +27,10 @@ def preprocess(input_dir, output_dir, output_num, clear_directories=True, num_tr
             except Exception as e:
                 print('Failed to delete %s. Reason: %s' % (file_path, e))
 
-    hits = pd.read_csv(f'{input_dir}/hits_velo.csv') # Read hits
-    particles = pd.read_csv(f'{input_dir}/mc_particles.csv') # Read MC particles
+    # hits = pd.read_csv(f'{input_dir}/hits_velo.csv') # Read hits
+    # particles = pd.read_csv(f'{input_dir}/mc_particles.csv') # Read MC particles
+    hits = pd.read_parquet(f'{input_dir}/hits_velo.parquet.lz4')
+    particles = pd.read_parquet(f'{input_dir}/mc_particles.parquet.lz4')
     hits = hits.merge(particles, on=['event', 'mcid'], how='left') # Merge
     # NB: left join!: keep fake hits
 
@@ -47,7 +49,8 @@ def preprocess(input_dir, output_dir, output_num, clear_directories=True, num_tr
         hits_csv.to_csv(f'{output_dir}/event{num}-hits.csv', index=False)
 
         # -particles.csv, use event_particles
-        particles_csv = event_particles[['mcid','vx', 'vy', 'vz', 'p', 'pt', 'eta', 'phi', 'charge', 'nhits_velo']]
+        # particles_csv = event_particles[['mcid','vx', 'vy', 'vz', 'p', 'pt', 'eta', 'phi', 'charge', 'nhits_velo']]
+        particles_csv = event_particles  # save everything
         particles_csv.rename(columns={'mcid': 'particle_id', 'charge': 'q', 'nhits_velo': 'nhits'}, inplace=True)
         particles_csv['particle_id'] = particles_csv['particle_id'] + 1
         pt = event_particles['pt']
-- 
GitLab


From e33e9580625971fea677e714fbc8c52b0344f2a0 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 04:27:59 +0100
Subject: [PATCH 02/30] playing around

---
 LHCb_Pipeline/full_pipeline_anthony.ipynb | 4400 +++++++++++++++++++++
 1 file changed, 4400 insertions(+)
 create mode 100644 LHCb_Pipeline/full_pipeline_anthony.ipynb

diff --git a/LHCb_Pipeline/full_pipeline_anthony.ipynb b/LHCb_Pipeline/full_pipeline_anthony.ipynb
new file mode 100644
index 00000000..77585245
--- /dev/null
+++ b/LHCb_Pipeline/full_pipeline_anthony.ipynb
@@ -0,0 +1,4400 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 0. Setup"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Imports"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/acorreia/softwares/mambaforge/envs/etx4velo/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
+      "  from .autonotebook import tqdm as notebook_tqdm\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<style>\n",
+       "        .bk-notebook-logo {\n",
+       "            display: block;\n",
+       "            width: 20px;\n",
+       "            height: 20px;\n",
+       "            background-image: url();\n",
+       "        }\n",
+       "    </style>\n",
+       "    <div>\n",
+       "        <a href=\"https://bokeh.org\" target=\"_blank\" class=\"bk-notebook-logo\"></a>\n",
+       "        <span id=\"p1001\">Loading BokehJS ...</span>\n",
+       "    </div>\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/javascript": "(function(root) {\n  function now() {\n    return new Date();\n  }\n\n  const force = true;\n\n  if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n    root._bokeh_onload_callbacks = [];\n    root._bokeh_is_loading = undefined;\n  }\n\nconst JS_MIME_TYPE = 'application/javascript';\n  const HTML_MIME_TYPE = 'text/html';\n  const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n  const CLASS_NAME = 'output_bokeh rendered_html';\n\n  /**\n   * Render data to the DOM node\n   */\n  function render(props, node) {\n    const script = document.createElement(\"script\");\n    node.appendChild(script);\n  }\n\n  /**\n   * Handle when an output is cleared or removed\n   */\n  function handleClearOutput(event, handle) {\n    const cell = handle.cell;\n\n    const id = cell.output_area._bokeh_element_id;\n    const server_id = cell.output_area._bokeh_server_id;\n    // Clean up Bokeh references\n    if (id != null && id in Bokeh.index) {\n      Bokeh.index[id].model.document.clear();\n      delete Bokeh.index[id];\n    }\n\n    if (server_id !== undefined) {\n      // Clean up Bokeh references\n      const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n      cell.notebook.kernel.execute(cmd_clean, {\n        iopub: {\n          output: function(msg) {\n            const id = msg.content.text.trim();\n            if (id in Bokeh.index) {\n              Bokeh.index[id].model.document.clear();\n              delete Bokeh.index[id];\n            }\n          }\n        }\n      });\n      // Destroy server and session\n      const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n      cell.notebook.kernel.execute(cmd_destroy);\n    }\n  }\n\n  /**\n   * Handle when a new output is added\n   */\n  function handleAddOutput(event, handle) {\n    const output_area = handle.output_area;\n    const output = handle.output;\n\n    // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n    if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n      return\n    }\n\n    const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n    if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n      toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n      // store reference to embed id on output_area\n      output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n    }\n    if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n      const bk_div = document.createElement(\"div\");\n      bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n      const script_attrs = bk_div.children[0].attributes;\n      for (let i = 0; i < script_attrs.length; i++) {\n        toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n        toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n      }\n      // store reference to server id on output_area\n      output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n    }\n  }\n\n  function register_renderer(events, OutputArea) {\n\n    function append_mime(data, metadata, element) {\n      // create a DOM node to render to\n      const toinsert = this.create_output_subarea(\n        metadata,\n        CLASS_NAME,\n        EXEC_MIME_TYPE\n      );\n      this.keyboard_manager.register_events(toinsert);\n      // Render to node\n      const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n      render(props, toinsert[toinsert.length - 1]);\n      element.append(toinsert);\n      return toinsert\n    }\n\n    /* Handle when an output is cleared or removed */\n    events.on('clear_output.CodeCell', handleClearOutput);\n    events.on('delete.Cell', handleClearOutput);\n\n    /* Handle when a new output is added */\n    events.on('output_added.OutputArea', handleAddOutput);\n\n    /**\n     * Register the mime type and append_mime function with output_area\n     */\n    OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n      /* Is output safe? */\n      safe: true,\n      /* Index of renderer in `output_area.display_order` */\n      index: 0\n    });\n  }\n\n  // register the mime type if in Jupyter Notebook environment and previously unregistered\n  if (root.Jupyter !== undefined) {\n    const events = require('base/js/events');\n    const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n    if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n      register_renderer(events, OutputArea);\n    }\n  }\n  if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n    root._bokeh_timeout = Date.now() + 5000;\n    root._bokeh_failed_load = false;\n  }\n\n  const NB_LOAD_WARNING = {'data': {'text/html':\n     \"<div style='background-color: #fdd'>\\n\"+\n     \"<p>\\n\"+\n     \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n     \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n     \"</p>\\n\"+\n     \"<ul>\\n\"+\n     \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n     \"<li>use INLINE resources instead, as so:</li>\\n\"+\n     \"</ul>\\n\"+\n     \"<code>\\n\"+\n     \"from bokeh.resources import INLINE\\n\"+\n     \"output_notebook(resources=INLINE)\\n\"+\n     \"</code>\\n\"+\n     \"</div>\"}};\n\n  function display_loaded() {\n    const el = document.getElementById(\"p1001\");\n    if (el != null) {\n      el.textContent = \"BokehJS is loading...\";\n    }\n    if (root.Bokeh !== undefined) {\n      if (el != null) {\n        el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n      }\n    } else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(display_loaded, 100)\n    }\n  }\n\n  function run_callbacks() {\n    try {\n      root._bokeh_onload_callbacks.forEach(function(callback) {\n        if (callback != null)\n          callback();\n      });\n    } finally {\n      delete root._bokeh_onload_callbacks\n    }\n    console.debug(\"Bokeh: all callbacks have finished\");\n  }\n\n  function load_libs(css_urls, js_urls, callback) {\n    if (css_urls == null) css_urls = [];\n    if (js_urls == null) js_urls = [];\n\n    root._bokeh_onload_callbacks.push(callback);\n    if (root._bokeh_is_loading > 0) {\n      console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n      return null;\n    }\n    if (js_urls == null || js_urls.length === 0) {\n      run_callbacks();\n      return null;\n    }\n    console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n    root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n    function on_load() {\n      root._bokeh_is_loading--;\n      if (root._bokeh_is_loading === 0) {\n        console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n        run_callbacks()\n      }\n    }\n\n    function on_error(url) {\n      console.error(\"failed to load \" + url);\n    }\n\n    for (let i = 0; i < css_urls.length; i++) {\n      const url = css_urls[i];\n      const element = document.createElement(\"link\");\n      element.onload = on_load;\n      element.onerror = on_error.bind(null, url);\n      element.rel = \"stylesheet\";\n      element.type = \"text/css\";\n      element.href = url;\n      console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n      document.body.appendChild(element);\n    }\n\n    for (let i = 0; i < js_urls.length; i++) {\n      const url = js_urls[i];\n      const element = document.createElement('script');\n      element.onload = on_load;\n      element.onerror = on_error.bind(null, url);\n      element.async = false;\n      element.src = url;\n      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n      document.head.appendChild(element);\n    }\n  };\n\n  function inject_raw_css(css) {\n    const element = document.createElement(\"style\");\n    element.appendChild(document.createTextNode(css));\n    document.body.appendChild(element);\n  }\n\n  const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.0.3.min.js\"];\n  const css_urls = [];\n\n  const inline_js = [    function(Bokeh) {\n      Bokeh.set_log_level(\"info\");\n    },\nfunction(Bokeh) {\n    }\n  ];\n\n  function run_inline_js() {\n    if (root.Bokeh !== undefined || force === true) {\n          for (let i = 0; i < inline_js.length; i++) {\n      inline_js[i].call(root, root.Bokeh);\n    }\nif (force === true) {\n        display_loaded();\n      }} else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(run_inline_js, 100);\n    } else if (!root._bokeh_failed_load) {\n      console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n      root._bokeh_failed_load = true;\n    } else if (force !== true) {\n      const cell = $(document.getElementById(\"p1001\")).parents('.cell').data().cell;\n      cell.output_area.append_execute_result(NB_LOAD_WARNING)\n    }\n  }\n\n  if (root._bokeh_is_loading === 0) {\n    console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n    run_inline_js();\n  } else {\n    load_libs(css_urls, js_urls, function() {\n      console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n      run_inline_js();\n    });\n  }\n}(window));",
+      "application/vnd.bokehjs_load.v0+json": ""
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "%load_ext autoreload\n",
+    "%autoreload 2\n",
+    "\n",
+    "from Scripts.utils.convenience_utils import *\n",
+    "from Scripts.utils.plotting_utils import plot_observable_performance\n",
+    "from Scripts.Step_1_Train_Metric_Learning import train as train_metric_learning\n",
+    "from Scripts.Step_2_Run_Metric_Learning import train as run_metric_learning_inference\n",
+    "from Scripts.Step_3_Train_GNN import train as train_gnn\n",
+    "from Scripts.Step_4_Run_GNN import train as run_gnn_inference\n",
+    "from Scripts.Step_5_Build_Track_Candidates import train as build_track_candidates\n",
+    "from Scripts.Step_6_Evaluate_Reconstruction import evaluate as evaluate_candidates\n",
+    "\n",
+    "import sys\n",
+    "from Scripts.utils.convenience_utils import get_example_data, plot_true_graph, get_training_metrics, plot_training_metrics, plot_neighbor_performance, plot_predicted_graph, plot_track_lengths, plot_edge_performance, plot_graph_sizes\n",
+    "import yaml\n",
+    "\n",
+    "import warnings\n",
+    "warnings.filterwarnings(\"ignore\")\n",
+    "\n",
+    "CONFIG = 'pipeline_config.yaml'"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Pipeline configurations\n",
+    "\n",
+    "The configurations for the entire pipeline are defined under pipeline_config.yml."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "with open(CONFIG, 'r') as f:\n",
+    "    configs = yaml.load(f, Loader=yaml.FullLoader)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Download data"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# ! xrdcp -r root://eoslhcb.cern.ch//eos/lhcb/user/a/anthonyc/tracking/data/csv/v2/minbias-sim10b-xdigi/0 data/input/"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Telegram notification bot"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import requests\n",
+    "import json\n",
+    "# from datetime import datetime\n",
+    "\n",
+    "# def send_telegram_message(message: str,\n",
+    "#                           chat_id: str,\n",
+    "#                           api_key: str,\n",
+    "#                          ):\n",
+    "#     responses = {}\n",
+    "\n",
+    "#     url = f'https://api.telegram.org/bot{api_key}/sendMessage?chat_id={chat_id}&text={message}'\n",
+    "    \n",
+    "#     response = requests.post(url)\n",
+    "    \n",
+    "#     return response\n",
+    "\n",
+    "def send_telegram_message(*args, **kwargs):\n",
+    "    pass"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# chat_id = \"5027012918\"\n",
+    "# api_key = \"6268687426:AAE1P7WQofCBuQPiYZlYaKU-p1GNn6OvAxM\"\n",
+    "\n",
+    "# send_telegram_message(\"======================\", chat_id, api_key)\n",
+    "\n",
+    "# send_telegram_message(\"Starting.\", chat_id, api_key)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Delete contents of `bokeh-plots`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "clear_contents('bokeh-plots')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Saving data into `torch` tensor form"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Saving event 004206889, 1/100, contains 814 true hits.\n",
+      "Saving event 004206890, 2/100, contains 935 true hits.\n",
+      "Saving event 004206891, 3/100, contains 1508 true hits.\n",
+      "Saving event 004206892, 4/100, contains 691 true hits.\n",
+      "Saving event 004206893, 5/100, contains 1584 true hits.\n",
+      "Saving event 004206894, 6/100, contains 1527 true hits.\n",
+      "Saving event 004206895, 7/100, contains 834 true hits.\n",
+      "Saving event 004206896, 8/100, contains 1012 true hits.\n",
+      "Saving event 004206897, 9/100, contains 1343 true hits.\n",
+      "Saving event 004206898, 10/100, contains 1185 true hits.\n",
+      "Saving event 004206899, 11/100, contains 841 true hits.\n",
+      "Saving event 004206900, 12/100, contains 1000 true hits.\n",
+      "Saving event 004206901, 13/100, contains 2350 true hits.\n",
+      "Saving event 004206902, 14/100, contains 2537 true hits.\n",
+      "Saving event 004206903, 15/100, contains 1938 true hits.\n",
+      "Saving event 004206904, 16/100, contains 3223 true hits.\n",
+      "Saving event 004206905, 17/100, contains 3772 true hits.\n",
+      "Discarding event 004206906, contains only fake hits.\n",
+      "Saving event 004206907, 18/100, contains 1071 true hits.\n",
+      "Saving event 004206908, 19/100, contains 911 true hits.\n",
+      "Saving event 004206909, 20/100, contains 891 true hits.\n",
+      "Saving event 004206910, 21/100, contains 287 true hits.\n",
+      "Saving event 004206911, 22/100, contains 1154 true hits.\n",
+      "Saving event 004206912, 23/100, contains 1430 true hits.\n",
+      "Saving event 004206913, 24/100, contains 3562 true hits.\n",
+      "Saving event 004206914, 25/100, contains 616 true hits.\n",
+      "Saving event 004206915, 26/100, contains 739 true hits.\n",
+      "Saving event 004206916, 27/100, contains 1019 true hits.\n",
+      "Saving event 004206917, 28/100, contains 2024 true hits.\n",
+      "Saving event 004206918, 29/100, contains 1679 true hits.\n",
+      "Saving event 004206919, 30/100, contains 1747 true hits.\n",
+      "Saving event 004206920, 31/100, contains 1254 true hits.\n",
+      "Saving event 004206921, 32/100, contains 2582 true hits.\n",
+      "Saving event 004206922, 33/100, contains 627 true hits.\n",
+      "Saving event 004206923, 34/100, contains 1168 true hits.\n",
+      "Saving event 004206924, 35/100, contains 1606 true hits.\n",
+      "Saving event 004206925, 36/100, contains 2457 true hits.\n",
+      "Saving event 004206926, 37/100, contains 1325 true hits.\n",
+      "Saving event 004206927, 38/100, contains 2473 true hits.\n",
+      "Saving event 004206928, 39/100, contains 3194 true hits.\n",
+      "Saving event 004206929, 40/100, contains 2108 true hits.\n",
+      "Saving event 004206930, 41/100, contains 3139 true hits.\n",
+      "Saving event 004206931, 42/100, contains 2060 true hits.\n",
+      "Discarding event 004206932, contains only fake hits.\n",
+      "Saving event 004206933, 43/100, contains 1013 true hits.\n",
+      "Saving event 004206934, 44/100, contains 397 true hits.\n",
+      "Saving event 004206935, 45/100, contains 709 true hits.\n",
+      "Saving event 004206936, 46/100, contains 772 true hits.\n",
+      "Saving event 004206937, 47/100, contains 872 true hits.\n",
+      "Saving event 004206938, 48/100, contains 1117 true hits.\n",
+      "Saving event 004206939, 49/100, contains 397 true hits.\n",
+      "Saving event 004206940, 50/100, contains 1636 true hits.\n",
+      "Saving event 004206941, 51/100, contains 3559 true hits.\n",
+      "Saving event 004206942, 52/100, contains 1822 true hits.\n",
+      "Saving event 004206943, 53/100, contains 344 true hits.\n",
+      "Saving event 004206944, 54/100, contains 1340 true hits.\n",
+      "Saving event 004206945, 55/100, contains 2038 true hits.\n",
+      "Saving event 004206946, 56/100, contains 3145 true hits.\n",
+      "Saving event 004206947, 57/100, contains 4457 true hits.\n",
+      "Saving event 004206948, 58/100, contains 1102 true hits.\n",
+      "Saving event 004206949, 59/100, contains 955 true hits.\n",
+      "Saving event 004206950, 60/100, contains 1426 true hits.\n",
+      "Saving event 004206951, 61/100, contains 428 true hits.\n",
+      "Saving event 004206952, 62/100, contains 1250 true hits.\n",
+      "Saving event 004206953, 63/100, contains 1591 true hits.\n",
+      "Saving event 004206954, 64/100, contains 2626 true hits.\n",
+      "Saving event 004206955, 65/100, contains 293 true hits.\n",
+      "Saving event 004206956, 66/100, contains 1312 true hits.\n",
+      "Saving event 004206957, 67/100, contains 983 true hits.\n",
+      "Saving event 004206958, 68/100, contains 1659 true hits.\n",
+      "Saving event 004206959, 69/100, contains 2843 true hits.\n",
+      "Saving event 004206960, 70/100, contains 816 true hits.\n",
+      "Saving event 004206961, 71/100, contains 211 true hits.\n",
+      "Saving event 004206962, 72/100, contains 1821 true hits.\n",
+      "Saving event 004206963, 73/100, contains 1017 true hits.\n",
+      "Saving event 004206964, 74/100, contains 2710 true hits.\n",
+      "Saving event 004206965, 75/100, contains 2393 true hits.\n",
+      "Saving event 004206966, 76/100, contains 3461 true hits.\n",
+      "Saving event 007212913, 77/100, contains 1855 true hits.\n",
+      "Saving event 007212914, 78/100, contains 923 true hits.\n",
+      "Saving event 007212915, 79/100, contains 1247 true hits.\n",
+      "Saving event 007212916, 80/100, contains 2129 true hits.\n",
+      "Saving event 007212917, 81/100, contains 2372 true hits.\n",
+      "Saving event 007212918, 82/100, contains 1742 true hits.\n",
+      "Saving event 007212919, 83/100, contains 2170 true hits.\n",
+      "Saving event 007212920, 84/100, contains 768 true hits.\n",
+      "Saving event 007212921, 85/100, contains 2265 true hits.\n",
+      "Saving event 007212922, 86/100, contains 3096 true hits.\n",
+      "Saving event 007212923, 87/100, contains 1829 true hits.\n",
+      "Saving event 007212924, 88/100, contains 833 true hits.\n",
+      "Saving event 007212925, 89/100, contains 2592 true hits.\n",
+      "Saving event 007212926, 90/100, contains 1433 true hits.\n",
+      "Saving event 007212927, 91/100, contains 1745 true hits.\n",
+      "Saving event 007212928, 92/100, contains 2669 true hits.\n",
+      "Saving event 007212929, 93/100, contains 982 true hits.\n",
+      "Saving event 007212930, 94/100, contains 1134 true hits.\n",
+      "Saving event 007212931, 95/100, contains 2717 true hits.\n",
+      "Saving event 007212932, 96/100, contains 2973 true hits.\n",
+      "Saving event 007212933, 97/100, contains 970 true hits.\n",
+      "Saving event 007212934, 98/100, contains 1286 true hits.\n",
+      "Saving event 007212935, 99/100, contains 420 true hits.\n",
+      "Saving event 007212936, 100/100, contains 3010 true hits.\n",
+      "Writing outputs to data/processed\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  0%|          | 0/100 [00:00<?, ?it/s]INFO:Preparing event 004206889\n",
+      "INFO:Preparing event 004206896\n",
+      "INFO:Preparing event 004206891\n",
+      "INFO:Preparing event 004206890\n",
+      "INFO:Preparing event 004206892\n",
+      "INFO:Preparing event 004206893\n",
+      "INFO:Preparing event 004206894\n",
+      "INFO:Preparing event 004206895\n",
+      "INFO:Preparing event 004206897\n",
+      "INFO:Preparing event 004206901\n",
+      "INFO:Preparing event 004206900\n",
+      "INFO:Preparing event 004206902\n",
+      "INFO:Preparing event 004206904\n",
+      "INFO:Preparing event 004206905\n",
+      "INFO:Preparing event 004206907\n",
+      "INFO:Preparing event 004206908\n",
+      "INFO:Preparing event 004206909\n",
+      "INFO:Preparing event 004206910\n",
+      "INFO:Preparing event 004206913\n",
+      "INFO:Preparing event 004206911\n",
+      "INFO:Preparing event 004206916\n",
+      "INFO:Preparing event 004206903\n",
+      "INFO:Preparing event 004206921\n",
+      "INFO:Preparing event 004206917\n",
+      "INFO:Preparing event 004206915\n",
+      "INFO:Preparing event 004206914\n",
+      "INFO:Preparing event 004206912\n",
+      "INFO:Preparing event 004206919\n",
+      "INFO:Preparing event 004206898\n",
+      "INFO:Preparing event 004206920\n",
+      "INFO:Preparing event 004206918\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206890 with size (2, 742)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206908 with size (2, 691)\n",
+      "INFO:Preparing event 004206922\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206907 with size (2, 803)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206892 with size (2, 545)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206902 with size (2, 1860)\n",
+      "INFO:Preparing event 004206899\n",
+      "INFO:Preparing event 004206923\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206895 with size (2, 625)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206913 with size (2, 2754)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206910 with size (2, 228)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206904 with size (2, 2437)\n",
+      "INFO:Preparing event 004206926\n",
+      "INFO:Preparing event 004206925\n",
+      "INFO:Preparing event 004206928\n",
+      "INFO:Preparing event 004206924\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206921 with size (2, 2020)\n",
+      "INFO:Preparing event 004206927\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206903 with size (2, 1492)\n",
+      "INFO:Preparing event 004206931\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206916 with size (2, 736)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206915 with size (2, 597)\n",
+      "INFO:Preparing event 004206930\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206917 with size (2, 1507)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206897 with size (2, 983)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206909 with size (2, 708)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206891 with size (2, 1109)\n",
+      "INFO:Preparing event 004206933\n",
+      "INFO:Preparing event 004206934\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206914 with size (2, 488)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206889 with size (2, 626)\n",
+      "INFO:Preparing event 004206929\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206911 with size (2, 875)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206900 with size (2, 729)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206901 with size (2, 1779)\n",
+      "INFO:Preparing event 004206937\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206896 with size (2, 782)\n",
+      "INFO:Preparing event 004206936\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206905 with size (2, 2741)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206920 with size (2, 954)\n",
+      "INFO:Preparing event 004206940\n",
+      "INFO:Preparing event 004206939\n",
+      "INFO:Preparing event 004206942\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206893 with size (2, 1163)\n",
+      "INFO:Preparing event 004206943\n",
+      "  1%|          | 1/100 [00:00<00:16,  5.84it/s]INFO:Preparing event 004206941\n",
+      "INFO:Preparing event 004206935\n",
+      "INFO:Preparing event 004206938\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206912 with size (2, 1089)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206919 with size (2, 1329)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206894 with size (2, 1145)\n",
+      "INFO:Preparing event 004206944\n",
+      "INFO:Preparing event 004206947\n",
+      "INFO:Preparing event 004206949\n",
+      "INFO:Preparing event 004206945\n",
+      "INFO:Preparing event 004206948\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206923 with size (2, 848)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206899 with size (2, 650)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206898 with size (2, 935)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206922 with size (2, 505)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206933 with size (2, 757)\n",
+      "INFO:Preparing event 004206951\n",
+      "INFO:Preparing event 004206953\n",
+      "INFO:Preparing event 004206950\n",
+      "INFO:Preparing event 004206946\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206934 with size (2, 310)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206931 with size (2, 1546)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206939 with size (2, 288)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206918 with size (2, 1355)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206928 with size (2, 2391)\n",
+      "INFO:Preparing event 004206956\n",
+      "INFO:Preparing event 004206958\n",
+      "INFO:Preparing event 004206957\n",
+      "INFO:Preparing event 004206955\n",
+      "INFO:Preparing event 004206952\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206940 with size (2, 1241)\n",
+      "INFO:Preparing event 004206963\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206935 with size (2, 542)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206927 with size (2, 1847)\n",
+      "INFO:Preparing event 004206962\n",
+      "INFO:Preparing event 004206961\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206938 with size (2, 836)\n",
+      "INFO:Preparing event 004206960\n",
+      "INFO:Preparing event 004206954\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206926 with size (2, 1027)\n",
+      "INFO:Preparing event 004206964\n",
+      "INFO:Preparing event 004206965\n",
+      "INFO:Preparing event 004206959\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206930 with size (2, 2426)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206944 with size (2, 1020)\n",
+      "INFO:Preparing event 007212913\n",
+      "INFO:Preparing event 004206966\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206948 with size (2, 849)\n",
+      "INFO:Preparing event 007212914\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206943 with size (2, 258)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206942 with size (2, 1367)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206929 with size (2, 1550)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206936 with size (2, 584)\n",
+      "INFO:Preparing event 007212917\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206956 with size (2, 1019)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206949 with size (2, 734)\n",
+      "INFO:Preparing event 007212918\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206937 with size (2, 690)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206941 with size (2, 2737)\n",
+      "INFO:Preparing event 007212919\n",
+      "INFO:Preparing event 007212921\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206958 with size (2, 1260)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206924 with size (2, 1197)\n",
+      "INFO:Preparing event 007212916\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206961 with size (2, 169)\n",
+      "INFO:Preparing event 007212922\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206945 with size (2, 1431)\n",
+      "INFO:Preparing event 007212920\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206947 with size (2, 3438)\n",
+      "INFO:Preparing event 007212915\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206960 with size (2, 627)\n",
+      "INFO:Preparing event 007212923\n",
+      "INFO:Preparing event 007212924\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206963 with size (2, 776)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206962 with size (2, 1329)\n",
+      " 35%|███▌      | 35/100 [00:00<00:00, 124.40it/s]INFO:Preparing event 007212925\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206959 with size (2, 2069)\n",
+      "INFO:Preparing event 007212927\n",
+      "INFO:Preparing event 007212929\n",
+      "INFO:Preparing event 007212928\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206946 with size (2, 2389)\n",
+      "INFO:Preparing event 007212930\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206957 with size (2, 728)\n",
+      "INFO:Preparing event 007212926\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206925 with size (2, 1898)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206953 with size (2, 1235)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206965 with size (2, 1832)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206955 with size (2, 212)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212913 with size (2, 1389)\n",
+      "INFO:Preparing event 007212932\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206951 with size (2, 322)\n",
+      "INFO:Preparing event 007212934\n",
+      "INFO:Preparing event 007212935\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206966 with size (2, 2581)\n",
+      "INFO:Preparing event 007212933\n",
+      "INFO:Preparing event 007212936\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206952 with size (2, 976)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206950 with size (2, 1073)\n",
+      "INFO:Preparing event 007212931\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212915 with size (2, 982)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206964 with size (2, 2053)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206954 with size (2, 1990)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212922 with size (2, 2242)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212921 with size (2, 1661)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212914 with size (2, 681)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212923 with size (2, 1412)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212920 with size (2, 605)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212929 with size (2, 706)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212927 with size (2, 1295)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212916 with size (2, 1597)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212935 with size (2, 282)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212930 with size (2, 856)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212917 with size (2, 1753)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212919 with size (2, 1630)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212934 with size (2, 1002)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212932 with size (2, 2200)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212924 with size (2, 626)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212926 with size (2, 1111)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212925 with size (2, 1990)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212928 with size (2, 2023)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212918 with size (2, 1298)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212931 with size (2, 2041)\n",
+      " 82%|████████▏ | 82/100 [00:00<00:00, 235.08it/s]INFO:Modulewise truth graph built for data/preprocessed/event007212933 with size (2, 722)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212936 with size (2, 2279)\n",
+      "100%|██████████| 100/100 [00:00<00:00, 222.39it/s]\n"
+     ]
+    }
+   ],
+   "source": [
+    "from Processing.Models.feature_construction import FeatureStore\n",
+    "\n",
+    "fs = FeatureStore(CONFIG)\n",
+    "fs.prepare_data()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 1. Train Metric Learning"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## What it does\n",
+    "Broadly speaking, the first stage of our pipeline is embedding the space points on to graphs, in a way that is efficient, i.e. we miss as few points on a graph as possible. We train a MLP to transform the input feature vector of each space point $\\mathbf{u}_i$ into an N-dimensional latent space $\\mathbf{v}_i$. The graph is then constructed by connecting the space points whose Euclidean distance between the latent space points $$d_{ij} = \\left| \\mathbf{v}_i - \\mathbf{v}_j \\right| < r_{embedding}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Training data\n",
+    "Let us take a look at the data before training. In this example pipeline, we have preprocessed the TrackML data into a more convenient form. We calculated directional information and summary statistics from the charge deposited in each spacepoints, and append them to its cyclidrical coordinates. Let us load an example data file and inspect the content."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>0</th>\n",
+       "      <th>1</th>\n",
+       "      <th>2</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0.465221</td>\n",
+       "      <td>-0.462661</td>\n",
+       "      <td>-1.440705</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>0.122540</td>\n",
+       "      <td>-0.611363</td>\n",
+       "      <td>-1.440705</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>0.513063</td>\n",
+       "      <td>-0.629230</td>\n",
+       "      <td>-1.434295</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>0.498745</td>\n",
+       "      <td>-0.508192</td>\n",
+       "      <td>-1.440705</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>0.249448</td>\n",
+       "      <td>-0.532812</td>\n",
+       "      <td>-1.440705</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>673</th>\n",
+       "      <td>0.726360</td>\n",
+       "      <td>0.467563</td>\n",
+       "      <td>3.753205</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>674</th>\n",
+       "      <td>0.244590</td>\n",
+       "      <td>0.593452</td>\n",
+       "      <td>3.746795</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>675</th>\n",
+       "      <td>0.722281</td>\n",
+       "      <td>0.704765</td>\n",
+       "      <td>3.746795</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>676</th>\n",
+       "      <td>0.128899</td>\n",
+       "      <td>-0.142000</td>\n",
+       "      <td>3.753205</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>677</th>\n",
+       "      <td>0.340476</td>\n",
+       "      <td>-0.061835</td>\n",
+       "      <td>3.753205</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>678 rows × 3 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "            0         1         2\n",
+       "0    0.465221 -0.462661 -1.440705\n",
+       "1    0.122540 -0.611363 -1.440705\n",
+       "2    0.513063 -0.629230 -1.434295\n",
+       "3    0.498745 -0.508192 -1.440705\n",
+       "4    0.249448 -0.532812 -1.440705\n",
+       "..        ...       ...       ...\n",
+       "673  0.726360  0.467563  3.753205\n",
+       "674  0.244590  0.593452  3.746795\n",
+       "675  0.722281  0.704765  3.746795\n",
+       "676  0.128899 -0.142000  3.753205\n",
+       "677  0.340476 -0.061835  3.753205\n",
+       "\n",
+       "[678 rows x 3 columns]"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "example_data_df, example_data_pyg = get_example_data(configs)\n",
+    "example_data_df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAEAAElEQVR4nOzdd3gU5doG8HtmW3qy6RVS6b0XAWkKYhfFisfesJ9jOUdF9LMce+96sCJYUYooTaQm9A7pvfe6beb7IxAJqZtsdja798+L6zKzM+/cgc1mn32bIMuyDCIiIiIiIjsQlQ5ARERERESugwUIERERERHZDQsQIiIiIiKyGxYgRERERERkNyxAiIiIiIjIbliAEBERERGR3bAAISIiIiIiu2EBQkREREREdsMChIiIiIiI7IYFCBERERER2Y1a6QD2dttttyEjI6PVx4YMGYLXX3/d6jYrKioAAH5+fsjLy8ONN96ISZMmYcmSJd1I2jMcPR8REREROTeXK0AmTJiAuLg4AMCmTZsgSRJmzpwJAIiMjOxSm7fccgu0Wi2WLVtms5xERERERM7I5QqQW265pen/t23bhoaGBjz22GNdbi8jIwMWiwVmsxmpqalwd3e3RUwiIiIiIqfkcgVIe1JTU3HnnXdi9uzZCAgIwIkTJ3D99dfj4YcfxuWXX4677roLAHDPPffg5MmTWLNmDZ577jnU1tYCAB5//HG88cYbAACLxYK33noLmzdvhl6vxwMPPIChQ4e2et+8vDy89tprSEtLw5w5c7B7926Ulpbihx9+aDXTSy+9hJ9++gk//fQTSkpKoNfrccEFF+C6667DwYMH8fDDD+OCCy5AZWUl9u/fj7i4ONxxxx3o169f0z2tyUdEREREZCuchN6KpKQkrFixAl5eXh2e+/HHH8PHxweBgYFYsWJF0/HExEQkJycjNjYWWVlZeOWVV1q93mw24+mnn8ahQ4cwadIk7Nq1C+np6e1mOnjwIN577z3odDpcfvnlcHd3x9KlS7F///6m83/77TfU1dVh3LhxOHjwIB577DHU19dbnY+IiIiIyJbYA9IKURTx/fffw9vbGwcPHuxSGxEREXj77bcBANdddx3y8vJgNpuhVjf/K9+/fz/S09Nx3nnn4Z///CdKS0tx9dVXt5spOzsb//nPfxATEwOj0YjMzExkZmYiPz8fERERAIDQ0FC89NJLABqLnL/++gt79+5FTEyMVfmIiIiIiGyJPSCtGDlyJLy9vbvVRp8+fZr+38/PDwAgy3KL83JycgAAAwYMAAAEBAQgPDy83UweHh5Ys2YNFi1ahK+++qrVdgcNGtT0/0OGDAEAlJWVWZ2PiIiIiMiWWIC0QqVSNf2/IAgAgPLycgCAJElNy+6eqatv3v39/QEAKSkpAICqqioUFBS0m+m7777Dvn378MQTT2DJkiUICQlpcf6xY8ea/v/o0aMAgLCwsC5lJCIiIiKyFY636UB4eDhEUcTWrVvxwgsvICcnB8XFxc3O8fb2Rn5+Pn777TcMGzbMqvbHjBkDHx8f/P777xAEASdOnIAkSe1ec3qY1PLly7Ft2zZs2LABAGAwGJrOycvLw7///W/4+flhy5YtiIiIwMiRI1FYWGhVPiIiIiIiW2IPSAcCAgJw9913w9PTE3v37sXo0aMRHx/f7JwFCxbA398f3333ndXte3h44Pnnn0d0dDQ2b96MgQMHom/fvu1eM3/+fAwfPhzJycnIz8/HDTfcAKBxWeHTzj//fKhUKmzfvh0jRozAiy++2KwXhYiIiIhICYLMgf+Kys3Nxffff4/AwEBceumlSE1NxSOPPIIBAwY0LelrjdPL8J65bDARERERkaPgECyFhYWFwcPDA19//TWWLl0KAOjfvz8eeughZYMREREREfUA9oA4CKPRiJKSEnh7e3drBa6CggKsXr0agwcPxoQJE2yYkIiIiIio+1iAEBERERGR3XASOhERERER2Q0LECIiIiIishsWIEREREREZDcutQrWY489hvvuu0/pGEREREREitPpdAgICLD6uqu2voLd5Sl4Y9QtuDhirNXXu9QkdEEQIMsy8vLyEB4ernQcIrvhc55cDZ/z5Gr4nKeusPZ5U9lQi+u3voI1pYcgSRYEufnio3F34dKI8Vbd16V6QIiIiIiIqHPMUiUySt9HnTEVKkHGrX+UYafFBHhqAADFDZW47K/n8Hz8w+jrFYZQfz2mBAVCIwjttssChIiIiIiImpFhwvbU6ais3wcBgE6lRonpPECnBU4NoBqsD4FvzXD8e/sxwD8f0GowwMcHG86dgnA3tzbb5iR0IiIiIiJqprJuD6oa9jV9rXcfjQjf/o3dFzJwR8J0XOl3I/ZW64GwYMBNBwA4XlWFt5JT2m2bPSBERERERNRMUW0J6gyApw6QZMDXbQhUGk+oZBWWjr8HYephmLVpA+CtAySpqVcEANJra9ttmwUIERERERE1I1VmIbsMGBAGCAA0mnjMjh6IV6Jvxki/GJQZTTh+6TykVFfjZHUVkqurcayqGseqa+Cman+QFQsQIiIiIiJqIhf+hf6JzyE/eDKOVW1DtC+g1cbjsRGXNJ3jr9XAX6tBfy9PlFZ4Y19hDXxqDAiuqMWBQgklA00I9NK02j7ngBAREREREQBALtoBy+YbYDFVYXq1GaMCn0alAfBx69fmNdP66LC73oQTAmDw8USNmwfu/qsYVSap1fNZgBAREREREQDAsv0eyA2lkAGYq45gQlERxsavglYd2uY1fT3VeG9WOCAAggrQeKhxqNaCO7cWt3o+CxAiIiIiIgIACIFjGid9CIAsAKa0LxBfUg+tKrjNa0x1JkTvOIJrhwYAggBZkiHLMvaXGls9nwUIEREREREBAFQT34YQNBtyg9S4/JUAmLbdBJQfbPOahmoDvv7XGgz7eRP6R/pAFgW4q0W8PiGw1fNZgBARERERUSOVDupzl0I2DoBUEQxoRkIIOAdS9so2LynPKofGzQP7PtyJQV+vhptOg1fGB+D8SPdWz2cBQkREREREf3P3gex3JYzHAmA4EQlTzhiYssJh3rcJUn4a5JpyAICUVgzLcytQklEKSbLAMyAYDb/uxRPFyZgZ3nrxAXAZXiIiIiIiOpu5HlJ1GVC9C5aTuxqPiQJkswke/3wLQlEc6m7/CJoIM4oXNM4PkWUZ/n7BiPbQtts0CxAiIiIiImpGDIz8+wtBAABIZiO0M26D5Xug4cO3IECAQTSgJLkYMgRAlqFV6eAfEdJ+2z0ZnIiIiIiIeh/N9AVQxQwBAMgmC0zlNRA0kyB94Y6GD9cAECDLJlRl5SB/X37jylkAfCN90GdMZNsNo5f2gDQ0NOCpp57CSy+9pHQUIiIiIiKnI3j6wOu5lbAcS4S5IAdSXgUMD+6D2ZgMCDIEQQWLuQ5mnYjB8wZChgDfEG+MnD8UGrf2S4xeV4CsXbsWa9euhdHY+rrCRERERERkG6qB46AaOA4AoIk6gdo7P4WUXwEIgHrKQER/dhfiQtveI6Q1vW4Ilq+vL6ZOnap0DCIiIiIil6Ke2h+eH94CVXQQ1DMGwPenJ6CysvgAAEGWZbkH8vWo7OxsPPfcc/jggw9afXzJkiV4+umn27z+4YcfxkMPPdRD6YiIiIiIHJ8gCAgLC7P7fXvdEKzOWLx4MRYvXtziuCAIkGUZeXl5CA8PVyAZkTL4nCdXw+c8uRo+56kr8vLyFLlvrxuCRUREREREvRcLECIiIiIishsWIEREREREZDe9sgCJiopqcwI6ERERERF1bPo2M/p/l2X3+/bKAoSIiIiIiHonFiBERERERGQ3LECIiIiIiMhuWIAQEREREZHdsAAhIiIiIiK7YQFCRERERER2wwKEiIgUJ8syTCaT0jGIiMgOWIAQEZHiSnJLkXkyB5IkKR2FiIg6YfuuJCTu2dela9U2zkJERGQ9ARAhK52CiIg6ITUtAylp6QCAAL0ecbHRVl3PAoSIiBQXGB4AfbAfRJEd80REjiw1LQPbdiXCx8cbALBtVyIAWFWE8JWeiIgUJwgC1Bp+JkZE1BtMHj8O7m5ucHdzw+Tx46y+nq/2RERERETUrtS0DAB/93SkpKc3+/rsx9vDHhAiIiIiImrT6WFXHdm2K7GpEGkPe0CIiIiIiKhV23clISUtHT4+3khJT2/q+SguKQUArNuwqelcHx9vbNuViNLycowbPbLNNtkDQkRERERENmM2m9t9nD0gRERERETUqknjxyIkKAjbdiVi6MCBTXM8Tvd8nD9zOoC/h2lNHj+uw3kgLECIiIiIiKhNnV1itzPFB8AChIiIiIiIOnD2alenWbP61WmcA0JERERERJ22bVci6hsaUN/Q0KnVsc7GHhAiIiIiIuqU0z0dpwuPzg67OhMLECIiIiIi6rS42GgUFhc3/b+1WIAQEREREZFVJo0f2+VrOQeEiIiIiIjshgUIERERERHZDQsQIiIiIiKyGxYgRERERERkNyxAiIiIiIjIbliAEBERERGR3bAAISIiIiIiu3HqAmTJkiUQBKHpDxERERERNdo0WY0TV/ax+32dugBZvHgxZFlu+kNE5Ory8ivwyL9X4J4HvsSOXalKxyEiIhfk1AUIERH9LS+/Aose+BKJu9Nw5Ggu/u/FX7B9R7LSsYiIyMWwACEichEvvrwaZeW1TV/X1hrw+tu/w2KRFExFRESuhgUIEZGLqKltaHHMaDLDbGYBQkRE9sMChIjIRZw3czA0alWzYyOH94VOp1YoERERuSL+1iEichFXXzUBoijiq2U7UFVdj2lTBuDpJy5VOhYREbkY9oAQEbmQq+aPw1dL70B8XAiuuWq80nGIiMgFsQAhInIxPt5uGNA/DCmphe2eV11ZA0ni/BAiIldmNJmQmp6BTX9tQ1ZOLgBg285EJO3dDwBITWt8LDU9A0aTqVNtsgAhInJBCfEhSE5puwCRJAllBWWoKquyYyoiInI02dm5SNyzD0ajESbjmQXG33vsGY1GJO7Zh+zs3E61yTkgREQuKD42GL+vP9zm46IoIjI+AiqVqs1ziIjI+WXl5MBf74fzZ05vOjZ5wrim/4+LjUZcbDTWbdiErJwcxMVGd9gmCxAiIhcUHxfS4RAsFh9ERNQnMrJT58XHxHS6TRYgREQuSKdTIzDQG7m55YiI0Csdh4iIHFRnejSsOQ9gAUJE5LIS4kKQnFrIAoSIiNq0bWcigObDrgCgprYWSXv3o6CwCCaTCSHBQRg+dDBCg4M7bJOT0ImIXFR8XDBSUouUjkFERA5Mq9VAq9U0O1ZTW4tf1/6OmpoajBg6GGNHjYBWo8HvGzajoKjj3yvsASEiclHxcSH4+Ze9SscgIiIHNnbUyBbHkvbsg5enBy6ae37TsYH9+2Hdhk04cOgIQme23wvCHhAiIhfVmYnorZEkCbIsd3wiERH1eqlpGU37f5xWUFSM+NiWk877REagrLyiwzZZgBARuajAAC+YTBZUVtVbdV1uSi7y0vJ7KBURETmSrJwcHDtx0qZtsgAhInJhcbHBSE2zbh5IeFw4wmJCeygRERE5kj6RkSgrrzi1z0djT0hocBBS0jJanJuVkwt/vV+HbbIAISJyYfHxIUhpZ0f01qhUKogif30QEbmCqKgIjBs1ElqNpmkn9LGjRzZNRD924iSOnTiJdRs2obCoGEEBAR22yUnoREQuLCEuBIm705SOQUREDkqr0TTtdn6al6cnLpp7HpL27MP+Q0ealuEdMnAADh87Dl8fn3b3BWEBQkTkwuLjgvHN8p1KxyAiol7Gy9MT06ee0+K4r48Ptu1KhF7v1+ZwLBYgREQuLCY6CBmZxZBlQBCUTkNERL1dXGw09Ho/eHl5tnkOB/ESEbm4ri7HS0RE1Bp/vR+0Gk2bj7MAISJycSxAiIjInliAEBG5uIS4ECSzACEiIjthAUJE5OLi44KRkmrdXiBERERdxQKEiMjF9dYhWBazBTkpeZBlWekoRERkBRYgREQuzsNDCx8fdxQUVCodxSqCIEDg0l1ERL0OCxAiIkJ8bDBS0nrXMCxRJSIiLoxFCBFRL8N9QIiICAnxIUhOKcQ5kxKUjkJERA7m8OHDnTpvyJAhnTqPBQgRESE+LgRrfjuodAwiInJAnS0sOotDsIiICHGxwUjtZUOwiIiod2IBQkRECA3xRXV1A2rrDEpHISIiJ+fUBciSJUuaVknhJEUiovbFxwcjJYW9IERE1LOcugBZvHgxZFlu+kNERG3rrfuBEBFR7+LUBQgREXUeCxAiIrIHFiBERAQASIgLRnIqh2AREVHPYgFCREQA2ANCRES20dHUBxYgRETUJCY6COkZxUrHICIiB3BmGWGxWP4+flaBUVpWjgOHj+Dw0WOorKzqcPEnbkRIRERNTg/DiokOUjoKEREpTABQXV2D/YePICsrB32iIjB86GD4eHsDACyShAMHD+NESipkWYYkSzh45BiGDOyPoYMHtVmIsAAhIqImCfGhSE4pwHkzBysdhYiIFFZVXY0Nf26F0WSCn68P8gqKUFpegelTJsPXxxtHjh1HXlEJhg4aiAH9EmCRLDh89BgysvPg5u6OfnGxrbbLIVhERNQkPi4YKVZORC8rqeyhNEREpKS9+w+iocGAKRPGYd6c2ZgyaTyMJhOOHDsBWZZx7EQy3LVqDBk0AGq1CjqtFqNHDIdOq8ahI8fabJcFCBERNYmLC0FqBxPRa6vrmv7fbDSjrKAMZqO5p6MREZGdFZWUom9UBMLDQpGTl4fw0BCEhwYjKycbBqMRkiQhMDAQQOMckdPzRPR+fhBVqjbbZQFCRERNfLzdoNNpUFxS3erjhnoDCrMLYTY1FhxqrRrRA6Kg1nJELxGRs9HpdND7+SE1PQO79x1EanoG/P38YLFIEABo1Crk5OVBkmSoVCqoVCqYzWYUFBbCYja12S4LECIiaqa9YVg6dx2iEqKg1vxdcKjVLD6IiJyRRbLAZDLB18cbk8aNga+PN0xmMwRBhE6nQ2x0NGSI2LTlL+Tk5iErJwcb/vwLEFQY2C+hzXZZgBARUTMd7Qei0ThfwWFsMCp6//q6ephMHMZGRI5FFESIahHFJaVI2ncQRSWlUIkqCELjClhDBg2Em1aNqpo6JO47gP2HjqKmtg6B/n4YwAKEiIg6y9U2JDQbzchOzkNDXYMi95dlGWUFFajgZH4icjCCIAIyMKBfAqLCQzGwX0Lj3iCCAMkiQavVwNfHG0ajAZFhIYgKD8PEcaMxafxYqNqZA+J8H2MREVG3xMcF46NPNysdw27UWjWiEsKhddMqcn9BEBARG6bIvYmI2tPQUN+0seCwIYMAAJVVlZBlGWq1CiaTGSlp6fDz8cW40aM63S57QIiIqJmIcD1Ky2rQ0ND2BEJno1TxQUTkyEKCApGTl4+CosZ5gQVFRcgrKEJUeBgEQUB+QQF0bu6I7tsHsizDYrG02CW9NSxAiIiohbjYYKSmWbcfCBEROZeRw4ZArVZj45/bsH7Tn9j451aoVaqm3pCM7GyYjEb0iYyAIAgQRbHN3c/PxAKEiIha6C3zQGRZhqHeoHQMIiKn5Ovri+lTJiMsNBiFJSUICwnGuedMhK+PD4xGI3LzCuCv94OnpwcAdKr4ADgHhIiIWpEQH4Ljx/OUjtGhyrIqlBaWI7p/VLsTHomIyHqyLMNf74fpUybDYrE0vc7KsgyNRoOpkyfCTaezul0WIERE1EJCXDB+Xb1f6Rgd8gvwhZevJ4sPIqIeIAhC05wOlUrV9P+nezoiwkK71C4LECIiaiEuNgSpaY4/BAvgRohERD3pzGFVnR1i1RHOASEiohbUahHhYXpkZZcqHYWIiJwMCxAiImpVQnwIklN6Ry8IERH1HixAiIioVfFxwUhJ5VK8RERkWxw4S0RErYqPC8GK7xOVjuHwnv9iPTILyxEXEYhHrp2udBwiIofHAoSIiFrVW/YCUdL1z3yNY5mNf0cHU/OQWVCGdx+6QuFURESOjUOwiIioVXo/DwiCgLLyWqWjOKSfthxCdlF509dGkwXHMgqxcU+ygqmIiBwfe0CIyKVZLBYIggBR5OcxrYmLDUZqWhH8R8coHcXhVNcbUFNvbHbMZLGgzmBSKBERUc84fPhwp84bMmRIp85jAUJELi0/vQCCICAiLlzpKA7p9DCssSxAWrhg/EB8uXY3yqrrmo5p1WqcN66/gqmIiGyvs4VFZ/EjPyJyaeGxYQiL6dpOrq6AS/G2LdDPE8ufWYggP0/oNGrERQTil//eAq2au7ITEbWHBQgRuTRRFDn8qh2ciN4+fx8P3HTBeMwa0w8rnlkITzet0pGIiBwef+sSEVGb+kT5Iy+/AmazpHQUh1VQVoX4yEClYxAR9RosQIiIqF3sBWlfQWk1QgO8lY5BRNRrsAAhIqJ2WVuAmEzmHkzjeArKqhHqzwKEiKiznLoAWbJkCQRBaPpDRETWS4gLRnJqUafOraupR8aJLJcqQgrLqhHCAoSIqNOcugBZvHgxZFlu+kNERNazpgfEw8sdEdGh0GhcZ5X3wvJqhOhZgBARdZZTFyBERNR91g7B8vDy6ME0joXFBxGR9ViAEBFRu3Q6NQRBwN33f4ktW08qHcehcPgVEbmqbTsTsW1nYpeuZQFCRETtOu/CV2BoMOHosVw8/X8/4dDhbKUjOQxOQCciV1VTW4ua2touXcsChIicmizLyE3Jg2ThPhZdsfDmj2E0mnF6Fp0kyXjwkW+5L8gp7AEhIrIeCxAicn5cBa/LyivrWhyTJAmJu9MUSON48kurEBbgY9U1RoMRhbklPZSIiMjxsQAhIqcmCAIi4sIgqvhy1xXRfQIgoHkBp1arMGlCvEKJWidJyvTIdKUHxGQyw2I09VAiIqKeU1ZeAaOp5euX0WRCWXlFp9vhb2QiImrT269fj6gof4hiYxEiigK+/2aRwqmaK8kvQ156oV2XW6+pN2LOwx9iy4E0vPLtJquu9fTyQFh0aA8lIyLqOes2bMK69ZuaFSFGkwnr1m/Cug2dfy1kAUJERO364tPbcNst5yIw0Asvv7AAPj5uSkdqxj/ED8GRAXbdcHbGfe+huKIWkiQjv6QK5973nlXXc3NcIuqNzp85HTW1tVi3fhMkSYYkyVi3fhNqamtx/szpnW6HBQgROSxuIOo4rrlyPKZM6o+s7FKlo7QgiiK0Oq3d7nffGz/BctaQr9o6Az5ZtdNuGYiIlOCv92sqQsorKlBeUdFUfPjr/TrdDgsQInJIJqMJuSl5sFgsSkehU+LigpGaWqR0DMUZTeYWx2QADYaWx4mInMGZcz9OFyEWiwUWi6VZ8dHZuSAsQIjIIanUKmjctFCpVEpHoVPiYoKRms4C5MGrz4V41hAqURSw6IpzFEpERNSzVv32O8rKy5u+Pl2EnN3zUVZejlW//d5heyxAiMghiaKIkKigbrcjyzLyMwph4T4g3RYXG4TUtGKlYyiuf1QQli1ZCLVKhCgI8HTXYss7jjUxn4jI1oxnrd4XHBSI4KDAds9pi9pmqYiIHJTFbAGn/HafVqtGUKA3cvPKERGuVzqOouIjAnD7xRNRUlmLR6+boXScJkaDERqthpPcicimoiLCkbR3H46dONnueTW1tYiKCO+wPfaAEJFTEwQBkfHh3AfERmJjgpCWzl4QoHETwn426KWzFUmSUJhVhNKC8o5PJiKywtjRI9EnMqLD8/pERmDs6JEdnsceECIi6rT4uGCkpBZhyuR+SkdpV3l+OUJDQyGKPVd4FpRVY+bohB5r31qiKCIsJhRqNX+1E5FteXl6YuyojguLzuJHgkRE1GmxMcFIc/CJ6JIkoaHeCHMrq1XZUkFpFUIDfHr0HtZi8UFEvQELECIi6rS42GCkpjl2ASKKIkJjgnt8b5DC8mqE6L179B5ERM6IBQgREXVaeJgfSstqYHDwPS96ehJ2Tb0RoiDAw03To/chInJGLECIiMgq3A8EKCirQqi/Yw2/IiLqLViAEBGRVWJjg5Hm4MOwelphWTVC/Dn8ioioK1iAEBGhccNC6pz42GCkuHgBUlBajdAAFiBERF3BAoSIXJ4sy8hLL4DRYFQ6Sq/QGyai9zQOwSIi6joWIETk8gRBgEqjhtCDe0Y4k9jYIKSlufZmhOwBISLqOv62JSICEBoVBI2Geyh0hqeHDp6eOhQVV3V4rqHBCEmS7JDKvgrKqhHKOSBERF3CAoSIiKwWFxuE1A56QSRJQnFOMcoKy+2Uquel5ZVh2qJ3sfdkDp78eK3ScXqNpQf3YszS9zDxyw+xKuWE0nGISGEsQIiIyGqdWQlLFEWEx4YhMCzATql6VnZRBRY8tRQ19QYAjb0gM+57T+FUju+LQ/vwf9s3o6S+Dvk11Xj8z9/xK4sQIpfGAoSIiKyWEBeC5NTCDs8TnWhezX8+WgPprMXSquoM+G7TAWUC9RIv7NwCs/z3MLxqowH/3bVFwUREpDTn+c1ARER2ExsTjDQX24zQZLa0elxAz+663ttJrSxxbXHCeUFE1HksQIiIyGp9ovyRm1cBi8V13ki+cOc8iELzYsPDTYP504cplKh3eHTCFKhVqqavvbU6PDp+qoKJiEhpLECIyCmYzRbkJOc45YpLjsrV9gOJDvXHsiULoVGrIAoCwgJ8sOWdRUrHcng3DxuNUA8veGl1CHT3wHNTZ+PSfgOVjkVECuKak0TkFERRgCCKEAQOh7GXuJggpKYXo19CqNJRUF1ZA29frx6/T3xEAK6cPhzBem/ccP7oHr+fM9iWk4m+vn7YetGVSkchIgfBAoSInIIoioiIC1c6hkuJiwtBamohgKGK5rBYLCjKLQUAq4qQqopqmBpMCAj1t+p+BWXVGJkQ0enzJUlyqsn41npz9w78c/w5Sscgom4oK6+Al5cnjEYjjp1IRkFhEcorKgAAIcFB6BMZgbjYGGg1mk61xwKEiOgsJpMJmk6+iJ6ttroOKrUIN3c3G6dyPHExQdi2I1npGFCpVIjuHwnVGfMMOkOtVsGsan1ieXsKy6oR0slNCC0WC/LT8hEaEwa12rp8ziAxPwcAMC4sUuEkRNQdq377HWNHjcD+Q0cAAPGx0Rg+dDBMRhMKioqw/9ARHD1xEtOnnAN/vV+H7Tn1RzJLliyBIAhNf4iIOmIymZGVnI/62nqrr5UkCVVllaitbuiBZI6nM3uB2Iu1xQcAeHh5wD/Iz+rrCkqrEBrg06lzRVGE1k0Hlcqpf9226Y2k7Xhg7CSlYxCRDSTt3Q8vTw9cccmFGDtq5Klej2hMnjAOV1xyIbw8PbHpr60wmkwdtuXUr4iLFy+GLMtNf4iIOqLRqBEaFQh3T3errisvqUROSi5C+4QiINivZ8I5GF8fd6jUIsrKapWOYjcWSUZFTT0CfDw6db4gCAiOCnLJD8H2FuahwWzGpIg+SkchIpsRcOBUL8iZtBoNpk89B0ajCalp6R224tQFCBFRV3h6d+7N5Zm8/TyhD9G73BvNuJhgpLrQfiDWDL9ydW/t3oH7xkxUOgYR2UBcTDRCgoOg1WoAtP6hvlajQXxsNFLSMjpsj3NAiIhsQK1W22UVJkdzeinesaNjlI5iFwVlVQj179zwK1d2uLgQJfV1OLePazwviJzd5AnjOnVeVGREpwoQ9oAQkU0YZDMsMvfgcDWuthdIQVk1QtkD0qE3d+/A/ez9IHIay77/CQVFHb/WhwYH45r5l3V4HntAiKjbHkr6DruKM+CmVmPJiItwTnC80pF6jMVi6dKEZ2cVFxuMZSt2Kh3DbgpKqxEawAKkPcdLi5FdXYnZ0c77OkDkarw8PZCdk4vQ4OBWH9+2MxE1tY3zAf31eowdNaLd9tgDQkTd8q/dP+C33CMoN9Yiv64SDyV9h50lHU9A641K8kqRk5LHRS3OEBsThLT0YqVj2A2HYLXNLEloMJvZ+0HkhPpERiIlLaPdFa6MRiMKi4px7MTJDttjAUJEXVbYUI2/ClOaHasxGfDOsU0KJepZAWH+CI8JdbmJ5h2JiQ5CeoZrFCHsAWnd60nb0f+jNzDwkzexPjMVc2P7KR2JiGxo4IB+0Go02LSl9WV2x44eCaDzvxtZgBBRl+lUKrT2XtxTo7N/GDsQBAEabdc2KHRmrjQPJL+0iqtgneXN3Tvw1u7tsMgSZFmG2WLBtK8/UToWEdnQ6WV2a2pq8cPKVdi2MxGp6RlITc9A0t79+GHlKtTU1nY49Oo0FiBE1GV+Gg/ckjAZGvHvORFaUYUnhl6gYCqyt/jYYKQ4eQGy/VAGJtzxBtLySnHXy98rHcfu2ht2+MG+xGaLcsoAMqsqkFld1eO5iMh+/PV+uOiC8zFi6GDU1NZi285EbNuZiILCQgzq3w8XzT0PcbExuHDOeR22xUnoRNQttyacA7Ms4desg/DXeSDGOwjr84/hpnjufuwqYmOD8P2Pu5WO0WM27E7GYx+sgnTqTXhZdR1m3PceNr51t8LJ7MNsNiM/vRChfYNb7QEUW+kGFQQB7iq+xSByNlqNBgP798PA/m0Ps/TX+3XYDntAiKjb7uw3FatnLcKXU27GMyMuwo6iNGwtSun4QnIKzj4E67UVfzYVH6dV1jZgzc5jCiWyL7VaDXdPN6jUra/+9vZ5FzYf+S3LmN43BsEe1m/oSUSugQUIEdncR5Oux1P7fkFBPYdguIIAfy+YTGZUVTcoHaVHuLfyqb8gCHDTuM4n/IHhARDF1t8yzOgTi6lR0dCIItSCiGl9YvHZ3MvtnJCIehMWIETUI36deQ8u2vCu0jHITpy5F+SVRRdBdcabb0EAokP1mDE6QcFUjqO4vg5HS4qQfMdDSLnzIXx+4RVKRyIiB8cChIh6hKdah08m3YBrtnA1HFcQGxuMNCctQKJD/fHtkhug06ihUomICw/E9//3D6VjOYy3krbjvrGc80VEnccChIh6zHD/SMzvOwpP7vtF6SitslgsSkdwGs6+ElZseADmTBiA/9wwC8ufWah0HIdRYWjArynHccPgEUpHIaJehAUIEfWoK/qOgodagy9TdykdpRmLxYKc1HxUlHGeii04cw/IaUVl1QjmHiDNvJm0Hfez94OIrMQChIh63OND52JzwQnsKE5TOkoTlUoF/xA/+Ph5KR3FKcTFBCM1veMCpDCrEDXVdXZIZHsFZdUIZQHSpNZkworjh3DT0FFKRyGiXoYFCBHZxaeTF+LR3T+ixFCjdJQm3r5eba7sQ9ZRq0WEhfohO6es/RNVKmg0rS/n6uiKymsQrGfBetobu7fjgTHs/SAi6/E3LxHZza+z7sFF67kylrPqzEpYIRGB0Lnp7JTIduoaTJAhw9NNq3QUh2CwWPDFob24bcRYpaMQUS/EAoSI7MZX4453JlyDG/76TOko1AOceSneovJqBOs5/Oq0N3dvx/3s/SCiLmIBQkR2NTqgD+ZFDsMzB1YpHcVmGuqccwM+qwnA2nUH8f5HG5VOYnOF5TUI4fArAIAky/hgXyLuHjVe6ShE1EuxACEiu7s6ZgwECFiWnoRnD6zGrdu+xOepO5SO1SUmkwl5GQWornScuS1KOJlciKWfb0VpaQ2++zEJ19/0kdKRbKqwrAoh/j5Kx1CUBGBnfjbe3L0D94+ZqHQcIurF1EoHICLX9OTweRi96nk0WEyQZRk7itNglCTcljBZ6WhW0Wg0iEqIhEbjui+nRSU1uPv+L2CRJACALMnIzS3Dvxd/j+eXzLdbjvKSCugD/XqkbVfvAdmel4Ubf/0eMgCzJOH4bQ8oHYmIejH2gBCRIh7b82NT8QEAMmS8fWwjNhYcVziZ9Vy5+ACA7dtOQpLkZsdkAMeO59stg8lkRllROYwNxh5pv7CsGiEuugTvmtQTuP6X72CSJJhPFZlDPn2r6f+JiKzFAoSIFJFRU9ZUfJwmQ8bekmyFElFXTZgYB0E4+6iAgf3C7JZBo1Ejun8faHtolarC8mqEuOgk9I8P7IF01s+qJMt4d+9OhRIRUW/HAoSIFDHILwxnv2cVZGBGaH9F8lDXhQb74pknLodwRhUSGeGH55+13/AroHFzyZ7S2R4QWZZbFNa9nbeu9aLOz83DzkmIyFmwACEiRTw1fB7GBsVAJTS+DAkABviFYVRgH2WDUZdMnhyPl567CsOGRCEk2Bdf/e8OpSPZVGFZDUL8O54Dkpuah4LMQjsksp8v5s2H5oziTgDQ10ePG4eMUCwTESmnrLwCqekZSNq7H0l79yM1PQNl5RVWteHaA5eJSFFLJ9+Iz1K2IbWqGOdHDEZGTSlePPQbHhs6R+lo1AVjx8QgJiYIdy5aqnQUm2owmmG2WODl3vEGiqHRoa0MR+v9npw0HS/u/BMqQURfPz+suuIGpSMRkQKS9u7DsRPJAICQ4CAAwLETJwEAw4cOxvAhgzvVDgsQIlLUzfF/r3o1NSQBLx76DV+k7sTCuAkKpqKuCgzwQl29EXV1Rnh4OMeu4dZMQFere24YmJI+2LcL66++GeFerjkPhoiAX9euQ01tHc6dMhl9IiOaPZaVk4ttOxORlZ2Li+ae12FbHIJFRA7lsaFzsLskA+vze99qWNQouk8gMrJKlI5hM648AR0AViYfw9iwSBYfRC4sae8+1NTW4fyZ09EnMgKpaRlY9v1PWPb9Tzh24iT6REbg/JnTUVNbiwOHjnTYnkMVIBs3bsRNN92Ef/zjH1i3bl2r5yxcuBAXXHBB058jRzr+Jomod3lr/NX44MSfOFphv2VcyXb69g1EZqYTFSAuvAQvALy9ZyfuHc0eSSJXVVZegWMnkjF5wjj46/0AAIl792FQ/34YMXQwkvbuR1l5Bfz1fpg8YRwOHD7S4ZwQhxmCVVFRgU8//RTvvPMORFHEPffcgzFjxiAgIKDpHEmSYDQasWbNGgWTEpE9fH/uHZi05iWsmbUIflquttObxPQNRLrCBYixwWSztorKaxDsopsQrs9IRbSvH+L1AR2fTEROqfxUMXHmsKtr5l/W9P9Je/ej/FQBcvqc01+3xWF6QBITEzFmzBjo9Xr4+vpi4sSJ2LFjR7NzSkpKmhUkROTcNs15CNN/e03pGGQlpXtATCYT8pILUF1ZY5P2CsqqEeqiPSDv7NmJRez9IHJpZRXlTRPOz2Q0mbDpr20AgJCQvx8PCQ5CWUV5u206TA9ISUkJgoODm74OCgpCaWlps3MKCgpQWVmJRx55BBkZGZg6dSruvvtuiGLzOmrJkiV4+umnW72PIAh4+OGH8dBDD9n8eyByZHl5eUpH6JL3B1+O8397Hf8btkDpKNRJbjozUtMKFX3ORfQLRXVtFaprq7rdVmZeMYb28eu1P0Ndtbu4ACpJQrBZdrnvvbfivxNZS+jGsn0HDh1GQWERLpxzHrw8Pa261mEKkNY2bpIkqdnX3t7emD9/Pi6++GJUV1fjySefxOrVq3HRRRc1O2/x4sVYvHhxi/YEQYAsN76QhoeH2/YbIHJgvfk5H45wLPbW4amUDfhkUuPSn3WSER6iMissWSyWHt3wzhmEhwPVNb8gICAYOp0yv2Zs+ZyvqjdhYHw0wsMDbdJeb/Ht7q14eNK0Xvva4Wp68+s8KaczRau/n75p6d2zj0+eENxiqFVhUTHiY2LabdNhCpCAgACcOHGi6euSkhJERUU1O6dv376Ijo6GIAjw9fXFlClTkJ6ebu+oRGRnk4LjkFdfiTu2f4VdJRkwyxaEuvti/XkP2DWH0WBCbno+ouLDoVY7zMunQzq9Elb/hFClo3RbYXkNQlxsDsiBogLUmoyYFMGNQYlcnf5UgZGVk9tsHsiZw65Oy8rJbXZNWxxmDsj48eORmJiI2tpa1NXVYefOnZgwYUJTj4UkSfjxxx+xZMkSmM1m1NTUYPv27Rg8uHMbnhBR7xag88RfRSkwSmZIsoy8ugqcs/Zlu2bQaNXw9vNi8dEJSs8DsRWDyQyD0QwfTzelo9gV534Q0Wn+ej8M7J+AbTsTm61udezEyaZNCIHG1bK27UzE8CGD252ADjhQD4her8fNN9+Mhx9+GLIs47rrrkNQUBAaGhpw4403YsWKFbjkkktQXFyMW265BWazGeeddx5mzpypdHQisoNnD6xucazcUIff847ivPBBdskgCAICQ/3tcq/eLiY6EOkZvb8AccUVsFIqypBeUYbZ0fFKRyEiBzF21EgUFBZh3YZNmDxhHPpERmDsqJFNj5/eiNDL0wPDh3bcOeAwBQgAzJw5s0VB4ebmhj/++KPp67vuugt33XWXvaMRkcJUYusdtmqB8zEcUd8+gVi1Zr/SMbrNFVfAYu8HEbXmornnI2nvPmw+vfLVqZWxCouKAQDDhwzuVPEBOFgBQkTUlrfGLcCVmz+CdMaCFX089ZgR1l/BVD3L2GBERXElAiMCWqz25+ii+wYiwwmGYBWVVSPYhQqQ/Jpq7MrLxhszL1A6ChE5oLGjRiIuJgbl5RVNS+3Gx8RAr/frcNjVmViAEFGvMNA3DMvPvQ3/2Po5DBYzojz0KDfWKR2ry4rzSqDWaqAP9G31cYvFgqzUXBjrDNCH+EHU9q4CJDzMD0XFVTCbJajVvSv7mVxtAvo7e3di0Sj2fhBR2/xPFRtxiO5yGyxAiKjXGOwbjqR5jzd9va8sG9dt+RRfT71FwVRdo3XTQKPVtPm4SqVCdP8oqFSqbq3TrqTTvSDxccFtnmM0mqBt5+9BaYVl1UiIco3ld6sMBvyachzPTZ2tdBQicnK992MpInJ5I/2jcHnfUXhy30qlo1ilsrwKvv6+8PDyaPc8tVrda4sPoHEeSGZWy2FYp/d4KikqR05Kbos9nxxJYVk1QlxkCNbbe3fiXvZ+EJEdsAAhol7tir4j4at1x2fJ25WO0inGBiOKcopgNJiUjtLjWlsJy2w2I/NkDswmMwKD9YiMj2ia31JWWN7qprRKyi2pRIje+QsQiyzjswO7cduIsUpHISIXwAKEiHq9fw4+D7tLM7C54GTHJytM66ZFzMBoaHWOO+zIVlrrAVGr1fDx84ZK3bh62enhV2azGbVVdQ5TmO0+no3xt7+BtLxS3P7SCqXj9Lh39+zEPVz5iojshAUIETmF9yZci/8eXofMmlKlo3TIVTYybGslrIBQfYuhZWq1GuGxodC5ae0Vr01/HUjDXa98D7OlcWhYdZ0B59zztsKpehaX3iUie2IBQkROY+2sezF3vXO/UexNoiL9kZNbhs6OqlKpur+niy2GcL3x3V/NlnsGgAaDGT9sPtDtth3RJwd2Y+HQkdCK3FOHiOyDBQgROZXVsxZh3vp3lI5Bp9hzP5DK8mrkpud1uwjRtrFssE7rnD1X7P0gIntjAUJETiXGKxAPD5mNRTuXAQBqLA2oMjUonMp1tbUSVk/w8HKDl69Xt1cOe/uByyGe0YYgAKEB3rhwUud2+O1Nlh09iLlx/eCnc1M6ChG5EBYgROR0ZoT2x8iAPpj5++sY9+uLmLD6RSzY/LHSsVxSayth9RSNRgO/gNY3drRGoJ8nfn7hZrjrtBBFAbHhgVj131ttkFAZhnpDm4+9u3cn7uHSu0RkZyxAiMgpbStKQV5dZdPXhyrzMH/zhwomck327AGxpYggX1w4aSAeuXYGVjyzUOk4XWYymZCTlouaqtoWj/2SchyjQsIR6e2jQDIicmUsQIjIKe0uzUSzgTiyjGMV+TDDcTe9c0b2nANia4XlNQjReykdo1s0Gg369OsDLx/PFo9x7gcRKYUFCBE5JVFo+fKmEkS+6NlZby5AisqqEewEu6BrNC0nz2/ITEWUty/6+QcqkIiIXB1/FxORU3pq2DwIzftAcFv/qWAJYn99ovyRlV2mdIwmktS5XrDC8mqn2wXdLEmQwN4PIlIWfxMTkVO6vO9IPD3iQrirNHBTaXBN7FjsKkpTOpZLkiTghZdXYdOW40pHgdFgQsaJbJjN5nbPM1skVNcZoPd2b/McWZZhsVhsHbHHPP3XRvT76HXEvv8KkstLMTIkTOlILiOztggP7vkY9+3+ECeqc5WOQ6Q451zUnIgIwJXRo3Fl9Oimr3/I3Isn9/2CZ0debLcM5SWVMBmMCI4Ists9HcnNd3yK3LxyyLKMZ59fCZPRhPNmDVUsj0arho+/T4e70Xem96MouxgmgwkR8eHdXvq3pz2xZQO+PrIPp3dIqTUaccVP3+CHy65VNJcryK4rwb17PkSZoRoAcP/uD/He2LsR6xWqcDIi5bAHhIhcxhV9R8Fbo8PSlB12u6ebuxbuXm1/iu7Mljy3EunpxU0bA0qSjJde+w0nTuQrlkkQBASG6Ds8r6isBsH+7U9AD4oMREjfYIcvPgDg22MHcOb2jDKAPQV5SsVxKYsPfdNUfABAjbkBTx78UsFERMpjAUJELuWRIedjV0k6/iw4aZf7uXu6w9u3d6+k1FUnUwpw9p7kkiQhcXe6Inms0ZkeEFEUodFq7JSoe86eD3WauZPzYahrZMioMtW0OF5jNkBq8dNB5DpYgBCRy3l/wrV44dBvyKp1nInRzmjwgHCc3TkgiAImTUpQJpAVisqrEexEE9CfnDz9rBJExhX9BkMt8m1ATxIgYIL/wGbHtCoNJgT0h9hGUUjkCvjKQ0Quac3se3HBH28rHcOp/fvRi5AQH9I0REkUBfznkYsQF+P482HyS6sRFuA8BcjCISMwLDgMalGEShBwcdwgvDpzrtKxnF6lqQ4rc3figvAx8FS7wUOlw8zgYXh88JVKRyNSFCehE5FLEiFg5cy7cdGGd/HrzHuUjtMrSJKE/PR8hMd2ftL1R+/ehE+W/olNm45j/NhYzDh3YMcXOYCi8mqMH9RX6Rg2k11dibL6OqTc8ZDSUVxGem0hFiW9jy2zX4QAAbfGnQ8IQLDOV+loRIpjDwgRuaw47yDcP2gG7tu1XOkovYIsAzVVdaipqrXqulv/MQ3XXD0BRlP7S986EmfYBf1M7+zeiUVjuO+HvewtS8VTB77C6nOfbpp/E+zmy+KD6BQWIETk0maFDcQQfTjeOLpB6SgOT6USERQRCEOdwepr+8WH4GRKYQ+k6hnOsgs6AJTU12FDZioWDFBu+WNXsr5gP5amr8eXkx5WOgqRw2IBQkQu7/Z+U1BQX4Vfsg8oHcXh+QfrERgWYPV1/RJCcTK5oAcS2Z5FklFRU48AHw+lo9jE23t24N7RE5WO4RJWZG3F1uKjeGv0HUpHIXJoLECIiAC8OPoyfJ2WiEPljrdLcUleKSQnWC41Pi4EKamO3wviTCtg1ZiM+OH4Edw4dKTSUZzeB8lrUVBfhqeHcnNHoo6wACEiOmX5tNtw87YvUGu2fohRT5EkCQ31Rph70fyJtvRLCMHJZMcvQArLahDSwSaEvcXbu3fg3jHs/bC1VbmJ+Ne+z/DKsR8BAM8fWQEvjRvu63+xwsmIegcWIEREZ1g7+17MdaDleUVRRERsKLQ6rdJRuq1/QihO9IJhWM7SA2KRZXxyYDfuGDFW6ShO5cec7Xjp2I/YUXIcK3N2YfbGJzFCH4vro6crHY2o12ABQkR0hkCdF14dOx83bl2qdJQmnV3y1tElJIQiuZ0CpLSoHCX5pXZM1LqCsmqE9tAE9PKSSlgslh5p+2zv7NmBRZz7YVOHyjPw5vFfIMmNQyJlyGiwGLCz5LjCyYh6F6cuQJYsWQJBEJr+EBF1xtjAaFwQOQRL9q9SOopT6agHROemhdZN+Z6ewrJqhPRAASJJEipLq1BXU2/ztlvz1u4duI/Dr2wqqSwZMuRmx2QAyVV5ygQi6qWcugBZvHgxZFlu+kNE1FkLosdAp1Lji9SdSkfpkoYGo8NNXFepRPSJ8kd6Rkmrj3v5eMLHAYY+FZZXI6QHcoiiiD4JEfD27fn5JR/uT8Ktw8dAxQ/fbGp22IimfT1OEwAM9nOeTSuJ7MGpCxAiou54bOgcbC1MwdaiFKWjWEWSJBz86xCOJSUrHaWFhPhQJKc49jyQovIaBPfQJoSiaJ9fu5x83jNy60rhr/OGSlQBEKASRAzVx+CJIQuUjkbUq6iVDkBE5Mg+mnQ9Zv3+Br445x8I9/BTOk6niKKIEdOGQq12vJf4Af3CsGbdIURG+mPQgHCbt282mqHWdu/77qkeEHv54vA+XN5/MLw0yg9ncyY/Zm/H9pLj+GnKf7C/PA2r8pIQ5RGIG2NmKh2NqNdhDwgRUQccbWWsztBqtXb7tL2zzGYJ7364AfsPZOLeB7/C/774y8btm5GZnIXyksoutyHLQGllLQL9PG2YzL7Y+2F775xchYzaIrwy8mYAwAh9LJ4YvIDFB1EXOdZvJyIiB6QRVPhu+u24dOP7SkfptcxmCXMufhUWS+O8FItFwhdfb8OHn2y22T3UajWiEqKgD/Ttchu9vfdj+fFDmNE3DkHuzrGLuyP494HPEajzwUMDLlU6CpHTYAFCRNQJ/XxCcGf/qXgo6bsev5czLprx08o9LSbFyzKwYdMRm95Hq9V06/revgfIO7t3YtGYCUrHcBr/2PkG5oSNwdV9pyodxSXkZxUhP73AKV8DqTkWIEREnTQnYjD6+YTgrWMbe+wesiwjP70ARoOx09dIkmS3vSW6KiJc3+rxoEAfOydpX2/eBf2XlOMYGRKGKO+u9wBRo2pzPc7b+CSeGHwVpgYPVjqOywgK84d/mJ5bJ7gAFiBERFa4s/9UZNeWY3XOIWTXleP9E1twtNJ2ewAIggBRpbJq/kZ+egHy0/JtlqEnTJoYj1nTB+PM9xVarRrvvnmDcqFa0RuGYLX16TDnfnSNGRKWZf6JLYWHAQDHq3Jw1V8v4udpTyDe2/YLJVDb1Bo1dG46pWOQHTjeEilERA7u5TFX4Pw/3kReXQVkAO+f+BNPDLsAV0WPtkn7oX2DrTo/LCbUJvftaf9+9EKoNSK2bD0BWQZW//Sg0pFaKCyrRliAY/XKnEmWZeSlF0KtViGkT1DT8d/TUxDjp0eCPkDBdL1Pg2TEeRuebPxCEDAoqw/Mkhlrpy9RNhiRk2MPCBGRlXYVpyGvvhIWWYYkyzBLFjyzfxV+zjqgSB5RFB1uxau2PPLQBfjfh7fCw8Mxl4jtqV3QbUUQBARHBiAwonmh8faeHbh3NHs/rDV302JIkBv/yBIOV2Qg1qt3FPREvVnv+I1FRORAfs46AMtZw2AkyPgt97BCiXqXoCBv1NcZUVNrUDpKC9nFlT22CaGtaLQaqFR///r+KycTfjo3DA0KUTBV77M6NwkWWWpxfEfpcQXSELkWFiBERFaK8vKHCs0nSYpAr9mo0BHExQUjNbVI6RhN9pzMwfjb38DJrCIseu1HGM0t35g6Ks796JpYn1AIaDnZOVjnZ/8w1C0bjqXi0e/X4Z2NO5SOQp3EAoSIyEp395+GgX6hzV5AvbTueGr4PMUy9TZxMcFITXeMAmTbwXTc+dJ3MJ/ao6Sm3oBpi3rHxpNJ+bmQIWNcWKTSUXqdgd5R8NV4NCtCtKIan46/T8FUZK1tKZl49Md1WHngKN7ZtBMXvLVU6UjUCSxAiIi6YMW02zE3cijCPfSYGTYQ8yKGYFl6ktKxeo242GCkpjlGAfLWD39BOmtInclkwdI1zf89DfWON2SMcz+6xiiZccHmp/Ha6NtwbfQ0RHoEYpR/HDbOfF7paGSFoupaPLlyPWoa/v7ZTCsux5Jfe26pdLINroJFRNRFL4+5otnXN239HLHegRgfGKNQot4jPi4Yv6zer3QMAICPh1vLg4IAD/e/NzVsqGtAVnIuogf0gVbXvc0ObeVwcSHKGuoxNSpa6Si9Sk5dCRbueA0/T30CPhoPxCeE4a6EC5SORV1QXF2DeqOpxfHsskoF0pA12ANCRGQj/zvnRvwr6QeUGGqUjuLwYmOCkeYgQ7DefvDyZpO6BQEI1nvjqukjmo65ebghxoGKDwB4e89O3Duau55bY29ZKv657zNsnPk8fDQeSsehLqo1mvDJ1t2479tVMJjNzR7z0Gowd2iCQsmos1iAEBHZ0NrZ92LuH71j/oCSNBoVQkN8kZ1T1iPtG+pbfiraFjetGr+9cju83HVQiSJiwwKw5uVbW5yncaDiI6W8FKkVZTg/hm+0Ouu3/D1Ymr4e305+ROkoPa6tzSqtZTR0/ufIHvZm5eGf363F1P9+iIraenxx05XY/cQ9CPfzRoCnBwK9PPHw7HNwxaghSkelDnAIFpGDMJlMqK9pgI+D78JM7fNU6/DZ5IVY8OfHWD7tNkUyFGQXwtPHE96+jr2c7Ol5IFGR/jZt19hgRO7xXEREhEHr1rn9Rvx9PHDVjBFw16lx87zxNs1jS/etX42DRfkwSRIeGT9F6Ti9xhfpG5FVW4y3Rt+hdBSbkGUZhVlFCI4KarEHUHVVLarLqhAeHdate1SUVaMkrwjRA/pCrVbu7aIky1iWeADLEg/Cx02Ha8cPxytXzm12zvqHbsHujFzoPdyQEBKoUFKyBgsQIgdRX2tAVXk1vP28IAgtl4ak3mOoPgLXxozD43t/wgujLrP7/XXuOmi1jvNpfVtOFyDnTh1g03a1blpEDYrodPFxWklFDUb2d9zVpC747kscLy2EJAMCgA/2J+GShIFKx3J4rxz7ET4aDzwxZIHSUWxGlmWYjSa01tGh02lgam1ek5X8/L3h4emmWPFxNL8I3+w6gB/3HsE144bjjQXzEB8c0Oq5oiBgXIzj/uxSSyxAiByEj58XvH09WXw4iUv6DEdqdTE+Sd6KWxPOseu99YF+dr1fV8XFBuPTz7dg+LA+GDMq2qZtd2W4VHFFDYL8HLPX6IWdW3C8tAjSqTecMoATpcV4bsef+M/EaYpmc2T/2vcZJgcNwqWRzjVXRhRFRCa0/oZbq9PCP9i64rstSsx5+nHvEXyTeACSJOPa8cPxf5fOtnsG6nmcA0LkQFh8OJeHBs/CgbIcbMh33J2VM1JyFLmvJAGLn/0JqalFeOTfy/Hs8ysVyXGm4opaBPl5Kh2jmdNj+bMqK1osFSzJMnKruNpPW/6x43VcHjXJ6YoPZ5ReUo7n12zG0KffxO7MXDx90Uz8ePd1mD+aczmcFXtAiIh60Nvjr8YF699GnHcQor1aHz6glLq6BmQey0BgoB+87PzJ/9xLXoHJZAEASJKMjX8eBwQBTz5+sV1znMnRekBqqmtRU1aD0L4huCRhIH5PT4bljCJEJQiYF99fwYSOySiZccmfz+LtsXci3qt78yCo+3amZyO/sgaXjWg5XHDt4ZNYlngAxdW1uGbccOx98l5oVPxs3BWwACEi6mFrZt2LQT8/jaOXPq10lGY8PNww8fxx0GptM1yjs/786wSMRkuzY7IsI3F3ml1znMlskVDbYISvZ/fHztuKVquBoFYBAObEJuD5KbPx6JbfoRIFQBbw8vQ5mBfHAuRM2XUluHHHa1g57Ul4q92VjuPy7lu2CuuPpQAAnl65HgcW34v8ymosSzyAbxMPYnJ8XyyaMRHjojl/w9WwACEisoPVsxZh3vp3sHrWIqWjNGPv4gMA4mODIQhoMYHW17f5vgxGg8luY9BLKmoR6GDDr7Q6LUIi/l7RJ6+uBtcNHo4QDy/MjI7H4MAgBdM5nr1lqXj52A/czdxB3Pn1L9hyIq1p6KDBbMbgxW8g2NsL14wbjvUP3wIfN53CKUkp7OciIrKDGK9APDh4Fu7b9a3SURQXEaHHP64/p9mcJ7VahU/eu7npa5PBhJyTuTDUG+ySydGGX7Xm/b27sPicGbhvzEQWH2dZe2qPj2UusMdHb7EnI6fFvCVZAp65dDZunzqWxYeLYwFCRGQns8IGYKg+Eq8fXa90FMUtvH4yrr5qHLy93eDursWaXx6Gm9vfnfIanQbhcaHQudvnTYqjFyCfHtyDG4aMgFZUKR3F4XyRvhF7S1OcZo8PZ7ArLRtmi9TiuCAKiAvUK5CIHA0LECIiO7qt3zkorK/GL9kHlI6iuDtumY5vlt4JtVqEVt3y15FbF/cysFgsHZ90FkdcAetM7+3dhbtHOe4GiUp5+dgPaLAY8Z9O7vFhqx3CqSWD2YzPt+/F+W/8D+/9uQtPXTQDqjM2SRQE4N6ZExHu56NgSnIUnANC5KRkWeayvg7qxdGX4arNHyHWOwhD/MKVjqMob283aDQqlJXVwt+/+wWAyWBCbno+RI+Ozz2TI/eArDh+GDP7xiLA3cpvysn9a99nOCdoMC6J7FxhJssy8jML4O7lAX2gbw+ncx0HcgqwbNcBrD18ElePG4aPbrgMfQP8AADnD47H/PeXodpgxNVjh+LOqeOUDUsOgwUIkROyWCzISytAWHQI1Br+mDuiFefejjGrnseWOf+Eh9r+E8EdSWx0ENIyim1SgKi1avjovdFgqbfquuKKGkSH9en2/XvCe3t3Yum8+UrHcCg37ngNdyZcgImBAzp9jSAI8Nb7QOfu2j9vtrI86RCWJR6ATq3CNeOH48Urzm9xjodWizX336hAOnJ0HIJF5IRUKhV07jqIXE/doa2ZdS8uWP+23e7nqMNPYqKDkJ5RbJO2BEGAf4j1Y8wdtQfkt7RkDAgIQrSvn9JRFJNXXwozGucTGCQT5m5ajKeGXmtV8XGat68ntFr77+7tLE4WlmDJrxsw4MnXcTS/EC9ecT6W33ENLh0xSOlo1Mvwo1EiJxUcGdjxSaSoYDdvvDj6cty87XN8NrlnPyUsKy5HZXEVogf2cbihebExQTh4WJkd2U9z1Dkg7+7dieennad0DMVc9OczqDTVQQBwdfRUfJ+5DT9Pe4J7fNjZLweOYdmuA6g1mnDNuOE4/uyDSkeiXo4FCBHZRHJJCXZk5iDY2xNz+iUoHafHNNQ1dHlydGsmBMUgvaYEzx5YjSeHz7NZu2dzc9chq6wGJoMJWjfHGoISEx2Elav2KZqhOz0gPTXfaltOJnx0bhgaFGLztnuDCzY/jSpTXdPXX6dvxgMDLmHxYSfZZZX4JvEAvk08gNmDEvDI3GkYGcWd5ck2WIAQUbcdKSrC7d//jMKaGujd3LAzMwtPz56pdCybM5lMyM8shD5EDz9/263kck3MWDx7YDWWpSfhmpixNmv3TB5eHhg0JqFF8SFJEkRR2aF6thyC1RVGswUGoxneHtYv+WuxWJCTkouI2HCbz7d6d+8uLBo9waZt9hbbio+j2tRyHs/S1PWYHzVZgUTO5+qPlyOtuBR6Dzese+DvPXj+OJqCbxIPIKe8EteOG47tj98Fd84lJBtz6gHiS5YsgSAITX+IyPZK6+pw/8pVKKypAQCUNzRgxaEj+HLvfmWD9QCNRoPI+AibFh+nPTl8Hv7IO4qdxek2b/u0s4sPY4MReWn5kKSW6/Xbk06nhl7viYKCSkXu351d0C1mC0oLKiHJtv07PFhcgBqjEZMiHHNifE/zUrdeDLqpuHmdLcx763Psz8pHVb0BmaWVGLbkLby1YQcmvvABfjlwDLdPGYs/HrwZN00ezeKDeoRTFyCLFy+GLMtNf4jI9k4Ul6DeZG52zGg242BBoUKJepamB38Zfzb5Rjy250cUNVT32D3OpNaq4eHjqXgPCPD3SlhK6M7wK41Wg779I6DVdm9Ym9Fgavb1e3t24e7Rrrvvx3B9DILdfHHmb24RAl4ZeXOb11DnfLp1N9JLyoEz/naNZglrDp3AmvtvxNvXXISJca5Z+JL9KP9bh4h6tf5BQXDXNF9VRhAE6N1tN0/ClZxeGeuZ/asxde0ruHTj+zBK5o4v7AJRFOEf7NcjbVtLyWFY3SlABEFAQKh/t+5vMpqQfiwD9bWNQ47SK8txoqwEc2Kcdy5VR545vAxX9jkHw/XR0Ika+Go88fmkhxDtFax0tF4vr6K1DzhkBHp5QO/B+TVkHyxAiKhbAjzc8ebF8xDk2TiERe/ujosHDsD+3Hw8se4PhdP1Ph5qLc4PH4xvM5JQYqjByapCjFn1Ahp6qAhxFDHRgdi3PwsNDfb/PpVeAUuj1SC6fx+4eza++Xt3z07c46JzPwDgwT0fY0LAAFzddyreG3M3Nsx8DqvPXYwYT9ecjG8rG4+n4o4vf8bvR5Nx9pgQURBww4SRiuQi18SBfUQurLykEpBl6IP8utXO4JBgfLHgCuzIykGw19+rYH174BAGvfomXr1wLub272eDxM7vYHkOfsne3+yYWbLg8o0fYM2sRcqEsoNX3lgHg8GEeZe9hrtvn44rLuuZyfitOZKej4RIZT9Z17k3zm0oqa/D5qx0vDJjrqJ5lHLjjtewqP9FGOvvur0/tpRbUYUVSYewYvchjOwTjmvHD8e0fjGoaTBiyksfwiRJEAB8fOPlmBATpXRcciEsQIhcmCgK6GxHaEerJSUEBiIhsPneI1cPH4rLhwzCw6vW4sfDR/HqhXPho+Mk0vZk1ZQDEICzPqOsMNYqkscezr/oVRhOzYGwWGS888EGWCQZV10xzqb3OXu53AajGbMeeB8GoxnrEk9gYHQwxg1Uduy7K/d+XPTnM3hj9O2I8wpVOopd1VTVwsvHtj1wvx0+ieW7DyGrtAJXjR2KNfff2Gx4lZebFvueuhd/nkzH5Pi+UDvAPDBbM5lMqK9pgI/eW+ko1Arne8YRUaf5+vvA17/jF+eSgjIUZBR2aTEHrUqFty+5ENeOGIZzP/gEn+9Rdr8HR3dh1FCoBVWzYyIEzI5wzp2G1647BNNZixjIMrDi+0Sb3qemqha5aflNz2GzJGHqondQbzBBkmVIkox7Xv0BfySdtOl9rWGwWPDN0QO4aegoxTIoocJYi3P+eARfTHzI5YoPk9GEwuxCGOoN3W4ru6IK//1tC0b/37v47Ugybp8yFhsevgV3TB3X5tyOaf1inLL4AIDaqjpUlVdxESIH5ZzPOiKyKf9gP/gG+3ZrOevpcbHYe/89yKqowCWff4Xk0lIbJnQu+y7+D3QqDUQIECDAS6PDwljn/FRc7+fR6nFvb9tOhnXz0MHD273pOfzxyh2QpeZvTCRZxtK1ti18rPHu3p24Z5Tz/DvLsoyywvJ2z0mrKcD1O17B1tkvQa/t2kIAvZlGq0Gffn2ahuB1xS8HjuG6T1bgP2u2ItjbE1v+dRveWDDP5Vey8gvwRURMOLdhcFAcgkVEHRJFEZ5erb9RtNaTM6fjSGER7vt5Fc6Ni8Wj506xSbvOZt9F/8HKrAOI8QrEMP8IDP55CQ5f+hQEONcv0wnj4zCwfxiOHM3D6W9NFEW8+cp1Nr2PWq2Gf7C+6Wt9G89nP6/GwqeirBK+eh+7vHlZdvQgTJIF7+/dhaO3PdDj97MXk9GMyvJq+AR4Q61u+XZjd1kK3jrxC1ZNW6xAOscgSVKXlvY+WViC5afmdswd0g8PzZ6MMI2A8PDwHkjZe7H4cFyC7EJ9U4IgQJZl5OXl8YeUXIqjPuc/TkzCp0l78Oq8CzA52rU/retIVm0Zbt/+FX6bfZ/SUXrEg498g6PH8iBJMpZ9fhcCA7v3aXhnnvMXPfoJ8kuqmmbbqEQRiR8/AIvFgoyTuQiJCLD52PyzjV76HsoaGpffVQkCUu54qEfvZ28WiwUqlarF8d8L9mFNbhLeGH27AqkcQ0l+GQz1RoTHhHT6jfL3ew5jedIhGMxmLBg7FFeNGQrNqb9fR32dJ8em1POGBQiRC3Dk53xJbR0eXr0GgR6eePVC11z5p7P+LDiJbzN24/0J1yodpUdUVtVj4c0fYeX393e7rc4+5694YimyCysQ5OeJH567CW7axk+j23rjbEvnLvsEmRUVzZYb0Lu5Y99N9/TofZW2PPMvnKjKwVNDr1E6iqIkSYLZZIZW1/4mlodzC7F890F8t/sw5o8eggVjh2JoRMu5Mo78Ok+OS6nnDYdgEXWBLMsoL650mE3crCVJEopzShAcFaR4F3Wgpwc+v2o+Vh49hviXXsNLF8zB5UOcc8J1d00L7Ye0mhK8fPh3/GvIeUrHsTlfH3dotWoUl1QjKNA+K9fccclEbNqTghfunNfseE8XHwCQU1XdYj+GKoMBDWYz3FoZsuQM3ju5GhZILl98AI1DDdsqPkwWCd/tPoTluw9Co1JhwZhhePaS2XZOSNRzOAmdqAuMDUbUVNbAYrEoHaVLJIsEs8niUKuDXDJoIFIeeQg7s7Jw/bffobCmRulIDumm+EmoMjXgh8y9SkfpEQnxIUhOKbTb/fJLqhAW6GO3+53JS6tpcUyjEp22+Pi/w8vhp/PCvf0uUjqKw9qblYdHf/gNo559GynFpXjpirn4/s5rceWYIUpHI7IpFiBEXaBz1yEiNswun5L2BLVGjfDY0Hb39VDKSxfMwaJJE3D5F9/gg53KrUjkyJ4deTF+ytyPvWVZSkexufj4EKTYsQDJKa5EZJCv3e53ph8uuxbiGT2QAoBlFy9QJEtPe2jvJxgTEI9r+05TOorDqTWasHT7Xsx9cyleWfcXJsX1xaGn78dTF85A/9DAjhsg6oUc790HUS/RW4uP05QeetWeCX2isO3u21FjNOK8T/6HQwUt35BKsoxnd6/H/Vt/wYacFAVSKuurqTdj0c5vUWGsUzqKTfWLD8XJlAK73S+vpBLhgfYrQM7sdYzz80eCPgB9ffwQ7+ePn6+4HiNDwuyWxV7+sfMNXN13KuaEjVY6ikPZmZaNB5evxtT/foiCymq8d90l+Oa2BbhkxEClo9mFLfY+od7LOft5icgp/HPqObh8yGA8vGoNRoSHYfGsGQAAkyRhzqpPkFrZuJfIhpxkfDDtcpwTFqNkXLtbO/tezPn9LeyY92iPtG+Pidhn65cQgrfetV8PSG5xJSLs2ANSkFEAfagebu5u2JqTiSAPT3x10ZV2u7+9XfLns3h11C2I9+bkaACoqGvAilNzO6L0vlgwdhheXzCv4wudTF1NHfLS89F3QN8uLUNMvR97QIjI7qyZOxPrr8dPC69DrL8/RrzxDtanpOI/u9Y2FR8AUGMy4l/bV6PC0NATcR2Wr8Yd70+8Ftdu+dTmbVeUVSE7Jc/u85yCg3xQ32BEdXXzf8uaqlo09MAnpvmlVQgLsN8cEJVa3bQnxnt7d+HuUePtdm97qjTVYcofj+KziQ+w+ACw5WQG7vnmF8x583+oMRjwxU1XYulN8zF3SD+loynCw8sDffpFsfhwYfyXJyK7MhpMyE3LQ1RCRKubk7XlhlEjcNmQQfjnqrVIbMhs8bgFMgrrq+Gnc7NlXIc3wj8K8/uOwhP7VuL/Rl5is3Z9/LygUomKDDVMiAtBcmohRo3oC6Bx2FJtZQ20bjq4dWPH6LMVV9RA7+0Btcp+n8UFRwUBAA4UFaDWZMSkCOfb/ya9thCLkt7HltkvOt3GmdYoqq7B8qRD+G73IQwIC8KCMcPw7rUXKx3LYXS0/DA5N/aAEJFdabRq+Pj7WFV8nOal1eKDyy/B3KgBEKTmj9WZjAjx6N7mdb3V5X1HQq/1wKfJ22zWpiiK8PZV5u/z7JWwBEFASFQI9EF+Nr1PbnEVIoKUWQHLWXs/9pal4qkDX2H1uU+7bPGx/lgKbvviJ8x/fxlEQcD3d12Hj264DDMHxikdjchhsAAhciBGo1npCD1OEAQEhOi71cZzU87Dk+NmwUPUQgMVojx98cG0K3DuTx/i8+N7bJS0d3l48GzsLc3CpoITNmlPkiSYzco8H/slhOJkctcnohdlFaEos7jD8+w9Af209MpynCwrwfkxCXa/t62tyd+NQkMlAGB9wX4sTV+PLyc9rHCqnlFnNOKNDdvx/Z7DLR7LKa/Eq79vxYTn38fP+45h4cSR2PLIbbhn+gQEe3sqkNa1SJKEouxih1pantrHIVhEDqK0uBJVJZXo2z/SIZfHdTQ3DxyLKeEx2JOXi4+37kFSSi72L3gAi5N+x9hv30asEITZ0fG4dfwYAHDqzd1Oe3fCNZi7/m3EegWir1dAt9oqyi6G2WhCZEKkjdJ1XkJ8CN7/aCM2bj6GGedavyKQPlSPWlNth+cpVYC8u2cn7hk9we73taUacz0u/vNZWGQJIgRMDRkCAQLeGn2H0tF6RFlNA8556YPG1QNlGSv3H8eXt8zHmkMnsHz3IeSWV2HB2KH47cGb4OfuWsNAHYEkyTA2GCBJUq9fodJVCLILlYuCIECWZcW2nSfqiNFohlZr+zfJrvCcf3fHLny7/yA0ahFZNRUw+xmhqlfj7hGT8EVOEmqMBnhrddhy6Z3w0Tr3G4RBPz+No5c+3eXrT/9aOPuXuSRJdimOL7riDVRXN0AQBAQHeWP5V3db3UZnnvNLPluHkf0jcfHkwV2NarWS+jrMWb4Uu/9h/ffkKIySGbM2/gfSWW8fHhhwKeZHTVIoVc+RJGD4M2/CZGk+7lMtijhvcAIWjBmK8bFRCqX7myu8zrdHlmWHXl7eUSn1vOHHrEQOpCeKD1dxz8TxGBkRjqzySsAkQF2sgyTIeDt1CyoN9bDIEioM9Rix4g2lo/a41bMWYd76d7p0bWV5FQqyCiAIQrPiQ5Zl5KUXojCrCLvK9iOp7IDVbZeXVMBkMrV7zoLr32taAUuWZRQVVWHhzR9bfa+OrNi4H9uPZKDeYLR52+1xht6Pz9J+b3V+x/r8fQqk6XnLkw7CLLX8rNbHXYfXrrrAIYoPcuy9raglvtshckBGgxEarYYvqFYqrKlp9rUsSoAsA2f8PUqShIe3r8ark5x37f0Yr0A8NHgW7t75DY5XFqLaVI8wDz1+mXFXh9e6e7hDtrR8syUIAoL7BOCfh55DZUE1ACDMLRgvDnusU5lkWUZdVR3UGjU0vppWz2loMKO45Kx/QwB5BRWdukdn/eu9VfhzfwosFgmvfvsngvy8MGNUz8/HMFgs+OboAZy4/cEev1dPCnUPgIyznyMCfLUeiuTpSScLS7A7K7fVuQWRfvYfvkfkLNgDQuRgGifTlaCssFzpKL3O8NBQiGcWba0MMBUEASoXqOtmhg3AnwXJKKivRK3ZiJTqIkz77dUOr9PqNPBrY17ES8kfIq+hELXmOtSa65BSk4G3Uv7XqTyCICA8JqzdlbXc3NRQq1v+WtJobDem+79fb8SmvcmwnBpOY7FIeOyD1UjJKbHZPc72e3oKHvtzHe79YxXuGdW7ez8A4NKI8VAJqmaFvZtKg/+OuEnBVLb1w94jWPDhMvzzu7UY1ScMj8yZ1uy1xUOrwYo7r1EwIVHvxh4QIgcjiiJCo4O7tEytq/v3jGlILi3F9swsWCQJumodTJ4GSM0qEQEqwfk/e7lzx9fNP6WWZZQaavBR8lbcnnCO1e1ZZAl5DS13KD9eldrpNjrTo/fy81fhgX99g9MfOIuigPffurHT9+jIgZS8Fp9myzKweucx3D9/is3uc9oXh/fj6b/WAwAkADE+fja/hz2VGatx2ZbnsGzyv/DuydU4UJEOf60PvpjYu3t1AOBYfjFW7D6I5UmHcNnIQfj3vOkYHhn69wmyjHVHkxHg6YH3ruN+HkTdwXc4RA6IxUfX/e/Ky/H5nr04VlSCeQP6Y3zfKEz68R2U1tdBkAR8M/MapNeXYeCyV/DWOZdgdpR9lkKVZRlms8VuO//WmlvObZBlGXWmru0mrhJEBOn8UdTQvKcgyj2sS+21ZfiwPnjtpWvw31fWoKCwEks/vg19ovxt1n50qB4ns4twZg0iCsCofhE2u8dpPycfw5JtG3Hm1OWPDyTB38Mdd4wYZ/P79bRjVdl4dN9SbJz5PFSCiOeGL2xxjslk7nW7W3+3+zCWJx2ERZZw1ZhhOLzk/uY9qafcfM5o3HzOaAUSEjkf5/8YkIicmizLLT7RvnH0KLw49zxMiekLrShi9/z7kH7DY9h08R14bfN2HE4txt4r78eK1AO4e8tPMElSG63bTnlBOQozC+22Tv0/h8xu8SZKJYi4b9D0Lrf56IC74K3+ewiVh8oND/W/rcvtWSyWVv8+Rg7vi2+/vAsx0UGwWCxdbr81z98xD9FhAU2jh0RRxK0XTsCUYbE2vQ8AbMnKgHTWc0sCsCM32+b36mmbiw7htWM/45dpT7bZg2g2m5F5MhMVpZV2Tme9w3mFeHLlHxjw5Os4mJuPpy+ZiZ/uvh7XjBvWavFBRLbVuz6mICKrFOYUwc3DeZeclWUZuWkFUKtFhPYN6fD8vno/rLj+aiw/eAgj33gXr8ybC9FDxqBlL+P5CXNxRdwwTPnxXZQ01MFX54btl90DtY2WndWH6uFj8bHbwgLD9ZFYPu12XPPnx4AAqAUVIj31ELvxuZOHyh0fj30Rv+ZtQI25DmvzN+GOPY/DT+2NN0Y+bXV7hRmFUGs1CI4KavXx0zuix0S3/nhXff/sjbjp+WUoLK/B1TNGYuHcMTZtH2hcSGKAPgCiKMJyRhEiQECCvnt7tNjb8sy/cKgiAx+Pv7fd89RqNfrERUHrprVTMutYJBkrdh/C8qSDUIsiFowdhmcvma10LCKXxH1AiJxYZVkVtDoNyivLnfI5L8syzCYzRJUKKpV1b6zNkoR/rl6LivoGvDxvDl46sBk/pB1qtreBVqXGyWv/ZevYdneiqhD9fULwS/YBbC9Kw4ujL+t2mw8ffBaZNblNX2tFDb6Z8LZVbZjNFqhUYptF2fc/7UZBQQUW3TXL6nwdvc6/+d1f0Hu7YeGcsVa33RFZlpGfXgCNmwaPHfgLGzIa58kIEDAqLBw/XNp7Ji+/cWIlVIKIe/tdpHSULjuQU4DlSQexcv9RXDVmKBaMHYYBobYtah0B39tQVyj1vGEPCJET8/X3AQCUVzrfilqVZVWorqhBRExYl3oV1KKINy6ah60Zmbh46VcI7ePRYjiQyWLGg9t+xeuTe++bLwDo79PYO3Rx1HAcrcjHF6k7sTCu66sxrcnfiOza/GbHjJIJLxx7F48PvKfT7ajV7a9ulRAXgr+2nehSxo6UVNQgISqwR9oWBAGh0SEQRRHTyqJRWFsDX50O8X4BWDJlZo/csyc8vv9zjPaPx/w+k5WOYjWTxYLlSY29HR5aDRaMHYbnLztP6VhEdAoLECLqlTx9PACh+5tPnRPdFzvuuQMX/PxZYwHSrD0BBkv7G+f1No8NnYOFf/0Pg/zCMCagb5faqDDVtHq82lzbnWgtnB6CZWsvfbMRWw+lw2SRcMGEgTZvH0DTjvGvJW7D5utuhZ+udw2FvHnnm7gpbhamBNlvl3hb2JuVh28TD2Lt4ZNYMHYoXlswDwnBvWvIG5ErYAFCLkOWZRgbjNC565SOQjagVqvhq/exWXtrLr0ZMV++0GzBXhkyQty9bXYPR/HFlJswdtUL2DznIXiqrf95mB85Fz/lrm12TBAEnBc6tdvZTEYTNNrGjQo9PLTw9fFAfkEFwkL9ut02ANz8wrc4mJIPGTL+SDqB6roGvPvQFTZp+7RPD+7GtpwsGC0WXNJvYK8qPoySGZdt+T+8Pvo29PO2/cpgPaHeZMaKpINYvvsQ/NzdcPW4YXhp/hylYxFRO7gKFrmMitIq5GcW2nxVHXIe+xY8CC+NrnEVHFnACyPnoY+3HkO/fQ1/ZCcrHc+mfppxJy7b+EGXrtWKGvxv7KvQiGqIgggBAiYHjkawW2CLZXqtUVtdh6zkbJhM5qZjtuwFefv7rTiUlt9sf5SkY1n4bNUum7QPAK8lbcNz2//Exsw0bM3JxKEi2/fg9JSsumLM2fQUvpn8SK8oPhIzcvDP79Zi0gvvI6+yGu9ccxG+uW0BLh7eM71aRGQ7Tt0DsmTJEjz99NNKxyAHoQ/0hbefJ1Qq2+2qTM7FT+uGw1c/hIKGGvhr3PGv1b+h2mDAqrk34//2rcd3qQcxUBMKN1GNuyaOx5sHt0KjUuHuwROVjm61SA89/jXkPNyfuBxvjltg9fVeag8sm/AOkkoPYLC+PxbufADbSvZAADA9ZDLuir3e6jY9vT0QGRvRbB+JfgkhOJlciKnn9Le6vbOl5pVCkprP87FIMlLzy7rdNgB8d+II3tmzs9lCBvsL8/DMtk14anLXlz+2h6TSk3j9+EpsnPm80lHaVWMwYnnSQazYfQghPl64asxQvHLlXKVjEZGVnLoAWbx4MRYvXtz0tb2WvyTHxQ3+qDNC3Rr3unjz4nnYkp6Bq778FreMHY039m7DH57JEGpE/Dd5U9N0kQ8O78TBBb1vJ+jZ4QNxtCIPH578C3f069ou4GMDhuMfiQ8BOLUnC4CNBdtQY6rBv/rfaXV7Zw+RTIgLxY+/7O5StrNNHBqNrQfTmi02oFKJmDi4a3NhzrY7LwdnryspAThRVmyT9nvKqtxEbCg8iG8m23/Ft+rKGnj7enV43o7ULCzffQhbkzOwYOwwfHTDZegb4NfzAYmoR3AIFhFZxWwyoyCj9wwr6a6pMdHYtehOvL8zEcZqCaoCLSyeFkCQcfq/KmMDzl3ZteFMSrt/0EzsK83ClsKuDTFLq81Crbm+2TEZMg5WHLdFPJsOwVowfThuv3hCU+GoUol4+Opzce6QvijMKep2+5Mj+7TYxE4AMCSw4z1q7GV9wT78+8AXeCd5NQDgk9R1OFyZhddH3Wr3LIZ6A4rzSpsNuTtTRX0DPv4rCTNf+xQf/ZWEOYMTsPuJe/Cv86ew+CDq5fhxMBFZ7fQO1o7WqyhJUtPqQ13R3vdUb2pcDcsMMyDIaHxr+bfc2qou31dpH0y8DlPXvoIb4sZjReZeeKt1+GzyQvhpPTq8NtS99aVsNaLGJtm8vDSQJBkVFXXw8+s4z2kmQ+url91+8UTklVThWEYh7rliMqYOj0NDvQEqTfd/HV6cMBAFtbV4fsdmAIBKEDApsi8enzit223bwqqC3Xjp0HeQ0Pg8X5ObhKv6TMFjg+YrkkfnrkOfhMgWyzFvTcnE8qSDSErPwZVjhuKLm65EhA0XnCAi5bEAISKrqDVqRMQ53mZX9bX1KM0vQ1hMaJfm+ZiMJhRllyA8NrTVIsRdo0G1wQA11DCh5UIG7irbvOFWyvVxE/D60fVNX0/57RVsOO8BBLu1/8bPQ/TAJRHnYWXu702TuwUIeHLQfd3OVJhThLQjGYjtG4jk1EKMHR3TqetMJhPyUgoQFBQMDy/3Fo97e+hwyZQhmDo8DgDg5q6Dm41WxxsaHII4P38MCQpBf/8A3D2q6/ut2NLBigy8cvgHSKf+jWRZRrWpHll1yg4PO118lNXWY/nug1ieeBDxwQFYMHYY3r6md++/Q0Rt4xAsIhsyNBhQlO3Y470dTXlJhU2Gv+jcdfDw8ejyIgMqlQpiO7tyr7rphqbhNaqS5sWGKAgI9fDCS/s2d+neSjNKZrxzbGOzYxZJwvzNH3fq+uv7XoaLwmfCQ+UGb40ntKIGTx1+BbfufgS59QVdzhUUHoh+I+MxYEA4TpzM7/iCUzQaDUJjQ1otPgAgt7gSEUG+Xc7Vnk8P7MbjE6fhzVnzHKb4AIDdZcmQIDU7JkPG8apshRI1+vNkOu7+eiUufPtzGE0WfHvHNfjkxssxe1C8ormIqGexACGyIYtFgiRJHZ9ITdw93ODm0f19EkRRhH+wvuvXq0SERbc9Vj/CxweJ996FCX2iMCGsD76bfQPGhURhoG8wvEq8cH3EWHhpdJj60/s4Ut675sgcqyw8e0QZAKDBbOx0Gwuj5+OL8W9glPcQGCQj6i0GVBir8MD+Jchv6FqBKYoivLw9ERrkhYP7M6362dK5a1s9vmFPMo5mFMLWowcf3bwOt/32M06UlWBWdJxtG7eBCQH9IZ71K18AMMA7qsfu+eO+I2gwt5zfUVRdi7c37sDUlz7CN7sOYP7oodj+2J24f9YkhPp0PCGdiHo/DsEisiEPT3d4eLb+qSu1zs1GBYg9+Lm54aurr2z6ekXo30vNPrN+I/bm5eO56XPxyLbVmBoRi0dHnottGZmYHG2bVZZ6ynB9BNzVWlQbG5odH+AXalU7mXW5+KsssdkxWZax+PCr+GjMf63OZTKZkZtRgLjYICz/cXez+T2GeoPVm4q++NUGrN99EuXV9Xj2f3/g3Yd90C8qyOpcZzJLEgZ+/CbM0t/zoioaGuDn5ljPaX9d44aaoiBCkiWIENDfJxJPDb3a5vfKLKvAvLe+gCRJWLxyA769fQEGh4dg4/FUfJt0EMfzi7Fg7DB8f9d1CPb2tPn9icjxsQAhIrKBp2bNwOGCQjy8ei1mxifAaDYidul/oanUQmUWsf62mxDu47gTaXdd8BhG/focDBYzBAFwV2lx38AZnbo29UQ24vpHodJU3erjBkvrE8I7otGoERXfuC9IaVktGhpMcHPTwGgwITslD5FxYZ0uXpdv3I+Vfx2G0dw4f6esug6PvPcrPn/iWvh6dr1YmPzVRzBJp+YECQJkANO++QQHbl7U5TZt7WhlNp46+BU2z3oBfxYdwoaCA4hwD8AdCbbfPyO5qBSXvPNl014oksWC+R8sg5dOi7HRkbh+/EhM7Rdt8/s6ku4uhkHkCvgTQkRkI0NCQ7Duln/AaDZj6aYDEErVMHgbUO9hwLkffoqCmhqlI7Zr70X/wVPD5+HNsQuQdOHjeCjxO5QY2s9cV9OAnOOZqKtpwDDfAXBXNe8BFCBgRsikLmc6vSlhQlwIklMbh7ZpdRr06RfZZvFhaDCguqJ57mPphU3FR9N5RjOOZXR9jgoAlDfUtzhWazKipKGhlbPtb2vxUbxx4md8P+VxAMC04KF4Ztj1PVJ8AMAnW3fjrL0eIcsyRkSF4b3rLnb64qM4twR56YXN9pqxF3MbyxkTOSIWIERENpZbVQ1AgGARoC7RQpAAU5ABT21e3+G1SlsQMwYzwwcAAH477z7M+f0tAMDi/b/iyX2/tDjfw8sN488fAw+vxmLg8/GvwUPt3jRhv59PLG6M7v4yr2fvB6LVtb3qWE1lLWor6pq9CRwYEwLtWUvt6rRqDIy2bpjZ2fRuLYdcemq0COzCEKyGugZUlFZ2K8+Zfs1NxKrcRHw07l6btdmeouoa5JRVAmj+5lsAmg21MpnMirxBt4eAMH8ERwbYfIny8pL2nxeGegOyT+S1uacKkaNhAUJEZGO+bjoIwt9vsMRaNVSlWuytzcZ/e9FKWR4qLT47ZyEGr1yC7zL24IfMvRi6cglqzM0/3Xc76832F+Nex/NDH8Nn419DRk02DFLnJ7O3RpIkmC0Sfvx5D5at2NXh+QEh/giNDm72JnDBjBG45JzB0Hs3FgyBfl546e6LujX8CgD+uv52iIJwag6/DAHAn9d2bVO/hvoGNNTZpudkadoGHK3Mwosj/mGT9tqz+UQ67vjyZ8x/fxnOie+LPv7NVxjTe7jjucvOA9D4b5mTkouy/PIez6UEURSh1bW+AEJXGY0mVJRUwNjQ9s+Rzl2HoMiAph5DIkcnyM76MUQrBEGALMvIy8tDeLjj7WNA1BmSJKG0oBxB4QGdvobPefsb8ea7qDEYmr7WqlToFxSIUf1D8UfeSXww7XIM9necHbLbMn3dayisb77Joo/GHTvnPdqp61fnb0RRQwluirmqS/eXZRlffr4Fy37ajfp6E9x0GsTHh+Cd169v97q2nvN/JJ1EWVUdxg6MRGx465soWiv2g1dxfmg0JFHAhxdfbpM2u+O14z/DR+OOW+PO77F7lNXWY3nSQSxLPIBB4cG4ZtxwTOv39z4t13/6HVKLy9DX3xff3t58orvJZIZarXK4jUwdmcVi6XCJcb7OU1co9bxhqUzUy5hNZhjqDJzo6OD2338P5nz6OQprahDm7Y01Ny/E4YJCPLp2HSZExOCRHasxJSwGj42arnTUdpW2MgekzmJAg2yGm9Dxr5B5YTNwc9K/cEXkXPhovK2+f1pGMVb+dgj19Y0T2RsMJiQnF2D594lYMH+c1e3NHtvP6mva8+bu7bh39ETcP3qCIj+PByrScbIqF1f0mQQRIp448CVG+cfh8qiuz7tpz9aUTCxLPIB9WXntrmT11S1XtnJ1I35Kb72u7m9E5Kj4KkDUy2h1WkTEhfHTQwdnMpnw2y03Njs2JDQEq29aiC/27MNvW06iwKMGU35636F7Q/y0HihpaF6EeKp1nSo+TrsydB6+zPgJ9yQstPr+RUVVEMTmz3WD0Yzs7NKmrxvqGuy6lLME4N+b10GjUuOrw/uQftc/7XbvM/0vfT2Wpq6HDBnvJa9Gf59IXN13Ks4NHmrT+1Q1GPBt4kF8m3gAsUH+uGbccLx77cU2vYerKi+thD6gZzbFJHJkLECIeiEWH47NZDIhJyUP/qH+8NW3/NR/4eiRuHLYUDy2dh3CjH54aNuvGOQbgs37stBgNmNwSDC+v/4aBZK39Nt592HCqv/CZGmc3CoIAl4b0/lJ5bIsY5ipP34uX4ciQykC1H4oSC9ESHQI1OqOP9UdMyrm7DnN8PZ2w7ixsQAAk8GErORcBIX7Qx/U9Y0oO6vKaMTIz96BJDduiqgSRTTUN8DN3foCqDPDatryQfJafJ2xGfKpvxxJtuBoRRYmjR7YpfZaszMtG98mHsD21CxcPW4YvrptAcJ9re/FotYZG4wozS+BWi3BS7sBguAJuPXM6mREjoZzQIhcAJ/z9tfZT+W3ZWThoVVrUKKqgcXNBFW5BoJZhaGhwfhp4XV2SNo5j+75EZIs4+UxV2DMquexZc4/4aHu3GRbWZaxvXQPfsxZC0+1BzzN7nhwwK3QunXu+rp6Exbe/OGptoC7b5+BmTMGNT1eW12P/Mx8RMVFNG1O2FPP+cGfvIlaU/N9TSI8vbFt4R1WtWM2m5F5MhchkYHw8rF+M75rtr2E7LqSZsdECLgl/nzcGNO5/VtaU2s0YXnSQXybeBDhft64etxwzBmc0OF1NVW1EAQBnt4eXb63K6osy4On4RKIohkQNBA0AyDov+hSW3ydp67gHBAiIifS2SFBk6P7QKtWQagSoarTwqI3QTBIOFxYhKTsXIyNiujhpJ3z39F/T65eO+tezF3/Nn6deQ+e2LcS7ipNs8fPJggCCgzFyKzLbTp21/7/4KOxL3aqB8DDXYMvPr4VG/7Yh0EjYhEX03y4mqe3O/r279PjcwsKamtgtEgtjpe0shdIR9RqNYLC/btUfABAqIc/sutK0ax7SACivYO71N7uzFx8m3gQm46nYsHYYfjkxsvQx9+v09fX19SzAOkCb+l2QKho/GeUAdm4D6h6GoLP08oGI+phLECIiBRmMJ8a3nRq3xDJ0wxzkAHHq4oxFo5RgJwpyM0bjw45DxNWvwicGg64Lvcodl/8b6hbWd19X/lhrMj6tdmxSqkar6d8gn/271zPgbunDpMnD4R/sF+rj9tjYnOopxe0ahVMxuYbGvp1Yc8PAPDx6/pwpjvi5mB3aTJOj2EQAEwNGoJpgUM63ftmNFvw7amVrAI8PXD1uGF45cquDQEKstGKYi5FygHksxZ5kBsAc7IyeYjsiEvoEBHZSVsjXv89Y3qzeT1irRqqMi3eP7YdL+7dZK94Vnli/6lNCWUZkGUYJTPO+/3NVs9Nrs1smqtwpqy6vE7fTxCEFsVHZVkVivNKWr+gh2y4+ubGPT/kxj0/NCpVl/f9sMb9ez7CjTtew/r8A9hZchyvHPsRf836Lwb59UGwmx8uiBiL/xt+Awz1BmQl58JoMLXZ1v7sfDz6w28Y89y7yCmvxHvXXYKvbr0KFw4b0OPfh8uTqyDX/wyp4j5IRecDUsv9UGRVtP1zEdkZe0CIiOzAYrEgLy0fYdGhUJ/1af2lgwZApxLx4Kq1kGUZAe7u2H7PHXhmwyb8dOgofko7gk9nzMcQ/+7t2m0rqdUlsEgthyKVG+paPX9a4Hh8n70azYcLCRji1x8mk7nLvRdancbmO2p3NDE81NMLEd4+iHL3gq/WHR9cdJlN73+2OosRczc9BcupSe9LDn+NAb5R+GT8fQCAj8Yuana+zl2H6AF9WuwUL8ly40pWSQfhodXgmnHD8d8r5vRodjrFnAzZsBFywwbAnArBbQZEt7mA3yuAXAupaA4gl0GGBoKmH0Tf55ROTNTjWIAQEdmBKIrw8HSHqo2Vn+b274e5/fuhxmiEl7ZxcvZTM6djQfFQPLhmFRauW44r+w/D46Om47xfPkZmTQW8tTr8PPdGRHradxnPOO9AqEUVTFLzoUih7j6tnh/iFojHBt6FF4+931QwxHhG4fqgS5F5Mht9+0V1qQhx93SHu6e79d9AG0wGE/IzCxAeGwa1umWeupp6bCvJxcCAYHw891Kr2zfUG5omyXfWDdtfbSo+gMYSLrk6D2ZIrQ53A9Cs+DicW4hlSQfx094jTUOs+oVwuFR3yA2bIBv/gqA9B4JbGxP+jX9BbtgI2bAREDwh6GZA9Hkc0Ixsfp6ghRi8Foby7yGovKH1dYzV74h6GlfBInIBfM73ft/sP4DFO/6AxdsMWW4+oOl/51yN6TExbV7bEyqMdThn7ctn9EAI+OO8+xHu4dfmNTkN+Vibvxluog6HK0/gv8MeR11NPTy8Wi8izGZzq4VAZ3TlOS/LMiqKK6FvZZ7Jh3t2ISk9AxmmWjw37TyMD4+0qu2qimoU55WiT0IENBpNxxeccv6mp1Brbmh2TC2o8MboW2GucsPB1GwMCArApKHNV6pasfsQvk08CFEUcM3YYbhi9BCr8lIb6j6HVPXCqblPMgTvRyF43ARIZad6OTYChk2AdiIEtxkQdDMAlX1ee/k6T13BVbCIiKhN144YDtlTxn92rm3x2C2bVuB77UKMigizWx4/rQf2X/Iknt63CjpRxGPD5mLML8/jwCVPtnlNpFsYbou5BrIs47mDbyOx7ADG+Q9v9dyKsiqUFVagb78Iu+0CLQhCq8XHoj9+xdq0ZEiSBBnAseIiqwsQHz9vuHu6WVV8AECsVwgOVWThzOFrakGF5NR6vLd5I2oNJnhqtXjRyx2+7rqmYVZXjRmK/7tsNgaFdW1VLGpJqvsRqHoBgKXpn0OuegFy7ReAXNfYy+FxGaB/C3x7RdQ+/oQQEfUSBrOpqSf3TJIs4R8rvsfBB++1ax41RPzfyL93xP5++h24ZON7uKf/dHybngS9zh2vjr2yxXVmoxmzVJPxTebPbRYgvnpvaDRquxUfbXlx5xasTjnRrMfpmR2bEKPXY1of63qdOlN8GCUztGLjr+YiQyVSqwsQ6eGP3LoyCAIgCiIej7oJT/+8AcXVtQAadyq/9fMfEKn3xY2TRuH4sw9alYs6ybgRgOWsgzKgjoSo/1KJRES9FgsQIqJewGQ04eaBY/Hy/j9Rbz5jhSNZBiSxaSlfJSX4BGNuxBA8kLS88YAg4M9Vz2P3hf9udp5Gp8HYgSOwK/UA/ipJxJTAcS3acpQ9JfYX5rdYv0uWgd8zU60uQNqTWVeEW3a+CZNsgZfaHf8ZsgCvHPkBP097Ah4qHVbnJ6G0oRrXRk3FJ1v3NBUfTQQRt04ZiytGDbZZJgIgl0Nu2NA4gdywoXHo1ZkfAAgqCJrRyuUj6qW4DC8RkYMz1BuQeSIbRoMJx675J0SIkCUZsgyIpVqIDSoYQxuwMv2IojnrJCPeO7H57wOyjDqzCZdu+qDFuSqVCtdFX4avM35qt02zwoVVgn8gBAjNjgmCgDEhttufpaC+HDdsfxUNFhMskoRKYy0e2/c//Dj1P/BQNU5anxc2FteET0HWyRxE+fnAU9u8NyXQywPRAX42y9RbGc2pAFqu0GYV80nItR9AKr2ycalc4x6IHldADD1+ahL56eeDAGhGQPB6oHv3I3JBLECIiKxkamePhZ6gc9chIjasaXWjtBseRWidP7SFblCZVQgRvfHyiIvw0PrVmPvLZyhtaH053J62pSAZUot1TWQU1Ve1en6gVo+R+iH4Mfc37Crdh5y6/GaPWywWZKfkoaqiuocSd+zZKTMxJPjvnddVgoC7Ro7DZf0GtntdcV4Jaqpq2z3ntP87srzF35sky/hf2h8AAGODEeUlFdDoNNCH+GPeiIG4YeKopiIk0MsT982YiNF92y6KKstb/zdwFjKMyCo8H3nFNyAjbzJM5tS/HzMmQTb82X4Dxm2Qq5ZAKp4GqeJBQKqF6PMfiCGJEHxfAHSzAIgQ/ZdD8LgagnY0RM9rIPp/27PfGJGT4hAsIurVJIuEH95YBZVahcvvn9fj96uqqEZRTjGiB/Tp8gpNXXH2crO77roT604mQwYwp1/jCkiXDh6EhT9/h4nfv4P7hp2DRcMm2S0fAMwJH4zHxJ9gtDTvtYj3CWrzmklBo/Hskbfgr/WDAAF3J9yAoT6NG+KpVCoEhQfAy8ezR3N35OK4/qf2Z/HAxIg+uHPE2A6vEVUi1G0suXw2ldDys0ABAtRC4/V1dQ0wNhgBAPqAxqWOH5g1CQNCg5BdXomE4ACc27/lcDCTyQSNRgOTwYSinCK4u7tB66btVKbeRUJm/kSYzH9vbJldeDEigr+Fpup5wLQHACCL/hCDdzaeIFedWiZ3A9CwEdCOheA2C6LnbR2uWiX4PNNj3wmRq+AyvEQuwFmf87VVdbgx/l5UllRBo9PA298LX6a+0+NvskwGEzQ661YzsqdNqWm4a+PP8PXTYumsqzBQ37gS0toTJxEXEIB+gQGdasdoNEOrta7IKjHU4NzfXoUsy41DlwQgcd7j8FC3/DfJqy/E00deR5mxoumYj9oLDw24DUN8+lt13xZt2/A5P+p/72L9NTfD3812e46cySiZMWND83kyHio3rJu+BCaDqUvP57KiClSWVaFPQuMqYt1Z0tiR1NSthFY7CFr138sO1zWsR0HpQ7BIxc3O7esWDbWlpHkDoheg6geYU04tkzsTcJsBoPcXZs76Ok89S6nnDYdgEVGvtfjSl1BZ0ji0xGQwoSy/HM9e9VqP39eRiw8AmB4Xi+O3PYSJ3tG4fNUXeGTbGgx57S3c/8tqXPS/L/Dmth0dtmGoNyDreGbTJ++dFajzwta5/8KCmDG4Z+C52HT+Q5i7/u1Wzz1alYxqc/NhSlXmGqTUZFh1z56SWVmB744fxszoOJsWH1+mb8LrJ1aiztL4dzv/rxfw+qjboNd6QS2IiPAIwO8znkF5cQXyMvNhsZy98lLH9EG+iIgJa1pFrPcXHxJScqKRX3oPsgpmoLzmXQCA2ZKN6rpVkOSyFleoLC2PQaqF4H03xJA9EHxfBtzmwBmKD6Lepre/IhGRi7KYLSjMLG5x/OjOkyjKLkFwVPPdnr967nt8838/QhQF3P3GTbjgtln2imozFovFqmVp35hzIQ4VjMWlP34Ji78JYqUGokHEO9t3orqhAU/MnN7mtTp3HSLjI7r06buf1gNPDb+w6euXx1yBf2xdilsSzsHe0kwEu/vgmpixCHYLgJ/GB8WG0qZz3VU6+Gv8rL6nLTWYzZj/8zLUGI3Ira7E0guusFnbN+58DenVhZAB/Ji1DTKAX6Y9CX+tN36d9lSzc/2D9fDx9+7SUsSCIDTbEb13k5CcHQ2gce6VLAMl5c+hsup/kCHC12sBvDwuQU3taggwwENQw1vtCwGGVtoSIWin2DM8EbWCBQgR9UoqtQqR/cJRkF7U7LiHlzsePOdJaHRqjJo9HKNnD8ORHcfx3cu/Np3zxp0fQVCJmHvzDHvH7jKTyYTslFxExUZY1QOTWlIGVa0KqBMg+ZpgcRcgVqix+vhJPDFzOiwWCcU5JQjpEwRBaL7ak5uHm02yjwuMxjqfYNyXuBwGiwluKg22F6Xi7fFXY3rwRPyS+wcaJAPUEHFu8CRMDRpvk/t2hUWWMfXrj1FU93fPzF2//YxfF9yIvj5+3Wp70e4PkFZd0GxZX62ohr/Wu81ren/PReflly1Eff0uCKIn+gT/BpWqcehgRfVnaG3/DQkmxIYfAMwpkA0b4W85CJVUDKMQAjefRwAxCHLZDfh7VSwBot8r4OAPIuW5zisbETmd//v1Mdwy6AFUldYAAIKiAvDh/lcAALkpBdj7xwH8/vlmbF+Z1Ow6WZbxzj2ftFmAFGQUIDQ6tGfDW0mj0UAf6Au1lXMywny9AACCJEBVroXkZoEl1AhYGt+USRYLJEs3ly3tQGp1MTbnn4DB0vgJdoPFhK1FqfgidScWxl2IMLdgnKxOh2+tJy7ve0GPZunImtQTMEvN/z6qzCb8mnwci0ZP6Fbb6bWFLfYUMUkWrCvYh/NDR3ar7d6usHwRamo3AJCglWqQkz8GIcEr0WBIQmXtNzh7aV13QQVflRZS8QxA0EHQzYDW7w1AMxpnDpYTApZDKrsTECSIXg8DbheCiJTHAoSIei2VWoWlJ9/Gnyu2Q1SJmHLF328QI+JDEREfitn/mIaLvRa22D3cZDRj07fbMH7eKHh4N75lqSipwo1xi2AymKDWqvHZ8TcRGO5v1++pPfogvdXXjI+KwiWDBuLno0cb9w1pUEFdpEGRTzVm//wxvjr/GoTFhDTr/ZBluUVvSHfk1lXAIjd/A2mwmJBc1dh7NSVoHKYEtdyMUAneWh3Es753nUoFL2335wmEufuj0lgHnFGGqEQRU4JdZ/NAGXWwWIqhVvUFABgNRsg4iKqanwFI6KN2h/pUD4WhdD5M7tcjWP8Cqmo+gNywGR6CCA9BBQNkeHjfC0E3HVBFtX1DzQiIITt7/hsjIqs4dT/kkiVLIAhC0x8ick7TrprUrPg4k5u7GxJGxzTfTE4GYkf0xY5fknBN5B14cOqT+Pa/P2NB6G2oq66HyWhGfU0Dro26E0ajdZOwHdHL8+bgiiFD4Ovmhmi9HnvvuxvJt/0LobIvpv7wPl7Zt6Xp3IqyKuRn5rco2LpjpH8UNGLzeQweah3GB0Xb7B62cm6fGIyP6APdGfMuon31+MfQUd1u+7zQEVAJAnDGc/GpodfAQ3SNSdBFFQ8jJTse6XkTkZ4/FnU1dcg8kY3qukScLj40gqrpd7YbBASY/oSu5nUEmQ/DR9MX9YIb8oUweIYlQ/BY2H7xQUQOi8vwErkAPueB+yf/B0d3nAQAjJkzAi+s+U/TY4e3Hsebd3+MjMNZLa6beuVEPLn8oRbH333gM+SnFWHc3BG4+K453c5nbDDabY8Gs9HcNJRrW0YW7lj/A3TeKiyddRX6eenRUGuEr783zJIEtWibz6nKjLW4bOMHsEgWaFVq3JxwDq6P7blej+4+5xdv3YgTZcWI8vbFy9Ot//fdWXoCzxxaBoss4a6EucivL4dJsuC+/hdhyeFlKDfWYl7ASMzuO7rLGe3NYpEgWSzQaK2f3J5fdjtqalfjzKFUouADtSocECSYzOmIUWlbflgoqCD6Lzu1Azm1h6/z1BVKPW9YgBC5AD7nG5mNZkBsfWLvW4s+wa/vrWt2TIAAT70H5tw0A6NmDcWIGUOh0apx15hHkbovHbIsQxRF3Pn6jbjs3q7PXTCbzcg6mQN9sB76QN8ut9MZxgYjsk7mIiohHDp3XdPxf69fhx/zDmFWnwRcFjUE9/+yBiazGdF6PdbctBAqVfcLkUpjPXaVpCPU3RfD9G3v2m0LSj7nd5aewCP7Pmu2u/mMkOF4Zth1TV8b6g3ITslB9IC+UGt6x2jowuwSmIwmRMSGWj2qIDUnFpJc3+J4eODn8BAskBt+BxpWtbxQ8IIYsq+rkV0KX+epK1iA2AELEHJVfM53zoWe18FQ//eQK62bFm9tfw77Nh7C3vWHsH/jIXj6eqCiuKrZdSq1iMU/PYKJ87r+abbRaIK2C58sd0VDXUOrK1yllZXjqpVfo1RVA6FcBdGgAiCgr483Ntx5q12y2YqSz/mZG5+AwdJ86J5KEPHnrBebHTOZzNBYUXxIkoTCzEKERltfANiKJEkQregVs0ilqKn7FUXlT+D0SlYqCPAUVfAUNfAQ3CG4zQTcZgNSPeSqJ/D3HBkRov+XgNYx5gc5Or7OU1co9bzpHR+7EBHZwarar7EwfhFK88rgG+iDrzLegyiKiBsRjfkPXQQAuHXoQy0KEEmSkbhmb7cKEHsVH0Dby+vG+ushV4sQDRpIfmZY3CWIFWpkVlXhQH4BhoeF2nyCujOySC03DpQhwyiZoRX//rVrTfEBND7PLGYLJEnq0t4gttCZ4kOSKlBdtxLVdb/AaDoBL4+LEOJzB0y1n8JDEKGCgFpZglk3E6L/x2ddbYFc/RIgaCH4vcnig8hJsQAhIjrDFynvtPv40KkDkXU0G2f2HQsAtv6wC4e3HMP4eaMwft5oDJ0ysGeD9iBBFqAq1zQt2StWqQFZhizLyE0vQKZQh9iQIIR5+Cgd1SH19QpCak0hznyShLsHNCs+ukKtViEyIbK78bpM+v/27jvOiTp/A/gzk0ySzfbeCx0VrJyI2FFAxYZd7L0dFqx3KmA5/dkLFmzn2UBUFKSjiB2xoPRelu01W1Om/f5YWFi2ZXeTTJJ93vfihTuZzHx2b8jOM9+mObC79HSoeg2ibKchJeElaOUnA2o5BFMcau03oq7hK7jltYi2n4Nk++mwaIdDd38NCDFQ7ONR2jAPbl1FTOS5SIl/odU5BPulEOyXGvDdEVEgsQsWUS/Aa963Jp08Bet+2gBN0SGYgLvfuRVjrjwJO9ftxq/z/8Sv8//Alj93YPgZR2D4uKMw/IwjEZPY/mJzvtaTVorFm7fg9jnzWsyCpcXKyEmKxXujL8Y1X3+CWtkFu8WKJ48ei+My+viqbJ8K1DW/rb4E62rykROZhMPj+mJx8Z+Yuet7RJisWFOzE7quIzMiEZ8cd7/fa/EnDfXYtvsgAMqeLSL6SJEQ91/ZRBAh22+GRd3dFDqkwyHYToVgPRUw8fPH3/g5T93BMSABwABCvRWved+b8dQX2LluN064cARGnv2PVq+7Glz4dcEq/DrvD/y64E+k901tbh0ZeFRfv9VVXVGDhtp6ZPbJ6HYI+WbbNvzzy3lQNQ19EhKw6LqrcONXs7HEsanFftGSFS+MPAunZg/wRek+FYhrflX1djy+diaq3fWIs0QhNzIFCdYoPDzkEgDA1vpiKJqGwTH+HXDfHl3XIbtln8yutqtkJDzy9uavE0UJsSZLy+mtAcCUCSF6UlPoECJAgcPPeeoOBpAAYACh3orXvPE2/ba1uXWkLL8CR59xJI4ZdxSOPuNIWCN8N/2ux+OByykjJjayx8fafxre74q2484f56La3XImowv7HYpnjj2zx+fyNX9f8zsaSnHPn++g1OVo3mY1SZg6dAKOSz4YNdV1iI0PXKtXW6rKHaipcCBnYHaPxozIylbkl46FpjUAAGyCCUmiBVZBBA4MudYzIMa/1JOyqZv4OU/dwUHoRERhbNA/+mPQP/rjyikXwVFei5UL/sS3M3/C/135CgYfPWBP68iRyDmoZ338LRYLLG2s2u12uaGqGuyR3j+V3n8NkFR7VKvFBAEgJyoOAPDxX6thEgVcfOjQrhcdgjbWFKBBcbXY5lZlbK0rwvDYASgvLEdEhDVga7sAQGN9I+xR9uavE5LjEBMf1a3w4XSvQINzMeqdi2GCgDhzCixqMSIEE9y6ijpdgVW0HvAuEWIb4zqIiA7EAEJEFGBxyTEYfdVJGH3VSQCA1d+tx4r5f2DqBc/B1eDC8DOPagokZ7Rcffu6Q+5E4ZZiWKwWPD7/QRx6wsFen9NRVgNN61oA2at4VzHSYyJx85Bj8Oyq79CoyAAAGySUFDXi6O9fR53bA6vZjDd+WoHFN14Li0GzNAVKn+hURJitqN8vhNjNVmTbkyFZJOQNzmlzvRl/cTY4sWvzbgwY2q/FuiL711BUcQ088kbYpEOQlvR2i/fr8KDBuQT1jYvR4FyMaEsfRJlSEC/FQtCqIVhPQr1Wi531c6FDhyBYkJLyC/SKU6FrbkCQICYtAeCbhSuJKLyxCxZRL8BrPnSU5Vfg1/l/NHXXWvAn/jH2CBwz7ih88fJ8FGwubt5PFAU8/fUjOOykIX6vqbqiBpHRdlisEmZu/QuL8zejf2wS/n3UKRj99n+xvaq6xf6n9u+HN8af4/e6OhKIa/778nV4Zv3nqPbUI9JsxfnZI3Fj/66vmt5Vuq7D4/K0WEiyqrwa5UUV6D+kb5stHuWlxyJSK4Gq6yhRXbBYBiMz6aOm0OFcBLfrF8RbD0OkyQqzsh0w94VgPQmC7WTAvC/oyspWeORtiIwYs+/gagFgMm52LmrCz3nqDo4BCQAGEOqteM2Hrt8WrcJX05filzm/tXotPiUWs0rebuNd3ivNLwN0HSk5KV0etK5oGk57+7/Y7ahpsT0rNgbLbzJ24cJAXfMrK7dgS10h0mzxGJV2mN/PBwCOCgeqymuQOzCrRdiQ3TIka+v1ZCorbkG88nXz17quY6fSAIspCvGWIbDpLohaCQTrSYDtpKa/hdgAfCfkS/ycp+7gGBAiImrlH2OPgGSTsGLu7zjweVF9TSOWffwDho87CpEx9naO0LGEtHgoitqtGbPMoogUSwR2o2UAOSQttVu1hKKjEwfg6MTOZwHr7tTImqZBVVRI+y1UGZcUh6i41mM72gofrsZqxO0XPoCmh3F55kioYiQk60gItlMA6chW7yUi8hd21iQiCnKHnzQEielxLbYJgoCzbx2DXxeswoScW3DX8Q/jk6fnYNf6gi4dW7JIiLDbIHuUFgGntKAMjsqaDt7Z5H8TLkRSpB2SyQS7JKFPfDxeOiv4ZsUykuyRkb+5AKraeoX0zlQUVqIkv7xV+CwoG4GtBTnYUXwoNM3R4jWPvAHVtdNQUHYuKqv/0XqqXAAaADn2eQjR9zB8EFHAsQWEiCgEzCh4E1f0uw2lu8phlsx4eNbdGHHWsObX1/60ESu++h2PXfQcXA1uHDPuKIw4exiOOq3zbkGqqqJwRzFi4qORkBIHALDZbbB6MYOTTZKw4rab8dmadRAFAeOHeD8wvrcwmU2wR0ZAFLv+zC8lOxmaprVoPdla0Be63jQdsqKUY3vhEKQlvYUG5zdodH0DuxiBaHMSYlAJwdIH0IoA3bPvoLoO0ZyOSNspPf7eiIi6g2NAiHoBXvPhw+PydDq1a+mucqyY9wd+mfs7/vp2bVMYOWsYho87CnHJMW2+R5ZlSFLrLjwHUhQloLM7dVe4XvMVjqmorpsO7LcCuRkCoswJiJVyYVa2AJbjIOwdy2HKAaBAKz0M0JtmL4OYBDHlZyPKJz8K12ue/ItjQIiIqFPerCuRmpuMc24bi3NuGwtVUZvCyFe/4+0HPkRKbjJGnDUMx4w7Cv2P6NP8Hm/Cx84tu6F4FPQZnNOjhe2oY6XVEyE458MuiLBEjIElbtqeV2S45fUAdNgEEXbBDLtogggBshgLS/QkwHoy0KrLlRli6jqg4XXoQgQE+9UB/X6IiA7EAEJEFMZMZhNGnns0Rp57NABg8+/b8MtXv+O5619HdYkDw/e0jhwz7qg235+/sRBb/tyOtL4piEqIRHxSLMOHj9U1fganeyUkc18o6i6YG+cgWjTDLACqcyE8nmNRLQ6E7l6OBCkHaVIUXJqKRl1BmeKGLAB90xcDiOr4RJG3tDEahIgo8NgFi6gX4DVPbaksrsave1pHVsz7A8PGHI7hZx6JkecejeSsRKz9eRP+c+kLUDwKzBYzbn7+Kpxw/gijy/ZKqFzzNQ3vosLxLDStGoJgg0WXkWq2QBL2hTxd1yGINgi2M5u6VVmPwbaiY6Fp9RBFG3LSvoXEdTh6vVC55qml7s6Q5yvsgkVERAGVmB6PM244FWfccCoAYNF/v8Zf367HrKfnwGq3oqqkGo21zub9X/3nu7DZbTj69COMKjmsuORVqKx5BZrWtJCjrrtgEsw4sAuVIAgQIq+FEHV387Z+mRsAuADYAlcwEfmUo7IGDY56ZPTNMDSEGIHT8BIREQBg7DWn4oH3J+Lj/DdwyoTj4G50t3i9qsSBrX/tMKi68KMoha2myG3UlVbdpHRBgmA9vo0jMHwQhary4kpERNkQnRjb68IHwABCRERtOOKUoUhIj2+xzR4TgdTcZIMqCj+RthNxYGuHKMagSI+ER9eg6Do0IQqmhA8B6R/GFEkUImRZhqOq1ugyvKJpGjxOD6ADMXGdjN0KUwwgRETUypCRg3Hpv8YjKqHpl2NkrB1n3HAqRl3W1pN46g5BiEZu2tcwmzJhFtNgNmUiLeFV5GWshiXtV0iJH8KcvIwLBVLY0HUdskf2y7Gry2tQU1HTatHOYCSKIjL6pMFqsxpdimE4BoSIiNp01k2jkZQejy2rdiBrQAZOuew4o0sKO6IYj7yMH+B0/QrJnA3J3K9pu5AEWJIMro7It6pKqlFdXo1+Q/v6tNuR2+lGdZkDeYOyQ6Y7U6jU6S8MIERE1K4RZ/8DI85m9x9/EhABu+0knx7TmwUriTri8XiQv7kA/Yf09dkxzTYJuihAVVWfLmhqjbCi78F5kCy8rQ0V/H+KiIgoRHizEr2qqijYUYT45DjEJ8UFpjAyTGN9I+rrG31+3OrKGtRW1kPTNIiib3rsx8ZHwx5l82n42IvhI7Tw/y0iIqIgVVNdh9j4aACALCvYvbUQmXlpsEa033fcZDIhu38WJIm/4nuDnZsLoTjdSMiN8+lxU9OTkZya6LPwsZckST49HoUmfjoREREFIY9bRkVROex2GySrBEkyIyElrsPwsRfDR2BsK61CbnIczN24Sf9tWyGqaxsx+ogBXX7v5BlL0OCW8a8LTsbBRza9v6ioyKv3Pj/3B2wpKsfhfTJw05hjOtzX1+GDaC+vP6EWL16M0047jRcjERFRAFisEnIH5bTorhKXGGtgRf7z+uJfUFrdgAuPHYpDclKNLscrIx98DY1uGYIg4IVrx+HEQ7wfK3Hbm1/ipw07AQGY8okFPz91q9fvPeb+ac3n/Xr1Fsx/6FpkJsR49d4JL8zAluIKuDwKfttagIq6Rvz7glO8PjeRr3idJhYsWIBbb70Vq1at8mc9REREtEdX+8r/ujkfL371Iz5Y/qefKvK9y16YiTcXr8QXv67F5S/OxIaCcqNL6tQx909DndMNVdOgqComvj0Hc1as8+q9N7z2OX5YvwOarkPTdNS73Bj54Otevffs/7yHRnfTNLb6nvef++T/UNPoQnWDC2U19SiqqsXuCgd2lFZhS3EFNhSUYW1+CZ798ntsLCiDy6MAADyKiq//3oJfNu3q3g+BqAcEvQsTJv/www945513kJWVhRtuuAG5ubn+rK1Ny5YtwwcffABd13HppZdizJgxXr9XEATouo6ioiJkZGT4sUqi4MJrnnqb3njN/7Z1N+7+7zzUNLhgk8wYkJGEj+661OiyOnTPe/Ox9O8tLdZuMAkClj52I5Ki7NB0fc9NftPfmqZB0Zr+u+nPnv9WNSh7vm6xz57t2p6vFU2DqurQ9H3/vXd78z5qy2Pv+7pp26bCcqzYnN/qe4mwSDhlaL+mGnQduq5D1Zr+3vt96DqwYvMuqFrLWy9BEJCTHAdJFKHsOefe8+79W1Y1ONtZQyPKZoFZFGCRJJhNIkyiCLNJhHnP3yZRREVtA0ocdQe8z4pHLhqFsUcO8sH/mxSKjPqs7NKjleOPPx4jRozAvHnzcO+992LkyJG48sorER8f3/mbfcDhcOCdd97BtGnTIIoibrvtNgwbNgyJiYkBOT8REVEwKnHU4ZGPl6KmwQUAcMkKNhdVYvLMJbh45GFNN7Ray5vaA7/ee5PbfDO/3z5KO9tavbeTczR/vWdbiaO+1cJxqq5j1MNvQtd1iIKw52a66W9RFGEWm/676c+e/95zs20ShZb77Nku7vnaLIowmQSIwr7/3ru9eR9Ty2ObTSIks9S8rabBBQHAgU9vY+xWHHdwn6YaBAGCIMAkNv299/sQBGDN7hLU7vn/aS8BwBOXj4HdYmkODfsHCZMoQjKJuPjZj7CzrLrFe22SGT8/dVunN5KbCstxw2ufwbHfuU2igFGH9e/y9UbUU10KIG63GxUVFejbty+uuOIKvP/++/jmm29wySWX4Pzzz4fV6t8VHVeuXIlhw4Y1B54RI0bgl19+wbhx47x6/3HHNS2i5e86iYINr3nf6O50lLqud3nRKVmWuzVbjC+nzAxlve2aL6yshUtu+XTcLctY+tcWbCqsaPU0vK2v997kNt/M77eP2STCbpZabWv13k7O0fz1nm1TZyzFii0tWxPMJhM+uusSHJSVEsgfYZdsLCrHpoKy5hAiCAI+mTQBCdH2Tt/7yaQJOPOxd6HtCV6CANxx1vE4NCe90/fO/dfVOPbB11DvdGPvJ8q8h64B0Pk1PygzGdNvvQD3vTcf9S43Yu02fHz3ZZBMpk7PS+HLqM9Kr7tgjR8/HnV1dTCZTEhJSUFaWhpSU1ORlpaGwsJCrFu3Dk888QSysrL8VuzHH38MXdcxYcIEAMCsWbPgdDpx1VVXtdhv6tSpmDJlSrvHmTRpEu6++26/1UnUFYqswmQWg3ZVVEdFPeKSovx+Ho9bRlVRNdL6dO2moyy/HNEJ0YiIsnn9HkVWULa7Cul9kr3+uauqipIdZUjKSIDV7v0HdvnuSqiygtQ+KV6fS/EoKNxairQ+ybBGeL+YXFVxNTxOT5fOReFB1TRc99YClNQ0NG+zmU24adQROP2wfgZW1rnLX5+Lijpn89e3n3YUxh0R/E/l7/rwa2wvq4bdYsFLV56KlJhIr99bWlOPe2d8C7es4rxhA3DJiEO6dO6XFv8Gl6zgllOOREwXPo+Aptax/MoaDExj7xFqCs/p6Z2HX5+f19sAsnbtWqSmpiIxse05oX/88Ud88skneOWVV3xe5F4fffQRALQIIA0NDbjmmmu8er/RY0DKCioQmxQNq82/aVP2yKgqrkJqbmjMJOKtkvwy6KqK9D6B/4fiL5qmYdem3YiOjUZSRoLfztPda97jUbB7y27kDsiG2c+LPMkeGZXFVUjr4nVbtrsccSmxsFi9v1FXVQ2l+WXI6JPWpXNVllYjPjm2Sy0MqqpBU1VIlq61ZjTUNSLSi6ep+9M0DYqsdOlnEa564xgQt6xi7KNvN12fuo4LRx6KmzuZZjVYTJ6xBCWOOpx+5GCcO7xrN+PUpDde89RzQT8GZMiQIR2+PmzYMMyYMaPHBXUkMTERmzZtav66oqIC2dnZfj2nL2mqCkVR4e/GLl3Xoaqan88SeAmpcZBlxegyfEoURWT1z4TZHJxN4BaLGbmDsv2yau2BJIvU5fABACnZyV1+j8kkdjl8AEBiatfHu5n2dDfpqq6GD6DpemL46L2skglLp96AH9fvRFKMHUNyun6NG2XqpaONLoGIAshnHYVtNhteffVVXx2uTcOHD8fKlSvR0NCAxsZGrFixAsccExpPdwAgLTcVkVFdv6noKovVgoy+4dNKsJfFagnIzy/QJMkc1N1lAhE+iMg3zKKIk4b0DanwQUS9T0jdWcTHx+Paa6/FpEmTmseCJCd3/eknEREREREZI6QCCACMGjUKo0aNMroMIiIiIiLqBs7VSEREFIS6sE4wEVFIYQAhIiIKMqqqonBbMZQwm3iDiAhgACEiIgo6oihCspihqKrRpRAR+RwDCBERUZARBAHJWUko2l6MitIqo8shIvKpkBuETkQUjnRdD+rpmCnwRFFEdv8sSH5eBJSIKNDYAkJEZDBd11G8qxi1jnqjS6Eg053wUV1eDU0Lv8VoiSh8MIAQERlMEARExkTDZrcaXQqFOFVVUedoRGO90+hSiIjaxQBCRBQEVFVBTUWN0WVQiDOZTMjql46omEijSyEiahcDCBFRELDaLJCsktFldGpb3ffYWLsUANeoCFai6Jtf7ezGRUT+wpFtRERBIDI6+J9Yf55/BypdO6FBxS/lb+HsuNcQH5/gsxve3sDj8sBisxhdRqdK8sugyCoy+6ZxcgQi8jn+1iCisOZxeYwuIURpe/40+br4aRQ1roFbq4OsNaJersD80geQv63QuBJDjNvpxvrfNofENZmcmYTU7CSGDyLyCwYQIgpbbqcb+ZsLIbtlo0sJKV/uvgfTNp2GaZtG44eyV+Fxe1Dp3tFqP4dYhG/qP4LKxfK8YraYYY+JgNPpAuD7cKzrOop3FKOkoKLHxzKZREiWnncJ1HUdus7uekTUEgMIEYUta4QV2QMyQmJsRbD4bNdE7G74c8+No4a/qj7HzJ03osK9tdW+Hk3GJmE15hS/F/hCQ5DJZEK/IXmIjY+Bx+XBzg274Xa6AfhmvIUgCIhJjkVSalyPj+UrRdtLULC1yOgyiCjIMIAQUVizRnBq2/Zo8GBx0eP4tuSF5m3FzrWt9qvVd+P6AV8gwZoLASYAgKoDpZ5YqFDwl+MXFLvym/fnE+/2mUxNPz+LzYK8g7JhjbBClhXs2lwAWVZ6fPzIKDvMUvAM70zLS0Vm3/RO96sqd/i/GCIKGgwgRES9UL1SgVc3no7Ntcuw1vEV3th8Bqob2x7PIQpmWMUoTOjzX0SYD0GVbEeBOwHanl8hmq5BVpue5Ou6jpJdpSgvrgrY9xKq9g5GN5tNiImLghREwcFXTCYRoqnjWw2Py4Pq8mrIcsddJUNh7AwReYcBhIioF/pw+5XYfypdWXPho/yrkGjph5YNGAKOS70FOjQsLJ6JDQ0laNRioe/36yPFmo6cyAFNewsCohOjEZcUE5hvJAwIgoDEtASjyzCMxWZB3qAcSFL7XSVVVUXBjhI4KrlWTm9VVlCO8qJKo8sgH2EAIaIu0zSN3WxCyJzd92P65rPw3rZL4NJqUeHaCk1v3d3HJFpwWd+30D/yBAgQIQpmnJD6TxQ6Xbj3r8sgiRY8e9hMTBr8DJKsaUiwJGNA9FBMHPhEi+NERUeG5dP8cGb0RA17u6Z19Hp2/3TEJcZ2uJ+zwcnPpjAVGReFqLjgn66cvMPfEETUZYVbiyCaBGT2yzS6FOrEVwUPIr/hdwA6PFoD3t48HofGnwe1jQASZU4CAJyRMwUulxPLqr/Eh7tmYkz6RXj28JnN+6VYM/DgQS/DqdYjwhQVqG+F/MTj8iB/YwGyB2UG9ZipjlpIgKZWktKCSsQkRCEhOS4wRVHAREZFGF0C+RBbQIioyzL6ZSApK8noMugApc4N+KvqMyh60zSvuxtWNoePvXRo2Fq3HFf2+xCCIAJoWufBJFhwRd/3oeoKFhTPwMMbr4VVtOGZw2fi1NTxbZ6vo/DRm59Ch9r3brFZgj58eGNvKwnDB1HwYwsIEXWDjoJtJUjJTER0LJ+AB4PV1V/gx7I3oEPFT+XTcUWf/6FGLoWmtz29a6yUgZsHzcM3Rc/CYorECSn/xILij7G8bB7GpF2IZw6f0e1adF1H0fZimCQJaTnJ3T5OKNI0DcU7SpCQnoAIu83ocrwW6uFjr866chFRcGAAIaIuM5lMSM5IYPgIEn9Vz8aPZa9B3y9s/G/7FTAJZgiCCF3ft1CgAAGHxZ8PADDDhlHp92Nx8ad4cPWVGJN2EZ4+7OMe1yMIApKzkiCKva+RXRRFWCNtsO6Z4YqIiFrrfb8diMgnYuKijS6B9thR92OL8LHXkLhxuH3QUpgFKwRBhCiYcJBwCYZGnQ9FlzG/6CP8e/XViDDb8fRhH2NU6rk+q8litQTVehSBsHcgd1JaQq8MX0RE3updvx2IiMJMQeMq1MjFaBrLsf/YAwGxlqZJAm4ZtBAFjX8iydYPgmbBkrJP8EP5QoxJvwj/d9hHAa9ZUzVUltUiOT0u4Of2F2eDE4Xbi5EzKBsWS8eDpYmIejsGECKiIPV92TTImgej0u5usd2pOrDOMR/rHPMRI6Xj2OTr8V3py3Cp9QB0CBCQZj8Yh8XvGzyeGjEEi4pn4cfyRRjbSfBoGsNRgvS81E4Xkeuqtb/vwLP3fwIBApLSYvHMRzf79PhGiYiMQHb/TL+FD13XUVVchYT0BAiC4JdzEBEFCgMIEVHQ0fDG5nGQNTcAHRscC3DjwDkobPwb6xzzUeLcgEPizsR5Oc8jRkoDAAyIPgVfFT6ACtc2ZEUehdHpDwIAPJobi0s+xU/NweNDryrwx0xO6/7Yiak3v4e6WicAoHh3JW4/7yVM++IOn5/LCP4cyK0qKhobnIjTNA60JqKQxwBCRBRk/rftcsiaq/lrHRre3Hw28qJG4JC4cRiX1XLhv+8KF6GhoQ5nDXiq+em4R3Nhccmn+LliCcakXYinvAweQNMg8qz+GZ3up+s6ireXIM3LlpK5H/7cHD72Ki2oxqa/d2PQYdle19cbmSUzsvpnsvWDiMICAwgRUZBpUKpabRMEE05Ku7N5scC9pq67CXWyAwDw49qvMOWQN7GoZBZ+qfgaY9IuxJOHfuDXWnW0HHmyP0VWUFHqQNqeNWMsUuuQIogCbBHhO2OUpmkQBKHLwaGq3AFNUZGUnti8jeGDiMIFp+kgIgoSjWo1fq14Dxpar1JuFi2twsdT6+9ArVwNfc//3KoLD66+ErHmBDx56Ps4KeUsn9e4f9csQRCQ2S8dpnZaP1RVheqRm7++/dHzERG5r5uSZDHj9IuGI3dgqs/rDAa6rqN4RwnKdpd3+b2SxQzJysHsRBSe2AJCRGSw/IbfsaZ6Doob1+OQmHG4qu9HeH/b5VB1tfmp94Q+77V6X5Xc+sZWhIjhSaf4rdaSXSWIToxBVHRk8zZVVdscl2C1WREVH4VaRx1i4qIx7+NfcNr4YagorkFNdT0OP6Y/rrhjtN9qNZogCEjLTYUgdr3lgmvsdE1laRUSUuLZSkQUIsI6gEydOhVTpkwxugwiolYU3YU11XOxunoO4iyZGBJ3No5UboMoi4iWUnDb4KVYsPtRQFQxNvNhiAd8XDcotRAFEeoB/Z9Mogk20e63uiWrtcVMT9WVNaitqEVW/4w2Q0idox5mixkbVxXg71+34dHp1/ittmBkMnPAuL8pioKaqqaQy1ajwHI1umCz24wug0KQoPtjqpMgJQhC0/SSRUXIyOh8gCVRuOA1H2ga2uvhWuJcj9XVc7Ct7gcMjT8bh8afgxgpvdV+iqJg58Z8JKQmICE5rnl7neLA4uJPsbrmV4xMHoOlxZ9B3zMKQ4CAfw58DLn2gf74ptqkaRoa6hrbfGKv6zqKdpSgxuHEs/d9ine/vr9Lx64qdyAyOgJWW9dnlwrWa768uApxSTGQetkijf7WXitcbxLoa95RVYvKkirkDcru9T/7UGbUZyU/ASlsyB4ZEhcAI4N9ln8HSp3rIcCEMRn/Qr/oEwAA6xzzsLp6DsyiFYfGn4PRGQ92eByz2Yyc/lmw2JoGaDvkSiwp+RTra/7EmPQLcUH2DQCA4Qkn453t/wcVGi7JvgU59v4+/X5UVUVNZS0SUuLbfF0UxXa7CwmCgPS8VFx/0INYsPGpLp/b1dAIi1XqVgAJJvvfHMtOd9NnFQOITzX/fGUZksTfA4EQlxCDyOgIhg/qFn4CUliorqxBZXEl8gbnwGzmZU2Bp+s6Pts1ESWudXu2qFhYOBXZkUchv+EPHBJ3Jk7LeABJ1n5eH9Nis6DKU4YlJZ9hS90anJpyAbJ2nIwY1Q7smRwpTkrCpEHP+P4b2sPl9KCxzom4pFiIYtfnLbn5zOcxfcGkbvXNz8gLvhaMrvJ4PCjLL4c9JhIJKXFI75PGcQp+UllajTpHPXIGZHbrWqWuY9ij7uKdGoWF+MRYREZGMHyQIQq3FSG/aANKkte12K5DR2Hj3/jn4K8BdO2ms9xdjCUln2Jnw2aMTrsA41NvxIRzXoRkXgMIwGlnHIprbvHfYPO9IqMiYI+0deum+dHb/oer7z4dOf1Suvze+toGRMVEdr5jEJNlGQXbipGUGo/o+GgA+6bS3fDHVmT0TUZkVCTMbA3xiYSUOMTERzN8EIUAfupR2NjbVYUo0JKzklAJAHLr1wSIODB8eFyedq/XUlcBlpR8hkLnDoxOuxATcicCAK6/+DXUVDc27zfns9+QkBSNcy78h4++iyaapkGRFVis++rrLHxUlFYjNj4Kn7/zPbauK8LhI/ujvMiBQYfm4NjTDulyDbKsoLywHCaTiIjIiC6/P1hIkoT45FhEx0e3+hkqbg/KdlfAFlHHBQZ9RBAESBbe1hCFAv5LpS7jYD+ifbbV/YA11XNQixJEmOPhVBzAfoPCj0+9pcX+Ho+CHRt2IXdQdovZY4pd+VhS/ClK3YUYnXYBrsi7s/m1zRuKW60g3ljvxm8/b/F5AKkuc6CxzonMfuleP0mWnW78+55PsPa3ndA0DT8tXYs+g9Pw2py7vHu/W0F1eS1SshIAAJJkRlb/rLAYJxGfFNfm9qHHHgxd15sXKvSWpmk9fsIve2QIgsCWFyIyDD99qEuqy2tQW9X+lJtEvUG9Uo411XOx1vEVMu2H4aiky5BtPxIA8PHO61Dl3gUBIk5JuxsHxY5t8V6LxYw+B+U2t4AUOndgccmnqHKXYXT6hTg0dnir81ltEtyu1osT5vbtetemziSmJSA2SenSTe6iz1dh9crtzUui67qOnZtKsfizlRhzwdEdvvfP7zbgpbs+gKZpSMlKwHPz7gOAsAgfnREEoUufo3tnFZMsElKzk7t93rLd5TCZzUjLbfv6qa6oQVxiDFtliMhvwv8TnnwqLikGFpvE8EG90o76n7Gm+itUurdjaPzZuKLv+7CZYlrsc1neO9CgtFq3Y38WmwX5jVuxpORT1MoOjEm7EIfEDmu1n6bqmP7yEnz39TqcP+EYfPnJStTVOiFZzMjrm4wb/nmqz79HAF0eS7VpdX5z+NhL1zWs/X1nhwHkt2/W4j/XvwlnvRsAUF5YjTvHPIUXFz/Q5ZrDQVlhBWITo9ud9UsQBKRkJfV4bZGMvunthgtZllFVVoXIqAh2ayUiv2EAoS4RBAGR0f5b5Iwo2DjVaqyp/gprHHORahuMwxLORW5k61aK/XUUPnY2bMLikk/hUhsxOu1CHBRzRJv7zfzfj3hv+re4aeJozJx/NwDg0CNy8cfK7YiJteOCy47p/jflY3kDU/HXim0tQoggCBj6j74dvm/Be983h4+9SvIrsG1NPvoNzWmxXVGUsJ9kQlNUKIqKjiYd3n9sTnd11LIhSRLyBuXwIRMR+VV4f5oTEXVTfsNvWFM9F8XO9RgafxYuzXsTdnNCu/vLsozGOidiE2LafH17/XosLvkMii5jTNqFGBh9aJv7LZq7Cm++vBTjxg/Dop8fbvHaYUfl4bCj8rr9PfnLzf8+F19/uQoNtS7oug5RFHDZbadi9PmtW3X2Fx3fepYrURQREdlyZeXK0mrUVdche0BmWN8Yp+WmGl0CAIT1z5iIggMDCBHRHm6tHmurv8Ka6rmIt+ZgaPzZODPrMa/e21DbiOlFk1FbWA2rGIF7Bj8LuykKW+rXYknxp4AgYEzaBegfNaTN96/4cTPefGkphhyeg/e/mIioaFub+wWjVx6ZjWsmnY56hxNb1hbgiJEDcOalnbfQ3PLkJfj7x00o3V0JAJAsEi64/TRkHDC2JSElDjFxUW3eGGuahsKtRcjolwGTqeW4FadShHXlj0DW6pAeNQZ5sdf24LskIiJfYQAhol5jWdELWF83HwIEDI07Byek3g4AKGhchTXVX2F3w+8YEn8Wzs97EdHmrj2NfqNsMsrVIgCAS3Vi8trrkW3vB4tgxekZl6Bv5EFtvm/jukK8+fJSREXZ8OhzlyArJ7Fn36Sf7Z25aW8Y+PL9HyFZzDjzkq53CYuItOLUi4/Bd1/+jtjEaBx92lCMv+W0VvsJggDJ2v6CZ6JJxP69ijRNh0cvwYrCO+FWKwAA9Z5tAEzIi72qy3USEZFvMYAQUa+wvORlrKv9CkDTUIW/q2ej3L0VDXIloqUUDI0/C6dnPtKtY/9StRQV7uIW2zRdg6zJmDjoiTbfU1LkwPSXlqCyvA43TjwNQw7PaXO/YFO6uxyqR0ZGvwz8+dMW/LZ8I5549/puH++LN77Bh2v+D/ao7rX4CIKAzH5NK6ZX1zbi389/hZLyGoy/dB6SMiqa91P1RmyrfgOZ0edAEuO6XS8REfUcAwgR9QprHXNbbStuXIMr+r2PWCmzR8d2Kg0HTgIFoGkmqAO5nDKmv7wEf6zYhpvuGI2RJw3u0bkDLSUrCbqmo7y4Bi899BneX/6vbh9r/v++x8nnHw1rhISCLQVI65MOcxdmeNJ1HUXbS2Ayi4hMisPlk95DdU3TYo0N7lokHbC/AAGq5mQAISIyWM9WMyIiCgE6NLSaJ3bPlo7Ch6ZpcDW6AAANam2b+/xe9R1WVCyDeMDMQoIg4IyMS1pse//N5bjo9GfRf0Aa3v9iYsiFD6BpkLjJbMJ1o5/GO0vu69GxZr20CBfdMRaiKEKyWiCKXVt3QhAEpGQnITkrCR/NXdkcPgDglx+GwO1u2W0r1nYYbOb0HtVsFEdVndElEBH5DFtAiCikKR4FZkvbH2Xlrs1Y7ZiLDY5FiJZSUeMpaR4roOtA/9jjOjx2wdZCFG4rxPzM6XDrTogQcduAR5Fj74+fK5ZgaelsDIweipv6/wvxliQ8vOY6yJoHAHBj/3+jf2TTgPO5n/2GN19eikuuOg5zlz/Y+nuQlaBflVpRNJjNTc+sbj3nRbz06e2Q2vm5e+P7OX9g0JF5SM1uGvOSmtO9RRUlS9tjQzavz8OSuVacfeHiPQFUQGb0ud2s1lgej4yKojLY7VauzRHGPG6PT6ZZJgoFgq7rbfUcCEuCIDQ12RcVISMjw+hyiAImXK95t9ON/E2FyBmUCWvEvtUT1tcsxJrqOdABHBp3Ng6OOwMAML/wEWyv+xEA0D/6RJyeObnD42uahn+tuRKy7mneJkCA1WTDkfHH47TU8YiRWk7NW+DcjqyIpvUvvv9mPd58eSmOOW4gbpx4GizW1jfs9bUNKCsoQ/aALEhS+wOtA8Xt9sDV4EZsQnTztutHP43igipYJDMGH5GLsRcejRPPPKxH57n91Cdw53NXoP9hPRv7ous6BEFAfaMbF9/xTotWkPsmz4Itor75awEChqb8BxlR5/TonEbwxTooe39WFHycDU4UbCtC3uCcdkN1Z8L1c578y6jrJrgfuRERdcAaYUX2wAxYI6yo8uzCmuq5WFs9FwOiRuHktLuRYhvYYv8zMx/t0vF/rFgIRZdbbNOhI1ZKxPlZbQ+8zoroi9WrduHNl5YiLSMOz0+/Gilpse2eIyomElKfjKAIH0DTjVBjbQNi4qMgCAKuHvV/KNkzTa5T8eCvX7bikltO7vbxt67OR31NI6Ji7D0OHyW7SqHIKjL7pSPKbsVHz12DOx7/FLsKqzB2VCMiIlqOzdGhY0PF/xkaQHRdR3V5DRJS4rr0vp6GD9kjo3R3BTL7pjGEBKGIyAjkDMjqdvjoiMctw9LBLHJERmAAIaKQlq/8hDW75sKl1mJo/Nm4Lm8uCjcWIy4pq8fHtpja7g4hCW1vz99RgTdfWQpXowcT7z8DAw/y7qnS/q03RotLiEVsfAwEQcDPX69tDh976bqOp++ZiY9+eKhLx9U0DRcNnARnoxuaouGaf5/b41qTs5KgqVrzDXVcTARuvHgkvvx6Nc471Yadyket3iPA2EX23E436h11iEmIajdU7O2Y4MugIJpEWCxSl46p6zrqaxsQHRvlszqoff74HHA2OFG0owQ5g7IhBXk3T+pdeDUSUciplUuwpnoO1jjmok/UsRiRcj0yIoY2v549OMvrvvK7ndtQ4izAPxJObLH9h/IFWFg8ExbRCrfmxt5B7AIE3NS/5c13bY0Tb760BBvXF+LGf56Go0cO6Nk36AeVZdXQNR1Jae2v5l62uwKJGQkwmURUlTtQUVzZ9o7d6Lh7bu4d8Lj2dWX773++RHrfFBx/1pHtvkf2KB2OMzGZTK0WJ2x0ybDbJESbD0OM6RDUeNY21ytAwJFp07pevA/Z7DYkZyV12KJRvKMEAgSk903z2XlNJhNSsg+cF6xjtY46OMpqYI+K4OroISoiMgJZ/TIYPijocBYsIgoqJbVbUFS9oc3Xttf/iDm778MX+XcjwhyH6/p/hjEZ/24RPgB4HT6+Kv4QL2/6N2btfh0PrJ4AAPi5YgkeXnMtKj1lmDzkTfzn0PeRasuAWTBDb7Rg88ODcemoadi0vmnRwbenfY1rL5yGQ4/Kw9szbw3K8AEAkmTu8GZe0zTIsgJNVQEACclxOG38cMQm2FvsJ4gC7nvukrYO0a7Zr38N2e1psU3XdHzwVOupkfeS3TJ2btwNt9PdpXM5XR5E7Pn/f0TmLERbBkMQTBAFK4ZnfIw4W8/Grnirvbplj4zCbcVorG9s83WgaUB+chfDgj/Exscgq38Gw0eIC6YWVqK9GImJKGh8tusOFDvXAADiqrNwRd/30ahUYY1jLtZUz0V6xBAckXARciKH9fhcswvewc8VS6BDB/SmhQMn/XURjk0ajQcPfhl2075uJ/cNfgFXnvcySooce7Z4MPHat6HrwPW3n4rPltzb43r8LSY+usPXRVFERp/UFl10IiJtcLsUpGcnoLTIAbPZhCfeuQ5Dj+7bpXNHRtuaJwHZny2y/RsjySohu396uzdPqqqiZEcJ0vumQxSbnqVpGvD54r8gKypwVtMMZCMzZ2Nb9evQoAQsfCiKgoLtRUjKSELsAT93ySIhq18GbPb2F140dWEtFH9j+Og9nA1ORERGGF0G9RIMIEQUFD7Ln4hi59rmrx2eAryx+UxIYgSGxp2NCX3fRYQpzmfnW1Ozsil8tCAgJ3JAi/ABAD9/twmlxTUttuk6kJoeh4uuONZnNRntwPEBN535HF769J/IHZAKTdOab/S7aszlx+HLt5Zhx/oi7O0PJZpEPDt3Uofv6+gmXRAECKLYXHOFowHn3PQ69macSybNxPKP7oYoApIpFvWe7d2qvTvMZjNyBrbf576j74vICB63jMLtRcjun8UWEwoIdsEioqBQ6mzd7UrR3bim/0wcnXSlT8MHAJiE1k92BUFAiqV1v3uhnQXydC10ZzEv3V0OdU93q7Y8ctN/cd09ZyB3QCoAdDt87PWfT++EySzCZrciMTUOM9c/06M1LURRREbf9OYAcvHEt7F/A4uiarh44lsAAEmMgay1vZCkv7DPPYUSi1VCzqAchg8KGH5CEpHfKbICk9nU7gw8m2uXteqeAwDQBYhePifRdR2qojYv6LercTO21q9DtDkORyfsmzb254olWFzyKYbEDcPvVd9B0RQATQOUhyecgtzIQS2OW15aiyVf/QWTSYCi7KtREATcN/Vcr2rrqbqaep/ORKRpGmSPDFVR2+xi89qjX2LY8YNw9MkH+eycM56fj5sevwhnX3eSz465V2GJA4qitdpeXt0AADCLMVACHECIQo3FD1MAE7WHAYSI/KZOKcWSov/A4/TghKhJyMzs3/xaqWsj1jsWYkPNIvSLPh5HJ12JlRX/a9EtakTytfC2obaqpBoNdY3I6p+BfNdWvLfjGdTJNbCZIrGx9m/0iRyIxSWf4Yj4Y3Hv4GcRZY7F+VnX4blN96FersFhccdifNZ1LY75+guL8eO3G3DrpLGY/PRFuPK8l1FWWguzScSTr1yOoYf3bB0Lb7idblQUVcJmt/nsqbooisjc03qgaRoqCiuRnJUEQRDw+bvfQ7KYcfblvuta1ljnxNezfsXs7S8CaApUuq4jJq7jcSneykyLg2QWm8Z+7Cc5oSm0SWI06j07AHgAhP9K0z3pLkdEFAhcCZ2oFzDimq9y78LHO66DjqYn0wIEXJT7Ggqdf2O9YyEkMQIHx52Og2LHwiQ0PXnbWrccy4qfgwYNxyRdh8MTxnfpnIqioEGvxatbJqPSU9ritb5RB+HaPvciwtR5S8IXM3/F6y8sxi13jcF5lww/4BwazObA3tzJsuy3hQoVRUXpzhKk9UnDiq/XY9m8v/DwK1f49BxvTf4MCamxOP/W0wAAlSVVAIDEDqYE7qraehfOuO5VqLoGAQIks4jvPr4bDfJW/FgwHrquQIQZI7NnI1Lq3/kBQ5Su6yjcXgyL1YKULONn0qLA4b0NdQdXQieisPLZrtubwwfQtAr1rF234vCEC3F61hQkWHJbvad/9EnoH31St89pNptRWl8IWfe0ei3GHN9p+Pjpu414/fnFGHnSYCz59ZF2zhH4J8v+XCXdbDYhs38mtq4rxIw3lmHaF3f49PiKrGLOW8swr+i15m2+DB57xUTZ8P2MSTj31jcwIDcFk646BtWuVVhZdEXzdahBwQ+7z8Uxmf9DnPUon9cQDARBQEpWUnNXRCKiYMRPKCLyOQ0KZN3VarsgiDgu5Wa/nrtP5CCYhZYfbVYxAv2jh7T7nq2bSvDa84sQG2vH89OvRkparF9rDDZ1jkY8eM1b+HTlFJ8f++Pn5uOySWf6/LhtEUUgIyUWV53X1Gq1q+bDFiG4iYYdjo9wRGp4BhAAsFjDv5sZEYU2BhAi8qmCxlX4u+qLNgeVR5qT/X5+SbBg4sAn8Pym+yGrblhNdhwRPxIjEk9ttW9drROvPbcIu3aU49a7x2JIAMZ0BJrHo8DSwQKEAHDFSf/BzJ/bbvHpqRnPL8CC0tcBADXVdbBaJZ9MQ6uqKsT9puHda99ChDKs5iQIEA8IISKspvgen5+IiLqPAYSIvNaoVGHO7vuhQcbI5JuRF3UMAECDijXVc7C6+ktEmZNxWMJ5ODPrUUzfciZktaklRDLZcXW/jwNSZ7Q5DncNfAqb6v5CrCURA6MObbXPf9/4FvM+/x23ThqL+6eeF5C6Aq2qogbVpdXIHZQFs7ntj/u9a33Y7L5/av7JS4tw0cQxzSHBWd8IVbH0OIBomobSnaWQrBYkHzDOwemSEWGTAE3GQYkPorRhKVxKSfPrVlMiDk56uEfnJ6K26boOXdc5CQJ1ioPQiXoBX1zzdUop/rf1suZZqgQIODntLpS4NmKjYzGGxp+DQ+PPRZwlq8X7VlXNAgTgiPiLenR+X1k450+8/vxiXHr1cbj0muONLsfvOmoBeeSm/2LcJcf4dLrd/Z2T80/M2vQcrBG+DzeyLMNsNjeHm9p6Fy6a+DZq612IjorAqw+dif598wAAvxZeDof7b0RJAzAye7bPayEKBsFwb1O8swSKR0H2wKzOd6agYNR1wwBC1Av44pp/e+t4OBVHi22CIOCU1Ek4OO6MHh07EP74dTtef2ERDjk0B7fcPQY2W++e8/61R79EVt8Un063u78vp3+Dkt2VuPnxwATP4y5+Dtp+v85EUcCPM/ettL6y6Cr0T7gdCbZ/BKQeMl5dTT1qq2qQ2SfT6FICIhjubVRVBXTAZG69vhAFJ6Oum7BuI5s6dSoEQWj+Q0Td51EbW20TICI36mgDqvFeQX4l/nXHR/jso5/xyJMX4a5/jQv78NHZcyV/rPVxoI+em48JARp8PvmleVC1loPNNU3Hk28sbv5aMsVCVmsCUg8FB4tVQkRUpNFl+Jyu6yjeUQJFVowupRWTycTwQV4J6zEgkydPxuTJk5u/Zggh6rr8ht+wuvrLPQN5BWC/hQItoh2R5uBca0D2qHjt+UX4+4+duHXSWAw7pp/RJQWEruso3lkCW1QEEpLjWr02/6Ofse7PnXhk2pV+q2HB+z/g+LOORHR865s/VW179fUea+Pjff9+6JIYC1kL7wCi63qL33O6rkPTNP/8vEOA1WaF1WY1ugy/6DVdVyhshXULCBF1TNVlfFf6MuYXPoL8xt9abF9V9Sn+t20CVlV9hsFRp+O2QUsQa0mDsOd/khiBGwbMMbD69s383484d9RT6D8oDe9+eluvCR9A04OWqIQoRMe1vvlf/+cOzJuxAv964TK/1vDxs/Nw2T3jWm3XNA2F24tRVVbt9bFUVYOmHjiVbstWnql3jINZbHmTbTIJuP/G05q/lsQYyFqt1+f1hqZpqHXU+fSY3aVpGop3lMDtcjdvK9tdjuLtJZ22iFFoEQQBGX3SuNYLhTRevUS9lKK78OG2q1GnlAEAChtW4Zjk61Hm2oTNtd/g0PhzcV7Os9DqolBRUAYlSsGVfT/ChpolUHQXhsadbfB30Nq3i9fi9RcWYezZR2L+D/82upyAkd0yJOu+bmUxsdGt9qmuqMUjN/4Xby2a5Ncbl29mrcBhxw9GUnpcq9dEUURCajwiIr2fBatkZwl0Hcjqv6+PsuyRUZJfjsy+ac2tHAvfvR0XTnwbNbWNSIiz4+V/tQxA9fJ2eNy/Izv6QpjFjhek9FZ9bQOqSx2IjLYb3sogiiIsEVZIln3XQXJWEjRVY+s/EQUdDkIn6gXauuYXFT6KLXXLW2wzCRJOSL0NQw4IFwfe4Aabdat34/XnFyMzJwG33DUWcfF2o0sKGEVRsHPjLiSmJyM+Mabd/c49/CF88N2/EB3r35/NtcMfxuMz/omMvik+Od7eX1H730SrqoaKoiqkZrfs/ldSXotbp8zE7FdvbHHNryi8GA73OgBNXZROyf0Rkhjnk/r81qUsQFxOFxxlNUjLTTW6FOoh3ttQdxh13bAFhKiXalRbd4OJMMciJ3JYq+3BED4Uj4pGl4yYmH1PzyvK6vDa84tQXVmPifefgYEHdfwhqioqIAgwmcKn96nZbEbuwJwWT773HwugaRpuHPssXpx1u9/Dx/dz/kD/odk+Cx9A22P3TCaxVfgAALeswHpA686q0olwuNc0f63rOpbtOhFj+vztk/pCOXz4SmN9I+xRvSf0E1HPMYAQ9VK5UcNR6twERXc1b4s0JyFG6v6TEFVVUV1eg6S0BF+U2Ow/D8/G8iVrAQD9BqXj9fdvwPQXl+C7b9bh1rvH4rhO1rHYuzhW6a4yiCYRaXnB+7RX0zSoitoiUHRm/31VVUXxjlKk5abALJkx5eb3cN5VxyK7n/9XoZ/x/Hzc9/p1fj9PezweFRZLy0BQ7fqz1X66rqCw/ktkRp0boMqCly3ChrTc7i8M6WxwomhXKfIGZnNMAhF5LXweAxJRlxyVcAmOSb4GkeZE2EwxSLENwEW5r/XomB63B+5GNzSt9aDh7ppy7yf4dvG+J9jbNhVj9PBHkZQag4+/uqvT8AEAJbtKUbi1EOl904I6fABAVXEVineWdnvgsCiKiLBbYTKb8Nz9M3HIUbk447KRfn9S/+uS1UjJSkSfg41bc+HJ6YuQX1SNOV+vbt5mN7euRxBMiLe2bumjrouIjECun8OHqqp+OzYRGYOPK4h6sSMSLkSfqGPg1hqQahvc4+NF2COQ0cfm00Gvv/60pdXxBEHAOed7v6Bcak4KNE0PicG4iRmJiNe6P3BYEAQkZiTivefmQ5VlnHnp8IB83x8/twC3Pnmx38/TFk0DTrr8BShK043q028twY0XHY2rzs/AMZmfYMmOo6Dpzj17Czg0+VHYJa7U7CuSn8PH7q3FSEiNRUxc68kViCg0sQWEqJeLs2T7JHzs5eubXZO59ceUIAiA6P15RFGEOUQWxxIEocetFT8tXoP87RW44z8XISrGNzM+dWTV9xthj7Ji0JF9/H4uoGkWrP1deufbzeEDAHQdePvT3+ByNS3UNrrPH0i2HweTYMOQ5ClID4OuV7KsoLyo0ugy/M5kMiEhNRZRMeG3oCBRb8YAQkRBa9qzCxEdHdEq1Fw4YQTMbQQTArauK8SMN5bhkVevCtgibB8/Nw+XTWq97oc/uJ1u7NyYD4+7KYTIbhlVjoZW+2majt/X7Wr+ekjyYzCLsciKvjAgdfqbpqpwO92d7xgGYuKiWywqSUShj/+iiSjozJm1EqOHP4qc3CTMmH8XHnxsPGwREiSLGedc9A9cd/soo0sMSrXVDXjw6jcx7Ys7AnbO9Su3QVU0DD12QEDOZ42wIqtfBix7ZmaTrBIG9ElrtRK6ZBZx3FH7FqAUBRu0/SZcCHVWmxWZfdONLoOIqFs4BoSIgsYfK7Zh2rMLMWxEfyz59ZHm7SeddghOOu0QAysLfrqu44qT/oOn/ns1ZFmGJAVm6uSPn5uPyyad2aKO6lIH4lPj/Db2JCIyosXXr029GFc/8CG27CgFAIiigHceH99iH5MQAbV5HEh4CIUxTUREbWEAISLDlRQ5MO3ZhVBVDY+/cBkys307jW9vcOPpz+K+Zy5EvyG5AQsfW1fnw1FRh2Gn7AuHqqLCUVWD6MSogNUBAO89dTn+88YibNxWinefvAJlZSUtXhcFCzTdE7B6iIiofQwgRGSo6S8uwU/fbcTt95yOo0cGphtPuHnkpv/ihvvH4agTBgZ0YbwDWz8AwCyZkTc4x5A++4cPzoam6e2MD1IgChLKGpcjxX5SoEsjIqL9cAwIERli/hd/4PRjH0dSagze/2Iiw0c3vfbolxh2/CAcffJBAQ0fu7eUYPeWEhx7xuGtXjNqwLCqaTC1cW5Fd2Dx9iOh6TL+Kv0ntlQ/b0B14cHZ6ITHzZYkIuoZtoAQUUD9/cdOTHtmIYYcnoN5P/wLJhOfg3TXp28th8flwdmXHxvwc3/87Hxcds+Zne/oY1Wl1bDH2GGLaD3Dl6pqra4nDS58s+N46GiaplfTVWyvfheqrmJwwr1N2zSNsyx5yVFWA1EUkZqTYnQpRBTCGECIKCAqy+sw7ZmFqK934aEnL0Bun2SjSwo5r079Aj8tWYv4xGhcfNPJ2PDXLlx392kBr6M0vxLrf9+G+6dfF/BzK7IKVWl7Zey2AsgOx/8AQQf2W1heh4by+m8xOOFe6LqO0l1lkCIsSEoL/bFHHreMhnon4hNjvH6Prnu/SGd6Xlp3SyMiasYAQkR+9/a0b/DNotW4/d7TMfJE3y162Ju8+8wCzPt4BXRdR1V5HZ68+2N8seox2OyWgNfy8fPzcdndgW/9AICUrKR2X1M0DeYDWjKiLH2h6633tVsyATTNJBWXGhuwNVP8zeV0wVXfAHgZQOpq61FfVY+03FTOqkVEAcM2ZyLymyXz/sLZJz6JmFgbZsy7i+Gjm7auLcRn73wHfb87aV3Xccu451tsC4TqslqsXLoGYyaMDOh5vdFWC0iq/TRkRo+DsN+vO1Gw4ai0t5q/jrBHhE0XrJi4aKTleN9KYbNZYbXbGD6IKKDYAkIUYM4GZ6t1DMLNutW7Me2Zheg3MA2zFt8Dmy1w07GGo/wdpYAgoEU/IgAN9a6A3Tjed+7z2L6uANB1XPngOQE5Z1epqg6TqfXPY2jyUxCFCBTXz4XNnInjsuYaUF3gdOWakCwSElLi/FcMEVEbGECIAkhVVRTnlyMxLR6x8dFGl+NzNY5GTHtmISrKanHPw2ej30D2F/eFU846Ei/863Noqta8TRCA48YMDcj5bz3psabwscfbUz7D2dedFJBzd0V7s2ABwCFJkyEKFtjNWQGuioiIDhQebc5EIcJkMiFnQEZYho//TV+O6y9+DcedPBgvvHUNw4ePnXjGoTCbTRAEQBAFjD7/aEx87Hy/n/ejZ7/Czo1FLbZ5XDImT3jV7+fuKkXR2lkDpIkkxkLWagJYERERtYUtIEQBZjaH1z+7ZYvX4JWnF+CCCSPw6eJ7jC4nLH361nLEJ0Vj3von8fWcP5Cdl4xBh+UE5NyVpQ60NYq7rrohIOfvClXTIHXw70syxaLRszNwBRlI0zQ01DUiOjbK6FKIiFoJrzshIvKL4kIHJt30X7icMsaefQRuvOM0bN5QhGnPLERGVgI+nHMnIqPCYxahYLNi2Xqs+2MnprxxNQDg1HOOCuj5b37sYiz64GfsP/5EFAWMu/qEgNbhjbYGoe/PIsbC0UtaQGqralFbVQ97VERAF6gkIvIGAwgRdaiooArXXvRa8/iDz2eswO+/boPFYsbt956OwYdkGlxh15UXVSAiKgJRMZE9PpbH5YHF5p+pcIt2VeDNJ+fh3aX3+eX43rDYLPhs6wsY3+cOiCYRoijgrpevwikXDDespvZ0FkAqXStR5VyJorp5yIgeF8DKAi8uKQ7R8dEtwofb6Ya1jQUciYgCjQGEKETU1dSjsa4RqVmBXYH47hvfazH4Wdd17Nxehs8WTEJMQs9v4ENZdYUDjooa5AzI8slT5vq6BkiSuXlNiuvHPIMvVz/e4+P21ML3f8D5t56GIcf0x2HHD4Y9ymZ0Sa38smo7Fny3HtGRFlw49shWr/9dNgnF9YsBaFhT/iBUvQbZMRMCX2gA7X9NNtY7UbyzGDmDciBJgfnVX+uoh8Vmhs0WfNcLERmLg9CJQoTFIkGyBn7ROZfT02qbKAjI310V8Fp8JTkjySetH/FJccjql+mT8KHrOuoqa+Eob+oidNMZz+GVL+9AwbYiuJ3uHh+/J2a+uBCX3Hk6Rpx+eHP4CPT6Ix1Ztb4A9z71BWrqGlFQ4sDJV7yI2npX8+ubqp5Gcf0iAE1BWoeKdRVPorTxG4MqDjx7VASyB2QFLHzouo7K4kps/GMLZFkJyDmJKHQwgBCFCGuEFQnJcQE95+8rtu1Zf6Ile6QFQw7LDmgtwcpXN3SCICA9Lx2p2Sl4/J8f4Io7RqPf4AwkpMQZ2m1m4fs/4LizjkR0/L7Apus6CncUwVFZa1hd+7vjsVnQ9gtEqqph0tMLm7+ucW/EgWuoAEB5w3eBKC9oWAL4AEMQBOQNzkHeQbkBCz1EFDoYQIiolW1bSnHfbR9g9owVePmd63D2+cMgigJEUUBUtA2zv77f6BLD1vsvLkbfgzKa1/iIS4w1tJ4ZLyzApXed0WKbIAhorHOivtr4ALI9vwJA65DcsF+rUbSlL9r6dZdgH+bHykgQBMQlxBhdRo9oqobiHSVB1eJHFA74WIKImjmqGvDGi0uwa3sZbrpzNA4f1gcAcPt9Z+CcS4ajvKQWRx7dx+Aqw9fyeX+hKL8SDzx/mdGlAACWz/4NBx/dDylZCa1e63NQrgEVtdY3Jwk2mxn1Deq+jQKQnrRvrZ2DEh+Cw70GNa51aOqGJaBv3LXIiDw74PVSaNF1HbrG8EHka2wBISIAwJsvL8WNE97A0SP74/UPb2oOH3tl5yQyfPjR9g1FmPXW8qAJH0DbrR97SRYJkkUKcEVtW/DWbbBamp6nCYKAjORYPHf/mS32GZHxCfJiLwMgYnDSJAxMuNuASinUmMwmZPRLh9BGV1Qi6j4GEKJe7rOPf8Ho4Y8iITEKsxZOwil7uv5Q4MgeBXdcOA2vzbnT6FKa/bpkNdJykpA7OMPoUjplNov49sM7kZuZgPGjD8Nn025oc79BifdCgAl5MdcGuEIiItofu2AR9VLfLl6L6S8twSljhmLJr48YXU6vdv2YZ/D24nuNLqOFmS8sxI2PXWh0GV2SHB+FE4cPbPd1ASboUNt9nSjYaJoGUeSzYgo/YX1VT506FYIgNP8hIuCv33filivexIqfNuO1D27EjXecZnRJvdpD17+Df04dj9TMeKNLabb6582QrGYcNKyv0aV0iVtWYO1wxiURe6fiJf+RPTIa6huNLiPkle0uR9H2Yg6Ap7AU1i0gkydPxuTJk5u/Zgih3mz3zgpMf2kJPB4F9zx8NvoNTDO6pF7vzSe/wpEjB+LI4wagcFsR0vukBcXTzhnPtz/2I5h5ZBUWqbM1WfaGEON/zuGqqrwGmqzAHhnB37s9kJiRCE1V+TOksBTWAYSIgPo6F9555Xvs3F6Fm+4YjaOP7W90SQRg0acr0VjvxvhrjoeqatDU4OgatOXvXah3NOKIEw8K+Ll1Xe/RzZYsq5A6CCAbq54CoGNN2UMYmvKfbp+HOpaamWR0CWHB7XKjprwG6Xl8WEThh4+AiMLYf9/4Flee9zIGHJyKdz65leEjSKz/cyeWfP477nziAgCAySQie2B2ULR+zHxhIS6563Sv9q2vrffZeVVFReHWQqg9CGIddcH6o+RG7HR8CEBHYf0c/FI4vtvnIf9QFK6Yvj+z2RQUnwlE/sArm0Karuso213OPrIHmPvpbzjzuCdgs5ox++v7cMKoQUaXRHvUORox+eb38PzMW40upZWCbaXYtbEII888otN9FVlBya5SuPdb8K8nBFGAZLX06IbL41FgsbQOILtqPkRF4y/YN/5DR617EzZUPt7tc5FvVRZXoXBbMTSNY3T2slgtSM1JCfh5ffVvmqgj7IJFIU1VNXhcHqiqCrOZl/OP327AGy8uwTHHD8SX3z7QYXcUMkYwzni114znF+DSu70b+2GWzMgdnANJ8s1aIKIo9vhmq70xILWeja1mv9Kho0He1aPz+YKiKPzsApCQFo/YpBg+8d+Poiioc9QjPikuYOdsrHeiaGcxcgflQOpwQgeinuHVRSHNvGeRqN7+S2vd6t2Y/tISJCXH4PnpVyMlLdbokqgN90x4HQ9PuxKx8ZFGl9JKVWkNVn23Afe+eo3X7/FV+PAVj6zA0sZNU0bUmSis+wLA/i2lApLsxwWstrbouo7iHSWwR9mRmN56tflwoKoqTKbOH4QIggAzb3hbaKx3oqGmAXGJsQEbiG6PimD4oIDgFUYhr7eED00DDvxWS4oceOPFxaipbsStd43F4CGZxhRHnXr5kc9xyllHYsg/gnM1+a60fgSr9rpgJUaMwKHJT2FN+b+hQ4EAEQMSbkNezFUGVLmPIAhIz0uDyRyeLZWyLGP31kJk982EZA2usBoKYuKiER0bFfBZsBg+KBB4lRGFgCvOfQkVZXWQLCa8MP0aZOUlYfqLS/D7iq24+c4xOPZEjvEIZl++/yMsFglnXDLc6FLa1FjvwjezVmD2jpeMLqXbdB3QdB0mse2btYzos2CX0vFn6Z3oE3st+sQFx2ro4fzUX5IkxCfFwdxGKKTO6boO2S3DYrMYXQqRz/FTgSjIXTT2WTiqmxb1Up0abr3qTUgWM26+czQm3h/aT6x7gz9+3Izflm/EE+9eD2eDExGREUaX1Ep7M1/pug5N07zqQmO09rpf7S/ONgx2czbiI44KUFUUnxxndAk94na6YY2wGnLu6nIHqiscyBuUExL/Bom6onf0XSEKUd8sWI0ah7PFNl0HklNjMG78MIOq6t1kWfZ63/JiB17892d44t3rIcsKinaVodZR58fqumfWy4tw0cSxrbaX7S5H8faSkJhlrr3uVwcyiRFQNWen+xF5PArytxTA1egy5PwJKfHIHZjN8EFhiS0gREFM1fQ2b/56y7iXYCPLMgq2FiExPRExcVGd7n/9mGcwa+UUAE39qnMGZATdwO2O1v1IzkqCpmohsRKzW1Zh9WLWN1GwQdONuaGk0GKxmJE3KMfQ8Sv8rKdwxSubaA9FUYLqSe/GtYVYOPdPmNu4qfrXo1xEzQiSJCEtJ8Wr8HH7eS/huRm3wmrbd/MSbOEDAGa8sACX3tV2Vz5RFENmjII3XbAAwCREQNXZAkLeMTJ8yLKMXZt2Q5a5QCOFn9D4zULkZ5qmoXBbESKjI5GUkWhoLSVFDkx/aQkqK+pw08TROOSwbFw1/hWUldQ0D0LvNyjN0Bp7M2/GcDx9zwyMv+YE9D8kuGclm/PWMoy9/DhYI0J/kKu3XbBqPWvhchQiLdK71d6JjGI2mxEVHQlzmM6SRr0bAwgRmp70ZvTNMPSD3uWS8eZLS/H7iq246Y7RGHnS4ObX/jf7n21Ow0vBZ+bry5CSGY9Tzu58NXGjzXhhAd74brLRZfiER1Fh6eDfr6LVY9muEVA1BQ3Ix+IdQ3Fq3q8wCfYAVhl6aqprERsf49W+3q75Qd7RNA1ulweqqjGEUNjh7QzRHpJkNqyv+/tvfYeLxjyLvgNS8P4XE1uEj70YPoLfT0vWYsu6Alx9V+sB3cFmycc/4+jThiIuOdrnx9Z1HVVlDp8ftyOdtYD8UHA6NF2FIAgQBAG6rmJ5/qgAVhh6FEVBVakD9bUNne6rqiqKd5Sgoa6x3X0qSqrgcXt8Ulfh1kKoqtr5ziFMFEVIFjPEdqaWJgplvKUhMtC82b/j7BOfhCgAc797kDNbhbDd28rw3guL8PC0K40uxSszX1yAS+70zzTOsltGvaMOihK4vuseWYWlg0HoHsXRapui1vuxotBnNpuRMyATUTGRne5rMplgj4mEPar9LooepxseT8+vCVEUIZpMvWKAttnAB2NE/sQuWEQG+Gn5Rkx/aQmGHdMfsxbfA5ut6wMdFUWB2cx/wkZRFA0PXfc26mqcuOnBs3DfFW9g0eanjS7LKz/M/QP9huYgo0+yX45vsVmQ2S/Dr91xqitrEBsf3XwT2tkgdIspHm61osU2yeRd16LerCv/HyakxHX4enpemk9upkVRRHqf8B8HpygKahx1iEmKgSorsNltRpdE5DO8eyEKoHV/78b0l5cgMSkaT796JdIy4rp1HNmjYNfmfOQMyIbFwFlaeqtaRyMuPfZRqIoGALjvijfw4AsTDK7KezNeWIB7XrnGr+fwZ/hQVRW1FXUwm02Ijm2akayzLlgn5i7C1zuOgaY3ddsRBRNOyl3qtxqpNT7J7xpJkpCekwJAR/GuUiSkJSA23vddJomMwABCFACFu6vw5stLUVvTiFvvGovBQ3o2O5JkMSMxPYnhwwCqquLmcc83h4+9nrl3Bk488zCDqvLe78vWISElFn2HZBldSreZTCZk9U9vEXI6WwdEhB2j+6zGr0UTIGu1OC7rqw7PUVXuQEKIr+Ldm1SWVUOA0GkrTCiRZQWF24uR0ScNWf0zIYXIlNhE3uDVTORHjQ1uTH9pKVb/uRM3TjwNI04Y5LNjxyey+0igqaqK/C1FaKhtvZCdDgGFuyqRmWvsNM6dmfnCAlz97/OMLqPHDmxhkWUVJi8G62ZGj4fD9VeH+3hcHlSXVyM6LjIo126h1ppmiQqvFhZJMiNnYBYs1tCfJpvoQAwgRH7y3hvf4stZK3HTHafhrn+NM7oc8gGTyYT4lBikZ8dj55YyAPsWrrTapKAPH+t+3QpdB4Yc09/oUnxq6isLsfiHdQAAWVHx2F1nt7uvKEjQdLnD41lsFuQNyuGUsiEkNiFwD2ScDU6v1gPyxTi9UFkIlKirwn8KCaIAmzNrJc487glYrGZ8uex+nH7OkUaXRD4UlxCLp96/CaKIPVO6Nt0kzFo5xejS2nXVkf/CuIzbcP/4F3D2tScbXY5PTX5pPpb8uL75669/3oSHX2i/e5UoWKDpnU8Fy/BBbZE9Mgq3F8PZ4Ox4P7eMnRvzezTrl67rKNhaAEdlTbePQRSsGK2JfOT7b9Zj+ktLcOyJg/Hltw9A6qA/OoW2iee/jPeWPYhfl61HY4MbF98UvDf15+ROhLvR3fz1U7e8jRPDaLrnr3/eAH1fQxQEQcCyFZtxy8VHtbm/twGEqC2SRULe4JxOWyYkq4TEtMQOJ0bwRmOjGzFJ4dW1jAhgACHqsdWrdmH6S0uQnhGPF9+6FsmpHJsRzp6Y+CFueGAcUjLicNblxxpdTof++/gX8Dhb3mzrmo5HJkzDox/dblBVvtW0qKB+wFYdmqa1uT8DCPWUt92i4pNie3QeQRCQlp2KyOjOu3sRhRoGECIvrFmVjx3bSpHXNwWHHpkLANi9swLTX14KV6MHd94/DgMOSje4SvK3z9/9HikZcTh+7KFGl+IVuZ3uH6rScgVpV6MrZNcYOG/04Zi9eFVzK4ggAOeMOqzdReoYQCiUxHGyEQpTDCBEnfhh2Qa88eJilJfWIjk1FlffeBJW/7UL69cU4KaJp+HokQOMLtFQmqb1ihWJ1/6+A798vQ7PfnyL0aV47cZHL8Tct7+FIu8LHKIo4P7Xr2v+urG+EUU7S5E7KDskp/mcdO0o6BrwxdK/AOgYd/KhuO/G01BUVNTm/gwgvqfrelCv8VFVWo34lLigrrE9jupa2GwW2CJC8wEBUXtC77cNUQD9/cdOvPHCYpSX1QIAyktr8Ozjc3HB5SPwzie3Glyd8arKHGiobUBm3/SwDiGKrOKBq97EvHVPGl1Kl73/538w4dAHIJoEmCUz3vhhMmISoppft0fZkTcoO6Rn27nn+lHQNA0D+6bg3FM7XouFAcS3ygoqILs9yOibHpQ3+IqioNZRh6i4qJBbN0mWFWz6cysy8tKQ3S/D6HKIfCp0f+MQBcD2raXN4WMvXdeRlMzVaAEgLikGNrs1LMPHr8s3orHGiZPPOQL/PP9lvPL5RKNL6pbPX/8a1085H2MuG4moOHub+4Ry+NjLLSuwevF9iLBAAwOIr8SnxkHXtKAMHwBgNpuR3T8zJGc1kyQzBh85gKufU1gK/d86RH6U1zcFKamxKCvdNw1iQmIUsvOSDKwqeIiiCHtU+A2QfOCqN7H6120AgOcenIXbJp+LPoNDb4yPqqj48s1lmF/8mtGl+J1HVmDxJoB4sQ4IeS8Uuu2FYvjYi+GDwlX4PbYk8qEj/tEHl113AhISm34JJCRG4+IrR2LY8H4GV0b+cu/lb+CvX7ZC03Romg5FUfHO0wuMLqtbZr64CJfcObbd11vPHhW6PB4VFkvnN5rsgkVEZLzgf3RBZLAzzjkCKakx2LW9HDl5SfjHseG1ijS1tHVdYattTqcbW9cVov8hmQZU1H2fvLQQn215od3XS/PLEJ0YjciotrtmhRJ/tIDoelMADYWn/OHMUVWLuACudE5E/sdPVSIvDDumH4Ydw1aP3iDCboWzwd1yow7k9Es1pqBu+vLNZTjjyuNhsbU/8FaUJFgsoTUwtz1ejwHpQgtIVakDNdW1yBuUHZbjnPzFlzPjeVwelBWUIjLKDqmHi/oRUfDgv2Yiov08N/NWXDPqqeavBUHAdfedAYstND4u7xjzJCqLa1DnaMD//vhPh/umZCQEqCr/80cXrITUOMQmRjN8dIEiKyjYVoSs/hkwm3v+b8Zis6DvwX18ciwiCh78VCUi2s9XH/6Ey24bhcycJMQnR+Omf5+F8decYHRZXjkr8zZs+nMnKoqr4XHJeP/JOUaXFDDed8HyPoAIghAWM4QFkslsQlRslE8DA8MHUfgJ6wAydepUCILQ/IeIqCPfzf8blWW1uPKOMXjn6/sw46eHce6VxxldllfuGPNUi5XPdV3Hoo9/wl8/bjSwqsDxNoBsqZ4GQMPaikf8X1QvJAgCktLDp2WNiPwjrAPI5MmToet68x8iovYU5Vfify8swoMvTDC6lG6pKnG03qjryN9YHPBajOBNF6x15VOwvfpNAEBB7ef4pfCCQJRGREQHCOsAQkTkrX+e9xJe+eIOo8votpHjjgAOaOgVTCLOvv5kYwpqh67rUFXVp8eUZRlOlwcep7vdfQpqP0Vh3efQoe2tBLXuDVhXMdmntRB1FR+QUm/EAEJEvd6D17yFh16+ApHRNqNL6ZL9b1xufuJiHHv64RAEAaIowGwxYU7+ywZW17aKokoUbivy6U2XJElQNA2JibHt7lMnb4R+QEDToaPBs9NndRB1leyRUbS9hCGEeh2O7CKiXu295xfhsOH9cMTIAUaX0iWqqqJoWxHS+qQ3r1NRVlCFic9fDtklB13Lx16J6QlQVc3n4/I664KVEnkKdtfMwv63eQJExNuO8GkdRF1hMpkgmkSOU6VehwGEqBN7n0zxF0R4+PPHzXhq0gzomo6xF/4DBTsrMPm1q4wuq8tEUYQtMgImU1ND9sola5CQFovTLw/uQfOiKPplWltZUSGZ2w8gibaRGJL8GNaUPwQdOgQISIs8EwMS7vR5LUTeEk0i0vNCa40hIl9gFyyiTpTml6Foe4nRZZAP/LViGx66/h3UVjegrqYRn779HcZc8A+jy+oWQRCQnJnUfDP/4TNf4fJ7z+rWscoKy1Fd4fBhdYHlkVVYpM7XAMmIPhdHpk+HxRSHfnE34LDU/wtAdUREdCAGEKJOJGclIy03xegyyAem3PRfaFrLvtZPTPzQoGp85/dl6xCTEIWBh+e2+brH7UHR9vZnw7JGWGGLsPqrPL/zdgpeAEiOGIlIqQ8S7cf7uSoiImoPAwhRJ0wmEaYOunZQaNA0rcU6GXupqgZF0dp4R+j46Jl5mHDvuHZfFwQBoqn9j/vYhBhEREb4o7SA8HYV9L1EwQpNb3/GrFbHd8vdKYuIiNrBAEJEvYIoisjMS8aBc9WmZsTBbA7Nj8KSnRVY9f1G2OwWHDSsb7v7SRYJabnh28+8Ky0gAGASbFB1l3fH9sjYtSkfjfWN3S2PiIgOwEHoRNRr3PivcXhi4odwNXqg6zrSshPw328eMLqsLqt3NOKKIx6E7JahqToeePN6o0sylFtWYO1KABFtUDXvAojFIiFnQBasIdxFjYgo2DCAEFHYUVUVJlPLLjm11Y14+p4Z+GLVY1j7+04AwJBheYEvroc0TcNFgydBU/d1G3vyhrdwyD/6ITEjzrjCDNT1Llg2aF62gABg+CAi8rHQ7HdARNQOj0fBjg274DlgvMc/x7+EV2Y3rXQ+ZFheSIYPAHjtgZktwgfQNFX0y/d9ZFBFxvNnFywKTYqsQFVUo8sgonYwgBBRWLFYzEhIS4TFsu+G9PF/foAbHhiH1Mx4AyvzDavd2saaNAIsFsmQeoJBVwNIVwehU+gp212Bst3lfj2H28lriKi7GECIKOwkJMU2//enby9HenYijhsz1MCKfOeGKefDFtmyS5BZMuHf795oUEXG62oXLLaAhL/0PqlI8+MCf7KsoGB7IRrrnX47B1E4YwAhorC1+tdt+O27TbjuvjOMLsWnXl7yICSLGZLVjOSMeMze/oLRJRnKn4PQKTQJgtBGS6HvSJIZOQOyYY8K3emriYzEQehE1GWyR4FkCc6PD0dlPaJiIiB7FEy++T18seoxo0vyuZkvLsSdL1yBURcdY3QpQaHrXbBs0PQqP1ZEvYHUi7s9EvVUcN5BEFHQkt0ydm0qQPaAjKCbHej+K6ejaFcFIAjQNR2vzJ5odEk+V1Vag1XfbcC9r15jdClBw+NR0cE6i62YBCtUjgEhIjIMAwgRdYlklZDVPz3owseDV7+Fv1dsa/7aGiGhrKgaWX2SDazK9z55aREuvmOs0WUElcZGFzyNbnjcMizWzp9Ki6INGrtgEREZhmNAiKjLbHab0SW0kL+1DNs2FLbY5nbK+OK9Hw2qyD88LhkLP/gB59xwitGlBBUVQGJynFfhA2ALCBGR0RhAiCgo1DrqUVdT3633Wm1SmwNOo2PCa4DozBcX4pI7Tze6jKDj8aiIiPC+P353ZsHSdR2qynUliIh8gQGEiIKCx+WBfMDigd5KzYrHhdefBLO0byrW+KQo3PzQOb4qz1CO8lrUVtWz+1U73B4F1i5MitCddUDKdpejeHsJdF3vanlERHQAjgEhoqCQlJbQo/dfcP2JkD0Kfv12A2Li7Zj0fxcjJt7uo+qM8+JdH+D7L3+HIqsYcFgOTGbv17voLTyygpgo77sFdqcFJDkrCaqi+nVqVyKi3oIBhIjCxqW3jsKlt44yugyfeXnSh1j26a/wuGUAwLY1u/G/J7/EVQ+ea2xhQcbplpEYF+X1/t0ZhC6KIkQLOw0QEfkCAwgRURDSVA0/L/yrOXwATeuvLPt0Za8NIDXVdZAkE+xR+1q2Jtz9X+woqIQgNC1IeOW5R3d6HA5CJyIyFh/nEFHQ0zQNqqoZXUZACaLQ5irLUbGh362su2SXB87GfcHhkjvfxY6CSgCArgNvfPw9Zi34o9PjNC1EyGl4iYiMwgBCREGvZGcJircXG11GQAmCgPunX4eI/cY2RMVG4N7Xeu8ChEnpiUhMiQcA5BdWI7+o9Wrm02d0PvUyW0CIiIzFLlhEFPTS+6T3ytmHBh2Rhyc+mYg3H/kUJrMJt//fpcg7KNPosoKCuZ1Zr0QvlkQ3iTaoXIiQiMgwDCBEFPQEQei1sw8dfHQ/vLjoAaPLCDoZydE44uAsrNpQAOzJpoIAPHjT6E7f251peKl3cDW6gm6hVaJwxC5YREQUkl6dcgkOPygbgiDAIpnxn7vPwSkjBnX6PgFm6NAA9K5xRdQxj8uD/M0FcDt9G05VVUXJrtJe2YpL1B4GECKiEKZpGsqLKo0uwzCvTbkYB/dPw6tTLsaJwwd4/b7urAVC4c1isyDv4DxYI6w+Pa4AAYpHYQAh2k9QdcFatmwZPvjgA+i6jksvvRRjxoxptc+VV16JioqK5q+feeYZHHLIIYEsk4goaMgeGW6nG5qmQRTD45lSV78Xj6zAInXt19neblgmoffOKkatWdoZW9QToklE1gCO3SLaX9AEEIfDgXfeeQfTpk2DKIq47bbbMGzYMCQmJjbvo2kaPB4PFixYYGClRETBw2qzIrNvetiMkXG7PCjbXY6Mvmkwmbxb9d3jUWGxdG2F+L0D0aXwyGxERCElaD56V65ciWHDhiE+Ph6xsbEYMWIEfvnllxb7VFRUtAgkRESEsAkfACBZzLBHR3gdPgDA7ZEheTH71V6KVgtVb8Su2g+6UyIREfVQ0LSAVFRUICUlpfnr5ORkVFa27NdcUlKCmpoa3Hfffdi5cydOOOEE3Hrrra2a6qdOnYopU6a0eR5BEDBp0iTcfffdPv8eiIJZUVGR0SUQec3b61VVVTQ2ulFcWASojZ0ew6NVYaPnIkAHdlS/h2LHDxhom+6TmoOVKqswSV1rIaLQxM956iqjHmAFTQBpa3CWprWcoSQ6OhoXXHABzj77bNTV1eHhhx/G/PnzcdZZZ7XYb/LkyZg8eXKr4wmCAF3XUVRUhIyMDN9+A0RBjNc8hTNdEDBwUD9ER+4bPNzeNb9kx+lN/7Hnd64L21BsmoKjUt8MRKkB53a6sXtrIXIGpsJitRhdDvkRP+epO4wKrQEPILNnz8by5ctbbBNFEWPHjsWmTZuat1VUVCA7O7vFfrm5ucjLy4MgCIiNjcXxxx+PHTt2BKJsIiIKUm5ZhdWLJ/yFdV9A05VW22tc6/1RVlCwRliR0SeN4YOIgkrAA8j48eMxfvz4Vturq6vxwQcfoKGhAYIgYMWKFbjwwguh6zqKi4uRlpaG2bNnY+3atXjooYfgcrnw888/Y9y4cYH+FoiIKIh4PIpXsxclRx4PscIMTZdbbI8wZ7fzjvBgj+JMX0QUXIKmC1Z8fDyuvfZaTJo0CbquY8KECUhOTobL5cJVV12FWbNm4ZxzzkF5eTmuu+46KIqC0aNHY9SoUUaXTkTdEE7TxgaaqqpdGqQdzlRVg8nLAegWMQlDkx/H6rIH9yxECJgEO0ZkzvBniUREdICgCSAAMGrUqFaBwmazYenSpc1f33LLLbjlllsCXRoR+VB9bQOqSh3I7MJUq9SkqsyBekcdMvtlBPXPTlEUmM3+/xXjbfervdKjzoIOFZsrX4bFFI9jsz73Y3VERNSWoAogRNQ72KMiILs9QX0DHazik2MR2cVpagNNlhXs3lqIzLw0n68qfSBvu1/tLyPqXDTKBQiimeiJiHoVfvoSUcCJooj45HijywhJgiB0eFMvu+V2XwsUSTIjISXO7+ED6N4q6ABgFmOgaLV+qIiIiDrDAEJEFCZkWcauLbtR66gzuhTEJcYG5DweWYWlG2tcSGIUZK3eDxUREVFn2AWLiChMSJKEnAHZsFglo0sJmO63gERD0YwPakREvRFbQIiIwkhvCh9A91tAzGIUFLaAEBEZggGEiIia6bpudAld0p1B6ABbQIiIjMQAQkREAICKkkqU7CoLqRDS3S5YkhgNmQGEiMgQHANCREQAgNjEGLhdHgiCYHQpXut+Fyy2gBARGYUBhIiIADQNYpek0BpD0u1ZsEzRkFUGECIiI7ALFhERhazudsES0BS0dBi/bkpvVbyzBI0NTqPLICIDMIAQEVHI6u4gdICtIEYziSLM5q63XhFR6GMAISKikOWWVVi70QUL4DgQo6XkpMBitRhdBhEZgAGEiMgPNE1D0fbikJpRKhTJsgKpG12wAK4FQkRkFAYQIiI/0HVAUzUGED/r7iB0gFPxEhEZhbNgERH5gckkImtAptFlhD23R4G1m2NA2AJCRGQMtoAQEVHIcssKrN3ughUDRav1cUVERNQZBhAiIgpZPZoFS4yC3MtbQHRdR8muMqiqanQpRNSLMIAQEVHIkhUVUjencmULSBNN1QAOVSKiAGIAISKikMUWkJ4RBAHpfVJh4nocRBRADCBERBSyuA5IzwmCYHQJRNTLMIAQEVHI8sgKLN0ehM4AQkRkBAYQIiIKWbKsQup2Cwin4SUiMgIDCBERhaSlP23Cxu2lmL98bbfez4UIiYiMwQBCREQh58tv1mDqK/NQU+fEsp834er73+/yMcymaCgqAwgRUaAxgBARUUhZvbEAz729FJrWNHespuvYsrMMj7+6qEvHYQsIEZExGECIiCik/PLXTuh6y4UrdB1Yv7WoS8fhGBAiImMwgBARUUg58egBOHDmWAECDhmQ0aXjCJAgCAI03ePD6oiIqDMMIEREFFIG903FAzePhSg2pRBBEHBQ/1T8+9axXT4Wp+IlIgq87k2eTkREFABV5Q5A05GQGt9i+5knHoKYSBv+/fxcXHLmMNw64fhuHX9vNyyLKdEH1RIRkTfCugVk6tSpEASh+Q8REYUWk0mEqZ11Po4f1g8CgBsuPrbbx+dAdCKiwAvrADJ58mTout78h4iIQktsQgxiE2LafV1WVEjm7i1ECLALFhGREcI6gBARUfjyyCos3VwFfS8GECKiwGMAISKikOSRFVikng1lZBcsIqLAYwAhIqKQ5PYosFp6FkC4FggRUeAxgBARUbfJsmLYuT0eBZYeBhBJjIGs1fqoIiIi8gYDCBERdUtjvRM7N+UbFkJ8MwaELSBERIHGAEJERN1ij4pAZl4apB6Ow+gut6zA2sNzcxA6EVHgMYAQEQUhTdNQvKM46KcQt0fZDTu3L7pgsQWkc26n2+gSiCjMMIAQEQUhTdOgKio0TTO6lKDliy5Y26vfRHnjd/irdJKPqgovikdB/qYCuBpdRpdCRGGEAYSIKAiZzWZkDciCydSzG+xw1tNpeL/eeQxqPGuh6TJKGxbh16JLfVhdeDBbzMg7KAc2u83oUogojDCAEBFRSOpJF6y/y+6Fst/sVzp01LjXYUfNu74qL2xIVsnoEogozDCAEBFRyPlj3W48/toi/PLndny68M8uv9+tlrfapukanHKxL8ojIqIOMIAQEVFIWbW+AHc8Ngv1jW7IiooX31uGD+f+1qVjpEeOAyC02CYIQL/463xYKRERtYUBhIiIQsp9//cFNG3f7GC6Dkyf8QMUxfsB+9kxF2Bo0hSIQlP3IkEw4aScb2A1pfm8XiIiaokBhIiIQoq7jYUPdU3vUgABgMyYCzEicxZMghUn5y6H1ZTqqxKJiKgDDCBERBRSDu6XdmDvKSTERcJm6/qA9GjLIJjFGOg6pzsmIgoUBhAiIj/SNA3lRRVGlxFW3njsUhw+OBMAIAgCEuLsmDv95m4fzyTaoWqNviqPiIg60bMlZImIqEOKrMDV4IaiKDCb+ZHrK69NvRSPTVsAq1XCfTec1qNjmQQ7VJ0BhIgoUPjbkIjIjyxWCzL7pUMU2eDsa9FRNmSkxPX4OGbRDoUtIEREAcPfiEREfsbw4R8ejwqLpecrxbMFhIgosPhbkYiIQpJbVmCVet6QzxYQIqLAYgAhIqKQJMsqJMkHLSBiBFTN6YOKiIjIGwwgREQUkjyyAosPWkDYBYuIKLAYQIiIKCSxCxYRUWhiACEiopDks0HoYiRUrcEHFRERkTcYQIiIKCTJigrJ3PMAYhbsUNgFi4goYBhAiIgoJHk8CiwWH4wB4UroREQBxQBCREQhyVdjQDgInYgosBhAiIgoJPlqGl4OQu8ZVVWNLoGIQgwDCBERhSSfTcPLLljdJssydm0uhKvRZXQpRBRCGECIiCjkvPvZL3DUufD5olU9PhYHoXefJElISI2DzW4zuhQiCiE9f3REREQUQJOemo1f/9oBTdPxwZyVqHe6MenaUd0+HltAeiYuIcboEogoxLAFhIiIQsY7n/6MX//aCU3TAQCapuHLpX9jxle/d/uYJjECqub0VYlERNSJsA4gU6dOhSAIzX+IiCi0bdpeCk3TWmxTVQ3rthZ3+5jsgkVEFFhhHUAmT54MXdeb/xARUWgbMjADBz5PMplEHHlwdrePyS5YRESBFdYBhIiIwsuV5w3HZeOOhsnU9OvLJIq4cvwxGD/m8G4fU4AZgAAdsm+KJCKiDnEQOhERhZTbrjgBtggzPvxyJW6/4iSc34PwsdfetUAkMbbnBRIRUYfYAkJERCFn7HEHIykhyifhAwBMQgRUnQPRiYgCgQGEiCgMKLLSq1akdssKrD5YhHAvjgMhIgocBhAiohCn6zpKdpWhbHe5X46vyErAJ/Lo7HweWYVFMvnsfHu7YBERkf8xgBARhThBEJDZLx1puak+P7amaSjZVYqqkmqfH7s9dTX1KNpR3GEIcXsUWC0+bAER7FA5FS8RUUBwEDoRURjw11pHoigiLS8VZnPgfl1ERNqgyGqH35PHo8DiywDCLlhERAHDFhAiIupQIMPH3vPFJ3U8G5VHVmDx4RgQsxgBhauhExEFBAMIERGFHLeswurDMSDsgkVEFDgMIEREFHJ83wUrEqrW4LPjERFR+xhAiIgo5Pi8C5Zgh8IWECKigGAAISKikOP7aXgjobAFhIgoIBhAiIgo5HAWLCKi0MUAQkREIcfnK6ELEVB1zoJFRBQIDCBERBRSfv17J+Z8sxrLVmxCeVW9T47JldCJiAKHAYSIiELGir924OEXvkJZRR12FVbh2gc+8EkIYRcsIqLAYQAhIqKQoGo6npq+BPWN7uZtlY4GTH1lfo+PzXVAiIgChwGEiIhCgtPpgapqrbbX1rt6fOymLlh1PT4OERF1jgGEiIhCQlSkFYcMSG+xzWwWccqIQT06rlstw4qCCajzbME3O4+BovlmXAkREbWNAYSIiELGU/eei2OP7IvY6AjERUfglktPwNXjj+nBETUs33UKVDTNgCVrtfhm1wjfFEtERG3y3RyGREREAfDsA+NRVFYDm1VCQqy9R8daVXoXdLTs1qXrKtZVTMYhSVN7dGwiImobAwgREYWcjJRYnxzHJFihQ4cAYb+tAkRYfXJ8IiJqjV2wiIio1zo05WmYBKnFNlGw4KCkfxlUERFR+GMAISKiXu3UPitgMycDAKzmZIzu84fBFRERhTcGECIi6tVE2HFSzneItgzEsLS3wF+NRET+xU9ZIiIiAGYxBopWa3QZRERhjwGEiIgIgFmM4hogREQBwABCREQEQBKjIXM1dCIiv2MAISIiAmAWo6EwgBAR+R0DCBEREdgCQkQUKAwgREREAMymGCgqB6ETEfkbAwgRERHYAkJEFChhHUCmTp0KQRCa/xAREbWHs2AREQVGWAeQyZMnQ9f15j9ERETtkcQYyFwHhIjI78I6gBAREXmLLSBERIHBAEJERASuhE5EFCgMIERERAAkMQoyW0CIiPyOAYSIiAhciJCIKFAYQIiIiACIghW6rkGHbHQpRERhjQGEiIhoD8nEgehERP7GAEJERATgp8Jz4VGr8V3+KShv/M7ocoiIwhYDCBER9Xo/F56HOvdmAICiufFnyW0oa1xmcFVEROGJAYSIiHq1Ws961Hk2t9imQ8Oasn8bVBERUXhjACEiol5OgK7rbWxvaxsREfUUAwgREfVqMZaDECnlHbBVwEFJDxtRDhFR2GMAISKiXu/47AWIlPpCgAABIo5IfREZUWcaXRYRUVgyG10AERERAMiyDEmSDDv/8dnzsK36NWhQkBp5mmF1EBGFO7aAEBGR4WSPjJ0b8+F2ug2twyzGcB0QIiI/YwAhIiLDSRYJ6blpsEZYja3DFANZrTW0BiKicMcAQkREQSEqJtLoEmAWo6FodUaXQUQU1hhAiIiI9pDEaMgMIEREfsUAQkREtAdbQFrTdR2uRpfRZRBRGGEAISIi2oMBpDVHZQ3ytxZCVVWjSyGiMMEAQkREtAe7YLUWFR0JVVGgeBSjSyGiMMEAQkREtAdbQFqTrBL6DM41fIYyIgofDCBERET7MQmRUPUGo8sIKja7zegSiCiMMIAQERHth2uBEBH5FwMIERHRfsxiFFdDJyLyIwYQIiKi/UhiDGSNLSBERP7CAEJERLQfDkQnIvIvBhAiIqL9cCpeIiL/YgAhIiLaT71nK3bXfgKA614QEfkDAwgREdEe3+wcjlrPBlS7/sSi7YdD1hxGl0REFHYYQIiIiAD8WDDugK5XGpbvGmVYPURE4YoBhIiICIBbLWu1TYOCOs8GA6ohIgpfDCBEREQAJCG+1TYBIqItBxlQDRFR+GIAISIiAnBCznyIggUQmr4WBBEjs2YbWxQRURgK6wAydepUCILQ/IeIiKh9Zozu8xcSbSNgFmNwXOYcREp9jC6KiCjshHUAmTx5MnRdb/5DRETUmYMSH4DNnIpISz+jSyEiCkthHUCIiIi6yixGQtEajC6DiChsMYAQERHtxyxGQdHqjS6DiChsMYAQERHthwGEiMi/GECIiIhaECEKFmi6y+hCiIjCEgMIERHRATgOhIjIfxhAiIiIDsBuWERE/sMAQkREdACzEAlFZwsIEZE/MIAQEREdgC0gRET+wwBCRER0AAYQIiL/YQAhIiI6AAMIEZH/MIAQEREdgLNgERH5DwMIERHRARhAiIj8hwGEiIjoAGYxGopWZ3QZRERhiQGEiIjoABwDQkTkPwwgREREB2iQt6PGvRZ1ni1Gl0JEFHYYQIiIiPaztvxhFNbNRY17DX4vuR617g1Gl0REFFYYQIiIiPbYVfs+Cuu+ah7/4VbK8XfZ3ZC1aoMrIyIKHwwgREREe1Q5f4cOT4ttiu5kKwgRkQ8xgBAREe2RYDsaomhpsU0UbIi1HmJQRURE4YcBhIiIaI/c2MuRGXUuLKZ4AIDVlISjUl+EWYw1uDIiovBhNroAIiKiYHJI0hQk2UfCJZchyX4sIqU+RpdERBRWGECIiIgOkGo/zegSiIjCFrtgERERERFRwDCAEBERERFRwDCAEBERERFRwDCAEBERERFRwDCAEBERERFRwDCAEBERERFRwDCAEBERERFRwIRkAHG5XLjvvvuMLoOIiIiIiLoo5BYiXLhwIRYuXAiPx2N0KURERERE1EUh1wISGxuLE044wegyiIiIiIioG0KuBeTYY4/F7t278fXXX7e7z9SpUzFlypQ2XxMEAZMmTcLdd9/tpwqJglNRUZHRJRAFFK956m14zVNXCYJgyHlDLoB4Y/LkyZg8eXKr7YIgQNd1FBUVISMjw4DKiIzBa556G17z1NvwmqfuMCq0BmUAmT17NpYvX95imyiKePHFFw2ph4iIiIiIfCMoA8j48eMxfvx4o8sgIiIiIiIfC7lB6EREREREFLpCMoBkZ2fjjTfeMLoMIiIiIiLqopAMIEREREREFJoYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGB6ZQB5/vnnjS6BKKB4zVNvw2ueehte8xRKBF3XdaOLCBRBEKDrevPfRL0Fr3nqbXjNU2/Da566o6ioCBkZGQE/rzngZzTQcccdB0EQAKD5b6Legtc89Ta85qm34TVPXXXffffh//7v/wJ+3l7VArJXsD4lYF1dE4x1BWNNAOvqqmCsKxhrAlhXV7Eu7wVjTQDr6irW5b1grMlfeuUYECIiIiIiMgYDCBERERERBQwDSBCZMmWK0SW0iXV5LxhrCmbB+vMKxokGDQAABFFJREFUxrqCsSYgeOsKVsH68wrGuoKxJiB46wpWwfrzCsa6grEmf+EYEKJegNc89Ta85qm34TVPoaRXtoD0poRJBPCap96H1zz1NrzmKZT0yhYQIiIiIiIyRq9sASEiIiIiImMwgBARERERUcAwgBARERERUcAwgBARERERUcCYjS7AaC6XC4888giefvppo0sh8qlly5bhgw8+gK7ruPTSSzFmzJhW+1x55ZWoqKho/vqZZ57BIYccEsgyiXzOm2ufKFTxs53CQa8OIAsXLsTChQvh8XiMLoXIpxwOB9555x1MmzYNoijitttuw7Bhw5CYmNi8j6Zp8Hg8WLBggYGVEvmWN9c+UajiZzuFi17dBSs2NhYnnHCC0WUQ+dzKlSsxbNgwxMfHIzY2FiNGjMAvv/zSYp+KigrelFHY8ebaJwpV/GyncNGrA8ixxx6L4cOHG10Gkc9VVFQgJSWl+evk5GRUVla22KekpAQ1NTW47777cNFFF2HatGnQNC3QpRL5lDfXPlGo4mc7hYteHUCIwlVb64se+AsoOjoaF1xwAZ566im89dZb2Lx5M+bPnx+oEon8wptrnyhU8bOdwkXYjwGZPXs2li9f3mKbKIp48cUXDamHyJfau77Hjh2LTZs2NW+rqKhAdnZ2i/1yc3ORl5cHQRAQGxuL448/Hjt27AhE2UR+k5iY2Om1TxSqvLm++dlOoSDsA8j48eMxfvx4o8sg8ov2ru/q6mp88MEHaGhogCAIWLFiBS688ELouo7i4mKkpaVh9uzZWLt2LR566CG4XC78/PPPGDdunAHfBZHvDB8+vM1rnygctHd987OdQk3YBxCi3ig+Ph7XXnstJk2aBF3XMWHCBCQnJ8PlcuGqq67CrFmzcM4556C8vBzXXXcdFEXB6NGjMWrUKKNLJ+qR9q59onDAz3YKF4LeVodCIiIiIiIiP+AgdCIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiCpjGxkace+652LBhAwBg165duPTSS7Ft2zaDKyMiokBhACEiooCx2+0444wz8Pnnn8PhcGDy5MmYNGkS+vXrZ3RpREQUIIKu67rRRRARUe9RVlaGq6++Gnl5eTjnnHMwZswYo0siIqIAYgsIEREFVFJSEtLT05GQkMDwQUTUCzGAEBFRQL300ktISUnB33//jfr6eqPLISKiAGMAISKigJkxYwYKCwvx2GOPYfDgwZg3b57RJRERUYAxgBARUUAsW7YMS5cuxeTJk2E2m3H++efjyy+/hKIoRpdGREQBxEHoREREREQUMGwBISIiIiKigGEAISIiIiKigGEAISIiIiKigGEAISIiIiKigPl/BqqgnmNssQwAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plot_true_graph(example_data_pyg, num_tracks=20)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Train metric learning model\n",
+    "\n",
+    "Finally we come to model training. By default, we train the MLP for 30 epochs, which takes approximately 15 minutes on an NVidia V100. Feel free to adjust the epoch number in pipeline_config.yml"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "/bin/bash: ligne 1: nvcc : commande introuvable\n"
+     ]
+    }
+   ],
+   "source": [
+    "! nvcc --version"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Tue Mar 14 11:58:25 2023       \n",
+      "+-----------------------------------------------------------------------------+\n",
+      "| NVIDIA-SMI 520.61.05    Driver Version: 520.61.05    CUDA Version: 11.8     |\n",
+      "|-------------------------------+----------------------+----------------------+\n",
+      "| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |\n",
+      "| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\n",
+      "|                               |                      |               MIG M. |\n",
+      "|===============================+======================+======================|\n",
+      "|   0  NVIDIA RTX A200...  On   | 00000000:01:00.0 Off |                  N/A |\n",
+      "| N/A   48C    P8     5W /  N/A |      7MiB /  8192MiB |      0%      Default |\n",
+      "|                               |                      |                  N/A |\n",
+      "+-------------------------------+----------------------+----------------------+\n",
+      "                                                                               \n",
+      "+-----------------------------------------------------------------------------+\n",
+      "| Processes:                                                                  |\n",
+      "|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |\n",
+      "|        ID   ID                                                   Usage      |\n",
+      "|=============================================================================|\n",
+      "|    0   N/A  N/A      2427      G   /usr/lib/xorg/Xorg                  4MiB |\n",
+      "+-----------------------------------------------------------------------------+\n"
+     ]
+    }
+   ],
+   "source": [
+    "! nvidia-smi"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "tags": []
+   },
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:-------------------- Step 1: Running metric learning training --------------------\n",
+      "INFO:----------------------------- a) Initialising model -----------------------------\n",
+      "INFO:------------------------------ b) Running training ------------------------------\n",
+      "GPU available: True (cuda), used: True\n",
+      "TPU available: False, using: 0 TPU cores\n",
+      "IPU available: False, using: 0 IPUs\n",
+      "HPU available: False, using: 0 HPUs\n",
+      "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+      "\n",
+      "  | Name    | Type       | Params\n",
+      "---------------------------------------\n",
+      "0 | network | Sequential | 201 K \n",
+      "---------------------------------------\n",
+      "201 K     Trainable params\n",
+      "0         Non-trainable params\n",
+      "201 K     Total params\n",
+      "0.805     Total estimated model params size (MB)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Sanity Checking DataLoader 0:   0%|          | 0/2 [00:00<?, ?it/s]eff=  tensor(0.0206)\n",
+      "pur=  tensor(0.0267)\n",
+      "torch.Size([2, 1048])\n",
+      "torch.Size([1048])\n",
+      "torch.Size([2, 1360])\n",
+      "Sanity Checking DataLoader 0:  50%|█████     | 1/2 [00:02<00:02,  2.17s/it]eff=  tensor(0.0162)\n",
+      "pur=  tensor(0.0090)\n",
+      "torch.Size([2, 4662])\n",
+      "torch.Size([4662])\n",
+      "torch.Size([2, 2586])\n",
+      "Epoch 0:  89%|████████▉ | 80/90 [00:15<00:01,  5.03it/s, loss=0.00784, v_num=2]eff=  tensor(0.6765)\n",
+      "pur=  tensor(0.1892)\n",
+      "torch.Size([2, 4862])\n",
+      "torch.Size([4862])\n",
+      "torch.Size([2, 1360])\n",
+      "Epoch 0:  90%|█████████ | 81/90 [00:17<00:01,  4.75it/s, loss=0.00784, v_num=2]eff=  tensor(0.6411)\n",
+      "pur=  tensor(0.1287)\n",
+      "torch.Size([2, 12884])\n",
+      "torch.Size([12884])\n",
+      "torch.Size([2, 2586])\n",
+      "Epoch 0:  91%|█████████ | 82/90 [00:17<00:01,  4.76it/s, loss=0.00784, v_num=2]eff=  tensor(0.6829)\n",
+      "pur=  tensor(0.1819)\n",
+      "torch.Size([2, 6322])\n",
+      "torch.Size([6322])\n",
+      "torch.Size([2, 1684])\n",
+      "Epoch 0:  92%|█████████▏| 83/90 [00:17<00:01,  4.77it/s, loss=0.00784, v_num=2]eff=  tensor(0.6341)\n",
+      "pur=  tensor(0.2081)\n",
+      "torch.Size([2, 3364])\n",
+      "torch.Size([3364])\n",
+      "torch.Size([2, 1104])\n",
+      "Epoch 0:  93%|█████████▎| 84/90 [00:17<00:01,  4.78it/s, loss=0.00784, v_num=2]eff=  tensor(0.7185)\n",
+      "pur=  tensor(0.1371)\n",
+      "torch.Size([2, 11800])\n",
+      "torch.Size([11800])\n",
+      "torch.Size([2, 2252])\n",
+      "Epoch 0:  94%|█████████▍| 85/90 [00:17<00:01,  4.79it/s, loss=0.00784, v_num=2]eff=  tensor(0.6482)\n",
+      "pur=  tensor(0.1134)\n",
+      "torch.Size([2, 12612])\n",
+      "torch.Size([12612])\n",
+      "torch.Size([2, 2206])\n",
+      "Epoch 0:  96%|█████████▌| 86/90 [00:17<00:00,  4.80it/s, loss=0.00784, v_num=2]eff=  tensor(0.7132)\n",
+      "pur=  tensor(0.1076)\n",
+      "torch.Size([2, 24304])\n",
+      "torch.Size([24304])\n",
+      "torch.Size([2, 3668])\n",
+      "Epoch 0:  97%|█████████▋| 87/90 [00:18<00:00,  4.81it/s, loss=0.00784, v_num=2]eff=  tensor(0.6621)\n",
+      "pur=  tensor(0.1176)\n",
+      "torch.Size([2, 15498])\n",
+      "torch.Size([15498])\n",
+      "torch.Size([2, 2752])\n",
+      "Epoch 0:  98%|█████████▊| 88/90 [00:18<00:00,  4.82it/s, loss=0.00784, v_num=2]eff=  tensor(0.5985)\n",
+      "pur=  tensor(0.3096)\n",
+      "torch.Size([2, 1040])\n",
+      "torch.Size([1040])\n",
+      "torch.Size([2, 538])\n",
+      "Epoch 0:  99%|█████████▉| 89/90 [00:18<00:00,  4.83it/s, loss=0.00784, v_num=2]eff=  tensor(0.6323)\n",
+      "pur=  tensor(0.1270)\n",
+      "torch.Size([2, 12350])\n",
+      "torch.Size([12350])\n",
+      "torch.Size([2, 2480])\n",
+      "Epoch 1:  89%|████████▉ | 80/90 [00:15<00:01,  5.18it/s, loss=0.00768, v_num=2]eff=  tensor(0.7368)\n",
+      "pur=  tensor(0.1854)\n",
+      "torch.Size([2, 5404])\n",
+      "torch.Size([5404])\n",
+      "torch.Size([2, 1360])\n",
+      "Epoch 1:  90%|█████████ | 81/90 [00:16<00:01,  4.86it/s, loss=0.00768, v_num=2]eff=  tensor(0.7007)\n",
+      "pur=  tensor(0.1137)\n",
+      "torch.Size([2, 15934])\n",
+      "torch.Size([15934])\n",
+      "torch.Size([2, 2586])\n",
+      "Epoch 1:  91%|█████████ | 82/90 [00:16<00:01,  4.87it/s, loss=0.00768, v_num=2]eff=  tensor(0.7838)\n",
+      "pur=  tensor(0.1828)\n",
+      "torch.Size([2, 7222])\n",
+      "torch.Size([7222])\n",
+      "torch.Size([2, 1684])\n",
+      "Epoch 1:  92%|█████████▏| 83/90 [00:17<00:01,  4.87it/s, loss=0.00768, v_num=2]eff=  tensor(0.6848)\n",
+      "pur=  tensor(0.2026)\n",
+      "torch.Size([2, 3732])\n",
+      "torch.Size([3732])\n",
+      "torch.Size([2, 1104])\n",
+      "Epoch 1:  93%|█████████▎| 84/90 [00:17<00:01,  4.88it/s, loss=0.00768, v_num=2]eff=  tensor(0.7726)\n",
+      "pur=  tensor(0.1297)\n",
+      "torch.Size([2, 13412])\n",
+      "torch.Size([13412])\n",
+      "torch.Size([2, 2252])\n",
+      "Epoch 1:  94%|█████████▍| 85/90 [00:17<00:01,  4.89it/s, loss=0.00768, v_num=2]eff=  tensor(0.7063)\n",
+      "pur=  tensor(0.1015)\n",
+      "torch.Size([2, 15349])\n",
+      "torch.Size([15349])\n",
+      "torch.Size([2, 2206])\n",
+      "Epoch 1:  96%|█████████▌| 86/90 [00:17<00:00,  4.90it/s, loss=0.00768, v_num=2]eff=  tensor(0.8092)\n",
+      "pur=  tensor(0.1020)\n",
+      "torch.Size([2, 29090])\n",
+      "torch.Size([29090])\n",
+      "torch.Size([2, 3668])\n",
+      "Epoch 1:  97%|█████████▋| 87/90 [00:17<00:00,  4.91it/s, loss=0.00768, v_num=2]eff=  tensor(0.7464)\n",
+      "pur=  tensor(0.1092)\n",
+      "torch.Size([2, 18804])\n",
+      "torch.Size([18804])\n",
+      "torch.Size([2, 2752])\n",
+      "Epoch 1:  98%|█████████▊| 88/90 [00:17<00:00,  4.92it/s, loss=0.00768, v_num=2]eff=  tensor(0.6543)\n",
+      "pur=  tensor(0.2798)\n",
+      "torch.Size([2, 1258])\n",
+      "torch.Size([1258])\n",
+      "torch.Size([2, 538])\n",
+      "Epoch 1:  99%|█████████▉| 89/90 [00:18<00:00,  4.93it/s, loss=0.00768, v_num=2]eff=  tensor(0.7387)\n",
+      "pur=  tensor(0.1173)\n",
+      "torch.Size([2, 15616])\n",
+      "torch.Size([15616])\n",
+      "torch.Size([2, 2480])\n",
+      "Epoch 2:  89%|████████▉ | 80/90 [00:16<00:02,  5.00it/s, loss=0.00758, v_num=2]eff=  tensor(0.7721)\n",
+      "pur=  tensor(0.1799)\n",
+      "torch.Size([2, 5838])\n",
+      "torch.Size([5838])\n",
+      "torch.Size([2, 1360])\n",
+      "Epoch 2:  90%|█████████ | 81/90 [00:17<00:01,  4.67it/s, loss=0.00758, v_num=2]eff=  tensor(0.7463)\n",
+      "pur=  tensor(0.1141)\n",
+      "torch.Size([2, 16910])\n",
+      "torch.Size([16910])\n",
+      "torch.Size([2, 2586])\n",
+      "Epoch 2:  91%|█████████ | 82/90 [00:17<00:01,  4.68it/s, loss=0.00758, v_num=2]eff=  tensor(0.8207)\n",
+      "pur=  tensor(0.1752)\n",
+      "torch.Size([2, 7886])\n",
+      "torch.Size([7886])\n",
+      "torch.Size([2, 1684])\n",
+      "Epoch 2:  92%|█████████▏| 83/90 [00:17<00:01,  4.69it/s, loss=0.00758, v_num=2]eff=  tensor(0.7138)\n",
+      "pur=  tensor(0.2079)\n",
+      "torch.Size([2, 3790])\n",
+      "torch.Size([3790])\n",
+      "torch.Size([2, 1104])\n",
+      "Epoch 2:  93%|█████████▎| 84/90 [00:17<00:01,  4.70it/s, loss=0.00758, v_num=2]eff=  tensor(0.8002)\n",
+      "pur=  tensor(0.1276)\n",
+      "torch.Size([2, 14124])\n",
+      "torch.Size([14124])\n",
+      "torch.Size([2, 2252])\n",
+      "Epoch 2:  94%|█████████▍| 85/90 [00:18<00:01,  4.71it/s, loss=0.00758, v_num=2]eff=  tensor(0.7185)\n",
+      "pur=  tensor(0.1008)\n",
+      "torch.Size([2, 15731])\n",
+      "torch.Size([15731])\n",
+      "torch.Size([2, 2206])\n",
+      "Epoch 2:  96%|█████████▌| 86/90 [00:18<00:00,  4.72it/s, loss=0.00758, v_num=2]eff=  tensor(0.8381)\n",
+      "pur=  tensor(0.0998)\n",
+      "torch.Size([2, 30800])\n",
+      "torch.Size([30800])\n",
+      "torch.Size([2, 3668])\n",
+      "Epoch 2:  97%|█████████▋| 87/90 [00:18<00:00,  4.73it/s, loss=0.00758, v_num=2]eff=  tensor(0.7762)\n",
+      "pur=  tensor(0.1084)\n",
+      "torch.Size([2, 19696])\n",
+      "torch.Size([19696])\n",
+      "torch.Size([2, 2752])\n",
+      "Epoch 2:  98%|█████████▊| 88/90 [00:18<00:00,  4.74it/s, loss=0.00758, v_num=2]eff=  tensor(0.7026)\n",
+      "pur=  tensor(0.3024)\n",
+      "torch.Size([2, 1250])\n",
+      "torch.Size([1250])\n",
+      "torch.Size([2, 538])\n",
+      "Epoch 2:  99%|█████████▉| 89/90 [00:18<00:00,  4.76it/s, loss=0.00758, v_num=2]eff=  tensor(0.7718)\n",
+      "pur=  tensor(0.1152)\n",
+      "torch.Size([2, 16620])\n",
+      "torch.Size([16620])\n",
+      "torch.Size([2, 2480])\n",
+      "Epoch 2: 100%|██████████| 90/90 [00:18<00:00,  4.75it/s, loss=0.00758, v_num=2]"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "`Trainer.fit` stopped: `max_epochs=3` reached.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 2: 100%|██████████| 90/90 [00:18<00:00,  4.74it/s, loss=0.00758, v_num=2]\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:-------------------------------- c) Saving model --------------------------------\n"
+     ]
+    }
+   ],
+   "source": [
+    "# send_telegram_message('Started metric learning training.', chat_id, api_key)\n",
+    "\n",
+    "metric_learning_trainer, metric_learning_model = train_metric_learning(CONFIG)\n",
+    "\n",
+    "# send_telegram_message('Finished metric learning training.', chat_id, api_key)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### From checkpoint"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# from Embedding.Models.layerless_embedding import LayerlessEmbedding\n",
+    "# from pytorch_lightning import Trainer\n",
+    "# from pytorch_lightning.loggers import CSVLogger\n",
+    "\n",
+    "# version_number = 6\n",
+    "\n",
+    "# HPARAMS_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_1/hparams.yaml'\n",
+    "# CKPT_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_1/checkpoints/epoch=19-step=1600.ckpt'\n",
+    "\n",
+    "# load_configs = {}\n",
+    "# with open(HPARAMS_PATH, 'r') as f:\n",
+    "#     load_configs = yaml.load(f, Loader=yaml.FullLoader)\n",
+    "\n",
+    "# metric_learning_model = LayerlessEmbedding(load_configs)\n",
+    "\n",
+    "# logger = CSVLogger('artifacts', name='metric_learning/velo_data')\n",
+    "\n",
+    "# metric_learning_trainer = Trainer(\n",
+    "#         accelerator='gpu' if torch.cuda.is_available() else 'cpu',\n",
+    "#         gpus=1,\n",
+    "#         max_epochs=40,\n",
+    "#         logger=logger,\n",
+    "#         # callbacks=[EarlyStopping(monitor=\"val_loss\", mode=\"min\")]\n",
+    "#     )\n",
+    "\n",
+    "# metric_learning_trainer.fit(metric_learning_model, ckpt_path=CKPT_PATH)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Plot training metrics"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "We can examine how the training went. This is stored in a simple dataframe:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>epoch</th>\n",
+       "      <th>train_loss</th>\n",
+       "      <th>val_loss</th>\n",
+       "      <th>eff</th>\n",
+       "      <th>pur</th>\n",
+       "      <th>current_lr</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0</td>\n",
+       "      <td>0.007978</td>\n",
+       "      <td>0.008570</td>\n",
+       "      <td>0.669372</td>\n",
+       "      <td>0.139480</td>\n",
+       "      <td>0.000125</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1</td>\n",
+       "      <td>0.007980</td>\n",
+       "      <td>0.008654</td>\n",
+       "      <td>0.746478</td>\n",
+       "      <td>0.131017</td>\n",
+       "      <td>0.000250</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   epoch  train_loss  val_loss       eff       pur  current_lr\n",
+       "0      0    0.007978  0.008570  0.669372  0.139480    0.000125\n",
+       "1      1    0.007980  0.008654  0.746478  0.131017    0.000250"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "embedding_metrics = get_training_metrics(metric_learning_trainer) \n",
+    "\n",
+    "# embedding_metrics = get_training_metrics(metric_learning_trainer, METRICS_PATH) # Use when loading from checkpoint\n",
+    "\n",
+    "embedding_metrics"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABwgAAAJYCAYAAAB2JbLWAADV00lEQVR4nOzdd3QU5dvG8Ws3lQRSCAkQErp0UGmhSxUFC6IgRboigqICIiq4iQgWLCigKFW6gPp7RVFUioJKk2ZBpEoJxVCSkJC6+/4RWBOTQALJTrL7/Zyz52RnZ2eveQBzu/fM85hsNptNAAAAAAAAAAAAAFyC2egAAAAAAAAAAAAAAByHBiEAAAAAAAAAAADgQmgQAgAAAAAAAAAAAC6EBiEAAAAAAAAAAADgQmgQAgAAAAAAAAAAAC6EBiEAAAAAAAAAAADgQmgQAgAAAAAAAAAAAC6EBiEAAAAAAAAAAADgQmgQAgAAAAAAAAAAAC6EBiEAAAAAAAAAAADgQmgQXsMjjzyiTp065fh4+umn83Ws6OhoderUSRaLpVD2d5T/5spLzjFjxqhTp06Ki4u75vEvXLigCxcu5PnYN6KojjEAAM7AarVmq5/uuecejR07VkePHr3u4+b0+ztz/VBcOVONdSOc4c8SAICC0Llz5xy/j3rooYfs+/zwww8aOHCgunTpIkk6ffq0xo4dqzvvvFM//vijFi9erE6dOmnDhg1X/ayiXBsYjRotAzUaADgfd6MDFHXNmjVTtWrVJEnr16+X1WpVhw4dJElhYWH5OlaJEiXUoUMH1ahRo1D2N0pB5xwyZIg8PT21dOnSYjMGAAAgd25ubmrbtq2sVqv27NmjnTt36qWXXtKsWbNkMpnyfbyc6oPM9YOzcNUayxn/LAEAuF4mk0nt27fPss3f39/+88cff6wTJ07o4YcfliRt2LBBO3fu1G233aaqVavKZDKpQ4cOKlu27FU/pyjXBkUNNRo1GgA4CxqE1zBkyBD7zz/++KOSkpI0bty46zpWYGBgvt6b3/2NUpA5jxw5ovT0dKWlpengwYOqVq1asRgDAACQO29vb/vv89TUVN1///36+++/9c8//ygkJCTfx/tv7ZFT/eAMXLHGctY/SwAArpe7u/tVf2dfunRJZrNZDz74oP25JLVr107ly5dX+fLl1aJFi2t+TnH5DqoooEajRgMAZ0GD8AYcPHhQw4YNU6dOnRQUFKR9+/bp9ddf12effabPPvtMMTExCgwMVJcuXdS3b19FR0drwIABatGihaKiouzvb9eunTw9PfXjjz/Kz89Pw4cPV0RERL73lzKmInjrrbd06NAh3XHHHdq+fbvOnj2rTz75JFv+SZMmacOGDXrrrbdUv359xcTEqHfv3qpdu7befffdXM/jv/6bU5L++usvvfvuuzp+/LhatWql1NTULO/J7diTJk1SQkKCJOm5557T1KlTsx37xIkTmjlzpn7//Xd5enqqYcOGGjp0qAICAvI0RtdyteNL0po1a7Rs2TKdPn1aZcqU0d13360ePXpc8zUAACB5eHioXLlyOnz4sBITE7Vnzx6NHj1a3bt312OPPSZJGjFihP766y+tXr1aR48ezVZvPfXUU1nqg//WD8uXL9dzzz2n7du3a8qUKbrllluUmJio7t27q3Llypo5c2a2XAVZX1BjZbhaXbRz507Nnj1bR48eVdmyZTVkyBA1b948xz9LAACQs0ceeUTHjh2TJHXq1Endu3fXp59+KkmKjIzUqFGjdO7cOc2fP18vvPCC2rZtq4MHD+r999/X/v37VbJkSd1xxx166KGHdPLkyWy1QW6/r/NSF+T2Oc8//zw1GjUaAKCIYA3CArBt2zYtX75cJUuW1J49e/Tee+/Jy8tL3bt3V4kSJTR//nzt2rUr1/dv2LBBJ06cUJ06dRQdHa0pU6Zc9fNy2z8tLU2RkZH69ddf1aJFC23ZskWHDx/O9ThXpqjYvHmzJOmXX36RlHGV2fWcxxXx8fEaO3asDh06pDZt2mjfvn36448/7K9f7dizZs2Sn5+fypQpk2OxkZiYqNGjR2vbtm267bbbVL9+fX377beaMGGCbDbbdY9pXo+/f/9+vfHGG3Jzc1Pv3r3l7++vDz/8UN9///1VXwMAABlrEm7btk1HjhyRu7u7ypUrl+f3Zq63/iun+uHKlPBX6pxdu3YpPT1dbdu2zfb+gq4vqLF01bro2LFjGjdunJKSktSzZ09J0sSJE/XXX39dMycAAK4mNTU12xqECxculJTRqAkJCZHZbNa7776r7t276/bbb5ckPfzww2revHmWY8XFxWnMmDE6cOCAunTpotKlS2vBggVatWpVts+92u/rK3KrC672OdRo1GgAgKKDOwgLgNls1sqVK1WqVCkdO3ZML7zwgqpUqaKUlBT9/fff+vvvv3Xy5Mlcp9CqXbu23n77bUkZU5oePXpUsbGxuX5ebvvv379fhw8f1u23364xY8bo7Nmz6tWrV67HadKkiUqVKqXNmzfrkUce0fbt22UymdSmTRslJibm+zyu+O6775SQkKD+/furX79+unDhQpa76AIDA3M99i233HLVY2/cuFFnz57VPffcoyeeeEKSdP78ee3evVv79u2Th4fHVcco8zz913P8+Ph4SRl3P5QtW1ZPPfWUYmJiFBoaqlOnTuX6GgAAriwhIUGdOnXKsu2+++6Tt7d3no+Rud6Kjo6+5v4tW7aUp6enNm/erGHDhmnbtm2SlOOXTwVdX1BjSRcuXJCUc1301VdfyWq16q677lLdunVVunRpTZ06Vf/73/80duzYq+YEAMDV5LQGYZUqVSRJVatWlZeXl6SM39GSFBwcLEkKDw+3z4R0xQ8//KCLFy/aa4nY2Fh9+OGHSktLy/a5V/t9ff/999s/M6e6YOPGjbl+DjUaNRoAoOigQVgAbr31VpUqVUqS5OPjo9WrV2vv3r1q2LBhlqt5chMWFmb/OSgoSEePHpXVas33/sePH5ck1apVy/5aaGioLl68mONx3N3d1bp1a61evVonTpzQjh071KBBAwUFBUlSvs/jiis56tWrJ0kKCAhQxYoVdfToUUnXN0ZXXGnC1a9f376tXr162r17t06ePKmKFStKyv+Y5vX4bdq00b333qsNGzbYr8aqVauWnn76aTVs2DDX1wAAcGVubm72L328vLxUr169bA3Da8lcb+VFiRIl1Lx5c/vV0Nu2bVOtWrVyvGuxoOsLaixdtS46efKkJOm9997L8p4TJ07kOS8AAK7iWmsQ5sfp06clyb5+nL+/v5555hlJynYBVl5+X+dWF1ztcyRRo1GjAQCKCBqEBcDNzc3+84oVK7Rz5069/PLLioiI0LRp0xyWo3Tp0pKkAwcOSMqY0uHUqVM5TsV1Rfv27bV69WotXLhQcXFxateunaQbOw8/Pz9J0h9//KFbb71ViYmJ9iIjr8fOrVgqW7asJOn333+3f9H422+/SdI1r+jKi2sd/0qTcODAgYqOjtbatWv16aefatmyZerfv3+urz3//PM3nA0AgOLK29s71y+2TCaTpIwroaWMaUivXNmcWeZ6Kzf/rR/at2+v77//XitXrtTp06fVvXv3HN9XGPWFq9dYV6uZrtSss2bNUuXKlZWenq7o6GiVKFHimjkBAMD1K1OmjKSM9QFbtGihuLg4zZs3T1WrVlWjRo2y7Hu139dXm/XqWp9z9913U6NRowEAiggahAXM3T1jSD/++GP9+OOPWrt2rSQpOTm50D+7cePG8vPz0zfffCOTyaR9+/Zd8665+vXrKygoSGvXrpXZbFarVq0k3dh5NGvWTIsWLdLSpUt19uxZ7du3L8vizNc6dqlSpXTy5El9/fXXatCgQZZjt27dWvPmzdMXX3whm82m+Ph47d69WzVq1FDt2rWvuuZiXlzr+KtWrdL06dNVr149RUREKCYmRpJUrlw5/fLLL7m+BgAAchYaGiqz2axNmzbplVde0fHjx/XPP//k+ziZ64c77rhDUsY0UiVLltRXX30lSWrTpk2O7y2M+sLVa6yr1UUtW7bUqlWrNGXKFLVv315btmzRzp079cwzz+j222/P8c8SAABXlZ6enuN6csOGDcvX7ApSxu/7uXPn6pNPPlFSUpJ+/fVX7d27V6NGjcq27+23357r7+srdwZe7+dQo1GjAQCKBrPRAZzNAw88oJtvvln79+/XyZMn1a9fP0nSjz/+WOif7ePjo8mTJ6ty5crasGGDateurUqVKl31PWaz2X61VMOGDe1zk9/IedSsWVNPPvmkypcvr7Vr1yo8PNw+F35ejv3ggw+qdOnSWrFiRbZj+/r66o033lCjRo20bt067dq1Sx07dtTLL78ss/nG/zpf6/h33323+vbtq5iYGC1YsEC//vqr7rrrLj300ENXfQ0AAOQsKChIw4cPl6+vr3bs2KFGjRqpevXq+T5OTvWDh4eH2rRpI5vNpvr169uvZv+vwqgvXL3GulpdVLNmTUVGRiotLU1z587V2bNnNWbMGN1+++3XzAkAgKuxWq365ptvsj2u50L00qVL67XXXlOVKlW0atUqnTt3To888ojuvPPObPte6/f1jXwONRo1GgCgaDDZuDfcaZw4cUIrV65UmTJl1K1bNx08eFBjx45VrVq1NHXqVKPjAQAAONw333yjKVOmaOTIkbr77ruNjgMAAABRowEAUBQwxagTKV++vHx8fLR48WLNnz9fUsZVTDlNFQEAAODs1q9fr08++UQeHh5q3bq10XEAAAAgajQAAIoK7iB0QikpKYqJiVGpUqXyPR89AACAs3jooYdks9nUs2dP3XvvvUbHAQAAgKjRAAAoKmgQAgAAAAAAAAAAAC7k+lb0BQAAAAAAAAAAAFAs0SAEAAAAAAAAAAAAXAgNQgAAAAAAAAAAAMCFuBsdoCgbN26cRo4caXQMAABwnby8vBQUFJTv9/Xc9Ia2nz+gqQ2H6J4KTQohmfOjjgIAwDlRXxU+6igAAFyLUfWVyWaz2fL9LhdhMplUWMMTHR2t0NDQQjk2/sU4Ow5j7TiMteMw1o5RmOOc32PHJiXooU1vaPXZX2W1pivY218fNn1M3SpEFEo+Z0Yd5TwYb8divB2HsXYsxtuxqK+KN+oo58KYOx5j7niMueMx5o7njPUVdxACAACXlWaN1ZGz7ysx5aDcTDY9/O05bU5PlXw9JEn/JMXqvo2TNLn6aFUqWV7lSgeqdXAZeZhMBicHAAAomqivAAAAClZh1Vc0CAEAgEuyKVU/HWyn2Es7ZZLk5eaumNTbJS9P6fIV23UDy8r/4s16/qe9UumTkqeHavn5aW3b1gr19jb2BAAAAIoY6isAAICCVZj1ldlB5wAAAFCkxCb+oriknfbngSUaqYJ/zYzLp2zSoze1U4+AAdoRHyiVD5G8vSRJf8bF6d39BwxKDQAAUHRRXwEAABSswqyvuIMQAAC4pDMJMUpMlny9JKtN8veuJzcPX7nZ3DQ/YoTKuzdQx/VrpVJektVqvypLkg4nJBiYHAAAoGiivgIAAChYhVlf0SDMJCoqSpGRkUbHAAAADmCNPapj56Ra5SWTJA+P6upUubbeqDxYtwZU0bmUVP3ZrasOxMfrr/g47Y+P1964eO2NvyhvNyZhAAAA+C/qKwAAgIJVmPUV1VcmFotFNpvN/gAAAM7Jdnqjam6dpIbmlvo7TjKbJU/P6hp3y726NaCKJKm0p4dqlvRV1/LlFJReQRdPh8nvn6oKOVVNu3f5KOZiqsFnAQAAUHRQXwEAABSswq6vaBACAACXYjvzs9I39FN6apzaxaepYZlIxSZLft41cn3PbRW9tP1SqvaZpGQ/X1309tHwjf8oLtXqwOQAAABFE/UVAABAwXJEfUWDEAAAuJT0n0bIlnRWNklpcb+r2ZkzalL9C3m6l8v1PZV83fVex1DJJJncJA8fd/2akK5hm/5xXHAAAIAiivoKAACgYDmivmINQgAAriElJUWXLl2S2cx1NYXB09NT8fHx+XqPyWRSyZIlr+vzTGUayxa3X5Jkk5R6aIGqh7aT/ENyfU9qYqoq//yn+tSvqiW/npPNmjEV+a6zKdeVAQAAFI709HTFx8fLzc3N6CiGor4CAMD1pKamKjExke+vCokz1lc0CAEAuAar1aoSJUrI09PT6ChOqWTJkjKZTPl6T34Lsszcmk+TLT5G1mNrZPI0SWaTUn8cJI/SNaTABjm+Jyk+WYufWa0GD9XVL7e11p8n4uRjNunVJkHXnQMAABS89PR0lShRQl5eXkZHMRT1FQAArudKHcT3V4XDGesrWskAAMC1uHnJve182VJqyXohRPK4VaagVrIe+79c33L+6Hl5ePto5webVWfxl/L28tAbEUHqHFbCgcEBAACKKOorAACAguWA+ooGYSZRUVEymUz2BwAAcFIl/GQL6KGUvUFK3hem1OONlXo0VGk718t68pBsF89LkqyH/lH6pOWKOXJWVmu6fINClLRqh8b/s18dQvnyCgAAwI76CgAAoGAVcn3FFKOZWCwWWSwW+3OahAAAOLG0S7LGn5Pityj9ry0Z28wm2dJS5TPmXZnOVFPi0A/lUSFN/zyYMb+7zWZT6YAQVfZhug4AAIBsqK+uS1RUlCIjI42OAQAAiqJCrK+4gxAAALgkc5mwf5+YTJLJJGtaijzaP6z0ldLFvu/KlpCsZHOiYvb/I5tMstls8nTzUukKZY0LDgAAUERRX10fi8Uim81mfwAAAFxRmPUVDUIAAOCSPNo9KLcq9SRJttR0pZ6/KJNHC1kXlFDSB6slmWSzpSru6HGd3HlSujyxgH+Ynyo2Dsv9wAAAAC6K+goAAKBgFWZ9xRSjAADAJZl8/VRy0v8pfe9WpZ06Lmv0BSU/vVNpKfslk00mk5vS0xKV5mVW3a61ZZNJ/mVL6dYH6svDmxLqv5gaCwAAUF8BAAAUrMKsr6i+AACAS3Or3VRutZtKkjzC9ylh2BxZT16QTJJ769qqPPcxVSsXYmzIYoC1nAEAwBXUVwAAAAWrMOorphgFAAC4zL1NTfl+MERulYPl3r6W/D8bLze+vAIAALhu1FcAAAAFq6DqK+4gzISpsQAAgHvrmvLbOcnoGAAAAE6D+goAAKBgFUR9xR2EmVgsFtlsNvsDAAAUPn7nIr/iYuKNjgAAAAAAAFyIM35/xR2EAADAMKnp6Uq1WqX0dJXwcJdJrFuHqxvZ8gWdP31e1RpUUeSnzxgdBwAAAAAAODGbzabkxGTZbJK7h5s8vDyMjlRguIMQAAAXcuzYMXXr1u2GjnH69Gl16dLlhrOkWa1KsVrtd+4npqTK+a7FQkF6uvUE7f35L5069I9+/N9WTe471ehIAABc0yOPPKJOnTrZH926dVNUVJTOnTuX72MVRC0HAADgKIMHD85SB115jB071r7Phg0b1KtXL/3000+SpEmTJql3796SpPvvv19Hjhy56mcUdn2UnJgiqzXju6u01HSlpaQV2mc5GncQAgBQDI0cOVLPPvusKlSokK/3lS5dWiNHjiykVLmz2myyXp6K4crP6Tab9J/pGdKtVrmbuX4J2aUkpSgmOusXqft/OWxQGgAA8uexxx5Tx44dZbPZdPr0ab366quaPn26XnzxxXwd57+13PXWhAAAAI4yYsQItW/fPss2Nzc3+88rV67UsGHD1KJFCx0+fFi7du3SokWLJEmPP/64ypQpc9XjF+Z3XdZ0a5apRW02m9LTrU7TWOMbOAAAHKwg5iw/deqUUlNTs223Wq1KT0/P9X2+vr7ZirKCYLXZlGa1ZtwVmJ6upLQ0XUpLU0JqihJTU5WUlqY0q1XpVqtMkjzMZnm5uUmmf6cUNZlMBd4cbPdjmmquOFqgx4QxPL091bBjgyzb2vRoblAaAIArKYjarUSJEvLz85O/v79q1Kihe+65Rzt37szXMaxWq7y9vbPUcrnVhIWJ+goAANdQUGvu+fj4yM/PL8vD19fX/np8fLzKli1r/zkgIEBeXl6SpHbt2qlkyZJXPX5hfdclSWY3s0z//e7Kw+0q77g+RtVXNAgBAHCQcyfP66Ueb6pHuYfVvcwgvTnk/esqtsaOHasLFy7omWee0c6dOxUTE6PevXtr48aN6t27t44dO6aff/5ZQ4cOVdeuXdW3b1/93//9nyQpOjraPu3C+fPn1bNnT61YsUI9evTQPffco7fffjvHTFfu+EuzWjPWDJR0KS1VCakp2rZzpx5//HHdd++9GjF8uH7Zvl0eZrM83cz69OPlGtyvnx7s3l2R48crIS5OHm5ucjObtWzJEg3p10+97r9fURMmKCk+/voHFy7h6Q8eVdehHVW5QbgefLabVr65yuhIAAAnlZaapimD39N9QQN1f/BgvdzzLcXGxBXY8U0mk/2irmPHjun+++/P8vojjzySY523Y8cOey3335rwnXfe0fvvv28/RnR0tLp06aKEhIQCyw0AAJzfhTOxmtjjTfUIGaL7ggbqzSHvKz3dWiifNWHCBJ06dUoTJkzQJ598opdeeklHjx7VwIEDJUk9e/a0TzG6Z88ePfbYY7r33ns1ZswYHT2a0VDL/F2XJB09elTPPPOMunXrpjFjxmjLli2Srv09WE7Hnzp1qmbPnS03dzeZzSbFnPtHd99zt9PUVzQIM4mKipLJZLI/AAAoKGejz2lI3ae18ZPNiv0nTvHnLurreev0YIWhunQxKV/Hev311xUQEKApU6bo1ltvlZRxhdW2bds0a9YshYSEaOLEibr//vu1dOlSDRs2TDNmzMixeLlw4YL++usvfbRggV59/XWtWbNGO3btUnJ6ekYDMCVFCSkpSkpLU2p6uv0OQEnydHNXSkKiJlos6tqli5YsWaI+vXvr5Zde0pnTp7Vn12599umnmjRpkubNm6f09HQtXbpUkrRz5059evm1uXPnyma12l8DruapmY8qavUYPfxKXy07/oG6lxlkdCQAgJNJiE1Un/Bh+mb+el08n6D4cxf1/cqfNajmkzp/+sJ1HTM5OVkJCQm6ePGiDh48qM8//1w333xznt6buc7LPJXof2vC1q1ba9OmTfbXN2zYoGbNmmW5Qh8AAOBqzp08r0G1ntQPn2xW7Nl4XTyfoK/nrVPvsEeVGHfpuo45ZcqUbGsQzpkzR5I0ceJElStXzv491osvvqiKFStq/vz5WY4RExOj8ePHq1evXpo3b55uuukmTZo0KdtnpaSkaNy4cWrUqJEWLlyonj176rXXXtPBgwcl/fs92MKFCzVlyhStWbNGe/bsyfX4zZo208+bf5JXCU95+Xhp46aNTlVfOctUqQXCYrHIYrHYn9MkBAAUBKvVqkG1nsyxEXj+1AUNb/ys5v35zg19RnJysvr16yc/Pz+lpaXpww8/VFhYmKxWqwIDA2UymRQbH6+0y3f/JaenKSk1VTabTXd16ya5u6tKtWqqUbOm4uPj5GYyyd3sLrO7Sf/9bXhlGlA3k0k/btqkatWqqWvXrpKk2267TevWrdP69etVvXp1Wa1WxcTEqGLFinrttddkvfz5qamp9tfCw8OzvAbkVanSJfXBrjfUp+IwLTk60+g4AAAn8VijZ3T+TGy27fHnL2pQrSf16dl5MudzWvQZM2ZoxowZkiQPDw81aNBATz75ZJ7em7nOu3jxYq773Xzzzbp06ZIOHDigatWqacOGDerfv3++cgIAANdltVo1qPaTOTYCz5/O+P5q/l/v5vu4Oa1B6Onpma9jrF+/XjfffLNuu+02SdKgQYNUoUKFbMvsbNu2TWazWT179pTZbFbTpk3VsmVLfffdd+rZs6dsNpt69Oghb29v1axZU7Vq1VJcXJz++uuvLMcf0H+AygaXVcPGDZ26vqJBCABAIftu4Q+62kyi506e194t+1U74qbr/gyTyaTAoCClWdOVbrPp+x9+0Ddr1sjdw0PhFSvKZDIpNT1dNmUEcTOZ5enhIUm6uW5d+3E8PTzkZjLneS3AmJgYhYaGZtkWGhqqmJgY9enTR4MHD9aCBQs0ceJE1atXT0OGDNFNN92kpk2b5voakB/BYUF67dsXNbj2k5q798Ya7QAA7N7wu+LO5t6EM5tN+mHFz2r7YMt8HXfUqFG6884787x/5infTSaTypQpc833uLm5qXnz5tq0aZM8PDx05swZRURE5CsnAABwXeuX/ijrVaYSvXAmVr9t2qt6rWrn67hX1iC8EWfOnMny/ZOnp6fuuuuubPudPHlS58+fV9++fbNsb926tf3nGjVq2H92d3fPdnyb1SZZpW7du0mSU9dXNAgBACggcWfjdX/w4Hy/LzH+kkY2fz7bdr+gUvrkn7mSJJsy1gGUzSarLaPNl5KersTUVCWmpGQ0AK3pMpvM2rJli/7vf//TO9OmqWxIiMwmk7p27Spvd3f7lVXuZnOBzDNepkwZ7dmzJ8u2U6dOqXr16jp58qQaNmyoe+65RwkJCVq6dKneffddTZs2LctrFy9e1LJly+yvAfkVXjNUzy95So81Gqv3f3nd6DgAgGLi7lL9lJSQv6ne488naFLvqZrUe2q211bFL5S3r/d1Zcl89XtSUpJOnTplf56fZVBat26tOXPmyGw2q3Xr1vK4fEEYAADAFQmxieoWOCD/74tL1NNtXsy23dffR/87/1FBRMtVUFCQ9u3bZ3+emppqn0I0s9KlS6tu3bp6/fV/vxs4duyYvL2vXqNdOb7NalPypRS5ebpp7ty56tmzp1PXV6xBCABAAfELKqVvrSuyPZ6ZN0Levl65vs+nVAm98/NkfZ32sb5O+1irU5fpi5SlWnzyQyWmZqwDmJiaopT0dKVdbg7KZlNKUpK83d3lc3lahhLuHvJyc9OlhAR5enqqhJeXUlNStHjxYqWkpCg5ObnAz7lly5Y6cOCA1qxZo8TERG3cuFHbtm1T27ZttWPHDr344os6ceKErFarrFar0tLSJOmqrwHXo/qtVTTi3cF6uvUEo6MAAIqJVfELs9Vtb6yLlK+/T67vKRngqxeWPpVjzXe9zcFSpUopISFBmzZtUnp6uj755JN81W2XLv07DVijRo10+vRprVq1KttUXgAAAFJGQy+nWmbcwpFX/f7K189Hb//wUrb3Xas5eGUt5v8+8uO2227T9u3b9dNPPyk+Pl4LFy7UunXrsq0F2KRJEx06dEhffvmlEhIStH37dg0fPlwxMTF5Ov4P329UqjUly/Gdub6iQQgAQCHr2K/NVV8PKOevSg0rK8VqVarVKpskN3PGNJ/e7u7y9fSUr4enSri7y8vNTZ5ubmrbtq1eeP557dq5M9vx2rdvr1q1amnAgAEaNmyY/Pz81KlTJz3/fPa7FG9UYGCgJk+erM8//1wPPvigFi1apBdffFEVKlRQ586dVa9ePT3xxBPq06eP/vrrLz377LOSlOW1vn37ZnkNuF71WtbSQy8+oHGdXzY6CgCgmLq5bV2VKl0y19dtNptu69miQD8zICBAjz32mObNm6euXbtq586dqlOnTp7ee9ttt2ncuHHasWOHpIz1DSMiIuTm5qabb765QHMCAADn1r5PK5nMuc9a4B/sl+/pRSXp3XffVbdu3bI8evToka9jlC9fXi+++KLmz5+vPn36aNeuXYqKiso2y0KpUqU0adIkffPNN+rVq5emT5+uJ598UrVrXz13uXLlNO6ZcVq8dFG24ztzfWWy2a62KpJriYqKUmRkZJZthTU80dHR2dZsQsFjnB2HsXYcxtpxrox1UlKSzGbzVRdQtl2+s89qs2X52Xr598i5Uxf0eIMxSohNzPK+wLIB+mj/NJUoeX1XnDsDm82W52mzroiPj1epUqWuuV/NFUclSft6VMx3rp+2bJO7u7uaNro13+9FxnRoRtVRP/3fNq2Zv15Rn40tlM93NfzecSzG23EYa8dy1HinpKTIZrPJyyv3q9+v5VL8JfWr/rhi/4nLst3X30fz/5qmgOAbW0OnsE2dOlXe3t4aNmxYvt5HfVV0GFlHoeAx5o7HmDseY+54OY15Xr6/upYLZ2I1sNaTSriQ9Q6/gBB/LTgw3Sm/v7LZbEpKSL7quTlrfcUahJlYLBZZLBb78/x+WQkAcF62y82+Kw0/a6a1AK02m678xjCbTDKbTDLp8jp/l38OCw/W/L+madqI2drzwx+ypqer5X0RGvVh/goLRzh48KBWrFiR6+utWrVSq1atHJjI8Q4eOqIDhw5LkoICA1WtamVjAyFfWtzbREkJSXrloXf13KKRRscBABQzJUqV0MfRszT10Q/042dbJZPUsGMDPT3zUfkG5D79qNGSk5N18uRJbdiwQVOmTDE6TjbUVwAAFH0BIf5aeHC63nlslnat+01Wq1UtuzXV6NmPGR2t0FytOejs9RUNQgAAJKWkp+t4XKyOx8XpWGysjsXFav+pU4pJTVWVkiX1UodOSk9Ly9IA9DCbZTKZZDJJJl37opKAYD9NWD7quu6Yc6Rq1app3LhxRscwzMFDR/Tjlq3y88u4wuvHLVsliS+xipn2fVorKTFFbw+dqaeLYCMeAFC0ubmZNXr2Yxo9+7EiX7td8euvv2rSpEnq0qWLqlevbnScLKivAAAoPkoFltT4ZU8XmxroRiTGX5JPqRK5vu7s9RUNQgCAS0i32XQsNtbeBDwae0HH4+J0/PK22ORkhfv5K8zPT2H+/gr381fb8Iq6uXJlhfr4ytvdXZ4eHgWSxdmLK2fQMqKpDhzOuAKr/jXmqUfR1eXhDkpOTNZ7T83T8KmDjI4DACimikvt1rhxY3322WeSCm+5lBtBfQUAQPFSXGqg63Wt5qDk/PUVDUIAgNO4cvff8bhYHc3UDDwWG6uYxASF+/sr7HITsKJ/gDpVrWbfVsYn+3RR0dHRCi1bTklJSQacDRzt4KEjkv690upKgXXl+X9fR/Fw38guWvbqZ5rz/BINmdzH6DgAALgU6isAAFAUXbqYVGzXUyzI+ooGIQCg2IiOj9exuMuNv9h/m4HH4mIVHR+vMD8/e8Ovor+/bqtcxb6trG9Jo+OjCLsyLUPLiKZX3Y/psIqnXuPu07zxS7Vk8qfq83x3o+MAAOASqK8AAEBRdOlikrx9vYrlHZIFXV/RIAQAFBmnEy5ebvrFZbkL8Mq20FKlLk8D6q8wfz81rxiuML96CvfzV2ipUkbHRzH105ZtOnDosPz8SunA4cP2K6/+iTkrSVqzdr19Xz+/Uvpxy1adPX9eTRvdakheXJ9BL/fW+6Pm69OpX6r7U12NjgMAgFOjvsqfqKgoRUZGGh0DAACnV5ybg4VRX9EgzISCDAAKV0xiYpaGn30dwMvbyvj4Xr4D0E9hfv5qElpB99WqY98GFBVpaWlGRyhyikMd9dhbAzV12If68sNv1XVoJ6PjAACATFy5vrJYLLJYLPbnxfFLSwAAirqkhGR5+RTP5uD1ulZ9RYMwEwoyALgx5y5dujzlZ5yOx2ZM/Xn8cjPwWFys/L28Lt/9l9Hwu7lceXWtUVNhfv4K9/eXG//dhQFaRDRR2eBg/bhlq+rXrm2ffuHKlVedO7STlHUaB6bAyq641FFPzRyq1/pPk5ePlzo+1MboOAAAOCXqKwAAUJQkJSTLq4SnTOai+V1FXhRGfUWDEACQZ7HJSToeG2df9++YvQmYsa2Eh0dGs8/PT2H+/qpdJli3V6tuvyPQ083N6FMAcpTXL6T48so5PLvgCUU98Ia8fbzUqnuE0XEAAHBK1FcAAKAoSEpIklcJr2LdHLyioOsrGoQAALv4lBQdj7u8BmDslalALzcB4+LkZjIrzN/vchPQX9VKB6lt5ar2bSXc+bWC4utK4XTw0JEs268854sr52JZOUbP3TlJ3r5eatz5FqPjAADglKivAACAkZITk+XpXbzvHPyvgqyv+CYXAFzIpbS0f5t+sf82/q5ss9lsGVOA+vkp3N9f4QH+al6xosIvbyvp6Wn0KQAO8eOWrfLzK2X/uWVEU4MToTC88tULGnXbi/Ly8VL91rWNjgMAgFOjvgIAAI6UnJgsDy8Pmd3MRkcpNDdaX9EgBAAnkpKebm/2HY+L09FMzcDjcXFKSktVuL+/fc2/cD9/NQmtYN/m5+Vl9CkAhrtypdWPW7ZKYtorZ/fW9y9pRJNn9eTMR1WjUVWj4wAA4JSorwAAgCMlX0px+uZgQdRXNAgBoBhJs1p1LD5eB4/+nWUK0ONxcToWF6v45GSFXW72hfn5qaK/v24uV+5yA9BPgd4ljD4FGOT06dMaNGiQVq9eXSD7ObtqVSvr9D//2H+Gc5ux7TUNqfu0LCtHq2LtMKPjAADglKivAACAIyRfSpG7h5tTNwevuNH6igZhJlFRUYqMjDQ6BgAXZpMyGn+Zpv7M+DmjGXju0iWV8/FRldJBCvP3V0V/f90ecpPC/DLWACzj42P0KQBOo0VEE6MjwIHm/P62+lZ+TG//MFEhFcsYHQcAAKdEfQUAAArTleagm7ub0VEc5kbqKxqEmVgsFlksFvtzk8l5Fq4EUHSciI/T8di4jKZfpuk/j8fF6mR8vMIuT/15ZR3AdpWr2KcEDfH1VXR0tEJDQ40+DdwAm83G7xigCFp85H09EDJEc/54W/5l/IyOAwAAAAAA8iglKVVu7maXag7eKBqEAFDATl28mGXdv6OxF+wNwONxcapQys8+5WeYn79aVqxk/zm0VCmj46MQnUlIUOT6tdpy4oTSbVZ1rnaTXu3YKd/NwvHjx6tGjRrq37+/JOnChQt68MEH9dFHH+nw4cOaN2+eTpw4oYCAAPXs2VP33nvvdWf+7bffNHPmTP3999+qUKGChgwZoiZNMq5MWrRokb744gslJCSobt26Gjt2rEqXLn3N14CibOWZObq75ENacWaOvH1YlxUAAAAAgKIuJSlVZjez3D1oDuYHDUIAyKd/EhLsa/5daQQei4vV8diMbSG+vvY7/sL8/BQRFq77LzcAw/y4I8VVnb54UbcvnK+45GT7tuW//6r1hw9pw6Ah8vHwyPOxbrvtNq1YscLeIPzhhx9Ur149+fn5aeLEiXryySfVvHlz7d69WxMnTlTHjh2vK/OFCxf0/PPP69FHH1WbNm20Y8cORUZGavbs2Tp16pQ+/fRTTZkyRf7+/nrttde0dOlSjRgxQjt37sz1NaA4WHVxkTqZe+hb6wqjowAA8snNzU3x8fFKSUkxOoqhkpOT5eWVvwtdmOECAIDizc3NTYmJiUrO9N2TKzi2L1olSnqrTIXSUlLhfY4z1lc0CAHgP85eumS/2+9YbGymNQEztvl7e2dM/+nnrzA/f91crrzuqlFLYf4Z28xF/D/8cDyrzaYOH81VQmpqttf+SUzQ3UsWae2AQXk+XosWLfT222/rxIkTqlChgr7//nvdfvvt8vT01IcffqiwsDBZrVYFBgbKZDLp4sWL15V706ZNqlatmrp27SopozG5bt06rV+/XtWrV5fValVMTIwqVqyo1157TVarVZKUmpqa62tAcbH60hJ1KdFHqy8tMToKACAf3NzcFBAQYHQMw8XHx6tMGdbUBQDAlXh4eMjf39/oGA71/qj5KlsxWN2f6lron+WM9RUNQgAu50JSUpYG4L93AmZMA+rr4WG/2y/c3191QoJ1e/Xq9m2ebtyqjvz5bO8fsl3l9TMJF7Xr1EndUq58no7n6+urpk2bauPGjerUqZP279+vl19+WWazWZs2bdLXX38tDw8PVapU6YauVIqJicm23mVoaKhiYmLUp08fDR48WAsWLNDEiRNVr149DRkyRDfddJOaNm2a62tAceHh5aGPT3yo7mUG6dOYeUbHAQAAAAAAmcx5brECywY4pDnorGgQAnA68SkpOh57uemXaS3AY5e3ebi5ZWkA3lQ6SO0qV1W4f8Y0oN7u/KcR1+d80iU1nPlevt93MSVF9y3LfpdSoHcJ7Rg2PMf3tGvXTitWrJC3t7datWqlEiVK6KefftJnn32madOmKSQkRJLsd/9djzJlymjPnj1Ztp06dUrVq1fXyZMn1bBhQ91zzz1KSEjQ0qVL9e6772ratGlXfQ0oTkqVLqkPdr2hPhWHacnRmUbHAQAAAAAAkha+tEIeXh7q9Ww3o6MUa3wLnklUVJQiIyONjgHgGhJTUy/f9Ren47GxOhp7ZfrPjG02m+3y+n8Zj0oBgWpZsZJ9m28+1noD8iPQu4QOPzU62/ZP/vhdL65fq8QcphiVpJKenlrY/YE830EoSREREXrjjTf0v//9T08++aSkjKkOPDw85OnpqeTkZK1cuVIpKSnXNUe6JLVs2VIffvih1qxZo9atW+uXX37Rtm3b9PDDD2vHjh365JNPNHHiRPn5+clqtSotLU2SrvoaUNwEhwXp9e9e1KBaT2ren+8YHQcAAAAAAJe27LX/KeVSioa80tfoKMUeDcJMLBaLLBaL/XlRX0AScFbJ6Wk6Hhtnn/rzaOy/zcBjcbFKSU+/vP6fn8L8/VXR318RYWH2baWuoxECFKb7atfRhHXf5fp6iG/JfDUHJcnb21vNmjXTH3/8oVtuuUWS1L59e23btk0DBgxQ6dKl1b17d3Xq1EnPP/+83nzzzXznDgwM1OTJk/X+++9r+vTpCg0N1YsvvqgKFSqobNmy2rdvn5544gmlpqaqZs2aevbZZyVJnTt3zvU1R1vf0j3bNKlAfoXVCNX4ZU9rWMNnNHPHFKPjAABgKOorAABglE+nfqnzpy/osbcGGh2lQBlVX5lsNtvVlkVyaSaTSYU1PNHR0RTUDsA4O05+xjrVar285l/Wxt+VbRdTUhXm73e54ZfRALzSDAz381eAt3chn03Rxt9rx7ky1klJSTKbzfL09LzuY/2TkKCOC+YpLjk5y/YyPj76ftDD8nHhO1ttNlu+L8qJj49XqVKlrrkf/16M44x11G8//qk54xbr7Y0THf7ZRuLfkWMx3o7DWDsW4+1YhTne/FkWPmeso1wZY+54jLnjMeaO54pjvmrmNzq852+NfO8RQz7fGesrQ+4gXLdunRYuXCibzabevXurc+fOed4nt+1LlizRF198IZvNpjvvvFP9+/eXJO3du1fTp0/X2bNn1a5dOz366KOOO1HARVlttixr/mVeB/B4XKzOX7qkMD//y1N+ZqwD2DnkJvu2oBIljD4FoMAF+/pq3YDBenH9Wm05cVzpVqvuqF5Dr3Ts5NAcBw8e1IoVK3J9vVWrVmrVqpUDEwHFR72WtfTQiw9oXOeX9eqa8UbHAQAAAADAJayZt177th3QmDnDjY7iVBzeILxw4YLmzJmj6dOny2w2a8SIEWrcuLGCgoKuuY+bm1uO28+ePasvv/xSs2bNkslk0vDhw9WwYUNVr15dkydP1quvvqrg4GCNHj1af/31l2rUqOHo0waczom4uIwm4OXm375TJ3UuNVXH4+J0OuGivfEX5pdx11+HqtUy7gL081eIr6/R8QFDBPn4aEbXu6/rjrmCUq1aNY0bN86QzwacQaNONys5MUWW+15X1GdjjY4DAAAAAIBTW7dko3as/VXPLRppdBSn4/AG4datW9W4cWMFBgZKkpo3b66ff/5Zd9111zX38fT0zHF7rVq15ObmZp/6zcPDQ2azWVu2bFH9+vVVoUIFSdJbb73FuoJAHp28GJ/1LsBMdwAej4uzN/uuNAKbli2n+pUrK8zPT+VLXnvaP8CV8bsIKN5a3NtESYnJeqXvO3pu8ZNGxwEAAAAAwClt+nSLNn66RZaVY4yO4pQc3iCMiYlRSEiI/XlwcLDOnj2bp308PDxy3F69enVFRETo/vvvl8lkUtu2bVWnTh19/PHHSkxM1LBhw3T+/HlFRERo5Ei6zIAknUlIsDf7jsVmngY0Y1tZ35JZ7gKMCAvXA5cbghX8/LIdzxXnvQYAuK72vVspOTFZbz0yU6NmDTM6DgAAKMKsVqvMZrPRMQAAKFa2fPmLvp63Xi+vYiaswuLwBmFOiyxbrdY87ZPb9l9//VW7d+/WW2+9JbPZrNdff13bt29XcnKy9u/fr6lTp8rHx0cWi0Vffvml7r333izHiIqKUmRkZI55TSaTRo8erVGjRuXjLPMmOjq6wI+J7Fx1nM8nJSk64aJOJSQoOiFBJxMu6mRCQsYjMUEBnl4q5+ur8pcfVXxLqkVQGZX39VU5H1+55fY/LxcvKvrixRxfctWxNgJj7ThXxjooKCjH30MoGPkd2+TkZMXHx19zP+7WRGG6c0gHJSUk672n5mn41EFGxwEAAAVs3bp1WrhwoWw2m3r37q3OnTtneX3x4sVavHix/bnValWjRo00adIk+7a5c+cqOTlZjz32mMNyAwBQ3O34bo8+fWe1XvtmgtFRnJrDG4RBQUHat2+f/XlMTIzCw8PztI+Hh0eO27ds2aI2bdqoevXqkqT27dtr8+bNqlSpkho1aqTg4GBJUrNmzXTkyJFsmSwWiywWS7btJpOp0L4M5m4rx3Dmcb6QlKRjcbE6br/7L2P6z4xtcSrp6ZFlDcCmISFZ7gj0KOCrF515rIsaxtpxrox1UlKSTCYTzaZCcj1rMnp5ealMmTLX3I9muuNc7YIrZ3bfyC5a9upnmvP8Eg2Z3MfoOAAAoIBcuHBBc+bM0fTp02U2mzVixAg1btxYQUFB9n369u2rvn372p9PmTJF7dq1sz/fs2ePPv/882yNRQAAkLtfN+7Vookr9db3Lxkdxek5vEEYERGhhQsXKiEhQSaTSZs3b1aPHj1ks9l08uRJlStXLtd93N3dc9y+a9curVq1St26dZPJZNKWLVvUrl07NWnSRMuWLdOZM2fk6+urTZs2qWvXro4+ZeC6xCcnZzT7Lq/7dzT232bg8bg4ebq5KdzPX2H+GQ3AmmWC1KFq1cvb/OTl5vB/3gBQLKWkpurY8RM6evyEqlWprIphFfTj5q3y9PRUk4a36OChIzp64oQqhlVQeFgFeXp4GB25SPrvBVeu1FDvNe4+zZ+wTIsnfaK+L9xvdBwAAAznDPXV1q1b1bhxYwUGBkqSmjdvrp9//ll33XVXjvvv2LFDJpNJjRs3liQlJCRo1qxZ6tGjh+Li4hyWGwCA4mzftgP6YMwCTd/yitFRipzCqK8c3kEIDAzU4MGDNXr0aNlsNvXt21fBwcFKSkrSgAEDtHz58lz3kZTj9o4dO+rw4cMaOnSobDabWrdurS5dushsNmvgwIEaM2aM0tPT1bZtW3Xs2NHRpwzkKCE1NeOOv9gr6wBesDcDj8XGymQyKezymn9hfv6qEhCo1pUqZzQA/fzkUwT/BwoAiqNjx05o646dKh0YoNSU1Eyv/DuLQEpKirb+slOySdWqVnZ4RhR9Ayf20szRH+mTt7/Q/U/n/MUhAACuwhnqq5iYGIWEhNifBwcH6+zZsznua7VaNXfuXEVFRdm3vfvuu+rXr5/OnDmTa4OQJW9cB2PueIy54zHmjudsY370jxP68MlFevnbZ4vsuRVWrrxcZF0Y9ZXJxoJKuWKK0eLPyHFOSku73Oz7d+rPf5uBsUqzpmdM/+mf0fCr6B9gbwaG+furlKenIbmvF3+nHYexdpzMU4yazWZ5FrN/l8XF9UwxGh8fr1KlSl1zv7z8e1n/wyalpKaqc4d2V91vzdr18vTwULs2rfKV1VW5ah01ddiHuqlhFXUd2snoKAWmKI+3M2K8HYexdizG27EKc7xdpb66srbglSlEly9froSEBA0alH3d4R9++EG//PKLnn76aUnSd999pz/++EMjR47UF198oWPHjuVrDUJXraOcFWPueIy54zHmjudsY35sX7Qs3V7T3L3vGB0lV85YXzEHIXCdUtLT7Xf8Xbnr70oD8HhcrBJSUy83AP3s6wA2LB9qXwfQ38vb6FMAAEiqGBaWp/2qV6lSyEngDJ6aOVSv9Z8mLx8vdXyojdFxAAAwhDPUV0FBQdq3b5/9eUxMjMLDw3Pcd926derSpYv9+YYNG3To0CH98ssvSkhIUFpamhISEjRmzJhCzw0AQHFz+u9/9NwdL2vR4feMjlKkFUZ9RYMQyEW6zZbR/IuNs9/9d+xyM/B4XJxik5Lsd/xdWQuwXtly9m1BJUoYfQoAgDzI65RWRXHqKxRNzy54QlEPvCFvHy+16h5hdBwAABzOGeqriIgILVy4UAkJCTKZTNq8ebN69Oghm82mkydPqly5cjKbzUpKStKvv/6q559/3v7el19+2f7z9dxBCACAqzh36oJGNn9eH0fPMjpKkVcY9RUNwkyuNvc7nFPmNf+Oxf07/efxuFj9k5BwebpPP4Vfngq0U9Vq9nUBg319jY4PACgAP27eKklq2axplu0XExK0bccunTp9RqmpqSobEqyb69dVuUxr0QC5sawco+e7TJaXj6ea3HGr0XEAAHAoZ6ivAgMDNXjwYI0ePVo2m019+/ZVcHCwkpKSNGDAAC1fvlyBgYHavn276taty3IEAADkU/z5i3q47tP69Ow8o6MUC4VRX9EgzMRischisdif53c9JBQ9pxISdPzE8SyNvyvTgJ6Ij/v3DkD/jLsAW1esdHlNQH+VK1nS6PgAAAfw9PTItu1iQoJWffWNSvr66Jb6dSVJp06f0TdrN+j2Dm2L5JdYKHomr35eo9ta5OXjpQZt6hgdBwAAh3GW+qpDhw7q0KFDlm3e3t769ttv7c9btWqlVq1yX+PnrrvuKrR8AAAUV8mXUtQ77FF9kbDY6CjFRmHUVzQIUaydSUj4t/GXqfl3LC5Wx2NjFeLjo0qBpe3r/jULC9cDdespzM9PFUr5GR0fAFAENGmY/e6ubb/sVElfH919Z2f7tto1a2jN2vXa/evvKteh6H2BhaLpzQ1RGtHkWT0581HVaFTV6DgAADgE9RUAAMiN1WrVPaX6aU3ax0ZHKVYKo76iQYgiLSYx0b7mn30a0EzTgZYuUcJ+x1+4n78ahVbQvbVq29cEPBkdrdDQUKNPAwBQhB08dEQenh6qGFbBvu3UmX/sV15lVjGsgnb9+rsj48EJzNj2mobUfVqWlaNVsXbeFhUHAKA4o74CAAC5udOzt75KWWp0jGKnMOorGoQw1PmkS/a7/o7HxerolZ8v3xVYyssro9nn56cwf3/VDymrO2+qYd/mbjYbfQoAgGLu6PHjSklNzVJgAQVtzu9v66Eqw/XmhiiVrRRsdBwAAAoV9RUAAMjJXb599Xn8Qpn5Xj/fCqO+okGIQhWXnJxl3b+jsRfszcBjsbHydve4fAdgxlqAtcsEq1PVava7Aj3d3Iw+BQCQ2WzWpUuXlJycbHQUp5ScnCwvL698vacg1wmuGBamrTt2as3a9apds4YqhlVQuZBgHTh0RLVr1siy79HjJ1Q6MKDAPhuuZdHh99Sj7BDN+u1tBQQz1TkAwHlRXwEAgP/qHjRIS49/IK8SnkZHKZYKo76iQZhJVFSUIiMjjY5RrFxMSfl3zb8r039mWgfQbDJlTP95uQlYrXSQbqtcxb6thDt/BQEUfZ6envL0pHgpLPHx8SpTpoxhnx8ennHl1dHjx5WakipJatLoVq366hut+uobVa9a+fLrJ3T6zD+qV7uWUVHhBFacnqO7Sz6kFWfmyNsnf41xAACKC+orAACQ2YOhj2j272+rVGBJo6MUW4VRX9GdycRischisdifF+TdCcXVpbS0y42/jIaffR3Ay9vSbVaF+fldnvIzo+nXLLyifVtJvlAHABRxnh4eqla1sqpdLqQkqaSvr+6+83Zt+2Wndv36u1JTU1U2JFj1atfSb3v/lL+fX5b9gfxYdXGROpl76FvrCqOjAABQKKivAADAFQ9VGa53f56s0uUCjI5SrBVGfUWD0MWlpKdnNPvi4uzNv8xrAl5KTVWYn7/C/DMafuH+/mocGmrf5u/lbfQpAABQKEr6+qpdm1bZtvv7+enHLVsVGBjAdFi4bqsvLVGXEn20+tISo6MAAOAw1FcAALiWwbWf1Ctfj1fZSsFGR3FaN1Jf0SB0cuk22+WGX+a7/+J0/PK2uOTkjGafn5/C/P0V7uevBmXL2dcELF2ihNGnAABAkVKtamUFBgaoZElfo6OgGPPw8tDH0R+qe9AgfXp2ntFxAAAwFPUVAADO59Fbxmj8x6MUXjPU6CguKS/1FQ1CJ5D5jr+jV5qBl6cAjUlMuLz+X8bdf+F+/upUtZp9WxkfH6PjAwBQ7HBlOwpCqcCS+nDPm+od/qiWHvvA6DgAABiK+goAAOfxeMRzGjVrmKo2qGR0FJd2rfqKBqEBpm35WXujoxV1+x0K9r321XHR8fH2df+OxWY0/q40AaPj4y83+zLu+Kvo76/bKlfJWBPQ309lfVn0EwAAoKgqU6G0pqy1aFCtJzXvz3eMjgMAAAAAwA0ZdduLevSN/qrZpLrRUXANNAgdrN+nK7U9+oSS0tK0fclCfdmnn6yy5XwX4OVtoaVKZTT8Lt8F2LxiuML86incz1+hpUoZfUoAAAC4AWE1QjV+2dMa1vAZzdwxxeg4AAAAAABcl2dvn6iHJjyg+q1rGx0FeUCDMJOoqChFRkYW2vF/PPa3/oz5R0lpaZKkfxISFDH7A4X4+Ga5C7BJaAXdV6uOfRsAAACcW7VbKuuJ6Q/rqVbjNXXTy0bHAQAAAAAgX8bf/aq6P9lFDTs2MDoK8ogGYSYWi0UWi8X+3GQyFejxS3v7yJzpmJ5ms0Y2a6ERTSMK9HMAAABQ/NRtUVP9I3vq2dsn6rVvJhgdBwAAAACAPIl64A3dMaidIro2MjoK8sFsdABXUjs4WG92vlMhvr4K8PRUh2rVaQ4CAADArmHHBrp3xB2y3Pe60VEAAAAAALimVx56V627R6hVd3odxQ13EDpYq4qVNP+++3Xg6DHd3bCh0XEAAABQxLS4t4mSEpP1St939NziJ42OAwAAAABAjt4Y8p4adqiv9n1aGx0F14EGoQFqlwmWf0qq0TEAAMBlv/32W572q1evXiEnKb4Key1nV9O+dyslJybrrUdmatSsYUbHAQAg36ivAABwbu8On6WaTaqr86B2RkdxGQVdX9EgBAAALo8vpm5cYa/l7IruHNJByYkpmvHkXI14Z7DRcQAAyBfqKwAAnNf7o+YrrEao7h52u9FRXEpB11esQQgAAAAUUd2euFNBoaU157nFRkcBAAAAAEBznluswLIB6v5UV6Oj4AbRIMwkKipKJpPJ/gAAAACM1uvZbnJzd9PiSZ8YHQUAAAAA4MIWRC6XZwlP9Xq2m9FRUABoEGZisVhks9nsDwAAAKAoGDixl+LPXdQnb39hdBQAAFDAuGAdAFAcLHv1M6WmpKnfiz2MjoICQoMQAAAAKAaGvTlAx/+K1hcffGt0FAAAUIC4YB0AUNR9OvVLnT8TqyGT+xgdBQWIBiEAAABQTDz5/lD98dM+fbvwe6OjAAAAAABcwKr31+j4/pN67K2BRkdBAaNBCAAAABQjYz96XD/93zZt+nSL0VEAAAAAAE7s67nr9NcvhzRyxsNGR0EhoEEIAACQT0z9BKNZVo7R6tlrte3rnUZHAQCgQFBfAQBQtKxbslE71/2m0bMfMzoKrtO16it3B+UAAAAocmySTJd/Tk9Pl5ubW8Z2m00mk8m+39lz53U8OlpuZrPCK1SQv7+f48MC/zF59fMa3dYiLx8vNWhTx+g4AABIor4CAMAZbPxkszZ9tlUvrhhtdBSo8OorGoSZREVFKTIy0ugYAADAQUyS4uMvatdvv+vo0eOqGF5BN9evK79SpSRJ6Vardu/5TfsOHJTNZpPVZtWe3/eqXu2aql+3TpYiDDDCmxuiNKLpOD353iOq0bia0XEAAKC+AgCgmNv8xS/65qMNmvj5OKOj4LLCqq9oEGZisVhksVjszylKAQBwbnHx8Vr7/SalpKYqwN9P0afO6Oz5C2rXuqX8/Urp971/KvpMjOrXqa1aNW5SujVdv/2xV0eORcu7RAnVqFbV6FMANGPrq3q43tOasHy0KtUJMzoOAMDFUV8BAFB87fhujz57d7Ve+2aC0VGQSWHVV6xBCAAAXNaOXXuUlJSs1s2aqusdndS6RYRSUlP1+959stls2rtvv0p4uqtenVpyd3eTl6enGt1ys7w83fXr73uNjg/Yzf7tbb3QdbJO//2P0VEAAC6O+goAgOLp1417tWjiSpqDRVBh1Vc0CAEAgMs6E3NWlcIrKLR8OR2PjlZoubIKLReio8ePKTklRVarVWXKlJGUMcd7enq6JCkwIEDmy/O9A0XFosPv6fGm43ThnzijowAAXBj1FQAAxc+fWw/ow2cW6K3vXzI6CnJQWPUVDUIAAOCyvLy8FBgQoIOHj2j7zj06ePiISgcEKD3dKpMkD3c3HY+OltVqk5ubm9zc3JSWlqZTp08rPS3V6PhANitOz1G/qiOUlJBkdBQAgIuivgIAoHg5uPuIpj76gaZtfsXoKMhFYdVXNAgBAIDLSremKzU1Vf5+pdSiaWP5+5VSalqaTCazvLy8VLVyZdlk1vofNur4iWgdPX5ca7/fKJncVLvGTUbHB3K0Kn6h7vHrL5vNZnQUAIALor4CAKD4OLYvWpN6va2ZO6cYHQVXUVj1lbsDzwEAAKBIMZvMMrub9U/MWR36+7iqVAqTm9lNJpOUbrWqXp3aOnfhZ8VdTNTWnbvl7uam1NRUlS8bolp8gYUi7MvExerq01erLy0xOgoAwMVQXwEAUDycOnJGz985SQsPzTA6Cq6hsOor7iDMJCoqSiaTyf4AAADOzWQySzapVo2bFB5aTrVr3CRbxguyplvl6ekhf79SSklJVlj5sgoPLa/mTRupRUQTubFGDoowDy8PfRz9oboHDTI6CgDAxVBfAQBQ9J09eV5PtRxPc7CYKKz6ijsIM7FYLLJYLPbnNAkBAHBuSUmXFBsbJ5PJpAb16kiSYuNiZbPZ5O7uptTUNB04dFgBfv5q2qihwWmB/CkVWFIf7nlTvcMf1dJjHxgdBwDgIqivAAAo2uLPX9Qj9Ubp07PzjI6CPCqs+oo7CAEAgMsqG1xGx6NP6tSZM5KkU2fOKPrUGYWHlpfJZNLJU6fk5V1ClStVlM1mU3p6epFd123dunUaNGiQBg4cqDVr1uS6X1JSksaOHZtl2/vvv6++ffuqV69eWrRokX37kiVL1KdPH/Xu3VsLFiwotOwoPGUqlNYb6yI1sOZIo6MAAFyEM9VXAAA4m6TEZPUJH0ZzsJgprPqKOwgBAIDLurVBPX33/Sat+/5HhZQprTMxZ+Xt7W2/GuvIsWNKTUlRxbAKMplMMpvNRXKGgQsXLmjOnDmaPn26zGazRowYocaNGysoKCjLfl999ZW++uorpaSk2Ldt27ZN+/bt0/z585WUlKSHH35YzZs3V3p6ur788kvNmjVLJpNJw4cPV8OGDVWvXj1Hnx5uUIWbymvC8lEaduszLDwPACh0zlJfAQDgbKzpVt3r319rUj82OgryqbDqK+4gBAAALsvf31/tWrdU+XIhOh0To/JlQ9S2VXP5+/kpJSVFJ6JPqXRggHx9fSQV3enHt27dqsaNGyswMFD+/v5q3ry5fv7552z7+fv7q02bNlm2+fj4qF+/fvLw8FCpUqUUFham5ORkmc1mubm5ydPTUx4eHvLw8JDZTOlYXFW7ubKemPGwnmo13ugoAAAn5yz1FQAAzuZOr976Knmp0TFwHQqrvuIOQgAA4LJsNptKBwaoXeuWSk9Pty/cbLPZ5OHhoTYtm8vby8vglNcWExOjkJAQ+/Pg4GCdPXs2234tWrTQsWPH9N1339m31a1bV1LGFKWrV69WcHCwatWqJbPZrIiICN1///0ymUxq27at6tSpU/gng0JTt0VN9Y/sqWdvn6jXvplgdBwAgJNylvoKAABncpdvX30ev5ALf4upwqqvaBACAACXZTKZ7HOyu7m52X++cqVVhfLlDMuWHznNK2+1WvN1jAYNGkiSFi9erP379yslJUW7d+/WW2+9JbPZrNdff13bt29X48aNs7wvKipKkZGROR7TZDJp9OjRGjVqVL6y5EV0dHSBH9MVlKtTRq17N9XYO6L01NxH8vw+xtuxGG/HYawdi/F2rMIa72tdke4s9RUAAM7ivtIDtezEh/Iq4Wl0FFynwqqvaBBmcrUvuAAAgHPK/CVXcZ3iKigoSPv27bM/j4mJUXh4eJ7eu2XLFgUGBqpGjRpq3769Dhw4oK1btyo5OVlt2rRR9erVJUnt27fX5s2bszUILRaLLBZLtuNmLl4LWnR0tEJDQwvl2K4gdFCofEuU1Pwxy/X8kqeuuT/j7ViMt+Mw1o7FeDtWYY53XhqPzlBfAQDgDHqWf0Rz905VyQBfo6PgBhVGfcX9pJlYLBbZbDb7AwAAoDiIiIjQ1q1blZCQoMTERG3evFnNmjWTzWZTdHT0Ve8mPHv2rD766CMlJSXp4sWL2r17t8LDw1WpUiVt3bpVFy9eVEJCgrZs2aLKlSs77qRQqNr1aqlbO9TXW4/MNDoKAAAAAKAQPFRluKZtnqzAsgFGR0ERxR2EAAAAxVxgYKAGDx6s0aNHy2azqW/fvgoODlZSUpIGDBig5cuXKzAwMMf33nHHHTpw4IAefvhh2Ww2tWvXTrfddpsk6fDhwxo6dKhsNptat26tLl26OPK0UMjuHNJByYkpmvHkXI14Z7DRcQAAAAAABWRQrSf16prxKlsp2OgoKMJoEAIAADiBDh06qEOHDlm2eXt769tvv82yLTw8XDNn/nvXmNls1siRI3M85tChQzV06NCCD4sio9sTd2rZa//TnOcWa8grfY2OAwAAAAC4QUNvHq0XV4xWWA2md8fVMcUoAAAA4MJ6PdtNbh5uWvzyJ0ZHAQAAAADcgMcjntPo2Y+pSv2KRkdBMUCDEAAAAHBxA1/qpYsXErTyrVVGRwEAwOVERUXJZDLZHwAAXI+n20zQsDcHqGaT6kZHQTFBgxAAAACAHn2jv07sP6kvPvj22jsDAIACY7FYZLPZ7A8AAPJrbKeX1N/SU/Va1TI6CooR1iDMJCoqSpGRkUbHAAAADvbbb7/lab969eoVchLAWE++P1SvD5guLx9Pdep3m9FxAADFGPUVAACOMf6uV3T/03fp1g71jY6CQlbQ9RUNwkwsFossFov9OdM6AADgGvhiCvjX2I8e10s93pS3j5da39/M6DgAgGKK+goAgMIX9cAbumNwe0V0aWh0FDhAQddXTDEKAAAAIIsXV4zW13PXaetXO42OAgAAAADIwSt931Hr+5upVfcIo6OgmKJBCAAAACCbSV8+r49f+5/+/PmA0VEAAAAAAJnMHrVYDTs1UPverYyOgmKMBiEAAACAHL25IUrLXv4//bX9oNFRAAAAAACS3h0+S1VuqaTOA9sZHQXFHA1CAAAAALmK/HK0Xh84XX//cdzoKAAAAADg0t5/er7CaoaqQ3/uHMSNo0EIAAAA4Kpm//a2xt/1ik4dOWN0FAAAAABwSbPHLVLp8oHq/mRXo6PASdAgzCQqKkomk8n+AAAAAJBh4aEZeqLZ87pwJtboKAAAAADgUhZELpeXj5ceHHuv0VHgRGgQZmKxWGSz2ewPAAAAAP9acWq2+lV7XEkJSUZHAQAAAACXsOzVz5SakqZ+L/YwOgqcDA1CAAAAAHm2Kn6h7vHrzwV1AAAAAFDIPnn7C134J05DJvcxOgqckLsRH7pu3TotXLhQNptNvXv3VufOnfO8T27blyxZoi+++EI2m0133nmn+vfvL0nq37+/YmJi7MedMmWK6tat64CzBAAAxdmPm7dKklo2a2pwEqDo+fLSEnUt0Uerk5YaHQUAUIxQXwEAkHefv7dG0QdP6YnpDxsdBUXYjdRXDm8QXrhwQXPmzNH06dNlNps1YsQINW7cWEFBQdfcx83NLcftZ8+e1ZdffqlZs2bJZDJp+PDhatiwoerUqaOUlBStXr3a0acJAACKuYsJCUZHAIosD093LT81W/eVHqjPzs03Og4AoJigvgIAIG++nrtO+3cc0ujZjxkdBUXcjdRXDp9idOvWrWrcuLECAwPl7++v5s2b6+eff87TPrltN5vNcnNzk6enpzw8POTh4SGz2ayYmJgsjUcAAAAABaNkgK9m/fqWeoc/anQUAAAAAHAaaxdv1K71v9EcRKFz+B2EMTExCgkJsT8PDg7W2bNn87SPh4dHjturV6+uiIgI3X///TKZTGrbtq3q1KmjPXv2KDY2VmPHjtWRI0fUpk0bDR8+XGZz1r5oVFSUIiMjc8xrMpk0evRojRo1qgDOPqvo6OgCPyayY5wdh7F2HMbacRhrxyiscTaZTIVyXAAZylQorTfWRWpgzZGav+9do+MAAAAAQLH2w8qf9dP/bdOE5QXfjwD+y+ENQpvNlm2b1WrN0z65bf/111+1e/duvfXWWzKbzXr99de1fft2BQUF6YEHHtA999yj+Ph4TZgwQV9++aXuvvvuLMewWCyyWCzZjm0ymXL8zIIQHR2t0NDQQjk2/sU4Ow5j7TiMteMw1o5RmOOc38bjufMXVLKkrzw9PLJsT0lN1cWLCSodGFCA6ZzL1S64gnOrcFN5TVg+SsNufUYzd04xOg4AoIihvgIAIG82f/GLvl3wvSZ+Ps7oKCjiCqq+cvgUo0FBQYqJibE/j4mJUZkyZfK0T27bt2zZojZt2qh69eqqWrWq2rdvr82bN6tSpUq69957ZTab5e/vr9atW+vw4cOFf5IAAKBYWrN2vdZ8t14pqan2bSmpqVrz3XqtWbvewGRFn8Vikc1msz/gWqrdXFkj33tET7Z8wegoAIAihvoKAIBr++Xb3frftK9oDiJPCqq+cniDMCIiQlu3blVCQoISExO1efNmNWvWTDabTdHR0bJarbnuk9v2SpUqaevWrbp48aISEhK0ZcsWVa5cWZ9++qmioqKUlpamixcv6qefflLdunUdfcoAAKCY6NyhnS4mJGjNd+tltdpktdq05rv1upiQoM4d2hkdDyjS6jSvoQFRD+rZ2ycaHQUAUIRQXwEAcHV7fvhDSyZ9qlfXjDc6CoqJgqqvHD7FaGBgoAYPHqzRo0fLZrOpb9++Cg4OVlJSkgYMGKDly5fnuo+kHLd37NhRhw8f1tChQ2Wz2dS6dWt16dJF6enp+ueffzRkyBClpaXp9ttvV4cOHRx9ygAAoJgoHRigzh3aac3a9fa74Ewmkzp3aMf0V0AeNOzYQEmJybJ0e11R/xtrdBwAQBFAfQUAQO7+3HpAs8Yu1LTNrxgdBcVIQdVXJhtzQOWKNQiLP8bZcRhrx2GsHYexdozCXoMwL8f+79zt585f0JdrvpUkde3cyV5csVZO3lFHOY/rGe/1y37Uz59v0/NLniqcUE6Mv9+Ow1g7FuPtWNRXxRt1lHNhzB2PMXc8xvz6HNx9RFMGzriutdwZc8dzxvrK4VOMAgAAFDVffP2Nzp0/b39+5Uqs/155de78eX3x9TcGJASKl3a9WqphxwZ68+H3jY4CADAI9RUAALk7+ucJTe499bqag3BdBV1f0SDMJCoqSiaTyf4AAACuIyUlNcvzkOAyCgkuc9V9AOTujsHtVe2Wypoxcq7RUQAABqG+AgAgu1OHz+iFrpM154+pRkdBMVSQ9ZXD1yAsyiwWiywWi/05TUIAAFxDeIVQbduxU3v3/XXV/S4mJCi8AlN4AHnV7fE7tey1/2nOc4s15JW+RscBADgQ9RUAANmdPXleT7Uar2UnPjQ6Coqhgq6vuIMQAAC4vCaNblXFsArX3K9iWAU1aXSrAxIBzqPXs93k5uGmxS9/YnQUAIADUV8BAJBV/LmLeqT+KJqDuG4FXV9xByEAAHB5JX191aQhX0wBhWXgS730wZgFWvnWKj0w6m6j4wAAHID6Ku+ioqIUGRlpdAwAQCFKSkhSn0qPaVX8QqOjoBgr6PqKOwgBAAAAFLpH3+iv6AOntGrmtRdKBwDAlVgsFtlsNvsDAOBcrOlW3RswgOYgihwahAAAAAAcYuR7j2jvz3/p24XfGx0FAAAAABziDs9e+jplmdExgGxoEAIAAABwmLEfPa6fP9+ujZ9sNjoKAAAAABSqrj599UXCIplMJqOjANnQIMwkKipKJpPJ/gAAAABQ8F5cMVpfz12nrV/tNDoKAAAAABSK+0oP1MfRH8rT29PoKECOaBBmwpzvAAAAgGNM+vJ5LX/9/7Tn+z+MjgIAAAAABapn+Uc0d+9UlQzwNToKkCsahAAAAAAM8cb6SH04dqH2bTtgdBQAAAAAKBB9Kz+m6VteUWDZAKOjAFdFgxAAAACAYaZveUVTBs3Q338cNzoKAAAAANyQgTVH6vVvX1RIxTJGRwGuiQYhAAAAAEPN/u1tjb/rFZ06csboKAAAAABwXYbePFqWlWNU4abyRkcB8oQGIQAAAADDLTw0Q080e14XzsQaHQUAAAAA8mVE03EaM2e4qtSvaHQUIM9oEAIAAAAoElacmq3+1R/XpYtJRkcBAAAAgDx5uvUEPfb2QNVoXM3oKEC+0CDMJCoqSiaTyf4AAAAA4Fifxy3Uvf79ZbPZjI4CAAAAAFc1ttNL6h/ZU/Va1jI6CpBvNAgzsVgsstls9gcAAAAAx/vy0hJ1LdHH6BgAAAAAkKvxd72i+5++S7d2qG90FOC60CAEAAAAUKR4eLpr+anZuq/0QKOjAAAAAEA2Ufe/oTuGtFdEl4ZGRwGuGw1CAAAA3DCmakdBKxngq9m/vaVeYY8aHQUAAAAA7Cb3mao2PZqr1X0RRkcBbggNQgAAANwwpmpHYQgKLa03N0RpYI0njI4CAAAAAHpj8HtqdPvNaterpdFRgBtGgxAAAABAkVWhejlNWDFaw259xugoAAAAAFzYO499qFoRN6nzwHZGRwEKhLvRAQAAAIx27vwFlSzpq5SUFO3dt1+nTp/R+QsXJEllQ4JVMayCqlWtIk8PD2ODAi6q2s2VNfK9R/Rkyxf0zo+TjI4DAMgD6isAgDN576l5qlg7THc92snoKHBhBV1fcQdhJqydAwCAa/ri62908NBhrfrqGx04dFjlygarbeuWahnRVCV9fbXr19+16qs1Onf+gtFRAZdVp3kNDXypl8Z2esnoKACAPKC+AgA4i9njFikotLTuG9nF6ChwcQVdX3EHYSYWi0UWi8X+nCYhAACuY9uOXQoM8Ffnju2zXGlVrWplNUlN1fofNmn9xk26+87OXOkOGOTWDvWVlJisF+99TS/937NGxwEAXAP1FQCguPvI8rG8fb314Nh7jY4CSCrY+oo7CAEAAOxM2v3r79m2enp4qF2bVkpJSdXBQ4cNyAXgiuZ3N1a73q00uc9Uo6MAAPKE+goAUDwtfeUzpael66EJDxgdBfiPgqmvaBACAACXV61KZZUNCZanp4ckW477eHp4qHrVyjpw6IhDswHIrl2vlmrYsYHefPh9o6MAAHJBfQUAKM4+efsLxcbEafCkPkZHAewKur5iilEAAODyWjZrmqf9wsMq8AUWUETcMbi9khKTNWPkXI14d7DRcQAA/0F9BQAorj5/b42iD57SE9MfNjoKkEVB11fcQQgAAFze0pWf6dSZM9fcr1xIiHo/cJ8DEgHIi26P36kyYUGaPW6R0VEAAP9BfQUAKI6+mrNWB3YepjmIIqmg6ysahAAAwOWV9PXRseMncn39x81btWbteq1Zu17bduxyXDAA1/Tg2Hvl4eWhRRNXGh0FAJAJ9VXeRUVFyWQy2R8AAGN8t+gH7fn+D42aNczoKECOCrq+okGYCQUZAACuqWJYmA4cOqKU1NRc90lJSdHpM/9o776/HJgMQF4MiHpQCbGJWvnWKqOjAAAuo77KO4vFIpvNZn8AABzvh5U/6+fPt+vZBU8YHQXIVUHXVzQIM6EgAwDANdWuVUOeHh5a/8OmHIusJo1ulcTFQ0BR9ugb/RV94JRWzfzG6CgAAFFfAQCKj59Xbdd3C3/QhOWjjI4CXFVB11fuBZgNAACgWPL08FC7Nq20/odN+uT/vlDFsAoqVzZEknTu/AUdOHRYktSk4S0uPwUWUJSNfO8RvT5wurx9vNSp/21GxwEAl0Z9BQAoDrZ/s1ufz/har3w93ugowDUVdH1FgxAAAEBS6cAA3d2lsw4eOqyjx0/ox81bJUmBAf6qU7OGqlWtLE9PT5UNCTE4KYCrGTv/cU3s+Za8fDzV5oHmRscBAJdGfQUAKMr2/PCHlk7+VG9uiDI6CpBnBVlf0SAEAAC4zNPDQ7Vr1lDtmjVy3ad0YIDjAgG4LhOWj9ILXSfL29dbTe+81eg4AODSqK8AAEXR3i37NfvZRXr358lGRwHyraDqK9YgBAAAAOB0Jn35vJa//n/a8/0fRkcBAAAAUIQc3HVE7zz2Ic1BuDwahAAAAACc0hvrI/Xh2IXat+2A0VEAAAAAFAFH/zyhyX2mauaOKUZHAQxHgzCTqKgomUwm+wMAAABA8TZ9yyt6Y/B7OvL7MaOjAAAAADDQqcNn9ELXyZrzx1SjowBFAg3CTCwWi2w2m/0BAAAAoPib9etbmnDPqzp1+IzRUQAAAAAY4Gz0OT3VeoIWHpxhdBSgyKBBCAAAAMDpLTw4Q080f14XzsQaHQUAAACAA8WdjdfQm8do2fEPjI4CFCk0CAEAAAC4hBWnZqt/9cd16WKS0VEAAAAAOEBSQpL6Vh6uT/6Za3QUoMihQQgAAIAbxlrOKC4+j1uobgEDZLVajY4CAAAAoBClp6WrW+BArYpfaHQUoEiiQQgAAIAbxlrOKE6+vLRYXUv0NToGAAAAgEJ0h2cvfZ2yzOgYQJFFgxAAAACAS3H3cNeK07N1X+mBRkcBAAAAUAi6+vTVl4mLjY4BFGk0CDNhaiwAAADANZQM8NXs395Sr7BHjY4CAAAAoAB1Cxyg5SdnydPb0+goQJFGgzATpsYCAAAAXEdQaGm9uSFKA2s8YXQUAAAAAAWgR7mHNX/fu/L19zE6ClDk0SAEAAAA4LIqVC+nF1eO0aO3jDE6CgAAAIAb0LfSY5qx7VUFhPgbHQUoFmgQAgAAAHBpVRtU0lMzh2pkixeMjgIAAADgOgysOVKvf/eiQsLLGB0FKDZoEAIAAABwebWb1dCgib00ttNLRkcBAAAAkA9DG4yW5ZMxqnBTeaOjAMUKDUIAAAAAkHRrh/q6b2QXvXjva0ZHAQAAAJAHI5o8qzHzRqhKvYpGRwGKHRqEAAAAAHBZ87sbq32fVprUe6rRUQAAAABcxdOtJ+ixqYNUo1FVo6MAxZK70QGKkqioKEVGRhodAwAAGOjc+Qs6f+GCzp2/IEkqHRigwIAAlQ4MMDQXAMdp+2BLJSem6I0h72nMnOFGxwGAYq+41lfr1q3TwoULZbPZ1Lt3b3Xu3DnL64sXL9bixYvtz61Wqxo1aqRJkybps88+0+eff67ExEQ1a9ZMI0eOlJubm6NPAQCc1tiOL6l/VE/Va1nL6CiAIQqivqJBmInFYpHFYrE/N5lMBqYBAACOtm3HTu3dt1+SVDYkWJK0d99fkqSb69fVzfXqGpYNgGN1HtROlxKSNGPkXI14d7DRcQCg2Cqu9dWFCxc0Z84cTZ8+XWazWSNGjFDjxo0VFBRk36dv377q27ev/fmUKVPUrl07/fHHH/rf//5nf+/48eP19ddfq2vXrkacCgA4nRe6TtYDo+/Wre3rGx0FMERB1Vc0CAEAACSt+mqNLiYkqm3rlqoYViHLa0ePn9CPm7fq6LETuvvO2w1KCMDRuj1+pz5+/f80e9wiPfzqQ0bHAYBipzjXV1u3blXjxo0VGBgoSWrevLl+/vln3XXXXTnuv2PHDplMJjVu3FibNm1S165dVapUKUlSs2bNdOrUKYdlBwBnFnX/G7rz4Q5qeuetRkcBDFGQ9RUNQgAA4PK27dipiwmJ6tyhnUoHBujgoSPaumOnJOmW+nVVu2YNlezQTmvWrtfuX3/XzfWL5pXuAAreg2Pv1UeWj7Vo4ko9NOEBo+MAQLFR3OurmJgYhYSE2J8HBwfr7NmzOe5rtVo1d+5cRUVFSZJatWplf+3s2bP69ttvNWrUqGzvu9pSNyaTSaNHj87xfTcqOjq6wI+Jq2PMHY8xdzxHjPl7Iz5Sw071VDUinD9j8ffcCIU15nmdzbKg6ysahAAAwKWdO39Be/ftV9vWLe3ztG/dsVN1ataQp6eHtu3YpbIhISodGKCWzZpqw8YfFR5WocivmQOg4AyIelAfPrNAK95cpR6j7zY6DgAUec5QX9lstmzbrFZrjvtu2rRJ1apVyzL9qCR9/fXXWrx4sR577DHVqVMn2/v+u9TNFSaTKcfPLwjR0dEKDQ0tlGMjZ4y54zHmjueIMZ8yaIbadGuu2we0LdTPKS74e+54hTnmeWk8FkZ9ZS6g/AAAAMXS+cuLOWeelqH3A/fp5stXXuW0z5XnAFzH0Cn9dfLQaa16f43RUQCgyHOG+iooKEgxMTH25zExMSpTpkyO+65bt04tW7a0P7darZo0aZK2bt2qadOmqUWLFoWeFwCc2dRhH6pO8xo0B+HSCqO+okEIAABc2rkL5+0LOmeWkpqq9Rt/lCSVLfvv62VDgnXuwnmH5QNQdIyc8bD2btmvbxd8b3QUACjSnKG+ioiI0NatW5WQkKDExERt3rxZzZo1k81mU3R0tP1uwqSkJP3666+65ZZb7O/duHGjEhMT9eKLLyogIMCYEwAAJ/HeU/NUqU6Yug7tZHQUwFCFUV/RIMwkKipKJpPJ/gAAAK5r96+/6dTpM7rrjttV0tfX6DgAioix8x/X5i9+0Q8rfzY6CgAUO8WpvgoMDNTgwYM1evRoPf300+rbt6+Cg4OVnJysAQMGKDY2VpK0fft21a1bV56envb3/vbbb9q5c6e6detmf8yZM8eoUwGAYmvWs4tUpkJp3Teyi9FRgCLrRuor1iDM5L9zv9MkBADA+ZUOCNTefftz3N6yWUi2udpPn/lH1atUcVA6AEXRhOWjNP6uV+Tl46WILg2NjgMARY6z1FcdOnRQhw4dsmzz9vbWt99+a3/eqlUrtWrVKss+I0aM0IgRIxySEQCc1fwXl8mnVAn1fOZeo6MARUJh1FfcQQgAAFxa4OUC6ujxE1m2ly0bnK24urJP4FUWeAbgGl7+4jmteONz7d7wu9FRAKDIob4CANyIpa98Jmu6VX3H3290FKDIKIz6yqUahFfmhwcAALiidGCAate8ST9u3qpzmRZv3rvvL+3d95f9+bnzF/Tj5q26uV7dbIUXANf0xrpIzXp2kfZtO2B0FAAoUqivAADXa+VbqxR3Nl6DJ/UxOgpQpBRGfWVIg3DdunUaNGiQBg4cqDVr1uRrn9y2L1myRH369FHv3r21YMGCbMebO3euPvjgg4I/GQAAUOw1aXirSvr6aM3a9farrJo0vFVNGt4qKePKqzVr16ukr49url/XyKgAipjpW17RG4Pf05HfjxkdBQCKFOorAEB+/d+Mr3Xq8Bk9+kZ/o6MARVJB11cOX4PwwoULmjNnjqZPny6z2awRI0aocePGCgoKuuY+bm5uOW4/e/asvvzyS82aNUsmk0nDhw9Xw4YNVa9ePUnSnj179Pnnn6tz586OPl0AAFBM3H1nZ23bsVMbNv4oSSobEiwpY852Sbq5Xl2+vAKQo1m/vqV+1UZoyncWlasSYnQcACgyqK8AAHn11Zy1OrjriEbNGmZ0FKBIK8j6yuENwq1bt6px48YKDAyUJDVv3lw///yz7rrrrmvu4+npmeP2WrVqyc3NTZ6enpIkDw8Pmc0ZN0cmJCRo1qxZ6tGjh+Li4hx5qgAAoJhp0vBWVatSRefPX9C5C+clSdWrVFFgYADTXl1DVFSUIiMjjY4BGGbhwRnqWf4RfbBrigLLBhgdBwCKDOorAMC1fLfoB+35/g89u+AJo6MAxUJB1VcObxDGxMQoJOTfq2qDg4N19uzZPO3j4eGR4/bq1asrIiJC999/v0wmk9q2bas6depIkt59913169dPZ86cybVBeLUvtEwmk0aPHq1Ro0Zd7ynnKjo6usCPiewYZ8dhrB2HsXYcxtoxCmucTSZTvt9T+nIxVU2VCz6QE7NYLLJYLPbn1zP2QHG3/OQs3evfX0uPfyCfUiWMjgMARQb1FQAgN9+v+FmbV23X+I8L/vt3wJkVRH3l8AahzWbLts1qteZpn9y2//rrr9q9e7feeustmc1mvf7669q+fbsuXLggX19fNW3aVF988UWumf77hdYVJpMpx88sCNHR0QoNDS2UY+NfjLPjMNaOw1g7DmPtGIU5zjR4ATja/8UuUGf3B/VVylL7rCYAAAAAsvvp821at3ijov431ugogEtyeIMwKChI+/btsz+PiYlReHh4nvbx8PDIcfuWLVvUpk0bVa9eXZLUvn17bd68WadOndKhQ4f0yy+/KCEhQWlpaUpISNCYMWMK+SwBAAAAuKovLy1W1xJ99VXyUqOjAAAAAEXS9m92a9V7a/TK1+ONjgK4LIdf0hoREaGtW7cqISFBiYmJ2rx5s5o1ayabzabo6GhZrdZc98lte6VKlbR161ZdvHhRCQkJ2rJliypXrqyXX35ZS5Ys0UcffaSBAweqc+fONAcBAAAAFCp3D3etPDNH3QIHGB0FAAAAKHL2fP+Hlr3yGc1BwGAOv4MwMDBQgwcP1ujRo2Wz2dS3b18FBwcrKSlJAwYM0PLly3PdR1KO2zt27KjDhw9r6NChstlsat26tbp06eLoUwMAAAAASZKvv4/m/DFVvSoM1bITHxodBwAAACgS9m7+S7OfW6x3f5pkdBTA5Tm8QShJHTp0UIcOHbJs8/b21rfffnvVfXLbbjKZNHToUA0dOjTXz7zrrrtuMDUAAAAA5F1Q+UC9+f1LGljjCc3/a5rRcQAAAABDHdx1RO8Mn6WZO6YYHQWADJhiFAAAAABcRYXq5fTiyjF69BaWOgAAAIDrOrr3uCb3fYfmIFCE0CDMJCoqSiaTyf4AAAAAgBtVtUElPTVzqEa2eMHoKAAAAIDDnTx0WuPvflVzfn/b6CgAMqFBmInFYpHNZrM/AAAAAKAg1G5WQ4Ne7qWxHV8yOgoAAADgMGejz+npNi9qwYHpRkcB8B80CAEAAADAAW5tX1/dn+qqCfe8anQUAAAAoNDFnY3X0JvHaNnxD4yOAiAHNAgBAAAAwEGa3dVIHfq21qTeU42OAgAAABSaSxeT9FCV4frkn7lGRwGQCxqEAAAAAOBAbR9sqca336w3hrxndBQAAACgwKWlpql70CB9HrfQ6CgAroIGIQAAAAA4WOdB7XRTw6qa/sQco6MAAAAABepOr976Knmp0TEAXAMNQgAAAAAwwL0j7lBIxTKa9ewio6MAAAAABaJLiT5afWmJ0TEA5AENwkyioqJkMpnsDwAAAAAoTD2fuVee3h5aNHGl0VEAAAbh+ygAzqJbwACtOD1bHl4eRkcBkAc0CDOxWCyy2Wz2BwAAAAAUtgFRDyoxLlEr3lxldBQAgAH4PgqAM+hR7mHN/+td+fr5GB0FQB7RIAQAAAAAgw2d0l8nD53W2o82Gh0FAAAAyJenm1o0Y9urCgjxNzoKgHygQQgAAAAARcDIGQ/r0K6j+uajDUZHAQAAAPJkYI0n9OzHjyskvIzRUQDkEw1CAAAAJ7Bu3ToNGjRIAwcO1Jo1a3LdLykpSWPHjs2y7f3331ffvn3Vq1cvLVq0yL597969GjFihHr16qUPPvig0LID+Ncjb/fV1tU79P2Kn42OAgAAAFzVI/VHKfKzsSpXJdjoKACug7vRAQAAAHBjLly4oDlz5mj69Okym80aMWKEGjdurKCgoCz7ffXVV/rqq6+UkpJi37Zt2zbt27dP8+fPV1JSkh5++GE1b95cFSpU0OTJk/Xqq68qODhYo0eP1l9//aUaNWo4+vQAlzP+41Eaf9cr8vb1UkSXhkbHAQAAALIZ0eRZPTP/cVWuG67o6Gij4wC4DtxBCAAAUMxt3bpVjRs3VmBgoPz9/dW8eXP9/HP2u4/8/f3Vpk2bLNt8fHzUr18/eXh4qFSpUgoLC1NycrK2bNmi+vXrq0KFCvL09NRbb72lqlWrOuqUAJf38hfPacUbn2v3ht+NjgIAAABk8VSr8Rr+zmDVaMT/IwLFGQ3CTKKiomQymewPAACA4iAmJkYhISH258HBwTp79my2/Vq0aKGIiIgs2+rWratGjRpp3bp1GjNmjIKDg1WrVi2dOnVKiYmJGjZsmB588EFNmzat0M8DQFZvrIvU7HGL9OfWA0ZHAQAAACRJz3SI0sCJvVS3RU2jowC4QUwxmonFYpHFYrE/p0kIAACKA5vNlm2b1WrN1zEaNGggSVq8eLH279+v5ORk7d+/X1OnTpWPj48sFou+/PJL3XvvvVneFxUVpcjIyByPaTKZNHr0aI0aNSpfWfKCKWwci/F2rMzj/dynT+iFjq9q2LT+Cq8damAq58TfbcdivB2rsMab70oAwHW90HWyeoy5R7e0q2d0FAAFgAYhAABAMRcUFKR9+/bZn8fExCg8PDxP792yZYsCAwNVo0YNtW/fXgcOHNDWrVsVGBioRo0aKTg4Y7H5Zs2a6ciRI9ne/98LrK4wmUw5Ni4LQnR0tEJDaZQ4CuPtWDmN97w/3lW/aiM05TuLylUJyeWdyC/+bjsW4+1YhTneNHoBwDVFdp+iLo90VNM7bzU6CoACwhSjAAAAxVxERIS2bt2qhIQEJSYmavPmzWrWrJlsNpuio6Ovejfh2bNn9dFHHykpKUkXL17U7t27FR4erqZNm+qXX37RmTNnlJCQoE2bNqlOnToOPCsAmS08OEMjW7yg86cvGB0FAAAALmZS76lq+2ALtezW1OgoAAoQdxACAAAUc4GBgRo8eLBGjx4tm82mvn37Kjg4WElJSRowYICWL1+uwMDAHN97xx136MCBA3r44Ydls9nUrl073XbbbTKZTBo4cKDGjBmj9PR0tW3bVh07dnTwmQHIbPnJWbrXv7+WHv9APqVKGB0HAAAALmDKoBlqcsctavtgS6OjAChgNAgBAACcQIcOHdShQ4cs27y9vfXtt99m2RYeHq6ZM2fan5vNZo0cOTLHY3bq1EmdOnUq+LAArtv/xS5QZ48H9VXSUpndmBAGAAAAhWfqsA9Vp3kN3T6grdFRABQC/o8SAAAAAIqR1ZeWqEuJPkbHAAAAgBOb8eRcVa4brq5DuWgUcFY0CDOJioqSyWSyPwAAAACgqHFzd9Mn/8xVt8ABRkcBAACAE/pw7EKFhJdRtyfuNDoKgEJEgzATi8Uim81mfwAAAABAUeTr76M5f0xVrwpDjY4CAAAAJzL/xWXy9fNRjzH3GB0FQCGjQQgAAAAAxVBQ+UC99cNLGnDTE0ZHAQAAgBNYMvlT2aw29R1/v9FRADgADUIAAAAAKKZCq5VT5KfPaOjNo42OAgAAgGJsxZurdPH8RQ16ubfRUQA4CA1CAAAAACjGqtSvqKc/eFQjW7xgdBQAAAAUQ/8342udPnJGQ6f0NzoKAAeiQQgAAAAAxVztZjU06OVeGtvxJaOjAAAAoBhZPXutDu0+osenDTE6CgAHo0EIAAAAAE7g1vb11f2prppwz6tGRwEAAEAx8O3C7/Xbxr16+sNhRkcBYAAahJlERUXJZDLZHwAAAABQnDS7q5E6PtRGL/d62+goAAAAKMK+X/Gztnzxi8Z+9LjRUQAYhAZhJhaLRTabzf4AAAAAgOLmtp4t1OSOW/TG4PeMjgIADrdmzRpZrVajYwBAkfbT59u0bvFGjf94lNFRABiIBiEAAAAAOJnOA9vppkZVNf2JOUZHAQCHWr16tYYPH66dO3caHQUAiqTta3Zp1fvfKOp/Y42OAsBgNAgBAAAAwAndO+IOhVQso1nPLjI6CgA4zDvvvKO+ffvqnXfe0fjx4/X3338bHQkAiozdG37Xstf+p1e+esHoKACKABqEAAAAAOCkej5zr7xKeGrhSyuMjgIADtO6dWvNnj1bjRs31jPPPKN33nlH58+fNzpWrqKiomQymewPACgMezf/pTnPL9Eb6yKNjgKgiKBBCAAAAABOrH9kT126mKQVb3xudBQAcIjk5GSdPn1aVatWVb9+/bRp0yYNGDBAS5YsUXJystHxsrFYLLLZbPYHABS0AzsP690Rs/XuT5OMjgKgCHE3OgAAAAAAoHANfb2f3h0xW6veX6O7H+tsdBwAKDTdu3dXfHy83NzcFBISonLlyqlZs2YqV66cjh8/rqFDh2rSpEkKCwszOioAOMTffxzXq/3e1ezf3jY6CoAihgZhJlFRUYqMjDQ6BgAAAAAUuJEzHtaUQTPk5eOl2we0NToOABSKl156Sb6+vipdurT8/f2zvb5p0ya99tprmjZtmgHpAMCxTh46rQn3vKoFB6YbHQVAEcQUo5kwpQMAAAAAZ/bMvBHaunqHvl/xs9FRAKBQnDhxQiNGjNDmzZslSRs3btTOnTvtrzdu3FhWq9WoeADgMDEnzmnUbS/SHASQKxqEAAAAuGFRUVEymUz2B4Cia/zHo/Ttgu+15ctfjI4CAAVu9uzZeumll9S5c8Z0yp6enrJYLNq+fbskydvbWzNmzDAyIgAUutiYOA279RktPfaB0VEAFGE0CAEAAHDDmIkBKF5eXjVOK9/6QrvW/2Z0FAAoUGazWdWqVbM/j4iI0Lhx4zRv3jwDUwGA4yTGX1L/ao9r5Zk5RkcBUMTRIAQAAAAAFzRlrUVznlusP7ceMDoKABSYBg0a6Msvv8y27ejRowYlAgDHSUtN0/1lBuv/YhcYHQVAMUCDEAAAwCBr1qxhDRwAhpq2+RW99fD7OvwbX5wDcA7Dhg3TF198oVdeeUXbt2/X4cOHtXDhQoWFhRkdDQAK3Z1evfVV8lKjYwAoJmgQAgAAGGT16tUaPny4du7caXQUAC7swz1vytLtdZ08dNroKABww4KCgjRz5kwFBQXp/fff1+OPP679+/dr/PjxRkcDgELVxbu3VifRHASQd+5GByhKoqKiFBkZaXQMAADgIt555x1t3LhR77zzjsLCwvTII4+oUqVKRscC4IIWHJiuB0Mf0fs7pqh0uQCj4wDAdYuLi9PmzZtVp04dde/eXWXKlDE6EgAUum4BA7TizBx5ePJ1P4C8y/N/Mfbs2aMVK1bIYrEoPT1d27ZtU5UqVVShQoXCzOdQFotFFovF/txkMhmYBgAAuILWrVurefPm+uKLL/TMM8+oZcuW6t+/vwIDA42OBsDFfBw9S/f699fS4x/Ip1QJo+MAwHWZMGGC/vnnH5UpU0YHDhyQn5+fateurVq1aunBBx80Oh4AFLgeZYdo/v5p8vXzMToKgGImzw3CefPmqUqVKjKbzfrggw+0adMmJSUl6YUXXlDjxo0LMyMAAIDTSk5OVkxMjKpWrap+/fppwYIFWrt2rXr16qX7779fXl5eRkcE4EL+L3aBOns8qK+SlsrsxooUAIqfv//+Wx999JH8/f2VlpamQ4cO6c8//9Sff/5pdDQAKHB9Kg7Te7+8roBgP6OjACiG8twgPHDggF566SWZTCatXbtWU6dO1dGjR7VgwQIahAAAANehe/fuio+Pl5ubm0JCQlSuXDk1a9ZM5cqV0/HjxzV06FBNmjRJYWFhRkcF4EJWX1qiLiX66OuUZUZHAYB8q169utLT0yVJ7u7uqlGjhmrUqKF77rnH4GQAULAG1nhCU9ZFKjgsyOgoAIqpPDcIK1asqN9++00BAQHy9PRUxYoVVb58eb322muFmQ8AAMBp3XLLLXrssccUFBQkszn7nTqbNm3Sa6+9pmnTphmQDoCrcnN30ycxc9UtYID+d+Ejo+MAQL5ERERo8uTJeuqpp7jICoDTeqT+KEV+NlYVqpczOgqAYizPDcLBgwdr4sSJ8vLyUps2bSRlrEvo6elZaOEAAACc0ciRI+Xv76/ff/9dx44dk4+Pj3x9fe2vb9q0Sa1atVLjxo21dOlSA5MCcFW+fj6a++c7ejD0EX0cPcvoOACQZz/99JMOHDigIUOGqHHjxqpZs6Zq1Kihm266SUFB3GUDoPgb3vhZjf3ocVWuG250FADFXJ4bhI0aNdJ7772nw4cPq2nTptqzZ4/GjRun/v37F2Y+AAAApzNmzBj99ttv2rFjh2bOnKm///5bYWFhql27tipVqqQFCxaoVatW8vb21owZM4yOC8BFlS4XoLc3TtSAm57QR/u5kxlA8fD222/LarXq6NGj2rdvn/766y8tWrRIhw4d0urVq42OBwA35MmWL+jxaUN0U8OqRkcB4ATy3CCUpNDQUIWGhkqSatSooQULFqh8+fKFEswIUVFRioyMNDoGAABwchUrVlTFihWVkJCgHj166NKlS9q3b5/+/PNP/fHHH+rZs6fREQFAkhRarZwiP31GQ28erQ93v2l0HAC4JpvNph9++EF///23QkND9cQTT0iS0tLSDE4GADfmmQ5RGvRyb9VpXsPoKACcRPbFbnKxZ88eTZgwQWlpaUpOTtb27dtltVoLM5vDWSwW2Ww2+wMAAKCgDRo0SHv27JEkVa5cWbGxsSpRooRuueUW9erVSxaLRf369TM4JQD8q0r9inr6w2Ea2fx5o6MAwDXNnj1bb775pk6cOKEZM2bo0KFD+uCDD3Jc7xkAiovnu0xWz2fu0S3t6hkdBYATyfMdhPPmzVOVKlVkNpv1wQcfaNOmTUpKStILL7ygxo0bF2ZGAAAAp/H0008rODhYkjRnzhwdOXJEwcHBqlmzpv1x0003qUSJEgYnBYB/1Y64SYMn99EzHaI0Za3F6DgAkKuvvvpKr776qurWratu3bopNDRUf/75p5YvX65evXoZHQ8A8s1y3+u669FOanLHrUZHAeBk8twgPHDggF566SWZTCatXbtWU6dO1dGjR7VgwQIahAAAAHnUoEED+88zZ85USkqKDhw4oH379mnfvn1avXq1oqOjtWbNGgNTAkB2t7Srp6SEZE2451VN/Hyc0XEAIEc+Pj725XEkydvbWyNHjpTFYqFBCKDYmdR7qtr1aqkW9zYxOgoAJ5TnBmHFihX122+/KSAgQJ6enqpYsaLKly+v1157rTDzAQAAOKXk5GQtXbpUAwcOVJ06dVSnTh37awkJCQYmA4DcNburkZITk/Vyr7c1ftnTRscBgGwiIiI0f/58+9qDUkbT8Pz58wamAoD8e33gdDW981a1fbCl0VEAOKk8T8A+ePBgvfbaa4qMjFTr1q0lZaxL6OnpWWjhAAAAnJWXl5e2b9+uEydOZHvN19fXgEQAkDe39WyhJnfcojcGv2d0FADI5pFHHtH+/fs1fPhwpaena/PmzZo2bZrq169vdDQAyLO3H/1A9VrWUqf+txkdBYATy3ODsFGjRnrvvfc0cuRIDR06VHv27NG4cePUrVu3QowHAADgvO6880699957iouLMzoKAORL54HtVKNxNU17fLbRUQAgC29vb02fPl0PPPCAGjRooBkzZsjT01PPPPOM0dEAIE9mPDlXVepVVJdHOhodBYCTy/MUo5J09uxZnTlzRrt27dJNN92kBQsWqHz58oWVzeGioqIUGRlpdAwAAOAi1qxZo4MHD6pXr166+eabVadOHdWoUUM1a9ZUQECA0fEA4KruGd5ZK974XB+OXaihr/czOg4AFzZo0CA9/fTTatCggbZt26YaNWro9ttv1+233250NADIlw/HLlRIeBl1e+JOo6MAcAF5bhAuW7ZMy5YtU926dbVy5UolJSVpyJAhTtUgtFgsslgs9udXplItDF5eXoV2bPyLcXYcxtpxGGvHYaz/v717j8+5/v84/rzGtMhhraHlbBFKYbXxzSEjRTohY86HkZUwKZLLJSSFQo6Rc9K36OCUUt9vio2S9P1mI3S6Ut9Niq3NYdfvj+/ve7Vl09iuz/s6PO632+eWz3ufva/n57XJ+3a9rs/nYw1P1tnbf4azZ8/WuXPndPToUaWmpiotLU3Lli3TkSNHtGXLFtPxiuXWW2/12Nze/nP1N9TbWr5W726j79aKieu0ctJr6j2hm+k4F8XXau3rqLe1Am19NXLkSIWHh0uSlixZoqNHjyo8PFz169d3b9dee60uv/xyw0kL9ucPrNeoUcNjr+WNPz9/R82t56s1X/bkWpWrWFbdRt9tOspF89Wa+zJqbj1/XF8VuUG4fv16TZkyRY0aNZIkHT16VFOmTFG5cuXUurV/3gt5x44dHps7JyfHY3PjD9TZOtTaOtTaOtTaGp6ss7f/DGfMmOF+0+r2229Xx44dJUlnzpwxnKz4WEf5D+ptLV+sd5+JD2jRmJV67bm3fOoNLV+stS+j3tYKtPVV48aN3X9esGCBTp8+rUOHDik1NVWpqanatGmTnE6ntm7dajBl4f78gXWbzeax1/LGn5+/o+bW88War57yuiQp/okuhpNcGl+sua+j5tbzx/VVkRuEZ8+ezXe1YK1atTR69GjNmzfPbxuEAAAAnnT11Vdr9+7dWrVqlX777TfVrVvX3TBs37696XgAUGQJ03trzkMv6a15W3X3sA6m4wAIcDk5OapevboaNmzoHsvMzDSYCAAK99qMt5V5IlMJz/YxHQVAgAkq6oFNmjTRW2+9lW8sIiJCR44cuegX3b59u/r3769+/foV+umtwo4pbHzNmjXq2bOnevTooRUrVrjH58+fr/j4eMXFxWnVqlUXnRUAAMBTevbsKYfDobVr12rlypW6+eabtWXLFv3zn/80He2iORwO2Ww29wYg8Dw8d5DS9nytrcs+MB0FQADbunWrunfvrk8++USS9NFHH2nv3r0qV66c4WQAcL4Nczfr52/+Q3MQgBFFvoJwyJAhevTRR/XNN9+oRYsWqlatmjZv3qzatWtf1AueOHFCS5Ys0dy5cxUUFKTExERFRUUpLCzsL48pVapUgeMZGRnauHGjFi9eLJvNpmHDhqlp06b6/ffflZqaqmXLlik7O1uDBg1S8+bNVbdu3YvKDAAA4GlhYWHq06ePGjdu7JMNQitvjQXAe41eOkyTu89USLkQte7W3HQcAAHopZde0qRJkxQVFSVJKlOmjOx2uyZMmOAeAwBvsGnxezqy/1uNXDjEdBQAAarIVxCGh4dr3rx5ql+/vtavX69x48bpm2++UVJS0kW9YEpKiqKiohQaGqqKFSuqefPm2rlzZ5GOKWw8KChIpUqVUpkyZRQcHKzg4GAFBQWpbNmy6t27t4KDg1W+fHlVq1aNe/MCAACvsWfPHp08eTLf2I033qjdu3cbSgQAxTf+1VHatuIfSt74qekoAAJQUFBQvg+GR0dH6/HHH9fLL79sMBUA5Ldt5T/05Y4DNAcBGFXkKwglqWzZsoqLi1NcXJwkKTc396Ibbunp6apcubJ7Pzw8XBkZGUU6Jjg4uMDxyMhIRUdHq0uXLrLZbGrTpk2++8xv375dmzZtUnh4uK677rrzMjkcDk2cOLHAvDabTUlJSRo1atRFnWdROJ3OEp8T56PO1qHW1qHW1qHW1vBUnb39KraXXnpJR44cUUREhBo0aKDrrrtOx48fP69pCAC+ZvLbj+vRWIcuK3uZbrrtetNxAASQxo0ba+PGjerVq1e+saefftpgKgD4wz/WfaLkjZ9p/NqRpqMACHAX1SD8s99//1333Xef3n333SJ/j8vlOm8sNze3SMcUNr5//37t27dPM2fOVFBQkKZPn649e/a4bx3RuHFjSdLq1at18OBB1a9fP98cf74l1v/YbLYCX7MkOJ1ORUREeGRu/IE6W4daW4daW4daW8OTdfb2Bu+CBQuUnZ2ttLQ0/fvf/9Znn30mp9OpoUOHmo4GAMX27Pt2DW8+Tg8+318Noq81HQdAgBg6dKgSExP13XffqX379goLC9OWLVtUrVo109EAQJ+8uVvbX9khx/oxpqMAQPEahFLBzbwLCQsLU2pqqns/PT1d1atXL9IxwcHBBY4nJyerVatWioyMlCS1bdtWu3bt0rlz5xQaGqp69eqpbdu2OnTokFJSUs5rEAIAAFjl9OnT+uCDD/Tbb7+pdu3auummm9S4cWP3B5oAwJ/M3jlVCTcmaeyqR1T7hhqm4wDwUydOnFClSpUk/fc9pQULFmjdunWaP3++jh07pvr162v8+PFmQwIIeHu2fq63F7yrpzc/YToKAEj6i2cQfvvtt+dd3Vdc0dHRSklJUWZmprKysrRr1y7FxMTI5XLJ6XQqNze30GMKG69Zs6ZSUlJ06tQpZWZmKjk5WbVq1VJGRoaWL1+u7OxsnTp1Svv27TuvGQkAAGCladOmaebMmfroo480YcIEDR8+XMeOHTMdCwA8ZtG+GbLfN10/Hv7JdBQAfiouLk47duyQJC1fvlwHDhxQ165dtWTJEm3cuFEzZ87UNddcYzglgEC278N/ae0zG2gOAvAqF7yCcODAgQoJCVFkZKTq1aunevXq6dprr1W1atUUFHTB3mKhQkNDNWDAACUlJcnlcik+Pl7h4eHKzs5W3759tW7dukKPkVTgeLt27XTkyBElJCTI5XKpZcuW6tixoyTp0KFDGjRokFwul2677Ta1bt36knIDAACUhN27d2vcuHFq3bq1srKyNH36dL3wwgs8FweAX1txaK66RwzW/M+e1ZVVK5mOA8DPvPXWWzp79qwk6ddff9XKlSt1+PBhVapUSfXr11e9evVUv359NWvWzHBSAIHo3zvTtPSJNXrh4ymmowBAPhdsEG7YsEEHDx5UWlqa0tLStHz5cv3444+6/PLLFRkZqVq1al3Si8bGxio2NjbfWEhIiLZt23bBYwobt9lsSkhIUEJCwnnHDx8+/JIyAgAAeEJ2drZuvPFGSVLZsmXVv39/PfTQQ4ZTAYDnvepcrHsr9dXqb+erXIWypuMA8CPDhw/XvHnzJEkxMTEaPny4zpw5oyNHjig1NVWpqan68MMPtWjRIsNJAQSag58d1tyHl2jenmdMRwGA81ywQViuXDnddNNNuummm9xjp06d0sGDB5WamqqDBw+qatWqns4IAADgV/LeieGqq65Sdna2wTQAYJ0NJ5brjjJx2pi1WqVKlzIdB4CfqFKlihwOh2JiYrRixQqtWrVKwcHB7rthde7c2XREAAHom39/r2f6zNFLX84yHQUACnTBBmFBrrjiCjVp0kRNmjTxRB4AAAC/d/z4cVWoUMF0DAAwYmPWanUqG68tp9eajgLATzzxxBN6++239fHHHys9PV1333236tatm+/2osV5XA4AXCzn18c04Z5ntPzgHNNRAKBQrIzycDgcstls7g0AAKCkVapUSYMHD1aXLl00ZswYLVmyRJLkdDoNJwMAa5QqXUqvpy/VvZX6mo4CwE8cOHBAXbp00eTJk91XEcbFxalcuXLavn27RowYoXvuucd0TAAB4j/fZ2j0bRNpDgLwehd9BaE/s9vtstvt7n2ahAAAoKS99tpr+vnnn5WWluZ+1nOFChXUt29flS9fXg0aNNB1112n3r17m44KAB5TrkJZLT3wgrpHDNarzsWm4wDwcc8884xeeOEFXXXVVapQoYLCwsLUokULtWjRwn3Mjz/+aDAhgEDxa/pverDpGP395yWmowDAX6JBCAAAYLHKlSurcuXKuvXWW91jP/30k9LS0pSWlqYvv/zSYDoAsMaVVSvp+R2T1SfyIa04NNd0HAA+LC4uToMGDVLNmjX1zTff6KabbjrvtqJXX3214ZQA/F3Wyd/Vp+5DevPXFaajAECR0CAEAADwAlWqVFGVKlXUsmVL01EAwDJX16kix4YxSmicpEVfzDAdB4CP6ty5s1q2bKl//etfmjZtmrZv36758+fr7Nmzqlevnvs5hK1btzYdFYCfOnP6rLqGD9Cm7FdMRwGAIqNBCAAAAAAwpvb1NTRy8VANbz5Os3dONR0HgI+qVKmS/va3v2nkyJFq27atJOnYsWNKTU1VWlqa3n77bRqEADymY0gPbct9zXQMALgoQaYDAAAAAAACW4PoazVgak89GuswHQWAD3r66aeVnZ0tSe7moCRVrVpVrVu31uDBg/Xcc8+ZigfAz3UM6cGVgwB8Eg1CAAAAAIBxN912vbqOukvjO08zHQWAj9m+fbtOnz7t3p8/f36+/dzcXJ08edJENAB+7p6KffT3/yxVcBlu1AfA99AgzMPhcMhms7k3AAAAAIB1ojs1U/s+rTW5+0zTUQD4sDfeeMN9RaEk/f7777r//vsNJgLgj7pWHqgVX89V2fKXm44CAJeEBmEedrtdLpfLvQEAAAAArNW6W3PdfGcTPTdgnukoAAAABepZY6jmfzZdFa+qYDoKAFwyGoQAAAAAAK/Sod9tqhdVV3Meesl0FAAAgHz6XvuwnvtgosKrhZmOAgDFQoMQAAAAAOB17h7WQVVrVdaiMStNRwHgA3z5GYM88gbwHYOuH6lJbz6miLpVTUcBgGKjQQgAAIBi440tAJ7QbfTduvyKEK2YuM50FABerHz58urXr5/69u2radOmSZIOHDigzMxMw8mKhkfeAL5hWNRjemzFw6rZsJrpKABQIkqbDgAAAADfZ7fbZbfb3fs0CQGUlN4TumnxY6u07tk39cCj95iOA8ALvfHGGzp27JhSU1N18OBBNWnSRFOnTlVmZqaqVq2q6tWrm44IwMc98rcn9NCcgbq2aR3TUQCgxNAgBAAAAAB4tcHP9NKch17SW/O26u5hHUzHAeCFqlatqqpVq6p169buMafTqbS0NKWlpen06dMG0wHwZaPbTtSAKT3VsHk901EAoERxi9E8uDUWAAAAAHinh+cOUtqer7V12QemowDwEREREWrTpo0SEhL03HPPmY4DwAeNvXOK4h67Vze2aWQ6CgCUOBqEeXDPdwAAAADwXqOXDtPuLZ/rH+s+MR0FAAD4Oft909V56O2K6nCT6SgA4BE0CAEAAAAAPmP82pF6b9U/teudT01HAQAAfmpy3Cy17XGrWtxzs+koAOAxNAgBAAAAAD7lqbce1+uz3tHnH3xpOgoAAPAz0/vOVXSnpmr9QAvTUQDAo2gQAgAAAAB8zrPv27V03Bp9lXzQdBQAAOAnZg1ZqOtvvU7te7c2HQUAPI4GIQAAAADAJ83eOVWzEhboyP5vTUcBAAA+7sXhS1X7hhrqOLid6SgAYAkahAAAAAAAn7Vo3wxNvP9ZOb8+ZjoKAADwUYseXaHKNcN170N3mo4CAJahQZiHw+GQzWZzbwAAAAAA77f84ByNajVBGT/+YjoKAADwMcueXKtylcqpW1Jn01EAwFI0CPOw2+1yuVzuDQAAAADgG9b+sEgDG4xQ5m9ZpqMAAAAfsXrK65Kk+Ce6GE4CANajQQgAAAAA8AsbTixXl6sG6NzZc6ajAAAAL/fac28p89cs9XsqznQUADCCBiEAAAAAwG9s+n2NOl7e03QMAADgxTbM2ayfv0tXwvTepqMAgDE0CAEAAAAAfiOoVJDWH1+meyr2MR0FAAB4oU2L39ORL79V4gsDTEcBAKNoEAIAAAAA/ErZ8pfr5dTZ6h4x2HQUAADgRbat+Ie+/PiARi4cYjoKABhHgxAAAAAA4HeurFpJz++YrD6RD5mOAgAAvMCHr36slM17NWYZawMAkGgQ5uNwOGSz2dwbAAAAAMB3XV2nihwbxiihcZLpKAAAwKBP3tytD9Z+rCdeGWE6CgB4DRqEedjtdrlcLvcGAAAAAPBtta+voVEvPaiHY8aajgIAAAzYvWWv3lm4TY71Y0xHAQCvQoMQAAAAAODXrrslUoOm9dLothNNRwEAABb6/IMvte7ZtzR10zjTUQDA69AgBAAAAAD4vRvbNFK3pM4a33ma6SgAAMAC//okVcueXKtn37ebjgIAXqm06QAAAAAAAFghulMzZWed1uTuMzVgVpzpOAB81Pbt27Vy5Uq5XC716NFDHTp0yPf11atXa/Xq1e793NxcNWvWTFOmTLE6KhCwDn52WC8OX6p5e54xHQUAvBYNQgAAAABAwGjdrblysnK0eORq2V991HQcAD7mxIkTWrJkiebOnaugoCAlJiYqKipKYWFh7mPi4+MVHx/v3n/22Wd12223mYgLBKTvD/yoxY+s1uL9M01HAQCvxi1GAQAAUGwOh0M2m829AYA3u71vG9W5qYZmJ75kOgoAH5OSkqKoqCiFhoaqYsWKat68uXbu3Fno8Z999plsNpuioqIsTAkErh8OHdPsQS/RHASAIuAKwjwcDocmTpxoOgYAAIDPsdvtstv/eLYHTUIA3i62b0t9vGaPFo1ZqYTpvU3HAeAj0tPTVblyZfd+eHi4MjIyCjw2NzdXS5culcPhKPDrF3ofymazKSkpSaNGjSp25j9zOp0lPicujJpbI8P5iybf87xm7XZQcwOoufWoufU8VXNT76HQIMyDN7YAAAAAIHB0G323Vk56TSsmrlOfiQ+YjgPAB7hcrvPGcnNzCzx2x44dqlu3br7bj+b15/eh/sdmsxX4OiXB6XQqIiLCI3OjYNTcGif+85se6fSkXvtpCTU3gJpbj5pbz5M1N9Xs5RajAAAAAICA1XtCN+X8flrrnn3TdBQAPiAsLEzp6enu/fT0dF111VUFHrt9+3b97W9/syoaELAyf8tSv2sf1ms/LTEdBQB8Cg1CAAAAAEBAG/xML/38bbrefHGL6SgAvFx0dLRSUlKUmZmprKws7dq1SzExMXK5XHI6ne6rCbOzs7V//37ddNNNZgMDfu7M6bPqVnmgNpxYbjoKAPgcGoQAAAAAgID30JyBOvjZYW19+QPTUQB4sdDQUA0YMEBJSUkaOXKk4uPjFR4erpycHPXt21e//vqrJGnPnj1q1KiRypQpYzgx4N86hvTQpuxXTMcAAJ/EMwgBAAAAAJA0eskwTY6bpZByl6n1Ay1MxwHgpWJjYxUbG5tvLCQkRNu2bXPv33rrrbr11lutjgYElDsv66HNOTQHAeBScQUhAAAAAAD/b/zakXpv1T+1651PTUcBAACFuLtCb72R8bJKB3P9CwBcKhqEeTgcDtlsNvcGAAAAAAg8T731uN54fqP2bt9vOgoAAPiTrpUHauXhF3X5FSGmowCAT6NBmIfdbpfL5XJvAAAAAIDANP29CXp5/Fp9tSvNdBQAAPD/elQfogV7n1XFqyqYjgIAPo8GIQAAAAAABZj9yRTNGrJQR/Z/azoKAAABr0/kQ5r5j0m66porTUcBAL9AgxAAAAAAgEIs2jdDE+9/Vs6vj5mOAgBAwBp0/Ug99dbjurpOFdNRAMBv0CAEAAAAAOAClh+co1GtJijjx19MRwEAIOA82GyMHl85XDUbVjMdBQD8Cg1CAAAAAAD+wtofFmlgwxHK/DXLdBQAAALG8BZPaPiLgxTZpLbpKADgd2gQAgAAAABQBBt+Wa6ulQfq7JmzpqMAAOD3RredqIFTe6pBTD3TUQDAL9EgzMPhcMhms7k3AAAAAADy2pi1Wp3KxpuOAQCAXxt75xTFPXavbmzTyHQUAPBbNAjzsNvtcrlc7g0AAAAAgLyCSgVp/fFluqdiH9NRAADwS/Z7p6vzg7crqsNNpqMAgF+jQQgAAAAAwEUoW/5yLUubrQeuHmw6CgAAfmVy95lqG99SLe6+2XQUAPB7NAgBAADwl3Jzc01HAACvElqlkmZ/MkW96yaajgIAgF+Y3neuou9qptbdmpuOAgABgQYhAACAH9i+fbv69++vfv36aevWrYUel52drTFjxuQbmz9/vuLj4xUXF6dVq1ad9z1Lly7VwoULSzwzAPi6qrUra9KbjymhcZLpKAAA+LRZCQt0fcsGat+7tekoABAwaBACAAD4uBMnTmjJkiWaOXOmXnjhBa1cuVIZGRnnHbd582aNGTNGv/32m3ts9+7dSk1N1bJly7R48WK9/fbb+vrrr91f/+KLL/TWW29Zch4A4ItqX19Do156UA/HjDUdBQAAnzT34SWqc2MtdRwUazoKAAQUGoQAAAA+LiUlRVFRUQoNDVXFihXVvHlz7dy587zjKlasqFatWuUbK1u2rHr37q3g4GCVL19e1apVU05OjiQpMzNTixcvVrdu3Sw5DwDwVdfdEqlB03ppdNuJpqMAAOBTFj26QlVqVdY9iXeYjgIAAae06QAAAAAonvT0dFWuXNm9Hx4eXuAVhC1atNB3332n9957zz3WqFEjSf+9RemmTZsUHh6u6667TpI0e/Zs9e7dWz///HO+qw4BAOe7sU0jZWflaPxdT2vyO1xNCADAX3l5/Cu6IvQKdUvqbDoKAAQkGoR5OBwOTZw40XQMAACAi+Jyuc4by83Nvag5GjduLElavXq1Dh48qO+++07lypXTLbfconfeeafQ77vQ+slmsykpKUmjRo26qCxF4XQ6S3xOFI56W4t6W6eka139pqqKuruxxnWeoocW9i/Ruf0Bv9vW8lS9bTabR+YFEFhWT35dtiCbeo6733QUAAhYNAjzsNvtstvt7n0WvQAAwBeEhYUpNTXVvZ+enq7q1asX6XuTk5MVGhqqevXqqW3btjp06JBSUlKUmpqqw4cP69NPP1VmZqbOnj2rzMxMjR49Ot/3/3n99D82m63AxmVJcDqdioiI8MjcOB/1thb1to6nan1vQoTKXlZOq59Yr0dfTizx+X0Vv9vW8mS9afQCKK7XnntLmb9lKWF6b9NRACCg8QxCAAAAHxcdHa2UlBRlZmYqKytLu3btUkxMjFwul5xO5wWvJszIyNDy5cuVnZ2tU6dOad++fapevbomT56sNWvWaPny5erXr586dOhwXnMQAFCw2/u20XW3RGp24kumowAA4FU2zNmsn79LpzkIAF7ASINw+/bt6t+/v/r166etW7de1DGFja9Zs0Y9e/ZUjx49tGLFCvf4+vXr1b9/f3Xv3l2zZs3SuXPnPHdiAAAABoSGhmrAgAFKSkrSyJEjFR8fr/DwcOXk5Khv37769ddfC/3eO+64Q1WqVNGgQYM0ZMgQNWnSRK1bt7YwPQD4p84PdtDVdapo0aMr/vpgAAHN4XDIZrO5N8BfbVy0TUf/9Z0SXxhgOgoAQAZuMXrixAktWbJEc+fOVVBQkBITExUVFaWwsLC/PKZUqVIFjmdkZGjjxo1avHixbDabhg0bpqZNmyooKEgbNmxwHz9+/Hht2bJFnTp1svq0AQAAPCo2NlaxsbH5xkJCQrRt27Z8Y9WrV9eCBQvc+0FBQRo+fPgF577rrrtKLigABJBuSZ216qm/a7n9VfV1dDcdB4CX4pE3CATvLv9Q/96Zxu23AcCLWH4FYUpKiqKiohQaGqqKFSuqefPm2rlzZ5GOKWw8KChIpUqVUpkyZRQcHKzg4GAFBQXp+PHj6tSpk8qXL69y5copJiZGx44ds/qUAQAAAAABqteTXXU6+4zWPfum6SgAABjx4asfa/eWz2kOAoCXsbxBmJ6ersqVK7v3w8PDlZGRUaRjChuPjIxUdHS0unTpoq5du6phw4Zq2LChbr31Vj3wwAOS/vt8nW3btql58+YePkMAAAAAAP4w+Jle+vnbdL354hbTUQAAsNTHG1L04auf6IlXRpiOAgD4E8tvMepyuc4by83NLdIxhY3v379f+/bt08yZMxUUFKTp06drz549ioqKkiRt2bJFq1ev1oMPPqiGDRueN4fD4dDEiRMLzGuz2ZSUlKRRo0YV5fQuitPpLPE5cT7qbB1qbR1qbR1qbQ1P1ZnbMwEAvMVDcwbquYHztPXlD9Sh/22m4wAA4HEpm/dq0+L3NGXjONNRAAAFsLxBGBYWptTUVPd+enq6qlevXqRjgoODCxxPTk5Wq1atFBkZKUlq27atdu3apaZNm+rpp5/WuXPnNGfOHFWqVKnATH++1/v/2Gy2ApuSJcHpdCoiIsIjc+MP1Nk61No61No61NoanqwzDV4AgDcZvWSYpvR4XpeVLaM23f9mOg4AAB7z+Qdf6rXn3tKz75//nisAwDtYfovR6OhopaSkKDMzU1lZWdq1a5diYmLkcrnkdDqVm5tb6DGFjdesWVMpKSk6deqUMjMzlZycrFq1aumjjz5SVlaWJkyYUGhzEAAAAAAAqzzxyghtX7NDO9/eYzoKAAAe8a9PUrXsybU0BwHAy1l+BWFoaKgGDBigpKQkuVwuxcfHKzw8XNnZ2erbt6/WrVtX6DGSChxv166djhw5ooSEBLlcLrVs2VIdO3bU/PnztXfvXt17773u1+/cubMGDhxo9WkDAAAAACBJmvTmYxrTbpJCyl2mJm1vMB0HAIASk/bpYc17ZKle3P2M6SgAgL9geYNQkmJjYxUbG5tvLCQkRNu2bbvgMYWN22w2JSQkKCEhId94YmKiEhMTSzA5AAAAAADFN/29CRre4gmFzLxMDWLqmY4DAECxHfnyWz3X/0Ut+mKG6SgAgCKw/BajAAAAAABAmv3JFD0/dJEOf/GN6SgAABTLD4eOyXH/szQHAcCH0CAEAAAAAMCQhZ8/p0ldn9MPh46ZjgIAwCX5+bt0jYl1aFnaHNNRAAAXgQZhHg6HQzabzb0BAAAAAOBpy9LmKKn1BGX8+IvpKAAAXJQTP/+qxJsf1+pv5puOAgC4SDQI87Db7XK5XO4NAAAAAAArrP1hkQY2HKHMX7NMRwEAoEgyf8tSv3rD9dqxl0xHAQBcAhqEAAAAAAB4gQ2/LFfXygN19sxZ01EAALigMzln1K3KIG04sdx0FADAJaJBCAAAAACAl9j4+2p1ujzedAwAAC6o4+U9ten3NaZjAACKgQYhAAAAAABeIigoSBtOLNfdFXqbjgIAQIHuvKyHNue8YjoGAKCYaBACAAAAAOBFLr8iRMsPztEDVw82HQUAgHzurtBbb2S8rNLBpU1HAQAUEw1CAAAAAAC8TGiVSpr9yRT1rptoOgoAAJKkLuEDtOrIPF1+RYjpKACAEkCDMA+HwyGbzebeAAAAAAAwpWrtynrqrcc1+IZRpqMAAAJcXLUhWrTvOVUIK286CgCghNAgzMNut8vlcrk3AAAAFA0ftAIAz6jVqLpGLx2mh6LHmo4CAAhQfSIf0qx/TlJYxJWmowAAShANQgAAABQbH7QCAM+pf3OkBj/TS6PbTjQdBQAQYAY2GqnJbz+uq+tUMR0FAFDCaBACAAAAAODlbmzTSN1G363xdz1tOgoAIEAMbfqoxq1+RDUaVDMdBQDgATQIAQAAAADwAdEdm+r2fm301AMzTUcBAPi54S2e0CPzBqvuTbVMRwEAeAgNQgAAAAAAfESrrs0Vc1czTe8313QUAICfGn3bRA16Ol4NYuqZjgIA8CAahAAAAAAA+JD2fVqrQUw9zR622HQUAICfGXvHZMWNvU+NWzc0HQUA4GE0CPNwOByy2WzuDQAAAAAAb9R56O26um5VLXp0hekoAIqJ96PgLez3TlfnYR0UdfuNpqMAACxAgzAPu90ul8vl3gAAAAAA8FbdkjqrbIWyWm5/1XQUAMXA+1HwBpO7z1Tb+JZqcffNpqMAACxCgxAAAAAAAB/V68muOpNzRq9Of9N0FACAj3qmzxzFdI5S627NTUcBAFiIBiEAAAAAAD5s0LReSv8+QxvmbjYdBQDgY2YOXqDGrRuqXa9WpqMAACxGgxAAAAAAAB+XOHuADu09oq0vf2A6CgDAR8x9eInq3lRLdw6MNR0FAGAADUIAAAAAAPzA6CXDtOfdffrw1Y9NRwEAeLmFo1eoau3KuifxDtNRAACG0CAEAAAAAMBPPPHKCG1fs0M7395jOgoAwEstfWKNKoSVV9dRnU1HAQAYRIMwD4fDIZvN5t4AAAAAAPA1k958TOtnb9Le9/ebjgIA8DKrJ7+uoFJB6jH2PtNRAACG0SDMw263y+VyuTcAAAAAAHzR9G0TtGzCWv17Z5rpKAAAL7Hu2TeVdfJ39ZsUZzoKAMAL0CAEAAAAAMAPvfDxFL3w4CId/uIb01EAAIatn71J6T8c1+BnepmOAgDwEjQIAQAAAADwUws/f06Tuj6nHw4dMx0FAGDIOwu36duvvtew5/ubjgIA8CI0CAEAAAAA8GPL0uYoqY1dGc7jpqMAACz27vIP9dWuND0yP8F0FACAl6FBCAAAAACAn1v7/UINun6UTp3INB0FAGCRD9Z+rD1bP9ejLyeajgIA8EI0CAEAAAAACADrjy9TtyqDdPbMWdNRAAAetmN9sv752k6NWzPCdBQAgJeiQQgAAAAAQIDY+Ptqdbo83nQMAIAHpWzeq80vvS/766NNRwEAeDEahHk4HA7ZbDb3BgAAAACAPwkKCtKGE8t1d4XepqMAADxg7/b9+vuMtzVl4zjTUQAAXo4GYR52u10ul8u9AQAAAADgby6/IkQrDs1Vt6qDTEcBAJSgLz8+oBX2dZr+3gTTUQAAPoAGIQAAAIqNOzEAgG+pVLmi5uyaqt51Ek1HAQCUgLRPD2v+iJc166OnTEcBAPgIGoQAAAAoNu7EAAC+p2qtynrq7cc1+IZRpqMAAIrhyJff6rn+L+rF3c+YjgIA8CE0CAEAAAAACFC1GlXX6KXD9FD0WNNRAACX4IeDP8rR5Tkt+mKG6SgAAB9DgxAAAAAAgABW/+ZIJUzvrdG3TTQdBQBwEX7+Nl1j2k/SstTZpqMAAHwQDUIAAAAAAAJc49YN9cCYe/REp6mmowAAiuDEz78q8ZbHtfrofNNRAAA+igZhHg6HQzabzb0BAAAAABAobrmziTr0v01PPTDTdBQAwAVk/pqlfvWH67VjL5mOAgDwYTQI87Db7XK5XO4NAAAAAIBA0qprc8Xc1UzT+801HQUAUIDT2af1wNWDteGX5aajAAB8HA1CAAAAAADg1r5PazWIqafZwxabjgIA+JNOZeO1MWu16RgAAD9AgxAAAAAAAOTTeejtioisqoWjV5iOAvg9HnmDorqjTJy2nF5rOgYAwE/QIAQAAAAAAOfpOqqzylUsq+X2V01HAfwaj7xBUXQu31sbflmmUqVLmY4CAPATNAgBAAAAAECBej3ZVWdyzujV6W+ajgIAAatL+ACtPjpPIeVCTEcBAPgRGoQAAAAAAKBQg6b1Uvr3Gdowd7PpKAAQcOKqDdGifc+pQlh501EAAH6GBmEe3PMdAAAAAIDzJc4eoK8/P6otS7ebjgIAAaN33UQ9/9FTCou40nQUAIAfokGYB/d8BwAAAACgYEkvPajP3vtCH6z92HQUAPB7AxuO0JSN41S1dmXTUQAAfooGIQAAAAAAKJJxa0bog1d2aOfbe0xHAQC/NbTpoxq3ZoRqXHeN6SgAAD9GgxAAAAAAABTZpDcf0/rZm7T3/f2mowCA3xnefJwemZ+gujfVMh0FAODnaBACAAAAAICLMn3bBC2bsFb/3plmOgoA+I2kNnYNeqaXGkRfazoKACAA0CAEAAAAAAAX7YWPp2j2sMX6et9R01EAwOeNvWOyeoy7X41bNTQdBQAQIGgQAgAAAACAS7Jg77N6qtsM/XDomOkoAOCzJtzzjO5OvENRt99oOgoAIIDQIMzD4XDIZrO5NwAAAAAAcGHL0uYoqY1dGc7jpqMAgM956oGZate7lZp3jjIdBQAQYGgQ5mG32+VyudwbAAAAAAD4a2u/X6hB14/SqROZpqMAgM94ps8cNb87Sq26NjcdBQAQgGgQAgAAAACAYlt/fJkeqDpIZ06fNR0FALzezMEL1Lh1Q7Xr1cp0FABAgKJBCAAAgGLjVu0AAEna+Psadbq8p+kYAODV5jz0kiKb1NadA2NNRwEABDAahAAAACg2btUOAJAkm82mN39dobsr9DYdBQC80oKk5YqoW1V3D+tgOgoAIMDRIAQAAAAAACXm8itCtOLQXHWrOsh0FADwKkufWKOKV1VQl5F3mY4CAAANQgAAAAAAULIqVa6oObumqnedRNNRAMArrHrq7ypVupR6jL3PdBQAACTRIAQAAAAAAB5QtVZlTX5nrAZdP9J0FAAw6tXpbyo7M1t9Hd1NRwEAwI0GYR4Oh0M2m829AQAAAACAS1ezYTU9+nKiJt41w3QUADDi3SX/UIbzuAZN62U6CgAA+dAgzMNut8vlcrk3AAAAAABQPPVvjlT3J+7W6Nsmmo4CAJZ6Z+E2OQ8e07Dn+5uOAgDAeWgQAgAAAAAAj2rQ/Fo9MOYePdFpqukoAGCJrcs+0IHkg+o3jduKAgC8k5EG4fbt29W/f3/169dPW7duvahjChtfs2aNevbsqR49emjFihX55srOztaYMWM8czIAAAAAAOAv3XJnE90xoK0mdeN2owD82/ZXduizbV9o9NJhpqMAAFCo0la/4IkTJ7RkyRLNnTtXQUFBSkxMVFRUlMLCwv7ymFKlShU4npGRoY0bN2rx4sWy2WwaNmyYmjZtquuvv16bN2/W5s2bdfr0aatPFQAAAAAA5NGyS4yys3I0ve9cjVn+kOk4AFDidqxP1kd/3yX766NNRwEA4IIsv4IwJSVFUVFRCg0NVcWKFdW8eXPt3LmzSMcUNh4UFKRSpUqpTJkyCg4OVnBwsIKC/ntqFStWVKtWraw+TQAAAAAAUID2vVurQfN6mj1ssekogFdwOByy2WzuDb4redNn2rJkO81BAIBPsLxBmJ6ersqVK7v3w8PDlZGRUaRjChuPjIxUdHS0unTpoq5du6phw4Zq2LChJKlFixaKjo728FkBAAAAAICi6jz0dkVEVtXC0Sv++mDAz9ntdrlcLvcG37T3/f16fdY7mvzOWNNRAAAoEstvMVrQQic3N7dIxxQ2vn//fu3bt08zZ85UUFCQpk+frj179igqKqpImRwOhyZOnFjg12w2m5KSkjRq1KgizXUxnE5nic+J81Fn61Br61Br61Bra3iqznwCGwAA79V1VGetnvy6lk1Yq36T4kzHAYBL9uXHB7Ri4jrN+ugp01EAACgyyxuEYWFhSk1Nde+np6erevXqRTomODi4wPHk5GS1atVKkZGRkqS2bdtq165dRW4Q2u122e3288ZtNpvHPrnldDoVERHhkbnxB+psHWptHWptHWptDU/WmQYvAADeLX58Fy0Zu1prn9mguMfuNR0HAC5a2p6vNX/kMr2YMs10FAAALorltxiNjo5WSkqKMjMzlZWVpV27dikmJkYul0tOp1O5ubmFHlPYeM2aNZWSkqJTp04pMzNTycnJqlWrltWnBgAAAAAALtLAp+OV8cNxbZi72XQUALgoR/Z/q+cGzqM5CADwSZZfQRgaGqoBAwYoKSlJLpdL8fHxCg8PV3Z2tvr27at169YVeoykAsfbtWunI0eOKCEhQS6XSy1btlTHjh2tPjUAAAAAAHAJEmcP0IxB87Vl6XbdMaCt6TgA8Jd+OPijHF2f07LU2aajAABwSSxvEEpSbGysYmNj842FhIRo27ZtFzymsHGbzaaEhAQlJCQU+HrVq1fXggULSiA5AAAAAADwhKSXHtTUns/rsrKX6ba4v5mOAwCF+vnbdI1pP0mrj843HQUAgEtm+S1GAQAAAAAACjJuzQh9uPZjffLWbtNRAKBAv/x0Qg9Fj6U5CADweTQIAQAAAACA13BsGKM3527RZ+99YToKAORz6kSmBjQYoXU/LjYdBQCAYqNBmIfD4ZDNZnNvAAAAAADAes+8+6SW21/Vv3emmY4CAJKk09mn1T0iQeuPLzMdBQCAEkGDMA+73S6Xy+XeAAAAAACAGS98PEWzhy3W1/uOmo4CIMC5XC7dVa6XNmatNh0FAIASQ4MQAAAAAAB4pQV7n9VTD8zUDwd/NB0FQAC7o0yctpxeazoGAAAligYhAAAAAADwWstSZ2t024lK/+G46SgAAlDn8r315onlCirF26gAAP/Cv2wAAAAoNp7lDADwpFe+W6jBN4zSqROZpqMACCD3X9Vfa76Zr5ByIaajAABQ4mgQAgAAoNh4ljMAwNPWH1+mB6oO0pnTZ01HARAA4q5J0OL9M1X+yitMRwEAwCNoEAIAAAAAAJ+w8fc16nR5T9MxAPi53nUT9fyOyQq7OtR0FAAAPIYGYR7cGgsAAAAAAO9ls9n01m8r1Ll8b9NRAPipgQ1HaMrGcapau7LpKAAAeBQNwjy4NRYAAAAAAN4tpFyIVh5+Ud2qDDQdBYCfGdrkUY17ZYRqXHeN6SgAAHgcDUIAAAAAAOBTKoVX0Jzkp9W7TqLpKAD8xMMxYzVi4RDVvbGW6SgAAFiCBiEAAAAAAPA5VWtV1uR3xmrQ9SNNRwHg45La2DV4em9dd0uk6SgAAFiGBiEAAAAAAPBJNRtW05hlDynxlsdNRwHgox7vMFk9n7hfjVs1NB0FAABL0SAEAAAAAAA+q15UXQ15ro+S2thNRwHgY568e5ruffhONWt/o+koAABYjgYhAAAAAADwaY1bNVT3x+7VE52mmo4CP7J9+3b1799f/fr109atWws85quvvlJiYqLi4uK0cOFC9/iaNWvUs2dP9ejRQytWrLAqMi7CUw/MVPs+rRVzVzPTUQAAMKK06QAAAAAAAADFdcudTZSTlaNJ3WZowmtJpuPAx504cUJLlizR3LlzFRQUpMTEREVFRSksLMx9THZ2tqZOnapp06YpPDxcSUlJSktLkyRt3LhRixcvls1m07Bhw9S0aVNdf/31pk4HfzKt92y1uOdmtera3HQUAACM4QrCPBwOh2w2m3sDAAAAAAC+o2WXGDW/O0rT+841HQU+LiUlRVFRUQoNDVXFihXVvHlz7dy5M98xycnJuuGGG3TNNdeoTJkymjlzpurUqaOgoCCVKlVKZcqUUXBwsIKDgxUUxFtw3mLGoPm66bbrFRvf0nQUAACM4grCPOx2u+z2P55ZQJMQAAAAAADf0r53a+VkndYLDy7SI/MTTMeBj0pPT1flypXd++Hh4crIyMh3zLFjx5SVlaWhQ4fql19+UXR0tIYPH67IyEhFR0erS5custlsatOmjRo2bHjeazgcDk2cOLHA17fZbEpKStKoUaNK9Lwkyel0lvicvmL5uNdUrX5VNb7jOkvrEMg1N4WaW4+aW4+aW89TNTfVi6JBCAAAAAAA/MpdQ9rr9VnvaEHScg2d0dd0HPggl8t13lhubm6+/ZycHB08eFDPP/+8ypYtK7vdro0bN6pOnTrat2+fZs6cqaCgIE2fPl179uxRVFRUvu//8wfV/8dmsxX4+iXB6XQqIiLCI3N7uwVJy1XvxrrqMvIuS183kGtuCjW3HjW3HjW3nidrbqrZy/0NAAAAAACA3+ky8i6VD71CyyasNR0FPigsLEzp6enu/fT0dF111VX5jgkNDVWzZs0UHh6ucuXKKSYmRkePHlVycrJatWqlyMhI1alTR23bttWuXbusPgXksWTcGlUKr2B5cxAAAG9GgxAAAAAAAPil+PFddO7MOa19ZoPpKPAx0dHRSklJUWZmprKysrRr1y7FxMTI5XLJ6XQqNzdXt9xyiz799FP9/PPPyszM1I4dO9SwYUPVrFlTKSkpOnXqlDIzM5WcnKxatWqZPqWAtXLSawouU1pxj99nOgoAAF6FW4wCAAAAAAC/NfDpeL34yFJtmLNZ9z58p+k48BGhoaEaMGCAkpKS5HK5FB8fr/DwcGVnZ6tv375at26dqlSpon79+mn06NE6d+6c2rRpo3bt2kmSjhw5ooSEBLlcLrVs2VIdO3Y0fEaB6dXpbyonK0eDpvUyHQUAAK9DgxAAAAAAAPi1xBcGaObgBdq85H3dOTDWdBz4iNjYWMXG5v99CQkJ0bZt29z77du3V/v27c/73oSEBCUkJHg8Iwr3xgsbdfzHX/TgrH6mowAA4JW4xWgeDodDNpvNvQEAAAAAAP8wavFQ7X1/vz5Y+7HpKAA87O0F7+r7VCfNQQAALoAGYR52u10ul8u9AQAA+Irt27erf//+6tevn7Zu3VrocdnZ2RozZky+sfnz5ys+Pl5xcXFatWqVe3z9+vXq37+/unfvrlmzZuncuXMeyw8AgBXGrRmhD9d+rE/e2m06CgAP2brsA6WmHNLweYNNRwEAwKtxi1EAAAAfd+LECS1ZskRz585VUFCQEhMTFRUVpbCwsHzHbd68WZs3b9bp06fdY7t371ZqaqqWLVum7OxsDRo0SM2bN1dOTo42bNjgnnP8+PHasmWLOnXqZPXpAQBQohwbxuix259SSNnL1LRdY9NxAJSg7a/s0GfbvtDY1Y+YjgIAgNfjCkIAAAAfl5KSoqioKIWGhqpixYpq3ry5du7ced5xFStWVKtWrfKNlS1bVr1791ZwcLDKly+vatWqKScnR8ePH1enTp1Uvnx5lStXTjExMTp27JhVpwQAgEc98+6TWjFxnf71SarpKABKyI43kvXR67toDgIAUERcQQgAAODj0tPTVblyZfd+eHi4MjIyzjuuRYsW+u677/Tee++5xxo1aiTpv7co3bRpk8LDw3XdddcpKOiPz5FlZGRo27ZtGjVqlAfPAgAAaz2/Y7KGNn1Ujy5NVN2bapmOA6AYkjd+qi0vf6DJbz9uOgoAAD6DBiEAAICPK+jZybm5uRc1R+PG/73F2urVq3Xw4EHVr19fkrRlyxatXr1aDz74oBo2bHje9zkcDk2cOLHAOW02m5KSkjzSWHQ6nSU+JwpHva1Fva1Dra3ljfWe8M5IjWk5WaOWJ6hqncp//Q0+xFP1ttlsHpkXuFR739+v15/fqOnbJpiOAgCAT6FBCAAA4OPCwsKUmvrHLdLS09NVvXr1In1vcnKyQkNDVa9ePbVt21aHDh1SSkqKrr32Wj399NM6d+6c5syZo0qVKhX4/Xa7XXa7/bxxm81WYOOyJDidTkVERHhkbpyPeluLeluHWlvLm+u96ut56lF9iObselpXXXOl6TglwpP19sZGLwLXlzsOaIVjnWb98ynTUQAA8Dk8gzAPh8Mhm83m3gAAAHxBdHS0UlJSlJmZqaysLO3atUsxMTFyuVxyOp0XvJowIyNDy5cvV3Z2tk6dOqV9+/apevXq+uijj5SVlaUJEyYU2hwEAMBfvPLdQiU0TtLJX06ZjgKgiFJ3H9KCpOU0BwEAuEQ0CPOw2+1yuVzuDQAAwBeEhoZqwIABSkpK0siRIxUfH6/w8HDl5OSob9+++vXXXwv93jvuuENVqlTRoEGDNGTIEDVp0kStW7fWl19+qb179+ree+91b0uWLLHwrAAAsNYbGS+re0SCzuScMR0FwF84sv9bzRg0X3OTnzYdBQAAn8UtRgEAAPxAbGysYmNj842FhIRo27Zt+caqV6+uBQsWuPeDgoI0fPjw8+ZLTExUYmKiZ8ICAOClNmatVofS3fXuuXWmowAoxPdpTk3qNkMvH3jBdBQAAHwaVxACAAAAAADov8/Qfeu3FepcvrfpKAAK8NM3/9HjHSbTHAQAoATQIAQAAAAAAPh/IeVCtPLwi+pWZaDpKADy+OWnE3o4ZpxWHZlnOgoAAH6BBiEAAAAAAEAelcIraG7KNPWqPcx0FACSTp3I1IAGI7Tux8WmowAA4DdoEAIAAAAAAPxJlZrhmrppnAY2Gmk6ChDQcn4/rbhrErT++DLTUQAA8Cs0CAEAAAAAAApQo0E1Pbb8ISXe8rjpKEBAys3N1d3le+udzNWmowAA4HdoEObhcDhks9ncGwAAAAAACGz1oupqyHN9lNTGbjoKEHDuvKyHNue8YjoGAAB+iQZhHna7XS6Xy70BAAAAAAA0btVQcY/fq3Edp5qOAgSMzlf00pu/rlBQKd6+BADAE/gXFgAAAAAA4C/cfEcTdRwUK0fX50xHAfze/WH9tea7BQope5npKAAA+C0ahAAAAAAAAEVw6/3RanHPzZred67pKIDfirsmQYu/nKnyoVeYjgIAgF+jQQgAAAAAAFBE7Xu3VsMW9fXCg4tMR4GfcDgcstls7i2Q9a6TqOc/nqywq0NNRwEAwO/RIAQAAAAAALgIdw1pr2r1IrQgabnpKPADdrtdLpfLvQWqAQ0e0dTNT6hqrcqmowAAEBBoEAIAAAAAAFykLiPvUvkrr9CyJ9eajgL4vKFNHtUTa0eqev0I01EAAAgYNAjz4JYOAAAAAACgqOKf6KJz53K1dtp601EAn/VwzFiNWDhEdW+sZToKAAABhQZhHtzSAQAAAAAAXIyBU3sq48dftGHOZtNRAJ8zqvUEJTzbR9fdEmk6CgAAAYcGIQAAAAAAQDEkvjBAh7/4RpuXvG86CuAzHrv9KfV6sqtuaNnAdBQAAAISDUIAAAAAAIBiGrV4qD7f/qW2v7LDdBTA6z159zTdN7yjmrZrbDoKAAABiwYhAAAAAABACRi7+hH9Y90n+uTN3aajAF5rUrcZur1vG8Xc1cx0FAAAAhoNQgAAABSbw+GQzWZzbwAABCrH+jF688Ut+uy9L0xHAbzO071m69b7blHLLjGmowAAEPBoEAIAAKDY7Ha7XC6XewMAIJA98+6TWjFxnf71SarpKIDXmDFovpq0vV5te7Y0HQUAAIgGYT588h0AAAAAAJSE53dM1pyHXtLXnx81HQUwbnbiS6rXrI7uGNDWdBQAAPD/aBDmwSffAQAAAABASVnw2bOaHDdL36c5TUcBjJk/apmqXXu1Oj/YwXQUAACQBw1CAAAAAAAAD3n5wAsa026S/vN9hukogOWWjF2t0CqVdP+ITqajAACAP6FBCAAAAAAA4EFrvl2gITeO1slfTpmOAlhm5aTXFHxZsOIeu9d0FAAAUAAahAAAAAAAAB72RsbL6h6RoDM5Z0xHATxu7TMbdPr30+oz8QHTUQAAQCFoEAIAAAAAAFhg0+9r1PHynqZjAB71xvMb9ctPJzTw6XjTUQAAwAXQIAQAAAAAALDI26dWqfMVvUzHADzi7QXv6vs0px6c2c90FAAA8BdoEAIAAAAAAFgkpOxlWnlknrpVGWg6ClCitr78gVJ3H9LweYNNRwEAAEVAgzAPh8Mhm83m3gAAAAAAAEpapfAKmpsyTb1qDzMdBSgR29d8pM/e36/RS/idBgDAV9AgzMNut8vlcrk3AAAAAAAAT6hSM1xTN43TwEYjTUcBimXHG8n66I1kjV013HQUAABwEWgQAgAAAAAAGFCjQTU9tuJhJd78mOkowCVJ3viptrz8gex/H206CgAAuEhe1SDcvn27+vfvr379+mnr1q0XdUxh42vWrFHPnj3Vo0cPrVixwuPnAAAAAAAAUFT1mtXR0Jn9NKr1BNNRgIvy2Xtf6I0XNmny24+bjgIAAC5BadMB/ufEiRNasmSJ5s6dq6CgICUmJioqKkphYWF/eUypUqUKHM/IyNDGjRu1ePFi2Ww2DRs2TE2bNtX1119v8EwBAAAAAAD+cEPLBuox9j6N6zhVUzeNMx0H+Ev7P/pKq576u2b+Y5LpKAAA4BJ5zRWEKSkpioqKUmhoqCpWrKjmzZtr586dRTqmsPGgoCCVKlVKZcqUUXBwsIKDgxUU5DWnDAAAAAAAIEm6+Y4m6jgoVo6uz5mOAlxQ6u5DWjh6Bc1BAAB8nNdcQZienq7KlSu798PDw5WRkVGkY4KDgwscj4yMVHR0tLp06SKbzaY2bdqoYcOGnj8ZAAAAAACAi3Tr/dHKzsrRM33m6LEVD5uOA5zn8BffaObgBVr4OY1sAAB8ndc0CF0u13ljubm5RTqmsPH9+/dr3759mjlzpoKCgjR9+nTt2bNHUVFR+Y51OByaOHFigblsNpuSkpI0atSoizibonE6nSU+J85Hna1Dra1Dra1Dra3hqTrbbDaPzAsAAOAp7Xq1Uk5Wjp4fukgjFiSYjgMLXOh9KW/yXapTk7vP1NKvXjAdBQAAlACvaRCGhYUpNTXVvZ+enq7q1asX6Zjg4OACx5OTk9WqVStFRkZKktq2batdu3ad1yC02+2y2+3nZbLZbAU2H0uC0+lURESER+bGH6izdai1dai1dai1NTxZZxq8AADAF3VKaK/XZ72jBUnLNXRGX9Nx4GF/fl/KGz/k9tM3/9HYOyZr1ZF5pqMAAIAS4jUP5IuOjlZKSooyMzOVlZWlXbt2KSYmRi6XS06nU7m5uYUeU9h4zZo1lZKSolOnTikzM1PJycmqVauW6VMFAAAAAAC4oC4j71L5K6/QsifXmo6CAHf82AkNbz6O5iAAAH7Ga64gDA0N1YABA5SUlCSXy6X4+HiFh4crOztbffv21bp16wo9RlKB4+3atdORI0eUkJAgl8ulli1bqmPHjobPFAAAAAAA4K/FP9FFS8at0dpp6xX3+H2m4yAAnfzllAY1Gqk3Ml42HQUAAJQwr2kQSlJsbKxiY2PzjYWEhGjbtm0XPKawcZvNpoSEBCUkcM9+AAAAAADgewZO7al5I17W+tmbdN9wPvQM6+T8flo9qg3RO5mrTUcBAAAe4DW3GAUAAAAAAMD5hj3fX0e//FabXnrfdBQEiNzcXN1dvjfNQQAA/BgNQgAAABSbw+GQzWZzbwAAoGSNXDRU+z74Uttf2WE6CgLAnWV6aPPpV0zHAAAAHkSDMA/e2AIAALg0drtdLpfLvQEAgJI3dvUj+se6T/TJm7tNR4Efu6tcvN46uVJBQbxtCACAP+Nf+jx4YwsAAAAAAHgzx/oxemveVn26bZ/pKPBD94f11yvfL9Rll5cxHQUAAHgYDUIAAAAAAAAfMm3reK2a9Hd9+fEB01HgR7pHDNZL/5ql8qFXmI4CAAAsQIMQAAAAAADAx8z66CnNfXiJvv78qOko8AO9ag/T7J1TdWXVSqajAAAAi9AgBAAAAAAA8EELPntWk+Nm6fs0p+ko8GEDGjyip7eMV5Wa4aajAAAAC9EgBAAARh078rMyf8syHQMAAMAnvXzgBY1pN0n/+T7DdBT4oCE3jdb4V0epev0I01EAAIDFaBACAABj5o14WVPuf0EP3fK4Du07ajoOAACAT1rz7QINuWm0Th4/ZToKfMhD0WM1avFQ1Wlc03QUAABgQGnTAQLNmZwzmnj/s3IeOaZhswbo5g43mY4EAPASLpfrj/+68u///x8llyvf/n+P/d9x/zv2f188f84/5jt/zrxz/HnOwnIVZ85tK/6hdxa+qzM5Z/Xbf07pybue1qyPnlLVWpVLpJ4AAACB5I30l9WpbLw6P9heKVv2qnHLhhqxYIjpWPAi76/5SCsd61SrUQ39mv6bhs7oq/o3R5qOBQAADKFBmIfD4dDEiRM9Nv+5s+eUcONo97MBpvSYpQmvjVbT2Bs89poFseIN6Euds7A5LvUN6J+O/aTTv5wr8Te1C5vjvP0AqbPL5dKvJ06oQsWKxZvTPf4Xc+S68u3nrU/eOeXKe9z5r/FXP7uizJm3xufNWcAcBf7cLnLO33//XSGXhVzynHlrXvTfL8/XuTg18USd5ZLO5Z6TTbbC53Sf5yXW+U9sNtsf/7Xl3///P0o2W779/x77v+P+d+z/vnj+nH/Md/6ceef485yF5SrOnOk/HNeZnLPu88/NdemHQ8doEAIAAFyi+4bfqVenvylJ+u4rp1wuaeRCmoSQtry8XYvHrNJvGSf1w8Fjqt7gGl1/63WmYwEAAINoEOZht9tlt9vd++43WEvIp9v2KTsz272feSJL4ztN1WVlL/PsG+V/YsUb0Jc6Z2FzXOob0GfPnVVw6eASf1O78DlKvia+UGebzaZTmZk6eUVW8eZ0j//FHEH/HQiyBZ1Xn7xzKs8cBb1G3jn//BpFnTNvjc+bs4A5Cvy5XeScx48fV9hVYZc8Z96aFz7HpdfkUutcnJp4os6yScd+PKaIayIKn9N9npf49zjAfb3vqB6NnaiTxzMlSVddE6pm7RobTgUAAOC7Pt6wO9/+Z+99obNnzqp0MG//BLp/rPtEv2WcdO+fOn5KaZ9+rXrN6hpMBQAATGKFaKF6zerk2w+5IkT9J8fp9j5tPPtGeQBzOp2KiOBB21ag1tah1tY5+XtZlatY1nQMv1X3xlqa8eEkzUiYp4jaV2vc6kdMRwIAAPBptRpVd9+1SJLCq4XRHIQk6bpbrtW+D/+tMzlnJEmXXX6Zrm1a5y++CwAA+DNWiRaqVLmSFu2boYebj9PJEyfVd2Kc7n6wg+lYAAAYU/v6Ghr39+E0vQEAAEqA/fXRmnj/szr0+WFVqRGuGR9OMh0JXqKvo7vOnjmnd5d/oErhFTVn11Q+WA4AQICjQWix8ldeoWWps3X40GHVieSTWgAAAAAAoORMfONRpf3roOo1utZ0FHiZgVN7qnXfGEXW5/0oAAAgBZkOEKhCyoaYjgAAAAAAAPzQFaHlTEeAlypbnvejAADAf9EgBAAAAAAAAAAAAAIIDcI8HA6HbDabewMAAAAAAAAAAAD8DQ3CPOx2u1wul3sDAAAAAAAAAAAA/A0NQgAAAAAAAAAAACCA0CAEAAAAAAAADOGRNwAAwAQahAAAAAAAAIAhPPIGAACYQIMQAAAAAAAAAAAACCA0CAEAAFBs3BoLAAAAAADAd9AgzIM3tgAAAC4Nt8YCAAAAAADwHTQI8+CNLQAAAAAAAAAAAPg7GoQAAAAAAAAAAABAAKFBCAAAAAAAAAAAAAQQGoQAAAAAAAAAAABAAKFBCAAAAAAAAAAAAAQQGoQAAAAAAAAAAABAAKFBCAAAAAAAAAAAAAQQGoR5OBwO2Ww29wYAAAAAAAAAAAD4GxqEedjtdrlcLvfmSTNnzvTo/Pgv6mwdam0dam0dam0N6oyLxe+Mtai3tai3dai1tai3tag3CsPvhvWoufWoufWoufWoufX8seY2l6c7YT7MZrN5rFHoybnxB+psHWptHWptHWptDU/W2el0KiIiwiNz48JYR/kP6m0t6m0dam0t6m0t1le+jXWUf6Hm1qPm1qPm1qPm1vPH9VVpy1/Rh9x6660evdUotzG1BnW2DrW2DrW2DrW2hqfqPGbMGD3zzDMemRsXxjrKv1Bva1Fv61Bra1Fva7G+8l2so/wPNbceNbceNbceNbeev62vuILwIpVUl5h5fGuekpyLeXxrnpKci3l8a56SnIt5fGseeI63/az5/4W1c/lzJs7N2rm8bZ6SnMufM3Fu1s7lbfOg+LzxZ+rPmUpyLjJZO4+3zkUm6+cik7XzeOtc/p6puHgGIQAAAAAAAAAAABBAaBACAAAAAAAAAAAAAYQG4UWaOHGi6Qj5lFQef52nJHnbuXnbPCXFG8/LGzOVBG87L2+bpyR527l52zwlxdvy4Hze9jPy538rvK3WEvW2mjeemzdmKineeG7emKmkeNu5eePPraR4W55A5o0/C3//O0TNrZ3LG+steef5eWOmkuSN5+eNmUqKN9apJOfy95oXF88gNMSb7jPrz6izdai1dai1dai1NagzLha/M9ai3tai3tah1tai3tai3igMvxvWo+bWo+bWo+bWo+bW88eacwWhId7UJfZn1Nk61No61No61Noa1BkXi98Za1Fva1Fv61Bra1Fva1FvFIbfDetRc+tRc+tRc+tRc+v5Y825ghAAAAAAAAAAAAAIIFxBCAAAAAAAAAAAAAQQGoQAAAAAAAAAAABAAKFBCAAAAAAAAAAAAAQQGoQAPCo3N9d0BAAAAJ/HmgoAAKB4WE8BQH40CC22fft29e/fX/369dPWrVtNx/EbRanr+vXr1b9/f3Xv3l2zZs3SuXPnLE7pHy7md3jp0qVauHChRcn8T1Fq/dVXXykxMVFxcXHUuhiKUus1a9aoZ8+e6tGjh1asWGFxQv+WnZ2tMWPGmI4BH8A6yrNYT1mLNZV1WFNZi3WVd2B9hYKwlvIs1lLWYz1lPdZV1mNt5R38dm3lgmV++eUXV8+ePV3Hjx93nThxwhUfH+9KT083HcvnFaWu//rXv1x9+vRx/fbbb65Tp065RowY4XrnnXcMJfZdF/M7vG/fPtc999zjmjdvnsUp/UNRav3777+7evXq5fr+++9dOTk5roceesiVmppqKLHvKkqtU1NTXT179nSdOnXKlZmZ6erbt69r//79hhL7l02bNrkefvhh15AhQ0xHgZdjHeVZrKesxZrKOqyprMW6yjuwvkJBWEt5Fmsp67Gesh7rKuuxtvIO/ry24gpCC6WkpCgqKkqhoaGqWLGimjdvrp07d5qO5fOKUtfjx4+rU6dOKl++vMqVK6eYmBgdO3bMUGLfVdTf4czMTC1evFjdunUzkNI/FKXWycnJuuGGG3TNNdeoTJkymjlzpurUqWMose8qSq2DgoJUqlQplSlTRsHBwQoODlZQEP+EloSKFSuqVatWpmPAB7CO8izWU9ZiTWUd1lTWYl3lHVhfoSCspTyLtZT1WE9Zj3WV9VhbeQd/XluVNh0gkKSnp6ty5cru/fDwcGVkZBhM5B+KUtdbb73V/eeMjAxt27ZNo0aNsiyjvyjq7/Ds2bPVu3dv/fzzz/rtt9+sjOg3ilLrY8eOKSsrS0OHDtUvv/yi6OhoDR8+3OqoPq8otY6MjFR0dLS6dOkim82mNm3aqGHDhlZH9UstWrTQd999p/fee890FHg51lGexXrKWqyprMOaylqsq7wD6ysUhLWUZ7GWsh7rKeuxrrIeayvv4M9rK1rJFnK5XOeN8XDc4ruYum7ZskUjRozQgAED+B/lJShKrd977z2VK1dOt9xyi1Wx/FJRap2Tk6ODBw/qqaee0tKlS+V0OrVx40arIvqNotR6//792rdvn2bOnKlZs2YpNTVVe/bssSoiALGO8jTWU9ZiTWUd1lTWYl0FeC/WUp7FWsp6rKesx7rKeqyt4GlcQWihsLAwpaamuvfT09NVvXp1g4n8Q1Hqmpubq6efflrnzp3TnDlzVKlSJYtT+oei1PrDDz/U4cOH9emnnyozM1Nnz55VZmamRo8ebXVcn1aUWoeGhqpZs2YKDw+XJMXExOjo0aNWxvQLRal1cnKyWrVqpcjISElS27ZttWvXLkVFRVmaFQhkrKM8i/WUtVhTWYc1lbVYVwHei7WUZ7GWsh7rKeuxrrIeayt4GlcQWig6OlopKSnKzMxUVlaWdu3apZiYGNOxfF5hdXW5XHI6ncrNzdVHH32krKwsTZgwgQVYMRSl1pMnT9aaNWu0fPly9evXTx06dGDhdQmKUutbbrlFn376qX7++WdlZmZqx44dfPrwEhSl1jVr1lRKSopOnTqlzMxMJScnq1atWqajAwGFdZRnsZ6yFmsq67CmshbrKsB7sZbyLNZS1mM9ZT3WVdZjbQVP4wpCC4WGhmrAgAFKSkqSy+VSfHy8+9MUuHSF1TU7O1t9+/bVunXr9OWXX2rv3r2699573d/XuXNnDRw40FxwH1SUWoeGhpqO6ReKUusqVaqoX79+Gj16tM6dO6c2bdqoXbt2pqP7nKLUul27djpy5IgSEhLkcrnUsmVLdezY0XR0IKCwjvIs1lPWYk1lHdZU1mJdBXgv1lKexVrKeqynrMe6ynqsreBpNldBN7IFAAAAAAAAAAAA4Je4xSgAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGEBiEAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGEBiEAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGEBiEAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGEBiEAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGktOkAAFBc999/v06ePHneeNu2bTV27FiPvObhw4f16KOP6vXXX/fI/AAAAFZjTQUAAFB8rKkA+AoahAB82rFjx3Ty5EktW7ZM5cuXz/e1MmXKeOx1Dx48qLp163psfgAAACuxpgIAACg+1lQAfAkNQgA+LTU1VREREbrmmmssf10WXgAAwF+wpgIAACg+1lQAfAkNQgA+7eDBg2rQoEGhXz979qzuueceJSUlacOGDfrmm28UExOj0aNHKzg4WP/5z3+0aNEi7d27V6VLl9a9996ruLg4SVJGRoYWLFigL774Qi6XSwMHDlSHDh3cr9ukSRM99thjSk1NVY0aNTRp0iRVqlTJitMGAAAoUaypAAAAio81FQBfQoMQgE9LS0vT3r179f777+cbv//++/Xggw/q8OHDOnPmjD777DPZ7Xb9+uuvGjdunLZs2aLY2Fg9+uijatOmjR588EE5nU6NHz9ejRo1UvXq1ZWYmKi77rrLPc+ECRPUokULlS1bVl9//bVKly6t8ePHq3Tp0kpISNCuXbt0xx13GKoEAADApWNNBQAAUHysqQD4EhqEAHxaWlqapkyZouuuuy7feEhIiCTpwIEDqlKlikaMGKHSpUsrLCxMMTEx+u677/TWW2+pdu3a6tevnyTpyiuvVKNGjXTo0CHt3LlTN954o3r16uX+2iOPPCJJOnr0qM6cOaPhw4crLCxMklSlShVdccUVFp01AABAyWJNBQAAUHysqQD4kiDTAQDgUjmdTmVmZqpRo0aqUKFCvu1/D34+cOCAmjVrptKl//g8xE8//aSIiAj985//VIsWLfLNefToUVWrVk3Jyclq3759vq916NBB5cuXV1pampo0aaLatWtL+u/tIQ4dOnTe4g8AAMAXsKYCAAAoPtZUAHwNDUIAPistLU1Vq1ZVuXLlCj3mq6++yvdg6JMnT+rAgQNq2rSpfvzxR1WrVs39taNHjyo7O1vXX3+9jh075v7UlSQlJyfro48+cr9u3vvJHz58WBUqVNBVV11VkqcHAABgCdZUAAAAxceaCoCvoUEIwGelpaWpevXqyszMPG/Lzc3VyZMn5XQ69f777+vbb7/VsWPHNGXKFN12222qUaOGatSooc2bN+vkyZNKTU3VlClTNHDgQF1++eWqX7++tmzZolOnTumTTz7RlClT3LdmSEtLU/369d05Dhw4cMEHUAMAAHgz1lQAAADFx5oKgK/hGYQAfFZaWpr27dune++997yvvfHGG0pNTVXt2rXVokULJSYmKiwsTLfffrvi4uIkSaNGjdKMGTPUs2dP1a5dW7169VLr1q0lSUlJSXrqqae0adMm1ahRQxMmTFCTJk109uxZHTly5LyFF7dtAAAAvoo1FQAAQPGxpgLga2wul8tlOgQAeMLKlSt1/Phx90ObAQAAcPFYUwEAABQfayoA3oZbjALwW3xiCgAAoPhYUwEAABQfayoA3oYGIQC/dfPNN6tZs2amYwAAAPg01lQAAADFx5oKgLfhFqMAAAAAAAAAAABAAOEKQgAAAAAAAAAAACCA/B8iFkredDD4JAAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plot_training_metrics(embedding_metrics, 'Metric Learning')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Evaluate model performance on sample test data\n",
+    "\n",
+    "Here we evaluate the model performace on one sample test data. We look at how the efficiency and purity change with the embedding radius."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 596])\n",
+      "torch.Size([596])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 6664])\n",
+      "torch.Size([6664])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 15730])\n",
+      "torch.Size([15730])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 28012])\n",
+      "torch.Size([28012])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 41682])\n",
+      "torch.Size([41682])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 55179])\n",
+      "torch.Size([55179])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 65439])\n",
+      "torch.Size([65439])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 70761])\n",
+      "torch.Size([70761])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 73106])\n",
+      "torch.Size([73106])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 74294])\n",
+      "torch.Size([74294])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 75154])\n",
+      "torch.Size([75154])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 75588])\n",
+      "torch.Size([75588])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 75877])\n",
+      "torch.Size([75877])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76123])\n",
+      "torch.Size([76123])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76231])\n",
+      "torch.Size([76231])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76287])\n",
+      "torch.Size([76287])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76328])\n",
+      "torch.Size([76328])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n",
+      "torch.Size([2, 76342])\n",
+      "torch.Size([76342])\n",
+      "torch.Size([2, 2370])\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABwgAAAJYCAYAAAB2JbLWAAA4B0lEQVR4nO3deZTddWH//9edyUwSsk0mGyQhhhCBkKQIGBDSsBoQFC2u5UeVtqIirm3Voq1fsYr9gvS0X1yLB+gBrVbFWrFiUBoQUEiAsDYGCGCWyb6QBZOZzNzfH4GRECCE3MnM5P14nMM5mXvvzH0Pf73OPO/93Eq1Wq0GAAAAAAAAKEJddx8AAAAAAAAA2HsEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKEifl7rz9NNPT0dHx063jxo1Kt/+9reTJL/61a9y9dVXZ+XKlfnZz36WFStW5J/+6Z/y4IMP5u///u/z5JNP5t/+7d/yd3/3dznppJNe9LlaWlpy3nnn5fjjj8/nP//5PfutAAB6oI6Ojpx++uk73Na/f/8cdthh+fCHP5xx48a9op/7Qjtq/fr1SZKmpqY9OTIAQI935plnpr29PbNmzeruowAA9BovGQiTpFKp5JRTTtnhtiFDhnT++z/+4z+ydOnSnH/++UmSW265JfPmzcuJJ56YCRMmpFKp5NRTT82oUaNe8nn69++fU089NYcccsgr+T0AAHqN+vr6nHTSSeno6MgDDzyQefPm5R/+4R/yrW99K5VKZbd/3gvtqPe+971pbGzMd7/73VoeHQAAAIB9wC4DYZ8+fXLRRRe96P2///3vU1dXl3e9612dXyfJySefnAMOOCAHHHBAjj/++F0eZOjQoS/5PAAA+4p+/fp17p62tra87W1vy+9+97usWrUqI0eO3O2f9/wd9eSTT6a9vT3btm3LwoULc/DBB9fs7AAAAAD0fnv0GYTve9/7snjx4nR0dGTmzJn5xje+ke985ztJkosvvjg33nhjvvOd72TmzJm55ZZbkiQLFy7MJz7xibzlLW/Jueeem+uuuy7VajUtLS2ZOXNmPve5z3X+/Hnz5uVDH/pQzjrrrJx//vn5zW9+0/kzZs6cmS996Uu5/PLLc/bZZ+e8887LXXfd1fm9L/Y8n/70pzNz5szcd999SZKnn346b3jDG3LBBRfsyf8KAIBXpKGhIfvvv3+S7bvkgQce6NxVz/rQhz6UmTNnpq2trXMHXXbZZbnqqqvyqU99aqcddckll2Tz5s1Zv359Pv3pTyeJDQQAFGvp0qX57Gc/m7e+9a350z/901x22WWdl2NPklmzZuUv/uIvcuaZZ+Y973lPfvCDH7ys+wAAerNdBsK2trbMnDlzh/+uu+66JNv/0DRy5MjU1dXliiuuyFvf+tacdtppSZLzzz8/xx133A4/a8OGDfnEJz6Rxx57LGeeeWaam5tz7bXX5oYbbtjpeRcvXpyLLrooW7ZsyTvf+c4kyRe+8IU88sgjnY+55ZZbsnTp0hx++OFpaWnJl7/85V0+z6mnnpokufPOO5Mk9913X9rb21/y8xEBALpCR0dH5s6dmyeffDJ9+vTpDIUvx9y5c/P9738/AwcO3Om+b33rWxk8eHCGDx+e73//+0liAwEARXr66afzN3/zN5k7d25OPPHETJ06Nb/4xS/y2c9+NtVqNY8++mguv/zy1NfX55xzzsmQIUNy5ZVX5tZbb33J+wAAertX9BmEBx10UJJkwoQJ6du3b5Jk0qRJSZIRI0YkSQ488MA0NTXt8H2/+tWvsmnTprznPe/Ju9/97jz11FO58sors23btp2e98Ybb0xHR0fe9KY3ZfLkyWlubs6//Mu/5Mc//nHe9ra3dT7nP//zPyfZ/jk7ixYtylNPPZXbbrvtRZ9n+vTpaWxszJ133pkLLrggc+fOTRJ/HAMA9prNmzdn5syZO9x29tlnp1+/fi/7Z9TV1eWHP/xhBg0alJaWll0+3gYCAEp02223Zc2aNXnzm9+cj3zkI0mSdevW5f7778+CBQuycePGJNuv6jBq1Kh8/OMfz+rVqzN69OgsX778Re8DAOjt9vgzCHfHihUrkqTzc3CGDBmST37yk0my0x+2li1bliT5+te/vsPtS5cu7fz32LFjO/89bNiwLFq0KB0dHS/5PEly3HHH5dZbb83ixYszd+7cHHbYYbv1in0AgD1RX1/fGeb69u2bKVOm7BQMd+XII4/MoEGDXvbj+/fvbwMBAMV5NvJNnTq187YpU6bk/vvvz7Jly3LCCSfkLW95S2655ZbOK1Mddthh+au/+qscddRRL3ofAEBvt8tAWEvDhw9Psv3zAY8//vhs2LAh11xzTSZMmJCjjz56h8c2Nzcn2X6JrPHjx6e9vT0tLS3p379/nnrqqVf8PGeddVZOOeWU3HrrrfnhD3+YFStW5K1vfWsX/LYAAC+sX79+L/oCrEqlkmT7K9uT7Zchfe5n5Dyrvr5+l89TrVZ3+NoGAgBKM2rUqCTJww8/3PkCrYceeihJMnLkyM5I+Od//udpaWnJzTffnB/96Ef53ve+l/e85z0vet9nPvOZ7vqVAABqYpeBsL29vfNVUs91wQUX7Nar1pNkxowZufrqq3P99ddny5YtefDBBzN//vz89V//9U6PPe2003LDDTfky1/+ck455ZTcddddmTdvXj75yU92vjPwlT7PtGnTMnDgwNx4441JkhNOOGG3fg8AgK4yevTo1NXV5fbbb88//uM/ZsmSJVm1atVu/5xBgwZl2bJl+fnPf543vOENSWwgAGDf1dHRsdPfr4477rjMmDEj11xzTX7605+mWq1m48aNuf/++3PIIYdk0qRJueGGG/LVr341U6ZMybHHHpvVq1cnSfbff//cc889L3ofAEBvV7erB3R0dOSmm27a6b+tW7fu9pM1Nzfn0ksvzUEHHZQbbrgha9euzfve976cccYZOz320EMPzcUXX5xt27bl6quvzpo1a/KJT3wip5122h4/T0NDQ0444YRUq9VMnTq18x2HAADdbdiwYbnwwgszYMCA3HvvvTn66KMzceLE3f4573rXu9Lc3Jwf/OAHnbfZQADAvuz5f7t67LHHMmDAgFx++eU5+uij8z//8z+577778vrXvz5f/OIXU1dXl7POOivnnntuVq9enWuvvTYPPvhg3vSmN+XP/uzPXvI+AIDerlJ9/rWnCnHTTTfly1/+cj760Y/mrLPO6u7jAADsFTYQAAAAALt8B+G+aPbs2bn++uvT0NCQGTNmdPdxAAD2ChsIAAAAgORlfAbhvuiqq65KtVrNBz7wgTQ1NXX3cQAA9gobCAAAAICk4EuMAgAAAAAAQImKvMQoAAAAAAAAlEogBAAAAAAAgIIIhAAAAAAAAFCQPi9045o1a7J169a9fRYAgJrq27dvhg0bttvf987bL8/d6x7Lvxz13rx5zLSanMW+AgD2BfYVAEBtdde+qlSr1erzb2xpacno0aN3+4cBAPQku7tpntqyOX92++X52ZoH09HRnhH9huTKYz6YPxlz7F4/CwBAT2RfAQDUVnftqxd8ByEAQAm2dTyVJ9d8I0+3Lkx9pZrzf7E2d7a3JQMakiSrtjyVs2+7JF+a+Dd51cADsn/z0MwYMTwNlUo3nxwAoGeyrwAAaqur9pVACAAUqZq2/HrhyXnq9/NSSdK3vk9Wt52W9G1MnrnAwuShozJk0xH5zK/nJ83LksaGHDZ4cG4+aUZG9+vXvb8AAEAPY18BANRWV+6rur30OwAA9ChPPX1PNmyZ1/n10P5HZ8yQQ7e/fKqafODVJ+cdTefl3o1DkwNGJv36Jkl+u2FDrnj0sW46NQBAz2VfAQDUVlfuK+8gBACKtHLz6jy9NRnQN+moJkP6TUl9w4DUV+vzb8d+KAf0+aO8fvbNyaC+SUdH56uykuSJzZu78eQAAD2TfQUAUFtdua8EQgCgSB1PLcritclhBySVJA0NEzNz/KRcPv4vc2TTQVnb2pbf/skb89jGjXlk44Y8unFj5m/YmPkbN6VfvYswAAA8n30FAFBbXbmvBEIAoDjVFbfl0DmXZNnI6Zm/4Y6MH5I0Nk7MRa95S+djmhsb0tzYkEMHDsia9YMyb8WmDN60NSPXb879KzqyelJbhg9s6MbfAgCg57CvAABqq6v3lZdnAQBFqa78TdpveXfa2zbk5I3bctTwi/PU1mRwv0Ne9HtOHNc3d/++LQsqydbBA7Kp33658LZV2dDWsRdPDgDQM9lXAAC1tTf2lUAIABSl/dcfSnXLmlSTbNvwcF63cmWmTfxpGvvs/6Lf86oBffL1149OKkmlPmnYr08e3NyeC25ftfcODgDQQ9lXAAC1tTf2lUuMAkAvs2nTplSf84HDJapUKhk4cOAr+97hr011w6NJkmqStsevzcTRJydDRr7o97Q93Zbxv/lt/r+pE/LvD65NtWP7///71rS+ojMAAD2LfWVfAQB7xp7aWU/fVwIhAPQy1Wo1gwYN6u5jdKuNGze+4u+tP+4rqW5cnY7Fs1JprCR1lbTd8RdpaD4kGfpHL/g9WzZuzXc++bP80Z9Nzj0nzshvl27IfnWV/N9pw17xOQCAnsO+sq8AgD1jT+2sp+8rlxgFAMpS3zd9Tvq3VFsPS8f6kUnDkakM++N0LP6vF/2WdYvWpaHffpn3r3fm8O/8d/r1bcjlxw7L6WP778WDAwD0UPYVAEBt7YV9JRACAOXpPzjVpnekdf6wbF0wNm1LXpu2RaOzbd7sdCx7PNVN65IkHY+vSvsl38/qJ9eko6M9A4aNzJYb7s3fr3o0p472xysAgE72FQBAbXXxvnKJUQCgTNt+n46Na5ONd6X9kbu231ZXSXVbW/b7xBWprDw4T7//yjSM2ZZV79p+ffdqtZrmppEZv19jNx4cAKCHsq8AAGqrC/eVQAgAFKlu+Ng/fFGpJEk6trWm8ZT3pf2HyZZ/vSKVVLK1bmtWP7oq1VSSajWN9X3TPGZUN50aAKDnsq8AAGqrK/eVS4wCAEVqOPldqT9oSpKk2taetnWbUmk4Ph3X9s+Wf/1Zkkqq1bZsWLQky+YtS7ZvsAwZOzjjXjv2xX8wAECh7CsAgNrqyn3lHYQAQJEqAwZn4CX/lfb5c7Jt+ZJ0tKzP1r+al22tjyaVaiqV+rRvezrb+tZl8hsnpZpKhowalCPfPjUN/UwoAIDns68AAGqrK/eV9QUAFK1+0jGpn3RMkqThwAXZfMFV6Vi2PqkkfWZMyvirP5iD9x/ZvYcEAOhF7CsAgNrqin3lEqMAAM/oc8KhGfCv7039+BHpc8phGfKff596f7wCAHjF7CsAgNqq1b7yDkIAgOfoM+PQDJ53SXcfAwBgn2FfAQDUVi32lXcQAgAAAAAAQEEEQgAAAAAAACiIQAgAdKnbbrst55xzTm699dZs27Ytn/70p/P+97+/u48FAAAAwD5qxYoVOfPMM7v7GD2aQAgAdKnrr78+559/fk488cTcf//9WblyZb72ta9197EAAAAAoFgCIQDQpTZs2JBRo0YlSTZu3Jhhw4aloaFhrzz3yXdsy6E/WLRXngsAoCfp6OhIe3t7zX+ufQUAUFvdta/67PVnBAB6hP/8ys/yk6/9PO1tHalvqMtbPnxG/uTDZ7yin7Vo0aJ85StfyaOPPpqJEyfmHe94R4499th84QtfyNKlS3PxxRfn1FNPzS9+8Yts2bIlH/3oR3PFFVfU+DcCAOhetdpXv/71r/OTn/wk/fv3z913352mpqa8/e1vz1ve8pYsXrw4H//4x3P99dd3Pv5973tfLrzwwhx44IH5yEc+kgsvvDBf/epXc+mll2b8+PE1/A0BALpWLf9e9VwPPfRQvvnNb+Z3v/tdxowZk/e+972ZNm1akuTb3/52fvrTn2bz5s2ZPHlyPvWpT6W5uXmX9/V23kEIAAW68lPX5erP/HuWPLIsy55YkSWPLMtVF30nV336O7v9s1pbW3PRRRfl6KOPznXXXZd3vvOdufTSS7Nw4cJ89rOfzZgxY3LxxRfngx/8YD760Y9mypQp4iAAsM+p5b5KknvuuScjRozIddddl4997GO55pprcvfdd+/y+zZu3Ji5c+fmW9/6ljgIAPQqtd5Tz1q/fn0+85nP5Iwzzsi///u/55xzzsnFF1+cZcuWZd68efnRj36USy65JNdcc03a29vz3e9+N0le8r59gUAIAIX5z6/8LDd8Y1a2bN66w+1bnt6aH3/lxvzkaz/frZ83d+7c1NXV5Z3vfGcGDRqUY445JtOnT88vf/nLWh4bAKDHqvW+SpKBAwfm/e9/f5qamvLa1742b3rTm/KLX/xil9+3devWvPvd787gwYN3+zkBALpLV+ypZ91+++05+OCD88Y3vjGDBg3KiSeemNe+9rWZPXt22tra0tHRkdWrV2fIkCG59NJL84EPfCBJXvK+fYFACACF+c//97Odxtaztjy9NT/+6o279fOWLVuWdevW5dxzz80555yTc845J3fffXeXfOYNAEBPVOt9lSSjRo1Knz5/+GSYAw88MCtXrnzBx1ar1c5/VyqVDB8+fLefDwCgO3XFnnrW6tWrM3r06B1uGz16dFavXp1jjjkmf/mXf5lrr702Z599dj7zmc/kiSeeSJKXvG9f4DMIAWAfdd3nf5BrP//93f6+xQtaMrPuHTvd/p7PvTPv/tzOtzc3N2fy5Mm57LLL/vAzFi9Ov379dvu5AQB6sr21r5Jk5cqV2bZtW2ckbGlp6Qx/z30h1pYtW7J8+fLOryuVSiqVym6fEQBgb9ibe+pZw4cPzwMPPLDDbcuXL8/EiROzbNmyHHXUUXnzm9+czZs357vf/W6uuOKKfOUrX3nJ+/YFAiEA7KPe/bl3vOBAes/ED2fZ4yte9PsOPGxMrv7ff3nZzzNt2rR8/etfz3//93/npJNOyvz58/P5z38+l112WUaMGPFKjg4A0CPtrX2VbP8swauuuirnnntuFi5cmJ/85Ce56KKLMmjQoGzevDm33357jjvuuFx//fXZuvWFX20PANDT7M099azp06fnyiuvzKxZszJjxozcc889mTt3bs4///zce++9uf766/OFL3whgwcPTkdHR7Zt25YkL3nfvkAgBIDCvO2v3phv/e23s/Xp1p3u67tfY9760TN36+cNGjQol1xySb7+9a/nm9/8ZoYNG5aPfexjmTRpUq2ODADQo9V6XyXJxIkT097envPOOy/9+/fPeeedl2OPPTZJ8sEPfjDXXHNNvvjFL2bKlCk5/PDD9/h3AADoTl2xp541dOjQfOlLX8o3vvGNfPWrX83o0aPzf/7P/8mYMWMyatSoLFiwIB/5yEfS1taWQw89NH/7t3+bJDn99NNf9L59QaX63AvVP6OlpWWn67ECAD3Dxo0bM2jQoD36GVdd9J38+Gs37nBt9777NeatH3tT/vKSc/b0iF3u5f4/OPQHi5IkC94xbref49d3zU2fPn1yzNFH7vb3vhD7CgB6rp62r37961/ne9/7Xq644oo9OtPusK8AgD3R0/ZUT9DT95V3EAJAgd77f8/NiHHD8uOv3Ji2rdvS0K8hZ3/0jJx1wendfbQeYeHjT+axx7d/6PSwoUNz8ITx3XsgAKDHs69emn0FAOyKPbV79nRfCYQAUKg3X/iGvPnCN3T3MXqchY8/mTvumpPBg7e/wuuOu+YkiT9iAQC7VKt9NXr06Jxyyik1OFHPYF8BAC+Xv1e9PLXYVwIhAMDzTD/2mDz2xPZXYE31WYoAwF42fvz4jB8/vruPUVP2FQBAbe3pvhIIAQCy/ZVXyR9eafXswHr26+ffDwDAS7OvAABqq5b7qq7GZwMA6HWevSzDrtxx15zOoQUAwIuzrwAAaqvW+8o7CAGAov36rrl57PEnMnjwoDz2xBOdr7xatXpNkmTWzbM7Hzt48KDccdecrFm3LsccfWS3nBcAoKezrwAAaqsr9pV3EAIA7KZt27Z19xEAAPYp9hUAQG3tal95ByEAULTjj52WUSNG5I675mTqpEmd12h/9pVXp596cpI/XMZh+rHH+JwcAICXYF8BANRWV+wrgRAAKN7L/YOUP14BALw89hUAQG3Vel8JhAAA+cPIev6HOD/7tT9cAQDsHvsKAKC2armvfAYhAMDz3HHXnPx+y5b8fsuW3HHXnO4+DgBAr2dfAQDU1p7uK+8gBAB4jmdfafXssHLZKwCAPWNfAQDUVi32lUAIAPA8B08YnxWrVnX+GwCAPWNfAQDU1p7uK4EQAOAFHH/stO4+AgDAPsW+AgCorT3ZVz6DEAAAAAAAAAoiEAIAAAAAAEBBXGIUAHqZSqWSjRs3dvcxulWlUunuIwAA+xD7yr4CAPaMPbWznr6vBEIA6GUGDhzY3UcAANin2FcAAHvGnup9XGIUAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIzyAEAPZZs6f3yejRo7v7GAAA+wz7CgCgtrprX3kHIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAF6dPdBwAA6E6tbW1ZvGRpFi1ZmoMPGp9xY8fkjjvnpLGxMdOOek0WPv5kFi1dmnFjx+TAsWPS2NDQ3UcGAOjR7CsAgNrqin3lHYQAQNEWL16aOffMS2tra9pa255zT7XzX62trZlzz7wsXrx07x8QAKCXsa8AAGqrK/aVdxACAEVbtGRJmoc25fRTT+68bfrrjun898ETxufgCeMz6+bZWbRkSQ6eML4bTgkA0HvYVwAAtdUV+0ogBACKNm7s2Jf1uIkHHdTFJwEA2DfYVwAAtdUV+0ogBACK9nJfse6V7QAAL499BQBQW12xrwRCAKBod9w5J8mOl2VIkk2bN2fuvfdl+YqVaWtry6iRI3LE1MnZf+TI7jgmAECvYV8BANRWV+yrui45KQBAL9HY2JDGxoYdbtu0eXNuuPGmbNq0Ka+ZOjnTjnpNGhsactPNt2T5ypXddFIAgN7BvgIAqK2u2FfeQQgAFG3aUUfudNvce+Zl4ID9ctYZp3feNunQQzLr5tm5/8GHs/+pXuUOAPBi7CsAgNrqin3lHYQAQNEWPv5kFi1ZusNty1euysQJO3+o87ixY7J23fq9dDIAgN7JvgIAqK2u2FfeQQgAFG3RkiVpbWvLuLFjuvsoAAD7BPsKAKC2umJfeQchAFC0cWPHZu269Zl18+zOV2LtP3JEHnv8yZ0eu2jJ0jQPbdq7BwQA6GXsKwCA2uqKfeUdhABA0Q48cPsrrxYtWZK21rYkybSjj8wNN96UG268KRMnjH/m/qVZsXJVpkw6rLuOCgDQK9hXAAC11RX7qlKtVqvPv7GlpSWjR4+u4dEBAPa+Pdk0mzZvztx75mX5ylVpa2vLqJEjMmLYsDw0/7eZfuwxOfiZ4bU3zgIA0FPYVwAAtdVd+8o7CAEAXsDAAQNy8gl/vNPtQwYPzh13zcnQoU0uhwUAsBvsKwCA2tqTfSUQAgDshoMnjM/QoU0ZOHBAdx8FAGCfYF8BANTWy9lXAiEAwG7yynYAgNqyrwAAamtX+6pu7xwDAAAAAAAA6AkEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIL06e4DAAB0t4ceeuhlPW7KlCldfBIAgH2DfQUAUFu13lcCIQBQPH+YAgCoLfsKAKC2ar2vXGIUAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBADYTdVqtbuPAACwT7GvAABqa1f7qs9eOgcAQI9TTVJ55t/t7e2pr6/ffnu1mkql0vm4NWvXZUlLS+rr6nLgmDEZMmTw3j8sAEAvYF8BANRWV+0rgRAAKFYlycaNm3LfQw9n0aIlGXfgmBwxdXIGDxqUJGnv6Mj9DzyUBY8tTLVaTUe1Iw88PD9TJh2aqZMP32GEAQBgXwEA1FpX7SuBEAAo1oaNG3Pzrbenta0tTUMGp2X5yqxZtz4nz5ieIYMH5eH5v03LytWZevikHHbIq9Pe0Z6H/nd+nlzckn79++eQgyd0968AANCj2FcAALXVVfvKZxACAMW6974HsmXL1sx43TF54xtmZsbxx6a1rS0Pz1+QarWa+QseTf/GPply+GHp06c+fRsbc/Rrjkjfxj558OH53X18AIAex74CAKitrtpXAiEAUKyVq9fkVQeOyegD9s+SlpaM3n9URu8/MouWLM7W1tZ0dHRk+PDhSbZf4729vT1JMrSpKXXPXO8dAIA/sK8AAGqrq/aVQAgAFKtv374Z2tSUhU88mbvnPZCFTzyZ5qamtLd3pJKkoU99lrS0pKOjmvr6+tTX12fbtm1ZvmJF2re1dffxAQB6HPsKAKC2umpf+QxCAKBY7R3taWtry4jhzTn+mNemrq6Spcs2p1KpS9++fTNh/Pi0rFyd2b+6LYe+emI6qh2Zv+DRpFKfSYeM7+7jAwD0OPYVAEBtddW+EggBgGLVVepS16cuq1avyeO/W5KDXjU29XX1qVSS9o6OTDl8Utau/002bHo6c+bdnz719Wlra8sBo0bmsENe3d3HBwDocewrAIDa6qp9JRACAMWqVOqSanLYoa9OW9u2TDrk1Xlo/oKkUklHe0caGxsyZPCgrFm7Lge96sA09GnIqFEjMnr//bv76AAAPZJ9BQBQW121rwRCAKBYW7b8Pk89tSGVSiV/NOXwJMlTG55KtVpNnz71aWvblscefyJNg4fkmKOP6ubTAgD0fPYVAEBtddW+quuqAwMA9HSjRgzPkpZlWb5yZZJk+cqVaVm+MgeOPiCVSiXLli9P3379M/5V41KtVtPe3p5qtdrNpwYA6LnsKwCA2uqqfeUdhABAsY78oyn55a23539uvSMjhzdn5eo16devX+ersZ5cvDhtra0ZN3ZMKpVK6urqUqlUuvnUAAA9l30FAFBbXbWvvIMQACjWkCFDcvKM6Tlg/5FZsXp1Dhg1Mif98XEZMnhwWltbs7RleZqHNmXAgP2SxB+vAAB2wb4CAKitrtpX3kEIABSrWq2meWhTTp4xPe3t7amvr++8vaGhISdMPy79+vbt5lMCAPQe9hUAQG111b4SCAGAYlUqlc5rstfX13f++9lXWo05YP9uOxsAQG9kXwEA1FZX7SuBEAAo2nMvu+ASVwAAe86+AgCora7YVz6DEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABSkT3cfAACguz300EMv63FTpkzp4pMAAOwb7CsAgNqq9b4SCAGA4vnDFABAbdlXAAC1Vet95RKjAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAC/gjjvn5I4753T3MQAA9hn2FQBAbe3JvupT47MAAOwTNm3e3N1HAADYp9hXAAC1tSf7yjsIAQAAAAAAoCACIQAAAAAAABREIAQAeMbadevT2ta20+2tbW1Zu2793j8QAEAvZ18BANRWrfaVQAgA8IxZN8/OrF/O3mFktba1ZdYvZ2fWzbO78WQAAL2TfQUAUFu12lcCIQDAM04/9eRs2rw5s345Ox0d1XR0VDPrl7OzafPmnH7qyd19PACAXse+AgCorVrtK4EQAOAZzUObOkfWuvXrs279+s5x1Ty0qbuPBwDQ69hXAAC1Vat9JRACAMV77rXbnx1Z7e3taW9v32Fc+awcAICXx74CAKitWu8rgRAAKN5Pf35T1q5b1/n1syPr+a+8WrtuXX7685u64YQAAL2LfQUAUFu13ld9uuKQAAC9TWtr2w5fjxwxfJePAQDgxdlXAAC1Vct9JRACAMU7cMzozL13XuYveOQlH7dp8+YcOGb0XjoVAEDvZV8BANRWrfeVS4wCAMWbdvSRGTd2zC4fN27smEw7+si9cCIAgN7NvgIAqK1a7yvvIAQAijdwwIBMO8ofpgAAasW+AgCorVrvK+8gBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABSkT3cfAACgu61dtz4DBw5Ia2tr5i94NMtXrMy69euTJKNGjsi4sWNy8ISD0tjQ0L0HBQDoJewrAIDaqvW+EggBgOL99Oc3ZdpRr8l9Dz6cJJk4YXyOmDo5ba1tWb5yZe578OH874JHcvKMP07z0KbuPSwAQC9gXwEA1Fat95VACACQZO6992Vo05Cc/vpTdnil1cETxmdaW1tm/+r2zL7t9px1xule6Q4A8DLYVwAAtVXLfeUzCAEAOlVy/zOvwnquxoaGnHzCH6e1tS0LH3+iG84FANBb2VcAALVVm30lEAIAxTv4oPEZNXJEGhsbklRf8DGNDQ2ZOGF8Hnv8yb16NgCA3si+AgCorVrvK5cYBQCKN/11x7ysxx04dow/YAEAvAz2FQBAbdV6X3kHIQBQvO/+8D+zfOXKXT5u/5Ejc87bz94LJwIA6N3sKwCA2qr1vvIOQgCgeAMH7JfFS5Zm/5EjX/D+O+6ck02bNydJmocOzbSjXrMXTwcA0PvYVwAAtVXrfeUdhABA8caNHZvHHn8yrW1tL/qY1tbWrFi5KvMXPLIXTwYA0DvZVwAAtVXrfSUQAgDFm3TYIWlsaMjsX93+giNr2tFHJqns/YMBAPRS9hUAQG3Vel+5xCgAULzGhoacfMIfZ/avbs/1//XTjBs7JvuP2n65hrXr1uexx59Ikkw76jWZe+993XhSAIDewb4CAKitWu+rSrVarT7/xpaWlowePbq2JwcA2Mt2d9O0trVl4eNPZNGSpVmxclWSZGjTkIwbOzYHTxifxsbGbNq0Oc1Dm7r8LAAAPZF9BQBQW921r7yDEADgGY0NDZl06CGZdOghL/qYV/LHKwCAUtlXAAC1Vat95TMIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAXp090HAADoSdauW59169dn7br1SZLmoU0Z2tSU5qFN3XouAIDeyr4CAKitWuwrgRAA4Blz752X+QseTZKMGjkiSTJ/wSNJkiOmTs4RUyZ329kAAHoj+woAoLZqta8EQgCAJDfcOCubNj+dk2ZMz7ixY3a4b9GSpbnjzjlZtHhpzjrjtG46IQBA72JfAQDUVi33lUAIABRv7r3zsmnz0zn91JPTPLQpCx9/MnPunZckec3UyZl06CEZeOrJmXXz7Nz/4MM5YqpXugMAvBT7CgCgtmq9r+r2xqEBAHqqtevWZ/6CRzP9dcd0Xqd9zr3zcvihh+Q1Uydn7r33Ze269Wke2pTprzsm9z/0cOf13QEA2Jl9BQBQW12xrwRCAKBo654ZS8+9LMM5bz87RzzzyqsXesw6f8ACAHhR9hUAQG11xb4SCAGAoq1dv67zA52fq7WtLbNvuyNJMmrUH+4fNXJE1q5ft9fOBwDQ29hXAAC11RX7SiAEAHgB9z/4UJavWJk3veG0DBwwoLuPAwDQ69lXAAC1tSf7SiAEAIrW3DQ0K1auesHbn3td92etWLkqzU1D99LpAAB6H/sKAKC2umJfCYQAQNGGPjOgFi1ZusPto0aN2GlcPfuYoc+7HQCAP7CvAABqqyv2lUAIABSteWhTJh366txx55ysfc6HN89f8EjmL3ik8+u169bnjjvn5Igpk3caXgAA/IF9BQBQW12xrwRCAKB40446MgMH7JdZN8/ufJXVtKOOzLSjjkyy/ZVXs26enYED9ssRUyd351EBAHoF+woAoLZqva/6dOlpAQB6ibPOOD1z752XW267I0kyauSIJOm8vvsRUyb74xUAwG6wrwAAaquW+0ogBAB4xrSjjszBBx2UdevWZ+36dUmSiQcdlKFDm1z2CgDgFbCvAABqq1b7SiAEAHiO5mfG1MEZ391HAQDYJ9hXAAC1VYt95TMIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAAChInxe6sW/fvmlpadnbZwEAqKnGxsbuPkIn+woA2BfYVwAAtdVd+6pSrVar3fLMAAAAAAAAwF7nEqMAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEH+f9DApMuju8rpAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plot_neighbor_performance(metric_learning_model)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Plot example truth and predicted graphs"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 13588])\n",
+      "torch.Size([13588])\n",
+      "torch.Size([2, 2370])\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAH0CAYAAACuKActAAEAAElEQVR4nOzdd3wUdfrA8c/Mlmx674WQ0JuiiBV774KFs569nXp2xQKoYP2pp5536lnvVECxK2LDhgoWlCItISEJ6b1unfn9sckmSzZ9U3ne9+LMzs5857u7yT7zzLcpuq7rCCGEEEIIIYQQYlCpg10BIYQQQgghhBBCSIIuhBBCCCGEEEIMCZKgCyGEEEIIIYQQQ4Ak6EIIIYQQQgghxBAgCboQQgghhBBCCDEESIIuhBBCCCGEEEIMAZKgCyGEEEIIIYQQQ4Ak6EIIIYQQQgghxBAgCboQQgghhBBCCDEESIIuhBBCCCGEEEIMAcbBrsBAu/zyy8nNzfX53JQpU3jiiSd6XGZ1dTUAERERFBYWctFFF3HQQQexcOHCPtS0fwz1+gkhhBDdoWkaxx13nNe2wMBAJkyYwN/+9jfS0tL8cp5bbrmFP/74g+XLl1NfX9+jGNr2+qAv5w0LC+vx8f4k1w5CCDFw9rgE/YADDiAzMxOAVatWoWkaRx11FAApKSm9KvPSSy/FbDbz5ptv+q2eQgghhOiawWDg8MMPR9M01q9fz7p167jvvvt44YUXUBTFr+cKDAzkqKOOYty4cd3aX64PhBBC9NQel6Bfeumlnp9Xr16N1Wrljjvu6HV5ubm5uFwunE4n2dnZBAYG+qOaQgghhOgGi8XiieMOh4M5c+awc+dOysrKiIuL8+u5IiMju33NsPv1QUvjgBBCCNGZPS5B70x2djZXXXUVxxxzDNHR0WzdupXzzz+fm2++mdmzZ3P11VcDcO2117Jt2zY++eQTFi1aRENDAwB33nknTz75JAAul4unnnqKr7/+msjISP7+978zdepUn+ctLCzk8ccfZ8eOHRx//PH88ssvVFRUsHz5cp91euSRR3j33Xd59913KS8vJzIykhNPPJHzzjuP9evXc/PNN3PiiSdSU1PD77//TmZmJldeeaXXHf/O6rdy5UqWLFlCSUkJMTExnHLKKZx11ln9+M4LIYQQfWcymUhISCAnJ4fGxsYOY+i6dev4z3/+Q15eHvHx8Vx66aUceOCBAGzbto2nnnqKgoICDjnkEBwOh6d8X129s7Oz+de//sX27dsJCQnh+OOP5/zzz293fbBs2bJen9cXuXYQQoiRSSaJ8+Hnn39m2bJlhISEdLnvCy+8QFhYGDExMSxbtsyzfe3atWzfvp2MjAzy8vJ47LHHfB7vdDpZsGABGzZs4KCDDmLNmjXk5OR0Wqf169fz7LPPEhAQwOzZswkMDOSVV17h999/9+z/6aef0tjYyMyZM1m/fj133HEHTU1NXdZv+/btPPbYYxgMBv7yl78QHh7O888/zzfffNPdt08IIYQYcJqm8fPPP5Obm4vRaCQhIcHzXNsYmp+fzx133IHVauXss88G4P7772fbtm3U1dVx2223sWPHDg499FC2bt3Kn3/+2eE5a2trueWWW8jKyuLEE08kKiqK1157jQ8//LDd9YE/zyvXDkIIMXJJC7oPqqry9ttvExoayvr163tVRnJyMk8//TQA5513HoWFhTidToxG77f8999/Jycnh2OPPZZbbrmFiooK5s6d22md8vPzueuuuxg9ejR2u52dO3eyc+dOioqKSE5OBiAhIYFHHnkEcAfy7777jt9++43Ro0d3Wr+WCW1MJhPx8fH8/e9/p7y8nKSkpF69D0IIIUR/amho4JhjjvHadsYZZ2CxWDyP28bQ559/Hk3TOPnkk5k8eTJRUVE8+eSTvPfee4wdO5aGhgYuvPBCLrjgAqqrqzttBf7222+pr6/37F9TU8Pzzz+P0+lst++KFSv8dl65dhBCiJFLEnQfpk+fTmhoaJ/KaDt7bEREBKWlpei63m6/goICACZMmABAdHQ0SUlJ1NfXd1inoKAgPvnkEzZv3sw+++zjs9xJkyZ5fp4yZQrfffcdlZWVniDbUf322WcfTjvtNL7++mseffRRT91uvPHGXr0PQgghRH9qmSQOICAggClTprRL2NvG0KKiIgCeffZZr3127drlmUdmypQpgDs+pqWlkZeX5/PcJSUlAJ7x5eHh4dx6660+9/XneeXaQQghRi5J0H0wGAyen1tmgK2qqgLcXeha7hS35SvQdUdUVBQAWVlZgLu7XHFxcbvu9W3r9NZbb7Fu3ToeeOAB9t9/f8/d7LY2b97s+bmlm1xiYmKX9SkqKuLQQw/lr3/9K4WFhXz55Ze88847LFmyhHnz5vX8BQohhBD9qO0kcR1pG0Nb4u4LL7xAeno6LpeLwsJCAgMD+fjjjwF33Jw+fTqNjY2exNqXmJgYwD0O/aCDDqK2tpaXX36ZjIwMTjnlFKD1+sCf55VrByGEGLkkQe9CUlISqqry/fff8+CDD1JQUEBZWZnXPqGhoRQVFfHpp58ybdq0HpU/Y8YMwsLC+Oyzz1AUha1bt6JpWqfHtHSTX7p0KatXr+bLL78EwGazefYpLCxk3rx5RERE8O2335KcnMz06dM9d/s78uuvv/LMM88wZcoU9t9/f8rLywG8xvIJIYQQw9Wxxx7Lhx9+yKOPPsqRRx7JmjVrWLduHbfeeisHHHAA//vf/3jzzTepqKhg69atnU7WNmvWLF566SWWL1+O1Wplw4YNbN68mZtuugnwvj7w53nl2kEIIUYumSSuC9HR0VxzzTUEBwfz22+/se+++zJmzBivfc455xyioqJ46623elx+UFAQixcvJj09na+//pqJEycyatSoTo8588wz2Wuvvdi+fTtFRUVccMEFgHvZuBbHHXccBoOBH374gb333puHHnrI6056R0455RTOO+88ysvLee2119iwYQMnn3wy559/fo9fmxBCCDHUjB8/ngULFuB0OnnppZeoqKjglltu4dhjj2X8+PHccMMNJCYm8uWXX5KamsrEiRM7LCsqKoqHH36Y0aNH8+GHH1JZWcnll1/OCSecAHhfH/jzvHLtIIQQI5ei97ZvtvCLXbt28fbbbxMTE8Ppp59OdnY2t912GxMmTPAs2dYTLUultF0WTgghhBAjh1w7CCHEyCVd3AdZYmIiQUFBvP7667zyyiuA++5+S/c4IYQQQoi25NpBCCFGLmlBHyLsdjvl5eWEhob2aQb54uJiPv74YyZPnswBBxzgxxoKIYQQYiiRawchhBh5JEEXQgghhBBCCCGGAJkkTgghhBBCCCGEGAIkQRdCCCGEEEIIIYYASdCFEEIIIYQQQoghYI+axf2OO+7g+uuvH+xqCCGEGMECAgKIjo7u8XFnf/8Yv1Rl8eQ+l3Jq8n79ULORQ+K5EEKI/jZY8XyPmiROURR2f7mFhYUkJSUNUo2EL/KZDC3yeQwt8nkMLb4+j55+RjXWBs7//jE+qdiAprmItYTz/MyrOT15f39Xd8SQeD48yGcytMjnMbTI5zG0DKV4vke1oAshhBCDzanVkFvxLxrt2RgUncs+r+QnlwOCTQCUWWs447tFLB5zM6NCEkmIimRWbAwmRRnkmgshhBCiRX/Fc0nQhRBCiAGi4+CH7COoaVqHAgQYjJQ7joUAMzS3CE+OjCe8fi/m/bAZoorAbGJCWBhfHj6LJItlcF+AEEIIIfo1nsskcUIIIcQAqWn8lVrrOs/jyMB9SQ4f775drsOVY4/grIiL+K0uEhLjwBIAwJbaWp7anjVItRZCCCFEW/0Zz6UFXQghhBggpQ3lNNogOAA0HcItUzCYgjHoBl7Z/1oSjdM4etWXEBoAmua5Cw+Q09AwiDUXQgghRIv+jOeSoAshhBADRKvJI78SJiSCAphMYzgmfSKPpV/C9IjRVNodbDn9JLLq6thWV8v2ujo219axua4ei0E6vQkhhBBDQX/Gc0nQhRBCiAGgl3zH+LWLKIo7mM21q0kPB7N5DHfsfZpnnyiziSizifEhwVRUh7KupJ6wehtx1Q38UaJRPtFBTIhpEF+FEEIIsWfr73gut+OFEEKIfqaX/ojr6wtwOWo5os7JPjELqLFBmGVch8cclhbAL00OtipgCwum3hLENd+VUevQBrDmQgghhGgxEPFcEnQhhBCin7l+uBbdWoEOOGs3cUBpKfuN+QizMaHDY0YFG3n26CRQQDGAKcjIhgYXV31fNnAVF0IIIYTHQMRzSdCFEEKIfqbEzHAPUlNAV8Cx4zXGlDdhNsR1eIyj0UH6j5s4d2o0KAq6pqPrOr9X2Aeu4kIIIYTwGIh4Lgm6EEII0c8MBz6NEnsMulVzT/eqgGP1xVC1vsNjrHU2Xr/1E6a9t4rxKWHoqkKgUeWJA2IGsOZCCCGEaDEQ8VwSdCGEEKK/GQIwHv4Kun0CWnUcmKajRB+Clv9+h4dU5VVhsgSx7rmfmPT6x1gCTDy2fzTHpQQOYMWFEEII4TEA8VwSdCGEEGIgBIahR5yFfXM0tq0pOApm4MhLwrluFVrRDvT6KgC0HWW4Fi2jPLcCTXMRHB2H9cPfuLtsO0clSXIuhBBCDKp+jucjepm1hQsXsmDBgsGuhhBCCOHmbEKrq4S6Nbi2rXFvUxV0p4OgW55CKc2k8YrnMSU7KTvHPZ5N13WiIuJIDzIPYsUHl8RzIYQQQ0o/xvMR3YI+f/58dF33/BNCCCEGkxqT0vpAUUBR0Jx2TEdehuttqD/vKfQGGza1kfLtZego6LqO2RBAVHL84FV8kEk8F0IIMZT0Zzwf0Qm6EEIIMZSYjjgHw+gpAOgOF46qehTTQWivBWJ97hNAQdcd1OYVULSuyD1TLBCeEkbajJSOCxZCCCHEgOnPeD6iu7gLIYQQQ4kSHEbIovdxbV6Ls7gArbAa243rcNq3g6KjKAZczkacASqTT5qIjkJ4fCjTz5yKySIhWwghhBgK+jOeS7QXQqDrOoqiDHY1hNhjGCbOxDBxJgCm1K00XPUiWlE1KGCcNZH0l64mM6HjNVWFEMIXiedCDKz+iOfSxV2IPZyu6xTmFlJdWTvYVRFij2Q8dDzBz12KIT0W45ETCH/3bgySnAshekjiuRCDy1/xXFrQhdjDKYpCcFgIQSGWds9VlFTJhExCDADjrPGErVs02NUQQgxjEs+FGHz+iOeSoAshiIgOb7fN5XLRVNeIU3UMQo2EEEII0VMSz4UY/qSLuxDCJ4PBQFJGImbLnrv2shBCCDHcSTwXYniRBF0I0SFVla8IIYQQYriTeC7E8CF/rUIMM06nc7CrIIQQQog+knguhPBFEnQhhpHyokoKsovQNG2wqyKE6MARq52MfytvsKshhBjCJJ4LMfQNVjyXSeKEGEaiEyIJiwqRrmpCCCHEMCbxXAjREflWEGIYURQFc4BM8iKEEEIMZxLPhRAdkQRdCCGEEEIIIYQYAiRBF0IIIYQQQgghhgBJ0IUQQgghhBC9JpPdCeE/MkmcEEIIIYQQoseqy+u54vhHaay3EhoRzMtf3YElSMbWC9EX0oIuhBBCCCGE6LHzDrqPuupGXE6N6vI6ztznnsGukhDDniToQohB4XK5KMjaJd3ihGjjhzU/s/bXdYNdDSGE6NKiv72Gpule2zSnxtP3Lh+kGgkxdPQlnksXdyHEoFAUBVAGuxpCDBnZO3LJ2pEDQHRkJJkZ6YNbISGE6ISiqOg6KG1CuQ6oirT/iT1bX+O5/AUJIQaFqqqkjElCVeVrSIjsHbmsXrOWsLBQwsJCWb1mLdk7cge7WkII0aF5T5+PweB9o91kNnLtwjMGqUZCDD5/xHO5MhZCCCGGgIP3n0mgxUKgxcLB+88c7OoIIUSXlv6ykIjoEAwGlcDgAIJDLYNdJSEGXV/j+YhO0BcuXIiiKJ5/QgghxFCSvSOX7B25ZGake3WBa3nc8vyeTuK5EENTSFggb66Zz0dbH+adPx4gJDyIx29bOtjVEmLA+TOej+gEff78+ei67vknhBBCDBUt3eC6It3dJZ4LMVy88NmtfPHur+zKKR/sqggxYPwdz2WSOCFGOF3XcblcGI1D+89d13VpGRN7jB/W/EzWjhzCwkLJyskhK8c9mUxZeQUAK79c5dm3ZQxbRVUVM/edPij1FUIMvuESz/9232yuP+NJlv/+wGBXRYh+1x/xfES3oAshoKKoksIdxUN6OTOHw0lB1i5cLtdgV0WIIcvpdA52FYQQg2i4xPOpM1JIyYhj/uUvDXZ1hBiSuornQ/sWnBCiz6ITo4hwuno1W7rLpVGaW0piYmK/tm4bjQaCggNlRnexxzho//2Ij41l9Zq1TJ040TNereVO+3FHHQG0dps7eP+ZsuyaEHu44RTPn1x+HadOupPfvt/GPoeM67fzCTHY+iOeS4IuxAinKApGU+/+1BXANQA36hVFITopuv9PJMQQ0t2EW5JzIQQMv3h+z7MXseCKl/jgz4f6/8RCDCJ/x3NJ0IUQHVINKokZcTI2XIh+0hKod580puWxJOZCCH8YjHg+84iJ7HXAWG466xkef+tvA3ZeIQaDP+O59CcVQgghhoDVa9bSZLXSZLV2azZYIYQY6u5/6VJythbx2dvynSb2HH2N55KgCyGEEIMsMyOdg/efSW1tHbW1ddKtXQgxYjy5/Hr+MW/5YFdDiAHhj3guCboQQggxBGRmpDMmYzRjMkZLci6EGDFGjY3nsFP25srjHhvsqggxIPoazyVBF0IIIYaIg/bfj4P232+wqyGEEH512//9hZqqet545ovBrooQA6Iv8VwSdCGEEEIIIUS/euXrefz3yZWDXQ0hhjxJ0IUQQgghhBD9yhJkZvYlh3LhrEWDXRUhhjRJ0IUQQgghhBD97vJ5p6CoCs8ufHewqyLEkCUJuhACALvNjq7rg10NIYQQQvTBQMTzv895mhPH3sbJ429n57biHh376jfz+PC/P1Bb3dhPtRNieJMEXQiBpmkU7yyhorhqsKvSI06na7CrIIQQQgwZAxHPbz33Wbb8noeu67hcGled+H/s+LOwR2VcdvtJXHb0w57HEs+FaCUJuhACVVVJykgkJjGqX8rXdZ3KMvfFQl1NPU6n0/OcpmnkbyvA5dJ6VKbD4WTntnyaGpr8WlchhBBiuOrveP7b6q1sXJuDonhv/9vpT/Yons+5/HCi48J48Pr/STwXYjeSoAshADAajf1Wtq3JRnV5LU6nk5qyGuprGjzPKYqCwahSW13XozJNJiOxSTEEBgf6u7pCCCHEsNWf8fzPX3JA8fGE3vN4/q9Pbmb1yg3kbimWeC5EG5KgCyH6nSXIwqhxKRiNRpIzk4iIDvc8pygKMUkxVBRV4rA7Oi2nbcs7QFhESL/UV4i+WHWwka1npQ12NYQQwu/Ov+F42H14u66jKHDSuNu5/7o3+fTNn7odz29+ZC63nfsviediSBqseC4JuhBiQBgMBsCdkO/ObDGTPiEVk9nU4fF2u4PcLXnYrfZ+q6MQQgghOrci61Gvx4qq8vG2R3j56ztJGR3L0ue+ZfZe93DXX19gy+957Y5vG8+POG06Y6akMO/C5weq+kIMeZKgCyGGhK665JnNJqLiozBbzANUIyGEEEL4siLrUeZcehi3PHoOk/dNZ95FLxCfHMldz1zIexsWMf+5i7E1Obj5nH8yZ+97eOyWJTTWW4H28fzRN69m4y85rP5sw2C+JCGGjP4bpCKEEH4WFRsx2FUQQgghBHDZnScDcNQZMzhl4h389v029jlkHAAzDh3PjEPHA/DR/37g/de+Z87e9xAdH8Yxs2dw0c0neJX14KtXcPsFz/HRlocG9kUIMQSN6Bb0hQsXoiiK558QYmRa/dkGzjvwPi6Y9QDb/sgf7OoIIfxM4rkQQ9ttj5/Lwitf9vncyecfxAuf3caKrEc5/JTprHz7Z04YcytXnfB/fLp0DQCT9xvNzMMncMKYW73+CbEnUnRd332qhxFLURR2f7mFhYUkJSUNUo2EL/KZDC1D/fNY8+WfLLzqFc/ftqIqPPnWdYzbK3WQa9Y/hvrnsafx9XnIZ9T/JJ4PD/KZDC39/Xnccs6zBASaWPTK5V3uW1laywsPfsSar/7EbnMwed/RrF+T7bWPgns+ut3HvI8U8vcxtAyleD6iW9CFECPfouv+63Whrms6d1z470GskRBCCLHneWzpNaxfk826H7Z3uW9UXBi3P3Eu7/zxAIteudznTTcd2m0TYk8gCboQI0BxXil22543u7m10Y7LpbXbbre5BqE2QgghRN8M93h+62NzWXD5Sz06Zq8DxpCSFN3B8BUZ0iL2PJKgCzES6DoOh7Pr/UYYS5CZmPiw3bYqpGTEDkp9hOguu8NBdk4uq75bTV7BLgBW/7SWn3/7HYDsHe7nsnNysTs6X09YCDGCDPN4fuhJe5M5KYW7L/5Pt4/55Zut/PZrVrvtug4y5YQY6vojnkuCLsQIEJ8WR3BI0GBXY1C8+u1dhIRaAPe41PRxCfz7k5sHuVZCdC4/fxdrf12H3W7HYW8bsFu7c9rtdtb+uo78/F0DX0EhxKAYCfH88beu5Y+fsvjjx+xO9/vs7bWce+B93Hf1K+x9wFgMBrVdl/aROv5cjBz9Ec9lmTUhRoA9fVbjqQdkkrOliGsXzGbGYeMHuzpCdCmvoICoyAiOO+oIz7aDD5jp+TkzI53MjHRWfrmKvIICMjPSB6GWQoiBNlLi+S2PzmX+5S/y3sbF7Z5b9twq3npuFU6ni1MvOISLbz2BUybegWJQUdoMW/s0W5JzMfT1RzyXBF0IMWxomkZlcRUxSdFe2//8NZdTLzyk0+Rc1/URc+Ejhr+0lJRu7Tdm9Oh+rokQQvjfYSfvzfuvfs89l7zI/S9dCsALiz/k4zd+JCDQzF+uPZpDT5hMTFI0p02eh6oq2G2tXfs7azmXeC6Gkv6I55KgCyGGDZfTRUNdExFOJ0Zj69dXTWUDZ191ZIfHNTY0UVFUSXJGIqoqI3vE4Otui7i0nAshhqvH3/obJ0+4nbv++gJ//JRFVGwYNz50NoedvDcOu4PCnBIun3YXDoeD2IRISguruixT4rkYavojnkuCLoQYNkxmE6ljk7yC8jsvfUtoeBBGY8eBOsBiJjgsWIK5GDJW/7QW8O4GB1Df0MDPv/1OcUkpDoeD+LhY9po6mYS4uMGophBCdOmNZ77gw9dWExBo4qH/XUVCahQAC654GZdTY93q7Tz8+lVMnZnhOcZkNnHruS9gbbRz1T2n8erjKzzPqQaJ52L46I94Lr/dQohhZfeg/N0nfzBh77ROjzEYDDjsDkp2lfdn1YToNrPZhNls8tpW39DAhys+o76+nr2nTma/ffbGbDLx2ZdfU1xaOkg1FUKIjr3+9Of87x+fUV1ZT8muKi496mGuO/0fnDDmVqrKannxyzsYv1cqbz23yuu4s2fMp6GuiafevYEXH/4Il6N57LkCARaTjzO5STwXQ01/xHNpQRdCDJr62gYsQQFe3dV7asfmQm5+5Jwu9wsJD8bQyV15IQbSfvtMb7ft51/XERIcxCknHOfZNnH8OFZ+uYo/Nmwi4ShpRRdCDB2N9XbeeOZzr5nXNU1j57ZiPtzysKdn2xNvX8fJE25nw9odTJ2ZwTn7zcfaYOPqe09n2XNfkZoZz47NhQAoKEREh3R6XonnYijpj3guv91CiEHhcrmoLquhrqq+12XkZ5fisLs49KS9u9w3ODQIS5Cl1+cSwp+yd+R61kttUVxaxpiM9pPIpKUkU1lVPUA1E0KIjp29772cOO42rjrxcfKyin1O1mYyG9sNO7v54bnce+mLzJ25EE3TOebM/Tj2zJl8/+kGxu/V2gtO13WSRsV0WgeJ52Io6Y94Li3oQvSSw+7AaDLKTKK9YLPaKcwtJjkjAbPZ3OF+RTtL0ZxOkjOTfD7/wX9XE5cc2V/VFKLf5BUUYHc4SEtJHuyqCLHHk3jePSeMuQVddy8Fl7u1iEdvfgNLoJmGOqtnH12H8XuPanfshL2TcTicaJrO5H3Tue7+OVx29MOMm5bKp0vXAO4hbLquS1wXw0p/xHNpQReiFzRNY9eOIqpKqge7KsNGfa27pdzhcFKYU0RwaFCnyTlATGIksSkd30n/9dut7HPIOL/Ur6mhiYrSrmeQFcIf0lJSqKyqbl4X1X3nPSEulqwdue32zSvYRVRkxMBWUIg9hMTz7jlnxgJPcg6gKFC4s4JDjp+EJciMqqqoqsLMIyaw+JXL2h1/8zn/Im1MPHabg/OuO4bP3v6ZXbnlZG0s8HSRD48ORlEgOb3zFvSuSDwXA6k/4rm0oAvRC6qqkjImqU9jp/ckTQ1NlBRUEDDWPd48NCyE6KSoLo8zmX1PFONyuTAYDJQUVHLqhQf5pY5Op4bu0vxSlhBdSU1132nPKyjAYXcAsN++0/lwxWd8uOIzxjQvx5JXsIuS0jKmTJwwWFUVYkSTeN49jfXWdj0MdF1nw9qdvPPHA/z4+SbCIoOYsl9Gu2PPO+h+0sYmsOPPQm55bC53XfIfbE12ADStdfy6tdGGrsOosQl9qqvEczGQ+iOey7eREL0kwbz7AoMDSRubhMnkTrhjkqN7XZbL5aJwRxF/rsvHaDKSPi7RL3UMDQ8mNDzYL2UJ0RWzyURmRrrXuqghwcGccsKx/PzrOn7fsMmzLMuUiRPYuHkL4WFhsi66EP1A4nnXMicnseX3PK8kXVEUaiobOHHsbcQmRjDjsAlExYWTNKo1xl9wyANM3W8036/cwEdbHgbg2QXv+TyHtdGBrutkTOxbXJd4LgZSf8Rz+UYSQgDuO+GF2UUkpMdjMBr8Xn5Lct5XBoOBmKRofnz0c9LHxfulzLZ0XadoZzGBwYFExkb4vXwhOhMSHMwRhx7Sbnt4WBir16wlMjJCursLITrVH/H8yeXXc+NZz7Dl953omo6iKFw171ROu2QW9bVNvPnMF/z4xSY+XboGS5CZidNHkbWxgKPO2Jd3X/6OFVmPespqrLf6PEdLV/eouDCsVicAFkvvUxWJ52Iw9SWeS4IuxDCg6zpOpwuTqX//ZPWudxl0z85/l49e/wFQSM7oeJyay+WirKCc+LS4Hk38oygKoVFhBFg6Hx8vxEDKzEgnMjKCkBBpFRJiOBvO8fyJt/7GWy98y58/Z3PU7P145Kb/cdolswgJC+Tyeadw+bxTAFj51lr+Of9dXE4X7778HQnJUfzvH59x/g3HcvVJjzPrhGmYLSa+eOcXFBRoCdGKu+K3nvssG9bsQEHBEmTi7d/vl3guRozuxHOZJE6IYaCisJKCrF1oWv+NqVIUhZQxST2+2+5yufqpRu09/8AHfPj6D+iAjk5+dhm3nfcv3zvr4LQ7vdZn7a7QsGDMHYx/F2KwREVGYPZTTxQhxOAY7vH8rMsPZf7zF3PI8VPImJjMvZe91G6fN//5JcedPRNLUABnXn44E2ek8/EbP3LCmFvJ3VqE0WTky3d/dSfbbfPt5nC9YU2O57mmRjtnTr9X4rkYUbqK59KCLsQwEJ0URXhcGKo6tO6pORwO8rMKSclIwhzQPwGwbWvDu6985/WcosD6n3bgdDoxGo3U1zbQVN9EbFIMBqOBlLG9W/JC13VZbkcIIYTfjaR4/uTy6zhp3G3kbivyzAdz8REPsu+scfz67VYOO3lvLr39JM/+c/a+h0n7jCL7z12dxtm2mxVFwdpoJyI2ulfvmcRzMRwNrW8HIYRPiqL4bQy3P5lMJiKiwzCZ++9eX0VhJbuyC9E0zefdc0UBZ/NYNYNBRTH07WutZcmd+tqGPpUjhBBC7G6kxfOLbj6B2897DoBLjnyIvQ4cQ352KfHJUVz/wBzPfv9a+B5BwWYuve1Y/vXJTb4L0+m4lbwXlxkSz8VwJQm6EKJPouIie3R32m6196j86KQokjMTUVWVsMhg2sZuXQdzgBFLiAVwzxYfE9/18m2dUVWVoNBALEEBfSpHCCGEGE56E8/PvvIILEFmztrnXqbOzABdp6Kklgf/e4XXvh/8dzW3P3Ee/37gE04efzuKorSL5zp683bda3toRCAhzXG+JySei+FqRCfoCxcuRFEUzz8hxOByOp0U5BRRU1XX7WPatjYs+2UhIeGtgdZkNvL+pgd7XR9bk83n9qi4SFl2R4ghROK5EENL23huMhupr20ifVwiq1du5MUvb/fa98JDF2EOMHHbef/G5dIxNk+Q592VHVSDytyrjyQyNhRwt6aHR4ew7Jf7uqyPxHMxkozoBH3+/Pnouu75J4QYXEajkdQxyYRHhva6jKNOm0F0fDj/XnkLH27ufXJubbSSn1WA3e7odRlCiIEh8VyIoaUlnt829znGTUtlv8Mm8PziD3jrN3cybW2088C1r3HKxDsoK6zmlPMP4pPtj3Di3ANwOnxPRmcOMJGSGUdtZQMT9k7l0+zHWLp2fpd1kXguRhq5pSSEGFB9XVrm1++2su+scYzKbF0DvWWSuJ6wBFlIG5cms7sKIcQe6P2C5/i58gsMiso1Yx8l3pI22FUaVr56/1cevXkJAEX5FTjsToJDLTx6y5ts/T2PXbnlZE5yTzh33vXHMvfqIwF45f8+8brJ1tJyrigKDpsDVVXQNJ0n3r6+23WReC5GGknQhRDDSlF+Jbc89hfP48qyKqrKqkkfn4bB0LMlZfpr5nkhumPjxo3d2m/KlCn9XBMh9iyfl7zJTxWfoigKmu7iqW1/56oxD5MaNHawqzakrViyhvTx8RTlVfBYc3IOYLc5UFUVh93FV+/9xrFn7sd/vridV/9vBSvf/tmTnDvtTkoLq73K1HVIH5tIZXktVWV1PL/4w15NPCvxXAwmf8dzSdCF6CFrkxWjyTggY5oqSqswm42ERvS+S/hQ47A7qCisJCE9vuudd7Puh+2oqsKEvVtbOqJiIwkJDe5xcr47TdNoqGskNDykT+UI0V2SeAsxOL4ufctrLgMd+HfWHSyatrzfzjmc47mmaZw2eR6aSwOUdmu4t0zstteBmTjtLgp3VgCw7LlV/POjGz37nT717naTwAFExITg0jRqKxuoLq/nmDNn9Lm+Es/FQPJ3PB/RY9CF8Ddd16ksqqK6rHZAzqfooGmDM95S0zQKsgrR+3h+l8t7rFlfxo9+9tbPJKfHtttutph7XWZZUQW11fXUVtdTUVTRrr5CCCEGTz31fFD4vN/K21L7C77CkE7/xtrhGs81TeO0SXfidLjQNL15yVPf+6ZmxrL4tSvYvC6Xv536JJNnjPZaH93lcrmbzNtMDqcaFHbllhEWHuRZ5/ymh87pcT1B4rkYOSRBF6IHFEUhIT2emMS+LeXVXVHxkYRHhQ3IuXzr2yWLy+Uid2uB1xqk5gBzr1rPNU1j/ZpsZh45sQ81as/diqITERVG6tiUPrfECyGE8I9fKr9g8YYLWVP+KfPWz2ZXU3afy5wQNsN7+nDcOaNJ7fkyXj0xXOP5R6//2O7Ggq+FFFRV4fI7TwXgnKuOJPvPXTzyxtUA3H3xfygtrHJP8uiuisek6aOpLq/HEmzG6XQRGh7Ui1q21EviuRgZJEEXI1Z/3TmtLqvZI2YRVlWVlDHJqGrvlzQyGAzEJEYSHNr7gAtQWVpNcW4JlaW1nH7RIX0qa3cxCVFYLO6l2ySYCyHE0PBp0au8W/As6K353D+330qJbVefy148tbkre3PBZmMAC6e80edyh6q+xPOU9BifGXlcUoTnZ4NB5eNtj3ger3xrLWGRwTx685u8/OgKdmwpRHPp7ZdIVGD/IydgbbKjqu6u75fecVKP69hC4rkYKSRBFyOSw+Zg57YCHA6nX8t1Op001DZit8lSHt0VHhnW53WLw6JC+PWHbCxBZqLi/NsCYWuykbs5H7vV7tdyhRBC9N4vVV+1a/HVdZ03cx/2S/n3TVrGeONMFBSSLZl+KXMk2mfWeI46fR+vbukms5FXv72LFVmP8tYv9/PR1tbP5K3nV2G3OVn68wK+ev833nnpG555/+8+y9Y1SBuTgGpQ2bB2BwDHnTWz13WVeC5GCknQxYhkNBsJjw7r85Je7co1GknKSCCgkzHP1ZUDMz59uHE5XRTuKOpV7wOj0ciaL7eQMSHJ7/UKCAwgfWJqn8axCyGE8C+zYmk31llBIcQU6ZfyjUYj50+4lTBTNAWN233uI/HcLWtTIQoKiqIwbloq765/wBPPQyK8hwa8+vin3PPsRZ7HToeL8w9+oF2Zuq4TGGRmx5ZCQsMDaaizEhwW2Kd6SjwXI4Uk6GJEUhSF6Dj/BPHdddZtym61U1pQisPu35b7gaLrer9OqtKXkQFb/8jjkOOndeMcvk+iaRr52/JxubR2z0kwF0KIoeW2ic+hKK1xQ9fBaDRxWcZCv53DYDBweNwcnLqD9dXfU+Yo8jwn8dzt+jn/YMfmQvf4cV1n2/p8nE6nz3i+4IqXyZyYxNSZGZw07jZPz3hfcVlRFP7+4Fls/SOP4FB3Yn74KXu3ew2+SDwXI50k6EL4kdliJmNSeq/W8BwKSvPLKMwu9NsY+7qaek9ZBqOB5MzEbnV3r6mso6ayzvNY0zTqa5s445JZnR5XvLOU4pySDuuvGgw+J7cRYjjYE+a+EKKtxdPewWRwJ1yqqmDQ/R9b948+DoCleY/z+OZreGrrDYDEc3Cve779j4J2cfPsGQvbxfPq8nrWfPUn/3j3Bs4/+H6g65vyh528NwU55VSVu+P9wcdN9Twn8VyMZF39XQ7Pbx0hhghdbz/pyUCsj95fYlNi0DUfE7n0gsvloryoEl3XCevFuq9tv7yWPfc1YZFdTzTnrr/ms/6qqpKc6f8u8kL0lE7rcE6Xy+XplbP790lFZRUFhYUYVJXU5GTCwwdzBmghBsd9U5Z4fp63fjbrq75nWqT/Jgu9e8OZQMvfpUKRNY9Ht1zBrROe3+Pj+Ya1O3xe59itDh6+8Q1mHj6RI06bDsCNZz3NSecdyK1znyVtTAKVpXW+ivQIDnN3ja8sraGpwQZA5qTk3eov8VwMbf0Vz4fvN48Qg0zXdQpziwgOCyYiOnywq+MXqqr6rV+NwWAgbWxyr2ZSDY9yJ/Rfvf8rj968BF3XPeujdn5OFQzSMUgMbQpQV1fP7xs3kZdXQFpqMntNnUxYqPv33qVp/LF+I1uzstF1HU3XWL9pM1Mmjmfq5El+uYEmxHCUGjyepflP+i1B31S7Fk337iatKApV9nK/lD+Y/BHPb3v8L6z64DfvjbpOSHgQOVuK+OmLTTxy8xuYAoy4HC7+/CWH6soG3vjxXv7v9qV88c4vnpnyW++5uxOXo06fAUBjvc1TdFhE6414iediOOiveC4JuhC9pCgKweEhBAYHdLqf3ebAHGAaoFoNLF3XKckrxWAyEZvUfm34vixz8vWH63jsZnfLiaIoaJrGSeNv5+Ot/pnBV4jBUltXx5fffI/d4SAiPIzC4lIqqqo5YtbBhIeFsmnzFgpLy5k6aSITxo3FpbnY+OdmcvMLsQQGMi4zY7BfghCD4urMB7lr/Rxey13Ehel39bm85CDff0sKvi+a98R4/uGWBzl5/B0AKKqCOcDEW7/d53ne6dQ4fcqdJKRGkbutBNWgcuLY2wiLDCYgwITN6l71RlVacnX3cmrvv/odJ8x1z9huNBs6fM+FGMr6K57LrSkh+iAiKoyAgI4TdLvNwc4t+diabB3uM5wpikJodChhUcF+L/uxW5Z4LbGjKAqaS+M/D33U57J3H/sjY3vFQPrt9/VYrTZmHTCTk44/hlkH7Y/d4WDT5q3ous7mrdsJNBuZMmkCRqOBALOZfffeiwCzkQ2bNg929YUYVMclXsCW2l/9UlaEMYakwHTaBhsFOCPl6nb77qnx3Gg08mn2Yxx60l5cetvJOB0aO7eXeJ5/9OY3SRoVQ+HOCj7Z/ggfbXmIFz67jZPPPxCb1eFpIdw9niuKwtUnPg7AmMnJXTZ2dETiuRhM/RXPJUEXoh+ZA0ykjUsmILB3gWc4CA4JIsDi/9ent1sB182ltZ+1tUfl6joFOwqpra4HoLa6juK84j6VKURPlJZXMCo1maTEBAoKC0lKiCcpIY68gnxsdjuaphETEwO4x7S1zMQcGRGB2odeKUKMBIfGno5JNfPQ5sv8Ut7fxj5OZEC85/F+0ccxI+rodvvt6fF83lMXcOblh3HGxbO4++IXPNu//fh3duWW89iSazzbkkfH8Ou3W5m2f2a3EuZRY+IJ6cUSaxLPxWDrr3guCboQzarKq7HZ7H4vdyQH8/50ya0ns3uPN0VRuHLeqX0qt7bKPbN8UIh7ghpLoAVLcNcT0AnhLwEBAURGRJCdk8sv69aTnZNLVEQELpeGApiMBgoKC9E0HYPBgMFgwOl0UlxSgsvpGOzqCzHo7pnyP2odldQ5q3w+39N4fuuEf3FS4sUA7Kjb0OF+Es/hsjtPpqnBxvuvfs8Vxz2KyWzkvOuOYfKM0Z59Vq/cyJbf89j4c07rgbvF85bE3RxgorSwhqjYnk8mK/FcDLb+iueSoAuBO1A01jWO2K5rPdF23VRN0yjLK+tRl7GWtVLbstt6nlTMuexQLr/zFM9jVVX4ZPsjPS5nd5qmERYR6pmd1xxgIjJmZEzyJ4YHl+bC4XAQHhbKQTNnEB4WisPpRFFUAgICyEhPR0dl1bffUbCrkLyCAr785jtQDEwcN3awqy/EoDNiJNIcxyObr2z3XG/j+cGx7nhTYS/qYs/hoz/i+Unjb6e+1spz939AfnYp+84ax7l/O5rSwioevvEN5ux9Dw9c+yrhUcHePeF07+7nt/7fXwCYOjODipIaYpMie/z6JJ6LwdZf8XxIJehfffUVF198MX/9619ZuXKlz30uvPBCTjzxRM+/TZs2DXAtxUikKApJ6Ym9Wg5sKLM2Wnu0f11NPQVZRZ6grmk6TocTrQfdygt3FLEru/UCx+FwsHNbHnU19T2qC0BkdCiWQDNv/XI/H2/reXJeX9vQvsyYcCIkgItBpCoqqlGlrLyCn9etp7S8AoPqXtPXpWlMmTQRi9lIbX0ja9f9we8b/qS+oZGYqAgmDJMEXeK56G+3Tvg3Lt3Jx0WveG3vSzw3KEZ0dO5aP4d7Npztp5r6x1CI56dMuAOX04WiuIehKUBpYTVzZy7gokMXk7OliFknTsMcYOLqe09H1/TWlnOleZx7RBArsh7lzX9+CcBld55EXXUjiWntJ5ptS+K5GIr6K54PmVncq6urefHFF3nmmWdQVZVrr72WGTNmEB0d7dlH0zTsdjuffPLJINZUDGeapuF0ODEHmNs9N9KWLrLbHBRkF5E6Jqnb3fKCQ4O81nE0Gg0kZib2aDb2hPQEr8cmk4n0cWnUVNdjCXRgMndvBly71c4X7/5C5qRkQiIs3T6/53ibg+K8YtLGpGK2tP+8hRgsiqKCDhPGj8XhcDJx3Fg2bt4KzRMhms0mwsNCqaisYvSoVExGE/HxsSQlJHRd+BAg8VwMBE3TmBJ2IKvLPuCkxL96PdfbeK7rmruVVwGX7mTe+tksnvaOH2rbN0Mhnr/x9Oc4nS6v91YHdmwu5KKbjmfuNUcBcPaM+Zx/wzH846633cm53rqz3qYVfVdOGQDp4xJprLeSNqZ1HoDdSTwXQ1V/xfMh04K+du1aZsyYQWRkJOHh4Rx44IH8+OOPXvuUl5d7BXgheqqiuIqS/PJ+meWzorRqSM0eag4wMWp8ao/GzKmqSkRU3+5GGwyqe/3SNkwBJuyNVuz27nV1d9gc5G/dxZZ1Ozni9Om9qoc5wET6hFESzMWQY7U2UVNTi6IoTJviXge1prYGXdcxGg04HE6yduQQFhLCzH33YfpeU4dNcg4Sz8XAqCiuYpbzPFRF5altN/a5vPcK/o3WvEZ3Ww9suqjPZffVUIjnVeX17caRgzvhbknOl/zrKxQFzrriCJoabKB5XxMpClgbbPxr4XsoiuJZss5uczJ6QmKH9ZB4Loaq/ornQ6YFvby8nLi4OM/j2NhYKioqvPYpLi6mpqaG2267jdzcXA499FCuueYaVNU7GVi4cCELFizweR5FUbj55pu56aabPNsKCwv990KEX/TnZ6JYNIqK/DvGzOl0UZRVRNyoOAICfQeQkvwKjAaV6F6Ms2rL5dQwGAf23po/Pg/drFNTW01NbXW39q93NNLYYGP6YaOG3d+opmlUF1cTmRhJXVU9YVH+HTox3N6PkW73z6Or1rv42BgKCosoLi0lIS6O4tJSCotLSU1KRFEUioqLCbAEkj4qDV3X0TQNVVWHTS8fieeirf6O5ycbruWDuqfJy9vBc9W3oaNhJoArYv6vR2Xl1+xwN/Hu9mfW5Gpo9xr2xHh+xpX789H/fvB6f3TdfUPjq4/XMGF6Kq8/9RnxqRGcMOZW9/OK9+rmuq5jCQ7gs7fXous6kXHB5ObkuZOZINeQ/PuVeL5nGSrxfMgk6L5aHncfJxMaGsqZZ57JqaeeSl1dHffccw8ff/wxp5xyitd+8+fPZ/78+e3KUxSl3XkKCwtJSkrywysQ/jJcP5Pk5KROu47ZGzWa6pqIi4vzTGjSU3arnZ3b8xk1Ls1z57m/Ddbn8fErvxKbGOHz3HU19QSFBPaoq95AcjldqDYDkRERNFXZiI2Jw2T2z9ftcP37GKl8fR5dXXBNnzaFL775nq++WU1cTBSl5RVYLBamTZkEQG5+Pg67nbSUZBRFGVbJOUg8F60G4jNJIYXPN73Mv6tv8Wyz61aeq7yJhVOWdLucq5Pu4971f8E7A4VxYfu0ew17ajxfkf1oa/KtQ0pmHEeeug/PL1zBAUdPxmBUKdzRfDOu+e9Tp/XvVVVVFr9yBdef8Q8sQQGMHpdEeX4DqkEdsn+7Es/3HEMpng+ZBD06OpqtW7d6HpeXl5Oamuq1z6hRo0hPT0dRFMLDw5k1axY5OTm7FyVEj+i6TnVZDZFxEX0qp6tkMX1MCna7o9fBHMBsMROXEjdgwdwfinOKiUmJwWA0dPqlZLfavbqvrfnqT6Yf3H4CDV3XqSqtxuV0ERE9NCeHMRgNJGYkoCgK6RPS+vSZi5EnPDycI2YdzB8bN1FYXExSfDx7TZ1MeFgYdrudXYXFxERHEdy8XNBwSs5B4rkYDO3W5MShOXg7/ynOTL2+WyUYsTBv0sss/vMSWgZPT4+axVmp7bvP78nx/MPND7L193xGTUwmJMQdsz947XtWLlvbnI0376wooLcOGVAUhVe+uZMnbn8LRVEwGBTGTk1ly7pcAixD9z2QeC4601/xfMiMQd9///1Zu3YtDQ0NNDY28tNPP3HAAQeg6zqFhYVomsY777zDwoULcTqd1NfX88MPPzB58uTBrroY5px2J3XVdTidzn4/l7mbE6R1Jjxy+Mw0r+s6mu5e6qVgewEOh+/32Ol0kpeVT3VlrWdbUV4Fp/91Vrt9FUUhdUzykE3OW7R8CUswF7vTdZ2oyAiOmHUwc2efzhGHHkJUZCS6rmMymTj04APZZ69pg13NXpN4LgaaU/expJquU+Oo7FE5IcYI7p78Gi0zmx0Se3qH++7J8Tws3EhAQGsKkZDqnk/Ca1k1vJMRo9FAXFIk69dkYQ4w0tRoZ++DxtJY7yAkLHBgXkQvSTwXHemveD5kftMiIyO55JJLuPnmm9F1nfPOO4/Y2FisVisXXXQRy5Yt47TTTqOsrIxLL70Up9PJsccey1FHHTXYVRfDnCnARHJm593TRe8oikJSRkLzuLNAjEbf77HRaGTUuDTPDO/fr9yA0WTscNKYnrQotp3FVoihoG33bIPB4Pm55fc6OXH4TAjni8RzMdCmhB/EusqvvRvSFZ2LMu7ocVlBhhBUVDQ0luc/y9/GPuq3eg5nHcVza6OdrX/kMXp8Ijlbvef30XV3QzrA1P0zePel70BRmH7IOH76YhOT9hnF2y+sIiwyqFt1kHguhpr+iudDJkEHOOqoo9oFaIvFwueff+55fPXVV3P11VcPdNXEEONwODGZ/PPrq2lah1/4mqZRuKOYxNHxe0RQ0HWdyuIqohIie5QE67pORXEVMYm+1zFVFIXY5JhOy2i7/Npny9aSMbHjGV27w26zo2kaO/7MJXVMCqHhIX0qTwh/avv3Ndy6sHeHxHPRXf6I52elXg+azu+136Dr7u7pt018ASMWHvjzIppc9QQZQrnIvLhb8TwlaBx5jVsoasrhnYJnmRF9FGmB4/tUx4E2UPH8prOf4ZDjp3H0Gfuy4MqXm8sAdpsR/6TzDuQ/D36E5tKYNjOT31dvB6CiuIaYhIhO6yTxXAxl/RHPh0wXdyG6y9ZkY+fWPJwddJfuifLCCgpzSjpdHk1RRuYFtC8ul4u6mnpcTlePjmuob6A4r7jdMAGn00lNm27r3fXnb7kcdtLe7bY7na52k011pKq4irL8chx2JxZL95emEUIIMTD8Gc+PMJ3PRZYHURUVUHhm283cs/EsGh216LpOg6OGfzde3614PjP6GAB0NH6t/IJ/b7+T5XlP97mOA2kg4vmfv+1k5/YS7nrmAhZc+TLBYRbAx3WTAvsfPpHi/ErCo4LZtbOM8OhgNE2jqqKe+OTOZ8OXeC72NJKgi2EnIDCApPREjH5oQY9KiCQuJdpnwK6qqEFVVZIzk9ot/dMVl6tnAXGoMBqNpI1L6fF7q+sQGRvRrlWisb6J6vLaHq0P31hvpaHOyukXtx9/XpxTTHFuSbfKiR8VT+q4FCbuOw7TAE3CU1leMyDnEUKIkcDf8Tw9bTQ3jn8a0Gl01eFyOVv7WCsKmu7iXztu77KscaHTPT+3RK9fqr5iWf4Tfa7nQBmIeL74utc44+JZnLPfAi6+9UQa63zMBQAkp8XwxJ1vYTQamHXiXuRsLiImPozi3BIa66ykZMT5PK6FxHOxp5EEXQxLQSH+mVBEVVXMAe3XLXfYnZQXluGw9/yuvtPpJD+rALvV7o8qDrie3owACA0LIWl0YrsbHWERoaSNTe52DwSr1clz939AZKx74hyXy0V5cZXn+cSMBBJH92w8j9nse116f3PYHFQWV/Tqd0YIIfZU/o7n0eYEIkzuLtj6brO76yg0OKu7LOu/uQ+y23xnKIrC5tpf/FLXgdLXeH72jPmcOf0evnznl3bxfOVba2mst7FtfT4ZE5KwWx3ouu7519bhp03nxy824XS6uHbBGRTlVzBp3wwSRydgbbKTNrbzBL2FxHOxpxhSY9CFGCpMZiOjJ6b3asZOo9FIWFTYgN3lHWx68zIqHSXh3U3O7738RdZ+tRkFxTPRj8PuwN5kQ9M0VFUd0vMAmAJMsgSLEEIMAbdNfJ5562eze/hRFDgsbnaXx4eZo6Exi7ZZuq6DWbX4uaZDS0s8ryip5/yD7/O8f4/dthSDycDhp7T2LHh+0QdM2z+TLb/vZMnaBZww5lbP8c2FQXM8Hzc1FVuTnZiEcDRNo666kWkHZKIoCi6nxtgpKQP/Yjsh8VwMNmlBF3ssh92By9XxeOa+fDFHxfZsUpbhStd1ivNLqCqv9mzTNK3HY97u+uvz/Lxqi/s9a37bThp3G5ZAC4np8b1qBehPHf3uSDAXQoiB5+s7eXL4/q0PmvPsM5KvYv+oE3h863XcveFMFv35V5/lnZd2GyaDCa+GYEXnzokv+rfiQ0jbeH7BrPva3dx4+MY3PD+/9OgnmANMrF21mSVrF1BTWd88Y3vbceet8fzey15ENaicMPcAAJwOFzMOHc8D177mfmzv3twy/UHiuRiKhtZVrxADRNd1SvPLqCiq6nrnXpZfmF2E1skNgJFAURQCQwIJDg32bCvfVcGuHUU9Gne+bnVWu22arvP2818PuRsd/f27I4QQovs6+k4+b9TtKIr7MndSxH6Y1ABWlrzOw5svp9xagKZrNDhqmLfBd4v6wslLvJLURZOX99trGAq84nkH4fuEMbdywphbeeu5VVRX1GMwqpw66U7OO/D+1p103K3nbcpQVAWnw8W5fzuan1dtwWQ2cvqUeaxeuQGAvxywgNLCgY+pIy2ea8Bjf3zNfzb/NNhVEX0kt4fEHsm9nmf7MdNdaahrJDi0e+t1dj89Hd4iosK9HselxqJpWs/eW/eqOO1Exoa126brOi6X1uGa6v2tt787u9M0DZvVTmDQyO4yKTq2cePGbu03ZcqUfq6JEMNXZ9/Jf0m7iTd2PkZew3bOG3Urr+Q8gLvbdevEcWg6i/+8hHmTXmp3fGxAMmW2XQCsq/mGfaOO6M+XMuha4rnRZMRhd7ZrRX98+d95+7kvWLtqMzOPmMipFxxCfV0jD//9DRSX1mbd8zbd3HcrZP2abFwuDUebVnNN07ni2Ed5b+Pifnx17Y2keF7vtDN9+WOet/zVrF/47pS/DVp99jT+jueSoIs9lqIo6LpOWUE5sSkxXX5BOxxOivOKSUpPJDC480ltFEUhObNv63gPFmujFUsfg0xPu6Tf+ODZPH7HUk+SrusQFhHIUWfs027f8l0V2JpsJI9J6vIzqyqvJjQixO9d1fzRql9VVkNTXSPJmV2/jv7mdDqlO98gkMRbCP/oKJ5PCT8Ik2qm3llNdEASCu79vOaOUxTsWpPPcqdHHsZnxe6u3d+WvTPsEvTexvMPNz/ISeNua9P1230X/abZT4ICKRmx3PPsRVitTi4+bJFnMjVFxftmu6LQ8nbf/PA5AOzYXOTznC6Xxo4/C8mYlOTzeYnnnTvgvSfRmnsu6joUNtRwyqf/4cPjLxuU+uxp/B3PpYu7GHGqKqq73b3a5XJht9q7tba2yWQkbVxal8n5cOZwOCjaWUJNVZ3fyuzOZ3HMnBncsOhMz+Pg0ECW/XKfz31jkqNJzEjoMAjammye8zbWNNBYb+1FrTun6zqVRZU96sa/u+j4SL/cue8rXdfZlV1EeVHloNZDCCF25494ftekVwB4dvutBBiC0BXv8nQdkgIzfJZ5eFxrXKqw+04sh6q+xvOPtz3CfodNIDDY3LqueXO4ys8u5dwD7uOMKXdSXV7n6dKua+3fW0UBo8nA0XNmALArt6zdfgCqQW2XnEs8755fyvNxaO3n/slvrB74ygi/kARdjCgul4ua8joa6hq7tb/RaCRlbHK3Zwc3+WGt1qHMZDKRMiaZ8MhQv5RXX9dAUW5xu+0ul4amaV4B0eXSCAoOYEXWoyz/3XdyDu6LhI4+L1uTjZ3bCrDbHM1d15IIiwjpdn1bLga64nK5aGxowtnDyfB2NxQmv1MUhaTRCUTFRwx2VYQQwsNf8dysWgg1RtLkasDqanC3ouNOKBUgLWgsV2QuAuCJrdfx9PabvMtV3SuyaPrwmlPGH/H8/pcuw9roaLddURVqKhuAlgZzdwu70pzB67o78dXRCAwOYPK+oz3HlhW1uemi654k/uWv7vA6h8Tz7psRk4qvWwNhJhlCN1wN/tWhEH5kMBhIHZNESFhw1zv3QEleWaczvvuDy9W34OAvfbkJ4XC0rhlaVV6D2WzCYG6/3NyODTls/X07uZt3el73dx+vZ0wnS624W3oLvT4Hu827tSQgMID0CWmYm5e468ndbGujlZ3bdnVr3VOj0UhSRuKIuWFjMpuGxM0CIYRo4c94fkLShV6PW5fzVKhxVlDtKOfO9WdQai2gqDGHeetn48QdCzJDpnqO+6z49W6db6TF83Z0PLHXM+S8pYW9OeFWFIWAADN2m4O/XHs0AC8/tsK7HEVBUWCfQ8YREm6ReN5LS7LX4dA0zw0SAJOq8tVJ1wxirURfyBWZGHH8vVa2rus4HE60DgKuy+XqU9cocN/pzdu+C6ez62AyVFkbrezcmofT4cThcFJdXg06xCfHtNs3LCYUxaBSXVrtCcjbNxYw64RpHZavN99pb/u4tKCc8l0VAGgujcIdRZjMvQuyliALoyekdnh8UW4R9W1acvyd0HZnmIUQQuxJ/BXPnbrTK3lpYTEEUeuo5JHNV6CgNHfjdu+3YP1cAPaNPNqz/8+Vn3d5rpEWz0+76GCvMfu6DkajwX3do9NuEji9uU3dEmgGwGQ2steBmQCU7vI9lErXkXjeS9esXs6Dv39J9ty7ePnwuewXm8ZhiZlsOftOjHLjfdgavreLhBggiqKQ3MmY5+KcYhRVJSmj95PCmS1mImPDh91EXZqmoWs6BqMBS5CFpPREjM13odPGpnR4cRWfEkd8ShwOuxOTyYi10U5jvZWTzz+ow3OpqkrKmNbxaS1ds1sCq+dioQ9MAe1b+z3PWQIw9/JioStlRZU4mmwkju7490wIIUTvzIg8io93vYhN8x7DfG76LbyYvdDnMRrum/JTwg/wbGt0dT2ee6TF86vuOR1VVXjnpe8Ad/f2D7c8xLWnPE72n0WeFvNW7gfmACMuTWf6QWM9zySkRrc7r6Iq3PnU+QSFBEg876HDPvwnYeYA/phzCwCzEjKYleB7PgUxvMitFSG6obMv2fj0eCL7OH5XURQiosO73tEHXddx2NuPERsI5bsqKMwp9vQgCAppnUDPYDBQWVZFeVFFh8e33N1+56VvCI/q/tiyFm3vehuMBpIy+2+SlpiEKMwB5n4pOzo+gqjESEnOhRCin8yf8gaq4r5p3PJdm9+wndgA30OrWvYFCDa4l/zUdZ0ia26n5xmJ8fyKu07jjZ/u4tbHzvF0BU8fl9icmOueseTQmqzXVjfSWGflsjtP9pSTvWkX4/dKA8BgVAkJDeTlVXcSEhYo8bwHipvqmLDsIQ5PyuTD42SW9pFIEnQh+shpd7Jza0G3xjr1h/KiCop3lva5m31vxKbEkNRB7wJd16kqraKxvusJfn78fBMTp6f1RxWHBVVVsQTKZC5CCNGfHpj6lvuH5nD5Zckyzk673msfdyjVuWPifzzbpkYc7Pn5m9J3+q1+Qz2ej52SQHR8GE/fs5zvV24A8AwLaHuYoiqEhgcRFhlEfHKkZ3tBbhk2q52YhHDe2/ggb627z+v5kaC/4/kLW37i4Pef4j+Hns3CfY/vt/OIwTW8+t8IMQRZgixkTk7v9VipvopNisHlcvntbq3LpaHgXvKkK53NqK4oCnGpcQRYArosJy+rlHOuOaqnVRVCCCF6ZEr4QWys+YEQYzj1zhoKm3IxKiZMqhmjaqLeUYtBNRJijPAcc3DsKfxU4Z7g7M/atf1Wt+EQz+c9dQE3nvk0Wpul0lSDitZmAldVcc+Uf+hJe3uVU1laiwKcf8NxGI3SRthTF3+zhPWVhWTPvWuwqyL6mfx1iD2KPyZ086WzsU4DwZ8T45Xml1G8s9QvZYWGhWD2MYt7W/nZpTjsTg45bmqn+wmxJ1j901pW/9R/CYAQI0Vv4/m5o9zjdeudNQB8XPgiM6OPpcnVwLVjHuOGcU/g1OyeWdwBos0JqIr7ktmp2fmp8hNeyllAvbO67y9kN0M9no+dmoLRbPS896rqnZyDu4NCfU0T18w/w2u7rcmBw+FizmWH+aVOe5ID3/8HdQ4bv55xU9c7iyGhL/F8RCfoCxcuRFEUzz+xZ9N1ncLsIkoLynt83J4kYVQciaPjB+x8H/3vB2ISezder6dKCkqpq6nvt/LtVnu/lS32DPUNDdQ3NAx2NYYcieeirb7G83Gh0wH3Gud2zcbY0L0BWJb3JHGWVFRUnt12i9exMQGtk5R+UPAfttf+waI/L2Zb3bo+vJL+1V/x3G5tHSfva8byyJhQ4lOivLZt+yMfgBmHTvBLHfaUeL61poxxSx/kjPSpvH30RYNdHdEDfYnnIzpBnz9/fvPSTPoel2QJN6vWyEObL2PBpnN5Yut1JKTHE5vcfhbRjui6TtHOYqoravxSn07XFW022EFhoC+Af/t+G3sfOKZXx9qsNupru//lZzSbMXXRot9b9bX15G7LG9ZL6wgxVEk8FyuLXuWuDWdw5/ozuGvDnD7F87+OvgcAp+ZONJfufIJocwI5DZsAGBu6NyXWfK/j94s61lMONMdKFF7JuZ+sut99nnMkxvPlL3zt9TdoMrdv8W9qtHH82TO9tv3+UxYA1z8wx2e5Es/be3LjN5z86QssP/av3LbXkYNaFzGwRnSCLoY/XddxdbD+eHc8sOkiah2V2F1Wym2FPJJ1RY/Wu1QUhZDwEILDgnpdhxa2Jhs7t+7E2UmS7rA7+e3bTTTUdT2x2lCm6zqaS+vWZ1eYV8Hx5xzQ5X6+NNQ2UVfV9bI3LaLjIrAEdj0mvjdCwkIYPX7UsFtaRwghBkJf4/k3Ze+h6+6kGF3n3i1n9ymejwqe0Lxdxao1sm/0kaDAJ0WvcNHou9HRWVOx0nP8wTEno6O3LgnenKTqOnxa/N925xup8fyNZ77wet5hd7nXkG9+Z0wmA031NubuNq/MiiU/YTQZiIoL83keiefezvnyv7yZtY7t58xjamTvl/EVw5Mk6GJIK80vo2hHUa9aTF7JfQBNb3MxoLjXMP26bHmPygmLDMVk6ttdWl13ry2akJbgWSfcF6PJQHxKNOZBHtPeF2VFlRTlFFOYU0xpflmn+/7xYzaqqjBpn1G9OldUXASJoxJ6dWx/GOy5CMTwVFlVjd3Rfmklu8NBZVX1wFdIiH7Ql3g+b/1soO004QqKrjRv77628fz8UXcAoOvuLtrflr6PioG15Z8CYDEE82nRa55j795wtjsJbWmRbv6voijEWFq7v7cYifG8trqRxgYbAZY2r0kBveV/OjidGqMnuBPKOdPv5cSxt3HKxDso3VVF5qTkDs8l8bzVjHceJ8BgYM3pfx+0Ooje8Vc8lwRdDGmxKTEkjO7dWpgOp7X9Rl3H7vKxvZ9VFldRlFvsta6oL4qikD4xtd+6bfmT0+FkV3b7i62ImDAi4iNIykggYVTHY98++t8P/GPeMpLSYnp0Xl3Xcfj48hNiuFr55SpWfrHKK6jbHQ5WfrGKlV+uGsSaCeE/fYnnvvR1oEOwMYzEwHTPY6urgbGhe+PQHWys+YETE/+KTWtCa54sTtPb937TdR2zwczc1JvbPTcS4/l5BywEwNY8Bl3Xda8PQlFA03SOO/sATp00j4baRnRdx+lwoWk6x8yZ4VW+xHNva8ryGLN0MZdM2J/XDj93sKsjesFf8VwSdDGkqaqK0di7GU1PSLoYZbdfcQWVYxPO80fVeiQ6MYrE0Qnd6o43XCZAUlUVVW0/vs1kMhIUHIiqqh2+lmtOfpx/LniXooJK8rJL2gXoipKqDltZygrK2ZVd5PexYXU19VQUV1C0o6jdjLS+dKerpubSulVWu+N6fIQYzo476gjqGxpY+cUqNE1H03RWfrGK+oYGjjvqiMGunhB+0Zd4HmRs3y1aUXQWT+vbmuRnp93oFadyGjaho/NZ8RvMiDoKRVF4MdudlBow0S4sKbBg8psdlj8c4/nDN77BBbMWMe+vz2MyGfnfk5+jaRq3nftvNE1v7QWo6/h6dYoCa1ZtxGF3eL1+Xdd57YlPvfbdE+K5le4N67j/t8+48KvXWXXSNVwz6eAen0cMDf6K55KgixErJSiTv417FKNqQlUMWAxBaLiod1bz4J+Xcv+mC1hd/uGA1Wc4jU3uTrBUDSqJo3veHe2yox9mx+Yi94Pmi51TJ87D1mTznLu+ug6n3XcdYlNiMBhUinOKe3zurrgbAxQ0TWNXdseBXdd1CncUU1ZY0Wl5RbklFPagnpd+s4QxSxczfuliFv66susDujDYE9yI7omKjPAE9arqaqqqqz3BPCoyYrCrJ8Sgu3vSKwQZw9A9zbU6oLCy+L/MWz+beetnc++Gs3tcbnxAKtGmBFq6z9tcTYSaIim3FWLV6okPGEVu42YA7p+2FFVVvJJ0xWeKOrT0JJ7ffM6zfPPR75QXVbPu++2ckHkL777yHadMuJOtf+xE03ScDqf7PVCau/u3eT903R0f//xlZ7ub7Iqi4LB7J6sjOZ6PWbqYjCUPMGnJg0x6++FO9z1t5UusLNjK1nPuJDUkwuc+Es+HB3/Fc0nQxYiWaBnNfVOW8vdx/+Deyf/jzkkvsvjPS6hzVNLkauCTwpf5pfKLrgvag5QVlpOfVdjjyXzaLnfS0bE1lbUU7qzAV6PCS4+uANw3MlLGJHc4/ktRFJIzk0jM6NukKeXFlRTmtHbpCw0PISYxmqSMBAxGA6B12IVSURTi02IxmAyUF1d2eI6kjASSM7tXz8u+Xcqqwiz3hDy6zn+3/8K9v37a9YEdsNsc5G7ZiaODGx1i8LUdq9YS1F0uFy6XyyuYy1h0IdxJ+oPT3iXYEEpLQv116TueydpcupMFG//S43JPT7naK9FuctWhYmBp3j84K+16dF3jtyp319RFU5djVL17Aexs2NzLV9T/ehLPP3jtB7b8ntuaWLck4c0PHQ53Gbque8dwxb2v3tyirigK1kYb+Lh5cfTsfb0ej9R4PmbpYjRN80yeZ3U4mfj2Qz733Wv5Y8QHhfD9qdd1WJ7E86HP3/FcEnSxR2hZv/SRLVe6NzRHFx14p+CfALhcGg77nj0WStd1rPVNGI0GDIaOuyJam2xUlbUuPed0OCkpKMVuteN0OtmxORe7rf17qeugGny3OEzaJ93zc2fnBnd3vK726UpYZAhhMeE+uyC6LxqSMRg6/oo0B5gxmY2YzB33jOjJEjerCrO8uwMCS7N7v76uOcBEdGJsp/UTg+ujTz+jsqrK87glqO9+p72yqoqPPv1sEGoohG9OnDy9/UYWb76ED3a9MKDnvmvyq56f207apgN2zT3HTE/ieUbIFMJMUajNl8ROzYmuaGyrXUeiJR2jamJFUes5D445xev4L0qW9uXl9JuexvOCnJL2Xfi9CuzkOaW5O3+bcPfXm09sUxcIjQjimvlntDt0JMZz902M1n0VBWy7reDzWcFWZn37MrdOO4LnZ3Xe+0Pi+dDn73guCbrYo7g0X3cfFb4rf5+KwkpK88v36DV2FUUhKSOJ5C7uZjvsDmxNTZ7HRpORUeNSMVvMqKpKQ62NqpKqdsdFRIfxytd3e23TdZ2J+47isJP37lFd+7q+rDnATEho35bPCw0PITzK95IxPdHxqLa+dZ+MjO573UT/su+WRMTFxhAXG9PpPkIMJid2Fm44l6KmndQ7qllT8SmfF78+oHUINIS06e7elntm957G85OSLgGv8dJgUAysLP4vMyKPpsFZi9b8TT0r9vTWsykK+Y3b+vJS+k1P4/nZVx7pnYDuFn50vTVJbfu+6l5d3N0PVmQ9yhvPfMZZVx6BwWhg9PgE9jpgTId1GEnxvDtjzu9Y+zE3/Pgenxx0LueP3bfL/UHi+XDgz3gut2LEgNI0jfraBsIiQoH2dxn7m0kxY9fs7bpYz4o5bVDqMxQZujGJT2h4CKHhIV7bWpauUVWVyfuN63AyoJiEUP694hauOuExVFUhbUwijy/9W4/qaG20krtpJ6OnpBPQy3VQW9bk7e7cAP35u6ECiUFhFDXWerYpwCXj9/P7uWxNtl6/Z8K/UpOT+Pm3dWze2vkFfn1DA6nJ7ZdxEmIwPLXlJlxtZjTX0fmm7F3Gh80gLWj8gNQhLXg8W2t/bU4aW7fr6Dw47V33zz34zp4SfgCBajBWvbH5Rr6OS3eytuIz7pz8Aj9VrGBZ3hPMTbuZYGMYqqKi6Rq6rmPXB35lmO7qaTx/8fPbuOzYR9B1cDldgOK1qlxLAu5O0lu3Q+v7vSLrUR684XWSRkWz9qvNzDphGr9+t5Wjz/CdiI60eG6h/Xuu6zohAe7XdsKK57G7nGw+63YKCwv7dC6J50OHv+O5tKCLAVVXU09NWS0ul4uaylrytxcMaIv1wqlLMKiqu6tW82mTgjIA+LjoJb4ue3vA6jKSmUzGToPf52//TExCOB9ve4R/fXJTt8rUdZ3Kokp0Xae6rBazxdSnwFS2q4KCrEI0retZWe02O8W5Jb0+V1dO+vQFIgICOT51AqqiYFRVrpp8ELfvdVSXx+q63u2/IWujlfzthTKObYjYb9/ppKV0vC5wi7SUZPbbd/oA1EiIrjVotT63b8/bPGDxfFr4Ic3d23WveN4ylnze+tnctWFOj8o8NvE8FL3tMCMdq6uRe9b/BR2d9dWrPc/FBqR4HbutrvfDkYaShLRo3lu/iEtvP4mxU1MxGlvThOR0d0ugJcgMgNGktkneFSKiQ1mR9SgA3378O/9ecQs7txdz6//NpaG2ib0PHuspayTH88wliwBoe6kZbDazfvatTHn7EcZHxPHlydf4PFbi+fDl73guLehiQIVHhhESFozBYCA4LAjV0PFSXP3lgalv8+KOBTS56rls7AP8e+vtzFs/B6W5w9w3Ze+yYPIbA1qngVRRUoXDaiM+Lb5P773dasdsMXttszZasQRZujz2py83sc8h47rcz+lwoqgqBoOKy+Wisb6RUGcY8WmxQGxvqw5AbHI0Tmd4t5a+U1UVVP/8ntY7HViMJs+X78x3n2Bm3CieOXh2j8vSdZ2inBIUFRLTu55R3xJkIXVskoxjGyJCgoPZbx9JvMXwMjX8YH6u+Myri7mma6jB2oDF82JrLjp6c5Lu/dyd689ARUEH7tpwBoumvtutMveLOoYVRa+ha7qnh4Cut3lNus7dG87kgalvc3DMKZ75awDWVqxkXOjA/y33Rzw3mo3MvuRQ9p01lqtPfIKDjp3CD59tpLigqnkCOHd3dJezNRk2BRg49KRpAFx53GMccdo+PHbLElIyYnl+0Udoms6osfG4XNqIiufF1joiLEFYMPBHRSGzP38ZBciae5fXfstz1pO5ZBGPHXAqZ6RP9VmWxPPhzd/xXD5VMeBaJgMxGo3tukkPlEszFnh+LrMXQJtLDbuziYUbz2X+lN4n6Q11jdRV1ZGQFt+XavaLkPAgHEEBfQ7mOzfnkzYhxXPX2+FwsmNLHqPGphDcxViworwK7nzq/E730XWdkrwyVFUhcXQCRqORpMykbgXgtvXc/SZCC0VRPN3yu2I0GUkc1ffPcsKyh3BoLnR05ozeiw93buLayYdw3eRDelWeoijEpcag9OA9ke5wQoi+OD35SsyKmR/KPwYFVAz8NeNu/pf7CL9u+Zy/T3gaYz9eXn5Vuozfqr4mxBiBhosmV32brteArrQuxqbB3etn80A310s/PG42XxYvw0Vzq6TXmGwFTdfYWvcLM6KO8krQdzRs9MMr67n+jOcNdXXEJUfw4+cbiU2IoKy4GoNRxeVs38Jrtzq5Zv4ZfLdiPcUFFTy38hbOmHoXDoeTD//7PQDn7LeQZ969dsTE88wlD+KeHV4nwhxEjb0Jg6Ky7Zw7vfa7fvW7rCrKInu3pH13Es9FW9LFXYw4DrsDu617E47kNW5p351IUbBpPR9T5rA7PWUZjAbMlqH5xRlgCehyMpWulmQxW8yMmpjqFRx0l4aqKZhMnV+Yfb9yA0aTkcxJHXcFajl/UkaC11rrPQnmVeXVFOT0fLm4/jJ+6UPYXe6LPgWF5TvWs3dMcq+T8xZGk7HT2WmFEMLfTky6mKsyFzMn9W/cN3UpGcFTuXfyfxkTshf3rj+bZflP+uU8u8fz1eUfsrrsQ+6a9DKjgidgUYPQdZ0Ik7v7dbvewYqCq9Ppx70dGnsGigKq0vHYbYvB3bBgUluTRaursdvn8Kf+judHnbYPug4Bge647mvdd0WBhNQoAJ64YxlX33s6X773K9YmOy6nhqa53//Geiv3XNE6G/5wjueZSxah6+66KChU25pQoF1yfuRHz7K9towNZ97arXIlnosW8lsgRpyKokoqCiu6tW9a0ASfa3L39G60y+ViV04RVaXVAFgCA4iKi+hRGf5UUVKJ09m7cUm2Jhv5Wbu6PH73O9nuIJ/Cll+3kbMtv8PjPlu2loyJHc8qq+s6xbmllOaX9alVIDImgtQxKX1evsUfvijYhlN3tVt25efSvEGslRBC9F5K8DimRxzute30lKtYPO0dCht3sGDjuWTb/ujTOdrG818qv+Tz4je5Z/J/Adg74lBqHZWoipFGraH5iPbJuNrDODIz8jiMekt8857ZHWBNxacAZAZ7d1XeWPNTj87TXYMZz1csXQNAQU45gGeMd9tYphpUjjt7f56+ZznhUcEcf87+vP7U5yg+upGXFLRf3aU7hlI8f3zjNwDt4nnbldar7U1MXPYQB8ans+KEKwa8jmL4kwRdjDgJo+JJHN35siJtHRxzmldMV4CzUq8H4I/a7zzbO7tzazAYSM5IQBsCK7Rpmoa90Y6tl8uWmC1mQiNDuz0baluBwYGERoUSmxDZ4T5//pbLYSft3eHziqKQMCqO2JSYDvfprrat+Q67g7Ki7t24KdlZ0u01dLsj0OS7N0VPbkA0NTR1vZMQQgwBfx//FKcmX85ndS/z9Labe11OSzzfWPMTHxa+wII2Q88mhx+AS3cyPnQ6dlcTCiqgtIvn6K0Tx7XoLJ6fmPxXXIoDtc1s3Do6igJm1cKGKvdkcUcmnON13O9V3/T6dXZksON5VXk9MfHhABiNBk9ruHsys+Y6unTmXn0kn7z5E08uvw6nU6MorwKzj7HRoeG9XwptqMTzEGPnvSNf3f4z+77zOM8cPIdF+53ocx+J56IrkqCLPd6JiRexX/TRKCgYFCPnpd/Bsrx/cNeGOSzd+QTzNsxmZd6b7NzeRfcqHeqr63p9p9tfVFUlIT2e4JDeBUJFUYiO6zjB7sroiaMICfM9t0BjvZWGOiunXzyr0zIMRoOn+5u/ZgW22ew4rLZulefvmYgPjh+FQfH+utV1nasnHdSt4+02BwXZhdiabH6tlxBC9Jd9Io/g6pgniTTHMW/9bD4peqVX5WTXr2dp3uMsnLKk3XNhpmgizO4JxvTmdcpR2iz9hTu5vnP9GZ7/zls/u8t4vnfYYZgVCy3ZvtL8P013oaHxR/W3pAR6r+u9o97/49AHM56/8n8rmgtx/8fl8p4hvWXZNV3XueGMf7D/kZMIjwrh0ZvfZNTYeP7x7g1eregGg8qzH9/Yq7rsbjDjeZCh/Vh3XdeZEZvKZd8u5Yn135A99y6OSh7r42iJ56J7JEEXAjgj5RoWTVvO/VOXMSlsJgrNX+rNa2R8W/0WG4NWdtq9ymQ2kTYupVd3qv1tKK7lrmkaLz78EVFxYd0+xuVyUZhd1Lwea9+EhAaTmJ7YrfcmIT0Bk7l7E850x8x3n+DI5DGEmgM8jTvXTZnFzVMP79bx5gAToyakyYQwQohh5/z027lz0otsqP6BBzZdRJE1p9vH7mrK4uWc+7l/6jKfz48OnsifNWs9j6PN7t5z3jmZ7kmwleZR1P+x39BpPJ8z6lpsehOqomJQjM2l6Dh1Bzo6X5W8BUCwMdxzjNXTzd6/Biuev/fK90TEhFBeXAP4TnTd66HrbN+4iwXPXwzAj59v5IIbj2PU2Hj+veIWps7MYJ9DxvH+n4tpqKob1vH8sm+XMv9X9xCHls4auq6zX1wahQ21VFgb+X3OLZ2WIfFcdMfgZxJCDDH/y33QHdzbfO/rwK+1n3Mql3V6bE8mPRnqdF2norh348V8cTqcrFu9nb0PHOOZjbVlPFtH75uqqhjNRp9j2XpC13UKdxQTnxaLsYtJ7Prqhh/fw6yoPHrAqYB75va+zNTewuzHGwZCCDGQQo2R3D7xeb4uXc4z224lM3QKl4xe0OkxFfZint1+O4umLe9wH4dup8ZRjkkx49Qd1DjK2u+kK+3ieXciytTwA8mqX0+jqw7Aa0m3MtsuAPaLOpqvS931UxSF36pWsU/kEd0ofWD1JJ5b661s3pCPrcnO8WfP5P1Xv28upPn/fCTFkTEhaJrGiiVrMJkNHHyse3x+WmYcj7xxtacOwy2en7byRQIMJpYdfSH7vfsElTb3ZICLZ57EORl7A5BTX8lxH/+bv46fyby9j+5WuRLPRVckQRdiNxZDSMtaLV7bVWXofaHquk5xXjGWoEDCIkNBwatVQNf1Xt99dzqcNNU3oQf07W630+nEYDBgDjBTsquamx/en7zN+aRNTKW0wH0xlTKm4xnd49Pi+nT+FgaD2u83UDKXLPL81ry/cxMuXeO1I87j4Pj0fj2vEEIMB4fHzeHwuDk8n303d68/k+MSL2BW7Gnt9rNq9fzflmtY3MnyaC/umE9hk7s1/ooxi/jn9ttw6k5SgsZQ0JjVuqOPeN6dTs9zR93MvPWzm1vdDWg4PQeqispb+f9gTuq1ngRd13U21KzudYI+FOL5A9e+xvefrvfcjPh8+c+7nbt1Tfi2ifrLq+6gcEcRS//1JYed3PFa0MMpnme8+YDnNWYuXeT57D898QrGhrmHVTyz6Xue3PAtS466gBmxqf1aH7FnkQRdiN2cmXodf1R/h1Nzet0ovnn8M4NXqQ4oikJoZBgms5HC3BKMRpXE9NZlyfK3FZCQHo85wPfaoZ0xmU2kjEmiqKioW/v7unjQNI38rELCIkLJ2lSEwaAyeb8MTwt6UobvyfzsVjs2m53aylqSutmNzWc5NgfmAJN74rn0/l2TfuzSxUBry4xTc2E2mnqUnNusNlRVxWQ24XA4sFnthIQG+7+yQgjRz97c+Riba37FUm3h0sz7iA9oTWCuyHyAnY1beC1nMd+VfcB+UUcyNeIQEiyjALhv44WdJuePbL4So2pC011EmeP5ueJzRodMIqd+E6HGKK99FUVH07wbfg+PO7tbr2F82L7srN+KVatvLQ/3eujrq3/grNQbUFA949/zGrZ1q1xfBjueL77uv6xeucEr3jbWu8dJK6r35Hs0d20HeOrd6zBbzITFRFBWVMP1D8zxKnc4xvPMJYu86qlr7usbk8HA8Z+8AOjEBobg0jSy5s7zWYbEc9EXI6c/rg8LFy5EURTPPyG66/6pyzAZ3EFQVVQyQ6bySs4Dg1wr30LCggmwBJCSmUjCKO+gVVFUSWlBeY/LbAm83f27qa9roDi3pN0YNVVVSc5I5IWHP+HxO5Yxaqy7fi1Luqhq+7vgLpeL/B27aGqwEhgS1Ou/3ZKCUtZ9tx67zX+zt3ak2FqHtttrVxQFZw/XbK0qrqKyqBKAmopaqktr/D7BjRDDkcTz4eWDXc+zoeZHnNiod9bw1Na/U2LzXn5zVNAETki8kAZnNatKl/PUthu5e/0c5q2fzX6Rx3ZY9vwNc4kJSKLWUcH8Ka8zOmQK2fUbODb+XAByGjaitpmUs7WxV/ck6V+X+h7TvruL0u/yJOdq8yWz3pyparqTP6q/JdbS2gOsyVXfvpAeGMx4/t2n6zsuQ2u/TVEUps7MZNw0902VJ+98i8xJSV77DMd4nlXffphES73tThctdyrKmuqZlZDRYTkSz0VfjOgEff78+Z4ZJuWPYvioqajH4ej6S7g7+/TFfVOWsHjaOzww9W0uzViIqqi8lru4X8/ZV7sHv2mzppDcQSt1RzRNoyi3BGuTlYqiyk7/duzNS78EWAIwBZp8Bt8z976Xbz76ndqqBrZvLKC+2trp+Q0GA2ljU4hLiiEqNqJHdW8rLDKU9AmpmAP6f2hCgiXU57i8FtWVtdhsXS+Tk5CeQHzzRVlMQjTJGb1vbRguSvJKe3XRKfYsEs+Hj0p7MWsqVtK2yVVH56UdC7z2+73qG94r+Lcn4QXQmluif676jI+LXvLaf1dTtjt5jzqGnY2bWTDlTQBmRB1Flb2EUcETUTFgdTWi+cooUbwmj2u77Fpn0oMnYTEEoSutByuKgo7OqpK3OTree7m1lnXS+2qg47nBZ5dxfffe7J73UNd1Djt2smf7z19v4a+3eC8rNhzj+ZiQ2A6HQOwejt/f2fHM/RLPRV+M6ARdDD+6rmOttWJt6Hz5CbvVTu6WPBw2B9UVtdRU1vR73a4Z8wil1nzeK/h3v5+rp2xWGwXZhZ5J11oYDIYeBwRVVTFZzGi6Rl1NPS6nrwsd99jyndvzqamqc69PqqhsWrvFa585e9/jvuPdHO0UReGsGfd0WQeTqftBuLK0yudFR2BwIPEpXY93s/dyfdndRZsD20Xv1w7/C7qu01hbT1N95zcmfBnpwRwgNDqU8JjQwa6GEMJPap2VPmdhc2jecX1j7U+ehNyjzVf5j+WfeH5eXf4Bz26/nXPSbmRt5UqvJddGBU0ARSGnYZPnO9OgGJvna/f9PWpsnpm9O0n6haPnYXU1uodxNZfZEnNKbQVMCfdeLnNjzY9dltmZwYrnV959otfNEl0HdAVFaX0P3UPZ3M8risIzD3wAwPuvfk+AxcSMQ8e3K7u/4vkZn71M5pLFZC5ZzPErngP8E88nLHvI/Sm3uyvRvl56t2YzcJN4LnpCEnQxpCiKQlx6NKERvtfRbmG2mElIi8cUYEJzaej6wHzx3TLhX2ys+ZFvyt71bNN1nbLCzu9M97fGBiuWYIvfJk2JTYwiKCiI+NRYjCbfS9EYjUbSx6cRHhmKw+5Ed7nYmVVAY2OTZ5+mBpvPoPTOi98AdL6ufDe4XC7qqhtorG/qeucOji/IKaK6orZP9ZjxzuMcmTyO+fsci9lgwGI0suTw85keloCiKCSOSiQiuvvLy+1JgoIDCbDIcjNCjBTpQZMIMrSP4TZXEx8XtraKh5tiPAlvC73NY03X+HDXf1iy8//4qvRtLs1YwFv5T3GfjyXXLGoQL2Tf49UNXVXcsctXbHbqTq7MXAR4J+m+4rlFDSLJkoFJtfhMyN7K/4dnKTaA/Mbt7fbpicGK58efc5BnaVnPZO2KOzdt6bmyezxXFIUTxtzKOy9+y5Gn79OnevYknp/1xav8UVHoqey26nIO/+iZPsXzPyoKyVyyCIfmvi5RaZOAt50gr5mug6GPM9KPNBLP/UcSdDHkdPcuY2i4+wIgKi6iz8lPRWk1ZYXd65Zz9+RX+bJ4CZtqfgLA6XTRUFuP0w9re/ZEy911l8tFdVktgcGWHh3fVXLscDgoyN5FU13HwdJkNmFrspH7Zx5hkaEcfupBBAUFep73vZyKwonn7I/L5WLntnyqyqvd57M7e1R/cLcopGQmEhwa1O1jyooqqK9t8ByfOiapR78/v5bls7Y81/N44rKHuGTC/jw08yQuHDuDzWfdwaYzbyfVHkhVcXWfZt4VQojh6K5JrxJoCIHmOdAPiz2Dq8c+zMaan1iw8S+sLv+AU5IuJd6SCp5W6TaNls150ZrKT9lY+yPHxZ/PSzkLeGDqW+3O9cTW67A3t84fFt8y67pCuCkGgECj7xv+/8me75mIbt5698RmHcXzuek34fTqAdD6nb6+ejVjQvfyPLZrPe8tNVTiuTnA7E5KPZO1e7eY707X4Yp7T6O0sIrjz54+YPH81/ICrwZuRYG8+poex/OLvn6D8754jSc3fsPsz1/2bLcYjEyNSkRROk6TAkwGtp99V7fPJURPyCzuQgAhoYHY7d0f037f1KXctX4Opydfxfu7ngdFZ1rRwZyddmM/1rKV0+mkIGsXSaOTMAeYSBubhMFg6HYyWF5UQX1tI6ljkryWcWnLZDKRkBZPXWNdh+XYbXbsdgep45IwW8ztzr3814Wcsfe9tO0adsLc/bGEuC8+4lPiCAoJpKy4ktqKGkZPHNXjVoO29XfYHJg6GaPW2NDE9x//yNT9JzFmaobndXbX1OWP0uhwd6ELMplpcjj45yFzOC6lfbe+BD8tJyOEEMPRPZNf47fcH5mUthcW1Z103T7xef6o/pYPCv/D16XvYNespAaPodFZj9Nlp8ZZgaIoBBvDqXdWu1NtxcB7u/5NevAkr/J/rvyC9wr+RWrwOMpsu1BQODLubH4o+4QmVx0NLndLqu5jPLqCggsnG2t+YvG0d5i3frZ3d/fNeM0iH2NOIiYgiUp7CS7dSduF21y6kzEh09ha+6tn/+/K3ve5fJwvQymev/7jPM7edyHora9PVRVMAUYcNicul77bSC6ddd9uY/xeaQMazxUfi9krOkx/7wnig0IZExbNXtHJzErMYGqk73H7mUsehOYhFj+VF7TWQVGxay42V5eCj94XqqLw78PO5qiEMT16bUL0hLSgCwEEBAZ4WuS768LRd/Hern+h4ULTNdZVfcvHRS93fSC+u9z1hNFoJCQiFJPZfY/NYDCgaRq7dhTR1Nh197DohCgSR8V3GMzBfQe8JL+s0/kAGuqaqKuqw2g2UpBViGO3mxyWEAtPvXs9AKYAI6dedLDXEizBoe5ZXWMTokgbl9qnLn1NDU3s3Jbf6Y2WoOBAjppzmCc574lJbz1Cg731vWiw2wgwGH0m53sap7PnrSVCiJEvwTzKk5y32CviUO6Z9Bp2zYpLd9HgqOWCUXdw+6QXWDztHeZPfp1GZy0HxZxEoCEUp2ZHVQwUNu3grvVn8nXp2/wr63Y+LnyJCWEzKGnKY/G0d1AVA1vrfiUzdAoo4HDZUFCwuhrb1aul6/LSvMc929rme7qutxufPjvlGjS0Nt3yW4/4utR7Sbg/a9d0+z0aavE8NCIIFDCZ1NaVE3An7LvfL/g0+zF++34rl95+0oDGc5OhfdmqqrJwxvHsF5NKUWMdL21Zw5zPXiFzySL2Wv4Yx3z8b65dvZwXtvxE5pIH0fXWXgfumzgKqqIwKTIeTdexu5woKJhVo+eFq4rC9nPmjejkXOL50CAt6EL00ms5i3ZbFlRhddkHHJd4AcZO/rTKiipxNNlIHJ3Qp67PMQnea72qqool2NKtNVIVRSHA0vl+JrORtHGpZG/L6XCfyJhwImPCAQgMtmA0tX/dH7/xA0mjYnjxy9s7P5/JiN3uwGQy+nxfrI1WaqvqiUuO8Xl8YHAgCWlxmM2dt4iHRfZ8AhMnYHM6vOqlKApWpwMnw++LVNd1SnaWgKK0W8qnpzRNI2/7LsIiQolJjOr6AOFRWVVNSEgwdrudzVu3U1xSSlV1NQDxcbGkpSSTmTEacw96eQgxHCz6868cEXcmh8edyXsF/+Yf2/5OcmAmh8bN5o2dj3Bl5iIizfH8UP4xJyddyqdFr6Eq7vXGPyt+A6NiJsIcS4W9mPlTXgcgJiCJ3yq/ZmzodDZW/4TFEIRNa8Klu5oTzN2WwkTBpTtZU7kSRfFuLHV/1+t8zdcczuEAjAqeSLgxilpnJZquYVCMuHR3MtPgrCHQEEyTyz18aldjVo/ej6EQz6849v+or23y7B8WGURlWR3RCeGUFVZ7GhYS06J56as7AHjr+VUEhViYOtP7pnd/x/MtZ9/J+Lce8lrKND4whDmjpzFn9DSvfQsba/m2KJtfyvLZUlPKDyW5oGvt4jm6jslgZEOle634CHMgv86+CYAXtv5Eo93ODVMP7fD9GywSz4cGf8dzaUEXfeJw7Ll32nzP3qlQ0ND5BDERMWGEx4X3y7jk8OiwTu+i95SuadSUVnfrc45Jivb5mn5bvd0zs6uu6x2uY1pcUEruljzys3ZRV9t+LVlN63x5pcb6JkoKyvrld9II4Gs8vaoMu+Qc3Bcj0UnRRPshAKuqSmpmEtEJkX6o2Z7lo08/I3tHDh+u+IysHTkkxMdy+KyDOXj/mYQEB/P7hk18uGIllVXVg11VsQcYqHj+0ObL2DfySA6POxOA01OuYtG05TS66nhj5yNMCJtBfGAqD22+jMXT3uGgmJO4b+pSzKp78imjasap2ym37SLG3Lru9vjQfdjZuJl9og5DR8OqNTQn0Do6OgbFOza2xPAPC/6D5jO2KHy2/imvLScnXdoch5Tmstsmea2X1E7dyVv5T/f+TWJg4/nc/Rd6knN3nLZTUVKLgsLl807xxF5zgInpB4/17Pf+q6s59sz92pU3EPF861l38PPsG1l9xg1kz72LosZabl3zYbv9KmwN5NVXkVtfRWFDDbV2K77mFdYVsLnc5zsmeZwnOQe4fPwBQzI5B4nnQ4W/4/lwvLYUA0jTtA67KTnsDvKzdpGUnoAlqGcTmowEAYZArM4m7y5fikJ68MROjzOZjO5lyfzMPY6tgOjEGELDg/t0A6ChvgmjUUU1qiSNTey0vrYmGwGBHc/aWV5Uw6kXHgJAZWk1tZU1pI1L9Rpjp+s6jiYHISHBBASbsfgoLygkkKCQwHbb2z6fPLrzuvZFRkgU2bXlXsvNXDRuRr+cayCYuuhpMFhl7Wl+/u13IiPCOe7oI73urGdmpLOfw8Gqb79n1Xffc8oJx0lLuuiToRDPH91yFZPCZnJ84oVe21/KWYBLd7F42js8m3Ub9228kP2ijgGg1JrPs1m3E29J44L0efxz+63NremwufZn7tlwNjOijuKwuNl8V/4+KkaMihmDYkBVVZpcDSgoRJkTKLPtalcnDRcqCtru632j8+C0d732nRS+P8GmcOod1QCYVBMOzT0vSaPTe3z3uspVlNnyuWbMIz1+nwYynj99z3JqKlqTaHdMdv8cGhFI0c6y1no5nJx8nntZuU2/ZFNZWsvFt54A0G/x/JrVb/PVrixMisqGs27z2i/K3Dp84p1jLmb25y+jAkVNdWytLqXS1oiCQrQliAkR8YSaLNTYre4eFW3G+Lf9+btT/kZScHgX7+rQIvF8aPBnPJcWdNGhkrxSCnOKO7zLaTKbSEiL2yOTc4D5k18nwGhpWWkVRVEIN0a326+7482tjT2f+bUto9FIQlo8LpeT4vySLvcvKyynqtz3+vH1lbVUlFSRt70Qp7XjMd0Oh5NducVUV9b6HLf03Yr1mMwGkke7u7FFx0eSOjbFM8auKKeYhvoGFEUhKSOBxNHxRMdH9Wjitrb663fxvFWvoyoKczOne7b9Zcw+zN/nuH45n9jTKPyxYVO7rWaTiSMOPQS73UH2jo67pgrRlaEQz5/Yeh2jQyZzavIVXtsf3XIVTs3J7ROfB6CgMYsbxz/NjoYN3L3hTP6x/e+clHQJE8Nm8Oz227lt4nNkhkxD1zV0NDTdyZqKlTyy+SoMion11auJNMcSbo72tGoriopVaz8WvYUOqKruiec6OrsvAQfueH5s/HmemeKdusPnfs3FUNCY5Z5ItocGMp6v+fLPdr8XLYl2bWUDLz28AoCYhHAMRpXRE9yTrr35z1VMnD6qX+P54+u/ZmX+VhyaiwaXnYw3H2h9XU47r2f/ypXfLWPWh89w9hevAvB2znpsLhfnZEzno+MvZ9s5d/LjaTfwe8UudjXWoDYn4oqiNPetcCfnAQYjZoORWR8+wyvb1vaqzkL4K55LC7roUGxKDC6nq9M7t0Eh3V/eaqiw2+yYA8y4XK4+dR+z2x1cF/MMG9RVNDhrOCnxEpbs/D+e3HoDfx//D8C9ZEtJbjEJoxM6n8DF5mDntgLSx6d22hrdlcDgQFwOF3TjIssSbOmwtTk+zT2Oqba6jvpOZn01mYykjkmmtqqegqxCUscme73OL9/9lfRxCVQUVhCVGIWiKBiN7nOqqorBbKQ4r4yoWAeRsRE9eKWguTRK8stIGBXn83e0qxndu+v4Fc8TFRDEyhOvBGDxzJP6XKYQAJmj06lvaGh+5DtxMptMjMlIJ2tHLhPHjxu4yokRZbDj+VPbbyLeMoozU67z2j5/41/YN/IIT9I+b/1sFkx5A1U1YnU2EmqKxKk5eb/g3xhVM4umvc2nRf8lq+4PTxnulbDdybVTs7Oy5L+kB02koDHL06qt6S7qHFWdV1JXm7u9tybn89bP9szm3hLPp48+nI8LX8KmNYEOJtWMU3N0MOwNKu3FPX6/YODi+TOf3Mrcfe/x3ticsOvg6cVfXlxD+rh4Tzz/48csnnjb/Xn2RzzPqi/jn5tWe86vNN84yVyyCLNqwK65CDUFkBYSyTHJ4zg2eTwHxI9i1gdPs668gKVHXcD7eX/y3JY1fJi7HotqdK/n3nxOVXH3mgCYFBnPh8ddBsCNP77P/b99zj82fMu6ObdwyAdPU9T8voWYzPwx55YevTaxZ/B3PJcEXXRIVVVU88jqZNFY30TRzmKSRiVQWlhOckaiJ2HsKbvNjq3RxtTgI4lOdI/XmTvqZl7cMZ8XdtzD5Rn3o6oKRrOpy9lMTQEmRk8chbmPCaXd7qBwZzEpmUk+n3e5XKiqe2bW7sxaHxYR2mmCDmAwqETFhhMcYvHcSS/MLiIxI4HN63Zy+sWH0FDfSIQW0e4mRXxKLFG2CIzmrj+D3RNuXdfRXe2Xz2l5nXlZu4iIDSc6rvtjqc788lX+KNuFQVX54LhLuXDV6xwYP5onDuzecjkjSWV5DVExw6ub33Bz8AEzu7VfakoyWTty+7cyYkQbzHj+r6zbCTdFc+6o1sSmyJrD09tu5qzUG5geeRjgTobvmvQKX5Ys5buy9zkq/myOip/LY1uuxmQ20eCs4+HNl2NSze0nfNMVTyJXZSul3lGNjk6CZRTF1p3dqufuZbZMAteSpLeN50fGn8Wnxf9D1zUcmoOOLsgVFNKDOh/21pGBiucRERbmv3Ap913xYmtXb0Xx+ZKK8itpqG9kxdO/EBIexNipKZ7n/B3P7/vl83Y9GVpavWMCQzg5bSJzM/dhVIh3jP/u1OsYv/RBMpcu8noNja7W3gNm1Yhdc/f6e+yAUzkjfarnuScOPI0nDjyNaW8/SuYS92TALTWoc9jY993/49czbu7yNQ4lEs/7n7/j+cjKvoToQlBIIImj4rEEWwiLCO11cg4QEhpMdFI01WVV2K12z/ZLMxZidTXwxs5HUVWV+DTfLby72z057+lSbFXlNVgbmkifMMpnS4iu6xTtKKIkv8zH0b1TVV5DQVYh4N29XFHdXf5rqxr4yzVHe7q1+2IKMHX5/tRW17Nze55XN3qD0UBSZqLPYw0GA6ljk3uUnP9l1X/5rbQADR2H5uKEFc9zWOKYXifn9bX1VFf47nI41NntTqpKKnF0MKGf8I83336X4tLSLvdLiIvjL2eeMQA1EsK/3q35B0bVzEXpd3m2rS7/kGe23cqdk170Ss5vm/gc/8q6nT+qvmPxtHc4Kn4u8zfOZUzIXtw24XkWTnmTKeEHUWErZvdFsHePlg7NjlNzdJicG9WuZ0d36U5P6/m89bO94vms2NNRUWlZgMygGH12dU8KHM0R8WcN+Xh+4JETePi/VxIY5O7B1zKL/e6CQwNJHZvCJ2+s4aRzD2j3vD/j+WuHn+vzPVVQKG2q4/nNP3HkR8+SuWQR45c9yP7vPcll3y5lafY6nKrmawlzz2uza05URSF77l1eyXm1vYmc+ko+27WdY1PHg+79m6YA1TYbrw6jLvASzweGv+O5tKCLPU5LsIuMi+hzWQEBZtInjGqXfF439nEe2XwlH+x6gVOTL+9xuZqmUZhTQnxqTLcn7HA5XRgMJk+iv/vkbYqikDg6EcXXbOTdZLc5vG4khEYEYzQZvIKqqqokZybxzkvfEhoe5Dl3W06ni/KiShJSY7t13rCIEAIDA7xuqLQMVejI7suztJ0EZnc/l+WztiSv3Rqv7+Zu4OH9T+5WHdtyuVzs2JKPouuER4X1y4z9/clsNjJqfGqfbmCJroUEB5FfsIuEuDifz6/+aa2ny1xUZCT77bP3ANZOiL55NXcRDt3OtRkPe7Yty3uCrXW/sWja255td62fw6FxZ/DI5is5IOZ4Tk26gm11v/FKzgPMHXUT08IP8ex7UtLFTIs4mGez7nAnT83Lo7m/YpXmx10nw07N3uFzKioa7tbcR7dezeJp7zBv/Wyv7u4Ah8Seyjel73iWazMoBlxt1tYG9wR3mqaRuyOHsKRAYoJ8t4bvbjDi+aT90rnzqXOZf/krHHbyXnz94e/tjnn9h3vI2VJETWU9F/zdPQdLf8bzpw6ZzfWr3e+5O4arZM+d54nn22vL+O/2X/i+KIeixlpWFWaxqjCrwzkEWsoB0HR3d/nO6Er7cnQ0/qgo7NZrHQokng8Mf8dz+bTEHqWv48596ai82yY+xwObLiLMFIXTZWN9zWqiLUleLQkdUVUVk8mAwdj9urZdR9XhcFKQvYvE9ESvmVJ3L6+0oJzwmFACLF2Pe7c12cjfXkja+BRPUDcajR12rft+xXrG75Xm8znN5cJld3SaNO/OFGDyfH6N9Y0U5hQzanyq1w2MipIqouIi2pXZ2NBERVElyRmJXsMNXC73mMy1pTtbr/Ta1lP33YW+KwaDgUn7jMVgMAy75LyFBPP+l5aSwp9bt7HX1Ckdzuhqt9upqq6hpLRMEnQxbLyx8zFqHBWcHXGrZ9vT227GhZN7Jv/Xs+2u9WcSHZDIzxWfceekFwk1RvJJ0Sv8VP4J901bhnG3y9Rtdb/xas4imvNxwP3VbVRNaLqGtluCvDt3t3UXgYYgzAYLNfaK9vuoJjTNBkCVzT1BW0uSfvf6Mz3Ju7sKKig66L6XXnXoDt7Z9U9+a1yFku2eSf7m8f/stI4wOPHcadd46O9vAlBRUsuU/TLY+PMOzzFjpri7s//rvveYtv8Yz/b+jOcnpkzAdeDp3PPzJ4QGWPj+lOu84vnYsFju29c9i3xLPB+77EF272EBeJJ2FQWzwUCAwUSQ0USE2UJcYChpIZFkhEYzOSqBUSGRxFiCydgtgW+5RHj8wNO79TqHConn/c/f8Vy6uItONTVa0bTeJSlDjd3mIG/7Lp+zjfeGrusU7yzp9P25e/KrfFGyhK/K3qbcVsi22l95cMvF3So/Pi2uy7HrbWmaRmWJexIck8lIypjkTpcxAfe6qK4OxnHvLiAwgJQxid0eJ5+zpYgjT9vH53NGkxGHy8n2Dbnd7vrncrnYuS2fhrpGgkKCSMlM8grmTqeT2qo6HPb2n2+AxUxQaFC797Mop5jCHUVcO/mQdsm5rkNMYHC36uaL0Wgctsm5GBgTJ4zDbDKx6tvvsTvadz/cb9/p+LrQFKI3Biqev13wNCXWnVw/9nHPtkV//pVIcxx/H/cPz7a7N5yJoigkWEZxz+T/EmqM5IUd97Ch+gfum9o+OQd393hfibBTc6DprnZrne+uZV10VVGxu2w+93Fo3ttXl7vX1l487R30luRcb57xXXGh6zpGxX2DwKi2r/NvVV83H6JTYSvi/7Ze02kdYeDjeVF+JWdOv4emBhuKorDx5xwMBhVVVYiMCSU41MKxc9zrnW/6JZer7m0d+tXf8fzUUZP548xb+f4U94R0HcXzLzduYOyyB91j0nXv3xJ3LwuFb0/9G9vnzmPTWbfz2+yb+P7U6/jo+Mt56bC5LNj3OC4cN4N9Y1KIsbhj/w9n3NB8fEs3DZ0df7m7W69R7Fn8Hc8lQRcd0nWdiqJKqsrc42gb6zteomQwuFyd3ynfnclsJDQixG93EnVdx+nU0LWOA9L3Ze+h6c0Jo6KgA3W2ap7O6nqCkaryGorzS7od8Ow2B411jWiahqZpVBRWYrP6vgBpEZ8WR1Bw+6CvaRqVZdXtzu1rCR6n00nZrnKvC7+SXVXYrA4OPXmaz/ParHbqqupoqK3D5eze5+hyalSWVKM2d+nbvS5Go5G0sck+byAYDAai49uPR0/KSCQpI5GbfnqfcHOb8hSF5JBwfjrt792qmxC90bLsSn19A8vf/4jVP60lOyeX7Jxcfv7td5a//xH1DQ3Sci76bKDi+Qe7nienfhM3jn8aALtm5+4NZ3FwzMmcn367Z7956+egoHJ55v2cO+pWXC4XD/55KSqqZ7k1XyxqCL4ucg2KO65ruubpkqxi8MSw3f/b4KyjyVWPUen4hnPLEm2fFL3SXOfZrTcHmuN5Sycrp+6+IHfpLlRl90tr7zhaaSvBqtXTmYGM50/fs5yLD1/sSe7dySj88VMWug7jpqXSUGflxHP35+VHVxAeHcyosfGecoZCPL/75xVcvfljTkidyM76KvfNcb1lETX3vDjZ59xFclDPJkpLCAhh89x5xAYGkxAYIsm56JC/47n0eRAdUhSFpNEJqKpKY30ju3KLSR+f1uFSHv7Q3YsGl8tFQXYRYdGhREZ37wtXURSvbmOdsTZaCQgMoL66ntDIUJ/7qKpKckZCp62k66q+gzazyzZXhCpb18uuBAVbMBjVLlthW7qJWQIDSM5M8uxvDgzAZDb1qlt/Y30TdVX1NNbV02BthA6GzdltdrL+zCbIHEhkXASqqvLYLUv45bsthEYEkre9kLSxSV7nd7lcBFjMRERFkDg6vts3TMwBJuJSY1A66VXQ09epqiqnf/YSTU4Hv8123zSZ/9tKxoTFcMGYfb3q3DJbrhD+FBUZwSknHkf2jhzyCnax+if35EOREeFMGj+OzIx0zGYz8R2MaxN7ltdzH+TPul9RdJgVeyrHJV7YreMGIp6vLP4vm2rWcOekFwH4veQ7llU+wRWZi0gPds9kXtCUxbPbbyPeksYN454EoMFRx4ObL2FG6HGcPvqyTs9RbM3FO+F1t2q6dCdGgxmny46Ke7k0Dc3znd2yrne7+VD0TibOaj6NV2LrI563CDGGU++soTutZEbV99JpAx3Pn7prOSuW/dTufdE1naCQABrrbaz56k9MZiN52wv5dNlPnHHxoV71Hex4fvhH/yS/vppJEQmsyN/s2d7ymlRFZfs5d3rVuSfx3IzCmtNv7Na+Ys/mz3guCbroVEsXoqCQIEaPT8PYj8m53eagKLcYQ2DXHTsMBgNR8REEh/p/3VaHzUFBVhGmACM7txWw31HTCexgHdKuvuAzQ6ZSbN3RvEJrMx1CTO4bBU67s92SJO5lygpJzEjsck10TdMozi3BEhJIdHykV31iEqOwW+0U7iwiJTO5Rz0HQsKCCQy2UFtZhxPfQwIcdgf523fRUGslc/9MDEYD5x14H5XldZ4Lm5xtpYyekOo5pq6mnoriamKTI2lqbOpRF35wT/zmsDuw9HKt+MM+/CeFjbUYVJWNZ93OIe89ydSoJF449GzPhc/CfY7zOkbXdX7/diOWYAuTZ47v1XmF6IzZZGLi+HGdrosaFRkxcBUSQ9IbOx9hY83a5qWm4Juy93DpLk5M6t6wqf6M51+Xvs0vlV9y16RXAPio4CXWVH7KFcGPkx6c3lz/x9hY8wMHx5zMSUmXAPBb1Srezn+av8TfzuTY/XyWXWTN4T/Z99LkasCgGDkk9jR+LPsIF+4xx9ePfYLnd9xNk7Meg2JCVRQU3YVLc3nlyi3xsXVSuc7pbcaaz9/4l+Yy9HbxvOWh1dXoOU5VDWiaq935dB0OizvNZ/f9wYjnny3/2edyaroODXVW9yR0OjjsTv658H3qa63MveYoYPDjuXuCt+YWeKORP6vbN3woKP/P3nnHyVHX///5mZntu7d7vZcklwZJ6AIiVRGwfQUVQeyVn371q2JFpQoqNrD3AiogiGJHehMEIZCEhPRc73d7d9unfH5/7N7e7u3e5S65Sy5hnjwe5HbKZz4zszuveX8+78L7V05mm7f13GahmS89tw30lwjD/SNoDo2SaWaDZ8NCGueQHlFtWtnEwMDeyxQA0yYnm0uikmI4XA6aVzbgcDmoaqyc1jifDa+pezdd8R3sjmyeGOgHAZ9c8V0Mw2DPtjbKayspLS/J22+mUeVcFEWhor4CxzR1Rx0uB4HSkhnFfGp22AlUVaW0MkRcL+7VoDk0AqUBKhsqcLmdvPesrzLcP5b35vP1T97G0pX1tKysAcAX8GIaJuPhGIGgf873qaaxumCZZVmzejE46U/foT8xhkBgmRYrb7+eS1edzKePOjNdN317F5V15fhL8uPOhRAcceJKNMf8Jhe0sbGxmQubRgtnOv899PdZG+i5zKee/3vwbzwycDdXZJK//XL31fQlOrli9e8YGOgnYoT59taPkbBivLnxoxxbeiYAf+j8PhtGHsvLjJ7Lv/p+x6P9f8KUBm7Vx4eWXc/fe3/JYwN3owqNi5ouY9v4s9y07eO4FG+2nU2jT/L79m8jhFkkDjltZE8a1jNrUDq23ES3kly/7i6u3HAB+sS+EoQC1629i+9u+xQ9iV2UOWoY1nuzxjnkGOeAKtRpvR4Ohp4Xk+CccOs84/2Fp9toWDKZqf1g6vnS274COUMlccMoeiclkr+0b+KzR6e/c7ae2xwq2DHoLxGsGeKkFxP76243Mhime1f3nGuOFvQjE/c0YZybZjoRjFEkAdne+MCyL7MicCwe1U+1p5n3Lb2KL228EE3TaF7RXGCcK4pCTUs1PXv60VOT7nfxWILB3uGC9l1uZ1FBS8QSCCFmrAWu6zqdu7oYH505Hq4YQgiq6isoCQUwTZOB3nCB2ksp+eE1f8zbJ1hWQk1DJbUtM4cH5JKapn6nYRh0bOtA12e+L197/gEGkpH8cilScvP2/wJ798jweN04psnKaWNjY3OwsGQ6dvvXe67jP0P/zMsw/tjgX/hT14/oT3Qt2PGfHXmQf/X+Nmucf+PF/0fKSvG51T/F4dB4aPx2rt/8XnQryRvrP5Q1zr+37VPsiWzm6rW3FrT5811X8YUNb+KhvjvxE+K6tX+g0dvKj3deTmd0J+fWvoNr1/6eO9u/w7PDD3Ju7Tu4cs1vsvuvCZ7ENWtvn7TBZcboJPMBkdGqvevPZBQzfG/7p3jbki9M7ibgHc2f50sbL+SjK74BgKpMb/gpCCzShvvPd1zFDZsu5Z89N+dtc6D1/C9bvpqXHzX992ScfS5SSrrbJrPeHyw9X3n7VxBTyp/NNNZS48ufmLL13OZQ4LCeQb/66qu56qqrDnY3FgWzjb3eX2Y7+rlQ+IM+1HnOni2lpGdXD1JCKqHTuKIep3v6+tvFePfS/MQi5zf8P67ceHHRlxNIG4xOlyOvjIqhG1h7SYwXj8bx+DwkYgk6d/XQvKJhxjrqDoeDphX7FofY09aLy+OmrCqEqqqUlHgZGhjP03ShwAlnrMp+7t3TBxJql9YUbXNiYGXi/vW29xMo9aVLsKxqKqhtrqoq3oAPbS/l6NojI0jLKvhepHJmOYKlJVN3mxWpRIpoJEZpRWif9rcpxDRNenb3UjelLJ7NSxdbz9OG58bwkznPWMFxpWcQcJSxM7KBe3p/w91dP8GpuJHIbDbyp4fu5f9W3ESVu2FOx9ubnr8w+iR/6vwR16y9HYCrNr2No0On8caGSwH42pYPYpkWbsXLK2su4oSyswH48uZ30eJdzdtbPpfX3tdfvJSRVD8CwfKSo7mk/nP8vv0mvrDxTQgEJ5WfyxvqP8gPd36Wf/bcQshZyWdW/Xja/mnCkY4xnwgblzn+6LPEzCR5FSh0x3fxj+5foykODCttZG4Zezqr5z6thIFkF9XuRvoSHQVtSSQhZyVf3PCWrKH+SP+fUITKq2suKdj+QOj5h875OoGgh8hYPOt9WFZZwvDAeEEogFAEdc3l2c8HQ89ff8/PMKRV1FNSWqBMhDFkBhlcqsadr3z37C4Gtp4vBLae7xtC7u9U4yHERJKQXLq7u6mrmyYD1ksUPaXPKALTIaWke3cvTo+Lytp9HxBYiHui68acRCsaiRMZHqe6KZ3IwTBMFEWQSqRIJlO4PW5cczTSp/LIwB95ZOBPBB3l9CbaEKh8atUPCDkqpt1nQrCLkYwnad/WSfPKRpxuJ6lkCqfLSW/nAGWVQZyufevvdPcjMhbF4dTyaq6+dsVnME2ZKSkuOeaUFXzl5g8CaeHTHBqWZU3rXtnb1odpWNQtrUl/n3b1Ut1UiWVaWbe9yFiMRDRORW150TaKYQArbrsu79VMSsmJ1S3cetbbZ91OMcbC40RHI9Q21+5XO7Ols7OThoa5vWgfapimRc+uHuqWLX5BL/b7sHVl4Xmp6vnNu69n6/gzCCE4peJ1nFf77oJtfrjj83TEthYsX1VyAkeFTuGo0GkF66ayNz3fFdnEL3ZfzZfX3kFfoo2btn0i677+QN8d3Nd3K6+ofANPD97HGTVv4vTK8xlIdnHTtv/jnJq3c2rlGwHYEdnAb/d8jaQVRxUaZ1a9mbOqL+SfPTfz6OCfkdJiTfAk3tb8GTpi2/nRjnSyr0+u+i7lzpmfuV/Y8KaCkmwTtbCnLEwvn2Fgv9rdRF+iHUjHNUskqtBwKE6uOPI3PDLwRx7u/yNxM5LRv8I2BAJFqFmjf3K5wruXfIHlgWOyyw6Enr/hiM+hpyYHqUsrA4wMjKMoglB5gKH+dMK7CT1XVIW/b7sBODh6vvbOG0iYBlamhFqenmfu67tWnEDCNLi/axu13hL+9Or3zun62Ho+/9h6vm8c1jPoNmmG+8OUVgZnNascGYvS295H88rGObsACSGoqCvLm/VdDCTjSTp2dKXPaZYDD4pC3tN/YkTX7XUzMjCCaViomrJfJdtOqzyffw/8hZ7Y7kzJFoMbtnyQT636AWXOwhHpyFiEvs4hmpbXFb03Lo+L5tXNODPxa1kBNy103dhnQZ+KlJLwwCj+oC8bCjDB37bdwHmtn8brd7PqqCau+/UHgHR2/s5d3Sw9omXG2MeqxrR4CyEQQlC/rDYnsU/6uA63A5S5zYJ89sm7qXD5GEpGs8vOqFvKL05/25zagcJZpZJQgJLQvud2mAsDXYPs3thBfX39YZ1RXlUVGpbXH+xu2NgsOl7n+zDvaAkihUSZJkpx3BgqunxP9AV2jj/P7e034lF9VLmbWB44imNLzyTkqMzbdiY970ns5ue7ruK6dXfy78G/8beeX/K51T+jxFHGjVs/RtQY45p1t/G1zR/iKPcZnF55Po8P/oW/d/+Kj628kWpXI3/p/hn/GboHS5p4tQCXrfg+5c5anhj6B1/Y8GYkFkt8R/KBZdcC8NUt72dMH6bJs5JXJT5ACdMPZOecBVMzoE01zrNx6UzqTNpdOn+7/pwZcSEUpDQJOsoYTqVz5pxWeT7/6rklU9pr+mfzVOM83Z6gL9mRZ6AvtJ5f8f6f5xnnACMD40A6JHJ4YCxPY4QQWeP8YOh56+3XowklzzifDGFID64IBKN6gm+e+AY44TWzug62ni88tp7vG7aBfphjmiaxsSi+gGevGcEhne2zcVn9Psfn5M6mzjczzR7PhMvjom5JzZy8AjxeDx5v8WPVNtei6wbt2zrxeF04XM45zeZO8OLYfxkzwgUvAt/e+lGuXXtH9rOUEtMw8Zf4cS13zXhvErE48YgkWDbprl3dVLVPD/9UIoWiKQWzVHrKoKejF63XQUVtOWWVISA9EPLX3z6Jv8TDV25+Ny2rmrL7pLMGN+91QENRlKxYDg+E8fknv7d6ymBsZJz6ZbUFidxgenfMtz3wGwYTEZ46/+P0tvVx0+4nObt1FWc1pDO4ziWpoJSS3j19CIdGbWPl3neYZywF+rb1Ej5h1HbBs7F5iTFbPa91LyGcGiLXOBVCYEoTXaZwCCea4mQk1c9j/X/mvt7bgHQt8XWhV3BU6BWsCBxbVM/D+gDf2/4prlv3B+7ouIktY//lurXpDO5/6voh60Kv4MLGj/OVze/jhLJXscY6k9+1fZ2dkQ1ct+4P/Hjn5bRFXwSgytXAx1d+B4Dt489x49b/w5QGte4WPrriWwDc23crD/bdgUNxZpPAxSKxWel5mauKoZySplKCS3WRsibriU998k9qQf4cbe5MvFcLENHDlLvqGNEHeKj/Tp4f+3c6+n8GLZmY5ZXZ9ifXnFRxbsH2C6nnW58vdMGfjpqGUno7R9i5uYtlR9QfUD3/c9smPvHE3ahCQbfMvLsiJrP+pT8LuGpKFZaZsPXcZjFjG+iHOaqqUrukZk51M2djyB9oRkfG6e8aZOnqpjnXAIW0gTgVwzD2eQbc4dCorK/YL3ed3ZEXKDbCb0or7/NwzzCR8RhNKxr2OnCipwyYkhBwX8TcMAw6dnUx2j+KbhnU10+OfgpF4HC5qKovz8Ztj49G6O8c5OG/rufI45fQvLyx4NpOnW3fG3oyRcqpZb+PTpeDhta6ovc/mUjR197H1d2P8Vh/G5oiePh1H+Xi+2+myhvg9yddTCKWoLqpiusaXz/50tA/QjySoG7J7BLcCCEorytDUQ+Om1Z1bQXHvuZoW8xtbF6CzFbP39Hyeb6y5f2M6yOkM10rvLH+A5xQljZeng8/wpbRp+mM72DcSmT3M6XBc+GH2RB+DAsTrxKgzruUFYFjOaHsVVhY3LDlQ1y/7i6+t+1T6DLJFUfewo92fp7eeBsfXfFtql2NfG3LBzmq9FReXXMJN2y6FI/Li1Nxc/mGCxAorPAczynJi1na2kTECPP1F/8fupWkzFnNp1b9MNufqza9jZSVyMaeTzBbPU+ZSRyKE0PqSClRFZXTqs7PDkgAOenK00zYfDNFq0f0cFoLnLVsl8/x3MgjDKd6KabnRV3qs9ukt//impvRKJwRXyg9/8i53ycRS2Xakuna7hPdKUJv5wjNy2u47Qf384XvpTPQHwg9P+vZW9JXSoAhzcLrmCk3OGGo//nl72SsYxi/rec2hwG2gf4SYF8M2tkwFh7HX+I7IDElvoAHKS3GwxFC5cFZ7zdR23oqUkp6dvfh8Xuo2Md4+enKvM2W8+rexaODd0/pGFS582NdSmtKiUbiDHQNUdUws1vfTBleR4fHMHWTsurCbaSU9LX3U9VYiaKkXfebljcyFPAy2D+U3UZPGThdDlpWNubF9AeCflweF3u29XHxR15VIN6xSByHS2N8KEJpdWha8cydBa9uqCpYP9132eHUuLrjUR4c2I0ADAtO+tONvKp+OV894tUkogmQ6RCF3GOXlAVwepwzivno0CjBnO/cQnmJzNZDxO1bfANo883oyBglocBh7fZnY7MvzFbPP7/6Z/yh87uM6kMcWXJS1jgHOCp0GkeFTmN3dAs/25mfwFRKiYmBgoopTbrju2iLbuFv3b8AoMbTwpWbLqLe08p51e/kSxsvZJl/LVet+R0AN2z5EKtLTuA1te/mio1vxZQG4bhEE05eX/8BTi4/D8Mw2LWljS9veRdJK4ZfK+XqNZMJU3+151q2ja3HpwWz7cLc9TxuRqj1LCFuRhhO9VLjbqInvgdIu7RXuGsZSHRnrfGscS7Jc8WGQsNYSsmWsadwKW4Gkl1ct+4PXL7hfPKsXFlkv8yACUhavKvZHduMW6QHHF4IP0GJs4JG73JgYfT8s+/4Kcm4ntMvke3yhMGe6zQnFEFlTZDXXXIyv/zGP4ADo+dnPntzXhb+CeO84EhS4tIcbHrLZ7EMg0Q8aev5IsPW833DNtBt9gnTNBkdGAM4IPE6mqbRsrxxTtnT9aRO+44OGpc3FmQLFUJQ3VS5T8nwpkNKSXhwFNOSlFdNL1q5XL/uLi7fcAETI+mqonJE8CR2jD/H3ztupsG9iguWfpCa5qqisV6RsSi+gLfgWEP9Ycqm5B0ID47iD01fO940LCxzUlAdDo2axmosNR2nFh4YZWRolOYVDSQTKcbCEUpCvuysftu2PkzD5OSz1+S13dc1SM+ebjSnA7fHRaA8UDRh30RSIofbSXX95EBEeGiUktLAjANBbZERHurfneddKJHc37Wd3sA6lq5aUvS7o2ka/sD0j8HoeJRnH3qeNS8/gsra2cQ87hujI+MM9Y7Q2Fr7ki//kn62jKMoyn4PgtnYvJR5U8NHZ1w/ovcVTbYnUKh2N6EqGgkzSspMu4RrwkFvfA+a4mBPdAs/33UVXq0ETTj47/D9PDzwB5YHjmY41ZvRNfAIP59f+xM03Nn2b9j2QSIyjEfxFdRA/+LGtyClxUXNl7EueEp2+b7ouSF1XlZ+Nnd3/hQAvxpi2/h6AAKOEAoqIBBKxhAXmfjmKbHXU2fFJxjV04PXilD47/D9XL/ujxkjPW2ASyReNUDczC97JjOl8HqSeyjRyvhHz695augeUlYKIWBN8OVc1PTJ7PbzqeeR0UTh9mTeQKREVRVMc9KLz+1xcuGlZ/Hat53MD67+E7f+4F6alwUpKQssmJ6v+P1XM4Mb026SOQaE3F6ePT99rRRbzxcdtp7vO7aBbrNPqKpK3dK5uc7vL3MtbeZwOSirLi8Q82x785Q0bYJYJM5Q3wgAwdIADufsfl7Xr7uLv3T/glp3I8eXnc2XNr6Fh/v/gCUlfcYe2rZu5BMrv1uwn2ma9HcNUV5j5pUIMwyD8ZExSnKSuOm6jmXJaR+QiqJQu6Qa05i+jFtpVYhAmR9FURgbDDPUH0ZtbSBUnj7GX255nLrmfNFLpXSio1GWH7UcAbi9rmmFWQiBy+tkqHeE0sogTqcD0zQZGxpH1dQZH+73dW1PJ5qZ8qIpBSw9YglO577da1/Ax8tefRy+QGGM3HwSLA3g9R+Y2qwDPUMEywLz/v2fL1RVpX7ZgX222Ni8FDk2dAZ/av9BXu10ENR5luBQXAwkOomZ40gkLtVL0owhhMiWGBMIdCvBzshGtow9jURmY759apAPtn4ZfUhkjfMbXryUcKofp+LmijU341Ymn+nf3vpRBpJdVLkb+fiKmwr6Olc970t2oAiF40pfyV0dP8Cj+TEx0a0kTsVDuauWtsiLKDkx4YLMYIWYkptEiiJTt5NY0uJPXT9id3QTuenLvnLUXVz9/PkIIbCkRBEia+oLIUiYMY6pOIPHBv6cjXGXEjaEH0c3k7xjyefnXc/rWsrYsbGXvPwEOeslEkURWJZEc6gYusFr33YyRspACLj5W/9CURXe+5nzOP89p82rnj872Mlb7vt15iSmSYWf0+mQ0501zmeDrecHHlvP9x3bQLfZZw6FH1xpxezd4feHRCyBL+Blyep0YrS5XpvX16VLgWweexpTpkVVZMR8INHJT3d+kQ8s+3LePoqioCpgmfkx65qm0dhan+2DlJKB9kHqWqpxzhA31tc5SDKWoGlFQ4HoTsT3aZqGlJK6JXXUttTmjeivf3w7p7/26Lz9nE4HDa21szaQK2srKAkFcDodjI9GCAT91C+r3ev1/MDqk/jq8/cXLA86XDidzlmX2bMsi6HeESrrJpP+LbSYT3CgRtqNpD6vWf0XgkPh2WJjczhwzbrfc+WmizClgZRwauUbOLf2ndn1X9z4Fpb7j2L7+HMAU2bbBSVaOUOpfIPPqbhJWjFu3PoxBAIxpGBKAwWFS5dfT5NnVXbb9eGHuLP9uyhCLZhNn8pc9Lw9+iIOJe0+HHCUIYChZA8ATb4VGFYKp+LGo/kI64OTZ5RNOCYmjfRs3jg5sRFTo9QtabJ+5GEEChILl+riyhfeip7b3kQbOW0/P/JIQSk4kOyOvQDMv55//vsXceW7fkN322Dm3SF38EGgCAWhCqRuomoKJ5y+GsuyOH/dF7Ey8fCWafHzr/4dVdV447tfMW0f5qLnH37sD9zTmU4eqAqBYVkzeiG+ruVIbjrxjdOuB1vPFwu2nu8bi7sgnc1hgZ7S6d3Tu/cND1GS8SQd27vRkzqqquY9jFIpnVQyhWVZM7QwyYP9vy/0phOCXdEX+NqW9wNp0RnuG0EIQVlNGYEibm4TfdD1dKyZoiloM2Z/TxAbj1JWHSowzscGx2nb1pke/Q5H2PXCbjq2d2XFeoLB3lHOf++pectM06SvfYBUIjWr84d0ksKxkXGeum89kdEoqqqSShWWpsnljl3Po4p0vydeIP0OF89ccBmpZIq2FztIxpMzNQGAoRskYslZ369DkZrmanxFkizZ2Ni8NLl6zW1c0PBhPrz8q3nG+Zc2XkidZwm9iT0Uc/OWWAylerLrhBB41QAe1Y9b9SGRWFiY0kDNzAf9aPvlfHnzu/j5riu5ctPF3NH+HVaVHM+1a38/r+fUk9iNT017li3xHYEpzawh7lH8xM0o60KvQLf0aSdqJ93bcwzzbJHz4sbjhPu6bunopl5UzycKsUkpiU1xf5/AqUyGBMy3nn/upgt520dfxTkXvozSKn/2XJuWVeJwaenkdEAyrnPZDW/lrp89UqCJUkr+9pvHp+3DBLPR85PvvilrnK8tq8HMDF5IKbN6LgXZUmqXNbycG9adt9dj23pucyhjG+g2NrNgJuMuXa+0qSAxmmVZdGzvYutzOxnsHp7VcapdTQWBVzKTICWcGuKbL36Y6HiM4f4RTNMkEPRnM9cauoGhTwrf8ECYzp3dmKZJTXM1aiZTaSqpF8Qcur1uQhUl9O7qyzOmTdPCHXDRsKQ2I6wpRkfGCgTvb7c+gcfrIjo6nte2qqp4A56CazP1+EP9I8Sj8eznktIAJ5x5FP6gj6H+ETp3dGGaxd3vv/b8A1zz7D1se+vn2XnRF3hD8xo+tPpknrvgMiDt+li3pHpW1QmcLicNy2rnLfFhOrGePi9tzRd2ohYbG5upHFt6FvWe1uznKzddhEf1MZoaZkwfxqkWT3g1kbyrxFHGEYETafatJmUliBjh7DYe1Y9H8+NU3QgU4maUnZGN6JlyZ9vHn+PGbf/Hnzp/xK7Ipnk5n4FEF0FnOuTqmNLTM3HgEkWo6GaShBnjjQ2XEjHCM3mvZ86wMHv43rAynnDT6bklJ6ulT61nrwiF9zVfs6B6fslHX83bP/GqjOt6uiddbYOc9MojM/2UVNWFcHkclNeUFI3CL60qyW6by1z0fOXtX6E/nh6k+MIxZ7NxeHIyRwiBqigEXW52Xng5O956OTsuupx3H32irecZbD0/fLFd3G0WHEVVqGmpOdjd2GciY1H6OvpnLHPmLBJvrigKjcvrUVVl1i4+b278KG3RLQwme3OyyabXCSEYSvWyfWgjNf6WgjYHu4awLIvy2jJcHhelFUH8AW+ea9zI4Ci7t+yhsracxtaG7MPdNE3CQxHK6suzsf6WZdG9p4+u7b00tzQDUFoeJHjimoL4+ofuXs/Ko5uobalOxygaBtue20lpVZDapvx7b1kWXbt6qG6sJJnU8frcSNPCyMTLTWQ/LcnUfi2vKqUkFEBVVe7t2sonn7gbRSj8+Zz38o3nH+KZwU42vvkz2fZvfPkbSSVTdO7spn5pWpyLleWZjvkUvMGeIWLjcZpWNNhCamNjc0hw9aZLkNLCsFI4FDfXr7uLr794KUkzlredgoqFyTGlpxM1xtgeeY5UpmybIhTKnbVophu3y03MHGdUH0rPMEtwKA404UK3khhSZzDZxVCyh6eH7wXArwWp97aysuQ4TiybfW3rCUZS/bT6jwJgReBYTJk2dl3CzVh0lJSS7meFq46hZE+mPnm+oVnvaaUrvqOgelqep/tekVOyw0/sOxmPPlGKTVMc6FaKT636IYkui35rYEH1/P/+5/uM5ySNM3SLR/7+XLZ/F334LIQQnPqaddz6g/to3z6Q7b+qKnz1Nx/aZz3vS0Y59c+TuXU+ffQruW79vXlX7s1LjuJrJ77O1nOblyT2DLrNgjI6Mkb79u5pZz+nouszuzIfDPwlPppWNO5TTJHT6SgwpC3LmvE8L1v1A2o9zYAseAGQUnJH5AYGSnfkLe/vGsDpc1HRUEHbtg5ikXQyH6fbmZ3tHu4P09/Rj5AChzO/tJiqqiRjCdpf7KC3YyDdZscA44MjuPzO7LF7dvcx1DtMx45O+rsn4/a2v9DFqy44LptFV1VV/AEvbu+km94EiqIgEKiaytjgGKNDY1TUlhMI+knGk3Tt6iaVzB+ldjg1/t6xmUsfvZOYoRPRk5z11x+yaaSXf//PxwqOoWoqDpfzgJQAnGB4IFywrLKugvpltbaY29jYHBJcvekSklYcQxqsKDkOE4PLN1zAqD7ESu8JaCKtBwoKqpKOGy931rJ9/HlSVoJVJcdx1ZrfcUHDR6j3LCcpY/QkdtOXaCdhRlGEQq2nhUpXI17VjyomBnvTBqpDcaEIhXEjzLbx9fyl66dcvuECrtx0Md/b/in+0fNrehJ79noeUWOMWu+SvGUCgapo4DIxrPTM8imVr8/kW883zv1aiJ7EboC8ZHbZ7OJihgRmUxCZWmHF9Dz3vzrPMoRQ6OruokfbwS/jn+er29/H030PzLuejw5FCQ+NTzkvgaFPvqudd9HJ2fa+eNPFrHlZC/6gh+r6Mn7/zLUoirJPev7ljffnGecAX38uP4fMh1afzNdOfF36+Lae27wEsWfQbeZEZCyK1++Z9YMyWFpSEJc9HYZh0Lmji6SZoK5ur5sfUGaTYGw2JBMpOrd3YFoWLauap03s8bEV3+bbW/83XaN1IpFsTk3V29u/TVLGeVnpqwFw+9yZwQAFQzdQM27vpmnSvaePipoyyqtLKSnzg0WByzlAy6pGejr6Ka1Mj3RXN1VR2VBBT09P9rjVTZUgYPvGXbi8LnTdoL8rTCqh88o3HpdtSwhB08rGoueWSqRIRBKZGq6hbK1QKSUuj4umlU1FM/V+9PE/FizriIazf0spMVIGDld6UKSmsbJge0M3EIqY96QlelInPDCKP+gr6PtECIKNjY3NYuL+zjt4YPhWJODTguhWkpSVwKE4saTFhvBjuBQP7116Fa3+dQD8dPsVdCV34NNKOLv6Yr648S1Y0qTJt4JLl3012/a6wKmU9i6l1tzOP/kRAoULGv8fg8lu2mPbGEx0EzVGsbBwqz68qh9FqBhWirgZxZRxBKAIB6qQGDJFd3w3vYk9PDpwNwKFoKOcRu8KjgydyLpgfrKylJWkybsSgI7YdgA0xYmUFnErkp1RP7HsHO7u/DECJTNRnja8FRSktBAoeFTfZKm0iRnwqW7v04elZ7fPDV3P1fP0eoW26Bb8jhDPGfexefSJbF/+2Pd9vG4vq/wnzJue+wKunGR3OeeV6ZPDNalbE3r+jVs/UnCcuer5WX/7AW3jIzNeriuOezXvbD0ePanbem7zksX+ptnMGtM0GewZJlgeoLQiNOv9/CWzy5qpaRp1LTUMjQztYw8XlryyK/uIw6kRqirD43PtNevmJ1Z+j+9u+wQ9iba0C1xekW/Jnzt/kjXQfRnXt8hohJGB0awPnqqq+AIeXJ70sWb2AhAIIRjsHqZuSU06/ktVs4MxUkoGu4eobqpi2eoWNKfGdR/5NVuf78RXUjhTPh1Ot5OmVQ2kUil62/poXtXEyGAYPaFT11Jb1DjvjIwWbyxnEmOkP8zYyBiNyxuKCraUkr62fjSnRnVT1az7uzeS8WQ6D8HK4se1sZkNwyNhRsJhhkfCAJSVhigNhSgrDR3UftkcntzfezsPDN+efYRG9HA6CZcQ6FaKUmcVn171o7x9fr3nOtoTL9LgWUZnfBe/77iJKlcDH1/5nYL2NU3jdnktYwzT7FvFh5ZdX7Qfo/ogW8aeZldkE73xPUSNMXSZQhMO3KoXRWhpY9oCXaYABU04sLAI6wOMjg2xafTf3Ma3cCpu6jxLaPEegcSi1t0CwC17voImHBhSRwCmYU4pLQeaoqEJB3EzCsC4GUYicSpOUjLtBu7TgkSNIlo0JWlcNo9c7iYTy6GonkuR7k/UGOUF/Qnys8tJbmv/Fteu/f286Xl/9+hk7HgRa9mhzU7L5qLnK26/HlNKHIqKbpl5Pv9Spt38f3DqmzmnYSXDfSO2ntscssyHntsG+iJn4gG6GFxqVFWlsbUOKSWJeAK3Z/ZG2WxxeVwwMu/N7jfRSIzxwbH9jqVXFIWyqtCs7+dHV3ybb2z+CMN6zxQBFVjS4vINF3DFEb+jd+cgFbWljIejNLY24PK4sqXRyqpKs3uZpslwX5iK2jIGOgepbKjI9sXjc+NyOnC4taL9S89Q6+gpHZfHxTtOvY7BnnC6N0Jw6/fv4+KPvIpUykAR5I1s6yk96/4OaVF3up00rXBhGRaD3UOU11RMe10a/MFsVtdcNEXJDpyUVZdSUh6YVlSFENQurZlXNzldN+jY0UXdkpo5xcXZ2OTy9LPr2bI1PctXXZWeKdqydRsAR609kqPWHHnQ+mYzfywmPX9g4PY8E3AiY3mLbzUfWHodAJdvuCBdF1tAlbOZvmQ7qtBoi20l5KjkM6t/XLTt+/tv5/7e29GEk/+t+B51M7jEBR0VnFR+HieV52fl3jL+NNvH1tMZ38Fwqg/D0hFCQRNONMWBlBa6TGJYOopQUQDdSrInuoW2aDoj+Bc3vJmQs5KIEeaY0tN5PvwoKSuJkqn4YWCgZV6DDUvHFJOhZ1JaeDQfSEHcSBvtpY7KSQM9Ny59omxaZoWUxQf0s5vn1FXP3U4iiyXLz6yzMEjNi5537h7gQ+d+A2nlz55PnjtEI+kkb/Ol58tuS3+nLmk9lmuOP4+lt12X70GQyZC/Y2yAc1hp67nNIct86bltoC9yunb2oCgKdUsXR5I1VVUZ6BlCj6eozYzKLjQD3YN4A158gckHZjQSJzIyTnXj/I2czoTL5WRsFkKQiCfRUzqBYGHpM0iLcdfuXkrKApRkyqONDo8Ri8bx+jwEM4lUcvnUEd/nixvfgmmZBYlmAK7Z/DY+2/ArfAFv1lthuH+E8XCEhmV1eQKnp3T0RApdN4hFYliWlV1vmhYjA6OEKkqKvlwoikJ1Sw17XmznV9+4N2ucT5zXb79zLy0rqgmGnHh8HtxeJ7UtNcSjcbp39dC0shGH04FlWVlRdTg1dN1g2ZFLcbmn9yi4p3PrZLmVCe8AReG+Y99Bf8dAdgR9b+5n+yPmY+Fx3B53Xu1Zh0OjaUXDrGqQmqZpj8jbFPCXf9xDJBrjjFNPoamhPm9de2cXjz/5FO0dXbz+vFcfpB7azBeLSc+tzIxlPoJa9zIALt9wPhMZzKWEvmQ7AG7VxxeO+CUATw7dQ8wc46yqt2RbuGLTRRhWiuPLXsUFDR+mu7s77wiz1fPVgRNYHTghb9++RBtbxp6mLfYiffF2UkYmIR0KquIAJLqZwmIigzoMp/oAWD/ycM65p2ts9yXaiOhpg9urBkjKOEIomJaBQODATULGshnZh/V+Tq38Hx4duLvAkJ6qlzO+G+XoeL6bu8jfaMpB/tl1C6+rf1/2877q+V9u+XfBYDeQnsmf6LuA95z+FT79jQv2S89/9OK/+fpzDwKw/oLLKHG6WXbbdcXd26Wka2Cy4o2t5zaHGvOp57aBvsiZyIq9mKisLceyrGlnWXt291KdUwZkf0m7Zk0pQ6IIlAP4cNQcGrWzcKOKjEUxkqlpDXQhBIGQD48vXSJESklkNEJKN/H5i5exAfjy2ju4ctPFpKxkkcyxkq91vptryn6HRtqrobQyhL/EVyAgLrcLzaGiJ1MkUzq9e/qoX5ae3dA0lZXHtJJIpKb9zjmdDipqy+jvLnTzk1Ky/YVujjmxgZrmSlKJFFJKPD4PdUtrcTgdDA+E2bNlDyuOWYE/4GWwZ4TdL+yitqWWxuX1RY4INzz/AL/c+hQ7L/oCAO9/5HYcisoPX/FmDN1Amafv2UxIKYmORjB0k7LKUN662Yi5YRi0b++ivqVmVuVhbF4aPP3seiLRGOe88kzKSkPs3LWHp55dD8DRa49k9coV+F95Jvfc/yDPb3yBo9baM+mHMotJz1UE5pTBXonkdXXv5ZpNb88Uns7fRwiRNc6veeEdJDLu4Pf33c7KwDG8OPZMxqQXbBl7uuhx90fPq93NVLub85YZpNgw8ji7opvoju0izACJTLb5dJb5XFf2SaNXSsn3t30akcmVHHRW0J/owKm4iRNBIomb4xhST3sRoJAwo5xX+660gb6fFBtsn0wPn4lZzyx2KR5ODJ3L82OP8u+hv1HmrObY0rM4s+rNWT2/T7+Z9s2bUIXGhc0fZ3XghGn1vKoulMkiL/MOLRDZ/kgL+nvCmIaxz3p+7B++yaiewK85ef7NnwYmZ9In7sHUAYovn/q6/b62e8PWc5uFYL713DbQFznqLOOADjTTjVxKKbEsWXx0dB+pqC0vWObxuvFkMoTHIrED5o402DNMeU3ptC9ZFdVle20jd5ZcCEFdy+yygl695lYu33BB3rLcRDNf2nAxX1n3x2y7w73DuAIuAiUBtEySO8uy0JM6TreLmsZKEuOJvPYcTkee61oxyipLOerkVrrbBgvi7F795hMoLfchTclT966nYXkNtS21hMqDQDofQXltOR5vWtQqaksJlK3NxtJ99qm/8YddzyEQfPeUN3HHrufYHO5ly4Wfyx7j60ecS2lFuj1tSvK+Cbf++UYIQW1z7T7vr2kaZZXBbMmbwwF7BmH/GB4Js2Xrds449ZRsXNpTz67niJUrcDodPP3sc1RXVVFWGuKUk17GQ48+TmNDvR2TfgizmPT8y+vu4gsbz0dKJSMkMqsfZEqATadKV79wCUkjlhM/bLF17Jn03xmjL2qM8pUt7+NdwWvz9p1vPddwcmzpmRxbemZ22Xe2fQKvVkKtt4XH+/9CQCvNJqSbykR/u+O7ADDMyYzjhtQzMfA6QUcFI3o/AG7FS8KKFbQ1peEZk8YBCFGQNS67zsLitbXv4e89v8aleHhk+I+EtEqODZ6J0+HiicG/cV/frZSJWgKJIG1sBSkxpM5vdn+Vty/5HKsDJxTV8ze9/3T+fe8mtjy7J+OOP3WgIJMYbmklsVjaJX9ver7y919BN9OZ6red9bmsIS6AmKHzz46tfOTxO6ecv8heJwHsuOjyvPW2nh84bD3fPxZCz4Us6udyeFIshrW7u3vG+Cib+WWgZwg9kaK2ZdI9vr9rCFPXqWlOzy7M5Z6kkinat3Vk466LMRYepyQU2O++T4yaNi6r26sRu7+kUgamrmczok6QIME1Gy4GKbJJZ7JIcGourjryVgD62vpIJlO4PG6qMxlQ9ZSOlDI7ShweHsPn8xCLJgBZ1MV+uvtx+Tt/ynNPbs8cW/KF77+TU169Nrs+NhbDsCw8PldBMpvB3mFUTc0a2gBffe5+fvLik3nvNM2BUh547Yeznw3DoG1bB41L6wvEcahvhPHwOI2t9fskNH0dA1TWlxMdj03rAbEYWAzPLNM06dzZTSDkz4uJfClS7H7M5h7t3LWHx//zFO+8+MKi62++9feccuLLWLa0pejnlzq2ns8PN774UWJmhMuP/GXe8gkX91zeu+xKWn1HFQwUw2Qt74m/Jxy2ncKDohQ+jy1pZgxgJVu6DcDKGArTvpgWWJOFJM0oquLAtNKz32514nkus7P+c2WiTrpL9ZA049nJeJmeei4SLjA70nHnk94KYnJF9sP16+7ivzsf5Y/RG7MDCpWueo70n8RAqosXxp8saFcTTq5Ze1vB8tzfyNc/dStPPbiF8XC86CUVikARgkuveANnvf6YafV8+W1fwZRmTiz9pK9CntN+zm/WoahsuuBT7Ny2m5GQxkl1S/La3B89v2z9D9k0uouA5uGXaz9j6/lesPV8ksWk5/YMus0BJVhegp7S82aMSytLSGWW6am51UF3upw0r2ouKIMmpcQ0TVKJFL0dA3h87n2qY56Lpmm0rGzc76Qkexup1JM625/fiaoqLF3Tkudy5cbNNevu4MoNb6UwCE6SMhJ8ceObuWLF76hqqip4iR3oHEiPHi9Jjx4novGCDLSz5bpfv59bbvwHA92jvOZtL2fZ6lpSST0b0+UtmZwFkVKSSqRwedKl2RxODSHStVxLK4OYQvDTLU8WvCS0j6czBqYSKZxuZ+YeNBW9fmVVIQIh/z4Z56Zpoid1IqMRBntHcHvd81Za73AkXfam6rCaQTjQDIdHsglkcknpOo8/+RQA1dWT66urKhkOj7CMlgPVRZuXAB9f9d2iy69YdytXbbgIBQULiwsaPkyr7yig+ODI1OhpMpnKj/O+imBJMG/bvkQH68MPY0kLBUHAEeTEsnOAdOz0VBd4KSVSSnTdYGwkQllFcMbn/L96f8fRpa/gv0MP0OhdzpHBE9Gljm4leXroXuJmFCEUglo5Y8YQAoFb9RM3xrGwCmqip88mvSxhxtLnJ9NnKsTULeaOyKupPmGppxPGSQEbBh/LM84BBpJdPJH6ezbD/FQMmSSsDxByFD5jJvj0Ny6mvzvMu8+4fjJhXA7SkphIfnTtnymvCnLy2WvSy3P0/KIHbsEiP+Rx4voUq/sOEHC4eO5NnwKgdeXSedXz9z/9dXZHepBIRvQI//PsFdzzihtsPZ8BW8/3n4XQc/sbexhjWRbDvSNU1BW6lB0snE5HQRmtCbfq8PA4/Z29uEPTx/TkGoDZ/Ys8eAe7hoiMR6lbWgvSwjIsmIdJ7/01zof6RoiNRalfVjdtWw6Xg2VrWtAcWoELN4CGxnXr/sDlGy+YtNEnptMFWJbJN7Z+mEurv06g1E9fez81LdWMDUeoXZLvTl/TWE3Pnj6qGivnnDNACME7Pn4eQgiMlMG253YihKB13ZKCuqyjw2OM9IeprC+nZ08vzSubUFSFzh1deP1u9qTGio4RSASJWIL2bZ20HNGC06nNmNV16ndjtqiqSmVDBS63E2/Aa9c6nQV27N3C8PzGTfT29fO6c1+N3ze7EpU2hz8HWs/duPnquj+RIIybUN66Nzd+lDvbvzNpLkpYXrKOHeObcmbPBafKizjCcSJNlU3ZfQeT3fyr91aQ6eRuSBhJDNAV28VZNW8lZowRNyLEzAhJK0bcjBIeHSaaGkfzKYzKEYYiCgYpUmYSQ+qY0sCw0snhTGliSYtnh9NJ4Tpi27N10NOz3JNu+WPGMJa0UIWGU3ERZzy73cSM+SQ58evkJtgTOf8vRFOcNLpWsDu+CQBFqNmkc7nktZmj50JKbuv+VsH2AsFJFedydOlpfH/7ZzCkntsYCMEte77CR5cX7ptLVV2IYKmP8FBkcvcpxrVpWDz+r01ZAz1Xz7tGh4uXoBWFM+gA9d4SftZ0HqmUMW96/qoHL0OKdJ4Aa6JSQk7owBue+AL/OO1rs2rrpYqt5wvD/ui5/RZ6GGPoBol4Ki/L5mImVBbA53MzMDRQdL2uG3Rs76C2Ze8lMCrqywkZQRwOBw1L62f18FmoeKdcyqpC+Eu8e70fbm9hCbupM+/XrP09V0zMpOf7kRFhiN+MXs1Hq76dbSs8NEog6MsznqWUWKaFtCzYh2RrE6JsmAZev5uqpsq89i3LIjoeI1QexB/00bu7F0UoWa+AiRqny10OFATWlDkIt6rh9rppXtmI05kph2OY6aRCM1zD3j29hKpD05YCHOwdJlgWyIYqpFI67ds6aWytK3rtbeaOHdM2M2Wh0mwplqnLTzmpqiA2ra9/gNYlSwq2t3lpcKD03MKgN95OnWcpQIFxDnBM6AyEFNzZ+V0saXFs+Zm8ueGjdMZ3cPPu65HC4pyad3CU97QCPX8u/EhhkXABG0f/zQtjTwICBQVFqKhCJWHGsoZyKFGB1x1EVby4lRBOhwun6sGtenEpbtyqj5gR4aGBPyAQBBylfHT5N/FqJSikjfqto+v5bVvaWPOqfiLGKG7VS8pKpWeCM4Z54Xy4RFM0DMtAEaJInfNJt34rx+3dsFJZ4xwoapxDjkGZuR6TfxdzFk8fcSQ5QLW7mfNq38lfe34+aZzm1BafDbf+50reesJVjIdjGWM7f72iKixZVVdUz7/XdA4XbPtDfs8yBvvUHitC8MgbPkoynpw3PX/lAx8HkR7oMaUJU44rhCCVk1fAZt+w9XxmFkLPD2sD/eqrr+aqq6462N04aDhdTuqXHphSaPPF1JnXXFRVmZVxDumH8oRLu3eG7OhSSoZ6hglWltC5o4e6luoFHUkUQhRtX9eNop4AE65k3R197NrUxjGnrqGsMh0jpKHx9pbP8Js9X5uyT/o4vfE2vrvt47zJ8Xks06J5RUOhW6IQ1C/b92QpE2gOB54SX8G9CQ+PMTY4htfvQdM0apbUoiiT38eJB/71z96HQ1HQpZV5uRG4FY0X3vIZIH90t3d3L6qmZN30i5HOFDy9mKTiSUaGLKpqK4C0Z0fT8tkN5NjsnVQiRdeebhpbG2xvhGkozQh2e2dXXjmWXDe4Cdo7u/L2eSli6/nC6/nW8WeyeqIKjSvW/CY9y12Eo0tP5+jS0/OWNXhaufyIX8x4jBUlR/NQ/51TIrQEa4In8bbmT+dte+Wmi5DSyk7nhvVBzq19B02+VUSNMZJWjHF9lMFUF0OJHsb0YfriHSAlJgZxI8pXt3wAKYu7rUcyNc1jxnh2/UyO6oaVDsFLy2hugrdJt38pRH5dc/Y9Pn3iWKJIyncJDOrpEnYnV7yWe/p+S8qcdHcXCN7U+L+zPs7tT1/FE/dtxuNz8stv/J3tGzrSh1QEx526gje97zSGB8MFen7WH27A53QS0VOTPgW5/ZQSoaS/Rdvfmk4Ctz96/ppHPkvCTGXPEaHkbVdQnk6SrXtvs2/Yer53FkLP7SRxiyBBw+FAURenfWS6e9K9qwfLNGlY3gDkZ3sd6hvG4XJma4v3dw9RWhnca9yRntLpbeunbmkN4+FINjvpgWBiRDIWidPb3kfj8oaC/g73h4mORfGFvPR1DrB8zdKCB+R9vb/lgf4/TFZomVI252Tv63nd0ncTHhxjbGRszklX9vU3YlkW3bt7CZT5iY/FCVUFcXvcWJD3yvfuh25l++gAj73howgh+ObzD+ETDs4vXV60zv1Eib/ZfN+m+16ODIUZ6R+jecW+JZQ7mByMZ9Zcf99SSoYHwpTPc8KZiVwEi4l9TSoD6bIsO3btyZZlmVgGcMKxxwDp7LD33P8gR6xcYZdZy8HW8/nluZFHuKPjpjwD1SGcXF0k0VguKSvBtsizdMS20+o/BkMmSRgxklaMhBljMNyPy+cgJZOkrDi6lWIg2cVQsifbhiJUfEoJlrCwpIFhGZhSRxb4VO0bIjvjLYvHzwslPRAw13YpyASTTzZb2t4T27X61rErtikzmEBRPZ9Kg7KKD62+Nqth1215NzE9gipUPtR6HfWe1oJ9Zvsb+e6X7qJzVz/Ljqzng5e/Hsuy+OIjf+aSZcdRbjnpcia48OHfcFR5HXed/R4AVt/+VZKWkTbUJ66zEKwNVfOTI9+wz3r+5sev4M5TruG1j3yOuJnMS0Y4dfBj4n5MxMFbwuLBM2/c6/keLGw9t/V8OmwD3Rb0/SaVTNHfOUTdkup5cb2b7p5MJIpRFAVDN9iztZ26zIz6QM8QLo+LkpA/W4u9rLZ0Whfnqe0eSC8D0zQZ6QsTHY/RtKIBIQTxaByPz0M8GiceTeRl0pyNa9GG8GPc1v5NikXCKSisKzuVt9R/LFNibW4PxP35jQz3jxAsL2GwcxB/uZ+r19/LXV2bkUheWb+cHaODlLt93PGqd5FK6pnkcfnn0NPWR0VtWdYdXU/qaEW2g/xrtXPzHjRVpWlFAyODo7g9zrwZ/kPVZetAP7PisTjDPSPULqk5qKEyelKn7cVOGpbXLqowhP0RdIC//OMeItEYp5z0sryRd0iPtD/+5FP4fV5ef94589bnwwFbz+eXG7d+jP5kZ8Fyh+JEoGBJK2MwW2ktnsY0VYWWcU/X0rPvlsCpOdGEA01xoikOHIqLqD5KzIrgVrws9a0hNpKiLFRGwBMkOW6yTX+K9sRWipnATuFCZJ5FUkosaWKRjj2fQCBQhIqCikNx4lBcOBUXbtXLuB4mrA9k3dlVoWb2FcgipdiKUez7N9UOz/0spcwarrNjilt7prGJ9xVFqFyx/LcFem6QQmN6jd+X38i20QHO+8dP0h8ErPBWsC06yCeXn8JHjjsju93pf/4enbHRgv2XlZTzr9dcCsxNz3+0/W5+3/kQIhP+phRPVJP/2pNz0TVF5Z7Tvz6ncz3Q2Hpu6/l02L4KNvuN5tBwe51z/rFP59Y9HbmjrJpDo3llU3b/ypzaquks5QvnCmgYBr27e6lZUos2x7q2hmHQtbOHqsZKghUl2T5OlFMzDBPTMLPbatr0SVR6OwcxUikaltaxLvQK7un9DcPJ/pwXgrROWVg8P/wYwUQVx3pfTeUBTBoYLC9BVVWqm6u57PE/cnfX5uzr1n2d22jwhfjliW/JlPnoIlgepLw6PTiRiCXSD27LytZvVzSFzt3dlJSVZEdzJ8IAVIdK+/Zu6luqUR0qLqcGqoIQAlM3MKZ81w5F4/xg4HQ5cfs9Bz2PhcPloGllYXm9Q53Xn3cOTz+7nocefRwgmwm2rz8du3vUmiPtmXObBcej+SGZv0ygsDp4Ist8a3Ep6VhvrxbArXrxKH7+PfhXHur/Q56xLqXFF468mbgZIawPsqdvO46AQsQIEzFGiRnj9CXaGNUHkUhMRWfD6OOYQscMG1gjVubYReanJXi1AHXepXhUHz6tBJ9awrgZ5r+D/8o3YpX0tgkjStyMEDPHC855ot8TJcIEAodw4xAuomahoZm3b04ysuz5C4mU6czuBZPmIvO/jIEtgWNLz+TZkQd5e8vneKr7AbalnsrZXGBl2sidRJhw47akyejweIGez2Sc7wu9icikcQ4gYVt0kEuaj+b8slVIKXm4Zyfvffi27AlPffMaTETnrOff2HknDww8m50hL2qcA1JIBEp6Nl1KVEXNxuJ/ec375vVaHA7Yer6wzKee2wa6zX6jKAoVtXMz+hKxBN17emhc3rjP5S9m2m+2xnkqmaJrZy/Nqxpm/cBSVRXNoc056zmkS7X5Sry4Pa6ifQwE/QSCfkzTpGNHJ8HyEGWVoYLEQJZlkYzEMAwzu+7Tq37E11+8lJFUH/nlX0BiMqR24Q8duKzQEzXLm5Y14HA5+HPnlvycuELQFRtlpHcYX2s9TSvS8U2GYSBNSeeOLhpa6ymvr0AI2PNiO9WN1TS21ue5+YcHw4wMjtG8ooHSyhJ00+Sp+/7LcWceh9efHpmtrKs4YOe9WLEsi+5dPdQtrZ2TOKuqmh00KcaB9EA53MR8ghOOPYZlS5YwMhJmOJwuLdi6ZAmlpaGC5DI2NgvBe5ZcwTUvvCMniZmg2tvIRY2fmHafLWNPF8ykW1hcteltQNp7S6DgiLlwiPQstmGlGDOGgUw5VBnlmNLTWF1yEkFHGUFHBSWOsmx7l294E2nXdCh316HhoDfeRtKMY2Tc4LPkGLHSkozrI5kzEWhCw635KHVUUeNu4enhe7PnKRB4VB8JM0rKSmAJExUVk+IJ3XLJPf90THSRbWTOO0nGOAd4duRBACqd9SjG5DPZrXhJWDFUARbFnq/pFg6Enn/woduLeuj/pftFrj7pNTy+Zyfv+8/teTXQcxHAMn/5nPX8gYFnirqwTwn9x+dwE9OTCCDo9BM3U5n59nSJuMMVW88XL/Ol57aBbnNQcHvdVDVUzck4T8aTKIoyYyK5OSNhsGeI2paqWbvZCCGoaanZ50POZjBDVVXqW+pwuBykkim6d/fS0FqXFTJFUWha2ZjtzwSfXvUjHuy7k/v6bp3y4qCwKnQcngPoSqRpGqGKEFomW2uxLO1ARrAFmqaRSqRo295B88pmmlY0goC2F9tpWt5A8/LGggd6ZCxKbDxBY2sdqqpSWhECoK61IWuc2ywclmXRs7uPqsaKrMuizb5RlhFvu865zcHAqbj53Oqf8v3tnyZhxalw1vKR1pndg4OOCnoT7TBFa97a9H+sC50K5LuH7ohs4Je7r57cNjPV/NzIo7RFt5KyEiTNOKY0sKa4mksJg4l0UjSH4sKleSjXaih1VLNl7KlCV+fMjPgb6j9AZ3wn/Yl2wqkBuuO76Yhtz8lWLgk4yjil4vW0+I5gMNXNw/13MZjs2UuAeZqAI8S4Hi5YPtG2ZPoJgwlj6NvbPppd1uI7AlMadMa2c3r1m3mw744iSdwFTsVxQPS8zO2lWBZ5r+ak9Y7rSY/n5MzwQ3Z7BUGTK8hvz3g7WFaBnp/35Ocycerw7aM/wjKlNqvnSp+COTUvgCSdwCYTpB90+qhylbLb6MGUFqN6FE2o6Vr2EuQ0GfNtimPr+fwxH3pupzY8BDDNw/Mh4y+Z/eivrhvsemE3W5/bTio1fyUznG4nR51y5F6Nc9NMz1QbxuzuxYT7WzwWJ5VM7XPfhBA4nA78QT+apmFZVtYFvlhilbHhMc6oehMvL3s9QqZd4RShcm7tOzi29Mx96sf+UF5Vmu3je1a/LF/iJbyubhVerxvTtOht68PhclBRV0kqmWSoZxiH00H90lpcHlfR0Va314W3xJvN2D/BstXNC3hWBx/LSl+v2aQQ6W7rw9ANFEWhobV+Xl3bFEVBdagodriAjc2sWMx67tdCfHb1T7nyyN/wkeV7j91915Iv4FLdTJhlAsGakpOzxvlUdkdfKDLFmnYRH9EHSFoJXKqHKncjRwZP4uyaS/jw8huo9eQ/zyUWl6/+BR9b/m3e1Pi/VLkbQBTGg0skf+/5NW2RzXi1Eo4tOwuP6s/0deL/gjF9mH/1/o4f7vgcd7R/h/5E516TxtW4m1GEgm4mM6chyK2znjk5VKFmz7mwulxuVvb0yuPLXsmYPoxEpo1zwJFxj0/vL1ClxVVrZk7eN1/86oyLcaqFEynd8THIJtifOgCR/vzpo87kztPeUVTPz3niM5m4fIGQgk8++/08Pb/3jG+kvSMmrlkm4dv9Z6TruiuKSmuggd3RnrzJCEtamJms/V/Y+HPu7np8/i/KPGPruU0x7Bn0RU50PEZ/1xBNy+te0jGzDofGsrXLkJaFcw4je0N9I5RVhWZ02dmbm42Ukt7dvYwMjqMnUxx16poZH4oTrkfldeVs/s82apoqqV+270lAhBBU1KZd/gY6B0kldRpa6wrOaWggzAv/eYHVx63ktQ3vxpHwMebqY6l/DceWnrHPx58vPrv2LBLjcX7XuRGJ5A3NR/CNk/4HQ0+XrtH19ItraXkJuq6T9KYHKLx+L4ZuoGW8LQY6BymvK0NRFDRNo7RifjLvL3R94fnEsiRGSseyrL0+F4Qlsay5ZyieLTVNhZl5bWxsCjkc9fzKI3/LL3dfQ3+ig5Ulx/DG+g9Pu+3a4MlZozNLpgzW25s/y6qSEwr2eXTgT/TGO/KWGZbOlzZemE1c51CcKELLJHqTINNlWYVUkViEjSHeX38tJY4yHu7/Y2aCN9+QNqWBIhQUoWHk1ESfFpE2BhMyDkCpsxoVlTJnDVvHn8lsIrIzxA7FScpKkp1jniax+50d3y1YZkz0RIBTcXLVmlun79cC8OKFn+PYP36T0WQCl+ogKXWUKZEFuedjAY8c/x4altUihCjQ87f+++rM/Dp5jZz72Ge574xvZhc9eOaNvPLBT2Jhpe8NCqlsqTvJxvCurDEOmbh9Jgc+BILvbLuLqJngbU2vXLgLtJ/Yem5TDNtAX+R4/R7KqoKHjZjvD845urYbhkEkPE5JyD8nt/iphpoQguqWGqqaq+je1YuhGzhdhUb9RMkIRVFw+z243E4altVS2TC7+OeJpHAzUdVYmS1L0r2rm8qGyqwrUrDUT1VjNcGytMH66ta3zPaUF5zx0QgjfWH+b9UreFvJagJBP4logsGeYSKjEaoaKymtCmYHHRwOB+XV6UEJXTfo2N5BTVMNbq+LRCI17T3YV/SUQceOLhqX1+9zToSFIptcJwdNU7PlBqdD13WiY3Gqm6uyXhc2NjYHj8NVz9+z5IpZbVfjbuHipk9yW/u3sHLKiL2m7j1FjXOAqDGaUyZtkqCjgoubL6Pesyy77Ps7PkN/oh2vGmBMH8ZCz87Afu3FD1DhrGM6v3UBKKhpszE3DjfH8pwwRAF6423ZfVWh8dq69/C3rl+wK7qJtcFXsHH0sWxldYC3NPwfd3X+gIQVpVioet5s+pQ4YIlkeeDoWV/nheDZ8y/L/r301uuyxrjPGSXoT2BaCj3hEIoi2PSaTyAtyQf/+w2OK1/FpUtfn6fncT1Z7BBFZ5DvP/NbfGL999kY3oVEct4jn0kb5AJ0y8iLU58MW8hpE4tf7/7nojHQbT23mS2HxnTRSxghBMGykgN+3EQsccCPOd9omkZDa/20xnkxV3ldN2jf2oGu56/TNBWHw0HTigacLieGYeS3lUix+cktDHSnMzU63Q4URaG6qWpWs7KmabJrSztD/WGAgvYnEEJkX+5y2x0dGUfTNCprynE4F5eBCekX05LyAD6/F5fTQV97H70dA1TUltHQWkc8miQ6Ginq/ulwaNQvqcObyTzasKwWRVXp3N65z+6iQ/0jjIcns/pqDpVgecmiM86T8STt27tIJece1pGMpYiORRjsGaa3rX9W7nM2NjYLh63nsDb0Ct677GqqPQ1Uexp4Q/0HeHnFa6fd/qzqtxaUPhMonF1zcZ5xnkrpfKT1Bq5ecxsNvtaC5HVSSgaS3VS46pBi6rNQ4FEDXLP2dlJWIn9qW0xmk899hE6035yJGY8b44zrIyioXNjwfzjxZPcTCH7X/nUMmQ53u37tXXhUf2aGvfCcC2p7S3CrBy7B695wqxpSStyOKBWhOA6HxO00WVE7yovnf4Z4NMkbnvkiuyI93NH2IK975PPZfR0OjTtediWi4MTTcfW5fO3FW3nlQ59kQ3gnMvNf2jYX2Tj03GuVzmkwtbeZMINFgK3nNnPBNtBtCph4iOj78BBZbEw3UzE8MEJHEQNP01QCocC0M9lCCCzLomNHN8N9I9nlpmlSvbQWh8uFYRgMdA+zY3M7um7kbTPdQ9VIGaTiKfwBTyb7eRfR8Vh63TTGelltOQ6ng1QiRX9nH3rKoLy6lKHeYYYHRohH49NfmAOMqqokYgk2/ecFotE4K49dwTGnrknH2DscVFSXUlZTxo4X2hgdGSvY3+VxZf8WQqAoAs3pmNXgh5SSvvb+fLcwmf+yJYSYMbPp/rA/QuryuFiyqmnO3iMA/qCPupZaquorqFu6cGUHbWxsFi+LUc+X+dby8RXf4eMrvsNJ5efNuK1TcfOlI3+NJhwZF3SVC5s+xlE5ce65ev7owN3sGn+hSEuCWk8LcSMypYSbJCgqqdeW88WN03mdFT47JwzDtthmAO7s+B66TKHLJDe8+AGONM7IbiuRuBQPJY4yjg+9CoAvHXkzDd5lKGJq3LqcqMY2eSwBndHtM16nA8nmCz+LphjUlCaysfdCCHTL4OKnvsyFm6/JM5xjRoJzH/xM9rPL4+K2l185OYgiJR7FgW4ZvPLBT/KjnX/mG1tu5189T0/G7xdJVFcMKWRe3LrE4u+nfXWeztzWc5sDh22g2xTg8rhoWd08v9nSFxlllaU0L28sMOCFEJTXlmUffgM9gwUGsqIoNCytpbQqBKRnJ9Y/vJFkNEGovCQ9c7+sFoemIDNGYSqZ4vlHNtHb3p9tJ9dgdHlctK5pweVxpWfC68rwBbzoKYO2rR2kUuk+TMz6G4ZB+/Z2RkciON1OSqtKsaSka1c3bVvaSUQT+5ycbqFwedy4fF58IR8dOzpIJvKv63DPMJ07u/YqgJGxKIqiUNNcXVSkUimd4YFw9rNlWZn4rsl2y6tLKSkN7N8JzYKRwTBdu3ryzmmuo+f78zucuD6L3aV26j2zsbGZHw4HPXcrfq5Zeztva/osV639LUeFTsuuGzdGeCx1B3eK6/nSC2/hof4/sMy/FkXkDrKnDfJocoyXlb2a69fdxfXr/kidr4VqdzOjsp+oMsJ7l1xJiVqWP6u9N3tsSjiwJU3GjBHWa//IW5604sTMCEeNn5fV847YjkwyvkyytJyEa+nJ4MmDh/UBDBaPpl/U2oScIr8CwXBqDDHFtBBCoIt8vf9X738nY8WFYF1pK83+aryqi7s6HuUfff8paLuAKTPmcmK7zLWTiuTBM2/c11MswNbz2WHr+fywuPw5bRYNzkXoJj3faHs5RyklesIgmUih+fO3zS1B4fa6OeaMdbhyks0NdQ2hqWo2TtqSEl/IR3VjJQCDvSOMDoZpXtXEUM8wFXVluL1uTNNEVVVKQoHMcTTKaspxOrXsTEjzykacLgfNy5twuBxIKUnFk8QdMSrrKwhWBvEHFo873ASlFUGCZQHatnVSUlZKsNSft76qsYpjvM7suefG4Q31jVBaGSQZT9LfNYTL4yzI3D5BMpEkGY0jK4LZkIC6ZYVJ9faGZVlExqLZ/uwLgZAfzenIHjsRS9Cxo5vmVY1zSnZ4uJNMJElEYtl7ZmNjM38cLnp+RDAdp74zsoF/D/6d3dEXSJhRSp1VrAmdzCtrLsSt+PnP0D8ZSHbRl2hP1zjX/Hxh9a/o2dNHMFDCPb238NTQv0hZSdYET+b/VtyYPca7ln2JH2z/NKbMGJRTs5TLGT+mY6KneYZVuxp5Qt7Jo11xumO7cePj13uuo9m3inc3XMmm6GP8qevHWNIsSFKnoKCxeOpGv2vVuTz+n4354QC59d6nIuHchz7NyyvXEDA9/HXoyewqS0r+M7SZ+8/8Fu948jpUodAe6y8wykWRcnOISXe43GMLBO9d+prJY9h6fsCw9Xx+ODye2jaHJYl4Om7O7Tk49ayFENS2FJ+lzWVkMExsNEbd0logPbtduyS/TnoimsAf8mbb8gU99Hb2ERkdZ2RghMh4FH+Jj+h4jMbWOqQ1mRSvtDwds+jyuGhYVks8GicWiWVngIUQuHweYmNRgqUl85o8bb5RFIX6JbVF4+SFEJRVlGZDAXraevCW+AkEfcTHY/iDPjSnRkm5b1rjHCBQ4scf8OWL9T6IxFh4nB2b2mhd00yobN8yxWuaRqBk8lzdXjdNy+ttMZ9CsXtmY2Nz+LC/ev6foX/yzMgD9Mb3IIFqdxOvqr4oG7/+wuiT/HLXl+mK78CpuFkZOI73LLmCEkc6OVnECHOP/Ak7dm3ArwU5q/pCTql4fbb9MX04k42+k9WOk7hk1WUIIUgZCa7ecklm1jQ/9XqxTOwzZX5vi72Ys13auE/oUZJWAofDwXFlr6TBu5yHuu5mQ/ShvOzkb1vymeKNHiSW+er4wpp3ct0LvyE3c/6/Tv8G5zz0aQzLLPBI16XJw/3PFyyfeO5ft+V33HLSF7j439egKSqGZeUPfojJ60EmO36mgcm2MnfAQpIwJ2e3bT0/cNh6Pj/YBrrNvBOPxdEcjv1OuDXSF05nRG+am6AbuoGqqfPycJhNG4GQH82hIYRguD9MeGiU5hUNeW5IofIgTtfkyKvH42blUa0IQHUO4Qt4iUdilJQFMFIGe17sYNmalqyxPZEhXlVVTDOJaZisf2QTtUuq8HjdDHQPUVlbfkg8EGeKvwoPjxEeGKOxtRZviR+Pz5OeAV9ai6IojAyGSYzFkZXTz1LA3A3yYiXWQmVBGpfV4na7ptlr38iNp7eZ5FD47trYvNQ4WHqeshLc13c7L4SfYETvx616afEdwdtbPseKwLFA2uD91e5r2RXZBMCywFoubf0qDZ7WbDvrRx7mgf7bGUr20uRbyf+u+Dq17iXZ9RYWP95xOR2xbawNnsJHln6DeDSRp+fXHPF7rnjhwqwLddZwnvrI2luYdM76tLmfdm1PmXG+/dwnuLj883i8JRwVOY+V5Sfw9/EfY0mLN9Z/iNWB4lnuDyZnVR1Db3yQu7v+TUDz8bOXfQqAlNSzsekSiRSSyxrfwvc6/4QhLSxZrISd4IHe/7LSX8etL7+CNz9+JaN6FMsyQYi8bO3pzYvkBRDpsnYTDugJczJbvK3nBxZbz/efWT9x77nnHs4+++xDpk6wzcFBSslQzwhOj4uquvKi2wz1jyAQlGViuKeSSqaIRmLUttQUXb+34/fs6cXn91KWqR2+0GiaRiCYdtcurQziL/EWxAjpSZ2u3b00tdZnH+gTLzwtK5vQNI2R/jBl1aXpWpiaythwhIraMrraeomPR6lqqKR7Ty/B8hKq66uIRuKUVoXweNz4S3yHdIzhBEJAeU0IVVUJ5WQ7nnjulFaECJXPr9uUrhv07umldklNQXLA6vrKObc3tUSOjc1iw9Zzm9lwoPW8I7aNxwb+ws7oBmLGOCWOchqslbyl/DJa6pcD6Vjs29q+ydbxZ9GtJA2+5VzU9EmOCJ6Y19afu37C+pGHsbA4OnQal638QcHxfrH7anaMP8/KkmO5ft1d2eXF9LzZdwR7oi8gkZQ5axhO9QKTBnvaE37CQCx0uU4vyLfghZystxZ1jEzR81aO5qS9XrODzduaz+ZtzWdnP5/94Kcys9iTtciFVPhh11/45+lf55Y9/+JXu/9ZJFQgbbT/cMef+eGOP2eX1/sqiZsphpOFyWOn4lA0UqaOS6RrtU/UTJ/A1nObQ4lZG+h///vf+eMf/8iHPvQhjjnmmIXsk80hjBCC+qW1Mz7QNE1lpmHm8YFxXMKNz+8FyMZlTzDcHyYZT1DbXCj4QojsbOtMTJ0xNU2Tnt29s9p3JoQQON2FLuYOl4OWVU1FZyEm3LWDFRmDVILb46K8phQ9qRMfj1FeXc72Z3bjDrqwUhZDfSO05NTNPByM82Q8SX/nAM0rmmbcbn/E0iAt2Boa60e28cLoHi5pPhvVq/HLPf+k3BPigvpX7HP7Ukq693TjDwUIlh74cko2NrPB1nOb2XAg9PzRtr/xXOQhBqwOLAwqXQ2cVvlGTqs8P7u9oij8uesnbBx9gqgxSpWrkXPr3smJZecAkwlX+xMd/Knrx+yJbiYgyjiv9t28rOJspvKbPV9j89h/aPGtzjPMi53/hJ5/cNm1XL7hAgD8jmDWQJdIlvuPZkfk+exscV5N89yrk2OQpz9ObCuo9y3Fk3H/P5T1fGrsPABSkjBTvPLBTyIQOBUtYzxn6pdjoQoVS1oF7XXFBmd97JSp41Qd6GZa5//a9W8+seLN+3wutp7bHExmbaDfdNNNPProo9x00000NDTwgQ98gObm5oXsm80hyt4MqL3VgS1vKKe2Lm18h4dHCQ+M09hamxV1X4kHhyv91e1t76eitgwtx/DNFf+pLwMAAz1D6PEUtUtyS1UUq585MxPlu6oaK2dl1BczzidGZ0dHxhjpT7t2I0HNtDdh2GuaxpqXe1A0BT2p48287BxOuDyuzCCGAwsLJScTbMRIcF//M7yx7pSC/T793A9pj/XTGmjkurXvzS4PGxEufPwqLEtS4vSBlIT1SPpYqpNUJj7tV3vuybwipV+e7uv9Lz847uP7dA5CCLwBH27vwcmbYGMzG2w9t5ktc9Xzjvh2ql2NOJX0M7CYnm8reYQXxp5gKNWDioN61zIurP4YFaOteXp+X99tPDvyIOHUAKXOKk4sO4dX1VyUd7yBniGeGbuP5637GdOHWBZYy6dW/ohYu05dWW3etnd2fpf1ww9R427hijU341YmE5XOWs8FtMe2MhF3DbA9sh5yZoxzURCUihpOrDmHf/T8KruNRGY0TlDtbuR9S6+a8TofKgQdAcL6+JRcbjm15JE5M9uTMeXFjPO9kRujP0HSTKXj+zMJ68566BM8cMa3534i2Hpuc3ARco5F/QzD4K9//Su/+93vOOWUU3jnO99JaenC1A+ebybiU3Lp7u6mrq7uIPVo7rwU3G1y74mUkuh4jEQsiWlYVDdU5G+7q4fyujJcReKK0vHMozS21uUZ6ZZlkUwkSSUNgvtQasuyLAa7hqioL6d7Zzc1S2ozswh7J113XaCqCgM9g7S/2MnRp61FURSi4zH8JTNnX9eTOrtfbKd5RQMjA6NgWVRPU25svjiQv5EH+9dzw4u3YVgma0NL+dbRH+bazTfzYN/6rAjfc+YNaJmxxTf9+wrCyUh2/yODLXzn2I9hYHDug5/JKYeaL+QF8Wy5CDi+dCVfO+pDC3OS+8mh9sw63Cl2Pw6Ve2Tr+cHlcNPzq194O4aVxJKSV1ZdyFk1F9Ld3Y1WZvLI4J/YNr6eiB7Gq5SQknEsLLxagE+t/AFOxU33rh52ev/LM6P30p/sxK8FWRd6BQOJLnrjbdSxkrevuiyr53d2fpeN4cdRhcZa72mcv+SD/L7jRhJGjNfWv4dyZ9pA/2v3z3ly6J+UO2t4e8vnqHTVZ/s8Wz3/0oYLMHOzwhXLEJchV18UofCBZdfR7F3JFza8KTP4LLCQLPWtJBRdyhuWv+uw0vPzH/0iY0Y8p0xc+nr87fSvcsXGX/LM8Nbsth7VRcJMpbedtOMLybnec9HziXX3n/mt+Ti1eedQe2Yd7iwmPZ+TgZ5MJhkcHGRoaIi2tjZuvvlmkskkF110EW9605twuRY+WcIDDzzALbfcgpSSiy++mHPOOWfW+x7qgj48ECY+HqVuydxLRs0X8Wgcj88zr21OfUkpdk8S8SSWaeH1e2bcNxfLsoiOx7LxZLnoKYPdL+6mZUVzUZf0mdBTOm3bulh6RNOsZs5Hh8cY7g3TsrqRrp09ICUNy+tJpVLs2dJO69qlGCkjrx9TZ/5zXfJTSR2ny4Ge0jFNc8Gz3B+o38g9vU/z9S23TuqzgKDDRzgZKbjH95/5LS577gesH94+ZZ1gbbCFLWPtGNKcXDzDyxQU5vYJOn3cdcq1+3lGC8Oh9Mw6lNhXY2kxCfpcsPX84HK46fk1L7ydhBnLfhYISp3VjKWGMdGpcNWxNnQKr6q+iC9tuhAzJz5YESr1nqV0xXfhVFysKjme82rfRUAr5eoXLiFpxrPbLvEfQcpM0hXfSaWrnrNrLmGl53h2vriT34krMKSePf7Lys/hmeH78TtCXNj4cVp8qwv6PRs9b4tu4cc7L2cmV/5iRqJA8Mqqt3J65Zv4zo6PM5DsKtjvvU3X0Bpac9jp+Wsf/ixxM5X9bk+UnxMy3wZXhEATGilLL/IMnsZin3FwpPAuWVjzWg99PjmUnlmHEoeDns/axf2CCy5gfHwcVVWpqqqipqaGk046iZqaGjo7O/ngBz/IddddR0NDw94b20fC4TA///nP+d73voeiKHzkIx/h+OOPp7y8ePKSww1/MJ0I7GCJ+XD/CJue3MrxZ62bNxdrKSWdO7sprQrNOHvs9riwLIvOHV15ceIzXYvpjHNI1xdfesQSNE1DSolhmLPKUmuaJqZhYhkGhmHhdE4KumEYeUnGDMNAVVXGw+MkYukSM7VLqtMj5YDT6WTFUa3EIjHad3TQumYZmqaRSqTo2tNLw7L0eZqGSW9bH3VLa9E0LVuizOF04ODQjVWbyne2/SFfiiWMpmIF91gCr37oU5jSKnL/JRtHd8/52FPrq5Y5Jt02h/vDlFbOPjGdlJLwQJjSqvmZiRwfjUz7PZ4vUskU0fE4pRX7Vn5mtoSHxhBCEpxlmRspJX2d/ThdrmmTUBVjqG8Yr98za+MjHWvYQ0lZkEBwZi+WwwFbzw8+h5OevzD2JEkrkbdMIhnVBznD91ZeuexN2eV/6vphnnEOYEmTUX2I/9f6FepzMrDfsuf6POMcYHdkM3WeJVy15ndZN3qAvzpuxNAny2pJJP8Z+ieXNH+GI4PFk63NVs+3jU26sE9HblI0P0FUp8ZRoVN5ReiNtG/vYiBVaJxLKflF+xVcH7rrsNPzuJXK+26nS6OJnFn1NJaUWKTd24vp+VwpdpcUMXlfbT2fP2w9X1hmbaBfc801VFdXU15eXnSU8bHHHuNrX/sa3/3ud+e1g7k89dRTHH/88VkXvJNPPpknnniC173udQt2zMWE0+lYsHqLum7s1UANVQQ58sQV8xr/LITAH/Lj9s5utsbK1MjeG4lYgoHuIdxe97TnNSG+wz3DRCMxGpc3zPjQTmeI78fpctC8shFnTi1vPanTtr2d5uVNOFwO9JTBnq1tNC9vpGFpPSxNb2ekDOLjMczKYHaGPJ0kbvI35XA5CFUEURSFPVs7qaovxxvwoWkakfEoY4Pjs6rPfqhR/K4WLhUITihfRX90hJ3xnoI5i1PK1zA2PsaGVNvkOiHyS9zkjq7mLBeAU3Hws5d9GgBd1xkdHiMQ8het3V4MI2UwHo4QKAsUZIWfiWL5EgzdoK+zH5fLOWdPj7mQTKSIR6KEyksW9HslLQs5h/aFEPhKfDjm+NwzDRPTnH1MY/o4ftzehbvGiwlbzw8+h5Oe+9UgxZ7VQUc5qz0n5y2ziui3lNDiXZ1nnANEjcLM3QKFFYFj84xzgKg1XrCtKjTKXNVF+zwXPT+j/EIeGryTia47SVKqxugz0t9dKSSlzip0S+flpa+ltm8dra2TEwChiiB0F078TmQ7P9xCHeaKmfF2K5z9zo1dZ9Z6ns3FJ9P/u//MdAy6refzi63nC8usv21r1qyZcf3xxx/Prbfeut8dmonBwUGqqqqynysrKxkaGirY7uqrr+aqq64q2oYQgssuu4xPfvKT2WXd3d3z3tdDCT2p07urn+qWSpyevX+hF+J6xfujszqGFtDo6+ubVZuaVzAw0L/X7aSUCI+gp6dnr9saig6YDI2kYCR/nSlMBoYGsp8txWRwuEgGUrfMO4d0WRaT/v78vsb7ohgyyXg0/ZLS3d2NntIZH4mAa+4JVfaHA/EbeWv5qdzcf//kAglNzgraUwM5cX/gFAofKX8NlMOHt3+fMSuelfFWVw2XVpyDETL5Xt9feCayI/vaGFS8jMm0C2aTq4KOVPrZUeso49yy43h0bBMB1csnG87PO1+HX2FgcO/fo1yEh4L7OROR0RijvWFqWqsLRN3p1wq+RwtxP6RDzuo3MB/Eu6N73yiXKAW/txkRMBYZZSwyOqfDxAYie9+oCFPvx2J/2bb1/PDlYOi5gyDN2hr2pDbmWlG83vuRgmOcpLyRZ3gAyaSGCQGnOS4u6Eu1XEa73FZQjmuFcXLBth4ZIEksbxkS5LCLbvK37dN/SUJuxamsopp3zkrP36l8lV+bn6NWG2aFuxckrBI9PB5ZwaUVP5o8pCUZY7zg+f+/Fd/je4P/O7ldxli/2LjmgD13JzgQv5EyNcCwGcnJYA8IiQKTdz5jZE9otJhclPk3N9Z80lCHKQMd+aMeuV9Bbln5aVvPFxhbzxeGOSeJO5j89re/BeCSSy4B4Pe//z3RaJT3vOc9s9r/UI9ZW0hikdiiyQy+2O6JrutomrbfP9JiI6qzxTAM+rsG8Pq9BMsWdlR0Kgfyfvyz5ym+vfX3WEiW+Gr5wTEfp08P864nvwIC/KqbP77iy3nnf/nGn7Iz0s0qfyNX52RxB9gZ6eLRwU28u2X2sa0HA8uyGBsZI1Qe2uu2i+338VJnMcWsHUrYer5wHCw9/9Xua2mLbcWlurl02VcIOSqL3pOUleBrW95P0orjVn18atUP8jKq5/Lo4J/4Z/ct2Soblx/xM57reTtxoxNN8XNy/Z9wqunksde+8A7iZgwy8c6Xr/4lPi0/y/wzve9jJPEkUpoIVBpLLmFl+eWzOr+u8dvYPHg1ud4CQiic1fJfFGZ3vS/fcEG2Ssln6n95WOv5u578Cp2x/rQ1LeCeV9xAjBQffPobRPU4q0qauOGoS/PO/5UPTg62ORUHhjSKel3kogoFl+qkyhViib+W48pWckSgiWZfYSneCVKWwZUbf4FAcP1RH8gu3zi2CyEFa4JL8rbVFCWvssxM2Hp+6LKY9Hz2/hqLgPLycrZuncz+ODg4SGNj40Hs0eHDYjHOFxuWZdG5s4eSUIBAyLfPbkmpRIqe9l7ql9bN2k1qZCBMaWUI0zR57rENeP1epCWJjsapW3L4ubgDnFv7Mk6gleHRMZqaa9nzYjvNyxv5dfOnUQWU1pbStauXuiXVWdfc69a8n+GBMOVFYsSW+etpclQVLF9sKIoyKzG3sTlcsPV84TgQet4x9jtA0lhySXbZu5d8aVb7Ptvzdk72vQBS0Bx877TGOcCpFW9kqXcNbfEtnFR+Ho93nEXCSM9mpswEj3Sczlktz6Dg5ktH3sI/en5F0krwuvr3Z6t9TLBj+DsMx59gYg5XYtIx/lvcjlqaS/Y+MNQ1fjeFrvyCXcM/pLXsshn3ndDza4+8g/WPPo/X7yU6Fj2s9fzXJ32eoZ5h2kcHOaK5Oavn36z+4LR6ft8Z35xWz/sSIzzcs55nxrazK9rDWCqKKS1MaREzEuwxetkT7eXBvvV5+ylC4BQOgk4fdZ4Kmr3V3N31eDYe/uwHL+P3p1zN/z5zI72JYQCW+mv56Qmf5l1PfZXu2AACwWWr3so5NSdw3ebf8PTwVoIOLz8/4dNoSv73zNZzm/ngkDLQTzzxRG655Rai0ShCCJ588kne8pa3HOxuFWV4IIyR0qmqrzzYXbHJ0NfeT0V9+ZxmsRVFoWFZHaZusGdzOy1HNO2Tke5wOQiUlhQ1zvWUkRcPlYgnsCwID47hC/qIRxOYKYvWdUtRVY2h7uHDUswn8Aa9KE4Fl8dFdWMVDpeD6sb0DImiKrg8jry42WQ8SWQkQqi8pODephIpdm9uZ8le7ptpWgx1D1HVOPPvNR0HJffZE8LGxiaNreeHLg/sORZTppO37QzfxBlNT81636d6LmI8tSnzSbJn9GdYMjXjLHa9t5V6bysdY78jYQzkrbMsgye7Xs/L6+8F4Lzad0/bzri+mRwH63QPpEn76C04lRC1/v+BGWZJXWpZwTIpTTojd6CqPpYEL7X1fAreoJcWZ9W86HkpPo4aaeKNR7yiQM/DeoQNo7v4d/8mtkU66Y8Pk5QGlrSwpCQhUyQSKfoSI6wf2Z63r4XkzY9fkbdsV6SHcx7+NIY1UQ1G8vUtt3F392NsG+tAShjXo7zukc/z9zO+NuvZdRub2XJIubgD3H///dxxxx1IKbngggsWbVmWeDSOnjIo2Yc624crE9d+b2I03T0Z6B7E5XVTEpp7BkzLsujZ3Ud5Xek+lzFJJVJzNs5N00QIkRUgy7IY6h2hsi6dqVhP6rRv76ZhWQ0ujyudfXJ3L063k7LqUFagirnHW5bF6PAYpRWhfTqf2XKg3XuG+8Mk4wlqmvJnFWYKEZhpXTKexOWZOQlhKplioHOQ2iU1M5bO69zehVAU6pfVZpf17ukFIahpnkxG1NvWh7/Mjz8wmUF0ZDBMsKxkVqX5ZsJ2iVtcLCaXuEMNW88PPR7rfBVxvTNvmUer5xWN9xfdPv+eGNy7uzD/gUBhTeUN+JxLCTiPmPbYu8M/YcfItyk2iw2gKX6cajkerQGfYxlB9xqCruPwaHXT7i8QOLVKDCuCacVQhRuXVkvQtY4K7+nU+F6T3dY0TR7uOA5TJrJH9SprKPWtoT92DylzBKfVQnPp22kpe7ut5ywOPTcsg2fDO9gQ3snz4R1sGWufVbJhQWHW+WKl31r99fz4hJk9KKbD1orFxWLS80POQN8f7Ji1g0v3rl6klHnGTdHtprknI4OjuNyOfXbfS6VSdO7spb6leq8P+Pmic3sniqpStzR9zqlkiv6OgbxScYlYArd3ctBgthldI2NRBnuGaGytX9AZ3cXwGzEMg84d3dQtqcXpWpjMx7O57paVnn3JNbJj0TiapuJ0TQ7eDHQNEawIZJeZpknnzh7Ka0pnLCc4GxbD/bCZZDEJ+ksJW88PPBYp7t99NFNnoQH8zlY0JYBDKcWhluFSK3BrNUTDDuprjsbraERBKW6gC4HAhZQpJBZCKAgcaIoXTZTg1MpwqdV4tFraxm5GSrOgDbdaR3PoPUSSW4gau4nrPRhyFNOKp3OlCzdOpRSJQcoayHx3FJaFPszS0snkbb3RvzMYe5jR5AaSRg+mTKAqXtxqHY7UcgLiZMacvyduduF3rKY6em1Wz+NGN1sHbmAk9SimlaDEtZaW0Hup8r56r9fW1vP5ZSY9f/PjVzKSys/6P1tjvNiyCneQ20++cp/6uRjuh80ki0nPDykXd5v950CN0hajpnn/YoH3t6aj05kexT5QxjlA3bL8H7XT5aR+WV2ecOQa5zD7jJH+Eh8en/uwcrce7BvG63MXDMKYujmn0ij7wmyue7HZb2+R2pyV9fm1nFVVpWFZ7WF1r2xsbA4uB1rPFZyoihvTys+WLoSDgHMVKTNM0uglktqBKWNYMo5hJWnvNMnL1S2tvDTcmhIAVBxKHTW+cwGBJXUs4hhWlKTRT1TfRTi5HoGGpNBAT5jdbBv6Kg41RMC1iubgO/A5l+B3LAdgOP4MY6lNxPRdjCV1TCJY0mBn+HvsHv0JDqUEl1aNz9GC37mS+sAFlLpPBCx6InczGHuUMfkCXcb9WKkUmuJDt4YZD/2U4cSZVHhPx6PVcXTtjQCMJp9nV/h7bOz7FAgodb+MpaGPEHIfU/Ta2no+v8yk57edciWvffizmJkBd01RufzIS7hm481ZI10gWOKvYXekJ/vNVUS6LJ4pc5MECs6tOXHBzsPmpYttoL/EiEXijA2NU1IaOOBCoKgHP0YnVFay942mwTAM+vb0Ud1SPetEb8UMuvmMNzscxNw0LZASVVORpoWh57986SmDnZv2sPTI5v2+doZhoihiv93M94XD4V7Z2NgsHg6Gnr+s9jae6HojE7PoAoWX19+N17G06Pa5s09Js5+43sHW4a8wltyMADQliG6GAYluhtkz+hMU4cKSKSxpMGHYC6GhCAeq8JA24BPZYygoBNxrSOg96NYYw/F/MxR7nMkCXRKBiiJcqIoXl1aOJpYjE0GCJY1IoWPKKLo5wnhqG0Pxx9HNCBIDgYZD9eNUK/E5l1HtP4+AazlJY4CRxLMMxR+jO/IHLKmjKQG8WiNB97FU+c7imOqfAtAfu4+20Z/z3563oypuyj2nsaLsU3zl/hd5vreH9x57HG9Yu/qw0IhDQc81FO45/ev8eOefEQg+uOz1AHzhyLdz07Y/oCC4/Mi3c3zpSj6x/vtsHt2DpihcdeR7OK58Ba97+POkLAMhBO9Zci5va37Vfp2HjU0xbAP9JcbhNEo71TV8tky4PpmmiaIosxYJVVVRNfWwuHaLib62PpBQt6yWyrqKgvWjI2MIVeCY4gpnWdachblndy9Ol4PqpnxvjlQihcPlOKyT9djY2BxeHAw99ztXcErDX3m+/xMIBEdXfx+3Vr/X/eJGB5sHv4QqXJxYdycAbeFfsX3k60zOrkssaVEfOJ9V5V/M7ps0+4kbHSSMbhJ6L0mrn/7oA6TMfgQqTrWSuN6FacWR0spxQJY5LZtYMglSkjQskgxhCp1o7HEsy0BKI1ObXaAIJ5riR1NKUBUn6YrcBuOpLYQTz2DKOJZMIVDSBr9ai1tL5yDRrSh9kX/RNX47ltRxqEG8WjMh97EsL/sU0dRO2sdu4dGOV3F0iwvD0cIn7+9ix/AQnzz9Fft/gw4yh5Kef2jZG/I+n1l1DGdW5Xs4fPuYjxTs9/fTv8YjA8+zzF9HvcdOHGmzMNgG+j4Qj8UZH45S1VD48DkUOBwMzFRSp2NHN03L6+fksh6Lxtjy1DaOPGk1g50DOFzOgof7dAghqGmZvq7mfCOlxNANHM58IdNTesGyCXaFf8Du8I8QKKwo/xwNgYsORFf3i9ol+dd0sHeY8urSrLhWVJdRUurP+97qukHXzm7ql9XhcMz+MVa3tDAJnGmadO7uJlQRpKwyv7TLwaonbGNjc2Cw9XzueB1LObn+7llvH9N38e/O12UMYLh/zxpOa3qMiL6tiLu6Rdf4HURSW/E7l1PiXEeZ9yRCruPAdVx2q5VlX9irnifMXuJ62rAfSfyH4cQzJI1edDkMKKjCgbRUFOHARIKUpAcJkkipY8gIZLzz0zkPrMw5TLrrmzKJZfaTMgcywwFGZuYfVMWNlJKY3kZE30H72C0gLRKGh47RKkwpOKqmjdNbXiScuIN/bj+Pc5dfm+3/A3uOxiTtKeBQQpzR9OSsr/nB4qWi56dVHjUv7djYTIdtoO8DliWzyaJsFhbTMBFFXJicLgctq5qyMUxSSvra+qhqqppxFNbhcOAr8eF0OahZUoui7H3GVNd1HI6FSWQyE0O9I0TGojQtr89LKNe9q4e6ZbV52ejbx37NtqGvkS4YkmbL4NUIFOoDFx7wvs/EUP8I0rSoqC0vyMiq6wZjw+MEywI4nA5GBkYIVYRwOBx5HhOaphIIBdC0/JfT8dEIHp972hCEiZcCXTeyLwKqqtLY2lDwYpBKpuhp66OupQZPTpy5lJLwYJjSKeJvY2Nz6GHr+Xxi8Hjna9DNEdxaAyfV/xGAJ7rOzxrnAJY0eKLz9ayquIKe6J+RGYM2jaDEdSSphMGA/jBd43/EGowDAk3x4VQr8Dqa8DtXElCPwlNSO62eu9Ua3GraYEyXUJvU887x2+iN/J3x1AsYVhSXWkHIfQL1gTfjdSwhYXQQ13tImn0kzX5S5hC6FUY3wxgyksn6HkdiYEk977gTCQxNKwFMZHyfTELm0uIsK4shmcg/DwFnBKH8gXt334FbrSNp9SItMxurrxsjPNR2Mmc0P7H/t2kesfXcxmZhsA30fcDn9+KzZ9UWHCklvXv6UB1qXgmrCXITjFiWhWmYe3WT0hwaq45LJ42ZjTfVcP8wo8MRmpYvbGbVYlTUlhGqzC/L5fa6qW6uor9jkGBlkA7jOvpj92Ja0ew2k9lLJS8OXbPoDHSvz41hmCRiCTp2pjO5+vxpwXQ4NFpWNaZLoxgGI4OjeP1eYtEEve39tK5tweFIu66V1+QLqpSS0YFRDN0sSCiY+71IxpO0b++geWVTNst6sVF7p8tJ84pGtCnr4tE4wwOj+EP+gzJwY2NjM3/Yej5/3L/7GCzSxqqe2sJjHa+kXn6zaFK3pDnAlsEv4RBBdIYzWdUFld4zWFLyv0S6QlQ3TuZ7ieg7CSeeZiyxgYi+k57xP9Fm/gpZptPdrqEJfybJ2xJKXEcQch1HyH1c3jFz9bwhcFHWw0y3wrSN/oqB2P2s77sUpIXX0Ui55zSag+/ArTXO6vwTRhdxozPtim/2kTT6SZoDJIxuUuYQhhXFkklMK32NBGn7W0rQ1Mns4AmzO70w10VbCHRreA5348Bg67mNzcJgG+iHAeOjEbx+zyHrui6lZKh3hIrasuyy/s4h9GSS6paqWZ2XqqrUt84cByelpGtXD2U1pUUzbxejtLKUQPDAJOApVhak2MixL+DDsiQbRt9IzEzXo80dic9tY7FUUcwV1NzR69qmKrp2dLNkdROaU8urGa9pGs0rGlFVFc2pMdwfJjoWJVQeQkpJKpHKG60XQuSVr5ugr2MAI2VQt7QGIQQuj4v6pfXThgnkMlXMTdOkt6OfUHnAFnMbG5t551DQ850j36Vr/HYUxcvL6m7DqZSxvvcDWeN8goTZw4D8HQoeTPLLWrnUapqClxDV24gktxA3u5HSZDj+JIOxh5GqxeYOBUW4MjPnpZlSa3VUeV+Fz9lKpLeU6uqVpLTNjMT/y3hqM1F9FyOJJ9lh3oTERBFOHEoIt1aHz7kMX9VqktbL8aqTSe0cSojW0o/TWvpxIJ2BvXPsdvpj99IxdgtCuAg4V1LtO4fm4HunvS5urT4bjz9dma/nu3s4//bfIQRYGSO8wjPKmlLBlefWM57cynhyM9HUrn29PQuOrec2NguPbaAf4kgpCfeHMQ2TUPn+lSE7WOgpnUQ0jmEYWYO0tDqItKxZZ0ufDUIIXF73rB7kuftMTWaSy2xrlu8NKSU9bT14fJ69ulqNpzbz5PAFeQPs6X9yzXRASip8p+133/YXKSXdu/uIjEVYekRLXt1Tf9BP/TLB6MgYyWgSX8hHSWkgK8oTL6mqqtKysiH7eWRglEh4nKqmKlwuZ9alMDw4RllVKO/4lfXlGLqRd58cTo2unT3UL6ud0/2LReI0LKmb8TthY2Njsy8cCnq+O/wjdod/kHbXNuGR9lM5tfFB9BwvrgmktBjlLxTWkgaJQefYHWiKH4caoszRjFMtx6VW4tZqcGt1GFYU3QwT03cRMzpImr0MJ55EN/+FYUWRQmdHPyjCgSLcaEoJTrWMoOt4vI4GPI56TCtO0hwipu8iHP8v/dY/2T56HSBRFS9OtQyv1oTPsZyg62jKvScTdB1FMCfGuDfyV3qif2Z3+MdsG74Bpxoi6DqaWv8bqfadW+S8i+v5//zqN2wM9/PWlWv5ymtezRk/+RnDyQRNnlX8FOtlXgAAxzJJREFU8sK3AWmNGRkfYbNyFlg5Ij9P7xr7i63nNjYHBttAP8QRQlC/rO6glI2aK5GxKG6vq8DodrqcBSOlc0kUMhcqc2bp9xfTNOne1UNNS81+9deyLPra+vAGfXh8M7laJrhv97FYmAhEjm5PCPekkCMEFb7TObr6h/vcr/nCMAxKK0sYGRpm1+ZdNC5vzHMpHekdAUVQUlHCSF8YVVMJBP2Mj0YwdJ3SilJikThe/+RIfVlViECpj+7dffhLfJTXlKIndSLhcUrK/HnfMUVRsq5v2WWqisNZmOV1ZGiM0vLipfhSKZ3+rkEal9bNy4tSKqnnvdwsRkzTJB5N4C/xHeyu2Ngc9ix2PTesMXaMfJdcg1tKkye63sDS0P9jNLk+b51AZZXjbzQ0tGCRYtvwl9GNOGWeE0gYfaTMQZLmEIYVJqrvYDTxfKZ+ehILPSc2XaAIDYEjM6Oedmd3KEE0xZc5ooklU5hWjJixm/HUJgxrHNNKZFzs09nZVeHF56xCU0oQKEhpEDd6GE9to2PsViQpQEkfQ63E62gm4FxNU8m7KK8+BYA9oz+hL/ovNg18lg39n8Ct1VHmOZnGwMX4HauL6vmqG2/ElBa7PvHJiavJtef9hpQ5jFurwTAupGd3D+HhMVxuN2eteYEHOo6cvJyK4FUtLy7EbZ0Ttp4Xx9Zzm/nGNtAPAxarmOcipWR0cBQ9UHyG+FA4h6koioLX5ylIbDJXJuLnA0H/tG6ND7WdiG6FSaeayReTPHGREqGovKplA5alsOWZrZTXllFVd3BKgUTGIjx5z9OoTo1QWYjm5XV07+ylacVk9v2J5D6KouAP+LLfhdh4nK49vbiPddOzp4f6pXV5ZfUcDgf1S2uy4u10O6lfVjfLkAiF6qb8a5JK6Qz1DOLzuXG6J18ATNNEVVWcTgdNy+sLXOH0lM5g9zC1LYV5EqZjLDxOX0c/S1Y3z6uXyHwzNjzG+EgUX8C7KGZvbGwOdxazFo6ltjAZKT2JbobZOvS1nDXpGVCExQup89i6RwNUFKGhCI3hxBMoOFEVJ0K4UIUbp1qOR6tHER5UxYsmfJlSZ/5MTfQkpkxgyjimFcW0ohgySsLowZARTCuW2SaVMewn66erwoOQGkLRECjo5hi6OYoldSTpEmsTNdcFKoriBCQpc4CE2cdQ/N/I0R8hpYkQDhxKCW61mmrfq3GptcSNdkbiT9E9fheKUHHIJuo4hyXO9/Pth5/mu+ufpMUb4oEPpt3j7929itwLGdPbebDtOFYYf2bJ6pasAXV2xiBfe+OXiMgQ8E38QmPjx/9vge7wzNh6Xhxbz20WgsX7TbI5rBBCULdkbu5Hix0hBOV15fvdjqZpNCxvmHb9vXtWZoR8QtGnOLTLiRcRlbrA/3BE5VcAME2dvs4hLMuisrbioFz73Vs6SSR0aqtDeErcDPUPU9NSmRdrljvAkftyWlVfgcOl4fF6aFzRSNf2TioaKgkE/Tn75j/Ciol5bhiClJKhvjDl1aGC6+F0pisD5LZpWRY9u3vxBLyUV5dOG6cm55gFuiQUwOOZPjvtYqG0spRgefCw+t3a2NjsG2XuE1EVN0aeO7ugwvsKjqn+KQCf//s/WT/4d7oilfgcSbyOJCdWl/J/p67LZD8fwzAjGDKGacUwZTRjdMdJWkNYMoFlpbBIIaWeNaKtbJ1yC6SVU+E83QeBAigoQkUoTgQOQEEIJa2cE48waSGFTP8rM89tSXo2HQuJiWmls8bnDojLjOJKqZMyh0iZw4ynXgRBth2BihAOTLWftrFfsHv0h7TWaXy/bhXrat8KwL27V6Tblvl6jpJi0PVjnEMfy5vhXHbjt7EIZTeLYLDmxpvYdBCMdFvPi2Pruc1CsLi/TTaHFXt7KMSjcUzz4JW76W3vp7ymdE4x6gvFaPIZJJLn+j6SY5yn/50QqKxxrqRfnI6ruTm7v57UGR0Z54RXHo3X5zkoD2TTNNHjCU46+1gCwQC7Nrex9dkdhF59PPF4Ak9OmbhiCCGydUyFgPDwGKW1k94XEyPhMzERL6cqgpqWakzTZDzjNucscp+nCqyiKFTUlee9gAAk4gksS+L1eXA4HdQtrZ2xH8WYr7g3PakvaAzdwZ7Rm688DzY2NvvPmc3P8EDbMVhWEgRUel/FUVXfya6/fetmpGgGIJJKuz7vHoFrz3kd2gI8SnQrnCl/NophjqHLcQxrjJGhXlx+E0vEsaxYekAgMxBgynjajV6mkDKVnnXHQEodKU0sTJBmxmCfDpk22mXuEhPTimU+pZ9Zbk0HNrJ5YCObB77IhOE/sU1u1RW3X1BdPlnH/ZN/+0deeboJohgFyxYaW89nxtbz2WHr+eyxDXSbRUMsEsc6iAY6lrUo6uE+0HZsjshPSfwGeaPHmurlrOb1eeuT8SSdO3pweZ14/QfHOAfo7xigvLac8OA4fW0DLF3TQmVDOR07uhjsGuBlZx2HL+ibtn+5dVLj0QTNq5oIlYUAGAuPsXtLByuPWpbnJjcVIQRVDeVTMsk2zEmkirUfHhgDKQuqAegp/YAO8BiGwe6tbVQ3VhEsLR5rdygjpaRnTy8lFSX4A3bcnI3NYuCs5vX0Rv+KW6sh5Do+u9ywmDKzvfA4lBAOJVTwNqsN9VLqL8XldhXdb64Y1hgpawTDGkU3RtHlOKYVwbDG0a1xTBklZYZ5rnsLKWuUUrdFmVdmQtMy7xV5U/mZRVn9Uziy6lpgUpuSCWNip2n7da77IqyUBQJ+sumbtKyeXUm4uWLr+cJj67lNLraBbrNoKK9OJ3Dr7u4+KMevaak5KMfN5f49R2HJBLlGuUROiTtPG+2nNt2PRyt0jXd5XDS01uaNEudmyB/sHqKspnRBR1Ity8I0JXVLakDAxsc2s+U/21h10kqkhPLaMoYHR4mMRrM17sPDY5SE/CiKgp7U6dzRQ+PyOlweF3pCR1EEuq6jKAodWzvx+N1Zsc0t+zKVqQI7H+dd01RVsCw6HqO3vZemFU3zkuRwNiPNmqbRsrJ50Sen2VeEEGguB64pSYFsbGwOLjW+1xUs0xQod3oZSkWnZB9XWHPTjfzwdf/DmcuXHJj+zbOea0oJmpIxmqZ5HK256TvErVp2ZhLBPdl9Pnoyp3a5nHCUz9dzVfFzWuODTBjnX77nQX6xef3ka0BuyRYJWmbFue6LMJKZjOYSPnDEJ7lr6JcEyvzMJ7ae23o+H9h6PjcWbzaSwwzTNA92F15SxGNxdP3Au4HtHwaWlW+cg0BMDJ5LCVJyTPVPOHvJi0WN8wlyjXPTNOna2cVIfxjTNImOxxjoHlrQGumKolC/tAaH04HD4WDdK46kqqkCt9tJ65Et1C+tY6Crj9FwBNM0MQyD8MAo0fG054DD5aB5ZUP2PMpryvCX+ln/0Ea6d/VQVlVK65HpF71USqdtW+d+3e/+7kG6dnbv1zXxBbzUL6nLE3PTNOna0YVhzO333989SO+evln1Zz7E3LIsxsLje9/wIFBVV7Eowk5sbCaw9Xx6/vuR/0dI82Qduf3Cwa6Pf5Jqr5/3/e2PrL7xRv7bObdB+MWu5//YvI2lN34Tn+bIGudgMZ7cOmVLgZJbbUVKjqv7KWc1P4OmlHDqd3/K0hu/xS+2pI3zMxtb2PXxT6bj6jMtqEDr55/ms6+5Fitl5Rt9At5c/b55PbehcNzW8wy2nu8/tp7PHnsG/QCgJ3U6d/fQsKx22qQUNvOHlJLh3jAOt4Oquop5a9M0zXlNAvLC0KcYij2NV6vn+NrfARpCEUx9hgtFsCT4YcaTL7Km5gY08kfHezv6cHlclFaEpj1WTVMNTne6vmhDax3du3qIRxN5pU7mm9wXB6EIGlrriUfjJOJJKqrL8Xi9+AIeOrZ10L2nn7WvWI3XO1muZWoclqZpNK9uQnUI9KSeHTl3ODQCoUA2OU1kPIrL7cIyzIJYs+korQyhp/T9DgeY6j6nKAqaQ0NR5tbufPVntoyPRgj3j+ILeGeVNdfG5qXKYtXzL/3zAf66fTM+h4vHLv3AQe3L+o9+hEjKwLAMYsPpGeSHP/R+AE794U+48M7b8KDyx0vezorKmROtLnY9P/tnv2RnZIQfveFmhEhy7+6bOHvJi6QT1BXRc+HArVaSMAY4qeWPGPEGVn3jRlLaRHid5KNHn8Anzjgtu89Ht/q49Y77sGKSUAIM4Ll7N2FJq0Aj5itMcPeeQd73gZ8hLRAK/P7W/6WiIv3uYeu5rec2C4+QCzmNtshIPyzzT7e7u5u6uroFPa6UkuGBMOVVheXFbArp7OyEhCiojT4XZnKR2hf62vtJJlI0rZh+1nourO99P4Pxx4D0QLqqenCIILo1hGWl8twDG0vewaqKL07b1ujIGC6Xs2hs1Vh4nOHeERqX1+c9qOdyffb3NxIZizLQPUzT8jqi43GSsQQlpQE6tnfTvLIBS1o8fPfjhCqDrDpuJSXBmd3zkvEk8VicUHmoYN1EjFNKT2GmTJpWNiEAbR5c1BYaXddn9cK/UM+s2STpsSmk2P04ELryUsfW80mu+dcD/Grzc9n4byFh1ycuO8i9SjOdnp/8gx/Rl4rhEw7uf997qPJP/9xfrHq+/NvfQhEKP3jjj7AyX0UpQSgWLqUOwwpjyiTZkm8Ijqz8BrX+13L7/2fvvAOjKPM+/nlmazab3jtJ6CAWmmDBAvYuYlfA3qN4ljs9z1NfvfModrFjx94bFmyoKCKKSE8C6b1stu/M+8eWZLO76aHOh+PMzjzzzDOzZL7ze55f+eV3/v715yiBR67Cf486mhkZuSF6PivjEhqrm4LOLUkCjyfYQFcUhbyxOTz9x8KIY+7p78jh0+8L+qwosPyLW1Q97yGqnu+e7Ep6vke7uN95553ebNe+vzsLIcQuJeYdcdqdg+rq3DeCvy+5D8nbBjq+OjUnhcyCgYlp29jwH2p9xjl4bXGPbEPGwZFD/iAr9szAvsyYWV0a5wBxCbERE6uYY6NJTE8IPKhlWaauqmHQ4s89HpmyTWVB31d0jImE1Fg0Gg2x8WaSM7xZVHOGZaIz6DAYDew/bRwCqNhSgdPh7PIchihDWDEH7+9axpB0cgqyyS7MwuVwUbpx+4C4R3rcHsq3VA7K74vH42HbpjIa65oGvO+eooq5yq6Mqufh+aumjufWrQ5KzqYI2OeBh3biqDoSXs9/uPJythbdQJRWy4FPPcG4Bx/CHUHmdzU9v/2TzylYtICR8ck8esoSPB0kQQhQFAmHp4ojhvzGmOR70YgoNCKKkYn3cOu7dgoWLODW73zGuaLw+IknsbVoHjNHjw2r5+YEEyEIwYIV/27XIwXy983r0jjvKWec+TCdl/4FMHvuk6qe96RvVc9VBoA92kC/4447UBQl8FclGI/Hw7YtZTTVNe/soQQhSYKswsyAKFdsraRia+VOHZMQAq1Wi6W1DYfd0a++6q0rEGHET5ZdAIxO/jcz8tczI389Y1Lu6te5JEkiNj4m8Lm12YLT6ggyoO1We7/O0REhaF/9D2wTxCfGAd6Xs/KtlbRZbBiiDIHfS4FETEIsDpsTSSP1K8ZTCEFVaQ0NVY2YzFFk5WcE4sjqqxv7/Czwl8IZDDQaDTkFWV2GKfSHpoYWbG22QelbRWVHoOp5eF7+9TcUOfR+tCkuDnz0cS567S0+XrdxJ4zMS3d6vvKqK9hadAM6ScPwBxew34MPD/qY+qPn4x9+lJf+WsPLp83i/TkXICu2sHruJzPmFA5I/YHb3rucQ58t4ZvaUpC8MvnizDPYev08jioc2uU5H//1frT6DqvGAs648UTyRmYjhCBzeDqPrvkPT/42f0D0XJKkEB0HBUkSqp73AFXPVQaCXd9PRGXQ0Gg05A3P2aXi6MLRl5qUg4WlwYIkCVJzQrN+9hSTPg+LKzh5jAJE6QbGfT4Sdqudmu115I7wliWxWmxoNBLbNpUzZEQOemP/M2tKkkT20KzIDRTQG3UYo/TY7Q6qS6vJLMgkOtaE3qinuaYJRVH45ctfQRIcOH1i+/htDvQGXZerKYqiUFVaTfqQVCRJQlGUwEyy2+3G0tRKTLy5T4lYJI1EVmHv3JzsNjtN1U09yig8EPc/Eg6rHRSFqOjByzmgoqKy47nrmOm89NfvweXNFAUNAovLyfLyEr6qKIHPvNuNQkuKMZoJWVnMnXgAY9LTduh4I+n5qquvBGD/hx6hYNECErTGwLbBojd6XtFi4eCnF2OW9J3CB0TnSqiB4qif/rGJok8/xKFtnxDXSIKXZ85iYmYXOtkJvVHP+y0vcNkBf6N8YyWpucmcd/tM7j7bu1q+ZP1DWC02HDbHgOj50leu5LAj7wu20YXEM09dHHKhqp6HR9Vzlf6iGuh7Obu6cQ4D797WH/wlRHrCTxWnI8tupmS/G9i2ouwEbO5tmPWFWJybAQGKgk4Tw5Ssd7rsr78xRUaTkdxhWRgMehw2B1WlVeQMy2bIqFz0A5xV8513VmFpc3DeuVODttdsq0FWvLPXFVsrcdjcaLUadDotUSaIjffGq+UMy8bt9noUuFwutFotdeV1mGJMJKZFdi+VZRmn3QkKVJRUIXs82G12UrPTiUswkz00a4e6fkmShNgF/v2mZfd9QklFRWXXZtn5s5nx4rM+r2QFk9DxZ9F1QW1WFJfy0m+/s6aqkmqbhbc3r+PtLX8BXlfKKKEjJyaWg/OGcNPh09AO0mOrOz1ffc1VuGU44KGHKFi0gGSdiZVXXT4oY+mpns968VUumnIni08RzMhfF9i+rHhkh1Y+s1xREJLE5W9cgqx9D6H1rtTqtVpeOX0W+2d4JyhGLpyPS0hIwKai67sdg1av5em1C3n+ztd4/9FPaa5rYdUnvyNppIh6fuMD77K+tIaxBencd/WJPbwrXt5YejWzzn7EVx4sfBtVz3cOqp7vHahJ4tRkPrscu/934mZZ8dj2GC4B6eajqbJ8Rnr0ceyTugCAdXW3UW/7Fh2ZTM5+ucu4SpfDRXlxJdlDMwck82x9dSPm+Gi0Gg2VJdVkFWYEzt85IU+478Pj8SB75LDlMs4691FqaloRAjQaiQ/fn4dOK+F0ONHqtIEYUpfLK+adr9tutQdi8Bw2B+XFleQMy0KSpG7F2OVysW1TOSnpiWzfUklmfhrmmOiQDLKdqdpejbXVTv6o3J0a39oTwn0fsizTWNNEUnriThrV3suulFRmb2Jn6/mrq9dw1v777pBz9YQai4W5b7xFpjmGJ2ae2uPjXlvzB+/++RcbG+ppdttxK7LPvVlBowjMWgND4xM5ZtgwLjpwQq/H1Z/vpMZi4cinn6FNcXsNRQTnj9mXO486sk/99YWJi+7mnpNfbHdjF4H/A/BlbIcvivdBRsbtlrnqQ38WfYVonZ5XzpjF2NT2yYDhixbhRm5P6odga9EN9IRlL37Nfy94GEkjIXtkxhw8kttfvyFEz8/8x/MUV9QH5g2GZifzyt0X9FnP/b9rn31yk6rnA4iq57sWu5KeqyvoKnsV9dUNmMxRg+oatKx4H+8PHYShyvIZ480/ousQRzY6+e4e96nVa4lLjEV2y33+rfXOhAtkWcba0kZ0rAmhFUgdxllTVkd9dQMjDxjWpbDVVzRgtzvJLgzOzDv34qeoqW5BwTs/IcseTjntAT54t4jq7bUYTUZSMr1ldfxi7nK60Gg1SJJ3JaBkfRmFY/K8CWeiDCSmJ6LVaqkpryMtO6XLa9TpdKRkJhMbb2Z4dFS3Qu7xeKgqrsIjwO10B+7R7obL6cJmseF2uwe0FKCKikowT/ywknt//BYh4O/LP+fXK64i3hg+SeeOJNVs5oPZF/T6uFn77sOsffcJ2f7gdz/wxeYtlLY2sbquklX1Fdzz4zdejy8kEg0mRienMGvffTh6xLCBuIQQUs1m0qNj2Wyp9y5Oo/D8n6uRZYW7jpk+qHr+zMpV3L1iOYtPecln5HbUBYVhpsUkGSfw8e8buOmzT2nTzgnTi6DN5Qwyzg997AnciowiOiT1Q2HYooXdrqR/9vxy/jfnUaC9nNq2P7eH6Pn8l76itKKhPcRaga1l9Tz82recdnBhSL890XM/qp4PPqqeq4BqoO9QdteHxe5KY10TxihDkHjLHu8M9+AS3inF5WlAK3ctSJEQQmBOiKZk/TbSclKDEr91R0NNI7Y2G0IRpA9Jo6WxlYS0eIy+mqKZhe0xgXFJMdRV1+JyuiPGdc1b9C4Vdc0cdsBQTtRKxCbHYo6JRpZlKiqbQ67eYXfxy4r1jJ8yIiD+/vIpMUkxNFY1Ex0TRVJGIoYoAwWjc7G22XE3W7A1WzHGRrH8/R/AI6Mgk57dtVui362uKzGXZRmPR/a+VEgS2UPSdnp26P5gMBrIKszcbcevorI7cM/ny3l67a8+YxEQsP9jD7PpuhsHzSV8Z3HtwVO49uApQdsqWiw8tuJHfti+jSqrpT2+/WPa49ujopmQmcXFkyYwKq1veufH4nSzxVIfvFEIXvxrDd+UlPDGSacMip4f8viTlNtbuOOgI0B5MkwLwZur1vD4n7/i0dHhTdq7XK10UsGCRQsCK+TVjlbf/k71y3swrmdveyXEa8TSZGXt9xs4drY3h01mYQZVH6xE7tROVhSq6lvC9puak4Isy1SVVner51argy+X/cbh0/dV9XyQUPVcBVQDfYfhsDuoLW8gMz9tl4qp3t0JZA0N8yBz2p1IkhRkoKdkJu+wsXUmLb2gy/0122tRZJm0CHFxOp2OIcNzwwpVc2Mr5lhTWJcxQ5QBoRG4HB4kScJutWPwGefh2g7fd1jEWdtplz2M1eGNCdtSVo/dauOKWYeiKArNja1EGbU4HK6gYySNYL+JQwP/7p12J3qjHp1RjzHKSFZhVGDcTQ0ttNS1EJsUiyRJ6I16HHYnkgL54/JwWl24XC4UWUFv6FkSFlmWqSyuIiM/PTCGrWtL0Bt15AzL3qWSEPYHVcxVVAaXl9f+HmJ8Aezz4CJSo8zE6PXEGowkm0ykx8SQEx9HYWIC47KyMOt3/9etzFgzdx0zPWT7iuJSXvj1N/6oqabaGhzfLmQFk0ZPTkwsh+blc+Phh0aczOhKzztTbbMw+bXnyTfF88Wlc/t+UZ0YunABOiGxtcibCG5ZieKtWxc8Uh7Z6AGd/5NCutnMqzPP5LDnng7Tq8Kbq9Zx0/KPUTRewzE4qR9IHU4RSc8jTZrrDMH/tk48ZCzf/rYVuUN2fyEEJ08bF/G6JUnCYDKgN+i71HMUuPs/n/LAo1/z3jtFqp4PEqqeq+z+irGboNPrMETpVeN8gKneVovH7SGzID3kgTaYiTQ21t9Hvf1HMs0nkRfnfTkoblrMlqaHMGmGYXVvDHKJG0L3pWPiU+Nwu9vLkSiKgizLQSIdzjj3eDw017UgSYKYOHPI/ugYEyYlCiEEdqsdp9WJy+4mOtaETqcLuW+RjPOr738zYJz7x/fKl39wwMgc8hPNZOVn8NwzF3P6rEfweNrXAxbcf1Ygts3tdrNt83ZSslJJyUgKOUdMXDRCeGu7dyQtKxlFUZAkibqqRtwOF5n5wd+5xyN7sxdrw8e1+V/+XC4XQitIy0kNOr6nL4culztQ5kVFRWXvwaDVYnW7QrbLQI2tjUpbK7KiIPsfkp3ilb0ooHjjjgUgIdAKCa2QMGp1RGm1xOj1xBmMJJlMZMbEkpMQS2FyMmPT03dJQ39qfh5T8/NCtr+25g+WrlrNNmsbm1saWP9HHU/88Qv++PYYnYHCuESOHTGcuZPGh+i5Wa8lWuixyI52PVVAEgInMnoktrU1UbBoPsNjkvnkogv7NP5vtk/F4W5he72R8Sl/Y+l5Z3ZIACfovOD9/p/7+oaikBUby9KZZ5IVG8uLP6wO278C3PjtxwiNQKCgQ4cTN4oi468T73dv70rP7/3kNuaMvC7g3i4Q5I7OYsSEoTidzoCeTzugkLsuP447Fn+MrHiN2v9ccyITR+dQUVERMj6HzYEhykBSWiJNDS1Ymizh9VxRAt9Da6uNk09dxPy7TlT1XEVlEFCTxKnJfHY5evOdeDwyiiyj3YEP2NVVc6mzrQhoVZr5CJpsvyMrbvZLfwSjMoZ3nv2EpOn/QW/QkG59gsZtVsZNHY3JbOqy746Z2mu21+J0OLsuWwY01DYR75uhDoeiKFQUVyPLHtZ8uY7csdkkpMTi8biJjokmJatrrwL/93HC9U9Q3WAJ2icJwZUzp3LylJHEJ8UFtt9w4yu0ttpITo6huLiWh/43K+C94HK6g2LxwZsErysXtoaqRlqaWskd7i0R1zmRHUBlSTWyRyarsPsZdP99rqusR8G7AmFpakWRBcmZiUSZwsc0ul1uSjaUklOYHdELYbBRn1m7FrtSUpm9iZ2l5/kL/9fBWFQwCC3ri4q6Pa6sqYn1NXVsrW9ge3MLNW0WGqw2WhwO2lxObB43To8bt6LgVjwowuuW3G4Ydm3oa4SEBoFO0mDQaIjS6Igx6Ik3mkg2RZFujiEvMYFhKUmMTU/FuINiW8N9Jwu/XsHy4q2UtDTR5nEii/YM6OHi28c88CA2xTsxMjImmY8uupAai4VTX3iZSker9z74VqXHxKXw/pyex+J/UTIaWVE6ZCtvr4+tKHqufn02bgM8duITCCH415cnUGlJJy82jldnnUW62cx1L7/P+1WbUCQF4YtXV9pnshFCQisEXx4/K6Dn+z34MBbZhYTMxqL2sm3d6XnJuu1css8N3okKjcRF/zuXKceND6vnpVWNfP3rFt7+6nfGDcvgzkuPDfo+WppaaWlsxWFzkjssG51Oi8vloq3FGqTnRTe8xG9rtoUYu4qisOzjv6l63g9Urdi12JX0XDXQ1V+OXY5d+TtZXXUZtdavQ8qOxBv3Z2LGKwBY26wsffBtRk8ayagJw4mNi+lRiTRFUdi+qRxzQjSJKQnIsowsy10mCXE5XJRu2k7u8Gz0+mAXMbfLjcaXuKW2rJYLCq/xxWlpue6JSzji7ENCsq5WllYRkxiLOaZ9IsH/fdzzzDLe/eYPOv4KaSSJb568Fn0XAZhnnPkwhxw8nGuvOSpou/+eOGwOSjeWM2RkTkQXPkVRaGu1Yo6NDruv4+92b1zD2lqtgNczwdpqw+1yk5AS1+V31dZqJTqm64mWwaS7349wLzt9pamhhfjE2O4b7sXsSoK+N7Gz9LzGYuHgp57EoyhESVrWXnftoJ6vM6WNTayvqaWkoZGy5haqLK002uy0OOxYXS6sHhcuj4xL9uBB7pOhH1jR12gxarXE6vXEGU2kRJtIjzGTG+819PfLzOw29r6n30lFi4VHvvuBn8q3U2W1YJPd7Z7lvvj25CgTkzOzmdspvv3adz7gk5JNuL3pSQHYPzGDNy84p8tzLiveB0VxhSkjJnH5mxejaOmweu41uYcmJvLyaWeQYjZz0oPPs9ZdB5K3VJ3ersFu8ATdYp0QbLju+gHV8xnSGYGs9gD7HjGGez+5LaKer9lazd8efI8VT18X9H001begeGTMCeZuV5FD6qLjXVBf/sUtgKrnfUXV812LXUnPVb8OFRV8SU6Kq0gf0p4j4KDHn6TC1oJZa+H+419DI/zuaCFHY3fXBj6Zok1Mn3UYmUPSA8LQk1qdQggS0uIxmb2zvZIkdftg1hl05I/KC+lflmXKtlQQEx+DwWTgvCFXI8teNzWX08X8OY+BDEfPPjxwjKWljca61oh1Sf8xdwZtdifLftqA5EvA8tEDlweM80hJEF9fejWHT7+PuXMOxWw2BtpWldSg0WlIz00lb3hWQMwVRaF4XQnmhFhSM5NQFAW3y0N1aTWaggwaq5pIyUmmZnst6UPSqN5WTVSMiYTk+G7vcWdam1oxRBmIjjGhT+q+FrylxYI5NjSMYCBFtD80N7bQXNcako23LzjtTuqrGoiOMakugCoqPlLNZjb2oG71YJGXEE9eQny/+yltbGJdZQ3FjY2UN7dQY7XQ0MHQt3m8xn6z006FtQ+GPgKtpEFSFEw6A1FaHTF6HfFRJpJNJjJjY8hLiKcwKZF9M7PIjDVzz3EzQsb57dZSXl7tjW+vsbbx5uZ1vLnlL0BBQhAltOTExDF3n/GcOmY0F771BjXONlY3VFGwaD4Tk7NZet6ZFC5aiKzITElfyZwpfwAysiwIfUwqyLKC4pdU4TXMRyan8NqssxAyzFj0DNUGKwivM4XiBFkPdqPH14PCcUOHcd8hRwy4nq/+Zq13WB20ds2Xf3LzUXex4Ks7A9s66vlB++ZjMup49v2VHD0+O9AmPimysdZZzycekMcvv5a2f+0+D8I33ljJ6adPVPV8EFD1fO9G/ZZUVPCKiCLLgVnbgx5/kgp7C2adhfnHdahRrsgoQoS8msTohwZ9zins2i09EuFiyLsjnPEvSRLZQzORPTKPXv9cyLuUoih8/sLXQQa6RqshJTMJgzGyq9dxU0fx1S+bmH3iJM4/dgImo3eW3+1yU7WtNmISxCsvP5Jzzn+c994uArwvF2m5KUgab9uO7mUuh4vWVgupOak4nS6qt9VgtdgYMiIHvVGPkAi4mAohiEmMRaOVqC6tjphgLxJR5iiiosKXSOpYv9U/rqptNeQO1aM3tq9u1FU2YGuzk92hlvzOwhwbjRDdvwj2BL1RT97wbLXMi4rKHshAGfpb6hrYWFPHloYGKlpbqLG00Wi302y3YXO7sTgdXkPfZafcKiM3+daiw8bnQ1hDX0joJA1xegNRWj1xBgN2j4dGm5U2j4tNzaHx7RICN/BzXTkFixagoDAlYyWzJ/0WSPomCZn2dWg/AreHgGG+b3oGr86cxVfrtnLwfY/RGuMBoy9xnAyKBOh94xaCy8ZP5OaDD+nz/exOz+8/9+HQyXAB61ZsCO6nk56fe8wEXvrklyADXVEUmmqbSUiNDzo2nJ7ff//Z3PbPN/n+h83+o0lOiuGRx79k5sxJqp4PAqqe792o35SKCl4BzOoQ633SmNdodRiZOmRzJyEUgQg1738VDJpE9kt7HABLaxsGgz6QFG2gsVpsAIFZ+a7QarU0NDQSlxITKjQKxKfFBW2KMhmJMkWu5+t2u3n101/JT4vnohMnodVqkWWZ2rI6YpNj0WgilzU5Y+ZEln2+ltv++SZ3//t07/h8s7gdXdmcDicut5vR40ficXnYvrkMU0wUUbIBncGbACcj3xuTllWYidvlJibOjMvpCnF37Qmdk9f4cTlclG2pIGdoVuBlQ2fQkTciB50u+LtNTIvH7XLvdDEH78udvyxNV/Qk5AIiJwxUUVFRAShMTqQwOTHi/p66h26srWdjbR0lDY1UtLZQ3WqhyW6n2WGnzeXE7vHQ5nbR7HJQbm1GpoOhLwTtxr7AI8DTIUv6A8c+gdMtYY6Sw+i5N17cr+dCSFz90cVMzs7h8RnHsvCLHzngnoexx8oQkAvhOy/4XepvOXgal06Y0NPbBnSv55fscwP1FY0kZsTz1NqFNDQ0IntkJCGFZIHX6oOf5531fM6Jk3jynR/4ZX0FJ2Vm4na7cdicNNU3EZNoRqvVMu+Bd9myrZZ9h2dy+dEHhGiaX7vXrNnGvJtepa6+lehoAyeesoj33ynyDkXV8wFD1fO9G/XbUtkt6PwAcjld2O0OYsK4J/UPN8uKx7J/FkDHpDHB6KQYFBRM2mwOzHoH8ApTS10LOqM+bEbTgcDS7E3S1hMDHSAxNYE5d57Nqk//YOPKzb4XEYEhxsDNz18T8TiPx4MQIjBz21DdSFNDC79vruD8I/YNPOhlWcFuc2ApriQhOT5I1GxtNlqbLSSkJKDTaXni8TnMOOa//PJLCRMmDAm0qy6tQZEVMgrSaaxtQXa7Sc9LQ6fTkZadGohTc9gdSBpNwD3L0tJG1bZqr8jqdaQPSe/2fvhLwnSHzqAjZ3g2Bl/pF3+W285iDt7Jne5KxPQlnm6wcNqdlBVXkDM0W3V1U1FR2eGE0/MMg4Hho0f0q993167j5d9+Z0NDHW1uJ1Gilf+d8gooYNB5Iui5guzxhq4piuCaDy9lSFQsm0vrmPjQk3iigbjQc3Uut3fvd1+Tbojm8VU/89HsniWp60rPT0mcTVtTGwCtjRaON50TWKEWEigeAvnsZGTeaVwSOPaBpd/w3tdrMei0PHrLTHJS4xBCMH3ScJ75aDUHjymkqaEFSQgkSYNWq+WE65+kutGbcK+ivpXy6mae+ufZgT476vm+++YyelQmJaV1WCx2FAUeX/wll192hKrnOxhVz/dc1G9TZZfHYXNQvb2arMKsgKi3NFpw2OyYY6IH9CH5eck+AB2EXAkYtR05PO/nkGOFEGQMCS331hlFUXzJ2rqf8exMYlpCl7OgbpebDb9sZtTk4Xg8noAAPfTDPRylmYU5IZq80dks+vbuiH00N7awec1WUjKTyRnm9SpISI2n2eXG7vIwbXROwF1Mq9WQkpWE3qgPGpfD5qBsSzkGgwFXnCsgHPf93yxu+fvrLPvkb4G2qTkpgfj4tOzgjPJ+MVcUhbryejQGA+nZSYF9OYVZYUU2/HW1Ur29moLRQ7qdSW5paqW5toXsoZlYLVYqS6rIG5mHTqdFURTqqxqJjo0iKrpnEyWVxVUoCj3KSDvY6I16ElMTVDFXUVHZ4QyEnn+wbgNvr/2TdXU1NDrtOBVPu5u0AlGSlhxzPLfOWExgtTuCnivAFR9cTJLRRILGCM5GSt3NoAHCzv8r3hVsRSAjB+257ouPAMhfOJ9DM4ew5MzTu7yOSHr+4FVPBYxzP067C1OMV28+cS3lBPO5OG0uJJ3EMufrAFx4/dP81dCCrLR7Cpx56xL+eepk9hmVy52XHsOk2QuRTEay46ORZYVtG8u5/bEPqW60BJVQXVtczdLPVnPmUfuH1fMHF53HkUf9B41GIsqoZ+nrK7n8siNUPd/BqHq+56J+oyq7PHqjHnN8bNCMe1KERGY94fEvf+LlH9ZgNur5aN5s/qq/ndq2b9ne7CbV3NmtyusA17H0yoz89RH77snLRW1ZHXarnexhWUiSFDG5WmecTjfbNm4jb1hOxBImHo+MxdKGtc1GVUkVucO8cV4v3f0mccmxvFb1ZMR4ptbmNowmPbHxMQzbrxBjlCEwruOLnqTJYiPKoCVveLubmMPmoLKkipxh2UFPE0OUgSGjhoRklR1/wBAOnFzIJZc9w5OLvfXjJY0UWBmIhBCCzIL2mDC3241Wq+1VaZS4hBiiTMYeuXmZzFHeGEghiI6JJnd4bkAAXU4XTXUt1FbVUji6IGKm2o6k56X1yWVvsOhYQicSg1EfVlEUmuqaSUiJH9B+VVRUdg96o+cfr9vIm3/+yV91tdTbrTgJNsSNQoPHIyM0EkKBzddf761fLhQUWSJ0tTxYzxXg5d/u4YFDR3HbW59TorfhCesl7W0r4Y07l4XcnmG+Q5vA+QR8W1nK1W9/wMOnnhD22rrSc0tTu7HsrT7nnVSwttrQ6rUIIXi74Tm0Om1Az6/6xwusq2/yuu2L9trtsqKw8LPf+OiYCQghGJmbzHFFT6DXaThwnzzunHsUdR//Cp30SVZkSqsbgch6ftHcabz22k80t9gwGnUcc/x8PvlwnqrnOxhVz/dMVANdZZdHCEFipyQmfeX93/7iv2u+R4nyPlz/s+wE9i/cghAKKeYOihh0fg37pNxPk30NI5L+3u8xpGQn4/F4s4R6PB4qtlSQnp/R7cNTr9eSmJbYZX1Rg1HPuKmjMZqMZAxJD7h/ffTk5xx53iFhjXNLaxtupzdhSnpuGvFJccTGxwT2n3zrq4FXD5fLzd3Pf8ldlx3rPV+UgdwRuTTXteBxuUnKTESj8Yp4pOu5687TOOHkhbz8ygrOOXtqN3erHb+YO+1OSjdtJ39kXiCOvTv8LpU9EV/wxmrFdIj96nic3qCnYExuwEPB7fbQUNVIaqfVgo5098Kyq+FyeV8e03PTB7QEjdVio6XRQmxiTI9i5lRUVPYswun55xs38/ofa/mzpoa6cIa4pCXNZOaAjEzOO2Bfxmd7PbumLHqMao0NBRkEfLJ1JBqfWgnhX93uZEkLiboGSE4wcNcrV1HbVso3m0oh4uPb+17gTVanwWTQkWgwUmxp7rSC3qlGOAofl26MeB+60vODTp3EV698H3TP/Eb69PMPRVGUIDdsi93OT9trQxLH+XG5PYH267fVofi2ffHTRirrWtlaXh8yBiEEx08dFVhACKfn55x1IO+99ysOhxu73Vun/vgTF/Dh+zdEvO6O/YOq5zsCVc93T1QDXWVQcTpdtLVYSUjufoZvsClpauLa5R8FkrtMyNjMvgWbA2XTAsliFCXwcgAwNftjTNo80qKPH5BxCCEC7u2SJBEVHdVjd/fEbmYqXS43ZVsq0GgFyZmpAFhbrNSW1XP+nWeEtFcUhbbGNlpbrSSkxIfMxE677OGO6wIgBJ+s+Ivx+WmcctQBAOh0WmISonG53FQVV6HRagKJXyLxwH0zufial3ploPvRG/WkZqf2WMwb65vZ9Otm9pu2T0ht2b7gj1/zT3Z43G5cDmePPSE609fjBhOdTkt2QVavVjR6QnSMCaPJoIq5ispuSH/1/KtNxSz9fQ1ra2qod9hwKO4gQ9wgNKRFmdk/I4Pzxu/PhOzIyeVuf+8LqrAGPv9n+rNIdNRun9dbkIDBMz9N5aeKMd5tJguE2Cvt0eXT8obw3KmR3dTzF8332e++k3R8jAeVpAtPJD3f+vs2JI2E7GmfAPBrxPl3nEHN9hqiE8yYY7wu45YWO5JoX3TviBAwYVSu93rC6Pm6rVUcsX8Bo4Zm8fhb36PI3nHfc9kxxMkeqkqqutTztNRYqqubA/fdanNy5jmPsvTlK7u+eB+qng8+qp7vnqgGusqg4rA5sFmsxCfFBj20HDaHt8TGDnyQnfTiC0Gf02MbQ9oIBFptHB6PFUnScmjeV2iJH7QxCSFIzoo8U9tTPG5v/VWdTosp2ghaiaho78P4oaufJmtYBvowmeW95c5SiVTMxOZwhr5jKAqriqs4pcMmg9GAwWjA2EHouqJwVA4nH78vp818kDdfv6ZX/w5cThf2FitxCTHUVzWQmJbQ5fGx8WbiU2J7HNvW9bndlG4sI3dYFkaTEY/bQ832WjLyu889EI6WZgut9S1k5u/8ki6d6YmYO+3OQDbenqKKuYrK7klP9fzbraW8uuZ3fq+uosZqwSXkEEM8NSqacWnpnL3vPkzNz+v1WF7euiboc7TBHZIrBkSgLKpA8K+PT6CiLT3Cm6/XMNdIEuftM45/HX5kYM+IhQvwCJBQOCKpkC8qi/HofIaYL769c9I4hGBL0bxeXxfA4WcfzKv3vh2yXQhBanYydVWNQXqenhoPsgJSx9h674r7jMkjueeK44DIeq6P0jP7hImMLUxn9foyjj9kDJnJsbjd7m71/K8NlUELGgA1NS1YrW5Mpu5NDFXPdwyqnu9+qAa6yqASE2f21XJs/4X3eDxUbqsmNiF2wFzXe0Qnnfls074cP/y3To0EuTFnUZhw/Y4aFQCWViutDa1kRKj7Kctyl0JZs60WRVHILMxAo9US10HAVrz7M5f974JuM5OGIy0hlsr65qDvT0Hwj4uOCmpnt9pxudwh33VXXHHFEaz8tYRTTnuA1lY7kiTx5BNzyR8SOmHRsYapoihUba8lISOB1uY2YhLMgWurrahDo9WQmNoe06jRaBi+37DAZ3+8WziaG1uJS4gJuw9Ap9eSPzI34JYoJIHB2PcZZGOUHpsxsiB2973vTDweD1XbqjHHmUnsR04IFRWV3YPOer6iuJSXVq9hdXkFjR47jg7J2lAUDEJDot7IAVnZnLXvOA4p6L0hHplgg3j+10dzyxGfdEoAp+DxCK569xKvIS0Bus69ePvRaTRcOWEyRVOmBO0vXLAQWfK28QCf1W8N1D2P0ur49qJLSIzyJhcrXLQQGRmB4MNjT4s48u6e6waDlmsemctDVz2D7JERkkCRFUYfPBKA5PTQ5+13T17DQZc8BBqB8NWRP2i/goBxDt3r+YRROUwY5U0C29ps6ZGe63QaXC5P0DZFUTj+pP9xy00ncPRRY0OOUfV810PV810P1UBXGXQ6P6w0Gg3ZhZk7rCbjn+XVXPPCe1gNriCXM6es56ZPz2HBsUu9SWUUQUH8JRQmFA3IeTuKUHfo9Vq0EWqnK4pCZUk1+qjI5dvS89sN+/QORv6a5Wtx2Jwcd8n0Xoy8nfcXXswhlzyA3enxuewJ3pk/F2On787aZsdhs9Nc00R6fkaPXPYNRgMJcSYqK5pACDyyzNyLn+LJxXMYWth+DS6Hi+2bK8gd5nXR0uq0JKbGIUkacn2J9vxEmaPQdBEf5p0x30bu0OyQ8ixOu5OasmpMJmOXcf4d90mSRGpOSsS2tZX1SFqJpJTwgmdttdHa2EpyWmLIS0FPvvediUajIaswU51BV1HZw/lxWxmvrl7D6spKau1tOBRPe5I0nyGebDAxNjWNWePGcfiw/MCxPa2D3lP+LK/m5FdeQtGKDqneoNiSy8ur9+PcA9YEPM4Vj8RV71/izcgeRLtx778Mt1vmwR9+4KEVPyApAllRULSApHQ6UkEDbA6zOr6lyDux73Q4aW6whB1/T/X8+EuOYuj+hdw8499odVpa6ls59++nRrwvc0YWccIJ+/NBaytnHjqWVcXVGDq5jQ+Gnv/7X6dx0y1LkWV/Cvj2d777/vsBDoeTk048INBe1XNVz1V6xh5toN95553861//2tnDUAnDYBjn+972IC6PB50kseae67Bb7Zy9+DXWOupxG2VOGD6CY4YO5+qP30fIAlkovDTzMsak3sL2lpeI1Y8hwThpQMbicrgo21xJzrDMINeiSJk09QY9KRmJQdtqK+oASMlMJj41rssV8EgztkvueI19p43uyyUEmHvc/ix+/1cK0hJY9LdTSU0MTXMrSRKGKCMuxYEk9WwF/bc121i3PtQ97rLLn+OLZTcHPusMOoaMzEWn1wbOpdXrqC6tCSlz4i/jEgmdXktyZnLY2ql6o578Ud2XbOkNXlGuQiBC4g1lWaalwUJcYlxYURRCYE6MxhQ9cEldBhpVzFV2FKqe957xDz1Km8fFiIQk3r3wvG7bryor58Vf1/BrZQV1dit22R1kiOvRkGw0MSY1lTP2Gcv04UMHbeyFixYG4nm3FF2P3Wpn/4cX49B7vG+uQUnTvS7mX2+bxJaaPG6Z/j4VTWbu/e7soEn5jm7o8UYjJ+ePwuiWWL6lmNK2ZhxaGUULHtHeTukUw+4/Iwy+no+cOJSsoRls+a0YIQQTj94/bPsX734Dh9VBztHj4I3vuebC6Vx018u43J6QtkvvPIMH3/qVbeX1A6Ln4w8Ywn/+70z+8c83cDjdneWcBYs+DTLQVT1X9VylZ+zRBvodd9zBHXfcEfi8q8WE7GnszOQYhbcvRI6TQQaaYPStC3EbZOQEidyMOD47fzZa38zs8cPn8diqn7li/MTA8XmxcwZ0PDqDjrwR2UGzsx6Ph7ItFcQlxgS5bEXC1CHbZrQ5/EPd5XJ1GYu1bsUGFn53V5fn8dcsjeR6teyXrRw4No+F15+CECLsS4miKEiSRFoEF/328bYf+/sf28O2CZfoxi/mflJzUjpXhekx8Z1eSDq6nUUSc0urFa1WwhjVM4+IwDgzk4lPjA07gy9JEnHJMRFfQtxuN/WVjSipStgyKm6Xu8eJdVRUdndUPe8dBQvnB4zr3xuqmPnCK7xx/tkArKmo5PlVv7GqooJamwV7pxVxPRqSjCZGp6Qwc5+xHD1iWPiTDBL5i+Z7fxBeo9qfjE3o279zf9S3fx1d8ggUCcod6VzzwSWBZLC+i/Id48uk5oFmq4Pn//qt/aQhJbDbjwmKL1cUdEKzw/Q8NikGWVbIKIysrc/f8RrPbXyQu17/FgCtBFX1rWwtb+Cq/77BIzfNDGp/39UnBN7XBkLPJ0wYQk5OIlu21IQ2CvN7quq5qucq3aP+a1AJwWqxYoogIJGwtLbRUttC+pC0HR5jc9wjzyEn+mPfFGwpMkIGoRX8d8ZRnD56TMgxHY3z/uKNoarGaDKSkBwf2N75Ia7RaMjOz0Cr7/rXTpZlnA5nt+UwXC432zZVkpmXQlR0yNsFbz/0EUazkVGTh3fZT8WWCoQkkVUY3g1xa0Uj1559GB6PByEE2zeXkZiaECQy5hhTl25k/vGWrC8lp9CbkOWC8w7i2ee+DW6kKGRlJYbvoAMDNdNbU1GPy+YIqskajtaGFuqqmsgZmtGjmqMdCTe77ycuIWzRXcD7cpE1JD3sfXW53GzftJ303HRMZu93rygKddVNpISJT1RRUdl7GP/QI8F1uoXg1/pKChctaDc1FQW90JCgN3Jgciqnjh3DCaNHADtXz4cuWkj78nj78rX/+SwUgSK8KdC81wEIr3EeQHh3KJ02CRmQfaa3CLeo4D0mNcrEP6ccwvHjxjJm0YPYFDcKMkIIJLT8VVQEsEP0vHxLFQCnXntc2OOuGH8TU06aQGZhOsUVDWgkiYvueJmmVhsAK9dt49DLHuKbxdcEHTfQev7U4rkcduS9wffTd38bGiwkJpoj9qXquarnKqHsmtkKVHYaba1tVG6rxeVy9eo4Y5QBXZRupyTA+MtVF1xaRQJFgsy26LDG+UAjhCAq2hgoedIVnTNkNje2hrSpr26krrwepZspZZ1OS3pOcljjHODdhz7mkNMP7LIPt8tNZmEmGfnpALQ0BY9nxe8lCCEYPyyL4r9KkD0K2fmZQaLW3Ghh3a/rKSsuR5ZlyjaX4/GEutbpdFoy8tKD4vK/+vyW4EZC8MKSS7sc80CSnJ5AUmYisixjabVGbJeRl07u8EyiY3ese5qkkdi+qRy32x20XafTkpWfGRBz8Ip8a0NLr393VVRU9ixaXI6QbYoik6SLYuH0Y9hadANbr5/H+qIifrjycp6edVrAOIedq+ceZNqXvkNriyt+9/POTXwr5orvj3+TxinQNANurxGvaPEuTQm/0e9v71+PF+ybkM5RI7z348+ia0nSR6EVAhNaNl9fFBjPjtDz2m1e1/hTrwk10JcvXcH29eXc+fZN3vNbbMiKzNptHVayFbA53Nz80PuBTS6Ha1D0fPkXtwZfpxDo9RrOOPORLq99oFD1XGVPQjXQVYKIjokmd1hmr0tYaLVaUjL6Xy6st8x66eUIxT/htpMO32HjiE+K73bGuTMul5v6qnqcdmfQ9pSMpG5ngP2Em5W/eNwNnJJ4IeWbq7ju8UsiHmu1WCnduB2Px+sS5nK5qa0IHs/SZaspyExAZ9CRkpWGTq8NmUGOSzAzdEwhJrNvgqKLF5Fw7l9ffX4L5549hTtuP5lZMycx6+xHu7vsAUOSvG5uzfUtNFY14LCFvtj60eq01JXX77Cx+c9pio0O66pniDJgtdgCn/V6HUNG5qDT6XC53CHtVVRU9g5GJCSH6KIQgi8vuYSTx3afk2Rn6fmoRfO70A8luIxahGbC9wfZa7HLevDE0clfVAn8yYiJYWR8ctDWzyu2cu7rb3LXZ19RsGgB9S4bkiKxtui6iGPvr56fm38FF48JrR7jL6F6dt5lIfv+O/thbn25CPDqudsjI7e7SHS4XIW65rbAx8HU8+Vf3EpGRvtKstPpAQEXXfJ0xH4GClXPVfYkVANdJYSBqC85kFz8zFsc/b9nWfLdqsC2rzcUc8g9i/lzfV1Q7U/Am1VWq+Xofbp27R4IZI+M7JH7dKxOpyV3WGj2UYgcDx6J6u21yLLMSbHnU/LHNtqarKDAhcOviXiMyWwiKz8DnU6Lw+ZAp9OSNzw7yGVv9YYyjppYCEB8YuRyJdGxJhJT4pEkiexh2b12Wbv4omkcNm0UV1x+BEaDlv/c/1GvjvfjcriwWiLPnEciMTWBtJxUtm8ox261h22j1WoGdUXJ6XBiaW0L2iaECEk25MdutVNRUhkk3pIk4Xa52bZxO7Y2W9jjVFRU9mw+mHMBBdEJPk9vrzP4N3MvxdyNO/aOYPiihQxdtJDRCxcGtn29oZjR9yzC4V3WDj5A8RvmAtx488xASHw5gVVw3+cOj+rQ+uggyRAt65CtMuub6oLsfQX4ua6cZ9f9GjDancLDsIULIl5XX/W8eG0p08VMakrqqNvewHQxk7/WFCPLMkfrzgysSNdta+CE2PZEf7edeB8F4/I46GRvuN5xf3u2Y948OtZml4Tg8AnBeQQGU89ffuFKhg1NC1y7LCtsLa5l0+bqXvWj6rmq53szqoGuEpGuZh8HE5fDFRClCf96lB82lbK9ron/fvgNN77yEUff/wzXvvA+URkGrEkuJmVmtQuwr8TH+msiz3QPJJUl1VSWVAfNfLrdbiwtbV0c1U5fMoy63W4aahpQFAVZlpFlGbfTxeX734i11dY+Uy+gtqSeu8+J/FJhNBlpbbZQUVKFy+WiobqJyuIqFEVhc1k9DpebGRMLej3G/vD8c5ey7PO1bNxY1avjPB4PJetL2bBqE05Hu1uYPwmeH6fDicsZ6jamN+rJHZkdcNmz24OF3WA0kJab2qsx9YbmhlbqKxuQZZnyLZXdTvwYTUbyRuSGJPjR+lwPI4U+qKio7Pl8celcbphwEEdkFbDu6utI0UWOnR1MOup5waIFuFHwIGMXMiPmL2LE/y1kzsdvY4/2Pu+8pnhwfLlk9/2spdNba0fj3BejLgtvwfLA7nbDXQCSrCBkUITAKrmp9ljDrhL7I+A7bnELhU83bIp4rb3Rc7fTzUlxF3DpuBu9mu2bgxBCcM1+f+OM9IvwuD1Beu60OLly0k0Ur93Gzx+v5uGf7gVg3r9fwWJ1hExDCG8lNW44/3DOO2Z8j8c2EDzxuDfxrtJBfy+9/NkeH6/quRdVz/deVANdJSxut5uyrRVhY6oGE4/HQ2VJNQ01TRw//zmaHTZsyPiTr370+wakGA2ONBmhheKieSw94yxumDKVZJOJ/MQEtoapTzpYZBakk5qTTEVJRWCGs6Whlaba5m5jzvqKtc2OtdVOZUkVFVsqkCSJzIIM6ioaQ9zoFEVh06riLvuLiTOTPTQLnU5HQmo8SZmJCCFY8sFKhkSY7R1sbv3bsVx93Qu9Okaj0ZA/ZghjpoxG7ws3kGWZ7ZvLaapvDrRrrGqkviK8a5t/9cNisfPjJyuxW8LPvg8G8cmxuBxOrBYbkiQieXAGEa7EDxAUy9aZnTXxpqKismO5+uADeXrWaWhhp+v5sEULg+LDFcClkXGZOj/p2pPB+f/IRgizCE7AqnX7jXJfsjiNzygXwX0rgCwJFEkErcALEfoqHD5yTvDA9z/05NK75cSY87G1hl8VFULQWt8WVs/LN1Uz77A7mPt/3oz89yx8l2+2VHonFDq/cwjB/OtO5swj9xuQMfeGeTe+HGaSA06f9VCPjlf1vB1Vz/dOdr6/k8ouiVarJWdYNnr9jnV312g0ZBZmkpSWwAZRj8dX5cMmyxhqwZEEmxz1/HvCwZx2wLjAcVdPPpCrJ3edEG0wEEKg0+vIG5EXeLgmpiaQkBI/KGWAZFmmubaFtJxktDotsi/gTAhB4b55rP5ibfB5BRx25tSwfTkdTrQ6LZIkBcau02kDP/+4toSzjz4g7LGR8Hg8/c7IarVYKciOZ+KEfC69/NnATHxP6LyCIUkSiWkJQQLXXekYALPZSO7oIRjNvSvD0h90Oh05Q7MxRBm6rf/aE2or6tDqdSQktycActqdbNtYQd6IrC6z0aqoqOw57Ap6Hm79UFHkUONYxrt0FCSfnfOxKx1+BkWjhKnmJRCKz2iVhC9ju68vBSSnhKZNQRISToOCYqJ9JV14JwYURQmpo/7R3At6fgMi8OJdr3e5oqooCrooHU6rM0TP41NikT0yZ950Ck6nzNurtwSuXQiBd8jepXOzycAh+xf2eZz90fPqmtawRmlDQxsrf97KpB545ql63o6q53sf6gr6HoilxTIg/exoMfej1Uoc/NSTeKQOj3cJHKnejKz/nHA4Z0+d2OsaloNJ55nPgTLOO7tzSZKEwaALGNZabbt43v/5vxh7yKj2FwtgxpxpzPn32SH9KopCzfZa6qsaw57XanfS1Gpj7omTezzWhtomtm0KzvjqdLp67UlgMpvIHZbJPXfNpKamhZde7n7FompbDU6HM+y+mDhzn14ykntQ27Yz4bLd9gZDlKFfx3dEH6XHYAz+HdYb9aqYq6jsRuwJej500Xxk5BBX8nAr1+Fd2Dvoqez/LALe68Fy275PAV+OGgWtLBFl1eCtPyeQdQquRHAkeI1zgVe3NUJQXDSPrUU3IAnJn3IO8Hrs9Qe/nhtjooJ1sZNEznv2SqJjohAdJwqA0YeMoGJzFS9s8WZFf/HNb0NS8HQ01k29TFzbkf7q+dSpw8K+B0mS4OZbX+vyWFXPQ1H1fO9DNdD3MGxtNqrL6nfr0gwLvvyZcksLoT5tCjOyhnDBQfsPyur0jqY7oWuoaaR8a2Wgnb80R2pOSsTkJsdddCSSVmLIPrlccOcsbnr66rDthBBkFmSQkpkUdv9jb35PWlLkJDLhSEiOIyM3NSCedqudiuIq6qvDTwJ0hb+Pd966jqee+br7AxQFtztYTKvKasPGpvUES0sbtRX1QeVQLK1tXWZTdbvdbNtUjsu58zOuKopCXEIsJnNoln9VzFVUdg/2BD2/6MWPAyHhCNEhbDyc/nVI8uY9wPsfGfCI9s8d7Xbh+0ER3jrnircPCdA6QdMCWoeEBwWrye2toS4UFMnrbh+t13Pt5ClsLZrH1qJ5bO5ghG8pup6C6ETiJX23xnlv9Hxm0QkkZSW0m/4djOr7Pr+dY2cfQVNNC5JGIr0wFUmSOPL8Q2goa+T4y2YE+px79rSQ8yqKglZ4jXqdtu/ebP3V8ysvP4Lzzp0StO3D927wrvAL0bWru6rnQah6vneiGuh7GFHRUX0qk7ajuWLJO4y6ZQGjbl3IMfd7E4c8/PkP7Hvbg6zeXh0+3kwI7j/3pEEfW+dZU38itoFElmXKt1Z2WaszLimWpHRvPLjH46FsSyV1lV2XBXn9f+9x6BlTeOr3BZx/+xldtu0qg+nyVVs4fPzQri+iE0KI9oQsVjvbN1aQnpNCcnrkOPbmxpZu+7147jROOe2BLtuk56Vh6pRERXF7cPZA0BVFCUnqZ46N9ma097nYKYpCc20LjbWRX060Wi0x8Wa0uv65+PeUzrVU/bS2tAVN7KioqOye7C56PnTRQvIXzid/4XwKF3mzs5+/+DWG/XsB63VNwY07GKNAp9XjdiNcIdiDLhBXHnB/V4L/Cm/iNzzevzLg0it4YsFtUFA04Z+Hf1x5NUVTpoTdB/D5JbP59drI1VCgb3p+77LbyBqRjjHagCnWq125o7MZf8Q4vnnD6zU2cuJQDjp5IslZiRTuM4S2ZitFj10a1G/MSz95JyWU9nC3C06ajE6rwd2P95aB0PO5sw/l+qJjAp9vvOlVHn/kQhRFoaGhjQ8+/C1sP6qet6Pq+d6LaqDvgezqYn7Fknf4+q+tPvctKG1oYuzfF7H0p99ZdO4JpBfEhE6kKzA8KRlzH7Ke94amhma2b64MMtIrtlZSsbVyQM9jt9oxRhswRkWe/dRoNIFYK41GQ+aQdJK6EEeAkj+3c/VDF/V7fFX1LVx26kF9Pt5oMpI7Iisg8OFwOlxUb68JqRvbmXPPmUJqaiy3/fPNXo0hPS+N6DAzzp1pqm/mr9WbaW0OdiXtGP8mhCAzP53UzJQu+0r2vYANNvVVjZRvqQg7cRRlMmDyuUeqqKjs3uzqej500UI8eAK2tYxMwYIFfG8rwx3rMxoRIXrudTUnuFxaIOt6mNJoIfW9fSnkZF/mdn9fWkBDICM6tO/qzEA9Ifuq58+se4D3W18kLS/FO1afEfb4vCUAHD33cJpqWjCajTx1y0v878t/BfqztliZIZ3BixsfZMbkEUF+/iUVDcSYDMiegTHq+qPnJ52wHyaT9778tb6C4cPTGT40DSFg/sJPejwGVc9VPd/bUA10lR3O8r+2BomJwDsDfd5R47l02bs02O0UF83jnHG+JHBCkBcfz6fnXzjoY4uNjyEpPT4oximzIIPMgowBO4fD5qCypIrYhNhelWXRG3RdPqSf+NvzJGclEpto7tf4nn1/JXFmI2ZT5JcNRVG6nNF1u93dxl/pDToKRg/pkYvWE4/PYeXPW1nxw+Zu2/oJd6/cbnfIuBOS48nOT+82ri1cf72d1e5vTJufxLR4YpJiw/an1WpJ7EO8nYqKikpv8SDT2dRVpFAjO8hY9pcV87dXfGXSAu7q/h10sMe92yVZIOT2TPCK5Mvc3i2DY6IPhJ5XFdegM2gDieNqt3s95Y67eDot9a3Ubq9j4jH7UTAuD4DSv8o4Of5CPrS+RGZhOmu3euuLCyHQSBIbt9WSHB+NrPRsBX2w9XzKgUN9dce9ru2LH5+DJEkIITjxlEU9GqOq5yp7G6qBrrLDsaco2FJkbEle8ZAlGXsqPLbqJ54/dSZPzzgagHuOnEFx0TyKr7uB5XP6vyrcEyRJIibOHLKtK3fwnlBdWk1libeutyHKQO6I3EDpkN6iKErYVedlL3zDsRcd0a9xAnzy43oOHDukyzblWyqp2Bq+TnlTQzPFf5V2uzIOvasb+/AD5/PPf73FgoWfcNa5j3Lb7b1bUXe53BT/tY2tfxSHCGFGblqXpUzC4XF7KNtU1mOR9ng8bNtUTkvTwJQ6srXYaGnYsWWTVFRUVLrDb/p0Nng6RJF32i4QbhFYQffa4kogXhx/eTYhkCWvUe433JUQdzs/3n72SU3ji9lz+L/DjvZvDjR/5KRT+nR9A63n9jYHMUkxKAqs/9lbZz2zMB2Ayq3VOG0u7v7gVgDWLF/LJWNvYJn8esAYbmhuC/Sl02mobbSQl56IR+6ZwTnYen7JRdNwuz1oNRINDW2sXbudD969weuObrEz45j/Mvfip3o0Vj+qnqvs6agGusoOJX/RfK/7mQRowZYi40gGs0fLb5dfxZScnJ09xH4RaQY2MSOR5A4J2SLVu+yMLMuUbS4Pcn1qbmhh+9aKYDf8LVU017Zwwb/O7OPI2ympqOfCEyZ22SZjSBoZQ0LLm7Q0tfLH92uBgU9eMnx4OslJZj748Deqq5pZ8eMmTj39wR4fr9NpvTPVCTH9mnCRZZmyTeXIioLeaOhxXxqNhoTUuAEpuSKEIGNIGklpO6dOvYqKyt5NQ5vNq+ed8a+G03GVMiSrW4fm3nrlilYO1C339tD+B7dAckth88eJQJ9eI96k0yJQkJDQKArvnnMu+fEJnLXfGIqL5iEJgeTL1H5sQdelvgZLz9989MPAtuaGFhRFIWdkJrJH5j8XPAzAITO9ZWPLNlYyeuowAJYvXcHNR93NZ57gLOiOQLIzgd3hwuFyMyo/rccrwoOt52lpccTFRSErYDTqmHfTUoxGLdHRegTgdnkoKa1j+tH/6XGfqp6r7OmoBrrKgGJ3u7nuhQ946Yc1QdvnvfIhBf9bENJeSGDyaPj9b9fuqCEOCOGy6sqyTPmWyrCZRnV6Hbo+lrnp7IoVnxRH3vDsIBeux+ctYej++RH78JdVCyfY/m13Pf0ZJ93wFDqthmE5XcdmabQaJE3o4yM2PoYDDj+AoWO7r3HaEaej++Qvjzz6OdU1zd53NF+916amNq6+7oUenycpNZHUnJR+xXMJIRCSQKORSMtN7XFfiqJgabRSV9HQ53N3pL9eHSoqKipdsXTtn4xYuJDR8xcGbR/790VMeOKxkPbeUmXhnksdn5GKt063P9Zc+A1sf3k0AW68f/1ypQVF21m7fInhUMiIieHyCZMoLpqH1eX2Jn1HxoVC4cLgsQsUFAWGdphc2FF6XrK+hNnDruPxq55jupjJy/95i40/bwUgqzAdRVGo2ORdyZ5955n867T70Wglhk8YytsPfcT/5j7CJ85Xw+q50un/H3ztW2wON3UtkRPX+dkRen7oISPR6zVEmww4nW7OOvdR2tocQXruccvMOvuRHp9H1XOVPZnBzbilsldRUtfCsfOfBhSW/bWJD39bzwF5mSz5fhUFKYlEm3RYnMFuUooCed0kPttR2K32LpOg+PG6NpWRmJpAQnJ8YLskSej0WqQ+1OiMhCRJZBVmhhjWnV3JVn32O7e+GHmSw+Px4LQ78XjkoNrp2zdup666iX+89SO1Da34aqDw6/rtHDCyb94M0b10LXO73ZRuLCU1O424hMil3Vb+vNW/tNKOEGzb1nVm+0i4XC6va2F872L2hRBkFWb2+nxCCFKzk9D2cLWlt9jabDgdLuISY0P2VZRUojcauszAq6KiouLnyMeeZ6u91hsarhEMW7QQU70Wh+zCmRr+GCWkJnnQ3g7/D/5Vb//Pwp8jzp/ozZ80TvHHpitBz37hFkg2iHbqkNpkvm8tZtgvq4KzvyNQhMyoBQv564brKVi0wHcOBQ9QsGgBm665bofp+aVjbgoYgALBs7e+Qt7YLIQQSBoNiqwgyzJxybHUltez4t2fMSdEU/xHKZ8++xUftL0EBOv556u2Bu5m+1WDIis4XW5OuG4xb/1nDpmp8fSFgdLza6+ewfsfrMZqdZKUFE11dUtYPW9osIT02RNUPVfZ01CnbFQGhCa7nePmP+2bA/fGh/1WWs4LK1az5NIzeLfoAgwaTWjtUwH3zThqp4y5Iw6bg22byiOu5DY3tscGaTQacgqygsTcT1puKhrfTPRAJRDxeDxUbKkMqQvqZ/nSFQgBB582OWIfWq2W7GFZQcY5QEJGIne9+xM1/tgn38vDZfe+TllV9yXQBgKtVsuQ4XldGucAY0Znhb79KQppqaEC1hPaWmwB98K+0ttj9Qb9oM2UO+xO7FZ7yHaXy019VQNKDxMGqaio7N3c/t4XFDtqO5QdV3DjoTXJhbOjc1XnGPMQ67w925u/aXCLDmXVBASs9CCP+PYNGrfAaNEQ3aRDb5cQGoHF7Kbc0MYfcp0vYV2nESgKbklh6IL5nYx3UJAZ89CDO0TPT4w9PzQzPVD6ZzmGKD2SRqLetxp7wIxxXHvg37ngX7OwtdrZ+MtW3mlcEjimo55/8dNfYUvK+78Kj6xw2s3P0WLpPoZ8IIik51qtREpKLImJ0aSkxAUP0o+iYO7lhIAfVc9V9jRUA11lQLjxpQ9DRcL38P2qvJjCBxYwPDmFmWPGevf5Gr937vmMS0vfgSMNjyHKQP6ovLCJXpx2JzVl1bic7XUqu4vHcjlcbNtUjtvtDvuQ7Qku32SBJElo9VokKfzSxKv/eZuJx+7fp3OYY6KpqG8NfW1QFO5d8lmXx/b2hcVqiexqp+tBgp2b/nY8++2T3f5SqICkkXhy8dxejcNPfFIsWfkZfXaPUxSFqtIqGmqb+nT8QBOfFEdadujSlk6nZfi+Q4lPjtsJo1JRUdndWLr19zDGSuhzUgjJt7ithE3+1nG1PODKrgiQhW+BXAlqGAhf92dzD2ov8GjBZvbQFu/GYZZxmxRkA94Vd//bbMikgYQHkMPppwJuRd4heq7RipAJAv8Y0oakoNFIuJzugB7pjHq2b6jA7XJz59t/i9jvX8XV3neDju7unU6jKApvfPlrl+PbEXo+/cjRuN0ymzZWkpxkDiot511NF9hsfZtIUPVcZU9DNdBVBoT42GgcCQo2c/usnkcjY0ly8eraP/jovAt4+fQzuP+oY3j0+BM5bvhI/rj6OvZJieArtxPQ6cO7KumNevJHDYm4PxxavZa4xFhcDhdlWypwholj64qWplaKN2zD7fYKdlpuasSZ2i2/lXDFgr6XoIuPiQp9GZMEE8fkRTzG7XZ7PQ7CZHZVFIWGmqagbVaLlcpttbhc7pD2vWHhwvOYMmUYCQlmRo3ORKfT8MWX6/rUl8vpwhPBK6EnCCGITojBHNf/JDGDjcvlpnRjWdhYSxUVFZUgXGFWw4M0QunwV/jizkWHbV5E+xI8kuzrQwCS0iEhnD9Tu39O31fyK9BE8bXv2GenzO0dhtM+adDeVgh/afRO6/dCYlxKVre3oz96vuzF5Xz11nf8d/kdoTt9lzDpuAPQaL36rjfq+OqV7xgyJpstvxV7XanzIueEaWhpQ6/T+OK42z0WOiKEYEwXpWJ3lJ5fevFhtLTYMMdEMW5cDlqthJAk9HptoG690+nmtjt6V6EFVD1X2fNQY9BV+kWL3c65T7zKWrkeDIAebAYZIQN6wfVTpnDN5ClBxxw7bDjHDhu+Q8anKEq/Eoj46U05MPA+7BN9MV+5w7PR9zKhTGx8DFFRxojnXfHeSu48bT6KoiBJgtTcrpO6dcafFV6SJD558HImXrggcK8UBSaPyWN2F5nctVotcUkxYVce3E43LY0txCaaA+M3mU3kDsvqcbbbrvi/u2cGfi4trWPOxU9x5BGje91PzfZaNFoN6Xne7LUul7vX44v1leRz2Bzd1ontKW6Xe8Dj2syx0WQNSUen61uiQhUVlT2ff73zBc//tAYlreOqJmGCyyOvl3eMLA/8JEAWnWLDCbfq7s/+3uFoJdggF75VdSVoOEqgT42QfFoG8Tojq666MtBs/4ceo9ljDWjdYZlDeGbWaV3dEt94+qbnx+jPChiN8amxfK68wQzpjMB9vffLf3Lrkf/mm2//YGNOIpw1CW1lM1l/VdHa0MZTaxcyQzqDjPzQDOt+XG4Zo14KjFOjkYgxGWhqtQW2XXLqFCaPjTzhviP1PCsrAVOUntW/lRITY0QSgoKCVJqa2og2GVm9ppTvv99ES4ud2NjucwL5UfVcZU9DXUFX6ZZ15TUc+O/HOPDfj/FXZW1g+wVPvM6EOx/lD7lDki4BaBWEDrYW3RBinO9IbFYbFcVVQSXKdgZ6Q9/Kk0RyE1vx3kruOOV+ZFlGURQ8Hpm5o6/rVd8VWyqoLG6ve/r+/Iu9M8hGAwfuk8sjN53ebR+JKQkRx50zNCtkcmEgjPPO5OUlc/yx+3HeBYt7fWxWYWZAzJ0OFyV/leCwOYLauHqQXd5utbNtUwUWXy3a/tDWamXbpu399jQIR1R032L7VFRU9hymLHiCwkULKVy0kIMXPgHA+6vXM/rWhTy/voNxDu2r1kLqtPqsdPrrbyw6md2dfxYdPvkMbdm/TwGPd6VbCVoSb+9HUgQ6SeOtj97hD8B5Y8ex6rIr2Xzd9WwpmseWonlBxjnA6muuYNbwfYgSOm6fOq1Hxnlneqrnx+jODFrRbaxu5vTUOV5POAHL5NdZ9dFq3HFRbByWjhKlR9FpcOUkUFGYwkM//h81ZXU9OpfH470HkhAkxphY9vAVTJ88nHFDM7ni9KlcdFLk/DR+dpSen3j8flTXtNDSYueUk8fTanHw8y9bmTZtFH9tqGCfsdkAnD6r5yVUQdVzlT2PPdpAv/POO70lFIQYkFXUvZHvNpVyxsMv0WKz02KzM/PBFzn38aWMvnUhWo3g8KlDEeFi1SLES+9IDEYDxmhjkGt4Q03DgCVvGwwURaGypJKGmsag7R0nGf59enDtWSEE29dXsPLTrmPMOpJRkEFGfnvs/7MfrCQrNY7li6/i4b/N7OLInqEZwMy33THvhmNwuT08/Ojn3bZ1u9001jWHbNcbdGTmZwbNmjvtTratLwsR+c4YTUbSc5KpKKnC6eyfEEfHmMjKzxyUyQwVld0ZVc/7z9j7FlIttSL7/lSIVgruWcB1n3+ILU0GI6EBzAGCV8ADseEh6+CKt48gL/Rg93hvonaBXkhoJP8KudcP3YP3xVQBMqJiyYyOIcag97pwS/5EXp1qqQMvrfmDxKjujZb7jjuKdUXXMWfShG7b9pXNa0vweIIXBoQQtNRZAlp+4+H/4oPFy2ibPrqTN4DANTSFi6b/g5rSurDlz/x89tNGANyy953GYNBSkO2tz37vlSfw9O1nMefE7o3z7hhIPT9z1mRaW+2MGZXJjz9twWTSM26fHF5/YyUul4c5sw9Bq9Xgdstcd/1LXfal6rnKnswebaDfcccdKIoS+KvSey595q1O0gqrSyv45c5reOaimcwoLAyte6ooRO0CrjeSJJGU1j4rLMsy1lY71ra+JXnZEQghMHeKg6qtqKdia2Xg37Ash/+3vO2vsh6fR6PRBE1cfLt6K4ePH9bHUe98lr58JW++9Qt1dV2XaLFbHViaWsM+D6JjTEGf9UY92cMzu3R18wt4TEIM+SNzvbF0/WSgXOv6SkN14y6TKEdFxY+q5/2nzSiH6LkSrYBOBFbIw+m5F58V6e7wUfL2IilgcGnQeHyGuxDBC+aKAJlAHTUFcKPgRPbmXXf7ap97QLhB8VmslbZWKptbaWt2IbUBTnDJgY6ChxkuAdtOIj07OdwQgyaWfnU6qDplf5So0HclBaioaKauvL5L9+gPv/szEJYG3neDcUO9JcN25d+RgoIUaussrFtXzhWXHs6GjVXotBoSEky89PIPLPvEmxTv9z+2U1IauYyqqufdo+r57ssebaCr9A+7O/LsoUmv5Z9ffcHfPvvEO2sdyMSpICSJtVdes4NG2XMkSSKrIIOY2MFLAjIQrkwxceYgN7qk9ARSspMD4l6wX16IIAkhmFl0Up/PWdtk4YRxeRFLuUViV3oJmHf9MVw494ku25hjo8kuzOrxClxX4upwOFi/agP1Pm+HnmSiHwgGO2RDo9Og0+04DwgVFZXB541168JGjod9EnbQ8/bYc9+SuNbnTi2D5PauossC7Do3Ho0cSP7WfgwI4U30pggFoSjo3RJam4RkBzy+PrUKaEDxgMYl0Hu8zu6yVkGOUoiK0zEqI4UrJk8ipMKUAnlRfSu32RV91XNzvJn9Z4wL0ceMQq8LtnV8Hq2Fyb5JDBFqyztcfLzuYeorGtEbI+vKxm016DuUTnW63Ew7oNBXmrVil9Rzt1umtLSeyqomAO67/0OMRh3TjxxDXZ2FP/7wLjScdaZ35f+iS56K2Jeq592j6vnui2qgq0Tk4c9+wI2Cu3Nt0SiJcY89zFfFxfx86RX8ctkVHDokH5NOR4rZzNbrbtg5A+4Bg+ka6XK5KdmwvcvyI31BkiQMRq+w2K127vnwVnJGZAb2CyH4zPNan/t/5v2fiI+JIibGFLGUWzga65qp2FoxKKJeV1EfIlyyLHcpZiccvx+FhWnceNOrXfY9UP8GnDYXMYnRJKbED0h/PcHlclG+qXJQs7fGJcYSE991TXoVFZXdi/+89hXhzfFI5dNE4L/tbuXty+Ky5K3U4n+LFIBe0hKvNRKj1QetaCsIsAu0LgkFgVPrwRMlo4vSYJQ0aGXJ5y6vgEHBo1UYmZHCtZOnYtJquefI6fxx1TV8cN75/G3qwRTfMA9kfxw7DI1K5KsrLx7Q+9VfPf/vZ7cz4Zj9Anoz995zaKxqQtJKOEdlBCXdCwoUcLj4+dWbAWisasJgimxUNlvsGPTa9uMVGJHnrfiiM+h3ST0/+9xHgyYOZFnB45Z5+91VHHrISFxuD99/v4nLLjmcuDgTsqxwyWXPROxb1fOuUfV890U10Pdi3LJMOHvnoc9/YP/bH+LJ9atwpSq40sCWIqMo4EhS8CQo3HTQIXw792KSTV43oiWnns6fV13Lyksu38FX0XNkWaa1uWsX6P6g02nJzEvDZDZ137iPuN0e3C4XMQlmxk0bzd+ev7pfxjnApz9uYPKYPFJzUiKWcguHOc5EbHJcrwWyuxgwj8eDrc0eUjKlsriKii2VXR774MJz+XNdOZ9/8WevxtQXYuLNDBmet0PjYbVaLSazqddVBVRUVPZsPti4kY0l1SHbp9z1GKNvXUh9rKPd+FLoItY8FO8zLjQxnCRLiFbQWAGPwCl7aHI7aLU7kTydksoZFaLNeuKNBm9yOBRcQsZsNjJpSA5FB03hv4cfjQKYm7VsXlvLcx/9zHBPEn//fBmba4MTpm0pup4Lh+3LVxfOocTWSOGC+cxY/GzPb1g39FfPzx92Jb9+6q0nbzAZcNmc2Cz2Lst4CVnhnEmjAp+balqIMkfOZO5ye2httQWiBxRg4rn3e0uz7aJ63tgUOuFhtTkx6LWMGOHNi/P4k18B8M6b1wKweUsNq38r7dW4eouq5yq7Guq/ir2U+z74mhdXrEYBpgzN5am5p7H4q5944quVRBsMmPKMNFmaCczrSmBPlzl++AgePu6EnTn0PtNc30xrYxvm2OgBfwjbrXaMJmNI3FNvj+8Oc2w05thoNvy8hcd/u5/8sbl9Oh9AfU0jiSnxlJTX86+Lj+718TqdDl1c79zAbG02tm3azpBRQzBEyIar0WjIHpoZ8h2lD0kP274zix+bw+y5TzL9yDG9Gltf2NHJqoQQJGUlqEmyVFRUAgxduBCPz9NNEhJbiq7nkLsfp9ptxWMGJQYUZDoUE0f0ZH3Gf0iHx41e0eAQHvSShAsPxArMBgPROj1Wl4smuw20oJM0OGVPh2MFLQ47GpdA4wCNXaBTBLLWTVldIy3brKTERpNljMWZ7sGyzcYNxx7M6pIKyrc3c9RLz5PQqGdoahJHjC7ghOEFzBk2gmnPPxsY4xZbI4c9/gzLL5/br/vZXz0/Z8jl1JbWB67dYXXwzsOf+HLMmJC2NyLnJAb2++u+S3YXv63fHuinua4FU2zXie8UqVN+fa2GQ4+7k28+ClN3vQt2lJ6bTAZafSXg2gcNF180jccWf8kF501lyQvfB3Y98dhsLr3iOeb97VW+XHZzr8bXW1Q9V9mVUFfQ90LufvcrXvj+V2Rfsp0Vm7axzz8W8fz3q7n95CP55h+XUmFpIZzr27VTpu74AfcSp8MZiCPqSEJKAlmFGYGHYU9KbvTsfC5KN27vdiY5Eg6bg22bynHanbQ2W3A5ux7Xq/95G3NCdL+Mc7fbTVNdEx99+yd6nYZRXdRZ7Q81FfXY7Q4srd5Z86joKOJTEqivrO/SlS6cYGk0EpouMtr6yc1J5Phj9+1T6TUVFRWV3YmhixbiEZ6AkSojU7BwAWXRbbjj/SuroZnPO2dW92dX1/hKnil448YRoBECk06HEAKH8KCVJJyyx7cQr9DicFBjbaPV6Qis5Do9HtLNXtfa8/bdn2QlilSDGYNJyy3HTSMtLYaUTDPTJhRSkJ+EIVZHub0VxSpT52jDHQX3fLqcDzdsoMXmROMQNMU52NBQy8Nf/8SRj7/AYR+81umKFErtjXy0dmOf72d/9byyuDLIOPfTUt+KEIKoWBOxX29AW9XsDfEHJFnhjoP3QbLYqWhuX2FubbAQm2gOe553v/nD+0PnfDSAuwc62RcGQs+XPHtJkOu9JAk8sswxR49Do5GIMhmQJMHlVz4PwLBh6RQWpqIoCuddqGq6yt6DaqDvhby28vdOSUkUPLLC97ddzinjR3d5bGrU4LlvDxQOuxNnBHH1lwtprGtm+5Zy3F0kwuspeoOOgtFD+pyt0xBlYMioPHQGHa2NrVhauo55++DxZRx21kF9OpcfrVbLkBG5vP31HxSmJwzIfeiMoii47U7qKutpqmkKCHh8chzmePOgzhr7S6+dOvNBjpzxH2Yc/V/Ky0MnbbrDP+bKkiraehGL6Ha5Q8rsqKioqAw0no4r436E0v587dJP0mtOS77jFZT2lfhACwWPImN1uQMGpUeWgyLSFQU8HhnZoyDJAkn2xoZXtVhAhhfXrKZOsVJjb8PqcnPPN1+z3d1KibOFtzf/xfLKElY1V7LR0UCl1AYI3LEKrgRwJwic8QpuvYwiCVpi3LTFu3EmgSLCGIWKwr+Xf9m3m0n/9XzLuvJAWff2IfkrsMhEx0YhhCDmi7+QrA5QFEb+WIJGp0XbYqetQ86ftmYrMUnh44c//WF9+JKDssLIQUiEO1B6nhBv4ovPbubAyYUcOLmQLz67mcKCVO7+v/eYO/tQXnjxe6YcOJQNGysC7vBPLZ6LRiNRXt7I4dPv4/Dp9/HyKz/16RpA1XOV3QPVQFcJIMveB9h/v/sW6CT5ikJeXDzxxu7dsHc2MXFm0nMjrwh7PB7amixkFWYOWOyPTt+/jJ96vRYhBNFx0chdZF51u91Ul9ZyzUMX9et84J2s2LCtljOPGY/N6sDpcPa6j65qygshyMhPJzs/k8z89ICAGwx6YndA0pLUlFiaGtuQFQW3R+a8CxdT2kXJls7IskzF1kpcTheSRoNW2/NMqNXbaqneVtOXYauoqKj0G+EQASOxvYiaD3/SN18GcY8/pVvHjOK+n/3PbcX3R8jezO2SAmfnj+OGAw5CEgKNCx48/Dgenn48jx99Ik8dewrPHn8qqS1eQ/e2gw8j3xnLjLh8smNjKUxM4Lxx+yHZFMZnZlKQmEhytAmTTotGEr4RKQgBZoOe9BgzI1OS0UiCMampFE2ZgkaI0Fh6Ifjx6v7lwumPnh98/ITQKit4DWlJEjhtLl9pNAXhW0n+35f/RKuV0DVacWvbX8utrXbiU8Jnp99S3kDg2/KdT8gK+wkNDzx22S6v5/fecwb33nMGAJdefBgrftjEKScfgABysxMRQnDZ5e05BTweOei7fvLpr3h2yXc9Pp+q5yq7G2oM+l7IvGMP4b8ffh0QYkVROH7fkRTX1TLrzdfQaDR8f9GlPPfbap5c9TMIQbrZzPI5/TcKdxRdz+YKFFlB10V90Z2Fx+2hsaGZpPTEsPsfuOwJsoZlDMi5/iqpxuWWOWbqKKq2VeM06klKC3/esGP1eCjfUok5wRwx86n/e+hNspqB4Pfft7P2z7KgTLkAF13yNJ9/dlOP+pAkCa1eh6TRkJaT0qvzZxakq3FlKioqg47GI+GR5A41xxUQEorBv7LesY65v+yZ5DWA/Qa8z2D0G5Z+13WDVsuwxESOHz6C44ePICc2DoDyxhZOe/lllm76gxRrFBcdsD9Lt/7Bdcs/4uoDp9Bks1JhaaW2zYomS4tkdXL3iuVgFBQ3tyB8cwflllYSk6L5bXslR48eRqY5htz4eAoTElmyZjW/VVQiV7pZecdVQddc+MAC5h99LNdOnkLBwgWBcQshmHfAlEG6071EhP4sJAmH1RGQJcWni6m5qWh0GzHWt2HpYDja2+zEp8WF7b7FYkf2eTQgvBMw919wBIdO32+30/NJkwowGHS88ebPzL7gYJ57/juiTXosbXaef+F7Nm+p8g8g6Lglz3/LnAsP7tE5VD1X2d3Y9SwUlUEnJimKYaNT2bitDo0VjhxTSKvZxfSXn2fO6HH886gZAPz9kEP5+yGH7uTRDjwajUTO8OydPYyw6PQ6TCaDd3Y9jCB8+9ZPzLn77G77iXR8R1746BfyMrwJSjLyepaArSMajYakjERM5q6T2OwMfl1dEna7HFJAt2t6K+R+draYtzS17hAvBRUVlZ2LViMjkALlUIVoN546ljrrHHPufUL5jHZFQS9pGJuSytHDh3PcsOG8u/4vPty4gY319az7/jsW//IzSSYTsQYjrQ4Hih7wCKq0Vp7cvCrQ1wM/riBar2dIXDyp0WbyTCZGZmby0E8/4Wp1E+/QM21kAfefeSyjH36Amw85hC9+3kxNcQsPX9WegHZKTg6FDywgBi1v/fInp01oT/r5wTnnc+yLS9hy3Q1svf4GxixYhAuFS/ebwFWH7iIGehhkWcZpdyHLvu9CEig+rdDqNIhWOwC/rNzIhEnDcdpdJGcmhtVzt8cTNP2SlRrPtBn7A+yWen78seN47fWVvPbqVTz7/HdkZyVgsdh57vlvMUWFT0DX2WDvDlXPVXYnVBf3vYwHf/qRm5Z9wh8NVThjZKYcOIRPGrZQ1tJMcdG8gHE+GFgttu4b7eXExJnJyMsIKwhrv1+PzWLn5KuO6bIPp8NJxdaqLmuGA6z8s5Rjpozqsk13RMeYdrp4hWP2hYeEblQUkhIHPjZvV8NqsVJf1TSotVVVVFR2PiMWLcKJwI3sc2Pv6I4eGaNWS2FiElNzchmblEas1ohL9rC6qpL7vvmGQ595kv+t+I6/6mrxKAp6jQa728225mZWV1ZQ3NSIhODE4SPJT0jgiIJCfpx7KcckDCWqWsJmd7GtsZlnTjmVmyZM4vIJk1hyymnIUQopMdF8+Nt6ANZdfR03LfuUohMOpqq5lYWfBLssnzxyFFKKloeWrQjaPiolhaIDpzB+8aMA/HlDERtvuJ4bDw/z3N8JpOQmhU2apsgKTruzfZ/UHkOu0Wm9290ePv7sNwDcTjfxabFd6rlfffcZ2n/Pup2p55dfdgR19a2UltZx/nkHUVbeSHlFExMnFJA3JCX0fioKu96bx8Cj6vnei2qg70W8uvYPHvxxBR5ZRla8iV6WbdnMiSNG8OG5FwzquW1tNipKKnG5BiYZmaIoVBRX7ZGJOyIJ5JJ/LmWfg7s3qLU6LVq9tks3NLvTTbPFzpwTJ/V5nIPJQGTY/+rzW4I3CMHrS6/pd7+DTXcTK91hMpvIHZaJTte/vAgqKiq7LiMXzcfVHj0eiBGnk2kuhEArSegkCcmnLXaPh23NTfxZW02z205+cgLTCwtJMEWh12k4Jnsok01ZZFmiMVQJtJUK6a0mjogZwp0TD+eWyQeRZYjii62bKW5sZHnxVs5481UuPHI8v951DYZaAQ6ZgkULmPXqe3y3sYQJWVmMTkklc2g8SWYTo29dyHPf/cqaK67m6Bee49WzT+apb36huLYhMPYFRx9Li9tBjb2NX0vLg67rmslTGJuaxszXXh3cG90HXild7NXxDl+FRqvBGG2gpcHSvlESAcNTq9OAoqB1y6wr9rp0e9we0vJSQvT8jGPuDKye+08xaUze4F5UP+ipnu+3bx6LHvyMM8+YhKIoREXp2WdsNhs3VvK//5wdbKQLgUYjcfRx/+OXX0oCm3/8aTP/m//xAF9B31H1XKWvqC7uexHfbduGJ8ysbrPN3qt+PG5vSRd/RvSeEBUdRd6I3AGN+1bkHT+D2hPX8cHij2//4o53bkSW5S6Nb0mSIrpyOWwODFEGFr+1gtSE8OVbdjYOm4Pt68vIHZWD3hjBta2HfPX5LTz86Ofk5Sax9s9yLpjzBM8/e+kAjbT3yLJMW6uVmLjw997lclG2pYLsgix0+r7/rvTmd1NFRWX3w43kq20eiiQERq2OOKOBpCgTQ+IT2Dc9nSk5OYxKSQ1amems58+u/pV/f/0V5++7H69eehYAq0sr+fzPTawqKeeRz3+k1e5Ap9GQEWdmWmYeVoObbypKOefN15CEIDnfRFO9jSVnncbsd99i9rtvkWQ1csJ+I3lm62o+u3Q2Jy94nsVf/cQnv2/ghVNnMu2dV1gy+zROeeBF1tx9bWB8M0eN4YP1G/jX21/wXlHwQsKSU09n6tNPcM83X/OPQ6f1+h72V8/PH3oVdWUNRMebeKPq6cD2gFEmwJwYjaWhDY/bw6jJw/hzxfr283c4t1anQVEgRtJQ43N1VxSFrMIMtB204OX/e4sy0XkaBmZMGt7n6xhMeqPnRdcdzey5TwJwzllTeP7F7/nk0z+47pqjuOPfbzHt0JF88+0GADIy4qmsbOLgg4Zz622vse+4XEq31VFXa0EI+ODjNSzvPEk/wKh6rjKYqAb6XsQ+qSl8smlDkJGuEYLRKb2Ly6kqqUZIkFmQ2avjBtI4F0KQVTgwydJ6iqXVSnNNExn56QED2ePxDPrD87dv/uSb13/AaDKQMyyDlqZW4hPDJ47pClubjfKtleSOyOGrXzZx8H4FgX1Ou7PfxvBAYYgykDMye8DGc/WV0wE48YT9OX3Wwzz1zDdcPDc4t0K4FzVLiwVz7MBOYrQ0ttJU10x0jCnsJItOp8McH+tdTVFRUVGJgAYZmU6GmqIgCcGMoUOpbrVQb7NS1tLMxvo6Pty0AUVR0EgSBo2GaJ2ehKgoYoSG1CgTwzMzKEhI4MDsHIqL5nHIM09x0NYn+P6iS9k/L4P984L19usNxXy1biu/baugrKEZnRPsKQpxkhGDokE2wYXvvkmUVofeqKVBb+fzjVvQuAUnvfQiOYlxjEhPweXxcM1T7zF3+niu+vIDThk/mmP+9yyf3DgHgPtmHMWbf/3JhoY6mqx24k3BlWRWXHQpwx9axOEFBUzNzunx/euvnp8Ydx72FgcIaKpu5mjdLD51eeuyf/Tk54F2Or0OU0wUsqww+YQD+LGsEkWjI2ZrXftYrE6fga6QGWdifZOFppomgCDj3Gqx8+xtryCfOTFkPK11LRgyvUnhdlc9z81JJDnJzOOLv+Tyy47gxZdXUF7RyFEzxrJg0ad86zPOAf7v7jOYe/FTfP3Ner76/BaOOvZ+XE53e/UB4LAj72X5F7cCqp6r7H6oBvpexGUTJvFzeTnLS0rwKDISgoNycyma0rua2hl7YUZLh92By+kkKiYqSMy3b64gLjmGhKT4Hvdlt9oxmnpWru6UhAtpa/bW6xSSIKMgvc8TAlHRUeQOz0Gv11Fe28zckyYD0NxooaasmvxReQNWdq6nyLIctpZruBq03XkOROpfkRU0vsy4b752NYdPv48LLzgYna+cTWuzhaaaRrKHZgfG4XK5qC6rR5OnISq666Q5TqcLq8Xao0mT+KQ4YhNiuryOlPSEnl6eiorKXsqGonkULJrvy9ruXVIVQmJz0Q0Rj7G73fxVW8umhnpKGhspb22lsrWFDW3NrPy9ijaXC6fHg+wz9CUhyF80n4SoKIYmJpEWHU12XBz58QkUJiZy04nTMHXQjA9+W0/R1x+hb9MQ1SihcSu4TW40sQIFwTZdCyaTDpvbzTZnC2Xrmpk1aRz3zTqGG175gKyCBL5t3oZJ0nDUg0+jj9bzwUXnc/Y+43j9j7Vc//IHPHvxzJDrWnHRpUx84jGKi+b16N71V8+vOvAWHK3O9uzsQuBxy8zMuJg3Kp/ipw9/DbR12p1ExRiJMkexcF0JyqGjAWg6aFjg2FarPRCDvt+oHP78eQNVpXVoNME6cXbWpUgaCWHUQUcPQkXh3NwreKHkEQzRxt1az2edMYklL3zP5ZcdwdlnHsiSF77jlNMfCIlBv/TyZ/hy2c0cPv0+jjtxPk6XJ+S8QgjuuPNtbvv7Caqeq+x2qAb6XsZTJ5/Kgh++5/fqKkanpHLTQb1PqrKjS2btCrS1WHHYHEHZUTUaDckZiUTHmHrcj8vhomxzJTnDMsOKVkdOSZyNpaktIDqyR+bEmPP5yPpy3y4COOzKR3H76qynJXqzgsYlmIkyGXa4mCuKQmVxFVqdlrTc1C7bulxuKosrySzI6NU46yvqsducZA/NDNzHSy4+jDNmPcQ7b10HQFS0EXdCTJC463S6Hsd9tbW0YW1tIy4hNqgPp8OJy+Um2hz678PldPWr1q6KiorK1qJ5DF80HxkJSchs7MI4B29yuP0zMtg/o3vvsw31dWysr2NdTS3PrF7FnzXVNMfGsrK8jDaXC7vLhcfneaSTJKJ0OmINBsampvFHTTXTJw9lfHoGiz74jiEijjabi2qLBWuiG4SCI9qDMMGLW3/npbVrGJuWSn2NlbooGw5JRpFlaPVOEBQXzePVtX+wYvu2sGNNNpm464jpjHvsYX6/4upur62/el6+sQpZkYOe90IImqubOTXxQqyt7WGDdos3rGzd5Dw8KN7a5YpAEd4kUAJoabOj1WsRwGmnTeWlXzdRt70eTQevw+sPuR2NTsOYqSP41p8FHn8Mu0CWZS4svIaPHa/s1no+8/SJPPHUclau3MoF5x/ECy+twG4PjWF3uz2UltYzcUI+P/9SHDHccciQZFXPVXZL9j5LS4UbphzEc6ec3ifjfFcnXObUgSAxNSFs6RJzbHSvvAl0Bh15I7K7Nc4BLI2WkBcAl92F3dK7nAF+Jl64AJfbE0gsM2n2wsA+vWHHi4sQgvS8NFKyk7ttq9VqMMdE99p7IDkrOaSG6TlnHUhySgx33PmOr28tCcnxIcf2NClLQnI8mUMyQ/4dNNa10FLXEtK+sbqJiuKqQfu3qqKisvewsWgem4uuZ2MPV497yoikZE4cPpKbDz6EDdcUcdiQfLY0NHDn4Uey9spr2HzdDRQXzePrORfx6PEnctXEyUwbkk+SycSo5BQ+27yJh1b+iCtBYa1cx1ZDE85UBZNei873HJeEQEbBY4bflGrKoizY8SAj+3TK+4zMXzSf88btCwkSNy0NnwDsvHH7ckhuHse99Hy319ZfPT9gxlg6W4SKoqDVa3G7ZOQOyWs9bg9llY3tNcsR/v95PwmwWB2BGPScnCRQ4Nvv16EzeI3X1+e/x5bfS7C22PjvV//yndB3fwQoAprOOxCPx8OnS5bv9no+dcownnhqOQDnnH0g4aVSkJeXxH/vOzPE0wAARcGg1zLHV9FF1XOV3Q3VQFfZY2isa6J8a8Uu/6DU9VA8w74oKKA19n5m/KR5TwXFKgpAkWVm3/nyTr1fGq2mRx4ZQggSMxJ7HVohhAj7EvDU4rl8v2Ijq38r7VV/XZ2nM2lZyWQMCX0JTMpIJKswfCk9FRUVlV2RR44/kaWzzuK6jz/kgrffDGzPiY3jyIJCLhk/gbsOP5KnTz6VD849n+KieVicTj48+TRePP50ohu0PHfq6dx08KGcN24/Jmdne1eUtaCRBBohUISCIkL1SCDYVt2EIil8sGFjl2O0u9zctOzTQbkHfv659EYKD8j35s1XFAQCc4KJj+2v8J/PbgtqK2kk5EOGEZrWDWQFJEnQanMGJxFze/h9SzUGX/3vJ/72AoqsULT4Ml786BfAa5T78f/Ycu6BTD1p/EBeaq8YKD2/7e8nsWVrDQBzLjzEp+NSUHtJav/5809vCtqmeE/C3289sU/Xoeq5yq6AaqCr7DGY46KJS44bkAflQButbpebqpLqXh1z5i2nBOra+sc04dj9+uS6Zne4Q1zAFMBitVPpK+myq+J2D0xpvs78390zuemWpYPSd3eE+w7t1r55RqioqKjsCMZnZLLhmiJsLhdjHnmQjfX1Xbb/48prOPqdN5k6LI9zJ+3L7S99ygX77sft0w7j1ZlncmB2DjF6PR5F4f1zvEa9COusrHDsyOFcdMB4nDEe5neql96RL2fP5f0N63l/Y4ds6YOg53e+cSMHnT6JmIRoFBReLXsCgOVLg2u2Zw5NR1PdDFLodUkCtBoNrW3tMegAerdMrdNJlNnIKQkXUrjfEDIL0zlmzuG8s3wtELKAjwJ4gNZGC7syPdFzrVYiNzeJ/7vvfQDGjslCURTOOnMyp50yHoNBG1Jid+7sQ5BlhWmHjuT/7pqJRiMxf8Eng3INoeNV9Vxl4FENdJU9Bp1OF7HcRW+p2l5NU0PzgPTlx+Px9Kr9xf93LhlD0wKfp82ayr0f/aNP575t7vSQbUIInrztHDRdxE7ZrfYBe7lx2By9Psbj8VC+pYJGX0bbgWTSxAImTyzksiueHfC+e4vT7qR0QzlOu3NnD0VFRUWlS16fdRZ3Hn4kx764hBs/i2wEmfV6Xjz6OAoWzefWEw4jNdbMZc+9Hdj/ysxZtDidFOjjOO6l5/nbsk+5Yp8JwUa6ApJbQ1urg5sPPhRJI7Fk1aoux/fX1ddx7Ucf8lN5Gee8+RpzXn9tUPT8ztdv4u2GJaRkJ/Hsbd567O89Grx6X1NaS9TGGkRVS/AiugLpybFoNBJt9uAV9DitBqtOoqG6mdyRWWxdU8ri3/4HQHVDqJs1ePV80S2n7jF6Pmf2IXz9jTdr+4OLzkOWFXKyE7jm6hmkpMSEtD//vIMwmfR8/c16cnO82ew9sszLr/7Y63H2F1XPVQYC1UBXUQmD0WTEFN3z5G/dodVpySrsXVk6gLqyBv7xahHL5Ne5fWnXCYC64tADhrLg+lODti39vwtJiDGSFiFmzOPxUFFag6Wh/zPyTqeb0g1lvZ5V1mg0ZA7JID6l92XlesLdd51ORWUzb7z5c4/au5yuQQkJ0Bv15A9A3XcVFRWVHcHM0WPYct0NrK6qZOITj0dslx8XxwunncHwBxfyyhVnsbasmsVf/RTYP3u//bHpPURVS6yqKOfN4r+4dr8DA0Z6FBoUncx9H3yN1enm8kmTaIvy8OpPv3c5vpsPPoSzXl/KD9u3801lGZNfei5C1fje01nPDz5tMt+9tZLp0kzcLt8KsU8mnHYXiRnxxH32J1K9V0sFIMkyDQ0WtBoJq92JxldmDSAnOQ6PUYfT5qRiSzWz7zorcC63b+VYQCA2W1FAI0kcNCp/j9Hzww4diVYr8cGHvwFgNht54CFv+bqxY7zl9KqqgyddPnzP+4504dwnyR+STE52Ikuej+xtoeq5yq7MHm2g33nnnYGSD2p8iIofWe5apl1OF/FJcTs00YrVYg3Z9t3bP6EoCofN6l0ZvEgMyUhACMGN5x3Gz0tuoCArqcv2Go2G3GGZxCSFzlb3Fr1eS/6oXIwmI/XVDb3yJtAZdIP6+/vKi5fzyGNfdNtOlmXKtlbSUN00KONQxVxFJTKqnu+afHHBHM4eN478RfOZvyK8MXRQbi7/OepoRj/8IN/fdjkPLfuBjdVe9/h/TjucVpeTrJw48lyxnDpyFA/89gO3TZtGcdE81l1fxL3Tj0LOFBxy9+PccOBUNFqJ+5d/C0TW845jURRwetzMWDI43lKz/30mNdtqfaXu/LXXvLHzMQnRRJm9pb1iP/4j4BuQlmDGKcteA90WXLd80r5DUPRaUvOSMcUYOefvpwHeeum+rhmSlYT/VL88fwOHjR/KObe9EHGMu6Oez5g+lpde+QGA886disPhYsUPm8nxrZC//VaoJ8UrL16OLCvYHW7KyhtJSoxmwaLQnASqnqvs6uzRBvodd9yBoiiBvyoqToeT8i2VEeOgZFmmelstjVWNO2xMVouVym21uFzBY3r1vnc4YPq4ATvPs+//RE5aPGfOOKDHxwxkqRadQYcsy9gtduy2Xcf1y2w2cuYZk5h11iMA/Pjj5rDtJEkiZ2gmSWpdUxWVHY6q57suNxw4NVAK7Yglz4Rtc+rI0RRNmcr+jz/CO9edz2kPthuT904/iu1yKz9t2c7NBx/K71dewwM//sDJr7wEwKwxYzl33H7Ykj2c/tBLXDN5Mo06O9/+tTWsnv9SWRk2lr22bXDis02xXm+7zoanrMi0NduoLq0NOcajgJAVmputWB0utB1c3N+95SWQBJVbqnl+yyOB7c998JN35Rxo8VVz0fiSst139QlYbA7++8KXHHPdYg659GG+Wh2sZbubnhddexRVVc3U1Vk484xJAPxvwccMLfCWcVu9JjTJa3p6POnp8ZSVNWCx2Bk3Lo8PP/otpJ2q5yq7Onu0ga6i0hmtTospJiqiUEmSRPqQVBIzEnvUnyzLbN9YFpKwpDeYzCZyh2Wh0wWPadOqrVzyn3P73G9nVvxewvRJwwesv74gSRKZBRlE+1YUdhUuv+wINFqJw6ffx99ve5PDp9/HdytCDfUdXVtWRUVFZXfh50uvYHxmFgWL5vPan2tD9l86fgKzxozlvPfe4JrpUzjobq9r/PHDhpMVG0t8jonzF79GjF7PmiuuJsVkYsRDi1hdWcnt0w5jal4uf7praat1oNFI3PzJZ2H1fEJGRqCUmx8B5MTFdzn+fum5CE1GJ4S3Prnb6Z1ASMhsNwZbrQ6GpSfiVhRsdhd6n4F+6zF3kz8iGxSFpEmFQf298t5PgTD2hhYrWo1Ex8D29+ZfzOuf/0Z9Uxt2u4ObFr3HR9+u6/219JAdoeejR2dx//yPACgsSKW5yUqb1Rv/XlnVFPaYV168HPB+H59++juyLHPehU+EtFP1XGVXRjXQVfYqJEkiKb1r47s3D20hBJJGor8el52N86X/fYfoeBN5o3P613EH6pvbuOL0yO7ynVfwB4tI7m2tLW04na4dMobO2O1uKiubgPbau7f/8w2+/W7TThmPioqKyu7I/TOO5tML5nDn8i+Z+dqrIftvPWQahw4ZwtLSPxmbncbZj3nbvHvWuVQ6LawqKcfp9hrIT518Ko8efyJnvP4qRZ98xFMnn0p+SgJP/7ma88fuRxVWXFHhQ9F+vORyNEIgEEhCkB4Tw4fnnt/l2Pui528u+oAZ0hnodFpv+AUiyFCXOtTofq2s3Uh0eTzsv98QkBW+/XF9YAX9zxUbOGD6PginB21+SqD98/9aisvXl07rjVcfPyqHjoM9cO6idnPdt/2fT35Ck33wMooPtp5fc+V0Vv1aAsApJx+ApBEsfuIrAKzW8P03NXmT4QnhLzgvKC9vYPETy/s9HhWVHYVqoKuo9AMhBFmFmT2q/dkbPly8jMPOHJjYc4DH3vyepLjISe8a65sp3bh90EqadYeiKLTWN9PatHNKxFxz3fNhi/v8b8FHO3wsKioqKrszwxIT+fOqa4nW6TjsjaX8XFEetP+/M45maFIi5ToLNS0W7v1gOWa9nukFhegytcx+6rVA2yMLCtl87fWsq61h4hOP8/F5F2KO0/PST2vQSILzXnqt8+kBiNHrWX9NEXMPGM91B05hxUWXdjvu3ur5aclzePyGJRx57iF8ZH8F8E7w+utxCyFQZJ/J3ElgPIpCYmw0KXHRtLjaY7hfLVvMC/9+A2F1Uu+bNK8pq+PZRz4OGN9Rvvw4U/YZEtSt2xVaTlWgcN6tz/foegaKgdTzkSMziI2N4tkl33LC8fuhKFBXb0GSRMT8A2ef+0hYPX/1tR2f0V1Fpa+oBrrKXk9vy5/tCCqLa7j2kYsHrL/PV25k6rj8iPsTkuLILczaaS5fQggyhmSQlLpz4sEMhvDXrdNpwm5XUVFRUemaJaeezp0HTuWcN17jyg/fD9r3xImnEGMwkDY0jld+XMN3G0t48qRTaJNd/FpRgaVTiarPzp8dSEZ36YSJeKJlojxatjqCM3l31HOtJHHbodO4dvKUAb2u5//1GjOkM3A53CyTX+eWF67lr582Bvab4kyBlWX/avqpRce1dyArIASJcSZyspIQisK0KTcDcO3U2zj87IPRtNqx+N7Q5wy/jjGXzwgcbnN4V45z0uIDkwEAQpJC8zMIwSnTBi6XTU8YaD0/7ZTxvPveagCGD0sjOTkmcH/D2eiSJrILRGlp3YCMSUVlsFENdJW9Go/HQ+nGMlqbd87KbTgWXb6YjIK07hv2ELfLzfbqJmafMJmWJkvEa93ZWUd3Zmbmhx+8ANFp1URRFN5YenW3xyqK0l5aR0VFRUUlwLTsHDZdez0lTY3s9/gjQe7Wr8ycRbPdxsSJOVz6rLc++tWTpqAkSVz09Jshfd1w4FQ2XXs9T676hRHJKVgkJwLY74GHGf3gg/y0ffuA6vn5w69mhuYMjtLNCmw7Of4CXvj365xadDzvt7Ynulv+6orAz1qdBghOZnjl/DnYnb4s7L5V9ZR4M0a9FoNbxjbUm/isdnsdf3/pOqR6C06NxCXjbmDKSRMoaWuv9OJye0iINdHSYg1KhvfzEm+ZMaVD/bXs1HguPuXAAbkfvWEg9fy8c6disdj5448yZp4+iaYmK7LvHi5b9kdI+w/fu4HOaSQVReHEE/bn1n+83uW5VD1X2VVQDXSVvRqNRkNyRiIxceadPZQA37zxIydeftSA9CXLMs+/vQKjXktuejxOmwO3Y+fEee/qfLnsZvRa74q5JIkeuzk2VjVSWVLVZWbpXWkCSEVFRWVH89G5F3DVxMns//gj/PvrrwLbPzz3ArY2NrLPuEwm3PEwRVOmYDbq+bWxkrow5Ue1ksSvl11JbnwcWo0GRUCL4sQmuzjrzdd4oXTTgOj5BcOvompzNSggu2WOFKczQzoDSZJYJr/OlQtmB7X/4f1fAj+3NVnp6NMufKvctdWt3mtwe1f5UxNjaKluwm1zIrnc2A7I5R+v3UBLgwVtTQuKTqKtycptr15Pdb33WP+C+cH75mOz2oPi5Wfe8iySJAVKEWalxfP2/XP7fS92BSZNLOCRxz7niMNH4fF4iIvzJqZb/vX6sO2Xf3ErQKDqgxCCoYWp1NVb+PbbDRHPo+q5yq6CaqCr7LW4XF5DNTa+/3VBO+K0973kyNbfS2lrsnLGjScNyFgkSeKbv8rYf3gWAMkZSSTsJDfy3YFPP/kbX31+C198djPHHL0P588OzfzamYT0BDILMiKuGDhsDmrK63ZYEj4VFRWVXZFLxk+guGgen23ezMHPPBnY/tXsiyhtayI5J4aTFz3Pw8ediMcMl/lW1cPx2PEnISkSiu+PnyXr1/DA9/2LNf72o5VUbqoJfPYnf0OCtxueC3tMx1JqbpcnyMB7dsMDADQ1tAAQ49OK1MRoNqzYSNrQdLK3N+EcmcnQfYdQXVKDvq4NhOCZzQ/y6Q/rO9RX9/73+INGYzS3u9Lf+sgHtNmcKIrCz0tuYOVz1/PO/Rf16z7sStxy0wls2FgFwNgx2YGs9xs2VUU85qvPb2H5F7ey/ItbSU+LY+EDnzL7wkOYv/CTiMeoeq6yq6Aa6Cp7JQ6bg+2bygbclcntdrN9SzkNtU19Ov6Zv7/M8AmF3TfsBRu31TJrxv5h9ymKgktdUQ/LTTceh93m5Iknl3fZTgiBRhM5Vt0QZQhbRk9FRUVlb+S7iy7hyPwC8hfN55nVqwD48eLLqHJbqFasvPPDn4xKSWaNtZqq5taI/bjkUO1SFHjk5xVhWvechy99MsjoB1/CN0/4VVVZlpE7lGbrbNxlFWYA0NLqde9P863wXzC6iOH75mFtc2BdVYJwupl3+0vUbK/3JkCTFV5+4Ws+WvFXwOCXZe9q8PhRObg9HiRJ8OaXv/PDH6U0tFjJSBrYBYddhdhYI1mZCVw/72XS0mOpr29FCGhqCvWyCMcrL12BEIIlz3+HAix97aew7VQ9V9lVUA10lb0SQ5SBtJw0tAP8kNVqteQMyyYxJb5Xxy26cjHnFVzJz5/8xjn/OG3AxrPyz20oisJB+4ZPENdQ00R5ccUumShvV+D1pVfzytIfsVr77hUBoNOFLwXUFV252KmoqKjsztx5+JH8fOkVPPDjDxz/kjfL+G+XX0WLzsmHGzdwycgJeAwKVyx5N2IfArwWecdtAqJ1hn6NbWnZk0Gx3QAoXuNthnQG5+RdwYNXPUXNNu+q+UdPfh5oJmkk7EOSsBw0FNuoDIS2vZ/WVhsA2dm+Uq9pcRwwbQxN9S3c8uK1RP1Swp82GwsvfRytXovk8rByTTFrt1QGDcVvhLt85ejuW/I5Zx+1P7KscOOpk/dYPZdlhd/WbGPZsj/xeBTwlbTb2MUqeke+XHYzTqebfcZk8cxz3/Z5HKqeq+wIVANdZa8lOiZy2bH+oNf37uH9j5Pu5cPHP6equAZZlnnk+mcHbCxLl61mWE5KxP1JaQlkD83qcsZ4T6A/LyyXX3YEZ5376ACOpntkWaaiuAqbdfDq16qoqKjsTJJNJtZccTXZsXEMe3AhX2zdwrqrr8UZK3Pze59w4vAR/O6sYVt9U9jjNxfN81rkgaRoADKrr7qq32O7dNEF3i59McwIWCa/zus1T3PIaZP55ZPVnDvkSk6Ou4Cn//Fy4Li2EWnYpw7FVZCC44BcWg9s94hrbfGu9koOrx5lTC7khzd+RKPXcujMKehL68HloS4vkZgEM1EKbK9roaWtXQeEEOw3whuy5vbItNmcLL51Fs+8v5LEWBNTp4zeI/X8xptfpaqqCSCQIM5v9N5z7/uRDgth4oR8vv9hM4mJ0Sx68LMBH2c4VD1X6Quqga6ishN59IZn+ekDr4uf3y2ueksNRYf8Y0D6X7V+OyceOqbLNjujtNpgzCZHquHeWNNE+Za+ewmcecYk0tPiuO2foVmFBwtJkjCYDOj0qhudiorKns3iE0/mxdPO4MoP32f2O2+x8drrcSXCVyu3ghYueCFy5u3ionlohHe9WysEW4v+NiBjOuO6E7n0ofMRwpsw9NiLjgAgPjmWKxbO5vktj7BMfp1L/nueLykcOPISceyfhyL51t8lCXdeEodMuhGAtjYHAMvfXgnApspGKtaVYYjxJjwTQhC9ahvW4WkYow0kGvU0SqDRdHxVVzj+IK+mL35rBXqdhq9WbUJRFG487/A9Vs83bqwKyczup6ysgeLi2gh7g/nvfWei0UjU1LTw/ger+znKnqHquUpfUA10FZWdyMqPVhOiOgK2ra/od99VdS202ZycceR+/e5rIGltaes2S2pvaahupGxzeCM8PiWOtJzUfq0qPPH4HH5auYVffinp8TEOm6PP5wNITk/caXXpVVRUVHYkk7Oz2XBNES0OB2MfeZAvLpyDJd5FgtvINqWVzdX1EY/dXDSPrUXz2FR0w4CO6YyrTiJvTA6F+w3hu7dWhm1zwmVHofhWdN0Z8Siik65JEp4Eb8x5m28FdeQhIwFolWUOO3UyHl/8uizL3H732eDyUJkew4jcFNySFNgPXiN+0phcrrjvdeLNRkxGPa8tW43JqGPG5BEDev09YUfpeXx8dMT2mZkJ/Pue93rc/+ef3oQsKxgMOv5x+xs9OkbVc5UdjWqgq6j0k0grtz1h9NThSCK0/nZqbnJ/h8Uz768kOy2+3/0MNAajnqgY04DWSU1IjSczPyOsES6EwBDVv5hEgPv+bxa33tZ1DVU/DpuD0o1lagI+FRUVlV7w1plnc9uhh3Pkkmc5ZeQoGrQ2NAjOevnVHXL+znpuiNKTnJVIW7OVzb8Vh7R/6u8vBX7W1LSETLgriozGF3v+/QfeUmxjpo327jNqmXbyRDyyzDl5V4CA9LwUsitbaM5L4ohDRnes1oYQgtSEGB55/TuKK+o57qDR2BwuhJC44PiJA3H5vWZH6fkzT16ETtf+WQgCnw0GLaWldZSVNfT4HJdechg2m5MVP2zutq2q5yo7A9VAV1HpBx6Ph7ItFTTUNPb6WLvNwd+evopRBw8PzD4rioI50czjq+7v99i+W7OVIyYM63c/A41eryMhOS7weSAS2ggh0Bt6n7ilN4w/YAgHTi7kksue6batIcrAkJG56AZ5TCoqKip7Gmftsw9br7uBNVVVJJhMeIRMg3BQsGgBBYsWcMoLL3XfSR8Ip+dGkwGH1cmIiYU8+49XgtpbLXZe+297Ejvj1jr0aytA9q14ywraqha+XfEffvroV8p9BmRtfQvICmg0xEQbcbk8RMdFodFocLs8pLY6we3hlQ9/DjqfRiPIS0/ghY9+5pMHL8fl9uBwupEkwdwTJw/KPemOHaXnWq3EZx//jf33yyM7K5FrrzqKvDzvQkZVVTPTDh3BHXdGLsvXmbPPPBDT/7d33+FRVG0bwO+ZLUk2vRcIhA6Cin4gUl8EqS8CIgERRYqiiAoKBgsQQSwIUoTXhoCISFNAFBBRRBSkiIqASCcB0kggCSlbZ74/NmwSk0DKZnd29/5dV64LdmfOnN2TzbPPnKbTAgDGjV9xw2MZz8kZmKAT1YBKpUJM/SgEV3HVdovFgssXLyMr/Spe2/QiBEFAUGQgmrVrgk1Zn9ilbpev5mHc4I52Kau2GPVGXDh9ybYnvdK9NmMQMi5fq3CLlpJq+4YBEZE72zlyNIbe0srWKX19z/O/stIxeNXqG55bHeXFcy+dFwwFBgx98X78sfNoqeMTur9qG95+ne/hC/D68wIEiwx1dgH2fTcTADC9/2w06dAUALBn2x8QJevCc6f2ngRkYMlf8yAIAswmC/JzC9C0wIwjV0pvMSfLwP5jSdg873EAwK5DpyEIAvp0aGHvt6JaHBHP580dhpUrxmLgwDsRVz8UggAUFBiQOG0gzp3PRFp6TqXL2rLZOiXinxOpSL5w4953xnNyNCbo5NYMegNMxuJgYdQXb5clSVKpuV3VpfXWVnl4l0qlQkzDaIRFhWDR+CWo3zIW61M/xv/2vVnj+ox+bTXuefJ/0HlroBaLP+JK3OZD46VBYGhgtbYtcZa1n4/HBx/96OxqEBG5vYROnQGg1L7kMmQcupzikHju7esFQ6ERHQe0hSAI2LVuD17u8zp6iPEQxbJfoQUI8DmWAi+jGVFB1rnnw+PG4b6nekEqWuzNolYhoKj39uOJywDRej1BACwmC/T5BvT8v8a24e3Xa2OxSEgY0Q0RwX6QZRlJaVchyzKmjelZ49dtD46O57F1QyGKom0R/86dmmLa9A1VKmPjFxMAAC9MccwUCqLKYoJObi3p5EVcSbXeGc25mofk0xdtc8zSkzKQerbmi7FV1/X5Vfu++R1DJve3S5kdHluII6dScK3QgAK9Ce99uReA9cvLpbNpMBqqtp93VkZ2rSb2giCUGh7nCry91Rj24N0YPHQx1q0/gLfnbMHhw8nOrhYRkdvJLCj4947kNr//dbLW47mXzst2I8DH3xuvP7gA+bmF+Cp3JRbsmVXmeBnWnnFvUcQ1owmzH10MLx8tnn53NAqLOgtiWtZFZFHc6/xwl+IYKwgwm8wwFhoREh0MWbDu8y2hKEkXBMR3bw1JkvDU62uhVqngVYWVwd0tnjeIC4NYdHMjMzMPMxLvx+kz6cjMzKt0GUFBPoiKCkRGRi76378APfvMxdTplVtrhqg2KSpB37lzJ0aNGoWRI0di+/bt5R4zYsQI9O3b1/Zz7NgxB9eSXIWh0ACVSkBITCgAIDDYD/WaxtpW0oyKi0RMoxhnVhEHv/0TFpMZPR/tWuOy+kz4CEaTBSjacgYAlm/ehzMXMyGKIrx1XlBrKh/MzWYzcq/kwGys/iJ47mrsY12Rn2fABx/9iG+3H8GkhDXY/fM/zq4WkWIwnpM9hOl0ECAW73UOALIMESLubN2s1uO5zt8b6UmX0UOMR0RsKARBwMI9s6Dz80Y/3XAAxVukqooWLVv293z4azUolCT8uPoXLDu+EABw6bx1KzCD0Yz8s9Z/+zWOtF1LEARYTBaYDCbM2nvUOmagKJ7LAARZxuDpqyCKIn47lQKzxYLwol76m3HHeN6sWTRMJuuc93kLrX9jOrZvglemVS3BXv3ZOABAXp4eJqMJe/eewVPjP7FrXYmqSjFr/mdnZ2Pp0qVYvHgxRFHE+PHj0aZNG4SGhtqOkSQJRqMRW7dudWJNyVV4+XihXtN60JRISrXa4qFXgiDYdeXR6vhs5nq07narXcq6kpNXtqdBlvHel3vwzoQBCIsOqVJ5arUa9ZrURXp6ul3q504WLNwOg9Fs642wWCTMnLUZH7wXgsaNIpxcOyLnYjwnezoz8Tk0XPBO8QOCgDMTnyt1TG3E8xe6z8CfPx6FRqvGNuNqqNVqPBA+GkumrMS6OZsREReGjPOZxXGgKFmMbVYXof4+uKTX23rZ17+zGZai3t7s7HyI5y8DzSOx/0gSACC3QA9BAMwmCyxmCRZJgiCW3eElKSkd495aj+AAHSRJsvUg34w7xvOIiADbv3//3brC/qzXHsA9976F7OwCBAXpKlVOr75zARm2GyIygOMn0rBw0Q5MeKaH/StOVAmK6UE/cOAA2rRpg+DgYAQGBqJ9+/b49ddfSx2TmZlZKsAT3UzJ5NyowC0y/jlwGo+//bBdygry15UdviYIeKRP9bdfqcne4e7syLGLZd5rWZbx0272ohMxnpO9nZ04CXeGx+DO8BicnTjJLvF81C0T0EszFH11D9kekyQJk7omoocYD1mSMWrWMOgCdLae+sZ3xmHdnM1Ylfw+si6V3b1FXTTkPHn/achqFZq3bQwA+HjKKuiKEsaCAgPGzhwKyMDlAgMEQcC1fAMgCDAZjJCKkvN/xxhBEBAUFIDfjl9Abp4etzSIgqqcefAVccd4rtWooFaLMBiKRwbc3a4RXnql8r3oRqMZZXo3ZBk7vj9a7vFEjqCYHvTMzExERBT3PIWHhyMrK6vUMWlpacjJyUFCQgLOnz+PLl264KmnniqzUMeMGTPw6quvlnsdQRAwadIkPP/887bHUlKcNw+ZymfvNjGbJaScSEVwTCD8gys3JKy2fb1oB3QB3vAKUdvl9S5/qT8GvbIGZosMQRAgQ0b/Ds0Q4Vfz99OZnxGL2QJRJTp9tENJERE6nD1b+jFJkhEZ7uWQ94p/s5Tl3+2hpN9VZ2A8p5Ls1Sbv3vMfAEBy8sUax/MXu72O1BMZgGCNMT3EeDRp2wCnDp5Diw5NsOKidVj6jmU/wWgwIiUlBWtnfYWjRVOZjNDbesxLWnr2Hbz20DvQFBggqwSkpKRgeu85uL37Ldgvy5BlGSqNCmrBBNliQYEgA5Bx5lwyABmXktMAFG+nLsvF8RwQEO6nhhY6WCQZIiywWMxVfn/dKZ57eathMlpgNkt4e+5mPPxQGzwzviOGj/gUp06dh6+vtnoFC0BMtD/juQdSSjxXTIJe3sIVklR6RU5/f38MHjwY/fv3x7Vr1zBt2jRs2bIF9913X6njEhMTkZiYWKY8oWjBjZJSUlIQE+PcechUWm21SXRkpF32sTQUGuDl41Xjcn5esx/dhnex62tdnBCPp2Z/gdBAHQb8pyWeHNSpxmU68zMiyzJSz6ZCI2oRXifMKXUoz5uzhmHk6CVIvpAFWQZEUcATY+9Bv3531fq1+TdLWcprD0//wsV4TtcpMZ6vnbcJqSczildJL/pdOvXbOeyQSve8xtSLhmSR8cG4lTh56Cy2FHyOEY2fxscTrNu8iSoRUonV43Mu5GHP+gNYfGw+Hnp9Df756SzSzmTg47/mo/2AWRAgAKKIFo3rQ2WRIWvV1jVifAOhUqkgmATkDmljLVsUijN1CJgwrAsWrt4NHy8NXnikG3758yx8vA1Ven/dLZ6HhvjjWp4eekMeDh5MRkLRgrt3tW2IhYt+xuJ3H7lpGT9+/yK6dnvDmogJAiDLCAnxxUcfPGaXOt4I/2Ypi5LiucMT9A0bNmDXrl2lHhNFEb1798aJEydsj2VmZiI2NrbUcfXr10dcXBwEQUBgYCA6d+6Mc+fOOaLa5AbskZybzWZcOp+G4PBABIcFVbsco96I9KTLeGbRmBrXqaTV239H8/oR+HTGcLuW6yyCICAyLrLc7Wyc7ZNlj2P+gm+RkpqD9nc3wqD72zi7SkQOxXhOzlKTeP7T2r22nunrBKFkMlzML9gPxkIjslKuYM3FDwEA/x17L1YkrgWAUsl5QIQ/nus8HW//kIjGTa1f8mc/9j5mbZiML+d/A1kQAciwSBLCg/2gk4E8QYBKFJFXaIAgCliWlALZSwNRECAV3YDSalTockdjLF73C5rXj8CFjGzc17kldh06DdGFRuvURjwPD/eH0WQd3p6ZlQej0QytVo3Zbw7BPfe+Zfv/zeza+TJ69ZkLk9mC0DA/rF/ztN3qSFQdDk/QBw0ahEGDBpV5/OrVq1i5ciXy8/MhCAL27duH+Ph46x231FRERUVhw4YNOHr0KKZOnQq9Xo+9e/eiX79+jn4J5MHUajViG9cpNbe9OhaOW4LYZnXsVKtih/65gPHxNe81dxZZlmEymqD1Kh6WpuR5c89N7O3sKhA5DeM5uaL39r+Ne4XBpR67nrDHR45BjxH/wdg5IwAAsx9dBAD438HZtmOHJgzExy+uKlNuQJA/2vdtg9u63FJUKBB2Rz3c/p+WeLnPG1DFt4FkHamOiGA/RPvrcMpkhCgKyCswILVXS+tq9RbJtme6KAgwmSWMGXA3vj9wApcu52BojzsAABZJUuTN6+scEc9jYoJx/nwmAMDHR4v7H3gXMTFBWDj/YfzfnXGYPGUt3p1fuQ6L7dsm27VuRDWhmE92cHAwRo8ejUmTJuG5557D8OHDER4eDoPBgEcffRQ5OTkYMGAAIiMjMWbMGDzxxBNo3bo1unfv7uyqk4epaXIOAHs2HsD9E/raoTbFLl3OQYHehPjure1ariNdSb+KCycvlhkOS0Sug/GclO5/v70OoCgxhwC1RoUd0noMeLoPflyzBz3EePRUDUHzuxpXeg6qyWDC5GVPAQD+2v03YJFwa7+2eCB8NCYtfQpyUTnXy7u3QzMAgEol4u2VOwG1iLszCwFV8Vdzby8NwoJ8MWXRZkSHBeJagQHjHugIALBYZKhVyu1Bd0Q8r18/FIWF1gUD9XojCgqNOH0mA/cNnI/pUwfiyJEL4NcJckWKmYMOAN27dy8ToL29vbFjxw7b/8eNG4dx48Y5umpEdjEobCTycwohWSTc92RPu5a9bPN+1I0ItGuZtc1oMEKtUdt6AXwDdMi4lAWLWYKodcz9Q32BHhovjaJ76olcDeM5KVmz/2uGtSkf4ql2L8NUaERUnHVRw4enDUbnB9rhsVbPo2XHZjiy+zgkScLM+Hfw9KIxCIkKqrDMz869Z/v31H5vQuh7K3Zu+Q13dW2F3qPuwavbD0IAbFuj/bdvW7z/0xHkFRigUYuou/1vnOvQGLAtDAeoVSJiI4Pw16kUxEYGAwAOHb+A/2sRC4skVWkV99rmjHjepFEECgsNAKyDD66TJBmPP7EMd7Suj0kvfI757zxUQQlEyqScTzaRm7tXHIzcrDxIFgmyLOOhBk/atfw9h8+hR7tmdi2zNkmShIwLmbiSXrxVjbfOG41bxUFTiTlj9qrD5dQryMnKdcj1iIhIGUKiQrAm6QOsOPkuTv52BgCwbdlOjL1tMjZeWY75u1/DxiufAABSTqdhaMzjeLDuWLzU9w3IRSuyA9ZeeFkozg5fGzoPUQ0ioDJL0KsEzPr6RetxRZ3dqqIEPaIo2RcEAUN73AlRFHDFR23bi1sUBBTqTTh7KQv9OrXEuZQs9O/SCq8vt97kMlskqFXK+BrvrHh+yy2xsEjlLB4AIL/AgHlzh+HPw8m1dn2i2qKMTzaRm4uPGgPIxUPbBEFAZtIVLH3lc7tdIysn3zb07d/ycvPtdh17EUURUXERCIsuvReyPRbzq0od6jSIQkhEcJXO0xfoa6lGRETkSH5BfqjTOAqPtXoO709cju3mtfALsm7fpvW2zp9evP9N7JDWo9tDnfHbt38AKB3PRVlED1080pMu4+cv9mHWlpcgFxjgU7LHvej469Pk7h69AAAgyjL0BhMEUYRRq7atVSfJMkwWCwr0RlxIz0abFrGYNqYnLl3OwakLlyEpaA66s+K5KFpHJJQ3C6F5s2gAwG23xmJywpoKy2A8JyVSxiebyM1dy84vM49NkiWcOnTaLuW//+UehAbqyn2uML8QGZeyYDKZ7HIte1KrnT/LpqpfcExGEy6dTUVhfmEt1YiIiBxJ66NF8vFL2Jy7stznszOto6zGvm3dtqu8eA4zML7tixgxYwhGNnkWgT5e0MslJkAXneOlUaHdyPmICQsEJGtPfIHBiMLw0nu6q0QBoiDg4T5tcOifC3hzfD8U5heiXdM6mPr+VpgtMlQKmoPurHju5aXB7bfVA2B9i0VRQOvW9TD37QcBAHPnDMOh38+Xey7jOSkVE3QiB2jWtnGZPXsFQcDUNc/bpfwd+0+g4+0Ny33Ox9cHsY2jodE4rmdaafJy85Fx6bJdytJoNajXtC58fH3sUh4RETnP6BYTofP3gZdOi2+X/1jmeVEUkZ+dj/cmLsegsFEAUG48b33PrdD5e+OndXvRYUBbRIT6w1jimKIB8cjKKUCjuqHY8PYoCBYJMgC90Yy8OkG2vdmtvcLWnuGUy7loWCcUQf4+8PH1wTuT78fZS1k4djYNew6fw7Y9f9fCu6Jc/47nfn5e0PlYRzqMeKQz3pg1GPPnFs8516hFtGpZFwkvri1TFuM5KRUTdKIbMBQtPlJTC3+ehTt63AqgOLCvTF5kG0ZXUxczcjC6f7sKn/e05DwzNavUFyiNRg211n7vgcaOZRERUe0rL54PChuFFnc3wYJfZqH7w12watYXpZ7/ZcN+SJKEx1o9jz2bDqLrsA4AinvQr8eZQdO64c8dR9C+f1vk5xRi6prnEB0WYNsuzXoSIIsidN5afD7Luo2bxiIDggCDwYzCoOIk0c9HC7NFQo92zfH9wZN44ZFutueefeeron9Zrz39o2+x/oc/a/TeKNnN4nlIsK9tHrqfrxbt7mpUpozZbw7Bwd/OlVs+4zkpERN0ogoYCg1IPpUCk8E+Q8Njm9RBQKg/Og9uj68LViKqblSVyzAZTGXu3H+58y/ovLWoE37zFdwNegMsFkuVr+tKzGYzCvMKYTKabY95+XghJDzIeZUiIiKnKS+e99Y+iGEv3o8Xlo8HAEx8fyzSzmUgI/ky3nrkXfTzexhvPvwuRFHEi589g1Xn38M/+04BANRa664fglbAnN9fwS8r/kLXBzti06Jt+DzpfQBAk7hIyEUJulmSAJUIAUCLuEgA1ngeUPR8ocEEqcRiagVF9YwJD0CgrzfatIi1PXfw77KLns1e8YNd3ielqUw8j4oKQmbmNQDA/gNnyi1Hp9PilhYxePHldbVaXyJ7YYJOVAEvHy/Ub1bXbouc7Fq7B0Ne6I/E9ZPg7e1d5fMtFgvSktORfTmn1OObdx/Fnc3q3PR8WZaRlXIFl1OuVPnarkStViOmYTS0DlxsjoiIlKtkPD++/yR6iPGY/d1UxE/ubztm83vbofHSYHjcUzj1+zlMeO8xbClYBa23Btenkp8tWhHcbLTe6N5hWI+/vjoJY6ERP3+xD29/P81W3m23xQGigEuXc9B+1AIAgCADfjqtLZ43Kdo6LTntqm1leAGA2SzB10eLtTv+xOMD29vK/Gz7H+UuiGYbG+9mKhPPD/+VjLPnMiAIwNlzFU9le/P1Idh/4GxtVJPI7pigE92AvZK8s38lIT+7AEMTBla7DJVKhegGUQiOCCr1+MnkDDzY886bni8IAqLiIhEVG17tOrgK7mlOREQlab002LhoK57rNA3bzWtxe9dWSDmThqn93kQfr2FY+vIq3NX3DqhUIpYem48eI7oCAFQaFfJzCgAAFnPxCDTfYF8AwMoZ6+Ht642ej/4Ht3dtZXv+rrubAgAGTl6KYb3utG3UHejnY4vnYx+7F4B1FxYIgm2LNQFARLAfJEnCA91us5U5sHPLMqPoZFmGoJDV3GvDjeJ5vwHzkZNdYH1rZeDKlYp3rAkI8EazplF4eeoXFR5DpBTu+4kmUpClL61Cs7Zl50VV1b9XSf2paBX4yvSgA1VfsdxdybKMzPRsZ1eDiIhqyZq5G9FbMxS9tEORfDoN85/4ECumr8W3prX4bOZ6DI15HCObPouczGt4fevL+Cr7U7z65QsICAvA8mmrbeWo1Crk5xaUKX9T1id47NbnEd0wEiq1iOeXjCv1/M7frMPhu93WAM8/1BWAABkygv2tc83VajVatqwPoOyicxKApJQreKDb7bbHEj/ahnvGLUa/TkVJeolzDn4ysQbvlGtasPA7FOQbbNvSXb+x8e7iHRWe88aswfh1n312zyGqTfy2TuQAf/xwBMOnDbZ7uV/sPIwmMaFQqar3Ub7RfHRZlpGVeqXMFwd3YDZbkJuVA5PJfPODiYjIpax640ssTfgcFosEySxhTNNn8POG/YhrGYueqiH4+oMd6DW6G76zrMOifW/gzu632s4dNLEvvvmgOMnTaNUoyC3E7FGLSl1j65LvkXYuHZcvZOGTk6Wf+3LnX5iy6GtAllH3+iJkAiBDQEigb5n6lomysgwJwIQHu+Cv06no+uRiHDubhoMrnscPB0/i1bF9UDcyGI3rheO3TycB8Lx4nnOtAP8e7y8D2LjpEHbvPlHuOSEhfmjSOBJTp3/pgBoSVR8TdKJ/MZvMsFikmx9YSd9/thsqtQrt+t58GHpVHT6VgsE97yizJ2tlmM1mJJ28VOFK9WazGbnZ12Ax2++9qA3V+cKh0agR1zwWGo3arb6wEBERsPyV1WUeu5Z1DT5+3lhydB7Wp32M0bOGlXvug1PuR0FuIf788SgAQK1VozBPj5/W/mo7ptndjbHwqSUwFprw3qHZpc7/+Kt9eGvF93jhkW4QTBLOJpWeFx0aoCtzzX9HcFEQ0L1tUzz99pcY+/oajI/vhC/eGoVn525A03oR6NfpFmycMxqrX7Puy+6J8fyR4R1Lv28lTn115kbs2HGs3PNemzEIe/aeql4FiRyECTpRCbIsIy0pAxkXMuxW5ro5X+Gu/9o/Of/x0GkYTGb079Lq5geXQ61WIzg8AFpvbbnPazQa1G8WC7VGufO5zSYzLp1Nq9a5oijCYrEg6cRF6Av0dqmPu6+QT0SkdH/uPlr+TWsZePPbqajfou5Ny7ir7x34cPKnAACttxb6PD1M+uIV4NWiCmqNGvdP6IsGrerZHn9n1Y/4cMNeTH+sF4bc2xoqSUL61bziggUgPLjs9qqCIECwPg3BWlX89Ls1xu9b/hziu7fGnsPn8NvxC1g67cEy53tiPG/YIBzLlz1u7USX5VJ3OWQAb835ptzzIiMD0ahhBF6duemG5TOekzMxQScqQRAE1GkUjaj6kXYr89yRZIybP9Ju5X398zG0fXQeEt7dDEmqWe9vcFjQDXvfXWHOurqaw/sB6+IzeVfzkZVa85XtLRYLLp5ORc7VazUui4iIqqd1RTetBeCJ1pNx5JfjNy3jpVXP4vQf1n2ztd4aFOaVuIkrAH/vO4k6TaIwbt5I28PTP9yGtTv+xOxn7sN9nVtaz5WBnBK92jJKJ+jdxy62rt4OawdBS2PRXGoBeOe5gVjyylDbsZMXfoW5EwdUWGdPjOf1YkMw4pFOVR5FOCNxEHb/XP4weIDxnJxP+Z9WIgcTBKFaQ8bLs/TlzxESFYSwmBC7lPfFD4cx8+PvSj3W9tF5FR6fdj4daeer18PsCtQaNaLianYzpeXdzRDTMLrGdVGpVAiJCoJ/OfMLiYjIcbboV9m2Lbv+s0Naj7pNo/FCtxkYGvM4Ni7aWuH53jpvxDargzmj/gettwaXzqbbnlOpVFCpVPjo8Du2x56fvwnb9h7Hu5PvR7c2TWyP61QqFPxrylx0eAAAoNvji3DNYCqeRy0IOKqx3nT/au5j6HBrnO2cUTNXo3XDaDT0r/oWra6iuvF85IhOEMSy39kiIwMrPKdOnSDUrx+KmbO+Kvd5xnNyNiboRLXou09+RM+R99itvPmrf0KZ5WRkGZMXbi73+NCYEITGhNrt+rXlWk4+0i/ab1pBVdjzhox/oJ9L9FIQEbkzrVaL7+UvUO+WOmh8Zxy+l61ba01bNwnfGteg1+huWDF9Lfr5DseCJz8st4wRM+Kxa+1eePt6I+losu1xi9mClef+Z/v/2DfW4ec/z2L59GG4u1VcqTICdVoY/hWz1UUxIs9oglx2eTgAQHRYgO3fm3cfxZmLmXg3YRDjeQV++G6KNfYWzWEPCtLh85VP3vCcV6cNxK6fKh5NwXhOzsTfPKJaYDabkZF8GVfSsjHmjYfsVm5Fw7903uXv167RaqDR2mcv99qk0aig8Sp/7hwREVF1LDu2EB8cmlvm8dGzhmHT1RWYvGw8fv/+CHqqhmBKz9eQnZlrO6brkI5Qa1RIu5AOi6l4PvIj0wfbRsU9PP0z/HHiIta9ORKtGpUdiRUR5AdLid7dkveCK3tb+PXlO7Bs+kOM5zfxw3cJmDKlH6ZM/i82fvHsTY+vXz8M9eqF4vU3v3ZA7Yiqhgk6kZ2tmb0R/XQP4+EG46Hxsm8wXTnz4VL/l2UZoihg5hN97HodR/PWeSMkPMjZ1SAiIg/SdWgHfHp6MVacXgST3oT4iDEY3WIC9n3zGwCgIK8QKSfTbQPXIuqFYcSr1nnhgxKW4URSBrYsGIsGFUxji6sTBrnEjXWxRFo+9D+3lkrSr69gfnuD4mHeQ1/5FD3uaobGdZXfc36dM+N57563onfvW29+YJFpLw/Azh//rsUaEVWPWyfoM2bMsA1ftdcQVqIb2bhoK5a9vBoWswWyLMNkMGF0iwkwGUw3P7kS6kUG4aOX4ov+J0Cr0WD/J8/bpWwiIqViPKfaFN0gEvN2z8QOaT2a3dUEMwe/gx5iPCBZp0FBsCbQGcmZMBlM6DPhQ1xIz8bPS55FRDmrsl93a6tYoMQwaVWJ3vTGjaNtA9xl+fp1BPx1Lh0zF3+NFd8cRFZ2PmaN61tbL9vjNWoUgbp1QjB7zhZnV4WoFLdO0BMTE0stEEJU25a9vLrM79qFEynYt+MQ8q/l2+UaOw+dRlRoAA6ueA4/fzgeFrP7bgUiScres5WIHIPxnBxlyoqnsVVfFMtLDkkvujHUefQCZGbn4+CK5+GtVd+wrA6dWpYqQ6Mq3uZs064j1n/Icqmh7zKArw+cwuL1P+PL2aNq+nIUQ6nx/KUp/bDj+2NIS8vBpUtXnV0dIgDAjf+yEFGViBXMEW/QLBa+/vZZDfSHg6fQp0MLAEBGcgZkGYgpZ+6bqzObzbh4JhUxcZHQcn46ERE5mKQWIWnVUBcYAQA5D7WDrBJxcEXlRq7pdNbY9cfvZwAA3iWmvf2TZF1ITYZQZj66IAC9O7RAoJ97rNqu5HjevHk01GoVhj38PgAgNjYUny5/3Mm1Ik/n1j3oRI6WsOLp0qt+ykDrbq1Qt0kdu5RvliRcvpqHZ4Z0BgBENYhCdMMou5StNGq1GgFBfi6xKA4REbkXQ9sGyH3wLuQNuhPZ99+B7OHtgCok5zaSjF9/PQkA0PlYk9MCvRGmotFvqnJXCnf9tWVKUnI8nzjpcxhLTEO8eCELo8Z87MQaETFBJ7KrjgPaYsamF+Cl00KtUeH27q0w5/tEu5W/cPVPiAot3n7F3edjhkQGO+T1GfSGag2/y0q7grTk9JsfSERELqN711egbx5l7coWBMDPG4Io4kBVk3MAsEj450wKACDA1wsAsHKrdRE6rUaFZvXDrZPQS/wcWPGc3V6LUig1nh89erHUZncygKTkTJjMyhyST56BCTqRnTXv0AQfHZ2DrfrVmGvH5BwAvj9wEr3ubmbXMj2dJEm4fDELV9KrPvfMN9AXASEBNz0uMzUL2Vk51akeERE5WE5sSOk90Yp8NG9TlctSSTLSruQBAIICdACK5593vbMxjp9Ph0qlQpC3FoIg4LGB7atfcQ9XnXiuVpdNhURRrGBkA+M5OQYTdCI7y8vOh7evzu53is2ShMzsfDxdNLydiuVcyUX6xYxqnSuKIqIbRCIsuurb2Hj7eEHn53Pza6hVUFWwPgERESnHowPfqHCT8ltui6tyeRpJxlW9AQAQ4GudU56VWwAAKDSYoNWo0L9LK3S+qylio4LxxKAO1aq3u3B0PJ/28oAy92JGj+qMCvJzxnNyCP6GEdmRJEmQJcCv6C65Pc1ftQtRof6VPj7jYiZMRvts76Z0Wi8NtN7VX3hGVWJl3doQEh4E/6DKtx0RETlHgcEMAYBcYuCzLMuA0YJO97aucnk+KhX0RTsPBPn74NjZNMiyDLVKxC+Hz8EiyXi0X1t888vfFa7aznheeVWN5x07NsH0aQPh6+sFby8Nnh7fHQ89WPEoBsZzcgSu4k5kR6Ioom6j6FqZZ7Xzt1P4b8dbKn28bLHAaDQpclEWe/Px9YGP7817somIiG5k/bbpaPvQ2xA0xV+RBQD/V83y/LRq5Bqt85mD/XX4aOOvAIDIUH+kZuYivvvtGD5tJV545J4Ky2A8r11duzRH1y7NHXpNohthDzqRndVGcm40V314e0S9CPj62b8nn4iIyJ0d/DwBMJggSDJgkXCPlzfeX/1CtcoKD/SFVDReOjRQh4PHkwEAGVfyIAoCUjNzUTciCPHdW1dYBuM5kWdhDzqRC1i4umrD24HauVFARETkCQ6umYJ1S7/DkDE9a1ROvegQ/H41FwAQFuwHk8kCQRBgtljQp+Mt+O7Xf/Drsok3LIPxnMizsAedyAXs/O0Uet3t/sOvZFmGodDg7GoQERHVODkHgGZNogDRmmD/c866+JkoCFCJIn7YfxKvjetb42soEeM5UfUxQSdSuOoMb7fLdQ1GpCVXbyXV6rqamYvUpHRYLJZav5anLLhDRETOc1e74pvr63/4AwBgkSREhvjj1sbRuLdt01qvA+M5kWthgk6kcNUZ3m4PZrMFkOWbH2hHIeGBqNs4ptZXVb+alYPzJ5JgNptr9TpEROTZYmOLt/zKzM4HAKhUIjKz8/H+i/EOqQPjOZFr4Rx0IoX74eBJ3Ne5lcOvq/P1gc7XBykpKQ69rlpd+3+WgkMD4evr45BrERERlSTLMhYnPOCw6zGeE7kW9qAT1SKj0Viz880SsnIKMD6+k51qRNfVZJ9VIiLyLDWK5yU6rwUB6Ny6IVo3rVPzShEAxnNyP7zdRFRLstKzkZ2ZjQYt6kEUq34vbONPR7Bl9zFEhwXUQu2IiIioMmoaz1FiEXYvjRpzJwywX+WIyO0wQSeqJSERgfAP9q1WMO///BKkXcmDLMsQRQGSBFTnOwERERHVTE3iedtH5lq7zYsseNZxQ9uJyDXxKz9RLREEAVqtpsrnDX3lU6ReuQa5aEEXSZLR4+n3qlRGXm5+la9LREREZVU3nrcbuQCyKFoT9KKfJ+esqVIZjOdEnocJOpHCpFzOKTVfDQDy9QZcSM+u1PmGQgPSktNhNHDbESIiImeRJEvJ0e0ArMl+z2c+qNT5jOdEnokJOpHC6LzK3qUXICA2MqhS53v5eKF+s1hoyymHiIiIHKO8jc0kGfhu0ZOVOp/xnMgzMUEnUpjVr48oNc9NAKq8V6pG41nB3KA3oCC/sEZlyA7eI5aIiNzb3U3rlOlBV6uq9tWb8bzqGM/J1bl1gj5jxgwIgmD7IXIFIQE6/PTh07itcTQa1g3FgkmDuB3LTeRczkVuZm61z5dlGZfOpiI3O8+OtSIie2E8J1e0eOqDeKxfO4goXsh93/KJTqyR8jGeEwGC7EG3mQRBKHNXLSUlBTExMU6qEZWHbaIsntIe2Vk58Av0hVqt7M0tPKU9XEV57cE2qn2M566BbaIsntIejOdUHUqK58r+zSUicpCg0EBnV4GIiIhqiPGcXJ1bD3EnIiIiIiIichVM0IlIkYx6o7OrQERERDXEeE5UNUzQiUhxTAYTzh+/AH2B3tlVISIiompiPCeqOs5BJyLF0XhpENciFlpvrbOrQkRERNXEeE5UdexBJ3Iz7rIxA4M5ERF5MsZzIs/EBJ3IjeRcycWlc6luE9SJiIg8EeM5kefiEHciN6Lz94EsyxAEwdlVISIiompiPCfyXOxBJ3IjGo2G+38SERG5OMZzIs/FBJ2IiIiIiIhIAZigExERERERESkAE3QiIiIiIiIiBWCCTkRERERERKQATNCJiIiIiIiIFIAJOhEREREREZECMEEnIiIiIiIiUgAm6ESkaBaLxdlVICIiohpiPCeqHCboRKRYJpMJSScvQV+gd3ZViIiIqJoYz4kqjwk6ESmWRqNBSGQQvHXezq4KERERVRPjOVHlMUEnIkULCglwdhWIiIiohhjPiSqHCToRERERERGRArh1gj5jxgwIgmD7ISK6TpIkSJLk7GoQUSUwnhNRRRjPyd24dYKemJgIWZZtP0RE16WeS0PKmRRnV4OIKoHxnIgqwnhO7kbt7AoQETlDdIMoftEnIiJycYzn5G6YoBORRxJFtx5ARERE5BEYz8nd8DeaiNxC/rUC3kEnIiJycYzn5OmYoBORy7NYLMhMyUJ2Zo6zq0JERETVxHhOxCHuROQGVCoV6jaOgUqlcnZViIiIqJoYz4nYg05EboLBnIiIyPUxnpOnY4JOREREREREpABM0ImIiIiIiIgUgAk6EbmEazl5MBQanF0NIiIiqgHGc6IbY4JORC4hPzcf+XkFzq4GERER1QDjOdGNcRV3InIJUbGRzq4CERER1RDjOdGNsQediIiIiIiISAGYoBMREREREREpABN0IiIiIiIiIgVggk5ERERERESkAEzQiYiIiIiIiBSACToRERERERGRAjBBJyIiIiIiIlIAJuhERERERERECsAEnYiIiIiIiEgB3DpBnzFjBgRBsP0QERGR62E8JyIiT+HWCXpiYiJkWbb9EBERkethPCciIk/h1gk6ERERERERkatggk5ERERERESkAEzQiYiIiIiIiBSACToRERERERGRAnh8gj5v3jxnV4H+hW2iLGwPZWF7KAvbQznYFsrDNlEWtoeysD2URUntIcgetByqIAhlVn8t7zFyLraJsrA9lIXtoSzltUdKSgpiYmKcVCPPwHjuGtgmysL2UBa2h7IoKZ6rHX5FJ+rUqVO5+6dyT1XlYZsoC9tDWdgeyvLv9khISMDs2bOdVBvPwHjuOtgmysL2UBa2h7IoJZ57VA96eWrj7pW9y2R5LI/lsTyW5xnlUfUxnrM8lsfyWB7LU0p5NeHxc9CJiIiIiIiIlIAJOhEREREREZECMEGvBa+++irLUxClv16ll2dvSn+9Si/P3pT+epVeHrk3pf/+Kb08e1P661V6efam9Ner9PLsTemvV+nlKQnnoCtovgFZsU2Uhe2hLGwPZWF7KAfbQnnYJsrC9lAWtoeyKKk9PL4H3Z3vvrgqtomysD2Uhe2hLGwP5WBbKA/bRFnYHsrC9lAWJbWHx/egExERERERESmBx/egExERERERESkBE3QiIiIiIiIiBWCCTkRERERERKQATNCJiIiIiIiIFIAJegl6vR4JCQnOroZH2rlzJ0aNGoWRI0di+/bt5R4zYsQI9O3b1/Zz7NgxB9fSs1SmTaj28DPhGhg3lInt4jz826U8jOfOxc+Ea1BS3FA7uwJKsW3bNmzbtg1Go9HZVfE42dnZWLp0KRYvXgxRFDF+/Hi0adMGoaGhtmMkSYLRaMTWrVudWFPPUZk2odrDz4RrYNxQJraL8/Bvl/IwnjsXPxOuQWlxgz3oRQIDA9GlSxdnV8MjHThwAG3atEFwcDACAwPRvn17/Prrr6WOyczMZDBxoMq0CdUefiZcA+OGMrFdnId/u5SH8dy5+JlwDUqLG0zQi3To0AHt2rVzdjU8UmZmJiIiImz/Dw8PR1ZWVqlj0tLSkJOTg4SEBAwZMgSLFy+GJEmOrqrHqEybUO3hZ8I1MG4oE9vFefi3S3kYz52LnwnXoLS4wQSdnE6W5TKP/fsPk7+/PwYPHoy33noLS5YswcmTJ7FlyxZHVdHjVKZNqPbwM0FEroh/u5SH8dy5+Jmg6vCoOegbNmzArl27Sj0miiIWLFjglPp4more/969e+PEiRO2xzIzMxEbG1vquPr16yMuLg6CICAwMBCdO3fGuXPnHFFtjxQaGnrTNqHaU5n3n58J8mSM587FeO46GM+di/GcqsOjEvRBgwZh0KBBzq6Gx6ro/b969SpWrlyJ/Px8CIKAffv2IT4+HrIsIzU1FVFRUdiwYQOOHj2KqVOnQq/XY+/evejXr58TXoVnaNeuXbltQo5R0fvPzwSRFeO5czGeuw7Gc+diPKfq8KgEnZQpODgYo0ePxqRJkyDLMoYPH47w8HDo9Xo8+uijWLduHQYMGIDLly9jzJgxMJvN6NmzJ7p37+7sqrutitqEHIOfCSJyRfzbpTyM587FzwRVhyCXNzmCiIiIiIiIiByKi8QRERERERERKQATdCIiIiIiIiIFYIJOREREREREpABM0ImIiIiIiIgUgAk6ERERERERkQIwQSciIiIiIiJSACboRERERERERArABJ2IiIiIiIhIAZigExERERERESkAE3QiIiIiIiIiBWCCTkRERERERKQATNCJiIiIiIiIFIAJOhEREREREZECMEEnonIVFBRg4MCBOH78OAAgKSkJw4YNw5kzZ5xcMyIiIqosxnMi18IEnYjKpdPp0LdvX3z55ZfIzs5GYmIiJk2ahEaNGjm7akRERFRJjOdErkWQZVl2diWISJkyMjIwcuRIxMXFYcCAAejVq5ezq0RERERVxHhO5DrYg05EFQoLC0N0dDRCQkIYzImIiFwU4zmR62CCTkQVWrhwISIiInD48GHk5eU5uzpERERUDYznRK6DCToRlWv16tW4dOkSXnvtNTRv3hzffPONs6tEREREVcR4TuRamKATURk7d+7Ejh07kJiYCLVajQceeACbNm2C2Wx2dtWIiIiokhjPiVwPF4kjIiIiIiIiUgD2oBMREREREREpABN0IiIiIiIiIgVggk5ERERERESkAEzQiYiIiIiIiBTg/wHptqlnT64kDAAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plot_predicted_graph(metric_learning_model)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Track lengths"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 13588])\n",
+      "torch.Size([13588])\n",
+      "torch.Size([2, 2370])\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAGQCAYAAABWJQQ0AABPDUlEQVR4nO3deXxU5dn/8e+ZLCyBrCRgIMiiBARUNBpAoGIKtIqtbV1K01oLbV14Si2hPrZ9bMivWm21ailVq4Vaqa217isuoBYQCAjIIoadAEMICQnZmGSW8/sDGcGsM5ntZD7v12teZE7mnvs69xzmynXOfc4xTNM0BQAAAAAhYAt3AAAAAACiBwUIAAAAgJChAAEAAAAQMhQgAAAAAEKGAgQAAABAyFCAAAAAAAgZChAAAAAAIUMBAgAAACBkKEAAAAAAhAwFCAAAAICQ6VIFyJEjRzRlyhT96Ec/OmP5yy+/rClTpmjRokWy2+2aMmWKCgsLO/Se1dXVqq6uDkK0kWHt2rW66aabdOWVV7b4+1Cvf7D627p1q6ZMmaKFCxe2+1pft5HOOn2dQ903gJPIH75rL38E27x58zRlyhTV1NSE9LM5vd9Av3dbyGPoSmLDHUCo9ejRQ3l5eRo2bFiHXj9r1izFx8frX//6V5AjC4/nn39ehw4d0o9//OMWfx/q9e/q492SaFxnwIrIH2dqL3+EUiR9Nl39c29JNK4zOifqCpCUlBTdeeedHXrtvn375Ha75XK5tHv3bg0dOjTI0YXWvn37dOjQIdlsNl1wwQXyeDyy2Wxn/D6U69/Vx7slX1znHj16hDskAK0gf3yuvfwRapHy2XT1z70l5DH4I+oKELvdru9///saP368ioqKJElvvfWWnnnmGR05ckR9+vTR1Vdfreuuu0733HOP6uvrJUm/+MUv9Oyzz+rQoUN67LHHtG3bNsXHx+uiiy7Sj3/8YyUnJ3vf/8EHH9SePXv0la98RevXr1dlZaWef/557d69W7fccoumTJmitLQ0lZSU6Pe//71efPFFvfjii6qoqFBKSoquvPJK5efna+vWrfrZz36m3NxcHTt2TAcOHNCoUaM0c+ZMPfLII9q1a5fOOecc/fKXv1R6enqL69tWvPfcc4/Ky8slSbNnz9ZLL72khIQEb9svrv+9997bLP7vfve7Kigo0De/+U3deuut3vfasWOH3njjDcXFxWnjxo3661//qtLSUvXt21ezZs3SuHHjmsXakf7aGi9J2r17tx599FHt3LlTvXr10le+8hV997vfbdbXX/7yFz333HO68cYb9b3vfa/d7aa1dTj1mU6ePFnx8fFatWqVEhMTddtttyk3N7fdbeKL6/zwww9LktxutxYsWKD3339fKSkpuv322zV69Og2t1cAwUX+6Hj+2Lx5swoKCnTllVfq+PHj2rRpk4YOHaqbb75Zw4YNa3V92soXO3bs0IIFC3Tw4EFNmDBBTqezzc+mtXzQ0mfjb79fRB4jj6FjutQ5IKfs27dPU6ZM8T7ami+5c+dOPfDAA4qJidGMGTOUlJSkxx9/XB988IGeeOIJJSYmqk+fPnr22WfV0NCggoICrVu3Tl/60pc0evRovfPOO7rrrrtkmqZcLpfmz5+vLVu2aPz48Vq7dq327t3brM9169bp2WefVa9evbR582Y98sgj6tatm775zW+qR48eevLJJ7Vp0ybv64uLi5WWlqZ+/fpp/fr1uu2229S9e3f1799fW7du1b///e8W1629eJ944gllZWXJZrPpnXfeOSN5SGq2/i3F354DBw7ozjvvlMPh0PXXXy9J+s1vfqMdO3Y0e21H+mtrvGpqajRv3jzt2rVLV155pVJTU/XUU0/p1VdfPaOfN998U88995yuvPLKDn1pd2Qd3n//fR06dEjnnXee7Ha77r//fklqd5tobZ2Li4u1c+dODRkyRKWlpXrggQcktb29Aug88sdJnc0fpyxdulQNDQ269NJLtXnzZt155506ceJEi+vT1ndtbW2t7rjjDu3Zs0eTJk1SSUmJPvnkk1Y/m7bywRc/m0D2Sx4jj6FjuuQRkISEBI0dO9b7/MCBAy3+wSvJe9JUXFyc+vbtq9tvv10VFRXKzMxs9toVK1aosrJSX/va1/STn/xEklRVVaWPP/5YJSUlqqur0969ezV16lTNmzdPlZWV+va3v93sfWw2m5577jn17t1bBw4c0K9+9SsNHjxYTU1N2r9/v/bv36/Dhw8rKytLkpSTk6Pf/OY3+vTTT/WTn/xE2dnZuvfee3Xw4EH94Ac/UFlZWYvr1l68w4cP7/igthL/5s2b23ztm2++KY/Ho+nTp2vkyJFKTU3Vww8/rJdeekl33HGHz/21NV4HDx5UXV2dd2/Q8ePH9fjjj8vlcnnfa/v27Xrttdc0YsQI/fSnP+1Q/22tw7e+9S1J0ogRI/TQQw9JOjkXtrS0VMePH9fOnTs7tE18Uf/+/fWnP/1JkpSfny+73S6Xy+XT9grAd+SPjsXb0fzRr18//f73v5d08g/ZFStWaMOGDerXr1+z9Xn88cdb/a4999xzVV9f7/1+r66ubnOP+X//+99288EpbX3H+9pva8hj5DGcqUsWIOnp6WfMBX355ZdbTSAXXXSRvv71r+v999/3VvvDhw/Xz372s2avPfVFfeoQoiSNGjVKH3/8sQ4fPqzjx49720tSWlqaMjMzVVdXd8b7jBkzRr1795Yk9ezZU2+88Ya2b9+uiy66SKZpNuu3b9++kqTu3btLks4666wznremvXj9LUBOj789hw8fliQ98sgjZyw/dOiQX/21NV5HjhyRJO+c26SkJP385z+XdPLqIZK828HevXtVVVWltLS0gKzDgAEDvD+npaWptLRUHo9HBw8elNT+NvFFAwcO9P6cnJys8vJymabp0/YKwHfkj47F29H8cd55553RfsWKFTp27Ji3ADl9fdr6rj11XsGoUaMknfxeHDhwoEpLS1vst6188EWB7Lc15DHyGM7UJQsQXxw+fFiTJk3STTfdJLvdrmXLlumFF17QM888o1/+8peS5P1yOPVFvm3bNl1++eWSPv9CyMjIUExMjCRp165dkk4eAi4rK2s2VenU6yTpP//5jzZu3Ki7775bubm53r0FgdBevB31xaR2evyGYUg6uWdMkjwezxmXH0xNTZV08hDtoEGD5Ha7Zbfb2zxJra3+2hqvPn36SDo5f3b8+PGqqanR3/72Nw0ZMkSDBw+WdPJLburUqVqwYIGeeOKJDp202NY6nPqjob227W0TLf3h0JKObK8AQoP80b7t27d7fz41delUESSduT5tfde+/vrr3vcYM2aMGhoavH9Ut6StfHD11VdL+vyzCWS/p5DHWkceg0QBoo8++kgLFy7UqFGjlJubq4qKCkny7p3p3bu3Dh8+rKVLl2rixIn629/+ptdee02maaq2tlYff/yxhg0bphEjRsjhcCgxMVFvv/22DMNQSUmJPB5Pm/3Hxp78CP79739r1apVWrZsmSSpsbGx0+vWXrwdcfr6n3vuuc1+n5mZKZvNppUrV3oP6x89etT7+6lTp+rVV1/V/fffryuuuEJr167Vxo0b9fOf/1xTp071ub+2xmvSpElavHixnn/+eTkcDm3ZskXbt2/X3Llzve2zs7N11VVX6dVXX9WyZcs0ffp0756t1rS1Du1d4SQnJ6fdbeL0dT7//PPbfL/2tlcAoUP+aJ/dbtcvf/lLJScn67///a/69++vMWPGaN++fc1e29Z37dixY/WPf/xD//rXv1RZWamSkpI2TwafOHFim/ng9M8mkP1+8b3JY82RxyB10ZPQfXH11VcrPz9fFRUVeuqpp7RlyxZNnz7de8WJG264QampqfrPf/6jhIQEPfDAA7r44ou1fPlybdq0SV/+8pd19913y2azqWfPnvrtb3+rQYMG6f3339eIESN09tlnt9n/tddeqwsuuEA7d+7U4cOHvSeTrVq1qtPr1l68HXH6+rckLS1Nt912mxISErRhwwZdfPHFOuecc7y/z87O1vz58+VyubR48WJVVlZq3rx5LRYfHemvrfFKTU3V7373Ow0ePFivvvqqjh07ph/96Ef66le/esZ72Gw2/fCHP5Qk/fnPf243yfu6DqfryDbR3jqfrr3tFUDokD/aN23aNMXExOjDDz/UhRdeqPvuu++MowGna+u7Njs7Wz/96U911llnadmyZcrKymqzEGovH5z+2QSy3y++d0vIY+QxSIbZ0WNmaNehQ4f03HPPqU+fPrrmmmu0e/du3XHHHRo+fLj3snSILmwTADqiq31XnLoM7+mXaIc1dbVtE5Eh6qdgBdJZZ52lnj176umnn9aTTz4p6eReh9MPnSK6sE0A6Ai+KxCp2DYRDBwBCYKmpiZVVFSod+/eHb5aFLo2tgkAHdFVvivKysr0+uuva+TIkWdc1hjW1VW2TUQGChAAAAAAIRP1J6EDAAAACB0KEAAAAAAhQwECAAAAIGS6zFWw7rzzTs2ZMyfcYQBAyHXr1k1paWk+t7t+5QNaX7VLD180S1/rf0kQIrMG8geAaBWu/NFlTkI3DEP+rordbldmZmaAI+o6GJ/2MUbtY4za1pnx8bXtcUe9vrvyAb1RuUUej1vp3ZP0+KW36pr+uX71b3Xkj+BhfNrHGLWPMWqbFfNHlzkCAgBomctzXPsqH1VD027FGKZ++M4xrXE7pYQ4SdJRx3F9Y8U9+u05BTq711nql5qiiel9FGcYYY4cABBOwcofFCAA0IWZcurD3ZN1/MRGGZK6xcSqwjlV6hYvfbbXf2RKXyXVXaBffrhdSj0sxcdpeGKill0+UZndu4d3BYKgqKhI8+fPD3cYABDRgpk/OAkdALqw4w0fqcax0fs8pcfF6p+UfXL3kyndfO5kXZf8fW2oTZHOypC6d5MkfVpTowU7d4Up6uAqLCyUaZreBwCguWDmD46AAEAXVl5foYZGKaGb5DGlpO6jFBOXoBgzRk/mztZZsefry+8tk3p3kzwe714tSdpbXx/GyAEA4RTM/EEBAgBdmOd4qQ4ck4afJRmS4uLO0ZRBI/TAoJkakzxYx5qc+vSaq7SrtlY7amu0s7ZW22tqtb22Tt1jOEgOANEqmPnDstmlqKhIhmF4HwCAM5lHVii7+B5dZLtM+2skm02Kjz9Hd174dY1JHixJSo2PU3avBF11Vj+lufur7sgAJR4dooyyofp4U09V1DnDvBYAgFALdv6wbAHCHF4AaJ1Zvlru978nt7NGk2tduqjPfB1vlBK7D2u1zZcGdtP6E06VGFJjYoLquvfUbSuOqsbpCWHkAIBwCkX+sGwBAgBonfvD2TIdlTIluWq2aWx5uS455zXFx/Zrtc3ZCbF65MuZkiEZMVJcz1htqXfrlpVHQxc4ACCsQpE/KEAAoAsy+uScnLRrSKYhOfc8pXMqTig+JqPVNs4Gpwat3qbvjE6TDEOm5+QR5k2VTaELHAAQVqHIHxQgANAFxYz7k4z0KTIdnpOXLzEk56ofSFWbW23jqG3U0z9/Q+e/9J6yByTKtBnqEWvTQ2P7hDByAEA4hSJ/UIAAQFcU002xlz8ps2m4PNUZUtwYGWkT5DnwcqtNqkqrFNe9pzb+ZY3Oe/p1de8Wpwdy0zRtQI8QBg4ACKsQ5A8KEADoqnokyky+Tk3b09RYMkDOgzlylmbKtfE9eQ7vkVlXJUny7Dkq9z3PqmJfpTwetxLSMuR4dYP+7+hO5WVSfABA1Aly/uA+IJJ2VzpUbdT43C41IV79Elu/zTwAhJ3rhDy1x6TatXLvWHtymc2Q6XKq57wFMsqHquHHjyuuv0tHbzg5v9c0TaUmZ2hQz/gwBm4NuysdiktsVHqvbuEOBQACK4j5w7IFSFFRkebPn9/p91m6rUy3/3uH4mJ3+ty2V/c4vfOzSerVzbLDCKCLs/UZ8PmTz+6Z5HE1Kf6KH8n9nOT4ywIZMtRoa1TFzqMyZUimqfiYbkrt3zdMUVvDqfyRmrBXH/4iL9zhAEBABTN/WHYKVqDuA7L3aL2cbo9qHS6fH5W1DjW5uD4+gMgVN/kGxQweJUkynW45q+pkxI2X56kecvzlDUmGTNOpmtKDOrzx8Mkrn0hKGpCogTkDWn9jePOH/bgj3KEAQMAFM3+w6x4AujAjIVG97nlZ7u3FcpUdlMdercafbZSraadkmDKMGLldDXJ1s2nkVSNkylBS394ac+1oxXUnRQBAtApm/iC7AEAUiBlxqWJGXCpJissqUf0ti+Q5XC0ZUuzEERq0+FYN7df6Nd4BANEpGPnDslOwAAD+iZ2UrYS/zFLMoHTFXjFcSS/+n2KiqPgoKiqSYRjeBwCgYwKVP0J+BOTpp5/W008/7X3u8Xh08cUX65577tHy5cu1ZMkSmaapGTNmaNq0aaEODwCiQuzEbCVuvCfcYYRFYWGhCgsLvc8pQgCg4wKRP0JegOTn5ys/P9/7/P7779fkyZNVXV2tRYsWaeHChbLZbJo9e7ZycnKUlpYW6hABAAAABElYp2Bt2LBBhmEoJydHxcXFysnJUUpKipKSkjRu3DitXr06nOEBAAAACLCwnYTu8Xi0ePFiFRUVSZIqKiqUkfH5HLL09HRVVlY2a9fW/T8Mw1BBQYHmzp3b4Thqany/AeHpysrK5OjR9c/lt9vt4Q4h4jFG7WOM2ubv+DCFCABgJWH7y3nlypUaOnSod4pVS/fy8Hia32Pji3N3TzEMw6/7gSQmnpB02Od2p/Tr10+pCV37bsF2u12ZmZnhDiOiMUbtY4za1pnxobADAFhJ2KZgLV++XJdddpn3eVpamioqKrzPKyoq1KdPn3CEBgCWMnmVS9n/KQ13GAAAiwlX/ghLAeJwOLRlyxZdeOGF3mW5ubkqLi5WfX29GhoatGbNGo0dOzYc4QEAAAAIkrBMwVq/fr1Gjhyp+PjPpy6lpKRo5syZKigokGmays/PV3p6ejjCAwAAABAkYSlAJkyYoAkTJjRbnpeXp7y8vDBEBAAAACAUuBM6AAAAgJChAAEAAAAQMpYtQIqKimQYhvcBAAAAIPJZtgApLCyUaZreBwAAAIDIZ9kCBADQeR+uXafijzaGOwwAgMV0Jn+E7U7oAIDw2r1nn3bt2StJSktJ0dAhg8IbEADAEjqbPzgCAgBRaPeefVq1tliJib2VmNhbq9YWa/eefeEOKyQ4hxAA/BeI/EEBAgBR6rLcS9Wje3f16N5dl+VeGu5wQoZzCAGgczqbP5iCBQBR5NReqlOHy3ft3XvG8y/+HgAAKbD5gyMgABAlTh02b080TccCALQv0PmDIyAAEAU+XLtOu/bsVWJib+3au9e75+poRaUk6a1l73lfe2pOb2VVlS69eExY4gUARIZg5A/LHgHhJEIACC6XyxXuEAAAFtRe/rDsEZDCwkIVFhZ6n1OEAEDrxudeor7p6Vq1tlijR4zwztE9tedqWt5kSZ8fZr8s91LOAwEABCV/WLYAAQD4pqMFBcUHAOB0gc4fFCAAEEW+eLWSU7j6FQCgLYHMH5Y9BwQA0Dmr1hbrhMOhEw5Hh65uAgCA1Pn8wREQAIhCp/ZUnUocTLsCAHREIPIHBQgARKmhQwbpyNGj3p8BAOiIzuYPChAAiGLjcy8JdwgAAAvqTP6w7Dkg3AcEAAAAsB7LFiCFhYUyTdP7AAAAABD5LFuAAAAAALAeChAAQFRhCi8AhBcFCAAgqjCFFwDCiwIEAAAAQMhQgAAAAAAIGe4DAgAW995lscrMzAx3GAAAiwlX/rDsERBOIgQAAACsx7IFCCcRAgAAANZj2QIEAAAAgPVQgAAAAAAIGQoQAAAAACETlqtgbd++XQsXLlRlZaUmT56sm2++WZK0fPlyLVmyRKZpasaMGZo2bVo4wgMAAAAQJCEvQBwOh37729/qvvvuU3p6ugoKCrRjxw5lZGRo0aJFWrhwoWw2m2bPnq2cnBylpaWFOkQAAAAAQRLyKVhr167V6NGj1b9/f8XHx+vBBx/UkCFDVFxcrJycHKWkpCgpKUnjxo3T6tWrQx0eAHRJTU6ndu/dp/dWrFLpwUOSpFVrirVuwyZJ0u49J3+3e+8+NTmdYYwUABBJgpE/Qn4EpKysTA0NDbrllltUVVWl3NxczZkzRxUVFcrIyPC+Lj09XZWVlc3aFxUVaf78+S2+t2EYKigo0Ny5czscT01Njc/rcLqysjI5enT9+zna7fZwhxDxGKP2MUZt83d8OnIvpAMHDql4w0alpiTL2XR6gvj8MuZNTU0q/mijZEpDhwzyK5ZgYwovAIRWMPJHyP9ybmxs1M6dO/Xwww+rZ8+eKiws1Ouvv97ivTw8Hk+zZYWFhSosLGy23DAMv+4Hkph4QtJhn9ud0q9fP6UmxPvd3grsdjt3WW4HY9Q+xqhtnRmfjhQupQcPKjUlWdPyJnuXXTb2Uu/PQ4cM0tAhg/TWsvdUevBgRBYgTOEFgNALRv4IeQGSkpKiiy++WOnp6ZKksWPHat++fcrOzlZJSYn3dRUVFcrKygp1eADQJQ0cMKBDrztn8OAgR+K/06fwStKDDz4owzC0fPly7xReSd4pvNOnTw9nuADQJQQjf4S8ALn00kv1zDPPqLy8XAkJCVq5cqWuuuoq5eTkaMmSJaqvr5dhGFqzZo2uu+66UIcHAF1SR49oROKRj1M6O4UXAOC7YOSPkBcgffv21U033aR58+bJ7Xbr8ssv15e//GUZhqGZM2eqoKBApmkqPz/fe5QEANA5q9YUSzrzsLkk1dXXa92GTSo7Ui6n06m+Gem6YPRI9TvtD/pI0dkpvME8h5Dzm1rH2LSPMWofY9S2YJ5DGIz8EZazp6dMmaIpU6Y0W56Xl6e8vLwwRAQAXVt8fFyzZXX19Xr1zbfVK6GnLhw9UpJUdqRcby97X1PzLo+4IqSzU3iDeQ4h5ze1jHO/2scYtY8xaluwzyEMRv7o+pdvAgDokovGNFu27qON6pXQU1d/9fMrRo3IHqa3lr2nj7dsU7+8yCpAmMILAKEXjPxBAQIAUWD3nn2Ki4/TwAH9vcvKyo9691ydbuCA/tq0ZVsow+sQpvACQOgFI39YtgBpay4vAOBMpQcPqsnpPCOBWBFTeAEgtIKRP0J+J/RAKSwslGma3gcAoHUDBwzQsarqz67TfvJOtv0y0rVrz75mry09eEipKcmhDRAAEJGCkT8sewQEANBxWVkn91yVHjzovZPtJReP0atvvq1X33xb53x2+cTSg4d0pPyoRo0YHq5QAQARJBj5gwIEAKJAfFyc9261p/RKSNDVX52qdR9t1KYt27yXURw1Yri2bv9USYmJEX1fEABA8AUjf1CAAEAU65WQoMmTJjRbnpSYqFVri5WSksx0LABAM53JHxQgAIBmhg4ZpJSUZPXqlRDuUAAAFtKR/EEBAgBoEUc+AAD+aC9/WPYqWAAAAACshyMgFlNW49DG0mq/2o4bkqbknnGBDQgAAADwgWULkGi9EeFNf1un0mMNshm+tXN7TF0yKEVPzcwNTmAAAABAB1h2Cla03ojweINT9Q6X6nx8NDS6dbzBFe7wAQAAEOUsW4AAAAAAsB4KEABAVCkqKpJhGN4HACC0LHsOCADAN1u3bu3Q60aNGhXkSMKrsLBQhYWF3ucUIQDQtkDnDwoQAIgSXb2wAAAER6DzB1OwAAAAAIQMBQgAAACAkLFsAcJJhAAAAID1WLYAidb7gAAAAABWZtkCBAAAAID1UIAAAAAACBkKEABAi5jeCgDwR3v5g/uAAEAXZ0o6dakOt9utmJiYk8tN84yLeFQeq9JBu10xNpuy+vdXUlJi6IMFAESMYOUPChAA6OIMSbW1ddq0dZtKSw9qYFZ/XTB6pBJ795YkuT0efbx5q0p27ZZpmvKYHm3etl2jRmRr9MjzuNIgAESpYOUPChAA6OJqamu17IOVanI6lZyUKHtZuSqrqjV54mVKSuytbds/lb28QqPPG6Hhw86V2+PW1k+2a98Bu7r36KFhQ4eEexUi3tJtR3TzU+t12Tl99M8f5YY7HAAIiGDlD8ueA8J9QACgYzZs2iyHo1ETx16qq74yRRPH56rJ6dS27SUyTVPbS3aqR3ysRp03XLGxMeoWH6+LL7xA3eJjtWXb9nCHbwlr9lRKhqnNB6vCHQoABEyw8odlCxDuAwIAHVNeUamzs/or86x+Omi3K7NfX2X2y1DpwQNqbGqSx+NRnz59JJ2c4+t2uyVJKcnJsn023xcAEH2ClT8sW4AAADqmW7duSklO1u69+7R+42bt3rtPqcnJcrs9MiTFxcbooN0uj8dUTEyMYmJi5HK5VHbkiNwuZ7jDBwCESbDyBwUIAHRxbo9bTqdTSYm9Nf7SHCUl9pbT5ZJh2NStWzcNGTRIpmx6778rdPCQXaUHD2rZByskI0Yjhp0b7vADjim8ANAxwcofFCAA0MXZDJtssTYdrajUuo2bVV5RqRhbjAzj5BVMRp03Qt3jY1VT16DijR9r05ZPVFffoD6pyRreBQsQpvACQMcEK3+E5SpYN954oyoqKrzP77//fo0cOVLLly/XkiVLZJqmZsyYoWnTpoUjPADoUgzDJpnS8Oxz5XS6NGLYudq6vUQyDHncHsXHxykpsbcqj1Vp8NlZiouNU9++6crs1y/coQMAwihY+SPkBYjH41FTU5PeeOONM5ZXV1dr0aJFWrhwoWw2m2bPnq2cnBylpaWFOkQA6FIcjhM6frxGhmHo/FHnSZKO1xyXaZqKjY2R0+nSrj17lZyYpEsvvijM0QIAIkWw8kfIp2BVVFS0WFQUFxcrJydHKSkpSkpK0rhx47R69epQhwcAXU7f9D46aD+ssvJySVJZebnsZeXKyjxLhmHocFmZunXvoUFnD5RpmnK73UxNAgAELX+E/AhIWVmZjh8/rjvuuEP79u3TpEmTdNttt6miokIZGRne16Wnp6uysrJZ+6KiIs2fP7/F9zYMQwUFBZo7d26H46mpqfF5HU5XVlYmR4/QDaPH4/a7rdPplN1u96utv+2iCWPUPsaobf6OT3snUo85f5Te/WClln+wShl9UlVeUanu3bt792btO3BAzqYmDRzQX4ZhyGazcXI2ACBo+SPkBUjv3r117bXX6mtf+5pqa2t111136fXXX2+xWvJ4PM2WFRYWqrCwsNlywzD82mOXmHhC0mGf253Sr18/pSbE+93eVzbbp363jYuLU2Zmps/t7Ha7X+2iCWPUPsaobZ0Zn/YKl6SkJE2eeJk+3rpN9rIyZfbtqwtGj1RSYqKampp0yF6mPmmpSkjoKan9ggYAEB2ClT9CXoCcffbZGjRokAzDUFJSkiZOnKi9e/dq2LBhKikp8b6uoqJCWVlZoQ4PALoc0zSVmpKsyRMvk9vtVsxnN4cyTVNxcXGadNk4de/WLcxRAgAiTbDyR8jPAXnhhRdUVFQkl8uluro6ffjhhxo5cqRyc3NVXFys+vp6NTQ0aM2aNRo7dmyowwOALufUEWLTPHmjqFM/n7oPRv+z+iktNSXcYQIAIkyw8kfIj4B8/etf19GjRzVr1iy5XC5NnTpVeXl5kqSZM2eqoKBApmkqPz9f6enpoQ4PALqk0w+LM8UKANBRwcgfIS9A4uLidOutt+rWW29t9ru8vDxvMQIAAACg6+FO6AAAAABChgIEAAAAQMhQgAAAAAAIGcsWIEVFRd4z8DmhEgAAALAGyxYghYWF3kuB+XMDQgAAAAChF/KrYAEAwmPr1q0det2oUaOCHEl4FRUVaf78+eEOAwAsI9D5gwIEAKJEVy8sOqqwsFCFhYXe50zjBYC2BTp/WHYKFgAAAADroQABAAAAEDIUIAAAAABChgIEAAAAQMhYtgDhPiAAAACA9Vi2AOE+IAAAAID1WLYAAQAAAGA9FCAAAAAAQoYCBACi2Ko1xVq1pjjcYQAALKYz+YM7oQNAFKurrw93CAAAC+pM/uAICAAAAICQoQABAAAAEDKWLUC4DwgA+OdYVbWanM5my5ucTh2rqg59QAAASwhU/rBsAcJ9QADAP28te09vvfveGUmkyenUW+++p7eWvRfGyAAAkSxQ+cOyBQgAwD/T8iarrr5eb737njweUx6PqbfefU919fWaljc53OEBACJUoPIHBQgARJnUlGRvEqmqrlZVdbU3eaSmJIc7vKBjCi8A+CdQ+YMCBACixOlzd08lEbfbLbfbfUby6OrngjCFFwB8E+j8QQECAFHitaVv61hVlff5qSTyxT1Xx6qq9NrSt8MQIQAgEgU6f3AjQgCIIk1NZ169JCO9T7uvAQAgkPmDAgQAokRW/0yt27BR20t2tPm6uvp6ZfXPDFFUAIBIF+j8YdkpWJxECAC+ueTiMRo4oH+7rxs4oL8uuXhMCCICAFhBoPOHZY+AFBYWqrCw0PucIgQA2tYrIUGXXERhAQDwTaDzh2WPgAAA0BXsOFKrpVvLwh0GAISMZY+AAADQFXzr0Q/lcpuqcYzU9TlZ4Q4HAIIu7EdAPB5PuEMAACBsah0uNbk9qm7g6mMAokNYj4AsXrxYjY2NuvXWWyVJy5cv15IlS2SapmbMmKFp06aFMzwAAAAAAdbhIyB//vOfA9rx5s2b9corr3ifV1dXa9GiRXrwwQf1xz/+UUuWLFFlZWVA+wQAhF6g88cpHEEHAGtqtwCZM2eO7rrrLi1btkwbNmxQfX39Gb9fuXKlz53W19friSee0HXXXeddVlxcrJycHKWkpCgpKUnjxo3T6tWrfX5vAEBkCEb+OGXx4sX6y1/+4n2+fPly/eAHP9BNN92kt956y+/3BQAEX7tTsObNm6etW7dqw4YNeuyxx7R//34NGDBAI0aM0Nlnn62nnnpKEyZM8KnTBQsW6Hvf+57Ky8tVU1MjSaqoqFBGRob3Nenp6RwBAQALC0b+kD4/gn5qmu6pI+gLFy6UzWbT7NmzlZOTo7S0tECvEgAgANotQAYOHKiBAweqvr5e1113nU6cOKGSkhJ9+umn+uSTT3T99df71OG7776rhIQEXXrppXrttde8y03TbPbalg6vFxUVaf78+S2+t2EYKigo0Ny5czscz6kCyF9lZWVy9AjdqTQej9vvtk6nU3a73a+2/raLJoxR+xijtvk7PpF6H6RA5w/pzCPop76/Tz+CLsl7BH369OkBXR8AQGB0+C/nU9OlevTooQsvvFAXXnihXx2+//772rNnjz766CPV19fL5XKpvr5eo0aNUklJifd1FRUVyspqfjnCL96A8BTDMFosYtqTmHhC0mGf253Sr18/pSbE+93eVzbbp363jYuLU2Zmps/t7Ha7X+2iCWPUPsaobZ0Zn0gv7AKVPySOoANAV9DhAqSmpkYffvihevXqpeHDh6tPnz5+dXj33Xd7f37ttdd04MAB3XrrraqqqtKSJUtUX18vwzC0Zs2aM84RAQBYU6DyRyQfQa+vrzvZr2n6VRCan71fpBeT/uiK6xRojFH7GKO2We0IeocLkLvuuktHjx5Vnz59tGvXLiUmJmrEiBEaPny4brjhhk4HkpKSopkzZ6qgoECmaSo/P1/p6emdft9gMiW9seWwenXzfQrW1JH91DM+JvBBAUCECVT+iOQj6AkJvSSVy2YYfhzJ2ihDUmJiYpc7SsiRz/YxRu1jjNpmxSPoHf7Lef/+/fr73/+upKQkuVwu7dmzR59++qk+/dT/KUFfnJ+bl5envLw8v98v1Jqcpn77xqfytXh0eUyt3FWpB647PziBAUAECVT+4Ag6AHQNHS5AzjnnHLndJ0+Ajo2N1bBhwzRs2DB97WtfC1pwEc8wVd/o9PnwlWlKtQ7ueAsgOgQ7f1jxCDoARLMOFyC5ubn67W9/q9tvv10DBgwIZkwAgC4kGPnD6kfQASCadbgA+fDDD7Vr1y7NmjVLOTk5ys7O1rBhw3TuuedyrXUAQKvIHwCA03W4AHnooYfk8XhUWlqqkpIS7dixQ//4xz+0Z88evfHGG8GMsUVtXc0EABA5Ii1/AADCq8MFyB/+8AdlZ2crOztbeXl53jvQulyuoAXXli9ezSRSb8QFAJHiWFW1evVKUFNTk7aX7FTZkXJVVVdLkvpmpGvggP4aOmSw4uPiAtpvpOUPAIBvAp0/OlyAnHXWWVq3bp3+8Y9/qKamRkOHDvUmlClTpvi1MgCA0Hlt6du65KILtWnLNknSOUMG6YLRI+VscqqsvFybtmzTJyU7NHniBKWmJAesX/IHAFhboPNHhwuQ73znO96fKysr9frrr+vZZ5/VkSNHSCAAYBHrNmxSSnKSpn35ijP2VA0dMkiXOJ16778r9d6Klbr6q9MCdiSE/AEA1hfI/GHzJ4C0tDTdeOONuvvuu7nUIQBYjqGPP9uLdbr4uDhNnjRBTU1O7d6zNyg9kz8AwMoCkz86XICsX79etbW1Zyy74IILtG7duo6+BQAgjIYOHqS+GemKj4+T1PKdv+Pj4nTOkEHatWdfwPolfwCAtQU6f3R4CtZf//pX7d27V5mZmRoxYoSGDx+uY8eONUsqAIDIdNnYSzv0uqwB/QNagJA/AMDaAp0/OlyAPPbYY3I4HNqxY4c++eQTbdiwQXa7XbfccktH3wIAEEb/eu5FTZ50mfplZLT5un4ZGZpx7TcC1i/5AwCsLdD5o8MFiCTt3LlTu3fv1tChQ3XNNdeoe/fuvjQPKO4DAgC+6ZXQUwcOHmo1gaxaU6y6+npJUmpKii656MKA9R1J+QMA4JtA548OnwPyzDPP6K677tL69ev18MMPKz8/P6w3kCosLJRpmt4HAKBtAwcM0K49+9TkdLb6mqamJh0pP6rtJTsC1m+k5Q8AgG8CnT86XIC8+OKLuueee3TPPffo6aef1h/+8Ae9+OKL+uCDDzr6FgCAMBoxfJji4+L03n9XtphELrl4jKTA39Q10vJHUVGRDMPwPgAAbQt0/uhwAeJyuXTWWWd5nw8aNEjz5s3TCy+80OHOAADhc+oyiXV19Xr+5de0ak2xdu/dp91792ndhk16/uXXVFdfH9CpV1Lk5Q+OoAOAbwKdPzp8DsiYMWP0yiuv6KabbvIuy8zM1N69wblWPAAg8FJTknX1ldO0e89elR48pFVriiVJKclJOi97mIYOGaT4+Hj1bedEQ1+QPwDA+gKZPzpcgNx88836+c9/rv3792v8+PEaMGCA3nzzTQ0ePNj/NQEAhFx8XJxGZA/TiOxhrb4mNSU5YP2RPwCgawhU/uhwAZKenq5HHnlEr7zyil588UUdPnxYAwcOVEFBQUffAgAQhcgfAIDTtVmAOBwOPfnkk/rggw/08MMPq2/fvvr2t7+tc845R+eff77i4+NDFScAwELIHwCA1rR5EvqiRYu0Zs0a3XTTTUpJSfEuf/XVV3XTTTdpy5YtQQ+wNVzFBAAiVyTnDwBAeLVZgCxfvlx33HGHpk2bdsbeqsLCQn3nO9/Rr3/9a5WXlwc9yJZwFRMAiFyRnD8AAOHVZgFimqb69OnTvJHNpunTp+trX/uaFi9eHLTgAADWRP4AALSmzQJkyJAh2r59e6u/v/zyy9v8PQAgOpE/AACtafMk9G9/+9t68MEHNXLkyBb3ZBmGoaqqqqAF11WZprTpQLV+8OR6n9seP9EUhIgAILDIHwCA1rRZgOTk5Oiqq67SLbfcopkzZ+qKK65Q9+7dJUlOp1N///vfNXTo0JAE2qUY0pEah8pqHOGOBACCgvwBAGhNu/cByc/PV3Z2tv7617/qkUce0YABA9SjRw/t3LlTsbGxuvfee0MRZ5djMwx5/Dh5ntPtAVgF+QMA0JIO3YgwJydHOTk52rt3rzZt2qTq6mpdccUVmjhxopKTk4McIgDAqsgfAIAv6vCd0CVp8ODBGjx4cLBi8UlRUZHmz58f7jAAAB0QSfkDABBebV4FK5JxHxAAAADAeixbgAAA4I+ioiIZhuF9AABCiwIEABBVOIIOAOFFAQIAAAAgZHw6CT1QHn30Ua1cuVJut1vTp0/Xd7/7XUnS8uXLtWTJEpmmqRkzZmjatGnhCA8AAABAkIS8AFm3bp1KSkr05JNPyuFw6Ic//KHGjRuntLQ0LVq0SAsXLpTNZtPs2bOVk5OjtLS0UIcIAF3esapqVVVX61hVtSQpNSVZKcnJSk1JDmtcAIDIFoj8EfICpGfPnvre976nuLg4xcXFacCAAWpsbFRxcbFycnKUkpIiSRo3bpxWr16t6dOnhzpEAOjS1m3YqO0lOyVJfTPSJUnbS3ZIki4YPVIXjBoZttgAAJErUPkj5AXIyJEnA1u+fLneeOMNpaena/jw4dq0aZMyMjK8r0tPT1dlZWWow+vS6htdevuTIz63czfUKTMzCAEBCLlX33xLdfUNunziZRo4oP8Zvys9eEir1hSr9MAhXf3VqWGKEAAQiQKZP8JyDogknX/++ZKkp59+Wjt37mzxSiQej6fZsrZuQGgYhgoKCjR37twOx1FTU9Ph10YCQ5Jf12wxTe2pqNfPntngc9MYw1CMzdCofgn+9Bw17HZ7uEOIeIxR2/wdn45eSnbdho2qq2/QtLzJSk1J1u49+1S8YaMk6cLRIzUie5h65U3WW8ve08dbtumC0RwJAQAEPn+EvABZu3atUlJSNGzYMF1xxRXatWuXiouLlZ6erpKSEu/rKioqlJWV1ax9YWGhCgsLmy03DMOvyykmJp6QdNjnduHi7wUjTcOQTFP1Tb6/Q0J8jHompigzs4+fvXd9drtdmRwmahNj1LbOjE9HCpdjVdXaXrJTl0+8zDtPt3jDRp2XPUzx8XFat2GT+mZkKDUlWZeNvVTvr1ilrAH9OScEAKJcMPJHyC/DW1lZqb///e9yOByqq6vTxx9/rKysLOXm5qq4uFj19fVqaGjQmjVrNHbs2FCHBwBdUtVnJwuefth8xrXf0AWf7blq6TWnngMAolcw8kfIj4B85Stf0a5du/TDH/5Qpmlq8uTJ+tKXviTDMDRz5kwVFBTINE3l5+crPT091OEBQJd0rLrKe8Lg6ZqcTq1aUyxJ6tv389/3zUjXseoqDdWgUIUIAIhAwcgfIS9AbDab5syZ0+Lv8vLylJeXF+KIACB6fbxlq8qOlGv6V6aqVwLneQEAOqYz+YM7oQNAFEhNTtGR8qMtLr9s7KXN5uoeKT+q1OSUEEUHAIhUwcgfFCAAEAVSPksQpQcPnbG8b9/0Zsnj1GtSOAEdAKJeMPIHBQgARIHUlGSNyD5Xq9YUe+9eK528gdSpm0hJJ692smpNsS4YNZIrYAEAgpI/LFuAFBUVyTAM7wMA0LZLLhqjXgk99day97x7qS65aIwuuWiMpJN7rt5a9p56JfTkHiAAAK9A54+w3Yiws754PxCKEABo39VfnaZ1Gzbq/RWrJMl7ZZNT83svGDWS4gMA0Ewg84dlCxAAgH8uuWiMhg4erKqqah2rrpIknTN4sFJSkqNi2lVRUZHmz58f7jAAwHIClT8oQAAgCqV+liyi8T4fHEEHAP8FIn9Y9hwQAAAAANZDAQIAQJAcqXFo8aq9OlrbGO5QACBiMAULAIAg+fFT67XlUI1e/fiwXrxtfLjDAYCIwBEQAACCxCNDbo8pj8cMdygAEDEsW4BwHxAAAADAeixbgBQWFso0Te8DAAAAQOSzbAECAAAAwHooQAAAAACEDAUIAAAAgJChAAEAAAAQMhQgAAAAAEKGAgQAAABAyFi2AOE+IAAAAID1WLYA4T4gAAAAgPVYtgABAMAfHEEHgPCiAAEARBWOoANAeFGAAAAAAAgZChAAAAAAIUMBAgAAACBkKEAAAAAAhAwFCAAAAICQsWwBwmUUAQAAAOuxbAHCZRQBAAAA67FsAQIAAADAeihAAAAAAIRMbDg6ffHFF/XKK6+ooaFBY8eO1Zw5cxQTE6Ply5dryZIlMk1TM2bM0LRp08IRHgAAAIAgCXkB8sknn+ill17SwoULZbPZ9H//939aunSpLrvsMi1atMi7fPbs2crJyVFaWlqoQwQARCh2YAGA9YV8CtaxY8d01VVXqXfv3kpISNDYsWNVVlam4uJi5eTkKCUlRUlJSRo3bpxWr14d6vAAABHq1A6sBQsWaPHixSotLdXSpUtVXV2tRYsW6cEHH9Qf//hHLVmyRJWVleEOFwDQipAXIBMmTND1118vSaqsrNQ777yjcePGqaKiQhkZGd7Xpaenk0AAAF7swAKAriEs54BI0tKlS/X000/r1ltv1XnnnaeNGzc2e43H42m2rKioSPPnz2/xPQ3DUEFBgebOndvhOGpqajr82khgSPL/osP+t66srJS9Z5PfPUcDu90e7hAiHmPUNn/HJ1ruhTRhwgTvz6d2YM2dO1ebNm1iBxYAWEjICxCPx6N7771Xbrdbf/rTn5ScnCxJSktLU0lJifd1FRUVysrKata+sLBQhYWFzZYbhuHX/UASE09IOuxzu3Dp3B1P/G+dlpamzMw+neq9K7Pb7crMzAx3GBGNMWpbZ8Yn2gq7SNyBVV9fd7Jf0zzj83A2ndxx43Q62/yczM/eryt+ll1xnQKNMWofY9Q2q+3ACnkBsmLFCjU0NOiee+45Y3lubq6WLFmi+vp6GYahNWvW6Lrrrgt1eACACBXJO7ASEnpJKpfNMM4oJOPi90pqUFxcXBsF5kYZkhITE7tckc6Oh/YxRu1jjNpmxR1YIS9Atm7dqo0bN+qaa67xLrv66qs1a9YszZw5UwUFBTJNU/n5+UpPTw91eACACMUOLADoGkJegMyePVuzZ89u8Xd5eXnKy8sLcUQAACtgBxYAdA1hOwkdAABfsAMLALqGkF+GFwAAAED0ogABAAAAEDKWLUCKiopkGIb3AQAAACDyWbYAKSwslGma3gcAAJHs/17apvN+/Zb+89HBcIcCAGFl2QIEAAAreXd7meocLr2z7Ui4QwGAsKIAAQAgBAydnC7MrGEA0Y4CBAAAAEDIUIAAAAAACBkKEAAAAAAhQwECAAAAIGRiwx2Av4qKijR//vxwhxEVnB5Tv3ltu9IS4nxq5zFNfeviLF138YAgRQYAAACrsWwBUlhYqMLCQu9zbkYYPE6XqU/LanxuZ8rU/sp6ChAAEYUdWAAQXkzBQvuMz//x9WGzURgCiCzcyBYAwosCBAAAAEDIUIAAAAAACBkKEAAAAAAhQwECAAAAIGQoQAAAAACEDAUIAAAAgJCxbAFSVFQkwzC8DwAAurpah0uz/7lBD7yzU24PlxAGYE2WLUC4jjsAINq8ta1M72w7osfe26HjJ5zhDgcA/GLZAgQAgGgUG2OTjSP/ACyMAgQAAABAyFCAAAAQYi9vOqzb/rlJVfVMowIQfWLDHQAAANHmf5/bpIYmt/r2jg93KAAQchwBAQAgxAzbyXM4OJcDQDSiAAEAAAAQMpYtQLgPCADAH+QPAAgvyxYg3AcEAOAP8gcAhJdlCxAAAAAA1sNVsBBUHlMqq3GEtM+kHnHqERcT0j4BAADQMRQgCBrTlI4cb9Tk+9/3ua3bNOUxpTibb/OzTVPKPquXXp49wec+AQAAEHxhK0AcDod+/etf6/e//7132fLly7VkyRKZpqkZM2Zo2rRp4QoPgWBIpkydcLp9bmqzGXJ7TLl8bGrK1O7yOp/7AwAAQGiEpQB588039eabb6qpqcm7rLq6WosWLdLChQtls9k0e/Zs5eTkKC0tLRwhAgAAAAiCsJyEnpSUpEmTJp2xrLi4WDk5OUpJSVFSUpLGjRun1atXhyM8AAAAAEESliMg48eP14EDB/Tuu+96l1VUVCgjI8P7PD09XZWVlc3aFhUVaf78+S2+r2EYKigo0Ny5czscS01NTccDjwCGJP8vGtm51v4xP+vXx1adCNNjmrLb7f6/gZ/C0afVMEZt83d8uJcFAMBKIuYk9Jauxe7xeJotKywsVGFhYbPlhmH4dT33xMQTkg773C5cOlc+hON69/79YWR0olayGYYyMzP9a+wnu90e8j6thjFqW2fGh8IOAGAlEXMfkLS0NFVUVHifV1RUqE+fPmGMCAAAAECgRUwBkpubq+LiYtXX16uhoUFr1qzR2LFjwx0WAAAAgACKmClYKSkpmjlzpgoKCmSapvLz85Wenh7usBBFVu+p1M1PrVeMj/cekaTs9B565lamFwGIXPZqh4r3VmrqyH7qGc/NWgGET9gKkKysLD322GNnLMvLy1NeXl6YIkK0e2vbER13uOTPeStr9lvrYgYAos/3F6/V3sp6XbOrUg9cd364wwEQxSLmCAgQKYywnKwPAMFV1+hWk9NUrcMZ7lAARLmIOQcEAAAAQNdn2SMgbd0PBAg1j0e68o8rfG7ndJt69LsX65yMhCBEBaCr+Gh/lbrFdmyf4QmnW6t3V2r0gCSl9+oW5MgAwHeWLUC+eD8QbsSFcLLZpG2H/TgPxJT+WVyqX08fEfigALTIajuwNpRWa9bf18swpJsnDWn39UWvfqIXNh5Sdt9eevV/JoQgQgDwDVOwgAAx/HhI/t6qEYC/CgsLZZqm9xHpah1Oud2mmlweudztx1tZ16RGp0vH6htDEB0A+I4CBAAAAEDIWHYKFtAS0zTlcJn60ZKPfG77aVltECKKPHWNLv3qxa1qcLp9bjs4LUHzpg1TfAz7LgArO1Lj0N6KBuUOThUzmAGEGgUIuhZDcrrcemdbmc9NPTJlRMGEqKVby/TmlsNqcnt8bts9Nkbfuqi/svv1DkJkAELlhsfX6PBxh/73K8M187JB4Q4HQJRhNybwmWi6kEGsn0cwYmKiZ4yAruxIjUMnGl06VHUi3KEAiEIUIAAAAABCxrIFSFFRkQzD8D4AAIgETW6PPjlco1qHy+e2ZTUO7TpaF4SoACByWLYAsdplFAEA0eH3S0v0jUc+1I+eWu9TO4fTo2/8eZW++ciHWrPnWJCiA4Dws2wBAgBAJNpf2SCH06UDVfU+tXOZHh2rb5TT7dHh45ybAaDrogABAAAAEDJchhcIsx1HavX02lKf2/WMi/HrXh4bSqv8nrboMU29vqVM6/dX+dz2gjQp069eAbTmUPUJ9e4ep8TupHMA1sE3FhBWpj7cVaF1+yp9bnnC6VH32BgZhm/FhNMtvwsQR5NHj36wS75ejddtSiMzeuqlOQP96hdAcyt3HtX/Pr9FGYnd9cHPLw93OADQYRQgQFgZcpum3E4/CgLTlMPp8vkqcB5TirX5d+U4j0w1OU2f75xsmlKTm4tFAIG0q7xeTS6P9lf6dq4JAIQb54AAAAAACBmOgAAIiQanR8s/Lfe5XXKPOF10dkoQIgK6lhqHS93jgr9fsa7RpbgYm7rFsg8TgH8sW4AUFRVp/vz54Q4DQAeYkkqrHPrpMxt9bhtrs+lvP7hEF2YlBzwuRKeumD9e2mTX3Gc3aUxWslITugWtn48PVuu7f12jPgnd9fpPJ6pnfEzQ+gLQdVl29wU3IgQsxpRqHS6fH063R3WNvt9RGmhNV8wfmw5Uy+3xqKSsJqj97DxSJ7fH0KHqBjn8uAofAEgWLkAAAAAAWA8FCAAAAICQoQABACCKffWPKzT0l29o1a5KffkPH2jU/Le0/XCtT++xdNsRnf2/r2vG42uCFCWAroQCBACAKLb98MnzRtbuq9SBqnq5PaY+9fFckjV7KiXD1JZD1UGIEEBXQwECAAAAIGQoQAAAAACEjGULkKKiIhmG4X0AANBV1DW6NPmB9zX+vmWqrG8Kdzgt2na4Rtn/96a+8edVAX/vyvom7/ofqj4R8PcHEF6WLUC64nXcAQCQpOoTTpXXOlTjcOvw8cj8A3zdnmNyuaWNB6oD/t5Hahze9d9bUR/w9wcQXpYtQAAA6MoMw5Aifgdb8OKzxvoD8AcFCAAAAICQiQ13AADQlka3qR8sXq8Ym297Qk1J3xgzQPd9a3RwAgMsYMHyXXr8g12afcW5PrVraHTrqgUr1Ogy9dANF+inz2xUQnysrr8ky6f3+du6Mv1rw2bNvuJclVU79J+PSnX3Nefrmxf1b/baRpdH331ijQ4ed+jua0b51E84bD9cqxlPrNbo/slaMuvScIcDWEpEFSDLly/XkiVLZJqmZsyYoWnTpoU7JABh5nJ75DFNGR7f2pkytWLX0eAEhYhD/mjZ29vKVOtw680tZT61O3aiSfsqGyRJ/915VEeON8pUo443OH16n//uPu7tv7zWoTqHR0u3lrVYgNQ4nNp86LgMw9Anh327D0k4vF9SrlqHWyt28j0D+CpiCpDq6motWrRICxculM1m0+zZs5WTk6O0tLRwhwbAspg/Hg3IH607dZVIf64VaRjy/heyGYY8fvx/Mk771/jsWdsXrjStdWVLzlEB/BIx54AUFxcrJydHKSkpSkpK0rhx47R69epwhwUAiHDkDwCwFsOMkGvY/vOf/5RpmsrPz5ckPfvsszpx4oS+//3vn/G6oqIizZ8/v9X3KSgo0Ny5czvc73/3HNf8pXtlM3yvxRrdHsXapBgf2za5TRmGR3G2GJ/7bPJ4FCNDMTbf9hA5PR7JNBQX4/ueJafbI8MwFOtjny6PR25J3Wy+j22Txy2ZhuJjfGvrNk25PKa6+dhOOvm5SKbPfUrSCZdbPWL9+DzdJ+cV+dMn21/bPObJz9PtxzdctxibGt0+zvn6TGqPOB074ds0FUmKMQwtv+0Cv/o0DENnnXWWX227gnDnD9Owye02ZRimYm02uT0emaZ08r+1IY8p2YyTe/5dnpN7/mw2Q263Rx5JMTZDNtnU6HarW+zJ7bzRZap7nE2GIZ1o+uz7xSadaPKoe6whjww1uTyKi5EUYf3HGCe/nxK7xai+ydNi/4k94lR9okk2w1BSz1jVNHjk9LgVH9O8/0anRwnxMYqLten4Cae6xdjUIz62WXu36VZqjzjVN7m9/XtkqK7RpZ5xgW9f2dCkONvJ9TdMI+T90572n7d3WS5/RMwUrJbqII+n+R8AhYWFKiwsbLbcMAy/7gfy7cxMZSV1U5/0dJ/bxnz2Re8Pw2bI9Pger82wyWP616fNMD77o8w3FRXl6tMnw78+bYY8fqynYZP8XE3F2Ay5/enTz21Iko4erVB6eh+/2hoyZPoxtcFq219lRYXS+vg+RjZD8iNUSVJFfZPqHC6f23Vm+4s1JJcf8dZUVykzM9OvPu12u1/tuopw54+4XqmqbXRqQHJ3VTU0qcHpVv+kHqqob5Lb7VbfxB46UtOoGJtNfXrF6eBxh3rFxSi5Z5xKK08oqWe8EnvEan9lvTJ6xSu+m00HKx3ql9xdMZIOVTvUP7mHXG5TR2odGpDSU00uj8prHRqUmqDjDldE9V/T6JLpkWwxhuqrjmnE4P7N+jfdptymKcM0JJvxWUHkbrX/GJshmYbcpkcyDMVILbaPNSS3IW//humR22MErf2p9a9pdPnd/7HqKvXpkxaW+K3S/nh1tVJTUi0bf7DbH6+qtFz+iJgCJC0tTSUlJd7nFRUVysry7Wob/hqc1l2Z/XqHpC8r6u2pZXzawRi1zx6GMcoOaW+dY7e7wx2CZYU9f2Qmt/i707e/7NO2/dZ+Ht6vl/fnkf2SvD+P6v/5z1JrP0de/5Jkt7uU2a93q322pvX+ux673aXMTP92YEULu92tzEzfdxRHC7vd96Pu4RYx54Dk5uaquLhY9fX1amho0Jo1azR27NhwhwUAiHDkDwCwlog5ApKSkqKZM2eqoKDAO5c33Y9pUQCA6EL+AABriZgCRJLy8vKUl5cX7jAAABZD/gAA64iYKVgAAAAAuj4KEAAAAAAhY9kCpKioSIZheB8AAAAAIp9lC5DCwkKZpul9AAAAAIh8li1AAAAAAFgPBQgAAACAkKEAAQAAABAyFCCSHnzwwXCHENEYn/YxRu1jjNrG+FgTn1vbGJ/2MUbtY4zaZsXxMcwucga3YRh+n4zembbRgPFpH2PUPsaobZ0ZH7vdrszMzABHFD3IH8HD+LSPMWofY9Q2K+aPiLoTemcMHDiwU5fj5VK+bWN82scYtY8xapu/43PZZZdp5cqVAY4mepA/govxaR9j1D7GqG1Wyx8cAelEW/qkz3C2pU/6DERbRM/nTZ9dq8/OtKVP+gxE287gHBAAAAAAIUMBAgAAACBkukwBMn/+fEv16W/bcPTZGVZaz3CMT2f6jZYxstp6Wm2MYL3PjO06OO3C1WdnMEbB69NKY9sZ4dp2u8w5IJ3B/Om2MT7tY4zaxxi1jfGxJj63tjE+7WOM2scYtc2K49NljoB0BnsP28b4tI8xah9j1DbGx5r43NrG+LSPMWofY9Q2K44PR0AAAAAAhAxHQAAAAACEDAUIAAAAgJChAAEAAAAQMhQgAAAAAEImNtwBhNPy5cu1ZMkSmaapGTNmaNq0aeEOKeLceOONqqio8D6///77NXLkyDBGFDkcDod+/etf6/e//713GdvU51oaH7anz7344ot65ZVX1NDQoLFjx2rOnDmKiYlhG7IIPqeWtfZ/nPHyLWdE43j5kjOicXx8zRkRP0ZmlKqqqjK/853vmMeOHTOrq6vN/Px8s6KiItxhRRS3223ecMMN4Q4jIr3xxhvmT37yE/Pmm2/2LmOb+lxL48P29Llt27aZN954o1lTU2PW1dWZt99+u/naa6+xDVkEn1PLWvs/znj5ljOicbx8yRnROD6+5gwrjFHUTsEqLi5WTk6OUlJSlJSUpHHjxmn16tXhDiuiVFRUKC0tLdxhRKSkpCRNmjTpjGVsU59raXzYnj537NgxXXXVVerdu7cSEhI0duxYlZWVsQ1ZBJ9Ty1r7P854+ZYzonG8fMkZ0Tg+vuYMK4xR1BYgFRUVysjI8D5PT09XZWVlGCOKPGVlZTp+/LjuuOMOXX/99Vq4cKE8Hk+4w4oI48ePV25u7hnL2KY+19L4sD19bsKECbr++uslSZWVlXrnnXc0btw4tiGL4HNqWWv/xxkv33JGNI6XLzkjGsfH15xhhTGK2gLEbOH+i9H6x1BrevfurWuvvVb33XefnnjiCe3YsUOvv/56uMOKWGxTbWN7am7p0qW6/fbbNXPmTJ133nlsQxbB59Sy1v6PM14ta21cGK+T2J6a62jOsMIYRe1J6GlpaSopKfE+r6ioUFZWVhgjijxnn322Bg0aJMMwlJSUpIkTJ2rv3r3hDitisU21je3pcx6PR/fee6/cbrf+9Kc/KTk5WRLbkFXwObWstf/jw4YNY7xa0Np2FBcXx3iJ7el0vuYMK2xDUXsEJDc3V8XFxaqvr1dDQ4PWrFmjsWPHhjusiPLCCy+oqKhILpdLdXV1+vDDD6P2ikUdwTbVNranz61YsUINDQ369a9/7U0kEtuQVfA5tay1/+OMV8taGxfG6yS2p8/5mjOsMEZRewQkJSVFM2fOVEFBgUzTVH5+vtLT08MdVkT5+te/rqNHj2rWrFlyuVyaOnWq8vLywh1WxGKbahvb0+e2bt2qjRs36pprrvEuu/rqqzVr1iy2IQvg/3rL2vo/zng119Z2xHixPZ3On5wR6WNkmC1NFAMAAACAIIjaKVgAAAAAQo8CBAAAAEDIUIAAAAAACBkKEAAAAAAhQwECAAAAIGQoQAAAAACEDAUIAAAAgJChAAEAAAAQMhQgAAAAAEKGAgQAAABAyMSGOwAgknzzm99UbW1ts+VXXHGFfvGLXzRbPm/ePF199dX60pe+FIrwAAARivwBdBwFCPCZsrIy1dbW6sknn1Tv3r3P+F18fHyLbXbv3q3s7OxQhAcAiFDkD8A3FCDAZ0pKSpSZman+/ft36PXl5eWSpH79+p2x3Ol0Ki4uLuDxAQAiE/kD8A0FCPCZnTt3asSIEa3+3m6369FHH9XWrVuVnp6uqVOnatiwYZKkqqoq/fnPf9aGDRvkcrk0ffp0lZaW6u6775bD4dBf//pXrV27Vg0NDfrqV7+qWbNmyTAMbdiwQYsWLdKBAwd0zjnn6Ac/+IFGjx4dqlUGAAQA+QPwDSehA5/ZsWOHli1bpilTppzxePTRR1VeXq45c+ZowoQJeuqpp/Stb31LTzzxhIYNGyaHw6E5c+YoOztbixcv1pw5c/Sf//xHw4cPl8fj0dy5c+V0OvXHP/5RRUVFevnll/XBBx/Ibrfr//2//6f8/Hw9/fTTGjRokJ599tlwDwMAwEfkD8A3HAEBPrNjxw7dc889Gj58+BnLu3fvrgULFuhLX/qSpk2bJkmaNm2aN4E8//zzuvDCC3XddddJkr785S9rwYIFGj58uN599105nU795Cc/UWxsrFJTUzVu3Djt379fcXFx6tatm1JSUtSrVy/9z//8jzweT8jXGwDQOeQPwDcUIIBOHh6vr6/XyJEjlZCQ0Oz369ev19y5c89Y1tjYqGHDhmnJkiW66aabvMtPnDghh8Oh7Oxs3XfffSorK9O11157RtvZs2fr0ksv1aRJk1RUVKSmpibl5eXphz/8oWJj+W8JAFZB/gB8x5YK6OTeq379+rWYPJxOpyorK5WVleVdtnnzZsXFxSk9PV0HDhzQgAEDvL/74IMP1L9/f/Xu3VulpaX61a9+pbFjx0qSHA6H7Ha7MjMztX37ds2ePVuzZ8/W/v37deedd+qCCy7QhAkTgr/CAICAIH8AvuMcEEAnE0hWVpbq6+ubPWJiYpSRkaFXX31VdXV12rRpkx566CFlZ2fLZrMpJSVFb7/9tpxOpzZs2KDHHnvMezLiueeeq9dee01HjhzR/v379Ytf/EJvv/22qqqqVFBQoA0bNsjpdOrgwYNyOBwaNGhQeAcCAOAT8gfgO8M0TTPcQQDhNm/ePH388cct/u6FF17Q7t279dBDD8nhcCg3N1eGYSgpKUkzZ87U8uXL9bvf/U6JiYnKzc1VWVmZpk2bpilTpqiqqkr333+/Nm/erJSUFF111VW6/vrrZbPZtGTJEr300ktqamrS2Wefre9///u65JJLQrzmAIDOIH8AvqMAATph9+7dstlsGjx4sCSpvr5e+fn5WrRokdLS0sIcHQAgUpE/EM2YggV0wtq1a/W73/1O5eXlqqys1AMPPKArrriC5AEAaBP5A9GMIyBAJ1RXV2vBggXatm2bkpOTNX78eN1www3q3r17uEMDAEQw8geiGQUIAAAAgJBhChYAAACAkPn/tEhY9NTZNNkAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plot_track_lengths(metric_learning_model)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  2%|â–Ž         | 2/80 [00:00<00:13,  5.91it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 33177])\n",
+      "torch.Size([33177])\n",
+      "torch.Size([2, 1008])\n",
+      "torch.Size([2, 145236])\n",
+      "torch.Size([145236])\n",
+      "torch.Size([2, 4474])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  5%|▌         | 4/80 [00:00<00:12,  6.03it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 77371])\n",
+      "torch.Size([77371])\n",
+      "torch.Size([2, 2310])\n",
+      "torch.Size([2, 23698])\n",
+      "torch.Size([23698])\n",
+      "torch.Size([2, 770])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  8%|â–Š         | 6/80 [00:01<00:12,  5.97it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 106526])\n",
+      "torch.Size([106526])\n",
+      "torch.Size([2, 3388])\n",
+      "torch.Size([2, 118727])\n",
+      "torch.Size([118727])\n",
+      "torch.Size([2, 3588])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 10%|â–ˆ         | 8/80 [00:01<00:11,  6.05it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 45129])\n",
+      "torch.Size([45129])\n",
+      "torch.Size([2, 1364])\n",
+      "torch.Size([2, 45374])\n",
+      "torch.Size([45374])\n",
+      "torch.Size([2, 1392])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 12%|█▎        | 10/80 [00:01<00:12,  5.80it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 93982])\n",
+      "torch.Size([93982])\n",
+      "torch.Size([2, 2878])\n",
+      "torch.Size([2, 40327])\n",
+      "torch.Size([40327])\n",
+      "torch.Size([2, 1212])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 15%|█▌        | 12/80 [00:02<00:11,  6.00it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 18314])\n",
+      "torch.Size([18314])\n",
+      "torch.Size([2, 556])\n",
+      "torch.Size([2, 58898])\n",
+      "torch.Size([58898])\n",
+      "torch.Size([2, 1870])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 18%|█▊        | 14/80 [00:02<00:11,  5.54it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 165032])\n",
+      "torch.Size([165032])\n",
+      "torch.Size([2, 4848])\n",
+      "torch.Size([2, 41258])\n",
+      "torch.Size([41258])\n",
+      "torch.Size([2, 1204])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 20%|██        | 16/80 [00:02<00:11,  5.68it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 157927])\n",
+      "torch.Size([157927])\n",
+      "torch.Size([2, 4940])\n",
+      "torch.Size([2, 106722])\n",
+      "torch.Size([106722])\n",
+      "torch.Size([2, 3244])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 22%|██▎       | 18/80 [00:03<00:10,  5.78it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 64141])\n",
+      "torch.Size([64141])\n",
+      "torch.Size([2, 1992])\n",
+      "torch.Size([2, 42679])\n",
+      "torch.Size([42679])\n",
+      "torch.Size([2, 1342])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 25%|██▌       | 20/80 [00:03<00:10,  5.95it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 30539])\n",
+      "torch.Size([30539])\n",
+      "torch.Size([2, 992])\n",
+      "torch.Size([2, 66983])\n",
+      "torch.Size([66983])\n",
+      "torch.Size([2, 2102])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 28%|██▊       | 22/80 [00:03<00:09,  5.89it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 146559])\n",
+      "torch.Size([146559])\n",
+      "torch.Size([2, 4544])\n",
+      "torch.Size([2, 49735])\n",
+      "torch.Size([49735])\n",
+      "torch.Size([2, 1452])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 30%|███       | 24/80 [00:04<00:09,  5.92it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 41307])\n",
+      "torch.Size([41307])\n",
+      "torch.Size([2, 1208])\n",
+      "torch.Size([2, 130830])\n",
+      "torch.Size([130830])\n",
+      "torch.Size([2, 4044])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 32%|███▎      | 26/80 [00:04<00:08,  6.04it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 17636])\n",
+      "torch.Size([17636])\n",
+      "torch.Size([2, 544])\n",
+      "torch.Size([2, 81389])\n",
+      "torch.Size([81389])\n",
+      "torch.Size([2, 2488])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 35%|███▌      | 28/80 [00:04<00:08,  6.11it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 42225])\n",
+      "torch.Size([42225])\n",
+      "torch.Size([2, 1340])\n",
+      "torch.Size([2, 48295])\n",
+      "torch.Size([48295])\n",
+      "torch.Size([2, 1494])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 38%|███▊      | 30/80 [00:05<00:08,  6.05it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 72177])\n",
+      "torch.Size([72177])\n",
+      "torch.Size([2, 2196])\n",
+      "torch.Size([2, 94619])\n",
+      "torch.Size([94619])\n",
+      "torch.Size([2, 2852])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 40%|████      | 32/80 [00:05<00:07,  6.09it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 38122])\n",
+      "torch.Size([38122])\n",
+      "torch.Size([2, 1166])\n",
+      "torch.Size([2, 36015])\n",
+      "torch.Size([36015])\n",
+      "torch.Size([2, 1126])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 42%|████▎     | 34/80 [00:05<00:07,  6.18it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 27868])\n",
+      "torch.Size([27868])\n",
+      "torch.Size([2, 900])\n",
+      "torch.Size([2, 16184])\n",
+      "torch.Size([16184])\n",
+      "torch.Size([2, 496])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 45%|████▌     | 36/80 [00:06<00:07,  5.84it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 131810])\n",
+      "torch.Size([131810])\n",
+      "torch.Size([2, 3964])\n",
+      "torch.Size([2, 120491])\n",
+      "torch.Size([120491])\n",
+      "torch.Size([2, 3702])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 48%|████▊     | 38/80 [00:06<00:07,  5.65it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 114268])\n",
+      "torch.Size([114268])\n",
+      "torch.Size([2, 3516])\n",
+      "torch.Size([2, 50176])\n",
+      "torch.Size([50176])\n",
+      "torch.Size([2, 1546])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 50%|█████     | 40/80 [00:06<00:07,  5.66it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 139258])\n",
+      "torch.Size([139258])\n",
+      "torch.Size([2, 4212])\n",
+      "torch.Size([2, 113876])\n",
+      "torch.Size([113876])\n",
+      "torch.Size([2, 3600])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 51%|█████▏    | 41/80 [00:06<00:06,  5.65it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 132790])\n",
+      "torch.Size([132790])\n",
+      "torch.Size([2, 3960])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 54%|█████▍    | 43/80 [00:07<00:06,  5.30it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 63651])\n",
+      "torch.Size([63651])\n",
+      "torch.Size([2, 1922])\n",
+      "torch.Size([2, 112798])\n",
+      "torch.Size([112798])\n",
+      "torch.Size([2, 3376])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 56%|█████▋    | 45/80 [00:07<00:06,  5.63it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 35462])\n",
+      "torch.Size([35462])\n",
+      "torch.Size([2, 1122])\n",
+      "torch.Size([2, 156800])\n",
+      "torch.Size([156800])\n",
+      "torch.Size([2, 4768])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 59%|█████▉    | 47/80 [00:08<00:05,  5.99it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 9371])\n",
+      "torch.Size([9371])\n",
+      "torch.Size([2, 326])\n",
+      "torch.Size([2, 12197])\n",
+      "torch.Size([12197])\n",
+      "torch.Size([2, 380])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 61%|██████▏   | 49/80 [00:08<00:05,  5.86it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 58555])\n",
+      "torch.Size([58555])\n",
+      "torch.Size([2, 1710])\n",
+      "torch.Size([2, 40082])\n",
+      "torch.Size([40082])\n",
+      "torch.Size([2, 1192])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 64%|██████▍   | 51/80 [00:08<00:04,  5.96it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 71883])\n",
+      "torch.Size([71883])\n",
+      "torch.Size([2, 2208])\n",
+      "torch.Size([2, 37779])\n",
+      "torch.Size([37779])\n",
+      "torch.Size([2, 1210])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 66%|██████▋   | 53/80 [00:09<00:04,  6.03it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 93884])\n",
+      "torch.Size([93884])\n",
+      "torch.Size([2, 2802])\n",
+      "torch.Size([2, 44443])\n",
+      "torch.Size([44443])\n",
+      "torch.Size([2, 1288])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 69%|██████▉   | 55/80 [00:09<00:04,  5.88it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 36064])\n",
+      "torch.Size([36064])\n",
+      "torch.Size([2, 1136])\n",
+      "torch.Size([2, 31939])\n",
+      "torch.Size([31939])\n",
+      "torch.Size([2, 994])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 71%|███████▏  | 57/80 [00:09<00:03,  6.01it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 18326])\n",
+      "torch.Size([18326])\n",
+      "torch.Size([2, 480])\n",
+      "torch.Size([2, 71050])\n",
+      "torch.Size([71050])\n",
+      "torch.Size([2, 2190])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 72%|███████▎  | 58/80 [00:09<00:03,  6.03it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 49196])\n",
+      "torch.Size([49196])\n",
+      "torch.Size([2, 1548])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 74%|███████▍  | 59/80 [00:10<00:03,  5.43it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 67424])\n",
+      "torch.Size([67424])\n",
+      "torch.Size([2, 2008])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 76%|███████▋  | 61/80 [00:10<00:03,  5.41it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 53062])\n",
+      "torch.Size([53062])\n",
+      "torch.Size([2, 1682])\n",
+      "torch.Size([2, 102606])\n",
+      "torch.Size([102606])\n",
+      "torch.Size([2, 3176])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 79%|███████▉  | 63/80 [00:10<00:02,  5.78it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 33730])\n",
+      "torch.Size([33730])\n",
+      "torch.Size([2, 1098])\n",
+      "torch.Size([2, 74578])\n",
+      "torch.Size([74578])\n",
+      "torch.Size([2, 2448])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 81%|████████▏ | 65/80 [00:11<00:02,  5.88it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 54733])\n",
+      "torch.Size([54733])\n",
+      "torch.Size([2, 1728])\n",
+      "torch.Size([2, 139013])\n",
+      "torch.Size([139013])\n",
+      "torch.Size([2, 4380])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 84%|████████▍ | 67/80 [00:11<00:02,  5.94it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 115493])\n",
+      "torch.Size([115493])\n",
+      "torch.Size([2, 3588])\n",
+      "torch.Size([2, 93149])\n",
+      "torch.Size([93149])\n",
+      "torch.Size([2, 2656])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 86%|████████▋ | 69/80 [00:11<00:01,  6.05it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 67130])\n",
+      "torch.Size([67130])\n",
+      "torch.Size([2, 2044])\n",
+      "torch.Size([2, 43267])\n",
+      "torch.Size([43267])\n",
+      "torch.Size([2, 1306])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 89%|████████▉ | 71/80 [00:12<00:01,  6.05it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 89229])\n",
+      "torch.Size([89229])\n",
+      "torch.Size([2, 2710])\n",
+      "torch.Size([2, 62475])\n",
+      "torch.Size([62475])\n",
+      "torch.Size([2, 1922])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 91%|█████████▏| 73/80 [00:12<00:01,  6.13it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 11883])\n",
+      "torch.Size([11883])\n",
+      "torch.Size([2, 394])\n",
+      "torch.Size([2, 96922])\n",
+      "torch.Size([96922])\n",
+      "torch.Size([2, 2852])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 94%|█████████▍| 75/80 [00:12<00:00,  6.15it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 65464])\n",
+      "torch.Size([65464])\n",
+      "torch.Size([2, 1946])\n",
+      "torch.Size([2, 40276])\n",
+      "torch.Size([40276])\n",
+      "torch.Size([2, 1284])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 96%|█████████▋| 77/80 [00:13<00:00,  6.14it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 137396])\n",
+      "torch.Size([137396])\n",
+      "torch.Size([2, 4262])\n",
+      "torch.Size([2, 38857])\n",
+      "torch.Size([38857])\n",
+      "torch.Size([2, 1252])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 99%|█████████▉| 79/80 [00:13<00:00,  6.14it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 104958])\n",
+      "torch.Size([104958])\n",
+      "torch.Size([2, 3320])\n",
+      "torch.Size([2, 31802])\n",
+      "torch.Size([31802])\n",
+      "torch.Size([2, 1036])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "100%|██████████| 80/80 [00:13<00:00,  5.87it/s]\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 106085])\n",
+      "torch.Size([106085])\n",
+      "torch.Size([2, 3240])\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAHUCAYAAADoXL3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/DklEQVR4nO3dfXzO9f////sx49jMNkbbzNkoIWNOJkI2Sc5G5V0hhOJNSE4SKhnJTCW9O6H6Fp28qXeJt1RKchZbYTmpnNYwZ+kdNie1xp6/P/rt+DjsXMfMk9v1cjkudTxfz9fr+Xw9joMdd6/X8ZzDGGMEAAAAABbzKukJAAAAAMDfRbABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAFQbObNmyeHw6GNGzfmuj02Nlbh4eFubeHh4erfv3+Rxlm/fr3i4uJ04sSJi5voVej9999X/fr15evrK4fDoc2bN5f0lPLlcDgUFxfnep793tq7d2+RjvPpp5+6HceTYmJiFBMTUyzHvhRiYmIUERFRbMffu3evHA6H5s2bV2xjALi6EWwAXFYWLVqkiRMnFmmf9evXa/LkyQSbQvr111/Vt29fXXvttVq2bJkSExN1/fXXl/S0iqRLly5KTExU5cqVi7Tfp59+qsmTJxfTrJCfypUrKzExUV26dCnpqQC4QnmX9AQA4HyNGzcu6SkUWWZmphwOh7y97fgrddeuXcrMzFSfPn0UHR1drGOdOXNGZcuW9fhxr7nmGl1zzTUeP+7lrrjqeSk4nU61aNGipKcB4ArGFRsAl5ULb0XLysrS1KlTVadOHfn6+qp8+fJq2LChXnjhBUlSXFycxo4dK0mqWbOmHA6HHA6HVq1a5dp/xowZqlu3rpxOp4KDg3XffffpwIEDbuMaYzRt2jTVqFFDPj4+ioqK0vLly3PcXrRq1So5HA698847GjNmjKpUqSKn06k9e/bo119/1dChQ3XDDTeoXLlyCg4O1i233KK1a9e6jZV9S84zzzyjhIQEhYeHy9fXVzExMa7QMX78eIWFhSkwMFB33nmnjh49Wqj6LVmyRDfddJPKli0rf39/tW/fXomJia7t/fv3V+vWrSVJPXr0kMPhyPf2qexbvpYvX64BAwYoKChIfn5+6tq1q37++We3vtm3Mq1Zs0YtW7ZU2bJldf/990uS0tPT9cgjj6hmzZoqU6aMqlSpopEjR+r06dNux0hPT9egQYNUsWJFlStXTh07dtSuXbvynNeFt6ItW7ZM7dq1U2BgoMqWLat69eopPj7ede4vv/yyJLneJ+cfwxijV155RY0aNZKvr68qVKigu+66K8d5GmM0Y8YM13ulSZMm+uyzz/Ks4YVOnDihBx54QEFBQSpXrpy6dOmin3/+OcftdnFxcXI4HEpOTtZdd92lChUq6Nprr5Ukbdy4UT179nS9d8LDw9WrVy/t27cv1zoV5vXLtmHDBt18880qW7asatWqpenTpysrK6vA8/rggw/UvHlzV+1r1arlev2l3G9FO/91uPBx/mu7ceNGdevWTUFBQfLx8VHjxo31n//8x238M2fOuN5jPj4+CgoKUlRUlBYsWFDg3AFcGez450UAVjt37pzOnj2bo90YU+C+M2bMUFxcnJ544gm1adNGmZmZ2rFjh+u2s4EDB+rYsWN68cUX9dFHH7luTbrhhhskSQ8++KBee+01DR8+XLGxsdq7d68mTpyoVatWKTk5WZUqVZIkPf7444qPj9c///lPde/eXampqRo4cKAyMzNzvU1rwoQJuummmzRnzhx5eXkpODhYv/76qyRp0qRJCg0N1alTp7Ro0SLFxMRoxYoVOQLEyy+/rIYNG+rll1/WiRMnNGbMGHXt2lXNmzdX6dKl9eabb2rfvn165JFHNHDgQC1ZsiTfWs2fP1+9e/fWbbfdpgULFigjI0MzZsxwjd+6dWtNnDhRN954o4YNG6Zp06apbdu2CggIKPB1eOCBB9S+fXvNnz9fqampeuKJJxQTE6OtW7eqfPnyrn6HDx9Wnz599Oijj2ratGny8vLSmTNnFB0drQMHDuixxx5Tw4YN9cMPP+jJJ5/Utm3b9OWXX8rhcMgYozvuuEPr16/Xk08+qWbNmmndunXq1KlTgfOTpDfeeEODBg1SdHS05syZo+DgYO3atUvff/+9JGnixIk6ffq0PvzwQ7ewl/2eGTx4sObNm6cRI0YoISFBx44d05QpU9SyZUtt2bJFISEhkqTJkydr8uTJeuCBB3TXXXcpNTVVgwYN0rlz51SnTp1855iVlaWuXbtq48aNiouLU5MmTZSYmKiOHTvmuU/37t3Vs2dPDRkyxBUE9+7dqzp16qhnz54KCgrS4cOHNXv2bDVr1kw//vij631d1NfvyJEj6t27t8aMGaNJkyZp0aJFmjBhgsLCwnTfffflOcfExET16NFDPXr0UFxcnHx8fLRv3z599dVX+dbj/NdBkn7//Xf17dtX586dU1BQkCRp5cqV6tixo5o3b645c+YoMDBQ7733nnr06KEzZ864/iFk9OjReueddzR16lQ1btxYp0+f1vfff6/ffvst3zkAuIIYACgmc+fONZLyfdSoUcNtnxo1aph+/fq5nsfGxppGjRrlO84zzzxjJJmUlBS39u3btxtJZujQoW7t33zzjZFkHnvsMWOMMceOHTNOp9P06NHDrV9iYqKRZKKjo11tK1euNJJMmzZtCjz/s2fPmszMTNOuXTtz5513utpTUlKMJBMZGWnOnTvnap81a5aRZLp16+Z2nJEjRxpJJi0tLc+xzp07Z8LCwkyDBg3cjnny5EkTHBxsWrZsmeMcPvjggwLPIfs1PH/+xhizbt06I8lMnTrV1RYdHW0kmRUrVrj1jY+PN15eXmbDhg1u7R9++KGRZD799FNjjDGfffaZkWReeOEFt35PP/20kWQmTZqUY17Zr/nJkydNQECAad26tcnKysrzfIYNG2Zy+9GX/Vo/99xzbu2pqanG19fXPProo8YYY44fP258fHzyrMf575XcfPLJJ0aSmT17tlt7fHx8jnOcNGmSkWSefPLJfI9pzF/vtVOnThk/Pz+3+l3M6/fNN9+49b3hhhtMhw4d8h3/2WefNZLMiRMn8uyT/b6fO3dunudw++23m3LlyplNmza52uvWrWsaN25sMjMz3frHxsaaypUru97vERER5o477sh3ngCubNyKBqDYvf3229qwYUOOR/YtUfm58cYbtWXLFg0dOlSff/650tPTCz3uypUrJSnHKms33nij6tWrpxUrVkiSkpKSlJGRoXvuucetX4sWLXKs2pbtH//4R67tc+bMUZMmTeTj4yNvb2+VLl1aK1as0Pbt23P07dy5s7y8/u+v4Xr16klSji9XZ7fv378/jzOVdu7cqUOHDqlv375uxyxXrpz+8Y9/KCkpSWfOnMlz/4L07t3b7XnLli1Vo0YNV42zVahQQbfccotb29KlSxUREaFGjRrp7NmzrkeHDh3cbhvMPtaFY917770Fzm/9+vVKT0/X0KFD5XA4inp6Wrp0qRwOh/r06eM2x9DQUEVGRrrmmJiYqD/++CPPehRk9erVkpTjvdarV68898ntvXbq1CmNGzdO1113nby9veXt7a1y5crp9OnTub7XCvv6hYaG6sYbb3Rra9iwYY5b3C7UrFkz13n95z//0cGDB/Ptn5vhw4frk08+0QcffKAmTZpIkvbs2aMdO3a45n/+a9O5c2cdPnxYO3fulPTXn+vPPvtM48eP16pVq/T7778XeQ4A7EawAVDs6tWrp6ioqByPwMDAAvedMGGCnn32WSUlJalTp06qWLGi2rVrl+cS0ufLvgUlt5WzwsLCXNuz/5t9q9H5cmvL65gzZ87Ugw8+qObNm2vhwoVKSkrShg0b1LFjx1w/ZGXfapOtTJky+bb/8ccfuc7l/HPI61yzsrJ0/PjxPPcvSGhoaK5tF97mk9v4v/zyi7Zu3arSpUu7Pfz9/WWM0f/+9z/XOXh7e6tixYoFjn2h7NsAq1atWuhzunCOxhiFhITkmGdSUpLbHPOaU2HmmX2OF77Geb3PpNxreu+99+qll17SwIED9fnnn+vbb7/Vhg0bdM011+T6Xivs63dh7aW/vvRfUEho06aNFi9erLNnz+q+++5T1apVFRERUejvt0ydOlVz5szRq6++6nZb3i+//CJJeuSRR3K8LkOHDpUk12vzr3/9S+PGjdPixYvVtm1bBQUF6Y477tDu3bsLNQcA9uM7NgAua97e3ho9erRGjx6tEydO6Msvv9Rjjz2mDh06KDU1Nd8VorI/pB0+fDjHB95Dhw65voeQ3S/7Q9T5jhw5kutVm9yuCrz77ruKiYnR7Nmz3dpPnjyZ/0l6wPnneqFDhw7Jy8tLFSpUuOjjHzlyJNe26667zq0tt7pUqlRJvr6+evPNN3M99vmvw9mzZ/Xbb7+5fcDObewLZa+QduGiEIVVqVIlORwOrV27Vk6nM8f27LbseeVVj7yu8GXLPsdjx465hZv8zvHCmqalpWnp0qWaNGmSxo8f72rPyMjQsWPHcj1GYV+/v+P222/X7bffroyMDCUlJSk+Pl733nuvwsPDddNNN+W537x58zRx4kTFxcW5LTYg/d97Y8KECerevXuu+2d/r8nPz8/1/adffvnFdfWma9eu2rFjh4fOEsDljCs2AKxRvnx53XXXXRo2bJiOHTvmWjUp+0Pnhf+qnH1L1LvvvuvWvmHDBm3fvl3t2rWTJDVv3lxOp1Pvv/++W7+kpKQCb8E5n8PhyPGheOvWrTm+IF0c6tSpoypVqmj+/PluizKcPn1aCxcudK2UdrH+/e9/uz1fv3699u3bV6hfSBkbG6uffvpJFStWzPXKXXYYaNu2ba5jzZ8/v8AxWrZsqcDAQM2ZMyffRSnyeq/ExsbKGKODBw/mOscGDRpI+uv2RB8fnzzrUZDs5bUvfK+99957Be6bLXuhhQvfa//v//0/nTt3Ltd9/s7rV1ROp1PR0dFKSEiQJH333Xd59l22bJkGDRqk+++/X5MmTcqxvU6dOqpdu7a2bNmS6+sSFRUlf3//HPuFhISof//+6tWrl3bu3Pm3bsMEYA+u2AC4rHXt2lURERGKiorSNddco3379mnWrFmqUaOGateuLUmuD50vvPCC+vXrp9KlS6tOnTqqU6eO/vnPf+rFF1+Ul5eXOnXq5FoVrVq1aho1apSkv279Gj16tOLj41WhQgXdeeedOnDggCZPnqzKlSu7fWclP7GxsXrqqac0adIkRUdHa+fOnZoyZYpq1qyZ66pwnuTl5aUZM2aod+/eio2N1eDBg5WRkaFnnnlGJ06c0PTp0//W8Tdu3KiBAwfq7rvvVmpqqh5//HFVqVLFdTtQfkaOHKmFCxeqTZs2GjVqlBo2bKisrCzt379fX3zxhcaMGaPmzZvrtttuU5s2bfToo4/q9OnTioqK0rp16/TOO+8UOEa5cuX03HPPaeDAgbr11ls1aNAghYSEaM+ePdqyZYteeuklSf/3XklISFCnTp1UqlQpNWzYUK1atdI///lPDRgwQBs3blSbNm3k5+enw4cP6+uvv1aDBg304IMPqkKFCnrkkUc0depUt3rExcUV6la0jh07qlWrVhozZozS09PVtGlTJSYm6u2335akQr3XAgIC1KZNGz3zzDOqVKmSwsPDtXr1ar3xxhtuK5yd7++8foXx5JNP6sCBA2rXrp2qVq2qEydO6IUXXlDp0qXz/F1JKSkpuvvuu1WrVi0NGDBASUlJbtsbN24sp9OpV199VZ06dVKHDh3Uv39/ValSRceOHdP27duVnJysDz74QNJf/0ARGxurhg0bqkKFCtq+fbveeeedvx3qAVikJFcuAHBly16R6cLVsLJ16dKlwFXRnnvuOdOyZUtTqVIlU6ZMGVO9enXzwAMPmL1797rtN2HCBBMWFma8vLyMJLNy5UpjzF+rhSUkJJjrr7/elC5d2lSqVMn06dPHpKamuu2flZVlpk6daqpWrWrKlCljGjZsaJYuXWoiIyPdVpTKb0WxjIwM88gjj5gqVaoYHx8f06RJE7N48WLTr18/t/PMXh3qmWeecds/r2MXVMfzLV682DRv3tz4+PgYPz8/065dO7Nu3bpCjZOb7LG/+OIL07dvX1O+fHnj6+trOnfubHbv3u3WNzo62tSvXz/X45w6dco88cQTpk6dOqZMmTImMDDQNGjQwIwaNcocOXLE1e/EiRPm/vvvN+XLlzdly5Y17du3Nzt27ChwVbRsn376qYmOjjZ+fn6mbNmy5oYbbjAJCQmu7RkZGWbgwIHmmmuuMQ6HI8cx3nzzTdO8eXPj5+dnfH19zbXXXmvuu+8+s3HjRlefrKwsEx8fb6pVq+Z6r3z88ccmOjq6wFXRjPlrFb4BAwa4nWNSUlKOFeGyV0X79ddfcxzjwIED5h//+IepUKGC8ff3Nx07djTff/99jj8/nnj9Lnz/5mbp0qWmU6dOpkqVKqZMmTImODjYdO7c2axdu9bV58JV0bLfh3k9zn9dtmzZYu655x4THBxsSpcubUJDQ80tt9xi5syZ4+ozfvx4ExUVZSpUqGCcTqepVauWGTVqlPnf//6X79wBXDkcxhTiF0kAwFUoJSVFdevW1aRJk/TYY4+V9HRKxLx58zRgwABt2LBBUVFRJT2dK1b27yBat26dWrZs6bHj8voBuJpwKxoASNqyZYsWLFigli1bKiAgQDt37tSMGTMUEBCgBx54oKSnhyvIggULdPDgQTVo0EBeXl5KSkrSM888ozZt2ng01ADA1YZgAwD6a0WljRs36o033tCJEycUGBiomJgYPf300/kuxQsUlb+/v9577z1NnTpVp0+fVuXKldW/f39NnTq1pKcGAFbjVjQAAAAA1mO5ZwAAAADWI9gAAAAAsB7BBgAAAID1LrvFA7KysnTo0CH5+/vL4XCU9HQAAAAAlBBjjE6ePKmwsLACf4nxZRdsDh06pGrVqpX0NAAAAABcJlJTU1W1atV8+1x2wcbf31/SX5MPCAgo4dkAAAAAKCnp6emqVq2aKyPk57ILNtm3nwUEBBBsAAAAABTqKyosHgAAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOt5l/QEYK/w8Z+U9BQuW3undynpKQAAAFxVuGIDAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9YocbNasWaOuXbsqLCxMDodDixcvzrPv4MGD5XA4NGvWrL8xRQAAAADIX5GDzenTpxUZGamXXnop336LFy/WN998o7CwsIueHAAAAAAUhndRd+jUqZM6deqUb5+DBw9q+PDh+vzzz9WlS5eLnhwAAAAAFEaRg01BsrKy1LdvX40dO1b169cvsH9GRoYyMjJcz9PT0z09JQAAAABXOI8Hm4SEBHl7e2vEiBGF6h8fH6/Jkyd7ehpAiQof/0lJT+GytHc6V3ABAEDx8OiqaJs2bdILL7ygefPmyeFwFGqfCRMmKC0tzfVITU315JQAAAAAXAU8GmzWrl2ro0ePqnr16vL29pa3t7f27dunMWPGKDw8PNd9nE6nAgIC3B4AAAAAUBQevRWtb9++uvXWW93aOnTooL59+2rAgAGeHAoAAAAAXIocbE6dOqU9e/a4nqekpGjz5s0KCgpS9erVVbFiRbf+pUuXVmhoqOrUqfP3ZwsAAAAAuShysNm4caPatm3rej569GhJUr9+/TRv3jyPTQwAAAAACqvIwSYmJkbGmEL337t3b1GHAAAAAIAi8ejiAQAAAABQEgg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAekUONmvWrFHXrl0VFhYmh8OhxYsXu7ZlZmZq3LhxatCggfz8/BQWFqb77rtPhw4d8uScAQAAAMBNkYPN6dOnFRkZqZdeeinHtjNnzig5OVkTJ05UcnKyPvroI+3atUvdunXzyGQBAAAAIDfeRd2hU6dO6tSpU67bAgMDtXz5cre2F198UTfeeKP279+v6tWr59gnIyNDGRkZrufp6elFnRIAAACAq1yxf8cmLS1NDodD5cuXz3V7fHy8AgMDXY9q1aoV95QAAAAAXGGKNdj88ccfGj9+vO69914FBATk2mfChAlKS0tzPVJTU4tzSgAAAACuQEW+Fa2wMjMz1bNnT2VlZemVV17Js5/T6ZTT6SyuaQAAAAC4ChRLsMnMzNQ999yjlJQUffXVV3lerQEAAAAAT/B4sMkONbt379bKlStVsWJFTw8BAAAAAG6KHGxOnTqlPXv2uJ6npKRo8+bNCgoKUlhYmO666y4lJydr6dKlOnfunI4cOSJJCgoKUpkyZTw3cwAAAAD4/xU52GzcuFFt27Z1PR89erQkqV+/foqLi9OSJUskSY0aNXLbb+XKlYqJibn4mQIAAABAHoocbGJiYmSMyXN7ftsAAAAAoDgU+++xAQAAAIDiRrABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHpFDjZr1qxR165dFRYWJofDocWLF7ttN8YoLi5OYWFh8vX1VUxMjH744QdPzRcAAAAAcihysDl9+rQiIyP10ksv5bp9xowZmjlzpl566SVt2LBBoaGhat++vU6ePPm3JwsAAAAAufEu6g6dOnVSp06dct1mjNGsWbP0+OOPq3v37pKkt956SyEhIZo/f74GDx7892YLAAAAALnw6HdsUlJSdOTIEd12222uNqfTqejoaK1fvz7XfTIyMpSenu72AAAAAICiKPIVm/wcOXJEkhQSEuLWHhISon379uW6T3x8vCZPnuzJaQC4TIWP/6Skp3DZ2ju9S0lPAQAAqxXLqmgOh8PtuTEmR1u2CRMmKC0tzfVITU0tjikBAAAAuIJ59IpNaGiopL+u3FSuXNnVfvTo0RxXcbI5nU45nU5PTgMAAADAVcajV2xq1qyp0NBQLV++3NX2559/avXq1WrZsqUnhwIAAAAAlyJfsTl16pT27Nnjep6SkqLNmzcrKChI1atX18iRIzVt2jTVrl1btWvX1rRp01S2bFnde++9Hp04AAAAAGQrcrDZuHGj2rZt63o+evRoSVK/fv00b948Pfroo/r99981dOhQHT9+XM2bN9cXX3whf39/z80aAAAAAM7jMMaYkp7E+dLT0xUYGKi0tDQFBASU9HSQD1a4AjyHVdEAAMipKNmgWFZFAwAAAIBLiWADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACs5/Fgc/bsWT3xxBOqWbOmfH19VatWLU2ZMkVZWVmeHgoAAAAAJEnenj5gQkKC5syZo7feekv169fXxo0bNWDAAAUGBurhhx/29HAAAAAA4Plgk5iYqNtvv11dunSRJIWHh2vBggXauHGjp4cCAAAAAEnFcCta69attWLFCu3atUuStGXLFn399dfq3Llzrv0zMjKUnp7u9gAAAACAovD4FZtx48YpLS1NdevWValSpXTu3Dk9/fTT6tWrV6794+PjNXnyZE9Pw6PCx39S0lMAAMCFn0t52zu9S0lPAUAJ8fgVm/fff1/vvvuu5s+fr+TkZL311lt69tln9dZbb+Xaf8KECUpLS3M9UlNTPT0lAAAAAFc4j1+xGTt2rMaPH6+ePXtKkho0aKB9+/YpPj5e/fr1y9Hf6XTK6XR6ehoAAAAAriIev2Jz5swZeXm5H7ZUqVIs9wwAAACg2Hj8ik3Xrl319NNPq3r16qpfv76+++47zZw5U/fff7+nhwIAAAAAScUQbF588UVNnDhRQ4cO1dGjRxUWFqbBgwfrySef9PRQAAAAACCpGIKNv7+/Zs2apVmzZnn60AAAAACQK49/xwYAAAAALjWCDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA63mX9AQAAMhL+PhPSnoKAABLcMUGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGC9Ygk2Bw8eVJ8+fVSxYkWVLVtWjRo10qZNm4pjKAAAAACQt6cPePz4cbVq1Upt27bVZ599puDgYP30008qX768p4cCAAAAAEnFEGwSEhJUrVo1zZ0719UWHh7u6WEAAAAAwMXjt6ItWbJEUVFRuvvuuxUcHKzGjRvr9ddfz7N/RkaG0tPT3R4AAAAAUBQeDzY///yzZs+erdq1a+vzzz/XkCFDNGLECL399tu59o+Pj1dgYKDrUa1aNU9PCQAAAMAVzuPBJisrS02aNNG0adPUuHFjDR48WIMGDdLs2bNz7T9hwgSlpaW5HqmpqZ6eEgAAAIArnMeDTeXKlXXDDTe4tdWrV0/79+/Ptb/T6VRAQIDbAwAAAACKwuPBplWrVtq5c6db265du1SjRg1PDwUAAAAAkooh2IwaNUpJSUmaNm2a9uzZo/nz5+u1117TsGHDPD0UAAAAAEgqhmDTrFkzLVq0SAsWLFBERISeeuopzZo1S7179/b0UAAAAAAgqRh+j40kxcbGKjY2tjgODQAAAAA5ePyKDQAAAABcagQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADW8y7pCQAApPDxn5T0FIArAn+WUFR7p3cp6SnAQ7hiAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwXrEHm/j4eDkcDo0cObK4hwIAAABwlSrWYLNhwwa99tpratiwYXEOAwAAAOAqV2zB5tSpU+rdu7def/11VahQobiGAQAAAIDiCzbDhg1Tly5ddOutt+bbLyMjQ+np6W4PAAAAACgK7+I46Hvvvafk5GRt2LChwL7x8fGaPHlycUwDAAAAwFXC41dsUlNT9fDDD+vdd9+Vj49Pgf0nTJigtLQ01yM1NdXTUwIAAABwhfP4FZtNmzbp6NGjatq0qavt3LlzWrNmjV566SVlZGSoVKlSrm1Op1NOp9PT0wAAAABwFfF4sGnXrp22bdvm1jZgwADVrVtX48aNcws1AAAAAOAJHg82/v7+ioiIcGvz8/NTxYoVc7QDAAAAgCcU+y/oBAAAAIDiViyrol1o1apVl2IYAAAAAFcprtgAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALCed0lPAAAAACgp4eM/KekpXJb2Tu9S0lMoMq7YAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2PB5v4+Hg1a9ZM/v7+Cg4O1h133KGdO3d6ehgAAAAAcPF4sFm9erWGDRumpKQkLV++XGfPntVtt92m06dPe3ooAAAAAJAkeXv6gMuWLXN7PnfuXAUHB2vTpk1q06aNp4cDAAAAAM8HmwulpaVJkoKCgnLdnpGRoYyMDNfz9PT04p4SAAAAgCtMsS4eYIzR6NGj1bp1a0VEROTaJz4+XoGBga5HtWrVinNKAAAAAK5AxRpshg8frq1bt2rBggV59pkwYYLS0tJcj9TU1OKcEgAAAIArULHdivbQQw9pyZIlWrNmjapWrZpnP6fTKafTWVzTAAAAAHAV8HiwMcbooYce0qJFi7Rq1SrVrFnT00MAAAAAgBuPB5thw4Zp/vz5+u9//yt/f38dOXJEkhQYGChfX19PDwcAAAAAnv+OzezZs5WWlqaYmBhVrlzZ9Xj//fc9PRQAAAAASCqmW9EAAAAA4FIq1lXRAAAAAOBSINgAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrFVuweeWVV1SzZk35+PioadOmWrt2bXENBQAAAOAqVyzB5v3339fIkSP1+OOP67vvvtPNN9+sTp06af/+/cUxHAAAAICrXLEEm5kzZ+qBBx7QwIEDVa9ePc2aNUvVqlXT7Nmzi2M4AAAAAFc5b08f8M8//9SmTZs0fvx4t/bbbrtN69evz9E/IyNDGRkZrudpaWmSpPT0dE9P7aJlZZwp6SkAAAAAl8zl8lk8ex7GmAL7ejzY/O9//9O5c+cUEhLi1h4SEqIjR47k6B8fH6/JkyfnaK9WrZqnpwYAAACgEAJnlfQM3J08eVKBgYH59vF4sMnmcDjcnhtjcrRJ0oQJEzR69GjX86ysLB07dkwVK1bMtT+KJj09XdWqVVNqaqoCAgJKejpXLOp86VDrS4M6XzrU+tKgzpcOtb40rpY6G2N08uRJhYWFFdjX48GmUqVKKlWqVI6rM0ePHs1xFUeSnE6nnE6nW1v58uU9Pa2rXkBAwBX9pr9cUOdLh1pfGtT50qHWlwZ1vnSo9aVxNdS5oCs12Ty+eECZMmXUtGlTLV++3K19+fLlatmypaeHAwAAAIDiuRVt9OjR6tu3r6KionTTTTfptdde0/79+zVkyJDiGA4AAADAVa5Ygk2PHj3022+/acqUKTp8+LAiIiL06aefqkaNGsUxHPLhdDo1adKkHLf7wbOo86VDrS8N6nzpUOtLgzpfOtT60qDOOTlMYdZOAwAAAIDLWLH8gk4AAAAAuJQINgAAAACsR7ABAAAAYD2CDQAAAADrEWwuM/Hx8WrWrJn8/f0VHBysO+64Qzt37nTrY4xRXFycwsLC5Ovrq5iYGP3www9ufTIyMvTQQw+pUqVK8vPzU7du3XTgwAG3PsePH1ffvn0VGBiowMBA9e3bVydOnHDrs3//fnXt2lV+fn6qVKmSRowYoT///LNYzr0kxcfHy+FwaOTIka426uw5Bw8eVJ8+fVSxYkWVLVtWjRo10qZNm1zbqfXfd/bsWT3xxBOqWbOmfH19VatWLU2ZMkVZWVmuPtT54qxZs0Zdu3ZVWFiYHA6HFi9e7Lb9cqvrtm3bFB0dLV9fX1WpUkVTpkyRDesE5VfnzMxMjRs3Tg0aNJCfn5/CwsJ033336dChQ27HoM6FU9B7+nyDBw+Ww+HQrFmz3NqpdcEKU+ft27erW7duCgwMlL+/v1q0aKH9+/e7tlPnIjK4rHTo0MHMnTvXfP/992bz5s2mS5cupnr16ubUqVOuPtOnTzf+/v5m4cKFZtu2baZHjx6mcuXKJj093dVnyJAhpkqVKmb58uUmOTnZtG3b1kRGRpqzZ8+6+nTs2NFERESY9evXm/Xr15uIiAgTGxvr2n727FkTERFh2rZta5KTk83y5ctNWFiYGT58+KUpxiXy7bffmvDwcNOwYUPz8MMPu9qps2ccO3bM1KhRw/Tv39988803JiUlxXz55Zdmz549rj7U+u+bOnWqqVixolm6dKlJSUkxH3zwgSlXrpyZNWuWqw91vjiffvqpefzxx83ChQuNJLNo0SK37ZdTXdPS0kxISIjp2bOn2bZtm1m4cKHx9/c3zz77bPEVyEPyq/OJEyfMrbfeat5//32zY8cOk5iYaJo3b26aNm3qdgzqXDgFvaezLVq0yERGRpqwsDDz/PPPu22j1gUrqM579uwxQUFBZuzYsSY5Odn89NNPZunSpeaXX35x9aHORUOwucwdPXrUSDKrV682xhiTlZVlQkNDzfTp0119/vjjDxMYGGjmzJljjPnrB0Dp0qXNe++95+pz8OBB4+XlZZYtW2aMMebHH380kkxSUpKrT2JiopFkduzYYYz56w+kl5eXOXjwoKvPggULjNPpNGlpacV30pfQyZMnTe3atc3y5ctNdHS0K9hQZ88ZN26cad26dZ7bqbVndOnSxdx///1ubd27dzd9+vQxxlBnT7nww8nlVtdXXnnFBAYGmj/++MPVJz4+3oSFhZmsrCwPVqJ45fdhO9u3335rJJl9+/YZY6jzxcqr1gcOHDBVqlQx33//valRo4ZbsKHWRZdbnXv06OH6Ozo31LnouBXtMpeWliZJCgoKkiSlpKToyJEjuu2221x9nE6noqOjtX79eknSpk2blJmZ6dYnLCxMERERrj6JiYkKDAxU8+bNXX1atGihwMBAtz4REREKCwtz9enQoYMyMjLcbiOy2bBhw9SlSxfdeuutbu3U2XOWLFmiqKgo3X333QoODlbjxo31+uuvu7ZTa89o3bq1VqxYoV27dkmStmzZoq+//lqdO3eWRJ2Ly+VW18TEREVHR7v9wr4OHTro0KFD2rt3r+cLUILS0tLkcDhUvnx5SdTZk7KystS3b1+NHTtW9evXz7GdWv99WVlZ+uSTT3T99derQ4cOCg4OVvPmzd1uV6PORUewuYwZYzR69Gi1bt1aERERkqQjR45IkkJCQtz6hoSEuLYdOXJEZcqUUYUKFfLtExwcnGPM4OBgtz4XjlOhQgWVKVPG1cdm7733npKTkxUfH59jG3X2nJ9//lmzZ89W7dq19fnnn2vIkCEaMWKE3n77bUnU2lPGjRunXr16qW7duipdurQaN26skSNHqlevXpKoc3G53OqaW5/s51dS7f/44w+NHz9e9957rwICAiRRZ09KSEiQt7e3RowYket2av33HT16VKdOndL06dPVsWNHffHFF7rzzjvVvXt3rV69WhJ1vhjeJT0B5G348OHaunWrvv766xzbHA6H23NjTI62C13YJ7f+F9PHRqmpqXr44Yf1xRdfyMfHJ89+1Pnvy8rKUlRUlKZNmyZJaty4sX744QfNnj1b9913n6sftf573n//fb377ruaP3++6tevr82bN2vkyJEKCwtTv379XP2oc/G4nOqa21zy2tdGmZmZ6tmzp7KysvTKK68U2J86F82mTZv0wgsvKDk5ucjnQq0LL3thl9tvv12jRo2SJDVq1Ejr16/XnDlzFB0dnee+1DlvXLG5TD300ENasmSJVq5cqapVq7raQ0NDJeVMz0ePHnUl69DQUP355586fvx4vn1++eWXHOP++uuvbn0uHOf48ePKzMzMkepts2nTJh09elRNmzaVt7e3vL29tXr1av3rX/+St7d3nv9KQZ2LrnLlyrrhhhvc2urVq+da9YX3tGeMHTtW48ePV8+ePdWgQQP17dtXo0aNcl2RpM7F43Kra259jh49KinnVSUbZWZm6p577lFKSoqWL1/uulojUWdPWbt2rY4eParq1au7fj7u27dPY8aMUXh4uCRq7QmVKlWSt7d3gT8fqXPREGwuM8YYDR8+XB999JG++uor1axZ0217zZo1FRoaquXLl7va/vzzT61evVotW7aUJDVt2lSlS5d263P48GF9//33rj433XST0tLS9O2337r6fPPNN0pLS3Pr8/333+vw4cOuPl988YWcTqeaNm3q+ZO/hNq1a6dt27Zp8+bNrkdUVJR69+6tzZs3q1atWtTZQ1q1apVjyfJdu3apRo0aknhPe8qZM2fk5eX+V3qpUqVc/ypInYvH5VbXm266SWvWrHFbxvWLL75QWFiY60OprbJDze7du/Xll1+qYsWKbtups2f07dtXW7dudfv5GBYWprFjx+rzzz+XRK09oUyZMmrWrFm+Px+p80Uo5sUJUEQPPvigCQwMNKtWrTKHDx92Pc6cOePqM336dBMYGGg++ugjs23bNtOrV69clxatWrWq+fLLL01ycrK55ZZbcl0esGHDhiYxMdEkJiaaBg0a5Lo8YLt27UxycrL58ssvTdWqVa1dsrUg56+KZgx19pRvv/3WeHt7m6efftrs3r3b/Pvf/zZly5Y17777rqsPtf77+vXrZ6pUqeJa7vmjjz4ylSpVMo8++qirD3W+OCdPnjTfffed+e6774wkM3PmTPPdd9+5VuO6nOp64sQJExISYnr16mW2bdtmPvroIxMQEGDFkq351TkzM9N069bNVK1a1WzevNnt52NGRobrGNS5cAp6T1/owlXRjKHWhVFQnT/66CNTunRp89prr5ndu3ebF1980ZQqVcqsXbvWdQzqXDQEm8uMpFwfc+fOdfXJysoykyZNMqGhocbpdJo2bdqYbdu2uR3n999/N8OHDzdBQUHG19fXxMbGmv3797v1+e2330zv3r2Nv7+/8ff3N7179zbHjx9367Nv3z7TpUsX4+vra4KCgszw4cPdlgK8klwYbKiz53z88ccmIiLCOJ1OU7duXfPaa6+5bafWf196erp5+OGHTfXq1Y2Pj4+pVauWefzxx90+9FHni7Ny5cpc/17u16+fMebyq+vWrVvNzTffbJxOpwkNDTVxcXFWLNeaX51TUlLy/Pm4cuVK1zGoc+EU9J6+UG7BhloXrDB1fuONN8x1111nfHx8TGRkpFm8eLHbMahz0TiMse1XigIAAACAO75jAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADACiSvXv3yuFwaPPmzSU9FZcdO3aoRYsW8vHxUaNGjTx23FWrVsnhcOjEiRMeOyYAoHgQbADAMv3795fD4dD06dPd2hcvXiyHw1FCsypZkyZNkp+fn3bu3KkVK1aU9HQAACWAYAMAFvLx8VFCQoKOHz9e0lPxmD///POi9/3pp5/UunVr1ahRQxUrVvTgrAAAtiDYAICFbr31VoWGhio+Pj7PPnFxcTluy5o1a5bCw8Ndz/v376877rhD06ZNU0hIiMqXL6/Jkyfr7NmzGjt2rIKCglS1alW9+eabOY6/Y8cOtWzZUj4+Pqpfv75WrVrltv3HH39U586dVa5cOYWEhKhv37763//+59oeExOj4cOHa/To0apUqZLat2+f63lkZWVpypQpqlq1qpxOpxo1aqRly5a5tjscDm3atElTpkyRw+FQXFxcrscxxmjGjBmqVauWfH19FRkZqQ8//NCtz6effqrrr79evr6+atu2rfbu3ZvjOK+//rqqVaumsmXL6s4779TMmTNVvnx5tz4ff/yxmjZtKh8fH9WqVctV02xxcXGqXr26nE6nwsLCNGLEiFznDAAoPIINAFioVKlSmjZtml588UUdOHDgbx3rq6++0qFDh7RmzRrNnDlTcXFxio2NVYUKFfTNN99oyJAhGjJkiFJTU932Gzt2rMaMGaPvvvtOLVu2VLdu3fTbb79Jkg4fPqzo6Gg1atRIGzdu1LJly/TLL7/onnvucTvGW2+9JW9vb61bt06vvvpqrvN74YUX9Nxzz+nZZ5/V1q1b1aFDB3Xr1k27d+92jVW/fn2NGTNGhw8f1iOPPJLrcZ544gnNnTtXs2fP1g8//KBRo0apT58+Wr16tSQpNTVV3bt3V+fOnbV582YNHDhQ48ePdzvGunXrNGTIED388MPavHmz2rdvr6efftqtz+eff64+ffpoxIgR+vHHH/Xqq69q3rx5rn4ffvihnn/+eb366qvavXu3Fi9erAYNGhTmpQIA5McAAKzSr18/c/vttxtjjGnRooW5//77jTHGLFq0yJz/1/qkSZNMZGSk277PP/+8qVGjhtuxatSoYc6dO+dqq1Onjrn55ptdz8+ePWv8/PzMggULjDHGpKSkGElm+vTprj6ZmZmmatWqJiEhwRhjzMSJE81tt93mNnZqaqqRZHbu3GmMMSY6Oto0atSowPMNCwszTz/9tFtbs2bNzNChQ13PIyMjzaRJk/I8xqlTp4yPj49Zv369W/sDDzxgevXqZYwxZsKECaZevXomKyvLtX3cuHFGkjl+/LgxxpgePXqYLl26uB2jd+/eJjAw0PX85ptvNtOmTXPr884775jKlSsbY4x57rnnzPXXX2/+/PPP/E8cAFAkXLEBAIslJCTorbfe0o8//njRx6hfv768vP7vx0FISIjbFYRSpUqpYsWKOnr0qNt+N910k+v/vb29FRUVpe3bt0uSNm3apJUrV6pcuXKuR926dSX99X2YbFFRUfnOLT09XYcOHVKrVq3c2lu1auUaqzB+/PFH/fHHH2rfvr3bnN5++23XfLZv364WLVq4LcBw/jlK0s6dO3XjjTe6tV34PPu2uPPHGTRokA4fPqwzZ87o7rvv1u+//65atWpp0KBBWrRokdttagCAi+Nd0hMAAFy8Nm3aqEOHDnrsscfUv39/t21eXl4yxri1ZWZm5jhG6dKl3Z47HI5c27KysgqcT3YoyMrKUteuXZWQkJCjT+XKlV3/7+fnV+Axzz9uNmNMkVaAy577J598oipVqrhtczqdrmMWJLdxL9wvKytLkydPVvfu3XPs7+Pjo2rVqmnnzp1avny5vvzySw0dOlTPPPOMVq9enaPuAIDCI9gAgOWmT5+uRo0a6frrr3drv+aaa3TkyBG3D+Oe/N0zSUlJatOmjSTp7Nmz2rRpk4YPHy5JatKkiRYuXKjw8HB5e1/8j5qAgACFhYXp66+/do0lSevXr89xpSQ/N9xwg5xOp/bv36/o6Og8+yxevNitLSkpye153bp19e2337q1bdy40e15kyZNtHPnTl133XV5zsfX11fdunVTt27dNGzYMNWtW1fbtm1TkyZNCn1OAAB3BBsAsFyDBg3Uu3dvvfjii27tMTEx+vXXXzVjxgzdddddWrZsmT777DMFBAR4ZNyXX35ZtWvXVr169fT888/r+PHjuv/++yVJw4YN0+uvv65evXpp7NixqlSpkvbs2aP33ntPr7/+ukqVKlXoccaOHatJkybp2muvVaNGjTR37lxt3rxZ//73vwt9DH9/fz3yyCMaNWqUsrKy1Lp1a6Wnp2v9+vUqV66c+vXrpyFDhui5557T6NGjNXjwYG3atEnz5s1zO85DDz2kNm3aaObMmeratau++uorffbZZ25XcZ588knFxsaqWrVquvvuu+Xl5aWtW7dq27Ztmjp1qubNm6dz586pefPmKlu2rN555x35+vqqRo0ahT4fAEBOfMcGAK4ATz31VI5bourVq6dXXnlFL7/8siIjI/Xtt9/muWLYxZg+fboSEhIUGRmptWvX6r///a8qVaokSQoLC9O6det07tw5dejQQREREXr44YcVGBjo9n2ewhgxYoTGjBmjMWPGqEGDBlq2bJmWLFmi2rVrF+k4Tz31lJ588knFx8erXr166tChgz7++GPVrFlTklS9enUtXLhQH3/8sSIjIzVnzhxNmzbN7RitWrXSnDlzNHPmTEVGRmrZsmUaNWqUfHx8XH06dOigpUuXavny5WrWrJlatGihmTNnuoJL+fLl9frrr6tVq1Zq2LChVqxYoY8//pjfvwMAf5PDFOamYgAAkKtBgwZpx44dWrt2bUlPBQCuatyKBgBAETz77LNq3769/Pz89Nlnn+mtt97SK6+8UtLTAoCrHldsAAAognvuuUerVq3SyZMnVatWLT300EMaMmRISU8LAK56BBsAAAAA1mPxAAAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAev8fNyihzCBEnIUAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 1000x500 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plot_graph_sizes(metric_learning_model)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 2. Construct graphs from metric learning inference\n",
+    "\n",
+    "This step performs model inference on the entire input datasets (train, validation and test), to obtain input graphs to the graph neural network. Optionally, we also clear the directory."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:------------- Step 2: Constructing graphs from metric learning model -------------\n",
+      "INFO:---------------------------- a) Loading trained model ----------------------------\n",
+      "INFO:----------------------------- b) Running inferencing -----------------------------\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training finished, running inference to build graphs...\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  1%|▏         | 1/80 [00:00<00:14,  5.33it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 24720])\n",
+      "torch.Size([24720])\n",
+      "torch.Size([2, 2480])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  2%|â–Ž         | 2/80 [00:00<00:13,  5.62it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 22072])\n",
+      "torch.Size([22072])\n",
+      "torch.Size([2, 2710])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  4%|▍         | 3/80 [00:00<00:13,  5.80it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 8778])\n",
+      "torch.Size([8778])\n",
+      "torch.Size([2, 1036])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  5%|▌         | 4/80 [00:00<00:13,  5.81it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 22034])\n",
+      "torch.Size([22034])\n",
+      "torch.Size([2, 2252])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  6%|â–‹         | 5/80 [00:00<00:12,  5.86it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 5860])\n",
+      "torch.Size([5860])\n",
+      "torch.Size([2, 1122])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  8%|â–Š         | 6/80 [00:01<00:12,  5.91it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 8212])\n",
+      "torch.Size([8212])\n",
+      "torch.Size([2, 900])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "  9%|â–‰         | 7/80 [00:01<00:12,  5.92it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 14606])\n",
+      "torch.Size([14606])\n",
+      "torch.Size([2, 1832])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 10%|â–ˆ         | 8/80 [00:01<00:12,  5.93it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 28448])\n",
+      "torch.Size([28448])\n",
+      "torch.Size([2, 3176])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 11%|█▏        | 9/80 [00:01<00:11,  5.94it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 27961])\n",
+      "torch.Size([27961])\n",
+      "torch.Size([2, 2310])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 12%|█▎        | 10/80 [00:01<00:11,  6.01it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 7526])\n",
+      "torch.Size([7526])\n",
+      "torch.Size([2, 1104])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 14%|█▍        | 11/80 [00:01<00:11,  5.95it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 32078])\n",
+      "torch.Size([32078])\n",
+      "torch.Size([2, 2656])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 15%|█▌        | 12/80 [00:02<00:11,  5.93it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 41196])\n",
+      "torch.Size([41196])\n",
+      "torch.Size([2, 3588])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 16%|█▋        | 13/80 [00:02<00:11,  5.95it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 1594])\n",
+      "torch.Size([1594])\n",
+      "torch.Size([2, 380])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 18%|█▊        | 14/80 [00:02<00:11,  5.75it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 42760])\n",
+      "torch.Size([42760])\n",
+      "torch.Size([2, 3702])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 19%|█▉        | 15/80 [00:02<00:11,  5.71it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 58912])\n",
+      "torch.Size([58912])\n",
+      "torch.Size([2, 4262])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 20%|██        | 16/80 [00:02<00:10,  5.84it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 10370])\n",
+      "torch.Size([10370])\n",
+      "torch.Size([2, 1098])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 21%|██▏       | 17/80 [00:02<00:10,  5.84it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 30992])\n",
+      "torch.Size([30992])\n",
+      "torch.Size([2, 2852])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 22%|██▎       | 18/80 [00:03<00:10,  5.82it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 50589])\n",
+      "torch.Size([50589])\n",
+      "torch.Size([2, 3960])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 24%|██▍       | 19/80 [00:03<00:10,  5.86it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 20262])\n",
+      "torch.Size([20262])\n",
+      "torch.Size([2, 2008])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 25%|██▌       | 20/80 [00:03<00:10,  5.88it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 11828])\n",
+      "torch.Size([11828])\n",
+      "torch.Size([2, 1340])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 26%|██▋       | 21/80 [00:03<00:09,  5.96it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 8052])\n",
+      "torch.Size([8052])\n",
+      "torch.Size([2, 1192])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 28%|██▊       | 22/80 [00:03<00:09,  5.91it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 49886])\n",
+      "torch.Size([49886])\n",
+      "torch.Size([2, 4044])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 29%|██▉       | 23/80 [00:03<00:09,  5.95it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 1132])\n",
+      "torch.Size([1132])\n",
+      "torch.Size([2, 326])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 30%|███       | 24/80 [00:04<00:09,  5.95it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 29434])\n",
+      "torch.Size([29434])\n",
+      "torch.Size([2, 3320])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 31%|███▏      | 25/80 [00:04<00:09,  5.73it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 79962])\n",
+      "torch.Size([79962])\n",
+      "torch.Size([2, 4848])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 32%|███▎      | 26/80 [00:04<00:09,  5.87it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 7098])\n",
+      "torch.Size([7098])\n",
+      "torch.Size([2, 1136])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 34%|███▍      | 27/80 [00:04<00:09,  5.67it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 17254])\n",
+      "torch.Size([17254])\n",
+      "torch.Size([2, 2044])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 35%|███▌      | 28/80 [00:04<00:09,  5.75it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 18100])\n",
+      "torch.Size([18100])\n",
+      "torch.Size([2, 1870])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 36%|███▋      | 29/80 [00:04<00:08,  5.75it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 45740])\n",
+      "torch.Size([45740])\n",
+      "torch.Size([2, 3600])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 38%|███▊      | 30/80 [00:05<00:08,  5.83it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 7286])\n",
+      "torch.Size([7286])\n",
+      "torch.Size([2, 1208])\n",
+      "torch.Size([2, 23350])\n",
+      "torch.Size([23350])\n",
+      "torch.Size([2, 2448])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 39%|███▉      | 31/80 [00:05<00:08,  5.57it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 15212])\n",
+      "torch.Size([15212])\n",
+      "torch.Size([2, 1946])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 41%|████▏     | 33/80 [00:05<00:08,  5.78it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 12366])\n",
+      "torch.Size([12366])\n",
+      "torch.Size([2, 1684])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 42%|████▎     | 34/80 [00:05<00:08,  5.64it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 61640])\n",
+      "torch.Size([61640])\n",
+      "torch.Size([2, 4768])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 44%|████▍     | 35/80 [00:06<00:07,  5.79it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 5338])\n",
+      "torch.Size([5338])\n",
+      "torch.Size([2, 1126])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 45%|████▌     | 36/80 [00:06<00:07,  5.88it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 9758])\n",
+      "torch.Size([9758])\n",
+      "torch.Size([2, 1306])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 46%|████▋     | 37/80 [00:06<00:07,  5.90it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 19674])\n",
+      "torch.Size([19674])\n",
+      "torch.Size([2, 2208])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 48%|████▊     | 38/80 [00:06<00:07,  5.95it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 9620])\n",
+      "torch.Size([9620])\n",
+      "torch.Size([2, 1548])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 49%|████▉     | 39/80 [00:06<00:06,  5.86it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 65041])\n",
+      "torch.Size([65041])\n",
+      "torch.Size([2, 4212])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 50%|█████     | 40/80 [00:06<00:06,  5.72it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 47670])\n",
+      "torch.Size([47670])\n",
+      "torch.Size([2, 4380])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 51%|█████▏    | 41/80 [00:07<00:06,  5.76it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 39053])\n",
+      "torch.Size([39053])\n",
+      "torch.Size([2, 3478])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 52%|█████▎    | 42/80 [00:07<00:06,  5.84it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 2146])\n",
+      "torch.Size([2146])\n",
+      "torch.Size([2, 556])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 54%|█████▍    | 43/80 [00:07<00:06,  5.80it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 26480])\n",
+      "torch.Size([26480])\n",
+      "torch.Size([2, 2196])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 55%|█████▌    | 44/80 [00:07<00:06,  5.90it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 4498])\n",
+      "torch.Size([4498])\n",
+      "torch.Size([2, 394])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 56%|█████▋    | 45/80 [00:07<00:05,  5.98it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 7242])\n",
+      "torch.Size([7242])\n",
+      "torch.Size([2, 1342])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 57%|█████▊    | 46/80 [00:07<00:05,  6.03it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 6792])\n",
+      "torch.Size([6792])\n",
+      "torch.Size([2, 1284])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 59%|█████▉    | 47/80 [00:08<00:05,  6.06it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 8062])\n",
+      "torch.Size([8062])\n",
+      "torch.Size([2, 1136])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 60%|██████    | 48/80 [00:08<00:05,  6.04it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 13442])\n",
+      "torch.Size([13442])\n",
+      "torch.Size([2, 1546])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 62%|██████▎   | 50/80 [00:08<00:05,  5.51it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 18458])\n",
+      "torch.Size([18458])\n",
+      "torch.Size([2, 2190])\n",
+      "torch.Size([2, 9836])\n",
+      "torch.Size([9836])\n",
+      "torch.Size([2, 1392])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 65%|██████▌   | 52/80 [00:08<00:04,  5.75it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 25132])\n",
+      "torch.Size([25132])\n",
+      "torch.Size([2, 2522])\n",
+      "torch.Size([2, 12338])\n",
+      "torch.Size([12338])\n",
+      "torch.Size([2, 1728])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 68%|██████▊   | 54/80 [00:09<00:04,  5.91it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 5718])\n",
+      "torch.Size([5718])\n",
+      "torch.Size([2, 994])\n",
+      "torch.Size([2, 16898])\n",
+      "torch.Size([16898])\n",
+      "torch.Size([2, 1758])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 70%|███████   | 56/80 [00:09<00:04,  5.85it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 8258])\n",
+      "torch.Size([8258])\n",
+      "torch.Size([2, 480])\n",
+      "torch.Size([2, 39463])\n",
+      "torch.Size([39463])\n",
+      "torch.Size([2, 3668])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 72%|███████▎  | 58/80 [00:09<00:03,  5.96it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 18288])\n",
+      "torch.Size([18288])\n",
+      "torch.Size([2, 1922])\n",
+      "torch.Size([2, 8986])\n",
+      "torch.Size([8986])\n",
+      "torch.Size([2, 1360])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 75%|███████▌  | 60/80 [00:10<00:03,  5.95it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 1970])\n",
+      "torch.Size([1970])\n",
+      "torch.Size([2, 544])\n",
+      "torch.Size([2, 14552])\n",
+      "torch.Size([14552])\n",
+      "torch.Size([2, 1710])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 76%|███████▋  | 61/80 [00:10<00:03,  5.27it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 30092])\n",
+      "torch.Size([30092])\n",
+      "torch.Size([2, 2752])\n",
+      "torch.Size([2, 7968])\n",
+      "torch.Size([7968])\n",
+      "torch.Size([2, 1288])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 80%|████████  | 64/80 [00:11<00:02,  5.67it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 6534])\n",
+      "torch.Size([6534])\n",
+      "torch.Size([2, 1166])\n",
+      "torch.Size([2, 62811])\n",
+      "torch.Size([62811])\n",
+      "torch.Size([2, 3964])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 82%|████████▎ | 66/80 [00:11<00:02,  5.75it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 66162])\n",
+      "torch.Size([66162])\n",
+      "torch.Size([2, 4940])\n",
+      "torch.Size([2, 15754])\n",
+      "torch.Size([15754])\n",
+      "torch.Size([2, 2102])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 85%|████████▌ | 68/80 [00:11<00:02,  5.85it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 43104])\n",
+      "torch.Size([43104])\n",
+      "torch.Size([2, 3588])\n",
+      "torch.Size([2, 13614])\n",
+      "torch.Size([13614])\n",
+      "torch.Size([2, 1364])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 88%|████████▊ | 70/80 [00:12<00:01,  5.97it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 2210])\n",
+      "torch.Size([2210])\n",
+      "torch.Size([2, 538])\n",
+      "torch.Size([2, 27512])\n",
+      "torch.Size([27512])\n",
+      "torch.Size([2, 2586])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 90%|█████████ | 72/80 [00:12<00:01,  6.00it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 27678])\n",
+      "torch.Size([27678])\n",
+      "torch.Size([2, 2878])\n",
+      "torch.Size([2, 18042])\n",
+      "torch.Size([18042])\n",
+      "torch.Size([2, 1494])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 92%|█████████▎| 74/80 [00:12<00:00,  6.04it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 41784])\n",
+      "torch.Size([41784])\n",
+      "torch.Size([2, 3240])\n",
+      "torch.Size([2, 4340])\n",
+      "torch.Size([4340])\n",
+      "torch.Size([2, 992])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 95%|█████████▌| 76/80 [00:13<00:00,  5.89it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 28100])\n",
+      "torch.Size([28100])\n",
+      "torch.Size([2, 2488])\n",
+      "torch.Size([2, 50622])\n",
+      "torch.Size([50622])\n",
+      "torch.Size([2, 4474])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 98%|█████████▊| 78/80 [00:13<00:00,  5.78it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 72144])\n",
+      "torch.Size([72144])\n",
+      "torch.Size([2, 4544])\n",
+      "torch.Size([2, 37952])\n",
+      "torch.Size([37952])\n",
+      "torch.Size([2, 3244])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "100%|██████████| 80/80 [00:13<00:00,  5.83it/s]\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 34502])\n",
+      "torch.Size([34502])\n",
+      "torch.Size([2, 3376])\n",
+      "torch.Size([2, 7566])\n",
+      "torch.Size([7566])\n",
+      "torch.Size([2, 1204])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 20%|██        | 2/10 [00:00<00:01,  6.14it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 17506])\n",
+      "torch.Size([17506])\n",
+      "torch.Size([2, 1922])\n",
+      "torch.Size([2, 7544])\n",
+      "torch.Size([7544])\n",
+      "torch.Size([2, 1210])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 40%|████      | 4/10 [00:00<00:01,  5.76it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 24664])\n",
+      "torch.Size([24664])\n",
+      "torch.Size([2, 2802])\n",
+      "torch.Size([2, 14966])\n",
+      "torch.Size([14966])\n",
+      "torch.Size([2, 1682])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 60%|██████    | 6/10 [00:01<00:00,  5.70it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 12184])\n",
+      "torch.Size([12184])\n",
+      "torch.Size([2, 1552])\n",
+      "torch.Size([2, 29416])\n",
+      "torch.Size([29416])\n",
+      "torch.Size([2, 2206])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 80%|████████  | 8/10 [00:01<00:00,  5.85it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 13216])\n",
+      "torch.Size([13216])\n",
+      "torch.Size([2, 1212])\n",
+      "torch.Size([2, 25590])\n",
+      "torch.Size([25590])\n",
+      "torch.Size([2, 2852])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "100%|██████████| 10/10 [00:01<00:00,  5.84it/s]\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 6970])\n",
+      "torch.Size([6970])\n",
+      "torch.Size([2, 1008])\n",
+      "torch.Size([2, 44808])\n",
+      "torch.Size([44808])\n",
+      "torch.Size([2, 3388])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 20%|██        | 2/10 [00:00<00:01,  5.58it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 9266])\n",
+      "torch.Size([9266])\n",
+      "torch.Size([2, 1496])\n",
+      "torch.Size([2, 23218])\n",
+      "torch.Size([23218])\n",
+      "torch.Size([2, 2370])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 40%|████      | 4/10 [00:00<00:01,  5.90it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 4230])\n",
+      "torch.Size([4230])\n",
+      "torch.Size([2, 770])\n",
+      "torch.Size([2, 14336])\n",
+      "torch.Size([14336])\n",
+      "torch.Size([2, 1992])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 60%|██████    | 6/10 [00:01<00:00,  5.73it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 109148])\n",
+      "torch.Size([109148])\n",
+      "torch.Size([2, 5882])\n",
+      "torch.Size([2, 9952])\n",
+      "torch.Size([9952])\n",
+      "torch.Size([2, 1452])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      " 80%|████████  | 8/10 [00:01<00:00,  5.95it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 18698])\n",
+      "torch.Size([18698])\n",
+      "torch.Size([2, 1710])\n",
+      "torch.Size([2, 2114])\n",
+      "torch.Size([2114])\n",
+      "torch.Size([2, 496])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "100%|██████████| 10/10 [00:01<00:00,  5.83it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "torch.Size([2, 55732])\n",
+      "torch.Size([55732])\n",
+      "torch.Size([2, 3516])\n",
+      "torch.Size([2, 7484])\n",
+      "torch.Size([7484])\n",
+      "torch.Size([2, 1252])\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "graph_builder = run_metric_learning_inference(CONFIG)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 3. Train graph neural networks"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "We have a set of graphs constructed. We now train a GNN to classify edges as either \"true\" (belonging to the same track) or \"false\" (not belonging to the same track). We train for 30 epochs, which should take around 10 minutes on a V100 GPU. Your mileage may vary."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:-------------------------  Step 3: Running GNN training  -------------------------\n",
+      "INFO:----------------------------- a) Initialising model -----------------------------\n",
+      "INFO:------------------------------ b) Running training ------------------------------\n",
+      "GPU available: True (cuda), used: True\n",
+      "TPU available: False, using: 0 TPU cores\n",
+      "IPU available: False, using: 0 IPUs\n",
+      "HPU available: False, using: 0 HPUs\n",
+      "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
+      "\n",
+      "  | Name                   | Type       | Params\n",
+      "------------------------------------------------------\n",
+      "0 | node_encoder           | Sequential | 34.0 K\n",
+      "1 | edge_encoder           | Sequential | 66.4 K\n",
+      "2 | edge_network           | Sequential | 82.8 K\n",
+      "3 | node_network           | Sequential | 82.8 K\n",
+      "4 | output_edge_classifier | Sequential | 83.2 K\n",
+      "------------------------------------------------------\n",
+      "349 K     Trainable params\n",
+      "0         Non-trainable params\n",
+      "349 K     Total params\n",
+      "1.397     Total estimated model params size (MB)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 2: 100%|██████████| 90/90 [00:14<00:00,  6.43it/s, loss=0.728, v_num=1]"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "`Trainer.fit` stopped: `max_epochs=3` reached.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 2: 100%|██████████| 90/90 [00:14<00:00,  6.41it/s, loss=0.728, v_num=1]\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:-------------------------------- c) Saving model --------------------------------\n"
+     ]
+    }
+   ],
+   "source": [
+    "# send_telegram_message('Started GNN training.', chat_id, api_key)\n",
+    "\n",
+    "gnn_trainer, gnn_model = train_gnn(CONFIG)\n",
+    "\n",
+    "# send_telegram_message('Finished GNN training.', chat_id, api_key)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### From checkpoint"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# from GNN.Models.interaction_gnn import InteractionGNN\n",
+    "# from pytorch_lightning import Trainer\n",
+    "# from pytorch_lightning.loggers import CSVLogger\n",
+    "\n",
+    "# version_number = 1\n",
+    "\n",
+    "# HPARAMS_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_1/hparams.yaml'\n",
+    "# CKPT_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_1/checkpoints/epoch=19-step=1600.ckpt'\n",
+    "# METRICS_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/gnn/velo_data/version_{version_number}/metrics.csv'\n",
+    "\n",
+    "# load_configs = {}\n",
+    "# with open(HPARAMS_PATH, 'r') as f:\n",
+    "#     load_configs = yaml.load(f, Loader=yaml.FullLoader)\n",
+    "    \n",
+    "# gnn_model = InteractionGNN(load_configs)\n",
+    "\n",
+    "# logger = CSVLogger('artifacts', name='gnn/velo_data')\n",
+    "\n",
+    "# gnn_trainer = Trainer(\n",
+    "#         gpus=1,\n",
+    "#         max_epochs=40,\n",
+    "#         logger=logger,\n",
+    "#         # callbacks=[EarlyStopping(monitor=\"val_loss\", mode=\"min\")]\n",
+    "# )\n",
+    "\n",
+    "# gnn_trainer.fit(gnn_model, ckpt_path=CKPT_PATH)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Plot training metrics"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>epoch</th>\n",
+       "      <th>train_loss</th>\n",
+       "      <th>val_loss</th>\n",
+       "      <th>eff</th>\n",
+       "      <th>pur</th>\n",
+       "      <th>current_lr</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0</td>\n",
+       "      <td>0.808832</td>\n",
+       "      <td>0.788465</td>\n",
+       "      <td>0.538224</td>\n",
+       "      <td>0.419893</td>\n",
+       "      <td>0.0002</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1</td>\n",
+       "      <td>0.760482</td>\n",
+       "      <td>0.759609</td>\n",
+       "      <td>0.497386</td>\n",
+       "      <td>0.483790</td>\n",
+       "      <td>0.0004</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   epoch  train_loss  val_loss       eff       pur  current_lr\n",
+       "0      0    0.808832  0.788465  0.538224  0.419893      0.0002\n",
+       "1      1    0.760482  0.759609  0.497386  0.483790      0.0004"
+      ]
+     },
+     "execution_count": 23,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "gnn_metrics = get_training_metrics(gnn_trainer)\n",
+    "\n",
+    "# gnn_metrics = get_training_metrics(gnn_trainer, METRICS_PATH) # Use when loading from checkpoint\n",
+    "\n",
+    "gnn_metrics"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABwgAAAJYCAYAAAB2JbLWAAD88klEQVR4nOzdZ3RUZdv28WMSkgABQggBpAtIR6X3ZgSkI0iXXqQoSBUVCBFQKdJRpEtXBAtFEQUUkCpIUW46UkIxQCAEUmfeDzzkJSaUQGauyeT/W2vWcs9ux1x6Pzmffe59bYvNZrMJAAAAAAAAAAAAQKrgZjoAAAAAAAAAAAAAAMehQQgAAAAAAAAAAACkIjQIAQAAAAAAAAAAgFSEBiEAAAAAAAAAAACQitAgBAAAAAAAAAAAAFIRGoQAAAAAAAAAAABAKkKDEAAAAAAAAAAAAEhFaBACAAAAAAAAAAAAqQgNQgAAAAAAAAAAACAVoUEIAAAAAAAAAAAApCKprkHYo0cP1alTJ9HPgAEDknSs4OBg1alTR4GBgXbZ3lH+m+txcg4ePFh16tTRzZs3H3n80NBQhYaGPvaxn4azjjEAAK7MarUmqKuaNGmioUOH6uzZs0983MT+rt9fV6RUrlR7PQ1X+HcJAIA91atXL9HrV6+//nrcNr/99ps6d+6sBg0aSJIuX76soUOHqn79+tq+fbuWLl2qOnXqaMuWLQ89lzPXDKZRu91F7QYArieN6QCOVqlSJRUsWFCStHnzZlmtVgUEBEiScufOnaRjpUuXTgEBASpcuLBdtjcluXN269ZNnp6eWr58eYoZAwAAkHTu7u6qVauWrFarDh48qP379+uDDz7QnDlzZLFYkny8xOqG++sKV5Faay9X/HcJAEBys1gseumll+J95+PjE/fPX375pS5cuKDu3btLkrZs2aL9+/erZs2aKlCggCwWiwICApQ9e/aHnseZawZnQ+1G7QYAriLVNQi7desW98/bt29XRESEhg0b9kTH8vX1TdK+Sd3elOTMeebMGcXGxiomJkYnT55UwYIFU8QYAACApEubNm3c3/no6Gi1aNFC//zzj/79919ly5Ytycf7b02SWF3hClJj7eWq/y4BAEhuadKkeejf8jt37sjNzU2tW7eOW5ak2rVr65lnntEzzzyjKlWqPPI8KeWalTOgdqN2AwBXkeoahA9z8uRJ9erVS3Xq1JGfn5+OHj2q8ePH65tvvtE333yjkJAQ+fr6qkGDBmrfvr2Cg4PVqVMnValSRUFBQXH7165dW56entq+fbsyZcqkPn36qGLFikneXro7tcCkSZN06tQpvfLKK9q7d6+uXr2qVatWJcg/duxYbdmyRZMmTVKpUqUUEhKitm3bqlixYpo2bdoDf8d//TenJB07dkzTpk3T+fPnVa1aNUVHR8fb50HHHjt2rMLDwyVJ7777rqZMmZLg2BcuXNCsWbP0119/ydPTU2XKlFHPnj2VOXPmxxqjR3nY8SVpw4YNWrFihS5fvqysWbOqcePGatmy5SPXAQCAB/Pw8FCOHDl0+vRp3b59WwcPHtSgQYPUvHlz9e7dW5LUt29fHTt2TOvXr9fZs2cT1GFvv/12vLrhv3XFV199pXfffVd79+7VhAkT9OKLL+r27dtq3ry58ufPr1mzZiXIlZx1B7XXXQ+rl/bv36+5c+fq7Nmzyp49u7p166bKlSsn+u8SAAAkTY8ePXTu3DlJUp06ddS8eXOtXr1akjRq1CgNHDhQ165d08KFC/X++++rVq1aOnnypD777DMdP35cGTJk0CuvvKLXX39dFy9eTFAzPOjv+OPUCw86z3vvvUftRu0GAHASqe4dhI9jz549+uqrr5QhQwYdPHhQn376qby8vNS8eXOlS5dOCxcu1J9//vnA/bds2aILFy6oePHiCg4O1oQJEx56vgdtHxMTo1GjRunQoUOqUqWKdu3apdOnTz/wOPemnNi5c6ck6Y8//pB0966xJ/kd94SFhWno0KE6deqUatSooaNHj+rvv/+OW/+wY8+ZM0eZMmVS1qxZEy0ebt++rUGDBmnPnj2qWbOmSpUqpY0bN2rEiBGy2WxPPKaPe/zjx49r4sSJcnd3V9u2beXj46PZs2fr119/feg6AADwYFarVXv27NGZM2eUJk0a5ciR47H3vb8O+6/E6op7U8Xfq3/+/PNPxcbGqlatWgn2T+66g9pLD62Xzp07p2HDhikiIkKtWrWSJI0ePVrHjh17ZE4AAHBXdHR0gncQLl68WNLdRk22bNnk5uamadOmqXnz5qpbt64kqXv37qpcuXK8Y928eVODBw/WiRMn1KBBA2XJkkWLFi3SmjVrEpz3YX/H73lQvfCw81C7UbsBAJwHTxAmws3NTV9//bUyZsyoc+fO6f3339ezzz6rqKgo/fPPP/rnn3908eLFB06VVaxYMU2ePFnS3SlNz549qxs3bjzwfA/a/vjx4zp9+rTq1q2rwYMH6+rVq2rTps0Dj1O+fHllzJhRO3fuVI8ePbR3715ZLBbVqFFDt2/fTvLvuOfnn39WeHi4OnbsqA4dOig0NDTeU3S+vr4PPPaLL7740GNv3bpVV69eVZMmTfTWW29Jkq5fv64DBw7o6NGj8vDweOgY3T/v/pMcPywsTNLdpxyyZ8+ut99+WyEhIcqZM6cuXbr0wHUAACCh8PBw1alTJ953r776qtKmTfvYx7i/DgsODn7k9lWrVpWnp6d27typXr16ac+ePZKU6EWm5K47qL2k0NBQSYnXSz/88IOsVqsaNWqkEiVKKEuWLJoyZYq+/fZbDR069KE5AQDAXYm9g/DZZ5+VJBUoUEBeXl6S7v7tliR/f39JUp48eeJmTrrnt99+061bt+JqjBs3bmj27NmKiYlJcN6H/R1v0aJF3DkTqxe2bt36wPNQu1G7AQCcBw3CRJQuXVoZM2aUJKVPn17r16/XkSNHVKZMmXh35zxI7ty54/7Zz89PZ8+eldVqTfL258+flyQVLVo0bl3OnDl169atRI+TJk0aVa9eXevXr9eFCxe0b98+Pf/88/Lz85OkJP+Oe+7lKFmypCQpc+bMyps3r86ePSvpycbonntNuFKlSsV9V7JkSR04cEAXL15U3rx5JSV9TB/3+DVq1FDTpk21ZcuWuLurihYtqgEDBqhMmTIPXAcAABJyd3ePu7jj5eWlkiVLJmgYPsr9ddjjSJcunSpXrhx31/OePXtUtGjRRJ9aTO66g9pLD62XLl68KEn69NNP4+1z4cKFx84LAEBq96h3ECbF5cuXJSnu/XE+Pj4aMmSIJCW4Metx/o4/qF542HkkUbtRuwEAnAQNwkS4u7vH/fPKlSu1f/9+jRkzRhUrVtT06dMdliNLliySpBMnTki6O0XDpUuXEp1y656XXnpJ69ev1+LFi3Xz5k3Vrl1b0tP9jkyZMkmS/v77b5UuXVq3b9+OKxoe99gPKn6yZ88uSfrrr7/iLigePnxYkh55h9bjeNTx7zUJO3furODgYP3yyy9avXq1VqxYoY4dOz5w3XvvvffU2QAAcDVp06Z94AUsi8Ui6e4dz9LdaUjv3cF8v/vrsAf5b13x0ksv6ddff9XXX3+ty5cvq3nz5onuZ4+6I7XXXg+rpe7VsnPmzFH+/PkVGxur4OBgpUuX7pE5AQBA8suaNauku+8HrFKlim7evKkFCxaoQIECKlu2bLxtH/Z3/GGzZD3qPI0bN6Z2o3YDADgJGoSPkCbN3SH68ssvtX37dv3yyy+SpMjISLufu1y5csqUKZN++uknWSwWHT169JFPzZUqVUp+fn765Zdf5ObmpmrVqkl6ut9RqVIlLVmyRMuXL9fVq1d19OjReC9bftSxM2bMqIsXL+rHH3/U888/H+/Y1atX14IFC7R27VrZbDaFhYXpwIEDKly4sIoVK/bQdy4+jkcdf82aNZoxY4ZKliypihUrKiQkRJKUI0cO/fHHHw9cBwAAkiZnzpxyc3PTtm3b9NFHH+n8+fP6999/k3yc++uKV155RdLd6aIyZMigH374QZJUo0aNRPe1R92R2muvh9VLVatW1Zo1azRhwgS99NJL2rVrl/bv368hQ4aobt26if67BAAA8cXGxib6PrlevXoladYF6W4dMH/+fK1atUoRERE6dOiQjhw5ooEDBybYtm7dug/8O37vycAnPQ+1G7UbAMA5uJkO4Oxee+01vfDCCzp+/LguXryoDh06SJK2b99u93OnT59eH374ofLnz68tW7aoWLFiypcv30P3cXNzi7v7qUyZMnFzjT/N7yhSpIj69++vZ555Rr/88ovy5MkTN7f94xy7devWypIli1auXJng2N7e3po4caLKli2rTZs26c8//9TLL7+sMWPGyM3t6f/zfNTxGzdurPbt2yskJESLFi3SoUOH1KhRI73++usPXQcAAJLGz89Pffr0kbe3t/bt26eyZcuqUKFCST5OYnWFh4eHatSoIZvNplKlSsXdtf5f9qg7Unvt9bB6qUiRIho1apRiYmI0f/58Xb16VYMHD1bdunUfmRMAANxltVr1008/Jfg8yY3rWbJk0bhx4/Tss89qzZo1unbtmnr06KH69esn2PZRf8ef5jzUbtRuAADnYLHxbLjTunDhgr7++mtlzZpVzZo108mTJzV06FAVLVpUU6ZMMR0PAADAafz000+aMGGC+vXrp8aNG5uOAwAAgIegdgMAwDymGHVizzzzjNKnT6+lS5dq4cKFku7elZTY1A8AAACp1ebNm7Vq1Sp5eHioevXqpuMAAADgIajdAABwDjxBmAJERUUpJCREGTNmTPL88gAAAK7u9ddfl81mU6tWrdS0aVPTcQAAAPAQ1G4AADgHGoQAAAAAAAAAAABAKvJkb/QFAAAAAAAAAAAAkCLRIAQAAAAAAAAAAABSERqEAAAAAAAAgJ1YrVbTEQAAABJIYzqAIw0bNkz9+vUzHQMAADiIl5eX/Pz8krxfq20Ttff6CU0p001NcpW3QzLXQX0FAEDqkprqq02bNmnx4sWy2Wxq27at6tWrl2Cbjh07KiQkJG55woQJKlGiRNzy/PnzFRkZqd69ez/2eamvAABIXUzVVxabzWZL8l4plMVikb1+bnBwsHLmzGmXYyNxjLnjMeaOx5g7HmPuePYc86Qe+0ZEuF7fNlHrrx6S1Ror/7Q+ml2ht5rlqmiXfK6A+sq1MOaOx5g7HmPueIy541FfPb3Q0FD17dtXM2bMkJubm/r27aupU6fGu3hntVrVrl07rVixItFjHDx4UCNHjlS9evWS1CCkvnItjLnjMeaOx5g7HmPueK5YX6WqJwgBAADuF2O9oTNXP9PtqJNyt9jUfeM17YyNlrw9JEn/RtzQq1vH6sNCg5QvwzPKkcVX1f2zysNiMZwcAADAOblKfbV7926VK1dOvr6+kqTKlStrx44datSoUdw2ISEhD7zbPzw8XHPmzFHLli118+ZNh2QGAACuyV71FQ1CAACQKtkUrd9P1taNO/tlkeTlnkYh0XUlL0/p/+7YLuGbXT63XtB7vx+RslyUPD1UNFMm/VKrunKmTWv2BwAAADgZV6qvQkJClC1btrhlf39/Xb16Nd42ly5d0o0bNzR06FCdOXNGNWrUUJ8+feTm5qZp06apQ4cOunLlygMbhEFBQRo1alSi6ywWiwYNGqSBAwcm22+6Jzg4ONmPiYdjzB2PMXc8xtzxGHPHs9eYWx7SyLNnfeXSDcKHFVoAACB1u3H7D92M2B+37JuurHL5FNGJmNOSTXrjudp6Jqa8Pr74j/SMp2SxSFar/nfzpqYdP6GPS5U0mB4AAMD5uFJ9ldgUn1arNd5yxowZ9dprr6lJkyYKCwvTiBEjtG7dOqVLl07e3t6qUKGC1q5d+8BzBAYGKjAwMMH3TDHqWhhzx2PMHY8xdzzG3PHsPcXog9izvnLpBuF/C62HdWEBAEDqciU8RLcjJW8vyWqTfNKWlLuHt9xt7lpYsa+eSfO8Xt78i5TRS7Ja4+7KkqTT4eEGkwMAADgnV6qv/Pz8dPTo0bjlkJAQ5cmTJ942+fLlU/78+WWxWOTj46Pq1avr9OnTunLlik6dOqU//vhD4eHhiomJUXh4uAYPHuzonwEAAFI4e9ZXLt0gBAAAeBDrjbM6d00q+oxkkeThUUh18hfTxPxdVTrzs7oWFa3/NWuoE2FhOhZ2U8fDwnTkZpiOhN1SWnc30/EBAACcjivVVxUrVtTixYsVHh4ui8WinTt3qmXLlrLZbLp48aJy5Mih1atX6/Dhwxo+fLgiIiL0+++/q1GjRurXr1/ccdauXatz586pd+/eBn8NAABIqexZX9EgBAAAqY7t8lYV2T1WF7NV1ZGb25XfR/L0LKRhLzaN2yaLp4eyeHqoSAZvXQ3NqP2XbynTrUhlCw3XgctWhRSLVtYMHgZ/hRlM4Q4AABLjavWVr6+vunbtqkGDBslms6l9+/by9/dXRESEOnXqpK+++kpNmzbVv//+q27duikmJkZ169ZVQECA6egAAMBF2Lu+okEIAABSFduVHYrd0kGKvqnaYTFKl2eUTt8apUxpCz9wn5p5vfTx39dltUi2TN6KjY5Vn63/au7LOZTJw7nudrc3pnAHAAD/5ar1VUBAQIKGX9q0abVx48a45d69ez/06cBGjRrZLR8AAHBdjqivjFRcmzZtUpcuXdS5c2dt2LAh0W2WLVumdu3aqW3btlq0aFG8dRERERo6dKgjogIAABcT+3tf2SKuyiYp5uZfqnTlisoXWivPNDkeuE8+7zT69OWckkWyuEse6dPoUHisem3713HBAQAAnBT1FQAAQPJyRH3l8CcIQ0NDNW/ePM2YMUNubm7q27evypUrJz8/v7htjh07pnXr1mnOnDmyWCzq06ePypQpo5IlS+qHH37QDz/8oKioKEdHBwCkUlFRUbpz547c3JzjTmZX4+npqbCwsCTtY7FYlCFDhic6nyVrOdluHpck2SRFn1qkQjlrSz7ZHrhP9O1o5d/xP7UrVUDLDl2TzXr3hc9/XqUeAQDAmcTGxiosLEzu7u6moxhFfQUAQOoTHR2t27dvc/3KTlyxvnJ4g3D37t0qV66cfH19JUmVK1fWjh074k254ObmJnd3d3l6ekqSPDw84v6j9vHxUY0aNfTzzz87OjoAIJWyWq1Kly5d3N8lJK8MGTIkeZrKpBZk93OvPF22sBBZz22QxdMiuVkUvb2LPLIUlnyfT3SfiLBILR2yXs+/XkJ/1Kyu/124qfRuFn1c3i/R7QEAgBmxsbFKly6dvLy8TEcxivoKAIDU514dxPUr+3DF+srhreSQkBBly/b/O5z+/v66evVqvG0KFSqkihUrqkWLFnrttddUvHhxFS9eXJJUpUoVVaxY0aGZAQCAC3H3UppaC2WLKipraDbJo7QsftVkPffdA3e5fva6PNKm1/7Pd6r40nVK6+WhiRX9VC93OgcGBwAAcFLUVwAAAMnLAfWVw58gtNlsCb6zWq3xlg8dOqQDBw5o0qRJcnNz0/jx47V3716VK1fusc4RFBSkUaNGJbrOYrFo0KBBGjhwYJKzP0pwcHCyHxMPx5g7HmPueIy54yU25n5+fon+DUPySOrYRkZGPtZdWA+8sytdJtkyt1T01lWyhOaW+zMF5WbLKffYzXLLkU+WjL6yZPCV9dS/si3frJDChWW1xsrbL5turtmn4WXyKCBn9SRlBgAAcGnUVwAAAMnLzvWVwxuEfn5+Onr0aNxySEiI8uTJE2+bXbt2qUaNGipUqJAk6aWXXtLOnTsfu0EYGBiowMDABN9bLBa7XdwNDg5Wzpw57XJsJI4xdzzG3PEYc8dLbMwjIiJksViSPI0AHo/NZkvy2Hp5eSlr1qyP3O6hDfaYO7KGXZPCdin22K6737lZZIuJVvrB02S5UlC3e86WR64Y/ds6W1zWLJmzKX96pusAAABIgPoKAAAgedmxvnL4FKMVK1bU7t27FR4ertu3b2vnzp2qVKmSbDabgoODZbValS9fPu3evVu3bt1SeHi4du3apfz58zs6KgAAcGFuWXP//wWLRbJYZI2JksdL3RX7tXSr/TTZwiMV6XZbIcf/lU13bzTydPdSllzZzQUHAABwUtRXAAAAycue9ZXDnyD09fVV165dNWjQINlsNrVv317+/v6KiIhQp06d9NVXX+nll1/W6dOn1bNnT9lsNlWvXl0NGjRwdFQAAODCPGq3VtSOtYo9fVi26FjF3LqjNH61ZF2UTlF/rZdkkc0WrZtnz+ui7aJkkWSTfHJnUt5yuR91eAAAgFSH+goAACB52bO+cniDUJICAgIUEBAQ77u0adNq48aNccs9e/ZUz549E90/T548mjVrll0zAgAA12bxzqQMY79T7JHdirl0XtbgUEUO2K+YqOOSxSaLxV2xMbcV4+WmEg2LySaLfLJnVOnXSskjrZESCgAAwKlRXwEAACQve9ZXVF8AACBVcy9WQe7FKkiSPPIcVXivebJeDJUsUprqxZR/fm8VzJHNbEgAAIAUhPoKAAAgedmjvnL4OwgBAACcVZoaReT9eTe55/dXmpeKyueb4XLn4hUAAMATo74CAABIXslVX/EEIQAAwH3SVC+iTPvHmo4BAADgMqivAAAAkldy1Fc8QZhMboXeNh0BAAAAAABANpvNdAQ4Ka5fAQCAe1y6QRgUFCSLxRL3sZfZ7yzRyHrj9caLgxUVEWW38wAAAJjmqPoKAAAknc1mU0R4hCJvRyk6Mtp0HDgZrl8BAID7uXSDMDAwUDabLe5jDwtGLNe309fr6oXrOnXwH3UrPkBWq9Uu5wIA4GmdO3dOzZo1e6pjXL58WQ0aNEieQEhxHFFfAQDgSnr06KE6derEfZo1a6agoCBdu3Ytycd6VC0XeTtKVuvdv9Ex0bGKiYp5iuRwJVy/AgCY0LVr13h10L3P0KFD47bZsmWL2rRpo99//12SNHbsWLVt21aS1KJFC505c+ah50iOa12pFe8gfErH/zit6Ij/f1de5J1InfjzjAqXKWAwFQDA1fXr10/vvPOOcuXKlaT9smTJon79+tkpFQAAABLTu3dvvfzyy7LZbLp8+bI+/vhjzZgxQyNHjkzScf5by91fE1pjrfFu3rHZbIqNtXLhB5K4fgUAMKdv37566aWX4n3n7u4e989ff/21evXqpSpVquj06dP6888/tWTJEknSm2++qaxZsz70+FzrenIu/QShI9RuW1UZs2SIW86YJQPFFQDgoZLjqatLly4pOjrhtFFWq1WxsbEP3M/b2ztBUebKam+PUZGVZ03HAAAAKVhy1G7p0qVTpkyZ5OPjo8KFC6tJkybav39/ko5htVqVNm3aeLXc/TWhm7tbvOm/LRaL0ni4JzjO06K+SpkSXL/y4/oVAODhkmvWoPTp0ytTpkzxPt7e3nHrw8LClD179rh/zpw5s7y8vCRJtWvXVoYMGRI97j2ucK3LVH1Fg/Ap1elQU2/N7K5cRZ5RtVcrKkf+bNr9Q9KKfABA6nDt4nV90PITtczRXc2zdtEn3T57omJr6NChCg0N1ZAhQ7R//36FhISobdu22rp1q9q2batz585px44d6tmzpxo2bKj27dvru+++kyQFBwfHTbtw/fp1tWrVSitXrlTLli3VpEkTTZ48OcmZDh8+rDfffFONGzdWr169tGfPnrh1S5YsUZs2bdS4cWMNGzYs3lRa99Y1adIkwToAAACTYqJjNKHrp3rVr7Na+HfVmFaTdCPkZrId32KxxN3Ude7cObVo0SLe+h49eiRa5+3bty+ulvtvTThlyhTNnT9X7mnc5eZmUci1f9W4SWOFh4cnW26kXP+9fuXrn1kHf/3bdCwAgBMKvXJDo1t+opbZuulVv876pNtnio21z7TUI0aM0KVLlzRixAitWrVKH3zwgc6ePavOnTtLklq1ahU3xejBgwfVu3dvNW3aVIMHD9bZs3cbavdf65Kks2fPasiQIWrWrJkGDx6sXbt2SXr0dbDEjj916lR99tlncccODg5WgwYNXKa+okGYDGq3rqoPfxmmwFWDNXbde/pm6jrt/emA6VgAACdyNfiaupUYoK2rdurGvzcVdu2WflywSa1z9dSdWxFJOtb48eOVOXNmTZgwQaVLl5Z09w6rPXv2aM6cOcqWLZtGjx6tFi1aaPny5erVq5dmzpyZaPESGhqqY8eOafHixZowYYI2bNiggwcPPnaW0NBQvffee6pfv76WLVumtm3batSoUbp48aL279+v1atXa+zYsVqwYIFiY2O1fPlySYq3bv78+fHWAQAAmBR+47ba5emlnxZu1q3r4Qq7dku/fr1DXYr01/XLoU90zMjISIWHh+vWrVs6efKkvv/+e73wwguPte/9dd7908vfXxO+8PwLqlShknbs/F1e6Tzlld5LW7dtVaVKleLdoQ/nFBQUJIvFEvexl/uvX03cPEpz312qIzuP2e18AICU59rF6+pStL9+W7VTN66G6db1cP24YJPa5n5Dt2/eeaJjTpgwIcE7COfNmydJGj16tHLkyBF3HWvkyJHKmzevFi5cGO8YISEhGj58uNq0aaMFCxboueee09ixYxOcKyoqSsOGDVPZsmW1ePFitWrVSuPGjdPJkyclPfg62IOOX716dW3bti3u+Fu2bHGp+oqp6O3gox+H6526o+XmZlGZl583HQcAYJjValWXov0TbQRevxSqPuXe0YL/TX2qc0RGRqpDhw7KlCmTYmJiNHv2bOXOnVtWq1W+vr6yWCy6detWgv1sNptatmyptGnTqkiRIipatKhu3nz8u+O3bdumggULqmHDhpKkmjVratOmTdq8ebMKFSokq9WqkJAQ5c2bV+PGjZPVeveOs+jo6Lh1efLkibcOAADApN5lh+j6lRsJvg+7fktdivbX6qsL5OaWtPutZ86cqZkzZ0qSPDw89Pzzz6t///6Pte/9dV6i9ZzVpujIaJWvWF53Jt7RiRMnVLBgQW3ZskUdO3ZMUk6YERgYqMDAwLhlezYJ7zft97HqXXaoBs3trUKln3XIOQEAzstqtapLsf6JNgKvX757/WrhsWlJPm5i7yD09PRM0jE2b96sF154QTVr1pQkdenSRbly5Urwmp09e/bIzc1NrVq1kpubmypUqKCqVavq559/VqtWrR54HezYsWOJHr9kyZK6c8d16ysahHYy7qcRGhIQJDd3N71Yu6TpOAAAg35e/JseNmvntYvXdWTXcRWr+NwTn8NiscS9tNnNzU3btm3Tjz/+KA8PD+XLl++hFxkKFy4c989p0iStNAgJCVHOnDnjfZczZ06FhISoXbt26tq1qxYtWqTRo0erZMmS6tatm5577jlVqFDhgesAAABMObDlL928mrAJd4+bm0W/rdyhWq2rJum4AwcOVP369R97+/unfL+/zktMVGSUvNLffU9P5cqVtW3bNnl4eOjKlSuqWLFiknIi9fnsj/HqVmKAAr8epLzFcpuOAwAwaPPy7bI+ZCrR0Cs3dHjbEZWsVixJx733DsKnceXKlXjXnzw9PdWoUaME2128eFHXr19X+/bt431fvXr1uH9O7DrYw47vyvUVDUI7mvBLoAbVCpSbu5uer1HcdBwAgJ3dvBqmFv5dk7zf7bA76lf5vQTfZ/LLqFX/zn+sY9w/HdHOnTv1zTffaPr06cqWLZskxT3hl9yyZs2aYErSS5cuqVChQrp48aLKlCmjJk2aKDw8XMuXL9e0adM0ffr0eOtu3bqlFStWxK0DAABwhMYZOygiPGlTvYddD9fYtlM0tu2UBOvWhC1WWu+0T5Tl/rvfIyIidOnSpbjlB007abPaZLNJXum84r6rXr265s2bJzc3N1WvXl0eHh5PlAepy7y/JqtjoTc17qcReqZAdtNxAAB2Fn7jtpr5dkr6fjdva0CNkQm+9/ZJr2+vf5Ec0R7Iz89PR48ejVuOjo6Om0L0flmyZFGJEiU0fvz4uO/OnTuntGkfXqM97PiuXF/xDkI7+2RLkBYMX67D2/5nOgoAwM4y+WXURuvKBJ8hC/oqrbfXA/dLnzGdpu34MMF+j2oO3rmT+NzvYWFh8vDwkKenpyIjI7V06VJFRUUpMjLyqX5fYqpWraoTJ05ow4YNun37trZu3ao9e/aoVq1a2rdvn0aOHKkLFy7IarXKarUqJiZGkh66DgAAwBHWhC1OUH9N3DRK3j7pH7hPhszeen/524nWfE/aHMyYMaPCw8O1bds2xcbGatWqVY+s26xWmyLvRMliiV8Tli1bVpcvX9aaNWsSTOUFPMyiEzM0sOZIhVy4ZjoKAMDOvH3SJ1rLDFvc76HXr7wzpdfk3z5IsN+jmoP33sX8309S1KxZU3v37tXvv/+usLAwLV68WJs2bUrwLsDy5cvr1KlTWrduncLDw7V371716dNHISEhT3x8V66vXLpB6KiXPD/K5N9Ga847i/X3Dl78DACp0csdajx0vV9O3yRPL1qzZk0NGzZM+/btS7DupZdeUtGiRdWpUyf16tVLmTJlUp06dfTeewmfUnxavr6++vDDD/X999+rdevWWrJkiUaOHKlcuXKpXr16KlmypN566y21a9dOx44d0zvvvCNJ8da1b98+3joAAABTXqhVQhmzZHjgepvNppqtqiTrOTNnzqzevXtrwYIFatiwofbv36/ixR8+C1Hk7Uil9fZKUBN6eHioYsWKcnd31wsvvJCsOeH6lp/7XG+8OFg3r4aZjgIAMOCldtVkcXtwH8XHP1OSpxeVpGnTpqlZs2bxPi1btkzSMZ555hmNHDlSCxcuVLt27fTnn3/G9X/ulzFjRo0dO1Y//fST2rRpoxkzZqh///4qVuzhuR92fFeuryw228PeiuRaLBaL7PVzg4ODE7yD6b/eqvSu+k7rpqIVCtklQ2rzOGOO5MWYOx5j7niJjXlERITc3NyS/ALl+127FKpuxd7WrRvx75DyzZ5Zi07MeOgdWq7OZrMl+UaesLAwZcyY8ZHbFVl5VpJ0tGXeJOf6fdcepUmTRhXKlk7yvqmJ6foKyYsxdzzG3PEYc8dz5JhHRUXJZrPJy+vJa6s7YXfUodCbuvHvzXjfe/uk18Jj05XZ/+neofM0bDabIsIjlS7Dg59WnDJlitKmTatevXol6djUV87DdH3VJFMHfRk856H/neHx8XfH8Rhzx2PMHc9e169Cr9xQ56L9FR4a//pV5mw+WnRiRqr92+Cq9RXvIHSg6Ts/Ut8Kw9T/0x4qXK6g6TgAAAfKkiOzFhybpul95+rgb3/LGhurqq9W1MDZSSssHOHkyZNauXLlA9dXq1ZN1apVc2Aixzt56oxOnDotSfLz9VXBAvnNBgIAAA6TLmM6fRk8R1Pe+Fzbv9ktWaQyLz+vAbPekHfmB08/6ggPaw5GRkbq4sWL2rJliyZMmODgZI9GfZVyfH9zsep7tdWaW4uVxoNLhwCQmmTO5qPFJ2doau85+nPTYVmtVlVtVkGD5vY2Hc0IV6+v+CvvYDN3f6zeZYdq0NzeKlT6WdNxAAAOlNk/k0Z8NfCJnphzpIIFC2rYsGGmYxhz8tQZbd+1W5ky3b3Da/uu3ZLERSwAAFIRd3c3DZrbW4Pm9naa2u122B2lz5jugesPHTqksWPHqkGDBipUyLlmLqK+Snl+iFyuOm4ttdH64BsHAQCuKaNvBg1fMcBpaiCTXL2+okFowGd/jNcbLw7WO4veUoHn85mOAwBwsNReXKUEVStW0InTd+/AKvWIeeoBAIBrc4ba7VHNQUkqV66cvvnmG0my2/SUT4P6KuVZf2eZGqRrp/V3lpmOAgAwwBlqINNcvb5yS+5AeDyf/zlRH78+TacPnzUdBQAA6O6dVydPnVHBAvnj3W11b/ne+tTu3ku6730AAIB93bkVkWLf90N9lbJ5eHlo5eW5apa5k+koAADg/yRnfUWD0KDZBz/RmNaTdfbIedNRAABI1e5Ny/Ao23ftTvUXsQIDA2Wz2eI+AADAfu7cilBab68UeVMO9ZVr8M6UXguPT1fL7N1MRwEAINVL7vqKKUYNm/fXZHUp2l+jv39HuQvnNB0HAIBU5/dde3Ti1GllypRRJ06fjpua4d+Qq5KkDb9sjts2U6aM2r5rt65ev64KZUsbyQsAAFKHlNwcpL5yLZn9M2nm3nFqn6+3lv7zmek4AACkSvaor3iC0Aks+N9UDW/0kS6cuGQ6CgAAeAwxMTGmIwAAABcWER4pr/Qpszn4pKivnFu2PFk1/pdAdS78lukoAADgMT2qvnLpJwiDgoI0atQo0zEey8Jj09WhYF9N+DlQOZ7NZjoOAACpRpWK5ZXd31/bd+1WqWLF4uZvv3fnVb2A2pL+/zQOVStWiDfHOwAAQHKKCI+UVzpPWdxSbnOQ+so15SqUQ6O+GaoepQZqzqFJpuMAAJCq2KO+cuknCFPaO3IWn5ypQbUDdeVsiOkoAACkKgUL5FfVihUeuR0XrwAAgD1FhEek+ObgPdRXril/iTwasvBN9S3/jukoAACkOsldX7n0E4Qp0dIzn6ld3l6a+vtY+ef2Mx0HAIBU417h9N+XON9b5sIVAACwp8jbkfJM6xrNwXuor1xT4bIF1GdqV71dbbimbBtjOg4AAKlKctZXLv0EYUq17OwsvVXxXV29eN10FAAAUqXtu3brTkSE7kREaPuu3abjAAAAFxd5O1IeXh5yc3fdyzTUV66lRJUi6jy6jYYEBJmOAgBAqvW09ZXrVp4p3IoLs9Wr9BCFXrlhOgoAAKnKvekabt4M082bYUx7BQAA7CryTpTLNwepr1zTi7VLqtWQJnqvwYemowAAkOokR33lutWnC1h5aa66lxyoGyE3TUcBAKRwly9fVoMGDZJtO1dXsEB+FSrwrAoVeJaLVwAAwG4i70QpjYe7SzcH76G+ck3lXymthj1f1qjmE0xHAQAg1Xna+op3EDq5r6/MU3O/LvrixHRl9M1gOg4AAKlGlYrlTUcAAAAu7F5z0D2Nu+koDkN95ZqqNqug6MhojW07Re8vf9t0HAAAUpWnqa9c/xY1F7D66gJ1eLavwm/eNh0FAJAMbDab6QiArFar6QgAAKRaURHRck/jlqqag3BttVpXVYX6pTW+8wzTUQAAwGPiCcIU4tvQL9QkUwd9GTxH6TKkNR0HAPAEroSHa9TmX7TrwgXF2qyqV/A5ffxyHVksliQdZ/jw4SpcuLA6duwoSQoNDVXr1q31xRdf6PTp01qwYIEuXLigzJkzq1WrVmratOkTZz58+LBmzZqlf/75R7ly5VK3bt1UvvzdO5OWLFmitWvXKjw8XCVKlNDQoUOVJUuWR66DfWzatEmLFy+WzWZT27ZtVa9evQduO3/+fEVGRqp3796SpGXLlmnt2rWy2WyqX79+3H9bAAAg+UVFRMvN3U1pPGgOwrXU6VhTURFRmtJrtt6e1dN0HAAA8Ag0CFOQ728uViPv9loVskBe6TxNxwEAJMHlW7dUd/FC3YyMjPvuq78OafPpU9rSpZvSe3g89rFq1qyplStXxjVxfvvtN5UsWVKZMmXS6NGj1b9/f1WuXFkHDhzQ6NGj9fLLLz9R5tDQUL333nt64403VKNGDe3bt0+jRo3S3LlzdenSJa1evVoTJkyQj4+Pxo0bp+XLl6tv377av3//A9fBPkJDQzVv3jzNmDFDbm5u6tu3r8qVKyc/P78E2x48eFDff/99XAPx2LFjWrdunebMmSOLxaI+ffqoTJkyKlmypKN/BgAAT83d3V1hYWGKiooyHSVR544GK12GtMqaK4sUYb/zREZGysvLK0n7JPWmNSSfoKAgjRo1ynSMZNGwZx19O/0Hzew/X32ndjUdBwBSFXd3d92+fVuR9117QvJxxfrKpRuErlRg3bM2fKkapG2r724uloenS//rAwCXYbXZFPDFfIVHRydY9+/tcDVetkS/dOry2MerUqWKJk+erAsXLihXrlz69ddfVbduXXl6emr27NnKnTu3rFarfH19ZbFYdOvWrSfKvW3bNhUsWFANGzaUdLcxuWnTJm3evFmFChWS1WpVSEiI8ubNq3HjxsVNWRkdHf3AdbCP3bt3q1y5cvL19ZUkVa5cWTt27FCjRo3ibRceHq45c+aoZcuWunnzpiTJzc1N7u7u8vS8e/ORh4eH3NyYhR4AkDK5u7src+bMpmMk6rOBC5U9r7+av93Q7ucKCwtT1qxZ7X4eJI/AwEAFBgbGLTv7xcRHafZWfa2c+L1mD12snuM7mI4DAKmGh4eHfHx8TMdwWa5YX7l0h8nVCqx71kcs1yuebbTu9lLeVwAAKcA3R/7Ww946eCX8lv68dFEv5njmsY7n7e2tChUqaOvWrapTp46OHz+uMWPGyM3NTdu2bdOPP/4oDw8P5cuX76n+9oWEhChnzpzxvsuZM6dCQkLUrl07de3aVYsWLdLo0aNVsmRJdevWTc8995wqVKjwwHWwj5CQEGXLli1u2d/fX1evXk2w3bRp09ShQwdduXIlrkFYqFAhVaxYUS1atJDFYlGtWrVUvHjxBPs+7MYri8WiQYMGaeDAgcnzg+4THByc7MfEwzHmjseYOx5j7nipfcy/+vB7pfdJr0qtSjtsLFL7mMOsloObaOnYVVo4YoU6j25jOg4AAEiESzcIXdmPUStU172VNsR86TKNTwBI6a5H3FGZWZ8meb9bUVF6dcWyBN/7pk2nfb36JLpP7dq1tXLlSqVNm1bVqlVTunTp9Pvvv+ubb77R9OnT45pF957+exJZs2bVwYMH43136dIlFSpUSBcvXlSZMmXUpEkThYeHa/ny5Zo2bZqmT5/+0HWwD5stYQv6v09t/vzzz3HN5bVr18Z9f+jQIR04cECTJk2Sm5ubxo8fr71796pcuXLx9v/vjVf3WCyWRM+fHIKDgxM0qWFfjLnjMeaOx5g7Xmof88UfrFSWrFnUcVQrh53TvmN+1k7Hhatp/34LLRi+XMs+XK127zU3HQcAAPwHDcIU7KfYr1THraU2WleajgIA0N2G3um3ByX4ftXff2nk5l90O5EpRiUpg6enFjd/7bGfIJSkihUrauLEifr222/Vv39/SXenOvDw8JCnp6ciIyP19ddfKyoq6onmSJekqlWravbs2dqwYYOqV6+uP/74Q3v27FH37t21b98+rVq1SqNHj1amTJlktVoVExMjSQ9dB/vw8/PT0aNH45ZDQkKUJ0+eeNts2bJFp06d0h9//KHw8HDFxMQoPDxcmTNnVo0aNVSoUCFJ0ksvvaSdO3cmaBACAICkWzHuW0XdiVK3j9qbjgIY0WVMW80eskgrP1mjloMam44DAADuwwtmUrifYr9SXXfH3YUIAEi6V4sVf+gTVtm8MySpOShJadOmVaVKlRQdHa0XX3xR0t3GTtGiRdWpUyf16tVLmTJlUp06dfTee+89UW5fX199+OGH+v7779W6dWstWbJEI0eOVK5cuVSvXj2VLFlSb731ltq1a6djx47pnXfekaSHrnO0zVXT6GjLvEbO7UgVK1bU7t27FR4ertu3b2vnzp2qVKmSbDabgoODZbVaNWbMGC1btkxffPGFOnfurHr16mnw4MHKly+fdu/erVu3bik8PFy7du1S/vz5Tf8kAABSvNVT1un65VCXaw6mlvoKyafnhI668s+/+nbGD6ajAADglEzVVxabveaEckKuOgVWbEysGqZvrx+jVhg5vympfZoaExhzx2PMHS+xMY+IiJCbm5s8PT2f+Lj/hofr5UULdDMyMt73WdOn169duiu9h8cTHzuls9lsSZ4uOywsTBkzZnzkdqnpf0O//PKLVq5cKZvNpubNm6tevXqKiIhQ48aN9dVXX8nX1zdu27Vr1+rcuXPq3bu3bDab5syZoy1btshms6l69erq1auX3Nwe7z4yV62vUivG3PEYc8djzB0vNY75mlk/6fTBf9Tv0x5Gzm/PMU+N/z4dzVXrq8k9Z6lIhefUoHuAkfObwv9mHI8xdzzG3PEYc8dzxfqKKUZdgHsad60JW6wG6dpp/Z2E77ACAJjn7+2tTZ26auTmX7TrwnnFWq16pVBhffRyHYfmOHnypFaufPDU1NWqVVO1atUcmAjJJSAgQAEB8S+2pE2bVhs3bkywbaNGjeL+2WKxqGfPnurZs6fdMwIAkBpsWLBZR/ec0OB5ib9LGkitBszupfGdZsjDK43qdKhpOg4AAKkeDUIX4eHloW+uLVQj7/ZaG77UdBwAQCL80qfXzIaNn+iJueRSsGBBDRs2zMi5AQAAXN2mZVu175dDendJP9NRAKc09Is3NabNZHl6eahmqyqm4wAAkKrxDkIX4pXOUysvz1OTTB1MRwEAPISp5iAAAADsZ9vqXdq6ehfNQeARhq8YoE3Ltun37/eYjgIAQKrm0g3CoKAgWSyWuE9qkC5DWi0/97ma+XYyHQUAAAAAgFRh17o/9OOCzQr8erDpKECKEPTtUK357Cft3fCn6SgAAKRaLt0gDAwMlM1mi/ukFt4+6bX41Ew19+tiOgoAAAAAAC5t388HtXrqeo1ZwzTuQFJ89MP7WjHuWx3Y8pfpKAAApEou3SBMzTL6ZtCCo1P1WrZupqMAAAAAAOCSDm09oiWjv9a4n0aYjgKkSBM3jdL895fp7x3HTEcBACDVoUHownyyZtLcw5PUMkd301EAAHBaUdHROnn6jDZv3a6z5y9Ikrbv3K09+/6UJJ08dXfdydNnFBUdbTApAABwJkf3nNDngxdp0q8fmI7idKivkBRTt4/V9Dfn6sT+06ajAADgtOxRX9EgdHGZs/lo1v4JapOrp+koAAA4pXPnLmj3H/sVFRWl6Kj7C6j/Pz15VFSUdv+xX+fOXXB8QAAA4HROHfxHk3rM0oxdH5mO4pSor5BUn/0xXh93mKZ//j5vOgoAAE7JHvUVDcJUwO8ZX03f9ZHa5e1lOgoAAE7n7PnzyuKbWfUCaqtggfySpKqVKqh8mdKSpIIF8qteQG1l8c2ss+e5YAEAQGp37miwxrSepM//nGg6itOivsKTmHt4skY2Hafgk5dMRwEAwOnYo75KY6+wcC7+uf00ZdsYtc/fW0vPfGY6DgAATiNv7tyPtV2hZ5+1cxIAAODsLv/zr959ZYyWnP7UdBSnRn2FJ/XF8elqm+cNTd/5kbLmymI6DgAATsMe9RVPEKYi2fJm1Sebg9ShYF/TUQAAcBoFC+SPu/MqObZzdUFBQbJYLHEfAABSi2uXQtWv8ns0Bx8D9RWexvJzn6tX6SG6EXLTdBQAAJyGPeorniBMZXI8m00fbxihzoXf0sJj003HAQDAuO07d0u6Oy3D/W6Fh2vPvj916fIVRUdHK3s2f71QqoRyZMtmIqbTCAwMVGBgYNwyTUIAQGoQdv2WupcYoNVXF5iOkiJQX+FpfX1lnpr6dNTy858rfcZ0puMAAGCcPeorniBMhXIVyqExa99Vl6L9TUcBAMA4T08PeXp6xPvuVni41vzwk27duqUXS5VQ+TIvytPDQz/9skWXrlwxlBQAAJgQeSdKbXO/QXMwCaivkBy+u7FILbJ2VUx0jOkoAAAYZ4/6yqUbhEyB9WC5C+dU0DdD1K3EANNRAAAwqnyZ0nEvdL5nzx/7lcE7vRrXr6diRQqrWJHCql2jmrJn89eBQ38ZSgoAABzNarWqScYOWhu+1HSUFIX6Csnlh8jlqu/V1nQMAACMs0d95dINwsDAQNlstrgP4stbLLeGfzlAPZ8fZDoKAADGnDx1RmfPX4j33aUr/6pQgYQvdc6bO5euXQ91UDIAAGBafc+2+iFquekYKQ71FZLT+ojlapCWJiEAIHWzR33l0g1CPNqzJfNq2JJ+euPFwaajAABgxNnz53Xk6DHTMQAAgJNp5N1e34ctlpsbl06SivoKycnDM42+/ne+mvp0NB0FAABj7FFfpUnWoyFFKvB8Pg1Z0Fe9yw7VZ3+MNx0HAJyOm5ub7ty5o8jISNNRXFJkZKS8vLyStE9yTh2eN3du7d63Xxt+2axiRQorb+5cypHNXydOnVGxIoXjbXv2/AVl8c2cbOcGAADOqblfFy0//7m80nmajpIiUV8lTVBQkEaNGmU6hlNLnzGdvjgxQy2zd9PKy/NMxwEAwOHsUV/RIIQkqVDpZzXg8zfUt8Iwzdz9sek4AOBUPD095enJxSF7CQsLU9asWY2dP0+eXJLu3okVHRUtSSpftrTW/PCT1vzwkwoVyP9/6y/o8pV/VbJYUVNRAQCAA7TO2UNz/5qsjL4ZTEdJsaivkiYwMFCBgYFxy8l5M5wryeyfSZ/+MV7t8vbSsrOzTMcBAMCh7FFfMU8G4hQuV1Bvzeiutyq9azoKAAAO4+nhoYIF8qt2jWoq+H/FVAZvbzWuX1cZvNPrz0N/ac++PyVJJYsV1eEj/9PJU2eM5QUAAPbz+rN9NG3Hh8qSI7PpKCka9RXsxT+3nyZuHqVOz71lOgoAAA5lj/qKJwgRT9EKhdR7chf1r/q+pm4fazoOAADGZPD2Vu0a1RJ875Mpk7bv2i1f38ypfjosAABcSddi/fXRj8OVPZ+/6Sgui/oKySFnwRwK+naoepQaqDmHJpmOAwCAUU9TX/EEIRIoXrmweozroAE1RpiOAgCA0ylYIL8avVJXGTJ4m44CAACSyRsvDtbwLwcqT5GcpqOkStRXSKr8JfJo6Bdvqk+5d0xHAQDAKT1OfUWDEIkqWa2ouoxpq0G1Ah+9MQAAqUwW38zy9PAwHQMAACSDNyu+q4FzeqnA8/lMR0nVqK+QVM+VKaA3p3dT/6rvm44CAIBTelR95dINwqCgIFkslrgPkub5GsXVIbClhgQEmY4CAAAAAECyG1hzpN6Y2FFFyhcyHQXAEyheubC6jGnLtSsAAJ6ASzcIAwMDZbPZ4j5Iuhdrl1Tbd1/VO3VHm44CAAAAAECyeafuaL0+4jWVql7MdBQAT+HF2iXVakgTvdfgQ9NRAABIUVy6QYjkUebl59VycBO9+8oY01EAAAAAAHhqwxt/rOb9G6jMy8+bjgIgGZR/pbQavVFHga+ONx0FAIAUgwYhHku5ui/o1f4N9X5D7sYCACA1Ywp3AEBKF/TaRL3SpbYqNixrOgqAZFSlaXm91LaaxrSZbDoKAAApAg1CPLYK9Uurce96GtHkY9NRAACAIUzhDgBIyT56fZqqN6+oas0rmo4CwA5qtqqiig3KaHznGaajAADg9GgQIkkqNSqr+t0DFNiMKRsAAAAAACnHxG6fqkxAKb3UrrrpKADsqE7HmipZtagmv/G56SgAADi1NKYDIOWp0qS8rLFWBbWYqMBVg03HAQDgqR0+fPixtitZsqSdkwAAAHuY1meOipQvpHpdapuOkmpQX8GkBj1eVlRktGb2m6++07qajgMAQLJI7vqKBiGeSLVXK8oaa9XoVpM04quBpuMAAPBUuDAFAIDr+mzgQuUunFONe9U1HSVVob6Cac3erK+VE7/X7KGL1XN8B9NxAAB4asldXzHFKJ5Yjdcqq8ZrlXj5MwAAAADAKc17d6l8s2dW87cbmo4CwICWg5vI2ye9Fo5YYToKAABOhwYhnkrNVlVUpWl5fdR+qukoAAAAAADEWTTqK3mm81Sbd5qZjgLAoPbvt5AkLR27ynASAACci0s3CIOCgmSxWOI+sI+X2lZT+fqlNa7jdNNRAAAAAADQio+/UXRUjDqMbGk6CgAn0Hl0G4XfuK2VE783HQUAAKfh0g3CwMBA2Wy2uA/s5+XXa6jMy89rfOcZpqMAAAAAAFKx1VPW6fqVG+r2YTvTUQA4kZ7jO+jK2RB9O+MH01EAAHAKLt0ghGPV6VhTL9QsoYndPjUdBQAAAACQCq35bIPOH7+o3pM6m44CwAn1ndZVpw+d1fo5P5uOAgCAcTQIkazqdamt4pWLaHLPWaajAAAAAABSkR/nb9KxP06p38zupqMAcGIDPn9Dh7f/TxsX/Wo6CgAARtEgRLJr0D1AhcsV1JRes01HAQDALpi6HAAA57Jp2Vbt33RYg+b2Nh0FT4j6Co40dOGb2rV+n3796nfTUQAAsJtH1Vc0CGEXDXvWUcEX8mla37mmowAA8ED3l0mxsbH///v/FFBXr13XgcN/6fDfR3Tjxk1ZLBYHJQQAAI+yddVObftmt95d0s90FIj6CinH8BUDtGn5Nv3+3R7TUQAAeCh71VdpkjMkcL/Gvevp2xk/aGa/+eo7ravpOAAAJGCRFBZ2S38e/ktnz55X3jy59EKpEsqUMaMkKdZq1YGDh3X0xEnZbDZZbVYd/OuIShYrolIlinMhCwAAw3au/UM/fbFFo78fZjoK/g/1FVKSoG+G6r0GH8rDK43Kv1LadBwAABJlr/qKBiHsqtmb9fXNtPX69O0F6jOli+k4AADEczMsTL/8uk1R0dHK7JNJwZeu6Or1UNWuXlU+mTLqryP/U/CVEJUqXkxFCz+nWGusDv99RGfOBSttunQqXLCA6Z8AAECqte/ng/pm2nqN+2mE6Si4D/UVUpoP17+nwS+NkmdaT71Qq4TpOAAAJGCv+oopRmF3r/ZroOz5/DVr0BemowAAEM++Pw8qIiJS1StVUMNX6qh6lYqKio7WX0eOymaz6cjR40rnmUYlixdVmjTu8vL0VNkXX5CXZxod+uuI6fhGBAUFyWKxxH0AADDh0NYjWjL6a5qDToj6Kumor8ybuGmU5r+/TH/vOGY6CgAACdirvnLpBiEFlvNoMaCR/J7x1eyhi01HAQAgzpWQq8qXJ5dyPpND54ODlTNHduXMkU1nz59TZFSUrFarsmbNKunuHO/35nn3zZxZbu7uJqMbExgYKJvNFvcBAMDR/rf7hGYPWaRJv35gOgoSQX2VdNRXzmHq9rGa8dY8Hd93ynQUAADisVd95dINQgos59JycBP5ZM2kucOWmI4CAIAkycvLS76ZM+vk6TPau/+gTp4+oyyZMys21iqLJI807jofHCyr1SZ3d3e5u7srJiZGly5fVmxMtOn4AACkOicPnNGUNz7X9J0fmY6CB6C+Qkr26d5xGt9phs78dc50FAAA4tirvnLpBiGcT+uhTeXt46357y8zHQUAAMVaYxUdHS2fTBlVpUI5+WTKqOiYGFksbvLy8lKB/Pllk5s2/7ZV5y8E6+z58/rl162SxV3FCj9nOj4AAKnKuaPBGttmsmbtn2A6Ch6C+gop3ZxDkxTYbLyCT14yHQUAAEn2q69oEMLh2r77qrzSeWnhyBWmowAAUjk3i5vc0rjp35Cr2rP/oK6EXJW7m7ssFinWalXJ4sWU1jONbt66rd37D+jPQ3/rVvhtZc2SWUW5gAUAgMNcOnNF79Ufq/lHppqOgkegvoIr+OL4dA2uPUr/nr9qOgoAAHarr2gQwoj2w1vIPY27Fo36ynQUAEAqZrG4STapaOHnlCdnDhUr/Jxsd1fIGmuVp6eHfDJlVFRUpHI/k115cj6jyhXKqkrF8nJPpe/IAQDA0a5evK63qw7X4lMzTUfBY6C+gqtYdnaW+pQdqtB/b5qOAgBI5exVX9EghDEdRraU1WrV0jGrTEcBAKRSERF3dOPGTVksFj1fsrgsFotu3Lwhm82mNGncFR0doxOnTitThgyqULaMSr9QSjlz5DAdGwCAVCPs+i31KDlQKy7MNh0Fj4n6Cq5k5eV56lToTd0Ou2M6CgAgFbNXfeVUDcJNmzapS5cu6ty5szZs2JDoNsuWLVO7du3Utm1bLVq0yMEJkdw6f9BGkXcitfyjb0xHAQCkQtn9s+p88EVdunJFknTpyhUFX7qiPDmfkcVi0cVLl+SVNp3y58srm82m2NhY2Ww2w6kBAEgdIm5Hql2eXlp9dYHpKEgC6iu4mu9uLNJr/l0VHRVjOgoAIJWyV33lNA3C0NBQzZs3T5MmTdLUqVO1ePFiXb0af57vY8eOad26dZozZ47mzZunTZs26fDhw4YSI7l0HdtOt2/e1opx35qOAgBIZUo/X1Jp0qTRpl+36+fNv2rTr9uUxt1dz5csLkk6c+6coqOilDd3LlksFrm5uclisRhODQCA67PGWtXUp6PW3FpiOgqSiPoKrmh9xHI1SNvWdAwAQCplr/rKaRqEu3fvVrly5eTr6ysfHx9VrlxZO3bsiLeNm5ub3N3d5enpKQ8PD3l4eMjNzWl+Ap5Ct4/a6+bVMK2c+L3pKACAVMTHx0e1q1fVMzmy6XJIiJ7Jnk21qlWWT6ZMioqK0oXgS8rim1ne3ukliYtXAAA4SH2vtvohcrnpGHgC1FdwVTQJAQCm2Ku+SmPP0EkREhKibNmyxS37+/sneIKwUKFCqlixolq0aCGLxaJatWqpePHijo4KO+k5voNmDfpCqyavVYsBjUzHAQCkAjabTVl8M6t29aqKjY2Ne3GzzWaTh4eHalStrLReXoZTAgCQujTybq/vwxZzQ3AKRX0FV+XhmUZf/ztfTX066rsbvPYIAOA49qqvnKZBmNh8qFarNd7yoUOHdODAAU2aNElubm4aP3689u7dq3LlysXbLigoSKNGjUr0PBaLRYMGDdLAgQOTLfs9wcHByX7M1KbJoDpaGrhaCz5Ypnrdaz1ye8bc8Rhzx2PMHY8xdzx7jfmj7piyWCxxNYi7u3vcP9/bL9czj36hMwAASD6vZumsFRdmyyudp+koeELUV3Bl6TOm06KTM/Ratm76+so803EAAKmEveorp2kQ+vn56ejRo3HLISEhypMnT7xtdu3apRo1aqhQoUKSpJdeekk7d+5M0CAMDAxUYGBggnPcP4jJLTg4WDlz5rTLsVObIXPe1Mx+87V79QE1e7P+A7djzB2PMXc8xtzxGHPHs+eYP07j8f4mIlNcAQBgTqtnemj+kSnKkNnbdBQ8JeoruDKfrJk0a/8Etc3zhpaf+9x0HABAKmGP+spp5uuoWLGidu/erfDwcN2+fVs7d+5UpUqVZLPZFBwcLKvVqnz58mn37t26deuWwsPDtWvXLuXPn990dNhB32lddfbIBa35bIPpKAAAAAAAO3v92T6avvND+WbPbDoKADxS1lxZ9MmWIHV67i3TUQAAeGJO0yD09fVV165dNWjQIA0YMEDt27eXv7+/IiMj1alTJ924cUMvv/yySpYsqZ49e6p79+4qWLCgGjRoYDo67KTfzO46dfAfrf18o+koAAAAAAA76VK0vz7eMFzZ8/mbjgIAjy1nwRz64Lt31L3kANNRAAB4Ik4zxagkBQQEKCAgIN53adOm1caN/79B1LNnT/Xs2dPR0WBI/896anLPWVo/100Nugc8egcAAGBXD3vXMwAASdXzhUEauXKQchdmincAKU++4rk1bHE/9S47VJ/9Md50HAAAksRpniAEHmTA7F76e8dRbViw2XQUAABSvcDAQNlstrgPAABP6s2K72rQ3N56tlRe01EA4IkVKv2s3prRXf2rvm86CgAASUKDECnC4Hl9dPC3v/XTF1tMRwEAAAAAPKUBNUao1yedVKR8IdNRAOCpFa9cWF3HttPgl0aZjgIAwGOjQYgUY8iCvtr/yyH9vOQ301EAAAAAAE9oaJ0P1DGwlUpWK2o6CgAkmxdqlVCbd5rp3fpjTUcBAOCxONU7CIFHeWfRW/ro9Wlyc7OoaK2CpuMAAFzE4cOHH2u7kiVL2jkJAACubXijj9RiQCOVDihlOgrsjPoKqVG5ei8qKjJagc3GK+jboabjAABcTHLXVy7dIAwKCtKoUaNMx0Aye3dJP41tO0WhN26oeW9eZA8AeHpcmAIAwP6CXpuoV7q+pIoNypiOAgdwhfpq06ZNWrx4sWw2m9q2bat69eol2KZjx44KCQmJW54wYYJKlCihzz77TNu2bVNsbKwaNWqk119/3ZHRYVCVJuUVHRGtMW0ma/iKAabjAABcSHLXVy7dIAwMDFRgYGDcssViMZgGyen95W/rvcZjldXfTzVeq2w6DgAAAADgIT5qP1XVW1RSteYVTUcBHktoaKjmzZunGTNmyM3NTX379lW5cuXk5+cXt43ValVUVJTWr18fb989e/bo6NGjWrhwoSIiItS9e3dVrlxZBQsyE1JqUbNVFUVFRmt8pxl6/aPmpuMAAJAo3kGIFOvNz7to84rt2rZ6l+koAAAAAIAHmDtwqcrUeV4vta1mOgrw2Hbv3q1y5crJ19dXPj4+qly5snbs2BFvm5CQkHgNw3vSp0+vDh06yMPDQxkzZlTu3LkVGRnpqOhwEnU61FTJ6sU0f8gK01EAAEiUSz9BCNcX+PVgBb46Xm7ubqrStLzpOAAAAACA+0zrM0fPvphP9TrXNh0FSJKQkBBly5Ytbtnf319Xr16Nt82lS5d048YNDR06VGfOnFGNGjXUp08flShRQtLdKUrXr18vf39/FS1aNME5HvZqHIvFokGDBmngwIHJ96P+T3BwcLIfE4l7sUEx/XvpX43rNk0dRr9mOk6qwn/njseYOx5j7nj2GnNTs1/SIESKF/TNUI1o8rHc3N1UqVFZ03EAAAAAAJI+G7BQuYvkVKWWpU1HAZLMZrMl+M5qtcZbzpgxo1577TU1adJEYWFhGjFihNatW6fGjRtLkp5//nlJ0tKlS3X8+HEVKVIk3v7/fTXOPRaLJdHzJ4fg4GDlzJnTLsdG4up0raHty//Q2sk/q+eEjqbjpAr8d+54jLnjMeaOZ88xN9XsZYpRuITR3w/T2lk/adf6faajAAAAAECqN3fYEmV5xlfN+zc0HQV4In5+fgoJCYlbDgkJUdasWeNtky9fPjVt2lRubm7y8fFR9erVdfr0ae3atUvHjh1T1qxZ9dJLL6lixYravXu3o38CnEjLQY2VwTeDFgxfbjoKAABxaBDCZYxZ+66+nf6D9m7403QUAACc3n/vgAcAILksGvWVvNJ7qfXQpqajAE/sXlMvPDxct2/f1s6dO1WpUiXZbDYFBwfLarVq9erVCgoKUkxMjG7duqXff/9dJUqU0NWrV/XFF18oIiJCt27d0oEDB5QnTx7TPwmGtXuvuSwWi5aOXWU6CgAAkphiFC7mox/e1zt1R8vN3U1lXn7edBwAABxm06ZNWrx4sWw2m9q2bat69eo9cNv58+crMjJSvXv31tKlS7V06dK4dVarVWXLltXYsWMdERsA4GJWfPyNoqNi1O3DdqajAE/F19dXXbt21aBBg2Sz2dS+fXv5+/srIiJCnTp10ldffaWmTZvq33//Vbdu3RQTE6O6desqICBAVqtVJ06cUPfu3WWz2VS7dm3VrFnT9E+CE+g8uo1mD12slRO/V8vBTUzHAQCkcjQI4XLG/TRCQ1/+QBY3i0q/VMp0HAAA7C40NFTz5s3TjBkz5Obmpr59+6pcuXLy8/NLsO3Bgwf1/fffxzUQ27dvr/bt28etnzBhgmrXru2w7AAA17Fq8lqF/ntTvT7pZDoKkCwCAgIUEBAQ77u0adNq48aNccu9e/dW7969423j5uamfv36OSQjUp6e4ztoZv/5+nb6D2r2Vn3TcQAAqRhTjMIljf95pJaOXqWDv/5tOgoAIIXavnO3tu9MGe+K2b17t8qVKydfX1/5+PiocuXK2rFjR4LtwsPDNWfOHLVs2TLR4+zbt08Wi0XlypWzd2QAgIv5/tMNCj55ieYgHiol1VeAPfWd2lVn/jqndbM3PnpjAAAe4mnqK5d+gjAoKEijRo0yHQOGTNw8SgNqjFC3D9urZLWipuMAAFKYW+HhpiM8tpCQEGXLli1u2d/fX1evXk2w3bRp09ShQwdduXJFN2/ejLfOarVq/vz5CgoKSvQcD6urLBaLBg0apIEDBz75j3iA4ODgZD8mHo4xdzzG3PEY8+T16/IdOvHHGXWb2PaBY8uYO569xtxisTzxvimpvgLs7e1ZPTW+8wx5pvVUnY5MQQsAeDJPU1+5dIMwMDBQgYGBcctPU8QiZZr822i9XW24eozvoBJVipiOAwCAXdhstgTfWa3WeMs///yzvL29VaFCBa1duzbB9tu2bVPBggUTnZZUSlhX3WOxWBI9f3IIDg5Wzpw57XJsJI4xdzzG3PEY8+T1y9Kt+ufPCxqxbNADt2HMHc+eY06zF0g+Qxe+qbFtp8jDK41qta5qOg4AIJVx6QYhIElTto1Rv8rvqfeULipW8TnTcQAASHZ+fn46evRo3HJISIjy5MkTb5stW7bo1KlT+uOPPxQeHq6YmBiFh4dr8ODBkqRNmzapQYMGDs0NAEjZfvt6h37/bo9GfJX8T5ADQGrx/vK3Nar5BHl4eahqswqm4wAAUhHeQYhUYdqODzXjrXk6tvek6SgAACd27XqooqKjE3wfFR2ta9dDHR/oMVWsWFG7d+9WeHi4bt++rZ07d6pSpUqy2WwKDg6W1WrVmDFjtGzZMn3xxRfq3Lmz6tWrF9ccjIiI0KFDh/Tiiy+a/SEAgBRj59o/tHHRrzQH8Ugptb4CHGnU6iFaN/tn7flxv+koAIAUILnqKxqESDVm7v5YU3rN1vF9p0xHAQA4qQ2/bNaGnzfHK7KioqO14efN2vDLZoPJHs7X11ddu3bVoEGDNGDAALVv317+/v6KjIxUp06ddOPGjYfuv3fvXpUoUUKenp4OSgwASMn+2HhA307/QaO/H2Y6ClKAlFpfAY724fr39NWE7/Xn5sOmowAAnFxy1VdMMYpU5dO949Sr9BANWdhXBV/IbzoOAMDJ1AuoHVdkpUlzt0za8PNm3QoPV72A2obTPVxAQIACAgLifZc2bVpt3LgxwbaNGjWKt1ytWjVVq1bNrvkAAK7h4G9/a9nY1fpkS5DpKEghUnJ9BTjahF8C9Xa14eoxvoNKVCliOg4AwEklV33FE4RIdWbtn6BxHabr9OGzpqMAAJxMFt/MqhdQW7fCw3U9NFTXQ0PjiqssvplNxwMAwKj/7T6hOUMX0xxEklBfAUkzZdsYzew3nxmwAAAPlFz1FQ1CpEqzD36isW0m65+/z5uOAgBwAvfP3X6vyIqNjVVsbGy84op35QAAUquTB85oyhufa/rOj0xHQQpBfQU8uU/3jtP4TjN05q9zpqMAAJxIctdXNAiRas09PFlBLSbo3NFg01EAAIat/fEnXbt+PW75XpH13zuvrl2/rrU//mQgIQAA5pz93wV92HaKZu2fYDoKUhDqK+DpzDk0SaNeHa8LJy6ZjgIAcBLJXV+5dIMwKChIFosl7gP81/wjUzWi8UcUWwAARUVFx1vO5p9V2fyzPnQbAABc3aXTV/R+ww817+8ppqMgBaK+Ap7OwmPTNTQgSFfOhZiOAgBwEslZX6VJtlROKDAwUIGBgXHLNAmRmIXHpqtjoTc17qcReqZAdtNxAAAG5MmVU3v27deRo8ceut2t8HDlyZXTQakAADDr6sXrervacK24MNt0FKRA1FdA8lj6z2dqmb2b5hyerMz+mUzHAQAYlNz1lUs/QQg8rkUnZmhIQJAu//Ov6SgAAAPKly2tvLlzPXK7vLlzqXzZ0g5IBACAWWHXbqlHqYE0B/HEqK+A5LPy8jx1fu4thd+8bToKAMCg5K6vXPoJQiAplpz+VO3y9tLU38fKP7ef6TgAAAfK4O2t8mW4MAUAgCRFhEeoXb7eWhO22HQUpGDUV0Dy+jb0CzVI107fhX4hDy8P03EAAAYkd33FE4TAfZadnaW3Kr2nq8HXTEcBAAAAAIezxlrVNHMnmoMA4ITW31mmBunamY4BAHARNAiB/1hx/nP1LvuOrl8ONR0FAAAAABzqFc82+jFqhekYAIAH+CFyuep7tTUdAwDgAmgQAon46uIc9Sg1SDdCbpqOAgCAUwkKCpLFYon7AABcR8P07bU2fAn/9x0AnFgajzRafXWBmmTqYDoKACCFo0EIPMDXV+apS9H+Crt2y3QUAACcRmBgoGw2W9wHAOAaXs3SWV8Gz5ZnWk/TUQAAj5AuQ1otPjVTr2XrZjoKACAFo0EIPMTqkAXqULCvwm/cNh0FAAAAAOyi1TM9NP/IFGXI7G06CpAqMUMDnoRP1kyatX+C2uZ5w3QUAEAKRYMQeIRvr3+htnne0J1bEaajAAAAAECyap+/t2bs+ki+2TObjgKkWszQgCeVNVcWTfr1A3Us9KbpKACAFMilG4TcgYXk8v3NxWqVo7sibkeajgIAAAAAyaJzkX4av3GksuXNajoKAOAJPVMgu8asGaZuJQaYjgIASGFcukHIHVhITmtuLVFzvy6Kjow2HQUAAAAAnkrPFwYp8OvByvXcM6ajAACeUt5iufXukn7qXXao6SgAgBTEpRuEQHJbf2eZGmfsoNiYWNNRAAAAAOCJ9K0wTIPn9dGzpfKajgIASCaFSj+rfjO7q1+V901HAQCkEDQIgST6MWqFGqRtJ6vVajoKAAAAACTJgOoj1HtyZxUuV9B0FABAMitWqbC6f9Reg2uPMh0FAJAC0CAEnsCGmC9VL01r0zEAAAAA4LENrfOBOo5qpZJVi5qOAgCwk+drFlebYc30bv2xpqMAAJwcDULgCf0U+5XqurcyHQMAAAAAHml4o4/UYkAjlQ4oZToKAMDOytV7UY1711Vgs/GmowAAnBgNQuAJWSwW/Ri1QvU8eJIQAAAAgPMKajFRr3R7SRUblDEdBQDgIFWalNdL7atrTOtJpqMAAJwUDULgKbi5u2lt+FI1SNvWdBQAAAAASODDdlNUo2VlVXu1oukoAAAHq9mysio1LqdxHaebjgIAcEI0CIGn5OGZRt9c/0KNvNubjgIAAAAAcSZ2/VRl676g2m2qmo4CADDk5ddrqFSN4prcc5bpKAAAJ+PSDcKgoCBZLJa4D2AvXuk89fWVeWqcsYPpKAAAAACgqb1nq2jF51Svc23TUQAAhjXoHqACL+TXjLfmmY4CAHAiaUwHsKfAwEAFBgbGLdMkhD2l9U6rFRc+V7PMnfRt6Bem4wAAkuDa9VBlyOCtqKgoHTl6XJcuX9H10FBJUvZs/sqbO5cKFnhWnh4eZoMCAPAYPn17gfIWy61Gb9QxHQWpGPUV4Fya9n1FX09ao88HL9IbEzuajgMAeALJXV+59BOEgKN5Z0qvxadnqrlfF9NRAABJsPbHn3Ty1Gmt+eEnnTh1Wjmy+6tW9aqqWrGCMnh7689Df2nNDxt07Xqo6ajGMUMDADi3ucOWyC9nFr3ar4HpKEjlqK8A5/PawMbKmCWDFgxfbjoKAOAJJHd9RYMQSGYZfTNo4bFpauHf1XQUAEAS7Nn3pzJ4p1eLpo1Uvkzp/7vrKr+qVqqgFk0bKYO3tzZv3aao6GjTUY0KDAyUzWaL+wAAnMcXgV8qrXdatR7a1HQUQBL1FeCM2r3XXBY3i5aOWWU6CgDgCSRnfUWDELCDTH4ZNe+vyWqZo7vpKACAJLHowKG/Enzr6eGh2jWqKSoqWidPnTaQCwCAh1v+0TeKjYnV6yNeMx0F+A/qK8DZdP6gjW6H3dFXE74zHQUA8ESSp76iQQjYSeZsPpq1f4La5OppOgoA4BEKPptf2bP5y9PTQ1LiT8V5enioUIH8OnHqjEOzAQDwKKsmr9WNkJvqOrad6ShAHOorwLn1GPe6/j1/Vd9O/8F0FADAY0ru+ipN8sYDcD+/Z3w1Y/fHapvnDS0/97npOACAB6haqcJjbZcndy4uYAEAnMr3n25Q8MlLemsGs5fAuVBfAc6v79SumtJrttbN3qiGPeuYjgMAeITkrq94ghCws6y5smjq9rFqn7+36SgAgAdY/vU3unTlyiO3y5Etm9q+9qoDEgEA8Gg/zPtFJ/afpjkIp0R9BaQMb8/qqb93HNNPX2wxHQUA8AjJXV/xBCHgANnyZtUnm4PUoWBfLT4503QcAMB/ZPBOr3PnLyhHtmyJrt++c7duhYdLkrL4+qp8mRcdmA4AgIR+XvKbDv76t95Z9JbpKECiqK+AlGPIgr76sN0UeXh5qHabqqbjAAAeILnrK54gBBwkx7PZNO6nEer0HP8PPAA4m7y5c+vEqTOKio5+4DZRUVG6fOVfHTl6zIHJAABI6Levd2jH93tpDsKpUV8BKct7y97Wr1/9ru3f7jYdBQDwAMldX7l0gzAoKEgWiyXuA5iWs2AOjV33rroU7W86CgDgPsWKFpanh4c2/7Yt0SKrfNnSkqglAADm7VizVz8v/k0jvhpoOgrwUNRXQMozavUQrZ/zs3b/sN90FABAIpK7vnLpBmFgYKBsNlvcB3AGuQvnVNC3Q9Wt+NumowAA/o+nh4dq16imW7fCteq7tdq+c7dOnj6jk6fPaM++P7Xqu7W6FR7O1FcAAKP2/nRA38/8UR98947pKMAjUV8BKdPYde/p60/WaP+mQ6ajAAD+I7nrK95BCBiQt2gujVg5SD1KDdScQ5NMxwEASMrim1mNG9TTyVOndfb8BW3feXdqHd/MPipepLAKFsgvT09PZX/APO8AANjTwd/+1vIPV+uTLUGmowCPjfrq8QQFBWnUqFGmYwBxxv88Um9XGy7PtJ4qUaWI6TgAgPskZ31FgxAwJH+JPHp3aX+98eJgff7nRNNxAAC6eydWsSKFVaxI4Qduk8U3s+MCAQAg6ciu45r7zhJN2/Gh6ShAklFfPVpgYKACAwPjlnlNDpzBlG1j1Lf8O+o/6w0VLlvAdBwAwH2Sq75y6SlGAWdX4Pl8GrrwTfUqM8R0FAAAAABO6OSfZzS192yagwAAh5u5Z5wmdpmp04fPmo4CALADGoSAYQVfzK+Bc3qrb3neIwIAAADg/zv7vwv6sN0Uzdo3wXQUAEAqNfvgJwpqPkEXTlwyHQUAkMxoEAJOoHDZAnprZg+9Veld01EAAAAAOIFLp6/o/YYfat7fU0xHAQCkcguPTdfQgCBdORdiOgoAIBnRIAScRNEKhdRnShf1q/K+6SgAADxQUFCQLBZL3AcAkPyuBl/T29VHaPHJmaajAAAgSVr6z2fqW36YQq/cMB0FAJBMaBACTqRYpcLqOaGDBlQfYToKAACJCgwMlM1mi/sAAJLXzath6vnCYK04/7npKAAAxLPy0lx1LtJP4Tdum44CAEgGLt0g5A53pEQlqxZVl7FtNahWoOkoAAAAABwoIjxC7fP30ap/55uOAgBAor69/oVa5uiu6Mho01EAAE/JpRuE3OGOlOr5GsXVcVQrDX5plOkoAAAAABwgNiZWzXw7a03YYtNRAAB4qPV3lqlBunamYwAAnpJLNwiBlOyFWiXU/v0WGlrnA9NRAAAAANjZK55t9GPUCtMxAAB4LD9GrdArnm1MxwAAPAUahIATKx1QSq2GNNW7r4wxHQUAAACAnTRM317rbi81HQMAgMfmnsZd31xbqCaZOpiOAgB4QjQIASdXru4Lav52Q73X4EPTUQAAAAAks2a+nfTVxTnyTOtpOgoAAEmSLkNaLTn9qVr4dzUdBQDwBGgQAilA+VdKq2nfehre+GPTUQAAAAAkk5Y5umvh0Wny9klvOgoAAE8kk19GzT4wUW1yv2E6CgAgiWgQAilExYZl1aBHgAKbjTcdBQAAAMBTap+vt2bu+ViZs/mYjgIAwFPxy5lFU7aOVoeCfU1HAQAkAQ1CIAWp0qS86naupVHNJ5iOAgAAAOAJdS7ST+N/HqlsebKajgIAQLLI8Ww2jV37rrqVGGA6CgDgMdEgBFKYqs0qKKB9dX3Q8hPTUQAAAAAkUc/nBylw1WDleu4Z01EAAEhWeYvl1ntL+6tXmSGmowAAHgMNQiAFqt6ikmq2rKwxbSabjgIAAADgMfUt/44GL+irZ0vmNR0FAAC7KPhifvX/rKf6VX7PdBQAwCO4dIMwKChIFosl7gO4kpqtqqhqswr6sN0U01EAAAAAPMKA6iPUe0oXFS5bwHQUAADsqljF59T949c1uPYo01EAAA+RxnQAewoMDFRgYGDcMk1CuJrabarKGmvVxx2madjifqbjAIBLuHY9VNdDQ3XteqgkKYtvZvlmzqwsvpmN5gIApFxDX/5AHYNaqWTVoqajAEZQXwGpz/M1i6vNu6/q3VfG6KMfh5uOAwAuJznqK5duEAKpQUD76rLGWjW+8wwNXfim6TgAkKLt2bdfR44elyRlz+YvSTpy9Jgk6YVSJfRCyRLGsgEAUqb3G36o1wY1VumXSpmOAhhBfQWkXuXqvqDoyGiNbDpOH3z3juk4AOAykqu+okEIuIA6HWvKarVqYtdPNXh+H9NxACBFWvPDBt0Kv61a1asqb+5c8dadPX9B23fu1tlzF9S4fl1DCZ1DUFCQRo0aZToGAKQIQS0mqn73AFWoX9p0FMAI6isAlRuXU1REtMa0nqThXw40HQcAUrzkrK9c+h2EQGpSr3NtlahaRJN6zDIdBQBSnD379utW+G3VC6itvLlz6eSpM1r+9Tda/vU3OnL0mPLmzqV6AbV1KzxcBw79ZTquUYGBgbLZbHEfAEDiPmw3RTVaVla1VyuajgIYQX0F4J6aLSurUuNyGtdxuukoAJCiJXd9RYMQcCH1uwWoSPmCmtJrtukoAJBiXLseqiNHj6tqpQpx87Tv3rdfxYsU1oulSmjPvj917XqosvhmVtVKFXTg8F9x87sDAJCYCV1mqly9F1W7TVXTUQAjqK8A/NfLr9fQ8zWLc2M7ADwhe9RXNAgBF9OwZx0VfDG/pvWZYzoKAKQI1/+vWLp/Woa2r72qF0qVULEihRPd5joXsAAADzCl12wVr1xYdTvVMh0FMIb6KmmCgoJksVjiPoCrqt8tQIVKP6vpb841HQUAUhx71Fc0CAEX1LhXXeUrkUcz3ppnOgoAOL1rodfjXuh8v6joaG3eul2SlD37/1+fPZu/roVed1g+AEDK8enbC5SveG417FnHdBTAKOqrpGEKd6QmTfrU0zMFsuvzwYtMRwGAFMUe9RUNQsBFNe37inI994w+fXuB6SgAkCIdOHRYly5fUaNX6iqDt7fpOAAAJzfnnSXKmiuLXu3XwHQUwGlRXwGQpNcGNlYmv4ya//4y01EAIMV7mvqKBiHgwl7t10A58mfTZwMXmo4CAE4rS2ZfXb7yb6Lf3z+v+z2Xr/yrLJl9HZQOAJASLBy5QukzplOrIU1NRwGcAvUVgEdp++6rck/jriWjvzYdBQBSBHvUVy7dIGQOd0Bq/nZDZc3lp9lDmLoBABLj+38F1NnzF+J9nz27f4Li6t42vv/5HgCQei3/6BtZY61qP7yF6SiA06C+AvA4OgW11p1bEfpqwnemowCA07NHfeXSDULmcAfuajmosXz8fTR32BLTUQDA6WTxzaxiRZ7T9p27de2+lzcfOXpMR44ei1u+dj1U23fu1gslSyQovAAAqdPXk9bo5tUwdR3bznQUwKlQXwF4XD3Gva6QC9f0zbT1pqMAgFOzR33l0g1CAP9f66FNlSGzt+a9x/zuAPBf5cuUVgbv9Nrwy+a4u6zKlymt8mVKS7p759WGXzYrg3d6vVCqhMmoAAAn8d3MH3Xp9BW9MbGj6SiAU6K+AvC4+kzporNHzmvt5xtNRwEAp5bc9VUau6YF4FTaDHtVS8eu0sIRK9R5dBvTcQDAqTSuX0979u3Xlq3bJUnZs/lLUtz87i+ULOFSF6+sVqvc3LhXDACexA/zftHJP89o4JxepqMATi211VcAnlz/z3pqQpeZ8kzrobqdapmOAwBOKznrKxqEQCrT/v0WWvzBSi0a9ZU6jmplOg4AOJXyZUqr4LPP6vr1UF0LvS5JKvTss/L1zez0015t2rRJixcvls1mU9u2bVWvXr0Hbjt//nxFRkaqd+/ekqQjR45oxowZunr1qmrXrq033njDUbEBIMX5eclvOvjr33pn0VumowApQkqurwA41pAFffVhuyny8PJQ7TZVTccBAKeVXPUVDUIgFeowsqW+CPxSS0Z/rddHvGY6DgA4lSz/V0wVVH7TUR5baGio5s2bpxkzZsjNzU19+/ZVuXLl5Ofnl2DbgwcP6vvvv49rIEZEROjDDz/Uxx9/LH9/fw0aNEjHjh1T4cKFHf0zAMDp/bpyh3au2avhXw40HQVIUVJifQXAjPeWva2gFhPl4ZVG1V6taDoOADit5KivjMwrtWnTJnXp0kWdO3fWhg0bEqxfunSpGjRoEPd55ZVX9P7770uSFi9erPbt26tDhw5av56X1wJPqlNQa0VHRmvZh6tNRwEAPKXdu3erXLly8vX1lY+PjypXrqwdO3Yk2C48PFxz5sxRy5Yt477btWuXSpUqpVy5csnT01OTJk1SgQIFHBkfAFKE37/fo01Lt9IcBADAzgJXDdaP8zZp1/p9pqMAgEtzeIPw3h3ukyZN0tSpU7V48WJdvXo13jbt27fX+vXr4z4BAQF69dVXtW3bNv3+++/69NNPNWnSJK1YsUJnz5519E8AXEaXMW11J+yOVoz71nQUAMBTCAkJUbZs2eKW/f39E9RXkjRt2jR16NBBPj4+cd9dunRJt2/fVq9evdS6dWtNnz7dIZkBICXZ+9MBrfl0g4K+HWo6CgAAqcKYte9q1aS12r/pkOkoAOCyHD7F6P13uEuKu8O9UaNGiW6/b98+WSwWlStXTp9//rmqVKkSd1GrUqVK2rFjh/Lmzeuw/ICr6fZRe815Z4m+mvCdWg1pajoOAOAJ2Gy2BN9ZrdZ4yz///LO8vb1VoUIFrV27Nu77yMhIHT9+XFOmTFH69OkVGBiodevWqWnT+H8TgoKCNGrUqETPb7FYNGjQIA0cmPxP1QQHByf7MfFwjLnjMeaOl5QxP7LjuL6d9KPeXfkW/66eAmPnePYac4vFYpfjAsB/jf95pAZUHyEPLw+VrFrUdBwAcDkObxA+7h3u0t0LW/Pnz1dQUJAkKX/+/Fq/fr2aN2+u6Oho7d27V+XLl0+wHxewUg/GPHk07P+Sln/wreYFLlH9N1566LaMueMx5o7HmDseF7Cejp+fn44ePRq3HBISojx58sTbZsuWLTp16pT++OMPhYeHKyYmRuHh4SpSpIjKli0rf39/SXdvwDpz5kyCcwQGBiowMDDB9xaLJdEGZXIIDg5Wzpw57XJsJI4xdzzG3PGSMuZHdh7Td5/8pOm/f2TnVK6N/84dz55jTq0MwJEmbx2tvhWGqf+nPVS4XEHTcQDApTi8Qfg4d7jfs23bNhUsWFB+fn6SpDp16ujo0aPq1q2bMmbMqPz588vLyyvBflzASh0Y8+Q1aFYffTZgoXau3K/m/Rsmug1j7niMueMx5o7HBaynV7FiRS1evFjh4eGyWCzauXOnWrZsKZvNposXLypHjhwaM2ZM3PZr167VuXPn1Lt3b12+fFkrVqzQlStX5O3trW3btqlhw8T/DgBAanLyzzOa2meOZu2bYDoKAACp2szdH6vn84P07rL+erYkM8kBQHJx+DsI/fz8FBISErccEhKirFmzJrrtpk2bVLVq1Xjf9e3bVytWrNCcOXPk6+urHDly2DUvkJr0ntxZF09d1rfTfzAdBQCQBL6+vuratasGDRqkAQMGqH379vL391dkZKQ6deqkGzduPHDf7Nmzq3Pnzho8eLB69uypEiVK6OWXX3ZgegBwPmePnNeH7afSHAQAwEnMPviJglpM1IXjF01HAQCX4fAnCB/nDnc3NzdFRETo0KFDeu+99+L2PXv2rD7++GNNmzZNN2/e1M6dO9W5c2dH/wTApfWd2lXT35yr7z/doCZ96pmOAwB4TAEBAQoICIj3Xdq0abVx48YE2/733c916tRRnTp17JoPAFKKi6cua3jjj7XoxAzTUQAAwH0WHp2m9vl7a/Jvo5Utb+IPnAAAHp/DnyB83Dvc9+7dqxIlSsjT0zNu3/z586tChQrq2LGjRo4cqcGDBytjxoyO/gmAy3trRnedPvSP1n6e8KIyAAAA4KquBl/TgBojaQ4CAOCklp75TH0rDFPolQfPkgIAeDwOf4JQerw73KtVq6Zq1aol2Ldr167q2rWr3TMCqV3/z3pq8hufa/2cn9WgB1PNAQAAwLXdvBqmni8M1qp/55uOAgAAHmLlpblq5ttJS898Jm+f9KbjAECK5fAnCAGkHAM+f0NHdh3Xj/M3mY4CAAAA2M2dWxF6/dk+NAcBAEghvr3+hVo900NREVGmowBAikWDEMBDDZrbW4e2HtFPX2wxHQUAAABIdjHRMWru10Xf31xsOgoAAEiCdbeXqpH367LZbKajAECKRIMQwCMNWdBXf246rG1f7zYdBQAAAEhW9b3a6ofI5aZjAACAJ/BD5HLV92prOgYApEg0CAE8lqFfvKnDv/5Pm5ZtNR0FAAAASBYN0rXT+jvLTMcAAABPyD2Nu769vlCNM3YwHQUAUhyXbhAGBQXJYrHEfQA8nV7TO2rHmj+05cvtpqMAAAAAT6VZ5k5aeXmuPLw8TEcBAABPIa13Wi375zM1z9rFdBQASFFcukEYGBgom80W9wHw9N5f/ra2rd6lX1fuMB0FAAAAeCItc3TXwmPT5J0pvekoAMAN7kAyyJglg+Yc/ERtcr9hOgoApBgu3SAEYB/DvxyoLV9u17bVu0xHAQAAAJJkQIVAzdzzsTJn8zEdBQAkcYM7kFz8cmbRlK2jNbjKB6ajAECKQIMwGfxw4rh6/rJRb61fazoK4DCBXw/Wz0t+0/Zvd5uOAgAAADyWzoXf0jtfvqlsebKajgIAAOwgx7PZNPCLnupW/G3TUQDA6dEgfEq/nD6ldzdu0F9XQ7T22FG1/vpL05EAhxm1eog2LNisHWv2mo4CAHAQpsACkFL1KDVQo74ZqhzP+puOAgAA7Cjnczn03vK31av0ENNRAMCp0SB8SosO7NeNyMi45XOhN3T4yhWDiQDH+uC7d7Tu843atX6f6SgAAAdgCiwAKVHf8u9oyMI3lb9EHtNRAACAAxR8Ib/6z+qpfpXfMx0FAJwWDcKn9FwWP3m5u8cth9wOl7sbd9MjdRmz9l19N+NH7flxv+koAAAAQDxvVxuuPlO7qnDZAqajAAAABypW8Tl1H/e6BtUKNB0FAJwSDcKnNLxGLbUt9YJypE+v/Jl99UXz1/T2D+v0wZbNpqMBDvXh+ve0avI6/bHxgOkoAAAAgCRpSECQOo9uoxJVipiOAgAADHi+RnG1e7+5htUbYzoKADgdGoTJILBWbc16qY42d+6qyrnzaEOHzsqT2UclZk7T2mNHTccDHObjDcP15bjvtH/TIdNRAAAAkMq93/BDtRzcRC/WLmk6CgAAMKhsnRfU9M1XNLLpONNRAMCp0CBMJv7p08db7vJiGe3p2VsbThxXh9VfKzgszFAywLHG/zxSS8es0oEtf5mOAgAAgFRqVPMJatDjZVWoX9p0FAAA4AQqNy6nlzvU0OhWk0xHAQCn4dINwqCgIFkslriPo6X38ND0Bo30RrnyavnVck3e8bvDMwAmTNw0Sl8EfqlDW4+YjgIAAIBUZmzbKarVuoqqNqtgOgoAAHAiNV6rrCpNy+vjDtNMRwEAp+DSDcLAwEDZbLa4jynV8ubT9m495e5mUcU5s/TbP2eMZQEcZdKvH2jeu0v11+9MswsAAADHmNBlpsq/8qJqta5qOgoAAHBCAe2r64VaJTSpxyzTUQDAOJduEDqbfhUra027Dpq/7w/1Xvu9wiIjTUcC7GrKtjH6fPAiHdl5zHQUAAAAuLgpvWareOXCqtuplukoAADAidXvFqBCpZ/V9Dfnmo4CAEbRIHSwbN7eWvhqCzUtWkzV5s/R3H17TUcC7Gra72M1s/8CHd1zwnQUAAAAuKiZ/ecrf4k8atizjukoAAAgBWjSp55yFsyhWYO+MB0FAIyhQWjIK4We04Heb+ryrXC9/MUC7bsYbDoSYDczdn2kqb3n6Pi+U6ajAAAAwMXMHrpY2fJkVbO36puOAgAAUpAWAxops38mzXtvmekoAGAEDULD3q9RU7ObNNXY337VkJ9+NB0HsJtP947TJ90/08k/z5iOAgAAABexcOQKeWdKr5aDm5iOAgAAUqA2w15VGg93LRn9tekoAOBwNAidQAHfLFrVuq0q5s6jZ6d8ohWHD5mOBNjFrH0TNK7TdJ0+dNZ0FAAAAKRwyz5cLZvVpvbDW5iOAgAAUrBOQa0VER6hL8d/ZzoKADgUDUIn8lrxEjr99iAduHRRr65YqmNXr5qOBCS72Qc+0di2k/XP3+dNRwEAAEAKtfKTNbp1/Za6jGlrOgoAAHAB3T9+XdcuXtfqqetMRwEAh6FB6IQ+ermuAmsF6K31azT6182m4wDJbu7hyfrgtYk6+78LpqMAAAAghflu5o+6fOaKek7oaDoKAABwIb0nd9a5/13Q2s83mo4CAA7h0g3CoKAgWSyWuE9K8mKOHNrQobNyZ/JRiZnTtO74MdORgGQ17+8pGtl0nC4cv2g6CgAgCVJyfQUg5Vs/9xedOnBGb07vZjoKAABwQf0/66n/7TquDQt5aAOA63PpBmFgYKBsNlvcJyXqUrqM9vTsrR+OHVWH1V/r4q0w05GAZLPw6DS9W3+sLp66bDoKAOAxuUJ9BSBl2rj4Vx3eekQDZvcyHQUAALiwwfP7aN/Gg9q0fJvpKABgVy7dIHQV6T08NKNhY71RrrxarFiuyTt+Nx0JSDaLTszQ0Jc/0KUzV0xHAQAAgJP6deUO7Vr7h4Z+8abpKABSkU2bNqlLly7q3LmzNmzYkOg2HTt2VIMGDeI+f/31lyTpm2++UZcuXdS6dWtNnjxZsbGxjowO4Cm9u7S/tn69U9u+2WU6CgDYDQ3CFKRa3nz6vXtPubtZVGnO5/rtnzOmIwHJYvGpmRpUM1BXzoWYjgIAAAAn8/v3e7Rp6VYN/3Kg6SgAUoANGzbIarU+9XFCQ0M1b948TZo0SVOnTtXixYt19erVeNtYrVZFRUVp/fr1cZ8SJUro77//1rfffqtp06Zp/vz5Onv2rH788cenzgTAsQJXDdaP8zZp1/p9pqMAgF3QIEyB+lWsrO/atdf8fX+oz7o1CouKMh0JeGpL//lM/Sq/r6vB10xHAQAAgJPYu+FPrfnsJwV9O9R0FAApxPr169WnTx/t37//qY6ze/dulStXTr6+vvLx8VHlypW1Y8eOeNuEhITIz88vwb7Xrl1Tw4YNlTFjRnl7e6tSpUq6dOnSU+UBYMaYte9q1eS12v/LIdNRACDZpTEdAE8mu3cGLXy1hX44fkxV536u/pWqqFuZsqZjAU9lxfnP1TpnD322b4Ky5MhsOg4AAAAMOrDlL60Y960mbhplOgqAFGTq1KnaunWrpk6dqty5c6tHjx7Kly9fko8TEhKibNmyxS37+/sneILw0qVLunHjhoYOHaozZ86oRo0a6tOnj6pVqxa3zdWrV7Vx40YNHJjwKeigoCCNGjUq0fNbLBYNGjQo0f2eVnBwcLIfEw/HmDteco75219019jmU/XazUYqUrFgsh3X1fDfueMx5o5nrzG3WCx2Oe6j0CBM4eo/V1j1nyusMb9t0cuLFmh8nXoq80xO07GAJ/Zl8By1zN5Ncw5PVmb/TKbjAAAAwIAjO49p3nvLNO33saajAEiBqlevrsqVK2vt2rUaMmSIqlatqo4dO8rX1/exj2Gz2RJ899+pSzNmzKjXXntNTZo0UVhYmEaMGKF169apcePGkqQff/xRS5cuVe/evVW8ePEExwsMDFRgYGCC7y0WS6LnTw7BwcHKmZPrRo7EmDuePcZ85s5x6lthmPp/2kOFy9Ek/C/+O3c8xtzx7Dnmppq9TDHqIobXqKXPGzXV2N9+1dCNib84G0gpVl6ep67F+ivs2i3TUQAAAOBgJ/af1rS+c2kOAnhikZGRunz5sgoUKKAOHTpo27Zt6tSpk5YtW6bIyMjHOoafn59CQkLilkNCQpQ1a9Z42+TLl09NmzaVm5ubfHx8VL16dZ0+fVpWq1Vjx47V7t27NX36dFWpUiVZfx8AM2bu/lgTu32q04fOmo4CAMmCBqELKZgli1a1bqvyOXPp2Smf6MvDzI2NlGt1yAJ1LPSmboWGm44CAAAAB/nn7/P6uMM0ffbHeNNRAKRQzZs3V6NGjdStWzdNnDhRW7duVaVKldS6dWudP39ePXv21Pnz5x95nIoVK2r37t0KDw/X7du3tXPnTlWqVEk2m03BwcGyWq1avXq1goKCFBMTo1u3bun3339XiRIltHXrVt2+fVsjR45U5syZ7f+jATjM7AOf6IOWn+j8MaZ2BJDyMcWoC2pZoqRaliipYT//pBWHD2p83Vf0XJaEL80GnN031xaqqU9HLT//udJnTGc6DgAAAOzo4qnLGtHkYy06McN0FAAp2AcffCBvb29lyZJFPj4+CdZv27ZN48aN0/Tp0x96HF9fX3Xt2lWDBg2SzWZT+/bt5e/vr4iICHXq1ElfffWVmjZtqn///VfdunVTTEyM6tatq4CAAM2cOVP79+9Xs2bN4o7XuHFjdevWLbl/LgADFvxvqtrn763Jv41WtrxZH70DADgpl24QPuxlz6nBxy/X1Z+XLqnv2jWqni+fRtSsbToSkGTf3Vikxhle18or85Q2vZfpOAAAALCDkAvXNLDmSC0/97npKABSuAsXLmjq1Knq37+/6tWrp61btypDhgwqXbq0JKlcuXJavnz5Yx0rICBAAQEB8b5LmzatNm7cGLfcu3dv9e7dO942ffv2Vd++fZ/ylwBwZkvPfKZWz/TQ539OkG/2zKbjAMATcekpRgMDA2Wz2eI+qdGLOXLop46dlTuTj0rOnKZ1x4+ZjgQk2ZpbS9Qia1dFRUSZjgIAAIBkdiPkpnqVHkJzEECymDt3rj744APVq1dPkuTp6anAwEDt3btX0t0G38yZM01GBOAivro4R12Lvc3rcQCkWC7dIMT/16V0Ge3q2Vs/HDuqjqu/1sVbYaYjAUmy7vZSNfXppJjoGNNRAAAAkExuh91Rx4Jv6usr80xHAeAi3NzcVLBgwbjlihUratiwYVqwYIHBVABc1TfXFqpNrp6KvMNN7QBSHhqEqYi3h4dmNGysHuXKq8WK5Zqy83fTkYAk+SFyuRqmay+r1Wo6CgAAAJ5STHSMWmTtqu9uLDIdBYALef7557Vu3boE3509e9ZQIgCubm34UjXO8HqqncEOQMpFgzAVqp43n37v3lMWWVRpzuf67Z8zpiMBj21DzJeql6a16RgAkCw2bNjATQ8AUq36Xm31Q+TjvQcMAB5Xr169tHbtWn300Ufau3evTp8+rcWLFyt37tymowFwYT9GrdArnm1MxwCAJKFBmIr1r1RZ37Vrr3n7/lCfdWt0K4pH4ZEybLSuVB23lqZjAMBTW79+vfr06aP9+/ebjvLYgoKCZLFY4j4A8CQapG2r9RE0BwEkPz8/P82aNUt+fn767LPP9Oabb+r48eMaPny46WgAXJibu5u+u7FIjTO8bjoKADw2GoSpXHbvDPri1RZqXLiIKs/9XPP2/WE6EvBYNkR/qXoePEkIIGWbOnWq2rdvr6lTp2r48OH6559/TEd6pMDAQNlstrgPACRVs8ydtPLKPHl4pjEdBYALunnzpnbu3KnixYtr3LhxWrdunSZNmqRcuXKZjgbAxaVN76VlZ2epedYupqMAwGN57AbhwYMHNWLECMXExCgyMlLbtm3ThQsX7JkNDlT/ucI61OctXbwVpjqLFmr/xYumIwEP5ebupnW3l6q+V1vTUQDgqVSvXl1z585VuXLlNGTIEE2dOlXXr183HQsA7KJl9m5aeHy6vDOlNx0FgIsaMWKEFi1apK+++kodO3ZUmzZtFBQUpC+//NJ0NACpQMYsGTTn0CS1ydXTdBQAeKTHvmVzwYIFevbZZ+Xm5qbPP/9c27ZtU0REhN5//32VK1fOnhnhQMNr1FKbklc1dOMGPZfFT+Pq1DMdCXigNB5p9N2NL9QwfXutu73UdBwAeCKRkZEKCQlRgQIF1KFDBy1atEi//PKL2rRpoxYtWsjLy8t0RABIFu3y9tKnf4xXZv9MpqMAcGH//POPvvjiC/n4+CgmJkanTp3S//73P/3vf/8zHQ1AKuH3jK+mbB+jDgX6avGpmabjAMADPXaD8MSJE/rggw9ksVj0yy+/aMqUKTp79qwWLVpEg9DFFMrip9Wt2+mrvw7r2Smf6OOX66p1yVKmYwGJ8kzrqVX/zlPjjB20Jmyx6TgAkCTNmzdXWFiY3N3dlS1bNuXIkUOVKlVSjhw5dP78efXs2VNjx45V7ty5TUcFgKfSufBbmrBplPxz+5mOAsDFFSpUSLGxsZKkNGn+X3t3HR7lmfdt/DsUp0gaggR3txIIUKxYcPcgwV2DWwju7g7BKe5FSgvFKV4ItEhpU0oDxYIVMu8f+26eZYFugGSukfNzHPdx7Ewm95y5yLN7PfnN3BNTWbNmVdasWVW9enXDZQBcSYr0yTRyxwC1ytldC3+cYjoHAN4q0gPCtGnT6sKFC0qSJIlix46ttGnTKmXKlBo7dmx09n2UwMBADR061HSGw6qfK7fq58qtfnu/1poL5zW2go+yfMb/Qw/7EzdBXK0JmacaiZtp84NlpnMAINLy58+vDh06yN3dXTFivHnl90OHDmns2LGaPn26gToAiBpt8vTU0I19lCpzCtMpAFyAt7e3Ro0ape7du/MiKwBGpc2eSgNWdVf7Ar015/R40zkA8IZIfwZhy5YtNXbsWA0dOlQlSpSQ9K/PJYwdO3a0xX2sgIAAWa3WiAMfZky5ChpS+kt12rZVw789YDoHeKv4CeNpxc3ZqvWZn+kUAPifunbtqsGDB+vMmTO6deuWnj59+trXDx06JEny8vJSeHi4iUQAiBIdvfqqz9LOSp8rjekUAC7i8OHDCg4OVqtWrTRw4EAtW7ZMR48e1d27d02nAXBBmfKlV/e57dSlSH/TKQDwhki/g7BgwYKaNWuWrl+/rsKFC+vcuXPq16+fmjVrFp19sBP5U6TU1838tOj0KeWeOU3jKlRU5SxZTWcBr/k0SQItvTpddTxaav2fi0znAMA79erVSxcuXNAPP/ygOXPm6ObNm0qdOrVy5MihdOnSadmyZSpevLjixo2rmTP5zAoAjqnbFwPVeXorZfk8o+kUAC5k8uTJCg8P1y+//KLg4GBduXJFy5cv17Vr17Rjxw7TeQBcUPbCmdV2fDP1LDVEk74dZjoHACJEekAoSZ6envL09JQkZc2aVcuWLVPKlCmjJQz2qWWBgmqQO6/6fL1Lq8+f07gKFZXi009NZwERErkn1MIfp6he8lZa98dC0zkA8FZp06ZV2rRpFRYWpnr16unp06cKDg7W5cuX9eOPP6p+/fqmEwHgo/QuG6gWIxopZ1FeVAjAtqxWq7777jvdvHlTnp6e6tKliyTp5cuXhssAuLI8JXLId1Ad9fMZoTG7B5nOAQBJ73GJ0XPnzmnw4MF6+fKlnj9/rpMnT3LJKxeVIFYszaxSTW28CqnW6hWacvSw6STgNUk8Emnu2Ylq4NnGdAoAvKFFixY6d+6cJCl9+vR68OCB4sWLp/z586thw4YKCAhQ06ZNDVcCwIcbUHmU6veurvxf5jadAsAFLViwQBMnTtRvv/2mmTNn6tq1a5o7d+5bP+8ZAGypYPl8qtmlkgZXH2M6BQAkvceAcPHixfLw8FCMGDG0YMECzZw5U507d9bJkyejsw92rETadDrSup0ssqjogrn67uYN00lAhM9SJNHME2PVKE070ykA8JoePXrIw8NDkrRw4UI1aNBATZs21YgRI7Ru3TqdO3fujc8kBABHEVBrnKq2K69CFQuYTgHgonbu3KkxY8ZowIABkv51NazLly9r7dq1hssAQCpStaAqNC+tYfUmmk4BgMgPCH/66Se1aNFCFotF+/bt09ixY+Xv769ly5ZFZx8cQLciRbWxoa8W/nBKnbZv1eMXL0wnAZKkpKk+09TDI+WbroPpFACIkDdv3ohLtM+ZM0dbtmxR//79lStXLv3888+aPHmyatasaTYSAD7AyEZT9GXDL1SsRiHTKQBcWPz48SM+HkeS4saNq65du/L5gwDsRok6RfRFzcIa03Sa6RQALi7SA8K0adPqwoULunz5smLHjq20adPK29tb169fj84+OIgUn36qpbXqqErWbCq6YK4WnT5lOgmQJCVLk1QTvw1U04ydTKcAwGueP3+uJUuWKHbs2MqZM6dq1aqlfv36afHixdqwYYPpPAB4L+P8ZqhwpQIq3eAL0ykAXJy3t7eWLFny2mcOxo8fX3/99ZfBKgB4XVnfEsr/ZW5NbD3bdAoAFxbpAWHLli01duxYDR06VCVKlJD0r88ljB07drTFwfFUzpJV5zt20W8PH6n8siU6c/t300mAUqRPprF7Bqt5li6mUwAgQpw4cXTy5En99ttvb3wtQYIEBooA4MNMbjdXub/IrvLNSplOAQC1adNGV69eVceOHfXq1SsdPXpU06dPV548eUynAcBrKrYso6wFM2papwWmUwC4qEgPCAsWLKhZs2apa9euatu2rc6dO6d+/frZ9SWwAgMDZbFYIg7YzuBSpTW7ajUNO/CN+u7ZbToHkGemFBq1Y4D8snU1nQIAESpVqqRZs2bp4cOHplMA4IPM7LZIGXKnVeU25UynAICkf11SdMaMGapbt67y5s2rmTNnKnbs2Ordu7fptHfi71eA66rWwUepMqfQHP+lplMAuKBIDwgl6e7du7pz547OnDmjtGnTatmyZWratGl0tX20gIAAWa3WiAO2lfkzd21o2FgFPVMpw5SJWnvxgukkuLhUWVJq2Oa+apWzu+kUAJAk7d69W2fOnFHDhg3Vv39/BQUF6dixY7p//77ptHfiD1gA/m1enyAlS5NUNbtUMp0CwMW1aNFC586dkySdOHFCjx49UoUKFTRy5EgFBQVpyJAhcnNzM1z5bvz9CnBtdXpUVRKPRFo4YKXpFAAuxmKN5M5j9erVWr16tXLlyqUbN27o2bNnatWqlSpXrhzdjVGmRIkSOnjwYLSc++7du3J3d4+WczuLvnt26+q9uxpX3keZP/v4tWLNbc9Z1vzGxVsa2XCy5p+fZDrlf3KWNXckrLntReeaO8K/56tXr3Tjxg0FBwfrypUrCg4O1vXr17Vr1y7TaZHC/sq5sOa256hrvmTwasWKG0u+A+uYTnlvjrrmjow1tz1X21+dO3dOHh4eSpkypdq3b68bN27Iw8ND2bJliziyZMmiePHimU6NFPZXzoU1tz1HXfNlQ9fKEsOipkPqmU55b4665o6MNbc9Z9xfxYzsAzdu3KiRI0cqV65ckqQbN25o5MiRSpAggUqVcozPmjh06FC0nfv58+fRdm5nMba8j07//rs6bNuqkunSa3Cp0h91Ptbc9pxlzdPnSqMBK7urbT5/zTs70XTOP3KWNXckrLntReea2/u/58SJEyP+aFWhQoWIF179/fffhssij/2Vc2HNbc8R13zFyPWS5JDDQckx19zRsea252r7q7x580b85zlz5ujFixf66aefFBwcrODgYO3YsUMhISHavdsxPgKF/ZVzYc1tz1HXvNnQ+lrYf4VWj92khn1rms55L4665o6MNbc9Z9xfRXpA+PLlS6VMmTLidvr06dWrVy/NmjXLYQaEMK9AypTa08xPi06fUp5Z0zW2vI8qZ8lqOgsuKEOetOq7tIvaf95bc34YbzoHgItKmTKlTpw4oeXLl+vhw4fKlClTxMCwfPnypvMA4A3rJm5V2P0wtR3fzHQKALzT8+fPlSZNGuXMmTPivrCwMINFABA5rUb7anaPJdowdbtqd6tiOgeAk4v0ZxAWKFBAW7Zsee0+T09PXb9+Pcqj4PxaFiioI63bafuVYDXfuF63Hz82nQQXlCl/evWc30GdCvU1nQLARTVu3FiBgYFavXq1goKCVKhQIe3atUvfffed6TQAeMOmGTt15+afDAcB2LXdu3erQYMGOnz4sCTp4MGDOn36tBIkSGC4DAAip8NkP/0aHKKtc742nQLAyUV6QNiuXTsdOHBAgYGB2rNnjy5duqT58+crQ4YM0dkHJ/Zp7NiaWaWaWn1eULVWr9DUo0dMJ8EFZS2YUV1ntVFn7/6mUwC4OHd3dzVr1kwjRoyQh4eH6RwAeM2O+Xt1/fwv6jStpekUAPhHCxYs0LBhw+Tj4yNJih07tgICAnTy5EnDZQAQeV1ntVHwiZ+0e/E3plMAOLFIDwg9PDw0a9YsZcuWTRs3btSAAQN08+ZN+fv7R2cfXEDJdOl1pHU7WWVV0QVzdfCXm6aT4GKyFcqsTlNbqGuxgaZTALiYkydP6tGjR6/dly9fPp04ccJQEQC8aU/Qt7pw6LJ6zG1nOgUA/qcYMWIoU6ZMEbe9vb3Vr18/LV682GAVALy/Xgs76oe957R/VfR9LikA1xbpzyCUpPjx46thw4Zq2LChJCk8PJwPw0SU6V6kmBrmzqs+X+/S6vPnNK5CRSWIFct0FlxEjiJZ1W5CM3UvPkhTDo0wnQPARSxYsEDXr1+Xp6encuTIoezZs+vevXtvDA0BwJRv1x7Wse0/aNDqHqZTACBS8ubNq+3bt6tJkyav3Td69GiDVQDwYfqv6KbAuhMUO04sFa/tbToHgJOJ9DsI3+bp06eqUaNGVLUASvHpp1pWu66qZM0m73mztej0KdNJcCG5imVTq9G+6llqiOkUAC5izpw52rx5s3r06KG0adPqhx9+0OHDh9W+fXvTaQCgw5tPaP+qQwwHATiU9u3ba9u2bRo9erROnjyp69evKygoSKlTpzadBgAfJOCrXtq1+Bsd287fSQFErfd6B+HbWK3WqOiIFoGBgRo6dKjpDHyAylmyqnKWrBr+7QFVWLZE4yr4KH+KlKaz4ALylMih5oEN1KvMUE3YP9R0DgAn9OLFC33zzTd6+PChMmTIoPz58ytv3rzKmzev6TQAiHBy9xltnfO1Ru/kEuwA7N/9+/eVJEkSSf/6XOc5c+Zo7dq1mj17tm7fvq1s2bJp0KBBZiMB4COM2NpPfcoPU+y4sVWgbB7TOQCcxD8OCH/55RelTp1aMWJ81BsNjQkICFBAQEDEbYvFYrAGH2JwqdK6eu+u+n69W1mTJtWYchVMJ8EF5CudS+Hh4epTbpjG7eXdhACi1pgxY/T9998rW7ZsWrx4sdKnT68hQ4YoRYoUNu0IDw932D0egOh19sBFrR67iRdLAXAYDRs21KBBg1S8eHEtXbpU2bJlU926ddW2bVvTaQAQZcbtGaIeJQcrVpxYyl08u+kcAE7gHweErVq1Uty4cZU5c2ZlzZpVWbNmVZYsWRx6aAjHk+Uzd21o2FhrLpxXhikTNa68j+rlym06C06uQJk8Cn8Vrn4+IzRmN680BRB1Tpw4oQEDBqhUqVJ68uSJxo0bp6lTp3705+Ls379fQUFBslqtatSokXx8fN752EWLFun58+fq0KGDJKlZs2YKDQ2N+Pr48eOVK1euj+oB4Jh+PHJFiwau1NTvR5pOAYBI27Jli16+fClJevDggYKCgnTt2jUlSZJE2bJlU9asWZUtWzYVLFjQcCkAfJzJ3w1XZ+/+6jKjlbIVymw6B4CD+8cB4aZNm3T16lVduXJFV65c0dKlS/X7778rXrx4ypw5s9KnT2+jTEBqkDuPGuTOoz57dmvVhXPqla+APD09TWfBiRUsn0/hr8I1oPIojdoxwHQOACfx7Nkz5cuXT5IUP358tWjRQp07d/6oc96/f18LFy7UjBkzFCNGDHXq1EleXl5yd3d/47Hnzp3Tli1bIgaI4eHhevHihXbs2PFRDQAc39UfrmlGl4WadXKs6RQAeC9du3bVrFmzJElFihRR165d9ffff+v69esKDg5WcHCwDhw4oHnz5hkuBYCPN+PYaLXL30t9l3VRxrzpTOcAcGD/OCBMkCCB8ufPr/z580fc9/jxY129elXBwcG6evWqzS+HBYwr76PTv/+uHju2qdydPzSoZGnTSXBihSoWUHi4VYOqjtaIbf1N5wBwEv95JYakSZPq2bNnH3W+48ePy8vLS25ubpKkokWL6siRI6pateprjwsLC9P8+fNVr149PXz4UJIUGhr61kEiANdy88dfNbbZdC24MNl0CgC8t+TJkyswMFBFihTRsmXLtHz5csWKFSvialjVqlUznQgAUWrumQlqkb2bhm/pq9RZeQMFgA/zjwPCt/n0009VoEABFShQIDp6gEgpkDKlVlaqop23f1feWdM1tryPKmXJajoLTsq78ucKfxWuITXGatjmvqZzADiBe/fuKVGiRFF2vtDQUCVLlizitoeHh+7evfvG46ZNm6amTZvqzp07EQPC27dv68GDB+rTp49u3LihkiVLqmPHjlxOHnAhIT/f1pAaY7X06nTTKQDwQQYOHKitW7fq+++/V2hoqKpXr65MmTK9dnlRPi4HgLNZfHmqmmToqIkHApU8nYfpHAAO6L0HhIA9afV5QdXPnUd99+zW6gvnNa6Cj5In+NR0FpxQ0WpeCn8VrqG1x2voht6mcwA4sCRJkqhNmzZKlCiRMmXKpNSpU0uSQkJCPvjS2Var9Y37wsPDX7u9d+9eJUiQQIULF9a2bdsi7k+YMKHq1q2r6tWr69GjRxo8eLC2b9/+xivtAwMDNXTo0Lc+v8Vikb+/v3r27PlB/f8kJCQkys+Jf8aa257JNb8b8pdG1JiiyScCXerf3pV+VnvBmttedK25xWKJlvN+jMuXL6tOnTqqU6eOBg8erO7duys4OFhXrlzR/v37NXv2bP3999/aunWr6VQAiFLLr89SA882mv3DeH2WIonpHAAOhgEhHF7C2LE1q0o1fXfzhmqsXKFGefKqW5GiprPghL6oWVjWcKsC605QwFe9TOcAcFDr1q3TnTt3dOXKlYjPek6UKJGaN2+uhAkTKkeOHMqePbuaNm0a6XO6u7srODg44nZoaKjSpEnz2mMOHDiga9eu6dSpUwoLC9PLly8VFhamnj17Kn369LJYLEqcOLFKlCih69evv/EcAQEBCggIeON+i8Xy1gFlVPiYoSk+DGtueybX/EHoQ3WtPFhf3Vlo5PlN4ffc9lhz24vONbfHYe/YsWM1depUJU2aVIkSJZK7u7uKFSumYsWKRTzm999/N1gIANFnTch81frMT0HXZurTJAlM5wBwIAwI4TRKpkuvo23aacrRwyq2YJ7GVvBRibR8UC+iVvHa3nr1KlwjGkzSoDVR/04ZAK4hWbJkSpYsmYoXLx5x3x9//KErV67oypUrunDhwnudz9vbW0FBQQoLC5PFYtHRo0dVr149Wa1W/f7770qRIoVGjBgR8fht27bp1q1b6tChg7766itduHBBgwYN0rNnz3T48OE3PrsQgPN58uipmmXqrM0PlplOAYCP1rBhQ7Vu3Vrp0qXTzZs3lT9//jcuK5oyZUrDlQAQfTbeW6KqCXy1PnSx4sSLbToHgINgQAin071IMTXInUd9v96tNefPaWyFikoQK5bpLDiRUvWKKvxVuEY1nqIBK7ubzgHgJJInT67kyZOrRIkS7/29bm5uatmypfz9/WW1WuXr6ysPDw89e/ZMzZs319q1a+Xm5vbW761Ro4b+/PNPtWrVSi9fvlSFChVUtmzZj/1xANixv1+8VF2PltrxbJXpFACIEtWqVVOJEiV08eJFjRkzJuKyoi9fvlTWrFkjPoewVKlSplMBINpsC1shn5gNtPPFKj5zFUCkOPWA8J8+KwfOLeWnCbWsdl1tv3pF3vNmy79YcbUo8LnpLDiRLxt+IWt4uEY3mab+y7uazgEAlS1b9o3BXty4cbVnz543Hvuf7xCMFSuWOnTooA4dOkR7IwD7UDluI+0JX2c6AwCiVJIkSfTFF1+oR48eKlOmjCTp9u3bEZ9FuHXrVgaEAJzezherVCl2I+1+ucZ0CgAH4NQvJQgICJDVao044HqqZMmqC5266teHD1Rh2RKduX3bdBKcSJnGJeTlk0/jms8wnQIAABApleM24p2DAJzO6NGj9ezZM0mKGA5KUooUKVSqVCm1adNGEyZMMJUHADYTI0YMbX64TNU+bWI6BYADcOoBIfBvg0t9qZlVqynwwD712/u16Rw4kfJNSynfl7k0oeUs0ykAAAD/qEbiZvrqz0WKFdupLyQDwAXt379fL168iLg9e/bs126Hh4fr0aNHJtIAwObixo+jlbfmqLZ7C9MpAOwcA0K4jCyfuWtjQ18VSJFSGaZM1LqLF0wnwUn4+H2p3MWza2Lr2aZTAAAA3qpuslZa9vMMxU8Yz3QKAES7DRs2RLyjUJKePn2q2rVrGyz6Z4GBgbJYLBEHAHyshG6fasHFyWrg2cZ0CgA7xoAQLqdB7jy63t1fJ0J+U501q/TzvXumk+AEKrYsoxzeWTS53VzTKQAAAK9pnLa9Zv8wTomTJjKdAgB4Cz4iB0B0+CxFEk09PFJNM3YynQLATjEghMsaV95HA0uWUrttmzXyu29N58AJVG5TTpkLZNC0jvNNpwAAAEiSmmfpognfDJVHanfTKQAAALCxFOmTadTOgWqZo5vpFAB2iAEhXNrnKT21t1kLJf80gfLOmq5dP101nQQHV619BaXPnVbTOy8wnQIAAFxc69w9NGxzX3lmSmE6BQCiHZ8xCABvlyabpwat6al2+XuZTgFgZxgQApJaf+6l71u30+bLl+S3cb3uhIWZToIDq97RR2mypdLMbotMpwAAABfV0auv+i7ronQ5U5tOAYBolzBhQvn5+al58+YaM2aMJOny5csK4/+3BwBJUsa86dRjXnt1KdLfdAoAOxLTdABgLxLGjq3ZVavru5s3VG1lkHzz5lNX76Kms+CganappA1Ttmt2zyXqMMnPdA4AAHAh3b4YqM7TWynL5xlNpwCATWzYsEG3b99WcHCwrl69qgIFCmjUqFEKCwtTihQplCZNGtOJAGBc9sKZ1XZ8M/UsNUSTvh1mOgeAHWBACPyXkunS61ib9pp85LC+WDhPY8v7qHjadKaz4IBqd6+iryZt1dxey9RuQjPTOQAAwAX0KjNULUc2Vs6iWU2nAIBNpUiRQilSpFCpUqUi7gsJCdGVK1d05coVvXjxwmAdANiHPCVyqMnguupbYbjGfj3YdA4Aw5z6EqOBgYGyWCwRB/A+ehQtpnX1G2nuyRPqvH2rnvz9t+kkOKC6PavJLXlize+73HQKAABwcv0rjVTDvjWVr3Qu0ykAYBc8PT1VunRptW3bVhMmTDCdAwB24fNyeVW7W2UNqjbGdAoAw5x6QBgQECCr1RpxAO/LM2FCBdWuq0pZs6nQvNlafPoH00lwQPV711BCtwRaOGCl6RQA+Gi8AAuwTwG1xqla+wry8slvOgUAAAB2zrtKQfn4ldawehNNpwAwyKkHhEBUqZIlqy526qpfHz6QT9ASnbl923QSHEzDfrUU79O4WjxolekUAPgovAALsD8jGk5WmUbFVaxGIdMpAAAAcBAl6hRR8VqFNbrJNNMpAAxhQAi8h8GlvtT0ytUUeGCf+u/92nQOHEzjAbUVK04sLQ1YYzoFAAA4iXHNZ8i7yucqVb+Y6RQAAAA4mDKNS+jzsnk0odUs0ykADGBACLynrO7u2tjQV/lSpFSGKRP11Y8XTSfBgTQZXFeStHz4V4ZLAACAo5vcbq5yF8+u8k1LmU4BAACAg/Jp8aWyeWXStE4LTKcAsDEGhMAHapg7j65399exX2+pzppVuvbXPdNJcBDNAxvo5YuXWjFyvekUAADgoGZ2XaQMedKqcptyplMAAADg4Kp18FHqLCk1u+cS0ykAbMjIgHD//v1q0aKF/Pz8tHv37je+vmLFClWuXDniqFixogYOHChJWrlypRo3bqxGjRpp2bJltk4H3jC+QkUNLFlKbbds1sjvvjWdAwfhN7yhnoU91+oxG02nAAAABzOv9zIlS+ehmp0rmU4BAACAk6jdvYrckifRwv4rTKcAsBGbDwjv37+vhQsXatKkSZo6daqCgoJ09+7d1x7j6+urHTt2RBxly5ZVrVq1dOXKFW3fvl3z58/XwoULtX//fl24cMHWPwLwhs9Tempv8xZK/mkC5Zs9Q7t+umo6CQ6g1ajGevRXmNaO32w6BQAAOIglg1crQZIEqudfzXQKAAAAnEzDvjUVK04sBQ1bZzoFgA3YfEB4/PhxeXl5yc3NTYkTJ1bRokV15MiRdz7+hx9+kMVikZeXl2LEiKFPPvlEsWPHVqxYsRQrVizFiMFVUmE/Wn/upUMt22jz5Uvy27RBd8LCTCfBzrUZ20T37zzQuolbTacAAAA79+/Lk/sOrGO4BAAAAM6q2dD6evH0hVaP3WQ6BUA0i2nrJwwNDVWyZMkibnt4eLzxDsJ/Cw8P16JFixQYGChJypw5s7y9vVWnTh1ZLBaVLl1aOXPmfOP7AgMDNXTo0Lee02KxyN/fXz179vz4H+a/hISERPk58c/sdc0Hf+6lI7+HqErQUtXMnFktcuY2nRRl7HXNHVnVHuW0cuhGLQpcoYptvnzj66y57bHmthdda26xWKLlvABga+smbFHYgydqO66p6RQAAAA4uVajfTW75xJtmLJdtbtXMZ0DIJrYfEBotVrfuC88PPytjz106JAyZcokd3d3SdL58+d19uxZTZo0STFixNC4ceN08uRJeXl5vfZ9AQEBCggIeON8Fovlrc8fFUJCQuTp6Rkt58bb2fua1/H0VJ2CXpp05HvV27lN48pX1Bdp05rO+ij2vuaOrNe8TprZbZGOrz+rml3+7/OEWHPbY81tLzrXnGEvAGewafpO3bkVqk5TW5pOAQAAgIvoMMlP0zot0NbZu1Wtg4/pHADRwObX53R3d1doaGjE7dDQUCVNmvStj92/f7+++OKLiNvHjh1TyZIllTlzZmXMmFFlypTR0aNHo70Z+Bg9i36hdfUbafbJY+qyY5uevnxpOgl2qtPUlvr1Sog2z9xlOgUAANiJHfP36vqFXxgOAgAAwOa6zmyt4JM/a/fib0ynAIgGNh8Qent76/jx4woLC9OTJ0909OhRFSlSRFarVSEhIRHvJnz27JnOnz+v/PnzR3xvunTpdPz4cT1+/FhhYWE6duyY0qdPb+sfAXhvngkTanntevLJnEUF58zU4jM/mE6Cneo8vZVuXrylrXO+Np0CAAAM27PsW134/rJ6zG1nOgUAAAAuqtfCjvph33ntX3nQdAqAKGbzAaGbm5tatmwpf39/9ejRQ76+vvLw8NDz58/VvHlzPXjwQJJ08uRJ5cqVS7Fjx4743nLlyil37txq27atWrdurUyZMqly5cq2/hGAD1Y1azb92Lmbbt1/IJ+gJTr7x23TSbBDXWe10U+nr2vH/L2mUwAAgCEH1nyv4ztPq8+SzqZTAAAA4OL6L++qQxuP6+B6ruYHOBObfwahJJUtW1Zly5Z97b64ceNqz549EbeLFy+u4sWLv/YYi8Witm3bqm3btjbpBKLLkNJf6srdu+rz9S7l8PDQ6HIVTCfBzvSY206T2szRgwcP1KhXHdM5AADAhg5vPqFvVn+vwI19TKcAAAAAkqQh6/w1qNoYxY4bS95VCprOARAFbP4OQgD/ktXdXZsa+SpfipTKOGWivvrxoukk2Jme89vr6slr2r2E67wDAOAqTuw6rW1z9zAcBAAAgN0ZsbWfNkzdoR/2njOdAiAKMCAEDGuYO49+7u6vY7/eUt21q3Ttr3umk2BHWk/y1dlvLmpP0LemUwBAkhQYGCiLxRJxAIg6Z765oLXjt2jUjgGmUwAAAIC3Gvv1YC0f/pXOH7xkOgXAR2JACNgBi6TxFSqqf/FSartls0YdZBiE/9NnaWed+vqs9q3gw6ABmBcQECCr1RpxAIgaFw8Ha8ng1Rq/L8B0CgDAxngBFgBHM+nbYZrXe5kuH//JdAqAj8CAELAjBT09tbd5C3nET6B8s2do909XTSfBTvQL6qpj20/pm9Xfm04BAABR7OoP1zSz6yJNOTTCdAoAwABegAXAEU0/OlqT287RtXM3TacA+EBOPSDkFVhwVG0KeulQyzbaePmS/DZt0J9hYaaTYAcGrOyu7zce07frjphOAQAAUeTXy79rXPMZmnVyrOkUAAAA4L3MPTNBIxpMUshPf5hOAfABnHpAyCuw4MgSxomjOVWrq0X+AqqyMkjTjx01nQQ7MGhNT3279rAOruf3AQAAR/fbT7c1rfUCzT8/yXQKAAAA8EEWXZqqiU3n6PaNO6ZTALwnpx4QAs6gVPoMOt6mvf4Of6XiC+fr+19+MZ0Ew4as89e+FQf1/abjplMAAMAH+vPXu+pdZqjGHRpsOgUAAAD4KBOPBKhbsYG6d/u+6RQA74EBIeAgehb9QmvqN9Dsk8fUdcc2PX350nQSDBq6obd2L/5GR7aeNJ0CAADe0/0/H6pjwT5a+csc0ykAAABAlFgTMl+tc/XQo78em04BEEkMCAEHkiphIi2vXU8VMmdRwTkzteTMadNJMGjY5r7aPm+vjm0/ZToFAABEUtjDJ/LL0kXr/lhoOgUAAACIUhvuLlbjNO317Mlz0ykAIoEBIeCAqmbNph87d9PN+3+pYtBSnfvjtukkGDJiaz9tnrlbJ3YxLAYAwN79/eKl6iVrpU33l5pOAQAAAKLF1sfLVSNRM4WHh5tOAfA/MCAEHFhA6TKaWrmKBu/fpwH79pjOgSGjdgzQ+snbdWrPWdMpAADgH1SO20g7nq0ynQEAAABEq50vVqlS7EamMwD8DwwIAQeXzT2pNjfyVZ5kyZVxykSt//Gi6SQYMGb3IK0Zt1mn9503nQIAAN6iUpxG2vmc4SAAAACcX4wYMbTlUZCqJvA1nQLgHzAgBJxEozx59XN3fx399Zbqrl2la3/9ZToJNjZuzxCtGLleZw8wJAYAwJ5UT9RUG+4uVsxYMU2nAAAAADYRJ15srf5tnmp95mc6BcA7MCAEnIhF0vgKFdW/eCm12bJRow5+azoJNjZh/1AtG7pW57770XQKAACQVDdZKwVdm6l4n8Y1nQIAAADY1KdJEmjhj1PUwLON6RQAb+HUA8LAwEBZLJaIA3AVBT09ta95S3nET6B8s2do909XTSfBhiYeCNTigat04fvLplMAAHBpjdK005zT45U4aSLTKQAAAIARn6VIomlHRqlJho6mUwD8F6ceEAYEBMhqtUYcgKtpU9BLB1u20cbLl9Ri0wb9GRZmOgk2MvngcM3rHaRLR6+YTgEAwCU1y9xZk74dpqSpPjOdAgAAABiVPJ2HxuwepBbZu5lOAfAfnHpACEBKFCeO5lStrub5C6jKyiDNOH7UdBJsZNrhkZrVfbEuH//JdAoAJ8IVGoD/rXXuHhq+pZ9SZkxuOgUAAACwC6mzemrw2p5ql7+X6RQA/x8DQsBFlE6fQcfbtNfzl69UfOF8Hb71i+kk2MD0o6M1vdN8XTl1zXQKACfBFRqAf9ahYB/1C+qqdDlTm04BAAAA7ErGvOnUc357dfbubzoFgBgQAi7Hv9gXWlO/gWYeP6auO7bp2cuXppMQzWaeGKtJbWbr5zM3TKcAAODUuhYbqK4zWytzgQymUwAAAAC7lK1QZrWf2Fw9Sg42nQK4PAaEgAtKlTCRVtSppwqZs6jAnJlacua06SREszk/jNc4vxm6du6m6RQAAJxSrzJD1WpUY+UoktV0CgAAAGDXchfPrqZD6qlvheGmUwCXxoAQcGFVs2bTpc7ddPP+X6q0fKnO/XHbdBKi0dwzEzTad6puXLxlOgUAAKfSv9JINexbU/lK5zKdAgAAADiEz8vlVe1ulTWo2hjTKYDLYkAIQAGly2hyxSoavH+fBu7bYzoH0Wj++UkaXm+ifrn8m+kUAACcQkDNcarWoYK8fPKbTgEAAAAcineVgqrY4ksF1p1gOgVwSQwIAUiSsidNqs2NfJUrWXJlmjpJ6y9dNJ2EaLLwxykKqDlOv14JMZ0CAIBDG9Fgksr4llCx6oVMpwAAAAAOqXhtb5WoU0SjfaeaTgFcDgNCAK9pnCevrnbtoSO/3FK9tat17a+/TCchGiy+PFUDq4xWyM9cVhYAgA8xrvkMeVctqFL1ippOAQAAABxamUbF9Xm5vJrQapbpFMClOPWAMDAwUBaLJeIAEDkxLBZN8KmovsVLqM2WjRp98DvTSYgGS69OV9/yw3X7xh3TKQAAOJTJbecod4kcKt+0lOkUAAAAwCn4tPhS2Qpl1rSO802nAC7DqQeEAQEBslqtEQeA9+PlmUr7mreUe/x4yjd7hr799ZbpJESxoGsz5V86QHd+CTWdAgCAQ5jRZaEy5kuvyq3Lmk4BADgJXuAOAP9SrX0Fpc7mqdk9lphOAVyCUw8IAUSNtgUL6WDLNtp184ZabNqg0CdPTCchCq24MVvdvhio0N/umU4BAMCuzeu9TMnTJ1ONThVNpwAAnAgvcAeA/1O7WxW5pUiihf1XmE4BnB4DQgCRkihOHI3+ooSa5y+gysuXasbxo6aTEIVW3ZqrToX66t7t+6ZTAACwS4sHrdKnbp+qnn810ykAAACAU2vYt6Zix4utZUPXmk4BnBoDQgDvpXT6DDretoOev3ylEovm6/CtX0wnIYqsCZmvdvl76f6dB6ZTAACwKytGrJclhkWNB9Q2nQIAAAC4hKZD6unvFy+1esxG0ymA02JACOCD+Bf7QqvrNtDM48fUded2PXv50nQSosC62wvUKlcPPbz7yHQKAAB2Yd2ELQp7+ER+wxqaTgEAAABcSqtRjfXXnQfaMGW76RTAKTEgBPDBUiVKpBV16ql8xkwqMGemlp45bToJUWD9n4vUPEsXPb4fZjoFAACjNk3fqTu3QtV2XFPTKQAAAIBL6jDJT79e/V1bZ+82nQI4HQaEAD5atWzZdalzN12//5cqLV+q83f+MJ2Ej7Tx3hI1Sd9RYQ+fmE4BYGcCAwNlsVgiDsBZbZ+3Rzcu3lKnqS1NpwAAAAAurevM1rpy6pp2LdpvOgVwKgwIAUSZoaXLaHLFKhq4d48G7ttjOgcfadP9pWqYqp2ehT0znQLAjgQEBMhqtUYcgDP6eukB/XjkirrPaWs6BQAAAIAk/wUddOabC9q34qDpFMBpMCAEEKWyJ02qLY2bKFey5Mo8dZLWX7poOgkfYeujINXxaKUXz16YTgEAwCYOrPleJ3adUe/FnUynAAAAAPgP/YK66vtNx3Vw/VHTKYBTcOoBIZfAAsxpnCevgrv20JFfbqn+2tW6fv8v00n4QNufrFDNJM3194uXplMAAIhW3286rgNrDmvgqu6mUwAAAAC8xZB1/vp66QEd3XbKdArg8Jx6QMglsACzPrFYNMGnonoXL6FWmzZqzKHvTCfhA+14tkpVE/gq/FW46RQAAKLF8Z2ntWP+Xg3d0Nt0CgAAAIB/MHxLP22avlOn9pw1nQI4NKceEAKwD4U8U2m/X0u5xY2n/LNn6uuffzKdhA+w++818onVwHQGAABR7sw3F7RuwhaN3D7AdAoAAACASBize5BWjFiv8wcvmU4BHBYDQgA2086rkL5t2Urrf7yolps3KPTJE9NJeE97wtepfIx6pjMAAIgyFw8Ha8ng1Rq/L8B0CgAAAID3MOnbYZrXe5kuH+fNCMCHYEAIwKYSx4mrudVqqGneAqq8fKlmHj9mOgnvaffLNfKJyTsJAQCO78qpa5rVbZGmHBphOgUAAADAB5h+dLSmtJurn8/eMJ0COBwGhACM+DJDBh1v20FPX/6tEovm68itW6aTEEkxYsTQ9qcrVClOI9MpAAB8sOsXftGEFjM188RY0ykAAAAAPsKc0+M1qtEU/XL5N9MpgENhQAjAqF7Fimt13QaafvyIuu7cruevXppOQiTEjBVTWx4uU+V4jU2nAADw3n776bYCa4/XvHMTTacAAAAAiAILf5yigZVH6faNO6ZTAIfBgBCAcakSJdLKOvVVPmMm5Zs1U0vPnDadhEiIFSeWNtxdrGqfNjGdAuADhIeHv9f9gLO4cytUfcoGasmV6aZTAAAAAEShoGsz1f2LQbr7+1+mUwCHwIAQgN2oli27Lnfppuv3/1Ll5ct0/s4fppPwP8SNH0drfp+vGombmU4BXN7+/fvVokUL+fn5affu3f/42EWLFmnu3LmRvh9wFvfvPFCnQv204uZs0ykAAAAAosHq3+apTZ6eenTvsekUwO459YAwMDBQFosl4gDgGIaWLqOJFStp4N49GrRvr+kc/A/xE8bTyl/mqKZbc9MpgMu6f/++Fi5cqEmTJmnq1KkKCgrS3bt33/rYc+fOacuWLZG+H3AWYQ+fyC9rV627vcB0CgAAAIBotCF0sRqnba9nT56bTgHsmlMPCAMCAmS1WiMOAI4jR1IPbWncRDmTeSjz1EnacOlH00n4BwkSx1fQzzNVO2kL0ymASzp+/Li8vLzk5uamxIkTq2jRojpy5MgbjwsLC9P8+fNVr169SN0POIu/n/+teslba9P9paZTAAAAANjA1sfLVSNxM4W/4mM0gHdx6gEhAMfXOE8+BXftoe9/uan6a1frxv37ppPwDgk/+1SLLk1VveStTKcALic0NFTJkiWLuO3h4fHWdxBOmzZNTZs2VeLEiSN1P+AsKsdrrB1PV5rOAAA4mMhcwr1Zs2aqXLlyxHHx4sWIrz179kx9+vSxVS4A4L/serFaFWM3NJ0B2K2YpgMA4H/5xGLRRJ9KOhHym1psWi+fzFnUr3hJ01l4iyQeiTTv3ETVT9lGa3+fbzoHcBlvu1JCePjrr5Lcu3evEiRIoMKFC2vbtm3/8/7/FhgYqKFDh771axaLRf7+/urZs+eH/QD/ICQkJMrPiX/mbGveMkNPLbw20a5/Lntuc1asue2x5rYXXWvuKh/h8u9LuM+YMUMxYsRQp06d5OXlJXd394jHhIeH68WLF9qxY8cb379z507t3LlTL168sGU2AOA/WCwWbX28XFUT+Gpb2ArTOYDdYUAIwGEU8kylb/xaae7JEyowZ6bGlfdR+UyZTWfhv7glT6LZp8aqYep2Wv3rXNM5gEtwd3dXcHBwxO3Q0FClSZPmtcccOHBA165d06lTpxQWFqaXL18qLCxM9+/ff+v9vXr1eu37AwICFBAQ8MZzWyyWaLuUe0hIiDw9PaPl3Hg7Z1vz6omaauPdJYr3aVzTKe/kbGvuCFhz22PNbS8619xVhr3/eQl3SRGXcK9atWrEY0JDQ18bGP6nxIkTq2TJktq7d69NegEAbxcnXmyt/m2ean3mp433lpjOAewKA0IADqedVyE1yJ1Hfffs1uoL5zW2vI+Sxo9vOgv/wd3zM007MlK+6Tpoxc3ZpnMAp+ft7a2goCCFhYXJYrHo6NGjqlevnqxWq37//XelSJFCI0aMiHj8tm3bdOvWLXXo0OG187zrfsAR1fFoqeXXZ9n1cBAAYL8icwn327dv68GDB+rTp49u3LihkiVLqmPHjooRI4aKFSumW7du/eOAkCs0uA7W3PZYc9uz9zUfub+f6iZvqWmnR/zvBzsIe19zZ+RsV2hgQAjAISWJG1dzq9XQ/uvXVGn5Uvnl/1ydCnubzsJ/SJYmqSZ9N0xNMnTU8uuzTOcATs3NzU0tW7aUv7+/rFarfH195eHhoWfPnql58+Zau3ZtxKvfAVfQMHU7zTs7QYncE5pOAQA4qMhcwj1hwoSqW7euqlevrkePHmnw4MHavn27qlWrFqnn4AoNroE1tz3W3PYcYc09PT0168Q49Sg2WCtuOP6L2R1hzZ2NM16hgQEhAIdWJkNGnWjbQRMOH1KJRfM1rnxFFf2vy+rBnOTpPDR+X4CaZe6sZT/NMJ0DOLWyZcuqbNmyr90XN25c7dmz543H/uelsSJzP+BImmXurMnfDZO752emUwAADiwyl3BPly6d0qdPL4vFosSJE6tEiRK6fv26rVMBAJGULG1Sjf16sFpk76bFl6eazgGMi2E6AACiQq9ixbWqbgNNP35E3XZu1/NXL00n4f9LmTG5Ru8cKL9sXU2nAACcXKtcPTRiaz+lzJjcdAoAwMF5e3vr+PHjCgsL05MnT3T06FEVKVJEVqtVISEhCg8P14YNGxQYGKiXL1/q8ePHOnz4sHLlymU6HQDwD1Jn9dSQdf5qm8/fdApgHANCAE4jdaJEWlmnvspmzKR8s2Zq2dkzppPw/6XKklLDt/RTyxzdTKcAAJxU+897a8CKbkqbI7XpFACAE/jPS7j36NEj4hLuz58/V/PmzfXgwQPVqFFDyZMnV6tWrdSuXTvlz5//jSs6AADsT4Y8adVrYUd1KtzPdApglFMPCAMDA2WxWCIOAK6herbsutylm36+d1eVly/ThTt/mE6CpDTZPBWwvrda5+5hOgUA4GS6FhuobrPaKFP+9KZTAABOpGzZspozZ47mzp0rHx8fSf93CXc3NzfFihVLHTp00NKlS7VixQo1b978te9PkyaN5syZYyIdAPA/ZPXKpA6T/NSj5GDTKYAxTj0gDAgIkNVqjTgAuJbAL8tqYsVK6r93jwbt22s6B5LS5Uytgat6cBkHAECU6fXlULUe7ascRbKaTgEAAADgQHIXz65mAfXVp/ww0ymAEU49IASAHEk9tLVxE+VM5qEs0yZrw6UfTSe5vAx50qrvsi5qX6C36RQAgIPrX3GEGvavpbylcppOAQAAAOCACpTNozo9qmpQ1dGmUwCbY0AIwCU0zpNPlzp30/e/3FSDdWt04/5900kuLVO+9PJf2EEdvfqaTgEAOKiAmuNUraOPvCrkM50CAAAAwIF5V/5cFVuWUWDdCaZTAJtiQAjAZcSMEUMTfSrJv9gXarFpvcYe+s50kkvL8nlGdZvdRp29+5tOAQA4mBENJqmMbwkVq17IdAoAAAAAJ1C8trdK1Cmi0b5TTacANsOAEIDLKZwqtb7xa6XEceOpwJyZ2nPtZ9NJLitboczqNK2luhYdYDoFAOAgxjabriLVvFSqXlHTKQAAAACcSJlGxfV5+bya0HKW6RTAJhgQAnBZ7b0K6Ru/Vlp34bxabd6ou0+fmk5ySTm8s6jdxObqXnyQ6RQAgJ2b1GaO8pbKqXJNSppOAQAAAOCEfPy+VHbvLJraYZ7pFCDaMSAE4NKSxI2redVryjdvPvksW6xZJ46ZTnJJuYplU6vRvupZaojpFACAnZrRZaEy5U+vSq3Kmk4BAAAA4MSqtiuvNNlTaXaPJaZTgGjFgBAAJJXJkFEn23VU2Iu/VXLxAh399ZbpJJeTp0QO+Q1rqF5fDjWdAuAfBAYGymKxRByALczttUwpMiRTjU4VTacAAAAAcAG1u1XRZyndtKDfctMpQLRhQAgA/6H3F8W1onY9TT16RN137dCLV69MJ7mUvKVyyndwHfUpN8x0CoB3CAgIkNVqjTiA6LZo4Eolck+ouj2rmU4BAAAA4EIa9KmhuAniamnAGtMpQLRw6gEhr3AH8CHSJE6sVXXr68v0GZR31nQtO3vGdJJLKVAmjxr0raF+PiNMpwAADFsxYr1ifBJDjfrXMp0CAAAAwAU1GVxXL/9+pdVjNppOAaKcUw8IeYU7gI9RI3sOXe7SXT/fu6sqK5bpwp0/TCe5jILl86luz6rqX2mk6RQAgCFrx2/Wk0dP5TesoekUAAAAAC6s1ajGuv/nQ62fvM10ChClnHpACABRIfDLsppQoZL6792jQfv3ms5xGV4++VWzSyUNqjradAoAwMY2Ttuh0N/uqc3YJqZTAAAAAEDtJzZXyM+3tWXWbtMpQJRhQAgAkZDDw0NbGzdRjqQeyjJtsjZe+tF0kkvwrvy5qravoMHVx5hOAQDYyLa5e/TLpV/VcUoL0ykAAAAAEKHLjNb66fR17Vy4z3QKECUYEALAe/DNm0+XOnfTwV9uqsG6Nbr54L7pJKdXpGpBVWpVVgG1xplOAQBEs6+XHtClo1fUbXZb0ykAAAAA8Iae89vr7IGL2rfioOkU4KMxIASA9xQzRgxN8qkk/2JfqPmG9Rp76DvTSU6vWI1CKt+0lALrTjCdAgCIJt+s/l4nd59R78WdTKcAAAAAwDv1C+qqw5tP6LuvjphOAT4KA0IA+ECFU6XWgRatlDhuPH0+Z5b2XPvZdJJTK17bW182/ELD608ynQIAiGKHNh7Td+uOaMDK7qZTAAAAAOB/Gry2p/YGfacjW0+aTgE+GANCAPhI7b0KaZ9fC627cF6tN2/U3adPTSc5rZJ1i6pEHW+NbDTFdAoAIIoc33laOxfsU8D6XqZTAAAAACDShm3uq80zdunUnrOmU4APwoAQAKKAW9x4mle9phrlzSefZYs1+8Rx00lOq3SDL1S0WkGNbjLNdAoA4COd3n9eX03cqpHbB5hOAQAAAID3Nmb3IK0cuUHnvvvRdArw3hgQAkAUKpsho06266hHL56r5OIFOvbrr6aTnFKZxiVUqGJ+jW023XQKAOADXfj+spYFrNW4vUNMpwAAYFRgYKAsFkvEAQBwLBMPBGpB3+W6dOyq6RTgvTj1gJANFgBT+nxRQitq19OUo4fVfdcOvXj1ynSS0ynXpKQKlM2j8S1mmk4BALynK6euaXb3xZp8cLjpFAAAjAsICJDVao04AACOZ9qRUZrafp5+PnvDdAoQaU49IGSDBcCkNIkTa1Xd+voyfQblmTVdQWfPmE5yOhWal1aeEjk0sfVs0ykAgEi6fuEXTWgxUzNPjDWdAgAAAABRZs7p8RrVaIp+ufyb6RQgUpx6QAgA9qBG9hwK7tJdV+/dVZUVQbp4547pJKdSsWUZ5SiSVZPbzjGdAgD4H367+rsC60zQvHMTTacAAAAAQJRb+OMUDawySrev8/c/2D8GhABgI8O+LKvxFXzUd+9uDdq/13SOU6ncuqyyFMykqR3mmU4BnB6XcMeHuvNLqPqUH6YlwdNMpwAAAABAtAn6eaa6lxisuyH3TKcA/4gBIQDYUE6PZNrWuKlyJPVQ1mmTtfHSj6aTnEbVduWVIU86Te+8wHQK4NS4hDs+xP07D9SpcD+tuMEloQEAAAA4v9W/zlWbvP56dO+x6RTgnRgQAoABvnnz6WLnbjr4y001XLdGNx/cN53kFKp39FGa7Kk0s+si0ykAgP8v7MET+WXrqnW3eQEHAAAAANexIXSxGqfroGdhz0ynAG/FgBAADIkVI4Ym+VRSj2JfqPmG9Rp36KDpJKdQs3MlpcyUXLN7LDGdAgAu78WzF6qfso02/bXUdAoAAAAA2NzWR0Gq6eanVy9fmU4B3sCAEAAM806VWgdatFKiuHH0+ZxZ2nvtZ9NJDq92tyrySOOuub2WmU4BAJdWJb6vtj9ZYToDAAAAAIzZ+XyVKsVpZDoDeAMDQgCwE+29CmufXwutuXBerTdv1L2nT00nObS6PavpsxRJNK9PkOkUAHBJFWM31K4Xq01nAAAAAIBRFotF28KWq0p8X9MpwGsYEAKAHXGLG0/zq9dUo7z5VH7ZYi27dNF0kkOr16u6Erkn1ML+vHsFAGypWsKm2vTXEn0S8xPTKQAAAABgXOy4sbX29/mq6dbcdAoQwakHhIGBgbJYLBEHADiKshky6lS7jnry90uVWrxAx3791XSSw2rYt6biJYynxYNWmU4BAJdQx6OlVtyYpbgJ4ppOAQAAAAC7kSBxfC2+PFX1U7YxnQJIcvIBYUBAgKxWa8QBAI6mfd58CqpdT1OOHlaPXTv04hUfaPwhGg+ordhxY2vJEC51BwDRqWHqdpp3doISuSc0nQIAAAAAdscteRLNODZavuk7mE4BnHtACADOIG3ixFpVt75Kpc+gPLOma/m5M6aTHJLvoDqKESOGgoatM50CAE6paaZOmnJwuNw9PzOdAgAAAAB2K1napBq3Z4j8snU1nQIXx4AQABxEzew5FNylu4JD76rKiiD9+Ocd00kOp9nQ+nr19yutGLnedAoAOJVWObtr5PYBSpEhmekUAAAAALB7qbKkVMD6Xmqb1990ClwYA0IAcDDDy5TV+Ao+6v31bg3ev890jsPxG95Qz58816rRG02nAIBTaP95bw1Y2V1ps6cynQIAAAAADiND7rTqtaijOhXuZzoFLooBIQA4oJweybTdt6myJXVXtulTtOnyJdNJDqXlyMYKexCmNeM2m04BAIfWtegAdZvdVpnypzedAgAAAAAOJ6tXJnWY7KceJQabToELimniSffv36+goCBZrVY1atRIPj4+r319xYoVWrFiRcTt8PBwFSxYUDlz5nzr/SNHjrRZOwDYkyZ586t+rjzqu2e3Vp8/p3EVKipt4sSmsxxC6zFNNK/3Mq2buFX1/KuZzgEAh+NfOkCtxzZRDu8splMAAAAAwGHl/iK7mgXWV59ywzRu7xDTOXAhNh8Q3r9/XwsXLtSMGTMUI0YMderUSV5eXnJ3d494jK+vr3x9fSNujx8/Xl9++aW8vLzeej8AuLLYn3yiyRUr69hvv6rphnWqkiWb+hQvYTrLIbQd30xz/Jdq/eRtqtOjqukcAHAY/SuOUKMBtZW3ZE7TKQAAAADg8AqUyaMXz/7WoKqjNWJbf9M5cBE2v8To8ePH5eXlJTc3NyVOnFhFixbVkSNH3vn4H374QRaLRV5eXpG6HwBclXeq1Pq2RWslihtHBefO0t5rP5tOcgjtJzbXHzf/1MZpO0ynAA4hMDBQFosl4oDrGVJjrKp3qiivCvlMpwAAAACA0/Cu/LkqtiqjwDoTTKfARdh8QBgaGqpkyZJF3Pbw8NDdu3ff+tjw8HAtWrRILVq0iNT9AACpvVdh7WnWQmsunFebLZt07+lT00l2r+OUFvrt6u/aPHOX6RTA7gUEBMhqtUYccC3D609SuaYlVbQaL9IDAAAAgKhWvJa3StYrqlGNp5hOgQuw+SVG3/aHpPDw8Lc+9tChQ8qUKdNrlx/9p/v/LTAwUEOHDn3r1ywWi/z9/dWzZ8/3C4+EkJCQKD8n/hlrbnusue196JoHehXWwd9+VdklC9Uwa3Y1zcFl4P5J7f6VtHTAOj18+EBlm3OJVluLrv9u4R1uQNQZ22y6ilb3Usm6RU2nAAAAAIDT+rLhF3rx7IUmtJylXos6ms6BE7P5gNDd3V3BwcERt0NDQ5UmTZq3Pnb//v2qXLlypO//t4CAAAUEBLxxv8ViibZXuoeEhMjT0zNazo23Y81tjzW3vY9d8waenmpQqLDGHTqoRrt3aFyFivJOlToKC51L/yXdNLLpZJ3edlFV2pY3neMyovO/W3hRAxA1JrWZo7ylcqpck5KmUwAAAADA6fn4fam/n7/U1A7z1G12W9M5cFI2v8Sot7e3jh8/rrCwMD158kRHjx5VkSJFZLVaFRISEvFuwmfPnun8+fPKnz//a9//rvsBAO/Wp3gJBdWup8mHv1ePXTv09zveuQ2pxdgGCj7xs3Yu3Gc6BQDswvTOC5S5QAZValXWdAoAAE6Jz3gGALxN1XbllTZHas3qvth0CpyUzQeEbm5uatmypfz9/dWjRw/5+vrKw8NDz58/V/PmzfXgwQNJ0smTJ5UrVy7Fjh37te9/1/0AgH+WNnFira7XQKXSZ1CuGVO1/NwZ00l2q+f89rp4OFi7F39jOgUAjJrjv1SemVKoekcf0ykAADgtPuMZAPAutbpWVtJUn2l+3+WmU+CEbD4glKSyZctqzpw5mjt3rnx8/vXHhrhx42rPnj1yc3OTJBUvXlzDhg1743vfdT8AIHJqZs+hK117KDj0rqquDNKPf94xnWSXei3sqLPfXtSeZd+aTgEAIxYNXKnESROpTo+qplMAAAAAwGXV711D8T6Nq6UBa0ynwMkYGRACAMwbXqasxpbzUe+vd2vIN1xO8236LOmsU3vOat+Kg6ZTAMCmlg//Sp/E/ESN+tcynQIAAAAALq/J4Lp69fKVVo3eaDoFToQBIQC4sFzJkmm7b1Nl+cxd2aZP0ebLl0wn2Z1+QV11fMcP2r/qkOkUALCJNeM261nYMzUPbGA6BQAAAADw/7Uc2VgP7z7SV5O2mk6Bk2BACABQ03z5db5jF31z47oafbVWt/7/58HiX/qv6KbDm0/o27WHTacAQLT6euG3uhtyT63HNDGdAgAAAAD4L+0mNNPv1/7Q3iVc7QofjwEhAECSFPuTTzSlYmV1L1JMvhvWadz3bDT+06DVPfTtuiM6uP6o6RQAiBbb5u5RyNXb6jilhekUAAAAAMA7dJnRWjcv/qqdC/nIIHwcBoQAgNd4p06t71q0VsLYcVRw7iztu37NdJLdGLLOX/tXHtKhjcdMpwBAlNq95BtdPnZVfmO4rCgAAAAA2LtW4xvp3Lc/au/y70ynwIE59YAwMDBQFosl4gAARF6HQoW1p1kLrTp3Vm22bNJfz56aTrILAet7ac/Sb3V4ywnTKQAQJfavOqQf9pxTr0UdTacAAAAAACKp77IuOrr1pL5dd8R0ChyUUw8IAwICZLVaIw4AwPv5LF48LahRSw1y51HZJYs15+Rx00l2IXBTH+2Yv0/Htp8ynQIAH+XQxmM6+NVR9V/RzXQKAAAAAOA9DVrTU/uWf6cjW0+aToEDcuoBIQAgapTLmEk/tO+oh8+eq/TihTr226+mk4wbsbWftszareM7T5tOAWyKKzQ4j2M7ftCuhfsVsL6X6RQAAAAAwAcatrmvtszcpZNfnzWdAgfDgBAAEGl9ipfQ0tp1NPnw9+q5e6f+Dg83nWTUyO0DtHHqdjZgcClcocE5nN53Xusnb9OIbf1NpwAAAAAAPtLoXYO0evRGnfv2R9MpcCAMCAEA7yVd4iRaXa+BSqRNp1wzpmrFOdcejo3eNUhrx2/W6X3nTacAQKRc+P6ylg1dq3F7hphOAQAAAABEkQnfDNWCfst16dhV0ylwEAwIAQAfpFaOnLrStYcuhf6pqiuDdOnPP00nGTNuzxCtHLVBZ765YDoFAP7RlZM/a3aPJZp8cLjpFAAAAABAFJt2ZJSmdpinn8/cMJ0CB8CAEADwUUaUKaex5XzU6+udGvLNPtM5xozfF6CgwHU69x2XcgBgn66f/0UTWs3SzONjTKcAAAAAAKLJnB/Ga5TvVP1y6VfTKbBzDAgBAB8tV7Jk2u7bTFk+c1f26VO0+fIl00lGTDwQqMUDV+nC95dNpwDAa367+rsC607QvLMTTacAAAAAAKLZwouTNbDqaN2+fsd0CuwYA0IAQJRpmi+/znXsom9uXFejr9bq1oMHppNsbvLB4ZrfJ0g/HrliOgUAJEl3fglVn/LDtCR4mukUAAAAAICNBP08U91LDNbdkHumU2CnnHpAGBgYKIvFEnEAAKJf7E8+0ZSKldWtSFH5blin8d8fMp1kc1O/H6nZPRbr8vGfTKcAcHF//XFfnb37a8WN2aZTAAAAAAA2tvrXuWqbr5ce3n1kOgV2yKkHhAEBAbJarREHAMB2iqROo+9atFaC2LHkNXeW9l+/ZjrJpqYfHa3pnebryinX+rkB2I/H98PUMkd3rf19vukUAAAAAIAh6/9cpCYZOurp42emU2BnnHpACAAwr2Mhb+1u1kIrzp1V2y2b9Nezp6aTbGbmibGa3HaOfjp93XQKABfz4tkLNfBsq433lphOAQAAAAAYtuVhkGp95qdXL1+ZToEdYUAIAIh27vHiaWGNWqqXO4/KLlmsOSdPmE6ymdmnxml8i5m6du6m6RQALsJqtapqgiba/mSF6RQAAAAAgJ3Y9WK1KsZuaDoDdoQBIQDAZspnzKQf2nfUg2dPVXrxQh3/7VfTSTYx98wEjWkyTdcv/GI6BYgQHh5uOgHRpGLshtr1YrXpDAAAAACAndnxdKUqx2tsOgN2ggEhAMDm+hYvqaW162ji4e/Vc/dOvXSBQcW8cxM1osFk/XLJNYaisL39+/erRYsW8vPz0+7du//xsYsWLdLcuXMjbs+ePVu+vr5q2LChli9fHt2piEbVEjbV5vtLFeMTtvkAAAAAgNfFihNL624vUE235qZTYAf4ywEAwIh0iZNoTb0GKpE2nXLMmKoV586aTop2Cy9OVkCt8fr1SojpFDiZ+/fva+HChZo0aZKmTp2qoKAg3b17962PPXfunLZs2RJx+8SJEwoODtaSJUs0f/58bd26VT///LOt0hGFaidtoZU3ZytugrimUwAAAAAAdipB4vhaEjxN9VK0Np0CwxgQAgCMqpUjp6527aFLoX+q2srluvTnn6aTotXiy1M1qOpo/fbTbdMpcCLHjx+Xl5eX3NzclDhxYhUtWlRHjhx543FhYWGaP3++6tWrF3Ff/Pjx1bRpU8WKFUsJEyZU6tSp9fz5c1vmIwo0TNVW889PUsLPPjWdAgAA3lNgYKAsFkvEAQBAdEuSLLFmnhgj33QdTKfAoJimAwAAkKQRZcrpwp0/1OvrnfLyTKXAL8uaToo2S65MV9NMnTR+b4BSZEhmOgdOIDQ0VMmS/d/vkoeHx1vfQTht2jQ1bdpUd+7c0cOHDyVJuXLlkvSvS5Tu2LFDHh4eyp49+xvfGxgYqKFDh771+S0Wi/z9/dWzZ88o+GleFxLCO27/l17FhqnfV5313PpUISFPP/p8rLntsea2x5rbHmtue9G15gywol5AQIACAgIibrPGAABbSJYmqcbtHSK/bF21JHia6RwYwIAQAGA3cidLru2+zbTs7Bllnz5F4ypUVPVsbw4qnEHQzzPlm76DJn83XMnSJjWdAwdntVrfuC/8vz7bc+/evUqQIIEKFy6sbdu2vfH4vHnzSpJWrFihq1evKlu2bK99/b//cPVvFovlrc8fFUJCQuTp6Rkt53YWrXJ215hdg5U2e6ooOR9rbnusue2x5rbHmttedK45w14AAJxHqiwpFbC+l9rm9de8cxNN58DGnPoSo1yiAQAcU7N8+XWuYxftu/azGn21Vr/+/3c6OZsVN2are/FB+vPXt39WHBBZ7u7uCg0NjbgdGhqqpElfHzwfOHBAR48eVfPmzbVkyRLt3r1bEyZM0LFjx3TlyhUlTZpUZcqUkbe3t44fP27rHwEfoH2B3hqwqnuUDQcBAAAAAK4nQ+606rW4kzoV6ms6BTbm1APCgIAAWa3WiAMA4Dhif/KJplaqom5FiqrRV2s0/vtDppOixcpf5qiLd3/d/f0v0ylwYP8e6oWFhenJkyc6evSoihQpIqvVqpCQEIWHh2vEiBFauXKlli5dKj8/P/n4+KhXr166e/euli5dqmfPnunx48c6e/as0qRJY/pHwv/QpUh/dZ/bTpnypTedAgAAAABwcFkLZlTHqS3Vvfgg0ymwIaceEAIAHF+R1Gl0sGUbJYgdS4Xmzdb+69dMJ0W51b/NU/sCvXX/zgPTKXBQbm5uatmypfz9/dWjRw/5+vrKw8NDz58/V/PmzfXgwbt/typWrKjkyZOrdevWateunQoUKKBSpUrZsB7vy790gNqMa6rshTObTgEAAAAAOIlcxbKp+bAG6lNumOkU2AifQQgAcAgdC3mrfq486rtnt9ZcOK+x5X2UJG5c01lRZt3tBaqbrJUW/jhZiZMmMp0DB1S2bFmVLVv2tfvixo2rPXv2vPHYqlWrRvznGDFiqGvXrtHeh6jRz2eEGg+srbwlc5pOAQAAAAA4mQJl8ujv5y81sMoojdw+wHQOohnvIAQAOIyk8eNrYY1aqpszl75cslBzT54wnRSlvrqzUC2yddOjvx6bTgFghwZXH6OaXSqpYPl8plMAAAAAAE6qcKUCqtymnIbWHm86BdGMASEAwOGUz5RZp9t30l/PnurLJQt1/LdfTSdFmQ13F6tphk4Ke/jEdAoAOzK8/iSVb1ZKRaoWNJ0CAAAAAHByX9QsrFL1i2lU4ymmUxCNGBACABxWv+IltbhmHU08/L38d+/Uy/Bw00lRYtP9pWqUup2ePn5mOgWAHRjTdJqK1SikknWLmk4BAAAAALiILxt+IS+f/BrfYqbpFEQTBoQAAIeWPkkSranXQF+kTaccM6Zq5fmzppOixJaHQaqXvJWeP31hOgWAQRNbz1b+L3OrrG8J0ykAAAAAABdToXlp5SyaVVPazzOdgmjAgBAA4BRq58ipq1176Mc7f6rayuW6FPqn6aSPti1shWq5NdffL16aTgFgwLROC5S1YEZVbFnGdAoAAAAAwEVVaVte6XOl0cxui0ynIIoxIAQAOJURZctpdLny8t+1UwHf7DOd89F2PFulap820auXr0ynALChOf5LlSpzClXr4GM6BQAAAADg4mp2qSSP1O6a33e56RREIaceEAYGBspisUQcAADXkDtZcu1o0kyZPnNX9ulTtSX4sumkj7LrxWpVitNIVqvVdAoAG1g4YKWSeCRSnR5VTacAAAAAACBJqt+7huInjKclQ1abTkEUceoBYUBAgKxWa8QBAHAtzfLl19mOnbTv2s9qvH6tfn340HTSB/v61VpV+KS+6QwA0Sxo2DrFih1TDfvVMp0CAAAAAMBrfAfVkTXcqpWjNphOQRRw6gEhAABxPompqZWqqEvhomr01RpNOHzIdNIHY0gIOLc14zbr+ZPnajaU/zsHAAAAANinFiMa6dG9x/pq0lbTKfhIDAgBAC6haJo0OtiyjeLFjKVC82brm+vXTSe9N4vFop3PV6li7IamU+DCuIR79Ngwdbvu/f6XWo9pYjoFAAAAAIB/1G5CM92+fkebZ+4ynYKPwIAQAOBSOhX21s4mzRV07rTabd2sB8+fmU56L5/E/ERbHwWpcrzGplPgoriEe9TbOudr/Rocog6T/UynAAAAAAAQKZ2nt9K1sze0Y8E+0yn4QAwIAQAuJ2n8+FpUo7bq5sylUosWau7JE6aT3kusOLG08d4SVU3gazoFwEfaveQbBR//SV1ntTGdAgAAAADAe+kxr73Of/ej9i7/znQKPgADQgCAyyqfKbPOdOikv549VZkli3Qi5DfTSZEWJ15srftjoaonamo6BcAH2r/qkH7Yc069FnU0nQIAAAAAwAfpu6yLjm49qW/XHTGdgvfEgBAA4PL6FS+phTVrafyhgxpx7KheOchlE+N9Glerbs1VTbfmplMAvKdDG47p4Pqj6r+im+kUAAAAAAA+yqA1PbV/xUEd3uJYV+lydQwIAQCQlCGJm9bWb6jPkydTtmmTtfL8OdNJkZIgcXwFXZup2u4tTKcAiKRj209p1+JvFPBVL9MpAAAAAABEicBNfbR19tc6ufuM6RREEgNCAAD+Q+X0GfVTt566eOcPVV+5XJdC/zSd9D8ldPtUi4Onqm6yVqZTAPwPp/ed1/op2zViaz/TKQAAAAAARKnROwdq9ZhNOvftj6ZTEAlOPSAMDAyUxWKJOAAAiKyRZctrZLny8t+1U0MP7Ded8z8lTppI889PVP2UbUynAHiHC4cua1ngWo3bM8R0CgAAsCP8/QoA4EwmfDNUC/qv0KWjV0yn4H9w6gFhQECArFZrxAEAwPvIkyy5djRppgxJ3JR9+lRtDb5sOukfuSVPotk/jFPDVG1NpwD4L8EnftIc/6Wa/N1w0ykAAMDO8PcrAICzmXZ4pKZ1WqCfTl83nYJ/4NQDQgAAokLz/AV0tmMn7bn2sxqvX6vfHj40nfRO7indNP3YaDVO2950CoD/7/r5XzSx9WzNODbadAoAAAAAADYx+9Q4jW4yTb9c+tV0Ct6BASEAAJEQ55OYmlapiroULqqGX63RhMOHTCe9k0dqd00+OFxNMnQ0nQK4vF+vhGhYvYmad3ai6RQAAAAAAGxq4cXJGlRtjH6/9ofpFLwFA0IAAN5D0TRpdLBlG8WLGUuF583WN9ft81IJydN5aML+oWqaqZPpFMBl/XHzT/XzGaHFl6eaTgEAAAAAwIhlP81Qz1JDFPrbPdMp+C8MCAEA+ACdCntrR5PmCjp3Wu22btaD589MJ70hRYZkGrN7sPyydjGdAricv/64ry5FBmj59VmmUwAAAAAAMGrVrblql7+XHt59ZDoF/4EBIQAAHyhp/PhaVKO26uTMpVKLFmreqROmk96QKnMKDd/aXy1zdDOdAriMx/fD1DJHd639fb7pFAAAAAAA7ML6PxepSYaOevrY/l5k76oYEAIA8JEqZMqsMx066e6TpyqzZJFOhvxmOuk1abJ5auiG3mqVq4fpFMDpPX/6Qg1TtdXGe0tMpwAAAAAAYFe2PAxSbfcWevn3S9MpEANCAACiTP8SJbWwZi2NPXRQvXbvUrjVajopQtocqTVoTQ+1zetvOgUOLjAwUBaLJeLA/wkPD1f1hE21LWyF6RQAAAAAAOzSzuerVClOI9MZEANCAACiVIYkblpXv6GKpk2jLNMma+X5c6aTImTInVZ9g7qofYHeplPgwAICAmS1WiMO/J9KcRpp5/NVpjMAAAAAALBrO56uVOV4jU1nuDynHhDyCncAgCl1cuTSz9166uKdP1Rj1QpdDg01nSRJypQvvXot6qgOBfuYTgGcSrVPm2jzg2WK8YlTb68BAAAAAPhoseLE0ro/FqhmkuamU1yaU/8Fg1e4AwBMG1m2vIaXKaseu7Yr8MB+0zmSpMwFMqjH3HbqVLif6RTAKdR2b6GVt+Yobvw4plMAAAAAAHAICRLF15Kr01UveSvTKS7LqQeEAADYg7zJU2hnk+ZKl8RNOWZM1dbgy6aTlNUrkzpPb6WuRQeYTgEcWsNUbTX/wiQldPvUdAoAAAAAAA4liUcizTw5Vr7pOphOcUkMCAEAsBG//AV0un0n7bn2s3zXr9NvDx8a7cnhnUXtJ/mp2xcDjXYAjqppxk6a8v0Iuad0M50CAAAAAIBDSpYmqcbtC5Bf1i6mU1wOA0IAAGwobsyYmlapijoV9lbDr9Zo4uHvjfbkLJpVbcY2VY+Sg412AI6mZY5uGrVzoFKkT2Y6BQAAAAAAh5YqcwoN3dhHbfL0NJ3iUhgQAgBgQLE0aXWwZRvFifmJCs+brQM3rhtryV08u1oMb6ReXw411gA4kvYFemvg6h5Kk83TdAoAAAAAAE4hfa406r2kszoV6ms6xWUwIAQAwKDOhYtoR5PmWnrmtNpt3ayHz58b6chbKqeaDKmr3mUDjTw/4Ci6FOmv7nPbKVO+9KZTAAAAAABwKlkLZlTHqS3Vvfgg0ykugQEhAACGJY0fX4tr1ladnLlUYtF8zTt1wkhH/i9zq1H/WupbYbiR5wfsXc9SQ9R2fDNlL5zZdAoAAAAAAE4pV7Fs8hvekBex2wADQgAA7ESFTJl1tkNn3X3yVGWXLtLJkN9s3vB5ubyq519N/SuNtPlzA/asb4XhajK4rvKUyGE6BQAAAAAAp5b/y9yq37u6BlQeZTrFqTEgBADAzvQvUVLzq9fS2EMH1fvrXQq3Wm36/F4++VWra2UNrMImDJCkwdXHqFbXyvq8XF7TKQAAAAAAuIRCFQuoSttyGlp7vOkUp+XUA8LAwEBZLJaIAwAAR5HRzU3r6jdUkdRplGXaZK06f86mz1+4UgFV6+CjwdXH2PR5AXszrN5EVWheWkWqFjSdAgAA7MT+/fvVokUL+fn5affu3W99TLNmzVS5cuWI4+LFizauBADA8X1Rs7BKNyimkY2mmE5xSk49IAwICJDVao04AABwNHVy5tLP3Xrq/J0/VGPVCgXfDbXZcxepWlCVWpVVQK1xNntOwJ6MbjJNxWsVVok6RUynAAAAO3H//n0tXLhQkyZN0tSpUxUUFKS7d+++9pjw8HC9ePFCO3bsiDhy5cplqBgAAMdWusEXKlypgMb5zTCd4nScekAIAICzGFW2vIaXKatuO7Yr8MB+mz1vsRqFVL5ZKQXWmWCz5wTswcTWs1WgTG6VaVzCdAoAALAjx48fl5eXl9zc3JQ4cWIVLVpUR44cee0xoaGhcnd3N1QIAIDzKd+slHIVy6Yp7eeZTnEqMU0HAACAyMmbPIV2NW2uJWdOK+eMqRpXoaKqZs0W7c9bvJa3wl+Fa3j9SRq8tme0Px/sW2BgoIYOHWo6I1pN67RAWQtmVMWWZUynAAAAOxMaGqpkyZJF3Pbw8HjjHYS3b9/WgwcP1KdPH924cUMlS5ZUx44dFSPG66/T/6d9lcVikb+/v3r2jPr9d0hISJSfE/+MNbc91tz2WHPbc7U1L1A1l/68E6pxraaryfA6Rhqia81NfUQeA0IAAByMX/4CapA7j/p+vUurL5zT2PI+SpUwUbQ+Z8m6RWUNt2pEw8katLpHtD4X7FtAQIACAgIibjvb5zzP7rlEqbOkVLUOPqZTAACAHXrbR9iEh4e/djthwoSqW7euqlevrkePHmnw4MHavn27qlWr9trj/ntf9W8WiyXaPionJCREnp6e0XJuvB1rbnusue2x5rbnqmvuN6iR1k3Yom1T9qntuKY2fe7oXHNTw14uMQoAgAOKFzOmplWuqg5e3mqwdo0mHv4+2p+zVP1iKlajkEb7To325wJMWNh/hdySJ1Ht7lVMpwAAADvl7u6u0ND/+1zw0NBQJU2a9LXHpEuXTjVq1FCMGDGUOHFilShRQtevX7d1KgAATqler+pKkDi+lgxebTrF4TEgBADAgX2RNq0OtWqjODE/UeH5c3TgRvT+4aFMo+IqVKmAxjabHq3PA9ha0LB1ihUnlhr2rWk6BQAA2DFvb28dP35cYWFhevLkiY4ePaoiRYrIarUqJCRE4eHh2rBhgwIDA/Xy5Us9fvxYhw8fVq5cuUynAwDgNHwH1pHVatXKURtMpzg0BoQAADiBzoWLaHvjplp65rTab9uih8+fR9tzlWtSUp+Xy6txfjOi7TkAW1o9dpNePH2hZkPrm04BAAB2zs3NTS1btpS/v7969OghX19feXh46Pnz52revLkePHigGjVqKHny5GrVqpXatWun/Pnzq2zZsqbTAQBwKi1GNNLjvx5r3cStplMcFp9BCACAk/BIkECLa9bW7p+uqsSi+epcuIjaFPSKlucq36yUwl+Fa0KrWeq1sGO0PAdgCxumbNdff9xXh0l+plMAAICDKFu27BsDv7hx42rPnj0Rtzt06KAOHTrYOg0AAJfSdnwzzey6SJtm7FTNzpVM5zgc3kEIAICT8cmcRWc7dNafT8JUdukinYqmDzr2afGlchbNpslt50TL+YHotnXO1/r1SgjDQQAAAAAAHFSnaS11/dxN7Viwz3SKw3HqAWFgYKAsFkvEAQCAKxlQopTmV6+l0Ye+Ve+vd8kaDc9RuXVZZfXKpCnt50XD2YHos3vxNwo+8ZO6zmpjOgUAAAAAAHyEHvPa68LBS9oT9K3pFIfi1APCgIAAWa3WiAMAAFeT0c1NX9VvpCKp0yjTlIladf5clD9HlbbllSlfOk3rtCDKzw1Eh/0rD+qHfee5PC4AAAAAAE6iz9LOOrb9B3279rDpFIfh1ANCAADwL3Vy5tK17v46f+cP1Vy1QsF3Q6P0/NU6+ChtjlSa2XVRlJ4XiGqHNhzTwQ3H1H95V9MpAAAAAAAgCg1a3UP7Vx7S4S0nTKc4BAaEAAC4kFFlyyuwTFl127Fdww58E6Xnrtm5kjwzp9Cs7ouj9LxAVDm2/ZR2Lf5GAV/1Mp0CAAAAAACiQeCmPto6+2ud3H3GdIrdY0AIAICLyZc8hXY1ba40SRIr54yp2nYlOMrOXatrZSVP56E5/kuj7JxAVPhh7zltmLpDI7b2M50CAAAAAACi0eidA7V67CadPXDRdIpdY0AIAICLapH/c51q30m7f7qqJhvWKeTRoyg5b50eVeWe0k3z+gRFyfmAj3X+4CUtH/6Vxn492HQKAAAAAACwgQn7h2rRwJX68cgV0yl2iwEhAAAuLF7MmJpeuao6eHmr3tpVmnTk+yg5b71e1ZU4aSIt6Lc8Ss4HfKjgEz9pbq9lmvTtMNMpAAAAAADAhqZ+P1LTOy/QT6evm06xSwwIAQCAvkibVt+3aqtYMT6R9/w5+vbGx2+cGvSpoQSJE2jRwJVRUAi8v2vnbmpSmzmacWy06RQAAAAAAGDA7FPjNKbpNN388VfTKXaHASEAAIjQxbuItjZuqsVnTqv9ti169Pz5R52vUf9aihMvjpYMWR1FhTAtMDBQFosl4rBXt4JDNKLBJM09M8F0CgAAAAAAMGjBhckaUmOsQn6+bTrFrjAgBAAAr0mWIIGW1KytWtlzqPii+Zp/6uRHnc93UB19EvMTLRu6NooKYVJAQICsVmvEYY/+uPmn+lccoUWXpppOAQAAAAAAdmDp1enyLx2g0N/umU6xG049IHSUV7gDAGCPfDJn0dkOnfXnkzCVW7pYp0JCPvhcTYfUU3h4uFaMWB+FhcCb7t2+r65FB2j59VmmUwAAAAAAgB1ZdWuu2hforQehD02n2AWnHhA6wivcAQCwdwNKlNK86jU0+tC36v31Ln3o/6L6DWuo50+fa9XojVHaB/zbo78eq3WuHloTMt90CgAAAAAAsENf3VmoZpk668mjp6ZTjHPqASEAAIgaGd0+01f1G8k7dRplmjJRqy+c/6DztBzZWE8ePtHqsZuiNhAu7/nTF2qUup023F1sOgUAAAAAANixzQ+WqU7Slnr590vTKUYxIAQAAJFWN2cuXevur7O3f1fNVSt05e7d9z5Hq9G+enj3kdZN2KKvJm3Vgl4r9fu1P6KhFq4iPDxc1RM21bawFaZTAAAAAACAA9j5fJUqxWlkOsOomKYDAACA4xldroLO/nFbXXZs1Rdp0mlI6S/f6/vbjmuqDp/31rULvyj8Zbh+/O6qphwarhTpk0VTMZxZpdiNtPPFKtMZAAAAAADAgex4tkqV4zbSjmeu+TcF3kEIAAA+SL7kKbS7qZ/SJEmsXDOnaduV4Eh/78/nbure7fsKfxkuSbobck9TO8yLrlQ4saoJfLXlUZBixGBbCwAAAAAAIi9W7Jj66s9FqpG4mekUI/hLCgAA+Cgt8n+uE207aPdPV9V0w1cKefTof35PIvdPFStOrNfuS5bWI7oS4aRqu7fQql/nKk682KZTAAAAAACAA4qfMJ6W/jRD9ZK3Mp1ic0YGhPv371eLFi3k5+en3bt3v/H1FStWqHLlyhFHxYoVNXDgQEnSpUuX1KlTJzVs2FBz5861dToAAHiL+LFiaXrlqmrnVUj11q7S5COH//HxHqnc1S+oizzSuCtx0oTK4pVRPea2s1EtnEEDzzZacHGyErp9ajoFAADgowQGBspisUQcAADAtpJ4JNKsU+PUOG170yk2ZfMB4f3797Vw4UJNmjRJU6dOVVBQkO7evfvaY3x9fbVjx46Io2zZsqpVq5aePXumUaNGacCAAVq2bJkuXLigK1eu2PpHAAAA71A8bTp936qtPolhkff8Ofru5o13PjZ38RwavWuQWk9urFnHx9ouEg6vSYaOmnZklD5LkcR0CgAAwEcLCAiQ1WqNOAAAgO15pHbXhG+GqnmWLqZTbMbmA8Ljx4/Ly8tLbm5uSpw4sYoWLaojR4688/E//PCDLBaLvLy8dOzYMeXJk0epUqVS7NixNWnSJGXMmNGG9QAAIDK6ehfV1sZNteiHU+qwbYsevXjx1sely5Faeb/MaeM6SFJ4eLjphA/SMkc3jd41SMnTcUlaAAAAAAAQdTwzpVDgpj5qk6en6RSbiGnrJwwNDVWyZMkibnt4eLzxDsJ/Cw8P16JFixQYGChJun37tp48eaL27dvrr7/+kre3t7p27frG9wUGBmro0KFvPafFYpG/v7969oz6f+CQkJAoPyf+GWtue6y57bHmtseaR51R3kV14NdbKjp/jlrkzK1G2bK/9XHRteaudImm/fv3KygoSFarVY0aNZKPj887H7to0SI9f/5cHTp0kCRt3LhRW7Zs0ZMnT1SkSBF17dpVn3zyia3SI61d/l4atKan0mTzNJ0CAAAAAACcUPpcadRnaWd19OqrWSed+4pXNh8Qvu1SCe96BfuhQ4eUKVMmubu7S5KeP3+uq1evasqUKYofP74CAgK0fft21ahR47XvCwgIUEBAwBvns1gs0XaphpCQEHl68scqW2LNbY81tz3W3PZY86jX2NNTjQt7a+R336rZnt0aV8FHn6f8vzWOzjV3lWHvvy/hPmPGDMWIEUOdOnWSl5dXxB7qP507d05btmyJGCD++OOP2rRpU8T3Dho0SLt27VKVKlVs/WP8o87e/dVzfntlzJvOdAoAAAAAAHBiWT7PqM7TW6nbFwM19fuRpnOijc0HhO7u7goODo64HRoaqjRp0rz1sfv371flypUjbru5ualgwYLy8PjXJaWKFCmiGzduRGsvAACIGgNLllKjPHnU++vdyujmprHlfdR+2xb99Ocd9SheUtWyZjOd6LD+8xLukiIu4V61atXXHhcWFqb58+erXr16evjwoSTp3r17qlKlihImTCjpX/ur27dv2/YHeIt9Kw8qKHCt0udKqwehD9V+YnNlK5TZdBYAAAAAAHABOYtmVcuRjdWrzFAlSBxfNy7dUovAhird4AvTaVHG5gNCb29vBQUFKSwsTBaLRUePHlW9evVktVr1+++/K0WKFIoRI4aePXum8+fPa8CAARHfW7hwYa1evVp37txRggQJdOjQIbt7dTsAAHi3jG6faX2DRvrqx4vKNHVSxP0B3+zT369eqXYOPo/wQ0T2Eu7Tpk1T06ZNdefOnYgBYfHixSO+fvfuXe3Zs+etl2K35SXcv119VKuHbdSTh8/029XbSpkpmT7LmMhl3hFqGutse6y57bHmtsea2x6XcAcAAPg4+Urn0pQO83T2wEVJ0vTOC/X3i5cq37SU4bKoYfMBoZubm1q2bCl/f39ZrVb5+vrKw8NDz549U/PmzbV27Vq5ubnp5MmTypUrl2LHjh3xvcmTJ5efn5969eqlV69eqXTp0ipXrpytfwQAAPCRsronlUeCBPozLEyS9NfTp9p65TIDwg8UmUu47927VwkSJFDhwoW1bdu2Nx6/a9curVixQh06dFDOnG/+O9jyEu7n9vyoJw+fRdx+9vi5Hv/+VFkLZorS58GbuMyy7bHmtsea2x5rbntcwh0AAODjBZ/8WU8ePIm4/fDuIx1Y/T0Dwo9RtmxZlS1b9rX74saNqz179kTcLl68+GuvaP+38uXLq3z58tHeCAAAok+uZMkU+5NPIm7HihFD+ZOnNFjk2CJzCfcDBw7o2rVrOnXqlMLCwvTy5UuFhYWpZ8+eGj16tF69eqXp06crSZIkNq5/U/bCWXT2wI/6+/nfkqQ48eIoy+cZDVcBAAAAAABXkqVABsWKEyvidszYnyi7dxaDRVHLyIAQAAC4tk8sFu1t1kK11qzU3cePVT9PXnUrUtR0lsOKzCXcR4wYEfH4bdu26datW+rQoYO+/fZbPXnyRCNH2s+HbjcPbKCXf7/S10u/URKPxJp+dBSXMwMAAAAAADYV45MYWvjjFHUtOkB/3bmvyq3KqemQeqazogwDQgAAYETcmDG107eZrt68qSzp0pnOcWiRvYT721y4cEGnT59WzZo1I+6rVq2aWrVqZaP6t2s1qrFKNS+izNl45yAAAAAAADAjTrzYmntmgn6+ck2ZsjrX3ygYEAIAAKMSxIr1vx+E/ykyl3D/t6pVq0b8506dOqlTp07R3vch4ieMazoBAAAAAABA8T51vr9RxDAdAAAAAAAAAAAAAMB2nHpAGBgYKIvFEnEAAAAAAAAAAAAArs6pB4QBAQGyWq0RBwAAAAAAAAAAAODqnHpACAAAAAAAAAAAAOB1DAgBAAAAAAAAAAAAF8KAEAAAAAAAAAAAAHAhDAgBAAAAAAAAAAAAF8KAEAAAAAAAAAAAAHAhDAgBAAAAAAAAAAAAF8KAEAAAAJEWGBgoi8UScQAAAAAAAMDxMCAEAABApAUEBMhqtUYcAAAAAAAAcDxOPSDkFe4AAAAAAACwZ/z9CgAAmODUA0Je4Q4AAAAAAAB7xt+vAACACU49IAQAAAAAAAAAAADwOgaEAAAAAAAAAAAAgAthQAgAAAAAAAAAAAC4EAaEAAAAAAAAAAAAgAthQBhFJk2aZDrB5bDmtsea2x5rbnusue2x5ngXfjdsjzW3Pdbc9lhz22PNbY81x7vwu2F7rLntsea2x5rbHmtue8645har1Wo1HWErFotF0fXjRue58Xasue2x5rbHmtsea2570bnmISEh8vT0jJZz41/YXzkX1tz2WHPbY81tjzW3PfZXjo39lXNhzW2PNbc91tz2WHPbc8b9VUybP6NBxYsXl8ViibbzR+e58Xasue2x5rbHmtsea2570bXmffr00dixY6Pl3PgX9lfOhzW3Pdbc9lhz22PNbY/9leNif+V8WHPbY81tjzW3Pdbc9pxtf+VS7yB8m6ia+kbl9NiZm6LyXDTZ9jz2ei6abH8ummx7Hns9l7M34ePY47+pMzdF5blosu157PVcNNn+XDTZ9jz2ei5nb8LHscd/U2duispz0WTb89jruWiy/blosu157PVczt70sfgMQgAAAAAAAAAAAMCFMCAEAAAAAAAAAAAAXIjLDwiHDh1qOuENUdUUlT+bvZ4rqjjzmtvjekv2+fPZY1NUssefzx6booo9rlNUnsvZ1xwfxx7/Lezxd99ezxVVnHnN7XG9Jfv8+eyxKSrZ489nj01RxR7XKSrP5exrjo9jj/8W9vi7b6/niirOvOb2uN6Sff589tgUlezx57PHpqhij+sUledy9jX/WC7/GYRRxZ6uG+sqWHPbY81tjzW3Pdbc9lhzvAu/G7bHmtsea257rLntsea2x5rjXfjdsD3W3PZYc9tjzW2PNbc9Z1xzl38HYVSxp6mvq2DNbY81tz3W3PZYc9tjzfEu/G7YHmtue6y57bHmtsea2x5rjnfhd8P2WHPbY81tjzW3Pdbc9pxxzXkHIQAAAAAAAAAAAOBCeAchAAAAAAAAAAAA4EIYEAIAAAAAAAAAAAAuhAEhAAAAAAAAAAAA4EIYEAL4aOHh4aYTAAAAnAr7KwAAgKjF/goAXseAMArs379fLVq0kJ+fn3bv3m06x+lEZn03btyoFi1aqEGDBpo8ebJevXpl40rn8j6/04sWLdLcuXNtVOa8IrPmly5dUqdOndSwYUPWPApEZs1Xrlypxo0bq1GjRlq2bJmNC13Ds2fP1KdPH9MZsEPsr6IX+yvbY39le+yvbI/9lX1gf4V3YX8Vvdhf2R77K9tjf2V77K/sg9Pur6z4KH/99Ze1cePG1nv37lnv379v9fX1tYaGhprOchqRWd+LFy9amzVrZn348KH18ePH1u7du1u3bdtmqNjxvc/v9NmzZ601atSwzpo1y8aVziUya/706VNrkyZNrL/++qv1+fPn1s6dO1uDg4MNFTu+yKx5cHCwtXHjxtbHjx9bw8LCrM2bN7eeP3/eULFz2rFjh7VLly7Wdu3amU6BnWF/Fb3YX9ke+yvbY39le+yv7AP7K7wL+6voxf7K9thf2R77K9tjf2UfnHl/xTsIP9Lx48fl5eUlNzc3JU6cWEWLFtWRI0dMZzmNyKzvvXv3VKVKFSVMmFAJEiRQkSJFdPv2bUPFji+yv9NhYWGaP3++6tWrZ6DSuURmzY8dO6Y8efIoVapUih07tiZNmqSMGTMaKnZ8kVnzGDFi6JNPPlHs2LEVK1YsxYoVSzFi8D+bUSlx4sQqWbKk6QzYIfZX0Yv9le2xv7I99le2x/7KPrC/wruwv4pe7K9sj/2V7bG/sj32V/bBmfdXMU0HOLrQ0FAlS5Ys4raHh4fu3r1rsMi5RGZ9ixcvHvGf7969qz179qhnz542a3Q2kf2dnjZtmpo2bao7d+7o4cOHtkx0OpFZ89u3b+vJkydq3769/vrrL3l7e6tr1662TnUakVnzzJkzy9vbW3Xq1JHFYlHp0qWVM2dOW6c6tWLFiunWrVvau3ev6RTYGfZX0Yv9le2xv7I99le2x/7KPrC/wruwv4pe7K9sj/2V7bG/sj32V/bBmfdXjJI/ktVqfeM+PvA26rzP+u7atUvdu3dXy5Yt+S/BjxCZNd+7d68SJEigwoUL2yrLqUVmzZ8/f66rV69q+PDhWrRokUJCQrR9+3ZbJTqdyKz5+fPndfbsWU2aNEmTJ09WcHCwTp48aatEwKWxv4pe7K9sj/2V7bG/sj32V4B9Y38Vvdhf2R77K9tjf2V77K8Q3XgH4Udyd3dXcHBwxO3Q0FClSZPGYJFzicz6hoeHa/To0Xr16pWmT5+uJEmS2LjSuURmzQ8cOKBr167p1KlTCgsL08uXLxUWFqZevXrZOtcpRGbN3dzcVLBgQXl4eEiSihQpohs3btgy06lEZs2PHTumkiVLKnPmzJKkMmXK6OjRo/Ly8rJpK+CK2F9FL/ZXtsf+yvbYX9ke+yvAvrG/il7sr2yP/ZXtsb+yPfZXiG68g/AjeXt76/jx4woLC9OTJ0909OhRFSlSxHSW03jX+lqtVoWEhCg8PFwHDx7UkydPNGTIEDZXUSAyaz5ixAitXLlSS5culZ+fn3x8fNhcfYTIrHnhwoV16tQp3blzR2FhYTp06BCvNPwIkVnzdOnS6fjx43r8+LHCwsJ07NgxpU+f3nQ64BLYX0Uv9le2x/7K9thf2R77K8C+sb+KXuyvbI/9le2xv7I99leIbryD8CO5ubmpZcuW8vf3l9Vqla+vb8QrJPDx3rW+z549U/PmzbV27VpduHBBp0+fVs2aNSO+r1q1amrVqpW5cAcWmTV3c3MznelUIrPmyZMnl5+fn3r16qVXr16pdOnSKleunOl0hxWZNS9XrpyuX7+utm3bymq1qkSJEqpcubLpdMAlsL+KXuyvbI/9le2xv7I99leAfWN/Fb3YX9ke+yvbY39le+yvEN0s1rddyBYAAAAAAAAAAACAU+ISowAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuBAGhAAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuBAGhAAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuBAGhAAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuBAGhAAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuJCYpgMAILJq166tR48evXF/mTJl1L9//2h5zmvXrql3795av359tJwfAADAJPZXAAAAUYv9FQBHwYAQgEO4ffu2Hj16pCVLlihhwoSvfS127NjR9rxXr15VpkyZou38AAAAprC/AgAAiFrsrwA4EgaEABxCcHCwPD09lSpVKps/LxssAADgjNhfAQAARC32VwAcCQNCAA7h6tWrypEjxzu//vLlS9WoUUP+/v7atGmTbt68qSJFiqhXr16KFSuW/vzzT82bN0+nT59WzJgxVbNmTTVs2FCSdPfuXc2ZM0fnzp2T1WpVq1at5OPjE/G8BQoUUN++fRUcHKy0adNq2LBhSpIkiS1+bAAAgGjD/goAACBqsb8C4EgYEAJwCFeuXNHp06e1b9++1+6vXbu2OnTooGvXrunvv//WDz/8oICAAD148EADBgzQrl27VLZsWfXu3VulS5dWhw4dFBISokGDBilXrlxKkyaNOnXqpKpVq0acZ8iQISpWrJjix4+vn3/+WTFjxtSgQYMUM2ZMtW3bVkePHlXFihUNrQQAAEDUYH8FAAAQtdhfAXAkDAgBOIQrV65o5MiRyp49+2v3x40bV5J0+fJlJU+eXN27d1fMmDHl7u6uIkWK6NatW9qyZYsyZMggPz8/SdJnn32mXLly6aefftKRI0eUL18+NWnSJOJr3bp1kyTduHFDf//9t7p27Sp3d3dJUvLkyfXpp5/a6KcGAACIPuyvAAAAohb7KwCOJIbpAAD4X0JCQhQWFqZcuXIpUaJErx3//oDny5cvq2DBgooZ8/9e9/DHH3/I09NT3333nYoVK/baOW/cuKHUqVPr2LFjKl++/Gtf8/HxUcKECXXlyhUVKFBAGTJkkPSvy0D89NNPb2zyAAAAHA37KwAAgKjF/gqAo2FACMDuXblyRSlSpFCCBAne+ZhLly699gHQjx490uXLl/X555/r999/V+rUqSO+duPGDT179ky5c+fW7du3I15dJUnHjh3TwYMHI573P68bf+3aNSVKlEhJkyaNyh8PAADA5thfAQAARC32VwAcDQNCAHbvypUrSpMmjcLCwt44wsPD9ejRI4WEhGjfvn365ZdfdPv2bY0cOVJffvml0qZNq7Rp02rnzp169OiRgoODNXLkSLVq1Urx4sVTtmzZtGvXLj1+/FiHDx/WyJEjIy7BcOXKFWXLli2i4/Lly//4QdMAAACOgv0VAABA1GJ/BcDR8BmEAOzelStXdPbsWdWsWfONr23YsEHBwcHKkCGDihUrpk6dOsnd3V0VKlRQw4YNJUk9e/bUxIkT1bhxY2XIkEFNmjRRqVKlJEn+/v4aPny4duzYobRp02rIkCEqUKCAXr58qevXr7+xweLyDAAAwBmwvwIAAIha7K8AOBqL1Wq1mo4AgI8RFBSke/fuRXw4MwAAAD4O+ysAAICoxf4KgL3hEqMAHB6vjAIAAIha7K8AAACiFvsrAPaGASEAh1eoUCEVLFjQdAYAAIDTYH8FAAAQtdhfAbA3XGIUAAAAAAAAAAAAcCG8gxAAAAAAAAAAAABwIf8PqmfO5g+G7PkAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plot_training_metrics(gnn_metrics, 'GNN')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Evaluate model performance on sample test data\n",
+    "\n",
+    "Here we evaluate the model performace on one sample test data. We look at how the efficiency and purity change with the embedding radius."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAJYCAYAAABy5h8aAACVRklEQVR4nOzdeZzN1R/H8fcdM2MsY2bMgrHvS8gy9ogmkaVEwm+yRFlLtmjTGBEhIqWypLRaimxJIsRYilAi2c0wZswwi9nv7w+5mWYww537vXPn9Xw87uPhfu+53+/7nrEcn3vO+ZrMZrNZAAAAAAAAgJ1yMjoAAAAAAAAAcCsUsAAAAAAAAGDXKGABAAAAAADArlHAAgAAAAAAgF2jgAUAAAAAAAC7RgELAAAAAAAAdo0CFgAAAAAAAOwaBSwAAAAAAADYNQpYAAAAAAAAsGsUsAAAAAAAAGDXnI0OkJvatWun9PT0TMdLlCihTz/9VJK0detWLVq0SBEREVq3bp0uXLigt956SwcPHtSrr76qkydPavHixXrllVfUunXrm14rLCxMffv2VfPmzRUSEpJbHwkAAMDupKenq127dhmOFSpUSDVq1NCzzz6rcuXK3dF5sxpfxcTESJI8PT3vJjIAAMhjHLqAJUkmk0kPPPBAhmMeHh6WX3/11Vc6d+6cnn76aUnSli1btG/fPt1///2qVKmSTCaTAgMDVaJEiVtep1ChQgoMDFS1atWs/yEAAADygAIFCqh169ZKT0/XgQMHtG/fPk2cOFHz58+XyWTK8fmyGl8NGDBArq6u+uKLL6wZHQAA2DmHL2A5OzvrxRdfvOnrV69elZOTk3r06GF5Lklt2rRRqVKlVKpUKTVv3vy21/Hy8rrldQAAABydm5ubZTyUkpKibt266dSpU7p48aL8/PxyfL7/jq9OnjyptLQ0paam6u+//1blypWtlh0AANi3fL0H1jPPPKMzZ84oPT1dbdu21bx58/TZZ59JkiZMmKD169frs88+U9u2bbVlyxZJ0t9//60xY8bo0UcfVVBQkJYsWSKz2aywsDC1bdtWwcHBlvPv27dPw4YNU+fOnfX0009r586dlnO0bdtWb7zxhmbMmKHHHntMffv21a5duyzvvdl1XnrpJbVt21b79++XJCUkJKh9+/YaPHiwbToNAAAgG1xcXFSyZElJ18YrBw4csIy3rhs2bJjatm2rlJQUy/ho2rRpWrhwocaOHZtpfDV58mTFx8crJiZGL730kiQxNgIAIJ9w+AJWSkqK2rZtm+GxZMkSSdcGPH5+fnJyctKcOXPUtWtXPfTQQ5Kkp59+Ws2aNctwritXrmjMmDE6duyYOnTooOLFi+uTTz7R6tWrM133zJkzevHFF5WYmKgnnnhCkvT666/r6NGjljZbtmzRuXPnVKtWLYWFhWn69Om3vU5gYKAkKTQ0VJK0f/9+paWl3XJ/LgAAAFtKT0/Xnj17dPLkSTk7O1sKWdmxZ88eLV26VEWLFs302vz581WsWDH5+Pho6dKlksTYCACAfMLhlxBmtQdWxYoVJUmVKlVSwYIFJUk1a9aUJPn6+kqSypYtm2lz0K1btyouLk59+vRR7969dfnyZX344YdKTU3NdN3169crPT1dnTp10j333KPixYvr7bff1sqVK9WtWzfLNWfNmiXp2n4Op0+f1uXLl7Vt27abXqdFixZydXVVaGioBg8erD179kgSgzQAAGC4+Ph4tW3bNsOxxx57TG5ubtk+h5OTk5YvXy53d3eFhYXdtj1jIwAA8geHL2Ddbg+snLhw4YIkWfZb8PDw0AsvvCBJmQZY4eHhkqT33nsvw/Fz585Zfl2mTBnLr729vXX69Gmlp6ff8jqS1KxZM/300086c+aM9uzZoxo1auTom00AAIDccH0Td0kqWLCgateunamgdTv169eXu7t7ttsXKlSIsREAAPmAwxewrMnHx0fStf2pmjdvritXruijjz5SpUqV1LBhwwxtixcvLunaVPcKFSooLS1NYWFhKlSokC5fvnzH1+ncubMeeOAB/fTTT1q+fLkuXLigrl275sKnBQAAyJkbN3H/r+t3IYyOjpZ0bZlhTExMpnYFChS47XXMZnOG54yNAABwfA5fwEpLS7PsLXWjwYMH5+jbPUlq2bKlFi1apBUrVigxMVEHDx7U4cOHNWrUqExtH3roIa1evVrTp0/XAw88oF27dmnfvn164YUXbnvHnNtdp1GjRipatKjWr18vSWrVqlWOPgcAAICt+fv7y8nJSdu3b9eUKVN09uxZXbx4McfncXd3V3h4uL777ju1b99eEmMjAADyA4ffxD09PV3ff/99pkdSUlKOz1W8eHG9+eabqlixolavXq1Lly7pmWee0cMPP5ypbfXq1TVhwgSlpqZq0aJFioqK0pgxYyybxN/NdVxcXNSqVSuZzWbVqVPHMmMLAADAXnl7e2vo0KEqUqSIfv31VzVs2FBVqlTJ8Xl69Oih4sWLa9myZZZjjI0AAHB8JvN/52AjT/j+++81ffp0DR8+XJ07dzY6DgAAgKEYGwEA4NgcfgaWI9q8ebNWrFghFxcXtWzZ0ug4AAAAhmJsBACA43P4PbAc0cKFC2U2mzVo0CB5enoaHQcAAMBQjI0AAHB8LCEEAAAAAACAXWMJIQAAAJSYmKixY8caHQMAACBLLCEEAADI59avX6/169crOTnZ6CgAAABZYgYWAABAPufh4aFWrVoZHQMAAOCmHHIG1osvvqjhw4cbHQMAABisYMGC8vb2zvH7ntg+Q3ujj+ntBgP0SOlGuZDMvjRv3lxnzpzRDz/8cNM2ISEhmjBhwk1fHz16tEaNGpUL6QAAgD0xanzlkJu4m0wm5dbHCgsLk7+/f66cG7dH/xuL/jcW/W8s+t9Yd9r/OX3f5cR4Pbl9htZFHVR6epp83Tz0YeMh6lK6SY6vndecOXNGkydP1vvvv5+j91lz3MWfM9uiv22PPrc9+tz26HPbs3WfGzW+csgZWAAAANmRmn5ZJ6PmKSH5bxUwmfX0xksKTUuRirhIki4mXtZj2ybrjSqjVb5oKZUs7qWWvj5yMZkMTg4AAGCfcmt8RQELAADkS2alaMffbXT56j6ZJBUs4KzIlIekgq7SPzOK7vEqIY+4e/XyjsNS8XDJ1UU1ihXTptYt5e/mZuwHAAAAsDO5Ob5iE3cAAJAvXU74RVcS91meexVqqNIe1a99vWeWBlVto+6effVrrJdUyk9yKyhJ+vPKFc3565hBqQEAAOxXbo6vHKKAFRISIpPJZHkAAADcTkR8pBKSJCeTZJbk4VZbBVyKqECBAlrSfLi6lwrShGNnlOhe8No3hunplveeiI83LnguKVu2bI73vwIAALhRbo6vHGIJYXBwsIKDgy3PKWIBAIDbSb98WmcuSTVKSSZJLi5V1LZCTc2o0F/1PSvqUnKK/uzSUcdiY3U09or+io3V4SuxOhwbJ7cCDvEdIAAAgFXl5vjKIQpYAAAAOWG+sE3Vd09WuF8LHb7ysyp4SK6uVfRivUctbYq7uqi4q4uqFy2iqBh37bsQp2JxSfKLiddvF9IVWTNFPkVdDPwUAAAA9iO3x1d8fQgAAPIVc8ROpW3prbSUK2oTm6oGPhN0OUkq5lbtpu+5v1xB7b2aoiMmKalYEcW5FdbQbRd1JSX9pu8BAADIL2wxvqKABQAA8pW0HcNkToySWVLqld/VNCJCjaqskatzyZu+p3wRZ733oL9kkkwFJJfCzjoYn6bB2y/aLjgAAICdssX4iiWEAADkMXFxcTL/cxvi/MLV1VWxsbGW5yaTSUWLFr2jc5l8AmS+8peka5uLphz/RFX820gefjd9T0pCiirs/FP/q1NJnx+8JHP6tf7fH5V8RxkAAIB9ycvjq/+Ok+6UvY+vKGABAJDHmM1mubu7Gx3DpooWLZrhJi13M0gr0OwdmWMjlX5mg0yuJsnJpJSfn5JL8WqSV90s35MYm6TPXlinuk/eo1/ub6k/z11RYSeTpjbyvuMcAADAfuTl8dV/x0l3yt7HVywhBAAA+UuBgnJuvVjm5BpKj/GTXOrL5H2f0s+suulbok9Hy8WtsPZ9EKpan62VW0EXzWjirXZlCtkwOAAAgJ2ywfiKAhYAAMh/ChWT2bO7kg97K+lIGaWcDVDKaX+l7tus9PDjMsdFS5LSj19U2uSlijwZpfT0NBXx9lPi6l/16sW/FOhP8QoAAMAil8dXLCEEAAD5U+pVpcdekmJ3Ke3ormvHnEwyp6ao8Jg5MkVUVsLAD+VSOlUXe1zbv8FsNqu4p58qFHY1MDgAAICdysXxFQUsAACQLzn5lPn3yT/7RqSnJsv1gWeUtlxK/GCOTDIpySlJkX9dlFkmyWyWa4GCKl66hEGpAQAA7Fdujq9YQggAAPIllzY9VKBibUmSOSVNKdFxMrk0V/onhZT4wTpJJpnNKbpy+qzC94VL/+yN6lGmmMoFlLn5iQEAAPKp3BxfMQMLAADkS6YixVR08iqlHd6t1PNnlR4Wo6SR+5Sa/JdkMstkKqC01ASlFnTSPR1ryiyTPEq4q/7jdeTixhAKAADgv3JzfMXoCwAA5GsFajZWgZqNJUkuZY8ofvBCpYfHSCbJuWVNVVg0RJVL+hkbEgAAIA/JjfEVSwgBAAD+4dyquop8MEAFKvjK+YEa8vjmVRWgeAUAAHDHrDW+susZWImJiXrttdc0bdo0o6MAAIB8wrlldRXbN9noGAAAAA7DGuMru52BtX79eo0dO1ZXrlwxOkoGqcmpSk1JvW27y1Gx2TpfYkLibdskxF7N1rmyc82U5JRs5Y+JtK9+BwAAAAAA+ZfdFrA8PDzUqlUro2NkcGDrHxrdNES9Kw3Twe2Hb9ru9R4zNaL5K3qu6Us3bXMlKlZ9qz2nftWe18q562/a7stpK9W/1gj1r/n8TQtZZrNZg+u/oOFNX9Zbz8y76bn2bNivJysMU9+qz+nI3mM3bfdalzc18r5XNbLV+Ju2AQAAAAAAsBW7XULYvHlznTlzRj/88IPRUSRJ+zYf0qQes3Ql8ooks157dKrGfjRMNZpUy9Bu7vCF2rpsp67dC9KsoY3GafKajIWs6IjLerHdREWfvyzJpAUvfabU5FQFBrXM0G71Bxv1+RsrlJqcIpNMGlDzeb29Y7JcC7pkaDe6TbDO/HlOZpkVcTZSqSlpGvjmkxnzbzqo2UM/VPyVRJlk1vhOU/TCx8+qSr2KGdrNHjpfO7/dI8mks0fDNaLleL297fW76DkAQH63bds2vffeexo8eLBatGih8ePHKyoqSh9++KHR0QAAAJBH2G0BKztCQkI0YcKELF8zmUwaPXq0Ro0aZZVr/bbtwD/FK8lsNin2UoImB81RwUKuGdrFRcfLbDb9U74y6di+E+p/z0g5OZksbVKSU5UYm2hplxiXpEWvfK4vpn6T4VzxlxOUmpwmk5xklhQZHqOB946Ws8u/P7b0tHTFX06Q2Xzt/CmJqdr8+XbtXvdrhnMlJSQpMT5ZZpklmXQp4oomPv6WXP+TP/ZS3LVc/8S9cDpCJ46dUMHCBe+886wsLCzM6Aj5Gv1vLPrfWPbS/66uripatKjRMbJtxYoVGjBggFq1aqVffvlFERERmjdvnsxmc47Oc2P7pKQkxcbefum8yWS6bRsAAADYvzxdwAoODlZwcHCm4yaTKceD4tvp0K+tfvhouy6cuiiTSfIr56O3t78u3zI+GdotnbFKi8d/pZSkFJkkte7RQi9/9nyGNmmpaXqmziidOXLtP0JFPQprwjcvqF7r2hna7V6/T1OenK246HiZJFW+t7zm/TIt02B8Qtdp+nnltVlTLgVdNHB6b3V59uEMbU7/eU5j2kxQ9IUYSZJvWW+9t/dNefp6ZGi36NXPtWLmWiUnJkuSajWtropVMs7SMlJYWJj8/f2NjpFv0f/Gov+NZU/9Hxsbm6cKM1euXFHJkiVlMpkUFxcnb29vubq63v6NNzCbzRk+c8GCBeXj43OLd1xTfdlpSad1pHu5nMYGAADI09LT02U2m1WgQAGrnrfNz6kyYnxlt3tg2Ru/cr6a/fMkla9TRtUbVdE7oVMyFa8k6Ykxj+p/L3dVtYDKavdUm0zFK0kq4FxAH/z2lhp3qK/K9Spo/NJRmYpXktT44foau/hZVbinrJo/2kjv7Xkzy/+wTPh6rB7s3UpVG1bSoBl9MhWvJKlcjdKas2OyqjaspJpNquqDfTMyFa8kqf+k/6nriA6qFlBZnQa31ek/zurv305ms5cAAHnJN++s01M1hqtP5Wf1VI3ht9yT8XZOnz6tF154QV26dNGYMWO0a9cuSdLrr7+uc+fOacKECZo3b57mzJmjQ4cOafjw4db6GLCxkJAQmUwmywMAAPzLWuOrHTt26MUXX1RISIg6d+6s3r17a9WqVZKkM2fOqFu3bhnaP/PMM9q3b58iIyPVq1cvbdu2Tb169dKZM2fu+jPZizw9A8vWvP2La+L6F277DfyT4x/Xk+Mfv2UbF1dnTV7z8m2v2axzgJp1Drhtu3EfP3fbNiUr+um9PW/ett2AN4I04I1/nw+u/4JGLRiiag0r3fa9AIC84cOxS7R63gYlxidZji188TNFnbukAVOCcnSu5ORkvfjii3rkkUf02muv6fDhw5o6daqmT5+u8ePHq3///ho1apRq166tmjVrat26dZo2bZq1PxJs5L8z4CliAQBwjTXHV5L0yy+/6LHHHtOSJUt07NgxTZo0SaVLl1aJEiVu+b7Y2Fjt2bNH8+fPV7FixXJ8XXtl1zOwypYtq/fff9/oGPne+/uma/bgD3R4119GRwEAWME376zLNLiSpMSEJK18Z72+ffe7HJ1vz549cnJy0hNPPCF3d3c1btxYLVq0sJsbsQAAAOQ2a4+vJKlo0aIaOHCgPD09FRAQoE6dOmnjxo23fV9SUpJ69+7tUMUryc4LWLAf7+55U/NGfKRDP/9pdBQAwF36Zva6TIOr6xITknI81T08PFzR0dEKCgpSr1691KtXL+3du1dpaWnWiAsAAGD3rD2+kqQSJUrI2fnfhXNly5ZVRERElm1v3AfcZDJla6/QvIYlhMi2OTvf0MiW49Xv9Z66t/U9RscBANzGkpBl+iRkaY7fd+ZImNo6dc90vE/wE+odnPl48eLFdc8992RYFnjmzBm5ubnl+NoAAAD2zFbjK0mKiIhQamqqpYgVFhZmKUzd+EVhYmKizp8/b3nuqPtUUsBCjsza9rrGPDBBaalpavBgXaPjAABuoXdw9ywHRH2qPKvw4xdu+r6yNUpr0R9vZ/s6jRo10nvvvae1a9eqdevWOnz4sEJCQjRt2jT5+vreSXQAAAC7ZKvxlXRtL6uFCxcqKChIf//9t7799lu9+OKLcnd3V3x8vLZv365mzZppxYoVSkrKevaXI2EJIXJsxo8T9NW0Vdrz3T6jowAA7kC3kR1VsLBrlq8VLOyqrsM75Oh87u7umjx5sr7//nv17NlTc+fO1fPPP6+aNWtaIy4AAIDds/b4SpKqVKmitLQ09e3bV9OnT1ffvn3VpEkTeXp6asiQIfroo4/UsWNH7d+/X7Vq1brbj2D3mIGFO/Lm9+P1QmCIqjasLE9fx9oYDgAc3aPDHlbkmUta+e76DHs1FCzsqq7Pd1KnwQ/l+JzVq1fX7Nmzs3xt0aJFll+3bt1arVu3zvH5jbBj1x45OzurccP6RkcBAAB2LjfGVy4uLho6dKiGDh2a6bWuXbuqa9eukq7tf3XjksENGzbcwSewjbsZX1HAwh2bvilYwxq/qGGz+6tWs2pGxwEA5MCAqUHyLeetle+sV0pSqlzcXPTY8IfVeXA7o6PZhb+Pn9Sx4yckSd5eXqpcqYKxgQAAgN1jfHVrdzu+ooCFu/Lu7ql6suJQvbUlRCXKs88JAOQljwxtr0eGtjc6ht35+/hJ/bxrt4oVc5ck/bxrtyRRxAIAALdlrfGVv7+/HnjgASsksg/WGF9RwMJd+/TEe3q4YC+tjlsiZxd+SwEA8r4WTRrr2Ilr3xDWYS8vAABgYxUqVFCFChWMjmFVdzu+otoAq1gaPl9PlHpGX0d+ZHQUAADuyN/HT0r695vA6wOs68//+zoAAABuzZrjK+5CCKtwL15Ub20J0cC6o42OAgBAjl2f1n47P+/abRloAQAA4OasPb5iBhaspmLtcho4vbdeeniypqx/xeg4AABky45de3Ts+AkVK+auYydOWL4ZvBgZJUnasGmzpW2xYu76edduRUVHc3dCAACAm8iN8RUzsGBVAe3qqfUTzTVjwHtGRwEAINekpqYaHQEAAMCh3G58xQwsWF27p9ooMuySFo//Uv1e72l0HAAAbql5k0Yq4eurn3ftVp2aNS17MFz/ZrBdYBtJ/06Db9GkMftgAQAA3EJujK+YgYVcEfRKN12JitXq9783OgoAALdVuVIFtWjS+LbtKF4BAABkj7XHVw4xAyskJEQTJkwwOgb+Y/h7zyi4yzQV8y6q+7s3NzoOAAC39N+74VzH3QcBAADujDXHVw4xAys4OFhms9nygP0IWTlWR/b8rY1LfjI6CgAA2fbzrt26mpioq4mJ2bp7DgAAAG7tbsdXDjEDC/Zt4LTeerXTFCXGJarzkHZGxwEA4JaufxN4fWDFskEAAIC7Y43xlUPMwIL9m7TmJZ04dEbzx31qdBQAAG6rcqUKqlKpoqpUqkjxCgAAwArudnxFAQs2M/zdp+Xh465JPWcZHQUAgNtq3qSRmjdpZHQMAAAAh3E34ysKWLCpJ154VC27NtHwZi8bHQUAAAAAAOQR7IEFm7v/iebyK++rHv7P6PPT76uAcwGjIwEAAAAAADtGAQuGqNmkqub9Ol0dCwdp0eG35V+5pNGRACDPMJlMio2NNTqGTSUlJalgwYKW5yaTycA0AADA0eTl8dV/x0l3yt7HVxSwYJjiJT31XfKX6lv1OY38cJDqtaltdCQAyBOKFi1qdASbi42NlY+Pj9ExAACAg8rL46v8Mk5iDywY7uO/3tFnk1Zo/aIfjY4CAAAAAADsEAUs2IXpm4J1KSxaHQsH6cs3VxodBwAA3ERISIhMJpPlAQAAYAsUsGA3gl7tpm8ufaT4mHi1d+2pzyavMDoSAAD4j+DgYJnNZssDAADAFihgwa64urlqwJQgrU34TCmJKWrr1F2fTFjKABkAcEc2t3DWke7ljI4BAADgMIwaX1HAgl0q4FxA/V7vqY3py2RyMqmdcw8teuVzpSSlGB0NAAAAAADYGAUs2L3er3XX92lLVahoIb3Q4nX2yAIAAAAAIJ+hgIU8o9dLj+ntvRMVHxOvJysO1S8bfzM6EgAAAAAAsAEKWMhzBkwJ0ltbQrRsxmqFPD5DsZfijI4EAAAAAAByEQUs5Eklyvtq6oZXFfi/lupb7Tl9OfUboyMBAAAAAIBcQgELedp9XZvo68iPFH/lqoIqDGFZIQAAAAAADsghClghISEymUyWB/KfAW/8T7O2vn5tWWG3GYqNZlkhAAAAAACOwiEKWMHBwTKbzZYH8ie/cj7XlhU+2VJv9n5Hq9//3uhIAIA8IDklRX+fOKnN237W6bPnJEk/h+7Wnl/3S5L+Pn7ttb9PnFRySoqBSQEAAPKG3BhfOUQBC7jRfY810aQ1L+nEgVMa02aCLkdeMToSAMCOnTlzTrt/2afk5GSlJN84gPr3S7Hk5GTt/mWfzpw5Z/uAAAAAeUxujK+crZwRsBvD33tGB376QwNqjVSfCU/okaHtjI4EALBDp8+eVXEvT7ULbGM51qJpY8uvK1eqoMqVKmjDps06ffasKleqYEBKAACAvCM3xlfMwIJDq3t/LS2PWKhTf5zRqPtfU0zEZaMjAQDsTLkyZVSlYsXbtqtSsaLKlSljg0QAAAB5W26Mr5iBhXzhublP6+C2w3qm7mgFvdpNXZ592OhIAAA7kd0ZVcy8AgAAyJ7cGF9RwEK+UadlTS07v0DvDl+kkS3Ha/yy0Spe0tPoWAAAg/0cultSxmntkhQXH689v+7X+QsRSklJUQk/X91b5x6V9PMzIiYAAECekRvjK5YQIt8ZNqe/BkwN0qB6YxRxJtLoOAAAg7m6usjV1SXDsbj4eK1e/73i4uJUr849atSgnlxdXPT9pi06HxFhUFIAAIC8ITfGV8zAQr5Uu0UNLTu/QG2dumtj+jKj4wAADNSoQf1Mx/b8sk9FixRW54f/vQFIzerVtGHTZv128HeVDGQWFgAAwM3kxviKGVjI1559Z4DmPrfQ6BgAAAP9ffykTp/NePvm8xEXVaVS5o1Hy5UprUvRMTZKBgAAkDflxviKAhbytUeHtdfe73/Tub/CjY4CADDI6bNndfjIUaNjAAAAOIzcGF9RwEK+N/zdpzVn2AKjYwAADFKuTBldio7Rhk2bLd8UlvTz1bHjJzO1PX32nIp7edo2IAAAQB6TG+MrCljI9xo8WFcFC7lq5+q9RkcBABigbNnSatygvlxdXJSSnCJJatSwvmWj0cNHjurwkaPasGmzLkRclK+3t8GJAQAA7FtujK/YxB2Q9OzcARp533g16xxgdBQAgI25uriocqUKqlypguVY0SJF1Pnhh7Tnl33af/B3y22ea9esoUOH/5RHsWIZ2gMAAOBfuTG+ooAFSPIr66P7ezTXshnfqvuYR4yOAwCwA0WLFFGbVvdlOu5RrJh+3rVbXl6eLCcEAADIgbsZX1HAAv4xcFpvdSj0P3V57mG5FHQxOg4AwE5VrlRBXl6eKlq0iNFRAAAAHEJ2xlfsgQXcgA3dAQDZUdzLU64ufNkBAABgLbcbX1HAAm7Qvv8D+uuX4/r7t5NGRwEAwC6FhITIZDJZHgAAALZAAQv4j2fnDtDcZxcaHQMAALsUHBwss9lseQAAANiCQxSw+CYQ1lS7RQ15ly6un5buMDoKAAAAAACQgxSw+CYQ1vbc3AF6h1lYAAAAAADYBYcoYAHW5uFTTJ2HPKRPX19udBQAAAAAAPI9CljATfQN6aGv316r2Og4o6MAAAAAAJCvORsdALBn1zd0f+mz542OAgDIRYcOHcpWu9q1a+dyEgAAAMdg7fEVBSzgFh7odZ9+/eGAjuw9puoBVYyOAwDIJRSmAAAArMva4yuWEAK3MWbhUD3b+CWjYwAAAAAAkG9RwAKy4e3tkzTivleNjgEAAAAAQL5EAQvIhnuaV1ezRxppwYufGh0FAAAAAIB8hwIWkE09xj6qk7+f1a61vxgdBQAAAACAfIUCFpADk1a/qClPzlH85QSjowAAAAAAkG9QwAJyaPbPk/V8i1eMjgEAAAAAQL5BAQvIofK1yuix4R309uAPjY4CADCI2Ww2OgIAAIBDud34igIWcAc6DmyrxPhEbfpsm9FRAAB34cZhUlpa2r/H/zOAiroUrd8O/a5DfxzW5ctXZDKZbJQQAAAgb8mt8ZWzNUMC+cmLS4bryYpDVfu+GipR3tfoOACAO2CSFBsbp/2Hftfp02dVrmxp3VvnHhVzd5ckpaWn67cDh3Tk2N8ym81KN6frwO+HVbtmddW5pxaFLAAAgP/IrfEVBSzgLsz+eZKGNX5JX579wOgoAIA7cCU2Vpt+2q7klBR5ehRT2PkIRUXHqE3LFvIo5q7fD/+psIhI1alVUzWqVVVaepoO/XFYJ8+Eya1QIVWrXMnojwAAAGBXcmt8xRJC4C54+xfXkJl9NannLKOjAADuwK/7DygxMUktmzZWx/Zt1bJ5EyWnpOj3w0dkNpt1+MhfKuTqrNq1asjZuYAKurqqYb17VdDVWQd/P2x0fAAAALuTW+MrCljAXbr/ieby9vfSvFGLjY4CAMihiMgolS9bWv6lSupsWJj8S5aQf0k/nT57RknJyUpPT5ePj4+ka3s4XN/HwcvTU04FChgZHQAAwC7l1viKAhZgBUNm9pOPf3HNHsKdCQEgLylYsKC8PD3194mT2rvvgP4+cVLFPT2VlpYukyQX5wI6Gxam9HSzChQooAIFCig1NVXnL1xQWmqK0fEBAADsTm6NrxyigBUSEiKTyWR5AEboPuYRVa5XUQPrjtbVuESj4wAAsiEtPU0pKSnyKOau5o0D5FHMXSmpqTKZnFSwYEFVqlBBZjlp89ZtOnsuTKfPntWmn7ZJpgKqWa2q0fEBAADsTm6NrxyigBUcHCyz2Wx5AEbpNKitXvr8efXwf0Z7N+w3Og4A4DacTE5ycnbSxcgo7dl3QBGRUSrgVEAm07U75NSuVVNurs66Epeg3ft+0/6DfyguPkE+xT1VgwIWAABAJrk1vuIuhICVVaxdTt9eWaKXHp6sQz//qX4TexodCQBwEyaTk2SWalSvqpSUVNWsVlWHDh+RTCalp6XL1dVFHsXcFXUpWhXLl5WLs4tKlPCVf8mSRkcHAACwS7k1vnKIGViAPZqy/hW5uLrohcAQo6MAAG4iMfGqLl++IpPJpLq1a8lkMunylcsym81ydi6glJRUHTt+QsWKFlXjhg1U/946FK8AAABuIbfGVxSwgFwU9Go3Bb3aTR3ceumvX48bHQcA8B8lfH10Nixc5yMiJEnnIyIUdj5CZf1LyWQyKfz8eRV0K6QK5cvJbDYrLS2N7QoAAABuIbfGVxSwgFxWr01trbqyRLMGfqCNn/xkdBwAwA3q160tZ2dn/fjTz/ph80/68aftci5QQHVr15IknTxzRinJySpXprRMJpOcnJzy/Q1juHkOAAC4ldwaX1HAAmzAxdVZ7+19U3u+26ft3+wyOg4A4B8eHh5q07KFSpX004XISJUq4afW9zWTR7FiSk5O1rmw8yru5akiRQpLEgUbcfMcAABwa7k1vmITd8CGXv58hN55doEuhcfokaHtjI4DAPme2WxWcS9PtWnZQmlpaSpQoIDluIuLi1q1aCa3ggUNTgkAAJB35Nb4ihlYgI09N/dpHfjpd/20bKfRUQAg3zOZTJaZRAUKFLD8+vryuNKlSsq7uJfRMQEAAPKM3BpfUcACDPDqV6O0+r0NOvDTH0ZHAYB878a9nNjXCQAA4O7lxviKAhZgkBmbJ2jOsPk69cdZo6MAAAAAAGDXKGABBlpwaJbGtAlWzMUrRkcBAAAAAMBuUcACDLbswkJ1LzHA6BgAAAAAANgtCliAHVhxcZG6+fY3OgYAAAAAAHaJAhZgB4p5u2vW1okacM9Io6MAAAAAAGB3KGABdqJczTJ6ft4zGt062OgoAAAAAADYFWcjLvrjjz9qyZIlMpvN6tWrl9q1a5epzeeff641a9bIbDbr4YcfVp8+fQxICthW3Va1FPRqN73aeYomrX7J6DgAkG8cOnQoW+1q166dy0kAAAAcg7XHVzYvYMXExGjhwoWaO3eunJycNGzYMAUEBMjb29vS5ujRo1q7dq3mz58vk8mkoUOHqkGDBgwakS80eLCuPHyLaWTL8Zq17XWj4wBAvsAYAwAAwLqsPb6y+RLC3bt3KyAgQF5eXvLw8FCzZs20c+fOjKGcnFSgQAG5urrKxcVFLi4ucnJitSPyj8r3VtCAqUH6X7nBRkcBAAAAAMBwNq8KRUZGys/Pz/Lc19dXUVFRGdpUqVJFTZo0Ubdu3fT444+rVq1aqlWrlq2jAoaq3aKGZu+YrLZO3XXh1EWj4wAAAAAAYBibLyE0m82ZjqWnp2d4fvDgQf3222+aOXOmnJycNG3aNO3du1cBAQEZ2oWEhGjChAlZXsdkMmn06NEaNWqU1bJfFxYWZvVzIvvyVf87SR+fna0RTV/VM7OCVKNZFaMT5a/+t0P0v7Hof2PdSf+bTKZcSAIAAABbs3kBy9vbW0eOHLE8j4yMVNmyZTO02bVrl1q1aqUqVa79Z/2BBx5QaGhopgJWcHCwgoMz37HNZDJlWSizhrCwMPn7++fKuXF7+bX/vzj9gUa3DlZagllte99vWI782v/2gv43Fv1vrDvtf4qOAAAAjsHmSwibNGmi3bt3Kz4+XgkJCQoNDVXTpk1lNpsVFham9PR0lS9fXrt371ZcXJzi4+O1a9cuVahQwdZRAbvy1pYQ7fvhoD6btMLoKAAAAAAA2JTNC1heXl7q37+/Ro8erZEjRyooKEi+vr5KSkpS3759dfnyZT344IOqXbu2Bg4cqKefflqVK1dWhw4dbB0VsDtjP35WKckpeuvpeUZHAQAAAADAZmy+hFCSAgMDFRgYmOGYm5ubNm7caHk+cOBADRw40NbRALvXb2JPfbfoR41tO1HTNr5mdBwAAAAAAHKdzWdgAbh77fs/oF4vPqbnmr5kdBQAAAAAAHIdBSwgj6ofWEejFw5Vv+rDjY4CAA7p59Dd+jl0t9ExAAAAHMbdjK8oYAF5WIV7ymrympf0v3KDjY4CAA4nLj5ecfHxRscAAABwGHczvjJkDywA1lO6ainN3jFZ3Xz7a8XFRUbHAQDYmR9//FFLliyR2WxWr1691K5du0xt+vTpo8jISMvz6dOn65577rFlTAAAgFuigAU4AN8y3vroz9nqXPRJrY771Og4AAA7ERMTo4ULF2ru3LlycnLSsGHDFBAQIG9vb0ub9PR0JScna926dQYmBQAAuDWWEAIOopi3u5ZFLFRbp+5KSU41Og4A5EmXomOUnJKS6XhySoouRcfYPtBd2r17twICAuTl5SUPDw81a9ZMO3fuzNAmMjIyQ0ELAADAmqw1vqKABTgQt8IFtTF9mR4t1lvxlxOMjgMAec6GTZu14YfNGQZZySkp2vDDZm3YtNnAZHcmMjJSfn5+lue+vr6KiorK0Ob8+fO6fPmyxo4dqyeeeEJz585Venq6raMCAAAHZa3xFUsIAQe0LvELdfHqq0WHZ6t4SU+j4wBAntEusI1lkOXsfG2YtOGHzYqLj1e7wDYGp8s5s9mc6dh/i1Pu7u56/PHH9cgjjyg2Nlbjx4/X2rVr1blz5wztQkJCNGHChCyvYzKZNHr0aI0aNequM4eFhd31OZB99Lft0ee2R5/bHn1ue7bsc5PJlKP21hpfUcACHNTK6I/Vw/8ZvbNrivzK+hgdBwDyhOJenpZB1vXij8lkUrvANiru5WlsuDvg7e2tI0eOWJ5HRkaqbNmyGdqUL19eFSpUkMlkkoeHh1q2bKkTJ05kOldwcLCCg4MzHTeZTFkWyu5EWFiY/P39rXIu3B79bXv0ue3R57ZHn9uerfs8p8Uya42vWEIIOLCvwuZr7nMLte/Hg0ZHAQC7duPeDNcHWWlpaUpLS8swuMpre2E1adJEu3fvVnx8vBISEhQaGqqmTZvKbDYrLCxM6enp+vrrrxUSEqLU1FTFxcVpx44d3IEQAADcNWuPryhgAQ5u4spx+uKNb7Tmg41GRwEAu7Xmu+91KTra8vz6IOu/3wxeio7Wmu++NyDhnfHy8lL//v01evRojRw5UkFBQfL19VVSUpL69u2ry5cv69FHH1WJEiU0YMAADRo0SPXq1VNgYKDR0QEAQB5n7fEVSwiBfGDaD69p9pAP9cGYTzRoRh+j4wCAXUpOznh3HD/fzMuv/9smLwgMDMxUkHJzc9PGjf9+sTFkyBANGTLE1tEAAICDs+b4igIWkE88P2+gls9crdcefVMTV40zOg4A2JWypf2159d9Onzk6C3bxcXHq2xp9vUAAAC4HWuPr1hCCOQjj4/qrIefDtSAWiOMjgIAdqVRw/oqV6b0bduVK1NajRrWt0EiAACAvM3a4yuHmIF1q9s6A8ioWecAla5aSu1de+qTY3PlV447FAJA0SJF1KgBhSkAAABrsfb4yiFmYAUHB8tsNlseAG6tXI3SWpvwmUa2Gq99m7hDIQAAAADAvjlEAQtAzhVwLqDPTs7TF1O/0er3884dtQAAAAAA+Q8FLCCfm7bxNZ04cEpLJi4zOgoAAAAAAFmigAVAw997RsVLeenFdpOMjgIAAAAAQCYUsABIkjo+86C6j+msnmUGKSH2qtFxAAAAAACwoIAFwKJh23v17u4p6lVmkA6HHjU6DgAAAAAAkihgAfgPb//iWnX5E80b9bG+W/Sj0XEAAAAAAKCABSBrc3ZM1u87jmjeqMVGRwEAAAAA5HMUsADc1OgFQ1SinC+buwMAAAAADEUBC8AtdR3RUd3HdFavsoOUlJBkdBwAAAAAQD5EAQvAbTVse6/eCZ2iCR3eUkpSitFxAAAAAAD5DAUsANniU7q4pmx5WT38Byo2Os7oOAAAAACAfIQCFoAc+TrqIz1R8hmlpqQaHQUAAAAAkE9QwAKQY6vjlqhz0d5GxwAAAAAA5BMUsADkmLOLs5aen6+u3k8ZHQUAAAAAkA9QwAJwR9y9iur9/dMVVH6I0VEAAAAAAA7O2egAAPIuv7I+emP9K3q69kgtODTL6DgAcMcuRceoaNEiSk5O1uEjf+n8hQhFx8RIkkr4+apcmdKqXKmiXF1cjA0KAACQR1h7fEUBC8BdKV+rjMYsGqbnmr6kd0KnGB0HAO7Imu++V6MG9bT/4O+SpCqVKujeOvcoJTlF5yMitP/g7/rjyFG1aXmfint5GhsWAAAgD7D2+MohlhCGhITIZDJZHgBsq0bjKur/xv809sGJRkcBgDu259f9KlqksLo92kmNGtT/51vBCmrRtLG6PdpJRYsU0eZt25WckmJ0VEMx7gIAANllzfGVQxSwgoODZTabLQ8Atlf/gTrq8tzDCn5smtFRAOAumPTbP98S3sjVxUVtWt2n5OQU/X38hAG57AfjLgAAkDPWGV85RAELgH1o/mgjBQa11LvPLzI6CgDkSOWKFVTCz1euri6Ssi7KuLq4qEqlCjp2/KRNswEAAORF1h5fsQcWAKtq9Xgzhf19QQtf+kwDpgQZHQcAsqVF08bZale2TGkKWAAAANlg7fEVM7AAWF3PcV10JSpW6xZsMjoKAGTLF8u/0fmIiNu2K+nnp16PP2aDRAAAAHmbtcdXzMACkCtGfjhYYx+cqFKV/FT/gTpGxwGAWypapLDOnD2nkn5+Wb7+c+huxcXHS5KKe3mpUYN6NkwHAACQ91h7fMUMLAC5ZtoPr+mtAfN04dRFo6MAwC2VK1NGx46fvOUdcJKTk3Uh4qIOHzlqw2QAAAB5k7XHVxSwAOSqT0+8pycrDjU6BgDcUs0a1eTq4qLNW7O+jXOjhvUlmWwfDAAAII+y9viKJYQAct0nx+aqT5Vn9cmxuUZHAYAsXb+N8+at27Vi1RqVK1NaJUtcm+5+KTpGx/65tXOjBvW059f9BiYFAADIG6w9vqKABSDXlapUQiPeH6hxD72uN78fb3QcAMhScS9Pde7QTn8fP6HTZ8/p59DdkiQvTw/Vql5NlStVkKurq0rcZB8HAAAAZGTN8RUFLAA20eDBugr7+4JmD/lQz88baHQcAMiSq4uLalavpprVq920TXEvT9sFAgAAyOOsNb5iDywANtNpUFsVci+kZTO+NToKAAAAACAPoYAFwKYGTuutP0KPavvXu4yOAgAAAADIIyhgAbC54OVjtPr9Dfrr1+NGRwEAAAAA5AEUsAAYovdrT+i9ER8ZHQMAAAAAkAdQwAJgiNr31VD0+RidO3be6CgAAAAAADtHAQuAYTo886DWzf/B6BgAAAAAADvnbHQA2J+0tDQ98MAD2rp1q9FRkE8MnNbb6Ah3pG3btvr++++NjgEAAAAADo8CFjJJTU3Vrl27ZDabjY6SSUpKilxcXIyOkW/lRv+H/X1exbzdVdSziFXPm9uSkpLk4eFhdAwAAAAAyBccYglhSEiITCaT5QEg7/DwKaYrkbFGxwAAAAAA2DGHKGAFBwfLbDZbHgDyjiIehZWYkKS01DSjowAAAAAA7JRDFLAA5G0ePsV0mVlYAAAAAICbYA8sZEt6erp++OEHbdmyRceOHVNcXJy8vLxUt25dPf7446pcubLREe3O33//rbS0NFWrVs2q5922bZu+/PJLnTt3TlWqVNGQIUNu2f/bt29XSEhIpuMPP/ywRo0aZdVsd8rDx11nj4areElPo6MAAAAAAOwQBSzc1qlTpzRx4kRFR0froYceUocOHeTk5KSjR48qNDRUQ4cO1RNPPKE+ffqwwfoNli1bpqtXr2ZZPLpTu3bt0sSJE9W5c2f16NFD69ev14gRI7Rw4UL5+fll+Z7w8HB5enqqb9++GY6XK1fOarnulrOrs5xdCygh9qoKuxcyOg4AAAAAwM5QwMItnThxQiNGjFClSpU0bdo0eXt7W15r3ry5+vTpo6VLl+rjjz9WdHS0xowZY2DajFJSUmQymeTs7Di/zZctW6aAgAANHz5cktSkSRM99dRTWrNmjfr375/le8LDw1WxYkV16tTJllFz7Ppm7hSwAAAAAAD/5Tj/s4fVJSYmKiQkRA0aNND48ePl5JR5yzQnJyf17NlTbm5uevfdd9WgQQM98MADWZ7v+PHjmj9/vg4fPiwnJyfVrVtXQ4cOtcwcSk9P15IlS7RlyxbFxMSoevXqGjx4sCpUqGB5/YsvvtBPP/2kixcvqnz58goKClLTpk0t13jiiSc0bNgwHTlyROvXr9f777+vEiVK6Pvvv9fKlSt1+vRplSxZUt27d1e7du1u+tlvl6VDhw4aPXq0AgMDLe+ZPn26Ll++rEmTJmn48OE6fPiwJKlt27ZauXKlihQpkqP+/6/Y2Fj99ttvGj16tOVYwYIF1aRJE23evPmWBaxSpUrd1bVtwb14UV04dVHp6elZ/l4DAAAAAORf/C8RN7V8+XLFxsbq+eefl5OTk8xms5YvX66BAweqS5cuWrBggbZu3ao5c+aoS5cuqlevnhYvXpzluZKSkjRu3DglJCTo+eef14ABA/Tnn3/qrbfesrSZNWuWvvnmGz322GN67rnnlJSUpOeee04RERGSpHfffVdffvml2rZtq1deeUXly5fX+PHjtWPHjgzXWrp0qc6dO6eRI0fKy8tLK1eu1MyZM9WkSRO99tpratiwoWbMmKHVq1ff9LPfLsvtTJ48Wffdd58CAgK0dOlSFS5cOFvvu5WoqChJmZf+lStXTufPn1dKSkqW7wsPD1dERISGDBmizp07a9CgQVq7du1d58kN12dhAQDsV0hIiEwmk+UBAABgC8zAwk19/fXX6t+/vzw9PSVJU6ZM0dGjRzVu3Dh5e3tr1qxZWrdunR588EFJUsuWLfXOO+8oIiIi035Mp06dUkxMjF5++WXVr19fkuTl5aVDhw5Jks6dO6cNGzbolVde0f333y9Juvfee/Xkk0/q559/1n333ac1a9Zo4MCB6tatm6Rry+diYmL0ySefqHnz5pZrpaSkaMKECTKZTEpMTNQnn3yi3r17KygoSJLUuHFjy/HOnTtn+ty3y/LYY4/dtu/c3d1VsGBBpaeny8vLK9t9fivR0dGSpKJFi2a6liQlJCTIw8Mjw2vp6em6cOGCrly5ot69e6tEiRIKDQ3V22+/rYSEBHXv3t0q2aylmI+7zp+IkKefx+0bA0AuuRQdo+iYGF2KjpEkFffylJenp4p7eRqay14EBwcrODjY8pwiFgAAuB1rjK8oYCFLHh4eio2NtRRwtm/frp9++knz58+3zABq37699u7da2lTpUoVSdcKKf9VsmRJFSpUSPPmzVO3bt0UEBCg5s2bWwpPf/zxh0wmk+677z7Le7y9vbVixQo5Ozvrl19+UXp6ulq2bJnhvPfff7+mT5+ulJQUywbyjRs3tgymT548qdjYWNWvX19XrlyxvK9OnTpat25dlsW222WxhqNHj2rYsGE3fb179+4aOHBghmNms1lS5v8oXD+e1bK7tLQ0jRs3TtWrV7csI2zevLlSU1P16aefqlu3bna1XK9gIVc5OZmUlJCkgoULGh0HQD6059d9OnzkL0lSCT9fSdLhI0clSffWuUf31r7HsGwAAAB5kbXGVxSwkCU3Nze5u7tbZvfs2LFD1atXz7B87cyZM/L29latWrUkSefPn5eLi4vKli2b6XzFihXTW2+9pU8++USzZ89WSkqKKleurCeffFL33XefIiIi5OHhoQIFCmR43/Wld1FRUTKZTJbZYNd5e3vLbDYrOjraUoi6ccbThQsXJEnPP/98lp8zPj4+07HbZbGGihUr6tNPP73p61ld6/rniouLy3A8Pj5eLi4ulp/VjVxcXNS6detMx5s3b66NGzfq/Pnz8vf3z2H63FXMp5guR8bKrxwFLAC2tXr9BsXFJ6h1yxYqV6Z0htdOnz2nn0N36/SZc+r88EMGJQQAAMhbrDm+ooCFLJlMJsXFxSk+Pl5FihRRdHR0hpk/6enp2rhxo1q2bGk5vmrVKj3wwAOZCj/XVa1aVa+//rqSkpJ06NAhLV++XK+//roWLFig4sWLKzY2NtMG3n///bcKFixoKVRdvnxZvr6+ltevL6u7sbB1Y87rS+qWLVuWqfh1M7fLUqZMmSzf99/C0q24uLioRIkS2W4vST4+PpKks2fPqmbNmpbj586ds7z2XzExMYqIiFDVqlUz9Mv1n1GhQvZ3xz8PH3f99Wuk/Mpl/ZkAIDfs+XWf4uIT1C6wjYp7eerv4ye1+9d9kqR6de5RzerVVDSwjTZs2qzfDv6ue+swEwsAAOBWrD2+sp+1Q7ArCQkJMpvNljvpBQQE6I8//tCuXbsUFRWlmTNn6vz58ypWrJgiIiI0bdo0Xbx4UYMGDcryfD/99JP69eunxMREFSxYUA0bNtTzzz+v9PR0nT9/XtWqVVNqaqp27dpleU9ycrJeeOEFhYaGqnLlynJyctK2bdsynbdixYpydXXN8roVKlSQi4uLQkNDMxxfvHixxo4dm+V7bpdFurZcLywszPJ6YmKi/vjjj5t1ZyZHjx5V27Ztb/r48MMPM73H3d1d9erVy7BpfVpamkJDQ9WqVassr3P8+HENGzZMmzdvznB8165d8vPzs9r+XNbmXryIrkSxmTsA27gUHaPDR/5Si6aNLfsw7P51n2pVr6Z6de7Rnl/361J0jIp7eapF08b67dDvlv0bAAAAkFlujK+YgYUsXb58WZUqVdKCBQtUt25ddenSRRcuXNCbb74pDw8P9evXTyVKlNCnn36qL774Qg0aNNC7776b5TI26dr+WBcuXNCkSZPUuXNnJSQkaMOGDSpWrJhq1Kghd3d3tWrVStOnT9eAAQNUsmRJrVq1Sunp6WrdurV8fHzUsWNHLVy4UGlpaapYsaK2bdumnTt3KiQk5Kafw9PTU127dtXs2bMVFRWlqlWrav/+/Vq2bJmGDh2a5XsqV658yyySVKlSJa1Zs0YlS5ZUiRIl9MUXX+jy5csZzuPs7Kxz587p6NGjqlKlSobZXHeyhFC6tjfW+PHjtWTJEtWvX1+rV69WXFycOnXqZGmzdu1a7d+/X2PHjlW9evVUo0YNzZs3T+Hh4apSpYr27t2rdevW6dVXX830ntGjR8vNze2muWzFw6eYIs9dUjHvrH8/AYA1Rf8zWLpxWnuvx/+9YceeX/cr+p8B1vU2158DAAAgs9wYX5nM13eAdiAmk0m59bHCwsLsbs8ga0tKSpKHh4eOHz+uoUOHqkGDBho5cmSWxanExEQ5Oztna3Pz0NBQffLJJzpz5oxcXV1Vo0YN9e/fX5UrV5Z07e6BH330kbZv366YmBhVrVpVAwcOVPXq1SVdW7a4ZMkSbd26VRERESpfvryCgoLUrFkzyzWeeOIJ9ezZU127drUcM5vNWr58ub7//nuFh4erRIkSeuyxxzIUff7rdllOnz6tt99+W0eOHFFycrKqVaummjVr6vz585o0aZIk6bffftOMGTN0+fJlffHFFypSpEg2ev/2tm7dqqVLl+rs2bOqVq2aBg0aZOlDSZo5c6bWr1+v1atXy83NTUlJSVq0aJH27NmjyMhIVaxYUU8++aQaNWqU6T0rV668Zc4bN8vPbSd/P6PSVUrKpaBtrpdT1/+cJCYm2uya+eHvH3tG/xvrTvs/O+/b8+s+XYqOUbvANhmOJ6ek6OfQ3Tpz9py6PtJRRf/5+3HDps0q7uWpRg3q5ziPI7LmuIs/Z7ZFf9sefW579Lnt0ee2Z+s+N2p8RQErh/LDH8Yb/2P+22+/afr06bp69ap69uypmjVrqnz58nJxcVFERIQOHz6s+++/32azdmxZQMmO6/tyZXd/LXv25ptvatSoUbfsX1v2f/SFy0pLTZNP6eI2uV5OUcDKf+h/YxlRwNrz6z4dO37Ssm/DdRSwMqKAlXfR37ZHn9sefW579Lnt5aUC1t2Mr1hCiFu69957tWjRIi1btkzr16/XggULlJ6ebnm9YsWKqlixoqpVq2ZgSuNkdWfEvOj333+Xq6urXRUHPXzcdfLQGbstYAFwHMU9vSy3dv7v8RZN/TJNZb8QcVFVKla0UToAAIC8JzfGVxSwcFuurq4KCgpSUFCQUlJSdPbsWZlMJvn4+Kho0aJGx4MVuLm5aeDAgUbHyMCpgJPcihZUXEy8inpaZ/klAGTF658B1Omz5zLs01CihG+mtqfPnsvwHgAAAGSWG+Mr7kKIHHFxcVHFihVVoUIFilcOpHLlylbbo8uaPHyK6UokdyMEkLuKe3mqZvWq+jl0d4a73xw+clSHjxy1PL8UHaOfQ3fr3tr3sIE7AADALeTG+MohClghISEymUyWBwDHUMSjsGQyKS01zegoABxcowb1VbRIYW3YtNnyLWCjBvUt+zCcPntOGzZtVtEihXVvnXuMjAoAAJAnWHt85RBLCIODgxUcHGx5ThELcBzFvIvqwqmL8q9c0ugoABxc54fbac+v+7Rl28+SpBJ+16a4X4i4KEm6t/Y9FK8AAABywJrjK4coYAFwXEU9i+jyxStKuJKgwsUKGx0HgINr1KC+KlesqOjoGF2KiZYkValYUV5eniwbBAAAuAPWGl9RwAJg9/zK+ejcX+GqULuc0VEA5APF/xlMVVYFo6MAAAA4BGuMrxxiDywAjs2loIuKeBZR9IXLRkcBAAAAABiAAhaAPMG3jLcuhUfLnG42OgoAAAAAwMYoYAHIM/zK+SjidKTRMQAAAAAANkYBC0Ce4V68qJKTUnQ1LtHoKAAAAAAAG2ITd9yVixcvau7cudq3b5/mzZsnf39/ffDBB9q0aZOCgoLUpUsXq11r27Zt+uKLLxQWFqYqVapoyJAhqly58k3bb9++XSEhIZmOP/zwwxo1apTl+enTp7Vo0SIdOHBARYoUUbdu3TLkvnr1qhYvXqwdO3YoJiZGZcuWVc+ePdWqVSurfTZkn185H50/EaHytcoYHQUAAAAAYCMUsHBX1q1bpz/++ENvvPGG/Pz8dPToUa1YsUIjR45UixYtrHadXbt2aeLEierYsaN69uyp9evXa8SIEVq4cKH8/PyyfE94eLg8PT3Vt2/fDMfLlfv3Tnbnzp3T6NGjVbVqVY0cOVJHjx7Vu+++K3d3dwUGBkqSZs+erR07dqhfv34qU6aMtm7dqtdff11vvvmmGjRoYLXPiOwpWMhVhYq66fLFK/LwLWZ0HAAAAACADVDAwl1JSEhQmTJlVLt2bctzSbr//vtVpEgRq11n2bJlCggI0LBhw+Ti4qImTZroqaee0po1a9S/f/8s3xMeHq6KFSuqU6dONz3vihUr5OnpqZCQELm4uKhly5Y6dOiQvv32WwUGBio+Pl6bNm3S2LFj1bZtW0lSo0aN9Pvvv2vTpk0UsAziV85HR385TgELAAAAAPIJ9sDCLX3//fcaOnSoOnXqpKefflobNmywvBYcHKyvv/5ahw4dUtu2bbVw4UKNHTtWktSlSxctW7bMKhliY2P122+/6f7777ccK1iwoJo0aaLNmzff9H3h4eEqVarUTV9PTU3Vli1b1LZtW7m4uFiOv/baaxoxYoQkKSYmRvfee6/uuecey+smk0leXl5KSkq6i0+Fu1WivC8bugMAAABAPsEMLNzUypUr9f7776tXr17q16+ffvnlF82YMUPJycnq3LmzXnjhBc2fP19///23Xn/9dbm5ualKlSqaNGmSPvroI/n4+FglR1RUlKSMS/+uP1+zZo1SUlIyFKCuCw8PlyQNGTJEZ8+elb+/vx555BF17NhRkhQZGanY2FhVr15daWlpOnPmjDw9PeXl5SUvLy9JUunSpTVjxgzLOc1ms/bs2aMjR45o5MiRVvl8uDMePu46ffiKkq4mq2AhV6PjAAAAAAByEQUsZMnJyUmffPKJevfuraCgIElS48aNlZiYqE8++USdO3dW0aJF5ebmJhcXF0vBp1ixa0u6vLy85ObmZpUs0dHRkqSiRYtmOO7u7i7p2rJFDw+PDK+lp6frwoULunLlinr37q0SJUooNDRUb7/9thISEtS9e3fLeX///XeNHz9eV69elSQFBARo7Nixls903TfffKP58+crJSVFXbt21YMPPmiVz4c751fORxGnLqpsjdJGRwEAAAAA5CIKWMhS4cKFFRsbq/r16+vKlSuW43Xq1NG6desUERFx083Tb+Xo0aMaNmzYTV/v3r27Bg4cmOGY2WyWdG3pXlbHnZwyr4RNS0vTuHHjVL16dcsywubNmys1NVWffvqpunXrZvlcq1atUnBwsGrVqqW//vpLb7zxht566y1NmjQpwzmbNWsmPz8//f777/r666/l4+Oj7t2757AHYE1uRQrKxc1FV6JiVczb3eg4AJAvhISEaMKECUbHAAAA+QwFLGTp+uyp559/PsvX4+Pj7+i8FStW1KeffnrT1wsXLpzp2PWZUHFxcZkyuLi4WGZi3cjFxUWtW7fOdLx58+bauHGjzp8/b3lf//791bBhQ0lS3bp1FRQUpDlz5iguLi7DrK+SJUuqZMmSatGihdLS0rR69WoKWHbAr5yPjv92igIWANhIcHCwgoODLc//+wUTAABAbjCkgPXjjz9qyZIlMpvN6tWrl9q1a5epzeHDhzV37lxFRUWpTZs2GjRokAFJ86+UlBRJ1+7+5+npabXzuri4qESJEjl6z/W9tM6ePasqVapYjp87d+6m+2zFxMQoIiJCVatWzTCwLlCggCSpUKFClplbJUuWzPDe688vX76sX3/9VRs2bNCkSZMynKdChQr6+uuvlZiYaLWlkrgzTk5O8i3rrUvh0Speyuv2bwAAAAAA5Dk2vwthTEyMFi5cqJkzZ2r27NlasmSJZZPu6xITE/XGG2/o5Zdf1ieffKJDhw7p6NGjto6ar12f3RQaGprh+OLFiy13GrwTR48eVdu2bW/6+PDDDzO9x93dXfXq1dOOHTssx9LS0hQaGqpWrVpleZ3jx49r2LBhme5SuGvXLvn5+cnLy0slS5ZUuXLltHfv3gxt9u/fr0KFCqlUqVJyc3PT7t27M/3+++OPP+Tj40Pxyk54+BRT9IXLMqebjY4CAAAAAMgFNp+BtXv3bgUEBFiWhTVr1kw7d+5Up06dLG127dqlOnXqqHTpaxszz5w5k+npNpaamqquXbtq9uzZioqKUtWqVbV//34tW7ZMQ4cOvePz3skSQuna3ljjx4/XZ599poCAAK1evVpxcXEZft+sXbtW+/fv19ixY1WvXj3VqFFD8+bNU3h4uKpUqaK9e/dq3bp1evXVVy3v6d27t6ZOnSqTyaQ6dero4MGDWr58uQYNGiQnJyc1aNBAtWrV0qRJk9S7d28VL17cMitr+PDhd9wPsD6vEh66dD5a3v7FjY4CAAAAALAymxewIiMjM2z+7evrm2kG1vnz55WQkKDBgwcrOjpaTZo0ybJYcKtNRE0mk0aPHq1Ro0ZZNb8khYWFWf2c9iQpKUmS1KdPHxUtWlQ//PCDvvjiC/n5+enZZ59Vhw4dLEsM09PTZTabLc9TU1MlXVuCeP3YfxUvfusCQ1bvq1+/vsaNG6cVK1Zo5cqVqlq1qqZOnSpvb29L+8OHD2vLli0aPny43NzcNGXKFH388cfatGmTvvrqK1WoUEEhISEKCAiwvKdFixYaM2aMvvnmG33zzTfy9/fXiBEj9OCDD1raTJw4UfPnz9cXX3yhyMhIlS1bVi+88IJat25908/oyOz1MxctXkSnfj+rYr622Qvrej/Y+u8DR//7x97R/8a6k/7nCzAAAADHYDJfv5WbjXz22WeSpKCgIEnS0qVLFR8fr6eeesrS5pNPPtGGDRv09ttvq3DhwgoODlbLli316KOPZusaJpNJufWxwsLC5O/vnyvnthdJSUny8PBQYmKi0VEySUlJkYuLi9Ex8i177/+LZyLlUtBFnn4euX4tI/6c5Ie/f+wZ/W+sO+1/fm65z5rjLn5etkV/2x59bnv0ue3R57Zn6z436mds8z2wvL29FRkZaXkeGRmZaSNuLy8vNWzYUL6+vipSpIiaNm2qkydP2jgpgLzGq6SXLp2PMToGAAAAAMDKbF7AatKkiXbv3q34+HglJCQoNDRUTZs2ldlsVlhYmNLT09W4cWP98ssvioiIUHx8vLZv365atWrZOiqAPMbZpYAKuxdS7KU4o6MAAAAAAKzI5ntgeXl5qX///ho9erTMZrOCgoLk6+urxMRE9e3bV0uXLlWJEiXUr18/jRkzRmlpaWrdurUefPBBW0cFkAd5lfTU+RMRci9e1OgoAAAAAAArsXkBS5ICAwMVGBiY4Zibm5s2btxoed62bVu1bdvW1tEA5HEFC7nK2aWAEq5cVeFihYyOAwAAAACwApsvIQSA3OZV0lOXzkcbHQMAAAAAYCUUsAA4nMLuhWRONyspIcnoKAAAAAAAK6CABcAheZbw4I6EAAAAAOAgKGABcEjuXkWVlJCs1ORUo6MAAAAAAO4SBSwADotZWAAAAADgGChgAXBYnr7FFHspTuZ0s9FRAAAAAAB3gQIWAIfmVcKDOxICAAAAQB7nbHQA5E2jR4/WgQMHFBQUpH79+mV4berUqTp69KgWLVqU6X0nT57UM888o5CQEDVv3jzDazt27NDq1at14sQJXb16VaVLl1anTp3Uvn17OTllv9a6bds2ffnllzp37pyqVKmiIUOGqHLlylm23bdvn8aOHXvTc4WEhKhQoUK3bdO8eXNt375dISEhmV5/+OGHNWrUKElSamqqvvzyS/3444+6dOmSqlWrpgEDBqh69eoZ3nP69GktWrRIBw4cUJEiRdStWzd16dLF8npaWpqWLVum7777TlFRUSpTpox69eqlVq1a5agvrJXnv3bt2qWUlBTdd999OcpjrczZ+VlYs58BAAAAALmLAhZyLDIyUgcPHpSbm5u2bNmSqYB1Jz744AMtX75c9913n3r16iUnJyf99ttvmjVrlk6cOKFhw4Zl6zy7du3SxIkT1blzZ/Xo0UPr16/XiBEjtHDhQvn5+WVqX7ZsWT3//POZjv/111/auHGjKlasKBcXl9u2kaTw8HB5enqqb9++GdqVK1fO8uu33npLO3fuVJ8+fVS6dGn9+OOPGjNmjObMmWM5z7lz5zR69GhVrVpVI0eO1NGjR/Xuu+/K3d1dgYGBkqQlS5Zo6dKl6tOnjypWrKjQ0FC9/vrrmjRpkpo0aZLtvshpnueee07Hjx/PlOdGZ86c0euvv6777rsvQwErO3mslfm/P4vYS3Eq4FxANWr/W+S6236uV69eps8OAAAAAMgdFLCQY1u2bJHJZNLTTz+tuXPn6tixY6pSpcodn+/QoUNavny5RowYoY4dO1qOd+7cWTVr1tT777+vDh06WIoTt7Js2TIFBARo+PDhkqQmTZroqaee0po1a9S/f/9M7X18fNSpU6cMx9LT0zVs2DD16dNHpUqVkqRstQkPD1fFihUztb3u9OnT+uGHH/TKK6+odevWlnzjxo3T0qVLNW7cOEnSihUr5OnpqZCQELm4uKhly5Y6dOiQvv32W0th5bvvvlPnzp3Vs2dPy3mOHj2qDRs2WApYt+uLO8kjSW3atMmU57rU1FRNmTJFSUlJd/SzsVbm//4sUlPSdPrwWVWqW96S5277mQIWAAAAANgOe2AhxzZv3qxGjRqpXbt2KliwoLZs2XJX55s/f75q1qyZoXh1XYcOHXTvvffqxIkTkqSDBw+qbdu2WrVqVaa2sbGx+u2333T//fdbjhUsWFBNmjTR5s2bs51n1apVSktLU/fu3XPUJjw83FLMysqxY8ckSffee2+G440aNdKOHTskXSsAbdmyRW3btpWLi4ulzWuvvaYRI0ZYnqempqpo0aIZzuPp6ank5GRJ2esLa+a5bvHixXJyclLVqlUzHM9OHmtlljL/LJxdCqiweyHFXorL0ee6XT8DAK6Z0f89oyMAAAAHRwELORIWFqajR48qMDBQbm5uatSo0V0VsNLT0/XXX39lKFrcqFChQpoxY4YeeOABSVKxYsXUsmVL+fv7Z2obFRUlKeOSvevPz58/r5SUlNvmuXLlihYvXqyBAweqQIECOWoTHh6uiIgIDRkyRJ07d9agQYO0du1ay+uenp6SpAsXLmQ434ULF5SQkKDExERFRkYqNjZW1atXV1pamk6ePKmYmBh5eXllmIHWsmVLrV27Vn/++aeuXLmitWvX6pdfflHLli2z3Rd3kufUqVNZ5pGkAwcOaNWqVXrxxRfl7Jxxcmd28lgrs5T1zyJ0/05dOh8jSVbrZwDANfFXErRtRajRMQAAgANjCSFyZPPmzXJzc1OzZs0kSffff7+2b9+uw4cPq2bNmjk+X3h4uFJSUlSyZMlstS9fvrxee+21LF+Ljr52p7n/zphxd3eXJCUkJMjDw+OW51+2bJnKlSungICAHLVJT0/XhQsXdOXKFfXu3VslSpRQaGio3n77bSUkJKh79+6qVauWSpQooXfffVcvvPCCfHx8tGPHDq1Zs0bStcLY9c/w+++/a/z48bp69aokKSAgQGPHjpWXl5ckadiwYTp69Kiee+45S4bOnTurXbt22e4La+aJi4vTm2++qYEDB6pMmTKZ+iw7eayV2dXVNcufxbvvzdX/nghSj7I9rNLPWS2TBID8Knj5GHVw66WmnRrKpaDL7d8AAACQQw4xAyskJEQmk8nyQO7ZvHmzWrZsKTc3N0lS06ZN5erqesezsNLS0qyWzWw2S1Km3wPXj9/uToaXL1/WypUr9b///S/HbdLS0jRu3Di9++67euyxx9S8eXONGjVKbdu21aeffqr09HS5ubkpJCRECQkJGjBggB599FF99NFHevTRRyVdm1125coVSdeWKAYHB+vbb7/VW2+9pRMnTuitt96yXO+dd95RVFSUxowZo1mzZql///764YcftG7dumz3xZ3kWbFiRZZ53n77bZUvX16dO3fOst+yk8damW/1s1i5+htdPBNptX4GAPxr8tqX9UrHKUbHAAAADsohZmAFBwcrODjY8pwiVu44ceKETp06pVOnTmnjxo0ZXvvpp580ePDgHPd96dKl5ezsrLCwsJu2WbVqlUwmkx555JFbnuvG2UA3io+Pl4uLi2Umz8388MMPcnNzU+PGjXPcxsXFxbKp+I2aN2+ujRs36vz58/L391flypW1YMEChYWFKTU1VWXLltU333yjQoUKyc3NzZKxf//+atiwoSSpbt26CgoK0pw5cxQXF6fo6GitW7dOU6dOtbSpXbu20tPTtWDBArVv3z7bfZHTPCkpKZny7NmzR7/++qsWLFhw037LTh5rZZZ0y5/FpSvRcnZyuet+btOmzU0/LwDkR/UD6yh07S9aMWuNuo3M+oYmAAAAd8ohCliwjR9//FFubm6aOHFihr2fDh06pI8++kiHDh1SnTp1VLRo0UxFiOtiY2Ml/btMrECBAqpUqZK2bNmS5abpKSkp+uijjyxL427Fx8dHknT27NkMyxnPnTtnee1Wvv/+e7Vu3fqme1/dqk1MTIwiIiJUtWrVDEW86+0KFSqk1NRUnT17ViVKlFDp0qUtbY4ePWrZd6l48eKSlGlJ5fXnly9f1p9//ilJmTZKr1atmmJjYxUeHp6tvrBmntjYWPXo0SNDm8OHD2vTpk0KCQlRnTp1bpvHWplv97PwL19SZ4+du+t+Pn/+vAAAGQ2Z2U/9qg9Xk44NVKZa5v0qAQAA7pRDLCGEbWzZskVNmjRR/fr1VbduXcujS5cucnFxsSwjrFatmqKjo3Xo0KFM5/jhhx/k7OysKlWqWI71799fR48e1ddff52p/SeffKL4+Hi1aNHitvnc3d1Vr169DHejS0tLU2hoqFq1anXL9549e1bHjx9X8+bN76jN8ePHNWzYsEx3O9y1a5f8/Pwss4uee+45LV682PJ6TEyMdu7cqQcffFDStQJKuXLltHfv3gzn2b9/vwoVKqRSpUqpbNmykpSpf3///Xe5uLioRIkS2e4La+Tp3Lmzpk2bluFRrlw51a9fX9OmTVOtWrWylcdamW/3syhRyk/+pf1VunSZu+5nAMiPbrd1A0sJAQBAbmAGFrLl8OHDOn/+vJ5++ulMrxUuXFgNGjTQ1q1bNWzYMAUGBmrNmjV65ZVX1KFDB1WpUkVXr17Vzp07tXv3bg0ZMkSFCxe2vL9hw4bq1KmT5s2bp/3796tBgwZycnLSL7/8oh07dqhTp06qW7euJOn06dP68ssv1a5duyw3Wu/evbvGjx+vJUuWqH79+lq9erXi4uLUqdO/SxnWrl2r/fv3a+zYsXJxubaUbN++fXJyclKNGjVu2ge3alOvXj3VqFFD8+bNU3h4uKpUqaK9e/dq3bp1evXVVyVJzs7Oat++vdauXasyZcrI3d1dX331lfz8/Cx3WZSk3r17a+rUqTKZTKpTp44OHjyo5cuXa9CgQZbrN27cWDNmzFCfPn1UpkwZHTx4UF999ZV69+5tuQPg7friTvLUrFlThw8fzpCnTJkymTZuL1KkiIoXL6769evn6GdjjczZ+Vn4lC6uDoEdteizBXfcz7eaqQcAjux2WzeUrlJSjw5rr3kjF2vIrH42TgcAAByVyXx9h2QHYjKZlFsfKywsTP7+jj0lPikpSR4eHkpMTLQcmzdvntasWaMVK1ZY9hm60YYNGzRjxgxNmzZN9evXV2JiopYvX65t27YpLCxMhQoVUoUKFdS9e3c1atQoy+tu2bJFq1ev1qlTp5SWlqayZcuqY8eOeuihhyyD419//VXjxo3Ts88+a9m4+7+2bt2qpUuX6uzZs6pWrZoGDRqkypUrW16fOXOm1q9fr9WrV1s+y8SJExUWFqb333//pv1yuzZJSUlatGiR9uzZo8jISFWsWFFPPvlkhs+bnJyshQsXavPmzXJyclL9+vU1ePDgTHdH3Lx5s1asWKFTp06pdOnS6tq1qx566CHL64mJifrss8+0bds2RUVFqXTp0nrkkUf08MMPZ/iPxO36wlp5/mv48OHy9/fXiy++mOH47fJYK3N2fhYXTl7Urwf3au2GtXfUz8nJyZn+nOS2/PD3jz2j/411p/3Pzy333WzcNbbtRPUc10UNHqyb7XPx87It+tv26HPbo89tjz63PVv3uVE/YwpYOZQf/jBmVcCyFykpKZZZU7A9R+r/1ORUnT0argq1y97R+434c5If/v6xZ/S/sShg2a+bjbtSklP1iHtvrU/6Itvn4udlW/S37dHntkef2x59bnv5pYDFHlgA8iVnV2cVcnfT5cgrRkcBAIfk4uqsV74coQldpxsdBQAAOAAKWADyLW//4ooKizY6BgA4rPseayL34kW1fuEmo6MAAIA8jk3ckYmzs7MaN26c5Z2FAPzrVvuAAQCuGb1giLqXfFpNOzWUVwlPo+MAAIA8igIWMilQoIC2bt1qdIwssZ7aWI7Y/7HRcepb5Tl9HfWR0VEAwGFNXvuyXuk4Re/tfdPoKAAAII9iCSGAfM3dq6ja9r1fX7+91ugoAOCwqjWspGaPBOjj4K+MjgIAAPIoClgA8r2nJvXSR69m/y5ZAICc6/1ad+35br/+3H3M6CgAACAPooAFIN9zK1xQjz7bXl9NW2V0FABwaJPXvqRXOr5hdAwAAJAHUcACAEn9J/9Pi1753OgYAODQPHyKaeD03pr+1LtGRwEAAHkMBSwAkORUwEn/e7mrPn19udFRAMChtevXRlfjErV1+U6jowAAgDyEAhYA/KNvSA99MmGpzGaz0VEAwKG9tmy03uwzV0lXk42OAgAA8ggKWABwAzZ0BwDbYD8sAACQExSwAOAGvV56TL//fERRYZeMjgLAwSUlJWnx4sVGxzBMvTa1VbVBJS17a7XRUQAAQB7gEAWskJAQmUwmywMA7sbUDa+qd+VnjY4BwMEVLFhQe/fu1blz54yOYphBM/po3fwfdOZImNFRAACAnbtlAWvw4MFKT0+XJO3evdsmge5EcHCwzGaz5QEAd8OloIvm7JisIQ3HGh0FgIN7+OGH9d577+nKlStGRzEMSwkBAEB23LKAVaJECYWEhGj9+vWaNWuW0tLSbJULAAxVpX5FdRvZSW/2ecfoKAAc2IYNG7R//3717NlTL730kpYsWaJdu3YpJibG6Gg241+5pB4b3kHvPr/I6CgAAMCOOd/qxVdeeUWrV6/Wzz//rMjISD3yyCOqXLmyqlevrmrVqql69eoqU6aMnJwcYiUiAGTw4JOtdPLQaX01bZV6jH3U6DgAHNCcOXOUlpamkydP6siRIzp69KgWL16sEydO6LvvvjM6ns08NryDXmw3SQd/+lP+vfyNjgMAAOzQLQtYf/75p7p166Zu3bpp/PjxGjFihGVw9eOPP2revHlKSUnR6tVsvgnAMT099UmNf2Sqytcqo6adGhodB4CDeeutt1S9enVVr15dDz30kDp06CBJSklJMTiZ7U1e+5I6FPqf2vV6wOgoAADADt2ygPXmm29q9uzZ8vHxUbFixeTt7a3mzZurefPmljbh4eG5HhIAjPT6ty+qd+VhqnBPWZWs6Gd0HAAOpFSpUtqzZ48+/fRTXblyxTLTvXr16mrbtq3R8WyqgHMBPfvBUwp+bJpCvmEPQgAAkNEtC1g9e/bU008/rfLly+vUqVOqV69epmWDpUqVsklQADDSoj/e1qOefbXu6udGRwHgQP73v/9Zfh0VFaW1a9dq6dKlunDhQr4rYElSw/Z19dfOk1q3YJM6PB1odBwAAGBHblnA6ty5s1q2bKnff/9dU6dOtSwbTE1NVbVq1Sz7YN1///22ygsAhnAp6KLZP0/S0IBxem/vm0bHAeCAvL291adPH9WtW1dbt2616bV//PFHLVmyRGazWb169VK7du1sev0bjZo/WD38n1GTjg3kVcKDvVZtzGw2y2QyGR0DgIPh7xbbc8Q+v+2IwNPTUy1atNDIkSM1ZcoUff311/rwww/VuXNnmUwm9r8CkG9UbVBJXUd05M6EAKxm7969io2NzXDs3nvv1Z49e2yWISYmRgsXLtTMmTM1e/ZsLVmyRFFRUTa7flYmr31ZwxqN05MVh+qFwBClpqQamie/WPTqF+pdaZjGPTTR6Cj5xpxh8/VkpWF6rQtfjtnK+EemqnelYZo7fKHRUfIFs9mscQ+9rt6Vhunj4C+NjpMvpCSnaswDExRUfoi+mbPW6DhWdcsZWDd64IF/N9QsWbKkSpYsycwrAPkOdyYEYE0LFizQiRMn5O/vr5o1a6pGjRq6dOlSpqJWbtq9e7cCAgLk5eUlSWrWrJl27typTp062SzDf+3ffEgxFy4rLTVdF89EaXD9F7Tg0CzD8uQHH479RCvnfqeUxBRdOHVRI1q+qre3TTI6lkObNeh9rZu/SZJ04WQE+7/ZwPhHpip0zS+SpFVzv1Naarqef+8Zg1M5tuEtXtWfoUclSctmrFZKUqqenvqkwakcl9ls1uD6L+j04bOSpPnjPpXZbFbX5437N92aTGaz2ZydhmazWT/99JNOnTolf39/u96XoWXLltq2bVuunDsqKkre3t65cm7cHv1vLPr/X3OGzlfzLo0V8NC9Nrsm/W8s+t9Yd9r/eeHnlpiYqKNHj+qPP/7Qn3/+qbCwMHXt2lXt27e3yfU///xzmc1mBQUFSZKWLl2qq1evqm/fvhnahYSEaMKECTc9z+jRozVq1CirZJoRNE8Hf/pTZkmOtfghD6DTbc4Rl/nYO/rc9uhz49RpXVNjPh1s1XO6uLjI19fXqufMjmzPwFqwYIG+/fZbNWvWTN98840qV66sjRs36plnnrG7vQm2b9+ea+dOSkrKtXPj9uh/Y9H//xr+3jPqVXaQ3gmdIp/SxW1yTfrfWPS/se60//PCz83NzU1169ZV3bp1Dbl+Vt9lpqenZzoWHBys4ODgTMdNJlOW57gTYWFh8vf3131dmupI6N9KTkqRJFWoXVbzD8y0yjXwr+v9LUnzX/xUK+esV3JisiSpdsuamvUTSwmt7cY+nz30Q615f6PlP/X3PdZYwSteMDKeQ7qxz4Mfm6Ydq/ZY+rzz0HYaPvdpI+M5pBv7/Pn7XtUfO47IZDLJpaCLuo3sqAFvBBmc0PHc2OdP1x6pU39cm4HlUtBFrbo2s7xmzesZIduVp/Xr12vq1Kl6+eWXJUn+/v76888/tXTp0lwLBwD27P190zW4PgNNAHcuJSVFq1ev1nvvvaeVK1fq9OnTNs/g7e2tyMhIy/PIyEj5+PjYPMeNuj7fUf2n/E9+ZX1Ur01tzftlmqF58oNnpj6px0d3Uonyvgp46F6KVzbw/HsD9ciw9ipZwU8tulC8soWQb8aqWecAlazgqy7DO1C8soHZ2ycp4KF7VaK8r3q8+CjFKxuY9+t01Wtzj3zL+ui5dweoy7MPGx3JarI9A6tw4cIZqnZubm4aPny4goOD1bNnz1wJBwD2zMOnmF78dLheaj9JU7571eg4APKg6dOn68CBA2ratKl27dqljz/+WG3atNFzzz1ns6UWTZo00ZIlSxQfHy+TyaTQ0FB1797dJte+lW4jOumx4R3sbqa/I3vq9V7qN7Eny3xs6Ll3BkjvDDA6Rr4ycdU4oyPkO1O+e5UlhDbk4uqs6ZsmKD093eH+Dc12AatJkyZavHixnnvuOcuxwoULKzo6OleCAUBeEPDQvTq274QWvvSZBkzhGyUAORMaGqrZs2erYsWKkqTY2FhNnjxZX375pXr16mWTDF5eXurfv79Gjx5t2QvLiH0tsuJoA++8gP9gAsgN/N1ie474b2i2P9Ezzzyjv/76S0OHDlVaWppCQ0P1zjvvqE6dOrmZDwDsXs9xXRT29wVtXb7T6CgA8pjy5curWLFilufu7u4aMWKENm7caNMcgYGBev/99/XBBx+oXbt2Nr02AABAdmS7gOXm5qa5c+fq8ccfV926dfXuu+/K1dVVL7zAWm0AGL90lBa8+JnCj18wOgqAPKRLly5avHixUlNTLceSk5N18eJFA1MBAADYn2wvIZSuTUF76KGH9NBDD+VWHgDIsz7YP0M9/J/Rt1eWGB0FQB4xc+ZMpaSkaP/+/WrYsKFKly6tTZs26YknnjA6GgAAgF3JUQELAHBzhYq6adKalzS6dbDe2hJidBwAecCqVat0/Phx/fnnn/rzzz+1bt06y62pL126pBo1aqhhw4aG3xUQAADAaBSwAMCK6raqpRZdGmveqMUaMrOf0XEA2DlnZ2dVq1ZN1apV0yOPPCLp2kbuR44c0eHDh7V161ZdvXpVXbp0MTYoAACAwRxiW/qQkBCZTCbLAwCM1HVER12+eEWbPttmdBQAeZC7u7sCAgLUu3dvTZ48meIVAACAHKSAFRwcLLPZbHkAgNFeXDJcX0z5Wqf+OGt0FAAAAADI8xyigAUA9ujDA2/pnWcXGB0DAAAAAPI8ClgAkEucnJzUfXRnvdp5qtFRAAAAACBPo4AFALmoSceGKlHeR9++t8HoKAAAAACQZ1HAAoBc9tzcp7V85mqFH79gdBQAAAAAyJMoYAGADUzd8KpebDfJ6BgAAAAAkCdRwAIAG/CvXFJdR3TU3OcWGh0FAAAAAPIcClgAYCOPDmuv8OMXtHv9PqOjAAAAAECeQgELAGxo8tqX9WqnKTKbzUZHAQAAAIA8gwIWANgY+2EBAAAAQM5QwAIAG2vwYF1VrFNOK2atMToKAAAAAOQJFLAAwACD3+qrdQs26fThs0ZHAQAAAAC7RwELAAzCUkIAAAAAyB4KWABgEN8y3npy/OOaNegDo6MAAAAAgF2jgAUABurwzIOKi4nXjm/3GB0FAAAAAOwWBSwAMNj4r0Zp7rMLdfFslNFRAOC2QkJCZDKZLA8AAABboIAFAHbg0xPv6cmKQ42OAQC3FRwcLLPZbHkAAADYAgUsALADTgWctOiPt9Wv+nCjowAAAACA3XGIAhZT2QE4gtJVS2nY7Kf0coc3jI4CAAAAAHbFIQpYTGUH4Cgata+vpp0a6p1nFxgdBQAAAADshkMUsADAkTwytJ1cCrpoxaw1RkcBAAAAALtAAQsA7NDgt/rqwE9/aMe3e4yOAgAAAACGo4AFAHYqZOVYLX71S504dNroKAAAAABgKApYAGDHPjzwloY3fVmJCUlGRwEAAAAAw1DAAgA7t+TEe+pdcajRMQAAAADAMBSwAMDOefoW08RV4zTxkVlGRwEAAAAAQ1DAAoA8oGbTamo/sLXe7POO0VEAAAAAwOYoYAFAHtG4U31VqV9R74/+2OgoAAAAAGBTFLAAIA/pNrKTTCaTls9cbXQUAAAAALAZClgAkMcMmtFHR/f+rc1f/mx0FAAAAACwCQpYAJAHvfz5CK15/3sd2PqH0VEAAAAAINdRwAKAPOqtLSGa+fQ8nTt23ugoAAAAAJCr8kQBKz093egIAGCXFh99R4PuHa2kq8lGRwEAAACAXGNIAevHH3/UU089pX79+mnDhg23bLto0SJ98MEHNkoGAHnPV+Hz1aPUM0bHAAAAAIBcY/MCVkxMjBYuXKiZM2dq9uzZWrJkiaKiorJse+DAAX377bc2TggAeUuRYoU1J/QNDag1wugoAAAAAJArbF7A2r17twICAuTl5SUPDw81a9ZMO3fuzNQuPj5e8+fPV/fu3W0dEQDynHI1SuvZuQM09sGJRkcBAAAAAKuzeQErMjJSfn5+lue+vr5ZzsCaM2eOevfuLQ8PD1vGA4A8q/4DddRx4IP64IVPjI4CAAAAAFblbOsLms3mTMf+u0n7Dz/8oCJFiqhx48Zas2bNTc8VEhKiCRMmZPmayWTS6NGjNWrUqLvKm5WwsDCrnxPZR/8bi/431u36v+p9FXT6+FlN6fu2+k55wkap8g9+/xvrTvrfZDLlQhIAAADYms0LWN7e3jpy5IjleWRkpMqWLZuhzZYtW3T8+HH98ssvio+PV2pqquLj4zVmzJgM7YKDgxUcHJzpGiaTKctCmTWEhYXJ398/V86N26P/jUX/Gyu7/d/7xSf09ey1WjX9ew2Z1S/3g+UT/P431p32P0VHAAAAx2DzJYRNmjTR7t27FR8fr4SEBIWGhqpp06Yym80KCwtTenq6Jk2apM8//1wff/yx+vXrp3bt2mUqXgEAbq7r8x1VvJSXFrz4qdFRAAAAAOCu2byA5eXlpf79+2v06NEaOXKkgoKC5Ovrq6SkJPXt21eXL1+2dSQAcEg9xj6qQkULafFrXxodBQAAAADuis2XEEpSYGCgAgMDMxxzc3PTxo0bM7Xt1KmTrWIBgMMJerWbPnr1C33+xtf638tdjY4DAAAAAHfE5jOwAAC29dSkXoqLjtOyt1YbHQWAAwgJCZHJZLI8AAAAbIECFgDkAwOn91HEqYtaOXe90VEA5HHBwcEym82WBwAAgC1QwAKAfGLYnP46cfC01s3/wegoAAAAAJAjFLAAIB8Z+cEgHfr5T2385CejowAAAABAtlHAAoB8ZuziZ3X84Cn9vGqP0VEAAAAAIFsoYAFAPjRoeh+tX7BJu9b+YnQUAAAAALgtClgAkE9NWv2ils1YrQM//WF0FAAAAAC4JQpYAJCPzdg8QR+M+VhHfzludBQAAAAAuCkKWACQz727501NCZqts0fDjI4CAAAAAFmigAUA0Ed/ztaYB0IUFXbJ6CgAAAAAkAkFLACAJOnLsx9oQK2Rir+SYHQUAAAAAMiAAhYAwGJlzMd6zKufzGaz0VEAAAAAwIICFgAggzXxn6pTkSeNjgEAAAAAFhSwAAAZuLq56vPT8/S43wCjowAAAACAJAcpYIWEhMhkMlkeAIC74+FTTHP3TNX4R6caHQUAAAAAHKOAFRwcLLPZbHkAAO5eyfK+6juhh4Y0HGt0FAAAAAD5nEMUsAAAuaNK/YoaOL23xj440egoAAAAAPIxClgAgFuq/0AddR7ykCZ2f8voKAAAAADyKQpYAIDbatmtqQLa1dOsge8bHQUAAABAPkQBCwCQLR2eDlTpqqU0f9ynRkcBAAAAkM9QwAIAZNsTLzwqk0n6atoqo6MAAAAAyEcoYAEAcuTpqU8q7O/zWjf/B6OjAAAAAMgnKGABAHJs5AeD9MvGA9q6fKfRUQAAAADkAxSwAAB3ZPzSUVrzwUbt23TQ6CgAAAAAHBwFLADAHZu28TUtmbhMf+07YXQUAAAAAA6MAhYA4K7M/Gminm/+ilKSUoyOAgAAAMBBUcACANy1WVsnamSr14yOAcAGQkJCZDKZLA8AAABboIAFALhr1RtV0f3dm+nDsUuMjgIglwUHB8tsNlseAAAAtkABCwBgFd3HPKLTf5zVrnW/Gh0FAAAAgIOhgAUAsJpJa17SpCdmKjEhyegoAAAAABwIBSwAgFXN3DpRo9gPCwAAAIAVUcACAFhV1QaVFBjUUu+P/tjoKAAAAAAcBAUsAIDVdRvZSWHHzmvn6r1GRwEAAADgAByigMXtnAHA/kxcNU5v9n5H8VcSjI4CAAAAII9ziAIWt3MGAPvEflgAAAAArMEhClgAAPtUqW55PTwgUO8+v8joKAAAAADyMApYAIBc1eW5h3XxTJR+Xrnb6CgAAAAA8igKWACAXDfh6xe06t3vFBsdZ3QUAAAAAHkQBSwAgE30fq27grtMMzoGAAAAgDyIAhYAwCbqtKypSnXLa9W73xkdBQAAAEAeQwELAGAzz74zQJ++vlwxEZeNjgIAAAAgD6GABQCwqeDlYxTy+AyjYwAAAADIQyhgAQBsqvZ9NVT53gosJQQAAACQbRSwAAA2x1JCAAAAADlBAQsAYAiWEgIAAADILgpYAABD1L6vhqrUq6iVc9cbHQUAAACAnaOABQAwzLA5/fX55K8VfSHG6CgAAAAA7BgFLACAoV5bPloTH3/L6BgAAAAA7BgFLACAoWq3qKEqDSpq5TssJQQAAACQNQpYAADDDZvdX5+/wVJCAAAAAFmjgAUAsAssJQQAAABwMxSwAAB2gaWEAAAAAG7GIQpYISEhMplMlgcAIG+6vpQwMSHJ6CgAboJxFwAAMIJDFLCCg4NlNpstDwBA3tXv9Z6aN+Ijo2MAuAnGXQAAwAgOUcACADiODk8H6tD2P3X6z3NGRwEAAABgJyhgAQDszpBZ/TRv5GKjYwAAAACwExSwAAB2J6BdPZnTzfpl429GRwEAAABgByhgAQDsErOwAAAAAFxHAQsAYJfK1yqjGk2qasNHm42OAgAAAMBgFLAAAHZr6NtP6T3uSAgAAADkexSwAAB2q7B7IXUb2UlLJi4zOgoAAAAAA1HAAgDYtT4TntCyGd/qalyi0VEAAAAAGIQCFgDA7rGUEAAAAMjfKGABAOxe+/4P6I+dR3X68FmjowAAAAAwAAUsAECeMPTtfnpvxGKjYwAAAAAwAAUsAECe0LDtvTKZpL3f/2Z0FAAAAAA2RgELAJBnDJnVT/NGLjY6BgAAAAAbo4AFAMgzytUso3uaV9f6hZuMjgIAAADAhihgAQDyFGZhAQAAAPkPBSwAQJ5SqKib+k7sqa9nrzU6CgAAAAAboYAFAMhzuo3oyCwsAAAAIB9xiAJWSEiITCaT5QEAcHy9X+uuJROXGR0DAAAAgA04RAErODhYZrPZ8gAAOL4+E57QJxOWGh0DAAAAgA04RAELAJA/UcQCAAAA8gcKWACAPItlhAAAAED+QAELAJCn9Q3poY+DvzI6BmC3fvzxRz311FPq16+fNmzYkGWbPn36qEOHDpbH77//buOUAAAAt+ZsdAAAAO7Gk+MfV1un7uob0sPoKIDdiYmJ0cKFCzV37lw5OTlp2LBhCggIkLe3t6VNenq6kpOTtW7dOgOTAgAA3BozsAAAeV6/iT21+LUvjY4B2J3du3crICBAXl5e8vDwULNmzbRz584MbSIjIzMUtAAAAOwRBSwAQJ4X9Go3fT75a+5EC/xHZGSk/Pz8LM99fX0VFRWVoc358+d1+fJljR07Vk888YTmzp2r9PR0W0cFAAC4JZYQAgAcQt+JPfTxa1+p3+s9jY4C2I2sirr/LU65u7vr8ccf1yOPPKLY2FiNHz9ea9euVefOnTO0CwkJ0YQJE7K8jslk0ujRozVq1Ki7zhwWFnbX50D20d+2R5/bHn1ue/S57dmyz00mk82udSMKWAAAhxD0Sje1c+6hPiFPyMmJCcbIX77++mtt2bIlwzEnJye1b99eR44csRyLjIxU2bJlM7QrX768KlSoIJPJJA8PD7Vs2VInTpzIdI3g4GAFBwdnOm4ymaw2+zEsLEz+/v5WORduj/62Pfrc9uhz26PPbc/WfW5UgZICFgDAYVyfhfXUpF5GRwFsqmvXruratWum49HR0VqyZIni4+NlMpkUGhqq7t27y2w2Kzw8XCVLltTXX3+tQ4cO6dVXX1ViYqJ27NihTp06GfApAAAAbo4CFgDAYfzv5a5q59JDfUN6yKkAs7AALy8v9e/fX6NHj5bZbFZQUJB8fX2VmJiovn37aunSpXr00Ud18eJFDRgwQKmpqXrooYcUGBhodHQAAIAMKGABABzK9TsS9p/8P6OjAHYhMDAwU0HKzc1NGzdutDwfMmSIhgwZYutoAAAA2cbX0wAAh9Lrpce0dPq3SktNMzoKAAAAACuhgAUAcDj9JvbQ4te+MjoGAAAAACuhgAUAcDg9X3xMy99ardSUVKOjAAAAALACQwpYP/74o5566in169dPGzZsyLLNN998o6eeeko9evTQrFmzlJbGUhAAQPZdvyMhAAAAgLzP5gWsmJgYLVy4UDNnztTs2bO1ZMkSRUVFZWjzxx9/aOXKlZozZ44WLVqk06dP67vvvrN1VABAHtZzXBf9ufsYX4AAAAAADsDmBazdu3crICBAXl5e8vDwULNmzbRz584MbS5duqSOHTvK3d1dRYoUUdOmTXX+/HlbRwUA5HGV61XQyjnrjY4BAAAA4C452/qCkZGR8vPzszz39fXNNAPrvvvus/w6KipKGzdu1KhRozKdKyQkRBMmTMjyOiaTSaNHj87yfXcrLCzM6udE9tH/xqL/jUX/50yzJxpoave5atajgVXOR/8b607632Qy5UISAAAA2JrNC1hmsznTsfT09Czbfvfdd/rss880ZMgQ1apVK9PrwcHBCg4OznTcZDJleR1rCAsLk7+/f66cG7dH/xuL/jcW/Z9z/v7+qnxvRZ3ZF64mHRve1bnof2Pdaf9TdAQAAHAMNi9geXt768iRI5bnkZGRKlu2bIY26enpmjJlitLS0vTOO+/I09PTxikBAI6iy3MPa8XM1XddwAIAAABgHJvvgdWkSRPt3r1b8fHxSkhIUGhoqJo2bSqz2aywsDClp6dr27ZtSkhI0GuvvUbxCgBwVwIeulfhxy/o3DH2UgQAAADyKpvPwPLy8lL//v01evRomc1mBQUFydfXV4mJierbt6+WLl2qQ4cOad++ferSpYvlfZ07d9aAAQNsHRcA4AC6DO+glXPWadic/kZHAQAAAHAHbF7AkqTAwEAFBgZmOObm5qaNGzdKkoYNG6Zhw4YZEQ0A4IC6PPuw2jp1p4AFAAAA5FE2X0IIAIARHhnaTt++t8HoGAAAAADuAAUsAEC+8NjwDvpmzjqjYwAAAAC4AxSwAAD5Qplq/vIr56NffzhgdBQAAAAAOUQBCwCQb3R57mGtfGe90TEAAAAA5BAFLABAvtGsc4D+3n9SEWcijY4CAAAAIAcoYAEA8pUuwztoJXthAQAAAHkKBSwAQL7S5dn2Wjn3O6NjAAAAAMgBClgAgHzFpaCLHnyyldYv3GR0FAAAAADZRAELAJDvPDa8g75hGSEAAACQZ1DAAgDkOxXrlFNRzyI6uO2w0VGAPCckJEQmk8nyAAAAsAUKWACAfKnLcw9r5TvrjY4B5DnBwcEym82WBwAAgC1QwAIA5EutHm+mA1v/UEzEZaOjAAAAALgNClgAgHyLvbAAAACAvIECFgAg33r02fZaNfc7o2MAAAAAuA2HKGCxmSgA4E4UKVZYzR4J0A+fbjU6CgAAAIBbcIgCFpuJAgDuVKfBD2nN+98bHQMAAADALThEAQsAgDt1T/Pqiom4rHPHzhsdBQAAAMBNUMACAOR77QcE6ruFm4yOAQAAAOAmKGABAPK99k+10XcfbTY6BgAAAICboIAFAMj3PP08VLVBJe35bp/RUQAAAABkgQIWAACS2vdvo+8WMQsLAAAAsEcUsAAAkNTq8Wbave5XJSYkGR0FAAAAwH9QwAIA4B/t+z+g7xb9aHQMAAAAAP9BAQsAgH9QwAIAAADsEwUsAAD+UbleBZnTzTp+4JTRUQAAAADcgAIWAAA3YBYWAAAAYH8oYAEAcIN2T7XRho+4GyEAAABgTyhgAQBwg8LuhdSgbV1t/3qX0VEAAAAA/IMCFgAA/8EyQgAAAMC+UMACAOA/mnRooD93H9PlyCtGRwEAAAAgClgAAGSJvbAAAAAA+0EBCwCALLCMEAAAALAfFLAAAMhC2er+KupVVIdDjxodBQAAAMj3HKKAFRISIpPJZHkAAGANzMICAAAA7INDFLCCg4NlNpstDwAArKH9U230HftgAQAAAIZziAIWAAC5wamAk9r0bPH/9u4/Lqo63+P4exBFRUR07YeWolmW5VqJCKyiZl6ztrRS1PwtlRnKWhpquRKWtdnN1eyWW2u3LukW7a2tpbRyXX+Ughc1f5WohagRKSgpg/wQzv1jb+xlCR2Y4ZzD4fV8POYP4euZN2/mPOb7+HBmRn9bvcXqKIBtcOU7AACwAgMsAAAugJcRAlVx5TsAALACAywAAC7gxkE3KOebXOUdP2V1FAAAAKDRYoAFAMBF3Db1Fm1+J83qGAAAAECjxQALAICLGDplkLa8k251DAAAAKDRYoAFAMBFXHLlL9Q9opv2fXHA6igAAABAo8QACwAAD1wd1kUb+DRCAAAAwBIMsAAA8ED4r2/Upne3WR0DAAAAaJQYYAEA4IGgtq3UpWcn7d643+ooAAAAQKPDAAsAAA8NHP0rbXznC6tjAAAAAI0OAywAADw0ICZSm1J4GSEAAABgNgZYAAB4KCiklbrd1EW7Nuy1OgoAAADQqDDAAgCgFgaOjtLGd7ZaHQMAAABoVBhgAQBQCwNiorQphQEWAAAAYCYGWAAA1EJgcEt179NNO9fvsToKAAAA0GgwwAIAoJZ4GSEAAABgLgZYAADUUvSoSG1+l08jBAAAAMziiAFWUlKSXC5X5Q0AgPoU2Lqlru17tXZ8ttvqKAAAAECj4IgBVmJiogzDqLwBAFDfeBkhAAAAYB5HDLAAADAbn0YIAAAAmIcBFgAAddCiVXNd/6trlfHJl1ZHAQAAAByPARYAAHXEywgBAAAAczDAAgCgjngZIQAAAGAOBlgAANRR85YB+uWAHtq+dpfVUQAAAABHY4AFAIAXBo7+lTa+84XVMQAAAABHY4AFAIAXokdFavO726yOAQAAADgaAywAALwQ0KKZbhx0g9I/3ml1FMAUSUlJcrlclTcAAAAzMMACAMBLA0ZHaROfRohGIjExUYZhVN4AAADMwAALAAAvDYyJ0kY+jRAAAACoNwywAADwUtOApuo95JdKS91hdRQAAADAkRhgAQDgA3waIQAAAFB/GGABAOADA2IitSmFTyMEAAAA6gMDLAAAfMC/qb/Ch92krR/+j9VRAAAAAMdhgAUAgI8MHBOlXX/ba3UMAAAAwHEYYAEA4CODxvRT9lfHGWIBAAAAPsYACwAAH1ry2ULNH7ZY5efLrY4CAAAAOIYjBlhJSUlyuVyVNwAArPT7zYv0SPRCq2MAAAAAjuGIAVZiYqIMw6i8AQBgpesirlHU8D5aNX+11VEAAAAAR3DEAAsAALsZM3eEDn95RBmffGl1FAAAAKDBY4AFAEA9eXbtE1o4YonKSsqsjgIAAAA0aAywAACoR7wfFgAAAOA9BlgAANSj7n26acCoSL2akGx1FAAAAKDBYoAFAEA9GzXnLh396rjSP95pdRQAAACgQWKABQCACZ5Ona+nR/9exe5iq6MAAAAADQ4DLAAATML7YQEAAAB1wwALAACTdLupi4ZMGKCX4ldZHQUAAABoUBhgAQBgontm3aHLulyqlOc/sDoKAAAA0GAwwAIAwGQjH/m1vt2TzRALAAAA8BADLAAALDAvOV4/5p3Vy7P+0+ooAAAAgO0xwAIAwCIPPDdel3e9VE/FLLU6CgAAAGBrDLAAALDQ3fG3a0BMpGb1W2B1FAAAAMC2/K0OAABAYxc9MlLtOrTVhK5xSv72P6yOAwAAANiOba/A2rBhg6ZMmaLJkyfrk08+sToOAAD16vqo7np+Q6Jubz5WhQVuq+MAAAAAtmLLAVZBQYFWrVqlpUuXavny5UpOTlZ+fr7VsQAAqFeXhV6iD84ka0LXOGV/dfyi6wtOntGM8Hl6OCxBuUdO1Ljuv5elanrvBP1uwos1rjlfdl6/vet3ir3+EW37a0aN67av3aUHb5yjBb9+VmWl52tc99ykFXo4LEFvPfVujWtOHs/X9N4JerjPXOXnnKpxHewlKSlJLper8gYAAGAGWw6wtm/frrCwMIWEhCg4OFiRkZHatm2b1bEAAKh3TZv56/1Tb+ipmBeU8dluZXzypfZ9fkCHd2Xp+MEcnTyer7OnC/V91gnF9ZmrzIxvdGhnluIjH9fRA9WHXn/+fapWzV+tw7uy9LfVW7RwxHPV1lRUVOjhsLlKS92ho18f15LJLyntox3V1mV8+qWeGbdcWXuylf7xTk3rNVsV5RXV1i2KeUHrkzfr0M4s/enZ9/XO8x9UW/N91g+a1f+3OrwrS4d2fKv4qMd14ujJOrYGMyUmJsowjMobAACAGVyGDXcea9askWEYGjdunCQpJSVF586d06RJk6qsS0pK0pNPPlnjcWbPnq1HH320PqMCAFBvkhf8WT8cOamSotLKW+m5UpWcK9W5s8WVw6N/PJW7FNCymZo1b1rlGEVnzqn8fIVckgxJfn4utWjdXH5+//wbVnlZuc65S2RU/HNL4N+siVq0al7lWMWFJSorPS9Dhlxyyc/PpYDAAPk3bVK5xqgwVHT2nCrKDbn+b2UTfz+1bN2iyrFKi8tUUlQqSfrpIp5xSXfr32IHelfav3C5XLr88st9ekxU5XK5fDbIysnJUYcOHXxyLFwcfZuPzs1H5+ajc/OZ3blVv2Nbvon7z22CKiqq/4U3MTFRiYmJ1b7uy43Uv+JktBb9W4v+rUX/1rKi/7mvx9f4va/TDylxxHM6/cOPcrlcatU2ULNeeVA3DrqhyrqVs9/UxpStOl9yXi4ZuvLajlq6aVGVNSVFJZoZ9bhO5ZyW5FKTpk00KSlGt99/a5V1n7z5dyUn/VnFhcWSDLW5NFhLNy1SUEirKuvm3/a0Du38VpIhl6QBMZGKWz61ypr9Ww9oyZSX5T5dKMml1u2C1OeWm2vsuK795+Tk1Pr/AAAAwH5sOcBq166dMjMzK/+dl5enK6+80sJEAADYy3V9r9ZTf52vRSP/XedLz2veW/G66Zae1dbNfXOmmjZrqi//vk/BvwjSi9ue+dn3LXr9q+Wa2Xe+3D8WadRjd2nkI3dWWxMze7iaBTTTn555Ty1bt9SKtGfUqk1gtXUvZyzRzMjHdSb/rK4Nv1rz36o+iIu6K1xPfxCkxWOXyeVy6Ym3Z+n6qGvr2AYAAACczpYDrL59+yo5OVlut1sul0tpaWkaNWqU1bEAALCV7mFX6b8OvyTDMOTftOan9Edfe0juH90KDK4+bPpJYOuWev3r5SopLlVA82Y1rhsxY5huf2CwmgXUvEaSVmx75qL3eUO/6/RW1suSpCb+TWpcBwAAANhygBUSEqKpU6dq9uzZle+F1b59e6tjAQBgO54Ofi40SPr/LjS8+snFhle1uU8GVwAAAPCELQdYkjR48GANHjzY6hgAAAAAAACwmN/FlwAAAAAAAADWYYAFAAAAAAAAW2OABQAAAAAAAFtjgAUAAAAAAABbY4AFAAAAAAAAW2OABQAAAAAAAFtjgAUAAAAAAABbY4AFAAAAAAAAW2OABQAAAAAAAFtjgAUAAAAAAABbY4AFAAAAAAAAW2OABQAAAAAAAFtjgAUAAAAAAABbc8QAKykpSS6Xq/IGAAAAAAAA53DEACsxMVGGYVTeAAAAAAAA4ByOGGABAADAO8XFxUpISLA6BgAAwM9igFVLS5cutTpCo0b/1qJ/a9G/tejfWvRfv9auXauEhASdOXPG0hz8ns1F3+ajc/PRufno3HyNpXOX4cDX3Llcrnp7KWF9HhsXR//Won9r0b+16N9ade0/JydHHTp0qIdEzrJ161bl5ORo/fr1WrlyZa3+ry/PDc4zc9G3+ejcfHRuPjo3n9mdW7W/8jf9Hk3Qr1+/en0zd94o3lr0by36txb9W4v+rVWX/hMSEvTcc8/VQxpniYqK0rFjx7R+/foa1yQlJenJJ5/82e/58tzgPDMXfZuPzs1H5+ajc/OZ2blV+ytHXoH1r+z6l0G7HsvXx+NY1h3L18fjWNYej2NZezyOZd2x6uN4qO7YsWNavHhxra/A8iVf/Z7t+Fgmk/nHIpP5xyKTucex67HIZP6x7JipPjjyCiwAAABU9d5772njxo1Vvubn56dly5ZZkgcAAKA2GGABAAA0Avfcc4/uueceq2MAAADUSaP4FMKa3q/Bar7M5euf0c7ZfMWuP6Odf5e+ZNfO6N85x6qP4/mKXTuz67GA2rLjY9mOmXzJjj+fHTP5kh1/Pjtm8iWn90TnDftYvmLHTD9pFO+B5Ut2fj1oY0D/1qJ/a9G/tejfWvTfOPB7Nhd9m4/OzUfn5qNz8zWWzhvFFVi+ZOdpZGNA/9aif2vRv7Xo31r03zjwezYXfZuPzs1H5+ajc/M1ls65AgsAAAAAAAC2xhVYAAAAAAAAsDUGWAAAAAAAALA1BlgAAAAAAACwNQZYALxWUVFhdQQAAACgTtjLAg2Dv9UBGpINGzYoOTlZhmFo7NixGjp0qNWRHMuTrt9//319+OGHKioqUkREhOLj49WkSRML0jpPbR7rr7/+ukpKSjR9+nQTEzqbJ/1//fXXeumll5Sfn69BgwZp2rRpFiR1Jk/6X7NmjVJTU2UYhoYNG6aJEydakLTxKC4u1sKFC7VkyRKro8AL3pxbnHPe8aT75ORkrVu3Tn5+fho7dqxuv/12C5I2bN70zL62bnzx2GYvWzvedM7+tW686dxxz58GPHL69GnjvvvuM06dOmUUFBQY48aNM/Ly8qyO5UiedL1//35j4sSJxpkzZ4zCwkJj1qxZRmpqqkWJnaU2j/Xdu3cbw4cPN15++WWTUzqXJ/2fO3fOGD9+vHH8+HGjpKTEmDFjhpGZmWlRYmfxpP/MzEzjvvvuMwoLCw23221MmjTJ2Lt3r0WJne/jjz82Zs6caUybNs3qKPCCN+cW55x3POl+y5YtxkMPPWQUFBQYJ06cMCZMmGBkZ2dblLhh8qZn9rV144vHNnvZ2vGmc/avdeNN5058/uQlhB7avn27wsLCFBISouDgYEVGRmrbtm1Wx3IkT7o+deqU7rjjDgUFBSkwMFARERHKzc21KLGzePpYd7vdeu211zRq1CgLUjqXJ/2np6erZ8+e6tixo5o1a6alS5eqa9euFiV2Fk/69/PzU5MmTdSsWTM1bdpUTZs2lZ8fT6f1JTg4WNHR0VbHgJe8Obc457zjSff79+9XVFSUgoOD1b59e0VERLDPrSVvemZfWzfePrbZy9aeN52zf60bbzp34vNnw05vory8PF1yySWV/27fvr3y8/MtTORcnnTdr18/xcTESJLy8/P12WefKTIy0tScTuXpY/3FF1/UhAkTFBwcbGY8x/Ok/9zcXBUVFemhhx7S6NGjtWLFCrNjOpYn/Xfr1k19+/bVvffeq5EjR6pHjx7q0aOH2VEbjaioKPXt29fqGPCSN+cW55x3POk+NDRUGRkZcrvdKigoUEZGhk6dOmV21AbNm57Z19aNt49t9rK1503n7F/rxpvOnfj8yXtgecgwjGpf483+6kdtul63bp1Wr16t6dOnN/iT0S486X/9+vUKDAxUeHi4UlNTzYrWKHjSf0lJiQ4dOqRly5apZcuWSkxM1EcffaThw4ebFdOxPOl/79692r17t5YuXSo/Pz8tWbJEGRkZCgsLMysm0OB4c24FBARwznnBk+6HDBmizMxMxcbGKigoSKGhoQoICDAroiP4omf2tbXjTefsZevGm87Zv9aNN507cc/KAMtD7dq1U2ZmZuW/8/LydOWVV1qYyLk86bqiokLPPvusysvLtWLFCrVp08bklM7lSf8bN27Ut99+qx07dsjtduv8+fNyu92aM2eO2XEdx5P+Q0JC1Lt3b7Vv316SFBERoSNHjpgZ07E86T89PV3R0dHq1q2bJOmWW25RWlpag94MAPXNm3OrefPmnHNe8HQPGxcXp/j4eEnSihUrdNlll5mW0Qm86Zl9bd140zl72brxpvPy8nL2r3XgTedO3LPyEkIP9e3bV9u3b5fb7VZRUZHS0tIUERFhdSxHqqlrwzCUk5OjiooKbdmyRUVFRVq4cCFP8j7mSf9PP/201qxZozfffFOTJ0/W0KFDecL3EU/6Dw8P144dO3TixAm53W59/vnn/KXWRzzpv3Pnztq+fbsKCwvldruVnp6u0NBQq6MDtubNucU55x1Puj969Kji4uJUWlqqvLw8paWlqX///lZHb1C86Zl9bd140zl72brxpnP2r3XjTedOfP7kCiwPhYSEaOrUqZo9e7YMw9C4ceMqp8fwrZq6Li4u1qRJk5SSkqJ9+/Zp165dGjFiROX/u/POOxUbG2tdcIfwpP+QkBCrYzqWJ/1feumlmjx5subMmaPy8nINHDhQt956q9XRHcGT/m+99VZlZWXpwQcflGEY6t+/Px83D1yEN+eWy+XinPOCJ92HhoYqPDxcEydOVNu2bTVnzhwFBQVZHb1B8aZn9rV1w2PbfN50HhQUxP61Drzp3Il7Vpfxcy+qBAAAAAAAAGyClxACAAAAAADA1hhgAQAAAAAAwNYYYAEAAAAAAMDWGGABAAAAAADA1hhgAQAAAAAAwNYYYAEAAAAAAMDWGGABAAAAAADA1hhgAQAAAAAAwNYYYAEAAAAAAMDWGGABAAAAAADA1hhgAQAAAAAAwNYYYAGAF44ePar4+HirYwAAADgSey0AP2GABcCRSktLTbmfffv2qXXr1qbcFwAAgF2w1wJgNpdhGIbVIQA0Pjt37tSqVat07NgxdevWTVOmTFHPnj0lSfn5+Vq5cqX27NkjwzAUGxuroUOHSpJOnjypV199Vbt27ZK/v79GjBihMWPGSJLi4+N12223ae3aterdu7fGjBmjP/7xj0pPT1dRUZGGDRum2NhYuVyuankudJ/Tpk3TAw88oLCwMEnS6tWrlZubq06dOumNN95QQECABg8erLi4ODOqAwAAuCj2WgCchiuwAJguJydHixYt0rhx47R69WqFhoYqJSVFklRQUKC4uDh17txZr7zyihISErR8+XKdPXtWRUVFeuyxx9SxY0e9+uqrWrBggd5++23t3btX5eXl+uabb/TFF19o3rx5mjhxoh599FGVlZVp+fLlSkpK0gcffKBNmzZVy3Oh+ywuLtaRI0fUvXv3yvUHDx5U9+7dNWrUKHXs2FELFixgQwUAAGyDvRYAJ/K3OgCAxicrK0sBAQEKCQlRq1atNGPGDFVUVEiSUlJS1KtXL40fP16S1LZtW/3mN7+RJH344Yfq0qWLJk+eXPm966+/XocPH1bLli1lGIYSEhIUHBysTz/9VGVlZZo5c6b8/f3Vtm1bRUZGKjs7u1qeC93nwYMH1aFDBwUFBVWuz8zM1Pjx43Xu3DllZ2dX2XABAABYjb0WACdigAXAdOHh4YqOjlZSUpJKS0s1ePBg3X///fL391d6erqmT59eZf1Pl5dv3rxZd999d5XvHTlyRCNGjFBmZqZ69eql4OBgSdKmTZuUm5urkSNHVln/c3+9u9B9fvXVV7ruuusqv56fn68zZ86oS5cu2rdvn6644goFBgbWsQkAAADfY68FwIkYYAEwVXFxsQ4ePKi4uDjFxcUpOztb8+bNU69evdSvXz/l5uaqXbt2levT09NVWlqq/v376/vvv9cVV1xR+b0jR46ouLhYN9xwg/7whz+oR48eld87evSonnjiCUVERFTeb05Ojrp27Vot04Xu88CBA7r55psrv/fRRx/pqquukr+/vw4cOFBlwwUAAGA19loAnIr3wAJgqtOnT2v27NnauXOnysrKdPz4cRUXFys0NFSS1L17d61bt06FhYXaunWrFi9erFatWkmSOnXqpLVr1+rs2bPKzMzU4sWLFRsbqxYtWigzM1PXXHNN5f1cffXVSk1N1Q8//KDs7GzNnz9fn3766c9mutB95uTk6NSpUzIMQ7t371ZKSkrlZeyZmZnq3LlzPbYFAABQO+y1ADgVn0IIwHTJycn6y1/+otLSUnXu3FmTJk1Snz59JEnfffednnrqKX333Xfq1KmTpkyZUvmJNNnZ2XrhhReUlZWlLl266N5779WAAQNUVlamO++8U2+//bbatGkj6R+bt+eff1579uxRSEiI7rjjDsXExMjPr/rc/kL3uW7dOq1cuVKBgYEKDw9XXl6eoqOjNWTIECUnJyslJUVz585Vv379zCkPAADgIthrAXAiBlgAAAAAAACwNV5CCAAAAAAAAFtjgAUAAAAAAABbY4AFAAAAAAAAW2OABQAAAAAAAFv7X6bhh7x75FgGAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<IPython.core.display.Image object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plot_edge_performance(gnn_model)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Step 4: GNN inference "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:--------------------- Step 4: Scoring graph edges using GNN  ---------------------\n",
+      "INFO:---------------------------- a) Loading trained model ----------------------------\n",
+      "INFO:----------------------------- b) Running inferencing -----------------------------\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Training finished, running inference to filter graphs...\n",
+      "Building train\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "100%|██████████| 80/80 [00:03<00:00, 23.62it/s]\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Building val\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "100%|██████████| 10/10 [00:00<00:00, 28.12it/s]\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Building test\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "100%|██████████| 10/10 [00:00<00:00, 22.84it/s]\n"
+     ]
+    }
+   ],
+   "source": [
+    "run_gnn_inference(CONFIG)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Step 5: Build track candidates from GNN"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:-----------  Step 5: Building track candidates from the scored graph  -----------\n",
+      "INFO:---------------------------- a) Loading scored graphs ----------------------------\n",
+      "INFO:---------------------------- b) Labelling graph nodes ----------------------------\n",
+      "100%|██████████| 100/100 [00:00<00:00, 698.73it/s]\n"
+     ]
+    }
+   ],
+   "source": [
+    "build_track_candidates(CONFIG)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Step 6: Evaluate track candidates"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "We can control the matching style in the pipeline config file. The following all require at least a majority of hits to match in each scheme (i.e. matching fraction = 50%).\n",
+    "A discussion of each matching style and some worked examples can be found in the [Documentation](https://hsf-reco-and-software-triggers.github.io/Tracking-ML-Exa.TrkX/performance/matching_definitions/)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "ATLAS style matching is the default."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:------------ Step 6: Evaluating the track reconstruction performance ------------\n",
+      "INFO:--------------------------- a) Loading labelled graphs ---------------------------\n",
+      "100%|██████████| 100/100 [00:02<00:00, 43.86it/s]\n",
+      "INFO:--------------------- b) Calculating the performance metrics ---------------------\n",
+      "INFO:Number of reconstructed particles: 0\n",
+      "INFO:Number of particles: 23405\n",
+      "INFO:Number of matched tracks: 0\n",
+      "INFO:Number of tracks: 0\n",
+      "INFO:Number of duplicate reconstructed particles: 0\n"
+     ]
+    },
+    {
+     "ename": "ZeroDivisionError",
+     "evalue": "division by zero",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mZeroDivisionError\u001b[0m                         Traceback (most recent call last)",
+      "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m evaluated_events, reconstructed_particles, particles, matched_tracks, tracks \u001b[39m=\u001b[39m evaluate_candidates(CONFIG)\n\u001b[1;32m      3\u001b[0m \u001b[39m# send_telegram_message('Finished evaluation.', chat_id, api_key)\u001b[39;00m\n\u001b[1;32m      4\u001b[0m \n\u001b[1;32m      5\u001b[0m \u001b[39m# send_telegram_message(\"======================\", chat_id, api_key)\u001b[39;00m\n",
+      "File \u001b[0;32m~/Documents/PhD/tracking/etx4velo/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py:163\u001b[0m, in \u001b[0;36mevaluate\u001b[0;34m(config_file)\u001b[0m\n\u001b[1;32m    161\u001b[0m \u001b[39m# Plot the results across pT and eta\u001b[39;00m\n\u001b[1;32m    162\u001b[0m eff \u001b[39m=\u001b[39m n_reconstructed_particles \u001b[39m/\u001b[39m n_particles\n\u001b[0;32m--> 163\u001b[0m fake_rate \u001b[39m=\u001b[39m \u001b[39m1\u001b[39m \u001b[39m-\u001b[39m (n_matched_tracks \u001b[39m/\u001b[39;49m n_tracks)\n\u001b[1;32m    164\u001b[0m dup_rate \u001b[39m=\u001b[39m n_dup_reconstructed_particles \u001b[39m/\u001b[39m n_reconstructed_particles\n\u001b[1;32m    166\u001b[0m logging\u001b[39m.\u001b[39minfo(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mEfficiency: \u001b[39m\u001b[39m{\u001b[39;00meff\u001b[39m:\u001b[39;00m\u001b[39m.3f\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n",
+      "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero"
+     ]
+    }
+   ],
+   "source": [
+    "evaluated_events, reconstructed_particles, particles, matched_tracks, tracks = evaluate_candidates(CONFIG)\n",
+    "\n",
+    "# send_telegram_message('Finished evaluation.', chat_id, api_key)\n",
+    "\n",
+    "# send_telegram_message(\"======================\", chat_id, api_key)"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Get all graph files"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import montetracko as mt\n",
+    "from Scripts import Step_6_Evaluate_Reconstruction as evalreco\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "with open(CONFIG) as file:\n",
+    "    all_configs = yaml.load(file, Loader=yaml.FullLoader)\n",
+    "\n",
+    "common_configs = all_configs[\"common_configs\"]\n",
+    "track_building_configs = all_configs[\"track_building_configs\"]\n",
+    "evaluation_configs = all_configs[\"evaluation_configs\"]\n",
+    "\n",
+    "\n",
+    "input_dir = track_building_configs[\"output_dir\"]\n",
+    "output_dir = evaluation_configs[\"output_dir\"]\n",
+    "os.makedirs(output_dir, exist_ok=True)\n",
+    "\n",
+    "all_graph_files = os.listdir(input_dir)\n",
+    "all_graph_files = [os.path.join(input_dir, graph) for graph in all_graph_files]"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Get tracks"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 41,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import os\n",
+    "import os.path as op\n",
+    "import yaml"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "graph_file = all_graph_files[0]\n",
+    "reconstruction_df = evalreco.load_reconstruction_df(graph_file)\n",
+    "particles_df = evalreco.load_particles_df(graph_file)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "with open(CONFIG) as file:\n",
+    "    all_configs = yaml.load(file, Loader=yaml.FullLoader)\n",
+    "preprocessed_dir = all_configs[\"processing_configs\"][\"preprocessed_dir\"]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pyarrow as pa\n",
+    "import pyarrow.csv as pac"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "event_id_str = op.basename(graph_file)\n",
+    "path_particle_file = op.join(\n",
+    "    preprocessed_dir, f\"event{event_id_str}-particles.csv\"\n",
+    ")\n",
+    "path_hits_file = op.join(\n",
+    "    preprocessed_dir, f\"event{event_id_str}-hits.csv\"\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'data/track_building_processed/007212930'"
+      ]
+     },
+     "execution_count": 46,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "graph_file"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 51,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df_particles = pac.read_csv(path_particle_file).to_pandas()\n",
+    "df_hits = pac.read_csv(\n",
+    "    path_hits_file\n",
+    ").to_pandas()\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 52,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>x</th>\n",
+       "      <th>y</th>\n",
+       "      <th>z</th>\n",
+       "      <th>module_id</th>\n",
+       "      <th>hit_id</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>17.90920</td>\n",
+       "      <td>-32.687800</td>\n",
+       "      <td>-288.141</td>\n",
+       "      <td>0</td>\n",
+       "      <td>179847</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>6.16420</td>\n",
+       "      <td>-17.403700</td>\n",
+       "      <td>-288.141</td>\n",
+       "      <td>0</td>\n",
+       "      <td>179848</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>-16.64530</td>\n",
+       "      <td>-17.423100</td>\n",
+       "      <td>-286.859</td>\n",
+       "      <td>0</td>\n",
+       "      <td>179849</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>-19.79550</td>\n",
+       "      <td>-17.384200</td>\n",
+       "      <td>-286.859</td>\n",
+       "      <td>0</td>\n",
+       "      <td>179850</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>13.88400</td>\n",
+       "      <td>-27.340300</td>\n",
+       "      <td>-288.141</td>\n",
+       "      <td>0</td>\n",
+       "      <td>179851</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1554</th>\n",
+       "      <td>4.70580</td>\n",
+       "      <td>-2.839030</td>\n",
+       "      <td>750.641</td>\n",
+       "      <td>25</td>\n",
+       "      <td>181401</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1555</th>\n",
+       "      <td>4.88080</td>\n",
+       "      <td>-2.625130</td>\n",
+       "      <td>750.641</td>\n",
+       "      <td>25</td>\n",
+       "      <td>181402</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1556</th>\n",
+       "      <td>18.20090</td>\n",
+       "      <td>-4.355780</td>\n",
+       "      <td>750.641</td>\n",
+       "      <td>25</td>\n",
+       "      <td>181403</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1557</th>\n",
+       "      <td>7.42816</td>\n",
+       "      <td>-0.194454</td>\n",
+       "      <td>750.641</td>\n",
+       "      <td>25</td>\n",
+       "      <td>181404</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1558</th>\n",
+       "      <td>7.38926</td>\n",
+       "      <td>-0.155563</td>\n",
+       "      <td>749.359</td>\n",
+       "      <td>25</td>\n",
+       "      <td>181405</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>1559 rows × 5 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "             x          y        z  module_id  hit_id\n",
+       "0     17.90920 -32.687800 -288.141          0  179847\n",
+       "1      6.16420 -17.403700 -288.141          0  179848\n",
+       "2    -16.64530 -17.423100 -286.859          0  179849\n",
+       "3    -19.79550 -17.384200 -286.859          0  179850\n",
+       "4     13.88400 -27.340300 -288.141          0  179851\n",
+       "...        ...        ...      ...        ...     ...\n",
+       "1554   4.70580  -2.839030  750.641         25  181401\n",
+       "1555   4.88080  -2.625130  750.641         25  181402\n",
+       "1556  18.20090  -4.355780  750.641         25  181403\n",
+       "1557   7.42816  -0.194454  750.641         25  181404\n",
+       "1558   7.38926  -0.155563  749.359         25  181405\n",
+       "\n",
+       "[1559 rows x 5 columns]"
+      ]
+     },
+     "execution_count": 52,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_hits"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 50,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>particle_id</th>\n",
+       "      <th>vx</th>\n",
+       "      <th>vy</th>\n",
+       "      <th>vz</th>\n",
+       "      <th>q</th>\n",
+       "      <th>nhits</th>\n",
+       "      <th>px</th>\n",
+       "      <th>py</th>\n",
+       "      <th>pz</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>356</td>\n",
+       "      <td>-0.0041</td>\n",
+       "      <td>-0.0602</td>\n",
+       "      <td>10.4652</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>-0.053259</td>\n",
+       "      <td>-0.267060</td>\n",
+       "      <td>-10.240854</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>363</td>\n",
+       "      <td>-0.0041</td>\n",
+       "      <td>-0.0602</td>\n",
+       "      <td>10.4652</td>\n",
+       "      <td>-1</td>\n",
+       "      <td>6</td>\n",
+       "      <td>0.213420</td>\n",
+       "      <td>-0.242910</td>\n",
+       "      <td>-3.359714</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>366</td>\n",
+       "      <td>13.2756</td>\n",
+       "      <td>-4.5004</td>\n",
+       "      <td>-70.5277</td>\n",
+       "      <td>1</td>\n",
+       "      <td>4</td>\n",
+       "      <td>0.343090</td>\n",
+       "      <td>-0.106520</td>\n",
+       "      <td>-2.660824</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>368</td>\n",
+       "      <td>-0.0041</td>\n",
+       "      <td>-0.0602</td>\n",
+       "      <td>10.4652</td>\n",
+       "      <td>1</td>\n",
+       "      <td>5</td>\n",
+       "      <td>-0.638633</td>\n",
+       "      <td>0.837760</td>\n",
+       "      <td>-19.624627</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>369</td>\n",
+       "      <td>-0.0041</td>\n",
+       "      <td>-0.0602</td>\n",
+       "      <td>10.4652</td>\n",
+       "      <td>-1</td>\n",
+       "      <td>5</td>\n",
+       "      <td>0.109862</td>\n",
+       "      <td>0.450230</td>\n",
+       "      <td>-5.729871</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>468</th>\n",
+       "      <td>2977</td>\n",
+       "      <td>0.0058</td>\n",
+       "      <td>-0.0229</td>\n",
+       "      <td>-49.6429</td>\n",
+       "      <td>-1</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.296190</td>\n",
+       "      <td>0.188880</td>\n",
+       "      <td>-1.590305</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>469</th>\n",
+       "      <td>2982</td>\n",
+       "      <td>0.0058</td>\n",
+       "      <td>-0.0229</td>\n",
+       "      <td>-49.6429</td>\n",
+       "      <td>1</td>\n",
+       "      <td>5</td>\n",
+       "      <td>0.099371</td>\n",
+       "      <td>0.733550</td>\n",
+       "      <td>-5.143205</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>470</th>\n",
+       "      <td>2999</td>\n",
+       "      <td>0.0058</td>\n",
+       "      <td>-0.0229</td>\n",
+       "      <td>-49.6429</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>-0.322370</td>\n",
+       "      <td>-0.106259</td>\n",
+       "      <td>0.536697</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>471</th>\n",
+       "      <td>3002</td>\n",
+       "      <td>0.0058</td>\n",
+       "      <td>-0.0229</td>\n",
+       "      <td>-49.6429</td>\n",
+       "      <td>-1</td>\n",
+       "      <td>8</td>\n",
+       "      <td>-0.320081</td>\n",
+       "      <td>0.144409</td>\n",
+       "      <td>2.521247</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>472</th>\n",
+       "      <td>3003</td>\n",
+       "      <td>-20.5282</td>\n",
+       "      <td>8.9883</td>\n",
+       "      <td>112.1490</td>\n",
+       "      <td>-1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>-0.001380</td>\n",
+       "      <td>-0.000800</td>\n",
+       "      <td>0.002110</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>473 rows × 9 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     particle_id       vx      vy        vz  q  nhits        px        py  \\\n",
+       "0            356  -0.0041 -0.0602   10.4652  1      3 -0.053259 -0.267060   \n",
+       "1            363  -0.0041 -0.0602   10.4652 -1      6  0.213420 -0.242910   \n",
+       "2            366  13.2756 -4.5004  -70.5277  1      4  0.343090 -0.106520   \n",
+       "3            368  -0.0041 -0.0602   10.4652  1      5 -0.638633  0.837760   \n",
+       "4            369  -0.0041 -0.0602   10.4652 -1      5  0.109862  0.450230   \n",
+       "..           ...      ...     ...       ... ..    ...       ...       ...   \n",
+       "468         2977   0.0058 -0.0229  -49.6429 -1      2  0.296190  0.188880   \n",
+       "469         2982   0.0058 -0.0229  -49.6429  1      5  0.099371  0.733550   \n",
+       "470         2999   0.0058 -0.0229  -49.6429  1      3 -0.322370 -0.106259   \n",
+       "471         3002   0.0058 -0.0229  -49.6429 -1      8 -0.320081  0.144409   \n",
+       "472         3003 -20.5282  8.9883  112.1490 -1      1 -0.001380 -0.000800   \n",
+       "\n",
+       "            pz  \n",
+       "0   -10.240854  \n",
+       "1    -3.359714  \n",
+       "2    -2.660824  \n",
+       "3   -19.624627  \n",
+       "4    -5.729871  \n",
+       "..         ...  \n",
+       "468  -1.590305  \n",
+       "469  -5.143205  \n",
+       "470   0.536697  \n",
+       "471   2.521247  \n",
+       "472   0.002110  \n",
+       "\n",
+       "[473 rows x 9 columns]"
+      ]
+     },
+     "execution_count": 50,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_particles.to_pandas()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'data/track_building_processed/007212930'"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "graph_file"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.15"
+  },
+  "vscode": {
+   "interpreter": {
+    "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
-- 
GitLab


From 10a62a85d8c62b46473eca79f7d4245302e379d1 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 15:04:13 +0100
Subject: [PATCH 03/30] define get_all_graph_files

I need this function for my script
---
 .../Scripts/Step_6_Evaluate_Reconstruction.py | 24 ++++++++++++++-----
 1 file changed, 18 insertions(+), 6 deletions(-)

diff --git a/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py
index 2c01c4d0..bd9cc152 100644
--- a/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py
+++ b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py
@@ -1,7 +1,6 @@
 """
 This script runs step 6 of the TrackML Quickstart example: Evaluating the track reconstruction performance.
 """
-
 import sys
 import os
 import yaml
@@ -19,6 +18,7 @@ from functools import partial
 from Scripts.utils.convenience_utils import headline
 from Scripts.utils.plotting_utils import plot_pt_eff
 
+
 def parse_args():
     """Parse command line arguments."""
     parser = argparse.ArgumentParser("5_Build_Track_Candidates.py")
@@ -109,6 +109,22 @@ def evaluate_labelled_graph(graph_file, matching_fraction=0.5, matching_style="A
 
     return matching_df
 
+
+def get_all_graph_files(config: dict) -> typing.List[str]:
+    """Obtain the list of all the graph files.
+    
+    Args:
+        config: dictionnary representing the configuration
+    
+    Returns:
+        List of paths to the graph files
+    """
+    track_building_configs = config["track_building_configs"]
+    input_dir = track_building_configs["output_dir"]
+    all_graph_filenames = os.listdir(input_dir)
+    all_graph_files = [os.path.join(input_dir, graph) for graph in all_graph_filenames]
+    return all_graph_files
+
 def evaluate(config_file="pipeline_config.yaml"):
 
     logging.info(headline("Step 6: Evaluating the track reconstruction performance"))
@@ -116,18 +132,14 @@ def evaluate(config_file="pipeline_config.yaml"):
     with open(config_file) as file:
         all_configs = yaml.load(file, Loader=yaml.FullLoader)
 
-    common_configs = all_configs["common_configs"]
-    track_building_configs = all_configs["track_building_configs"]
     evaluation_configs = all_configs["evaluation_configs"]
 
     logging.info(headline("a) Loading labelled graphs"))
 
-    input_dir = track_building_configs["output_dir"]
     output_dir = evaluation_configs["output_dir"]
     os.makedirs(output_dir, exist_ok=True)
 
-    all_graph_files = os.listdir(input_dir)
-    all_graph_files = [os.path.join(input_dir, graph) for graph in all_graph_files]
+    all_graph_files = get_all_graph_files(config=all_configs)
 
     evaluated_events = []
     for graph_file in tqdm(all_graph_files):
-- 
GitLab


From e4a774f602587390316a4ac62db320893760a6e2 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 15:04:28 +0100
Subject: [PATCH 04/30] remove unused libraries

---
 LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py | 7 +------
 1 file changed, 1 insertion(+), 6 deletions(-)

diff --git a/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py
index bd9cc152..fc15634a 100644
--- a/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py
+++ b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py
@@ -1,7 +1,7 @@
 """
 This script runs step 6 of the TrackML Quickstart example: Evaluating the track reconstruction performance.
 """
-import sys
+import typing
 import os
 import yaml
 import argparse
@@ -9,15 +9,10 @@ import logging
 import torch
 import numpy as np
 import pandas as pd
-import scipy.sparse as sps
 import matplotlib.pyplot as plt
 
-from tqdm.contrib.concurrent import process_map
 from tqdm import tqdm
-from functools import partial
 from Scripts.utils.convenience_utils import headline
-from Scripts.utils.plotting_utils import plot_pt_eff
-
 
 def parse_args():
     """Parse command line arguments."""
-- 
GitLab


From df15f0c807a7cfb8bbf80480530c32f6d8f651cd Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 15:04:54 +0100
Subject: [PATCH 05/30] formatting with black

---
 .../Scripts/Step_6_Evaluate_Reconstruction.py | 199 ++++++++++++------
 1 file changed, 135 insertions(+), 64 deletions(-)

diff --git a/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py
index fc15634a..9ed27d98 100644
--- a/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py
+++ b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py
@@ -14,6 +14,7 @@ import matplotlib.pyplot as plt
 from tqdm import tqdm
 from Scripts.utils.convenience_utils import headline
 
+
 def parse_args():
     """Parse command line arguments."""
     parser = argparse.ArgumentParser("5_Build_Track_Candidates.py")
@@ -21,12 +22,16 @@ def parse_args():
     add_arg("config", nargs="?", default="pipeline_config.yaml")
     return parser.parse_args()
 
+
 def load_reconstruction_df(file):
     """Load the reconstructed tracks from a file."""
     graph = torch.load(file, map_location="cpu")
-    reconstruction_df = pd.DataFrame({"hit_id": graph.hid, "track_id": graph.labels, "particle_id": graph.pid})
+    reconstruction_df = pd.DataFrame(
+        {"hit_id": graph.hid, "track_id": graph.labels, "particle_id": graph.pid}
+    )
     return reconstruction_df
 
+
 def load_particles_df(file):
     """Load the particles from a file."""
     graph = torch.load(file, map_location="cpu")
@@ -35,45 +40,79 @@ def load_particles_df(file):
     particles_df = pd.DataFrame({"particle_id": graph.pid, "pt": graph.pt})
 
     # Reduce to only unique particle_ids
-    particles_df = particles_df.drop_duplicates(subset=['particle_id'])
+    particles_df = particles_df.drop_duplicates(subset=["particle_id"])
 
     return particles_df
 
-def get_matching_df(reconstruction_df, particles_df, min_track_length=1, min_particle_length=1):
-    
+
+def get_matching_df(
+    reconstruction_df, particles_df, min_track_length=1, min_particle_length=1
+):
     # Get track lengths
-    candidate_lengths = reconstruction_df.track_id.value_counts(sort=False)\
-        .reset_index().rename(
-            columns={"index":"track_id", "track_id": "n_reco_hits"})
+    candidate_lengths = (
+        reconstruction_df.track_id.value_counts(sort=False)
+        .reset_index()
+        .rename(columns={"index": "track_id", "track_id": "n_reco_hits"})
+    )
 
     # Get true track lengths
-    particle_lengths = reconstruction_df.drop_duplicates(subset=['hit_id']).particle_id.value_counts(sort=False)\
-        .reset_index().rename(
-            columns={"index":"particle_id", "particle_id": "n_true_hits"})
-
-    spacepoint_matching = reconstruction_df.groupby(['track_id', 'particle_id']).size()\
-        .reset_index().rename(columns={0:"n_shared"})
-
-    spacepoint_matching = spacepoint_matching.merge(candidate_lengths, on=['track_id'], how='left')
-    spacepoint_matching = spacepoint_matching.merge(particle_lengths, on=['particle_id'], how='left')
-    spacepoint_matching = spacepoint_matching.merge(particles_df, on=['particle_id'], how='left')
+    particle_lengths = (
+        reconstruction_df.drop_duplicates(subset=["hit_id"])
+        .particle_id.value_counts(sort=False)
+        .reset_index()
+        .rename(columns={"index": "particle_id", "particle_id": "n_true_hits"})
+    )
+
+    spacepoint_matching = (
+        reconstruction_df.groupby(["track_id", "particle_id"])
+        .size()
+        .reset_index()
+        .rename(columns={0: "n_shared"})
+    )
+
+    spacepoint_matching = spacepoint_matching.merge(
+        candidate_lengths, on=["track_id"], how="left"
+    )
+    spacepoint_matching = spacepoint_matching.merge(
+        particle_lengths, on=["particle_id"], how="left"
+    )
+    spacepoint_matching = spacepoint_matching.merge(
+        particles_df, on=["particle_id"], how="left"
+    )
 
     # Filter out tracks with too few shared spacepoints
-    spacepoint_matching["is_matchable"] = spacepoint_matching.n_reco_hits >= min_track_length
-    spacepoint_matching["is_reconstructable"] = spacepoint_matching.n_true_hits >= min_particle_length
+    spacepoint_matching["is_matchable"] = (
+        spacepoint_matching.n_reco_hits >= min_track_length
+    )
+    spacepoint_matching["is_reconstructable"] = (
+        spacepoint_matching.n_true_hits >= min_particle_length
+    )
 
     return spacepoint_matching
 
+
 def calculate_matching_fraction(spacepoint_matching_df):
     spacepoint_matching_df = spacepoint_matching_df.assign(
-        purity_reco=np.true_divide(spacepoint_matching_df.n_shared, spacepoint_matching_df.n_reco_hits))
+        purity_reco=np.true_divide(
+            spacepoint_matching_df.n_shared, spacepoint_matching_df.n_reco_hits
+        )
+    )
     spacepoint_matching_df = spacepoint_matching_df.assign(
-        eff_true = np.true_divide(spacepoint_matching_df.n_shared, spacepoint_matching_df.n_true_hits))
+        eff_true=np.true_divide(
+            spacepoint_matching_df.n_shared, spacepoint_matching_df.n_true_hits
+        )
+    )
 
     return spacepoint_matching_df
 
-def evaluate_labelled_graph(graph_file, matching_fraction=0.5, matching_style="ATLAS", min_track_length=1, min_particle_length=1):
 
+def evaluate_labelled_graph(
+    graph_file,
+    matching_fraction=0.5,
+    matching_style="ATLAS",
+    min_track_length=1,
+    min_particle_length=1,
+):
     if matching_fraction < 0.5:
         raise ValueError("Matching fraction must be >= 0.5")
 
@@ -86,31 +125,42 @@ def evaluate_labelled_graph(graph_file, matching_fraction=0.5, matching_style="A
     particles_df = load_particles_df(graph_file)
 
     # Get matching dataframe
-    matching_df = get_matching_df(reconstruction_df, particles_df, min_track_length=min_track_length, min_particle_length=min_particle_length) 
+    matching_df = get_matching_df(
+        reconstruction_df,
+        particles_df,
+        min_track_length=min_track_length,
+        min_particle_length=min_particle_length,
+    )
     matching_df["event_id"] = int(graph_file.split("/")[-1])
 
     # Calculate matching fraction
     matching_df = calculate_matching_fraction(matching_df)
-    matching_df = matching_df[matching_df['particle_id'] != 0] # Drop particles with particle_id == 0
+    matching_df = matching_df[
+        matching_df["particle_id"] != 0
+    ]  # Drop particles with particle_id == 0
 
     # Run matching depending on the matching style
     if matching_style == "ATLAS":
-        matching_df["is_matched"] = matching_df["is_reconstructed"] = matching_df.purity_reco >= matching_fraction
+        matching_df["is_matched"] = matching_df["is_reconstructed"] = (
+            matching_df.purity_reco >= matching_fraction
+        )
     elif matching_style == "one_way":
         matching_df["is_matched"] = matching_df.purity_reco >= matching_fraction
         matching_df["is_reconstructed"] = matching_df.eff_true >= matching_fraction
     elif matching_style == "two_way":
-        matching_df["is_matched"] = matching_df["is_reconstructed"] = (matching_df.purity_reco >= matching_fraction) & (matching_df.eff_true >= matching_fraction)
+        matching_df["is_matched"] = matching_df["is_reconstructed"] = (
+            matching_df.purity_reco >= matching_fraction
+        ) & (matching_df.eff_true >= matching_fraction)
 
     return matching_df
 
 
 def get_all_graph_files(config: dict) -> typing.List[str]:
     """Obtain the list of all the graph files.
-    
+
     Args:
         config: dictionnary representing the configuration
-    
+
     Returns:
         List of paths to the graph files
     """
@@ -120,8 +170,8 @@ def get_all_graph_files(config: dict) -> typing.List[str]:
     all_graph_files = [os.path.join(input_dir, graph) for graph in all_graph_filenames]
     return all_graph_files
 
-def evaluate(config_file="pipeline_config.yaml"):
 
+def evaluate(config_file="pipeline_config.yaml"):
     logging.info(headline("Step 6: Evaluating the track reconstruction performance"))
 
     with open(config_file) as file:
@@ -138,42 +188,56 @@ def evaluate(config_file="pipeline_config.yaml"):
 
     evaluated_events = []
     for graph_file in tqdm(all_graph_files):
-        evaluated_events.append(evaluate_labelled_graph(graph_file, 
-                                matching_fraction=evaluation_configs["matching_fraction"], 
-                                matching_style=evaluation_configs["matching_style"],
-                                min_track_length=evaluation_configs["min_track_length"],
-                                min_particle_length=evaluation_configs["min_particle_length"]))
+        evaluated_events.append(
+            evaluate_labelled_graph(
+                graph_file,
+                matching_fraction=evaluation_configs["matching_fraction"],
+                matching_style=evaluation_configs["matching_style"],
+                min_track_length=evaluation_configs["min_track_length"],
+                min_particle_length=evaluation_configs["min_particle_length"],
+            )
+        )
     evaluated_events = pd.concat(evaluated_events)
 
     particles = evaluated_events[evaluated_events["is_reconstructable"]]
-    reconstructed_particles = particles[particles["is_reconstructed"] & particles["is_matchable"]]    
+    reconstructed_particles = particles[
+        particles["is_reconstructed"] & particles["is_matchable"]
+    ]
     tracks = evaluated_events[evaluated_events["is_matchable"]]
     matched_tracks = tracks[tracks["is_matched"]]
 
-    n_particles = len(particles.drop_duplicates(subset=['event_id', 'particle_id']))
-    n_reconstructed_particles = len(reconstructed_particles.drop_duplicates(subset=['event_id', 'particle_id']))
-    
-    n_tracks = len(tracks.drop_duplicates(subset=['event_id', 'track_id']))
-    n_matched_tracks = len(matched_tracks.drop_duplicates(subset=['event_id', 'track_id']))
+    n_particles = len(particles.drop_duplicates(subset=["event_id", "particle_id"]))
+    n_reconstructed_particles = len(
+        reconstructed_particles.drop_duplicates(subset=["event_id", "particle_id"])
+    )
+
+    n_tracks = len(tracks.drop_duplicates(subset=["event_id", "track_id"]))
+    n_matched_tracks = len(
+        matched_tracks.drop_duplicates(subset=["event_id", "track_id"])
+    )
 
-    n_dup_reconstructed_particles = len(reconstructed_particles) - n_reconstructed_particles
+    n_dup_reconstructed_particles = (
+        len(reconstructed_particles) - n_reconstructed_particles
+    )
 
     logging.info(headline("b) Calculating the performance metrics"))
     logging.info(f"Number of reconstructed particles: {n_reconstructed_particles}")
     logging.info(f"Number of particles: {n_particles}")
     logging.info(f"Number of matched tracks: {n_matched_tracks}")
     logging.info(f"Number of tracks: {n_tracks}")
-    logging.info(f"Number of duplicate reconstructed particles: {n_dup_reconstructed_particles}")   
+    logging.info(
+        f"Number of duplicate reconstructed particles: {n_dup_reconstructed_particles}"
+    )
 
     eff = n_reconstructed_particles / n_particles
 
-    if n_tracks!=0 and n_reconstructed_particles!=0:
+    if n_tracks != 0 and n_reconstructed_particles != 0:
         fake_rate = 1 - (n_matched_tracks / n_tracks)
         dup_rate = n_dup_reconstructed_particles / n_reconstructed_particles
     else:
         fake_rate = np.nan
         dup_rate = np.nan
-    
+
     logging.info(f"Efficiency: {eff:.3f}")
     logging.info(f"Fake rate: {fake_rate:.3f}")
     logging.info(f"Duplication rate: {dup_rate:.3f}")
@@ -182,39 +246,46 @@ def evaluate(config_file="pipeline_config.yaml"):
 
     num_bins = 30
     f1, ax1 = plt.subplots()
-    n1 = ax1.hist(particles.drop_duplicates(subset=['event_id', 'particle_id']).pt, bins=num_bins, range=(0,3))
-    n2 = ax1.hist(reconstructed_particles.drop_duplicates(subset=['event_id', 'particle_id']).pt, bins=num_bins, range=(0,3))            
-    ax1.legend(['reconstructible', 'reconstructed'])
-    ax1.set_title('Tranverse momentum distribution')
-    ax1.set_xlabel('$p_T$ [GeV]')
-    f1.savefig('reconstructible_vs_reconstructed_pt.png')
-
-    x = [(n1[1][i]+n1[1][i+1])/2 for i in range(len(n1[1]) - 1)]
+    n1 = ax1.hist(
+        particles.drop_duplicates(subset=["event_id", "particle_id"]).pt,
+        bins=num_bins,
+        range=(0, 3),
+    )
+    n2 = ax1.hist(
+        reconstructed_particles.drop_duplicates(subset=["event_id", "particle_id"]).pt,
+        bins=num_bins,
+        range=(0, 3),
+    )
+    ax1.legend(["reconstructible", "reconstructed"])
+    ax1.set_title("Tranverse momentum distribution")
+    ax1.set_xlabel("$p_T$ [GeV]")
+    f1.savefig("reconstructible_vs_reconstructed_pt.png")
+
+    x = [(n1[1][i] + n1[1][i + 1]) / 2 for i in range(len(n1[1]) - 1)]
 
     f2, ax2 = plt.subplots()
-    ax2.scatter(x, n2[0]/n1[0], marker='+')
-    ax2.set_title('Efficiency vs transverse momentum')
-    ax2.set_ylabel('Efficiency')
-    ax2.set_xlabel('$p_T$ [GeV]')
-    f2.savefig('pt_efficiency.png')
+    ax2.scatter(x, n2[0] / n1[0], marker="+")
+    ax2.set_title("Efficiency vs transverse momentum")
+    ax2.set_ylabel("Efficiency")
+    ax2.set_xlabel("$p_T$ [GeV]")
+    f2.savefig("pt_efficiency.png")
 
     # First get the list of particles without duplicates
-    grouped_reco_particles = particles.groupby('particle_id')["is_reconstructed"].any()
-    particles["is_reconstructed"] = particles["particle_id"].isin(grouped_reco_particles[grouped_reco_particles].index.values)
-    particles = particles.drop_duplicates(subset=['particle_id'])
+    grouped_reco_particles = particles.groupby("particle_id")["is_reconstructed"].any()
+    particles["is_reconstructed"] = particles["particle_id"].isin(
+        grouped_reco_particles[grouped_reco_particles].index.values
+    )
+    particles = particles.drop_duplicates(subset=["particle_id"])
 
     # Plot the results across pT and eta
     # plot_pt_eff(particles)
 
     # TODO: Plot the results
     return evaluated_events, reconstructed_particles, particles, matched_tracks, tracks
-    
-
 
 
 if __name__ == "__main__":
-
     args = parse_args()
     config_file = args.config
 
-    evaluate(config_file) 
\ No newline at end of file
+    evaluate(config_file)
-- 
GitLab


From df344080258b2482d4cd5581a4371ace54569beb Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 15:45:31 +0100
Subject: [PATCH 06/30] formatting

---
 .../Processing/utils/preprocessing.py         | 158 +++++++++++-------
 1 file changed, 97 insertions(+), 61 deletions(-)

diff --git a/LHCb_Pipeline/Processing/utils/preprocessing.py b/LHCb_Pipeline/Processing/utils/preprocessing.py
index c7cc0ce0..e78bd795 100644
--- a/LHCb_Pipeline/Processing/utils/preprocessing.py
+++ b/LHCb_Pipeline/Processing/utils/preprocessing.py
@@ -1,20 +1,25 @@
 import os, shutil
 import numpy as np
 import pandas as pd
-import matplotlib.pyplot as plt
 
 
-def preprocess(input_dir, output_dir, output_num, clear_directories=True, num_true_hits_threshold=0):
+def preprocess(
+    input_dir: str,
+    output_dir: str,
+    output_num: str,
+    clear_directories: bool = True,
+    num_true_hits_threshold: int = 0,
+):
     """
-    Preprocess the first `output_num` events in the input files, into the form of the TrackML dataset.
+    Preprocess the first `output_num` events in the input files,
+    into the form of the TrackML dataset.
     Remove any events that contain only fake hits.
     """
 
     os.makedirs(input_dir, exist_ok=True)
     os.makedirs(output_dir, exist_ok=True)
-    
 
-    # Clear contents 
+    # Clear contents
     if clear_directories:
         folder = output_dir
         for filename in os.listdir(folder):
@@ -25,93 +30,124 @@ def preprocess(input_dir, output_dir, output_num, clear_directories=True, num_tr
                 elif os.path.isdir(file_path):
                     shutil.rmtree(file_path)
             except Exception as e:
-                print('Failed to delete %s. Reason: %s' % (file_path, e))
+                print("Failed to delete %s. Reason: %s" % (file_path, e))
 
     # hits = pd.read_csv(f'{input_dir}/hits_velo.csv') # Read hits
     # particles = pd.read_csv(f'{input_dir}/mc_particles.csv') # Read MC particles
-    hits = pd.read_parquet(f'{input_dir}/hits_velo.parquet.lz4')
-    particles = pd.read_parquet(f'{input_dir}/mc_particles.parquet.lz4')
-    hits = hits.merge(particles, on=['event', 'mcid'], how='left') # Merge
+    hits = pd.read_parquet(f"{input_dir}/hits_velo.parquet.lz4")
+    particles = pd.read_parquet(f"{input_dir}/mc_particles.parquet.lz4")
+    hits = hits.merge(particles, on=["event", "mcid"], how="left")  # Merge
     # NB: left join!: keep fake hits
 
     # Remove hits with has_velo == 0
-    hits = hits[hits['has_velo'] == 1]
+    # hits = hits[hits["has_velo"] == 1]
 
     # Remove electrons and positrons ?
-    hits = hits[np.abs(hits['pid']) != 11]
+    # hits = hits[np.abs(hits["pid"]) != 11]
 
-    event_list = hits['event'].unique() # The order is not mixed
+    event_list = hits["event"].unique()  # The order is not mixed
 
-    i = 0 # Count the number of events outputed
+    i = 0  # Count the number of events outputed
     for event_num in event_list:
-        event_hits = hits[hits['event'] == event_num]
-        event_particles = particles[particles['event'] == event_num]
-        
+        event_hits = hits[hits["event"] == event_num]
+        event_particles = particles[particles["event"] == event_num]
+
         # -hits.csv, use event_hits
-        hits_csv = event_hits[['x', 'y', 'z', 'plane']]
-        hits_csv.rename(columns={'plane': 'module_id'}, inplace=True)
-        hits_csv['hit_id'] = hits_csv.index + 1
+        hits_csv = event_hits[["x", "y", "z", "plane"]]
+        hits_csv.rename(columns={"plane": "module_id"}, inplace=True)
+        hits_csv["hit_id"] = hits_csv.index + 1  # TODO: this is not accurate 
         num = str(event_num).zfill(9)
-        hits_csv.to_csv(f'{output_dir}/event{num}-hits.csv', index=False)
+        hits_csv.to_csv(f"{output_dir}/event{num}-hits.csv", index=False)
 
         # -particles.csv, use event_particles
-        # particles_csv = event_particles[['mcid','vx', 'vy', 'vz', 'p', 'pt', 'eta', 'phi', 'charge', 'nhits_velo']]
+        # particles_csv = event_particles[
+        #     [
+        #         "mcid",
+        #         "vx",
+        #         "vy",
+        #         "vz",
+        #         "p",
+        #         "pt",
+        #         "eta",
+        #         "phi",
+        #         "charge",
+        #         "nhits_velo",
+        #     ]
+        # ]
         particles_csv = event_particles  # save everything
-        particles_csv.rename(columns={'mcid': 'particle_id', 'charge': 'q', 'nhits_velo': 'nhits'}, inplace=True)
-        particles_csv['particle_id'] = particles_csv['particle_id'] + 1
-        pt = event_particles['pt']
-        eta = event_particles['eta']
-        phi = event_particles['phi']
-        px = pt * np.cos(phi) # Correctly transform coordinates
-        py = pt * np.sin(phi) # https://thespectrumofriemannium.wordpress.com/tag/pseudorapidity/
+        particles_csv.rename(
+            columns={"mcid": "particle_id", "charge": "q", "nhits_velo": "nhits"},
+            inplace=True,
+        )
+        particles_csv["particle_id"] = particles_csv["particle_id"] + 1
+        pt = event_particles["pt"]
+        eta = event_particles["eta"]
+        phi = event_particles["phi"]
+        px = pt * np.cos(phi)  # Correctly transform coordinates
+        py = pt * np.sin(
+            phi
+        )  # https://thespectrumofriemannium.wordpress.com/tag/pseudorapidity/
         pz = pt * np.sinh(eta)
-        particles_csv['px'] = px / 1000 # Convert momentum from MeV to GeV
-        particles_csv['py'] = py / 1000
-        particles_csv['pz'] = pz / 1000
-        particles_csv.drop(['p', 'pt', 'eta', 'phi'], axis=1, inplace=True)
+        particles_csv["px"] = px / 1000  # Convert momentum from MeV to GeV
+        particles_csv["py"] = py / 1000
+        particles_csv["pz"] = pz / 1000
+        # particles_csv.drop(["p", "pt", "eta", "phi"], axis=1, inplace=True)  # let's keep them
         num = str(event_num).zfill(9)
-        particles_csv.to_csv(f'{output_dir}/event{num}-particles.csv', index=False)
+        particles_csv.to_csv(f"{output_dir}/event{num}-particles.csv", index=False)
 
         # -truth.csv, use event_hits
-        truth_csv = event_hits[['mcid','x', 'y', 'z', 'p', 'pt', 'eta', 'phi', 'lhcbid']]
-        truth_csv.rename(columns={'mcid': 'particle_id', 'x': 'tx', 'y': 'ty', 'z': 'tz'}, inplace=True)
-        truth_csv['particle_id'] = truth_csv['particle_id'] + 1
-        pt = event_hits['pt']
-        eta = event_hits['eta']
-        phi = event_hits['phi']
-        px = pt * np.cos(phi) # Correctly transform coordinates
+        truth_csv = event_hits[
+            ["mcid", "x", "y", "z", "p", "pt", "eta", "phi", "lhcbid"]
+        ]
+        truth_csv.rename(
+            columns={"mcid": "particle_id", "x": "tx", "y": "ty", "z": "tz"},
+            inplace=True,
+        )
+        truth_csv["particle_id"] = truth_csv["particle_id"] + 1
+        pt = event_hits["pt"]
+        eta = event_hits["eta"]
+        phi = event_hits["phi"]
+        px = pt * np.cos(phi)  # Correctly transform coordinates
         py = pt * np.sin(phi)
         pz = pt * np.sinh(eta)
-        truth_csv['tpx'] = px / 1000 # Convert momentum from MeV to GeV
-        truth_csv['tpy'] = py / 1000
-        truth_csv['tpz'] = pz / 1000
-        truth_csv.drop(['p', 'pt', 'eta', 'phi'], axis=1, inplace=True)
+        truth_csv["tpx"] = px / 1000  # Convert momentum from MeV to GeV
+        truth_csv["tpy"] = py / 1000
+        truth_csv["tpz"] = pz / 1000
+        truth_csv.drop(["p", "pt", "eta", "phi"], axis=1, inplace=True)
         num = str(event_num).zfill(9)
-        truth_csv['hit_id'] = hits_csv.index + 1
-        truth_csv.to_csv(f'{output_dir}/event{num}-truth.csv', index=False)
+        truth_csv["hit_id"] = hits_csv.index + 1
+        truth_csv.to_csv(f"{output_dir}/event{num}-truth.csv", index=False)
 
-        num_true_hits = len(truth_csv[truth_csv['particle_id'] != 0].drop_duplicates(subset=['lhcbid']))
-        if (len(truth_csv['particle_id'].value_counts()) == 1 and truth_csv['particle_id'].value_counts().iloc[0] != 0):
+        num_true_hits = len(
+            truth_csv[truth_csv["particle_id"] != 0].drop_duplicates(subset=["lhcbid"])
+        )
+        if (
+            len(truth_csv["particle_id"].value_counts()) == 1
+            and truth_csv["particle_id"].value_counts().iloc[0] != 0
+        ):
             # Discard "fake" events
-            print(f'Discarding event {num}, contains only fake hits.')
+            print(f"Discarding event {num}, contains only fake hits.")
             # Discard events that only contain fake hits
-            os.remove(f'{output_dir}/event{num}-hits.csv')
-            os.remove(f'{output_dir}/event{num}-particles.csv')
-            os.remove(f'{output_dir}/event{num}-truth.csv')
+            os.remove(f"{output_dir}/event{num}-hits.csv")
+            os.remove(f"{output_dir}/event{num}-particles.csv")
+            os.remove(f"{output_dir}/event{num}-truth.csv")
         elif num_true_hits < num_true_hits_threshold:
             # Check the number of hits
-            print(f'Discarding event {num}, contains only {num_true_hits} true hits.')
+            print(f"Discarding event {num}, contains only {num_true_hits} true hits.")
             # Discard events
-            os.remove(f'{output_dir}/event{num}-hits.csv')
-            os.remove(f'{output_dir}/event{num}-particles.csv')
-            os.remove(f'{output_dir}/event{num}-truth.csv')
+            os.remove(f"{output_dir}/event{num}-hits.csv")
+            os.remove(f"{output_dir}/event{num}-particles.csv")
+            os.remove(f"{output_dir}/event{num}-truth.csv")
         else:
             i += 1  # If not discarded, count
-            print(f'Saving event {num}, {i}/{output_num}, contains {num_true_hits} true hits.')
+            print(
+                f"Saving event {num}, {i}/{output_num}, contains {num_true_hits} true hits."
+            )
 
         if i == output_num:
-            break   # If output number reached, break loop
-    
-    if i < output_num:
-        raise Exception(f'Not enough events found with more than {num_true_hits} true hits')
+            break  # If output number reached, break loop
 
+    if i < output_num:
+        raise Exception(
+            f"Not enough events found with more than {num_true_hits} true hits"
+        )
-- 
GitLab


From b605dce3a0a36986b51692dd5802a64d001c9283 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 16:05:21 +0100
Subject: [PATCH 07/30] temporary pipeline for testing

---
 LHCb_Pipeline/full_pipeline_anthony.ipynb | 1110 +++++++++++----------
 1 file changed, 570 insertions(+), 540 deletions(-)

diff --git a/LHCb_Pipeline/full_pipeline_anthony.ipynb b/LHCb_Pipeline/full_pipeline_anthony.ipynb
index 77585245..13bcc803 100644
--- a/LHCb_Pipeline/full_pipeline_anthony.ipynb
+++ b/LHCb_Pipeline/full_pipeline_anthony.ipynb
@@ -19,14 +19,6 @@
    "execution_count": 1,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/acorreia/softwares/mambaforge/envs/etx4velo/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
-      "  from .autonotebook import tqdm as notebook_tqdm\n"
-     ]
-    },
     {
      "data": {
       "text/html": [
@@ -186,7 +178,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
@@ -302,207 +294,226 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "  0%|          | 0/100 [00:00<?, ?it/s]INFO:Preparing event 004206889\n",
-      "INFO:Preparing event 004206896\n",
-      "INFO:Preparing event 004206891\n",
       "INFO:Preparing event 004206890\n",
+      "INFO:Preparing event 004206889\n",
+      "INFO:Preparing event 004206891\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a467fbebb2da45359ca424b4e5aa2f07",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "  0%|          | 0/100 [00:00<?, ?it/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
       "INFO:Preparing event 004206892\n",
       "INFO:Preparing event 004206893\n",
-      "INFO:Preparing event 004206894\n",
       "INFO:Preparing event 004206895\n",
+      "INFO:Preparing event 004206894\n",
+      "INFO:Preparing event 004206899\n",
       "INFO:Preparing event 004206897\n",
-      "INFO:Preparing event 004206901\n",
       "INFO:Preparing event 004206900\n",
-      "INFO:Preparing event 004206902\n",
+      "INFO:Preparing event 004206901\n",
+      "INFO:Preparing event 004206903\n",
       "INFO:Preparing event 004206904\n",
+      "INFO:Preparing event 004206902\n",
       "INFO:Preparing event 004206905\n",
+      "INFO:Preparing event 004206911\n",
       "INFO:Preparing event 004206907\n",
+      "INFO:Preparing event 004206912\n",
+      "INFO:Preparing event 004206914\n",
+      "INFO:Preparing event 004206913\n",
+      "INFO:Preparing event 004206910\n",
       "INFO:Preparing event 004206908\n",
+      "INFO:Preparing event 004206915\n",
       "INFO:Preparing event 004206909\n",
-      "INFO:Preparing event 004206910\n",
-      "INFO:Preparing event 004206913\n",
-      "INFO:Preparing event 004206911\n",
       "INFO:Preparing event 004206916\n",
-      "INFO:Preparing event 004206903\n",
-      "INFO:Preparing event 004206921\n",
       "INFO:Preparing event 004206917\n",
-      "INFO:Preparing event 004206915\n",
-      "INFO:Preparing event 004206914\n",
-      "INFO:Preparing event 004206912\n",
+      "INFO:Preparing event 004206918\n",
       "INFO:Preparing event 004206919\n",
-      "INFO:Preparing event 004206898\n",
       "INFO:Preparing event 004206920\n",
-      "INFO:Preparing event 004206918\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206890 with size (2, 742)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206908 with size (2, 691)\n",
+      "INFO:Preparing event 004206921\n",
+      "INFO:Preparing event 004206896\n",
+      "INFO:Preparing event 004206898\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206897 with size (2, 983)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206912 with size (2, 1089)\n",
       "INFO:Preparing event 004206922\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206907 with size (2, 803)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206892 with size (2, 545)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206902 with size (2, 1860)\n",
-      "INFO:Preparing event 004206899\n",
       "INFO:Preparing event 004206923\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206895 with size (2, 625)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206913 with size (2, 2754)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206910 with size (2, 228)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206899 with size (2, 650)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206914 with size (2, 488)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206891 with size (2, 1109)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206904 with size (2, 2437)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206893 with size (2, 1163)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206890 with size (2, 742)\n",
       "INFO:Preparing event 004206926\n",
       "INFO:Preparing event 004206925\n",
-      "INFO:Preparing event 004206928\n",
-      "INFO:Preparing event 004206924\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206921 with size (2, 2020)\n",
       "INFO:Preparing event 004206927\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206903 with size (2, 1492)\n",
-      "INFO:Preparing event 004206931\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206916 with size (2, 736)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206915 with size (2, 597)\n",
+      "INFO:Preparing event 004206924\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206895 with size (2, 625)\n",
+      "INFO:Preparing event 004206928\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206900 with size (2, 729)\n",
+      "INFO:Preparing event 004206929\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206894 with size (2, 1145)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206909 with size (2, 708)\n",
       "INFO:Preparing event 004206930\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206896 with size (2, 782)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206901 with size (2, 1779)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206917 with size (2, 1507)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206897 with size (2, 983)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206909 with size (2, 708)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206891 with size (2, 1109)\n",
-      "INFO:Preparing event 004206933\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206918 with size (2, 1355)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206913 with size (2, 2754)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206922 with size (2, 505)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206892 with size (2, 545)\n",
+      "INFO:Preparing event 004206935\n",
       "INFO:Preparing event 004206934\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206914 with size (2, 488)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206889 with size (2, 626)\n",
-      "INFO:Preparing event 004206929\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206911 with size (2, 875)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206900 with size (2, 729)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206901 with size (2, 1779)\n",
-      "INFO:Preparing event 004206937\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206896 with size (2, 782)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206923 with size (2, 848)\n",
       "INFO:Preparing event 004206936\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206905 with size (2, 2741)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206920 with size (2, 954)\n",
-      "INFO:Preparing event 004206940\n",
-      "INFO:Preparing event 004206939\n",
-      "INFO:Preparing event 004206942\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206893 with size (2, 1163)\n",
-      "INFO:Preparing event 004206943\n",
-      "  1%|          | 1/100 [00:00<00:16,  5.84it/s]INFO:Preparing event 004206941\n",
-      "INFO:Preparing event 004206935\n",
+      "INFO:Preparing event 004206933\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206902 with size (2, 1860)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206915 with size (2, 597)\n",
+      "INFO:Preparing event 004206931\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206910 with size (2, 228)\n",
       "INFO:Preparing event 004206938\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206912 with size (2, 1089)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206919 with size (2, 1329)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206894 with size (2, 1145)\n",
+      "INFO:Preparing event 004206937\n",
+      "INFO:Preparing event 004206939\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206908 with size (2, 691)\n",
+      "INFO:Preparing event 004206940\n",
+      "INFO:Preparing event 004206941\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206907 with size (2, 803)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206916 with size (2, 736)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206911 with size (2, 875)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206889 with size (2, 626)\n",
+      "INFO:Preparing event 004206946\n",
       "INFO:Preparing event 004206944\n",
-      "INFO:Preparing event 004206947\n",
-      "INFO:Preparing event 004206949\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206919 with size (2, 1329)\n",
+      "INFO:Preparing event 004206942\n",
       "INFO:Preparing event 004206945\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206903 with size (2, 1492)\n",
       "INFO:Preparing event 004206948\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206923 with size (2, 848)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206899 with size (2, 650)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206898 with size (2, 935)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206922 with size (2, 505)\n",
+      "INFO:Preparing event 004206943\n",
+      "INFO:Preparing event 004206949\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206933 with size (2, 757)\n",
-      "INFO:Preparing event 004206951\n",
-      "INFO:Preparing event 004206953\n",
-      "INFO:Preparing event 004206950\n",
-      "INFO:Preparing event 004206946\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206927 with size (2, 1847)\n",
+      "INFO:Preparing event 004206947\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206898 with size (2, 935)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206934 with size (2, 310)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206931 with size (2, 1546)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206939 with size (2, 288)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206918 with size (2, 1355)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206935 with size (2, 542)\n",
+      "INFO:Preparing event 004206950\n",
+      "INFO:Preparing event 004206951\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206928 with size (2, 2391)\n",
+      "INFO:Preparing event 004206953\n",
+      "INFO:Preparing event 004206952\n",
+      "INFO:Preparing event 004206955\n",
+      "INFO:Preparing event 004206954\n",
       "INFO:Preparing event 004206956\n",
-      "INFO:Preparing event 004206958\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206926 with size (2, 1027)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206920 with size (2, 954)\n",
       "INFO:Preparing event 004206957\n",
-      "INFO:Preparing event 004206955\n",
-      "INFO:Preparing event 004206952\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206940 with size (2, 1241)\n",
-      "INFO:Preparing event 004206963\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206935 with size (2, 542)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206927 with size (2, 1847)\n",
-      "INFO:Preparing event 004206962\n",
+      "INFO:Preparing event 004206958\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206925 with size (2, 1898)\n",
+      "INFO:Preparing event 004206959\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206921 with size (2, 2020)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206924 with size (2, 1197)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206929 with size (2, 1550)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206931 with size (2, 1546)\n",
       "INFO:Preparing event 004206961\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206938 with size (2, 836)\n",
       "INFO:Preparing event 004206960\n",
-      "INFO:Preparing event 004206954\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206926 with size (2, 1027)\n",
-      "INFO:Preparing event 004206964\n",
+      "INFO:Preparing event 004206962\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206905 with size (2, 2741)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206951 with size (2, 322)\n",
       "INFO:Preparing event 004206965\n",
-      "INFO:Preparing event 004206959\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206930 with size (2, 2426)\n",
+      "INFO:Preparing event 004206963\n",
+      "INFO:Preparing event 004206964\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206939 with size (2, 288)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206944 with size (2, 1020)\n",
-      "INFO:Preparing event 007212913\n",
-      "INFO:Preparing event 004206966\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206937 with size (2, 690)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206948 with size (2, 849)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206938 with size (2, 836)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206953 with size (2, 1235)\n",
       "INFO:Preparing event 007212914\n",
+      "INFO:Preparing event 004206966\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206943 with size (2, 258)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206942 with size (2, 1367)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206929 with size (2, 1550)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206954 with size (2, 1990)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206955 with size (2, 212)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206930 with size (2, 2426)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206936 with size (2, 584)\n",
-      "INFO:Preparing event 007212917\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206956 with size (2, 1019)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206949 with size (2, 734)\n",
+      "INFO:Preparing event 007212915\n",
       "INFO:Preparing event 007212918\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206937 with size (2, 690)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206941 with size (2, 2737)\n",
-      "INFO:Preparing event 007212919\n",
-      "INFO:Preparing event 007212921\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206958 with size (2, 1260)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206924 with size (2, 1197)\n",
-      "INFO:Preparing event 007212916\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206961 with size (2, 169)\n",
+      "INFO:Preparing event 007212913\n",
+      "INFO:Preparing event 007212920\n",
       "INFO:Preparing event 007212922\n",
+      "INFO:Preparing event 007212921\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206945 with size (2, 1431)\n",
-      "INFO:Preparing event 007212920\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206947 with size (2, 3438)\n",
-      "INFO:Preparing event 007212915\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206960 with size (2, 627)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206942 with size (2, 1367)\n",
+      "INFO:Preparing event 007212917\n",
       "INFO:Preparing event 007212923\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206941 with size (2, 2737)\n",
+      "INFO:Preparing event 007212916\n",
+      "INFO:Preparing event 007212919\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206960 with size (2, 627)\n",
       "INFO:Preparing event 007212924\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206963 with size (2, 776)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206962 with size (2, 1329)\n",
-      " 35%|███▌      | 35/100 [00:00<00:00, 124.40it/s]INFO:Preparing event 007212925\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206959 with size (2, 2069)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206949 with size (2, 734)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206947 with size (2, 3438)\n",
+      "INFO:Preparing event 007212926\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206940 with size (2, 1241)\n",
       "INFO:Preparing event 007212927\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206957 with size (2, 728)\n",
       "INFO:Preparing event 007212929\n",
-      "INFO:Preparing event 007212928\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206946 with size (2, 2389)\n",
+      "INFO:Preparing event 007212925\n",
       "INFO:Preparing event 007212930\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206957 with size (2, 728)\n",
-      "INFO:Preparing event 007212926\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206925 with size (2, 1898)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206953 with size (2, 1235)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206965 with size (2, 1832)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206955 with size (2, 212)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212913 with size (2, 1389)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206958 with size (2, 1260)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206956 with size (2, 1019)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206946 with size (2, 2389)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206952 with size (2, 976)\n",
+      "INFO:Preparing event 007212931\n",
       "INFO:Preparing event 007212932\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206951 with size (2, 322)\n",
+      "INFO:Preparing event 007212928\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212915 with size (2, 982)\n",
+      "INFO:Preparing event 007212933\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206962 with size (2, 1329)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206950 with size (2, 1073)\n",
       "INFO:Preparing event 007212934\n",
       "INFO:Preparing event 007212935\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206966 with size (2, 2581)\n",
-      "INFO:Preparing event 007212933\n",
       "INFO:Preparing event 007212936\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206952 with size (2, 976)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206950 with size (2, 1073)\n",
-      "INFO:Preparing event 007212931\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212915 with size (2, 982)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206963 with size (2, 776)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206965 with size (2, 1832)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event004206964 with size (2, 2053)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206954 with size (2, 1990)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212922 with size (2, 2242)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206961 with size (2, 169)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event007212921 with size (2, 1661)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event007212914 with size (2, 681)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212923 with size (2, 1412)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212920 with size (2, 605)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206959 with size (2, 2069)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event007212929 with size (2, 706)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212927 with size (2, 1295)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212924 with size (2, 626)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event007212916 with size (2, 1597)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212933 with size (2, 722)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206966 with size (2, 2581)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212913 with size (2, 1389)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event007212935 with size (2, 282)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212930 with size (2, 856)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212917 with size (2, 1753)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212919 with size (2, 1630)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212934 with size (2, 1002)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212932 with size (2, 2200)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212924 with size (2, 626)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event007212926 with size (2, 1111)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212925 with size (2, 1990)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212928 with size (2, 2023)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212920 with size (2, 605)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212927 with size (2, 1295)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212934 with size (2, 1002)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212923 with size (2, 1412)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212930 with size (2, 856)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212931 with size (2, 2041)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212922 with size (2, 2242)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event007212918 with size (2, 1298)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212931 with size (2, 2041)\n",
-      " 82%|████████▏ | 82/100 [00:00<00:00, 235.08it/s]INFO:Modulewise truth graph built for data/preprocessed/event007212933 with size (2, 722)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212917 with size (2, 1753)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212919 with size (2, 1630)\n",
       "INFO:Modulewise truth graph built for data/preprocessed/event007212936 with size (2, 2279)\n",
-      "100%|██████████| 100/100 [00:00<00:00, 222.39it/s]\n"
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212925 with size (2, 1990)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212932 with size (2, 2200)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212928 with size (2, 2023)\n"
      ]
     }
    ],
@@ -3561,70 +3572,19 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>epoch</th>\n",
-       "      <th>train_loss</th>\n",
-       "      <th>val_loss</th>\n",
-       "      <th>eff</th>\n",
-       "      <th>pur</th>\n",
-       "      <th>current_lr</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>0</td>\n",
-       "      <td>0.808832</td>\n",
-       "      <td>0.788465</td>\n",
-       "      <td>0.538224</td>\n",
-       "      <td>0.419893</td>\n",
-       "      <td>0.0002</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>1</td>\n",
-       "      <td>0.760482</td>\n",
-       "      <td>0.759609</td>\n",
-       "      <td>0.497386</td>\n",
-       "      <td>0.483790</td>\n",
-       "      <td>0.0004</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "   epoch  train_loss  val_loss       eff       pur  current_lr\n",
-       "0      0    0.808832  0.788465  0.538224  0.419893      0.0002\n",
-       "1      1    0.760482  0.759609  0.497386  0.483790      0.0004"
-      ]
-     },
-     "execution_count": 23,
-     "metadata": {},
-     "output_type": "execute_result"
+     "ename": "NameError",
+     "evalue": "name 'gnn_trainer' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m gnn_metrics \u001b[39m=\u001b[39m get_training_metrics(gnn_trainer)\n\u001b[1;32m      3\u001b[0m \u001b[39m# gnn_metrics = get_training_metrics(gnn_trainer, METRICS_PATH) # Use when loading from checkpoint\u001b[39;00m\n\u001b[1;32m      5\u001b[0m gnn_metrics\n",
+      "\u001b[0;31mNameError\u001b[0m: name 'gnn_trainer' is not defined"
+     ]
     }
    ],
    "source": [
@@ -3804,7 +3764,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 4,
    "metadata": {
     "scrolled": true
    },
@@ -3815,26 +3775,38 @@
      "text": [
       "INFO:------------ Step 6: Evaluating the track reconstruction performance ------------\n",
       "INFO:--------------------------- a) Loading labelled graphs ---------------------------\n",
-      "100%|██████████| 100/100 [00:02<00:00, 43.86it/s]\n",
+      "100%|██████████| 100/100 [00:01<00:00, 57.16it/s]\n",
       "INFO:--------------------- b) Calculating the performance metrics ---------------------\n",
-      "INFO:Number of reconstructed particles: 0\n",
+      "INFO:Number of reconstructed particles: 17074\n",
       "INFO:Number of particles: 23405\n",
-      "INFO:Number of matched tracks: 0\n",
-      "INFO:Number of tracks: 0\n",
-      "INFO:Number of duplicate reconstructed particles: 0\n"
+      "INFO:Number of matched tracks: 17157\n",
+      "INFO:Number of tracks: 17651\n",
+      "INFO:Number of duplicate reconstructed particles: 83\n",
+      "INFO:Efficiency: 0.730\n",
+      "INFO:Fake rate: 0.028\n",
+      "INFO:Duplication rate: 0.005\n",
+      "INFO:------------------------------ c) Plotting results ------------------------------\n"
      ]
     },
     {
-     "ename": "ZeroDivisionError",
-     "evalue": "division by zero",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mZeroDivisionError\u001b[0m                         Traceback (most recent call last)",
-      "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m evaluated_events, reconstructed_particles, particles, matched_tracks, tracks \u001b[39m=\u001b[39m evaluate_candidates(CONFIG)\n\u001b[1;32m      3\u001b[0m \u001b[39m# send_telegram_message('Finished evaluation.', chat_id, api_key)\u001b[39;00m\n\u001b[1;32m      4\u001b[0m \n\u001b[1;32m      5\u001b[0m \u001b[39m# send_telegram_message(\"======================\", chat_id, api_key)\u001b[39;00m\n",
-      "File \u001b[0;32m~/Documents/PhD/tracking/etx4velo/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction.py:163\u001b[0m, in \u001b[0;36mevaluate\u001b[0;34m(config_file)\u001b[0m\n\u001b[1;32m    161\u001b[0m \u001b[39m# Plot the results across pT and eta\u001b[39;00m\n\u001b[1;32m    162\u001b[0m eff \u001b[39m=\u001b[39m n_reconstructed_particles \u001b[39m/\u001b[39m n_particles\n\u001b[0;32m--> 163\u001b[0m fake_rate \u001b[39m=\u001b[39m \u001b[39m1\u001b[39m \u001b[39m-\u001b[39m (n_matched_tracks \u001b[39m/\u001b[39;49m n_tracks)\n\u001b[1;32m    164\u001b[0m dup_rate \u001b[39m=\u001b[39m n_dup_reconstructed_particles \u001b[39m/\u001b[39m n_reconstructed_particles\n\u001b[1;32m    166\u001b[0m logging\u001b[39m.\u001b[39minfo(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mEfficiency: \u001b[39m\u001b[39m{\u001b[39;00meff\u001b[39m:\u001b[39;00m\u001b[39m.3f\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n",
-      "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero"
-     ]
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHJCAYAAAB0RmgdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABO9ElEQVR4nO3deVxWdf7//8elrCJeKshWhLhEKO6WYk6Su4ZmVjpZpJNDNW6ROqZWZpuolWYfxmUalTTNmkmbJh1yCS1T3JJcM0sx/QaSiReuqHB+f/jjjJegsooHn/fb7brdvM71Oue832+O8vR9lstmGIaBiIiIiMVUqegGiIiIiJSEQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjFQ4m81WpNfatWsruqliMRs2bGDixImcOHGioptSZHXr1mXQoEHm+7Vr15bo+J85cyaJiYnFWqewfQ0aNIjq1asXazvXc62fS1RUFFFRUWW6P6m8XCq6ASIbN250ev/666+TnJzMV1995bS8UaNGN7JZUgls2LCBV199lUGDBlGzZs2Kbk6JtGzZko0bNxb7+J85cya+vr5Ogai89lVc1/q5zJw5s1z3LZWLQoxUuLZt2zq9r1OnDlWqVCmw/EpnzpyhWrVq5dm0cmMYBufOncPT07OimyI3uRo1alz370JpXbhwAZvNdkP2dT36z4oUh04niSVERUURERHB119/Tbt27ahWrRpPPfUUAB9//DFdu3YlMDAQT09PwsPDGTt2LKdPn3baRv60+E8//UTPnj2pXr06wcHBjBo1ipycHODSP+Z+fn7ExMQUaMOJEyfw9PRk5MiR5rLs7GxGjx5NaGgobm5u3HbbbcTFxRXYt81mY9iwYcyePZvw8HDc3d354IMPAJg1axbNmjWjevXqeHt7c9dddzF+/Hin9TMyMnjmmWe4/fbbcXNzIzQ0lFdffZWLFy9ed+zq1q1LdHQ0X3zxBS1atDDH6IsvvgAgMTGR8PBwvLy8uOeee9i6dWuBbXz++edERkZSrVo1vL296dKlS4EZtIkTJ2Kz2dixYwePPvoodrud2rVrM3LkSC5evMi+ffvo3r073t7e1K1bl6lTpxbYT3HHc+HChYSHh1OtWjWaNWtm9im/PX/9618BCA0NLXBa0mazMXHixELH6/LZi8TERGw2G1999RWxsbH4+PhQo0YNnnzySU6fPk1GRgb9+vWjZs2aBAYGMnr0aC5cuHDdn8uFCxcYM2YMAQEBVKtWjfbt27N58+YCdYWd4jlw4AB//OMfCQoKwt3dHX9/fzp16kRqaqrZh927d7Nu3Tqz33Xr1nXa3sKFCxk1ahS33XYb7u7u/PTTT9c8dbV79246deqEl5cXderUYdiwYZw5c8b8PC0tDZvNVugprMvH+no/l8JOJx0/fpwhQ4Zw22234ebmRr169XjxxRfNv7eX7+d6x4VULpqJEctIT0/niSeeYMyYMUyaNIkqVS5l8P3799OzZ0/i4uLw8vLihx9+YMqUKWzevLnAKakLFy7Qu3dvBg8ezKhRo/j66695/fXXsdvtTJgwAVdXV5544glmz57N3/72N2rUqGGu+9FHH3Hu3Dn+9Kc/AZdmgjp06MCRI0cYP348TZs2Zffu3UyYMIGdO3eyevVqbDabuf5nn33GN998w4QJEwgICMDPz48lS5YwZMgQhg8fzttvv02VKlX46aef2LNnj7leRkYG99xzD1WqVGHChAnUr1+fjRs38sYbb5CWlsb8+fOvO3bff/8948aN48UXX8Rut/Pqq6/St29fxo0bx5o1a5g0aRI2m40XXniB6OhoDh48aM4SLV68mMcff5yuXbvy0UcfkZOTw9SpU4mKimLNmjW0b9/eaV/9+vXjiSee4JlnnmHVqlVMnTqVCxcusHr1aoYMGcLo0aNZvHgxL7zwAg0aNKBv374lGs/ly5ezZcsWXnvtNapXr87UqVN56KGH2LdvH/Xq1ePPf/4zx48f5//+7/9YunQpgYGBQMn/p//nP/+Zvn37smTJErZv38748ePNcNa3b1+efvppVq9ezZQpUwgKCnIKu4WJjY1lwYIFjB49mi5durBr1y769u3LyZMnr9uWnj17kpuby9SpU7njjjs4duwYGzZsMK8xWbZsGY888gh2u908PePu7u60jXHjxhEZGcns2bOpUqUKfn5+ZGRkFLq/Cxcu0LNnT5555hnGjh3Lhg0beOONNzh06BD/+c9/ijB6/1Pcn8u5c+e4//77+fnnn3n11Vdp2rQp33zzDfHx8aSmprJ8+XKn+usdF1LJGCI3mYEDBxpeXl5Oyzp06GAAxpo1a665bl5ennHhwgVj3bp1BmB8//33TtsFjE8++cRpnZ49exphYWHm+x07dhiA8fe//92p7p577jFatWplvo+PjzeqVKlibNmyxanuX//6lwEYK1asMJcBht1uN44fP+5UO2zYMKNmzZrX7NMzzzxjVK9e3Th06JDT8rffftsAjN27d19z/ZCQEMPT09M4cuSIuSw1NdUAjMDAQOP06dPm8s8++8wAjM8//9wwDMPIzc01goKCjCZNmhi5ublm3cmTJw0/Pz+jXbt25rJXXnnFAIx33nnHaf/Nmzc3AGPp0qXmsgsXLhh16tQx+vbtay4r7nj6+/sb2dnZ5rKMjAyjSpUqRnx8vLnsrbfeMgDj4MGDBcYFMF555ZVCx2vgwIHm+/nz5xuAMXz4cKe6Pn36GIAxbdq0Av1t2bJlge1ebu/evQZgPP/8807LFy1aZABO+09OTjYAIzk52TAMwzh27JgBGO++++4199G4cWOjQ4cOBZbnb+++++676mf5+zKM//29mTFjhlPtm2++aQDG+vXrDcMwjIMHDxqAMX/+/ALbvXKsr/Vz6dChg1O7Z8+eXejf2ylTphiAsXLlSqf9FOW4kMpDp5PEMmrVqkXHjh0LLD9w4AADBgwgICCAqlWr4urqSocOHQDYu3evU63NZqNXr15Oy5o2bcqhQ4fM902aNKFVq1ZOMxx79+5l8+bN5iksgC+++IKIiAiaN2/OxYsXzVe3bt0KnZLv2LEjtWrVclp2zz33cOLECR577DH+/e9/c+zYsQL9++KLL7j//vsJCgpy2k+PHj0AWLdu3bWGDYDmzZtz2223me/Dw8OBS1P3l19XlL88fzz27dvHr7/+SkxMjDnzBVC9enUefvhhUlJSnE4pAERHRzu9Dw8Px2azme0FcHFxoUGDBk7jXtzxvP/++/H29jbf+/v74+fn57TNslRYvwAeeOCBAsuv14bk5GQAHn/8cafl/fr1w8Xl2hPktWvXpn79+rz11ltMmzaN7du3k5eXV6Q+XO7hhx8uVv2VbR0wYADwv76Ul6+++govLy8eeeQRp+X5p/zWrFnjtPxGHxdSsRRixDLyp50vd+rUKf7whz+wadMm3njjDdauXcuWLVtYunQpAGfPnnWqr1atGh4eHk7L3N3dOXfunNOyp556io0bN/LDDz8AMH/+fNzd3XnsscfMmqNHj7Jjxw5cXV2dXt7e3hiGUSCQFNb+mJgY5s2bx6FDh3j44Yfx8/OjTZs2rFq1ymk///nPfwrsp3HjxgCFBp8r1a5d2+m9m5vbNZfnj8fvv/9+1bYHBQWRl5dHVlbWdfdV2Li7ubk5jXtxx9PHx6dAm9zd3Qv8zMtKccbwyuPpSvnjGhAQ4LTcxcWl0H5dzmazsWbNGrp168bUqVNp2bIlderUYcSIEUU6FZWvsJ/p1RTWrvy25/elvPz+++8EBAQ4nUoE8PPzw8XFpcD+b/RxIRVL18SIZVz5jxhc+l/ar7/+ytq1a83ZF6DUzwV57LHHGDlyJImJibz55pssXLiQPn36OM2k+Pr64unpybx58wrdhq+v73XbD/CnP/2JP/3pT5w+fZqvv/6aV155hejoaH788UdCQkLw9fWladOmvPnmm4WuHxQUVMJeXl/+L4T09PQCn/36669UqVKlwOxSSRV3PEvL3d29wIWhUP6/lOF/45qRkeE0Q3bx4sUi7T8kJIS5c+cC8OOPP/LJJ58wceJEzp8/z+zZs4vUhqsdj4XJb9flASH/+pn8Zfkh9coxLe14+vj4sGnTJgzDcGpzZmYmFy9eLPPjQqxFIUYsLf8ftSsvWpwzZ06ptlurVi369OnDggULiIyMJCMjw+lUElw6vTBp0iR8fHwIDQ0t1f4AvLy86NGjB+fPn6dPnz7s3r2bkJAQoqOjWbFiBfXr1y+zwFBUYWFh3HbbbSxevJjRo0eb43369Gk+/fRT846lslDW4wn/Oy4K+1943bp12bFjh9Oyr776ilOnTpXJvq8l/+6bRYsW0apVK3P5J598UqQ7zi5355138tJLL/Hpp5/y3XffmcvLevZh0aJFjBgxwny/ePFi4H998ff3x8PDo8CY/vvf/y6wrWv9XK7UqVMnPvnkEz777DMeeughc/mCBQvMz+XWpRAjltauXTtq1arFs88+yyuvvIKrqyuLFi3i+++/L/W2n3rqKT7++GOGDRvG7bffTufOnZ0+j4uL49NPP+W+++7j+eefp2nTpuTl5fHLL7+wcuVKRo0aRZs2ba65j9jYWDw9Pbn33nsJDAwkIyOD+Ph47HY7d999NwCvvfYaq1atol27dowYMYKwsDDOnTtHWloaK1asYPbs2dx+++2l7m9hqlSpwtSpU3n88ceJjo7mmWeeIScnh7feeosTJ04wefLkMttXWYznlZo0aQLAjBkzGDhwIK6uroSFheHt7U1MTAwvv/wyEyZMoEOHDuzZs4eEhATsdnuZ9elqwsPDeeKJJ3j33XdxdXWlc+fO7Nq1i7ffftvpjrjC7Nixg2HDhvHoo4/SsGFD3Nzc+Oqrr9ixYwdjx44165o0acKSJUv4+OOPqVevHh4eHuZ4FJebmxvvvPMOp06d4u677zbvTurRo4d5d5rNZuOJJ55g3rx51K9fn2bNmrF582Yz7FzuWj+XKz355JP87W9/Y+DAgaSlpdGkSRPWr1/PpEmT6NmzZ4G/l3JrUYgRS/Px8WH58uWMGjWKJ554Ai8vLx588EE+/vhjWrZsWaptd+7cmeDgYA4fPsyLL77odGErXJo5+eabb5g8eTJ///vfzduS77jjDjp37mw+l+Na/vCHP5CYmMgnn3xCVlYWvr6+tG/fngULFlCnTh3g0rULW7du5fXXX+ett97iyJEjeHt7ExoaSvfu3ct9dmbAgAF4eXkRHx9P//79qVq1Km3btiU5OZl27dqV2X7KYjyvFBUVxbhx4/jggw94//33ycvLIzk5maioKP7617+SnZ1NYmIib7/9Nvfccw+ffPIJDz74YJn16Vrmzp2Lv78/iYmJvPfeezRv3pxPP/2UP/7xj9dcLyAggPr16zNz5kwOHz6MzWajXr16vPPOOwwfPtyse/XVV0lPTyc2NpaTJ08SEhJCWlpaidrq6urKF198wYgRI3jjjTfw9PQkNjaWt956y6nunXfeAWDq1KmcOnWKjh078sUXXxT42V3r53IlDw8PkpOTefHFF3nrrbf47bffuO222xg9ejSvvPJKifojlYfNMAyjohshIiIiUly6O0lEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCyp0j4nJi8vj19//RVvb+9iPV5bREREKo5hGJw8eZKgoKACz+e6UqUNMb/++ivBwcEV3QwREREpgcOHD1/3aeSVNsTkP7768OHD132Mt4iIiNwcsrOzCQ4OLvRrKK5UaUNM/imkGjVqKMSIiIhYTFEuBdGFvSIiImJJCjEiIiJiSQoxIiIiYkmV9poYEREpndzcXC5cuFDRzZBKxtXVlapVq5bJthRiRETEiWEYZGRkcOLEiYpuilRSNWvWJCAgoNTPcVOIERERJ/kBxs/Pj2rVqumBoVJmDMPgzJkzZGZmAhAYGFiq7SnEiIiIKTc31wwwPj4+Fd0cqYQ8PT0ByMzMxM/Pr1SnlnRhr4iImPKvgalWrVoFt0Qqs/zjq7TXXCnEiIhIATqFJOWprI4vhRgRERGxJIUYERGRW9igQYPo06eP+T4qKoq4uLhrrlO3bl3efffdcm1XUejCXhERKZK6Y5ffsH2lTX7ghu2rIkVFRdG8efMbEgjS0tIIDQ1l+/btNG/e3Fw+Y8YMDMMo9/2XB4UYERGplM6fP4+bm1tFN6PUDMMgNzcXF5fy+ZVtt9vLZbs3gk4niYhIpRAVFcWwYcMYOXIkvr6+dOnShT179tCzZ0+qV6+Ov78/MTExHDt2zFwnLy+PKVOm0KBBA9zd3bnjjjt48803zc937txJx44d8fT0xMfHh6effppTp06Zn+efinn77bcJDAzEx8eHoUOHOt11M3PmTBo2bIiHhwf+/v488sgj5rrr1q1jxowZ2Gw2bDYbaWlprF27FpvNxpdffknr1q1xd3fnm2++KXDaByAuLo6oqKgi9Sc0NBSAFi1aYLPZzPUK2+7FixcZNmwYNWvWxMfHh5deeumaszUOh4Onn34aPz8/atSoQceOHfn++++v/0MrJYUYERGpND744ANcXFz49ttvmTx5Mh06dKB58+Zs3bqVpKQkjh49Sr9+/cz6cePGMWXKFF5++WX27NnD4sWL8ff3B+DMmTN0796dWrVqsWXLFv75z3+yevVqhg0b5rTP5ORkfv75Z5KTk/nggw9ITEwkMTERgK1btzJixAhee+019u3bR1JSEvfddx9w6TROZGQksbGxpKenk56eTnBwsLndMWPGEB8fz969e2natGmR+n+t/mzevBmA1atXk56eztKlS687jps2beK9995j+vTp/OMf/yi01jAMHnjgATIyMlixYgXbtm2jZcuWdOrUiePHjxep3SWl00kVoDTnlW+V88QiIiXRoEEDpk6dCsCECRNo2bIlkyZNMj+fN28ewcHB/PjjjwQGBjJjxgwSEhIYOHAgAPXr16d9+/YALFq0iLNnz7JgwQK8vLwASEhIoFevXkyZMsUMB7Vq1SIhIYGqVaty11138cADD7BmzRpiY2P55Zdf8PLyIjo6Gm9vb0JCQmjRogVw6TSOm5sb1apVIyAgoEBfXnvtNbp06VLkvp88efKa/alTpw4APj4+he7vcsHBwUyfPh2bzUZYWBg7d+5k+vTpxMbGFqhNTk5m586dZGZm4u7uDsDbb7/NZ599xr/+9S+efvrpIvehuDQTIyIilUbr1q3NP2/bto3k5GSqV69uvu666y4Afv75Z/bu3UtOTg6dOnUqdFt79+6lWbNmZoABuPfee8nLy2Pfvn3mssaNGzs9dTYwMNB8rH6XLl0ICQmhXr16xMTEsGjRIs6cOVPsvhTF9fpTHG3btnV6lktkZCT79+8nNze3QO22bds4deoUPj4+TmN98OBBfv7551K35Vo0EyMiIpXG5YEjLy/PnDW5UmBgIAcOHLjmtgzDuOpD2S5f7urqWuCzvLw8ALy9vfnuu+9Yu3YtK1euZMKECUycOJEtW7ZQs2bNIvcFoEqVKgWuS7n82pv8x/nfaHl5eQQGBrJ27doCn12vj6WlmRgREamUWrZsye7du6lbty4NGjRwenl5edGwYUM8PT1Zs2ZNoes3atSI1NRUTp8+bS779ttvqVKlCnfeeWeR2+Hi4kLnzp2ZOnUqO3bsIC0tja+++goANze3Qmc3ClOnTh3S09OdlqWmppp/vl5/8u/UKsr+UlJSCrxv2LBhod9z1LJlSzIyMnBxcSkwzr6+vtfdV2koxIiISKU0dOhQjh8/zmOPPcbmzZs5cOAAK1eu5KmnniI3NxcPDw9eeOEFxowZw4IFC/j5559JSUlh7ty5ADz++ON4eHgwcOBAdu3aRXJyMsOHDycmJsa8HuZ6vvjiC9577z1SU1M5dOgQCxYsIC8vj7CwMODSQ+M2bdpEWloax44dM2dwCtOxY0e2bt3KggUL2L9/P6+88gq7du0yP79ef/z8/PD09DQvcHY4HFfd1+HDhxk5ciT79u3jo48+4v/+7/947rnnCq3t3LkzkZGR9OnThy+//JK0tDQ2bNjASy+9xNatW4s0TiWlECMiIpVSUFAQ3377Lbm5uXTr1o2IiAiee+457HY7Vapc+vX38ssvM2rUKCZMmEB4eDj9+/c3r2epVq0aX375JcePH+fuu+/mkUceoVOnTiQkJBS5DTVr1mTp0qV07NiR8PBwZs+ezUcffUTjxo0BGD16NFWrVqVRo0bUqVOHX3755arb6tatGy+//DJjxozh7rvv5uTJkzz55JNONdfqj4uLC++99x5z5swhKCiIBx988Kr7evLJJzl79iz33HMPQ4cOZfjw4Ve9QNdms7FixQruu+8+nnrqKe68807++Mc/kpaWVuSwV1I2w6qP6buO7Oxs7HY7DoeDGjVqVHRznOjuJBG5WZ07d46DBw8SGhqKh4dHRTdHKqlrHWfF+f2tmRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJD3sroRu5FfSi4iISEGaiRERERFLUogRERERS1KIEREREUtSiBERERFLUogRERGRYklLS8Nmszl9AWVF0N1JIiJSNBPtN3BfV/9ywsokKiqK5s2b8+6775b7vtLS0ggNDWX79u00b9683Pd3IxRrJmbWrFk0bdqUGjVqUKNGDSIjI/nvf/9rfj5o0CBsNpvTq23btk7byMnJYfjw4fj6+uLl5UXv3r05cuSIU01WVhYxMTHY7XbsdjsxMTGcOHGi5L0UEZFbzvnz5yu6CWXCMAwuXrxY0c24KRUrxNx+++1MnjyZrVu3snXrVjp27MiDDz7I7t27zZru3buTnp5uvlasWOG0jbi4OJYtW8aSJUtYv349p06dIjo6mtzcXLNmwIABpKamkpSURFJSEqmpqcTExJSyqyIiUplFRUUxbNgwRo4cia+vL126dGHPnj307NmT6tWr4+/vT0xMDMeOHTPXycvLY8qUKTRo0AB3d3fuuOMO3nzzTfPznTt30rFjRzw9PfHx8eHpp5/m1KlT5ueDBg2iT58+vP322wQGBuLj48PQoUO5cOGCWTNz5kwaNmyIh4cH/v7+PPLII+a669atY8aMGeZ//NPS0li7di02m40vv/yS1q1b4+7uzjfffGPu63JxcXFERUUVqT+hoaEAtGjRApvN5rTe/PnzCQ8Px8PDg7vuuouZM2c67Wfz5s20aNECDw8PWrduzfbt20v2QypjxTqd1KtXL6f3b775JrNmzSIlJcX8WnF3d3cCAgIKXd/hcDB37lwWLlxI586dAfjwww8JDg5m9erVdOvWjb1795KUlERKSgpt2rQB4P333ycyMpJ9+/YRFhZW7E6KiMit4YMPPuAvf/kL3377LcePH6dDhw7ExsYybdo0zp49ywsvvEC/fv346quvABg3bhzvv/8+06dPp3379qSnp/PDDz8AcObMGbp3707btm3ZsmULmZmZ/PnPf2bYsGEkJiaa+0xOTiYwMJDk5GR++ukn+vfvT/PmzYmNjWXr1q2MGDGChQsX0q5dO44fP84333wDwIwZM/jxxx+JiIjgtddeA6BOnTqkpaUBMGbMGN5++23q1atHzZo1i9T/a/Vn8+bN3HPPPaxevZrGjRvj5uYGXPod+8orr5CQkECLFi3Yvn07sbGxeHl5MXDgQE6fPk10dDQdO3bkww8/5ODBgzz33HOl/VGViRJfE5Obm8s///lPTp8+TWRkpLl87dq1+Pn5UbNmTTp06MCbb76Jn58fANu2bePChQt07drVrA8KCiIiIoINGzbQrVs3Nm7ciN1uNwMMQNu2bbHb7WzYsOGWDzGleVJw2uQHyrAlIiI3nwYNGjB16lQAJkyYQMuWLZk0aZL5+bx58wgODubHH38kMDCQGTNmkJCQwMCBAwGoX78+7du3B2DRokWcPXuWBQsW4OXlBUBCQgK9evViypQp+Pv7A1CrVi0SEhKoWrUqd911Fw888ABr1qwhNjaWX375BS8vL6Kjo/H29iYkJIQWLVoAYLfbcXNzo1q1aoX+5/+1116jS5cuRe77yZMnr9mfOnXqAODj4+O0v9dff5133nmHvn37ApdmbPbs2cOcOXMYOHAgixYtIjc3l3nz5lGtWjUaN27MkSNH+Mtf/lLktpWXYoeYnTt3EhkZyblz56hevTrLli2jUaNGAPTo0YNHH32UkJAQDh48yMsvv0zHjh3Ztm0b7u7uZGRk4ObmRq1atZy26e/vT0ZGBgAZGRlm6Lmcn5+fWVOYnJwccnJyzPfZ2dnF7ZqIiFhc69atzT9v27aN5ORkqlevXqDu559/5sSJE+Tk5NCpU6dCt7V3716aNWtmBhiAe++9l7y8PPbt22eGmMaNG1O1alWzJjAwkJ07dwLQpUsXQkJCqFevHt27d6d79+489NBDVKtWrVh9KYq9e/desz+F+e233zh8+DCDBw8mNjbWXH7x4kXsdru53WbNmjm1+fLJi4pU7BATFhZGamoqJ06c4NNPP2XgwIGsW7eORo0a0b9/f7MuIiKC1q1bExISwvLly82EVxjDMLDZbOb7y/98tZorxcfH8+qrrxa3OyIiUolcHjjy8vLMWZMrBQYGcuDAgWtu61q/dy5f7urqWuCzvLw8ALy9vfnuu+9Yu3YtK1euZMKECUycOJEtW7Zc9xTR5X0BqFKlCoZhOC27/NobT0/Pa26vMPntfP/9953OgABmMLtynzeTYj8nxs3NjQYNGtC6dWvi4+Np1qwZM2bMKLQ2MDCQkJAQ9u/fD0BAQADnz58nKyvLqS4zM9NMtAEBARw9erTAtn777TezpjDjxo3D4XCYr8OHDxe3ayIiUom0bNmS3bt3U7duXRo0aOD08vLyomHDhnh6erJmzZpC12/UqBGpqamcPn3aXPbtt99SpUoV7rzzziK3w8XFhc6dOzN16lR27NhBWlqaeU2Om5ub040t11KnTh3S09Odll3+nJbr9Sf/GpjL9+fv789tt93GgQMHCoxR/oXAjRo14vvvv+fs2bPmeikpKUVqc3kr9cPuDMNwOo1zud9//53Dhw8TGBgIQKtWrXB1dWXVqlVmTXp6Ort27aJdu3bApSkqh8PB5s2bzZpNmzbhcDjMmsK4u7ubt37nv0RE5NY1dOhQjh8/zmOPPcbmzZs5cOAAK1eu5KmnniI3NxcPDw9eeOEFxowZw4IFC/j5559JSUlh7ty5ADz++ON4eHgwcOBAdu3aRXJyMsOHDycmJuaa/6m+3BdffMF7771Hamoqhw4dYsGCBeTl5ZnXd9atW5dNmzaRlpbGsWPHzJmRwnTs2JGtW7eyYMEC9u/fzyuvvMKuXbvMz6/XHz8/Pzw9PUlKSuLo0aM4HJeexTNx4kTi4+PNC4137tzJ/PnzmTZtGnDpjuEqVaowePBg9uzZw4oVK3j77beL/wMpB8UKMePHj+ebb74hLS2NnTt38uKLL7J27Voef/xxTp06xejRo9m4caN5i1ivXr3w9fXloYceAi5dxDR48GBGjRrFmjVr2L59O0888QRNmjQx71YKDw+ne/fuxMbGkpKSQkpKCrGxsURHR9/yF/WKiEjRBQUF8e2335Kbm0u3bt2IiIjgueeew263U6XKpV9/L7/8MqNGjWLChAmEh4fTv39/MjMzAahWrRpffvklx48f5+677+aRRx6hU6dOJCQkFLkNNWvWZOnSpXTs2JHw8HBmz57NRx99ZN7RO3r0aKpWrUqjRo2oU6cOv/zyy1W31a1bN15++WXGjBnD3XffzcmTJ3nyySedaq7VHxcXF9577z3mzJlDUFAQDz74IAB//vOf+cc//kFiYiJNmjShQ4cOJCYmmjMx1atX5z//+Q979uyhRYsWvPjii4WeoqsINqMYJ7sGDx7MmjVrSE9Px26307RpU1544QW6dOnC2bNn6dOnD9u3b+fEiRMEBgZy//338/rrrxMcHGxu49y5c/z1r39l8eLFnD17lk6dOjFz5kynmuPHjzNixAg+//xzAHr37k1CQkKRbzGDSxf22u12HA5HuczKlOYuoYqiu5NE5HrOnTvHwYMHCQ0NxcPDo6KbI5XUtY6z4vz+LlaIsRKFmIIUYkTkehRi5EYoqxCjL4AUERERS1KIEREREUtSiBERERFLUogREZECKunlknKTKKvjSyFGRERM+U+fPXPmTAW3RCqz/OPryqcdF1eJvwBSREQqn6pVq1KzZk2nZ6Vc6ytfRIrDMAzOnDlDZmYmNWvWdPrOqZJQiBERESf533CcH2REylrNmjUL/ebu4lKIERERJzabjcDAQPz8/Jy+YFCkLLi6upZ6BiafQoyIiBSqatWqZfbLRqQ86MJeERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkl4pugNw4dccuL/G6aZMfKMOWiIiIlF6xZmJmzZpF06ZNqVGjBjVq1CAyMpL//ve/5ueGYTBx4kSCgoLw9PQkKiqK3bt3O20jJyeH4cOH4+vri5eXF7179+bIkSNONVlZWcTExGC327Hb7cTExHDixImS91JEREQqnWKFmNtvv53JkyezdetWtm7dSseOHXnwwQfNoDJ16lSmTZtGQkICW7ZsISAggC5dunDy5ElzG3FxcSxbtowlS5awfv16Tp06RXR0NLm5uWbNgAEDSE1NJSkpiaSkJFJTU4mJiSmjLouIiEhlYDMMwyjNBmrXrs1bb73FU089RVBQEHFxcbzwwgvApVkXf39/pkyZwjPPPIPD4aBOnTosXLiQ/v37A/Drr78SHBzMihUr6NatG3v37qVRo0akpKTQpk0bAFJSUoiMjOSHH34gLCysSO3Kzs7GbrfjcDioUaNGabpYqNKcmrEinU4SEZEboTi/v0t8YW9ubi5Llizh9OnTREZGcvDgQTIyMujatatZ4+7uTocOHdiwYQMA27Zt48KFC041QUFBREREmDUbN27EbrebAQagbdu22O12s0ZERESk2Bf27ty5k8jISM6dO0f16tVZtmwZjRo1MgOGv7+/U72/vz+HDh0CICMjAzc3N2rVqlWgJiMjw6zx8/MrsF8/Pz+zpjA5OTnk5OSY77Ozs4vbNREREbGQYs/EhIWFkZqaSkpKCn/5y18YOHAge/bsMT+32WxO9YZhFFh2pStrCqu/3nbi4+PNC4HtdjvBwcFF7ZKIiIhYULFDjJubGw0aNKB169bEx8fTrFkzZsyYQUBAAECB2ZLMzExzdiYgIIDz58+TlZV1zZqjR48W2O9vv/1WYJbncuPGjcPhcJivw4cPF7drIiIiYiGlftidYRjk5OQQGhpKQEAAq1atMj87f/4869ato127dgC0atUKV1dXp5r09HR27dpl1kRGRuJwONi8ebNZs2nTJhwOh1lTGHd3d/PW7/yXiIiIVF7FuiZm/Pjx9OjRg+DgYE6ePMmSJUtYu3YtSUlJ2Gw24uLimDRpEg0bNqRhw4ZMmjSJatWqMWDAAADsdjuDBw9m1KhR+Pj4ULt2bUaPHk2TJk3o3LkzAOHh4XTv3p3Y2FjmzJkDwNNPP010dHSR70wSERGRyq9YIebo0aPExMSQnp6O3W6nadOmJCUl0aVLFwDGjBnD2bNnGTJkCFlZWbRp04aVK1fi7e1tbmP69Om4uLjQr18/zp49S6dOnUhMTKRq1apmzaJFixgxYoR5F1Pv3r1JSEgoi/6KiIhIJVHq58TcrPScmLKl58SIiMiNcEOeEyMiIiJSkRRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSXCq6AbeiNI8BJV637rnFZdgSERER61KIsRgFIBERkUt0OklEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsqVghJj4+nrvvvhtvb2/8/Pzo06cP+/btc6oZNGgQNpvN6dW2bVunmpycHIYPH46vry9eXl707t2bI0eOONVkZWURExOD3W7HbrcTExPDiRMnStZLERERqXSKFWLWrVvH0KFDSUlJYdWqVVy8eJGuXbty+vRpp7ru3buTnp5uvlasWOH0eVxcHMuWLWPJkiWsX7+eU6dOER0dTW5urlkzYMAAUlNTSUpKIikpidTUVGJiYkrRVREREalMXIpTnJSU5PR+/vz5+Pn5sW3bNu677z5zubu7OwEBAYVuw+FwMHfuXBYuXEjnzp0B+PDDDwkODmb16tV069aNvXv3kpSUREpKCm3atAHg/fffJzIykn379hEWFlasToqIiEjlU6prYhwOBwC1a9d2Wr527Vr8/Py48847iY2NJTMz0/xs27ZtXLhwga5du5rLgoKCiIiIYMOGDQBs3LgRu91uBhiAtm3bYrfbzRoRERG5tRVrJuZyhmEwcuRI2rdvT0REhLm8R48ePProo4SEhHDw4EFefvllOnbsyLZt23B3dycjIwM3Nzdq1arltD1/f38yMjIAyMjIwM/Pr8A+/fz8zJor5eTkkJOTY77Pzs4uaddERETEAkocYoYNG8aOHTtYv3690/L+/fubf46IiKB169aEhISwfPly+vbte9XtGYaBzWYz31/+56vVXC4+Pp5XX321uN0QERERiyrR6aThw4fz+eefk5yczO23337N2sDAQEJCQti/fz8AAQEBnD9/nqysLKe6zMxM/P39zZqjR48W2NZvv/1m1lxp3LhxOBwO83X48OGSdE1EREQsolghxjAMhg0bxtKlS/nqq68IDQ297jq///47hw8fJjAwEIBWrVrh6urKqlWrzJr09HR27dpFu3btAIiMjMThcLB582azZtOmTTgcDrPmSu7u7tSoUcPpJSIiIpVXsU4nDR06lMWLF/Pvf/8bb29v8/oUu92Op6cnp06dYuLEiTz88MMEBgaSlpbG+PHj8fX15aGHHjJrBw8ezKhRo/Dx8aF27dqMHj2aJk2amHcrhYeH0717d2JjY5kzZw4ATz/9NNHR0bozSURERIBihphZs2YBEBUV5bR8/vz5DBo0iKpVq7Jz504WLFjAiRMnCAwM5P777+fjjz/G29vbrJ8+fTouLi7069ePs2fP0qlTJxITE6latapZs2jRIkaMGGHexdS7d28SEhJK2k8RERGpZGyGYRgV3YjykJ2djd1ux+FwlMuppbpjl5d43TSPAWXYkqKre25xiddNm/xAGbZERESkcMX5/a3vThIRERFLUogRERERS1KIEREREUtSiBERERFLUogRERERS1KIEREREUtSiBERERFLUogRERERSyrxt1iL9ZTuIXuOMmuHiIhIWdBMjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJusZYiqTt2eYnXTZv8QBm2RERE5BLNxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJRUrxMTHx3P33Xfj7e2Nn58fffr0Yd++fU41hmEwceJEgoKC8PT0JCoqit27dzvV5OTkMHz4cHx9ffHy8qJ3794cOXLEqSYrK4uYmBjsdjt2u52YmBhOnDhRsl6KiIhIpVOsELNu3TqGDh1KSkoKq1at4uLFi3Tt2pXTp0+bNVOnTmXatGkkJCSwZcsWAgIC6NKlCydPnjRr4uLiWLZsGUuWLGH9+vWcOnWK6OhocnNzzZoBAwaQmppKUlISSUlJpKamEhMTUwZdFhERkcrAZhiGUdKVf/vtN/z8/Fi3bh333XcfhmEQFBREXFwcL7zwAnBp1sXf358pU6bwzDPP4HA4qFOnDgsXLqR///4A/PrrrwQHB7NixQq6devG3r17adSoESkpKbRp0waAlJQUIiMj+eGHHwgLC7tu27Kzs7Hb7TgcDmrUqFHSLl5V3bHLS7xumseAMmzJjVH33OISr5s2+YEybImIiFRmxfn9XaprYhwOBwC1a9cG4ODBg2RkZNC1a1ezxt3dnQ4dOrBhwwYAtm3bxoULF5xqgoKCiIiIMGs2btyI3W43AwxA27ZtsdvtZo2IiIjc2lxKuqJhGIwcOZL27dsTEREBQEZGBgD+/v5Otf7+/hw6dMiscXNzo1atWgVq8tfPyMjAz8+vwD79/PzMmivl5OSQk5Njvs/Ozi5hz0RERMQKSjwTM2zYMHbs2MFHH31U4DObzeb03jCMAsuudGVNYfXX2k58fLx5EbDdbic4OLgo3RARERGLKlGIGT58OJ9//jnJycncfvvt5vKAgACAArMlmZmZ5uxMQEAA58+fJysr65o1R48eLbDf3377rcAsT75x48bhcDjM1+HDh0vSNREREbGIYoUYwzAYNmwYS5cu5auvviI0NNTp89DQUAICAli1apW57Pz586xbt4527doB0KpVK1xdXZ1q0tPT2bVrl1kTGRmJw+Fg8+bNZs2mTZtwOBxmzZXc3d2pUaOG00tEREQqr2JdEzN06FAWL17Mv//9b7y9vc0ZF7vdjqenJzabjbi4OCZNmkTDhg1p2LAhkyZNolq1agwYMMCsHTx4MKNGjcLHx4fatWszevRomjRpQufOnQEIDw+ne/fuxMbGMmfOHACefvppoqOji3RnkoiIiFR+xQoxs2bNAiAqKspp+fz58xk0aBAAY8aM4ezZswwZMoSsrCzatGnDypUr8fb2NuunT5+Oi4sL/fr14+zZs3Tq1InExESqVq1q1ixatIgRI0aYdzH17t2bhISEkvRRREREKqFSPSfmZqbnxJQtPSdGRERuhBv2nBgRERGRilLi58Tc6qw4myIiIlKZaCZGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELElfOyBFUrqvWXCUWTtERETyaSZGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJ350k5a7u2OUlXjdt8gNl2BIREalMNBMjIiIilqQQIyIiIpakECMiIiKWpBAjIiIilqQQIyIiIpakECMiIiKWpBAjIiIilqQQIyIiIpakECMiIiKWpBAjIiIilqQQIyIiIpZU7BDz9ddf06tXL4KCgrDZbHz22WdOnw8aNAibzeb0atu2rVNNTk4Ow4cPx9fXFy8vL3r37s2RI0ecarKysoiJicFut2O324mJieHEiRPF7qCIiIhUTsUOMadPn6ZZs2YkJCRctaZ79+6kp6ebrxUrVjh9HhcXx7Jly1iyZAnr16/n1KlTREdHk5uba9YMGDCA1NRUkpKSSEpKIjU1lZiYmOI2V0RERCqpYn+LdY8ePejRo8c1a9zd3QkICCj0M4fDwdy5c1m4cCGdO3cG4MMPPyQ4OJjVq1fTrVs39u7dS1JSEikpKbRp0waA999/n8jISPbt20dYWFhxmy0iIiKVTLlcE7N27Vr8/Py48847iY2NJTMz0/xs27ZtXLhwga5du5rLgoKCiIiIYMOGDQBs3LgRu91uBhiAtm3bYrfbzRoRERG5tRV7JuZ6evTowaOPPkpISAgHDx7k5ZdfpmPHjmzbtg13d3cyMjJwc3OjVq1aTuv5+/uTkZEBQEZGBn5+fgW27efnZ9ZcKScnh5ycHPN9dnZ2GfZKREREbjZlHmL69+9v/jkiIoLWrVsTEhLC8uXL6du371XXMwwDm81mvr/8z1eruVx8fDyvvvpqKVouIiIiVlLut1gHBgYSEhLC/v37AQgICOD8+fNkZWU51WVmZuLv72/WHD16tMC2fvvtN7PmSuPGjcPhcJivw4cPl3FPRERE5GZS7iHm999/5/DhwwQGBgLQqlUrXF1dWbVqlVmTnp7Orl27aNeuHQCRkZE4HA42b95s1mzatAmHw2HWXMnd3Z0aNWo4vURERKTyKvbppFOnTvHTTz+Z7w8ePEhqaiq1a9emdu3aTJw4kYcffpjAwEDS0tIYP348vr6+PPTQQwDY7XYGDx7MqFGj8PHxoXbt2owePZomTZqYdyuFh4fTvXt3YmNjmTNnDgBPP/000dHRujNJREREgBKEmK1bt3L//feb70eOHAnAwIEDmTVrFjt37mTBggWcOHGCwMBA7r//fj7++GO8vb3NdaZPn46Liwv9+vXj7NmzdOrUicTERKpWrWrWLFq0iBEjRph3MfXu3fuaz6YRERGRW4vNMAyjohtRHrKzs7Hb7TgcjvI5tTTRXvbbrKTqnltc4nXTJj9Qhi0REZGbXXF+f+u7k0RERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkor9BZAixZXmMaAUazvKrB0iIlK5aCZGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEnPiZGbWt2xy0u8btrkB8qwJSIicrPRTIyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYUrFDzNdff02vXr0ICgrCZrPx2WefOX1uGAYTJ04kKCgIT09PoqKi2L17t1NNTk4Ow4cPx9fXFy8vL3r37s2RI0ecarKysoiJicFut2O324mJieHEiRPF7qCIiIhUTsUOMadPn6ZZs2YkJCQU+vnUqVOZNm0aCQkJbNmyhYCAALp06cLJkyfNmri4OJYtW8aSJUtYv349p06dIjo6mtzcXLNmwIABpKamkpSURFJSEqmpqcTExJSgiyIiIlIZ2QzDMEq8ss3GsmXL6NOnD3BpFiYoKIi4uDheeOEF4NKsi7+/P1OmTOGZZ57B4XBQp04dFi5cSP/+/QH49ddfCQ4OZsWKFXTr1o29e/fSqFEjUlJSaNOmDQApKSlERkbyww8/EBYWdt22ZWdnY7fbcTgc1KhRo6RdvLqJ9rLfphRQ99ziEq+bNvmBMmyJiIjcCMX5/V2m18QcPHiQjIwMunbtai5zd3enQ4cObNiwAYBt27Zx4cIFp5qgoCAiIiLMmo0bN2K3280AA9C2bVvsdrtZIyIiIrc2l7LcWEZGBgD+/v5Oy/39/Tl06JBZ4+bmRq1atQrU5K+fkZGBn59fge37+fmZNVfKyckhJyfHfJ+dnV3yjoiIiMhNr1zuTrLZbE7vDcMosOxKV9YUVn+t7cTHx5sXAdvtdoKDg0vQchEREbGKMg0xAQEBAAVmSzIzM83ZmYCAAM6fP09WVtY1a44ePVpg+7/99luBWZ5848aNw+FwmK/Dhw+Xuj8iIiJy8yrT00mhoaEEBASwatUqWrRoAcD58+dZt24dU6ZMAaBVq1a4urqyatUq+vXrB0B6ejq7du1i6tSpAERGRuJwONi8eTP33HMPAJs2bcLhcNCuXbtC9+3u7o67u3tZdkduAmkeA0qxtqPM2iEiIjefYoeYU6dO8dNPP5nvDx48SGpqKrVr1+aOO+4gLi6OSZMm0bBhQxo2bMikSZOoVq0aAwZc+mVkt9sZPHgwo0aNwsfHh9q1azN69GiaNGlC586dAQgPD6d79+7ExsYyZ84cAJ5++mmio6OLdGeSiIiIVH7FDjFbt27l/vvvN9+PHDkSgIEDB5KYmMiYMWM4e/YsQ4YMISsrizZt2rBy5Uq8vb3NdaZPn46Liwv9+vXj7NmzdOrUicTERKpWrWrWLFq0iBEjRph3MfXu3fuqz6YRERGRW0+pnhNzM9NzYoSJOp0kImI1FfacGBEREZEbpUwv7BW5mdQdu7zE6+ppvyIiNz/NxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIgluVR0A0TKS5rHgFKs7SizdoiISPnQTIyIiIhYkkKMiIiIWJJOJ4kUou7Y5SVeN23yA2XYEhERuRrNxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJZV5iJk4cSI2m83pFRAQYH5uGAYTJ04kKCgIT09PoqKi2L17t9M2cnJyGD58OL6+vnh5edG7d2+OHDlS1k0VERERCyuXmZjGjRuTnp5uvnbu3Gl+NnXqVKZNm0ZCQgJbtmwhICCALl26cPLkSbMmLi6OZcuWsWTJEtavX8+pU6eIjo4mNze3PJorIiIiFlQu32Lt4uLiNPuSzzAM3n33XV588UX69u0LwAcffIC/vz+LFy/mmWeeweFwMHfuXBYuXEjnzp0B+PDDDwkODmb16tV069atPJos4iTNY0Ap1naUWTtEROTqymUmZv/+/QQFBREaGsof//hHDhw4AMDBgwfJyMiga9euZq27uzsdOnRgw4YNAGzbto0LFy441QQFBREREWHWiIiIiJT5TEybNm1YsGABd955J0ePHuWNN96gXbt27N69m4yMDAD8/f2d1vH39+fQoUMAZGRk4ObmRq1atQrU5K9fmJycHHJycsz32dnZZdUlkWKpO3Z5iddNm/xAGbZERKRyK/MQ06NHD/PPTZo0ITIykvr16/PBBx/Qtm1bAGw2m9M6hmEUWHal69XEx8fz6quvlqLlIiIiYiXlfou1l5cXTZo0Yf/+/eZ1MlfOqGRmZpqzMwEBAZw/f56srKyr1hRm3LhxOBwO83X48OEy7omIiIjcTMo9xOTk5LB3714CAwMJDQ0lICCAVatWmZ+fP3+edevW0a5dOwBatWqFq6urU016ejq7du0yawrj7u5OjRo1nF4iIiJSeZX56aTRo0fTq1cv7rjjDjIzM3njjTfIzs5m4MCB2Gw24uLimDRpEg0bNqRhw4ZMmjSJatWqMWDApbtB7HY7gwcPZtSoUfj4+FC7dm1Gjx5NkyZNzLuVRERERMo8xBw5coTHHnuMY8eOUadOHdq2bUtKSgohISEAjBkzhrNnzzJkyBCysrJo06YNK1euxNvb29zG9OnTcXFxoV+/fpw9e5ZOnTqRmJhI1apVy7q5IiIiYlE2wzCMim5EecjOzsZut+NwOMrn1NJEe9lvUyqFuucWl3hd3Z0kIre64vz+1ncniYiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIgllcu3WIvcykrzDdh1x+rOJhGRotJMjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSLuwVqSTqjl1e4nV1UbCIWJFmYkRERMSSFGJERETEkhRiRERExJJ0TYzITaRUD8o7V/IH5YmIWJFmYkRERMSSFGJERETEknQ6SaSSKM2pKHCUWTtERG4UhRgR0TNmRMSSdDpJRERELEkhRkRERCxJIUZEREQsSdfEiEip6HoaEakomokRERERS9JMjIhU2JOCNYsjIqWhECMipaKvShCRiqLTSSIiImJJmokRkQqjpwyLSGloJkZEREQsSSFGRERELEmnk0TEknRnk4goxIjILac0Aag0FJ5EypZOJ4mIiIglaSZGRCypdHc2VYy6Y0v+XBzN4ogUpBAjImIBugZIpCCFGBGRG0RPNxYpWzd9iJk5cyZvvfUW6enpNG7cmHfffZc//OEPFd0sEZEbqlQBqBSnsSqKZo+kKG7qEPPxxx8TFxfHzJkzuffee5kzZw49evRgz5493HHHHRXdPBERS7Di9UN6IrMUhc0wDKOiG3E1bdq0oWXLlsyaNctcFh4eTp8+fYiPj7/mutnZ2djtdhwOBzVq1Cj7xk20l/02RUTkkoklDzEVdQs9aAapLBTn9/dNOxNz/vx5tm3bxtixY52Wd+3alQ0bNlRQq0RE5EYo1YXMFTnzNLHkq1bUdU9WDl43bYg5duwYubm5+Pv7Oy339/cnIyOjQH1OTg45OTnme4fjUorPzs4unwbm3LQTWCIilrfD9liJ183OuX7Nzag0fS6N7HGlWHnckTJrR77839tFOVF004aYfDabzem9YRgFlgHEx8fz6quvFlgeHBxcbm0TERG5pU0uv0srTp48id1+7e3ftCHG19eXqlWrFph1yczMLDA7AzBu3DhGjhxpvs/Ly+P48eP4+PgUGnpKIzs7m+DgYA4fPlw+19tUIhqrotNYFZ3Gqug0VsWj8Sq68horwzA4efIkQUFB1629aUOMm5sbrVq1YtWqVTz00EPm8lWrVvHggw8WqHd3d8fd3d1pWc2aNcu1jTVq1NBBXkQaq6LTWBWdxqroNFbFo/EquvIYq+vNwOS7aUMMwMiRI4mJiaF169ZERkby97//nV9++YVnn322opsmIiIiFeymDjH9+/fn999/57XXXiM9PZ2IiAhWrFhBSEhIRTdNREREKthNHWIAhgwZwpAhQyq6GU7c3d155ZVXCpy+koI0VkWnsSo6jVXRaayKR+NVdDfDWN3UD7sTERERuZoqFd0AERERkZJQiBERERFLUogRERERS1KIEREREUtSiLmKmTNnEhoaioeHB61ateKbb765Zv26deto1aoVHh4e1KtXj9mzZ9+glla84ozV2rVrsdlsBV4//PDDDWxxxfj666/p1asXQUFB2Gw2Pvvss+uuc6seV8Udq1v1uIqPj+fuu+/G29sbPz8/+vTpw759+6673q14XJVkrG7V4wpg1qxZNG3a1HyQXWRkJP/973+vuU5FHFcKMYX4+OOPiYuL48UXX2T79u384Q9/oEePHvzyyy+F1h88eJCePXvyhz/8ge3btzN+/HhGjBjBp59+eoNbfuMVd6zy7du3j/T0dPPVsGHDG9TiinP69GmaNWtGQkJCkepv5eOquGOV71Y7rtatW8fQoUNJSUlh1apVXLx4ka5du3L69OmrrnOrHlclGat8t9pxBXD77bczefJktm7dytatW+nYsSMPPvggu3fvLrS+wo4rQwq45557jGeffdZp2V133WWMHTu20PoxY8YYd911l9OyZ555xmjbtm25tfFmUdyxSk5ONgAjKyvrBrTu5gUYy5Ytu2bNrXxcXa4oY6Xj6pLMzEwDMNatW3fVGh1XlxRlrHRcOatVq5bxj3/8o9DPKuq40kzMFc6fP8+2bdvo2rWr0/KuXbuyYcOGQtfZuHFjgfpu3bqxdetWLly4UG5trWglGat8LVq0IDAwkE6dOpGcnFyezbSsW/W4Ko1b/bhyOBwA1K5d+6o1Oq4uKcpY5bvVj6vc3FyWLFnC6dOniYyMLLSmoo4rhZgrHDt2jNzc3ALflO3v71/gG7XzZWRkFFp/8eJFjh07Vm5trWglGavAwED+/ve/8+mnn7J06VLCwsLo1KkTX3/99Y1osqXcqsdVSei4uvTNvyNHjqR9+/ZERERctU7HVdHH6lY/rnbu3En16tVxd3fn2WefZdmyZTRq1KjQ2oo6rm76rx2oKDabzem9YRgFll2vvrDllVFxxiosLIywsDDzfWRkJIcPH+btt9/mvvvuK9d2WtGtfFwVh44rGDZsGDt27GD9+vXXrb3Vj6uijtWtflyFhYWRmprKiRMn+PTTTxk4cCDr1q27apCpiONKMzFX8PX1pWrVqgVmEjIzMwukzHwBAQGF1ru4uODj41Nuba1oJRmrwrRt25b9+/eXdfMs71Y9rsrKrXRcDR8+nM8//5zk5GRuv/32a9be6sdVccaqMLfSceXm5kaDBg1o3bo18fHxNGvWjBkzZhRaW1HHlULMFdzc3GjVqhWrVq1yWr5q1SratWtX6DqRkZEF6leuXEnr1q1xdXUtt7ZWtJKMVWG2b99OYGBgWTfP8m7V46qs3ArHlWEYDBs2jKVLl/LVV18RGhp63XVu1eOqJGNVmFvhuLoawzDIyckp9LMKO67K9bJhi1qyZInh6upqzJ0719izZ48RFxdneHl5GWlpaYZhGMbYsWONmJgYs/7AgQNGtWrVjOeff97Ys2ePMXfuXMPV1dX417/+VVFduGGKO1bTp083li1bZvz444/Grl27jLFjxxqA8emnn1ZUF26YkydPGtu3bze2b99uAMa0adOM7du3G4cOHTIMQ8fV5Yo7VrfqcfWXv/zFsNvtxtq1a4309HTzdebMGbNGx9UlJRmrW/W4MgzDGDdunPH1118bBw8eNHbs2GGMHz/eqFKlirFy5UrDMG6e40oh5ir+9re/GSEhIYabm5vRsmVLp9vwBg4caHTo0MGpfu3atUaLFi0MNzc3o27dusasWbNucIsrTnHGasqUKUb9+vUNDw8Po1atWkb79u2N5cuXV0Crb7z82zWvfA0cONAwDB1XlyvuWN2qx1VhYwQY8+fPN2t0XF1SkrG6VY8rwzCMp556yvx3vU6dOkanTp3MAGMYN89xZTOM///KGxEREREL0TUxIiIiYkkKMSIiImJJCjEiIiJiSQoxIiIiYkkKMSIiImJJCjEiIiJiSQoxIiIiYkkKMSIiImJJCjEiIiJiSQoxInLTiYqKwmazYbPZSE1NrbB2DBo0yGzHZ599VmHtEJHCKcSIyE0pNjaW9PR0IiIinJZnZGTw3HPP0aBBAzw8PPD396d9+/bMnj2bM2fOFGnbvXr1onPnzoV+tnHjRmw2G9999x0zZswgPT291H0RkfLhUtENEBEpTLVq1QgICHBaduDAAe69915q1qzJpEmTaNKkCRcvXuTHH39k3rx5BAUF0bt37+tue/DgwfTt25dDhw4REhLi9Nm8efNo3rw5LVu2BMBut5ddp0SkTGkmRkTKxNGjR7HZbMyYMYMWLVrg4eFB48aNWb9+fZntY8iQIbi4uLB161b69etHeHg4TZo04eGHH2b58uX06tULAMMwmDp1KvXq1cPT05NmzZrxr3/9y9xOdHQ0fn5+JCYmOm3/zJkzfPzxxwwePLjM2iwi5UchRkTKxPbt2wGYOXMm06dP5/vvv6du3bo8/vjj5OXllXr7v//+OytXrmTo0KF4eXkVWmOz2QB46aWXmD9/PrNmzWL37t08//zzPPHEE6xbtw4AFxcXnnzySRITEzEMw1z/n//8J+fPn+fxxx8vdXtFpPwpxIhImfj+++9xdXUlKSmJqKgowsLCeO211/jll1948803ad68OREREbi7u9O8eXOaN2/OnDlzirz9n376CcMwCAsLc1ru6+tL9erVqV69Oi+88AKnT59m2rRpzJs3j27dulGvXj0GDRrEE0884bS/p556irS0NNauXWsumzdvHn379qVWrVqlHg8RKX+6JkZEykRqaip9+/YlNDTUXObu7g5cusvn5Zdf5rvvvmP48OF8++23Jd5P/mxLvs2bN5OXl8fjjz9OTk4Oe/bs4dy5c3Tp0sWp7vz587Ro0cJ8f9ddd9GuXTvmzZvH/fffz88//8w333zDypUrS9w2EbmxFGJEpEykpqYycOBAp2Xfffcdvr6+3HbbbQDs3r2bxo0bl2j7DRo0wGaz8cMPPzgtr1evHgCenp4A5qmr5cuXm/vNlx+q8g0ePJhhw4bxt7/9jfnz5xMSEkKnTp1K1D4RufF0OklESu3s2bPs37+f3Nxcc1leXh4zZsxg4MCBVKly6Z+aXbt2lTjE+Pj40KVLFxISEjh9+vRV6xo1aoS7uzu//PILDRo0cHoFBwc71fbr14+qVauyePFiPvjgA/70pz8VmOkRkZuXZmJEpNR27tyJzWbjww8/pGPHjtSsWZMJEyZw4sQJXnrpJbNu9+7ddO3atcT7mTlzJvfeey+tW7dm4sSJNG3alCpVqrBlyxZ++OEHWrVqhbe3N6NHj+b5558nLy+P9u3bk52dzYYNG6hevbrTbFH16tXp378/48ePx+FwMGjQoNIMg4jcYAoxIlJqqamp3HXXXYwdO5ZHHnmEEydOEB0dzcaNG6lZs6ZZV5qZGID69euzfft2Jk2axLhx4zhy5Aju7u40atSI0aNHM2TIEABef/11/Pz8iI+P58CBA9SsWZOWLVsyfvz4AtscPHgwc+fOpWvXrtxxxx0lbpuI3Hg24/L7C0VESmDo0KFkZWWxePHiq9acOnWK0NBQfvvtt+tuLyoqiubNm/Puu++WYStLzmazsWzZMvr06VPRTRGRy+iaGBEptdTUVJo2bXrNmj179tCoUaMib3PmzJlUr16dnTt3lrZ5Jfbss89SvXr1Ctu/iFybZmJEpFQMw8But7NkyRJ69uxZJtv8f//v/3H27FkA7rjjDtzc3Mpku8WVmZlJdnY2AIGBgVd9yJ6IVAyFGBEREbEknU4SERERS1KIEREREUtSiBERERFLUogRERERS1KIEREREUtSiBERERFLUogRERERS1KIEREREUtSiBERERFLUogRERERS1KIEREREUv6/wD45+1oGdxgAQAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHJCAYAAABtzYa7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJXklEQVR4nO3deVxU9f7H8feAMqgoLiTgEuCSSuYGqUB2MwtzKa1b0r2Fa7drO9mmWZZmkd6baQuUN5VsUSq1vLlii8tPsjS0krJFDTKQtATLBMHv7w8vk9OAwggMeF7Px+M8YL7zPd/zPd85w/nw/X7POTZjjBEAAICFeHm6AgAAADWNAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAItV5KSopsNlu5y4cffujI+/PPP+v6669Xy5YtZbPZNHz4cEnS3r17NWTIEDVv3lw2m00JCQnau3evbDabUlJSKlWfDz/80GW7cPX6669r9uzZnq4GLOTIkSN69NFH+W6iQup5ugJARS1YsECdO3d2SQ8PD3f8/thjj2nZsmWaP3++2rdvr+bNm0uS7r77bm3ZskXz589XUFCQgoODFRQUpPT0dLVv375S9ejVq5fS09OdtgtXr7/+ur744gslJCR4uiqwiCNHjmjq1KmSpEsuucSzlUGtRwCEOqNr166KjIw8ZZ4vvvhC7du31w033OCS3rt3b0ePUKm+fftWuh5NmjRxaz2Ur6SkRMXFxbLb7Z6uSrU5cuSIGjZs6OlqAPgfhsBwVigdzlq3bp2+/PJLp+Exm82mb7/9VqtWrXKk7927t9whsK+++kp/+9vfFBgYKLvdrnPPPVcjR45UYWGhpPKHwLZu3aqrrrpKzZs3l6+vr3r27Kk33njDKU/pcN4HH3ygW265RQEBAWrRooWuueYa/fjjjy779frrrysqKkp+fn7y8/NTjx49NG/ePEknervq1aun7Oxsl/XGjh2rFi1a6OjRo2W21+zZsx3t8mcPPPCAfHx8dODAAUlSRkaGhg4dqpYtW8put6tVq1YaMmSIfvjhh7I/DJ3473vFihX6/vvvnYYrpT8+q5kzZ2r69OkKCwuT3W7XBx98oKNHj+qee+5Rjx495O/vr+bNmysqKkrvvPOOyzZsNptuv/12vfLKK+rSpYsaNmyo7t27691333XK99NPP+nmm29W27ZtZbfbdc455ygmJkbr1q2TJCUkJKhRo0YqKChw2UZcXJwCAwN17NgxR1pqaqqioqLUqFEj+fn5aeDAgcrIyHBab/To0fLz89Pnn3+u2NhYNW7cWAMGDKhwexpjlJSUpB49eqhBgwZq1qyZrr32Wu3evbvcNi/16KOPymaz6bPPPtN1113naMcJEyaouLhYu3bt0hVXXKHGjRsrNDRUM2fOdCkjKytLN954o6OOXbp00VNPPaXjx4878pR+jv/61780Y8YMhYaGqkGDBrrkkkv09ddf69ixY5o4caJatWolf39/XX311crLy3PZVmXa89tvv9XgwYPl5+entm3b6p577nF8L/fu3atzzjlHkjR16lTHMTd69GhHGaGhoeW218lKj60FCxaoU6dOatCggSIjI/XRRx/JGKN//etfCgsLk5+fny699NIyv0eoAwxQyy1YsMBIMh999JE5duyY01JcXGyMMebo0aMmPT3d9OzZ07Rr186kp6eb9PR0k5+fb9LT001QUJCJiYlxpB89etTs2bPHSDILFixwbGv79u3Gz8/PhIaGmhdeeMG899575tVXXzUjRowwBQUFxhhjPvjgAyPJfPDBB4713n//fePj42P69etnUlNTzerVq83o0aNdyi/dl3bt2pk77rjDrFmzxrz00kumWbNmpn///k77/fDDDxtJ5pprrjFvvvmmWbt2rZk1a5Z5+OGHjTHG7N+/39jtdjN58mSn9Q4ePGgaNGhg7rvvvnLb9KeffjI+Pj4u6xYXF5tWrVqZa665xhhjzK+//mpatGhhIiMjzRtvvGHWr19vUlNTzfjx401mZma55e/cudPExMSYoKAgR5unp6cbY4yj3Vu3bm369+9v3nrrLbN27VqzZ88ec+jQITN69GjzyiuvmPfff9+sXr3a3HvvvcbLy8u8/PLLTtuQZEJDQ03v3r3NG2+8YVauXGkuueQSU69ePfPdd9858g0cONCcc845Zu7cuebDDz80b7/9tpkyZYpZvHixMcaYHTt2GEnmP//5j1P5v/zyi7Hb7WbChAmOtMcff9zYbDYzduxY8+6775qlS5eaqKgo06hRI7Nz505HvlGjRpn69eub0NBQk5iYaN577z2zZs2aCrfnP/7xD1O/fn1zzz33mNWrV5vXX3/ddO7c2QQGBprc3Nxy290YYx555BEjyXTq1Mk89thjJi0tzdx///1Gkrn99ttN586dzTPPPGPS0tLMmDFjjCSzZMkSx/p5eXmmdevW5pxzzjEvvPCCWb16tbn99tuNJHPLLbc48pV+jiEhIebKK6807777rnn11VdNYGCgOe+880x8fLwZO3asWbVqlXnhhReMn5+fufLKK53qWpn29PHxMV26dDH//ve/zbp168yUKVOMzWYzU6dONcac+BuwevVqI8mMGzfOccx9++23jjJCQkLKba+Tle5XdHS0Wbp0qVm2bJk577zzTPPmzc3dd99thg0bZt59913z2muvmcDAQNOtWzdz/PjxU34uqH0IgFDrlQYNZS3e3t5Oef/yl7+Y888/36WMkJAQM2TIEKe0sgKgSy+91DRt2tTk5eWVW5+yAqDOnTubnj17mmPHjjnlHTp0qAkODjYlJSVO+3Lrrbc65Zs5c6aRZHJycowxxuzevdt4e3ubG264ofyGMSf+qLds2dIUFhY60mbMmGG8vLzMnj17TrnuNddcY9q0aeOomzHGrFy50kgy//3vf40xxmzdutVIMm+//fYpyyrLkCFDyjzhlLZ7+/btTVFR0SnLKC4uNseOHTPjxo0zPXv2dHpPkgkMDHQEpsYYk5uba7y8vExiYqIjzc/PzyQkJJxyO7169TLR0dFOaUlJSUaS+fzzz40xxmRlZZl69eqZO+64wynf4cOHTVBQkBkxYoQjbdSoUUaSmT9/vlPeirRnenq6kWSeeuopp/Ts7GzToEEDc//9959yX0pP6H9ev0ePHkaSWbp0qSPt2LFj5pxzznEEvMYYM3HiRCPJbNmyxWn9W265xdhsNrNr1y5jzB+fY/fu3Z2OodmzZxtJ5qqrrnJaPyEhwUgy+fn5xhj32vONN95wyjt48GDTqVMnx+uffvrJSDKPPPKIS7tUNgAKCgoyv/76qyPt7bffNpJMjx49nIKd0v397LPPXMpG7cYQGOqMhQsX6pNPPnFatmzZUmXlHzlyROvXr9eIESMcXekV8e233+qrr75yzDsqLi52LIMHD1ZOTo527drltM5VV13l9Lpbt26SpO+//16SlJaWppKSEt12222n3PZdd92lvLw8vfnmm5Kk48ePKzk5WUOGDCmzu/9kY8aM0Q8//OAYCpJOTDQPCgrSoEGDJEkdOnRQs2bN9MADD+iFF15QZmbmaVqj4q666irVr1/fJf3NN99UTEyM/Pz8VK9ePdWvX1/z5s3Tl19+6ZK3f//+aty4seN1YGCgWrZs6WhHSerdu7dSUlI0ffp0ffTRR07DWaXGjBmjzZs3O31OCxYs0IUXXqiuXbtKktasWaPi4mKNHDnS6TP29fXVX/7ylzKvPPrrX//q9Loi7fnuu+/KZrPpxhtvdNpOUFCQunfvXuErnIYOHer0ukuXLrLZbI7PVpLq1aunDh06OLXX+++/r/DwcPXu3dtp/dGjR8sYo/fff98pffDgwfLy+uNU0qVLF0nSkCFDXLYvnRhekyrfnjabTVdeeaVTWrdu3ZzqXpX69++vRo0audR/0KBBTkNmpenVVQ9UHwIg1BldunRRZGSk0xIREVFl5f/yyy8qKSlRmzZtKrXe/v37JUn33nuv6tev77TceuutkuSYT1OqRYsWTq9LJ//+/vvvkk7MW5F02rr07NlT/fr10/PPPy/pxMlz7969uv32209b70GDBik4OFgLFiyQdGL/ly9frpEjR8rb21uS5O/vr/Xr16tHjx568MEHdf7556tVq1Z65JFHygwkKiM4ONglbenSpRoxYoRat26tV199Venp6frkk080duzYMucz/bkdpRNtWdqO0ok5JqNGjdJLL72kqKgoNW/eXCNHjlRubq4jzw033CC73e6YD5aZmalPPvlEY8aMceQp/ZwvvPBCl885NTXV5TNu2LChmjRp4pRWkfbcv3+/jDEKDAx02c5HH33ksp3ylF4BWcrHx0cNGzaUr6+vS/rJbXvw4MEyP5tWrVo53j/ddk6VXrotd9rzz3W32+3lznM7U+7uF+oOrgID/qd58+by9vY+5eTesgQEBEiSJk2apGuuuabMPJ06dapUmaU9UD/88IPatm17yrx33nmnrrvuOn366ad67rnndN555+nyyy8/7Ta8vb0VHx+vZ555RocOHdLrr7+uwsJCp5O+JF1wwQVavHixjDH67LPPlJKSomnTpqlBgwaaOHFipfbrZH+eeCpJr776qsLCwpSamur0fulEV3cEBARo9uzZmj17trKysrR8+XJNnDhReXl5Wr16tSSpWbNmGjZsmBYuXKjp06drwYIF8vX11d/+9jenciTprbfeUkhIiFv7J52+PQMCAmSz2bRx48Yyr4qr7ivlWrRooZycHJf00kn6pe1wpirbnmfK19e3zOOoogElzj4EQMD/NGjQQH/5y1/05ptv6vHHH6/wH/pOnTqpY8eO2rFjh5544okqqUtsbKy8vb2VnJysqKioU+a9+uqrde655+qee+7R+vXr9fTTT5d78v2zMWPGaObMmVq0aJFSUlIUFRVV5r2WpBMn9O7du+vpp59WSkqKPv3001OW/eeemIqw2Wzy8fFxqn9ubm6ZV4G549xzz9Xtt9+u9957T//3f//n9N6YMWP0xhtvaOXKlXr11Vd19dVXq2nTpo73Bw4cqHr16um7775zGdpyR3ntOXToUD355JPat2+fRowYccbbqawBAwYoMTFRn376qXr16uVIX7hwoWw2m/r3718l26nq9pRce1JPFhoaqry8PO3fv1+BgYGSpKKiIq1Zs6ZKto26hwAIdcYXX3yh4uJil/T27dtXas7OqcyaNUsXXXSR+vTpo4kTJ6pDhw7av3+/li9frhdffNFpvsnJXnzxRQ0aNEgDBw7U6NGj1bp1a/3888/68ssv9emnnzrm6FRUaGioHnzwQT322GP6/fff9be//U3+/v7KzMzUgQMHHDd7k0705Nx222164IEH1KhRI8dlvxXRuXNnRUVFKTExUdnZ2Zo7d67T+++++66SkpI0fPhwtWvXTsYYLV26VIcOHTptL9MFF1ygpUuXKjk5WREREfLy8jrtfZyGDh2qpUuX6tZbb9W1116r7OxsPfbYYwoODtY333xT4f0qlZ+fr/79++vvf/+7OnfurMaNG+uTTz7R6tWrXXrrYmNj1aZNG916663Kzc116QkLDQ3VtGnTNHnyZO3evVtXXHGFmjVrpv379+vjjz9Wo0aNnD6XslSkPWNiYnTzzTdrzJgx2rp1qy6++GI1atRIOTk52rRpky644ALdcsstlW6Lirr77ru1cOFCDRkyRNOmTVNISIhWrFihpKQk3XLLLTrvvPOqZDtV0Z5/1rhxY4WEhOidd97RgAED1Lx5cwUEBCg0NFRxcXGaMmWKrr/+et133306evSonnnmGZWUlFTJ/qDuIQBCnfHnE1Kp//znP7rpppuqZBvdu3fXxx9/rEceeUSTJk3S4cOHFRQUpEsvvdQx1l+W/v376+OPP9bjjz+uhIQE/fLLL2rRooXCw8Pd/i9+2rRp6tixo5599lndcMMNqlevnjp27Kg777zTJW9cXJweeOABxcfHy9/fv1LbGTNmjG6++WY1aNBAcXFxTu917NhRTZs21cyZM/Xjjz/Kx8dHnTp1UkpKikaNGnXKcu+66y7t3LlTDz74oPLz82VOXHV62rrk5eXphRde0Pz589WuXTtNnDhRP/zwQ6VPhtKJYY8+ffrolVde0d69e3Xs2DGde+65euCBB3T//fc75fXy8tLIkSP1xBNPqG3bto779pxs0qRJCg8P15w5c7Ro0SIVFhYqKChIF154ocaPH3/a+lS0PV988UX17dtXL774opKSknT8+HG1atVKMTExLpOTq9o555yjzZs3a9KkSZo0aZIKCgrUrl07zZw5UxMmTKjSbZ1pe5Zl3rx5uu+++3TVVVepsLBQo0aNUkpKisLCwvTOO+/owQcf1LXXXqvg4GBNmDBBP/30k1vHFuo+mzndXyQAtd6zzz6rO++8U1988YXOP/98T1cHAGo9AiCgDsvIyNCePXv0z3/+UzExMXr77bc9XSUAqBMIgIA6LDQ0VLm5uerXr59eeeUVBQUFebpKAFAnEAABAADL4UaIAADAcgiAAACA5RAAAQAAy+E+QGU4fvy4fvzxRzVu3LjCd9QFAACeZYzR4cOH1apVK6eH9JaFAKgMP/7442mfvwQAAGqn7Ozs0z5MmgCoDKWPO8jOznZ5mjMAAKidCgoK1LZt23IfW3QyAqAylA57NWnShAAIAIA6piLTV5gEDQAALIcACAAAWI7HA6CkpCSFhYXJ19dXERER2rhx4ynzP//88+rSpYsaNGigTp06aeHChS55lixZovDwcNntdoWHh2vZsmXVVX0AAFAHeTQASk1NVUJCgiZPnqyMjAz169dPgwYNUlZWVpn5k5OTNWnSJD366KPauXOnpk6dqttuu03//e9/HXnS09MVFxen+Ph47dixQ/Hx8RoxYoS2bNlSU7sFAABqOY8+C6xPnz7q1auXkpOTHWldunTR8OHDlZiY6JI/OjpaMTEx+te//uVIS0hI0NatW7Vp0yZJUlxcnAoKCrRq1SpHniuuuELNmjXTokWLKlSvgoIC+fv7Kz8/n0nQAADUEZU5f3usB6ioqEjbtm1TbGysU3psbKw2b95c5jqFhYXy9fV1SmvQoIE+/vhjHTt2TNKJHqA/lzlw4MByyywtt6CgwGkBAABnL48FQAcOHFBJSYkCAwOd0gMDA5Wbm1vmOgMHDtRLL72kbdu2yRijrVu3av78+Tp27JgOHDggScrNza1UmZKUmJgof39/x8JNEAEAOLt5fBL0n6/VN8aUe/3+ww8/rEGDBqlv376qX7++hg0bptGjR0uSvL293SpTkiZNmqT8/HzHkp2d7ebeAACAusBjAVBAQIC8vb1demby8vJcenBKNWjQQPPnz9eRI0e0d+9eZWVlKTQ0VI0bN1ZAQIAkKSgoqFJlSpLdbnfc9JCbHwIAcPbzWADk4+OjiIgIpaWlOaWnpaUpOjr6lOvWr19fbdq0kbe3txYvXqyhQ4c6HnoWFRXlUubatWtPWyYAALAOjz4KY8KECYqPj1dkZKSioqI0d+5cZWVlafz48ZJODE3t27fPca+fr7/+Wh9//LH69OmjX375RbNmzdIXX3yhl19+2VHmXXfdpYsvvlgzZszQsGHD9M4772jdunWOq8QAALXHkaJihU9ZI0nKnDZQDX14QhNqhkePtLi4OB08eFDTpk1TTk6OunbtqpUrVyokJESSlJOT43RPoJKSEj311FPatWuX6tevr/79+2vz5s0KDQ115ImOjtbixYv10EMP6eGHH1b79u2VmpqqPn361PTuAQCAWsqj9wGqrbgPEABUryNFxf/7WaLI6eskSVsfukwNfU5c0EJPENxRmfM3RxgAoMaVDnudrDQQkqS9Tw6pyerAgjx+GTwAAEBNowcIAFDjMqcNlFT+EBhQ3QiAAAA1rqw5Pg19vJn7gxrDEBgAALAcQm0AgMc09KnHhGd4BD1AAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHIIgAAAgOUQAAEAAMshAAIAAJZDAAQAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALMfjAVBSUpLCwsLk6+uriIgIbdy48ZT5X3vtNXXv3l0NGzZUcHCwxowZo4MHDzreT0lJkc1mc1mOHj1a3bsCAADqCI8GQKmpqUpISNDkyZOVkZGhfv36adCgQcrKyioz/6ZNmzRy5EiNGzdOO3fu1JtvvqlPPvlEN910k1O+Jk2aKCcnx2nx9fWtiV0CAAB1gEcDoFmzZmncuHG66aab1KVLF82ePVtt27ZVcnJymfk/+ugjhYaG6s4771RYWJguuugi/fOf/9TWrVud8tlsNgUFBTktAAAApTwWABUVFWnbtm2KjY11So+NjdXmzZvLXCc6Olo//PCDVq5cKWOM9u/fr7feektDhgxxyvfrr78qJCREbdq00dChQ5WRkXHKuhQWFqqgoMBpAQAAZy+PBUAHDhxQSUmJAgMDndIDAwOVm5tb5jrR0dF67bXXFBcXJx8fHwUFBalp06Z69tlnHXk6d+6slJQULV++XIsWLZKvr69iYmL0zTfflFuXxMRE+fv7O5a2bdtWzU4CAAAnR4qKFTpxhUInrtCRomKP1cPjk6BtNpvTa2OMS1qpzMxM3XnnnZoyZYq2bdum1atXa8+ePRo/frwjT9++fXXjjTeqe/fu6tevn9544w2dd955TkHSn02aNEn5+fmOJTs7u2p2DgAA1Er1PLXhgIAAeXt7u/T25OXlufQKlUpMTFRMTIzuu+8+SVK3bt3UqFEj9evXT9OnT1dwcLDLOl5eXrrwwgtP2QNkt9tlt9vPYG8AAMCplPb2HCkqOSntj98b+tRsSOKxAMjHx0cRERFKS0vT1Vdf7UhPS0vTsGHDylznyJEjqlfPucre3t6STvQclcUYo+3bt+uCCy6oopoDAIDKCp+yxiUtcvo6x+97nxzi8n518lgAJEkTJkxQfHy8IiMjFRUVpblz5yorK8sxpDVp0iTt27dPCxculCRdeeWV+sc//qHk5GQNHDhQOTk5SkhIUO/evdWqVStJ0tSpU9W3b1917NhRBQUFeuaZZ7R9+3Y9//zzHttPAABQu3g0AIqLi9PBgwc1bdo05eTkqGvXrlq5cqVCQkIkSTk5OU73BBo9erQOHz6s5557Tvfcc4+aNm2qSy+9VDNmzHDkOXTokG6++Wbl5ubK399fPXv21IYNG9S7d+8a3z8AAHBC5rSBkk4Me5X2/Gx96DI19PH2SH1spryxIwsrKCiQv7+/8vPz1aRJE09XBwCAs8aRomLHcFjmtIFVOvenMudvj18FBgAAUNM8OgQGAACspaFPvRqf8FwWeoAAAIDlEAABAADLIQACAACWQwAEAIAbasszreAeAiAAAGA5XAUGAEAl1LZnWsE9fEoAAFRCbXumFdzDEBgAALAceoAAAKiE2vZMK7iHAAgAUGdV53OlylPWNhr6eDP3p45hCAwAAFgO4SoAoM6pDVdi1ZZnWsE9BEAAgDqHK7FwphgCAwAAlkMPEACgzuFKLJwpAiAAQJ3DlVg4UwyBAQAAyyFUBlCreOK+Lqi7uBIL7qIHCAAAWA7/WgGoFWrDfV0AWAd/UQDUCtzXBUBNYggMAABYDj1AAGoF7usCoCYRAAGoFbivC4CaxBAYAACwHP61AlCrcF8XADWBHiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAE4KxypKhYoRNXKHTiCsfzxQDgzwiAAACA5XAfIABnBZ4mD6AyPN4DlJSUpLCwMPn6+ioiIkIbN248Zf7XXntN3bt3V8OGDRUcHKwxY8bo4MGDTnmWLFmi8PBw2e12hYeHa9myZdW5CwBqgfApaxQ+ZY3TE+Qjp69zpJ/tGPoDKsejAVBqaqoSEhI0efJkZWRkqF+/fho0aJCysrLKzL9p0yaNHDlS48aN086dO/Xmm2/qk08+0U033eTIk56erri4OMXHx2vHjh2Kj4/XiBEjtGXLlpraLQAAUMvZjDHGUxvv06ePevXqpeTkZEdaly5dNHz4cCUmJrrk//e//63k5GR99913jrRnn31WM2fOVHZ2tiQpLi5OBQUFWrVqlSPPFVdcoWbNmmnRokUVqldBQYH8/f2Vn5+vJk2auLt7AGrQyUNgZT1N/mwdArPqfgNlqcz522M9QEVFRdq2bZtiY2Od0mNjY7V58+Yy14mOjtYPP/yglStXyhij/fv366233tKQIX88Nyg9Pd2lzIEDB5ZbpiQVFhaqoKDAaQFQtzT0qfe/xfukNG9H+tnK6kN/gLs8FgAdOHBAJSUlCgwMdEoPDAxUbm5umetER0frtddeU1xcnHx8fBQUFKSmTZvq2WefdeTJzc2tVJmSlJiYKH9/f8fStm3bM9gzAABQ23n83yKbzeb02hjjklYqMzNTd955p6ZMmaKBAwcqJydH9913n8aPH6958+a5VaYkTZo0SRMmTHC8LigoIAiqQkeKih3/iWZOG3hW/zcOz7Pa0+Qzpw2UVP4QGICyeexMFBAQIG9vb5eemby8PJcenFKJiYmKiYnRfffdJ0nq1q2bGjVqpH79+mn69OkKDg5WUFBQpcqUJLvdLrvdfoZ7BAA1r6x/KEqH/gCUz2NDYD4+PoqIiFBaWppTelpamqKjo8tc58iRI/Lycq6yt/eJ/3JK53JHRUW5lLl27dpyy0T1OVJU/L/F+b4spekAAHiKR/9FmDBhguLj4xUZGamoqCjNnTtXWVlZGj9+vKQTQ1P79u3TwoULJUlXXnml/vGPfyg5OdkxBJaQkKDevXurVatWkqS77rpLF198sWbMmKFhw4bpnXfe0bp167Rp0yaP7adVlTUB8+SJmlYapgCqmyeH/hjmRl3k0aM0Li5OBw8e1LRp05STk6OuXbtq5cqVCgkJkSTl5OQ43RNo9OjROnz4sJ577jndc889atq0qS699FLNmDHDkSc6OlqLFy/WQw89pIcffljt27dXamqq+vTpU+P7BwAAaieP3geotuI+QFWD+5MAZze+46htKnP+5uhEtWFyJnB2Y5gbdZnHnwUGVCdPPh+JZzMBQO3Fv+Kodla7LwtgFdyDCHUZARDOSifPTfgj7Y/fq3MYzpPbBmoSw9yoyzhKcVby5NwE5kUAQO1HAAQAtUBdvpcOw9yoi+rONwyW5c6JwZNzE5gXAQC1HwEQzkqenJvAvAhUBnPGAM/gm4VaixMDrIA5Y4BncAZBrVUVJwZPzk1gXgQA1F4EQADgQcwZAzyDAAi1FicGWAFzxgDP4BuGWosTAwCgunAmAYBagDljQM0iAEKtx4kBAFDVeBo8AACwHAIgAABgOQRAwCkcKSpW6MQVCp24wnFjRgBA3UcAhNMiCAAAnG2YBG0RdflJ057AYzgA4OzGX3GUy8pBAM9nAoCz29l7BoOkMwtiCAIAAGcrAqCzHEGMe3gMh/sYbgVqP76nBEA4BSsHATyGAwDObvw1P8udSRBDEIDKsPKcMaCu4Hv6B+vsqUURxJwZHsNRcQy3ArUf39M/cBbEaREEWA/zAwCc7firZhEEMahuVp4zBtQVfE//QAAEwOFM5gcw3ArUfnxP/2C9PQZQLuYHALAKAiAAVYrhVqD243tKAATgJMwPAGAVBEAAHJgfAMAqvDxdAQAAgJrGv3UAXDA/AMDZjh4gAABgOR4PgJKSkhQWFiZfX19FRERo48aN5eYdPXq0bDaby3L++ec78qSkpJSZ5+jRozWxOwDqsCNFxQqduEKhE1c47okE4Ozk0QAoNTVVCQkJmjx5sjIyMtSvXz8NGjRIWVlZZeafM2eOcnJyHEt2draaN2+u6667zilfkyZNnPLl5OTI19e3JnYJAADUAR4NgGbNmqVx48bppptuUpcuXTR79my1bdtWycnJZeb39/dXUFCQY9m6dat++eUXjRkzximfzWZzyhcUFFQTuwOgjjpSVPy/xfkO2KXpAM4+HpsEXVRUpG3btmnixIlO6bGxsdq8eXOFypg3b54uu+wyhYSEOKX/+uuvCgkJUUlJiXr06KHHHntMPXv2LLecwsJCFRYWOl4XFBRUYk8A1HXcARuwHo/1AB04cEAlJSUKDAx0Sg8MDFRubu5p18/JydGqVat00003OaV37txZKSkpWr58uRYtWiRfX1/FxMTom2++KbesxMRE+fv7O5a2bdu6t1NAFWI+St3DZwbUHR6/DN5mszm9Nsa4pJUlJSVFTZs21fDhw53S+/btq759+zpex8TEqFevXnr22Wf1zDPPlFnWpEmTNGHCBMfrgoICgiDAQrgDNmA9HguAAgIC5O3t7dLbk5eX59Ir9GfGGM2fP1/x8fHy8fE5ZV4vLy9deOGFp+wBstvtstvtFa88UI3O5InscM+Z3gGbzwyoezz2rfTx8VFERITS0tJ09dVXO9LT0tI0bNiwU667fv16ffvttxo3btxpt2OM0fbt23XBBReccZ2BmlAV81GOFBU7ysmcNpATcDVjDhFQ93j0r+KECRMUHx+vyMhIRUVFae7cucrKytL48eMlnRia2rdvnxYuXOi03rx589SnTx917drVpcypU6eqb9++6tixowoKCvTMM89o+/btev7552tknwDUXdwBG7AOjwZAcXFxOnjwoKZNm6acnBx17dpVK1eudFzVlZOT43JPoPz8fC1ZskRz5swps8xDhw7p5ptvVm5urvz9/dWzZ09t2LBBvXv3rvb9AarCmcxHYSjGM5hDBNQ9NmOMqexKo0eP1tixY3XxxRdXR508rqCgQP7+/srPz1eTJk08XR1YlDvDWKETV5zyfXo3qhdDj4BnVeb87dZl8IcPH1ZsbKw6duyoJ554Qvv27XOrogAAAJ7gVg+QJB08eFCvvvqqUlJS9MUXX+iyyy7TuHHjNGzYMNWvX7+q61mj6AFCXXXyEFhZQzH0SAA4m1V7D5AktWjRQnfddZcyMjL08ccfq0OHDoqPj1erVq109913n/KycwDVo6FPvf8t3ieleTvSAQAnnPGdoHNycrR27VqtXbtW3t7eGjx4sHbu3Knw8HA9/fTTVVFHAACAKuXWENixY8e0fPlyLViwQGvXrlW3bt1000036YYbblDjxo0lSYsXL9Ytt9yiX375pcorXd0YAgMAoO6pzPnbrT7x4OBgHT9+XH/729/08ccfq0ePHi55Bg4cqKZNm7pTPAAAQLVyKwB6+umndd1118nX17fcPM2aNdOePXvcrhgAAEB1cWsO0FVXXaUjR464pP/8888qKCg440oBAABUJ7cCoOuvv16LFy92SX/jjTd0/fXXn3GlAAAAqpNbAdCWLVvUv39/l/RLLrlEW7ZsOeNKAQAAVCe3AqDCwkIVFxe7pB87dky///77GVcKAACgOrkVAF144YWaO3euS/oLL7ygiIiIM64UAABAdXLrKrDHH39cl112mXbs2KEBAwZIkt577z198sknWrt2bZVWEAAAoKq51QMUExOj9PR0tW3bVm+88Yb++9//qkOHDvrss8/Ur1+/qq4jAABAlXL7Yahns9p4J+gjRcUKn7JGkpQ5bSDPdQIA4E+q/U7QknT8+HF9++23ysvL0/Hjx53eu/jii90tFgAAoNq5FQB99NFH+vvf/67vv/9ef+5AstlsKikpqZLK4UTPz4mfJSel/fE7PUEAAFSeW2fP8ePHKzIyUitWrFBwcLBsNltV1wv/UzrsdbLI6escv+99ckhNVgcAUEWY2uBZbrX2N998o7feeksdOnSo6voAAABUO7cCoD59+ujbb78lAKoBmdMGSjox7FXa87P1ocvU0Mfbk9UCALiJqQ21g1utfMcdd+iee+5Rbm6uLrjgAtWvX9/p/W7dulVJ5VD2F6GhjzdfEACoo5jaUDu4dRb961//KkkaO3asI81ms8kYwyRoAABQ67l1H6Dvv//+lO+HhIS4XaHaoDbeBwgAcHY4eQisrKkNFenhZwJ12ar9PkB1PcABAMBTmNpQO7j1KAxJeuWVVxQTE6NWrVo5eoRmz56td955p8oqBwAA/nCkqPh/i/ME6tJ0VJxb4WZycrKmTJmihIQEPf744445P02bNtXs2bM1bNiwKq0kAABnm4Y+9So94ZkJ1FXHrR6gZ599Vv/5z380efJkeXv/cTl2ZGSkPv/88yqrHAAAQHVwqwdoz5496tmzp0u63W7Xb7/9dsaVAgAArrg3XNVxqwcoLCxM27dvd0lftWqVwsPDz7ROAACgDA196v1v8T4pzduRjopzq7Xuu+8+3XbbbTp69KiMMfr444+1aNEiJSYm6qWXXqrqOgIAAFQpt+4DJEn/+c9/NH36dGVnZ0uSWrdurUcffVTjxo2r0gp6AvcBAgCg7qnM+dvtAKjUgQMHdPz4cbVs2fJMiqlVCIAAAKh7qv1GiCcLCAg40yIAAABqVIUDoF69eum9995Ts2bN1LNnT9lstnLzfvrpp1VSOQAAgOpQ4QBo2LBhstvtkqThw4dXV30AAACq3RnPATpTSUlJ+te//qWcnBydf/75mj17tvr161dm3tGjR+vll192SQ8PD9fOnTsdr5csWaKHH35Y3333ndq3b6/HH39cV199dYXrxBwgAADqnsqcv926D9Ann3yiLVu2uKRv2bJFW7durXA5qampSkhI0OTJk5WRkaF+/fpp0KBBysrKKjP/nDlzlJOT41iys7PVvHlzXXfddY486enpiouLU3x8vHbs2KH4+HiNGDGizPoCAABrcqsHqHfv3rr//vt17bXXOqUvXbpUM2bMqHCw0adPH/Xq1UvJycmOtC5dumj48OFKTEw87fpvv/22rrnmGu3Zs8fxhPq4uDgVFBRo1apVjnxXXHGFmjVrpkWLFlWoXvQAAQBQ91R7D1BmZqZ69erlkt6zZ09lZmZWqIyioiJt27ZNsbGxTumxsbHavHlzhcqYN2+eLrvsMkfwI53oAfpzmQMHDqxwmQAA4Ozn1mXwdrtd+/fvV7t27ZzSc3JyVK9exYo8cOCASkpKFBgY6JQeGBio3Nzc066fk5OjVatW6fXXX3dKz83NrXSZhYWFKiwsdLwuKCioyC4AAIA6yq0eoMsvv1yTJk1Sfn6+I+3QoUN68MEHdfnll1eqrD9fTm+MOeUl9qVSUlLUtGnTMq9Iq2yZiYmJ8vf3dyxt27atWOUBAECd5FYA9NRTTyk7O1shISHq37+/+vfvr7CwMOXm5uqpp56qUBkBAQHy9vZ26ZnJy8tz6cH5M2OM5s+fr/j4ePn4+Di9FxQUVOkyS4O50qX08R4AAODs5FYA1Lp1a3322WeaOXOmwsPDFRERoTlz5ujzzz+vcO+Jj4+PIiIilJaW5pSelpam6OjoU667fv16ffvtt2U+dywqKsqlzLVr156yTLvdriZNmjgtAADg7OX2ozAaNWqkm2+++Yw2PmHCBMXHxysyMlJRUVGaO3eusrKyNH78eEknemb27dunhQsXOq03b9489enTR127dnUp86677tLFF1+sGTNmaNiwYXrnnXe0bt06bdq06YzqCgAAzh4VDoCWL1+uQYMGqX79+lq+fPkp81511VUVKjMuLk4HDx7UtGnTlJOTo65du2rlypWOq7pycnJc7gmUn5+vJUuWaM6cOWWWGR0drcWLF+uhhx7Sww8/rPbt2ys1NVV9+vSpUJ0AwGqOFBUrfMoaSVLmtIFq6HPGj4kEar0K3wfIy8tLubm5atmypby8yh85s9lsKikpqbIKegL3AQJgJQRAOFtUy9Pgjx8/XubvAIC66UhR8f9+lpyU9sfvBEI4m1X46G7evLm+/vprBQQEaOzYsZozZ44aN25cnXUDAFSj0l6fk0VOX+f4fe+TQ2qyOjWOni9rq/BVYEVFRY4bBL788ss6evRotVUKAACgOlU43I2KitLw4cMVEREhY4zuvPNONWjQoMy88+fPr7IKAgCqR+a0gZJODHuV9vxsfegyNfTx9mS1qh1Df5AqEQC9+uqrevrpp/Xdd99JOnE1Fr1AAFB3lXWib+jjfdYHAFYf+sMJFT7KAwMD9eSTT0qSwsLC9Morr6hFixbVVjEAAIDq4tYk6P79+7s8ggIAUDc19KlnqV4Pqw79wRmToAEAltLQp97/Fu+T0rwd6bAGJkEDAADLcWsStM1mYxI0AKBOs9rQH5xV+FEYJwsLC9PWrVvP2knQPAoDAIC6pzLn7wrPAZKkwYMHKz8/X3v27FGLFi30+OOP69ChQ473Dx48qPDwcLcqDQAAUFMqFQCtXr1ahYWFjtczZszQzz//7HhdXFysXbt2VV3tAAAAqkGlAqA/c2P0DAAAwOPOKAACAACoiyoVANlsNtlsNpc0AACAuqRSd3wyxmj06NGy2+2SpKNHj2r8+PFq1KiRJDnNDwIAAKitKhUAjRo1yun1jTfe6JJn5MiRZ1YjAACAalapAGjBggXVVQ8AAIAawyRoAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHIIgAAAgOUQAAEAAMshAAIAAJZDAAQAACyHAAgAAFgOARAAALAcAiAAAGA5Hg+AkpKSFBYWJl9fX0VERGjjxo2nzF9YWKjJkycrJCREdrtd7du31/z58x3vp6SkyGazuSxHjx6t7l0BAAB1RD1Pbjw1NVUJCQlKSkpSTEyMXnzxRQ0aNEiZmZk699xzy1xnxIgR2r9/v+bNm6cOHTooLy9PxcXFTnmaNGmiXbt2OaX5+vpW234AAIC6xaMB0KxZszRu3DjddNNNkqTZs2drzZo1Sk5OVmJiokv+1atXa/369dq9e7eaN28uSQoNDXXJZ7PZFBQUVK11BwAAdZfHhsCKioq0bds2xcbGOqXHxsZq8+bNZa6zfPlyRUZGaubMmWrdurXOO+883Xvvvfr999+d8v36668KCQlRmzZtNHToUGVkZJyyLoWFhSooKHBaAADA2ctjPUAHDhxQSUmJAgMDndIDAwOVm5tb5jq7d+/Wpk2b5Ovrq2XLlunAgQO69dZb9fPPPzvmAXXu3FkpKSm64IILVFBQoDlz5igmJkY7duxQx44dyyw3MTFRU6dOrdodBAAAtZbHJ0HbbDan18YYl7RSx48fl81m02uvvabevXtr8ODBmjVrllJSUhy9QH379tWNN96o7t27q1+/fnrjjTd03nnn6dlnny23DpMmTVJ+fr5jyc7OrrodBAAAtY7HeoACAgLk7e3t0tuTl5fn0itUKjg4WK1bt5a/v78jrUuXLjLG6Icffiizh8fLy0sXXnihvvnmm3LrYrfbZbfb3dwTAABQ13isB8jHx0cRERFKS0tzSk9LS1N0dHSZ68TExOjHH3/Ur7/+6kj7+uuv5eXlpTZt2pS5jjFG27dvV3BwcNVVHgAA1GkeHQKbMGGCXnrpJc2fP19ffvml7r77bmVlZWn8+PGSTgxNjRw50pH/73//u1q0aKExY8YoMzNTGzZs0H333aexY8eqQYMGkqSpU6dqzZo12r17t7Zv365x48Zp+/btjjIBAAA8ehl8XFycDh48qGnTpiknJ0ddu3bVypUrFRISIknKyclRVlaWI7+fn5/S0tJ0xx13KDIyUi1atNCIESM0ffp0R55Dhw7p5ptvVm5urvz9/dWzZ09t2LBBvXv3rvH9AwAAtZPNGGM8XYnapqCgQP7+/srPz1eTJk08XR0AAFABlTl/e/wqMAAAgJpGAAQAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHIIgAAAgOUQAAEAAMshAAIAAJZDAAQAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwHI8HQElJSQoLC5Ovr68iIiK0cePGU+YvLCzU5MmTFRISIrvdrvbt22v+/PlOeZYsWaLw8HDZ7XaFh4dr2bJl1bkLAACgjvFoAJSamqqEhARNnjxZGRkZ6tevnwYNGqSsrKxy1xkxYoTee+89zZs3T7t27dKiRYvUuXNnx/vp6emKi4tTfHy8duzYofj4eI0YMUJbtmypiV0CAAB1gM0YYzy18T59+qhXr15KTk52pHXp0kXDhw9XYmKiS/7Vq1fr+uuv1+7du9W8efMyy4yLi1NBQYFWrVrlSLviiivUrFkzLVq0qEL1KigokL+/v/Lz89WkSZNK7hUAAPCEypy/PdYDVFRUpG3btik2NtYpPTY2Vps3by5zneXLlysyMlIzZ85U69atdd555+nee+/V77//7siTnp7uUubAgQPLLVM6MaxWUFDgtAAAgLNXPU9t+MCBAyopKVFgYKBTemBgoHJzc8tcZ/fu3dq0aZN8fX21bNkyHThwQLfeeqt+/vlnxzyg3NzcSpUpSYmJiZo6deoZ7hEAAKgrPD4J2mazOb02xriklTp+/LhsNptee+019e7dW4MHD9asWbOUkpLi1AtUmTIladKkScrPz3cs2dnZZ7BHAACgtvNYD1BAQIC8vb1demby8vJcenBKBQcHq3Xr1vL393ekdenSRcYY/fDDD+rYsaOCgoIqVaYk2e122e32M9gbAABQl3isB8jHx0cRERFKS0tzSk9LS1N0dHSZ68TExOjHH3/Ur7/+6kj7+uuv5eXlpTZt2kiSoqKiXMpcu3ZtuWUCAADr8egQ2IQJE/TSSy9p/vz5+vLLL3X33XcrKytL48ePl3RiaGrkyJGO/H//+9/VokULjRkzRpmZmdqwYYPuu+8+jR07Vg0aNJAk3XXXXVq7dq1mzJihr776SjNmzNC6deuUkJDgiV0EAAC1kMeGwKQTl6wfPHhQ06ZNU05Ojrp27aqVK1cqJCREkpSTk+N0TyA/Pz+lpaXpjjvuUGRkpFq0aKERI0Zo+vTpjjzR0dFavHixHnroIT388MNq3769UlNT1adPnxrfPwAAUDt59D5AtRX3AQIAoO6pE/cBAgAAdc+RomKFTlyh0IkrdKSo2NPVcRsBEAAAsByPzgECAAB1Q2lvz5GikpPS/vi9oU/dCinqVm0BAIBHhE9Z45IWOX2d4/e9Tw6pyeqcMYbAAACA5dADBAAATitz2kBJJ4a9Snt+tj50mRr6eHuyWm4jAAIAAKdV1hyfhj7edW7uTymGwAAAgOXUzbANAAB4REOfenVuwnNZ6AECAACWQwAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHIIgAAAgOUQAAEAAMshAAIAAJZDAAQAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAsx+MBUFJSksLCwuTr66uIiAht3Lix3LwffvihbDaby/LVV1858qSkpJSZ5+jRozWxOwAAoA6o58mNp6amKiEhQUlJSYqJidGLL76oQYMGKTMzU+eee2656+3atUtNmjRxvD7nnHOc3m/SpIl27drllObr61u1lQcAAHWWRwOgWbNmady4cbrpppskSbNnz9aaNWuUnJysxMTEctdr2bKlmjZtWu77NptNQUFBVV1dAABwlvDYEFhRUZG2bdum2NhYp/TY2Fht3rz5lOv27NlTwcHBGjBggD744AOX93/99VeFhISoTZs2Gjp0qDIyMqq07gAAoG7zWAB04MABlZSUKDAw0Ck9MDBQubm5Za4THBysuXPnasmSJVq6dKk6deqkAQMGaMOGDY48nTt3VkpKipYvX65FixbJ19dXMTEx+uabb8qtS2FhoQoKCpwWAABw9vLoEJh0YrjqZMYYl7RSnTp1UqdOnRyvo6KilJ2drX//+9+6+OKLJUl9+/ZV3759HXliYmLUq1cvPfvss3rmmWfKLDcxMVFTp049010BAAB1hMd6gAICAuTt7e3S25OXl+fSK3Qqffv2PWXvjpeXly688MJT5pk0aZLy8/MdS3Z2doW3DwAA6h6PBUA+Pj6KiIhQWlqaU3paWpqio6MrXE5GRoaCg4PLfd8Yo+3bt58yj91uV5MmTZwWAABw9vLoENiECRMUHx+vyMhIRUVFae7cucrKytL48eMlneiZ2bdvnxYuXCjpxFVioaGhOv/881VUVKRXX31VS5Ys0ZIlSxxlTp06VX379lXHjh1VUFCgZ555Rtu3b9fzzz/vkX0EAAC1j0cDoLi4OB08eFDTpk1TTk6OunbtqpUrVyokJESSlJOTo6ysLEf+oqIi3Xvvvdq3b58aNGig888/XytWrNDgwYMdeQ4dOqSbb75Zubm58vf3V8+ePbVhwwb17t27xvcPAADUTjZjjPF0JWqbgoIC+fv7Kz8/n+EwAADqiMqcvz3+KAwAAICaRgAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAA1aAjRcUKnbhCoRNX6EhRsaerAwCAZREAAQAAy/HoozCsorS350hRyUlpf/ze0IePAQCAmsSZtwaET1njkhY5fZ3j971PDqnJ6gAAYHkMgQEAAMuhB6gGZE4bKOnEsFdpz8/Why5TQx9vT1YLAADLIgCqAWXN8Wno483cHwAAPIQhMAAAYDl0QdSghj71mPAMAEAtQA8QAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHJ4FlgZjDGSpIKCAg/XBAAAVFTpebv0PH4qBEBlOHz4sCSpbdu2Hq4JAACorMOHD8vf3/+UeWymImGSxRw/flw//vijGjduLJvNVql1CwoK1LZtW2VnZ6tJkybVVMOzD+3mHtqt8mgz99Bu7qHd3ONuuxljdPjwYbVq1UpeXqee5UMPUBm8vLzUpk2bMyqjSZMmHOxuoN3cQ7tVHm3mHtrNPbSbe9xpt9P1/JRiEjQAALAcAiAAAGA5BEBVzG6365FHHpHdbvd0VeoU2s09tFvl0Wbuod3cQ7u5pybajUnQAADAcugBAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIDckJSUpLCxMvr6+ioiI0MaNG0+Zf/369YqIiJCvr6/atWunF154oYZqWrtUpt0+/PBD2Ww2l+Wrr76qwRp71oYNG3TllVeqVatWstlsevvtt0+7Dsda5duNY01KTEzUhRdeqMaNG6tly5YaPny4du3addr1rH68udNuHG9ScnKyunXr5rjJYVRUlFatWnXKdarjWCMAqqTU1FQlJCRo8uTJysjIUL9+/TRo0CBlZWWVmX/Pnj0aPHiw+vXrp4yMDD344IO68847tWTJkhquuWdVtt1K7dq1Szk5OY6lY8eONVRjz/vtt9/UvXt3PffccxXKz7F2QmXbrZSVj7X169frtttu00cffaS0tDQVFxcrNjZWv/32W7nrcLy5126lrHy8tWnTRk8++aS2bt2qrVu36tJLL9WwYcO0c+fOMvNX27FmUCm9e/c248ePd0rr3LmzmThxYpn577//ftO5c2entH/+85+mb9++1VbH2qiy7fbBBx8YSeaXX36pgdrVfpLMsmXLTpmHY81VRdqNY81VXl6ekWTWr19fbh6ON1cVaTeOt7I1a9bMvPTSS2W+V13HGj1AlVBUVKRt27YpNjbWKT02NlabN28uc5309HSX/AMHDtTWrVt17NixaqtrbeJOu5Xq2bOngoODNWDAAH3wwQfVWc06j2PtzHCs/SE/P1+S1Lx583LzcLy5qki7leJ4O6GkpESLFy/Wb7/9pqioqDLzVNexRgBUCQcOHFBJSYkCAwOd0gMDA5Wbm1vmOrm5uWXmLy4u1oEDB6qtrrWJO+0WHBysuXPnasmSJVq6dKk6deqkAQMGaMOGDTVR5TqJY809HGvOjDGaMGGCLrroInXt2rXcfBxvzirabhxvJ3z++efy8/OT3W7X+PHjtWzZMoWHh5eZt7qONZ4G7wabzeb02hjjkna6/GWln+0q026dOnVSp06dHK+joqKUnZ2tf//737r44ourtZ51Gcda5XGsObv99tv12WefadOmTafNy/H2h4q2G8fbCZ06ddL27dt16NAhLVmyRKNGjdL69evLDYKq41ijB6gSAgIC5O3t7dJrkZeX5xKdlgoKCiozf7169dSiRYtqq2tt4k67laVv37765ptvqrp6Zw2Otapj1WPtjjvu0PLly/XBBx+oTZs2p8zL8faHyrRbWax4vPn4+KhDhw6KjIxUYmKiunfvrjlz5pSZt7qONQKgSvDx8VFERITS0tKc0tPS0hQdHV3mOlFRUS75165dq8jISNWvX7/a6lqbuNNuZcnIyFBwcHBVV++swbFWdax2rBljdPvtt2vp0qV6//33FRYWdtp1ON7ca7eyWO14K4sxRoWFhWW+V23H2hlNobagxYsXm/r165t58+aZzMxMk5CQYBo1amT27t1rjDFm4sSJJj4+3pF/9+7dpmHDhubuu+82mZmZZt68eaZ+/frmrbfe8tQueERl2+3pp582y5YtM19//bX54osvzMSJE40ks2TJEk/tQo07fPiwycjIMBkZGUaSmTVrlsnIyDDff/+9MYZjrTyVbTeONWNuueUW4+/vbz788EOTk5PjWI4cOeLIw/Hmyp1243gzZtKkSWbDhg1mz5495rPPPjMPPvig8fLyMmvXrjXG1NyxRgDkhueff96EhIQYHx8f06tXL6dLHkeNGmX+8pe/OOX/8MMPTc+ePY2Pj48JDQ01ycnJNVzj2qEy7TZjxgzTvn174+vra5o1a2Yuuugis2LFCg/U2nNKL5f98zJq1ChjDMdaeSrbbhxrpsz2kmQWLFjgyMPx5sqdduN4M2bs2LGOc8E555xjBgwY4Ah+jKm5Y81mzP9mEgEAAFgEc4AAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAAATirXHLJJbLZbLLZbNq+fbvH6jF69GhHPd5++22P1QNA2QiAAJx1/vGPfygnJ0ddu3Z1Ss/NzdVdd92lDh06yNfXV4GBgbrooov0wgsv6MiRIxUq+8orr9Rll11W5nvp6emy2Wz69NNPNWfOHOXk5JzxvgCoHvU8XQEAqGoNGzZUUFCQU9ru3bsVExOjpk2b6oknntAFF1yg4uJiff3115o/f75atWqlq6666rRljxs3Ttdcc42+//57hYSEOL03f/589ejRQ7169ZIk+fv7V91OAahS9AAB8Lj9+/fLZrNpzpw56tmzp3x9fXX++edr06ZNVbaNW2+9VfXq1dPWrVs1YsQIdenSRRdccIH++te/asWKFbryyislScYYzZw5U+3atVODBg3UvXt3vfXWW45yhg4dqpYtWyolJcWp/CNHjig1NVXjxo2rsjoDqD4EQAA8LiMjQ5KUlJSkp59+Wjt27FBoaKhuuOEGHT9+/IzLP3jwoNauXavbbrtNjRo1KjOPzWaTJD300ENasGCBkpOTtXPnTt1999268cYbtX79eklSvXr1NHLkSKWkpMgY41j/zTffVFFRkW644YYzri+A6kcABMDjduzYofr162v16tW65JJL1KlTJ02bNk1ZWVl6/PHH1aNHD3Xt2lV2u109evRQjx499OKLL1a4/G+//VbGGHXq1MkpPSAgQH5+fvLz89MDDzyg3377TbNmzdL8+fM1cOBAtWvXTqNHj9aNN97otL2xY8dq7969+vDDDx1p8+fP1zXXXKNmzZqdcXsAqH7MAQLgcdu3b9c111yjsLAwR5rdbpd04mqqhx9+WJ9++qnuuOMO/d///Z/b2ynt5Sn18ccf6/jx47rhhhtUWFiozMxMHT16VJdffrlTvqKiIvXs2dPxunPnzoqOjtb8+fPVv39/fffdd9q4caPWrl3rdt0A1CwCIAAet337do0aNcop7dNPP1VAQIBat24tSdq5c6fOP/98t8rv0KGDbDabvvrqK6f0du3aSZIaNGggSY7hthUrVji2W6o0ICs1btw43X777Xr++ee1YMEChYSEaMCAAW7VD0DNYwgMgEf9/vvv+uabb1RSUuJIO378uObMmaNRo0bJy+vEn6kvvvjC7QCoRYsWuvzyy/Xcc8/pt99+KzdfeHi47Ha7srKy1KFDB6elbdu2TnlHjBghb29vvf7663r55Zc1ZswYlx4mALUXPUAAPOrzzz+XzWbTq6++qksvvVRNmzbVlClTdOjQIT300EOOfDt37lRsbKzb20lKSlJMTIwiIyP16KOPqlu3bvLy8tInn3yir776ShEREWrcuLHuvfde3X333Tp+/LguuugiFRQUaPPmzfLz83PqpfLz81NcXJwefPBB5efna/To0WfSDABqGAEQAI/avn27OnfurIkTJ+raa6/VoUOHNHToUKWnp6tp06aOfGfSAyRJ7du3V0ZGhp544glNmjRJP/zwg+x2u8LDw3Xvvffq1ltvlSQ99thjatmypRITE7V79241bdpUvXr10oMPPuhS5rhx4zRv3jzFxsbq3HPPdbtuAGqezZx8HScA1LDbbrtNv/zyi15//fVy8/z6668KCwvTTz/9dNryLrnkEvXo0UOzZ8+uwlq6z2azadmyZRo+fLinqwLgJMwBAuBR27dvV7du3U6ZJzMzU+Hh4RUuMykpSX5+fvr888/PtHpuGz9+vPz8/Dy2fQCnRg8QAI8xxsjf31+LFy/W4MGDq6TMffv26ffff5cknXvuufLx8amScisrLy9PBQUFkqTg4OByb8AIwDMIgAAAgOUwBAYAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwnP8HrqhjBdDm4TkAAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
     }
    ],
    "source": [
@@ -3855,12 +3827,20 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [],
    "source": [
     "import montetracko as mt\n",
-    "from Scripts import Step_6_Evaluate_Reconstruction as evalreco\n"
+    "import montetracko.lhcb as mtb\n",
+    "from Scripts import Step_6_Evaluate_Reconstruction as evalreco\n",
+    "mt_config = {\n",
+    "    \"aliases\": {\n",
+    "        \"n_hits\": \"nhits\",\n",
+    "        \"hit_id\": \"lhcbid\",\n",
+    "    },\n",
+    "    \"fake_particle_id\": 0,\n",
+    "}"
    ]
   },
   {
@@ -3895,7 +3875,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 41,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -3906,18 +3886,18 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [],
    "source": [
     "graph_file = all_graph_files[0]\n",
-    "reconstruction_df = evalreco.load_reconstruction_df(graph_file)\n",
-    "particles_df = evalreco.load_particles_df(graph_file)\n"
+    "\n",
+    "# particles_df = evalreco.load_particles_df(graph_file)\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -3928,64 +3908,169 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 35,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [],
    "source": [
-    "import pyarrow as pa\n",
-    "import pyarrow.csv as pac"
+    "import pyarrow.csv as pac\n",
+    "from tqdm.notebook import tqdm"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 45,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [],
    "source": [
-    "event_id_str = op.basename(graph_file)\n",
-    "path_particle_file = op.join(\n",
-    "    preprocessed_dir, f\"event{event_id_str}-particles.csv\"\n",
-    ")\n",
-    "path_hits_file = op.join(\n",
-    "    preprocessed_dir, f\"event{event_id_str}-hits.csv\"\n",
-    ")"
+    "# %%timeit\n",
+    "\n",
+    "# dict_paths = {\n",
+    "#     \"particles\": op.join(preprocessed_dir, \"event{event_id_str}-particles.csv\"),\n",
+    "#     \"hits_particles\": op.join(preprocessed_dir, \"event{event_id_str}-truth.csv\"),\n",
+    "# }\n",
+    "# dict_convert_options = {\n",
+    "#     \"hits_particles\": pac.ConvertOptions(include_columns=[\"particle_id\", \"lhcbid\"]),\n",
+    "# }\n",
+    "# dict_columns = {\n",
+    "#     \"hits_particles\": [\"particle_id\", \"lhcbid\"],\n",
+    "# }\n",
+    "\n",
+    "# dict_list_dataframes = {\n",
+    "#     \"particles\": [],\n",
+    "#     \"hits_particles\": [],\n",
+    "#     \"tracks\": [],\n",
+    "# }\n",
+    "\n",
+    "# first_iteration: bool = True\n",
+    "# for graph_file in tqdm(all_graph_files):\n",
+    "#     # Event ID from graph file name\n",
+    "#     event_id_str = op.basename(graph_file)\n",
+    "#     event_id = int(event_id_str)\n",
+    "\n",
+    "#     # Load dataframe of tracks\n",
+    "#     reconstruction_df = evalreco.load_reconstruction_df(graph_file)\n",
+    "#     df_tracks = reconstruction_df[[\"hit_id\", \"track_id\"]].drop_duplicates()\n",
+    "\n",
+    "#     # Particles and hit-particle truth association\n",
+    "#     tables_event = {}\n",
+    "#     for name, path in dict_paths.items():\n",
+    "#         tables_event[name] = pac.read_csv(\n",
+    "#             path.format(event_id_str=event_id_str),\n",
+    "#             convert_options=dict_convert_options.get(name),\n",
+    "#         )\n",
+    "\n",
+    "#     if first_iteration:\n",
+    "#         first_iteration = False\n",
+    "#         for name, table in tables_event.items():\n",
+    "#             dict_convert_options[name] = pac.ConvertOptions(\n",
+    "#                 column_types=table.schema,\n",
+    "#                 include_columns=table.column_names,\n",
+    "#             )\n",
+    "\n",
+    "#     # Retrieve read options\n",
+    "#     if not dict_convert_options:\n",
+    "#         for name, table in tabtables_eventles.items():\n",
+    "#             dict_convert_options[name] = pac.ConvertOptions()\n",
+    "\n",
+    "#     # Convert to pandas DataFrame\n",
+    "#     dataframes_event = {name: table.to_pandas() for name, table in tables_event.items()}\n",
+    "#     dataframes_event[\"tracks\"] = df_tracks\n",
+    "\n",
+    "#     # Rename column\n",
+    "#     dataframes_event[\"hits_particles\"].rename(columns={\"lhcbid\": \"hit_id\"}, inplace=True)\n",
+    "\n",
+    "#     # Add event ID column\n",
+    "#     for dataframe in dataframes_event.values():\n",
+    "#         dataframe[\"event_id\"] = event_id\n",
+    "\n",
+    "#     # Append to list for concatenation\n",
+    "#     for name, dataframe in dataframes_event.items():\n",
+    "#         dict_list_dataframes[name].append(dataframe)\n",
+    "\n",
+    "# dataframes = {\n",
+    "#     name: pd.concat(list_dataframes)\n",
+    "#     for name, list_dataframes in dict_list_dataframes.items()\n",
+    "# }"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 46,
+   "execution_count": 11,
    "metadata": {},
    "outputs": [
     {
      "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b8d68af13f204cb6b52b2244a0fef3f3",
+       "version_major": 2,
+       "version_minor": 0
+      },
       "text/plain": [
-       "'data/track_building_processed/007212930'"
+       "  0%|          | 0/100 [00:00<?, ?it/s]"
       ]
      },
-     "execution_count": 46,
      "metadata": {},
-     "output_type": "execute_result"
+     "output_type": "display_data"
     }
    ],
    "source": [
-    "graph_file"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 51,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "df_particles = pac.read_csv(path_particle_file).to_pandas()\n",
-    "df_hits = pac.read_csv(\n",
-    "    path_hits_file\n",
-    ").to_pandas()\n"
+    "dict_paths = {\n",
+    "    \"particles\": op.join(preprocessed_dir, \"event{event_id_str}-particles.csv\"),\n",
+    "    \"hits_particles\": op.join(preprocessed_dir, \"event{event_id_str}-truth.csv\"),\n",
+    "}\n",
+    "dict_list_dataframes = {\n",
+    "    \"particles\": [],\n",
+    "    \"hits_particles\": [],\n",
+    "    \"tracks\": [],\n",
+    "}\n",
+    "dict_convert_options = {\n",
+    "    \"hits_particles\": pac.ConvertOptions(\n",
+    "        include_columns=[\"particle_id\", \"lhcbid\", \"hit_id\"]\n",
+    "    ),\n",
+    "}\n",
+    "\n",
+    "for graph_file in tqdm(all_graph_files):\n",
+    "    # Event ID from graph file name\n",
+    "    event_id_str = op.basename(graph_file)\n",
+    "    event_id = int(event_id_str)\n",
+    "\n",
+    "    # Load dataframe of tracks\n",
+    "    reconstruction_df = evalreco.load_reconstruction_df(graph_file)\n",
+    "    df_tracks = reconstruction_df[[\"hit_id\", \"track_id\"]].drop_duplicates()\n",
+    "\n",
+    "    # Particles and hit-particle truth association\n",
+    "    dataframes_event = {}\n",
+    "    for name, path in dict_paths.items():\n",
+    "        dataframes_event[name] = pac.read_csv(\n",
+    "            path.format(event_id_str=event_id_str),\n",
+    "            convert_options=dict_convert_options.get(name),\n",
+    "        ).to_pandas()\n",
+    "    dataframes_event[\"tracks\"] = df_tracks\n",
+    "\n",
+    "    # Add event ID column\n",
+    "    for dataframe in dataframes_event.values():\n",
+    "        dataframe[\"event_id\"] = event_id\n",
+    "\n",
+    "    dataframes_event[\"tracks\"][\"lhcbid\"] = mt.array_utils.transform.replace(\n",
+    "        array=np.asarray(dataframes_event[\"tracks\"][\"hit_id\"]),\n",
+    "        values_to_replace=np.asarray(dataframes_event[\"hits_particles\"][\"hit_id\"]),\n",
+    "        replacement_values=np.asarray(dataframes_event[\"hits_particles\"][\"lhcbid\"]),\n",
+    "    )\n",
+    "\n",
+    "    # Append to list for concatenation\n",
+    "    for name, dataframe in dataframes_event.items():\n",
+    "        dict_list_dataframes[name].append(dataframe)\n",
+    "\n",
+    "dataframes = {\n",
+    "    name: pd.concat(list_dataframes)\n",
+    "    for name, list_dataframes in dict_list_dataframes.items()\n",
+    "}\n",
+    "dataframes[\"hits_particles\"].drop(\"hit_id\", axis=1, inplace=True)\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 52,
+   "execution_count": 12,
    "metadata": {},
    "outputs": [
     {
@@ -4009,366 +4094,311 @@
        "  <thead>\n",
        "    <tr style=\"text-align: right;\">\n",
        "      <th></th>\n",
-       "      <th>x</th>\n",
-       "      <th>y</th>\n",
-       "      <th>z</th>\n",
-       "      <th>module_id</th>\n",
-       "      <th>hit_id</th>\n",
+       "      <th>particle_id</th>\n",
+       "      <th>lhcbid</th>\n",
+       "      <th>event_id</th>\n",
        "    </tr>\n",
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
        "      <th>0</th>\n",
-       "      <td>17.90920</td>\n",
-       "      <td>-32.687800</td>\n",
-       "      <td>-288.141</td>\n",
-       "      <td>0</td>\n",
-       "      <td>179847</td>\n",
+       "      <td>2829</td>\n",
+       "      <td>671094942</td>\n",
+       "      <td>7212930</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>1</th>\n",
-       "      <td>6.16420</td>\n",
-       "      <td>-17.403700</td>\n",
-       "      <td>-288.141</td>\n",
-       "      <td>0</td>\n",
-       "      <td>179848</td>\n",
+       "      <td>2259</td>\n",
+       "      <td>604074443</td>\n",
+       "      <td>7212930</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2</th>\n",
-       "      <td>-16.64530</td>\n",
-       "      <td>-17.423100</td>\n",
-       "      <td>-286.859</td>\n",
        "      <td>0</td>\n",
-       "      <td>179849</td>\n",
+       "      <td>537154464</td>\n",
+       "      <td>7212930</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>3</th>\n",
-       "      <td>-19.79550</td>\n",
-       "      <td>-17.384200</td>\n",
-       "      <td>-286.859</td>\n",
-       "      <td>0</td>\n",
-       "      <td>179850</td>\n",
+       "      <td>501</td>\n",
+       "      <td>537143928</td>\n",
+       "      <td>7212930</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>4</th>\n",
-       "      <td>13.88400</td>\n",
-       "      <td>-27.340300</td>\n",
-       "      <td>-288.141</td>\n",
-       "      <td>0</td>\n",
-       "      <td>179851</td>\n",
+       "      <td>2828</td>\n",
+       "      <td>536908207</td>\n",
+       "      <td>7212930</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>...</th>\n",
        "      <td>...</td>\n",
        "      <td>...</td>\n",
        "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>1554</th>\n",
-       "      <td>4.70580</td>\n",
-       "      <td>-2.839030</td>\n",
-       "      <td>750.641</td>\n",
-       "      <td>25</td>\n",
-       "      <td>181401</td>\n",
+       "      <th>2265</th>\n",
+       "      <td>1858</td>\n",
+       "      <td>591324376</td>\n",
+       "      <td>4206903</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>1555</th>\n",
-       "      <td>4.88080</td>\n",
-       "      <td>-2.625130</td>\n",
-       "      <td>750.641</td>\n",
-       "      <td>25</td>\n",
-       "      <td>181402</td>\n",
+       "      <th>2266</th>\n",
+       "      <td>2236</td>\n",
+       "      <td>590901436</td>\n",
+       "      <td>4206903</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>1556</th>\n",
-       "      <td>18.20090</td>\n",
-       "      <td>-4.355780</td>\n",
-       "      <td>750.641</td>\n",
-       "      <td>25</td>\n",
-       "      <td>181403</td>\n",
+       "      <th>2267</th>\n",
+       "      <td>601</td>\n",
+       "      <td>658027554</td>\n",
+       "      <td>4206903</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>1557</th>\n",
-       "      <td>7.42816</td>\n",
-       "      <td>-0.194454</td>\n",
-       "      <td>750.641</td>\n",
-       "      <td>25</td>\n",
-       "      <td>181404</td>\n",
+       "      <th>2268</th>\n",
+       "      <td>3974</td>\n",
+       "      <td>591239709</td>\n",
+       "      <td>4206903</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>1558</th>\n",
-       "      <td>7.38926</td>\n",
-       "      <td>-0.155563</td>\n",
-       "      <td>749.359</td>\n",
-       "      <td>25</td>\n",
-       "      <td>181405</td>\n",
+       "      <th>2269</th>\n",
+       "      <td>3250</td>\n",
+       "      <td>591260403</td>\n",
+       "      <td>4206903</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>1559 rows × 5 columns</p>\n",
+       "<p>194437 rows × 3 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "             x          y        z  module_id  hit_id\n",
-       "0     17.90920 -32.687800 -288.141          0  179847\n",
-       "1      6.16420 -17.403700 -288.141          0  179848\n",
-       "2    -16.64530 -17.423100 -286.859          0  179849\n",
-       "3    -19.79550 -17.384200 -286.859          0  179850\n",
-       "4     13.88400 -27.340300 -288.141          0  179851\n",
-       "...        ...        ...      ...        ...     ...\n",
-       "1554   4.70580  -2.839030  750.641         25  181401\n",
-       "1555   4.88080  -2.625130  750.641         25  181402\n",
-       "1556  18.20090  -4.355780  750.641         25  181403\n",
-       "1557   7.42816  -0.194454  750.641         25  181404\n",
-       "1558   7.38926  -0.155563  749.359         25  181405\n",
+       "      particle_id     lhcbid  event_id\n",
+       "0            2829  671094942   7212930\n",
+       "1            2259  604074443   7212930\n",
+       "2               0  537154464   7212930\n",
+       "3             501  537143928   7212930\n",
+       "4            2828  536908207   7212930\n",
+       "...           ...        ...       ...\n",
+       "2265         1858  591324376   4206903\n",
+       "2266         2236  590901436   4206903\n",
+       "2267          601  658027554   4206903\n",
+       "2268         3974  591239709   4206903\n",
+       "2269         3250  591260403   4206903\n",
        "\n",
-       "[1559 rows x 5 columns]"
+       "[194437 rows x 3 columns]"
       ]
      },
-     "execution_count": 52,
+     "execution_count": 12,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "df_hits"
+    "dataframes[\"hits_particles\"]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 33,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "trackEvaluator = mt.TrackMatcher(config=mt_config).full_matching(\n",
+    "    df_events_hits_particles=dataframes[\"hits_particles\"],\n",
+    "    df_events_particles=dataframes[\"particles\"],\n",
+    "    df_events_tracks_hits=dataframes[\"tracks\"],\n",
+    "    matching_condition=mt.matchcond.MinMatchingFraction(0.7),\n",
+    "    track_condition=mt.matchcond.MinLengthTrack(2),\n",
+    ")\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 50,
+   "execution_count": 34,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>particle_id</th>\n",
-       "      <th>vx</th>\n",
-       "      <th>vy</th>\n",
-       "      <th>vz</th>\n",
-       "      <th>q</th>\n",
-       "      <th>nhits</th>\n",
-       "      <th>px</th>\n",
-       "      <th>py</th>\n",
-       "      <th>pz</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>356</td>\n",
-       "      <td>-0.0041</td>\n",
-       "      <td>-0.0602</td>\n",
-       "      <td>10.4652</td>\n",
-       "      <td>1</td>\n",
-       "      <td>3</td>\n",
-       "      <td>-0.053259</td>\n",
-       "      <td>-0.267060</td>\n",
-       "      <td>-10.240854</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>363</td>\n",
-       "      <td>-0.0041</td>\n",
-       "      <td>-0.0602</td>\n",
-       "      <td>10.4652</td>\n",
-       "      <td>-1</td>\n",
-       "      <td>6</td>\n",
-       "      <td>0.213420</td>\n",
-       "      <td>-0.242910</td>\n",
-       "      <td>-3.359714</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>366</td>\n",
-       "      <td>13.2756</td>\n",
-       "      <td>-4.5004</td>\n",
-       "      <td>-70.5277</td>\n",
-       "      <td>1</td>\n",
-       "      <td>4</td>\n",
-       "      <td>0.343090</td>\n",
-       "      <td>-0.106520</td>\n",
-       "      <td>-2.660824</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>368</td>\n",
-       "      <td>-0.0041</td>\n",
-       "      <td>-0.0602</td>\n",
-       "      <td>10.4652</td>\n",
-       "      <td>1</td>\n",
-       "      <td>5</td>\n",
-       "      <td>-0.638633</td>\n",
-       "      <td>0.837760</td>\n",
-       "      <td>-19.624627</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>369</td>\n",
-       "      <td>-0.0041</td>\n",
-       "      <td>-0.0602</td>\n",
-       "      <td>10.4652</td>\n",
-       "      <td>-1</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0.109862</td>\n",
-       "      <td>0.450230</td>\n",
-       "      <td>-5.729871</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>...</th>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>468</th>\n",
-       "      <td>2977</td>\n",
-       "      <td>0.0058</td>\n",
-       "      <td>-0.0229</td>\n",
-       "      <td>-49.6429</td>\n",
-       "      <td>-1</td>\n",
-       "      <td>2</td>\n",
-       "      <td>0.296190</td>\n",
-       "      <td>0.188880</td>\n",
-       "      <td>-1.590305</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>469</th>\n",
-       "      <td>2982</td>\n",
-       "      <td>0.0058</td>\n",
-       "      <td>-0.0229</td>\n",
-       "      <td>-49.6429</td>\n",
-       "      <td>1</td>\n",
-       "      <td>5</td>\n",
-       "      <td>0.099371</td>\n",
-       "      <td>0.733550</td>\n",
-       "      <td>-5.143205</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>470</th>\n",
-       "      <td>2999</td>\n",
-       "      <td>0.0058</td>\n",
-       "      <td>-0.0229</td>\n",
-       "      <td>-49.6429</td>\n",
-       "      <td>1</td>\n",
-       "      <td>3</td>\n",
-       "      <td>-0.322370</td>\n",
-       "      <td>-0.106259</td>\n",
-       "      <td>0.536697</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>471</th>\n",
-       "      <td>3002</td>\n",
-       "      <td>0.0058</td>\n",
-       "      <td>-0.0229</td>\n",
-       "      <td>-49.6429</td>\n",
-       "      <td>-1</td>\n",
-       "      <td>8</td>\n",
-       "      <td>-0.320081</td>\n",
-       "      <td>0.144409</td>\n",
-       "      <td>2.521247</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>472</th>\n",
-       "      <td>3003</td>\n",
-       "      <td>-20.5282</td>\n",
-       "      <td>8.9883</td>\n",
-       "      <td>112.1490</td>\n",
-       "      <td>-1</td>\n",
-       "      <td>1</td>\n",
-       "      <td>-0.001380</td>\n",
-       "      <td>-0.000800</td>\n",
-       "      <td>0.002110</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "<p>473 rows × 9 columns</p>\n",
-       "</div>"
-      ],
       "text/plain": [
-       "     particle_id       vx      vy        vz  q  nhits        px        py  \\\n",
-       "0            356  -0.0041 -0.0602   10.4652  1      3 -0.053259 -0.267060   \n",
-       "1            363  -0.0041 -0.0602   10.4652 -1      6  0.213420 -0.242910   \n",
-       "2            366  13.2756 -4.5004  -70.5277  1      4  0.343090 -0.106520   \n",
-       "3            368  -0.0041 -0.0602   10.4652  1      5 -0.638633  0.837760   \n",
-       "4            369  -0.0041 -0.0602   10.4652 -1      5  0.109862  0.450230   \n",
-       "..           ...      ...     ...       ... ..    ...       ...       ...   \n",
-       "468         2977   0.0058 -0.0229  -49.6429 -1      2  0.296190  0.188880   \n",
-       "469         2982   0.0058 -0.0229  -49.6429  1      5  0.099371  0.733550   \n",
-       "470         2999   0.0058 -0.0229  -49.6429  1      3 -0.322370 -0.106259   \n",
-       "471         3002   0.0058 -0.0229  -49.6429 -1      8 -0.320081  0.144409   \n",
-       "472         3003 -20.5282  8.9883  112.1490 -1      1 -0.001380 -0.000800   \n",
-       "\n",
-       "            pz  \n",
-       "0   -10.240854  \n",
-       "1    -3.359714  \n",
-       "2    -2.660824  \n",
-       "3   -19.624627  \n",
-       "4    -5.729871  \n",
-       "..         ...  \n",
-       "468  -1.590305  \n",
-       "469  -5.143205  \n",
-       "470   0.536697  \n",
-       "471   2.521247  \n",
-       "472   0.002110  \n",
-       "\n",
-       "[473 rows x 9 columns]"
+       "0.9149435564993853"
       ]
      },
-     "execution_count": 50,
+     "execution_count": 34,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "df_particles.to_pandas()"
+    "trackEvaluator.compute_metric(\n",
+    "    \"efficiency\",\n",
+    "    category=mtb.category.allen_categories[0],\n",
+    ")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 35,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "TrackChecker output                               :       678/    18902   3.59% ghosts\n",
+      "01_velo                                           :      8186/     8947  91.49% ( 92.65%),        86 (  1.04%) clones, pur  99.19%, hit eff  94.86% \n",
+      "02_long                                           :      4846/     5143  94.23% ( 95.52%),        47 (  0.96%) clones, pur  99.28%, hit eff  95.94% \n",
+      "03_long_P>5GeV                                    :      3161/     3330  94.92% ( 96.32%),        34 (  1.06%) clones, pur  99.32%, hit eff  96.42% \n",
+      "04_long_strange                                   :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "05_long_strange_P>5GeV                            :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "06_long_fromB                                     :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "07_long_fromB_P>5GeV                              :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "08_long_electrons                                 :       253/      381  66.40% ( 70.75%),         6 (  2.32%) clones, pur  98.26%, hit eff  74.89% \n",
+      "09_long_fromB_electrons                           :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "10_long_fromB_electrons_P>5GeV                    :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "trackEvaluator.print_report(\n",
+    "    reporter=mt.AllenReporter(),\n",
+    "    categories=mtb.category.allen_categories,\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 36,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "+----------------------+--------------+----------------------+------------+--------------------------+----------------------+\n",
+      "| Categories           | Efficiency   | Average efficiency   | % clones   | Average hit efficiency   | Average hit purity   |\n",
+      "+======================+==============+======================+============+==========================+======================+\n",
+      "| Velo, only electrons | 60.08%       | 63.28%               | 3.84%      | 98.22%                   | 72.04%               |\n",
+      "+----------------------+--------------+----------------------+------------+--------------------------+----------------------+\n",
+      "| Velo, no electrons   | 91.49%       | 92.65%               | 1.04%      | 99.19%                   | 94.86%               |\n",
+      "+----------------------+--------------+----------------------+------------+--------------------------+----------------------+\n",
+      "+--------------+------------+------------+------------+\n",
+      "| Categories   |   # ghosts | # tracks   | % ghosts   |\n",
+      "+==============+============+============+============+\n",
+      "| Everything   |        678 | 18,902     | 3.59%      |\n",
+      "+--------------+------------+------------+------------+\n"
+     ]
+    }
+   ],
+   "source": [
+    "trackEvaluator.print_report(\n",
+    "    reporter=mt.TabReporter(\n",
+    "        [\n",
+    "            \"efficiency\",\n",
+    "            \"efficiency_per_event\",\n",
+    "            \"clone_rate\",\n",
+    "            \"hit_purity_per_candidate\",\n",
+    "            \"hit_efficiency_per_candidate\",\n",
+    "        ],\n",
+    "        mode=\"markdown\",\n",
+    "        tablefmt=\"grid\",\n",
+    "    ),\n",
+    "    categories=mtb.category.velo_categories,\n",
+    ")\n",
+    "trackEvaluator.print_report(\n",
+    "    reporter=mt.TabReporter(\n",
+    "        metric_names=[\"n_ghosts\", \"n_tracks\", \"ghost_rate\"],\n",
+    "        mode=\"markdown\",\n",
+    "        tablefmt=\"grid\",\n",
+    "    ),\n",
+    ")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
    "metadata": {},
    "outputs": [
     {
      "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAADFgAAAk3CAYAAAAXtVqvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f3Bb533nfX9EUhFIKRVIZQtRye5WQLcdQ3IbA2J960fv3crA3YxH3BltCCmevWWrcUQw9Ywz8bRE9Udnnkz/UKju2FPvzJqA66xSduOxwa3uLT1RpoDleizZk5KA/WxkeLrz8Cj1VoTViQEwEUWoJonnD92ABROgiINDAiDfrxlNgnPO9zqXLsDQBeD6Xt8thUKhIAAAAAAAAAAAAAAAAAAAAAAAgE2srdEdAAAAAAAAAAAAAAAAAAAAAAAAaDQSLAAAAAAAAAAAAAAAAAAAAAAAwKZHggUAAAAAAAAAAAAAAAAAAAAAANj0SLAAAAAAAAAAAAAAAAAAAAAAAACbHgkWAAAAAAAAAAAAAAAAAAAAAABg0yPBAgAAAAAAAAAAAAAAAAAAAAAAbHokWAAAAAAAAAAAAAAAAAAAAAAAgE2PBAsAAAAAAAAAAAAAAAAAAAAAALDpkWABAAAAAAAAAAAAAAAAAAAAAAA2PRIsAAAAAAAAAAAAAAAAAAAAAADAptfR6A4AAAAAaF3pZFpT4SnlM3mlk2nZ7DZ5g155B71VY/K5vN4695YkqWtXlzLTGbn8LrkH3A2PAQAAAAAAAAAAAAAAALB5bSkUCoVGdwIAAABA60lEEpJUlkxhxA1FA1F19nRqMDEom91WFpPP5RXxRhSIBtTr6S0dnwhOyGa3yT/iX3af9YoBAAAAAAAAAAAAAAAAsLm1NboDAAAAAFpP1sgqn8svq1Th9Dn1+OuPK2tkFQ1El8VFA1E9MPBAWdKDJPWH+5WMJGXEjYbFAAAAAAAAAAAAAAAAANjcSLAAAAAAULOp8NSy5IqiXk+vnD6njLihrJEtHc8aWRlxQweCByrGuU+4dXXkatmx9YoBAAAAAAAAAAAAAAAAABIsAAAAANTsevy6/mzvnymfy1c8v9uzW5KUTqZLx6bCU5Kkbmd3xZgeV4+MuFHW5nrFAAAAAAAAAAAAAAAAAEBHozuA2iwsLOjdd9+Vw+FQWxv5MQAAAFhbS0tLunnzph566CF1dHz68aGzp1PpZFpZI6teT++q2voo+ZFsdlvV88WEiJmpGTl9znWNaRbM9wEAALBeqs31sTaY6wMAAGC9MNdfX8z1AQAAsJ6Y768PRrbFvPvuu/qt3/qtRncDAAAAm8zf/d3fqa+vr/T4VOyUska2apWInJGTpLLki6yRVWdPZ9V7FJMiskZ23WOaBfN9AAAArLfPzvWxNpjrAwAAYL0x118fzPUBAADQCMz31xYJFi3G4XBIkt555x196UtfanBvWt/CwoKSyaQ8Hg+ZXBZgPK3FeFqL8bQW42ktxtNajGd9Fv55QUt3lkqPb8zc0P/p+z9L89B7VUuukKTUeEq9nt6ya+Yz8yvGFJMi8rn8usc0C+b7qIT3NVTC6wLV8NpAJbwuUMk//uM/6uDBgxXn+rBecZz/7u/+Tr29q6sCiObB+2hr4/lrbTx/rY3nr7Xx/LWudDqt3/qt32Kuv074Xt9avPdYi/G0FuNpLcbTWoyntRhPazGe1uK7/fXBK7XFFMsJ7t69mw9mFlhYWNBPf/pTfelLX+KN2wKMp7UYT2sxntZiPK3FeFqL8azP3/5//lZvfufN0uPZtllJqqms9dXzVyVJ/S/2lx1fbULD7Y9vr3tMs2C+j0p4X0MlvC5QDa8NVMLrApUsLCxIqm2uD/OK49zb28tcvwXxPtraeP5aG89fa+P5a208f62Puf764Ht9a/HeYy3G01qMp7UYT2sxntZiPK3FeFqL7/bXB69UAAAAACVHzh7RwWcOlh5/+OGHeu7B51Ydn06mFQ/FFYgG1OthV1YAAAAAAAAAAAAAAAAArYMECwAAAAAlHds61LHt048JW3dsrSk+GojqWPiY3APuZedsdtuqqkt07epa9xgAAAAAAAAAAAAAAAAAoD4IAAAAAEtEA1F5g155B70Vz3f2dK4YP5+Zl3Q3QWK9YwAAAAAAAAAAAAAAAACABAsAAAAAdYuFYtrTt0eHhw9Xvabb2V1KbqikWHWi29m97jEAAAAAAAAAAAAAAAAAQIIFAAAAgLokIgn1uHoqJlcUkxkkabdnd9njz8oaWUmS0+dc9xgAAAAAAAAAAAAAAAAAIMECAAAAgGmp8ZQkyTvoXXYua2RlxI3S4/0n90uS0sl0xbZmJmeWJT2sVwwAAAAAAAAAAAAAAAAAkGABAAAAwJR0Mq35zHzF5ApJMuKGej29pce9nl45fU5de+VaxetT4ykdDpVXwVivGAAAAAAAAAAAAAAAAADoaHQHAAAAALSerJFVNBDVXt9ezQRnlp3PZ/Iy4oZC2VDZ8UA0oIg3ov0n95clX0wEJ3Ro+FDFyhLrFQMAAAAAAAAAAAAAAABgcyPBAgAAAEDNxvxjyhpZZSPZqtd0O7uXHbPZbRpMDCoWislmt6lrV5cy0xm5/C65B9wV21mvGAAAAAAAAAAAAAAAAACbGwkWAAAAAGr29PTTpmNtdpv6w/1NGQMAAAAAAAAAAAAAAABg82prdAcAAAAAAAAAAAAAAAAAAAAAAAAajQQLAAAAAAAAAAAAAAAAAAAAAACw6ZFgAQAAAAAAAAAAAAAAAAAAAAAANr2ORnegkYLBoAKBgHw+X13t5HI5nTt3TpK0a9cuTU9Py+/3a2BgwNIYAAAAAAAAAAAAAAAAAAAAAACwNjZdgoVhGIrH4wqHw0omkwoEAnW1l8vl5PV6FY1G5fF4SseDwaAmJyc1MjJiSQwAAAAAAAAAAAAAAAAAAAAAAFg7bY3uwHqKRCIKhUKSZFkSQyAQ0MDAQFmihCSFw2FFIhHF43FLYgAAAAAAAAAAAAAAAAAAAAAAwNrZVAkWg4ODikajGhwcVE9PT93tFathBIPBiudPnDixLJHDTAwAAAAAAAAAAAAAAAAAAAAAAFhbmyrBwmrhcFiS5HQ6K553uVyKx+PK5XJ1xQAAAAAAAAAAAAAAAAAAAAAAgLVFgkUdksmk7HZ71fPFJIqpqam6YgAAAAAAAAAAAAAAAAAAAAAAwNrqaHQHWplhGOrp6al6vphIYRhGXTGVLC0taXFxcfWdRUWLi4ulsdyyZUuju9PyGE9rMZ7WYjytxXhai/G0llXjOTc3Zyrun/7pn/TNb35TiURCXq9XL7zwgn75l3/ZVFvbt283FWelpaWlRndhU2K+j3vx7wQq4XWBanhtoJLFxUXNzc3p5z//uTo6av9K2Ko5bjPMb5tJoz9z/OIXvzB1f9RncXGRuX4L4t/X1sbz19p4/lobz19r4/lrXcw3G4Pv9a3Be4+1GE9rMZ7WYjytxXhai/G0Fut4rMU6nvVBgkUdMplMqeJEJcVEilwuV1dMJe+8847+/u//vvS4vb3d1I+jm93S0pL+9//+31paWlJbGwVd6sV4WovxtBbjaS3G01qMp7WsGs8/+ZM/MRX3P//n/1Qmk5EkxeNxPfzww/qN3/gNU2398R//sak4K3388ceN7sKmxHwf9+LfCVTC6wLV8NpAJUtLS/pP/+k/mY63ao7bDPPbZtLozxwLCwum7o/6XL16Vd3d3aXHzPVbA/++tjaev9bG89faeP5aG89f68pms43uwqbE9/rW4L3HWoyntRhPazGe1mI8rcV4Wot1PNZiHc/6YCZfh/slQRTd+2I2E1PJ6Oho2Qex3/zN39SXv/zlVbWNTxUKBc3OzkoSmYYWYDytxXhai/G0FuNpLcbTWo0ez5///OcrPq7Fhx9+WG936lZP/2Ee833cq9Hva2hOvC5QDa8NVFIoFOqKt2qO2wzz243Ays8cWH8vvPACc/0WxL+vrY3nr7Xx/LU2nr/WxvPXuqhW1xh8r28N3nusxXhai/G0FuNpLcbTWoyntRo9nqzjgRkkWLSoY1uPqdv26S5XW/9/W9VxfX2fzsCrgXW931pYWFjQO++8o4MHD7JzgAUYT2sxntZiPK3FeFqL8bSWVeP57//9vzcVd+LECf3t3/6tFhcX1d7ern/7b/+tXn31VVNtNUNpwQ8//FDf+ta3Gt2NTafR8/2NMNffSPh3ApXwukA1vDZQycLCgr7whS/o4YcfNvW6sGqO2wzz22bS6M8cH374oR566CFTfYB5//k//2d98YtfLD3etm2btm3b1sAeYTXW8t/X6Imope2ZtZE/BzI/am08f62N56+18fy1rhs3bujpp59udDc2neeff15f+tKXSo8381y/njluYUtBWxxb1HGzQ1sK5hdgbuT5bS14L7cW42ktxtNajKe1GE9rsY7HWqzjWR/8l18Hu92+qooUu3btqiumkq72Ln2+/fPlB5fu26ylNsIHwWJJxm3btvEPoQUYT2sxntZiPK3FeFqL8bSWVeNpdq7z3/7bf9Pp06c1OTmpvr4+XbhwQT09Pab70Whbt25tdBc2pUbP9zfCXH8j4d8JVMLrAtXw2kAl7e3t+vznP6+enh5Tr4uNNsdtFo3+zMEuV43xhS98Qf/iX/yLRncDNVrLf1/bl9otbc+sjfw5kPlRa+P5a208f62N5691fe5zn2t0Fzal7u5u5vr/r3rmuEtbltSmNrUttamt0Ga6nY08v60F7+XWYjytxXhai/G0FuNpLdbxWIt1POuD//LrcL//wDKZjKS7SRX1xAAAAKB1OBwOXbp0qdHdAAAAACzDHLe58HwAAAAAAAAAALA6fKcOM8yn+kJOp7OUEFFJsVKF0+msKwYAAAAAAAAAAAAAAAAAAAAAAKwtEizq4PF4SgkRlRiGIUny+Xx1xQAAAAAAAAAAAAAAAAAAAAAAgLVFgkUdTp48KUlKJpMVz09OTi5LlDATAwAAAAAAAAAAAAAAAAAAAAAA1hYJFveRy+UUCoUUj8eXnfN4PPL5fHrllVcqxo6PjysUCtUdAwAAAAAAAAAAAAAAAAAAAAAA1tamTbAwDEPS3QSKlUQiEZ0/f16BQKDi+Wg0qvHx8WUVKYLBoIaHhytWozATAwAAAAAAAAAAAAAAAAAAAAAA1k5HozuwnsbHxxUOhyVJU1NTkqQzZ86UjgUCAQ0ODpbF+Hw+2e12nThxomKbdrtdiURCoVBIdrtdu3bt0vT0tPx+vwYGBiyLAQAAAAAAAAAAAAAAAAAAAAAAa2dTJVgMDAzUnMDg8XiUzWZXvMZut5eSNFbLTAwAAAAAAAAAAAAAAAAAAAAAAFgbbY3uAAAAAAAAAAAAAAAAAAAAAAAAQKORYAEAAAAAAAAAAAAAAAAAAAAAADY9EiwAAAAAAAAAAAAAAAAAAAAAAMCmR4IFAAAAAAAAAAAAAAAAAAAAAADY9EiwAAAAAAAAAAAAAAAAAAAAAAAAmx4JFgAAAAAAAAAAAAAAAAAAAAAAYNMjwQIAAAAAAAAAAAAAAAAAAAAAAGx6JFgAAAAAAAAAAAAAAAAAAAAAAIBNjwQLAAAAAAAAAAAAAAAAAAAAAACw6ZFgAQAAAAAAAAAAAAAAAAAAAAAANj0SLAAAAAAAAAAAAAAAAAAAAAAAwKZHggUAAAAAAAAAAAAAAAAAAAAAANj0SLAAAAAAAAAAAAAAAAAAAAAAAACbHgkWAAAAAAAAAAAAAAAAAAAAAABg0+todAcAAAAAAAAAAAAANM7L/S83ugt6bOKxRncBAAAAAAAAAKhgAQAAAAAAAAAAAAAAAAAAAAAAQIIFAAAAAAAAAAAAAAAAAAAAAADY9Doa3QEAAAAAAAAAAAAAAAAA6ycRSSgVTclmt0mS7E67/CP+itfmc3m9de4tSVLXri5lpjNy+V1yD7irtm8mBgAAAACaAQkWAAAAAAAAAAAAAICm9JOXf6Ibz95QW6GtYX14bOKxht0bAKyWz+X1F4/8hfb69upU7FTpeNbIKhaKLUuyyOfyingjCkQD6vX0lo5PBCd0Y/JGxaQMMzEAAAAA0Cwa9y0UAAAAAAAAAAAAAAAAgHVTTK74bJLDa8HXlIwkl10fDUT1wMADZYkSktQf7lcykpQRNyyJAQAAAIBmQYIFAAAAAAAAAAAAAAAAsMFdPX9VWSNbsYKEzW7TngN7yo5ljayMuKEDwQMV23OfcOvqyNW6YwAAAACgmXQ0ugMAAAAAAAAAAKD5ZI2sroxckSTlM3nlc3k5/U4dHj5c8fpEJKFUNCVv0Cunzymb3aaskVU6mdb7r7yvI2ePLNvBVpLyubzeOveWJKlrV5cy0xm5/C65B9xV+2YmBkBze7n/5TVpd2nLkjK9Gd149obaCvffe+6xicfWpB8AADSDK+euyDPoqXguEA0sOzYVnpIkdTu7K8b0uHqUjCSVz+Vls9tMxwAAAABAMyHBAgAAAAAAAAAAlEmNp3Rj8ob6w/1lxyPeiBLhhJ6efnpZTD6XlxE3ZMSNsuM2u02BaKBqckXEG1l2fiI4oRuTNyrurGsmBgAAANjsUuMp5XN57T+5f9UxHyU/WjEJophEMTM1I6fPaToGAAAAAJrJ/bdpAQAAAAALpMZTje4CAAAAgFXI5/J6/5X3KyYq9L/Yr6yR1URwomLssfAxHRo+JPeAW55Bj46FjymUDVVdOBUNRPXAwAPLki/6w/1KRpLLkjXMxgAAAACb3fuvvC9JpXl0OplWIpJQOpmuGpM1surs6ax6vphIkTWydcUAAAAAQDMhwQIAAADAmsvn8ooGokpEEsrn8o3uDgAAAIAVzEzNKDWeUiwUW3auuBjrevx6xdh9J/bJP+JXIBpQf7hf3kFv1ftkjayMuKEDwQMVz7tPuHV15GrdMQAAAMBGtnBnQXd+fqf0559/8c8Vr7s3keLq+auaz8yX5utj/rGKicrzmfkVq1EUEynu/d7fTAwAAAAANJOORncAAAAAQOubCE5oX2Bf1V1piztRvRZ8Ta8FX1uxrUA0IPeAW5KUiCSUiqbkDXrl9Dlls9uUNbJKJ9N6/5X3deTskWW71kp3f5h569xbkqSuXV3KTGfk8rtK7QIAAACorrOnUza7TV27uqpes9KCqdWaCk9Jkrqd3RXP97h6lIwklc/lS/czE4Pm83L/y43ugiTpsYnHGt0FAACAul05d0VvfufN0uNZzVa8rpj4kIgkdHj4cOl4r6dXgWhAf7b3zxSIBsq+519tEsTtj2/XFQMAAAAAzYQECwAAAACmFHeOTYTvlhDfF9i34rXdzm71enpl66m8yCmfyStrZMuSIPK5vIy4sWznLJvdpkA0UDW5IuKNLDs/EZzQjckb8o/4a/2rAgAAAJtKr6dXoWyo4rnirrd7fXvrvs9HyY9WTIIoJlHMTM2UFnmZiQEAAAA2siNnj+jgMwdLj2/cuKHn3M8tu66Y+FCsIHEvm90mp8+p14Kv6enpp9euswAAAADQAkiwgGnsMAUAALB5JSIJGTFDTr9TvhGfxvxjK15/Y/KGTsVOVd1lVpJioZh8I75lx4+FjykznVHOyMnWY9Me755S2fJKooGoHhh4YFnyRX+4XyPdI3L5XSy0AgAAAEyKh+LqdnbfN3E5nUxrZmpGew7sqZgYLd1NxK60uKuomEhRrIhnNgYAAADYyDq2dahj26fLfz73889VvM5mtymfy1f9ftzpdyo1nlI6mS7N4Ysx93Nv9TszMQAAAADQTEiwAAAAAFAz76C3lORQ3MH2flZKrkgn0+px9VS8Zt+JfSvuUHuvYlWNY+FjFc+7T7h1deQqCRYAAADYdBbuLGjxzmLp8Se3PqkpPmtkdWXkiuxOu07FTlW9zogbyhpZOX1OeQe9SifTGvOP6XDo8LJ5+HxmfsXPCcVEinsXZ5mJAYBasMEYAGCj6uzpVD6Xr/p9e3EuPTM1U0qwWCm5Wbo7P5dU1qaZGAAAAABoJiRYAAAAAFhzB4IHVjw/FZ5Sf7i/7vtMhackVU/m6HH1KBlJrvgjEgAAALARXTl3RW9+583S49m22VXFpcZTujF5QzkjJ7vTLpffVfXa4jz88PDh0rFeT68C0YBGukc0mBgsq2ax2iSI2x/frisGAGDO3Nyc6dibN29qaGhIiURCXq9Xo6OjcjgcNbezsLBgug8AgHK9nt5VVXq7d87d7ezWzNTMfa+99zt5MzEAAAAA0ExIsAAAAACw5lb6oSQWisk/4rfkPh8lP1oxcaLYj5mpGapYAAAAYFM5cvaIDj5zsPT4ww8/1HMPPnffOPeAW+4Bd+nxmH9MiXBC/S/2L5t733vdvWx2m9wDbkUDUT09/bTJvwEAYL3t2LHDknZisZhcruoJevfz/ODzlvQDADa7PX17lBpPVd2AqFhZ4t6k6N2e3TLiRtU2iwkb937fbiYGAAAAAJpJW6M7AAAAAKB5LNxZ0J2f3yn9+eTWJ2t6v3QyrR5Xz6qqSaSTaSUiCaWT6arXZI3siuXHi/dZzS5dAAAAwEbSsa1D235pW+nP1h1bTbUTiAaUGk8pGojWFLenb4+yRrZsLm6z21ZVkaJrV1ddMQAAAAA+TYiulvyQmc5IkvYc2FM6tv/kfkmq+r38zOTyzYzMxAAAAABAM6GCBQAAAICSK+eu6M3vvFl6PNs2u+b3C0QDK15jxA1ljaycPqe8g16lk2mN+cd0OHR42Y8w85n5FatlFJMvVrMgCwAAAMByxWoUqfGUjLix6oVRxWTndDJdmrOvlBwtfbqD7r0J2WZiAADm3Lp1y3Ts8ePHdfnyZS0uLqq9vV1Hjx7VxYsXa25nYWFBfzH8F6b7AQD4VLezW+4Bt66cu1Kx+twH4x/o0PChsrl0r6dXTp9T1165VlbZoig1ntKp2KmyY2ZiAAAA0Lzm5uZMx968eVPBYFA//vGP9fDDDyscDsvhcJhqa/v27ab7sRklIgmloqnS/N7utMs/4q94bT6X11vn3pJ0d/OizHRGLr+ratVqszGthAQLAAAAACVHzh7RwWcOlh5/+OGHeu7B59bkXqnxlOxO+4rXFBdeHR4+XDrW6+lVIBrQSPeIBhODZT/QrDZx4vbHt2vvMAAAALBJ5HP5FZOXi/P46dh0KcFiIjih6/Hrenr66VXfp9vZrZmpmRX7UbyunhgAgDn1LFwYGxvT6dOnNTk5qb6+Pl24cMFUewsLC6b7AABYrv/FfkW8ESUiCXkHvaXj0UBU3c7uiguuAtGAIt6I9p/cX/Z9/ERwQoeGD1VMujYTAwAAgOa0Y8cOS9qJx+NyuVym4wuFgiX92Ojyubz+4pG/0F7f3rLE5qyRVSwUWzbnz+fyingjCkQDy+buNyZvVPyMYCam1ZBgAQAAAKCkY1uHOrZ9+jFh646ta3avK+euqP/F/hWvqZbZXtw1NxqI1rSACwAAAMD9jXSPSJJC2VDFShBdu7oklSc4p6fSpeoRlRSvvffHlt2e3TLiRtWYrJGVpLLFV2ZiAADrz+Fw6NKlS43uBgDgM2x2mwYTg3rr3FuKBqKS7s7V3QF3WcJFpZhYKCab3baq3WnNxAAAAACoXzG54rNJDq8FX9PM1Myy49FAVA8MPLCs+lx/uF8j3SNy+V3Lvm83E9NqSLAAAAAAsO6yRlbpZLpiefDV2tO3R6nxlLJGtrQ7rc1uW1UVi+KCMAAAAADL2ew2dfZ0VkyukKTMdEaStMe7p3Rsr2+vBkcGq7Y5Mzkjm91WVlli/8n9evv821U/G8xMziz7EcZMTDO5ffu25ubmao67efOmhoaGlEgk5PV6NTo6KofDYaoP9exIDwAAgNZns9tq3lHWZrepP7zyhklWxAAAAKD53Lp1y3Ts8ePHdfnyZS0uLqq9vV1Hjx7VxYsXLewd7nX1/FVljWzF7+ptdpv2HNhTdixrZGXEDR0LH6vYnvuEW1dHrpZ9524mphWRYAEAAABg3U2Fp8oWVplRXOyVTqZLbXX2dK4YU9xRt9pCMQAAAACSZ9CjA8EDVc+nXk3JZrdp34l9pWP7T+5XIpKouOtt1sgqNZ5SIBooO97r6ZXT59S1V65VTJZIjafKSpibjWkmv/7rv153G7FYTC6Xy3R8oVCouw8AAAAAmo+ZZO4iK5O6AQDAxlLPhi1jY2N64okn9M477+jgwYP6/ve/zwYwa+jKuSvyDHoqnvvs9/PS3bU7kqqu3+lx9SgZSSqfy5fW2ZiJaUVtje4AAAAAgM3nevz6fRMsJoITet71fE3tdju7S0kUlRSrW9Sb3AEAAABsZP4Rv66MXJERN5adiwaikqTHX3+87MeRXk+v8rm8rp6/WnZ91sgq4o3o0PAhuQfcy9oLRAP6YPwDpZPpsuMTwQkdGj5UcZcrMzEAAAAAsNHt2LHD9B+Xy6VYLKZMJlNK6jbbFgAAQJHD4dBrr72m//E//odee+01EjjXUGo8pXwur/0n96865qPkRysmQRTX1sxMzdQV04qoYAEAAABg3aWT6YqLq8qumUqvKlni3l1rd3t2V1wEVpQ1spLEgisAAADgPvrD/UqNpxQNRGXrsSmfySufy2u3Z7e+df1bFX9AOTx8WEbc0ERwonS9zW7T468/XrHahHS3utxgYlCxUEw2u01du7qUmc7I5XdV/cxgJqZZ/P3f/72++MUv1hx3/PhxXb58WYuLi2pvb9fRo0d18eLFNejh5vJy/8urum5py5IyvRndePaG2grsXQYAAAAAAACgubz/yvuSPl1Dk06mNTM1oz0H9lT9fj5rZNXZ01m1zeLvAMW1NmZjWhEJFgAAAADWVXGXWVvPyqUA9/r2anBksOr5mckZ2ey2smoU+0/u19vn31Y6ma74AXFmcobkCgAAAGCV3APumhMWnD5nzXNum92m/nD/msc0g66uLm3fvr3muLGxMZ0+fVqTk5Pq6+vThQsXTLUDAAAAYOO6deuW6Vgrk7r/+mt/bbofAAAAKLdwZ0GLdxZLjz+59UnF6+6t+Hz1/FX1enrlHfQqnUxrzD+mw6HDy767n8/Ml625+axiIkVxA1SzMa2IBAsAAAAA62qlqhT32n9yvxKRhLyD3mXnskZWqfGUAtFA2fFeT6+cPqeuvXKtYoJFajylU7FT5joOAAAAAA3icDh06dKlRncDAAAAQBOrJwmbpG4AAIDmdOXcFb35nTdLj2fbZiteN5+Zl81uUyKS0OHhw6XjvZ5eBaIB/dneP1MgGihLslhtEsTtj2/XFdOKSLAAAAAAUJdiWb/VfogqXl8sC1hNr6dXRtzQ1fNXyz78ZY2sIt6IDg0fqribbiAaUMQb0f6T+8uSLCaCEzo0fIgKFgAAAACAppFfML+T2+ydWb30k5d0ffa69u7cqycffFI7t+001ZatY+XP6AAAANjYSOoGAABoTkfOHtHBZw6WHn/44Yd67sHnll1XXLNTrCBxL5vdJqfPqdeCr+np6afXrrMbCAkWAAAAAGqWGk8pEU5IkmamZiRJE2cmSsfcAXfFyhOStOfAHtnsNn2x74v3vc/h4cMy4oYmghPKZ/LK5/Ky2W16/PXHK1aokO5+MBxMDCoWislmt6lrV5cy0xm5/K6KCRkAAAAAADTK13/0dUvaufaza/r2G982Hf+DYz+wpB8AAAAAmsv8/Lzm5ubU0VH7MsGbN29qaGhIiURCXq9Xo6OjcjgcpvpBRRQAAMzp2Nahjm2f/ju+dcfWitfZ7Dblc/mqm446/U6lxlNKJ9Ol9TbFmPvp2tW17D61xLQiEiwAAAAA1Mw94DadrNDr6VUoG1r19U6fs+aqEza7Tf3h/lq7BgAAAAAAAAAAAGwYjz76qCXtxGIxuVwu0/GFQsGSfgAAgMo6ezpLm5ZWOy/d3US1mGBRqdrFveYz85JU1qaZmFZEggUAAAAAAAAAAADQAN/7yvdMxz479axSH6e0VFhS25Y2uXe59cyBZyzsHQAAAAAAAIBW0OvpVdbI3ve6e6tPdDu7NTM1c99ru53ddcW0IhIsAAAAAAAAAAAAgAawdZjfye2ph57S6Hujms5Ny2V3aejLQ3W1BwAAAGDj+eEPf6hDhw6po6P2ZYLHjx/X5cuXtbi4qPb2dh09elQXL15cg14CAIB67enbo9R4qmoVi2JliWL1Ckna7dktI25UbbOYsOH0OeuKaUUkWAAAAAAAAADYkObm5kzH3rx5U0NDQ0okEvJ6vRodHZXD4ai5ne3bt5vuAwCshZf7X250F2CRndt2KvRwqNHdAAAAANDEOjs7tX37dlMJFmNjYzp9+rQmJyfV19enCxcu8F0XAABNyj3gVjwUlxE35B5wLzufmc5IkvYc2FM6tv/kfr19/m2lk+myxIuimcmZZYkSZmJaEQkWAAAAAAAAADakHTt2WNJOLBaTy+UyFVsoFCzpAwAAAAAAALCeHA6HLl261OhuAACAVeh2dss94NaVc1cqJlh8MP6BDg0fKqtu0evpldPn1LVXrlVMlkiNp3QqdqrsmJmYVtTW6A4AAAAAAAAAAAAAAAAAAAAAAABz+l/sVz6XVyKSKDseDUTV7eyWf8S/LCYQDeiD8Q+UTqbLjk8EJ3Ro+FDFahRmYloNFSwAAAAAAAAAbEi3bt0yHXv8+HFdvnxZi4uLam9v19GjR3Xx4kULewcAAIBW8XL/y43ugiTpsYnHGt0FAAAAAADQpGx2mwYTg3rr3FuKBqKSpHwuL3fALe+gd8WYWCgmm92mrl1dykxn5PK7KlbCMBvTakiwAAAAAAAAALAhbd++3XTs2NiYTp8+rcnJSfX19enChQt1tQcAAAAAAAAAAACsJZvdVrFSxf1i+sP9ax7TSkiwAAAAAAAAAIDPcDgcunTpUqO7AQAAAAAAAAAAAGAdtTW6AwAAAAAAAAAAAAAAAAAAAAAAAI1GBYsWdWfhjvIL+ZrjZu/M6qWfvKTrs9e1d+dePfngk9q5baepPtg6bKbiAAAAAKysGeb7AAAAAAAAANBK5ubmTMfevHlTQ0NDSiQS8nq9Gh0dlcPhMNXW9u3bTfcDAIDNZH5+XnNzc+roqH0ZK/92AwDWEgkWLeoP//YP627j2s+u6dtvfNt0/Pe+8j3TsSz8AgAAAKpr9Hz/9/R7dd8fAAAAAAAAANbTjh07LGknFovJ5XKZji8UCpb0AwCAje7RRx+1pB3+7QYAWI0EC5j29R993ZJ26k30YPEXAAAAAAAAAAAAAACN0yzVIwBAap73JHbFBwAAaE0kWLSoP/13f6pdtl01xz079axSH6e0VFhS25Y2uXe59cyBZ0z1waoECwAAAADlmmG+DwAAAAAAGsfsokAWBAJolGaoHnHr1i3T9z1+/LguX76sxcVFtbe36+jRo7p48aLp9gA0VjO8J0nsig/czw9/+EMdOnRIHR21L2Pl324AwFoiwaJFbevYJluHrea4px56SqPvjWo6Ny2X3aWhLw+ZakeSvveV75mKk1j4BQBAs+KHW6A5NMN8HwAAAAAANI4ViwJZEAhgs6nn94WxsTGdPn1ak5OT6uvr04ULF/i9AgCANdbZ2ant27ebSrDg324AwFralAkWuVxO586dkyTt2rVL09PT8vv9GhgYqKvNUCgkScpkMpIkv9+vwcHBmmL6+vo0PDxsuh/3s3PbToUeDlnSVj0LtVj4BQBAc+KHW6C1WTnfBwAAAAAAAIDVavXqEQ6HQ5cuXVrXewJYO63+ngTg/vi3GwCwljZdgkUul5PX61U0GpXH4ykdDwaDmpyc1MjISM1tJpNJBQIBhcNh+Xy+0nG/36/p6emKbSaTSYXDYY2MjMhut5eOj4+Py+v1KpFI1NyPVsLCLwAAAAAAAAAAAKAys4sCWRAIoFGoHgGgmfCeBAAAgHpsugSLQCCggYGBsuQKSQqHw+ru7pbf7y9Lkqilzc/GhcNhuVyuim2GQiHFYrFlbQ0MDCiTySgYDCocDtfUDwAAgHrxwy0AAAAAAGvn/zn9/2hX565GdwNACzC7iI8FgdgsXu5/udFdkCQ9NvFYo7uwIbADNYBmwnsSAAAANlWChWEYisfjVRMXTpw4oZGRkZoSLM6fPy/DMHT27Nll55xOp3w+37I2k8mknE5n1TaL/QAAAFhv/HALAAAAAMDGll/Im4qbvTOrl37ykq7PXtfenXv15INPaue2nabasnXYTMUBuD8WBAIAAAAAAAD12VQJFsXEimrJDS6XS5FIRLlcTna7fVVtFqtQVLve4/Ho/PnzZceKiR7VZDKZVd8fAACgGfDDLQAAAAAAreHrP/p63W1c+9k1ffuNb5uO/8GxH9TdB2Cja5bd+RttacuS1NvoXgAAAAAAAGAzaWt0B9ZTMplcMXGhmHgxNTW16janpqZWbNPlcpXuXeTxeGQYhgKBQMWYcDiskydPrroPAAAAAAAAAAAAAAAAAAAAAACgPpuqgoVhGOrp6al6vpgoYRjGqtvs6elRJpO573VTU1PyeDyS7iZyDA4OKhKJyOVyKRwOy+fzSZLi8bhyuZxGRkZW3QcAAAAAsNLc3Jzp2Js3b2poaEiJREJer1ejo6NyOBym2tq+fbvpfgAAAACo7Htf+Z6puGennlXq45SWCktq29Im9y63njnwjMW9AwAAAAAAAACgsTZVgkUmkylVqaikmHyRy+VW3abH49H4+HjV89PT0xXbDIfDcrlcCoVC8vv9GhwclMvlksfjUTgcvu995xfmdWvhVunx1rat2tq+ddX93kgWFhbqil1aWqqrjWZSz0K4f/qnf9Lv//7vlxbC/Zf/8l/0y7/8yzW1sdHGs9EYT2sxntZiPK3FeFqL8bTW0tJSo7uwKTV6vr9jxw5L2onFYqWqfmZ88sknlvSj1fG+hkp4XaAaXhuohNcFKmGu3xi3F29r28K20uNGfLf/ua2fMxX3Tc83FX43LCNnyGl3KvhQ0HRbS2qt119hS0EFFVTYUmi5voPnr9Xx/JVrtfncWs5Dl7Y0x+uh1Z6TWvA5onXxnDXG7Oxs2Qat27Zt07Zt21aI2LjqeY+26t9+/ju4i/dyazGe1mI8rcV4WovxtBbjaS2+218fmyrBYrWJEx9//PGq2wwGgxofH1cymSxVqLhXPB6v2ubw8LDsdruCwaAikYjsdrui0eiq7hv621DZ4694vqJHDzy66n5vJFeuXDEdu7S0pA8//FCS1NbWZlWXGuZ3fud3LGknHo/r137t10zF/tf/+l8lbYzxbLSN9vpsNMbTWoyntRhPazGe1qplbgzrMN+/q565/kbC+xoq4XWBanhtoBJeF6iEuX5jtPpc/xu/8o3S/1/UojK6f4XvjaCgguY/P6+MMtqiLY3uDmrE89faeP7Ktdp3JWs5D830Nse/Qa32nNSCzxGt695F/lg/X/7yl8seP/HEEzp9+nRD+tJo9bxHW/Vv/0Z+f64F7+XWsmo85+fnTcdms1k9++yz+l//63/p137t1/TMM8+ou7vbVFudnZ2m+2EFXp/WYjytxXhai/G0Ft/tr49NlWCxFnw+n3w+n86dO7csOSIej8vn8ymZTGrXrl3LYkOhkFwulwqFgkKhkM6fP1+qZnG/KhYj/25E3bZPJ0db27Zqa3pzVrA4cuSI6dhiRtyhQ4fU0cF/Dlb4V//qXzGeFuH1aS3G01qMp7UYT2sxntYqfsjF+mr0fL+Wqn6fNTAwoDfeeEOLi4tqb2/X7/zO76xY9W8l27dvN92PjYT3NVTC6wLV8NpAJbwuUAlz/cZo9Fwf5hS2FJRRRj0f9WhLgQXerYbnr7Xx/JWr53fRRljLeeiNZ29Y2p5Zrfac1ILPEa3rH//xHxvdhU3pvffe07/8l/+y9HgzV7Co5z3aqn/7N/L7cy14L7eWVeO5das13wMkEgn9x//4H03HN7qSPK9PazGe1mI8rcV4Wovv9tfHpnql2u32VS0UqpQMsZJYLKZgMKhQKKSzZ89K+rRyhcvlKt37Xn6/X6FQSD6fT5I0MjKikydPKhAIKBKJKJPJrFjNorOjUzs6dpQfLNTU7Q2j3jfctrY2dXR0bIg37lu3bpmOPX78uC5fvlxaCHf06FFdvHixpjYWFhb07rvvbpjxbAYb6fXZDBhPazGe1mI8rcV4WofdAxqj0fP9nTt3mo79y7/8S50+fVqTk5Pq6+vThQsX6moPd/G+hkp4XaAaXhuohNcFPou5fmN0tXfx3X4LWtKStmiLthS2qK2wMf/byS/kTcfO3pnVSz95Sddnr2vvzr168sEntXNb7Z8DbR02031YyWZ4/jYynr9yrTiXW6t5aLO8HlrxOakFnyNaE89XY+zcuVM9PT2N7kZTqOc92qp/+/nv4FO8l1trI41nM/wdNtJ4NgPG01qMp7UYT+vw3f762FSv1Pt9kCmWSfxsMsRqhMNh5XK5UmKFz+eT3W7X+fPnJUkHDhwoXXv+/Hl5PJ5SckWRx+PR9PS0gsGgIpFIqQIGsFr17PA7Nja2bCFcre0VMw0BAACweTkcDl26dKnR3QAAAAAA1ODrP/q6Je1c+9k1ffuNb5uK/cGxH1jSBwAAAADNZ25uznTszZs3NTQ0pEQiIa/Xq9HRUTkcjprbaZbK6Y3eQBcAANzfpkqwcDqdmpqaqnq+WN3C6XSaat9ut2tgYKDs2OTkpKS7yRNF4XBYiUSiajvhcFhTU1OKxWIkWGDdsBAOAAAAAAAAAAAAaF4v97/c6C7osYnHGt0FSc1ReQcAAKzejh077n/RKsRiMblcLlOxhUJzlJBs9Aa6AADg/jZVgoXH4ylVmKjEMAxJsjSpIZlManBwcNl97lclIxgMrpiEgU/V80Xi0pYlZXozuvHsjbpKCzbLF4kAAAAAAAAAAAC1+t5Xvmc69tmpZ5X6OKWlwpLatrTJvcutZw48Y2HvAGC5Zqi8I0m/p9+zpB8AAACrwQa6AACsj02VYHHy5EmdP39eyWSyrKJE0eTkZM3JFclkUo888oii0eiy2GQyKcMwFAqFyo47nU4ZhrFipYzp6Wl5vd6a+gIAAAAAAAAAAADUytZhMx371ENPafS9UU3npuWyuzT05aG62gNQHVUbAABAq7p165bp2OPHj+vy5ctaXFxUe3u7jh49qosXL1rYOwAAgHKbKsHC4/HI5/PplVdeqZhgMT4+rlgstux4LpfTuXPn5Pf7lyVRFKteVHLmzBmNjIwsS6QYGBhQKBRSNBqtGJfL5ZRMJnX27NnV/LUAAAAAAAAAAACAhti5badCD4fufyGAujVD1YZmqdhA5R0AAFrL9u3bTceOjY3p9OnTmpycVF9fny5cuFBXewAAAPfT1ugOrLdoNKrx8XElk8my48FgUMPDwxUrWEQiEZ0/f16BQGDZOZ/PV/pTlMvlFAgE5PP5NDw8vCxmZGSkdM9cLld2LplMKhAIaGRkRHa73cTfEAAAAAAAAAAAAACAjcvWYTP956mHntKDX3hQO7bu0INfeFBPPfSU6bYAAMDaczgcunTpkn72s5/p0qVLcjgcje4SAADY4DZVBQtJstvtSiQSCoVCstvt2rVrl6anp+X3+zUwMFAxxufzyW6368SJExXbGxkZKSVfFBMmQqFQxWSNomg0qng8rjNnzpQddzqdFatooDqzpXCLZXCNXxhyft5JGVwAAAAAAAAAAAAATYuqDdag8g4AAIA0NzdnKu7mzZsaGhpSIpGQ1+vV6OioqaSXhYUFU/dfC40ei3rdvHlTwWBQP/7xj/Xwww8rHA6b7gfVYQDgrk2XYCHdTYoIh8Orvt7j8SibzVY973Q6FY1Ga+7HZytfwBwrSuFeu2O+DK7UPKVwAQAAAAAAAAAAWpHZDbWkTzfVuj57XXt37i3bVGtpy5LufHJH+YW82gpt922LHenRzOp5fT710FMafW9U07lpuewuDX15iNc7AADAJrZjx46624jFYnK5XKbj33jjjbr7YIVmGAurxOPxuvpRKBQs7A0AtK5NmWABAAAAAAAAAAAAoHlYsaGWJF37WX2bav3g2A8s6QfQbKjaAAAAAAAAsDokWKDlmS2FSxlcAAAAAAAAAAAAAAAAAGthbm7OVNzNmzc1NDSkRCIhr9er0dFRORyOmttZWFgwdX9sDrdu3TIVd/z4cV2+fFmLi4tqb2/X0aNHdfHixZrbWVhY0LvvvmuqD1Zr9FjUq1n6AQAbCQkWaHlmS9c+9dBTeuG9FzT982m5fsmlb375m5TBBQAAAIAmZ/YHKcm6H6Ukafv27ab7AQAAAGA5sxtqSStvqrW0ZUnZ3Vl1f9SttkKbVd0FAABAFfmFvKm42TuzeuknL8n4hSHn55168sEntXPbTot7t7527NhRdxuxWEwul8t0/BtvvFF3H7Axmf2dY2xsTKdPn9bk5KT6+vp04cIFU201UwJQo8eiXmNjY3riiSf0zjvv6ODBg/r+97/P71gAUCcSLLBp7dy2U8P/x7AyvRn1pHv4Uh0AAABoMs2wkJ4vH5uPFT9ISfX/KFUoFCzpBwAAAIC76tkE66mHntLoe6Oazk3LZXdp6MtDpfaWtixp29ZtsnXY+C0IAABgHXz9R1+vu41rd67p229823T87+n36u4DgMocDocuXbrU6G40hWYZC4fDoddee01XrlzRkSNH1NHBsmAAqBfvpAAAAACAptQMC+lZRA8AAAAAzW/ntp0KPRxqdDewgZndiVv6dDfu67PXtXfn3rp2464nEQkAAKy/W7dumYo7fvy4Ll++rMXFRbW3t+vo0aO6ePFize0sLCzo3XffNdUHAACAzYwECwAAAAAA0DLM/iAlWfejFAAAAABgc7FiJ25Juvaz+nbj/sGxH1jSDwAA1tL3vvI9U3HPTj2r1McpLRWW1LalTe5dbj1z4BmLe7e+zFbJHhsb0+nTpzU5Oam+vj5duHDBVFsLCwum7g8AALDZkWABWGBubs507M2bNzU0NKREIiGv16vR0VE5HA5TbZn9YAYAAAA0IxbSo5J6PvdY9aMUAAAAAAAAADSbl/tfbnQXJJmvuPTUQ0/phfde0PTPp+X6JZe++eVvbtrqTQ6HQ5cuXWp0NwAAADYtEiwAC+zYscOSdmKxmFwul+n4QqFgST8AAACAZsBCeliNH6UAAAAAAGaY3Ylb2pi7cQMAsBZ2btup4f9jWJnejHrSPWortDW6SwAAANikSLAAAAAAAGw4LKQHAAAAAABWqWf37Kceekqj741qOjctl92loS8PbdrduAEAAAAAAFoBCRaABW7dumU69vjx47p8+bIWFxfV3t6uo0eP6uLFixb2DgAAAAAAAAAAfFZ+Ib+q65a2LOnOJ3eUX8iXdtGdvTOrl37ykq7PXtfenXv15INPaue2nTX3gUXWwMa3c9tOhR4ONbobAAAAAAAAWCUSLAALbN++3XTs2NiYTp8+rcnJSfX19enChQt1tddo8/PzmpubU0dH7W8vN2/e1NDQkBKJhLxer0ZHR+VwOEz1o5XHEAAAAPgs5tkAAKARskZWV0auSJLymbzyubycfqcODx+uGpPP5fXWubckSV27upSZzsjld8k94G54DPBZX//R1y1p59rPrunbb3zbVOwPjv3Akj4AAAAAAAAAAKxBggXQYA6HQ5cuXWp0Nyzz6KOPWtJOLBaTy+UyHV8oFCzpBwAAANAMmmWebbZ6H0keAAC0ntR4Sjcmb6g/3F92POKNKBFO6Onpp5fF5HN5RbwRBaIB9Xp6S8cnghO6MXlD/hF/w2IAAAAAYC3dvn1bc3NzNcdZ+d0pAAAAAGuQYAEAAAAAAFZlx44ddbdBMjUAAM0vn8vr/VfeVyAaWHau/8V+RbwRTQQnliVfRANRPTDwQFnSgyT1h/s10j0il98lp8/ZkBigku995Xurum5py5Kyu7Pq/qhbbYU2SdKzU88q9XFKS4UltW1pk3uXW88ceGYtuwsAAFqEmUX2RVYstr99+7bp+8O8ffv21d1Gvd+dUh0NAAAAsAYJFgAs9cMf/lCHDh1SR0ftby/Hjx/X5cuXtbi4qPb2dh09elQXL15cg14CAACrTQQntC+wb8VFTIlIQqloSt6gV06fUza7TVkjq3QyrfdfeV9Hzh5ZtkBKuru4661zb0mSunZ1KTOdkcvvknvAXfVeZmKAZtYs82wrEiwAAJtXoxcZFVEN6f5mpmaUGk8pFootqwZRnLNfj18vO541sjLiho6Fj1Vs033CrasjV8s+M6xXDFCNrcO2quuWtixp29ZtsnXYSgkWTz30lEbfG9V0blouu0tDXx5adXsAAGBjs+o7tHoX2wMAAAAAzCHBAoClOjs7tX37dlMLv8bGxnT69GlNTk6qr69PFy5caOkfvOtdNBAMBvXjH/9YDz/8sMLhMIsGAABNp7iwKRFOKJ1Ma19g5d2Z8rm8jLghI26UHbfZbQpEA1WTKyLeyLLzE8EJ3Zi8sWyxl9kYoNk1yzz71q1bpuJIpgYASM2zyIhqSPfX2dMpm92mrl1dVa+x2csXkk+FpyRJ3c7uitf3uHqUjCSVz+VLsesVA6yFndt2KvRwqNHdAAAAQJN4//339a//9b+uOc7K707/+mt/bSoOAAAAQDkSLAA0DYfDoUuXLjW6G5axatFAPB5n0QAAoOkkIgkZMUNOv1O+EZ/G/GOrijsWPqbMdEY5Iydbj017vHvkHfRWvT4aiOqBgQeWJV/0h/s10j0il9+1bGdaMzHARmblPNtsYsZGS6YGAGCj6/X0KpStvHA8nUxLkvb69pYd/yj50YoJDcWEiJmpmdJ8fL1iAAAAgPVkdpMSyZrF9jdu3NCv//qvm+4DzOnq6jL1nSffnQIAAADNhwQLAAAAADXzDnpLiRHFBVarse/EvlXvIluskHEsfKziefcJt66OXC1bNGUmBsDa22jJ1AAAcxq9yAjWiIfi6nZ2L6sMlzWy6uzprBpX/ByQNbLrHgMAAACsp3oWx1ux2L6rq3olOqydiTMT+oLtC6ZiH+94XI8ffFySdPkbl63sFgAAAAATSLAAgDXCogEAAOozFZ6S9OkOtJ/V4+pRMpJUPpcvLaIyEwMAAID10ehFRpvdwp0FLd5ZLD3+5NYnNcVnjayujFyR3WnXqdipZefnM/NV5+GSSkkR+Vx+3WMAAACAVrHWG5UkIgmloil5g145fU7Z7DZljazSybTef+V9HTl7ZFl1aOnu/Pqtc29Jkrp2dSkznZHL75J7wF31XmZiAAAAAKAZkGABAGuk3kUDTzzxhN555x0dPHhQ3//+91k0AADYdD5KfrRiEkRxUdXM1EypIoWZGAAAADQ/qiHV78q5K3rzO2+WHs+2za4qLjWe0o3JG8oZOdmddrn8rorXrTah4fbHt9c9BgAAAMBd+VxeRtyQETfKjtvsNgWigarJFRFvZNn5ieCEbkzeWFbdzmwMAAAAADQLEiwAoAk5HA699tprunLlio4cOaKODt6uN5K5uTlTcTdv3tTQ0JASiYS8Xq9GR0flcDhMtUXCDoBGSyfTmpma0Z4Deyr+YCPd3SG3uPtsJcVEiqyRrSsGAAAA2AyOnD2ig88cLD3+8MMP9dyDz903zj3gLtthdsw/pkQ4of4X+6kKB2BDyi+Yr4Aze2dWL/3kJV2fva69O/fqyQef1M5tO021ZevgPRYAsDaOhY8pM51RzsjJ1mPTHu8eeQe9Va+PBqJ6YOCBZd/l94f7NdI9IpfftWxDIzMxAAAAANAsWLELAMA627FjR91txGIxuVyVd4xcjUKhUHcfAGxMC3cWtHhnsfT4k1ufWNq+ETeUNbJy+pzyDnqVTqY15h/T4dDhZT+mzGfmSxUnKikmUty7g62ZGAAAAGAz6NjWoY5tn/4ksHXHVlPtBKIBjXSPKJ/L61TsVOm4zW5b1Ty7a1fXuscAQC2+/qOvW9LOtZ9d07ff+Lbp+B8c+4El/QAA4LP2ndi36mTprJGVETd0LHys4nn3Cbeujlwt+37fTAwAAAAANBMSLAAAAACUXDl3RW9+583S49m2WcvaLiY+HB4+XDrW6+ktLdAaTAyW7Wa12iSI2x/frisGAAAAwOrZ7Da5B9xKjadkxI3SoqiVKslJd5Ohi/FF6xUDAAAAwJyp8JQkVd3YqMfVo2QkqXwuX5qDm4kBAAAAgGZCggUAAOvs1q1bpuKOHz+uy5cva3FxUe3t7Tp69KguXrxoce8AbHZHzh7RwWcOlh5/+OGHeu7B5yxp2z3grni8uEArGojq6emnLbkXAAAAAPPyufyK1eHsTrskaTo2XUqw6HZ2a2ZqZsU2i9cVrVcMANTie1/5nunYZ6eeVerjlJYKS2rb0ib3LreeOfCMhb0DAGB9fZT8aMUkiOK8e2ZqpvTZwEwMAKyHubk507E3b95UMBjUj3/8Yz388MMKh8NyOBym2tq+fbvpfgAAgPVBggUAAOvM7IflsbExnT59WpOTk+rr69OFCxf44A3Ach3bOtSx7dOPCVt3bF2X++7p26PUeEpZI1v6ccVmt62qIkXXrq7S/zcTAwAAAKDcSPeIJCmUDVVcGFWcT987997t2S0jblRtM2tkJalsAdV6xQBALWwd5nfSfuqhpzT63qimc9Ny2V0a+vJQXe0BALCW0sm0ZqZmtOfAnrLq0vfKGtkVq8gVPy8U5+FmYwBgPezYscOSduLxuFwul+n4QqFgST8AAMDaIcECwIZUb9b50NCQEomEvF6vRkdHTWWds/AdVnM4HLp06VKjuwEAa6L4g0o6mS4lWKz0A4wkzWfmy2LNxgAAAAAoZ7Pb1NnTWXXenJnOSJL2ePeUju0/uV9vn39b6WS64uKsmcnlu9OuVwwArJed23Yq9HCo0d0AAGwyC3cWtHhnsfT4n3/xzyteb8QNZY2snD6nvINepZNpjfnHdDh0eNlceqXKdtKn38nfm3xtJgYAAAAAmgkJFgA2JKuyzmOxmOmsczLOAQD41ERwQtfj1/X09NOrjul2dmtmaqbq+eKPL/f+UGMmBgAAAEA5z6BHB4IHqp5PvZqSzW7TvhP7Ssd6Pb1y+py69sq1iokPqfGUTsVOlR1brxg0n/yC+cV0s3dm9dJPXtL12evau3OvnnzwSe3cttNUW1QWAAAAG8GVc1f05nfeLD2e1WzVa4vfjR8ePlw61uvpVSAa0Ej3iAYTg2Xz7NUmQdz++HZdMQCwHm7dumU69vjx47p8+bIWFxfV3t6uo0eP6uLFixb2DgAANBMSLAAAAACsufRUulQ9opLiDy73/nCz27NbRtyoGlMsH37vjlpmYgAAAACU84/4NRGc0L7AvmVz52ggKkl6/PXHl1W4CEQDingj2n9yf9ncfiI4oUPDhyrOw9crBs3l6z/6uiXtXPvZNX37jW+bjv/BsR9Y0g8AAIBGOnL2iA4+c7D0+MaNG3rO/VzFa90D7orHbXab3ANuRQPRmjZKAoBWsn37dtOxY2NjeuKJJ/TOO+/o4MGD+v73v19XewAAoD7G64aMmCFtkXpcPdpzYI92f3m3Ze2TYAFgQyLrHACA5rLXt1eDI4NVz89Mzshmt5VVlth/cr/ePv+20sl0xZ1pZyZnli2cMhMDAAAAYLn+cL9S4ylFA1HZemzKZ/LK5/La7dmtb13/1rLkCunuoqzBxKBioZhsdpu6dnUpM52Ry+9acSHXesQAAAAAG1XHtg51bPt0+c/nfv45U+3s6duj1HhKWSNb+q7eZretqiJF166u0v83EwMAzc7hcOi1117TlStXdOTIEXV0sOwSAIC1dH7XeQ1/PFz1vPMRp5yPOJWfzWs+My8jbmgqPCX/iF/bfmlb3ffnX3oAG1K9WeenT5/W5OSk+vr6dOHCBbLOAQCo0/6T+5WIJOQd9C47lzWySo2nFIgGyo73enrl9Dl17ZVrFZMlUuMpnYqdqjsGAAAAQGXuAXfNCQs2u0394f6mjEHz+N5Xvmc69tmpZ5X6OKWlwpLatrTJvcutZw48Y2HvAAAANqdiEnU6mS4lWHT2dK4YU6xcfW8CtpkYAAAAALhXoVBY1XW2nTbZdtrkPeNVfjavWCimYy8cq/v+bXW3AAAbjMPh0KVLl/Szn/1Mly5dksPhaHSXAABoalkjK0kr7kjV6+lVPpfX1fNXl8VGvBEdGj5UceFWIBrQB+MfKJ1Mlx2fCE7o0PChitUozMQAAAAAANaPrcNm+s9TDz2lB7/woHZs3aEHv/CgnnroKdNtAQAAbCYTwQk973q+pphuZ3cpIaKS4u8C91anNhMDAAAAAPfasmVLzTG2ndZ950sFCwAAAAA1S42nlAgnJEkzUzOSpIkzE6Vj7oB7WbWKw8OHZcQNTQQnlM/klc/lZbPb9Pjrj1esNiHd3cFqMDGoWCgmm92mrl1dykxn5PK7qu6kayYGAAAAANAadm7bqdDDoUZ3AwAAoOWkp9KrSny49/v63Z7dMuJG1ZjiBkz3bmxkJgYAAABA/RKRhFLRlLxBr5w+p2x2m7JGVulkWu+/8r6OnD1ScX1OPpfXW+fekqRVr7ExE7PW8rN5pafS979wFUiwAAAAAFAz94Db1Icip89Z848mNrtN/eH+NY8BAAAAAAAAAGCj2uvbq8GRwarnZyZnZLPbyipL7D+5X2+ff1vpZLriQqyZyZll3/mbiQEAAABQv3wuLyNuLEt4ttltCkQDVZMrIt7IsvMTwQndmLwh/4jfkphKcj/NVTxeKBTunv+HnFRYuY18Lq/5zLzSybSunLsi9wlrEjxIsAAAAAAAAABgqbm5OdOxN2/e1NDQkBKJhLxer0ZHR+VwOEy1tX37dtP9AAAAAABgI9l/cr8SkcSy6tPS3aoSqfGUAtFA2fFeT6+cPqeuvXKt4mKs1HhKp2Kn6o4BAAAAYI1j4WPKTGeUM3Ky9di0x7un4meAomggqgcGHlg2d+8P92uke0Quv2tZgrSZmEpmEjOamZxR1sjKiBu6M3un7Pzzzufv20ZRoVCQ0+fUsReOrTpmJSRYAAAAAE2qGRYm3r5923QfAADA5rVjxw5L2onFYnK5XKbjizvcAAAAAACw2fV6emXEDV09f1WHhw+XjmeNrCLeiA4NH6pYuToQDSjijWj/yf3Ldqc9NHyo4sIpMzEAAAAA6rfvxD7Z7LZVXVtMbDgWrpyU4D7h1tWRq2XzdzMx1bi/6pb7q59+Bkkn04qH4jJeN7RlyxY98NUHVvX36HZ2y+l3yvmIdZ8zSLAAAAAAmlSzLEwEAAAAAAAAAACt7/DwYRlxQxPBCeUzeeVzednsNj3++uMVq01Iks1u02BiULFQTDa7TV27upSZzsjld1VMyDAbAwAAAGB9TYWnJN1NUKikx9WjZCRZ+txgNma1ej29OhU7pYnghD4Y/0CBVwP3D1ojJFgAAAAAAAAAsNStW7dMxx4/flyXL1/W4uKi2tvbdfToUV28eNHC3gEAAAAAsHk5fc6aK0jY7Db1h/vXPAYAAADA+vko+dGKSRDFJIqZqZnSZwgzMbXqD/crnUibirUKCRYAAABAk2qGhYn/8A//oH379pnuBwAA2Jy2b99uOnZsbEynT5/W5OSk+vr6dOHChbraAwAAAAAAAAAAADaTdDKtmakZ7Tmwp2q1uqyRVWdPZ9U2iokUWSNbV4wZR84eMRUXPxuX75yvrntLJFgAAAAATasZFiZ2dXWZ7gMAAIAZDodDly5danQ3AAAAAAAAAAAAgIZauLOgxTuLpcef3PpkxeuNuKGskZXT55R30Kt0Mq0x/5gOhw4vqygxn5kvVZyopJhIkc/l64oxw/1Vt6m4ZCRJggUAAACAyliYCFhjbm7OdOzNmzc1NDSkRCIhr9er0dFRORyOmttZWFgw3QcAAAAAAAAAAAAAANCarpy7oje/82bp8WzbbNVri4kPh4cPl471enoViAY00j2iwcRgWTWL1SZB3P74dl0x9cr9NLeqihjpZLruxI4iEiwAAAAAAKhix44dlrQTi8XkcrlMx7/xxhuW9AMAAAAAAAAby1ptELKwsKD5+XnNzc2po+P+S0vqqcgMAAAAAKjsyNkjOvjMwdLjDz/8UM89+FzFa90Dlas+2Ow2uQfcigaienr66TXp51pI/nlS8VDcsqSJWpBgAQAAAAAAAAAAAAAA0IKaZYOQQqFgST8AAADQOGuVvFsLEneBch3bOtSx7dPl/lt3bDXVzp6+PUqNp5Q1sqVKFza7bVXJC127ukr/30yMGcbrhiYGJ9Tt7JY74JbNbrtvTDqR1vXL1+u6bxEJFgAAAAAAVHHr1i3TscePH9fly5e1uLio9vZ2HT16VBcvXqy5nYWFBb377rum+wEAAAAAAAAAAAAA99MMybsk7gJro5igkE6mSwkWnT2dK8bMZ+bLYs3GmPH6H72uQDQg91crV+Wo5vyu83Xdt4gECwAA0DBkvgMAml09/06MjY3p9OnTmpycVF9fny5cuGCqvYWFBdN9AAAAAAAAwMa2VhuELCws6O2339ahQ4fU0cHSEgAAAGC9NcO6Kom1Va1iIjih6/Hrenr66VXHdDu7NTM1U/V8sVJFMSHDbIwZtm5bzckVkmTfa6/rvkV8CgYAAA1D5jsAYCNzOBy6dOlSo7sBAAAAAACADWytNghZWFhQZ2entm/fToIFAADAJrFWybswpxnWVUmsrWoV6al0qXpEJcXEh15Pb+nYbs9uGXGjakzWyEqSnD5nXTFm3NvPWgxODdZ13yI+BQMA1oXZjFqrsmnZ+RkAAAAAAAAAAAD4FBuEAAAA4F5rlbwLYO3t9e3V4Ej15IKZyRnZ7LayyhL7T+7X2+ffVjqZrpjQMDM5syxRwkyMGcWEkEYhwQIAsC6syKitN5v2jTfeqLsPsBaZ7wAAAAAAAAAAoFW93P9yo7uwZpa2LCnTm9GNZ2+ordB23+sfm3hsHXoFAACAZkXyrvVYV4Va7D+5X4lIQt5B77JzWSOr1HhKgWig7Hivp1dOn1PXXrlWMVkiNZ7SqdipumPMcAfc+uCvPtAD/+GBmuLiZ+PynfPVfX8SLAAAQMOQ+Q4AAAAAAAAAAAAAAAAA5VhXhVr0enplxA1dPX9Vh4cPl45njawi3ogODR+Se8C9LC4QDSjijWj/yf1lCRMTwQkdGj5UsRqFmZhaOR9x6uqfXq05ySIZSZJgAQBoHWYzaq3Kpl1YWNC7775rqg9oTmS+AwAAoGhubs507M2bNzU0NKREIiGv16vR0VE5HA5TbTXLF9Pz8/Oam5tTR0dtX/1txLEAAAAAAAAAAADYbFhXtTkdHj4sI25oIjihfCavfC4vm92mx19/vGK1CUmy2W0aTAwqForJZrepa1eXMtMZufyuigkZZmNqlftpTvsC+/R+9H292Pei9vr2qsfVo25nd9WYdDKtfC5vyf1JsAAArAuzi2usyqZdWFgwdX8AAAAAzW/Hjh2WtBOLxeRyuUzHFwoFS/pRr0cffbTuNjbKWAAAAKD13fnkjvILebUV2mqOnb0zq5d+8pKuz17X3p179eSDT2rntp01t2PrsNUcAwAAAAAAsN6cPmfNFSRsdpv6w/1rHlOLsCesO7N3JN393XEmMaMtW7as2f0+iwQLAEBTI5sWAAAAQKtohkoaJJcDAABgo/nD//qHlrRz7WfX9O03vm0q9gfHfmBJHwAAAAAAAHB/nT2dkqR9J/bJZl/dxhfpRFrXL1+35P4kWADABtcMC3wk8xUsAAAAAOB+bt26ZTr2+PHjunz5shYXF9Xe3q6jR4/q4sWLptpqlkoaP/zhD3Xo0CF1dNT21Z+VYwEAAAAAAAAAAAAAZnQ7u3Xkj47I8w1PTXHnd5235P4kWADABtcsC3wKhYIl/QAAAACAz6onoXtsbEynT5/W5OSk+vr6dOHChZZPEO/s7NT27dtrTrDYiGMBAACA1venv/en6v6oW22Ftppjn516VqmPU1oqLKltS5vcu9x65sAza9BLAAAAAAAAWKXb2a1uZ3fNcfa9dkvuT4IFAACbUL2VTYLBoH784x/r4YcfVjgcprIJAAAAWpbD4dClS5csaasZKmksLCzo3XffNdUHK8cCAAAAsMq2rdtk67CZSrB46qGnNPreqKZz03LZXRr68pBsHbY16CUAAAAAAACscmz0mKm4walBS+5PggUAbHDNsMAHzceqyibxeJzKJgAAAMD/qxkqaSwsLJjuAwAAALDR7Ny2U6GHQ43uxoZSywZOCwsLmp+f19zcnDo6OnTz5k0NDQ0pkUjI6/VqdHTU9AZOAAAAAAAAa4UECwDY4JphgQ8AAAAAYGVUjwAAAADQCqzawCkWi9W1gdMPjv3Akn4AAAAAAICNIT+bV/LFpA79waG62yLBAgBQFQt8Ni4qmwAAAAAAAAAAANQnv5A3FTd7Z1Yv/eQlXZ+9rr079+rJB5/Uzm07TbVl67CZigMAAAAAYCPJGlm9/8r7JFgAAABz6q1s8sQTT+idd97RwYMH9f3vf5/KJgAAAAAAAAAAbAK1bOC0sLCgt99+W4cOHVJHR4elGzj99df+2lSc1b7+o6/X3ca1n13Tt9/4tul4qnkAAAAAADaa65ev1xxzdeSq8jlzGyF81qZMsMjlcjp37pwkadeuXZqenpbf79fAwEBdbYZCIUlSJpORJPn9fg0ODt43NhKJKBqNym63S5KcTqdGRkZM9wUAgLXkcDj02muv6cqVKzpy5Ig6OjbldAIAAAAAAAAAgE2nlg2XFhYW1NnZqe3bt6ujo0NjY2M6ffq0Jicn1dfXpwsXLrCBEwAAAAAAWObVgVd1Z/ZOTTGFQkGd3Z2W3H/TrYjM5XLyer2KRqPyeDyl48FgUJOTk6YSG5LJpAKBgMLhsHw+X+m43+/X9PR01TZzuZweeeQR+Xw+xWKx0nHDMBQKhUiyAAAAAAAAAAAAAABsCA6HQ5cuXWp0Nyz1va98z1Tcs1PPKvVxSkuFJbVtaZN7l1vPHHjG4t4BAAAAANCaOnvuJkrsO7FPNrut4jX5XF5ZI6uZqRk5fU7t6dtj2f03XYJFIBDQwMBAWXKFJIXDYXV3d8vv95clSdTS5mfjwuGwXC5X1TaLyRWfTaQIBoOampoiwQIAAAAAAAAAAAAA0DRe7n951dcubVlSpjejG8/eUFuhbQ171Ti2jsqLPO7nqYee0uh7o5rOTctld2noy0Om2wIAAAAAYKPpdnbryB8dkecbnvtfLOnqn15VZ3fnqq+/n435LUYVhmEoHo8rGAxWPH/ixImakxrOnz8vwzB09uzZZeecTmfFBIp74yqds9vtOnDgQE39AAAAAAAAAAAAAAAAzW/ntp0KPRxS5HcjCj0c0s5tOxvdJQAAAAAAmka3s1vdzu5VX3/4Dw/L1m3T9cvXLbn/pqpgEQ6HJd1NfKjE5XIpEokol8vJbrevqs1YLCZJVa/3eDw6f/78suPnzp3T4OBgxZhoNLqqewMAAAAAAAAAAAAAADRaLdVN1spjE481ugsAAAAAAAscGz1Wc4z7q27Fz8a19+jeuu+/qRIsksnkiokTxcSLqakp+Xy+VbU5NTW1Ypsul6t0b4/nbtmR8fFx5XI5nTx5cnUdBwAAAAAA+Iz5+XnNzc2po6P2r3du3rypoaEhJRIJeb1ejY6OyuFwmOrH9u3bTcUBAAAAAAAAAAAAANBsNlWChWEY6unpqXq+mChhGMaq2+zp6VEmk7nvdVNTU6UEi1deeUWSSo+TyaSmpqZ04MCB0jEAAAAAAICVPProo5a0E4vFShtEmFEoFCzpBwAAAAAAAAAAAAAAZuWMnCXtbKoEi0wmU6pSUUkx+SKXy626TY/Ho/Hx8arnp6enl7WZTCZL///8+fPyeDwaHBxUMpmU3+9XKBS6bwWN+YV53Vq4VXq8tW2rtrZvXXW/cVdhS0EFFVTYUtCSlky3s7CwYGGvWtfCwoKWlpYYD4swntZiPK3FeFqL8bQW42mtpSXzcySY1+j5Pv/9NBfe11BJM70emqkv4D0DlfG6QCXM9Rvj9uJtbVvYVnrMd/utwarfEtAYPH+tjeevtfH8tbZWfP74zHMX49AYjf5ef6NgHY+1+E7IWoyntRhPazGe1mI8rcV4Wovv9qvLz+Y1n523pK1NlWCx2sSJjz/+eNVtBoNBjY+PK5lMVqw+EY/Hl7WZyWRkt9sViUQ0PDxcOu7xeBSNRrV3715Fo9EVkyxCfxsqe/wVz1f06AFrdq7cTAoqaP7z88oooy3aYrqdK1euWNir1rW0tKQPP/xQktTW1tbg3rQ+xtNajKe1GE9rMZ7WYjytVcvcGNZp9Hyf+W1z4X0NlSwtLWl0dFRf+tKXTL0u/viP/1jvvvuulpaW1NbWpoceekh/8id/YqovvGc0F94zUAmvC1TCXL8xGj3XhzlW/ZaAxuD5a208f62N56+1teLzx3cUd2UymUZ3YVNirm8N1vFYi++ErMV4WovxtBbjaS3G01qMp7U2y3f71y9fX/W1+VxeWSOrRDghb9Bryf03VYLFWvD5fPL5fDp37pyi0WjZuXg8Lp/Pp2QyqV27dpWOFxM9ihUz7mW32+Xz+RQMBkvVLyoZ+Xcj6rZ1lx5vbduqrWky32tV2FJQRhn1fNSjLQXzH8yOHDliYa9aVzHD8NChQ+ro4O2lXoyntRhPazGe1mI8rcV4Wqv4IRfrq9Hzfea3zYX3NVRS7+viN37jN/Tkk09qampKBw4c0EsvvSSHw2F1N9EAvGegEl4XqIS5fmM0eq4Pc6z6LQGNwfPX2nj+WhvPX2trxeeP7zXv+sd//MdGd2FTYq5vDdbxWIvvhKzFeFqL8bQW42ktxtNajKe1Nst3+68OvKo7s3dWfX2hUJDT59ShPzhkyf031SvVbrevqorFvckQqxGLxRQMBhUKhXT27FlJn1aucLlcpXt/th/VKlT4/f4Vq2JIUmdHp3Z07Cg/WKip25C0pCVt0RZtKWxRW8F8Zhxv+p9qa2tTR0cHY2IRxtNajKe1GE9rMZ7WYjytw+4BjdHo+T7/7TQf3tdQST2viy9+8Yv60Y9+tAa9QjPgPQOV8LrAZzHXb4yu9i6+229BVv2WgMbg+WttPH+tjeevtbXi88fnnbsYh8Zo9Pf6GwXreKzHd0LWYjytxXhai/G0FuNpLcbTOpvlu/3Onk5J0r4T+2Sz21a+dlenej29cj7itOz+m+qVWqlixL2KZRLvTYZYrXA4rFwuV0qs8Pl8stvtOn/+vCTpwIEDZf3I5XJV71Ps59TUVNUECzSXl/tfbnQXJEmPTTzW6C4AAAAAAAAAAAAAAAAAAAAAgCndzm4d+aMj8nyjMevoN1WChdPp1NTUVNXzxeoWTqe5DBa73a6BgYGyY5OTk5JUlijh8XhkGMZ921tNtQ0AAAAAAAAAAAAAAAAAAAAAwNqZm5szHXvz5k0NDQ0pkUjI6/VqdHRUDoej5nZu375tug+tpNvZrW5nd8Puv6kSLDweT6nCRCXFpAefz2fZPZPJpAYHB8uO9fX1aXx8vGoVi2IlDapXAAAAAAAAAAAAAAAAAAAAAEBj7dixw5J2YrGYXC6XJW1tVMdGjzX0/m0Nvfs6O3nypKS7SQ+VTE5O1pxckUwm1d3dXTFxI5lMyjAMhUKhsuPFKhfVkj2mp6clSQcOHKipLwAAAAAAAAAAAAAAAAAAAAAAwJxNV8HC5/PplVdeqVgdYnx8XLFYbNnxXC6nc+fOye/3L0vAKFa9qOTMmTMaGRmR0+ksO+50OjUwMKBz586Vki0+24/h4eGK1S0AAAAAAAAAAAAAAAAAAAAAAOvn1q1bpmOPHz+uy5cva3FxUe3t7Tp69KguXrxYczv/8A//oH379pnuR6vK/TSnqfCUPkp+pPnMvDp7OmV32nUgeEC7v7zb8vttqgQLSYpGo/J6vTp58mRZkkUwGNTw8HDFChaRSETnz59XJBJRNpstO+fz+Up/inK5nM6cOSOfz6fh4eGK/XjxxRfl9XoViUQ0ODhYOh4IBOR0OjUyMlLvXxUAAKAlzc3NmY69efOmgsGgfvzjH+vhhx9WOByWw+Ew1db27dtN9wMAAAAAAAAAAAAAAADAxlHPWqKxsTGdPn1ak5OT6uvr04ULF0y119XVZboPrSp+Nq63z7+tQqGw7FwykpQ74FZ/pF/bfmmbZffcdAkWdrtdiURCoVBIdrtdu3bt0vT0tPx+f8VqEtLdJAq73a4TJ05UbG9kZESBQEDS3eQKSQqFQhWTNT7bj3PnzpXFBgKBsoQLAACwtupdzD80NKREIiGv16vR0VFTi/kXFhZM92Ej2rFjhyXtxONxuVwu0/GVJuUAAAAAAAAAAAAAAADY2Obn5zU3N6eOjtqXWVu1noiNQTcWh8OhS5cuNbobLSU/m1fEG9F8Zl4PfPUB7enbI5vddvdcLq/5j+eVTqT1/qvvy4gb+tb1b2nb561Jsth0CRbS3eSGcDi86us9Hs+yyhX3cjqdikajpvpBpQoAABrLqsX8sVisrsX8b7zxhiX9AAAAWG/NkLDKF8wAAAAAAAAAAACwyqOPPmpJO/WsJ2JjUGx20UBUTp9Tx0aPrXhdfjav2HBMf3H0L3Rm8owl996UCRYAAABoXrdu3TIde/z4cV2+fFmLi4tqb2/X0aNHdfHiRQt7BwAAPqsZElb5ghkArJdOpjUVnlI+k1c6mZbNbpM36JV30Fvx+kQkoVQ0JW/QK6fPKZvdpqyRVTqZ1vuvvK8jZ4+o19O7LC6fy+utc29Jkrp2dSkznZHL75J7wF21b2ZiAAAAAAAAAABAa0i8mFC3s/u+yRWSZNtpU3+4X68Nvabknyfl+Yan7vuTYAEAADa1ZljMv7CwoHfffdd0PzaaenagHhsb0xNPPKF33nlHBw8e1Pe//312tAYAAACAGiUiCUlSf7i/dMyIG4oGoro6clWDicFSGe6ifC4vI27IiBtlx212mwLRQNXkiog3suz8RHBCNyZvyD/ityQGAAAAAAAAAGrxwx/+UIcOHVJHR+3LrNkcFKjf9fh1DbwyUFPMsdFj+svf/UsSLAAAAOpV72L+06dPa3JyUn19fbpw4YKp9hYWFkz3AeUcDodee+01XblyRUeOHDH1QRcAANSmGRJWAQDWyRpZ5XN5HR4+XHbc6XPq8dcfV8QbUTQQ1anYqWWxx8LHlJnOKGfkZOuxaY93T9WKF9Ld8t4PDDywLPmiP9yvke4RufwuOX3OumMAAAAAAAAAoBadnZ3avn27qXUnVq0nAjYzW7ft/hdVYN9rt+T+rDgDAAAwyeFw6NKlS43uBtAUJoIT2hfYd9+FTOlkWlPhKeUzeaWTadnsNnmD3qqLrhKRhFLRlLxBr5w+p2x2m7JGVulkWu+/8r6OnD1SdSfct869JUnq2tWlzHRGLr9L7gF3/X9ZAECZZkhYBQBYZyo8pd8++9sVz/V6euX0OWXEDWWNrLqd3WXn953Yt6yyRTVZIysjbuhYuHJ5b/cJt66OXC37jGEmBgAAAAAAAADWE+uJAAtsWee4zyDBAgAAAIApxcVNiXBC6WRa+wL7Vrw+EUlIuruzbJERNxQNRHV15KoGE4PLFmPlc3kZcUNG3Cg7brPbFIgGqiZXRLyRZecnghO6MXlD/hF/zX9XAPisubk507E3b97U0NCQEomEvF6vRkdH5XA4ampjo1TA4gtmAGg+1+PXlYwk9a3r36qYLLHbs1tG3FA6mV6WYFGLqfCUJFVto8fVo2QkqXwuX+qHmRgAAAAAAAAAANBa8pm8qbickbPk/iRYAAAAAKhZIpKQETPk9DvlG/FpzD+24vVZI6t8Lq/Dw4fLjjt9Tj3++uOKeCOKBqI6FTu1LPZY+Jgy0xnljJxsPTbt8e6pWvFCkqKBqB4YeGBZ8kV/uF8j3SNy+V3saAugbjt27LCknVgsJpfLZSr2jTfesKQPAADcq7OnU+lkWlkjWzGh2SofJT9aMQmimEQxMzVTmr+biQEAAAAAAAAAAK3FvteuDy5+oAeOP7DqmLf/09va/dBuS+5PggUAAACAmnkHvaUkh3Qyfd/rp8JT+u2zv13xXK+nV06fU0bcUNbILtuNdt+JfavefbZYVeNY+FjF8+4Tbl0ducpiKwAAAKCKU7FTFeflRcXdn1ZKvkgn05qZmtGeA3uqXpc1surs6azaRvEzQNbI1hUDAAAAAAAAAABai++7Pj3/q89L0qqSLBIvJnTl3BUNfzxsyf1JsAAAAACw5q7HrysZSepb179VMVlit2e3jLihdDJddSHXakyFpySpahs9rh4lI0nlc/lVJ20AQCW3bt0yHXv8+HFdvnxZi4uLam9v19GjR3Xx4sWa2lhYWNC7775rug8AgM1n4c6CFu8slh5/cuuTqteuNCdPjafU6+mteE0xadrpc8o76FU6mdaYf0yHQ4eXJTnPZ+ZXvE8xkSKf+7QMuJkYAAAAAAAAAADQegKvBhQ5EJHr/3LJPeDWngN7Smt98rm85jPzmo5N64PxD5Q1sjozdcaye5NgAQAAAGDNdfZ0Kp1MK2tkV9zptl4fJT9aMXGiuBhrZmqGKhYA6rJ9+3bTsWNjYzp9+rQmJyfV19enCxcu1NzewsKC6fsDADanK+eu6M3vvFl6PNs2W3MbV89flST1v9i/7Fxxrn14+HDpWK+nV4FoQCPdIxpMDJZ9FlhtEsTtj2/XFQMAAAAAAAAAAFpPr6dXg1ODmjgzoYnBCW3ZsmXZNYVCQd3Obv3ff/N/q/ch69YjNTTB4vLlyzp69GgjuwAA2ETm5+c1Nzenjo7a//m7efOmhoaGlEgk5PV6NTo6KofDYaof9SzGA4C1VsuutrU4FTulrJGtuttszshJ0orJF+lkWjNTM9pzYE/V67JGtrRrbSXF5IuskV1lzwHAeg6HQ5cuXWp0NwAAm8yRs0d08JmDpccffvihnnvwuVXHp5NpxUNxBaKBivNx94C7YpzNbpN7wK1oIKqnp5+uveMAAAAAAAAAAGBT6vX0ajAxqEQkoUQ4ofS76dK5bme3vEGvDv/h4RVaMKehCRZ+v1+Li4v3vxAAAAs8+uijlrQTi8XkcrlMxxcKBUv6AQBrwYpdbaupllwhSanxlHo9vRWvMeKGskZWTp9T3kGv0sm0xvxjOhw6vKwKxXxmfsX7FJMvVrvzLQAAALBRdGzrUMe2T38S2Lpja03x0UBUx8LHqiZSrGRP3x6lxlNlSdc2u21V8/KuXV2l/28mBgAAAAAAAAAAtDbvoFfeQe+63a9t3e5Uwc6dO/X7v//7jewCAAAAgHscOXtEfzT7R6U/3/z/fnPN73n1/FVJUv+L/cvOFRdfHR4+XNolt9fTq0A0oDH/mNLJdNn1q02cuP3x7Xq6DAAAAGwq0UBU3qD5Hy+KleTunb+vVHlOups8fW+s2RgAAAAAAAAAAIBaNDTBIpfLKRwO63d/93f13nvvNbIrAIBN4Ic//KFyuZxu3bpV8x+/36/29nZJUnt7u/x+v6l2bt261eBRAICVdWzr0LZf2lb6U+uutrVKJ9OKh+IKRAOlBIp7uQfcFXfItdltcg+4FQ1E17R/AAAAwGYXC8W0p2+PDg9XL7E9EZzQ867na2q329ldSoiopJg8fW+FOjMxAAAAAAAAAACgNaX+e0p/+bt/qRd/60Xlfppbdj57Pavoiaje/k9vW3rfhiZYSFI4HNbo6KgmJyd18uRJ/fmf/7l+/vOfN7pbAIANqLOzU9u3bzf1Z2xsTH6/X7t27ZLf79fY2JjptgAAn4oGojoWPlYxieJ+9vTtUdbIKmtkS8dsdtuqqlh07eqq+X4AAADAZpOIJNTj6qmYXHHvvDs9lV5V4sO9SdW7PbtXnLsX5/lOn7OuGAAAAAAAAAAA0HriZ+OSpBuTN5ROpMuqZBd17+1W4NWAdj+0u3S9FRqaYBEOh/WNb3xDe/fu1ZkzZ/TKK6/I6/VqeHhY3/zmN6lqAQBoGg6HQ5cuXdLPfvYzXbp0SQ6Ho9FdAoCWFw1E5Q165R30moq32W2SVPYBqrOnc8WY4qKvYiwAAACAylLjKUmqOF/PGlkZcaP0eK9vr0LZUNW2ZiZnZLPbyipL7D+5X5Iq/iBSjPlsooSZGAAAAAAAAAAA0FquX76ubme33F91qz/Sr0e++4ge+A8PVL3e+YhTTp9TH/zVB5bcv6EJFmfOnFl27KGHHtLo6Ki++93vllW1AAAAALBxxEIx7enbU3En3KKJ4ISedz1fU7vdzu5V7Zx778IuAAAAAOXSybsVKaolQxtxo6waxf6T+5WIJCpemzWySo2n1P9if9nxXk+vnD6nrr1yrWJcajylw6HDdccAAAAAAAAAAIDW8n70fXnP3P2Nwj3g1uE/vP93/85HnJqOTVty/w5LWlkDO3fu1JkzZ3TmzBm9++67Ghoa0pYtWzQ0NKTf/M3fbHT3AAAAAJiUiCTU4+qpuFgrn8t/WpliKr2qZIl7F3bt9uwu20n3s7JGVpLY1RYAAACoImtkFQ1Etde3VzPBmWXn85m8jLhRVrGi19MrI27o6vmrZUnUWSOriDeiQ8OH5B5wL2srEA0o4o1o/8n9ZfP6ieCEDg0fqjhvNxMDAAAAAAAAAABaSKGxt2/aBIt7uVwuuVwunTt3TpFIRE6nU6FQSN/4xjca3TUAAAAANUiNpySpYnJF1sgqnUyXFl7t9e3V4Mhg1bZmJmdks9vKqlHsP7lfb59/W+lkumyx1b0xLLgCAAAAqhvzjylrZJWNZKteU6ki3OHhwzLihiaCE8pn8qXk6cdff7zi3FySbHabBhODioVistlt6trVpcx0Ri6/q2JChtkYAAAAAAAAAADQOvLZvKm4nJGz5P5NnWBx+fJljYyMKB6PS5IKhYIGBwcVDAYlqVTVIhQK6Vd+5Vca2FMAAAAA95NO3q1IUSm5QpKMuFGW/LD/5H4lIomqyRip8ZQC0UDZ8V5Pr5w+p669cq3iIq7UeEqnYqfq/JsAAAAAG9fT00+bjnX6nDUnNNvsNvWH+9c8BgAAAAAAAAAAtIbMdKbmmPxsXrc/vm3J/RuaYHH58mUdPXq07NjPf/5zRSIRhcNhGYahQqFQqlhx5syZsmtHR0c1OzurSCSiTCajs2fP6pd+6ZfW868AAAAAbHpZ4+7Otvlc9ezxrJFVNBDVXt9ezQRnlp3PZ/Iy4oZC2VDpWK+nV0bc0NXzV3V4+HBZWxFvRIeGD1XcoTYQDSjijWj/yf1lSRYTwQkdGj5EBQsAAAAAAAAAAD5jIjihI6EjFSvWSXd/A3jr3FuStOpKcmZiAAAAAGDfiX0aPzmugVcGVh0zfmJc+7+235L7NzTBwu/3a3FxUdLdZItwOKzx8XEVCgVJKlWreOihh6q2sXPnTv3hH/6hZmdn9Y1vfEPnz5+nmgUAAACwxlLjKSXCCUnSzNTdhImJMxOlY+6Au6zyxJh/TFkjq2wkW7XNSj/aHB4+LCNuaCI4oXwmr3wuL5vdpsdff7xihQrp7m62g4lBxUIx2ew2frQBAAAAAAAAAGAF6WRayUhSB4IHKp7P5/KKeCMKRAPLNja6MXlD/hG/JTEAAAAAIN1dL/T8rz6v8a+Nq//Ffm37/Laq13703keaODOhfC6vQ39wyJL7NzTBYufOnfo3/+bfSNKyahUnTpzQzp07a2rr1Vdf1Te/+U298MILa9VlAAAAAJLcA+6akhWenn7a9L2cPmfNVSdsdpv6w/2m7wkAAAAAAAAAwGYRD8VXPB8NRPXAwAPLNj7qD/drpHtELr9r2ff4ZmIAAAAAoOjU35zS87/6vFLRlJz+u2uHbHabOns6NZ+ZV2Y6o+vx60on0yoUCgomg5bdu6EJFpI0PT0tSRoYGNDZs2dXrFaxGrUkZQAAAAAAAAAAAAAAAACbVSKSkDvglhE3Kp7PGlkZcUPHwscqnnefcOvqyNWyZAkzMQAAAABwr25nt0KZkKKBqKb/ZlpGbPlnlkKhIKfPqWPhY+re223ZvRueYBEMBvXd7363rsSI2dlZffe731UwGNTs7KyFvQMAAAAAAAAAAAAAAECze7n/5UZ3QZL02MRjje7CqmWNrKS7C5eqmQpPrXhNj6tHyUhS+VxeNrvNdAwAAAAAfJbNbtOp2CkZrxtKRVOamZopfY7odnbLG/TK+Yj1idsNT7B44YUX6m7j1Vdf1cjIiMbHxxUKhSzoFQAAAAAAAAAAAAAAALBxTYWn5B/xV61eIUkfJT9aMQmimEQxMzVTqkhhJgbA2vjJyz/RjWdvqK3Q1tB+tFLyGQAAaD7OR5xrkkhRTUMTLE6cOGFZO9PT0+rr69NXv/pVS9oEAAAAAAAAAAAAAAAANqLUeEoHggfue13WyKqzp7Pq+WIiRbEahtkYAAAAAGgWDU2wGB0dtaSdnTt36rvf/a4lbQEAAAAAAAAAAAAAAACtYOHOghbvLJYe//Mv/vm+MflcXlkjK/eA+77XzmfmSxUnKikmUuRz+bpiAAAAAKBZNDTBoui///f/rkgkomw2q1dffVW/8iu/Unb++vXrCoVC+q3f+i39wR/8QWM6CQAAAAAAAAAAAAAAADSRK+eu6M3vvFl6PKvZ+8a8de4t+Uf8q2p/tUkQtz++XVcMAAAAADSLhidYnD17VgcOHNDk5KRmZ2eVTCaXJVjs3btXr776ql5//XWdPXtW586da0xnAQAAAAAAAAAAAAAAgCZx5OwRHXzmYOnxjRs39Jz7uarXG3FDLr9rPboGAE3l5f6X64pf2rKkTG9GN569obZCm+l2Hpt4rK5+AACAtdfQBIvLly/L6XTqq1/9qgqFgq5fv67/8B/+Q9XrH3nkEUnSX/3VX614HQAAAAAAAAAAAAAAALDRdWzrUMe2T5f/fO7nn1vx+unY9KqrV0iSzW5bVUWKrl1ddcUAAAAAWDsTwQkdCR1Rt7O74vl8Lq+3zr0l6e48PTOdkcvvknvAXbVNMzGtoqEJFtFoVC+88IIkaWBgYFUxjzzyiL75zW+SYAEAAAAAAAAAAAAAAACs0tXzV/XbZ3+7ppjOns4Vz89n5iXdTaqoJwYAAADA2kgn00pGkjoQPFDxfD6XV8QbUSAaUK+nt3R8IjihG5M3KiZom4lpJeZrVVmgUCg08vYAAAAAAAAAAAAAAADAhpc1srLZbTUnNXQ7u0sJEZUUK1XcuxOumRgAAAAAayMeiq94PhqI6oGBB8oSJSSpP9yvZCQpI25YEtNKGlrBIpvNmoozjNYedAAAAAAAAACbw9zcnOnYmzdvamhoSIlEQl6vV6Ojo3I4HDW3s7CwYLoPAAAAAICNIZ1MKxVNKRVNLTuXNe6u35k4M1GqPnEqdkqStNuze8XFUcVYp89ZOmYmBgAAAID1EpGE3AF31fl51sjKiBs6Fj5W8bz7hFtXR66Wzd3NxLSahiZYTE9P1xwzOzurjz/+eA16AwAAAAAAAADW2rFjhyXtxGIxuVwu0/FvvPGGJf0AAAAAALQm94Bb7gF3xXOp8ZSigaj6X+xftgPt/pP79fb5t5VOppedk6SZyZllC6fMxAAAAACwVjGxeaXKcVPhqRWv6XH1KBlJKp/Ll6rhmYlpNW2NvPmJEyd08uTJmmO+9rWvrVGPAAAAAAAAAAAAAAAAAEhSr6dXTp9T1165VvF8ajylw6HDdccAAAAAsNZUeEreQe+K13yU/GjFJIhiEsXM1ExdMa2moQkWw8PDSiQS+trXvqZf/OIXK1773nvvqa+vT4Zh6A/+4A/WqYcAAAAAAAAAYN6tW7dM//H7/Wpvb5cktbe3y+/3m2onl8s1dhAAAAAAAE2tuLNt8X8/KxAN6IPxD5ROpsuOTwQndGj4UMVqFGZiAAAAAFgjNZ7SgeCB+16XNbLq7Omser6YSHHvZwUzMa2mo9Ed+Ju/+Rv96q/+qqLRqPx+v3w+n+x2u3p6epTJZDQ9Pa14PK5kMqlCoaBkMtnoLgMAAAAAAADAqmzfvt107NjYmE6fPq3JyUn19fXpwoULptpbWFgw3QcAAAAAwMY1EZxQzsiVdpadODOhRDih3Z7d8o/4S9fZ7DYNJgYVC8Vks9vUtatLmemMXH6X3APuim2biQEAAABQbuHOghbvLJYef3Lrk/vG5HN5ZY3squbd85n5UsWJSoqJFPlcvq6Y9RI/G5fvnK/udhqeYOF0OpXJZBQIBPQ3f/M3isViy64pFAry+XwKh8Pau3dvA3oJAAAAAAAAAOvL4XDo0qVLje4GAAAAAGCD6g/3r/pam91W0/VmYwAAAAB86sq5K3rzO2+WHs+2zd435q1zb5UlTK9ktUkQtz++XVfMeklGkhsjwUKS7Ha7YrGYXn/9dUWjUU1NTSmXy8lut8vpdCoYDOqRRx5pdDcBAAAAAAAAAAAAAAAAAAAAAFhzR84e0cFnDpYef/jhh3ruweeqXm/EDbn8rvXo2rrJ/TSnrJG973XpZNqyqhlNkWBR9Mgjj5BIAQAAAAAAAAAAAAAAAAAAAADY1Dq2dahj26fL/bfu2Lri9dOx6VVXr5DuVp1bTVJC166uumLMSP55UvFQ3LKkiVo0VYIFAAAAAAAAAAAAAAAAAAAAAABYvavnr+q3z/52TTGdPZ0rnp/PzEu6m1RRT0ytjNcNTQxOqNvZLXfAvaq20om0rl++bvqe92rJBIuzZ8/q3Llzje4GAAAAAAAAAAAAAAAAAAAAAAANkzWystltNSc1dDu7NTM1U/V8sXpEt7O7rphavf5HrysQDcj9VXdNced3nTd9z3u1ZIJFJBIhwQIAAAAAAAAAAAAAAAAAAAAAsKmlk2mloimloqll57JGVpI0cWaiVH3iVOyUJGm3Z7eMuFG13WKs0+csHTMTUytbt63m5ApJsu+1m77nvZomweKnP/2pDKP6YBclk0nlcrm17xAAAAAAAAAAAAAAAAAAAAAAAE3MPeCWe6ByQkJqPKVoIKr+F/vV6+ktO7f/5H69ff5tpZPpZeckaWZyZlmihJmYWlVqdzUGpwbrum9RwxMs/vzP/1yhUIikCQAAAAAAAAAAAAAAAAAAAAAA1kGvp1dOn1PXXrlWMakhNZ4qVbuoJ6ZW+Vy+rvh6NTTB4vXXX9fg4KCcTqcCgYDsdvt9YxKJhC5fvrz2ncP/n70/jI3rPBME3ZeyDJeUTFykgI2oALtRsWcB0x7cuCj3nZbUwExUnG40xAtMzJLGuOtggInIZH+4gb4d0Zo/i15cjEIlSGN6gW2T7h8z61lo7eK4fzB3ehCWPZO1lR8RWZ1BYhnYCUueDCR6dsdVpXTaLE0U1v2hJS2aRYosHrJY4vMAQlLnO+93Xn/nqPRV1XnPBwAAAAAAAAAAAABAh6qWqyv/26wgIl/Ix+TAZDxz/plV7dOj03Hy4smmq1G0ErMV/fn+eP/N9+Oprzy1pbjipWLkLue2deyINhdYvPzyy1EoFOL555/fUtyRI0d2KCMAAAAAAAAAAGjN1aGrbT3+R4sftfX4AADA3jA9Oh21ci1uz96+//rCdMxNzMXR7NEYHB9c2S+VTsXI3EjMjM1EKp2Kw0cOR2W+En2DfdE/3N+071ZitiJzJhPXvn1ty0UWpclS5xdYdHd3b7m4IiLi+PHjO5ANAAAAAAAAAAAAAAB0tqGJoU3vm0qntrR/qzGbVfugFk/nn473Cu/Fq8+9Gsdzx6Onrye6M93rxiyUFqJeqydy/LYWWGSz2ZbiZmdnE84EAAAAAAAAAAAAAABop4nsRNy9czciIhqNRtyeux1dXV27dvy2FljUarV2Hh4AAAAAAAAAAAAAANgjDvUcioiIp889Hal0alMxC3MLcfPtm4kcv60FFvl8Pt588834yle+sqW4S5cuxeXLl3coKwAAAAAAAAAAAAAAYLd1Z7rj9MunI/u17Jbirhy5ksjxDyTSS4vOnDkT8/Pz8eabb24pbnJycocyAgAAAAAAAAAAAAAA2qE70x3dme4tx6WPpxM5fltXsPjggw8in89HoVCI5557LnK5XPT19UUmk1k3plQqRa1W270kAQAAAAAAAAAAAACAHXf2lbMtxY3MjiRy/LYWWGSz2bhz505ERDQajZibm4uurq52pgQAAAAAAAAAAAAAAOxDbS2w6OnpiYiIc+fORTqd3lTM3NxcvP322zuYFQAAAAAAAAAAAAAA0G61D2oxOzEbH5Y+jMXKYhzqORTpTDpOjJ6Io186mvjx2lpgkclk4uWXX46vfe1rW4o7cuTIDmUEAAAAAAAAAAAAAAC0W/FSMX545YfRaDTWtJUmS9Gf74+hyaF44nNPJHbMthdYZDKZLccdP358B7IBAAAgIuLq0NV2pxARES9Mv9DuFAAAAAAAAAAA2GX1O/WYHJiMxcpiPPX8U3HsuWORSqfut9XqsfjRYizMLcR7b7wX5WI5fv/m78cTfyOZIou2Fli88sorLcXNzs4mnAkAAAAAAAAAAAAAANBuhXwhMrlMnH3l7Ib71e/UY+biTPwvX/5f4sL1C4kcu60FFs384he/iEqlEl/84hd37Bi1Wi0uX74cERFHjhyJ+fn5GBwcjOHh4W31OTY2FhERlUolIiIGBwdjZGRkS/2Mjo7G2NhYSyt7AAAAAAAAAAAAAABAp5p7dS66M90PLa6IiEg9mYqhiaH43te/F6U/K0X2a9ltH//AtntIwAcffBDf+MY34rHHHovu7u74jd/4jVXtN2/ejHPnzsWf/dmfbftYtVotBgYG4vz58zE+Ph4XL16MiYmJmJmZWSmQ2KpSqRQDAwORz+djYmIiCoXCyp+t9FkqlWJycjJqtVpLeQAAAAAAAAAAAAAAQKe6Wby5qeKKB5195WzcKNxI5PhtL7B4++23I5PJxMTERBw/fjzOnDkTx48fX7XP8ePH44033ojjx4/Hd77znW0dL5/Px/DwcGSzq6tTJiYmYnJyMorFYst95nK5NX1euXJl0322WuABAAAAAAAAAAAAAACdLtWdaikufTydyPHbWmBx8+bNGB4ejpGRkZifn4+f/exn8f3vfz+ef/75pvsvF1+8/fbbLR2vXC5HsViM0dHRpu3nzp2L8fHxLfV55cqVKJfLcenSpTVtmUwmcrncpvqcnJyMfD6/pWMDAAAAAAAAAAAAAMAjo2uX4z6lrQUWL7/8coyPj8crr7yyatWKrq71/+uef/75KBQKLR1vYmIiIu4XPjTT19cXxWIxarXapvucmZmJiIh0Ot20PZvNPnQFi3K5vGFeAAAAAAAAAAAAAADwqKtX6i3F1cq1RI7f1gKLarUaFy5c2HJco9Fo6XilUmndQoiITwocZmdnN93n7Ozshn329fWtHHs9ExMTMTIysuljAgAAAAAAAAAAAADAoyZ9PB3v//n7W4r54Xd+GEefPZrI8dtaYNHqig3VarWluHK5HD09Peu2LxdKLK8osRkb9feg9Yo2pqamYnR0dNPHAwAAAAAAAAAAAACAR1HuW7mY+ebMposs5l6di3cvvxu5b+USOf7BRHpp0XYKJVpRqVQ2LOpYLpao1Wqb7jObzcbU1NS67fPz8+v2WavVolwux/Dw8KaPt2zx3mL88t4vV14/fuDxePyxx7fcz37X6GpEIxrR6GrEUiy1O51tu3fvXtuPv7S01PY8HhXGM1nGM1nGM1nGM1nGM1lLS50/R+pE5vv3+Xt8n/c1mnFdsB7XBs24LmjGXL89Pv71x/HEvSdWXu/XuX6nedR+S9hvnL/O5vx1Nuevszl/navR1Wh3CvuS7/WTkdR7j+9A7rt3796eeS/fC+dkqWt7Y+D6TJbvLJNlPJNlPJNlPJO1n77bz7+Rj8kTk9H39/qif7g/jp04Fql0KiIi6rV6LFYWY35mPt6fej+q5WpcmL2Q2LHbWmDR3d0d/+bf/Jv4u3/372465tKlS3HmzJmWjrfZwomPPvpo032Ojo7G1NRUlEqlyGaza9qLxeK6fV6+fDnGx8c3fawHjf3bsVWvfzf7u/F7J36vpb72s0Y0YvFvLEYlKtEVXe1OZ9vefffdth5/aWkpfv7zn0dExIEDbV0g55FgPJNlPJNlPJNlPJNlPJO1lbkxyTHfv6/d89u9wvsazbguWI9rg2ZcFzTzsLn+QmkhZidmo16px0JpIVLpVAyMDsTAyMC6MfVaPd65/E5ERBw+cjgq85XoG7z/w0e7Y/YKc/3O9Kj9lrDfOH+dzfnrbM5fZ3P+OtdfLf5Vu1PYl8z1k5HUe4/fF+5bWlraM+/le+GcVHor24p3fSbLd5bJMp7JMp7JMp7J2k/38fRme2NkdiSmL0zH9Mh0dHWt/fe30WhEd6Y7/rvv/3fR+2xvYsdua4HFxYsX4+/9vb8Xr7766qaKLL7zne/E1NRU/Pt//+93IbvNyeVykcvl4vLly1EoFFa1FYvFyOVyUSqV4siRI2vaBgcHWz7u+N8Zj+5U98rrxw88Ho8vqHzfqkZXIypRiZ4Pe6Kr0flfCp0+fbqtx1+uMDx58mQcPNjWt5dHgvFMlvFMlvFMlvFMlvFM1vKHXHaX+f597Z7f7hXe12jGdcF6XBs047qgmY3m+nOTcxERMTQxtLKtXCxHIV+Ia+PXYmRuZOUpUcvqtXpMDkxGvpCP3uwnP2JMj07Hreu3YnB87ffhuxWzl5jrd6ZH7beE/cb562zOX2dz/jqb89fBFtudwP5krp+MpN57/L5w37179+Knr/90T7yX74Vzcuu7t7YV7/pMlu8sk2U8k2U8k2U8k7Xf7uPpzfbGyNxIzE3OxdzEXCz85cJKW3emOwZGB+LUN08lfty2XqmZTCZeeeWVOHPmTJw4cSLOnz8fzz77bNRqtfjggw+iVqtFpVKJUqkUExMTUS6XY25uruXjpdPpTa1i8eliiIeZmZmJ0dHRGBsbi0uXLkXEJytX9PX1rRz70zGtrl4REXHo4KH47MHPrt5olcctW4ql6Iqu6Gp0xYFG51fG7YV/fA4cOBAHDx7cE7k8Coxnsoxnsoxnsoxnsoxncjb79IDp0el4Ov90ZHKZDffzRNvNMd+/z9/hT3hfoxnXBetxbdCM64JPW2+uXy1Xo16rx6mLq3+QyOQy8dW3vhqTA5NRyBfixZkXV7UX8oV4avipVUUPEfeLNMa7x6NvsG/N54XditlLDj922Fy/Az1qvyXsN85fZ3P+Opvz19mcv87V7puo9yvf6ycjqfce3398Yq+8l++Fc7LdMXB9Js93lskynskynskynsnZr6uADIxsvMJ20tp+peZyuXjjjTdiZGQkLl68uLJ9cnJy5f83Go3IZDIxOzsbX/rSl1o+Vk9Pz4btlcr9ZcA+XQyxGRMTE1Gr1VYKK3K5XKTT6bhy5UpERJw4cWJl3ytXrqwUYkCSrg5dbevxl7qW4gt/8IW25gAA7J5quRrlYvl+hXhpIZ7OP73h/p5oCwAAe9/sxGz89qXfbtrWm+2NTC4T5WI5quVqdGfuP511+bPB2YmzTeP6z/XHtfFrqwofdisGAAAAAABgK/ZEGcvw8HBUKpW4fPlyfOlLX4pGo7Hy5/jx4zE+Ph4/+9nP4tlnn93WcTKZzEoRRTPLq1tkMq39+JJOp2N4eDiGh4dXijSuX78eERHZbDYiIsrlcqTT6ZaKOAAAYK+Ym5yL4tj/XVw8nttUzEZPmi1NlqJcLLctBgAAuO9m8Wb80+P/NOq1etP2o9mjERGxUPpkGe7ZidmIiJWCi0/r6euJcrG8qs/digEAAAAAAPaH9998P5F+2r6CxYMuXry4ahWLpGWz2ZUVJpopl+/faJXLbe4Gsc0olUoxMjKy6nWhUIhCobDu8S9cuLCy2sbMzExiuQAAQFIeXHrvwRur1uOJtgAA0BkO9RyKhdJCVMvVNUXL6/mw9GGk0ql125cLIm7P3l6Zi+9WDAAAAAAAsD9MX5iOp77y1Lb72VMFFjvt/PnzceXKlSiVSisrSjzo+vXrWy6uKJVKcebMmSgUCmtiS6VSlMvlGBsbW9m2vMJFM1NTU5HP5+PVV19tmh8AAHSqzTxptjRZinqtvnLD1G7FAAAAn3hx5sWolqvrzqlr5VpExKrii2q5God6Dq3b5/Lcu1qu7noMAAAAAACw93z44w/j6JeOrtu2FYuVxaiWq4mtcN2RBRZvvvlmfOUrX9lyXDabjVwuF6+//nrTAoapqammK0bUarW4fPlyDA4OrimiWF51opkLFy7E+Ph4ZDKelAUAwP7mibYAANBe9+7ei1/f/fXK61/98lfr7rtecUVExI2pG9Gb7V21z2JlccOY5aKIB3/Y2K0YAAAAAABgbym+XIwffvuH0TvQGxd+dGFN+z//8j+Pu3futiGz+zqywOLChQstFVhERBQKhRgYGIjz58+vKrIYHR2NixcvNl3BYnJyMq5cuRKTk5NRra5+8lUul1v5s6xWq8WFCxcil8vFxYsXN53bcrFGuVy2ggUAAI8UT7QFAID2evfyu/GDP/rByus7B+5suY9rV65FRMTQq0Ortm+2oOHjjz7e9RgAAAAAAGBvqZar0Wg0ol5t/r3/8r0/AyMD918fWf9eoIiIxY8WozpfjffffD+R/Ha8wOLHP/5xfOlLX1q3bSsqlUqUy+Wo1Wot55NOp2Nubi7GxsYinU7HkSNHYn5+PgYHB2N4eLhpTC6Xi3Q6HefOnWva3/j4eOTz+YiIldzGxsaaFms0Mzo6GuVyOWZnZyPifgHJxMREZLPZGB8fb+G/EgAAWrOVp9puhSfaAgBAe52+dDp+6w9+a+X1z3/+8/jjv/XHm45fKC1EcawY+UI+erO9O5EiAAAAAACwDwy9OhSZwUxkcpmm7d2Z7jj98unIfm1rCxZcOXIlifR2tsDi5Zdfjm9/+9sxMDAQP/rRj9a0f/nLX447d7b+lKztSqfTMTExsen9s9nsmpUrHpTJZKJQKLScz1ZyAQCAnZTEU22b8URbAABor4NPHIyDT3zyk8Djn318S/GFfCHOTpyN/uH+NW2pdGpTc/HDRw7vegwAAAAAALC3pJ5MxcCFgXXbM4OZOHbi2Jb7TR9PbyOrT+xogUW5XI5Go7FucUJPT09ERIyMjERExJEjRzbs76OPPor5+fl48803k00UAACIiO0/1RYAAHj0FPKFGBgdWFmK+9OWV4pbz2JlMSLuF0jsdgwAAAAAANBZTn3zVEtxI7MjiRx/RwssXn311RgcHIxcLte0PZPJxMsvvxxf+9rXttTvwwoxAACA1mz3qbbr8URbAADoTDNjM3HsuWNx6uL6P2Z0Z7rj9uztdduX5+jdme5djwEAAAAAANiKHS2wePLJJ+PChQvrtg8ODsaJEye23O/x48e3kxYAALDLPNEWAAA6z9zkXPT09TRduaJeq6/Mq49mj0a5WF63n2r5/irXmVxmZdtuxQAAAAAAAI+W8lvlKM+UI7oievp64tiJY3H0S0cT6/9AYj214Jvf/GZ86Utf2nLc7Oxs8skAAAA7pjvTvVLc0Mx6T6fdjRgAAGCtG1M3IiKaFldUy9VVhQ7PnH8mIiIWSgtN+7p9/faaoofdigEAAAAAADrLlSNXNmzPnMlE7lu5OP3y6Th+5njcun4rvveN78XdX9xN5PhtLbAAAAD2h6PZoyvFDc2s93Ta3YgBAABWWygtxGJlsWlxRUREuViO3mzvyuvebG9kcpn46es/bbr/jakbcWrs1KptuxUDAAAAAAB0lkajsan9Uk+movt4dwxcGIjct3IxMzaTyPH3RIHFv/yX/zJ+53d+J37zN38zPvjggzXtN2/ejHPnzsV3vvOd3U8OAADYNk+0BQCAzlAtV6OQL8TtudsxPTq95k8hX4jiWHHNqnD5Qj7en3p/zVx8enQ6Tl482XQevlsxAAAAAABA5+jq6tpyTOrJVGLHP5hYTy26dOlSnDhxIq5fvx537tyJUqkUX/ziF1ftc/z48XjjjTfirbfeikuXLsXly5fbkywAANCSB580++CTbpfdmLoRL8682JYYAADgE68NvhbVcjWqk9V19/l0cUVERCqdipG5kZgZm4lUOhWHjxyOynwl+gb7on+4v2k/uxUDAAAAAAA82up36rEw2/yBrFvV1gKLt99+OzKZTDz//PPRaDTi5s2b8ZWvfGXd/c+cORMREW+++eaG+wEAALunWr5/41W9Vt9wv3whH5MDk/HM+WdWFT887Om0uxEDAADc99L8Sy3HptKpGJoY2pMxAAAAAADA3lH7oNZ0e6PRuN/+H2oRjY37qNfqsVhZjIXSQrx7+d3oP5fMg5jaWmBRKBTiT//0TyMiYnh4eFMxZ86ciW984xsKLAAAoI1uTN2IuYm5iIi4PXs7IiKmL0yvbOvP98fAyMCqGE+0BQAAAAAAYKddHbra7hT2hKWupYi1C74DAOwJt+dux+3rt6Narka5WI67d+6uav+TzJ9suq9GoxGZXCbO/unZRHJra4HFcoUJAADQWfqH+1sqVvBEWwAAAAAAAAAA2N/6n++P/uc/ufdoobQQxbFilN8qR1dXVzz1/FOb6qc70x2ZwUxkzmQSy62tBRbVarWluHK5nHAmAAAAAAAAAAAAAADAbuvN9saLMy/G9Oh0vD/1fuTfyLctlwNtO3JEzM/Pbznmzp078dFHH+1ANgAAAAAAAAAAAAAAQDsMTQxF+ni6rTm0tcDi3Llzcf78+S3H/IN/8A92KCMAAAAAAAAAAAAAAKAdTl863dbjt7XA4uLFizE3Nxf/4B/8g/irv/qrDff98Y9/HM8991yUy+X4wz/8w13KEAAAAAAAAAAAAAAA2A39z/e39fgH23r0iPj+978fv/EbvxGFQiEGBwcjl8tFOp2Onp6eqFQqMT8/H8ViMUqlUjQajSiVSu1OGQAAAAAAAAAAANiEq0NX250CAPCIq9+pR+nVUpz8w5Pb7qvtBRaZTCYqlUrk8/n4/ve/HzMzM2v2aTQakcvlYmJiIo4fP96GLAEAAAAAAAAAAAAAgL2mWq7Ge6+/92gUWEREpNPpmJmZibfeeisKhULMzs5GrVaLdDodmUwmRkdH48yZM+1OEwBgxywuLsZf//Vfx8GDW5+e/af/9J/i61//eszNzcXAwEC88sor8fnPf76lPD7zmc+0FAcAAAAAAAAAAADbdfPtm1uOuTZ+Leq1eiLH3xMFFsvOnDmjkAIA2Jd+7/d+L5F+ZmZmoq+vr+X4RqORSB4AAAAAAAAAAACwVW8MvxF379zdUkyj0YhD3YcSOf6eKrAAAAAAAAAAAAAAAAD2p0M99wslnj73dKTSqab71Gv1qJarcXv2dmRymTj23LHEjt+RBRbf+MY34k//9E/bnQYAQGL+1b/6V3Hy5Mk4eHDr07O///f/frz99tvx61//Oh577LH48pe/HH/+53++A1kCAAAAAAAAAADAzunOdMfpl09H9mvZTe1/7dvX4lD3oU3v/zAdWWDxxhtvKLAAAB4phw4dis985jMtFVi89tpr8Q//4T+M69evx3PPPRf/7J/9s/jMZz6zA1kCAAAAAADQ6arlarw7/m5ERNQr9ajX6pEZzMSpi6fWjanX6vHO5XciIuLwkcNRma9E32Bf9A/3JxoDAADQnemO7kz3pvc/9c1TceNf3oibb9+M418+vu3j73iBxY9//OP40pe+tGb7nTt34q233tpyf9evX49arbb9xAAAHhGf//zn4y/+4i/anQYAAAAAAAB73I2pG3Hr+q0YmhhatX1yYDLmJubipfmX1sTUa/WYHJiMfCEfvdnele3To9Nx6/qtGBwfTCQGAAAgIuLsK2e3HNP/fH8ULxX3doHFW2+9FaOjo3Hz5s3o6+uL/+P/+D9Wtc/Ozsbw8HB0dXVtqd9Go7HlGAAAAAAAAAAA2M/qtXq89/p7kS/k17QNvToUkwOTMT06vab4opAvxFPDT60qlIiIGJoYivHu8egb7ItMLrPtGAAAgL1gRwos7ty5ExMTEzExMRGDg4Px5JNPrtmnp6cnIiKef/75eO655yKdTj+031qtFj/72c/iz/7sz5JOGQAAAAAAAAAAHlm3Z2/HjakbMTM2s2YFieVCiJvFm6u2V8vVKBfLcXai+RNk+8/1x7Xxa6uKJVqJAQAA2K5auZZIPztSYPHWW2/FpUuX4tlnn41qtdq0wCKTyURXV1e88cYbW+6/UCgkkSYAAAAAAAAAAOwLh3oORSqdisNHDq+7TyqdWvV6dmI2IiK6M91N9+/p64nSZCnqtfpKbCsxAAAA21G/U4/F6mIife1IgcX169fjK1/5SkRE0+KK5e3rtT1MLpdrOTcAAAAAAAAAANhverO9MVYda9q2UFqIiIjjueOrtn9Y+nDDIojlIorbs7dXVqRoJQYAAGDZzbdvPnyn/1u9Vo9quRpzE3MxMDqQyPF3pMCip6cnPvjgg/jiF7+44X5dXV0t9d/KqhcAAAAAAAAAAMBaxbFidGe6Y3B8cNX2arkah3oOrRu3XEhRLVe3FQMAALDsjeE34u6du5vev9FoRCaXiZN/eDKR4+9IgUUul4uJiYm4fPnyTnQfv/jFL+Jzn/vcjvQNAAAAAAAAAACdYOnXS9FYanzy+t7SluKr5Wq8O/5upDPpeHHmxTXti5XFlRUnmlkupKjX6tuKAQAAWLb8meHpc09vuDpeRMShI4eiN9sbmTPJrY63IwUWzz77bOTz+fj6178e/81/898k3v/x48fjo48+SrxfAAAAAAAAAADoFJWfVaLy7ysrr+/EnU3F3Zi6Ebeu34pauRbpTDr6Bvua7rfZIoiPP/p4WzEAAEAylouoIyLqlXrUa/XIDGbi1MVT68bUa/V45/I7ERFx+MjhqMxXom+wL/qH+xON2azuTHecfvl0ZL+W3XZfrdiRAouIiFdeeSUymUxMTk7GP/pH/yjRvhuNxsN3AgAAAAAAAACAR1jPb/SsWi2iUq9E/ODhcf3D/atufHpt8LWYm5iLoVeHHvqEWAAAYG9aLqQemhhatX1yYDLmJubipfmX1sTUa/WYHJiMfCEfvdnele3To9Nx6/qtGBwfTCRmK7oz3RuuirfTdqzAIpfLxfPPPx8jIyMxMjIS2Ww2MpnVS2/UarX4nd/5nU33WalUolwux507m6u2BwAAAAAAAACAR9WBxw5EPPbA63sHWuonX8jHePd41Gv1eHHmxZXtqXRqUytSHD5yeFsxAADA9tRr9Xjv9fciX8ivaRt6dSgmByZjenR6TfFFIV+Ip4afWlUoERExNDEU493j0TfYF5lcZtsxW3H2lbMtxyZhxwosvv71r0e5XF5ZbWJubi7m5ubW7DczM7Plvru6uradHwAAAAAAAAAAcL8oon+4P25M3YhysbxyM9ShnkMbxi1WFlfil7USAwAAbM/t2dtxY+pGzIzNrFlBYrkQ4mbx5qrt1XI1ysVynJ1oXtDQf64/ro1fW1Us0UpMp2mtbP0h/vIv/zLS6XS89dZbkcvlYnx8PJaWltb8SafTTbdv9Gd2dnYnUgYAAAAAAAAAgEdWvVaParm6bns6k46IiPmZ+ZVt3ZnulYKI9fpc3m87MQAAwPYc6jkUqXRqw5XiPl3kPDtx/7789ebmPX09US6WV61Q10pMEmof1OL9N9+P0p+V4ubbN6P2QS3R/h+0IytYvPXWW/H1r389nnzyyfj+97+/7n6trESRzWbjySef3E56AAAAAAAAAACwr4x3j0dExFh1rOnqEcs3Yj14I9TR7NEoF8vr9rlcsPHg02lbiQEAALanN9sbY9Wxpm0LpYWIiDieO75q+4elDzdcWW65iOL27O2V+XsrMdtx8+2b8b3R7zUtFu8d6I2hV4fi6P/j6LaP86AdWcGi0WhET0/PTnQdERGFQmHH+gYAAAAAAAAAgEdNKp2K7kz3ujdDVeYrERFxbODYyrZnzj8TEZ/ckPVpt6+vvWmqlRgAAGCte3fvxd1f3F3586tf/qqlfopjxejOdMfg+OCq7dVyNQ71HFo3bvmzw4PFDa3EtGrq/FS8NvhaVOYr0Wg0In08Henj6XjiySei0WjE7dnbMZmdjLf+8VvbPtaDdmQFi0wmE7Ozs/HlL395J7qPM2fO7Ei/AAAAAAAAAADwKMqOZOPE6Il122+8cSNS6VQ8fe7plW292d7I5DLx09d/Gr3Z3rUxUzfixZkXV21rJQYAAFjr3cvvxg/+6Acrr+8cuLOl+Gq5Gu+OvxvpTLrpHHyxsriy4kQzy4UUD65y10pMK4ovF2N+Zj7OfOtM9A/3R/fxtcdc+MuF+On/9tN491vvxqEjh+Lk/+fkto65bEdWsMjlcjE+Pr4TXUdExHe+850d6xsAAAAAAAAAAB41g+OD8e74u1Eulte0FfKFiIj46ltfXbPCRb6Qj/en3l+zIsX06HScvHiy6WoUrcQAAACrnb50Ol6+8/LKn2/8u29sKu7G1I2YGZuJ4ljxfhF1/umm+222COLjjz7eVsxWld8qR7lYjt+/+ftx6punmhZXRET0Ptsbg+OD8dLPXorZP52N2n+otXzMB+3IChZPPvlkHD9+PP7xP/7H8U/+yT9JvP/Lly/HH/7hHybeLwAAAAAAAAAAPKqGJobixtSNKOQLkepJRb1Sj3qtHkezR+P3b/7+muKKiIhUOhUjcyMxMzYTqXQqDh85HJX5SvQN9kX/cH/T47QSAwAArHbwiYNx8IlPbvd//LOPbyquf7h/1bz7tcHXYm5iLoZeHWo6599rSpOl+8XfT24u1+5Md+TfyEfxYjGGXx/e9vF3pMAiImJ8fDyOHz8exWIxRkdH48yZM9HT07PS3mg0IiLiP/yH/7Dy/zdjbm4uarVa0ukCAAAAAAAAAMAj79M3W21GKp2KoYmhHY8BAACSly/kY7x7POq1erw48+LK9lQ6takVKQ4fObytmK1qNBqbLq5Y1pvt3VJNwkZ2rMDiySefjHK5HAMDA3HhwoXo6upqul8mY8k/AAAAAAAAAAAAAABIWiqdiv7h/rgxdSPKxXJkcvfv3z/Uc2jDuMXK4kr8slZitqo7072rcZ+2YwUWERHpdDrm5+djamoqZmdnV6080Wg04tVXX42RkZEt9Xn9+vX48Y9/nGyiAAAAAAAAAAAAAADQgeq1eixWFtctMkhn0hERMT8zv1Jg0Z3pjtuztzfsc3m/Za3EbFnzdR12Lu5TdrTAYtnw8HAMDw+v2T41NRWvvPLKlvs7cuRIEmkBAAAAAAAAAAAAAEBHG+8ej4iIsepY09UjDh85HBGfFEBERBzNHo1ysbxun9VyNSJipSCj1Zit6s50R+2DWqS/mN50zN1f3H3o6hqbdSCRXlrUaDRaiuvuTmb5DgAAAAAAAAAAAAAA6GSpdCq6M91NiysiIirzlYiIODZwbGXbM+efiYiIhdJC05jb12+vKZRoJWarBi4MxOwrs3H3F3c3HTNzcSZOjJ7Y1nGX7coKFut59dVXW4r72c9+lnAmAAAAAAAAAAAAAADQebIj2Q0LDG68cSNS6VQ8fe7plW292d7I5DLx09d/Gr3Z3rUxUzfixZkXV21rJeZBtQ9qm/iviXj6/NNRyBdi4OsD0X18/cUZquVqvPf6e5Ebz8UTn3tiU30/TFsLLJ5//vl2Hh4AAAAAAAAAAAAAADra4PhgTI9Ox9P5p9esIFHIFyIi4qtvfXXNChf5Qj4mBybjmfPPrCqYmB6djpMXTzZdjaKVmGUT2Ym4e2dzK1M0Go0oF8sP3S+VTsXsxGz89qXfTqTIoq0FFut5+eWX4+bNm5HJZKKvry8ymUycOHEiPve5z7U7NQAAAAAAAAAAAAAA2FOGJobixtSNKOQLkepJRb1Sj3qtHkezR+P3b/7+muKKiPvFCSNzIzEzNhOpdCoOHzkclflK9A32Rf9wf9PjtBKz7FDPoajX6tE/3B+Heg4l8t8dEVGv1uO9N96L7Ney2+5rxwosfvzjH0elUolyuRzz8/NRLpejVqtFOp2OTCYTly9fXjf2W9/6VkRE3Lx5M0qlUnzrW9+KYrEYXV1dK0UX//pf/+udSh0AAAAAAAAAAAAAADpK/3D/Q4scPi2VTsXQxNCOx0REdGe64/TLpxMphNgpO1Zg8eUvfznu3LkTjUYj8vl8vPzyy/Hss89uqY/jx4/H8ePH4/nnn49yuRz5fD7+8i//Msrlhy/1AQAAAAAAAAAAAAAA7A3dme7oznS3O40N7ViBxbK5ubktF1Y0k8lkYm5uLrq7u+MXv/hFApkBAAAAAAAAAAAAAAC74ewrZ9udwkMd2MnOR0ZGEimueND4+Hii/QEAAAAAAAAAAAAAAOxogUU+n0+8z8HBwcT7BAAAAAAAAAAAAAAAOtP7b76fSD8HE+llHSdOnGi6/YMPPnho7Be/+MWm248fPx6NRmMbWQEAAAAAAAAAAAAAAI+K6QvT8dRXntp2PztWYNHV1RWf+9znmrYVCoX46KOPolgsxl/+5V+ubM9kMjE8PBxHjhyJkZGRdePT6fROpAwAAAAAAAAAAAAAAOygD3/8YRz90tF127ZisbIY1XI16rV6Eqnt7AoW6/nmN7+58v/Hxsbi29/+duTz+Xj99dc3Fd/V1bVTqQEAAAAAAAAAAAAAADug+HIxfvjtH0bvQG9c+NGFNe3//Mv/PO7euduGzO5rS4HFg8bHx+Pb3/52jI+PtzsVAAAAAAAAAAAAAABgh1TL1Wg0GlGvNl9x4lDPoYiIGBgZuP/6yKEN+1v8aDGq89V4/833E8mv7QUWERHpdDq++MUvtjsNAABgC25M3Yj+4f52pwEAAOyg6dHpeDr/dGRymXX3mZucixuFGzEwOhCZXCZS6VRUy9VYKC3Ee6+/F6cvnY7ebO+auHqtHu9cficiIg4fORyV+Ur0DfZt+DmjlRgAAAAAAGDvGHp1KDKDmXV/e+jOdMfpl09H9mvZLfV75ciVJNLbGwUWXV1d7U4BAADYgnqtHoV8Ic5OnI2nzz0dqXSq3SkBAAAJqZarUS6WY25iLhZKC/F0/ukN96/X6lEulqNcLK/ankqnIl/Ir1tcMTkwuaZ9enQ6bl2/FYPjg4nEAAAAAAAAe0vqyVQMXBhYtz0zmIljJ45tud/08fQ2svrEniiw2G21Wi0uX74cERFHjhyJ+fn5GBwcjOHh4W31OTY2FhERlUolIiIGBwdjZGRk3ZhSqRQTExNRqVSiVCpFOp2O0dHRDWMAAGAvqJarERHxvdHvxfdGv7fhvvlCfuVpsrv5ZFsAAGDr5ibnojxTjsxgJnLjuXht8LVNxZ2dOBuV+UrUyrVI9aTi2MCxlaW7mynkC/HU8FNr5v9DE0Mx3j0efYN9a55c1UoMAAAAAADQWU5981RLcSOzydyD35EFFrVabVuxAwMDUSgUIpv9ZNmQ0dHRuH79eoyPj2+5z1KpFPl8PiYmJiKXy61sHxwcjPn5+aZ9Tk5ORkTExMTEyrZisRj5fD7Gx8djbm4u0un0lnMBAIDdUC1XozvTHb3Z3kj1NF+9ol6pR7VcXVUEsVtPtgUAAFozMDKwUhixUFrYdNxWVrZbXiHj7MTZpu395/rj2vi1VcUSrcQAAAAAAACd6f0334/ebG+kv5je9WPvWIFFo9GIv/k3/+amigRqtVo899xzm+p3O8UVERH5fD6Gh4dXFVdE3C906O7ujsHBwVVFElvp89NxExMT0dfXt6bPcrkctVotLl68uGr/XC4Xb731VgwMDEQ+n4+ZmZkt/tcBAMDuuHX9Vrw482J0Z7rX3WdmbCZy42vn1rvxZFsAAGDvmp2YjYhY9/NET19PlCZLUa/VV4o2WokBAAAAAAA6z/e+/r0ovVqKVHcqLv7niw8PSNiOrmAxPz+/6X3n5uY2vW9XV1cr6US5XI5isbhq1YgHnTt3LsbHx7dUYHHlypUol8tx6dKlNW2ZTCZyudyaPicmJpruHxGRzWYjl8tFsViMcrkcmYwbxQAA2Js2Kq5YKC1ET19P0312+sm2AADA3vZh6cMNPxMsf464PXt7Za7fSgwAAAAAANB5FiuLcfzM8TUPY90tO1pgsVwscOTIkUT6++ijj2Jubi7efvvtluKXCyvWK1ro6+uLycnJqNVqm1p5IyJWVplYb/9sNhtXrlxZta1YLMbk5GTcvHmzaVw2m41isRilUkmBBQAAe9KJ0RMbts9OzMbQxNC2j+MptQAA0FkWSgtxe/Z2HDtxbN0fPqrlahzqObRuH8tz+2q5uq0YAAAAAACg83RnuiP3rc0vmJC0HSuw6Orqirfffjs+97nPJd73Y4891lJcqVTasHBiuZhhdnZ206tYzM7ObthnX1/fyrGz2WxERPT09ESpVIpyubyyDQAAOslGq1fMjM3E4PhgIsfxlFoAAEjGvbv34td3f73y+le//FWi/ZeL5aiWq5HJZWJgZCAWSgvx2uBrcWrs1Jq5+mJlccPPFMuFFPVafVsxAAAAAMDmXR262u4U4oXpF9qdArAHHDpyKGof1CL9xfSW4q4cuRIXP7q47ePvWIFFo9HYkeKKiIgnn3yypbhyuRw9PT3rti8XSpTL5U332dPTE5VK5aH7zc7OrhRTzMzMRLlcXnd1iuXjK74AAGC3bfemq4XSQvT09WxqNYmderItAACw1ruX340f/NEPVl7fOXAnsb6XCx9OXTy1sq032xv5Qj7Gu8djZG5k1Zx/s0UQH3/08bZiAAAAAACAznPqm6eicK4QJ75+Io5/+fim4xqNRiLH37ECi7feemunum6570qlsm5RQ0SsFF/UarVN95nNZmNqamrd9vn5+aZ9bpTH1NRUZLPZDfdZvLcYv7z3y5XXjx94PB5/7PFNZs2yRlcjGtGIRlcjlmKp3el0vEZXI5aWluLevXvtTuWRcO/ePeOZIOOZLOOZLOOZLOO5Pf/75f893vn/vrPyeqs3Xb17+d3IF/Ib7rPTT7Z9FJjv3+fv8X3e12jGdcF6XBs047ogIuJvf/Nvx3MvPbfy+j/+x/8Yf/ylP06k7/7h/qbbU+lU9A/3RyFfiJfmX0rkWJ3u419/HE/ce2Ll9X6d63cavyV0Nuevszl/nc3562zOX+dqdCVzQxFb43v9ZHjvSZbxTFZS4+k7uvt8Z5mspMZzqav97xV74ZpwfSbLeCZraan9f093S/6NfPzwOz+MuYm5OPbc/Ye3Huo5tO5DX+dn5uPunbuJHHvHCiyeffbZneq65b43Wzjx0UcfbbrP0dHRmJqailKp1HTFiWKxuKU+r1y5EhERr7766ob7jf3bsVWvfzf7u/F7J35vU8fgE41oxOLfWIxKVKIrutqdTsdrRCPu/fz+P4IHDhxoczadb2lpKX7+859HhPFMgvFMlvFMlvFMlvHcptMRp/5/nzx1tvJRJeL/vbnQG1M3Ip1Jb7jPbjzZ9lFgvn/fu+++2+4U9gTvazTjumA9rg2acV3QzFa+B9+OY88dixtTN6Jarq58HkilU5ua6x8+cnjl/7cSsxeZ63cmvyV0Nuevszl/nc3562zOX+f6q8W/ancK+5K5fjK89yTLeCYrqfH0+9d9vrNMVlLjWemtJJVSy/bC3xHXZ7KMZ7J267v9dvujA38UXV33/71tNBpxY+rGrh5/xwos9otcLhe5XC4uX74chUJhVVuxWIxcLhelUimOHDny0L5KpVKMjY1FoVBoWqzxoPG/Mx7dqU+e5Pv4gcfj8QWV71vV6GpEJSrR82FPdDV8kNiuRlcjjv3Xx+LkyZNx8KC3l+1artg0nskwnskynskynskynsla/pC7Ge9efjeGXh3acB9Ptt0c8/37Tp8+3e4U9gTvazTjumA9rg2acV3QzFbm+tux/CSphdLCSoHF8kp061msLK6KbTVmLzLX70x+S+hszl9nc/46m/PX2Zy/DrbY7gT2J3P9ZHjvSZbxTFZS4+n3r/t8Z5mspMbz1ndvJZVSy7bzcPf/8//8P+O//+//+5ibm4uBgYH4n//n/zn+q//qv9pyP67PZBnPZO3Wd/vt1p3pjmq5Gv3D/Q/9fWDZ7eu348Mff5jI8ffVlZpOpze1isVmiiEeNDMzE6OjozE2NhaXLl2KiE9Wrujr61s59sPk8/mYmJiI4eHhh+576OCh+OzBz67eaJXHLVuKpeiKruhqdMWBhsq47VqKpThw4EAcPHjQP4QJMZ7JMp7JMp7JMp7JMp7J2ezTA6rlaiyUFlatPrFVST3Z9lFgvn+fv8Of8L5GM64L1uPaoBnXBZ+W1JPCpken42bx5pYKpbsz3XF79va67cufAZY/F7QasxcdfuywuX4H8ltCZ3P+Opvz19mcv87m/HUuN1G3h+/1k+G9J1nGM1lJjafv5z7hO8tkJTGee+G9YjP32m5GsViM//a//W9bjv83/+bfuD4T5O97cvbLKiDdme44/fLpyH5t4wULPu3KkSuJHH9fXak9PT0btlcq95c3auUNemJiImq12kphRS6Xi3Q6HVeu3D9RJ06c2DA+n8/H6OhojIyMbPnYAADQbrMTs9u+kSmpJ9sCAAC7Z2F2YWVe3sxy4cODxdhHs0ejXCyvG1MtVyMiIpPLbCsGAAAAAADoPN2Z7pbuQ0p1J3P/0P4oY/m/ZTKZlSKKZpZXt8hkWvsBJp1Ox/DwcAwPD68UaVy/fj0iIrLZ9StoxsbG4rnnnouLFy+2dFwAAGi3m8WbD/1gMz06HX/S9ydb6rc7072pm7X2+lNqAQDgUXU8dzzGqmPrtt++fjtS6dSqOfsz55+JiPvF1evFfLpQopUYAAAAAKCz/PKXv2z5z+DgYDz22GMREfHYY4/F4OBgS/0s30sMtM/ZV87G8S8f33LcSz/b/GrbG9lXBRbZbHbDN75y+f7Tr3K5XGLHLJVKG65KMTk5GX19fU2LK7xJAwDQKRZKCw9dRaLVJ9sub2/GU2oBAKC9njn/TMxNzjVtq5arcWPqRgy9OrRqe2+2NzK5TPz09Z82jbsxdSNOjZ3adgwAAAAA0Fk+85nPtPzntddei8HBwThy5EgMDg7Ga6+91nJfwP52sN0J7Kbz58/HlStXolQqNV1R4vr161suriiVSnHmzJkoFAprYkulUpTL5Rgba/70rqmpqYiIpgUY5XI5SqVSDA8PbykfaLefXP1J3PrurTjQaG/91gvTL7T1+ACwnyw/QTbVs3GBxfHc8RgZX7/4eL0n2/7wyg9jobSwqvDiwRjFFQAAsDOWC5o3KnruzfZGuViOa1euxamLnxQ4VMvVmByYjJMXT0b/cP+auHwhH5MDk/HM+WdWzfWnR6fj5MWTTef5rcQAAAAAAPvD5z//+fiLv/iLdqcB7ILyW+Uoz5QjuiJ6+nri2IljcfRLRxPrf18VWGSz2cjlcvH66683LbCYmpqKmZmZNdtrtVpcvnw5BgcH1xRRLK960cyFCxdifHw8Mpm1P+qUSqWoVCrrrm5RLBYTXUkDAAB2ykarUjxo+cm2AyMDa9qWn2ybL+RXbX/wKbXNCixuTN2IF2debC1xAABgjRtTN2Ju4v6KFLdnb0dExPSF6ZVt/fn+NXP6UxdPRblYjunR6ahX6lGv1SOVTsVX3/pq03l8REQqnYqRuZGYGZuJVDoVh48cjsp8JfoG+5oWZLQaAwAAAAAAdJYrR67ExY8urtueOZOJzJlM1O/UY7GyGOViOWYnZmNwfDCe+NwT2z7+viqwiIgoFAoxMDAQ58+fX1VkMTo6GhcvXmxa1DA5ORlXrlyJycnJqFarq9pyudzKn2W1Wi0uXLgQuVwuLl5ce3LL5XLk8/nI5XIxOjq6pr1SqUSxWFxzLAAA2IuWn2qbSm+8gsVuPtkWAABoTf9wf0vFCplcZstz81Q6FUMTQzseAwAAAAAAdI5Go7Gp/VJPpiL1ZCoGLgxE/U49ZsZm4uyfnt328fddgUU6nY65ubkYGxuLdDodR44cifn5+RgcHIzh4eGmMblcLtLpdJw7d65pf+Pj45HP33/Sbq1Wi4iIsbGxdVegGBwcjHK5HJOTk+vm2WzVCwAA2IuOnTgWqXQqvvDcFx6672492RYAAAAAAAAAAOg8XV1dW45JPbnxg2G3Yt8VWETcL4qYmJjY9P7ZbHbD1SQymUwUCoVN9zc/P7/pfQEAYK/rzfbGWHVs0/vv1pNtAQAAAAAAAACAR1/9Tj0WZhcS6WtfFlgAAAAAAAAAAAAAAAC7r/ZBren2RqNxv/0/1CIaG/dRr9VjsbIYC6WFePfyu9F/rj+R3BRYAAAAAAAAAAAAAAAAu+L23O24ff12VMvVKBfLcffO3VXtf5L5k0331Wg0IpPLxNk/PZtIbgosAAAAAAAAAAAAAACAXdH/fH/0P//JihMLpYUojhWj/FY5urq64qnnn9pUP92Z7sgMZiJzJpNYbgosAAAAAAAAAAAAAACAtujN9saLMy/G9Oh0vD/1fuTfyLctFwUWAAAAAAAAAAAAADvs6tDVdqcQEREvTL/Q7hQAoKmhiaFYmFtoaw4H2np0AAAAAAAAAAAAAACAiDh96XRbj28FCwAAAAAAAAAAAAAAoO36n+9/6D43374Z1XI1ujPdcezEsXjic08kdnwFFgAAAAAAAAAAAAAAQNsVXy5G/U591bazf3o2IiLqd+rxWu61WCgtRKPRiO5Md9Sr9chP5eP43z2eyPEVWAAAAAAAAAAAAAAAAG03MDoQf9L3JzEwOhADIwPR+2zvSlshX4jbc7fj1MVTkftWLiIi6rV6FM4Vovt4d6S/mN728RVYAAAAAAAAAAAAALBrfnL1J3Hru7fiQONAW/N4YfqFth4fgLU+/MsPI1/IR//z/au23/iXN6JcLMfT+adXiisiIlLpVOTfyEfxUnFlpYvtaO+/TAAAAAAAAAAAAAAAABFx6/qtNcUVERHvvf5edHV1xelLp9e0pdKpSD2ZSuT4CiwAAAAAAAAAAAAAAID2azTfXC6WIyLi6JeONt+hK5nDK7AAAAAAAAAAAAAAAADa7tCRQ2u2VW9Wo16rR2+2d924eq2eyPEVWAAAAAAAAAAAAAAAAG3X1bV2KYobUzciIuJ47vj6geusfLFVCiwAAAAAAAAAAAAAAIC2+/g/fxx3f3F31ba5ibno6uqKZ84/0zSmeKkYA6MDiRxfgQUAAAAAAAAAAAAAANB2py+djkK+EB/+uw/jwx9/GFPnp6Jarkb/cH8c/dLRVft++OMP41/8zr+Iw0cOR++zvYkc/2AivQAAAAAAAAAAAAAAAGxD6slUnLl8Jt54/o2olqsREfF0/ukYfn14ZZ/vff17US6WV9rLxXJ8/NHHkbuc2/bxFVgAAAAAAAAAAAAAAAB7Qm+2N1762UtRv1OP1JOpNe2nxk7FqbFTq7Yd6jmUyLEVWAAAAAAAAAAAAAAAAHtKs+KKiIju4907dswDO9YzAAAAAAAAAAAAAADADnv/zfcT6UeBBQAAAAAAAAAAAAAA0LGmL0wn0s/BRHoBAAAAAAAAAAAAYM+7OnS1rcdf6lqK6G1rCgC02Yc//jCOfunoum1bsVhZjGq5GvVaPYnUFFgAAAAAAAAAAMB+sFBaiNmJ2ahX6rFQWohUOhUDowMxMDKwbky9Vo93Lr8TERGHjxyOynwl+gb7on+4P9EYAABgfyi+XIwffvuH0TvQGxd+dGFN+z//8j+Pu3futiGz+xRYAAAAsCe1+8k5EREvTL/Q7hQAAAAAABIxNzkXERFDE0Mr28rFchTyhbg2fi1G5kYilU6tiqnX6jE5MBn5Qj56s588anx6dDpuXb8Vg+ODa47TSgwAALB/VMvVaDQaUa82X3HiUM+hiIiVQvBDRw5t2N/iR4tRna/G+2++n0h+CiwAAAAAAAAAAOARVi1Xo16rx6mLp1Ztz+Qy8dW3vhqTA5NRyBfixZkXV7UX8oV4avipVYUSEfeLNMa7x6NvsC8yucy2YwAAgP1j6NWhyAxm1v1c0J3pjtMvn47s17Jb6vfKkStJpBcHEukFAAAAAAAAAADYk2YnZlee/vppvdneyOQyUS6Wo1qurmyvlqtRLpbjxOiJpnH95/rj2vi1VdtaiQEAAPaX1JOpGLgwEN3Hu5u2ZwYzcezEsS33mz6e3mZm9ymwAAAAAAAAAACAR9jN4s34p8f/adRr9abtR7NHIyJiobSwsm12YjYi7j89tpmevp4oF8ur+mwlBgAA4EGnvnkqjn7p6JbjRmZHEjn+wUR6AQAAAAAAAAAA9qRDPYdiobQQ1XI1erO9m4r5sPRhpNKpdduXiyhuz96OTC7TcgwAAJCMhdJCzE7MRr1Sj4XSQqTSqRgYHVh3NbuIiHqtHu9cficiIg4fORyV+Ur0DfZF/3B/ojGdRIEFAAAAAAAAAAB0oKVfL0VjqfHJ63tLTfd7cebFqJar664sUSvXIiJWFV9Uy9U41HNo3WMvF1JUy9VtxQAAANs3NzkXERFDE0Mr28rFchTyhbg2fi1G5kbWFEPXa/WYHJiMfCG/6rPA9Oh03Lp+KwbHB9ccp5WYrah9UItysRyV+crK55RUTyp6+nqiN9sbx798fFv9b4YCCwAAAAAAAAAA6ECVn1Wi8u8rK6/vxJ11912vuCIi4sbUjejN9q7aZ7GyuGHMciFFvVbfVgwAALA91XI16rV6nLp4atX2TC4TX33rqzE5MBmFfCFenHlxVXshX4inhp9as8rd0MRQjHePR99g35qV51qJeZi7v7gbc5Nz8e7ldzf1WWFgdCBOXTwV6S+mt3SczVJgAQAAAAAAAAAAHajnN3pWFTRU6pWIH2ytj2tXrkVExNCrQ6u2b7YI4uOPPt5WDAAAsD2zE7Px25d+u2lbb7Y3MrlMlIvlVavaVcvVKBfLcXbibNO4/nP9cW382qpiiVZiHqb0Z6X43uj3IiKi0WisakulU3Go51AsVhZXfdaYfWU25ibm4tTYqTjzT85s+libpcACAAAAAAAAAAA60IHHDkQ89sDrewe2FL9QWojiWDHyhfyaJ9ACAACd4WbxZpQmS/H7N38/UunUmvaj2aNRLpZjobSwUmAxOzEbEeuvdNfT1xOlyVLUa/WVPluJ2cjU+am4MXUjGo1GZHKZyAxmIpPLRO+zzT+b1O/Uo1wsx/z356P0aimujV+LcrEcF3504aHH2oqtfaoCAAAAAAAAAAAeCYV8Ic5OnI3+4f41bal0alMrUhw+cnhbMQAAwPYc6jkU9Vo9quXqpmM+LH24YRHEchHF7dnb24pZz7/4nX8R7xXei6eefypemn8pXvz+i3Hqm6fWLa6IiEg9mYr+5/tjaGIo/oel/yF+6w9/K27P3o5Xf/PVhx5vK6xgAQAAAAAAAAAA+0whX4iB0YEYGBlo2n6o59CG8YuVxYiIVTdYtRIDAABsz4szL0a1XF13ZYlauRYRsWrVumq5uuH8fXnO/mDRRisxzVz79rWYn5mPocmhyH4tu+G+GxkcH4y+wb547e+9Fm/947fizD8503JfD7KCBQAAAAAAAAAA7CMzYzNx7LljceriqXX36c50rxRENLO8UsWDN3G1EgMAADR37+69uPuLuyt/fvXLX62770Zz7BtTN6I327tqn8XK4oaFz8uFFA+uUNdKzKfV79SjOFaMwSuD2yquWJbJZSL/Rj6ujV+L2ge1bfcXYQULAAAAAAAAAADYN+Ym56Knr6fpyhX1Wn3lhqmj2aNRLpbX7Wf5qbSZXGZlWysxAABAc+9efjd+8Ec/WHl958CdLfdx7cq1iIgYenVo1faNiiAe9PFHH28r5tPmJueiN9sbJ//w5Kb62oz+4f44+uzRuDF1I5F+rWABAAAAAAAAAAD7wI2pGxERTYsrquXqquKIZ84/ExERC6WFpn3dvn57TaFEKzEAAEBzpy+djpfvvLzy5xv/7htbil8oLURxrBj5Qj56s707lOXWvPf6e/Hb//i3E+/39Mun473X30ukLwUWAAAAAAAAAADwiFsoLcRiZbFpcUVERLlYXnXTVW+2NzK5TPz09Z823f/G1I04NXZq1bZWYgAAgOYOPnEwnvjcEyt/Hv/s41uKL+QLcXbibPQP969pS6VTm1qR4vCRw9uK+bTazdqOFF1nBjMrK+Zt18FEegEAAAAAAAAAAPakarkahXwhjueOx+3R22va65V6lIvlGKuOrdqeL+RjcmAynjn/zKrii+nR6Th58WTTG6NaiQEAAJJVyBdiYHRg3QLrQz2HNoxfrCxGxP2iiu3EfFq9Vo8nPvfEhv20IvXk5oo/NkOBBQAAAAAAAAAAPMJeG3wtquVqVCfXf6Jrd6Z7zbZUOhUjcyMxMzYTqXQqDh85HJX5SvQN9jV9Cm6rMQAAQHJmxmbi2HPH4tTF9VeP6850x+3ZtcXXy5aLFR78nNBKzKc98WTyxRVJ963AAgAAAAAAAAAAHmEvzb/UcmwqnYqhiaEdjwEAALZvbnIuevp6mq5cUa/VV1aXOJo9GuVied1+quX7xdkPrkDXSsyndXV1bfwfsA1J9X0gkV4AAAAAAAAAAAAAAIC2uDF1IyKiaXFFtVxdVRzxzPlnIiJiobTQtK/b12+vKZRoJaYTKbAAAAAAAAAAAAAAAIAOtVBaiMXKYtPiioiIcrEcvdnelde92d7I5DLx09d/2nT/G1M34tTYqVXbWonpRAfbnQAAAAAAAAAAAAAAALB11XI1CvlCHM8dj9ujt9e01yv1KBfLMVYdW7U9X8jH5MBkPHP+mVXFF9Oj03Hy4smmq1G0ErMql1p9q/95m5ZU3wosgEfS1aGr7U4hXph+od0pAAAAAAAAAAAAAPAIe23wtaiWq1GdrK67T3eme822VDoVI3MjMTM2E6l0Kg4fORyV+Ur0DfZF/3B/035aiXlQo9GI/+lv/k9N89mOann9//atUmABAAAAAAA0NT06HU/nn97UE6feufxORMSmf0zZrRgAAAAAAHiUvTT/UsuxqXQqhiaGdjzmQZX5SlTmKy3Hr6erqyuRfhRYAAAALZmbnIsbhRsxMDoQmVwmUulUVMvVWCgtxHuvvxenL51etRTgMjdRAQDA3lYtV6NcLMfcxFwslBbi6fzTG+5fr9VjcmAy8oX8muXAb12/FYPjg22LAQAAAAAA9pZMLhOZwY0f7LRVt390O95/8/1E+lJgAQAAtKReq0e5WI5ysbxqeyqdWnPD04MxbqICAIC9a25yLsoz5cgMZiI3novXBl97aEwhX4inhp9a8xlgaGIoxrvHo2+wb80KGLsVAwAAAAAA7B1dXV3x4vdf3JG+/8fH/sdE+lFgAQAAtOzsxNmozFeiVq5FqicVxwaOxcDIwLr7u4kKAAD2toGRgZU5/UJp4aH7L692cXbibNP2/nP9cW382qo5+27FAAAAAAAAe8sTTz6x5/tWYAEAALTs6XNPRyqd2tS+bqICAIBHz+zEbEREdGe6m7b39PVEabIU9Vp95bPDbsUAAAAAAAB7y1ff+uqe7/tAIr0AAAA8xGZuiCoXy1Gv1bcVAwAA7J4PSx9uWNCwPJe/PXt712MAAAAAAIC9pffZ3j3ftwILAABgV7iJCgAAHj3VcjUO9Rxat315Pl8tV3c9BgAAAAAAYKsUWAAAANu2UFqIucm5WCgtrLuPm6gAAKB97t29F3d/cXflz69++atE+l2sLG5YFL08n39w1bndigEAAAAAANiqg+1OAAAA2Dvu3b0Xv77765XXD7vpqlwsR7VcjUwuEwMjA7FQWojXBl+LU2OnIpPLrNp3sbK4suJEM+vdRLXVGAAAYK13L78bP/ijH6y8vnPgTiL9bnYu/vFHH+96DAAAAAB0gqtDV7cVv9S1FJXeStz67q040PDcdYDtUmABAACs2MpNV8uFD6cunlrZ1pvtjXwhH+Pd4zEyNxK92d6VNjdRAQBA+5y+dDp+6w9+a+X1z3/+8/jjv/XHbcwIAAAAAABg71FgAQAArNjKTVf9w/1Nt6fSqegf7o9CvhAvzb+0I3kCAABbc/CJg3HwiU9+Enj8s48n0m8qndpUYfThI4d3PQYAAAAAAGCrrAUEAACsOPjEwXjic0+s/Gn1pqtjzx2Larka1XJ1ZZubqAAA4NFzqOfQhu2LlcWIuD+33+0YAAAAAACArVJgAQAAJG75pqaF0sLKNjdRAQDAo6c7070yL29muWC6O9O96zEAAAAAAABbdfDhuzx6arVaXL58OSIijhw5EvPz8zE4OBjDw8Pb6nNsbCwiIiqVSkREDA4OxsjIyK7mAQAAu2F6dDpuFm/GS/MvbTqmO9Mdt2dvr9u+3k1UW40BAAB2z9Hs0SgXy+u2L69ql8lldj0GAAAAAABgq/ZdgUWtVouBgYEoFAqRzWZXto+Ojsb169djfHx8y32WSqXI5/MxMTERuVxuZfvg4GDMz8837XMn8gAAgN2yMLuwqafH9mZ7V7a5iQoAAB49z5x/Jn545YexUFpYNf9fdvv67TXz9d2KAQAAAAAA2KoD7U5gt+Xz+RgeHl5V1BARMTExEZOTk1EsFlvu88HiiuU+r1y50rTPncgDAAB2y/Hc8Rirjq3bfvv67UilU6tWlnjm/DMREbFQWlg3ptlNVFuNAQAAdk9vtjcyuUz89PWfNm2/MXUjTo2daksMAAAAAADAVu2rAotyuRzFYjFGR0ebtp87d27LK0dcuXIlyuVyXLp0aU1bJpOJXC63ps+dyAMAAHbTM+efibnJuaZt1XI1bkzdiKFXh1ZtdxMVAAB0luUV45ZXqFtPvpCP96feX1MYPT06HScvnmxaFL1bMQAAAAAAAFtxsN0J7KaJiYmIuF/40ExfX19MTk5GrVaLdDq9qT5nZmYiItbdP5vNxpUrV3Y8DwAA2E292d4oF8tx7cq1OHXxkwKHarkakwOTcfLiyegf7l8Tly/kY3JgMp45/0z0ZntXtj/sJqqtxgAAAK25MXUj5ibuF1Pfnr0dERHTF6ZXtvXn+2NgZGBVTCqdipG5kZgZm4lUOhWHjxyOynwl+gb7mn4u2M0YAAAAAACArdhXBRalUmnDgoXlgofZ2dnI5XKb6nN2dnbDPvv6+laOnc1mdywPAADYbacunopysRzTo9NRr9SjXqtHKp2Kr7711VWFEA9yExUAAOxt/cP9Lc2zU+lUDE0MPXzHNsQAAAAAAABs1r4qsCiXy9HT07Nu+3LRQ7lc3nSfPT09UalUHrrf7OzsSoFFEnks3luMX9775crrxw88Ho8/9vgms2ZZo6sRjWhEo6sRS7HU7nQ6nvFc7d69e9uOX1pa2nY/3Gc8k2U8k2U8k2U8k7W0tPG/6ZlcZssrSLiJ6uHM9/eOvfBe4n2NZlwXrMe1QTOuC5p52FyfnfHxrz+OJ+49sfLaXL8z+O67szl/nc3562zOX2dz/jpXo6vR7hT2Jd/rJ8N7T7KMZ7KMZ7L20njuhe9Nl7q2NwZ7aTy3ay+cD9+pJ8t4Jst3+7tjXxVYVCqVldUhmlkueqjVapvuM5vNxtTU1Lrt8/Pza/pMIo+xfzu26vXvZn83fu/E720iYx7UiEYs/o3FqEQluqKr3el0POO52rvvvrut+KWlpfj5z38eEREHDhxIIqV9zXgmy3gmy3gmy3gm66OPPmp3CvuS+f7esd05XRK8r9GM64L1uDZoxnVBM+b67WGu35l8993ZnL/O5vx1Nuevszl/neuvFv+q3SnsS+b6yfDekyzjmSzjmay9NJ574ffASu/DH/K9kb00ntu1F86H79STZTyT5bv93bGvCiw2WzixlYtvdHQ0pqamolQqraxQ8aBisbimzyTyGP8749Gd6l55/fiBx+PxBZXvW9XoakQlKtHzYU90NTp7YrEXGM/VTp8+va345YrNkydPxsGD++rtekcYz2QZz2QZz2QZz2Qtf8hld5nv7x3bndMlwfsazbguWI9rg2ZcFzRjrt8e5vqdyXffnc3562zOX2dz/jqb89fBFtudwP5krp8M7z3JMp7JMp7J2kvjuRd+D7z13Vvbit9L47lde+F8+E49WcYzWb7b3x2u1G3K5XKRy+Xi8uXLUSgUVrUVi8XI5XJRKpXiyJEjiR730MFD8dmDn1290SqPW7YUS9EVXdHV6IoDDZVx22U8V0tiMnDgwIE4ePCgiUVCjGeyjGeyjGeyjGdyPD2gPcz394698j7ifY1mXBesx7VBM64LPs1cvz0OP3bYXL8D+e67szl/nc3562zOX2dz/jpXp99U2al8r58M7z3JMp7JMp7J2kvjuRe+M93uGOyl8dyuvXA+InynnjTjmRzf7e+OfTXK6XR6U6tHbLUYYmZmJnp6emJsbCxqtVrUarWYmpqKWq0WfX19K8fe6TwAAAAAAAAAAAAAAIDW7KtSoJ6eng3bK5VKRKwuhtisiYmJqNVqUSwWI+L+yhbpdDquXLkSEREnTpzYlTwAAAAAAAAAAAAAAICt21cFFplMJmZnZ9dtX15VIpPJtNR/Op2O4eHhVduuX78eERHZbHbX8gAAAAAAAAAAAAAAALbmQLsT2E3ZbHaleKGZcrkcEfdXn0hKqVSKkZGRtucBAAAAAAAAAAAAAACsb18VWJw/fz4i7hc9NHP9+vUtFzWUSqXo7u6OYrHYtK1cLsfY2NiO5wEAAAAAAAAAAAAAALRuXxVYZLPZyOVy8frrrzdtn5qaWlMMERFRq9VibGysaRHF8moTzVy4cCHGx8cjk8kkkgcAAAAAAAAAAAAAALAz9lWBRUREoVCIqampNatHjI6OxsWLF5uuHDE5ORlXrlyJfD6/pi2Xy638WVar1SKfz0cul4uLFy8mlgcAAAAAAAAAAAAAALAzDrY7gd2WTqdjbm4uxsbGIp1Ox5EjR2J+fj4GBwdjeHi4aUwul4t0Oh3nzp1r2t/4+PhK8UWtVouIiLGxsQ2LJFrJAwAAAAAAAAAAAAAA2Bn7rsAi4n5xw8TExKb3z2azUa1W123PZDJRKBR2PA8AAAAAAAAAAAAAAGBnHGh3AgAAAAAAAAAAAAAAAO2mwAIAAAAAAAAAAAAAANj3DrY7AYBH1dWhq9uKX+paikpvJW5991YcaLReD/fC9AvbygMAAAAAAAAAAAAA9gMrWAAAAAAAAAAAAAAAAPueAgsAAAAAAAAAAAAAAGDfO9juBAAAAGCvujp0td0pxFLXUnzhD77Q7jQAAAAAAAAAAB55VrAAAAAAAAAAAAAAAAD2PQUWAAAAAAAAAAAAAADAvqfAAgAAAAAAAAAAAAAA2PcOtjsBAAAAAAAAAAAAANhtV4eutjsFAPYYK1gAAAAAAAAAAAAAAAD7ngILAAAAAAAAAAAAAABg31NgAQAAAAAAAAAAAAAA7HsKLAAAAAAAAAAAAAAAgH1PgQUAAAAAAAAAAAAAALDvKbAAAAAAAAAAAAAAAAD2PQUWAAAAAAAAAAAAAADAvqfAAgAAAAAAAAAAAAAA2PcUWAAAAAAAAAAAAAAAAPueAgsAAAAAAAAAAAAAAGDfU2ABAAAAAAAAAAAAAADsewosAAAAAAAAAAAAAACAfe9guxMAAAAAAAAAAAB2z/TodDydfzoyucyG+9Vr9Xjn8jsREXH4yOGozFeib7Av+of7E40BAADYKxRYAAAAAAAAAADAI65arka5WI65iblYKC3E0/mnN9y/XqvH5MBk5Av56M32rmyfHp2OW9dvxeD4YCIxAAAAe8mBdicAAAAAAAAAAADsnLnJuSiOFSMiIjee21RMIV+Ip4afWlUoERExNDEUpclSlIvlRGIAAAD2EitYAAAAAAAAAADAI2xgZCAGRgYiImKhtPDQ/ZdXuzg7cbZpe/+5/rg2fi0yucy2YgAAgORNj07H0/mnHzr3rtfq8c7ldyIi4vCRw1GZr0TfYF/0D/cnGtNpFFgAAAAAAAAAAAArZidmIyKiO9PdtL2nrydKk6Wo1+qRSqdajgEAAJKxXPA8NzEXC6WFeDr/9Ib712v1mByYjHwhv2oFuunR6bh1/VYMjg8mEtOJFFgAAADAHveTqz+JW9+9FQcaB9qaxwvTL7T1+AAAAADA7viw9OGGRRDLRRS3Z2+vPBW3lRgAAGD75ibnojxTjsxgJnLjuXht8LWHxhTyhXhq+KlVhRIREUMTQzHePR59g31r5u2txHSi9t6ZAQAAAAAAAAAA7CnVcjUO9Rxat325kKJarm4rBgAA2L6BkYHIF/IxMDKw4Zx82fJqFydGTzRt7z/XH9fGr207plNZwQLgEXd16Gq7U4gITzsGAAAAAAAASNrSr5eisdT45PW9pUT6Xawsrqw40czyTVv1Wn1bMQAAwO6bnZiNiFh3/t7T1xOlyVLUa/WVQulWYjqVAgsAAAAAAAAAAOhAlZ9VovLvKyuv78SdRPrdbBHExx99vK0YAABg931Y+nDDIojlIorbs7cjk8u0HNOpFFgAAAAAAAAAAEAH6vmNnlVPkK3UKxE/aGNCAADAnlctV1dWmGtmuZCiWq5uK6ZTKbAAAAAAAAAAAIAOdOCxAxGPPfD63oFE+k2lU5takeLwkcPbigEAANZ37+69+PXdX6+8/tUvf5VIv4uVxVWF2p+2XEjx4Py+lZhOpcACAAAAAAAAAABYsdGTaSPu31wV8clTaluNAQB40NWhq+1OIZa6luILf/CFdqcBERHx7uV34wd/9MkSdXcO3Emk380WQXz80cfbiulUCiwAAAAAAIAVc5NzcaNwIwZGByKTy0QqnYpquRoLpYV47/X34vSl09Gb7V0TV6/V453L70TE/SfSVuYr0TfYF/3D/eseq5UYAABg53VnuuP27O1125dvrnrwCbatxAAAAOs7fel0/NYf/NbK65///Ofxx3/rj9uY0f6gwAIAAGjZQmkhZidmo16px0JpIVLpVAyMDsTAyEDT/XfzRi0AAKA19Vo9ysVylIvlVdtT6VTkC/l15+yTA5Nr2qdHp+PW9VsxOD6YSAwAALA7jmaPrvlM8KBquRoREZlcZlsxAADA+g4+cTAOPvHJ7f6Pf/bxRPpNpVObWpHi8JHD24rpVAosAACAlsxNzkVExNDE0Mq2crEchXwhro1fi5G5kTXLfO/WjVoAAMD2nJ04G5X5StTKtUj1pOLYwLF1C6kjIgr5Qjw1/NSaOf3QxFCMd49H32DfmpuoWokBAAB2xzPnn4kfXvlhLJQWmn53f/v67TXz9VZiAACgU1wdutruFOI/1/9zIv0c6jm0YftiZTEiYtV9P63EdCoFFgAAwJZVy9Wo1+px6uKpVdszuUx89a2vxuTAZBTyhXhx5sU1sbtxoxYAALA9T597etM/glTL1SgXy3F24mzT9v5z/XFt/NqqeXsrMQAAwO7pzfZGJpeJn77+06bFEjembqz5DaCVGAAAYPd1Z7rj9uztdduXV6roznRvK6ZTHWh3AgAAQOeZnZhdtyhi+QeUcrG8stz3g54+93QMjg9GvpCPoYmhDYsrlm+6OjF6omn78k1XAABA+8xOzEbE+j+a9PT1RLlYXrV0eCsxAABAMpa/u3/YfDtfyMf7U+/HQmlh1fbp0ek4efFk04LoVmIAAIDddTR7dMPPA8ufGR6cv7cS06msYAEAAGzZzeLNKE2W4vdv/n7Tp9oezR6NcrEcC6WFbVWmb+amq9JkKeq1+iOxxCAAAHSiD0sfbjgfX57P3569vfLDSisxAABA625M3Yi5ibmIiJWnzk5fmF7Z1p/vX/NApFQ6FSNzIzEzNhOpdCoOHzkclflK9A32Rf9wf9PjtBIDAADsrmfOPxM/vPLDWCgtNF197vb1td/NtxLTqRRYAAAAW3ao51AslBaiWq42/dCUFDddAQBAey2UFuL27O04duLYunP/arkah3oOrdvH8pz+wRXuWokBAABa1z/c31KBQyqdiqGJoR2PAQAAdk9vtjcyuUz89PWfNv3u/8bUjXhx5sVtx3SqA+1OAAAA2Dvu3b0Xd39xd+XPr375q6b7vTjzYrw0/9K6N1jVyrWIiA2LLxZKCzE3ObdmmfAHuekKAACSsdm5/rJysRzXrlyLiFh5iu1rg69FuVhes+9iZXHDwujlOf2DS4e3EgMAAAAAAGxs+R6ah32/ni/k4/2p99fctzM9Oh0nL55s+qDTVmI6kRUsAACAFe9efjd+8Ec/WHl958CddfddXj2imRtTN6I329t0n3KxHNVyNTK5TAyMDMRCaSFeG3wtTo2dWvNBa7GyuOFx3HQFAACb08pc/9TFUyvberO9kS/kY7x7PEbmRlYVU292Pv7xRx9vKwYAAAAAYL+4OnS13SlERMQL0y+0O4WI2DvjsVfdmLoRcxNzERFxe/Z2RERMX5he2daf7195mNKyVDoVI3MjMTM2E6l0Kg4fORyV+Ur0Dfatu/pdKzGdSIEFAACw4vSl0/Fbf/BbK69//vOfxx//rT/eUh/LT7kdenXt8t+7caMWAACw1lbm+hv9cNI/3B+FfCFemn9pR/IEAAAAAGDv2G5hw1LXUlR6K3Hru7fiQONAQlnxaf3D/S0VOKTSqRiaWHt/T9IxncaVCgAArDj4xMF44nNPrPx5/LOPbyl+obQQxbFi5Av5VYUSy9b7QPfgjVoAAEDytjvXX3bsuWNRLVdXlhiPuD+f30xx9OEjh7cVAwAAAAAAsNMUWAAAAIkp5AtxduJsS1XxSd2oBQAA7JxUOhUR94urlx3qObRhzGJlcVVsqzEAAAAAAAA7TYEFAACQiEK+EAOjAzEwMtBSfFI3agEAAK2bHp2OP+n7ky3FdGe6V+bmzSwXTXdnurcVAwAAAAAAsNMUWAAAANs2MzYTx547Fqcunlp3n926UQsAAGjdwuzCpubgvdnelW1Hs0c3XHlueZW6TC6zrRgAAAAAAICddrDdCQCwP1wdutrW4y91LcUX/uALbc0B4FE1NzkXPX09TVeuqNfqn6xM0eKNWuVied0YN10BAECyjueOx8j4yLrtt6/fjlQ6tarI+Znzz8QPr/wwFkoLq+bzD8Z8es7eSgwAAAAAAMBOs4IFAADQshtTNyIimhZXVMvVVcURx3PHY6w6tm5f692oFRGxUFpYN8ZNVwAAkJxnzj8Tc5NzTduq5WrcmLoRQ68Ordrem+2NTC4TP339p03jbkzdiFNjp7YdAwAAAAAAsNMUWAAAAC1ZKN1fkaJZcUVERLlYXvUk2t26UQsAAGhdb7Y36rV6XLtybdX2arkakwOTcfLiyegf7l8Tly/k4/2p99cUR0+PTsfJiyebFka3EgMAAAAAALCTDrY7AQAAoPNUy9Uo5AtxPHc8bo/eXtNer9SjXCyvWrGiN9sb5WI5rl25FqcunlrV18Nu1JocmIxnzj+zqmDDTVcAALAzTl08FeViOaZHp6NeqUe9Vo9UOhVffeurq+bkD0qlUzEyNxIzYzORSqfi8JHDUZmvRN9gX9N5fqsxAAAAAAAAO0mBBQAAsGWvDb4W1XI1qpPVdffpznSv2bZbN2oBAADbk8lltlzMnEqnYmhi6OE7bjMGAAAAAABgpyiwAAAAtuyl+Zdajt2tG7WA5F0dutruFOKF6RfanQIAAAAAAAAA8Ig60O4EAAAAAAAAAAAAAAAA2s0KFgAAAAAAAAAAAAAAEfGTqz+JW9+9FQcanmMP+5G/+QAAAAAAAAAAAAAAwL63L1ewqNVqcfny5YiIOHLkSMzPz8fg4GAMDw9vq8+xsbGIiKhUKhER8dxzz8XFixcTjQEAAAAAAAAAAAAAAJK37wosarVaDAwMRKFQiGw2u7J9dHQ0rl+/HuPj41vus1QqxcTERIyPj0c6nV7ZPjU1FQMDAzE3N5dIDAAAAAAAAAAAAAAAsDP2XYFFPp+P4eHhVcUVERETExPR3d0dg4ODkcvlttTn2NhYzMzMrNk+PDwclUolRkdHY2JiYtsxAAAAAAAAAAAAAADAzjjQ7gR2U7lcjmKxGKOjo03bz507t+UVLEqlUmQymXXbz507F8VicdsxAAAAAAAAAAAAAADAztlXBRbLK0KsV9zQ19cXxWIxarXapvtcLtpYT6VSiXQ6ve0YAAAAAAAAAAAAAABg5+yrAotSqbRh4cJy4cXs7Oym+8xms1EulyOfzzdtn5iYiPPnz287BgAAAAAAAAAAAAAA2Dn7qsCiXC5HT0/Puu3LxRflcnnTfWYymRgZGYmpqamVFTCWLa+GcfHixW3HAAAAAAAAAAAAAAAAO+dguxPYTZVKZWWVimaWiy9qtdqW+p2YmIi+vr4YGxuLwcHBGBkZib6+vshmszExMZFYzIMW7y3GL+/9cuX14wcej8cfe3xLeRPR6GpEIxrR6GrEUiy1O52OZzyTZTyT1ehqxNLSUty7d6/dqTwS7t27ZzwTZDyTZTyTtbTk36B2MN/nQeaFq/2v/6//td0pRETE+Tfbu/Kkf+9Yj2uDZlwXNGOu3x4f//rjeOLeEyuvzfU7gzl5Z3P+Opvz19mcv87m/HWuRlej3SnsS77XT4b3nmQZz2QZz2QZz2QZz2QZz2QZz2Q1wnx/N+yrAovNFk589NFHW+774sWLkU6nY3R0NCYnJyOdTkehUEg8ZtnYvx1b9fp3s78bv3fi97ac937XiEYs/o3FqEQluqKr3el0POOZLOOZrEY04t7P799IcuDAvlrAaUcsLS3Fz3/+84gwnkkwnskynslqZW7M9pnv8yDzwr3p3Xffbevx/XvHelwbNOO6oBlz/fYw1+9M5uSdzfnrbM5fZ3P+Opvz17n+avGv2p3CvmSunwzvPckynskynskynskynskynskynsn6Zf2XD9+JbdtXBRY7aWxsLPr6+qLRaMTY2FhcuXJlZWWK9VakaCVm2fjfGY/uVPfK68cPPB6PL6h836pGVyMqUYmeD3uiq+GNe7uMZ7KMZ7IaXY049l8fi5MnT8bBg/75267lp54az2QYz2QZz2Qt34jH7jLf50HmhXvT6dOn23p8/96xHtcGzbguaMZcvz3M9TuTOXlnc/46m/PX2Zy/zub8dbDFdiewP5nrJ8N7T7KMZ7KMZ7KMZ7KMZ7KMZ7KMZ7Iai1aw2A376te0dDq9qVUsjhw5sqV+BwcHY2xsLHK5XEREjI+Px/nz5yOfz8fk5GRUKpU1K1O0EvOgQwcPxWcPfnb1Rn9ntmwplqIruqKr0RUHGp7et13GM1nGM1lLsRQHDhyIgwcPupkkIcYzWcYzWcYzOZ5w3B7m+zzIvHBv2gv/xvj3jvW4NmjGdcGnmeu3x+HHDpvrdyBz8s7m/HU256+zOX+dzfnrXG5aaw/f6yfDe0+yjGeyjGeyjGeyjGeyjGeyjGeyrAKyO/bVr2k9PT0btlcqlYi4X4ixWVeuXIlsNrtSKLEsm83G/Px8jI6OxuTkZBSLxZV9WokBYPt+cvUnceu7t9o+UXth+oW2Hh8AAAAAAAAAAACAtfZVKVAmk1kpomhmeXWLTCaz6T4nJibi0qVLG7Zns9mYmZnZVgwAAAAAAAAAAAAAALBz9lWBRTabXSmiaKZcLkdEbGnViHK5/NAVL0ZHR1cdt5UYAAAAAAAAAAAAAABg5xxsdwK76fz583HlypUolUqRzWbXtF+/fn1LxRUR91e7KJfLG656MT8/HwMDA9uKAeDRcXXoartTiBemX2h3CgAAAAAAAAAAAAB7yr5bwSKXy8Xrr7/etH1qairGxsbWbK/VajE2NhbFYnFN2/DwcNOYB2NLpVKcO3duWzEAAAAAAAAAAAAAAMDO2VcFFhERhUIhpqamolQqrdo+OjoaFy9ebLqCxeTkZFy5ciXy+fyatvHx8ZX4Wq22qq1UKkU+n4/x8fFIp9PbigEAAAAAAAAAAAAAAHbOwXYnsNvS6XTMzc3F2NhYpNPpOHLkSMzPz8fg4GAMDw83jcnlcpFOp9ddUaJQKESxWIwLFy6s2p7JZGJmZiaxGAAAAAAAAAAAAAAAYGfsuwKLiPtFFhMTE5veP5vNRrVa3XCfXC7XdPWLpGMAAAAAAAAAAAAAAIDkHWh3AgAAAAAAAAAAAAAAAO2mwAIAAAAAAAAAAAAAANj3DrY7AQAAAIBOc3XoaluPv9S1FJXeStz67q040Gjv8zNemH6hrccHAAAAAAAAgKRYwQIAAAAAAAAAAAAAANj3rGABAPvQdp+4nNQTkz3tGAAAAAAAAAAAANgrrGABAAAAAAAAAAAAAADse1awAAAAAABg3/jrv/7rlmP/03/6T/H1r3895ubmYmBgIF555ZX4/Oc/31Jfn/nMZ1rOAwAAAAAAgJ2hwAIAAAAAgH3js5/9bCL9zMzMRF9fX8vxjUYjkTwAAAAAAABIzoF2JwAAAAAAAAAAAAAAANBuVrAAANrm6tDVdqcQL0y/0O4UAAAA2EW//OUvW479+3//78fbb78dv/71r+Oxxx6LL3/5y/Hnf/7nCWYHAAAAAABAOymwAAAAAKBlimaBTvOZz3ym5djXXnst/uE//Idx/fr1eO655+Kf/bN/tq3+AAAAAAAA2FsUWAAAAAAAwCZ8/vOfj7/4i79odxoAAAAAAADskAPtTgAAAAAAAAAAAAAAAKDdrGABAAAAQEe7OnS13SlERMQL0y+0OwUAAAAAAAAAtkGBBQCwr+2Fm/GWupbiC3/whXanAQAAAAAAAAAAAPvagXYnAAAAAAAAAAAAAAAA0G5WsAAA2AN+cvUnceu7t+JAo731ry9Mv9DW4wMAAAAAAAAAAEC7KLAAAGDF1aGr7U5BkQcA0LH2wlxqqWspvvAHX2h3GgAAAAAAAAAdqb2PSAYAAAAAAAAAAAAAANgDFFgAAAAAAAAAAAAAAAD73sF2JwAAAA+6OnR1W/FLXUtR6a3Ere/eigON1uuJX5h+YVt5AAAAAAAAAAAA0FkUWAAAAADAI+QnV3+y7WLT7VKsCgAAAAAAAHSi9v3KCgAAAAAAAAAAAAAAsEdYwQIAAJq4OnS13Sl48jMAwDaZ0wEAAAAAAABbocACAAD2qL1wQ+B/rv/nDdvrtXq8c/mdiIg4fORwVOYr0TfYF/3D/buRHgCwR+2FecxesRfGYqlrKb7wB19odxp0GHN9AAB4NJnrAwDAo8t8PxkKLAAAgJbUa/WYHJiMfCEfvdnele3To9Nx6/qtGBwfbGN2AABAq8z1AQDg0WSuDwAAjy7z/eQosAAAAFpSyBfiqeGnVn0oi4gYmhiK8e7x6Bvsi0wu06bsAAB40E+u/iRuffdWHGgcaFsOL0y/0LZjszXm+gAA8Ggy1wcAgEeX+X5yFFh0mP/yX/5LRET8aulXbc7k0fCrX/8q/tXsv4rzR8/HEweeaHc6Hc94Jst4Jst4Jst4Jst4Jst4Jmt53rk8D11WLVejXCzH2YmzTeP6z/XHtfFrPphtkfk+zXhfoxnXBetxbdDMXrkurg5dbduxH6TQ477luae5PjzcXnkfpTXOX2dz/jqb89fZnL9Hj7n+zvC9frK89yTLeCbLeCbLeCbLeCbLeCbLeCbLfTy7Q4FFh7l7925ERNxbutfmTB4Nv1r6Vfzr0r+Or/zuV7xxJ8B4Jst4Jst4Jst4Jst4Jst4Jmt53rk8D102OzEbERHdme6mcT19PVGaLEW9Vo9UOrWzST5CzPdpxvsazbguWI9rg2ZcF6sp9Lhvee5prg8P5320szl/nc3562zOX2dz/h495vo7w/f6yfLekyzjmSzjmSzjmSzjmSzjmSzjmSz38ewOBRYAAMCWfVj6cMMPXMsf2G7P3lb9DgAATbS70OM//vI/Nt1urg8AAI8mc30AAHh0me8n60C7EwAAADpPtVyNQz2H1m1f/tBWLVd3KyUAACAB5voAAPBoMtcHAIBHl/l+sqxg0WGWlpYiIqJWr8Xhxw63OZvO9/GvP46IiGq9Gncfu/uQvXkY45ks45ks45ks45ks45ks47k9S79eimh88rr61/c/WC3PQ5ctVhbXXVYwIlY+tNVr9eSTfISZ79OM9zWacV2wHtcGzbguiDDXb7flca7W/XjVibyPdjbnr7M5f53N+etszl/n+PRcv1av3d9urr8rfK+fLO89yTKeyTKeyTKeyTKeyTKeyTKe2+O7/fboajQajYfvxl7x7rvvxm//9m+3Ow0AAPaZd955J06fPr3y+o+6/ih6s70xMjfSdP+F0kJMDkzGyYsnY3B8cLfS7Hjm+wAA7DZz/d1x/fr1+M3f/M12pwEAwD7yox/9KJ577rmV1+b6O8P3+gAAtIPv9neWFSw6zN/+2387fvSjH8XnP//5OHDgQLvTAQDgEXPvv9yLpbufVLkvLS3F/1X7v+K5/+dzG0SRFPN9AAB2irl+ez377LPm+gAA7Ij15vrPPvtsG7PaP3yvDwDATvLdfnsosOgwBw8eXPWEAQAA2Gm/Eb+xZlsqndrUsoGHj1gOeyvM9wEA2E3m+rvHXB8AgN1krr97zPUBANht5vs7T+k0AACwZYd6Dm3YvlhZjIj7H+AAAIDOYa4PAACPJnN9AAB4dJnvJ0uBBQAAsGXdme6VD1/NLFfFd2e6dyslAAAgAeb6AADwaDLXBwCAR5f5frIUWAAAAFt2NHt0w6UFq+VqRERkcpndSgkAAEiAuT4AAPz/2fvj2Djv+07w/0iWq5Hs1kNqDxbVHlAN9x/T6l4ylNuzpB52bbJdFOIfWXOkC7BOc9iYTHEHBxtsxei/618q1SLB5g6oZ9wFutXhDHm4zR0YXIFy7Daw5GBX5KS7a9M4XDnKeiuOA6w5o6xjjRtZ/P2hH8diOKTI4SOSI75egJDM8zyf7/PVd0bj78w87+f7cDLXBwCAh5f5frIELAAAgA07dvZYRERUy9WW++evzftQBgAAHchcHwAAHk7m+gAA8PAy30+WgAUAALBhPdmeyAxk4p3L77TcPzsxGyfHTm5xrwAAgM0y1wcAgIeTuT4AADy8zPeTJWABAAC0JVfMxXsT761Iv0+OTsaJcyck3wEAoEOZ6wMAwMPJXB8AAB5e5vvJ2bO4uLi43Z0AAAA6U6PeiKmxqUilU3Hw0MFYmFuI3sHe6Bvu2+6uAQAAm2CuDwAADydzfQAAeHiZ7ydDwAIAAAAAAAAAAAAAANj19m53BwAAAAAAAAAAAAAAALabgAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOvt2+4OAAAAnatarsZ0fjoaC42olquRSqeif7Q/+kf6V61p1Bvx1oW3IiLi4KGDsTC3EL2DvdE33LftNQAAAAAAAAAAwO61Z3FxcXG7OwEAAHSemcJMRMSyMEWlVIlirhgHug/EyMxIpNKpZTWNeiMK/YXIFXPRk+1pbp8cnYxUOhWD44MrzrNVNQAAAAAAAAAAwO62d7s7AAAAdJ5apRaNemPFShWZgUx86Y0vRa1Si2KuuKKumCvGU8NPLQs9REQM5YeiXChHpVTZthoAAAAAAAAAAGB3E7AAAAA2bDo/vSJcsaQn2xOZgUxUSpWoVWrN7bVKLSqlShwfPd6yru9MX1wdv7ps21bVAAAAAAAAAAAACFgAAAAbdr10Pf7l0X8ZjXqj5f7D2cMREVEtV5vbpvPTERHRlelqWdPd2x2VUmVZm1tVAwAAAAAAAAAAsG+7O8DG3L59O37wgx/Ek08+GXv3yscAAPBg3blzJ370ox/F5z//+di377OPDwe6D0S1XI1apRY92Z51tfVB+YNIpVOr7l8KRMxPz0dmILOlNTuF+T4AAFtltbk+D4a5PgAAW8Vcf2uZ6wMAsJXM97eGke0wP/jBD+JXf/VXt7sbAADsMv/u3/27eOaZZ5qPX5x6MWqV2qqrRNQr9YiIZeGLWqUWB7oPrHqOpVBErVLb8pqdwnwfAICt9rNzfR4Mc30AALaauf7WMNcHAGA7mO8/WAIWHebJJ5+MiIjvf//78Uu/9Evb3JvOd/v27SiXy5HNZiW5EmA8k2U8k2U8k2U8k2U8k2U8N+f2392OO5/caT6+MX8j/oeB/6E5D73XauGKiIjZidnoyfYsO+bWwq01a5ZCEY16Y8trdgrzfVrxvkYrXhesxmuDVrwuaOVv//Zv49lnn2051yd5S+P87/7dv4uenvWtAsjO4X20s3n+Opvnr7N5/jqb569zVavV+NVf/VVz/S3ie/1kee9JlvFMlvFMlvFMlvFMlvFMlvFMlu/2t4ZXaodZWk7w8OHDPpgl4Pbt2/HDH/4wfumXfskbdwKMZ7KMZ7KMZ7KMZ7KMZ7KM5+b81f/6V/G93/te8/HNvTcjIja0rPXVi1cjImLo1aFl29cbaPj4w4+3vGanMN+nFe9rtOJ1wWq8NmjF64JWbt++HREbm+vTvqVx7unpMdfvQN5HO5vnr7N5/jqb56+zef46n7n+1vC9frK89yTLeCbLeCbLeCbLeCbLeCbLeCbLd/tbwysVAABoOnX+VDz79Webj99///341q98a9311XI1SmOlyBVz0ZN1V1YAAAAAAAAAAKBzCFgAAABN+/bvi337P/uY8Ojjj26ovpgrxun86egb7luxL5VOrWt1iYOHDm55DQAAAAAAAAAAgPVBAACARBRzxegf7Y/+kf6W+w90H1iz/tbCrYi4G5DY6hoAAAAAAAAAAAABCwAAYNOmxqbiyDNH4uS5k6se05XpaoYbWlladaIr07XlNQAAAAAAAAAAAAIWAADApswUZqK7t7tluGIpzBARcTh7eNnjn1Wr1CIiIjOQ2fIaAAAAAAAAAAAAAQsAAKBtsxOzERHRP9K/Yl+tUotKqdJ8fOzssYiIqJarLduavza/IvSwVTUAAAAAAAAAAAACFgAAQFuq5WrcWrjVMlwREVEpVaIn29N83JPticxAJt65/E7L42cnZuPk2PJVMLaqBgAAAAAAAAAAYN92dwAAAOg8tUotirliHB04GvOj8yv2NxYaUSlVYqw2tmx7rpiLQn8hjp09tix8MTk6GSfOnWi5ssRW1QAAAAAAAAAAALubgAUAALBhlwYvRa1Si1qhtuoxXZmuFdtS6VSMzIzE1NhUpNKpOHjoYCzMLUTvYG/0Dfe1bGeragAAAAAAAAAAgN1NwAIAANiwl+debrs2lU7FUH5oR9YAAAAAAAAAAAC7197t7gAAAAAAAAAAAAAAAMB2E7AAAAAAAAAAAAAAAAB2PQELAAAAAAAAAAAAAABg19u33R3oNKOjo5HL5WJgYGBT7dTr9bhw4UJERBw6dCjm5uZicHAwhoeHk+gmAAAAAAAAAAAAAACwAQIW61CpVKJUKkU+n49yuRy5XG5T7dXr9ejv749isRjZbLa5fXR0NK5duxbj4+Ob7TIAAAAAAAAAAAAAALABe7e7AztdoVCIsbGxiIjEgg+5XC6Gh4eXhSsiIvL5fBQKhSiVSomcBwAAAAAAAAAAAAAAWB8Bi/sYGRmJYrEYIyMj0d3dven2llbDGB0dbbn/zJkzVrAAAAAAAAAAAAAAAIAtJmCxxfL5fEREZDKZlvt7e3ujVCpFvV7fwl4BAAAAAAAAAAAAAMDuJmCxxcrlcqTT6VX3LwUvpqent6hHAAAAAAAAAAAAAADAvu3uwG5TqVSiu7t71f1L4YtKpbJmO3fu3IlPP/00ya7tSp9++mlzLPfs2bPd3el4xjNZxjNZxjNZxjNZxjNZxjNZd+7c2e4u7Erm+9zL+xqteF2wGq8NWvG6oBVz/e3x6aefmut3IO+jnc3z19k8f53N89fZPH+dy3xze/hePxnee5JlPJNlPJNlPJNlPJNlPJNlPJPlu/2tIWCxxRYWFpqrVLSyFL6o1+trtvP9738//t//9/9tPn7kkUdi3z5P50bduXMn/vN//s9x586d2LvXgi6bZTyTZTyTZTyTZTyTZTyTZTyT9eGHH253F3Yl833u5X2NVrwuWI3XBq14XdCKuf72uHr1anR1dTUfm+t3Bu+jnc3z19k8f53N89fZPH+dq1arbXcXdiXf6yfDe0+yjGeyjGeyjGeyjGeyjGeyjGeyfLe/Nczkt9j9ghNL7vcP4JVXXln2Qey/++/+u/jc5z63iZ7tTouLi3Hz5s2ICMm4BBjPZBnPZBnPZBnPZBnPZBnPZP34xz/e7i7sSub73Mv7Gq14XbAarw1a8bqgFXP97fFHf/RH5vodyPtoZ/P8dTbPX2fz/HU2z1/n+q//9b9udxd2Jd/rJ8N7T7KMZ7KMZ7KMZ7KMZ7KMZ7KMZ7J8t781BCw61OlHT0dX6rO7XD36N4/Gvutb+3TmXs9t6fkehNu3b8f3v//9ePbZZ905IAHGM1nGM1nGM1nGM1nGM1nGM1nvv/9+fO1rX9vubuw62z3ffxjm+g8T72u04nXBarw2aMXrglbM9bfH//a//W/xi7/4i83H+/fvj/37929jj1iPB/k+WjxTTLS9dj3MnwP9d7Czef46m+evs3n+OteNGzfi5Zdf3u5u7Drf/va345d+6Zeaj3fzXH8zc9zFPYux58k9se9H+2LPYvsXYD7M89uN8F6eLOOZLOOZLOOZLOOZLOOZLN/tbw2v1C2WTqfXtYrFoUOH1tx/8JGD8fOP/PzyjXc20bE2PAwfBJeWZNy/f7837gQYz2QZz2QZz2QZz2QZz2QZz2Q9+uij292FXWm75/sPw1z/YeJ9jVa8LliN1wateF3Qirn+9vh7f+/vxX/z3/w3290NNuhBvo8+cueRRNtr18P8OdB/Bzub56+zef46m+evc/3cz/3cdndhV+rq6jLX///bzBz3zp47sTf2xt47e2Pv4t6223mY57cb4b08WcYzWcYzWcYzWcYzWcYzWb7b3xrtz0RpS3d395r7FxYWIuJuEAMAAAAAAAAAAAAAANgaAhZbLJPJNEMUrSytbpHJZLaoRwAAAAAAAAAAAAAAgIDFFstms80QRSuVSiUiIgYGBraoRwAAAAAAAAAAAAAAgIDFFjt79mxERJTL5Zb7r127JlwBAAAAAAAAAAAAAABbTMDiAajX6zE2NhalUmnFvmw2GwMDA3H58uWWtRMTEzE2NvaguwgAAAAAAAAAAAAAANxDwGIDKpVKRNwNUKylUCjExYsXI5fLtdxfLBZjYmJixSoWo6Ojce7cOStYAAAAAAAAAAAAAADAFtu33R3Y6SYmJiKfz0dExPT0dEREvPTSS81tuVwuRkZGltUMDAxEOp2OM2fOtGwznU7HzMxMjI2NRTqdjkOHDsXc3FwMDg7G8PDwA/zbAAAAAAAAAAAAAAAArQhY3Mfw8PCGQw/ZbDZqtdqax6TT6WZIAwAAAAAAAAAAAAAA2F57t7sDAAAAAAAAAAAAAAAA203AAgAAAAAAAAAAAAAA2PUELAAAAAAAAAAAAAAAgF1PwAIAAAAAAAAAAAAAANj1BCwAAAAAAAAAAAAAAIBdT8ACAAAAAAAAAAAAAADY9QQsAAAAAAAAAAAAAACAXU/AAgAAAAAAAAAAAAAA2PUELAAAAAAAAAAAAAAAgF1PwAIAAAAAAAAAAAAAANj1BCwAAAAAAAAAAAAAAIBdT8ACAAAAAAAAAAAAAADY9QQsAAAAAAAAAAAAAACAXU/AAgAAAAAAAAAAAAAA2PX2bXcHAAAAAAAAgO3z2tBr292F+OLkF7e7CwAAAAAAVrAAAAAAAAAAAAAAAAAQsAAAAAAAAAAAAAAAAHa9fdvdAQAAAAAAAABo5T++9h/jxjdvxN7F7bt34Bcnv7ht5wZ4UGYKMzFbnI1UOhUREelMOgbHB1se26g34q0Lb0VExMFDB2NhbiF6B3ujb7hv1fbbqQEAANgJBCwAAAAAAAAAAGAXaNQb8afP/2kcHTgaL0692Nxeq9RiamxqRciiUW9Eob8QuWIuerI9ze2To5Nx49qNlqGMdmoAAAB2iu27zQcAAAAAAAAAALBllsIVPxty+O7od6NcKK84vpgrxlPDTy0LSkREDOWHolwoR6VUSaQGAABgpxCwAAAAAAAAAACAh9zVi1ejVqm1XEEilU7FkeNHlm2rVWpRKVXi+Ojxlu31nemLq+NXN10DAACwk+zb7g4AAAAAAAA7T61SiyvjVyIiorHQiEa9EZnBTJw8d7Ll8TOFmZgtzkb/aH9kBjKRSqeiVqlFtVyNdy+/G6fOn1pxB9uIiEa9EW9deCsiIg4eOhgLcwvRO9gbfcN9q/atnRpgZ3tt6LUH0u6dPXdioWchbnzzRuxdvP+95744+cUH0g8A2AmuXLgS2ZFsy325Ym7Ftun8dEREdGW6WtZ093ZHuVCORr0RqXSq7RoAAICdRMACAAAAAABYZnZiNm5cuxFD+aFl2wv9hZjJz8TLcy+vqGnUG1EpVaJSqizbnkqnIlfMrRquKPQXVuyfHJ2MG9dutLyzbjs1AACw281OzEaj3ohjZ4+tu+aD8gdrhiCWQhTz0/ORGci0XQMAALCT3P82LQAAAAmYnZjd7i4AAADr0Kg34t3L77YMKgy9OhS1Si0mRydb1p7On44T505E33BfZEeycTp/OsZqY6teOFXMFeOp4adWhC+G8kNRLpRXhDXarQEAgIfV7U9uxyc//qT55+/+69+1PO7dy+9GRDTn0dVyNWYKM1EtV1dtu1apxYHuA6vuXwpS1Cq1TdUAAADsJFawAAAAHrhGvRHFXDFO50/H02eetuw3AADsYPPT8zE7MRtTY1MrQhZLF2NdL11vWbuR+X6tUotKqRKn86db7u870xdXx68uC2e0UwMAAA+zKxeuxPd+73vNxzfjZsvj7g1SXL14NXqyPdE/0h/VcjUuDV6Kk2MnV8yjby3caq440cpSkKJRb2yqBgAAYCcRsAAAADZtcnQyns49vepFTEt3ovru6Hfju6PfXbOtXDEXfcN9ERExU5iJ2eJs9I/2R2YgE6l0KmqVWlTL1Xj38rtx6vypFXetjbj7w8xbF96KiIiDhw7GwtxC9A72NtsFAABWd6D7QKTSqTh46OCqxyQRmp7OT0dErHrxVXdvd5QL5WjUG83ztVPDzvPa0Gvb3YWIiPji5Be3uwsAAJt26vypePbrzzYf37hxI77V960Vx91auBWpdCpmCjNx8tzJ5vaebE/kirn4l0f/ZeSKuWXf8683BPHxhx9vqgYAAGAnEbAAAADasnTn2Jn83SXEn849veaxXZmu6Mn2RKq79UVOjYVG1Cq1ZSGIRr0RlVIlKqXKsmNT6VTkirlVwxWF/sKK/ZOjk3Hj2o0Vd+AFAACW68n2xFhtrOW+pbveHh04uunzfFD+YM0QxFKIYn56vnmRVzs1AADwMNu3f1/s2//Z5T8/9+Ofa3ncUvBhaQWJe6XSqcgMZOK7o9+Nl+defjAdBQAA6BACFrTNHaYAAHavmcJMVKYqkRnMxMD4QFwavLTm8Teu3YgXp15cc1nwqbGpGBgfWLH9dP50LMwtRL1Sj1R3Ko70H4n+kf5V2ynmivHU8FMrwhdD+aEY7xqP3sFeF1oBAECbSmOl6Mp03Te4XC1XY356Po4cP9IyGB1xN4jd6uKuJUtBiqUV8dqtAQAA7s6VG/XGqt+PZwYzMTsxG9VytTmHX6q5n3tXv2unBgAAYCcRsAAAADasf6S/GXJYuoPt/awVrqiWq9Hd293ymKfPPL3mHWrvtbSqxun86Zb7+870xdXxqwIWAADsOrc/uR2ffvJp8/FPP/rphuprlVpcGb8S6Uw6Xpx6cdXjKqVK1Cq1yAxkon+kP6rlalwavBQnx06umIffWri15ueEpSDFvRdntVMDsBFuMAbAw+pA94Fo1Burft++NJeen55vBizWCjdH3J2fR8SyNtupAQAA2EkELAAAgAfu+OjxNfdP56djKD+06fNM56cjYvUwR3dvd5QL5TV/RAIAgIfRlQtX4nu/973m45t7b66rbnZiNm5cuxH1Sj3SmXT0DvaueuzSPPzkuZPNbT3ZnsgVczHeNR4jMyPLVrNYbwji4w8/3lQNAABwd26+npXe7p1zd2W6Yn56/r7H3vudfDs1AAAAO4mABQAA8MCt9UPJ1NhUDI4PJnKeD8ofrBmcWOrH/PS8VSwAANhVTp0/Fc9+/dnm4/fffz++9Svfum9d33Bf9A33NR9fGrwUM/mZGHp1aMXc+97j7pVKp6JvuC+KuWK8PPdym38DAABgM448cyRmJ2ZXvQHR0soS94aiD2cPR6VUWbXNpcDGvd+3t1MDAACwk+zd7g4AAAA7x+1PbscnP/6k+eenH/30gZ6vWq5Gd2/3ulaTqJarMVOYiWq5uuoxtUptzeXHl86znrt0AQDAw2Tf/n2x/xf2N/88+vijbbWTK+ZidmI2irnihuqOPHMkapXasrl4Kp1a14oUBw8d3FQNAADwWSB6tfDDwtxCREQcOX6kue3Y2WMREat+Lz9/beXNjNqpAQAA2EmsYAEAADRduXAlvvd732s+vrn35gM/X66YW/OYSqkStUotMgOZ6B/pj2q5GpcGL8XJsZMrfoS5tXBrzdUylsIX67kgCwAAWGlpNYrZidmolCrrvjBqKexcLVebc/a1wtERn91B995Adjs1AADA3RWe+4b74sqFKy1Xn3tv4r04ce7Esrl0T7YnMgOZeOfyO8tWtlgyOzEbL069uGxbOzUAAECyZgozMVucbc7v05l0DI4Ptjy2UW/EWxfeioi7Ny9amFuI3sHeVVetbremk1jBAgAAaDp1/lR84+Y3mn9+59//zgM71+zEbKQz6TWPWbrw6uS5k80fYnqyPZEr5uLS4KUVd8Bab3Di4w8/3niHAQBgl2jUG2uu+rY0j5+bmmtumxydjG/3fntD5+nKdDUDEav1Y+m4zdQAAAB3Db06FI16I2YKM8u2F3PF6Mp0tbzgKlfMxXsT7634Pn5ydDJOnDvRMnTdTg0AALB5jXojCv2FWJhbiBenXoxcMRe5Yi6Ojx6PqbGpVY8/dvZYDI4PxslzJ2MoPxRzU3Mtj2+3ptNYwQIAAGjat39f7Nv/2ceERx9/9IGd68qFKzH06tCax6yWbF+6a24xV4yX515+EN0DAIBda7xrPCIixmpjLVeCOHjoYEQsDzhXp6vrCj7cewfbw9nDUSlVVq1ZCnnce/FVOzUAAMBdqXQqRmZG4q0Lb0UxV4yIu3P1vlxf9I/0r1kzNTYVU2f9qwABAABJREFUqXRqXXenbacGAADYvD99/k/j6MDRFeHp745+N+an51dsL+aK8dTwUytWnxvKD8V413j0Dvau+L69nZpOI2ABAABsuVqlFtVyteXy4Ot15JkjMTsxG7VKrXl32lQ6ta5VLJYuCAMAAFZKpVNxoPtAy3BFRMTC3EJERBzpP9LcdnTgaIyMj6za5vy1+UilU8tWljh29li8ffHtVT8bzF+bX/EjTDs1AADAZ1LpVMuVKu5XM5Rf+4ZJSdQAAADtu3rxatQqtZbf1afSqThy/MiybbVKLSqlSpzOn27ZXt+Zvrg6fnXZd+7t1HSivdvdAQAAYPeZzk8vu7CqHUsXe927xPiB7gNr1izdUXe1C8UAAICI7Eg2Xpx6cdX9s6/PRiqdiqfPPN3cduzssZgpzLQ8vlapxezE7IoV7HqyPZEZyMQ7l99pfZ6J2Tg5dnLTNQAAAAAA8LC7cuFKZEeyLfflirkV3/tP56cjIla9fqe7tzsqpcqyG522U9OJBCwAAIAtd710/b4Bi8nRyfh277c31G5XpqsZomhl6QPcZsMdAADwMBscH4wr41eiUqqs2FfMFSMi4ktvfGlZcLkn2xONeiOuXry67PhapRaF/kKcOHci+ob7VrSXK+bivYn3lgWnI+5+Hjhx7kTLu1y1UwMAAAAAAA+r2YnZaNQbcezssXXXfFD+YM0blC5dWzM/Pb+pmk60b7s7AAAA7D7VcrXlxVXLjpmuriss0ZPtaW47nD3c8iKwJbVKLSLCBVcAAHAfQ/mhmJ2YjWKuGKnuVDQWGtGoN+Jw9nB87frXWv6AcvLcyaiUKjE5Otk8PpVOxZfe+NKyefu9UulUjMyMxNTYVKTSqTh46GAszC1E72Dvqp8Z2qmBVl4bem1dx93ZcycWehbixjdvxN5F9y4DAAAAAHaWdy+/GxGfXUNTLVdjfno+jhw/sur387VKLQ50H1i1zaXfAZautWm3phMJWAAAAFtq6S6zqe7VE+0REUcHjsbI+Miq++evzUcqnVq2GsWxs8fi7YtvR7VcbfkBcf7avHAFAACsU99w34YDC5mBzIbn3Kl0KobyQw+8BgAAAAAAOsntT27Hp5982nz8049+2vK4e1d8vnrxavRke6J/pD+q5WpcGrwUJ8dOrvju/tbCrWXX3PyspSDF0g1Q263pRAIW61Sv1+PChQsREXHo0KGYm5uLwcHBGB4e3lSbY2NjERGxsLAQERGDg4MxMrL6RWQAANDp1lqV4l7Hzh6LmcJM9I/0r9hXq9RidmI2csXcsu092Z7IDGTincvvtAxYzE7MxotTL7bXcQAAAAAAAAAA2CJXLlyJ7/3e95qPb+692fK4Wwu3IpVOxUxhJk6eO9nc3pPtiVwxF//y6L+MXDG3LGSx3hDExx9+vKmaTiRgsQ71ej36+/ujWCxGNpttbh8dHY1r167F+Pj4htssl8uRy+Uin8/HwMBAc/vg4GDMzc211SYAAGyHpWX91vshaun4pWUBV9OT7YlKqRJXL15d9uGvVqlFob8QJ86daHk33VwxF4X+Qhw7e2xZyGJydDJOnDthBQsAAAAAAAAAAHa8U+dPxbNff7b5+P33349v/cq3Vhy3dM3O0goS90qlU5EZyMR3R78bL8+9/OA6+xARsFiHXC4Xw8PDy8IVERH5fD66urpicHBwWUhiI23+bF0+n4/e3t622gQAgK0yOzEbM/mZiIiYn56PiIjJlyab2/pyfS1XnoiIOHL8SKTSqfjFZ37xvuc5ee5kVEqVmBydjMZCIxr1RqTSqfjSG19quUJFxN0PhiMzIzE1NhWpdCoOHjoYC3ML0TvY2zKQAQAAAAAAAAAAO82+/fti3/7PLvd/9PFHWx6XSqeiUW+setPRzGAmZidmo1quNq+3Waq5n4OHDq44z0ZqOpGAxX1UKpUolUqRz+db7j9z5kyMj49vKAxx8eLFqFQqcf78+RX7MplMDAwMbLhNAADYSn3DfW2HFXqyPTFWG1v38ZmBzIZXnUilUzGUH9po1wAAAAAAAAAAoKMc6D7QvGnpavsj7t5EdSlg0Wq1i3vdWrgVEbGszXZqOtHe7e7ATrcUrMhkWl/Q1dvbG6VSKer1+rrbnJqaioiIdDrdcn82m41SqbShfgIAAAAAAAAAAAAAsLsshSbu597VJ7oyXc1AxFrHdmW6NlXTiQQs7qNcLq8ahIj4LHgxPT297janp6fXbLO3t7d5bgAAAAAAAAAAAAAAaOXIM0ciYnmA4l5LoYh7gxiHs4dXPT4iolapRUREZuCzRQraqelE+7a7AztdpVKJ7u7uVfcvBSUqlcq62+zu7o6FhYX7Hjc9PR3ZbHbd7QIAAAAAAKzltaHXtrsLAAAAAAAkqG+4L0pjpaiUKtE33Ldi/8Lc3evWjxw/0tx27OyxePvi21EtV1uugDF/bX5FUKKdmk4kYHEfCwsLzVUqWlkKX9Tr9XW3mc1mY2JiYtX9c3Nz923z1u1b8dHtj5qPH937aDz6yKPr7sPD5Pbt25uqvXPnzqba4DPGM1nGM1nGM1nGM1nGM1nGM1l37tzZ7i7sSts93/fvZ2fxvkYrXhesxmuDVrwuaMVcf3vUarU4ePBg8/H+/ftj//79W9qHO3s89xu1uGcxFmMxFvcsxp0wfp2mU58//92+6/bt2zvi+fN8tMc8tLN5/jqX52x73Lx5c9nNVrdjrr9TbOYzR1JzN/8O7vJenizjmSzjmSzjmSzjmSzjmazVvtvvynRF33BfXLlwpWXA4r2J9+LEuRORSqea23qyPZEZyMQ7l99pGZaYnZiNF6deXLatnZpOJGBxH+sNTnz44YfrbnN0dDQmJiaiXC63XKGiVCrdt82xvxpb9vgfZ/9x/Nbx31p3Hx4mV65cabv2zp078f7770dExN69e5Pq0q5lPJNlPJNlPJNlPJNlPJNlPJO1kXkuydnu+f5m5tgkz/sarXhdsBqvDVrxuqAVc/3t8Q/+wT9Y9vi3f/u348tf/vKW9mGh5/4rbLPcYizGrZ+/FQuxEHtiz3Z3hw3q1OfPZ/O77ty5syOevz/6n/9o2859r1/54q9sdxc2xDy0s3n+Ote9F/mzdT73uc8te7wdc/2dYjOfOZKau5lL3eW9PFnGM1nGM1nGM1nGM1nGM1lrfbc/9OpQFPoLMVOYif6R/ub2Yq4YXZmuGBwfXFGTK+ai0F+IY2ePLQtMTI5OxolzJ1quRtFOTacRsNgGAwMDMTAwEBcuXIhisbhsX6lUioGBgSiXy3Ho0KFV2xj/h+PRlepqPn5076PxaHV3rmBx6tSptmuXEnEnTpyIffv8c9gs45ks45ks45ks45ks45ks45mspQ+5bK3tnu9vZo5N8ryv0YrXBavx2qAVrwtaMdffHv/hP/yH+MVf/MXm4+24q+2Nb97Y0vM9DBb3LMZCLET3B92xZ7FzLtDnrk59/nw2v+v27dvxzuV3Ou75e1A67XVhHtrZPH+d62//9m+3uwu70l//9V/Hf/vf/rfNx7t5BYvNfOZIau7Waf/NfFC8lyfLeCbLeCbLeCbLeCbLeCZrre/2U+lUjMyMxFsX3opi7u716Y16I/pyfcsCF61qpsamIpVOxcFDB2NhbiF6B3tbroTRbk2n8Uq9j3Q6va5VLNYKQ7QyNTUVo6OjMTY2FufPn4+Iz1au6O3tbZ57NQf2HYjH9z2+fOPihrrw0NjsG+7evXtj37593rgTYjyTZTyTZTyTZTyTZTyTZTyT4+4B22O75/v+7ew83tdoxeuC1Xht0IrXBT/LXH97dHV1RXd397b2Ye+i536j7sSd2BN7Ys/iHuPXgTr1+fPf7M904vP3oHTi68I8tLN5/jqT52t7PPHEE9s+198pNvPf7KTmbv4dfMZ7ebKMZ7KMZ7KMZ7KMZ7KMZ3Lu991+Kp1quVLF/WqG8kMPvKaTeKXex/0+/CwtrbhWGGI1+Xw+6vV6M1gxMDAQ6XQ6Ll68GBERx48f33CbAAAAAAAAAAAAAADAxglY3Ecmk4np6elV9y+tbpHJZNpqP51Ox/Dw8LJt165di4iIbDbbVpsAAAAAAAAAAAAAAMDGWEf1PrLZbDNE0UqlUomIu6tPJKVcLsfIyEhi7QEAAAAAAAAAAAAAAGsTsLiPs2fPRsTd0EMr165d23C4olwuR1dXV5RKpZb7KpVKjI2NbbyzAAAAAAAAAAAAAABAWwQs7iObzcbAwEBcvny55f6JiYmWYYh6vR5jY2MtQxRLq1608tJLL8X4+HhkMpn2Ow0AAAAAAAAAAAAAAGyIgMU6FIvFmJiYWLGKxejoaJw7d67lChaFQiEuXrwYuVxuxb6BgYHmnyX1ej1yuVwMDAzEuXPnkv9LAAAAAAAAAAAAAAAAq9q33R3oBOl0OmZmZmJsbCzS6XQcOnQo5ubmYnBwMIaHh1vWDAwMRDqdjjNnzrRsb3x8vBm+qNfrERExNjbWMqwBAAAAAAAAAAAAAAA8WAIW65ROpyOfz6/7+Gw2G7VabdX9mUwmisViEl0DAAAAAAAAAAAAAAA2ae92dwAAAAAAAAAAAAAAAGC7WcECAAAAAABgC/xfX/6/4tCBQ9vdDQDoeK8NvbbdXYiIiC9OfnG7uwAAAAAkzAoWAAAAAAAAAAAAAADArmcFCwAAAAAAAIAdZKfcnX+73dlzJ6Jnu3sBAAAAwG5iBQsAAAAAAAAAAAAAAGDXE7AAAAAAAAAAAAAAAAB2PQELAAAAAAAAAAAAAABg1xOwAAAAAAAAAAAAAAAAdj0BCwAAAAAAAAAAAAAAYNcTsAAAAAAAAAAAAAAAAHY9AQsAAAAAAAAAAAAAAGDX27fdHQAAAAAAAAAA1vba0Gvb3YX44uQXt7sLAAAAAA+UgAUdbzNfJN7ZcycWehbixjdvxN7F9hd08UUiAAAAAAAAAAAAAEBna/+KcgAAAAAAAAAAAAAAgIeEgAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu96+7e4AAAAAAAAAAAAA7Xtt6LXt7gIAADwUrGABAAAAAAAAAAAAAADsegIWAAAAAAAAAAAAAADAridgAQAAAAAAAAAAAAAA7Hr7trsDAAAAAADAzlOr1OLK+JWIiGgsNKJRb0RmMBMnz51ctaZRb8RbF96KiIiDhw7GwtxC9A72Rt9w37bXAAAAAAAA3I+ABQAAAAAAsMzsxGzcuHYjhvJDy7YX+gsxk5+Jl+deXlHTqDei0F+IXDEXPdme5vbJ0cm4ce1GDI4PblsNAAAAAADAeuzd7g4AAAAAAAA7R6PeiHcvv9syqDD06lDUKrWYHJ1csa+YK8ZTw08tCz1ERAzlh6JcKEelVNm2GgAAAAAAgPUQsAAAADZtcnTyvhcxzRRm4tLgpZidmI1GvREREbVKLWYnZqOYK0a1XG1Z16g3YmpsKqbGpuLqxasxOToZsxOza56rnRoAAOCu+en5mJ2YjamxqRX7lkIN10vXl22vVWpRKVXi+Ojxlm32nemLq+NXt6UGAAAAAABgvfZtdwcAAIDOtHRh00x+Jqrlajyde3rN4xv1RlRKlRVBjFQ6FblibsXdZ5dqCv2FFfsnRyfjxrUbLe+o204NAADwmQPdByKVTsXBQwdXPSaVTi17PJ2fjoiIrkxXy+O7e7ujXChHo95o1m5VDQAAAAAAwHpZwQIAANiwmcJMlMZKERExMD6w7rrT+dNx4tyJ6Bvui+xINk7nT8dYbSwyA5mWxxdzxXhq+KkV4Yuh/FCUC+WWq2a0UwMAAHymJ9sTY7WxOHnu5Ip9SyvPHR04umz7B+UP1gw0LAUi5qfnt7wGAAAAAABgvaxgAQAAbFj/SH/0j/RHxGcXWK3H02eeXvddZJdWyDidP91yf9+Zvrg6fnVZOKOdGgAAYP1KY6XoynStWBmuVqnFge4Dq9YtfQ6oVWpbXgMAAPCgTb40GX8v9fe2uxsAAEACBCwAAIAdaTo/HRGf3YH2Z3X3dke5UI5GvdG8iKqdGgAA2A1uf3I7Pv3k0+bjn3700w3V1yq1uDJ+JdKZdLw49eKK/bcWbq06D4+IZiiiUW9seQ0AAHDXTGEmZouz0T/aH5mBTKTSqahValEtV+Pdy+/GqfOnVqwOHXF3fv3WhbciIuLgoYOxMLcQvYO90Tfct+q52qkBAADYCQQsAACAHemD8gdrhiCWLqqan55vrkjRTg0AAOwGVy5cie/93veaj2/uvbmuutmJ2bhx7UbUK/VIZ9LRO9jb8rj1Bho+/vDjLa8BAADuatQbUSlVolKqLNueSqciV8ytGq4o9BdW7J8cnYwb126sWN2u3RoAAICdQsACAADYctVyNean5+PI8SMtf7CJuHuH3KW7z7ayFKSoVWqbqgEAgN3g1PlT8ezXn20+fv/99+Nbv/Kt+9b1Dfctu8PspcFLMZOfiaFXh6wKBwAAHeh0/nQszC1EvVKPVHcqjvQfif6R/lWPL+aK8dTwUyu+yx/KD8V413j0DvauuKFROzUAAAA7hYAFAADQdPuT2/HpJ582H//0o58m2n6lVIlapRaZgUz0j/RHtVyNS4OX4uTYyRU/ptxauNVccaKVpSDFvXewbacGAAB2g33798W+/Z/9JPDo44+21U6umIvxrvFo1Bvx4tSLze2pdGpd8+yDhw5ueQ0AAPCZp888ve6wdK1Si0qpEqfzp1vu7zvTF1fHry77fr+dGgAAgJ1EwAIAAGi6cuFKfO/3vtd8fHPvzcTaXgo+nDx3srmtJ9vTvEBrZGZk2d2s1huC+PjDjzdVAwAArF8qnYq+4b6YnZiNSqnSvChqrZXkIu6GoZfql2xVDQAA0J7p/HRExKo3Nuru7Y5yoRyNeqM5B2+nBgAAYCcRsFiner0eFy5ciIiIQ4cOxdzcXAwODsbw8PCm2hwbG4uIiIWFhYiIeOaZZ+LcuXOb7zAAALTh1PlT8ezXn20+fv/99+Nbv/KtRNruG+5ruX3pAq1irhgvz72cyLkAAID2NeqNNVeHS2fSERExNzXXDFh0Zbpifnp+zTaXjluyVTUAAEB7Pih/sGYIYmnePT893/xs0E4NAADATiJgsQ71ej36+/ujWCxGNpttbh8dHY1r167F+Pj4htssl8uRz+djfHw80ul0c/vExET09/fHzMxMEl0HAIAN2bd/X+zb/9nHhEcff3RLznvkmSMxOzEbtUqt+eNKKp1a14oUBw8dbP7/dmoAAIDlxrvufuc9VhtreWHU0nz63rn34ezhqJQqq7ZZq9QiIpZdQLVVNQAAwErVcjXmp+fjyPEjy1aXvletUltzFbmlzwtL8/B2awAAWOknP/lJ27U/+tGP4qtf/WrMzMxEf39/vPLKK/Hkk0+21dZjjz3Wdj+gUwlYrEMul4vh4eFl4YqIiHw+H11dXTE4OBgDAwMbanNsbCympqZWbB8eHo6FhYUYHR2NfD6/qX4DAECnWPpBpVquNgMWa/0AExFxa+HWstp2awAAgOVS6VQc6D6w6rx5Ye7uisxH+o80tx07eyzevvh2VMvVlhdnzV9beXfaraoBAICH2e1Pbsenn3zafPx3//Xv1jy+UqpErVKLzEAm+kf6o1quxqXBS3Fy7OSKufRaK9tFfPad/L3h63ZqAABY6fHHH0+knampqejt7W27fnFxMZF+QCfZu90d2OkqlUqUSqUYHR1tuf/MmTMbXsGiXC5HJrP6DzxnzpyJUqm0oTYBAGAnmxydjG/3fntDNV2ZrmYgopWlH1/u/aGmnRoAAGC57Eg2Xpx6cdX9s6/PRiqdiqfPPN3c1pPticxAJt65/E7rmonZODl2ctm2raoBAICH2ZULV+L3n/j95p//ve9/X/XYpe/GT5472Qws92R7IlfMxaXBS1EtV5cdv94QxMcffrypGgAAgJ1EwOI+llaRWC0Q0dvbG6VSKer1+rrbXAptrGZhYSHS6fRGugkAADtadbq6ruDDvXegPZw9vOYPMUvLh997R612agAAgOUGxwfjyviVqJQqK/YVc8WIiPjSG19ascJFrpiL9ybeW3FR1uToZJw4d6LlPHyragAA4GF16vyp+MbNbzT//C+z/8uqx/YN90XfcN+K7al0KvqG+5rzfQAAtt9HH33U9p/BwcF45JFHIiLikUceicHBwbbbgp2o8kYlSt8oRel8Kcp/XI4P/vqDRNvfl2hrD6Fyubxm2GEpeDE9PR0DAwPrajObzUalUolcLhfF4soPp/l8Ps6ePdtWfwEAYCc6OnA0RsZHVt0/f20+UunUspUljp09Fm9ffDuq5eqy4MW9NT974VQ7NQAAwEpD+aGYnZiNYq4Yqe5UNBYa0ag34nD2cHzt+tdWhCsi7l6UNTIzElNjU5FKp+LgoYOxMLcQvYO9LS/i2soaAAB4WO3bvy/27f/s8p+f+/HPtdXOkWeOxOzEbNQqteZ39al0al0rUhw8dLD5/9upAQBgpccee6zt2kuXLsWXv/zluHbtWjzzzDPxJ3/yJ5tqD7baxUMX49yH51bdn3k+E5nnM9G42YhbC7eiUqrEdH46BscHY/8v7N/0+QUs7qNSqUR3d/eq+5fCF5XKyjt5rSaTycTIyEgUCoXo7e2NfD7fDGcsrYYxPj6+qX4DAMBOcuzssZgpzET/SP+KfbVKLWYnZiNXzC3b3pPticxAJt65/E7LsMTsxGy8OPXipmsAAIDWVru77VpS6VQM5Yd2ZA0AALC6pRB1tVxtBiwOdB9Ys2Zp5ep7A9jt1AAAkKwnn3wy/vzP/3y7uwFtW1xcXNdxqSdSkXoiFf0v9UfjZiOmxqbi9B+d3vT5BSzuY2FhoblKRStL4Yt6vb6hdvP5fPT29sbY2FgMDg7GyMhI9Pb2RjabjXw+f9/6W7dvxUe3P1t659G9j8ajjzy6oT4QsbhnMRZjMRb3LMaduNN2O7dv306wV53r9u3bcefOHeOREOOZLOOZLOOZLOOZLOOZrDt37j9HqlVqERFr3pGqJ9sTlVIlrl68GifPnVxWW+gvxIlzJ1peuJUr5qLQX4hjZ48tC0xMjk7GiXMnWq5G0U7NTrPd833/fnYW72u04nXBarw2aMXrglbWM9cneR9/+nHsv/3Z3bN8t98Zkvotge3h+etsnr+dZyNzygc5D72zZ2e8Hh7mObbPEZ1rtedscnQyrpeux8tzL6+7ra5MV8xPz6+6f+l3gXtXp26n5mGw3d/rPyxcx5Ms7+XJMp7JMp7JMp7JMp7JMp7J2i3f7e/Zs2fDNaknkgtxC1jcx3qDEx9++OGG2z537lyk0+kYHR2NQqEQ6XQ6isXiumrH/mps2eN/nP3H8VvHf2vDfdjtFmMxbv38rViIhdgTG//HuOTKlSsJ9qpz3blzJ95///2IiNi7d+8296bzGc9kGc9kGc9kGc9kGc9krTbPnZ2YjZn8TERE84eSyZcmm9v6cn0rVqs4ee5kVEqVmBydjMZCIxr1RqTSqfjSG19qudpExN07WI3MjMTU2FSk0qk4eOhgLMwtRO9g76p30m2nZqfZ7vm++e3O4n2NVrwuWI3XBq14XdBKO99ps3nbPdenPUn9lsD28Px1Ns/fzrOR740e5Dx0oWch0fba9TB/j+ZzROdaWGj976M6XW2uHtHKUvDh3u/rD2cPR6VUWbVm6QZM997YqJ2ah4G5fjJcx5Ms7+XJMp7JMp7JMp7JMp7JMp7JWuu7/ZnCTMwWZ6N/tD8yA5lIpVNRq9SiWq7Gu5ffjVPnT7W8PqdRb8RbF96KiFj3NTbt1DxojZuNqE5XE2lLwGIbjY2NRW9vbywuLsbY2FhcvHixuZrF/VaxGP+H49GV+izN/+jeR+PRquT7Ri3uWYyFWIjuD7pjz2L7H8xOnTqVYK8611LC8MSJE7Fvn7eXzTKeyTKeyTKeyTKeyTKeyVr6kPuz+ob72vpQlBnIbPhHk1Q6FUP5oQdes5Ns93zf/HZn8b5GK14XrMZrg1a8Lmhltbk+D9Z2z/VpT1K/JbA9PH+dzfO382zke6MHOQ+98c0bibbXrof5ezSfIzrX3/7t37bcfnTgaIyMj6xaN39tPlLp1LKVJY6dPRZvX3w7quVqywux5q/Nr/jOv52ah4G5fjJcx5Ms7+XJMp7JMp7JMp7JMp7JMp7JWuu7/Ua9EZVSZUXgOZVORa6YWzVcUegvrNg/OToZN67diMHxwURqWqn/sN5y++Li4t39/6kesbh2G416I24t3IpquRpXLlyJvjPJBDy8Uu8jnU6vaxWLQ4cObajdwcHBGBsbi4GBgYiIGB8fj7Nnz0Yul4tCoRALCwtrrmZxYN+BeHzf48s33udFxEp34k7siT2xZ3FP7F1sPxnnTf8ze/fujX379hmThBjPZBnPZBnPZBnPZBnP5Lh7wPbY7vm+fzs7j/c1WvG6YDVeG7TidcHPMtffHgcfOei7/Q6U1G8JbA/PX2fz/O08G51PPqh56E55PTzs82ufIzrTas/XsbPHYqYws2L16Yi7q0rMTsxGrphbtr0n2xOZgUy8c/mdlhdjzU7MxotTL2665mGw3d/rPyxcx5M87+XJMp7JMp7JMp7JMp7JMp7Jud93+6fzp2NhbiHqlXqkulNxpP9Iy88AS4q5Yjw1/NSKuftQfijGu8ajd7B3RUC6nZpW5mfmY/7afNQqtaiUKvHJzU+W7f925tv3bWPJ4uJiZAYycfqPTq+7Zi1eqffR3d295v6lpRXT6fS627x48WJks9lmuGJJNpuNubm5GB0djUKhEKVSacUxAAAAAAAAAACwET3ZnqiUKnH14tU4ee5kc3utUotCfyFOnDvRcuXqXDEXhf5CHDt7bMXdaU+cO9Hywql2agAAgM17+szTkUqn1nXsUrDhdL51KKHvTF9cHb+6bP7eTs1q+l7oi74XPvsMUi1XozRWisobldizZ0889cJT6/p7dGW6IjOYiczzyX3OELC4j0wmE9PT06vuX1rdIpNZ/5OSz+djZmZmzf3T09MxNTUlYAEAAAAAAAAAwKadPHcyKqVKTI5ORmOhEY16I1LpVHzpjS+1XG0iIiKVTsXIzEhMjU1FKp2Kg4cOxsLcQvQO9rYMZLRbAwAAbK3p/N3r47syXS33d/d2R7lQbn5uaLdmvXqyPfHi1IsxOToZ7028F7nXc/cvekAELO4jm81GqVRadX+lUomI2FAQolKp3HfFi9HR0TVDGAAAAAAAAAAAsBGZgcyGV5BIpVMxlB964DUAAMDW+aD8wZohiKUQxfz0fPMzRDs1GzWUH4rqTLWt2qTs3dazd4CzZ89GRES5XG65/9q1axteZSKTyTSDGauZm5uL/v7+DbULAAAAAAAAAAAAAMDuVS1XY6YwE9Xy6kGFWqUWB7oPrLp/KUhRq9Q2VdOOU+dPtVVXOr/6ogobIWBxH9lsNgYGBuLy5cst909MTMTY2NiK7fV6PcbGxlqufjE8PNyy5t7acrkcZ86cab/jAAAAAAAAAAAAAAB0pNuf3I5PfvxJ889PP/rpmsdXSpW4evFqRET0j9y90f+lwUtRKa1cGODWwq01V6NYClI06o1N1bSj74W+turKhdYLKmzUvkRaecgVi8Xo7++Ps2fPRjabbW4fHR2Nc+fOtVzBolAoxMWLF6NQKESttjyFMz4+HrlcLkZHR2N8fDzS6XRzX7lcjrGxsRXbAQAAAAAAAAAAAADYHa5cuBLf+73vNR/f3Htz1WO7Ml0REXHy3Mnmtp5sT+SKuRjvGo+RmZHoyfY09603BPHxhx9vqmaz6j+sr2tFjGq5uulgxxIBi3VIp9MxMzMTY2NjkU6n49ChQzE3NxeDg4MxPDzcsmZgYCDS6fSqq1AUi8UolUrx0ksvLdueyWRiamoq8b8DAAAAAAAAAAAAAMB6/eQnP2m79kc/+lGMjo7Gv/23/zZ+7dd+LfL5fDz55JNttfXYY4+13Y9Odur8qXj26882H7///vvxrV/5Vstj+4Zbr/qQSqeib7gvirlivDz38gPp54NQ/uNylMZKiYUmNkLAYp3S6XTk8/l1H5/NZlesXPGzBgYGWq5+AQAAAAAAAAAAAACwnR5//PFE2imVStHb29t2/eLiYiL96DT79u+Lffs/u9z/0ccfbaudI88cidmJ2ahVas2VLlLp1LrCCwcPHWz+/3Zq2lF5oxKTI5PRlemKvlxfpNKp+9ZUZ6px/c3rmzrvEgELAAAAAAAAAAAAAAB4CC0FFKrlajNgcaD7wJo1txZuLattt6Ydb3zjjcgVc9H3QutVOVZz8dDFTZ13iYAFAAAAAAAAAAAAAADLfPTRR23XfuELX4g333wzPv3003jkkUfiueeei+985zsJ9o4lk6OTcb10PV6ee3ndNV2Zrpifnl91/9JKFUuBjHZr2pHqSm04XBERkT6a3tR5lwhYAAAAAAAAAAAAAACwzGOPPdZ27aVLl+K3f/u34/vf/348++yz8a//9b/eVHusrjpdba4e0cpS8KEn29Pcdjh7OCqlyqo1tUotIiIyA5lN1bTj3n5uxMj0yKbOu2RvIq0AAAAAAAAAAAAAAEBEPPnkk/Hd7343/u//+/+O7373u/Hkk09ud5ceWkcHjsZYbWzV/fPX5iOVTi1bWeLY2WMREVEtV1et+dmgRDs17VgKhGwXK1gAAAAAAAAAAGzQa0OvbXcXHpg7e+7EQs9C3Pjmjdi7eP97d35x8otb0CsAAABaOXb2WMwUZqJ/pH/FvlqlFrMTs5Er5pZt78n2RGYgE+9cfqflihGzE7Px4tSLm65pR1+uL977s/fiqX/y1IbqSudLMXBhYNPnt4IFAAAAAAAAAAAAAAB0oJ5sTzTqjbh68eqy7bVKLQr9hThx7kT0DfetqMsVc/HexHsrVqSYHJ2ME+dOtFyNop2ajco8n4mFuYV478/e21BduVDe9LkjrGABAAAAAAAAAAAAAAAd6+S5k1EpVWJydDIaC41o1BuRSqfiS298qeVqExERqXQqRmZGYmpsKlLpVBw8dDAW5haid7C3ZSCj3ZqNqv+wHk/nno53i+/Gq8+8GkcHjkZ3b3d0ZbpWramWq9GoNxI5v4AFAAAAAAAAAAAAAAB0sMxAZsMrSKTSqRjKDz3wmo3IZ/Pxyc1PIiJicXEx5mfmY8+ePQ/sfD9LwAIAAAAAAAAAAAAAANh2B7oPRETE02eejlQ6ta6a6kw1rr95PZHzC1gAAAAAAAAAAAAAAADbrivTFae+cSqyX8luqO7ioYuJnH9vIq0AAAAAAAAAAAAAAABsQlemK7oyXRuuSx9NJ3J+K1gAAAAAAAAAAAAAAADb7vQrp9uqG5keSeT8VrAAAAAAAAAAAAAAAAB2PQELAAAAAAAAAAAAAACgIzVuNuLtP3w7kbYELAAAAAAAAAAAAAAAgI5Uq9Ti3cvvJtLWvkRaAQAAAAAAAAAAAAAA2ITrb17fcM3V8avRqDcSOb+ABQAAAAAAAAAAAAAAsO1eH349Prn5yYZqFhcX40DXgUTOL2ABAAAAAAAAAAAAAABsuwPdd4MST595OlLpVMtjGvVG1Cq1mJ+ej8xAJo48cySx8wtYAAAAAAAAAAD39drQa+s+9s6eO7HQsxA3vnkj9i7ufYC9AgAAAB4mXZmuOPWNU5H9SnZdx1/9g6txoOvAuo+/H99iAAAAAAAAAAAAAAAA264r0xVdma51H3/yd09GqisV19+8nsj5rWABAAAAAAAAAEDbNrK6yYPyxckvbncXAAAASMDpV05vuKbvhb4onS/F0eeObvr8VrAAAAAAAAAAAAAAAAB2PQELAAAAAAAAAAAAAACgY9Ur9UTaEbAAAAAAAAAAAAAAAAA6UuNmI27VbiXS1r5EWgEAAAAAAAAAAAAAANiE629eX/exjXojapVazORnon+0P5HzC1gAAAAAAAAAAAAAAETErVu34ic/+Uns27fxy6x/9KMfxVe/+tWYmZmJ/v7+eOWVV+LJJ5/ccDuPPfbYhmvgYfH68Ovxyc1P1n384uJiZAYyceJfnEjk/AIWAAAAAAAAAAAAAAAR8Vu/9VuJtDM1NRW9vb1t1S4uLibSh4fFT37yk7bqkgq8RAi9bKUD3QciIuLpM09HKp1a+9hDB6In2xOZ5zOJnV/AAhLw2tBr292FiIj44uQXt7sLAAAAAAAAAAAAAJCYxx9/fNNtbCbwEiH0spW6Ml1x6hunIvuV7LacX8ACAAAAAAAAAAAAACAi/p//5/+JEydOxL59G7/M+gtf+EK8+eab8emnn8YjjzwSzz33XHznO995AL2Eh1dXpiu6Ml3bdn4BCwAAAAAAAAAAAACAiDhw4EA89thjbQUsLl26FF/+8pfj2rVr8cwzz8Sf/MmfxGOPPfYAerm7fPTRR23VCbx0ptOvnN7W8wtYAAAAAAAAAAAAAABs0pNPPhl//ud/vt3deOi0G1IReKEdAhYAAAAAAAAAAAAAADxUBF4eDvUf1mM6Px0flD+IWwu34kD3gUhn0nF89Hgc/tzhxM8nYAEAAAAAAAAAAAAAAOwopfOlePvi27G4uLhiX7lQjr5cXwwVhmL/L+xP7JwCFgAAAAAAAAAAAAAAwI7QuNmIQn8hbi3ciqdeeCqOPHMkUunU3X31Rtz68FZUZ6rx7uvvRqVUia9d/1rs//lkQhYCFgAAAAAAAAAAAAAAwI5QzBUjM5CJ06+cXvO4xs1GTJ2bij997k/jpWsvJXJuAQsAAAAAAGCZarka0/npaCw0olquRiqdiv7R/ugf6W95/ExhJmaLs9E/2h+ZgUyk0qmoVWpRLVfj3cvvxqnzp6In27OirlFvxFsX3oqIiIOHDsbC3EL0DvZG33Dfqn1rpwYAAAAAADbjJz/5Sdu1P/rRj+KrX/1qzMzMRH9/f7zyyivx5JNPbridjz/+uO0+dJKZV2eiK9N133BFRETqiVQM5Yfiu1/9bpT/uBzZr2Q3fX4BCwAAAAAAoGmmMBMREUP5oea2SqkSxVwxro5fjZGZkeYy3Esa9UZUSpWolCrLtqfSqcgVc6uGKwr9hRX7J0cn48a1GzE4PphIDQAAAAAAbNbjjz+eSDtTU1PR29ubSFsPq+ul6zF8eXhDNadfOR3/x2/+H4kELPZuugXaMjExsd1dAAAAAACAZWqVWjTqjRUrVWQGMvGlN74UtUotirliy9rT+dNx4tyJ6Bvui+xINk7nT8dYbSwyA5mWxxdzxXhq+KkV4Yuh/FCUC+UVYY12awAAAAAAgM6R6krd/6AW0kfTiZzfChbboF6vRy6Xi3w+H2fOnIl0Or3dXQIAgE2ZHJ2Mp3NPr3rh1JJquRrT+eloLDSiWq5GKp2K/tH+FRdvLZkpzMRscTb6R/sjM5CJVDoVtUotquVqvHv53Th1/tSqd8J968JbERFx8NDBWJhbiN7B3ugb7tv8XxYAAB5i0/np+PXzv95yX0+2JzIDmaiUKlGr1KIr07Vs/9Nnnl6xssVqapVaVEqVOJ1vvbx335m+uDp+ddlnjHZqAAAAAAAgCR999FHbtV/4whfizTffjE8//TQeeeSReO655+I73/nOhtv5T//pP8XTTz/ddj86xp4trvsZAhbrVK/X48KFCxERcejQoZibm4vBwcEYHt7Y8iMREZXK3TtojY6Oxujo6JrHFovFts4BAAAP2tLFTTP5maiWq/F0bu0PcDOFmYi4e2fZJZVSJYq5YlwdvxojMyMrLsZq1BtRKVVW3IU2lU5FrphbNVxR6C+s2D85Ohk3rt2IwfHBDf9dAQBgt7heuh7lQjm+dv1rLcMSh7OHo1KqRLVcXRGw2Ijp/HRExKptdPd2R7lQjka90exHOzUAAAAAAJCExx57rO3aS5cuxZe//OW4du1aPPPMM/Enf/InbbV38ODBtvvQSRoLjbbq6pV6IucXsFiHer0e/f39USwWI5vNNrePjo7GtWvXYnx8fEPtVSqVyGQykc1mo7u7u+UxCwsLUalUhCsAANiRZgozUZmqRGYwEwPjA3Fp8NKax9cqtWjUG3Hy3Mll2zMDmfjSG1+KQn8hirlivDj14ora0/nTsTC3EPVKPVLdqTjSf2TVFS8iIoq5Yjw1/NSK8MVQfijGu8ajd7DXHW0BAGAVB7oPRLVcjVql1jLQnJQPyh+sGYJYClHMT8835+/t1AAAAAAAwHZ78skn48///M+3uxsdI300He9957146gtPrbvm7T98Ow5//nAi5xewWIdcLhfDw8PLwhUREfl8Prq6umJwcDAGBgbW3d61a9diamoqMpnVf+AZGxvbcHADAAC2Sv9IfzPkUC1X73v8dH46fv38r7fc15PticxAJiqlStQqtRV3o336zNPrvvvs0qoap/OnW+7vO9MXV8evutgKAABW8eLUiy3n5UuW7v60VviiWq7G/PR8HDl+ZNXjapVaHOg+sGobS58BapXapmoAAAAAAIDOMvD7A/Htv//tiIh1hSxmXp2JKxeuxLkPzyVyfgGL+6hUKlEqlSKfz7fcf+bMmRgfH99QwCIi1gxXlMvl6O3tXfOYT25/Eo3bG1/+5OYnN+Nf/cd/FddvXo+jTxyNf/Yr/yye2P/EhtuJiEjts8Q6AADrc710PcqFcnzt+tdahiUOZw9HpVSJarm66oVc6zGdn46IWLWN7t7uKBfK0ag31h3aAACAh8HtT27Hp5982nz8049+uuqxa83JZydmoyfb0/KYpdB0ZiAT/SP9US1X49LgpTg5dnJFyPnWwq01z7MUpGjUP/sevJ0aAAAAAACg8+Rez0XheCF6f6M3+ob74sjxI81rfRr1RtxauBVzU3Px3sR7UavU4qXplxI7t4DFfSwFK1YLO/T29kahUIh6vR7pdHpdbY6Ojt73nKsFOpb87l/97rrOtZZ3/ss78c//8p+3Xf9/nv4/N90HAAB2hwPdB6JarkatUlvzTreb9UH5gzWDE0sXY81Pz1vFAgCAXeXKhSvxvd/7XvPxzb03N9zG1YtXIyJi6NWhFfuW5tonz51sbuvJ9kSumIvxrvEYmRlZ9llgvSGIjz/8eFM1AAAAAABA5+nJ9sTI9EhMvjQZkyOTsWfPnhXHLC4uRlemK/7pX/zT6Pl8ctcjCVjcR7lcXjM4sRS8mJ6eXvcqFmutTDE2Nhbj4+Mb6iMAACRlI3e13YgXp16MWqW26t1m65V6RMSa4YtquRrz0/Nx5PiRVY+rVWrNu9a2shS+qFVq6+w5AAA8HE6dPxXPfv3Z5uP3338/vvUr31p3fbVcjdJYKXLFXMv5eN9wX8u6VDoVfcN9UcwV4+W5lzfecQAAAAAAYFfqyfbEyMxIzBRmYiY/E9UfVJv7ujJd0T/aHyd/9+QaLbRHwOI+KpVKdHd3r7p/KXxRqVQ2fa5yuRy9vb3rWgnjD/7hH8Sh1KENn+Ob09+M2Q9n487indi7Z2/0HeqLrx//ehu9BQDgYZTEXW1Xs1q4IiJidmI2erI9LY+plCpRq9QiM5CJ/pH+qJarcWnwUpwcO7liFYpbC7fWPM9S+GK9d74FAICHxb79+2Lf/s9+Enj08Uc3VF/MFeN0/vSqQYq1HHnmSMxOzC4LXafSqXXNyw8eOtj8/+3UAAAAAAAAna1/pD/6R/q37HwCFvexsLCw5ooTS+GLer2+6XNduHAhisXiuo69E3fidtxuPn5076Px6CP3/0Hsd7K/E/kf5KNSr0QmnYnRz4/Gzz36c231907caatuJ1ncsxiLsRiLexYfir/P7du373/QAz7/nTt3tr0fDwvjmSzjmSzjmSzjmSzjuTn//e/+9/HMy880H//n//yf41ufW/9dbdtx9eLViIgYenVoxb6li69Onvssbd6T7YlcMRfjXeMxMjOy7O656w1OfPzhx5vp8gN36/at+Oj2R83H653vJ8W/n53F+xqteF2wGq8NWvG6oJU7d9b/fWgxV4z+0fZ/vFhaSa5arjbn+GutPBdxNzx9b227NTvNx59+HPtv728+3uq5Pu152H5L2G08f53N89fZPH+drROfP5957jIO22O7v9d/WCT13uPfwV2+E0qW8UyW8UyW8UyW8UyW8UzWRr7bp30CFvex3uDEhx9+uKnzTExMrBnk+FljfzW27PE/zv7j+K3jv7Wu2q/88lea///T+DQWYmHd533YLMZi3Pr5W7EQC7En9mx3dzbtypUr23r+O3fuxPvvvx8REXv37t3WvjwMjGeyjGeyjGeyjGeyjGeyNjvPvZ9quRqlsVLkirllQYklq90dN5VORd9wXxRzxXh57uUH2sftsJn5fhK2e17Jct7XaMXrgtV4bdCK1wWtrHeuPzU2FUeeObIs9PyzJkcn43rp+obm5l2Zrpifnl91/1J4+t4V6tqp2Wm2e65Pex623xJ2G89fZ/P8dTbPX2frxOfP95p3LSzs3mtAtpO5fjKSeu/xfnCX74SSZTyTZTyTZTyTZTyTZTyT9aCv49lpZv/NbJQL5bhVuxW513OR/uX0sv2167UojZXiF3/1F+PEvziR2HkFLHaICxcuxKuvvrru48f/4Xh0pT77kejRvY/Go1XJ941a3LMYC7EQ3R90x57FzvhSaC2nTp3a1vMvJQxPnDgR+/Z5e9ks45ks45ks45ks45ks45mspQ+5D0oxV4zT+dOrBinWcuSZIzE7MRu1Sq15AVUqnVrXKhYHDx3c8Pm20nbP97d7Xsly3tdoxeuC1Xht0IrXBa2sZ64/U5iJ7t7ulitXNOqNz1ammK42V49oZWmOfm+o+nD2cFRKlVVrapVaRERkBj67MVE7NTvNds/1ac/D9lvCbuP562yev87m+etsnfj8+V7zrr/927/d7i7sSub6yUjqvcf7wV2+E0qW8UyW8UyW8UyW8UyW8UzWg76OZycpnS/FkeNH4sa1G/HJzU+iWq6uCFh0He2K3Ou5qLxRidL5UgxcGEjk3F6p95FOp9e1isWhQ4faPkelUolyuRzZbHbdNQf2HYjH9z2+fONi213Yte7EndgTe2LP4p7Yu9j5ybid8B+fvXv3xr59+3ZEXx4GxjNZxjNZxjNZxjNZxjM5D/LuAcVcMfpH+1terLUezYu5ytVmwOJA94E1a5Yu+lqq3am2e77v387O432NVrwuWI3XBq14XfCz7jfXn52YjYhoOV+vVWpRLVebQemjA0djZHxk1bbmr81HKp1atrLEsbPH4u2Lb0e1XG25mt38tfkVQYl2anaag48c9N1+B3rYfkvYbTx/nc3z19k8f52tE58/n3fuMg7bY7u/139YJPXe49/BZ3wnlCzjmSzjmSzjmSzjmSzjmZzdsgrI9TevR1emK/pe6ItYvLtSxVP/5KlVj888f/e3gff+7L01j1uv3THKm9Dd3b3m/qWlFdPpdNvnyOfzkcns7B99AAAgSVNjU3HkmSNx8tzJVY+ZHJ2Mb/d+e0PtdmW61nXn3Hsv7AIAAJarlu+uSLFaGLpSqiwLOBw7eyxmCjMtj61VajE7MRtDrw4t296T7YnMQCbeufxOy7rZidk4OXZy0zUAAAAAAEBnebf4bvS/dPc3ir7hvjj5u/f/7j/zfCbmpuYSOf9DGQV68803o1KpRCaTiePHj8cv/MIvtN1WJpOJ6enpVfcvrW6xmYBEqVQSsAAAYNeYKcxEd293y4u1GvXGZytTTFfXFZa498Kuw9nDUSlVVq2pVWoRETv+rrYAALBdapVaFHPFODpwNOZH51fsbyw0olKqxFhtrLmtJ9sTlVIlrl68uixEXavUotBfiBPnTjRXu7hXrpiLQn8hjp09tmxePzk6GSfOnWg5b2+nBgAAAAAA6CDbvBpcxwUsvvGNb8TNmzeXbfujP/qjiIi4efNmDAwMRLlcjsXFxchkMlGr1WJiYiL+0T/6R22dL5vNRqlUWnV/pXL34q2BgYG22o+IKJfLMTw83HY9AAB0itmJ2YiIluGKWqUW1XK1eeHV0YGjMTI+smpb89fmI5VOLVuN4tjZY/H2xbejWq4uu9jq3hoXXAEAwOouDV6KWqUWtUJt1WNarQh38tzJqJQqMTk6GY2FRjM8/aU3vtRybh4RkUqnYmRmJKbGpiKVTsXBQwdjYW4hegd7WwYy2q0BAAAAAAA6R6PWaKuuXqkncv6OC1iMjo5Gb29vjI6OxsjISHz+859v7svlcjEzMxPnzp2L3//934+IuytMnDlzJo4ePRq//Mu/vOHznT17Ni5evBjlcjmy2eyK/deuXdt0uCIioru7u+02AACgE1TLd1ekaBWuiIiolCrLwg/Hzh6LmcLMqmGM2YnZyBVzy7b3ZHsiM5CJdy6/0/IirtmJ2Xhx6sVN/k0AAODh9fLcy23XZgYyGw40p9KpGMoPPfAaAAAAAACgMyzMLWy4pnGzER9/+HEi5++4gMUPfvCDKBaL8cILLyzb/m/+zb+JUqkUuVyuGa6IiEin0/H666/H+fPnmytdbEQ2m42BgYG4fPlyy4DFxMRETE1Nrdher9fjwoULMTg4uGYAY2Fh4y8AAADYSWqVu3e2bdRXT4/XKrUo5opxdOBozI/Or9jfWGhEpVSJsdpYc1tPticqpUpcvXg1Tp47uaytQn8hTpw70fIOtbliLgr9hTh29tiykMXk6GScOHfCChYAAAAAAPAzJkcn49TYqZYr1kXc/Q3grQtvRUSseyW5dmoAAACePvN0TJydiOHLw+uumTgzEcf+x2OJnL/jAhbXrl2LCxcurNh++fLl2LNnT5w/f37FvnQ6HU888UTb5ywWi9Hf3x9nz55dFrIYHR2Nc+fOtQxQFAqFuHjxYhQKhajVVl9KvVKpNPsIAACdYnZiNmbyMxERMT99NzAx+dJkc1tfrm/ZyhOXBi9FrVKLWmH1uXGrH21OnjsZlVIlJkcno7HQiEa9Eal0Kr70xpdarlARcfdutiMzIzE1NhWpdMqPNgAAAAAAsIZquRrlQjmOjx5vub9Rb0ShvxC5Ym7FjY1uXLsRg+ODidQAAABE3L1e6Nt//9sx8T9OxNCrQ7H/5/eveuwHf/1BTL40GY16I078ixOJnL/jAhaLi4stt5dKpYiI+NznPtdy/549e9o+ZzqdjpmZmRgbG4t0Oh2HDh2Kubm5GBwcjOHh1smYgYGBSKfTcebMmTXbPn78eKTT6XjmmWfa7h8AAGy1vuG+DYUVXp57ue1zZQYyG151IpVOxVB+qO1zAgAAAADAblEaK625v5grxlPDT6248dFQfijGu8ajd7B3xff47dQAAAAsefEvXoxv//1vx2xxNjKDd68dSqVTcaD7QNxauBULcwtxvXQ9quVqLC4uxmh5NLFzd1zA4tChQyu2Xb9+Per1evT397eouKter2/qvOl0OvL5/LqPz2aza65csdHjAAAAAAAAAAAgSTOFmejL9UWlVGm5v1apRaVUidP50y33953pi6vjV5eFJdqpAQAAuFdXpivGFsaimCvG3F/MRWVq5WeWxcXFyAxk4nT+dHQd7Urs3B0XsGi1EsXExERE3F01YjWrrXwBAAAAAAAAAEBne23ote3uQkREfHHyi9vdhXWrVe7eELQrs/qFSNP56TWP6e7tjnKhHI16I1LpVNs1AAAAPyuVTsWLUy9G5Y1KzBZnY356vvk5oivTFf2j/ZF5PvngdscFLP7Lf/kv8eMf/zh+4Rd+obktn8/Hnj174uzZsy1rzp8/H6OjyS37AQAAAAAAAAAAnWw6Px2D44Orrl4REfFB+YM1QxBLIYr56fnmihTt1AAPxn987T/GjW/eiL2Le7e1H50UPgMAdp7M85kHEqRYzfbOnNpw/vz5yOVy8e///b+Pv/7rv46zZ89GpVKJ4eHh+NznPrfs2L/+67+O3/zN34xDhw7F5z//+e3pMAAAAAAAAAAA7CCzE7NxfPT4fY+rVWpxoPvAqvuXghRLq2G0WwMAALBTdNwKFk888URcuHAhXnjhhahU7iboh4eH4/Lly81jvvrVr0apVGruL5VK8eGHH8aFCxe2pc8AAAAAAAAAAJC025/cjk8/+bT5+O/+69/dt6ZRb0StUou+4b77Hntr4VZzxYlWloIUjXpjUzUAAAA7RccFLCIistls/M3f/E3cvHkznnjiiRX7x8bGYmxsbNm27u7ureoeAAAAAAAAAAA8cFcuXInv/d73mo9vxs371rx14a0YHB9cV/vrDUF8/OHHm6oBAADYKToyYLFkKVzx4x//OBYWFuKXf/mXIyLi6NGj29grAAAAAAAAAAB48E6dPxXPfv3Z5uMbN27Et/q+terxlVIlegd7t6JrADvKa0Ovbar+zp47sdCzEDe+eSP2Lu5tu50vTn5xU/0AAB68jg1Y/PCHP4zx8fEoFAoREbFnz564fft2c//169djbGwsfuM3fiO+8pWvbFc3AQAAAAAAAADggdi3f1/s2//Z5T8/9+OfW/P4uam5da9eERGRSqfWtSLFwUMHN1UDAAA8OJOjk3Fq7FR0Zbpa7m/UG/HWhbci4u48fWFuIXoHe6NvuG/VNtup6RQdGbB48803Y2BgICIiMplMZDKZuH79+rJjjh49Gq+//nq88cYb8Yd/+IfxL/7Fv9iOrgIAAAAAAAAAwLa7evFq/Pr5X99QzYHuA2vuv7VwKyLuhio2UwMAADwY1XI1yoVyHB893nJ/o96IQn8hcsVc9GR7mtsnRyfjxrUbLQPa7dR0kvbXqtom169fj+Hh4RgZGYm5ubn4m7/5m/iLv/iLeOGFF1oe//zzz8fRo0fjzTff3OKeAgAAAAAAAADA9qtVapFKpzYcaujKdDUDEa0srVRx751w26kBAAAejNJYac39xVwxnhp+allQIiJiKD8U5UI5KqVKIjWdpONWsPjGN74R4+Pj8dJLLy3bvmfPnlVrXnjhhfid3/mdeO655x509wAAAAAAAAAAYEeplqsxW5yN2eLsin21Si0iIiZfmmyuPvHi1IsREXE4e3jNi6OWajMDmea2dmoAAIDkzRRmoi/Xt+r8vFapRaVUidP50y33953pi6vjV5fN3dup6TQdF7Co1WorwhXrsbi4+AB6AwAAAAAAAAAAO1vfcF/0Dfe13Dc7MRvFXDGGXh1acQfaY2ePxdsX345qubpiX0TE/LX5FRdOtVMDAAAkaynYvNbKcdP56TWP6e7tjnKhHI16o7kaXjs1nWbvdndgozKZ9j5g1Wq1hHsCAAAAAAAAAAAPr55sT2QGMvHO5Xda7p+dmI2TYyc3XQMAACRrOj8d/SP9ax7zQfmDNUMQSyGK+en5TdV0mo4LWLQblKhUVl96EAAAAAAAAAAAdqOlO9su/e/PyhVz8d7Ee1EtV5dtnxydjBPnTrRcjaKdGgAAIBmzE7NxfPT4fY+rVWpxoPvAqvuXghT3flZop6bT7NvuDmxUV1dX/OVf/mX8o3/0j9Zdc/78+Xj++ecfYK8AAAAAAAAAAKBzTI5ORr1Sb95ZdvKlyZjJz8Th7OEYHB9sHpdKp2JkZiSmxqYilU7FwUMHY2FuIXoHe6NvuK9l2+3UAAAAy93+5HZ8+smnzcc//ein961p1BtRq9TWNe++tXCrueJEK0tBika9samarVI6X4qBCwObbqfjAhbnzp2L3/iN34hXX311XSGLP/zDP4yJiYn4//6//28LegcAAAAAAAAAADvfUH5o3cem0qkNHd9uDQAA8JkrF67E937ve83HN/fevG/NWxfeWhaYXst6QxAff/jxpmq2SrlQ3p0Bi0wmE6+88ko8//zzcfz48Th79mx8/vOfj3q9Hj/84Q+jXq/HwsJClMvlyOfzUalUYmZmZru7DQAAAAAAAAAAAAAA63Lq/Kl49uvPNh+///778a1f+daqx1dKlegd7N2Krm2Z+g/rUavU7ntctVxNbNWMjgtYREQMDAzE66+/HiMjI3Hu3Lnm9kKh0Pz/i4uLkclkYnp6Oj73uc9tQy8BAAAAAAAAAAAAAGDj9u3fF/v2f3a5/6OPP7rm8XNTc+tevSLi7qpz6wklHDx0cFM17Sj/cTlKY6XEQhMb0ZEBi4iI4eHhGB4ejosXL8bly5fjBz/4QXNfJpOJ0dHR+N3f/d1t7CEAAAAAAAAAAAAAADxYVy9ejV8//+sbqjnQfWDN/bcWbkXE3VDFZmo2qvJGJSZHJqMr0xV9ub51tVWdqcb1N6+3fc57dWzAYsm5c+eWrWIBAAAAAAAAAAAAAAC7Qa1Si1Q6teFQQ1emK+an51fdv7R6RFema1M1G/XGN96IXDEXfS/0baju4qGLbZ/zXh0fsAAAAAAAAAAAAAAAgN2oWq7GbHE2ZouzK/bVKrWIiJh8abK5+sSLUy9GRMTh7OGolCqrtrtUmxnINLe1U7NRqa7UhsMVERHpo+m2z3mvXROwOH/+fFy4cGG7uwEAAAAAAAAAAAAAERHxk5/8pO3aH/3oRzE6Ohr/9t/+2/i1X/u1yOfz8eSTT7bV1mOPPdZ2P4Dt1TfcF33DrQMJsxOzUcwVY+jVoejJ9izbd+zssXj74ttRLVdX7IuImL82vyIo0U7NRrVqdz1Gpkc2dd4luyZgUSgUBCwAAAAAAAAAAAAA2DEef/zxRNoplUrR29vbdv3i4mIi/QA6R0+2JzIDmXjn8jstQw2zE7PN1S42U7NRjXpjU/Wb1dEBix/+8IdRqay+xMiScrkc9Xr9wXcIAAAAAAAAAIBd67Wh17b1/B/e+nBbzw8AAOwstUqt+b+tAhG5Yi4K/YU4dvbYsv2To5Nx4tyJlqtRtFOzEX25vnjvz96Lp/7JUxuqK50vxcCFgU2dO6JDAxZ//Md/HGNjY0ITAAAAAAAAAAAAAHSsjz76qO3aL3zhC/Hmm2/Gp59+Go888kg899xz8Z3vfCfB3m2tn/zkJ23X/uhHP4qvfvWrMTMzE/39/fHKK6/Ek08+ueF2bt++3XYfYCeZHJ2MeqUe89Pzdx+/NBkz+Zk4nD0cg+ODzeNS6VSMzIzE1NhUpNKpOHjoYCzMLUTvYG/0Dfe1bLudmo3IPJ+Jq39wdcMhi3KhvDsDFm+88UaMjIxEJpOJXC4X6XT6vjUzMzPx5ptvPvjOAQAAAAAAAAAAAMA6PfbYY23XXrp0KX77t387vv/978ezzz4b//pf/+tNtbfdHn/88UTamZqait7e3rbr//Iv/zKRfsB2GsoPrfvYVDq1oePbrVmv+g/r8XTu6Xi3+G68+syrcXTgaHT3dkdXpmvVmmq5Go16I5Hzd1zA4hvf+EYUi8V44YUXNlR36NChB9QjAAAAAAAAAAAAANhaTz75ZHz3u9+NK1euxKlTp2Lfvo67LBhghXw2H5/c/CQiIhYXF2N+Zj727NmzZefvuHfSrq6uDYcrIiKOHj36AHoDAAAAAAAAAAAAAGzWRx991HbtF77whXjzzTfj008/jUceeSSee+65+M53vrPhdm7fvh0/+MEP2u4HsHkHug9ERMTTZ56OVDq1rprqTDWuv3k9kfN3XMAim822VTc9PZ1wTwAAAB6MT25/Eo3bG1+28OYnN+Nf/cd/FddvXo+jTxyNf/Yr/yye2P/EA+ghAAAAAAAAACTrsccea7v20qVL8eUvfzmuXbsWzzzzTPzJn/xJW+3dvn277T4AyejKdMWpb5yK7Fc2lhu4eOhiIufvuIBFvV7f7i4AAAA8UL/7V7+76Tbe+S/vxD//y3/eVu3/FP/Tps8PAAAAAAAAAFvlySefjD//8z/f7m4ACejKdEVXpmvDdemj6UTOvzeRVrZQLpeLP/uzP9tw3fnz5x9AbwAAAAAAAAAAAAAAgCScfuV0HH3u6IbrRqZHEjl/x61g8fzzz8cf/MEfxJ/92Z/FP/kn/2TddYVCIS5cuPAAewYAAJCMP/iHfxCHUoc2XPfN6W/G7IezcWfxTuzdszf6DvXF149//QH0EAAAAAAAAAAAHj4dF7D44Q9/GLlcLorFYjzzzDMxMDAQvb29kclkVq0pl8tRr9e3rpMAAACbsH/f/kjtS2247n/+/P8cr/z1KzFXn4vedG989XNfbasdAAAAAAAAAADYCeo/rMd0fjo+KH8QtxZuxYHuA5HOpOP46PE4/LnDiZ+v4wIW2Ww2bt68GRERi4uLMTMzE3v27NnmXgEAAGy/J/Y/EWO/Nrbd3QAAAAAAAAAAgE0rnS/F2xffjsXFxRX7yoVy9OX6YqgwFPt/YX9i5+y4gEV3d3dERJw5cybS6fS6amZmZuLNN998gL0CAAB4eLw29Np2dyEiIr44+cXt7gIAAAAAAAAAAFuscbMRhf5C3Fq4FU+98FQceeZIpNKpu/vqjbj14a2ozlTj3dffjUqpEl+7/rXY//PJhCw6LmCRyWTiG9/4RnzlK1/ZUN2hQ4ceUI8AAAAAAAAAAAAAAIAkFHPFyAxk4vQrp9c8rnGzEVPnpuJPn/vTeOnaS4mce28irWyhTCYTmUxmw3VHjx59AL0BAAAAAAAAAAAAAACSMPPqTHRluu4broiISD2RiqH8UPT090T5j8uJnL/jAhavvPJKPPfccxuum56efgC9AQAAAAAAAAAAAAAAknC9dH1d4Yp7nX7ldMwWZxM5f8cFLAAAAAAAAAAAAAAAgIdPqivVVl36aDqR8+9LpJVt9MMf/jDy+XyUy+VYWFiI7u7uyGQyMTo6Gp/73Oe2u3sAAAAAAAAAAAAAAMB67Nniup/R0QGL8+fPx8WLF2NxcXHFvkKhELlcLgqFQvzCL/zCNvQOAAAAAAAAAAAAAABYr8ZCo626eqWeyPk7MmBx8+bN6O/vj4WFhXjhhRfimWeeiXQ6HRER9Xo9Pvzww5iZmYnXX389SqVSXL9+PX7+539+U+es1+tx4cKFiIg4dOhQzM3NxeDgYAwPD2/2rxOFQiGKxWLz75DJZGJ8fHzT7QIAAAAAAAAAAAAAQKdIH03He995L576wlPrrnn7D9+Ow58/nMj5OzJgkcvlYmBgIF555ZU1j7t582acO3cunnvuubh27Vrb56vX69Hf3x/FYjGy2Wxz++joaFy7dq3tMES9Xo/nn38+BgYGYmpqqrm9UqnE2NiYkAUAAAAAAAAAAAAAALvGwO8PxLf//rcjItYVsph5dSauXLgS5z48l8j5Oy5g8eqrr0Ymk7lvuCIi4oknnoh8Ph9f/epX44//+I/jK1/5SlvnzOVyMTw8vCxcERGRz+ejq6srBgcHY2BgYMPtLoUrfjZIMTo6GtPT0wIWAAAAAAAAAAAAAADsKrnXc1E4Xoje3+iNvuG+OHL8SKTSqYiIaNQbcWvhVsxNzcV7E+9FrVKLl6ZfSuzcHRewKJVKcfny5Q3VvPLKK/Gbv/mbbQUsKpVKlEqlyOfzLfefOXMmxsfHNxywuHjxYlQqlZYhinQ6HcePH99wXwEAAAAAIAnVcjWm89PRWGhEtVyNVDoV/aP90T/Sv2pNo96Ity68FRERBw8djIW5hegdvPvDx3bXAAAAAAAAnaMn2xMj0yMx+dJkTI5Mxp49e1Ycs7i4GF2Zrvinf/FPo+fzPYmdu+MCFl1dXW3VHT16tK26pWBFJpNpub+3tzcKhULU6/VIp9PrbvfChQsxMjLScl+xWNxwPwEAAAAAIAkzhZmIiBjKDzW3VUqVKOaKcXX8aozMjDTvErWkUW9Eob8QuWIuerKf/YgxOToZN67diMHxwRXn2aoaAAAAAACg8/Rke2JkZiRmCjMxk5+J6g+qzX1dma74/7H3/7Ft3Xee7//SD68oS60oqYAsD+5ORXYXG9q+G5P2ZmK7+O4q4tx8A2sBN6I9wV5nPHEtKTCQWXsaKd5/LmaArSt34O7tBbYiXXtcaBBfh5r6DwV1UdL2FLUzmBHJZG4cZe/u6KiTgaUYG5NUa1sUIpPfP/yVYkWkLB4eiaT0fABGy3PO+3Pe/hyG/vDw8z4fT49He9/ca/l5y67AIlv1yWrGxWKxZQsn5gsvIpHIilexGB4eVjKZ1KFDh0zlBAAAAJSakZ4RbfNtk6Mje2HyPJ5oCwAAAJS2hJFQKpnS3r7FP0g4Ohx69dqrCngCCvqCOhw6vGh/0BfUM13PLCp6kB4XaQw0DsjpdS75vrBWMQAAAAAAAAAAoHx5updfYdtqZVdgEY/HTcUZhmE6rqmpKef++eKLfNq/fPmyJMntdkt6XMQRiUS0a9euhW2AGZc6LxX1/OmKtH7n5O8UNQcAALB2EkZCRth4XCEem9I237Zlj+eJtgAAAEDpi/gj+uapb2bd1+pulaPDISNsKGEk1Oh4vOL0/HeD/f79WeNcB126NXBrUeHDWsUAAAAAAAAAAADko+wKLNra2nTlyhUdOHBgxTF//ud/rp07d5o6XzweX1ilIpv54otkMrniNmOx2ML/P3PmjNxut7q7uxWLxeT1etXf3//U1TBm5mZ0f+7+wutNlZu0qWrTinPAY5mKjDLKKFORUVrpYqdT9jIVGaXTac3NzRU7lXVhbm6O/rQQ/Wkt+tNa9Ke16E9rpdPZx0jRQFRGyJDD61DHQIeGvENPbYsn2q4c4/3H+O/4MT7XkA3vC+TCewPZ8L5ANrnG+hPhCcUCMf3xxB/LZrct2b/FvUVG2NBUbGqhwCLij0jSwusva3I2KRaIKZVMLbS5VjGl5uGjh6qZq1l4vVHH+uWG3xLKG9evvHH9yhvXr7xx/cpXpiJT7BQ2JO7rW8Oqzx7ugTw2NzdXMp/lpXBN0hWF9QHvT2txz9Ja9Ke16E9r0Z/WynVvH499/NOP9cy3nim4nbIrsPje976nb3zjG5K0oiKLc+fO6fTp07p3756p8620cCKf9uPxuOx2uwKBgPr6+ha2u91uBYNBtbW1KRgMLltk0f/X/Ytev+h+US/temnFOeCxjDKa+cqM4oqrQhXFTqfsZZTR3CeP/xGsrKwscjblL51O65NPPpFEf1qB/rQW/Wkt+tNa9Ke1co1zn1x6byo29dR2eKJtfhjvP3bz5s1ip1AS+FxDNrwvkAvvDWTD+wLZ5Brr1zbVaio2pYSRWFK0nMunsU+XLWiYL4iYjEwujMXXKqbUMNYvT/yWUN64fuWN61feuH7ljetXvn4789tip7AhMda3hlWfPfy+8Fg6nS6Zz/JSuCbx1nhB8bw/rcU9S2vRn9aiP61Ff1rL7Hz4jWLk2MjGLLCQpHfeeUe7du3S7//+76urq0u7du2S3W6X9LggIh6PKxQKaXh4WIZhKBKJFDfhL5kv2phf/eJJdrtdHR0d6unp0fj4eM42Bv7tgBptXzyla1PlJm2aovI9X5mKjOKKq+nTJlVkuClUqExFRlv/+Vbt2bNH1dVl+fFSUuYrNulPa9Cf1qI/rUV/Wov+tNb8l9xC8UTb/DDef2zfvn3FTqEk8LmGbHhfIBfeG8iG9wWyyTXWPxw6rISRyDmmThpJSVpUfJEwEqptqs15rvmxd8JIrHlMqWGsX574LaG8cf3KG9evvHH9yhvXr4zNFDuBjYmxvjWs+uzh94XH5ubmdPvy7ZL4LC+Fa3Ln7J2C4nl/Wot7ltaiP61Ff1qL/rSWVfN4SsGnH3yqLc9uybkvHzPxGSWMhFLJlBWplWeBhdvtViQS0bFjx9Td3a2KiqUDlkwmI4fDoV/84hfauXOn6XPZ7fYVrWLR3Nycd5u5Vqjwer0aHh5WLBaT2+3Oekxtda3qq+sXb2SVx7yllVaFKlSRqVBlhsq4QqWVVmVlpaqrq/mH0CL0p7XoT2vRn9aiP61Ff1rHqqcH8ETb/DDef4z/hr/A5xqy4X2BXHhvIBveF5ibndOj2UcLrx89fJTz2FzFFZI0NjymVnfromNm4jPLxswXRTz5w8ZaxZSazVWbGeuXIX5LKG9cv/LG9StvXL/yxvUrX8WeRL1RcV/fGlZ99nD/4wul8lleCtek0D7g/Wk97llai/60Fv1pLfrTOutlFZDwW2G99/331Opp1bG/O7Zk/0/af6LZ6dkiZPZY2b5T3W63otGoAoGA/H6/3n///YV9DodDPT09evPNNws+T7ZVJp4Ujz9eOmx+BY2VtplMJnPGzJ8zEonkLLAAAAAAyglPtAUAAACK6+bpm/rln/5y4fV05XTebdw6c0uS1Hmuc9H2lRY0PLz3cM1jAAAAAAAAAABAaUkYCWUyGaUS2e/7z8/98XR7Hr9uzj0XSJJm7s0oMZ7Qxz/92JL8yrbAYl53d7e6u7tXrX2Hw6FIJJJz//zqFg7Hyp9+63a7ZRjGU49bycoZAAAAgJW+/FTbz+9/bkm7PNEWAAAAKK59p/bp+ZPPL7z+5JNP9IMdP1hx/FRsSuH+sHxBn1rdrauRIgAAAAAAAAAA2AA6z3XK4XXI0ZF9/n2jo1H73ton97fzW6jgTPMZK9Ir/wKL1eZ2uxUOh3Puny+U6OjoWHGbu3fv1vDwcM5VLOZXxWD1CgAAAKw1K55qmw1PtAUAAACKq7qmWtU1X/wksKl+U17xQV9Q+/375epyLdlns9tWNBbf3Lx5zWMAAAAAAAAAAEBpsTXY5Dnmybnf4XVo666tebdrb7MXkNUXKi1ppQycOnXKVNyhQ4ckSbFYLOv+0dHRvIorJKmrq0uSchZujI+PS5J27dqVV7sAAABAofad2qe3pt9a+PP6379e7JQAAAAAFFnQF5Snx7OwFPeXza8Ul8tMfEbS4wKJtY4BAAAAAAAAAADlZe+be7Xl2S15x3VHui05/4YpsAgEAqbi3G63Ojo6dPny5az7h4eH1d/fv2R7MplUf39/1iIKh8Ohrq4unT59OmebfX19WVe3AAAAAFZTdU21ar5as/An36fa5sITbQEAAIDyFOoPaevurdrbtzfnMY2OxoXihmzmx+iNjsY1jwEAAAAAAAAAAMhH9dMPWTsffPCB5W3G43EZhqFkMmm6jWAwKI/Ho0OHDsntdi9s7+npUV9fX9YVLAKBgM6cOaNAIKBEIrFk/7lz5+TxeBQIBNTd/UW1jM/nk8Ph0MDAgOl8AQAAgFLDE20BAACA8hMNRNXkbMq6ckUqmVoYV29xb5ERNnK2kzAe3yN3dDgWtq1VDAAAAAAAAAAAWF+Ma4aMkCFVSE3OJm3dtdXUihe5lFSBRXt7u6anp4udxhJ2u13RaFT9/f2y2+1qbm7W+Pi4vF6vurq6ssZ0dHTIbrfr4MGDy7Z5+vRp+Xw+SY9XvfD5fIsKLgAAAID1oNHRqMnIZM79uZ5OuxYxAAAAAJYaGx6TpKzFFQkjoanYlFxdLknS9kPb9d6Z9zQVm1Kru3XJ8ZOjk0uKHtYqBgDylZp7+sqYuUzPTuv8h+c1MT2htoY2Hd1xVA01DabaslXzcAgAAAAAAABsTGeaz6jvXl/O/Y4XHHK84FBqOqWZ+IyMsKGIPyLvgFc1X60p+PwlVWDR1NQkSQsFBs3NzQW3ee/ePY2Pj+unP/1pQe3Y7Xb5/f4VH+92u7OuXPHlNlmpAgAAABsBT7QFAAAAysdUbEoz8ZmsxRWSZISNRWPqVnerHB0O3b58O2vhw9jwmA6HDi/atlYxAJCv137+miXt3P7stk7cOGE6/u39b1uSBwAAAAAAAFBuMpnMio6zNdhka7DJc8yj1HRKof6Q9v9of8HnL6kCC4fDobfeekvf/va3LW/bimINAAAAAObwRFsAAACgPCSMhIK+oNo62jTZs3R1uFQ8JSNsqD/Rv2i7L+hTwBPQ9kPbF43FR3pGtKdvT9Zx+FrFAAAAAAAAAACA8lFRUZF3jK3BuhVhS6rAwu12y+FYnR8/2traVqVdAAAAAE/HE20BAACA8jDkHVLCSCgRyL1Cc6Ojcck2m92m7mi3Qv0h2ew2bW7erPh4XE6vU64uV9Z21ioGAPJx4cULpmPPRs5q7N6Y0pm0Kisq5Wp26eSukxZmBwAAAAAAACCb1HRKU5EpS9oqqQKL733ve6vWdiQSWbW2AQAAgI0sYTyeeJVKppY9jifaAgAAAKXvjfE3TMfa7DZ1+jtLMgYAVspWbf5Jd8d3HtfgB4MaT47LaXeq99negtoDAAAAAAAA1qvkr5NZt2cymcf7/zEpZZZvI5VMaSY+o6nYlG6evinXQWsexFRSBRYAAAAAysPY8Jii/qgkaTIyKUkaOTaysM3lc8nT7VkUwxNtAQAAAADAetZQ06D+5/qLnQYAAMCGd6nzUrFTKAnpirS0dMF3AACAkjAZndTk6KQSRkJG2NDs9Oyi/T90/HDFbWUyGTk6HNr/o/2W5Fa2BRZ/9Vd/pUAgoEQioXfeeUdf//rXF+2fmJhQf3+//s2/+Tf6zne+U5wkAQAAgHXK1eUyVazAE20BAAAAAAAAAAAAAACAjc31skuul7+YezQVm1K4PyzjmqGKigo98/IzK2qn0dEoh9chxwsOy3IrywKLU6dOadeuXRodHdX09LRisdiSAou2tja98847unbtmk6dOqXTp08XJ1kAAAAAAAAAAAAAAAAAAAAAAJBVq7tVh0OHNdIzoo+HP5bvHV/Rcim7Aovr16/L4XDo5ZdfViaT0cTEhL71rW/lPP6FF16QJP30pz9d9jgAAAAAAAAAAAAAAAAAAABsHA8ePDAVd/fuXfX29ioajcrj8WhwcFAtLS2m2qqrqzMVBwDrUae/U1PRqaLmUHYFFsFgUD/60Y8kSV1dXSuKeeGFF/T6669TYAEAAAAAAAAAAAAAAAAAAABJUn19fcFthEIhOZ1O0/GZTKbgHABgPdl3al9Rz19Z1LObwD8kAAAAAAAAAAAAAAAAAAAAAACsP66XXUU9f9mtYJFIJEzFGYZhcSYAAAAAAAAAAAAAAAAAAGA5lzovFTsFIKf79++bijtw4ICuX7+uR48eqaqqSu3t7bpy5YrF2QEAVio1nVLsXEx7vrOn4LbKrsBifHw875jp6Wndu3dvFbIBAAAAAAAAAAAAAAAAAABAOaqrqzMVNzQ0pCNHjmh0dFS7d+/WxYsXTbcFAChcwkjoo8sfbcwCi4MHD+rQoUO6fPlyXjF/8Ad/sIpZAQAAAAAAAAAAAAAAAAAAYCNoaWnR1atXi50GAKxLE9cn8o65NXBLqWTKkvOXXYFFX1+fvvGNb+gP/uAPdO7cOX3lK1/JeewHH3ygY8eOKZlM6jvf+c4aZgkAAAAAAAAAAAAAAAAAAAAAAPLxTtc7mp2ezSsmk8motrHWkvOXXYGFJP3iF7/QN77xDQWDQXm9XnV0dMhut6upqUnxeFzj4+MKh8OKxWLKZDKKxWLFThkAAAAAAAAAAAAAAAAAAAAoSQ8ePDAde/fuXfX29ioajcrj8WhwcFAtLS15t1NXV2c6BwDrR23T40KJbQe3yWa3ZT0mlUwpYSQ0GZmUo8Ohrbu3Wnb+siywcDgcisfj8vl8+sUvfqFQKLTkmEwmo46ODvn9frW1tRUhSwAAAAAAAAAAAAAAAAAAAKD01dfXW9JOKBSS0+k0FZvJZCzJAUB5a3Q0at9b++T+tntFx9/6/i3VNtau+PinKcsCC0my2+0KhUK6du2agsGgIpGIksmk7Ha7HA6Henp69MILLxQ7TQAAAAAAAAAAAAAAAKBkJIyEbg7clCSl4imlkik5vA7t7dubMyaVTOlXp38lSdrcvFnx8bicXqdcXS5LYwAAAACg0dGoRkfjio/f++Zejf3VmCauT6itvfCFGcq2wGLeCy+8QCEFAAAAAAAAAAAAAAAA8BRjw2O6M3pHnf7ORdsDnoCi/qjeGH9jSUwqmVLAE5Av6FOru3Vh+0jPiO6M3pF3wGtJDAAAKK779++bjj1w4ICuX7+uR48eqaqqSu3t7bpy5YqF2QHYSPYP7s87xvWyS+FTYUsKLCoLbgEAAAAAAAAAAAAAAABASUslU/ro8kdZixs6z3UqYSQ00jOyZF/QF9QzXc8sKpSQpE5/p2KBmIywYUkMAAAorrq6OtN/hoaG5PV61dzcLK/Xq6GhIVPtAEApoMACAAAAAAAAAAAAAAAAWOcmI5MaGx5TqD+0ZN98IcREeGLR9oSRkBE2tKtnV9Y2XQddujVwq+AYAABQ3lpaWnT16lV99tlnunr1qlpaWoqdEoANKGkkLWmHAgsAAAAAAAAAAAAAAABgnattqpXNbtPm5s05j7HZbYteR/wRSVKjozHr8U3OJhlhQ6lkqqAYAAAAAChEajqlmcSMJW1VW9IKAAAAAAAAAAAAAADrUGrO/ATg6dlpnf/wvCamJ9TW0KajO46qoabBVFu2atvTDwKAZbS6W9Wf6M+6byo2JUlq62hbtP3T2KdLii6eNF9EMRmZlKPDYToGAAAAAOZNXJ94+kH/f6lkSgkjoag/Kk+Px5LzU2ABAAAAAAAAAAAAAEAOr/38NUvauf3ZbZ24ccJ0/Nv737YkDwDIJtwfVqOjUd4B76LtCSOh2qbanHHzhRQJI1FQDABsFA8ePDAde/fuXfX29ioajcrj8WhwcFAtLS2m2qqrqzOdBwAAq+2drnc0Oz274uMzmYwcHQ7t+c4eS85PgQVM40ktAAAAAAAAAAAA5a8UfvPh9x4AAMxJP0ork8588XounVd8wkjo5sBN2R12HQ4dXrJ/Jj6zsOJENvOFFKnkF+MJMzEAsFHU19db0k4oFJLT6TQdn8lknn4QAKAszY/xJSkVTymVTMnhdWhv396cMalkSr86/StJ0ubmzYqPx+X0OuXqclkas1Lz3xm2Hdy27Op4klTbXKtWd6scL1i3Oh4FFjCNJ7UAAAAAAAAAAACUv1L4zYffe1DKLrx4wXTs2chZjd0bUzqTVmVFpVzNLp3cddLC7ABsdPF/iCv+P+ILr6c1vaK4seEx3Rm9o6SRlN1hl9ObfZLuSosgHt57WFAMAAAAgMLNj/M7/Z2Ltgc8AUX9Ub0x/saSmFQypYAnIF/Qp1Z368L2kZ4R3Rm9s2SVO7Mx+Wh0NGrfW/vk/ra7oHbMosACAAAAAAAAAABgDczOzZpaKYBVoQEUQymsbJKuyO8p7KulkM/O4zuPa/CDQY0nx+W0O9X7bC+fxQAs1fSNpkWrRcRTcemXT49zdbkWPVl2yDukqD+qznOdT31CLADAvPv375uOPXDggK5fv65Hjx6pqqpK7e3tunLlioXZAQDKWSqZ0keXP5Iv6Fuyr/NcpwKegEZ6RpYUXwR9QT3T9cyiQglJ6vR3aqBxQE6vU44OR8Ex+Wh0NC67Kt5qo8ACpvGkFgAAAAAAAAAAVu47v/xOwW2wKjRWA7/5IJtSWNlEkn7Y/UNL8iiWhpoG9T/XX+w0AKxjlVWVUtUTr+cqTbXjC/o00DigVDKlw6HDC9ttdtuKVqTY3Ly5oBgA2Cjq6upMxw4NDenIkSMaHR3V7t27dfHixYLaAwCsL5ORSY0NjynUH1qygsR8IcREeGLR9oSRkBE2tN+/P2ubroMu3Rq4tahYwkxMvvYPZm97rVBgAdN4UgsAAAAAAAAAAED54zcfAABgs9vk6nJpbHhMRthYmAxV21S7bNxMfGYhfp6ZGADA07W0tOjq1avFTgMAUKJqm2pls9uWLWT+8hg84o9IUs7VIpqcTYoFYkolUwuxZmLKDQUWKAqe1AIAAAAAAAAA2Gj+/P/z52qqbco7br2tEJCae/rTjHOZnp3W+Q/Pa2J6Qm0NbTq646gaahpMtUURgDX4zWf9KoWVTdIVaT3UQ9N5AAAWSyVTmonP5JwIZXfYJUnjofGFAotGR6MmI5PLtjl/3DwzMQAAAAAK0+puVX8i+326qdiUJKmto23R9k9jny5bBDE/Zp+MTC58RzATY4Xkr5Oaik0tfKdpdDTK/nW7Ze0/iQILAAAAAAAAAACANVBTXWNqUv96WyHgtZ+/Zkk7tz+7rRM3TpiOf3v/25bkAaxXpbCyCQUWAGCtgcYBSVJ/oj/rhKj5J93OF0BI0hb3FhlhI2ebCSMhSYsmTpmJAQAAALB6wv1hNToa5R3wLtqeMBLLrkA3/71hfgxvNqYQE9cn9G7Pu1nba/W0qvNcp7b86y2WnGveuimw+PWvf63BwUFNT08vbMtkMqqoqJDX69W3vvWtImYHAAAAAAAAAABgDisEACg3fG4BQGmy2W2qbarN+bTZ+HhckrTVs3Vh2/ZD2/Xemfc0FZtSq7t1Sczk6NKn0pqJAQAAALDU3OycHs0+Wnj9+f3P84pPGAndHLgpu8Ouw6HDS/Yvt8KdpIVCiieLsM3EmDV8aFhjw2PKZDKSvlgdYyY+o1QypcnIpALugPb279UL332h4PPNWxcFFr29vfrGN76hU6dOqaFh6TLQ165d06FDh9TT06P29vYiZAgAAAAAAAAAAFB8qTlzP2pNz07r/IfnNTE9obaGNh3dcVQNNUt/k1mJCy9eMBUnSWcjZzV2b0zpTFqVFZVyNbt0ctdJ0+0BAABsJO5ut3b17Mq5f+ydMdnsNm07uG1hW6u7VY4Oh25fvp21WGJseGzJRC0zMQAAAACWunn6pn75p79ceD1dOb3M0V8YGx7TndE7ShpJ2R12Ob3OrMettAji4b0vVhg1E2NG+K2wxkPjeuF7L8jV5VJj29Kijqn3p3T7/76tm9+7qdrmWu35kz0FnXNeyRRY/OY3v9FXv/rVvONef/119ff3q62tLecxL7zwgl544QV9//vflySKLAAAAAAAAAAAwIb02s9fK7iN25/d1okbJ0zHv73/bdOxx3ce1+AHgxpPjstpd6r32V7ZqrM/gbkcmC14kawteinnPgQAACvnHfBqpGdE23zblqwgEfQFJUmvXnt1yQoXvqBPAU9A2w9tX1QwMdIzoj19e7KuRmEmBgAAAMBi+07t0/Mnn194/cknn+gHO37w1DhXl0uuLtfC6yHvkKL+qDrPdeZc0a6UGNcMGWFDfzzxx7I15M63dWerWne2alfPLg39/pBcXS7Zf9de8PlLosDi3Llzeuutt3TmzBkdPXp0xXE//vGP1dXVtWxxxZPefPNNvf766xRYAAAAAAAAAAAAlKGGmgb1P9df7DQsY0XBi1TcohcAAFBeOv2dGhseU9AXlK3JplQ8pVQypS3uLY8nL2WZbGWz29Qd7VaoPySb3abNzZsVH4/L6XUumrRVaAwAAACAxaprqlVd88V0/031m0y14wv6NNA4oFQytWg1OZvdtqIVKTY3by4oJl+xQOxx8fcyxRVPanQ0yveOT+G+sLoud5k+77ySKLA4duyYIpGIjh07Jr/fr2AwqN/93d99alwikdDBgwfzOpfdbjeZJQAAAAAAAAAAQHm78OIFU3FnI2c1dm9M6UxalRWVcjW7dHLXSYuzA4ClZj+fVWoupcpMZd6xVq30wiovANabLz/NdiVsdps6/Z2rHgMAAADAeja7Ta4ul8aGx2SEjYUV5WqbapeNm4nPLMTPMxOTr0wms+Liinmt7lZlMhnT53xSSRRYSJLf75ckXbt2TQ6HQ2fOnNGf/MmfLBvT0dGh06dP6/Tp0ys6x29+8xslEomCcwUAAAAAAAAAAChHZicJH995XIMfDGo8OS6n3aneZ3uZcGwBswUvEkUv2Dje/Is3LWmnkJVeWOUFAAAAAACUulQypZn4jBodjVn32x12SdJ4aHyhwKLR0ajJyOSybc4fN89MTL7MxhZyzifl/5iPVeT3+9XR0aF33nlH//k//2f9i3/xL/T3f//3OY/fuXOnxsfHderUKf32t79dtu2f/vSneuGFF9Tb22t12gAAAAAAAAAAAOtaQ02D+p/rV+B/C6j/uX5TT4DHUrZqm+k/x3ce146v7VD9pnrt+NoOHd953HRbAAAAAAAAAMrbQOOAfuj84UKBw5dtbt4sSYv2b3FvyXm8JCWMxwsbzBdkmI3JW8Uax31JyaxgMc/pdMrr9WpiYkJ9fX3auXOnent79V//63/Nevw777wjn88nu90uh8Mht9utpqYmSVI8HpdhGIrFYrLb7XrnnXf07LPPruHfBgAAAAAAAAAAALDefNELsN59/4++r8ZPG1WZyf/Zgaz0Yr3UXO4JFF+Wrkhr9vNZpeZSqsxUanp2Wuc/PK+J6Qm1NbTp6I6jpgv2KA4DAAAAAGAxm92m2qZa2ezZvzPHx+OSpK2erQvbth/arvfOvKep2JRa3a1LYiZHJ5cUSpiJyVejo1HJXydl/7p9xTGzv5lVbVNtQeedV3IFFh0dHYpEImpvb5ff71dPT48OHjyo5uZm/fjHP9aBAweWxASDQRmGoYGBAUWjUQWDQUmSw+GQw+HQ4OCgjh07ttZ/FQAAAAAAAAAAAABAAWo21chWbTNVYHF853ENfjCo8eS4nHanep/tZWJ+gV77+WuWtHP7s9s6ceOE6fi3979tSR4AAAAAAKwX7m63dvXsyrl/7J0x2ew2bTu4bWFbq7tVjg6Hbl++nbVYYmx4TIdDhxdtMxOTL88xj8JvhfXN//RN1Xy1ZkUxob6QvGe8BZ13XskVWOzcuVN//ud/rvb2dkmS2+3WP/zDP+jMmTN6+eWXdfDgQZ07d05f+cpXFsU5HA75/f5ipAwAAAAAAAAAAAAAKDGs9AIAAAAAADYK74BXIz0j2ubbtmQFiaDv8eIFr157dckKF76gTwFPQNsPbV9UMDHSM6I9fXuyrkZhJmZe8tfJFf19th3apqAvKE+vR41tjTmPSxgJfXT5I3UMdKy4GONpSq7AQpLu3bu3ZFtfX5+6urrk8/lkt9sVCAR09OjRImQHAAAAAAAAAAAAAMDGc+HFCys+Nl2RVmJLQo2fNqoyU6mzkbMauzemdCatyopKuZpdOrnr5CpmCwAAAADAxtLp79TY8JiCvqBsTTal4imlkiltcW/RH0/88ZLiCkmy2W3qjnYr1B+SzW7T5ubNio/H5fQ65epyZT2PmZh5frdfs9OzK/r7ZDIZGWHjqcfZ7DZF/BF989TKV7xYTskVWExMTKipqSnrPofDoWg0qkAgoDfffFN+v1/BYFC/+7u/u+p5JZNJnT59WpLU3Nys8fFxeb1edXV1mWovEAgoGAyqp6dHHR0dstvtMgxDsVhMly9f1qlTp+R2u638KwAAAAAAAAAAAAAAYJqteulEjFzSFWnVbKqRrdqmykylju88rsEPBjWeHJfT7lTvs715tQcAAAAAAJ7O1eV6apHDl9nsNnX6O1c9RpJqm2qVSqbk6nKptqk27/hcUomUPnrnI7m/Xfj8+5IrsHj//ffV0dGx7DHd3d06ePCgjh07JofDof7+fn33u99dtZySyaQ8Ho+CweCiooeenh6Njo5qYGDAVJvhcFjhcHjRdrvdvuQ8AAAAAAAAAAAAAACUs4aaBvU/11/sNAAAAAAAQBE1Ohq17619lhRCrJaSK7AIhUL60Y9+9NTj5gsRwuGwDh48qGAwqOHhYf3rf/2vLc/J5/Opq6trSdGD3+9XY2OjvF7vU4tCsvH7/RofH5dhGGpqapLH41F3d7dVaQMAAAAAAAAAAAAAAAAAAAAAUBIaHY1qdDQWO41llVSBxa9//Ws5nU598MEHGh0dlWEYkiSn0ymHw6Fdu3bpq1/96qKYjo4OxeNx9ff3a+fOnert7dX3vve9JceZZRiGwuGw/H5/1v0HDx7UwMCAqQKLgwcPym63F5ghAAAAAAAAAAAA8pWaS63ouHRFWrOfzyo1l1JlplKSND07rfMfntfE9ITaGtp0dMdRNdQ05J2DrdqWdwwAAAAAAAAAlKv9g/uLncJTlVSBRXd3t+LxuCRp586d6ujoUFNTkwzDkGEY6uvrU0VFhXp6evTss88uih0YGNChQ4fU3d2ttrY2/fjHP9aBAwcKzmm+sMLhcGTd73Q6FQgElEwmKZYAAAAAAAAAAAAoE6/9/DVL2rn92W2duHHCVOzb+9+2JAcAAAAAAAAAgDVKpsDi1KlT8vl8Onbs2JJ9O3fu1M6dO/Xyyy9Lkt566y0ZhqFvfetbi45zu92KRCI6c+aMXn75Zf3+7/++gsGgvvKVr5jOKxaLLVs4MV94EYlETK1iAQAAAAAAAAAAAAAAAAAAAAAAzPv4px/rmW89U3A7JVFg8f7776upqSlrcUU23/ve9/TWW2/J7Xbr61//+pL9fX196u7uls/nk91uVyAQ0NGjR03lZhiGmpqacu6fL74wDMNU+9LjIo5IJKJdu3bJ7XabbgcAAAAAAAAAAAArc+HFCys6Ll2RVmJLQo2fNqoyUylJOhs5q7F7Y0pn0qqsqJSr2aWTu06uZroAgBKUmkuZipuendb5D89rYnpCbQ1tOrrjqBpqGky1Zau2mYoDAAAAAGC9GTk2sn4KLK5du6aenp68Yg4dOqRwOKxvf/vbWffb7XaFQiENDw+ru7tbfr9fwWBQv/u7v5vXeeLx+MIqFdnMF18kk8m82pWkcDgswzDU0dGh7u5uxWIxeb1e9ff3P3U1jJm5Gd2fu7/welPlJm2q2pR3DhtdpiKjjDLKVGSUVrrY6ZS9TEVG6XRac3NzxU5lXZibm6M/LUR/Wov+tBb9aS3601rpNGOkYmC8/xj/HT/G5xqy4X2BXHhvIBveF8iGsX5xPHz0UDVzNQuvN+pYv1T8s03/bEXHZSoy+meb/plqNtWoIlMhSXrd/br87/tlJA057A717OxZcXtP4reJ1cdvQeWN61feNsL1e+3nrxXcxu3PbuvEjROm4/+y8y8LziGbjXD91qtMRabYKWxI3Ne3Bp891qI/rWVVf3KP7jHuWVqL/rQW/Wkt+tNa6+ne/qcffKotz27JuS8fM/EZJYyEUklzD0L4spIosGhra1MkElF7e/uKYyYmJuTxeJ56XFdXl7xer/r6+uRwONTf36/vfve7Kz7PSgsn7t27t+I2JS0UbfT19S1sc7vdCgaDamxsVDQaXXY1i/6/7l/0+kX3i3pp10t55QApo4xmvjKjuOKqUEWx0yl7GWU098njfwQrKyuLnE35S6fT+uSTTyTRn1agP61Ff1qL/rQW/WmtfMe5sAbj/cdu3rxZ7BRKAp9ryIb3BXLhvYFseF8gG8b6xcFYvzzl+i3h21//4iFgj/RIccWLkd66Mfv5rOnY3878Vpd/dVn/9Nk/6X/52v+iQ988pK/UfkXS4+uXsqU02zy7ot+CajbVPPUYrB1+yytvXL+1EW9dnX9/uH7l67czvy12ChsSY31r8NljLfrTWlb1J79/PcY9S2vRn9aiP61Ff1prvdzbD78V1nvff0+tnlYd+7tjS/b/pP0nmp02f7+wUCVRYPHyyy9r165d+qu/+qsVrTBx7do1nT59WqOjoytqv6GhQX6/Xz09PQoEAoWma4murq6s2+12u7q6uuTz+TQ+Pp4zfuDfDqjR1rjwelPlJm2aovI9X5mKjOKKq+nTpoWnTsG8TEVGW//5Vu3Zs0fV1SXx8VLW5is26U9r0J/Woj+tRX9ai/601vyX3GzGhsfk6nKtYTYbR7HH+6k58xX907PT+ov/5y80MT2htoY2/dH/+kdqqGkw1da+fftM57Ge8LmGbHhfIBfeG8iG9wWyWW6sj9VT7LE+zOG3hLXxv4/875a08//e+X/1Z//3n5mOX60nwcMc/vsrbxvh+v34//tjU3H/ZfS/aOzemNKZtCorKuVqduk/7v6PptqyTdlMxT3NRrh+69ZMsRPYmBjrW4PPHmvRn9ayqj/5/esx7llai/60Fv1pLfrTWuvl3n7CSCiTySiVyD4/pbapVpLk6X68GENtc+2y7c3cm1FiPKGPf/qxJfmVzDv1nXfe0c6dO7V79255vV653W41NTUt7DcMQ6OjowqHw0omk4pEInmfw+12a3BwMK8Yu92+olUsmpub884nl927d2t4eFiGYSysdPFltdW1qq+uX7yRVR7zllZaFapQRaZClRkq4wqVVlqVlZWqrq7mH0KL0J/Woj+tRX9ai/60Fv1pnVxPD0glUwr6gtrv369tB7fJZl+dH/E2qmKP97999dtPP2gFbn92W39y/U9Mxx+tPmpJHusBn2vIhvcFcuG9gWx4X+DLVvqksJGeEW3zbZOjI/u9akmKBqIaC47J0+ORo8Mhm92mhJHQVGxKH13+SPtO7VOru3VJXCqZ0q9O/0qStLl5s+LjcTm9zmULuc3ElJLNVZu5t1+G+C1hY+Ealxb++ytvG+H6ba7abCru+M7jGvxgUOPJcTntTvU+22u6rdUaS2yE67deMYm6OIp9X3+94LPHWvSntazqT+7PfYF7ltaiP61Ff1qL/rTOelkFpPNcpxxeR87fHhodjdr31j65v+3Oq90zzWesSK90CiwcDocmJib03e9+V319fZKkioovvvRlMhnZ7XadOnVKb7755prl9WSRRzbx+OPlNu12u2XnnG8rFovlLLAAAAAAiilhJCRJ7/a8q3d73l32WF/QtzDZaS0nXgEAAAAwJ2EkZIQNRf1RTcWmtM23bdnjU8mUjLAhI2ws2m6z2+QL+nKO8QOewJL9Iz0jujN6R94BryUxAMrHhRcvmI49Gzm75EnwJ3edlCSlK9JKbEmo8dNGJpUBKBkNNQ3qf66/2GkAAAAAAFAUtgabPMc8Ofc7vA5t3bU173btbfYCsvpCyRRYSFJDQ4MGBgY0MDCgiYkJGYaxsIqDw+FQW1vbmufkcDiWXS1jfnWLfAohenp6FA6HNT4+Xmh6AAAAQFEkjIQaHY1qdbfK1pR99YpUPKWEkVhUBLFWE69QmNWa1AIAAIDSFw1EZYQMObwOdQx0aMg7tKK4/f79io/HlTSSsjXZtNWzdWHp7myCvqCe6XpmyXeATn+nBhoH5PQ6lzy5ykwMgPJhqza/Oma2J8HPt5euSKtmU41s1bayKrBIzaVMxU3PTuv8h+c1MT2htoY2Hd1xVA01DabaKuSaAAAAAAAAAGbtfXOvqbjuSLcl5y+pAosntbW1qa2tTS+88EJR83C73QqHwzn3G8bjiWEdHR0rbjMSiSysfJHNfNGG253fsiYAAADAWrkzekeHQ4fV6GjMeUyoP6SOgaXj5LWYeIXCrNakFgAAAJQ+T7dnYXw+FZtacdy2g9tks69s3De/QsZ+//6s+10HXbo1cGvRON9MDICNYz0+Cf61n79WcBu3P7utEzdOmI5/e//bBecAAAAAAAAAmPHxTz9Wq7tV9q/b1/zcJVtgUSoOHTqkM2fOKBaLZS14GB0dzau4QnpcjDEwMJBz/+joqOx2e16rYgAAAABrbbniiqnYlJqcTVmPWe2JVyiu9TipBQAAANaK+B+vGp3rO0WTs0mxQEypZGrhu4OZGAAAAAAAAAAAUH7e7X1XsXMx2Rpt6vusb83PT4HFU7jdbnV0dOjy5ctZCyyGh4cVCoWWbE8mkzp9+rS8Xu+SAoxDhw4pEAiou3vpMiSGYWh4eFjBYNC6vwQAAABgsV09u5bdH/FH1OnvLPg8TKICAAAA1p9PY58uO36fH/9PRiYXiqnNxABAObvw4gVTcWcjZzV2b0zpTFqVFZVyNbt0ctdJi7MDAAAAAAAAVs9MfEZtL7Sp1d1alPNXFuWsZSYYDGp4eFixWGzR9p6eHvX19WVdwSIQCOjMmTPy+XxL9rndbiWTSZ05c2bRdsMw5PF41NfXp66uLmv/EgAAAICFllu9ItQfknfAa8l58plEBQAAAKD4pmJTigaimopN5TwmYSRU21Sbc//8d4CEkSgoBgDKma3aZurP8Z3HteNrO1S/qV47vrZDx3ceN90WAAAAAAAAUAyNjkYd/sVhdXxv6Rz9tcAKFitgt9sVjUbV398vu92u5uZmjY+Py+v15iyE6OjokN1u18GDB7Pu7+vrUzgcVk9Pj+LxuJLJpOx2u65du5Z1pQwAAACgHEzFptTkbFrRahJTsSlNRia1ddfWnBXnTKICAAAArDE3O6dHs48WXn9+/3NL2zfChhJGQo4OhzzdHk3FpjTkHdLe/r1LVpSYic8sW7Q9/x0glUwVFAMAG1FDTYP6n+svdhoAAAAAgDJ0qfNSsVPQKyOvFDsFACWgtrlWyV8nZf+6Pa+4M81n1Hevr+DzU2CxQna7XX6/f8XHu91uJRLLT/Lq6OjIuvoFAAAAUCyFTrq6efqmfMGlq7g9abUnXgEAAABY6ubpm/rln/5y4fV05bRlbc+P2ff27V3Y1upulS/o00DjgLqj3YuKqlc6fn9472FBMQAAAFg7qTnz92inZ6d1/sPzmpieUFtDm47uOKqGmoa822H1HQAAAABYH/a+uVfBg0Ht6t2ltva2FcdlMhlLzk+BBQAAAIAFhUy6Ghsek91hX/aYtZh4BQAAAGCpfaf26fmTzy+8/uSTT/SDHT+wpG1XlyvrdpvdJleXS0FfUG+Mv2HJuQAAAFCaXvv5a5a0c/uz2zpx44Sp2Lf3v21JDgAAAACA4vO949N7f/6eov6otu7eqlZ3q2qbamWzZy+uHw+Na3Z61pJzU2ABAAAAYEEhk65unr6pznOdyx7DxCsAAACgOKprqlVd88VPApvqN63Jebfu3qqx4TEljMRCwbXNbltRMfXm5s0L/99MDAAAWL9KYbUEqTRWTFitvkhXpDX7+axScylVZiqtShcAAAAAgKf608o/VUVFhaTHq1KMDY+t6fkpsAAAAACwwOykq4SR0FRsatHqE/myauIVAAAAgNIx/ySpqdjUwji/tql22ZiZ+MyiWLMxAABg/SqF1RKk0lgxoVT64sKLF0zHno2c1di9MaUzaVVWVMrV7NLJXSdNtwcAAAAAKG+NjkYljIRcXa6n/j4wb3J0Up9+8Kkl56fAAgAAAEDBIv7IwmQps6yaeAUAAABg7Yz0jGgiPJHXSnSNjkZNRiZz7p8vsn7yO4aZGAAAAKydQlbzOL7zuAY/GNR4clxOu1O9z/aWxOogAAAAAIDiaHQ0at9b++T+tjuvuDPNZyw5PwUWAAAAAAo2EZ546kSmtZp4BQAAAGDtTEWmFgqfs5kfsz+52t0W9xYZYSNnTMJISJIcHY6CYgAAwPrFaglfWK2+SFekldiSUOOnjarMVFqVblYNNQ3qf65/Vc8BAAAAACgfjY5GU3OBbI3WFOuv7rdgAAAAABvCVGzqqatImJ14Nb89GyZRAQAAAMXV1tGm/kTuyXCTo5Oy2W2LfgjZfmi7pMffI3LFfHmMbyYGAACsX7Zqm+k/x3ce146v7VD9pnrt+NoOHd953HRbpWA1+6JmU01Z9QUAAAAAYH3YP7hfbe1tece98Q8rf+jrcljBAgAAAEBB5ic42ZqW/xGtraNN3QPdOffnmnj13pn3NBWbWlR48WQMk6gAAACA4tl+aLuigag83Z4l+xJGQmPDY/IFfYu2t7pb5ehw6Pbl21nH+WPDYzocOlxwDAAAQDaslvAF+gIAAAAAgKUosABgqQ8vfag7Z++s+jKxT/PKyCtFPT8AABvJcqtSPGmtJl4BAAAAsMb8inHLrSrX6m6VETZ068wt7e3buyg24AloT98eubpcS+J8QZ8CnoC2H9q+aKw/0jOiPX17shZSm4kBAAAAAAAAAADri3HNkBEypAqpydmkrbu2asuzWyxrnwILAAAAAAWZn3Rlsy+/gsVaTrwCAAAAYM7Y8Jii/qgkaTIyKUkaOTaysM3lcy0pmt7bt1dG2NBIz4hS8ZRSyZRsdptevfZq1kJp6fH3h+5ot0L9IdnsNm1u3qz4eFxOrzPr9wKzMQAAAAAAAAAAoLycaT6jvnt9Ofc7XnDI8YJDqemUZuIzMsKGIv6IvANe1Xy1puDzU2ABAAAAoCBbd22VzW7T7+z+naceu1YTrwAAAACY4+pymRpnOzoceRc/2+w2dfo7Vz0GAAAAAAAAAACUj0wms6LjbA022Rps8hzzKDWdUqg/pP0/2l/w+SmwAAAAAFCQVner+hP9Kz5+rSZeAQAAAAAAAAAAAAAAACgvFRUVecfYGmyWnb/SspYAAAAAAAAAAAAAAAAAAAAAAADWUGo6panIlCVtsYIFAAAAAAAAAAAAAAAAAAAAAABYE8lfJ7Nuz2Qyj/f/Y1LKLN9GKpnSTHxGU7Ep3Tx9U66DLktyo8ACAAAAAAAAAAAAAAAAAAAAAACsicnopCZHJ5UwEjLChmanZxft/6HjhytuK5PJyNHh0P4f7bckNwosUPZScylTcdOz0zr/4XkZvzXk+IpDR3ccVUNNg6m2bNU2U3EAAAAAAAAAAAAAAAAAAAAAsJG4XnbJ9fIXK05MxaYU7g/LuGaooqJCz7z8zIraaXQ0yuF1yPGCw7LcKLBA2Xvt568V3Mbt2ds6ceOE6fi3979dcA4AAAAAAAAAAAAAAAAAsN6YfYCu9MVDdCemJ9TW0Gb6Ibo8QBcAgNLW6m7V4dBhjfSM6OPhj+V7x1e0XCiwAAAAAAAAAAAAAAAAAAAAq8KKB+hK0u3PzD9Et1QeoHup81KxU5AkvTLySrFT0MzMjB48eKDq6vynsd69e1e9vb2KRqPyeDwaHBxUS0uLqTzq6upMxQEAVkenv1NT0ami5kCBBcrehRcvmIo7GzmrsXtjSmfSqqyolKvZpZO7TlqcHQAAAAAAAAAAAAAAAAAAeNJLL71kSTuhUEhOp9N0fCaTsSQPAIB19p3aV9TzU2CBsmd2+bbjO4/rRx/8SOO/GZfzq069/uzrLAUHAAAAAAAAAAAAAEAZSs2lTMdOz07r/IfnNTE9obaGNh3dcVQNNQ2m2mLeAQAsZfYBuhIP0QUAYCNyvex66jET1yeUMBJqdDRq666tqvlqjWXnp8ACG1ZDTYP6fq9P8da4mqaaVJmpLHZKAAAAAAAAAAAAAADAhNd+/pol7dz+7LZO3DhhOv7t/W9bkgcArCeFFJ8d33lcgx8Majw5Lqfdqd5neylmWyd+9rOfac+ePaquzn8a64EDB3T9+nU9evRIVVVVam9v15UrV1YhSwBAMYTfCis1vbiIfv+P9kuSUtMpDXUMaSo2pUwmo0ZHo1KJlHzDPrX9uzZLzk+BBQAAAAAAAAAAAAAAAAAAKDkNNQ3qf66/2GlgFdTW1qqurs5UgcXQ0JCOHDmi0dFR7d69WxcvXlRdXd0qZAkAKAZPj0c/dP5Qnh6PPN0ete5sXdgX9AU1GZ3U3r696vhehyQplUwpeDCoxrZG2b9uL/j8FFgAAAAAAAAAAAAAAACgrF148YLp2LORsxq7N6Z0Jq3Kikq5ml06ueukhdkBAIAv+/DSh7pz9o4qM5Wm4l+tflWvPv+qJOn6t6+bzuOVkVdMxwIAVsen738qX9An18uuRdvH/mpMRtjQNt+2heIKSbLZbfK941P4VHhhpYtCUGABAAAAAAAAAAAAAACAsmartpmOPb7zuAY/GNR4clxOu1O9z/YW1B4AAAAAwLw7o3fUcbpjyfaPLn+kiooK7Tu1b8k+m90mW4M13+MosAAAAAAAAAAAAAAAoMSl5lKmY6dnp3X+w/OamJ5QW0Obju44qoaahrzbYcI51quGmgb1P9df7DQAAAAAAJKUyb7ZCBuSpC3Pbsl+QIU1p6fAAgAAAAAAAAAAAACAEvfaz1+zpJ3bn93WiRsnTMW+vf9tS3IAAAAAAADIpba5dsm2xERCqWRKWz1bc8alkuYfTvGkSktaAQAAAAAAAAAAAAAAAAAAAAAAKEBFxdKlKMaGxyRJbR1tuQNzrHyRL1awAAAAAAAAAAAAAACgxF148YLp2LORsxq7N6Z0Jq3Kikq5ml06ueukhdkBAAAAAABY4+FnDzX7m1nVfLVmYVvUH1VFRYW2H9qeNSZ8KixPj8eS81NgAVggNWd+SZnp2Wmd//C8JqYn1NbQpqM7jqqhpsFUW7Zqm+k8AAAAAAAAAAAAAJSuQn4LPL7zuAY/GNR4clxOu1O9z/by2yIAAAAAAChJ+07tU9AXVMeZDikj3Tx9UwkjoW2+bdry7JZFx376wacK94fl8DrUurPVkvNTYAFY4LWfv2ZJO7c/u60TN06Yjn97/9uW5AEAAAAAAAAAAABg/WioaVD/c/3FTgMAAAAAAOCpbA02vXD6Bb3z8jtKGAlJ0jbfNnVd7lo45t3ed2WEjYX9RtjQw3sP1XG6o+DzU2ABAAAAAAAAAAAAAAAAAAAAAABKQqu7VW/8wxtKTadka1i6Cufe/r3a27930bbaplpLzk2BBWCBCy9eMB17NnJWY/fGlM6kVVlRKVezSyd3nbQwOwAAAAAAAAAAAAAAAAAAHnvw4IGpuLt376q3t1fRaFQej0eDg4NqaWnJu525uTlT5wcAbDzZiiskqbGtcdXOSYEFYAFbdfb/eFfi+M7jGvxgUOPJcTntTvU+21tQewAAAAAAAAAAAAAAAAAA5FJfX19wG6FQSE6n03T8D7t/WHAOAAA86eOffqxnvvVMwe1QYAEUWUNNg/qf6y92GgAAAAAAAAAAAAAAAAAAAABQlkaOjVBgAQAAAAAAAAAAAAAAAGBlpmJTivgjSsVTmopNyWa3ydPjkafbkzMmlUzpV6d/JUna3LxZ8fG4nF6nXF0uS2MAq6TmUqZjp2endf7D85qYnlBbQ5uO7jiqhpoGU23Zqm2m8wBW24UXL5iKOxs5q7F7Y0pn0qqsqJSr2aWTu07m3U66Iq2HemgqBwDA+vDpB59qy7Nbcu7Lx0x8RgkjoVTS/DjwSRRYAAAAAAAAAAAAAAAAAOtcNBCVJHX6Oxe2GWFDQV9QtwZuqTvaLZt98YTwVDKlgCcgX9CnVnfrwvaRnhHdGb0j74B3yXnMxABWeu3nr1nSzu3PbuvEjROm49/e/7YleQCrwWwB0PGdxzX4waDGk+Ny2p3qfbbXVFsUWADAxhZ+K6z3vv+eWj2tOvZ3x5bs/0n7TzQ7PVuEzB6jwAIAAAAAUJIudV4qdgp6ZeSVYqcAAAAAAAAAAAWbf5rr3r69i7Y7Ohx69dqrCngCCvqCOhw6vGh/0BfUM13PLCqUkB4XaQw0DsjpdcrR4Sg4BgBQHhpqGtT/XH+x0wAAlLmEkVAmk1EqkX3FidqmWklaWGmvtrl22fZm7s0oMZ7Qxz/92JL8KLAAAAAAAAAAAAAAAAAA1rGIP6Jvnvpm1n2t7lY5OhwywoYSRkKNjkZJjyc9GWFD+/37s8a5Drp0a+DWomIJMzGA1S68eMF07NnIWY3dG1M6k1ZlRaVczS6d3HXSwuwAAADQea5TDq8j5/eCRkej9r21T+5vu/Nq90zzGSvSU6UlrQAAAAAAAAAAAAAAAAAoSRPhCf2fbf+nUsnsT4jd4t4iSZqKTS1si/gjkrRQcPFlTc4mGWFjUZtmYgCr2aptpv8c33lcO762Q/Wb6rXjazt0fOdx020BAAAgO1uDTZ5jHjW2Zf/e4PA6tHXX1rzbtbfZC8zsMVawAAAAAAAAAAAAAAAAANax2qZaTcWmlDASanW3rijm09instlzTxKfL6KYjEwuPHnWTAxQShpqGtT/XH+x0wAAANjQ9r6511Rcd6TbkvNTYAEAAAAAAAAAAAAAAACsY4dDh5UwEjlXlkgaSUlaVHyRMBKqbarN2eZ8IUXCSBQUAwAAAMAaU7EpRfwRpeIpTcWmZLPb5OnxyNPtyRmTSqb0q9O/kiRtbt6s+HhcTq9Tri6XpTHlhAKLFUomkzp9+rQkqbm5WePj4/J6verq6rL0PD09Perv75fDQZU+AAAAAAAAAAAAAAAAcks/SiuTznzxei6d89hcxRWSNDY8plZ366JjZuIzy8bMF1KkkqmCYgAAAAAULhqISpI6/Z0L24ywoaAvqFsDt9Qd7V6y2lwqmVLAE5Av6FtUbD3SM6I7o3fkHfAuOY+ZmHwkf52UETYUH48vFILbmmxqcjap1d2qtva2gtpfCQosViCZTMrj8SgYDMrtdi9s7+np0ejoqAYGBiw5TywWUyAQUE9PjyXtAQAAAAAAAAAAAAAAYP2K/0Nc8f8RX3g9rem827h15pYkqfNc56LtKy2CeHjvYUExAAAAAAqTMBJKJVPa27d30XZHh0OvXntVAU9AQV9Qh0OHF+0P+oJ6puuZRYUS0uMijYHGATm9Tjk6HAXHPM3sb2YVDUR18/TNFX2n8PR4tLdvr+xft+d1npWiwGIFfD6furq6FhVXSJLf71djY6O8Xq86OjoKPk9/f3/BbQAAAAAAAAAAAAAAAGBjaPpG06IVI+KpuPTLlcdPxaYU7g8vefosAAAAgPIR8Uf0zVPfzLqv1d0qR4dDRthQwkgsfH9IGAkZYUP7/fuzxrkOunRr4NaiYgkzMU8T+3FM7/a8K0nKZDKL9tnsNtU21WomPrOo8CIyGFHUH9Xe/r164bsvrPhcK0WBxVMYhqFwOCy/3591/8GDBzUwMFBwgUUgEJDP51M4HC6oHQAAAAAAAAAAAAAAAGwMlVWVUtUTr+cq84oP+oLa798vV5dryT6b3baip8dubt5cUAwAAACAwkyEJxQLxPTHE38sm922ZP8W9xYZYUNTsamFAouIPyJJiwq2n9TkbFIsEFMqmVpo00zMcoYPDWtseEyZTEaODoccXoccHQ617sxe/J2aTskIGxr/xbhi52K6NXBLRtjQsb879tRz5SO/b1Ub0HxhhcORvZLG6XQqHA4rmUyaPodhGMueAwAAAAAAAAAAAAAAALBS0BeUp8cjT7cn6/7aptpl42fiM5K0aOKUmRgAAAAAhaltqlUqmVLCSKw45tPYp8uOy+eLKCYjkwXF5PKX/9tf6qPgR3rm5Wf0xvgbOvyLw9r75t6cxRWSZGuwyfWyS53+Tv0f6f9Dz3/neU1GJnXu35x76vnyQYHFU8RiMdnt9pz754siIpGI6XP4/X51d3ebjgcAAAAAAAAAAAAAAABWKtQf0tbdW7W3b2/OYxodjQsFEdnMr1Tx5NNrzcQAAAAAyG5udk6zv5ld+PP5/c+zHnc4dFhvjL+hVnf24oSkkZSkRfsTRmLZAun5QoonizbMxGRz6/u3NB4aV2egU753fGpsM/f9wDvg1eFfHNZkZFLX/tM1U21kU21ZS+uUYRhqamrKuX+++GJ+FYp8DQ8Pq6enx1QsAAAAAAAAAAAAAAAAkI9oIKomZ1PWlStSydTCpKgt7i0ywrnnw8xPmnJ0OBa2mYkBAAAAkN3N0zf1yz/95cLr6crpnMcuV8Q8NjymVnfromNm4jPLxswXUswXSZuN+bLUdErh/rC8Z7xyf9ud87iVcnQ45HvHp+FDw/J0e2T/ur3gNimweIp4PL6wSkU288UXyWQy77aTyaQMw1BXV1fesTNzM7o/d3/h9abKTdpUtSnvdja6TEVGGWWUqcgorXSx0yl7pdSfc3NzRT2/Febm5pROp9fF36UU0J/Woj+tRX9ai/60VjrNGKkYGO8/lprL/YX7aaZnp/UX/89faGJ6Qm0Nbfqj//WP1FDTkHc7pfBZwucasuF9gVx4byAb3hfIhrF+cTx89FA1czULrzfqWL/clNK9b+SP61feuH7ljetX3rh+5StTkVl2/9jwmCRlLa5IGAlNxabk6nJJkrYf2q73zrynqdhU1ifhTo5OLimUMBOzHnBf3xp89liL/rQW/WmtUurP9XDf1Kp7wOmK4r+3S+F6cE/dWvRnYX7vzd/T7jd2L7z+p3/6J/3g2R/k1catM7ckSZ3nOhdtX64I4kkP7z0sKObLooGoWt2t2vOdPStqayVcXS5t2blFY8NjlrRLgcVTrLRw4t69e3m3ffr0aQ0MDOQdJ0n9f92/6PWL7hf10q6XTLW1kWWU0cxXZhRXXBWqKHY6Za+U+vPmzZtFPb8V0um0PvnkE0lSZWVlkbMpf/SntehPa9Gf1qI/rWVmnIvCMd5/7I3AG5a0c/uz2/qT639iKtZ502lJDoXgcw3Z8L5ALrw3kA3vC2TDWL84GOuXp1K69438cf3KG9evvHH9yhvXr3z9dua3OfdNxaY0E5/JWlwhSUbYWFT80OpulaPDoduXb2ctlhgbHtPh0OFF28zErAeM9a3BZ4+16E9r0Z/WKqX+ZJ7ZF+KtcatSMq0Urgf31K1Ff1or33v7U7EphfvD8gV9WcfnxfDR5Y/0zf/0Tcvb3ffWPt0auEWBRTkLh8Pyer2m4wf+7YAabV8ssbKpcpM2TVH5nq9MRUZxxdX0aZMqMgx8C1VK/blv376int8K8xWbe/bsUXU1H9eFoj+tRX9ai/60Fv1prfkvuVhbjPdLRymMK/lcQza8L5AL7w1kw/sC2TDWLw7G+uWplO59I39cv/LG9StvXL/yxvUrYzPZNyeMhIK+oNo62jTZM7lkfyqekhE21J9YXCjgC/oU8AS0/dD2RROyRnpGtKdvT9bVKMzElDvG+tbgs8da9Ke16E9rlVJ/lsLvgYWy6h7wnbN3rErJtFK4HtxTtxb9aa187+0HfUHt9+9fWKXuSTa7bUUrUmxu3lxQzJclJ5Kr8p3A4XXo3Z53LWmLd+pT2O32Fa1i0dzcnFe7oVDI9OoVklRbXav66vrFG5df5RFZpJVWhSpUkalQZYbKuEKVUn+ul3+IKysrVV1dvW7+PsVGf1qL/rQW/Wkt+tM6PD2gOBjvP3bhxQumY89Gzmrs3pjSmbQqKyrlanbp5K6TebdTKp8jfK4hG94XyIX3BrLhfYEvY6xfHJurNjPWL0OldO8b+eP6lTeuX3nj+pU3rl/5yjVJdcg7pISRUCKQyBnb6Ghcss1mt6k72q1Qf0g2u02bmzcrPh6X0+vMOknLbEy5476+NfjssRb9aS3601ql1J/r5Z6pFfeAi30tpNK5HtxTtxb9aZ187u0HfUF5ejw5V7CrbapdNn4m/rh622a3FRTzZalkSjVfrVm2HTNsDSsr/lgJ3qlP0dTUtOz+ePzxkkh2u33FbZ45c0anTp0qJC0AAAAAWPds1bm/cD/N8Z3HNfjBoMaT43Lanep9treg9gAAAAAAAACgnL0x/obpWJvdpk5/56rHAAAAALBGqD+krbu3am/f3pzHNDoaNRlZurrdvPlihScLsc3EfFlNg/XFFVa3TYHFUzgcDkUikZz751e3cDhWtlSJYRiy2+15FWQAAAAAAPLTUNOg/uf6n34gAAAAAAAAAAAAAADAOhENRNXkbMq6ckUqmVpYXWKLe4uMsJGznYTxePU7R8cXc+TNxHxZRUX2VfesYFXbFFg8hdvtVjgczrnfMB6/STo6OlbUXiwWUzAYVDAYzNnWsWPHFlbOCIVC+aYMAAAAAAAAAAAAAAAAAAAAANhAxobHJClrcUXCSGgqNiVXl0uStP3Qdr135j1NxabU6m5dcvzk6OSSQgkzMeWIAounOHTokM6cOaNYLCa3271k/+jo6IqLKySpq6tLXV1dWfcNDw/L5/Pp3LlzWc8FAAAAAAAAAAAAAAAAAAAAAMCTpmJTmonPZC2ukCQjbCwqfmh1t8rR4dDty7ezFkuMDY/pcOjwom1mYsoRBRZP4Xa71dHRocuXL2ctehgeHs66ykQymdTp06fl9XrzKsAAAAAAAAAAAAAAAAAAAAAAAGAlEkZCQV9QbR1tmuyZXLI/FU/JCBvqT/Qv2u4L+hTwBLT90PZFBRMjPSPa07cn62oUZmIW5ZJM5fvXWzGr2qbAYgWCwaA8Ho8OHTq0qMiip6dHfX19WQsoAoGAzpw5o0AgoEQisaLzGIax8L+sYAEU5lLnpWKnoFdGXil2CgAAACjQgwcPTMfevXtXvb29ikaj8ng8GhwcVEtLS97tzM3Nmc7Bamb7w6q+kKS6ujpTcQAAAAAAAAAAAAAArEdD3iEljIQSgdxz1hsdjUu22ew2dUe7FeoPyWa3aXPzZsXH43J6nXJ1ubK2YybmSZlMRv/Xv/i/suZTiISxsvn6K0GBxQrY7XZFo1H19/fLbrerublZ4+Pj8nq96urqyhrT0dEhu92ugwcPPrX9np4eGYahSCQiSTp27Jj8fr/cbrcGBgYs/bsAAAAAAFauvr7eknZCoZCcTqfp+Bs3bliSR6Gs6I9C+yKTyRScAwAAWLmRnhFt821b0ROnfnX6V5K04h9T1ioGAAAAAAAAAID17I3xN0zH2uw2dfo7Vz3mSfHxuOLjcdPxuVRUVFjSDgUWK2S32+X3+1d8vNvtXvHKFfm0CwAAAJSKaCCqseCYPD0eOTocstltShgJTcWm9NHlj7Tv1L5FSwHOYxIVAAAAUNoSRkJG2FDUH9VUbErbfNuWPT6VTCngCcgX9C1ZDvzO6B15B7xFiwEAAAAAAAAAAKXF0eGQw7v8g53yNfl3k/r4px9b0hYFFgAAAABMSSVTMsKGjLCxaLvNblsy4enJGCZRoZzcv3/fdOyBAwd0/fp1PXr0SFVVVWpvb9eVK1fybmdubk7vv/++6TysZLY/rOoLAACw+qKBqIyQIYfXoY6BDg15h54aE/QF9UzXM0u+A3T6OzXQOCCn17lkBYy1igEAAAAAAAAAAKWjoqJCh39xeFXa/rOqP7OkHQosAAAAAJi2379f8fG4kkZStiabtnq2ytPtyXk8k6hQburq6kzHDg0N6ciRIxodHdXu3bt18eJFU+3Nzc2ZzsFqZvvDqr4AAACrz9PtWRjTT8Wmnnr8/GoX+/37s+53HXTp1sCtRWP2tYoBAAAAAAAAAAClpaahpuTbpsACAABsaA8ePDAde/fuXfX29ioajcrj8WhwcFAtLS15t1NKE2eBfG07uE02u21FxzKJChtNS0uLrl69Wuw0SgJ9AQDA+hXxRyRJjY7GrPubnE2KBWJKJVML3x3WKgYAAAAAAAAAAJSWV6+9WvJtU2ABAAA2tPr6ekvaCYVCcjqdpuNv3LhhSR5AKWMSFQAAALD+fBr7dNmx+PxYfjIyuVAYvVYxAAAAAAAAAACgtLTubC35timwAAAAALAmmEQFAAAArD8JI6Haptqc++fH8wkjseYxAAAAAAAA81JzKdOx07PTOv/heRm/NeT4ikNHdxxVQ02DqbZs1Tw0DgCAUkeBBbCOWPFFYGJ6Qm0Nbaa+CKQr0qbPDwDFcv/+fdOxBw4c0PXr1/Xo0SNVVVWpvb1dV65cybudubk5vf/++6bzAErBVGxKk5FJbd21Va3u7NXgTKICAAAAimdudk6PZh8tvP78/ueWtDsTn8m54pykhfF8KvnFvcu1igEAAAAAAJj32s9fs6Sd27O3deLGCdPxb+9/25I8AADA6qHAAlhHLPsi8Jn5LwI/7P6hJTkAwFqpq6szHTs0NKQjR45odHRUu3fv1sWLF021Nzc3ZzoHwGr5TroywoYSRkKODoc83R5NxaY05B3S3v69S1aUYBIVAAAAUDw3T9/UL//0lwuvpyunLWl3pWPxh/cernkMAAAAAAAAUA4udV4qKD5dkVa8Na47Z++oMlNpUVYAsHFRYAHAUrOfzyo1lzI1ULNiFY15LKcHYC20tLTo6tWrxU4DsFQ+k67mCx/29u1d2NbqbpUv6NNA44C6o92LVrNgEhUAAABQPPtO7dPzJ59feP3JJ5/oBzt+UMSMAAAAAAAA1s6FFy+Yjj0bOauxe2NKZ9KqrKiUq9mlk7tOWpgdAAAoJRRYAOtIsb8IpCvS+vZffNt0Dk8qZBUNieX0AAAwK59JV64uV9btNrtNri6Xgr6g3hh/Y1XyBAAAAJCf6ppqVdd88ZPApvpNlrRrs9tWVBi9uXnzmscAAAAAAADMK+Rhrcd3HtePPviRxn8zLudXnXr92dd5+CsAAOsYBRbAOlLoF4HBDwY1nhyX0+5U77O9ebeXrkibPj8AACgNVk262rp7q8aGx5QwEgsrXTCJCgAAAFh/aptql90/E5+R9Hhsv9YxAAAAAAAAVmioaVDf7/Up3hpX01STKjOVxU4JAACsIgosAEh6/EWg/7n+gtv5/h99X42fNpr6IsFyegAArB/zk5qmYlMLBRZMogIAAADWn0ZHoyYjkzn3zxdMz38vWMsYAAAAAAA2utnPZ5WaS5maxzM9O63zH57XxPSE2hradHTHUTXUNJjKg9UeAABAOaHAAoClajbVyFZtM/XFzIpVNErJgwcPTMfevXtXPT09+tu//Vs999xz8vv9amlpMdVWXV2d6TwAAMhlpGdEE+EJvTH+xopjmEQFAAAArD9b3FtkhI2c+xNGQpLk6HCseQwAAAAAABvdm3/xpiXt3P7stk7cOGE6/u39b1uSBwAAwFqgwAJAybBqFY1SUV9fb0k74XBYTqfTdHwmk7EkDwAAnjQVmVpYPSKb+cKHVnfrwjYmUQEAAADrz/ZD2/Xemfc0FZtaNP6fNzk6uWS8vlYxAAAAAAAAAAAA+aLAAgAAAEDe2jra1D3QnXP/5OikbHbbopUlmEQFAAAArD+t7lY5Ohy6ffl21jH72PCYDocOFyUGAAAAAICN7vt/9H01ftqoykxl3rFnI2c1dm9M6UxalRWVcjW7dHLXyVXIEgAAoLTkP3ICAKzI/fv3Tf/xer2qqqqSJFVVVcnr9ZpuCwCA1bD90HZFA9Gs+xJGQmPDY+o817lo+5MTorIZGx7T3v69BccAAAAAsMb8inHzK9Tl4gv69PHwx5qKTS3aPtIzoj19e7IWRa9VDAAAAAAAG1nNphrZqm2m/hzfeVw7vrZD9ZvqteNrO3R853HTbQEAAJQTVrAAgFVSV1dnOnZoaEh/+Id/qL/5m7/R888/r5/85CcFtQcAgNVa3a0ywoZunbmlvX1fFDgkjIQCnoD29O2Rq8u1JM4X9CngCWj7oe2Lnjr7tElU+cYAAAAAMGdseExR/+Ni6snIpCRp5NjIwjaXzyVPt2dRjM1uU3e0W6H+kGx2mzY3b1Z8PC6n15n1e8FaxgAAAAAAAHMaahrU/1x/sdMAAABYcxRYAEAJamlp0bvvvqubN29q3759qq7m4xoAUHr29u2VETY00jOiVDylVDIlm92mV6+9uqgQ4klMogIAAABKm6vLZWqcbbPb1OnvfPqBRYgBAAAAAAAAAABYKWbsAgDWxIMHD0zF3b17V729vYpGo/J4PBocHFRLS0ve7czNzZk6PwBgeY4OR94rSDCJCgAAAAAAAAAAAAAAAEAposACALAm6uvrC24jFArJ6XSajr9x40bBOQAAAAAAAAAAAAAAAAAAAGB9osACAAAAAAAAALDqzK5uKVm3wqUk1dXVmc4DAAAAAAAAAAAA6xsFFgCANXH//n1TcQcOHND169f16NEjVVVVqb29XVeuXMm7nbm5Ob3//vumcgAAAAAAAIWzYnVLqfAVLjOZjCV5AAAAAAAAAAAAYP2hwAIAsCbMPh1yaGhIR44c0ejoqHbv3q2LFy+aamtubs7U+QEAAAAAAAAAAAAAAAAAALAxUGABAChpLS0tunr1arHTAAAAAAAABTK7uqVk3QqXAAAAAAAAAAAAwHIosAAAAEBJefDggenYu3fvqqenR3/7t3+r5557Tn6/Xy0tLabaMrvyDgAAAIDsChljW7XCJQAAAAAAAAAAALAcCiwAAABQUurr6y1pJxwOy+l0mo7PZDKW5AEAAACgcKxwCQAAAAAAAAAAgLVQWewEAAAAAAAAAAAAAAAAAAAAAAAAio0VLAAAAFBS7t+/bzr2wIEDun79uh49eqSqqiq1t7frypUrFmYHAAAAANZ48OCBqbi7d++qt7dX0WhUHo9Hg4ODamlpybudhw8fmjo/AAAAgOWl5lKmY6dnp3X+w/OamJ5QW0Obju44qoaahrzamJ2bNX1+AAAAAAAFFgAAACgxdXV1pmOHhob0h3/4h/qbv/kbPf/88/rJT35SUHsAAAAAsFrq6+sLbiMUCsnpdFqQDQAAAACrvPbz1yxp5/Znt3XixglL2gIAAAAArBwFFgAAAFg3Wlpa9O677+rmzZvat2+fqqsZ7gIAAAAAAAAAAAAAAAAAVoYZZwAAAAAAAAAArLH79++bijtw4ICuX7+uR48eqaqqSu3t7bpy5Ure7fzjP/6jtm3bZioHAAAAALldePGC6dizkbMauzemdCatyopKuZpdOrnrZF5txGfi+s4vv2M6BwAAAADY6CiwAAAAAACgxM3MzOjBgwemVua5e/euent7FY1G5fF4NDg4qJaWFlN51NXVmYoDAABLmf13dWhoSEeOHNHo6Kh2796tixcvmmpr8+bNps4PAAAAYHm2apvp2OM7j2vwg0GNJ8fltDvV+2xv3u3VVNeYPj8AAAAAgAILAFg1lzovFRSfrkgr3hrXnbN3VJmpNN3OKyOvFJQHAAAAiu+ll16ypJ1QKCSn02k6PpPJWJIHAAAwr6WlRVevXi12GgAAAABWQUNNg/qf6y92GgAAAACwoZmfsQsAAAAAAAAAAAAAAAAAAAAAALBOsIIFgHUpNZcyHTs9O63zH57XxPSE2hradHTHUTXUNOTdTiFLv2J1zMzM6MGDB6quzv+fv7t376q3t1fRaFQej0eDg4NqaWkxlUddXZ2pOAAAsHH97Gc/0549e0yNYw4cOKDr16/r0aNHqqqqUnt7u65cubIKWQJ48OCB6VirvnPMzc2ZzgEAAAAAAAAAAAAANjoKLACsS6/9/DVL2rn92W2duHHCVOzb+9+2JAdY56WXXrKknVAoJKfTaTo+k8lYkgcAANg4amtrVVdXZ6rAYmhoSEeOHNHo6Kh2796tixcvUvC5TlBAXHrq6+staafQ7xw3btywJA8AAAAAAAAAAAAA2GgosAAAAAAAIIdLnZeKnYLSFWn9zsnfMR3f0tKiq1evWpgRSgUFxAAAAAAAAAAAAAAAWIsCCwDr0oUXL5iOPRs5q7F7Y0pn0qqsqJSr2aWTu05amB2K5Wc/+5n27Nlj6gm/Bw4c0PXr1/Xo0SNVVVWpvb1dV65cWYUsAQAAAJSr+/fvm4616jvH3Nyc3n//fdN5AAAAAAAAAAAAAMBGRoEFgHXJVm0zHXt853ENfjCo8eS4nHanep/tLag9lI7a2lrV1dWZKrAYGhrSkSNHNDo6qt27d+vixYuqq6tbhSwBAACwnAcPHpiOvXv3rnp7exWNRuXxeDQ4OKiWlhZTbZXCWJAC4tJTyPvCqu8cc3NzpnMAAAAAAAAAAAAAgI2OAgsA+JKGmgb1P9df7DRQYlpaWnT16tVipwEAALDh1dfXW9JOKBSS0+k0HZ/JZCzJoxAUEK8vfOdYv0qhMIzCGwAAAAAAAAAAAGBlKLBYoWQyqdOnT0uSmpubNT4+Lq/Xq66uLtNtGoahgYEBSVI8HlcymZTX61VfX58lOQMAkEuhE3x6enr0t3/7t3ruuefk9/vL+snPAAAAGxGT+YG1UyqFYTdu3LAkDwAAAAAAAABYTy51Xip2CgCAEkOBxQokk0l5PB4Fg0G53e6F7T09PRodHV0oksjH8PCwRkdH5ff7F233eDzy+/0aHx8vOG8AAHKxaoJPOBwu+yc/AwCA8nL//n3TsQcOHND169f16NEjVVVVqb29XVeuXLEwOwAAAAAAAAAAAAAAUM4osFgBn8+nrq6uRcUVkuT3+9XY2Civ16uOjo4Vt5dMJnX58mUFg8El+86dOyePx6Oenp4lxRcAAAAAAGx0hayANTQ0pCNHjmh0dFS7d+/WxYsXWVELwKorhcKwubk5vf/++6bzAAAAAAAAAAAAADYKCiyewjAMhcPhnMUOBw8e1MDAQF4FFpFIRMPDw+rv71+y+sV8EUc4HDafNAAAT1EKE3wAAADWWktLi65evVrsNABsMKVQGDY3N2c6BwAAAAAAAAAAAGAjocDiKeYLKxwOR9b9TqdTgUBAyWRSdrt9RW02NTXJbrerubk55zErbQsAADMKneDzh3/4h/qbv/kbPf/88/rJT37Ck58tMDMzowcPHqi6Ov/h2d27d9Xb26toNCqPx6PBwUG1tLSYyoNr+YUHDx6YiuN6AAAAwCoUhgEAAAAAAAAAAABriwKLp4jFYssWO8wXXkQikRWvYuF2u5VIJHKeT1JeK2IAALCWWlpa9O677+rmzZvat2+fqYIALPXSSy9Z0k4oFJLT6TQdn8lkLMljPaivry+4Da4HAAAAAAAAAAAAAAAAAJQPZkQ+hWEYampqyrl/vvjCMAxLztff3y+Hw6GBgQFL2gMAlB6eig8AAAAAAAAAAAAA68fs3KxSc6m846Znp3X+w/OamJ5QW0Obju44qoaaBlM52KptpuIAAAAALEaBxVPE4/GFVSqymS++SCaTBZ3HMAwNDAzI4XAoFAo99fiZuRndn7u/8HpT5SZtqtpUUA4bUaYio4wyylRklFa62OmUPfrTWlb159zcnIVZla+5uTml0+mS6I9SeCr+559/XtD5S6k/14O5uTm9++67+r3f+z1TK4J0dXXpxo0bevTokaqqqvTv/t2/0/DwsOlcyp1V70+z47v1dj3Saf5NLwbG+3hSpiLDv7tYgvEYcuG9gWx4XyAbxvrF8fDRQ9XM1Sy8ZqxfHrj3Xd64fuWN61feuH7ljetXvjIVrI5dDG/+9ZsFt3H7s9s6ceOE6fi/7PzLgnMoNj57rEV/Wov+tBb9aa311J+lcB+be+rWoj+txb39tUGBxVOsdGLdvXv3TLU/PDys0dFRGYYhh8Mhr9e7orj+v+5f9PpF94t6addLpnLYyDLKaOYrM4orrgpVFDudskd/Wsuq/rx586aFWZWvdDqtTz75RJJUWVlZ5GyKr9D3Bf1prXQ6rf/5P/+n/v7v/95Uf77++uv6zW9+o//23/6b/tW/+ld6/fXX9f77769CpuWh2O/P9XY9zI5zURjG+3hSRhnNffL4ZhP/7mJesf+9Q+nivbHYzMyM6dhEIqGzZ8/qv//3/65/+S//pU6ePKnGxsa826mtrTWdg1V4XyAbxvrFwVi/PHHvu7xx/cob16+8cf3KG9evfP125rfFTgFFEm+NFzuFgvHZYy3601r0p7XoT2utp/4shblu3FO3Fv1pLe7trw0KLIqsq6tLXV1dC6+9Xq/8fr/OnTsnu92eM27g3w6o0fbFD7qbKjdp0xRPucpXpiKjuOJq+rRJFZnyHliUAvrTWlb15759+yzMqnzNV8Du2bPH1AoBViqFp+LX1dWZiptXSv25HljRn//+3/97K1Mqa6Xw/lxP12P+Sy7WFuN9PClTkdHWf76Vf3exSCn8e4fSxHtjsU2brPn3MxqN6j/8h/9gKrbQFQStwPsC2TDWLw7G+uWJe9/ljetX3rh+5Y3rV964fmXM/LMGUIA/++afqbFm8Vi/uurp38H/y+h/0di9MaUzaVVWVMrV7NJ/3P0fTeVgm7KZiislfPZYi/60Fv1pLfrTWuupP0thrhv31K1Ff1qLe/trg3fqU9jt9hVNhG1ubrbkfMFgUI2NjUomkwqFQjmPq62uVX11/eKNrPKYt7TSqlCFKjIVqsxQGVco+tNaVvUng5IvVFZWqrq6uuh90tDQYCruL//yL3XkyBGNjo5q9+7dunjxoum2rFAq/ble0J/Woj+tw9MDioPxPp6UVprPNWTF+wK58N4oLaVyHXhf4MsY6xfH5qrNjPXLEPe+yxvXr7xx/cob16+8cf3KV7lPqixX9hq7mm35zx06vvO4Bj8Y1HhyXE67U73P9mpz1WZzSayD7xZ89liL/rQW/Wkt+tNa66k/S+UeNvfUrUV/Wod7+2uDd+pTNDU1Lbs/Hn+8vN5yq03kw263q6urS8PDwwqHw+ro6LCkXQBA+WtpadHVq1eLnQYAAAAAlI379++bjj1w4ICuX7++sIpge3u7rly5YmF2AAAAAABgo2uoaVD/c/3FTgMAAADAEyiweAqHw6FIJJJz//zqFg6HY8VtJpNJxePxnDHz20OhEAUWAAAAAAAAgEl1dXWmY4eGhpasIlhIewAAAAAAAAAAAABKHwUWT+F2uxUOh3PuNwxDkvIqhGhsbJQkJRKJrCtfNDc/XjJwvngDAID16sGDB6Zj7969q97eXkWjUXk8Hg0ODqqlpSXvdpggBQAAACAbVhEEAAAAAKxnIz0j2ubbJkfH8g8UTSVT+tXpX0mSNjdvVnw8LqfXKVeXy9IYAAAAACgVFFg8xaFDh3TmzBnFYjG53e4l+0dHR/NeZcJut6upqSlrcYUkjY+PS5I8Hk/e+QIAUE7q6+staScUCsnpdJqKzWQyluQAAAAAAAAAAAAAlLKEkZARNhT1RzUVm9I237Zlj08lUwp4AvIFfWp1ty5sH+kZ0Z3RO/IOeC2JAQAAAIBSUlnsBEqd2+1WR0eHLl++nHX/8PCw+vv7l2xPJpPq7+/PuvpFd3e3QqFQznO+8847stvtOnjwoPnEAQAAAAAAAAAAAAAAAEnRQFTh/sdzWDoGVvYg0aAvqGe6nllUKCFJnf5OxQIxGWHDkhgAAAAAKCWsYLECwWBQHo9Hhw4dWrSKRU9Pj/r6+rKuYBEIBHTmzBkFAgElEolF+wYGBtTT0yOfz7ck1ufzSZKuXbuWc4ULAADWi/v375uOPXDggK5fv65Hjx6pqqpK7e3tunLlioXZAQAAAAAAAAAAAOuDp9sjT7dHkjQVm3rq8fOrXez378+633XQpVsDt+TocBQUAwAAAMB6Iz0j2ubb9tSxdyqZ0q9O/0qStLl5s+LjcTm9Trm6XJbGlBsKLFbAbrcrGo2qv79fdrtdzc3NGh8fl9frVVdXV9aYjo6OZVeh8Pv9Gh4els/nU1NTk+LxuJLJpNxutyYmJiiuAABsCHV1daZjh4aGdOTIEY2Ojmr37t26ePFiQe0BAADAnAcPHpiOvXv3rnp7exWNRuXxeDQ4OKiWlpa822EcCAAAAAAAYK2IPyJJanQ0Zt3f5GxSLBBTKpmSzW4zHQMAAADAGvMFz1F/VFOxKW3zbVv2+FQypYAnIF/Qt2gFupGeEd0ZvSPvgNeSmHJEgcUK2e12+f3+FR/vdruXrFzxZV1dXTkLNAAAwPJaWlp09erVYqcBAMCa+PDSh7pz9o4qM5VFzeOVkVeKen6Upvr6ekvaCYVCcjqdpmIzmYwlOQAAAAAAAOCxT2OfLlsEMV9EMRmZXHgqrpkYAAAAAIWLBqIyQoYcXoc6Bjo05B16akzQF9QzXc8sKpSQpE5/pwYaB+T0OpeM283ElCMKLAAAAAAAAAAAAAAAAAAsSBgJ1TbV5tw/X0iRML54+KiZGKw/qbmUqbjp2Wmd//C8jN8acnzFoaM7jqqhpsFUW7ZqVkgBAAAbi6fbI0+3R5I0FZt66vHzq13s9+/Put910KVbA7cWFUuYiSlXFFgAwDp3qfNSsVOQxNOOAQAAgPXq/v37pmMPHDig69ev69GjR6qqqlJ7e7uuXLliYXYAAAAAAADrW/pRWpn0F6t7pufSlrQ7E59ZWHEim/lCilTyi8n0ZmKw/rz289cKbuP27G2duHHCdPzb+98uOAcAAID1LOKPSFLO8XuTs0mxQEypZGqhUNpMTLmiwAIAAAAAAACm1dXVmY4dGhrSkSNHNDo6qt27d+vixYsFtQcAAAAAALDRxP8hrvj/iC+8nta0Je2utAji4b2HBcUAAAAAWHufxj5dtghivohiMjK5sCKFmZhyRYEFAAAAAAAAiqKlpUVXr14tdhoAAAAAAABlq+kbTYueIBtPxaVfFjEhbHgXXrxgKu5s5KzG7o0pnUmrsqJSrmaXTu46aXF2AAAAkKSEkVhYYS6b+UKKhJEoKKZcUWABAAAAAAAAAAAAAAAAlKHKqkqp6onXc5WWtGuz21a0IsXm5s0FxWD9sVXnfqrxco7vPK4fffAjjf9mXM6vOvX6s6+bbgsAAGC9mJud06PZRwuvP7//uSXtzsRnFhVqf9l8IcWT43szMeWKAgsAAAAsePDggam4u3fvqre3V9FoVB6PR4ODg2ppaTHVVl1dnak4AAAAAAAAAAAAWGO5J9NKjydXSV88pdZsDDCvoaZBfb/Xp3hrXE1TTarMWFMsBAAoL5c6LxU7BaUr0vqdk79T7DQASdLN0zf1yz/9Yom66cppS9pdaRHEw3sPC4opVxRYAAAAYEF9fX3BbYRCITmdTtPxmUym4BywdqZiU4r4I0rFU5qKTclmt8nT45Gn25P1+GggqrHgmDw9Hjk6HLLZbUoYCU3FpvTR5Y+079Q+tbpbl8Slkin96vSvJD1+slV8PC6n1ylXl2tV/34AAADARrSW43bG+gAAAEBpanQ0ajIymXP//OSqJ59gayYGAAAAQG77Tu3T8yefX3j9ySef6Ac7flDEjDYGCiwAYJ1LzZlfbml6dlrnPzyviekJtTW06eiOo2qoabAwOwBAOYsGopKkTn/nwjYjbCjoC+rWwC11R7uXPIUqlUzJCBsywsai7Ta7Tb6gL+ckrYAnsGT/SM+I7ozekXfAa+VfCwAAANjw1mrczlgfAAAAKF1b3FuWfCd4UsJISJIcHY6CYgAAAADkVl1TreqaL6b7b6rfZEm7NrttRStSbG7eXFBMuaLAAgDWudd+/pol7dz+7LZO3DhhOv6P9EeW5AFgdd2/f99U3IEDB3T9+nU9evRIVVVVam9v15UrVyzODqUkYSSUSqa0t2/vou2ODodevfaqAp6Agr6gDocOL4nd79+v+HhcSSMpW5NNWz1bc654IUlBX1DPdD2zZBJXp79TA40Dcnqd/BgDAAAAWGwtxu2M9QEAAIDStf3Qdr135j1NxaayFllPjk4uGa+biQEAAADKxaXOS8VOQZ+lPrOkndqm2mX3z8RnJGnRg1XNxJQrCiwAAACwoK6uzlTc0NCQjhw5otHRUe3evVsXL1403RbKQ8Qf0TdPfTPrvlZ3qxwdDhlhQwkjsWSp720Ht634y1TCSMgIG9rv3591v+ugS7cGbvGDDAAAAFbswYMHpmPv3r2r3t5eRaNReTweDQ4OqqWlxVRbpf6dabXH7Yz1AQAAgNI2f6//9uXbWYslxobHljxkyUwMAAAAgLXX6GjUZGQy5/75lSqenPNjJqZcUWABAOvchRcvmI49GzmrsXtjSmfSqqyolKvZpZO7TlqYHYD1oqWlRVevXi12GlhDE+EJxQIx/fHEH2eddDW/DPhUbKqgL04Rf0RS7i9fTc4mxQIxpZKpdVEBDwAAgNVXX19vSTuhUEhOp9N0fCaTsSSPUmBm3M5YHwAAACiehJGQ9MUEqFx8QZ8CnoC2H9q+qGBipGdEe/r2ZC2INhMDAAAAYG3Nz+vJZf47w5PjdzMx5YoCCwBY52zV5n+APr7zuAY/GNR4clxOu1O9z/YW1B4AYP2obarVVGxKCSOR9SlUVvk09umyk6nmJ2NNRlhWHAAAACgWM+N2xvoAAADA2hobHlPUH5WkhafOjhwbWdjm8rnk6fYsirHZbeqOdivUH5LNbtPm5s2Kj8fl9Drl6nJlPY+ZGAAAAABra/uh7XrvzHuaik1lnfczObr03ryZmHJFgQUAIKeGmgb1P9df7DQAACXocOiwEkYi59Nmk0ZSkpYtvpiKTWkyMqmtu7bmPC5hJFTbVJuzjfkJWfNV8AAAAMDT3L9/33TsgQMHdP36dT169EhVVVVqb2/XlStXLMyu9KzWuJ2xPgAAALC2XF0uUwUONrtNnf7OVY8BAAAAsHZa3a1ydDh0+/LtrPf+x4bHdDh0uOCYclVZ7AQAAAAAlI652TnN/mZ24c/n9z/PeWyu4grp8ZemVndr1mOMsKFbZ25J0sLTsIa8Q1mXEZyJzyz7VNv5CVlPW8YcAAAAmFdXV2f6z9DQkLxer5qbm+X1ejU0NGS6rbWWz1hfWv1xO2N9AAAAAAAAAACsN//goqfdX/cFffp4+GNNxaYWbR/pGdGevj1ZV6MwE1OOWMECAAAAwIKbp2/ql3/6y4XX05XTebcxPwmr89zSp1PNF1zs7du7sK3V3Spf0KeBxgF1R7sXVbmvdDLVw3sP884TAAAAyFdLS4uuXr1a7DRMyWesvxbjdsb6AAAAAAAAAJDbpc5LxU5BkvTKyCvFTkFS6fRHqRobHlPUH5UkTUYmJUkjx0YWtrl8roWHKc2z2W3qjnYr1B+SzW7T5ubNio/H5fQ6c65+ZyamHFFgAQAAAGDBvlP79PzJ5xdef/LJJ/rBjh+sOH4qNqVwf1i+oC/rcoDLfQFzdbkU9AX1xvgb+ScOAAAAYFn5jPUZtwMAAAAAAAAApMILG9IVacVb47pz9o4qM5UWZYUvc3W5TBU42Ow2dfqXPkDV6phywzsVAAAAwILqmmrVfLVm4c+m+k15xQd9Qe337zf1pW3r7q1KGImFpQqlx1/KVvJk283Nm/M+HwAAALCRFDrWn2fVuJ2xPgAAAAAAAAAAKEUUWAAAAACwRNAXlKfHs2RJwZWy2W2SHq+CMa+2qXbZmJn4zKJYAAAAAKvLqnE7Y30AAAAAAAAAAFCKKLAAAAAAULBQf0hbd2/V3r69OY8Z6RnRD50/zKvdRkfjwsSqbOafeNvoaMyrXQAAAADZrdW4nbE+AAAAAAAAAAAoRdXFTgAAAABAeYsGompyNmVduSKVTH3xhNvI1IomULW6Wxe2bXFvkRE2csYkjIQkydHhMJU7AGB9ePDggenYu3fvqre3V9FoVB6PR4ODg2ppaTHVVl1dnek8AKBUrNW4nbE+AAAAAAAAAAAoRRRYAADWxKXOS0U9f7oird85+TtFzQEA1qOx4TFJylpckTASmopNydXlkiS1dbSpe6A7Z1uTo5Oy2W2LnlC7/dB2vXfmPU3FphZN4HoyhglXAID6+npL2gmFQnI6nabjM5mMJXkAQDGt1bidsT4AAAAAAAAAAChFlcVOAAAAAEB5moo9frJttuIKSTLCxqKJUtsPbVc0EM16bMJIaGx4TJ3nOhdtb3W3ytHh0O3Lt7PGjQ2PaW//XpN/AwAAAABftlbjdsb6AAAAAAAAAACgFLGCBQAAAIC8JYyEgr6g2jraNNkzuWR/Kp6SETbUn+hf2NbqbpURNnTrzC3t7du7qK2AJ6A9fXsWVrt4ki/oU8AT0PZD2xcVbIz0jGhP3x6eagugKB48eGA69u7du+rt7VU0GpXH49Hg4KBaWlryamNubs70+dej+/fvm449cOCArl+/rkePHqmqqkrt7e26cuWKhdkBQHlZy3E7Y30AAAAAAAAAAFBqKLAAAAAAkLch75ASRkKJQCLnMY2OxiXb9vbtlRE2NNIzolQ8pVQyJZvdplevvbpoQtWTbHabuqPdCvWHZLPbtLl5s+LjcTm9zqwTuwBgLdTX11vSTigUktPpNBV748YNS3JYD+rq6kzHDg0N6ciRIxodHdXu3bt18eLFgtoDgPVgrcbtjPUBAAAAAAAAAECpocACAAAAQN7eGH/DdKyjw5H3k2htdps6/Z2mzwkAQC4tLS26evVqsdMAgJKzVuN2xvoAAAAAAAAAAKCUUGABAAAAAABW5FLnpWKnoFdGXil2CpKk+/fvm449cOCArl+/rkePHqmqqkrt7e26cuVKXm3Mzc3p/fffN50DAAAAAAAAAAAAAABYigILAAAAAACAPNXV1ZmOHRoa0pEjRzQ6Oqrdu3fr4sWLebc3Nzdn+vwAAAAAAAAAgNWXmkuZipuendb5D89rYnpCbQ1tOrrjqBpqGvJuJ12RNnV+AACAjY4CCwAAAAAAgDXU0tKiq1evFjsNAAAAAAAAAMAqeu3nrxXcxu3PbuvEjROm43/Y/cOCcwCAjejDSx/qztk7qsxUFjsVAEXAf/kAAAAAAAAAAAAAAAAAAAAAAGDDYwULAAAAAAAAYB2ZmZnRgwcPVF2d362/u3fvqre3V9FoVB6PR4ODg2ppaTGVQ11dnak4AAAAAAAAYL248OIFU3FnI2c1dm9M6UxalRWVcjW7dHLXybzbSVek9VAPTeUAAACwkVFgAQAAAAAAAKwjL730UsFthEIhOZ1O0/GZTKbgHAAAAAAAAIByZqu2mYo7vvO4Bj8Y1HhyXE67U73P9ppqiwILAAAAcyiwAAAAAAAAAAAAAAAAAACgBDTUNKj/uf5ipwEAALBhUWABAAAAAAAArCM/+9nPtGfPHlVX53fr78CBA7p+/boePXqkqqoqtbe368qVK6uUJQAAAAAAAAAAAACUHgosAAAAAAAAgHWktrZWdXV1eRdYDA0N6ciRIxodHdXu3bt18eJF1dXVrVKWAAAAAAAAAAAAAFB6KLAAAAAAAAAAoJaWFl29erXYaQAAAAAAAAAAAABA0VQWOwEAAAAAAAAAAAAAAAAAAAAAAIBiYwULAAAAAABQNi51Xip2CpKkV0ZeKXYKAAAAAAAAAAAAAADAYqxgAQAAAAAAAAAAAAAAAAAAAAAANjwKLAAAAAAAAAAAAAAAAAAAAAAAwIZHgQUAAAAAAAAAAAAAAAAAAAAAANjwqoudQLlIJpM6ffq0JKm5uVnj4+Pyer3q6uoy3WYsFpPf71c8HlcsFpPdbldPT4+6u7utShsA8IQPL32oO2fvqDJT3PrCV0ZeKer5AZSPBw8emI69e/euent7FY1G5fF4NDg4qJaWlrzbefjwoekcAAAAAAAAAAAAAAAAAKCcUGCxAslkUh6PR8FgUG63e2F7T0+PRkdHNTAwkHebgUBAkuT3+xe2hcNh+Xw+DQwMKBqNym63F5w7AAAAyld9fb0l7YRCITmdTkvaAgAAAAAAAAAAAAAAAID1qriP8C4TPp9PXV1di4orpMfFEYFAQOFwOK/2DMNQMplcslJFR0eHrl27JsMw5PP5Cs4bAAAAAAAAAAAAAAAAAAAAAACsDCtYPIVhGAqHw4tWmnjSwYMHNTAwoI6OjhW36ff7derUqaz73G63Ojo6FA6HZRiGHA6HqbwBAKXrUuelYqegV0ZeKXYKAFbg/v37pmMPHDig69ev69GjR6qqqlJ7e7uuXLmSdzv/+I//qG3btpnOAwAAAAAAAAAAAAAAAADKBQUWTzFfWJGr0MHpdCoQCOj/x97/x9Z13geC91cSXV39aHVJzZam2l1Ul5nFmna2MSklY0mzMyOTad9AGsAJrxQD60RvE5PyFHA3QSJa2H/eYv9QqRbJtgNMRLop3NFODJuceAEZUREySgNLCRqS15mNw+xiXl7l9VSi3YnJq1Sy6IYi3z9U0qJ5SZGXR7y84ucDCPA953yf8/Vzjo6ee+75nqdQKEQ6nV5Sm/39/dHd3R2XL18uGtPY2Bj9/f2Ry+UUWAAArGPbtm0rOfbs2bNx7NixGBgYiL1798YLL7xQUntbt24tOQcAANaOmzdvxo0bN6Kqavm3hN9+++04fvx4DA0NRVNTU5w5cyZqa2uX3c5KxrcAAADA4iYmJ0qOvfbetfj6j78el69djt07dsfnPvy52LF5R0ltpapSJecBAABrgQKLu8jlcosWTswUQAwODi55FouamprI5XKRz+ejsbExiTQBAGCO2traOH/+fLnTAABgjfjEJz6RSDt9fX1RX19fUuz09HQiOQAAAADz/d5f/V4i7bzx8zfiC9/9Qsnx3zj0jUTyAACAclFgcRf5fD5qamoWXD9TfJHP55fcZl9fX+Tz+QVnp5hpS/EFAAAAAAAAAAAAAACsDgUWdzE2NrZgIUREzBZfFAqFZbW7WJu9vb3R2Ni46DY3J2/G9cnrs58f2PhAPLDpgWXlQMT0humYjumY3jAdUzFV7nQqnv5Mlv5Mlv6ca3JycsXxU1NTK26H2/RnsvRnsqamXDPLwXifOxnHrE3l/nfGv3csxLlBMZOTk/Hqq6/GP/tn/yyqqpZ/S7i1tTW++93vxq1bt2LTpk3xr/7Vv4re3t6S8mDtMNYvj3dvvRubJzfPfjbWrwzG5JXN8atsjl9lc/wqm+NXuaY3mD2wHNbCff0//3/9ecmx//vA/x7D7wzH1PRUbNywMRp2NsT/svd/KamtqQ2lXzNce5KlP5OlP5OlP5OlP5OlP5OlP5M1Hcb7q0GBxV0stXDinXfeSWR/p0+fjoiI559/ftHtOv66Y87n32383fjEnk8kksN6Mh3TcfNXb8ZYjMWG2FDudCqe/kyW/kyW/pzr4sWLK4qfmpqKN998MyIiNm7cmERK65r+TJb+TFZS41yWx3ifOxnHrE0rHU+tlH/vWIhzg2Kmpqbiv/7X/xr/6T/9p5LOi2eeeSZ+8YtfxP/9f//f8T/8D/9DPPPMM/H666/fg0xZTcb65WGsX5mMySub41fZHL/K5vhVNsevcv39zb8vdwrrUqWP9T+989PxH773H+LNv3sz/rtf/+/i0//i0/Hu1ndLauvdKC0uwrUnafozWfozWfozWfozWfozWfozWdcnrt99I1ZMgcUaksvloqOjI3p6eqKxsXHRbTv/ZWdUp6pnPz+w8YF4YNRbrpZresN0jMVY1LxVExumXbhXSn8mS38mS3/OdeDAgRXFz7x1dN++fSW9/ZS59Gey9GeyZh7QZHUZ73Mn45i1aaXjqZXy7x0LcW5QTBLnxb/+1/86yZRYA4z1y8NYvzIZk1c2x6+yOX6VzfGrbI5fBbtZ7gTWp0of69dETfyvH/lf319w7R//rDLXnmTpz2Tpz2Tpz2Tpz2Tpz2Tpz2RN3zSDxWrwK+tdpNPpJc1isXPnzhXvK5vNRldXV7S2tt512y1VW2J71fa5C/2dWbapmIoNsSE2TG+IjdPe6rhS+jNZ+jNZ+nOuJB602rhxY1RVVXloKyH6M1n6MznefF0exvvcyThmbep5oqes+5/aMBVjdWMx+r+Plv28ePLck2XdP/MZC1GM84IPMtYvj62bthrrVyBj8srm+FU2x6+yOX6VzfGrXB5aKw/39ZPh2pMs/Zks/Zks/Zks/Zks/Zks/Zkss4CsDr+m3UVNTc2i68fGxiLidiHGSmSz2Whvb4+2trYVtQMAS/Hi4RdXFD/zQN+Vr1xZ0cDXw3gAAAAAAAAAAADAWqEU6C4ymcxsEUUxM7NbZDKZkvfR0dERe/fujRMnTpTcBgAAAAAAAAAAAAAAUDoFFnfR2Ng4W0RRTD6fj4iI5ubmktrv7u6O+vr6osUVi+0XAAAAAAAAAAAAAABIjgKLuzh69GhERORyuaLrBwYGSi6u6O3tjYiItra2eevy+Xz09/eX1C4AAAAAlNONGzdK/pPP5+PjH/947Ny5Mz7+8Y9HPp8vuS0AAAAAAACA5agqdwJrXWNjYzQ3N8dLL70UjY2N89b39vZGX1/fvOWFQiFOnToVLS0tRQswcrlcjI2NFS2uiIjo7+8vuXADAAAAAMpp+/btibTT19cX9fX1JcdPT08nkgcAAAAAAACwPiiwWIKenp5oamqKo0ePzimyaG9vjxMnThQthOju7o7Tp09Hd3d3jI+Pz1mXz+cjm81Gc3NztLe3z4sdGxuL/v7+eXEAAAAAAAAAAAAAAMC9ocBiCdLpdAwNDUVHR0ek0+nYuXNnjIyMREtLS7S2thaNaW5ujnQ6HUeOHJm3rqWlJfL5fHR3dy+4z0wmk1j+ALBWvXj4xXKnEE+ee7LcKQAAwH3n+vXrJcc+8cQTceHChbh161Zs2rQpDh48GK+88kqC2QEAAAAAAAAUp8BiidLpdHR1dS15+8bGxgVnoBgZGUkqLQAAAICyUjRLMdu2bSs59uzZs3Hs2LEYGBiIvXv3xgsvvLCi9gAAAAAAAACWSoEFAAAAALBm1NbWxvnz58udBgAAAAAAALAObSx3AgAAAAAAAAAAAAAAAOVmBgsAYF178fCL5U4hpjZMxW988TfKnQYAQMVaC2O6iIgnzz1Z7hQAAAAAAAAAWAEzWAAAAAAAAAAAAAAAAOueAgsAAAAAAAAAAAAAAGDdqyp3AgAARPz4xR/Hla9ciY3T5a1/ffLck2XdPwAAAAAAAAAAAJSLAgsAAGa9ePjFcqegyAMAqFhrYSw1tWEqfuOLv1HuNAAAAAAAAAAqUnlfkQwAAAAAAAAAAAAAALAGmMECAIA1ZaVvfp7aMBVjdWNx5StXYuN06fXEZtIAAAAAAAAAAABYX8xgAQAAAAAAAAAAAAAArHtmsAAAAACA+8iPX/zximfzWimzgQEAAAAAAACVyAwWAAAAAAAAAAAAAADAumcGCwAAKOLFwy+WOwVvfgYAKtZaGEutFcZ0AAAAAAAAUDkUWAAAwBq1Fh5M/PnEzxddP1GYiNdOvRYREVt3bo2xkbGob6mPhtaG1UgPAGDNWwtjuqkNU/EbX/yNcqdBhTHWBwCA+5OxPgAA3L+M95OhwAIAACjJRGEiupu6I9uTjbrGutnl59rPxZWBK9HS2VLG7AAAgFIZ6wMAwP3JWB8AAO5fxvvJUWABAACUpCfbEw+1PjTnS1lExOGuw9FZ3Rn1LfWRac6UKTsAAO704xd/HFe+ciU2Tm8sWw5PnnuybPtmeYz1AQDg/mSsDwAA9y/j/eQosKgw//AP/xAREb+c+mWZM7k//PLWL+Nbg9+Kow8ejc0bN5c7nYqnP5OlP5OlP5OlP5OlP5OlP5M1M+6cGYfOGM+PR74/H4e6DhWNazjSEJc6L/litkzG+xTjukYxzgsW4tygmLVyXrx4+MWy7ftOCj1umxl7GuvD3a2V6yilcfwqm+NX2Ry/yub43X+M9e8N9/WT5dqTLP2ZLP2ZLP2ZLP2ZLP2ZLP2ZLM/xrA4FFhXmvffei4iIyanJMmdyf/jl1C/jr3J/FZ/83U+6cCdAfyZLfyZLfyZLfyZLfyZLfyZrZtw5Mw6dMdg1GBER1ZnqonE19TWR687FRGEiUunUvU3yPmK8TzGuaxTjvGAhzg2KcV7MpdDjtpmxp7E+3J3raGVz/Cqb41fZHL/K5vjdf4z17w339ZPl2pMs/Zks/Zks/Zks/Zks/Zks/Zksz/GsDgUWAADAsr2Ve2vRL1wzX9iuDl5V/Q4AAEWUu9Djv1z/L0WXG+sDAMD9yVgfAADuX8b7ydpY7gQAAIDKM54fjy01WxZcP/OlbTw/vlopAQAACTDWBwCA+5OxPgAA3L+M95NlBosKMzU1FRERhYlCbN20tczZVL53b70bERHjE+Px3qb37rI1d6M/k6U/k6U/k6U/k6U/k6U/V2bq1lTE9Pufx2/c/mI1Mw6dcXPs5oLTCkbE7Je2icJE8knex4z3KcZ1jWKcFyzEuUExzgsijPXLbaafxyf8eFWJXEcrm+NX2Ry/yub4VTbHr3J8cKxfmCjcXm6svyrc10+Wa0+y9Gey9Gey9Gey9Gey9Gey9OfKuLdfHhump6en774Za8XFixfjn//zf17uNAAAWGdee+21OHDgwOznP9zwh1HXWBdtQ21Ftx/NjUZ3U3fsO7EvWjpbVivNime8DwDAajPWXx0DAwPx0Y9+tNxpAACwjvzwhz+MvXv3zn421r833NcHAKAc3Nu/t8xgUWH+2T/7Z/HDH/4wamtrY+PGjeVOBwCA+8zkP0zG1HvvV7lPTU3Ffy3819j7sb2LRJEU430AAO4VY/3yevTRR431AQC4JxYa6z/66KNlzGr9cF8fAIB7yb398lBgUWGqqqrmvGEAAADutQ/Fh+YtS6VTS5o2cOtO02Evh/E+AACryVh/9RjrAwCwmoz1V4+xPgAAq814/95TOg0AACzblpoti66/OXYzIm5/gQMAACqHsT4AANyfjPUBAOD+ZbyfLAUWAADAslVnqme/fBUzUxVfnalerZQAAIAEGOsDAMD9yVgfAADuX8b7yVJgAQAALNuDjQ8uOrXgeH48IiIyzZnVSgkAAEiAsT4AANyfjPUBAOD+ZbyfLAUWAADAsj1y9JGIiBjNjRZdf3Xgqi9lAABQgYz1AQDg/mSsDwAA9y/j/WQpsAAAAJatrrEuMs2ZeOOlN4quH+4djv0d+1c5KwAAYKWM9QEA4P5krA8AAPcv4/1kKbAAAABKku3Jxk97fzqv+v1c+7nYd2KfyncAAKhQxvoAAHB/MtYHAID7l/F+cjZMT09PlzsJAACgMk0UJqKvoy9S6VRs3bk1xkbGor6lPhpaG8qdGgAAsALG+gAAcH8y1gcAgPuX8X4yFFgAAAAAAAAAAAAAAADr3sZyJwAAAAAAAAAAAAAAAFBuCiwAAAAAAAAAAAAAAIB1T4EFAAAAAAAAAAAAAACw7imwAAAAAAAAAAAAAAAA1j0FFgAAAAAAAAAAAAAAwLqnwAIAAAAAAAAAAAAAAFj3FFgAAAAAAAAAAAAAAADrngILAAAAAAAAAAAAAABg3VNgAQAAAAAAAAAAAAAArHsKLAAAAAAAAAAAAAAAgHVPgQUAAAAAAAAAAAAAALDuKbAAAAAAAAAAAAAAAADWPQUWAAAAAAAAAAAAAADAuqfAAgAAAAAAAAAAAAAAWPcUWAAAAAAAAAAAAAAAAOueAgsAAAAAAAAAAAAAAGDdU2ABAAAAAAAAAAAAAACsewosAAAAAAAAAAAAAACAdU+BBQAAAAAAAAAAAAAAsO4psAAAAAAAAAAAAAAAANY9BRYAAAAAAAAAAAAAAMC6p8ACAAAAAAAAAAAAAABY9xRYAAAAAAAAAAAAAAAA654CCwAAAAAAAAAAAAAAYN1TYAEAAAAAAAAAAAAAAKx7CiwAAAAAAAAAAAAAAIB1T4EFAAAAAAAAAAAAAACw7imwAAAAAAAAAAAAAAAA1j0FFgAAAAAAAAAAAAAAwLqnwAIAAAAAAAAAAAAAAFj3FFgAAAAAAAAAAAAAAADrngILAAAAAAAAAAAAAABg3VNgAQAAAAAAAAAAAAAArHsKLAAAAAAAAAAAAAAAgHVPgQUAAAAAAAAAAAAAALDuKbAAAAAAAAAAAAAAAADWvapyJwAAAFSu0dxoDHYNxsTYRIzmRiOVTkVTe1M0tTUtGDNRmIjXTr0WERFbd26NsZGxqG+pj4bWhrLHAAAAAAAAAAAA69eG6enp6XInAQAAVJ6h7qGIiDnFFPn+fPRke2JLzZZoG2qLVDo1J2aiMBHdTd2R7clGXWPd7PJz7ecilU5FS2fLvP2sVgwAAAAAAAAAALC+bSx3AgAAQOUZz4/HRGFi3kwVmeZMfOY7n4nx/Hj0ZHvmxfVke+Kh1ofmFD1ERBzuOhy57lzk+/NliwEAAAAAAAAAANY3BRYAAMCyDXYNziuumFHXWBeZ5kzk+/Mxnh+fXT6eH498fz72tO8pGtdwpCEudV6as2y1YgAAAAAAAAAAABRYAAAAy3a5/3L86e4/jYnCRNH1DzY+GBERo7nR2WWDXYMREVGdqS4aU1NfE/n+/Jw2VysGAAAAAAAAAACgqtwJsDyTk5Px+uuvR21tbWzcqD4GAIB7a2pqKt5+++149NFHo6rq/a8PW2q2xGhuNMbz41HXWLektt7KvRWpdGrB9TMFEVcHr0amObOqMWuF8T4AAKtlobE+94axPgAAq8VYf3UZ6wMAsJqM91eHnq0wr7/+enz0ox8tdxoAAKwzP/zhD2Pv3r2zn5/qeyrG8+MLzhJRyBciIuYUX4znx2NLzZYF9zFTFDGeH1/1mLXCeB8AgNX2wbE+94axPgAAq81Yf3UY6wMAUA7G+/eWAosKU1tbGxERP/jBD+I3f/M3y5xN5ZucnIxcLheNjY0quRKgP5OlP5OlP5OlP5OlP5OlP1dm8h8mY+q9qdnPV65eif+p+X+aHYfeaaHiioiI4d7hqGusm7PNzbGbi8bMFEVMFCZWPWatMN6nGNc1inFesBDnBsU4Lyjmb//2b+Oxxx4rOtYneTP9/MMf/jDq6pY2CyBrh+toZXP8KpvjV9kcv8rm+FWu0dHR+OhHP2qsv0rc10+Wa0+y9Gey9Gey9Gey9Gey9Gey9Gey3NtfHc7UCjMzneCDDz7oi1kCJicn42c/+1n85m/+pgt3AvRnsvRnsvRnsvRnsvRnsvTnyvz1/+ev43t/+L3Zz9c2XouIWNa01pdOX4qIiMPPH56zfKkFDe++8+6qx6wVxvsU47pGMc4LFuLcoBjnBcVMTk5GxPLG+pRupp/r6uqM9SuQ62hlc/wqm+NX2Ry/yub4VT5j/dXhvn6yXHuSpT+TpT+TpT+TpT+TpT+TpT+T5d7+6nCmAgAAsw6cPBCPffGx2c9vvvlmfPXDX11y/GhuNPo7+iPbk426Rm9lBQAAAAAAAAAAKocCCwAAYFbV5qqo2vz+14QHtj+wrPiebE8c6joUDa0N89al0qklzS6xdefWVY8BAAAAAAAAAAAwPwgAAJCInmxPNLU3RVNbU9H1W2q2LBp/c+xmRNwukFjtGAAAAAAAAAAAAAUWAADAivV19MWuvbti/4n9C25TnameLW4oZmbWiepM9arHAAAAAAAAAAAAKLAAAABWZKh7KGrqa4oWV8wUM0REPNj44JzPHzSeH4+IiExzZtVjAAAAAAAAAAAAFFgAAAAlG+4djoiIprameevG8+OR78/Pfn7k6CMRETGaGy3a1tWBq/OKHlYrBgAAAAAAAAAAQIEFAABQktHcaNwcu1m0uCIiIt+fj7rGutnPdY11kWnOxBsvvVF0++He4djfMXcWjNWKAQAAAAAAAAAAqCp3AgAAQOUZz49HT7YndjfvjqvtV+etnxibiHx/PjrGO+Ysz/Zko7upOx45+sic4otz7edi34l9RWeWWK0YAAAAAAAAAABgfVNgAQAALNvZlrMxnh+P8e7xBbepzlTPW5ZKp6JtqC36OvoilU7F1p1bY2xkLOpb6qOhtaFoO6sVAwAAAAAAAAAArG8KLAAAgGV7duTZkmNT6VQc7jq8JmMAAAAAAAAAAID1a2O5EwAAAAAAAAAAAAAAACg3BRYAAAAAAAAAAAAAAMC6p8ACAAAAAAAAAAAAAABY96rKnUBS2tvbI5vNRnNz84raKRQKcerUqYiI2LlzZ4yMjERLS0u0trYmFlPKPgAAAAAAAAAAAAAAgHunogss8vl89Pf3R1dXV+Ryuchmsytqr1AoRFNTU/T09ERjY+Ps8vb29hgYGIjOzs4Vx5SyDwAAAAAAAAAAAAAA4N7aWO4EStXd3R0dHR0REYkVJWSz2WhtbZ1T+BAR0dXVFd3d3dHf37/imFL2AQAAAAAAAAAAAAAA3FsVW2DR1tYWPT090dbWFjU1NStub2Y2jPb29qLrjxw5Mq+QY7kxpewDAAAAAAAAAAAAAAC49yq2wCJpXV1dERGRyWSKrq+vr4/+/v4oFAolx5SyDwAAAAAAAAAAAAAA4N5TYPGPcrlcpNPpBdfPFEUMDg6WHFPKPgAAAAAAAAAAAAAAgHuvqtwJrBX5fD5qamoWXD9TGJHP50uOKWUfC5mamopbt27ddTsWd+vWrdm+3LBhQ7nTqXj6M1n6M1n6M1n6M1n6M1n6M1lTU1PlTmFdMt7nTq5rFOO8YCHODYpxXqxNN27cKCnu7/7u7+KZZ56JoaGhaGpqiq997Wvx67/+68tu5+///u9L2j8rc+vWLWP9CuQ6Wtkcv8rm+FU2x6+yOX6Vy3izPNzXT4ZrT7L0Z7L0Z7L0Z7L0Z7L0Z7L0Z7I8x7M6FFj8o7GxsdkZJIqZKYwoFAolx5Syj4X84Ac/iP/n//l/Zj9v2rQpqqoczuWampqK//Jf/ktMTU3Fxo0mdFkp/Zks/Zks/Zks/Zks/Zks/Zmsd955p9wprEvG+9zJdY1inBcsxLlBMc6Ltel/+9/+t5Li/q//6/+KsbGxiIjo7++Pj33sY/E//o//47LbmZycLGn/rMylS5eiurp69rOxfmVwHa1sjl9lc/wqm+NX2Ry/yjU+Pl7uFNYl9/WT4dqTLP2ZLP2ZLP2ZLP2ZLP2ZLP2ZLM/xrA4j+X+0lKKGiLkn5nJjStnHQs6cOTPni9hv//Zvx0c+8pEltc/7pqen49q1axERKuMSoD+TpT+TpT+TpT+TpT+TpT+T9Ytf/KLcKaxLxvvcyXWNYpwXLMS5QTHOi/vLB8foxuyV5Wtf+5qxfgVyHa1sjl9lc/wqm+NX2Ry/ymW2uvJwXz8Zrj3J0p/J0p/J0p/J0p/J0p/J0p/J8pvA6lBgUaEOPXAoqlPvv+Xqgf/vA1F1eXUPZ/bl7Kru716YnJyMH/zgB/HYY495c0AC9Gey9Gey9Gey9Gey9Gey9Gey3nzzzfiDP/iDcqex7pR7vH8/jPXvJ65rFOO8YCHODYpxXqxN//pf/+uS4o4cORJ//dd/Hbdu3YpNmzbFv/gX/yJefvnlZbfz5ptvxqOPPlpSDpTu3/7bfxu/8Ru/Mft58+bNsXnz5jJmxFLcy+toz5GeRNsr1f38PdC/g5XN8atsjl9lc/wq15UrV+LZZ58tdxrrzp/92Z/Fb/7mb85+Xs9j/ZWMcac3TMeG2g1R9XZVbJgu/QHM+3l8uxyu5cnSn8nSn8nSn8nSn8nSn8nyHM/qcKb+o3Q6vaQZJnbu3FlyTCn7WMjWTVvjVzf96tyFU3cNS9T98EVwZkrGzZs3u3AnQH8mS38mS38mS38mS38mS38m64EHHih3CutSucf798NY/37iukYxzgsW4tygGOfF2lTqmOs//If/EMeOHYuBgYHYu3dvvPDCC1FTU7Psdrzlqjz+yT/5J/Hf/Df/TbnTYJnu5XV009SmRNsr1f38PdC/g5XN8atsjl9lc/wq16/8yq+UO4V1qbq62lj/H61kjDu1YSo2xsbYOLUxNk5vLLmd+3l8uxyu5cnSn8nSn8nSn8nSn8nSn8nyHM/qcKb+o7v9ADU2NhYRt4skSo0pZR8AAAAAADCjtrY2zp8/X+40AAAAAAAA7kull/reZzKZzGyBQzEzM09kMpmSY0rZBwAAAAAAAAAAAAAAcO8psPhHjY2NswUOxeTz+YiIaG5uLjmmlH0AAAAAAAAAAAAAAAD3ngKLf3T06NGIiMjlckXXDwwMzCt8WG5MKfsAAAAAAAAAAAAAAADuvXVVYFEoFKKjoyP6+/vnrWtsbIzm5uZ46aWXisb29vZGR0fHimJK2QcAAAAAAAAAAAAAAHDv3RcFFvl8PiJuF1Aspru7O06fPh3ZbLbo+p6enujt7Z03w0R7e3ucOHGi6OwSy40pZR8AAAAAAAAAAAAAAMC9VVXuBErV29sbXV1dERExODgYERFPP/307LJsNhttbW1zYpqbmyOdTseRI0eKtplOp2NoaCg6OjoinU7Hzp07Y2RkJFpaWqK1tTWRmFL2AQAAAAAAAAAAAAAA3FsVW2DR2tq67IKExsbGGB8fX3SbdDo9W6SxVMuNKWUfAAAAAAAAAAAAAADAvbOx3AkAAAAAAAAAAAAAAACUmwILAAAAAAAAAAAAAABg3VNgAQAAAAAAAAAAAAAArHsKLAAAAAAAAAAAAAAAgHVPgQUAAAAAAAAAAAAAALDuKbAAAAAAAAAAAAAAAADWPQUWAAAAAAAAAAAAAADAuqfAAgAAAAAAAAAAAAAAWPcUWAAAAAAAAAAAAAAAAOueAgsAAAAAAAAAAAAAAGDdU2ABAAAAAAAAAAAAAACsewosAAAAAAAAAAAAAACAdU+BBQAAAAAAAAAAAAAAsO5VlTsBAAAAAAAAoHxePPxiuVOIJ889We4UAAAAAADMYAEAAAAAAAAAAAAAAKDAAgAAAAAAAAAAAAAAWPeqyp0AAAAAAAAAAACweoa6h2K4ZzhS6VRERKQz6WjpbCm67URhIl479VpERGzduTXGRsaivqU+GlobFmy/lBgAAIC1QIEFAAAAAAAAAGvSj1/8cVz5ypXYOL2xbDk8ee7Jsu0bIGkThYn494//+9jdvDue6ntqdvl4fjz6OvrmFVlMFCaiu6k7sj3ZqGusm11+rv1cXBm4UrQoo5QYAACAtaJ8d6EAAAAAAAAAAIBVM1Nc8cEih1fbX41cd27e9j3Znnio9aE5hRIREYe7DkeuOxf5/nwiMQAAAGuFAgsAAAAAAAAAALjPXTp9Kcbz40VnkEilU7Frz645y8bz45Hvz8ee9j1F22s40hCXOi+tOAYAAGAtqSp3AgAAAAAAAAAAwL118dTFaGxrLLou25Odt2ywazAiIqoz1UVjauprItedi4nCRKTSqZJjAAAA1hIFFgAAAAAAwDzj+fG42HkxIiImxiZiojARmZZM7D+xv+j2Q91DMdwzHE3tTZFpzkQqnYrx/HiM5kbjJy/9JA6cPBB1jXXz4iYKE/HaqdciImLrzq0xNjIW9S310dDasGBupcQAa9uLh1+8J+1ObZiKsbqxuPKVK7FxeuNdt3/y3JP3JA8AKLfh3uGYKEzEI0cfWXLMW7m3Fi2CmCmiuDp4NTLNmZJjAAAA1hIFFgAAwKoY7h32sBMAAFSI4d7huDJwJQ53HZ6zvLupO4a6huLZkWfnxUwUJiLfn498f37O8lQ6Fdme7ILFFd1N3fPWn2s/F1cGrkRLZ0siMQAAsN795KWfRETMjqFHc6NxdfBq7Nqzq+hYPeJ20fWWmi0LtjlTSDGeH19RDAAAwFpy99e0AAAArNBEYSJ6sj0x1D0UE4WJcqcDAAAsYqIwET956SdFCxUOP384xvPjca79XNHYQ12HYt+JfdHQ2hCNbY1xqOtQdIx3LPhm2p5sTzzU+tC8B7oOdx2OXHduXrFGqTEAAHC/mnxvMt77xXuzf/7h7/+h6HajudHZ/750+lLcHLsZTW1NERFxtuVs0XH0zbGbi85GMVNIced9/1JiAAAA1hIzWAAAACt2rv1cPJx9eMGHpmbeRPVq+6vxavuri7aV7cnOznQx1D0Uwz3D0dTeFJnmTKTSqRjPj8dobjR+8tJP4sDJAwu+Bfe1U69FRMTWnVtjbGQs6lvqzaABAABLcHXwagz3DkdfR9+8IouZ8ffl/stFYx8+8vCiD1PdaTw/Hvn+fBzqOlR0fcORhrjUeWnO94xSYgAA4H528dTF+N4ffm/287W4VnS7mcKHoe6h2H9i/+zyusa6yPZk4093/2lke7JzxtJLLYJ49513VxQDAACwliiwAAAASjLzYNNQ11CM5kbj4ezDi25bnamOusa6SNUUf9hqYmwixvPjc4ogJgoTke/Pz3tzViqdimxPdsHiiu6m7nnrz7WfiysDV4q+hRcAAHjflpotkUqnYuvOrQtus9QiisUMdg1GRER1prro+pr6msh152KiMDG7v1JiWHtePPxiuVOIiIgnzz1Z7hQAAFbswMkD8dgXH5v9fOXKlfhqw1fnbTdT+DAzg8SdUulUZJoz8Wr7q/HsyLP3LlkAAIAKoMACAABYtqHuocj35SPTkonmzuY423J20e2vDFyJp/qeWvAhqIiIvo6+aO5snrf8UNehGBsZi0K+EKmaVOxq2jU7bXkxPdmeeKj1oXnFF4e7DkdndWfUt9R7my0AACyirrEuOsY7iq4bzY1GRMTu5t0r3s9bubcWLYKY+f5wdfDq7Bi+lBgAALifVW2uiqrN7z/+8yu/+JWi26XSqZgoTCw4Ts60ZGK4dzhGc6Oz99dnYu7mzuLsUmIAAADWEgUWlMwbpgAA1q+mtqbZIoeZB6zuZrHiitHcaNTU1xTd5uEjDy/5zbMzs2oc6jpUdH3DkYa41HnJg1YAAFCi/o7+qM5U33VmuNHcaFwdvBq79uwqOvNcxO3xe7G3586Y+R4wnh9fUQwAAHB75orFZnqbGWdfHbw6O4ZfbOwdEXFz7GZEzJ3hrpQYAACAtUSBBQAAcM/tad+z6PrBrsE43HV4xfsZ7BqMiIWLOWrqayLXnVv0RyQAALgfTb43GbfeuzX7+ZfXf7ms+PH8eFzsvBjpTDqe6ntqwe3y/fkYz49HpjkTTW1NMZobjbMtZ2N/x/55hc43x24uWog982DWnW+/LSUGYDm8YAyA+1VdY92SCpHvHEtXZ6rj6uDVu2575xi9lBgAAIC1RIEFAABwzy32Q0lfR99d3367VG/l3lq0cGImj6uDV81iAQDAunLx1MX43h9+b/bztY3XlhQ33DscVwauRCFfiHQmHfUt9QtuOzPe3n9i/+yyusa6yPZko7O6M9qG2ubMZrHUIoh333l3RTEAAEDErr27Yrh3eMEXEM3MLHHnmP3Bxgcj359fsM2Zgo0777eXEgMAALCWbCx3AgAAwPo1mhuNmvqaJc0mMZobjaHuoRjNjS64zXh+fNHpx2f2s5S3dAEAwP3kwMkD8dy152b/PPOfnllSXENrQ7R0tkS2JxstnS1xqfNS9GR7ihY6NLQ2RENrw7zlqXQqGloboifbs+L/DwAAoDQzY/WFih/GRsYiImLXnl2zyx45+khExIL35a8OzH+ZUSkxAAAAa4kCCwAAYNbke5Px3i/em/3zy+u/vKf7u3jqYjS1NS26Tb4/H5dOX4qImN32bMvZoj8C3Ry7uWixxkzxxVLfegsAAPeLqs1VsfnXNs/+eWD7AyW1k+3JxnDv8LKLJXbt3RXj+fE5xc6pdGpJY/OtO7euKAYAALg941xDa0NcPHWx6Pqf9v409p3YN+cee11jXWSaM/HGS28UjRnuHY79HfvnLCslBgAAYC2pKncCAADA2nHx1MX43h9+b/bztY3X7tm+hnuHI51JL7pNdaY6IiL2n3j/x5a6xrrI9mSjs7oz2oba5kxXvtTCiXffeXf5CQMAALOzUQz3Dke+P7/kN8/OPKQ1mhudHecvNvtcxO0C6jtjS40BAABuO/z84ehu6o6h7qE5Lz/qyfZEdaY6Wjpb5sVke7LR3dQdjxx9ZM79+HPt52LfiX1FvxOUEgMAACRnqHsohnuGZ++VpzPpouP9iNvP2rx26rWIuP3yorGRsahvqS86Y/VKYiqJAgsAAGDWgZMH4rEvPjb7+c0334yvfvir92RfF09djMPPH150m4W+eM081NWT7YlnR569F+kBAMC6NVGYiJtjN2cLIT5oplB6pG9k9sGoc+3n4nL/5WWNz6sz1XF18Oqiecxst5IYAADgtlQ6FW1DbfHaqddmZ6WbKExEQ7ZhwdmmZ2L6OvoilU4t6eGpUmIAAICVmyhMxL9//N/H7ubd8VTfU7PLx/Pj0dfRN6/IYqIwEd1N3ZHtyc4rjr4ycKVoUUYpMZVGgQUAADCranNVVG1+/2vCA9sfuCf7Gc+Px2hudM4XreXatXdXDPcOx3h+fPbhqVQ6taRZLLbu3FryfgEA4H7XWd0ZEREd4x1FZ4KYGU/fOfYeHRydnT2imJlt7/wO8GDjg5Hvzy8YM54fj4iY83bbUmIAAID3pdKpZT/wlEqn4nDX4i9MSiIGAABYmZniig+O+V9tfzWuDl6dt7wn2xMPtT407/mdw12Ho7O6M+pb6ufdby8lptJsLHcCAADA+jPYNbjiN8rOPOg1mhudXbalZsuiMTMPfBV7SAwAALgtlU5FdaZ6wXHz2MhYRETsato1u2x38+7oGO9YsM2rA1dn253xyNFHImLumP6DMR/8EaaUGAAAAAAAuN9dOn0pxvPjRQuqU+lU7Nqza86y8fx45Pvzsad9T9H2Go40xKXOSyuOqUQKLAAAgFV3uf/yXQsszrWfiz+r/7NltVudqV7SW3NXWtwBAAD3s8a2xjlTh3/Q8MvDkUqn4uEjD88ue+ToIzHUPVR0+/H8eAz3Dsfh5+e+vbausS4yzZl446U3iu+ndzj2d+xfcQwAAAAAANzvLp66GI1tjUXXZXuy8+77D3YNRsTCz9DU1NdEvj8/ZzbrUmIqUVW5EwAAANaf0dxoNLQ2LL7N4OiSiiXunHLwwcYHI9+fXzBmPD8eEeGNtgAAsIiWzpY4134uHs4+XHTq74iIz3znM3NmuKhrrIt8fz4unb4U+0+8X+Awnh+P7qbu2HdiX9HvANmebHQ3dccjRx+ZM7Y/134u9p3YV3TsXkoMFPPi4ReXtN3UhqkYqxuLK1+5EhunvbsMAAAAAFhbhnuHY6IwMTsL9FK8lXtrwZmsI94vorg6+P7M0aXEVCIFFgAAwKoazY1GRESqZuEvXBERu5t3R1tn24Lrrw5cjVQ6Nacq/pGjj8T3T38/RnOjcx60ujOmkr/AAQDAajncdTiGe4ejJ9sTqZpUTIxNxERhIh5sfDD+4PIfFP0BZf+J/ZHvz8e59nOz26fSqfjMdz5TdHwecXta8rahtujr6ItUOhVbd26NsZGxqG+pX7Aou5QYAAAAAAC4X/3kpZ9ExPsvKR3NjcbVwauxa8+uBe/Pj+fHY0vNlgXbnPkdYOZlpqXGVCIFFgAAwKpabFaKOz1y9JEY6h6KprameevG8+Mx3Dsc2Z7snOV1jXWRac7EGy+9UfQL4nDv8LwpDwEAgOIaWhuWXbCQac4su6g5lU7F4a7D9zwGAAAAAAAqyeR7k3HrvVuzn395/ZdFt5t52WlExKXTl6KusS6a2ppiNDcaZ1vOxv6O/fPu3d8cuznnpaYfNFNIMVGYWFFMJVJgAQAArMhM1flSvxzNbL/YlIERt4sl8v35uHT6Uuw/sX9OfHdTd+w7sa/ow17Znmx0N3XHI0cfmVNkca79XOw7sc8MFgAAAAAAAAAArHkXT12M7/3h92Y/X9t4reh2N8duRiqdiqHuoTnP2NQ11kW2Jxt/uvtPI9uTnfPMzFKf83n3nXdXFFOJFFgAAADLNtw7HENdQxERcXXwakREnHv63OyyhmxD0ZknIiJ27dkVqXQqfmPvb9x1P/tP7I98fz7OtZ+LibGJmChMRCqdis985zMLTmGYSqeibagt+jr6IpVOxdadW2NsZCzqW+qX/fZdAAAAAAAAAAAohwMnD8RjX3xs9vObb74ZX/3wV+dtN1P4MDODxJ1S6VRkmjPxavur8ezIs/cu2fuIAgsAAGDZGlobSi5WqGusi47xjiVvn2nOLHvWiVQ6FYe7Di83NQAAAAAAAAAAWBOqNldF1eb3H/d/YPsDRbdLpVMxUZhY8PmaTEsmhnuHYzQ3OvtC05mYu9m6c+u8/SwnphJtLHcCAAAAAAAAAAAAAADA8s3MXJFKpxZdf3Xw6rxlC7k5dnNem6XEVCIFFgAAAAAAAAAAAAAAUIFmZqW4mztnn6jOVM8WRCy2bXWmekUxlUiBBQAAAAAAAAAAAAAAVKBde3dFxNwCijvNFEXcWYjxYOODC24fETGeH4+IiExzZkUxlaiq3AkAAAAAAACwOl48/GK5UwAAAAAAIEENrQ3R39Ef+f58NLQ2zFs/NjIWERG79uyaXfbI0Ufi+6e/H6O50aIzYFwduDqvUKKUmEpkBgsAAAAAAAAAAAAAAKhA1ZnqaGhtiIunLhZd/9Pen8a+E/silU7NLqtrrItMcybeeOmNojHDvcOxv2P/nGWlxFQiM1gAAAAAAAAAwALWyuw/T557stwpAAAAAGvU4ecPR3dTdwx1D0VTW9Ps8p5sT1RnqqOls2VeTLYnG91N3fHI0UfmzEhxrv1c7Duxr+hsFKXEVBoFFgAAAAAAAAAAAAAAUKFS6VS0DbXFa6dei55sT0RETBQmoiHbMKfgolhMX0dfpNKp2Lpza4yNjEV9S300tDYkFlNpFFgAAAAAAAAAAAAAAEAFS6VTRWequFvM4a7D9zymkmwsdwIAAAAAAAAAAAAAAADlZgYLAKBsbty4UXLs22+/HcePH4+hoaFoamqKM2fORG1t7bLb2bZtW8k5AAAAAAAAAAAAAPcPBRYAQNls3749kXb6+vqivr6+pNjp6elEcgAAAAAAAAAAAAAq28ZyJwAAAAAAAAAAAAAAAFBuZrAAAMrm+vXrJcc+8cQTceHChbh161Zs2rQpDh48GK+88kqC2QEAAAAAAAAAAADriQILAKBstm3bVnLs2bNn49ixYzEwMBB79+6NF154YUXtwQfduHGjpLi33347jh8/HkNDQ9HU1BRnzpyJ2traktpyTgMAAAAAAAAAAKyeii+wKBQKcerUqYiI2LlzZ4yMjERLS0u0trauqM2Ojo6IiBgbG4uIiJaWlmhra0ssptj2e/fujRMnTpScNwCsJ7W1tXH+/Plyp8F9bPv27Stuo6+vL+rr60uOn56eXnEOAAAAAAAAAAAALE1FF1gUCoVoamqKnp6eaGxsnF3e3t4eAwMD0dnZuew2c7lcZLPZ6Orqiubm5tnlLS0tMTIyUrTN5cbkcrno6uqKzs7OSKfTs8t7e3ujqakphoaGlp03AAAAAAAAAAAAAABQuoousMhms9Ha2jqnuCIioqurK6qrq6OlpWVOwcNy2vxgXFdXV9TX1xdtc7kxHR0d0dfXN2/fra2tMTY2Fu3t7dHV1bWsvAEASNb169dLinviiSfiwoULcevWrdi0aVMcPHgwXnnllYSzAwAAAAAAAAAAIGkVW2CRz+ejv79/wUKEI0eORGdn57IKLE6fPh35fD5Onjw5b10mk4nm5uZ5bS43JpfLRSaTWTCHmbwBACivbdu2lRR39uzZOHbsWAwMDMTevXvjhRdeKLktAAAA7i//57H/M3Zu2VnuNACg4r14+MVypxAREU+ee7LcKQAAAAAJ21juBEo1U1ixULFCfX199Pf3R6FQWHKbM7NKpNPpousbGxujv79/RTEzhSELGRsbW7AtAADWvtra2jh//nz8/Oc/j/Pnz0dtbW25UwIAAAAAAAAAAGAJKnYGi1wut2ghwkzhxeDg4JJnsRgcHFy0zfr6+tl9NzY2lhTT2NgY+Xw+stls9PT0zNu+q6srjh49uqR8AQAAAAAAgPvPWnk7f7lNbZiKqCt3FgAAAACsJxU7g0U+n4+ampoF188UPeTz+SW3uVh7dxocHCw5JpPJRFtbW/T29s7OsjFjZsaNEydOLDlnAAAAAAAAAAAAAABg5Sp2BouxsbHZWSqKmSl8KBQKS26zsbExent7F1w/MjIyr81SYrq6uqK+vj46OjqipaUl2traor6+PhobG6Orq2tJud6cvBnXJ6/Pfn5g4wPxwKYHlhR7v5mcnFxR7NTU1Ira4H36M1n6M1n6M1n6M1n6M1n6M1lTU1PlTmFdKvd439+ftcV1jWKcFyzEuUExzguKMdYvj3dvvRubJzfPfl7P9/YryfSG6ZiO6ZjeMB1T4e9OpXH8KpvjN1eljefu5Th0asPaOB8q7Zgsh+8RlcsxK49r167F2NjY7OfNmzfH5s2bF4m4f63kGp3Uv/3+HtzmWp4s/Zks/Zks/Zks/Zks/Zks9/ZXR8UWWCy1cOKdd95Zcpvt7e3R29sbuVwuGhsb562fmW3izjZLiYmIOHHiRKTT6Whvb4/u7u5Ip9PR09Oz5Fw7/rpjzuffbfzd+MSeTyw5/n5y8eLFkmOnpqbizTffjIiIjRsrdkKXNUN/Jkt/Jkt/Jkt/Jkt/Jkt/Jms542mSU+7x/krG2CTPdY1inBcsxLlBMc4LijHWL49yj/UpzXRMx81fvRljMRYbYkO502GZHL/K5vjNVWn3bO7lOHSsbuzuG62CSjsmy+F7ROW68yF/Vs9HPvKROZ8/+9nPxrFjx8qSS7mt5Bqd1L/99/P1eTlcy5OlP5OlP5OlP5OlP5OlP5Pl3v7qqNgCi3uhubk5mpub49SpU/OKHfr7+6O5uTlyuVzs3LlzRTERER0dHVFfXx/T09PR0dERp0+fnp3NYimzWHT+y86oTiTbnsoAAQAASURBVFXPfn5g4wPxwOj6fMvVgQMHSo6dqYjbt29fVFX567BS+jNZ+jNZ+jNZ+jNZ+jNZ+jNZM19yWV3lHu+vZIxN8lzXKMZ5wUKcGxTjvKAYY/3yKPdYn9JMb5iOsRiLmrdqYsO0B7wrjeNX2Ry/uSrtns29HIde+cqVRNsrVaUdk+XwPaJy/e3f/m25U1iXfvSjH8V/+9/+t7Of1/MMFiu5Rif1b//9fH1eDtfyZOnPZOnPZOnPZOnPZOnPZLm3vzoq9kxNp9NLmsXig4UNd9PX1xft7e3R0dERJ0+ejIj3Z6Gor6+f3fdKYlpaWqKjoyOam5sjIqKzszOOHj0a2Ww2uru7Y2xs7K6zWWyp2hLbq7bPXTi9rP/V+8ZKL7gbN26MqqoqF+6E6M9k6c9k6c9k6c9k6c9k6c/keHtAeZR7vO/vztrjukYxzgsW4tygGOcFH2SsXx5bN211b78CTcVUbIgNsWF6Q2yc9nen0jh+lc3xm6sSx3L3ahy6Vs6HSjwmy+F7RGVyvMpjx44dUVNTU+401oSVXKOT+rff34P3uZYnS38mS38mS38mS38mS38mx7391VGxZ+rdvpTMTHn4wWKIpejq6opCoTBbJNHc3BzpdDpOnz4dERF79uwpOeb06dPR2Ng4W1wxo7GxMUZGRqK9vT26u7tnZ78AAAAAAAAAAAAAAADuvYotsMhkMjE4OLjg+pnZLTKZTEntp9PpaG1tnbNsYGAgIm4XQ5Qa09XVFUNDQwvut6urKwYHB6Ovr0+BBQAAAAAAAAAAAAAArJKKLbBobGycnS2imHw+HxGRaJFCLpeLtra2FcXk8/m7zqrR3t6+aBEGAAAAAAAAAOvLi4dfLHcK8eS5J8udAgAAAMA9VbEFFkePHo3Tp09HLpcrOqPEwMDAsosrcrlcPP7449HT0zMvNpfLRT6fj46OjhXFZDKZyOfzi86sMTIyEk1NTcvKfT1byY3EqQ1TMVY3Fle+ciU2Tm8suR03EgEAAAAAAAAAAAAAKlvpT5SXWWNjYzQ3N8dLL71UdH1vb++8YoiIiEKhEB0dHUVnv5iZ9aKYp59+Ojo7O+cVRiw3prW1tWhed+aXy+XiyJEjC24DAAAAAAAAAAAAAAAkq2ILLCIienp6ore3N3K53Jzl7e3tceLEiaIzWHR3d8fp06cjm83OW9fc3Dz7Z0ahUIhsNhvNzc1x4sSJFcd0dnbO5lgoFOasy+Vykc1mo7OzM9Lp9F3//wEAAAAAAAAAAAAAgGRUlTuBlUin0zE0NBQdHR2RTqdj586dMTIyEi0tLdHa2lo0prm5OdLpdNEZItLpdHR2ds4WX8wUQHR0dBQt1ig1pqenJ/r7++Ppp5+eszyTyURfX99d/78BAAAAAAAAAAAAAIBkVXSBRcTtAoeurq4lb9/Y2Bjj4+MLrs9kMtHT07OsHEqJ+eCsFwAAAAAAAAAAAAAAQPlsLHcCAAAAAAAAAAAAAAAA5VbxM1gAAAAAUD43btwoOfbtt9+O48ePx9DQUDQ1NcWZM2eitrZ22e1s27at5BwAAAAAAAAAYIYCCwAAAABKtn379kTa6evri/r6+pJip6enE8kBAAAAAAAAgPVtY7kTAAAAAAAAAAAAAAAAKLdEZ7C4cOFCHDx4MMkmAQAAAFjDrl+/XnLsE088ERcuXIhbt27Fpk2b4uDBg/HKK68kmB0AAAAAAAAALF2iBRYtLS1x69atJJsEAAAAYA3btm1bybFnz56NY8eOxcDAQOzduzdeeOGFFbUHAAAAAAAAACuRaIHFjh074t/8m38T/+7f/bskmwUAAADgPlRbWxvnz58vdxpwT924caPk2LfffjuOHz8eQ0ND0dTUFGfOnIna2tpltzM5OVlyDgAAAEBlePHwi+VOAQAA7guJFlgUCoXo6uqKkZGR6OzsjI985CNJNg8AwDqw0gfQ2tvb42/+5m/iYx/7WHR1dZX0AFrEyt7GDQAAM7Zv355IO319fVFfX19y/He/+91E8gAAAAAAAID7WaIFFhERXV1d8fjjj0d/f3+cOnUqWlpa4siRI/Frv/ZrSe8KAID7UFIPoPX396/oAbTp6elE8gAAAAAAAAAAAKAyJFpg0dXVFZ///OcjIuLpp5+Op59+Ol5//fU4ceJEbNiwIdrb281qAQAAAACsG9evXy859oknnogLFy7ErVu3YtOmTXHw4MF45ZVXlt3O5ORkvP766yXnAQAAAAAAAOtFogUWTz/99Lxljz76aJw5cyauXbsWL7/88uysFjOFGAAAcKe18AAaAAAkZdu2bSXHnj17No4dOxYDAwOxd+/eeOGFF0pqb3JysuQcAAAAAAAAYD1JtMBiMTt27Jgzq8Xx48djw4YNcfz48fjt3/7t1UoDAIA1bqUPoH32s5+NH/zgB/HYY4/FX/7lX66oPQAAKKfa2to4f/58udNgHRvPj8fFzosRETExNhEThYnItGRi/4n9C8ZMFCbitVOvRUTE1p1bY2xkLOpb6qOhtaHsMQAAAAAAAHezagUWd6qvr4/6+vo4depUdHd3RyaTiY6ODrNaAACwIrW1tfHqq6/GxYsX48CBA1FVVZbhLgAAQMUb7h2OKwNX4nDX4TnLu5u6Y6hrKJ4deXZezERhIrqbuiPbk426xrrZ5efaz8WVgSvR0tlSthgAAAAAAICl2LiaO7tw4UL8zu/8TlRXV8dzzz0XhUIhnn766Xj55Zejqakpjh8/Hs8880z87Gc/W820AAAAAKhgN27cKPlPPp+Pj3/847Fz5874+Mc/Hvl8vuS2AO4XE4WJ+MlLPylaqHD4+cMxnh+Pc+3n5q3ryfbEQ60PzSl6iIg43HU4ct25yPfnyxYDAAAAAACwFIm+0vfChQtx8ODBOct+8YtfRHd3d3R1dUU+n4/p6enZGSuefvrpOdueOXMmrl27Ft3d3TE2NhYnT56MX/u1X0syRQAA4B44134uHs4+HJnmzILbDHUPxXDPcDS1N0WmOROpdCrG8+MxmhuNn7z0kzhw8sC8B6Qibj/c9dqp1yIiYuvOrTE2Mhb1LfXR0Nqw4L5KiQGgcm3fvj2Rdvr6+qK+vr7k+Onp6UTyACi3q4NXY7h3OPo6+uYVWcyM2S/3X56zfDw/Hvn+fBzqOlS0zYYjDXGp89Kc7wyrFQMAAAAAALBUiRZYtLS0xK1btyLidrFFV1dX9Pb2zv643NbWFu3t7fHoo48u2MaOHTviy1/+cly7di0+//nPx+nTp+O3fuu3kkwTAABIwMyDTUNdQzGaG42Hsw8vuv1EYSLy/fl5b5NNpVOR7ckuWFzR3dQ9b/259nNxZeBK0TfqlhIDAAC8b0vNlkilU7F159YFt0mlU3M+D3YNRkREdaa66PY19TWR687FRGFiNna1YgAAAAAAAJYq0QKLHTt2xD/9p/80ImLebBVHjhyJHTt2LKutl19+OZ555pn42te+lmSaAADACg11D0W+Lx+Zlkw0dzbH2ZazS4o71HUoxkbGopAvRKomFbuadkVTW9OC2/dke+Kh1ofmFV8c7jocndWdUd9SP+/NtKXEAFDZrl+/XnLsE088ERcuXIhbt27Fpk2b4uDBg/HKK68kmB1A5alrrIuO8Y6i60ZzoxERsbt595zlb+XeWrSgYaYg4urg1dnx+GrFAABw7924caPk2LfffjuOHz8eQ0ND0dTUFGfOnIna2tplt7Nt27aScwAAAIAZiRZYRESMjIxERERra2ucPHly0dkqlmI5RRkAAMDqaGprmi2MmHnAaikePvLwkt8iOzNDxqGuQ0XXNxxpiEudl+Y8NFVKDACVbyUPUJw9ezaOHTsWAwMDsXfv3njhhRc8kAGwiP6O/qjOVM+bGW48Px5barYsGDfzPWA8P77qMQAA3Hvbt29PpJ2+vr6or68vKXZ6ejqRHKAU554+F/8k9U/KnQYAAJCAxAss2tvb44/+6I9WVBhx7dq1+KM/+qNob2+Pa9euJZgdAABQKQa7BiPi/TfQflBNfU3kunMxUZiYfYiqlBgA1rfa2to4f/58udMAuOcm35uMW+/dmv38y+u/XFb8eH48LnZejHQmHU/1PTVv/c2xmwuOwyNitihiojCx6jEAAMBtQ91DMdwzHE3tTZFpzkQqnYrx/HiM5kbjJy/9JA6cPDBvduiI2+Pr1069FhERW3dujbGRsahvqY+G1oYF91VKDAAAwFqQeIHF1772tRW38fLLL0dnZ2f09vZGR0fxacgBAID721u5txYtgph5qOrq4NXZGSlKiQEAgPXg4qmL8b0//N7s52sbl/Zyo+He4bgycCUK+UKkM+mobyn+NuGlFjS8+867qx4DAMC9d/369ZJjn3jiibhw4ULcunUrNm3aFAcPHoxXXnklweyYMVGYiHx/PvL9+TnLU+lUZHuyCxZXdDd1z1t/rv1cXBm4Mm92u1JjAAAA1opECyyOHDmSWDsjIyOxd+/e+NSnPpVImwAAwNoxmhuNq4NXY9eeXUV/sIm4/YbcmbfPFjNTSDGeH19RDAAArAcHTh6Ix7742OznN998M7764a/eNa6htWHOG2bPtpyNoa6hOPz8YbPCAQAwa9u2bSXHnj17No4dOxYDAwOxd+/eeOGFF1bUHos71HUoxkbGopAvRKomFbuadkVTW9OC2/dke+Kh1ofm3cs/3HU4Oqs7o76lft4LjUqJAQAAWCsSLbA4c+ZMIu3s2LEj/uiP/iiRtgAAgKWbfG8ybr13a/bzL6//MtH28/35GM+PR6Y5E01tTTGaG42zLWdjf8f+eT+m3By7OTvjRDEzhRR3vsG2lBgAAFgPqjZXRdXm938SeGD7AyW1k+3JRmd1Z0wUJuKpvqdml6fSqSWNs7fu3LrqMQAArG21tbVx/vz5cqexbjx85OElF0uP58cj35+PQ12Hiq5vONIQlzovzbm/X0oMAADAWrLxXjT6H//jf4zf+Z3fiY9+9KPxs5/9bN76y5cvx5EjR+JP/uRP7sXuAQCAEl08dTH+aMcfzf752m9/LbG2Zwof9p/YP/vWqrrGusj2ZONsy9kYzY3O2X6pRRDvvvPuimIAAIClS6VT0dDaEPn+fOT787PLF5tJLuJ2MfRM/GrHAAAApRnsGoyIWPDFRjX1NZHvz8+5N19KDAAAwFqSeIHFyZMnIyJiYGAghoaGIpfLzdtm9+7d8fLLL8ejjz46uz0AAFB+B04eiOeuPTf755n/9ExibTe0NkRDa8O85TMPaPVkexLbFwBARMSNGzdK/pPP5+PjH/947Ny5Mz7+8Y9HPp8vqR2oRBOFiRjPjy+4Pp1JR0TESN/I7LLqTPVsccNCbc5st9oxAABAad7KvbVo8fLMuPvq4NUVxQAAAKwlVXffZOkuXLgQmUwmPvWpT8X09HRcvnw5PvnJTy64/eOPPx4REd/85jcX3Q4AAFgdVZuromrz+18THtj+wKrsd9feXTHcOxzj+fHZH1dS6dSS3mC1defW2f8uJQYAuH9t3749kXb6+vqivr6+pNjp6elEcoDV1FndGRERHeMdRR+MmhlP3zn2frDxwTkzWnzQTMFGpjmz6jEAAKwPKylyf/vtt+P48eMxNDQUTU1NcebMmaitrS2prW3btpWcx2oazY3G1cGrsWvPrtlZpz9oPD++6CxyM98X7izQLiUGAABgLUm0wKKnpye+9rWvRUREa2vrkmIef/zxeOaZZxRYAADAOjbzg8pobnS2wGKxH2AiYvattXc+8FVKDAAAMFcqnYotNVsWHDePjYxFRMSupl2zyx45+kh8//T3YzQ3WvThrKsDV+cVPaxWDAAA68NaKLKPWP1C+8n3JuPWe7dmP//D3//Dotvn+/Mxnh+PTHMmmtqaYjQ3Gmdbzsb+jv3zxtI3x24uOjvczD35O4uvS4kBAABYSxItsPA2NgAAoJhz7eficv/leHbk2SXHVGeqF50ifObHlzt/qCklBgC4f12/fr3k2CeeeCIuXLgQt27dik2bNsXBgwfjlVdeSTA7WLsa2xpjT/ueBdcPvzwcqXQqHj7y8Oyyusa6yDRn4o2X3iha+DDcOxxP9T01Z9lqxQAAwP3s4qmL8b0//N7s52txbcFtZ+6N7z+xf3ZZXWNdZHuy0VndGW1DbXPG2Ustgnj3nXdXFAMAALCWJFpgMT5e2vR9+fzC03kDANxLa2G66MnJyZJzgEoxOjg6O3tEMTM/uNz5w82DjQ9Gvn/h7woz04ff+UatUmIAgPvXtm3bSo49e/ZsHDt2LAYGBmLv3r3xwgsvrKg9qCQtnS1xrv1cPJx9eN7YuSfbExERn/nOZ+bNcJHtyUZ3U3c8cvSROWP7c+3nYt+JfUXH4asVAwDA/W+9FtkfOHkgHvviY7Ofr1y5El9t+GrRbRtaG4ouT6VT0dDaED3ZnmW9KAkAAKAc8t/JR74vH7Ehoqa+Jnbt2RUPfuTBxNpPtMBiZGRk2THXrl2Ld955J8k0AACWbK1MF/3d7343kTxgrdrdvDvaOtsWXH914Gqk0qk5M0s8cvSR+P7p78dobrTom2mvDlyd9+BUKTEAAMXU1tbG+fPny50GlM3hrsMx3DscPdmeSNWkYmJsIiYKE/Fg44PxB5f/YF5xRcTth7Lahtqir6MvUulUbN25NcZGxqK+pX7RB7lWIwYAgPvfei2yr9pcFVWb33/851d+8SsltbNr764Y7h2O8fz47L36VDq1pBkptu7cOvvfpcQAAADc6fTO03HinRMLrs88nonM45mYuDYRN8duRr4/H4Ndg9HS2RKbf23zivefaIHFkSNH4ujRo/HSSy8tK+bTn/50kmkAAABrzCNHH4mh7qFoamuat248Px7DvcOR7cnOWV7XWBeZ5ky88dIbRYslhnuH46m+p1YcAwCwHty8eTNu3LgRVVXLvyWc1Ox9lfJwEu9raG1YdsFCKp2Kw12H12QMAAAsRJF9zBZRj+ZGZwssttRsWTRmZubqOwuwS4kBWE9u3LhRcmxS9+ki3KsDlm6l16329vb4m7/5m/jYxz4WXV1drlssyfT09JK2S+1IRWpHKpqeboqJaxPR19EXh752aMX7T7TA4sSJE/GhD30oPv3pT8fzzz8fv/qrv7rgtj/60Y/i6aefjkKhEF/60peSTAMAYMnWwnTRk5OT8frrr5ecB5TbeH48ImLRN1LVNdZFvj8fl05fiv0n9s+J7W7qjn0n9hV9cCvbk43upu545OgjcwomzrWfi30n9hWdjaKUGACA+90nPvGJRNpZyex9S70ZDgAAQPLOtZ+Ly/2X49mRZ5ccU52pjquDVxdcP/O7wJ2zU5cSA7CebN++PZF2VnKfLsK9OmDpkrpu9ff3u26xZBs2bFh2TGpHckXciRZYRER8+9vfjg996EPR09MTLS0t0dzcHOl0OmpqamJsbCxGRkaiv78/crlcTE9PRy6XSzoFAIAlWwvTRU9OTpacA5TLcO9wDHUNRUTM/lBy7ulzs8sasg3zZqvYf2J/5Pvzca79XEyMTcREYSJS6VR85jufKTrbRMTtN1i1DbVFX0dfpNKp2Lpza4yNjEV9S/2Cb9ItJQYAAAAAAO5no4Ojs7NHFDNT+HDn/foHGx+MfH9+wZiZFzDd+WKjUmIAAICVG+oeiuGe4Whqb4pMcyZS6VSM58djNDcaP3npJ3Hg5IGiz+dMFCbitVOvRUQs+RmbUmLutYlrEzE6OJpIW4kXWGQymRgbG4tsNhvf/va3o6+vb94209PT0dzcHF1dXbF79+6kUwAAWBWmi2Y9a2htKOlLUaY5s+wfTVLpVBzuOnzPYwAA7mff+ta3Yt++fVFVtfxbwknN3gcAAED57G7eHW2dbQuuvzpwNVLp1JyZJR45+kh8//T3YzQ3WvRBrKsDV+fd8y8lBmA9uX79esmx7tMB5eC6VTkmChOR78/PK3hOpVOR7ckuWFzR3dQ9b/259nNxZeBKtHS2JBJTTOFnhaLLZ2YrKfz/ChF3mbhkojARN8duxmhuNC6euhgNR5Ip8Ei8wCIiIp1OR19fX3znO9+Jnp6eGBwcjEKhEOl0OjKZTLS3t8fjjz9+L3YNAAAAsC7cvHkzbty4UdLD0m+//XYcP348hoaGoqmpKc6cORO1tbUl5bGSGcGA1bNly5bYtm1bSdeMpGbvAwAAoHweOfpIDHUPzZt9OuL2rBLDvcOR7cnOWV7XWBeZ5ky88dIbRR/GGu4djqf6nlpxDMB6spL7au7TAeWw0uvWZz/72fjBD34Qjz32WPzlX/6l69Y9dqjrUIyNjEUhX4hUTSp2Ne0q+h1gRk+2Jx5qfWje2P1w1+HorO6M+pb6eQXSpcQUc3XoalwduBrj+fHI9+fjvWvvzVn/Z5k/u2sbM6anpyPTnIlDXzu05JjF3JMCixmPP/64QgoAAACAe+ATn/hEIu309fVFfX19yfEzbxAB7l9m7wNgPZmYnCg59tp71+LrP/56XL52OXbv2B2f+/DnYsfmHSW1lapKlZwHABRT11gX+f58XDp9Kfaf2D+7fDw/Ht1N3bHvxL6iM1dne7LR3dQdjxx9ZN7bafed2Ff0walSYgC4O/fpgEpTW1sbr776aly8eDEOHDhQ0kugWJ6HjzwcqfTS7ivNFDYc6ipelNBwpCEudV6aM34vJWYhDZ9qiIZPvf8dZDQ3Gv0d/ZH/Tj42bNgQD33qoSX9f1RnqiPTkonM48l9z3CmAgAAAAAAAETE7/3V7yXSzhs/fyO+8N0vlBz/jUPfSCQPALjT/hP7I9+fj3Pt52JibCImChORSqfiM9/5TNHZJiIiUulUtA21RV9HX6TSqdi6c2uMjYxFfUt90YKMUmMAAIDVNdg1GBG3CxSKqamviVx3bvZ7Q6kxS1XXWBdP9T0V59rPxU97fxrZl7N3D7pH1kSBxcmTJ+PUqVPlTgMAAACgYnzrW9+Kffv2lfSmlyeeeCIuXLgQt27dik2bNsXBgwfjlVdeuQdZAgAAALCWZJozy55BIpVOxeGuw/c8BgDgxo0bJce+/fbbcfz48RgaGoqmpqY4c+ZM1NbWLrudycnJknOASvJW7q1FiyBmiiiuDl6d/Q5RSsxyHe46HKNDoyXFJmVNFFh0d3crsAAAAABYhi1btsS2bdtKKrA4e/ZsHDt2LAYGBmLv3r3xwgsvxLZt2+5BlgAAUFn+4nf/ouTYrwx+JYbfGY6p6anYuGFjNOxsiC/u+WKC2QEAAMD9bfv27Ym009fXF/X19SXHf/e7300kDyiX0dxoXB28Grv27Fpwtrrx/HhsqdmyYBszhRTj+fEVxZTiwMkDJcX1n+yP5lPNK9p3xD0ssPjZz34W+Xz+rtvlcrkoFAr3Kg0AAAAAPqC2tjbOnz9f7jQAAGDNSVUt/Aa+u/n9R38/zvzoTIwURqI+XR/HP3J8Re0BAAAAsL5NvjcZt967Nfv5l9d/uej2+f58jOfHI9Ociaa2phjNjcbZlrOxv2P/vBklbo7dnJ1xopiZQoqJwsSKYkrR8KmGkuJy3bm1WWDx53/+59HR0aFoAgAAAAAAAFg3dmzeER0f6yh3GgAAAFCxrl+/XnLsE088ERcuXIhbt27Fpk2b4uDBg/HKK68su53Jycl4/fXXS84DknTx1MX43h9+b/bztY3XFtx2pvBh/4n9s8vqGusi25ONzurOaBtqmzObxVKLIN59590VxaxU4WeFJc2IMZobXXFhx4xECyy+853vRFtbW2Qymchms5FOp+8aMzQ0FBcuXEgyDQAAAAAAAAAAAACggmzbtq3k2LNnz8axY8diYGAg9u7dGy+88EJJ7U1OTpacAyTtwMkD8dgXH5v9/Oabb8ZXP/zVots2tBaf9SGVTkVDa0P0ZHvi2ZFn70me90Luz3PR39GfWNHEciRaYPHcc89FT09PfOpTn1pW3M6dO5NMAwAAAAAAAAAAAABYJ2pra+P8+fPlTgMSVbW5Kqo2v/+4/wPbHyipnV17d8Vw73CM58dnZ7pIpVNLKl7YunPr7H+XElOK/Hfyca7tXFRnqqMh2xCpdOquMaNDo3H5wuUV7XdGogUW1dXVyy6uiIjYvXt3kmkAAAAAAAAAAAAAAMC6N1OgMJobnS2w2FKzZdGYm2M358SWGlOK7zz3ncj2ZKPhU8Vn5VjI6Z2nV7TfGYkWWDQ2NpYUNzg4mGQaAAAAAAAAAEDCbty4seRtJycn4+bNm3Hjxo2oqqqKt99+O44fPx5DQ0PR1NQUZ86cidra2nuYLQAAAKwP59rPxeX+y/HsyLNLjqnOVMfVwasLrp+ZqWKmIKPUmFKkqlPLLq6IiEjvTq9ovzMSLbAoFApJNgcAAAAAAAAArBHbt29PpJ2+vr6or68vOf4bh76RSB4AcC8tpzDxTkkVJU5OTpa0fwDWhlL/HYlI7t+SiIht27aVnAerZ3RwdHb2iGJmCh/qGutmlz3Y+GDk+/MLxoznxyMiItOcWVFMKe7McznaBttWtN8ZiRZYZLPZ+OY3vxmf/OQnlxV38uTJOHXqVJKpAAAAAAAAAADcMy8efrHcKdwzUxumYqxuLK585UpsnN541+2fPPfkKmQFUFmSKExcaVHid7/73RXnAEB5rJUC9+np6UTy4N7a3bw72joXLi64OnA1UunUnJklHjn6SHz/9PdjNDdatKDh6sDVeYUSpcSUYqYgpFzu/i14GR5//PEYGRmJb37zm8uK6+7uTjINAAAAAAAAACBh169fX/KfQqEQ3/rWt6JQKMT169ejpaUlNm3aFBERmzZtipaWlmW1d+cfAAAA4H2PHH0khrqHiq4bz4/HcO9wHH7+8JzldY11kWnOxBsvvVE0brh3OPZ37F9xTCkasg3x02/+dNlx/Sf7V7zviIRnsPjZz34W2Ww2enp6Yu/evdHc3Bz19fWRySxciZLL5aJQKCSZBgAAAAAAAACQsG3bti1528nJydiyZUts27Ytqqqq4uzZs3Hs2LEYGBiIvXv3xgsvvLCs9gCg0pRaFPjEE0/EhQsX4tatW7Fp06Y4ePBgvPLKK8tuZ3JyMl5//fWScgCg/FZSXJ7UvyVUjrrGusj35+PS6Uux/8T7BQ7j+fHobuqOfSf2RUNrw7y4bE82upu645Gjj8yZkeJc+7nYd2Jf0dkoSolZrszjmbj0x5fip9/8aTz0yYeWHJfrzkXzqeYV7z/RAovGxsa4du1aRNyeEmZoaCg2bNiQ5C4AAAAAAAAAgApTW1sb58+fL3caALBqSi0kTKoocXJysqT9A7A2rKQgXYH7+rT/xP7I9+fjXPu5mBibiInCRKTSqfjMdz4zpxDiTql0KtqG2qKvoy9S6VRs3bk1xkbGor6lvmhBRqkxy1X4WSEezj4cP+n5STy/9/nY3bw7auprojpTvWDMaG40JgoTiew/0QKLmpqaiIg4cuRIpNPpJcUMDQ3FhQsXkkwDAAAAAAAAAAAAKo6iRABWyr8l61emObPsGSRS6VQc7jp8z2OWo6uxK9679l5E3J704erQ1VWd9CHRAotMJhPPPfdcfP7zn19W3M6dO5NMAwAAAAAAAAAAAAAAqDBbarZERMTDRx6OVDq1pJjRodG4fOFyIvtPvMAik1le1UtExO7du5NMAwAAAACANebGjRslx7799ttx/PjxGBoaiqampjhz5kzU1taW1JZp0AEAAAAAANau6kx1HHjuQDR+vnFZcad3nk5k/4kWWJw5c6akuMHBwSTTAAAAAABgjdm+fXsi7fT19UV9fX3J8dPT04nkAQBA+UxMTpQce+29a/H1H389Ll+7HLt37I7PffhzsWPzjpLaSlUt7S2aAAAAwNJVZ6qjOlO97Lj07nQi+0+0wKKYX/ziFzE2Nha/9Vu/da93BQAAAAAAAADc537vr34vkXbe+Pkb8YXvfqHk+G8c+kYieQAAAADvO3TmUElxbYNtiez/nhRY/OxnP4vOzs7o7u6OiIgNGzbE5OTk7PrLly9HR0dHfPzjH4/Pf/7z9yIFAAAAAADWkOvXr5cc+8QTT8SFCxfi1q1bsWnTpjh48GC88sorCWYHAAAAAKxHN27cKCnu7bffjuPHj8fQ0FA0NTXFmTNnora2tqS2tm3bVlIcAPdG4gUWFy5ciObm5oiIyGQykclk4vLly3O22b17d7z88svxne98J/7kT/4kvvSlLyWdBgAAAAAAa8hKfiQ8e/ZsHDt2LAYGBmLv3r3xwgsv+NERAGAd+4vf/YuSY78y+JUYfmc4pqanYuOGjdGwsyG+uOeLCWYHAEAl2b59+4rb6Ovri/r6+pLjp6enV5wDwHo3cW0ics/nYt+X9q24rUQLLC5fvhytra3R1tYWHR0dsXv37oiIeO6554pu//jjj0ehUIgLFy7EwYMHk0wFAKCi3Lx5M27cuBFVVcsfnnkrAgAAcL+rra2N8+fPlzsNAADWiFRVquTY33/09+PMj87ESGEk6tP1cfwjx1fUHgAAAFB+4/nx+MlLP1l7BRbPPfdcdHZ2xtNPPz1n+YYNGxaM+dSnPhXPPPOMAgsAYF37xCc+kUg73ooAAAAAAAAL27F5R3R8rKPcaQAAsEZcv369pLgnnngiLly4ELdu3YpNmzbFwYMH45VXXkk4O4D16fKFy8uOudR5KSYKE4nsP9ECi/Hx8XnFFUuxkgf5CoVCnDp1KiIidu7cGSMjI9HS0hKtra0rarOj4/YNlbGxsYiIaGlpiba2tkRjIiK6u7ujp6cn0ul0RERkMpno7OwsOXcAAAAAAAAAAAAA7m7btm0lxZ09ezaOHTsWAwMDsXfv3njhhRdKbguAuV5ufTneu/besmKmp6djS/WWRPafaIFFJpMpKW58fLykuEKhEE1NTdHT0xONjY2zy9vb22NgYKCkQoVcLhfZbDa6urqiubl5dnlLS0uMjIwUbbOUmEKhEI8//ng0NzdHX1/f7PJ8Ph8dHR2KLABgnfnWt74V+/bti6qq5Q/PvBUBAAAAAAAAAGD11NbWxvnz58udBsB9aUvN7UKJh488HKl0qug2E4WJGM+Px9XBq5FpzsSuvbsS23/iM1iUIp/PlxSXzWajtbV1TnFFRERXV1dUV1dHS0vLnIKH5bT5wbiurq6or68v2mYpMTPFFR8spGhvb4/BwUEFFgCwzmzZsiW2bdtWUoGFtyIAAAAAALAaXjz84pK3ndowFWN1Y3HlK1di4/TGe5gVAAAAcD+pzlTHgecOROPnG+++cURc+uNLsaV6y5K3v5tE72JUV1fHd7/73WXFnDx5Mh5//PFl7yufz0d/f3+0t7cXXX/kyJFlFymcPn068vl8nDx5ct66TCZTtCBiJTHF8kun07Fnz55l5Q0ArG8zb0X4+c9/HufPn4/a2tpypwQAAAAAAAAAAADLVp2pjupM9ZK33//l/ZGqTsXlC5cT2X+iM1icOHEiPv7xj8fzzz8f/+pf/au7bv8nf/In0dvbG//5P//nZe+rq6srIm4XMRRTX18f3d3dUSgUIp1OL6nNvr6+iIgFt29sbIzTp0+vOObUqVPR1tZWdPuenp4l5QoAAAAAAAD3i4nJiZJjr713Lb7+46/H5WuXY/eO3fG5D38udmzeERG336D/3i/fi4nJiSW9QT9VlSo5D4D1bDmzm9wrT557stwpAAAAkIBDZw4tO6bhUw3Rf7I/dh/cveL9J1pgkclk4syZM/H444/Hnj174ujRo/Hoo49GoVCIn/3sZ1EoFGJsbCxyuVx0dXVFPp+PoaGhkvaVy+UWLZyYKbwYHByM5ubmJbU5ODi4aJv19fWz+25sbCwppre3NwqFQhw9enRJOQEAAAAAAMD97vf+6vcSaeeNn78RX/juF0qO/8ahbySSBwAAAABQmRItsIiIaG5ujpdffjna2trixIkTs8u7u7tn/3t6ejoymUwMDg7GRz7ykZL2k8/no6amZsH1M0UP+Xx+yW3W1NTE2NjYXbcbHBycLbBYbsxLL70UETEbn8vlYnBwMPbs2TO7bCluTt6M65PXZz8/sPGBeGDTA0uO57bpDdMxHdMxvWE6pmKq5HYmJycTzKpyTU5OxtTUlP5IiP5Mlv5Mlv5Mlv5Mlv5M1tRU6WMkSlfu8b6/P2uL6xrFOC9YiHODYpwXFGOsXx7v3no3Nk9unv3s3n5lSOq3BCrD1AbHeC3x96+yOX6VrRKPn+88t+mH8ij3ff37hed4kuWeULL0Z7L0Z7L0Z7L0Z7L0Z7Lc219cIV9IpJ3ECywiIlpbW6O1tTVOnz4dL730Urz++uuz6zKZTLS3t8eXv/zlFe1jbGxsdpaKYmaKLwqFwpLbnJlhYiEjIyPz2lxuTC6Xm113+vTpaGxsjLa2tsjlctHS0hIdHR1LmnGj46875nz+3cbfjU/s+cRd45hrOqbj5q/ejLEYiw2xoeR2Ll68mGBWlWtqairefPPNiIjYuPHu02yzOP2ZLP2ZLP2ZLP2ZLP2ZrHfeeafcKaxL5R7vG9+uLa5rFOO8YCHODYpxXlCMsX55lHusT2mS+i2Bxf3x//uPS47982//efznq/85pqanYuOGjfFPd/3T+PzHPx8Rt4/fxK9OROrvU0s6fmMP3P3Faqwef/8qm+NX2Srx+LmvedtSXhJK8oz1k+E5nmS5J5Qs/Zks/Zks/Zks/Zks/Zks9/YXNnFtIm6O30ykrXtSYDHjxIkTc2axSNJSCyeWcyK1t7dHb29v5HK5orNJ9Pf3z2tzuTFjY2ORTqeju7t7Tt80NjZGT09P7N69O3p6eu5aZNH5LzujOlU9+/mBjQ/EA6Mq35dresN0jMVY1LxVExumS/9iduDAgQSzqlwzFYb79u2Lqqp7enlZF/RnsvRnsvRnsvRnsvRnsma+5LK6yj3eXyvj2xs3bpQc+3d/93fxb/7Nv4mhoaFoamqKf/fv/l38+q//+rLb2bZtW8k5JMV1jWKcFyzEuUExzguKMdYvj3KP9SlNUr8lcO88+/Cz0fUPXZEv5COTzkT7w+2x4+c7IuIfj98DY1HzjuNXifz9q2yOX2WrxOO3Vu5rltvf/u3fljuFdclYPxme40mWe0LJ0p/J0p/J0p/J0p/J0p/JWi/39i9fuLzkbScKEzGeH4+hrqFoam9KZP/O1Ds0NzdHc3NznDp1Knp6euas6+/vj+bm5sjlcrFz586SY2YKQ2Zm2LhTOp2O5ubmaG9vn535YiEbY2NU3XH4pqem4x+m/uGu/4/X3rsWX//x1+Pytcuxe8fu+NyHPxc7Nu+4a1wxqapUSXFryVRMxYbYEBumN8TG6dIr41z037dx48aoqqrSJwnRn8nSn8nSn8nSn8nSn8nx9oDy2FK1JbZXbZ+7cHr19r9W/u6k0+lE2unv74///r//70uKnZ5exY5fhOsaxTgvWIhzg2KcF3yQsX55bN20taxjfUqT1G8J3DvVv1Idz33subkL//HvluNX2Ry/yub4VbZKPH6+79ymH8qj3Pf17xee40mee0LJ0p/J0p/vW8mL595+++1ob2+Pv/mbv4mPfexj0dXVFbW1tSW1tRZePrdWOD+TpT+Ts17u7b/c+nK8d+29JW8/PT0dmeZM7PvSvkT2vybO1G9+85vxyU9+clkx6XR6SbNY3FkMsRR9fX3R3t4eHR0dcfLkyYh4fxaK+vr62X2XGjOT90IzVLS0tCw6I8aML//1l5f1/1XMGz9/I77w3S+UHP+NQ99YcQ4AAAAAAAAAAAAA69X27dvvvtES9Pf3zz6zWoq18vI5gC01WyIi4uEjD0cqvfiEAFt2bom6xrrIPJ5JbP9rosDi6aefXnaBRbEZIO40NjYWEaW98bSrqysKhcJskURzc3Ok0+k4ffp0RETs2bOn5JiampooFAoL5jXz/zU4OLhogQVry4uHXyx3ChER8eS5J8udAgAAJOb69eslxz7xxBNx4cKFuHXrVmzatCkOHjwYr7zySoLZAQAAAAAAsBQrfTv/8ePHY2hoKJqamuLMmTMlvZ3fm/kBoHJUZ6rjwHMHovHz5XmWftkFFj/60Y/iIx/5yILrlmNsbCzy+fySZqL4oEwmE4ODgwuun2kzkymtGiWdTkdra+ucZQMDAxERCxY+LCWmsbEx8vn8Xfd/tz7543/5x7EztbzZOSIivjL4lRh+Zzimpqdi44aN0bCzIb6454vLbgcAAOBeW8mN7rNnz8axY8diYGAg9u7dGy+88IIb5wAAAEBFm5icKDn22nvX4us//npcvnY5du/YHZ/78Odix+Ydy24nVbX4WyMBAIpJ6u38fX19Jb+d35v5Wcu8eA5grupMdVRnqsu2/2UVWDz33HPxx3/8x9HU1BQ//OEP560/ePBgXLt2LbHkFtPY2Dg7W0QxM0UMzc3Nie0zl8tFW1vbimL27t0bvb29C85iMTPzxt1mr9hctbmkm1e//+jvx5kfnYmRwkjUp+vj+EeOuwkGAADcd2pra+P8+fPlTgMAAAAgMb/3V7+XSDtv/PyN+MJ3v1BS7DcOfSORHAAAgPet9MVzn/3sZ+MHP/hBPPbYY/GXf/mXXjwHVLxDZw6Vdf/LKrDI5/MxPT0d4+PjRdfX1NRERMwWFOzcufgMC++8806MjIzEN7/5zeWkERERR48ejdOnT0culytajDAwMLDs4opcLhePP/549PT0zIvN5XKRz+ejo6NjRTGtra3R0dER/f3982a7iIgYGRmJiIg9e/YsK/el2rF5R3R8rOPuGwIAAAAAAAAAAMAKeTs/3Du1tbXx6quvxsWLF+PAgQNRVbWsx4IBKGJZV9Lnn38+WlpaFixcyGQy8dxzz8XnP//5ZSVxt0KMYhobG6O5uTleeumlogUWvb290dfXN295oVCIU6dOFf3/mJn1opinn346Ojs7I5PJrCgmk8lEa2trnDp1qmiBRW9vb5w4caLo7BYAAAAAAAAArE9/8bt/UXLsVwa/EsPvDMfU9FRs3LAxGnY2xBf3fDHB7ADWt/cm34uJyYllx11771p8/cdfj8vXLsfuHbvjcx/+XOzYvKOkHFJVqZLiYDWs9O38x44di4GBgdi7d2+88MIL3s4PAOtM4WeFGOwajLdyb8XNsZuxpWZLpDPp2NO+Jx78yIOJ729ZBRY7duyIp59+esH1LS0tJc28sHv37mXHRET09PREU1NTHD16dE6RRXt7e5w4caJoIUh3d3ecPn06uru7583E0dzcPPtnRqFQiKeffjqam5vjxIkT89orJeb555+Ppqam6O7unp3tIyIim81GJpOJzs7O5XUEAAAAAAAAAPe1lTw4+/uP/n6c+dGZGCmMRH26Po5/5LgHcQES9OW//vKK23jj52/EF777hZLjv3HoGyvOAdai2traOH/+fLnTAADKpP9kf3z/9Pdjenp63rpcdy4asg1xuPtwbP61zYntM9G5gL785dK+LAwODpYUl06nY2hoKDo6OiKdTsfOnTtjZGQkWlpais4OEXG7ICKdTseRI0eKttfZ2RnZbDYibhdKRER0dHQsOGtHqTFDQ0Nx6tSpOXHZbHZOwQUAAAAAAAAArNSOzTui42Md5U4DAAAAYEkmrk1Ed1N33By7GQ996qHYtXdXpNK3XxYxUZiIm+/cjNGh0fjJyz+JfH8+/uDyH8TmX02myCLRAotySKfT0dXVteTtGxsb581ccadMJhM9PT3LyqGUmJnCDOD+dePGjZJj33777Whvb4+/+Zu/iY997GPR1dUVtbW1JbVlWkQAAAAAAAAAuHf++F/+cexM7Vx23FcGvxLD7wzH1PRUbNywMRp2NsQX93zxHmQIAACVpSfbE5nmTBw6c2jR7SauTUTfib749wf/fTw98HQi+74nBRb/8T/+x+ju7o7x8fF4+eWX47d+67fmrL98+XJ0dHTERz/60fjSl750L1IAKLvt27cn0k5/f3/U19eXHF9sWiQAAAAAWMxobjQGuwZjYmwiRnOjkUqnoqm9KZramopuP9Q9FMM9w9HU3hSZ5kyk0qkYz4/HaG40fvLST+LAyQNR11g3L26iMBGvnXotIiK27twaYyNjUd9SHw2tDQvmVkoMAADAvbS5anOkqlLLjvv9R38/zvzoTIwURqI+XR/HP3K8pHYAAOB+MvT8UFRnqu9aXBERkdqRisNdh+PV469G7s9z0fj5xhXvP/ECi5MnT8aePXtiYGAgrl27Frlcbl6Bxe7du+Pll1+O73znO3Hy5Mk4depU0mkAAAAAAAAlGOoeioiIw12HZ5fl+/PRk+2JS52Xom2obXYa7hkThYnI9+cj35+fszyVTkW2J7tgcUV3U/e89efaz8WVgSvR0tmSSAwAAMBatWPzjuj4WEe50wAAgDXlcv/laH2pdVkxh84civ/jd/6PtVdgceHChchkMvGpT30qpqen4/Lly/HJT35ywe0ff/zxiIj45je/ueh2AJXo+vXrJcc+8cQTceHChbh161Zs2rQpDh48GK+88kqC2QFAss61n4uHsw9Hpjmz6HZr+S24AABAxHh+PCYKE7H/xP45yzPNmfjMdz4T3U3d0ZPtiaf6npoXe6jrUIyNjEUhX4hUTSp2Ne1acKwfcXt674daH5o3pj/cdTg6qzujvqV+3neMUmIAAAAAAIDKkaoubVa39O50IvtPtMCip6cnvva1r0VERGvr0qpGHn/88XjmmWcUWAD3nW3btpUce/bs2fjsZz8bP/jBD+Kxxx6Lv/zLv1xRewBwL4znxyPfn4+hrqEYzY3Gw9mHF91+Lb8FFwAAuG2wazD++cl/XnRdXWNdZJozke/Px3h+PKoz1XPWP3zk4Xlj+oXMfJ841FV8eu+GIw1xqfPSnGKJUmIAAAAAAIAKs2GV4z4g0QKL6enpJJsDWLdqa2vj1VdfjYsXL8aBAweiqirRyzUArNhQ91Dk+/KRaclEc2dznG05u+j2a/0tuAAAwG2X+y9HrjsXf3D5D4oWSzzY+GDk+/MxmhudV2CxHINdgxERC7ZRU18Tue5cTBQmZvMoJQYWMzE5saTtpjZMxXu/fC8mJidi4/TGiIi49t61+PqPvx6Xr12O3Tt2x+c+/LnYsXnHsnNIVTlXAQAAAADuNDG2tHu3H1TIFxLZf6JP7I6Pj5cUl8/n774RAACwZjS1Nc0WOYzmRu+6/Vp+Cy4AAPC+LTVbYjQ3GuP58aIzxiXlrdxbi47zZ74XXB28Ojt+LyUGFvN7f/V7ibTzxs/fiC989wslxX7j0DcSyQEAAAAA4H6R3p2On77y03joiYeWHPP9P/l+PPjog4nsf2MirfyjkZGRZcdcu3Yt3nnnnSTTAAAA1pjL/ZfjT3f/aUwUileYP9h4+wvOUoo1FrOUN9rm+/ML5gEAAOvdU31PxbMjzy5YXDHz9qfFii9Gc6Mx1D206Ph+PD8eW2q2LLh+ppBiPP/+i51KiQEAAAAAACpL8x81R9+X++Knr/x0SdsPPT8UF09djOY/ak5k/4nOYHHkyJE4evRovPTSS8uK+fSnP51kGgAAwBqzlt+CCwAA68Hke5Nx671bs59/ef2XC267UMFyRMRw73DUNdYV3WZmVrpMcyaa2ppiNDcaZ1vOxv6O/fPG3zfHbi66n5lCijuLo0uJgcX8xe/+xZK2m9owFeMPjkf1W9Wxcfr2u8u+MviVGH5nOKamp2Ljho3RsLMhvrjni/cyXQAAAACAdSP7cja693RH/cfro6G1IXbt2TX7TNBEYSJujt2Mkb6R+GnvT2M8Px5PDz6d2L4TLbA4ceJEfOhDH4pPf/rT8fzzz8ev/uqvLrjtj370o3j66aejUCjEl770pSTTAOAON27cKDn27bffjuPHj8fQ0FA0NTXFmTNnora2tqS2tm3bVnIeAFS+p/qeivH8+IIPQy31LbhXB6/Grj27FtzOG20BAKC4i6cuxvf+8Huzn69tvLbsNi6dvhQREYefPzxv3cxYf/+J/bPL6hrrItuTjc7qzmgbapszjl9qEcS777y7ohhYTKpq4QL9O01tmIrND2yOVFVqtsDi9x/9/TjzozMxUhiJ+nR9HP/I8SW3BwAAAADA4uoa66JtsC3OPX0uzrWdiw0bNszbZnp6Oqoz1fE/f/t/jrpHk3vha6IFFhER3/72t+NDH/pQ9PT0REtLSzQ3N0c6nY6ampoYGxuLkZGR6O/vj1wuF9PT05HL5ZJOAYA7bN++PZF2+vr6or6+vuT46enpRPIA4N5azlttl2utvgUXAADWgwMnD8RjX3xs9vObb74ZX/3wV5ccP5objf6O/sj2ZIsWPDe0NhSNS6VT0dDaED3Znnh25NnlJw5r1I7NO6LjYx3lTgMAAAAA4L5V11gXbUNtMdQ9FENdQzH6+ujsuupMdTS1N8X+L+9fpIXSJF5gkclkYmxsLLLZbHz729+Ovr6+edtMT09Hc3NzdHV1xe7du5NOAQAAKFESb7VdrnK/BRcAANaDqs1VUbX5/Z8EHtj+wLLie7I9cajr0IKFFIvZtXdXDPcOz5nVLpVOLWn8vnXn1tn/LiUG4P/P3h8Gt3WfeZ7vj5S8AiXFBMipS1E9NW0eZF6YVrotQNqeSErNmASU3JS4VYoIqVN3lVFikaDLVe5NbkRIvTUveudWy6Q97p1s1ZignKx61RuvBLb1grlRyoDoztry1IQA5K7YdNXEPFQ8JdK6FQGgWzKhCkXcFwohUQQp4OCQBKjvp4oV4/zP8/yfHMDwAXCe8wcAAAAAAABQ3bzdXnm7vas2n+0NFpLkdDoVjUZ1+fJlRSIRxeNxZTIZOZ1OGYahYDCo9vb2lZgaAPCQW7duWY49ePCgRkZGdPfuXW3YsEFtbW26ePGijdUBACpNuXe1LRV3wQUAAAAqXyQQkTdo/ccLh9Mh6d75/3yDxfzqckuZSc0siLUaAwAAAAAAAAAAUIoVabCY197eTiMFAKyxLVu2WI49d+6cjh07ptHRUe3evVtnz54tKx8AoPKVe1fbUlXCXXABVJfbt29bjr1x44Z6enqUSCTk9Xo1MDCgpqYmS7k4LwYAPC6ioai2796+YFW5hw0HhzURmyip+dlluDQZn1xyfP68fv5c32oMAAAAAAAAAACoTmN/P6bkYFIz6RkFLgTkfMq5YDw9kVYsFNMf/fd/pD0/3GPbvCvaYAEAqG5NTU26dOnSWpcBAFinKuUuuACqy9atW23JE41G5Xa7Lcfncjlb6gAAoJIlBhNqcDcUPGfPZrL3z8njU/lz7ULmGx8eXLVum2ebzJi5ZEzaTEuSDJ9RVgwAAAAAAAAAAKg+sVMxbd+1XddHr+vO9B1NJacWNVi4WlwKXAjIvGwqdiom32mfLXPX2pKlTC+88MJalwAAAABgFRV7F9wfuX9UUl6X4Srqwi7uaItqMzMzo9u3b1v6M01T+/fvV2Njo/bv3y/TNC3nAgAAj4+xoTFJKthckTbTCxodWnwtCqVDS+aaHJ2Uw+lYcB6+48gOSfcappeKebhRwkoMAAAAAAAAAACoLhMjE3IZLrUealXHYIfaX27X0996esn9jXZDhs/Qx299bMv8FbGCxYULF/T666+vdRkAAAAAVkGl3QUXqAbf/OY3bcmzHlZtuHXrluXYgwcPamRkRHfv3tWGDRvU1tamixcv2lgdAADrw1Ty3rn4UqvNmTFzwTn1jiM7lBhMLNmMMTY0pkAksGB7s6dZhs/Qh+c/XHBOP29saExHo0fLjgEAAAAAAAAAANXlo8hHOvD6AUlSa2drUTFGu6GfvfCzZRsxilVyg8UHH3ygZ599dtH26elpXb58ueQCRkdHlclkSo4DAAAAUH0edRfcqeRU/oNRi69F3X3dS+Za6i647/e/r6nkVMELrrijLVD9tmzZYjn23LlzOnbsmEZHR7V7926dPXu2rHwAAKxHaTOtSCCiFl+LJoOTi8azqazMmLlgxYpmT7PMmKkr/VcWrFKXNtMa9A5qT++egj+ABCIBDXoHtePIjgXn78PBYe3p3VPw3N1KDAAAAAAAAAAAqCJrfO/HohssLl++rGAwqImJCbndbv3X//pfF4zH43F1dnaqpqampAJyuVzJMQAq18zMjG7fvq2NG0tfIOfGjRvq6elRIpGQ1+vVwMCAmpqaLNXBRVIAAFSeSr0LLlANfv7zn2vPnj2WzrNZteG+pqYmXbp0aa3LAACgop3zn1PaTCs9mF5ynwebnOft7d0rM2ZqODisbCqbX53uO5e/U/DcXJIcToe6E92KhqJyOB3a3LhZqfGU3H73knekshIDAAAAAAAAAACqRzadtRSXMTO2zF/UlRnT09MKh8MKh8Py+/2qr69ftE9DQ4Mk6dChQ9q9e7ecTucj82YyGX3yySd64403SqsaQMX65je/aUueaDQqt9ttOT6XW+P2NQAAHiNp896FV9nM0h9uKv0uuEClq6ur05YtWyw1WLBqAwAAKMVL4y9ZjjV8Rsnn2w6nQx3hjhWPAQAAAAAAAAAA1SE1nio5Jjud1Rc3v7Bl/qKuzLh8+bJOnTqlnTt3Kp1OF2ywMAxDNTU1unDhQslFRCKRkmMAAAAArJ2xoTElwglJ0mT8XsPEcNdwfltroHXByhOVfhdcYD1j1QYAAAAAAAAAjzIcHNa+0L6C39VL926y9O7pdyWp6O/drcQAAAAAwDOHn9HQkSF1nu8sOmbo8JB2/PkOW+YvqsFidHRU3/rWtySpYHPF/Palxh7F5/NZigNQeX7+859rz549lu6se/DgQY2MjOju3bvasGGD2tradPHixRWoEgAAlKu1s7WkH0Cq4S64AAAAAAAAAAA8jqaSU0oOJrUruKvgeDaT1aB3UIFIYNHK0ddHr8vf57clBgAAAACkezdk/dGXf6ShPx9Sx5kObfrSpiX3/eyDzzTcNaxsJqs9P9xjy/xFXQHd0NCga9eu6amnnlp2v5qaGktFWFn1AkBlqqur05YtWyw1WJw7d07Hjh3T6Oiodu/erbNnz2rLli0rUCUAAAAAAAAAAAAAAJCkWCi27HgkENHTnU8vWlm6I9yhPlef3H73ohslWYkBAAAAgHlH3z6qH335RxqLjMnw37s5q8PpUF1DnWZSM0qNpzQRm9BUckq5XE7BZNC2uYu6Atrn8ykcDuv06dO2Tfygzz//XE8++eSK5AZQPZqamnTp0qW1LgMAAAAAAAAAAAAAgMdCYjCh1kCrzJhZcDxtpmXGTB0IHyg43nq4VVf6rixolrASAwAAAAAPchkuhVIhRQIRjb89LjO6+DNLLpeT4TN0IHxArhaXbXMX1WCxc+dOBQIB9fT06I//+I9tm3xeS0uLbt68aXteAAAAAAAAAAAAAAAArH9vdry51iVIkv6H/+t/sBx748YN9fT0KJFIyOv1amBgQE1NTSXl+OKLL4reN22mJd27cGkp8XB82X0a3A1KDiaVzWTlcDosxwAAAADAwxxOh45Gj8q8bGosMqbJ+GT+c4TLcMkb9Mpot79xu6gGC0kaGBiQYRgaHBzU888/b2sRuVzO1nwAAAAAUM3uzN5RdjZbctz0nWn9+Nc/1sT0hFrqW/T8V55X/ab6FagQAAAAAAAAAFDI1q1bbckTjUbldrttybWUeDguf59/ydUrJOmz5GfLNkHMN1FMxifzK1JYiQGwMn795q91/bXrqs3Vrmkd3x7+9prODwAAqpvRbqxII8VSim6w8Pl8OnTokLq7u9Xd3S2PxyPDWFhoJpPR17/+9aInT6VSMk1T09PTxVcMPMTKhWfS/YvPzH8yZXzJWLOLz+y8CO727duW67DjThizs7OW5wcAAMB9J/7hRNk5Pvzdh/r+O9+3FPtdfbfs+QEAAAAAQHWz+hucZN/vX3M1c5ZrAAAsb2xoTLuCux65X9pMq66hbsnx+UaK+dUwrMYAAAAAQKUousGip6dHpmnmV5tIJBJKJBKL9otGoyUXUVNTU3IMMO97v/he2Tk+vGP94jM7lXMRnCR9b2v5x0Iq704Y77zzji01AAAAAAAAAAAAYO3Y8RucVP7vXz/q/pEtdQDAarl165bl2IMHD2pkZER3797Vhg0b1NbWposXLy4bM3tnVnfv3M0/vj51XX/i/ZNlY7KZrNJmWq2drY+saSY1k19xopD5Rops5n5jnpUYAAAAAKgURTVYXL16VU6nU5cvX1YgEJDf79eJE4vvqNrQ0KBUKlVSAclkUrt37y4pBgAAAADWs1f+zStqdDSWHPda/DWN3RzTXG5OtTW1am1s1Q92/WAFKgQAAAAAAFgdd35/R9nZrGpztSXH2rWShmOjo+QYAI+vLVu2WI49d+6cjh07ptHRUe3evVtnz559ZL5/eOUf9Mu/+mX+8bSmHznPu6fflb/PX1RNxTZBfHHzi7JiAAAAAKBSFNVgcfnyZfX09Ki+vl5vv/32kvtZWYnC4/Govr70L7GAeT/5xk8sxVXKxWd21nF46LDlOqzcCeNhs7Ozunr1quUaAAAAcM+mjZss/XD/4s4XNfDBgMYz43I73ep5tocLAAAAAAAAgCVWf4OT7Pv9a65mTsf/9+OW63hQOStp/PTAT22pAQAepampSZcuXSopZt+pffrqD76af3z9+nX9TevfLLm/GTPl9rst1wgA1erNjjfLip+rmVOqOaXrr1231Pw779vD3y6rDgAAsPKKarDI5XJqaGhYsSIikciK5cb6Z/WCsRd3vqjXP3hd45+Py/2kWy88+8KaXHxm50Vwq30njIfNzs5anh8AAADlq99Ur9Cfhda6DAAAAAAAsA6U87uZXb9/zdXMWa4BAB4XGzdt1MZN9y//+e8+/++W3X88Ol706hWS5HA6ilqRYnPj5rJiUL7sbHErhxRi16pPEis/AQAAVKLh4LD2hfbJZbgKjmczWb17+l1J987TU+Mpuf1utXa2LpnTSky1KKrBwjAMxeNxtbW1rUgR7e3tK5IXWE79pnr1/qtepZpTaphqKKuzuNw6KuEiOCt3wgAAAAAAAAAAAAAeZufvX6989xW5PnNZ+i2vUla0B4BKcaX/ir526mslxdQ11C07PpOakXSvqaKcGJTve7/4ni15yln1SWLlJwAAgEozlZxScjCpXcFdBcezmawGvYMKRAJq9jTntw8Hh3V99HrBBm0rMdWkqG+hfD6f+vr6VqyIV199dcVyAwAAAABKc/v2bct/pmlq//79amxs1P79+2WapuVcAAAAAAAAm57YJMdGh6W/F3e+qK/8s69o6xNb9ZV/9hW9uPNFS3kAYD1Im2k5nI6SmxpchivfEFHI/EoVD94J10oMAAAAgJURC8WWHY8EInq68+kFjRKS1BHuUHIwKTNm2hJTTYpawaK+vl4tLS36y7/8S/31X/+17UWcPn1aP/zhD23PCwAAAAAo3datW23JE41G5Xa7Lcfncjlb6gAAAAAAAI+nSllJHgAqwVRySmORMY1FxhaNpc20JGm4azi/+sTR6FFJ0jbPtmUvjpqPNXxGfpuVGJTvJ9/4ieVYVn0CAABYnxKDCbUGWpc8P0+baZkxUwfCBwqOtx5u1ZW+KwvO3a3EVJuiGiwkqa+vTy0tLYrFYgoGg2pvb1dDQ0N+fP7Cl9/+9rclXQSTSCSUyWSKrxgAAAAAAAAAAAAAAABA0Vo7W9Xa2VpwbGxoTJFARB1nOhbdgXbHkR16v/99TSWnFo1J0uTo5KILp6zEoHzlrLr04s4XNfDBgMYz43I73ep5todVnAAAAKrcfGPzcivHxcPxZfdpcDcoOZhUNpPNr4ZnJabaFN1gUV9fL9M05fV61dXVpZqamoL7GQYfgAAAAACgmt26dcty7MGDBzUyMqK7d+9qw4YNamtr08WLF22sDgAAAEC1y85mLcdO35nWj3/9Y01MT6ilvkXPf+V51W+qt5SLC8YAAAAerdnTLMNn6MPzHxZslhgbGsuvdlFODNYWqz4BAACsP/FwXP4+/7Kry32W/GzZJoj5JorJ+P0maSsx1aboBgtJcjqdGh8f19DQkOLx+IKVJ3K5nM6cOaPu7u6SChgdHdUHH3xQUgwAAAAAYOVs2bLFcuy5c+d07NgxjY6Oavfu3Tp79mxZ+QAAAOx2+/Zty7E3btxQT0+PEomEvF6vBgYG1NTUZCkX50h4nH3vF9+zJc+Hv/tQ33/n+5bjf3rgp7bUAQAAUO3m72ybNtMFGyICkYAGvYPacWTHgvHh4LD29O4peNGUlRgAAAAA9hgbGtOu4K5H7pc206prqFtyfL6RYv4zg9WYalNSg8W8zs5OdXZ2Lto+NDSkgYGBkvM1NjZaKQMAAAAAUGGampp06dKltS4DAABgSVu3brUlTzQaldvtthyfy+VsqQMAAKw8Vt4BsF4NB4eVMTOajE/ee9w1rEQ4oW2ebfL3+fP7OZwOdSe6FQ1F5XA6tLlxs1LjKbn9brV2thbMbSUGAAAAwEKzd2Z1987d/OPf3/r9I2OymazSZrqo8+6Z1Ex+xYlC5hspspn7341YiVktsVMx+U77ys5jqcFiKVZ/EHK5lj7IAAAAAACslUq4w/Xs7KzlGgAAAIBK9JNv/MRy7Gvx1zR2c0xzuTnV1tSqtbFVP9j1AxurA4DFWHkHwHrVEe4oel+H01HS/lZjAAAAANz33un39Mu/+mX+8XTt9CNj3j397oKG6eUU2wTxxc0vyopZLcnBZOU1WJw5c8ZS3CeffGJnGQAAAAAA2KJS7nD9zjvv2FIHAACQbt26ZTn24MGDGhkZ0d27d7Vhwwa1tbXp4sWLNlYHPB7KuQP7iztf1MAHAxrPjMvtdKvn2R7u6G6DSrg7P88jAAAAAAAAsNC+U/v01R98Nf/4008/1d985W+W3N+MmXL7rV+bUIky1zJKm+lH7jeVnLJt1QxbGywOHTq0aNvnn3+uVCqlp556ys6pAAAAAAAAAAAo2ZYtWyzHnjt3TseOHdPo6Kh2796ts2fPlpUPQOnqN9Ur9GehtS5j3amEu/NzZ35UMlbeAQCgeFabd+cbd81/MmV8ybDcuAsAALCebNy0URs33b/c/4mtTyy7/3h0vOjVK6R7q84V05SwuXFzWTFWJN9IKhaK2dY0UQpbGyzmXbt2TX19fRocHJQk1dTUaHZ2Nj8+MTGhUCik/fv36/jx4ytRAgAAAAAAZauEO1zPzs7q6tWrlusAAAD2aWpq0qVLl9a6DAAAsMpYeQcAgOLZ0bz74R3rjbuS9F19t+waAAAAqs2V/iv62qmvlRRT11C37PhMakbSvaaKcmJKZV42Ndw9LJfhUmugtahcU4kpTYxMWJ7zQbY3WIyMjMjn80mSDMOQYRiamFhYbEtLiy5cuKDLly/r1Vdf1Q9/+EO7ywAAAAAAoGyVcIfrB29YAAAAAAArgbvzAyuHlXcAAAAAAMBKS5tpOZyOkpsaXIZLk/HJJcfnV49wGa6yYkp1+eRlBSIBtR5qLSmuv7Hf8pwPsrXBYmJiQp2dneru7lYoFFJLS4sk6eTJkwX3b29vVyaT0cjIiNra2uwsBQAAAACANcUdrgEAAABUC+7ODwAAALtYbd6lcRcAAMC6qeSUxiJjGouMLRpLm2lJ0nDXcH71iaPRo5KkbZ5tMmPmknnnYw2fkd9mJaZUDpej5OYKSXK2OC3P+SBbGyxOnjypvr4+dXV1LdheU1OzZMyhQ4f0wgsv0GABAAAAAAAAAAAAVBnuzg8AAIAHWW22fXHni3r9g9c1/vm43E+69cKzL9C4a4M7v7+j7GxWtbnakmOn70zrx7/+sSamJ9RS36Lnv/K86jfVr0CVAACgXK2drWrtLNyQMDY0pkggoo4zHWr2NC8Y23Fkh97vf19TyalFY5I0OTq5qFHCSkypCuUtRne8u6x559naYJFOpxc1VxQjl8vZWQYAAAAAAAAAAAAAAAAAoErUb6pX77/qVao5pYapBksNAVjsxP9+wpY8H/7uQ33/ne9bjv+uvmtLHbDP7du3LcXduHFDPT09SiQS8nq9GhgYUFNTU8l5ZmdnLc0PALBXs6dZhs/Qh+c/LNjUMDY0ll/topyYUmUz2bLiy2Vrg4VhWOs2SafTdpYBAAAAAAAAAAAAVLzsrPUfCu28myx3BgYAwD5vdry5pvPfnLm5pvMDAKrD1q1by84RjUbldrstx7/zzjtl1wAAeLS0mc7/b6GGiEAkoEHvoHYc2bFgfDg4rD29ewquRmElphStgVZ9/NbHevpbT5cUFzsVk++0r6y5pRVYwcIK0zTtLAMAAAAAAAAAAACoeN/7xfdsyVPu3WR/euCnttQB+1htvqHxBgAAAA965buvyPWZy9KKIK/FX9PYzTHN5eZUW1Or1sZW/WDXD1agSgAAsBKGg8PKmBlNxifvPe4aViKc0DbPNvn7/Pn9HE6HuhPdioaicjgd2ty4WanxlNx+t1o7WwvmthJTCqPd0JVXrpTcZJEcTFZeg4XL5dI777yj5557ruiYU6dOqb293c4yAAAAAAAAAAAAAKBq2dF8Q+MNAAAANj2xSY6NDksNFi/ufFEDHwxoPDMut9Otnmd7aMJdR27dumUp7uDBgxoZGdHdu3e1YcMGtbW16eLFiyXnmZ2d1dWrVy3VAAAoTke4o+h9HU5HSftbjSlW5lpGzwSe0UeRj3Rm9xm1+FrU4G6Qy3AtGTOVnFI2Y33F4AfZ2mDR29ur/fv368yZM0U1Wbz66qsaGhrSb37zGzvLwCph2WoAAAAAAAAAAADrfvKNn1iO5W6yAAAAQGG3b9+2HHvjxg319PQokUjI6/VqYGBATU1NlnJt2bLFch2VoH5TvUJ/FlrrMrBCrL4+z507p2PHjml0dFS7d+/W2bNnLeWanZ21ND8A4PEQ9oR1Z/qOJCmXy2kyMamamppVm9/WBgvDMDQwMKD29nbt2rVLR44c0c6dO5XJZHTt2jVlMhmlUiklk0mFw2GZpqlEImFnCVhFLFsNAAAAAAAAAABgXTk3keJusuub1eYbGm8AAACkrVu32pInGo3K7XZbjs/lcrbUAXvYcTNh859MGV8yyrqZcLVramrSpUuX1roMAMA6V9dQJ0l65vAzcjiL+85zKjGliZEJW+a3tcFCknw+ny5cuKDu7m719vbmtw8ODub/OZfLyTAMxeNxPfvss3aXAAAAAAAAAAAAAKxr3E12fbPaLEPjDQAAAFCYbTcTvlPezYS/q+/aUgcAAOuZy3Bp38l98hz3lBTX39hvy/y2N1hIUmdnpzo7O9Xf36/z58/r6tWr+THDMBQMBnXixImVmBqriGWrAQAAAAAAAAAAgMpB4w0AAIB069Yty7EHDx7UyMiI7t69qw0bNqitrU0XL160sToAAAA8istwyWW4So5ztjhtmX9FGizm9fb2LljFAusLy1ajkt2+fdty7I0bN9TT06NEIiGv16uBgQE1NTWVnGfLli2WawAAAAAAVJ9K+Cw6OztruQYAAAAAAABgPSjneo1z587p2LFjGh0d1e7du3X27Fmu/1gnuJkwAADV48DAAUtx3fFuW+Zf0QYLYCncPQcrbevWrbbkiUajcrvdlmJzuZwtNQAAAAAAqkMlfBaVpHfeeceWOgAAAAAAAIDHTVNTky5durTWZWAFlHsz4dc/eF3jn4/L/aRbLzz7AjcTBgBgHaPBAgAAAAAAAAAAAAAAAAAAoID6TfXq/Ve9SjWn1DDVoNpc7VqXBADAYyVzLaN4OK7Pkp9pJjWjuoY6OQ2ndgV3aduz22yfjwYLAOvSrVu3LMcePHhQIyMjunv3rjZs2KC2tjZdvHjRxuoAAAAAAOtRJXwWnZ2d1dWrVy3XAQAAAAAAAAAAAACVInYqpvf731cul1s0lhxMqjXQqo7BDm16cpNtc9JgAWBd2rJli+XYc+fO6dixYxodHdXu3bt19uzZsvIBAABUmzc73lzrEiRJ3x7+9lqXACzp9u3blmNv3Lihnp4eJRIJeb1eDQwMqKmpqaQcs7OzlufHyqmEz6K8NgAAAAAAAAAAAABUu+x0VoPeQc2kZvT0oae1ffd2OZyOe2OZrGZuzmgqMaWPLnwkM2bqLyb+Qpu+ZE+TRdU3WGQyGZ0+fVqS1NjYqPHxcfn9fnV2dpaVMxQKSZJSqZQkye/3q7u729aYhwWDQYVCIRmGYbV0ADZoamrSpUuX1roMAAAAABVs69attuSJRqNyu92WYt955x1bakBl4LMoAAAAAAAAAAAAANwTCURk+AwdGDiw7H7Z6ayivVH9H23/h7pGu2yZu6obLDKZjLxeryKRiDweT357MBjU6Oio+vr6Ss6ZTCYVCAQUDofl8/ny2/1+v8bHxwvmtBJTKMfg4KCCwWDJNQMAAAAAAAAAAAAAAAAAAAAAUO0SZxJyGa5HNldIkqPeoY5wh37W8zMl30jKc9zzyJhHqeoGi0AgoM7OzgXNFZIUDoflcrnk9/sXNDyUkvPhuHA4LLfbXTCnlZiHza9+AQAAAAAAKt+tW7csxx48eFAjIyO6e/euNmzYoLa2Nl28eLGkHLOzs7p69arlGgAAAAAAAAAAAAAAqEQTsQl1nu8sKebAwAH93df/zpYGi9qyM6wR0zQVi8WWXPHh8OHDJa9g0d/fL9M0derUqUVjhmHI5/Mtymkl5mGDg4MKBAIl1QoAAAAAANbOli1bLP+dO3dOfr9fjY2N8vv9OnfunKU8AAAAAAAAAAAAAACsNw6Xw1Kcs8Vpy/xVu4JFOByWdK+JoRC3263BwUFlMhk5nc6ickajUUlacn+Px6P+/v6yYx5kmqakpf9/AAAAAACA9aWpqUmXLl1a6zIAAMBjKjubtRQ3fWdaP/71jzUxPaGW+hY9/5XnVb+p3lIux0ZrP44BAAAAAAAAAB4DNasc95CqbbBIJpPLNk7MNyzE43H5fL6icsbj8WVzut3u/Nwej8dyzIPC4bD6+voUi8WKqhEAAAAAAAAAAMCq7/3ie2Xn+PB3H+r773zfcvxPD/y07BoAAAAAAAAAAOtTNmXtRkEZM2PL/LW2ZFkDpmmqoaFhyfH5pof5FSKKsVy+B8Xj8bJi5g0NDSkYDBZXHAAAAAAAAAAAAAAAAAAAAABg1d2+fdvyn2ma2r9/vxobG7V//36ZpmkpzxdffLHWh2FVOFuc+vjixyXFvP/q+9q2c5st86/qChaXL19WNBpVTU2N3G63du3apWeffdZSrlQqlV+lopD5xodMJlN0To/Ho6GhoSXHx8fHF+W0EjP/2DRNdXZ2Fl3fg2ZmZ3Rr9lb+8RO1T+iJDU9YyvU4y9XklFNOuZqc5jS31uWUbXZ2ds3nn5ubW/M61guOp704nvbieNqL42kvjqe95uaq/xypGnG+fw//Ht/D+xoK4XWBpfDaQCG8LlAI5/pr44u7X2jT7Kb847U413/j//mGpbj/dfR/1djNMc3l5lRbU6vWxlb9T7v/J0u55mqq6/W33n5LeNzw/FU3nr/qxvNX3Xj+qleuJrfWJTyW+F7fHna99/AdyD2zs7MV815eCc9JuZ9FeX3ai+8s7cXxtBfH017r6Xhu3brVljzRaFRut9uWXOuV72WffvTlH0mSnj749CP3T5xJ6L3T76n3Zq8t89vaYNHY2KibN28uOd7e3q729nZNT08rlUopFospHA6rr69PTz75ZElzFds4sVw9DwsGgxoaGlIymZTH41k0HovFFuW0EiNJp0+fVl9fX9G1PSz0D6EFj7/h+Ya+ueublvM9rnLKaeZLM0oppRrVrHU5ZXvvvffWdP65uTl9+umnkqTa2qpdIKdicDztxfG0F8fTXhxPe3E87VXK+TTsw/n+PWt9flspeF9DIbwusBReGyiE1wUK4Vx/bVTzuf6fN/65/s9f/p/69P/3qf7F/+Nf6M//9Z/ri83W7pb2harrLmvr7beExw3PX3Xj+atuPH/Vjeevev3TzD+tdQmPpWo+168kdr338PvCPXNzcxXzXl4Jz0mqOVVWPK9Pe/Gdpb04nvbieNqL4wmrAhcCGtw1KPd+t1o7W7V913Y5nA5JUjaT1UxqRuPRcX089LHSZlpd8S7b5ra1wSKXK64Lvr6+XvX19erq6tL09LRCoZBef/11O0uxxOfzyefz6fTp04pEIgvGYrGYfD6fksmkGhsby4qJxWLy+/1l1dr3b/rkcrjyj5+ofUJPTNH5XqpcTU4ppdTwWYNqctX/pdC+ffvWdP75DsM9e/Zo48ZVXSBnXeJ42ovjaS+Op704nvbieNpr/kMuVhfn+/es9fltpeB9DYXwusBSeG2gEF4XKORR5/pTySnFw3FlU1lNJafkcDrkDXrl7fYuGZPNZPXu6XclSZsbNys1npLbf++Hj7WOqRTVfK7foAb9z8/+z/c3TP/h7zGw3n5LeNzw/FU3nr/qxvNX3Xj+qtjMWhfweKrmc/1KYtd7D78v3DM7O6sPz39YEe/llfCcXH/telnxvD7txXeW9uJ42ovjaa/1dDyLXRygkM7OTr3zzju6e/euNmzYoOeee05DQ0Ml5/n000/1J3/yJ5brqCbNnmZ1x7s13DWs4e5h1dQs/u9vLpeTy3Dpf3z7f1Tzzmbb5rb1lVqo8Eepr6+3NJfT6SzqhfpgY0MxotGogsGgQqGQTp06Jen+KhTzy7E4nc6yYqLRaFmrV0hS3cY6bd340FIzrPJYsjnNqUY1qsnVqDZX/Z1xlfAfn9raWm3cuLEialkPOJ724njed/v2bcuxN27cUDAY1H/5L/9Ff/Znf6ZwOKympiZLubZs2WK5jvWG16e9OJ724e4Ba4Pz/Xv4d/g+3tdQCK8LLKUSXhvlfubo6elRIpGQ1+vVwMAAnzlsUAmvC1SW5c71E4MJSVJHuCO/zYyZigQiutJ3Rd2J7vxdouZlM1kNegcViATU7Ln/I8ZwcFjXR6/L37f4pkOrFVNJNm/YzLl+FVpvvyU8bnj+qhvPX3Xj+atuPH/Va60von5c8b2+Pex67+H7j/sq5b28Ep6Tco8Br0/78Z2lvTie9uJ42mu9HE+r17xL0t/93d/p2LFjGh0d1e7du3X27FlL+b70pS9ZrqEaNXua1Z3oVmIwoUQ4oamrU/kxl+GSN+jV3hN7bZ93zV+p09PTisfjJcc1NDQsO55K3VvS6+FmiGKEw2FlMpl8k4TP55PT6VR/f78kadeuXZZj+vv7800YAACsla1btz56pyLEYrF8M6EVxa5+BaDyDQeH9UzgGRk+Y9n9uKMtAACPB7s+c0SjUT5zAKssbaaVzWS1t3fhDxKGz9B3Ln9Hg95BRQIRHY0eXTAeCUT0dOfTC5oepHtNGn2uPrn97kWfF1YrBgAAAAAAAACAtdTU1KRLly6tdRlVy9u9/Arbdiu5weLatWsFt8//WPnb3/72kT9cZjIZpVIpJZNJnT59WocPHy61DBmGsWxjxvzqFoZh7YcUp9Opzs7OBdtGR0clSR6Px1KMaZpyOp2Wmj6AYrzZ8eaazj9XM6c/+sEfrWkNAABg9aTNtMyYea9DPDmlZwLPLLs/d7QFAAAAKl88HNfXTn2t4Fizp1mGz5AZM5U203IZLkn3PxscCB8oGNd6uFVX+q4saHxYrRgAAAAAAAAAAIBSlNxgkUgkNDo6KtM0FYvFND09vWC8lIaGXC4nn8+n119/vdQy5PF48qtFFGKapqR7K0nYJZlMqru723JMMplUJBJRJBJZtN98vV1dXfnVOaLRaJkVAwBQ2K1btyzHHjx4UCMjI7p79642bNigtrY2Xbx40cbqAFSDxGBCZtSU4Tfk6/PpnP/cI2O4oy0AAI8PPnMA1WsiNqHkYFJ/MfEXcjgdi8a3ebbJjJmaSk7lGyzi4Xs3Q5p//LAGd4OSg0llM9l8ztWKAQAAAAAAAAAAj4eP3/pYT3/r6bLzlNxgcejQIR06dCj/OJlMKhQK6fLly6qpqVkwthzDMOT3+9Xe3l5qCZKkI0eOqL+/X8lksuCKEqOjoyU3VySTSbW3tysSiSyKTSaTMk1ToVDIckxnZ+eiFS7mDQ0NKRAI6MyZM0uukAEAgF22bNliOfbcuXP6t//23+o//+f/rK9+9av627/927LyAahODy69N5WceuT+3NEWAIDHS7mfOY4dO6bR0VHt3r1bZ8+e5TMHsIrqGuo0lZxS2kwvalpeymfJz5ZtaJhviJiMT+bPxVcrBgAAAAAAAAAAPB6Gu4bXpsHiYR6PR9FoVMFgUENDQ7pw4ULZRRU7r8/n0/nz5ws2JAwNDRVcASKTyej06dPy+/2LGiLmV5EopKurS319fYtW6LASAwBANWtqatLPfvYzvffee9q3b582biz7dALAY4A72gIAgGI1NTXp0qVLa10G8Ng6Gj2qtJle8pw6Y2YkaUHzRdpMq66hbsmc8+feaTO96jEAAAAAAAAAAKDyfPbBZ9r27LYlx0oxk5pR2kwrm8naUVr5DRbzwuGwEomEXemKEolE5PV6deTIkQVNFsFgUL29vQVXsBgcHFR/f78GBweVTi/8kcXn8+X/5mUyGXV1dcnn86m3t3dRPisxhcw3apimyQoWAAAAWHe4oy0AAACwtmbvzOrunbv5x7+/9fsl912quUKSxobG1OxpXrDPTGpm2Zj5pogHf9hYrRgAAAAAAAAAAFBZYidjev+V99XsbVbXr7oWjf9t29/qzvSdNajsHltvOX3q1Ck70z2S0+lUIpFQKBSS0+lUY2OjxsfH5ff71dnZWTDG5/PJ6XTq8OHDBfP19fUpEAhIutcoIUmhUKhgs4bVmAcFg0GZpql4/N6ddru6uhQOh+XxeNTX1/fIeAAAAKAacEdbAAAAYG29d/o9/fKvfpl/PF07XXKOK/1XJEkdZzoWbC+2oeGLm1+segwAAAAAAAAAAKgsaTOtXC6nbLrw9/7z1/54u733HjcufS2QJM3cnFF6PK2P3/rYlvpsbbA4dOiQnemK4nQ6FQ6Hi97f4/EsWrniQYZhKBKJlFSDlZh5pdQOAAAArLRS7mpbCu5oCwAAAKytfaf26as/+Gr+8aeffqq/+crfFB0/lZxSLBRTIBJQs6d5JUoEAAAAAAAAAACPgY4zHTL8hgyfUXDcZbi07+Q+eY57Ssrb39hvR3n2NlhY9dZbb+lb3/rWWpcBAAAAPPbsuKttIdzRFgAAAFhbGzdt1MZN938SeGLrEyXFRwIRHQgfUGtn66Ixh9NR1Ln45sbNqx4DAAAAAAAAAAAqi6PeIW+Xd8lxw29o+67tJed1tjjLqOq+imiw6OrqosECAAAAqADl3tUWAAAAwPoTCUTkDXrzS3E/bH6luKXMpGYk3WuQWO0YAAAAAAAAAABQXfae2Gsprjvebcv8JTdYfPDBB3r22WeXHCtFKpWSaZrKZDKllgEAAABgBZR7V9ulcEdbAAAAoDpFQ1Ft371de3uX/jHDZbg0GZ9ccnz+HN1luFY9BgAAAAAAAAAAoBQlNVicPHlSr7zyirxer371q18tGm9ra9P09LRtxQEAAABYH7ijLQAAAFB9EoMJNbgbCq5ckc1k8+fV2zzbZMbMJfOkzbQkyfAZ+W2rFQMAAAAAAAAAANYX87IpM2pKNVKDu0Hbd23Xtme32Za/pAYL0zSVy+WUTqcLjjc0NEiSurvvLa/R2Ni4bL6bN29qfHxcb731VillAAAAAKgy3NEWAAAAqC5jQ2OSVLC5Im2mNZWcUmtnqyRpx5Eder//fU0lp9TsaV60/+To5KKmh9WKAQAAAAAAAAAA1aW/sV+9N3uXHDfaDRnthrLTWc2kZmTGTMXDcfn7/Nr05Kay5y+pweLMmTPy+/3y+XyFizUMnTx5UsePHy+piEc1YgAAAACobtzRFgAAAKgeU8kpzaRmCjZXSJIZMxecUzd7mmX4DH14/sOCjQ9jQ2M6Gj26YNtqxQAAAAAAAAAAgOqSy+WK2s9R75Cj3iFvl1fZ6ayioagOvH6g7PlrS9m5vr5eXV1damlpKTju9/u1a9eukotYKh8AAACA9WHHkR2S7l2oVchSd6ddjRgAAAAA96XNtCKBiCYTkxoODi/6iwQiioVii1aFC0QC+njo40Xn4sPBYe3p3VPwPHy1YgAAAAAAAAAAQPWoqakpOcZR77Bt/pJWsHiUEydOWIqLx+N2lgEAAACgwnBHWwAAAKA6nPOfU9pMKz2YXnKfh5srJMnhdKg70a1oKCqH06HNjZuVGk/J7XertbO1YJ7VigEAAFgp2dmspbjpO9P68a9/rInpCbXUt+j5rzyv+k31lnI5Ntp3AQkAAAAAANUqO53VVLzwDVlLZWuDBQAAAIDHT9q8d+FVNrP8j4mBSECD3kHtOLJjQfPDo+5OuxoxAAAAAO55afwly7EOp0Md4Y6KjAEAAFgJ3/vF98rO8eHvPtT33/m+5fifHvhp2TUAAAAAALDaMtcyBbfncrl747/NSLnlc2QzWc2kZjSVnNJ7p99T62F7bsRUEQ0Wp06d0unTp9e6DAAAAABFGhsaUyKckCRNxiclScNdw/ltrYFWebu9C2K4oy0AAAAAAAAAAABW2psdb651CRVhrmZOWrzgOwAAQEWYTExqcnRSaTMtM2bqzvSdBeM/Mn5UdK5cLifDZ+jA6wdsqa0iGiwGBwdpsAAAAACqSGtnq6VmBe5oCwAAAAAAAGC9+Mk3fmIp7rX4axq7Oaa53Jxqa2rV2tiqH+z6gc3VAQAAAABQuVoPtar10P1rj6aSU4qFYjIvm6qpqdHTh54uKo/LcMnwGzLaDdtqW7EGi2vXrsk0zUful0wmlclkVqoMAAAAAAAAAAAAAAAA2zk2OizFvbjzRQ18MKDxzLjcTrd6nu2xnAsAAAAAgPWg2dOso9GjGg4O6+OhjxW4EFizWmxvsHjjjTcUCoVomgAAAAAAAAAAAAAAAHhI/aZ6hf4stNZlAAAAAABQcTrCHZpKTK1pDbY2WFy+fFnd3d0yDEOBQEBOp/ORMYlEQiMjI3aWAQAAAAAAAAAAAAAAAAAAAAAAqsy+U/vWdH5bGyxOnjypSCSiQ4cOlRTX2NhoZxkAAAAAAAAAAAAAAAAAAAAAAKDKtB5qXdP5bW2wcLlcJTdXSFJLS4udZQAAAAAAgBVw+/ZtS3E3btxQT0+PEomEvF6vBgYG1NTUZCnXli1bLMUBAAAAAAAAAIC18WbHm2tdAgAAWOey01klzyS154d7ys5la4OFx+OxFBePx+0sAwAAAAAArICtW7eWnSMajcrtdluOz+VyZdcAAAAAAAAAAAAAAADWj7SZ1kfnP6q8BotMJmNnOgAAAAAAAAAAAAAAAAAAAAAA8JiYGJkoOeZK3xVlM1lb5re1wSIQCOitt97St771rZLiTp06pdOnT9tZCgAAAAAAsNmtW7csxR08eFAjIyO6e/euNmzYoLa2Nl28eNHm6gAAAAAAAAAAAAAAQLW70HlBd6bvlBSTy+VU56qzZX5bGyza29v1yiuvlNxkMTg4SIMFAAAAAAAVbsuWLZbizp07p2PHjml0dFS7d+/W2bNnLecCAAAAAAAAAAAAAADrV13DvUaJZw4/I4fTUXCfbCartJnWZHxShs/Q9t3bbZu/6AaLDz74oKj9/H6/otGodu/eLZ/PJ7fbLcMwltw/mUwqk8kUWwYAAAAAAKgyTU1NunTp0lqXAQAAAAAAAAAAAAAAKpzLcGnfyX3yHPcUtf+VV66ozlVX9P6PUnSDRVtbm6anp4tOnMvllEgkVFNTY6kwAAAAAAAAAAAAAAAAAPZKm2m91/eeJCmbyiqbycrwG9rbu3fJmGwmq3dPvytJ2ty4WanxlNx+t1o7W22NAQAAAACX4ZLLcBW9/94TezX292OaGJlQS1tL2fMX3WDR0NAgSTp8+LCcTmfZE89LJBIaGRmxLR8AAAAAAAAAAEAlujN7R9nZbMlx03em9eNf/1gT0xNqqW/R8195XvWb6i3V4NhYeDl1AAAAPB7GhsZ0ffS6OsIdC7YPegeVCCf00vhLi2KymawGvYMKRAJq9jTntw8Hh3V99Lr8fX5bYgAAAABAkg4MHCg5pvVQq2KnYqvbYGEYhk6ePKnjx4+XPenDGhsbbc8JAAAAAAAAAABQSX74yx+WnePD332o77/zfcvxPz3w07JrAAAAQHXKZrL66PxHCkQCi8Y6znRo0Duo4eDwouaLSCCipzufXtAoIUkd4Q71ufrk9rtl+IyyYwAAAACgEtQWu6NhGDKMlflg09JSfqcIAAAAAAAAAAAAAAAAgMIm45MaGxpTNBRdNDbfCDERm1iwPW2mZcZM7QruKpiz9XCrrvRdKTsGAAAAAMqVMTO25Cl6BYuBgQFbJiwkHo+vWG4AAAAAAAAAAIBK8Oq/flUNdQ0lx70Wf01jN8c0l5tTbU2tWhtb9YNdP1iBCgEAALCe1TXUyeF0aHPj5iX3cTgdCx7Hw/eu6XEZroL7N7gblBxMKpvJ5mOtxAAAAABAObLTWc2kZ2zJVXSDBQAAAAAAAAAAAKzbtHGTHBtLv4DsxZ0vauCDAY1nxuV2utXzbI+lPAAAAHi8NXuaFUqHCo5NJackSS2+lgXbP0t+tmwTxHwTxWR8UobPsBwDAAAAAPMmRiYevdMfZDNZpc20EuGEvEGvLfPTYAEAAAAAAAAAAFDB6jfVK/RnhS+EAwAAwONt7u6ccnO5+49n5yzliYVichku+fv8C7anzbTqGuqWjJtvpEib6bJiAAAAAGDehc4LujN9p+j9c7mcDJ+hPT/cY8v8NFgAAAAAAAAAAAAAAAAAVSj1SUqp36Tyj6c1XVJ82kzrvb735DScOho9umh8JjWTX3GikPlGimwmW1YMAAAAAHvMn+NLUjaVVTaTleE3tLd375Ix2UxW755+V5K0uXGzUuMpuf1utXa22hpTrPnPDM8cfmbZ1fEkqa6xTs2eZhnt9q2OR4MFAAAAAAAAAAAAAAAAUIUavtywoJkhlU1Jv3x03NjQmK6PXlfGzMhpOOX2uwvuV2wTxBc3vygrBgAAAED55s/zO8IdC7YPegeVCCf00vhLi2KymawGvYMKRAJq9jTntw8Hh3V99PqiVe6sxpTCZbi07+Q+eY57yspjVe2azAoAAAAAAAAAAAAAAACgLLUbarXhiQ35v9qNxV0K1NrZKn+fX4FIQP4+v670XVEkEGFVCQAAAKBKZTNZfXT+o4LNDR1nOpQ20xoODi8aiwQierrz6QWNEpLUEe5QcjApM2baElMKl+FadlW8lUaDBQAAAAAAAAAAAAAAAPAYC0QCGhsaUyQQWbDd4XQU1XSxuXFzWTEAAAAAyjMZn9TY0JiioeiisflGiInYxILtaTMtM2ZqV3BXwZyth1t1pe9K2TGlOjBwQC1tLWXlKAcNFgAAAAAAAAAAAAAAAMBjzOF0qLWzVWbMXHC32bqGumXjZlIz+fhyYgAAAACUp66hTg6nY9lG5ofPwePhuCQtuVpEg7tBZsxc0EBtJaba0GABAAAAAAAAAAAAAAAArHPZTFZpM73kuNNwSpLGo+P5bS7DlW+IWCrn/H7lxAAAAAAoT7OnWaF0SHt79y4am0pOSZJafAtXhfgs+dmyjc/z5+yT8cmyYuyQuZbRx299rOQbSU2MTChzLWNr/gdtXLHMAAAAAAAAAAAAAAAAACpCn6tPkhRKhwpeEDV/p9sH7zS7zbNtwYoWD5tv2DB8RlkxAAAAAFZOLBSTy3DJ3+dfsD1tppddgW7+c8ODjdpWYsoxMTKhnwV/VjBfs7dZHWc6tO1Pt9ky1zxWsAAAAAAAAAAAAAAAAADWOYfTIZfhWvJus6nxlCRpu3d7ftuOIzsk3b/j7cMmRycXNUpYiQEAAACw2OydWd35/E7+7/e3fl9SfNpMazg4LKfh1EvjLy0an0nNLLsaxXwjxYNN2FZirBo6MqRz/nNKjaeUy+XkbHHK2eLUpvpNyuVymoxPatAzqMt/ebnsuR604itYfP7550qlUnrqqadWeioAAAAAAAAAAAAAAAAABXi6PdoV3LXk+NiFMTmcDj1z+Jn8tmZPswyfoQ/Pf6hmT/PimKExHY0eXbDNSgwAAACAxd47/Z5++Ve/zD+erp0uKm5saEzXR68rY2bkNJxy+90F9yu2CeKLm1+UFWNF7GRM49Fxtb/crtbOVrlaXIv2mbo6pQ//rw/13svvqa6xTnv+33vKmnPeiqxgce3aNb3wwgvasGGDXC6XvvzlLy8Yn5iY0OHDh/XGG2+sxPQAAAAAAAAAAAAAAAAAHuDv8+u9vvdkxsxFY5FARJL0ncvfWXQ32kAkoI+HPl60IsVwcFh7evcUXI3CSgwAAACAhfad2qeT0yfzfy/84wtFxbV2tsrf51cgEpC/z68rfVcUCURsWVViNZiXTZkxU38x8Rfae2JvweYKSWre2Sx/n18vffKS4q/Hlfltxpb5bV/BYmRkRD6fT5JkGIYMw9DExMSCfVpaWnThwgVdvnxZr776qn74wx/aXQYAAAAAAAAAAAAAAACAB3SEOzQ2NKZIICJHg0PZVFbZTFbbPNv0FxN/sai5QpIcToe6E92KhqJyOB3a3LhZqfGU3H63WjtbC85jJQYAAADAQhs3bdTGTfcv939i6xOW8gQiAfW5+pTNZBesJudwOopqutjcuLmsmFIlB5P3mr/rF38+KcRluBS4EFCsN6bO852W551na4PFxMSEOjs71d3drVAopJaWFknSyZMnC+7f3t6uTCajkZERtbW12VkKAAAAAAAAAAAAAAAAgIe0draW3OTgcDrUEe5Y8RgAAAAA9nM4HWrtbNXY0JjMmJlfUa6uoW7ZuJnUTD5+npWYUuVyuaKbK+Y1e5qVy+Usz/kgWxssTp48qb6+PnV1dS3YXlNTs2TMoUOH9MILL9BgAQAAAAAAAAAAAAAAAAAAAABY4Pbt25bibty4oZ6eHiUSCXm9Xg0MDKipqclSri1btliKWy3ZTFYzqRm5DFfBcafhlCSNR8fzDRYuw6XJ+OSyOef3m2clplRWY8uZ80G2Nlik0+lFzRXFsKtbBAAAAAAAAAAAAAAAAAAAAACwfmzdurXsHNFoVG6323J8pV/v3ufqkySF0qGCq0dsbtws6X4DhCRt82yTGTOXzJk205KUb8iwGlOypdd2WJm4h9Tak+Yew7B2INLptJ1lAAAAAAAAAAAAAAAAAAAAAADwWHA4HXIZroLNFZKUGk9JkrZ7t+e37TiyQ5I0lZwqGDM5OrmoUcJKTKlchkuZa5mSYu58fkd1DXVlzTvP1gYLq40Sprl0FwsAAAAAAAAAAAAAAAAAAAAA4PF069YtS39+v18bNmyQJG3YsEF+v99yrkrn6fboaPTokuNjF8bkcDr0zOFn8tuaPc0yfIY+PP9h4ZihMe0N7V2wzUpMqbxdXsUH4rrz+Z2iY6K9Ue0K7ipr3nkbbcnyBy6XS++8846ee+65omNOnTql9vZ2O8sAAAAAAAAAAAAAAAAAAAAAAKwDW7ZssRR37tw5HTt2TKOjo9q9e7fOnj1rOVel8/f5NRwc1jOBZxatIBEJRCRJ37n8nUUrXAQiAQ16B7XjyA41e5rz24eDw9rTu6fgahRWYuYVuzLFM0eeUSQQkbfHK1eLa8n90mZaH53/SL4+nzY9uamo3I9ia4NFb2+v9u/frzNnzhTVZPHqq69qaGhIv/nNb+wsAwAAAAAAAAAAAAAAAAAAAADwGGtqatKlS5fWuoxV0xHu0NjQmCKBiBwNDmVTWWUzWW3zbNNfTPzFouYKSXI4HepOdCsaisrhdGhz42alxlNy+91q7WwtOI+VmHlhT1h3potbmSKXy8mMmY/cz+F0KB6O62unvmZLk4WtDRaGYWhgYEDt7e3atWuXjhw5op07dyqTyejatWvKZDJKpVJKJpMKh8MyTVOJRMLOEgAAAAAAAAAAAAAAAAAAAAAAeOy0drY+ssnhYQ6nQx3hjhWPkaS6hjplM1m1draqrqGu5PilZNNZfXThI3mOe8rOZWuDhST5fD5duHBB3d3d6u3tzW8fHBzM/3Mul5NhGIrH43r22WftLgEAAAAAAAAAAAAAAAAAAAAAAFQQl+HSvpP7bGmEWCm1K5G0s7NTqVRKp0+f1rPPPqtcLpf/a2lpUV9fnz755BPt3LlzJaYHAAAAAAAAAAAAAAAAAAAAAAAVxGW45DJca13GsmxfweJBvb29C1axAAAAAAAAAAAAAAAAAAAAAAAAj58DAwfWuoRHsnUFiw8++EBvvfWWnSkBAAAAAAAAAAAAAAAAAAAAAABWnK0NFp2dnQqFQpZiX331VTU2NmrDhg1qbGzUxYsX7SwNAAAAAAAAAAAAAAAAAAAAAACsQx+/9bEteWxtsAgGg/rNb35Tctzhw4cVCoUUCAR04cIFHT9+XMePH9c777xjZ3kAAAAAAAAAAAAAAAAAAAAAAGCdGe4atiXPRluy/EEqlSo55urVqxoaGlIwGNTrr78uSTp06JCOHDmiI0eOWGrYAAAAAAAAAAAAAAAAAAAAAAAAleezDz7Ttme3LTlWipnUjNJmWtlM1o7S7G2w2LVrl0ZGRiRJfX19isfjymQy8vv9CoVCeu655xbFnD9/XjU1Nerr61uw3ePxqLu7W2+99Za+9a1v2VkmAAAAAAAAAAAAAAAAAAAAAABYZbGTMb3/yvtq9jar61ddi8b/tu1vdWf6zhpUdo+tDRaHDh3S/v37dfnyZeVyufz2t99+W9FoVKFQSH/913+9ICYWi8nj8ejJJ59clO/EiRM6cuQIDRYAAABABRobGlNrZ+talwEAAAAAAAAAAAAAAACgSqTNtHK5nLLpwitO1DXUSZK83d57jxvrls03c3NG6fG0Pn7rY1vqs7XBYnp6WvF4PN8YsXPnTknSxMSEotGoTp48Kb/fv2AlC9M0deTIkSVzulwuO0sEAAAAYINsJqtIIKID4QN65vAzcjgda10SAAAAgBUwHBzWM4FnZPiMJfdJDCY0FhmTN+iV4TPkcDqUNtOaSk7po/Mfad+pfWr2NC+Ky2ayevf0u5KkzY2blRpPye13L9vIbSUGAAAAAAAAAABUjo4zHTL8xpK/PbgMl/ad3CfPcU9Jefsb++0oz94Gi5dfflmXL1/ON1bMa2lpUXd3tw4fPqxgMLigwSKTycjpdC6Zs6amZtk5M5mMTp8+LUlqbGzU+Pi4/H6/Ojs7Lf//yGQyCoVCkqRUKiVJ8vv96u7uti0mmUwqHA4rlUopmUzK6XQqGAwuOwcAYH24ffu2pbgbN26op6dHiURCXq9XAwMDampqspRry5YtluIAYF7aTEuSfhb8mX4W/Nmy+wYigfzFTqt54RUAAAAAa9JmWmbMVCKc0FRySs8Enll2/2wmKzNmyoyZC7Y7nA4FIoElz/EHvYOLxoeDw7o+el3+Pr8tMQAAAAAAAAAAoLI46h3ydnmXHDf8hrbv2l5yXmeLs4yq7rO1wSKdTi9qrniQ0+m0dUWKTCYjr9erSCQij+d+h0owGNTo6Kj6+vpKzplMJhUIBBQOh+Xz+fLb/X6/xsfHC+YsNWZwcFCSFA6H89tisZgCgYD6+vqUSCSWbToBAFS3rVu3lp0jGo3K7XZbjs/lcmXXAODxljbTchkuNXua5WgovHpFNpVV2kwvaIJYrQuvAAAAAFiTGEzIjJoy/IZ8fT6d858rKu5A+IBS4yllzIwcDQ5t927PL91dSCQQ0dOdTy/6DNAR7lCfq09uv3vRnausxAAAAAAAAAAAgOqy98ReS3HdcXsWOrC1waKY5olHrUhRikAgoM7OzgXNFdK9xgWXyyW/37+g4aGUnA/HhcNhud3ugjlLiTFNU5lMRr29vQv29fl8unz5srxerwKBgKLRaEl1AwAAAKvp+uh1HY0elctY+jNANBSVr2/x+fhqXHgFAAAAwBpvtzd/fj6VnCo67pnDz8jhLNx8/bD5FTIOhA8UHG893KorfVcWnOdbiQEAAAAAAAAAANXp47c+VrOnWc6nnKs+t60NFrlcTv/4j/+oP/3TPy04/vnnn+vmzZsl5Vxqf9M0FYvFFqwC8aDDhw+rr6+vpAaL/v5+maapU6dOLRozDEM+n29RzlJjwuFwwX0lyePxyOfzKRaLyTRNGQY/BAHAenTr1i1LcQcPHtTIyIju3r2rDRs2qK2tTRcvXrS5OgAo3nLNFVPJKTW4Gwrus9IXXgEAAACobPFwXNLSnyka3A1KDiaVzWTznx2sxAAAAAAAAAAAgOrzs56fKXkmKYfLod7f9T46wGa1dibr7u7Wc889p//wH/6Drl27lt/++eef64033lBLS4t6enry269evSrpXrNEIW+99ZZ2795dcGy+sWKpJgS3261YLKZMJlN0/fOrRjidzoLjHo9HsVisrJhYLKaWlpYl65pfjSOZTBZdNwCgumzZssXS37lz5+T3+9XY2Ci/369z585ZzgUA5doV3LXseDwcX3ZVimIVcxGVGTOVzWTLngsAAADA6vgs+dmyTRDz5/+T8cmyYgAAAAAAAAAAQPWZSc2opb1FnuOeNZnf1hUsDMPQyy+/rJ6eHvX2Lu4W2blzp5LJpBoaGjQ6Oqq+vr58Q8Fvf/tb/fEf/3F+3+npaYVCISUSiYJzJZPJJZsa5muRpHg8XvQqFvF4fNmcbrc7P/d83aXGNDQ0KJlMyjTNfA4AAIrR1NSkS5curXUZACBp+dUroqGo/H1+W+Yp5SIqVrEAAAAA1t5UckqT8Ult37VdzZ7mgvukzbTqGuqWzDH/GSBtpsuKAQAAAAAAQOWamZnR7du3tXFj6Zex3rhxQz09PUokEvJ6vRoYGFBTU5OlOrhRKQBUHpfhku/l4q7/Xwm2NlhI91ax2LVrl0KhkC5fvizpXrNDKBRSV1eXJiYmFA6Hlclk8tvmmw/6+/vV3t4u0zQVDAZ16NAhPfnkkwXnMU1TDQ0NS9Yx3/Sw1OoYhTQ0NCiVSj1yv3g8nm+OKDUmGo3KNM0lV96Yr5fmCwAAAFSjqeSUGtwNyzZFPLjvSlx4BQAAAGCx2Tuzunvnbv7x72/93tb8ZsxU2kzL8Bnydns1lZzSOf857Q3tXdQMPZOaWbZpe/4zwIMr1VmJAQAAAAAAQOX65je/aUueaDSavxG2FblczpY61oM3O95c6xL07eFvr3UJACpAXWOdMtcycj7lLCmuv7FfvTcXLxJRKtsbLCTlGwkKaWlp0csvv7xo/3A4rMOHD6umpkaS1NXVtWi/B6VSqSWbFCTlmy8ymUxJdQ8NDS05Pj4+viinlZjl6h4aGpLH41l2H0mamZ3Rrdlb+cdP1D6hJzY8sWwMFsvV5JRTTrmanOY0t9blVL1cTU5zc3OanZ1d61LWhdnZWY6njTie9uJ42ovjaS+OZ3kevugqO13axUnvnX5PgUhg2X1W+sKr9YDz/Xv49/ge3tdQCK8LLIXXBgrhdQFJ+r9P/9969//zbv7xdO20bbnnz9n39u7Nb2v2NCsQCajP1afuRPeCpupiz9+/uPlFWTGV6Iu7X2jT7Kb848f1XL/a8FtCdeP5q248f9WN56+68fxVr1wNF4muBb7XtwfvPfbieNrLruPJd3T3VNJxqKRarLLrO+C5mrV/r6iE54Pv1O3F8bTX3Nza/3u6Gvae2KvI4Yh29exSS1tL0XF2Nc2tSIOFFZ2dnZqbm9Ply5dlGIZaWpY/GMU2Tty8ebPoGoLBoIaGhvIrajwsFostymklZin9/f2SpDNnzjxy39A/hBY8/obnG/rmLns6Oh8nOeU086UZpZRSjWrWupyql1NOs5/e+49gbW3tGldT/ebm5vTpp59K4njageNpL46nvTie9uJ4lufaP1zTb3/52/zj23dvFx07NjQmp+Fcdp/VuPBqPeB8/5733ntvrUuoCLyvoRBeF1gKrw0UwusCkqR90t7/7/3z8NTNlPT/sid1a2drwe0Op0Otna2KBCJ6afwleyarcpzrVyd+S6huPH/VjeevuvH8VTeev+r1TzP/tNYlPJY417cH7z324njay67jye9f98zNzWlgYED//J//c0vfWf67f/fvdPXqVc3Nzam2tlY7d+7Uv//3/95SLevhObHrO+BUc8qukiyrhOeD79TtxfG0VynXxVe7wIWA3n/1fSXCCW3fvV3NnmbVNdTJ4XQU3H88Oq4703dsmXtNGix6enryK1X4/X5961vfyo+1t7evRUmSJJ/PJ5/Pp9OnTysSiSwYi8Vi8vl8SiaTamxsLCumkGQyqVAopEgkUrBR42F9/6ZPLsf9O/k+UfuEnpii871UuZqcUkqp4bMG1eT4IFGuXE1O2//Fdu3Zs0cbN1ZM/1bVmu/Y5Hjag+NpL46nvTie9uJ4ludf7f5XuvvS/RUs/tt/+2965dlXiop97/R76jjTsew+XHhVHM7379m3b99al1AReF9DIbwusBReGyiE1wUKmf9Ba6Vt371dY0NjSpvpfMO1w+koqpl6c+Pm/D9bialEnOtXJ35LqG48f9WN56+68fxVN56/Kjaz1gU8njjXtwfvPfbieNrLruPJ71/3lPud5Z/8yZ/o+eefVzwe165du/TjH/9YTU1NdpdZNez6Dvj6a9ftKsmySvh3hO/U7cXxtNdqfbe/1v6q9q/yvQa5XE5jQ2OrOv+avFIHBgby/3z58mW98cYbOn78eEk5nE5nUatYPKqx4WHRaFTBYFChUEinTp2SdH8VCrfbnZ+73JiHBQIBhcNhdXZ2FlVn3cY6bd24deFGVnks2ZzmVKMa1eRqVJujM65cc7rXEbxx40b+Q2gTjqe9OJ724njai+NpL46ndRs3bpS23H/s+Lxw1/fD0mZaU8mpBatPlMquC6/WA8737+Hf4ft4X0MhvC6wFF4bKITXBR62WncKm7+T1FRyKn+eX9dQt2zMTGpmQazVmEq0ecNmzvWrEL8lVDeev+rG81fdeP6qG89f9eIi6rXB9/r24L3HXhxPe9l1PPl+7r5yvrP8oz/6I/3iF79Ygaqqlx3fAVfCe0Wl/DvCd+r24nja53FZBcRluJQ202rtbH3k7wPzJkcn9dkHn9ky/5q/Utvb27V79+6SGywaGhqWHU+l7i1V9KjGhkLC4bAymUy+ScLn88npdKq/v1+StGvXLlti5gUCAQWDQXV3d5dcKwAAAFAJ4uF4/mIpq+y68AoAAADA6hkODmsiNlHSSnQuw6XJ+OSS4/NN1g9+xrASAwAAAAAAAAAAqo/LcGnfyX3yHPeUFNff2G/L/CvWYPHBBx/INM0lx1OplDKZjM6fP//IZolCDMNQPB5fcnx+dQvDMErOLd1rzHh4NYnR0VFJksdT+MmyEhMKhbR792719vZaqhMAAMBOt2/fthR348YN9fT0KJFIyOv1amBgwPLym1u2bHn0Tqg4E7GJR17ItFoXXgEAAABYPVPxqXzjcyHz5+wPrna3zbNNZmzp3w/SZlqSZPjuf79vJQYAAAAAAAAAAFQfl+GydC2Qw2XPDVptb7C4du2a/H7/ss0VD2ppaVEkEil5Ho/Hk18topD5+X0+X8m5l5JMJkteZWK5mMHBQbnd7oLjmUzG0uobAAAA5di6deujd3qEaDQqt9ttOT6XY73kajSVnFJrZ+vy+6zShVcAAAAAVk+Lr0XdfUt/bz45OimH07Hgh5AdR3bo/f73NZWcWnD+/2DMw+f4VmIAAAAAAAAAAED1OTBwwFLcS58Uf9PX5djeYOHz+ZRKpXTo0CHt3r1bTqdTkUhEfr8/3zCQyWQUjUbldDp14cIFS/McOXJE/f39SiaTBVeHGB0dLbm5IplMqr29XZFIZFFsMpmUaZoKhUJlx0jS0NCQJBVsrjBNU8lkctFqGEA1+PWbv9b1166rNle7pnV8e/jbazo/AACPk6nklCTJ0bB8F/hqXXgFAAAAYPXsOLJDicGEvN3eRWNpM62xoTEFIoEF25s9zTJ8hj48/2HB8/yxoTEdjR4tOwYAAAAAAAAAAKBUtjZYnDlzRoZhKJFIqL6+fsHYkSNH9OSTT+YfnzhxQhMTEzp16pROnz5d8lwej0c+n0/nz58v2GAxNDSkaDS6aHsmk9Hp06fl9/sXNUQst+pGV1eX+vr6ZBgLL96yEpNMJpVKpZZc2SIWi9m68gYAAECxbt26ZSnu4MGDGhkZ0d27d7Vhwwa1tbXp4sWLNleHSrXcqhQPWq0LrwAAAADYY37FuPnV5gpp9jTLjJm60n9Fe3v3Logd9A5qT++egqvdBSIBDXoHtePIjgXn+sPBYe3p3VOwkdpKDAAAwHqXnV36XO1Rpu9M68e//rEmpifUUt+i57/yvOo33bvWY65mTnd+f0fZ2WxRN9dzbFz+BjwAAAAAANjFvGzKjJpSjdTgbtD2Xdu17dlttuW3tcFiaGhIQ0NDCxopJMkwDMXjcbW1tS3Y3tLSou7ubr3xxhs6fvx4yfNFIhF5vV4dOXJkQZNFMBhUb29vwSaFwcFB9ff3a3BwUOl0esGYz+fL/83LZDLq6uqSz+dTb2/vonylxpimqUAgIJ/Pp2AwuChfKpVSLBZbVBsAVLvbt29birtx44Z6enqUSCTk9Xo1MDCgpqamkvPMzs5amh943GzZssVS3Llz53Ts2DGNjo5q9+7dOnv2rOVcqD7zF105nMv/gLaaF14BAAAAsGZsaEyJcEKSNBmflCQNdw3nt7UGWhc1Te/t3SszZmo4OKxsKqtsJiuH06HvXP5OwUZp6d7nh+5Et6KhqBxOhzY3blZqPCW3313wc4HVGAAAgPXue7/4ni15Pvzdh/r+O9+3HP/TAz+1pQ4AAAAAAPob+9V7c/F1+/OMdkNGu6HsdFYzqRmZMVPxcFz+Pr82Pbmp7PltbbBoaWlZ1FwhSQ0NDbpw4cKiBov5mPHxcUvzOZ1OJRIJhUIhOZ1ONTY2anx8XH6/X52dnQVjfD6fnE6nDh8+XDBfX1+fAoF7d83NZDKSpFAotOSKEqXG+P1+maapwcHBJf9/PbziBQCsB1u3bi07RzQaldvtthz/zjvvlF0DgMKampp06dKltS4Da2T7ru1yOB36o91/9Mh9V+vCKwAAAADWtHa2WjrPNnxGyc3PDqdDHeGOFY8BAAAAAAAAAADVI5fLFbWfo94hR71D3i6vstNZRUNRHXj9QNnz29pg4XK5Cm7fuXOnuru7dfr0aTunk3SvwSEcDhe9v8fjWXZ1CMMwFIlESqqhlBirzSQAAABApWr2NCuUDhW9/2pdeAUAAAAAAAAA691PvvETy7GvxV/T2M0xzeXmVFtTq9bGVv1g1w8kSXM1c0pvS8v1mUu1uVq7ygUAAAAA4JFqampKjnHUO2yb39YGi+W6Rbxery5evKiDBw8uGjNN084yAAAV6NatW5biDh48qJGREd29e1cbNmxQW1ubLl68WHKe2dlZXb161VINAAAAAAAAAAAAQCVybLR+AcmLO1/UwAcDGs+My+10q+fZnny+uZo5bXpikxwbHTRYAAAAAAAqXnY6q6n4lC25bG2w8Pv9euutt/Stb31Lb7zxhqLRqM6cOaMnn3xSnZ2d+vrXv65YLKbnnnsuH3P58mUaLADgMbBlyxZLcefOndOxY8c0Ojqq3bt36+zZs5Zyzc7OWpofAAAAAAAAAAAAWI/qN9Ur9GfFr04MAAAAAIBdMtcyBbfPL/iQ+W1GWnrtB0lSNpPVTGpGU8kpvXf6PbUebrWlNlsbLNrb2/XKK6/olVdeUSgUUk1Njfx+v44fPy6fz6e2tjb5fD75/X7t3LlTpmlqaGhI4XDYzjIAAOtIU1OTLl26tNZlAAAAAAAAAAAAAAAAAAAAwAaTiUlNjk4qbaZlxkzdmb6zYPxHxo+KzpXL5WT4DB14/YAttdnaYCFJJ06c0NWrV3XixAlNT0/r8OHD+bGhoSG1tbXp7bffVjQaVS6Xk8fj0fHjx+0uAwAAAAAAAAAAAAAAAAAAAAAAVJjWQ61qPXR/xYmp5JRioZjMy6Zqamr09KGni8rjMlwy/IaMdsO22mxvsJCknTt3aufOnYu219fXK5FIaGhoSLFYTG63W93d3StRAgAAAAAAAAAAAAAAAAAAQMV4s+PNtS5BkvTt4W+vdQkAACzQ7GnW0ehRDQeH9fHQxwpcCKxZLSvSYPEonZ2d6uzsXIupAQAAAAAAAAAAAAAAAAAAAABAhekId2gqMbWmNdTanfCtt97StWvX7E4LAAAAAAAAAAAAAAAAAAAAAADWsX2n9q3p/LauYNHT06MzZ87I5XLpd7/7nZ2pAQAAAAAAAAAAAAAAAAAAAADAOtZ6qPWR+0yMTChtpuUyXNq+a7s2PbnJtvltbbBIpVJqb2+Xx+OxMy0AAAAAAAAAAAAAAAAAAAAAAFjnYidjyk5nF2w78PoBSVJ2OqtzvnOaSk4pl8vJZbiUTWcVGAqo5bkWW+a3tcHCMAy9/PLLdqYEAAAAAAAAAAAAAAAAAAAAAACPAW/Qqx+5fyRv0Ctvt1fNO5vzY5FARJOJSe3t3Svfyz5JUjaTVeRwRK4Wl5xPOcue39YGi8bGRl27dk1PPfVUyXE3b960sxQAAAAAAAAAAAAAAAAAAABUoF+/+Wtdf+26anO1a1rHt4e/vabzAwAW++zqZwpEAmo91Lpg+9jfj8mMmXom8Ey+uUKSHE6HAhcCip2K5Ve6KIet/2U6ceKEent7NTIyUlJcLpezswwAAAAAAAAAAAAAAAAAAAAAAFBlro9eX9RcIUkfnf9INTU12ndq36Ixh9MhR73DlvltXcFCki5cuKBXX31V4XBYu3fvlsfjUUNDg5xOZ8H9o9Gopqen7S4DAAAAAAAAAAAAAAAAAAAAAABUkyXWbjBjpiRp27PbCu9QY8/0tjZY1NbWqqbmXmW5XE5DQ0N2pgcAAAAAAAAAAAAAAAAAAAAAAOtUXWPdom3pibSymay2e7cvGZfNZG2Z39YGC8MwZJqmOjs71dDQUFTM6OioPvjgAzvLAAAAAAAAAAAAAAAAAAAAAAAAVWZ+wYcHjQ2NSZJafC1LBy6x8kWpbG+wOHnypI4fP15SXGNjo51lAAAAAAAAAAAAAAAAAAAAAACAKvPF777Qnc/vaNOTm/LbEuGEampqtOPIjoIxsVMxeYNeW+avtSXLHxiGIcMwSo5zuVx2lgEAAAAAAAAAAAAAAAAAAAAAAKrMvlP7FAlE9Nk/fqbPPvhMQ0eGlDbTau1s1bZnty3Y97MPPtPfff3vtLlxs5p3Ntsyv60rWAwMDFiK++STT+wsAwAAAAAAAAAAAAAAAAAAAAAAVBlHvUPtp9t14dAFpc20JOmZwDPqPN+Z3+dnPT+TGTPz42bM1Bc3v5DvtK/s+W1tsCjk888/VyqV0lNPPbXSUwEAAAAAAAAAAAAAAAAAAAAAgCrW7GnWS5+8pOx0Vo56x6LxvaG92hvau2BbXUOdLXPX2pLlIdeuXdMLL7ygDRs2yOVy6ctf/vKC8YmJCR0+fFhvvPHGSkwPAAAAAAAAAAAAAAAAAAAAAACqWKHmCklytbgW/S21b6lsb7AYGRmRYRgKh8NqaWlRe3u7WlpaFuzT0tKiCxcuqKWlRa+++qrdJQAAAAAAAAAAAAAAAAAAAAAAgMfEx299bEseWxssJiYm1NnZqe7ubo2Pj+uTTz7R22+/rUOHDhXcf775YmRkxM4yAAAAAAAAAAAAAAAAAAAAAADAY2K4a9iWPBttyfIHJ0+eVF9fn7q6uhZsr6mpWTLm0KFDeuGFF9TW1mZnKQAAAAAAAAAAAAAAAAAeMJWcUjwcVzaV1VRySg6nQ96gV95u75Ix2UxW755+V5K0uXGzUuMpuf1utXa22hoDAFg9b3a8uabzz9XMSc1rWgIAYI199sFn2vbstiXHSjGTmlHaTCubydpRmr0NFul0elFzRTFyuZydZQAAAAAA1oG1/mJXkr49/O21LgEAAAAAAAAAbJEYTEiSOsId+W1mzFQkENGVvivqTnTL4XQsiMlmshr0DioQCajZc/9K2OHgsK6PXpe/z79oHisxAAAAAB4fsZMxvf/K+2r2NqvrV4t7D/627W91Z/rOGlR2j60NFoZhWIpLp9N2lgEAAAAAAAAAAAAAAADgD+bv5rq3d++C7YbP0Hcuf0eD3kFFAhEdjR5dMB4JRPR059MLGiWke00afa4+uf1uGT6j7BgAAAAAj4+0mVYul1M2XXjFibqGOknKr7RX11i3bL6ZmzNKj6f18Vsf21Kf7StYWGGapp1lAAAAAAAAAAAAAAAAAPiDeDiur536WsGxZk+zDJ8hM2YqbablMlyS7l30ZMZMHQgfKBjXerhVV/quLGiWsBIDAAAA4PHScaZDht9Y8nOBy3Bp38l98hz3lJS3v7HfjvJUa0uWP3C5XHrnnXdKijl16pTa29vtLAMAAAAAAAAAAAAAAADAH0zEJvQfW/6jspnCd4jd5tkmSZpKTuW3xcNxSco3XDyswd0gM2YuyGklBgAAAMDjxVHvkLfLK1dL4c8Nht/Q9l3bS87rbHGWWdk9tq5g0dvbq/379+vMmTN67rnnHrn/q6++qqGhIf3mN7+xswwAAAAAAAAAAAAAAAAAf1DXUKep5JTSZlrNnuaiYj5LfiaH07Hk+HwTxWR8Mn/nWSsxAAAAAOwxlZxSPBxXNpXVVHJKDqdD3qBX3m7vkjHZTFbvnn5XkrS5cbNS4ym5/W61drbaGlOKvSf2WorrjnfbMr+tDRaGYWhgYEDt7e3atWuXjhw5op07dyqTyejatWvKZDJKpVJKJpMKh8MyTVOJRMLOEgAAAAAAAAAAAAAAAAA84Gj0qNJmesmVJTJmRpIWNF+kzbTqGuqWzDnfSJE202XFAAAAAChfYvDeNfkd4Y78NjNmKhKI6ErfFXUnuhc1Q2czWQ16BxWIBBZ8FhgODuv66HX5+/yL5rESU21sbbCQJJ/PpwsXLqi7u1u9vb357YODg/l/zuVyMgxD8Xhczz77rN0lAAAAAAAAAAAAAAAAAOve3N055eZy9x/Pzi2571LNFZI0NjSmZk/zgn1mUjPLxsw3UmQz2bJiAAAAAJQnbaaVzWS1t3fhyg+Gz9B3Ln9Hg95BRQIRHY0eXTAeCUT0dOfTi1a56wh3qM/VJ7ffvWjlOSsxpchcy8iMmUqNp/KN4I4GhxrcDWr2NKulrcVy7mLZ3mAhSZ2dners7FR/f7/Onz+vq1ev5scMw1AwGNSJEydWYmoAAAAAAAAAAAAAAADgsZD6JKXUb1L5x9OaLjnHlf4rkqSOMx0LthfbBPHFzS/KigEAAABQnng4rq+d+lrBsWZPswyfITNmLljVLm2mZcZMHQgfKBjXerhVV/quLGiWsBJTjDuf31FiMKH3Tr9X1GcKb9Crvb175XzKWdI8xaq1M9nIyMiCx729vUokEpqbm8v/ffLJJzRXAAAAAAAAAAAAAAAAAGVq+HKD3F935/+e+tdPlRQ/lZxSLBRTIBJYdAdaAAAAANVhIjah/9jyH5dsTtjm2Sbp3vn/vHg4Lmnple4a3A0yY+aCnFZiHiX5RlJ9rj7FQjHNpGeUy+Xyf5vqN8nZ4tSm+k0LtscH4vqR+0e6/JeXi56nFLauYOH3+5XJZPSlL33JzrQAAAAAAAAAAAAAAAAAHlK7oVba8MDj2dLutRoJRHQgfECtna2LxhxOR1EXRm1u3FxWDAAAAIDy1DXUaSo5pbSZLrpx+rPkZ3I4HUuOzzdRTMYn8ytSWIlZztCRIY0NjSmXy8nwGTL8hgyfoeadhf8/ZKezMmOmxt8eV/JMUlf6rsiMmer6Vdcj5yqFrQ0W9fX1CoVC+k//6T/ZmRYAAAAAAAAAAAAAAACAjSKBiLxBr7zd3oLjdQ11y8bPpGYkacEFVlZiAAAAAJTnaPSo0mZ6yZUlMmZGkhY0X6TN9LLn7/Pn7GkzXVbMUv7u63+n8ei4Wjtb5evzydVSuPYF+esdaj3UqtZDreoIdygaiur9V97Xmf/+jK1NFqW1rT9CJpNROBzW7t27NTIyYmdqAAAAAAAAAAAAAAAAADaIhqLavnu79vbuXXIfl+HKN0QUMr9SxYMXcVmJAQAAAFDY7J1Z3fn8Tv7v97d+v+S+y51jjw2NqdnTvGCfmdTMso3P840UD65QZyWmkCuvXNF4dFwdgx0KXAgU1VxRiL/Pr6NvH9VkfFKX//KypRyF2NpgIUnhcFixWEzj4+Pav3+/Xn31VX3++ed2TwMAAAAAAAAAAAAAAACgRInBhBrcDQWbKx68EGqbZ9uyF0bN35XW8BllxQAAAAAo7L3T7+nl+pfzf6//6esl57jSf0WS1HGmY8H2RzVBzPvi5hdlxTwsO51VLBSTv98vz3FPUfmWY/gMBS4EdKXvijLXMmXnk2xusAiHwzp+/Ljq6+vV1dWlt99+W+3t7ert7dWRI0dY1QIAAAAAAAAAAAAAAABYI2NDY5Ikb7d30VjaTMuMmfnHO47skCRNJacK5pocnVzUKGElBgAAAEBh+07t08npk/m/F/7xhZLip5JTioViCkQCavY0r1CVpUkMJtTsadaeH+6xLWdrZ6u27dyW/7xTLlsbLLq6uhZt27lzpwYGBnT+/HmNj4/r8OHDrGoBAAAAAAAArJCZmRndvn275D/TNLV//341NjZq//79Mk3TUp7bt2+v9SEAAAAAAAAFTCWnNJOaKdhcIUlmzFxw0VWzp1mGz9CH5z8suP/Y0Jj2hhaugmElBgAAAEBhGzdt1KYnN+X/ntj6REnxkUBEB8IH1NrZumjM4XQUtSLF5sbNZcU87KPzH+lrf/m1R+Yo1b6T+/TR+Y9sybXRlixF6urqUldXl65evare3l7V1NSop6dHf/qnf7qaZQAAAAAAAADr1je/+c2yc0SjUbndbsvxuVyu7BoAAAAAAIB90mZakUBELb4WTQYnF41nU1mZMVOhdGjB9kAkoEHvoHYc2bGg+WI4OKw9vXsKrkZhJQYAAACAvSKBiLxB75IN1nUNdcvGz6RmJN1rqign5mGZicyKfCYw/IZ+FvyZLblWtcFintvtltvt1unTpzU4OCiPx6PR0dG1KAUAAAAAAAAAAAAAAABY1875zyltppUeTC+5j8twLdrmcDrUnehWNBSVw+nQ5sbNSo2n5Pa7C94F12oMAAAAAPtEQ1Ft371de3uXXj3OZbg0GV/cfD1vfqWKBz8nWIkptM+mJzctOW6Vo7641TWKsaoNFiMjIwqHwxoaGpJ070523d3dCgaDq1kGAAAAAAAAsG79/Oc/1549e7RxY2lf/R08eFAjIyO6e/euNmzYoLa2Nl28eHGFqgQAAAAAAKvppfGXLMc6nA51hDtWPAYAAABA+RKDCTW4GwquXJHNZPOrS2zzbJMZM5fMkzbvNWc/uNqElZiHbaq3v7nC7ty1tmT5g5GRkUXbPv/8c7366qtqbGyU3+9XJBLRzp07NTAwoLm5OQ0MDGjnzp12lgEAAAAAAAA8turq6rRly5aS/86dOye/35//Hu/cuXOW8mzZsmWtDwEAAAAAAAAAAADw2BkbGpOkgs0VaTO9oDlix5EdkqSp5FTBXJOjk4saJazEPKympmbZ8XLYldvWFSz8fr/u3r0raeFqFblcTpLyq1XQUAEAAAAAAABUlqamJl26dGmtywAAAAAAAAAAAABQoqnklGZSMwWbKyTJjJkLmh+aPc0yfIY+PP+hmj3Ni/YfGxrT0ejRBdusxFQjWxss6uvrtXv3bpmmqUwmo1wuJ4/Ho2AwqK6uLjunAgAAAAAAAAAAAAAAAAAAAADgsZY204oEImrxtWgyOLloPJvKyoyZCqVDC7YHIgENege148iOBQ0Tw8Fh7endU3A1Cisx1cbWBgtJSiQSklitAsDaerPjzbUuQd8e/vZalwAAAAAAAAAAAAAAAAAAAIB17Jz/nNJmWunB9JL7uAzXom0Op0PdiW5FQ1E5nA5tbtys1HhKbr9brZ2tBfNYiXlQNpMt/v9YiezKbXuDRTAY1Ouvv253WgAAAAAAAAAAAAAAAAAAAAAA8ICXxl+yHOtwOtQR7ljxmHm5XE7/27/83wo2fJQjbS7dXFIqWxssMpkMzRUAAAAAAAAAAKwTw8FhPRN45pFLemczWb17+l1JKvpuVasVAwAAAAAAAAAAKkdqPKXUeMr2vDU1NbbksbXBoru72850AAAAACpYYjChsciYvEGvDJ8hh9OhtJnWVHJKH53/SPtO7VOzp3lRHBdRAQAAAJUtbaZlxkwlwglNJaf0TOCZZffPZrIa9A4qEAks+AwwHBzW9dHr8vf51ywGAAAAAAAAAABUFsNnyPAvf2OnUk3+alIfv/WxLblsbbAYGBiwMx0AAACACpbNZGXGTJkxc8F2h9Ox6IKnB2O4iAoAAACoXInBhMyoKcNvyNfn0zn/uUfGRAIRPd359KLPAB3hDvW5+uT2uxetgLFaMQAAAAAAAAAAoHLU1NTo6NtHVyT3/7Lhf7ElT60tWcrU2Ni41iUAAAAAsOBA+ID29O5Ra2erPN0eHQgfUCgdWvKipuUuiEoOJhc1a1iNAQAAAGCNt9urQCQgb7dXdQ11j9x/frWLXcFdBcdbD7fqSt+VNYkBAAAAAAAAAACVZVP9porPbesKFlblcrm1LgEAAACABc8cfkYOp6OofecviDoQPlBwfP6CqAebM6zEAAAAAFg98XBckuQyXAXHG9wNSg4mlc1k858dVisGAAAAAAAAAABUlu9c/k7F517zFSxOnjyp6enptS4DAAAAwAor5oIoM2Yqm8mWFQMAAABg9XyW/GzZhob5c/nJ+OSqxwAAAAAAAAAAgMrSvLO54nOvSYPFyMiIjhw5og0bNuiVV15ZixIAAAAArDIuogIAAADWn7SZVl1D3ZLj8+fzaTO96jEAAAAAAAAAAACl2rhaE33wwQc6f/68BgcHlclkJEm5XE6SVFNTs1plAAAAAFgBU8kpTcYntX3XdjV7CneDcxEVAAAAsHZm78zq7p27+ce/v/V7W/LOpGaWXHFOUv58/sFV51YrBgAAAAAAAAAAoFQr2mBx7do1DQ0NKRwOyzRNSfebKnw+n4LBoHK5nI4cObKSZQAAAAAoUqkXXZkxU2kzLcNnyNvt1VRySuf857Q3tFeGz1iwLxdRAQAAAGvnvdPv6Zd/9cv84+naaVvyFnsu/sXNL1Y9BgAAAAAAAKgGb3a8WVb8XM2cUs0pXX/tumpztTZVBQCPL9sbLD7//HNduHBB4XBYyWRS0v2mCsMwFAwG1d3drfr6+nzMg/8MAAAAYO2UctHVfOPD3t69+W3NnmYFIgH1ufrUnehesJoFF1EBAAAAa2ffqX366g++mn/86aef6m++8jdrWBEAAAAAAAAAAEDlsa3B4q233tL58+c1NDQk6X5ThdPp1PT0tMbHx/XUU08VjI1EInaVAQAAAKAMpVx01drZWnC7w+lQa2erIoGIXhp/aUXqBAAAAFCajZs2auOm+z8JPLH1CVvyOpyOohqjNzduXvUYAAAAAAAAAACAUpXVYDEyMqJIJKLBwUFJC5sqDh8+rGAwqJ07d6qhoWHJ5gpJam9vt1xDJpPR6dOnJUmNjY0aHx+X3+9XZ2dnWTlDoZAkKZVKSZL8fr+6u7tti1mJugEAAIBy2XXR1fbd2zU2NKa0mc6vdMFFVAAAAMD6U9dQt+z4TGpG0r1z+9WOAQAAAAAAAAAAKFXJDRbXrl1TOBzW4OCgMpmMpPuNFZ2dnQoGg4saJmpqasqvtIBMJiOv16tIJCKPx5PfHgwGNTo6qr6+vpJzJpNJBQIBhcNh+Xy+/Ha/36/x8fGCOUuNWYm6AQAAgEoyf1HTVHIq32DBRVQAAADA+uMyXJqMTy45Pt8wPf+5YDVjAAAAAAAAAAAASlVb7I5nzpzRv/yX/1Jut1v9/f1Kp9PK5XJqb29XOBzW3NycLly4UNZqFKUKBALq7Oxc0KQgKd8AEovFLOd8sFFiPmd/f3/BnKXGrETdAAAAwGoaDg7rR+4flRTjMlz5hohClrqIqtQYAAAAAKtnm2fbsqvOpc20JMnwGaseAwAAAAAAAAAAUKqiGyyi0ajGx8eVy+VkGEa+yeLtt99WV1fXStZYkGmaisViCgaDBccPHz5c8koQ/f39Mk1Tp06dWjRmGIZ8Pt+inKXGrETdAAAAwGqbik8V1fjQ7GnOb+MiKgAAAGD92XFkh6R7q9cVMjk6ueh8fbViAAAAAAAAAAAASlV0g8WFCxc0NzengYEBtbS0aHR0VIlEYiVrW1Y4HJZ0r4mhELfbrVgspkwmU3TOaDQqSXI6nQXHPR7PotUlSo1ZiboBAACA1dbia1EoHVpyfHJ0Ug6nY8HKElxEBQAAAKw/zZ5mGT5DH57/sOD42NCY9ob2rkkMAAAAAAAAAABAqYpusJjX3d2tt99+W4ODg0okEtq/f79eeOEFffDBBytQ3tKSyeSSTQ3S/QaGeDxedM54PL5sTrfbnZ/basxK1A0AAACsth1HdigxWLjhOm2mNTY0po4zHQu2cxEVAAAAUF3mV4xbblU5SQpEAvp46ONFjdHDwWHt6d1TsCl6tWIAAAAAAAAAAABKsdFqYH19vU6cOKETJ05oYmJC4XBYXV1d8vl8CgaDeuqpp2wsczHTNNXQ0LDk+HwTg2maRedsaGhQKpV65H7xeFwej8dSzErUDQAAAKy2Zk+zzJipK/1XtLf3foND2kxr0DuoPb171NrZuiguEAlo0DuoHUd2qNnTnN/+qIuoSo0BAAAAYM3Y0JgS4XvN1JPxSUnScNdwfltroFXebu+CGIfToe5Et6KhqBxOhzY3blZqPCW3313wc8FqxgAAAAAAAAAAAJTCcoPFg1paWvTyyy9Lkq5evaqXX35ZExMT8vv96urqsmOKRVKpVH61h0LmmxgymUzROT0ej4aGhpYcHx8fX5Sz1Bi76p6ZndGt2Vv5x0/UPqEnNjyxbAwWy9XklFNOuZqc5jS31uVUPY7nQrOzs2XHz83NlZ0H93A87cXxtBfH014cT3vNzS393/S9vXtlxkwNB4eVTWWVzWTlcDr0ncvfWdAI8SAuoioO5/uVoxLeS3hfQyG8LrAUXhsohNcFClnqXL+1s9XSebbD6VBHuOPRO65BTCX54u4X2jS7Kf+Yc/3qwHff1Y3nr7rx/FU3nr/qxvNXvXI1ubUu4bHE9/r24L3HXhxPe3E87VVJx7MSvjedqynvGFTS8SxXJTwffKduL46nvZa7jgf2saXB4kE7d+7UwMCAJOnv//7v1dXVpVwupzfeeEPHjx8vGPPqq6/qhz/8YUnzFNs4cfPmzaJzBoNBDQ0NKZlM5leoeFAsFluUs9QYu+oO/UNoweNveL6hb+76ZlG5cV9OOc18aUYppVSjmrUup+pxPBd67733yoqfm5vTp59+Kkmqra21o6THGsfTXhxPe3E87cXxtNejzksNn1HyChKP40VUpeJ8v3KUe05nB97XUAivCyyF1wYK4XWBQkr57hz24Vy/OvHdd3Xj+atuPH/VjeevuvH8Va9/mvmntS7hscS5vj1477EXx9NeHE97VdLxrITfA1PNqbLiK+l4lqsSng++U7cXx9NefLe/OmxvsHjQoUOHdOjQIU1PT+vChQvav3+/XC6XgsGg2traJEkTExMKhUIlN1isBJ/PJ5/Pp9OnTysSiSwYi8Vi8vl8SiaTamxsLCvGDn3/pk8uhyv/+InaJ/TEFJ3vpcrV5JRSSg2fNagmV90nFpWA47nQvn37yoqf79jcs2ePNm5c0bfrxwLH014cT3txPO3F8bTX/IdcrC7O9ytHued0duB9DYXwusBSeG2gEF4XKIRz/bXBuX514rvv6sbzV914/qobz1914/mrYjNrXcDjiXN9e/DeYy+Op704nvaqpONZCb8HXn/telnxlXQ8y1UJzwffqduL42kvvttfHavySq2vr1dXV5e6uro0PT2twcFBvfzyy6qpqcmv8FAqp9NZ1GoQpTY2RKNRBYNBhUIhnTp1StL9VSjcbnd+bqsxdtVdt7FOWzduXbiRVR5LNqc51ahGNbka1ebojCsXx3MhO04GamtrtXHjRk4sbMLxtBfH014cT3txPO3D3QPWBuf7laNS3kd4X0MhvC6wFF4bKITXBR7Guf7a2LxhM+f6VYjvvqsbz1914/mrbjx/1Y3nr3pV+0WV1Yrv9e3Be4+9OJ724njaq5KOZyV8Z1ruMaik41muSng+JL5TtxvH0z58t786Vv2VWl9frxMnTujEiROKxWL61a9+pc8//7zkPA0NDcuOp1L3lkx6uBmiGOFwWJlMJt8k4fP55HQ61d/fL0natWuX5ZiVrBsAAAAAAAAAAAAAAAAAAAAAAFizpq1APp9PkUhEX//610uONQxD8Xh8yfH5VSIMw7BUm9PpVGdn54Jto6OjkiSPx2M5ZqXrBgAAAAAAAAAAAAAAAAAAAEqRnc1ajp2+M60f//rHmpieUEt9i57/yvOq31RvY3UAsHrWfK0Vn8+n+vrS30Q9Hk9+tYhCTNPM57dLMplUd3d3WTFrUTcAAAAAAAAAAAAAAAAAAACwlO/94nu25Pnwdx/q++9831Lsd/VdW2oAgHLUrnUBknT58uWSY44cOSLpXgNDIaOjoyU3KSSTSblcroINEMlkUqZpKhQKlRWzEnUDAAAAAAAAAAAAAAAAAAAAAIDyrPkKFpK0c+fOkmM8Ho98Pp/Onz8vj8ezaHxoaEjRaHTR9kwmo9OnT8vv9y9qZJhfPaKQrq4u9fX1yTCMsmKs1g0AAAAAAAAAAAAAAAAAAACshJ984yeWY1+Lv6axm2Oay82ptqZWrY2t+sGuH9hYHQCsnopYwcKqSCSioaGhRatBBINB9fb2FlwJYnBwUP39/QoEAovGfD5f/m9eJpNRIBCQz+dTb2+vLTFW6gYAAAAAAAAAAAAAAAAAAABWgmOjw/Lfiztf1Ff+2Ve09Ymt+so/+4pe3PmipTwAUAkqYgULq5xOpxKJhEKhkJxOpxobGzU+Pi6/36/Ozs6CMT6fT06nU4cPHy6Yr6+vL998kclkJEmhUGjJpgerMaXWDQAAAAAAAAAAAAAAAAAAAFSa+k31Cv1ZaK3LAABbVHWDhXSvWSEcDhe9v8fjUTqdXnLcMAxFIpGSarASU2rdAIDyzczM6Pbt29q4sfT//N24cUM9PT1KJBLyer0aGBhQU1OTpTq2bNliKQ4AAAAAAAAAAAAAAAAAAAArp+obLAAAKNY3v/lNW/JEo1G53W7L8blczpY6AAAAAAAAAAAAAAAAAAAAYJ/atS4AAAAAAAAAAAAAAAAAAAAAAABgrbGCBQDgsfHzn/9ce/bs0caNpf/n7+DBgxoZGdHdu3e1YcMGtbW16eLFiytQJQAAAAAAAAAAAAAAAABgrczMzOj27duWrjO7ceOGenp6lEgk5PV6NTAwoKamppLzbNmypeQYAPagwQIAVsibHW+WFT9XM6dUc+r/z94fxsZ1ngmC7iuZbpVkT1ykZiBT6bloF2d+mFbPJEWrdyx5FguHBBqB+CMTlgT/cMZYxKR7Fkhjg20x/nfzZ9TUDBJ0Bpi4mMEiGAErOMXbWYBBey7IuCewlF5EZKV34jAY3GU57WmRNrZdVUo7VrkjkfeHlmXRLFJk8ZDFIp8HEOA657zf+fydo9J7Tp33fHHzGzfj8HLzEw49P/n8tvqxnxw9ejQeeeSRphLfK1euxIsvvhg3btyI06dPx3e/+11JLAAAAAAAAAAAwD7z+c9/PpF2pqamoqenp6nY5eXlRPoAbJ0CCwDYhBMnTsTrr7/e6m4AAAAAAAAAAAAAsEMUWAAAAAAAAAAAAAAARMSf/dmfxZkzZ6KjY+uPWX/hC1+IN954I+7evRsPPfRQPPfcc/H9739/B3oJ7BQFFgAAAAAAAAAAAAAAEXH06NF45JFHmiqwuHLlSrz44otx48aNOH36dHz3u9+NRx55ZAd6CewUBRYAAACwjquDV1vdhVg6tBSf/uqnW90NAAAAAAAAAB7gxIkT8frrr7e6G8A2HG51BwAAAAAAAAAAAAAAAFpNgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOvI5WdwAAAAAAAAAAAAAAdtvVwaut7gIAe4wZLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgafAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA0+BBQAAAAAAAAAAAAAAcOApsAAAAAAAAAAAAAAAAA48BRYAAAAAAAAAAAAAAMCB19HqDgAAAAAAAAAAALtncmQynso9FZn+zIbb1aq1ePPSmxERcez4sSjPl6NnoCd6h3oTjQEAANgrFFgAAAAAAAAAAMA+VylVojRditn8bCwWF+Op3FMbbl+r1mK8bzxyhVx0Z7vryydHJuPmjZsxMDaQSAwAAMBecrjVHQAAAAAAAAAAAHbO7PhsTI9OR0RE/1j/pmIKuUI8OfTkqkKJiIjB/GAUx4tRmi4lEgMAALCXmMECAAAAAAAAAAD2sb7hvugb7ouIiMXi4gO3X5nt4lz+XMP1ved74/rY9cj0Z7YVAwAAJG9yZDKeyj31wNy7Vq3Fm5fejIiIY8ePRXm+HD0DPdE71JtoTLtRYAEAAAB73M+u/ixufuNmHF5u7USUz08+39L9AwAAAAC7YyY/ExERnZnOhuu7erqiOF6MWrUWqXSq6RgAACAZKwXPs/nZWCwuxlO5pzbcvlatxXjfeOQKuVUz0E2OTMbNGzdjYGwgkZh21NonMwAAAAAAAAAAgD3l3eK7GxZBrBRRLMwsbCsGAADYvtnx2ZgenY6IiP6x/k3FFHKFeHLoyVWFEhERg/nBKI4XozRdSiSmHSmwAAAAAAAAAAAA6iqlShztOrru+pVCikqpsq0YAABg+/qG+yJXyEXfcN+GOfmKldkunh55uuH63vO9cX3s+rZj2lVHqzsAwM66Oni11V2IiIjnJ59vdRcAAAAAAAAA9pWlu0uxvLT88ec7S4m0e7t8uz7jRCMrD23VqrVtxQAAALtvJj8TEbFu/t7V0xXF8WLUqrV6oXQzMe1KgQUAAAAAAAAAALSh8v9VjvL/r1z/fCtuJdLuZosgPnz/w23FAAAAu+/d4rsbFkGsFFEszCxEpj/TdEy7UmABAAAAAAAAAABtqOsfda16g2y5Vo74UQs7BAAAJObOR3fi7kd3659/88FvEmm3UqrUZ5hrZKWQolKqbCumXSmwAAAAAAAAAACANnT4ocMRD933+c7hRNpNpVObmpHi2PFj24oBAADWd+3StfjR1z+uoL51OJkZ626Xb68q1P6klUKK+/P7ZmLalQILAAAAAAAAAACgbqM300bce7gq4uO31DYbAwBwv6uDV1vdhVg6tBSf/uqnW90NiIiIZ195Np756jP1z++8805883e/ue12N1sE8eH7H24rpl0psAAAAJq2WFyMmfxM1Mq1WCwuRiqdir6Rvugb7mu4/ez4bMwV5qJvpC8y/ZlIpVNRKVVisbgYP3/t5/HsK89Gd7Z7TVytWos3L70ZEffebFWeL0fPQE/0DvXu6P8fAAAcRLuZt8v1AQBgb+rMdMbCzMK661cerrr/DbbNxAAAAOvrONIRHUc+ftz/4UcfbmFvDg4FFgAAQFNmx2cjImIwP1hfVpouRSFXiOtj12N4dnjNW6hq1VqUpktRmi6tWp5KpyJXyK37kNZ43/ia9ZMjk3Hzxs0YGBtI8n8LAAAOvN3K2+X6AACwdz2efXzNNcH9KqVKRERk+jPbigEAgHaxF2ZY+Zva3yTSTiqd2tSMFMeOH9tWTLs63OoOAAAA7adSqkStWlszU0WmPxNf+uGXolKqRCFXaBh7Ln8uzlw8E71DvZEdzsa5/LkYrYyu+4NKIVeIJ4eeXPMQ12B+MIrjxQ1/rAEAAJqzG3m7XB8AAPauUxdORcS9mawbWbixsOb6oJkYAABg9x3tOrrh+tvl2xERq16s2kxMuzKDBQAAsGUz+Zn456/884brurPdkenPRGm6FJVSZc1U30+df2rTF1OVUiVK06U4lz/XcH3v+d64PnbdDzIAAJCwnc7b5foAALC3rdzrf+u1txrOYjc3MRcvTL2w7RgAAGD3dWY6Y2FmYd31KzNV3P/MTzMx7coMFgAAwJa9Pf12/MkTf7Lu1H+PZx+PiPXfUrVZM/mZiFj/4qurpytK06VNTUEIAADsjGbydrk+AAC0TqVUiYh4YL6dK+TiFxO/WHOvf3JkMs5cPNOwILqZGAAAYHc9nn18w+uBlWuG+/P3ZmLalRksAACALTvadTQWi4tRKVUavoUqKe8W393wrbkrD2MtzJhWHAAAWqWZvF2uDwAAu2tuYi5m87MREfW3zk6+NFlf1pvrjb7hvlUxqXQqhmeHY2p0KlLpVBw7fizK8+XoGeiJ3qHehvtpJgYAANhdpy6cih9f/nEsFhcbPvezcGPtvflmYtqVAgsAAGDLXph6ISqlyrpvm62WqhERGxZfLBYXY2FmIU4+fXLd7SqlShztOrpuGysPZK1UwQMAAMnaqbxdrg8AALurd6i3qQKHVDoVg/nBHY8BAAB2T3e2OzL9mXjrtbca3vufm5iLF6Ze2HZMu1JgAQAA1N356E7c/ehu/fNvPvjNutuuV1wRce+iqTvb3XCb0nQpKqVKZPoz0TfcF4vFxbgycCXOjp5dU8l+u3x7w/2sPJD1oGnMAQDgoNtKrh+x83m7XB8AAAAAgM26Oni11V1oGysvLnrQ/fVcIRfjfeNx6sKpVQUTkyOTcebimYazUTQT044UWAAAAHXXLl2LH339R/XPtw7f2nIb1y9fj4iIwe+sfTvVygNUZy+erS/rznZHrpCLsc6xGJ4dXnUBttmHqT58/8Mt9xMAAA6SreT6u5G3y/UBAAAAANa3VwoKnp98vtVdYBPmJuZiNj8bERELMwsRETH50mR9WW+uN/qG+1bFpNKpGJ4djqnRqUilU3Hs+LEoz5ejZ6Bn3dnvmolpRwosAACAumdfeTae+eoz9c/vvPNOfPN3v7np+MXiYkyPTkeukGs4HeBGF2C9Q71RyBXiK/Nf2XrHAQCADW0l15e3AwAAAAAQsf1Cj6VDS1HuLsfNb9yMw8uHE+oVn9Q71NtUgUMqnYrB/NoXqCYd026cqQAAQF3HkY448qkj9T8PP/rwluILuUKcy59r6qLt5OmTUSlV6lMVRty7KNvMm22PHT+25f0BAMBBst1cf0VSebtcHwAAAAAA2IsUWAAAAIko5ArRN9K3ZkrBzUqlUxFxbxaMFUe7jm4Yc7t8e1UsAACws5LK2+X6AAAAAADAXqTAAgAA2Lap0ak4efpknL14dt1tJkcm41s939pSu52ZzvqDVY2svPG2M9O5pXYBAIDGditvl+sDAAAAAAB7kQILAABgW2bHZ6Orp6thccXKQ1EREYszi5t6gKo7211f9nj28VVtfFKlVImIiEx/Zsv9BgAA1tqtvF2uDwAAAAAA7EUdre4AAAfD1cGrLd3/0qGl+PRXP93SPgDsR3MTcxER0Tfct2ZdpVSJxeJi9A71RkTEE/1PxPDY8LptLdxYiFQ6teoNtacunIofX/5xLBYXVz3AdX+MB64AACA5u5W3y/UBAAAAAIC9yAwWAABAUxaL995s26i4IiKiNF1a9aDUqQunYnZ8tuG2lVIl5ibmYvA7g6uWd2e7I9Ofibdee6th3NzEXJwdXTtzBgAA0Jzdytvl+gAAAAAAwF6kwAIAANiySqkShVwhFmYXYnJkcs2fQq4Q06PTq95q253tjlq1FtcvX1/T1njfeJy5eKY+28X9coVc/GLiF7FYXFy1fHJkMs5cPOOttgAAkKDdzNvl+gAAAAAAwF7T0eoOAAAA7efKwJWolCpRGa+su839xRUrzl48G6XpUkyOTEatXItatRapdCq+9MMvrZrt4n6pdCqGZ4djanQqUulUHDt+LMrz5egZ6Gn4YBcAALA9u5W3y/UBAAAAAIC9RoEFAACwZV+Z/0rTsZn+zJbfRJtKp2IwP9j0PgEAgK3Zrbxdrg8AAAAAAOwlCiwAAACATbk6eLXVXYjnJ59vdRcAAAAAAAAAgH3qcKs7AAAAAAAAAAAAAAAA0GpmsAAAAAAAAAAAAAAAiIifXf1Z3PzGzTi87D32cBC1fYFFtVqNS5cuRUTE8ePHY35+PgYGBmJoaGhbbY6OjkZERLlcjoiIgYGBGB4e3lLM6dOn4+LFi4lsDwAAAAAAAAAAAAAA7Jy2LrCoVqvR19cXhUIhstlsffnIyEjcuHEjxsbGttxmsViMXC4X+Xw++vv768sHBgZifn6+YZvFYjHy+XyMjY1FOp2uL5+YmIi+vr6YnZ3d1vYAAAAAAAAAAAAAAMDOausCi1wuF0NDQ6uKKyIi8vl8dHZ2xsDAwKoiia20+cm4fD4fPT09DdscHR2NqampNW0NDQ1FuVyOkZGRyOfzTW8PAAAAAAAAAAAAAADsrMOt7kCzSqVSTE9Px8jISMP158+f3/IMFpcvX45SqRSvvPLKmnWZTCb6+/vXtFksFiOTyazb5vnz52N6errp7QEAAAAAAAAAAAAAgJ3XtgUWKzM8rFes0NPTE9PT01GtVjfd5sqsEul0uuH6bDa7pvhhpdBjPeVyeVV7W90eAAAAAAAAAAAAAADYeW1bYFEsFjcsRFgpvJiZmdl0mzMzMxu22dPTU9/3imw2G6VSKXK5XMOYfD4fFy5caHp7AAAAAAAAAAAAAABg53W0ugPNKpVK0dXVte76lUKJUqm06Ta7urqiXC4/cLuZmZnIZrMRca+QY3h4OMbHx6Onpyfy+Xz09/dHRNRn0BgbG6vHbnX79dy+czs+uPNB/fPDhx+Ohx96eNP/r9yzfGg5lmM5lg8tx1Istbo7bc94Jst4Jmv50HIsLS3FnTt3Wt2VfeHOnTvGM0HGM1nGM1lLS/4NagX5PveTF67m+/0e/96xHucGjTgvaESu3xof3v0wjtw5Uv8s128PcvL25vi1N8evvTl+7c3xa1/Lh5Zb3YUDyX39ZPjuSZbxTJbxTJbxTJbxTJbxTJbxTNZyyPd3Q9sWWJTL5fosFY2sFF9Uq9VNt5nNZmNiYmLd9fPz8w3bzOfz0dPTE6OjozEwMBDDw8PR09MT2Ww28vn8mna2un0jo/95dNXn38/+fnz+6c9vKpaPLcdy3P57t6Mc5TgUh1rdnbZnPJNlPJO1HMtx5517D5IcPty2EzjtGUtLS/HOO+9EhPFMgvFMlvFM1vvvv9/qLhxI8n3uJy9c7dq1a63uwp7g3zvW49ygEecFjcj1W0Ou357k5O3N8Wtvjl97c/zam+PXvv729t+2ugsHklw/Gb57kmU8k2U8k2U8k2U8k2U8k2U8k/VB7YMHb8S2tW2BxWYLJ7byI9HIyEhMTExEsVisz1Bxv+np6XXbvHjxYqTT6RgZGYnx8fFIp9NRKBTW3ddWt/+ksf9hLDpTnfXPDx9+OB5eVPm+VcuHlqMc5eh6tysOLfvi3i7jmSzjmazlQ8tx8v91Ms6cORMdHW37z9+esfLWU+OZDOOZLOOZrJUH8dhd8n3uJy9c7eY3bra6CxERceFPL7R0//69Yz3ODRpxXtCIXL815PrtSU7e3hy/9ub4tTfHr705fm3sdqs7cDDJ9ZPhuydZxjNZxjNZxjNZxjNZxjNZxjNZy7fNYLEb/Jp2n/7+/ujv749Lly6tKXaYnp6O/v7+KBaLcfz48TWxo6Oj0dPTE8vLyzE6OhqXL1+uz07RaFaKrW7/SUc7jsajHY+uXujvzJYtxVIcikNxaPlQHF729r7tMp7JMp7JWoqlOHz4cHR0dHiYJCHGM1nGM1nGMznecNwa8n3uJy/cm/bCvzH+vWM9zg0acV7wSXL91jj20DG5fhuSk7c3x6+9OX7tzfFrb45f+/LQWmu4r58M3z3JMp7JMp7JMp7JMp7JMp7JMp7JMgvI7mjbMzWdTm9qFotGxRAbmZqaiq6urhgdHY1qtRrVajUmJiaiWq1GT09Pfd/3GxgYqBdHRESMjY3F7OxsZDKZGB8fj1wut63tAQAAAAAAAAAAAACAndW2BRZdXV0bri+XyxGxthhiM/L5fLzyyisxPT1dn7liaGioXtDx9NNP17e9fPlyZLPZ6O/vX9VGNpuN+fn5GB4ejomJiZienm5qewAAAAAAAAAAAAAAYOe17XzwmUwmZmZm1l2/UgyRyWSaaj+dTsfQ0NCqZTdu3IiIe8UQK/L5fMzOzq7bTj6fj5mZmZiamor+/v4tbw9Acn529Wdx8xs3Wz7V2POTz7d0/wAAAAAAAAAAAACs1bYzWGSz2XoRRSOlUikiItEihWKxGMPDw2v286BZMkZGRup93er2AAAAAAAAAAAAAADAzmvbGSwuXLgQly9fjmKxuGpGiRU3btzYcnFFsViMz33uc1EoFNbEFovFKJVKMTo6ump5JpOJUqm04UwZ8/Pz0dfX19T2AOw/VwevtroLZtEAAAAAAAAAAAAA+IS2nsGiv78/XnvttYbrJyYm1hRDRERUq9UYHR2N6enpNetWZr1o5KWXXoqxsbE1hRFDQ0MN93P//orFYpw/f76p7QEAAAAAAAAAAAAAgJ3XtgUWERGFQiEmJiaiWCyuWj4yMhIXL15sOIPF+Ph4XL58OXK53Jp1/f399T8rqtVq5HK56O/vj4sXL66JGRsbq++zWq2uWlcsFiOXy8XY2Fik0+mmtgcAAAAAAAAAAAAAAHZeR6s7sB3pdDpmZ2djdHQ00ul0HD9+PObn52NgYCCGhoYaxvT390c6nW44Q0Q6nY6xsbF68cVKAcTo6GjDYo0VhUIhpqen46WXXlq1PJPJxNTU1La3BwAAAAAAAAAAAAAAdlZbF1hE3CuKyOfzm94+m81GpVJZd30mk4lCobDlfnxy5ouktwcAAAAAAAAAAAAAAHbO4VZ3AAAAAAAAAAAAAAAAoNUUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODA62h1BwAAAADazdXBqy3d/9KhpSh3l+PmN27G4eXWvj/j+cnnW7p/AAAAAAAAAEiKAgsAOIC2+0BgUg/0eRgPAAAAAAAAAAAA2Cta+4pDAAAAAAAAAAAAAACAPUCBBQAAAAAAAAAAAAAAcOB1tLoDAABAY7/+9a+bjn3vvffi5ZdfjtnZ2ejr64tXX301Tpw4seV2Pvzww6b7AAAAAAAAAAAA0E4UWAAAwB716KOPJtLO1NRU9PT0JNIWAAAAAAAAAADAfnW41R0AAAAAAAAAAAAAAABoNTNYAAAtc3Xwaqu7EM9PPt/qLsC6Pvjgg6Zjv/CFL8Qbb7wRd+/ejYceeiiee+65+P73v7/ldv7qr/4qnnrqqab7AQAAAAAAAAAA0C4UWAAAwB71yCOPNB175cqVePHFF+PGjRtx+vTp+O53v9tUe8eOHWu6DwAcDIpmAQAAAAAAANgvFFgAAMA+dOLEiXj99ddb3Q0AAAAAAAAAAIC2cbjVHQAAAAAAAAAAAAAAAGg1M1gAAAfa1cGrre5CLB1aik9/9dOt7gYAQNvaCzldRMTzk8+3ugsAAAAAAAAAbIMZLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgdbS6AwAARPzs6s/i5jduxuHl1ta/Pj/5fEv3DwAAAAAAAAAAAK2iwAIAgLqrg1db3QVFHgBA29oLudTSoaX49Fc/3epuAAAAAAAAALSl1r4iGQAAAAAAAAAAAAAAYA8wgwUAAHvKdt/8vHRoKcrd5bj5jZtxeLn5emIzaQAAAAAAAAAAABwsZrAAAAAAAAAAAAAAAAAOPDNYAAAAAMA+8rOrP9v2bF7bZTYwAAAAAAAAoB2ZwQIAAAAAAAAAAAAAADjwzGABAAANXB282uou7Al/U/ubVncBAGhDcqmPmc0DAAAAAAAA2ocCCwAAoGm1ai3evPRmREQcO34syvPl6Bnoid6h3hb3DABgb9gLxSZLh5bi01/9dKu7QZuR6wMAwP4k1wcAgP1Lvp8MBRYAAEBTatVajPeNR66Qi+5sd3355Mhk3LxxMwbGBlrYOwAAoFlyfQAA2J/k+gAAsH/J95OjwAIAAGhKIVeIJ4eeXHVRFhExmB+Msc6x6BnoiUx/pkW9AwDgfj+7+rO4+Y2bcXj5cMv68Pzk8y3bN1sj1wcAgP1Jrg8AAPuXfD85CizazN/93d9FRMRvln7T4p7sD7+5+5v4s5k/iwuPX4gjh4+0ujttz3gmy3gmy3gmy3gmy3gmy3gmayXvXMlDV1RKlShNl+Jc/lzDuN7zvXF97LoLsy2S79OI7zUacV6wHucGjeyV8+Lq4NWW7XsvanXByUruKdeHB9sr36M0x/Frb45fe3P82pvjt//I9XeG+/rJ8t2TLOOZLOOZLOOZLOOZLOOZLOOZLM/x7I7Wva6Mpnz00UcREXFn6U6Le7I//GbpN/Gfiv/JhW5CjGeyjGeyjGeyjGeyjGeyjGeyVvLOlTx0xUx+JiIiOjOdDeO6erqiNF2KWrW2sx3cZ+T7NOJ7jUacF6zHuUEjzgsaWck95frwYL5H25vj194cv/bm+LU3x2//kevvDPf1k+W7J1nGM1nGM1nGM1nGM1nGM1nGM1me49kdZrAAAAC27N3iu5FKp9Zdv3LBtjCzoPodAAAaaPWMHv/tg//WcLlcHwAA9ie5PgAA7F/y/WSZwQIAANiySqkSR7uOrrt+5aKtUqrsVpcAAIAEyPUBAGB/kusDAMD+Jd9Plhks2szS0lJERFRr1Tj20LEW96b9fXj3w4iIqNQq8dFDHz1gax7EeCbLeCbLeCbLeCbLeCbLeG7P0t2liOWPP1d+fe/CaiUPXXG7fHvdaQUjon7RZmrBrZHv04jvNRpxXrAe5waNOC+IkOu32so4V2p+vGpHvkfbm+PX3hy/9ub4tTfHr318Mtev1qr3lsv1d4X7+sny3ZMs45ks45ks45ks45ks45ks47k97u23xqHl5eXlB2/GXnHt2rX45//8n7e6GwAAHDBvvvlmPPvss/XPXz/09ejOdsfw7HDD7ReLizHeNx5nLp6JgbGB3epm25PvAwCw2+T6u+PGjRvxe7/3e63uBgAAB8hPfvKTOH36dP2zXH9nuK8PAEAruLe/s8xg0Wb+2T/7Z/GTn/wkTpw4EYcPH251dwAA2Gfu/N2dWPro4yr3paWl+L+r/3ec/u9ObxBFUuT7AADsFLl+a332s5+V6wMAsCPWy/U/+9nPtrBXB4f7+gAA7CT39ltDgUWb6ejoWPWGAQAA2Gn/KP7RmmWpdGpT0wYeO2467K2Q7wMAsJvk+rtHrg8AwG6S6+8euT4AALtNvr/zlE4DAABbdrTr6Ibrb5dvR8S9CzgAAKB9yPUBAGB/kusDAMD+Jd9PlgILAABgyzoznfWLr0ZWquI7M5271SUAACABcn0AANif5PoAALB/yfeTpcACAADYssezj284tWClVImIiEx/Zre6BAAAJECuDwAA+5NcHwAA9i/5frIUWAAAAFt26sKpiIhYLC42XL9wY8FFGQAAtCG5PgAA7E9yfQAA2L/k+8lSYAEAAGxZd7Y7Mv2ZeOu1txqun5uYi7OjZ3e5VwAAwHbJ9QEAYH+S6wMAwP4l30+WAgsAAKApuUIufjHxizXV75Mjk3Hm4hmV7wAA0Kbk+gAAsD/J9QEAYP+S7yfn0PLy8nKrOwEAALSnWrUWU6NTkUqn4tjxY1GeL0fPQE/0DvW2umsAAMA2yPUBAGB/kusDAMD+Jd9PhgILAAAAAAAAAAAAAADgwDvc6g4AAAAAAAAAAAAAAAC0mgILAAAAAAAAAAAAAADgwFNgAQAAAAAAAAAAAAAAHHgKLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgafAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA0+BBQAAAAAAAAAAAAAAcOApsAAAAAAAAAAAAAAAAA48BRYAAAAAAAAAAAAAAMCBp8ACAAAAAAAAAAAAAAA48BRYAAAAAAAAAAAAAAAAB54CCwAAAAAAAAAAAAAA4MBTYAEAAAAAAAAAAAAAABx4CiwAAAAAAAAAAAAAAIADT4EFAAAAAAAAAAAAAABw4CmwAAAAAAAAAAAAAAAADjwFFgAAAAAAAAAAAAAAwIGnwAIAAAAAAAAAAAAAADjwFFgAAAAAAAAAAAAAAAAHngILAAAAAAAAAAAAAADgwFNgAQAAAAAAAAAAAAAAHHgKLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgafAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA6+j1R0AAADa12JxMWbyM1Er12KxuBipdCr6Rvqib7hv3ZhatRZvXnozIiKOHT8W5fly9Az0RO9Qb8tjAAAAAAAAAACAg+vQ8vLycqs7AQAAtJ/Z8dmIiFXFFKXpUhRyhTjadTSGZ4cjlU6tiqlVazHeNx65Qi66s9315ZMjk5FKp2JgbGDNfnYrBgAAAAAAAAAAONgOt7oDAABA+6mUKlGr1tbMVJHpz8SXfvilqJQqUcgV1sQVcoV4cujJVUUPERGD+cEojhejNF1qWQwAAAAAAAAAAHCwKbAAAAC2bCY/s6a4YkV3tjsy/ZkoTZeiUqrUl1dKlShNl+LpkacbxvWe743rY9dXLdutGAAAAAAAAAAAAAUWAADAlr09/Xb8yRN/ErVqreH6x7OPR0TEYnGxvmwmPxMREZ2ZzoYxXT1dUZourWpzt2IAAAAAAAAAAAA6Wt0BtubOnTvx05/+NE6cOBGHD6uPAQBgZy0tLcV7770Xn/3sZ6Oj4+PLh6NdR2OxuBiVUiW6s92bauvd4ruRSqfWXb9SELEwsxCZ/syuxuwV8n0AAHbLerk+O0OuDwDAbpHr7y65PgAAu0m+vzuMbJv56U9/Gr/3e7/X6m4AAHDA/OQnP4nTp0/XP78w9UJUSpV1Z4molqoREauKLyqlShztOrruPlaKIiqlyq7H7BXyfQAAdtsnc312hlwfAIDdJtffHXJ9AABaQb6/sxRYtJkTJ05ERMRf/MVfxG//9m+3uDft786dO1EsFiObzarkSoDxTJbxTJbxTJbxTJbxTJbx3J47f3cnlj5aqn++uXAz/vv+/76eh95vveKKiIi5ibnoznav2uZ2+faGMStFEbVqbddj9gr5Po34XqMR5wXrcW7QiPOCRv76r/86nnnmmYa5PslbGeef/OQn0d29uVkA2Tt8j7Y3x6+9OX7tzfFrb45f+1pcXIzf+73fk+vvEvf1k+W7J1nGM1nGM1nGM1nGM1nGM1nGM1nu7e8OZ2qbWZlO8PHHH3dhloA7d+7EL3/5y/jt3/5tX9wJMJ7JMp7JMp7JMp7JMp7JMp7b85//3/85fvT1H9U/3zp8KyJiS9NaX798PSIiBr8zuGr5ZgsaPnz/w12P2Svk+zTie41GnBesx7lBI84LGrlz505EbC3Xp3kr49zd3S3Xb0O+R9ub49feHL/25vi1N8ev/cn1d4f7+sny3ZMs45ks45ks45ks45ks45ks45ks9/Z3hzMVAACoe/aVZ+OZrz5T//zOO+/EN3/3m5uOXywuxvTodOQKuejOeisrAAAAAAAAAADQPhRYAAAAdR1HOqLjyMeXCQ8/+vCW4gu5QpzLn4veod4161Lp1KZmlzh2/NiuxwAAAAAAAAAAAJgfBAAASEQhV4i+kb7oG+5ruP5o19EN42+Xb0fEvQKJ3Y4BAAAAAAAAAABQYAEAAGzb1OhUnDx9Ms5ePLvuNp2ZznpxQyMrs050Zjp3PQYAAAAAAAAAAECBBQAAsC2z47PR1dPVsLhipZghIuLx7OOrPn9SpVSJiIhMf2bXYwAAAAAAAAAAABRYAAAATZubmIuIiL7hvjXrKqVKlKZL9c+nLpyKiIjF4mLDthZuLKwpetitGAAAAAAAAAAAAAUWAABAUxaLi3G7fLthcUVERGm6FN3Z7vrn7mx3ZPoz8dZrbzXcfm5iLs6Orp4FY7diAAAAAAAAAAAAOlrdAQAAoP1USpUo5ArxRP8TsTCysGZ9rVyL0nQpRiujq5bnCrkY7xuPUxdOrSq+mByZjDMXzzScWWK3YgAAAAAAAAAAgINNgQUAALBlVwauRKVUicp4Zd1tOjOda5al0qkYnh2OqdGpSKVTcez4sSjPl6NnoCd6h3obtrNbMQAAAAAAAAAAwMGmwAIAANiyr8x/penYVDoVg/nBPRkDAAAAAAAAAAAcXIdb3QEAAAAAAAAAAAAAAIBWU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA6+j1R1oNyMjI5HL5aK/v39b7VSr1bh06VJERBw/fjzm5+djYGAghoaGkugmAAAAAAAAAAAAAACwBQosNqFUKsX09HTk8/koFouRy+W21V61Wo2+vr4oFAqRzWbry0dGRuLGjRsxNja23S4DAAAAAAAAAAAAAABbcLjVHdjrxsfHY3R0NCIiscKHXC4XQ0NDq4orIiLy+XyMj4/H9PR0IvsBAAAAAAAAAAAAAAA2R4HFAwwPD0ehUIjh4eHo6uradnsrs2GMjIw0XH/+/HkzWAAAAAAAAAAAAAAAwC5TYLHL8vl8RERkMpmG63t6emJ6ejqq1eou9goAAAAAAAAAAAAAAA42BRa7rFgsRjqdXnf9SuHFzMzMLvUIAAAAAAAAAAAAAADoaHUHDppSqRRdXV3rrl8pviiVShu2s7S0FHfv3k2yawfS3bt362N56NChVnen7RnPZBnPZBnPZBnPZBnPZBnPZC0tLbW6CweSfJ/7+V6jEecF63Fu0Ijzgkbk+q1x9+5duX4b8j3a3hy/9ub4tTfHr705fu1Lvtka7usnw3dPsoxnsoxnsoxnsoxnsoxnsoxnstzb3x0KLHZZuVyuz1LRyErxRbVa3bCdv/iLv4j/+l//a/3zQw89FB0dDudWLS0txX/7b/8tlpaW4vBhE7psl/FMlvFMlvFMlvFMlvFMlvFM1vvvv9/qLhxI8n3u53uNRpwXrMe5QSPOCxqR67fG9evXo7Ozs/5Zrt8efI+2N8evvTl+7c3xa2+OX/uqVCqt7sKB5L5+Mnz3JMt4Jst4Jst4Jst4Jst4Jst4Jsu9/d0hk99lDyqcWPGgvwCvvvrqqguxf/pP/2l85jOf2UbPDqbl5eW4detWRITKuAQYz2QZz2QZz2QZz2QZz2QZz2T96le/anUXDiT5PvfzvUYjzgvW49ygEecFjcj1W+Pb3/62XL8N+R5tb45fe3P82pvj194cv/b1t3/7t63uwoHkvn4yfPcky3gmy3gmy3gmy3gmy3gmy3gmy7393aHAok2de/hcdKY+fsvVw//Xw9Hx9u4eztz3cru6v51w586d+Iu/+It45plnvDkgAcYzWcYzWcYzWcYzWcYzWcYzWe+880784R/+Yau7ceC0Ot/fD7n+fuJ7jUacF6zHuUEjzgsakeu3xr/7d/8uPv3pT9c/HzlyJI4cOdLCHrEZO/k9WjhfSLS9Zu3n60D/DrY3x6+9OX7tzfFrXzdv3oyvfOUrre7GgfOtb30rfvu3f7v++SDn+tvJcZcPLcehE4ei472OOLTc/AOY+zm/3Qrf5ckynskynskynskynskynslyb393OFN3WTqd3tQsFsePH99w/bGHjsXfe+jvrV64tI2ONWE/XAiuTMl45MgRX9wJMJ7JMp7JMp7JMp7JMp7JMp7Jevjhh1vdhQOp1fn+fsj19xPfazTivGA9zg0acV7QiFy/Nf7+3//78Q/+wT9odTfYop38Hn1o6aFE22vWfr4O9O9ge3P82pvj194cv/b1W7/1W63uwoHU2dkp1/9/bCfHXTq0FIfjcBxeOhyHlw833c5+zm+3wnd5soxnsoxnsoxnsoxnsoxnstzb3x3NZ6I0paura8P15XI5Iu4VYgAAAAAAAAAAAAAAALtDgcUuy2Qy9SKKRlZmt8hkMrvUIwAAAAAAAAAAAAAAQIHFLstms/UiikZKpVJERPT39+9SjwAAAAAAAAAAAAAAAAUWu+zChQsREVEsFhuuv3HjhuIKAAAAAAAAAAAAAADYZQosdkC1Wo3R0dGYnp5esy6bzUZ/f3+89tprDWMnJiZidHR0p7sIAAAAAAAAAAAAAADcR4HFFpRKpYi4V0CxkfHx8bh8+XLkcrmG6wuFQkxMTKyZxWJkZCQuXrxoBgsAAAAAAAAAAAAAANhlHa3uwF43MTER+Xw+IiJmZmYiIuKll16qL8vlcjE8PLwqpr+/P9LpdJw/f75hm+l0OmZnZ2N0dDTS6XQcP3485ufnY2BgIIaGhnbw/wYAAAAAAAAAAAAAAGhEgcUDDA0NbbnoIZvNRqVS2XCbdDpdL9IAAAAAAAAAAAAAAABa63CrOwAAAAAAAAAAAAAAANBqCiwAAAAAAAAAAAAAAIADT4EFAAAAAAAAAAAAAABw4CmwAAAAAAAAAAAAAAAADjwFFgAAAAAAAAAAAAAAwIGnwAIAAAAAAAAAAAAAADjwFFgAAAAAAAAAAAAAAAAHngILAAAAAAAAAAAAAADgwFNgAQAAAAAAAAAAAAAAHHgKLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgdfR6g4AAAAAAAAArXN18GqruxDPTz7f6i4AAAAAAJjBAgAAAAAAAAAAAAAAQIEFAAAAAAAAAAAAAABw4HW0ugMAAAAAAAAAAMDumR2fjbnCXKTSqYiISGfSMTA20HDbWrUWb156MyIijh0/FuX5cvQM9ETvUO+67TcTAwAAsBcosAAAAAAAAABgT/rZ1Z/FzW/cjMPLh1vWh+cnn2/ZvgGSVqvW4j9+7j/GE/1PxAtTL9SXV0qVmBqdWlNkUavWYrxvPHKFXHRnu+vLJ0cm4+aNmw2LMpqJAQAA2CtadxcKAAAAAAAAAADYNSvFFZ8scvjByA+iOF5cs30hV4gnh55cVSgRETGYH4zieDFK06VEYgAAAPYKBRYAAAAAAAAAALDPXb98PSqlSsMZJFLpVJx8+uSqZZVSJUrTpXh65OmG7fWe743rY9e3HQMAALCXdLS6AwAAAAAAAAAAwM66dulaZIezDdflCrk1y2byMxER0ZnpbBjT1dMVxfFi1Kq1SKVTTccAAADsJQosAAAAAACANSqlSlwbuxYREbVyLWrVWmQGMnH24tmG28+Oz8ZcYS76Rvoi05+JVDoVlVIlFouL8fPXfh7PvvJsdGe718TVqrV489KbERFx7PixKM+Xo2egJ3qHetftWzMxwN52dfDqjrS7dGgpyt3luPmNm3F4+fADt39+8vkd6QcAtNrcxFzUqrU4deHUpmPeLb67YRHEShHFwsxCZPozTccAAADsJQosAACAXTE3MedhJwAAaBNzE3Nx88bNGMwPrlo+3jces/nZ+Mr8V9bE1Kq1KE2XojRdWrU8lU5FrpBbt7hivG98zfrJkcm4eeNmDIwNJBIDAAAH3c9f+3lERD2HXiwuxsLMQpx8+mTDXD3iXtH10a6j67a5UkhRKVW2FQMAALCXPPg1LQAAANtUq9aikCvE7Phs1Kq1VncHAADYQK1ai5+/9vOGhQqD3xmMSqkSkyOTDWPP5c/FmYtnoneoN7LD2TiXPxejldF130xbyBXiyaEn1zzQNZgfjOJ4cU2xRrMxAACwX9356E589KuP6n/+7m//ruF2i8XF+n9fv3w9bpdvR99wX0REXBm40jCPvl2+veFsFCuFFPff928mBgAAYC8xgwUAALBtkyOT8VTuqXUfmlp5E9UPRn4QPxj5wYZt5Qq5+kwXs+OzMVeYi76Rvsj0ZyKVTkWlVInF4mL8/LWfx7OvPLvuW3DfvPRmREQcO34syvPl6BnoMYMGAABswsLMQsxNzMXU6NSaIouV/Pvt6bcbxj51/qkNH6a6X6VUidJ0Kc7lzzVc33u+N66PXV91ndFMDAAA7GfXLl2LH339R/XPt+JWw+1WCh9mx2fj7MWz9eXd2e7IFXLxJ0/8SeQKuVW59GaLID58/8NtxQAAAOwlCiwAAICmrDzYNJufjcXiYjyVe2rDbTszndGd7Y5UV+OHrWrlWlRKlVVFELVqLUrTpTVvzkqlU5Er5NYtrhjvG1+zfnJkMm7euNnwLbwAAMDHjnYdjVQ6FceOH1t3m80WUWxkJj8TERGdmc6G67t6uqI4XoxatVbfXzMx7D1XB6+2ugsREfH85POt7gIAwLY9+8qz8cxXn6l/vnnzZnyz95trtlspfFiZQeJ+qXQqMv2Z+MHID+Ir81/Zuc4CAAC0AQUWAADAls2Oz0ZpqhSZgUz0j/XHlYErG25/88bNeGHqhXUfgoqImBqdiv6x/jXLz+XPRXm+HNVSNVJdqTjZd7I+bXkjhVwhnhx6ck3xxWB+MMY6x6JnoMfbbAEAYAPd2e4YrYw2XLdYXIyIiCf6n9j2ft4tvrthEcTK9cPCzEI9h28mBgAA9rOOIx3RceTjx39+61e/1XC7VDoVtWpt3Tw5M5CJuYm5WCwu1u+vr8Q8yP3F2c3EAAAA7CUKLGiaN0wBABxcfcN99SKHlQesHmSj4orF4mJ09XQ13Oap809t+s2zK7NqnMufa7i+93xvXB+77kErAABo0vTodHRmOh84M9xicTEWZhbi5NMnG848F3Evf2/09twVK9cBlVJlWzEAAMC9mSs2multJc9emFmo5/Ab5d4REbfLtyNi9Qx3zcQAAADsJQosAACAHff0yNMbrp/Jz8RgfnDb+5nJz0TE+sUcXT1dURwvbvgjEgAA7Ed3ProTdz+6W//8mw9+s6X4SqkS18auRTqTjhemXlh3u9J0KSqlSmT6M9E33BeLxcW4MnAlzo6eXVPofLt8e8NC7JUHs+5/+20zMQBb4QVjAOxX3dnuTRUi359Ld2Y6Y2Fm4YHb3p+jNxMDAACwlyiwAAAAdtxGP5RMjU498O23m/Vu8d0NCydW+rEws2AWCwAADpRrl67Fj77+o/rnW4dvbSpubmIubt64GdVSNdKZdPQM9Ky77Uq+ffbi2fqy7mx35Aq5GOsci+HZ4VWzWWy2COLD9z/cVgwAABBx8vTJmJuYW/cFRCszS9yfsz+efTxK06V121wp2Lj/fnszMQAAAHvJ4VZ3AAAAOLgWi4vR1dO1qdkkFouLMTs+G4vFxXW3qZQqG04/vrKfzbylCwAA9pNnX3k2vnbra/U/f/B//sGm4nqHemNgbCByhVwMjA3E9bHrUcgVGhY69A71Ru9Q75rlqXQqeod6o5ArbPv/AwAAaM5Krr5e8UN5vhwRESefPllfdurCqYiIde/LL9xY+zKjZmIAAAD2EgUWAABA3Z2P7sRHv/qo/uc3H/xmR/d37dK16Bvu23Cb0nQprl++HhFR3/bKwJWGPwLdLt/esFhjpfhis2+9BQCA/aLjSEcc+dSR+p+HH324qXZyhVzMTcxtuVji5OmTUSlVVhU7p9KpTeXmx44f21YMAABwb8a53qHeuHbpWsP1v5j4RZy5eGbVPfbubHdk+jPx1mtvNYyZm5iLs6NnVy1rJgYAAGAv6Wh1BwAAgL3j2qVr8aOv/6j++dbhWzu2r7mJuUhn0htu05npjIiIsxc//rGlO9sduUIuxjrHYnh2eNV05ZstnPjw/Q+33mEAAKA+G8XcxFyUpkubfvPsykNai8XFep6/0exzEfcKqO+PbTYGAAC4Z/A7gzHeNx6z47OrXn5UyBWiM9MZA2MDa2JyhVyM943HqQunVt2PnxyZjDMXzzS8JmgmBgAASM7s+GzMFebq98rTmXTDfD/i3rM2b156MyLuvbyoPF+OnoGehjNWbyemnSiwAAAA6p595dl45qvP1D+/88478c3f/eaO7OvapWsx+J3BDbdZ78Jr5aGuQq4QX5n/yk50DwAADqxatRa3y7frhRCftFIoPT81X38wanJkMt6efntL+XlnpjMWZhY27MfKdtuJAQAA7kmlUzE8OxxvXnqzPitdrVqL3lzvurNNr8RMjU5FKp3a1MNTzcQAAADbV6vW4j9+7j/GE/1PxAtTL9SXV0qVmBqdWlNkUavWYrxvPHKF3Jri6Js3bjYsymgmpt0osAAAAOo6jnREx5GPLxMefvThHdlPpVSJxeLiqgutrTp5+mTMTcxFpVSpPzyVSqc2NYvFsePHmt4vAADsd2OdYxERMVoZbTgTxEo+fX/uvTizWJ89opGVbe+/Bng8+3iUpkvrxlRKlYiIVW+3bSYGAAD4WCqd2vIDT6l0KgbzG78wKYkYAABge1aKKz6Z8/9g5AexMLOwZnkhV4gnh55c8/zOYH4wxjrHomegZ8399mZi2s3hVncAAAA4eGbyM9t+o+zKg16LxcX6sqNdRzeMWXngq9FDYgAAwD2pdCo6M53r5s3l+XJERJzsO1lf9kT/EzFaGV23zYUbC/V2V5y6cCoiVuf0n4z55I8wzcQAAAAAAMB+d/3y9aiUKg0LqlPpVJx8+uSqZZVSJUrTpXh65OmG7fWe743rY9e3HdOOFFgAAAC77u3ptx9YYDE5Mhnf6vnWltrtzHRu6q252y3uAACA/Sw7nF01dfgnzX1vLlLpVDx1/qn6slMXTsXs+GzD7SulSsxNzMXgd1a/vbY72x2Z/ky89dpbjfczMRdnR89uOwYAAAAAAPa7a5euRXY423BdrpBbc99/Jj8TEes/Q9PV0xWl6dKq2aybiWlHHa3uAAAAcPAsFhejd6h3421mFjdVLHH/lIOPZx+P0nRp3ZhKqRIR4Y22AACwgYGxgZgcmYynck81nPo7IuJLP/zSqhkuurPdUZouxfXL1+PsxY8LHCqlSoz3jceZi2caXgPkCrkY7xuPUxdOrcrtJ0cm48zFMw1z92ZioJGrg1c3td3SoaUod5fj5jduxuFl7y4DAAAAAPaWuYm5qFVr9VmgN+Pd4rvrzmQd8XERxcLMxzNHNxPTjhRYAAAAu2qxuBgREamu9S+4IiKe6H8ihseG112/cGMhUunUqqr4UxdOxY8v/zgWi4urHrS6P6adL+AAAGC3DOYHY25iLgq5QqS6UlEr16JWrcXj2cfjD9/+w4Y/oJy9eDZK06WYHJmsb59Kp+JLP/xSw/w84t605MOzwzE1OhWpdCqOHT8W5fly9Az0rFuU3UwMAAAAAADsVz9/7ecR8fFLSheLi7EwsxAnnz657v35SqkSR7uOrtvmyu8AKy8zbTamHSmwAAAAdtVGs1Lc79SFUzE7Pht9w31r1lVKlZibmItcIbdqeXe2OzL9mXjrtbcaXiDOTcytmfIQAABorHeod8sFC5n+zJaLmlPpVAzmB3c8BgAAAAAA2smdj+7E3Y/u1j//5oPfNNxu5WWnERHXL1+P7mx39A33xWJxMa4MXImzo2fX3Lu/Xb696qWmn7RSSFGr1rYV044UWAAAANuyUnW+2Yujle03mjIw4l6xRGm6FNcvX4+zF8+uih/vG48zF880fNgrV8jFeN94nLpwalWRxeTIZJy5eMYMFgAAAAAAAAAA7HnXLl2LH339R/XPtw7farjd7fLtSKVTMTs+u+oZm+5sd+QKufiTJ/4kcoXcqmdmNvucz4fvf7itmHakwAIAANiyuYm5mM3PRkTEwsxCRERMvjRZX9ab620480RExMmnT0YqnYpPn/70A/dz9uLZKE2XYnJkMmrlWtSqtUilU/GlH35p3SkMU+lUDM8Ox9ToVKTSqTh2/FiU58vRM9Cz5bfvAgAAAAAAAABAKzz7yrPxzFefqX9+55134pu/+801260UPqzMIHG/VDoVmf5M/GDkB/GV+a/sXGf3EQUWm1StVuPSpUsREXH8+PGYn5+PgYGBGBoa2labo6OjERFRLpcjImJgYCCGh4e332EAANhBvUO9TRcrdGe7Y7QyuuntM/2ZLc86kUqnYjA/uNWuAQAAAAAAAADAntBxpCM6jnz8uP/Djz7ccLtUOhW1am3d52syA5mYm5iLxeJi/YWmKzEPcuz4sTX72UpMO1JgsQnVajX6+vqiUChENputLx8ZGYkbN27E2NjYltssFouRy+Uin89Hf39/ffnAwEDMz8831SYAAAAAAAAAAAAAAAfH0a6jUavWIpVOrbs+ImJhZqFeYNFotov73S7fjohY1WYzMe3ocKs70A5yuVwMDQ2tKq6IiMjn8zE+Ph7T09NNt3l/ccVKm5cvX26qTQAAAAAAAAAAAAAADo6VookHuX/2ic5MZ70gYqNtOzOd24ppRwosHqBUKsX09HSMjIw0XH/+/PktzzZx+fLlKJVK8corr6xZl8lkor+/3wwWAAAAAAAAAAAAAABs6OTpkxGxuoDifitFEfcXYjyefXzd7SMiKqVKRERk+jPbimlHHa3uwF6Xz+cj4l7hQyM9PT0xPj4e1Wo10un0ptqcmpqKiFh3+2w2G5cvX95yXwEAAAAAADZydfBqq7sAAAAAAECCeod6Y3p0OkrTpegd6l2zvjxfjoiIk0+frC87deFU/Pjyj2OxuNhwBoyFGwtrCiWaiWlHZrB4gGKxuGHhxErhxczMzKbbnJmZ2bDNnp6e+r4BAAAAAAAAAAAAAKCRzkxn9A71xrVL1xqu/8XEL+LMxTORSqfqy7qz3ZHpz8Rbr73VMGZuYi7Ojp5dtayZmHZkBosHKJVK0dXVte76lUKJUqm06Ta7urqiXC4/cLuZmZnIZrObbhcAAAAAAACAZO2V2X+en3y+1V0AAAAA9qjB7wzGeN94zI7PRt9wX315IVeIzkxnDIwNrInJFXIx3jcepy6cWjUjxeTIZJy5eKbhbBTNxLQbBRYPUC6X67NUNLJSfFGtVjfdZjabjYmJiXXXz8/PP7DN23duxwd3Pqh/fvjww/HwQw9vug/7yZ07d7YVu7S0tK02+JjxTJbxTJbxTJbxTJbxTJbxTNbS0lKru3AgtTrf9/dnb/G9RiPOC9bj3KAR5wWNyPVbo1KpxLFjx+qfjxw5EkeOHNnVPiwdcuy3avnQcizHciwfWo6lMH7tpl2Pn3+377lz505bHr+d0m7nhTy0vTl+7csxa41bt26tetlqK3L9vWI71xxJ5W7+HtzjuzxZxjNZxjNZxjNZxjNZxjNZG93bT6VTMTw7HG9eejMKuUJERNSqtejN9a4quGgUMzU6Fal0Ko4dPxbl+XL0DPRE71BvYjHtRoHFA2y2cOL999/fdJsjIyMxMTERxWKx4QwV09PTD2xz9D+Prvr8+9nfj88//flN92E/uXat8XQ2m7G0tBTvvPNOREQcPnw4qS4dWMYzWcYzWcYzWcYzWcYzWcYzWVvJc0lOq/P97eTYJM/3Go04L1iPc4NGnBc0ItdvjX/yT/7Jqs//8l/+y3jxxRd3tQ/l7gfPsM1qy7Ect//e7ShHOQ7FoVZ3hy1q1+Pn2vyepaWltjx+O6Xdzgt5aHtz/NrX/Q/5s3s+85nPrPrcilx/r9jONUdSuVu7/Zu5U3yXJ8t4Jst4Jst4Jst4Jst4JutB9/ZT6VTDmSoeFDOYH9zxmHaiwKIF+vv7o7+/Py5duhSFQmHVuunp6ejv749isRjHjx9ft42x/2EsOlOd9c8PH344Hl48mDNYPPvss03HrlTEnTlzJjo6/HXYLuOZLOOZLOOZLOOZLOOZLOOZrJWLXHZXq/P97eTYJM/3Go04L1iPc4NGnBc0Itdvjf/yX/5LfPrTn65/bsVbbW9+4+au7m8/WD60HOUoR9e7XXFo2QPe7aZdj59r83vu3LkTb732Vtsdv53SbueFPLS9OX7t66//+q9b3YUD6S//8i/jH/7Df1j/fJBnsNjONUdSuVu7/Zu5U3yXJ8t4Jst4Jst4Jst4Jst4Jsu9/d3hTH2AdDq9qVksNiqGaGRqaipGRkZidHQ0XnnllYj4eOaKnp6e+r7Xc7TjaDza8ejqhctb6sK+sd0v3MOHD0dHR4cv7oQYz2QZz2QZz2QZz2QZz2QZz+R4e0BrtDrf93dn7/G9RiPOC9bj3KAR5wWfJNdvjc7Ozujq6mppHw4vO/ZbtRRLcSgOxaHlQ8avDbXr8fNv9sfa8fjtlHY8L+Sh7c3xa0+OV2s89thjLc/194rt/JudVO7m78HHfJcny3gmy3gmy3gmy3gmy3gmx7393eFMfYAHXfysTK24UTHEevL5fFSr1XphRX9/f6TT6bh8+XJERDz99NNbbhMAAAAAAAAAAAAAANg6BRYPkMlkYmZmZt31K7NbZDKZptpPp9MxNDS0atmNGzciIiKbzTbVJgAAAAAAAAAAAAAAsDXmCXmAbDZbL6JopFQqRcS92SeSUiwWY3h4OLH2AAAAAAAAAAAAAACAjSmweIALFy5ExL2ih0Zu3Lix5eKKYrEYnZ2dMT093XBdqVSK0dHRrXcWAAAAAAAAAAAAAABoigKLB8hms9Hf3x+vvfZaw/UTExMNiyGq1WqMjo42LKJYmfWikZdeeinGxsYik8k032kAAAAAAAAAAAAAAGBLFFhsQqFQiImJiTWzWIyMjMTFixcbzmAxPj4ely9fjlwut2Zdf39//c+KarUauVwu+vv74+LFi8n/TwAAAAAAAAAAAAAAAOvqaHUH2kE6nY7Z2dkYHR2NdDodx48fj/n5+RgYGIihoaGGMf39/ZFOp+P8+fMN2xsbG6sXX1Sr1YiIGB0dbVisAQAAAAAAAAAAAAAA7CwFFpuUTqcjn89vevtsNhuVSmXd9ZlMJgqFQhJdAwAAAAAA2sD//uL/HsePHm91NwCg7V0dvNrqLkRExPOTz7e6CwAAAEDCFFgAAAAAAAAA7CF75eHxVls6tBTR3epeAAAAAHCQHG51BwAAAAAAAAAAAAAAAFpNgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgafAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceB2t7gAAAAAAAAAAsLGrg1db3YV4fvL5VncBAAAAYEcpsKDtbedG4tKhpSh3l+PmN27G4eXmJ3RxIxEAAAAAAAAAAAAAoL01/0Q5AAAAAAAAAAAAAADAPqHAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA0+BBQAAAAAAAAAAAAAAcOApsAAAAAAAAAAAAAAAAA48BRYAAAAAAAAAAAAAAMCBp8ACAAAAAAAAAAAAAAA48Dpa3QEAAAAAAAAAAACad3Xwaqu7AAAA+4IZLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgdfR6g4AAAAAAAB7T6VUiWtj1yIiolauRa1ai8xAJs5ePLtuTK1aizcvvRkREceOH4vyfDl6Bnqid6i35TEAAAAAAAAPosACAAAAAABYZW5iLm7euBmD+cFVy8f7xmM2Pxtfmf/KmphatRbjfeORK+SiO9tdXz45Mhk3b9yMgbGBlsUAAAAAAABsxuFWdwAAAAAAANg7atVa/Py1nzcsVBj8zmBUSpWYHJlcs66QK8STQ0+uKnqIiBjMD0ZxvBil6VLLYgAAAAAAADZDgQUAALBtkyOTD3yIaXZ8Nq4MXIm5ibmoVWsREVEpVWJuYi4KuUIsFhcbxtWqtZganYqp0am4fvl6TI5MxtzE3Ib7aiYGAAC4Z2FmIeYm5mJqdGrNupWihren3161vFKqRGm6FE+PPN2wzd7zvXF97HpLYgAAAAAAADaro9UdAAAA2tPKg02z+dlYLC7GU7mnNty+Vq1Fabq0phAjlU5FrpBb8/bZlZjxvvE16ydHJuPmjZsN36jbTAwAAPCxo11HI5VOxbHjx9bdJpVOrfo8k5+JiIjOTGfD7bt6uqI4XoxatVaP3a0YAAAAAACAzTKDBQAAsGWz47MxPTodERH9Y/2bjjuXPxdnLp6J3qHeyA5n41z+XIxWRiPTn2m4fSFXiCeHnlxTfDGYH4zieLHhrBnNxAAAAB/rznbHaGU0zl48u2bdysxzT/Q/sWr5u8V3NyxoWCmIWJhZ2PUYAAAAAACAzTKDBQAAsGV9w33RN9wXER8/YLUZT51/atNvkV2ZIeNc/lzD9b3ne+P62PVVxRnNxAAAAJs3PTodnZnONTPDVUqVONp1dN24leuASqmy6zEAAAA7bfKlyfj7qb/f6m4AAAAJUGABAADsSTP5mYj4+A20n9TV0xXF8WLUqrX6Q1TNxAAAwEFw56M7cfeju/XPv/ngN1uKr5QqcW3sWqQz6Xhh6oU162+Xb6+bh0dEvSiiVq3tegwAAHDP7PhszBXmom+kLzL9mUilU1EpVWKxuBg/f+3n8ewrz66ZHTriXn795qU3IyLi2PFjUZ4vR89AT/QO9a67r2ZiAAAA9gIFFgAAwJ70bvHdDYsgVh6qWphZqM9I0UwMAAAcBNcuXYsfff1H9c+3Dt/aVNzcxFzcvHEzqqVqpDPp6BnoabjdZgsaPnz/w12PAQAA7qlVa1GaLkVpurRqeSqdilwht25xxXjf+Jr1kyOTcfPGzTWz2zUbAwAAsFcosAAAAHbdYnExFmYW4uTTJxv+YBNx7w25K2+fbWSlkKJSqmwrBgAADoJnX3k2nvnqM/XP77zzTnzzd7/5wLjeod5Vb5i9MnAlZvOzMfidQbPCAQBAGzqXPxfl+XJUS9VIdaXiZN/J6BvuW3f7Qq4QTw49ueZe/mB+MMY6x6JnoGfNC42aiQEAANgrFFgAAAB1dz66E3c/ulv//JsPfpNo+6XpUlRKlcj0Z6JvuC8Wi4txZeBKnB09u+bHlNvl2/UZJxpZKaS4/w22zcQAAMBB0HGkIzqOfPyTwMOPPtxUO7lCLsY6x6JWrcULUy/Ul6fSqU3l2ceOH9v1GAAA4GNPnX9q08XSlVIlStOlOJc/13B97/neuD52fdX9/WZiAAAA9hIFFgAAQN21S9fiR1//Uf3zrcO3Emt7pfDh7MWz9WXd2e76A1rDs8Or3mZiOP/jAADsLklEQVS12SKID9//cFsxAADA5qXSqegd6o25ibkoTZfqD0VtNJNcxL1i6JX4FbsVAwAANGcmPxMRse6Ljbp6uqI4XoxatVbPwZuJAQAA2EsOt7oDAADA3vHsK8/G1259rf7nD/7PP0is7d6h3ugd6l2zfOUBrUKukNi+AACA5tWqtaiUKuuuT2fSERExPzVfX9aZ6awXN6zX5sp2ux0DAAA0593iuxsWQazk3QszC9uKAQAA2EvarsDijTfeaHUXAABg3+o40hFHPnWk/ufhRx/elf2ePH0yKqXKqoe4UunUpmakOHb82LZiAACA1cY6x+JbPd9aN7deyafvX/949vENc/GVXH9lxovdjAEAANZaLC7G7PhsLBYX192mUqpsOIvcSiHF/ff2m4kBAADYS9quwGJgYKDVXQAAABK28oPK/T/kbPQDTETU31p7/5uwmokBAABWS6VT0ZnpXDdvLs+XIyLiZN/J+rJTF05FRKz7cNbCjYU1RQ+7FQMAAPvZnY/uxEe/+qj+5+/+9u823L40XYrrl69HRETfcF9ERFwZuBKl6dKabW+Xb294P33lnvz9RdDNxAAAAOwlHa3uwFY99thj8a/+1b+Kf//v/32ruwIAAGzS5MhkvD39dnxl/iubjunMdG44RfjKjy8r04k3GwMAJO/Xv/5107HvvfdevPzyyzE7Oxt9fX3x6quvxokTJ5pq65FHHmm6H3CQZYez8fTI0+uun/veXKTSqXjq/FP1Zd3Z7sj0Z+Kt196K7mz32piJuXhh6oVVy3YrBgAA9rNrl67Fj77+o/rnW3Fr3W1X7o2fvXi2vqw72x25Qi7GOsdieHZ4VZ692SKID9//cFsxAAAAe0nbFVhUq9XI5/MxPz8fY2Nj8ZnPfGbX9nvp0qWIiDh+/HjMz8/HwMBADA0NbavN0dHRiIgol++98ev06dNx8eLF7XcYAAD2kMWZxfrsEY2s/OBy/w83j2cfb/jGrBUr04ff/3baZmIAgOQ9+uijibQzNTUVPT09TccvLy8n0g84aAbGBmJyZDKeyj21Jncu5AoREfGlH35pzVtpc4VcjPeNx6kLp1bl9pMjk3Hm4pmGefhuxQAAwH717CvPxjNffab++ebNm/HN3m823LZ3qLfh8lQ6Fb1DvVHIFbb0oiQAAIBWKP2wFKWpUsShiK6erjj59Ml4/DOPJ9Z+2xVYRETk8/n43Oc+F9PT03Hp0qUYGBiI8+fPx6c+9akd2V+1Wo2+vr4oFAqRzWbry0dGRuLGjRsxNja25TaLxWLk8/kYGxuLdDpdXz4xMRF9fX0xOzubRNcBAGBPeKL/iRgeG153/cKNhUilU6tmljh14VT8+PKPY7G42PDNtAs3FtY8ONVMDAAAsNZgfjDmJuaikCtEqisVtXItatVaPJ59PP7w7T9cU1wRce+hrOHZ4ZganYpUOhXHjh+L8nw5egZ6NnyQazdiAABgv+o40hEdRz5+/Oe3fvVbTbVz8vTJmJuYi0qpUr9Xn0qnNjUjxbHjx+r/3UwMAADA/S4fvxwX319/woLM5zKR+Vwmardqcbt8O0rTpZjJz8TA2EAc+dSRbe+/7Qos8vl8fPnLX46IiJdeeileeuml+OlPfxoXL16MQ4cOxcjISOKzWuRyuRgaGlpVXLHSl87OzhgYGIj+/v4ttTk6OhpTU1Nrlg8NDUW5XI6RkZHI5/Pb6jcAAOwVpy6citnx2egb7luzrlKqxNzEXOQKuVXLu7PdkenPxFuvvdWwWGJuYi5emHph2zEAQPI++OCDpmO/8IUvxBtvvBF3796Nhx56KJ577rn4/ve/n2DvgM3qHerdcsFCKp2KwfzgnowBAADWt1JEvVhcrBdYHO06umHMyszV9xdgNxMDAABwv83OUp96LBWpx1LR91Jf1G7VYmp0Ks59+9y293942y3sspdeemnNss9+9rPx6quvxh//8R/HjRs34sKFC/Ef/sN/SGR/pVIppqenY2RkpOH68+fPb3kGi2KxGJnM+m/NPX/+fExPT2+pTQAAaJVKqRIRseEbqbqz3VGr1uL65etrYsf7xuPMxTMNH9zKFXLxi4lfxGJxcdXyyZHJOHPxTMPZKJqJAQCS9cgjjzT958qVKzEwMBDHjx+PgYGBuHLlStNtAQAAAPdMjkzGt3q+taWYzkxnvSCikZXfBe6fnbqZGAAAgPsdOnRoyzGpx5Ir4m67GSw28thjj62a1eLll1+OQ4cOxcsvvxz/9J/+06baXJlFYr2CiJ6enhgfH49qtRrpdHpTba4UbaynXC5vui0AAGiFuYm5mM3PRkTEwsxCRERMvjRZX9ab610zW8XZi2ejNF2KyZHJqJVrUavWIpVOxZd++KWGs01E3HuD1fDscEyNTkUqnYpjx49Feb4cPQM9675Jt5kYAGDvOHHiRLz++uut7gYAAADsK4szi5sqfLj/fv3j2cejNF1aN2blBUz3v9iomRgAAGD7ZsdnY64wF30jfZHpz0QqnYpKqRKLxcX4+Ws/j2dfebbh8zm1ai3evPRmRMSmn7FpJman1W7VYnFm8cEbbsK+KrC4X09PT/T09MSlS5difHw8MplMjI6Oxpe//OUttVMsFjcsdlgpvJiZmYn+/v5NtZnNZqNUKkUul4tCobBmfT6fjwsXLmypnwAAsJt6h3qbuijK9Ge2/KNJKp2KwfzgjscAAAAAAMB+9UT/EzE8Nrzu+oUbC5FKp1bNLHHqwqn48eUfx2JxseGDWAs3Ftbc828mBgAA2L5atRal6dKagudUOhW5Qm7d4orxvvE16ydHJuPmjZsxMDaQSEwj1V9WGy5fXl6+t/6vqhHLG7dRq9bidvl2LBYX49qla9F7PpkCj31XYPHGG2/E2NhYfYaI5eXlGB4ejpGRkYiI+qwWo6Oj8Tu/8zsPbK9UKkVXV9e661eKL0ql9avvPymTycTw8HCMj49HT09P5PP5enHG9PR0VKvVGBsb23R7AAAAAAAAAACwnlMXTsXs+Oya2acj7s0qMTcxF7lCbtXy7mx3ZPoz8dZrbzV8GGtuYi5emHph2zEAAEAyzuXPRXm+HNVSNVJdqTjZd7LhNcCKQq4QTw49uSZ3H8wPxljnWPQM9KwpkG4mppGF2YVYuLEQlVIlStOl+OjWR6vWfyvzrQe2sWJ5eTky/Zk49+1zm47ZSNsVWLzxxhvx3HPPrVr2q1/9KsbHxyOfz0epVLo3SP/PjBUvvfTSqm1fffXVuHXrVoyPj0e5XI5XXnklPvWpT627v3K5XJ+lopGV4otqtbql/498Ph89PT0xOjoaAwMDMTw8HD09PZHNZiOfzz8w/vad2/HBnQ/qnx8+/HA8/NDDW+oDEcuHlmM5lmP50HIsxVLT7dy5cyfBXrWvO3fuxNLSkvFIiPFMlvFMlvFMlvFMlvFM1tJS8zkSzWt1vu/vz97ie41GnBesx7lBI84LGpHrt8aHdz+MI3eO1D+7t98ekvotgdZw/Nqb47f3bCWn3Mk8dOnQ3jgf9nOO7Tqifa13zLqz3VGaLsX1y9fj7MWz9eWVUiXG+8bjzMUzDWeuzhVyMd43HqcunFrzdtozF880fHCqmZh21+r7+vuF53iS5bs8WcYzWcYzWcYzWcYzWcYzWQ+6t//U+acilU5tqq2VwoZz+cZFCb3ne+P62PVV+XszMevp/WJv9H7x42uQxeJiTI9OR+mHpTh06FA8+cUnN/X/0ZnpjMxAJjKfS+46o+0KLAYGBuLu3bsRca/YIp/Px8TERH06kJXZKj772c+u28Zjjz0Wf/RHfxS3bt2KL3/5y3H58uV1Z7PYbOHE+++/v6X/j4iIixcvRjqdjpGRkRgfH490Oh2FQmFTsaP/eXTV59/P/n58/unPb7kPB91yLMftv3c7ylGOQ3Go6XauXbuWYK/a19LSUrzzzjsREXH48OEW96b9Gc9kGc9kGc9kGc9kGc9kNZPnsn2tzvflt3uL7zUacV6wHucGjTgvaESu3xqtzvVpTlK/JdAajl97c/z2nq3cN9rJPLTcXU60vWbt5/toriPaV7m8/t+PsxfPRmm6FJMjk1Er16JWrUUqnYov/fBLDWebiIhIpVMxPDscU6NTkUqn4tjxY1GeL0fPQE/DgoxmY9qdXD8ZnuNJlu/yZBnPZBnPZBnPZBnPZBnPZCV5b38mPxMR9woUGunq6YrieLF+3dBszGZ1Z7vjhakXYnJkMn4x8YvIfS/34KAd0nYFFo899lj843/8jyMi1sxWcf78+Xjssce21Nb3vve9+IM/+IP49re/vVNdXtfo6Gj09PTE8vJyjI6OxuXLl+uzWTxoFoux/2EsOlMfn5wPH344Hl5U+b5Vy4eWoxzl6Hq3Kw4tN39h9uyzzybYq/a1UmF45syZ6Ohou6+XPcd4Jst4Jst4Jst4Jst4JmvlIpfd1ep8X367t/heoxHnBetxbtCI84JG5Pqt0epcn+Yk9VsCreH4tTfHb+/Zyn2jncxDb37jZqLtNWs/30dzHdG+/vqv/3rD9Zn+zJZnkEilUzGYH9zxmHYm10+G53iS5bs8WcYzWcYzWcYzWcYzWcYzWUne23+3+O6GRRArRRQLMwv1a4hmYrZqMD8Yi7OLTcUmpS3P1Pn5+YiIGBoaildeeWXD2So2Y6OijHQ6valZLI4fP76lfQ4MDMTo6Gj09/dHRMTY2FhcuHAhcrlcjI+PR7lc3nA2i6MdR+PRjkdXL1zeUheIiKVYikNxKA4tH4rDy81XxvnS/9jhw4ejo6PDmCTEeCbLeCbLeCbLeCbLeCbH2wNao9X5vr87e4/vNRpxXrAe5waNOC/4JLl+axx76Jh7+20oqd8SaA3Hr705fnvPVvPJncpD98r5sN/za9cR7cnxao1W39ffLzzHkzzf5ckynskynskynskynskynsnZ7L39xeJiLMwsxMmnT647W12lVImjXUfXbWOlkKJSqmwrphnPvtJcwez0K9PRf6l/W/uOiNgbdx22aGRkJCqVSnzve99rurji1q1b8corr8Qvf/nLuHXr1rrbdXV1bdjOytSK6XR60/u+fPlyZLPZenHFimw2G/Pz8zE8PBwTExMxPT296TYBAAAAAAAAAAAAANgf7nx0Jz761Uf1P7/54Dcbbl+aLsX1y9cjIqJvuC8iIq4MXInSdGnNtrfLtzecjWKlkKJWrW0rphm9X+xtKq44XtzWfle0ZSnQt7/97W238b3vfS/GxsZiYmIiRkdH190uk8nEzMzMuutXZrfIZDY/jUk+n4/Z2dkN18/MzMTU1NSaIgwAAAAAAAAAAAAAAPa3a5euxY++/qP651uH159UoDPTGRERZy+erS/rznZHrpCLsc6xGJ4dXjWbxWaLID58/8NtxWxX9ZfVTc2IsVhc3HZhx4q2K7A4f/58Yu3Mz8/H6dOn44tf/OK622Wz2Q1nkiiV7lX0bKUQolQqPXDGi5GRkQ2LMAAAAAAAAAAAAAAA2J+efeXZeOarz9Q/v/POO/HN3/1mw217hxrP+pBKp6J3qDcKuUJ8Zf4rO9LPnVD8D8WYHp1OrGhiK9quwOLVV1/dcP0Pf/jDmJqaikOHDkVPT088/fTT8ZnPfGbNdo899lj88R//8QP3d+HChbh8+XIUi8XIZrNr1t+4cWPLs0xkMpkolUobznoxPz8ffX19W2oXAAAAAAAAAAAAAID213GkIzqOfPy4/8OPPtxUOydPn4y5ibmolCr1mS5S6dSmiheOHT9W/+9mYppR+mEpJocnozPTGb253kilUw+MWZxdjLffeHtb+13RdgUWx48fj/fff3/d9Z/73Ofic5/7XNy6dSvK5XJMT09HPp+PsbGx+NSnPrXl/WWz2ejv74/XXnutYYHFxMRETE1NrVlerVbj0qVLMTAwsKYAY2hoKEZHR6NQKDTcZ7VajWKxGK+88sqW+wsAAAAAAAAAAAAAABFRL1BYLC7WCyyOdh3dMOZ2+faq2GZjmvHDr/0wcoVc9H6x8awc67l8/PK29rvicCKt7KLl5eVNbffYY4/FE088ES+99FL88R//cYyOjja9z0KhEBMTE1EsFlctHxkZiYsXLzacwWJ8fDwuX74cuVxuzbqxsbF6fLVaXbWuWCxGLpeLsbGxSKfTTfcZAAAAAAAAAAA4GGp3ak3/ee/X78W//j/+dbz0/30p/vX/8a/jvV+/13RbAADsvsmRyfhWz7e2FNOZ6awXRDSyMlPFSkFGszHNSHWmtlxcERGRfiK9rf2uaLsZLA4dOrTlmMcee2xb+0yn0zE7Oxujo6ORTqfj+PHjMT8/HwMDAzE0NNQwpr+/P9LpdJw/f77h+kKhENPT0/HSSy+tWp7JZBrOiAEAAAAA0Kzbt2/Hr3/96+jo2Pot4ffeey9efvnlmJ2djb6+vnj11VfjxIkTW27nkUce2XIMAAAAsDn/43/6HxNp562/eSv+5z//n5uO/9/O/W+J9AMAgM1bnFncVOFDd7a7vuzx7ONRmi6tG1MpVSIiItOf2VZMM+7v51YMzwxva78r2q7Aohm3bt2KmZmZbbWRTqcjn89vevtsNhuVSmXDbfr7+xvOfgEAAAAAkKTPf/7zibQzNTUVPT09TcVudnZiAABoF1cHr7a6Cztm6dBSlLvLcfMbN+Pw8uEHbv/85PO70CsAAAAaeaL/iRgeW7+4YOHGQqTSqVUzS5y6cCp+fPnHsVhcbFjQsHBjYU2hRDMxzVgpCGmVPVlg8ctf/rLh8pUf4P7qr/7qgT/GVavVKJfLUSwW49KlS+vOJAEAAAAAAAAAANDO/tff/1+bjv3GzDdi7v25WFpeisOHDkfv8d746tNfTbB3AADspFMXTsXs+Gz0DfetWVcpVWJuYi5yhdyq5d3Z7sj0Z+Kt195qWCwxNzEXL0y9sO2YZvTmeuMXf/qLePJfPLmluOlXpqP/0vYnP9iTBRazs7Nx48aNKJVKMT09Hbdu3Vq1PpPZfGXL8vJy9Pf3x7e//e2kuwkAAAAA0Bb+7M/+LM6cORMdHVu/JfyFL3wh3njjjbh792489NBD8dxzz8X3v//9HeglAAAA0KxUR6rp2P/ps/9TvPqXr8Z8dT560j3x8mde3lZ7AADsru5sd5SmS3H98vU4e/FsfXmlVInxvvE4c/FM9A71ronLFXIx3jcepy6cWlUwMTkyGWcunmk4G0UzMVuV+Vwmrv+b61susiiOF/dvgcUXv/jF+OIXv1j/XCwWY3R0NH74wx/GoUOHVq3bSCaTiYGBgfjc5z63U10FAAAAANjzjh49Go888khTBRZXrlyJF198MW7cuBGnT5+O7373u/HII4/sQC8BAACAVnjsyGMx+t+NtrobAABsw9mLZ6M0XYrJkcmolWtRq9YilU7Fl374pYazTUREpNKpGJ4djqnRqUilU3Hs+LEoz5ejZ6CnYUFGszFbVf1lNZ7KPRU/L/w8vnP6O/FE/xPR1dMVnZnOdWMWi4tRq9YS2f+eLLD4pGw2G1NTUzEyMhITExPxve99r9VdAgAAAAA4EE6cOBGvv/56q7sBAAAAAADABjL9mS3PIJFKp2IwP7jjMVuRz+bjo1sfRUTE8vJyLMwuxKFDh3Zsf5/UFgUWK/L5fMzOzra6GwAAAAAAAAAAAAAAQMKOdh2NiIinzj8VqXRqUzGLs4vx9htvJ7L/tiqwiIh45ZVXWt0FAAAAANizbt++Hb/+9a+jo2Nrt/7ee++9ePnll2N2djb6+vri1VdfjRMnTjTVh0ceeaSpOAAAAAAAAOBg68x0xrNfezayX85uKe7y8cuJ7L/tCiy++MUvtroLAAAAALBnff7zn992G1NTU9HT09N0/PLy8rb7AAAAAAAAABw8nZnO6Mx0bjku/UQ6kf0fTqSVNvCnf/qnre4CAAAAAAAAAAAAAACwjnOvnosnnntiy3HDM8OJ7L/tZrBo1ksvvRT/4l/8i1Z3AwAAAAB21J/92Z/FmTNnoqNja7f+vvCFL8Qbb7wRd+/ejYceeiiee+65+P73v79DvQQAAACA/e3Xv/51U3HvvfdevPzyyzE7Oxt9fX3x6quvxokTJ7bczp07d5raPwDAQbcnCyz+8i//Mj7zmc+su24ryuVylEqlqFar2+4XAAAAAOx1R48ejUceeWTLBRZXrlyJF198MW7cuBGnT5+O7373u/HII4/sUC8BAAAAYH979NFHt93G1NRU9PT0NB3/53/+59vuAwBAO6jdqkXxO8U487+c2XZbe67A4mtf+1r8m3/zb6Kvry9+8pOfrFn/3HPPxa1bt1rQMwAAAADYv06cOBGvv/56q7sBAAAAAAAAsCWVUiV+/trP92eBRalUiuXl5ahUKg3Xd3V1RUTE8PBwREQcP358w/bef//9mJ+fjz/90z9NtqMAAAAAAAAAAADQwAcffNBU3Be+8IV444034u7du/HQQw/Fc889F9///ve33M6dO3fipz/9aVN9AABopbffeHvLMdfHrketWktk/3uuwOI73/lODAwMRH9/f8P1mUwmvva1r8WXv/zlLbX7oEIMAAAAAAAAAAAASMIjjzzSVNyVK1fixRdfjBs3bsTp06fju9/9blNt3blzp6n9AwC02veGvhcf3fpoSzHLy8txtPNoIvvfcwUWjz32WLz00kvrrh8YGIinn356y+0+8cQT2+kWAAAAAAAAAAAA7KgTJ07E66+/3upuAAC0zNGue4UST51/KlLpVMNtatVaVEqVWJhZiEx/Jk6ePpnY/vdcgcWD/NEf/VFTcTMzMwn3BAAAAAAAAAAOjquDVze97dKhpSh3l+PmN27G4eXDO9grAAAAYD/pzHTGs197NrJfzm5q++v/5noc7Ty66e0fpO0KLCIi/vRP/zSy2Wz8zu/8Tqu7AgAAAECL/frXv2469r333ouXX345Zmdno6+vL1599dU4ceJEU2098sgjTfcDAAAAAAAAgHsFFp2Zzk1vf/aPzsbc/2cu3n7j7XjiuSe2vf+2K7B4+eWX4zvf+U50dnbG3/zN37S6OwAAAMAB1OoH+u/cudP0/vejRx99NJF2pqamoqenp+n45eXlRPoBAAAA7WYrs5vslOcnn291FwAAAEjAuVfPbTmm94u9Mf3K9MEssCiXy/G5z30ustlkpvAAAAAA2Kq98ED/n//5nyfSBwAAAAAAAADgnrYrsMhkMvHHf/zHre4GAAAAAHvEBx980HTsF77whXjjjTfi7t278dBDD8Vzzz0X3//+9xPsHQAAAAAAAAA7rVqqJtJO2xVYHD9+PH75y1/G7/zO72w57v3339+ZTgEAAAAHSqsf6L9z50789Kc/bboP+80jjzzSdOyVK1fixRdfjBs3bsTp06fju9/97rbaAwAAAAAAAGB31W7V4nbldiJttV2BxR/90R/F+fPn4+WXX47nnntu03HLy8s72CsAAADgIGn1A/137txpev+sduLEiXj99ddb3Q0AAAAAAAAAIuLtN97e9La1ai0qpUrM5mejb6Qvkf23XYFFRMT3vve9+Lf/9t9GPp+P06dPRzabja6urkin0w23n5qailu3bu1uJwEAAAAa8EA/AAAAAAAAADT2vaHvxUe3Ptr09svLy5Hpz8SZ/+XM/5+9/w9u677ze/8XKbkEJcUEyDulqJ25awL73a0heWMB1E0jKfc2FODNZMTOyCKkm2mVdWzxh+uZZOyNCKmd3plt70Sm7HqnuTM1AcVep9qxK4Gx/qAnzjeA6OZa8t4NAUi9kem2Gx4qbkVK/UYA6JVMaEIR3z84pEQTpIiDQwIgn48Zj8Vzzvtz3jqAwAPgvM7Hkv1XXMCiurpaVVVVkmYORn9/f4k7AgAAAAAAAAAAAAAAAAAAAAAAxaqtr5UkbT+0XTa7beltG2rV5GmSc5/Tsv1XXMDC6XTKMAy1t7ervr5+WTVDQ0O6cuXKyjaGde2dtndK3YIk6VsD3yp1CwAAAACAdebOnTuma2/evKnu7m4lEgl5vV719fWpsbGx4HE2b95sugcAAAAAAAAAAAAAQPlwOB3ae3yvPEc9Jdl/RQYsjh8/rqNHjxZU19DQsEIdAQAAAAAArF9btmyxZJxoNCqXy2WqNpfLWdIDAAAAAAAAAAAAAKC0HE6HHE5HyfZfkQELp7PwKTwcjtIdZAAAAAAAAAAAAAAAAAAAAAAAsLT9fftLuv+KC1j09fWZqvv1r39tcScAAAAAAAC4ffu26doDBw5ocHBQ9+7d04YNG9Ta2qrz589b2B0AAAAAAAAAAAAAAMtXcQELAAAAYDXcuXPHVN3NmzfV3d2tRCIhr9ervr4+NTY2mhpr8+bNpuoAAFhNxfy+OnPmjJ555hkNDQ1p165deuutt/j9BwAAAAAAAAAAAACYk7mWUTwU143kDU2mJlVbXyu7066WrhZtfXKr5ftbFwGLiYkJnT59Wt///vdL3QoAAAAqxJYtW4oeIxqNyuVyma7P5XJF9wAAQDlrbGzU+++/X+o2AAAAAAAAAAAAAABlKHYipo9OfZT3OqpkOCl3wK22cJtqHq2xbJ/rImBhGIbOnj1LwAIAAAAAAAAAAAAAAAAAAAAAgDKWncgq7A1rMjWpxw8+rm27tslmt82sy2Q1eWtS44lxfXzuYxkxQ98b/Z5qvmRNyKLiAhaDg4MF1/T29iqTyVjfDAAAANas27dvm6o7cOCABgcHde/ePW3YsEGtra06f/68xd0BAAAAAAAAAAAAAAAAwNoUCUTk9Dm1v2//kttlJ7KK9kT171v/vTqGOizZd8UFLNrb2zUxMVFQTS6Xk8PhWKGOAAAAsBZt3rzZVN2ZM2f0zDPPaGhoSLt27dJbb71leiwAAAAAKJXx5LjiobiyqazGk+Oy2W3ydnnl7fTm3T4RTmg4Mixvl1dOn1M2u01pI63x5Lg+Pvux9p7YqyZP04K6bCarD09+KEna1LBJqZGUXH6X3O3uRXszUwMAAAAAAAAAACpD4nRCDqfjoeEKSbLV2dQWatN73e8p+aOkPEc9Re+/4gIW9fX1kqRDhw7Jbrfn3SaTycgwDMXjcfl8Pu3atWsVOwQAAMB61tjYqPfff7/UbQAAAACAaYlwQpLUFmqbW2bEDEUCEV3qvaTOROfcNNyzspmsjJghI2bMW26z2xSIBBYNV4S94QXrB7oGdH3ouvy9fktqAAAAAAAAAABA5RiNjar9bHtBNfv79uuv/uSv1mfAwul06vjx4zp69Oiytn/llVfkcDiWvT0AAACAwg10DWh7YLucPueS25XzXXABAAAASGkjrWwmqz09e+Ytd/qc+vaFbyvsDSsSiOhI9MiC2v2h/UqNpJQxMrLV27TNu23Rc31pZnrvx9sfX3BO3xZqU6+jVy6/a8F7DDM1AAAAAAAAAACgctgctodvlIe92W7J/isyYOF0Lv/LkWPHjuknP/mJBgcH1drauoKdAUB5unPnjunamzdvqru7W4lEQl6vV319fWpsbDQ11ubNm033AQAoT2kjLSNmKBFKaDw5ru2B7UtuX853wQUAAAAwIx6K62snvpZ3XZOnSU6fU0bMUNpIy+F0zFu//dD2Bef0i5l9P7E/lH96b/chty71XpoXljBTAwAAAABYXdmprKm6ibsTeuNXb8j4O0POLzn13BPPqa6mzuLuAAAAUBGqVrnuCyouYNHX11dwzcGDB3XixAkCFgDWpS1btlgyTjQalcvlMl2fy+Us6QMAUB4S4YSMqCGn3ylfr09n/GeW3L7c74ILAADWpnK46QA3HEClGY2NKhlO6nuj38sbltjq2SojZmg8Ob4gYFGIeCguSYuOUe+qVzKcVDaTnevDTA0AAAAAYHU9+7Nnix7j6t2revGDF03Xf0ffKboHAAAAlE42ZS60mzEyluy/4gIWAAAAAErP2+mdCzmMJ8cfun053wUXAACsXeVw0wFuOIBKU1tfq/HkuNJGOu+McVa5kbyx5Hn+7PuCsfjY3Pm7mRoAAAAAAAAAAFBZ7M12fXL+Ez1+4PFl13z06kfaunOrJftfNwELwzBK3QIAlMTt27dN1x44cECDg4O6d++eNmzYoNbWVp0/f97C7gDMmpyc1J07d7RxY+GnZ1bdWVfi7rpYOeV8F1wAAACsL+Uws4lUvu+/jkSP5A0+z5q9+9NS4Yvx5LjG4mPa1rJt0e3SRlq19bWLjjF7vp420kXVAAAAAABW15vfeNNU3Wvx1zR8a1jTuWlVV1XL3eDWSy0vWdwdAAAAKoHvZZ9++Ac/lKRlhSwSpxO6ePKiem71WLL/dRGwmJiYUDrNFyoA1qdivqw/c+aMnnnmGQ0NDWnXrl166623yvbLf6DSffOb37RknGLurCtxd12snHK+Cy4AAFi7uOkA8imHmU2k1X//NXV3Svfu3pv7+Xe3f7fotkuFnof7h9Xkacq7zeysdE6fU95Or8aT4zrjP6M9wT0Lzr8nU5NL7mc2SJHN3J8G3EwNAAAAAGB12Taau8HVCztf0OtXXtfIZyNyPerS808+b3osAAAAVL7AuYDCLWG5nnLJ3e7WtpZtc9cEZTNZTaYmNRId0Sf9nyhtpNUR77Bs3xUXsBgcHFz2tplMRoZhKBQKqaurawW7AoC1qbGxUe+//36p2wAArAHlfBdcAACwdnHTAeC+iycv6hd//ou5nyeqJwoe49KpS5KkttNtC9bNnuvv6dkzt6zJ06RAJKBeR686E53zzuOXG4L4/NbnRdUAAAAAACpDXU2dev5hj1JNKdWP16s6V13qlgAAAFBCTZ4mdcY7NdAxoIHOAVVVVS3YJpfLyeF06J/+/J+qaad1N3ytuIBFe3u7JiaW/8VPLpeTz+fT97///RXsqnD9/f1qb28vdRsAAKBM/PSnP9Xu3bu1cWPhp2fcWRdWKuSutoUq17vgAgAA5MNNB9au9Tqzyd4Te/XVl7469/Onn36qv3jiL5ZdP54cVywYUyASyBt4dre789bZ7Da5292KBCL67sh3C28cAAAAAAAAAACsS02eJnUmOpUIJ5QIJTR+eXxuncPpkLfLqz3H9iwxgjkVF7Cor6+XJB06dEh2u33JbRsaGuTxeLRv375V6Gz5MpmMAoGAQqHQsv4eAABg7autrdXmzZtNBSy4sy6sZMVdbQtV6rvgAgAAYH1ZrzObbKzZqI01999zPrLlkYLqI4GI9of2LxqkWMq2Xds03D88b1Y7m922rPP3TQ2b5v5spgYAAAAAAAAAAFQ2b6dX3k7vqu2v4gIWTqdTx48f19GjR1d1v5lMRidPnpQ0E9wYGRmR3+83NQuFYRiSpK6uLnV1dS25bSQSYaYLAACwJO6sCysVe1fbQnEXXAAAAFSS9fr+KxKIyNtl/ssLm90maeb8fzZgMTu73GImU5Pzas3WAAAAAAAAAAAAFKIiAxZOp3NV95nJZOT1ehWJROTxeOaWd3V1aWhoSL29vQWNZxiGnE6nPB7P3IwcX5RKpWQYBuEKAAAArKpi72pbqHK4Cy4AAACAxUWDUW3btW3erHJfNNA1oNHYaEHhZ4fTobH42KLrZ8/rZ8/1zdYAAAAAAAAAAIDKNPyTYSXDSU2mJxU4F5D9Mfu89enRtGLBmH7vf/k97f7+bsv2W3EBi76+vlXfZyAQUHt7+7xwhSSFQiE5HA75/X75fL5ljzc0NKRoNLpkUCQYDBYc3AAAAAAqSbncBRcAAABAfolwQvWu+rzn7NlM9v45eXx87lw7n9ngw4Oz1m31bJURMxatSRtpSZLTd/9zdDM1AAAAAAAAAACg8sROxLStZZuuD13X3Ym7Gk+OLwhYOJodCpwLyLhgKHYiJt/J5V/Pv5RqS0ZZwwzDUCwWU1dXV971hw4dMhWEWCpckUwm5XK5Vn2mDgDA6rhz546p/wzD0FNPPaWGhgY99dRTMgzD9FgAUGrLvQvuD10/LGhch9OxrAu7uKMtAAAAsLTh/mFJyhuuSBvpeUGHZl+zgungomONDY3JZrfNOw/fcXiHpJnA9GI1XwxKmKkBAAAAAAAAAACVZXRwVA6nQ+6DbrWF27Tv5X16/OnHF93euc8pp8+pT979xJL9V9wMFvlcu3ZNyWRSqVRKTqdTTqdTjz32mCVjh0IhSYsHIlwul8LhsDKZjOx2+7LGXCys8eA+Z/cLAFh7tmzZUvQY0WhULpfLdH0ulyu6BysUE/a4efOmuru7lUgk5PV61dfXp8bGxoLH2bx5s+keAJhTbnfBBQAAADDfeHLmXHyx2eaMmDHvnHrH4R1KhBOLhjGG+4cViATmLW/yNMnpc+rq2avzzulnDfcP60j0SNE1AAAAAAAAAACgsnwc+Vj7X98vSXK3u5dV49zn1HvPv7dkEGO5KjpgMTg4qK6uLhnGwguovF6vTp8+rS9/+ctF7SOZTC4ZnJgNXsTjcfl8y5tWZKmZKYLBoKkZMQAAqERWhE2k4gIn5RI2AdaLh90Fdzw5PvfGqNnXrM7ezkXHWuwuuB+d+kjjyfG8F1xxR1sAAABgaWkjrUggomZfs8a6xhasz6ayMmLGvBkrmjxNMmKGLp26NG+WurSRVtgb1u6e3Xm/AAlEAgp7w9pxeMe88/eBrgHt7tmd99zdTA0AAAAAAAAAAKggJb6kr2IDFocPH1Z/f//cRZF2u1319fVzYYt4PC6Px6NgMKgf/OAHpvdjGIbq6+sXXT8bvsgX8ihUMpmUy+Va1kwYk1OTuj11e+7nR6of0SMbHim6h/UmV5VTTjnlqnKa1nSp2yna1NRUyfc/PT1d8j7WCo6ntcrpeGYyGVN17e3t+uCDD3Tv3j1t2LBBX//619Xf329qrGKPQzkdz2KVw99hLR3PcsDxtNb0tHXnSOV6F9xyVOrzff79lBde15APzwsshucG8uF5gXwWO9c/4z+jtJFWOpxetPbBkPOsPT17ZMQMDXQNKJvKzs1O9+0L3857bi5JNrtNnYlORYNR2ew2bWrYpNRISi6/a9E7UpmpKSef3/tcNVM1cz/z2X5lWGvfJaw3PH6VjcevsvH4VbZKfPx4zzOD41Aapf5cf62w6rWHfwcz+EzIWhxPa3E8rcXxtBbH01ocT2tZeR1POcums6bqMkbGkv1XZMDi+eefVyQSkcfjUW9vr1paWlRXVze3fmJiQtFoVCdPnlRvb68aGhr0Z3/2Z6b2lUqllpxxYjZ8YfZi2QedPHlSkUhkWdsG/2Nw3s/f8HxD32z5ZtE9rDc55TT5pUmllFKVqkrdTtEuXrxY0v1PT0/r008/lSRVV1eXtJe1gONprbVwPJ9//nl99tln+s//+T/rH/yDf6Dnn39ely9fNjXW5OSk6T7S6bT+zb/5N/ov/+W/6I/+6I/0Z3/2Z3I4Fl5YsRw//elPTffxL//lv9Tly5c1PT2t6upq7dy5U//6X//rgscp9WunVF7PT7PPjXQ6rddee03/9b/+V/3hH/6hXnrpJdPPi9raWlN1s8rpeK4Ft27deug2aWPmwqtsZvE3N+V+F9xyU+rz/XJ4bcR9vK4hH54XWAzPDeTD8wL5LHau/92R75oe0+lzFny+bbPb1BZqW/GaclHqc32Ys9a+S1hvePwqG49fZePxq2yV+PjxueaMVCpV6hbWJc71rWHVaw+vBzP4TMhaHE9rcTytxfG0FsfTWhxPay3nOp61IDVS+Pua7ERWn9/63JL9V1zA4sKFCwqFQurv79fTTz+dd5u6ujq1t7ervb1d4XBYzz//vNrb2/X7v//7Be9vucGJYp+w/f39SwY5vqj3H/XKYbt/0eIj1Y/okXGS74XKVeWUUkr1N+pVlauMD4WWsnfv3pLufzZhuHv3bm3cWHEvL2WH42mttXI8//E//seWjPPII9b8zkgmk/on/+SfmK7/3e9+Z7r2j//4j/Xcc88pHo+rpaVFb7zxhhobG02PV0rl9Py04rmRSCRK9ryQyut4rgWzb3K/aLh/WIlQQpI0Fp8JTAx0DMwtcwfc82aeKPe74JabUp/vl/q8EvPxuoZ8pqamNDk5qS9/+cumnhf/43/8D/2zf/bPlEgk5PV69e/+3b/T3//7f99UL5s3bzZVh5XBawby4XmBfBY718fKKvW5PsxZa98lrDc8fpWNx6+y8fhVtkp8/Phcc8Z//+//3VTdQNeA9gb35v2sXpq5ydKHJz+UpGV/7m6mplL9q6/9Kzlq5p/rb/xvD38PPnF3Qn/5//6lRidG1VzXrO/88XdUV1P30Lp8bBttpurKiVWvPbwezOAzIWtxPK3F8bQWx9NaHE9rcTyttV4+299+aLv6D/er/Wz7smv6D/Vrx/++w5L9V9wz9dSpU4pGo9q3b9+ytu/s7JQk9fT06OzZsyvZWlFOnjyp06dPL3v72o212rJxy/yFOYubWgemNa0qVakqV6XqXOUn48rhl091dbU2btxYFr2sBRxPa3E8y08xj8Xv/d7v6Wc/+5mF3ZQWz8/7rDgGHE/rLHb3AHe7u6AvQCrhLrjlpNTn+/zbKT+8riGf/fv3WzJOLBbTH/7hH5quz+X4QKLc8JqBfHhe4Iu4U1hpbNqwic/2K9Ba+y5hveHxq2w8fpWNx6+yVeLjx/udGWaOw3hyXMlwUi1dLXnXZzNZhb1hBSKBBTNHXx+6Ln+v35KaSvZ/fPh/FD3G1d9e1Z8N/pnp+rf3v110D6Vm1WsPrwf38ZmQtTie1uJ4WovjaS2Op7U4ntZZL5/t7+nZox/+wQ/V/7/3q+10m2q+VLPotjeu3NBAx4Cymax2f3+3JfuvuGdqLpdbdrhiVmdnp/r7+03tz263L2sWi4aGBlPjS5JhGEomk/J4PKbHAACgELdv3zZde+DAAQ0ODurevXvasGGDWltbdf78eQu7QymZfW7wvAAAAADwMHfu3DFde/PmTXV3d8/NvNPX12d6FkNm3gEAAACA+WLB2JLrI4GIHm9/fMHM0m2hNvU6euXyuxbcKMlMDQAAAADMOvLzI/rhH/xQw5FhOf0zN2e12W2qra/VZGpSqZGURmOjGk+OK5fLqSvZZdm+Ky5g4XSae3NlNrxQX1+/5PpUKiVpJohhVigUMv33AgDAjGIuJjlz5oz+9E//VH/913+tr371q/rxj3/MxSlriNnH8syZM3rmmWc0NDSkXbt26a233uJ5AQDACvvpT39qeipdwpEASmHLli0P32gZotGoXC6X6Xpm3gEAAACA+xLhhNwBt4yYkXd92kjLiBnaH8o/m6r7kFuXei/NC0uYqal0r/yjV9RgK/zmrK/FX9PwrWFN56ZVXVUtd4NbL7W8tAIdAgAAAJXF4XQomAoqEoho5OcjMqIL37Pkcjk5fU7tD+2Xo9lh2b4rLmBhVlVVlak6p9OpeDy+6PrZ2S2KCUjEYjECFgCAitHY2Kj33ntPFy9e1N69e5m6DZJmnhfvv/9+qdsAAGBdqa2t1ebNm02djxGOBAAAAAAAa807be+UugVJ0rcGvlXqFpYtbaQlzVy4tJh4KL7kNvWueiXDSWUzWdnsNtM1la5mY41sGwv/u7yw8wX1XenTSGZELrtL3U92mxoHAAAAWItsdpuORI/IuGBoODKssfjY3PsIh9Mhb5dXzn3WX4NfcVdEer1eXbt2TY899tiyayYmJpacieLEiRM6efJk3nUej0ex2OJTIRrGTBrG5/Mtu58vSiaTam9vN10PAAAAAMB6cefOHdO1N2/eVHd3txKJhLxer/r6+tTY2GhqrEoPIxCOBFAKt2/fNl3LzDsAAAAAYL14KC5/r3/R2Ssk6UbyxpIhiNkQxVh8bG5GCjM161VdTZ2CXwmWug2sYb9651e6/tp1VeeqS9pHJYXPAABA+XHuc65IkGIxFRew6OjoUHd3t06dOqVHH310WTUvv/zyogEKSQqHw4uuP3z4sE6dOqVkMimPx7Ng/dDQUNHhCklLBkAAAAAAAMCMLVu2WDJONBqVy+UyXZ/L5SzpA2tLOQSApqamTPcArLRiwmnMvAMAAAAA1hruH1ZLV8tDt0sbadXW1y66fjZIMTsbhtkaAAAAACgXFRewuHbtmgKBgAKBgLq7u9Xc3LzotoZhKBQKKRgM6sqVK3m3GRoaUiaTWXQMj8cjn8+ns2fP5g1Y9Pf3KxqNLlieyWR08uRJ+f3+JQMYqVRq0XUAzCuHi1r4kh8AAAAA1pdyCQB98MEHlvQBlBNm3gEAAABQKVb7u+qpu1O6d/fe3M/p//Hw0EI2k1XaSMvd7n7otpOpybkZJ/KZDVJkM9miagAAAACgXFRcwMLj8WhiYkK5XE6xWOyh2y93u6VEIhF5vV4dPnx4Xsiiq6tLPT09eQMU4XBYp06dUjgcVjq9+JtXw5iZZtFutxfVI4D5yuGiFu5oCwAAAFjv9u3bpmsPHDigwcFB3bt3Txs2bFBra6vOnz9vYXcAAAAAAABY78rhu+qH+fDkh/L3+pe17XJDEJ/f+ryoGgAAAAAoFxUXsKivr1cmk1F7e7vq6+uLHm9oaGjR2S1m2e12JRIJBYNB2e12NTQ0aGRkRH6/X+3t7XlrfD6f7Ha7Dh06tOTYLS0tstvt2rVrl9m/AgAAANaocpiR6fPP+XIDKAeTk5O6c+eONm4s/G28Va8HUnnM0lZMD2fOnNEzzzyjoaEh7dq1S2+99VZZ/J2wdpRDAGhqakqXL1823QcAAAAAAFjbjJghl39lghsAUM7eaXunqPrpqmmlmlK6/tp1VeeqTY/zrYFvFdUHAABYeRUXsHA6nTp+/LiOHj1q2ZgNDQ0P3cZutysUCi17TI/Hs+TMFYVuB6Aw5XBRCwAAxaqEu1wBWB3f/OY3LRmn2NeDSp+lrbGxUe+//36p28AaVg4BoKmpKdM9AAAAAACA4pX6u+rr16/rj/7ojxZdPxIdWfbsFZJks9uWNSPFpoZNRdUAAAAAWDkDXQPaG9wrh9ORd302k9WHJz+UNHOenhpJyeV3yd3uXnRMMzWVoiIDFk6n09IxHY78TxYAlascLmoBAAAAAGC5CAABAAAAALA2lPq76k2bFg8tXDp1SV878bWCxqutr11y/WRqUtJMqKKYGgAAAAArYzw5rmQ4qZaulrzrs5mswt6wApGAmjxNc8sHugZ0feh63oC2mZpKUnEBi76+PsvH/PWvf235mAAqFxe1AADKRanvciVJv/nNb7R9+3bTfQCwxk9/+lPt3r1bGzcW/jaeGdoAAAAAAACAyrCS31WnjbRsdlvBoQaH06Gx+Nii62dnqnjwTrhmagAAAACsjFgwtuT6SCCix9sfnxeUkKS2UJt6Hb1y+V1y+pxF11SSigtYAABg1uTkpO7cuWPqwsSbN2+qu7tbiURCXq9XfX19amxsNNUHM6IAWK5S3+VKWvpOVwBWT21trTZv3mzqPIYZ2gAAAAAAAACMJ8c1HBnWcGR4wbq0kZYkDXQMzM0+cSR6RJK01bNVRsxYdNzZ2gcvnjJTAwAAAMB6iXBC7oB70fPztJGWETO0P7Q/73r3Ibcu9V6ad+5upqbSELAAAKwb3/zmNy0ZJxqNyuVyma7P5XKW9AEAS2FGJgCzeD0AAAAAAAAA4G53y93uzrtuuH9YkUBEbafbFtyBdsfhHfro1EcaT44vWCdJY0NjCy6cMlMDAAAAwFqzwealZo6Lh+JLblPvqlcynFQ2k52bDc9MTaWpLnUDAAAAAAAAAAAAAAAAAMpPk6dJTp9TV89ezbt+uH9Ye4J7iq4BAAAAYK14KC5vp3fJbW4kbywZgpgNUYzFx4qqqTTMYAEAWDd++tOfavfu3dq4sfBffwcOHNDg4KDu3bunDRs2qLW1VefPn1+BLgEAAAAAa8mdO3dM1968eVPd3d1KJBLyer3q6+tTY2NjweNMTU2Z7gEAAAAAsPbN3tk2baTzzjgRiAQU9oa14/COeesHuga0u2d33tkozNQAAAAAsMZw/7Bauloeul3aSKu2vnbR9bNBitn3DGZrKg0BCwDAulFbW6vNmzebClicOXNGzzzzjIaGhrRr1y699dZb2rx58wp0CQAAAABYS7Zs2WLJONFoVC6Xy3T9Bx98YEkfAAAAAIC1Y6BrQBkjM3dn2YGOASVCCW31bJW/1z+3nc1uU2eiU9FgVDa7TZsaNik1kpLL75K73Z13bDM1AAAAAOabujule3fvzf38u9u/e2hNNpNV2kgv67x7MjU5N+NEPrNBimwmW1TNaomdiMl30lf0OAQsAABYhsbGRr3//vulbgMAAAAAAAAAAAAALNEWalv2tja7raDtzdYAAAAAuO/iyYv6xZ//Yu7nieqJh9Z8ePLDeYHppSw3BPH5rc+LqlktyXCSgAUAAADWnjt37piuvXnzprq6uvQ3f/M3+spXvqJQKKTGxkZTYzFLDQAAAKxw+/Zt07UHDhzQ4OCg7t27pw0bNqi1tVXnz58veJypqSldvnzZdB8AAAAAAAAAAABYfXtP7NVXX/rq3M+ffvqp/uKJv1h0eyNmyOU3PyN6OcpcyyhtpB+63Xhy3LJZMwhYAAAAoKxs2bLFknFisZhcLvNvGHK5nCV9AAAAYH0rJrh75swZPfPMMxoaGtKuXbv01ltvmRpvamrKdA8AAAAAAAAAAAAojY01G7Wx5v7l/o9seWTJ7UeiI8uevUKamXVuOaGETQ2biqoxI/mjpGLBmGWhiUIQsAAAAAAAAACAMtTY2Kj333+/1G0AAAAAAAAAAACgzF06dUlfO/G1gmpq62uXXD+ZmpQ0E6oopqZQxgVDA50DcjgdcgfcyxprPDGu0cFR0/t8EAELAAAAlJXbt2+brj1w4IAGBwd17949bdiwQa2trTp//ryF3QEAAAAAAAAAAAAAAABA+UgbadnstoJDDQ6nQ2PxsUXXz84e4XA6iqop1IXjFxSIBOQ+6C6o7lTDKdP7fBABCwAAAJSVzZs3m649c+aM/vRP/1R//dd/ra9+9av68Y9/XNR4AAAAAAAAAAAAAAAAAFDOxpPjGo4MazgyvGBd2khLkgY6BuZmnzgSPSJJ2urZKiNmLDrubK3T55xbZqamUDaHreBwhSTZm+2m9/mgNRewuHDhgqLRqKqqquRyudTS0qInn3yy1G0BAABgFTQ2Nuq9997TxYsXtXfvXm3cuOZOdwEAAAAAAAAAAAAAAABgjrvdLXd7/kDCcP+wIoGI2k63qcnTNG/djsM79NGpjzSeHF+wTpLGhsYWBCXM1BQq37jL0RnvLGq/s6otGWUVNTQ0LLl+3759evnll3X8+HHt27dPQ0NDev755/XZZ5+tUocAAAAAAAAAAAAAAAAAAAAAAJSvJk+TnD6nrp69mnf9cP+w9gT3FF1TqGwmW1R9sSrulr65XG5Z29XV1amurk4dHR2amJhQMBjU66+/vsLdAQAAAAAAAAAAAAAAYL16p+2dku7/1uStku4fAAAAQHlJG+m5/+ebGSIQCSjsDWvH4R3z1g90DWh3z+68s1GYqSmEO+DWJ+9+oseffrygutiJmHwnfUXtW6rAgEVVVVXBNXV1dSvQCQAAAAAAAAAAAAAAAAAAAAAA5WWga0AZI6Ox+NjMzx0DSoQS2urZKn+vf247m92mzkSnosGobHabNjVsUmokJZffJXe7O+/YZmoK4dzn1KVXLhUcskiGk+szYGHGxMSE4vF4qdsAAAAAAAAAAAAAAAAAAAAAAGBFtYXalr2tzW4raHuzNcuVuZbR9sB2fRz5WKd3nVazr1n1rno5nI5Fa8aT48pmspbsvywDFteuXcu7PJfLSZJ+85vfzP15MZlMRqlUSslkUidPntShQ4esbhMAAAAAAAAAAAAAAAAAAAAAAFgk5Anp7sRdSTP5gbHEmKqqqlZt/2UZsEgkEhoaGpJhGIrFYpqYmJi33ul0LnusXC4nn8+n119/3eo2AQAAAAAAAAAAAAAAAAAAAACARWrrayVJ2w9tl81uW1bNeGJco4Ojluy/LAMWBw8e1MGDB+d+TiaTCgaDunDhgqqqquatW4rT6ZTf79e+fftWqlUAwDLduXPHVN3NmzfV3d2tRCIhr9ervr4+NTY2FjzO1NSUqf0DAAAAAAAAAAAAAABUoru/u6vsVFbVueqCayfuTuiNX72h0YlRNdc167knnlNdTd0KdAkAADCfw+nQ3uN75TnqKajuVMMpS/ZflgGLL/J4PIpGo+rq6lJ/f7/OnTtX6pYAAAXasmVL0WNEo1G5XC7T9R988EHRPQAAAAAAAAAAAAAAAFSCY395zJJxrv72ql784EXT9d/RdyzpAwAArA8Op0MOp6PgOnuz3ZL9V0TAYlYoFFIikSh1G0DZMjtDgGTNLAHMEAAAAAAAAAAAAAAAAAAAAADArP19+03VdcY7Ldl/RQUsJOnEiROlbgEoW1bMECAVN0sAMwTcV2zgpaurS3/zN3+jr3zlKwqFQgUHXmZt3rzZdB9Wun37tqm6AwcOaHBwUPfu3dOGDRvU2tqq8+fPFzzO1NSULl++bKoHAAAAAAAAAAAAAACASvPKd16R44ZD1bnqgmtfi7+m4VvDms5Nq7qqWu4Gt15qeWkFugQAACgvFRewOHjwYKlbALCEyclJ3blzRxs3Fv7yYsUsGrPKIVRgVeAlFouZDrxIUi6Xs6SPYpl9TM6cOaNnnnlGQ0ND2rVrl9566y1TYzHDCgAAAAAAAAAAAAAAWE9qHqmRbaPNVMDihZ0vqO9Kn0YyI3LZXep+slu2jbYV6BIAAGBpmWsZxUNx3Uje0GRqUrX1tbI77WrpatHWJ7davr+KC1iY9e677+rpp58udRvAijI7Q4BkzSwBU1NTstvtpnt4UDGzaEjlEypA8RobG/X++++Xug0AAAAAAAAAAAAAAIB1o66mTsGvBEvdBgAAWOdiJ2L66NRHea8LToaTcgfcagu3qebRGsv2uW4CFh0dHQQssOYVM2uDFbMEMEPAfKUOvAAAAJj1Tts7pW5BkvStgW+VugUAAAAAAAAAAAAAAACssuxEVmFvWJOpST1+8HFt27VNNvvMbFrZTFaTtyY1nhjXx+c+lhEz9L3R76nmS9aELMoyYHHlyhU9+eSTi64rRCqVkmEYymQyRfcFrGVWzRLw05/+VLt379bGjYW/vKy1UEGxgZc//dM/1V//9V/rq1/9qn784x8XNR4AAAAAAAAAAAAAAAAAAABQCSKBiJw+p/b37V9yu+xEVtGeqP59679Xx1CHJfsuu4DF8ePH9corr8jr9eqXv/zlgvWtra2amJgoQWcAlqO2tlabN282FbCwYhaNtaKxsVHvvfeeLl68qL1795o6ngAAAAAAAAAAAAAAAAAAAEAlSZxOyOF0PDRcIUm2OpvaQm16r/s9JX+UlOeop+j9l90Vu4ZhKJfLKZ1O511fX18vSers7JQkNTQ0LDnerVu3NDIyonfffdfaRgFYzqpZNACgEHfu3DFde/PmTXV3dyuRSMjr9aqvr0+NjY0FjzM1NWW6BwAAVpPZ35tW/c6UipspDgAAAAAAAAAAAAAAlLfR2Kjaz7YXVLO/b7/+6k/+am0GLE6fPi2/3y+fz5d3vdPp1PHjx3X06NGCxn1YEAMAAKxPW7ZssWScaDQql8tluv6DDz6wpA8AgLUI4s1nxe/NYn9n5nK5onsAAAAAAAAAAAAAAADlyeawmaqzN9st2X/ZBSzq6urU0dGx6Hq/36+WlpaCx21ubi6mLQAAAADAOkQQDwAAAAAAAAAAoPJlp7KmayfuTuiNX70h4+8MOb/k1HNPPKe6mjoLuwMAAPNUrXLdF5RdwOJhjh07ZqouHo9b3AkAAFgLbt++bbr2wIEDGhwc1L1797Rhwwa1trbq/PnzBY8zNTWly5cvm+4DAIDVYvb3plW/MwEAAAAAAAAAAMx49mfPWjLO1btX9eIHL5qu/46+Y0kfAACsZdmUuWBkxshYsv+KC1gAAABYafPmzaZrz5w5o2eeeUZDQ0PatWuX3nrrLVPjTU1Nme4BALCyCOLNZ/b3plW/MwEAAAAAAAAAAAAAwNpmb7brk/Of6PEDjy+75qNXP9LWnVst2f+6CVicOHFCJ0+eLHUbAABgDWlsbNT7779f6jYAACuIIJ41+J0JAAAAAAAAAABK6c1vvGm69rX4axq+Nazp3LSqq6rlbnDrpZaXLOwOAAA8yPeyTz/8gx9K0rJCFonTCV08eVE9t3os2f+6CViEw2ECFgAAAACAVUOoAAAAAAAAAAAAoDzYNtpM176w8wW9fuV1jXw2ItejLj3/5PNFjQcAAB4ucC6gcEtYrqdccre7ta1lm2z2md+/2UxWk6lJjURH9En/J0obaXXEOyzbd0UHLK5duybDMB66XTKZVCaTWfmGAAAAAAAAAABYA8aT44qH4sqmshpPjstmt8nb5ZW307toTTaT1YcnP5QkbWrYpNRISi7/zBcfpa4BAAAAAAAwq66mTj3/sEepppTqx+tVnasudUsAAKx5TZ4mdcY7NdAxoIHOAVVVVS3YJpfLyeF06J/+/J+qaWeTZfuuyIDFj370IwWDQUITAAAAAAAAAABYLBFOSJLaQm1zy4yYoUggoku9l9SZ6Jy7S9SsbCarsDesQCSgJs/9LzEGugZ0fei6/L3+BftZrRoAAAAAAAAAAFB5mjxN6kx0KhFOKBFKaPzy+Nw6h9Mhb5dXe47tsXy/FRewuHDhgjo7O+V0OhUIBGS32x9ak0gkNDg4uPLNASX2Tts7Jd3/dNW0fu+l3ytpDwAAoDQGuga0PbBdTp9zye24oy0AAABQ3tJGWtlMVnt65n8h4fQ59e0L31bYG1YkENGR6JF56yOBiB5vf3xe6EGaCWn0Onrl8rsWvF9YrRoAAAAAAAAAAFC5vJ1Lz7BttYoLWBw/flyRSEQHDx4sqK6hoWGFOgIAAADWp7SRlhEzZhLiyXFtD2xfcnvuaAsAAACUv3gorq+d+FredU2eJjl9ThkxQ2kjLYfTIen+e4P9of1569yH3LrUe2le8GG1agAAAAAAAAAAAApRXeoGCuVwOAoOV0hSc3PzCnQDAAAArE+JcEKxYEyS5Ov1LatmqTvNJsNJGTGjZDUoT3fu3DH9n2EYeuqpp9TQ0KCnnnpKhmGYGgcAAGC9GY2N6t82/1tlM9m867d6tkqSxpP3p+GOh+KSNBe4+KJ6V72MmDFvzNWqAQAAAAAAAAAA68Mn735iyTgVN4OFx+MxVRePxy3uBAAAAFi/Hpx678ELqxbDHW1hxpYtWywZJxqNyuVymarN5XKW9AAAAFApautrNZ4cV9pILwgtL+ZG8oZsdtui62cDEWPxsblz8dWqAQAAAAAAAAAA68NAx4Aef/rxosepuIBFJpMp2X5PnjwpSWpoaNDIyIj8fr/a29uLHjscDisSichut0uSnE6nent7ix4XAAAAKBfLudNsMpxUNpOdu2BqtWoAAAAA3HckekRpI73oOXXGyEjSvPBF2kirtr520TFnz73TRnrVawAAAAAAAAAAQPm5ceWGtj65ddF1hZhMTSptpC2b4briAhaBQEDvvvuunn766YLqTpw4MReQKFQmk5HX61UkEpk3g0ZXV5eGhoZMhyEymYz27dsnn8+naDQ6t9wwDAWDQUIWAAAAWDO4oy3MuH37tunaAwcOaHBwUPfu3dOGDRvU2tqq8+fPW9gdAABAce7cuWOq7ubNm+ru7lYikZDX61VfX58aGxsfWjd1d0r37t6b+3ni/zex6LaLhSskabh/WE2epnnbTKYml6yZDUU8+MXGatUAAAAAAAAAAIDyEjse00evfKQmb5M6ftmxYP2PW3+suxN3S9DZjIoLWOzbt0+vvPJKwSGLcDhsOmARCATU3t4+L1whSaFQSA6HQ36/Xz6fr+BxZ8MVXwxSdHV1KR6PE7AAAADAmsEdbWHG5s2bTdeeOXNGzzzzjIaGhrRr1y699dZbRY0HAABgtS1bthQ9RjQalcvlsqCb5bl06pIkqe1027zlyw00fH7r81WvAQAAAAAAAAAA5SVtpJXL5ZRN5//cf/baH2+nd+bnhsWvBZKkyVuTSo+k9cm7n1jSX1kFLK5cubKs7fx+v6LRqHbt2iWfzyeXyyWnc/G7zyaTSWUyGVM9GYahWCymUCiUd/2hQ4fU29tbcMDi1KlTMgwjb4jCbrerpaXFVL8AAABAMb54V9vf3f6dJeNyR1ustsbGRr3//vulbgMAAGDNGE+OKxaMKRAJqMnTVOp2AAAAAAAAAABAhWo73San3ymnL//1/w6nQ3uP75XnqCfv+sWcajhlRXvlFbBobW3VxMTi05J/US6XUyKRUFVV1Yr1NBusWCzA4XK5FA6HlclkZLfblz3uyZMn1dnZmXddJBIpuE8AAADAChdPXtQv/vwXcz9PVC///Hwp3NEWAAAAmO/27dum6g4cOKDBwUHdu3dPGzZsUGtrq86fP1/wOL/5zW+0ffv2ZW8fCUS0P7Rf7nb3gnU2u21Z5+KbGjateg0AAAAAAAAAACgvtjqbvB3eRdc7/U5ta9lW8Lj2ZnsRXd1XVgGL+vp6STOzQhQSVniYRCKhwcFBU7XJZHLJXmaDF/F4fNmzWPT39yuTyejw4cOmegIAAABWyt4Te/XVl7469/Onn36qv3jiL0rYEQAAALA2bd682VTdmTNn9Mwzz2hoaEi7du3SW2+9ZWqsTZuWH0KIBCLydnnnpuL+otmZ4hYzmZqUNBOQWO0aAAAAAAAAAABQWfYc22OqrjOef/KDQpVVwMLpdOr48eM6evSo5WM3NDSYqjMMYy74kc9s+MIwjGWPefbsWUmSxzMzbUkymVQ8HldLS8vcsoeZnJrU7an7dzh7pPoRPbLhkWX3gBm5qpxyyilXldO0pkvdTsXLVeU0PT2tqampUreyJkxNTXE8LcTxtBbH01ocT2txPIu0QdqwacP9Hx/4czG4o21hON+fwb/jGbyuIR+eF1gMzw3kw/NibWloaNDAwMC8ZWYe2+np5X0eGg1GtW3XNu3pWfzLDIfTobH42KLrZ8/RHU7HqteUm8/vfa6aqZq5n9fruX6l4buEysbjV9l4/Cobj19l4/GrXLmqXKlbWJf4XN8aVr328BnIjKmpqbJ5LS+Hx2S6qrhjwPPTWnxmaS2Op7U4ntbieFpruZ/tozhlF7CYnRHCas3NzabqUqnUkj3Nhi8ymcyyx0wmk3N/PnXqlDwejzo7O5VMJuX3+xUMBh86G0bwPwbn/fwNzzf0zZZvLrsHzMgpp8kvTSqllKpUVep2Kl5OOU19OvNLsLq6usTdVL7p6Wl9+umnkjieVuB4WovjaS2Op7U4nta6deuWJeNwR9vCcL4/4+LFi6VuoSzwuoZ8eF5gMTw3kA/PC+SznHP9RDiheld93pkrspns3Hn1Vs9WGbHFb0KUNtKSJKfv/mftq1VTbjjXr0x8l1DZePwqG49fZePxq2w8fpXr7yb/rtQtrEuc61vDqtcevl+YMT09XTav5eXwmKSaUkXV8/y0Fp9ZWovjaS2Op7U4ntay6jqeSmdcMGREDalKqnfVa1vLNm19cqtl45dVwKKvr2/Fxo7H46bqlhucKOQJm0qlZLfbFQ6H1dPTM7fc4/EoEomoublZkUhkyZBF7z/qlcN2/y5cj1Q/okfGSb4XKleVU0op1d+oV1WOD4WKlavKadv/vE27d+/Wxo1l9fJSkWYTmxxPa3A8rcXxtBbH01ocT2vNvsktFne0LQzn+zP27t1b6hbKAq9ryIfnBRbDcwP58LxAPg871x/uH5akvOGKtJHWeHJc7na3JGnH4R366NRHGk+Oq8nTtGD7saGxBaGH1aopN5zrVya+S6hsPH6VjcevsvH4VTYevwo2WeoG1ifO9a1h1WsP3y/MmJqa0tWzV8vitbwcHpPrr10vqp7np7X4zNJaHE9rcTytxfG0llXX8ZS7Uw2n1HOrZ9H1zn1OOfc5lZ3IajI1KSNmKB6Ky9/rV82jNYvWLRfP1BKYDW3Mzn7xILvdLp/Pp66uLo2MjCw6Ru3GWm3ZuGX+QmZ5LNi0plWlKlXlqlSdIxlXrGlNq7q6Whs3buQXoUU4ntbieFqL42ktjqe1OJ7WseruAdzRtjCc78/g3/B9vK4hH54XWAzPDeTD8wJftNS5/nhyXJOpybzhCkkyYsa8c+omT5OcPqeunr2aN/gw3D+sI9Ej85atVk252bRhE+f6FYjvEiobj19l4/GrbDx+lY3Hr3KV+iLq9YrP9a1h1WsPn3/cVy6v5eXwmBR7DHh+Wo/PLK3F8bQWx9NaHE/rrJdZQHK55Z1M2+psstXZ5O3wKjuRVTQY1f7X9xe9//VxlItgt9uXNYtFQ0NDQWNKWnSGCr/fL8MwlEwmlz0mAAAAUM52HN4haeZCrXwWuzvtatQAAAAAuC9tpBUJRDSWGNNA18CC/yKBiGLB2IJZ4QKRgD7p/2TBufhA14B29+zOex6+WjUAAAAAAAAAAKByVFUVHhy31dks2z9RoIfIN8vEg1KplKT7oYnljpnJZBatmd1nPB6Xx+NZ9rgAAABAueKOtgAAAEBlOOM/o7SRVjqcXnSbL4YrJMlmt6kz0aloMCqb3aZNDZuUGknJ5XfJ3e7OO85q1QAAAAAAAAAAgLUtO5HVeDz/DVkLRcDiIZxOp+Lx+KLrZ2e3cDqXf1csj8cjwzAeut1yZs4AAAAASi1tzFx4lc1kl9wuEAko7A1rx+Ed88IPD7s77WrUAAAAAJjx3ZHvmq612W1qC7WVZQ0AAAAAAAAAACgfmWuZvMtzudzM+t9kpNzSY2QzWU2mJjWeHNfFkxflPmTNjZgIWDyEx+NRLBZbdP1sUMLn8y17zF27dqm/v3/RWSxmZ8Vg9goAAACUq+H+YSVCCUnSWHxMkjTQMTC3zB1wy9vpnVfDHW0BAAAAAAAAAACw0t5pe6fULZSF6appaeGE7wAAAGVhLDGmsaExpY20jJihuxN3563/ofOHyx4rl8vJ6XNq/+v7LemNgMVDHD58WKdOnVIymcwbeBgaGiooXCFJ7e3tCgaDisViam9vX7B+ZGREktTS0mKuaay67NTSd2teysTdCb3xqzc0OjGq5rpmPffEc6qrqTM1lm2jzXQfAAAAhXC3u02FFbijLQAAAAAAAAAAAAAAALC+uQ+65T54/9qj8eS4YsGYjAuGqqqq9PjBx5c1jsPpkNPvlHOf07LeCFg8hMfjkc/n09mzZ/MGLPr7+xWNRhcsz2QyOnnypPx+/4IAhtPpVHt7u06ePJk3YNHf36+enp68s1ugPD37s2ctGefqb6/qxQ9eNF3/9v63LekDAAAAAAAAAAAAAAAAAAAAAFZDk6dJR6JHNNA1oE/6P1HgXKBkvVSXbM8VJBKJqL+/X8lkct7yrq4u9fT05J3BIhwO69SpUwoE8j+4p0+fViaTUTgcnrc8EAjI6XSqt7fXur8AAAAAAAAAAAAAAAAAAAAAAABlrC3UJnuzvaQ9MIPFMtjtdiUSCQWDQdntdjU0NGhkZER+vz/vDBSS5PP5ZLfbdejQoSXHPHny5FwII5PJKBAIqLOzc8X+LlgZb37jTdO1r8Vf0/CtYU3nplVdVS13g1svtbxkYXcAAAAAAAAAAAAAAAAAAAAAUP72nthb0v0TsFgmu92uUCi07O09Ho/S6fRDx2SmirXBttFmuvaFnS+o70qfRjIjctld6n6yu6jxAAAAAAAAAAAAAAAAgPUqO5U1XTtxd0Jv/OoNjU6MqrmuWc898ZzqaupMjcX1PwAAAOa4D7pLuv81EbD47LPPlEql9Nhjj5W6FaBgdTV1Cn4lWOo2AAAAAAAAAAAAAAAAgIr37M+etWScq7+9qhc/eNF0/dv737akj7XgnbZ3St0CAABY47ITWSVPJ7X7+7uLHqtiAxbXrl1Tb2+vwuGwJKmqqkpTU1Nz60dHRxUMBvXUU0/p6NGjpWoTAAAAAAAAAAAAAAAAK4w71gMAsHx37twxVXfz5k11d3crkUjI6/Wqr69PjY2NBY/z4LWeAABYIW2k9fHZj9dvwGJwcFA+n0+S5HQ65XQ6NTo6Om+b5uZmnTt3ThcuXNCrr76q73//+6VoFQAAAAAAAAAAAAAAACuMO9YDmPXmN940Xfta/DUN3xrWdG5a1VXVcje49VLLSxZ2B5SHLVu2FD1GNBqVy+UyXf/BBx8U3QMAYG0aHRx9+EZfcKn3krIZ88H7B1VcwGJ0dFTt7e3q7OxUMBhUc3OzJOn48eN5t9+3b58ymYwGBwfV2tq6mq0CAAAAAAAAAAAAAAAAAFZRMTPJvLDzBfVd6dNIZkQuu0vdT3YzMw0AAMAqO9d+Tncn7hZUk8vlVOuotWT/FRewOH78uHp7e9XR0TFveVVV1aI1Bw8e1PPPP0/AAgAAAAAAAAAAAAAAYA3ijvUArFBXU6fgV4KlbgNYcbdv3zZVd+DAAQ0ODurevXvasGGDWltbdf78+YLHmZqa0uXLl031AABY+2rrZ4IS2w9tl82eP+yazWSVNtIai4/J6XNq265tlu2/4gIW6XR6QbhiOXK53Ap0AwAAAAAAAAAAAAAAgFLjjvXLlzbSuth7UZKUTWWVzWTl9Du1p2fPojXZTFYfnvxQkrSpYZNSIym5/C65292W1gAAVsfmzZtN1Z05c0bPPPOMhoaGtGvXLr311lumxpqamjK1fwDA+uBwOrT3+F55jnqWtf2lVy6p1lG77O0fpuICFk6n01RdOp22uBMAAAAAAAAAAAAAAABUuvV0x/rh/mFdH7qutlDbvOVhb1iJUELfHfnugppsJquwN6xAJKAmT9Pc8oGuAV0fui5/r9+SGgBA+WtsbNT7779f6jYAAGucw+mQw+lY9vZ7ju3R8E+GNTo4qubW5qL3X130CKvMbFDCMAyLOwEAAAAAAAAAAAAAAAAqQzaT1cdnP84bbmg73aa0kdZA18CCdZFARI+3Pz4vKCFJbaE2JcNJGbGF1+SYqQEAAAAASdrft7/goIT7oFsj0RFL9l9xAQuHw6EPPvigoJoTJ05o3759K9QRAAAAAAAAAAAAAAArKzuVNf3fzTs39YP/5wfq+P926Af/zw90885NU+MAqGxj8TEN9w8rGowuWDcbhBiNjc5bnjbSMmKGWrpa8o7pPuTWpd5LRdcAAAAAQLnYWOoGCtXT06OnnnpKp0+f1te//vWHbv/qq6+qv79ff/u3f7sK3QEAAAAAAAAAAAAAYL1nf/asJeNc/e1VvfjBi6Zq397/tiU9ACiN2vpa2ew2bWrYtOg2Nrtt3s/xUFyS5HA68m5f76pXMpxUNpOdqzVTAwAAAADFyhgZS8apuICF0+lUX1+f9u3bp5aWFh0+fFg7d+5UJpPRtWvXlMlklEqllEwmFQqFZBiGEolEqdsGAAAAAAAAAAAAAAAASqbJ06RgOph33XhyXJLU7Guet/xG8saSIYjZEMVYfExOn9N0DQAAAAAUIzuR1WR60pKxKi5gIUk+n0/nzp1TZ2enenp65paHw+G5P+dyOTmdTsXjcT355JMl6BIAAAAAAAAAAAAAAGu8+Y03Tde+Fn9Nw7eGNZ2bVnVVtdwNbr3U8pKF3QGodLFgTA6nQ/5e/7zlaSOt2vraRetmgxRpI11UDQAAAADMGh0cXfa22UxWaSOtRCghb5fXkv1XZMBCktrb29Xe3q5Tp07p7Nmzunz58tw6p9Oprq4uHTt2rIQdYrVkp7Km6ibuTuiNX70h4+8MOb/k1HNPPKe6mjpTY9k2MmUlAAAAAAAAAAAAgJVTzHeSL+x8QX1X+jSSGZHL7lL3k918xwmsEdP3ppWbzt3/eWq6oPq0kdbF3ouyO+06Ej2yYP1kanJuxol8ZoMU2cz9azfM1AAA1p/JyUnduXNHGzcWfhnrzZs31d3drUQiIa/Xq76+PjU2NprqY/PmzabqAAAr51z7Od2duLvs7XO5nJw+p3Z/f7cl+6/YgMWsnp6eebNYYP159mfPFj3G1btX9eIHL5quf3v/20X3AAAAAAAAAAAAAAAroa6mTsGvBEvdBoAVkPp1Sqm/Tc39PKGJZdUN9w/r+tB1ZYyM7E67XH5X3u2WG4L4/NbnRdUAANafb37zm5aME41G5XLl/z22HLlc7uEbAUAFmQ1RS1I2lVU2k5XT79Senj2L1mQzWX148kNJ0qaGTUqNpOTyu+Rud1tas1yzoezth7bPzYC36LYNtWryNMm5z1n0fmdVXMDiypUrMgxDTz/9dKlbAQAAAAAAAAAAAAAAAEqm/g/q580WkcqmpF88vM7d7p534dMZ/xklQgm1nW576AVMAAAAAMrTbJC6LdQ2b3nYG1YilNB3R767oCabySrsDSsQCajJ0zS3fKBrQNeHrsvf67ekphAOp0N7j++V56inqHHMqriARXt7u6qqqkwFLF599VWdPHlSmUxGdrtdP/rRj3TgwIEV6BKr6c1vvGmq7rX4axq+Nazp3LSqq6rlbnDrpZaXLO4OAAAAAAAAAAAAAABgZVRvqJY2PPDzVLWpcQKRgHodvcpmsjoSPTK33Ga3LWtGik0Nm4qqAbC2ZaeWN7NNPhN3J/TGr97Q6MSomuua9dwTz6mupq7gcWwbCY+Vm5/+9KfavXu3Nm4s/DLWAwcOaHBwUPfu3dOGDRvU2tqq8+fPr0CXAFA5spmsPj77sQKRwIJ1bafbFPaGNdA1sCB8EQlE9Hj74/OCEpLUFmpTr6NXLr9LTp+z6JpCOJyOeUHy1VZxAYuuri4dO3as4LpDhw7pJz/5iTo6OuT3+/XLX/5SR48eld1u19e//vUV6BSrxezJ7ws7X9DrV17XyGcjcj3q0vNPPs+JNAAAAAAAAAAAAAAABeLC2cpns9vkbndruH9YRsyYuxiqtr52ybrJ1ORc/SwzNQDWtmd/9qwl41z97VW9+MGLpmrf3v+2JT3AOrW1tdq8ebOpgMWZM2f0zDPPaGhoSLt27dJbb72lzZs3r0CXAFA5xuJjGu4fVjQYXTCDxGwQYjQ2Om952kjLiBnaH9qfd0z3Ibcu9V6aF5YwU1Oo/X35x14tFRewSKVSBddcvnxZ/f396urq0uuvvy5JOnjwoA4fPqzDhw/rb//2b61uExWgrqZOPf+wR6mmlOrH61WdM3cXBwAAAAAAAAAAAAAA1jMunK0M2UxWk6nJRe8Ea3faJUkj0ZG5i6EcTofG4mNLjjm73SwzNQAAFKKxsVHvv/9+qdsAgLJSW18rm9225ExxXww5x0NxSYufm9e76pUMJ5XNZOdqzdRUmooLWLS0tGhwcFCS1Nvbq3g8rkwmI7/fr2AwmHc2irNnz6qqqkq9vb3zlns8HnV2durdd9/V008/vSr9AwAAAAAAAAAAAAAAWGGlZo6YrprW3d/dVXYqy80K15Bex8x1M8F0MO+FTrMXYs0GICRpq2erjJix6JhpIy1J8+5Oa6YGwNr25jfeNF37Wvw1Dd8a1nRuWtVV1XI3uPVSy0sWdgcAwNrQ5GlSMB3Mu248OS5JavY1z1t+I3ljyRDEbIhiLD42d/5upsYKmWsZjSfH50LjDqdD9sfslo3/oIoLWBw8eFBPPfWULly4oFwuN7f85z//uaLRqILBoH7wgx/Mq4nFYvJ4PHr00UcXjHfs2DEdPnyYgAUAAAAAAAAAAAAAAKgo5TBzhMSFs5XCZrfN3dU2n9RISpK0zbttbtmOwzv00amPNJ4cV5OnaUHN2NDCi6bM1ABY22wbzd+9+oWdL6jvSp9GMiNy2V3qfrK7qPEAAFiPYsGYHE6H/L3+ecvTRlq19bWL1s2+d5gNSZutKcbo4Kje63ov73hN3ia1nW7T1i9vtWRfsyouYDExMaF4PD4XjNi5c6ckaXR0VNFoVMePH5ff7583k4VhGDp8+PCiYzocTDkIAAAAAAAAAAAAAABgBhfOVgZPp0ctXS2Lrh8+Nyyb3abth7bPLWvyNMnpc+rq2at5wxLD/cM6Ej0yb5mZGgBYTF1NnYJfyX83bgAA1rqpu1O6d/fe3M+/u/27gurTRloXey/K7rTnPQefnQ1iMbNBigdnuTNTY1b/4X4N9w/PTcowu9/J1KSymazG4mMKe8LaE9yjfT/YV/T+ZlVcwOLll1/WhQsX5oIVs5qbm9XZ2alDhw6pq6trXsAik8nIbrcvOmZVVdVKtQsAAAAAAAAAAAAAALAiVmrmiOmqaaW3puW44VB1rtqqdvPiwtnV4+/1a6BrQNsD2xfMIBEJRCRJ377w7QUzXAQiAYW9Ye04vGNeYGKga0C7e3bnnY3CTA0AAACA+S6evKhf/Pkv5n6eqJ5YVt1w/7CuD11XxsjI7rTL5Xfl3W65IYjPb31eVI0ZseMxjURHtO/lfXK3u+VoXhjqGL88rqv/4aouvnxRtQ212v1nu4va56yKC1ik0+kF4YoH2e12ZqQAAAAAAAAAAAAAAABr3krNHDFdNa2aR2pk22hb8YAFVldbqE3D/cOKBCKy1duUTWWVzWS11bNV3xv93oJwhSTZ7DZ1JjoVDUZls9u0qWGTUiMpufwuudvdefdjpgYAAADAfHtP7NVXX/rq3M+ffvqp/uKJv3honbvdPe+8+4z/jBKhhNpOt+U95y83xgVDRsyYeY9St3i/TTub1LSzSS1dLTrz1Bm5292y/7696P1XXMBiOeEJZqQAAAAAAAAAAAAAAABYHDNHrF9fvNhqOWx2m9pCbSteAwAAAOC+jTUbtbHm/uX+j2x5xNQ4gUhAvY5eZTNZHYkemVtus9uWNSPFpoZNRdUUKhlOzsyut0S44kEOp0OBcwHFemJqP9tuer+zKi5gkcvl9J/+03/Sl7/85bzrP/vsM926daugMQvdHgAAAAAAAAAAAAAAlEZ26uEXcixm4u6E3vjVGxqdGFVzXbOee+I51dXUmRqrmNkjAAAAAABYLTa7Te52t4b7h2XEDDl9TklSbX3tknWTqcm5+llmagqVy+WWHa6Y1eRpUi6XM73PB1VcwKKzs1MtLS36F//iX+jgwYN67LHHJM0EK86dO6dgMKhIJDK3/eXLlyVJhmHkHe/dd9/Vrl27VrxvAAAAAAAAAAAAAABQvGd/9qwl41z97VW9+MGLpuvf3v+2JX0AAAAAAFCsbCarydSkHE5H3vV2p12SNBIdmQtYOJwOjcXHlhxzdrtZZmoKZba2mH0+qOICFk6nUy+//LK6u7vV09OzYP3OnTuVTCZVX1+voaEh9fb2yuPxSJJ+85vf6Pd///fntp2YmFAwGFQikVi1/gEAAAAAAAAAAAAAAAAAAAAAsEqvo1eSFEwH884esalhk6T7AQhJ2urZKiOWfxIDSUobaUmaC2SYrSlY1SrXfUHFBSyk+7NYBINBXbhwQdJM8CIYDKqjo0Ojo6MKhULKZDJzy5LJpDwej06dOqV9+/bJMAx1dXXp4MGDevTRR0v8NwIAAAAAAAAAAAAAAMvx5jfeNF37Wvw1Dd8a1nRuWtVV1XI3uPVSy0sWdgcAAAAAwOqz2W2qra/NG66QpNRISpK0zbttbtmOwzv00amPNJ4cV5OnaUHN2NDYgqCEmZpCOZwOZa5lZH/Mvuyau5/dVW19bVH7nVWRAQtJ8ng8ikajedc1Nzfr5ZdfXrB9KBTSoUOHVFU1E0/p6OhYsB0AAAAAAAAAAAAAAChfto35LxZZjhd2vqC+K30ayYzIZXep+8nuosYDAAAAAKAceDo9aulqWXT98Llh2ew2bT+0fW5Zk6dJTp9TV89ezRuWGO4f1pHokXnLzNQUytvhVex4TF/7519TzaM1y6qJ9kTlP+Uvar+zKjZgYUZ7e7ump6d14cIFOZ1ONTc3l7olAAAAAAAAAAAAAACwSupq6hT8SrDUbQAAAAAAYCl/r18DXQPaHti+YAaJSCAiSfr2hW8vmOEiEAko7A1rx+Ed8wITA10D2t2zO+9sFGZqZmWuZZb199l+eLsigYi83V45mh2Lbpc20vr47Mfy9fqWHcZ4mDUbsOju7p6bqcLv9+vpp5+eW7dv375StQUAAAAAAAAAAAAAAAAAAAAAgKXaQm0a7h9WJBCRrd6mbCqrbCarrZ6t+t7o9xaEKyTJZrepM9GpaDAqm92mTQ2blBpJyeV3yd3uzrsfMzWzQp6Q7k7cXdbfJ5fLyYgZD93OZrcpHorrayeWP+PFUtZswKKvr2/uzxcuXNCPfvQjHT16tIQdAQAAAAAAAAAAAAAAAAAAAACwMtzt7oeGHL7IZrepLdS24jWSVFtfq2wmK3e7W7X1tQXXLyabzurjcx/Lc9RT9FhrNmDxoH379mnXrl0ELAAAAAAAAAAAAAAAAAAAAAAAKAGH06G9x/daEoRYKRUdsLhy5YoMY/FpP1KplDKZjM6ePav6+vpV7AwAAAAAKld2Kmu6duLuhN741RsanRhVc12znnviOdXV1FnYHQAAAAAAAAAAAAAAACqRw+mQw+kodRtLqsiAxbVr1+T3+5cMVzyoublZkUhkhbsCAAAAgLXh2Z89a8k4V397VS9+8KLp+u/oO5b0AQAAAABApTF78wMrb3xg22gzVQcAAAAAAAAsZn/f/lK38FAVGbDw+XxKpVI6ePCgdu3aJbvdrkgkIr/fL7vdLknKZDKKRqOy2+06d+5caRsGAAAAAAAAAAAAgGWy4uYHxd744O39bxfdAwAAAAAAAFBpKi5gcfr0aTmdTiUSCdXVzb/byuHDh/Xoo4/O/Xzs2DGNjo7qxIkTOnny5Gq3CgAAAAAV6c1vvGm69rX4axq+Nazp3LSqq6rlbnDrpZaXLOwOAAAAAAAAAAAAAAAAmO+Tdz/R408/XvQ4FRew6O/vV39//7wghSQ5nU7F43G1trbOW97c3KzOzk796Ec/0tGjR1ezVQAAAACoSLaNNtO1L+x8QX1X+jSSGZHL7lL3k91FjQcAAAAAwHpk9uYH3PgAWF3Zqaypuom7E3rjV29odGJUzXXNeu6J51RXU/fwwjz47A0AAAAAgBkDHQPrM2DR3Ny8IFwhSfX19Tp37tyCgMVszcjIyGq0BwAAAADrWl1NnYJfCZa6DQAAAAAAKprZC6a58QGwup792bNFj3H1t1f14gcvmq5/e//bRfcAAAAAAMBqu3HlhrY+uXXRdYWYTE0qbaSVzZi7EcIXVVzAwuFw5F2+c+dOdXZ26uTJk6vcEQAAAAAAAAAAAACUHjc+AAAAAAAAQLmLHY/po1c+UpO3SR2/7Fiw/setP9bdibsl6GxGxQUscrncouu8Xq/Onz+vAwcOLFhnGMZKtgUAAACsO8P9w3K3u0vdBgAAAAAAAACUxJvfeNNU3Wvx1zR8a1jTuWlVV1XL3eDWSy0vWdwdAAAAAADlKW2klcvllE3nn3Gitr5WkuTt9M783FC75HiTtyaVHknrk3c/saS/igtY+P1+vfvuu3r66af1ox/9SNFoVKdPn9ajjz6q9vZ2/cmf/IlisZi+/vWvz9VcuHCBgAUAAABgoWwmq0ggov2h/dp+aLtsdlupWwIAAACwAga6BrQ9sF1On3PRbRLhhIYjw/J2eeX0OWWz25Q20hpPjuvjsx9r74m9avI0LajLZrL68OSHkqRNDZuUGknJ5XctGeQ2UwMAALBSbBvNfS76ws4X1HelTyOZEbnsLnU/2W16LAAAAAAAKk3b6TY5/c5Fv3twOB3ae3yvPEc9BY17quGUFe1VXsBi3759euWVV/TKK68oGAyqqqpKfr9fR48elc/nU2trq3w+n/x+v3bu3CnDMNTf369QKFTUfjOZjE6ePClJamho0MjIiPx+v9rb202NFw6HFYlE1NXVJZ/PJ7vdLsMwlEwmdfbsWZ04cUIeT2FPCgAAAGC1pI20JOm9rvf0Xtd7S24biATmLnZazQuvAAAAAJiTNtIyYoYSoYTGk+PaHti+5PbZTFZGzJARm3+jI5vdpkAksOg5ftgbXrB+oGtA14euy9/rt6QGQOXITuW/W91yTNyd0Bu/ekOjE6NqrmvWc088p7qaOknSdNW07v7urrJTWVXnqh86Fhc4A1gNdTV1Cn4lWOo2AAAAAAAoCVudTd4O76LrnX6ntrVsK3hce7O9iK7uq7iAhSQdO3ZMly9f1rFjxzQxMaFDhw7Nrevv71dra6t+/vOfKxqNKpfLyePx6OjRo6b3l8lk5PV6FYlE5oUeurq6NDQ0pN7eXlNjxmIxxWKxecvtdvuC/QAAAADlJm2k5XA61ORpkq0+/4UH2VRWaSM9LwSxWhdeAQAAADAnEU7IiBpy+p3y9fp0xn9mWXX7Q/uVGkkpY2Rkq7dpm3fb3NTd+UQCET3e/viC9wBtoTb1Onrl8rsW3LnKTA2AyvHsz561ZJyrv72qFz940XT92/vftqQPAAAAAAAAAObsObbHVF1nvNOS/VdkwEKSdu7cqZ07dy5YXldXp0Qiof7+fsViMblcLnV2FnewAoGA2tvbF4QeQqGQHA6H/H6/fD5fweOGQiGNjIzIMAzV19fL6/UW3SsAAACwGq4PXdeR6BE5nI5Ft4kGo/L1LjxPXo0LrwAAAACY4+30zp2fjyfHl123/dB22ezLu+v77AwZ+0P78653H3LrUu+leef5ZmqAh1nujAn5ZkBYasaEQjBbAgAAAAAAAAAs9Mm7n6jJ0yT7Y/ZV33fFBiwepr29Xe3t7UWPYxiGYrGYQqFQ3vWHDh1Sb2+vqYDFoUOHZLfbi+wQAAAAKI2lwhXjyXHVu+rzbrPSF14BAAAAKG/xUFzS4u8p6l31SoaTymayc+8dzNQAD1MOMyYwW8J9b37jTdO1r8Vf0/CtYU3nplVdVS13g1svtbwkaSYgk96aluOGYy4gAwAAAAAAAKB8vdf9npKnk7I5bOr5bc+q778iP0V89913de3atVXZ12ywwunMf8GWy+VSLBZTJpNZlX4AAACActDS1bLk+ngovuSsFMu1nIuojJihbGZ5dx0FAAAAUHo3kjeWDEHMnv+PxceKqgFQWWwbbab/e2HnC3rif3pCWx7Zoif+pyf0ws4X5q2veaRm2WMBAAAAAAAAKK3J1KSa9zXLc9RTkv1X3AwW3d3dOn36tBwOh37729+u+P6SyeSSs0zMBi/i8bipWSwAAACASrTU7BXRYFT+Xr8l+ynkIipmsQAAAABKbzw5rrH4mLa1bFOTpynvNmkjrdr62kXHmH0PkDbSRdUAD7PcGRPyzYCw1IwJWH11NXUKfiVY6jYAAAAAAAAAWMDhdMj3cumuy6+4gEUqldK+ffvk8axOIsUwDNXX1y+6fjZ8YRiG6X0kk0nF43G1tLQs++81OTWp21O3535+pPoRPbLhEdM9rFe5qpxyyilXldO0pkvdTsXLVeU0PT2tqampUreyJkxNTXE8LcTxtBbH01ocT2txPK01PV3YOdJ4clz1rvolQxEPbrsSF16tBZzvz+Df8Qxe15APzwsshucG8uF5AUmaujule3fvzf2cnbB2FjgjZihtpOX0OeXt9Go8Oa4z/jPaE9yzIAw9mZpcMrQ9+x7gwZnqzNSUo8/vfa6aqZq5n9fruX65+HuP/L1lbZeryunvPfL3VPNIjapyVZKk5z3PK3Q5JCNjyGl3qmtn17LHexDfTaw8vguqbDx+5Sc7tfzftbmqnLK/y2ry3qSqclWauDuhv/x//1KjE6NqrmvWd/74O6qrqTPVBzPOrDz+/VWuXFWu1C2sS3yubw1ee6zF8bSWVceTz+hm8Jmltaw6nmefPmtRR+YdfvdwqVvg+Wkxjqe1Cr2Op1LVNtQqcy0j+2P2gupONZxSz62eovdfcQELp9Opl19+edX2l0ql5mapyGc2fJHJZAoeOxaLyTAM+Xw+dXZ2KplMyu/3KxgMPnQ2jOB/nH8Xnm94vqFvtnyz4B7Wu5xymvzSpFJKqUpVpW6n4uWU09SnM78Eq6urS9xN5Zuentann34qieNpBY6ntTie1uJ4WovjWZzpqWlN37v/Zix1K1VQ/cWTFxWIBJbcZqUvvFoLON+fcfHixVK3UBZ4XUM+PC+wGJ4byIfnBSTp2n+8pt/84jdzP9+5d8eysWfP2ff07Jlb1uRpUiASUK+jV52Jznmh6uWev39+6/OiasoR5/qVabHvEo4+dnTuz/d0TykV9h4aq4Pvgiobj1/5+W74u5aMc/W3V/Vng39muv6HnT+0pA8sjn9/levvJv+u1C2sS5zrW4PXHmtxPK1l1fHk+68ZfGZpLauOZ6qp9J9tlMO/EZ6f1uJ4WuvWrVulbmFV7Dm2R5FDEbV0t6i5tXnZdbmcNYHzigtYNDQ06Nq1a3rssccKrjPzpFpucKLQsWdDGz0991MyHo9HkUhEDodDiURiydksev9Rrxy2+xeaPVL9iB4ZJ/leqFxVTimlVH+jfu6uUzAvV5XTtv95m3bv3q2NGyvu5aXszCY2OZ7W4Hhai+NpLY6ntTiexfm//8//W5f+z0tzP09UTyy7drh/WHanfcltVuPCq7WA8/0Ze/fuLXULZYHXNeTD8wKL4bmBfHheQJL+4a5/qHvfvT+DxX/7b/9Nrzz5iiVju9vdeZfb7Da5292KBCL67og1F2NWOs71KxPfJVQ2Hr/KxuOHxdSP15e6hTWPf38VbLLUDaxPnOtbg9cea3E8rWXV8eT7rxl8Zmktq47n9deuW9WSaeXwb4Tnp7U4ntaaDausB4FzAX306kdKhBLatmubmjxNqq2vlc2ef1bLkeiI7k7ctWTfFfdMPXbsmA4dOqTu7m61trYuu86qRIpV2tvb8y632+1qb29XIBDQyMjIovW1G2u1ZeOW+QvL669YEaY1rSpVqSpXpeocybhiTWta1dXV2rhxI78ILcLxtBbH01ocT2txPK3F8TTvfz3xv2rPS/fDD59++qn+4om/WFbtxZMX1Xa6bcltuPBqeTjfn8G/4ft4XUM+PC+wGJ4byIfnBTZu3Chtvv+z7bP8X0BYbduubRruH1baSM8Frm1227LC1JsaNs392UxNOdq0YRPn+hWI7xIqG49fZePxKz9vfuPNZW87XTWt9Na0HDccqs5V67X4axq+Nazp3LSqq6rlbnDrpZaXTPXB82Hl8e+vcnERdWnwub41eO2xFsfTWlYdTz6fu4/PLK1lxfEsh9eKcnk+8Py0FsfTOutlFpA/r/5zVVXNvLfJ5XIa7h9e1f1X5DP13LlzevXVVxUKhbRr1y55PB7V19fLbrfn3T4ajWpiYvl33n2Q3W5f1iwWDQ0NpsbPZ9euXerv75dhGHMzXQAAAACrYWPNRm2suf824ZEty7u7UtpIazw5Pm/2iUJZdeEVAAAAgPIxeyep8eT43Hl+bX3tkjWTqcl5tWZrAACA9Wwbl/+7drpqWjWP1Mi20abqXLVe2PmC+q70aSQzIpfdpe4nuwsaDwAAAAAArA8Op0NpIy13u/uh3w/MGhsa040rNyzZf8UFLKqrq+clUvr7+1d0f/X1S08tmkqlJGnRcIcZs2Mlk0kCFgAAAKgI8VB87mIps6y68AoAAADA6hnoGtBobLSgmegcTofG4mOLrp8NWT/4HsNMDQAAKC91NXUKfiVY6jYAAAAAAECZczgd2nt8rzxHPQXVnWo4Zcn+Ky5g4XQ6ZRiG2tvbHxp+mDU0NKQrV66Y3l88Hl90/ezsFoUEIbq6uhSLxTQyMmKqJwAAAKDcjMZGH3oh02pdeAUAAABg9YzHx+eCz/nMnrM/ONvdVs9WGTFj0Zq0kZYkOX33P3c3UwMAAAAAAAAAACqPw+kwdS2QzWHNDVorMmBx/PhxHT16tKC6hoYGU/vzeDyKxWKLrjeMmS90fD7fsseMx+NzM1/kMxva8HgKS90AAAAApTKeHJe73b30Nqt04RUAAACA1dPsa1Znb+ei68eGxmSz2+Z9EbLj8A59dOojjSfH553/P1jzxXN8MzUAAAAAAAAAAKDy7O/bb6ruu79e/k1fl1KRAYtCZouY5XCYu6Pt4cOHderUKSWTybyBh6GhoYLCFdJMGKO3t3fR9UNDQ7Lb7ab+nkCp/eqdX+n6a9dVnasuaR/fGvhWSfcPAMB6Mp4clyTZ6pdOga/WhVcAAAAAVs+OwzuUCCfk7fQuWJc20hruH1YgEpi3vMnTJKfPqatnr+Y9zx/uH9aR6JGia5Bfdiprqm7i7oTe+NUbGp0YVXNds5574jnV1dSZGsu20Zq7iAFYH+7+7q6yU1lT3z1Z9drF6xYAAAAAAMD6UXEBi76+PlN1v/71r03VeTwe+Xw+nT17Nm/Aor+/X9FodMHyTCajkydPyu/3LwhgHD58WOFwWJ2dCy8uMwxD/f39ikQipvoFAAAAVttSs1I8aLUuvAIAAABgjdkZ42Znm8unydMkI2bo0qlL2tOzZ15t2BvW7p7deWe7C0QCCnvD2nF4x7xz/YGuAe3u2Z03SG2mBgs9+7Nnix7j6m+v6sUPXjRd//b+t4vuYa0wG3iRCL1g/Tj2l8csGaeY1y5etwAAAAAAAMqHccGQETWkKqneVa9tLdu09cmtlo1fcQGLfD777DOlUik99thjKzJ+JBKR1+vV4cOH54Usurq61NPTk3cGi3A4rFOnTikcDiudTs9b5/F4FIvFdOrUKfX09MwtNwxDXq9XPT09am9vX5G/CwAAAGC12YuubPalL8ZYzQuvAAAAAJgz3D+sRCghSRqLj0mSBjoG5pa5A+4Foek9PXtkxAwNdA0om8oqm8nKZrfp2xe+nTcoLc28f+hMdCoajMpmt2lTwyalRlJy+V153xeYrQHKnRWBF4nQCwAAAAAAAIC141TDKfXc6ll0vXOfU859TmUnsppMTcqIGYqH4vL3+lXzaE3R+6/YgMW1a9fU29urcDgsSaqqqtLU1NTc+tHRUQWDQT311FM6evRoUfuy2+1KJBIKBoOy2+1qaGjQyMiI/H7/okEIn88nu92uQ4cO5V3f09OjWCymrq4upVIpZTIZ2e12XbhwIe9MGQAAAEC52tayTTa7Tb+36/ceuu1qXXgFAAAAwBx3u9vUebbT5yw4/Gyz29QWalvxGsz35jfeNFX3Wvw1Dd8a1nRuWtVV1XI3uPVSy0sWdwcAC73ynVfkuOFQda664FpeuwAAAAAAACpPLpdb1na2OptsdTZ5O7zKTmQVDUa1//X9Re+/IgMWg4ODc7NGOJ1OOZ1OjY6OztumublZ586d04ULF/Tqq6/q+9//flH7tNvtCoVCy97e4/EsmLnii3w+X97ZLyoF01YDAABAmpmZIpgOLnv71brwCgAAAACwkNnP1F/Y+YL6rvRpJDMil92l7ie7+XzeAmYDLxIXjmP9qHmkRraNNlMBC167AAAAAAAAKk9VVVXBNbY66z7zqbiAxejoqNrb29XZ2algMKjm5mZJ0vHjx/Nuv2/fPmUyGQ0ODqq1tXU1W13zmLYaAAAAAAAAAID1oa6mTsGvLD9cj+Up5kJvKy8cL4ebanHRO1YCr10AAAAAAADrQ3Yiq/H4uCVjVVzA4vjx4+rt7VVHR8e85UslVQ4ePKjnn3+egAUAAAAAAAAAAADWBCsvHC+Hm2pxQy0AAAAA68GdO3dM1968eVPd3d1KJBLyer3q6+tTY2OjqbE2b95sug8AAKyQuZbJuzyXy82s/01Gyi09RjaT1WRqUuPJcV08eVHuQ25Lequ4gEU6nV4QrliO2YMN6zBtNQAAAAAAAAAAAAAAAAAAy7NlyxZLxolGo3K5XKbruZ4SAFBqY4kxjQ2NKW2kZcQM3Z24O2/9D50/XPZYuVxOTp9T+1/fb0lvFRewcDqdpurS6bTFnaBcpq0GAAAAAAAAAACVIzuVNV07cXdCb/zqDY1OjKq5rlnPPfGc6mrqTI3F9xL3cVMtAAAAAAAAAKvJfdAt98H7M06MJ8cVC8ZkXDBUVVWlxw8+vqxxHE6HnH6nnPvMZQzyqbiAhdmghGEYFneCYlg5bTUAAAAAAAAAAKgcz/7sWUvGufrbq3rxgxdN17+9/21L+lgLuKkWAAAAAKwOAu4AAOTX5GnSkegRDXQN6JP+TxQ4FyhZLxUXsHA4HPrggw/09a9/fdk1J06c0L59+1awKwAAAAAAAAAAAGD94aZaa1c5zDYzXTVtugcrlcOxkJh5BwAAYC0g4A4AwNLaQm0aT4yXtIeKC1j09PToqaee0unTp5cVsnj11VfV39+vv/3bv12F7gAAAAAAAAAAAPK7O3XX1EW6a+3iXO7WCVSGcplt5oedP7Skj2KUy7Fg5h0AAID1jYA7AGC92Htib0n3X3EBC6fTqb6+Pu3bt08tLS06fPiwdu7cqUwmo2vXrimTySiVSimZTCoUCskwDCUSiVK3DQAAAAAAAAAA1rnv/+L7RY+xFi7O5W6dAAAAAAAAAIDFuA+6H7rN6OCo0kZaDqdD21q2qebRGsv2X3EBC0ny+Xw6d+6cOjs71dPTM7c8HA7P/TmXy8npdCoej+vJJ58sQZcAAAAAAAAAAACwEnfrBFZPOcw2M101rc/1uek+rFIOxwIAAAAAAGC9iB2PKTsxfzbo/a/vlyRlJ7I64zuj8eS4crmcHE6HsumsAv0BNX+92ZL9V2TAQpLa29vV3t6uU6dO6ezZs7p8+fLcOqfTqa6uLh07dqyEHQIAAAAAAAAAANz36v/2qupr6wuu4+JcAKVQDrPNlEvAohyOBQAAAAAAwHrh7fLqh64fytvllbfTq6adTXPrIoGIxhJj2tOzR76XfZKkbCaryKGIHM0O2R+zF73/igtYDA4OqrW1de7nnp6eebNYAAAAAAAAAAAAlKOajTWmLqrl4lwAlYbZZu7jWAAAAAD5/eqdX+n6a9dVnasuaR/fGvhWSfcPAFjoxuUbCkQCch90z1s+/JNhGTFD2wPb58IVkmSz2xQ4F1DsRGxupotiVFzAwu/3K5PJ6Etf+lKpWwEAAAAAAAAAAFhxXJwLAAAAAAAAAFgvrg9dl++kb8Hyj89+rKqqKu09sXfBOpvdJludNTcmKm30z4S6ujoFg3yJAAAAAAAAAAAAAAAAAAAAAADAmpLLv9iIGZKkrU9uzb9BlTW7r7iARSaTUSgU0q5duzQ4OFjqdgAAAAAAAAAAAAAAAAAAAAAAgAVqG2oXLEuPppXNZNXkaVq0LpvJWrL/igtYSFIoFFIsFtPIyIieeuopvfrqq/rss89K3RYAAAAAAAAAAAAAAAAAAAAAADCpqmrhVBTD/cOSpGZf8+KFi8x8UaiKC1iEQiEdPXpUdXV16ujo0M9//nPt27dPPT09Onz4MLNaAAAAAAAAAAAAAAAAAAAAAABQgT7/7ee6+9ndecsSoYSqqqq04/COvDWxEzF5u7yW7L/iAhYdHR0Llu3cuVN9fX06e/asRkZGdOjQIWa1AAAAAAAAAAAAAAAAAAAAAACgguw9sVeRQEQ3/tMN3bhyQ/2H+5U20nK3u7X1ya3ztr1x5Yb+6k/+SpsaNqlpZ5Ml+99oyShlpKOjQx0dHbp8+bJ6enpUVVWl7u5uffnLXy51awAAAAAAAAAAAAAAAAAAAAAAYBG2Opv2ndyncwfPKW2kJUnbA9vVfrZ9bpv3ut+TETPm1hsxQ5/f+ly+k76i97/mAhazXC6XXC6XTp48qXA4LI/Ho6GhoVK3BQAAAAAAAAAAAAAAAAAAAAAAFtHkadJ3f/1dZSeystXZFqzfE9yjPcE985bV1tdasu81F7AYHBxUKBRSf3+/JCmXy6mzs1NdXV0l7gwAAAAAAAAAAAAAAAAAAAAoP9mprOnaibsTeuNXb2h0YlTNdc167onnVFdTZ2F3ANarfOEKSXI0O1ZsnxUXsBgcHFRra+u8ZZ999pnC4bBOnjypTCajXC4nj8ejrq4udXR0lKhTAAAAAAAAAAAAAAAAAAAAoPw9+7NnLRnn6m+v6sUPXjRV+x19x5IeAKxPn7z7iR5/+vGix6m4gIXf79e9e/ckzZ+tIpfLSdLcbBU7d+4sZZsAAAAAAAAAAAAAAAAAAAAAAGAVDHQMrM+ARV1dnXbt2iXDMJitAgAAAAAAAAAAAAAAAFim8eS44qG4sqmsxpPjstlt8nZ55e30LlqTzWT14ckPJUmbGjYpNZKSy++Su91taQ0AYPW80/ZOSfc/XTUtNZW0hTl37twxVXfz5k11d3crkUjI6/Wqr69PjY2NpsbavHmzqTqrvfmNN03XvhZ/TcO3hjWdm1Z1VbXcDW691PKShd0BWGtuXLmhrU9uXXRdISZTk0obaWUzWStaq7yAhSQlEglJzFYBAAAAAGtZqT/YlaRvDXyr1C0AAAAAAAAAgCUS4ZnrbdpCbXPLjJihSCCiS72X1JnolM1um1eTzWQV9oYViATU5Ll/JexA14CuD12Xv9e/YD9magAAKJUtW7YUPUY0GpXL5TJdn8vliu7BCraNtodvtIgXdr6gvit9GsmMyGV3qfvJ7qLGA7C2xY7H9NErH6nJ26SOXy6cYOHHrT/W3Ym7JehsRkUGLLq6uvT666+Xug0AAAAAAAAAAAAAAACg7M3ezXVPz555y50+p7594dsKe8OKBCI6Ej0yb30kENHj7Y/PC0pIMyGNXkevXH6XnD5n0TUAAKCy1dXUKfiVYKnbAFAh0kZauVxO2XT+GSdq62slaW6mvdqG2iXHm7w1qfRIWp+8+4kl/VVcwCKTyRCuAAAAAAAAAAAAAAAAAJYpHorraye+lnddk6dJTp9TRsxQ2kjL4XRImrnoyYgZ2h/an7fOfcitS72X5oUlzNQAAFBKt2/fNlV34MABDQ4O6t69e9qwYYNaW1t1/vx5i7sDgLWp7XSbnH7nou8LHE6H9h7fK89RT0Hjnmo4ZUV7lRew6OzsLHULAAAAAAAAAAAAAAAAQMUYjY0qGU7qe6Pfk81uW7B+q2erjJih8eT4XMAiHopL0tzPX1TvqlcynFQ2k50b00wNAACltHnzZlN1Z86c0TPPPKOhoSHt2rVLb731lumxAGC9sdXZ5O3wLrre6XdqW8u2gse1N9uL6Oq+igtY9PX1lboFAAAAAAAAAAAAAAAAoGLU1tdqPDmutJFWk6dpWTU3kjeWDEHMhijG4mNzd541UwMAQCVqbGzU+++/X+o2AGCe8eS44qG4sqmsxpPjstlt8nZ55e1cPMyQzWT14ckPJUmbGjYpNZKSy++Su91taU0h9hzbY6quM27NRA4VF7Awq6GhQbdu3Sp1GwAAAAAAAAAAAAAAAMCqOhI9orSRXnRmiYyRkaR54Yu0kVZtfe2iY84GKdJGuqgaAAAAAMVLhBOSpLZQ29wyI2YoEojoUu8ldSY6F4Shs5mswt6wApHAvPcCA10Duj50Xf5e/4L9mKmpNOsmYJHL5UrdAgAAAAAAAAAAAIAylp3Kmq6duDuhN371hkYnRtVc16znnnhOdTV1psaybVz8zt8AADxo+t60ctP3r4mZnppedNvFwhWSNNw/rCZP07xtJlOTS9bMBimymfu/P83UAAAAAChO2kgrm8lqT8/8mR+cPqe+feHbCnvDigQiOhI9Mm99JBDR4+2PL5jlri3Upl5Hr1x+14KZ58zUFCJzLSMjZig1kpoLgtvqbap31avJ06Tm1mbTYy/XughYHD9+XBMTE6VuAwAAAAAAAAAAAEAZe/Znz1oyztXfXtWLH7xouv7t/W9b0gcAYO1L/Tql1N+m5n6eUOHXx1w6dUmS1Ha6bd7y5YYgPr/1eVE1AAAAAIoTD8X1tRNfy7uuydMkp88pI2bMm9UubaRlxAztD+3PW+c+5Nal3kvzwhJmapbj7md3lQgndPHkxWW9p/B2ebWnZ4/sj9kL2s9yVa/IqGVgcHBQhw8f1oYNG/TKK6+Uuh0AAAAAAAAAAAAAAADAUvV/UC/Xn7jm/nvsf3usoPrx5LhiwZgCkcCCO9ACAAAAqAyjsVH92+Z/u2g4Yatnq6SZ8/9Z8VBc0uIz3dW76mXEjHljmql5mOSPkup19CoWjGkyPalcLjf3X01djezNdtXU1cxbHu+L64euH+rCP7+w7P0UYk3NYHHlyhWdPXtW4XBYmUxGkpTLzUyDWFVVVcLOAAAAAAAAAAAAAJS7N7/xpuna1+KvafjWsKZz06quqpa7wa2XWl6ysDsAABaq3lAtbXjg56nC7rUaCUS0P7Rf7nb3gnU2u21ZF0ZtathUVA0AAACA4tTW12o8Oa60kV52cPpG8oZsdtui62dDFGPxsbkZKczULKX/cL+G+4eVy+Xk9Dnl9Dvl9DnVtDP/3yE7kZURMzTy8xElTyd1qfeSjJihjl92PHRfhaj4gMW1a9fU39+vUCgkwzAk3Q9V+Hw+dXV1KZfL6fDhw6VsEwAAAAAAAAAAAECZs21c/Avih3lh5wvqu9KnkcyIXHaXup/sLmo8AABWWiQQkbfLK2+nN+/62vraJesnU5OSNO8CKzM1AAAAAIpzJHpEaSO96MwSGSMjSfPCF2kjveT5++w5e9pIF1WzmL/6k7/SSHRE7na3fL0+OZrz9z5v/Dqb3Afdch90qy3Upmgwqo9e+Uin/5fTloYsKjJg8dlnn+ncuXMKhUJKJpOS7ocqnE6nurq61NnZqbq6urmaB/8MAAAAAAAAAAAAAFaqq6lT8CvBUrcBAMCyRINRbdu1TXt69iy6jcPp0Fh8bNH1szNVPHgRl5kaAAAAAPlN3Z3Svbv35n7+3e3fLbrtUufYw/3DavI0zdtmMjW5ZM1skOLBGerM1ORz6ZVLGomOqC3cJs9Rz5LbLsXf65fL79KZp87owj+/oH0/2Gd6rAdVVMDi3Xff1dmzZ9Xf3y/pfqjCbrdrYmJCIyMjeuyxx/LWRiKR1WoTAAAAAAAAAAAAAAAAKEuJcEL1rvq8M1dkM9m5u85u9WyVETMWHWf2rrROn3NumZkaAAAAAPldPHlRv/jzX8z9PFE9UfAYl05dkiS1nW6bt/xhIYhZn9/6vKiaL8pOZBULxuQ/5S8qXDHL6XMqcC6g/sP98nZ6ZX/MXvSY1UWPsMIGBwf1/PPPa8OGDQoEAopEIsrlcqqrq1NnZ6cSiYRSqZTq6uoWDVdI0r591iRSAAAAAAAAAAAAAAAAgEo03D8sSXnDFWkjPS8csePwDknSeHI871hjQ2MLghJmagAAAADkt/fEXh2fOD733/P/6fmC6seT44oFYwpEAmryNK1Ql4VJhBNq8jRp9/d3Wzamu92trTu3zr3fKVZZBiyuXbumEydOqKGhQX6/X+FwWLlcTrlcTu3t7YpGo0qlUurr69POnTslSVVVVSXuGgAAAAAAAAAAAAAAAChP48lxTaYm84YrJMmIGfMuumryNMnpc+rq2at5tx/uH9ae4J55y8zUAAAAAMhvY81G1TxaM/ffI1seKag+Eohof2i/3O3uBetsdtuyZqTY1LCpqJov+vjsx/raP//aQ8co1N7je/Xx2Y8tGWujJaNY5PTp0zp16pQMYyYNn8vlJEk+n0+BQEAdHR2lbA8AAAAAAAAAAAAAAACoOGkjrUggomZfs8a6xhasz6ayMmKGgungvOWBSEBhb1g7Du+YF74Y6BrQ7p7deWejMFMDAAAAwFqRQETeLu+iAeva+tol6ydTk5JmQhXF1HxRZjSzIu8JnH6n3ut6z5KxyipgEY1GNTIyIklyuVzq6upSR0eH6urqStwZAAAAAAAAAAAAAAAAUJnO+M8obaSVDqcX3cbhdCxYZrPb1JnoVDQYlc1u06aGTUqNpOTyu/LeBddsDQAAAADrRINRbdu1TXt6Fp89zuF0aCy+MHw9a3amigffJ5ipybdNzaM1i643y1a3vNk1lqOsAhbnzp2TJIXDYfX392toaEgej0etra0l7gwAAAAAAAAAAAAAAACoTN8d+a7pWpvdprZQ24rXAAAAACheIpxQvas+78wV2Ux2bnaJrZ6tMmLGouOkjZlw9oOzTZip+aKaOuvDFVaPXW3JKBbr7OzUz3/+c4XDYSUSCT311FN6/vnndeXKlZL1lMlkFAwGFQwGderUKXV1dam/v9/y/XR1dckwFn/iAQAAAAAAAAAAAAAAAAAAAADwoOH+YUnKG65IG+l54Ygdh3dIksaT43nHGhsaWxCUMFPzRVVVVUuuL4ZVY5dlwGJWXV2djh07pp///Ofq6enRf/gP/0G7du3SiRMndO3atVXrI5PJyOv16vDhw+rt7VVPT49CoZCi0aiCwaBl+0kmkwqHw8pkMpaNCQAAAAAAAAAAAAAAAAAAAABYu8aT45pMTeYNV0iSETPU5Gma+7nJ0ySnz6mrZ6/m3X64f1h7gnvmLTNTU4k2lrqB5WpubtbLL78sSbp8+bJefvlljY6Oyu/3q6OjY0X3HQgE1N7eLo/HM295KBSSw+GQ3++Xz+crej9WhjUAAAAAAAAAAAAAAAAAAAAAAGtb2kgrEoio2dessa6xBeuzqayMmKFgev616oFIQGFvWDsO75gXvhjoGtDunt15Z6MwU1NpKiZg8aCdO3eqr69PkvSTn/xEHR0dyuVy+tGPfqSjR4/mrXn11Vf1/e9/v+B9GYahWCymUCiUd/2hQ4fU29tbdMAiHA4rEAgoFosVNQ6AGe+0vVPqFvStgW+VugUAAAAAAAAAAAAAAAAAAACsYWf8Z5Q20kqH04tu43A6Fiyz2W3qTHQqGozKZrdpU8MmpUZScvldcre7845jpuZB2Ux2+X+xAlk1dkUGLB508OBBHTx4UBMTEzp37pyeeuopORwOdXV1qbW1VZI0OjqqYDBoKmAxG6xwOvOnaVwul8LhsDKZjOx2u6m/g2EYS+4DAAAAAAAAAAAAAAAAAAAAAIAv+u7Id03X2uw2tYXaVrxmVi6X0//1//m/8gY+ipE2Fg+XFKriAxaz6urq1NHRoY6ODk1MTCgcDuvll19WVVVVUbNCJJPJJYMTs6GIeDxuehaLUCik3t5eZq8AAAAAAAAAAJSVga4BbQ9sf+iU3tlMVh+e/FCSln23qtWqAQAAAAAAAAAA5SM1klJqJGX5uFVVVZaMs2YCFg+qq6vTsWPHdOzYMcViMf3yl7/UZ599ZmoswzBUX1+/6PrZ8MXsLBSF6u/vV1dXl6laAAAAoJQS4YSGI8Pydnnl9Dlls9uUNtIaT47r47Mfa++JvWryNC2o4yIqAAAAoLyljbSMmKFEKKHx5Li2B7YvuX02k1XYG1YgEpj3HmCga0DXh67L3+svWQ0AAAAAAAAAACgvTp9TTv/SN3Yq1Ngvx/TJu59YMtaaDFg8yOfzKRKJ6E/+5E9M1adSqblZKvKZDV9kMpmCx85kMjIMQ+3t7QXXTk5N6vbU7bmfH6l+RI9seKTgcda7XFVOOeWUq8ppWtOlbqficTznm5qaKrp+enq66HEwg+NpLY6ntTie1uJ4Wmt6evHf6dlMVkbMkBGbHza22W0LLnh6sIaLqB6O8/3yUQ6vJbyuIR+eF1gMzw3kw/MC+Sx2rp8IJ2REDTn9Tvl6fTrjP/PQsSKBiB5vf3zBe4C2UJt6Hb1y+V0LZsBYrZpy8/m9z1UzVTP3M+f6lYHPvisbj19l4/GrbDx+lY3Hr3LlqnKlbmFd4nN9a/DaYy2Op7U4ntYqp+O5Fj43teoz4Omq0j+3y+Hx4DN1a3E8rbXUdTyVoqqqSkd+fmRFxv5XG/6VJeOs+YCFNBOyqKurM1X7/2/v72IjPe8D0fPPVguiZCUqsg8gtwPMQsWzwKQtY0dF9SSRFCATkziGV32Rg6ru0UUMb7xieWAgC3sxJHSXc9VgD6DszLmIig0HPuOBG60qbIA0EAfDUpyB7bkIycpg7NFc7LJ01udIbeNErNLEVrfGLdZe9FSp2axiffBlfbB+P4CQWPV+PHye5336/37836fXxIn333+/721fvXo11tfX+14vImLtr9cO/P6FzBfii89/caBtTbNGNOLOr9yJvdiLmUhmWphppj4P+sEPfnCs9ff39+MnP/lJREScOXMmiSJNNfWZLPWZLPWZLPWZrG5x7suFl2Nvdy/q1XrMzs/GZxY/E4srix2Xn9aHqPol3h8fx43pkmBcox39gk70DdrRL2inU6y/uLLYiulvV2533U5ztouXCy+3/f7C5Qvxw/UfHojZh7XOOBLrTybXvieb9pts2m+yab/Jpv0m19/f+ftRF2EqifWTYexJlvpMlvpM1jjV5zjcDzyupK4B753fS6pIAxuH9nBNPVnqM1mDPK8+bh576rHuC41421ORYBER8dZbb426CAeUy+VYXh78Tbvrv7Mec7Nzrd8fPfNoPHpb5nu/GjON2Iu9mP/pfMw0BL7HpT4Peumll461fjNj84UXXoizZ6dmuD4x6jNZ6jNZ6jNZ6jNZzZPcTj57+bMxm5rtaVvT/BBVv8T74+O4MV0SjGu0o1/Qib5BO/oF7XSL9Xu1XdiOiIi59Fzb7+cX5qOyUYm79butc4dhrTOOxPqTybXvyab9Jpv2m2zab7Jpvwl2Z9QFmE5i/WQYe5KlPpOlPpM1TvU5DvcDjyupa8Dvvv5uUkUa2Di0h2vqyVKfyUrq2v4ofemtL439tqempz733HMDrZdKpXqaxeLcuXN9bXdzc3Pg2SsiIh4/+3g8efbJgx+a5bFv+7EfMzETM42ZONOQGXdc6vOgJIKBM2fOxNmzZwUWCVGfyVKfyVKfyVKfyUny7QHT/BBVv8T742NcxhHjGu3oF3Sib9COfsHDkor1f1r56ZGxeDOWf2/7vVZi9LDWGUdPPPKEWH8CufY92bTfZNN+k037TTbtN7lG/ZDqtHJdPxnGnmSpz2Spz2SNU32elmumSVwDHnVbRIxPe7imniz1mZzTMAvI+efOj/22J7+WT9j8/PyR3+/t3Z8SKZVK9bzNa9euxWuvvXacYgEAwMTp54Go46wDAAAMT61ai8fnH+/4fTOer1VrQ18HAAAAAACgXxIsukin060kinaas1uk0729EatarUYqleorIQMAAIbl3kf34qP/8lHr55c//2VP692u3I6djZ24XbndcRkPUQEAwOgMGut3c2fvzpFJ0c14/m797tDXAQAAAAAA6Je5VrrIZDJRLpc7fl+tViMiYmlpqaftVSqVKBaLUSwWO27r1Vdfbc2csbm52W+RAQBgYD+4+oP4d//Tv2v9/sGZD45cvlquRq1ai/RSOhZXFuN25XZ8e/nb8eLai5FeOpiEfGfvTmvGiXY6PUTV7zoAAMBh/cb6veo1Fv/w/Q+Hvg4AAAAATIIbl24ca/39mf3YO78X777+bpxpeO86wHFJsOjiypUrce3atahUKpHJZA59v7W11XNyRURENpuNbDbb9rtSqRS5XC6uX7/edl8AAHDSXnrtpfitb/xW6/ef/OQn8cef++O2yzYTH15cfbH12fnM+cgVc7E+tx4rOytxPnO+9Z2HqAAAYHT6ifUBAAAAAACmlVS1LjKZTCwtLcXNmzfbfl8qlWJtbe3Q5/V6PdbW1o6c/QIAAMbN2cfOxmO/+ljr59EnH+247IXshbiQvXDo89nUbFzIXohi7vCsbQAAwGj0E+v3YzY121Ni9BPnnhj6OgAAAAAAAP2SYNGDYrEYpVIpKpXKgc/z+Xysrq62ncFiY2Mjrl27Frlcruf9VKvVA/8FAIBJ9ZmLn4latRa1aq31mYeoAADg9Hl8/vEjv7+zdyci7sf2w14HAAAAAACgX2dHXYBJkEqlYmdnJ9bW1iKVSsW5c+did3c3lpeXI5vNtl1naWkpUqlUXL58uev28/l8VKvV2N7ejoiIV199NQqFQmQymVhfX0/0bwEAgGFoPtR0u3I75tJzEeEhKgAAOI3m0nPx3vZ7Hb9vJkw3zwuGuQ4AAAAAAEC/JFj0KJVKRaFQ6Hn5TCYTtVqt+4IRfW0XAADGwa38rXin/E784e4f9ryOh6h699G9j+Luve4zdzzsg48+iG/+6JvxzgfvxDNPPRNf+dxX4qnHnup7O7NnJawAANCbT2c+HdVy51mZm7PapZfSQ18HAAAAAACgXxIsAACAvt3evt2aPaKdZuLD+cz51mceourdP//rf37sbfz4734cX//e1wda9zsvf+fY+wcAYDo8e+XZ+PfX/n3crtw+EP83vbf13qF4fVjrAAAAAAAA9OvMqAsAAABMnmeWnom12lrH79/bei9mU7MHZpZ49sqzERFxu3K74zrtHqLqdx0AAGB4zmfOR3opHT+++eO2379dejteXHtxJOsAAAAAAAD0ywwWAABA35698mzsbOzE4srioe9q1Vq8XXo7csXcgc8ffCCq3Rtn3y69Hb+/+fvHXuc0+Be/8y/i3Oy5vtd7ffv1ePv9t2O/sR9nZs7EhXMX4hvPf+MESggAwDRozhjXnKGuk1wxFxuLG/HslWcPxO238rfihdUX2iZFD2sdAAAAAACAfkiwAAAA+nY+cz6q5Wr88NoP48XVT94SW6vWYmNxI15YfSEuZC8cWs9DVL157OxjMXt2tu/1vvbc1+KN//BG7NZ3YyG1EF/9R18daDsAAEyvt0tvx05hJyIi3tt+LyIibr16q/XZhdyFQ4nWs6nZWNlZic21zZhNzcYT556Ivd29WFheaHteMMx1AAAAAAAA+iHBAgAAGMiLqy9GtVyNW/lbcXfvbtyt343Z1Gx86a0vtZ1tIsJDVCftqceeirXfWBt1MQAAmGAXshcGirNnU7NxqXBpLNcBAAAAAADolQQLAABgYOmldN8zSHiICgAAAAAAAAAAGEcSLAAAAAAAAAAAAACAkfrFL34x8Lo/+9nP4qtf/Wrs7OzE4uJivPHGG/H000/3vZ179+4NXAbgdJBgAQAAAAAAAAAAAACM1JNPPpnIdjY3N2NhYWHg9b/3ve8lUg5gMkmwAAAAAAAAAAAAAIARuHvv7sDrfvDRB/HNH30zqn9fjfSvpOMrn/tKPPXYUwNta/bs7MDlADhNJFgAAAAAAAAAAAAAwAj8wV/+QSLb+fFHP46vf+/rA6//nZe/k0g5juPnP//5wOv+3u/9XvzVX/1VfPzxx/HII4/E7/7u78af/dmf9b2de/fuxd/+7d8OXA5g8kmwAAAAAAAAAAAAAABG6lOf+tTA637729+OL3/5y7G1tRUXL16Mb33rWwNt7969ewOXATgdJFgAAAAAAAAAAAAAwAj86Rf+dOB1X99+Pd5+/+3Yb+zHmZkzceHchfjG899IsHST4+mnn47vfve7oy4GcApIsAAAAAAAAAAAAACAEZg9Ozvwul977mvxJ//hT2L3v+zGwq8uxD/7R//sWNsDQIIFAAAAAAAAAAAAAEycpx57KlZ/czX2zu/F/O35ONM4M+oiAUw8IykAAAAAAAAAAAAAADD1JFgAAAAAAAAAAAAAAABTT4IFAAAAAAAAAAAAAAAw9SRYAAAAAAAAAAAAAAAAU0+CBQAAAAAAAAAAAAAAMPXOjroAAKfVjUs3jrX+/sx+7J3fi3dffzfONAbPh3vl1ivHKgcAAAAAAAAAAAAATAMzWAAAAAAAAAAAAAAAAFNPggUAAAAAAAAAAAAAADD1JFgAAAAAAAAAAAAAAABT7+yoCwAAAADj6salG6MuQuzP7MevfePXRl0MAAAAAAAAAIBTzwwWAAAAAAAAAAAAAADA1JNgAQAAAAAAAAAAAAAATD0JFgAAAAAAAAAAAAAAwNQ7O+oCAAAAAAAAAAAAAMCw3bh0Y9RFAGDMmMECAAAAAAAAAAAAAACYehIsAAAAAAAAAAAAAACAqSfBAgAAAAAAAAAAAAAAmHoSLAAAAAAAAAAAAAAAgKknwQIAAAAAAAAAAAAAAJh6EiwAAAAAAAAAAAAAAICpJ8ECAAAAAAAAAAAAAACYehIsAAAAAAAAAAAAAACAqSfBAgAAAAAAAAAAAAAAmHoSLAAAAAAAAAAAAAAAgKknwQIAAAAAAAAAAAAAAJh6EiwAAAAAAAAAAAAAAICpd3bUBQAAAAAAAAAAAIbnVv5WfDb32UgvpY9c7m79bnz/6vcjIuKJc0/E3u5eLCwvxIXshUTXAQAAGBcSLAAAAAAAAAAA4JSrVWtRLVdjp7ATtyu347O5zx65/N363dhY3IhcMRfnM+dbn9/K34p3t96N5fXlRNYBAAAYJxIselSv1+Pq1asREXHu3LnY3d2N5eXlyGazA2+zWq3G+vp6RETs7e1FvV6P5eXlWF1d7bruR/c+irv37va9zw8++iC++aNvxjsfvBPPPPVMfOVzX4mnHnuq7+1ERMyenR1oPQAAAAAAAAAAhmdnYyeqm9VIL6djaX0pvr387a7rFHPF+PXsrx9IlIiIuFS4FOtz67GwvHBoBoxB1gEAAJJlxrrjkWDRg3q9HouLi1EsFiOTybQ+z+fzsbW11UqS6EepVIqtra0oFAoHPl9cXIxCoRC7u7tHrv/P//qf973Ph/34734cX//e1wde/zsvf+fYZQAAAAAAAAAA4GQtrizG4spiRETcrtzuunxztouXCy+3/f7C5Qvxw/UfHnhga5B1AACAZJixLjkSLHqQy+Uim80eSK6IiCgUCjE3NxfLy8uxtLTU8/bq9XrcvHkzisXioe+uX78ei4uLkc/nDyVfAAAAMJ1+dONH8e7r78aZxpmRluOVW6+MdP8AAAAAwHBsF7YjImIuPdf2+/mF+ahsVOJu/W7MpmYHXgcAADg+M9YlS4JFF9VqNcrlcsdkh8uXL8f6+npfCRbb29tRKpVibW3t0OwXzSSOcrl85Db+xe/8izg3e67nfTa9vv16vP3+27Hf2I8zM2fiwrkL8Y3nv9H3dgAAAAAAAAAAOJ1+WvnpkUkQzSSK97bfaz1ANcg6AADA8ZmxLlmjffXlBGgmVqTT7Rt7YWEhyuVy1Ov1nrc5Pz8fqVQqzp3rnCCRSqWO3MZjZx+L2bOzff987bmvxef+u8/Fk48+GZ/77z4XX3vuawNtZ/asNwkAAAAAAAAAAJxGtWotHp9/vOP3zUSKWrV2rHUAAIDh62X2uWq5Gnfrd4+1zqQyg0UXlUrlyGSHZuLF9vZ2z7NYZDKZqNXanyxWKpWIiL5mxOjHU489FWu/sXYi2wbG041LN0ZdhIiIeOXWK6MuAgAAAAAAAMCpsv/xfjT2G5/8fm8/ke3e2bvT8cGpiGglUjz48NQg6wAAAMNnxrqjSbDoolqtxvz8fMfvm8kX1Wo1kf2tra1FOp2O9fX1RLYHAAAAAAAAAMDptPf/3Yu9/89e6/cP4oNEtttrEsSH7394rHUAAGBS/OIXvxh43Z/97Gfx1a9+NXZ2dmJxcTHeeOONePrpp/vezocfJhNLm7HuaBIsutjb22vNUtFOM/miXq8faz/VajXW19cjnU7H5uZm1+Xv3LsTP7/389bvj555NB595NFjlWEaNWYa0YhGNGYasR/JvMVhmqnPZJ22+rx3797I97+/vz/ycpwW6jNZ6jNZ6jNZ+/uT/2/QJBLv86BxiguNrePDv3d0om/Qjn5BO2L90fjw4w/jsXuPtX4X60+GcYrJ6Z/2m2zab7Jpv8mm/SbH3P95LlILqdbve3f3Iv56ZMWZWq7rJ8PYkyz1mSz1mSz1mazTVJ/jcB3bNfVknab6fPLJJxPZzubmZiwsLCSyrUGZse5oEiy66DVx4v333x9o+6VSKba2tqJarUY6nY7l5eWe1lv767UDv38h84X44vNfHKgM06wRjbjzK3diL/ZiJmZGXZyJpz6Tddrq8wc/+MFI97+/vx8/+clPIiLizJkzIy3LaaA+k6U+k6U+kzVonMvxiPd50DjFhaOO6fiEf+/oRN+gHf2CdsT6oyHWn0zjFJPTP+032bTfZNN+k037Ta5f3Bn8rboPmk3N9vRg1BPnnjjWOqeFWD8Zxp5kqc9kqc9kqc9knab6HIf7ka6pJ0t9jicz1h1NgsWIZbPZyGazrd+Xl5ejUCjE9evXI5VKdVxv/XfWY272kyygR888Go/elvner8ZMI/ZiL+Z/Oh8zjckOLMaB+kzWaavPl156aaT7b2bAvvDCC3H2rH/+jkt9Jkt9Jkt9Jqt5kstwifd50DjFhaOO6fiEf+/oRN+gHf2CdsT6oyHWn0zjFJPTP+032bTfZNN+k037TbA7yWym+fbZjrvZu7+j2dTssdY5LcT6yTD2JEt9Jkt9Jkt9Jus01ee7r7876iJEY6YR/+D/8Q9cU0/IabpH0etL+9vJZrPxve99Lz7++ON45JFH4p/8k38SpVKp63r3ProXH3/0cev3d999NzK/lRm4HPRmsnvqEKRSqZ4OiHPnziWyv2KxGHNzc1Gv12Nzc7Pjco+ffTyePPvQVDONRIowVfZjP2ZiJmYaM3GmITPuuNRnsk5bfY5DcHTmzJk4e/bsWJTlNFCfyVKfyVKfyen29oDblduxXdiOu3t343bldsymZmMxvxiLK4ttl9/Z2Im3i2/HYn4x0kvpmE3NRq1ai9uV2/Gfbv6neOm1l+J85vyh9e7W78b3r34/Iu6/2Wpvdy8WlhfiQvbC8f/IMSTe50HjFBcaV8eLf+/oRN+gHf2Chx0V6w8zbp+2WP+JR54Q60+gcYrJ6Z/2m2zab7Jpv8mm/SZXUg9VzqXn4r3t9zp+33x77Vz6k6SCQdY5LVzXT4axJ1nqM1nqM1nqM1nqM1n7se+aesJOS30+9dRTA6/7b/7Nv4kvf/nLsbW1FRcvXoxvfetbA23vw4+TmR3CjHVHm+yeOgTz8/NHfr+3txcRceRsE/1IpVKRzWajVCpFuVyOpaWlRLYLAABJ29nYiYiIS4VLrc+q5WoUc8X44foPY2Vn5dBbqO7W70a1XI1quXrg89nUbOSKuY4PaW0sbhz6/lb+Vry79W4sry8n+WcBAMDUG1bcLtYHAIDx9enMpw+dEzyoVq1FRER6KX2sdQAAoBe/+MUvBlrvZz/7WXz1q1+NnZ2dWFxcjDfeeCOefvrpgbb15//0zwdar+lLZ78UX/qtL0VExF/93/9qoG383d2/O1YZmsxYdzQJFl2k0+nY3t7u+H1zdot0uveTv3q9Hnt7ex3XaX6+ubkpwQIAgLFUq9bibv1uvLj64oHP00vp+NJbX4qNxY0o5orx+5u/f2jdlwsvx97uXtSr9Zidn43PLH6m44wXERHFXDF+Pfvrhx7iulS4FOtz67GwvOBmDAAAJGwYcbtYHwAAxtezV56Nf3/t38ftyu22Sdbvbb13KF4fZB0AAOjFk08+2X2hLjY3N2NhYWHg9b/z8neOXYZxYca6o0mw6CKTyUS5XO74fbV6P/O+n0SIubn7HadWq7Wd+eLcuXMR8UnyBgAAjJvtwnb89mu/3fa785nzkV5KR7VcjVq1dujE6bOXP9tztnqtWotquRovF15u+/2Fyxfih+s/dEMGAAASdtJxu1gfAADGW/Na/49v/rhtssTbpbcPvWRpkHUAAIDhM2Pd0c6MugDj7sqVKxERUalU2n6/tbXV9ywTqVQq0ul02+SKiIjd3d2IiFhc7Pw2MAAAGKV3yu/Ev3zmX7ayzx/26cynIyLiduX2sfazXbg/m1yn7Pb5hfmolqsdywEAAJy8QeJ2sT4AAIxO88GnbvF2rpiL/1z6z4eu9d/K34oXVl9o++DUIOsAAEA3P//5zwf6WV5ejkceeSQiIh555JFYXl4eeFunybNXno2Izs/1dJqxrt91JpUZLLrIZDKxtLQUN2/ejEwmc+j7UqkUm5ubhz6v1+tx9erVWF5ePpSAsbKyEvl8vuM+33zzzUilUnH58uXj/wEAAHACHp9/PG5XbketWmv7Fqqk/LTy0yPfmtt8GOu97dNzkgYAAJNmkLhdrA8AAMP1dunt2CnsRMT9ODsi4tart1qfXchdiMWVgy8CnU3NxsrOSmyubcZsajaeOPdE7O3uxcLyQlzIXmi7n0HWAQAYN3fu3Ilf/OIXcfZs/49Z/+xnP4uvfvWrsbOzE4uLi/HGG2/E008/3fd2PvWpT/W9zmk2aH18+9vfji9/+cuxtbUVFy9ejG9961vqNsxY140Eix4Ui8VYXFyMK1euHEiyyOfzsbq62nYGi42Njbh27VpsbGxErVY78N36+nrk8/nI5XKH1s3lchER8dZbb3Wc4QIAAEbt9zd/P2rVWse3zdar9YiII5Mvbldux3vb78Vnnv9Mx+Vq1Vo8Pv94x200H8hqvm0LAABo795H9+Ljjz5u/f7Ln/+yp/VOKm4X6wMAwHBdyF4YKMFhNjUblwqXTnwdAIBx8sUvfjGR7WxubsbCwsJA6zYajUTKMO2efvrp+O53vzvqYgxVPzPWbSxuxLNXnj1w/b/bjHX9rjOJJFj0IJVKxc7OTqytrUUqlYpz587F7u5uLC8vRzabbbvO0tLSkbNQFAqFKJVKkcvlYn5+Pvb29qJer0cmk4l33nlHcgUAACPRz0NXnZIrIu5npZ/PnG+7TLVcjVq1FumldCyuLMbtyu349vK348W1Fw+daN3Zu3PkfpoPZHU7KQQAgGn3g6s/iH/3P/271u8fnPngyOVPOm4X6wMAAAAA0Ksbl26MughjzYx1yZJg0aNUKhWFQqHn5TOZzKGZKx6WzWY7JmgAAMAo9PvQVTs/vPbDiIi4dP3w26maD1C9uPpi67PzmfORK+ZifW49VnZWDmS49/ow1Yfvf9h3OQEAYJq89NpL8Vvf+K3W7z/5yU/ijz/3x22XHUbcLtYHAAAAAMbVX/zFX8QLL7wQZ8/2/5j17/3e78Vf/dVfxccffxyPPPJI/O7v/m782Z/9Wd/bGZeEglduvTLqItADM9YlS4IFAADQ0s9DV+3crtyO8lo5csXcgQeumo7KcL+QvRDFXDH+cPcP+y84AABwpLOPnY2zj31yS+DRJx/tuKy4HQAAAACYZo8//nh86lOfGijB4tvf/nZ8+ctfjq2trbh48WJ861vfik996lMnUMrhOG6ix/7Mfuyd34t3X383zjTOJFQqOFkSLAAAgJZ+Hrpqp5grxsuFlwfKiv/Mxc/E26W3o1attd6YO5ua7enNtk+ce6Lv/QEAAP1LKm4X6wMAAAAAp9HTTz8d3/3ud0ddDOAYpAIBAACJKOaKsZhfjMWVxYHWn03NRsT9WTCaHp9//Mh17uzdObAuAABwspKK28X6AAAAAADAOJJgAQAAHNvm2mZ85uJn4sXVFzsucyt/K/7Vwr/qa7tz6bnWg1XtNN9423xzLgAAcDzDitvF+gAAAAAAwDg6O+oCADAdbly6MdL978/sx69949dGWgaA02pnYyfmF+bbzlxxt373kzfcbt/u6QGq85nzrc8+nfl0VMvVjuvUqrWIiEgvpQcqOwAAcNCw4naxPgAAAAAAMI7MYAEAAAzs7dLbERFtkytq1dqBB6aeWXom1mprHbf13tZ7MZuaPfCG2mevPBsREbcrtzuu44ErAABIzrDidrE+AAAAAAAwjiRYAAAAA7lduf9m23bJFRER1XL1wFttn73ybOxs7LRdtlatxdult+PS9UsHPj+fOR/ppXT8+OaP2673dunteHHtxQH/AgAA4GHDitvF+gAAAAAAwDiSYAEAAPStVq1FMVeM93bei1v5W4d+irlilNfKB95qez5zPu7W78YPr/3w0LY2FjfihdUX4kL2wqF95Yq5+M+l/3zozba38rfihdUXvNUWAAASNMy4XawPAAAAAACMm7OjLgAAADB5vr387ahVa1HbqHVc5sHkiqYXV1+Markat/K34u7e3bhbvxuzqdn40ltfOjDbxYNmU7OxsrMSm2ubMZuajSfOPRF7u3uxsLzQ9sEuAADgeIYVt4v1AQAAAACAcSPBAgAA6Nsf7v7hwOuml9J9v4l2NjUblwqXBt4nAADQn2HF7WJ9AAAAAABgnEiwAAAAAHpy49KNURchXrn1yqiLAAAAAAAAAACcUmdGXQAAAAAAAAAAAAAAAIBRM4MFAAAAAAAAAAAAAEBE/OjGj+Ld19+NMw3vsYdp5MgHAAAAAAAAAAAAAACmngQLAAAAAAAAAAAAAABg6kmwAAAAAAAAAAAAAAAApp4ECwAAAAAAAAAAAAAAYOpJsAAAAAAAAAAAAAAAAKaeBAsAAAAAAAAAAAAAAGDqSbAAAAAAAAAAAAAAAACmngQLAAAAAAAAAAAAAABg6p0ddQEAAAAAenXj0o1RFyEiIl659cqoiwAAAAAAAAAAJMwMFgAAAAAAAAAAAAAAwNSTYAEAAAAAAAAAAAAAAEw9CRYAAAAAAAAAAAAAAMDUOzvqAgDAsPzoxo/i3dffjTON0eYXvnLrlZHuHwAAAAAAAAAAALq5e+/uwOt+8NEH8c0ffTOqf1+N9K+k4yuf+0o89dhTA21r9uzswOWAfkmwAAAAAAAAAAAAAADggD/4yz9IZDs//ujH8fXvfX3g9b/z8ncSKQf0QoIFAAzZjUs3Rl0Es2gAAAAAAAAAAAAAPESCBQAAAAAAAAAAAAAAB/zpF/504HVf33493n7/7dhv7MeZmTNx4dyF+Mbz30iwdHAyJFgAAAAAAAAAAAAAAHDA7NnZgdf92nNfiz/5D38Su/9lNxZ+dSH+2T/6Z8faHgyLBAsAAAAAAAAAAAAAABLz1GNPxepvrsbe+b2Yvz0fZxpnRl0k6ImeCgAAAAAAAAAAAAAATD0JFgAAAAAAAAAAAAAAwNSTYAEAAAAAAAAAAAAAAEw9CRYAAAAAAAAAAAAAAMDUOzvqAgAAAABMmhuXbox0//sz+7F3fi/eff3dONMY7fszXrn1ykj3DwAAAAAAAABJkWABAFPouA8EJvVAn4fxAAAAAAAAAAAAgHEx2lccAgAAAAAAAAAAAAAAjAEJFgAAAAAAAAAAAAAAwNQ7O+oCAAAAAAAAAAAAAABw3917dwde94OPPohv/uib8c4H78QzTz0TX/ncV+Kpx54aaFuzZ2cHLgdMKgkWAAAAAAAAAAAAAABj4g/+8g8S2c6P/+7H8fXvfX3g9b/z8ncSKQdMkjOjLgAAAAAAAAAAAAAAAMComcGiR/V6Pa5evRoREefOnYvd3d1YXl6ObDY78DYrlUoUCoXY29uLSqUSqVQq8vl8rKysJFVsABhrNy7dGHUR4pVbr4y6CAAAAAAAAAAAAC1/+oU/HXjd17dfj7fffzv2G/txZuZMXDh3Ib7x/DcSLB2cbhIselCv12NxcTGKxWJkMpnW5/l8Pra2tmJ9fb3vbW5sbERERKFQaH1WLpcjl8vF+vp67OzsRCqVOnbZAQAAAE6SpFkAAAAAAABI1uzZ2YHX/dpzX4s3/sMbsVvfjYXUQnz1H331WNuDaSPBoge5XC6y2eyB5IqI+8kRc3Nzsby8HEtLSz1vr1qtRr1ej9XV1QOfLy0txVtvvRWLi4uRy+Vic3MzkfIDAAAAAAAAAAAAAKffU489FWu/sTbqYsDEOjPqAoy7arUa5XI58vl82+8vX77c9wwWhUIhVlZW2n6XyWRiaWkpyuVyVKvVvssLAAAAAAAAAAAAAAD0zwwWXRQKhYiISKfTbb9fWFiIjY2NqNfrkUqletpmuVyOjY2NeOedd9quk8lkolwuR6VS6bhfACAZNy7dGHURYn9mP37tG7826mIAAEyscYjpIiJeufXKqIsAAAAAAAAAwDGYwaKLSqVyZOJEMwFie3u7523Oz89HvV43QwUAAAAAAAAAAAAAAIwJM1h0Ua1WY35+vuP3zeSLfpIlNjc3o1qtdpydormtTCbTe0EBAAAAAAAAAAAAAICBSbDoYm9vr2MiRES0ki/q9Xpf2z1qm6VSKTKZzJHL3Ll3J35+7+et3x8982g8+sijfZWBiMZMIxrRiMZMI/Zjf9TFmXjqM1nqM1nqM1nqM1mNmUb8xxv/Mf73P/7fY6YxM9KyXPl/Xxnp/pNw79692N/fj3v37o26KKfC/r5jfBTE+zzIv7u0o1+Mp3GIP8RCtKNf0I5YfzQ+/PjDeOzeY63fxfqTQew12bTfZNN+k037TTbtN7kaM41RF2Equa6fDGNPstRnstRnstRnstRnstRnstRnshoh3h8GCRZd9Jo48f777yeyv2vXrkVExPXr149cbu2v1w78/oXMF+KLz38xkTJMk0Y04s6v3Im92IuZGO0DraeB+kyW+kyW+kyW+kzWONXnn3ztT0a6/4iIz73yuWOtv7+/Hz/5yU8iIuLMmTNJFGmqJRXn0h/xPg8ap38nGB/6xXgah1iqEY341d/61YgQC/EJMTLtiPVHQ6w/mcRek037TTbtN9m032TTfpPr7+/8/aiLMJXE+skw9iRLfSZLfSZLfSZLfSZLfSZLfSbr53d/3n0hjk2CxRipVCqxtrYWxWIxMpnMkcuu/856zM3OtX5/9Myj8ehtme/9asw0Yi/2Yv6n8yN/Y/hpoD6TpT6TpT6TpT6TpT4Peumll461fvOtvC+88EKcPSvcPa7mg3gMl3ifB/l3gnb0CzppzDTiM//gM2IhDhAj045YfzTE+pNJ7DXZtN9k036TTftNNu03we6MugDTSayfDGNPstRnstRnstRnstRnstRnstRnshp3zGAxDO6mdZFKpXqaxeLcuXPH3lcul4tCoRDZbLbrso+ffTyePPvkwQ8dM33bj/2YiZmYaczEmYa39x2X+kyW+kyW+kyW+kyW+jyo+HvFY62/P7Mfe+f34vb/6/ax6vOVW68cqxynhTccj4Z4nwf5d4J29As62Y/9OHPmTJw9e9aD9BygX/Awsf5oPPHIE2L9CST2mmzab7Jpv8mm/Sab9ptcHlobDdf1k2HsSZb6TJb6TJb6TJb6TJb6TJb6TJZZQIbD3bQu5ufnj/x+b28vIu4nYhxHLpeLfD4fKysrx9oOAAAAANPtRzd+FO++/u5IL1JLVgUAAAAAAAAmkVSgLtLpdCuJop3m7BbpdHrgfaytrcXFixdjdXV14G0AAAAAAAAAAAAAAACDk2DRRSaTaSVRtFOtViMiYmlpaaDtb2xsxMLCQtvkiqP2CwAAAAAAAAAAAAAAJOfsqAsw7q5cuRLXrl2LSqUSmUzm0PdbW1sDJ1eUSqWIiFhZWTn0XbVajUqlEtlsdqBtAwBwPDcu3Rh1EcbC3939u1EXAQCYQGKpT7xy65VRFwEAAAAAAADokQSLLjKZTCwtLcXNmzfbJliUSqXY3Nw89Hm9Xo+rV6/G8vJy2wSMSqUSe3t7bZMrIiLK5fLAiRsAADAsd+t34/tXvx8REU+ceyL2dvdiYXkhLmQvjLhkAADjYRySTfZn9uPXvvFroy4GE0asDwAAp5NYHwAATi/xfjIkWPSgWCzG4uJiXLly5UCSRT6fj9XV1baJEBsbG3Ht2rXY2NiIWq124LtqtRq5XC6WlpYin88fWndvby/K5fKh9QAAYJzcrd+NjcWNyBVzcT5zvvX5rfyteHfr3VheXx5h6QAAgEGJ9QEA4HQS6wMAwOkl3k+OBIsepFKp2NnZibW1tUilUnHu3LnY3d2N5eXlyGazbddZWlqKVCoVly9fPvTd8vJyVKvV2NjY6LjPdDrd9vP/+l//a0RE/HL/lwP8JTzslx//Mv5i+y/iyqevxGNnHht1cSae+kyW+kyW+kyW+kyW+kyW+kxWM+5sxqEPKuaK8evZXz9wUhYRcalwKdbn1mNheSHSS+3jWtoT79OOcY129As60Tdo55cf/zLW/5/r8b9++n8dab945dYrI9s3hzVjT7E+dOff18mm/Sab9pts2m+yab/TSayfPNf1k2XsSZb6TJb6TJb6TJb6TJb6TJb6TJbneIZDgkWPUqlUFAqFnpfPZDIdZ6DY3d0duBwfffRRRETc27838Db4xC/3fxl/WfnL+B+/8D8auBOgPpOlPpOlPpOlPpOlPpOlPpPVjDubcWhTrVqLarkaLxdebrvehcsX4ofrP3Ri1ifxPu0Y12hHv6ATfYN2xqVf3Lh0Y2T7HkejTjhpxp5ifehuXMZRBqP9Jpv2m2zab7Jpv9NHrH8yXNdPlrEnWeozWeozWeozWeozWeozWeozWZ7jGY4zoy4AAAAwebYL2xERMZeea/v9/MJ8VMvVuFu/O8xiAQAAxyTWBwCA00msDwAAp5d4P1lmsAAAAPr208pPYzY12/H75gnbe9vvyX4HAIA2Rj2jx//28/+t7edifQAAOJ3E+gAAcHqJ95MlwWLC7O/vR0RE/W49nnjkiRGXZvJ9+PGHERFRu1uLjx75qMvSdKM+k6U+k6U+k6U+k6U+k6U+j2f/4/2Ixie/135Ru//5f4tDW59Xa/H4/OMdt9M8aatVa8kX8hQT79OOcY129As60TdoR78gQqw/as16rt1Vb5PIODrZtN9k036TTftNNu03OR6O9et36/c/F+sPhev6yTL2JEt9Jkt9Jkt9Jkt9Jkt9Jkt9Ho9r+6Mx02g0Gt0XY1z84Ac/iN/+7d8edTEAAJgy3//+9+Oll15q/b4+tx5z6blY2Vlpu/ztyu3YWNyIpfWleHH1xWEVc+KJ9wEAGDax/nBsbW3FP/7H/3jUxQAAYIr8zd/8TVy8eLH1u1j/ZLiuDwDAKLi2f7LMYDFhfvM3fzP+5m/+Jp5++uk4c+bMqIsDAMApc++/3ov9jz7Jct/f34//o/5/xMXfuHhgubv1uz1t78P3P0y0fKedeB8AgJMi1h+t5557TqwPAMCJ6BTrP/fccweWE+ufDNf1AQA4Sa7tj4YEiwlz9uzZA28YAACAk/bfx38/6iJMDfE+AADDJNYfHrE+AADDJNYfHrE+AADDJt4/eVKnAQCAvs2mZnvKfn/i3BNDKA0AAJAUsT4AAJxOYn0AADi9xPvJkmABAAD07fH5x4/8/s7enYi4fwIHAABMDrE+AACcTmJ9AAA4vcT7yZJgAXACSqXSqIsAcKoYV8fPXHqudfLVTjMrfi49N6wiAQAACRDrAwDA6STWBzjMfWiAZBlXR0e8nywJFgAJq9frkcvlYmNjI+r1+qiLAzDxjKvj6dOZTx85tWCtWouIiPRSelhFAgAAEiDWBwCA00msD3CQ+9AAyTKujpZ4P1kzjUajMepCcLR6vR5Xr16NiIhz587F7u5uLC8vRzabHXHJRq9SqUShUIi9vb2oVCqRSqUin8/HyspK2+U3NjaiWCxGPp+PpaWlSKVSUa1Wo1KpxM2bN+O1116LTCZzaL1paINh1s1pr89KpRKLi4s9LVssFlt/t/55UD6fj1wuF0tLS0cuN6w+OOn13Gt9Gld700t9Gld7160+javd9XvsRhy/rz1699H4y3/1l5Ffz8erq68eWraYK8bd+t24VLw0cfU5TJPY37jvNMQq+l+yRjEWj9s6tFetVmN9fT0iIvb29qJer8fy8nKsrq52XGec21nfODn5fD7W1tYinW5/YXuc21i/OJ5xO3+8XbkdG4sbsbKzEucz5w+ts/nGZvzDJ/9h/M//8X8+1n5gVAaJ244y6DHMYAaJrboxZg1P0u3n+Bu9bjFsN46/0TpO+zn+JtPDsf7Dmtf1f3/z90dQusli/BrMsO5FT4Npug96koZ9H/q0Grd7ZpNu3J7vmXTj9nzPpBu353sm1UndV07i2j4PaDDWarVaI51ON3Z2dg58vrKy0lhdXR1RqcZDoVBoFAqFA59tbm42UqlUI51ON2q12qF11tfXGxFx6CeVSjU2Nzfb7mda2mBYdTMN9VksFhvpdLqRzWYbKysrbX+y2Wwjk8kcWE//bDR2d3cbhUKhkclkGhHR8e9uGlYfnNR67rc+jatH67c+jatH66c+jatHG+TYTaqv/eulf9344v/li23X+aP4o8bf/tnfTlx9DtMk9rdpd5piFf0vWaMci8dlHdorFott6yyTyTTS6XTbdca5nfWNk7Ozs9OIiEN12zTObaxfHN84nj/+66V/3fi3q/+27Tp/FH/U+Kf/13+qTzCRBonbuhnkGGYwg8RW3Rizhuck2s/xN1rdYthuHH+jddz2c/xNrmas384fxR81djd3h1yiyWP8Gsyw7kVPi2m5D3rShnkf+rQZ13tmk2pcn++ZVOP6fM+kGtfneybVSd9XPs61fQ6SYDHmlpaWOnbm0zh49Gp3d7exvr7e9rvmxaClpaVD362vrzcKhUJjdXW1NYg/PFg9bFraYFh1Mw31ubq62tjdPfrCU7tlpr1/FgqFRjabbRQKhcbm5mZPAe6w+uAk1nO/9WlcPdog/dO42lm/9Wlc7WzQYzepvnandqfxL9P/svHUrzx1YJ0/X/nzxr9d/bcTV5/Dpn4my2mLVfS/5Ix6LB6XdTisVqs1stls2++afWNlZeXQd+PczvrGyVlaWjry4aZxbmP94vjG8fyxGev/9m/89oF1mrF+UvuBYRo0butmkGOY/g0aW3VjzBqOk2o/x99odYthe1nf8Tc6x20/x9/kasb67+28d+DzB2N9jmb86t8w70VPi2m4DzoMw7wPfZqM8z2zSTTOz/dMonF+vmcSjfPzPZNoGPeVj3Ntn4MkWIyx3d3dRkR0HHBWVlYGuth/Gqyurh75JqnmBaF2A3E/b6CapjYYRt1MS312y/Db2dlpGwDon59oBgzdThiG0QdPQz33Up/G1d71Up+NhnG1V732z27bmNZxdZBjN+m+dqd2p/E//MP/ofHc/+m5xg/Wf9D485U/b/yn4n+ayPocJvUz2SY9VtH/kjUOY/Go16G95oXmTrFMRBx6U+84t7O+cXKabyvq9HDTOLexfpGMcT1/fPtv325ERON/WflfDsT6Se8HhmXQ61/d9HsMM5hBYqtujFnDcxLt12g4/kapWwzbjeNvtI7bfo2G42/S3andaT1g1S7WpzPj12CGdS96mkzDfdBhGNZ96NNsnO6ZnQbj9HzPaTBOz/ecBuP0fM+kGtZ95UGu7XPYmWBsFQqFiIhIp9Ntv19YWIhyuRz1en2IpRoP5XI5nnnmmY5/eyaTiYiISqVyrP1og84GqZtpqc98Pn/k94VCIVZWVo69n2mpz06G1QenpZ6Nq6Onf3ZmXO1skGM36b42m5qN3/2//W787f/vb+OzK5+NS4VLcSF7YSLrc5jUz+k3zrGK/pescRiLR70O7c3Pz0cqlYpz5851XCaVSh34fZzbWd84GdVqNSI612vEeLexfjEaw2qrb934VkREfKnwpXhx9cVWrJ/0fmBYhnX9i5MxSGzVjTFreE6i/RidXmLYbhx/o5NE+zH5ZlOzcalwKZbXl9vG+nRm/BqMWHz09N32hnUfetq57pgsY+ro6Z+dGVePNqz7yoNc2+cwCRZjrFKpHHkxsXnAbG9vD6lE42N+fj7q9XrrAtBJ0QadDVI301KfR12QXFtbi/X19UT2My312cmw+uC01LNxdfT0z86Mq50NcuwaP8eD+jn9xvlY0/+SddrGYv0jOZlMJmq1Wqyurh76rnlhdGlp6dDn49rO+sbJ6OVmwji3sX4xGuPcvvoE42xY1784GYPEVt0Ys4bnJNqP0UnigRjH3+hM+wNNcFzGr8GIxUdP321vWPehp51rTMkypo6e/tmZcfVo43xfmcPOjroAdFatVmN+fr7j980DYBr/sdzc3IxqtdpxQG7WSTOjq51KpRLb29vx/PPPd1xuWtvgpOpmWuuzqVKpxMLCQk9vYdI/uxtWH5yWejaunizj6skwrg527Bo/x4P6Of3G+VjT/5J12sZi/WM41tbWIp1OH7qQPM7trG8kr1QqdX2bU8R4t7F+kbxxOn/UJzhtkrj+1U0vxzDJ6xRbdWPMGg+Dtt/DHH/D0WsM243jbzSSar+HOf6YJsavwQzrXvS0Oq33QUcp6fvQ0841pmQZU0+WMfVkGFfvG+f7yhxmBosxtre3d+SA0jwApnWalqOy3UqlUmQymbbLlMvluHbtWkRE6+0cy8vLUS6XDy07bW1w0nUzbfX5sKtXr3Z9I4z+2bth9cFpqmfjavKMqyfLuHpfv8eu8XM8qJ/Tb5yPNf0veadpLNY/Tla1Wo18Ph/pdDp2d3cPfT/O7axvJKv5hqKjxo+mcW5j/SI543j+qE9wGg16/aubfo5hktMtturGmDVax22/Jsff8PQTw3bj+Bu+JNuvyfHHNDJ+DW4Y96KnzTTcBx2VpO9DTzvXmJJnTE2eMfVkGVc/Ma73lTnMDBZjrNfO+/77759sQSZMc5C9fv36oe+aA8+DUxBnMpkoFosxNzcXOzs7B7K/pqkNhlE301SfDyuVSl0vWOqf/RlWH5z2eo4wrg7KuHqyjKvddTp2jZ/jQf2cfuN8rOl/wzOJY7H+cTJKpVJsbW21HmZZXl5uu9w4t7O+kayrV6/2/JbmcW5j/SIZ43r+qE8wTY66/tVNv8cwx9drbNWNMWs0kmq/CMffsPUTw3bj+Bu+JNsvwvHH9DJ+JS/Je9HTZNrvg56kk7gPPe1cYxoeY+pgjKkny7jam1HfV+YwCRacKpVKJdbW1qJYLLYdULPZbNv1UqlUZLPZyOVyx3pLziRTNyfr6tWrXW/OaQPGkXF1cOrmZBlXj9bt2AXg5BmLeVA2mz0QmywvL0ehUIjr16/3NB0yp0u5XD7Wg4ScPtN87gLj4Lhxm2N4+MRWky3J9nP8DY8YdrKdRPs5/oAkuBc9OHVzctyHZlIZUwenbk6WcbU795XH05lRF4DOUqlUT5lE586dO/nCTIhcLheFQqHjgHuUixcvRrVajWq12vpMG9yXVN1Ma31Wq9WoVCrH+sdP/zxsWH1w2uvZuHoyjKvHY1zt7qhj1/g5HtTP6TfOx5r+NxyTOhbrH8NRLBajVCpFLpc78Pk4t7O+kZzNzc1YWlrqeflxbmP94uSN8vxRn2BaHOf6VzftjmGS1ym26saYNR4Gbb9uHH/J6jeG7cbxN1xJt183jj9OM+NXspK+F819p/0+6Ek6qfvQ0841puEwpp4MY+rxGFd7Mw73lTlMgsUYm5+fP/L7vb29iAhv4/lvcrlc5PP5WFlZGWj9Zj1WKpXWZ9rgvqTqZlrrs1AodJ3mqhv987Bh9cFprmfj6skxrh6PcfVo3Y5d4+d4UD+n3zgfa/rfyZvksVj/GI7Uf3vjTrlcjnK53Pp8nNtZ30jGtWvX4rXXXutrnXFuY/3i5I3y/FGfYBoc9/pXN+2OYZLXKbbqxpg1HgZtv162G+H4S8IgMWw3jr/hOYn268bxx2lm/ErOSdyL5r7TfB/0pJ3Ufehp5xrTyTOmnhxj6vEYV7sbl/vKHCbBYoyl0+lWR26nmWF03AHoNFhbW4uLFy/G6upqx2Xy+XwsLCz0td1paYNh1c201OfDyuVy179J/+zfsPrgtNazcfV4jKsny7jaWS/HrvFzPKif02+cjzX972RN+lisfySnXq8f+TadZh1ubm4e+Gxc21nfOL5qtRqpVKrvC9bj3Mb6xfGN8/mjPsFp10vc1s0gxzCDGSS26saYNTwn0X6Ov+EYNIbtxvE3HCfVfo4/ppnxKxkndS96WkzrfdBhOKn70NPONaaTZUw9HmPqyTKuHm2c7itzmASLMZbJZI6cpqV5IXKY03mOo42NjVhYWGg7yDxYf9vb2z0NGg9ORzQtbTCsupmW+nxYpVLpeuFS/+zfsPrgNNazcfX4jKsny7jaXq/HrvFzPKif02+cjzX97+SchrFY/0jO3NxcLCwsdKzP5rS7+sb0qFQqUSwWY3l5+dBPPp+PiIhXX3219VnTOLexfnF843z+qE9wmvUat3UzyDHMYAaJrboxZg3PSbSf4284Bo1hu3H8DcdJtZ/jj2lm/Dq+k7wXPS2m8T7osJzUfehp5xrTyTGmHp8x9WQZVzsbt/vKHCbBYoxduXIlIjpPbbO1tTX1HbxUKkVEtJ0ep1qtHphKeGlpKWq1WsdtbW1tRSqVOpCVNS1tMKy6mZb6fFDzb+027ZL+2b9h9cFpq2fjajKMqyfHuNpeP8eu8XM8qJ/Tb5yPNf3vZJyWsVj/SE4z1uh04Xh3dzciIhYXF1ufjXM76xvHl81mY3Nzs+3P+vp6RERcv3699VnTOLexfnF843z+qE9wWvUTt3UzyDHMYAaJrboxZg3PSbSf4284Bo1hu3H8DcdJtZ/jj2lm/Dqek74XPS2m7T7osJzkfehp5xrTyTCmJsOYenKMq52N431l2mgw1paWlhqrq6ttv4uIxubm5pBLND52dnYahUKh4/eFQqGxu7vb0/K7u7uNiGgUi8VD301DGwyzbqahPh+0ubnZiIjGysrKkcvpnwft7Oz0VP5h9cFJr+de69O42pte6tO42rte+2eTcfWwfo/dRsP4OS7Uz+Q6DbGK/pes0zYW6x/JWF1dPdTuD0qlUo1UKtWo1WoHPh/ndtY3Tk6xWGxERGNnZ6ft9+PcxvrF8Yz7+aM+wWkzSNxWq9Uaq6urbfvuoMcw/Rs0tjqq/RoNY9awnET7Of5Gr1sM6/gbb8dpP8cf0874NZhh3YueBtN0H3SYTvo+9Gk1bvfMJt24Pd8z6cbt+Z5JN27P90yqcb6vzEESLMZcrVZrpNPpQxc2VlZWOnb+abC7u9tIp9ONlZWVtj/ZbLaRSqUOrbe+vt5YX18/tK1UKtWxPqelDYZVN9NSn02FQqERET39bfrnJ5oXdbsFR8Pqg5Nez73Up3G1d732T+Nqb3qtzybj6kGDHrvGz/GgfibXaYhV9L/knMaxWP9IzsrKStsLlM1+0e5BlnFuZ33j5Kyvrx/5b8s4t7F+cXzjfP6oT3CaHOf6V0S0/a75fb/HMIMZJLbq1n7GrOE5ifZz/I1WtxjW8Tfejtt+jj+mmfGrf8O8Fz0tpuE+6LCd9H3o02rc7plNunF7vmfSjdvzPZNu3J7vmUTjfl+Zg2YajUaj2ywXjFa9Xo+1tbVIpVJx7ty52N3djeXl5chms6Mu2sgsLCxEtVo9cpl0Ot2aUvhB5XI5isVi7O3tRb1ej1QqFa+99lpkMpmO25qWNhhW3UxLfUbcn2bp85//fFy/fr2nv2+a+2epVIpCoRAREdvb262///nnn4+IiFwu13ZarGH1wUmr537r07h6tEH7p3G1vUHrM8K4+rDjHLvGz/GgfibHaYxV9L9knNaxWP9ITqlUips3b8b8/HwrJslkMvHaa69FKpVqu844t7O+kax8Ph/VavXQvy2ZTCbW19cPLDvObaxfHN84nz/qE5wWg8ZtzWsRly9fbp0TPGyQY5jB9Btb9dJ+xqzhOYn2c/wNX68xrONvPCXZfo4/ppnxqz/Dvhc9LU77fdBhG8Z96NNi3O+ZTZpxf75n0oz78z2TZtyf75k0k3BfmU9IsAAAAAAAAAAAAAAAAKbemVEXAAAAAAAAAAAAAAAAYNQkWAAAAAAAAAAAAAAAAFNPggUAAAAAAAAAAAAAADD1JFgAAAAAAAAAAAAAAABTT4IFAAAAAAAAAAAAAAAw9SRYAAAAAAAAAAAAAAAAU0+CBQAAAAAAAAAAAAAAMPUkWAAAAAAAAAAAAAAAAFNPggUAAAAAAAAAAAAAADD1JFgAAAAAAAAAAAAAAABTT4IFAENXKpViZmbmwE+9Xh91sSZePp8/9jbW1tYOtMvc3FwCJQMA4DQQx58McTwAAAAAAHQ2bfcnXPMHGD0JFgCMRCqVip2dndZPKpUadZEmWrlcjo2NjWNv57XXXmu1yfr6egIlAwDgNBHHJ0scDwAAAAAA3U3T/QnX/AFGT4IFACMxPz8fmUym9dNUrVZjbm7uUOZ5tVodeF8LCwuHMrtLpdKxyp/P52Nubu7Qz8zMTFy7dq2nbdTr9VZ5Hlx/kAesisViZLPZvtd7WCqVatsuAAAQIY6PEMcDAAAAAMCwdbo/cRq55g8wehIsABgr6XQ6arVaNBqNyGazrROFQqEw0PbK5XKk0+nWthuNRtRqtWM/xFQoFKJWq0WxWIx6vR71ej2Wlpai0WjE6upqT9tIpVJRq9Xi+eefj3q9HisrK1Gr1WJlZaXv8mxsbMSVK1f6Xg8AAJIgjhfHAwAAAAAAAJwGEiwAGFsXL16MfD4fETHQ22AjIjY3N2N5eTki4kSyupeWlmJpaWng9VOpVORyuchms7G+vj7QFIblcjkiIpE33wIAwHGJ43sjjgcAAAAA4KSUSqVjzTINANNMggUAYyuVSsXzzz8f6XQ66vV6VCqVY21vfn4+oZId1Hx4rFQqDbT+zs5OrK+vD7z/QqHgoSwAAMaGOL434ngAAAAAAE7K1tbWqIsAABNLggUAY6/54FOhUOhrvVKpFFeuXDmJIh2QzWZbb6wd5A291Wo10un0wPsvlUqtOgIAgHEhjj+aOB4AAAAAgJNi9goAGJwECwDG3srKSkREvPnmm32tt7m5GZlM5iSKdMjly5cjov+HxzY2NiKXyw2831KpFKlUKpaWlgbeBgAAnARxfGfieAAAAAAATlK5XB51EQBgYkmwAGDsNR88qtfrUSqVelqnXq/HwsLCCZfsE803z1Yqlb7eAlAsFlsPng3i5s2brYfCAABgnIjjOxPHAwAAAABwUiqVStTr9VEXAwAmlgQLACZC8+2wN2/e7Gn5jY2NYz3w1K9MJhPpdDoien/7bbVaba0zqFKpdKw35wIAwEkSx7cnjgcAgIPq9XrkcrlYXFyMxcXFqFQqB76/du1aLC8vx/LyciwuLkYul+srSRoAAKbJ2traqIsAABNNggUAE6H5kFWpVOopy353dzdSqdTJFuohzRPUjY2NnpYvFAqtN+YOolQqtd4KDAAA40gcf5g4HgAADsvlcrG+vh47OzsxPz8fi4uLUa/Xo1KpxOLiYmQymdjc3IzNzc3Y2dmJSqUSCwsL3soLAAAPyefzUS6XR10MAJhoEiwAJlw+n4/l5eVYWFiIUqnU+rxer0c+n49cLhfLy8un4m1O2Ww2IiLefPPNI5erVquxuLg40D6q1Wqr3pp122vdXb58OSLu130vJ6vlcjkymcxA5Yy4/2BXc5+9uHbtWuvNXvl83kk1AMApMAnnA+L4g8TxAABwUKVSiXQ63ZoprvnftbW1ePXVV+Ott946lKDcPM/oNVEaAABGYW1t7cC13Vwu1zaGzefzMTMzE3Nzc62fmZmZtteCNzY2YmZmprV8c7lSqRSLi4sHrsUvLi4e2Obc3Fzru+Xl5UPfzczMHLquXq1WD+yvudy4ePA+ydzcXKv85XI58vl8rK2ttWbCe/A+yoPLNLexuLh45PX3Ye4LgNGSYAEwwZonX5ubm5HNZiOXy0WlUolyuRy5XC7W1taiWCzG5uZmXLx4MRYWFg5Nqz1Jmm+JLRQKRy5XKBRab8rtR7lcbj2IVSwWo1AoxObmZs8nNqlUqnVTZ319veu+rly50ncZm5oPf/Xy5txqtRoLCwuxtbUVOzs7rb+tUChEtVo1NSQAwISalPMBcfwnxPEAAHDY1atXD8TIzYeU3nzzzXjrrbfaznJ37ty5iIjY2toaShkBAKAfzRnXLl68eODabrFYjJ2dnVheXj4wG1uhUIhGoxGXL1+Oer0e6XQ6Go1G25mQV1ZWWtfbL1++HLVaLZaWliKbzcbOzk7UarXWNe/m7w/+NG1ubkatVovr169HvV6Per0exWKxlfDclE6nY3V1NSIilpaWolgsRqPRSLrKBpbL5SKXy8Xe3l6rTq9duxb1ej0KhUKsr6/H5uZmvPbaawcSXB5cpnlfoZn88HByxCj2BcBoSbAAmFD1ej2q1WrrZGphYSEi7gfzzWD8wZOe1dXVSKVSkcvlRlLeJCwtLUUqlYpKpZL423dLpVIsLy9HoVA4dIK6srISly9fjuXl5a77bd4EKpfLR05NPujDY01vvvlmpFKprm/OrdfrsbCwEJlMJorF4qHvV1ZW4uLFi07YAAAmzCSdD4jjPyGOBwCAw6rV6oEYuZkkff369bbJFRERu7u7ERExPz9/4uUDAIB+VCqVWFxcjPX19Vaiw4MKhUKk0+m2Mzo3Eye6XdO+fPlyZDKZKBQKHWPmXmWz2dZ+b9682XaZer0e6+vrUSwW2yZ9jNLS0lLrfkDE/fsG6XT6UN1ns9lIp9OxtrYW5XK57TIrKyuRTqfj1VdfHfm+ABgtCRYAE2pjY+PAw1HNmwl7e3ttH8CJuJ9VXq1WD7y1tjl13cLCQiwuLsby8nLHzxYXF1ufj+ptqQ+epLTTfHttv1599dXIZDIdTwSbf2+3N9o2Hx6L6Dw1efOBreOc5BaLxZ4e7Gr2kevXr7f9vlQqxauvvtr1bcIAAIyXpM4HhkUcf584HgAADnsw7n3wfKXdw2hNzSSMdg+lAQDAKL366qutGSU6KRQKsbe31/bZm5WVldZsyJ28+eabXa9792NlZSWy2WyUSqVD18grlUqkUqnWLBbjqnnt/ubNmx3rfmlpqZUs0mmZTCbTesnVOOwLgNGQYAEwoTY3N1sPKUV8cjPhqBOo5gNB29vbEXE/4317ezvW19djd3c3dnZ2YnNzMzY3NyOVSkW1Wo1isdj6bGdnJ3Z2diKVSrWm3x625ptlOz1ItLm52Xe2fHMqvitXrnRcJp1ORzqd7viw1YOaD0x1KuPGxsaR++qmeSLdbRvlcjnK5fKBh8UeVq1Wo16vx97e3sDlAQBg+JI4Hxgmcbw4HgAAOmk3e8VR5wcPPoD04HkRAACM2sbGRlQqlZ5mk15aWopr164deri+2/X0iDiRmSSKxWKk0+nI5/OtxOd6vR5Xr15NNJnjpB1VL81r7kfNMt2cJe+o2a5HsS8AhkuCBcCEWl9fP/CwTfPk5qjgvXlS1gzMS6VSXL9+vW2mdKVSaT2M9KBUKhVXrlw59PmwZDKZxN+825zi8KiTmoho/c3dTmyaJ7udynhUBnsv3nzzzUin013L23xz8VFvAl5dXY1isdjxLccAAIynJM4HhkkcL44HAIBebG5uRsTR8XAzCSOdTh9rhjkAAEhaMyni+eef77rsxYsXD6zTlMlkIpPJRKlUantdu1KpDDQjdC+a8Xgul4t6vR6vvvpqx5mWx9XCwkLXZZp1P0n7AmC4zo66AAAMpt0bnVKpVMfEhwcz3pvL7O7utp3Cr9sbolKpVNeHgk5SPp+PtbW1KBQKB040S6XSQG+UbT481Zyto5NmHe7t7R150yadTsfS0lKUy+VDZaxUKsd+i0ChUOjpwa7mm4m73WA6zkNiAACMRhLnA8MmjhfHAwBAN83zm6Pi3Wb8n/QbewEA4Lia1617SQRuLtPuhT/5fD7y+XxsbGwceq6nUCic2IwS6XQ6isVi5HK5eOaZZ+Ktt96auKTmXu6BJPU3DXNfAAyXBAuAU6B5M+GoqbCbNyUi7j+MVa1WY3Fx8cjtdcp4393djZWVlUGLe2zZbDbW1tbizTffPPDQ09bW1rEeMlpbWzvy5KefE9R8Ph/lcjk2NjYOlLFQKMTa2trAZazX61GpVHp6U23zTQbNKQUBADidBjkfGAVxvDgeAACO0kvy+IPLndRbewEAYJj29vYOfbayshL5fD6uXr16KMGi28uEjiubzbZeRrS9vT3SF7ACwKicGXUBADi+Xm4mNB+6SqfTkU6no16vd3wAq5kd3+kkadQ3LdLpdGQymajX662/vV6vx7lz54613XZTKw7qwQfESqVS6/+r1eqx3hi8sbHRasNumifU7U7GAQA4PQY5HxgFcbw4HgAAjtLLzBT1er01S50ZLAAAGFe9XLfu9rKdlZWVA9fTI+5fa87n88cq24Pba6darUYqlYpMJhP5fL7tDBsAcNpJsAA4BZonM0fdTGg+HNR862omk+mY0V4ul498Q9Q43LRonjA23yr75ptvDvzW2+bfmfQDTM1ZPq5evRoR9090c7ncsbZ58+bNnk+Wm3/X7u7usfYJAMB4G+R8YFTE8d2J4wEAmFa9JI83l0mn0yf61l4AABhEP9et33///QPrPOzh6+kR95OSj/vMTjOxuZO1tbUoFoutGZn7uT6+sbERc3Nzsbi4eCDJZNT3JgCgXxIsACZcLzcTNjY2Wss0HxbqpJeHs8ZBc/aN5oNiu7u7A79RtnlS2kvWffPNWP1ut1qtRrFY7Fr/3fZdqVR6fgCtuf9ubx9obhsAgMmT9PnASRPH975/cTwAANOml/sTN2/e7LoMAACMSvP6brckhohP4t9OL+fJZDKRyWSiVCpFvV6PSqUSFy9e7Ks8D8+k0W1mjXw+H+vr6xFx/55CsViMarXaU5JFqVSK9fX1uHz5ctTr9fj85z8f9Xo9rl271ne5AWDUJFgATLjmSVmnh5Lq9XorE7yZXX6UXt4QNSz1er1jVn8qlWrdQFlbW4uFhYWB97O6uhrpdPpA1n8n/WTVZzKZVrusra0N/OBYU6lUOrDNbpaWlmJpaSkqlUrXh868LQAAYDIlfT6QBHH8QeJ4AADornlv4qjZtR9cbhzuYQAAwMOa162bLxnqpF6vR7lcjmw2G5lMpuNyzeSLjY2NKBQKPb8MqNNMGnt7ex2vy1+7di1yudyBeDybzcbq6mqUSqW4du3akfvc3NyM3d3dKBQKsbu7G9evX4+1tbV4//33B57JGgBGRYIFwIRr3kzY3t5u+30ul4t6vR7FYvHIk7Km5gNa4/D2p/fff//I7PnmieS1a9dab8I9ylFTMDaz7o86ISyXy33ftGmWsVQqdXzrQK8KhUJcuXKl73UiIl599dWOy5TLZW8LAACYUEmfDyRBHH+QOB4AALqbn5+PVCrVeltuO9VqtXWuMQ73MAAAoJ1CoRDVarU1u3Q7a2trkUql4vr160duq5lQcfXq1YiIjjNZP6x5Tfzhl/iUy+V4/vnnDy1fKpVia2urbZy9vr4emUwm1tbWjnwp0MMvQ0qlUl1j/HF21L2JSd4XAL2RYAEw4ZonL9evXz80JV8+n4/t7e3Y3NzsORu8XC53fUPUMJTL5bh27dqRJ2jNvymbzR55Erm1tRURh08cH5TJZGJnZycKhULbt8CWSqWoVCo9vw2gqbl8Op0+1gNt1Wo1qtVq3/tPp9Oxs7MT9Xo9lpeXDz3oVi6XY3NzM1ZXVwcuGwAAo5P0+cBxieMPEscDAEBvMplM1Gq1I2PnZoJ5JpPp+cEyAAAYtqWlpdjZ2Ym1tbW2LwdqXrt/5513eoprV1ZWol6v9/UyoOZMyVevXm1dX67X67Gzs3Pgmne1Wo18Pn/o/kK77UVEfP7zn+8683LE/ev6pVJpqMkVzXIdVb5elqlWqwf+O+p9ATAaEiwAJljzZkI6nY5sNhtXrlyJxcXFWF5ejsXFxUilUvHOO+/0/CanZlA/yjc/VavVmJmZaWXTV6vVWFxcjJmZmbbLr6ystD2JrFQqMTc3F3Nzc62pF6vV6qHPHpTJZGJ3dzciIhYXFyOXy0U+n498Ph+pVGqgh5dSqVRks9lE3no76E2j5t+1vLwcn//852N5ebn1d9Xr9Yl9WwAAwLRL+nzgOMTx7YnjAQAgOeM0AzcAABylmUD8/vvvH7i227x+v7Oz0/N143w+H5lMpu+XAW1ubsbly5fj85//fOTz+VhbWztwXXlubi4WFhZaM200X1j0sFKp1EoUqdfrsbi4GHNzc21fehRx/97F9vb20F4Q1CxP857J2traofINskw+n09kO4PuC4DRmmk0Go1RFwKAwTSz3VdWVg5NtTeIjY2NyOfzsb6+fqInOqVSKdbW1loPQdHdwsJCrK2t9f3m2+Mol8uRy+WiVqsNbZ8AAPQu6fOBbsTx/RPHAwBAcubm5qJer8fm5qYkCwAAGEOlUilSqVTi8fo0359wzR9gNMxgATDBmpnMzbfEHpe3P42narUa1Wo1Ll++POqiAAAwRpI+HyBZ4ngAAEhOtVqNer0eEe5hAADAOLp27Vqk0+lD8frGxkZUq9URlQoABiPBAmCCNafm63cawE6aD2gltT2SUSgUYmlpqefpIQEAmA5Jnw+QLHE8AAAkp1QqRYTzHwAAGEcbGxuxtbV1KJGiXC5HsViMdDo9opIBwGAkWABMqGYyRCqVSuREpFKpRL1ed3NiDJVKpcjlcqMuBgAAYyTp8wGSJ44HAIDkmIEbAADGU6VSiZ2dnbh+/XpsbW3F3Nxc5PP5yOVykcvlolAojLqIANC3s6MuAACDSeJmQqlUips3b0a9Xo/t7e2IuD/N9vLycqRSqVheXo6VlZVEystgKpVKVKvVuHz58qiLAgDAGPFw0XgTxwMAQLLS6XSk0+l47bXXRl0UAADgATdv3mwlUayvr0fE/Rkt0ul07OzseEkUABNJggXABKrX663psI8jm81GNptNoESclJs3b8bS0lKkUqlRFwUAgDGR1PkAJ0ccDwAAyfLWWwAAGE/NpIoHf3/4MwCYNGdGXQAA+jM3Nxdzc3Oxt7cXEfdnoZiZmYm5ubkRl4yTsLGxEfl8ftTFAABgTDgfmAzieAAAAAAAAIDJJMECYMLUarVoNBqt/zZ/arXaqIvWl2q1GjMzM62fer0+6iKNnUqlEvV6faizjKytrbXaZHl5eWj7BQCgN6M+HxDHdyeOBwAAAACAZE3T/QnX/AFGb6bRaDRGXQgApku9Xo9qtXrgs0wmM6LSjK9KpRLlcjlWV1eHtk9tAwBAJ2LF3ojjAQAAAAAgOdN2DXza/l6AcSTBAgAAAAAAAAAAAAAAmHpnRl0AAAAAAAAAAAAAAACAUZNgAQAAAAAAAAAAAAAATD0JFgAAAAAAAAAAAAAAwNSTYAEAAAAAAAAAAAAAAEw9CRYAAAAAAAAAAAAAAMDUk2ABAAAAAAAAAAAAAABMPQkWAAAAAAAAAAAAAADA1JNgAQAAAAAAAAAAAAAATL3/P4Oky9Ye9UalAAAAAElFTkSuQmCC",
       "text/plain": [
-       "'data/track_building_processed/007212930'"
+       "<Figure size 3200x2400 with 32 Axes>"
       ]
      },
-     "execution_count": 14,
      "metadata": {},
-     "output_type": "execute_result"
+     "output_type": "display_data"
     }
    ],
    "source": [
-    "graph_file"
+    "import matplotlib as mpl\n",
+    "# mpl.rcParams.update(**mpl.rcParamsDefault)\n",
+    "mpl.rcParams.update(\n",
+    "    **{\n",
+    "        # Font\n",
+    "        'font.family': 'serif',\n",
+    "        'font.serif': 'Computer Modern Roman',\n",
+    "        # Latex\n",
+    "        'text.latex.preamble': r'\\usepackage{amsmath}',\n",
+    "        'text.usetex': True,  # Put to False to disable Latex\n",
+    "        # Fontsizes    \n",
+    "        'legend.fontsize': 20,\n",
+    "        'axes.titlesize': 24,\n",
+    "        'xtick.labelsize': 20,\n",
+    "        'ytick.labelsize': 20,\n",
+    "        'axes.labelsize': 25,\n",
+    "        'font.size': 20,    \n",
+    "        # Lines\n",
+    "        'lines.markersize': 6.,\n",
+    "        'lines.linestyle': '-',\n",
+    "        'lines.linewidth': 1.5,\n",
+    "        # Figure\n",
+    "        \"figure.figsize\": (8, 6),\n",
+    "        # \"figure.dpi\": 200,\n",
+    "        # Ticks\n",
+    "        # Ticks settings\n",
+    "        \"xtick.direction\": \"in\",\n",
+    "        \"ytick.direction\": \"in\",\n",
+    "    }\n",
+    ")\n",
+    "\n",
+    "columns = [\"pt\", \"p\", \"eta\", \"vz\"]\n",
+    "\n",
+    "metric_names = [\n",
+    "    \"efficiency\",\n",
+    "    # \"ghost_rate\",\n",
+    "    \"clone_rate\",\n",
+    "    \"hit_purity_per_candidate\",\n",
+    "    \"hit_efficiency_per_candidate\",\n",
+    "]\n",
+    "\n",
+    "\n",
+    "# _ = trackEvaluator.plot_histogram(\n",
+    "#     column=\"vz\",\n",
+    "#     metric_name=\"efficiency\",\n",
+    "#     column_label=column_labels[\"vz\"],\n",
+    "#     range=column_ranges[\"vz\"],\n",
+    "#     category=mtb.category.velo_category,\n",
+    "#     bins=\"auto\",\n",
+    "# )\n",
+    "\n",
+    "_ = trackEvaluator.plot_histograms(\n",
+    "    columns=columns,\n",
+    "    metric_names=metric_names,\n",
+    "    column_labels=column_labels,\n",
+    "    column_ranges=column_ranges,\n",
+    "    category=mtb.category.velo_category,\n",
+    "    bins=20,\n",
+    ")\n",
+    "\n"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {
-- 
GitLab


From 4609f65e9fb26732af9150f22df69e42a08c710d Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 17:16:22 +0100
Subject: [PATCH 08/30] tidy up pre-processing

---
 .../Processing/utils/preprocessing.py         | 293 +++++++++++-------
 1 file changed, 180 insertions(+), 113 deletions(-)

diff --git a/LHCb_Pipeline/Processing/utils/preprocessing.py b/LHCb_Pipeline/Processing/utils/preprocessing.py
index e78bd795..524d089d 100644
--- a/LHCb_Pipeline/Processing/utils/preprocessing.py
+++ b/LHCb_Pipeline/Processing/utils/preprocessing.py
@@ -1,8 +1,101 @@
-import os, shutil
+import typing
+import os
+import shutil
 import numpy as np
 import pandas as pd
 
 
+def clear_existing_directories(directory: str):
+    """Delete all files and directories within a given directory.
+
+    Args:
+        directory: The directory to clear.
+    """
+    for filename in os.listdir(directory):
+        file_path = os.path.join(directory, filename)
+        try:
+            if os.path.isfile(file_path) or os.path.islink(file_path):
+                os.unlink(file_path)
+            elif os.path.isdir(file_path):
+                shutil.rmtree(file_path)
+        except Exception as e:
+            print("Failed to delete %s. Reason: %s" % (file_path, e))
+
+
+def load_dataframes(indir: str) -> typing.Tuple[pd.DataFrame, pd.DataFrame]:
+    """Load the dataframes of hits and particles. This function is also used
+    in the validation step.
+
+    Args:
+        indir: directory where the dataframes are saved
+
+    Returns:
+        A 2-tuple containing the dataframe of hits and the dataframes of particles
+
+    Notes:
+        The function also defines the column ``particle_id = mcid + 1``
+        in both dataframes.
+    """
+    particles = pd.read_parquet(f"{indir}/mc_particles.parquet.lz4")
+    hits = pd.read_parquet(f"{indir}/hits_velo.parquet.lz4")
+
+    # Define `particle_id = mcid + 1` directly in the original dataframes
+    particles["particle_id"] = particles["mcid"] + 1
+    hits["particle_id"] = hits["mcid"] + 1
+
+    return particles, hits
+
+
+def enough_true_hits(
+    event_hits: pd.DataFrame,
+    num_true_hits_threshold: int,
+    event_id_str: str,
+    num_events: int,
+    required_num_events: int,
+) -> bool:
+    """Check whether an event has enough true hits to be saved.
+
+    Args:
+        event_hits: DataFrame of all hits for an event.
+        num_true_hits_threshold: Minimum number of true hits required for the event
+            to be saved.
+        event_id_str: String representation of the event ID.
+        num_events: The current number of saved events.
+        required_num_events: The desired number of saved events.
+
+    Returns:
+        ``True`` if the event has enough true hits to be saved, ``False`` otherwise.
+
+    Notes:
+        The function checks the number of true hits in an event and compares it
+        with the given threshold.
+        If the number of true hits is equal to 0, the event is discarded as
+        it contains only fake hits.
+        If the number of true hits is below the given threshold,
+        the event is discarded as it does not contain enough true hits.
+        Otherwise, the event is saved as the function returns ``True``.
+    """
+    #: Number of true hits for this event
+    num_true_hits = len(
+        event_hits[event_hits["particle_id"] != 0].drop_duplicates(subset=["lhcbid"])
+    )
+    if num_true_hits == 0:
+        print(f"Discarding event {event_id_str}, contains only fake hits.")
+        return False
+    elif num_true_hits < num_true_hits_threshold:
+        print(
+            f"Discarding event {event_id_str}, contains only {num_true_hits} true hits",
+            f"below {num_true_hits_threshold} threshold",
+        )
+        return False
+    else:
+        print(
+            f"Saving event {event_id_str}, {num_events+1}/{required_num_events},",
+            f"contains {num_true_hits} true hits.",
+        )
+        return True
+
+
 def preprocess(
     input_dir: str,
     output_dir: str,
@@ -10,144 +103,118 @@ def preprocess(
     clear_directories: bool = True,
     num_true_hits_threshold: int = 0,
 ):
-    """
-    Preprocess the first `output_num` events in the input files,
+    """Preprocess the first `output_num` events in the input files,
     into the form of the TrackML dataset.
     Remove any events that contain only fake hits.
     """
-
     os.makedirs(input_dir, exist_ok=True)
     os.makedirs(output_dir, exist_ok=True)
 
     # Clear contents
     if clear_directories:
-        folder = output_dir
-        for filename in os.listdir(folder):
-            file_path = os.path.join(folder, filename)
-            try:
-                if os.path.isfile(file_path) or os.path.islink(file_path):
-                    os.unlink(file_path)
-                elif os.path.isdir(file_path):
-                    shutil.rmtree(file_path)
-            except Exception as e:
-                print("Failed to delete %s. Reason: %s" % (file_path, e))
-
-    # hits = pd.read_csv(f'{input_dir}/hits_velo.csv') # Read hits
-    # particles = pd.read_csv(f'{input_dir}/mc_particles.csv') # Read MC particles
-    hits = pd.read_parquet(f"{input_dir}/hits_velo.parquet.lz4")
-    particles = pd.read_parquet(f"{input_dir}/mc_particles.parquet.lz4")
-    hits = hits.merge(particles, on=["event", "mcid"], how="left")  # Merge
+        clear_existing_directories(output_dir)
+
+    # Load dataframes
+    particles, hits = load_dataframes(input_dir)
+
+    # Correctly transform coordinates
+    # source: https://thespectrumofriemannium.wordpress.com/tag/pseudorapidity/
+    pt, eta, phi = particles["pt"], particles["eta"], particles["phi"]
+    px = pt * np.cos(phi)
+    py = pt * np.sin(phi)
+    pz = pt * np.sinh(eta)
+    # Convert momentum from MeV to GeV
+    particles["px"] = px / 1000
+    particles["py"] = py / 1000
+    particles["pz"] = pz / 1000
+
+    # Add truth particle information to the dataframe of hits
+    hits = hits.merge(particles, on=["event", "particle_id"], how="left")  # Merge
     # NB: left join!: keep fake hits
 
+    # Filter
     # Remove hits with has_velo == 0
     # hits = hits[hits["has_velo"] == 1]
-
     # Remove electrons and positrons ?
     # hits = hits[np.abs(hits["pid"]) != 11]
 
     event_list = hits["event"].unique()  # The order is not mixed
-
     i = 0  # Count the number of events outputed
     for event_num in event_list:
+        if i == output_num:
+            break  # If output number reached, break loop
+
         event_hits = hits[hits["event"] == event_num]
         event_particles = particles[particles["event"] == event_num]
+        #: String representation of the event ID
+        event_id_str = str(event_num).zfill(9)
 
-        # -hits.csv, use event_hits
-        hits_csv = event_hits[["x", "y", "z", "plane"]]
-        hits_csv.rename(columns={"plane": "module_id"}, inplace=True)
-        hits_csv["hit_id"] = hits_csv.index + 1  # TODO: this is not accurate 
-        num = str(event_num).zfill(9)
-        hits_csv.to_csv(f"{output_dir}/event{num}-hits.csv", index=False)
-
-        # -particles.csv, use event_particles
-        # particles_csv = event_particles[
-        #     [
-        #         "mcid",
-        #         "vx",
-        #         "vy",
-        #         "vz",
-        #         "p",
-        #         "pt",
-        #         "eta",
-        #         "phi",
-        #         "charge",
-        #         "nhits_velo",
-        #     ]
-        # ]
-        particles_csv = event_particles  # save everything
-        particles_csv.rename(
-            columns={"mcid": "particle_id", "charge": "q", "nhits_velo": "nhits"},
-            inplace=True,
-        )
-        particles_csv["particle_id"] = particles_csv["particle_id"] + 1
-        pt = event_particles["pt"]
-        eta = event_particles["eta"]
-        phi = event_particles["phi"]
-        px = pt * np.cos(phi)  # Correctly transform coordinates
-        py = pt * np.sin(
-            phi
-        )  # https://thespectrumofriemannium.wordpress.com/tag/pseudorapidity/
-        pz = pt * np.sinh(eta)
-        particles_csv["px"] = px / 1000  # Convert momentum from MeV to GeV
-        particles_csv["py"] = py / 1000
-        particles_csv["pz"] = pz / 1000
-        # particles_csv.drop(["p", "pt", "eta", "phi"], axis=1, inplace=True)  # let's keep them
-        num = str(event_num).zfill(9)
-        particles_csv.to_csv(f"{output_dir}/event{num}-particles.csv", index=False)
-
-        # -truth.csv, use event_hits
-        truth_csv = event_hits[
-            ["mcid", "x", "y", "z", "p", "pt", "eta", "phi", "lhcbid"]
-        ]
-        truth_csv.rename(
-            columns={"mcid": "particle_id", "x": "tx", "y": "ty", "z": "tz"},
-            inplace=True,
-        )
-        truth_csv["particle_id"] = truth_csv["particle_id"] + 1
-        pt = event_hits["pt"]
-        eta = event_hits["eta"]
-        phi = event_hits["phi"]
-        px = pt * np.cos(phi)  # Correctly transform coordinates
-        py = pt * np.sin(phi)
-        pz = pt * np.sinh(eta)
-        truth_csv["tpx"] = px / 1000  # Convert momentum from MeV to GeV
-        truth_csv["tpy"] = py / 1000
-        truth_csv["tpz"] = pz / 1000
-        truth_csv.drop(["p", "pt", "eta", "phi"], axis=1, inplace=True)
-        num = str(event_num).zfill(9)
-        truth_csv["hit_id"] = hits_csv.index + 1
-        truth_csv.to_csv(f"{output_dir}/event{num}-truth.csv", index=False)
-
-        num_true_hits = len(
-            truth_csv[truth_csv["particle_id"] != 0].drop_duplicates(subset=["lhcbid"])
-        )
-        if (
-            len(truth_csv["particle_id"].value_counts()) == 1
-            and truth_csv["particle_id"].value_counts().iloc[0] != 0
+        if enough_true_hits(
+            event_hits=event_hits,
+            num_true_hits_threshold=num_true_hits_threshold,
+            event_id_str=event_id_str,
+            num_events=i,
+            required_num_events=output_num,
         ):
-            # Discard "fake" events
-            print(f"Discarding event {num}, contains only fake hits.")
-            # Discard events that only contain fake hits
-            os.remove(f"{output_dir}/event{num}-hits.csv")
-            os.remove(f"{output_dir}/event{num}-particles.csv")
-            os.remove(f"{output_dir}/event{num}-truth.csv")
-        elif num_true_hits < num_true_hits_threshold:
-            # Check the number of hits
-            print(f"Discarding event {num}, contains only {num_true_hits} true hits.")
-            # Discard events
-            os.remove(f"{output_dir}/event{num}-hits.csv")
-            os.remove(f"{output_dir}/event{num}-particles.csv")
-            os.remove(f"{output_dir}/event{num}-truth.csv")
-        else:
             i += 1  # If not discarded, count
-            print(
-                f"Saving event {num}, {i}/{output_num}, contains {num_true_hits} true hits."
+            # Define `hit_id` directly in `event_hits`
+            event_hits["hit_id"] = event_hits.index + 1
+            # NB: `event_hits` may have duplicated `particle_id`, in the case where
+            #     one hit is associated with several MC particles
+            #     but by setting `hit_id` this way, you virtually consider that
+            #     `(lcbid, particle_id1)` and `(lcbid, particle_id2)` are two different
+            #     hits, although they have the same `lhcbid`
+            # TODO: keep LHCbID, or drop duplicated `lhcbid`
+
+            # hits.csv, use event_hits ----------------------------------------------
+            hits_csv = event_hits[["x", "y", "z", "plane", "hit_id"]]
+            hits_csv.rename(columns={"plane": "module_id"}, inplace=True)
+
+            # particles.csv, use event_particles ------------------------------------
+            particles_csv = event_particles[
+                [
+                    "particle_id",
+                    "vx",
+                    "vy",
+                    "vz",
+                    "px",
+                    "py",
+                    "pz",
+                    "charge",
+                    "nhits_velo",
+                ]
+            ]
+
+            particles_csv.rename(
+                columns={"charge": "q", "nhits_velo": "nhits"},
+                inplace=True,
             )
 
-        if i == output_num:
-            break  # If output number reached, break loop
+            # -truth.csv, use event_hits -------------------------------------------
+            truth_csv = event_hits[
+                ["particle_id", "hit_id", "x", "y", "z", "px", "py", "pz", "lhcbid"]
+            ]
+            truth_csv.rename(
+                columns={
+                    "x": "tx",
+                    "y": "ty",
+                    "z": "tz",
+                    "px": "tpx",
+                    "py": "tpy",
+                    "pz": "tpz",
+                },
+                inplace=True,
+            )
+
+            # Save -----------------------------------------------------------------
+            hits_csv.to_csv(f"{output_dir}/event{event_id_str}-hits.csv", index=False)
+            particles_csv.to_csv(
+                f"{output_dir}/event{event_id_str}-particles.csv", index=False
+            )
+            truth_csv.to_csv(f"{output_dir}/event{event_id_str}-truth.csv", index=False)
 
     if i < output_num:
         raise Exception(
-            f"Not enough events found with more than {num_true_hits} true hits"
+            "Not enough events found with more than "
+            f"{num_true_hits_threshold} true hits"
         )
-- 
GitLab


From b369907ba4820effb89696a1c10f7d5f3cd82d73 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 17:28:05 +0100
Subject: [PATCH 09/30] check that preprocessing is the EXACT same as main

---
 LHCb_Pipeline/Processing/utils/preprocessing.py | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/LHCb_Pipeline/Processing/utils/preprocessing.py b/LHCb_Pipeline/Processing/utils/preprocessing.py
index 524d089d..b59374fe 100644
--- a/LHCb_Pipeline/Processing/utils/preprocessing.py
+++ b/LHCb_Pipeline/Processing/utils/preprocessing.py
@@ -177,11 +177,11 @@ def preprocess(
                     "vx",
                     "vy",
                     "vz",
+                    "charge",
+                    "nhits_velo",
                     "px",
                     "py",
                     "pz",
-                    "charge",
-                    "nhits_velo",
                 ]
             ]
 
@@ -192,7 +192,7 @@ def preprocess(
 
             # -truth.csv, use event_hits -------------------------------------------
             truth_csv = event_hits[
-                ["particle_id", "hit_id", "x", "y", "z", "px", "py", "pz", "lhcbid"]
+                ["particle_id", "x", "y", "z", "lhcbid", "px", "py", "pz", "hit_id"]
             ]
             truth_csv.rename(
                 columns={
-- 
GitLab


From f61416f11f70fbe2f6f217ddfbb98e833f9b8ac3 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 19:38:31 +0100
Subject: [PATCH 10/30] column labels, range and configure_matplotlib

---
 .../utils/plotting_utils_validation.py        | 50 +++++++++++++++++++
 1 file changed, 50 insertions(+)
 create mode 100644 LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py

diff --git a/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py b/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py
new file mode 100644
index 00000000..9797a469
--- /dev/null
+++ b/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py
@@ -0,0 +1,50 @@
+import matplotlib as mpl
+
+#: Associates a column name with its label for the plots
+column_labels = {
+    "pt": "$p_T$ [MeV/c]",
+    "p": "$p$ [MeV/c]",
+    "eta": "$\eta$",
+    "vz": r"$\text{ovtx}_{z}$ [mm]",
+}
+
+#: Associates a column name with its range for the plots
+column_ranges = {
+    "pt": (0, 2000),
+    "p": (0, 50000),
+    "eta": None,
+    "vz": (0, 200),
+}
+
+
+
+def configure_matplotlib():
+    """Set up ``rcParams`` matplotlib object to configure font, fontsizes, etc."""
+    mpl.rcParams.update(
+        **{
+            # Font
+            "font.family": "serif",
+            "font.serif": "Computer Modern Roman",
+            # Latex
+            "text.latex.preamble": r"\usepackage{amsmath}",
+            "text.usetex": True,  # Put to False to disable Latex
+            # Fontsizes
+            "legend.fontsize": 20,
+            "axes.titlesize": 24,
+            "xtick.labelsize": 20,
+            "ytick.labelsize": 20,
+            "axes.labelsize": 25,
+            "font.size": 20,
+            # Lines
+            "lines.markersize": 6.0,
+            "lines.linestyle": "-",
+            "lines.linewidth": 1.5,
+            # Figure
+            "figure.figsize": (8, 6),
+            # "figure.dpi": 200,
+            # Ticks
+            # Ticks settings
+            "xtick.direction": "in",
+            "ytick.direction": "in",
+        }
+    )
-- 
GitLab


From b189f98bb77b7f1b810979fe0992a6991287698c Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 19:38:42 +0100
Subject: [PATCH 11/30] working evaluation script using montetracko

---
 ...p_6_Evaluate_Reconstruction_MonteTracko.py | 282 ++++++++++++++++++
 1 file changed, 282 insertions(+)
 create mode 100644 LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction_MonteTracko.py

diff --git a/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction_MonteTracko.py b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction_MonteTracko.py
new file mode 100644
index 00000000..9112f111
--- /dev/null
+++ b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction_MonteTracko.py
@@ -0,0 +1,282 @@
+"""This script runs the performance evaluation of the tracking inference, using
+MonteTracko.
+"""
+import os.path as op
+import typing
+import yaml
+import logging
+
+import numpy as np
+import numpy.typing as npt
+import pandas as pd
+import pyarrow.csv as pac
+
+import montetracko as mt
+import montetracko.lhcb as mtb
+from montetracko.utils.libs import get_correct_tqdm
+
+from Scripts.utils.convenience_utils import headline
+import Scripts.utils.plotting_utils_validation as plotutils
+from Processing.utils.preprocessing import load_dataframes
+import Scripts.Step_6_Evaluate_Reconstruction as evalreco
+
+
+def filter_event_ids(dataframe: pd.DataFrame, event_ids: npt.ArrayLike) -> pd.DataFrame:
+    """Filters a Pandas DataFrame to keep only rows corresponding to given event IDs.
+
+    Args:
+        dataframe: The input DataFrame to filter.
+        event_ids: A list-like object of event IDs to keep.
+
+    Returns:
+        A new DataFrame containing only rows corresponding to the given event IDs.
+
+    Raises:
+        ValueError: If any of the given event IDs are not found in the input DataFrame.
+    """
+    dataframe = dataframe[dataframe["event"].isin(event_ids)]
+
+    # Sanity check: check that all the event IDs are in the dataframe
+    event_ids_not_in_dataframe = event_ids[~np.isin(event_ids, dataframe["event"])]
+    if event_ids_not_in_dataframe.size:
+        raise ValueError(
+            "The following event IDs were not found in the dataframe: "
+            + ", ".join(event_ids)
+        )
+    # Return filtered dataframe
+    return dataframe
+
+
+def load_tracks(
+    all_graph_files: typing.List[str],
+    indir: str,
+) -> typing.Tuple[pd.DataFrame, np.ndarray]:
+    """Load the tracks from graphs.
+
+    Args:
+        all_graph_files: A list of strings representing the paths to the graphs.
+        indir: A string representing the directory where the hit-particle truth
+            association CSV files are located.
+            The CSV files are expected to have names following the format
+            ``"event{event_id_str}-truth.csv"``, where ``{event_id_str}``
+            is the ID of the corresponding event.
+
+    Returns:
+        : A tuple containing:
+
+            * A concatenated Pandas DataFrame containing all the tracks, \
+            with the following columns: ``event`` (event ID), ``track_id`` (track ID), \
+            and ``lhcbid`` (equivalent to a hit ID).
+            * A NumPy array of the event IDs
+
+    Notes:
+        This function also converts the ``hit_id`` column to the corresponding
+        ``lhcbid``.
+        Each track DataFrame is augmented with an ``event`` column containing
+        the corresponding event ID.
+    """
+    path_df_hits_particles = op.join(indir, "event{event_id_str}-truth.csv")
+
+    #: List of dataframes of tracks (one dataframe = one event)
+    list_df_tracks = []
+    #: List of corresponding event IDs
+    event_ids = []
+
+    tqdm = get_correct_tqdm()
+    # Loop over the graphs (one graph = one event)
+    for graph_file in tqdm(all_graph_files):
+        # Obtain the Event ID from the graph file name
+        event_id_str = op.basename(graph_file)
+        event_id = int(event_id_str)
+        event_ids.append(event_id)
+
+        # Load the dataframe of tracks
+        reconstruction_df = evalreco.load_reconstruction_df(graph_file)
+        df_tracks_event = reconstruction_df[["hit_id", "track_id"]].drop_duplicates()
+
+        # Load hit-particle truth association in order to convert `hit_id` to `lhcbid`
+        df_hits_particles_event = pac.read_csv(
+            path_df_hits_particles.format(event_id_str=event_id_str),
+            convert_options=pac.ConvertOptions(include_columns=["lhcbid", "hit_id"]),
+        ).to_pandas()
+
+        # Deduce `lhcbid` from `hit_id`
+        df_tracks_event["lhcbid"] = mt.array_utils.transform.replace(
+            array=np.asarray(df_tracks_event["hit_id"]),
+            values_to_replace=np.asarray(df_hits_particles_event["hit_id"]),
+            replacement_values=np.asarray(df_hits_particles_event["lhcbid"]),
+        )
+
+        # Drop the `hit_id` column to avoid possible confusions
+        df_tracks_event.drop(["hit_id"], axis=1, inplace=True)
+
+        # Add event ID column
+        df_tracks_event["event"] = event_id
+        list_df_tracks.append(df_tracks_event)
+
+    # Return concatenated dataframe and array of event IDs
+    return pd.concat(list_df_tracks), np.asarray(event_ids)
+
+
+def report(
+    trackEvaluator: mt.TrackEvaluator,
+    allen_report: bool = False,
+):
+    """Generate a report of the track evaluation.
+
+    The function prints out the track evaluation report using two different reporters.
+    If `allen_report` is True, the function uses the Allen reporter.
+
+    In any cases, it uses the `TabReporter` with the  following metrics:
+
+    * ``efficiency``: the fraction of MC particles with a matching reconstructed track
+    * ``efficiency_per_event``: the fraction of MC particles with a matching
+        reconstructed track, averaged over all events
+    * ``clone_rate``: proportion of reconstructed tracks that are matched to
+        the same MC particle
+    * ``hit_purity_per_candidate``: Average fraction of correctly matched hits
+    on matched tracks, out of all matched track-particle associations.
+    * ``hit_efficiency_per_candidate``: Average fraction of correctly matched hits
+    on matched particles, out of all matched track-particle associations.
+
+    Additionally, a separate ``TabReporter`` is used to report the global
+    number of ghosts andtracks, and the ghost rate.
+
+    Args:
+        trackEvaluator: A ``TrackEvaluator`` instance containing the results
+            of the track matching.
+        allen_report: whether to report in Allen categories using the Allen reporter
+    """
+    # Report
+    logging.info("3) Reporting")
+    if allen_report:
+        trackEvaluator.print_report(
+            reporter=mt.AllenReporter(),
+            categories=mtb.category.allen_categories,
+        )
+    trackEvaluator.print_report(
+        reporter=mt.TabReporter(
+            [
+                "efficiency",
+                "efficiency_per_event",
+                "clone_rate",
+                "hit_purity_per_candidate",
+                "hit_efficiency_per_candidate",
+            ],
+            mode="markdown",
+            tablefmt="grid",
+        ),
+        categories=mtb.category.velo_categories,
+    )
+    trackEvaluator.print_report(
+        reporter=mt.TabReporter(
+            metric_names=["n_ghosts", "n_tracks", "ghost_rate"],
+            mode="markdown",
+            tablefmt="grid",
+        ),
+    )
+
+
+def plot(trackEvaluator):
+    """Generate and display histograms of track evaluation metrics in specified
+    particle-related columns (`pt`, `p`, `eta` and `vz`)
+
+    Args:
+        trackEvaluator: A ``TrackEvaluator`` instance containing the results
+            of the track matching.
+    """
+    logging.info("4) Plotting")
+    plotutils.configure_matplotlib()
+    fig, _, _ = trackEvaluator.plot_histograms(
+        columns=["pt", "p", "eta", "vz"],
+        metric_names=[
+            "efficiency",
+            "clone_rate",
+            "hit_purity_per_candidate",
+            "hit_efficiency_per_candidate",
+        ],
+        column_labels=plotutils.column_labels,
+        column_ranges=plotutils.column_ranges,
+        category=mtb.category.velo_category,
+        bins=20,
+    )
+    fig.savefig("track_evaluation.pdf", dpi=200, bbox_inches="tight")
+
+
+def evaluate(
+    config_file: str = "pipeline_config.yaml",
+    min_track_length: int = 2,
+    whether_to_plot: bool = True,
+    allen_report: bool = False,
+):
+    """Runs truth-based tracking evaluation.
+
+    Args:
+        config_file: path to the Exa.TrkX configuration file.
+        min_track_length: minimum length of a track to be considered in the evaluation.
+        whether_to_plot: whether to plot histograms.
+        allen_report: whether to report in Allen categories using the Allen reporter
+
+    Returns:
+        mt.TrackEvaluator: object containing the results of the evaluation.
+    """
+    logging.info(headline("Step 6: Evaluation using MonteTracko"))
+
+    # Load the configuration
+    with open(config_file) as file:
+        all_configs = yaml.load(file, Loader=yaml.FullLoader)
+
+    # Get some directories
+    #: Directory where the pre-processed CSV files are
+    preprocessed_dir = all_configs["processing_configs"]["preprocessed_dir"]
+    #: Directory where the original parquet files are
+    input_dir = all_configs["processing_configs"]["input_dir"]
+
+    # Get path to the graph files, which contain the tracks for each event
+    all_graph_files = evalreco.get_all_graph_files(config=all_configs)
+
+    logging.info("1) Load the dataframes")
+    # Load the dataframe of tracks
+    df_tracks, event_ids = load_tracks(
+        all_graph_files=all_graph_files, indir=preprocessed_dir
+    )
+    # Load the dataframes of hits and particles
+    df_particles, df_hits_particles = load_dataframes(indir=input_dir)
+    df_particles = filter_event_ids(df_particles, event_ids)
+    df_hits_particles = filter_event_ids(df_hits_particles, event_ids)
+
+    logging.info("2) Matching")
+    # Filter tracks and match them to particles
+    mt_config = {
+        # Associates a column name used in MonteTracko with the actual column names
+        "aliases": {
+            "n_hits": "nhits_velo",
+            "hit_id": "lhcbid",
+            "event_id": "event",
+        },
+        # Value of `particle_id` when the hit is fake
+        "fake_particle_id": 0,
+    }
+    trackEvaluator = mt.TrackMatcher(config=mt_config).full_matching(
+        df_events_hits_particles=df_hits_particles,
+        df_events_particles=df_particles,
+        df_events_tracks_hits=df_tracks,
+        matching_condition=mt.matchcond.MinMatchingFraction(0.7),
+        # Min length of a track
+        # default is 2.
+        track_condition=mt.matchcond.MinLengthTrack(min_track_length),
+    )
+
+    # Report
+    report(trackEvaluator=trackEvaluator, allen_report=allen_report)
+
+    # Plot
+    if whether_to_plot:
+        plot(trackEvaluator=trackEvaluator)
+    return trackEvaluator
+
+
+if __name__ == "__main__":
+    args = evalreco.parse_args()
+    config_file = args.config
+    evalreco.evaluate(config_file)
-- 
GitLab


From cc483d831e9a21e6d5fea807be3305ae4923f57a Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 19:39:12 +0100
Subject: [PATCH 12/30] remove test notebooks

---
 LHCb_Pipeline/full_pipeline_anthony.ipynb | 4430 ---------------------
 1 file changed, 4430 deletions(-)
 delete mode 100644 LHCb_Pipeline/full_pipeline_anthony.ipynb

diff --git a/LHCb_Pipeline/full_pipeline_anthony.ipynb b/LHCb_Pipeline/full_pipeline_anthony.ipynb
deleted file mode 100644
index 13bcc803..00000000
--- a/LHCb_Pipeline/full_pipeline_anthony.ipynb
+++ /dev/null
@@ -1,4430 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# 0. Setup"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Imports"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "        .bk-notebook-logo {\n",
-       "            display: block;\n",
-       "            width: 20px;\n",
-       "            height: 20px;\n",
-       "            background-image: url();\n",
-       "        }\n",
-       "    </style>\n",
-       "    <div>\n",
-       "        <a href=\"https://bokeh.org\" target=\"_blank\" class=\"bk-notebook-logo\"></a>\n",
-       "        <span id=\"p1001\">Loading BokehJS ...</span>\n",
-       "    </div>\n"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/javascript": "(function(root) {\n  function now() {\n    return new Date();\n  }\n\n  const force = true;\n\n  if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n    root._bokeh_onload_callbacks = [];\n    root._bokeh_is_loading = undefined;\n  }\n\nconst JS_MIME_TYPE = 'application/javascript';\n  const HTML_MIME_TYPE = 'text/html';\n  const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n  const CLASS_NAME = 'output_bokeh rendered_html';\n\n  /**\n   * Render data to the DOM node\n   */\n  function render(props, node) {\n    const script = document.createElement(\"script\");\n    node.appendChild(script);\n  }\n\n  /**\n   * Handle when an output is cleared or removed\n   */\n  function handleClearOutput(event, handle) {\n    const cell = handle.cell;\n\n    const id = cell.output_area._bokeh_element_id;\n    const server_id = cell.output_area._bokeh_server_id;\n    // Clean up Bokeh references\n    if (id != null && id in Bokeh.index) {\n      Bokeh.index[id].model.document.clear();\n      delete Bokeh.index[id];\n    }\n\n    if (server_id !== undefined) {\n      // Clean up Bokeh references\n      const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n      cell.notebook.kernel.execute(cmd_clean, {\n        iopub: {\n          output: function(msg) {\n            const id = msg.content.text.trim();\n            if (id in Bokeh.index) {\n              Bokeh.index[id].model.document.clear();\n              delete Bokeh.index[id];\n            }\n          }\n        }\n      });\n      // Destroy server and session\n      const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n      cell.notebook.kernel.execute(cmd_destroy);\n    }\n  }\n\n  /**\n   * Handle when a new output is added\n   */\n  function handleAddOutput(event, handle) {\n    const output_area = handle.output_area;\n    const output = handle.output;\n\n    // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n    if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n      return\n    }\n\n    const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n    if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n      toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n      // store reference to embed id on output_area\n      output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n    }\n    if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n      const bk_div = document.createElement(\"div\");\n      bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n      const script_attrs = bk_div.children[0].attributes;\n      for (let i = 0; i < script_attrs.length; i++) {\n        toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n        toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n      }\n      // store reference to server id on output_area\n      output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n    }\n  }\n\n  function register_renderer(events, OutputArea) {\n\n    function append_mime(data, metadata, element) {\n      // create a DOM node to render to\n      const toinsert = this.create_output_subarea(\n        metadata,\n        CLASS_NAME,\n        EXEC_MIME_TYPE\n      );\n      this.keyboard_manager.register_events(toinsert);\n      // Render to node\n      const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n      render(props, toinsert[toinsert.length - 1]);\n      element.append(toinsert);\n      return toinsert\n    }\n\n    /* Handle when an output is cleared or removed */\n    events.on('clear_output.CodeCell', handleClearOutput);\n    events.on('delete.Cell', handleClearOutput);\n\n    /* Handle when a new output is added */\n    events.on('output_added.OutputArea', handleAddOutput);\n\n    /**\n     * Register the mime type and append_mime function with output_area\n     */\n    OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n      /* Is output safe? */\n      safe: true,\n      /* Index of renderer in `output_area.display_order` */\n      index: 0\n    });\n  }\n\n  // register the mime type if in Jupyter Notebook environment and previously unregistered\n  if (root.Jupyter !== undefined) {\n    const events = require('base/js/events');\n    const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n    if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n      register_renderer(events, OutputArea);\n    }\n  }\n  if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n    root._bokeh_timeout = Date.now() + 5000;\n    root._bokeh_failed_load = false;\n  }\n\n  const NB_LOAD_WARNING = {'data': {'text/html':\n     \"<div style='background-color: #fdd'>\\n\"+\n     \"<p>\\n\"+\n     \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n     \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n     \"</p>\\n\"+\n     \"<ul>\\n\"+\n     \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n     \"<li>use INLINE resources instead, as so:</li>\\n\"+\n     \"</ul>\\n\"+\n     \"<code>\\n\"+\n     \"from bokeh.resources import INLINE\\n\"+\n     \"output_notebook(resources=INLINE)\\n\"+\n     \"</code>\\n\"+\n     \"</div>\"}};\n\n  function display_loaded() {\n    const el = document.getElementById(\"p1001\");\n    if (el != null) {\n      el.textContent = \"BokehJS is loading...\";\n    }\n    if (root.Bokeh !== undefined) {\n      if (el != null) {\n        el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n      }\n    } else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(display_loaded, 100)\n    }\n  }\n\n  function run_callbacks() {\n    try {\n      root._bokeh_onload_callbacks.forEach(function(callback) {\n        if (callback != null)\n          callback();\n      });\n    } finally {\n      delete root._bokeh_onload_callbacks\n    }\n    console.debug(\"Bokeh: all callbacks have finished\");\n  }\n\n  function load_libs(css_urls, js_urls, callback) {\n    if (css_urls == null) css_urls = [];\n    if (js_urls == null) js_urls = [];\n\n    root._bokeh_onload_callbacks.push(callback);\n    if (root._bokeh_is_loading > 0) {\n      console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n      return null;\n    }\n    if (js_urls == null || js_urls.length === 0) {\n      run_callbacks();\n      return null;\n    }\n    console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n    root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n    function on_load() {\n      root._bokeh_is_loading--;\n      if (root._bokeh_is_loading === 0) {\n        console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n        run_callbacks()\n      }\n    }\n\n    function on_error(url) {\n      console.error(\"failed to load \" + url);\n    }\n\n    for (let i = 0; i < css_urls.length; i++) {\n      const url = css_urls[i];\n      const element = document.createElement(\"link\");\n      element.onload = on_load;\n      element.onerror = on_error.bind(null, url);\n      element.rel = \"stylesheet\";\n      element.type = \"text/css\";\n      element.href = url;\n      console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n      document.body.appendChild(element);\n    }\n\n    for (let i = 0; i < js_urls.length; i++) {\n      const url = js_urls[i];\n      const element = document.createElement('script');\n      element.onload = on_load;\n      element.onerror = on_error.bind(null, url);\n      element.async = false;\n      element.src = url;\n      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n      document.head.appendChild(element);\n    }\n  };\n\n  function inject_raw_css(css) {\n    const element = document.createElement(\"style\");\n    element.appendChild(document.createTextNode(css));\n    document.body.appendChild(element);\n  }\n\n  const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.0.3.min.js\"];\n  const css_urls = [];\n\n  const inline_js = [    function(Bokeh) {\n      Bokeh.set_log_level(\"info\");\n    },\nfunction(Bokeh) {\n    }\n  ];\n\n  function run_inline_js() {\n    if (root.Bokeh !== undefined || force === true) {\n          for (let i = 0; i < inline_js.length; i++) {\n      inline_js[i].call(root, root.Bokeh);\n    }\nif (force === true) {\n        display_loaded();\n      }} else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(run_inline_js, 100);\n    } else if (!root._bokeh_failed_load) {\n      console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n      root._bokeh_failed_load = true;\n    } else if (force !== true) {\n      const cell = $(document.getElementById(\"p1001\")).parents('.cell').data().cell;\n      cell.output_area.append_execute_result(NB_LOAD_WARNING)\n    }\n  }\n\n  if (root._bokeh_is_loading === 0) {\n    console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n    run_inline_js();\n  } else {\n    load_libs(css_urls, js_urls, function() {\n      console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n      run_inline_js();\n    });\n  }\n}(window));",
-      "application/vnd.bokehjs_load.v0+json": ""
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%load_ext autoreload\n",
-    "%autoreload 2\n",
-    "\n",
-    "from Scripts.utils.convenience_utils import *\n",
-    "from Scripts.utils.plotting_utils import plot_observable_performance\n",
-    "from Scripts.Step_1_Train_Metric_Learning import train as train_metric_learning\n",
-    "from Scripts.Step_2_Run_Metric_Learning import train as run_metric_learning_inference\n",
-    "from Scripts.Step_3_Train_GNN import train as train_gnn\n",
-    "from Scripts.Step_4_Run_GNN import train as run_gnn_inference\n",
-    "from Scripts.Step_5_Build_Track_Candidates import train as build_track_candidates\n",
-    "from Scripts.Step_6_Evaluate_Reconstruction import evaluate as evaluate_candidates\n",
-    "\n",
-    "import sys\n",
-    "from Scripts.utils.convenience_utils import get_example_data, plot_true_graph, get_training_metrics, plot_training_metrics, plot_neighbor_performance, plot_predicted_graph, plot_track_lengths, plot_edge_performance, plot_graph_sizes\n",
-    "import yaml\n",
-    "\n",
-    "import warnings\n",
-    "warnings.filterwarnings(\"ignore\")\n",
-    "\n",
-    "CONFIG = 'pipeline_config.yaml'"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### Pipeline configurations\n",
-    "\n",
-    "The configurations for the entire pipeline are defined under pipeline_config.yml."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "with open(CONFIG, 'r') as f:\n",
-    "    configs = yaml.load(f, Loader=yaml.FullLoader)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Download data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# ! xrdcp -r root://eoslhcb.cern.ch//eos/lhcb/user/a/anthonyc/tracking/data/csv/v2/minbias-sim10b-xdigi/0 data/input/"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### Telegram notification bot"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import requests\n",
-    "import json\n",
-    "# from datetime import datetime\n",
-    "\n",
-    "# def send_telegram_message(message: str,\n",
-    "#                           chat_id: str,\n",
-    "#                           api_key: str,\n",
-    "#                          ):\n",
-    "#     responses = {}\n",
-    "\n",
-    "#     url = f'https://api.telegram.org/bot{api_key}/sendMessage?chat_id={chat_id}&text={message}'\n",
-    "    \n",
-    "#     response = requests.post(url)\n",
-    "    \n",
-    "#     return response\n",
-    "\n",
-    "def send_telegram_message(*args, **kwargs):\n",
-    "    pass"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# chat_id = \"5027012918\"\n",
-    "# api_key = \"6268687426:AAE1P7WQofCBuQPiYZlYaKU-p1GNn6OvAxM\"\n",
-    "\n",
-    "# send_telegram_message(\"======================\", chat_id, api_key)\n",
-    "\n",
-    "# send_telegram_message(\"Starting.\", chat_id, api_key)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Delete contents of `bokeh-plots`"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "clear_contents('bokeh-plots')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Saving data into `torch` tensor form"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Saving event 004206889, 1/100, contains 814 true hits.\n",
-      "Saving event 004206890, 2/100, contains 935 true hits.\n",
-      "Saving event 004206891, 3/100, contains 1508 true hits.\n",
-      "Saving event 004206892, 4/100, contains 691 true hits.\n",
-      "Saving event 004206893, 5/100, contains 1584 true hits.\n",
-      "Saving event 004206894, 6/100, contains 1527 true hits.\n",
-      "Saving event 004206895, 7/100, contains 834 true hits.\n",
-      "Saving event 004206896, 8/100, contains 1012 true hits.\n",
-      "Saving event 004206897, 9/100, contains 1343 true hits.\n",
-      "Saving event 004206898, 10/100, contains 1185 true hits.\n",
-      "Saving event 004206899, 11/100, contains 841 true hits.\n",
-      "Saving event 004206900, 12/100, contains 1000 true hits.\n",
-      "Saving event 004206901, 13/100, contains 2350 true hits.\n",
-      "Saving event 004206902, 14/100, contains 2537 true hits.\n",
-      "Saving event 004206903, 15/100, contains 1938 true hits.\n",
-      "Saving event 004206904, 16/100, contains 3223 true hits.\n",
-      "Saving event 004206905, 17/100, contains 3772 true hits.\n",
-      "Discarding event 004206906, contains only fake hits.\n",
-      "Saving event 004206907, 18/100, contains 1071 true hits.\n",
-      "Saving event 004206908, 19/100, contains 911 true hits.\n",
-      "Saving event 004206909, 20/100, contains 891 true hits.\n",
-      "Saving event 004206910, 21/100, contains 287 true hits.\n",
-      "Saving event 004206911, 22/100, contains 1154 true hits.\n",
-      "Saving event 004206912, 23/100, contains 1430 true hits.\n",
-      "Saving event 004206913, 24/100, contains 3562 true hits.\n",
-      "Saving event 004206914, 25/100, contains 616 true hits.\n",
-      "Saving event 004206915, 26/100, contains 739 true hits.\n",
-      "Saving event 004206916, 27/100, contains 1019 true hits.\n",
-      "Saving event 004206917, 28/100, contains 2024 true hits.\n",
-      "Saving event 004206918, 29/100, contains 1679 true hits.\n",
-      "Saving event 004206919, 30/100, contains 1747 true hits.\n",
-      "Saving event 004206920, 31/100, contains 1254 true hits.\n",
-      "Saving event 004206921, 32/100, contains 2582 true hits.\n",
-      "Saving event 004206922, 33/100, contains 627 true hits.\n",
-      "Saving event 004206923, 34/100, contains 1168 true hits.\n",
-      "Saving event 004206924, 35/100, contains 1606 true hits.\n",
-      "Saving event 004206925, 36/100, contains 2457 true hits.\n",
-      "Saving event 004206926, 37/100, contains 1325 true hits.\n",
-      "Saving event 004206927, 38/100, contains 2473 true hits.\n",
-      "Saving event 004206928, 39/100, contains 3194 true hits.\n",
-      "Saving event 004206929, 40/100, contains 2108 true hits.\n",
-      "Saving event 004206930, 41/100, contains 3139 true hits.\n",
-      "Saving event 004206931, 42/100, contains 2060 true hits.\n",
-      "Discarding event 004206932, contains only fake hits.\n",
-      "Saving event 004206933, 43/100, contains 1013 true hits.\n",
-      "Saving event 004206934, 44/100, contains 397 true hits.\n",
-      "Saving event 004206935, 45/100, contains 709 true hits.\n",
-      "Saving event 004206936, 46/100, contains 772 true hits.\n",
-      "Saving event 004206937, 47/100, contains 872 true hits.\n",
-      "Saving event 004206938, 48/100, contains 1117 true hits.\n",
-      "Saving event 004206939, 49/100, contains 397 true hits.\n",
-      "Saving event 004206940, 50/100, contains 1636 true hits.\n",
-      "Saving event 004206941, 51/100, contains 3559 true hits.\n",
-      "Saving event 004206942, 52/100, contains 1822 true hits.\n",
-      "Saving event 004206943, 53/100, contains 344 true hits.\n",
-      "Saving event 004206944, 54/100, contains 1340 true hits.\n",
-      "Saving event 004206945, 55/100, contains 2038 true hits.\n",
-      "Saving event 004206946, 56/100, contains 3145 true hits.\n",
-      "Saving event 004206947, 57/100, contains 4457 true hits.\n",
-      "Saving event 004206948, 58/100, contains 1102 true hits.\n",
-      "Saving event 004206949, 59/100, contains 955 true hits.\n",
-      "Saving event 004206950, 60/100, contains 1426 true hits.\n",
-      "Saving event 004206951, 61/100, contains 428 true hits.\n",
-      "Saving event 004206952, 62/100, contains 1250 true hits.\n",
-      "Saving event 004206953, 63/100, contains 1591 true hits.\n",
-      "Saving event 004206954, 64/100, contains 2626 true hits.\n",
-      "Saving event 004206955, 65/100, contains 293 true hits.\n",
-      "Saving event 004206956, 66/100, contains 1312 true hits.\n",
-      "Saving event 004206957, 67/100, contains 983 true hits.\n",
-      "Saving event 004206958, 68/100, contains 1659 true hits.\n",
-      "Saving event 004206959, 69/100, contains 2843 true hits.\n",
-      "Saving event 004206960, 70/100, contains 816 true hits.\n",
-      "Saving event 004206961, 71/100, contains 211 true hits.\n",
-      "Saving event 004206962, 72/100, contains 1821 true hits.\n",
-      "Saving event 004206963, 73/100, contains 1017 true hits.\n",
-      "Saving event 004206964, 74/100, contains 2710 true hits.\n",
-      "Saving event 004206965, 75/100, contains 2393 true hits.\n",
-      "Saving event 004206966, 76/100, contains 3461 true hits.\n",
-      "Saving event 007212913, 77/100, contains 1855 true hits.\n",
-      "Saving event 007212914, 78/100, contains 923 true hits.\n",
-      "Saving event 007212915, 79/100, contains 1247 true hits.\n",
-      "Saving event 007212916, 80/100, contains 2129 true hits.\n",
-      "Saving event 007212917, 81/100, contains 2372 true hits.\n",
-      "Saving event 007212918, 82/100, contains 1742 true hits.\n",
-      "Saving event 007212919, 83/100, contains 2170 true hits.\n",
-      "Saving event 007212920, 84/100, contains 768 true hits.\n",
-      "Saving event 007212921, 85/100, contains 2265 true hits.\n",
-      "Saving event 007212922, 86/100, contains 3096 true hits.\n",
-      "Saving event 007212923, 87/100, contains 1829 true hits.\n",
-      "Saving event 007212924, 88/100, contains 833 true hits.\n",
-      "Saving event 007212925, 89/100, contains 2592 true hits.\n",
-      "Saving event 007212926, 90/100, contains 1433 true hits.\n",
-      "Saving event 007212927, 91/100, contains 1745 true hits.\n",
-      "Saving event 007212928, 92/100, contains 2669 true hits.\n",
-      "Saving event 007212929, 93/100, contains 982 true hits.\n",
-      "Saving event 007212930, 94/100, contains 1134 true hits.\n",
-      "Saving event 007212931, 95/100, contains 2717 true hits.\n",
-      "Saving event 007212932, 96/100, contains 2973 true hits.\n",
-      "Saving event 007212933, 97/100, contains 970 true hits.\n",
-      "Saving event 007212934, 98/100, contains 1286 true hits.\n",
-      "Saving event 007212935, 99/100, contains 420 true hits.\n",
-      "Saving event 007212936, 100/100, contains 3010 true hits.\n",
-      "Writing outputs to data/processed\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:Preparing event 004206890\n",
-      "INFO:Preparing event 004206889\n",
-      "INFO:Preparing event 004206891\n"
-     ]
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "a467fbebb2da45359ca424b4e5aa2f07",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "  0%|          | 0/100 [00:00<?, ?it/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:Preparing event 004206892\n",
-      "INFO:Preparing event 004206893\n",
-      "INFO:Preparing event 004206895\n",
-      "INFO:Preparing event 004206894\n",
-      "INFO:Preparing event 004206899\n",
-      "INFO:Preparing event 004206897\n",
-      "INFO:Preparing event 004206900\n",
-      "INFO:Preparing event 004206901\n",
-      "INFO:Preparing event 004206903\n",
-      "INFO:Preparing event 004206904\n",
-      "INFO:Preparing event 004206902\n",
-      "INFO:Preparing event 004206905\n",
-      "INFO:Preparing event 004206911\n",
-      "INFO:Preparing event 004206907\n",
-      "INFO:Preparing event 004206912\n",
-      "INFO:Preparing event 004206914\n",
-      "INFO:Preparing event 004206913\n",
-      "INFO:Preparing event 004206910\n",
-      "INFO:Preparing event 004206908\n",
-      "INFO:Preparing event 004206915\n",
-      "INFO:Preparing event 004206909\n",
-      "INFO:Preparing event 004206916\n",
-      "INFO:Preparing event 004206917\n",
-      "INFO:Preparing event 004206918\n",
-      "INFO:Preparing event 004206919\n",
-      "INFO:Preparing event 004206920\n",
-      "INFO:Preparing event 004206921\n",
-      "INFO:Preparing event 004206896\n",
-      "INFO:Preparing event 004206898\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206897 with size (2, 983)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206912 with size (2, 1089)\n",
-      "INFO:Preparing event 004206922\n",
-      "INFO:Preparing event 004206923\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206899 with size (2, 650)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206914 with size (2, 488)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206891 with size (2, 1109)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206904 with size (2, 2437)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206893 with size (2, 1163)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206890 with size (2, 742)\n",
-      "INFO:Preparing event 004206926\n",
-      "INFO:Preparing event 004206925\n",
-      "INFO:Preparing event 004206927\n",
-      "INFO:Preparing event 004206924\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206895 with size (2, 625)\n",
-      "INFO:Preparing event 004206928\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206900 with size (2, 729)\n",
-      "INFO:Preparing event 004206929\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206894 with size (2, 1145)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206909 with size (2, 708)\n",
-      "INFO:Preparing event 004206930\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206896 with size (2, 782)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206901 with size (2, 1779)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206917 with size (2, 1507)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206918 with size (2, 1355)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206913 with size (2, 2754)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206922 with size (2, 505)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206892 with size (2, 545)\n",
-      "INFO:Preparing event 004206935\n",
-      "INFO:Preparing event 004206934\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206923 with size (2, 848)\n",
-      "INFO:Preparing event 004206936\n",
-      "INFO:Preparing event 004206933\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206902 with size (2, 1860)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206915 with size (2, 597)\n",
-      "INFO:Preparing event 004206931\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206910 with size (2, 228)\n",
-      "INFO:Preparing event 004206938\n",
-      "INFO:Preparing event 004206937\n",
-      "INFO:Preparing event 004206939\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206908 with size (2, 691)\n",
-      "INFO:Preparing event 004206940\n",
-      "INFO:Preparing event 004206941\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206907 with size (2, 803)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206916 with size (2, 736)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206911 with size (2, 875)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206889 with size (2, 626)\n",
-      "INFO:Preparing event 004206946\n",
-      "INFO:Preparing event 004206944\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206919 with size (2, 1329)\n",
-      "INFO:Preparing event 004206942\n",
-      "INFO:Preparing event 004206945\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206903 with size (2, 1492)\n",
-      "INFO:Preparing event 004206948\n",
-      "INFO:Preparing event 004206943\n",
-      "INFO:Preparing event 004206949\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206933 with size (2, 757)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206927 with size (2, 1847)\n",
-      "INFO:Preparing event 004206947\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206898 with size (2, 935)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206934 with size (2, 310)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206935 with size (2, 542)\n",
-      "INFO:Preparing event 004206950\n",
-      "INFO:Preparing event 004206951\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206928 with size (2, 2391)\n",
-      "INFO:Preparing event 004206953\n",
-      "INFO:Preparing event 004206952\n",
-      "INFO:Preparing event 004206955\n",
-      "INFO:Preparing event 004206954\n",
-      "INFO:Preparing event 004206956\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206926 with size (2, 1027)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206920 with size (2, 954)\n",
-      "INFO:Preparing event 004206957\n",
-      "INFO:Preparing event 004206958\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206925 with size (2, 1898)\n",
-      "INFO:Preparing event 004206959\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206921 with size (2, 2020)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206924 with size (2, 1197)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206929 with size (2, 1550)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206931 with size (2, 1546)\n",
-      "INFO:Preparing event 004206961\n",
-      "INFO:Preparing event 004206960\n",
-      "INFO:Preparing event 004206962\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206905 with size (2, 2741)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206951 with size (2, 322)\n",
-      "INFO:Preparing event 004206965\n",
-      "INFO:Preparing event 004206963\n",
-      "INFO:Preparing event 004206964\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206939 with size (2, 288)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206944 with size (2, 1020)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206937 with size (2, 690)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206948 with size (2, 849)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206938 with size (2, 836)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206953 with size (2, 1235)\n",
-      "INFO:Preparing event 007212914\n",
-      "INFO:Preparing event 004206966\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206943 with size (2, 258)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206954 with size (2, 1990)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206955 with size (2, 212)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206930 with size (2, 2426)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206936 with size (2, 584)\n",
-      "INFO:Preparing event 007212915\n",
-      "INFO:Preparing event 007212918\n",
-      "INFO:Preparing event 007212913\n",
-      "INFO:Preparing event 007212920\n",
-      "INFO:Preparing event 007212922\n",
-      "INFO:Preparing event 007212921\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206945 with size (2, 1431)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206942 with size (2, 1367)\n",
-      "INFO:Preparing event 007212917\n",
-      "INFO:Preparing event 007212923\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206941 with size (2, 2737)\n",
-      "INFO:Preparing event 007212916\n",
-      "INFO:Preparing event 007212919\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206960 with size (2, 627)\n",
-      "INFO:Preparing event 007212924\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206949 with size (2, 734)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206947 with size (2, 3438)\n",
-      "INFO:Preparing event 007212926\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206940 with size (2, 1241)\n",
-      "INFO:Preparing event 007212927\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206957 with size (2, 728)\n",
-      "INFO:Preparing event 007212929\n",
-      "INFO:Preparing event 007212925\n",
-      "INFO:Preparing event 007212930\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206958 with size (2, 1260)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206956 with size (2, 1019)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206946 with size (2, 2389)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206952 with size (2, 976)\n",
-      "INFO:Preparing event 007212931\n",
-      "INFO:Preparing event 007212932\n",
-      "INFO:Preparing event 007212928\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212915 with size (2, 982)\n",
-      "INFO:Preparing event 007212933\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206962 with size (2, 1329)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206950 with size (2, 1073)\n",
-      "INFO:Preparing event 007212934\n",
-      "INFO:Preparing event 007212935\n",
-      "INFO:Preparing event 007212936\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206963 with size (2, 776)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206965 with size (2, 1832)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206964 with size (2, 2053)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206961 with size (2, 169)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212921 with size (2, 1661)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212914 with size (2, 681)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206959 with size (2, 2069)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212929 with size (2, 706)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212924 with size (2, 626)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212916 with size (2, 1597)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212933 with size (2, 722)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206966 with size (2, 2581)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212913 with size (2, 1389)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212935 with size (2, 282)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212926 with size (2, 1111)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212920 with size (2, 605)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212927 with size (2, 1295)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212934 with size (2, 1002)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212923 with size (2, 1412)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212930 with size (2, 856)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212931 with size (2, 2041)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212922 with size (2, 2242)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212918 with size (2, 1298)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212917 with size (2, 1753)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212919 with size (2, 1630)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212936 with size (2, 2279)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212925 with size (2, 1990)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212932 with size (2, 2200)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212928 with size (2, 2023)\n"
-     ]
-    }
-   ],
-   "source": [
-    "from Processing.Models.feature_construction import FeatureStore\n",
-    "\n",
-    "fs = FeatureStore(CONFIG)\n",
-    "fs.prepare_data()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# 1. Train Metric Learning"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## What it does\n",
-    "Broadly speaking, the first stage of our pipeline is embedding the space points on to graphs, in a way that is efficient, i.e. we miss as few points on a graph as possible. We train a MLP to transform the input feature vector of each space point $\\mathbf{u}_i$ into an N-dimensional latent space $\\mathbf{v}_i$. The graph is then constructed by connecting the space points whose Euclidean distance between the latent space points $$d_{ij} = \\left| \\mathbf{v}_i - \\mathbf{v}_j \\right| < r_{embedding}$$"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Training data\n",
-    "Let us take a look at the data before training. In this example pipeline, we have preprocessed the TrackML data into a more convenient form. We calculated directional information and summary statistics from the charge deposited in each spacepoints, and append them to its cyclidrical coordinates. Let us load an example data file and inspect the content."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>0</th>\n",
-       "      <th>1</th>\n",
-       "      <th>2</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>0.465221</td>\n",
-       "      <td>-0.462661</td>\n",
-       "      <td>-1.440705</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>0.122540</td>\n",
-       "      <td>-0.611363</td>\n",
-       "      <td>-1.440705</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>0.513063</td>\n",
-       "      <td>-0.629230</td>\n",
-       "      <td>-1.434295</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>0.498745</td>\n",
-       "      <td>-0.508192</td>\n",
-       "      <td>-1.440705</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>0.249448</td>\n",
-       "      <td>-0.532812</td>\n",
-       "      <td>-1.440705</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>...</th>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>673</th>\n",
-       "      <td>0.726360</td>\n",
-       "      <td>0.467563</td>\n",
-       "      <td>3.753205</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>674</th>\n",
-       "      <td>0.244590</td>\n",
-       "      <td>0.593452</td>\n",
-       "      <td>3.746795</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>675</th>\n",
-       "      <td>0.722281</td>\n",
-       "      <td>0.704765</td>\n",
-       "      <td>3.746795</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>676</th>\n",
-       "      <td>0.128899</td>\n",
-       "      <td>-0.142000</td>\n",
-       "      <td>3.753205</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>677</th>\n",
-       "      <td>0.340476</td>\n",
-       "      <td>-0.061835</td>\n",
-       "      <td>3.753205</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "<p>678 rows × 3 columns</p>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "            0         1         2\n",
-       "0    0.465221 -0.462661 -1.440705\n",
-       "1    0.122540 -0.611363 -1.440705\n",
-       "2    0.513063 -0.629230 -1.434295\n",
-       "3    0.498745 -0.508192 -1.440705\n",
-       "4    0.249448 -0.532812 -1.440705\n",
-       "..        ...       ...       ...\n",
-       "673  0.726360  0.467563  3.753205\n",
-       "674  0.244590  0.593452  3.746795\n",
-       "675  0.722281  0.704765  3.746795\n",
-       "676  0.128899 -0.142000  3.753205\n",
-       "677  0.340476 -0.061835  3.753205\n",
-       "\n",
-       "[678 rows x 3 columns]"
-      ]
-     },
-     "execution_count": 8,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "example_data_df, example_data_pyg = get_example_data(configs)\n",
-    "example_data_df"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAEAAElEQVR4nOzdd3gU5doG8HtmW3qy6RVS6b0XAWkKYhfFisfesJ9jOUdF9LMce+96sCJYUYooTaQm9A7pvfe6beb7IxAJqZtsdja798+L6zKzM+/cgc1mn32bIMuyDCIiIiIiIjsQlQ5ARERERESugwUIERERERHZDQsQIiIiIiKyGxYgRERERERkNyxAiIiIiIjIbliAEBERERGR3bAAISIiIiIiu2EBQkREREREdsMChIiIiIiI7IYFCBERERER2Y1a6QD2dttttyEjI6PVx4YMGYLXX3/d6jYrKioAAH5+fsjLy8ONN96ISZMmYcmSJd1I2jMcPR8REREROTeXK0AmTJiAuLg4AMCmTZsgSRJmzpwJAIiMjOxSm7fccgu0Wi2WLVtms5xERERERM7I5QqQW265pen/t23bhoaGBjz22GNdbi8jIwMWiwVmsxmpqalwd3e3RUwiIiIiIqfkcgVIe1JTU3HnnXdi9uzZCAgIwIkTJ3D99dfj4YcfxuWXX4677roLAHDPPffg5MmTWLNmDZ577jnU1tYCAB5//HG88cYbAACLxYK33noLmzdvhl6vxwMPPIChQ4e2et+8vDy89tprSEtLw5w5c7B7926Ulpbihx9+aDXTSy+9hJ9++gk//fQTSkpKoNfrccEFF+C6667DwYMH8fDDD+OCCy5AZWUl9u/fj7i4ONxxxx3o169f0z2tyUdEREREZCuchN6KpKQkrFixAl5eXh2e+/HHH8PHxweBgYFYsWJF0/HExEQkJycjNjYWWVlZeOWVV1q93mw24+mnn8ahQ4cwadIk7Nq1C+np6e1mOnjwIN577z3odDpcfvnlcHd3x9KlS7F///6m83/77TfU1dVh3LhxOHjwIB577DHU19dbnY+IiIiIyJbYA9IKURTx/fffw9vbGwcPHuxSGxEREXj77bcBANdddx3y8vJgNpuhVjf/K9+/fz/S09Nx3nnn4Z///CdKS0tx9dVXt5spOzsb//nPfxATEwOj0YjMzExkZmYiPz8fERERAIDQ0FC89NJLABqLnL/++gt79+5FTEyMVfmIiIiIiGyJPSCtGDlyJLy9vbvVRp8+fZr+38/PDwAgy3KL83JycgAAAwYMAAAEBAQgPDy83UweHh5Ys2YNFi1ahK+++qrVdgcNGtT0/0OGDAEAlJWVWZ2PiIiIiMiWWIC0QqVSNf2/IAgAgPLycgCAJElNy+6eqatv3v39/QEAKSkpAICqqioUFBS0m+m7777Dvn378MQTT2DJkiUICQlpcf6xY8ea/v/o0aMAgLCwsC5lJCIiIiKyFY636UB4eDhEUcTWrVvxwgsvICcnB8XFxc3O8fb2Rn5+Pn777TcMGzbMqvbHjBkDHx8f/P777xAEASdOnIAkSe1ec3qY1PLly7Ft2zZs2LABAGAwGJrOycvLw7///W/4+flhy5YtiIiIwMiRI1FYWGhVPiIiIiIiW2IPSAcCAgJw9913w9PTE3v37sXo0aMRHx/f7JwFCxbA398f3333ndXte3h44Pnnn0d0dDQ2b96MgQMHom/fvu1eM3/+fAwfPhzJycnIz8/HDTfcAKBxWeHTzj//fKhUKmzfvh0jRozAiy++2KwXhYiIiIhICYLMgf+Kys3Nxffff4/AwEBceumlSE1NxSOPPIIBAwY0LelrjdPL8J65bDARERERkaPgECyFhYWFwcPDA19//TWWLl0KAOjfvz8eeughZYMREREREfUA9oA4CKPRiJKSEnh7e3drBa6CggKsXr0agwcPxoQJE2yYkIiIiIio+1iAEBERERGR3XASOhERERER2Q0LECIiIiIishsWIEREREREZDcutQrWY489hvvuu0/pGEREREREitPpdAgICLD6uqu2voLd5Sl4Y9QtuDhirNXXu9QkdEEQIMsy8vLyEB4ernQcIrvhc55cDZ/z5Gr4nKeusPZ5U9lQi+u3voI1pYcgSRYEufnio3F34dKI8Vbd16V6QIiIiIiIqHPMUiUySt9HnTEVKkHGrX+UYafFBHhqAADFDZW47K/n8Hz8w+jrFYZQfz2mBAVCIwjttssChIiIiIiImpFhwvbU6ais3wcBgE6lRonpPECnBU4NoBqsD4FvzXD8e/sxwD8f0GowwMcHG86dgnA3tzbb5iR0IiIiIiJqprJuD6oa9jV9rXcfjQjf/o3dFzJwR8J0XOl3I/ZW64GwYMBNBwA4XlWFt5JT2m2bPSBERERERNRMUW0J6gyApw6QZMDXbQhUGk+oZBWWjr8HYephmLVpA+CtAySpqVcEANJra9ttmwUIERERERE1I1VmIbsMGBAGCAA0mnjMjh6IV6Jvxki/GJQZTTh+6TykVFfjZHUVkqurcayqGseqa+Cman+QFQsQIiIiIiJqIhf+hf6JzyE/eDKOVW1DtC+g1cbjsRGXNJ3jr9XAX6tBfy9PlFZ4Y19hDXxqDAiuqMWBQgklA00I9NK02j7ngBAREREREQBALtoBy+YbYDFVYXq1GaMCn0alAfBx69fmNdP66LC73oQTAmDw8USNmwfu/qsYVSap1fNZgBAREREREQDAsv0eyA2lkAGYq45gQlERxsavglYd2uY1fT3VeG9WOCAAggrQeKhxqNaCO7cWt3o+CxAiIiIiIgIACIFjGid9CIAsAKa0LxBfUg+tKrjNa0x1JkTvOIJrhwYAggBZkiHLMvaXGls9nwUIEREREREBAFQT34YQNBtyg9S4/JUAmLbdBJQfbPOahmoDvv7XGgz7eRP6R/pAFgW4q0W8PiGw1fNZgBARERERUSOVDupzl0I2DoBUEQxoRkIIOAdS9so2LynPKofGzQP7PtyJQV+vhptOg1fGB+D8SPdWz2cBQkREREREf3P3gex3JYzHAmA4EQlTzhiYssJh3rcJUn4a5JpyAICUVgzLcytQklEKSbLAMyAYDb/uxRPFyZgZ3nrxAXAZXiIiIiIiOpu5HlJ1GVC9C5aTuxqPiQJkswke/3wLQlEc6m7/CJoIM4oXNM4PkWUZ/n7BiPbQtts0CxAiIiIiImpGDIz8+wtBAABIZiO0M26D5Xug4cO3IECAQTSgJLkYMgRAlqFV6eAfEdJ+2z0ZnIiIiIiIeh/N9AVQxQwBAMgmC0zlNRA0kyB94Y6GD9cAECDLJlRl5SB/X37jylkAfCN90GdMZNsNo5f2gDQ0NOCpp57CSy+9pHQUIiIiIiKnI3j6wOu5lbAcS4S5IAdSXgUMD+6D2ZgMCDIEQQWLuQ5mnYjB8wZChgDfEG+MnD8UGrf2S4xeV4CsXbsWa9euhdHY+rrCRERERERkG6qB46AaOA4AoIk6gdo7P4WUXwEIgHrKQER/dhfiQtveI6Q1vW4Ilq+vL6ZOnap0DCIiIiIil6Ke2h+eH94CVXQQ1DMGwPenJ6CysvgAAEGWZbkH8vWo7OxsPPfcc/jggw9afXzJkiV4+umn27z+4YcfxkMPPdRD6YiIiIiIHJ8gCAgLC7P7fXvdEKzOWLx4MRYvXtziuCAIkGUZeXl5CA8PVyAZkTL4nCdXw+c8uRo+56kr8vLyFLlvrxuCRUREREREvRcLECIiIiIishsWIEREREREZDe9sgCJiopqcwI6ERERERF1bPo2M/p/l2X3+/bKAoSIiIiIiHonFiBERERERGQ3LECIiIiIiMhuWIAQEREREZHdsAAhIiIiIiK7YQFCRERERER2wwKEiIgUJ8syTCaT0jGIiMgOWIAQEZHiSnJLkXkyB5IkKR2FiIg6YfuuJCTu2dela9U2zkJERGQ9ARAhK52CiIg6ITUtAylp6QCAAL0ecbHRVl3PAoSIiBQXGB4AfbAfRJEd80REjiw1LQPbdiXCx8cbALBtVyIAWFWE8JWeiIgUJwgC1Bp+JkZE1BtMHj8O7m5ucHdzw+Tx46y+nq/2RERERETUrtS0DAB/93SkpKc3+/rsx9vDHhAiIiIiImrT6WFXHdm2K7GpEGkPe0CIiIiIiKhV23clISUtHT4+3khJT2/q+SguKQUArNuwqelcHx9vbNuViNLycowbPbLNNtkDQkRERERENmM2m9t9nD0gRERERETUqknjxyIkKAjbdiVi6MCBTXM8Tvd8nD9zOoC/h2lNHj+uw3kgLECIiIiIiKhNnV1itzPFB8AChIiIiIiIOnD2alenWbP61WmcA0JERERERJ22bVci6hsaUN/Q0KnVsc7GHhAiIiIiIuqU0z0dpwuPzg67OhMLECIiIiIi6rS42GgUFhc3/b+1WIAQEREREZFVJo0f2+VrOQeEiIiIiIjshgUIERERERHZDQsQIiIiIiKyGxYgRERERERkNyxAiIiIiIjIbliAEBERERGR3bAAISIiIiIiu3HqAmTJkiUQBKHpDxERERERNdo0WY0TV/ax+32dugBZvHgxZFlu+kNE5Ory8ivwyL9X4J4HvsSOXalKxyEiIhfk1AUIERH9LS+/Aose+BKJu9Nw5Ggu/u/FX7B9R7LSsYiIyMWwACEichEvvrwaZeW1TV/X1hrw+tu/w2KRFExFRESuhgUIEZGLqKltaHHMaDLDbGYBQkRE9sMChIjIRZw3czA0alWzYyOH94VOp1YoERERuSL+1iEichFXXzUBoijiq2U7UFVdj2lTBuDpJy5VOhYREbkY9oAQEbmQq+aPw1dL70B8XAiuuWq80nGIiMgFsQAhInIxPt5uGNA/DCmphe2eV11ZA0ni/BAiIldmNJmQmp6BTX9tQ1ZOLgBg285EJO3dDwBITWt8LDU9A0aTqVNtsgAhInJBCfEhSE5puwCRJAllBWWoKquyYyoiInI02dm5SNyzD0ajESbjmQXG33vsGY1GJO7Zh+zs3E61yTkgREQuKD42GL+vP9zm46IoIjI+AiqVqs1ziIjI+WXl5MBf74fzZ05vOjZ5wrim/4+LjUZcbDTWbdiErJwcxMVGd9gmCxAiIhcUHxfS4RAsFh9ERNQnMrJT58XHxHS6TRYgREQuSKdTIzDQG7m55YiI0Csdh4iIHFRnejSsOQ9gAUJE5LIS4kKQnFrIAoSIiNq0bWcigObDrgCgprYWSXv3o6CwCCaTCSHBQRg+dDBCg4M7bJOT0ImIXFR8XDBSUouUjkFERA5Mq9VAq9U0O1ZTW4tf1/6OmpoajBg6GGNHjYBWo8HvGzajoKjj3yvsASEiclHxcSH4+Ze9SscgIiIHNnbUyBbHkvbsg5enBy6ae37TsYH9+2Hdhk04cOgIQme23wvCHhAiIhfVmYnorZEkCbIsd3wiERH1eqlpGU37f5xWUFSM+NiWk877REagrLyiwzZZgBARuajAAC+YTBZUVtVbdV1uSi7y0vJ7KBURETmSrJwcHDtx0qZtsgAhInJhcbHBSE2zbh5IeFw4wmJCeygRERE5kj6RkSgrrzi1z0djT0hocBBS0jJanJuVkwt/vV+HbbIAISJyYfHxIUhpZ0f01qhUKogif30QEbmCqKgIjBs1ElqNpmkn9LGjRzZNRD924iSOnTiJdRs2obCoGEEBAR22yUnoREQuLCEuBIm705SOQUREDkqr0TTtdn6al6cnLpp7HpL27MP+Q0ealuEdMnAADh87Dl8fn3b3BWEBQkTkwuLjgvHN8p1KxyAiol7Gy9MT06ee0+K4r48Ptu1KhF7v1+ZwLBYgREQuLCY6CBmZxZBlQBCUTkNERL1dXGw09Ho/eHl5tnkOB/ESEbm4ri7HS0RE1Bp/vR+0Gk2bj7MAISJycSxAiIjInliAEBG5uIS4ECSzACEiIjthAUJE5OLi44KRkmrdXiBERERdxQKEiMjF9dYhWBazBTkpeZBlWekoRERkBRYgREQuzsNDCx8fdxQUVCodxSqCIEDg0l1ERL0OCxAiIkJ8bDBS0nrXMCxRJSIiLoxFCBFRL8N9QIiICAnxIUhOKcQ5kxKUjkJERA7m8OHDnTpvyJAhnTqPBQgRESE+LgRrfjuodAwiInJAnS0sOotDsIiICHGxwUjtZUOwiIiod2IBQkRECA3xRXV1A2rrDEpHISIiJ+fUBciSJUuaVknhJEUiovbFxwcjJYW9IERE1LOcugBZvHgxZFlu+kNERG3rrfuBEBFR7+LUBQgREXUeCxAiIrIHFiBERAQASIgLRnIqh2AREVHPYgFCREQA2ANCRES20dHUBxYgRETUJCY6COkZxUrHICIiB3BmGWGxWP4+flaBUVpWjgOHj+Dw0WOorKzqcPEnbkRIRERNTg/DiokOUjoKEREpTABQXV2D/YePICsrB32iIjB86GD4eHsDACyShAMHD+NESipkWYYkSzh45BiGDOyPoYMHtVmIsAAhIqImCfGhSE4pwHkzBysdhYiIFFZVXY0Nf26F0WSCn68P8gqKUFpegelTJsPXxxtHjh1HXlEJhg4aiAH9EmCRLDh89BgysvPg5u6OfnGxrbbLIVhERNQkPi4YKVZORC8rqeyhNEREpKS9+w+iocGAKRPGYd6c2ZgyaTyMJhOOHDsBWZZx7EQy3LVqDBk0AGq1CjqtFqNHDIdOq8ahI8fabJcFCBERNYmLC0FqBxPRa6vrmv7fbDSjrKAMZqO5p6MREZGdFZWUom9UBMLDQpGTl4fw0BCEhwYjKycbBqMRkiQhMDAQQOMckdPzRPR+fhBVqjbbZQFCRERNfLzdoNNpUFxS3erjhnoDCrMLYTY1FhxqrRrRA6Kg1nJELxGRs9HpdND7+SE1PQO79x1EanoG/P38YLFIEABo1Crk5OVBkmSoVCqoVCqYzWYUFBbCYja12S4LECIiaqa9YVg6dx2iEqKg1vxdcKjVLD6IiJyRRbLAZDLB18cbk8aNga+PN0xmMwRBhE6nQ2x0NGSI2LTlL+Tk5iErJwcb/vwLEFQY2C+hzXZZgBARUTMd7Qei0ThfwWFsMCp6//q6ephMHMZGRI5FFESIahHFJaVI2ncQRSWlUIkqCELjClhDBg2Em1aNqpo6JO47gP2HjqKmtg6B/n4YwAKEiIg6y9U2JDQbzchOzkNDXYMi95dlGWUFFajgZH4icjCCIAIyMKBfAqLCQzGwX0Lj3iCCAMkiQavVwNfHG0ajAZFhIYgKD8PEcaMxafxYqNqZA+J8H2MREVG3xMcF46NPNysdw27UWjWiEsKhddMqcn9BEBARG6bIvYmI2tPQUN+0seCwIYMAAJVVlZBlGWq1CiaTGSlp6fDz8cW40aM63S57QIiIqJmIcD1Ky2rQ0ND2BEJno1TxQUTkyEKCApGTl4+CosZ5gQVFRcgrKEJUeBgEQUB+QQF0bu6I7tsHsizDYrG02CW9NSxAiIiohbjYYKSmWbcfCBEROZeRw4ZArVZj45/bsH7Tn9j451aoVaqm3pCM7GyYjEb0iYyAIAgQRbHN3c/PxAKEiIha6C3zQGRZhqHeoHQMIiKn5Ovri+lTJiMsNBiFJSUICwnGuedMhK+PD4xGI3LzCuCv94OnpwcAdKr4ADgHhIiIWpEQH4Ljx/OUjtGhyrIqlBaWI7p/VLsTHomIyHqyLMNf74fpUybDYrE0vc7KsgyNRoOpkyfCTaezul0WIERE1EJCXDB+Xb1f6Rgd8gvwhZevJ4sPIqIeIAhC05wOlUrV9P+nezoiwkK71C4LECIiaiEuNgSpaY4/BAvgRohERD3pzGFVnR1i1RHOASEiohbUahHhYXpkZZcqHYWIiJwMCxAiImpVQnwIklN6Ry8IERH1HixAiIioVfFxwUhJ5VK8RERkWxw4S0RErYqPC8GK7xOVjuHwnv9iPTILyxEXEYhHrp2udBwiIofHAoSIiFrVW/YCUdL1z3yNY5mNf0cHU/OQWVCGdx+6QuFURESOjUOwiIioVXo/DwiCgLLyWqWjOKSfthxCdlF509dGkwXHMgqxcU+ygqmIiBwfe0CIyKVZLBYIggBR5OcxrYmLDUZqWhH8R8coHcXhVNcbUFNvbHbMZLGgzmBSKBERUc84fPhwp84bMmRIp85jAUJELi0/vQCCICAiLlzpKA7p9DCssSxAWrhg/EB8uXY3yqrrmo5p1WqcN66/gqmIiGyvs4VFZ/EjPyJyaeGxYQiL6dpOrq6AS/G2LdDPE8ufWYggP0/oNGrERQTil//eAq2au7ITEbWHBQgRuTRRFDn8qh2ciN4+fx8P3HTBeMwa0w8rnlkITzet0pGIiBwef+sSEVGb+kT5Iy+/AmazpHQUh1VQVoX4yEClYxAR9RosQIiIqF3sBWlfQWk1QgO8lY5BRNRrsAAhIqJ2WVuAmEzmHkzjeArKqhHqzwKEiKiznLoAWbJkCQRBaPpDRETWS4gLRnJqUafOraupR8aJLJcqQgrLqhHCAoSIqNOcugBZvHgxZFlu+kNERNazpgfEw8sdEdGh0GhcZ5X3wvJqhOhZgBARdZZTFyBERNR91g7B8vDy6ME0joXFBxGR9ViAEBFRu3Q6NQRBwN33f4ktW08qHcehcPgVEbmqbTsTsW1nYpeuZQFCRETtOu/CV2BoMOHosVw8/X8/4dDhbKUjOQxOQCciV1VTW4ua2touXcsChIicmizLyE3Jg2ThPhZdsfDmj2E0mnF6Fp0kyXjwkW+5L8gp7AEhIrIeCxAicn5cBa/LyivrWhyTJAmJu9MUSON48kurEBbgY9U1RoMRhbklPZSIiMjxsQAhIqcmCAIi4sIgqvhy1xXRfQIgoHkBp1arMGlCvEKJWidJyvTIdKUHxGQyw2I09VAiIqKeU1ZeAaOp5euX0WRCWXlFp9vhb2QiImrT269fj6gof4hiYxEiigK+/2aRwqmaK8kvQ156oV2XW6+pN2LOwx9iy4E0vPLtJquu9fTyQFh0aA8lIyLqOes2bMK69ZuaFSFGkwnr1m/Cug2dfy1kAUJERO364tPbcNst5yIw0Asvv7AAPj5uSkdqxj/ED8GRAXbdcHbGfe+huKIWkiQjv6QK5973nlXXc3NcIuqNzp85HTW1tVi3fhMkSYYkyVi3fhNqamtx/szpnW6HBQgROSxuIOo4rrlyPKZM6o+s7FKlo7QgiiK0Oq3d7nffGz/BctaQr9o6Az5ZtdNuGYiIlOCv92sqQsorKlBeUdFUfPjr/TrdDgsQInJIJqMJuSl5sFgsSkehU+LigpGaWqR0DMUZTeYWx2QADYaWx4mInMGZcz9OFyEWiwUWi6VZ8dHZuSAsQIjIIanUKmjctFCpVEpHoVPiYoKRms4C5MGrz4V41hAqURSw6IpzFEpERNSzVv32O8rKy5u+Pl2EnN3zUVZejlW//d5heyxAiMghiaKIkKigbrcjyzLyMwph4T4g3RYXG4TUtGKlYyiuf1QQli1ZCLVKhCgI8HTXYss7jjUxn4jI1oxnrd4XHBSI4KDAds9pi9pmqYiIHJTFbAGn/HafVqtGUKA3cvPKERGuVzqOouIjAnD7xRNRUlmLR6+boXScJkaDERqthpPcicimoiLCkbR3H46dONnueTW1tYiKCO+wPfaAEJFTEwQBkfHh3AfERmJjgpCWzl4QoHETwn426KWzFUmSUJhVhNKC8o5PJiKywtjRI9EnMqLD8/pERmDs6JEdnsceECIi6rT4uGCkpBZhyuR+SkdpV3l+OUJDQyGKPVd4FpRVY+bohB5r31qiKCIsJhRqNX+1E5FteXl6YuyojguLzuJHgkRE1GmxMcFIc/CJ6JIkoaHeCHMrq1XZUkFpFUIDfHr0HtZi8UFEvQELECIi6rS42GCkpjl2ASKKIkJjgnt8b5DC8mqE6L179B5ERM6IBQgREXVaeJgfSstqYHDwPS96ehJ2Tb0RoiDAw03To/chInJGLECIiMgq3A8EKCirQqi/Yw2/IiLqLViAEBGRVWJjg5Hm4MOwelphWTVC/Dn8ioioK1iAEBGhccNC6pz42GCkuHgBUlBajdAAFiBERF3BAoSIXJ4sy8hLL4DRYFQ6Sq/QGyai9zQOwSIi6joWIETk8gRBgEqjhtCDe0Y4k9jYIKSlufZmhOwBISLqOv62JSICEBoVBI2Geyh0hqeHDp6eOhQVV3V4rqHBCEmS7JDKvgrKqhHKOSBERF3CAoSIiKwWFxuE1A56QSRJQnFOMcoKy+2Uquel5ZVh2qJ3sfdkDp78eK3ScXqNpQf3YszS9zDxyw+xKuWE0nGISGEsQIiIyGqdWQlLFEWEx4YhMCzATql6VnZRBRY8tRQ19QYAjb0gM+57T+FUju+LQ/vwf9s3o6S+Dvk11Xj8z9/xK4sQIpfGAoSIiKyWEBeC5NTCDs8TnWhezX8+WgPprMXSquoM+G7TAWUC9RIv7NwCs/z3MLxqowH/3bVFwUREpDTn+c1ARER2ExsTjDQX24zQZLa0elxAz+663ttJrSxxbXHCeUFE1HksQIiIyGp9ovyRm1cBi8V13ki+cOc8iELzYsPDTYP504cplKh3eHTCFKhVqqavvbU6PDp+qoKJiEhpLECIyCmYzRbkJOc45YpLjsrV9gOJDvXHsiULoVGrIAoCwgJ8sOWdRUrHcng3DxuNUA8veGl1CHT3wHNTZ+PSfgOVjkVECuKak0TkFERRgCCKEAQOh7GXuJggpKYXo19CqNJRUF1ZA29frx6/T3xEAK6cPhzBem/ccP7oHr+fM9iWk4m+vn7YetGVSkchIgfBAoSInIIoioiIC1c6hkuJiwtBamohgKGK5rBYLCjKLQUAq4qQqopqmBpMCAj1t+p+BWXVGJkQ0enzJUlyqsn41npz9w78c/w5Sscgom4oK6+Al5cnjEYjjp1IRkFhEcorKgAAIcFB6BMZgbjYGGg1mk61xwKEiOgsJpMJmk6+iJ6ttroOKrUIN3c3G6dyPHExQdi2I1npGFCpVIjuHwnVGfMMOkOtVsGsan1ieXsKy6oR0slNCC0WC/LT8hEaEwa12rp8ziAxPwcAMC4sUuEkRNQdq377HWNHjcD+Q0cAAPGx0Rg+dDBMRhMKioqw/9ARHD1xEtOnnAN/vV+H7Tn1RzJLliyBIAhNf4iIOmIymZGVnI/62nqrr5UkCVVllaitbuiBZI6nM3uB2Iu1xQcAeHh5wD/Iz+rrCkqrEBrg06lzRVGE1k0Hlcqpf9226Y2k7Xhg7CSlYxCRDSTt3Q8vTw9cccmFGDtq5Klej2hMnjAOV1xyIbw8PbHpr60wmkwdtuXUr4iLFy+GLMtNf4iIOqLRqBEaFQh3T3errisvqUROSi5C+4QiINivZ8I5GF8fd6jUIsrKapWOYjcWSUZFTT0CfDw6db4gCAiOCnLJD8H2FuahwWzGpIg+SkchIpsRcOBUL8iZtBoNpk89B0ajCalp6R224tQFCBFRV3h6d+7N5Zm8/TyhD9G73BvNuJhgpLrQfiDWDL9ydW/t3oH7xkxUOgYR2UBcTDRCgoOg1WoAtP6hvlajQXxsNFLSMjpsj3NAiIhsQK1W22UVJkdzeinesaNjlI5iFwVlVQj179zwK1d2uLgQJfV1OLePazwviJzd5AnjOnVeVGREpwoQ9oAQkU0YZDMsMvfgcDWuthdIQVk1QtkD0qE3d+/A/ez9IHIay77/CQVFHb/WhwYH45r5l3V4HntAiKjbHkr6DruKM+CmVmPJiItwTnC80pF6jMVi6dKEZ2cVFxuMZSt2Kh3DbgpKqxEawAKkPcdLi5FdXYnZ0c77OkDkarw8PZCdk4vQ4OBWH9+2MxE1tY3zAf31eowdNaLd9tgDQkTd8q/dP+C33CMoN9Yiv64SDyV9h50lHU9A641K8kqRk5LHRS3OEBsThLT0YqVj2A2HYLXNLEloMJvZ+0HkhPpERiIlLaPdFa6MRiMKi4px7MTJDttjAUJEXVbYUI2/ClOaHasxGfDOsU0KJepZAWH+CI8JdbmJ5h2JiQ5CeoZrFCHsAWnd60nb0f+jNzDwkzexPjMVc2P7KR2JiGxo4IB+0Go02LSl9WV2x44eCaDzvxtZgBBRl+lUKrT2XtxTo7N/GDsQBAEabdc2KHRmrjQPJL+0iqtgneXN3Tvw1u7tsMgSZFmG2WLBtK8/UToWEdnQ6WV2a2pq8cPKVdi2MxGp6RlITc9A0t79+GHlKtTU1nY49Oo0FiBE1GV+Gg/ckjAZGvHvORFaUYUnhl6gYCqyt/jYYKQ4eQGy/VAGJtzxBtLySnHXy98rHcfu2ht2+MG+xGaLcsoAMqsqkFld1eO5iMh+/PV+uOiC8zFi6GDU1NZi285EbNuZiILCQgzq3w8XzT0PcbExuHDOeR22xUnoRNQttyacA7Ms4desg/DXeSDGOwjr84/hpnjufuwqYmOD8P2Pu5WO0WM27E7GYx+sgnTqTXhZdR1m3PceNr51t8LJ7MNsNiM/vRChfYNb7QEUW+kGFQQB7iq+xSByNlqNBgP798PA/m0Ps/TX+3XYDntAiKjb7uw3FatnLcKXU27GMyMuwo6iNGwtSun4QnIKzj4E67UVfzYVH6dV1jZgzc5jCiWyL7VaDXdPN6jUra/+9vZ5FzYf+S3LmN43BsEe1m/oSUSugQUIEdncR5Oux1P7fkFBPYdguIIAfy+YTGZUVTcoHaVHuLfyqb8gCHDTuM4n/IHhARDF1t8yzOgTi6lR0dCIItSCiGl9YvHZ3MvtnJCIehMWIETUI36deQ8u2vCu0jHITpy5F+SVRRdBdcabb0EAokP1mDE6QcFUjqO4vg5HS4qQfMdDSLnzIXx+4RVKRyIiB8cChIh6hKdah08m3YBrtnA1HFcQGxuMNCctQKJD/fHtkhug06ihUomICw/E9//3D6VjOYy3krbjvrGc80VEnccChIh6zHD/SMzvOwpP7vtF6SitslgsSkdwGs6+ElZseADmTBiA/9wwC8ufWah0HIdRYWjArynHccPgEUpHIaJehAUIEfWoK/qOgodagy9TdykdpRmLxYKc1HxUlHGeii04cw/IaUVl1QjmHiDNvJm0Hfez94OIrMQChIh63OND52JzwQnsKE5TOkoTlUoF/xA/+Ph5KR3FKcTFBCM1veMCpDCrEDXVdXZIZHsFZdUIZQHSpNZkworjh3DT0FFKRyGiXoYFCBHZxaeTF+LR3T+ixFCjdJQm3r5eba7sQ9ZRq0WEhfohO6es/RNVKmg0rS/n6uiKymsQrGfBetobu7fjgTHs/SAi6/E3LxHZza+z7sFF67kylrPqzEpYIRGB0Lnp7JTIduoaTJAhw9NNq3QUh2CwWPDFob24bcRYpaMQUS/EAoSI7MZX4453JlyDG/76TOko1AOceSneovJqBOs5/Oq0N3dvx/3s/SCiLmIBQkR2NTqgD+ZFDsMzB1YpHcVmGuqccwM+qwnA2nUH8f5HG5VOYnOF5TUI4fArAIAky/hgXyLuHjVe6ShE1EuxACEiu7s6ZgwECFiWnoRnD6zGrdu+xOepO5SO1SUmkwl5GQWornScuS1KOJlciKWfb0VpaQ2++zEJ19/0kdKRbKqwrAoh/j5Kx1CUBGBnfjbe3L0D94+ZqHQcIurF1EoHICLX9OTweRi96nk0WEyQZRk7itNglCTcljBZ6WhW0Wg0iEqIhEbjui+nRSU1uPv+L2CRJACALMnIzS3Dvxd/j+eXzLdbjvKSCugD/XqkbVfvAdmel4Ubf/0eMgCzJOH4bQ8oHYmIejH2gBCRIh7b82NT8QEAMmS8fWwjNhYcVziZ9Vy5+ACA7dtOQpLkZsdkAMeO59stg8lkRllROYwNxh5pv7CsGiEuugTvmtQTuP6X72CSJJhPFZlDPn2r6f+JiKzFAoSIFJFRU9ZUfJwmQ8bekmyFElFXTZgYB0E4+6iAgf3C7JZBo1Ejun8faHtolarC8mqEuOgk9I8P7IF01s+qJMt4d+9OhRIRUW/HAoSIFDHILwxnv2cVZGBGaH9F8lDXhQb74pknLodwRhUSGeGH55+13/AroHFzyZ7S2R4QWZZbFNa9nbeu9aLOz83DzkmIyFmwACEiRTw1fB7GBsVAJTS+DAkABviFYVRgH2WDUZdMnhyPl567CsOGRCEk2Bdf/e8OpSPZVGFZDUL8O54Dkpuah4LMQjsksp8v5s2H5oziTgDQ10ePG4eMUCwTESmnrLwCqekZSNq7H0l79yM1PQNl5RVWteHaA5eJSFFLJ9+Iz1K2IbWqGOdHDEZGTSlePPQbHhs6R+lo1AVjx8QgJiYIdy5aqnQUm2owmmG2WODl3vEGiqHRoa0MR+v9npw0HS/u/BMqQURfPz+suuIGpSMRkQKS9u7DsRPJAICQ4CAAwLETJwEAw4cOxvAhgzvVDgsQIlLUzfF/r3o1NSQBLx76DV+k7sTCuAkKpqKuCgzwQl29EXV1Rnh4OMeu4dZMQFere24YmJI+2LcL66++GeFerjkPhoiAX9euQ01tHc6dMhl9IiOaPZaVk4ttOxORlZ2Li+ae12FbHIJFRA7lsaFzsLskA+vze99qWNQouk8gMrJKlI5hM648AR0AViYfw9iwSBYfRC4sae8+1NTW4fyZ09EnMgKpaRlY9v1PWPb9Tzh24iT6REbg/JnTUVNbiwOHjnTYnkMVIBs3bsRNN92Ef/zjH1i3bl2r5yxcuBAXXHBB058jRzr+Jomod3lr/NX44MSfOFphv2VcyXb69g1EZqYTFSAuvAQvALy9ZyfuHc0eSSJXVVZegWMnkjF5wjj46/0AAIl792FQ/34YMXQwkvbuR1l5Bfz1fpg8YRwOHD7S4ZwQhxmCVVFRgU8//RTvvPMORFHEPffcgzFjxiAgIKDpHEmSYDQasWbNGgWTEpE9fH/uHZi05iWsmbUIflquttObxPQNRLrCBYixwWSztorKaxDsopsQrs9IRbSvH+L1AR2fTEROqfxUMXHmsKtr5l/W9P9Je/ej/FQBcvqc01+3xWF6QBITEzFmzBjo9Xr4+vpi4sSJ2LFjR7NzSkpKmhUkROTcNs15CNN/e03pGGQlpXtATCYT8pILUF1ZY5P2CsqqEeqiPSDv7NmJRez9IHJpZRXlTRPOz2Q0mbDpr20AgJCQvx8PCQ5CWUV5u206TA9ISUkJgoODm74OCgpCaWlps3MKCgpQWVmJRx55BBkZGZg6dSruvvtuiGLzOmrJkiV4+umnW72PIAh4+OGH8dBDD9n8eyByZHl5eUpH6JL3B1+O8397Hf8btkDpKNRJbjozUtMKFX3ORfQLRXVtFaprq7rdVmZeMYb28eu1P0Ndtbu4ACpJQrBZdrnvvbfivxNZS+jGsn0HDh1GQWERLpxzHrw8Pa261mEKkNY2bpIkqdnX3t7emD9/Pi6++GJUV1fjySefxOrVq3HRRRc1O2/x4sVYvHhxi/YEQYAsN76QhoeH2/YbIHJgvfk5H45wLPbW4amUDfhkUuPSn3WSER6iMissWSyWHt3wzhmEhwPVNb8gICAYOp0yv2Zs+ZyvqjdhYHw0wsMDbdJeb/Ht7q14eNK0Xvva4Wp68+s8KaczRau/n75p6d2zj0+eENxiqFVhUTHiY2LabdNhCpCAgACcOHGi6euSkhJERUU1O6dv376Ijo6GIAjw9fXFlClTkJ6ebu+oRGRnk4LjkFdfiTu2f4VdJRkwyxaEuvti/XkP2DWH0WBCbno+ouLDoVY7zMunQzq9Elb/hFClo3RbYXkNQlxsDsiBogLUmoyYFMGNQYlcnf5UgZGVk9tsHsiZw65Oy8rJbXZNWxxmDsj48eORmJiI2tpa1NXVYefOnZgwYUJTj4UkSfjxxx+xZMkSmM1m1NTUYPv27Rg8uHMbnhBR7xag88RfRSkwSmZIsoy8ugqcs/Zlu2bQaNXw9vNi8dEJSs8DsRWDyQyD0QwfTzelo9gV534Q0Wn+ej8M7J+AbTsTm61udezEyaZNCIHG1bK27UzE8CGD252ADjhQD4her8fNN9+Mhx9+GLIs47rrrkNQUBAaGhpw4403YsWKFbjkkktQXFyMW265BWazGeeddx5mzpypdHQisoNnD6xucazcUIff847ivPBBdskgCAICQ/3tcq/eLiY6EOkZvb8AccUVsFIqypBeUYbZ0fFKRyEiBzF21EgUFBZh3YZNmDxhHPpERmDsqJFNj5/eiNDL0wPDh3bcOeAwBQgAzJw5s0VB4ebmhj/++KPp67vuugt33XWXvaMRkcJUYusdtmqB8zEcUd8+gVi1Zr/SMbrNFVfAYu8HEbXmornnI2nvPmw+vfLVqZWxCouKAQDDhwzuVPEBOFgBQkTUlrfGLcCVmz+CdMaCFX089ZgR1l/BVD3L2GBERXElAiMCWqz25+ii+wYiwwmGYBWVVSPYhQqQ/Jpq7MrLxhszL1A6ChE5oLGjRiIuJgbl5RVNS+3Gx8RAr/frcNjVmViAEFGvMNA3DMvPvQ3/2Po5DBYzojz0KDfWKR2ry4rzSqDWaqAP9G31cYvFgqzUXBjrDNCH+EHU9q4CJDzMD0XFVTCbJajVvSv7mVxtAvo7e3di0Sj2fhBR2/xPFRtxiO5yGyxAiKjXGOwbjqR5jzd9va8sG9dt+RRfT71FwVRdo3XTQKPVtPm4SqVCdP8oqFSqbq3TrqTTvSDxccFtnmM0mqBt5+9BaYVl1UiIco3ld6sMBvyachzPTZ2tdBQicnK992MpInJ5I/2jcHnfUXhy30qlo1ilsrwKvv6+8PDyaPc8tVrda4sPoHEeSGZWy2FYp/d4KikqR05Kbos9nxxJYVk1QlxkCNbbe3fiXvZ+EJEdsAAhol7tir4j4at1x2fJ25WO0inGBiOKcopgNJiUjtLjWlsJy2w2I/NkDswmMwKD9YiMj2ia31JWWN7qprRKyi2pRIje+QsQiyzjswO7cduIsUpHISIXwAKEiHq9fw4+D7tLM7C54GTHJytM66ZFzMBoaHWOO+zIVlrrAVGr1fDx84ZK3bh62enhV2azGbVVdQ5TmO0+no3xt7+BtLxS3P7SCqXj9Lh39+zEPVz5iojshAUIETmF9yZci/8eXofMmlKlo3TIVTYybGslrIBQfYuhZWq1GuGxodC5ae0Vr01/HUjDXa98D7OlcWhYdZ0B59zztsKpehaX3iUie2IBQkROY+2sezF3vXO/UexNoiL9kZNbhs6OqlKpur+niy2GcL3x3V/NlnsGgAaDGT9sPtDtth3RJwd2Y+HQkdCK3FOHiOyDBQgROZXVsxZh3vp3lI5Bp9hzP5DK8mrkpud1uwjRtrFssE7rnD1X7P0gIntjAUJETiXGKxAPD5mNRTuXAQBqLA2oMjUonMp1tbUSVk/w8HKDl69Xt1cOe/uByyGe0YYgAKEB3rhwUud2+O1Nlh09iLlx/eCnc1M6ChG5EBYgROR0ZoT2x8iAPpj5++sY9+uLmLD6RSzY/LHSsVxSayth9RSNRgO/gNY3drRGoJ8nfn7hZrjrtBBFAbHhgVj131ttkFAZhnpDm4+9u3cn7uHSu0RkZyxAiMgpbStKQV5dZdPXhyrzMH/zhwomck327AGxpYggX1w4aSAeuXYGVjyzUOk4XWYymZCTlouaqtoWj/2SchyjQsIR6e2jQDIicmUsQIjIKe0uzUSzgTiyjGMV+TDDcTe9c0b2nANia4XlNQjReykdo1s0Gg369OsDLx/PFo9x7gcRKYUFCBE5JVFo+fKmEkS+6NlZby5AisqqEewEu6BrNC0nz2/ITEWUty/6+QcqkIiIXB1/FxORU3pq2DwIzftAcFv/qWAJYn99ovyRlV2mdIwmktS5XrDC8mqn2wXdLEmQwN4PIlIWfxMTkVO6vO9IPD3iQrirNHBTaXBN7FjsKkpTOpZLkiTghZdXYdOW40pHgdFgQsaJbJjN5nbPM1skVNcZoPd2b/McWZZhsVhsHbHHPP3XRvT76HXEvv8KkstLMTIkTOlILiOztggP7vkY9+3+ECeqc5WOQ6Q451zUnIgIwJXRo3Fl9Oimr3/I3Isn9/2CZ0debLcM5SWVMBmMCI4Ists9HcnNd3yK3LxyyLKMZ59fCZPRhPNmDVUsj0arho+/T4e70Xem96MouxgmgwkR8eHdXvq3pz2xZQO+PrIPp3dIqTUaccVP3+CHy65VNJcryK4rwb17PkSZoRoAcP/uD/He2LsR6xWqcDIi5bAHhIhcxhV9R8Fbo8PSlB12u6ebuxbuXm1/iu7Mljy3EunpxU0bA0qSjJde+w0nTuQrlkkQBASG6Ds8r6isBsH+7U9AD4oMREjfYIcvPgDg22MHcOb2jDKAPQV5SsVxKYsPfdNUfABAjbkBTx78UsFERMpjAUJELuWRIedjV0k6/iw4aZf7uXu6w9u3d6+k1FUnUwpw9p7kkiQhcXe6Inms0ZkeEFEUodFq7JSoe86eD3WauZPzYahrZMioMtW0OF5jNkBq8dNB5DpYgBCRy3l/wrV44dBvyKp1nInRzmjwgHCc3TkgiAImTUpQJpAVisqrEexEE9CfnDz9rBJExhX9BkMt8m1ATxIgYIL/wGbHtCoNJgT0h9hGUUjkCvjKQ0Quac3se3HBH28rHcOp/fvRi5AQH9I0REkUBfznkYsQF+P482HyS6sRFuA8BcjCISMwLDgMalGEShBwcdwgvDpzrtKxnF6lqQ4rc3figvAx8FS7wUOlw8zgYXh88JVKRyNSFCehE5FLEiFg5cy7cdGGd/HrzHuUjtMrSJKE/PR8hMd2ftL1R+/ehE+W/olNm45j/NhYzDh3YMcXOYCi8mqMH9RX6Rg2k11dibL6OqTc8ZDSUVxGem0hFiW9jy2zX4QAAbfGnQ8IQLDOV+loRIpjDwgRuaw47yDcP2gG7tu1XOkovYIsAzVVdaipqrXqulv/MQ3XXD0BRlP7S986EmfYBf1M7+zeiUVjuO+HvewtS8VTB77C6nOfbpp/E+zmy+KD6BQWIETk0maFDcQQfTjeOLpB6SgOT6USERQRCEOdwepr+8WH4GRKYQ+k6hnOsgs6AJTU12FDZioWDFBu+WNXsr5gP5amr8eXkx5WOgqRw2IBQkQu7/Z+U1BQX4Vfsg8oHcXh+QfrERgWYPV1/RJCcTK5oAcS2Z5FklFRU48AHw+lo9jE23t24N7RE5WO4RJWZG3F1uKjeGv0HUpHIXJoLECIiAC8OPoyfJ2WiEPljrdLcUleKSQnWC41Pi4EKamO3wviTCtg1ZiM+OH4Edw4dKTSUZzeB8lrUVBfhqeHcnNHoo6wACEiOmX5tNtw87YvUGu2fohRT5EkCQ31Rph70fyJtvRLCMHJZMcvQArLahDSwSaEvcXbu3fg3jHs/bC1VbmJ+Ne+z/DKsR8BAM8fWQEvjRvu63+xwsmIegcWIEREZ1g7+17MdaDleUVRRERsKLQ6rdJRuq1/QihO9IJhWM7SA2KRZXxyYDfuGDFW6ShO5cec7Xjp2I/YUXIcK3N2YfbGJzFCH4vro6crHY2o12ABQkR0hkCdF14dOx83bl2qdJQmnV3y1tElJIQiuZ0CpLSoHCX5pXZM1LqCsmqE9tAE9PKSSlgslh5p+2zv7NmBRZz7YVOHyjPw5vFfIMmNQyJlyGiwGLCz5LjCyYh6F6cuQJYsWQJBEJr+EBF1xtjAaFwQOQRL9q9SOopT6agHROemhdZN+Z6ewrJqhPRAASJJEipLq1BXU2/ztlvz1u4duI/Dr2wqqSwZMuRmx2QAyVV5ygQi6qWcugBZvHgxZFlu+kNE1FkLosdAp1Lji9SdSkfpkoYGo8NNXFepRPSJ8kd6Rkmrj3v5eMLHAYY+FZZXI6QHcoiiiD4JEfD27fn5JR/uT8Ktw8dAxQ/fbGp22IimfT1OEwAM9nOeTSuJ7MGpCxAiou54bOgcbC1MwdaiFKWjWEWSJBz86xCOJSUrHaWFhPhQJKc49jyQovIaBPfQJoSiaJ9fu5x83jNy60rhr/OGSlQBEKASRAzVx+CJIQuUjkbUq6iVDkBE5Mg+mnQ9Zv3+Br445x8I9/BTOk6niKKIEdOGQq12vJf4Af3CsGbdIURG+mPQgHCbt282mqHWdu/77qkeEHv54vA+XN5/MLw0yg9ncyY/Zm/H9pLj+GnKf7C/PA2r8pIQ5RGIG2NmKh2NqNdhDwgRUQccbWWsztBqtXb7tL2zzGYJ7364AfsPZOLeB7/C/774y8btm5GZnIXyksoutyHLQGllLQL9PG2YzL7Y+2F775xchYzaIrwy8mYAwAh9LJ4YvIDFB1EXOdZvJyIiB6QRVPhu+u24dOP7SkfptcxmCXMufhUWS+O8FItFwhdfb8OHn2y22T3UajWiEqKgD/Ttchu9vfdj+fFDmNE3DkHuzrGLuyP494HPEajzwUMDLlU6CpHTYAFCRNQJ/XxCcGf/qXgo6bsev5czLprx08o9LSbFyzKwYdMRm95Hq9V06/revgfIO7t3YtGYCUrHcBr/2PkG5oSNwdV9pyodxSXkZxUhP73AKV8DqTkWIEREnTQnYjD6+YTgrWMbe+wesiwjP70ARoOx09dIkmS3vSW6KiJc3+rxoEAfOydpX2/eBf2XlOMYGRKGKO+u9wBRo2pzPc7b+CSeGHwVpgYPVjqOywgK84d/mJ5bJ7gAFiBERFa4s/9UZNeWY3XOIWTXleP9E1twtNJ2ewAIggBRpbJq/kZ+egHy0/JtlqEnTJoYj1nTB+PM9xVarRrvvnmDcqFa0RuGYLX16TDnfnSNGRKWZf6JLYWHAQDHq3Jw1V8v4udpTyDe2/YLJVDb1Bo1dG46pWOQHTjeEilERA7u5TFX4Pw/3kReXQVkAO+f+BNPDLsAV0WPtkn7oX2DrTo/LCbUJvftaf9+9EKoNSK2bD0BWQZW//Sg0pFaKCyrRliAY/XKnEmWZeSlF0KtViGkT1DT8d/TUxDjp0eCPkDBdL1Pg2TEeRuebPxCEDAoqw/Mkhlrpy9RNhiRk2MPCBGRlXYVpyGvvhIWWYYkyzBLFjyzfxV+zjqgSB5RFB1uxau2PPLQBfjfh7fCw8Mxl4jtqV3QbUUQBARHBiAwonmh8faeHbh3NHs/rDV302JIkBv/yBIOV2Qg1qt3FPREvVnv+I1FRORAfs46AMtZw2AkyPgt97BCiXqXoCBv1NcZUVNrUDpKC9nFlT22CaGtaLQaqFR///r+KycTfjo3DA0KUTBV77M6NwkWWWpxfEfpcQXSELkWFiBERFaK8vKHCs0nSYpAr9mo0BHExQUjNbVI6RhN9pzMwfjb38DJrCIseu1HGM0t35g6Ks796JpYn1AIaDnZOVjnZ/8w1C0bjqXi0e/X4Z2NO5SOQp3EAoSIyEp395+GgX6hzV5AvbTueGr4PMUy9TZxMcFITXeMAmTbwXTc+dJ3MJ/ao6Sm3oBpi3rHxpNJ+bmQIWNcWKTSUXqdgd5R8NV4NCtCtKIan46/T8FUZK1tKZl49Md1WHngKN7ZtBMXvLVU6UjUCSxAiIi6YMW02zE3cijCPfSYGTYQ8yKGYFl6ktKxeo242GCkpjlGAfLWD39BOmtInclkwdI1zf89DfWON2SMcz+6xiiZccHmp/Ha6NtwbfQ0RHoEYpR/HDbOfF7paGSFoupaPLlyPWoa/v7ZTCsux5Jfe26pdLINroJFRNRFL4+5otnXN239HLHegRgfGKNQot4jPi4Yv6zer3QMAICPh1vLg4IAD/e/NzVsqGtAVnIuogf0gVbXvc0ObeVwcSHKGuoxNSpa6Si9Sk5dCRbueA0/T30CPhoPxCeE4a6EC5SORV1QXF2DeqOpxfHsskoF0pA12ANCRGQj/zvnRvwr6QeUGGqUjuLwYmOCkeYgQ7DefvDyZpO6BQEI1nvjqukjmo65ebghxoGKDwB4e89O3Duau55bY29ZKv657zNsnPk8fDQeSsehLqo1mvDJ1t2479tVMJjNzR7z0Gowd2iCQsmos1iAEBHZ0NrZ92LuH71j/oCSNBoVQkN8kZ1T1iPtG+pbfiraFjetGr+9cju83HVQiSJiwwKw5uVbW5yncaDiI6W8FKkVZTg/hm+0Ouu3/D1Ymr4e305+ROkoPa6tzSqtZTR0/ufIHvZm5eGf363F1P9+iIraenxx05XY/cQ9CPfzRoCnBwK9PPHw7HNwxaghSkelDnAIFpGDMJlMqK9pgI+D78JM7fNU6/DZ5IVY8OfHWD7tNkUyFGQXwtPHE96+jr2c7Ol5IFGR/jZt19hgRO7xXEREhEHr1rn9Rvx9PHDVjBFw16lx87zxNs1jS/etX42DRfkwSRIeGT9F6Ti9xhfpG5FVW4y3Rt+hdBSbkGUZhVlFCI4KarEHUHVVLarLqhAeHdate1SUVaMkrwjRA/pCrVbu7aIky1iWeADLEg/Cx02Ha8cPxytXzm12zvqHbsHujFzoPdyQEBKoUFKyBgsQIgdRX2tAVXk1vP28IAgtl4ak3mOoPgLXxozD43t/wgujLrP7/XXuOmi1jvNpfVtOFyDnTh1g03a1blpEDYrodPFxWklFDUb2d9zVpC747kscLy2EJAMCgA/2J+GShIFKx3J4rxz7ET4aDzwxZIHSUWxGlmWYjSa01tGh02lgam1ek5X8/L3h4emmWPFxNL8I3+w6gB/3HsE144bjjQXzEB8c0Oq5oiBgXIzj/uxSSyxAiByEj58XvH09WXw4iUv6DEdqdTE+Sd6KWxPOseu99YF+dr1fV8XFBuPTz7dg+LA+GDMq2qZtd2W4VHFFDYL8HLPX6IWdW3C8tAjSqTecMoATpcV4bsef+M/EaYpmc2T/2vcZJgcNwqWRzjVXRhRFRCa0/oZbq9PCP9i64rstSsx5+nHvEXyTeACSJOPa8cPxf5fOtnsG6nmcA0LkQFh8OJeHBs/CgbIcbMh33J2VM1JyFLmvJAGLn/0JqalFeOTfy/Hs8ysVyXGm4opaBPl5Kh2jmdNj+bMqK1osFSzJMnKruNpPW/6x43VcHjXJ6YoPZ5ReUo7n12zG0KffxO7MXDx90Uz8ePd1mD+aczmcFXtAiIh60Nvjr8YF699GnHcQor1aHz6glLq6BmQey0BgoB+87PzJ/9xLXoHJZAEASJKMjX8eBwQBTz5+sV1znMnRekBqqmtRU1aD0L4huCRhIH5PT4bljCJEJQiYF99fwYSOySiZccmfz+LtsXci3qt78yCo+3amZyO/sgaXjWg5XHDt4ZNYlngAxdW1uGbccOx98l5oVPxs3BWwACEi6mFrZt2LQT8/jaOXPq10lGY8PNww8fxx0GptM1yjs/786wSMRkuzY7IsI3F3ml1znMlskVDbYISvZ/fHztuKVquBoFYBAObEJuD5KbPx6JbfoRIFQBbw8vQ5mBfHAuRM2XUluHHHa1g57Ul4q92VjuPy7lu2CuuPpQAAnl65HgcW34v8ymosSzyAbxMPYnJ8XyyaMRHjojl/w9WwACEisoPVsxZh3vp3sHrWIqWjNGPv4gMA4mODIQhoMYHW17f5vgxGg8luY9BLKmoR6GDDr7Q6LUIi/l7RJ6+uBtcNHo4QDy/MjI7H4MAgBdM5nr1lqXj52A/czdxB3Pn1L9hyIq1p6KDBbMbgxW8g2NsL14wbjvUP3wIfN53CKUkp7OciIrKDGK9APDh4Fu7b9a3SURQXEaHHP64/p9mcJ7VahU/eu7npa5PBhJyTuTDUG+ySydGGX7Xm/b27sPicGbhvzEQWH2dZe2qPj2UusMdHb7EnI6fFvCVZAp65dDZunzqWxYeLYwFCRGQns8IGYKg+Eq8fXa90FMUtvH4yrr5qHLy93eDursWaXx6Gm9vfnfIanQbhcaHQudvnTYqjFyCfHtyDG4aMgFZUKR3F4XyRvhF7S1OcZo8PZ7ArLRtmi9TiuCAKiAvUK5CIHA0LECIiO7qt3zkorK/GL9kHlI6iuDtumY5vlt4JtVqEVt3y15FbF/cysFgsHZ90FkdcAetM7+3dhbtHOe4GiUp5+dgPaLAY8Z9O7vFhqx3CqSWD2YzPt+/F+W/8D+/9uQtPXTQDqjM2SRQE4N6ZExHu56NgSnIUnANC5KRkWeayvg7qxdGX4arNHyHWOwhD/MKVjqMob283aDQqlJXVwt+/+wWAyWBCbno+RI+Ozz2TI/eArDh+GDP7xiLA3cpvysn9a99nOCdoMC6J7FxhJssy8jML4O7lAX2gbw+ncx0HcgqwbNcBrD18ElePG4aPbrgMfQP8AADnD47H/PeXodpgxNVjh+LOqeOUDUsOgwUIkROyWCzISytAWHQI1Br+mDuiFefejjGrnseWOf+Eh9r+E8EdSWx0ENIyim1SgKi1avjovdFgqbfquuKKGkSH9en2/XvCe3t3Yum8+UrHcCg37ngNdyZcgImBAzp9jSAI8Nb7QOfu2j9vtrI86RCWJR6ATq3CNeOH48Urzm9xjodWizX336hAOnJ0HIJF5IRUKhV07jqIXE/doa2ZdS8uWP+23e7nqMNPYqKDkJ5RbJO2BEGAf4j1Y8wdtQfkt7RkDAgIQrSvn9JRFJNXXwozGucTGCQT5m5ajKeGXmtV8XGat68ntFr77+7tLE4WlmDJrxsw4MnXcTS/EC9ecT6W33ENLh0xSOlo1Mvwo1EiJxUcGdjxSaSoYDdvvDj6cty87XN8NrlnPyUsKy5HZXEVogf2cbihebExQTh4WJkd2U9z1Dkg7+7dieennad0DMVc9OczqDTVQQBwdfRUfJ+5DT9Pe4J7fNjZLweOYdmuA6g1mnDNuOE4/uyDSkeiXo4FCBHZRHJJCXZk5iDY2xNz+iUoHafHNNQ1dHlydGsmBMUgvaYEzx5YjSeHz7NZu2dzc9chq6wGJoMJWjfHGoISEx2Elav2KZqhOz0gPTXfaltOJnx0bhgaFGLztnuDCzY/jSpTXdPXX6dvxgMDLmHxYSfZZZX4JvEAvk08gNmDEvDI3GkYGcWd5ck2WIAQUbcdKSrC7d//jMKaGujd3LAzMwtPz56pdCybM5lMyM8shD5EDz9/263kck3MWDx7YDWWpSfhmpixNmv3TB5eHhg0JqFF8SFJEkRR2aF6thyC1RVGswUGoxneHtYv+WuxWJCTkouI2HCbz7d6d+8uLBo9waZt9hbbio+j2tRyHs/S1PWYHzVZgUTO5+qPlyOtuBR6Dzese+DvPXj+OJqCbxIPIKe8EteOG47tj98Fd84lJBtz6gHiS5YsgSAITX+IyPZK6+pw/8pVKKypAQCUNzRgxaEj+HLvfmWD9QCNRoPI+AibFh+nPTl8Hv7IO4qdxek2b/u0s4sPY4MReWn5kKSW6/Xbk06nhl7viYKCSkXu351d0C1mC0oLKiHJtv07PFhcgBqjEZMiHHNifE/zUrdeDLqpuHmdLcx763Psz8pHVb0BmaWVGLbkLby1YQcmvvABfjlwDLdPGYs/HrwZN00ezeKDeoRTFyCLFy+GLMtNf4jI9k4Ul6DeZG52zGg242BBoUKJepamB38Zfzb5Rjy250cUNVT32D3OpNaq4eHjqXgPCPD3SlhK6M7wK41Wg779I6DVdm9Ym9Fgavb1e3t24e7Rrrvvx3B9DILdfHHmb24RAl4ZeXOb11DnfLp1N9JLyoEz/naNZglrDp3AmvtvxNvXXISJca5Z+JL9KP9bh4h6tf5BQXDXNF9VRhAE6N1tN0/ClZxeGeuZ/asxde0ruHTj+zBK5o4v7AJRFOEf7NcjbVtLyWFY3SlABEFAQKh/t+5vMpqQfiwD9bWNQ47SK8txoqwEc2Kcdy5VR545vAxX9jkHw/XR0Ika+Go88fmkhxDtFax0tF4vr6K1DzhkBHp5QO/B+TVkHyxAiKhbAjzc8ebF8xDk2TiERe/ujosHDsD+3Hw8se4PhdP1Ph5qLc4PH4xvM5JQYqjByapCjFn1Ahp6qAhxFDHRgdi3PwsNDfb/PpVeAUuj1SC6fx+4eza++Xt3z07c46JzPwDgwT0fY0LAAFzddyreG3M3Nsx8DqvPXYwYT9ecjG8rG4+n4o4vf8bvR5Nx9pgQURBww4SRiuQi18SBfUQurLykEpBl6IP8utXO4JBgfLHgCuzIykGw19+rYH174BAGvfomXr1wLub272eDxM7vYHkOfsne3+yYWbLg8o0fYM2sRcqEsoNX3lgHg8GEeZe9hrtvn44rLuuZyfitOZKej4RIZT9Z17k3zm0oqa/D5qx0vDJjrqJ5lHLjjtewqP9FGOvvur0/tpRbUYUVSYewYvchjOwTjmvHD8e0fjGoaTBiyksfwiRJEAB8fOPlmBATpXRcciEsQIhcmCgK6GxHaEerJSUEBiIhsPneI1cPH4rLhwzCw6vW4sfDR/HqhXPho+Mk0vZk1ZQDEICzPqOsMNYqkscezr/oVRhOzYGwWGS888EGWCQZV10xzqb3OXu53AajGbMeeB8GoxnrEk9gYHQwxg1Uduy7K/d+XPTnM3hj9O2I8wpVOopd1VTVwsvHtj1wvx0+ieW7DyGrtAJXjR2KNfff2Gx4lZebFvueuhd/nkzH5Pi+UDvAPDBbM5lMqK9pgI/eW+ko1Arne8YRUaf5+vvA17/jF+eSgjIUZBR2aTEHrUqFty+5ENeOGIZzP/gEn+9Rdr8HR3dh1FCoBVWzYyIEzI5wzp2G1647BNNZixjIMrDi+0Sb3qemqha5aflNz2GzJGHqondQbzBBkmVIkox7Xv0BfySdtOl9rWGwWPDN0QO4aegoxTIoocJYi3P+eARfTHzI5YoPk9GEwuxCGOoN3W4ru6IK//1tC0b/37v47Ugybp8yFhsevgV3TB3X5tyOaf1inLL4AIDaqjpUlVdxESIH5ZzPOiKyKf9gP/gG+3ZrOevpcbHYe/89yKqowCWff4Xk0lIbJnQu+y7+D3QqDUQIECDAS6PDwljn/FRc7+fR6nFvb9tOhnXz0MHD273pOfzxyh2QpeZvTCRZxtK1ti18rPHu3p24Z5Tz/DvLsoyywvJ2z0mrKcD1O17B1tkvQa/t2kIAvZlGq0Gffn2ahuB1xS8HjuG6T1bgP2u2ItjbE1v+dRveWDDP5Vey8gvwRURMOLdhcFAcgkVEHRJFEZ5erb9RtNaTM6fjSGER7vt5Fc6Ni8Wj506xSbvOZt9F/8HKrAOI8QrEMP8IDP55CQ5f+hQEONcv0wnj4zCwfxiOHM3D6W9NFEW8+cp1Nr2PWq2Gf7C+6Wt9G89nP6/GwqeirBK+eh+7vHlZdvQgTJIF7+/dhaO3PdDj97MXk9GMyvJq+AR4Q61u+XZjd1kK3jrxC1ZNW6xAOscgSVKXlvY+WViC5afmdswd0g8PzZ6MMI2A8PDwHkjZe7H4cFyC7EJ9U4IgQJZl5OXl8YeUXIqjPuc/TkzCp0l78Oq8CzA52rU/retIVm0Zbt/+FX6bfZ/SUXrEg498g6PH8iBJMpZ9fhcCA7v3aXhnnvMXPfoJ8kuqmmbbqEQRiR8/AIvFgoyTuQiJCLD52PyzjV76HsoaGpffVQkCUu54qEfvZ28WiwUqlarF8d8L9mFNbhLeGH27AqkcQ0l+GQz1RoTHhHT6jfL3ew5jedIhGMxmLBg7FFeNGQrNqb9fR32dJ8em1POGBQiRC3Dk53xJbR0eXr0GgR6eePVC11z5p7P+LDiJbzN24/0J1yodpUdUVtVj4c0fYeX393e7rc4+5694YimyCysQ5OeJH567CW7axk+j23rjbEvnLvsEmRUVzZYb0Lu5Y99N9/TofZW2PPMvnKjKwVNDr1E6iqIkSYLZZIZW1/4mlodzC7F890F8t/sw5o8eggVjh2JoRMu5Mo78Ok+OS6nnDYdgEXWBLMsoL650mE3crCVJEopzShAcFaR4F3Wgpwc+v2o+Vh49hviXXsNLF8zB5UOcc8J1d00L7Ye0mhK8fPh3/GvIeUrHsTlfH3dotWoUl1QjKNA+K9fccclEbNqTghfunNfseE8XHwCQU1XdYj+GKoMBDWYz3FoZsuQM3ju5GhZILl98AI1DDdsqPkwWCd/tPoTluw9Co1JhwZhhePaS2XZOSNRzOAmdqAuMDUbUVNbAYrEoHaVLJIsEs8niUKuDXDJoIFIeeQg7s7Jw/bffobCmRulIDumm+EmoMjXgh8y9SkfpEQnxIUhOKbTb/fJLqhAW6GO3+53JS6tpcUyjEp22+Pi/w8vhp/PCvf0uUjqKw9qblYdHf/gNo559GynFpXjpirn4/s5rceWYIUpHI7IpFiBEXaBz1yEiNswun5L2BLVGjfDY0Hb39VDKSxfMwaJJE3D5F9/gg53KrUjkyJ4deTF+ytyPvWVZSkexufj4EKTYsQDJKa5EZJCv3e53ph8uuxbiGT2QAoBlFy9QJEtPe2jvJxgTEI9r+05TOorDqTWasHT7Xsx9cyleWfcXJsX1xaGn78dTF85A/9DAjhsg6oUc790HUS/RW4uP05QeetWeCX2isO3u21FjNOK8T/6HQwUt35BKsoxnd6/H/Vt/wYacFAVSKuurqTdj0c5vUWGsUzqKTfWLD8XJlAK73S+vpBLhgfYrQM7sdYzz80eCPgB9ffwQ7+ePn6+4HiNDwuyWxV7+sfMNXN13KuaEjVY6ikPZmZaNB5evxtT/foiCymq8d90l+Oa2BbhkxEClo9mFLfY+od7LOft5icgp/HPqObh8yGA8vGoNRoSHYfGsGQAAkyRhzqpPkFrZuJfIhpxkfDDtcpwTFqNkXLtbO/tezPn9LeyY92iPtG+Pidhn65cQgrfetV8PSG5xJSLs2ANSkFEAfagebu5u2JqTiSAPT3x10ZV2u7+9XfLns3h11C2I9+bkaACoqGvAilNzO6L0vlgwdhheXzCv4wudTF1NHfLS89F3QN8uLUNMvR97QIjI7qyZOxPrr8dPC69DrL8/RrzxDtanpOI/u9Y2FR8AUGMy4l/bV6PC0NATcR2Wr8Yd70+8Ftdu+dTmbVeUVSE7Jc/u85yCg3xQ32BEdXXzf8uaqlo09MAnpvmlVQgLsN8cEJVa3bQnxnt7d+HuUePtdm97qjTVYcofj+KziQ+w+ACw5WQG7vnmF8x583+oMRjwxU1XYulN8zF3SD+loynCw8sDffpFsfhwYfyXJyK7MhpMyE3LQ1RCRKubk7XlhlEjcNmQQfjnqrVIbMhs8bgFMgrrq+Gnc7NlXIc3wj8K8/uOwhP7VuL/Rl5is3Z9/LygUomKDDVMiAtBcmohRo3oC6Bx2FJtZQ20bjq4dWPH6LMVV9RA7+0Btcp+n8UFRwUBAA4UFaDWZMSkCOfb/ya9thCLkt7HltkvOt3GmdYoqq7B8qRD+G73IQwIC8KCMcPw7rUXKx3LYXS0/DA5N/aAEJFdabRq+Pj7WFV8nOal1eKDyy/B3KgBEKTmj9WZjAjx6N7mdb3V5X1HQq/1wKfJ22zWpiiK8PZV5u/z7JWwBEFASFQI9EF+Nr1PbnEVIoKUWQHLWXs/9pal4qkDX2H1uU+7bPGx/lgKbvviJ8x/fxlEQcD3d12Hj264DDMHxikdjchhsAAhciBGo1npCD1OEAQEhOi71cZzU87Dk+NmwUPUQgMVojx98cG0K3DuTx/i8+N7bJS0d3l48GzsLc3CpoITNmlPkiSYzco8H/slhOJkctcnohdlFaEos7jD8+w9Af209MpynCwrwfkxCXa/t62tyd+NQkMlAGB9wX4sTV+PLyc9rHCqnlFnNOKNDdvx/Z7DLR7LKa/Eq79vxYTn38fP+45h4cSR2PLIbbhn+gQEe3sqkNa1SJKEouxih1pantrHIVhEDqK0uBJVJZXo2z/SIZfHdTQ3DxyLKeEx2JOXi4+37kFSSi72L3gAi5N+x9hv30asEITZ0fG4dfwYAHDqzd1Oe3fCNZi7/m3EegWir1dAt9oqyi6G2WhCZEKkjdJ1XkJ8CN7/aCM2bj6GGedavyKQPlSPWlNth+cpVYC8u2cn7hk9we73taUacz0u/vNZWGQJIgRMDRkCAQLeGn2H0tF6RFlNA8556YPG1QNlGSv3H8eXt8zHmkMnsHz3IeSWV2HB2KH47cGb4OfuWsNAHYEkyTA2GCBJUq9fodJVCLILlYuCIECWZcW2nSfqiNFohlZr+zfJrvCcf3fHLny7/yA0ahFZNRUw+xmhqlfj7hGT8EVOEmqMBnhrddhy6Z3w0Tr3G4RBPz+No5c+3eXrT/9aOPuXuSRJdimOL7riDVRXN0AQBAQHeWP5V3db3UZnnvNLPluHkf0jcfHkwV2NarWS+jrMWb4Uu/9h/ffkKIySGbM2/gfSWW8fHhhwKeZHTVIoVc+RJGD4M2/CZGk+7lMtijhvcAIWjBmK8bFRCqX7myu8zrdHlmWHXl7eUSn1vOHHrEQOpCeKD1dxz8TxGBkRjqzySsAkQF2sgyTIeDt1CyoN9bDIEioM9Rix4g2lo/a41bMWYd76d7p0bWV5FQqyCiAIQrPiQ5Zl5KUXojCrCLvK9iOp7IDVbZeXVMBkMrV7zoLr32taAUuWZRQVVWHhzR9bfa+OrNi4H9uPZKDeYLR52+1xht6Pz9J+b3V+x/r8fQqk6XnLkw7CLLX8rNbHXYfXrrrAIYoPcuy9raglvtshckBGgxEarYYvqFYqrKlp9rUsSoAsA2f8PUqShIe3r8ark5x37f0Yr0A8NHgW7t75DY5XFqLaVI8wDz1+mXFXh9e6e7hDtrR8syUIAoL7BOCfh55DZUE1ACDMLRgvDnusU5lkWUZdVR3UGjU0vppWz2loMKO45Kx/QwB5BRWdukdn/eu9VfhzfwosFgmvfvsngvy8MGNUz8/HMFgs+OboAZy4/cEev1dPCnUPgIyznyMCfLUeiuTpSScLS7A7K7fVuQWRfvYfvkfkLNgDQuRgGifTlaCssFzpKL3O8NBQiGcWba0MMBUEASoXqOtmhg3AnwXJKKivRK3ZiJTqIkz77dUOr9PqNPBrY17ES8kfIq+hELXmOtSa65BSk4G3Uv7XqTyCICA8JqzdlbXc3NRQq1v+WtJobDem+79fb8SmvcmwnBpOY7FIeOyD1UjJKbHZPc72e3oKHvtzHe79YxXuGdW7ez8A4NKI8VAJqmaFvZtKg/+OuEnBVLb1w94jWPDhMvzzu7UY1ScMj8yZ1uy1xUOrwYo7r1EwIVHvxh4QIgcjiiJCo4O7tEytq/v3jGlILi3F9swsWCQJumodTJ4GSM0qEQEqwfk/e7lzx9fNP6WWZZQaavBR8lbcnnCO1e1ZZAl5DS13KD9eldrpNjrTo/fy81fhgX99g9MfOIuigPffurHT9+jIgZS8Fp9myzKweucx3D9/is3uc9oXh/fj6b/WAwAkADE+fja/hz2VGatx2ZbnsGzyv/DuydU4UJEOf60PvpjYu3t1AOBYfjFW7D6I5UmHcNnIQfj3vOkYHhn69wmyjHVHkxHg6YH3ruN+HkTdwXc4RA6IxUfX/e/Ky/H5nr04VlSCeQP6Y3zfKEz68R2U1tdBkAR8M/MapNeXYeCyV/DWOZdgdpR9lkKVZRlms8VuO//WmlvObZBlGXWmru0mrhJEBOn8UdTQvKcgyj2sS+21ZfiwPnjtpWvw31fWoKCwEks/vg19ovxt1n50qB4ns4twZg0iCsCofhE2u8dpPycfw5JtG3Hm1OWPDyTB38Mdd4wYZ/P79bRjVdl4dN9SbJz5PFSCiOeGL2xxjslk7nW7W3+3+zCWJx2ERZZw1ZhhOLzk/uY9qafcfM5o3HzOaAUSEjkf5/8YkIicmizLLT7RvnH0KLw49zxMiekLrShi9/z7kH7DY9h08R14bfN2HE4txt4r78eK1AO4e8tPMElSG63bTnlBOQozC+22Tv0/h8xu8SZKJYi4b9D0Lrf56IC74K3+ewiVh8oND/W/rcvtWSyWVv8+Rg7vi2+/vAsx0UGwWCxdbr81z98xD9FhAU2jh0RRxK0XTsCUYbE2vQ8AbMnKgHTWc0sCsCM32+b36mmbiw7htWM/45dpT7bZg2g2m5F5MhMVpZV2Tme9w3mFeHLlHxjw5Os4mJuPpy+ZiZ/uvh7XjBvWavFBRLbVuz6mICKrFOYUwc3DeZeclWUZuWkFUKtFhPYN6fD8vno/rLj+aiw/eAgj33gXr8ybC9FDxqBlL+P5CXNxRdwwTPnxXZQ01MFX54btl90DtY2WndWH6uFj8bHbwgLD9ZFYPu12XPPnx4AAqAUVIj31ELvxuZOHyh0fj30Rv+ZtQI25DmvzN+GOPY/DT+2NN0Y+bXV7hRmFUGs1CI4KavXx0zuix0S3/nhXff/sjbjp+WUoLK/B1TNGYuHcMTZtH2hcSGKAPgCiKMJyRhEiQECCvnt7tNjb8sy/cKgiAx+Pv7fd89RqNfrERUHrprVTMutYJBkrdh/C8qSDUIsiFowdhmcvma10LCKXxH1AiJxYZVkVtDoNyivLnfI5L8syzCYzRJUKKpV1b6zNkoR/rl6LivoGvDxvDl46sBk/pB1qtreBVqXGyWv/ZevYdneiqhD9fULwS/YBbC9Kw4ujL+t2mw8ffBaZNblNX2tFDb6Z8LZVbZjNFqhUYptF2fc/7UZBQQUW3TXL6nwdvc6/+d1f0Hu7YeGcsVa33RFZlpGfXgCNmwaPHfgLGzIa58kIEDAqLBw/XNp7Ji+/cWIlVIKIe/tdpHSULjuQU4DlSQexcv9RXDVmKBaMHYYBobYtah0B39tQVyj1vGEPCJET8/X3AQCUVzrfilqVZVWorqhBRExYl3oV1KKINy6ah60Zmbh46VcI7ePRYjiQyWLGg9t+xeuTe++bLwDo79PYO3Rx1HAcrcjHF6k7sTCu66sxrcnfiOza/GbHjJIJLxx7F48PvKfT7ajV7a9ulRAXgr+2nehSxo6UVNQgISqwR9oWBAGh0SEQRRHTyqJRWFsDX50O8X4BWDJlZo/csyc8vv9zjPaPx/w+k5WOYjWTxYLlSY29HR5aDRaMHYbnLztP6VhEdAoLECLqlTx9PACh+5tPnRPdFzvuuQMX/PxZYwHSrD0BBkv7G+f1No8NnYOFf/0Pg/zCMCagb5faqDDVtHq82lzbnWgtnB6CZWsvfbMRWw+lw2SRcMGEgTZvH0DTjvGvJW7D5utuhZ+udw2FvHnnm7gpbhamBNlvl3hb2JuVh28TD2Lt4ZNYMHYoXlswDwnBvWvIG5ErYAFCLkOWZRgbjNC565SOQjagVqvhq/exWXtrLr0ZMV++0GzBXhkyQty9bXYPR/HFlJswdtUL2DznIXiqrf95mB85Fz/lrm12TBAEnBc6tdvZTEYTNNrGjQo9PLTw9fFAfkEFwkL9ut02ANz8wrc4mJIPGTL+SDqB6roGvPvQFTZp+7RPD+7GtpwsGC0WXNJvYK8qPoySGZdt+T+8Pvo29PO2/cpgPaHeZMaKpINYvvsQ/NzdcPW4YXhp/hylYxFRO7gKFrmMitIq5GcW2nxVHXIe+xY8CC+NrnEVHFnACyPnoY+3HkO/fQ1/ZCcrHc+mfppxJy7b+EGXrtWKGvxv7KvQiGqIgggBAiYHjkawW2CLZXqtUVtdh6zkbJhM5qZjtuwFefv7rTiUlt9sf5SkY1n4bNUum7QPAK8lbcNz2//Exsw0bM3JxKEi2/fg9JSsumLM2fQUvpn8SK8oPhIzcvDP79Zi0gvvI6+yGu9ccxG+uW0BLh7eM71aRGQ7Tt0DsmTJEjz99NNKxyAHoQ/0hbefJ1Qq2+2qTM7FT+uGw1c/hIKGGvhr3PGv1b+h2mDAqrk34//2rcd3qQcxUBMKN1GNuyaOx5sHt0KjUuHuwROVjm61SA89/jXkPNyfuBxvjltg9fVeag8sm/AOkkoPYLC+PxbufADbSvZAADA9ZDLuir3e6jY9vT0QGRvRbB+JfgkhOJlciKnn9Le6vbOl5pVCkprP87FIMlLzy7rdNgB8d+II3tmzs9lCBvsL8/DMtk14anLXlz+2h6TSk3j9+EpsnPm80lHaVWMwYnnSQazYfQghPl64asxQvHLlXKVjEZGVnLoAWbx4MRYvXtz0tb2WvyTHxQ3+qDNC3Rr3unjz4nnYkp6Bq778FreMHY039m7DH57JEGpE/Dd5U9N0kQ8O78TBBb1vJ+jZ4QNxtCIPH578C3f069ou4GMDhuMfiQ8BOLUnC4CNBdtQY6rBv/rfaXV7Zw+RTIgLxY+/7O5StrNNHBqNrQfTmi02oFKJmDi4a3NhzrY7LwdnryspAThRVmyT9nvKqtxEbCg8iG8m23/Ft+rKGnj7enV43o7ULCzffQhbkzOwYOwwfHTDZegb4NfzAYmoR3AIFhFZxWwyoyCj9wwr6a6pMdHYtehOvL8zEcZqCaoCLSyeFkCQcfq/KmMDzl3ZteFMSrt/0EzsK83ClsKuDTFLq81Crbm+2TEZMg5WHLdFPJsOwVowfThuv3hCU+GoUol4+Opzce6QvijMKep2+5Mj+7TYxE4AMCSw4z1q7GV9wT78+8AXeCd5NQDgk9R1OFyZhddH3Wr3LIZ6A4rzSpsNuTtTRX0DPv4rCTNf+xQf/ZWEOYMTsPuJe/Cv86ew+CDq5fhxMBFZ7fQO1o7WqyhJUtPqQ13R3vdUb2pcDcsMMyDIaHxr+bfc2qou31dpH0y8DlPXvoIb4sZjReZeeKt1+GzyQvhpPTq8NtS99aVsNaLGJtm8vDSQJBkVFXXw8+s4z2kmQ+url91+8UTklVThWEYh7rliMqYOj0NDvQEqTfd/HV6cMBAFtbV4fsdmAIBKEDApsi8enzit223bwqqC3Xjp0HeQ0Pg8X5ObhKv6TMFjg+YrkkfnrkOfhMgWyzFvTcnE8qSDSErPwZVjhuKLm65EhA0XnCAi5bEAISKrqDVqRMQ53mZX9bX1KM0vQ1hMaJfm+ZiMJhRllyA8NrTVIsRdo0G1wQA11DCh5UIG7irbvOFWyvVxE/D60fVNX0/57RVsOO8BBLu1/8bPQ/TAJRHnYWXu702TuwUIeHLQfd3OVJhThLQjGYjtG4jk1EKMHR3TqetMJhPyUgoQFBQMDy/3Fo97e+hwyZQhmDo8DgDg5q6Dm41WxxsaHII4P38MCQpBf/8A3D2q6/ut2NLBigy8cvgHSKf+jWRZRrWpHll1yg4PO118lNXWY/nug1ieeBDxwQFYMHYY3r6md++/Q0Rt4xAsIhsyNBhQlO3Y470dTXlJhU2Gv+jcdfDw8ejyIgMqlQpiO7tyr7rphqbhNaqS5sWGKAgI9fDCS/s2d+neSjNKZrxzbGOzYxZJwvzNH3fq+uv7XoaLwmfCQ+UGb40ntKIGTx1+BbfufgS59QVdzhUUHoh+I+MxYEA4TpzM7/iCUzQaDUJjQ1otPgAgt7gSEUG+Xc7Vnk8P7MbjE6fhzVnzHKb4AIDdZcmQIDU7JkPG8apshRI1+vNkOu7+eiUufPtzGE0WfHvHNfjkxssxe1C8ormIqGexACGyIYtFgiRJHZ9ITdw93ODm0f19EkRRhH+wvuvXq0SERbc9Vj/CxweJ996FCX2iMCGsD76bfQPGhURhoG8wvEq8cH3EWHhpdJj60/s4Ut675sgcqyw8e0QZAKDBbOx0Gwuj5+OL8W9glPcQGCQj6i0GVBir8MD+Jchv6FqBKYoivLw9ERrkhYP7M6362dK5a1s9vmFPMo5mFMLWowcf3bwOt/32M06UlWBWdJxtG7eBCQH9IZ71K18AMMA7qsfu+eO+I2gwt5zfUVRdi7c37sDUlz7CN7sOYP7oodj+2J24f9YkhPp0PCGdiHo/DsEisiEPT3d4eLb+qSu1zs1GBYg9+Lm54aurr2z6ekXo30vNPrN+I/bm5eO56XPxyLbVmBoRi0dHnottGZmYHG2bVZZ6ynB9BNzVWlQbG5odH+AXalU7mXW5+KsssdkxWZax+PCr+GjMf63OZTKZkZtRgLjYICz/cXez+T2GeoPVm4q++NUGrN99EuXV9Xj2f3/g3Yd90C8qyOpcZzJLEgZ+/CbM0t/zoioaGuDn5ljPaX9d44aaoiBCkiWIENDfJxJPDb3a5vfKLKvAvLe+gCRJWLxyA769fQEGh4dg4/FUfJt0EMfzi7Fg7DB8f9d1CPb2tPn9icjxsQAhIrKBp2bNwOGCQjy8ei1mxifAaDYidul/oanUQmUWsf62mxDu47gTaXdd8BhG/focDBYzBAFwV2lx38AZnbo29UQ24vpHodJU3erjBkvrE8I7otGoERXfuC9IaVktGhpMcHPTwGgwITslD5FxYZ0uXpdv3I+Vfx2G0dw4f6esug6PvPcrPn/iWvh6dr1YmPzVRzBJp+YECQJkANO++QQHbl7U5TZt7WhlNp46+BU2z3oBfxYdwoaCA4hwD8AdCbbfPyO5qBSXvPNl014oksWC+R8sg5dOi7HRkbh+/EhM7Rdt8/s6ku4uhkHkCvgTQkRkI0NCQ7Duln/AaDZj6aYDEErVMHgbUO9hwLkffoqCmhqlI7Zr70X/wVPD5+HNsQuQdOHjeCjxO5QY2s9cV9OAnOOZqKtpwDDfAXBXNe8BFCBgRsikLmc6vSlhQlwIklMbh7ZpdRr06RfZZvFhaDCguqJ57mPphU3FR9N5RjOOZXR9jgoAlDfUtzhWazKipKGhlbPtb2vxUbxx4md8P+VxAMC04KF4Ztj1PVJ8AMAnW3fjrL0eIcsyRkSF4b3rLnb64qM4twR56YXN9pqxF3MbyxkTOSIWIERENpZbVQ1AgGARoC7RQpAAU5ABT21e3+G1SlsQMwYzwwcAAH477z7M+f0tAMDi/b/iyX2/tDjfw8sN488fAw+vxmLg8/GvwUPt3jRhv59PLG6M7v4yr2fvB6LVtb3qWE1lLWor6pq9CRwYEwLtWUvt6rRqDIy2bpjZ2fRuLYdcemq0COzCEKyGugZUlFZ2K8+Zfs1NxKrcRHw07l6btdmeouoa5JRVAmj+5lsAmg21MpnMirxBt4eAMH8ERwbYfIny8pL2nxeGegOyT+S1uacKkaNhAUJEZGO+bjoIwt9vsMRaNVSlWuytzcZ/e9FKWR4qLT47ZyEGr1yC7zL24IfMvRi6cglqzM0/3Xc76832F+Nex/NDH8Nn419DRk02DFLnJ7O3RpIkmC0Sfvx5D5at2NXh+QEh/giNDm72JnDBjBG45JzB0Hs3FgyBfl546e6LujX8CgD+uv52iIJwag6/DAHAn9d2bVO/hvoGNNTZpudkadoGHK3Mwosj/mGT9tqz+UQ67vjyZ8x/fxnOie+LPv7NVxjTe7jjucvOA9D4b5mTkouy/PIez6UEURSh1bW+AEJXGY0mVJRUwNjQ9s+Rzl2HoMiAph5DIkcnyM76MUQrBEGALMvIy8tDeLjj7WNA1BmSJKG0oBxB4QGdvobPefsb8ea7qDEYmr7WqlToFxSIUf1D8UfeSXww7XIM9necHbLbMn3dayisb77Joo/GHTvnPdqp61fnb0RRQwluirmqS/eXZRlffr4Fy37ajfp6E9x0GsTHh+Cd169v97q2nvN/JJ1EWVUdxg6MRGx465soWiv2g1dxfmg0JFHAhxdfbpM2u+O14z/DR+OOW+PO77F7lNXWY3nSQSxLPIBB4cG4ZtxwTOv39z4t13/6HVKLy9DX3xff3t58orvJZIZarXK4jUwdmcVi6XCJcb7OU1co9bxhqUzUy5hNZhjqDJzo6OD2338P5nz6OQprahDm7Y01Ny/E4YJCPLp2HSZExOCRHasxJSwGj42arnTUdpW2MgekzmJAg2yGm9Dxr5B5YTNwc9K/cEXkXPhovK2+f1pGMVb+dgj19Y0T2RsMJiQnF2D594lYMH+c1e3NHtvP6mva8+bu7bh39ETcP3qCIj+PByrScbIqF1f0mQQRIp448CVG+cfh8qiuz7tpz9aUTCxLPIB9WXntrmT11S1XtnJ1I35Kb72u7m9E5Kj4KkDUy2h1WkTEhfHTQwdnMpnw2y03Njs2JDQEq29aiC/27MNvW06iwKMGU35636F7Q/y0HihpaF6EeKp1nSo+TrsydB6+zPgJ9yQstPr+RUVVEMTmz3WD0Yzs7NKmrxvqGuy6lLME4N+b10GjUuOrw/uQftc/7XbvM/0vfT2Wpq6HDBnvJa9Gf59IXN13Ks4NHmrT+1Q1GPBt4kF8m3gAsUH+uGbccLx77cU2vYerKi+thD6gZzbFJHJkLECIeiEWH47NZDIhJyUP/qH+8NW3/NR/4eiRuHLYUDy2dh3CjH54aNuvGOQbgs37stBgNmNwSDC+v/4aBZK39Nt592HCqv/CZGmc3CoIAl4b0/lJ5bIsY5ipP34uX4ciQykC1H4oSC9ESHQI1OqOP9UdMyrm7DnN8PZ2w7ixsQAAk8GErORcBIX7Qx/U9Y0oO6vKaMTIz96BJDduiqgSRTTUN8DN3foCqDPDatryQfJafJ2xGfKpvxxJtuBoRRYmjR7YpfZaszMtG98mHsD21CxcPW4YvrptAcJ9re/FotYZG4wozS+BWi3BS7sBguAJuPXM6mREjoZzQIhcAJ/z9tfZT+W3ZWThoVVrUKKqgcXNBFW5BoJZhaGhwfhp4XV2SNo5j+75EZIs4+UxV2DMquexZc4/4aHu3GRbWZaxvXQPfsxZC0+1BzzN7nhwwK3QunXu+rp6Exbe/OGptoC7b5+BmTMGNT1eW12P/Mx8RMVFNG1O2FPP+cGfvIlaU/N9TSI8vbFt4R1WtWM2m5F5MhchkYHw8rF+M75rtr2E7LqSZsdECLgl/nzcGNO5/VtaU2s0YXnSQXybeBDhft64etxwzBmc0OF1NVW1EAQBnt4eXb63K6osy4On4RKIohkQNBA0AyDov+hSW3ydp67gHBAiIifS2SFBk6P7QKtWQagSoarTwqI3QTBIOFxYhKTsXIyNiujhpJ3z39F/T65eO+tezF3/Nn6deQ+e2LcS7ipNs8fPJggCCgzFyKzLbTp21/7/4KOxL3aqB8DDXYMvPr4VG/7Yh0EjYhEX03y4mqe3O/r279PjcwsKamtgtEgtjpe0shdIR9RqNYLC/btUfABAqIc/sutK0ax7SACivYO71N7uzFx8m3gQm46nYsHYYfjkxsvQx9+v09fX19SzAOkCb+l2QKho/GeUAdm4D6h6GoLP08oGI+phLECIiBRmMJ8a3nRq3xDJ0wxzkAHHq4oxFo5RgJwpyM0bjw45DxNWvwicGg64Lvcodl/8b6hbWd19X/lhrMj6tdmxSqkar6d8gn/271zPgbunDpMnD4R/sF+rj9tjYnOopxe0ahVMxuYbGvp1Yc8PAPDx6/pwpjvi5mB3aTJOj2EQAEwNGoJpgUM63ftmNFvw7amVrAI8PXD1uGF45cquDQEKstGKYi5FygHksxZ5kBsAc7IyeYjsiEvoEBHZSVsjXv89Y3qzeT1irRqqMi3eP7YdL+7dZK94Vnli/6lNCWUZkGUYJTPO+/3NVs9Nrs1smqtwpqy6vE7fTxCEFsVHZVkVivNKWr+gh2y4+ubGPT/kxj0/NCpVl/f9sMb9ez7CjTtew/r8A9hZchyvHPsRf836Lwb59UGwmx8uiBiL/xt+Awz1BmQl58JoMLXZ1v7sfDz6w28Y89y7yCmvxHvXXYKvbr0KFw4b0OPfh8uTqyDX/wyp4j5IRecDUsv9UGRVtP1zEdkZe0CIiOzAYrEgLy0fYdGhUJ/1af2lgwZApxLx4Kq1kGUZAe7u2H7PHXhmwyb8dOgofko7gk9nzMcQ/+7t2m0rqdUlsEgthyKVG+paPX9a4Hh8n70azYcLCRji1x8mk7nLvRdancbmO2p3NDE81NMLEd4+iHL3gq/WHR9cdJlN73+2OosRczc9BcupSe9LDn+NAb5R+GT8fQCAj8Yuana+zl2H6AF9WuwUL8ly40pWSQfhodXgmnHD8d8r5vRodjrFnAzZsBFywwbAnArBbQZEt7mA3yuAXAupaA4gl0GGBoKmH0Tf55ROTNTjWIAQEdmBKIrw8HSHqo2Vn+b274e5/fuhxmiEl7ZxcvZTM6djQfFQPLhmFRauW44r+w/D46Om47xfPkZmTQW8tTr8PPdGRHradxnPOO9AqEUVTFLzoUih7j6tnh/iFojHBt6FF4+931QwxHhG4fqgS5F5Mht9+0V1qQhx93SHu6e79d9AG0wGE/IzCxAeGwa1umWeupp6bCvJxcCAYHw891Kr2zfUG5omyXfWDdtfbSo+gMYSLrk6D2ZIrQ53A9Cs+DicW4hlSQfx094jTUOs+oVwuFR3yA2bIBv/gqA9B4JbGxP+jX9BbtgI2bAREDwh6GZA9Hkc0Ixsfp6ghRi8Foby7yGovKH1dYzV74h6GlfBInIBfM73ft/sP4DFO/6AxdsMWW4+oOl/51yN6TExbV7bEyqMdThn7ctn9EAI+OO8+xHu4dfmNTkN+Vibvxluog6HK0/gv8MeR11NPTy8Wi8izGZzq4VAZ3TlOS/LMiqKK6FvZZ7Jh3t2ISk9AxmmWjw37TyMD4+0qu2qimoU55WiT0IENBpNxxeccv6mp1Brbmh2TC2o8MboW2GucsPB1GwMCArApKHNV6pasfsQvk08CFEUcM3YYbhi9BCr8lIb6j6HVPXCqblPMgTvRyF43ARIZad6OTYChk2AdiIEtxkQdDMAlX1ee/k6T13BVbCIiKhN144YDtlTxn92rm3x2C2bVuB77UKMigizWx4/rQf2X/Iknt63CjpRxGPD5mLML8/jwCVPtnlNpFsYbou5BrIs47mDbyOx7ADG+Q9v9dyKsiqUFVagb78Iu+0CLQhCq8XHoj9+xdq0ZEiSBBnAseIiqwsQHz9vuHu6WVV8AECsVwgOVWThzOFrakGF5NR6vLd5I2oNJnhqtXjRyx2+7rqmYVZXjRmK/7tsNgaFdW1VLGpJqvsRqHoBgKXpn0OuegFy7ReAXNfYy+FxGaB/C3x7RdQ+/oQQEfUSBrOpqSf3TJIs4R8rvsfBB++1ax41RPzfyL93xP5++h24ZON7uKf/dHybngS9zh2vjr2yxXVmoxmzVJPxTebPbRYgvnpvaDRquxUfbXlx5xasTjnRrMfpmR2bEKPXY1of63qdOlN8GCUztGLjr+YiQyVSqwsQ6eGP3LoyCAIgCiIej7oJT/+8AcXVtQAadyq/9fMfEKn3xY2TRuH4sw9alYs6ybgRgOWsgzKgjoSo/1KJRES9FgsQIqJewGQ04eaBY/Hy/j9Rbz5jhSNZBiSxaSlfJSX4BGNuxBA8kLS88YAg4M9Vz2P3hf9udp5Gp8HYgSOwK/UA/ipJxJTAcS3acpQ9JfYX5rdYv0uWgd8zU60uQNqTWVeEW3a+CZNsgZfaHf8ZsgCvHPkBP097Ah4qHVbnJ6G0oRrXRk3FJ1v3NBUfTQQRt04ZiytGDbZZJgIgl0Nu2NA4gdywoXHo1ZkfAAgqCJrRyuUj6qW4DC8RkYMz1BuQeSIbRoMJx675J0SIkCUZsgyIpVqIDSoYQxuwMv2IojnrJCPeO7H57wOyjDqzCZdu+qDFuSqVCtdFX4avM35qt02zwoVVgn8gBAjNjgmCgDEhttufpaC+HDdsfxUNFhMskoRKYy0e2/c//Dj1P/BQNU5anxc2FteET0HWyRxE+fnAU9u8NyXQywPRAX42y9RbGc2pAFqu0GYV80nItR9AKr2ycalc4x6IHldADD1+ahL56eeDAGhGQPB6oHv3I3JBLECIiKxkamePhZ6gc9chIjasaXWjtBseRWidP7SFblCZVQgRvfHyiIvw0PrVmPvLZyhtaH053J62pSAZUot1TWQU1Ve1en6gVo+R+iH4Mfc37Crdh5y6/GaPWywWZKfkoaqiuocSd+zZKTMxJPjvnddVgoC7Ro7DZf0GtntdcV4Jaqpq2z3ntP87srzF35sky/hf2h8AAGODEeUlFdDoNNCH+GPeiIG4YeKopiIk0MsT982YiNF92y6KKstb/zdwFjKMyCo8H3nFNyAjbzJM5tS/HzMmQTb82X4Dxm2Qq5ZAKp4GqeJBQKqF6PMfiCGJEHxfAHSzAIgQ/ZdD8LgagnY0RM9rIPp/27PfGJGT4hAsIurVJIuEH95YBZVahcvvn9fj96uqqEZRTjGiB/Tp8gpNXXH2crO77roT604mQwYwp1/jCkiXDh6EhT9/h4nfv4P7hp2DRcMm2S0fAMwJH4zHxJ9gtDTvtYj3CWrzmklBo/Hskbfgr/WDAAF3J9yAoT6NG+KpVCoEhQfAy8ezR3N35OK4/qf2Z/HAxIg+uHPE2A6vEVUi1G0suXw2ldDys0ABAtRC4/V1dQ0wNhgBAPqAxqWOH5g1CQNCg5BdXomE4ACc27/lcDCTyQSNRgOTwYSinCK4u7tB66btVKbeRUJm/kSYzH9vbJldeDEigr+Fpup5wLQHACCL/hCDdzaeIFedWiZ3A9CwEdCOheA2C6LnbR2uWiX4PNNj3wmRq+AyvEQuwFmf87VVdbgx/l5UllRBo9PA298LX6a+0+NvskwGEzQ661YzsqdNqWm4a+PP8PXTYumsqzBQ37gS0toTJxEXEIB+gQGdasdoNEOrta7IKjHU4NzfXoUsy41DlwQgcd7j8FC3/DfJqy/E00deR5mxoumYj9oLDw24DUN8+lt13xZt2/A5P+p/72L9NTfD3812e46cySiZMWND83kyHio3rJu+BCaDqUvP57KiClSWVaFPQuMqYt1Z0tiR1NSthFY7CFr138sO1zWsR0HpQ7BIxc3O7esWDbWlpHkDoheg6geYU04tkzsTcJsBoPcXZs76Ok89S6nnDYdgEVGvtfjSl1BZ0ji0xGQwoSy/HM9e9VqP39eRiw8AmB4Xi+O3PYSJ3tG4fNUXeGTbGgx57S3c/8tqXPS/L/Dmth0dtmGoNyDreGbTJ++dFajzwta5/8KCmDG4Z+C52HT+Q5i7/u1Wzz1alYxqc/NhSlXmGqTUZFh1z56SWVmB744fxszoOJsWH1+mb8LrJ1aiztL4dzv/rxfw+qjboNd6QS2IiPAIwO8znkF5cQXyMvNhsZy98lLH9EG+iIgJa1pFrPcXHxJScqKRX3oPsgpmoLzmXQCA2ZKN6rpVkOSyFleoLC2PQaqF4H03xJA9EHxfBtzmwBmKD6Lepre/IhGRi7KYLSjMLG5x/OjOkyjKLkFwVPPdnr967nt8838/QhQF3P3GTbjgtln2imozFovFqmVp35hzIQ4VjMWlP34Ji78JYqUGokHEO9t3orqhAU/MnN7mtTp3HSLjI7r06buf1gNPDb+w6euXx1yBf2xdilsSzsHe0kwEu/vgmpixCHYLgJ/GB8WG0qZz3VU6+Gv8rL6nLTWYzZj/8zLUGI3Ira7E0guusFnbN+58DenVhZAB/Ji1DTKAX6Y9CX+tN36d9lSzc/2D9fDx9+7SUsSCIDTbEb13k5CcHQ2gce6VLAMl5c+hsup/kCHC12sBvDwuQU3taggwwENQw1vtCwGGVtoSIWin2DM8EbWCBQgR9UoqtQqR/cJRkF7U7LiHlzsePOdJaHRqjJo9HKNnD8ORHcfx3cu/Np3zxp0fQVCJmHvzDHvH7jKTyYTslFxExUZY1QOTWlIGVa0KqBMg+ZpgcRcgVqix+vhJPDFzOiwWCcU5JQjpEwRBaL7ak5uHm02yjwuMxjqfYNyXuBwGiwluKg22F6Xi7fFXY3rwRPyS+wcaJAPUEHFu8CRMDRpvk/t2hUWWMfXrj1FU93fPzF2//YxfF9yIvj5+3Wp70e4PkFZd0GxZX62ohr/Wu81ren/PReflly1Eff0uCKIn+gT/BpWqcehgRfVnaG3/DQkmxIYfAMwpkA0b4W85CJVUDKMQAjefRwAxCHLZDfh7VSwBot8r4OAPIuW5zisbETmd//v1Mdwy6AFUldYAAIKiAvDh/lcAALkpBdj7xwH8/vlmbF+Z1Ow6WZbxzj2ftFmAFGQUIDQ6tGfDW0mj0UAf6Au1lXMywny9AACCJEBVroXkZoEl1AhYGt+USRYLJEs3ly3tQGp1MTbnn4DB0vgJdoPFhK1FqfgidScWxl2IMLdgnKxOh2+tJy7ve0GPZunImtQTMEvN/z6qzCb8mnwci0ZP6Fbb6bWFLfYUMUkWrCvYh/NDR3ar7d6usHwRamo3AJCglWqQkz8GIcEr0WBIQmXtNzh7aV13QQVflRZS8QxA0EHQzYDW7w1AMxpnDpYTApZDKrsTECSIXg8DbheCiJTHAoSIei2VWoWlJ9/Gnyu2Q1SJmHLF328QI+JDEREfitn/mIaLvRa22D3cZDRj07fbMH7eKHh4N75lqSipwo1xi2AymKDWqvHZ8TcRGO5v1++pPfogvdXXjI+KwiWDBuLno0cb9w1pUEFdpEGRTzVm//wxvjr/GoTFhDTr/ZBluUVvSHfk1lXAIjd/A2mwmJBc1dh7NSVoHKYEtdyMUAneWh3Es753nUoFL2335wmEufuj0lgHnFGGqEQRU4JdZ/NAGXWwWIqhVvUFABgNRsg4iKqanwFI6KN2h/pUD4WhdD5M7tcjWP8Cqmo+gNywGR6CCA9BBQNkeHjfC0E3HVBFtX1DzQiIITt7/hsjIqs4dT/kkiVLIAhC0x8ick7TrprUrPg4k5u7GxJGxzTfTE4GYkf0xY5fknBN5B14cOqT+Pa/P2NB6G2oq66HyWhGfU0Dro26E0ajdZOwHdHL8+bgiiFD4Ovmhmi9HnvvuxvJt/0LobIvpv7wPl7Zt6Xp3IqyKuRn5rco2LpjpH8UNGLzeQweah3GB0Xb7B62cm6fGIyP6APdGfMuon31+MfQUd1u+7zQEVAJAnDGc/GpodfAQ3SNSdBFFQ8jJTse6XkTkZ4/FnU1dcg8kY3qukScLj40gqrpd7YbBASY/oSu5nUEmQ/DR9MX9YIb8oUweIYlQ/BY2H7xQUQOi8vwErkAPueB+yf/B0d3nAQAjJkzAi+s+U/TY4e3Hsebd3+MjMNZLa6beuVEPLn8oRbH333gM+SnFWHc3BG4+K453c5nbDDabY8Gs9HcNJRrW0YW7lj/A3TeKiyddRX6eenRUGuEr783zJIEtWibz6nKjLW4bOMHsEgWaFVq3JxwDq6P7blej+4+5xdv3YgTZcWI8vbFy9Ot//fdWXoCzxxaBoss4a6EucivL4dJsuC+/hdhyeFlKDfWYl7ASMzuO7rLGe3NYpEgWSzQaK2f3J5fdjtqalfjzKFUouADtSocECSYzOmIUWlbflgoqCD6Lzu1Azm1h6/z1BVKPW9YgBC5AD7nG5mNZkBsfWLvW4s+wa/vrWt2TIAAT70H5tw0A6NmDcWIGUOh0apx15hHkbovHbIsQxRF3Pn6jbjs3q7PXTCbzcg6mQN9sB76QN8ut9MZxgYjsk7mIiohHDp3XdPxf69fhx/zDmFWnwRcFjUE9/+yBiazGdF6PdbctBAqVfcLkUpjPXaVpCPU3RfD9G3v2m0LSj7nd5aewCP7Pmu2u/mMkOF4Zth1TV8b6g3ITslB9IC+UGt6x2jowuwSmIwmRMSGWj2qIDUnFpJc3+J4eODn8BAskBt+BxpWtbxQ8IIYsq+rkV0KX+epK1iA2AELEHJVfM53zoWe18FQ//eQK62bFm9tfw77Nh7C3vWHsH/jIXj6eqCiuKrZdSq1iMU/PYKJ87r+abbRaIK2C58sd0VDXUOrK1yllZXjqpVfo1RVA6FcBdGgAiCgr483Ntx5q12y2YqSz/mZG5+AwdJ86J5KEPHnrBebHTOZzNBYUXxIkoTCzEKERltfANiKJEkQregVs0ilqKn7FUXlT+D0SlYqCPAUVfAUNfAQ3CG4zQTcZgNSPeSqJ/D3HBkRov+XgNYx5gc5Or7OU1co9bzpHR+7EBHZwarar7EwfhFK88rgG+iDrzLegyiKiBsRjfkPXQQAuHXoQy0KEEmSkbhmb7cKEHsVH0Dby+vG+ushV4sQDRpIfmZY3CWIFWpkVlXhQH4BhoeF2nyCujOySC03DpQhwyiZoRX//rVrTfEBND7PLGYLJEnq0t4gttCZ4kOSKlBdtxLVdb/AaDoBL4+LEOJzB0y1n8JDEKGCgFpZglk3E6L/x2ddbYFc/RIgaCH4vcnig8hJsQAhIjrDFynvtPv40KkDkXU0G2f2HQsAtv6wC4e3HMP4eaMwft5oDJ0ysGeD9iBBFqAq1zQt2StWqQFZhizLyE0vQKZQh9iQIIR5+Cgd1SH19QpCak0hznyShLsHNCs+ukKtViEyIbK78bpM+v/27jvOiTp/A/gzk0ySzfbeCx0VrJyI2FFAxYZd7L0dFqx3KmA5/dkLFmzn2UBUFKSjiB2xoPRelu01W1Om/f5YWFi2ZXeTTJJ93vfihTuZzHx2b8jOM9+mObC79HSoeg2ibKchJeElaOUnA2o5BFMcau03oq7hK7jltYi2n4Nk++mwaIdDd38NCDFQ7ONR2jAPbl1FTOS5SIl/odU5BPulEOyXGvDdEVEgsQsWUS/Aa963Jp08Bet+2gBN0SGYgLvfuRVjrjwJO9ftxq/z/8Sv8//Alj93YPgZR2D4uKMw/IwjEZPY/mJzvtaTVorFm7fg9jnzWsyCpcXKyEmKxXujL8Y1X3+CWtkFu8WKJ48ei+My+viqbJ8K1DW/rb4E62rykROZhMPj+mJx8Z+Yuet7RJisWFOzE7quIzMiEZ8cd7/fa/EnDfXYtvsgAMqeLSL6SJEQ91/ZRBAh22+GRd3dFDqkwyHYToVgPRUw8fPH3/g5T93BMSABwABCvRWved+b8dQX2LluN064cARGnv2PVq+7Glz4dcEq/DrvD/y64E+k901tbh0ZeFRfv9VVXVGDhtp6ZPbJ6HYI+WbbNvzzy3lQNQ19EhKw6LqrcONXs7HEsanFftGSFS+MPAunZg/wRek+FYhrflX1djy+diaq3fWIs0QhNzIFCdYoPDzkEgDA1vpiKJqGwTH+HXDfHl3XIbtln8yutqtkJDzy9uavE0UJsSZLy+mtAcCUCSF6UlPoECJAgcPPeeoOBpAAYACh3orXvPE2/ba1uXWkLL8CR59xJI4ZdxSOPuNIWCN8N/2ux+OByykjJjayx8fafxre74q2484f56La3XImowv7HYpnjj2zx+fyNX9f8zsaSnHPn++g1OVo3mY1SZg6dAKOSz4YNdV1iI0PXKtXW6rKHaipcCBnYHaPxozIylbkl46FpjUAAGyCCUmiBVZBBA4MudYzIMa/1JOyqZv4OU/dwUHoRERhbNA/+mPQP/rjyikXwVFei5UL/sS3M3/C/135CgYfPWBP68iRyDmoZ338LRYLLG2s2u12uaGqGuyR3j+V3n8NkFR7VKvFBAEgJyoOAPDxX6thEgVcfOjQrhcdgjbWFKBBcbXY5lZlbK0rwvDYASgvLEdEhDVga7sAQGN9I+xR9uavE5LjEBMf1a3w4XSvQINzMeqdi2GCgDhzCixqMSIEE9y6ijpdgVW0HvAuEWIb4zqIiA7EAEJEFGBxyTEYfdVJGH3VSQCA1d+tx4r5f2DqBc/B1eDC8DOPagokZ7Rcffu6Q+5E4ZZiWKwWPD7/QRx6wsFen9NRVgNN61oA2at4VzHSYyJx85Bj8Oyq79CoyAAAGySUFDXi6O9fR53bA6vZjDd+WoHFN14Li0GzNAVKn+hURJitqN8vhNjNVmTbkyFZJOQNzmlzvRl/cTY4sWvzbgwY2q/FuiL711BUcQ088kbYpEOQlvR2i/fr8KDBuQT1jYvR4FyMaEsfRJlSEC/FQtCqIVhPQr1Wi531c6FDhyBYkJLyC/SKU6FrbkCQICYtAeCbhSuJKLyxCxZRL8BrPnSU5Vfg1/l/NHXXWvAn/jH2CBwz7ih88fJ8FGwubt5PFAU8/fUjOOykIX6vqbqiBpHRdlisEmZu/QuL8zejf2wS/n3UKRj99n+xvaq6xf6n9u+HN8af4/e6OhKIa/778nV4Zv3nqPbUI9JsxfnZI3Fj/66vmt5Vuq7D4/K0WEiyqrwa5UUV6D+kb5stHuWlxyJSK4Gq6yhRXbBYBiMz6aOm0OFcBLfrF8RbD0OkyQqzsh0w94VgPQmC7WTAvC/oyspWeORtiIwYs+/gagFgMm52LmrCz3nqDo4BCQAGEOqteM2Hrt8WrcJX05filzm/tXotPiUWs0rebuNd3ivNLwN0HSk5KV0etK5oGk57+7/Y7ahpsT0rNgbLbzJ24cJAXfMrK7dgS10h0mzxGJV2mN/PBwCOCgeqymuQOzCrRdiQ3TIka+v1ZCorbkG88nXz17quY6fSAIspCvGWIbDpLohaCQTrSYDtpKa/hdgAfCfkS/ycp+7gGBAiImrlH2OPgGSTsGLu7zjweVF9TSOWffwDho87CpEx9naO0LGEtHgoitqtGbPMoogUSwR2o2UAOSQttVu1hKKjEwfg6MTOZwHr7tTImqZBVVRI+y1UGZcUh6i41mM72gofrsZqxO0XPoCmh3F55kioYiQk60gItlMA6chW7yUi8hd21iQiCnKHnzQEielxLbYJgoCzbx2DXxeswoScW3DX8Q/jk6fnYNf6gi4dW7JIiLDbIHuUFgGntKAMjsqaDt7Z5H8TLkRSpB2SyQS7JKFPfDxeOiv4ZsUykuyRkb+5AKraeoX0zlQUVqIkv7xV+CwoG4GtBTnYUXwoNM3R4jWPvAHVtdNQUHYuKqv/0XqqXAAaADn2eQjR9zB8EFHAsQWEiCgEzCh4E1f0uw2lu8phlsx4eNbdGHHWsObX1/60ESu++h2PXfQcXA1uHDPuKIw4exiOOq3zbkGqqqJwRzFi4qORkBIHALDZbbB6MYOTTZKw4rab8dmadRAFAeOHeD8wvrcwmU2wR0ZAFLv+zC8lOxmaprVoPdla0Be63jQdsqKUY3vhEKQlvYUG5zdodH0DuxiBaHMSYlAJwdIH0IoA3bPvoLoO0ZyOSNspPf7eiIi6g2NAiHoBXvPhw+PydDq1a+mucqyY9wd+mfs7/vp2bVMYOWsYho87CnHJMW2+R5ZlSFLrLjwHUhQloLM7dVe4XvMVjqmorpsO7LcCuRkCoswJiJVyYVa2AJbjIOwdy2HKAaBAKz0M0JtmL4OYBDHlZyPKJz8K12ue/ItjQIiIqFPerCuRmpuMc24bi3NuGwtVUZvCyFe/4+0HPkRKbjJGnDUMx4w7Cv2P6NP8Hm/Cx84tu6F4FPQZnNOjhe2oY6XVEyE458MuiLBEjIElbtqeV2S45fUAdNgEEXbBDLtogggBshgLS/QkwHoy0KrLlRli6jqg4XXoQgQE+9UB/X6IiA7EAEJEFMZMZhNGnns0Rp57NABg8+/b8MtXv+O5619HdYkDw/e0jhwz7qg235+/sRBb/tyOtL4piEqIRHxSLMOHj9U1fganeyUkc18o6i6YG+cgWjTDLACqcyE8nmNRLQ6E7l6OBCkHaVIUXJqKRl1BmeKGLAB90xcDiOr4RJG3tDEahIgo8NgFi6gX4DVPbaksrsave1pHVsz7A8PGHI7hZx6JkecejeSsRKz9eRP+c+kLUDwKzBYzbn7+Kpxw/gijy/ZKqFzzNQ3vosLxLDStGoJgg0WXkWq2QBL2hTxd1yGINgi2M5u6VVmPwbaiY6Fp9RBFG3LSvoXEdTh6vVC55qml7s6Q5yvsgkVERAGVmB6PM244FWfccCoAYNF/v8Zf367HrKfnwGq3oqqkGo21zub9X/3nu7DZbTj69COMKjmsuORVqKx5BZrWtJCjrrtgEsw4sAuVIAgQIq+FEHV387Z+mRsAuADYAlcwEfmUo7IGDY56ZPTNMDSEGIHT8BIREQBg7DWn4oH3J+Lj/DdwyoTj4G50t3i9qsSBrX/tMKi68KMoha2myG3UlVbdpHRBgmA9vo0jMHwQhary4kpERNkQnRjb68IHwABCRERtOOKUoUhIj2+xzR4TgdTcZIMqCj+RthNxYGuHKMagSI+ER9eg6Do0IQqmhA8B6R/GFEkUImRZhqOq1ugyvKJpGjxOD6ADMXGdjN0KUwwgRETUypCRg3Hpv8YjKqHpl2NkrB1n3HAqRl3W1pN46g5BiEZu2tcwmzJhFtNgNmUiLeFV5GWshiXtV0iJH8KcvIwLBVLY0HUdskf2y7Gry2tQU1HTatHOYCSKIjL6pMFqsxpdimE4BoSIiNp01k2jkZQejy2rdiBrQAZOuew4o0sKO6IYj7yMH+B0/QrJnA3J3K9pu5AEWJIMro7It6pKqlFdXo1+Q/v6tNuR2+lGdZkDeYOyQ6Y7U6jU6S8MIERE1K4RZ/8DI85m9x9/EhABu+0knx7TmwUriTri8XiQv7kA/Yf09dkxzTYJuihAVVWfLmhqjbCi78F5kCy8rQ0V/H+KiIgoRHizEr2qqijYUYT45DjEJ8UFpjAyTGN9I+rrG31+3OrKGtRW1kPTNIiib3rsx8ZHwx5l82n42IvhI7Tw/y0iIqIgVVNdh9j4aACALCvYvbUQmXlpsEa033fcZDIhu38WJIm/4nuDnZsLoTjdSMiN8+lxU9OTkZya6LPwsZckST49HoUmfjoREREFIY9bRkVROex2GySrBEkyIyElrsPwsRfDR2BsK61CbnIczN24Sf9tWyGqaxsx+ogBXX7v5BlL0OCW8a8LTsbBRza9v6ioyKv3Pj/3B2wpKsfhfTJw05hjOtzX1+GDaC+vP6EWL16M0047jRcjERFRAFisEnIH5bTorhKXGGtgRf7z+uJfUFrdgAuPHYpDclKNLscrIx98DY1uGYIg4IVrx+HEQ7wfK3Hbm1/ipw07AQGY8okFPz91q9fvPeb+ac3n/Xr1Fsx/6FpkJsR49d4JL8zAluIKuDwKfttagIq6Rvz7glO8PjeRr3idJhYsWIBbb70Vq1at8mc9REREtEdX+8r/ujkfL371Iz5Y/qefKvK9y16YiTcXr8QXv67F5S/OxIaCcqNL6tQx909DndMNVdOgqComvj0Hc1as8+q9N7z2OX5YvwOarkPTdNS73Bj54Otevffs/7yHRnfTNLb6nvef++T/UNPoQnWDC2U19SiqqsXuCgd2lFZhS3EFNhSUYW1+CZ798ntsLCiDy6MAADyKiq//3oJfNu3q3g+BqAcEvQsTJv/www945513kJWVhRtuuAG5ubn+rK1Ny5YtwwcffABd13HppZdizJgxXr9XEATouo6ioiJkZGT4sUqi4MJrnnqb3njN/7Z1N+7+7zzUNLhgk8wYkJGEj+661OiyOnTPe/Ox9O8tLdZuMAkClj52I5Ki7NB0fc9NftPfmqZB0Zr+u+nPnv9WNSh7vm6xz57t2p6vFU2DqurQ9H3/vXd78z5qy2Pv+7pp26bCcqzYnN/qe4mwSDhlaL+mGnQduq5D1Zr+3vt96DqwYvMuqFrLWy9BEJCTHAdJFKHsOefe8+79W1Y1ONtZQyPKZoFZFGCRJJhNIkyiCLNJhHnP3yZRREVtA0ocdQe8z4pHLhqFsUcO8sH/mxSKjPqs7NKjleOPPx4jRozAvHnzcO+992LkyJG48sorER8f3/mbfcDhcOCdd97BtGnTIIoibrvtNgwbNgyJiYkBOT8REVEwKnHU4ZGPl6KmwQUAcMkKNhdVYvLMJbh45GFNN7Ray5vaA7/ee5PbfDO/3z5KO9tavbeTczR/vWdbiaO+1cJxqq5j1MNvQtd1iIKw52a66W9RFGEWm/676c+e/95zs20ShZb77Nku7vnaLIowmQSIwr7/3ru9eR9Ty2ObTSIks9S8rabBBQHAgU9vY+xWHHdwn6YaBAGCIMAkNv299/sQBGDN7hLU7vn/aS8BwBOXj4HdYmkODfsHCZMoQjKJuPjZj7CzrLrFe22SGT8/dVunN5KbCstxw2ufwbHfuU2igFGH9e/y9UbUU10KIG63GxUVFejbty+uuOIKvP/++/jmm29wySWX4Pzzz4fV6t8VHVeuXIlhw4Y1B54RI0bgl19+wbhx47x6/3HHNS2i5e86iYINr3nf6O50lLqud3nRKVmWuzVbjC+nzAxlve2aL6yshUtu+XTcLctY+tcWbCqsaPU0vK2v997kNt/M77eP2STCbpZabWv13k7O0fz1nm1TZyzFii0tWxPMJhM+uusSHJSVEsgfYZdsLCrHpoKy5hAiCAI+mTQBCdH2Tt/7yaQJOPOxd6HtCV6CANxx1vE4NCe90/fO/dfVOPbB11DvdGPvJ8q8h64B0Pk1PygzGdNvvQD3vTcf9S43Yu02fHz3ZZBMpk7PS+HLqM9Kr7tgjR8/HnV1dTCZTEhJSUFaWhpSU1ORlpaGwsJCrFu3Dk888QSysrL8VuzHH38MXdcxYcIEAMCsWbPgdDpx1VVXtdhv6tSpmDJlSrvHmTRpEu6++26/1UnUFYqswmQWg3ZVVEdFPeKSovx+Ho9bRlVRNdL6dO2moyy/HNEJ0YiIsnn9HkVWULa7Cul9kr3+uauqipIdZUjKSIDV7v0HdvnuSqiygtQ+KV6fS/EoKNxairQ+ybBGeL+YXFVxNTxOT5fOReFB1TRc99YClNQ0NG+zmU24adQROP2wfgZW1rnLX5+Lijpn89e3n3YUxh0R/E/l7/rwa2wvq4bdYsFLV56KlJhIr99bWlOPe2d8C7es4rxhA3DJiEO6dO6XFv8Gl6zgllOOREwXPo+Aptax/MoaDExj7xFqCs/p6Z2HX5+f19sAsnbtWqSmpiIxse05oX/88Ud88skneOWVV3xe5F4fffQRALQIIA0NDbjmmmu8er/RY0DKCioQmxQNq82/aVP2yKgqrkJqbmjMJOKtkvwy6KqK9D6B/4fiL5qmYdem3YiOjUZSRoLfztPda97jUbB7y27kDsiG2c+LPMkeGZXFVUjr4nVbtrsccSmxsFi9v1FXVQ2l+WXI6JPWpXNVllYjPjm2Sy0MqqpBU1VIlq61ZjTUNSLSi6ep+9M0DYqsdOlnEa564xgQt6xi7KNvN12fuo4LRx6KmzuZZjVYTJ6xBCWOOpx+5GCcO7xrN+PUpDde89RzQT8GZMiQIR2+PmzYMMyYMaPHBXUkMTERmzZtav66oqIC2dnZfj2nL2mqCkVR4e/GLl3Xoaqan88SeAmpcZBlxegyfEoURWT1z4TZHJxN4BaLGbmDsv2yau2BJIvU5fABACnZyV1+j8kkdjl8AEBiatfHu5n2dDfpqq6GD6DpemL46L2skglLp96AH9fvRFKMHUNyun6NG2XqpaONLoGIAshnHYVtNhteffVVXx2uTcOHD8fKlSvR0NCAxsZGrFixAsccExpPdwAgLTcVkVFdv6noKovVgoy+4dNKsJfFagnIzy/QJMkc1N1lAhE+iMg3zKKIk4b0DanwQUS9T0jdWcTHx+Paa6/FpEmTmseCJCd3/eknEREREREZI6QCCACMGjUKo0aNMroMIiIiIiLqBs7VSEREFIS6sE4wEVFIYQAhIiIKMqqqonBbMZQwm3iDiAhgACEiIgo6oihCspihqKrRpRAR+RwDCBERUZARBAHJWUko2l6MitIqo8shIvKpkBuETkQUjnRdD+rpmCnwRFFEdv8sSH5eBJSIKNDYAkJEZDBd11G8qxi1jnqjS6Eg053wUV1eDU0Lv8VoiSh8MIAQERlMEARExkTDZrcaXQqFOFVVUedoRGO90+hSiIjaxQBCRBQEVFVBTUWN0WVQiDOZTMjql46omEijSyEiahcDCBFRELDaLJCsktFldGpb3ffYWLsUANeoCFai6Jtf7ezGRUT+wpFtRERBIDI6+J9Yf55/BypdO6FBxS/lb+HsuNcQH5/gsxve3sDj8sBisxhdRqdK8sugyCoy+6ZxcgQi8jn+1iCisOZxeYwuIURpe/40+br4aRQ1roFbq4OsNaJersD80geQv63QuBJDjNvpxvrfNofENZmcmYTU7CSGDyLyCwYQIgpbbqcb+ZsLIbtlo0sJKV/uvgfTNp2GaZtG44eyV+Fxe1Dp3tFqP4dYhG/qP4LKxfK8YraYYY+JgNPpAuD7cKzrOop3FKOkoKLHxzKZREiWnncJ1HUdus7uekTUEgMIEYUta4QV2QMyQmJsRbD4bNdE7G74c8+No4a/qj7HzJ03osK9tdW+Hk3GJmE15hS/F/hCQ5DJZEK/IXmIjY+Bx+XBzg274Xa6AfhmvIUgCIhJjkVSalyPj+UrRdtLULC1yOgyiCjIMIAQUVizRnBq2/Zo8GBx0eP4tuSF5m3FzrWt9qvVd+P6AV8gwZoLASYAgKoDpZ5YqFDwl+MXFLvym/fnE+/2mUxNPz+LzYK8g7JhjbBClhXs2lwAWVZ6fPzIKDvMUvAM70zLS0Vm3/RO96sqd/i/GCIKGgwgRES9UL1SgVc3no7Ntcuw1vEV3th8Bqob2x7PIQpmWMUoTOjzX0SYD0GVbEeBOwHanl8hmq5BVpue5Ou6jpJdpSgvrgrY9xKq9g5GN5tNiImLghREwcFXTCYRoqnjWw2Py4Pq8mrIcsddJUNh7AwReYcBhIioF/pw+5XYfypdWXPho/yrkGjph5YNGAKOS70FOjQsLJ6JDQ0laNRioe/36yPFmo6cyAFNewsCohOjEZcUE5hvJAwIgoDEtASjyzCMxWZB3qAcSFL7XSVVVUXBjhI4KrlWTm9VVlCO8qJKo8sgH2EAIaIu0zSN3WxCyJzd92P65rPw3rZL4NJqUeHaCk1v3d3HJFpwWd+30D/yBAgQIQpmnJD6TxQ6Xbj3r8sgiRY8e9hMTBr8DJKsaUiwJGNA9FBMHPhEi+NERUeG5dP8cGb0RA17u6Z19Hp2/3TEJcZ2uJ+zwcnPpjAVGReFqLjgn66cvMPfEETUZYVbiyCaBGT2yzS6FOrEVwUPIr/hdwA6PFoD3t48HofGnwe1jQASZU4CAJyRMwUulxPLqr/Eh7tmYkz6RXj28JnN+6VYM/DgQS/DqdYjwhQVqG+F/MTj8iB/YwGyB2UG9ZipjlpIgKZWktKCSsQkRCEhOS4wRVHAREZFGF0C+RBbQIioyzL6ZSApK8noMugApc4N+KvqMyh60zSvuxtWNoePvXRo2Fq3HFf2+xCCIAJoWufBJFhwRd/3oeoKFhTPwMMbr4VVtOGZw2fi1NTxbZ6vo/DRm59Ch9r3brFZgj58eGNvKwnDB1HwYwsIEXWDjoJtJUjJTER0LJ+AB4PV1V/gx7I3oEPFT+XTcUWf/6FGLoWmtz29a6yUgZsHzcM3Rc/CYorECSn/xILij7G8bB7GpF2IZw6f0e1adF1H0fZimCQJaTnJ3T5OKNI0DcU7SpCQnoAIu83ocrwW6uFjr866chFRcGAAIaIuM5lMSM5IYPgIEn9Vz8aPZa9B3y9s/G/7FTAJZgiCCF3ft1CgAAGHxZ8PADDDhlHp92Nx8ad4cPWVGJN2EZ4+7OMe1yMIApKzkiCKva+RXRRFWCNtsO6Z4YqIiFrrfb8diMgnYuKijS6B9thR92OL8LHXkLhxuH3QUpgFKwRBhCiYcJBwCYZGnQ9FlzG/6CP8e/XViDDb8fRhH2NU6rk+q8litQTVehSBsHcgd1JaQq8MX0RE3updvx2IiMJMQeMq1MjFaBrLsf/YAwGxlqZJAm4ZtBAFjX8iydYPgmbBkrJP8EP5QoxJvwj/d9hHAa9ZUzVUltUiOT0u4Of2F2eDE4Xbi5EzKBsWS8eDpYmIejsGECKiIPV92TTImgej0u5usd2pOrDOMR/rHPMRI6Xj2OTr8V3py3Cp9QB0CBCQZj8Yh8XvGzyeGjEEi4pn4cfyRRjbSfBoGsNRgvS81E4Xkeuqtb/vwLP3fwIBApLSYvHMRzf79PhGiYiMQHb/TL+FD13XUVVchYT0BAiC4JdzEBEFCgMIEVHQ0fDG5nGQNTcAHRscC3DjwDkobPwb6xzzUeLcgEPizsR5Oc8jRkoDAAyIPgVfFT6ACtc2ZEUehdHpDwIAPJobi0s+xU/NweNDryrwx0xO6/7Yiak3v4e6WicAoHh3JW4/7yVM++IOn5/LCP4cyK0qKhobnIjTNA60JqKQxwBCRBRk/rftcsiaq/lrHRre3Hw28qJG4JC4cRiX1XLhv+8KF6GhoQ5nDXiq+em4R3Nhccmn+LliCcakXYinvAweQNMg8qz+GZ3up+s6ireXIM3LlpK5H/7cHD72Ki2oxqa/d2PQYdle19cbmSUzsvpnsvWDiMICAwgRUZBpUKpabRMEE05Ku7N5scC9pq67CXWyAwDw49qvMOWQN7GoZBZ+qfgaY9IuxJOHfuDXWnW0HHmyP0VWUFHqQNqeNWMsUuuQIogCbBHhO2OUpmkQBKHLwaGq3AFNUZGUnti8jeGDiMIFp+kgIgoSjWo1fq14Dxpar1JuFi2twsdT6+9ArVwNfc//3KoLD66+ErHmBDx56Ps4KeUsn9e4f9csQRCQ2S8dpnZaP1RVheqRm7++/dHzERG5r5uSZDHj9IuGI3dgqs/rDAa6rqN4RwnKdpd3+b2SxQzJysHsRBSe2AJCRGSw/IbfsaZ6Doob1+OQmHG4qu9HeH/b5VB1tfmp94Q+77V6X5Xc+sZWhIjhSaf4rdaSXSWIToxBVHRk8zZVVdscl2C1WREVH4VaRx1i4qIx7+NfcNr4YagorkFNdT0OP6Y/rrhjtN9qNZogCEjLTYUgdr3lgmvsdE1laRUSUuLZSkQUIsI6gEydOhVTpkwxugwiolYU3YU11XOxunoO4iyZGBJ3No5UboMoi4iWUnDb4KVYsPtRQFQxNvNhiAd8XDcotRAFEeoB/Z9Mogk20e63uiWrtcVMT9WVNaitqEVW/4w2Q0idox5mixkbVxXg71+34dHp1/ittmBkMnPAuL8pioKaqqaQy1ajwHI1umCz24wug0KQoPtjqpMgJQhC0/SSRUXIyOh8gCVRuOA1H2ga2uvhWuJcj9XVc7Ct7gcMjT8bh8afgxgpvdV+iqJg58Z8JKQmICE5rnl7neLA4uJPsbrmV4xMHoOlxZ9B3zMKQ4CAfw58DLn2gf74ptqkaRoa6hrbfGKv6zqKdpSgxuHEs/d9ine/vr9Lx64qdyAyOgJWW9dnlwrWa768uApxSTGQetkijf7WXitcbxLoa95RVYvKkirkDcru9T/7UGbUZyU/ASlsyB4ZEhcAI4N9ln8HSp3rIcCEMRn/Qr/oEwAA6xzzsLp6DsyiFYfGn4PRGQ92eByz2Yyc/lmw2JoGaDvkSiwp+RTra/7EmPQLcUH2DQCA4Qkn453t/wcVGi7JvgU59v4+/X5UVUVNZS0SUuLbfF0UxXa7CwmCgPS8VFx/0INYsPGpLp/b1dAIi1XqVgAJJvvfHMtOd9NnFQOITzX/fGUZksTfA4EQlxCDyOgIhg/qFn4CUliorqxBZXEl8gbnwGzmZU2Bp+s6Pts1ESWudXu2qFhYOBXZkUchv+EPHBJ3Jk7LeABJ1n5eH9Nis6DKU4YlJZ9hS90anJpyAbJ2nIwY1Q7smRwpTkrCpEHP+P4b2sPl9KCxzom4pFiIYtfnLbn5zOcxfcGkbvXNz8gLvhaMrvJ4PCjLL4c9JhIJKXFI75PGcQp+UllajTpHPXIGZHbrWqWuY9ij7uKdGoWF+MRYREZGMHyQIQq3FSG/aANKkte12K5DR2Hj3/jn4K8BdO2ms9xdjCUln2Jnw2aMTrsA41NvxIRzXoRkXgMIwGlnHIprbvHfYPO9IqMiYI+0deum+dHb/oer7z4dOf1Suvze+toGRMVEdr5jEJNlGQXbipGUGo/o+GgA+6bS3fDHVmT0TUZkVCTMbA3xiYSUOMTERzN8EIUAfupR2NjbVYUo0JKzklAJAHLr1wSIODB8eFyedq/XUlcBlpR8hkLnDoxOuxATcicCAK6/+DXUVDc27zfns9+QkBSNcy78h4++iyaapkGRFVis++rrLHxUlFYjNj4Kn7/zPbauK8LhI/ujvMiBQYfm4NjTDulyDbKsoLywHCaTiIjIiC6/P1hIkoT45FhEx0e3+hkqbg/KdlfAFlHHBQZ9RBAESBbe1hCFAv5LpS7jYD+ifbbV/YA11XNQixJEmOPhVBzAfoPCj0+9pcX+Ho+CHRt2IXdQdovZY4pd+VhS/ClK3YUYnXYBrsi7s/m1zRuKW60g3ljvxm8/b/F5AKkuc6CxzonMfuleP0mWnW78+55PsPa3ndA0DT8tXYs+g9Pw2py7vHu/W0F1eS1SshIAAJJkRlb/rLAYJxGfFNfm9qHHHgxd15sXKvSWpmk9fsIve2QIgsCWFyIyDD99qEuqy2tQW9X+lJtEvUG9Uo411XOx1vEVMu2H4aiky5BtPxIA8PHO61Dl3gUBIk5JuxsHxY5t8V6LxYw+B+U2t4AUOndgccmnqHKXYXT6hTg0dnir81ltEtyu1osT5vbtetemziSmJSA2SenSTe6iz1dh9crtzUui67qOnZtKsfizlRhzwdEdvvfP7zbgpbs+gKZpSMlKwHPz7gOAsAgfnREEoUufo3tnFZMsElKzk7t93rLd5TCZzUjLbfv6qa6oQVxiDFtliMhvwv8TnnwqLikGFpvE8EG90o76n7Gm+itUurdjaPzZuKLv+7CZYlrsc1neO9CgtFq3Y38WmwX5jVuxpORT1MoOjEm7EIfEDmu1n6bqmP7yEnz39TqcP+EYfPnJStTVOiFZzMjrm4wb/nmqz79HAF0eS7VpdX5z+NhL1zWs/X1nhwHkt2/W4j/XvwlnvRsAUF5YjTvHPIUXFz/Q5ZrDQVlhBWITo9ud9UsQBKRkJfV4bZGMvunthgtZllFVVoXIqAh2ayUiv2EAoS4RBAGR0f5b5Iwo2DjVaqyp/gprHHORahuMwxLORW5k61aK/XUUPnY2bMLikk/hUhsxOu1CHBRzRJv7zfzfj3hv+re4aeJozJx/NwDg0CNy8cfK7YiJteOCy47p/jflY3kDU/HXim0tQoggCBj6j74dvm/Be983h4+9SvIrsG1NPvoNzWmxXVGUsJ9kQlNUKIqKjiYd3n9sTnd11LIhSRLyBuXwIRMR+VV4f5oTEXVTfsNvWFM9F8XO9RgafxYuzXsTdnNCu/vLsozGOidiE2LafH17/XosLvkMii5jTNqFGBh9aJv7LZq7Cm++vBTjxg/Dop8fbvHaYUfl4bCj8rr9PfnLzf8+F19/uQoNtS7oug5RFHDZbadi9PmtW3X2Fx3fepYrURQREdlyZeXK0mrUVdche0BmWN8Yp+WmGl0CAIT1z5iIggMDCBHRHm6tHmurv8Ka6rmIt+ZgaPzZODPrMa/e21DbiOlFk1FbWA2rGIF7Bj8LuykKW+rXYknxp4AgYEzaBegfNaTN96/4cTPefGkphhyeg/e/mIioaFub+wWjVx6ZjWsmnY56hxNb1hbgiJEDcOalnbfQ3PLkJfj7x00o3V0JAJAsEi64/TRkHDC2JSElDjFxUW3eGGuahsKtRcjolwGTqeW4FadShHXlj0DW6pAeNQZ5sdf24LskIiJfYQAhol5jWdELWF83HwIEDI07Byek3g4AKGhchTXVX2F3w+8YEn8Wzs97EdHmrj2NfqNsMsrVIgCAS3Vi8trrkW3vB4tgxekZl6Bv5EFtvm/jukK8+fJSREXZ8OhzlyArJ7Fn36Sf7Z25aW8Y+PL9HyFZzDjzkq53CYuItOLUi4/Bd1/+jtjEaBx92lCMv+W0VvsJggDJ2v6CZ6JJxP69ijRNh0cvwYrCO+FWKwAA9Z5tAEzIi72qy3USEZFvMYAQUa+wvORlrKv9CkDTUIW/q2ej3L0VDXIloqUUDI0/C6dnPtKtY/9StRQV7uIW2zRdg6zJmDjoiTbfU1LkwPSXlqCyvA43TjwNQw7PaXO/YFO6uxyqR0ZGvwz8+dMW/LZ8I5549/puH++LN77Bh2v+D/ao7rX4CIKAzH5NK6ZX1zbi389/hZLyGoy/dB6SMiqa91P1RmyrfgOZ0edAEuO6XS8REfUcAwgR9QprHXNbbStuXIMr+r2PWCmzR8d2Kg0HTgIFoGkmqAO5nDKmv7wEf6zYhpvuGI2RJw3u0bkDLSUrCbqmo7y4Bi899BneX/6vbh9r/v++x8nnHw1rhISCLQVI65MOcxdmeNJ1HUXbS2Ayi4hMisPlk95DdU3TYo0N7lokHbC/AAGq5mQAISIyWM9WMyIiCgE6NLSaJ3bPlo7Ch6ZpcDW6AAANam2b+/xe9R1WVCyDeMDMQoIg4IyMS1pse//N5bjo9GfRf0Aa3v9iYsiFD6BpkLjJbMJ1o5/GO0vu69GxZr20CBfdMRaiKEKyWiCKXVt3QhAEpGQnITkrCR/NXdkcPgDglx+GwO1u2W0r1nYYbOb0HtVsFEdVndElEBH5DFtAiCikKR4FZkvbH2Xlrs1Y7ZiLDY5FiJZSUeMpaR4roOtA/9jjOjx2wdZCFG4rxPzM6XDrTogQcduAR5Fj74+fK5ZgaelsDIweipv6/wvxliQ8vOY6yJoHAHBj/3+jf2TTgPO5n/2GN19eikuuOg5zlz/Y+nuQlaBflVpRNJjNTc+sbj3nRbz06e2Q2vm5e+P7OX9g0JF5SM1uGvOSmtO9RRUlS9tjQzavz8OSuVacfeHiPQFUQGb0ud2s1lgej4yKojLY7VauzRHGPG6PT6ZZJgoFgq7rbfUcCEuCIDQ12RcVISMjw+hyiAImXK95t9ON/E2FyBmUCWvEvtUT1tcsxJrqOdABHBp3Ng6OOwMAML/wEWyv+xEA0D/6RJyeObnD42uahn+tuRKy7mneJkCA1WTDkfHH47TU8YiRWk7NW+DcjqyIpvUvvv9mPd58eSmOOW4gbpx4GizW1jfs9bUNKCsoQ/aALEhS+wOtA8Xt9sDV4EZsQnTztutHP43igipYJDMGH5GLsRcejRPPPKxH57n91Cdw53NXoP9hPRv7ous6BEFAfaMbF9/xTotWkPsmz4Itor75awEChqb8BxlR5/TonEbwxTooe39WFHycDU4UbCtC3uCcdkN1Z8L1c578y6jrJrgfuRERdcAaYUX2wAxYI6yo8uzCmuq5WFs9FwOiRuHktLuRYhvYYv8zMx/t0vF/rFgIRZdbbNOhI1ZKxPlZbQ+8zoroi9WrduHNl5YiLSMOz0+/Gilpse2eIyomElKfjKAIH0DTjVBjbQNi4qMgCAKuHvV/KNkzTa5T8eCvX7bikltO7vbxt67OR31NI6Ji7D0OHyW7SqHIKjL7pSPKbsVHz12DOx7/FLsKqzB2VCMiIlqOzdGhY0PF/xkaQHRdR3V5DRJS4rr0vp6GD9kjo3R3BTL7pjGEBKGIyAjkDMjqdvjoiMctw9LBLHJERmAAIaKQlq/8hDW75sKl1mJo/Nm4Lm8uCjcWIy4pq8fHtpja7g4hCW1vz99RgTdfWQpXowcT7z8DAw/y7qnS/q03RotLiEVsfAwEQcDPX69tDh976bqOp++ZiY9+eKhLx9U0DRcNnARnoxuaouGaf5/b41qTs5KgqVrzDXVcTARuvHgkvvx6Nc471Yadyket3iPA2EX23E436h11iEmIajdU7O2Y4MugIJpEWCxSl46p6zrqaxsQHRvlszqoff74HHA2OFG0owQ5g7IhBXk3T+pdeDUSUciplUuwpnoO1jjmok/UsRiRcj0yIoY2v549OMvrvvK7ndtQ4izAPxJObLH9h/IFWFg8ExbRCrfmxt5B7AIE3NS/5c13bY0Tb760BBvXF+LGf56Go0cO6Nk36AeVZdXQNR1Jae2v5l62uwKJGQkwmURUlTtQUVzZ9o7d6Lh7bu4d8Lj2dWX773++RHrfFBx/1pHtvkf2KB2OMzGZTK0WJ2x0ybDbJESbD0OM6RDUeNY21ytAwJFp07pevA/Z7DYkZyV12KJRvKMEAgSk903z2XlNJhNSsg+cF6xjtY46OMpqYI+K4OroISoiMgJZ/TIYPijocBYsIgoqJbVbUFS9oc3Xttf/iDm778MX+XcjwhyH6/p/hjEZ/24RPgB4HT6+Kv4QL2/6N2btfh0PrJ4AAPi5YgkeXnMtKj1lmDzkTfzn0PeRasuAWTBDb7Rg88ODcemoadi0vmnRwbenfY1rL5yGQ4/Kw9szbw3K8AEAkmTu8GZe0zTIsgJNVQEACclxOG38cMQm2FvsJ4gC7nvukrYO0a7Zr38N2e1psU3XdHzwVOupkfeS3TJ2btwNt9PdpXM5XR5E7Pn/f0TmLERbBkMQTBAFK4ZnfIw4W8/Grnirvbplj4zCbcVorG9s83WgaUB+chfDgj/Exscgq38Gw0eIC6YWVqK9GImJKGh8tusOFDvXAADiqrNwRd/30ahUYY1jLtZUz0V6xBAckXARciKH9fhcswvewc8VS6BDB/SmhQMn/XURjk0ajQcPfhl2075uJ/cNfgFXnvcySooce7Z4MPHat6HrwPW3n4rPltzb43r8LSY+usPXRVFERp/UFl10IiJtcLsUpGcnoLTIAbPZhCfeuQ5Dj+7bpXNHRtuaJwHZny2y/RsjySohu396uzdPqqqiZEcJ0vumQxSbnqVpGvD54r8gKypwVtMMZCMzZ2Nb9evQoAQsfCiKgoLtRUjKSELsAT93ySIhq18GbPb2F140dWEtFH9j+Og9nA1ORERGGF0G9RIMIEQUFD7Ln4hi59rmrx2eAryx+UxIYgSGxp2NCX3fRYQpzmfnW1Ozsil8tCAgJ3JAi/ABAD9/twmlxTUttuk6kJoeh4uuONZnNRntwPEBN535HF769J/IHZAKTdOab/S7aszlx+HLt5Zhx/oi7O0PJZpEPDt3Uofv6+gmXRAECKLYXHOFowHn3PQ69macSybNxPKP7oYoApIpFvWe7d2qvTvMZjNyBrbf576j74vICB63jMLtRcjun8UWEwoIdsEioqBQ6mzd7UrR3bim/0wcnXSlT8MHAJiE1k92BUFAiqV1v3uhnQXydC10ZzEv3V0OdU93q7Y8ctN/cd09ZyB3QCoAdDt87PWfT++EySzCZrciMTUOM9c/06M1LURRREbf9OYAcvHEt7F/A4uiarh44lsAAEmMgay1vZCkv7DPPYUSi1VCzqAchg8KGH5CEpHfKbICk9nU7gw8m2uXteqeAwDQBYhePifRdR2qojYv6LercTO21q9DtDkORyfsmzb254olWFzyKYbEDcPvVd9B0RQATQOUhyecgtzIQS2OW15aiyVf/QWTSYCi7KtREATcN/Vcr2rrqbqaep/ORKRpGmSPDFVR2+xi89qjX2LY8YNw9MkH+eycM56fj5sevwhnX3eSz465V2GJA4qitdpeXt0AADCLMVACHECIQo3FD1MAE7WHAYSI/KZOKcWSov/A4/TghKhJyMzs3/xaqWsj1jsWYkPNIvSLPh5HJ12JlRX/a9EtakTytfC2obaqpBoNdY3I6p+BfNdWvLfjGdTJNbCZIrGx9m/0iRyIxSWf4Yj4Y3Hv4GcRZY7F+VnX4blN96FersFhccdifNZ1LY75+guL8eO3G3DrpLGY/PRFuPK8l1FWWguzScSTr1yOoYf3bB0Lb7idblQUVcJmt/nsqbooisjc03qgaRoqCiuRnJUEQRDw+bvfQ7KYcfblvuta1ljnxNezfsXs7S8CaApUuq4jJq7jcSneykyLg2QWm8Z+7Cc5oSm0SWI06j07AHgAhP9K0z3pLkdEFAhcCZ2oFzDimq9y78LHO66DjqYn0wIEXJT7Ggqdf2O9YyEkMQIHx52Og2LHwiQ0PXnbWrccy4qfgwYNxyRdh8MTxnfpnIqioEGvxatbJqPSU9ritb5RB+HaPvciwtR5S8IXM3/F6y8sxi13jcF5lww/4BwazObA3tzJsuy3hQoVRUXpzhKk9UnDiq/XY9m8v/DwK1f49BxvTf4MCamxOP/W0wAAlSVVAIDEDqYE7qraehfOuO5VqLoGAQIks4jvPr4bDfJW/FgwHrquQIQZI7NnI1Lq3/kBQ5Su6yjcXgyL1YKULONn0qLA4b0NdQdXQieisPLZrtubwwfQtAr1rF234vCEC3F61hQkWHJbvad/9EnoH31St89pNptRWl8IWfe0ei3GHN9p+Pjpu414/fnFGHnSYCz59ZF2zhH4J8v+XCXdbDYhs38mtq4rxIw3lmHaF3f49PiKrGLOW8swr+i15m2+DB57xUTZ8P2MSTj31jcwIDcFk646BtWuVVhZdEXzdahBwQ+7z8Uxmf9DnPUon9cQDARBQEpWUnNXRCKiYMRPKCLyOQ0KZN3VarsgiDgu5Wa/nrtP5CCYhZYfbVYxAv2jh7T7nq2bSvDa84sQG2vH89OvRkparF9rDDZ1jkY8eM1b+HTlFJ8f++Pn5uOySWf6/LhtEUUgIyUWV53X1Gq1q+bDFiG4iYYdjo9wRGp4BhAAsFjDv5sZEYU2BhAi8qmCxlX4u+qLNgeVR5qT/X5+SbBg4sAn8Pym+yGrblhNdhwRPxIjEk9ttW9drROvPbcIu3aU49a7x2JIAMZ0BJrHo8DSwQKEAHDFSf/BzJ/bbvHpqRnPL8CC0tcBADXVdbBaJZ9MQ6uqKsT9puHda99ChDKs5iQIEA8IISKspvgen5+IiLqPAYSIvNaoVGHO7vuhQcbI5JuRF3UMAECDijXVc7C6+ktEmZNxWMJ5ODPrUUzfciZktaklRDLZcXW/jwNSZ7Q5DncNfAqb6v5CrCURA6MObbXPf9/4FvM+/x23ThqL+6eeF5C6Aq2qogbVpdXIHZQFs7ntj/u9a33Y7L5/av7JS4tw0cQxzSHBWd8IVbH0OIBomobSnaWQrBYkHzDOwemSEWGTAE3GQYkPorRhKVxKSfPrVlMiDk56uEfnJ6K26boOXdc5CQJ1ioPQiXoBX1zzdUop/rf1suZZqgQIODntLpS4NmKjYzGGxp+DQ+PPRZwlq8X7VlXNAgTgiPiLenR+X1k450+8/vxiXHr1cbj0muONLsfvOmoBeeSm/2LcJcf4dLrd/Z2T80/M2vQcrBG+DzeyLMNsNjeHm9p6Fy6a+DZq612IjorAqw+dif598wAAvxZeDof7b0RJAzAye7bPayEKBsFwb1O8swSKR0H2wKzOd6agYNR1wwBC1Av44pp/e+t4OBVHi22CIOCU1Ek4OO6MHh07EP74dTtef2ERDjk0B7fcPQY2W++e8/61R79EVt8Un063u78vp3+Dkt2VuPnxwATP4y5+Dtp+v85EUcCPM/ettL6y6Cr0T7gdCbZ/BKQeMl5dTT1qq2qQ2SfT6FICIhjubVRVBXTAZG69vhAFJ6Oum7BuI5s6dSoEQWj+Q0Td51EbW20TICI36mgDqvFeQX4l/nXHR/jso5/xyJMX4a5/jQv78NHZcyV/rPVxoI+em48JARp8PvmleVC1loPNNU3Hk28sbv5aMsVCVmsCUg8FB4tVQkRUpNFl+Jyu6yjeUQJFVowupRWTycTwQV4J6zEgkydPxuTJk5u/Zggh6rr8ht+wuvrLPQN5BWC/hQItoh2R5uBca0D2qHjt+UX4+4+duHXSWAw7pp/RJQWEruso3lkCW1QEEpLjWr02/6Ofse7PnXhk2pV+q2HB+z/g+LOORHR865s/VW179fUea+Pjff9+6JIYC1kL7wCi63qL33O6rkPTNP/8vEOA1WaF1WY1ugy/6DVdVyhshXULCBF1TNVlfFf6MuYXPoL8xt9abF9V9Sn+t20CVlV9hsFRp+O2QUsQa0mDsOd/khiBGwbMMbD69s383484d9RT6D8oDe9+eluvCR9A04OWqIQoRMe1vvlf/+cOzJuxAv964TK/1vDxs/Nw2T3jWm3XNA2F24tRVVbt9bFUVYOmHjiVbstWnql3jINZbHmTbTIJuP/G05q/lsQYyFqt1+f1hqZpqHXU+fSY3aVpGop3lMDtcjdvK9tdjuLtJZ22iFFoEQQBGX3SuNYLhTRevUS9lKK78OG2q1GnlAEAChtW4Zjk61Hm2oTNtd/g0PhzcV7Os9DqolBRUAYlSsGVfT/ChpolUHQXhsadbfB30Nq3i9fi9RcWYezZR2L+D/82upyAkd0yJOu+bmUxsdGt9qmuqMUjN/4Xby2a5Ncbl29mrcBhxw9GUnpcq9dEUURCajwiIr2fBatkZwl0Hcjqv6+PsuyRUZJfjsy+ac2tHAvfvR0XTnwbNbWNSIiz4+V/tQxA9fJ2eNy/Izv6QpjFjhek9FZ9bQOqSx2IjLYb3sogiiIsEVZIln3XQXJWEjRVY+s/EQUdDkIn6gXauuYXFT6KLXXLW2wzCRJOSL0NQw4IFwfe4Aabdat34/XnFyMzJwG33DUWcfF2o0sKGEVRsHPjLiSmJyM+Mabd/c49/CF88N2/EB3r35/NtcMfxuMz/omMvik+Od7eX1H730SrqoaKoiqkZrfs/ldSXotbp8zE7FdvbHHNryi8GA73OgBNXZROyf0Rkhjnk/r81qUsQFxOFxxlNUjLTTW6FOoh3ttQdxh13bAFhKiXalRbd4OJMMciJ3JYq+3BED4Uj4pGl4yYmH1PzyvK6vDa84tQXVmPifefgYEHdfwhqioqIAgwmcKn96nZbEbuwJwWT773HwugaRpuHPssXpx1u9/Dx/dz/kD/odk+Cx9A22P3TCaxVfgAALeswHpA686q0olwuNc0f63rOpbtOhFj+vztk/pCOXz4SmN9I+xRvSf0E1HPMYAQ9VK5UcNR6twERXc1b4s0JyFG6v6TEFVVUV1eg6S0BF+U2Ow/D8/G8iVrAQD9BqXj9fdvwPQXl+C7b9bh1rvH4rhO1rHYuzhW6a4yiCYRaXnB+7RX0zSoitoiUHRm/31VVUXxjlKk5abALJkx5eb3cN5VxyK7n/9XoZ/x/Hzc9/p1fj9PezweFRZLy0BQ7fqz1X66rqCw/ktkRp0boMqCly3ChrTc7i8M6WxwomhXKfIGZnNMAhF5LXweAxJRlxyVcAmOSb4GkeZE2EwxSLENwEW5r/XomB63B+5GNzSt9aDh7ppy7yf4dvG+J9jbNhVj9PBHkZQag4+/uqvT8AEAJbtKUbi1EOl904I6fABAVXEVineWdnvgsCiKiLBbYTKb8Nz9M3HIUbk447KRfn9S/+uS1UjJSkSfg41bc+HJ6YuQX1SNOV+vbt5mN7euRxBMiLe2bumjrouIjECun8OHqqp+OzYRGYOPK4h6sSMSLkSfqGPg1hqQahvc4+NF2COQ0cfm00Gvv/60pdXxBEHAOed7v6Bcak4KNE0PicG4iRmJiNe6P3BYEAQkZiTivefmQ5VlnHnp8IB83x8/twC3Pnmx38/TFk0DTrr8BShK043q028twY0XHY2rzs/AMZmfYMmOo6Dpzj17Czg0+VHYJa7U7CuSn8PH7q3FSEiNRUxc68kViCg0sQWEqJeLs2T7JHzs5eubXZO59ceUIAiA6P15RFGEOUQWxxIEocetFT8tXoP87RW44z8XISrGNzM+dWTV9xthj7Ji0JF9/H4uoGkWrP1deufbzeEDAHQdePvT3+ByNS3UNrrPH0i2HweTYMOQ5ClID4OuV7KsoLyo0ugy/M5kMiEhNRZRMeG3oCBRb8YAQkRBa9qzCxEdHdEq1Fw4YQTMbQQTArauK8SMN5bhkVevCtgibB8/Nw+XTWq97oc/uJ1u7NyYD4+7KYTIbhlVjoZW+2majt/X7Wr+ekjyYzCLsciKvjAgdfqbpqpwO92d7xgGYuKiWywqSUShj/+iiSjozJm1EqOHP4qc3CTMmH8XHnxsPGwREiSLGedc9A9cd/soo0sMSrXVDXjw6jcx7Ys7AnbO9Su3QVU0DD12QEDOZ42wIqtfBix7ZmaTrBIG9ElrtRK6ZBZx3FH7FqAUBRu0/SZcCHVWmxWZfdONLoOIqFs4BoSIgsYfK7Zh2rMLMWxEfyz59ZHm7SeddghOOu0QAysLfrqu44qT/oOn/ns1ZFmGJAVm6uSPn5uPyyad2aKO6lIH4lPj/Db2JCIyosXXr029GFc/8CG27CgFAIiigHceH99iH5MQAbV5HEh4CIUxTUREbWEAISLDlRQ5MO3ZhVBVDY+/cBkys307jW9vcOPpz+K+Zy5EvyG5AQsfW1fnw1FRh2Gn7AuHqqLCUVWD6MSogNUBAO89dTn+88YibNxWinefvAJlZSUtXhcFCzTdE7B6iIiofQwgRGSo6S8uwU/fbcTt95yOo0cGphtPuHnkpv/ihvvH4agTBgZ0YbwDWz8AwCyZkTc4x5A++4cPzoam6e2MD1IgChLKGpcjxX5SoEsjIqL9cAwIERli/hd/4PRjH0dSagze/2Iiw0c3vfbolxh2/CAcffJBAQ0fu7eUYPeWEhx7xuGtXjNqwLCqaTC1cW5Fd2Dx9iOh6TL+Kv0ntlQ/b0B14cHZ6ITHzZYkIuoZtoAQUUD9/cdOTHtmIYYcnoN5P/wLJhOfg3TXp28th8flwdmXHxvwc3/87Hxcds+Zne/oY1Wl1bDH2GGLaD3Dl6pqra4nDS58s+N46GiaplfTVWyvfheqrmJwwr1N2zSNsyx5yVFWA1EUkZqTYnQpRBTCGECIKCAqy+sw7ZmFqK934aEnL0Bun2SjSwo5r079Aj8tWYv4xGhcfNPJ2PDXLlx392kBr6M0vxLrf9+G+6dfF/BzK7IKVWl7Zey2AsgOx/8AQQf2W1heh4by+m8xOOFe6LqO0l1lkCIsSEoL/bFHHreMhnon4hNjvH6Prnu/SGd6Xlp3SyMiasYAQkR+9/a0b/DNotW4/d7TMfJE3y162Ju8+8wCzPt4BXRdR1V5HZ68+2N8seox2OyWgNfy8fPzcdndgW/9AICUrKR2X1M0DeYDWjKiLH2h6633tVsyATTNJBWXGhuwNVP8zeV0wVXfAHgZQOpq61FfVY+03FTOqkVEAcM2ZyLymyXz/sLZJz6JmFgbZsy7i+Gjm7auLcRn73wHfb87aV3Xccu451tsC4TqslqsXLoGYyaMDOh5vdFWC0iq/TRkRo+DsN+vO1Gw4ai0t5q/jrBHhE0XrJi4aKTleN9KYbNZYbXbGD6IKKDYAkIUYM4GZ6t1DMLNutW7Me2Zheg3MA2zFt8Dmy1w07GGo/wdpYAgoEU/IgAN9a6A3Tjed+7z2L6uANB1XPngOQE5Z1epqg6TqfXPY2jyUxCFCBTXz4XNnInjsuYaUF3gdOWakCwSElLi/FcMEVEbGECIAkhVVRTnlyMxLR6x8dFGl+NzNY5GTHtmISrKanHPw2ej30D2F/eFU846Ei/863Noqta8TRCA48YMDcj5bz3psabwscfbUz7D2dedFJBzd0V7s2ABwCFJkyEKFtjNWQGuioiIDhQebc5EIcJkMiFnQEZYho//TV+O6y9+DcedPBgvvHUNw4ePnXjGoTCbTRAEQBAFjD7/aEx87Hy/n/ejZ7/Czo1FLbZ5XDImT3jV7+fuKkXR2lkDpIkkxkLWagJYERERtYUtIEQBZjaH1z+7ZYvX4JWnF+CCCSPw6eJ7jC4nLH361nLEJ0Vj3von8fWcP5Cdl4xBh+UE5NyVpQ60NYq7rrohIOfvClXTIHXw70syxaLRszNwBRlI0zQ01DUiOjbK6FKIiFoJrzshIvKL4kIHJt30X7icMsaefQRuvOM0bN5QhGnPLERGVgI+nHMnIqPCYxahYLNi2Xqs+2MnprxxNQDg1HOOCuj5b37sYiz64GfsP/5EFAWMu/qEgNbhjbYGoe/PIsbC0UtaQGqralFbVQ97VERAF6gkIvIGAwgRdaiooArXXvRa8/iDz2eswO+/boPFYsbt956OwYdkGlxh15UXVSAiKgJRMZE9PpbH5YHF5p+pcIt2VeDNJ+fh3aX3+eX43rDYLPhs6wsY3+cOiCYRoijgrpevwikXDDespvZ0FkAqXStR5VyJorp5yIgeF8DKAi8uKQ7R8dEtwofb6Ya1jQUciYgCjQGEKETU1dSjsa4RqVmBXYH47hvfazH4Wdd17Nxehs8WTEJMQs9v4ENZdYUDjooa5AzI8slT5vq6BkiSuXlNiuvHPIMvVz/e4+P21ML3f8D5t56GIcf0x2HHD4Y9ymZ0Sa38smo7Fny3HtGRFlw49shWr/9dNgnF9YsBaFhT/iBUvQbZMRMCX2gA7X9NNtY7UbyzGDmDciBJgfnVX+uoh8Vmhs0WfNcLERmLg9CJQoTFIkGyBn7ROZfT02qbKAjI310V8Fp8JTkjySetH/FJccjql+mT8KHrOuoqa+Eob+oidNMZz+GVL+9AwbYiuJ3uHh+/J2a+uBCX3Hk6Rpx+eHP4CPT6Ix1Ztb4A9z71BWrqGlFQ4sDJV7yI2npX8+ubqp5Gcf0iAE1BWoeKdRVPorTxG4MqDjx7VASyB2QFLHzouo7K4kps/GMLZFkJyDmJKHQwgBCFCGuEFQnJcQE95+8rtu1Zf6Ile6QFQw7LDmgtwcpXN3SCICA9Lx2p2Sl4/J8f4Io7RqPf4AwkpMQZ2m1m4fs/4LizjkR0/L7Apus6CncUwVFZa1hd+7vjsVnQ9gtEqqph0tMLm7+ucW/EgWuoAEB5w3eBKC9oWAL4AEMQBOQNzkHeQbkBCz1EFDoYQIiolW1bSnHfbR9g9owVePmd63D2+cMgigJEUUBUtA2zv77f6BLD1vsvLkbfgzKa1/iIS4w1tJ4ZLyzApXed0WKbIAhorHOivtr4ALI9vwJA65DcsF+rUbSlL9r6dZdgH+bHykgQBMQlxBhdRo9oqobiHSVB1eJHFA74WIKImjmqGvDGi0uwa3sZbrpzNA4f1gcAcPt9Z+CcS4ajvKQWRx7dx+Aqw9fyeX+hKL8SDzx/mdGlAACWz/4NBx/dDylZCa1e63NQrgEVtdY3Jwk2mxn1Deq+jQKQnrRvrZ2DEh+Cw70GNa51aOqGJaBv3LXIiDw74PVSaNF1HbrG8EHka2wBISIAwJsvL8WNE97A0SP74/UPb2oOH3tl5yQyfPjR9g1FmPXW8qAJH0DbrR97SRYJkkUKcEVtW/DWbbBamp6nCYKAjORYPHf/mS32GZHxCfJiLwMgYnDSJAxMuNuASinUmMwmZPRLh9BGV1Qi6j4GEKJe7rOPf8Ho4Y8iITEKsxZOwil7uv5Q4MgeBXdcOA2vzbnT6FKa/bpkNdJykpA7OMPoUjplNov49sM7kZuZgPGjD8Nn025oc79BifdCgAl5MdcGuEIiItofu2AR9VLfLl6L6S8twSljhmLJr48YXU6vdv2YZ/D24nuNLqOFmS8sxI2PXWh0GV2SHB+FE4cPbPd1ASboUNt9nSjYaJoGUeSzYgo/YX1VT506FYIgNP8hIuCv33filivexIqfNuO1D27EjXecZnRJvdpD17+Df04dj9TMeKNLabb6582QrGYcNKyv0aV0iVtWYO1wxiURe6fiJf+RPTIa6huNLiPkle0uR9H2Yg6Ap7AU1i0gkydPxuTJk5u/Zgih3mz3zgpMf2kJPB4F9zx8NvoNTDO6pF7vzSe/wpEjB+LI4wagcFsR0vukBcXTzhnPtz/2I5h5ZBUWqbM1WfaGEON/zuGqqrwGmqzAHhnB37s9kJiRCE1V+TOksBTWAYSIgPo6F9555Xvs3F6Fm+4YjaOP7W90SQRg0acr0VjvxvhrjoeqatDU4OgatOXvXah3NOKIEw8K+Ll1Xe/RzZYsq5A6CCAbq54CoGNN2UMYmvKfbp+HOpaamWR0CWHB7XKjprwG6Xl8WEThh4+AiMLYf9/4Flee9zIGHJyKdz65leEjSKz/cyeWfP477nziAgCAySQie2B2ULR+zHxhIS6563Sv9q2vrffZeVVFReHWQqg9CGIddcH6o+RG7HR8CEBHYf0c/FI4vtvnIf9QFK6Yvj+z2RQUnwlE/sArm0Karuso213OPrIHmPvpbzjzuCdgs5ox++v7cMKoQUaXRHvUORox+eb38PzMW40upZWCbaXYtbEII888otN9FVlBya5SuPdb8K8nBFGAZLX06IbL41FgsbQOILtqPkRF4y/YN/5DR617EzZUPt7tc5FvVRZXoXBbMTSNY3T2slgtSM1JCfh5ffVvmqgj7IJFIU1VNXhcHqiqCrOZl/OP327AGy8uwTHHD8SX3z7QYXcUMkYwzni114znF+DSu70b+2GWzMgdnANJ8s1aIKIo9vhmq70xILWeja1mv9Kho0He1aPz+YKiKPzsApCQFo/YpBg+8d+Poiioc9QjPikuYOdsrHeiaGcxcgflQOpwQgeinuHVRSHNvGeRqN7+S2vd6t2Y/tISJCXH4PnpVyMlLdbokqgN90x4HQ9PuxKx8ZFGl9JKVWkNVn23Afe+eo3X7/FV+PAVj6zA0sZNU0bUmSis+wLA/i2lApLsxwWstrbouo7iHSWwR9mRmN56tflwoKoqTKbOH4QIggAzb3hbaKx3oqGmAXGJsQEbiG6PimD4oIDgFUYhr7eED00DDvxWS4oceOPFxaipbsStd43F4CGZxhRHnXr5kc9xyllHYsg/gnM1+a60fgSr9rpgJUaMwKHJT2FN+b+hQ4EAEQMSbkNezFUGVLmPIAhIz0uDyRyeLZWyLGP31kJk982EZA2usBoKYuKiER0bFfBZsBg+KBB4lRGFgCvOfQkVZXWQLCa8MP0aZOUlYfqLS/D7iq24+c4xOPZEjvEIZl++/yMsFglnXDLc6FLa1FjvwjezVmD2jpeMLqXbdB3QdB0mse2btYzos2CX0vFn6Z3oE3st+sQFx2ro4fzUX5IkxCfFwdxGKKTO6boO2S3DYrMYXQqRz/FTgSjIXTT2WTiqmxb1Up0abr3qTUgWM26+czQm3h/aT6x7gz9+3Izflm/EE+9eD2eDExGREUaX1Ep7M1/pug5N07zqQmO09rpf7S/ONgx2czbiI44KUFUUnxxndAk94na6YY2wGnLu6nIHqiscyBuUExL/Bom6onf0XSEKUd8sWI0ah7PFNl0HklNjMG78MIOq6t1kWfZ63/JiB17892d44t3rIcsKinaVodZR58fqumfWy4tw0cSxrbaX7S5H8faSkJhlrr3uVwcyiRFQNWen+xF5PArytxTA1egy5PwJKfHIHZjN8EFhiS0gREFM1fQ2b/56y7iXYCPLMgq2FiExPRExcVGd7n/9mGcwa+UUAE39qnMGZATdwO2O1v1IzkqCpmohsRKzW1Zh9WLWN1GwQdONuaGk0GKxmJE3KMfQ8Sv8rKdwxSubaA9FUYLqSe/GtYVYOPdPmNu4qfrXo1xEzQiSJCEtJ8Wr8HH7eS/huRm3wmrbd/MSbOEDAGa8sACX3tV2Vz5RFENmjII3XbAAwCREQNXZAkLeMTJ8yLKMXZt2Q5a5QCOFn9D4zULkZ5qmoXBbESKjI5GUkWhoLSVFDkx/aQkqK+pw08TROOSwbFw1/hWUldQ0D0LvNyjN0Bp7M2/GcDx9zwyMv+YE9D8kuGclm/PWMoy9/DhYI0J/kKu3XbBqPWvhchQiLdK71d6JjGI2mxEVHQlzmM6SRr0bAwgRmp70ZvTNMPSD3uWS8eZLS/H7iq246Y7RGHnS4ObX/jf7n21Ow0vBZ+bry5CSGY9Tzu58NXGjzXhhAd74brLRZfiER1Fh6eDfr6LVY9muEVA1BQ3Ix+IdQ3Fq3q8wCfYAVhl6aqprERsf49W+3q75Qd7RNA1ulweqqjGEUNjh7QzRHpJkNqyv+/tvfYeLxjyLvgNS8P4XE1uEj70YPoLfT0vWYsu6Alx9V+sB3cFmycc/4+jThiIuOdrnx9Z1HVVlDp8ftyOdtYD8UHA6NF2FIAgQBAG6rmJ5/qgAVhh6FEVBVakD9bUNne6rqiqKd5Sgoa6x3X0qSqrgcXt8Ulfh1kKoqtr5ziFMFEVIFjPEdqaWJgplvKUhMtC82b/j7BOfhCgAc797kDNbhbDd28rw3guL8PC0K40uxSszX1yAS+70zzTOsltGvaMOihK4vuseWYWlg0HoHsXRapui1vuxotBnNpuRMyATUTGRne5rMplgj4mEPar9LooepxseT8+vCVEUIZpMvWKAttnAB2NE/sQuWEQG+Gn5Rkx/aQmGHdMfsxbfA5ut6wMdFUWB2cx/wkZRFA0PXfc26mqcuOnBs3DfFW9g0eanjS7LKz/M/QP9huYgo0+yX45vsVmQ2S/Dr91xqitrEBsf3XwT2tkgdIspHm61osU2yeRd16LerCv/HyakxHX4enpemk9upkVRRHqf8B8HpygKahx1iEmKgSorsNltRpdE5DO8eyEKoHV/78b0l5cgMSkaT796JdIy4rp1HNmjYNfmfOQMyIbFwFlaeqtaRyMuPfZRqIoGALjvijfw4AsTDK7KezNeWIB7XrnGr+fwZ/hQVRW1FXUwm02Ijm2akayzLlgn5i7C1zuOgaY3ddsRBRNOyl3qtxqpNT7J7xpJkpCekwJAR/GuUiSkJSA23vddJomMwABCFACFu6vw5stLUVvTiFvvGovBQ3o2O5JkMSMxPYnhwwCqquLmcc83h4+9nrl3Bk488zCDqvLe78vWISElFn2HZBldSreZTCZk9U9vEXI6WwdEhB2j+6zGr0UTIGu1OC7rqw7PUVXuQEKIr+Ldm1SWVUOA0GkrTCiRZQWF24uR0ScNWf0zIYXIlNhE3uDVTORHjQ1uTH9pKVb/uRM3TjwNI04Y5LNjxyey+0igqaqK/C1FaKhtvZCdDgGFuyqRmWvsNM6dmfnCAlz97/OMLqPHDmxhkWUVJi8G62ZGj4fD9VeH+3hcHlSXVyM6LjIo126h1ppmiQqvFhZJMiNnYBYs1tCfJpvoQAwgRH7y3hvf4stZK3HTHafhrn+NM7oc8gGTyYT4lBikZ8dj55YyAPsWrrTapKAPH+t+3QpdB4Yc09/oUnxq6isLsfiHdQAAWVHx2F1nt7uvKEjQdLnD41lsFuQNyuGUsiEkNiFwD2ScDU6v1gPyxTi9UFkIlKirwn8KCaIAmzNrJc487glYrGZ8uex+nH7OkUaXRD4UlxCLp96/CaKIPVO6Nt0kzFo5xejS2nXVkf/CuIzbcP/4F3D2tScbXY5PTX5pPpb8uL75669/3oSHX2i/e5UoWKDpnU8Fy/BBbZE9Mgq3F8PZ4Ox4P7eMnRvzezTrl67rKNhaAEdlTbePQRSsGK2JfOT7b9Zj+ktLcOyJg/Hltw9A6qA/OoW2iee/jPeWPYhfl61HY4MbF98UvDf15+ROhLvR3fz1U7e8jRPDaLrnr3/eAH1fQxQEQcCyFZtxy8VHtbm/twGEqC2SRULe4JxOWyYkq4TEtMQOJ0bwRmOjGzFJ4dW1jAhgACHqsdWrdmH6S0uQnhGPF9+6FsmpHJsRzp6Y+CFueGAcUjLicNblxxpdTof++/gX8Dhb3mzrmo5HJkzDox/dblBVvtW0qKB+wFYdmqa1uT8DCPWUt92i4pNie3QeQRCQlp2KyOjOu3sRhRoGECIvrFmVjx3bSpHXNwWHHpkLANi9swLTX14KV6MHd94/DgMOSje4SvK3z9/9HikZcTh+7KFGl+IVuZ3uH6rScgVpV6MrZNcYOG/04Zi9eFVzK4ggAOeMOqzdReoYQCiUxHGyEQpTDCBEnfhh2Qa88eJilJfWIjk1FlffeBJW/7UL69cU4KaJp+HokQOMLtFQmqb1ihWJ1/6+A798vQ7PfnyL0aV47cZHL8Tct7+FIu8LHKIo4P7Xr2v+urG+EUU7S5E7KDskp/mcdO0o6BrwxdK/AOgYd/KhuO/G01BUVNTm/gwgvqfrelCv8VFVWo34lLigrrE9jupa2GwW2CJC8wEBUXtC77cNUQD9/cdOvPHCYpSX1QIAyktr8Ozjc3HB5SPwzie3Glyd8arKHGiobUBm3/SwDiGKrOKBq97EvHVPGl1Kl73/538w4dAHIJoEmCUz3vhhMmISoppft0fZkTcoO6Rn27nn+lHQNA0D+6bg3FM7XouFAcS3ygoqILs9yOibHpQ3+IqioNZRh6i4qJBbN0mWFWz6cysy8tKQ3S/D6HKIfCp0f+MQBcD2raXN4WMvXdeRlMzVaAEgLikGNrs1LMPHr8s3orHGiZPPOQL/PP9lvPL5RKNL6pbPX/8a1085H2MuG4moOHub+4Ry+NjLLSuwevF9iLBAAwOIr8SnxkHXtKAMHwBgNpuR3T8zJGc1kyQzBh85gKufU1gK/d86RH6U1zcFKamxKCvdNw1iQmIUsvOSDKwqeIiiCHtU+A2QfOCqN7H6120AgOcenIXbJp+LPoNDb4yPqqj48s1lmF/8mtGl+J1HVmDxJoB4sQ4IeS8Uuu2FYvjYi+GDwlX4PbYk8qEj/tEHl113AhISm34JJCRG4+IrR2LY8H4GV0b+cu/lb+CvX7ZC03Romg5FUfHO0wuMLqtbZr64CJfcObbd11vPHhW6PB4VFkvnN5rsgkVEZLzgf3RBZLAzzjkCKakx2LW9HDl5SfjHseG1ijS1tHVdYattTqcbW9cVov8hmQZU1H2fvLQQn215od3XS/PLEJ0YjciotrtmhRJ/tIDoelMADYWn/OHMUVWLuACudE5E/sdPVSIvDDumH4Ydw1aP3iDCboWzwd1yow7k9Es1pqBu+vLNZTjjyuNhsbU/8FaUJFgsoTUwtz1ejwHpQgtIVakDNdW1yBuUHZbjnPzFlzPjeVwelBWUIjLKDqmHi/oRUfDgv2Yiov08N/NWXDPqqeavBUHAdfedAYstND4u7xjzJCqLa1DnaMD//vhPh/umZCQEqCr/80cXrITUOMQmRjN8dIEiKyjYVoSs/hkwm3v+b8Zis6DvwX18ciwiCh78VCUi2s9XH/6Ey24bhcycJMQnR+Omf5+F8decYHRZXjkr8zZs+nMnKoqr4XHJeP/JOUaXFDDed8HyPoAIghAWM4QFkslsQlRslE8DA8MHUfgJ6wAydepUCILQ/IeIqCPfzf8blWW1uPKOMXjn6/sw46eHce6VxxldllfuGPNUi5XPdV3Hoo9/wl8/bjSwqsDxNoBsqZ4GQMPaikf8X1QvJAgCktLDp2WNiPwjrAPI5MmToet68x8iovYU5Vfify8swoMvTDC6lG6pKnG03qjryN9YHPBajOBNF6x15VOwvfpNAEBB7ef4pfCCQJRGREQHCOsAQkTkrX+e9xJe+eIOo8votpHjjgAOaOgVTCLOvv5kYwpqh67rUFXVp8eUZRlOlwcep7vdfQpqP0Vh3efQoe2tBLXuDVhXMdmntRB1FR+QUm/EAEJEvd6D17yFh16+ApHRNqNL6ZL9b1xufuJiHHv64RAEAaIowGwxYU7+ywZW17aKokoUbivy6U2XJElQNA2JibHt7lMnb4R+QEDToaPBs9NndRB1leyRUbS9hCGEeh2O7CKiXu295xfhsOH9cMTIAUaX0iWqqqJoWxHS+qQ3r1NRVlCFic9fDtklB13Lx16J6QlQVc3n4/I664KVEnkKdtfMwv63eQJExNuO8GkdRF1hMpkgmkSOU6VehwGEqBN7n0zxF0R4+PPHzXhq0gzomo6xF/4DBTsrMPm1q4wuq8tEUYQtMgImU1ND9sola5CQFovTLw/uQfOiKPplWltZUSGZ2w8gibaRGJL8GNaUPwQdOgQISIs8EwMS7vR5LUTeEk0i0vNCa40hIl9gFyyiTpTml6Foe4nRZZAP/LViGx66/h3UVjegrqYRn779HcZc8A+jy+oWQRCQnJnUfDP/4TNf4fJ7z+rWscoKy1Fd4fBhdYHlkVVYpM7XAMmIPhdHpk+HxRSHfnE34LDU/wtAdUREdCAGEKJOJGclIy03xegyyAem3PRfaFrLvtZPTPzQoGp85/dl6xCTEIWBh+e2+brH7UHR9vZnw7JGWGGLsPqrPL/zdgpeAEiOGIlIqQ8S7cf7uSoiImoPAwhRJ0wmEaYOunZQaNA0rcU6GXupqgZF0dp4R+j46Jl5mHDvuHZfFwQBoqn9j/vYhBhEREb4o7SA8HYV9L1EwQpNb3/GrFbHd8vdKYuIiNrBAEJEvYIoisjMS8aBc9WmZsTBbA7Nj8KSnRVY9f1G2OwWHDSsb7v7SRYJabnh28+8Ky0gAGASbFB1l3fH9sjYtSkfjfWN3S2PiIgOwEHoRNRr3PivcXhi4odwNXqg6zrSshPw328eMLqsLqt3NOKKIx6E7JahqToeePN6o0sylFtWYO1KABFtUDXvAojFIiFnQBasIdxFjYgo2DCAEFHYUVUVJlPLLjm11Y14+p4Z+GLVY1j7+04AwJBheYEvroc0TcNFgydBU/d1G3vyhrdwyD/6ITEjzrjCDNT1Llg2aF62gABg+CAi8rHQ7HdARNQOj0fBjg274DlgvMc/x7+EV2Y3rXQ+ZFheSIYPAHjtgZktwgfQNFX0y/d9ZFBFxvNnFywKTYqsQFVUo8sgonYwgBBRWLFYzEhIS4TFsu+G9PF/foAbHhiH1Mx4AyvzDavd2saaNAIsFsmQeoJBVwNIVwehU+gp212Bst3lfj2H28lriKi7GECIKOwkJMU2//enby9HenYijhsz1MCKfOeGKefDFtmyS5BZMuHf795oUEXG62oXLLaAhL/0PqlI8+MCf7KsoGB7IRrrnX47B1E4YwAhorC1+tdt+O27TbjuvjOMLsWnXl7yICSLGZLVjOSMeMze/oLRJRnKn4PQKTQJgtBGS6HvSJIZOQOyYY8K3emriYzEQehE1GWyR4FkCc6PD0dlPaJiIiB7FEy++T18seoxo0vyuZkvLsSdL1yBURcdY3QpQaHrXbBs0PQqP1ZEvYHUi7s9EvVUcN5BEFHQkt0ydm0qQPaAjKCbHej+K6ejaFcFIAjQNR2vzJ5odEk+V1Vag1XfbcC9r15jdClBw+NR0cE6i62YBCtUjgEhIjIMAwgRdYlklZDVPz3owseDV7+Fv1dsa/7aGiGhrKgaWX2SDazK9z55aREuvmOs0WUElcZGFzyNbnjcMizWzp9Ki6INGrtgEREZhmNAiKjLbHab0SW0kL+1DNs2FLbY5nbK+OK9Hw2qyD88LhkLP/gB59xwitGlBBUVQGJynFfhA2ALCBGR0RhAiCgo1DrqUVdT3633Wm1SmwNOo2PCa4DozBcX4pI7Tze6jKDj8aiIiPC+P353ZsHSdR2qynUliIh8gQGEiIKCx+WBfMDigd5KzYrHhdefBLO0byrW+KQo3PzQOb4qz1CO8lrUVtWz+1U73B4F1i5MitCddUDKdpejeHsJdF3vanlERHQAjgEhoqCQlJbQo/dfcP2JkD0Kfv12A2Li7Zj0fxcjJt7uo+qM8+JdH+D7L3+HIqsYcFgOTGbv17voLTyygpgo77sFdqcFJDkrCaqi+nVqVyKi3oIBhIjCxqW3jsKlt44yugyfeXnSh1j26a/wuGUAwLY1u/G/J7/EVQ+ea2xhQcbplpEYF+X1/t0ZhC6KIkQLOw0QEfkCAwgRURDSVA0/L/yrOXwATeuvLPt0Za8NIDXVdZAkE+xR+1q2Jtz9X+woqIQgNC1IeOW5R3d6HA5CJyIyFh/nEFHQ0zQNqqoZXUZACaLQ5irLUbGh362su2SXB87GfcHhkjvfxY6CSgCArgNvfPw9Zi34o9PjNC1EyGl4iYiMwgBCREGvZGcJircXG11GQAmCgPunX4eI/cY2RMVG4N7Xeu8ChEnpiUhMiQcA5BdWI7+o9Wrm02d0PvUyW0CIiIzFLlhEFPTS+6T3ytmHBh2Rhyc+mYg3H/kUJrMJt//fpcg7KNPosoKCuZ1Zr0QvlkQ3iTaoXIiQiMgwDCBEFPQEQei1sw8dfHQ/vLjoAaPLCDoZydE44uAsrNpQAOzJpoIAPHjT6E7f251peKl3cDW6gm6hVaJwxC5YREQUkl6dcgkOPygbgiDAIpnxn7vPwSkjBnX6PgFm6NAA9K5xRdQxj8uD/M0FcDt9G05VVUXJrtJe2YpL1B4GECKiEKZpGsqLKo0uwzCvTbkYB/dPw6tTLsaJwwd4/b7urAVC4c1isyDv4DxYI6w+Pa4AAYpHYQAh2k9QdcFatmwZPvjgA+i6jksvvRRjxoxptc+VV16JioqK5q+feeYZHHLIIYEsk4goaMgeGW6nG5qmQRTD45lSV78Xj6zAInXt19neblgmoffOKkatWdoZW9QToklE1gCO3SLaX9AEEIfDgXfeeQfTpk2DKIq47bbbMGzYMCQmJjbvo2kaPB4PFixYYGClRETBw2qzIrNvetiMkXG7PCjbXY6Mvmkwmbxb9d3jUWGxdG2F+L0D0aXwyGxERCElaD56V65ciWHDhiE+Ph6xsbEYMWIEfvnllxb7VFRUtAgkRESEsAkfACBZzLBHR3gdPgDA7ZEheTH71V6KVgtVb8Su2g+6UyIREfVQ0LSAVFRUICUlpfnr5ORkVFa27NdcUlKCmpoa3Hfffdi5cydOOOEE3Hrrra2a6qdOnYopU6a0eR5BEDBp0iTcfffdPv8eiIJZUVGR0SUQec3b61VVVTQ2ulFcWASojZ0ew6NVYaPnIkAHdlS/h2LHDxhom+6TmoOVKqswSV1rIaLQxM956iqjHmAFTQBpa3CWprWcoSQ6OhoXXHABzj77bNTV1eHhhx/G/PnzcdZZZ7XYb/LkyZg8eXKr4wmCAF3XUVRUhIyMDN9+A0RBjNc8hTNdEDBwUD9ER+4bPNzeNb9kx+lN/7Hnd64L21BsmoKjUt8MRKkB53a6sXtrIXIGpsJitRhdDvkRP+epO4wKrQEPILNnz8by5ctbbBNFEWPHjsWmTZuat1VUVCA7O7vFfrm5ucjLy4MgCIiNjcXxxx+PHTt2BKJsIiIKUm5ZhdWLJ/yFdV9A05VW22tc6/1RVlCwRliR0SeN4YOIgkrAA8j48eMxfvz4Vturq6vxwQcfoKGhAYIgYMWKFbjwwguh6zqKi4uRlpaG2bNnY+3atXjooYfgcrnw888/Y9y4cYH+FoiIKIh4PIpXsxclRx4PscIMTZdbbI8wZ7fzjvBgj+JMX0QUXIKmC1Z8fDyuvfZaTJo0CbquY8KECUhOTobL5cJVV12FWbNm4ZxzzkF5eTmuu+46KIqC0aNHY9SoUUaXTkTdEE7TxgaaqqpdGqQdzlRVg8nLAegWMQlDkx/H6rIH9yxECJgEO0ZkzvBniUREdICgCSAAMGrUqFaBwmazYenSpc1f33LLLbjlllsCXRoR+VB9bQOqSh3I7MJUq9SkqsyBekcdMvtlBPXPTlEUmM3+/xXjbfervdKjzoIOFZsrX4bFFI9jsz73Y3VERNSWoAogRNQ72KMiILs9QX0DHazik2MR2cVpagNNlhXs3lqIzLw0n68qfSBvu1/tLyPqXDTKBQiimeiJiHoVfvoSUcCJooj45HijywhJgiB0eFMvu+V2XwsUSTIjISXO7+ED6N4q6ABgFmOgaLV+qIiIiDrDAEJEFCZkWcauLbtR66gzuhTEJcYG5DweWYWlG2tcSGIUZK3eDxUREVFn2AWLiChMSJKEnAHZsFglo0sJmO63gERD0YwPakREvRFbQIiIwkhvCh9A91tAzGIUFLaAEBEZggGEiIia6bpudAld0p1B6ABbQIiIjMQAQkREAICKkkqU7CoLqRDS3S5YkhgNmQGEiMgQHANCREQAgNjEGLhdHgiCYHQpXut+Fyy2gBARGYUBhIiIADQNYpek0BpD0u1ZsEzRkFUGECIiI7ALFhERhazudsES0BS0dBi/bkpvVbyzBI0NTqPLICIDMIAQEVHI6u4gdICtIEYziSLM5q63XhFR6GMAISKikOWWVVi70QUL4DgQo6XkpMBitRhdBhEZgAGEiMgPNE1D0fbikJpRKhTJsgKpG12wAK4FQkRkFAYQIiI/0HVAUzUGED/r7iB0gFPxEhEZhbNgERH5gckkImtAptFlhD23R4G1m2NA2AJCRGQMtoAQEVHIcssKrN3ughUDRav1cUVERNQZBhAiIgpZPZoFS4yC3MtbQHRdR8muMqiqanQpRNSLMIAQEVHIkhUVUjencmULSBNN1QAOVSKiAGIAISKikMUWkJ4RBAHpfVJh4nocRBRADCBERBSyuA5IzwmCYHQJRNTLMIAQEVHI8sgKLN0ehM4AQkRkBAYQIiIKWbKsQup2Cwin4SUiMgIDCBERhaSlP23Cxu2lmL98bbfez4UIiYiMwQBCREQh58tv1mDqK/NQU+fEsp834er73+/yMcymaCgqAwgRUaAxgBARUUhZvbEAz729FJrWNHespuvYsrMMj7+6qEvHYQsIEZExGECIiCik/PLXTuh6y4UrdB1Yv7WoS8fhGBAiImMwgBARUUg58egBOHDmWAECDhmQ0aXjCJAgCAI03ePD6oiIqDMMIEREFFIG903FAzePhSg2pRBBEHBQ/1T8+9axXT4Wp+IlIgq87k2eTkREFABV5Q5A05GQGt9i+5knHoKYSBv+/fxcXHLmMNw64fhuHX9vNyyLKdEH1RIRkTfCugVk6tSpEASh+Q8REYUWk0mEqZ11Po4f1g8CgBsuPrbbx+dAdCKiwAvrADJ58mTout78h4iIQktsQgxiE2LafV1WVEjm7i1ECLALFhGREcI6gBARUfjyyCos3VwFfS8GECKiwGMAISKikOSRFVikng1lZBcsIqLAYwAhIqKQ5PYosFp6FkC4FggRUeAxgBARUbfJsmLYuT0eBZYeBhBJjIGs1fqoIiIi8gYDCBERdUtjvRM7N+UbFkJ8MwaELSBERIHGAEJERN1ij4pAZl4apB6Ow+gut6zA2sNzcxA6EVHgMYAQEQUhTdNQvKM46KcQt0fZDTu3L7pgsQWkc26n2+gSiCjMMIAQEQUhTdOgKio0TTO6lKDliy5Y26vfRHnjd/irdJKPqgovikdB/qYCuBpdRpdCRGGEAYSIKAiZzWZkDciCydSzG+xw1tNpeL/eeQxqPGuh6TJKGxbh16JLfVhdeDBbzMg7KAc2u83oUogojDCAEBFRSOpJF6y/y+6Fst/sVzp01LjXYUfNu74qL2xIVsnoEogozDCAEBFRyPlj3W48/toi/PLndny68M8uv9+tlrfapukanHKxL8ojIqIOMIAQEVFIWbW+AHc8Ngv1jW7IiooX31uGD+f+1qVjpEeOAyC02CYIQL/463xYKRERtYUBhIiIQsp9//cFNG3f7GC6Dkyf8QMUxfsB+9kxF2Bo0hSIQlP3IkEw4aScb2A1pfm8XiIiaokBhIiIQoq7jYUPdU3vUgABgMyYCzEicxZMghUn5y6H1ZTqqxKJiKgDDCBERBRSDu6XdmDvKSTERcJm6/qA9GjLIJjFGOg6pzsmIgoUBhAiIj/SNA3lRRVGlxFW3njsUhw+OBMAIAgCEuLsmDv95m4fzyTaoWqNviqPiIg60bMlZImIqEOKrMDV4IaiKDCb+ZHrK69NvRSPTVsAq1XCfTec1qNjmQQ7VJ0BhIgoUPjbkIjIjyxWCzL7pUMU2eDsa9FRNmSkxPX4OGbRDoUtIEREAcPfiEREfsbw4R8ejwqLpecrxbMFhIgosPhbkYiIQpJbVmCVet6QzxYQIqLAYgAhIqKQJMsqJMkHLSBiBFTN6YOKiIjIGwwgREQUkjyyAosPWkDYBYuIKLAYQIiIKCSxCxYRUWhiACEiopDks0HoYiRUrcEHFRERkTcYQIiIKCTJigrJ3PMAYhbsUNgFi4goYBhAiIgoJHk8CiwWH4wB4UroREQBxQBCREQhyVdjQDgInYgosBhAiIgoJPlqGl4OQu8ZVVWNLoGIQgwDCBERhSSfTcPLLljdJssydm0uhKvRZXQpRBRCGECIiCjkvPvZL3DUufD5olU9PhYHoXefJElISI2DzW4zuhQiCiE9f3REREQUQJOemo1f/9oBTdPxwZyVqHe6MenaUd0+HltAeiYuIcboEogoxLAFhIiIQsY7n/6MX//aCU3TAQCapuHLpX9jxle/d/uYJjECqub0VYlERNSJsA4gU6dOhSAIzX+IiCi0bdpeCk3TWmxTVQ3rthZ3+5jsgkVEFFhhHUAmT54MXdeb/xARUWgbMjADBz5PMplEHHlwdrePyS5YRESBFdYBhIiIwsuV5w3HZeOOhsnU9OvLJIq4cvwxGD/m8G4fU4AZgAAdsm+KJCKiDnEQOhERhZTbrjgBtggzPvxyJW6/4iSc34PwsdfetUAkMbbnBRIRUYfYAkJERCFn7HEHIykhyifhAwBMQgRUnQPRiYgCgQGEiCgMKLLSq1akdssKrD5YhHAvjgMhIgocBhAiohCn6zpKdpWhbHe5X46vyErAJ/Lo7HweWYVFMvnsfHu7YBERkf8xgBARhThBEJDZLx1puak+P7amaSjZVYqqkmqfH7s9dTX1KNpR3GEIcXsUWC0+bAER7FA5FS8RUUBwEDoRURjw11pHoigiLS8VZnPgfl1ERNqgyGqH35PHo8DiywDCLlhERAHDFhAiIupQIMPH3vPFJ3U8G5VHVmDx4RgQsxgBhauhExEFBAMIERGFHLeswurDMSDsgkVEFDgMIEREFHJ83wUrEqrW4LPjERFR+xhAiIgo5Pi8C5Zgh8IWECKigGAAISKikOP7aXgjobAFhIgoIBhAiIgo5HAWLCKi0MUAQkREIcfnK6ELEVB1zoJFRBQIDCBERBRSfv17J+Z8sxrLVmxCeVW9T47JldCJiAKHAYSIiELGir924OEXvkJZRR12FVbh2gc+8EkIYRcsIqLAYQAhIqKQoGo6npq+BPWN7uZtlY4GTH1lfo+PzXVAiIgChwGEiIhCgtPpgapqrbbX1rt6fOymLlh1PT4OERF1jgGEiIhCQlSkFYcMSG+xzWwWccqIQT06rlstw4qCCajzbME3O4+BovlmXAkREbWNAYSIiELGU/eei2OP7IvY6AjERUfglktPwNXjj+nBETUs33UKVDTNgCVrtfhm1wjfFEtERG3y3RyGREREAfDsA+NRVFYDm1VCQqy9R8daVXoXdLTs1qXrKtZVTMYhSVN7dGwiImobAwgREYWcjJRYnxzHJFihQ4cAYb+tAkRYfXJ8IiJqjV2wiIio1zo05WmYBKnFNlGw4KCkfxlUERFR+GMAISKiXu3UPitgMycDAKzmZIzu84fBFRERhTcGECIi6tVE2HFSzneItgzEsLS3wF+NRET+xU9ZIiIiAGYxBopWa3QZRERhjwGEiIgIgFmM4hogREQBwABCREQEQBKjIXM1dCIiv2MAISIiAmAWo6EwgBAR+R0DCBEREdgCQkQUKAwgREREAMymGCgqB6ETEfkbAwgRERHYAkJEFChhHUCmTp0KQRCa/xAREbWHs2AREQVGWAeQyZMnQ9f15j9ERETtkcQYyFwHhIjI78I6gBAREXmLLSBERIHBAEJERASuhE5EFCgMIERERAAkMQoyW0CIiPyOAYSIiAhciJCIKFAYQIiIiACIghW6rkGHbHQpRERhjQGEiIhoD8nEgehERP7GAEJERATgp8Jz4VGr8V3+KShv/M7ocoiIwhYDCBER9Xo/F56HOvdmAICiufFnyW0oa1xmcFVEROGJAYSIiHq1Ws961Hk2t9imQ8Oasn8bVBERUXhjACEiol5OgK7rbWxvaxsREfUUAwgREfVqMZaDECnlHbBVwEFJDxtRDhFR2GMAISKiXu/47AWIlPpCgAABIo5IfREZUWcaXRYRUVgyG10AERERAMiyDEmSDDv/8dnzsK36NWhQkBp5mmF1EBGFO7aAEBGR4WSPjJ0b8+F2ug2twyzGcB0QIiI/YwAhIiLDSRYJ6blpsEZYja3DFANZrTW0BiKicMcAQkREQSEqJtLoEmAWo6FodUaXQUQU1hhAiIiI9pDEaMgMIEREfsUAQkREtAdbQFrTdR2uRpfRZRBRGGEAISIi2oMBpDVHZQ3ytxZCVVWjSyGiMMEAQkREtAe7YLUWFR0JVVGgeBSjSyGiMMEAQkREtAdbQFqTrBL6DM41fIYyIgofDCBERET7MQmRUPUGo8sIKja7zegSiCiMMIAQERHth2uBEBH5FwMIERHRfsxiFFdDJyLyIwYQIiKi/UhiDGSNLSBERP7CAEJERLQfDkQnIvIvBhAiIqL9cCpeIiL/YgAhIiLaT71nK3bXfgKA614QEfkDAwgREdEe3+wcjlrPBlS7/sSi7YdD1hxGl0REFHYYQIiIiAD8WDDugK5XGpbvGmVYPURE4YoBhIiICIBbLWu1TYOCOs8GA6ohIgpfDCBEREQAJCG+1TYBIqItBxlQDRFR+GIAISIiAnBCznyIggUQmr4WBBEjs2YbWxQRURgK6wAydepUCILQ/IeIiKh9Zozu8xcSbSNgFmNwXOYcREp9jC6KiCjshHUAmTx5MnRdb/5DRETUmYMSH4DNnIpISz+jSyEiCkthHUCIiIi6yixGQtEajC6DiChsMYAQERHtxyxGQdHqjS6DiChsMYAQERHthwGEiMi/GECIiIhaECEKFmi6y+hCiIjCEgMIERHRATgOhIjIfxhAiIiIDsBuWERE/sMAQkREdACzEAlFZwsIEZE/MIAQEREdgC0gRET+wwBCRER0AAYQIiL/YQAhIiI6AAMIEZH/MIAQEREdgLNgERH5DwMIERHRARhAiIj8hwGEiIjoAGYxGopWZ3QZRERhiQGEiIjoABwDQkTkPwwgREREB2iQt6PGvRZ1ni1Gl0JEFHYYQIiIiPaztvxhFNbNRY17DX4vuR617g1Gl0REFFYYQIiIiPbYVfs+Cuu+ah7/4VbK8XfZ3ZC1aoMrIyIKHwwgREREe1Q5f4cOT4ttiu5kKwgRkQ8xgBAREe2RYDsaomhpsU0UbIi1HmJQRURE4YcBhIiIaI/c2MuRGXUuLKZ4AIDVlISjUl+EWYw1uDIiovBhNroAIiKiYHJI0hQk2UfCJZchyX4sIqU+RpdERBRWGECIiIgOkGo/zegSiIjCFrtgERERERFRwDCAEBERERFRwDCAEBERERFRwDCAEBERERFRwDCAEBERERFRwDCAEBERERFRwDCAEBERERFRwIRkAHG5XLjvvvuMLoOIiIiIiLoo5BYiXLhwIRYuXAiPx2N0KURERERE1EUh1wISGxuLE044wegyiIiIiIioG0KuBeTYY4/F7t278fXXX7e7z9SpUzFlypQ2XxMEAZMmTcLdd9/tpwqJglNRUZHRJRAFFK956m14zVNXCYJgyHlDLoB4Y/LkyZg8eXKr7YIgQNd1FBUVISMjw4DKiIzBa556G17z1NvwmqfuMCq0BmUAmT17NpYvX95imyiKePHFFw2ph4iIiIiIfCMoA8j48eMxfvx4o8sgIiIiIiIfC7lB6EREREREFLpCMoBkZ2fjjTfeMLoMIiIiIiLqopAMIEREREREFJoYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGAYQIiIiIiIKGB6ZQB5/vnnjS6BKKB4zVNvw2ueehte8xRKBF3XdaOLCBRBEKDrevPfRL0Fr3nqbXjNU2/Da566o6ioCBkZGQE/rzngZzTQcccdB0EQAKD5b6Legtc89Ta85qm34TVPXXXffffh//7v/wJ+3l7VArJXsD4lYF1dE4x1BWNNAOvqqmCsKxhrAlhXV7Eu7wVjTQDr6irW5b1grMlfeuUYECIiIiIiMgYDCBERERERBQwDSBCZMmWK0SW0iXV5LxhrCmbB+vMKxokGDQAABFFJREFUxrqCsSYgeOsKVsH68wrGuoKxJiB46wpWwfrzCsa6grEmf+EYEKJegNc89Ta85qm34TVPoaRXtoD0poRJBPCap96H1zz1NrzmKZT0yhYQIiIiIiIyRq9sASEiIiIiImMwgBARERERUcAwgBARERERUcAwgBARERERUcCYjS7AaC6XC4888giefvppo0sh8qlly5bhgw8+gK7ruPTSSzFmzJhW+1x55ZWoqKho/vqZZ57BIYccEsgyiXzOm2ufKFTxs53CQa8OIAsXLsTChQvh8XiMLoXIpxwOB9555x1MmzYNoijitttuw7Bhw5CYmNi8j6Zp8Hg8WLBggYGVEvmWN9c+UajiZzuFi17dBSs2NhYnnHCC0WUQ+dzKlSsxbNgwxMfHIzY2FiNGjMAvv/zSYp+KigrelFHY8ebaJwpV/GyncNGrA8ixxx6L4cOHG10Gkc9VVFQgJSWl+evk5GRUVla22KekpAQ1NTW47777cNFFF2HatGnQNC3QpRL5lDfXPlGo4mc7hYteHUCIwlVb64se+AsoOjoaF1xwAZ566im89dZb2Lx5M+bPnx+oEon8wptrnyhU8bOdwkXYjwGZPXs2li9f3mKbKIp48cUXDamHyJfau77Hjh2LTZs2NW+rqKhAdnZ2i/1yc3ORl5cHQRAQGxuL448/Hjt27AhE2UR+k5iY2Om1TxSqvLm++dlOoSDsA8j48eMxfvx4o8sg8ov2ru/q6mp88MEHaGhogCAIWLFiBS688ELouo7i4mKkpaVh9uzZWLt2LR566CG4XC78/PPPGDdunAHfBZHvDB8+vM1rnygctHd987OdQk3YBxCi3ig+Ph7XXnstJk2aBF3XMWHCBCQnJ8PlcuGqq67CrFmzcM4556C8vBzXXXcdFEXB6NGjMWrUKKNLJ+qR9q59onDAz3YKF4LeVodCIiIiIiIiP+AgdCIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiIiIiChgGECIiCpjGxkace+652LBhAwBg165duPTSS7Ft2zaDKyMiokBhACEiooCx2+0444wz8Pnnn8PhcGDy5MmYNGkS+vXrZ3RpREQUIIKu67rRRRARUe9RVlaGq6++Gnl5eTjnnHMwZswYo0siIqIAYgsIEREFVFJSEtLT05GQkMDwQUTUCzGAEBFRQL300ktISUnB33//jfr6eqPLISKiAGMAISKigJkxYwYKCwvx2GOPYfDgwZg3b57RJRERUYAxgBARUUAsW7YMS5cuxeTJk2E2m3H++efjyy+/hKIoRpdGREQBxEHoREREREQUMGwBISIiIiKigGEAISIiIiKigGEAISIiIiKigGEAISIiIiKigPl/BqqgnmNssQwAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "plot_true_graph(example_data_pyg, num_tracks=20)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Train metric learning model\n",
-    "\n",
-    "Finally we come to model training. By default, we train the MLP for 30 epochs, which takes approximately 15 minutes on an NVidia V100. Feel free to adjust the epoch number in pipeline_config.yml"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "/bin/bash: ligne 1: nvcc : commande introuvable\n"
-     ]
-    }
-   ],
-   "source": [
-    "! nvcc --version"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Tue Mar 14 11:58:25 2023       \n",
-      "+-----------------------------------------------------------------------------+\n",
-      "| NVIDIA-SMI 520.61.05    Driver Version: 520.61.05    CUDA Version: 11.8     |\n",
-      "|-------------------------------+----------------------+----------------------+\n",
-      "| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |\n",
-      "| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |\n",
-      "|                               |                      |               MIG M. |\n",
-      "|===============================+======================+======================|\n",
-      "|   0  NVIDIA RTX A200...  On   | 00000000:01:00.0 Off |                  N/A |\n",
-      "| N/A   48C    P8     5W /  N/A |      7MiB /  8192MiB |      0%      Default |\n",
-      "|                               |                      |                  N/A |\n",
-      "+-------------------------------+----------------------+----------------------+\n",
-      "                                                                               \n",
-      "+-----------------------------------------------------------------------------+\n",
-      "| Processes:                                                                  |\n",
-      "|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |\n",
-      "|        ID   ID                                                   Usage      |\n",
-      "|=============================================================================|\n",
-      "|    0   N/A  N/A      2427      G   /usr/lib/xorg/Xorg                  4MiB |\n",
-      "+-----------------------------------------------------------------------------+\n"
-     ]
-    }
-   ],
-   "source": [
-    "! nvidia-smi"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {
-    "tags": []
-   },
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:-------------------- Step 1: Running metric learning training --------------------\n",
-      "INFO:----------------------------- a) Initialising model -----------------------------\n",
-      "INFO:------------------------------ b) Running training ------------------------------\n",
-      "GPU available: True (cuda), used: True\n",
-      "TPU available: False, using: 0 TPU cores\n",
-      "IPU available: False, using: 0 IPUs\n",
-      "HPU available: False, using: 0 HPUs\n",
-      "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
-      "\n",
-      "  | Name    | Type       | Params\n",
-      "---------------------------------------\n",
-      "0 | network | Sequential | 201 K \n",
-      "---------------------------------------\n",
-      "201 K     Trainable params\n",
-      "0         Non-trainable params\n",
-      "201 K     Total params\n",
-      "0.805     Total estimated model params size (MB)\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Sanity Checking DataLoader 0:   0%|          | 0/2 [00:00<?, ?it/s]eff=  tensor(0.0206)\n",
-      "pur=  tensor(0.0267)\n",
-      "torch.Size([2, 1048])\n",
-      "torch.Size([1048])\n",
-      "torch.Size([2, 1360])\n",
-      "Sanity Checking DataLoader 0:  50%|█████     | 1/2 [00:02<00:02,  2.17s/it]eff=  tensor(0.0162)\n",
-      "pur=  tensor(0.0090)\n",
-      "torch.Size([2, 4662])\n",
-      "torch.Size([4662])\n",
-      "torch.Size([2, 2586])\n",
-      "Epoch 0:  89%|████████▉ | 80/90 [00:15<00:01,  5.03it/s, loss=0.00784, v_num=2]eff=  tensor(0.6765)\n",
-      "pur=  tensor(0.1892)\n",
-      "torch.Size([2, 4862])\n",
-      "torch.Size([4862])\n",
-      "torch.Size([2, 1360])\n",
-      "Epoch 0:  90%|█████████ | 81/90 [00:17<00:01,  4.75it/s, loss=0.00784, v_num=2]eff=  tensor(0.6411)\n",
-      "pur=  tensor(0.1287)\n",
-      "torch.Size([2, 12884])\n",
-      "torch.Size([12884])\n",
-      "torch.Size([2, 2586])\n",
-      "Epoch 0:  91%|█████████ | 82/90 [00:17<00:01,  4.76it/s, loss=0.00784, v_num=2]eff=  tensor(0.6829)\n",
-      "pur=  tensor(0.1819)\n",
-      "torch.Size([2, 6322])\n",
-      "torch.Size([6322])\n",
-      "torch.Size([2, 1684])\n",
-      "Epoch 0:  92%|█████████▏| 83/90 [00:17<00:01,  4.77it/s, loss=0.00784, v_num=2]eff=  tensor(0.6341)\n",
-      "pur=  tensor(0.2081)\n",
-      "torch.Size([2, 3364])\n",
-      "torch.Size([3364])\n",
-      "torch.Size([2, 1104])\n",
-      "Epoch 0:  93%|█████████▎| 84/90 [00:17<00:01,  4.78it/s, loss=0.00784, v_num=2]eff=  tensor(0.7185)\n",
-      "pur=  tensor(0.1371)\n",
-      "torch.Size([2, 11800])\n",
-      "torch.Size([11800])\n",
-      "torch.Size([2, 2252])\n",
-      "Epoch 0:  94%|█████████▍| 85/90 [00:17<00:01,  4.79it/s, loss=0.00784, v_num=2]eff=  tensor(0.6482)\n",
-      "pur=  tensor(0.1134)\n",
-      "torch.Size([2, 12612])\n",
-      "torch.Size([12612])\n",
-      "torch.Size([2, 2206])\n",
-      "Epoch 0:  96%|█████████▌| 86/90 [00:17<00:00,  4.80it/s, loss=0.00784, v_num=2]eff=  tensor(0.7132)\n",
-      "pur=  tensor(0.1076)\n",
-      "torch.Size([2, 24304])\n",
-      "torch.Size([24304])\n",
-      "torch.Size([2, 3668])\n",
-      "Epoch 0:  97%|█████████▋| 87/90 [00:18<00:00,  4.81it/s, loss=0.00784, v_num=2]eff=  tensor(0.6621)\n",
-      "pur=  tensor(0.1176)\n",
-      "torch.Size([2, 15498])\n",
-      "torch.Size([15498])\n",
-      "torch.Size([2, 2752])\n",
-      "Epoch 0:  98%|█████████▊| 88/90 [00:18<00:00,  4.82it/s, loss=0.00784, v_num=2]eff=  tensor(0.5985)\n",
-      "pur=  tensor(0.3096)\n",
-      "torch.Size([2, 1040])\n",
-      "torch.Size([1040])\n",
-      "torch.Size([2, 538])\n",
-      "Epoch 0:  99%|█████████▉| 89/90 [00:18<00:00,  4.83it/s, loss=0.00784, v_num=2]eff=  tensor(0.6323)\n",
-      "pur=  tensor(0.1270)\n",
-      "torch.Size([2, 12350])\n",
-      "torch.Size([12350])\n",
-      "torch.Size([2, 2480])\n",
-      "Epoch 1:  89%|████████▉ | 80/90 [00:15<00:01,  5.18it/s, loss=0.00768, v_num=2]eff=  tensor(0.7368)\n",
-      "pur=  tensor(0.1854)\n",
-      "torch.Size([2, 5404])\n",
-      "torch.Size([5404])\n",
-      "torch.Size([2, 1360])\n",
-      "Epoch 1:  90%|█████████ | 81/90 [00:16<00:01,  4.86it/s, loss=0.00768, v_num=2]eff=  tensor(0.7007)\n",
-      "pur=  tensor(0.1137)\n",
-      "torch.Size([2, 15934])\n",
-      "torch.Size([15934])\n",
-      "torch.Size([2, 2586])\n",
-      "Epoch 1:  91%|█████████ | 82/90 [00:16<00:01,  4.87it/s, loss=0.00768, v_num=2]eff=  tensor(0.7838)\n",
-      "pur=  tensor(0.1828)\n",
-      "torch.Size([2, 7222])\n",
-      "torch.Size([7222])\n",
-      "torch.Size([2, 1684])\n",
-      "Epoch 1:  92%|█████████▏| 83/90 [00:17<00:01,  4.87it/s, loss=0.00768, v_num=2]eff=  tensor(0.6848)\n",
-      "pur=  tensor(0.2026)\n",
-      "torch.Size([2, 3732])\n",
-      "torch.Size([3732])\n",
-      "torch.Size([2, 1104])\n",
-      "Epoch 1:  93%|█████████▎| 84/90 [00:17<00:01,  4.88it/s, loss=0.00768, v_num=2]eff=  tensor(0.7726)\n",
-      "pur=  tensor(0.1297)\n",
-      "torch.Size([2, 13412])\n",
-      "torch.Size([13412])\n",
-      "torch.Size([2, 2252])\n",
-      "Epoch 1:  94%|█████████▍| 85/90 [00:17<00:01,  4.89it/s, loss=0.00768, v_num=2]eff=  tensor(0.7063)\n",
-      "pur=  tensor(0.1015)\n",
-      "torch.Size([2, 15349])\n",
-      "torch.Size([15349])\n",
-      "torch.Size([2, 2206])\n",
-      "Epoch 1:  96%|█████████▌| 86/90 [00:17<00:00,  4.90it/s, loss=0.00768, v_num=2]eff=  tensor(0.8092)\n",
-      "pur=  tensor(0.1020)\n",
-      "torch.Size([2, 29090])\n",
-      "torch.Size([29090])\n",
-      "torch.Size([2, 3668])\n",
-      "Epoch 1:  97%|█████████▋| 87/90 [00:17<00:00,  4.91it/s, loss=0.00768, v_num=2]eff=  tensor(0.7464)\n",
-      "pur=  tensor(0.1092)\n",
-      "torch.Size([2, 18804])\n",
-      "torch.Size([18804])\n",
-      "torch.Size([2, 2752])\n",
-      "Epoch 1:  98%|█████████▊| 88/90 [00:17<00:00,  4.92it/s, loss=0.00768, v_num=2]eff=  tensor(0.6543)\n",
-      "pur=  tensor(0.2798)\n",
-      "torch.Size([2, 1258])\n",
-      "torch.Size([1258])\n",
-      "torch.Size([2, 538])\n",
-      "Epoch 1:  99%|█████████▉| 89/90 [00:18<00:00,  4.93it/s, loss=0.00768, v_num=2]eff=  tensor(0.7387)\n",
-      "pur=  tensor(0.1173)\n",
-      "torch.Size([2, 15616])\n",
-      "torch.Size([15616])\n",
-      "torch.Size([2, 2480])\n",
-      "Epoch 2:  89%|████████▉ | 80/90 [00:16<00:02,  5.00it/s, loss=0.00758, v_num=2]eff=  tensor(0.7721)\n",
-      "pur=  tensor(0.1799)\n",
-      "torch.Size([2, 5838])\n",
-      "torch.Size([5838])\n",
-      "torch.Size([2, 1360])\n",
-      "Epoch 2:  90%|█████████ | 81/90 [00:17<00:01,  4.67it/s, loss=0.00758, v_num=2]eff=  tensor(0.7463)\n",
-      "pur=  tensor(0.1141)\n",
-      "torch.Size([2, 16910])\n",
-      "torch.Size([16910])\n",
-      "torch.Size([2, 2586])\n",
-      "Epoch 2:  91%|█████████ | 82/90 [00:17<00:01,  4.68it/s, loss=0.00758, v_num=2]eff=  tensor(0.8207)\n",
-      "pur=  tensor(0.1752)\n",
-      "torch.Size([2, 7886])\n",
-      "torch.Size([7886])\n",
-      "torch.Size([2, 1684])\n",
-      "Epoch 2:  92%|█████████▏| 83/90 [00:17<00:01,  4.69it/s, loss=0.00758, v_num=2]eff=  tensor(0.7138)\n",
-      "pur=  tensor(0.2079)\n",
-      "torch.Size([2, 3790])\n",
-      "torch.Size([3790])\n",
-      "torch.Size([2, 1104])\n",
-      "Epoch 2:  93%|█████████▎| 84/90 [00:17<00:01,  4.70it/s, loss=0.00758, v_num=2]eff=  tensor(0.8002)\n",
-      "pur=  tensor(0.1276)\n",
-      "torch.Size([2, 14124])\n",
-      "torch.Size([14124])\n",
-      "torch.Size([2, 2252])\n",
-      "Epoch 2:  94%|█████████▍| 85/90 [00:18<00:01,  4.71it/s, loss=0.00758, v_num=2]eff=  tensor(0.7185)\n",
-      "pur=  tensor(0.1008)\n",
-      "torch.Size([2, 15731])\n",
-      "torch.Size([15731])\n",
-      "torch.Size([2, 2206])\n",
-      "Epoch 2:  96%|█████████▌| 86/90 [00:18<00:00,  4.72it/s, loss=0.00758, v_num=2]eff=  tensor(0.8381)\n",
-      "pur=  tensor(0.0998)\n",
-      "torch.Size([2, 30800])\n",
-      "torch.Size([30800])\n",
-      "torch.Size([2, 3668])\n",
-      "Epoch 2:  97%|█████████▋| 87/90 [00:18<00:00,  4.73it/s, loss=0.00758, v_num=2]eff=  tensor(0.7762)\n",
-      "pur=  tensor(0.1084)\n",
-      "torch.Size([2, 19696])\n",
-      "torch.Size([19696])\n",
-      "torch.Size([2, 2752])\n",
-      "Epoch 2:  98%|█████████▊| 88/90 [00:18<00:00,  4.74it/s, loss=0.00758, v_num=2]eff=  tensor(0.7026)\n",
-      "pur=  tensor(0.3024)\n",
-      "torch.Size([2, 1250])\n",
-      "torch.Size([1250])\n",
-      "torch.Size([2, 538])\n",
-      "Epoch 2:  99%|█████████▉| 89/90 [00:18<00:00,  4.76it/s, loss=0.00758, v_num=2]eff=  tensor(0.7718)\n",
-      "pur=  tensor(0.1152)\n",
-      "torch.Size([2, 16620])\n",
-      "torch.Size([16620])\n",
-      "torch.Size([2, 2480])\n",
-      "Epoch 2: 100%|██████████| 90/90 [00:18<00:00,  4.75it/s, loss=0.00758, v_num=2]"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "`Trainer.fit` stopped: `max_epochs=3` reached.\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 2: 100%|██████████| 90/90 [00:18<00:00,  4.74it/s, loss=0.00758, v_num=2]\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:-------------------------------- c) Saving model --------------------------------\n"
-     ]
-    }
-   ],
-   "source": [
-    "# send_telegram_message('Started metric learning training.', chat_id, api_key)\n",
-    "\n",
-    "metric_learning_trainer, metric_learning_model = train_metric_learning(CONFIG)\n",
-    "\n",
-    "# send_telegram_message('Finished metric learning training.', chat_id, api_key)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### From checkpoint"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# from Embedding.Models.layerless_embedding import LayerlessEmbedding\n",
-    "# from pytorch_lightning import Trainer\n",
-    "# from pytorch_lightning.loggers import CSVLogger\n",
-    "\n",
-    "# version_number = 6\n",
-    "\n",
-    "# HPARAMS_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_1/hparams.yaml'\n",
-    "# CKPT_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_1/checkpoints/epoch=19-step=1600.ckpt'\n",
-    "\n",
-    "# load_configs = {}\n",
-    "# with open(HPARAMS_PATH, 'r') as f:\n",
-    "#     load_configs = yaml.load(f, Loader=yaml.FullLoader)\n",
-    "\n",
-    "# metric_learning_model = LayerlessEmbedding(load_configs)\n",
-    "\n",
-    "# logger = CSVLogger('artifacts', name='metric_learning/velo_data')\n",
-    "\n",
-    "# metric_learning_trainer = Trainer(\n",
-    "#         accelerator='gpu' if torch.cuda.is_available() else 'cpu',\n",
-    "#         gpus=1,\n",
-    "#         max_epochs=40,\n",
-    "#         logger=logger,\n",
-    "#         # callbacks=[EarlyStopping(monitor=\"val_loss\", mode=\"min\")]\n",
-    "#     )\n",
-    "\n",
-    "# metric_learning_trainer.fit(metric_learning_model, ckpt_path=CKPT_PATH)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Plot training metrics"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "We can examine how the training went. This is stored in a simple dataframe:"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>epoch</th>\n",
-       "      <th>train_loss</th>\n",
-       "      <th>val_loss</th>\n",
-       "      <th>eff</th>\n",
-       "      <th>pur</th>\n",
-       "      <th>current_lr</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>0</td>\n",
-       "      <td>0.007978</td>\n",
-       "      <td>0.008570</td>\n",
-       "      <td>0.669372</td>\n",
-       "      <td>0.139480</td>\n",
-       "      <td>0.000125</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>1</td>\n",
-       "      <td>0.007980</td>\n",
-       "      <td>0.008654</td>\n",
-       "      <td>0.746478</td>\n",
-       "      <td>0.131017</td>\n",
-       "      <td>0.000250</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "   epoch  train_loss  val_loss       eff       pur  current_lr\n",
-       "0      0    0.007978  0.008570  0.669372  0.139480    0.000125\n",
-       "1      1    0.007980  0.008654  0.746478  0.131017    0.000250"
-      ]
-     },
-     "execution_count": 14,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "embedding_metrics = get_training_metrics(metric_learning_trainer) \n",
-    "\n",
-    "# embedding_metrics = get_training_metrics(metric_learning_trainer, METRICS_PATH) # Use when loading from checkpoint\n",
-    "\n",
-    "embedding_metrics"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 15,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABwgAAAJYCAYAAAB2JbLWAADV00lEQVR4nOzdd3QU5dvG8Ws3lQRSCAkQErp0UGmhSxUFC6IgRboigqICIiq4iQgWLCigKFW6gPp7RVFUioJKk2ZBpEoJxVCSkJC6+/4RWBOTQALJTrL7/Zyz52RnZ2eveQBzu/fM85hsNptNAAAAAAAAAAAAAFyC2egAAAAAAAAAAAAAAByHBiEAAAAAAAAAAADgQmgQAgAAAAAAAAAAAC6EBiEAAAAAAAAAAADgQmgQAgAAAAAAAAAAAC6EBiEAAAAAAAAAAADgQmgQAgAAAAAAAAAAAC6EBiEAAAAAAAAAAADgQmgQAgAAAAAAAAAAAC6EBiEAAAAAAAAAAADgQmgQXsMjjzyiTp065fh4+umn83Ws6OhoderUSRaLpVD2d5T/5spLzjFjxqhTp06Ki4u75vEvXLigCxcu5PnYN6KojjEAAM7AarVmq5/uuecejR07VkePHr3u4+b0+ztz/VBcOVONdSOc4c8SAICC0Llz5xy/j3rooYfs+/zwww8aOHCgunTpIkk6ffq0xo4dqzvvvFM//vijFi9erE6dOmnDhg1X/ayiXBsYjRotAzUaADgfd6MDFHXNmjVTtWrVJEnr16+X1WpVhw4dJElhYWH5OlaJEiXUoUMH1ahRo1D2N0pB5xwyZIg8PT21dOnSYjMGAAAgd25ubmrbtq2sVqv27NmjnTt36qWXXtKsWbNkMpnyfbyc6oPM9YOzcNUayxn/LAEAuF4mk0nt27fPss3f39/+88cff6wTJ07o4YcfliRt2LBBO3fu1G233aaqVavKZDKpQ4cOKlu27FU/pyjXBkUNNRo1GgA4CxqE1zBkyBD7zz/++KOSkpI0bty46zpWYGBgvt6b3/2NUpA5jxw5ovT0dKWlpengwYOqVq1asRgDAACQO29vb/vv89TUVN1///36+++/9c8//ygkJCTfx/tv7ZFT/eAMXLHGctY/SwAArpe7u/tVf2dfunRJZrNZDz74oP25JLVr107ly5dX+fLl1aJFi2t+TnH5DqoooEajRgMAZ0GD8AYcPHhQw4YNU6dOnRQUFKR9+/bp9ddf12effabPPvtMMTExCgwMVJcuXdS3b19FR0drwIABatGihaKiouzvb9eunTw9PfXjjz/Kz89Pw4cPV0RERL73lzKmInjrrbd06NAh3XHHHdq+fbvOnj2rTz75JFv+SZMmacOGDXrrrbdUv359xcTEqHfv3qpdu7befffdXM/jv/6bU5L++usvvfvuuzp+/LhatWql1NTULO/J7diTJk1SQkKCJOm5557T1KlTsx37xIkTmjlzpn7//Xd5enqqYcOGGjp0qAICAvI0RtdyteNL0po1a7Rs2TKdPn1aZcqU0d13360ePXpc8zUAACB5eHioXLlyOnz4sBITE7Vnzx6NHj1a3bt312OPPSZJGjFihP766y+tXr1aR48ezVZvPfXUU1nqg//WD8uXL9dzzz2n7du3a8qUKbrllluUmJio7t27q3Llypo5c2a2XAVZX1BjZbhaXbRz507Nnj1bR48eVdmyZTVkyBA1b948xz9LAACQs0ceeUTHjh2TJHXq1Endu3fXp59+KkmKjIzUqFGjdO7cOc2fP18vvPCC2rZtq4MHD+r999/X/v37VbJkSd1xxx166KGHdPLkyWy1QW6/r/NSF+T2Oc8//zw1GjUaAKCIYA3CArBt2zYtX75cJUuW1J49e/Tee+/Jy8tL3bt3V4kSJTR//nzt2rUr1/dv2LBBJ06cUJ06dRQdHa0pU6Zc9fNy2z8tLU2RkZH69ddf1aJFC23ZskWHDx/O9ThXpqjYvHmzJOmXX36RlHGV2fWcxxXx8fEaO3asDh06pDZt2mjfvn36448/7K9f7dizZs2Sn5+fypQpk2OxkZiYqNGjR2vbtm267bbbVL9+fX377beaMGGCbDbbdY9pXo+/f/9+vfHGG3Jzc1Pv3r3l7++vDz/8UN9///1VXwMAABlrEm7btk1HjhyRu7u7ypUrl+f3Zq63/iun+uHKlPBX6pxdu3YpPT1dbdu2zfb+gq4vqLF01bro2LFjGjdunJKSktSzZ09J0sSJE/XXX39dMycAAK4mNTU12xqECxculJTRqAkJCZHZbNa7776r7t276/bbb5ckPfzww2revHmWY8XFxWnMmDE6cOCAunTpotKlS2vBggVatWpVts+92u/rK3KrC672OdRo1GgAgKKDOwgLgNls1sqVK1WqVCkdO3ZML7zwgqpUqaKUlBT9/fff+vvvv3Xy5Mlcp9CqXbu23n77bUkZU5oePXpUsbGxuX5ebvvv379fhw8f1u23364xY8bo7Nmz6tWrV67HadKkiUqVKqXNmzfrkUce0fbt22UymdSmTRslJibm+zyu+O6775SQkKD+/furX79+unDhQpa76AIDA3M99i233HLVY2/cuFFnz57VPffcoyeeeEKSdP78ee3evVv79u2Th4fHVcco8zz913P8+Ph4SRl3P5QtW1ZPPfWUYmJiFBoaqlOnTuX6GgAAriwhIUGdOnXKsu2+++6Tt7d3no+Rud6Kjo6+5v4tW7aUp6enNm/erGHDhmnbtm2SlOOXTwVdX1BjSRcuXJCUc1301VdfyWq16q677lLdunVVunRpTZ06Vf/73/80duzYq+YEAMDV5LQGYZUqVSRJVatWlZeXl6SM39GSFBwcLEkKDw+3z4R0xQ8//KCLFy/aa4nY2Fh9+OGHSktLy/a5V/t9ff/999s/M6e6YOPGjbl+DjUaNRoAoOigQVgAbr31VpUqVUqS5OPjo9WrV2vv3r1q2LBhlqt5chMWFmb/OSgoSEePHpXVas33/sePH5ck1apVy/5aaGioLl68mONx3N3d1bp1a61evVonTpzQjh071KBBAwUFBUlSvs/jiis56tWrJ0kKCAhQxYoVdfToUUnXN0ZXXGnC1a9f376tXr162r17t06ePKmKFStKyv+Y5vX4bdq00b333qsNGzbYr8aqVauWnn76aTVs2DDX1wAAcGVubm72L328vLxUr169bA3Da8lcb+VFiRIl1Lx5c/vV0Nu2bVOtWrVyvGuxoOsLaixdtS46efKkJOm9997L8p4TJ07kOS8AAK7iWmsQ5sfp06clyb5+nL+/v5555hlJynYBVl5+X+dWF1ztcyRRo1GjAQCKCBqEBcDNzc3+84oVK7Rz5069/PLLioiI0LRp0xyWo3Tp0pKkAwcOSMqY0uHUqVM5TsV1Rfv27bV69WotXLhQcXFxateunaQbOw8/Pz9J0h9//KFbb71ViYmJ9iIjr8fOrVgqW7asJOn333+3f9H422+/SdI1r+jKi2sd/0qTcODAgYqOjtbatWv16aefatmyZerfv3+urz3//PM3nA0AgOLK29s71y+2TCaTpIwroaWMaUivXNmcWeZ6Kzf/rR/at2+v77//XitXrtTp06fVvXv3HN9XGPWFq9dYV6uZrtSss2bNUuXKlZWenq7o6GiVKFHimjkBAMD1K1OmjKSM9QFbtGihuLg4zZs3T1WrVlWjRo2y7Hu139dXm/XqWp9z9913U6NRowEAiggahAXM3T1jSD/++GP9+OOPWrt2rSQpOTm50D+7cePG8vPz0zfffCOTyaR9+/Zd8665+vXrKygoSGvXrpXZbFarVq0k3dh5NGvWTIsWLdLSpUt19uxZ7du3L8vizNc6dqlSpXTy5El9/fXXatCgQZZjt27dWvPmzdMXX3whm82m+Ph47d69WzVq1FDt2rWvuuZiXlzr+KtWrdL06dNVr149RUREKCYmRpJUrlw5/fLLL7m+BgAAchYaGiqz2axNmzbplVde0fHjx/XPP//k+ziZ64c77rhDUsY0UiVLltRXX30lSWrTpk2O7y2M+sLVa6yr1UUtW7bUqlWrNGXKFLVv315btmzRzp079cwzz+j222/P8c8SAABXlZ6enuN6csOGDcvX7ApSxu/7uXPn6pNPPlFSUpJ+/fVX7d27V6NGjcq27+23357r7+srdwZe7+dQo1GjAQCKBrPRAZzNAw88oJtvvln79+/XyZMn1a9fP0nSjz/+WOif7ePjo8mTJ6ty5crasGGDateurUqVKl31PWaz2X61VMOGDe1zk9/IedSsWVNPPvmkypcvr7Vr1yo8PNw+F35ejv3ggw+qdOnSWrFiRbZj+/r66o033lCjRo20bt067dq1Sx07dtTLL78ss/nG/zpf6/h33323+vbtq5iYGC1YsEC//vqr7rrrLj300ENXfQ0AAOQsKChIw4cPl6+vr3bs2KFGjRqpevXq+T5OTvWDh4eH2rRpI5vNpvr169uvZv+vwqgvXL3GulpdVLNmTUVGRiotLU1z587V2bNnNWbMGN1+++3XzAkAgKuxWq365ptvsj2u50L00qVL67XXXlOVKlW0atUqnTt3To888ojuvPPObPte6/f1jXwONRo1GgCgaDDZuDfcaZw4cUIrV65UmTJl1K1bNx08eFBjx45VrVq1NHXqVKPjAQAAONw333yjKVOmaOTIkbr77ruNjgMAAABRowEAUBQwxagTKV++vHx8fLR48WLNnz9fUsZVTDlNFQEAAODs1q9fr08++UQeHh5q3bq10XEAAAAgajQAAIoK7iB0QikpKYqJiVGpUqXyPR89AACAs3jooYdks9nUs2dP3XvvvUbHAQAAgKjRAAAoKmgQAgAAAAAAAAAAAC7k+lb0BQAAAAAAAAAAAFAs0SAEAAAAAAAAAAAAXAgNQgAAAAAAAAAAAMCFuBsdoCgbN26cRo4caXQMAABwnby8vBQUFJTv9/Xc9Ia2nz+gqQ2H6J4KTQohmfOjjgIAwDlRXxU+6igAAFyLUfWVyWaz2fL9LhdhMplUWMMTHR2t0NDQQjk2/sU4Ow5j7TiMteMw1o5RmOOc32PHJiXooU1vaPXZX2W1pivY218fNn1M3SpEFEo+Z0Yd5TwYb8divB2HsXYsxtuxqK+KN+oo58KYOx5j7niMueMx5o7njPUVdxACAACXlWaN1ZGz7ysx5aDcTDY9/O05bU5PlXw9JEn/JMXqvo2TNLn6aFUqWV7lSgeqdXAZeZhMBicHAAAomqivAAAAClZh1Vc0CAEAgEuyKVU/HWyn2Es7ZZLk5eaumNTbJS9P6fIV23UDy8r/4s16/qe9UumTkqeHavn5aW3b1gr19jb2BAAAAIoY6isAAICCVZj1ldlB5wAAAFCkxCb+oriknfbngSUaqYJ/zYzLp2zSoze1U4+AAdoRHyiVD5G8vSRJf8bF6d39BwxKDQAAUHRRXwEAABSswqyvuIMQAAC4pDMJMUpMlny9JKtN8veuJzcPX7nZ3DQ/YoTKuzdQx/VrpVJektVqvypLkg4nJBiYHAAAoGiivgIAAChYhVlf0SDMJCoqSpGRkUbHAAAADmCNPapj56Ra5SWTJA+P6upUubbeqDxYtwZU0bmUVP3ZrasOxMfrr/g47Y+P1964eO2NvyhvNyZhAAAA+C/qKwAAgIJVmPUV1VcmFotFNpvN/gAAAM7Jdnqjam6dpIbmlvo7TjKbJU/P6hp3y726NaCKJKm0p4dqlvRV1/LlFJReQRdPh8nvn6oKOVVNu3f5KOZiqsFnAQAAUHRQXwEAABSswq6vaBACAACXYjvzs9I39FN6apzaxaepYZlIxSZLft41cn3PbRW9tP1SqvaZpGQ/X1309tHwjf8oLtXqwOQAAABFE/UVAABAwXJEfUWDEAAAuJT0n0bIlnRWNklpcb+r2ZkzalL9C3m6l8v1PZV83fVex1DJJJncJA8fd/2akK5hm/5xXHAAAIAiivoKAACgYDmivmINQgAAriElJUWXLl2S2cx1NYXB09NT8fHx+XqPyWRSyZIlr+vzTGUayxa3X5Jkk5R6aIGqh7aT/ENyfU9qYqoq//yn+tSvqiW/npPNmjEV+a6zKdeVAQAAFI709HTFx8fLzc3N6CiGor4CAMD1pKamKjExke+vCokz1lc0CAEAuAar1aoSJUrI09PT6ChOqWTJkjKZTPl6T34Lsszcmk+TLT5G1mNrZPI0SWaTUn8cJI/SNaTABjm+Jyk+WYufWa0GD9XVL7e11p8n4uRjNunVJkHXnQMAABS89PR0lShRQl5eXkZHMRT1FQAArudKHcT3V4XDGesrWskAAMC1uHnJve182VJqyXohRPK4VaagVrIe+79c33L+6Hl5ePto5webVWfxl/L28tAbEUHqHFbCgcEBAACKKOorAACAguWA+ooGYSZRUVEymUz2BwAAcFIl/GQL6KGUvUFK3hem1OONlXo0VGk718t68pBsF89LkqyH/lH6pOWKOXJWVmu6fINClLRqh8b/s18dQvnyCgAAwI76CgAAoGAVcn3FFKOZWCwWWSwW+3OahAAAOLG0S7LGn5Pityj9ry0Z28wm2dJS5TPmXZnOVFPi0A/lUSFN/zyYMb+7zWZT6YAQVfZhug4AAIBsqK+uS1RUlCIjI42OAQAAiqJCrK+4gxAAALgkc5mwf5+YTJLJJGtaijzaP6z0ldLFvu/KlpCsZHOiYvb/I5tMstls8nTzUukKZY0LDgAAUERRX10fi8Uim81mfwAAAFxRmPUVDUIAAOCSPNo9KLcq9SRJttR0pZ6/KJNHC1kXlFDSB6slmWSzpSru6HGd3HlSujyxgH+Ynyo2Dsv9wAAAAC6K+goAAKBgFWZ9xRSjAADAJZl8/VRy0v8pfe9WpZ06Lmv0BSU/vVNpKfslk00mk5vS0xKV5mVW3a61ZZNJ/mVL6dYH6svDmxLqv5gaCwAAUF8BAAAUrMKsr6i+AACAS3Or3VRutZtKkjzC9ylh2BxZT16QTJJ769qqPPcxVSsXYmzIYoC1nAEAwBXUVwAAAAWrMOorphgFAAC4zL1NTfl+MERulYPl3r6W/D8bLze+vAIAALhu1FcAAAAFq6DqK+4gzISpsQAAgHvrmvLbOcnoGAAAAE6D+goAAKBgFUR9xR2EmVgsFtlsNvsDAAAUPn7nIr/iYuKNjgAAAAAAAFyIM35/xR2EAADAMKnp6Uq1WqX0dJXwcJdJrFuHqxvZ8gWdP31e1RpUUeSnzxgdBwAAAAAAODGbzabkxGTZbJK7h5s8vDyMjlRguIMQAAAXcuzYMXXr1u2GjnH69Gl16dLlhrOkWa1KsVrtd+4npqTK+a7FQkF6uvUE7f35L5069I9+/N9WTe471ehIAABc0yOPPKJOnTrZH926dVNUVJTOnTuX72MVRC0HAADgKIMHD85SB115jB071r7Phg0b1KtXL/3000+SpEmTJql3796SpPvvv19Hjhy56mcUdn2UnJgiqzXju6u01HSlpaQV2mc5GncQAgBQDI0cOVLPPvusKlSokK/3lS5dWiNHjiykVLmz2myyXp6K4crP6Tab9J/pGdKtVrmbuX4J2aUkpSgmOusXqft/OWxQGgAA8uexxx5Tx44dZbPZdPr0ab366quaPn26XnzxxXwd57+13PXWhAAAAI4yYsQItW/fPss2Nzc3+88rV67UsGHD1KJFCx0+fFi7du3SokWLJEmPP/64ypQpc9XjF+Z3XdZ0a5apRW02m9LTrU7TWOMbOAAAHKwg5iw/deqUUlNTs223Wq1KT0/P9X2+vr7ZirKCYLXZlGa1ZtwVmJ6upLQ0XUpLU0JqihJTU5WUlqY0q1XpVqtMkjzMZnm5uUmmf6cUNZlMBd4cbPdjmmquOFqgx4QxPL091bBjgyzb2vRoblAaAIArKYjarUSJEvLz85O/v79q1Kihe+65Rzt37szXMaxWq7y9vbPUcrnVhIWJ+goAANdQUGvu+fj4yM/PL8vD19fX/np8fLzKli1r/zkgIEBeXl6SpHbt2qlkyZJXPX5hfdclSWY3s0z//e7Kw+0q77g+RtVXNAgBAHCQcyfP66Ueb6pHuYfVvcwgvTnk/esqtsaOHasLFy7omWee0c6dOxUTE6PevXtr48aN6t27t44dO6aff/5ZQ4cOVdeuXdW3b1/93//9nyQpOjraPu3C+fPn1bNnT61YsUI9evTQPffco7fffjvHTFfu+EuzWjPWDJR0KS1VCakp2rZzpx5//HHdd++9GjF8uH7Zvl0eZrM83cz69OPlGtyvnx7s3l2R48crIS5OHm5ucjObtWzJEg3p10+97r9fURMmKCk+/voHFy7h6Q8eVdehHVW5QbgefLabVr65yuhIAAAnlZaapimD39N9QQN1f/BgvdzzLcXGxBXY8U0mk/2irmPHjun+++/P8vojjzySY523Y8cOey3335rwnXfe0fvvv28/RnR0tLp06aKEhIQCyw0AAJzfhTOxmtjjTfUIGaL7ggbqzSHvKz3dWiifNWHCBJ06dUoTJkzQJ598opdeeklHjx7VwIEDJUk9e/a0TzG6Z88ePfbYY7r33ns1ZswYHT2a0VDL/F2XJB09elTPPPOMunXrpjFjxmjLli2Srv09WE7Hnzp1qmbPnS03dzeZzSbFnPtHd99zt9PUVzQIM4mKipLJZLI/AAAoKGejz2lI3ae18ZPNiv0nTvHnLurreev0YIWhunQxKV/Hev311xUQEKApU6bo1ltvlZRxhdW2bds0a9YshYSEaOLEibr//vu1dOlSDRs2TDNmzMixeLlw4YL++usvfbRggV59/XWtWbNGO3btUnJ6ekYDMCVFCSkpSkpLU2p6uv0OQEnydHNXSkKiJlos6tqli5YsWaI+vXvr5Zde0pnTp7Vn12599umnmjRpkubNm6f09HQtXbpUkrRz5059evm1uXPnyma12l8DruapmY8qavUYPfxKXy07/oG6lxlkdCQAgJNJiE1Un/Bh+mb+el08n6D4cxf1/cqfNajmkzp/+sJ1HTM5OVkJCQm6ePGiDh48qM8//1w333xznt6buc7LPJXof2vC1q1ba9OmTfbXN2zYoGbNmmW5Qh8AAOBqzp08r0G1ntQPn2xW7Nl4XTyfoK/nrVPvsEeVGHfpuo45ZcqUbGsQzpkzR5I0ceJElStXzv491osvvqiKFStq/vz5WY4RExOj8ePHq1evXpo3b55uuukmTZo0KdtnpaSkaNy4cWrUqJEWLlyonj176rXXXtPBgwcl/fs92MKFCzVlyhStWbNGe/bsyfX4zZo208+bf5JXCU95+Xhp46aNTlVfOctUqQXCYrHIYrHYn9MkBAAUBKvVqkG1nsyxEXj+1AUNb/ys5v35zg19RnJysvr16yc/Pz+lpaXpww8/VFhYmKxWqwIDA2UymRQbH6+0y3f/JaenKSk1VTabTXd16ya5u6tKtWqqUbOm4uPj5GYyyd3sLrO7Sf/9bXhlGlA3k0k/btqkatWqqWvXrpKk2267TevWrdP69etVvXp1Wa1WxcTEqGLFinrttddkvfz5qamp9tfCw8OzvAbkVanSJfXBrjfUp+IwLTk60+g4AAAn8VijZ3T+TGy27fHnL2pQrSf16dl5MudzWvQZM2ZoxowZkiQPDw81aNBATz75ZJ7em7nOu3jxYq773Xzzzbp06ZIOHDigatWqacOGDerfv3++cgIAANdltVo1qPaTOTYCz5/O+P5q/l/v5vu4Oa1B6Onpma9jrF+/XjfffLNuu+02SdKgQYNUoUKFbMvsbNu2TWazWT179pTZbFbTpk3VsmVLfffdd+rZs6dsNpt69Oghb29v1axZU7Vq1VJcXJz++uuvLMcf0H+AygaXVcPGDZ26vqJBCABAIftu4Q+62kyi506e194t+1U74qbr/gyTyaTAoCClWdOVbrPp+x9+0Ddr1sjdw0PhFSvKZDIpNT1dNmUEcTOZ5enhIUm6uW5d+3E8PTzkZjLneS3AmJgYhYaGZtkWGhqqmJgY9enTR4MHD9aCBQs0ceJE1atXT0OGDNFNN92kpk2b5voakB/BYUF67dsXNbj2k5q798Ya7QAA7N7wu+LO5t6EM5tN+mHFz2r7YMt8HXfUqFG6884787x/5infTSaTypQpc833uLm5qXnz5tq0aZM8PDx05swZRURE5CsnAABwXeuX/ijrVaYSvXAmVr9t2qt6rWrn67hX1iC8EWfOnMny/ZOnp6fuuuuubPudPHlS58+fV9++fbNsb926tf3nGjVq2H92d3fPdnyb1SZZpW7du0mSU9dXNAgBACggcWfjdX/w4Hy/LzH+kkY2fz7bdr+gUvrkn7mSJJsy1gGUzSarLaPNl5KersTUVCWmpGQ0AK3pMpvM2rJli/7vf//TO9OmqWxIiMwmk7p27Spvd3f7lVXuZnOBzDNepkwZ7dmzJ8u2U6dOqXr16jp58qQaNmyoe+65RwkJCVq6dKneffddTZs2LctrFy9e1LJly+yvAfkVXjNUzy95So81Gqv3f3nd6DgAgGLi7lL9lJSQv6ne488naFLvqZrUe2q211bFL5S3r/d1Zcl89XtSUpJOnTplf56fZVBat26tOXPmyGw2q3Xr1vK4fEEYAADAFQmxieoWOCD/74tL1NNtXsy23dffR/87/1FBRMtVUFCQ9u3bZ3+emppqn0I0s9KlS6tu3bp6/fV/vxs4duyYvL2vXqNdOb7NalPypRS5ebpp7ty56tmzp1PXV6xBCABAAfELKqVvrSuyPZ6ZN0Levl65vs+nVAm98/NkfZ32sb5O+1irU5fpi5SlWnzyQyWmZqwDmJiaopT0dKVdbg7KZlNKUpK83d3lc3lahhLuHvJyc9OlhAR5enqqhJeXUlNStHjxYqWkpCg5ObnAz7lly5Y6cOCA1qxZo8TERG3cuFHbtm1T27ZttWPHDr344os6ceKErFarrFar0tLSJOmqrwHXo/qtVTTi3cF6uvUEo6MAAIqJVfELs9Vtb6yLlK+/T67vKRngqxeWPpVjzXe9zcFSpUopISFBmzZtUnp6uj755JN81W2XLv07DVijRo10+vRprVq1KttUXgAAAFJGQy+nWmbcwpFX/f7K189Hb//wUrb3Xas5eGUt5v8+8uO2227T9u3b9dNPPyk+Pl4LFy7UunXrsq0F2KRJEx06dEhffvmlEhIStH37dg0fPlwxMTF5Ov4P329UqjUly/Gdub6iQQgAQCHr2K/NVV8PKOevSg0rK8VqVarVKpskN3PGNJ/e7u7y9fSUr4enSri7y8vNTZ5ubmrbtq1eeP557dq5M9vx2rdvr1q1amnAgAEaNmyY/Pz81KlTJz3/fPa7FG9UYGCgJk+erM8//1wPPvigFi1apBdffFEVKlRQ586dVa9ePT3xxBPq06eP/vrrLz377LOSlOW1vn37ZnkNuF71WtbSQy8+oHGdXzY6CgCgmLq5bV2VKl0y19dtNptu69miQD8zICBAjz32mObNm6euXbtq586dqlOnTp7ee9ttt2ncuHHasWOHpIz1DSMiIuTm5qabb765QHMCAADn1r5PK5nMuc9a4B/sl+/pRSXp3XffVbdu3bI8evToka9jlC9fXi+++KLmz5+vPn36aNeuXYqKiso2y0KpUqU0adIkffPNN+rVq5emT5+uJ598UrVrXz13uXLlNO6ZcVq8dFG24ztzfWWy2a62KpJriYqKUmRkZJZthTU80dHR2dZsQsFjnB2HsXYcxtpxrox1UlKSzGbzVRdQtl2+s89qs2X52Xr598i5Uxf0eIMxSohNzPK+wLIB+mj/NJUoeX1XnDsDm82W52mzroiPj1epUqWuuV/NFUclSft6VMx3rp+2bJO7u7uaNro13+9FxnRoRtVRP/3fNq2Zv15Rn40tlM93NfzecSzG23EYa8dy1HinpKTIZrPJyyv3q9+v5VL8JfWr/rhi/4nLst3X30fz/5qmgOAbW0OnsE2dOlXe3t4aNmxYvt5HfVV0GFlHoeAx5o7HmDseY+54OY15Xr6/upYLZ2I1sNaTSriQ9Q6/gBB/LTgw3Sm/v7LZbEpKSL7quTlrfcUahJlYLBZZLBb78/x+WQkAcF62y82+Kw0/a6a1AK02m678xjCbTDKbTDLp8jp/l38OCw/W/L+madqI2drzwx+ypqer5X0RGvVh/goLRzh48KBWrFiR6+utWrVSq1atHJjI8Q4eOqIDhw5LkoICA1WtamVjAyFfWtzbREkJSXrloXf13KKRRscBABQzJUqV0MfRszT10Q/042dbJZPUsGMDPT3zUfkG5D79qNGSk5N18uRJbdiwQVOmTDE6TjbUVwAAFH0BIf5aeHC63nlslnat+01Wq1UtuzXV6NmPGR2t0FytOejs9RUNQgAAJKWkp+t4XKyOx8XpWGysjsXFav+pU4pJTVWVkiX1UodOSk9Ly9IA9DCbZTKZZDJJJl37opKAYD9NWD7quu6Yc6Rq1app3LhxRscwzMFDR/Tjlq3y88u4wuvHLVsliS+xipn2fVorKTFFbw+dqaeLYCMeAFC0ubmZNXr2Yxo9+7EiX7td8euvv2rSpEnq0qWLqlevbnScLKivAAAoPkoFltT4ZU8XmxroRiTGX5JPqRK5vu7s9RUNQgCAS0i32XQsNtbeBDwae0HH4+J0/PK22ORkhfv5K8zPT2H+/gr381fb8Iq6uXJlhfr4ytvdXZ4eHgWSxdmLK2fQMqKpDhzOuAKr/jXmqUfR1eXhDkpOTNZ7T83T8KmDjI4DACimikvt1rhxY3322WeSCm+5lBtBfQUAQPFSXGqg63Wt5qDk/PUVDUIAgNO4cvff8bhYHc3UDDwWG6uYxASF+/sr7HITsKJ/gDpVrWbfVsYn+3RR0dHRCi1bTklJSQacDRzt4KEjkv690upKgXXl+X9fR/Fw38guWvbqZ5rz/BINmdzH6DgAALgU6isAAFAUXbqYVGzXUyzI+ooGIQCg2IiOj9exuMuNv9h/m4HH4mIVHR+vMD8/e8Ovor+/bqtcxb6trG9Jo+OjCLsyLUPLiKZX3Y/psIqnXuPu07zxS7Vk8qfq83x3o+MAAOASqK8AAEBRdOlikrx9vYrlHZIFXV/RIAQAFBmnEy5ebvrFZbkL8Mq20FKlLk8D6q8wfz81rxiuML96CvfzV2ipUkbHRzH105ZtOnDosPz8SunA4cP2K6/+iTkrSVqzdr19Xz+/Uvpxy1adPX9eTRvdakheXJ9BL/fW+6Pm69OpX6r7U12NjgMAgFOjvsqfqKgoRUZGGh0DAACnV5ybg4VRX9EgzISCDAAKV0xiYpaGn30dwMvbyvj4Xr4D0E9hfv5qElpB99WqY98GFBVpaWlGRyhyikMd9dhbAzV12If68sNv1XVoJ6PjAACATFy5vrJYLLJYLPbnxfFLSwAAirqkhGR5+RTP5uD1ulZ9RYMwEwoyALgx5y5dujzlZ5yOx2ZM/Xn8cjPwWFys/L28Lt/9l9Hwu7lceXWtUVNhfv4K9/eXG//dhQFaRDRR2eBg/bhlq+rXrm2ffuHKlVedO7STlHUaB6bAyq641FFPzRyq1/pPk5ePlzo+1MboOAAAOCXqKwAAUJQkJSTLq4SnTOai+V1FXhRGfUWDEACQZ7HJSToeG2df9++YvQmYsa2Eh0dGs8/PT2H+/qpdJli3V6tuvyPQ083N6FMAcpTXL6T48so5PLvgCUU98Ia8fbzUqnuE0XEAAHBK1FcAAKAoSEpIklcJr2LdHLyioOsrGoQAALv4lBQdj7u8BmDslalALzcB4+LkZjIrzN/vchPQX9VKB6lt5ar2bSXc+bWC4utK4XTw0JEs268854sr52JZOUbP3TlJ3r5eatz5FqPjAADglKivAACAkZITk+XpXbzvHPyvgqyv+CYXAFzIpbS0f5t+sf82/q5ss9lsGVOA+vkp3N9f4QH+al6xosIvbyvp6Wn0KQAO8eOWrfLzK2X/uWVEU4MToTC88tULGnXbi/Ly8VL91rWNjgMAgFOjvgIAAI6UnJgsDy8Pmd3MRkcpNDdaX9EgBAAnkpKebm/2HY+L09FMzcDjcXFKSktVuL+/fc2/cD9/NQmtYN/m5+Vl9CkAhrtypdWPW7ZKYtorZ/fW9y9pRJNn9eTMR1WjUVWj4wAA4JSorwAAgCMlX0px+uZgQdRXNAgBoBhJs1p1LD5eB4/+nWUK0ONxcToWF6v45GSFXW72hfn5qaK/v24uV+5yA9BPgd4ljD4FGOT06dMaNGiQVq9eXSD7ObtqVSvr9D//2H+Gc5ux7TUNqfu0LCtHq2LtMKPjAADglKivAACAIyRfSpG7h5tTNwevuNH6igZhJlFRUYqMjDQ6BgAXZpMyGn+Zpv7M+DmjGXju0iWV8/FRldJBCvP3V0V/f90ecpPC/DLWACzj42P0KQBOo0VEE6MjwIHm/P62+lZ+TG//MFEhFcsYHQcAAKdEfQUAAArTleagm7ub0VEc5kbqKxqEmVgsFlksFvtzk8l5Fq4EUHSciI/T8di4jKZfpuk/j8fF6mR8vMIuT/15ZR3AdpWr2KcEDfH1VXR0tEJDQ40+DdwAm83G7xigCFp85H09EDJEc/54W/5l/IyOAwAAAAAA8iglKVVu7maXag7eKBqEAFDATl28mGXdv6OxF+wNwONxcapQys8+5WeYn79aVqxk/zm0VCmj46MQnUlIUOT6tdpy4oTSbVZ1rnaTXu3YKd/NwvHjx6tGjRrq37+/JOnChQt68MEH9dFHH+nw4cOaN2+eTpw4oYCAAPXs2VP33nvvdWf+7bffNHPmTP3999+qUKGChgwZoiZNMq5MWrRokb744gslJCSobt26Gjt2rEqXLn3N14CibOWZObq75ENacWaOvH1YlxUAAAAAgKIuJSlVZjez3D1oDuYHDUIAyKd/EhLsa/5daQQei4vV8diMbSG+vvY7/sL8/BQRFq77LzcAw/y4I8VVnb54UbcvnK+45GT7tuW//6r1hw9pw6Ah8vHwyPOxbrvtNq1YscLeIPzhhx9Ur149+fn5aeLEiXryySfVvHlz7d69WxMnTlTHjh2vK/OFCxf0/PPP69FHH1WbNm20Y8cORUZGavbs2Tp16pQ+/fRTTZkyRf7+/nrttde0dOlSjRgxQjt37sz1NaA4WHVxkTqZe+hb6wqjowAA8snNzU3x8fFKSUkxOoqhkpOT5eWVvwtdmOECAIDizc3NTYmJiUrO9N2TKzi2L1olSnqrTIXSUlLhfY4z1lc0CAHgP85eumS/2+9YbGymNQEztvl7e2dM/+nnrzA/f91crrzuqlFLYf4Z28xF/D/8cDyrzaYOH81VQmpqttf+SUzQ3UsWae2AQXk+XosWLfT222/rxIkTqlChgr7//nvdfvvt8vT01IcffqiwsDBZrVYFBgbKZDLp4sWL15V706ZNqlatmrp27SopozG5bt06rV+/XtWrV5fValVMTIwqVqyo1157TVarVZKUmpqa62tAcbH60hJ1KdFHqy8tMToKACAf3NzcFBAQYHQMw8XHx6tMGdbUBQDAlXh4eMjf39/oGA71/qj5KlsxWN2f6lron+WM9RUNQgAu50JSUpYG4L93AmZMA+rr4WG/2y/c3191QoJ1e/Xq9m2ebtyqjvz5bO8fsl3l9TMJF7Xr1EndUq58no7n6+urpk2bauPGjerUqZP279+vl19+WWazWZs2bdLXX38tDw8PVapU6YauVIqJicm23mVoaKhiYmLUp08fDR48WAsWLNDEiRNVr149DRkyRDfddJOaNm2a62tAceHh5aGPT3yo7mUG6dOYeUbHAQAAAAAAmcx5brECywY4pDnorGgQAnA68SkpOh57uemXaS3AY5e3ebi5ZWkA3lQ6SO0qV1W4f8Y0oN7u/KcR1+d80iU1nPlevt93MSVF9y3LfpdSoHcJ7Rg2PMf3tGvXTitWrJC3t7datWqlEiVK6KefftJnn32madOmKSQkRJLsd/9djzJlymjPnj1Ztp06dUrVq1fXyZMn1bBhQ91zzz1KSEjQ0qVL9e6772ratGlXfQ0oTkqVLqkPdr2hPhWHacnRmUbHAQAAAAAAkha+tEIeXh7q9Ww3o6MUa3wLnklUVJQiIyONjgHgGhJTUy/f9Ren47GxOhp7ZfrPjG02m+3y+n8Zj0oBgWpZsZJ9m28+1noD8iPQu4QOPzU62/ZP/vhdL65fq8QcphiVpJKenlrY/YE830EoSREREXrjjTf0v//9T08++aSkjKkOPDw85OnpqeTkZK1cuVIpKSnXNUe6JLVs2VIffvih1qxZo9atW+uXX37Rtm3b9PDDD2vHjh365JNPNHHiRPn5+clqtSotLU2SrvoaUNwEhwXp9e9e1KBaT2ren+8YHQcAAAAAAJe27LX/KeVSioa80tfoKMUeDcJMLBaLLBaL/XlRX0AScFbJ6Wk6Hhtnn/rzaOy/zcBjcbFKSU+/vP6fn8L8/VXR318RYWH2baWuoxECFKb7atfRhHXf5fp6iG/JfDUHJcnb21vNmjXTH3/8oVtuuUWS1L59e23btk0DBgxQ6dKl1b17d3Xq1EnPP/+83nzzzXznDgwM1OTJk/X+++9r+vTpCg0N1YsvvqgKFSqobNmy2rdvn5544gmlpqaqZs2aevbZZyVJnTt3zvU1R1vf0j3bNKlAfoXVCNX4ZU9rWMNnNHPHFKPjAABgKOorAABglE+nfqnzpy/osbcGGh2lQBlVX5lsNtvVlkVyaSaTSYU1PNHR0RTUDsA4O05+xjrVar285l/Wxt+VbRdTUhXm73e54ZfRALzSDAz381eAt3chn03Rxt9rx7ky1klJSTKbzfL09LzuY/2TkKCOC+YpLjk5y/YyPj76ftDD8nHhO1ttNlu+L8qJj49XqVKlrrkf/16M44x11G8//qk54xbr7Y0THf7ZRuLfkWMx3o7DWDsW4+1YhTne/FkWPmeso1wZY+54jLnjMeaO54pjvmrmNzq852+NfO8RQz7fGesrQ+4gXLdunRYuXCibzabevXurc+fOed4nt+1LlizRF198IZvNpjvvvFP9+/eXJO3du1fTp0/X2bNn1a5dOz366KOOO1HARVlttixr/mVeB/B4XKzOX7qkMD//y1N+ZqwD2DnkJvu2oBIljD4FoMAF+/pq3YDBenH9Wm05cVzpVqvuqF5Dr3Ts5NAcBw8e1IoVK3J9vVWrVmrVqpUDEwHFR72WtfTQiw9oXOeX9eqa8UbHAQAAAADAJayZt177th3QmDnDjY7iVBzeILxw4YLmzJmj6dOny2w2a8SIEWrcuLGCgoKuuY+bm1uO28+ePasvv/xSs2bNkslk0vDhw9WwYUNVr15dkydP1quvvqrg4GCNHj1af/31l2rUqOHo0waczom4uIwm4OXm375TJ3UuNVXH4+J0OuGivfEX5pdx11+HqtUy7gL081eIr6/R8QFDBPn4aEbXu6/rjrmCUq1aNY0bN86QzwacQaNONys5MUWW+15X1GdjjY4DAAAAAIBTW7dko3as/VXPLRppdBSn4/AG4datW9W4cWMFBgZKkpo3b66ff/5Zd9111zX38fT0zHF7rVq15ObmZp/6zcPDQ2azWVu2bFH9+vVVoUIFSdJbb73FuoJAHp28GJ/1LsBMdwAej4uzN/uuNAKbli2n+pUrK8zPT+VLXnvaP8CV8bsIKN5a3NtESYnJeqXvO3pu8ZNGxwEAAAAAwClt+nSLNn66RZaVY4yO4pQc3iCMiYlRSEiI/XlwcLDOnj2bp308PDxy3F69enVFRETo/vvvl8lkUtu2bVWnTh19/PHHSkxM1LBhw3T+/HlFRERo5Ei6zIAknUlIsDf7jsVmngY0Y1tZ35JZ7gKMCAvXA5cbghX8/LIdzxXnvQYAuK72vVspOTFZbz0yU6NmDTM6DgAAKMKsVqvMZrPRMQAAKFa2fPmLvp63Xi+vYiaswuLwBmFOiyxbrdY87ZPb9l9//VW7d+/WW2+9JbPZrNdff13bt29XcnKy9u/fr6lTp8rHx0cWi0Vffvml7r333izHiIqKUmRkZI55TSaTRo8erVGjRuXjLPMmOjq6wI+J7Fx1nM8nJSk64aJOJSQoOiFBJxMu6mRCQsYjMUEBnl4q5+ur8pcfVXxLqkVQGZX39VU5H1+55fY/LxcvKvrixRxfctWxNgJj7ThXxjooKCjH30MoGPkd2+TkZMXHx19zP+7WRGG6c0gHJSUk672n5mn41EFGxwEAAAVs3bp1WrhwoWw2m3r37q3OnTtneX3x4sVavHix/bnValWjRo00adIk+7a5c+cqOTlZjz32mMNyAwBQ3O34bo8+fWe1XvtmgtFRnJrDG4RBQUHat2+f/XlMTIzCw8PztI+Hh0eO27ds2aI2bdqoevXqkqT27dtr8+bNqlSpkho1aqTg4GBJUrNmzXTkyJFsmSwWiywWS7btJpOp0L4M5m4rx3Dmcb6QlKRjcbE6br/7L2P6z4xtcSrp6ZFlDcCmISFZ7gj0KOCrF515rIsaxtpxrox1UlKSTCYTzaZCcj1rMnp5ealMmTLX3I9muuNc7YIrZ3bfyC5a9upnmvP8Eg2Z3MfoOAAAoIBcuHBBc+bM0fTp02U2mzVixAg1btxYQUFB9n369u2rvn372p9PmTJF7dq1sz/fs2ePPv/882yNRQAAkLtfN+7Vookr9db3Lxkdxek5vEEYERGhhQsXKiEhQSaTSZs3b1aPHj1ks9l08uRJlStXLtd93N3dc9y+a9curVq1St26dZPJZNKWLVvUrl07NWnSRMuWLdOZM2fk6+urTZs2qWvXro4+ZeC6xCcnZzT7Lq/7dzT232bg8bg4ebq5KdzPX2H+GQ3AmmWC1KFq1cvb/OTl5vB/3gBQLKWkpurY8RM6evyEqlWprIphFfTj5q3y9PRUk4a36OChIzp64oQqhlVQeFgFeXp4GB25SPrvBVeu1FDvNe4+zZ+wTIsnfaK+L9xvdBwAAAznDPXV1q1b1bhxYwUGBkqSmjdvrp9//ll33XVXjvvv2LFDJpNJjRs3liQlJCRo1qxZ6tGjh+Li4hyWGwCA4mzftgP6YMwCTd/yitFRipzCqK8c3kEIDAzU4MGDNXr0aNlsNvXt21fBwcFKSkrSgAEDtHz58lz3kZTj9o4dO+rw4cMaOnSobDabWrdurS5dushsNmvgwIEaM2aM0tPT1bZtW3Xs2NHRpwzkKCE1NeOOv9gr6wBesDcDj8XGymQyKezymn9hfv6qEhCo1pUqZzQA/fzkUwT/BwoAiqNjx05o646dKh0YoNSU1Eyv/DuLQEpKirb+slOySdWqVnZ4RhR9Ayf20szRH+mTt7/Q/U/n/MUhAACuwhnqq5iYGIWEhNifBwcH6+zZsznua7VaNXfuXEVFRdm3vfvuu+rXr5/OnDmTa4OQJW9cB2PueIy54zHmjudsY370jxP68MlFevnbZ4vsuRVWrrxcZF0Y9ZXJxoJKuWKK0eLPyHFOSku73Oz7d+rPf5uBsUqzpmdM/+mf0fCr6B9gbwaG+furlKenIbmvF3+nHYexdpzMU4yazWZ5FrN/l8XF9UwxGh8fr1KlSl1zv7z8e1n/wyalpKaqc4d2V91vzdr18vTwULs2rfKV1VW5ah01ddiHuqlhFXUd2snoKAWmKI+3M2K8HYexdizG27EKc7xdpb66srbglSlEly9froSEBA0alH3d4R9++EG//PKLnn76aUnSd999pz/++EMjR47UF198oWPHjuVrDUJXraOcFWPueIy54zHmjudsY35sX7Qs3V7T3L3vGB0lV85YXzEHIXCdUtLT7Xf8Xbnr70oD8HhcrBJSUy83AP3s6wA2LB9qXwfQ38vb6FMAAEiqGBaWp/2qV6lSyEngDJ6aOVSv9Z8mLx8vdXyojdFxAAAwhDPUV0FBQdq3b5/9eUxMjMLDw3Pcd926derSpYv9+YYNG3To0CH98ssvSkhIUFpamhISEjRmzJhCzw0AQHFz+u9/9NwdL2vR4feMjlKkFUZ9RYMQyEW6zZbR/IuNs9/9d+xyM/B4XJxik5Lsd/xdWQuwXtly9m1BJUoYfQoAgDzI65RWRXHqKxRNzy54QlEPvCFvHy+16h5hdBwAABzOGeqriIgILVy4UAkJCTKZTNq8ebN69Oghm82mkydPqly5cjKbzUpKStKvv/6q559/3v7el19+2f7z9dxBCACAqzh36oJGNn9eH0fPMjpKkVcY9RUNwkyuNvc7nFPmNf+Oxf07/efxuFj9k5BwebpPP4Vfngq0U9Vq9nUBg319jY4PACgAP27eKklq2axplu0XExK0bccunTp9RqmpqSobEqyb69dVuUxr0QC5sawco+e7TJaXj6ea3HGr0XEAAHAoZ6ivAgMDNXjwYI0ePVo2m019+/ZVcHCwkpKSNGDAAC1fvlyBgYHavn276taty3IEAADkU/z5i3q47tP69Ow8o6MUC4VRX9EgzMRischisdif53c9JBQ9pxISdPzE8SyNvyvTgJ6Ij/v3DkD/jLsAW1esdHlNQH+VK1nS6PgAAAfw9PTItu1iQoJWffWNSvr66Jb6dSVJp06f0TdrN+j2Dm2L5JdYKHomr35eo9ta5OXjpQZt6hgdBwAAh3GW+qpDhw7q0KFDlm3e3t769ttv7c9btWqlVq1yX+PnrrvuKrR8AAAUV8mXUtQ77FF9kbDY6CjFRmHUVzQIUaydSUj4t/GXqfl3LC5Wx2NjFeLjo0qBpe3r/jULC9cDdespzM9PFUr5GR0fAFAENGmY/e6ubb/sVElfH919Z2f7tto1a2jN2vXa/evvKteh6H2BhaLpzQ1RGtHkWT0581HVaFTV6DgAADgE9RUAAMiN1WrVPaX6aU3ax0ZHKVYKo76iQYgiLSYx0b7mn30a0EzTgZYuUcJ+x1+4n78ahVbQvbVq29cEPBkdrdDQUKNPAwBQhB08dEQenh6qGFbBvu3UmX/sV15lVjGsgnb9+rsj48EJzNj2mobUfVqWlaNVsXbeFhUHAKA4o74CAAC5udOzt75KWWp0jGKnMOorGoQw1PmkS/a7/o7HxerolZ8v3xVYyssro9nn56cwf3/VDymrO2+qYd/mbjYbfQoAgGLu6PHjSklNzVJgAQVtzu9v66Eqw/XmhiiVrRRsdBwAAAoV9RUAAMjJXb599Xn8Qpn5Xj/fCqO+okGIQhWXnJxl3b+jsRfszcBjsbHydve4fAdgxlqAtcsEq1PVava7Aj3d3Iw+BQCQ2WzWpUuXlJycbHQUp5ScnCwvL698vacg1wmuGBamrTt2as3a9apds4YqhlVQuZBgHTh0RLVr1siy79HjJ1Q6MKDAPhuuZdHh99Sj7BDN+u1tBQQz1TkAwHlRXwEAgP/qHjRIS49/IK8SnkZHKZYKo76iQZhJVFSUIiMjjY5RrFxMSfl3zb8r039mWgfQbDJlTP95uQlYrXSQbqtcxb6thDt/BQEUfZ6envL0pHgpLPHx8SpTpoxhnx8ennHl1dHjx5WakipJatLoVq366hut+uobVa9a+fLrJ3T6zD+qV7uWUVHhBFacnqO7Sz6kFWfmyNsnf41xAACKC+orAACQ2YOhj2j272+rVGBJo6MUW4VRX9GdycRischisdifF+TdCcXVpbS0y42/jIaffR3Ay9vSbVaF+fldnvIzo+nXLLyifVtJvlAHABRxnh4eqla1sqpdLqQkqaSvr+6+83Zt+2Wndv36u1JTU1U2JFj1atfSb3v/lL+fX5b9gfxYdXGROpl76FvrCqOjAABQKKivAADAFQ9VGa53f56s0uUCjI5SrBVGfUWD0MWlpKdnNPvi4uzNv8xrAl5KTVWYn7/C/DMafuH+/mocGmrf5u/lbfQpAABQKEr6+qpdm1bZtvv7+enHLVsVGBjAdFi4bqsvLVGXEn20+tISo6MAAOAw1FcAALiWwbWf1Ctfj1fZSsFGR3FaN1Jf0SB0cuk22+WGX+a7/+J0/PK2uOTkjGafn5/C/P0V7uevBmXL2dcELF2ihNGnAABAkVKtamUFBgaoZElfo6OgGPPw8tDH0R+qe9AgfXp2ntFxAAAwFPUVAADO59Fbxmj8x6MUXjPU6CguKS/1FQ1CJ5D5jr+jV5qBl6cAjUlMuLz+X8bdf+F+/upUtZp9WxkfH6PjAwBQ7HBlOwpCqcCS+nDPm+od/qiWHvvA6DgAABiK+goAAOfxeMRzGjVrmKo2qGR0FJd2rfqKBqEBpm35WXujoxV1+x0K9r321XHR8fH2df+OxWY0/q40AaPj4y83+zLu+Kvo76/bKlfJWBPQ309lfVn0EwAAoKgqU6G0pqy1aFCtJzXvz3eMjgMAAAAAwA0ZdduLevSN/qrZpLrRUXANNAgdrN+nK7U9+oSS0tK0fclCfdmnn6yy5XwX4OVtoaVKZTT8Lt8F2LxiuML86incz1+hpUoZfUoAAAC4AWE1QjV+2dMa1vAZzdwxxeg4AAAAAABcl2dvn6iHJjyg+q1rGx0FeUCDMJOoqChFRkYW2vF/PPa3/oz5R0lpaZKkfxISFDH7A4X4+Ga5C7BJaAXdV6uOfRsAAACcW7VbKuuJ6Q/rqVbjNXXTy0bHAQAAAAAgX8bf/aq6P9lFDTs2MDoK8ogGYSYWi0UWi8X+3GQyFejxS3v7yJzpmJ5ms0Y2a6ERTSMK9HMAAABQ/NRtUVP9I3vq2dsn6rVvJhgdBwAAAACAPIl64A3dMaidIro2MjoK8sFsdABXUjs4WG92vlMhvr4K8PRUh2rVaQ4CAADArmHHBrp3xB2y3Pe60VEAAAAAALimVx56V627R6hVd3odxQ13EDpYq4qVNP+++3Xg6DHd3bCh0XEAAABQxLS4t4mSEpP1St939NziJ42OAwAAAABAjt4Y8p4adqiv9n1aGx0F14EGoQFqlwmWf0qq0TEAAMBlv/32W572q1evXiEnKb4Key1nV9O+dyslJybrrUdmatSsYUbHAQAg36ivAABwbu8On6WaTaqr86B2RkdxGQVdX9EgBAAALo8vpm5cYa/l7IruHNJByYkpmvHkXI14Z7DRcQAAyBfqKwAAnNf7o+YrrEao7h52u9FRXEpB11esQQgAAAAUUd2euFNBoaU157nFRkcBAAAAAEBznluswLIB6v5UV6Oj4AbRIMwkKipKJpPJ/gAAAACM1uvZbnJzd9PiSZ8YHQUAAAAA4MIWRC6XZwlP9Xq2m9FRUABoEGZisVhks9nsDwAAAKAoGDixl+LPXdQnb39hdBQAAFDAuGAdAFAcLHv1M6WmpKnfiz2MjoICQoMQAAAAKAaGvTlAx/+K1hcffGt0FAAAUIC4YB0AUNR9OvVLnT8TqyGT+xgdBQWIBiEAAABQTDz5/lD98dM+fbvwe6OjAAAAAABcwKr31+j4/pN67K2BRkdBAaNBCAAAABQjYz96XD/93zZt+nSL0VEAAAAAAE7s67nr9NcvhzRyxsNGR0EhoEEIAACQT0z9BKNZVo7R6tlrte3rnUZHAQCgQFBfAQBQtKxbslE71/2m0bMfMzoKrtO16it3B+UAAAAocmySTJd/Tk9Pl5ubW8Z2m00mk8m+39lz53U8OlpuZrPCK1SQv7+f48MC/zF59fMa3dYiLx8vNWhTx+g4AABIor4CAMAZbPxkszZ9tlUvrhhtdBSo8OorGoSZREVFKTIy0ugYAADAQUyS4uMvatdvv+vo0eOqGF5BN9evK79SpSRJ6Vardu/5TfsOHJTNZpPVZtWe3/eqXu2aql+3TpYiDDDCmxuiNKLpOD353iOq0bia0XEAAKC+AgCgmNv8xS/65qMNmvj5OKOj4LLCqq9oEGZisVhksVjszylKAQBwbnHx8Vr7/SalpKYqwN9P0afO6Oz5C2rXuqX8/Urp971/KvpMjOrXqa1aNW5SujVdv/2xV0eORcu7RAnVqFbV6FMANGPrq3q43tOasHy0KtUJMzoOAMDFUV8BAFB87fhujz57d7Ve+2aC0VGQSWHVV6xBCAAAXNaOXXuUlJSs1s2aqusdndS6RYRSUlP1+959stls2rtvv0p4uqtenVpyd3eTl6enGt1ys7w83fXr73uNjg/Yzf7tbb3QdbJO//2P0VEAAC6O+goAgOLp1417tWjiSpqDRVBh1Vc0CAEAgMs6E3NWlcIrKLR8OR2PjlZoubIKLReio8ePKTklRVarVWXKlJGUMcd7enq6JCkwIEDmy/O9A0XFosPv6fGm43ThnzijowAAXBj1FQAAxc+fWw/ow2cW6K3vXzI6CnJQWPUVDUIAAOCyvLy8FBgQoIOHj2j7zj06ePiISgcEKD3dKpMkD3c3HY+OltVqk5ubm9zc3JSWlqZTp08rPS3V6PhANitOz1G/qiOUlJBkdBQAgIuivgIAoHg5uPuIpj76gaZtfsXoKMhFYdVXNAgBAIDLSremKzU1Vf5+pdSiaWP5+5VSalqaTCazvLy8VLVyZdlk1vofNur4iWgdPX5ca7/fKJncVLvGTUbHB3K0Kn6h7vHrL5vNZnQUAIALor4CAKD4OLYvWpN6va2ZO6cYHQVXUVj1lbsDzwEAAKBIMZvMMrub9U/MWR36+7iqVAqTm9lNJpOUbrWqXp3aOnfhZ8VdTNTWnbvl7uam1NRUlS8bolp8gYUi7MvExerq01erLy0xOgoAwMVQXwEAUDycOnJGz985SQsPzTA6Cq6hsOor7iDMJCoqSiaTyf4AAADOzWQySzapVo2bFB5aTrVr3CRbxguyplvl6ekhf79SSklJVlj5sgoPLa/mTRupRUQTubFGDoowDy8PfRz9oboHDTI6CgDAxVBfAQBQ9J09eV5PtRxPc7CYKKz6ijsIM7FYLLJYLPbnNAkBAHBuSUmXFBsbJ5PJpAb16kiSYuNiZbPZ5O7uptTUNB04dFgBfv5q2qihwWmB/CkVWFIf7nlTvcMf1dJjHxgdBwDgIqivAAAo2uLPX9Qj9Ubp07PzjI6CPCqs+oo7CAEAgMsqG1xGx6NP6tSZM5KkU2fOKPrUGYWHlpfJZNLJU6fk5V1ClStVlM1mU3p6epFd123dunUaNGiQBg4cqDVr1uS6X1JSksaOHZtl2/vvv6++ffuqV69eWrRokX37kiVL1KdPH/Xu3VsLFiwotOwoPGUqlNYb6yI1sOZIo6MAAFyEM9VXAAA4m6TEZPUJH0ZzsJgprPqKOwgBAIDLurVBPX33/Sat+/5HhZQprTMxZ+Xt7W2/GuvIsWNKTUlRxbAKMplMMpvNRXKGgQsXLmjOnDmaPn26zGazRowYocaNGysoKCjLfl999ZW++uorpaSk2Ldt27ZN+/bt0/z585WUlKSHH35YzZs3V3p6ur788kvNmjVLJpNJw4cPV8OGDVWvXj1Hnx5uUIWbymvC8lEaduszLDwPACh0zlJfAQDgbKzpVt3r319rUj82OgryqbDqK+4gBAAALsvf31/tWrdU+XIhOh0To/JlQ9S2VXP5+/kpJSVFJ6JPqXRggHx9fSQV3enHt27dqsaNGyswMFD+/v5q3ry5fv7552z7+fv7q02bNlm2+fj4qF+/fvLw8FCpUqUUFham5ORkmc1mubm5ydPTUx4eHvLw8JDZTOlYXFW7ubKemPGwnmo13ugoAAAn5yz1FQAAzuZOr976Knmp0TFwHQqrvuIOQgAA4LJsNptKBwaoXeuWSk9Pty/cbLPZ5OHhoTYtm8vby8vglNcWExOjkJAQ+/Pg4GCdPXs2234tWrTQsWPH9N1339m31a1bV1LGFKWrV69WcHCwatWqJbPZrIiICN1///0ymUxq27at6tSpU/gng0JTt0VN9Y/sqWdvn6jXvplgdBwAgJNylvoKAABncpdvX30ev5ALf4upwqqvaBACAACXZTKZ7HOyu7m52X++cqVVhfLlDMuWHznNK2+1WvN1jAYNGkiSFi9erP379yslJUW7d+/WW2+9JbPZrNdff13bt29X48aNs7wvKipKkZGROR7TZDJp9OjRGjVqVL6y5EV0dHSBH9MVlKtTRq17N9XYO6L01NxH8vw+xtuxGG/HYawdi/F2rMIa72tdke4s9RUAAM7ivtIDtezEh/Iq4Wl0FFynwqqvaBBmcrUvuAAAgHPK/CVXcZ3iKigoSPv27bM/j4mJUXh4eJ7eu2XLFgUGBqpGjRpq3769Dhw4oK1btyo5OVlt2rRR9erVJUnt27fX5s2bszUILRaLLBZLtuNmLl4LWnR0tEJDQwvl2K4gdFCofEuU1Pwxy/X8kqeuuT/j7ViMt+Mw1o7FeDtWYY53XhqPzlBfAQDgDHqWf0Rz905VyQBfo6PgBhVGfcX9pJlYLBbZbDb7AwAAoDiIiIjQ1q1blZCQoMTERG3evFnNmjWTzWZTdHT0Ve8mPHv2rD766CMlJSXp4sWL2r17t8LDw1WpUiVt3bpVFy9eVEJCgrZs2aLKlSs77qRQqNr1aqlbO9TXW4/MNDoKAAAAAKAQPFRluKZtnqzAsgFGR0ERxR2EAAAAxVxgYKAGDx6s0aNHy2azqW/fvgoODlZSUpIGDBig5cuXKzAwMMf33nHHHTpw4IAefvhh2Ww2tWvXTrfddpsk6fDhwxo6dKhsNptat26tLl26OPK0UMjuHNJByYkpmvHkXI14Z7DRcQAAAAAABWRQrSf16prxKlsp2OgoKMJoEAIAADiBDh06qEOHDlm2eXt769tvv82yLTw8XDNn/nvXmNls1siRI3M85tChQzV06NCCD4sio9sTd2rZa//TnOcWa8grfY2OAwAAAAC4QUNvHq0XV4xWWA2md8fVMcUoAAAA4MJ6PdtNbh5uWvzyJ0ZHAQAAAADcgMcjntPo2Y+pSv2KRkdBMUCDEAAAAHBxA1/qpYsXErTyrVVGRwEAwOVERUXJZDLZHwAAXI+n20zQsDcHqGaT6kZHQTFBgxAAAACAHn2jv07sP6kvPvj22jsDAIACY7FYZLPZ7A8AAPJrbKeX1N/SU/Va1TI6CooR1iDMJCoqSpGRkUbHAAAADvbbb7/lab969eoVchLAWE++P1SvD5guLx9Pdep3m9FxAADFGPUVAACOMf6uV3T/03fp1g71jY6CQlbQ9RUNwkwsFossFov9OdM6AADgGvhiCvjX2I8e10s93pS3j5da39/M6DgAgGKK+goAgMIX9cAbumNwe0V0aWh0FDhAQddXTDEKAAAAIIsXV4zW13PXaetXO42OAgAAAADIwSt931Hr+5upVfcIo6OgmKJBCAAAACCbSV8+r49f+5/+/PmA0VEAAAAAAJnMHrVYDTs1UPverYyOgmKMBiEAAACAHL25IUrLXv4//bX9oNFRAAAAAACS3h0+S1VuqaTOA9sZHQXFHA1CAAAAALmK/HK0Xh84XX//cdzoKAAAAADg0t5/er7CaoaqQ3/uHMSNo0EIAAAA4Kpm//a2xt/1ik4dOWN0FAAAAABwSbPHLVLp8oHq/mRXo6PASdAgzCQqKkomk8n+AAAAAJBh4aEZeqLZ87pwJtboKAAAAADgUhZELpeXj5ceHHuv0VHgRGgQZmKxWGSz2ewPAAAAAP9acWq2+lV7XEkJSUZHAQAAAACXsOzVz5SakqZ+L/YwOgqcDA1CAAAAAHm2Kn6h7vHrzwV1AAAAAFDIPnn7C134J05DJvcxOgqckLsRH7pu3TotXLhQNptNvXv3VufOnfO8T27blyxZoi+++EI2m0133nmn+vfvL0nq37+/YmJi7MedMmWK6tat64CzBAAAxdmPm7dKklo2a2pwEqDo+fLSEnUt0Uerk5YaHQUAUIxQXwEAkHefv7dG0QdP6YnpDxsdBUXYjdRXDm8QXrhwQXPmzNH06dNlNps1YsQINW7cWEFBQdfcx83NLcftZ8+e1ZdffqlZs2bJZDJp+PDhatiwoerUqaOUlBStXr3a0acJAACKuYsJCUZHAIosD093LT81W/eVHqjPzs03Og4AoJigvgIAIG++nrtO+3cc0ujZjxkdBUXcjdRXDp9idOvWrWrcuLECAwPl7++v5s2b6+eff87TPrltN5vNcnNzk6enpzw8POTh4SGz2ayYmJgsjUcAAAAABaNkgK9m/fqWeoc/anQUAAAAAHAaaxdv1K71v9EcRKFz+B2EMTExCgkJsT8PDg7W2bNn87SPh4dHjturV6+uiIgI3X///TKZTGrbtq3q1KmjPXv2KDY2VmPHjtWRI0fUpk0bDR8+XGZz1r5oVFSUIiMjc8xrMpk0evRojRo1qgDOPqvo6OgCPyayY5wdh7F2HMbacRhrxyiscTaZTIVyXAAZylQorTfWRWpgzZGav+9do+MAAAAAQLH2w8qf9dP/bdOE5QXfjwD+y+ENQpvNlm2b1WrN0z65bf/111+1e/duvfXWWzKbzXr99de1fft2BQUF6YEHHtA999yj+Ph4TZgwQV9++aXuvvvuLMewWCyyWCzZjm0ymXL8zIIQHR2t0NDQQjk2/sU4Ow5j7TiMteMw1o5RmOOc38bjufMXVLKkrzw9PLJsT0lN1cWLCSodGFCA6ZzL1S64gnOrcFN5TVg+SsNufUYzd04xOg4AoIihvgIAIG82f/GLvl3wvSZ+Ps7oKCjiCqq+cvgUo0FBQYqJibE/j4mJUZkyZfK0T27bt2zZojZt2qh69eqqWrWq2rdvr82bN6tSpUq69957ZTab5e/vr9atW+vw4cOFf5IAAKBYWrN2vdZ8t14pqan2bSmpqVrz3XqtWbvewGRFn8Vikc1msz/gWqrdXFkj33tET7Z8wegoAIAihvoKAIBr++Xb3frftK9oDiJPCqq+cniDMCIiQlu3blVCQoISExO1efNmNWvWTDabTdHR0bJarbnuk9v2SpUqaevWrbp48aISEhK0ZcsWVa5cWZ9++qmioqKUlpamixcv6qefflLdunUdfcoAAKCY6NyhnS4mJGjNd+tltdpktdq05rv1upiQoM4d2hkdDyjS6jSvoQFRD+rZ2ycaHQUAUIRQXwEAcHV7fvhDSyZ9qlfXjDc6CoqJgqqvHD7FaGBgoAYPHqzRo0fLZrOpb9++Cg4OVlJSkgYMGKDly5fnuo+kHLd37NhRhw8f1tChQ2Wz2dS6dWt16dJF6enp+ueffzRkyBClpaXp9ttvV4cOHRx9ygAAoJgoHRigzh3aac3a9fa74Ewmkzp3aMf0V0AeNOzYQEmJybJ0e11R/xtrdBwAQBFAfQUAQO7+3HpAs8Yu1LTNrxgdBcVIQdVXJhtzQOWKNQiLP8bZcRhrx2GsHYexdozCXoMwL8f+79zt585f0JdrvpUkde3cyV5csVZO3lFHOY/rGe/1y37Uz59v0/NLniqcUE6Mv9+Ow1g7FuPtWNRXxRt1lHNhzB2PMXc8xvz6HNx9RFMGzriutdwZc8dzxvrK4VOMAgAAFDVffP2Nzp0/b39+5Uqs/155de78eX3x9TcGJASKl3a9WqphxwZ68+H3jY4CADAI9RUAALk7+ucJTe499bqag3BdBV1f0SDMJCoqSiaTyf4AAACuIyUlNcvzkOAyCgkuc9V9AOTujsHtVe2Wypoxcq7RUQAABqG+AgAgu1OHz+iFrpM154+pRkdBMVSQ9ZXD1yAsyiwWiywWi/05TUIAAFxDeIVQbduxU3v3/XXV/S4mJCi8AlN4AHnV7fE7tey1/2nOc4s15JW+RscBADgQ9RUAANmdPXleT7Uar2UnPjQ6Coqhgq6vuIMQAAC4vCaNblXFsArX3K9iWAU1aXSrAxIBzqPXs93k5uGmxS9/YnQUAIADUV8BAJBV/LmLeqT+KJqDuG4FXV9xByEAAHB5JX191aQhX0wBhWXgS730wZgFWvnWKj0w6m6j4wAAHID6Ku+ioqIUGRlpdAwAQCFKSkhSn0qPaVX8QqOjoBgr6PqKOwgBAAAAFLpH3+iv6AOntGrmtRdKBwDAlVgsFtlsNvsDAOBcrOlW3RswgOYgihwahAAAAAAcYuR7j2jvz3/p24XfGx0FAAAAABziDs9e+jplmdExgGxoEAIAAABwmLEfPa6fP9+ujZ9sNjoKAAAAABSqrj599UXCIplMJqOjANnQIMwkKipKJpPJ/gAAAABQ8F5cMVpfz12nrV/tNDoKAAAAABSK+0oP1MfRH8rT29PoKECOaBBmwpzvAAAAgGNM+vJ5LX/9/7Tn+z+MjgIAAAAABapn+Uc0d+9UlQzwNToKkCsahAAAAAAM8cb6SH04dqH2bTtgdBQAAAAAKBB9Kz+m6VteUWDZAKOjAFdFgxAAAACAYaZveUVTBs3Q338cNzoKAAAAANyQgTVH6vVvX1RIxTJGRwGuiQYhAAAAAEPN/u1tjb/rFZ06csboKAAAAABwXYbePFqWlWNU4abyRkcB8oQGIQAAAADDLTw0Q080e14XzsQaHQUAAAAA8mVE03EaM2e4qtSvaHQUIM9oEAIAAAAoElacmq3+1R/XpYtJRkcBAAAAgDx5uvUEPfb2QNVoXM3oKEC+0CDMJCoqSiaTyf4AAAAA4Fifxy3Uvf79ZbPZjI4CAAAAAFc1ttNL6h/ZU/Va1jI6CpBvNAgzsVgsstls9gcAAAAAx/vy0hJ1LdHH6BgAAAAAkKvxd72i+5++S7d2qG90FOC60CAEAAAAUKR4eLpr+anZuq/0QKOjAAAAAEA2Ufe/oTuGtFdEl4ZGRwGuGw1CAAAA3DCmakdBKxngq9m/vaVeYY8aHQUAAAAA7Cb3mao2PZqr1X0RRkcBbggNQgAAANwwpmpHYQgKLa03N0RpYI0njI4CAAAAAHpj8HtqdPvNaterpdFRgBtGgxAAAABAkVWhejlNWDFaw259xugoAAAAAFzYO499qFoRN6nzwHZGRwEKhLvRAQAAAIx27vwFlSzpq5SUFO3dt1+nTp/R+QsXJEllQ4JVMayCqlWtIk8PD2ODAi6q2s2VNfK9R/Rkyxf0zo+TjI4DAMgD6isAgDN576l5qlg7THc92snoKHBhBV1fcQdhJqydAwCAa/ri62908NBhrfrqGx04dFjlygarbeuWahnRVCV9fbXr19+16qs1Onf+gtFRAZdVp3kNDXypl8Z2esnoKACAPKC+AgA4i9njFikotLTuG9nF6ChwcQVdX3EHYSYWi0UWi8X+nCYhAACuY9uOXQoM8Ffnju2zXGlVrWplNUlN1fofNmn9xk26+87OXOkOGOTWDvWVlJisF+99TS/937NGxwEAXAP1FQCguPvI8rG8fb314Nh7jY4CSCrY+oo7CAEAAOxM2v3r79m2enp4qF2bVkpJSdXBQ4cNyAXgiuZ3N1a73q00uc9Uo6MAAPKE+goAUDwtfeUzpael66EJDxgdBfiPgqmvaBACAACXV61KZZUNCZanp4ckW477eHp4qHrVyjpw6IhDswHIrl2vlmrYsYHefPh9o6MAAHJBfQUAKM4+efsLxcbEafCkPkZHAewKur5iilEAAODyWjZrmqf9wsMq8AUWUETcMbi9khKTNWPkXI14d7DRcQAA/0F9BQAorj5/b42iD57SE9MfNjoKkEVB11fcQQgAAFze0pWf6dSZM9fcr1xIiHo/cJ8DEgHIi26P36kyYUGaPW6R0VEAAP9BfQUAKI6+mrNWB3YepjmIIqmg6ysahAAAwOWV9PXRseMncn39x81btWbteq1Zu17bduxyXDAA1/Tg2Hvl4eWhRRNXGh0FAJAJ9VXeRUVFyWQy2R8AAGN8t+gH7fn+D42aNczoKECOCrq+okGYCQUZAACuqWJYmA4cOqKU1NRc90lJSdHpM/9o776/HJgMQF4MiHpQCbGJWvnWKqOjAAAuo77KO4vFIpvNZn8AABzvh5U/6+fPt+vZBU8YHQXIVUHXVzQIM6EgAwDANdWuVUOeHh5a/8OmHIusJo1ulcTFQ0BR9ugb/RV94JRWzfzG6CgAAFFfAQCKj59Xbdd3C3/QhOWjjI4CXFVB11fuBZgNAACgWPL08FC7Nq20/odN+uT/vlDFsAoqVzZEknTu/AUdOHRYktSk4S0uPwUWUJSNfO8RvT5wurx9vNSp/21GxwEAl0Z9BQAoDrZ/s1ufz/har3w93ugowDUVdH1FgxAAAEBS6cAA3d2lsw4eOqyjx0/ox81bJUmBAf6qU7OGqlWtLE9PT5UNCTE4KYCrGTv/cU3s+Za8fDzV5oHmRscBAJdGfQUAKMr2/PCHlk7+VG9uiDI6CpBnBVlf0SAEAAC4zNPDQ7Vr1lDtmjVy3ad0YIDjAgG4LhOWj9ILXSfL29dbTe+81eg4AODSqK8AAEXR3i37NfvZRXr358lGRwHyraDqK9YgBAAAAOB0Jn35vJa//n/a8/0fRkcBAAAAUIQc3HVE7zz2Ic1BuDwahAAAAACc0hvrI/Xh2IXat+2A0VEAAAAAFAFH/zyhyX2mauaOKUZHAQxHgzCTqKgomUwm+wMAAABA8TZ9yyt6Y/B7OvL7MaOjAAAAADDQqcNn9ELXyZrzx1SjowBFAg3CTCwWi2w2m/0BAAAAoPib9etbmnDPqzp1+IzRUQAAAAAY4Gz0OT3VeoIWHpxhdBSgyKBBCAAAAMDpLTw4Q080f14XzsQaHQUAAACAA8WdjdfQm8do2fEPjI4CFCk0CAEAAAC4hBWnZqt/9cd16WKS0VEAAAAAOEBSQpL6Vh6uT/6Za3QUoMihQQgAAIAbxlrOKC4+j1uobgEDZLVajY4CAAAAoBClp6WrW+BArYpfaHQUoEiiQQgAAIAbxlrOKE6+vLRYXUv0NToGAAAAgEJ0h2cvfZ2yzOgYQJFFgxAAAACAS3H3cNeK07N1X+mBRkcBAAAAUAi6+vTVl4mLjY4BFGk0CDNhaiwAAADANZQM8NXs395Sr7BHjY4CAAAAoAB1Cxyg5SdnydPb0+goQJFGgzATpsYCAAAAXEdQaGm9uSFKA2s8YXQUAAAAAAWgR7mHNX/fu/L19zE6ClDk0SAEAAAA4LIqVC+nF1eO0aO3jDE6CgAAAIAb0LfSY5qx7VUFhPgbHQUoFmgQAgAAAHBpVRtU0lMzh2pkixeMjgIAAADgOgysOVKvf/eiQsLLGB0FKDZoEAIAAABwebWb1dCgib00ttNLRkcBAAAAkA9DG4yW5ZMxqnBTeaOjAMUKDUIAAAAAkHRrh/q6b2QXvXjva0ZHAQAAAJAHI5o8qzHzRqhKvYpGRwGKHRqEAAAAAHBZ87sbq32fVprUe6rRUQAAAABcxdOtJ+ixqYNUo1FVo6MAxZK70QGKkqioKEVGRhodAwAAGOjc+Qs6f+GCzp2/IEkqHRigwIAAlQ4MMDQXAMdp+2BLJSem6I0h72nMnOFGxwGAYq+41lfr1q3TwoULZbPZ1Lt3b3Xu3DnL64sXL9bixYvtz61Wqxo1aqRJkybps88+0+eff67ExEQ1a9ZMI0eOlJubm6NPAQCc1tiOL6l/VE/Va1nL6CiAIQqivqJBmInFYpHFYrE/N5lMBqYBAACOtm3HTu3dt1+SVDYkWJK0d99fkqSb69fVzfXqGpYNgGN1HtROlxKSNGPkXI14d7DRcQCg2Cqu9dWFCxc0Z84cTZ8+XWazWSNGjFDjxo0VFBRk36dv377q27ev/fmUKVPUrl07/fHHH/rf//5nf+/48eP19ddfq2vXrkacCgA4nRe6TtYDo+/Wre3rGx0FMERB1Vc0CAEAACSt+mqNLiYkqm3rlqoYViHLa0ePn9CPm7fq6LETuvvO2w1KCMDRuj1+pz5+/f80e9wiPfzqQ0bHAYBipzjXV1u3blXjxo0VGBgoSWrevLl+/vln3XXXXTnuv2PHDplMJjVu3FibNm1S165dVapUKUlSs2bNdOrUKYdlBwBnFnX/G7rz4Q5qeuetRkcBDFGQ9RUNQgAA4PK27dipiwmJ6tyhnUoHBujgoSPaumOnJOmW+nVVu2YNlezQTmvWrtfuX3/XzfWL5pXuAAreg2Pv1UeWj7Vo4ko9NOEBo+MAQLFR3OurmJgYhYSE2J8HBwfr7NmzOe5rtVo1d+5cRUVFSZJatWplf+3s2bP69ttvNWrUqGzvu9pSNyaTSaNHj87xfTcqOjq6wI+Jq2PMHY8xdzxHjPl7Iz5Sw071VDUinD9j8ffcCIU15nmdzbKg6ysahAAAwKWdO39Be/ftV9vWLe3ztG/dsVN1ataQp6eHtu3YpbIhISodGKCWzZpqw8YfFR5WocivmQOg4AyIelAfPrNAK95cpR6j7zY6DgAUec5QX9lstmzbrFZrjvtu2rRJ1apVyzL9qCR9/fXXWrx4sR577DHVqVMn2/v+u9TNFSaTKcfPLwjR0dEKDQ0tlGMjZ4y54zHmjueIMZ8yaIbadGuu2we0LdTPKS74e+54hTnmeWk8FkZ9ZS6g/AAAAMXS+cuLOWeelqH3A/fp5stXXuW0z5XnAFzH0Cn9dfLQaa16f43RUQCgyHOG+iooKEgxMTH25zExMSpTpkyO+65bt04tW7a0P7darZo0aZK2bt2qadOmqUWLFoWeFwCc2dRhH6pO8xo0B+HSCqO+okEIAABc2rkL5+0LOmeWkpqq9Rt/lCSVLfvv62VDgnXuwnmH5QNQdIyc8bD2btmvbxd8b3QUACjSnKG+ioiI0NatW5WQkKDExERt3rxZzZo1k81mU3R0tP1uwqSkJP3666+65ZZb7O/duHGjEhMT9eKLLyogIMCYEwAAJ/HeU/NUqU6Yug7tZHQUwFCFUV/RIMwkKipKJpPJ/gAAAK5r96+/6dTpM7rrjttV0tfX6DgAioix8x/X5i9+0Q8rfzY6CgAUO8WpvgoMDNTgwYM1evRoPf300+rbt6+Cg4OVnJysAQMGKDY2VpK0fft21a1bV56envb3/vbbb9q5c6e6detmf8yZM8eoUwGAYmvWs4tUpkJp3Teyi9FRgCLrRuor1iDM5L9zv9MkBADA+ZUOCNTefftz3N6yWUi2udpPn/lH1atUcVA6AEXRhOWjNP6uV+Tl46WILg2NjgMARY6z1FcdOnRQhw4dsmzz9vbWt99+a3/eqlUrtWrVKss+I0aM0IgRIxySEQCc1fwXl8mnVAn1fOZeo6MARUJh1FfcQQgAAFxa4OUC6ujxE1m2ly0bnK24urJP4FUWeAbgGl7+4jmteONz7d7wu9FRAKDIob4CANyIpa98Jmu6VX3H3290FKDIKIz6yqUahFfmhwcAALiidGCAate8ST9u3qpzmRZv3rvvL+3d95f9+bnzF/Tj5q26uV7dbIUXANf0xrpIzXp2kfZtO2B0FAAoUqivAADXa+VbqxR3Nl6DJ/UxOgpQpBRGfWVIg3DdunUaNGiQBg4cqDVr1uRrn9y2L1myRH369FHv3r21YMGCbMebO3euPvjgg4I/GQAAUOw1aXirSvr6aM3a9farrJo0vFVNGt4qKePKqzVr16ukr49url/XyKgAipjpW17RG4Pf05HfjxkdBQCKFOorAEB+/d+Mr3Xq8Bk9+kZ/o6MARVJB11cOX4PwwoULmjNnjqZPny6z2awRI0aocePGCgoKuuY+bm5uOW4/e/asvvzyS82aNUsmk0nDhw9Xw4YNVa9ePUnSnj179Pnnn6tz586OPl0AAFBM3H1nZ23bsVMbNv4oSSobEiwpY852Sbq5Xl2+vAKQo1m/vqV+1UZoyncWlasSYnQcACgyqK8AAHn11Zy1OrjriEbNGmZ0FKBIK8j6yuENwq1bt6px48YKDAyUJDVv3lw///yz7rrrrmvu4+npmeP2WrVqyc3NTZ6enpIkDw8Pmc0ZN0cmJCRo1qxZ6tGjh+Li4hx5qgAAoJhp0vBWVatSRefPX9C5C+clSdWrVFFgYADTXl1DVFSUIiMjjY4BGGbhwRnqWf4RfbBrigLLBhgdBwCKDOorAMC1fLfoB+35/g89u+AJo6MAxUJB1VcObxDGxMQoJOTfq2qDg4N19uzZPO3j4eGR4/bq1asrIiJC999/v0wmk9q2bas6depIkt59913169dPZ86cybVBeLUvtEwmk0aPHq1Ro0Zd7ynnKjo6usCPiewYZ8dhrB2HsXYcxtoxCmucTSZTvt9T+nIxVU2VCz6QE7NYLLJYLPbn1zP2QHG3/OQs3evfX0uPfyCfUiWMjgMARQb1FQAgN9+v+FmbV23X+I8L/vt3wJkVRH3l8AahzWbLts1qteZpn9y2//rrr9q9e7feeustmc1mvf7669q+fbsuXLggX19fNW3aVF988UWumf77hdYVJpMpx88sCNHR0QoNDS2UY+NfjLPjMNaOw1g7DmPtGIU5zjR4ATja/8UuUGf3B/VVylL7rCYAAAAAsvvp821at3ijov431ugogEtyeIMwKChI+/btsz+PiYlReHh4nvbx8PDIcfuWLVvUpk0bVa9eXZLUvn17bd68WadOndKhQ4f0yy+/KCEhQWlpaUpISNCYMWMK+SwBAAAAuKovLy1W1xJ99VXyUqOjAAAAAEXS9m92a9V7a/TK1+ONjgK4LIdf0hoREaGtW7cqISFBiYmJ2rx5s5o1ayabzabo6GhZrdZc98lte6VKlbR161ZdvHhRCQkJ2rJliypXrqyXX35ZS5Ys0UcffaSBAweqc+fONAcBAAAAFCp3D3etPDNH3QIHGB0FAAAAKHL2fP+Hlr3yGc1BwGAOv4MwMDBQgwcP1ujRo2Wz2dS3b18FBwcrKSlJAwYM0PLly3PdR1KO2zt27KjDhw9r6NChstlsat26tbp06eLoUwMAAAAASZKvv4/m/DFVvSoM1bITHxodBwAAACgS9m7+S7OfW6x3f5pkdBTA5Tm8QShJHTp0UIcOHbJs8/b21rfffnvVfXLbbjKZNHToUA0dOjTXz7zrrrtuMDUAAAAA5F1Q+UC9+f1LGljjCc3/a5rRcQAAAABDHdx1RO8Mn6WZO6YYHQWADJhiFAAAAABcRYXq5fTiyjF69BaWOgAAAIDrOrr3uCb3fYfmIFCE0CDMJCoqSiaTyf4AAAAAgBtVtUElPTVzqEa2eMHoKAAAAIDDnTx0WuPvflVzfn/b6CgAMqFBmInFYpHNZrM/AAAAAKAg1G5WQ4Ne7qWxHV8yOgoAAADgMGejz+npNi9qwYHpRkcB8B80CAEAAADAAW5tX1/dn+qqCfe8anQUAAAAoNDFnY3X0JvHaNnxD4yOAiAHNAgBAAAAwEGa3dVIHfq21qTeU42OAgAAABSaSxeT9FCV4frkn7lGRwGQCxqEAAAAAOBAbR9sqca336w3hrxndBQAAACgwKWlpql70CB9HrfQ6CgAroIGIQAAAAA4WOdB7XRTw6qa/sQco6MAAAAABepOr976Knmp0TEAXAMNQgAAAAAwwL0j7lBIxTKa9ewio6MAAAAABaJLiT5afWmJ0TEA5AENwkyioqJkMpnsDwAAAAAoTD2fuVee3h5aNHGl0VEAAAbh+ygAzqJbwACtOD1bHl4eRkcBkAc0CDOxWCyy2Wz2BwAAAAAUtgFRDyoxLlEr3lxldBQAgAH4PgqAM+hR7mHN/+td+fr5GB0FQB7RIAQAAAAAgw2d0l8nD53W2o82Gh0FAAAAyJenm1o0Y9urCgjxNzoKgHygQQgAAAAARcDIGQ/r0K6j+uajDUZHAQAAAPJkYI0n9OzHjyskvIzRUQDkEw1CAAAAJ7Bu3ToNGjRIAwcO1Jo1a3LdLykpSWPHjs2y7f3331ffvn3Vq1cvLVq0yL597969GjFihHr16qUPPvig0LID+Ncjb/fV1tU79P2Kn42OAgAAAFzVI/VHKfKzsSpXJdjoKACug7vRAQAAAHBjLly4oDlz5mj69Okym80aMWKEGjdurKCgoCz7ffXVV/rqq6+UkpJi37Zt2zbt27dP8+fPV1JSkh5++GE1b95cFSpU0OTJk/Xqq68qODhYo0eP1l9//aUaNWo4+vQAlzP+41Eaf9cr8vb1UkSXhkbHAQAAALIZ0eRZPTP/cVWuG67o6Gij4wC4DtxBCAAAUMxt3bpVjRs3VmBgoPz9/dW8eXP9/HP2u4/8/f3Vpk2bLNt8fHzUr18/eXh4qFSpUgoLC1NycrK2bNmi+vXrq0KFCvL09NRbb72lqlWrOuqUAJf38hfPacUbn2v3ht+NjgIAAABk8VSr8Rr+zmDVaMT/IwLFGQ3CTKKiomQymewPAACA4iAmJkYhISH258HBwTp79my2/Vq0aKGIiIgs2+rWratGjRpp3bp1GjNmjIKDg1WrVi2dOnVKiYmJGjZsmB588EFNmzat0M8DQFZvrIvU7HGL9OfWA0ZHAQAAACRJz3SI0sCJvVS3RU2jowC4QUwxmonFYpHFYrE/p0kIAACKA5vNlm2b1WrN1zEaNGggSVq8eLH279+v5ORk7d+/X1OnTpWPj48sFou+/PJL3XvvvVneFxUVpcjIyByPaTKZNHr0aI0aNSpfWfKCKWwci/F2rMzj/dynT+iFjq9q2LT+Cq8damAq58TfbcdivB2rsMab70oAwHW90HWyeoy5R7e0q2d0FAAFgAYhAABAMRcUFKR9+/bZn8fExCg8PDxP792yZYsCAwNVo0YNtW/fXgcOHNDWrVsVGBioRo0aKTg4Y7H5Zs2a6ciRI9ne/98LrK4wmUw5Ni4LQnR0tEJDaZQ4CuPtWDmN97w/3lW/aiM05TuLylUJyeWdyC/+bjsW4+1YhTneNHoBwDVFdp+iLo90VNM7bzU6CoACwhSjAAAAxVxERIS2bt2qhIQEJSYmavPmzWrWrJlsNpuio6Ovejfh2bNn9dFHHykpKUkXL17U7t27FR4erqZNm+qXX37RmTNnlJCQoE2bNqlOnToOPCsAmS08OEMjW7yg86cvGB0FAAAALmZS76lq+2ALtezW1OgoAAoQdxACAAAUc4GBgRo8eLBGjx4tm82mvn37Kjg4WElJSRowYICWL1+uwMDAHN97xx136MCBA3r44Ydls9nUrl073XbbbTKZTBo4cKDGjBmj9PR0tW3bVh07dnTwmQHIbPnJWbrXv7+WHv9APqVKGB0HAAAALmDKoBlqcsctavtgS6OjAChgNAgBAACcQIcOHdShQ4cs27y9vfXtt99m2RYeHq6ZM2fan5vNZo0cOTLHY3bq1EmdOnUq+LAArtv/xS5QZ48H9VXSUpndmBAGAAAAhWfqsA9Vp3kN3T6grdFRABQC/o8SAAAAAIqR1ZeWqEuJPkbHAAAAgBOb8eRcVa4brq5DuWgUcFY0CDOJioqSyWSyPwAAAACgqHFzd9Mn/8xVt8ABRkcBAACAE/pw7EKFhJdRtyfuNDoKgEJEgzATi8Uim81mfwAAAABAUeTr76M5f0xVrwpDjY4CAAAAJzL/xWXy9fNRjzH3GB0FQCGjQQgAAAAAxVBQ+UC99cNLGnDTE0ZHAQAAgBNYMvlT2aw29R1/v9FRADgADUIAAAAAKKZCq5VT5KfPaOjNo42OAgAAgGJsxZurdPH8RQ16ubfRUQA4CA1CAAAAACjGqtSvqKc/eFQjW7xgdBQAAAAUQ/8342udPnJGQ6f0NzoKAAeiQQgAAAAAxVztZjU06OVeGtvxJaOjAAAAoBhZPXutDu0+osenDTE6CgAHo0EIAAAAAE7g1vb11f2prppwz6tGRwEAAEAx8O3C7/Xbxr16+sNhRkcBYAAahJlERUXJZDLZHwAAAABQnDS7q5E6PtRGL/d62+goAAAAKMK+X/Gztnzxi8Z+9LjRUQAYhAZhJhaLRTabzf4AAAAAgOLmtp4t1OSOW/TG4PeMjgIADrdmzRpZrVajYwBAkfbT59u0bvFGjf94lNFRABiIBiEAAAAAOJnOA9vppkZVNf2JOUZHAQCHWr16tYYPH66dO3caHQUAiqTta3Zp1fvfKOp/Y42OAsBgNAgBAAAAwAndO+IOhVQso1nPLjI6CgA4zDvvvKO+ffvqnXfe0fjx4/X3338bHQkAiozdG37Xstf+p1e+esHoKACKABqEAAAAAOCkej5zr7xKeGrhSyuMjgIADtO6dWvNnj1bjRs31jPPPKN33nlH58+fNzpWrqKiomQymewPACgMezf/pTnPL9Eb6yKNjgKgiKBBCAAAAABOrH9kT126mKQVb3xudBQAcIjk5GSdPn1aVatWVb9+/bRp0yYNGDBAS5YsUXJystHxsrFYLLLZbPYHABS0AzsP690Rs/XuT5OMjgKgCHE3OgAAAAAAoHANfb2f3h0xW6veX6O7H+tsdBwAKDTdu3dXfHy83NzcFBISonLlyqlZs2YqV66cjh8/rqFDh2rSpEkKCwszOioAOMTffxzXq/3e1ezf3jY6CoAihgZhJlFRUYqMjDQ6BgAAAAAUuJEzHtaUQTPk5eOl2we0NToOABSKl156Sb6+vipdurT8/f2zvb5p0ya99tprmjZtmgHpAMCxTh46rQn3vKoFB6YbHQVAEcQUo5kwpQMAAAAAZ/bMvBHaunqHvl/xs9FRAKBQnDhxQiNGjNDmzZslSRs3btTOnTvtrzdu3FhWq9WoeADgMDEnzmnUbS/SHASQKxqEAAAAuGFRUVEymUz2B4Cia/zHo/Ttgu+15ctfjI4CAAVu9uzZeumll9S5c8Z0yp6enrJYLNq+fbskydvbWzNmzDAyIgAUutiYOA279RktPfaB0VEAFGE0CAEAAHDDmIkBKF5eXjVOK9/6QrvW/2Z0FAAoUGazWdWqVbM/j4iI0Lhx4zRv3jwDUwGA4yTGX1L/ao9r5Zk5RkcBUMTRIAQAAAAAFzRlrUVznlusP7ceMDoKABSYBg0a6Msvv8y27ejRowYlAgDHSUtN0/1lBuv/YhcYHQVAMUCDEAAAwCBr1qxhDRwAhpq2+RW99fD7OvwbX5wDcA7Dhg3TF198oVdeeUXbt2/X4cOHtXDhQoWFhRkdDQAK3Z1evfVV8lKjYwAoJmgQAgAAGGT16tUaPny4du7caXQUAC7swz1vytLtdZ08dNroKABww4KCgjRz5kwFBQXp/fff1+OPP679+/dr/PjxRkcDgELVxbu3VifRHASQd+5GByhKoqKiFBkZaXQMAADgIt555x1t3LhR77zzjsLCwvTII4+oUqVKRscC4IIWHJiuB0Mf0fs7pqh0uQCj4wDAdYuLi9PmzZtVp04dde/eXWXKlDE6EgAUum4BA7TizBx5ePJ1P4C8y/N/Mfbs2aMVK1bIYrEoPT1d27ZtU5UqVVShQoXCzOdQFotFFovF/txkMhmYBgAAuILWrVurefPm+uKLL/TMM8+oZcuW6t+/vwIDA42OBsDFfBw9S/f699fS4x/Ip1QJo+MAwHWZMGGC/vnnH5UpU0YHDhyQn5+fateurVq1aunBBx80Oh4AFLgeZYdo/v5p8vXzMToKgGImzw3CefPmqUqVKjKbzfrggw+0adMmJSUl6YUXXlDjxo0LMyMAAIDTSk5OVkxMjKpWrap+/fppwYIFWrt2rXr16qX7779fXl5eRkcE4EL+L3aBOns8qK+SlsrsxooUAIqfv//+Wx999JH8/f2VlpamQ4cO6c8//9Sff/5pdDQAKHB9Kg7Te7+8roBgP6OjACiG8twgPHDggF566SWZTCatXbtWU6dO1dGjR7VgwQIahAAAANehe/fuio+Pl5ubm0JCQlSuXDk1a9ZM5cqV0/HjxzV06FBNmjRJYWFhRkcF4EJWX1qiLiX66OuUZUZHAYB8q169utLT0yVJ7u7uqlGjhmrUqKF77rnH4GQAULAG1nhCU9ZFKjgsyOgoAIqpPDcIK1asqN9++00BAQHy9PRUxYoVVb58eb322muFmQ8AAMBp3XLLLXrssccUFBQkszn7nTqbNm3Sa6+9pmnTphmQDoCrcnN30ycxc9UtYID+d+Ejo+MAQL5ERERo8uTJeuqpp7jICoDTeqT+KEV+NlYVqpczOgqAYizPDcLBgwdr4sSJ8vLyUps2bSRlrEvo6elZaOEAAACc0ciRI+Xv76/ff/9dx44dk4+Pj3x9fe2vb9q0Sa1atVLjxo21dOlSA5MCcFW+fj6a++c7ejD0EX0cPcvoOACQZz/99JMOHDigIUOGqHHjxqpZs6Zq1Kihm266SUFB3GUDoPgb3vhZjf3ocVWuG250FADFXJ4bhI0aNdJ7772nw4cPq2nTptqzZ4/GjRun/v37F2Y+AAAApzNmzBj99ttv2rFjh2bOnKm///5bYWFhql27tipVqqQFCxaoVatW8vb21owZM4yOC8BFlS4XoLc3TtSAm57QR/u5kxlA8fD222/LarXq6NGj2rdvn/766y8tWrRIhw4d0urVq42OBwA35MmWL+jxaUN0U8OqRkcB4ATy3CCUpNDQUIWGhkqSatSooQULFqh8+fKFEswIUVFRioyMNDoGAABwchUrVlTFihWVkJCgHj166NKlS9q3b5/+/PNP/fHHH+rZs6fREQFAkhRarZwiP31GQ28erQ93v2l0HAC4JpvNph9++EF///23QkND9cQTT0iS0tLSDE4GADfmmQ5RGvRyb9VpXsPoKACcRPbFbnKxZ88eTZgwQWlpaUpOTtb27dtltVoLM5vDWSwW2Ww2+wMAAKCgDRo0SHv27JEkVa5cWbGxsSpRooRuueUW9erVSxaLRf369TM4JQD8q0r9inr6w2Ea2fx5o6MAwDXNnj1bb775pk6cOKEZM2bo0KFD+uCDD3Jc7xkAiovnu0xWz2fu0S3t6hkdBYATyfMdhPPmzVOVKlVkNpv1wQcfaNOmTUpKStILL7ygxo0bF2ZGAAAAp/H0008rODhYkjRnzhwdOXJEwcHBqlmzpv1x0003qUSJEgYnBYB/1Y64SYMn99EzHaI0Za3F6DgAkKuvvvpKr776qurWratu3bopNDRUf/75p5YvX65evXoZHQ8A8s1y3+u669FOanLHrUZHAeBk8twgPHDggF566SWZTCatXbtWU6dO1dGjR7VgwQIahAAAAHnUoEED+88zZ85USkqKDhw4oH379mnfvn1avXq1oqOjtWbNGgNTAkB2t7Srp6SEZE2451VN/Hyc0XEAIEc+Pj725XEkydvbWyNHjpTFYqFBCKDYmdR7qtr1aqkW9zYxOgoAJ5TnBmHFihX122+/KSAgQJ6enqpYsaLKly+v1157rTDzAQAAOKXk5GQtXbpUAwcOVJ06dVSnTh37awkJCQYmA4DcNburkZITk/Vyr7c1ftnTRscBgGwiIiI0f/58+9qDUkbT8Pz58wamAoD8e33gdDW981a1fbCl0VEAOKk8T8A+ePBgvfbaa4qMjFTr1q0lZaxL6OnpWWjhAAAAnJWXl5e2b9+uEydOZHvN19fXgEQAkDe39WyhJnfcojcGv2d0FADI5pFHHtH+/fs1fPhwpaena/PmzZo2bZrq169vdDQAyLO3H/1A9VrWUqf+txkdBYATy3ODsFGjRnrvvfc0cuRIDR06VHv27NG4cePUrVu3QowHAADgvO6880699957iouLMzoKAORL54HtVKNxNU17fLbRUQAgC29vb02fPl0PPPCAGjRooBkzZsjT01PPPPOM0dEAIE9mPDlXVepVVJdHOhodBYCTy/MUo5J09uxZnTlzRrt27dJNN92kBQsWqHz58oWVzeGioqIUGRlpdAwAAOAi1qxZo4MHD6pXr166+eabVadOHdWoUUM1a9ZUQECA0fEA4KruGd5ZK974XB+OXaihr/czOg4AFzZo0CA9/fTTatCggbZt26YaNWro9ttv1+233250NADIlw/HLlRIeBl1e+JOo6MAcAF5bhAuW7ZMy5YtU926dbVy5UolJSVpyJAhTtUgtFgsslgs9udXplItDF5eXoV2bPyLcXYcxtpxGGvHYaz/v717j8+5/v84/rzGtMhhraHlbBFKYbXxzSEjRTohY86HkZUwKZLLJSSFQo6Rc9K36OCUUt9vio2S9P1mI3S6Ut9Niq3NYdfvj+/ve7Vl09iuz/s6PO632+eWz3ufva/n57XJ+3a9rs/nYw1P1tnbf4azZ8/WuXPndPToUaWmpiotLU3Lli3TkSNHtGXLFtPxiuXWW2/12Nze/nP1N9TbWr5W726j79aKieu0ctJr6j2hm+k4F8XXau3rqLe1Am19NXLkSIWHh0uSlixZoqNHjyo8PFz169d3b9dee60uv/xyw0kL9ucPrNeoUcNjr+WNPz9/R82t56s1X/bkWpWrWFbdRt9tOspF89Wa+zJqbj1/XF8VuUG4fv16TZkyRY0aNZIkHT16VFOmTFG5cuXUurV/3gt5x44dHps7JyfHY3PjD9TZOtTaOtTaOtTaGp6ss7f/DGfMmOF+0+r2229Xx44dJUlnzpwxnKz4WEf5D+ptLV+sd5+JD2jRmJV67bm3fOoNLV+stS+j3tYKtPVV48aN3X9esGCBTp8+rUOHDik1NVWpqanatGmTnE6ntm7dajBl4f78gXWbzeax1/LGn5+/o+bW88War57yuiQp/okuhpNcGl+sua+j5tbzx/VVkRuEZ8+ezXe1YK1atTR69GjNmzfPbxuEAAAAnnT11Vdr9+7dWrVqlX777TfVrVvX3TBs37696XgAUGQJ03trzkMv6a15W3X3sA6m4wAIcDk5OapevboaNmzoHsvMzDSYCAAK99qMt5V5IlMJz/YxHQVAgAkq6oFNmjTRW2+9lW8sIiJCR44cuegX3b59u/r3769+/foV+umtwo4pbHzNmjXq2bOnevTooRUrVrjH58+fr/j4eMXFxWnVqlUXnRUAAMBTevbsKYfDobVr12rlypW6+eabtWXLFv3zn/80He2iORwO2Ww29wYg8Dw8d5DS9nytrcs+MB0FQADbunWrunfvrk8++USS9NFHH2nv3r0qV66c4WQAcL4Nczfr52/+Q3MQgBFFvoJwyJAhevTRR/XNN9+oRYsWqlatmjZv3qzatWtf1AueOHFCS5Ys0dy5cxUUFKTExERFRUUpLCzsL48pVapUgeMZGRnauHGjFi9eLJvNpmHDhqlp06b6/ffflZqaqmXLlik7O1uDBg1S8+bNVbdu3YvKDAAA4GlhYWHq06ePGjdu7JMNQitvjQXAe41eOkyTu89USLkQte7W3HQcAAHopZde0qRJkxQVFSVJKlOmjOx2uyZMmOAeAwBvsGnxezqy/1uNXDjEdBQAAarIVxCGh4dr3rx5ql+/vtavX69x48bpm2++UVJS0kW9YEpKiqKiohQaGqqKFSuqefPm2rlzZ5GOKWw8KChIpUqVUpkyZRQcHKzg4GAFBQWpbNmy6t27t4KDg1W+fHlVq1aNe/MCAACvsWfPHp08eTLf2I033qjdu3cbSgQAxTf+1VHatuIfSt74qekoAAJQUFBQvg+GR0dH6/HHH9fLL79sMBUA5Ldt5T/05Y4DNAcBGFXkKwglqWzZsoqLi1NcXJwkKTc396Ibbunp6apcubJ7Pzw8XBkZGUU6Jjg4uMDxyMhIRUdHq0uXLrLZbGrTpk2++8xv375dmzZtUnh4uK677rrzMjkcDk2cOLHAvDabTUlJSRo1atRFnWdROJ3OEp8T56PO1qHW1qHW1qHW1vBUnb39KraXXnpJR44cUUREhBo0aKDrrrtOx48fP69pCAC+ZvLbj+vRWIcuK3uZbrrtetNxAASQxo0ba+PGjerVq1e+saefftpgKgD4wz/WfaLkjZ9p/NqRpqMACHAX1SD8s99//1333Xef3n333SJ/j8vlOm8sNze3SMcUNr5//37t27dPM2fOVFBQkKZPn649e/a4bx3RuHFjSdLq1at18OBB1a9fP98cf74l1v/YbLYCX7MkOJ1ORUREeGRu/IE6W4daW4daW4daW8OTdfb2Bu+CBQuUnZ2ttLQ0/fvf/9Znn30mp9OpoUOHmo4GAMX27Pt2DW8+Tg8+318Noq81HQdAgBg6dKgSExP13XffqX379goLC9OWLVtUrVo109EAQJ+8uVvbX9khx/oxpqMAQPEahFLBzbwLCQsLU2pqqns/PT1d1atXL9IxwcHBBY4nJyerVatWioyMlCS1bdtWu3bt0rlz5xQaGqp69eqpbdu2OnTokFJSUs5rEAIAAFjl9OnT+uCDD/Tbb7+pdu3auummm9S4cWP3B5oAwJ/M3jlVCTcmaeyqR1T7hhqm4wDwUydOnFClSpUk/fc9pQULFmjdunWaP3++jh07pvr162v8+PFmQwIIeHu2fq63F7yrpzc/YToKAEj6i2cQfvvtt+dd3Vdc0dHRSklJUWZmprKysrRr1y7FxMTI5XLJ6XQqNze30GMKG69Zs6ZSUlJ06tQpZWZmKjk5WbVq1VJGRoaWL1+u7OxsnTp1Svv27TuvGQkAAGCladOmaebMmfroo480YcIEDR8+XMeOHTMdCwA8ZtG+GbLfN10/Hv7JdBQAfiouLk47duyQJC1fvlwHDhxQ165dtWTJEm3cuFEzZ87UNddcYzglgEC278N/ae0zG2gOAvAqF7yCcODAgQoJCVFkZKTq1aunevXq6dprr1W1atUUFHTB3mKhQkNDNWDAACUlJcnlcik+Pl7h4eHKzs5W3759tW7dukKPkVTgeLt27XTkyBElJCTI5XKpZcuW6tixoyTp0KFDGjRokFwul2677Ta1bt36knIDAACUhN27d2vcuHFq3bq1srKyNH36dL3wwgs8FweAX1txaK66RwzW/M+e1ZVVK5mOA8DPvPXWWzp79qwk6ddff9XKlSt1+PBhVapUSfXr11e9evVUv359NWvWzHBSAIHo3zvTtPSJNXrh4ymmowBAPhdsEG7YsEEHDx5UWlqa0tLStHz5cv3444+6/PLLFRkZqVq1al3Si8bGxio2NjbfWEhIiLZt23bBYwobt9lsSkhIUEJCwnnHDx8+/JIyAgAAeEJ2drZuvPFGSVLZsmXVv39/PfTQQ4ZTAYDnvepcrHsr9dXqb+erXIWypuMA8CPDhw/XvHnzJEkxMTEaPny4zpw5oyNHjig1NVWpqan68MMPtWjRIsNJAQSag58d1tyHl2jenmdMRwGA81ywQViuXDnddNNNuummm9xjp06d0sGDB5WamqqDBw+qatWqns4IAADgV/LeieGqq65Sdna2wTQAYJ0NJ5brjjJx2pi1WqVKlzIdB4CfqFKlihwOh2JiYrRixQqtWrVKwcHB7rthde7c2XREAAHom39/r2f6zNFLX84yHQUACnTBBmFBrrjiCjVp0kRNmjTxRB4AAAC/d/z4cVWoUMF0DAAwYmPWanUqG68tp9eajgLATzzxxBN6++239fHHHys9PV1333236tatm+/2osV5XA4AXCzn18c04Z5ntPzgHNNRAKBQrIzycDgcstls7g0AAKCkVapUSYMHD1aXLl00ZswYLVmyRJLkdDoNJwMAa5QqXUqvpy/VvZX6mo4CwE8cOHBAXbp00eTJk91XEcbFxalcuXLavn27RowYoXvuucd0TAAB4j/fZ2j0bRNpDgLwehd9BaE/s9vtstvt7n2ahAAAoKS99tpr+vnnn5WWluZ+1nOFChXUt29flS9fXg0aNNB1112n3r17m44KAB5TrkJZLT3wgrpHDNarzsWm4wDwcc8884xeeOEFXXXVVapQoYLCwsLUokULtWjRwn3Mjz/+aDAhgEDxa/pverDpGP395yWmowDAX6JBCAAAYLHKlSurcuXKuvXWW91jP/30k9LS0pSWlqYvv/zSYDoAsMaVVSvp+R2T1SfyIa04NNd0HAA+LC4uToMGDVLNmjX1zTff6KabbjrvtqJXX3214ZQA/F3Wyd/Vp+5DevPXFaajAECR0CAEAADwAlWqVFGVKlXUsmVL01EAwDJX16kix4YxSmicpEVfzDAdB4CP6ty5s1q2bKl//etfmjZtmrZv36758+fr7Nmzqlevnvs5hK1btzYdFYCfOnP6rLqGD9Cm7FdMRwGAIqNBCAAAAAAwpvb1NTRy8VANbz5Os3dONR0HgI+qVKmS/va3v2nkyJFq27atJOnYsWNKTU1VWlqa3n77bRqEADymY0gPbct9zXQMALgoQaYDAAAAAAACW4PoazVgak89GuswHQWAD3r66aeVnZ0tSe7moCRVrVpVrVu31uDBg/Xcc8+ZigfAz3UM6cGVgwB8Eg1CAAAAAIBxN912vbqOukvjO08zHQWAj9m+fbtOnz7t3p8/f36+/dzcXJ08edJENAB+7p6KffT3/yxVcBlu1AfA99AgzMPhcMhms7k3AAAAAIB1ojs1U/s+rTW5+0zTUQD4sDfeeMN9RaEk/f7777r//vsNJgLgj7pWHqgVX89V2fKXm44CAJeEBmEedrtdLpfLvQEAAAAArNW6W3PdfGcTPTdgnukoAAAABepZY6jmfzZdFa+qYDoKAFwyGoQAAAAAAK/Sod9tqhdVV3Meesl0FAAAgHz6XvuwnvtgosKrhZmOAgDFQoMQAAAAAOB17h7WQVVrVdaiMStNRwHgA3z5GYM88gbwHYOuH6lJbz6miLpVTUcBgGKjQQgAAIBi440tAJ7QbfTduvyKEK2YuM50FABerHz58urXr5/69u2radOmSZIOHDigzMxMw8mKhkfeAL5hWNRjemzFw6rZsJrpKABQIkqbDgAAAADfZ7fbZbfb3fs0CQGUlN4TumnxY6u07tk39cCj95iOA8ALvfHGGzp27JhSU1N18OBBNWnSRFOnTlVmZqaqVq2q6tWrm44IwMc98rcn9NCcgbq2aR3TUQCgxNAgBAAAAAB4tcHP9NKch17SW/O26u5hHUzHAeCFqlatqqpVq6p169buMafTqbS0NKWlpen06dMG0wHwZaPbTtSAKT3VsHk901EAoERxi9E8uDUWAAAAAHinh+cOUtqer7V12QemowDwEREREWrTpo0SEhL03HPPmY4DwAeNvXOK4h67Vze2aWQ6CgCUOBqEeXDPdwAAAADwXqOXDtPuLZ/rH+s+MR0FAAD4Oft909V56O2K6nCT6SgA4BE0CAEAAAAAPmP82pF6b9U/teudT01HAQAAfmpy3Cy17XGrWtxzs+koAOAxNAgBAAAAAD7lqbce1+uz3tHnH3xpOgoAAPAz0/vOVXSnpmr9QAvTUQDAo2gQAgAAAAB8zrPv27V03Bp9lXzQdBQAAOAnZg1ZqOtvvU7te7c2HQUAPI4GIQAAAADAJ83eOVWzEhboyP5vTUcBAAA+7sXhS1X7hhrqOLid6SgAYAkahAAAAAAAn7Vo3wxNvP9ZOb8+ZjoKAADwUYseXaHKNcN170N3mo4CAJahQZiHw+GQzWZzbwAAAAAA77f84ByNajVBGT/+YjoKAADwMcueXKtylcqpW1Jn01EAwFI0CPOw2+1yuVzuDQAAAADgG9b+sEgDG4xQ5m9ZpqMAAAAfsXrK65Kk+Ce6GE4CANajQQgAAAAA8AsbTixXl6sG6NzZc6ajAAAAL/fac28p89cs9XsqznQUADCCBiEAAAAAwG9s+n2NOl7e03QMAADgxTbM2ayfv0tXwvTepqMAgDE0CAEAAAAAfiOoVJDWH1+meyr2MR0FAAB4oU2L39ORL79V4gsDTEcBAKNoEAIAAAAA/ErZ8pfr5dTZ6h4x2HQUAADgRbat+Ie+/PiARi4cYjoKABhHgxAAAAAA4HeurFpJz++YrD6RD5mOAgAAvMCHr36slM17NWYZawMAkGgQ5uNwOGSz2dwbAAAAAMB3XV2nihwbxiihcZLpKAAAwKBP3tytD9Z+rCdeGWE6CgB4DRqEedjtdrlcLvcGAAAAAPBtta+voVEvPaiHY8aajgIAAAzYvWWv3lm4TY71Y0xHAQCvQoMQAAAAAODXrrslUoOm9dLothNNRwEAABb6/IMvte7ZtzR10zjTUQDA69AgBAAAAAD4vRvbNFK3pM4a33ma6SgAAMAC//okVcueXKtn37ebjgIAXqm06QAAAAAAAFghulMzZWed1uTuMzVgVpzpOAB81Pbt27Vy5Uq5XC716NFDHTp0yPf11atXa/Xq1e793NxcNWvWTFOmTLE6KhCwDn52WC8OX6p5e54xHQUAvBYNQgAAAABAwGjdrblysnK0eORq2V991HQcAD7mxIkTWrJkiebOnaugoCAlJiYqKipKYWFh7mPi4+MVHx/v3n/22Wd12223mYgLBKTvD/yoxY+s1uL9M01HAQCvxi1GAQAAUGwOh0M2m829AYA3u71vG9W5qYZmJ75kOgoAH5OSkqKoqCiFhoaqYsWKat68uXbu3Fno8Z999plsNpuioqIsTAkErh8OHdPsQS/RHASAIuAKwjwcDocmTpxoOgYAAIDPsdvtstv/eLYHTUIA3i62b0t9vGaPFo1ZqYTpvU3HAeAj0tPTVblyZfd+eHi4MjIyCjw2NzdXS5culcPhKPDrF3ofymazKSkpSaNGjSp25j9zOp0lPicujJpbI8P5iybf87xm7XZQcwOoufWoufU8VXNT76HQIMyDN7YAAAAAIHB0G323Vk56TSsmrlOfiQ+YjgPAB7hcrvPGcnNzCzx2x44dqlu3br7bj+b15/eh/sdmsxX4OiXB6XQqIiLCI3OjYNTcGif+85se6fSkXvtpCTU3gJpbj5pbz5M1N9Xs5RajAAAAAICA1XtCN+X8flrrnn3TdBQAPiAsLEzp6enu/fT0dF111VUFHrt9+3b97W9/syoaELAyf8tSv2sf1ms/LTEdBQB8Cg1CAAAAAEBAG/xML/38bbrefHGL6SgAvFx0dLRSUlKUmZmprKws7dq1SzExMXK5XHI6ne6rCbOzs7V//37ddNNNZgMDfu7M6bPqVnmgNpxYbjoKAPgcGoQAAAAAgID30JyBOvjZYW19+QPTUQB4sdDQUA0YMEBJSUkaOXKk4uPjFR4erpycHPXt21e//vqrJGnPnj1q1KiRypQpYzgx4N86hvTQpuxXTMcAAJ/EMwgBAAAAAJA0eskwTY6bpZByl6n1Ay1MxwHgpWJjYxUbG5tvLCQkRNu2bXPv33rrrbr11lutjgYElDsv66HNOTQHAeBScQUhAAAAAAD/b/zakXpv1T+1651PTUcBAACFuLtCb72R8bJKB3P9CwBcKhqEeTgcDtlsNvcGAAAAAAg8T731uN54fqP2bt9vOgoAAPiTrpUHauXhF3X5FSGmowCAT6NBmIfdbpfL5XJvAAAAAIDANP29CXp5/Fp9tSvNdBQAAPD/elQfogV7n1XFqyqYjgIAPo8GIQAAAAAABZj9yRTNGrJQR/Z/azoKAAABr0/kQ5r5j0m66porTUcBAL9AgxAAAAAAgEIs2jdDE+9/Vs6vj5mOAgBAwBp0/Ug99dbjurpOFdNRAMBv0CAEAAAAAOAClh+co1GtJijjx19MRwEAIOA82GyMHl85XDUbVjMdBQD8Cg1CAAAAAAD+wtofFmlgwxHK/DXLdBQAAALG8BZPaPiLgxTZpLbpKADgd2gQAgAAAABQBBt+Wa6ulQfq7JmzpqMAAOD3RredqIFTe6pBTD3TUQDAL9EgzMPhcMhms7k3AAAAAADy2pi1Wp3KxpuOAQCAXxt75xTFPXavbmzTyHQUAPBbNAjzsNvtcrlc7g0AAAAAgLyCSgVp/fFluqdiH9NRAADwS/Z7p6vzg7crqsNNpqMAgF+jQQgAAAAAwEUoW/5yLUubrQeuHmw6CgAAfmVy95lqG99SLe6+2XQUAPB7NAgBAADwl3Jzc01HAACvElqlkmZ/MkW96yaajgIAgF+Y3neuou9qptbdmpuOAgABgQYhAACAH9i+fbv69++vfv36aevWrYUel52drTFjxuQbmz9/vuLj4xUXF6dVq1ad9z1Lly7VwoULSzwzAPi6qrUra9KbjymhcZLpKAAA+LRZCQt0fcsGat+7tekoABAwaBACAAD4uBMnTmjJkiWaOXOmXnjhBa1cuVIZGRnnHbd582aNGTNGv/32m3ts9+7dSk1N1bJly7R48WK9/fbb+vrrr91f/+KLL/TWW29Zch4A4ItqX19Do156UA/HjDUdBQAAnzT34SWqc2MtdRwUazoKAAQUGoQAAAA+LiUlRVFRUQoNDVXFihXVvHlz7dy587zjKlasqFatWuUbK1u2rHr37q3g4GCVL19e1apVU05OjiQpMzNTixcvVrdu3Sw5DwDwVdfdEqlB03ppdNuJpqMAAOBTFj26QlVqVdY9iXeYjgIAAae06QAAAAAonvT0dFWuXNm9Hx4eXuAVhC1atNB3332n9957zz3WqFEjSf+9RemmTZsUHh6u6667TpI0e/Zs9e7dWz///HO+qw4BAOe7sU0jZWflaPxdT2vyO1xNCADAX3l5/Cu6IvQKdUvqbDoKAAQkGoR5OBwOTZw40XQMAACAi+Jyuc4by83Nvag5GjduLElavXq1Dh48qO+++07lypXTLbfconfeeafQ77vQ+slmsykpKUmjRo26qCxF4XQ6S3xOFI56W4t6W6eka139pqqKuruxxnWeoocW9i/Ruf0Bv9vW8lS9bTabR+YFEFhWT35dtiCbeo6733QUAAhYNAjzsNvtstvt7n0WvQAAwBeEhYUpNTXVvZ+enq7q1asX6XuTk5MVGhqqevXqqW3btjp06JBSUlKUmpqqw4cP69NPP1VmZqbOnj2rzMxMjR49Ot/3/3n99D82m63AxmVJcDqdioiI8MjcOB/1thb1to6nan1vQoTKXlZOq59Yr0dfTizx+X0Vv9vW8mS9afQCKK7XnntLmb9lKWF6b9NRACCg8QxCAAAAHxcdHa2UlBRlZmYqKytLu3btUkxMjFwul5xO5wWvJszIyNDy5cuVnZ2tU6dOad++fapevbomT56sNWvWaPny5erXr586dOhwXnMQAFCw2/u20XW3RGp24kumowAA4FU2zNmsn79LpzkIAF7ASINw+/bt6t+/v/r166etW7de1DGFja9Zs0Y9e/ZUjx49tGLFCvf4+vXr1b9/f3Xv3l2zZs3SuXPnPHdiAAAABoSGhmrAgAFKSkrSyJEjFR8fr/DwcOXk5Khv37769ddfC/3eO+64Q1WqVNGgQYM0ZMgQNWnSRK1bt7YwPQD4p84PdtDVdapo0aMr/vpgAAHN4XDIZrO5N8BfbVy0TUf/9Z0SXxhgOgoAQAZuMXrixAktWbJEc+fOVVBQkBITExUVFaWwsLC/PKZUqVIFjmdkZGjjxo1avHixbDabhg0bpqZNmyooKEgbNmxwHz9+/Hht2bJFnTp1svq0AQAAPCo2NlaxsbH5xkJCQrRt27Z8Y9WrV9eCBQvc+0FBQRo+fPgF577rrrtKLigABJBuSZ216qm/a7n9VfV1dDcdB4CX4pE3CATvLv9Q/96Zxu23AcCLWH4FYUpKiqKiohQaGqqKFSuqefPm2rlzZ5GOKWw8KChIpUqVUpkyZRQcHKzg4GAFBQXp+PHj6tSpk8qXL69y5copJiZGx44ds/qUAQAAAAABqteTXXU6+4zWPfum6SgAABjx4asfa/eWz2kOAoCXsbxBmJ6ersqVK7v3w8PDlZGRUaRjChuPjIxUdHS0unTpoq5du6phw4Zq2LChbr31Vj3wwAOS/vt8nW3btql58+YePkMAAAAAAP4w+Jle+vnbdL354hbTUQAAsNTHG1L04auf6IlXRpiOAgD4E8tvMepyuc4by83NLdIxhY3v379f+/bt08yZMxUUFKTp06drz549ioqKkiRt2bJFq1ev1oMPPqiGDRueN4fD4dDEiRMLzGuz2ZSUlKRRo0YV5fQuitPpLPE5cT7qbB1qbR1qbR1qbQ1P1ZnbMwEAvMVDcwbquYHztPXlD9Sh/22m4wAA4HEpm/dq0+L3NGXjONNRAAAFsLxBGBYWptTUVPd+enq6qlevXqRjgoODCxxPTk5Wq1atFBkZKUlq27atdu3apaZNm+rpp5/WuXPnNGfOHFWqVKnATH++1/v/2Gy2ApuSJcHpdCoiIsIjc+MP1Nk61No61No61NoanqwzDV4AgDcZvWSYpvR4XpeVLaM23f9mOg4AAB7z+Qdf6rXn3tKz75//nisAwDtYfovR6OhopaSkKDMzU1lZWdq1a5diYmLkcrnkdDqVm5tb6DGFjdesWVMpKSk6deqUMjMzlZycrFq1aumjjz5SVlaWJkyYUGhzEAAAAAAAqzzxyghtX7NDO9/eYzoKAAAe8a9PUrXsybU0BwHAy1l+BWFoaKgGDBigpKQkuVwuxcfHKzw8XNnZ2erbt6/WrVtX6DGSChxv166djhw5ooSEBLlcLrVs2VIdO3bU/PnztXfvXt17773u1+/cubMGDhxo9WkDAAAAACBJmvTmYxrTbpJCyl2mJm1vMB0HAIASk/bpYc17ZKle3P2M6SgAgL9geYNQkmJjYxUbG5tvLCQkRNu2bbvgMYWN22w2JSQkKCEhId94YmKiEhMTSzA5AAAAAADFN/29CRre4gmFzLxMDWLqmY4DAECxHfnyWz3X/0Ut+mKG6SgAgCKw/BajAAAAAABAmv3JFD0/dJEOf/GN6SgAABTLD4eOyXH/szQHAcCH0CAEAAAAAMCQhZ8/p0ldn9MPh46ZjgIAwCX5+bt0jYl1aFnaHNNRAAAXgQZhHg6HQzabzb0BAAAAAOBpy9LmKKn1BGX8+IvpKAAAXJQTP/+qxJsf1+pv5puOAgC4SDQI87Db7XK5XO4NAAAAAAArrP1hkQY2HKHMX7NMRwEAoEgyf8tSv3rD9dqxl0xHAQBcAhqEAAAAAAB4gQ2/LFfXygN19sxZ01EAALigMzln1K3KIG04sdx0FADAJaJBCAAAAACAl9j4+2p1ujzedAwAAC6o4+U9ten3NaZjAACKgQYhAAAAAABeIigoSBtOLNfdFXqbjgIAQIHuvKyHNue8YjoGAKCYaBACAAAAAOBFLr8iRMsPztEDVw82HQUAgHzurtBbb2S8rNLBpU1HAQAUEw1CAAAAAAC8TGiVSpr9yRT1rptoOgoAAJKkLuEDtOrIPF1+RYjpKACAEkCDMA+HwyGbzebeAAAAAAAwpWrtynrqrcc1+IZRpqMAAAJcXLUhWrTvOVUIK286CgCghNAgzMNut8vlcrk3AAAAFA0ftAIAz6jVqLpGLx2mh6LHmo4CAAhQfSIf0qx/TlJYxJWmowAAShANQgAAABQbH7QCAM+pf3OkBj/TS6PbTjQdBQAQYAY2GqnJbz+uq+tUMR0FAFDCaBACAAAAAODlbmzTSN1G363xdz1tOgoAIEAMbfqoxq1+RDUaVDMdBQDgATQIAQAAAADwAdEdm+r2fm301AMzTUcBAPi54S2e0CPzBqvuTbVMRwEAeAgNQgAAAAAAfESrrs0Vc1czTe8313QUAICfGn3bRA16Ol4NYuqZjgIA8CAahAAAAAAA+JD2fVqrQUw9zR622HQUAICfGXvHZMWNvU+NWzc0HQUA4GE0CPNwOByy2WzuDQAAAAAAb9R56O26um5VLXp0hekoAIqJ96PgLez3TlfnYR0UdfuNpqMAACxAgzAPu90ul8vl3gAAAAAA8FbdkjqrbIWyWm5/1XQUAMXA+1HwBpO7z1Tb+JZqcffNpqMAACxCgxAAAAAAAB/V68muOpNzRq9Of9N0FACAj3qmzxzFdI5S627NTUcBAFiIBiEAAAAAAD5s0LReSv8+QxvmbjYdBQDgY2YOXqDGrRuqXa9WpqMAACxGgxAAAAAAAB+XOHuADu09oq0vf2A6CgDAR8x9eInq3lRLdw6MNR0FAGAADUIAAAAAAPzA6CXDtOfdffrw1Y9NRwEAeLmFo1eoau3KuifxDtNRAACG0CAEAAAAAMBPPPHKCG1fs0M7395jOgoAwEstfWKNKoSVV9dRnU1HAQAYRIMwD4fDIZvN5t4AAAAAAPA1k958TOtnb9Le9/ebjgIA8DKrJ7+uoFJB6jH2PtNRAACG0SDMw263y+VyuTcAAAAAAHzR9G0TtGzCWv17Z5rpKAAAL7Hu2TeVdfJ39ZsUZzoKAMAL0CAEAAAAAMAPvfDxFL3w4CId/uIb01EAAIatn71J6T8c1+BnepmOAgDwEjQIAQAAAADwUws/f06Tuj6nHw4dMx0FAGDIOwu36duvvtew5/ubjgIA8CI0CAEAAAAA8GPL0uYoqY1dGc7jpqMAACz27vIP9dWuND0yP8F0FACAl6FBCAAAAACAn1v7/UINun6UTp3INB0FAGCRD9Z+rD1bP9ejLyeajgIA8EI0CAEAAAAACADrjy9TtyqDdPbMWdNRAAAetmN9sv752k6NWzPCdBQAgJeiQQgAAAAAQIDY+Ptqdbo83nQMAIAHpWzeq80vvS/766NNRwEAeDEahHk4HA7ZbDb3BgAAAACAPwkKCtKGE8t1d4XepqMAADxg7/b9+vuMtzVl4zjTUQAAXo4GYR52u10ul8u9AQAAAADgby6/IkQrDs1Vt6qDTEcBAJSgLz8+oBX2dZr+3gTTUQAAPoAGIQAAAIqNOzEAgG+pVLmi5uyaqt51Ek1HAQCUgLRPD2v+iJc166OnTEcBAPgIGoQAAAAoNu7EAAC+p2qtynrq7cc1+IZRpqMAAIrhyJff6rn+L+rF3c+YjgIA8CE0CAEAAAAACFC1GlXX6KXD9FD0WNNRAACX4IeDP8rR5Tkt+mKG6SgAAB9DgxAAAAAAgABW/+ZIJUzvrdG3TTQdBQBwEX7+Nl1j2k/SstTZpqMAAHwQDUIAAAAAAAJc49YN9cCYe/REp6mmowAAiuDEz78q8ZbHtfrofNNRAAA+igZhHg6HQzabzb0BAAAAABAobrmziTr0v01PPTDTdBQAwAVk/pqlfvWH67VjL5mOAgDwYTQI87Db7XK5XO4NAAAAAIBA0qprc8Xc1UzT+801HQUAUIDT2af1wNWDteGX5aajAAB8HA1CAAAAAADg1r5PazWIqafZwxabjgIA+JNOZeO1MWu16RgAAD9AgxAAAAAAAOTTeejtioisqoWjV5iOAvg9HnmDorqjTJy2nF5rOgYAwE/QIAQAAAAAAOfpOqqzylUsq+X2V01HAfwaj7xBUXQu31sbflmmUqVLmY4CAPATNAgBAAAAAECBej3ZVWdyzujV6W+ajgIAAatL+ACtPjpPIeVCTEcBAPgRGoQAAAAAAKBQg6b1Uvr3Gdowd7PpKAAQcOKqDdGifc+pQlh501EAAH6GBmEe3PMdAAAAAIDzJc4eoK8/P6otS7ebjgIAAaN33UQ9/9FTCou40nQUAIAfokGYB/d8BwAAAACgYEkvPajP3vtCH6z92HQUAPB7AxuO0JSN41S1dmXTUQAAfooGIQAAAAAAKJJxa0bog1d2aOfbe0xHAQC/NbTpoxq3ZoRqXHeN6SgAAD9GgxAAAAAAABTZpDcf0/rZm7T3/f2mowCA3xnefJwemZ+gujfVMh0FAODnaBACAAAAAICLMn3bBC2bsFb/3plmOgoA+I2kNnYNeqaXGkRfazoKACAA0CAEAAAAAAAX7YWPp2j2sMX6et9R01EAwOeNvWOyeoy7X41bNTQdBQAQIGgQAgAAAACAS7Jg77N6qtsM/XDomOkoAOCzJtzzjO5OvENRt99oOgoAIIDQIMzD4XDIZrO5NwAAAAAAcGHL0uYoqY1dGc7jpqMAgM956oGZate7lZp3jjIdBQAQYGgQ5mG32+VyudwbAAAAAAD4a2u/X6hB14/SqROZpqMAgM94ps8cNb87Sq26NjcdBQAQgGgQAgAAAACAYlt/fJkeqDpIZ06fNR0FALzezMEL1Lh1Q7Xr1cp0FABAgKJBCAAAgGLjVu0AAEna+Psadbq8p+kYAODV5jz0kiKb1NadA2NNRwEABDAahAAAACg2btUOAJAkm82mN39dobsr9DYdBQC80oKk5YqoW1V3D+tgOgoAIMDRIAQAAAAAACXm8itCtOLQXHWrOsh0FADwKkufWKOKV1VQl5F3mY4CAAANQgAAAAAAULIqVa6oObumqnedRNNRAMArrHrq7ypVupR6jL3PdBQAACTRIAQAAAAAAB5QtVZlTX5nrAZdP9J0FAAw6tXpbyo7M1t9Hd1NRwEAwI0GYR4Oh0M2m829AQAAAACAS1ezYTU9+nKiJt41w3QUADDi3SX/UIbzuAZN62U6CgAA+dAgzMNut8vlcrk3AAAAAABQPPVvjlT3J+7W6Nsmmo4CAJZ6Z+E2OQ8e07Dn+5uOAgDAeWgQAgAAAAAAj2rQ/Fo9MOYePdFpqukoAGCJrcs+0IHkg+o3jduKAgC8k5EG4fbt29W/f3/169dPW7duvahjChtfs2aNevbsqR49emjFihX55srOztaYMWM8czIAAAAAAOAv3XJnE90xoK0mdeN2owD82/ZXduizbV9o9NJhpqMAAFCo0la/4IkTJ7RkyRLNnTtXQUFBSkxMVFRUlMLCwv7ymFKlShU4npGRoY0bN2rx4sWy2WwaNmyYmjZtquuvv16bN2/W5s2bdfr0aatPFQAAAAAA5NGyS4yys3I0ve9cjVn+kOk4AFDidqxP1kd/3yX766NNRwEA4IIsv4IwJSVFUVFRCg0NVcWKFdW8eXPt3LmzSMcUNh4UFKRSpUqpTJkyCg4OVnBwsIKC/ntqFStWVKtWraw+TQAAAAAAUID2vVurQfN6mj1ssekogFdwOByy2WzuDb4redNn2rJkO81BAIBPsLxBmJ6ersqVK7v3w8PDlZGRUaRjChuPjIxUdHS0unTpoq5du6phw4Zq2LChJKlFixaKjo728FkBAAAAAICi6jz0dkVEVtXC0Sv++mDAz9ntdrlcLvcG37T3/f16fdY7mvzOWNNRAAAoEstvMVrQQic3N7dIxxQ2vn//fu3bt08zZ85UUFCQpk+frj179igqKqpImRwOhyZOnFjg12w2m5KSkjRq1KgizXUxnE5nic+J81Fn61Br61Br61Bra3iqznwCGwAA79V1VGetnvy6lk1Yq36T4kzHAYBL9uXHB7Ri4jrN+ugp01EAACgyyxuEYWFhSk1Nde+np6erevXqRTomODi4wPHk5GS1atVKkZGRkqS2bdtq165dRW4Q2u122e3288ZtNpvHPrnldDoVERHhkbnxB+psHWptHWptHWptDU/WmQYvAADeLX58Fy0Zu1prn9mguMfuNR0HAC5a2p6vNX/kMr2YMs10FAAALorltxiNjo5WSkqKMjMzlZWVpV27dikmJkYul0tOp1O5ubmFHlPYeM2aNZWSkqJTp04pMzNTycnJqlWrltWnBgAAAAAALtLAp+OV8cNxbZi72XQUALgoR/Z/q+cGzqM5CADwSZZfQRgaGqoBAwYoKSlJLpdL8fHxCg8PV3Z2tvr27at169YVeoykAsfbtWunI0eOKCEhQS6XSy1btlTHjh2tPjUAAAAAAHAJEmcP0IxB87Vl6XbdMaCt6TgA8Jd+OPijHF2f07LU2aajAABwSSxvEEpSbGysYmNj842FhIRo27ZtFzymsHGbzaaEhAQlJCQU+HrVq1fXggULSiA5AAAAAADwhKSXHtTUns/rsrKX6ba4v5mOAwCF+vnbdI1pP0mrj843HQUAgEtm+S1GAQAAAAAACjJuzQh9uPZjffLWbtNRAKBAv/x0Qg9Fj6U5CADweTQIAQAAAACA13BsGKM3527RZ+99YToKAORz6kSmBjQYoXU/LjYdBQCAYqNBmIfD4ZDNZnNvAAAAAADAes+8+6SW21/Vv3emmY4CAJKk09mn1T0iQeuPLzMdBQCAEkGDMA+73S6Xy+XeAAAAAACAGS98PEWzhy3W1/uOmo4CIMC5XC7dVa6XNmatNh0FAIASQ4MQAAAAAAB4pQV7n9VTD8zUDwd/NB0FQAC7o0yctpxeazoGAAAligYhAAAAAADwWstSZ2t024lK/+G46SgAAlDn8r315onlCirF26gAAP/Cv2wAAAAoNp7lDADwpFe+W6jBN4zSqROZpqMACCD3X9Vfa76Zr5ByIaajAABQ4mgQAgAAoNh4ljMAwNPWH1+mB6oO0pnTZ01HARAA4q5J0OL9M1X+yitMRwEAwCNoEAIAAAAAAJ+w8fc16nR5T9MxAPi53nUT9fyOyQq7OtR0FAAAPIYGYR7cGgsAAAAAAO9ls9n01m8r1Ll8b9NRAPipgQ1HaMrGcapau7LpKAAAeBQNwjy4NRYAAAAAAN4tpFyIVh5+Ud2qDDQdBYCfGdrkUY17ZYRqXHeN6SgAAHgcDUIAAAAAAOBTKoVX0Jzkp9W7TqLpKAD8xMMxYzVi4RDVvbGW6SgAAFiCBiEAAAAAAPA5VWtV1uR3xmrQ9SNNRwHg45La2DV4em9dd0uk6SgAAFiGBiEAAAAAAPBJNRtW05hlDynxlsdNRwHgox7vMFk9n7hfjVs1NB0FAABL0SAEAAAAAAA+q15UXQ15ro+S2thNRwHgY568e5ruffhONWt/o+koAABYjgYhAAAAAADwaY1bNVT3x+7VE52mmo4CP7J9+3b1799f/fr109atWws85quvvlJiYqLi4uK0cOFC9/iaNWvUs2dP9ejRQytWrLAqMi7CUw/MVPs+rRVzVzPTUQAAMKK06QAAAAAAAADFdcudTZSTlaNJ3WZowmtJpuPAx504cUJLlizR3LlzFRQUpMTEREVFRSksLMx9THZ2tqZOnapp06YpPDxcSUlJSktLkyRt3LhRixcvls1m07Bhw9S0aVNdf/31pk4HfzKt92y1uOdmtera3HQUAACM4QrCPBwOh2w2m3sDAAAAAAC+o2WXGDW/O0rT+841HQU+LiUlRVFRUQoNDVXFihXVvHlz7dy5M98xycnJuuGGG3TNNdeoTJkymjlzpurUqaOgoCCVKlVKZcqUUXBwsIKDgxUUxFtw3mLGoPm66bbrFRvf0nQUAACM4grCPOx2u+z2P55ZQJMQAAAAAADf0r53a+VkndYLDy7SI/MTTMeBj0pPT1flypXd++Hh4crIyMh3zLFjx5SVlaWhQ4fql19+UXR0tIYPH67IyEhFR0erS5custlsatOmjRo2bHjeazgcDk2cOLHA17fZbEpKStKoUaNK9Lwkyel0lvicvmL5uNdUrX5VNb7jOkvrEMg1N4WaW4+aW4+aW89TNTfVi6JBCAAAAAAA/MpdQ9rr9VnvaEHScg2d0dd0HPggl8t13lhubm6+/ZycHB08eFDPP/+8ypYtK7vdro0bN6pOnTrat2+fZs6cqaCgIE2fPl179uxRVFRUvu//8wfV/8dmsxX4+iXB6XQqIiLCI3N7uwVJy1XvxrrqMvIuS183kGtuCjW3HjW3HjW3nidrbqrZy/0NAAAAAACA3+ky8i6VD71CyyasNR0FPigsLEzp6enu/fT0dF111VX5jgkNDVWzZs0UHh6ucuXKKSYmRkePHlVycrJatWqlyMhI1alTR23bttWuXbusPgXksWTcGlUKr2B5cxAAAG9GgxAAAAAAAPil+PFddO7MOa19ZoPpKPAx0dHRSklJUWZmprKysrRr1y7FxMTI5XLJ6XQqNzdXt9xyiz799FP9/PPPyszM1I4dO9SwYUPVrFlTKSkpOnXqlDIzM5WcnKxatWqZPqWAtXLSawouU1pxj99nOgoAAF6FW4wCAAAAAAC/NfDpeL34yFJtmLNZ9z58p+k48BGhoaEaMGCAkpKS5HK5FB8fr/DwcGVnZ6tv375at26dqlSpon79+mn06NE6d+6c2rRpo3bt2kmSjhw5ooSEBLlcLrVs2VIdO3Y0fEaB6dXpbyonK0eDpvUyHQUAAK9DgxAAAAAAAPi1xBcGaObgBdq85H3dOTDWdBz4iNjYWMXG5v99CQkJ0bZt29z77du3V/v27c/73oSEBCUkJHg8Iwr3xgsbdfzHX/TgrH6mowAA4JW4xWgeDodDNpvNvQEAAAAAAP8wavFQ7X1/vz5Y+7HpKAA87O0F7+r7VCfNQQAALoAGYR52u10ul8u9AQAA+Irt27erf//+6tevn7Zu3VrocdnZ2RozZky+sfnz5ys+Pl5xcXFatWqVe3z9+vXq37+/unfvrlmzZuncuXMeyw8AgBXGrRmhD9d+rE/e2m06CgAP2brsA6WmHNLweYNNRwEAwKtxi1EAAAAfd+LECS1ZskRz585VUFCQEhMTFRUVpbCwsHzHbd68WZs3b9bp06fdY7t371ZqaqqWLVum7OxsDRo0SM2bN1dOTo42bNjgnnP8+PHasmWLOnXqZPXpAQBQohwbxuix259SSNnL1LRdY9NxAJSg7a/s0GfbvtDY1Y+YjgIAgNfjCkIAAAAfl5KSoqioKIWGhqpixYpq3ry5du7ced5xFStWVKtWrfKNlS1bVr1791ZwcLDKly+vatWqKScnR8ePH1enTp1Uvnx5lStXTjExMTp27JhVpwQAgEc98+6TWjFxnf71SarpKABKyI43kvXR67toDgIAUERcQQgAAODj0tPTVblyZfd+eHi4MjIyzjuuRYsW+u677/Tee++5xxo1aiTpv7co3bRpk8LDw3XdddcpKOiPz5FlZGRo27ZtGjVqlAfPAgAAaz2/Y7KGNn1Ujy5NVN2bapmOA6AYkjd+qi0vf6DJbz9uOgoAAD6DBiEAAICPK+jZybm5uRc1R+PG/73F2urVq3Xw4EHVr19fkrRlyxatXr1aDz74oBo2bHje9zkcDk2cOLHAOW02m5KSkjzSWHQ6nSU+JwpHva1Fva1Dra3ljfWe8M5IjWk5WaOWJ6hqncp//Q0+xFP1ttlsHpkXuFR739+v15/fqOnbJpiOAgCAT6FBCAAA4OPCwsKUmvrHLdLS09NVvXr1In1vcnKyQkNDVa9ePbVt21aHDh1SSkqKrr32Wj399NM6d+6c5syZo0qVKhX4/Xa7XXa7/bxxm81WYOOyJDidTkVERHhkbpyPeluLeluHWlvLm+u96ut56lF9iObselpXXXOl6TglwpP19sZGLwLXlzsOaIVjnWb98ynTUQAA8Dk8gzAPh8Mhm83m3gAAAHxBdHS0UlJSlJmZqaysLO3atUsxMTFyuVxyOp0XvJowIyNDy5cvV3Z2tk6dOqV9+/apevXq+uijj5SVlaUJEyYU2hwEAMBfvPLdQiU0TtLJX06ZjgKgiFJ3H9KCpOU0BwEAuEQ0CPOw2+1yuVzuDQAAwBeEhoZqwIABSkpK0siRIxUfH6/w8HDl5OSob9+++vXXXwv93jvuuENVqlTRoEGDNGTIEDVp0kStW7fWl19+qb179+ree+91b0uWLLHwrAAAsNYbGS+re0SCzuScMR0FwF84sv9bzRg0X3OTnzYdBQAAn8UtRgEAAPxAbGysYmNj842FhIRo27Zt+caqV6+uBQsWuPeDgoI0fPjw8+ZLTExUYmKiZ8ICAOClNmatVofS3fXuuXWmowAoxPdpTk3qNkMvH3jBdBQAAHwaVxACAAAAAADov8/Qfeu3FepcvrfpKAAK8NM3/9HjHSbTHAQAoATQIAQAAAAAAPh/IeVCtPLwi+pWZaDpKADy+OWnE3o4ZpxWHZlnOgoAAH6BBiEAAAAAAEAelcIraG7KNPWqPcx0FACSTp3I1IAGI7Tux8WmowAA4DdoEAIAAAAAAPxJlZrhmrppnAY2Gmk6ChDQcn4/rbhrErT++DLTUQAA8Cs0CAEAAAAAAApQo0E1Pbb8ISXe8rjpKEBAys3N1d3le+udzNWmowAA4HdoEObhcDhks9ncGwAAAAAACGz1oupqyHN9lNTGbjoKEHDuvKyHNue8YjoGAAB+iQZhHna7XS6Xy70BAAAAAAA0btVQcY/fq3Edp5qOAgSMzlf00pu/rlBQKd6+BADAE/gXFgAAAAAA4C/cfEcTdRwUK0fX50xHAfze/WH9tea7BQope5npKAAA+C0ahAAAAAAAAEVw6/3RanHPzZred67pKIDfirsmQYu/nKnyoVeYjgIAgF+jQQgAAAAAAFBE7Xu3VsMW9fXCg4tMR4GfcDgcstls7i2Q9a6TqOc/nqywq0NNRwEAwO/RIAQAAAAAALgIdw1pr2r1IrQgabnpKPADdrtdLpfLvQWqAQ0e0dTNT6hqrcqmowAAEBBoEAIAAAAAAFykLiPvUvkrr9CyJ9eajgL4vKFNHtUTa0eqev0I01EAAAgYNAjz4JYOAAAAAACgqOKf6KJz53K1dtp601EAn/VwzFiNWDhEdW+sZToKAAABhQZhHtzSAQAAAAAAXIyBU3sq48dftGHOZtNRAJ8zqvUEJTzbR9fdEmk6CgAAAYcGIQAAAAAAQDEkvjBAh7/4RpuXvG86CuAzHrv9KfV6sqtuaNnAdBQAAAISDUIAAAAAAIBiGrV4qD7f/qW2v7LDdBTA6z159zTdN7yjmrZrbDoKAAABiwYhAAAAAABACRi7+hH9Y90n+uTN3aajAF5rUrcZur1vG8Xc1cx0FAAAAhoNQgAAABSbw+GQzWZzbwAABCrH+jF688Ut+uy9L0xHAbzO071m69b7blHLLjGmowAAEPBoEAIAAKDY7Ha7XC6XewMAIJA98+6TWjFxnf71SarpKIDXmDFovpq0vV5te7Y0HQUAAIgGYT588h0AAAAAAJSE53dM1pyHXtLXnx81HQUwbnbiS6rXrI7uGNDWdBQAAPD/aBDmwSffAQAAAABASVnw2bOaHDdL36c5TUcBjJk/apmqXXu1Oj/YwXQUAACQBw1CAAAAAAAAD3n5wAsa026S/vN9hukogOWWjF2t0CqVdP+ITqajAACAP6FBCAAAAAAA4EFrvl2gITeO1slfTpmOAlhm5aTXFHxZsOIeu9d0FAAAUAAahAAAAAAAAB72RsbL6h6RoDM5Z0xHATxu7TMbdPr30+oz8QHTUQAAQCFoEAIAAAAAAFhg0+9r1PHynqZjAB71xvMb9ctPJzTw6XjTUQAAwAXQIAQAAAAAALDI26dWqfMVvUzHADzi7QXv6vs0px6c2c90FAAA8BdoEAIAAAAAAFgkpOxlWnlknrpVGWg6ClCitr78gVJ3H9LweYNNRwEAAEVAgzAPh8Mhm83m3gAAAAAAAEpapfAKmpsyTb1qDzMdBSgR29d8pM/e36/RS/idBgDAV9AgzMNut8vlcrk3AAAAAAAAT6hSM1xTN43TwEYjTUcBimXHG8n66I1kjV013HQUAABwEWgQAgAAAAAAGFCjQTU9tuJhJd78mOkowCVJ3viptrz8gex/H206CgAAuEhe1SDcvn27+vfvr379+mnr1q0XdUxh42vWrFHPnj3Vo0cPrVixwuPnAAAAAAAAUFT1mtXR0Jn9NKr1BNNRgIvy2Xtf6I0XNmny24+bjgIAAC5BadMB/ufEiRNasmSJ5s6dq6CgICUmJioqKkphYWF/eUypUqUKHM/IyNDGjRu1ePFi2Ww2DRs2TE2bNtX1119v8EwBAAAAAAD+cEPLBuox9j6N6zhVUzeNMx0H+Ev7P/pKq576u2b+Y5LpKAAA4BJ5zRWEKSkpioqKUmhoqCpWrKjmzZtr586dRTqmsPGgoCCVKlVKZcqUUXBwsIKDgxUU5DWnDAAAAAAAIEm6+Y4m6jgoVo6uz5mOAlxQ6u5DWjh6Bc1BAAB8nNdcQZienq7KlSu798PDw5WRkVGkY4KDgwscj4yMVHR0tLp06SKbzaY2bdqoYcOGnj8ZAAAAAACAi3Tr/dHKzsrRM33m6LEVD5uOA5zn8BffaObgBVr4OY1sAAB8ndc0CF0u13ljubm5RTqmsPH9+/dr3759mjlzpoKCgjR9+nTt2bNHUVFR+Y51OByaOHFigblsNpuSkpI0atSoizibonE6nSU+J85Hna1Dra1Dra1Dra3hqTrbbDaPzAsAAOAp7Xq1Uk5Wjp4fukgjFiSYjgMLXOh9KW/yXapTk7vP1NKvXjAdBQAAlACvaRCGhYUpNTXVvZ+enq7q1asX6Zjg4OACx5OTk9WqVStFRkZKktq2batdu3ad1yC02+2y2+3nZbLZbAU2H0uC0+lURESER+bGH6izdai1dai1dai1NTxZZxq8AADAF3VKaK/XZ72jBUnLNXRGX9Nx4GF/fl/KGz/k9tM3/9HYOyZr1ZF5pqMAAIAS4jUP5IuOjlZKSooyMzOVlZWlXbt2KSYmRi6XS06nU7m5uYUeU9h4zZo1lZKSolOnTikzM1PJycmqVauW6VMFAAAAAAC4oC4j71L5K6/QsifXmo6CAHf82AkNbz6O5iAAAH7Ga64gDA0N1YABA5SUlCSXy6X4+HiFh4crOztbffv21bp16wo9RlKB4+3atdORI0eUkJAgl8ulli1bqmPHjobPFAAAAAAA4K/FP9FFS8at0dpp6xX3+H2m4yAAnfzllAY1Gqk3Ml42HQUAAJQwr2kQSlJsbKxiY2PzjYWEhGjbtm0XPKawcZvNpoSEBCUkcM9+AAAAAADgewZO7al5I17W+tmbdN9wPvQM6+T8flo9qg3RO5mrTUcBAAAe4DW3GAUAAAAAAMD5hj3fX0e//FabXnrfdBQEiNzcXN1dvjfNQQAA/BgNQgAAABSbw+GQzWZzbwAAoGSNXDRU+z74Uttf2WE6CgLAnWV6aPPpV0zHAAAAHkSDMA/e2AIAALg0drtdLpfLvQEAgJI3dvUj+se6T/TJm7tNR4Efu6tcvN46uVJBQbxtCACAP+Nf+jx4YwsAAAAAAHgzx/oxemveVn26bZ/pKPBD94f11yvfL9Rll5cxHQUAAHgYDUIAAAAAAAAfMm3reK2a9Hd9+fEB01HgR7pHDNZL/5ql8qFXmI4CAAAsQIMQAAAAAADAx8z66CnNfXiJvv78qOko8AO9ag/T7J1TdWXVSqajAAAAi9AgBAAAAAAA8EELPntWk+Nm6fs0p+ko8GEDGjyip7eMV5Wa4aajAAAAC9EgBAAARh078rMyf8syHQMAAMAnvXzgBY1pN0n/+T7DdBT4oCE3jdb4V0epev0I01EAAIDFaBACAABj5o14WVPuf0EP3fK4Du07ajoOAACAT1rz7QINuWm0Th4/ZToKfMhD0WM1avFQ1Wlc03QUAABgQGnTAQLNmZwzmnj/s3IeOaZhswbo5g43mY4EAPASLpfrj/+68u///x8llyvf/n+P/d9x/zv2f188f84/5jt/zrxz/HnOwnIVZ85tK/6hdxa+qzM5Z/Xbf07pybue1qyPnlLVWpVLpJ4AAACB5I30l9WpbLw6P9heKVv2qnHLhhqxYIjpWPAi76/5SCsd61SrUQ39mv6bhs7oq/o3R5qOBQAADKFBmIfD4dDEiRM9Nv+5s+eUcONo97MBpvSYpQmvjVbT2Bs89poFseIN6Euds7A5LvUN6J+O/aTTv5wr8Te1C5vjvP0AqbPL5dKvJ06oQsWKxZvTPf4Xc+S68u3nrU/eOeXKe9z5r/FXP7uizJm3xufNWcAcBf7cLnLO33//XSGXhVzynHlrXvTfL8/XuTg18USd5ZLO5Z6TTbbC53Sf5yXW+U9sNtsf/7Xl3///P0o2W779/x77v+P+d+z/vnj+nH/Md/6ceef485yF5SrOnOk/HNeZnLPu88/NdemHQ8doEAIAAFyi+4bfqVenvylJ+u4rp1wuaeRCmoSQtry8XYvHrNJvGSf1w8Fjqt7gGl1/63WmYwEAAINoEOZht9tlt9vd++43WEvIp9v2KTsz272feSJL4ztN1WVlL/PsG+V/YsUb0Jc6Z2FzXOob0GfPnVVw6eASf1O78DlKvia+UGebzaZTmZk6eUVW8eZ0j//FHEH/HQiyBZ1Xn7xzKs8cBb1G3jn//BpFnTNvjc+bs4A5Cvy5XeScx48fV9hVYZc8Z96aFz7HpdfkUutcnJp4os6yScd+PKaIayIKn9N9npf49zjAfb3vqB6NnaiTxzMlSVddE6pm7RobTgUAAOC7Pt6wO9/+Z+99obNnzqp0MG//BLp/rPtEv2WcdO+fOn5KaZ9+rXrN6hpMBQAATGKFaKF6zerk2w+5IkT9J8fp9j5tPPtGeQBzOp2KiOBB21ag1tah1tY5+XtZlatY1nQMv1X3xlqa8eEkzUiYp4jaV2vc6kdMRwIAAPBptRpVd9+1SJLCq4XRHIQk6bpbrtW+D/+tMzlnJEmXXX6Zrm1a5y++CwAA+DNWiRaqVLmSFu2boYebj9PJEyfVd2Kc7n6wg+lYAAAYU/v6Ghr39+E0vQEAAEqA/fXRmnj/szr0+WFVqRGuGR9OMh0JXqKvo7vOnjmnd5d/oErhFTVn11Q+WA4AQICjQWix8ldeoWWps3X40GHVieSTWgAAAAAAoORMfONRpf3roOo1utZ0FHiZgVN7qnXfGEXW5/0oAAAgBZkOEKhCyoaYjgAAAAAAAPzQFaHlTEeAlypbnvejAADAf9EgBAAAAAAAAAAAAAIIDcI8HA6HbDabewMAAAAAAAAAAAD8DQ3CPOx2u1wul3sDAAAAAAAAAAAA/A0NQgAAAAAAAAAAACCA0CAEAAAAAAAADOGRNwAAwAQahAAAAAAAAIAhPPIGAACYQIMQAAAAAAAAAAAACCA0CAEAAFBs3BoLAAAAAADAd9AgzIM3tgAAAC4Nt8YCAAAAAADwHTQI8+CNLQAAAAAAAAAAAPg7GoQAAAAAAAAAAABAAKFBCAAAAAAAAAAAAAQQGoQAAAAAAAAAAABAAKFBCAAAAAAAAAAAAAQQGoQAAAAAAAAAAABAAKFBCAAAAAAAAAAAAAQQGoR5OBwO2Ww29wYAAAAAAAAAAAD4GxqEedjtdrlcLvfmSTNnzvTo/Pgv6mwdam0dam0dam0N6oyLxe+Mtai3tai3dai1tai3tag3CsPvhvWoufWoufWoufWoufX8seY2l6c7YT7MZrN5rFHoybnxB+psHWptHWptHWptDU/W2el0KiIiwiNz48JYR/kP6m0t6m0dam0t6m0t1le+jXWUf6Hm1qPm1qPm1qPm1vPH9VVpy1/Rh9x6660evdUotzG1BnW2DrW2DrW2DrW2hqfqPGbMGD3zzDMemRsXxjrKv1Bva1Fv61Bra1Fva7G+8l2so/wPNbceNbceNbceNbeev62vuILwIpVUl5h5fGuekpyLeXxrnpKci3l8a56SnIt5fGseeI63/az5/4W1c/lzJs7N2rm8bZ6SnMufM3Fu1s7lbfOg+LzxZ+rPmUpyLjJZO4+3zkUm6+cik7XzeOtc/p6puHgGIQAAAAAAAAAAABBAaBACAAAAAAAAAAAAAYQG4UWaOHGi6Qj5lFQef52nJHnbuXnbPCXFG8/LGzOVBG87L2+bpyR527l52zwlxdvy4Hze9jPy538rvK3WEvW2mjeemzdmKineeG7emKmkeNu5eePPraR4W55A5o0/C3//O0TNrZ3LG+steef5eWOmkuSN5+eNmUqKN9apJOfy95oXF88gNMSb7jPrz6izdai1dai1dai1NagzLha/M9ai3tai3tah1tai3tai3igMvxvWo+bWo+bWo+bWo+bW88eacwWhId7UJfZn1Nk61No61No61Noa1BkXi98Za1Fva1Fv61Bra1Fva1FvFIbfDetRc+tRc+tRc+tRc+v5Y825ghAAAAAAAAAAAAAIIFxBCAAAAAAAAAAAAAQQGoQAAAAAAAAAAABAAKFBCAAAAAAAAAAAAAQQGoQAPCo3N9d0BAAAAJ/HmgoAAKB4WE8BQH40CC22fft29e/fX/369dPWrVtNx/EbRanr+vXr1b9/f3Xv3l2zZs3SuXPnLE7pHy7md3jp0qVauHChRcn8T1Fq/dVXXykxMVFxcXHUuhiKUus1a9aoZ8+e6tGjh1asWGFxQv+WnZ2tMWPGmI4BH8A6yrNYT1mLNZV1WFNZi3WVd2B9hYKwlvIs1lLWYz1lPdZV1mNt5R38dm3lgmV++eUXV8+ePV3Hjx93nThxwhUfH+9KT083HcvnFaWu//rXv1x9+vRx/fbbb65Tp065RowY4XrnnXcMJfZdF/M7vG/fPtc999zjmjdvnsUp/UNRav3777+7evXq5fr+++9dOTk5roceesiVmppqKLHvKkqtU1NTXT179nSdOnXKlZmZ6erbt69r//79hhL7l02bNrkefvhh15AhQ0xHgZdjHeVZrKesxZrKOqyprMW6yjuwvkJBWEt5Fmsp67Gesh7rKuuxtvIO/ry24gpCC6WkpCgqKkqhoaGqWLGimjdvrp07d5qO5fOKUtfjx4+rU6dOKl++vMqVK6eYmBgdO3bMUGLfVdTf4czMTC1evFjdunUzkNI/FKXWycnJuuGGG3TNNdeoTJkymjlzpurUqWMose8qSq2DgoJUqlQplSlTRsHBwQoODlZQEP+EloSKFSuqVatWpmPAB7CO8izWU9ZiTWUd1lTWYl3lHVhfoSCspTyLtZT1WE9Zj3WV9VhbeQd/XluVNh0gkKSnp6ty5cru/fDwcGVkZBhM5B+KUtdbb73V/eeMjAxt27ZNo0aNsiyjvyjq7/Ds2bPVu3dv/fzzz/rtt9+sjOg3ilLrY8eOKSsrS0OHDtUvv/yi6OhoDR8+3OqoPq8otY6MjFR0dLS6dOkim82mNm3aqGHDhlZH9UstWrTQd999p/fee890FHg51lGexXrKWqyprMOaylqsq7wD6ysUhLWUZ7GWsh7rKeuxrrIeayvv4M9rK1rJFnK5XOeN8XDc4ruYum7ZskUjRozQgAED+B/lJShKrd977z2VK1dOt9xyi1Wx/FJRap2Tk6ODBw/qqaee0tKlS+V0OrVx40arIvqNotR6//792rdvn2bOnKlZs2YpNTVVe/bssSoiALGO8jTWU9ZiTWUd1lTWYl0FeC/WUp7FWsp6rKesx7rKeqyt4GlcQWihsLAwpaamuvfT09NVvXp1g4n8Q1Hqmpubq6efflrnzp3TnDlzVKlSJYtT+oei1PrDDz/U4cOH9emnnyozM1Nnz55VZmamRo8ebXVcn1aUWoeGhqpZs2YKDw+XJMXExOjo0aNWxvQLRal1cnKyWrVqpcjISElS27ZttWvXLkVFRVmaFQhkrKM8i/WUtVhTWYc1lbVYVwHei7WUZ7GWsh7rKeuxrrIeayt4GlcQWig6OlopKSnKzMxUVlaWdu3apZiYGNOxfF5hdXW5XHI6ncrNzdVHH32krKwsTZgwgQVYMRSl1pMnT9aaNWu0fPly9evXTx06dGDhdQmKUutbbrlFn376qX7++WdlZmZqx44dfPrwEhSl1jVr1lRKSopOnTqlzMxMJScnq1atWqajAwGFdZRnsZ6yFmsq67CmshbrKsB7sZbyLNZS1mM9ZT3WVdZjbQVP4wpCC4WGhmrAgAFKSkqSy+VSfHy8+9MUuHSF1TU7O1t9+/bVunXr9OWXX2rv3r2699573d/XuXNnDRw40FxwH1SUWoeGhpqO6ReKUusqVaqoX79+Gj16tM6dO6c2bdqoXbt2pqP7nKLUul27djpy5IgSEhLkcrnUsmVLdezY0XR0IKCwjvIs1lPWYk1lHdZU1mJdBXgv1lKexVrKeqynrMe6ynqsreBpNldBN7IFAAAAAAAAAAAA4Je4xSgAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGEBiEAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGEBiEAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGEBiEAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGEBiEAAAAAAAAAAAAQQGgQAgAAAAAAAAAAAAGktOkAAFBc999/v06ePHneeNu2bTV27FiPvObhw4f16KOP6vXXX/fI/AAAAFZjTQUAAFB8rKkA+AoahAB82rFjx3Ty5EktW7ZM5cuXz/e1MmXKeOx1Dx48qLp163psfgAAACuxpgIAACg+1lQAfAkNQgA+LTU1VREREbrmmmssf10WXgAAwF+wpgIAACg+1lQAfAkNQgA+7eDBg2rQoEGhXz979qzuueceJSUlacOGDfrmm28UExOj0aNHKzg4WP/5z3+0aNEi7d27V6VLl9a9996ruLg4SVJGRoYWLFigL774Qi6XSwMHDlSHDh3cr9ukSRM99thjSk1NVY0aNTRp0iRVqlTJitMGAAAoUaypAAAAio81FQBfQoMQgE9LS0vT3r179f777+cbv//++/Xggw/q8OHDOnPmjD777DPZ7Xb9+uuvGjdunLZs2aLY2Fg9+uijatOmjR588EE5nU6NHz9ejRo1UvXq1ZWYmKi77rrLPc+ECRPUokULlS1bVl9//bVKly6t8ePHq3Tp0kpISNCuXbt0xx13GKoEAADApWNNBQAAUHysqQD4EhqEAHxaWlqapkyZouuuuy7feEhIiCTpwIEDqlKlikaMGKHSpUsrLCxMMTEx+u677/TWW2+pdu3a6tevnyTpyiuvVKNGjXTo0CHt3LlTN954o3r16uX+2iOPPCJJOnr0qM6cOaPhw4crLCxMklSlShVdccUVFp01AABAyWJNBQAAUHysqQD4kiDTAQDgUjmdTmVmZqpRo0aqUKFCvu1/D34+cOCAmjVrptKl//g8xE8//aSIiAj985//VIsWLfLNefToUVWrVk3Jyclq3759vq916NBB5cuXV1pampo0aaLatWtL+u/tIQ4dOnTe4g8AAMAXsKYCAAAoPtZUAHwNDUIAPistLU1Vq1ZVuXLlCj3mq6++yvdg6JMnT+rAgQNq2rSpfvzxR1WrVs39taNHjyo7O1vXX3+9jh075v7UlSQlJyfro48+cr9u3vvJHz58WBUqVNBVV11VkqcHAABgCdZUAAAAxceaCoCvoUEIwGelpaWpevXqyszMPG/Lzc3VyZMn5XQ69f777+vbb7/VsWPHNGXKFN12222qUaOGatSooc2bN+vkyZNKTU3VlClTNHDgQF1++eWqX7++tmzZolOnTumTTz7RlClT3LdmSEtLU/369d05Dhw4cMEHUAMAAHgz1lQAAADFx5oKgK/hGYQAfFZaWpr27dune++997yvvfHGG0pNTVXt2rXVokULJSYmKiwsTLfffrvi4uIkSaNGjdKMGTPUs2dP1a5dW7169VLr1q0lSUlJSXrqqae0adMm1ahRQxMmTFCTJk109uxZHTly5LyFF7dtAAAAvoo1FQAAQPGxpgLga2wul8tlOgQAeMLKlSt1/Phx90ObAQAAcPFYUwEAABQfayoA3oZbjALwW3xiCgAAoPhYUwEAABQfayoA3oYGIQC/dfPNN6tZs2amYwAAAPg01lQAAADFx5oKgLfhFqMAAAAAAAAAAABAAOEKQgAAAAAAAAAAACCA/B8iFkredDD4JAAAAABJRU5ErkJggg==",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "plot_training_metrics(embedding_metrics, 'Metric Learning')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Evaluate model performance on sample test data\n",
-    "\n",
-    "Here we evaluate the model performace on one sample test data. We look at how the efficiency and purity change with the embedding radius."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 16,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 596])\n",
-      "torch.Size([596])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 6664])\n",
-      "torch.Size([6664])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 15730])\n",
-      "torch.Size([15730])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 28012])\n",
-      "torch.Size([28012])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 41682])\n",
-      "torch.Size([41682])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 55179])\n",
-      "torch.Size([55179])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 65439])\n",
-      "torch.Size([65439])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 70761])\n",
-      "torch.Size([70761])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 73106])\n",
-      "torch.Size([73106])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 74294])\n",
-      "torch.Size([74294])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 75154])\n",
-      "torch.Size([75154])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 75588])\n",
-      "torch.Size([75588])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 75877])\n",
-      "torch.Size([75877])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76123])\n",
-      "torch.Size([76123])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76231])\n",
-      "torch.Size([76231])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76287])\n",
-      "torch.Size([76287])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76328])\n",
-      "torch.Size([76328])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n",
-      "torch.Size([2, 76342])\n",
-      "torch.Size([76342])\n",
-      "torch.Size([2, 2370])\n"
-     ]
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABwgAAAJYCAYAAAB2JbLWAAA4B0lEQVR4nO3deZTddWH//9edyUwSsk0mGyQhhhCBkKQIGBDSsBoQFC2u5UeVtqIirm3Voq1fsYr9gvS0X1yLB+gBrVbFWrFiUBoQUEiAsDYGCGCWyb6QBZOZzNzfH4GRECCE3MnM5P14nMM5mXvvzH0Pf73OPO/93Eq1Wq0GAAAAAAAAKEJddx8AAAAAAAAA2HsEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKEifl7rz9NNPT0dHx063jxo1Kt/+9reTJL/61a9y9dVXZ+XKlfnZz36WFStW5J/+6Z/y4IMP5u///u/z5JNP5t/+7d/yd3/3dznppJNe9LlaWlpy3nnn5fjjj8/nP//5PfutAAB6oI6Ojpx++uk73Na/f/8cdthh+fCHP5xx48a9op/7Qjtq/fr1SZKmpqY9OTIAQI935plnpr29PbNmzeruowAA9BovGQiTpFKp5JRTTtnhtiFDhnT++z/+4z+ydOnSnH/++UmSW265JfPmzcuJJ56YCRMmpFKp5NRTT82oUaNe8nn69++fU089NYcccsgr+T0AAHqN+vr6nHTSSeno6MgDDzyQefPm5R/+4R/yrW99K5VKZbd/3gvtqPe+971pbGzMd7/73VoeHQAAAIB9wC4DYZ8+fXLRRRe96P2///3vU1dXl3e9612dXyfJySefnAMOOCAHHHBAjj/++F0eZOjQoS/5PAAA+4p+/fp17p62tra87W1vy+9+97usWrUqI0eO3O2f9/wd9eSTT6a9vT3btm3LwoULc/DBB9fs7AAAAAD0fnv0GYTve9/7snjx4nR0dGTmzJn5xje+ke985ztJkosvvjg33nhjvvOd72TmzJm55ZZbkiQLFy7MJz7xibzlLW/Jueeem+uuuy7VajUtLS2ZOXNmPve5z3X+/Hnz5uVDH/pQzjrrrJx//vn5zW9+0/kzZs6cmS996Uu5/PLLc/bZZ+e8887LXXfd1fm9L/Y8n/70pzNz5szcd999SZKnn346b3jDG3LBBRfsyf8KAIBXpKGhIfvvv3+S7bvkgQce6NxVz/rQhz6UmTNnpq2trXMHXXbZZbnqqqvyqU99aqcddckll2Tz5s1Zv359Pv3pTyeJDQQAFGvp0qX57Gc/m7e+9a350z/901x22WWdl2NPklmzZuUv/uIvcuaZZ+Y973lPfvCDH7ys+wAAerNdBsK2trbMnDlzh/+uu+66JNv/0DRy5MjU1dXliiuuyFvf+tacdtppSZLzzz8/xx133A4/a8OGDfnEJz6Rxx57LGeeeWaam5tz7bXX5oYbbtjpeRcvXpyLLrooW7ZsyTvf+c4kyRe+8IU88sgjnY+55ZZbsnTp0hx++OFpaWnJl7/85V0+z6mnnpokufPOO5Mk9913X9rb21/y8xEBALpCR0dH5s6dmyeffDJ9+vTpDIUvx9y5c/P9738/AwcO3Om+b33rWxk8eHCGDx+e73//+0liAwEARXr66afzN3/zN5k7d25OPPHETJ06Nb/4xS/y2c9+NtVqNY8++mguv/zy1NfX55xzzsmQIUNy5ZVX5tZbb33J+wAAertX9BmEBx10UJJkwoQJ6du3b5Jk0qRJSZIRI0YkSQ488MA0NTXt8H2/+tWvsmnTprznPe/Ju9/97jz11FO58sors23btp2e98Ybb0xHR0fe9KY3ZfLkyWlubs6//Mu/5Mc//nHe9ra3dT7nP//zPyfZ/jk7ixYtylNPPZXbbrvtRZ9n+vTpaWxszJ133pkLLrggc+fOTRJ/HAMA9prNmzdn5syZO9x29tlnp1+/fi/7Z9TV1eWHP/xhBg0alJaWll0+3gYCAEp02223Zc2aNXnzm9+cj3zkI0mSdevW5f7778+CBQuycePGJNuv6jBq1Kh8/OMfz+rVqzN69OgsX778Re8DAOjt9vgzCHfHihUrkqTzc3CGDBmST37yk0my0x+2li1bliT5+te/vsPtS5cu7fz32LFjO/89bNiwLFq0KB0dHS/5PEly3HHH5dZbb83ixYszd+7cHHbYYbv1in0AgD1RX1/fGeb69u2bKVOm7BQMd+XII4/MoEGDXvbj+/fvbwMBAMV5NvJNnTq187YpU6bk/vvvz7Jly3LCCSfkLW95S2655ZbOK1Mddthh+au/+qscddRRL3ofAEBvt8tAWEvDhw9Psv3zAY8//vhs2LAh11xzTSZMmJCjjz56h8c2Nzcn2X6JrPHjx6e9vT0tLS3p379/nnrqqVf8PGeddVZOOeWU3HrrrfnhD3+YFStW5K1vfWsX/LYAAC+sX79+L/oCrEqlkmT7K9uT7Zchfe5n5Dyrvr5+l89TrVZ3+NoGAgBKM2rUqCTJww8/3PkCrYceeihJMnLkyM5I+Od//udpaWnJzTffnB/96Ef53ve+l/e85z0vet9nPvOZ7vqVAABqYpeBsL29vfNVUs91wQUX7Nar1pNkxowZufrqq3P99ddny5YtefDBBzN//vz89V//9U6PPe2003LDDTfky1/+ck455ZTcddddmTdvXj75yU92vjPwlT7PtGnTMnDgwNx4441JkhNOOGG3fg8AgK4yevTo1NXV5fbbb88//uM/ZsmSJVm1atVu/5xBgwZl2bJl+fnPf543vOENSWwgAGDf1dHRsdPfr4477rjMmDEj11xzTX7605+mWq1m48aNuf/++3PIIYdk0qRJueGGG/LVr341U6ZMybHHHpvVq1cnSfbff//cc889L3ofAEBvV7erB3R0dOSmm27a6b+tW7fu9pM1Nzfn0ksvzUEHHZQbbrgha9euzfve976cccYZOz320EMPzcUXX5xt27bl6quvzpo1a/KJT3wip5122h4/T0NDQ0444YRUq9VMnTq18x2HAADdbdiwYbnwwgszYMCA3HvvvTn66KMzceLE3f4573rXu9Lc3Jwf/OAHnbfZQADAvuz5f7t67LHHMmDAgFx++eU5+uij8z//8z+577778vrXvz5f/OIXU1dXl7POOivnnntuVq9enWuvvTYPPvhg3vSmN+XP/uzPXvI+AIDerlJ9/rWnCnHTTTfly1/+cj760Y/mrLPO6u7jAADsFTYQAAAAALt8B+G+aPbs2bn++uvT0NCQGTNmdPdxAAD2ChsIAAAAgORlfAbhvuiqq65KtVrNBz7wgTQ1NXX3cQAA9gobCAAAAICk4EuMAgAAAAAAQImKvMQoAAAAAAAAlEogBAAAAAAAgIIIhAAAAAAAAFCQPi9045o1a7J169a9fRYAgJrq27dvhg0bttvf987bL8/d6x7Lvxz13rx5zLSanMW+AgD2BfYVAEBtdde+qlSr1erzb2xpacno0aN3+4cBAPQku7tpntqyOX92++X52ZoH09HRnhH9huTKYz6YPxlz7F4/CwBAT2RfAQDUVnftqxd8ByEAQAm2dTyVJ9d8I0+3Lkx9pZrzf7E2d7a3JQMakiSrtjyVs2+7JF+a+Dd51cADsn/z0MwYMTwNlUo3nxwAoGeyrwAAaqur9pVACAAUqZq2/HrhyXnq9/NSSdK3vk9Wt52W9G1MnrnAwuShozJk0xH5zK/nJ83LksaGHDZ4cG4+aUZG9+vXvb8AAEAPY18BANRWV+6rur30OwAA9ChPPX1PNmyZ1/n10P5HZ8yQQ7e/fKqafODVJ+cdTefl3o1DkwNGJv36Jkl+u2FDrnj0sW46NQBAz2VfAQDUVlfuK+8gBACKtHLz6jy9NRnQN+moJkP6TUl9w4DUV+vzb8d+KAf0+aO8fvbNyaC+SUdH56uykuSJzZu78eQAAD2TfQUAUFtdua8EQgCgSB1PLcritclhBySVJA0NEzNz/KRcPv4vc2TTQVnb2pbf/skb89jGjXlk44Y8unFj5m/YmPkbN6VfvYswAAA8n30FAFBbXbmvBEIAoDjVFbfl0DmXZNnI6Zm/4Y6MH5I0Nk7MRa95S+djmhsb0tzYkEMHDsia9YMyb8WmDN60NSPXb879KzqyelJbhg9s6MbfAgCg57CvAABqq6v3lZdnAQBFqa78TdpveXfa2zbk5I3bctTwi/PU1mRwv0Ne9HtOHNc3d/++LQsqydbBA7Kp33658LZV2dDWsRdPDgDQM9lXAAC1tTf2lUAIABSl/dcfSnXLmlSTbNvwcF63cmWmTfxpGvvs/6Lf86oBffL1149OKkmlPmnYr08e3NyeC25ftfcODgDQQ9lXAAC1tTf2lUuMAkAvs2nTplSf84HDJapUKhk4cOAr+97hr011w6NJkmqStsevzcTRJydDRr7o97Q93Zbxv/lt/r+pE/LvD65NtWP7///71rS+ojMAAD2LfWVfAQB7xp7aWU/fVwIhAPQy1Wo1gwYN6u5jdKuNGze+4u+tP+4rqW5cnY7Fs1JprCR1lbTd8RdpaD4kGfpHL/g9WzZuzXc++bP80Z9Nzj0nzshvl27IfnWV/N9pw17xOQCAnsO+sq8AgD1jT+2sp+8rlxgFAMpS3zd9Tvq3VFsPS8f6kUnDkakM++N0LP6vF/2WdYvWpaHffpn3r3fm8O/8d/r1bcjlxw7L6WP778WDAwD0UPYVAEBt7YV9JRACAOXpPzjVpnekdf6wbF0wNm1LXpu2RaOzbd7sdCx7PNVN65IkHY+vSvsl38/qJ9eko6M9A4aNzJYb7s3fr3o0p472xysAgE72FQBAbXXxvnKJUQCgTNt+n46Na5ONd6X9kbu231ZXSXVbW/b7xBWprDw4T7//yjSM2ZZV79p+ffdqtZrmppEZv19jNx4cAKCHsq8AAGqrC/eVQAgAFKlu+Ng/fFGpJEk6trWm8ZT3pf2HyZZ/vSKVVLK1bmtWP7oq1VSSajWN9X3TPGZUN50aAKDnsq8AAGqrK/eVS4wCAEVqOPldqT9oSpKk2taetnWbUmk4Ph3X9s+Wf/1Zkkqq1bZsWLQky+YtS7ZvsAwZOzjjXjv2xX8wAECh7CsAgNrqyn3lHYQAQJEqAwZn4CX/lfb5c7Jt+ZJ0tKzP1r+al22tjyaVaiqV+rRvezrb+tZl8hsnpZpKhowalCPfPjUN/UwoAIDns68AAGqrK/eV9QUAFK1+0jGpn3RMkqThwAXZfMFV6Vi2PqkkfWZMyvirP5iD9x/ZvYcEAOhF7CsAgNrqin3lEqMAAM/oc8KhGfCv7039+BHpc8phGfKff596f7wCAHjF7CsAgNqq1b7yDkIAgOfoM+PQDJ53SXcfAwBgn2FfAQDUVi32lXcQAgAAAAAAQEEEQgAAAAAAACiIQAgAdKnbbrst55xzTm699dZs27Ytn/70p/P+97+/u48FAAAAwD5qxYoVOfPMM7v7GD2aQAgAdKnrr78+559/fk488cTcf//9WblyZb72ta9197EAAAAAoFgCIQDQpTZs2JBRo0YlSTZu3Jhhw4aloaFhrzz3yXdsy6E/WLRXngsAoCfp6OhIe3t7zX+ufQUAUFvdta/67PVnBAB6hP/8ys/yk6/9PO1tHalvqMtbPnxG/uTDZ7yin7Vo0aJ85StfyaOPPpqJEyfmHe94R4499th84QtfyNKlS3PxxRfn1FNPzS9+8Yts2bIlH/3oR3PFFVfU+DcCAOhetdpXv/71r/OTn/wk/fv3z913352mpqa8/e1vz1ve8pYsXrw4H//4x3P99dd3Pv5973tfLrzwwhx44IH5yEc+kgsvvDBf/epXc+mll2b8+PE1/A0BALpWLf9e9VwPPfRQvvnNb+Z3v/tdxowZk/e+972ZNm1akuTb3/52fvrTn2bz5s2ZPHlyPvWpT6W5uXmX9/V23kEIAAW68lPX5erP/HuWPLIsy55YkSWPLMtVF30nV336O7v9s1pbW3PRRRfl6KOPznXXXZd3vvOdufTSS7Nw4cJ89rOfzZgxY3LxxRfngx/8YD760Y9mypQp4iAAsM+p5b5KknvuuScjRozIddddl4997GO55pprcvfdd+/y+zZu3Ji5c+fmW9/6ljgIAPQqtd5Tz1q/fn0+85nP5Iwzzsi///u/55xzzsnFF1+cZcuWZd68efnRj36USy65JNdcc03a29vz3e9+N0le8r59gUAIAIX5z6/8LDd8Y1a2bN66w+1bnt6aH3/lxvzkaz/frZ83d+7c1NXV5Z3vfGcGDRqUY445JtOnT88vf/nLWh4bAKDHqvW+SpKBAwfm/e9/f5qamvLa1742b3rTm/KLX/xil9+3devWvPvd787gwYN3+zkBALpLV+ypZ91+++05+OCD88Y3vjGDBg3KiSeemNe+9rWZPXt22tra0tHRkdWrV2fIkCG59NJL84EPfCBJXvK+fYFACACF+c//97Odxtaztjy9NT/+6o279fOWLVuWdevW5dxzz80555yTc845J3fffXeXfOYNAEBPVOt9lSSjRo1Knz5/+GSYAw88MCtXrnzBx1ar1c5/VyqVDB8+fLefDwCgO3XFnnrW6tWrM3r06B1uGz16dFavXp1jjjkmf/mXf5lrr702Z599dj7zmc/kiSeeSJKXvG9f4DMIAWAfdd3nf5BrP//93f6+xQtaMrPuHTvd/p7PvTPv/tzOtzc3N2fy5Mm57LLL/vAzFi9Ov379dvu5AQB6sr21r5Jk5cqV2bZtW2ckbGlp6Qx/z30h1pYtW7J8+fLOryuVSiqVym6fEQBgb9ibe+pZw4cPzwMPPLDDbcuXL8/EiROzbNmyHHXUUXnzm9+czZs357vf/W6uuOKKfOUrX3nJ+/YFAiEA7KPe/bl3vOBAes/ED2fZ4yte9PsOPGxMrv7ff3nZzzNt2rR8/etfz3//93/npJNOyvz58/P5z38+l112WUaMGPFKjg4A0CPtrX2VbP8swauuuirnnntuFi5cmJ/85Ce56KKLMmjQoGzevDm33357jjvuuFx//fXZuvWFX20PANDT7M099azp06fnyiuvzKxZszJjxozcc889mTt3bs4///zce++9uf766/OFL3whgwcPTkdHR7Zt25YkL3nfvkAgBIDCvO2v3phv/e23s/Xp1p3u67tfY9760TN36+cNGjQol1xySb7+9a/nm9/8ZoYNG5aPfexjmTRpUq2ODADQo9V6XyXJxIkT097envPOOy/9+/fPeeedl2OPPTZJ8sEPfjDXXHNNvvjFL2bKlCk5/PDD9/h3AADoTl2xp541dOjQfOlLX8o3vvGNfPWrX83o0aPzf/7P/8mYMWMyatSoLFiwIB/5yEfS1taWQw89NH/7t3+bJDn99NNf9L59QaX63AvVP6OlpWWn67ECAD3Dxo0bM2jQoD36GVdd9J38+Gs37nBt9777NeatH3tT/vKSc/b0iF3u5f4/OPQHi5IkC94xbref49d3zU2fPn1yzNFH7vb3vhD7CgB6rp62r37961/ne9/7Xq644oo9OtPusK8AgD3R0/ZUT9DT95V3EAJAgd77f8/NiHHD8uOv3Ji2rdvS0K8hZ3/0jJx1wendfbQeYeHjT+axx7d/6PSwoUNz8ITx3XsgAKDHs69emn0FAOyKPbV79nRfCYQAUKg3X/iGvPnCN3T3MXqchY8/mTvumpPBg7e/wuuOu+YkiT9iAQC7VKt9NXr06Jxyyik1OFHPYF8BAC+Xv1e9PLXYVwIhAMDzTD/2mDz2xPZXYE31WYoAwF42fvz4jB8/vruPUVP2FQBAbe3pvhIIAQCy/ZVXyR9eafXswHr26+ffDwDAS7OvAABqq5b7qq7GZwMA6HWevSzDrtxx15zOoQUAwIuzrwAAaqvW+8o7CAGAov36rrl57PEnMnjwoDz2xBOdr7xatXpNkmTWzbM7Hzt48KDccdecrFm3LsccfWS3nBcAoKezrwAAaqsr9pV3EAIA7KZt27Z19xEAAPYp9hUAQG3tal95ByEAULTjj52WUSNG5I675mTqpEmd12h/9pVXp596cpI/XMZh+rHH+JwcAICXYF8BANRWV+wrgRAAKN7L/YOUP14BALw89hUAQG3Vel8JhAAA+cPIev6HOD/7tT9cAQDsHvsKAKC2armvfAYhAMDz3HHXnPx+y5b8fsuW3HHXnO4+DgBAr2dfAQDU1p7uK+8gBAB4jmdfafXssHLZKwCAPWNfAQDUVi32lUAIAPA8B08YnxWrVnX+GwCAPWNfAQDU1p7uK4EQAOAFHH/stO4+AgDAPsW+AgCorT3ZVz6DEAAAAAAAAAoiEAIAAAAAAEBBXGIUAHqZSqWSjRs3dvcxulWlUunuIwAA+xD7yr4CAPaMPbWznr6vBEIA6GUGDhzY3UcAANin2FcAAHvGnup9XGIUAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIzyAEAPZZs6f3yejRo7v7GAAA+wz7CgCgtrprX3kHIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAF6dPdBwAA6E6tbW1ZvGRpFi1ZmoMPGp9xY8fkjjvnpLGxMdOOek0WPv5kFi1dmnFjx+TAsWPS2NDQ3UcGAOjR7CsAgNrqin3lHYQAQNEWL16aOffMS2tra9pa255zT7XzX62trZlzz7wsXrx07x8QAKCXsa8AAGqrK/aVdxACAEVbtGRJmoc25fRTT+68bfrrjun898ETxufgCeMz6+bZWbRkSQ6eML4bTgkA0HvYVwAAtdUV+0ogBACKNm7s2Jf1uIkHHdTFJwEA2DfYVwAAtdUV+0ogBACK9nJfse6V7QAAL499BQBQW12xrwRCAKBod9w5J8mOl2VIkk2bN2fuvfdl+YqVaWtry6iRI3LE1MnZf+TI7jgmAECvYV8BANRWV+yrui45KQBAL9HY2JDGxoYdbtu0eXNuuPGmbNq0Ka+ZOjnTjnpNGhsactPNt2T5ypXddFIAgN7BvgIAqK2u2FfeQQgAFG3aUUfudNvce+Zl4ID9ctYZp3feNunQQzLr5tm5/8GHs/+pXuUOAPBi7CsAgNrqin3lHYQAQNEWPv5kFi1ZusNty1euysQJO3+o87ixY7J23fq9dDIAgN7JvgIAqK2u2FfeQQgAFG3RkiVpbWvLuLFjuvsoAAD7BPsKAKC2umJfeQchAFC0cWPHZu269Zl18+zOV2LtP3JEHnv8yZ0eu2jJ0jQPbdq7BwQA6GXsKwCA2uqKfeUdhABA0Q48cPsrrxYtWZK21rYkybSjj8wNN96UG268KRMnjH/m/qVZsXJVpkw6rLuOCgDQK9hXAAC11RX7qlKtVqvPv7GlpSWjR4+u4dEBAPa+Pdk0mzZvztx75mX5ylVpa2vLqJEjMmLYsDw0/7eZfuwxOfiZ4bU3zgIA0FPYVwAAtdVd+8o7CAEAXsDAAQNy8gl/vNPtQwYPzh13zcnQoU0uhwUAsBvsKwCA2tqTfSUQAgDshoMnjM/QoU0ZOHBAdx8FAGCfYF8BANTWy9lXAiEAwG7yynYAgNqyrwAAamtX+6pu7xwDAAAAAAAA6AkEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIL06e4DAAB0t4ceeuhlPW7KlCldfBIAgH2DfQUAUFu13lcCIQBQPH+YAgCoLfsKAKC2ar2vXGIUAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBADYTdVqtbuPAACwT7GvAABqa1f7qs9eOgcAQI9TTVJ55t/t7e2pr6/ffnu1mkql0vm4NWvXZUlLS+rr6nLgmDEZMmTw3j8sAEAvYF8BANRWV+0rgRAAKFYlycaNm3LfQw9n0aIlGXfgmBwxdXIGDxqUJGnv6Mj9DzyUBY8tTLVaTUe1Iw88PD9TJh2aqZMP32GEAQBgXwEA1FpX7SuBEAAo1oaNG3Pzrbenta0tTUMGp2X5yqxZtz4nz5ieIYMH5eH5v03LytWZevikHHbIq9Pe0Z6H/nd+nlzckn79++eQgyd0968AANCj2FcAALXVVfvKZxACAMW6974HsmXL1sx43TF54xtmZsbxx6a1rS0Pz1+QarWa+QseTf/GPply+GHp06c+fRsbc/Rrjkjfxj558OH53X18AIAex74CAKitrtpXAiEAUKyVq9fkVQeOyegD9s+SlpaM3n9URu8/MouWLM7W1tZ0dHRk+PDhSbZf4729vT1JMrSpKXXPXO8dAIA/sK8AAGqrq/aVQAgAFKtv374Z2tSUhU88mbvnPZCFTzyZ5qamtLd3pJKkoU99lrS0pKOjmvr6+tTX12fbtm1ZvmJF2re1dffxAQB6HPsKAKC2umpf+QxCAKBY7R3taWtry4jhzTn+mNemrq6Spcs2p1KpS9++fTNh/Pi0rFyd2b+6LYe+emI6qh2Zv+DRpFKfSYeM7+7jAwD0OPYVAEBtddW+EggBgGLVVepS16cuq1avyeO/W5KDXjU29XX1qVSS9o6OTDl8Utau/002bHo6c+bdnz719Wlra8sBo0bmsENe3d3HBwDocewrAIDa6qp9JRACAMWqVOqSanLYoa9OW9u2TDrk1Xlo/oKkUklHe0caGxsyZPCgrFm7Lge96sA09GnIqFEjMnr//bv76AAAPZJ9BQBQW121rwRCAKBYW7b8Pk89tSGVSiV/NOXwJMlTG55KtVpNnz71aWvblscefyJNg4fkmKOP6ubTAgD0fPYVAEBtddW+quuqAwMA9HSjRgzPkpZlWb5yZZJk+cqVaVm+MgeOPiCVSiXLli9P3379M/5V41KtVtPe3p5qtdrNpwYA6LnsKwCA2uqqfeUdhABAsY78oyn55a23539uvSMjhzdn5eo16devX+ersZ5cvDhtra0ZN3ZMKpVK6urqUqlUuvnUAAA9l30FAFBbXbWvvIMQACjWkCFDcvKM6Tlg/5FZsXp1Dhg1Mif98XEZMnhwWltbs7RleZqHNmXAgP2SxB+vAAB2wb4CAKitrtpX3kEIABSrWq2meWhTTp4xPe3t7amvr++8vaGhISdMPy79+vbt5lMCAPQe9hUAQG111b4SCAGAYlUqlc5rstfX13f++9lXWo05YP9uOxsAQG9kXwEA1FZX7SuBEAAo2nMvu+ASVwAAe86+AgCora7YVz6DEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABSkT3cfAACguz300EMv63FTpkzp4pMAAOwb7CsAgNqq9b4SCAGA4vnDFABAbdlXAAC1Vet95RKjAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAC/gjjvn5I4753T3MQAA9hn2FQBAbe3JvupT47MAAOwTNm3e3N1HAADYp9hXAAC1tSf7yjsIAQAAAAAAoCACIQAAAAAAABREIAQAeMbadevT2ta20+2tbW1Zu2793j8QAEAvZ18BANRWrfaVQAgA8IxZN8/OrF/O3mFktba1ZdYvZ2fWzbO78WQAAL2TfQUAUFu12lcCIQDAM04/9eRs2rw5s345Ox0d1XR0VDPrl7OzafPmnH7qyd19PACAXse+AgCorVrtK4EQAOAZzUObOkfWuvXrs279+s5x1Ty0qbuPBwDQ69hXAAC1Vat9JRACAMV77rXbnx1Z7e3taW9v32Fc+awcAICXx74CAKitWu8rgRAAKN5Pf35T1q5b1/n1syPr+a+8WrtuXX7685u64YQAAL2LfQUAUFu13ld9uuKQAAC9TWtr2w5fjxwxfJePAQDgxdlXAAC1Vct9JRACAMU7cMzozL13XuYveOQlH7dp8+YcOGb0XjoVAEDvZV8BANRWrfeVS4wCAMWbdvSRGTd2zC4fN27smEw7+si9cCIAgN7NvgIAqK1a7yvvIAQAijdwwIBMO8ofpgAAasW+AgCorVrvK+8gBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABSkT3cfAACgu61dtz4DBw5Ia2tr5i94NMtXrMy69euTJKNGjsi4sWNy8ISD0tjQ0L0HBQDoJewrAIDaqvW+EggBgOL99Oc3ZdpRr8l9Dz6cJJk4YXyOmDo5ba1tWb5yZe578OH874JHcvKMP07z0KbuPSwAQC9gXwEA1Fat95VACACQZO6992Vo05Cc/vpTdnil1cETxmdaW1tm/+r2zL7t9px1xule6Q4A8DLYVwAAtVXLfeUzCAEAOlVy/zOvwnquxoaGnHzCH6e1tS0LH3+iG84FANBb2VcAALVVm30lEAIAxTv4oPEZNXJEGhsbklRf8DGNDQ2ZOGF8Hnv8yb16NgCA3si+AgCorVrvK5cYBQCKN/11x7ysxx04dow/YAEAvAz2FQBAbdV6X3kHIQBQvO/+8D+zfOXKXT5u/5Ejc87bz94LJwIA6N3sKwCA2qr1vvIOQgCgeAMH7JfFS5Zm/5EjX/D+O+6ck02bNydJmocOzbSjXrMXTwcA0PvYVwAAtVXrfeUdhABA8caNHZvHHn8yrW1tL/qY1tbWrFi5KvMXPLIXTwYA0DvZVwAAtVXrfSUQAgDFm3TYIWlsaMjsX93+giNr2tFHJqns/YMBAPRS9hUAQG3Vel+5xCgAULzGhoacfMIfZ/avbs/1//XTjBs7JvuP2n65hrXr1uexx59Ikkw76jWZe+993XhSAIDewb4CAKitWu+rSrVarT7/xpaWlowePbq2JwcA2Mt2d9O0trVl4eNPZNGSpVmxclWSZGjTkIwbOzYHTxifxsbGbNq0Oc1Dm7r8LAAAPZF9BQBQW921r7yDEADgGY0NDZl06CGZdOghL/qYV/LHKwCAUtlXAAC1Vat95TMIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAXp090HAADoSdauW59169dn7br1SZLmoU0Z2tSU5qFN3XouAIDeyr4CAKitWuwrgRAA4Blz752X+QseTZKMGjkiSTJ/wSNJkiOmTs4RUyZ329kAAHoj+woAoLZqta8EQgCAJDfcOCubNj+dk2ZMz7ixY3a4b9GSpbnjzjlZtHhpzjrjtG46IQBA72JfAQDUVi33lUAIABRv7r3zsmnz0zn91JPTPLQpCx9/MnPunZckec3UyZl06CEZeOrJmXXz7Nz/4MM5YqpXugMAvBT7CgCgtmq9r+r2xqEBAHqqtevWZ/6CRzP9dcd0Xqd9zr3zcvihh+Q1Uydn7r33Ze269Wke2pTprzsm9z/0cOf13QEA2Jl9BQBQW12xrwRCAKBo654ZS8+9LMM5bz87RzzzyqsXesw6f8ACAHhR9hUAQG11xb4SCAGAoq1dv67zA52fq7WtLbNvuyNJMmrUH+4fNXJE1q5ft9fOBwDQ29hXAAC11RX7SiAEAHgB9z/4UJavWJk3veG0DBwwoLuPAwDQ69lXAAC1tSf7SiAEAIrW3DQ0K1auesHbn3td92etWLkqzU1D99LpAAB6H/sKAKC2umJfCYQAQNGGPjOgFi1ZusPto0aN2GlcPfuYoc+7HQCAP7CvAABqqyv2lUAIABSteWhTJh366txx55ysfc6HN89f8EjmL3ik8+u169bnjjvn5Igpk3caXgAA/IF9BQBQW12xrwRCAKB40446MgMH7JdZN8/ufJXVtKOOzLSjjkyy/ZVXs26enYED9ssRUyd351EBAHoF+woAoLZqva/6dOlpAQB6ibPOOD1z752XW267I0kyauSIJOm8vvsRUyb74xUAwG6wrwAAaquW+0ogBAB4xrSjjszBBx2UdevWZ+36dUmSiQcdlKFDm1z2CgDgFbCvAABqq1b7SiAEAHiO5mfG1MEZ391HAQDYJ9hXAAC1VYt95TMIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAACiIQAgAAAAAAAAFEQgBAAAAAACgIAIhAAAAAAAAFEQgBAAAAAAAgIIIhAAAAAAAAFAQgRAAAAAAAAAKIhACAAAAAABAQQRCAAAAAAAAKIhACAAAAAAAAAURCAEAAAAAAKAgAiEAAAAAAAAURCAEAAAAAACAggiEAAAAAAAAUBCBEAAAAAAAAAoiEAIAAAAAAEBBBEIAAAAAAAAoiEAIAAAAAAAABREIAQAAAAAAoCACIQAAAAAAABREIAQAAAAAAICCCIQAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEEEQgAAAAAAAChInxe6sW/fvmlpadnbZwEAqKnGxsbuPkIn+woA2BfYVwAAtdVd+6pSrVar3fLMAAAAAAAAwF7nEqMAAAAAAABQEIEQAAAAAAAACiIQAgAAAAAAQEH+f9DApMuju8rpAAAAAElFTkSuQmCC",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "plot_neighbor_performance(metric_learning_model)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Plot example truth and predicted graphs"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 17,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 13588])\n",
-      "torch.Size([13588])\n",
-      "torch.Size([2, 2370])\n"
-     ]
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAH0CAYAAACuKActAAEAAElEQVR4nOzdd3wUdfrA8c/Mlmx674WQ0JuiiBV774KFs569nXp2xQKoYP2pp5536lnvVECxK2LDhgoWlCItISEJ6b1unfn9sckmSzZ9U3ne9+LMzs5857u7yT7zzLcpuq7rCCGEEEIIIYQQYlCpg10BIYQQQgghhBBCSIIuhBBCCCGEEEIMCZKgCyGEEEIIIYQQQ4Ak6EIIIYQQQgghxBAgCboQQgghhBBCCDEESIIuhBBCCCGEEEIMAZKgCyGEEEIIIYQQQ4Ak6EIIIYQQQgghxBAgCboQQgghhBBCCDEESIIuhBBCCCGEEEIMAcbBrsBAu/zyy8nNzfX53JQpU3jiiSd6XGZ1dTUAERERFBYWctFFF3HQQQexcOHCPtS0fwz1+gkhhBDdoWkaxx13nNe2wMBAJkyYwN/+9jfS0tL8cp5bbrmFP/74g+XLl1NfX9+jGNr2+qAv5w0LC+vx8f4k1w5CCDFw9rgE/YADDiAzMxOAVatWoWkaRx11FAApKSm9KvPSSy/FbDbz5ptv+q2eQgghhOiawWDg8MMPR9M01q9fz7p167jvvvt44YUXUBTFr+cKDAzkqKOOYty4cd3aX64PhBBC9NQel6Bfeumlnp9Xr16N1Wrljjvu6HV5ubm5uFwunE4n2dnZBAYG+qOaQgghhOgGi8XiieMOh4M5c+awc+dOysrKiIuL8+u5IiMju33NsPv1QUvjgBBCCNGZPS5B70x2djZXXXUVxxxzDNHR0WzdupXzzz+fm2++mdmzZ3P11VcDcO2117Jt2zY++eQTFi1aRENDAwB33nknTz75JAAul4unnnqKr7/+msjISP7+978zdepUn+ctLCzk8ccfZ8eOHRx//PH88ssvVFRUsHz5cp91euSRR3j33Xd59913KS8vJzIykhNPPJHzzjuP9evXc/PNN3PiiSdSU1PD77//TmZmJldeeaXXHf/O6rdy5UqWLFlCSUkJMTExnHLKKZx11ln9+M4LIYQQfWcymUhISCAnJ4fGxsYOY+i6dev4z3/+Q15eHvHx8Vx66aUceOCBAGzbto2nnnqKgoICDjnkEBwOh6d8X129s7Oz+de//sX27dsJCQnh+OOP5/zzz293fbBs2bJen9cXuXYQQoiRSSaJ8+Hnn39m2bJlhISEdLnvCy+8QFhYGDExMSxbtsyzfe3atWzfvp2MjAzy8vJ47LHHfB7vdDpZsGABGzZs4KCDDmLNmjXk5OR0Wqf169fz7LPPEhAQwOzZswkMDOSVV17h999/9+z/6aef0tjYyMyZM1m/fj133HEHTU1NXdZv+/btPPbYYxgMBv7yl78QHh7O888/zzfffNPdt08IIYQYcJqm8fPPP5Obm4vRaCQhIcHzXNsYmp+fzx133IHVauXss88G4P7772fbtm3U1dVx2223sWPHDg499FC2bt3Kn3/+2eE5a2trueWWW8jKyuLEE08kKiqK1157jQ8//LDd9YE/zyvXDkIIMXJJC7oPqqry9ttvExoayvr163tVRnJyMk8//TQA5513HoWFhTidToxG77f8999/Jycnh2OPPZZbbrmFiooK5s6d22md8vPzueuuuxg9ejR2u52dO3eyc+dOioqKSE5OBiAhIYFHHnkEcAfy7777jt9++43Ro0d3Wr+WCW1MJhPx8fH8/e9/p7y8nKSkpF69D0IIIUR/amho4JhjjvHadsYZZ2CxWDyP28bQ559/Hk3TOPnkk5k8eTJRUVE8+eSTvPfee4wdO5aGhgYuvPBCLrjgAqqrqzttBf7222+pr6/37F9TU8Pzzz+P0+lst++KFSv8dl65dhBCiJFLEnQfpk+fTmhoaJ/KaDt7bEREBKWlpei63m6/goICACZMmABAdHQ0SUlJ1NfXd1inoKAgPvnkEzZv3sw+++zjs9xJkyZ5fp4yZQrfffcdlZWVniDbUf322WcfTjvtNL7++mseffRRT91uvPHGXr0PQgghRH9qmSQOICAggClTprRL2NvG0KKiIgCeffZZr3127drlmUdmypQpgDs+pqWlkZeX5/PcJSUlAJ7x5eHh4dx6660+9/XneeXaQQghRi5J0H0wGAyen1tmgK2qqgLcXeha7hS35SvQdUdUVBQAWVlZgLu7XHFxcbvu9W3r9NZbb7Fu3ToeeOAB9t9/f8/d7LY2b97s+bmlm1xiYmKX9SkqKuLQQw/lr3/9K4WFhXz55Ze88847LFmyhHnz5vX8BQohhBD9qO0kcR1pG0Nb4u4LL7xAeno6LpeLwsJCAgMD+fjjjwF33Jw+fTqNjY2exNqXmJgYwD0O/aCDDqK2tpaXX36ZjIwMTjnlFKD1+sCf55VrByGEGLkkQe9CUlISqqry/fff8+CDD1JQUEBZWZnXPqGhoRQVFfHpp58ybdq0HpU/Y8YMwsLC+Oyzz1AUha1bt6JpWqfHtHSTX7p0KatXr+bLL78EwGazefYpLCxk3rx5RERE8O2335KcnMz06dM9d/s78uuvv/LMM88wZcoU9t9/f8rLywG8xvIJIYQQw9Wxxx7Lhx9+yKOPPsqRRx7JmjVrWLduHbfeeisHHHAA//vf/3jzzTepqKhg69atnU7WNmvWLF566SWWL1+O1Wplw4YNbN68mZtuugnwvj7w53nl2kEIIUYumSSuC9HR0VxzzTUEBwfz22+/se+++zJmzBivfc455xyioqJ46623elx+UFAQixcvJj09na+//pqJEycyatSoTo8588wz2Wuvvdi+fTtFRUVccMEFgHvZuBbHHXccBoOBH374gb333puHHnrI6056R0455RTOO+88ysvLee2119iwYQMnn3wy559/fo9fmxBCCDHUjB8/ngULFuB0OnnppZeoqKjglltu4dhjj2X8+PHccMMNJCYm8uWXX5KamsrEiRM7LCsqKoqHH36Y0aNH8+GHH1JZWcnll1/OCSecAHhfH/jzvHLtIIQQI5ei97ZvtvCLXbt28fbbbxMTE8Ppp59OdnY2t912GxMmTPAs2dYTLUultF0WTgghhBAjh1w7CCHEyCVd3AdZYmIiQUFBvP7667zyyiuA++5+S/c4IYQQQoi25NpBCCFGLmlBHyLsdjvl5eWEhob2aQb54uJiPv74YyZPnswBBxzgxxoKIYQQYiiRawchhBh5JEEXQgghhBBCCCGGAJkkTgghhBBCCCGEGAIkQRdCCCGEEEIIIYYASdCFEEIIIYQQQoghYI+axf2OO+7g+uuvH+xqCCGEGMECAgKIjo7u8XFnf/8Yv1Rl8eQ+l3Jq8n79ULORQ+K5EEKI/jZY8XyPmiROURR2f7mFhYUkJSUNUo2EL/KZDC3yeQwt8nkMLb4+j55+RjXWBs7//jE+qdiAprmItYTz/MyrOT15f39Xd8SQeD48yGcytMjnMbTI5zG0DKV4vke1oAshhBCDzanVkFvxLxrt2RgUncs+r+QnlwOCTQCUWWs447tFLB5zM6NCEkmIimRWbAwmRRnkmgshhBCiRX/Fc0nQhRBCiAGi4+CH7COoaVqHAgQYjJQ7joUAMzS3CE+OjCe8fi/m/bAZoorAbGJCWBhfHj6LJItlcF+AEEIIIfo1nsskcUIIIcQAqWn8lVrrOs/jyMB9SQ4f775drsOVY4/grIiL+K0uEhLjwBIAwJbaWp7anjVItRZCCCFEW/0Zz6UFXQghhBggpQ3lNNogOAA0HcItUzCYgjHoBl7Z/1oSjdM4etWXEBoAmua5Cw+Q09AwiDUXQgghRIv+jOeSoAshhBADRKvJI78SJiSCAphMYzgmfSKPpV/C9IjRVNodbDn9JLLq6thWV8v2ujo219axua4ei0E6vQkhhBBDQX/Gc0nQhRBCiAGgl3zH+LWLKIo7mM21q0kPB7N5DHfsfZpnnyiziSizifEhwVRUh7KupJ6wehtx1Q38UaJRPtFBTIhpEF+FEEIIsWfr73gut+OFEEKIfqaX/ojr6wtwOWo5os7JPjELqLFBmGVch8cclhbAL00OtipgCwum3hLENd+VUevQBrDmQgghhGgxEPFcEnQhhBCin7l+uBbdWoEOOGs3cUBpKfuN+QizMaHDY0YFG3n26CRQQDGAKcjIhgYXV31fNnAVF0IIIYTHQMRzSdCFEEKIfqbEzHAPUlNAV8Cx4zXGlDdhNsR1eIyj0UH6j5s4d2o0KAq6pqPrOr9X2Aeu4kIIIYTwGIh4Lgm6EEII0c8MBz6NEnsMulVzT/eqgGP1xVC1vsNjrHU2Xr/1E6a9t4rxKWHoqkKgUeWJA2IGsOZCCCGEaDEQ8VwSdCGEEKK/GQIwHv4Kun0CWnUcmKajRB+Clv9+h4dU5VVhsgSx7rmfmPT6x1gCTDy2fzTHpQQOYMWFEEII4TEA8VwSdCGEEGIgBIahR5yFfXM0tq0pOApm4MhLwrluFVrRDvT6KgC0HWW4Fi2jPLcCTXMRHB2H9cPfuLtsO0clSXIuhBBCDKp+jucjepm1hQsXsmDBgsGuhhBCCOHmbEKrq4S6Nbi2rXFvUxV0p4OgW55CKc2k8YrnMSU7KTvHPZ5N13WiIuJIDzIPYsUHl8RzIYQQQ0o/xvMR3YI+f/58dF33/BNCCCEGkxqT0vpAUUBR0Jx2TEdehuttqD/vKfQGGza1kfLtZego6LqO2RBAVHL84FV8kEk8F0IIMZT0Zzwf0Qm6EEIIMZSYjjgHw+gpAOgOF46qehTTQWivBWJ97hNAQdcd1OYVULSuyD1TLBCeEkbajJSOCxZCCCHEgOnPeD6iu7gLIYQQQ4kSHEbIovdxbV6Ls7gArbAa243rcNq3g6KjKAZczkacASqTT5qIjkJ4fCjTz5yKySIhWwghhBgK+jOeS7QXQqDrOoqiDHY1hNhjGCbOxDBxJgCm1K00XPUiWlE1KGCcNZH0l64mM6HjNVWFEMIXiedCDKz+iOfSxV2IPZyu6xTmFlJdWTvYVRFij2Q8dDzBz12KIT0W45ETCH/3bgySnAshekjiuRCDy1/xXFrQhdjDKYpCcFgIQSGWds9VlFTJhExCDADjrPGErVs02NUQQgxjEs+FGHz+iOeSoAshiIgOb7fN5XLRVNeIU3UMQo2EEEII0VMSz4UY/qSLuxDCJ4PBQFJGImbLnrv2shBCCDHcSTwXYniRBF0I0SFVla8IIYQQYriTeC7E8CF/rUIMM06nc7CrIIQQQog+knguhPBFEnQhhpHyokoKsovQNG2wqyKE6MARq52MfytvsKshhBjCJJ4LMfQNVjyXSeKEGEaiEyIJiwqRrmpCCCHEMCbxXAjREflWEGIYURQFc4BM8iKEEEIMZxLPhRAdkQRdCCGEEEIIIYQYAiRBF0IIIYQQQgghhgBJ0IUQQgghhBC9JpPdCeE/MkmcEEIIIYQQoseqy+u54vhHaay3EhoRzMtf3YElSMbWC9EX0oIuhBBCCCGE6LHzDrqPuupGXE6N6vI6ztznnsGukhDDniToQohB4XK5KMjaJd3ihGjjhzU/s/bXdYNdDSGE6NKiv72Gpule2zSnxtP3Lh+kGgkxdPQlnksXdyHEoFAUBVAGuxpCDBnZO3LJ2pEDQHRkJJkZ6YNbISGE6ISiqOg6KG1CuQ6oirT/iT1bX+O5/AUJIQaFqqqkjElCVeVrSIjsHbmsXrOWsLBQwsJCWb1mLdk7cge7WkII0aF5T5+PweB9o91kNnLtwjMGqUZCDD5/xHO5MhZCCCGGgIP3n0mgxUKgxcLB+88c7OoIIUSXlv6ykIjoEAwGlcDgAIJDLYNdJSEGXV/j+YhO0BcuXIiiKJ5/QgghxFCSvSOX7B25ZGake3WBa3nc8vyeTuK5EENTSFggb66Zz0dbH+adPx4gJDyIx29bOtjVEmLA+TOej+gEff78+ei67vknhBBCDBUt3eC6It3dJZ4LMVy88NmtfPHur+zKKR/sqggxYPwdz2WSOCFGOF3XcblcGI1D+89d13VpGRN7jB/W/EzWjhzCwkLJyskhK8c9mUxZeQUAK79c5dm3ZQxbRVUVM/edPij1FUIMvuESz/9232yuP+NJlv/+wGBXRYh+1x/xfES3oAshoKKoksIdxUN6OTOHw0lB1i5cLtdgV0WIIcvpdA52FYQQg2i4xPOpM1JIyYhj/uUvDXZ1hBiSuornQ/sWnBCiz6ITo4hwuno1W7rLpVGaW0piYmK/tm4bjQaCggNlRnexxzho//2Ij41l9Zq1TJ040TNereVO+3FHHQG0dps7eP+ZsuyaEHu44RTPn1x+HadOupPfvt/GPoeM67fzCTHY+iOeS4IuxAinKApGU+/+1BXANQA36hVFITopuv9PJMQQ0t2EW5JzIQQMv3h+z7MXseCKl/jgz4f6/8RCDCJ/x3NJ0IUQHVINKokZcTI2XIh+0hKod580puWxJOZCCH8YjHg+84iJ7HXAWG466xkef+tvA3ZeIQaDP+O59CcVQgghhoDVa9bSZLXSZLV2azZYIYQY6u5/6VJythbx2dvynSb2HH2N55KgCyGEEIMsMyOdg/efSW1tHbW1ddKtXQgxYjy5/Hr+MW/5YFdDiAHhj3guCboQQggxBGRmpDMmYzRjMkZLci6EGDFGjY3nsFP25srjHhvsqggxIPoazyVBF0IIIYaIg/bfj4P232+wqyGEEH512//9hZqqet545ovBrooQA6Iv8VwSdCGEEEIIIUS/euXrefz3yZWDXQ0hhjxJ0IUQQgghhBD9yhJkZvYlh3LhrEWDXRUhhjRJ0IUQQgghhBD97vJ5p6CoCs8ufHewqyLEkCUJuhACALvNjq7rg10NIYQQQvTBQMTzv895mhPH3sbJ429n57biHh376jfz+PC/P1Bb3dhPtRNieJMEXQiBpmkU7yyhorhqsKvSI06na7CrIIQQQgwZAxHPbz33Wbb8noeu67hcGled+H/s+LOwR2VcdvtJXHb0w57HEs+FaCUJuhACVVVJykgkJjGqX8rXdZ3KMvfFQl1NPU6n0/OcpmnkbyvA5dJ6VKbD4WTntnyaGpr8WlchhBBiuOrveP7b6q1sXJuDonhv/9vpT/Yons+5/HCi48J48Pr/STwXYjeSoAshADAajf1Wtq3JRnV5LU6nk5qyGuprGjzPKYqCwahSW13XozJNJiOxSTEEBgf6u7pCCCHEsNWf8fzPX3JA8fGE3vN4/q9Pbmb1yg3kbimWeC5EG5KgCyH6nSXIwqhxKRiNRpIzk4iIDvc8pygKMUkxVBRV4rA7Oi2nbcs7QFhESL/UV4i+WHWwka1npQ12NYQQwu/Ov+F42H14u66jKHDSuNu5/7o3+fTNn7odz29+ZC63nfsviediSBqseC4JuhBiQBgMBsCdkO/ObDGTPiEVk9nU4fF2u4PcLXnYrfZ+q6MQQgghOrci61Gvx4qq8vG2R3j56ztJGR3L0ue+ZfZe93DXX19gy+957Y5vG8+POG06Y6akMO/C5weq+kIMeZKgCyGGhK665JnNJqLiozBbzANUIyGEEEL4siLrUeZcehi3PHoOk/dNZ95FLxCfHMldz1zIexsWMf+5i7E1Obj5nH8yZ+97eOyWJTTWW4H28fzRN69m4y85rP5sw2C+JCGGjP4bpCKEEH4WFRsx2FUQQgghBHDZnScDcNQZMzhl4h389v029jlkHAAzDh3PjEPHA/DR/37g/de+Z87e9xAdH8Yxs2dw0c0neJX14KtXcPsFz/HRlocG9kUIMQSN6Bb0hQsXoiiK558QYmRa/dkGzjvwPi6Y9QDb/sgf7OoIIfxM4rkQQ9ttj5/Lwitf9vncyecfxAuf3caKrEc5/JTprHz7Z04YcytXnfB/fLp0DQCT9xvNzMMncMKYW73+CbEnUnRd332qhxFLURR2f7mFhYUkJSUNUo2EL/KZDC1D/fNY8+WfLLzqFc/ftqIqPPnWdYzbK3WQa9Y/hvrnsafx9XnIZ9T/JJ4PD/KZDC39/Xnccs6zBASaWPTK5V3uW1laywsPfsSar/7EbnMwed/RrF+T7bWPgns+ut3HvI8U8vcxtAyleD6iW9CFECPfouv+63Whrms6d1z470GskRBCCLHneWzpNaxfk826H7Z3uW9UXBi3P3Eu7/zxAIteudznTTcd2m0TYk8gCboQI0BxXil22543u7m10Y7LpbXbbre5BqE2QgghRN8M93h+62NzWXD5Sz06Zq8DxpCSFN3B8BUZ0iL2PJKgCzES6DoOh7Pr/UYYS5CZmPiw3bYqpGTEDkp9hOguu8NBdk4uq75bTV7BLgBW/7SWn3/7HYDsHe7nsnNysTs6X09YCDGCDPN4fuhJe5M5KYW7L/5Pt4/55Zut/PZrVrvtug4y5YQY6vojnkuCLsQIEJ8WR3BI0GBXY1C8+u1dhIRaAPe41PRxCfz7k5sHuVZCdC4/fxdrf12H3W7HYW8bsFu7c9rtdtb+uo78/F0DX0EhxKAYCfH88beu5Y+fsvjjx+xO9/vs7bWce+B93Hf1K+x9wFgMBrVdl/aROv5cjBz9Ec9lmTUhRoA9fVbjqQdkkrOliGsXzGbGYeMHuzpCdCmvoICoyAiOO+oIz7aDD5jp+TkzI53MjHRWfrmKvIICMjPSB6GWQoiBNlLi+S2PzmX+5S/y3sbF7Z5b9twq3npuFU6ni1MvOISLbz2BUybegWJQUdoMW/s0W5JzMfT1RzyXBF0IMWxomkZlcRUxSdFe2//8NZdTLzyk0+Rc1/URc+Ejhr+0lJRu7Tdm9Oh+rokQQvjfYSfvzfuvfs89l7zI/S9dCsALiz/k4zd+JCDQzF+uPZpDT5hMTFI0p02eh6oq2G2tXfs7azmXeC6Gkv6I55KgCyGGDZfTRUNdExFOJ0Zj69dXTWUDZ191ZIfHNTY0UVFUSXJGIqoqI3vE4Otui7i0nAshhqvH3/obJ0+4nbv++gJ//JRFVGwYNz50NoedvDcOu4PCnBIun3YXDoeD2IRISguruixT4rkYavojnkuCLoQYNkxmE6ljk7yC8jsvfUtoeBBGY8eBOsBiJjgsWIK5GDJW/7QW8O4GB1Df0MDPv/1OcUkpDoeD+LhY9po6mYS4uMGophBCdOmNZ77gw9dWExBo4qH/XUVCahQAC654GZdTY93q7Tz8+lVMnZnhOcZkNnHruS9gbbRz1T2n8erjKzzPqQaJ52L46I94Lr/dQohhZfeg/N0nfzBh77ROjzEYDDjsDkp2lfdn1YToNrPZhNls8tpW39DAhys+o76+nr2nTma/ffbGbDLx2ZdfU1xaOkg1FUKIjr3+9Of87x+fUV1ZT8muKi496mGuO/0fnDDmVqrKannxyzsYv1cqbz23yuu4s2fMp6GuiafevYEXH/4Il6N57LkCARaTjzO5STwXQ01/xHNpQRdCDJr62gYsQQFe3dV7asfmQm5+5Jwu9wsJD8bQyV15IQbSfvtMb7ft51/XERIcxCknHOfZNnH8OFZ+uYo/Nmwi4ShpRRdCDB2N9XbeeOZzr5nXNU1j57ZiPtzysKdn2xNvX8fJE25nw9odTJ2ZwTn7zcfaYOPqe09n2XNfkZoZz47NhQAoKEREh3R6XonnYijpj3guv91CiEHhcrmoLquhrqq+12XkZ5fisLs49KS9u9w3ODQIS5Cl1+cSwp+yd+R61kttUVxaxpiM9pPIpKUkU1lVPUA1E0KIjp29772cOO42rjrxcfKyin1O1mYyG9sNO7v54bnce+mLzJ25EE3TOebM/Tj2zJl8/+kGxu/V2gtO13WSRsV0WgeJ52Io6Y94Li3oQvSSw+7AaDLKTKK9YLPaKcwtJjkjAbPZ3OF+RTtL0ZxOkjOTfD7/wX9XE5cc2V/VFKLf5BUUYHc4SEtJHuyqCLHHk3jePSeMuQVddy8Fl7u1iEdvfgNLoJmGOqtnH12H8XuPanfshL2TcTicaJrO5H3Tue7+OVx29MOMm5bKp0vXAO4hbLquS1wXw0p/xHNpQReiFzRNY9eOIqpKqge7KsNGfa27pdzhcFKYU0RwaFCnyTlATGIksSkd30n/9dut7HPIOL/Ur6mhiYrSrmeQFcIf0lJSqKyqbl4X1X3nPSEulqwdue32zSvYRVRkxMBWUIg9hMTz7jlnxgJPcg6gKFC4s4JDjp+EJciMqqqoqsLMIyaw+JXL2h1/8zn/Im1MPHabg/OuO4bP3v6ZXbnlZG0s8HSRD48ORlEgOb3zFvSuSDwXA6k/4rm0oAvRC6qqkjImqU9jp/ckTQ1NlBRUEDDWPd48NCyE6KSoLo8zmX1PFONyuTAYDJQUVHLqhQf5pY5Op4bu0vxSlhBdSU1132nPKyjAYXcAsN++0/lwxWd8uOIzxjQvx5JXsIuS0jKmTJwwWFUVYkSTeN49jfXWdj0MdF1nw9qdvPPHA/z4+SbCIoOYsl9Gu2PPO+h+0sYmsOPPQm55bC53XfIfbE12ADStdfy6tdGGrsOosQl9qqvEczGQ+iOey7eREL0kwbz7AoMDSRubhMnkTrhjkqN7XZbL5aJwRxF/rsvHaDKSPi7RL3UMDQ8mNDzYL2UJ0RWzyURmRrrXuqghwcGccsKx/PzrOn7fsMmzLMuUiRPYuHkL4WFhsi66EP1A4nnXMicnseX3PK8kXVEUaiobOHHsbcQmRjDjsAlExYWTNKo1xl9wyANM3W8036/cwEdbHgbg2QXv+TyHtdGBrutkTOxbXJd4LgZSf8Rz+UYSQgDuO+GF2UUkpMdjMBr8Xn5Lct5XBoOBmKRofnz0c9LHxfulzLZ0XadoZzGBwYFExkb4vXwhOhMSHMwRhx7Sbnt4WBir16wlMjJCursLITrVH/H8yeXXc+NZz7Dl953omo6iKFw171ROu2QW9bVNvPnMF/z4xSY+XboGS5CZidNHkbWxgKPO2Jd3X/6OFVmPespqrLf6PEdLV/eouDCsVicAFkvvUxWJ52Iw9SWeS4IuxDCg6zpOpwuTqX//ZPWudxl0z85/l49e/wFQSM7oeJyay+WirKCc+LS4Hk38oygKoVFhBFg6Hx8vxEDKzEgnMjKCkBBpFRJiOBvO8fyJt/7GWy98y58/Z3PU7P145Kb/cdolswgJC+Tyeadw+bxTAFj51lr+Of9dXE4X7778HQnJUfzvH59x/g3HcvVJjzPrhGmYLSa+eOcXFBRoCdGKu+K3nvssG9bsQEHBEmTi7d/vl3guRozuxHOZJE6IYaCisJKCrF1oWv+NqVIUhZQxST2+2+5yufqpRu09/8AHfPj6D+iAjk5+dhm3nfcv3zvr4LQ7vdZn7a7QsGDMHYx/F2KwREVGYPZTTxQhxOAY7vH8rMsPZf7zF3PI8VPImJjMvZe91G6fN//5JcedPRNLUABnXn44E2ek8/EbP3LCmFvJ3VqE0WTky3d/dSfbbfPt5nC9YU2O57mmRjtnTr9X4rkYUbqK59KCLsQwEJ0URXhcGKo6tO6pORwO8rMKSclIwhzQPwGwbWvDu6985/WcosD6n3bgdDoxGo3U1zbQVN9EbFIMBqOBlLG9W/JC13VZbkcIIYTfjaR4/uTy6zhp3G3kbivyzAdz8REPsu+scfz67VYOO3lvLr39JM/+c/a+h0n7jCL7z12dxtm2mxVFwdpoJyI2ulfvmcRzMRwNrW8HIYRPiqL4bQy3P5lMJiKiwzCZ++9eX0VhJbuyC9E0zefdc0UBZ/NYNYNBRTH07WutZcmd+tqGPpUjhBBC7G6kxfOLbj6B2897DoBLjnyIvQ4cQ352KfHJUVz/wBzPfv9a+B5BwWYuve1Y/vXJTb4L0+m4lbwXlxkSz8VwJQm6EKJPouIie3R32m6196j86KQokjMTUVWVsMhg2sZuXQdzgBFLiAVwzxYfE9/18m2dUVWVoNBALEEBfSpHCCGEGE56E8/PvvIILEFmztrnXqbOzABdp6Kklgf/e4XXvh/8dzW3P3Ee/37gE04efzuKorSL5zp683bda3toRCAhzXG+JySei+FqRCfoCxcuRFEUzz8hxOByOp0U5BRRU1XX7WPatjYs+2UhIeGtgdZkNvL+pgd7XR9bk83n9qi4SFl2R4ghROK5EENL23huMhupr20ifVwiq1du5MUvb/fa98JDF2EOMHHbef/G5dIxNk+Q592VHVSDytyrjyQyNhRwt6aHR4ew7Jf7uqyPxHMxkozoBH3+/Pnouu75J4QYXEajkdQxyYRHhva6jKNOm0F0fDj/XnkLH27ufXJubbSSn1WA3e7odRlCiIEh8VyIoaUlnt829znGTUtlv8Mm8PziD3jrN3cybW2088C1r3HKxDsoK6zmlPMP4pPtj3Di3ANwOnxPRmcOMJGSGUdtZQMT9k7l0+zHWLp2fpd1kXguRhq5pSSEGFB9XVrm1++2su+scYzKbF0DvWWSuJ6wBFlIG5cms7sKIcQe6P2C5/i58gsMiso1Yx8l3pI22FUaVr56/1cevXkJAEX5FTjsToJDLTx6y5ts/T2PXbnlZE5yTzh33vXHMvfqIwF45f8+8brJ1tJyrigKDpsDVVXQNJ0n3r6+23WReC5GGknQhRDDSlF+Jbc89hfP48qyKqrKqkkfn4bB0LMlZfpr5nkhumPjxo3d2m/KlCn9XBMh9iyfl7zJTxWfoigKmu7iqW1/56oxD5MaNHawqzakrViyhvTx8RTlVfBYc3IOYLc5UFUVh93FV+/9xrFn7sd/vridV/9vBSvf/tmTnDvtTkoLq73K1HVIH5tIZXktVWV1PL/4w15NPCvxXAwmf8dzSdCF6CFrkxWjyTggY5oqSqswm42ERvS+S/hQ47A7qCisJCE9vuudd7Puh+2oqsKEvVtbOqJiIwkJDe5xcr47TdNoqGskNDykT+UI0V2SeAsxOL4ufctrLgMd+HfWHSyatrzfzjmc47mmaZw2eR6aSwOUdmu4t0zstteBmTjtLgp3VgCw7LlV/POjGz37nT717naTwAFExITg0jRqKxuoLq/nmDNn9Lm+Es/FQPJ3PB/RY9CF8Ddd16ksqqK6rHZAzqfooGmDM95S0zQKsgrR+3h+l8t7rFlfxo9+9tbPJKfHtttutph7XWZZUQW11fXUVtdTUVTRrr5CCCEGTz31fFD4vN/K21L7C77CkE7/xtrhGs81TeO0SXfidLjQNL15yVPf+6ZmxrL4tSvYvC6Xv536JJNnjPZaH93lcrmbzNtMDqcaFHbllhEWHuRZ5/ymh87pcT1B4rkYOSRBF6IHFEUhIT2emMS+LeXVXVHxkYRHhQ3IuXzr2yWLy+Uid2uB1xqk5gBzr1rPNU1j/ZpsZh45sQ81as/diqITERVG6tiUPrfECyGE8I9fKr9g8YYLWVP+KfPWz2ZXU3afy5wQNsN7+nDcOaNJ7fkyXj0xXOP5R6//2O7Ggq+FFFRV4fI7TwXgnKuOJPvPXTzyxtUA3H3xfygtrHJP8uiuisek6aOpLq/HEmzG6XQRGh7Ui1q21EviuRgZJEEXI1Z/3TmtLqvZI2YRVlWVlDHJqGrvlzQyGAzEJEYSHNr7gAtQWVpNcW4JlaW1nH7RIX0qa3cxCVFYLO6l2ySYCyHE0PBp0au8W/As6K353D+330qJbVefy148tbkre3PBZmMAC6e80edyh6q+xPOU9BifGXlcUoTnZ4NB5eNtj3ger3xrLWGRwTx685u8/OgKdmwpRHPp7ZdIVGD/IydgbbKjqu6u75fecVKP69hC4rkYKSRBFyOSw+Zg57YCHA6nX8t1Op001DZit8lSHt0VHhnW53WLw6JC+PWHbCxBZqLi/NsCYWuykbs5H7vV7tdyhRBC9N4vVV+1a/HVdZ03cx/2S/n3TVrGeONMFBSSLZl+KXMk2mfWeI46fR+vbukms5FXv72LFVmP8tYv9/PR1tbP5K3nV2G3OVn68wK+ev833nnpG555/+8+y9Y1SBuTgGpQ2bB2BwDHnTWz13WVeC5GCknQxYhkNBsJjw7r85Je7co1GknKSCCgkzHP1ZUDMz59uHE5XRTuKOpV7wOj0ciaL7eQMSHJ7/UKCAwgfWJqn8axCyGE8C+zYmk31llBIcQU6ZfyjUYj50+4lTBTNAWN233uI/HcLWtTIQoKiqIwbloq765/wBPPQyK8hwa8+vin3PPsRZ7HToeL8w9+oF2Zuq4TGGRmx5ZCQsMDaaizEhwW2Kd6SjwXI4Uk6GJEUhSF6Dj/BPHdddZtym61U1pQisPu35b7gaLrer9OqtKXkQFb/8jjkOOndeMcvk+iaRr52/JxubR2z0kwF0KIoeW2ic+hKK1xQ9fBaDRxWcZCv53DYDBweNwcnLqD9dXfU+Yo8jwn8dzt+jn/YMfmQvf4cV1n2/p8nE6nz3i+4IqXyZyYxNSZGZw07jZPz3hfcVlRFP7+4Fls/SOP4FB3Yn74KXu3ew2+SDwXI50k6EL4kdliJmNSeq/W8BwKSvPLKMwu9NsY+7qaek9ZBqOB5MzEbnV3r6mso6ayzvNY0zTqa5s445JZnR5XvLOU4pySDuuvGgw+J7cRYjjYE+a+EKKtxdPewWRwJ1yqqmDQ/R9b948+DoCleY/z+OZreGrrDYDEc3Cve779j4J2cfPsGQvbxfPq8nrWfPUn/3j3Bs4/+H6g65vyh528NwU55VSVu+P9wcdN9Twn8VyMZF39XQ7Pbx0hhghdbz/pyUCsj95fYlNi0DUfE7n0gsvloryoEl3XCevFuq9tv7yWPfc1YZFdTzTnrr/ms/6qqpKc6f8u8kL0lE7rcE6Xy+XplbP790lFZRUFhYUYVJXU5GTCwwdzBmghBsd9U5Z4fp63fjbrq75nWqT/Jgu9e8OZQMvfpUKRNY9Ht1zBrROe3+Pj+Ya1O3xe59itDh6+8Q1mHj6RI06bDsCNZz3NSecdyK1znyVtTAKVpXW+ivQIDnN3ja8sraGpwQZA5qTk3eov8VwMbf0Vz4fvN48Qg0zXdQpziwgOCyYiOnywq+MXqqr6rV+NwWAgbWxyr2ZSDY9yJ/Rfvf8rj968BF3XPeujdn5OFQzSMUgMbQpQV1fP7xs3kZdXQFpqMntNnUxYqPv33qVp/LF+I1uzstF1HU3XWL9pM1Mmjmfq5El+uYEmxHCUGjyepflP+i1B31S7Fk337iatKApV9nK/lD+Y/BHPb3v8L6z64DfvjbpOSHgQOVuK+OmLTTxy8xuYAoy4HC7+/CWH6soG3vjxXv7v9qV88c4vnpnyW++5uxOXo06fAUBjvc1TdFhE6414iediOOiveC4JuhC9pCgKweEhBAYHdLqf3ebAHGAaoFoNLF3XKckrxWAyEZvUfm34vixz8vWH63jsZnfLiaIoaJrGSeNv5+Ot/pnBV4jBUltXx5fffI/d4SAiPIzC4lIqqqo5YtbBhIeFsmnzFgpLy5k6aSITxo3FpbnY+OdmcvMLsQQGMi4zY7BfghCD4urMB7lr/Rxey13Ehel39bm85CDff0sKvi+a98R4/uGWBzl5/B0AKKqCOcDEW7/d53ne6dQ4fcqdJKRGkbutBNWgcuLY2wiLDCYgwITN6l71RlVacnX3cmrvv/odJ8x1z9huNBs6fM+FGMr6K57LrSkh+iAiKoyAgI4TdLvNwc4t+diabB3uM5wpikJodChhUcF+L/uxW5Z4LbGjKAqaS+M/D33U57J3H/sjY3vFQPrt9/VYrTZmHTCTk44/hlkH7Y/d4WDT5q3ous7mrdsJNBuZMmkCRqOBALOZfffeiwCzkQ2bNg929YUYVMclXsCW2l/9UlaEMYakwHTaBhsFOCPl6nb77qnx3Gg08mn2Yxx60l5cetvJOB0aO7eXeJ5/9OY3SRoVQ+HOCj7Z/ggfbXmIFz67jZPPPxCb1eFpIdw9niuKwtUnPg7AmMnJXTZ2dETiuRhM/RXPJUEXoh+ZA0ykjUsmILB3gWc4CA4JIsDi/9ent1sB182ltZ+1tUfl6joFOwqpra4HoLa6juK84j6VKURPlJZXMCo1maTEBAoKC0lKiCcpIY68gnxsdjuaphETEwO4x7S1zMQcGRGB2odeKUKMBIfGno5JNfPQ5sv8Ut7fxj5OZEC85/F+0ccxI+rodvvt6fF83lMXcOblh3HGxbO4++IXPNu//fh3duWW89iSazzbkkfH8Ou3W5m2f2a3EuZRY+IJ6cUSaxLPxWDrr3guCboQzarKq7HZ7H4vdyQH8/50ya0ns3uPN0VRuHLeqX0qt7bKPbN8UIh7ghpLoAVLcNcT0AnhLwEBAURGRJCdk8sv69aTnZNLVEQELpeGApiMBgoKC9E0HYPBgMFgwOl0UlxSgsvpGOzqCzHo7pnyP2odldQ5q3w+39N4fuuEf3FS4sUA7Kjb0OF+Es/hsjtPpqnBxvuvfs8Vxz2KyWzkvOuOYfKM0Z59Vq/cyJbf89j4c07rgbvF85bE3RxgorSwhqjYnk8mK/FcDLb+iueSoAuBO1A01jWO2K5rPdF23VRN0yjLK+tRl7GWtVLbstt6nlTMuexQLr/zFM9jVVX4ZPsjPS5nd5qmERYR6pmd1xxgIjJmZEzyJ4YHl+bC4XAQHhbKQTNnEB4WisPpRFFUAgICyEhPR0dl1bffUbCrkLyCAr785jtQDEwcN3awqy/EoDNiJNIcxyObr2z3XG/j+cGx7nhTYS/qYs/hoz/i+Unjb6e+1spz939AfnYp+84ax7l/O5rSwioevvEN5ux9Dw9c+yrhUcHePeF07+7nt/7fXwCYOjODipIaYpMie/z6JJ6LwdZf8XxIJehfffUVF198MX/9619ZuXKlz30uvPBCTjzxRM+/TZs2DXAtxUikKApJ6Ym9Wg5sKLM2Wnu0f11NPQVZRZ6grmk6TocTrQfdygt3FLEru/UCx+FwsHNbHnU19T2qC0BkdCiWQDNv/XI/H2/reXJeX9vQvsyYcCIkgItBpCoqqlGlrLyCn9etp7S8AoPqXtPXpWlMmTQRi9lIbX0ja9f9we8b/qS+oZGYqAgmDJMEXeK56G+3Tvg3Lt3Jx0WveG3vSzw3KEZ0dO5aP4d7Npztp5r6x1CI56dMuAOX04WiuIehKUBpYTVzZy7gokMXk7OliFknTsMcYOLqe09H1/TWlnOleZx7RBArsh7lzX9+CcBld55EXXUjiWntJ5ptS+K5GIr6K54PmVncq6urefHFF3nmmWdQVZVrr72WGTNmEB0d7dlH0zTsdjuffPLJINZUDGeapuF0ODEHmNs9N9KWLrLbHBRkF5E6Jqnb3fKCQ4O81nE0Gg0kZib2aDb2hPQEr8cmk4n0cWnUVNdjCXRgMndvBly71c4X7/5C5qRkQiIs3T6/53ibg+K8YtLGpGK2tP+8hRgsiqKCDhPGj8XhcDJx3Fg2bt4KzRMhms0mwsNCqaisYvSoVExGE/HxsSQlJHRd+BAg8VwMBE3TmBJ2IKvLPuCkxL96PdfbeK7rmruVVwGX7mTe+tksnvaOH2rbN0Mhnr/x9Oc4nS6v91YHdmwu5KKbjmfuNUcBcPaM+Zx/wzH846633cm53rqz3qYVfVdOGQDp4xJprLeSNqZ1HoDdSTwXQ1V/xfMh04K+du1aZsyYQWRkJOHh4Rx44IH8+OOPXvuUl5d7BXgheqqiuIqS/PJ+meWzorRqSM0eag4wMWp8ao/GzKmqSkRU3+5GGwyqe/3SNkwBJuyNVuz27nV1d9gc5G/dxZZ1Ozni9Om9qoc5wET6hFESzMWQY7U2UVNTi6IoTJviXge1prYGXdcxGg04HE6yduQQFhLCzH33YfpeU4dNcg4Sz8XAqCiuYpbzPFRF5altN/a5vPcK/o3WvEZ3Ww9suqjPZffVUIjnVeX17caRgzvhbknOl/zrKxQFzrriCJoabKB5XxMpClgbbPxr4XsoiuJZss5uczJ6QmKH9ZB4Loaq/ornQ6YFvby8nLi4OM/j2NhYKioqvPYpLi6mpqaG2267jdzcXA499FCuueYaVNU7GVi4cCELFizweR5FUbj55pu56aabPNsKCwv990KEX/TnZ6JYNIqK/DvGzOl0UZRVRNyoOAICfQeQkvwKjAaV6F6Ms2rL5dQwGAf23po/Pg/drFNTW01NbXW39q93NNLYYGP6YaOG3d+opmlUF1cTmRhJXVU9YVH+HTox3N6PkW73z6Or1rv42BgKCosoLi0lIS6O4tJSCotLSU1KRFEUioqLCbAEkj4qDV3X0TQNVVWHTS8fieeirf6O5ycbruWDuqfJy9vBc9W3oaNhJoArYv6vR2Xl1+xwN/Hu9mfW5Gpo9xr2xHh+xpX789H/fvB6f3TdfUPjq4/XMGF6Kq8/9RnxqRGcMOZW9/OK9+rmuq5jCQ7gs7fXous6kXHB5ObkuZOZINeQ/PuVeL5nGSrxfMgk6L5aHncfJxMaGsqZZ57JqaeeSl1dHffccw8ff/wxp5xyitd+8+fPZ/78+e3KUxSl3XkKCwtJSkrywysQ/jJcP5Pk5KROu47ZGzWa6pqIi4vzTGjSU3arnZ3b8xk1Ls1z57m/Ddbn8fErvxKbGOHz3HU19QSFBPaoq95AcjldqDYDkRERNFXZiI2Jw2T2z9ftcP37GKl8fR5dXXBNnzaFL775nq++WU1cTBSl5RVYLBamTZkEQG5+Pg67nbSUZBRFGVbJOUg8F60G4jNJIYXPN73Mv6tv8Wyz61aeq7yJhVOWdLucq5Pu4971f8E7A4VxYfu0ew17ajxfkf1oa/KtQ0pmHEeeug/PL1zBAUdPxmBUKdzRfDOu+e9Tp/XvVVVVFr9yBdef8Q8sQQGMHpdEeX4DqkEdsn+7Es/3HEMpng+ZBD06OpqtW7d6HpeXl5Oamuq1z6hRo0hPT0dRFMLDw5k1axY5OTm7FyVEj+i6TnVZDZFxEX0qp6tkMX1MCna7o9fBHMBsMROXEjdgwdwfinOKiUmJwWA0dPqlZLfavbqvrfnqT6Yf3H4CDV3XqSqtxuV0ERE9NCeHMRgNJGYkoCgK6RPS+vSZi5EnPDycI2YdzB8bN1FYXExSfDx7TZ1MeFgYdrudXYXFxERHEdy8XNBwSs5B4rkYDO3W5MShOXg7/ynOTL2+WyUYsTBv0sss/vMSWgZPT4+axVmp7bvP78nx/MPND7L193xGTUwmJMQdsz947XtWLlvbnI0376wooLcOGVAUhVe+uZMnbn8LRVEwGBTGTk1ly7pcAixD9z2QeC4601/xfMiMQd9///1Zu3YtDQ0NNDY28tNPP3HAAQeg6zqFhYVomsY777zDwoULcTqd1NfX88MPPzB58uTBrroY5px2J3XVdTidzn4/l7mbE6R1Jjxy+Mw0r+s6mu5e6qVgewEOh+/32Ol0kpeVT3VlrWdbUV4Fp/91Vrt9FUUhdUzykE3OW7R8CUswF7vTdZ2oyAiOmHUwc2efzhGHHkJUZCS6rmMymTj04APZZ69pg13NXpN4LgaaU/expJquU+Oo7FE5IcYI7p78Gi0zmx0Se3qH++7J8Tws3EhAQGsKkZDqnk/Ca1k1vJMRo9FAXFIk69dkYQ4w0tRoZ++DxtJY7yAkLHBgXkQvSTwXHemveD5kftMiIyO55JJLuPnmm9F1nfPOO4/Y2FisVisXXXQRy5Yt47TTTqOsrIxLL70Up9PJsccey1FHHTXYVRfDnCnARHJm593TRe8oikJSRkLzuLNAjEbf77HRaGTUuDTPDO/fr9yA0WTscNKYnrQotp3FVoihoG33bIPB4Pm55fc6OXH4TAjni8RzMdCmhB/EusqvvRvSFZ2LMu7ocVlBhhBUVDQ0luc/y9/GPuq3eg5nHcVza6OdrX/kMXp8Ijlbvef30XV3QzrA1P0zePel70BRmH7IOH76YhOT9hnF2y+sIiwyqFt1kHguhpr+iudDJkEHOOqoo9oFaIvFwueff+55fPXVV3P11VcPdNXEEONwODGZ/PPrq2lah1/4mqZRuKOYxNHxe0RQ0HWdyuIqohIie5QE67pORXEVMYm+1zFVFIXY5JhOy2i7/Npny9aSMbHjGV27w26zo2kaO/7MJXVMCqHhIX0qTwh/avv3Ndy6sHeHxHPRXf6I52elXg+azu+136Dr7u7pt018ASMWHvjzIppc9QQZQrnIvLhb8TwlaBx5jVsoasrhnYJnmRF9FGmB4/tUx4E2UPH8prOf4ZDjp3H0Gfuy4MqXm8sAdpsR/6TzDuQ/D36E5tKYNjOT31dvB6CiuIaYhIhO6yTxXAxl/RHPh0wXdyG6y9ZkY+fWPJwddJfuifLCCgpzSjpdHk1RRuYFtC8ul4u6mnpcTlePjmuob6A4r7jdMAGn00lNm27r3fXnb7kcdtLe7bY7na52k011pKq4irL8chx2JxZL95emEUIIMTD8Gc+PMJ3PRZYHURUVUHhm283cs/EsGh216LpOg6OGfzde3614PjP6GAB0NH6t/IJ/b7+T5XlP97mOA2kg4vmfv+1k5/YS7nrmAhZc+TLBYRbAx3WTAvsfPpHi/ErCo4LZtbOM8OhgNE2jqqKe+OTOZ8OXeC72NJKgi2EnIDCApPREjH5oQY9KiCQuJdpnwK6qqEFVVZIzk9ot/dMVl6tnAXGoMBqNpI1L6fF7q+sQGRvRrlWisb6J6vLaHq0P31hvpaHOyukXtx9/XpxTTHFuSbfKiR8VT+q4FCbuOw7TAE3CU1leMyDnEUKIkcDf8Tw9bTQ3jn8a0Gl01eFyOVv7WCsKmu7iXztu77KscaHTPT+3RK9fqr5iWf4Tfa7nQBmIeL74utc44+JZnLPfAi6+9UQa63zMBQAkp8XwxJ1vYTQamHXiXuRsLiImPozi3BIa66ykZMT5PK6FxHOxp5EEXQxLQSH+mVBEVVXMAe3XLXfYnZQXluGw9/yuvtPpJD+rALvV7o8qDrie3owACA0LIWl0YrsbHWERoaSNTe52DwSr1clz939AZKx74hyXy0V5cZXn+cSMBBJH92w8j9nse116f3PYHFQWV/Tqd0YIIfZU/o7n0eYEIkzuLtj6brO76yg0OKu7LOu/uQ+y23xnKIrC5tpf/FLXgdLXeH72jPmcOf0evnznl3bxfOVba2mst7FtfT4ZE5KwWx3ouu7519bhp03nxy824XS6uHbBGRTlVzBp3wwSRydgbbKTNrbzBL2FxHOxpxhSY9CFGCpMZiOjJ6b3asZOo9FIWFTYgN3lHWx68zIqHSXh3U3O7738RdZ+tRkFxTPRj8PuwN5kQ9M0VFUd0vMAmAJMsgSLEEIMAbdNfJ5562eze/hRFDgsbnaXx4eZo6Exi7ZZuq6DWbX4uaZDS0s8ryip5/yD7/O8f4/dthSDycDhp7T2LHh+0QdM2z+TLb/vZMnaBZww5lbP8c2FQXM8Hzc1FVuTnZiEcDRNo666kWkHZKIoCi6nxtgpKQP/Yjsh8VwMNmlBF3ssh92By9XxeOa+fDFHxfZsUpbhStd1ivNLqCqv9mzTNK3HY97u+uvz/Lxqi/s9a37bThp3G5ZAC4np8b1qBehPHf3uSDAXQoiB5+s7eXL4/q0PmvPsM5KvYv+oE3h863XcveFMFv35V5/lnZd2GyaDCa+GYEXnzokv+rfiQ0jbeH7BrPva3dx4+MY3PD+/9OgnmANMrF21mSVrF1BTWd88Y3vbceet8fzey15ENaicMPcAAJwOFzMOHc8D177mfmzv3twy/UHiuRiKhtZVrxADRNd1SvPLqCiq6nrnXpZfmF2E1skNgJFAURQCQwIJDg32bCvfVcGuHUU9Gne+bnVWu22arvP2818PuRsd/f27I4QQovs6+k4+b9TtKIr7MndSxH6Y1ABWlrzOw5svp9xagKZrNDhqmLfBd4v6wslLvJLURZOX99trGAq84nkH4fuEMbdywphbeeu5VVRX1GMwqpw66U7OO/D+1p103K3nbcpQVAWnw8W5fzuan1dtwWQ2cvqUeaxeuQGAvxywgNLCgY+pIy2ea8Bjf3zNfzb/NNhVEX0kt4fEHsm9nmf7MdNdaahrJDi0e+t1dj89Hd4iosK9HselxqJpWs/eW/eqOO1Exoa126brOi6X1uGa6v2tt787u9M0DZvVTmDQyO4yKTq2cePGbu03ZcqUfq6JEMNXZ9/Jf0m7iTd2PkZew3bOG3Urr+Q8gLvbdevEcWg6i/+8hHmTXmp3fGxAMmW2XQCsq/mGfaOO6M+XMuha4rnRZMRhd7ZrRX98+d95+7kvWLtqMzOPmMipFxxCfV0jD//9DRSX1mbd8zbd3HcrZP2abFwuDUebVnNN07ni2Ed5b+Pifnx17Y2keF7vtDN9+WOet/zVrF/47pS/DVp99jT+jueSoIs9lqIo6LpOWUE5sSkxXX5BOxxOivOKSUpPJDC480ltFEUhObNv63gPFmujFUsfg0xPu6Tf+ODZPH7HUk+SrusQFhHIUWfs027f8l0V2JpsJI9J6vIzqyqvJjQixO9d1fzRql9VVkNTXSPJmV2/jv7mdDqlO98gkMRbCP/oKJ5PCT8Ik2qm3llNdEASCu79vOaOUxTsWpPPcqdHHsZnxe6u3d+WvTPsEvTexvMPNz/ISeNua9P1230X/abZT4ICKRmx3PPsRVitTi4+bJFnMjVFxftmu6LQ8nbf/PA5AOzYXOTznC6Xxo4/C8mYlOTzeYnnnTvgvSfRmnsu6joUNtRwyqf/4cPjLxuU+uxp/B3PpYu7GHGqKqq73b3a5XJht9q7tba2yWQkbVxal8n5cOZwOCjaWUJNVZ3fyuzOZ3HMnBncsOhMz+Pg0ECW/XKfz31jkqNJzEjoMAjammye8zbWNNBYb+1FrTun6zqVRZU96sa/u+j4SL/cue8rXdfZlV1EeVHloNZDCCF25494ftekVwB4dvutBBiC0BXv8nQdkgIzfJZ5eFxrXKqw+04sh6q+xvOPtz3CfodNIDDY3LqueXO4ys8u5dwD7uOMKXdSXV7n6dKua+3fW0UBo8nA0XNmALArt6zdfgCqQW2XnEs8755fyvNxaO3n/slvrB74ygi/kARdjCgul4ua8joa6hq7tb/RaCRlbHK3Zwc3+WGt1qHMZDKRMiaZ8MhQv5RXX9dAUW5xu+0ul4amaV4B0eXSCAoOYEXWoyz/3XdyDu6LhI4+L1uTjZ3bCrDbHM1d15IIiwjpdn1bLga64nK5aGxowtnDyfB2NxQmv1MUhaTRCUTFRwx2VYQQwsNf8dysWgg1RtLkasDqanC3ouNOKBUgLWgsV2QuAuCJrdfx9PabvMtV3SuyaPrwmlPGH/H8/pcuw9roaLddURVqKhuAlgZzdwu70pzB67o78dXRCAwOYPK+oz3HlhW1uemi654k/uWv7vA6h8Tz7psRk4qvWwNhJhlCN1wN/tWhEH5kMBhIHZNESFhw1zv3QEleWaczvvuDy9W34OAvfbkJ4XC0rhlaVV6D2WzCYG6/3NyODTls/X07uZt3el73dx+vZ0wnS624W3oLvT4Hu827tSQgMID0CWmYm5e468ndbGujlZ3bdnVr3VOj0UhSRuKIuWFjMpuGxM0CIYRo4c94fkLShV6PW5fzVKhxVlDtKOfO9WdQai2gqDGHeetn48QdCzJDpnqO+6z49W6db6TF83Z0PLHXM+S8pYW9OeFWFIWAADN2m4O/XHs0AC8/tsK7HEVBUWCfQ8YREm6ReN5LS7LX4dA0zw0SAJOq8tVJ1wxirURfyBWZGHH8vVa2rus4HE60DgKuy+XqU9cocN/pzdu+C6ez62AyVFkbrezcmofT4cThcFJdXg06xCfHtNs3LCYUxaBSXVrtCcjbNxYw64RpHZavN99pb/u4tKCc8l0VAGgujcIdRZjMvQuyliALoyekdnh8UW4R9W1acvyd0HZnmIUQQuxJ/BXPnbrTK3lpYTEEUeuo5JHNV6CgNHfjdu+3YP1cAPaNPNqz/8+Vn3d5rpEWz0+76GCvMfu6DkajwX3do9NuEji9uU3dEmgGwGQ2steBmQCU7vI9lErXkXjeS9esXs6Dv39J9ty7ePnwuewXm8ZhiZlsOftOjHLjfdgavreLhBggiqKQ3MmY5+KcYhRVJSmj95PCmS1mImPDh91EXZqmoWs6BqMBS5CFpPREjM13odPGpnR4cRWfEkd8ShwOuxOTyYi10U5jvZWTzz+ow3OpqkrKmNbxaS1ds1sCq+dioQ9MAe1b+z3PWQIw9/JioStlRZU4mmwkju7490wIIUTvzIg8io93vYhN8x7DfG76LbyYvdDnMRrum/JTwg/wbGt0dT2ee6TF86vuOR1VVXjnpe8Ad/f2D7c8xLWnPE72n0WeFvNW7gfmACMuTWf6QWM9zySkRrc7r6Iq3PnU+QSFBEg876HDPvwnYeYA/phzCwCzEjKYleB7PgUxvMitFSG6obMv2fj0eCL7OH5XURQiosO73tEHXddx2NuPERsI5bsqKMwp9vQgCAppnUDPYDBQWVZFeVFFh8e33N1+56VvCI/q/tiyFm3vehuMBpIy+2+SlpiEKMwB5n4pOzo+gqjESEnOhRCin8yf8gaq4r5p3PJdm9+wndgA30OrWvYFCDa4l/zUdZ0ia26n5xmJ8fyKu07jjZ/u4tbHzvF0BU8fl9icmOueseTQmqzXVjfSWGflsjtP9pSTvWkX4/dKA8BgVAkJDeTlVXcSEhYo8bwHipvqmLDsIQ5PyuTD42SW9pFIEnQh+shpd7Jza0G3xjr1h/KiCop3lva5m31vxKbEkNRB7wJd16kqraKxvusJfn78fBMTp6f1RxWHBVVVsQTKZC5CCNGfHpj6lvuH5nD5Zckyzk673msfdyjVuWPifzzbpkYc7Pn5m9J3+q1+Qz2ej52SQHR8GE/fs5zvV24A8AwLaHuYoiqEhgcRFhlEfHKkZ3tBbhk2q52YhHDe2/ggb627z+v5kaC/4/kLW37i4Pef4j+Hns3CfY/vt/OIwTW8+t8IMQRZgixkTk7v9VipvopNisHlcvntbq3LpaHgXvKkK53NqK4oCnGpcQRYArosJy+rlHOuOaqnVRVCCCF6ZEr4QWys+YEQYzj1zhoKm3IxKiZMqhmjaqLeUYtBNRJijPAcc3DsKfxU4Z7g7M/atf1Wt+EQz+c9dQE3nvk0Wpul0lSDitZmAldVcc+Uf+hJe3uVU1laiwKcf8NxGI3SRthTF3+zhPWVhWTPvWuwqyL6mfx1iD2KPyZ086WzsU4DwZ8T45Xml1G8s9QvZYWGhWD2MYt7W/nZpTjsTg45bmqn+wmxJ1j901pW/9R/CYAQI0Vv4/m5o9zjdeudNQB8XPgiM6OPpcnVwLVjHuOGcU/g1OyeWdwBos0JqIr7ktmp2fmp8hNeyllAvbO67y9kN0M9no+dmoLRbPS896rqnZyDu4NCfU0T18w/w2u7rcmBw+FizmWH+aVOe5ID3/8HdQ4bv55xU9c7iyGhL/F8RCfoCxcuRFEUzz+xZ9N1ncLsIkoLynt83J4kYVQciaPjB+x8H/3vB2ISezder6dKCkqpq6nvt/LtVnu/lS32DPUNDdQ3NAx2NYYcieeirb7G83Gh0wH3Gud2zcbY0L0BWJb3JHGWVFRUnt12i9exMQGtk5R+UPAfttf+waI/L2Zb3bo+vJL+1V/x3G5tHSfva8byyJhQ4lOivLZt+yMfgBmHTvBLHfaUeL61poxxSx/kjPSpvH30RYNdHdEDfYnnIzpBnz9/fvPSTPoel2QJN6vWyEObL2PBpnN5Yut1JKTHE5vcfhbRjui6TtHOYqoravxSn07XFW022EFhoC+Af/t+G3sfOKZXx9qsNupru//lZzSbMXXRot9b9bX15G7LG9ZL6wgxVEk8FyuLXuWuDWdw5/ozuGvDnD7F87+OvgcAp+ZONJfufIJocwI5DZsAGBu6NyXWfK/j94s61lMONMdKFF7JuZ+sut99nnMkxvPlL3zt9TdoMrdv8W9qtHH82TO9tv3+UxYA1z8wx2e5Es/be3LjN5z86QssP/av3LbXkYNaFzGwRnSCLoY/XddxdbD+eHc8sOkiah2V2F1Wym2FPJJ1RY/Wu1QUhZDwEILDgnpdhxa2Jhs7t+7E2UmS7rA7+e3bTTTUdT2x2lCm6zqaS+vWZ1eYV8Hx5xzQ5X6+NNQ2UVfV9bI3LaLjIrAEdj0mvjdCwkIYPX7UsFtaRwghBkJf4/k3Ze+h6+6kGF3n3i1n9ymejwqe0Lxdxao1sm/0kaDAJ0WvcNHou9HRWVOx0nP8wTEno6O3LgnenKTqOnxa/N925xup8fyNZ77wet5hd7nXkG9+Z0wmA031NubuNq/MiiU/YTQZiIoL83keiefezvnyv7yZtY7t58xjamTvl/EVw5Mk6GJIK80vo2hHUa9aTF7JfQBNb3MxoLjXMP26bHmPygmLDMVk6ttdWl13ry2akJbgWSfcF6PJQHxKNOZBHtPeF2VFlRTlFFOYU0xpflmn+/7xYzaqqjBpn1G9OldUXASJoxJ6dWx/GOy5CMTwVFlVjd3Rfmklu8NBZVX1wFdIiH7Ql3g+b/1soO004QqKrjRv77628fz8UXcAoOvuLtrflr6PioG15Z8CYDEE82nRa55j795wtjsJbWmRbv6voijEWFq7v7cYifG8trqRxgYbAZY2r0kBveV/OjidGqMnuBPKOdPv5cSxt3HKxDso3VVF5qTkDs8l8bzVjHceJ8BgYM3pfx+0Ooje8Vc8lwRdDGmxKTEkjO7dWpgOp7X9Rl3H7vKxvZ9VFldRlFvsta6oL4qikD4xtd+6bfmT0+FkV3b7i62ImDAi4iNIykggYVTHY98++t8P/GPeMpLSYnp0Xl3Xcfj48hNiuFr55SpWfrHKK6jbHQ5WfrGKlV+uGsSaCeE/fYnnvvR1oEOwMYzEwHTPY6urgbGhe+PQHWys+YETE/+KTWtCa54sTtPb937TdR2zwczc1JvbPTcS4/l5BywEwNY8Bl3Xda8PQlFA03SOO/sATp00j4baRnRdx+lwoWk6x8yZ4VW+xHNva8ryGLN0MZdM2J/XDj93sKsjesFf8VwSdDGkqaqK0di7GU1PSLoYZbdfcQWVYxPO80fVeiQ6MYrE0Qnd6o43XCZAUlUVVW0/vs1kMhIUHIiqqh2+lmtOfpx/LniXooJK8rJL2gXoipKqDltZygrK2ZVd5PexYXU19VQUV1C0o6jdjLS+dKerpubSulVWu+N6fIQYzo476gjqGxpY+cUqNE1H03RWfrGK+oYGjjvqiMGunhB+0Zd4HmRs3y1aUXQWT+vbmuRnp93oFadyGjaho/NZ8RvMiDoKRVF4MdudlBow0S4sKbBg8psdlj8c4/nDN77BBbMWMe+vz2MyGfnfk5+jaRq3nftvNE1v7QWo6/h6dYoCa1ZtxGF3eL1+Xdd57YlPvfbdE+K5le4N67j/t8+48KvXWXXSNVwz6eAen0cMDf6K55KgixErJSiTv417FKNqQlUMWAxBaLiod1bz4J+Xcv+mC1hd/uGA1Wc4jU3uTrBUDSqJo3veHe2yox9mx+Yi94Pmi51TJ87D1mTznLu+ug6n3XcdYlNiMBhUinOKe3zurrgbAxQ0TWNXdseBXdd1CncUU1ZY0Wl5RbklFPagnpd+s4QxSxczfuliFv66susDujDYE9yI7omKjPAE9arqaqqqqz3BPCoyYrCrJ8Sgu3vSKwQZw9A9zbU6oLCy+L/MWz+beetnc++Gs3tcbnxAKtGmBFq6z9tcTYSaIim3FWLV6okPGEVu42YA7p+2FFVVvJJ0xWeKOrT0JJ7ffM6zfPPR75QXVbPu++2ckHkL777yHadMuJOtf+xE03ScDqf7PVCau/u3eT903R0f//xlZ7ub7Iqi4LB7J6sjOZ6PWbqYjCUPMGnJg0x6++FO9z1t5UusLNjK1nPuJDUkwuc+Es+HB3/Fc0nQxYiWaBnNfVOW8vdx/+Deyf/jzkkvsvjPS6hzVNLkauCTwpf5pfKLrgvag5QVlpOfVdjjyXzaLnfS0bE1lbUU7qzAV6PCS4+uANw3MlLGJHc4/ktRFJIzk0jM6NukKeXFlRTmtHbpCw0PISYxmqSMBAxGA6B12IVSURTi02IxmAyUF1d2eI6kjASSM7tXz8u+Xcqqwiz3hDy6zn+3/8K9v37a9YEdsNsc5G7ZiaODGx1i8LUdq9YS1F0uFy6XyyuYy1h0IdxJ+oPT3iXYEEpLQv116TueydpcupMFG//S43JPT7naK9FuctWhYmBp3j84K+16dF3jtyp319RFU5djVL17Aexs2NzLV9T/ehLPP3jtB7b8ntuaWLck4c0PHQ53Gbque8dwxb2v3tyirigK1kYb+Lh5cfTsfb0ej9R4PmbpYjRN80yeZ3U4mfj2Qz733Wv5Y8QHhfD9qdd1WJ7E86HP3/FcEnSxR2hZv/SRLVe6NzRHFx14p+CfALhcGg77nj0WStd1rPVNGI0GDIaOuyJam2xUlbUuPed0OCkpKMVuteN0OtmxORe7rf17qeugGny3OEzaJ93zc2fnBnd3vK726UpYZAhhMeE+uyC6LxqSMRg6/oo0B5gxmY2YzB33jOjJEjerCrO8uwMCS7N7v76uOcBEdGJsp/UTg+ujTz+jsqrK87glqO9+p72yqoqPPv1sEGoohG9OnDy9/UYWb76ED3a9MKDnvmvyq56f207apgN2zT3HTE/ieUbIFMJMUajNl8ROzYmuaGyrXUeiJR2jamJFUes5D445xev4L0qW9uXl9JuexvOCnJL2Xfi9CuzkOaW5O3+bcPfXm09sUxcIjQjimvlntDt0JMZz902M1n0VBWy7reDzWcFWZn37MrdOO4LnZ3Xe+0Pi+dDn73guCbrYo7g0X3cfFb4rf5+KwkpK88v36DV2FUUhKSOJ5C7uZjvsDmxNTZ7HRpORUeNSMVvMqKpKQ62NqpKqdsdFRIfxytd3e23TdZ2J+47isJP37lFd+7q+rDnATEho35bPCw0PITzK95IxPdHxqLa+dZ+MjO573UT/su+WRMTFxhAXG9PpPkIMJid2Fm44l6KmndQ7qllT8SmfF78+oHUINIS06e7elntm957G85OSLgGv8dJgUAysLP4vMyKPpsFZi9b8TT0r9vTWsykK+Y3b+vJS+k1P4/nZVx7pnYDuFn50vTVJbfu+6l5d3N0PVmQ9yhvPfMZZVx6BwWhg9PgE9jpgTId1GEnxvDtjzu9Y+zE3/Pgenxx0LueP3bfL/UHi+XDgz3gut2LEgNI0jfraBsIiQoH2dxn7m0kxY9fs7bpYz4o5bVDqMxQZujGJT2h4CKHhIV7bWpauUVWVyfuN63AyoJiEUP694hauOuExVFUhbUwijy/9W4/qaG20krtpJ6OnpBPQy3VQW9bk7e7cAP35u6ECiUFhFDXWerYpwCXj9/P7uWxNtl6/Z8K/UpOT+Pm3dWze2vkFfn1DA6nJ7ZdxEmIwPLXlJlxtZjTX0fmm7F3Gh80gLWj8gNQhLXg8W2t/bU4aW7fr6Dw47V33zz34zp4SfgCBajBWvbH5Rr6OS3eytuIz7pz8Aj9VrGBZ3hPMTbuZYGMYqqKi6Rq6rmPXB35lmO7qaTx/8fPbuOzYR9B1cDldgOK1qlxLAu5O0lu3Q+v7vSLrUR684XWSRkWz9qvNzDphGr9+t5Wjz/CdiI60eG6h/Xuu6zohAe7XdsKK57G7nGw+63YKCwv7dC6J50OHv+O5tKCLAVVXU09NWS0ul4uaylrytxcMaIv1wqlLMKiqu6tW82mTgjIA+LjoJb4ue3vA6jKSmUzGToPf52//TExCOB9ve4R/fXJTt8rUdZ3Kokp0Xae6rBazxdSnwFS2q4KCrEI0retZWe02O8W5Jb0+V1dO+vQFIgICOT51AqqiYFRVrpp8ELfvdVSXx+q63u2/IWujlfzthTKObYjYb9/ppKV0vC5wi7SUZPbbd/oA1EiIrjVotT63b8/bPGDxfFr4Ic3d23WveN4ylnze+tnctWFOj8o8NvE8FL3tMCMdq6uRe9b/BR2d9dWrPc/FBqR4HbutrvfDkYaShLRo3lu/iEtvP4mxU1MxGlvThOR0d0ugJcgMgNGktkneFSKiQ1mR9SgA3378O/9ecQs7txdz6//NpaG2ib0PHuspayTH88wliwBoe6kZbDazfvatTHn7EcZHxPHlydf4PFbi+fDl73guLehiQIVHhhESFozBYCA4LAjV0PFSXP3lgalv8+KOBTS56rls7AP8e+vtzFs/B6W5w9w3Ze+yYPIbA1qngVRRUoXDaiM+Lb5P773dasdsMXttszZasQRZujz2py83sc8h47rcz+lwoqgqBoOKy+Wisb6RUGcY8WmxQGxvqw5AbHI0Tmd4t5a+U1UVVP/8ntY7HViMJs+X78x3n2Bm3CieOXh2j8vSdZ2inBIUFRLTu55R3xJkIXVskoxjGyJCgoPZbx9JvMXwMjX8YH6u+Myri7mma6jB2oDF82JrLjp6c5Lu/dyd689ARUEH7tpwBoumvtutMveLOoYVRa+ha7qnh4Cut3lNus7dG87kgalvc3DMKZ75awDWVqxkXOjA/y33Rzw3mo3MvuRQ9p01lqtPfIKDjp3CD59tpLigqnkCOHd3dJezNRk2BRg49KRpAFx53GMccdo+PHbLElIyYnl+0Udoms6osfG4XNqIiufF1joiLEFYMPBHRSGzP38ZBciae5fXfstz1pO5ZBGPHXAqZ6RP9VmWxPPhzd/xXD5VMeBaJgMxGo3tukkPlEszFnh+LrMXQJtLDbuziYUbz2X+lN4n6Q11jdRV1ZGQFt+XavaLkPAgHEEBfQ7mOzfnkzYhxXPX2+FwsmNLHqPGphDcxViworwK7nzq/E730XWdkrwyVFUhcXQCRqORpMykbgXgtvXc/SZCC0VRPN3yu2I0GUkc1ffPcsKyh3BoLnR05ozeiw93buLayYdw3eRDelWeoijEpcag9OA9ke5wQoi+OD35SsyKmR/KPwYFVAz8NeNu/pf7CL9u+Zy/T3gaYz9eXn5Vuozfqr4mxBiBhosmV32brteArrQuxqbB3etn80A310s/PG42XxYvw0Vzq6TXmGwFTdfYWvcLM6KO8krQdzRs9MMr67n+jOcNdXXEJUfw4+cbiU2IoKy4GoNRxeVs38Jrtzq5Zv4ZfLdiPcUFFTy38hbOmHoXDoeTD//7PQDn7LeQZ969dsTE88wlD+KeHV4nwhxEjb0Jg6Ky7Zw7vfa7fvW7rCrKInu3pH13Es9FW9LFXYw4DrsDu617E47kNW5p351IUbBpPR9T5rA7PWUZjAbMlqH5xRlgCehyMpWulmQxW8yMmpjqFRx0l4aqKZhMnV+Yfb9yA0aTkcxJHXcFajl/UkaC11rrPQnmVeXVFOT0fLm4/jJ+6UPYXe6LPgWF5TvWs3dMcq+T8xZGk7HT2WmFEMLfTky6mKsyFzMn9W/cN3UpGcFTuXfyfxkTshf3rj+bZflP+uU8u8fz1eUfsrrsQ+6a9DKjgidgUYPQdZ0Ik7v7dbvewYqCq9Ppx70dGnsGigKq0vHYbYvB3bBgUluTRaursdvn8Kf+judHnbYPug4Bge647mvdd0WBhNQoAJ64YxlX33s6X773K9YmOy6nhqa53//Geiv3XNE6G/5wjueZSxah6+66KChU25pQoF1yfuRHz7K9towNZ97arXIlnosW8lsgRpyKokoqCiu6tW9a0ASfa3L39G60y+ViV04RVaXVAFgCA4iKi+hRGf5UUVKJ09m7cUm2Jhv5Wbu6PH73O9nuIJ/Cll+3kbMtv8PjPlu2loyJHc8qq+s6xbmllOaX9alVIDImgtQxKX1evsUfvijYhlN3tVt25efSvEGslRBC9F5K8DimRxzute30lKtYPO0dCht3sGDjuWTb/ujTOdrG818qv+Tz4je5Z/J/Adg74lBqHZWoipFGraH5iPbJuNrDODIz8jiMekt8857ZHWBNxacAZAZ7d1XeWPNTj87TXYMZz1csXQNAQU45gGeMd9tYphpUjjt7f56+ZznhUcEcf87+vP7U5yg+upGXFLRf3aU7hlI8f3zjNwDt4nnbldar7U1MXPYQB8ans+KEKwa8jmL4kwRdjDgJo+JJHN35siJtHRxzmldMV4CzUq8H4I/a7zzbO7tzazAYSM5IQBsCK7Rpmoa90Y6tl8uWmC1mQiNDuz0baluBwYGERoUSmxDZ4T5//pbLYSft3eHziqKQMCqO2JSYDvfprrat+Q67g7Ki7t24KdlZ0u01dLsj0OS7N0VPbkA0NTR1vZMQQgwBfx//FKcmX85ndS/z9Labe11OSzzfWPMTHxa+wII2Q88mhx+AS3cyPnQ6dlcTCiqgtIvn6K0Tx7XoLJ6fmPxXXIoDtc1s3Do6igJm1cKGKvdkcUcmnON13O9V3/T6dXZksON5VXk9MfHhABiNBk9ruHsys+Y6unTmXn0kn7z5E08uvw6nU6MorwKzj7HRoeG9XwptqMTzEGPnvSNf3f4z+77zOM8cPIdF+53ocx+J56IrkqCLPd6JiRexX/TRKCgYFCPnpd/Bsrx/cNeGOSzd+QTzNsxmZd6b7NzeRfcqHeqr63p9p9tfVFUlIT2e4JDeBUJFUYiO6zjB7sroiaMICfM9t0BjvZWGOiunXzyr0zIMRoOn+5u/ZgW22ew4rLZulefvmYgPjh+FQfH+utV1nasnHdSt4+02BwXZhdiabH6tlxBC9Jd9Io/g6pgniTTHMW/9bD4peqVX5WTXr2dp3uMsnLKk3XNhpmgizO4JxvTmdcpR2iz9hTu5vnP9GZ7/zls/u8t4vnfYYZgVCy3ZvtL8P013oaHxR/W3pAR6r+u9o97/49AHM56/8n8rmgtx/8fl8p4hvWXZNV3XueGMf7D/kZMIjwrh0ZvfZNTYeP7x7g1eregGg8qzH9/Yq7rsbjDjeZCh/Vh3XdeZEZvKZd8u5Yn135A99y6OSh7r42iJ56J7JEEXAjgj5RoWTVvO/VOXMSlsJgrNX+rNa2R8W/0WG4NWdtq9ymQ2kTYupVd3qv1tKK7lrmkaLz78EVFxYd0+xuVyUZhd1Lwea9+EhAaTmJ7YrfcmIT0Bk7l7E850x8x3n+DI5DGEmgM8jTvXTZnFzVMP79bx5gAToyakyYQwQohh5/z027lz0otsqP6BBzZdRJE1p9vH7mrK4uWc+7l/6jKfz48OnsifNWs9j6PN7t5z3jmZ7kmwleZR1P+x39BpPJ8z6lpsehOqomJQjM2l6Dh1Bzo6X5W8BUCwMdxzjNXTzd6/Biuev/fK90TEhFBeXAP4TnTd66HrbN+4iwXPXwzAj59v5IIbj2PU2Hj+veIWps7MYJ9DxvH+n4tpqKob1vH8sm+XMv9X9xCHls4auq6zX1wahQ21VFgb+X3OLZ2WIfFcdMfgZxJCDDH/y33QHdzbfO/rwK+1n3Mql3V6bE8mPRnqdF2norh348V8cTqcrFu9nb0PHOOZjbVlPFtH75uqqhjNRp9j2XpC13UKdxQTnxaLsYtJ7Prqhh/fw6yoPHrAqYB75va+zNTewuzHGwZCCDGQQo2R3D7xeb4uXc4z224lM3QKl4xe0OkxFfZint1+O4umLe9wH4dup8ZRjkkx49Qd1DjK2u+kK+3ieXciytTwA8mqX0+jqw7Aa0m3MtsuAPaLOpqvS931UxSF36pWsU/kEd0ofWD1JJ5b661s3pCPrcnO8WfP5P1Xv28upPn/fCTFkTEhaJrGiiVrMJkNHHyse3x+WmYcj7xxtacOwy2en7byRQIMJpYdfSH7vfsElTb3ZICLZ57EORl7A5BTX8lxH/+bv46fyby9j+5WuRLPRVckQRdiNxZDSMtaLV7bVWXofaHquk5xXjGWoEDCIkNBwatVQNf1Xt99dzqcNNU3oQf07W630+nEYDBgDjBTsquamx/en7zN+aRNTKW0wH0xlTKm4xnd49Pi+nT+FgaD2u83UDKXLPL81ry/cxMuXeO1I87j4Pj0fj2vEEIMB4fHzeHwuDk8n303d68/k+MSL2BW7Gnt9rNq9fzflmtY3MnyaC/umE9hk7s1/ooxi/jn9ttw6k5SgsZQ0JjVuqOPeN6dTs9zR93MvPWzm1vdDWg4PQeqispb+f9gTuq1ngRd13U21KzudYI+FOL5A9e+xvefrvfcjPh8+c+7nbt1Tfi2ifrLq+6gcEcRS//1JYed3PFa0MMpnme8+YDnNWYuXeT57D898QrGhrmHVTyz6Xue3PAtS466gBmxqf1aH7FnkQRdiN2cmXodf1R/h1Nzet0ovnn8M4NXqQ4oikJoZBgms5HC3BKMRpXE9NZlyfK3FZCQHo85wPfaoZ0xmU2kjEmiqKioW/v7unjQNI38rELCIkLJ2lSEwaAyeb8MTwt6UobvyfzsVjs2m53aylqSutmNzWc5NgfmAJN74rn0/l2TfuzSxUBry4xTc2E2mnqUnNusNlRVxWQ24XA4sFnthIQG+7+yQgjRz97c+Riba37FUm3h0sz7iA9oTWCuyHyAnY1beC1nMd+VfcB+UUcyNeIQEiyjALhv44WdJuePbL4So2pC011EmeP5ueJzRodMIqd+E6HGKK99FUVH07wbfg+PO7tbr2F82L7srN+KVatvLQ/3eujrq3/grNQbUFA949/zGrZ1q1xfBjueL77uv6xeucEr3jbWu8dJK6r35Hs0d20HeOrd6zBbzITFRFBWVMP1D8zxKnc4xvPMJYu86qlr7usbk8HA8Z+8AOjEBobg0jSy5s7zWYbEc9EXI6c/rg8LFy5EURTPPyG66/6pyzAZ3EFQVVQyQ6bySs4Dg1wr30LCggmwBJCSmUjCKO+gVVFUSWlBeY/LbAm83f27qa9roDi3pN0YNVVVSc5I5IWHP+HxO5Yxaqy7fi1Luqhq+7vgLpeL/B27aGqwEhgS1Ou/3ZKCUtZ9tx67zX+zt3ak2FqHtttrVxQFZw/XbK0qrqKyqBKAmopaqktr/D7BjRDDkcTz4eWDXc+zoeZHnNiod9bw1Na/U2LzXn5zVNAETki8kAZnNatKl/PUthu5e/0c5q2fzX6Rx3ZY9vwNc4kJSKLWUcH8Ka8zOmQK2fUbODb+XAByGjaitpmUs7WxV/ck6V+X+h7TvruL0u/yJOdq8yWz3pyparqTP6q/JdbS2gOsyVXfvpAeGMx4/t2n6zsuQ2u/TVEUps7MZNw0902VJ+98i8xJSV77DMd4nlXffphES73tThctdyrKmuqZlZDRYTkSz0VfjOgEff78+Z4ZJuWPYvioqajH4ej6S7g7+/TFfVOWsHjaOzww9W0uzViIqqi8lru4X8/ZV7sHv2mzppDcQSt1RzRNoyi3BGuTlYqiyk7/duzNS78EWAIwBZp8Bt8z976Xbz76ndqqBrZvLKC+2trp+Q0GA2ljU4hLiiEqNqJHdW8rLDKU9AmpmAP6f2hCgiXU57i8FtWVtdhsXS+Tk5CeQHzzRVlMQjTJGb1vbRguSvJKe3XRKfYsEs+Hj0p7MWsqVtK2yVVH56UdC7z2+73qG94r+Lcn4QXQmluif676jI+LXvLaf1dTtjt5jzqGnY2bWTDlTQBmRB1Flb2EUcETUTFgdTWi+cooUbwmj2u77Fpn0oMnYTEEoSutByuKgo7OqpK3OTree7m1lnXS+2qg47nBZ5dxfffe7J73UNd1Djt2smf7z19v4a+3eC8rNhzj+ZiQ2A6HQOwejt/f2fHM/RLPRV+M6ARdDD+6rmOttWJt6Hz5CbvVTu6WPBw2B9UVtdRU1vR73a4Z8wil1nzeK/h3v5+rp2xWGwXZhZ5J11oYDIYeBwRVVTFZzGi6Rl1NPS6nrwsd99jyndvzqamqc69PqqhsWrvFa585e9/jvuPdHO0UReGsGfd0WQeTqftBuLK0yudFR2BwIPEpXY93s/dyfdndRZsD20Xv1w7/C7qu01hbT1N95zcmfBnpwRwgNDqU8JjQwa6GEMJPap2VPmdhc2jecX1j7U+ehNyjzVf5j+WfeH5eXf4Bz26/nXPSbmRt5UqvJddGBU0ARSGnYZPnO9OgGJvna/f9PWpsnpm9O0n6haPnYXU1uodxNZfZEnNKbQVMCfdeLnNjzY9dltmZwYrnV959otfNEl0HdAVFaX0P3UPZ3M8risIzD3wAwPuvfk+AxcSMQ8e3K7u/4vkZn71M5pLFZC5ZzPErngP8E88nLHvI/Sm3uyvRvl56t2YzcJN4LnpCEnQxpCiKQlx6NKERvtfRbmG2mElIi8cUYEJzaej6wHzx3TLhX2ys+ZFvyt71bNN1nbLCzu9M97fGBiuWYIvfJk2JTYwiKCiI+NRYjCbfS9EYjUbSx6cRHhmKw+5Ed7nYmVVAY2OTZ5+mBpvPoPTOi98AdL6ufDe4XC7qqhtorG/qeucOji/IKaK6orZP9ZjxzuMcmTyO+fsci9lgwGI0suTw85keloCiKCSOSiQiuvvLy+1JgoIDCbDIcjNCjBTpQZMIMrSP4TZXEx8XtraKh5tiPAlvC73NY03X+HDXf1iy8//4qvRtLs1YwFv5T3GfjyXXLGoQL2Tf49UNXVXcsctXbHbqTq7MXAR4J+m+4rlFDSLJkoFJtfhMyN7K/4dnKTaA/Mbt7fbpicGK58efc5BnaVnPZO2KOzdt6bmyezxXFIUTxtzKOy9+y5Gn79OnevYknp/1xav8UVHoqey26nIO/+iZPsXzPyoKyVyyCIfmvi5RaZOAt50gr5mug6GPM9KPNBLP/UcSdDHkdPcuY2i4+wIgKi6iz8lPRWk1ZYXd65Zz9+RX+bJ4CZtqfgLA6XTRUFuP0w9re/ZEy911l8tFdVktgcGWHh3fVXLscDgoyN5FU13HwdJkNmFrspH7Zx5hkaEcfupBBAUFep73vZyKwonn7I/L5WLntnyqyqvd57M7e1R/cLcopGQmEhwa1O1jyooqqK9t8ByfOiapR78/v5bls7Y81/N44rKHuGTC/jw08yQuHDuDzWfdwaYzbyfVHkhVcXWfZt4VQojh6K5JrxJoCIHmOdAPiz2Dq8c+zMaan1iw8S+sLv+AU5IuJd6SCp5W6TaNls150ZrKT9lY+yPHxZ/PSzkLeGDqW+3O9cTW67A3t84fFt8y67pCuCkGgECj7xv+/8me75mIbt5698RmHcXzuek34fTqAdD6nb6+ejVjQvfyPLZrPe8tNVTiuTnA7E5KPZO1e7eY707X4Yp7T6O0sIrjz54+YPH81/ICrwZuRYG8+poex/OLvn6D8754jSc3fsPsz1/2bLcYjEyNSkRROk6TAkwGtp99V7fPJURPyCzuQgAhoYHY7d0f037f1KXctX4Opydfxfu7ngdFZ1rRwZyddmM/1rKV0+mkIGsXSaOTMAeYSBubhMFg6HYyWF5UQX1tI6ljkryWcWnLZDKRkBZPXWNdh+XYbXbsdgep45IwW8ztzr3814Wcsfe9tO0adsLc/bGEuC8+4lPiCAoJpKy4ktqKGkZPHNXjVoO29XfYHJg6GaPW2NDE9x//yNT9JzFmaobndXbX1OWP0uhwd6ELMplpcjj45yFzOC6lfbe+BD8tJyOEEMPRPZNf47fcH5mUthcW1Z103T7xef6o/pYPCv/D16XvYNespAaPodFZj9Nlp8ZZgaIoBBvDqXdWu1NtxcB7u/5NevAkr/J/rvyC9wr+RWrwOMpsu1BQODLubH4o+4QmVx0NLndLqu5jPLqCggsnG2t+YvG0d5i3frZ3d/fNeM0iH2NOIiYgiUp7CS7dSduF21y6kzEh09ha+6tn/+/K3ve5fJwvQymev/7jPM7edyHora9PVRVMAUYcNicul77bSC6ddd9uY/xeaQMazxUfi9krOkx/7wnig0IZExbNXtHJzErMYGqk73H7mUsehOYhFj+VF7TWQVGxay42V5eCj94XqqLw78PO5qiEMT16bUL0hLSgCwEEBAZ4WuS768LRd/Hern+h4ULTNdZVfcvHRS93fSC+u9z1hNFoJCQiFJPZfY/NYDCgaRq7dhTR1Nh197DohCgSR8V3GMzBfQe8JL+s0/kAGuqaqKuqw2g2UpBViGO3mxyWEAtPvXs9AKYAI6dedLDXEizBoe5ZXWMTokgbl9qnLn1NDU3s3Jbf6Y2WoOBAjppzmCc574lJbz1Cg731vWiw2wgwGH0m53sap7PnrSVCiJEvwTzKk5y32CviUO6Z9Bp2zYpLd9HgqOWCUXdw+6QXWDztHeZPfp1GZy0HxZxEoCEUp2ZHVQwUNu3grvVn8nXp2/wr63Y+LnyJCWEzKGnKY/G0d1AVA1vrfiUzdAoo4HDZUFCwuhrb1aul6/LSvMc929rme7qutxufPjvlGjS0Nt3yW4/4utR7Sbg/a9d0+z0aavE8NCIIFDCZ1NaVE3An7LvfL/g0+zF++34rl95+0oDGc5OhfdmqqrJwxvHsF5NKUWMdL21Zw5zPXiFzySL2Wv4Yx3z8b65dvZwXtvxE5pIH0fXWXgfumzgKqqIwKTIeTdexu5woKJhVo+eFq4rC9nPmjejkXOL50CAt6EL00ms5i3ZbFlRhddkHHJd4AcZO/rTKiipxNNlIHJ3Qp67PMQnea72qqool2NKtNVIVRSHA0vl+JrORtHGpZG/L6XCfyJhwImPCAQgMtmA0tX/dH7/xA0mjYnjxy9s7P5/JiN3uwGQy+nxfrI1WaqvqiUuO8Xl8YHAgCWlxmM2dt4iHRfZ8AhMnYHM6vOqlKApWpwMnw++LVNd1SnaWgKK0W8qnpzRNI2/7LsIiQolJjOr6AOFRWVVNSEgwdrudzVu3U1xSSlV1NQDxcbGkpSSTmTEacw96eQgxHCz6868cEXcmh8edyXsF/+Yf2/5OcmAmh8bN5o2dj3Bl5iIizfH8UP4xJyddyqdFr6Eq7vXGPyt+A6NiJsIcS4W9mPlTXgcgJiCJ3yq/ZmzodDZW/4TFEIRNa8Klu5oTzN2WwkTBpTtZU7kSRfFuLHV/1+t8zdcczuEAjAqeSLgxilpnJZquYVCMuHR3MtPgrCHQEEyTyz18aldjVo/ej6EQz6849v+or23y7B8WGURlWR3RCeGUFVZ7GhYS06J56as7AHjr+VUEhViYOtP7pnd/x/MtZ9/J+Lce8lrKND4whDmjpzFn9DSvfQsba/m2KJtfyvLZUlPKDyW5oGvt4jm6jslgZEOle634CHMgv86+CYAXtv5Eo93ODVMP7fD9GywSz4cGf8dzaUEXfeJw7Ll32nzP3qlQ0ND5BDERMWGEx4X3y7jk8OiwTu+i95SuadSUVnfrc45Jivb5mn5bvd0zs6uu6x2uY1pcUEruljzys3ZRV9t+LVlN63x5pcb6JkoKyvrld9II4Gs8vaoMu+Qc3Bcj0UnRRPshAKuqSmpmEtEJkX6o2Z7lo08/I3tHDh+u+IysHTkkxMdy+KyDOXj/mYQEB/P7hk18uGIllVXVg11VsQcYqHj+0ObL2DfySA6POxOA01OuYtG05TS66nhj5yNMCJtBfGAqD22+jMXT3uGgmJO4b+pSzKp78imjasap2ym37SLG3Lru9vjQfdjZuJl9og5DR8OqNTQn0Do6OgbFOza2xPAPC/6D5jO2KHy2/imvLScnXdoch5Tmstsmea2X1E7dyVv5T/f+TWJg4/nc/Rd6knN3nLZTUVKLgsLl807xxF5zgInpB4/17Pf+q6s59sz92pU3EPF861l38PPsG1l9xg1kz72LosZabl3zYbv9KmwN5NVXkVtfRWFDDbV2K77mFdYVsLnc5zsmeZwnOQe4fPwBQzI5B4nnQ4W/4/lwvLYUA0jTtA67KTnsDvKzdpGUnoAlqGcTmowEAYZArM4m7y5fikJ68MROjzOZjO5lyfzMPY6tgOjEGELDg/t0A6ChvgmjUUU1qiSNTey0vrYmGwGBHc/aWV5Uw6kXHgJAZWk1tZU1pI1L9Rpjp+s6jiYHISHBBASbsfgoLygkkKCQwHbb2z6fPLrzuvZFRkgU2bXlXsvNXDRuRr+cayCYuuhpMFhl7Wl+/u13IiPCOe7oI73urGdmpLOfw8Gqb79n1Xffc8oJx0lLuuiToRDPH91yFZPCZnJ84oVe21/KWYBLd7F42js8m3Ub9228kP2ijgGg1JrPs1m3E29J44L0efxz+63NremwufZn7tlwNjOijuKwuNl8V/4+KkaMihmDYkBVVZpcDSgoRJkTKLPtalcnDRcqCtru632j8+C0d732nRS+P8GmcOod1QCYVBMOzT0vSaPTe3z3uspVlNnyuWbMIz1+nwYynj99z3JqKlqTaHdMdv8cGhFI0c6y1no5nJx8nntZuU2/ZFNZWsvFt54A0G/x/JrVb/PVrixMisqGs27z2i/K3Dp84p1jLmb25y+jAkVNdWytLqXS1oiCQrQliAkR8YSaLNTYre4eFW3G+Lf9+btT/kZScHgX7+rQIvF8aPBnPJcWdNGhkrxSCnOKO7zLaTKbSEiL2yOTc4D5k18nwGhpWWkVRVEIN0a326+7482tjT2f+bUto9FIQlo8LpeT4vySLvcvKyynqtz3+vH1lbVUlFSRt70Qp7XjMd0Oh5NducVUV9b6HLf03Yr1mMwGkke7u7FFx0eSOjbFM8auKKeYhvoGFEUhKSOBxNHxRMdH9Wjitrb663fxvFWvoyoKczOne7b9Zcw+zN/nuH45n9jTKPyxYVO7rWaTiSMOPQS73UH2jo67pgrRlaEQz5/Yeh2jQyZzavIVXtsf3XIVTs3J7ROfB6CgMYsbxz/NjoYN3L3hTP6x/e+clHQJE8Nm8Oz227lt4nNkhkxD1zV0NDTdyZqKlTyy+SoMion11auJNMcSbo72tGoriopVaz8WvYUOqKruiec6OrsvAQfueH5s/HmemeKdusPnfs3FUNCY5Z5ItocGMp6v+fLPdr8XLYl2bWUDLz28AoCYhHAMRpXRE9yTrr35z1VMnD6qX+P54+u/ZmX+VhyaiwaXnYw3H2h9XU47r2f/ypXfLWPWh89w9hevAvB2znpsLhfnZEzno+MvZ9s5d/LjaTfwe8UudjXWoDYn4oqiNPetcCfnAQYjZoORWR8+wyvb1vaqzkL4K55LC7roUGxKDC6nq9M7t0Eh3V/eaqiw2+yYA8y4XK4+dR+z2x1cF/MMG9RVNDhrOCnxEpbs/D+e3HoDfx//D8C9ZEtJbjEJoxM6n8DF5mDntgLSx6d22hrdlcDgQFwOF3TjIssSbOmwtTk+zT2Oqba6jvpOZn01mYykjkmmtqqegqxCUscme73OL9/9lfRxCVQUVhCVGIWiKBiN7nOqqorBbKQ4r4yoWAeRsRE9eKWguTRK8stIGBXn83e0qxndu+v4Fc8TFRDEyhOvBGDxzJP6XKYQAJmj06lvaGh+5DtxMptMjMlIJ2tHLhPHjxu4yokRZbDj+VPbbyLeMoozU67z2j5/41/YN/IIT9I+b/1sFkx5A1U1YnU2EmqKxKk5eb/g3xhVM4umvc2nRf8lq+4PTxnulbDdybVTs7Oy5L+kB02koDHL06qt6S7qHFWdV1JXm7u9tybn89bP9szm3hLPp48+nI8LX8KmNYEOJtWMU3N0MOwNKu3FPX6/YODi+TOf3Mrcfe/x3ticsOvg6cVfXlxD+rh4Tzz/48csnnjb/Xn2RzzPqi/jn5tWe86vNN84yVyyCLNqwK65CDUFkBYSyTHJ4zg2eTwHxI9i1gdPs668gKVHXcD7eX/y3JY1fJi7HotqdK/n3nxOVXH3mgCYFBnPh8ddBsCNP77P/b99zj82fMu6ObdwyAdPU9T8voWYzPwx55YevTaxZ/B3PJcEXXRIVVVU88jqZNFY30TRzmKSRiVQWlhOckaiJ2HsKbvNjq3RxtTgI4lOdI/XmTvqZl7cMZ8XdtzD5Rn3o6oKRrOpy9lMTQEmRk8chbmPCaXd7qBwZzEpmUk+n3e5XKiqe2bW7sxaHxYR2mmCDmAwqETFhhMcYvHcSS/MLiIxI4HN63Zy+sWH0FDfSIQW0e4mRXxKLFG2CIzmrj+D3RNuXdfRXe2Xz2l5nXlZu4iIDSc6rvtjqc788lX+KNuFQVX54LhLuXDV6xwYP5onDuzecjkjSWV5DVExw6ub33Bz8AEzu7VfakoyWTty+7cyYkQbzHj+r6zbCTdFc+6o1sSmyJrD09tu5qzUG5geeRjgTobvmvQKX5Ys5buy9zkq/myOip/LY1uuxmQ20eCs4+HNl2NSze0nfNMVTyJXZSul3lGNjk6CZRTF1p3dqufuZbZMAteSpLeN50fGn8Wnxf9D1zUcmoOOLsgVFNKDOh/21pGBiucRERbmv3Ap913xYmtXb0Xx+ZKK8itpqG9kxdO/EBIexNipKZ7n/B3P7/vl83Y9GVpavWMCQzg5bSJzM/dhVIh3jP/u1OsYv/RBMpcu8noNja7W3gNm1Yhdc/f6e+yAUzkjfarnuScOPI0nDjyNaW8/SuYS92TALTWoc9jY993/49czbu7yNQ4lEs/7n7/j+cjKvoToQlBIIImj4rEEWwiLCO11cg4QEhpMdFI01WVV2K12z/ZLMxZidTXwxs5HUVWV+DTfLby72z057+lSbFXlNVgbmkifMMpnS4iu6xTtKKIkv8zH0b1TVV5DQVYh4N29XFHdXf5rqxr4yzVHe7q1+2IKMHX5/tRW17Nze55XN3qD0UBSZqLPYw0GA6ljk3uUnP9l1X/5rbQADR2H5uKEFc9zWOKYXifn9bX1VFf47nI41NntTqpKKnF0MKGf8I83336X4tLSLvdLiIvjL2eeMQA1EsK/3q35B0bVzEXpd3m2rS7/kGe23cqdk170Ss5vm/gc/8q6nT+qvmPxtHc4Kn4u8zfOZUzIXtw24XkWTnmTKeEHUWErZvdFsHePlg7NjlNzdJicG9WuZ0d36U5P6/m89bO94vms2NNRUWlZgMygGH12dU8KHM0R8WcN+Xh+4JETePi/VxIY5O7B1zKL/e6CQwNJHZvCJ2+s4aRzD2j3vD/j+WuHn+vzPVVQKG2q4/nNP3HkR8+SuWQR45c9yP7vPcll3y5lafY6nKrmawlzz2uza05URSF77l1eyXm1vYmc+ko+27WdY1PHg+79m6YA1TYbrw6jLvASzweGv+O5tKCLPU5LsIuMi+hzWQEBZtInjGqXfF439nEe2XwlH+x6gVOTL+9xuZqmUZhTQnxqTLcn7HA5XRgMJk+iv/vkbYqikDg6EcXXbOTdZLc5vG4khEYEYzQZvIKqqqokZybxzkvfEhoe5Dl3W06ni/KiShJSY7t13rCIEAIDA7xuqLQMVejI7suztJ0EZnc/l+WztiSv3Rqv7+Zu4OH9T+5WHdtyuVzs2JKPouuER4X1y4z9/clsNjJqfGqfbmCJroUEB5FfsIuEuDifz6/+aa2ny1xUZCT77bP3ANZOiL55NXcRDt3OtRkPe7Yty3uCrXW/sWja255td62fw6FxZ/DI5is5IOZ4Tk26gm11v/FKzgPMHXUT08IP8ex7UtLFTIs4mGez7nAnT83Lo7m/YpXmx10nw07N3uFzKioa7tbcR7dezeJp7zBv/Wyv7u4Ah8Seyjel73iWazMoBlxt1tYG9wR3mqaRuyOHsKRAYoJ8t4bvbjDi+aT90rnzqXOZf/krHHbyXnz94e/tjnn9h3vI2VJETWU9F/zdPQdLf8bzpw6ZzfWr3e+5O4arZM+d54nn22vL+O/2X/i+KIeixlpWFWaxqjCrwzkEWsoB0HR3d/nO6Er7cnQ0/qgo7NZrHQokng8Mf8dz+bTEHqWv48596ai82yY+xwObLiLMFIXTZWN9zWqiLUleLQkdUVUVk8mAwdj9urZdR9XhcFKQvYvE9ESvmVJ3L6+0oJzwmFACLF2Pe7c12cjfXkja+BRPUDcajR12rft+xXrG75Xm8znN5cJld3SaNO/OFGDyfH6N9Y0U5hQzanyq1w2MipIqouIi2pXZ2NBERVElyRmJXsMNXC73mMy1pTtbr/Ta1lP33YW+KwaDgUn7jMVgMAy75LyFBPP+l5aSwp9bt7HX1Ckdzuhqt9upqq6hpLRMEnQxbLyx8zFqHBWcHXGrZ9vT227GhZN7Jv/Xs+2u9WcSHZDIzxWfceekFwk1RvJJ0Sv8VP4J901bhnG3y9Rtdb/xas4imvNxwP3VbVRNaLqGtluCvDt3t3UXgYYgzAYLNfaK9vuoJjTNBkCVzT1BW0uSfvf6Mz3Ju7sKKig66L6XXnXoDt7Z9U9+a1yFku2eSf7m8f/stI4wOPHcadd46O9vAlBRUsuU/TLY+PMOzzFjpri7s//rvveYtv8Yz/b+jOcnpkzAdeDp3PPzJ4QGWPj+lOu84vnYsFju29c9i3xLPB+77EF272EBeJJ2FQWzwUCAwUSQ0USE2UJcYChpIZFkhEYzOSqBUSGRxFiCydgtgW+5RHj8wNO79TqHConn/c/f8Vy6uItONTVa0bTeJSlDjd3mIG/7Lp+zjfeGrusU7yzp9P25e/KrfFGyhK/K3qbcVsi22l95cMvF3So/Pi2uy7HrbWmaRmWJexIck8lIypjkTpcxAfe6qK4OxnHvLiAwgJQxid0eJ5+zpYgjT9vH53NGkxGHy8n2Dbnd7vrncrnYuS2fhrpGgkKCSMlM8grmTqeT2qo6HPb2n2+AxUxQaFC797Mop5jCHUVcO/mQdsm5rkNMYHC36uaL0Wgctsm5GBgTJ4zDbDKx6tvvsTvadz/cb9/p+LrQFKI3Biqev13wNCXWnVw/9nHPtkV//pVIcxx/H/cPz7a7N5yJoigkWEZxz+T/EmqM5IUd97Ch+gfum9o+OQd393hfibBTc6DprnZrne+uZV10VVGxu2w+93Fo3ttXl7vX1l487R30luRcb57xXXGh6zpGxX2DwKi2r/NvVV83H6JTYSvi/7Ze02kdYeDjeVF+JWdOv4emBhuKorDx5xwMBhVVVYiMCSU41MKxc9zrnW/6JZer7m0d+tXf8fzUUZP548xb+f4U94R0HcXzLzduYOyyB91j0nXv3xJ3LwuFb0/9G9vnzmPTWbfz2+yb+P7U6/jo+Mt56bC5LNj3OC4cN4N9Y1KIsbhj/w9n3NB8fEs3DZ0df7m7W69R7Fn8Hc8lQRcd0nWdiqJKqsrc42gb6zteomQwuFyd3ynfnclsJDQixG93EnVdx+nU0LWOA9L3Ze+h6c0Jo6KgA3W2ap7O6nqCkaryGorzS7od8Ow2B411jWiahqZpVBRWYrP6vgBpEZ8WR1Bw+6CvaRqVZdXtzu1rCR6n00nZrnKvC7+SXVXYrA4OPXmaz/ParHbqqupoqK3D5eze5+hyalSWVKM2d+nbvS5Go5G0sck+byAYDAai49uPR0/KSCQpI5GbfnqfcHOb8hSF5JBwfjrt792qmxC90bLsSn19A8vf/4jVP60lOyeX7Jxcfv7td5a//xH1DQ3Sci76bKDi+Qe7nienfhM3jn8aALtm5+4NZ3FwzMmcn367Z7956+egoHJ55v2cO+pWXC4XD/55KSqqZ7k1XyxqCL4ucg2KO65ruubpkqxi8MSw3f/b4KyjyVWPUen4hnPLEm2fFL3SXOfZrTcHmuN5Sycrp+6+IHfpLlRl90tr7zhaaSvBqtXTmYGM50/fs5yLD1/sSe7dySj88VMWug7jpqXSUGflxHP35+VHVxAeHcyosfGecoZCPL/75xVcvfljTkidyM76KvfNcb1lETX3vDjZ59xFclDPJkpLCAhh89x5xAYGkxAYIsm56JC/47n0eRAdUhSFpNEJqKpKY30ju3KLSR+f1uFSHv7Q3YsGl8tFQXYRYdGhREZ37wtXURSvbmOdsTZaCQgMoL66ntDIUJ/7qKpKckZCp62k66q+gzazyzZXhCpb18uuBAVbMBjVLlthW7qJWQIDSM5M8uxvDgzAZDb1qlt/Y30TdVX1NNbV02BthA6GzdltdrL+zCbIHEhkXASqqvLYLUv45bsthEYEkre9kLSxSV7nd7lcBFjMRERFkDg6vts3TMwBJuJSY1A66VXQ09epqiqnf/YSTU4Hv8123zSZ/9tKxoTFcMGYfb3q3DJbrhD+FBUZwSknHkf2jhzyCnax+if35EOREeFMGj+OzIx0zGYz8R2MaxN7ltdzH+TPul9RdJgVeyrHJV7YreMGIp6vLP4vm2rWcOekFwH4veQ7llU+wRWZi0gPds9kXtCUxbPbbyPeksYN454EoMFRx4ObL2FG6HGcPvqyTs9RbM3FO+F1t2q6dCdGgxmny46Ke7k0Dc3znd2yrne7+VD0TibOaj6NV2LrI563CDGGU++soTutZEbV99JpAx3Pn7prOSuW/dTufdE1naCQABrrbaz56k9MZiN52wv5dNlPnHHxoV71Hex4fvhH/yS/vppJEQmsyN/s2d7ymlRFZfs5d3rVuSfx3IzCmtNv7Na+Ys/mz3guCbroVEsXoqCQIEaPT8PYj8m53eagKLcYQ2DXHTsMBgNR8REEh/p/3VaHzUFBVhGmACM7txWw31HTCexgHdKuvuAzQ6ZSbN3RvEJrMx1CTO4bBU67s92SJO5lygpJzEjsck10TdMozi3BEhJIdHykV31iEqOwW+0U7iwiJTO5Rz0HQsKCCQy2UFtZhxPfQwIcdgf523fRUGslc/9MDEYD5x14H5XldZ4Lm5xtpYyekOo5pq6mnoriamKTI2lqbOpRF35wT/zmsDuw9HKt+MM+/CeFjbUYVJWNZ93OIe89ydSoJF449GzPhc/CfY7zOkbXdX7/diOWYAuTZ47v1XmF6IzZZGLi+HGdrosaFRkxcBUSQ9IbOx9hY83a5qWm4Juy93DpLk5M6t6wqf6M51+Xvs0vlV9y16RXAPio4CXWVH7KFcGPkx6c3lz/x9hY8wMHx5zMSUmXAPBb1Srezn+av8TfzuTY/XyWXWTN4T/Z99LkasCgGDkk9jR+LPsIF+4xx9ePfYLnd9xNk7Meg2JCVRQU3YVLc3nlyi3xsXVSuc7pbcaaz9/4l+Yy9HbxvOWh1dXoOU5VDWiaq935dB0OizvNZ/f9wYjnny3/2edyaroODXVW9yR0OjjsTv658H3qa63MveYoYPDjuXuCt+YWeKORP6vbN3woKP/P3nnHyVHX///5mZntu7d7vZcklwZJ6AIiVRGwfQUVQeyVn371q2JFpQoqNrD3AiogiGJHehMEIZCEhPRc73d7d9unfH5/7N7e7u3e5S65Sy5hnjwe5HbKZz4zszuveX8+78L7V05mm7f13GahmS89tw30lwjD/SNoDo2SaWaDZ8NCGueQHlFtWtnEwMDeyxQA0yYnm0uikmI4XA6aVzbgcDmoaqyc1jifDa+pezdd8R3sjmyeGOgHAZ9c8V0Mw2DPtjbKayspLS/J22+mUeVcFEWhor4CxzR1Rx0uB4HSkhnFfGp22AlUVaW0MkRcL+7VoDk0AqUBKhsqcLmdvPesrzLcP5b35vP1T97G0pX1tKysAcAX8GIaJuPhGIGgf873qaaxumCZZVmzejE46U/foT8xhkBgmRYrb7+eS1edzKePOjNdN317F5V15fhL8uPOhRAcceJKNMf8Jhe0sbGxmQubRgtnOv899PdZG+i5zKee/3vwbzwycDdXZJK//XL31fQlOrli9e8YGOgnYoT59taPkbBivLnxoxxbeiYAf+j8PhtGHsvLjJ7Lv/p+x6P9f8KUBm7Vx4eWXc/fe3/JYwN3owqNi5ouY9v4s9y07eO4FG+2nU2jT/L79m8jhFkkDjltZE8a1jNrUDq23ES3kly/7i6u3HAB+sS+EoQC1629i+9u+xQ9iV2UOWoY1nuzxjnkGOeAKtRpvR4Ohp4Xk+CccOs84/2Fp9toWDKZqf1g6vnS274COUMlccMoeiclkr+0b+KzR6e/c7ae2xwq2DHoLxGsGeKkFxP76243Mhime1f3nGuOFvQjE/c0YZybZjoRjFEkAdne+MCyL7MicCwe1U+1p5n3Lb2KL228EE3TaF7RXGCcK4pCTUs1PXv60VOT7nfxWILB3uGC9l1uZ1FBS8QSCCFmrAWu6zqdu7oYH505Hq4YQgiq6isoCQUwTZOB3nCB2ksp+eE1f8zbJ1hWQk1DJbUtM4cH5JKapn6nYRh0bOtA12e+L197/gEGkpH8cilScvP2/wJ798jweN04psnKaWNjY3OwsGQ6dvvXe67jP0P/zMsw/tjgX/hT14/oT3Qt2PGfHXmQf/X+Nmucf+PF/0fKSvG51T/F4dB4aPx2rt/8XnQryRvrP5Q1zr+37VPsiWzm6rW3FrT5811X8YUNb+KhvjvxE+K6tX+g0dvKj3deTmd0J+fWvoNr1/6eO9u/w7PDD3Ju7Tu4cs1vsvuvCZ7ENWtvn7TBZcboJPMBkdGqvevPZBQzfG/7p3jbki9M7ibgHc2f50sbL+SjK74BgKpMb/gpCCzShvvPd1zFDZsu5Z89N+dtc6D1/C9bvpqXHzX992ScfS5SSrrbJrPeHyw9X3n7VxBTyp/NNNZS48ufmLL13OZQ4LCeQb/66qu56qqrDnY3FgWzjb3eX2Y7+rlQ+IM+1HnOni2lpGdXD1JCKqHTuKIep3v6+tvFePfS/MQi5zf8P67ceHHRlxNIG4xOlyOvjIqhG1h7SYwXj8bx+DwkYgk6d/XQvKJhxjrqDoeDphX7FofY09aLy+OmrCqEqqqUlHgZGhjP03ShwAlnrMp+7t3TBxJql9YUbXNiYGXi/vW29xMo9aVLsKxqKqhtrqoq3oAPbS/l6NojI0jLKvhepHJmOYKlJVN3mxWpRIpoJEZpRWif9rcpxDRNenb3UjelLJ7NSxdbz9OG58bwkznPWMFxpWcQcJSxM7KBe3p/w91dP8GpuJHIbDbyp4fu5f9W3ESVu2FOx9ubnr8w+iR/6vwR16y9HYCrNr2No0On8caGSwH42pYPYpkWbsXLK2su4oSyswH48uZ30eJdzdtbPpfX3tdfvJSRVD8CwfKSo7mk/nP8vv0mvrDxTQgEJ5WfyxvqP8gPd36Wf/bcQshZyWdW/Xja/mnCkY4xnwgblzn+6LPEzCR5FSh0x3fxj+5foykODCttZG4Zezqr5z6thIFkF9XuRvoSHQVtSSQhZyVf3PCWrKH+SP+fUITKq2suKdj+QOj5h875OoGgh8hYPOt9WFZZwvDAeEEogFAEdc3l2c8HQ89ff8/PMKRV1FNSWqBMhDFkBhlcqsadr3z37C4Gtp4vBLae7xtC7u9U4yHERJKQXLq7u6mrmyYD1ksUPaXPKALTIaWke3cvTo+Lytp9HxBYiHui68acRCsaiRMZHqe6KZ3IwTBMFEWQSqRIJlO4PW5cczTSp/LIwB95ZOBPBB3l9CbaEKh8atUPCDkqpt1nQrCLkYwnad/WSfPKRpxuJ6lkCqfLSW/nAGWVQZyufevvdPcjMhbF4dTyaq6+dsVnME2ZKSkuOeaUFXzl5g8CaeHTHBqWZU3rXtnb1odpWNQtrUl/n3b1Ut1UiWVaWbe9yFiMRDRORW150TaKYQArbrsu79VMSsmJ1S3cetbbZ91OMcbC40RHI9Q21+5XO7Ols7OThoa5vWgfapimRc+uHuqWLX5BL/b7sHVl4Xmp6vnNu69n6/gzCCE4peJ1nFf77oJtfrjj83TEthYsX1VyAkeFTuGo0GkF66ayNz3fFdnEL3ZfzZfX3kFfoo2btn0i677+QN8d3Nd3K6+ofANPD97HGTVv4vTK8xlIdnHTtv/jnJq3c2rlGwHYEdnAb/d8jaQVRxUaZ1a9mbOqL+SfPTfz6OCfkdJiTfAk3tb8GTpi2/nRjnSyr0+u+i7lzpmfuV/Y8KaCkmwTtbCnLEwvn2Fgv9rdRF+iHUjHNUskqtBwKE6uOPI3PDLwRx7u/yNxM5LRv8I2BAJFqFmjf3K5wruXfIHlgWOyyw6Enr/hiM+hpyYHqUsrA4wMjKMoglB5gKH+dMK7CT1XVIW/b7sBODh6vvbOG0iYBlamhFqenmfu67tWnEDCNLi/axu13hL+9Or3zun62Ho+/9h6vm8c1jPoNmmG+8OUVgZnNascGYvS295H88rGObsACSGoqCvLm/VdDCTjSTp2dKXPaZYDD4pC3tN/YkTX7XUzMjCCaViomrJfJdtOqzyffw/8hZ7Y7kzJFoMbtnyQT636AWXOwhHpyFiEvs4hmpbXFb03Lo+L5tXNODPxa1kBNy103dhnQZ+KlJLwwCj+oC8bCjDB37bdwHmtn8brd7PqqCau+/UHgHR2/s5d3Sw9omXG2MeqxrR4CyEQQlC/rDYnsU/6uA63A5S5zYJ89sm7qXD5GEpGs8vOqFvKL05/25zagcJZpZJQgJLQvud2mAsDXYPs3thBfX39YZ1RXlUVGpbXH+xu2NgsOl7n+zDvaAkihUSZJkpx3BgqunxP9AV2jj/P7e034lF9VLmbWB44imNLzyTkqMzbdiY970ns5ue7ruK6dXfy78G/8beeX/K51T+jxFHGjVs/RtQY45p1t/G1zR/iKPcZnF55Po8P/oW/d/+Kj628kWpXI3/p/hn/GboHS5p4tQCXrfg+5c5anhj6B1/Y8GYkFkt8R/KBZdcC8NUt72dMH6bJs5JXJT5ACdMPZOecBVMzoE01zrNx6UzqTNpdOn+7/pwZcSEUpDQJOsoYTqVz5pxWeT7/6rklU9pr+mfzVOM83Z6gL9mRZ6AvtJ5f8f6f5xnnACMD40A6JHJ4YCxPY4QQWeP8YOh56+3XowklzzifDGFID64IBKN6gm+e+AY44TWzug62ni88tp7vG7aBfphjmiaxsSi+gGevGcEhne2zcVn9Psfn5M6mzjczzR7PhMvjom5JzZy8AjxeDx5v8WPVNtei6wbt2zrxeF04XM45zeZO8OLYfxkzwgUvAt/e+lGuXXtH9rOUEtMw8Zf4cS13zXhvErE48YgkWDbprl3dVLVPD/9UIoWiKQWzVHrKoKejF63XQUVtOWWVISA9EPLX3z6Jv8TDV25+Ny2rmrL7pLMGN+91QENRlKxYDg+E8fknv7d6ymBsZJz6ZbUFidxgenfMtz3wGwYTEZ46/+P0tvVx0+4nObt1FWc1pDO4ziWpoJSS3j19CIdGbWPl3neYZywF+rb1Ej5h1HbBs7F5iTFbPa91LyGcGiLXOBVCYEoTXaZwCCea4mQk1c9j/X/mvt7bgHQt8XWhV3BU6BWsCBxbVM/D+gDf2/4prlv3B+7ouIktY//lurXpDO5/6voh60Kv4MLGj/OVze/jhLJXscY6k9+1fZ2dkQ1ct+4P/Hjn5bRFXwSgytXAx1d+B4Dt489x49b/w5QGte4WPrriWwDc23crD/bdgUNxZpPAxSKxWel5mauKoZySplKCS3WRsibriU998k9qQf4cbe5MvFcLENHDlLvqGNEHeKj/Tp4f+3c6+n8GLZmY5ZXZ9ifXnFRxbsH2C6nnW58vdMGfjpqGUno7R9i5uYtlR9QfUD3/c9smPvHE3ahCQbfMvLsiJrP+pT8LuGpKFZaZsPXcZjFjG+iHOaqqUrukZk51M2djyB9oRkfG6e8aZOnqpjnXAIW0gTgVwzD2eQbc4dCorK/YL3ed3ZEXKDbCb0or7/NwzzCR8RhNKxr2OnCipwyYkhBwX8TcMAw6dnUx2j+KbhnU10+OfgpF4HC5qKovz8Ztj49G6O8c5OG/rufI45fQvLyx4NpOnW3fG3oyRcqpZb+PTpeDhta6ovc/mUjR197H1d2P8Vh/G5oiePh1H+Xi+2+myhvg9yddTCKWoLqpiusaXz/50tA/QjySoG7J7BLcCCEorytDUQ+Om1Z1bQXHvuZoW8xtbF6CzFbP39Hyeb6y5f2M6yOkM10rvLH+A5xQljZeng8/wpbRp+mM72DcSmT3M6XBc+GH2RB+DAsTrxKgzruUFYFjOaHsVVhY3LDlQ1y/7i6+t+1T6DLJFUfewo92fp7eeBsfXfFtql2NfG3LBzmq9FReXXMJN2y6FI/Li1Nxc/mGCxAorPAczynJi1na2kTECPP1F/8fupWkzFnNp1b9MNufqza9jZSVyMaeTzBbPU+ZSRyKE0PqSClRFZXTqs7PDkgAOenK00zYfDNFq0f0cFoLnLVsl8/x3MgjDKd6KabnRV3qs9ukt//impvRKJwRXyg9/8i53ycRS2Xakuna7hPdKUJv5wjNy2u47Qf384XvpTPQHwg9P+vZW9JXSoAhzcLrmCk3OGGo//nl72SsYxi/rec2hwG2gf4SYF8M2tkwFh7HX+I7IDElvoAHKS3GwxFC5cFZ7zdR23oqUkp6dvfh8Xuo2Md4+enKvM2W8+rexaODd0/pGFS582NdSmtKiUbiDHQNUdUws1vfTBleR4fHMHWTsurCbaSU9LX3U9VYiaKkXfebljcyFPAy2D+U3UZPGThdDlpWNubF9AeCflweF3u29XHxR15VIN6xSByHS2N8KEJpdWha8cydBa9uqCpYP9132eHUuLrjUR4c2I0ADAtO+tONvKp+OV894tUkogmQ6RCF3GOXlAVwepwzivno0CjBnO/cQnmJzNZDxO1bfANo883oyBglocBh7fZnY7MvzFbPP7/6Z/yh87uM6kMcWXJS1jgHOCp0GkeFTmN3dAs/25mfwFRKiYmBgoopTbrju2iLbuFv3b8AoMbTwpWbLqLe08p51e/kSxsvZJl/LVet+R0AN2z5EKtLTuA1te/mio1vxZQG4bhEE05eX/8BTi4/D8Mw2LWljS9veRdJK4ZfK+XqNZMJU3+151q2ja3HpwWz7cLc9TxuRqj1LCFuRhhO9VLjbqInvgdIu7RXuGsZSHRnrfGscS7Jc8WGQsNYSsmWsadwKW4Gkl1ct+4PXL7hfPKsXFlkv8yACUhavKvZHduMW6QHHF4IP0GJs4JG73JgYfT8s+/4Kcm4ntMvke3yhMGe6zQnFEFlTZDXXXIyv/zGP4ADo+dnPntzXhb+CeO84EhS4tIcbHrLZ7EMg0Q8aev5IsPW833DNtBt9gnTNBkdGAM4IPE6mqbRsrxxTtnT9aRO+44OGpc3FmQLFUJQ3VS5T8nwpkNKSXhwFNOSlFdNL1q5XL/uLi7fcAETI+mqonJE8CR2jD/H3ztupsG9iguWfpCa5qqisV6RsSi+gLfgWEP9Ycqm5B0ID47iD01fO940LCxzUlAdDo2axmosNR2nFh4YZWRolOYVDSQTKcbCEUpCvuysftu2PkzD5OSz1+S13dc1SM+ebjSnA7fHRaA8UDRh30RSIofbSXX95EBEeGiUktLAjANBbZERHurfneddKJHc37Wd3sA6lq5aUvS7o2ka/sD0j8HoeJRnH3qeNS8/gsra2cQ87hujI+MM9Y7Q2Fr7ki//kn62jKMoyn4PgtnYvJR5U8NHZ1w/ovcVTbYnUKh2N6EqGgkzSspMu4RrwkFvfA+a4mBPdAs/33UVXq0ETTj47/D9PDzwB5YHjmY41ZvRNfAIP59f+xM03Nn2b9j2QSIyjEfxFdRA/+LGtyClxUXNl7EueEp2+b7ouSF1XlZ+Nnd3/hQAvxpi2/h6AAKOEAoqIBBKxhAXmfjmKbHXU2fFJxjV04PXilD47/D9XL/ujxkjPW2ASyReNUDczC97JjOl8HqSeyjRyvhHz695augeUlYKIWBN8OVc1PTJ7PbzqeeR0UTh9mTeQKREVRVMc9KLz+1xcuGlZ/Hat53MD67+E7f+4F6alwUpKQssmJ6v+P1XM4Mb026SOQaE3F6ePT99rRRbzxcdtp7vO7aBbrNPqKpK3dK5uc7vL3MtbeZwOSirLi8Q82x785Q0bYJYJM5Q3wgAwdIADufsfl7Xr7uLv3T/glp3I8eXnc2XNr6Fh/v/gCUlfcYe2rZu5BMrv1uwn2ma9HcNUV5j5pUIMwyD8ZExSnKSuOm6jmXJaR+QiqJQu6Qa05i+jFtpVYhAmR9FURgbDDPUH0ZtbSBUnj7GX255nLrmfNFLpXSio1GWH7UcAbi9rmmFWQiBy+tkqHeE0sogTqcD0zQZGxpH1dQZH+73dW1PJ5qZ8qIpBSw9YglO577da1/Ax8tefRy+QGGM3HwSLA3g9R+Y2qwDPUMEywLz/v2fL1RVpX7ZgX222Ni8FDk2dAZ/av9BXu10ENR5luBQXAwkOomZ40gkLtVL0owhhMiWGBMIdCvBzshGtow9jURmY759apAPtn4ZfUhkjfMbXryUcKofp+LmijU341Ymn+nf3vpRBpJdVLkb+fiKmwr6Olc970t2oAiF40pfyV0dP8Cj+TEx0a0kTsVDuauWtsiLKDkx4YLMYIWYkptEiiJTt5NY0uJPXT9id3QTuenLvnLUXVz9/PkIIbCkRBEia+oLIUiYMY6pOIPHBv6cjXGXEjaEH0c3k7xjyefnXc/rWsrYsbGXvPwEOeslEkURWJZEc6gYusFr33YyRspACLj5W/9CURXe+5nzOP89p82rnj872Mlb7vt15iSmSYWf0+mQ0501zmeDrecHHlvP9x3bQLfZZw6FH1xpxezd4feHRCyBL+Blyep0YrS5XpvX16VLgWweexpTpkVVZMR8INHJT3d+kQ8s+3LePoqioCpgmfkx65qm0dhan+2DlJKB9kHqWqpxzhA31tc5SDKWoGlFQ4HoTsT3aZqGlJK6JXXUttTmjeivf3w7p7/26Lz9nE4HDa21szaQK2srKAkFcDodjI9GCAT91C+r3ev1/MDqk/jq8/cXLA86XDidzlmX2bMsi6HeESrrJpP+LbSYT3CgRtqNpD6vWf0XgkPh2WJjczhwzbrfc+WmizClgZRwauUbOLf2ndn1X9z4Fpb7j2L7+HMAU2bbBSVaOUOpfIPPqbhJWjFu3PoxBAIxpGBKAwWFS5dfT5NnVXbb9eGHuLP9uyhCLZhNn8pc9Lw9+iIOJe0+HHCUIYChZA8ATb4VGFYKp+LGo/kI64OTZ5RNOCYmjfRs3jg5sRFTo9QtabJ+5GEEChILl+riyhfeip7b3kQbOW0/P/JIQSk4kOyOvQDMv55//vsXceW7fkN322Dm3SF38EGgCAWhCqRuomoKJ5y+GsuyOH/dF7Ey8fCWafHzr/4dVdV447tfMW0f5qLnH37sD9zTmU4eqAqBYVkzeiG+ruVIbjrxjdOuB1vPFwu2nu8bi7sgnc1hgZ7S6d3Tu/cND1GS8SQd27vRkzqqquY9jFIpnVQyhWVZM7QwyYP9vy/0phOCXdEX+NqW9wNp0RnuG0EIQVlNGYEibm4TfdD1dKyZoiloM2Z/TxAbj1JWHSowzscGx2nb1pke/Q5H2PXCbjq2d2XFeoLB3lHOf++pectM06SvfYBUIjWr84d0ksKxkXGeum89kdEoqqqSShWWpsnljl3Po4p0vydeIP0OF89ccBmpZIq2FztIxpMzNQGAoRskYslZ369DkZrmanxFkizZ2Ni8NLl6zW1c0PBhPrz8q3nG+Zc2XkidZwm9iT0Uc/OWWAylerLrhBB41QAe1Y9b9SGRWFiY0kDNzAf9aPvlfHnzu/j5riu5ctPF3NH+HVaVHM+1a38/r+fUk9iNT017li3xHYEpzawh7lH8xM0o60KvQLf0aSdqJ93bcwzzbJHz4sbjhPu6bunopl5UzycKsUkpiU1xf5/AqUyGBMy3nn/upgt520dfxTkXvozSKn/2XJuWVeJwaenkdEAyrnPZDW/lrp89UqCJUkr+9pvHp+3DBLPR85PvvilrnK8tq8HMDF5IKbN6LgXZUmqXNbycG9adt9dj23pucyhjG+g2NrNgJuMuXa+0qSAxmmVZdGzvYutzOxnsHp7VcapdTQWBVzKTICWcGuKbL36Y6HiM4f4RTNMkEPRnM9cauoGhTwrf8ECYzp3dmKZJTXM1aiZTaSqpF8Qcur1uQhUl9O7qyzOmTdPCHXDRsKQ2I6wpRkfGCgTvb7c+gcfrIjo6nte2qqp4A56CazP1+EP9I8Sj8eznktIAJ5x5FP6gj6H+ETp3dGGaxd3vv/b8A1zz7D1se+vn2XnRF3hD8xo+tPpknrvgMiDt+li3pHpW1QmcLicNy2rnLfFhOrGePi9tzRd2ohYbG5upHFt6FvWe1uznKzddhEf1MZoaZkwfxqkWT3g1kbyrxFHGEYETafatJmUliBjh7DYe1Y9H8+NU3QgU4maUnZGN6JlyZ9vHn+PGbf/Hnzp/xK7Ipnk5n4FEF0FnOuTqmNLTM3HgEkWo6GaShBnjjQ2XEjHCM3mvZ86wMHv43rAynnDT6bklJ6ulT61nrwiF9zVfs6B6fslHX83bP/GqjOt6uiddbYOc9MojM/2UVNWFcHkclNeUFI3CL60qyW6by1z0fOXtX6E/nh6k+MIxZ7NxeHIyRwiBqigEXW52Xng5O956OTsuupx3H32irecZbD0/fLFd3G0WHEVVqGmpOdjd2GciY1H6OvpnLHPmLBJvrigKjcvrUVVl1i4+b278KG3RLQwme3OyyabXCSEYSvWyfWgjNf6WgjYHu4awLIvy2jJcHhelFUH8AW+ea9zI4Ci7t+yhsracxtaG7MPdNE3CQxHK6suzsf6WZdG9p4+u7b00tzQDUFoeJHjimoL4+ofuXs/Ko5uobalOxygaBtue20lpVZDapvx7b1kWXbt6qG6sJJnU8frcSNPCyMTLTWQ/LcnUfi2vKqUkFEBVVe7t2sonn7gbRSj8+Zz38o3nH+KZwU42vvkz2fZvfPkbSSVTdO7spn5pWpyLleWZjvkUvMGeIWLjcZpWNNhCamNjc0hw9aZLkNLCsFI4FDfXr7uLr794KUkzlredgoqFyTGlpxM1xtgeeY5UpmybIhTKnbVophu3y03MHGdUH0rPMEtwKA404UK3khhSZzDZxVCyh6eH7wXArwWp97aysuQ4TiybfW3rCUZS/bT6jwJgReBYTJk2dl3CzVh0lJSS7meFq46hZE+mPnm+oVnvaaUrvqOgelqep/tekVOyw0/sOxmPPlGKTVMc6FaKT636IYkui35rYEH1/P/+5/uM5ySNM3SLR/7+XLZ/F334LIQQnPqaddz6g/to3z6Q7b+qKnz1Nx/aZz3vS0Y59c+TuXU+ffQruW79vXlX7s1LjuJrJ77O1nOblyT2DLrNgjI6Mkb79u5pZz+nouszuzIfDPwlPppWNO5TTJHT6SgwpC3LmvE8L1v1A2o9zYAseAGQUnJH5AYGSnfkLe/vGsDpc1HRUEHbtg5ikXQyH6fbmZ3tHu4P09/Rj5AChzO/tJiqqiRjCdpf7KC3YyDdZscA44MjuPzO7LF7dvcx1DtMx45O+rsn4/a2v9DFqy44LptFV1VV/AEvbu+km94EiqIgEKiaytjgGKNDY1TUlhMI+knGk3Tt6iaVzB+ldjg1/t6xmUsfvZOYoRPRk5z11x+yaaSXf//PxwqOoWoqDpfzgJQAnGB4IFywrLKugvpltbaY29jYHBJcvekSklYcQxqsKDkOE4PLN1zAqD7ESu8JaCKtBwoKqpKOGy931rJ9/HlSVoJVJcdx1ZrfcUHDR6j3LCcpY/QkdtOXaCdhRlGEQq2nhUpXI17VjyomBnvTBqpDcaEIhXEjzLbx9fyl66dcvuECrtx0Md/b/in+0fNrehJ79noeUWOMWu+SvGUCgapo4DIxrPTM8imVr8/kW883zv1aiJ7EboC8ZHbZ7OJihgRmUxCZWmHF9Dz3vzrPMoRQ6OruokfbwS/jn+er29/H030PzLuejw5FCQ+NTzkvgaFPvqudd9HJ2fa+eNPFrHlZC/6gh+r6Mn7/zLUoirJPev7ljffnGecAX38uP4fMh1afzNdOfF36+Lae27wEsWfQbeZEZCyK1++Z9YMyWFpSEJc9HYZh0Lmji6SZoK5ur5sfUGaTYGw2JBMpOrd3YFoWLauap03s8bEV3+bbW/83XaN1IpFsTk3V29u/TVLGeVnpqwFw+9yZwQAFQzdQM27vpmnSvaePipoyyqtLKSnzg0WByzlAy6pGejr6Ka1Mj3RXN1VR2VBBT09P9rjVTZUgYPvGXbi8LnTdoL8rTCqh88o3HpdtSwhB08rGoueWSqRIRBKZGq6hbK1QKSUuj4umlU1FM/V+9PE/FizriIazf0spMVIGDld6UKSmsbJge0M3EIqY96QlelInPDCKP+gr6PtECIKNjY3NYuL+zjt4YPhWJODTguhWkpSVwKE4saTFhvBjuBQP7116Fa3+dQD8dPsVdCV34NNKOLv6Yr648S1Y0qTJt4JLl3012/a6wKmU9i6l1tzOP/kRAoULGv8fg8lu2mPbGEx0EzVGsbBwqz68qh9FqBhWirgZxZRxBKAIB6qQGDJFd3w3vYk9PDpwNwKFoKOcRu8KjgydyLpgfrKylJWkybsSgI7YdgA0xYmUFnErkp1RP7HsHO7u/DECJTNRnja8FRSktBAoeFTfZKm0iRnwqW7v04elZ7fPDV3P1fP0eoW26Bb8jhDPGfexefSJbF/+2Pd9vG4vq/wnzJue+wKunGR3OeeV6ZPDNalbE3r+jVs/UnCcuer5WX/7AW3jIzNeriuOezXvbD0ePanbem7zksX+ptnMGtM0GewZJlgeoLQiNOv9/CWzy5qpaRp1LTUMjQztYw8XlryyK/uIw6kRqirD43PtNevmJ1Z+j+9u+wQ9iba0C1xekW/Jnzt/kjXQfRnXt8hohJGB0awPnqqq+AIeXJ70sWb2AhAIIRjsHqZuSU06/ktVs4MxUkoGu4eobqpi2eoWNKfGdR/5NVuf78RXUjhTPh1Ot5OmVQ2kUil62/poXtXEyGAYPaFT11Jb1DjvjIwWbyxnEmOkP8zYyBiNyxuKCraUkr62fjSnRnVT1az7uzeS8WQ6D8HK4se1sZkNwyNhRsJhhkfCAJSVhigNhSgrDR3UftkcntzfezsPDN+efYRG9HA6CZcQ6FaKUmcVn171o7x9fr3nOtoTL9LgWUZnfBe/77iJKlcDH1/5nYL2NU3jdnktYwzT7FvFh5ZdX7Qfo/ogW8aeZldkE73xPUSNMXSZQhMO3KoXRWhpY9oCXaYABU04sLAI6wOMjg2xafTf3Ma3cCpu6jxLaPEegcSi1t0CwC17voImHBhSRwCmYU4pLQeaoqEJB3EzCsC4GUYicSpOUjLtBu7TgkSNIlo0JWlcNo9c7iYTy6GonkuR7k/UGOUF/Qnys8tJbmv/Fteu/f286Xl/9+hk7HgRa9mhzU7L5qLnK26/HlNKHIqKbpl5Pv9Spt38f3DqmzmnYSXDfSO2ntscssyHntsG+iJn4gG6GFxqVFWlsbUOKSWJeAK3Z/ZG2WxxeVwwMu/N7jfRSIzxwbH9jqVXFIWyqtCs7+dHV3ybb2z+CMN6zxQBFVjS4vINF3DFEb+jd+cgFbWljIejNLY24PK4sqXRyqpKs3uZpslwX5iK2jIGOgepbKjI9sXjc+NyOnC4taL9S89Q6+gpHZfHxTtOvY7BnnC6N0Jw6/fv4+KPvIpUykAR5I1s6yk96/4OaVF3up00rXBhGRaD3UOU11RMe10a/MFsVtdcNEXJDpyUVZdSUh6YVlSFENQurZlXNzldN+jY0UXdkpo5xcXZ2OTy9LPr2bI1PctXXZWeKdqydRsAR609kqPWHHnQ+mYzfywmPX9g4PY8E3AiY3mLbzUfWHodAJdvuCBdF1tAlbOZvmQ7qtBoi20l5KjkM6t/XLTt+/tv5/7e29GEk/+t+B51M7jEBR0VnFR+HieV52fl3jL+NNvH1tMZ38Fwqg/D0hFCQRNONMWBlBa6TGJYOopQUQDdSrInuoW2aDoj+Bc3vJmQs5KIEeaY0tN5PvwoKSuJkqn4YWCgZV6DDUvHFJOhZ1JaeDQfSEHcSBvtpY7KSQM9Ny59omxaZoWUxQf0s5vn1FXP3U4iiyXLz6yzMEjNi5537h7gQ+d+A2nlz55PnjtEI+kkb/Ol58tuS3+nLmk9lmuOP4+lt12X70GQyZC/Y2yAc1hp67nNIct86bltoC9yunb2oCgKdUsXR5I1VVUZ6BlCj6eozYzKLjQD3YN4A158gckHZjQSJzIyTnXj/I2czoTL5WRsFkKQiCfRUzqBYGHpM0iLcdfuXkrKApRkyqONDo8Ri8bx+jwEM4lUcvnUEd/nixvfgmmZBYlmAK7Z/DY+2/ArfAFv1lthuH+E8XCEhmV1eQKnp3T0RApdN4hFYliWlV1vmhYjA6OEKkqKvlwoikJ1Sw17XmznV9+4N2ucT5zXb79zLy0rqgmGnHh8HtxeJ7UtNcSjcbp39dC0shGH04FlWVlRdTg1dN1g2ZFLcbmn9yi4p3PrZLmVCe8AReG+Y99Bf8dAdgR9b+5n+yPmY+Fx3B53Xu1Zh0OjaUXDrGqQmqZpj8jbFPCXf9xDJBrjjFNPoamhPm9de2cXjz/5FO0dXbz+vFcfpB7azBeLSc+tzIxlPoJa9zIALt9wPhMZzKWEvmQ7AG7VxxeO+CUATw7dQ8wc46yqt2RbuGLTRRhWiuPLXsUFDR+mu7s77wiz1fPVgRNYHTghb9++RBtbxp6mLfYiffF2UkYmIR0KquIAJLqZwmIigzoMp/oAWD/ycM65p2ts9yXaiOhpg9urBkjKOEIomJaBQODATULGshnZh/V+Tq38Hx4duLvAkJ6qlzO+G+XoeL6bu8jfaMpB/tl1C6+rf1/2877q+V9u+XfBYDeQnsmf6LuA95z+FT79jQv2S89/9OK/+fpzDwKw/oLLKHG6WXbbdcXd26Wka2Cy4o2t5zaHGvOp57aBvsiZyIq9mKisLceyrGlnWXt291KdUwZkf0m7Zk0pQ6IIlAP4cNQcGrWzcKOKjEUxkqlpDXQhBIGQD48vXSJESklkNEJKN/H5i5exAfjy2ju4ctPFpKxkkcyxkq91vptryn6HRtqrobQyhL/EVyAgLrcLzaGiJ1MkUzq9e/qoX5ae3dA0lZXHtJJIpKb9zjmdDipqy+jvLnTzk1Ky/YVujjmxgZrmSlKJFFJKPD4PdUtrcTgdDA+E2bNlDyuOWYE/4GWwZ4TdL+yitqWWxuX1RY4INzz/AL/c+hQ7L/oCAO9/5HYcisoPX/FmDN1Amafv2UxIKYmORjB0k7LKUN662Yi5YRi0b++ivqVmVuVhbF4aPP3seiLRGOe88kzKSkPs3LWHp55dD8DRa49k9coV+F95Jvfc/yDPb3yBo9baM+mHMotJz1UE5pTBXonkdXXv5ZpNb88Uns7fRwiRNc6veeEdJDLu4Pf33c7KwDG8OPZMxqQXbBl7uuhx90fPq93NVLub85YZpNgw8ji7opvoju0izACJTLb5dJb5XFf2SaNXSsn3t30akcmVHHRW0J/owKm4iRNBIomb4xhST3sRoJAwo5xX+660gb6fFBtsn0wPn4lZzyx2KR5ODJ3L82OP8u+hv1HmrObY0rM4s+rNWT2/T7+Z9s2bUIXGhc0fZ3XghGn1vKoulMkiL/MOLRDZ/kgL+nvCmIaxz3p+7B++yaiewK85ef7NnwYmZ9In7sHUAYovn/q6/b62e8PWc5uFYL713DbQFznqLOOADjTTjVxKKbEsWXx0dB+pqC0vWObxuvFkMoTHIrED5o402DNMeU3ptC9ZFdVle20jd5ZcCEFdy+yygl695lYu33BB3rLcRDNf2nAxX1n3x2y7w73DuAIuAiUBtEySO8uy0JM6TreLmsZKEuOJvPYcTkee61oxyipLOerkVrrbBgvi7F795hMoLfchTclT966nYXkNtS21hMqDQDofQXltOR5vWtQqaksJlK3NxtJ99qm/8YddzyEQfPeUN3HHrufYHO5ly4Wfyx7j60ecS2lFuj1tSvK+Cbf++UYIQW1z7T7vr2kaZZXBbMmbwwF7BmH/GB4Js2Xrds449ZRsXNpTz67niJUrcDodPP3sc1RXVVFWGuKUk17GQ48+TmNDvR2TfgizmPT8y+vu4gsbz0dKJSMkMqsfZEqATadKV79wCUkjlhM/bLF17Jn03xmjL2qM8pUt7+NdwWvz9p1vPddwcmzpmRxbemZ22Xe2fQKvVkKtt4XH+/9CQCvNJqSbykR/u+O7ADDMyYzjhtQzMfA6QUcFI3o/AG7FS8KKFbQ1peEZk8YBCFGQNS67zsLitbXv4e89v8aleHhk+I+EtEqODZ6J0+HiicG/cV/frZSJWgKJIG1sBSkxpM5vdn+Vty/5HKsDJxTV8ze9/3T+fe8mtjy7J+OOP3WgIJMYbmklsVjaJX9ver7y919BN9OZ6red9bmsIS6AmKHzz46tfOTxO6ecv8heJwHsuOjyvPW2nh84bD3fPxZCz4Us6udyeFIshrW7u3vG+Cib+WWgZwg9kaK2ZdI9vr9rCFPXqWlOzy7M5Z6kkinat3Vk466LMRYepyQU2O++T4yaNi6r26sRu7+kUgamrmczok6QIME1Gy4GKbJJZ7JIcGourjryVgD62vpIJlO4PG6qMxlQ9ZSOlDI7ShweHsPn8xCLJgBZ1MV+uvtx+Tt/ynNPbs8cW/KF77+TU169Nrs+NhbDsCw8PldBMpvB3mFUTc0a2gBffe5+fvLik3nvNM2BUh547Yeznw3DoG1bB41L6wvEcahvhPHwOI2t9fskNH0dA1TWlxMdj03rAbEYWAzPLNM06dzZTSDkz4uJfClS7H7M5h7t3LWHx//zFO+8+MKi62++9feccuLLWLa0pejnlzq2ns8PN774UWJmhMuP/GXe8gkX91zeu+xKWn1HFQwUw2Qt74m/Jxy2ncKDohQ+jy1pZgxgJVu6DcDKGArTvpgWWJOFJM0oquLAtNKz32514nkus7P+c2WiTrpL9ZA049nJeJmeei4SLjA70nHnk94KYnJF9sP16+7ivzsf5Y/RG7MDCpWueo70n8RAqosXxp8saFcTTq5Ze1vB8tzfyNc/dStPPbiF8XC86CUVikARgkuveANnvf6YafV8+W1fwZRmTiz9pK9CntN+zm/WoahsuuBT7Ny2m5GQxkl1S/La3B89v2z9D9k0uouA5uGXaz9j6/lesPV8ksWk5/YMus0BJVhegp7S82aMSytLSGWW6am51UF3upw0r2ouKIMmpcQ0TVKJFL0dA3h87n2qY56Lpmm0rGzc76Qkexup1JM625/fiaoqLF3Tkudy5cbNNevu4MoNb6UwCE6SMhJ8ceObuWLF76hqqip4iR3oHEiPHi9Jjx4novGCDLSz5bpfv59bbvwHA92jvOZtL2fZ6lpSST0b0+UtmZwFkVKSSqRwedKl2RxODSHStVxLK4OYQvDTLU8WvCS0j6czBqYSKZxuZ+YeNBW9fmVVIQIh/z4Z56Zpoid1IqMRBntHcHvd81Za73AkXfam6rCaQTjQDIdHsglkcknpOo8/+RQA1dWT66urKhkOj7CMlgPVRZuXAB9f9d2iy69YdytXbbgIBQULiwsaPkyr7yig+ODI1OhpMpnKj/O+imBJMG/bvkQH68MPY0kLBUHAEeTEsnOAdOz0VBd4KSVSSnTdYGwkQllFcMbn/L96f8fRpa/gv0MP0OhdzpHBE9Gljm4leXroXuJmFCEUglo5Y8YQAoFb9RM3xrGwCmqip88mvSxhxtLnJ9NnKsTULeaOyKupPmGppxPGSQEbBh/LM84BBpJdPJH6ezbD/FQMmSSsDxByFD5jJvj0Ny6mvzvMu8+4fjJhXA7SkphIfnTtnymvCnLy2WvSy3P0/KIHbsEiP+Rx4voUq/sOEHC4eO5NnwKgdeXSedXz9z/9dXZHepBIRvQI//PsFdzzihtsPZ8BW8/3n4XQc/sbexhjWRbDvSNU1BW6lB0snE5HQRmtCbfq8PA4/Z29uEPTx/TkGoDZ/Ys8eAe7hoiMR6lbWgvSwjIsmIdJ7/01zof6RoiNRalfVjdtWw6Xg2VrWtAcWoELN4CGxnXr/sDlGy+YtNEnptMFWJbJN7Z+mEurv06g1E9fez81LdWMDUeoXZLvTl/TWE3Pnj6qGivnnDNACME7Pn4eQgiMlMG253YihKB13ZKCuqyjw2OM9IeprC+nZ08vzSubUFSFzh1deP1u9qTGio4RSASJWIL2bZ20HNGC06nNmNV16ndjtqiqSmVDBS63E2/Aa9c6nQV27N3C8PzGTfT29fO6c1+N3ze7EpU2hz8HWs/duPnquj+RIIybUN66Nzd+lDvbvzNpLkpYXrKOHeObcmbPBafKizjCcSJNlU3ZfQeT3fyr91aQ6eRuSBhJDNAV28VZNW8lZowRNyLEzAhJK0bcjBIeHSaaGkfzKYzKEYYiCgYpUmYSQ+qY0sCw0snhTGliSYtnh9NJ4Tpi27N10NOz3JNu+WPGMJa0UIWGU3ERZzy73cSM+SQ58evkJtgTOf8vRFOcNLpWsDu+CQBFqNmkc7nktZmj50JKbuv+VsH2AsFJFedydOlpfH/7ZzCkntsYCMEte77CR5cX7ptLVV2IYKmP8FBkcvcpxrVpWDz+r01ZAz1Xz7tGh4uXoBWFM+gA9d4SftZ0HqmUMW96/qoHL0OKdJ4Aa6JSQk7owBue+AL/OO1rs2rrpYqt5wvD/ui5/RZ6GGPoBol4Ki/L5mImVBbA53MzMDRQdL2uG3Rs76C2Ze8lMCrqywkZQRwOBw1L62f18FmoeKdcyqpC+Eu8e70fbm9hCbupM+/XrP09V0zMpOf7kRFhiN+MXs1Hq76dbSs8NEog6MsznqWUWKaFtCzYh2RrE6JsmAZev5uqpsq89i3LIjoeI1QexB/00bu7F0UoWa+AiRqny10OFATWlDkIt6rh9rppXtmI05kph2OY6aRCM1zD3j29hKpD05YCHOwdJlgWyIYqpFI67ds6aWytK3rtbeaOHdM2M2Wh0mwplqnLTzmpqiA2ra9/gNYlSwq2t3lpcKD03MKgN95OnWcpQIFxDnBM6AyEFNzZ+V0saXFs+Zm8ueGjdMZ3cPPu65HC4pyad3CU97QCPX8u/EhhkXABG0f/zQtjTwICBQVFqKhCJWHGsoZyKFGB1x1EVby4lRBOhwun6sGtenEpbtyqj5gR4aGBPyAQBBylfHT5N/FqJSikjfqto+v5bVvaWPOqfiLGKG7VS8pKpWeCM4Z54Xy4RFM0DMtAEaJInfNJt34rx+3dsFJZ4xwoapxDjkGZuR6TfxdzFk8fcSQ5QLW7mfNq38lfe34+aZzm1BafDbf+50reesJVjIdjGWM7f72iKixZVVdUz7/XdA4XbPtDfs8yBvvUHitC8MgbPkoynpw3PX/lAx8HkR7oMaUJU44rhCCVk1fAZt+w9XxmFkLPD2sD/eqrr+aqq6462N04aDhdTuqXHphSaPPF1JnXXFRVmZVxDumH8oRLu3eG7OhSSoZ6hglWltC5o4e6luoFHUkUQhRtX9eNop4AE65k3R197NrUxjGnrqGsMh0jpKHx9pbP8Js9X5uyT/o4vfE2vrvt47zJ8Xks06J5RUOhW6IQ1C/b92QpE2gOB54SX8G9CQ+PMTY4htfvQdM0apbUoiiT38eJB/71z96HQ1HQpZV5uRG4FY0X3vIZIH90t3d3L6qmZN30i5HOFDy9mKTiSUaGLKpqK4C0Z0fT8tkN5NjsnVQiRdeebhpbG2xvhGkozQh2e2dXXjmWXDe4Cdo7u/L2eSli6/nC6/nW8WeyeqIKjSvW/CY9y12Eo0tP5+jS0/OWNXhaufyIX8x4jBUlR/NQ/51TIrQEa4In8bbmT+dte+Wmi5DSyk7nhvVBzq19B02+VUSNMZJWjHF9lMFUF0OJHsb0YfriHSAlJgZxI8pXt3wAKYu7rUcyNc1jxnh2/UyO6oaVDsFLy2hugrdJt38pRH5dc/Y9Pn3iWKJIyncJDOrpEnYnV7yWe/p+S8qcdHcXCN7U+L+zPs7tT1/FE/dtxuNz8stv/J3tGzrSh1QEx526gje97zSGB8MFen7WH27A53QS0VOTPgW5/ZQSoaS/Rdvfmk4Ctz96/ppHPkvCTGXPEaHkbVdQnk6SrXtvs2/Yer53FkLP7SRxiyBBw+FAURenfWS6e9K9qwfLNGlY3gDkZ3sd6hvG4XJma4v3dw9RWhnca9yRntLpbeunbmkN4+FINjvpgWBiRDIWidPb3kfj8oaC/g73h4mORfGFvPR1DrB8zdKCB+R9vb/lgf4/TFZomVI252Tv63nd0ncTHhxjbGRszklX9vU3YlkW3bt7CZT5iY/FCVUFcXvcWJD3yvfuh25l++gAj73howgh+ObzD+ETDs4vXV60zv1Eib/ZfN+m+16ODIUZ6R+jecW+JZQ7mByMZ9Zcf99SSoYHwpTPc8KZiVwEi4l9TSoD6bIsO3btyZZlmVgGcMKxxwDp7LD33P8gR6xcYZdZy8HW8/nluZFHuKPjpjwD1SGcXF0k0VguKSvBtsizdMS20+o/BkMmSRgxklaMhBljMNyPy+cgJZOkrDi6lWIg2cVQsifbhiJUfEoJlrCwpIFhGZhSRxb4VO0bIjvjLYvHzwslPRAw13YpyASTTzZb2t4T27X61rErtikzmEBRPZ9Kg7KKD62+Nqth1215NzE9gipUPtR6HfWe1oJ9Zvsb+e6X7qJzVz/Ljqzng5e/Hsuy+OIjf+aSZcdRbjnpcia48OHfcFR5HXed/R4AVt/+VZKWkTbUJ66zEKwNVfOTI9+wz3r+5sev4M5TruG1j3yOuJnMS0Y4dfBj4n5MxMFbwuLBM2/c6/keLGw9t/V8OmwD3Rb0/SaVTNHfOUTdkup5cb2b7p5MJIpRFAVDN9iztZ26zIz6QM8QLo+LkpA/W4u9rLZ0Whfnqe0eSC8D0zQZ6QsTHY/RtKIBIQTxaByPz0M8GiceTeRl0pyNa9GG8GPc1v5NikXCKSisKzuVt9R/LFNibW4PxP35jQz3jxAsL2GwcxB/uZ+r19/LXV2bkUheWb+cHaODlLt93PGqd5FK6pnkcfnn0NPWR0VtWdYdXU/qaEW2g/xrtXPzHjRVpWlFAyODo7g9zrwZ/kPVZetAP7PisTjDPSPULqk5qKEyelKn7cVOGpbXLqowhP0RdIC//OMeItEYp5z0sryRd0iPtD/+5FP4fV5ef94589bnwwFbz+eXG7d+jP5kZ8Fyh+JEoGBJK2MwW2ktnsY0VYWWcU/X0rPvlsCpOdGEA01xoikOHIqLqD5KzIrgVrws9a0hNpKiLFRGwBMkOW6yTX+K9sRWipnATuFCZJ5FUkosaWKRjj2fQCBQhIqCikNx4lBcOBUXbtXLuB4mrA9k3dlVoWb2FcgipdiKUez7N9UOz/0spcwarrNjilt7prGJ9xVFqFyx/LcFem6QQmN6jd+X38i20QHO+8dP0h8ErPBWsC06yCeXn8JHjjsju93pf/4enbHRgv2XlZTzr9dcCsxNz3+0/W5+3/kQIhP+phRPVJP/2pNz0TVF5Z7Tvz6ncz3Q2Hpu6/l02L4KNvuN5tBwe51z/rFP59Y9HbmjrJpDo3llU3b/ypzaquks5QvnCmgYBr27e6lZUos2x7q2hmHQtbOHqsZKghUl2T5OlFMzDBPTMLPbatr0SVR6OwcxUikaltaxLvQK7un9DcPJ/pwXgrROWVg8P/wYwUQVx3pfTeUBTBoYLC9BVVWqm6u57PE/cnfX5uzr1n2d22jwhfjliW/JlPnoIlgepLw6PTiRiCXSD27LytZvVzSFzt3dlJSVZEdzJ8IAVIdK+/Zu6luqUR0qLqcGqoIQAlM3MKZ81w5F4/xg4HQ5cfs9Bz2PhcPloGllYXm9Q53Xn3cOTz+7nocefRwgmwm2rz8du3vUmiPtmXObBcej+SGZv0ygsDp4Ist8a3Ep6VhvrxbArXrxKH7+PfhXHur/Q56xLqXFF468mbgZIawPsqdvO46AQsQIEzFGiRnj9CXaGNUHkUhMRWfD6OOYQscMG1gjVubYReanJXi1AHXepXhUHz6tBJ9awrgZ5r+D/8o3YpX0tgkjStyMEDPHC855ot8TJcIEAodw4xAuomahoZm3b04ysuz5C4mU6czuBZPmIvO/jIEtgWNLz+TZkQd5e8vneKr7AbalnsrZXGBl2sidRJhw47akyejweIGez2Sc7wu9icikcQ4gYVt0kEuaj+b8slVIKXm4Zyfvffi27AlPffMaTETnrOff2HknDww8m50hL2qcA1JIBEp6Nl1KVEXNxuJ/ec375vVaHA7Yer6wzKee2wa6zX6jKAoVtXMz+hKxBN17emhc3rjP5S9m2m+2xnkqmaJrZy/Nqxpm/cBSVRXNoc056zmkS7X5Sry4Pa6ifQwE/QSCfkzTpGNHJ8HyEGWVoYLEQJZlkYzEMAwzu+7Tq37E11+8lJFUH/nlX0BiMqR24Q8duKzQEzXLm5Y14HA5+HPnlvycuELQFRtlpHcYX2s9TSvS8U2GYSBNSeeOLhpa6ymvr0AI2PNiO9WN1TS21ue5+YcHw4wMjtG8ooHSyhJ00+Sp+/7LcWceh9efHpmtrKs4YOe9WLEsi+5dPdQtrZ2TOKuqmh00KcaB9EA53MR8ghOOPYZlS5YwMhJmOJwuLdi6ZAmlpaGC5DI2NgvBe5ZcwTUvvCMniZmg2tvIRY2fmHafLWNPF8ykW1hcteltQNp7S6DgiLlwiPQstmGlGDOGgUw5VBnlmNLTWF1yEkFHGUFHBSWOsmx7l294E2nXdCh316HhoDfeRtKMY2Tc4LPkGLHSkozrI5kzEWhCw635KHVUUeNu4enhe7PnKRB4VB8JM0rKSmAJExUVk+IJ3XLJPf90THSRbWTOO0nGOAd4duRBACqd9SjG5DPZrXhJWDFUARbFnq/pFg6Enn/woduLeuj/pftFrj7pNTy+Zyfv+8/teTXQcxHAMn/5nPX8gYFnirqwTwn9x+dwE9OTCCDo9BM3U5n59nSJuMMVW88XL/Ol57aBbnNQcHvdVDVUzck4T8aTKIoyYyK5OSNhsGeI2paqWbvZCCGoaanZ50POZjBDVVXqW+pwuBykkim6d/fS0FqXFTJFUWha2ZjtzwSfXvUjHuy7k/v6bp3y4qCwKnQcngPoSqRpGqGKEFomW2uxLO1ARrAFmqaRSqRo295B88pmmlY0goC2F9tpWt5A8/LGggd6ZCxKbDxBY2sdqqpSWhECoK61IWuc2ywclmXRs7uPqsaKrMuizb5RlhFvu865zcHAqbj53Oqf8v3tnyZhxalw1vKR1pndg4OOCnoT7TBFa97a9H+sC50K5LuH7ohs4Je7r57cNjPV/NzIo7RFt5KyEiTNOKY0sKa4mksJg4l0UjSH4sKleSjXaih1VLNl7KlCV+fMjPgb6j9AZ3wn/Yl2wqkBuuO76Yhtz8lWLgk4yjil4vW0+I5gMNXNw/13MZjs2UuAeZqAI8S4Hi5YPtG2ZPoJgwlj6NvbPppd1uI7AlMadMa2c3r1m3mw744iSdwFTsVxQPS8zO2lWBZ5r+ak9Y7rSY/n5MzwQ3Z7BUGTK8hvz3g7WFaBnp/35Ocycerw7aM/wjKlNqvnSp+COTUvgCSdwCYTpB90+qhylbLb6MGUFqN6FE2o6Vr2EuQ0GfNtimPr+fwxH3pupzY8BDDNw/Mh4y+Z/eivrhvsemE3W5/bTio1fyUznG4nR51y5F6Nc9NMz1QbxuzuxYT7WzwWJ5VM7XPfhBA4nA78QT+apmFZVtYFvlhilbHhMc6oehMvL3s9QqZd4RShcm7tOzi29Mx96sf+UF5Vmu3je1a/LF/iJbyubhVerxvTtOht68PhclBRV0kqmWSoZxiH00H90lpcHlfR0Va314W3xJvN2D/BstXNC3hWBx/LSl+v2aQQ6W7rw9ANFEWhobV+Xl3bFEVBdagodriAjc2sWMx67tdCfHb1T7nyyN/wkeV7j91915Iv4FLdTJhlAsGakpOzxvlUdkdfKDLFmnYRH9EHSFoJXKqHKncjRwZP4uyaS/jw8huo9eQ/zyUWl6/+BR9b/m3e1Pi/VLkbQBTGg0skf+/5NW2RzXi1Eo4tOwuP6s/0deL/gjF9mH/1/o4f7vgcd7R/h/5E516TxtW4m1GEgm4mM6chyK2znjk5VKFmz7mwulxuVvb0yuPLXsmYPoxEpo1zwJFxj0/vL1ClxVVrZk7eN1/86oyLcaqFEynd8THIJtifOgCR/vzpo87kztPeUVTPz3niM5m4fIGQgk8++/08Pb/3jG+kvSMmrlkm4dv9Z6TruiuKSmuggd3RnrzJCEtamJms/V/Y+HPu7np8/i/KPGPruU0x7Bn0RU50PEZ/1xBNy+te0jGzDofGsrXLkJaFcw4je0N9I5RVhWZ02dmbm42Ukt7dvYwMjqMnUxx16poZH4oTrkfldeVs/s82apoqqV+270lAhBBU1KZd/gY6B0kldRpa6wrOaWggzAv/eYHVx63ktQ3vxpHwMebqY6l/DceWnrHPx58vPrv2LBLjcX7XuRGJ5A3NR/CNk/4HQ0+XrtH19ItraXkJuq6T9KYHKLx+L4ZuoGW8LQY6BymvK0NRFDRNo7RifjLvL3R94fnEsiRGSseyrL0+F4Qlsay5ZyieLTVNhZl5bWxsCjkc9fzKI3/LL3dfQ3+ig5Ulx/DG+g9Pu+3a4MlZozNLpgzW25s/y6qSEwr2eXTgT/TGO/KWGZbOlzZemE1c51CcKELLJHqTINNlWYVUkViEjSHeX38tJY4yHu7/Y2aCN9+QNqWBIhQUoWHk1ESfFpE2BhMyDkCpsxoVlTJnDVvHn8lsIrIzxA7FScpKkp1jniax+50d3y1YZkz0RIBTcXLVmlun79cC8OKFn+PYP36T0WQCl+ogKXWUKZEFuedjAY8c/x4altUihCjQ87f+++rM/Dp5jZz72Ge574xvZhc9eOaNvPLBT2Jhpe8NCqlsqTvJxvCurDEOmbh9Jgc+BILvbLuLqJngbU2vXLgLtJ/Yem5TDNtAX+R4/R7KqoKHjZjvD845urYbhkEkPE5JyD8nt/iphpoQguqWGqqaq+je1YuhGzhdhUb9RMkIRVFw+z243E4altVS2TC7+OeJpHAzUdVYmS1L0r2rm8qGyqwrUrDUT1VjNcGytMH66ta3zPaUF5zx0QgjfWH+b9UreFvJagJBP4logsGeYSKjEaoaKymtCmYHHRwOB+XV6UEJXTfo2N5BTVMNbq+LRCI17T3YV/SUQceOLhqX1+9zToSFIptcJwdNU7PlBqdD13WiY3Gqm6uyXhc2NjYHj8NVz9+z5IpZbVfjbuHipk9yW/u3sHLKiL2m7j1FjXOAqDGaUyZtkqCjgoubL6Pesyy77Ps7PkN/oh2vGmBMH8ZCz87Afu3FD1DhrGM6v3UBKKhpszE3DjfH8pwwRAF6423ZfVWh8dq69/C3rl+wK7qJtcFXsHH0sWxldYC3NPwfd3X+gIQVpVioet5s+pQ4YIlkeeDoWV/nheDZ8y/L/r301uuyxrjPGSXoT2BaCj3hEIoi2PSaTyAtyQf/+w2OK1/FpUtfn6fncT1Z7BBFZ5DvP/NbfGL999kY3oVEct4jn0kb5AJ0y8iLU58MW8hpE4tf7/7nojHQbT23mS2HxnTRSxghBMGykgN+3EQsccCPOd9omkZDa/20xnkxV3ldN2jf2oGu56/TNBWHw0HTigacLieGYeS3lUix+cktDHSnMzU63Q4URaG6qWpWs7KmabJrSztD/WGAgvYnEEJkX+5y2x0dGUfTNCprynE4F5eBCekX05LyAD6/F5fTQV97H70dA1TUltHQWkc8miQ6Ginq/ulwaNQvqcObyTzasKwWRVXp3N65z+6iQ/0jjIcns/pqDpVgecmiM86T8STt27tIJece1pGMpYiORRjsGaa3rX9W7nM2NjYLh63nsDb0Ct677GqqPQ1Uexp4Q/0HeHnFa6fd/qzqtxaUPhMonF1zcZ5xnkrpfKT1Bq5ecxsNvtaC5HVSSgaS3VS46pBi6rNQ4FEDXLP2dlJWIn9qW0xmk899hE6035yJGY8b44zrIyioXNjwfzjxZPcTCH7X/nUMmQ53u37tXXhUf2aGvfCcC2p7S3CrBy7B695wqxpSStyOKBWhOA6HxO00WVE7yovnf4Z4NMkbnvkiuyI93NH2IK975PPZfR0OjTtediWi4MTTcfW5fO3FW3nlQ59kQ3gnMvNf2jYX2Tj03GuVzmkwtbeZMINFgK3nNnPBNtBtCph4iOj78BBZbEw3UzE8MEJHEQNP01QCocC0M9lCCCzLomNHN8N9I9nlpmlSvbQWh8uFYRgMdA+zY3M7um7kbTPdQ9VIGaTiKfwBTyb7eRfR8Vh63TTGelltOQ6ng1QiRX9nH3rKoLy6lKHeYYYHRohH49NfmAOMqqokYgk2/ecFotE4K49dwTGnrknH2DscVFSXUlZTxo4X2hgdGSvY3+VxZf8WQqAoAs3pmNXgh5SSvvb+fLcwmf+yJYSYMbPp/rA/QuryuFiyqmnO3iMA/qCPupZaquorqFu6cGUHbWxsFi+LUc+X+dby8RXf4eMrvsNJ5efNuK1TcfOlI3+NJhwZF3SVC5s+xlE5ce65ev7owN3sGn+hSEuCWk8LcSMypYSbJCgqqdeW88WN03mdFT47JwzDtthmAO7s+B66TKHLJDe8+AGONM7IbiuRuBQPJY4yjg+9CoAvHXkzDd5lKGJq3LqcqMY2eSwBndHtM16nA8nmCz+LphjUlCaysfdCCHTL4OKnvsyFm6/JM5xjRoJzH/xM9rPL4+K2l185OYgiJR7FgW4ZvPLBT/KjnX/mG1tu5189T0/G7xdJVFcMKWRe3LrE4u+nfXWeztzWc5sDh22g2xTg8rhoWd08v9nSFxlllaU0L28sMOCFEJTXlmUffgM9gwUGsqIoNCytpbQqBKRnJ9Y/vJFkNEGovCQ9c7+sFoemIDNGYSqZ4vlHNtHb3p9tJ9dgdHlctK5pweVxpWfC68rwBbzoKYO2rR2kUuk+TMz6G4ZB+/Z2RkciON1OSqtKsaSka1c3bVvaSUQT+5ycbqFwedy4fF58IR8dOzpIJvKv63DPMJ07u/YqgJGxKIqiUNNcXVSkUimd4YFw9rNlWZn4rsl2y6tLKSkN7N8JzYKRwTBdu3ryzmmuo+f78zucuD6L3aV26j2zsbGZHw4HPXcrfq5Zeztva/osV639LUeFTsuuGzdGeCx1B3eK6/nSC2/hof4/sMy/FkXkDrKnDfJocoyXlb2a69fdxfXr/kidr4VqdzOjsp+oMsJ7l1xJiVqWP6u9N3tsSjiwJU3GjBHWa//IW5604sTMCEeNn5fV847YjkwyvkyytJyEa+nJ4MmDh/UBDBaPpl/U2oScIr8CwXBqDDHFtBBCoIt8vf9X738nY8WFYF1pK83+aryqi7s6HuUfff8paLuAKTPmcmK7zLWTiuTBM2/c11MswNbz2WHr+fywuPw5bRYNzkXoJj3faHs5RyklesIgmUih+fO3zS1B4fa6OeaMdbhyks0NdQ2hqWo2TtqSEl/IR3VjJQCDvSOMDoZpXtXEUM8wFXVluL1uTNNEVVVKQoHMcTTKaspxOrXsTEjzykacLgfNy5twuBxIKUnFk8QdMSrrKwhWBvEHFo873ASlFUGCZQHatnVSUlZKsNSft76qsYpjvM7suefG4Q31jVBaGSQZT9LfNYTL4yzI3D5BMpEkGY0jK4LZkIC6ZYVJ9faGZVlExqLZ/uwLgZAfzenIHjsRS9Cxo5vmVY1zSnZ4uJNMJElEYtl7ZmNjM38cLnp+RDAdp74zsoF/D/6d3dEXSJhRSp1VrAmdzCtrLsSt+PnP0D8ZSHbRl2hP1zjX/Hxh9a/o2dNHMFDCPb238NTQv0hZSdYET+b/VtyYPca7ln2JH2z/NKbMGJRTs5TLGT+mY6KneYZVuxp5Qt7Jo11xumO7cePj13uuo9m3inc3XMmm6GP8qevHWNIsSFKnoKCxeOpGv2vVuTz+n4354QC59d6nIuHchz7NyyvXEDA9/HXoyewqS0r+M7SZ+8/8Fu948jpUodAe6y8wykWRcnOISXe43GMLBO9d+prJY9h6fsCw9Xx+ODye2jaHJYl4Om7O7Tk49ayFENS2FJ+lzWVkMExsNEbd0logPbtduyS/TnoimsAf8mbb8gU99Hb2ERkdZ2RghMh4FH+Jj+h4jMbWOqQ1mRSvtDwds+jyuGhYVks8GicWiWVngIUQuHweYmNRgqUl85o8bb5RFIX6JbVF4+SFEJRVlGZDAXraevCW+AkEfcTHY/iDPjSnRkm5b1rjHCBQ4scf8OWL9T6IxFh4nB2b2mhd00yobN8yxWuaRqBk8lzdXjdNy+ttMZ9CsXtmY2Nz+LC/ev6foX/yzMgD9Mb3IIFqdxOvqr4oG7/+wuiT/HLXl+mK78CpuFkZOI73LLmCEkc6OVnECHOP/Ak7dm3ArwU5q/pCTql4fbb9MX04k42+k9WOk7hk1WUIIUgZCa7ecklm1jQ/9XqxTOwzZX5vi72Ys13auE/oUZJWAofDwXFlr6TBu5yHuu5mQ/ShvOzkb1vymeKNHiSW+er4wpp3ct0LvyE3c/6/Tv8G5zz0aQzLLPBI16XJw/3PFyyfeO5ft+V33HLSF7j439egKSqGZeUPfojJ60EmO36mgcm2MnfAQpIwJ2e3bT0/cNh6Pj/YBrrNvBOPxdEcjv1OuDXSF05nRG+am6AbuoGqqfPycJhNG4GQH82hIYRguD9MeGiU5hUNeW5IofIgTtfkyKvH42blUa0IQHUO4Qt4iUdilJQFMFIGe17sYNmalqyxPZEhXlVVTDOJaZisf2QTtUuq8HjdDHQPUVlbfkg8EGeKvwoPjxEeGKOxtRZviR+Pz5OeAV9ai6IojAyGSYzFkZXTz1LA3A3yYiXWQmVBGpfV4na7ptlr38iNp7eZ5FD47trYvNQ4WHqeshLc13c7L4SfYETvx616afEdwdtbPseKwLFA2uD91e5r2RXZBMCywFoubf0qDZ7WbDvrRx7mgf7bGUr20uRbyf+u+Dq17iXZ9RYWP95xOR2xbawNnsJHln6DeDSRp+fXHPF7rnjhwqwLddZwnvrI2luYdM76tLmfdm1PmXG+/dwnuLj883i8JRwVOY+V5Sfw9/EfY0mLN9Z/iNWB4lnuDyZnVR1Db3yQu7v+TUDz8bOXfQqAlNSzsekSiRSSyxrfwvc6/4QhLSxZrISd4IHe/7LSX8etL7+CNz9+JaN6FMsyQYi8bO3pzYvkBRDpsnYTDugJczJbvK3nBxZbz/efWT9x77nnHs4+++xDpk6wzcFBSslQzwhOj4uquvKi2wz1jyAQlGViuKeSSqaIRmLUttQUXb+34/fs6cXn91KWqR2+0GiaRiCYdtcurQziL/EWxAjpSZ2u3b00tdZnH+gTLzwtK5vQNI2R/jBl1aXpWpiaythwhIraMrraeomPR6lqqKR7Ty/B8hKq66uIRuKUVoXweNz4S3yHdIzhBEJAeU0IVVUJ5WQ7nnjulFaECJXPr9uUrhv07umldklNQXLA6vrKObc3tUSOjc1iw9Zzm9lwoPW8I7aNxwb+ws7oBmLGOCWOchqslbyl/DJa6pcD6Vjs29q+ydbxZ9GtJA2+5VzU9EmOCJ6Y19afu37C+pGHsbA4OnQal638QcHxfrH7anaMP8/KkmO5ft1d2eXF9LzZdwR7oi8gkZQ5axhO9QKTBnvaE37CQCx0uU4vyLfghZystxZ1jEzR81aO5qS9XrODzduaz+ZtzWdnP5/94Kcys9iTtciFVPhh11/45+lf55Y9/+JXu/9ZJFQgbbT/cMef+eGOP2eX1/sqiZsphpOFyWOn4lA0UqaOS6RrtU/UTJ/A1nObQ4lZG+h///vf+eMf/8iHPvQhjjnmmIXsk80hjBCC+qW1Mz7QNE1lpmHm8YFxXMKNz+8FyMZlTzDcHyYZT1DbXCj4QojsbOtMTJ0xNU2Tnt29s9p3JoQQON2FLuYOl4OWVU1FZyEm3LWDFRmDVILb46K8phQ9qRMfj1FeXc72Z3bjDrqwUhZDfSO05NTNPByM82Q8SX/nAM0rmmbcbn/E0iAt2Boa60e28cLoHi5pPhvVq/HLPf+k3BPigvpX7HP7Ukq693TjDwUIlh74cko2NrPB1nOb2XAg9PzRtr/xXOQhBqwOLAwqXQ2cVvlGTqs8P7u9oij8uesnbBx9gqgxSpWrkXPr3smJZecAkwlX+xMd/Knrx+yJbiYgyjiv9t28rOJspvKbPV9j89h/aPGtzjPMi53/hJ5/cNm1XL7hAgD8jmDWQJdIlvuPZkfk+exscV5N89yrk2OQpz9ObCuo9y3Fk3H/P5T1fGrsPABSkjBTvPLBTyIQOBUtYzxn6pdjoQoVS1oF7XXFBmd97JSp41Qd6GZa5//a9W8+seLN+3wutp7bHExmbaDfdNNNPProo9x00000NDTwgQ98gObm5oXsm80hyt4MqL3VgS1vKKe2Lm18h4dHCQ+M09hamxV1X4kHhyv91e1t76eitgwtx/DNFf+pLwMAAz1D6PEUtUtyS1UUq585MxPlu6oaK2dl1BczzidGZ0dHxhjpT7t2I0HNtDdh2GuaxpqXe1A0BT2p48287BxOuDyuzCCGAwsLJScTbMRIcF//M7yx7pSC/T793A9pj/XTGmjkurXvzS4PGxEufPwqLEtS4vSBlIT1SPpYqpNUJj7tV3vuybwipV+e7uv9Lz847uP7dA5CCLwBH27vwcmbYGMzG2w9t5ktc9Xzjvh2ql2NOJX0M7CYnm8reYQXxp5gKNWDioN61zIurP4YFaOteXp+X99tPDvyIOHUAKXOKk4sO4dX1VyUd7yBniGeGbuP5637GdOHWBZYy6dW/ohYu05dWW3etnd2fpf1ww9R427hijU341YmE5XOWs8FtMe2MhF3DbA9sh5yZoxzURCUihpOrDmHf/T8KruNRGY0TlDtbuR9S6+a8TofKgQdAcL6+JRcbjm15JE5M9uTMeXFjPO9kRujP0HSTKXj+zMJ68566BM8cMa3534i2Hpuc3ARco5F/QzD4K9//Su/+93vOOWUU3jnO99JaenC1A+ebybiU3Lp7u6mrq7uIPVo7rwU3G1y74mUkuh4jEQsiWlYVDdU5G+7q4fyujJcReKK0vHMozS21uUZ6ZZlkUwkSSUNgvtQasuyLAa7hqioL6d7Zzc1S2ozswh7J113XaCqCgM9g7S/2MnRp61FURSi4zH8JTNnX9eTOrtfbKd5RQMjA6NgWVRPU25svjiQv5EH+9dzw4u3YVgma0NL+dbRH+bazTfzYN/6rAjfc+YNaJmxxTf9+wrCyUh2/yODLXzn2I9hYHDug5/JKYeaL+QF8Wy5CDi+dCVfO+pDC3OS+8mh9sw63Cl2Pw6Ve2Tr+cHlcNPzq194O4aVxJKSV1ZdyFk1F9Ld3Y1WZvLI4J/YNr6eiB7Gq5SQknEsLLxagE+t/AFOxU33rh52ev/LM6P30p/sxK8FWRd6BQOJLnrjbdSxkrevuiyr53d2fpeN4cdRhcZa72mcv+SD/L7jRhJGjNfWv4dyZ9pA/2v3z3ly6J+UO2t4e8vnqHTVZ/s8Wz3/0oYLMHOzwhXLEJchV18UofCBZdfR7F3JFza8KTP4LLCQLPWtJBRdyhuWv+uw0vPzH/0iY0Y8p0xc+nr87fSvcsXGX/LM8Nbsth7VRcJMpbedtOMLybnec9HziXX3n/mt+Ti1eedQe2Yd7iwmPZ+TgZ5MJhkcHGRoaIi2tjZuvvlmkskkF110EW9605twuRY+WcIDDzzALbfcgpSSiy++mHPOOWfW+x7qgj48ECY+HqVuydxLRs0X8Wgcj88zr21OfUkpdk8S8SSWaeH1e2bcNxfLsoiOx7LxZLnoKYPdL+6mZUVzUZf0mdBTOm3bulh6RNOsZs5Hh8cY7g3TsrqRrp09ICUNy+tJpVLs2dJO69qlGCkjrx9TZ/5zXfJTSR2ny4Ge0jFNc8Gz3B+o38g9vU/z9S23TuqzgKDDRzgZKbjH95/5LS577gesH94+ZZ1gbbCFLWPtGNKcXDzDyxQU5vYJOn3cdcq1+3lGC8Oh9Mw6lNhXY2kxCfpcsPX84HK46fk1L7ydhBnLfhYISp3VjKWGMdGpcNWxNnQKr6q+iC9tuhAzJz5YESr1nqV0xXfhVFysKjme82rfRUAr5eoXLiFpxrPbLvEfQcpM0hXfSaWrnrNrLmGl53h2vriT34krMKSePf7Lys/hmeH78TtCXNj4cVp8qwv6PRs9b4tu4cc7L2cmV/5iRqJA8Mqqt3J65Zv4zo6PM5DsKtjvvU3X0Bpac9jp+Wsf/ixxM5X9bk+UnxMy3wZXhEATGilLL/IMnsZin3FwpPAuWVjzWg99PjmUnlmHEoeDns/axf2CCy5gfHwcVVWpqqqipqaGk046iZqaGjo7O/ngBz/IddddR0NDw94b20fC4TA///nP+d73voeiKHzkIx/h+OOPp7y8ePKSww1/MJ0I7GCJ+XD/CJue3MrxZ62bNxdrKSWdO7sprQrNOHvs9riwLIvOHV15ceIzXYvpjHNI1xdfesQSNE1DSolhmLPKUmuaJqZhYhkGhmHhdE4KumEYeUnGDMNAVVXGw+MkYukSM7VLqtMj5YDT6WTFUa3EIjHad3TQumYZmqaRSqTo2tNLw7L0eZqGSW9bH3VLa9E0LVuizOF04ODQjVWbyne2/SFfiiWMpmIF91gCr37oU5jSKnL/JRtHd8/52FPrq5Y5Jt02h/vDlFbOPjGdlJLwQJjSqvmZiRwfjUz7PZ4vUskU0fE4pRX7Vn5mtoSHxhBCEpxlmRspJX2d/ThdrmmTUBVjqG8Yr98za+MjHWvYQ0lZkEBwZi+WwwFbzw8+h5OevzD2JEkrkbdMIhnVBznD91ZeuexN2eV/6vphnnEOYEmTUX2I/9f6FepzMrDfsuf6POMcYHdkM3WeJVy15ndZN3qAvzpuxNAny2pJJP8Z+ieXNH+GI4PFk63NVs+3jU26sE9HblI0P0FUp8ZRoVN5ReiNtG/vYiBVaJxLKflF+xVcH7rrsNPzuJXK+26nS6OJnFn1NJaUWKTd24vp+VwpdpcUMXlfbT2fP2w9X1hmbaBfc801VFdXU15eXnSU8bHHHuNrX/sa3/3ud+e1g7k89dRTHH/88VkXvJNPPpknnniC173udQt2zMWE0+lYsHqLum7s1UANVQQ58sQV8xr/LITAH/Lj9s5utsbK1MjeG4lYgoHuIdxe97TnNSG+wz3DRCMxGpc3zPjQTmeI78fpctC8shFnTi1vPanTtr2d5uVNOFwO9JTBnq1tNC9vpGFpPSxNb2ekDOLjMczKYHaGPJ0kbvI35XA5CFUEURSFPVs7qaovxxvwoWkakfEoY4Pjs6rPfqhR/K4WLhUITihfRX90hJ3xnoI5i1PK1zA2PsaGVNvkOiHyS9zkjq7mLBeAU3Hws5d9GgBd1xkdHiMQ8het3V4MI2UwHo4QKAsUZIWfiWL5EgzdoK+zH5fLOWdPj7mQTKSIR6KEyksW9HslLQs5h/aFEPhKfDjm+NwzDRPTnH1MY/o4ftzehbvGiwlbzw8+h5Oe+9UgxZ7VQUc5qz0n5y2ziui3lNDiXZ1nnANEjcLM3QKFFYFj84xzgKg1XrCtKjTKXNVF+zwXPT+j/EIeGryTia47SVKqxugz0t9dKSSlzip0S+flpa+ltm8dra2TEwChiiB0F078TmQ7P9xCHeaKmfF2K5z9zo1dZ9Z6ns3FJ9P/u//MdAy6refzi63nC8usv21r1qyZcf3xxx/Prbfeut8dmonBwUGqqqqynysrKxkaGirY7uqrr+aqq64q2oYQgssuu4xPfvKT2WXd3d3z3tdDCT2p07urn+qWSpyevX+hF+J6xfujszqGFtDo6+ubVZuaVzAw0L/X7aSUCI+gp6dnr9saig6YDI2kYCR/nSlMBoYGsp8txWRwuEgGUrfMO4d0WRaT/v78vsb7ohgyyXg0/ZLS3d2NntIZH4mAa+4JVfaHA/EbeWv5qdzcf//kAglNzgraUwM5cX/gFAofKX8NlMOHt3+fMSuelfFWVw2XVpyDETL5Xt9feCayI/vaGFS8jMm0C2aTq4KOVPrZUeso49yy43h0bBMB1csnG87PO1+HX2FgcO/fo1yEh4L7OROR0RijvWFqWqsLRN3p1wq+RwtxP6RDzuo3MB/Eu6N73yiXKAW/txkRMBYZZSwyOqfDxAYie9+oCFPvx2J/2bb1/PDlYOi5gyDN2hr2pDbmWlG83vuRgmOcpLyRZ3gAyaSGCQGnOS4u6Eu1XEa73FZQjmuFcXLBth4ZIEksbxkS5LCLbvK37dN/SUJuxamsopp3zkrP36l8lV+bn6NWG2aFuxckrBI9PB5ZwaUVP5o8pCUZY7zg+f+/Fd/je4P/O7ldxli/2LjmgD13JzgQv5EyNcCwGcnJYA8IiQKTdz5jZE9otJhclPk3N9Z80lCHKQMd+aMeuV9Bbln5aVvPFxhbzxeGOSeJO5j89re/BeCSSy4B4Pe//z3RaJT3vOc9s9r/UI9ZW0hikdiiyQy+2O6JrutomrbfP9JiI6qzxTAM+rsG8Pq9BMsWdlR0Kgfyfvyz5ym+vfX3WEiW+Gr5wTEfp08P864nvwIC/KqbP77iy3nnf/nGn7Iz0s0qfyNX52RxB9gZ6eLRwU28u2X2sa0HA8uyGBsZI1Qe2uu2i+338VJnMcWsHUrYer5wHCw9/9Xua2mLbcWlurl02VcIOSqL3pOUleBrW95P0orjVn18atUP8jKq5/Lo4J/4Z/ct2Soblx/xM57reTtxoxNN8XNy/Z9wqunksde+8A7iZgwy8c6Xr/4lPi0/y/wzve9jJPEkUpoIVBpLLmFl+eWzOr+u8dvYPHg1ud4CQiic1fJfFGZ3vS/fcEG2Ssln6n95WOv5u578Cp2x/rQ1LeCeV9xAjBQffPobRPU4q0qauOGoS/PO/5UPTg62ORUHhjSKel3kogoFl+qkyhViib+W48pWckSgiWZfYSneCVKWwZUbf4FAcP1RH8gu3zi2CyEFa4JL8rbVFCWvssxM2Hp+6LKY9Hz2/hqLgPLycrZuncz+ODg4SGNj40Hs0eHDYjHOFxuWZdG5s4eSUIBAyLfPbkmpRIqe9l7ql9bN2k1qZCBMaWUI0zR57rENeP1epCWJjsapW3L4ubgDnFv7Mk6gleHRMZqaa9nzYjvNyxv5dfOnUQWU1pbStauXuiXVWdfc69a8n+GBMOVFYsSW+etpclQVLF9sKIoyKzG3sTlcsPV84TgQet4x9jtA0lhySXbZu5d8aVb7Ptvzdk72vQBS0Bx877TGOcCpFW9kqXcNbfEtnFR+Ho93nEXCSM9mpswEj3Sczlktz6Dg5ktH3sI/en5F0krwuvr3Z6t9TLBj+DsMx59gYg5XYtIx/lvcjlqaS/Y+MNQ1fjeFrvyCXcM/pLXsshn3ndDza4+8g/WPPo/X7yU6Fj2s9fzXJ32eoZ5h2kcHOaK5Oavn36z+4LR6ft8Z35xWz/sSIzzcs55nxrazK9rDWCqKKS1MaREzEuwxetkT7eXBvvV5+ylC4BQOgk4fdZ4Kmr3V3N31eDYe/uwHL+P3p1zN/z5zI72JYQCW+mv56Qmf5l1PfZXu2AACwWWr3so5NSdw3ebf8PTwVoIOLz8/4dNoSv73zNZzm/ngkDLQTzzxRG655Rai0ShCCJ588kne8pa3HOxuFWV4IIyR0qmqrzzYXbHJ0NfeT0V9+ZxmsRVFoWFZHaZusGdzOy1HNO2Tke5wOQiUlhQ1zvWUkRcPlYgnsCwID47hC/qIRxOYKYvWdUtRVY2h7uHDUswn8Aa9KE4Fl8dFdWMVDpeD6sb0DImiKrg8jry42WQ8SWQkQqi8pODephIpdm9uZ8le7ptpWgx1D1HVOPPvNR0HJffZE8LGxiaNreeHLg/sORZTppO37QzfxBlNT81636d6LmI8tSnzSbJn9GdYMjXjLHa9t5V6bysdY78jYQzkrbMsgye7Xs/L6+8F4Lzad0/bzri+mRwH63QPpEn76C04lRC1/v+BGWZJXWpZwTIpTTojd6CqPpYEL7X1fAreoJcWZ9W86HkpPo4aaeKNR7yiQM/DeoQNo7v4d/8mtkU66Y8Pk5QGlrSwpCQhUyQSKfoSI6wf2Z63r4XkzY9fkbdsV6SHcx7+NIY1UQ1G8vUtt3F392NsG+tAShjXo7zukc/z9zO+NuvZdRub2XJIubgD3H///dxxxx1IKbngggsWbVmWeDSOnjIo2Yc624crE9d+b2I03T0Z6B7E5XVTEpp7BkzLsujZ3Ud5Xek+lzFJJVJzNs5N00QIkRUgy7IY6h2hsi6dqVhP6rRv76ZhWQ0ujyudfXJ3L063k7LqUFagirnHW5bF6PAYpRWhfTqf2XKg3XuG+8Mk4wlqmvJnFWYKEZhpXTKexOWZOQlhKplioHOQ2iU1M5bO69zehVAU6pfVZpf17ukFIahpnkxG1NvWh7/Mjz8wmUF0ZDBMsKxkVqX5ZsJ2iVtcLCaXuEMNW88PPR7rfBVxvTNvmUer5xWN9xfdPv+eGNy7uzD/gUBhTeUN+JxLCTiPmPbYu8M/YcfItyk2iw2gKX6cajkerQGfYxlB9xqCruPwaHXT7i8QOLVKDCuCacVQhRuXVkvQtY4K7+nU+F6T3dY0TR7uOA5TJrJH9SprKPWtoT92DylzBKfVQnPp22kpe7ut5ywOPTcsg2fDO9gQ3snz4R1sGWufVbJhQWHW+WKl31r99fz4hJk9KKbD1orFxWLS80POQN8f7Ji1g0v3rl6klHnGTdHtprknI4OjuNyOfXbfS6VSdO7spb6leq8P+Pmic3sniqpStzR9zqlkiv6OgbxScYlYArd3ctBgthldI2NRBnuGaGytX9AZ3cXwGzEMg84d3dQtqcXpWpjMx7O57paVnn3JNbJj0TiapuJ0TQ7eDHQNEawIZJeZpknnzh7Ka0pnLCc4GxbD/bCZZDEJ+ksJW88PPBYp7t99NFNnoQH8zlY0JYBDKcWhluFSK3BrNUTDDuprjsbraERBKW6gC4HAhZQpJBZCKAgcaIoXTZTg1MpwqdV4tFraxm5GSrOgDbdaR3PoPUSSW4gau4nrPRhyFNOKp3OlCzdOpRSJQcoayHx3FJaFPszS0snkbb3RvzMYe5jR5AaSRg+mTKAqXtxqHY7UcgLiZMacvyduduF3rKY6em1Wz+NGN1sHbmAk9SimlaDEtZaW0Hup8r56r9fW1vP5ZSY9f/PjVzKSys/6P1tjvNiyCneQ20++cp/6uRjuh80ki0nPDykXd5v950CN0hajpnn/YoH3t6aj05kexT5QxjlA3bL8H7XT5aR+WV2ecOQa5zD7jJH+Eh8en/uwcrce7BvG63MXDMKYujmn0ij7wmyue7HZb2+R2pyV9fm1nFVVpWFZ7WF1r2xsbA4uB1rPFZyoihvTys+WLoSDgHMVKTNM0uglktqBKWNYMo5hJWnvNMnL1S2tvDTcmhIAVBxKHTW+cwGBJXUs4hhWlKTRT1TfRTi5HoGGpNBAT5jdbBv6Kg41RMC1iubgO/A5l+B3LAdgOP4MY6lNxPRdjCV1TCJY0mBn+HvsHv0JDqUEl1aNz9GC37mS+sAFlLpPBCx6InczGHuUMfkCXcb9WKkUmuJDt4YZD/2U4cSZVHhPx6PVcXTtjQCMJp9nV/h7bOz7FAgodb+MpaGPEHIfU/Ta2no+v8yk57edciWvffizmJkBd01RufzIS7hm481ZI10gWOKvYXekJ/vNVUS6LJ4pc5MECs6tOXHBzsPmpYttoL/EiEXijA2NU1IaOOBCoKgHP0YnVFay942mwTAM+vb0Ud1SPetEb8UMuvmMNzscxNw0LZASVVORpoWh57986SmDnZv2sPTI5v2+doZhoihiv93M94XD4V7Z2NgsHg6Gnr+s9jae6HojE7PoAoWX19+N17G06Pa5s09Js5+43sHW4a8wltyMADQliG6GAYluhtkz+hMU4cKSKSxpMGHYC6GhCAeq8JA24BPZYygoBNxrSOg96NYYw/F/MxR7nMkCXRKBiiJcqIoXl1aOJpYjE0GCJY1IoWPKKLo5wnhqG0Pxx9HNCBIDgYZD9eNUK/E5l1HtP4+AazlJY4CRxLMMxR+jO/IHLKmjKQG8WiNB97FU+c7imOqfAtAfu4+20Z/z3563oypuyj2nsaLsU3zl/hd5vreH9x57HG9Yu/qw0IhDQc81FO45/ev8eOefEQg+uOz1AHzhyLdz07Y/oCC4/Mi3c3zpSj6x/vtsHt2DpihcdeR7OK58Ba97+POkLAMhBO9Zci5va37Vfp2HjU0xbAP9JcbhNEo71TV8tky4PpmmiaIosxYJVVVRNfWwuHaLib62PpBQt6yWyrqKgvWjI2MIVeCY4gpnWdachblndy9Ol4PqpnxvjlQihcPlOKyT9djY2BxeHAw99ztXcErDX3m+/xMIBEdXfx+3Vr/X/eJGB5sHv4QqXJxYdycAbeFfsX3k60zOrkssaVEfOJ9V5V/M7ps0+4kbHSSMbhJ6L0mrn/7oA6TMfgQqTrWSuN6FacWR0spxQJY5LZtYMglSkjQskgxhCp1o7HEsy0BKI1ObXaAIJ5riR1NKUBUn6YrcBuOpLYQTz2DKOJZMIVDSBr9ai1tL5yDRrSh9kX/RNX47ltRxqEG8WjMh97EsL/sU0dRO2sdu4dGOV3F0iwvD0cIn7+9ix/AQnzz9Fft/gw4yh5Kef2jZG/I+n1l1DGdW5Xs4fPuYjxTs9/fTv8YjA8+zzF9HvcdOHGmzMNgG+j4Qj8UZH45S1VD48DkUOBwMzFRSp2NHN03L6+fksh6Lxtjy1DaOPGk1g50DOFzOgof7dAghqGmZvq7mfCOlxNANHM58IdNTesGyCXaFf8Du8I8QKKwo/xwNgYsORFf3i9ol+dd0sHeY8urSrLhWVJdRUurP+97qukHXzm7ql9XhcMz+MVa3tDAJnGmadO7uJlQRpKwyv7TLwaonbGNjc2Cw9XzueB1LObn+7llvH9N38e/O12UMYLh/zxpOa3qMiL6tiLu6Rdf4HURSW/E7l1PiXEeZ9yRCruPAdVx2q5VlX9irnifMXuJ62rAfSfyH4cQzJI1edDkMKKjCgbRUFOHARIKUpAcJkkipY8gIZLzz0zkPrMw5TLrrmzKJZfaTMgcywwFGZuYfVMWNlJKY3kZE30H72C0gLRKGh47RKkwpOKqmjdNbXiScuIN/bj+Pc5dfm+3/A3uOxiTtKeBQQpzR9OSsr/nB4qWi56dVHjUv7djYTIdtoO8DliWzyaJsFhbTMBFFXJicLgctq5qyMUxSSvra+qhqqppxFNbhcOAr8eF0OahZUoui7H3GVNd1HI6FSWQyE0O9I0TGojQtr89LKNe9q4e6ZbV52ejbx37NtqGvkS4YkmbL4NUIFOoDFx7wvs/EUP8I0rSoqC0vyMiq6wZjw+MEywI4nA5GBkYIVYRwOBx5HhOaphIIBdC0/JfT8dEIHp972hCEiZcCXTeyLwKqqtLY2lDwYpBKpuhp66OupQZPTpy5lJLwYJjSKeJvY2Nz6GHr+Xxi8Hjna9DNEdxaAyfV/xGAJ7rOzxrnAJY0eKLz9ayquIKe6J+RGYM2jaDEdSSphMGA/jBd43/EGowDAk3x4VQr8Dqa8DtXElCPwlNSO62eu9Ua3GraYEyXUJvU887x2+iN/J3x1AsYVhSXWkHIfQL1gTfjdSwhYXQQ13tImn0kzX5S5hC6FUY3wxgyksn6HkdiYEk977gTCQxNKwFMZHyfTELm0uIsK4shmcg/DwFnBKH8gXt334FbrSNp9SItMxurrxsjPNR2Mmc0P7H/t2kesfXcxmZhsA30fcDn9+KzZ9UWHCklvXv6UB1qXgmrCXITjFiWhWmYe3WT0hwaq45LJ42ZjTfVcP8wo8MRmpYvbGbVYlTUlhGqzC/L5fa6qW6uor9jkGBlkA7jOvpj92Ja0ew2k9lLJS8OXbPoDHSvz41hmCRiCTp2pjO5+vxpwXQ4NFpWNaZLoxgGI4OjeP1eYtEEve39tK5tweFIu66V1+QLqpSS0YFRDN0sSCiY+71IxpO0b++geWVTNst6sVF7p8tJ84pGtCnr4tE4wwOj+EP+gzJwY2NjM3/Yej5/3L/7GCzSxqqe2sJjHa+kXn6zaFK3pDnAlsEv4RBBdIYzWdUFld4zWFLyv0S6QlQ3TuZ7ieg7CSeeZiyxgYi+k57xP9Fm/gpZptPdrqEJfybJ2xJKXEcQch1HyH1c3jFz9bwhcFHWw0y3wrSN/oqB2P2s77sUpIXX0Ui55zSag+/ArTXO6vwTRhdxozPtim/2kTT6SZoDJIxuUuYQhhXFkklMK32NBGn7W0rQ1Mns4AmzO70w10VbCHRreA5348Bg67mNzcJgG+iHAeOjEbx+zyHrui6lZKh3hIrasuyy/s4h9GSS6paqWZ2XqqrUt84cByelpGtXD2U1pUUzbxejtLKUQPDAJOApVhak2MixL+DDsiQbRt9IzEzXo80dic9tY7FUUcwV1NzR69qmKrp2dLNkdROaU8urGa9pGs0rGlFVFc2pMdwfJjoWJVQeQkpJKpHKG60XQuSVr5ugr2MAI2VQt7QGIQQuj4v6pfXThgnkMlXMTdOkt6OfUHnAFnMbG5t551DQ850j36Vr/HYUxcvL6m7DqZSxvvcDWeN8goTZw4D8HQoeTPLLWrnUapqClxDV24gktxA3u5HSZDj+JIOxh5GqxeYOBUW4MjPnpZlSa3VUeV+Fz9lKpLeU6uqVpLTNjMT/y3hqM1F9FyOJJ9lh3oTERBFOHEoIt1aHz7kMX9VqktbL8aqTSe0cSojW0o/TWvpxIJ2BvXPsdvpj99IxdgtCuAg4V1LtO4fm4HunvS5urT4bjz9dma/nu3s4//bfIQRYGSO8wjPKmlLBlefWM57cynhyM9HUrn29PQuOrec2NguPbaAf4kgpCfeHMQ2TUPn+lSE7WOgpnUQ0jmEYWYO0tDqItKxZZ0ufDUIIXF73rB7kuftMTWaSy2xrlu8NKSU9bT14fJ69ulqNpzbz5PAFeQPs6X9yzXRASip8p+133/YXKSXdu/uIjEVYekRLXt1Tf9BP/TLB6MgYyWgSX8hHSWkgK8oTL6mqqtKysiH7eWRglEh4nKqmKlwuZ9alMDw4RllVKO/4lfXlGLqRd58cTo2unT3UL6ud0/2LReI0LKmb8TthY2Njsy8cCnq+O/wjdod/kHbXNuGR9lM5tfFB9BwvrgmktBjlLxTWkgaJQefYHWiKH4caoszRjFMtx6VW4tZqcGt1GFYU3QwT03cRMzpImr0MJ55EN/+FYUWRQmdHPyjCgSLcaEoJTrWMoOt4vI4GPI56TCtO0hwipu8iHP8v/dY/2T56HSBRFS9OtQyv1oTPsZyg62jKvScTdB1FMCfGuDfyV3qif2Z3+MdsG74Bpxoi6DqaWv8bqfadW+S8i+v5//zqN2wM9/PWlWv5ymtezRk/+RnDyQRNnlX8FOtlXgAAxzJJREFU8sK3AWmNGRkfYbNyFlg5Ij9P7xr7i63nNjYHBttAP8QRQlC/rO6glI2aK5GxKG6vq8DodrqcBSOlc0kUMhcqc2bp9xfTNOne1UNNS81+9deyLPra+vAGfXh8M7laJrhv97FYmAhEjm5PCPekkCMEFb7TObr6h/vcr/nCMAxKK0sYGRpm1+ZdNC5vzHMpHekdAUVQUlHCSF8YVVMJBP2Mj0YwdJ3SilJikThe/+RIfVlViECpj+7dffhLfJTXlKIndSLhcUrK/HnfMUVRsq5v2WWqisNZmOV1ZGiM0vLipfhSKZ3+rkEal9bNy4tSKqnnvdwsRkzTJB5N4C/xHeyu2Ngc9ix2PTesMXaMfJdcg1tKkye63sDS0P9jNLk+b51AZZXjbzQ0tGCRYtvwl9GNOGWeE0gYfaTMQZLmEIYVJqrvYDTxfKZ+ehILPSc2XaAIDYEjM6Oedmd3KEE0xZc5ooklU5hWjJixm/HUJgxrHNNKZFzs09nZVeHF56xCU0oQKEhpEDd6GE9to2PsViQpQEkfQ63E62gm4FxNU8m7KK8+BYA9oz+hL/ovNg18lg39n8Ct1VHmOZnGwMX4HauL6vmqG2/ElBa7PvHJiavJtef9hpQ5jFurwTAupGd3D+HhMVxuN2eteYEHOo6cvJyK4FUtLy7EbZ0Ttp4Xx9Zzm/nGNtAPAxarmOcipWR0cBQ9UHyG+FA4h6koioLX5ylIbDJXJuLnA0H/tG6ND7WdiG6FSaeayReTPHGREqGovKplA5alsOWZrZTXllFVd3BKgUTGIjx5z9OoTo1QWYjm5XV07+ylacVk9v2J5D6KouAP+LLfhdh4nK49vbiPddOzp4f6pXV5ZfUcDgf1S2uy4u10O6lfVjfLkAiF6qb8a5JK6Qz1DOLzuXG6J18ATNNEVVWcTgdNy+sLXOH0lM5g9zC1LYV5EqZjLDxOX0c/S1Y3z6uXyHwzNjzG+EgUX8C7KGZvbGwOdxazFo6ltjAZKT2JbobZOvS1nDXpGVCExQup89i6RwNUFKGhCI3hxBMoOFEVJ0K4UIUbp1qOR6tHER5UxYsmfJlSZ/5MTfQkpkxgyjimFcW0ohgySsLowZARTCuW2SaVMewn66erwoOQGkLRECjo5hi6OYoldSTpEmsTNdcFKoriBCQpc4CE2cdQ/N/I0R8hpYkQDhxKCW61mmrfq3GptcSNdkbiT9E9fheKUHHIJuo4hyXO9/Pth5/mu+ufpMUb4oEPpt3j7929itwLGdPbebDtOFYYf2bJ6pasAXV2xiBfe+OXiMgQ8E38QmPjx/9vge7wzNh6Xhxbz20WgsX7TbI5rBBCULdkbu5Hix0hBOV15fvdjqZpNCxvmHb9vXtWZoR8QtGnOLTLiRcRlbrA/3BE5VcAME2dvs4hLMuisrbioFz73Vs6SSR0aqtDeErcDPUPU9NSmRdrljvAkftyWlVfgcOl4fF6aFzRSNf2TioaKgkE/Tn75j/Ciol5bhiClJKhvjDl1aGC6+F0pisD5LZpWRY9u3vxBLyUV5dOG6cm55gFuiQUwOOZPjvtYqG0spRgefCw+t3a2NjsG2XuE1EVN0aeO7ugwvsKjqn+KQCf//s/WT/4d7oilfgcSbyOJCdWl/J/p67LZD8fwzAjGDKGacUwZTRjdMdJWkNYMoFlpbBIIaWeNaKtbJ1yC6SVU+E83QeBAigoQkUoTgQOQEEIJa2cE48waSGFTP8rM89tSXo2HQuJiWmls8bnDojLjOJKqZMyh0iZw4ynXgRBth2BihAOTLWftrFfsHv0h7TWaXy/bhXrat8KwL27V6Tblvl6jpJi0PVjnEMfy5vhXHbjt7EIZTeLYLDmxpvYdBCMdFvPi2Pruc1CsLi/TTaHFXt7KMSjcUzz4JW76W3vp7ymdE4x6gvFaPIZJJLn+j6SY5yn/50QqKxxrqRfnI6ruTm7v57UGR0Z54RXHo3X5zkoD2TTNNHjCU46+1gCwQC7Nrex9dkdhF59PPF4Ak9OmbhiCCGydUyFgPDwGKW1k94XEyPhMzERL6cqgpqWakzTZDzjNucscp+nCqyiKFTUlee9gAAk4gksS+L1eXA4HdQtrZ2xH8WYr7g3PakvaAzdwZ7Rm688DzY2NvvPmc3P8EDbMVhWEgRUel/FUVXfya6/fetmpGgGIJJKuz7vHoFrz3kd2gI8SnQrnCl/NophjqHLcQxrjJGhXlx+E0vEsaxYekAgMxBgynjajV6mkDKVnnXHQEodKU0sTJBmxmCfDpk22mXuEhPTimU+pZ9Zbk0HNrJ5YCObB77IhOE/sU1u1RW3X1BdPlnH/ZN/+0deeboJohgFyxYaW89nxtbz2WHr+eyxDXSbRUMsEsc6iAY6lrUo6uE+0HZsjshPSfwGeaPHmurlrOb1eeuT8SSdO3pweZ14/QfHOAfo7xigvLac8OA4fW0DLF3TQmVDOR07uhjsGuBlZx2HL+ibtn+5dVLj0QTNq5oIlYUAGAuPsXtLByuPWpbnJjcVIQRVDeVTMsk2zEmkirUfHhgDKQuqAegp/YAO8BiGwe6tbVQ3VhEsLR5rdygjpaRnTy8lFSX4A3bcnI3NYuCs5vX0Rv+KW6sh5Do+u9ywmDKzvfA4lBAOJVTwNqsN9VLqL8XldhXdb64Y1hgpawTDGkU3RtHlOKYVwbDG0a1xTBklZYZ5rnsLKWuUUrdFmVdmQtMy7xV5U/mZRVn9Uziy6lpgUpuSCWNip2n7da77IqyUBQJ+sumbtKyeXUm4uWLr+cJj67lNLraBbrNoKK9OJ3Dr7u4+KMevaak5KMfN5f49R2HJBLlGuUROiTtPG+2nNt2PRyt0jXd5XDS01uaNEudmyB/sHqKspnRBR1Ity8I0JXVLakDAxsc2s+U/21h10kqkhPLaMoYHR4mMRrM17sPDY5SE/CiKgp7U6dzRQ+PyOlweF3pCR1EEuq6jKAodWzvx+N1Zsc0t+zKVqQI7H+dd01RVsCw6HqO3vZemFU3zkuRwNiPNmqbRsrJ50Sen2VeEEGguB64pSYFsbGwOLjW+1xUs0xQod3oZSkWnZB9XWHPTjfzwdf/DmcuXHJj+zbOea0oJmpIxmqZ5HK256TvErVp2ZhLBPdl9Pnoyp3a5nHCUz9dzVfFzWuODTBjnX77nQX6xef3ka0BuyRYJWmbFue6LMJKZjOYSPnDEJ7lr6JcEyvzMJ7ae23o+H9h6PjcWbzaSwwzTNA92F15SxGNxdP3Au4HtHwaWlW+cg0BMDJ5LCVJyTPVPOHvJi0WN8wlyjXPTNOna2cVIfxjTNImOxxjoHlrQGumKolC/tAaH04HD4WDdK46kqqkCt9tJ65Et1C+tY6Crj9FwBNM0MQyD8MAo0fG054DD5aB5ZUP2PMpryvCX+ln/0Ea6d/VQVlVK65HpF71USqdtW+d+3e/+7kG6dnbv1zXxBbzUL6nLE3PTNOna0YVhzO333989SO+evln1Zz7E3LIsxsLje9/wIFBVV7Eowk5sbCaw9Xx6/vuR/0dI82Qduf3Cwa6Pf5Jqr5/3/e2PrL7xRv7bObdB+MWu5//YvI2lN34Tn+bIGudgMZ7cOmVLgZJbbUVKjqv7KWc1P4OmlHDqd3/K0hu/xS+2pI3zMxtb2PXxT6bj6jMtqEDr55/ms6+5Fitl5Rt9At5c/b55PbehcNzW8wy2nu8/tp7PHnsG/QCgJ3U6d/fQsKx22qQUNvOHlJLh3jAOt4Oquop5a9M0zXlNAvLC0KcYij2NV6vn+NrfARpCEUx9hgtFsCT4YcaTL7Km5gY08kfHezv6cHlclFaEpj1WTVMNTne6vmhDax3du3qIRxN5pU7mm9wXB6EIGlrriUfjJOJJKqrL8Xi9+AIeOrZ10L2nn7WvWI3XO1muZWoclqZpNK9uQnUI9KSeHTl3ODQCoUA2OU1kPIrL7cIyzIJYs+korQyhp/T9DgeY6j6nKAqaQ0NR5tbufPVntoyPRgj3j+ILeGeVNdfG5qXKYtXzL/3zAf66fTM+h4vHLv3AQe3L+o9+hEjKwLAMYsPpGeSHP/R+AE794U+48M7b8KDyx0vezorKmROtLnY9P/tnv2RnZIQfveFmhEhy7+6bOHvJi6QT1BXRc+HArVaSMAY4qeWPGPEGVn3jRlLaRHid5KNHn8Anzjgtu89Ht/q49Y77sGKSUAIM4Ll7N2FJq0Aj5itMcPeeQd73gZ8hLRAK/P7W/6WiIv3uYeu5rec2C4+QCzmNtshIPyzzT7e7u5u6uroFPa6UkuGBMOVVheXFbArp7OyEhCiojT4XZnKR2hf62vtJJlI0rZh+1nourO99P4Pxx4D0QLqqenCIILo1hGWl8twDG0vewaqKL07b1ujIGC6Xs2hs1Vh4nOHeERqX1+c9qOdyffb3NxIZizLQPUzT8jqi43GSsQQlpQE6tnfTvLIBS1o8fPfjhCqDrDpuJSXBmd3zkvEk8VicUHmoYN1EjFNKT2GmTJpWNiEAbR5c1BYaXddn9cK/UM+s2STpsSmk2P04ELryUsfW80mu+dcD/Grzc9n4byFh1ycuO8i9SjOdnp/8gx/Rl4rhEw7uf997qPJP/9xfrHq+/NvfQhEKP3jjj7AyX0UpQSgWLqUOwwpjyiTZkm8Ijqz8BrX+13L7/2fvvAOjKPM+/nlmazab3jtJ6CAWmmDBAvYuYlfA3qN4ljs9z1NfvfModrFjx94bFmyoKCKKSE8C6b1stu/M+8eWZLO76aHOh+PMzjzzzDOzZL7ze55f+eV3/v715yiBR67Cf486mhkZuSF6PivjEhqrm4LOLUkCjyfYQFcUhbyxOTz9x8KIY+7p78jh0+8L+qwosPyLW1Q97yGqnu+e7Ep6vke7uN95553ebNe+vzsLIcQuJeYdcdqdg+rq3DeCvy+5D8nbBjq+OjUnhcyCgYlp29jwH2p9xjl4bXGPbEPGwZFD/iAr9szAvsyYWV0a5wBxCbERE6uYY6NJTE8IPKhlWaauqmHQ4s89HpmyTWVB31d0jImE1Fg0Gg2x8WaSM7xZVHOGZaIz6DAYDew/bRwCqNhSgdPh7PIchihDWDEH7+9axpB0cgqyyS7MwuVwUbpx+4C4R3rcHsq3VA7K74vH42HbpjIa65oGvO+eooq5yq6Mqufh+aumjufWrQ5KzqYI2OeBh3biqDoSXs9/uPJythbdQJRWy4FPPcG4Bx/CHUHmdzU9v/2TzylYtICR8ck8esoSPB0kQQhQFAmHp4ojhvzGmOR70YgoNCKKkYn3cOu7dgoWLODW73zGuaLw+IknsbVoHjNHjw2r5+YEEyEIwYIV/27XIwXy983r0jjvKWec+TCdl/4FMHvuk6qe96RvVc9VBoA92kC/4447UBQl8FclGI/Hw7YtZTTVNe/soQQhSYKswsyAKFdsraRia+VOHZMQAq1Wi6W1DYfd0a++6q0rEGHET5ZdAIxO/jcz8tczI389Y1Lu6te5JEkiNj4m8Lm12YLT6ggyoO1We7/O0REhaF/9D2wTxCfGAd6Xs/KtlbRZbBiiDIHfS4FETEIsDpsTSSP1K8ZTCEFVaQ0NVY2YzFFk5WcE4sjqqxv7/Czwl8IZDDQaDTkFWV2GKfSHpoYWbG22QelbRWVHoOp5eF7+9TcUOfR+tCkuDnz0cS567S0+XrdxJ4zMS3d6vvKqK9hadAM6ScPwBxew34MPD/qY+qPn4x9+lJf+WsPLp83i/TkXICu2sHruJzPmFA5I/YHb3rucQ58t4ZvaUpC8MvnizDPYev08jioc2uU5H//1frT6DqvGAs648UTyRmYjhCBzeDqPrvkPT/42f0D0XJKkEB0HBUkSqp73AFXPVQaCXd9PRGXQ0Gg05A3P2aXi6MLRl5qUg4WlwYIkCVJzQrN+9hSTPg+LKzh5jAJE6QbGfT4Sdqudmu115I7wliWxWmxoNBLbNpUzZEQOemP/M2tKkkT20KzIDRTQG3UYo/TY7Q6qS6vJLMgkOtaE3qinuaYJRVH45ctfQRIcOH1i+/htDvQGXZerKYqiUFVaTfqQVCRJQlGUwEyy2+3G0tRKTLy5T4lYJI1EVmHv3JzsNjtN1U09yig8EPc/Eg6rHRSFqOjByzmgoqKy47nrmOm89NfvweXNFAUNAovLyfLyEr6qKIHPvNuNQkuKMZoJWVnMnXgAY9LTduh4I+n5qquvBGD/hx6hYNECErTGwLbBojd6XtFi4eCnF2OW9J3CB0TnSqiB4qif/rGJok8/xKFtnxDXSIKXZ85iYmYXOtkJvVHP+y0vcNkBf6N8YyWpucmcd/tM7j7bu1q+ZP1DWC02HDbHgOj50leu5LAj7wu20YXEM09dHHKhqp6HR9Vzlf6iGuh7Obu6cQ4D797WH/wlRHrCTxWnI8tupmS/G9i2ouwEbO5tmPWFWJybAQGKgk4Tw5Ssd7rsr78xRUaTkdxhWRgMehw2B1WlVeQMy2bIqFz0A5xV8513VmFpc3DeuVODttdsq0FWvLPXFVsrcdjcaLUadDotUSaIjffGq+UMy8bt9noUuFwutFotdeV1mGJMJKZFdi+VZRmn3QkKVJRUIXs82G12UrPTiUswkz00a4e6fkmShNgF/v2mZfd9QklFRWXXZtn5s5nx4rM+r2QFk9DxZ9F1QW1WFJfy0m+/s6aqkmqbhbc3r+PtLX8BXlfKKKEjJyaWg/OGcNPh09AO0mOrOz1ffc1VuGU44KGHKFi0gGSdiZVXXT4oY+mpns968VUumnIni08RzMhfF9i+rHhkh1Y+s1xREJLE5W9cgqx9D6H1rtTqtVpeOX0W+2d4JyhGLpyPS0hIwKai67sdg1av5em1C3n+ztd4/9FPaa5rYdUnvyNppIh6fuMD77K+tIaxBencd/WJPbwrXt5YejWzzn7EVx4sfBtVz3cOqp7vHahJ4tRkPrscu/934mZZ8dj2GC4B6eajqbJ8Rnr0ceyTugCAdXW3UW/7Fh2ZTM5+ucu4SpfDRXlxJdlDMwck82x9dSPm+Gi0Gg2VJdVkFWYEzt85IU+478Pj8SB75LDlMs4691FqaloRAjQaiQ/fn4dOK+F0ONHqtIEYUpfLK+adr9tutQdi8Bw2B+XFleQMy0KSpG7F2OVysW1TOSnpiWzfUklmfhrmmOiQDLKdqdpejbXVTv6o3J0a39oTwn0fsizTWNNEUnriThrV3suulFRmb2Jn6/mrq9dw1v777pBz9YQai4W5b7xFpjmGJ2ae2uPjXlvzB+/++RcbG+ppdttxK7LPvVlBowjMWgND4xM5ZtgwLjpwQq/H1Z/vpMZi4cinn6FNcXsNRQTnj9mXO486sk/99YWJi+7mnpNfbHdjF4H/A/BlbIcvivdBRsbtlrnqQ38WfYVonZ5XzpjF2NT2yYDhixbhRm5P6odga9EN9IRlL37Nfy94GEkjIXtkxhw8kttfvyFEz8/8x/MUV9QH5g2GZifzyt0X9FnP/b9rn31yk6rnA4iq57sWu5KeqyvoKnsV9dUNmMxRg+oatKx4H+8PHYShyvIZ480/ousQRzY6+e4e96nVa4lLjEV2y33+rfXOhAtkWcba0kZ0rAmhFUgdxllTVkd9dQMjDxjWpbDVVzRgtzvJLgzOzDv34qeoqW5BwTs/IcseTjntAT54t4jq7bUYTUZSMr1ldfxi7nK60Gg1SJJ3JaBkfRmFY/K8CWeiDCSmJ6LVaqkpryMtO6XLa9TpdKRkJhMbb2Z4dFS3Qu7xeKgqrsIjwO10B+7R7obL6cJmseF2uwe0FKCKikowT/ywknt//BYh4O/LP+fXK64i3hg+SeeOJNVs5oPZF/T6uFn77sOsffcJ2f7gdz/wxeYtlLY2sbquklX1Fdzz4zdejy8kEg0mRienMGvffTh6xLCBuIQQUs1m0qNj2Wyp9y5Oo/D8n6uRZYW7jpk+qHr+zMpV3L1iOYtPecln5HbUBYVhpsUkGSfw8e8buOmzT2nTzgnTi6DN5Qwyzg997AnciowiOiT1Q2HYooXdrqR/9vxy/jfnUaC9nNq2P7eH6Pn8l76itKKhPcRaga1l9Tz82recdnBhSL890XM/qp4PPqqeq4BqoO9QdteHxe5KY10TxihDkHjLHu8M9+AS3inF5WlAK3ctSJEQQmBOiKZk/TbSclKDEr91R0NNI7Y2G0IRpA9Jo6WxlYS0eIy+mqKZhe0xgXFJMdRV1+JyuiPGdc1b9C4Vdc0cdsBQTtRKxCbHYo6JRpZlKiqbQ67eYXfxy4r1jJ8yIiD+/vIpMUkxNFY1Ex0TRVJGIoYoAwWjc7G22XE3W7A1WzHGRrH8/R/AI6Mgk57dtVui362uKzGXZRmPR/a+VEgS2UPSdnp26P5gMBrIKszcbcevorI7cM/ny3l67a8+YxEQsP9jD7PpuhsHzSV8Z3HtwVO49uApQdsqWiw8tuJHfti+jSqrpT2+/WPa49ujopmQmcXFkyYwKq1veufH4nSzxVIfvFEIXvxrDd+UlPDGSacMip4f8viTlNtbuOOgI0B5MkwLwZur1vD4n7/i0dHhTdq7XK10UsGCRQsCK+TVjlbf/k71y3swrmdveyXEa8TSZGXt9xs4drY3h01mYQZVH6xE7tROVhSq6lvC9puak4Isy1SVVner51argy+X/cbh0/dV9XyQUPVcBVQDfYfhsDuoLW8gMz9tl4qp3t0JZA0N8yBz2p1IkhRkoKdkJu+wsXUmLb2gy/0122tRZJm0CHFxOp2OIcNzwwpVc2Mr5lhTWJcxQ5QBoRG4HB4kScJutWPwGefh2g7fd1jEWdtplz2M1eGNCdtSVo/dauOKWYeiKArNja1EGbU4HK6gYySNYL+JQwP/7p12J3qjHp1RjzHKSFZhVGDcTQ0ttNS1EJsUiyRJ6I16HHYnkgL54/JwWl24XC4UWUFv6FkSFlmWqSyuIiM/PTCGrWtL0Bt15AzL3qWSEPYHVcxVVAaXl9f+HmJ8Aezz4CJSo8zE6PXEGowkm0ykx8SQEx9HYWIC47KyMOt3/9etzFgzdx0zPWT7iuJSXvj1N/6oqabaGhzfLmQFk0ZPTkwsh+blc+Phh0aczOhKzztTbbMw+bXnyTfF88Wlc/t+UZ0YunABOiGxtcibCG5ZieKtWxc8Uh7Z6AGd/5NCutnMqzPP5LDnng7Tq8Kbq9Zx0/KPUTRewzE4qR9IHU4RSc8jTZrrDMH/tk48ZCzf/rYVuUN2fyEEJ08bF/G6JUnCYDKgN+i71HMUuPs/n/LAo1/z3jtFqp4PEqqeq+z+irGboNPrMETpVeN8gKneVovH7SGzID3kgTaYiTQ21t9Hvf1HMs0nkRfnfTkoblrMlqaHMGmGYXVvDHKJG0L3pWPiU+Nwu9vLkSiKgizLQSIdzjj3eDw017UgSYKYOHPI/ugYEyYlCiEEdqsdp9WJy+4mOtaETqcLuW+RjPOr738zYJz7x/fKl39wwMgc8hPNZOVn8NwzF3P6rEfweNrXAxbcf1Ygts3tdrNt83ZSslJJyUgKOUdMXDRCeGu7dyQtKxlFUZAkibqqRtwOF5n5wd+5xyN7sxdrw8e1+V/+XC4XQitIy0kNOr6nL4culztQ5kVFRWXvwaDVYnW7QrbLQI2tjUpbK7KiIPsfkp3ilb0ooHjjjgUgIdAKCa2QMGp1RGm1xOj1xBmMJJlMZMbEkpMQS2FyMmPT03dJQ39qfh5T8/NCtr+25g+WrlrNNmsbm1saWP9HHU/88Qv++PYYnYHCuESOHTGcuZPGh+i5Wa8lWuixyI52PVVAEgInMnoktrU1UbBoPsNjkvnkogv7NP5vtk/F4W5he72R8Sl/Y+l5Z3ZIACfovOD9/p/7+oaikBUby9KZZ5IVG8uLP6wO278C3PjtxwiNQKCgQ4cTN4oi468T73dv70rP7/3kNuaMvC7g3i4Q5I7OYsSEoTidzoCeTzugkLsuP447Fn+MrHiN2v9ccyITR+dQUVERMj6HzYEhykBSWiJNDS1Ymizh9VxRAt9Da6uNk09dxPy7TlT1XEVlEFCTxKnJfHY5evOdeDwyiiyj3YEP2NVVc6mzrQhoVZr5CJpsvyMrbvZLfwSjMoZ3nv2EpOn/QW/QkG59gsZtVsZNHY3JbOqy746Z2mu21+J0OLsuWwY01DYR75uhDoeiKFQUVyPLHtZ8uY7csdkkpMTi8biJjokmJatrrwL/93HC9U9Q3WAJ2icJwZUzp3LylJHEJ8UFtt9w4yu0ttpITo6huLiWh/43K+C94HK6g2LxwZsErysXtoaqRlqaWskd7i0R1zmRHUBlSTWyRyarsPsZdP99rqusR8G7AmFpakWRBcmZiUSZwsc0ul1uSjaUklOYHdELYbBRn1m7FrtSUpm9iZ2l5/kL/9fBWFQwCC3ri4q6Pa6sqYn1NXVsrW9ge3MLNW0WGqw2WhwO2lxObB43To8bt6LgVjwowuuW3G4Ydm3oa4SEBoFO0mDQaIjS6Igx6Ik3mkg2RZFujiEvMYFhKUmMTU/FuINiW8N9Jwu/XsHy4q2UtDTR5nEii/YM6OHi28c88CA2xTsxMjImmY8uupAai4VTX3iZSker9z74VqXHxKXw/pyex+J/UTIaWVE6ZCtvr4+tKHqufn02bgM8duITCCH415cnUGlJJy82jldnnUW62cx1L7/P+1WbUCQF4YtXV9pnshFCQisEXx4/K6Dn+z34MBbZhYTMxqL2sm3d6XnJuu1css8N3okKjcRF/zuXKceND6vnpVWNfP3rFt7+6nfGDcvgzkuPDfo+WppaaWlsxWFzkjssG51Oi8vloq3FGqTnRTe8xG9rtoUYu4qisOzjv6l63g9Urdi12JX0XDXQ1V+OXY5d+TtZXXUZtdavQ8qOxBv3Z2LGKwBY26wsffBtRk8ayagJw4mNi+lRiTRFUdi+qRxzQjSJKQnIsowsy10mCXE5XJRu2k7u8Gz0+mAXMbfLjcaXuKW2rJYLCq/xxWlpue6JSzji7ENCsq5WllYRkxiLOaZ9IsH/fdzzzDLe/eYPOv4KaSSJb568Fn0XAZhnnPkwhxw8nGuvOSpou/+eOGwOSjeWM2RkTkQXPkVRaGu1Yo6NDruv4+92b1zD2lqtgNczwdpqw+1yk5AS1+V31dZqJTqm64mWwaS7349wLzt9pamhhfjE2O4b7sXsSoK+N7Gz9LzGYuHgp57EoyhESVrWXnftoJ6vM6WNTayvqaWkoZGy5haqLK002uy0OOxYXS6sHhcuj4xL9uBB7pOhH1jR12gxarXE6vXEGU2kRJtIjzGTG+819PfLzOw29r6n30lFi4VHvvuBn8q3U2W1YJPd7Z7lvvj25CgTkzOzmdspvv3adz7gk5JNuL3pSQHYPzGDNy84p8tzLiveB0VxhSkjJnH5mxejaOmweu41uYcmJvLyaWeQYjZz0oPPs9ZdB5K3VJ3ersFu8ATdYp0QbLju+gHV8xnSGYGs9gD7HjGGez+5LaKer9lazd8efI8VT18X9H001begeGTMCeZuV5FD6qLjXVBf/sUtgKrnfUXV812LXUnPVb8OFRV8SU6Kq0gf0p4j4KDHn6TC1oJZa+H+419DI/zuaCFHY3fXBj6Zok1Mn3UYmUPSA8LQk1qdQggS0uIxmb2zvZIkdftg1hl05I/KC+lflmXKtlQQEx+DwWTgvCFXI8teNzWX08X8OY+BDEfPPjxwjKWljca61oh1Sf8xdwZtdifLftqA5EvA8tEDlweM80hJEF9fejWHT7+PuXMOxWw2BtpWldSg0WlIz00lb3hWQMwVRaF4XQnmhFhSM5NQFAW3y0N1aTWaggwaq5pIyUmmZnst6UPSqN5WTVSMiYTk+G7vcWdam1oxRBmIjjGhT+q+FrylxYI5NjSMYCBFtD80N7bQXNcako23LzjtTuqrGoiOMakugCoqPlLNZjb2oG71YJGXEE9eQny/+yltbGJdZQ3FjY2UN7dQY7XQ0MHQt3m8xn6z006FtQ+GPgKtpEFSFEw6A1FaHTF6HfFRJpJNJjJjY8hLiKcwKZF9M7PIjDVzz3EzQsb57dZSXl7tjW+vsbbx5uZ1vLnlL0BBQhAltOTExDF3n/GcOmY0F771BjXONlY3VFGwaD4Tk7NZet6ZFC5aiKzITElfyZwpfwAysiwIfUwqyLKC4pdU4TXMRyan8NqssxAyzFj0DNUGKwivM4XiBFkPdqPH14PCcUOHcd8hRwy4nq/+Zq13WB20ds2Xf3LzUXex4Ks7A9s66vlB++ZjMup49v2VHD0+O9AmPimysdZZzycekMcvv5a2f+0+D8I33ljJ6adPVPV8EFD1fO9G/ZZUVPCKiCLLgVnbgx5/kgp7C2adhfnHdahRrsgoQoS8msTohwZ9zins2i09EuFiyLsjnPEvSRLZQzORPTKPXv9cyLuUoih8/sLXQQa6RqshJTMJgzGyq9dxU0fx1S+bmH3iJM4/dgImo3eW3+1yU7WtNmISxCsvP5Jzzn+c994uArwvF2m5KUgab9uO7mUuh4vWVgupOak4nS6qt9VgtdgYMiIHvVGPkAi4mAohiEmMRaOVqC6tjphgLxJR5iiiosKXSOpYv9U/rqptNeQO1aM3tq9u1FU2YGuzk92hlvzOwhwbjRDdvwj2BL1RT97wbLXMi4rKHshAGfpb6hrYWFPHloYGKlpbqLG00Wi302y3YXO7sTgdXkPfZafcKiM3+daiw8bnQ1hDX0joJA1xegNRWj1xBgN2j4dGm5U2j4tNzaHx7RICN/BzXTkFixagoDAlYyWzJ/0WSPomCZn2dWg/AreHgGG+b3oGr86cxVfrtnLwfY/RGuMBoy9xnAyKBOh94xaCy8ZP5OaDD+nz/exOz+8/9+HQyXAB61ZsCO6nk56fe8wEXvrklyADXVEUmmqbSUiNDzo2nJ7ff//Z3PbPN/n+h83+o0lOiuGRx79k5sxJqp4PAqqe792o35SKCl4BzOoQ633SmNdodRiZOmRzJyEUgQg1738VDJpE9kt7HABLaxsGgz6QFG2gsVpsAIFZ+a7QarU0NDQSlxITKjQKxKfFBW2KMhmJMkWu5+t2u3n101/JT4vnohMnodVqkWWZ2rI6YpNj0WgilzU5Y+ZEln2+ltv++SZ3//t07/h8s7gdXdmcDicut5vR40ficXnYvrkMU0wUUbIBncGbACcj3xuTllWYidvlJibOjMvpCnF37Qmdk9f4cTlclG2pIGdoVuBlQ2fQkTciB50u+LtNTIvH7XLvdDEH78udvyxNV/Qk5AIiJwxUUVFRAShMTqQwOTHi/p66h26srWdjbR0lDY1UtLZQ3WqhyW6n2WGnzeXE7vHQ5nbR7HJQbm1GpoOhLwTtxr7AI8DTIUv6A8c+gdMtYY6Sw+i5N17cr+dCSFz90cVMzs7h8RnHsvCLHzngnoexx8oQkAvhOy/4XepvOXgal06Y0NPbBnSv55fscwP1FY0kZsTz1NqFNDQ0IntkJCGFZIHX6oOf5531fM6Jk3jynR/4ZX0FJ2Vm4na7cdicNNU3EZNoRqvVMu+Bd9myrZZ9h2dy+dEHhGiaX7vXrNnGvJtepa6+lehoAyeesoj33ynyDkXV8wFD1fO9G/XbUtkt6PwAcjld2O0OYsK4J/UPN8uKx7J/FkDHpDHB6KQYFBRM2mwOzHoH8ApTS10LOqM+bEbTgcDS7E3S1hMDHSAxNYE5d57Nqk//YOPKzb4XEYEhxsDNz18T8TiPx4MQIjBz21DdSFNDC79vruD8I/YNPOhlWcFuc2ApriQhOT5I1GxtNlqbLSSkJKDTaXni8TnMOOa//PJLCRMmDAm0qy6tQZEVMgrSaaxtQXa7Sc9LQ6fTkZadGohTc9gdSBpNwD3L0tJG1bZqr8jqdaQPSe/2fvhLwnSHzqAjZ3g2Bl/pF3+W285iDt7Jne5KxPQlnm6wcNqdlBVXkDM0W3V1U1FR2eGE0/MMg4Hho0f0q993167j5d9+Z0NDHW1uJ1Gilf+d8gooYNB5Iui5guzxhq4piuCaDy9lSFQsm0vrmPjQk3iigbjQc3Uut3fvd1+Tbojm8VU/89HsniWp60rPT0mcTVtTGwCtjRaON50TWKEWEigeAvnsZGTeaVwSOPaBpd/w3tdrMei0PHrLTHJS4xBCMH3ScJ75aDUHjymkqaEFSQgkSYNWq+WE65+kutGbcK+ivpXy6mae+ufZgT476vm+++YyelQmJaV1WCx2FAUeX/wll192hKrnOxhVz/dc1G9TZZfHYXNQvb2arMKsgKi3NFpw2OyYY6IH9CH5eck+AB2EXAkYtR05PO/nkGOFEGQMCS331hlFUXzJ2rqf8exMYlpCl7OgbpebDb9sZtTk4Xg8noAAPfTDPRylmYU5IZq80dks+vbuiH00N7awec1WUjKTyRnm9SpISI2n2eXG7vIwbXROwF1Mq9WQkpWE3qgPGpfD5qBsSzkGgwFXnCsgHPf93yxu+fvrLPvkb4G2qTkpgfj4tOzgjPJ+MVcUhbryejQGA+nZSYF9OYVZYUU2/HW1Ur29moLRQ7qdSW5paqW5toXsoZlYLVYqS6rIG5mHTqdFURTqqxqJjo0iKrpnEyWVxVUoCj3KSDvY6I16ElMTVDFXUVHZ4QyEnn+wbgNvr/2TdXU1NDrtOBVPu5u0AlGSlhxzPLfOWExgtTuCnivAFR9cTJLRRILGCM5GSt3NoAHCzv8r3hVsRSAjB+257ouPAMhfOJ9DM4ew5MzTu7yOSHr+4FVPBYxzP067C1OMV28+cS3lBPO5OG0uJJ3EMufrAFx4/dP81dCCrLR7Cpx56xL+eepk9hmVy52XHsOk2QuRTEay46ORZYVtG8u5/bEPqW60BJVQXVtczdLPVnPmUfuH1fMHF53HkUf9B41GIsqoZ+nrK7n8siNUPd/BqHq+56J+oyq7PHqjHnN8bNCMe1KERGY94fEvf+LlH9ZgNur5aN5s/qq/ndq2b9ne7CbV3NmtyusA17H0yoz89RH77snLRW1ZHXarnexhWUiSFDG5WmecTjfbNm4jb1hOxBImHo+MxdKGtc1GVUkVucO8cV4v3f0mccmxvFb1ZMR4ptbmNowmPbHxMQzbrxBjlCEwruOLnqTJYiPKoCVveLubmMPmoLKkipxh2UFPE0OUgSGjhoRklR1/wBAOnFzIJZc9w5OLvfXjJY0UWBmIhBCCzIL2mDC3241Wq+1VaZS4hBiiTMYeuXmZzFHeGEghiI6JJnd4bkAAXU4XTXUt1FbVUji6IGKm2o6k56X1yWVvsOhYQicSg1EfVlEUmuqaSUiJH9B+VVRUdg96o+cfr9vIm3/+yV91tdTbrTgJNsSNQoPHIyM0EkKBzddf761fLhQUWSJ0tTxYzxXg5d/u4YFDR3HbW59TorfhCesl7W0r4Y07l4XcnmG+Q5vA+QR8W1nK1W9/wMOnnhD22rrSc0tTu7HsrT7nnVSwttrQ6rUIIXi74Tm0Om1Az6/6xwusq2/yuu2L9trtsqKw8LPf+OiYCQghGJmbzHFFT6DXaThwnzzunHsUdR//Cp30SVZkSqsbgch6ftHcabz22k80t9gwGnUcc/x8PvlwnqrnOxhVz/dMVANdZZdHCEFipyQmfeX93/7iv2u+R4nyPlz/s+wE9i/cghAKKeYOihh0fg37pNxPk30NI5L+3u8xpGQn4/F4s4R6PB4qtlSQnp/R7cNTr9eSmJbYZX1Rg1HPuKmjMZqMZAxJD7h/ffTk5xx53iFhjXNLaxtupzdhSnpuGvFJccTGxwT2n3zrq4FXD5fLzd3Pf8ldlx3rPV+UgdwRuTTXteBxuUnKTESj8Yp4pOu5687TOOHkhbz8ygrOOXtqN3erHb+YO+1OSjdtJ39kXiCOvTv8LpU9EV/wxmrFdIj96nic3qCnYExuwEPB7fbQUNVIaqfVgo5098Kyq+FyeV8e03PTB7QEjdVio6XRQmxiTI9i5lRUVPYswun55xs38/ofa/mzpoa6cIa4pCXNZOaAjEzOO2Bfxmd7PbumLHqMao0NBRkEfLJ1JBqfWgnhX93uZEkLiboGSE4wcNcrV1HbVso3m0oh4uPb+17gTVanwWTQkWgwUmxp7rSC3qlGOAofl26MeB+60vODTp3EV698H3TP/Eb69PMPRVGUIDdsi93OT9trQxLH+XG5PYH267fVofi2ffHTRirrWtlaXh8yBiEEx08dFVhACKfn55x1IO+99ysOhxu73Vun/vgTF/Dh+zdEvO6O/YOq5zsCVc93T1QDXWVQcTpdtLVYSUjufoZvsClpauLa5R8FkrtMyNjMvgWbA2XTAsliFCXwcgAwNftjTNo80qKPH5BxCCEC7u2SJBEVHdVjd/fEbmYqXS43ZVsq0GgFyZmpAFhbrNSW1XP+nWeEtFcUhbbGNlpbrSSkxIfMxE677OGO6wIgBJ+s+Ivx+WmcctQBAOh0WmISonG53FQVV6HRagKJXyLxwH0zufial3ploPvRG/WkZqf2WMwb65vZ9Otm9pu2T0ht2b7gj1/zT3Z43G5cDmePPSE609fjBhOdTkt2QVavVjR6QnSMCaPJoIq5ispuSH/1/KtNxSz9fQ1ra2qod9hwKO4gQ9wgNKRFmdk/I4Pzxu/PhOzIyeVuf+8LqrAGPv9n+rNIdNRun9dbkIDBMz9N5aeKMd5tJguE2Cvt0eXT8obw3KmR3dTzF8332e++k3R8jAeVpAtPJD3f+vs2JI2E7GmfAPBrxPl3nEHN9hqiE8yYY7wu45YWO5JoX3TviBAwYVSu93rC6Pm6rVUcsX8Bo4Zm8fhb36PI3nHfc9kxxMkeqkqqutTztNRYqqubA/fdanNy5jmPsvTlK7u+eB+qng8+qp7vnqgGusqg4rA5sFmsxCfFBj20HDaHt8TGDnyQnfTiC0Gf02MbQ9oIBFptHB6PFUnScmjeV2iJH7QxCSFIzoo8U9tTPG5v/VWdTosp2ghaiaho78P4oaufJmtYBvowmeW95c5SiVTMxOZwhr5jKAqriqs4pcMmg9GAwWjA2EHouqJwVA4nH78vp818kDdfv6ZX/w5cThf2FitxCTHUVzWQmJbQ5fGx8WbiU2J7HNvW9bndlG4sI3dYFkaTEY/bQ832WjLyu889EI6WZgut9S1k5u/8ki6d6YmYO+3OQDbenqKKuYrK7klP9fzbraW8uuZ3fq+uosZqwSXkEEM8NSqacWnpnL3vPkzNz+v1WF7euiboc7TBHZIrBkSgLKpA8K+PT6CiLT3Cm6/XMNdIEuftM45/HX5kYM+IhQvwCJBQOCKpkC8qi/HofIaYL769c9I4hGBL0bxeXxfA4WcfzKv3vh2yXQhBanYydVWNQXqenhoPsgJSx9h674r7jMkjueeK44DIeq6P0jP7hImMLUxn9foyjj9kDJnJsbjd7m71/K8NlUELGgA1NS1YrW5Mpu5NDFXPdwyqnu9+qAa6yqASE2f21XJs/4X3eDxUbqsmNiF2wFzXe0Qnnfls074cP/y3To0EuTFnUZhw/Y4aFQCWViutDa1kRKj7Kctyl0JZs60WRVHILMxAo9US10HAVrz7M5f974JuM5OGIy0hlsr65qDvT0Hwj4uOCmpnt9pxudwh33VXXHHFEaz8tYRTTnuA1lY7kiTx5BNzyR8SOmHRsYapoihUba8lISOB1uY2YhLMgWurrahDo9WQmNoe06jRaBi+37DAZ3+8WziaG1uJS4gJuw9Ap9eSPzI34JYoJIHB2PcZZGOUHpsxsiB2973vTDweD1XbqjHHmUnsR04IFRWV3YPOer6iuJSXVq9hdXkFjR47jg7J2lAUDEJDot7IAVnZnLXvOA4p6L0hHplgg3j+10dzyxGfdEoAp+DxCK569xKvIS0Bus69ePvRaTRcOWEyRVOmBO0vXLAQWfK28QCf1W8N1D2P0ur49qJLSIzyJhcrXLQQGRmB4MNjT4s48u6e6waDlmsemctDVz2D7JERkkCRFUYfPBKA5PTQ5+13T17DQZc8BBqB8NWRP2i/goBxDt3r+YRROUwY5U0C29ps6ZGe63QaXC5P0DZFUTj+pP9xy00ncPRRY0OOUfV810PV810P1UBXGXQ6P6w0Gg3ZhZk7rCbjn+XVXPPCe1gNriCXM6es56ZPz2HBsUu9SWUUQUH8JRQmFA3IeTuKUHfo9Vq0EWqnK4pCZUk1+qjI5dvS89sN+/QORv6a5Wtx2Jwcd8n0Xoy8nfcXXswhlzyA3enxuewJ3pk/F2On787aZsdhs9Nc00R6fkaPXPYNRgMJcSYqK5pACDyyzNyLn+LJxXMYWth+DS6Hi+2bK8gd5nXR0uq0JKbGIUkacn2J9vxEmaPQdBEf5p0x30bu0OyQ8ixOu5OasmpMJmOXcf4d90mSRGpOSsS2tZX1SFqJpJTwgmdttdHa2EpyWmLIS0FPvvediUajIaswU51BV1HZw/lxWxmvrl7D6spKau1tOBRPe5I0nyGebDAxNjWNWePGcfiw/MCxPa2D3lP+LK/m5FdeQtGKDqneoNiSy8ur9+PcA9YEPM4Vj8RV71/izcgeRLtx778Mt1vmwR9+4KEVPyApAllRULSApHQ6UkEDbA6zOr6lyDux73Q4aW6whB1/T/X8+EuOYuj+hdw8499odVpa6ls59++nRrwvc0YWccIJ+/NBaytnHjqWVcXVGDq5jQ+Gnv/7X6dx0y1LkWV/Cvj2d777/vsBDoeTk048INBe1XNVz1V6xh5toN95553861//2tnDUAnDYBjn+972IC6PB50kseae67Bb7Zy9+DXWOupxG2VOGD6CY4YO5+qP30fIAlkovDTzMsak3sL2lpeI1Y8hwThpQMbicrgo21xJzrDMINeiSJk09QY9KRmJQdtqK+oASMlMJj41rssV8EgztkvueI19p43uyyUEmHvc/ix+/1cK0hJY9LdTSU0MTXMrSRKGKCMuxYEk9WwF/bc121i3PtQ97rLLn+OLZTcHPusMOoaMzEWn1wbOpdXrqC6tCSlz4i/jEgmdXktyZnLY2ql6o578Ud2XbOkNXlGuQiBC4g1lWaalwUJcYlxYURRCYE6MxhQ9cEldBhpVzFV2FKqe957xDz1Km8fFiIQk3r3wvG7bryor58Vf1/BrZQV1dit22R1kiOvRkGw0MSY1lTP2Gcv04UMHbeyFixYG4nm3FF2P3Wpn/4cX49B7vG+uQUnTvS7mX2+bxJaaPG6Z/j4VTWbu/e7soEn5jm7o8UYjJ+ePwuiWWL6lmNK2ZhxaGUULHtHeTukUw+4/Iwy+no+cOJSsoRls+a0YIQQTj94/bPsX734Dh9VBztHj4I3vuebC6Vx018u43J6QtkvvPIMH3/qVbeX1A6Ln4w8Ywn/+70z+8c83cDjdneWcBYs+DTLQVT1X9VylZ+zRBvodd9zBHXfcEfi8q8WE7GnszOQYhbcvRI6TQQaaYPStC3EbZOQEidyMOD47fzZa38zs8cPn8diqn7li/MTA8XmxcwZ0PDqDjrwR2UGzsx6Ph7ItFcQlxgS5bEXC1CHbZrQ5/EPd5XJ1GYu1bsUGFn53V5fn8dcsjeR6teyXrRw4No+F15+CECLsS4miKEiSRFoEF/328bYf+/sf28O2CZfoxi/mflJzUjpXhekx8Z1eSDq6nUUSc0urFa1WwhjVM4+IwDgzk4lPjA07gy9JEnHJMRFfQtxuN/WVjSipStgyKm6Xu8eJdVRUdndUPe8dBQvnB4zr3xuqmPnCK7xx/tkArKmo5PlVv7GqooJamwV7pxVxPRqSjCZGp6Qwc5+xHD1iWPiTDBL5i+Z7fxBeo9qfjE3o279zf9S3fx1d8ggUCcod6VzzwSWBZLC+i/Id48uk5oFmq4Pn//qt/aQhJbDbjwmKL1cUdEKzw/Q8NikGWVbIKIysrc/f8RrPbXyQu17/FgCtBFX1rWwtb+Cq/77BIzfNDGp/39UnBN7XBkLPJ0wYQk5OIlu21IQ2CvN7quq5qucq3aP+a1AJwWqxYoogIJGwtLbRUttC+pC0HR5jc9wjzyEn+mPfFGwpMkIGoRX8d8ZRnD56TMgxHY3z/uKNoarGaDKSkBwf2N75Ia7RaMjOz0Cr7/rXTpZlnA5nt+UwXC432zZVkpmXQlR0yNsFbz/0EUazkVGTh3fZT8WWCoQkkVUY3g1xa0Uj1559GB6PByEE2zeXkZiaECQy5hhTl25k/vGWrC8lp9CbkOWC8w7i2ee+DW6kKGRlJYbvoAMDNdNbU1GPy+YIqskajtaGFuqqmsgZmtGjmqMdCTe77ycuIWzRXcD7cpE1JD3sfXW53GzftJ303HRMZu93rygKddVNpISJT1RRUdl7GP/QI8F1uoXg1/pKChctaDc1FQW90JCgN3Jgciqnjh3DCaNHADtXz4cuWkj78nj78rX/+SwUgSK8KdC81wEIr3EeQHh3KJ02CRmQfaa3CLeo4D0mNcrEP6ccwvHjxjJm0YPYFDcKMkIIJLT8VVQEsEP0vHxLFQCnXntc2OOuGH8TU06aQGZhOsUVDWgkiYvueJmmVhsAK9dt49DLHuKbxdcEHTfQev7U4rkcduS9wffTd38bGiwkJpoj9qXquarnKqHsmtkKVHYaba1tVG6rxeVy9eo4Y5QBXZRupyTA+MtVF1xaRQJFgsy26LDG+UAjhCAq2hgoedIVnTNkNje2hrSpr26krrwepZspZZ1OS3pOcljjHODdhz7mkNMP7LIPt8tNZmEmGfnpALQ0BY9nxe8lCCEYPyyL4r9KkD0K2fmZQaLW3Ghh3a/rKSsuR5ZlyjaX4/GEutbpdFoy8tKD4vK/+vyW4EZC8MKSS7sc80CSnJ5AUmYisixjabVGbJeRl07u8EyiY3ese5qkkdi+qRy32x20XafTkpWfGRBz8Ip8a0NLr393VVRU9ixaXI6QbYoik6SLYuH0Y9hadANbr5/H+qIifrjycp6edVrAOIedq+ceZNqXvkNriyt+9/POTXwr5orvj3+TxinQNANurxGvaPEuTQm/0e9v71+PF+ybkM5RI7z348+ia0nSR6EVAhNaNl9fFBjPjtDz2m1e1/hTrwk10JcvXcH29eXc+fZN3vNbbMiKzNptHVayFbA53Nz80PuBTS6Ha1D0fPkXtwZfpxDo9RrOOPORLq99oFD1XGVPQjXQVYKIjokmd1hmr0tYaLVaUjL6Xy6st8x66eUIxT/htpMO32HjiE+K73bGuTMul5v6qnqcdmfQ9pSMpG5ngP2Em5W/eNwNnJJ4IeWbq7ju8UsiHmu1WCnduB2Px+sS5nK5qa0IHs/SZaspyExAZ9CRkpWGTq8NmUGOSzAzdEwhJrNvgqKLF5Fw7l9ffX4L5549hTtuP5lZMycx6+xHu7vsAUOSvG5uzfUtNFY14LCFvtj60eq01JXX77Cx+c9pio0O66pniDJgtdgCn/V6HUNG5qDT6XC53CHtVVRU9g5GJCSH6KIQgi8vuYSTx3afk2Rn6fmoRfO70A8luIxahGbC9wfZa7HLevDE0clfVAn8yYiJYWR8ctDWzyu2cu7rb3LXZ19RsGgB9S4bkiKxtui6iGPvr56fm38FF48JrR7jL6F6dt5lIfv+O/thbn25CPDqudsjI7e7SHS4XIW65rbAx8HU8+Vf3EpGRvtKstPpAQEXXfJ0xH4GClXPVfYkVANdJYSBqC85kFz8zFsc/b9nWfLdqsC2rzcUc8g9i/lzfV1Q7U/Am1VWq+Xofbp27R4IZI+M7JH7dKxOpyV3WGj2UYgcDx6J6u21yLLMSbHnU/LHNtqarKDAhcOviXiMyWwiKz8DnU6Lw+ZAp9OSNzw7yGVv9YYyjppYCEB8YuRyJdGxJhJT4pEkiexh2b12Wbv4omkcNm0UV1x+BEaDlv/c/1GvjvfjcriwWiLPnEciMTWBtJxUtm8ox261h22j1WoGdUXJ6XBiaW0L2iaECEk25MdutVNRUhkk3pIk4Xa52bZxO7Y2W9jjVFRU9mw+mHMBBdEJPk9vrzP4N3MvxdyNO/aOYPiihQxdtJDRCxcGtn29oZjR9yzC4V3WDj5A8RvmAtx488xASHw5gVVw3+cOj+rQ+uggyRAt65CtMuub6oLsfQX4ua6cZ9f9GjDancLDsIULIl5XX/W8eG0p08VMakrqqNvewHQxk7/WFCPLMkfrzgysSNdta+CE2PZEf7edeB8F4/I46GRvuN5xf3u2Y948OtZml4Tg8AnBeQQGU89ffuFKhg1NC1y7LCtsLa5l0+bqXvWj6rmq53szqoGuEpGuZh8HE5fDFRClCf96lB82lbK9ron/fvgNN77yEUff/wzXvvA+URkGrEkuJmVmtQuwr8TH+msiz3QPJJUl1VSWVAfNfLrdbiwtbV0c1U5fMoy63W4aahpQFAVZlpFlGbfTxeX734i11dY+Uy+gtqSeu8+J/FJhNBlpbbZQUVKFy+WiobqJyuIqFEVhc1k9DpebGRMLej3G/vD8c5ey7PO1bNxY1avjPB4PJetL2bBqE05Hu1uYPwmeH6fDicsZ6jamN+rJHZkdcNmz24OF3WA0kJab2qsx9YbmhlbqKxuQZZnyLZXdTvwYTUbyRuSGJPjR+lwPI4U+qKio7Pl8celcbphwEEdkFbDu6utI0UWOnR1MOup5waIFuFHwIGMXMiPmL2LE/y1kzsdvY4/2Pu+8pnhwfLlk9/2spdNba0fj3BejLgtvwfLA7nbDXQCSrCBkUITAKrmp9ljDrhL7I+A7bnELhU83bIp4rb3Rc7fTzUlxF3DpuBu9mu2bgxBCcM1+f+OM9IvwuD1Beu60OLly0k0Ur93Gzx+v5uGf7gVg3r9fwWJ1hExDCG8lNW44/3DOO2Z8j8c2EDzxuDfxrtJBfy+9/NkeH6/quRdVz/deVANdJSxut5uyrRVhY6oGE4/HQ2VJNQ01TRw//zmaHTZsyPiTr370+wakGA2ONBmhheKieSw94yxumDKVZJOJ/MQEtoapTzpYZBakk5qTTEVJRWCGs6Whlaba5m5jzvqKtc2OtdVOZUkVFVsqkCSJzIIM6ioaQ9zoFEVh06riLvuLiTOTPTQLnU5HQmo8SZmJCCFY8sFKhkSY7R1sbv3bsVx93Qu9Okaj0ZA/ZghjpoxG7ws3kGWZ7ZvLaapvDrRrrGqkviK8a5t/9cNisfPjJyuxW8LPvg8G8cmxuBxOrBYbkiQieXAGEa7EDxAUy9aZnTXxpqKismO5+uADeXrWaWhhp+v5sEULg+LDFcClkXGZOj/p2pPB+f/IRgizCE7AqnX7jXJfsjiNzygXwX0rgCwJFEkErcALEfoqHD5yTvDA9z/05NK75cSY87G1hl8VFULQWt8WVs/LN1Uz77A7mPt/3oz89yx8l2+2VHonFDq/cwjB/OtO5swj9xuQMfeGeTe+HGaSA06f9VCPjlf1vB1Vz/dOdr6/k8ouiVarJWdYNnr9jnV312g0ZBZmkpSWwAZRj8dX5cMmyxhqwZEEmxz1/HvCwZx2wLjAcVdPPpCrJ3edEG0wEEKg0+vIG5EXeLgmpiaQkBI/KGWAZFmmubaFtJxktDotsi/gTAhB4b55rP5ibfB5BRx25tSwfTkdTrQ6LZIkBcau02kDP/+4toSzjz4g7LGR8Hg8/c7IarVYKciOZ+KEfC69/NnATHxP6LyCIUkSiWkJQQLXXekYALPZSO7oIRjNvSvD0h90Oh05Q7MxRBm6rf/aE2or6tDqdSQktycActqdbNtYQd6IrC6z0aqoqOw57Ap6Hm79UFHkUONYxrt0FCSfnfOxKx1+BkWjhKnmJRCKz2iVhC9ju68vBSSnhKZNQRISToOCYqJ9JV14JwYURQmpo/7R3At6fgMi8OJdr3e5oqooCrooHU6rM0TP41NikT0yZ950Ck6nzNurtwSuXQiBd8jepXOzycAh+xf2eZz90fPqmtawRmlDQxsrf97KpB545ql63o6q53sf6gr6HoilxTIg/exoMfej1Uoc/NSTeKQOj3cJHKnejKz/nHA4Z0+d2OsaloNJ55nPgTLOO7tzSZKEwaALGNZabbt43v/5vxh7yKj2FwtgxpxpzPn32SH9KopCzfZa6qsaw57XanfS1Gpj7omTezzWhtomtm0KzvjqdLp67UlgMpvIHZbJPXfNpKamhZde7n7FompbDU6HM+y+mDhzn14ykntQ27Yz4bLd9gZDlKFfx3dEH6XHYAz+HdYb9aqYq6jsRuwJej500Xxk5BBX8nAr1+Fd2Dvoqez/LALe68Fy275PAV+OGgWtLBFl1eCtPyeQdQquRHAkeI1zgVe3NUJQXDSPrUU3IAnJn3IO8Hrs9Qe/nhtjooJ1sZNEznv2SqJjohAdJwqA0YeMoGJzFS9s8WZFf/HNb0NS8HQ01k29TFzbkf7q+dSpw8K+B0mS4OZbX+vyWFXPQ1H1fO9DNdD3MGxtNqrL6nfr0gwLvvyZcksLoT5tCjOyhnDBQfsPyur0jqY7oWuoaaR8a2Wgnb80R2pOSsTkJsdddCSSVmLIPrlccOcsbnr66rDthBBkFmSQkpkUdv9jb35PWlLkJDLhSEiOIyM3NSCedqudiuIq6qvDTwJ0hb+Pd966jqee+br7AxQFtztYTKvKasPGpvUES0sbtRX1QeVQLK1tXWZTdbvdbNtUjsu58zOuKopCXEIsJnNoln9VzFVUdg/2BD2/6MWPAyHhCNEhbDyc/nVI8uY9wPsfGfCI9s8d7Xbh+0ER3jrnircPCdA6QdMCWoeEBwWrye2toS4UFMnrbh+t13Pt5ClsLZrH1qJ5bO5ghG8pup6C6ETiJX23xnlv9Hxm0QkkZSW0m/4djOr7Pr+dY2cfQVNNC5JGIr0wFUmSOPL8Q2goa+T4y2YE+px79rSQ8yqKglZ4jXqdtu/ebP3V8ysvP4Lzzp0StO3D927wrvAL0bWru6rnQah6vneiGuh7GFHRUX0qk7ajuWLJO4y6ZQGjbl3IMfd7E4c8/PkP7Hvbg6zeXh0+3kwI7j/3pEEfW+dZU38itoFElmXKt1Z2WaszLimWpHRvPLjH46FsSyV1lV2XBXn9f+9x6BlTeOr3BZx/+xldtu0qg+nyVVs4fPzQri+iE0KI9oQsVjvbN1aQnpNCcnrkOPbmxpZu+7147jROOe2BLtuk56Vh6pRERXF7cPZA0BVFCUnqZ46N9ma097nYKYpCc20LjbWRX060Wi0x8Wa0uv65+PeUzrVU/bS2tAVN7KioqOye7C56PnTRQvIXzid/4XwKF3mzs5+/+DWG/XsB63VNwY07GKNAp9XjdiNcIdiDLhBXHnB/V4L/Cm/iNzzevzLg0it4YsFtUFA04Z+Hf1x5NUVTpoTdB/D5JbP59drI1VCgb3p+77LbyBqRjjHagCnWq125o7MZf8Q4vnnD6zU2cuJQDjp5IslZiRTuM4S2ZitFj10a1G/MSz95JyWU9nC3C06ajE6rwd2P95aB0PO5sw/l+qJjAp9vvOlVHn/kQhRFoaGhjQ8+/C1sP6qet6Pq+d6LaqDvgezqYn7Fknf4+q+tPvctKG1oYuzfF7H0p99ZdO4JpBfEhE6kKzA8KRlzH7Ke94amhma2b64MMtIrtlZSsbVyQM9jt9oxRhswRkWe/dRoNIFYK41GQ+aQdJK6EEeAkj+3c/VDF/V7fFX1LVx26kF9Pt5oMpI7Iisg8OFwOlxUb68JqRvbmXPPmUJqaiy3/fPNXo0hPS+N6DAzzp1pqm/mr9WbaW0OdiXtGP8mhCAzP53UzJQu+0r2vYANNvVVjZRvqQg7cRRlMmDyuUeqqKjs3uzqej500UI8eAK2tYxMwYIFfG8rwx3rMxoRIXrudTUnuFxaIOt6mNJoIfW9fSnkZF/mdn9fWkBDICM6tO/qzEA9Ifuq58+se4D3W18kLS/FO1afEfb4vCUAHD33cJpqWjCajTx1y0v878t/BfqztliZIZ3BixsfZMbkEUF+/iUVDcSYDMiegTHq+qPnJ52wHyaT9778tb6C4cPTGT40DSFg/sJPejwGVc9VPd/bUA10lR3O8r+2BomJwDsDfd5R47l02bs02O0UF83jnHG+JHBCkBcfz6fnXzjoY4uNjyEpPT4oximzIIPMgowBO4fD5qCypIrYhNhelWXRG3RdPqSf+NvzJGclEpto7tf4nn1/JXFmI2ZT5JcNRVG6nNF1u93dxl/pDToKRg/pkYvWE4/PYeXPW1nxw+Zu2/oJd6/cbnfIuBOS48nOT+82ri1cf72d1e5vTJufxLR4YpJiw/an1WpJ7EO8nYqKikpv8SDT2dRVpFAjO8hY9pcV87dXfGXSAu7q/h10sMe92yVZIOT2TPCK5Mvc3i2DY6IPhJ5XFdegM2gDieNqt3s95Y67eDot9a3Ubq9j4jH7UTAuD4DSv8o4Of5CPrS+RGZhOmu3euuLCyHQSBIbt9WSHB+NrPRsBX2w9XzKgUN9dce9ru2LH5+DJEkIITjxlEU9GqOq5yp7G6qBrrLDsaco2FJkbEle8ZAlGXsqPLbqJ54/dSZPzzgagHuOnEFx0TyKr7uB5XP6vyrcEyRJIibOHLKtK3fwnlBdWk1libeutyHKQO6I3EDpkN6iKErYVedlL3zDsRcd0a9xAnzy43oOHDukyzblWyqp2Bq+TnlTQzPFf5V2uzIOvasb+/AD5/PPf73FgoWfcNa5j3Lb7b1bUXe53BT/tY2tfxSHCGFGblqXpUzC4XF7KNtU1mOR9ng8bNtUTkvTwJQ6srXYaGnYsWWTVFRUVLrDb/p0Nng6RJF32i4QbhFYQffa4kogXhx/eTYhkCWvUe433JUQdzs/3n72SU3ji9lz+L/DjvZvDjR/5KRT+nR9A63n9jYHMUkxKAqs/9lbZz2zMB2Ayq3VOG0u7v7gVgDWLF/LJWNvYJn8esAYbmhuC/Sl02mobbSQl56IR+6ZwTnYen7JRdNwuz1oNRINDW2sXbudD969weuObrEz45j/Mvfip3o0Vj+qnqvs6agGusoOJX/RfK/7mQRowZYi40gGs0fLb5dfxZScnJ09xH4RaQY2MSOR5A4J2SLVu+yMLMuUbS4Pcn1qbmhh+9aKYDf8LVU017Zwwb/O7OPI2ympqOfCEyZ22SZjSBoZQ0LLm7Q0tfLH92uBgU9eMnx4OslJZj748Deqq5pZ8eMmTj39wR4fr9NpvTPVCTH9mnCRZZmyTeXIioLeaOhxXxqNhoTUuAEpuSKEIGNIGklpO6dOvYqKyt5NQ5vNq+ed8a+G03GVMiSrW4fm3nrlilYO1C339tD+B7dAckth88eJQJ9eI96k0yJQkJDQKArvnnMu+fEJnLXfGIqL5iEJgeTL1H5sQdelvgZLz9989MPAtuaGFhRFIWdkJrJH5j8XPAzAITO9ZWPLNlYyeuowAJYvXcHNR93NZ57gLOiOQLIzgd3hwuFyMyo/rccrwoOt52lpccTFRSErYDTqmHfTUoxGLdHRegTgdnkoKa1j+tH/6XGfqp6r7OmoBrrKgGJ3u7nuhQ946Yc1QdvnvfIhBf9bENJeSGDyaPj9b9fuqCEOCOGy6sqyTPmWyrCZRnV6Hbo+lrnp7IoVnxRH3vDsIBeux+ctYej++RH78JdVCyfY/m13Pf0ZJ93wFDqthmE5XcdmabQaJE3o4yM2PoYDDj+AoWO7r3HaEaej++Qvjzz6OdU1zd53NF+916amNq6+7oUenycpNZHUnJR+xXMJIRCSQKORSMtN7XFfiqJgabRSV9HQ53N3pL9eHSoqKipdsXTtn4xYuJDR8xcGbR/790VMeOKxkPbeUmXhnksdn5GKt063P9Zc+A1sf3k0AW68f/1ypQVF21m7fInhUMiIieHyCZMoLpqH1eX2Jn1HxoVC4cLgsQsUFAWGdphc2FF6XrK+hNnDruPxq55jupjJy/95i40/bwUgqzAdRVGo2ORdyZ5955n867T70Wglhk8YytsPfcT/5j7CJ85Xw+q50un/H3ztW2wON3UtkRPX+dkRen7oISPR6zVEmww4nW7OOvdR2tocQXruccvMOvuRHp9H1XOVPZnBzbilsldRUtfCsfOfBhSW/bWJD39bzwF5mSz5fhUFKYlEm3RYnMFuUooCed0kPttR2K32LpOg+PG6NpWRmJpAQnJ8YLskSej0WqQ+1OiMhCRJZBVmhhjWnV3JVn32O7e+GHmSw+Px4LQ78XjkoNrp2zdup666iX+89SO1Da34aqDw6/rtHDCyb94M0b10LXO73ZRuLCU1O424hMil3Vb+vNW/tNKOEGzb1nVm+0i4XC6va2F872L2hRBkFWb2+nxCCFKzk9D2cLWlt9jabDgdLuISY0P2VZRUojcauszAq6KiouLnyMeeZ6u91hsarhEMW7QQU70Wh+zCmRr+GCWkJnnQ3g7/D/5Vb//Pwp8jzp/ozZ80TvHHpitBz37hFkg2iHbqkNpkvm8tZtgvq4KzvyNQhMyoBQv564brKVi0wHcOBQ9QsGgBm665bofp+aVjbgoYgALBs7e+Qt7YLIQQSBoNiqwgyzJxybHUltez4t2fMSdEU/xHKZ8++xUftL0EBOv556u2Bu5m+1WDIis4XW5OuG4xb/1nDpmp8fSFgdLza6+ewfsfrMZqdZKUFE11dUtYPW9osIT02RNUPVfZ01CnbFQGhCa7nePmP+2bA/fGh/1WWs4LK1az5NIzeLfoAgwaTWjtUwH3zThqp4y5Iw6bg22byiOu5DY3tscGaTQacgqygsTcT1puKhrfTPRAJRDxeDxUbKkMqQvqZ/nSFQgBB582OWIfWq2W7GFZQcY5QEJGIne9+xM1/tgn38vDZfe+TllV9yXQBgKtVsuQ4XldGucAY0Znhb79KQppqaEC1hPaWmwB98K+0ttj9Qb9oM2UO+xO7FZ7yHaXy019VQNKDxMGqaio7N3c/t4XFDtqO5QdV3DjoTXJhbOjc1XnGPMQ67w925u/aXCLDmXVBASs9CCP+PYNGrfAaNEQ3aRDb5cQGoHF7Kbc0MYfcp0vYV2nESgKbklh6IL5nYx3UJAZ89CDO0TPT4w9PzQzPVD6ZzmGKD2SRqLetxp7wIxxXHvg37ngX7OwtdrZ+MtW3mlcEjimo55/8dNfYUvK+78Kj6xw2s3P0WLpPoZ8IIik51qtREpKLImJ0aSkxAUP0o+iYO7lhIAfVc9V9jRUA11lQLjxpQ9DRcL38P2qvJjCBxYwPDmFmWPGevf5Gr937vmMS0vfgSMNjyHKQP6ovLCJXpx2JzVl1bic7XUqu4vHcjlcbNtUjtvtDvuQ7Qku32SBJElo9VokKfzSxKv/eZuJx+7fp3OYY6KpqG8NfW1QFO5d8lmXx/b2hcVqiexqp+tBgp2b/nY8++2T3f5SqICkkXhy8dxejcNPfFIsWfkZfXaPUxSFqtIqGmqb+nT8QBOfFEdadujSlk6nZfi+Q4lPjtsJo1JRUdndWLr19zDGSuhzUgjJt7ithE3+1nG1PODKrgiQhW+BXAlqGAhf92dzD2ov8GjBZvbQFu/GYZZxmxRkA94Vd//bbMikgYQHkMPppwJuRd4heq7RipAJAv8Y0oakoNFIuJzugB7pjHq2b6jA7XJz59t/i9jvX8XV3neDju7unU6jKApvfPlrl+PbEXo+/cjRuN0ymzZWkpxkDiot511NF9hsfZtIUPVcZU9DNdBVBoT42GgcCQo2c/usnkcjY0ly8eraP/jovAt4+fQzuP+oY3j0+BM5bvhI/rj6OvZJieArtxPQ6cO7KumNevJHDYm4PxxavZa4xFhcDhdlWypwholj64qWplaKN2zD7fYKdlpuasSZ2i2/lXDFgr6XoIuPiQp9GZMEE8fkRTzG7XZ7PQ7CZHZVFIWGmqagbVaLlcpttbhc7pD2vWHhwvOYMmUYCQlmRo3ORKfT8MWX6/rUl8vpwhPBK6EnCCGITojBHNf/JDGDjcvlpnRjWdhYSxUVFZUgXGFWw4M0QunwV/jizkWHbV5E+xI8kuzrQwCS0iEhnD9Tu39O31fyK9BE8bXv2GenzO0dhtM+adDeVgh/afRO6/dCYlxKVre3oz96vuzF5Xz11nf8d/kdoTt9lzDpuAPQaL36rjfq+OqV7xgyJpstvxV7XanzIueEaWhpQ6/T+OK42z0WOiKEYEwXpWJ3lJ5fevFhtLTYMMdEMW5cDlqthJAk9HptoG690+nmtjt6V6EFVD1X2fNQY9BV+kWL3c65T7zKWrkeDIAebAYZIQN6wfVTpnDN5ClBxxw7bDjHDhu+Q8anKEq/Eoj46U05MPA+7BN9MV+5w7PR9zKhTGx8DFFRxojnXfHeSu48bT6KoiBJgtTcrpO6dcafFV6SJD558HImXrggcK8UBSaPyWN2F5nctVotcUkxYVce3E43LY0txCaaA+M3mU3kDsvqcbbbrvi/u2cGfi4trWPOxU9x5BGje91PzfZaNFoN6Xne7LUul7vX44v1leRz2Bzd1ontKW6Xe8Dj2syx0WQNSUen61uiQhUVlT2ff73zBc//tAYlreOqJmGCyyOvl3eMLA/8JEAWnWLDCbfq7s/+3uFoJdggF75VdSVoOEqgT42QfFoG8Tojq666MtBs/4ceo9ljDWjdYZlDeGbWaV3dEt94+qbnx+jPChiN8amxfK68wQzpjMB9vffLf3Lrkf/mm2//YGNOIpw1CW1lM1l/VdHa0MZTaxcyQzqDjPzQDOt+XG4Zo14KjFOjkYgxGWhqtQW2XXLqFCaPjTzhviP1PCsrAVOUntW/lRITY0QSgoKCVJqa2og2GVm9ppTvv99ES4ud2NjucwL5UfVcZU9DXUFX6ZZ15TUc+O/HOPDfj/FXZW1g+wVPvM6EOx/lD7lDki4BaBWEDrYW3RBinO9IbFYbFcVVQSXKdgZ6Q9/Kk0RyE1vx3kruOOV+ZFlGURQ8Hpm5o6/rVd8VWyqoLG6ve/r+/Iu9M8hGAwfuk8sjN53ebR+JKQkRx50zNCtkcmEgjPPO5OUlc/yx+3HeBYt7fWxWYWZAzJ0OFyV/leCwOYLauHqQXd5utbNtUwUWXy3a/tDWamXbpu399jQIR1R032L7VFRU9hymLHiCwkULKVy0kIMXPgHA+6vXM/rWhTy/voNxDu2r1kLqtPqsdPrrbyw6md2dfxYdPvkMbdm/TwGPd6VbCVoSb+9HUgQ6SeOtj97hD8B5Y8ex6rIr2Xzd9WwpmseWonlBxjnA6muuYNbwfYgSOm6fOq1Hxnlneqrnx+jODFrRbaxu5vTUOV5POAHL5NdZ9dFq3HFRbByWjhKlR9FpcOUkUFGYwkM//h81ZXU9OpfH470HkhAkxphY9vAVTJ88nHFDM7ni9KlcdFLk/DR+dpSen3j8flTXtNDSYueUk8fTanHw8y9bmTZtFH9tqGCfsdkAnD6r5yVUQdVzlT2PPdpAv/POO70lFIQYkFXUvZHvNpVyxsMv0WKz02KzM/PBFzn38aWMvnUhWo3g8KlDEeFi1SLES+9IDEYDxmhjkGt4Q03DgCVvGwwURaGypJKGmsag7R0nGf59enDtWSEE29dXsPLTrmPMOpJRkEFGfnvs/7MfrCQrNY7li6/i4b/N7OLInqEZwMy33THvhmNwuT08/Ojn3bZ1u9001jWHbNcbdGTmZwbNmjvtTratLwsR+c4YTUbSc5KpKKnC6eyfEEfHmMjKzxyUyQwVld0ZVc/7z9j7FlIttSL7/lSIVgruWcB1n3+ILU0GI6EBzAGCV8ADseEh6+CKt48gL/Rg93hvonaBXkhoJP8KudcP3YP3xVQBMqJiyYyOIcag97pwS/5EXp1qqQMvrfmDxKjujZb7jjuKdUXXMWfShG7b9pXNa0vweIIXBoQQtNRZAlp+4+H/4oPFy2ibPrqTN4DANTSFi6b/g5rSurDlz/x89tNGANyy953GYNBSkO2tz37vlSfw9O1nMefE7o3z7hhIPT9z1mRaW+2MGZXJjz9twWTSM26fHF5/YyUul4c5sw9Bq9Xgdstcd/1LXfal6rnKnswebaDfcccdKIoS+KvSey595q1O0gqrSyv45c5reOaimcwoLAyte6ooRO0CrjeSJJGU1j4rLMsy1lY71ra+JXnZEQghMHeKg6qtqKdia2Xg37Ash/+3vO2vsh6fR6PRBE1cfLt6K4ePH9bHUe98lr58JW++9Qt1dV2XaLFbHViaWsM+D6JjTEGf9UY92cMzu3R18wt4TEIM+SNzvbF0/WSgXOv6SkN14y6TKEdFxY+q5/2nzSiH6LkSrYBOBFbIw+m5F58V6e7wUfL2IilgcGnQeHyGuxDBC+aKAJlAHTUFcKPgRPbmXXf7ap97QLhB8VmslbZWKptbaWt2IbUBTnDJgY6ChxkuAdtOIj07OdwQgyaWfnU6qDplf5So0HclBaioaKauvL5L9+gPv/szEJYG3neDcUO9JcN25d+RgoIUaussrFtXzhWXHs6GjVXotBoSEky89PIPLPvEmxTv9z+2U1IauYyqqufdo+r57ssebaCr9A+7O/LsoUmv5Z9ffcHfPvvEO2sdyMSpICSJtVdes4NG2XMkSSKrIIOY2MFLAjIQrkwxceYgN7qk9ARSspMD4l6wX16IIAkhmFl0Up/PWdtk4YRxeRFLuUViV3oJmHf9MVw494ku25hjo8kuzOrxClxX4upwOFi/agP1Pm+HnmSiHwgGO2RDo9Og0+04DwgVFZXB541168JGjod9EnbQ8/bYc9+SuNbnTi2D5PauossC7Do3Ho0cSP7WfgwI4U30pggFoSjo3RJam4RkBzy+PrUKaEDxgMYl0Hu8zu6yVkGOUoiK0zEqI4UrJk8ipMKUAnlRfSu32RV91XNzvJn9Z4wL0ceMQq8LtnV8Hq2Fyb5JDBFqyztcfLzuYeorGtEbI+vKxm016DuUTnW63Ew7oNBXmrVil9Rzt1umtLSeyqomAO67/0OMRh3TjxxDXZ2FP/7wLjScdaZ35f+iS56K2Jeq592j6vnui2qgq0Tk4c9+wI2Cu3Nt0SiJcY89zFfFxfx86RX8ctkVHDokH5NOR4rZzNbrbtg5A+4Bg+ka6XK5KdmwvcvyI31BkiQMRq+w2K127vnwVnJGZAb2CyH4zPNan/t/5v2fiI+JIibGFLGUWzga65qp2FoxKKJeV1EfIlyyLHcpZiccvx+FhWnceNOrXfY9UP8GnDYXMYnRJKbED0h/PcHlclG+qXJQs7fGJcYSE991TXoVFZXdi/+89hXhzfFI5dNE4L/tbuXty+Ky5K3U4n+LFIBe0hKvNRKj1QetaCsIsAu0LgkFgVPrwRMlo4vSYJQ0aGXJ5y6vgEHBo1UYmZHCtZOnYtJquefI6fxx1TV8cN75/G3qwRTfMA9kfxw7DI1K5KsrLx7Q+9VfPf/vZ7cz4Zj9Anoz995zaKxqQtJKOEdlBCXdCwoUcLj4+dWbAWisasJgimxUNlvsGPTa9uMVGJHnrfiiM+h3ST0/+9xHgyYOZFnB45Z5+91VHHrISFxuD99/v4nLLjmcuDgTsqxwyWXPROxb1fOuUfV890U10Pdi3LJMOHvnoc9/YP/bH+LJ9atwpSq40sCWIqMo4EhS8CQo3HTQIXw792KSTV43oiWnns6fV13Lyksu38FX0XNkWaa1uWsX6P6g02nJzEvDZDZ137iPuN0e3C4XMQlmxk0bzd+ev7pfxjnApz9uYPKYPFJzUiKWcguHOc5EbHJcrwWyuxgwj8eDrc0eUjKlsriKii2VXR774MJz+XNdOZ9/8WevxtQXYuLNDBmet0PjYbVaLSazqddVBVRUVPZsPti4kY0l1SHbp9z1GKNvXUh9rKPd+FLoItY8FO8zLjQxnCRLiFbQWAGPwCl7aHI7aLU7kTydksoZFaLNeuKNBm9yOBRcQsZsNjJpSA5FB03hv4cfjQKYm7VsXlvLcx/9zHBPEn//fBmba4MTpm0pup4Lh+3LVxfOocTWSOGC+cxY/GzPb1g39FfPzx92Jb9+6q0nbzAZcNmc2Cz2Lst4CVnhnEmjAp+balqIMkfOZO5ye2httQWiBxRg4rn3e0uz7aJ63tgUOuFhtTkx6LWMGOHNi/P4k18B8M6b1wKweUsNq38r7dW4eouq5yq7Guq/ir2U+z74mhdXrEYBpgzN5am5p7H4q5944quVRBsMmPKMNFmaCczrSmBPlzl++AgePu6EnTn0PtNc30xrYxvm2OgBfwjbrXaMJmNI3FNvj+8Oc2w05thoNvy8hcd/u5/8sbl9Oh9AfU0jiSnxlJTX86+Lj+718TqdDl1c79zAbG02tm3azpBRQzBEyIar0WjIHpoZ8h2lD0kP274zix+bw+y5TzL9yDG9Gltf2NHJqoQQJGUlqEmyVFRUAgxduBCPz9NNEhJbiq7nkLsfp9ptxWMGJQYUZDoUE0f0ZH3Gf0iHx41e0eAQHvSShAsPxArMBgPROj1Wl4smuw20oJM0OGVPh2MFLQ47GpdA4wCNXaBTBLLWTVldIy3brKTERpNljMWZ7sGyzcYNxx7M6pIKyrc3c9RLz5PQqGdoahJHjC7ghOEFzBk2gmnPPxsY4xZbI4c9/gzLL5/br/vZXz0/Z8jl1JbWB67dYXXwzsOf+HLMmJC2NyLnJAb2++u+S3YXv63fHuinua4FU2zXie8UqVN+fa2GQ4+7k28+ClN3vQt2lJ6bTAZafSXg2gcNF180jccWf8kF501lyQvfB3Y98dhsLr3iOeb97VW+XHZzr8bXW1Q9V9mVUFfQ90LufvcrXvj+V2Rfsp0Vm7axzz8W8fz3q7n95CP55h+XUmFpIZzr27VTpu74AfcSp8MZiCPqSEJKAlmFGYGHYU9KbvTsfC5KN27vdiY5Eg6bg22bynHanbQ2W3A5ux7Xq/95G3NCdL+Mc7fbTVNdEx99+yd6nYZRXdRZ7Q81FfXY7Q4srd5Z86joKOJTEqivrO/SlS6cYGk0EpouMtr6yc1J5Phj9+1T6TUVFRWV3YmhixbiEZ6AkSojU7BwAWXRbbjj/SuroZnPO2dW92dX1/hKnil448YRoBECk06HEAKH8KCVJJyyx7cQr9DicFBjbaPV6Qis5Do9HtLNXtfa8/bdn2QlilSDGYNJyy3HTSMtLYaUTDPTJhRSkJ+EIVZHub0VxSpT52jDHQX3fLqcDzdsoMXmROMQNMU52NBQy8Nf/8SRj7/AYR+81umKFErtjXy0dmOf72d/9byyuDLIOPfTUt+KEIKoWBOxX29AW9XsDfEHJFnhjoP3QbLYqWhuX2FubbAQm2gOe553v/nD+0PnfDSAuwc62RcGQs+XPHtJkOu9JAk8sswxR49Do5GIMhmQJMHlVz4PwLBh6RQWpqIoCuddqGq6yt6DaqDvhby28vdOSUkUPLLC97ddzinjR3d5bGrU4LlvDxQOuxNnBHH1lwtprGtm+5Zy3F0kwuspeoOOgtFD+pyt0xBlYMioPHQGHa2NrVhauo55++DxZRx21kF9OpcfrVbLkBG5vP31HxSmJwzIfeiMoii47U7qKutpqmkKCHh8chzmePOgzhr7S6+dOvNBjpzxH2Yc/V/Ky0MnbbrDP+bKkiraehGL6Ha5Q8rsqKioqAw0no4r436E0v587dJP0mtOS77jFZT2lfhACwWPImN1uQMGpUeWgyLSFQU8HhnZoyDJAkn2xoZXtVhAhhfXrKZOsVJjb8PqcnPPN1+z3d1KibOFtzf/xfLKElY1V7LR0UCl1AYI3LEKrgRwJwic8QpuvYwiCVpi3LTFu3EmgSLCGIWKwr+Xf9m3m0n/9XzLuvJAWff2IfkrsMhEx0YhhCDmi7+QrA5QFEb+WIJGp0XbYqetQ86ftmYrMUnh44c//WF9+JKDssLIQUiEO1B6nhBv4ovPbubAyYUcOLmQLz67mcKCVO7+v/eYO/tQXnjxe6YcOJQNGysC7vBPLZ6LRiNRXt7I4dPv4/Dp9/HyKz/16RpA1XOV3QPVQFcJIMveB9h/v/sW6CT5ikJeXDzxxu7dsHc2MXFm0nMjrwh7PB7amixkFWYOWOyPTt+/jJ96vRYhBNFx0chdZF51u91Ul9ZyzUMX9et84J2s2LCtljOPGY/N6sDpcPa6j65qygshyMhPJzs/k8z89ICAGwx6YndA0pLUlFiaGtuQFQW3R+a8CxdT2kXJls7IskzF1kpcTheSRoNW2/NMqNXbaqneVtOXYauoqKj0G+EQASOxvYiaD3/SN18GcY8/pVvHjOK+n/3PbcX3R8jezO2SAmfnj+OGAw5CEgKNCx48/Dgenn48jx99Ik8dewrPHn8qqS1eQ/e2gw8j3xnLjLh8smNjKUxM4Lxx+yHZFMZnZlKQmEhytAmTTotGEr4RKQgBZoOe9BgzI1OS0UiCMampFE2ZgkaI0Fh6Ifjx6v7lwumPnh98/ITQKit4DWlJEjhtLl9pNAXhW0n+35f/RKuV0DVacWvbX8utrXbiU8Jnp99S3kDg2/KdT8gK+wkNDzx22S6v5/fecwb33nMGAJdefBgrftjEKScfgABysxMRQnDZ5e05BTweOei7fvLpr3h2yXc9Pp+q5yq7G2oM+l7IvGMP4b8ffh0QYkVROH7fkRTX1TLrzdfQaDR8f9GlPPfbap5c9TMIQbrZzPI5/TcKdxRdz+YKFFlB10V90Z2Fx+2hsaGZpPTEsPsfuOwJsoZlDMi5/iqpxuWWOWbqKKq2VeM06klKC3/esGP1eCjfUok5wRwx86n/e+hNspqB4Pfft7P2z7KgTLkAF13yNJ9/dlOP+pAkCa1eh6TRkJaT0qvzZxakq3FlKioqg47GI+GR5A41xxUQEorBv7LesY65v+yZ5DWA/Qa8z2D0G5Z+13WDVsuwxESOHz6C44ePICc2DoDyxhZOe/lllm76gxRrFBcdsD9Lt/7Bdcs/4uoDp9Bks1JhaaW2zYomS4tkdXL3iuVgFBQ3tyB8cwflllYSk6L5bXslR48eRqY5htz4eAoTElmyZjW/VVQiV7pZecdVQddc+MAC5h99LNdOnkLBwgWBcQshmHfAlEG6071EhP4sJAmH1RGQJcWni6m5qWh0GzHWt2HpYDja2+zEp8WF7b7FYkf2eTQgvBMw919wBIdO32+30/NJkwowGHS88ebPzL7gYJ57/juiTXosbXaef+F7Nm+p8g8g6Lglz3/LnAsP7tE5VD1X2d3Y9SwUlUEnJimKYaNT2bitDo0VjhxTSKvZxfSXn2fO6HH886gZAPz9kEP5+yGH7uTRDjwajUTO8OydPYyw6PQ6TCaDd3Y9jCB8+9ZPzLn77G77iXR8R1746BfyMrwJSjLyepaArSMajYakjERM5q6T2OwMfl1dEna7HFJAt2t6K+R+draYtzS17hAvBRUVlZ2LViMjkALlUIVoN546ljrrHHPufUL5jHZFQS9pGJuSytHDh3PcsOG8u/4vPty4gY319az7/jsW//IzSSYTsQYjrQ4Hih7wCKq0Vp7cvCrQ1wM/riBar2dIXDyp0WbyTCZGZmby0E8/4Wp1E+/QM21kAfefeSyjH36Amw85hC9+3kxNcQsPX9WegHZKTg6FDywgBi1v/fInp01oT/r5wTnnc+yLS9hy3Q1svf4GxixYhAuFS/ebwFWH7iIGehhkWcZpdyHLvu9CEig+rdDqNIhWOwC/rNzIhEnDcdpdJGcmhtVzt8cTNP2SlRrPtBn7A+yWen78seN47fWVvPbqVTz7/HdkZyVgsdh57vlvMUWFT0DX2WDvDlXPVXYnVBf3vYwHf/qRm5Z9wh8NVThjZKYcOIRPGrZQ1tJMcdG8gHE+GFgttu4b7eXExJnJyMsIKwhrv1+PzWLn5KuO6bIPp8NJxdaqLmuGA6z8s5Rjpozqsk13RMeYdrp4hWP2hYeEblQUkhIHPjZvV8NqsVJf1TSotVVVVFR2PiMWLcKJwI3sc2Pv6I4eGaNWS2FiElNzchmblEas1ohL9rC6qpL7vvmGQ595kv+t+I6/6mrxKAp6jQa728225mZWV1ZQ3NSIhODE4SPJT0jgiIJCfpx7KcckDCWqWsJmd7GtsZlnTjmVmyZM4vIJk1hyymnIUQopMdF8+Nt6ANZdfR03LfuUohMOpqq5lYWfBLssnzxyFFKKloeWrQjaPiolhaIDpzB+8aMA/HlDERtvuJ4bDw/z3N8JpOQmhU2apsgKTruzfZ/UHkOu0Wm9290ePv7sNwDcTjfxabFd6rlfffcZ2n/Pup2p55dfdgR19a2UltZx/nkHUVbeSHlFExMnFJA3JCX0fioKu96bx8Cj6vnei2qg70W8uvYPHvxxBR5ZRla8iV6WbdnMiSNG8OG5FwzquW1tNipKKnG5BiYZmaIoVBRX7ZGJOyIJ5JJ/LmWfg7s3qLU6LVq9tks3NLvTTbPFzpwTJ/V5nIPJQGTY/+rzW4I3CMHrS6/pd7+DTXcTK91hMpvIHZaJTte/vAgqKiq7LiMXzcfVHj0eiBGnk2kuhEArSegkCcmnLXaPh23NTfxZW02z205+cgLTCwtJMEWh12k4Jnsok01ZZFmiMVQJtJUK6a0mjogZwp0TD+eWyQeRZYjii62bKW5sZHnxVs5481UuPHI8v951DYZaAQ6ZgkULmPXqe3y3sYQJWVmMTkklc2g8SWYTo29dyHPf/cqaK67m6Bee49WzT+apb36huLYhMPYFRx9Li9tBjb2NX0vLg67rmslTGJuaxszXXh3cG90HXild7NXxDl+FRqvBGG2gpcHSvlESAcNTq9OAoqB1y6wr9rp0e9we0vJSQvT8jGPuDKye+08xaUze4F5UP+ipnu+3bx6LHvyMM8+YhKIoREXp2WdsNhs3VvK//5wdbKQLgUYjcfRx/+OXX0oCm3/8aTP/m//xAF9B31H1XKWvqC7uexHfbduGJ8ysbrPN3qt+PG5vSRd/RvSeEBUdRd6I3AGN+1bkHT+D2hPX8cHij2//4o53bkSW5S6Nb0mSIrpyOWwODFEGFr+1gtSE8OVbdjYOm4Pt68vIHZWD3hjBta2HfPX5LTz86Ofk5Sax9s9yLpjzBM8/e+kAjbT3yLJMW6uVmLjw997lclG2pYLsgix0+r7/rvTmd1NFRWX3w43kq20eiiQERq2OOKOBpCgTQ+IT2Dc9nSk5OYxKSQ1amems58+u/pV/f/0V5++7H69eehYAq0sr+fzPTawqKeeRz3+k1e5Ap9GQEWdmWmYeVoObbypKOefN15CEIDnfRFO9jSVnncbsd99i9rtvkWQ1csJ+I3lm62o+u3Q2Jy94nsVf/cQnv2/ghVNnMu2dV1gy+zROeeBF1tx9bWB8M0eN4YP1G/jX21/wXlHwQsKSU09n6tNPcM83X/OPQ6f1+h72V8/PH3oVdWUNRMebeKPq6cD2gFEmwJwYjaWhDY/bw6jJw/hzxfr283c4t1anQVEgRtJQ43N1VxSFrMIMtB204OX/e4sy0XkaBmZMGt7n6xhMeqPnRdcdzey5TwJwzllTeP7F7/nk0z+47pqjuOPfbzHt0JF88+0GADIy4qmsbOLgg4Zz622vse+4XEq31VFXa0EI+ODjNSzvPEk/wKh6rjKYqAb6XsQ+qSl8smlDkJGuEYLRKb2Ly6kqqUZIkFmQ2avjBtI4F0KQVTgwydJ6iqXVSnNNExn56QED2ePxDPrD87dv/uSb13/AaDKQMyyDlqZW4hPDJ47pClubjfKtleSOyOGrXzZx8H4FgX1Ou7PfxvBAYYgykDMye8DGc/WV0wE48YT9OX3Wwzz1zDdcPDc4t0K4FzVLiwVz7MBOYrQ0ttJU10x0jCnsJItOp8McH+tdTVFRUVGJgAYZmU6GmqIgCcGMoUOpbrVQb7NS1tLMxvo6Pty0AUVR0EgSBo2GaJ2ehKgoYoSG1CgTwzMzKEhI4MDsHIqL5nHIM09x0NYn+P6iS9k/L4P984L19usNxXy1biu/baugrKEZnRPsKQpxkhGDokE2wYXvvkmUVofeqKVBb+fzjVvQuAUnvfQiOYlxjEhPweXxcM1T7zF3+niu+vIDThk/mmP+9yyf3DgHgPtmHMWbf/3JhoY6mqx24k3BlWRWXHQpwx9axOEFBUzNzunx/euvnp8Ydx72FgcIaKpu5mjdLD51eeuyf/Tk54F2Or0OU0wUsqww+YQD+LGsEkWjI2ZrXftYrE6fga6QGWdifZOFppomgCDj3Gqx8+xtryCfOTFkPK11LRgyvUnhdlc9z81JJDnJzOOLv+Tyy47gxZdXUF7RyFEzxrJg0ad86zPOAf7v7jOYe/FTfP3Ner76/BaOOvZ+XE53e/UB4LAj72X5F7cCqp6r7H6oBvpexGUTJvFzeTnLS0rwKDISgoNycyma0rua2hl7YUZLh92By+kkKiYqSMy3b64gLjmGhKT4Hvdlt9oxmnpWru6UhAtpa/bW6xSSIKMgvc8TAlHRUeQOz0Gv11Fe28zckyYD0NxooaasmvxReQNWdq6nyLIctpZruBq03XkOROpfkRU0vsy4b752NYdPv48LLzgYna+cTWuzhaaaRrKHZgfG4XK5qC6rR5OnISq666Q5TqcLq8Xao0mT+KQ4YhNiuryOlPSEnl6eiorKXsqGonkULJrvy9ruXVIVQmJz0Q0Rj7G73fxVW8umhnpKGhspb22lsrWFDW3NrPy9ijaXC6fHg+wz9CUhyF80n4SoKIYmJpEWHU12XBz58QkUJiZy04nTMHXQjA9+W0/R1x+hb9MQ1SihcSu4TW40sQIFwTZdCyaTDpvbzTZnC2Xrmpk1aRz3zTqGG175gKyCBL5t3oZJ0nDUg0+jj9bzwUXnc/Y+43j9j7Vc//IHPHvxzJDrWnHRpUx84jGKi+b16N71V8+vOvAWHK3O9uzsQuBxy8zMuJg3Kp/ipw9/DbR12p1ExRiJMkexcF0JyqGjAWg6aFjg2FarPRCDvt+oHP78eQNVpXVoNME6cXbWpUgaCWHUQUcPQkXh3NwreKHkEQzRxt1az2edMYklL3zP5ZcdwdlnHsiSF77jlNMfCIlBv/TyZ/hy2c0cPv0+jjtxPk6XJ+S8QgjuuPNtbvv7Caqeq+x2qAb6XsZTJ5/Kgh++5/fqKkanpHLTQb1PqrKjS2btCrS1WHHYHEHZUTUaDckZiUTHmHrcj8vhomxzJTnDMsOKVkdOSZyNpaktIDqyR+bEmPP5yPpy3y4COOzKR3H76qynJXqzgsYlmIkyGXa4mCuKQmVxFVqdlrTc1C7bulxuKosrySzI6NU46yvqsducZA/NDNzHSy4+jDNmPcQ7b10HQFS0EXdCTJC463S6Hsd9tbW0YW1tIy4hNqgPp8OJy+Um2hz678PldPWr1q6KiorK1qJ5DF80HxkJSchs7MI4B29yuP0zMtg/o3vvsw31dWysr2NdTS3PrF7FnzXVNMfGsrK8jDaXC7vLhcfneaSTJKJ0OmINBsampvFHTTXTJw9lfHoGiz74jiEijjabi2qLBWuiG4SCI9qDMMGLW3/npbVrGJuWSn2NlbooGw5JRpFlaPVOEBQXzePVtX+wYvu2sGNNNpm464jpjHvsYX6/4upur62/el6+sQpZkYOe90IImqubOTXxQqyt7WGDdos3rGzd5Dw8KN7a5YpAEd4kUAJoabOj1WsRwGmnTeWlXzdRt70eTQevw+sPuR2NTsOYqSP41p8FHn8Mu0CWZS4svIaPHa/s1no+8/SJPPHUclau3MoF5x/ECy+twG4PjWF3uz2UltYzcUI+P/9SHDHccciQZFXPVXZL9j5LS4UbphzEc6ec3ifjfFcnXObUgSAxNSFs6RJzbHSvvAl0Bh15I7K7Nc4BLI2WkBcAl92F3dK7nAF+Jl64AJfbE0gsM2n2wsA+vWHHi4sQgvS8NFKyk7ttq9VqMMdE99p7IDkrOaSG6TlnHUhySgx33PmOr28tCcnxIcf2NClLQnI8mUMyQ/4dNNa10FLXEtK+sbqJiuKqQfu3qqKisvewsWgem4uuZ2MPV497yoikZE4cPpKbDz6EDdcUcdiQfLY0NHDn4Uey9spr2HzdDRQXzePrORfx6PEnctXEyUwbkk+SycSo5BQ+27yJh1b+iCtBYa1cx1ZDE85UBZNei873HJeEQEbBY4bflGrKoizY8SAj+3TK+4zMXzSf88btCwkSNy0NnwDsvHH7ckhuHse99Hy319ZfPT9gxlg6W4SKoqDVa3G7ZOQOyWs9bg9llY3tNcsR/v95PwmwWB2BGPScnCRQ4Nvv16EzeI3X1+e/x5bfS7C22PjvV//yndB3fwQoAprOOxCPx8OnS5bv9no+dcownnhqOQDnnH0g4aVSkJeXxH/vOzPE0wAARcGg1zLHV9FF1XOV3Q3VQFfZY2isa6J8a8Uu/6DU9VA8w74oKKA19n5m/KR5TwXFKgpAkWVm3/nyTr1fGq2mRx4ZQggSMxJ7HVohhAj7EvDU4rl8v2Ijq38r7VV/XZ2nM2lZyWQMCX0JTMpIJKswfCk9FRUVlV2RR44/kaWzzuK6jz/kgrffDGzPiY3jyIJCLhk/gbsOP5KnTz6VD849n+KieVicTj48+TRePP50ohu0PHfq6dx08KGcN24/Jmdne1eUtaCRBBohUISCIkL1SCDYVt2EIil8sGFjl2O0u9zctOzTQbkHfv659EYKD8j35s1XFAQCc4KJj+2v8J/PbgtqK2kk5EOGEZrWDWQFJEnQanMGJxFze/h9SzUGX/3vJ/72AoqsULT4Ml786BfAa5T78f/Ycu6BTD1p/EBeaq8YKD2/7e8nsWVrDQBzLjzEp+NSUHtJav/5809vCtqmeE/C3289sU/Xoeq5yq6AaqCr7DGY46KJS44bkAflQButbpebqpLqXh1z5i2nBOra+sc04dj9+uS6Zne4Q1zAFMBitVPpK+myq+J2D0xpvs78390zuemWpYPSd3eE+w7t1r55RqioqKjsCMZnZLLhmiJsLhdjHnmQjfX1Xbb/48prOPqdN5k6LI9zJ+3L7S99ygX77sft0w7j1ZlncmB2DjF6PR5F4f1zvEa9COusrHDsyOFcdMB4nDEe5neql96RL2fP5f0N63l/Y4ds6YOg53e+cSMHnT6JmIRoFBReLXsCgOVLg2u2Zw5NR1PdDFLodUkCtBoNrW3tMegAerdMrdNJlNnIKQkXUrjfEDIL0zlmzuG8s3wtELKAjwJ4gNZGC7syPdFzrVYiNzeJ/7vvfQDGjslCURTOOnMyp50yHoNBG1Jid+7sQ5BlhWmHjuT/7pqJRiMxf8Eng3INoeNV9Vxl4FENdJU9Bp1OF7HcRW+p2l5NU0PzgPTlx+Px9Kr9xf93LhlD0wKfp82ayr0f/aNP575t7vSQbUIInrztHDRdxE7ZrfYBe7lx2By9Psbj8VC+pYJGX0bbgWTSxAImTyzksiueHfC+e4vT7qR0QzlOu3NnD0VFRUWlS16fdRZ3Hn4kx764hBs/i2wEmfV6Xjz6OAoWzefWEw4jNdbMZc+9Hdj/ysxZtDidFOjjOO6l5/nbsk+5Yp8JwUa6ApJbQ1urg5sPPhRJI7Fk1aoux/fX1ddx7Ucf8lN5Gee8+RpzXn9tUPT8ztdv4u2GJaRkJ/Hsbd567O89Grx6X1NaS9TGGkRVS/AiugLpybFoNBJt9uAV9DitBqtOoqG6mdyRWWxdU8ri3/4HQHVDqJs1ePV80S2n7jF6Pmf2IXz9jTdr+4OLzkOWFXKyE7jm6hmkpMSEtD//vIMwmfR8/c16cnO82ew9sszLr/7Y63H2F1XPVQYC1UBXUQmD0WTEFN3z5G/dodVpySrsXVk6gLqyBv7xahHL5Ne5fWnXCYC64tADhrLg+lODti39vwtJiDGSFiFmzOPxUFFag6Wh/zPyTqeb0g1lvZ5V1mg0ZA7JID6l92XlesLdd51ORWUzb7z5c4/au5yuQQkJ0Bv15A9A3XcVFRWVHcHM0WPYct0NrK6qZOITj0dslx8XxwunncHwBxfyyhVnsbasmsVf/RTYP3u//bHpPURVS6yqKOfN4r+4dr8DA0Z6FBoUncx9H3yN1enm8kmTaIvy8OpPv3c5vpsPPoSzXl/KD9u3801lGZNfei5C1fje01nPDz5tMt+9tZLp0kzcLt8KsU8mnHYXiRnxxH32J1K9V0sFIMkyDQ0WtBoJq92JxldmDSAnOQ6PUYfT5qRiSzWz7zorcC63b+VYQCA2W1FAI0kcNCp/j9Hzww4diVYr8cGHvwFgNht54CFv+bqxY7zl9KqqgyddPnzP+4504dwnyR+STE52Ikuej+xtoeq5yq7MHm2g33nnnYGSD2p8iIofWe5apl1OF/FJcTs00YrVYg3Z9t3bP6EoCofN6l0ZvEgMyUhACMGN5x3Gz0tuoCArqcv2Go2G3GGZxCSFzlb3Fr1eS/6oXIwmI/XVDb3yJtAZdIP6+/vKi5fzyGNfdNtOlmXKtlbSUN00KONQxVxFJTKqnu+afHHBHM4eN478RfOZvyK8MXRQbi7/OepoRj/8IN/fdjkPLfuBjdVe9/h/TjucVpeTrJw48lyxnDpyFA/89gO3TZtGcdE81l1fxL3Tj0LOFBxy9+PccOBUNFqJ+5d/C0TW845jURRwetzMWDI43lKz/30mNdtqfaXu/LXXvLHzMQnRRJm9pb1iP/4j4BuQlmDGKcteA90WXLd80r5DUPRaUvOSMcUYOefvpwHeeum+rhmSlYT/VL88fwOHjR/KObe9EHGMu6Oez5g+lpde+QGA886disPhYsUPm8nxrZC//VaoJ8UrL16OLCvYHW7KyhtJSoxmwaLQnASqnqvs6uzRBvodd9yBoiiBvyoqToeT8i2VEeOgZFmmelstjVWNO2xMVouVym21uFzBY3r1vnc4YPq4ATvPs+//RE5aPGfOOKDHxwxkqRadQYcsy9gtduy2Xcf1y2w2cuYZk5h11iMA/Pjj5rDtJEkiZ2gmSWpdUxWVHY6q57suNxw4NVAK7Yglz4Rtc+rI0RRNmcr+jz/CO9edz2kPthuT904/iu1yKz9t2c7NBx/K71dewwM//sDJr7wEwKwxYzl33H7Ykj2c/tBLXDN5Mo06O9/+tTWsnv9SWRk2lr22bXDis02xXm+7zoanrMi0NduoLq0NOcajgJAVmputWB0utB1c3N+95SWQBJVbqnl+yyOB7c998JN35Rxo8VVz0fiSst139QlYbA7++8KXHHPdYg659GG+Wh2sZbubnhddexRVVc3U1Vk484xJAPxvwccMLfCWcVu9JjTJa3p6POnp8ZSVNWCx2Bk3Lo8PP/otpJ2q5yq7Onu0ga6i0hmtTospJiqiUEmSRPqQVBIzEnvUnyzLbN9YFpKwpDeYzCZyh2Wh0wWPadOqrVzyn3P73G9nVvxewvRJwwesv74gSRKZBRlE+1YUdhUuv+wINFqJw6ffx99ve5PDp9/HdytCDfUdXVtWRUVFZXfh50uvYHxmFgWL5vPan2tD9l86fgKzxozlvPfe4JrpUzjobq9r/PHDhpMVG0t8jonzF79GjF7PmiuuJsVkYsRDi1hdWcnt0w5jal4uf7praat1oNFI3PzJZ2H1fEJGRqCUmx8B5MTFdzn+fum5CE1GJ4S3Prnb6Z1ASMhsNwZbrQ6GpSfiVhRsdhd6n4F+6zF3kz8iGxSFpEmFQf298t5PgTD2hhYrWo1Ex8D29+ZfzOuf/0Z9Uxt2u4ObFr3HR9+u6/219JAdoeejR2dx//yPACgsSKW5yUqb1Rv/XlnVFPaYV168HPB+H59++juyLHPehU+EtFP1XGVXRjXQVfYqJEkiKb1r47s3D20hBJJGor8el52N86X/fYfoeBN5o3P613EH6pvbuOL0yO7ynVfwB4tI7m2tLW04na4dMobO2O1uKiubgPbau7f/8w2+/W7TThmPioqKyu7I/TOO5tML5nDn8i+Z+dqrIftvPWQahw4ZwtLSPxmbncbZj3nbvHvWuVQ6LawqKcfp9hrIT518Ko8efyJnvP4qRZ98xFMnn0p+SgJP/7ma88fuRxVWXFHhQ9F+vORyNEIgEEhCkB4Tw4fnnt/l2Pui528u+oAZ0hnodFpv+AUiyFCXOtTofq2s3Uh0eTzsv98QkBW+/XF9YAX9zxUbOGD6PginB21+SqD98/9aisvXl07rjVcfPyqHjoM9cO6idnPdt/2fT35Ck33wMooPtp5fc+V0Vv1aAsApJx+ApBEsfuIrAKzW8P03NXmT4QnhLzgvKC9vYPETy/s9HhWVHYVqoKuo9AMhBFmFmT2q/dkbPly8jMPOHJjYc4DH3vyepLjISe8a65sp3bh90EqadYeiKLTWN9PatHNKxFxz3fNhi/v8b8FHO3wsKioqKrszwxIT+fOqa4nW6TjsjaX8XFEetP+/M45maFIi5ToLNS0W7v1gOWa9nukFhegytcx+6rVA2yMLCtl87fWsq61h4hOP8/F5F2KO0/PST2vQSILzXnqt8+kBiNHrWX9NEXMPGM91B05hxUWXdjvu3ur5aclzePyGJRx57iF8ZH8F8E7w+utxCyFQZJ/J3ElgPIpCYmw0KXHRtLjaY7hfLVvMC/9+A2F1Uu+bNK8pq+PZRz4OGN9Rvvw4U/YZEtSt2xVaTlWgcN6tz/foegaKgdTzkSMziI2N4tkl33LC8fuhKFBXb0GSRMT8A2ef+0hYPX/1tR2f0V1Fpa+oBrrKXk9vy5/tCCqLa7j2kYsHrL/PV25k6rj8iPsTkuLILczaaS5fQggyhmSQlLpz4sEMhvDXrdNpwm5XUVFRUemaJaeezp0HTuWcN17jyg/fD9r3xImnEGMwkDY0jld+XMN3G0t48qRTaJNd/FpRgaVTiarPzp8dSEZ36YSJeKJlojxatjqCM3l31HOtJHHbodO4dvKUAb2u5//1GjOkM3A53CyTX+eWF67lr582Bvab4kyBlWX/avqpRce1dyArIASJcSZyspIQisK0KTcDcO3U2zj87IPRtNqx+N7Q5wy/jjGXzwgcbnN4V45z0uIDkwEAQpJC8zMIwSnTBi6XTU8YaD0/7ZTxvPveagCGD0sjOTkmcH/D2eiSJrILRGlp3YCMSUVlsFENdJW9Go/HQ+nGMlqbd87KbTgWXb6YjIK07hv2ELfLzfbqJmafMJmWJkvEa93ZWUd3Zmbmhx+8ANFp1URRFN5YenW3xyqK0l5aR0VFRUUlwLTsHDZdez0lTY3s9/gjQe7Wr8ycRbPdxsSJOVz6rLc++tWTpqAkSVz09Jshfd1w4FQ2XXs9T676hRHJKVgkJwLY74GHGf3gg/y0ffuA6vn5w69mhuYMjtLNCmw7Of4CXvj365xadDzvt7Ynulv+6orAz1qdBghOZnjl/DnYnb4s7L5V9ZR4M0a9FoNbxjbUm/isdnsdf3/pOqR6C06NxCXjbmDKSRMoaWuv9OJye0iINdHSYg1KhvfzEm+ZMaVD/bXs1HguPuXAAbkfvWEg9fy8c6disdj5448yZp4+iaYmK7LvHi5b9kdI+w/fu4HOaSQVReHEE/bn1n+83uW5VD1X2VVQDXSVvRqNRkNyRiIxceadPZQA37zxIydeftSA9CXLMs+/vQKjXktuejxOmwO3Y+fEee/qfLnsZvRa74q5JIkeuzk2VjVSWVLVZWbpXWkCSEVFRWVH89G5F3DVxMns//gj/PvrrwLbPzz3ArY2NrLPuEwm3PEwRVOmYDbq+bWxkrow5Ue1ksSvl11JbnwcWo0GRUCL4sQmuzjrzdd4oXTTgOj5BcOvompzNSggu2WOFKczQzoDSZJYJr/OlQtmB7X/4f1fAj+3NVnp6NMufKvctdWt3mtwe1f5UxNjaKluwm1zIrnc2A7I5R+v3UBLgwVtTQuKTqKtycptr15Pdb33WP+C+cH75mOz2oPi5Wfe8iySJAVKEWalxfP2/XP7fS92BSZNLOCRxz7niMNH4fF4iIvzJqZb/vX6sO2Xf3ErQKDqgxCCoYWp1NVb+PbbDRHPo+q5yq6CaqCr7LW4XF5DNTa+/3VBO+K0973kyNbfS2lrsnLGjScNyFgkSeKbv8rYf3gWAMkZSSTsJDfy3YFPP/kbX31+C198djPHHL0P588OzfzamYT0BDILMiKuGDhsDmrK63ZYEj4VFRWVXZFLxk+guGgen23ezMHPPBnY/tXsiyhtayI5J4aTFz3Pw8ediMcMl/lW1cPx2PEnISkSiu+PnyXr1/DA9/2LNf72o5VUbqoJfPYnf0OCtxueC3tMx1JqbpcnyMB7dsMDADQ1tAAQ49OK1MRoNqzYSNrQdLK3N+EcmcnQfYdQXVKDvq4NhOCZzQ/y6Q/rO9RX9/73+INGYzS3u9Lf+sgHtNmcKIrCz0tuYOVz1/PO/Rf16z7sStxy0wls2FgFwNgx2YGs9xs2VUU85qvPb2H5F7ey/ItbSU+LY+EDnzL7wkOYv/CTiMeoeq6yq6Aa6Cp7JQ6bg+2bygbclcntdrN9SzkNtU19Ov6Zv7/M8AmF3TfsBRu31TJrxv5h9ymKgktdUQ/LTTceh93m5Iknl3fZTgiBRhM5Vt0QZQhbRk9FRUVlb+S7iy7hyPwC8hfN55nVqwD48eLLqHJbqFasvPPDn4xKSWaNtZqq5taI/bjkUO1SFHjk5xVhWvechy99MsjoB1/CN0/4VVVZlpE7lGbrbNxlFWYA0NLqde9P863wXzC6iOH75mFtc2BdVYJwupl3+0vUbK/3JkCTFV5+4Ws+WvFXwOCXZe9q8PhRObg9HiRJ8OaXv/PDH6U0tFjJSBrYBYddhdhYI1mZCVw/72XS0mOpr29FCGhqCvWyCMcrL12BEIIlz3+HAix97aew7VQ9V9lVUA10lb0SQ5SBtJw0tAP8kNVqteQMyyYxJb5Xxy26cjHnFVzJz5/8xjn/OG3AxrPyz20oisJB+4ZPENdQ00R5ccUumShvV+D1pVfzytIfsVr77hUBoNOFLwXUFV252KmoqKjsztx5+JH8fOkVPPDjDxz/kjfL+G+XX0WLzsmHGzdwycgJeAwKVyx5N2IfArwWecdtAqJ1hn6NbWnZk0Gx3QAoXuNthnQG5+RdwYNXPUXNNu+q+UdPfh5oJmkk7EOSsBw0FNuoDIS2vZ/WVhsA2dm+Uq9pcRwwbQxN9S3c8uK1RP1Swp82GwsvfRytXovk8rByTTFrt1QGDcVvhLt85ejuW/I5Zx+1P7KscOOpk/dYPZdlhd/WbGPZsj/xeBTwlbTb2MUqeke+XHYzTqebfcZk8cxz3/Z5HKqeq+wIVANdZa8lOiZy2bH+oNf37uH9j5Pu5cPHP6equAZZlnnk+mcHbCxLl61mWE5KxP1JaQlkD83qcsZ4T6A/LyyXX3YEZ5376ACOpntkWaaiuAqbdfDq16qoqKjsTJJNJtZccTXZsXEMe3AhX2zdwrqrr8UZK3Pze59w4vAR/O6sYVt9U9jjNxfN81rkgaRoADKrr7qq32O7dNEF3i59McwIWCa/zus1T3PIaZP55ZPVnDvkSk6Ou4Cn//Fy4Li2EWnYpw7FVZCC44BcWg9s94hrbfGu9koOrx5lTC7khzd+RKPXcujMKehL68HloS4vkZgEM1EKbK9roaWtXQeEEOw3whuy5vbItNmcLL51Fs+8v5LEWBNTp4zeI/X8xptfpaqqCSCQIM5v9N5z7/uRDgth4oR8vv9hM4mJ0Sx68LMBH2c4VD1X6Quqga6ishN59IZn+ekDr4uf3y2ueksNRYf8Y0D6X7V+OyceOqbLNjujtNpgzCZHquHeWNNE+Za+ewmcecYk0tPiuO2foVmFBwtJkjCYDOj0qhudiorKns3iE0/mxdPO4MoP32f2O2+x8drrcSXCVyu3ghYueCFy5u3ionlohHe9WysEW4v+NiBjOuO6E7n0ofMRwpsw9NiLjgAgPjmWKxbO5vktj7BMfp1L/nueLykcOPISceyfhyL51t8lCXdeEodMuhGAtjYHAMvfXgnApspGKtaVYYjxJjwTQhC9ahvW4WkYow0kGvU0SqDRdHxVVzj+IK+mL35rBXqdhq9WbUJRFG487/A9Vs83bqwKyczup6ysgeLi2gh7g/nvfWei0UjU1LTw/ger+znKnqHquUpfUA10FZWdyMqPVhOiOgK2ra/od99VdS202ZycceR+/e5rIGltaes2S2pvaahupGxzeCM8PiWOtJzUfq0qPPH4HH5auYVffinp8TEOm6PP5wNITk/caXXpVVRUVHYkk7Oz2XBNES0OB2MfeZAvLpyDJd5FgtvINqWVzdX1EY/dXDSPrUXz2FR0w4CO6YyrTiJvTA6F+w3hu7dWhm1zwmVHofhWdN0Z8Siik65JEp4Eb8x5m28FdeQhIwFolWUOO3UyHl/8uizL3H732eDyUJkew4jcFNySFNgPXiN+0phcrrjvdeLNRkxGPa8tW43JqGPG5BEDev09YUfpeXx8dMT2mZkJ/Pue93rc/+ef3oQsKxgMOv5x+xs9OkbVc5UdjWqgq6j0k0grtz1h9NThSCK0/nZqbnJ/h8Uz768kOy2+3/0MNAajnqgY04DWSU1IjSczPyOsES6EwBDVv5hEgPv+bxa33tZ1DVU/DpuD0o1lagI+FRUVlV7w1plnc9uhh3Pkkmc5ZeQoGrQ2NAjOevnVHXL+znpuiNKTnJVIW7OVzb8Vh7R/6u8vBX7W1LSETLgriozGF3v+/QfeUmxjpo327jNqmXbyRDyyzDl5V4CA9LwUsitbaM5L4ohDRnes1oYQgtSEGB55/TuKK+o57qDR2BwuhJC44PiJA3H5vWZH6fkzT16ETtf+WQgCnw0GLaWldZSVNfT4HJdechg2m5MVP2zutq2q5yo7A9VAV1HpBx6Ph7ItFTTUNPb6WLvNwd+evopRBw8PzD4rioI50czjq+7v99i+W7OVIyYM63c/A41eryMhOS7weSAS2ggh0Bt6n7ilN4w/YAgHTi7kksue6batIcrAkJG56AZ5TCoqKip7Gmftsw9br7uBNVVVJJhMeIRMg3BQsGgBBYsWcMoLL3XfSR8Ip+dGkwGH1cmIiYU8+49XgtpbLXZe+297Ejvj1jr0aytA9q14ywraqha+XfEffvroV8p9BmRtfQvICmg0xEQbcbk8RMdFodFocLs8pLY6we3hlQ9/DjqfRiPIS0/ghY9+5pMHL8fl9uBwupEkwdwTJw/KPemOHaXnWq3EZx//jf33yyM7K5FrrzqKvDzvQkZVVTPTDh3BHXdGLsvXmbPPPBDT/7d33+FRVG0bwO+ZLUk2vRcIhA6Cin4gUl8EqS8CIgERRYqiiAoKBgsQQSwIUoTXhoCISFNAFBBRRBSkiIqASCcB0kggCSlbZ74/NmwSk0DKZnd29/5dV64LdmfOnN2TzbPPnKbTAgDGjV9xw2MZz8kZmKAT1YBKpUJM/SgEV3HVdovFgssXLyMr/Spe2/QiBEFAUGQgmrVrgk1Zn9ilbpev5mHc4I52Kau2GPVGXDh9ybYnvdK9NmMQMi5fq3CLlpJq+4YBEZE72zlyNIbe0srWKX19z/O/stIxeNXqG55bHeXFcy+dFwwFBgx98X78sfNoqeMTur9qG95+ne/hC/D68wIEiwx1dgH2fTcTADC9/2w06dAUALBn2x8QJevCc6f2ngRkYMlf8yAIAswmC/JzC9C0wIwjV0pvMSfLwP5jSdg873EAwK5DpyEIAvp0aGHvt6JaHBHP580dhpUrxmLgwDsRVz8UggAUFBiQOG0gzp3PRFp6TqXL2rLZOiXinxOpSL5w4953xnNyNCbo5NYMegNMxuJgYdQXb5clSVKpuV3VpfXWVnl4l0qlQkzDaIRFhWDR+CWo3zIW61M/xv/2vVnj+ox+bTXuefJ/0HlroBaLP+JK3OZD46VBYGhgtbYtcZa1n4/HBx/96OxqEBG5vYROnQGg1L7kMmQcupzikHju7esFQ6ERHQe0hSAI2LVuD17u8zp6iPEQxbJfoQUI8DmWAi+jGVFB1rnnw+PG4b6nekEqWuzNolYhoKj39uOJywDRej1BACwmC/T5BvT8v8a24e3Xa2OxSEgY0Q0RwX6QZRlJaVchyzKmjelZ49dtD46O57F1QyGKom0R/86dmmLa9A1VKmPjFxMAAC9MccwUCqLKYoJObi3p5EVcSbXeGc25mofk0xdtc8zSkzKQerbmi7FV1/X5Vfu++R1DJve3S5kdHluII6dScK3QgAK9Ce99uReA9cvLpbNpMBqqtp93VkZ2rSb2giCUGh7nCry91Rj24N0YPHQx1q0/gLfnbMHhw8nOrhYRkdvJLCj4947kNr//dbLW47mXzst2I8DH3xuvP7gA+bmF+Cp3JRbsmVXmeBnWnnFvUcQ1owmzH10MLx8tnn53NAqLOgtiWtZFZFHc6/xwl+IYKwgwm8wwFhoREh0MWbDu8y2hKEkXBMR3bw1JkvDU62uhVqngVYWVwd0tnjeIC4NYdHMjMzMPMxLvx+kz6cjMzKt0GUFBPoiKCkRGRi76378APfvMxdTplVtrhqg2KSpB37lzJ0aNGoWRI0di+/bt5R4zYsQI9O3b1/Zz7NgxB9eSXIWh0ACVSkBITCgAIDDYD/WaxtpW0oyKi0RMoxhnVhEHv/0TFpMZPR/tWuOy+kz4CEaTBSjacgYAlm/ehzMXMyGKIrx1XlBrKh/MzWYzcq/kwGys/iJ47mrsY12Rn2fABx/9iG+3H8GkhDXY/fM/zq4WkWIwnpM9hOl0ECAW73UOALIMESLubN2s1uO5zt8b6UmX0UOMR0RsKARBwMI9s6Dz80Y/3XAAxVukqooWLVv293z4azUolCT8uPoXLDu+EABw6bx1KzCD0Yz8s9Z/+zWOtF1LEARYTBaYDCbM2nvUOmagKJ7LAARZxuDpqyCKIn47lQKzxYLwol76m3HHeN6sWTRMJuuc93kLrX9jOrZvglemVS3BXv3ZOABAXp4eJqMJe/eewVPjP7FrXYmqSjFr/mdnZ2Pp0qVYvHgxRFHE+PHj0aZNG4SGhtqOkSQJRqMRW7dudWJNyVV4+XihXtN60JRISrXa4qFXgiDYdeXR6vhs5nq07narXcq6kpNXtqdBlvHel3vwzoQBCIsOqVJ5arUa9ZrURXp6ul3q504WLNwOg9Fs642wWCTMnLUZH7wXgsaNIpxcOyLnYjwnezoz8Tk0XPBO8QOCgDMTnyt1TG3E8xe6z8CfPx6FRqvGNuNqqNVqPBA+GkumrMS6OZsREReGjPOZxXGgKFmMbVYXof4+uKTX23rZ17+zGZai3t7s7HyI5y8DzSOx/0gSACC3QA9BAMwmCyxmCRZJgiCW3eElKSkd495aj+AAHSRJsvUg34w7xvOIiADbv3//3brC/qzXHsA9976F7OwCBAXpKlVOr75zARm2GyIygOMn0rBw0Q5MeKaH/StOVAmK6UE/cOAA2rRpg+DgYAQGBqJ9+/b49ddfSx2TmZlZKsAT3UzJ5NyowC0y/jlwGo+//bBdygry15UdviYIeKRP9bdfqcne4e7syLGLZd5rWZbx0272ohMxnpO9nZ04CXeGx+DO8BicnTjJLvF81C0T0EszFH11D9kekyQJk7omoocYD1mSMWrWMOgCdLae+sZ3xmHdnM1Ylfw+si6V3b1FXTTkPHn/achqFZq3bQwA+HjKKuiKEsaCAgPGzhwKyMDlAgMEQcC1fAMgCDAZjJCKkvN/xxhBEBAUFIDfjl9Abp4etzSIgqqcefAVccd4rtWooFaLMBiKRwbc3a4RXnql8r3oRqMZZXo3ZBk7vj9a7vFEjqCYHvTMzExERBT3PIWHhyMrK6vUMWlpacjJyUFCQgLOnz+PLl264KmnniqzUMeMGTPw6quvlnsdQRAwadIkPP/887bHUlKcNw+ZymfvNjGbJaScSEVwTCD8gys3JKy2fb1oB3QB3vAKUdvl9S5/qT8GvbIGZosMQRAgQ0b/Ds0Q4Vfz99OZnxGL2QJRJTp9tENJERE6nD1b+jFJkhEZ7uWQ94p/s5Tl3+2hpN9VZ2A8p5Ls1Sbv3vMfAEBy8sUax/MXu72O1BMZgGCNMT3EeDRp2wCnDp5Diw5NsOKidVj6jmU/wWgwIiUlBWtnfYWjRVOZjNDbesxLWnr2Hbz20DvQFBggqwSkpKRgeu85uL37Ldgvy5BlGSqNCmrBBNliQYEgA5Bx5lwyABmXktMAFG+nLsvF8RwQEO6nhhY6WCQZIiywWMxVfn/dKZ57eathMlpgNkt4e+5mPPxQGzwzviOGj/gUp06dh6+vtnoFC0BMtD/juQdSSjxXTIJe3sIVklR6RU5/f38MHjwY/fv3x7Vr1zBt2jRs2bIF9913X6njEhMTkZiYWKY8oWjBjZJSUlIQE+PcechUWm21SXRkpF32sTQUGuDl41Xjcn5esx/dhnex62tdnBCPp2Z/gdBAHQb8pyWeHNSpxmU68zMiyzJSz6ZCI2oRXifMKXUoz5uzhmHk6CVIvpAFWQZEUcATY+9Bv3531fq1+TdLWcprD0//wsV4TtcpMZ6vnbcJqSczildJL/pdOvXbOeyQSve8xtSLhmSR8cG4lTh56Cy2FHyOEY2fxscTrNu8iSoRUonV43Mu5GHP+gNYfGw+Hnp9Df756SzSzmTg47/mo/2AWRAgAKKIFo3rQ2WRIWvV1jVifAOhUqkgmATkDmljLVsUijN1CJgwrAsWrt4NHy8NXnikG3758yx8vA1Ven/dLZ6HhvjjWp4eekMeDh5MRkLRgrt3tW2IhYt+xuJ3H7lpGT9+/yK6dnvDmogJAiDLCAnxxUcfPGaXOt4I/2Ypi5LiucMT9A0bNmDXrl2lHhNFEb1798aJEydsj2VmZiI2NrbUcfXr10dcXBwEQUBgYCA6d+6Mc+fOOaLa5AbskZybzWZcOp+G4PBABIcFVbsco96I9KTLeGbRmBrXqaTV239H8/oR+HTGcLuW6yyCICAyLrLc7Wyc7ZNlj2P+gm+RkpqD9nc3wqD72zi7SkQOxXhOzlKTeP7T2r22nunrBKFkMlzML9gPxkIjslKuYM3FDwEA/x17L1YkrgWAUsl5QIQ/nus8HW//kIjGTa1f8mc/9j5mbZiML+d/A1kQAciwSBLCg/2gk4E8QYBKFJFXaIAgCliWlALZSwNRECAV3YDSalTockdjLF73C5rXj8CFjGzc17kldh06DdGFRuvURjwPD/eH0WQd3p6ZlQej0QytVo3Zbw7BPfe+Zfv/zeza+TJ69ZkLk9mC0DA/rF/ztN3qSFQdDk/QBw0ahEGDBpV5/OrVq1i5ciXy8/MhCAL27duH+Ph46x231FRERUVhw4YNOHr0KKZOnQq9Xo+9e/eiX79+jn4J5MHUajViG9cpNbe9OhaOW4LYZnXsVKtih/65gPHxNe81dxZZlmEymqD1Kh6WpuR5c89N7O3sKhA5DeM5uaL39r+Ne4XBpR67nrDHR45BjxH/wdg5IwAAsx9dBAD438HZtmOHJgzExy+uKlNuQJA/2vdtg9u63FJUKBB2Rz3c/p+WeLnPG1DFt4FkHamOiGA/RPvrcMpkhCgKyCswILVXS+tq9RbJtme6KAgwmSWMGXA3vj9wApcu52BojzsAABZJUuTN6+scEc9jYoJx/nwmAMDHR4v7H3gXMTFBWDj/YfzfnXGYPGUt3p1fuQ6L7dsm27VuRDWhmE92cHAwRo8ejUmTJuG5557D8OHDER4eDoPBgEcffRQ5OTkYMGAAIiMjMWbMGDzxxBNo3bo1unfv7uyqk4epaXIOAHs2HsD9E/raoTbFLl3OQYHehPjure1ariNdSb+KCycvlhkOS0Sug/GclO5/v70OoCgxhwC1RoUd0noMeLoPflyzBz3EePRUDUHzuxpXeg6qyWDC5GVPAQD+2v03YJFwa7+2eCB8NCYtfQpyUTnXy7u3QzMAgEol4u2VOwG1iLszCwFV8Vdzby8NwoJ8MWXRZkSHBeJagQHjHugIALBYZKhVyu1Bd0Q8r18/FIWF1gUD9XojCgqNOH0mA/cNnI/pUwfiyJEL4NcJckWKmYMOAN27dy8ToL29vbFjxw7b/8eNG4dx48Y5umpEdjEobCTycwohWSTc92RPu5a9bPN+1I0ItGuZtc1oMEKtUdt6AXwDdMi4lAWLWYKodcz9Q32BHhovjaJ76olcDeM5KVmz/2uGtSkf4ql2L8NUaERUnHVRw4enDUbnB9rhsVbPo2XHZjiy+zgkScLM+Hfw9KIxCIkKqrDMz869Z/v31H5vQuh7K3Zu+Q13dW2F3qPuwavbD0IAbFuj/bdvW7z/0xHkFRigUYuou/1vnOvQGLAtDAeoVSJiI4Pw16kUxEYGAwAOHb+A/2sRC4skVWkV99rmjHjepFEECgsNAKyDD66TJBmPP7EMd7Suj0kvfI757zxUQQlEyqScTzaRm7tXHIzcrDxIFgmyLOOhBk/atfw9h8+hR7tmdi2zNkmShIwLmbiSXrxVjbfOG41bxUFTiTlj9qrD5dQryMnKdcj1iIhIGUKiQrAm6QOsOPkuTv52BgCwbdlOjL1tMjZeWY75u1/DxiufAABSTqdhaMzjeLDuWLzU9w3IRSuyA9ZeeFkozg5fGzoPUQ0ioDJL0KsEzPr6RetxRZ3dqqIEPaIo2RcEAUN73AlRFHDFR23bi1sUBBTqTTh7KQv9OrXEuZQs9O/SCq8vt97kMlskqFXK+BrvrHh+yy2xsEjlLB4AIL/AgHlzh+HPw8m1dn2i2qKMTzaRm4uPGgPIxUPbBEFAZtIVLH3lc7tdIysn3zb07d/ycvPtdh17EUURUXERCIsuvReyPRbzq0od6jSIQkhEcJXO0xfoa6lGRETkSH5BfqjTOAqPtXoO709cju3mtfALsm7fpvW2zp9evP9N7JDWo9tDnfHbt38AKB3PRVlED1080pMu4+cv9mHWlpcgFxjgU7LHvej469Pk7h69AAAgyjL0BhMEUYRRq7atVSfJMkwWCwr0RlxIz0abFrGYNqYnLl3OwakLlyEpaA66s+K5KFpHJJQ3C6F5s2gAwG23xmJywpoKy2A8JyVSxiebyM1dy84vM49NkiWcOnTaLuW//+UehAbqyn2uML8QGZeyYDKZ7HIte1KrnT/LpqpfcExGEy6dTUVhfmEt1YiIiBxJ66NF8vFL2Jy7stznszOto6zGvm3dtqu8eA4zML7tixgxYwhGNnkWgT5e0MslJkAXneOlUaHdyPmICQsEJGtPfIHBiMLw0nu6q0QBoiDg4T5tcOifC3hzfD8U5heiXdM6mPr+VpgtMlQKmoPurHju5aXB7bfVA2B9i0VRQOvW9TD37QcBAHPnDMOh38+Xey7jOSkVE3QiB2jWtnGZPXsFQcDUNc/bpfwd+0+g4+0Ny33Ox9cHsY2jodE4rmdaafJy85Fx6bJdytJoNajXtC58fH3sUh4RETnP6BYTofP3gZdOi2+X/1jmeVEUkZ+dj/cmLsegsFEAUG48b33PrdD5e+OndXvRYUBbRIT6w1jimKIB8cjKKUCjuqHY8PYoCBYJMgC90Yy8OkG2vdmtvcLWnuGUy7loWCcUQf4+8PH1wTuT78fZS1k4djYNew6fw7Y9f9fCu6Jc/47nfn5e0PlYRzqMeKQz3pg1GPPnFs8516hFtGpZFwkvri1TFuM5KRUTdKIbMBQtPlJTC3+ehTt63AqgOLCvTF5kG0ZXUxczcjC6f7sKn/e05DwzNavUFyiNRg211n7vgcaOZRERUe0rL54PChuFFnc3wYJfZqH7w12watYXpZ7/ZcN+SJKEx1o9jz2bDqLrsA4AinvQr8eZQdO64c8dR9C+f1vk5xRi6prnEB0WYNsuzXoSIIsidN5afD7Luo2bxiIDggCDwYzCoOIk0c9HC7NFQo92zfH9wZN44ZFutueefeeron9Zrz39o2+x/oc/a/TeKNnN4nlIsK9tHrqfrxbt7mpUpozZbw7Bwd/OlVs+4zkpERN0ogoYCg1IPpUCk8E+Q8Njm9RBQKg/Og9uj68LViKqblSVyzAZTGXu3H+58y/ovLWoE37zFdwNegMsFkuVr+tKzGYzCvMKYTKabY95+XghJDzIeZUiIiKnKS+e99Y+iGEv3o8Xlo8HAEx8fyzSzmUgI/ky3nrkXfTzexhvPvwuRFHEi589g1Xn38M/+04BANRa664fglbAnN9fwS8r/kLXBzti06Jt+DzpfQBAk7hIyEUJulmSAJUIAUCLuEgA1ngeUPR8ocEEqcRiagVF9YwJD0CgrzfatIi1PXfw77KLns1e8YNd3ielqUw8j4oKQmbmNQDA/gNnyi1Hp9PilhYxePHldbVaXyJ7YYJOVAEvHy/Ub1bXbouc7Fq7B0Ne6I/E9ZPg7e1d5fMtFgvSktORfTmn1OObdx/Fnc3q3PR8WZaRlXIFl1OuVPnarkStViOmYTS0DlxsjoiIlKtkPD++/yR6iPGY/d1UxE/ubztm83vbofHSYHjcUzj1+zlMeO8xbClYBa23Btenkp8tWhHcbLTe6N5hWI+/vjoJY6ERP3+xD29/P81W3m23xQGigEuXc9B+1AIAgCADfjqtLZ43Kdo6LTntqm1leAGA2SzB10eLtTv+xOMD29vK/Gz7H+UuiGYbG+9mKhPPD/+VjLPnMiAIwNlzFU9le/P1Idh/4GxtVJPI7pigE92AvZK8s38lIT+7AEMTBla7DJVKhegGUQiOCCr1+MnkDDzY886bni8IAqLiIhEVG17tOrgK7mlOREQlab002LhoK57rNA3bzWtxe9dWSDmThqn93kQfr2FY+vIq3NX3DqhUIpYem48eI7oCAFQaFfJzCgAAFnPxCDTfYF8AwMoZ6+Ht642ej/4Ht3dtZXv+rrubAgAGTl6KYb3utG3UHejnY4vnYx+7F4B1FxYIgm2LNQFARLAfJEnCA91us5U5sHPLMqPoZFmGoJDV3GvDjeJ5vwHzkZNdYH1rZeDKlYp3rAkI8EazplF4eeoXFR5DpBTu+4kmUpClL61Cs7Zl50VV1b9XSf2paBX4yvSgA1VfsdxdybKMzPRsZ1eDiIhqyZq5G9FbMxS9tEORfDoN85/4ECumr8W3prX4bOZ6DI15HCObPouczGt4fevL+Cr7U7z65QsICAvA8mmrbeWo1Crk5xaUKX9T1id47NbnEd0wEiq1iOeXjCv1/M7frMPhu93WAM8/1BWAABkygv2tc83VajVatqwPoOyicxKApJQreKDb7bbHEj/ahnvGLUa/TkVJeolzDn4ysQbvlGtasPA7FOQbbNvSXb+x8e7iHRWe88aswfh1n312zyGqTfy2TuQAf/xwBMOnDbZ7uV/sPIwmMaFQqar3Ub7RfHRZlpGVeqXMFwd3YDZbkJuVA5PJfPODiYjIpax640ssTfgcFosEySxhTNNn8POG/YhrGYueqiH4+oMd6DW6G76zrMOifW/gzu632s4dNLEvvvmgOMnTaNUoyC3E7FGLSl1j65LvkXYuHZcvZOGTk6Wf+3LnX5iy6GtAllH3+iJkAiBDQEigb5n6lomysgwJwIQHu+Cv06no+uRiHDubhoMrnscPB0/i1bF9UDcyGI3rheO3TycB8Lx4nnOtAP8e7y8D2LjpEHbvPlHuOSEhfmjSOBJTp3/pgBoSVR8TdKJ/MZvMsFikmx9YSd9/thsqtQrt+t58GHpVHT6VgsE97yizJ2tlmM1mJJ28VOFK9WazGbnZ12Ax2++9qA3V+cKh0agR1zwWGo3arb6wEBERsPyV1WUeu5Z1DT5+3lhydB7Wp32M0bOGlXvug1PuR0FuIf788SgAQK1VozBPj5/W/mo7ptndjbHwqSUwFprw3qHZpc7/+Kt9eGvF93jhkW4QTBLOJpWeFx0aoCtzzX9HcFEQ0L1tUzz99pcY+/oajI/vhC/eGoVn525A03oR6NfpFmycMxqrX7Puy+6J8fyR4R1Lv28lTn115kbs2HGs3PNemzEIe/aeql4FiRyECTpRCbIsIy0pAxkXMuxW5ro5X+Gu/9o/Of/x0GkYTGb079Lq5geXQ61WIzg8AFpvbbnPazQa1G8WC7VGufO5zSYzLp1Nq9a5oijCYrEg6cRF6Av0dqmPu6+QT0SkdH/uPlr+TWsZePPbqajfou5Ny7ir7x34cPKnAACttxb6PD1M+uIV4NWiCmqNGvdP6IsGrerZHn9n1Y/4cMNeTH+sF4bc2xoqSUL61bziggUgPLjs9qqCIECwPg3BWlX89Ls1xu9b/hziu7fGnsPn8NvxC1g67cEy53tiPG/YIBzLlz1u7USX5VJ3OWQAb835ptzzIiMD0ahhBF6duemG5TOekzMxQScqQRAE1GkUjaj6kXYr89yRZIybP9Ju5X398zG0fXQeEt7dDEmqWe9vcFjQDXvfXWHOurqaw/sB6+IzeVfzkZVa85XtLRYLLp5ORc7VazUui4iIqqd1RTetBeCJ1pNx5JfjNy3jpVXP4vQf1n2ztd4aFOaVuIkrAH/vO4k6TaIwbt5I28PTP9yGtTv+xOxn7sN9nVtaz5WBnBK92jJKJ+jdxy62rt4OawdBS2PRXGoBeOe5gVjyylDbsZMXfoW5EwdUWGdPjOf1YkMw4pFOVR5FOCNxEHb/XP4weIDxnJxP+Z9WIgcTBKFaQ8bLs/TlzxESFYSwmBC7lPfFD4cx8+PvSj3W9tF5FR6fdj4daeer18PsCtQaNaLianYzpeXdzRDTMLrGdVGpVAiJCoJ/OfMLiYjIcbboV9m2Lbv+s0Naj7pNo/FCtxkYGvM4Ni7aWuH53jpvxDargzmj/gettwaXzqbbnlOpVFCpVPjo8Du2x56fvwnb9h7Hu5PvR7c2TWyP61QqFPxrylx0eAAAoNvji3DNYCqeRy0IOKqx3nT/au5j6HBrnO2cUTNXo3XDaDT0r/oWra6iuvF85IhOEMSy39kiIwMrPKdOnSDUrx+KmbO+Kvd5xnNyNiboRLXou09+RM+R99itvPmrf0KZ5WRkGZMXbi73+NCYEITGhNrt+rXlWk4+0i/ab1pBVdjzhox/oJ9L9FIQEbkzrVaL7+UvUO+WOmh8Zxy+l61ba01bNwnfGteg1+huWDF9Lfr5DseCJz8st4wRM+Kxa+1eePt6I+losu1xi9mClef+Z/v/2DfW4ec/z2L59GG4u1VcqTICdVoY/hWz1UUxIs9oglx2eTgAQHRYgO3fm3cfxZmLmXg3YRDjeQV++G6KNfYWzWEPCtLh85VP3vCcV6cNxK6fKh5NwXhOzsTfPKJaYDabkZF8GVfSsjHmjYfsVm5Fw7903uXv167RaqDR2mcv99qk0aig8Sp/7hwREVF1LDu2EB8cmlvm8dGzhmHT1RWYvGw8fv/+CHqqhmBKz9eQnZlrO6brkI5Qa1RIu5AOi6l4PvIj0wfbRsU9PP0z/HHiIta9ORKtGpUdiRUR5AdLid7dkveCK3tb+PXlO7Bs+kOM5zfxw3cJmDKlH6ZM/i82fvHsTY+vXz8M9eqF4vU3v3ZA7Yiqhgk6kZ2tmb0R/XQP4+EG46Hxsm8wXTnz4VL/l2UZoihg5hN97HodR/PWeSMkPMjZ1SAiIg/SdWgHfHp6MVacXgST3oT4iDEY3WIC9n3zGwCgIK8QKSfTbQPXIuqFYcSr1nnhgxKW4URSBrYsGIsGFUxji6sTBrnEjXWxRFo+9D+3lkrSr69gfnuD4mHeQ1/5FD3uaobGdZXfc36dM+N57563onfvW29+YJFpLw/Azh//rsUaEVWPWyfoM2bMsA1ftdcQVqIb2bhoK5a9vBoWswWyLMNkMGF0iwkwGUw3P7kS6kUG4aOX4ov+J0Cr0WD/J8/bpWwiIqViPKfaFN0gEvN2z8QOaT2a3dUEMwe/gx5iPCBZp0FBsCbQGcmZMBlM6DPhQ1xIz8bPS55FRDmrsl93a6tYoMQwaVWJ3vTGjaNtA9xl+fp1BPx1Lh0zF3+NFd8cRFZ2PmaN61tbL9vjNWoUgbp1QjB7zhZnV4WoFLdO0BMTE0stEEJU25a9vLrM79qFEynYt+MQ8q/l2+UaOw+dRlRoAA6ueA4/fzgeFrP7bgUiScres5WIHIPxnBxlyoqnsVVfFMtLDkkvujHUefQCZGbn4+CK5+GtVd+wrA6dWpYqQ6Mq3uZs064j1n/Icqmh7zKArw+cwuL1P+PL2aNq+nIUQ6nx/KUp/bDj+2NIS8vBpUtXnV0dIgDAjf+yEFGViBXMEW/QLBa+/vZZDfSHg6fQp0MLAEBGcgZkGYgpZ+6bqzObzbh4JhUxcZHQcn46ERE5mKQWIWnVUBcYAQA5D7WDrBJxcEXlRq7pdNbY9cfvZwAA3iWmvf2TZF1ITYZQZj66IAC9O7RAoJ97rNqu5HjevHk01GoVhj38PgAgNjYUny5/3Mm1Ik/n1j3oRI6WsOLp0qt+ykDrbq1Qt0kdu5RvliRcvpqHZ4Z0BgBENYhCdMMou5StNGq1GgFBfi6xKA4REbkXQ9sGyH3wLuQNuhPZ99+B7OHtgCok5zaSjF9/PQkA0PlYk9MCvRGmotFvqnJXCnf9tWVKUnI8nzjpcxhLTEO8eCELo8Z87MQaETFBJ7KrjgPaYsamF+Cl00KtUeH27q0w5/tEu5W/cPVPiAot3n7F3edjhkQGO+T1GfSGag2/y0q7grTk9JsfSERELqN711egbx5l7coWBMDPG4Io4kBVk3MAsEj450wKACDA1wsAsHKrdRE6rUaFZvXDrZPQS/wcWPGc3V6LUig1nh89erHUZncygKTkTJjMyhyST56BCTqRnTXv0AQfHZ2DrfrVmGvH5BwAvj9wEr3ubmbXMj2dJEm4fDELV9KrPvfMN9AXASEBNz0uMzUL2Vk51akeERE5WE5sSOk90Yp8NG9TlctSSTLSruQBAIICdACK5593vbMxjp9Ph0qlQpC3FoIg4LGB7atfcQ9XnXiuVpdNhURRrGBkA+M5OQYTdCI7y8vOh7evzu53is2ShMzsfDxdNLydiuVcyUX6xYxqnSuKIqIbRCIsuurb2Hj7eEHn53Pza6hVUFWwPgERESnHowPfqHCT8ltui6tyeRpJxlW9AQAQ4GudU56VWwAAKDSYoNWo0L9LK3S+qylio4LxxKAO1aq3u3B0PJ/28oAy92JGj+qMCvJzxnNyCP6GEdmRJEmQJcCv6C65Pc1ftQtRof6VPj7jYiZMRvts76Z0Wi8NtN7VX3hGVWJl3doQEh4E/6DKtx0RETlHgcEMAYBcYuCzLMuA0YJO97aucnk+KhX0RTsPBPn74NjZNMiyDLVKxC+Hz8EiyXi0X1t888vfFa7aznheeVWN5x07NsH0aQPh6+sFby8Nnh7fHQ89WPEoBsZzcgSu4k5kR6Ioom6j6FqZZ7Xzt1P4b8dbKn28bLHAaDQpclEWe/Px9YGP7817somIiG5k/bbpaPvQ2xA0xV+RBQD/V83y/LRq5Bqt85mD/XX4aOOvAIDIUH+kZuYivvvtGD5tJV545J4Ky2A8r11duzRH1y7NHXpNohthDzqRndVGcm40V314e0S9CPj62b8nn4iIyJ0d/DwBMJggSDJgkXCPlzfeX/1CtcoKD/SFVDReOjRQh4PHkwEAGVfyIAoCUjNzUTciCPHdW1dYBuM5kWdhDzqRC1i4umrD24HauVFARETkCQ6umYJ1S7/DkDE9a1ROvegQ/H41FwAQFuwHk8kCQRBgtljQp+Mt+O7Xf/Drsok3LIPxnMizsAedyAXs/O0Uet3t/sOvZFmGodDg7GoQERHVODkHgGZNogDRmmD/c866+JkoCFCJIn7YfxKvjetb42soEeM5UfUxQSdSuOoMb7fLdQ1GpCVXbyXV6rqamYvUpHRYLJZav5anLLhDRETOc1e74pvr63/4AwBgkSREhvjj1sbRuLdt01qvA+M5kWthgk6kcNUZ3m4PZrMFkOWbH2hHIeGBqNs4ptZXVb+alYPzJ5JgNptr9TpEROTZYmOLt/zKzM4HAKhUIjKz8/H+i/EOqQPjOZFr4Rx0IoX74eBJ3Ne5lcOvq/P1gc7XBykpKQ69rlpd+3+WgkMD4evr45BrERERlSTLMhYnPOCw6zGeE7kW9qAT1SKj0Viz880SsnIKMD6+k51qRNfVZJ9VIiLyLDWK5yU6rwUB6Ny6IVo3rVPzShEAxnNyP7zdRFRLstKzkZ2ZjQYt6kEUq34vbONPR7Bl9zFEhwXUQu2IiIioMmoaz1FiEXYvjRpzJwywX+WIyO0wQSeqJSERgfAP9q1WMO///BKkXcmDLMsQRQGSBFTnOwERERHVTE3iedtH5lq7zYsseNZxQ9uJyDXxKz9RLREEAVqtpsrnDX3lU6ReuQa5aEEXSZLR4+n3qlRGXm5+la9LREREZVU3nrcbuQCyKFoT9KKfJ+esqVIZjOdEnocJOpHCpFzOKTVfDQDy9QZcSM+u1PmGQgPSktNhNHDbESIiImeRJEvJ0e0ArMl+z2c+qNT5jOdEnokJOpHC6LzK3qUXICA2MqhS53v5eKF+s1hoyymHiIiIHKO8jc0kGfhu0ZOVOp/xnMgzMUEnUpjVr48oNc9NAKq8V6pG41nB3KA3oCC/sEZlyA7eI5aIiNzb3U3rlOlBV6uq9tWb8bzqGM/J1bl1gj5jxgwIgmD7IXIFIQE6/PTh07itcTQa1g3FgkmDuB3LTeRczkVuZm61z5dlGZfOpiI3O8+OtSIie2E8J1e0eOqDeKxfO4goXsh93/KJTqyR8jGeEwGC7EG3mQRBKHNXLSUlBTExMU6qEZWHbaIsntIe2Vk58Av0hVqt7M0tPKU9XEV57cE2qn2M566BbaIsntIejOdUHUqK58r+zSUicpCg0EBnV4GIiIhqiPGcXJ1bD3EnIiIiIiIichVM0IlIkYx6o7OrQERERDXEeE5UNUzQiUhxTAYTzh+/AH2B3tlVISIiompiPCeqOs5BJyLF0XhpENciFlpvrbOrQkRERNXEeE5UdexBJ3Iz7rIxA4M5ERF5MsZzIs/EBJ3IjeRcycWlc6luE9SJiIg8EeM5kefiEHciN6Lz94EsyxAEwdlVISIiompiPCfyXOxBJ3IjGo2G+38SERG5OMZzIs/FBJ2IiIiIiIhIAZigExERERERESkAE3QiIiIiIiIiBWCCTkRERERERKQATNCJiIiIiIiIFIAJOhEREREREZECMEEnIiIiIiIiUgAm6ESkaBaLxdlVICIiohpiPCeqHCboRKRYJpMJSScvQV+gd3ZViIiIqJoYz4kqjwk6ESmWRqNBSGQQvHXezq4KERERVRPjOVHlMUEnIkULCglwdhWIiIiohhjPiSqHCToRERERERGRArh1gj5jxgwIgmD7ISK6TpIkSJLk7GoQUSUwnhNRRRjPyd24dYKemJgIWZZtP0RE16WeS0PKmRRnV4OIKoHxnIgqwnhO7kbt7AoQETlDdIMoftEnIiJycYzn5G6YoBORRxJFtx5ARERE5BEYz8nd8DeaiNxC/rUC3kEnIiJycYzn5OmYoBORy7NYLMhMyUJ2Zo6zq0JERETVxHhOxCHuROQGVCoV6jaOgUqlcnZViIiIqJoYz4nYg05EboLBnIiIyPUxnpOnY4JOREREREREpABM0ImIiIiIiIgUgAk6EbmEazl5MBQanF0NIiIiqgHGc6IbY4JORC4hPzcf+XkFzq4GERER1QDjOdGNcRV3InIJUbGRzq4CERER1RDjOdGNsQediIiIiIiISAGYoBMREREREREpABN0IiIiIiIiIgVggk5ERERERESkAEzQiYiIiIiIiBSACToRERERERGRAjBBJyIiIiIiIlIAJuhERERERERECsAEnYiIiIiIiEgB3DpBnzFjBgRBsP0QERGR62E8JyIiT+HWCXpiYiJkWbb9EBERkethPCciIk/h1gk6ERERERERkatggk5ERERERESkAEzQiYiIiIiIiBSACToRERERERGRAnh8gj5v3jxnV4H+hW2iLGwPZWF7KAvbQznYFsrDNlEWtoeysD2URUntIcgetByqIAhlVn8t7zFyLraJsrA9lIXtoSzltUdKSgpiYmKcVCPPwHjuGtgmysL2UBa2h7IoKZ6rHX5FJ+rUqVO5+6dyT1XlYZsoC9tDWdgeyvLv9khISMDs2bOdVBvPwHjuOtgmysL2UBa2h7IoJZ57VA96eWrj7pW9y2R5LI/lsTyW5xnlUfUxnrM8lsfyWB7LU0p5NeHxc9CJiIiIiIiIlIAJOhEREREREZECMEGvBa+++irLUxClv16ll2dvSn+9Si/P3pT+epVeHrk3pf/+Kb08e1P661V6efam9Ner9PLsTemvV+nlKQnnoCtovgFZsU2Uhe2hLGwPZWF7KAfbQnnYJsrC9lAWtoeyKKk9PL4H3Z3vvrgqtomysD2Uhe2hLGwP5WBbKA/bRFnYHsrC9lAWJbWHx/egExERERERESmBx/egExERERERESkBE3QiIiIiIiIiBWCCTkRERERERKQATNCJiIiIiIiIFIAJegl6vR4JCQnOroZH2rlzJ0aNGoWRI0di+/bt5R4zYsQI9O3b1/Zz7NgxB9fSs1SmTaj28DPhGhg3lInt4jz826U8jOfOxc+Ea1BS3FA7uwJKsW3bNmzbtg1Go9HZVfE42dnZWLp0KRYvXgxRFDF+/Hi0adMGoaGhtmMkSYLRaMTWrVudWFPPUZk2odrDz4RrYNxQJraL8/Bvl/IwnjsXPxOuQWlxgz3oRQIDA9GlSxdnV8MjHThwAG3atEFwcDACAwPRvn17/Prrr6WOyczMZDBxoMq0CdUefiZcA+OGMrFdnId/u5SH8dy5+JlwDUqLG0zQi3To0AHt2rVzdjU8UmZmJiIiImz/Dw8PR1ZWVqlj0tLSkJOTg4SEBAwZMgSLFy+GJEmOrqrHqEybUO3hZ8I1MG4oE9vFefi3S3kYz52LnwnXoLS4wQSdnE6W5TKP/fsPk7+/PwYPHoy33noLS5YswcmTJ7FlyxZHVdHjVKZNqPbwM0FEroh/u5SH8dy5+Jmg6vCoOegbNmzArl27Sj0miiIWLFjglPp4more/969e+PEiRO2xzIzMxEbG1vquPr16yMuLg6CICAwMBCdO3fGuXPnHFFtjxQaGnrTNqHaU5n3n58J8mSM587FeO46GM+di/GcqsOjEvRBgwZh0KBBzq6Gx6ro/b969SpWrlyJ/Px8CIKAffv2IT4+HrIsIzU1FVFRUdiwYQOOHj2KqVOnQq/XY+/evejXr58TXoVnaNeuXbltQo5R0fvPzwSRFeO5czGeuw7Gc+diPKfq8KgEnZQpODgYo0ePxqRJkyDLMoYPH47w8HDo9Xo8+uijWLduHQYMGIDLly9jzJgxMJvN6NmzJ7p37+7sqrutitqEHIOfCSJyRfzbpTyM587FzwRVhyCXNzmCiIiIiIiIiByKi8QRERERERERKQATdCIiIiIiIiIFYIJOREREREREpABM0ImIiIiIiIgUgAk6ERERERERkQIwQSciIiIiIiJSACboRERERERERArABJ2IiIiIiIhIAZigExERERERESkAE3QiIiIiIiIiBWCCTkRERERERKQATNCJiIiIiIiIFIAJOhEREREREZECMEEnonIVFBRg4MCBOH78OAAgKSkJw4YNw5kzZ5xcMyIiIqosxnMi18IEnYjKpdPp0LdvX3z55ZfIzs5GYmIiJk2ahEaNGjm7akRERFRJjOdErkWQZVl2diWISJkyMjIwcuRIxMXFYcCAAejVq5ezq0RERERVxHhO5DrYg05EFQoLC0N0dDRCQkIYzImIiFwU4zmR62CCTkQVWrhwISIiInD48GHk5eU5uzpERERUDYznRK6DCToRlWv16tW4dOkSXnvtNTRv3hzffPONs6tEREREVcR4TuRamKATURk7d+7Ejh07kJiYCLVajQceeACbNm2C2Wx2dtWIiIiokhjPiVwPF4kjIiIiIiIiUgD2oBMREREREREpABN0IiIiIiIiIgVggk5ERERERESkAEzQiYiIiIiIiBTg/wHptqlnT64kDAAAAABJRU5ErkJggg==",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "plot_predicted_graph(metric_learning_model)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Track lengths"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 18,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 13588])\n",
-      "torch.Size([13588])\n",
-      "torch.Size([2, 2370])\n"
-     ]
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAGQCAYAAABWJQQ0AABPDUlEQVR4nO3deXxU5dn/8e+ZLCyBrCRgIMiiBARUNBpAoGIKtIqtbV1K01oLbV14Si2hPrZ9bMivWm21ailVq4Vaqa217isuoBYQCAjIIoadAEMICQnZmGSW8/sDGcGsM5ntZD7v12teZE7mnvs69xzmynXOfc4xTNM0BQAAAAAhYAt3AAAAAACiBwUIAAAAgJChAAEAAAAQMhQgAAAAAEKGAgQAAABAyFCAAAAAAAgZChAAAAAAIUMBAgAAACBkKEAAAAAAhAwFCAAAAICQ6VIFyJEjRzRlyhT96Ec/OmP5yy+/rClTpmjRokWy2+2aMmWKCgsLO/Se1dXVqq6uDkK0kWHt2rW66aabdOWVV7b4+1Cvf7D627p1q6ZMmaKFCxe2+1pft5HOOn2dQ903gJPIH75rL38E27x58zRlyhTV1NSE9LM5vd9Av3dbyGPoSmLDHUCo9ejRQ3l5eRo2bFiHXj9r1izFx8frX//6V5AjC4/nn39ehw4d0o9//OMWfx/q9e/q492SaFxnwIrIH2dqL3+EUiR9Nl39c29JNK4zOifqCpCUlBTdeeedHXrtvn375Ha75XK5tHv3bg0dOjTI0YXWvn37dOjQIdlsNl1wwQXyeDyy2Wxn/D6U69/Vx7slX1znHj16hDskAK0gf3yuvfwRapHy2XT1z70l5DH4I+oKELvdru9///saP368ioqKJElvvfWWnnnmGR05ckR9+vTR1Vdfreuuu0733HOP6uvrJUm/+MUv9Oyzz+rQoUN67LHHtG3bNsXHx+uiiy7Sj3/8YyUnJ3vf/8EHH9SePXv0la98RevXr1dlZaWef/557d69W7fccoumTJmitLQ0lZSU6Pe//71efPFFvfjii6qoqFBKSoquvPJK5efna+vWrfrZz36m3NxcHTt2TAcOHNCoUaM0c+ZMPfLII9q1a5fOOecc/fKXv1R6enqL69tWvPfcc4/Ky8slSbNnz9ZLL72khIQEb9svrv+9997bLP7vfve7Kigo0De/+U3deuut3vfasWOH3njjDcXFxWnjxo3661//qtLSUvXt21ezZs3SuHHjmsXakf7aGi9J2r17tx599FHt3LlTvXr10le+8hV997vfbdbXX/7yFz333HO68cYb9b3vfa/d7aa1dTj1mU6ePFnx8fFatWqVEhMTddtttyk3N7fdbeKL6/zwww9LktxutxYsWKD3339fKSkpuv322zV69Og2t1cAwUX+6Hj+2Lx5swoKCnTllVfq+PHj2rRpk4YOHaqbb75Zw4YNa3V92soXO3bs0IIFC3Tw4EFNmDBBTqezzc+mtXzQ0mfjb79fRB4jj6FjutQ5IKfs27dPU6ZM8T7ami+5c+dOPfDAA4qJidGMGTOUlJSkxx9/XB988IGeeOIJJSYmqk+fPnr22WfV0NCggoICrVu3Tl/60pc0evRovfPOO7rrrrtkmqZcLpfmz5+vLVu2aPz48Vq7dq327t3brM9169bp2WefVa9evbR582Y98sgj6tatm775zW+qR48eevLJJ7Vp0ybv64uLi5WWlqZ+/fpp/fr1uu2229S9e3f1799fW7du1b///e8W1629eJ944gllZWXJZrPpnXfeOSN5SGq2/i3F354DBw7ozjvvlMPh0PXXXy9J+s1vfqMdO3Y0e21H+mtrvGpqajRv3jzt2rVLV155pVJTU/XUU0/p1VdfPaOfN998U88995yuvPLKDn1pd2Qd3n//fR06dEjnnXee7Ha77r//fklqd5tobZ2Li4u1c+dODRkyRKWlpXrggQcktb29Aug88sdJnc0fpyxdulQNDQ269NJLtXnzZt155506ceJEi+vT1ndtbW2t7rjjDu3Zs0eTJk1SSUmJPvnkk1Y/m7bywRc/m0D2Sx4jj6FjuuQRkISEBI0dO9b7/MCBAy3+wSvJe9JUXFyc+vbtq9tvv10VFRXKzMxs9toVK1aosrJSX/va1/STn/xEklRVVaWPP/5YJSUlqqur0969ezV16lTNmzdPlZWV+va3v93sfWw2m5577jn17t1bBw4c0K9+9SsNHjxYTU1N2r9/v/bv36/Dhw8rKytLkpSTk6Pf/OY3+vTTT/WTn/xE2dnZuvfee3Xw4EH94Ac/UFlZWYvr1l68w4cP7/igthL/5s2b23ztm2++KY/Ho+nTp2vkyJFKTU3Vww8/rJdeekl33HGHz/21NV4HDx5UXV2dd2/Q8ePH9fjjj8vlcnnfa/v27Xrttdc0YsQI/fSnP+1Q/22tw7e+9S1J0ogRI/TQQw9JOjkXtrS0VMePH9fOnTs7tE18Uf/+/fWnP/1JkpSfny+73S6Xy+XT9grAd+SPjsXb0fzRr18//f73v5d08g/ZFStWaMOGDerXr1+z9Xn88cdb/a4999xzVV9f7/1+r66ubnOP+X//+99288EpbX3H+9pva8hj5DGcqUsWIOnp6WfMBX355ZdbTSAXXXSRvv71r+v999/3VvvDhw/Xz372s2avPfVFfeoQoiSNGjVKH3/8sQ4fPqzjx49720tSWlqaMjMzVVdXd8b7jBkzRr1795Yk9ezZU2+88Ya2b9+uiy66SKZpNuu3b9++kqTu3btLks4666wznremvXj9LUBOj789hw8fliQ98sgjZyw/dOiQX/21NV5HjhyRJO+c26SkJP385z+XdPLqIZK828HevXtVVVWltLS0gKzDgAEDvD+npaWptLRUHo9HBw8elNT+NvFFAwcO9P6cnJys8vJymabp0/YKwHfkj47F29H8cd55553RfsWKFTp27Ji3ADl9fdr6rj11XsGoUaMknfxeHDhwoEpLS1vst6188EWB7Lc15DHyGM7UJQsQXxw+fFiTJk3STTfdJLvdrmXLlumFF17QM888o1/+8peS5P1yOPVFvm3bNl1++eWSPv9CyMjIUExMjCRp165dkk4eAi4rK2s2VenU6yTpP//5jzZu3Ki7775bubm53r0FgdBevB31xaR2evyGYUg6uWdMkjwezxmXH0xNTZV08hDtoEGD5Ha7Zbfb2zxJra3+2hqvPn36SDo5f3b8+PGqqanR3/72Nw0ZMkSDBw+WdPJLburUqVqwYIGeeOKJDp202NY6nPqjob227W0TLf3h0JKObK8AQoP80b7t27d7fz41delUESSduT5tfde+/vrr3vcYM2aMGhoavH9Ut6StfHD11VdL+vyzCWS/p5DHWkceg0QBoo8++kgLFy7UqFGjlJubq4qKCkny7p3p3bu3Dh8+rKVLl2rixIn629/+ptdee02maaq2tlYff/yxhg0bphEjRsjhcCgxMVFvv/22DMNQSUmJPB5Pm/3Hxp78CP79739r1apVWrZsmSSpsbGx0+vWXrwdcfr6n3vuuc1+n5mZKZvNppUrV3oP6x89etT7+6lTp+rVV1/V/fffryuuuEJr167Vxo0b9fOf/1xTp071ub+2xmvSpElavHixnn/+eTkcDm3ZskXbt2/X3Llzve2zs7N11VVX6dVXX9WyZcs0ffp0756t1rS1Du1d4SQnJ6fdbeL0dT7//PPbfL/2tlcAoUP+aJ/dbtcvf/lLJScn67///a/69++vMWPGaN++fc1e29Z37dixY/WPf/xD//rXv1RZWamSkpI2TwafOHFim/ng9M8mkP1+8b3JY82RxyB10ZPQfXH11VcrPz9fFRUVeuqpp7RlyxZNnz7de8WJG264QampqfrPf/6jhIQEPfDAA7r44ou1fPlybdq0SV/+8pd19913y2azqWfPnvrtb3+rQYMG6f3339eIESN09tlnt9n/tddeqwsuuEA7d+7U4cOHvSeTrVq1qtPr1l68HXH6+rckLS1Nt912mxISErRhwwZdfPHFOuecc7y/z87O1vz58+VyubR48WJVVlZq3rx5LRYfHemvrfFKTU3V7373Ow0ePFivvvqqjh07ph/96Ef66le/esZ72Gw2/fCHP5Qk/fnPf243yfu6DqfryDbR3jqfrr3tFUDokD/aN23aNMXExOjDDz/UhRdeqPvuu++MowGna+u7Njs7Wz/96U911llnadmyZcrKymqzEGovH5z+2QSy3y++d0vIY+QxSIbZ0WNmaNehQ4f03HPPqU+fPrrmmmu0e/du3XHHHRo+fLj3snSILmwTADqiq31XnLoM7+mXaIc1dbVtE5Eh6qdgBdJZZ52lnj176umnn9aTTz4p6eReh9MPnSK6sE0A6Ai+KxCp2DYRDBwBCYKmpiZVVFSod+/eHb5aFLo2tgkAHdFVvivKysr0+uuva+TIkWdc1hjW1VW2TUQGChAAAAAAIRP1J6EDAAAACB0KEAAAAAAhQwECAAAAIGS6zFWw7rzzTs2ZMyfcYQBAyHXr1k1paWk+t7t+5QNaX7VLD180S1/rf0kQIrMG8geAaBWu/NFlTkI3DEP+rordbldmZmaAI+o6GJ/2MUbtY4za1pnx8bXtcUe9vrvyAb1RuUUej1vp3ZP0+KW36pr+uX71b3Xkj+BhfNrHGLWPMWqbFfNHlzkCAgBomctzXPsqH1VD027FGKZ++M4xrXE7pYQ4SdJRx3F9Y8U9+u05BTq711nql5qiiel9FGcYYY4cABBOwcofFCAA0IWZcurD3ZN1/MRGGZK6xcSqwjlV6hYvfbbXf2RKXyXVXaBffrhdSj0sxcdpeGKill0+UZndu4d3BYKgqKhI8+fPD3cYABDRgpk/OAkdALqw4w0fqcax0fs8pcfF6p+UfXL3kyndfO5kXZf8fW2oTZHOypC6d5MkfVpTowU7d4Up6uAqLCyUaZreBwCguWDmD46AAEAXVl5foYZGKaGb5DGlpO6jFBOXoBgzRk/mztZZsefry+8tk3p3kzwe714tSdpbXx/GyAEA4RTM/EEBAgBdmOd4qQ4ck4afJRmS4uLO0ZRBI/TAoJkakzxYx5qc+vSaq7SrtlY7amu0s7ZW22tqtb22Tt1jOEgOANEqmPnDstmlqKhIhmF4HwCAM5lHVii7+B5dZLtM+2skm02Kjz9Hd174dY1JHixJSo2PU3avBF11Vj+lufur7sgAJR4dooyyofp4U09V1DnDvBYAgFALdv6wbAHCHF4AaJ1Zvlru978nt7NGk2tduqjPfB1vlBK7D2u1zZcGdtP6E06VGFJjYoLquvfUbSuOqsbpCWHkAIBwCkX+sGwBAgBonfvD2TIdlTIluWq2aWx5uS455zXFx/Zrtc3ZCbF65MuZkiEZMVJcz1htqXfrlpVHQxc4ACCsQpE/KEAAoAsy+uScnLRrSKYhOfc8pXMqTig+JqPVNs4Gpwat3qbvjE6TDEOm5+QR5k2VTaELHAAQVqHIHxQgANAFxYz7k4z0KTIdnpOXLzEk56ofSFWbW23jqG3U0z9/Q+e/9J6yByTKtBnqEWvTQ2P7hDByAEA4hSJ/UIAAQFcU002xlz8ps2m4PNUZUtwYGWkT5DnwcqtNqkqrFNe9pzb+ZY3Oe/p1de8Wpwdy0zRtQI8QBg4ACKsQ5A8KEADoqnokyky+Tk3b09RYMkDOgzlylmbKtfE9eQ7vkVlXJUny7Dkq9z3PqmJfpTwetxLSMuR4dYP+7+hO5WVSfABA1Aly/uA+IJJ2VzpUbdT43C41IV79Elu/zTwAhJ3rhDy1x6TatXLvWHtymc2Q6XKq57wFMsqHquHHjyuuv0tHbzg5v9c0TaUmZ2hQz/gwBm4NuysdiktsVHqvbuEOBQACK4j5w7IFSFFRkebPn9/p91m6rUy3/3uH4mJ3+ty2V/c4vfOzSerVzbLDCKCLs/UZ8PmTz+6Z5HE1Kf6KH8n9nOT4ywIZMtRoa1TFzqMyZUimqfiYbkrt3zdMUVvDqfyRmrBXH/4iL9zhAEBABTN/WHYKVqDuA7L3aL2cbo9qHS6fH5W1DjW5uD4+gMgVN/kGxQweJUkynW45q+pkxI2X56kecvzlDUmGTNOpmtKDOrzx8Mkrn0hKGpCogTkDWn9jePOH/bgj3KEAQMAFM3+w6x4AujAjIVG97nlZ7u3FcpUdlMdercafbZSraadkmDKMGLldDXJ1s2nkVSNkylBS394ac+1oxXUnRQBAtApm/iC7AEAUiBlxqWJGXCpJissqUf0ti+Q5XC0ZUuzEERq0+FYN7df6Nd4BANEpGPnDslOwAAD+iZ2UrYS/zFLMoHTFXjFcSS/+n2KiqPgoKiqSYRjeBwCgYwKVP0J+BOTpp5/W008/7X3u8Xh08cUX65577tHy5cu1ZMkSmaapGTNmaNq0aaEODwCiQuzEbCVuvCfcYYRFYWGhCgsLvc8pQgCg4wKRP0JegOTn5ys/P9/7/P7779fkyZNVXV2tRYsWaeHChbLZbJo9e7ZycnKUlpYW6hABAAAABElYp2Bt2LBBhmEoJydHxcXFysnJUUpKipKSkjRu3DitXr06nOEBAAAACLCwnYTu8Xi0ePFiFRUVSZIqKiqUkfH5HLL09HRVVlY2a9fW/T8Mw1BBQYHmzp3b4Thqany/AeHpysrK5OjR9c/lt9vt4Q4h4jFG7WOM2ubv+DCFCABgJWH7y3nlypUaOnSod4pVS/fy8Hia32Pji3N3TzEMw6/7gSQmnpB02Od2p/Tr10+pCV37bsF2u12ZmZnhDiOiMUbtY4za1pnxobADAFhJ2KZgLV++XJdddpn3eVpamioqKrzPKyoq1KdPn3CEBgCWMnmVS9n/KQ13GAAAiwlX/ghLAeJwOLRlyxZdeOGF3mW5ubkqLi5WfX29GhoatGbNGo0dOzYc4QEAAAAIkrBMwVq/fr1Gjhyp+PjPpy6lpKRo5syZKigokGmays/PV3p6ejjCAwAAABAkYSlAJkyYoAkTJjRbnpeXp7y8vDBEBAAAACAUuBM6AAAAgJChAAEAAAAQMpYtQIqKimQYhvcBAAAAIPJZtgApLCyUaZreBwAAAIDIZ9kCBADQeR+uXafijzaGOwwAgMV0Jn+E7U7oAIDw2r1nn3bt2StJSktJ0dAhg8IbEADAEjqbPzgCAgBRaPeefVq1tliJib2VmNhbq9YWa/eefeEOKyQ4hxAA/BeI/EEBAgBR6rLcS9Wje3f16N5dl+VeGu5wQoZzCAGgczqbP5iCBQBR5NReqlOHy3ft3XvG8y/+HgAAKbD5gyMgABAlTh02b080TccCALQv0PmDIyAAEAU+XLtOu/bsVWJib+3au9e75+poRaUk6a1l73lfe2pOb2VVlS69eExY4gUARIZg5A/LHgHhJEIACC6XyxXuEAAAFtRe/rDsEZDCwkIVFhZ6n1OEAEDrxudeor7p6Vq1tlijR4zwztE9tedqWt5kSZ8fZr8s91LOAwEABCV/WLYAAQD4pqMFBcUHAOB0gc4fFCAAEEW+eLWSU7j6FQCgLYHMH5Y9BwQA0Dmr1hbrhMOhEw5Hh65uAgCA1Pn8wREQAIhCp/ZUnUocTLsCAHREIPIHBQgARKmhQwbpyNGj3p8BAOiIzuYPChAAiGLjcy8JdwgAAAvqTP6w7Dkg3AcEAAAAsB7LFiCFhYUyTdP7AAAAABD5LFuAAAAAALAeChAAQFRhCi8AhBcFCAAgqjCFFwDCiwIEAAAAQMhQgAAAAAAIGe4DAgAW995lscrMzAx3GAAAiwlX/rDsERBOIgQAAACsx7IFCCcRAgAAANZj2QIEAAAAgPVQgAAAAAAIGQoQAAAAACETlqtgbd++XQsXLlRlZaUmT56sm2++WZK0fPlyLVmyRKZpasaMGZo2bVo4wgMAAAAQJCEvQBwOh37729/qvvvuU3p6ugoKCrRjxw5lZGRo0aJFWrhwoWw2m2bPnq2cnBylpaWFOkQAAAAAQRLyKVhr167V6NGj1b9/f8XHx+vBBx/UkCFDVFxcrJycHKWkpCgpKUnjxo3T6tWrQx0eAHRJTU6ndu/dp/dWrFLpwUOSpFVrirVuwyZJ0u49J3+3e+8+NTmdYYwUABBJgpE/Qn4EpKysTA0NDbrllltUVVWl3NxczZkzRxUVFcrIyPC+Lj09XZWVlc3aFxUVaf78+S2+t2EYKigo0Ny5czscT01Njc/rcLqysjI5enT9+zna7fZwhxDxGKP2MUZt83d8OnIvpAMHDql4w0alpiTL2XR6gvj8MuZNTU0q/mijZEpDhwzyK5ZgYwovAIRWMPJHyP9ybmxs1M6dO/Xwww+rZ8+eKiws1Ouvv97ivTw8Hk+zZYWFhSosLGy23DAMv+4Hkph4QtJhn9ud0q9fP6UmxPvd3grsdjt3WW4HY9Q+xqhtnRmfjhQupQcPKjUlWdPyJnuXXTb2Uu/PQ4cM0tAhg/TWsvdUevBgRBYgTOEFgNALRv4IeQGSkpKiiy++WOnp6ZKksWPHat++fcrOzlZJSYn3dRUVFcrKygp1eADQJQ0cMKBDrztn8OAgR+K/06fwStKDDz4owzC0fPly7xReSd4pvNOnTw9nuADQJQQjf4S8ALn00kv1zDPPqLy8XAkJCVq5cqWuuuoq5eTkaMmSJaqvr5dhGFqzZo2uu+66UIcHAF1SR49oROKRj1M6O4UXAOC7YOSPkBcgffv21U033aR58+bJ7Xbr8ssv15e//GUZhqGZM2eqoKBApmkqPz/fe5QEANA5q9YUSzrzsLkk1dXXa92GTSo7Ui6n06m+Gem6YPRI9TvtD/pI0dkpvME8h5Dzm1rH2LSPMWofY9S2YJ5DGIz8EZazp6dMmaIpU6Y0W56Xl6e8vLwwRAQAXVt8fFyzZXX19Xr1zbfVK6GnLhw9UpJUdqRcby97X1PzLo+4IqSzU3iDeQ4h5ze1jHO/2scYtY8xaluwzyEMRv7o+pdvAgDokovGNFu27qON6pXQU1d/9fMrRo3IHqa3lr2nj7dsU7+8yCpAmMILAKEXjPxBAQIAUWD3nn2Ki4/TwAH9vcvKyo9691ydbuCA/tq0ZVsow+sQpvACQOgFI39YtgBpay4vAOBMpQcPqsnpPCOBWBFTeAEgtIKRP0J+J/RAKSwslGma3gcAoHUDBwzQsarqz67TfvJOtv0y0rVrz75mry09eEipKcmhDRAAEJGCkT8sewQEANBxWVkn91yVHjzovZPtJReP0atvvq1X33xb53x2+cTSg4d0pPyoRo0YHq5QAQARJBj5gwIEAKJAfFyc9261p/RKSNDVX52qdR9t1KYt27yXURw1Yri2bv9USYmJEX1fEABA8AUjf1CAAEAU65WQoMmTJjRbnpSYqFVri5WSksx0LABAM53JHxQgAIBmhg4ZpJSUZPXqlRDuUAAAFtKR/EEBAgBoEUc+AAD+aC9/WPYqWAAAAACshyMgFlNW49DG0mq/2o4bkqbknnGBDQgAAADwgWULkGi9EeFNf1un0mMNshm+tXN7TF0yKEVPzcwNTmAAAABAB1h2Cla03ojweINT9Q6X6nx8NDS6dbzBFe7wAQAAEOUsW4AAAAAAsB4KEABAVCkqKpJhGN4HACC0LHsOCADAN1u3bu3Q60aNGhXkSMKrsLBQhYWF3ucUIQDQtkDnDwoQAIgSXb2wAAAER6DzB1OwAAAAAIQMBQgAAACAkLFsAcJJhAAAAID1WLYAidb7gAAAAABWZtkCBAAAAID1UIAAAAAACBkKEABAi5jeCgDwR3v5g/uAAEAXZ0o6dakOt9utmJiYk8tN84yLeFQeq9JBu10xNpuy+vdXUlJi6IMFAESMYOUPChAA6OIMSbW1ddq0dZtKSw9qYFZ/XTB6pBJ795YkuT0efbx5q0p27ZZpmvKYHm3etl2jRmRr9MjzuNIgAESpYOUPChAA6OJqamu17IOVanI6lZyUKHtZuSqrqjV54mVKSuytbds/lb28QqPPG6Hhw86V2+PW1k+2a98Bu7r36KFhQ4eEexUi3tJtR3TzU+t12Tl99M8f5YY7HAAIiGDlD8ueA8J9QACgYzZs2iyHo1ETx16qq74yRRPH56rJ6dS27SUyTVPbS3aqR3ysRp03XLGxMeoWH6+LL7xA3eJjtWXb9nCHbwlr9lRKhqnNB6vCHQoABEyw8odlCxDuAwIAHVNeUamzs/or86x+Omi3K7NfX2X2y1DpwQNqbGqSx+NRnz59JJ2c4+t2uyVJKcnJsn023xcAEH2ClT8sW4AAADqmW7duSklO1u69+7R+42bt3rtPqcnJcrs9MiTFxcbooN0uj8dUTEyMYmJi5HK5VHbkiNwuZ7jDBwCESbDyBwUIAHRxbo9bTqdTSYm9Nf7SHCUl9pbT5ZJh2NStWzcNGTRIpmx6778rdPCQXaUHD2rZByskI0Yjhp0b7vADjim8ANAxwcofFCAA0MXZDJtssTYdrajUuo2bVV5RqRhbjAzj5BVMRp03Qt3jY1VT16DijR9r05ZPVFffoD6pyRreBQsQpvACQMcEK3+E5SpYN954oyoqKrzP77//fo0cOVLLly/XkiVLZJqmZsyYoWnTpoUjPADoUgzDJpnS8Oxz5XS6NGLYudq6vUQyDHncHsXHxykpsbcqj1Vp8NlZiouNU9++6crs1y/coQMAwihY+SPkBYjH41FTU5PeeOONM5ZXV1dr0aJFWrhwoWw2m2bPnq2cnBylpaWFOkQA6FIcjhM6frxGhmHo/FHnSZKO1xyXaZqKjY2R0+nSrj17lZyYpEsvvijM0QIAIkWw8kfIp2BVVFS0WFQUFxcrJydHKSkpSkpK0rhx47R69epQhwcAXU7f9D46aD+ssvJySVJZebnsZeXKyjxLhmHocFmZunXvoUFnD5RpmnK73UxNAgAELX+E/AhIWVmZjh8/rjvuuEP79u3TpEmTdNttt6miokIZGRne16Wnp6uysrJZ+6KiIs2fP7/F9zYMQwUFBZo7d26H46mpqfF5HU5XVlYmR4/QDaPH4/a7rdPplN1u96utv+2iCWPUPsaobf6OT3snUo85f5Te/WClln+wShl9UlVeUanu3bt792btO3BAzqYmDRzQX4ZhyGazcXI2ACBo+SPkBUjv3r117bXX6mtf+5pqa2t111136fXXX2+xWvJ4PM2WFRYWqrCwsNlywzD82mOXmHhC0mGf253Sr18/pSbE+93eVzbbp363jYuLU2Zmps/t7Ha7X+2iCWPUPsaobZ0Zn/YKl6SkJE2eeJk+3rpN9rIyZfbtqwtGj1RSYqKampp0yF6mPmmpSkjoKan9ggYAEB2ClT9CXoCcffbZGjRokAzDUFJSkiZOnKi9e/dq2LBhKikp8b6uoqJCWVlZoQ4PALoc0zSVmpKsyRMvk9vtVsxnN4cyTVNxcXGadNk4de/WLcxRAgAiTbDyR8jPAXnhhRdUVFQkl8uluro6ffjhhxo5cqRyc3NVXFys+vp6NTQ0aM2aNRo7dmyowwOALufUEWLTPHmjqFM/n7oPRv+z+iktNSXcYQIAIkyw8kfIj4B8/etf19GjRzVr1iy5XC5NnTpVeXl5kqSZM2eqoKBApmkqPz9f6enpoQ4PALqk0w+LM8UKANBRwcgfIS9A4uLidOutt+rWW29t9ru8vDxvMQIAAACg6+FO6AAAAABChgIEAAAAQMhQgAAAAAAIGcsWIEVFRd4z8DmhEgAAALAGyxYghYWF3kuB+XMDQgAAAAChF/KrYAEAwmPr1q0det2oUaOCHEl4FRUVaf78+eEOAwAsI9D5gwIEAKJEVy8sOqqwsFCFhYXe50zjBYC2BTp/WHYKFgAAAADroQABAAAAEDIUIAAAAABChgIEAAAAQMhYtgDhPiAAAACA9Vi2AOE+IAAAAID1WLYAAQAAAGA9FCAAAAAAQoYCBACi2Ko1xVq1pjjcYQAALKYz+YM7oQNAFKurrw93CAAAC+pM/uAICAAAAICQoQABAAAAEDKWLUC4DwgA+OdYVbWanM5my5ucTh2rqg59QAAASwhU/rBsAcJ9QADAP28te09vvfveGUmkyenUW+++p7eWvRfGyAAAkSxQ+cOyBQgAwD/T8iarrr5eb737njweUx6PqbfefU919fWaljc53OEBACJUoPIHBQgARJnUlGRvEqmqrlZVdbU3eaSmJIc7vKBjCi8A+CdQ+YMCBACixOlzd08lEbfbLbfbfUby6OrngjCFFwB8E+j8QQECAFHitaVv61hVlff5qSTyxT1Xx6qq9NrSt8MQIQAgEgU6f3AjQgCIIk1NZ169JCO9T7uvAQAgkPmDAgQAokRW/0yt27BR20t2tPm6uvp6ZfXPDFFUAIBIF+j8YdkpWJxECAC+ueTiMRo4oH+7rxs4oL8uuXhMCCICAFhBoPOHZY+AFBYWqrCw0PucIgQA2tYrIUGXXERhAQDwTaDzh2WPgAAA0BXsOFKrpVvLwh0GAISMZY+AAADQFXzr0Q/lcpuqcYzU9TlZ4Q4HAIIu7EdAPB5PuEMAACBsah0uNbk9qm7g6mMAokNYj4AsXrxYjY2NuvXWWyVJy5cv15IlS2SapmbMmKFp06aFMzwAAAAAAdbhIyB//vOfA9rx5s2b9corr3ifV1dXa9GiRXrwwQf1xz/+UUuWLFFlZWVA+wQAhF6g88cpHEEHAGtqtwCZM2eO7rrrLi1btkwbNmxQfX39Gb9fuXKlz53W19friSee0HXXXeddVlxcrJycHKWkpCgpKUnjxo3T6tWrfX5vAEBkCEb+OGXx4sX6y1/+4n2+fPly/eAHP9BNN92kt956y+/3BQAEX7tTsObNm6etW7dqw4YNeuyxx7R//34NGDBAI0aM0Nlnn62nnnpKEyZM8KnTBQsW6Hvf+57Ky8tVU1MjSaqoqFBGRob3Nenp6RwBAQALC0b+kD4/gn5qmu6pI+gLFy6UzWbT7NmzlZOTo7S0tECvEgAgANotQAYOHKiBAweqvr5e1113nU6cOKGSkhJ9+umn+uSTT3T99df71OG7776rhIQEXXrppXrttde8y03TbPbalg6vFxUVaf78+S2+t2EYKigo0Ny5czscz6kCyF9lZWVy9AjdqTQej9vvtk6nU3a73a+2/raLJoxR+xijtvk7PpF6H6RA5w/pzCPop76/Tz+CLsl7BH369OkBXR8AQGB0+C/nU9OlevTooQsvvFAXXnihXx2+//772rNnjz766CPV19fL5XKpvr5eo0aNUklJifd1FRUVyspqfjnCL96A8BTDMFosYtqTmHhC0mGf253Sr18/pSbE+93eVzbbp363jYuLU2Zmps/t7Ha7X+2iCWPUPsaobZ0Zn0gv7AKVPySOoANAV9DhAqSmpkYffvihevXqpeHDh6tPnz5+dXj33Xd7f37ttdd04MAB3XrrraqqqtKSJUtUX18vwzC0Zs2aM84RAQBYU6DyRyQfQa+vrzvZr2n6VRCan71fpBeT/uiK6xRojFH7GKO2We0IeocLkLvuuktHjx5Vnz59tGvXLiUmJmrEiBEaPny4brjhhk4HkpKSopkzZ6qgoECmaSo/P1/p6emdft9gMiW9seWwenXzfQrW1JH91DM+JvBBAUCECVT+iOQj6AkJvSSVy2YYfhzJ2ihDUmJiYpc7SsiRz/YxRu1jjNpmxSPoHf7Lef/+/fr73/+upKQkuVwu7dmzR59++qk+/dT/KUFfnJ+bl5envLw8v98v1Jqcpn77xqfytXh0eUyt3FWpB647PziBAUAECVT+4Ag6AHQNHS5AzjnnHLndJ0+Ajo2N1bBhwzRs2DB97WtfC1pwEc8wVd/o9PnwlWlKtQ7ueAsgOgQ7f1jxCDoARLMOFyC5ubn67W9/q9tvv10DBgwIZkwAgC4kGPnD6kfQASCadbgA+fDDD7Vr1y7NmjVLOTk5ys7O1rBhw3TuuedyrXUAQKvIHwCA03W4AHnooYfk8XhUWlqqkpIS7dixQ//4xz+0Z88evfHGG8GMsUVtXc0EABA5Ii1/AADCq8MFyB/+8AdlZ2crOztbeXl53jvQulyuoAXXli9ezSRSb8QFAJHiWFW1evVKUFNTk7aX7FTZkXJVVVdLkvpmpGvggP4aOmSw4uPiAtpvpOUPAIBvAp0/OlyAnHXWWVq3bp3+8Y9/qKamRkOHDvUmlClTpvi1MgCA0Hlt6du65KILtWnLNknSOUMG6YLRI+VscqqsvFybtmzTJyU7NHniBKWmJAesX/IHAFhboPNHhwuQ73znO96fKysr9frrr+vZZ5/VkSNHSCAAYBHrNmxSSnKSpn35ijP2VA0dMkiXOJ16778r9d6Klbr6q9MCdiSE/AEA1hfI/GHzJ4C0tDTdeOONuvvuu7nUIQBYjqGPP9uLdbr4uDhNnjRBTU1O7d6zNyg9kz8AwMoCkz86XICsX79etbW1Zyy74IILtG7duo6+BQAgjIYOHqS+GemKj4+T1PKdv+Pj4nTOkEHatWdfwPolfwCAtQU6f3R4CtZf//pX7d27V5mZmRoxYoSGDx+uY8eONUsqAIDIdNnYSzv0uqwB/QNagJA/AMDaAp0/OlyAPPbYY3I4HNqxY4c++eQTbdiwQXa7XbfccktH3wIAEEb/eu5FTZ50mfplZLT5un4ZGZpx7TcC1i/5AwCsLdD5o8MFiCTt3LlTu3fv1tChQ3XNNdeoe/fuvjQPKO4DAgC+6ZXQUwcOHmo1gaxaU6y6+npJUmpKii656MKA9R1J+QMA4JtA548OnwPyzDPP6K677tL69ev18MMPKz8/P6w3kCosLJRpmt4HAKBtAwcM0K49+9TkdLb6mqamJh0pP6rtJTsC1m+k5Q8AgG8CnT86XIC8+OKLuueee3TPPffo6aef1h/+8Ae9+OKL+uCDDzr6FgCAMBoxfJji4+L03n9XtphELrl4jKTA39Q10vJHUVGRDMPwPgAAbQt0/uhwAeJyuXTWWWd5nw8aNEjz5s3TCy+80OHOAADhc+oyiXV19Xr+5de0ak2xdu/dp91792ndhk16/uXXVFdfH9CpV1Lk5Q+OoAOAbwKdPzp8DsiYMWP0yiuv6KabbvIuy8zM1N69wblWPAAg8FJTknX1ldO0e89elR48pFVriiVJKclJOi97mIYOGaT4+Hj1bedEQ1+QPwDA+gKZPzpcgNx88836+c9/rv3792v8+PEaMGCA3nzzTQ0ePNj/NQEAhFx8XJxGZA/TiOxhrb4mNSU5YP2RPwCgawhU/uhwAZKenq5HHnlEr7zyil588UUdPnxYAwcOVEFBQUffAgAQhcgfAIDTtVmAOBwOPfnkk/rggw/08MMPq2/fvvr2t7+tc845R+eff77i4+NDFScAwELIHwCA1rR5EvqiRYu0Zs0a3XTTTUpJSfEuf/XVV3XTTTdpy5YtQQ+wNVzFBAAiVyTnDwBAeLVZgCxfvlx33HGHpk2bdsbeqsLCQn3nO9/Rr3/9a5WXlwc9yJZwFRMAiFyRnD8AAOHVZgFimqb69OnTvJHNpunTp+trX/uaFi9eHLTgAADWRP4AALSmzQJkyJAh2r59e6u/v/zyy9v8PQAgOpE/AACtafMk9G9/+9t68MEHNXLkyBb3ZBmGoaqqqqAF11WZprTpQLV+8OR6n9seP9EUhIgAILDIHwCA1rRZgOTk5Oiqq67SLbfcopkzZ+qKK65Q9+7dJUlOp1N///vfNXTo0JAE2qUY0pEah8pqHOGOBACCgvwBAGhNu/cByc/PV3Z2tv7617/qkUce0YABA9SjRw/t3LlTsbGxuvfee0MRZ5djMwx5/Dh5ntPtAVgF+QMA0JIO3YgwJydHOTk52rt3rzZt2qTq6mpdccUVmjhxopKTk4McIgDAqsgfAIAv6vCd0CVp8ODBGjx4cLBi8UlRUZHmz58f7jAAAB0QSfkDABBebV4FK5JxHxAAAADAeixbgAAA4I+ioiIZhuF9AABCiwIEABBVOIIOAOFFAQIAAAAgZHw6CT1QHn30Ua1cuVJut1vTp0/Xd7/7XUnS8uXLtWTJEpmmqRkzZmjatGnhCA8AAABAkIS8AFm3bp1KSkr05JNPyuFw6Ic//KHGjRuntLQ0LVq0SAsXLpTNZtPs2bOVk5OjtLS0UIcIAF3esapqVVVX61hVtSQpNSVZKcnJSk1JDmtcAIDIFoj8EfICpGfPnvre976nuLg4xcXFacCAAWpsbFRxcbFycnKUkpIiSRo3bpxWr16t6dOnhzpEAOjS1m3YqO0lOyVJfTPSJUnbS3ZIki4YPVIXjBoZttgAAJErUPkj5AXIyJEnA1u+fLneeOMNpaena/jw4dq0aZMyMjK8r0tPT1dlZWWow+vS6htdevuTIz63czfUKTMzCAEBCLlX33xLdfUNunziZRo4oP8Zvys9eEir1hSr9MAhXf3VqWGKEAAQiQKZP8JyDogknX/++ZKkp59+Wjt37mzxSiQej6fZsrZuQGgYhgoKCjR37twOx1FTU9Ph10YCQ5Jf12wxTe2pqNfPntngc9MYw1CMzdCofgn+9Bw17HZ7uEOIeIxR2/wdn45eSnbdho2qq2/QtLzJSk1J1u49+1S8YaMk6cLRIzUie5h65U3WW8ve08dbtumC0RwJAQAEPn+EvABZu3atUlJSNGzYMF1xxRXatWuXiouLlZ6erpKSEu/rKioqlJWV1ax9YWGhCgsLmy03DMOvyykmJp6QdNjnduHi7wUjTcOQTFP1Tb6/Q0J8jHompigzs4+fvXd9drtdmRwmahNj1LbOjE9HCpdjVdXaXrJTl0+8zDtPt3jDRp2XPUzx8XFat2GT+mZkKDUlWZeNvVTvr1ilrAH9OScEAKJcMPJHyC/DW1lZqb///e9yOByqq6vTxx9/rKysLOXm5qq4uFj19fVqaGjQmjVrNHbs2FCHBwBdUtVnJwuefth8xrXf0AWf7blq6TWnngMAolcw8kfIj4B85Stf0a5du/TDH/5Qpmlq8uTJ+tKXviTDMDRz5kwVFBTINE3l5+crPT091OEBQJd0rLrKe8Lg6ZqcTq1aUyxJ6tv389/3zUjXseoqDdWgUIUIAIhAwcgfIS9AbDab5syZ0+Lv8vLylJeXF+KIACB6fbxlq8qOlGv6V6aqVwLneQEAOqYz+YM7oQNAFEhNTtGR8qMtLr9s7KXN5uoeKT+q1OSUEEUHAIhUwcgfFCAAEAVSPksQpQcPnbG8b9/0Zsnj1GtSOAEdAKJeMPIHBQgARIHUlGSNyD5Xq9YUe+9eK528gdSpm0hJJ692smpNsS4YNZIrYAEAgpI/LFuAFBUVyTAM7wMA0LZLLhqjXgk99day97x7qS65aIwuuWiMpJN7rt5a9p56JfTkHiAAAK9A54+w3Yiws754PxCKEABo39VfnaZ1Gzbq/RWrJMl7ZZNT83svGDWS4gMA0Ewg84dlCxAAgH8uuWiMhg4erKqqah2rrpIknTN4sFJSkqNi2lVRUZHmz58f7jAAwHIClT8oQAAgCqV+liyi8T4fHEEHAP8FIn9Y9hwQAAAAANZDAQIAQJAcqXFo8aq9OlrbGO5QACBiMAULAIAg+fFT67XlUI1e/fiwXrxtfLjDAYCIwBEQAACCxCNDbo8pj8cMdygAEDEsW4BwHxAAAADAeixbgBQWFso0Te8DAAAAQOSzbAECAAAAwHooQAAAAACEDAUIAAAAgJChAAEAAAAQMhQgAAAAAEKGAgQAAABAyFi2AOE+IAAAAID1WLYA4T4gAAAAgPVYtgABAMAfHEEHgPCiAAEARBWOoANAeFGAAAAAAAgZChAAAAAAIUMBAgAAACBkKEAAAAAAhAwFCAAAAICQsWwBwmUUAQAAAOuxbAHCZRQBAAAA67FsAQIAAADAeihAAAAAAIRMbDg6ffHFF/XKK6+ooaFBY8eO1Zw5cxQTE6Ply5dryZIlMk1TM2bM0LRp08IRHgAAAIAgCXkB8sknn+ill17SwoULZbPZ9H//939aunSpLrvsMi1atMi7fPbs2crJyVFaWlqoQwQARCh2YAGA9YV8CtaxY8d01VVXqXfv3kpISNDYsWNVVlam4uJi5eTkKCUlRUlJSRo3bpxWr14d6vAAABHq1A6sBQsWaPHixSotLdXSpUtVXV2tRYsW6cEHH9Qf//hHLVmyRJWVleEOFwDQipAXIBMmTND1118vSaqsrNQ777yjcePGqaKiQhkZGd7Xpaenk0AAAF7swAKAriEs54BI0tKlS/X000/r1ltv1XnnnaeNGzc2e43H42m2rKioSPPnz2/xPQ3DUEFBgebOndvhOGpqajr82khgSPL/osP+t66srJS9Z5PfPUcDu90e7hAiHmPUNn/HJ1ruhTRhwgTvz6d2YM2dO1ebNm1iBxYAWEjICxCPx6N7771Xbrdbf/rTn5ScnCxJSktLU0lJifd1FRUVysrKata+sLBQhYWFzZYbhuHX/UASE09IOuxzu3Dp3B1P/G+dlpamzMw+neq9K7Pb7crMzAx3GBGNMWpbZ8Yn2gq7SNyBVV9fd7Jf0zzj83A2ndxx43Q62/yczM/eryt+ll1xnQKNMWofY9Q2q+3ACnkBsmLFCjU0NOiee+45Y3lubq6WLFmi+vp6GYahNWvW6Lrrrgt1eACACBXJO7ASEnpJKpfNMM4oJOPi90pqUFxcXBsF5kYZkhITE7tckc6Oh/YxRu1jjNpmxR1YIS9Atm7dqo0bN+qaa67xLrv66qs1a9YszZw5UwUFBTJNU/n5+UpPTw91eACACMUOLADoGkJegMyePVuzZ89u8Xd5eXnKy8sLcUQAACtgBxYAdA1hOwkdAABfsAMLALqGkF+GFwAAAED0ogABAAAAEDKWLUCKiopkGIb3AQAAACDyWbYAKSwslGma3gcAAJHs/17apvN+/Zb+89HBcIcCAGFl2QIEAAAreXd7meocLr2z7Ui4QwGAsKIAAQAgBAydnC7MrGEA0Y4CBAAAAEDIUIAAAAAACBkKEAAAAAAhQwECAAAAIGRiwx2Av4qKijR//vxwhxEVnB5Tv3ltu9IS4nxq5zFNfeviLF138YAgRQYAAACrsWwBUlhYqMLCQu9zbkYYPE6XqU/LanxuZ8rU/sp6ChAAEYUdWAAQXkzBQvuMz//x9WGzURgCiCzcyBYAwosCBAAAAEDIUIAAAAAACBkKEAAAAAAhQwECAAAAIGQoQAAAAACEDAUIAAAAgJCxbAFSVFQkwzC8DwAAurpah0uz/7lBD7yzU24PlxAGYE2WLUC4jjsAINq8ta1M72w7osfe26HjJ5zhDgcA/GLZAgQAgGgUG2OTjSP/ACyMAgQAAABAyFCAAAAQYi9vOqzb/rlJVfVMowIQfWLDHQAAANHmf5/bpIYmt/r2jg93KAAQchwBAQAgxAzbyXM4OJcDQDSiAAEAAAAQMpYtQLgPCADAH+QPAAgvyxYg3AcEAOAP8gcAhJdlCxAAAAAA1sNVsBBUHlMqq3GEtM+kHnHqERcT0j4BAADQMRQgCBrTlI4cb9Tk+9/3ua3bNOUxpTibb/OzTVPKPquXXp49wec+AQAAEHxhK0AcDod+/etf6/e//7132fLly7VkyRKZpqkZM2Zo2rRp4QoPgWBIpkydcLp9bmqzGXJ7TLl8bGrK1O7yOp/7AwAAQGiEpQB588039eabb6qpqcm7rLq6WosWLdLChQtls9k0e/Zs5eTkKC0tLRwhAgAAAAiCsJyEnpSUpEmTJp2xrLi4WDk5OUpJSVFSUpLGjRun1atXhyM8AAAAAEESliMg48eP14EDB/Tuu+96l1VUVCgjI8P7PD09XZWVlc3aFhUVaf78+S2+r2EYKigo0Ny5czscS01NTccDjwCGJP8vGtm51v4xP+vXx1adCNNjmrLb7f6/gZ/C0afVMEZt83d8uJcFAMBKIuYk9Jauxe7xeJotKywsVGFhYbPlhmH4dT33xMQTkg773C5cOlc+hON69/79YWR0olayGYYyMzP9a+wnu90e8j6thjFqW2fGh8IOAGAlEXMfkLS0NFVUVHifV1RUqE+fPmGMCAAAAECgRUwBkpubq+LiYtXX16uhoUFr1qzR2LFjwx0WAAAAgACKmClYKSkpmjlzpgoKCmSapvLz85Wenh7usBBFVu+p1M1PrVeMj/cekaTs9B565lamFwGIXPZqh4r3VmrqyH7qGc/NWgGET9gKkKysLD322GNnLMvLy1NeXl6YIkK0e2vbER13uOTPeStr9lvrYgYAos/3F6/V3sp6XbOrUg9cd364wwEQxSLmCAgQKYywnKwPAMFV1+hWk9NUrcMZ7lAARLmIOQcEAAAAQNdn2SMgbd0PBAg1j0e68o8rfG7ndJt69LsX65yMhCBEBaCr+Gh/lbrFdmyf4QmnW6t3V2r0gCSl9+oW5MgAwHeWLUC+eD8QbsSFcLLZpG2H/TgPxJT+WVyqX08fEfigALTIajuwNpRWa9bf18swpJsnDWn39UWvfqIXNh5Sdt9eevV/JoQgQgDwDVOwgAAx/HhI/t6qEYC/CgsLZZqm9xHpah1Oud2mmlweudztx1tZ16RGp0vH6htDEB0A+I4CBAAAAEDIWHYKFtAS0zTlcJn60ZKPfG77aVltECKKPHWNLv3qxa1qcLp9bjs4LUHzpg1TfAz7LgArO1Lj0N6KBuUOThUzmAGEGgUIuhZDcrrcemdbmc9NPTJlRMGEqKVby/TmlsNqcnt8bts9Nkbfuqi/svv1DkJkAELlhsfX6PBxh/73K8M187JB4Q4HQJRhNybwmWi6kEGsn0cwYmKiZ4yAruxIjUMnGl06VHUi3KEAiEIUIAAAAABCxrIFSFFRkQzD8D4AAIgETW6PPjlco1qHy+e2ZTUO7TpaF4SoACByWLYAsdplFAEA0eH3S0v0jUc+1I+eWu9TO4fTo2/8eZW++ciHWrPnWJCiA4Dws2wBAgBAJNpf2SCH06UDVfU+tXOZHh2rb5TT7dHh45ybAaDrogABAAAAEDJchhcIsx1HavX02lKf2/WMi/HrXh4bSqv8nrboMU29vqVM6/dX+dz2gjQp069eAbTmUPUJ9e4ep8TupHMA1sE3FhBWpj7cVaF1+yp9bnnC6VH32BgZhm/FhNMtvwsQR5NHj36wS75ejddtSiMzeuqlOQP96hdAcyt3HtX/Pr9FGYnd9cHPLw93OADQYRQgQFgZcpum3E4/CgLTlMPp8vkqcB5TirX5d+U4j0w1OU2f75xsmlKTm4tFAIG0q7xeTS6P9lf6dq4JAIQb54AAAAAACBmOgAAIiQanR8s/Lfe5XXKPOF10dkoQIgK6lhqHS93jgr9fsa7RpbgYm7rFsg8TgH8sW4AUFRVp/vz54Q4DQAeYkkqrHPrpMxt9bhtrs+lvP7hEF2YlBzwuRKeumD9e2mTX3Gc3aUxWslITugWtn48PVuu7f12jPgnd9fpPJ6pnfEzQ+gLQdVl29wU3IgQsxpRqHS6fH063R3WNvt9RGmhNV8wfmw5Uy+3xqKSsJqj97DxSJ7fH0KHqBjn8uAofAEgWLkAAAAAAWA8FCAAAAICQoQABACCKffWPKzT0l29o1a5KffkPH2jU/Le0/XCtT++xdNsRnf2/r2vG42uCFCWAroQCBACAKLb98MnzRtbuq9SBqnq5PaY+9fFckjV7KiXD1JZD1UGIEEBXQwECAAAAIGQoQAAAAACEjGULkKKiIhmG4X0AANBV1DW6NPmB9zX+vmWqrG8Kdzgt2na4Rtn/96a+8edVAX/vyvom7/ofqj4R8PcHEF6WLUC64nXcAQCQpOoTTpXXOlTjcOvw8cj8A3zdnmNyuaWNB6oD/t5Hahze9d9bUR/w9wcQXpYtQAAA6MoMw5Aifgdb8OKzxvoD8AcFCAAAAICQiQ13AADQlka3qR8sXq8Ym297Qk1J3xgzQPd9a3RwAgMsYMHyXXr8g12afcW5PrVraHTrqgUr1Ogy9dANF+inz2xUQnysrr8ky6f3+du6Mv1rw2bNvuJclVU79J+PSnX3Nefrmxf1b/baRpdH331ijQ4ed+jua0b51E84bD9cqxlPrNbo/slaMuvScIcDWEpEFSDLly/XkiVLZJqmZsyYoWnTpoU7JABh5nJ75DFNGR7f2pkytWLX0eAEhYhD/mjZ29vKVOtw680tZT61O3aiSfsqGyRJ/915VEeON8pUo443OH16n//uPu7tv7zWoTqHR0u3lrVYgNQ4nNp86LgMw9Anh327D0k4vF9SrlqHWyt28j0D+CpiCpDq6motWrRICxculM1m0+zZs5WTk6O0tLRwhwbAspg/Hg3IH607dZVIf64VaRjy/heyGYY8fvx/Mk771/jsWdsXrjStdWVLzlEB/BIx54AUFxcrJydHKSkpSkpK0rhx47R69epwhwUAiHDkDwCwFsOMkGvY/vOf/5RpmsrPz5ckPfvsszpx4oS+//3vn/G6oqIizZ8/v9X3KSgo0Ny5czvc73/3HNf8pXtlM3yvxRrdHsXapBgf2za5TRmGR3G2GJ/7bPJ4FCNDMTbf9hA5PR7JNBQX4/ueJafbI8MwFOtjny6PR25J3Wy+j22Txy2ZhuJjfGvrNk25PKa6+dhOOvm5SKbPfUrSCZdbPWL9+DzdJ+cV+dMn21/bPObJz9PtxzdctxibGt0+zvn6TGqPOB074ds0FUmKMQwtv+0Cv/o0DENnnXWWX227gnDnD9Owye02ZRimYm02uT0emaZ08r+1IY8p2YyTe/5dnpN7/mw2Q263Rx5JMTZDNtnU6HarW+zJ7bzRZap7nE2GIZ1o+uz7xSadaPKoe6whjww1uTyKi5EUYf3HGCe/nxK7xai+ydNi/4k94lR9okk2w1BSz1jVNHjk9LgVH9O8/0anRwnxMYqLten4Cae6xdjUIz62WXu36VZqjzjVN7m9/XtkqK7RpZ5xgW9f2dCkONvJ9TdMI+T90572n7d3WS5/RMwUrJbqII+n+R8AhYWFKiwsbLbcMAy/7gfy7cxMZSV1U5/0dJ/bxnz2Re8Pw2bI9Pger82wyWP616fNMD77o8w3FRXl6tMnw78+bYY8fqynYZP8XE3F2Ay5/enTz21Iko4erVB6eh+/2hoyZPoxtcFq219lRYXS+vg+RjZD8iNUSVJFfZPqHC6f23Vm+4s1JJcf8dZUVykzM9OvPu12u1/tuopw54+4XqmqbXRqQHJ3VTU0qcHpVv+kHqqob5Lb7VbfxB46UtOoGJtNfXrF6eBxh3rFxSi5Z5xKK08oqWe8EnvEan9lvTJ6xSu+m00HKx3ql9xdMZIOVTvUP7mHXG5TR2odGpDSU00uj8prHRqUmqDjDldE9V/T6JLpkWwxhuqrjmnE4P7N+jfdptymKcM0JJvxWUHkbrX/GJshmYbcpkcyDMVILbaPNSS3IW//humR22MErf2p9a9pdPnd/7HqKvXpkxaW+K3S/nh1tVJTUi0bf7DbH6+qtFz+iJgCJC0tTSUlJd7nFRUVysry7Wob/hqc1l2Z/XqHpC8r6u2pZXzawRi1zx6GMcoOaW+dY7e7wx2CZYU9f2Qmt/i707e/7NO2/dZ+Ht6vl/fnkf2SvD+P6v/5z1JrP0de/5Jkt7uU2a93q322pvX+ux673aXMTP92YEULu92tzEzfdxRHC7vd96Pu4RYx54Dk5uaquLhY9fX1amho0Jo1azR27NhwhwUAiHDkDwCwlog5ApKSkqKZM2eqoKDAO5c33Y9pUQCA6EL+AABriZgCRJLy8vKUl5cX7jAAABZD/gAA64iYKVgAAAAAuj4KEAAAAAAhY9kCpKioSIZheB8AAAAAIp9lC5DCwkKZpul9AAAAAIh8li1AAAAAAFgPBQgAAACAkKEAAQAAABAyFCCSHnzwwXCHENEYn/YxRu1jjNrG+FgTn1vbGJ/2MUbtY4zaZsXxMcwucga3YRh+n4zembbRgPFpH2PUPsaobZ0ZH7vdrszMzABHFD3IH8HD+LSPMWofY9Q2K+aPiLoTemcMHDiwU5fj5VK+bWN82scYtY8xapu/43PZZZdp5cqVAY4mepA/govxaR9j1D7GqG1Wyx8cAelEW/qkz3C2pU/6DERbRM/nTZ9dq8/OtKVP+gxE287gHBAAAAAAIUMBAgAAACBkukwBMn/+fEv16W/bcPTZGVZaz3CMT2f6jZYxstp6Wm2MYL3PjO06OO3C1WdnMEbB69NKY9sZ4dp2u8w5IJ3B/Om2MT7tY4zaxxi1jfGxJj63tjE+7WOM2scYtc2K49NljoB0BnsP28b4tI8xah9j1DbGx5r43NrG+LSPMWofY9Q2K44PR0AAAAAAhAxHQAAAAACEDAUIAAAAgJChAAEAAAAQMhQgAAAAAEImNtwBhNPy5cu1ZMkSmaapGTNmaNq0aeEOKeLceOONqqio8D6///77NXLkyDBGFDkcDod+/etf6/e//713GdvU51oaH7anz7344ot65ZVX1NDQoLFjx2rOnDmKiYlhG7IIPqeWtfZ/nPHyLWdE43j5kjOicXx8zRkRP0ZmlKqqqjK/853vmMeOHTOrq6vN/Px8s6KiItxhRRS3223ecMMN4Q4jIr3xxhvmT37yE/Pmm2/2LmOb+lxL48P29Llt27aZN954o1lTU2PW1dWZt99+u/naa6+xDVkEn1PLWvs/znj5ljOicbx8yRnROD6+5gwrjFHUTsEqLi5WTk6OUlJSlJSUpHHjxmn16tXhDiuiVFRUKC0tLdxhRKSkpCRNmjTpjGVsU59raXzYnj537NgxXXXVVerdu7cSEhI0duxYlZWVsQ1ZBJ9Ty1r7P854+ZYzonG8fMkZ0Tg+vuYMK4xR1BYgFRUVysjI8D5PT09XZWVlGCOKPGVlZTp+/LjuuOMOXX/99Vq4cKE8Hk+4w4oI48ePV25u7hnL2KY+19L4sD19bsKECbr++uslSZWVlXrnnXc0btw4tiGL4HNqWWv/xxkv33JGNI6XLzkjGsfH15xhhTGK2gLEbOH+i9H6x1BrevfurWuvvVb33XefnnjiCe3YsUOvv/56uMOKWGxTbWN7am7p0qW6/fbbNXPmTJ133nlsQxbB59Sy1v6PM14ta21cGK+T2J6a62jOsMIYRe1J6GlpaSopKfE+r6ioUFZWVhgjijxnn322Bg0aJMMwlJSUpIkTJ2rv3r3hDitisU21je3pcx6PR/fee6/cbrf+9Kc/KTk5WRLbkFXwObWstf/jw4YNY7xa0Np2FBcXx3iJ7el0vuYMK2xDUXsEJDc3V8XFxaqvr1dDQ4PWrFmjsWPHhjusiPLCCy+oqKhILpdLdXV1+vDDD6P2ikUdwTbVNranz61YsUINDQ369a9/7U0kEtuQVfA5tay1/+OMV8taGxfG6yS2p8/5mjOsMEZRewQkJSVFM2fOVEFBgUzTVH5+vtLT08MdVkT5+te/rqNHj2rWrFlyuVyaOnWq8vLywh1WxGKbahvb0+e2bt2qjRs36pprrvEuu/rqqzVr1iy2IQvg/3rL2vo/zng119Z2xHixPZ3On5wR6WNkmC1NFAMAAACAIIjaKVgAAAAAQo8CBAAAAEDIUIAAAAAACBkKEAAAAAAhQwECAAAAIGQoQAAAAACEDAUIAAAAgJChAAEAAAAQMhQgAAAAAEKGAgQAAABAyMSGOwAgknzzm99UbW1ts+VXXHGFfvGLXzRbPm/ePF199dX60pe+FIrwAAARivwBdBwFCPCZsrIy1dbW6sknn1Tv3r3P+F18fHyLbXbv3q3s7OxQhAcAiFDkD8A3FCDAZ0pKSpSZman+/ft36PXl5eWSpH79+p2x3Ol0Ki4uLuDxAQAiE/kD8A0FCPCZnTt3asSIEa3+3m6369FHH9XWrVuVnp6uqVOnatiwYZKkqqoq/fnPf9aGDRvkcrk0ffp0lZaW6u6775bD4dBf//pXrV27Vg0NDfrqV7+qWbNmyTAMbdiwQYsWLdKBAwd0zjnn6Ac/+IFGjx4dqlUGAAQA+QPwDSehA5/ZsWOHli1bpilTppzxePTRR1VeXq45c+ZowoQJeuqpp/Stb31LTzzxhIYNGyaHw6E5c+YoOztbixcv1pw5c/Sf//xHw4cPl8fj0dy5c+V0OvXHP/5RRUVFevnll/XBBx/Ibrfr//2//6f8/Hw9/fTTGjRokJ599tlwDwMAwEfkD8A3HAEBPrNjxw7dc889Gj58+BnLu3fvrgULFuhLX/qSpk2bJkmaNm2aN4E8//zzuvDCC3XddddJkr785S9rwYIFGj58uN599105nU795Cc/UWxsrFJTUzVu3Djt379fcXFx6tatm1JSUtSrVy/9z//8jzweT8jXGwDQOeQPwDcUIIBOHh6vr6/XyJEjlZCQ0Oz369ev19y5c89Y1tjYqGHDhmnJkiW66aabvMtPnDghh8Oh7Oxs3XfffSorK9O11157RtvZs2fr0ksv1aRJk1RUVKSmpibl5eXphz/8oWJj+W8JAFZB/gB8x5YK6OTeq379+rWYPJxOpyorK5WVleVdtnnzZsXFxSk9PV0HDhzQgAEDvL/74IMP1L9/f/Xu3VulpaX61a9+pbFjx0qSHA6H7Ha7MjMztX37ds2ePVuzZ8/W/v37deedd+qCCy7QhAkTgr/CAICAIH8AvuMcEEAnE0hWVpbq6+ubPWJiYpSRkaFXX31VdXV12rRpkx566CFlZ2fLZrMpJSVFb7/9tpxOpzZs2KDHHnvMezLiueeeq9dee01HjhzR/v379Ytf/EJvv/22qqqqVFBQoA0bNsjpdOrgwYNyOBwaNGhQeAcCAOAT8gfgO8M0TTPcQQDhNm/ePH388cct/u6FF17Q7t279dBDD8nhcCg3N1eGYSgpKUkzZ87U8uXL9bvf/U6JiYnKzc1VWVmZpk2bpilTpqiqqkr333+/Nm/erJSUFF111VW6/vrrZbPZtGTJEr300ktqamrS2Wefre9///u65JJLQrzmAIDOIH8AvqMAATph9+7dstlsGjx4sCSpvr5e+fn5WrRokdLS0sIcHQAgUpE/EM2YggV0wtq1a/W73/1O5eXlqqys1AMPPKArrriC5AEAaBP5A9GMIyBAJ1RXV2vBggXatm2bkpOTNX78eN1www3q3r17uEMDAEQw8geiGQUIAAAAgJBhChYAAACAkPn/tEhY9NTZNNkAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "plot_track_lengths(metric_learning_model)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 19,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  2%|â–Ž         | 2/80 [00:00<00:13,  5.91it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 33177])\n",
-      "torch.Size([33177])\n",
-      "torch.Size([2, 1008])\n",
-      "torch.Size([2, 145236])\n",
-      "torch.Size([145236])\n",
-      "torch.Size([2, 4474])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  5%|▌         | 4/80 [00:00<00:12,  6.03it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 77371])\n",
-      "torch.Size([77371])\n",
-      "torch.Size([2, 2310])\n",
-      "torch.Size([2, 23698])\n",
-      "torch.Size([23698])\n",
-      "torch.Size([2, 770])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  8%|â–Š         | 6/80 [00:01<00:12,  5.97it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 106526])\n",
-      "torch.Size([106526])\n",
-      "torch.Size([2, 3388])\n",
-      "torch.Size([2, 118727])\n",
-      "torch.Size([118727])\n",
-      "torch.Size([2, 3588])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 10%|â–ˆ         | 8/80 [00:01<00:11,  6.05it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 45129])\n",
-      "torch.Size([45129])\n",
-      "torch.Size([2, 1364])\n",
-      "torch.Size([2, 45374])\n",
-      "torch.Size([45374])\n",
-      "torch.Size([2, 1392])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 12%|█▎        | 10/80 [00:01<00:12,  5.80it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 93982])\n",
-      "torch.Size([93982])\n",
-      "torch.Size([2, 2878])\n",
-      "torch.Size([2, 40327])\n",
-      "torch.Size([40327])\n",
-      "torch.Size([2, 1212])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 15%|█▌        | 12/80 [00:02<00:11,  6.00it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 18314])\n",
-      "torch.Size([18314])\n",
-      "torch.Size([2, 556])\n",
-      "torch.Size([2, 58898])\n",
-      "torch.Size([58898])\n",
-      "torch.Size([2, 1870])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 18%|█▊        | 14/80 [00:02<00:11,  5.54it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 165032])\n",
-      "torch.Size([165032])\n",
-      "torch.Size([2, 4848])\n",
-      "torch.Size([2, 41258])\n",
-      "torch.Size([41258])\n",
-      "torch.Size([2, 1204])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 20%|██        | 16/80 [00:02<00:11,  5.68it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 157927])\n",
-      "torch.Size([157927])\n",
-      "torch.Size([2, 4940])\n",
-      "torch.Size([2, 106722])\n",
-      "torch.Size([106722])\n",
-      "torch.Size([2, 3244])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 22%|██▎       | 18/80 [00:03<00:10,  5.78it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 64141])\n",
-      "torch.Size([64141])\n",
-      "torch.Size([2, 1992])\n",
-      "torch.Size([2, 42679])\n",
-      "torch.Size([42679])\n",
-      "torch.Size([2, 1342])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 25%|██▌       | 20/80 [00:03<00:10,  5.95it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 30539])\n",
-      "torch.Size([30539])\n",
-      "torch.Size([2, 992])\n",
-      "torch.Size([2, 66983])\n",
-      "torch.Size([66983])\n",
-      "torch.Size([2, 2102])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 28%|██▊       | 22/80 [00:03<00:09,  5.89it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 146559])\n",
-      "torch.Size([146559])\n",
-      "torch.Size([2, 4544])\n",
-      "torch.Size([2, 49735])\n",
-      "torch.Size([49735])\n",
-      "torch.Size([2, 1452])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 30%|███       | 24/80 [00:04<00:09,  5.92it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 41307])\n",
-      "torch.Size([41307])\n",
-      "torch.Size([2, 1208])\n",
-      "torch.Size([2, 130830])\n",
-      "torch.Size([130830])\n",
-      "torch.Size([2, 4044])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 32%|███▎      | 26/80 [00:04<00:08,  6.04it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 17636])\n",
-      "torch.Size([17636])\n",
-      "torch.Size([2, 544])\n",
-      "torch.Size([2, 81389])\n",
-      "torch.Size([81389])\n",
-      "torch.Size([2, 2488])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 35%|███▌      | 28/80 [00:04<00:08,  6.11it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 42225])\n",
-      "torch.Size([42225])\n",
-      "torch.Size([2, 1340])\n",
-      "torch.Size([2, 48295])\n",
-      "torch.Size([48295])\n",
-      "torch.Size([2, 1494])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 38%|███▊      | 30/80 [00:05<00:08,  6.05it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 72177])\n",
-      "torch.Size([72177])\n",
-      "torch.Size([2, 2196])\n",
-      "torch.Size([2, 94619])\n",
-      "torch.Size([94619])\n",
-      "torch.Size([2, 2852])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 40%|████      | 32/80 [00:05<00:07,  6.09it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 38122])\n",
-      "torch.Size([38122])\n",
-      "torch.Size([2, 1166])\n",
-      "torch.Size([2, 36015])\n",
-      "torch.Size([36015])\n",
-      "torch.Size([2, 1126])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 42%|████▎     | 34/80 [00:05<00:07,  6.18it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 27868])\n",
-      "torch.Size([27868])\n",
-      "torch.Size([2, 900])\n",
-      "torch.Size([2, 16184])\n",
-      "torch.Size([16184])\n",
-      "torch.Size([2, 496])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 45%|████▌     | 36/80 [00:06<00:07,  5.84it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 131810])\n",
-      "torch.Size([131810])\n",
-      "torch.Size([2, 3964])\n",
-      "torch.Size([2, 120491])\n",
-      "torch.Size([120491])\n",
-      "torch.Size([2, 3702])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 48%|████▊     | 38/80 [00:06<00:07,  5.65it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 114268])\n",
-      "torch.Size([114268])\n",
-      "torch.Size([2, 3516])\n",
-      "torch.Size([2, 50176])\n",
-      "torch.Size([50176])\n",
-      "torch.Size([2, 1546])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 50%|█████     | 40/80 [00:06<00:07,  5.66it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 139258])\n",
-      "torch.Size([139258])\n",
-      "torch.Size([2, 4212])\n",
-      "torch.Size([2, 113876])\n",
-      "torch.Size([113876])\n",
-      "torch.Size([2, 3600])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 51%|█████▏    | 41/80 [00:06<00:06,  5.65it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 132790])\n",
-      "torch.Size([132790])\n",
-      "torch.Size([2, 3960])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 54%|█████▍    | 43/80 [00:07<00:06,  5.30it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 63651])\n",
-      "torch.Size([63651])\n",
-      "torch.Size([2, 1922])\n",
-      "torch.Size([2, 112798])\n",
-      "torch.Size([112798])\n",
-      "torch.Size([2, 3376])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 56%|█████▋    | 45/80 [00:07<00:06,  5.63it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 35462])\n",
-      "torch.Size([35462])\n",
-      "torch.Size([2, 1122])\n",
-      "torch.Size([2, 156800])\n",
-      "torch.Size([156800])\n",
-      "torch.Size([2, 4768])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 59%|█████▉    | 47/80 [00:08<00:05,  5.99it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 9371])\n",
-      "torch.Size([9371])\n",
-      "torch.Size([2, 326])\n",
-      "torch.Size([2, 12197])\n",
-      "torch.Size([12197])\n",
-      "torch.Size([2, 380])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 61%|██████▏   | 49/80 [00:08<00:05,  5.86it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 58555])\n",
-      "torch.Size([58555])\n",
-      "torch.Size([2, 1710])\n",
-      "torch.Size([2, 40082])\n",
-      "torch.Size([40082])\n",
-      "torch.Size([2, 1192])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 64%|██████▍   | 51/80 [00:08<00:04,  5.96it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 71883])\n",
-      "torch.Size([71883])\n",
-      "torch.Size([2, 2208])\n",
-      "torch.Size([2, 37779])\n",
-      "torch.Size([37779])\n",
-      "torch.Size([2, 1210])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 66%|██████▋   | 53/80 [00:09<00:04,  6.03it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 93884])\n",
-      "torch.Size([93884])\n",
-      "torch.Size([2, 2802])\n",
-      "torch.Size([2, 44443])\n",
-      "torch.Size([44443])\n",
-      "torch.Size([2, 1288])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 69%|██████▉   | 55/80 [00:09<00:04,  5.88it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 36064])\n",
-      "torch.Size([36064])\n",
-      "torch.Size([2, 1136])\n",
-      "torch.Size([2, 31939])\n",
-      "torch.Size([31939])\n",
-      "torch.Size([2, 994])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 71%|███████▏  | 57/80 [00:09<00:03,  6.01it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 18326])\n",
-      "torch.Size([18326])\n",
-      "torch.Size([2, 480])\n",
-      "torch.Size([2, 71050])\n",
-      "torch.Size([71050])\n",
-      "torch.Size([2, 2190])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 72%|███████▎  | 58/80 [00:09<00:03,  6.03it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 49196])\n",
-      "torch.Size([49196])\n",
-      "torch.Size([2, 1548])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 74%|███████▍  | 59/80 [00:10<00:03,  5.43it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 67424])\n",
-      "torch.Size([67424])\n",
-      "torch.Size([2, 2008])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 76%|███████▋  | 61/80 [00:10<00:03,  5.41it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 53062])\n",
-      "torch.Size([53062])\n",
-      "torch.Size([2, 1682])\n",
-      "torch.Size([2, 102606])\n",
-      "torch.Size([102606])\n",
-      "torch.Size([2, 3176])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 79%|███████▉  | 63/80 [00:10<00:02,  5.78it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 33730])\n",
-      "torch.Size([33730])\n",
-      "torch.Size([2, 1098])\n",
-      "torch.Size([2, 74578])\n",
-      "torch.Size([74578])\n",
-      "torch.Size([2, 2448])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 81%|████████▏ | 65/80 [00:11<00:02,  5.88it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 54733])\n",
-      "torch.Size([54733])\n",
-      "torch.Size([2, 1728])\n",
-      "torch.Size([2, 139013])\n",
-      "torch.Size([139013])\n",
-      "torch.Size([2, 4380])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 84%|████████▍ | 67/80 [00:11<00:02,  5.94it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 115493])\n",
-      "torch.Size([115493])\n",
-      "torch.Size([2, 3588])\n",
-      "torch.Size([2, 93149])\n",
-      "torch.Size([93149])\n",
-      "torch.Size([2, 2656])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 86%|████████▋ | 69/80 [00:11<00:01,  6.05it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 67130])\n",
-      "torch.Size([67130])\n",
-      "torch.Size([2, 2044])\n",
-      "torch.Size([2, 43267])\n",
-      "torch.Size([43267])\n",
-      "torch.Size([2, 1306])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 89%|████████▉ | 71/80 [00:12<00:01,  6.05it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 89229])\n",
-      "torch.Size([89229])\n",
-      "torch.Size([2, 2710])\n",
-      "torch.Size([2, 62475])\n",
-      "torch.Size([62475])\n",
-      "torch.Size([2, 1922])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 91%|█████████▏| 73/80 [00:12<00:01,  6.13it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 11883])\n",
-      "torch.Size([11883])\n",
-      "torch.Size([2, 394])\n",
-      "torch.Size([2, 96922])\n",
-      "torch.Size([96922])\n",
-      "torch.Size([2, 2852])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 94%|█████████▍| 75/80 [00:12<00:00,  6.15it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 65464])\n",
-      "torch.Size([65464])\n",
-      "torch.Size([2, 1946])\n",
-      "torch.Size([2, 40276])\n",
-      "torch.Size([40276])\n",
-      "torch.Size([2, 1284])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 96%|█████████▋| 77/80 [00:13<00:00,  6.14it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 137396])\n",
-      "torch.Size([137396])\n",
-      "torch.Size([2, 4262])\n",
-      "torch.Size([2, 38857])\n",
-      "torch.Size([38857])\n",
-      "torch.Size([2, 1252])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 99%|█████████▉| 79/80 [00:13<00:00,  6.14it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 104958])\n",
-      "torch.Size([104958])\n",
-      "torch.Size([2, 3320])\n",
-      "torch.Size([2, 31802])\n",
-      "torch.Size([31802])\n",
-      "torch.Size([2, 1036])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "100%|██████████| 80/80 [00:13<00:00,  5.87it/s]\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 106085])\n",
-      "torch.Size([106085])\n",
-      "torch.Size([2, 3240])\n"
-     ]
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAHUCAYAAADoXL3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/DklEQVR4nO3dfXzO9f////sx49jMNkbbzNkoIWNOJkI2Sc5G5V0hhOJNSE4SKhnJTCW9O6H6Fp28qXeJt1RKchZbYTmpnNYwZ+kdNie1xp6/P/rt+DjsXMfMk9v1cjkudTxfz9fr+Xw9joMdd6/X8ZzDGGMEAAAAABbzKukJAAAAAMDfRbABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAFQbObNmyeHw6GNGzfmuj02Nlbh4eFubeHh4erfv3+Rxlm/fr3i4uJ04sSJi5voVej9999X/fr15evrK4fDoc2bN5f0lPLlcDgUFxfnep793tq7d2+RjvPpp5+6HceTYmJiFBMTUyzHvhRiYmIUERFRbMffu3evHA6H5s2bV2xjALi6EWwAXFYWLVqkiRMnFmmf9evXa/LkyQSbQvr111/Vt29fXXvttVq2bJkSExN1/fXXl/S0iqRLly5KTExU5cqVi7Tfp59+qsmTJxfTrJCfypUrKzExUV26dCnpqQC4QnmX9AQA4HyNGzcu6SkUWWZmphwOh7y97fgrddeuXcrMzFSfPn0UHR1drGOdOXNGZcuW9fhxr7nmGl1zzTUeP+7lrrjqeSk4nU61aNGipKcB4ArGFRsAl5ULb0XLysrS1KlTVadOHfn6+qp8+fJq2LChXnjhBUlSXFycxo4dK0mqWbOmHA6HHA6HVq1a5dp/xowZqlu3rpxOp4KDg3XffffpwIEDbuMaYzRt2jTVqFFDPj4+ioqK0vLly3PcXrRq1So5HA698847GjNmjKpUqSKn06k9e/bo119/1dChQ3XDDTeoXLlyCg4O1i233KK1a9e6jZV9S84zzzyjhIQEhYeHy9fXVzExMa7QMX78eIWFhSkwMFB33nmnjh49Wqj6LVmyRDfddJPKli0rf39/tW/fXomJia7t/fv3V+vWrSVJPXr0kMPhyPf2qexbvpYvX64BAwYoKChIfn5+6tq1q37++We3vtm3Mq1Zs0YtW7ZU2bJldf/990uS0tPT9cgjj6hmzZoqU6aMqlSpopEjR+r06dNux0hPT9egQYNUsWJFlStXTh07dtSuXbvynNeFt6ItW7ZM7dq1U2BgoMqWLat69eopPj7ede4vv/yyJLneJ+cfwxijV155RY0aNZKvr68qVKigu+66K8d5GmM0Y8YM13ulSZMm+uyzz/Ks4YVOnDihBx54QEFBQSpXrpy6dOmin3/+OcftdnFxcXI4HEpOTtZdd92lChUq6Nprr5Ukbdy4UT179nS9d8LDw9WrVy/t27cv1zoV5vXLtmHDBt18880qW7asatWqpenTpysrK6vA8/rggw/UvHlzV+1r1arlev2l3G9FO/91uPBx/mu7ceNGdevWTUFBQfLx8VHjxo31n//8x238M2fOuN5jPj4+CgoKUlRUlBYsWFDg3AFcGez450UAVjt37pzOnj2bo90YU+C+M2bMUFxcnJ544gm1adNGmZmZ2rFjh+u2s4EDB+rYsWN68cUX9dFHH7luTbrhhhskSQ8++KBee+01DR8+XLGxsdq7d68mTpyoVatWKTk5WZUqVZIkPf7444qPj9c///lPde/eXampqRo4cKAyMzNzvU1rwoQJuummmzRnzhx5eXkpODhYv/76qyRp0qRJCg0N1alTp7Ro0SLFxMRoxYoVOQLEyy+/rIYNG+rll1/WiRMnNGbMGHXt2lXNmzdX6dKl9eabb2rfvn165JFHNHDgQC1ZsiTfWs2fP1+9e/fWbbfdpgULFigjI0MzZsxwjd+6dWtNnDhRN954o4YNG6Zp06apbdu2CggIKPB1eOCBB9S+fXvNnz9fqampeuKJJxQTE6OtW7eqfPnyrn6HDx9Wnz599Oijj2ratGny8vLSmTNnFB0drQMHDuixxx5Tw4YN9cMPP+jJJ5/Utm3b9OWXX8rhcMgYozvuuEPr16/Xk08+qWbNmmndunXq1KlTgfOTpDfeeEODBg1SdHS05syZo+DgYO3atUvff/+9JGnixIk6ffq0PvzwQ7ewl/2eGTx4sObNm6cRI0YoISFBx44d05QpU9SyZUtt2bJFISEhkqTJkydr8uTJeuCBB3TXXXcpNTVVgwYN0rlz51SnTp1855iVlaWuXbtq48aNiouLU5MmTZSYmKiOHTvmuU/37t3Vs2dPDRkyxBUE9+7dqzp16qhnz54KCgrS4cOHNXv2bDVr1kw//vij631d1NfvyJEj6t27t8aMGaNJkyZp0aJFmjBhgsLCwnTfffflOcfExET16NFDPXr0UFxcnHx8fLRv3z599dVX+dbj/NdBkn7//Xf17dtX586dU1BQkCRp5cqV6tixo5o3b645c+YoMDBQ7733nnr06KEzZ864/iFk9OjReueddzR16lQ1btxYp0+f1vfff6/ffvst3zkAuIIYACgmc+fONZLyfdSoUcNtnxo1aph+/fq5nsfGxppGjRrlO84zzzxjJJmUlBS39u3btxtJZujQoW7t33zzjZFkHnvsMWOMMceOHTNOp9P06NHDrV9iYqKRZKKjo11tK1euNJJMmzZtCjz/s2fPmszMTNOuXTtz5513utpTUlKMJBMZGWnOnTvnap81a5aRZLp16+Z2nJEjRxpJJi0tLc+xzp07Z8LCwkyDBg3cjnny5EkTHBxsWrZsmeMcPvjggwLPIfs1PH/+xhizbt06I8lMnTrV1RYdHW0kmRUrVrj1jY+PN15eXmbDhg1u7R9++KGRZD799FNjjDGfffaZkWReeOEFt35PP/20kWQmTZqUY17Zr/nJkydNQECAad26tcnKysrzfIYNG2Zy+9GX/Vo/99xzbu2pqanG19fXPProo8YYY44fP258fHzyrMf575XcfPLJJ0aSmT17tlt7fHx8jnOcNGmSkWSefPLJfI9pzF/vtVOnThk/Pz+3+l3M6/fNN9+49b3hhhtMhw4d8h3/2WefNZLMiRMn8uyT/b6fO3dunudw++23m3LlyplNmza52uvWrWsaN25sMjMz3frHxsaaypUru97vERER5o477sh3ngCubNyKBqDYvf3229qwYUOOR/YtUfm58cYbtWXLFg0dOlSff/650tPTCz3uypUrJSnHKms33nij6tWrpxUrVkiSkpKSlJGRoXvuucetX4sWLXKs2pbtH//4R67tc+bMUZMmTeTj4yNvb2+VLl1aK1as0Pbt23P07dy5s7y8/u+v4Xr16klSji9XZ7fv378/jzOVdu7cqUOHDqlv375uxyxXrpz+8Y9/KCkpSWfOnMlz/4L07t3b7XnLli1Vo0YNV42zVahQQbfccotb29KlSxUREaFGjRrp7NmzrkeHDh3cbhvMPtaFY917770Fzm/9+vVKT0/X0KFD5XA4inp6Wrp0qRwOh/r06eM2x9DQUEVGRrrmmJiYqD/++CPPehRk9erVkpTjvdarV68898ntvXbq1CmNGzdO1113nby9veXt7a1y5crp9OnTub7XCvv6hYaG6sYbb3Rra9iwYY5b3C7UrFkz13n95z//0cGDB/Ptn5vhw4frk08+0QcffKAmTZpIkvbs2aMdO3a45n/+a9O5c2cdPnxYO3fulPTXn+vPPvtM48eP16pVq/T7778XeQ4A7EawAVDs6tWrp6ioqByPwMDAAvedMGGCnn32WSUlJalTp06qWLGi2rVrl+cS0ufLvgUlt5WzwsLCXNuz/5t9q9H5cmvL65gzZ87Ugw8+qObNm2vhwoVKSkrShg0b1LFjx1w/ZGXfapOtTJky+bb/8ccfuc7l/HPI61yzsrJ0/PjxPPcvSGhoaK5tF97mk9v4v/zyi7Zu3arSpUu7Pfz9/WWM0f/+9z/XOXh7e6tixYoFjn2h7NsAq1atWuhzunCOxhiFhITkmGdSUpLbHPOaU2HmmX2OF77Geb3PpNxreu+99+qll17SwIED9fnnn+vbb7/Vhg0bdM011+T6Xivs63dh7aW/vvRfUEho06aNFi9erLNnz+q+++5T1apVFRERUejvt0ydOlVz5szRq6++6nZb3i+//CJJeuSRR3K8LkOHDpUk12vzr3/9S+PGjdPixYvVtm1bBQUF6Y477tDu3bsLNQcA9uM7NgAua97e3ho9erRGjx6tEydO6Msvv9Rjjz2mDh06KDU1Nd8VorI/pB0+fDjHB95Dhw65voeQ3S/7Q9T5jhw5kutVm9yuCrz77ruKiYnR7Nmz3dpPnjyZ/0l6wPnneqFDhw7Jy8tLFSpUuOjjHzlyJNe26667zq0tt7pUqlRJvr6+evPNN3M99vmvw9mzZ/Xbb7+5fcDObewLZa+QduGiEIVVqVIlORwOrV27Vk6nM8f27LbseeVVj7yu8GXLPsdjx465hZv8zvHCmqalpWnp0qWaNGmSxo8f72rPyMjQsWPHcj1GYV+/v+P222/X7bffroyMDCUlJSk+Pl733nuvwsPDddNNN+W537x58zRx4kTFxcW5LTYg/d97Y8KECerevXuu+2d/r8nPz8/1/adffvnFdfWma9eu2rFjh4fOEsDljCs2AKxRvnx53XXXXRo2bJiOHTvmWjUp+0Pnhf+qnH1L1LvvvuvWvmHDBm3fvl3t2rWTJDVv3lxOp1Pvv/++W7+kpKQCb8E5n8PhyPGheOvWrTm+IF0c6tSpoypVqmj+/PluizKcPn1aCxcudK2UdrH+/e9/uz1fv3699u3bV6hfSBkbG6uffvpJFStWzPXKXXYYaNu2ba5jzZ8/v8AxWrZsqcDAQM2ZMyffRSnyeq/ExsbKGKODBw/mOscGDRpI+uv2RB8fnzzrUZDs5bUvfK+99957Be6bLXuhhQvfa//v//0/nTt3Ltd9/s7rV1ROp1PR0dFKSEiQJH333Xd59l22bJkGDRqk+++/X5MmTcqxvU6dOqpdu7a2bNmS6+sSFRUlf3//HPuFhISof//+6tWrl3bu3Pm3bsMEYA+u2AC4rHXt2lURERGKiorSNddco3379mnWrFmqUaOGateuLUmuD50vvPCC+vXrp9KlS6tOnTqqU6eO/vnPf+rFF1+Ul5eXOnXq5FoVrVq1aho1apSkv279Gj16tOLj41WhQgXdeeedOnDggCZPnqzKlSu7fWclP7GxsXrqqac0adIkRUdHa+fOnZoyZYpq1qyZ66pwnuTl5aUZM2aod+/eio2N1eDBg5WRkaFnnnlGJ06c0PTp0//W8Tdu3KiBAwfq7rvvVmpqqh5//HFVqVLFdTtQfkaOHKmFCxeqTZs2GjVqlBo2bKisrCzt379fX3zxhcaMGaPmzZvrtttuU5s2bfToo4/q9OnTioqK0rp16/TOO+8UOEa5cuX03HPPaeDAgbr11ls1aNAghYSEaM+ePdqyZYteeuklSf/3XklISFCnTp1UqlQpNWzYUK1atdI///lPDRgwQBs3blSbNm3k5+enw4cP6+uvv1aDBg304IMPqkKFCnrkkUc0depUt3rExcUV6la0jh07qlWrVhozZozS09PVtGlTJSYm6u2335akQr3XAgIC1KZNGz3zzDOqVKmSwsPDtXr1ar3xxhtuK5yd7++8foXx5JNP6sCBA2rXrp2qVq2qEydO6IUXXlDp0qXz/F1JKSkpuvvuu1WrVi0NGDBASUlJbtsbN24sp9OpV199VZ06dVKHDh3Uv39/ValSRceOHdP27duVnJysDz74QNJf/0ARGxurhg0bqkKFCtq+fbveeeedvx3qAVikJFcuAHBly16R6cLVsLJ16dKlwFXRnnvuOdOyZUtTqVIlU6ZMGVO9enXzwAMPmL1797rtN2HCBBMWFma8vLyMJLNy5UpjzF+rhSUkJJjrr7/elC5d2lSqVMn06dPHpKamuu2flZVlpk6daqpWrWrKlCljGjZsaJYuXWoiIyPdVpTKb0WxjIwM88gjj5gqVaoYHx8f06RJE7N48WLTr18/t/PMXh3qmWeecds/r2MXVMfzLV682DRv3tz4+PgYPz8/065dO7Nu3bpCjZOb7LG/+OIL07dvX1O+fHnj6+trOnfubHbv3u3WNzo62tSvXz/X45w6dco88cQTpk6dOqZMmTImMDDQNGjQwIwaNcocOXLE1e/EiRPm/vvvN+XLlzdly5Y17du3Nzt27ChwVbRsn376qYmOjjZ+fn6mbNmy5oYbbjAJCQmu7RkZGWbgwIHmmmuuMQ6HI8cx3nzzTdO8eXPj5+dnfH19zbXXXmvuu+8+s3HjRlefrKwsEx8fb6pVq+Z6r3z88ccmOjq6wFXRjPlrFb4BAwa4nWNSUlKOFeGyV0X79ddfcxzjwIED5h//+IepUKGC8ff3Nx07djTff/99jj8/nnj9Lnz/5mbp0qWmU6dOpkqVKqZMmTImODjYdO7c2axdu9bV58JV0bLfh3k9zn9dtmzZYu655x4THBxsSpcubUJDQ80tt9xi5syZ4+ozfvx4ExUVZSpUqGCcTqepVauWGTVqlPnf//6X79wBXDkcxhTiF0kAwFUoJSVFdevW1aRJk/TYY4+V9HRKxLx58zRgwABt2LBBUVFRJT2dK1b27yBat26dWrZs6bHj8voBuJpwKxoASNqyZYsWLFigli1bKiAgQDt37tSMGTMUEBCgBx54oKSnhyvIggULdPDgQTVo0EBeXl5KSkrSM888ozZt2ng01ADA1YZgAwD6a0WljRs36o033tCJEycUGBiomJgYPf300/kuxQsUlb+/v9577z1NnTpVp0+fVuXKldW/f39NnTq1pKcGAFbjVjQAAAAA1mO5ZwAAAADWI9gAAAAAsB7BBgAAAID1LrvFA7KysnTo0CH5+/vL4XCU9HQAAAAAlBBjjE6ePKmwsLACf4nxZRdsDh06pGrVqpX0NAAAAABcJlJTU1W1atV8+1x2wcbf31/SX5MPCAgo4dkAAAAAKCnp6emqVq2aKyPk57ILNtm3nwUEBBBsAAAAABTqKyosHgAAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOt5l/QEYK/w8Z+U9BQuW3undynpKQAAAFxVuGIDAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9YocbNasWaOuXbsqLCxMDodDixcvzrPv4MGD5XA4NGvWrL8xRQAAAADIX5GDzenTpxUZGamXXnop336LFy/WN998o7CwsIueHAAAAAAUhndRd+jUqZM6deqUb5+DBw9q+PDh+vzzz9WlS5eLnhwAAAAAFEaRg01BsrKy1LdvX40dO1b169cvsH9GRoYyMjJcz9PT0z09JQAAAABXOI8Hm4SEBHl7e2vEiBGF6h8fH6/Jkyd7ehpAiQof/0lJT+GytHc6V3ABAEDx8OiqaJs2bdILL7ygefPmyeFwFGqfCRMmKC0tzfVITU315JQAAAAAXAU8GmzWrl2ro0ePqnr16vL29pa3t7f27dunMWPGKDw8PNd9nE6nAgIC3B4AAAAAUBQevRWtb9++uvXWW93aOnTooL59+2rAgAGeHAoAAAAAXIocbE6dOqU9e/a4nqekpGjz5s0KCgpS9erVVbFiRbf+pUuXVmhoqOrUqfP3ZwsAAAAAuShysNm4caPatm3rej569GhJUr9+/TRv3jyPTQwAAAAACqvIwSYmJkbGmEL337t3b1GHAAAAAIAi8ejiAQAAAABQEgg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAekUONmvWrFHXrl0VFhYmh8OhxYsXu7ZlZmZq3LhxatCggfz8/BQWFqb77rtPhw4d8uScAQAAAMBNkYPN6dOnFRkZqZdeeinHtjNnzig5OVkTJ05UcnKyPvroI+3atUvdunXzyGQBAAAAIDfeRd2hU6dO6tSpU67bAgMDtXz5cre2F198UTfeeKP279+v6tWr59gnIyNDGRkZrufp6elFnRIAAACAq1yxf8cmLS1NDodD5cuXz3V7fHy8AgMDXY9q1aoV95QAAAAAXGGKNdj88ccfGj9+vO69914FBATk2mfChAlKS0tzPVJTU4tzSgAAAACuQEW+Fa2wMjMz1bNnT2VlZemVV17Js5/T6ZTT6SyuaQAAAAC4ChRLsMnMzNQ999yjlJQUffXVV3lerQEAAAAAT/B4sMkONbt379bKlStVsWJFTw8BAAAAAG6KHGxOnTqlPXv2uJ6npKRo8+bNCgoKUlhYmO666y4lJydr6dKlOnfunI4cOSJJCgoKUpkyZTw3cwAAAAD4/xU52GzcuFFt27Z1PR89erQkqV+/foqLi9OSJUskSY0aNXLbb+XKlYqJibn4mQIAAABAHoocbGJiYmSMyXN7ftsAAAAAoDgU+++xAQAAAIDiRrABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHpFDjZr1qxR165dFRYWJofDocWLF7ttN8YoLi5OYWFh8vX1VUxMjH744QdPzRcAAAAAcihysDl9+rQiIyP10ksv5bp9xowZmjlzpl566SVt2LBBoaGhat++vU6ePPm3JwsAAAAAufEu6g6dOnVSp06dct1mjNGsWbP0+OOPq3v37pKkt956SyEhIZo/f74GDx7892YLAAAAALnw6HdsUlJSdOTIEd12222uNqfTqejoaK1fvz7XfTIyMpSenu72AAAAAICiKPIVm/wcOXJEkhQSEuLWHhISon379uW6T3x8vCZPnuzJaQC4TIWP/6Skp3DZ2ju9S0lPAQAAqxXLqmgOh8PtuTEmR1u2CRMmKC0tzfVITU0tjikBAAAAuIJ59IpNaGiopL+u3FSuXNnVfvTo0RxXcbI5nU45nU5PTgMAAADAVcajV2xq1qyp0NBQLV++3NX2559/avXq1WrZsqUnhwIAAAAAlyJfsTl16pT27Nnjep6SkqLNmzcrKChI1atX18iRIzVt2jTVrl1btWvX1rRp01S2bFnde++9Hp04AAAAAGQrcrDZuHGj2rZt63o+evRoSVK/fv00b948Pfroo/r99981dOhQHT9+XM2bN9cXX3whf39/z80aAAAAAM7jMMaYkp7E+dLT0xUYGKi0tDQFBASU9HSQD1a4AjyHVdEAAMipKNmgWFZFAwAAAIBLiWADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACs5/Fgc/bsWT3xxBOqWbOmfH19VatWLU2ZMkVZWVmeHgoAAAAAJEnenj5gQkKC5syZo7feekv169fXxo0bNWDAAAUGBurhhx/29HAAAAAA4Plgk5iYqNtvv11dunSRJIWHh2vBggXauHGjp4cCAAAAAEnFcCta69attWLFCu3atUuStGXLFn399dfq3Llzrv0zMjKUnp7u9gAAAACAovD4FZtx48YpLS1NdevWValSpXTu3Dk9/fTT6tWrV6794+PjNXnyZE9Pw6PCx39S0lMAAMCFn0t52zu9S0lPAUAJ8fgVm/fff1/vvvuu5s+fr+TkZL311lt69tln9dZbb+Xaf8KECUpLS3M9UlNTPT0lAAAAAFc4j1+xGTt2rMaPH6+ePXtKkho0aKB9+/YpPj5e/fr1y9Hf6XTK6XR6ehoAAAAAriIev2Jz5swZeXm5H7ZUqVIs9wwAAACg2Hj8ik3Xrl319NNPq3r16qpfv76+++47zZw5U/fff7+nhwIAAAAAScUQbF588UVNnDhRQ4cO1dGjRxUWFqbBgwfrySef9PRQAAAAACCpGIKNv7+/Zs2apVmzZnn60AAAAACQK49/xwYAAAAALjWCDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA63mX9AQAAMhL+PhPSnoKAABLcMUGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGC9Ygk2Bw8eVJ8+fVSxYkWVLVtWjRo10qZNm4pjKAAAAACQt6cPePz4cbVq1Upt27bVZ599puDgYP30008qX768p4cCAAAAAEnFEGwSEhJUrVo1zZ0719UWHh7u6WEAAAAAwMXjt6ItWbJEUVFRuvvuuxUcHKzGjRvr9ddfz7N/RkaG0tPT3R4AAAAAUBQeDzY///yzZs+erdq1a+vzzz/XkCFDNGLECL399tu59o+Pj1dgYKDrUa1aNU9PCQAAAMAVzuPBJisrS02aNNG0adPUuHFjDR48WIMGDdLs2bNz7T9hwgSlpaW5HqmpqZ6eEgAAAIArnMeDTeXKlXXDDTe4tdWrV0/79+/Ptb/T6VRAQIDbAwAAAACKwuPBplWrVtq5c6db265du1SjRg1PDwUAAAAAkooh2IwaNUpJSUmaNm2a9uzZo/nz5+u1117TsGHDPD0UAAAAAEgqhmDTrFkzLVq0SAsWLFBERISeeuopzZo1S7179/b0UAAAAAAgqRh+j40kxcbGKjY2tjgODQAAAAA5ePyKDQAAAABcagQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADW8y7pCQAApPDxn5T0FIArAn+WUFR7p3cp6SnAQ7hiAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwXrEHm/j4eDkcDo0cObK4hwIAAABwlSrWYLNhwwa99tpratiwYXEOAwAAAOAqV2zB5tSpU+rdu7def/11VahQobiGAQAAAIDiCzbDhg1Tly5ddOutt+bbLyMjQ+np6W4PAAAAACgK7+I46Hvvvafk5GRt2LChwL7x8fGaPHlycUwDAAAAwFXC41dsUlNT9fDDD+vdd9+Vj49Pgf0nTJigtLQ01yM1NdXTUwIAAABwhfP4FZtNmzbp6NGjatq0qavt3LlzWrNmjV566SVlZGSoVKlSrm1Op1NOp9PT0wAAAABwFfF4sGnXrp22bdvm1jZgwADVrVtX48aNcws1AAAAAOAJHg82/v7+ioiIcGvz8/NTxYoVc7QDAAAAgCcU+y/oBAAAAIDiViyrol1o1apVl2IYAAAAAFcprtgAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALCed0lPAAAAACgp4eM/KekpXJb2Tu9S0lMoMq7YAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2PB5v4+Hg1a9ZM/v7+Cg4O1h133KGdO3d6ehgAAAAAcPF4sFm9erWGDRumpKQkLV++XGfPntVtt92m06dPe3ooAAAAAJAkeXv6gMuWLXN7PnfuXAUHB2vTpk1q06aNp4cDAAAAAM8HmwulpaVJkoKCgnLdnpGRoYyMDNfz9PT04p4SAAAAgCtMsS4eYIzR6NGj1bp1a0VEROTaJz4+XoGBga5HtWrVinNKAAAAAK5AxRpshg8frq1bt2rBggV59pkwYYLS0tJcj9TU1OKcEgAAAIArULHdivbQQw9pyZIlWrNmjapWrZpnP6fTKafTWVzTAAAAAHAV8HiwMcbooYce0qJFi7Rq1SrVrFnT00MAAAAAgBuPB5thw4Zp/vz5+u9//yt/f38dOXJEkhQYGChfX19PDwcAAAAAnv+OzezZs5WWlqaYmBhVrlzZ9Xj//fc9PRQAAAAASCqmW9EAAAAA4FIq1lXRAAAAAOBSINgAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrEWwAAAAAWI9gAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADAAAAwHoEGwAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAegQbAAAAANYj2AAAAACwHsEGAAAAgPUINgAAAACsR7ABAAAAYD2CDQAAAADrFVuweeWVV1SzZk35+PioadOmWrt2bXENBQAAAOAqVyzB5v3339fIkSP1+OOP67vvvtPNN9+sTp06af/+/cUxHAAAAICrXLEEm5kzZ+qBBx7QwIEDVa9ePc2aNUvVqlXT7Nmzi2M4AAAAAFc5b08f8M8//9SmTZs0fvx4t/bbbrtN69evz9E/IyNDGRkZrudpaWmSpPT0dE9P7aJlZZwp6SkAAAAAl8zl8lk8ex7GmAL7ejzY/O9//9O5c+cUEhLi1h4SEqIjR47k6B8fH6/JkyfnaK9WrZqnpwYAAACgEAJnlfQM3J08eVKBgYH59vF4sMnmcDjcnhtjcrRJ0oQJEzR69GjX86ysLB07dkwVK1bMtT+KJj09XdWqVVNqaqoCAgJKejpXLOp86VDrS4M6XzrU+tKgzpcOtb40rpY6G2N08uRJhYWFFdjX48GmUqVKKlWqVI6rM0ePHs1xFUeSnE6nnE6nW1v58uU9Pa2rXkBAwBX9pr9cUOdLh1pfGtT50qHWlwZ1vnSo9aVxNdS5oCs12Ty+eECZMmXUtGlTLV++3K19+fLlatmypaeHAwAAAIDiuRVt9OjR6tu3r6KionTTTTfptdde0/79+zVkyJDiGA4AAADAVa5Ygk2PHj3022+/acqUKTp8+LAiIiL06aefqkaNGsUxHPLhdDo1adKkHLf7wbOo86VDrS8N6nzpUOtLgzpfOtT60qDOOTlMYdZOAwAAAIDLWLH8gk4AAAAAuJQINgAAAACsR7ABAAAAYD2CDQAAAADrEWwuM/Hx8WrWrJn8/f0VHBysO+64Qzt37nTrY4xRXFycwsLC5Ovrq5iYGP3www9ufTIyMvTQQw+pUqVK8vPzU7du3XTgwAG3PsePH1ffvn0VGBiowMBA9e3bVydOnHDrs3//fnXt2lV+fn6qVKmSRowYoT///LNYzr0kxcfHy+FwaOTIka426uw5Bw8eVJ8+fVSxYkWVLVtWjRo10qZNm1zbqfXfd/bsWT3xxBOqWbOmfH19VatWLU2ZMkVZWVmuPtT54qxZs0Zdu3ZVWFiYHA6HFi9e7Lb9cqvrtm3bFB0dLV9fX1WpUkVTpkyRDesE5VfnzMxMjRs3Tg0aNJCfn5/CwsJ033336dChQ27HoM6FU9B7+nyDBw+Ww+HQrFmz3NqpdcEKU+ft27erW7duCgwMlL+/v1q0aKH9+/e7tlPnIjK4rHTo0MHMnTvXfP/992bz5s2mS5cupnr16ubUqVOuPtOnTzf+/v5m4cKFZtu2baZHjx6mcuXKJj093dVnyJAhpkqVKmb58uUmOTnZtG3b1kRGRpqzZ8+6+nTs2NFERESY9evXm/Xr15uIiAgTGxvr2n727FkTERFh2rZta5KTk83y5ctNWFiYGT58+KUpxiXy7bffmvDwcNOwYUPz8MMPu9qps2ccO3bM1KhRw/Tv39988803JiUlxXz55Zdmz549rj7U+u+bOnWqqVixolm6dKlJSUkxH3zwgSlXrpyZNWuWqw91vjiffvqpefzxx83ChQuNJLNo0SK37ZdTXdPS0kxISIjp2bOn2bZtm1m4cKHx9/c3zz77bPEVyEPyq/OJEyfMrbfeat5//32zY8cOk5iYaJo3b26aNm3qdgzqXDgFvaezLVq0yERGRpqwsDDz/PPPu22j1gUrqM579uwxQUFBZuzYsSY5Odn89NNPZunSpeaXX35x9aHORUOwucwdPXrUSDKrV682xhiTlZVlQkNDzfTp0119/vjjDxMYGGjmzJljjPnrB0Dp0qXNe++95+pz8OBB4+XlZZYtW2aMMebHH380kkxSUpKrT2JiopFkduzYYYz56w+kl5eXOXjwoKvPggULjNPpNGlpacV30pfQyZMnTe3atc3y5ctNdHS0K9hQZ88ZN26cad26dZ7bqbVndOnSxdx///1ubd27dzd9+vQxxlBnT7nww8nlVtdXXnnFBAYGmj/++MPVJz4+3oSFhZmsrCwPVqJ45fdhO9u3335rJJl9+/YZY6jzxcqr1gcOHDBVqlQx33//valRo4ZbsKHWRZdbnXv06OH6Ozo31LnouBXtMpeWliZJCgoKkiSlpKToyJEjuu2221x9nE6noqOjtX79eknSpk2blJmZ6dYnLCxMERERrj6JiYkKDAxU8+bNXX1atGihwMBAtz4REREKCwtz9enQoYMyMjLcbiOy2bBhw9SlSxfdeuutbu3U2XOWLFmiqKgo3X333QoODlbjxo31+uuvu7ZTa89o3bq1VqxYoV27dkmStmzZoq+//lqdO3eWRJ2Ly+VW18TEREVHR7v9wr4OHTro0KFD2rt3r+cLUILS0tLkcDhUvnx5SdTZk7KystS3b1+NHTtW9evXz7GdWv99WVlZ+uSTT3T99derQ4cOCg4OVvPmzd1uV6PORUewuYwZYzR69Gi1bt1aERERkqQjR45IkkJCQtz6hoSEuLYdOXJEZcqUUYUKFfLtExwcnGPM4OBgtz4XjlOhQgWVKVPG1cdm7733npKTkxUfH59jG3X2nJ9//lmzZ89W7dq19fnnn2vIkCEaMWKE3n77bUnU2lPGjRunXr16qW7duipdurQaN26skSNHqlevXpKoc3G53OqaW5/s51dS7f/44w+NHz9e9957rwICAiRRZ09KSEiQt7e3RowYket2av33HT16VKdOndL06dPVsWNHffHFF7rzzjvVvXt3rV69WhJ1vhjeJT0B5G348OHaunWrvv766xzbHA6H23NjTI62C13YJ7f+F9PHRqmpqXr44Yf1xRdfyMfHJ89+1Pnvy8rKUlRUlKZNmyZJaty4sX744QfNnj1b9913n6sftf573n//fb377ruaP3++6tevr82bN2vkyJEKCwtTv379XP2oc/G4nOqa21zy2tdGmZmZ6tmzp7KysvTKK68U2J86F82mTZv0wgsvKDk5ucjnQq0LL3thl9tvv12jRo2SJDVq1Ejr16/XnDlzFB0dnee+1DlvXLG5TD300ENasmSJVq5cqapVq7raQ0NDJeVMz0ePHnUl69DQUP355586fvx4vn1++eWXHOP++uuvbn0uHOf48ePKzMzMkepts2nTJh09elRNmzaVt7e3vL29tXr1av3rX/+St7d3nv9KQZ2LrnLlyrrhhhvc2urVq+da9YX3tGeMHTtW48ePV8+ePdWgQQP17dtXo0aNcl2RpM7F43Kra259jh49KinnVSUbZWZm6p577lFKSoqWL1/uulojUWdPWbt2rY4eParq1au7fj7u27dPY8aMUXh4uCRq7QmVKlWSt7d3gT8fqXPREGwuM8YYDR8+XB999JG++uor1axZ0217zZo1FRoaquXLl7va/vzzT61evVotW7aUJDVt2lSlS5d263P48GF9//33rj433XST0tLS9O2337r6fPPNN0pLS3Pr8/333+vw4cOuPl988YWcTqeaNm3q+ZO/hNq1a6dt27Zp8+bNrkdUVJR69+6tzZs3q1atWtTZQ1q1apVjyfJdu3apRo0aknhPe8qZM2fk5eX+V3qpUqVc/ypInYvH5VbXm266SWvWrHFbxvWLL75QWFiY60OprbJDze7du/Xll1+qYsWKbtups2f07dtXW7dudfv5GBYWprFjx+rzzz+XRK09oUyZMmrWrFm+Px+p80Uo5sUJUEQPPvigCQwMNKtWrTKHDx92Pc6cOePqM336dBMYGGg++ugjs23bNtOrV69clxatWrWq+fLLL01ycrK55ZZbcl0esGHDhiYxMdEkJiaaBg0a5Lo8YLt27UxycrL58ssvTdWqVa1dsrUg56+KZgx19pRvv/3WeHt7m6efftrs3r3b/Pvf/zZly5Y17777rqsPtf77+vXrZ6pUqeJa7vmjjz4ylSpVMo8++qirD3W+OCdPnjTfffed+e6774wkM3PmTPPdd9+5VuO6nOp64sQJExISYnr16mW2bdtmPvroIxMQEGDFkq351TkzM9N069bNVK1a1WzevNnt52NGRobrGNS5cAp6T1/owlXRjKHWhVFQnT/66CNTunRp89prr5ndu3ebF1980ZQqVcqsXbvWdQzqXDQEm8uMpFwfc+fOdfXJysoykyZNMqGhocbpdJo2bdqYbdu2uR3n999/N8OHDzdBQUHG19fXxMbGmv3797v1+e2330zv3r2Nv7+/8ff3N7179zbHjx9367Nv3z7TpUsX4+vra4KCgszw4cPdlgK8klwYbKiz53z88ccmIiLCOJ1OU7duXfPaa6+5bafWf196erp5+OGHTfXq1Y2Pj4+pVauWefzxx90+9FHni7Ny5cpc/17u16+fMebyq+vWrVvNzTffbJxOpwkNDTVxcXFWLNeaX51TUlLy/Pm4cuVK1zGoc+EU9J6+UG7BhloXrDB1fuONN8x1111nfHx8TGRkpFm8eLHbMahz0TiMse1XigIAAACAO75jAwAAAMB6BBsAAAAA1iPYAAAAALAewQYAAACA9Qg2AAAAAKxHsAEAAABgPYINAAAAAOsRbAAAAABYj2ADACiSvXv3yuFwaPPmzSU9FZcdO3aoRYsW8vHxUaNGjTx23FWrVsnhcOjEiRMeOyYAoHgQbADAMv3795fD4dD06dPd2hcvXiyHw1FCsypZkyZNkp+fn3bu3KkVK1aU9HQAACWAYAMAFvLx8VFCQoKOHz9e0lPxmD///POi9/3pp5/UunVr1ahRQxUrVvTgrAAAtiDYAICFbr31VoWGhio+Pj7PPnFxcTluy5o1a5bCw8Ndz/v376877rhD06ZNU0hIiMqXL6/Jkyfr7NmzGjt2rIKCglS1alW9+eabOY6/Y8cOtWzZUj4+Pqpfv75WrVrltv3HH39U586dVa5cOYWEhKhv37763//+59oeExOj4cOHa/To0apUqZLat2+f63lkZWVpypQpqlq1qpxOpxo1aqRly5a5tjscDm3atElTpkyRw+FQXFxcrscxxmjGjBmqVauWfH19FRkZqQ8//NCtz6effqrrr79evr6+atu2rfbu3ZvjOK+//rqqVaumsmXL6s4779TMmTNVvnx5tz4ff/yxmjZtKh8fH9WqVctV02xxcXGqXr26nE6nwsLCNGLEiFznDAAoPIINAFioVKlSmjZtml588UUdOHDgbx3rq6++0qFDh7RmzRrNnDlTcXFxio2NVYUKFfTNN99oyJAhGjJkiFJTU932Gzt2rMaMGaPvvvtOLVu2VLdu3fTbb79Jkg4fPqzo6Gg1atRIGzdu1LJly/TLL7/onnvucTvGW2+9JW9vb61bt06vvvpqrvN74YUX9Nxzz+nZZ5/V1q1b1aFDB3Xr1k27d+92jVW/fn2NGTNGhw8f1iOPPJLrcZ544gnNnTtXs2fP1g8//KBRo0apT58+Wr16tSQpNTVV3bt3V+fOnbV582YNHDhQ48ePdzvGunXrNGTIED388MPavHmz2rdvr6efftqtz+eff64+ffpoxIgR+vHHH/Xqq69q3rx5rn4ffvihnn/+eb366qvavXu3Fi9erAYNGhTmpQIA5McAAKzSr18/c/vttxtjjGnRooW5//77jTHGLFq0yJz/1/qkSZNMZGSk277PP/+8qVGjhtuxatSoYc6dO+dqq1Onjrn55ptdz8+ePWv8/PzMggULjDHGpKSkGElm+vTprj6ZmZmmatWqJiEhwRhjzMSJE81tt93mNnZqaqqRZHbu3GmMMSY6Oto0atSowPMNCwszTz/9tFtbs2bNzNChQ13PIyMjzaRJk/I8xqlTp4yPj49Zv369W/sDDzxgevXqZYwxZsKECaZevXomKyvLtX3cuHFGkjl+/LgxxpgePXqYLl26uB2jd+/eJjAw0PX85ptvNtOmTXPr884775jKlSsbY4x57rnnzPXXX2/+/PPP/E8cAFAkXLEBAIslJCTorbfe0o8//njRx6hfv768vP7vx0FISIjbFYRSpUqpYsWKOnr0qNt+N910k+v/vb29FRUVpe3bt0uSNm3apJUrV6pcuXKuR926dSX99X2YbFFRUfnOLT09XYcOHVKrVq3c2lu1auUaqzB+/PFH/fHHH2rfvr3bnN5++23XfLZv364WLVq4LcBw/jlK0s6dO3XjjTe6tV34PPu2uPPHGTRokA4fPqwzZ87o7rvv1u+//65atWpp0KBBWrRokdttagCAi+Nd0hMAAFy8Nm3aqEOHDnrsscfUv39/t21eXl4yxri1ZWZm5jhG6dKl3Z47HI5c27KysgqcT3YoyMrKUteuXZWQkJCjT+XKlV3/7+fnV+Axzz9uNmNMkVaAy577J598oipVqrhtczqdrmMWJLdxL9wvKytLkydPVvfu3XPs7+Pjo2rVqmnnzp1avny5vvzySw0dOlTPPPOMVq9enaPuAIDCI9gAgOWmT5+uRo0a6frrr3drv+aaa3TkyBG3D+Oe/N0zSUlJatOmjSTp7Nmz2rRpk4YPHy5JatKkiRYuXKjw8HB5e1/8j5qAgACFhYXp66+/do0lSevXr89xpSQ/N9xwg5xOp/bv36/o6Og8+yxevNitLSkpye153bp19e2337q1bdy40e15kyZNtHPnTl133XV5zsfX11fdunVTt27dNGzYMNWtW1fbtm1TkyZNCn1OAAB3BBsAsFyDBg3Uu3dvvfjii27tMTEx+vXXXzVjxgzdddddWrZsmT777DMFBAR4ZNyXX35ZtWvXVr169fT888/r+PHjuv/++yVJw4YN0+uvv65evXpp7NixqlSpkvbs2aP33ntPr7/+ukqVKlXoccaOHatJkybp2muvVaNGjTR37lxt3rxZ//73vwt9DH9/fz3yyCMaNWqUsrKy1Lp1a6Wnp2v9+vUqV66c+vXrpyFDhui5557T6NGjNXjwYG3atEnz5s1zO85DDz2kNm3aaObMmeratau++uorffbZZ25XcZ588knFxsaqWrVquvvuu+Xl5aWtW7dq27Ztmjp1qubNm6dz586pefPmKlu2rN555x35+vqqRo0ahT4fAEBOfMcGAK4ATz31VI5bourVq6dXXnlFL7/8siIjI/Xtt9/muWLYxZg+fboSEhIUGRmptWvX6r///a8qVaokSQoLC9O6det07tw5dejQQREREXr44YcVGBjo9n2ewhgxYoTGjBmjMWPGqEGDBlq2bJmWLFmi2rVrF+k4Tz31lJ588knFx8erXr166tChgz7++GPVrFlTklS9enUtXLhQH3/8sSIjIzVnzhxNmzbN7RitWrXSnDlzNHPmTEVGRmrZsmUaNWqUfHx8XH06dOigpUuXavny5WrWrJlatGihmTNnuoJL+fLl9frrr6tVq1Zq2LChVqxYoY8//pjfvwMAf5PDFOamYgAAkKtBgwZpx44dWrt2bUlPBQCuatyKBgBAETz77LNq3769/Pz89Nlnn+mtt97SK6+8UtLTAoCrHldsAAAognvuuUerVq3SyZMnVatWLT300EMaMmRISU8LAK56BBsAAAAA1mPxAAAAAADWI9gAAAAAsB7BBgAAAID1CDYAAAAArEewAQAAAGA9gg0AAAAA6xFsAAAAAFiPYAMAAADAev8fNyihzCBEnIUAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<Figure size 1000x500 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "plot_graph_sizes(metric_learning_model)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# 2. Construct graphs from metric learning inference\n",
-    "\n",
-    "This step performs model inference on the entire input datasets (train, validation and test), to obtain input graphs to the graph neural network. Optionally, we also clear the directory."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 20,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:------------- Step 2: Constructing graphs from metric learning model -------------\n",
-      "INFO:---------------------------- a) Loading trained model ----------------------------\n",
-      "INFO:----------------------------- b) Running inferencing -----------------------------\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Training finished, running inference to build graphs...\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  1%|▏         | 1/80 [00:00<00:14,  5.33it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 24720])\n",
-      "torch.Size([24720])\n",
-      "torch.Size([2, 2480])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  2%|â–Ž         | 2/80 [00:00<00:13,  5.62it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 22072])\n",
-      "torch.Size([22072])\n",
-      "torch.Size([2, 2710])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  4%|▍         | 3/80 [00:00<00:13,  5.80it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 8778])\n",
-      "torch.Size([8778])\n",
-      "torch.Size([2, 1036])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  5%|▌         | 4/80 [00:00<00:13,  5.81it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 22034])\n",
-      "torch.Size([22034])\n",
-      "torch.Size([2, 2252])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  6%|â–‹         | 5/80 [00:00<00:12,  5.86it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5860])\n",
-      "torch.Size([5860])\n",
-      "torch.Size([2, 1122])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  8%|â–Š         | 6/80 [00:01<00:12,  5.91it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 8212])\n",
-      "torch.Size([8212])\n",
-      "torch.Size([2, 900])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  9%|â–‰         | 7/80 [00:01<00:12,  5.92it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 14606])\n",
-      "torch.Size([14606])\n",
-      "torch.Size([2, 1832])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 10%|â–ˆ         | 8/80 [00:01<00:12,  5.93it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 28448])\n",
-      "torch.Size([28448])\n",
-      "torch.Size([2, 3176])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 11%|█▏        | 9/80 [00:01<00:11,  5.94it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 27961])\n",
-      "torch.Size([27961])\n",
-      "torch.Size([2, 2310])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 12%|█▎        | 10/80 [00:01<00:11,  6.01it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7526])\n",
-      "torch.Size([7526])\n",
-      "torch.Size([2, 1104])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 14%|█▍        | 11/80 [00:01<00:11,  5.95it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 32078])\n",
-      "torch.Size([32078])\n",
-      "torch.Size([2, 2656])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 15%|█▌        | 12/80 [00:02<00:11,  5.93it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 41196])\n",
-      "torch.Size([41196])\n",
-      "torch.Size([2, 3588])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 16%|█▋        | 13/80 [00:02<00:11,  5.95it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 1594])\n",
-      "torch.Size([1594])\n",
-      "torch.Size([2, 380])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 18%|█▊        | 14/80 [00:02<00:11,  5.75it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 42760])\n",
-      "torch.Size([42760])\n",
-      "torch.Size([2, 3702])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 19%|█▉        | 15/80 [00:02<00:11,  5.71it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 58912])\n",
-      "torch.Size([58912])\n",
-      "torch.Size([2, 4262])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 20%|██        | 16/80 [00:02<00:10,  5.84it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 10370])\n",
-      "torch.Size([10370])\n",
-      "torch.Size([2, 1098])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 21%|██▏       | 17/80 [00:02<00:10,  5.84it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 30992])\n",
-      "torch.Size([30992])\n",
-      "torch.Size([2, 2852])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 22%|██▎       | 18/80 [00:03<00:10,  5.82it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 50589])\n",
-      "torch.Size([50589])\n",
-      "torch.Size([2, 3960])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 24%|██▍       | 19/80 [00:03<00:10,  5.86it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 20262])\n",
-      "torch.Size([20262])\n",
-      "torch.Size([2, 2008])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 25%|██▌       | 20/80 [00:03<00:10,  5.88it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 11828])\n",
-      "torch.Size([11828])\n",
-      "torch.Size([2, 1340])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 26%|██▋       | 21/80 [00:03<00:09,  5.96it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 8052])\n",
-      "torch.Size([8052])\n",
-      "torch.Size([2, 1192])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 28%|██▊       | 22/80 [00:03<00:09,  5.91it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 49886])\n",
-      "torch.Size([49886])\n",
-      "torch.Size([2, 4044])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 29%|██▉       | 23/80 [00:03<00:09,  5.95it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 1132])\n",
-      "torch.Size([1132])\n",
-      "torch.Size([2, 326])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 30%|███       | 24/80 [00:04<00:09,  5.95it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 29434])\n",
-      "torch.Size([29434])\n",
-      "torch.Size([2, 3320])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 31%|███▏      | 25/80 [00:04<00:09,  5.73it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 79962])\n",
-      "torch.Size([79962])\n",
-      "torch.Size([2, 4848])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 32%|███▎      | 26/80 [00:04<00:09,  5.87it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7098])\n",
-      "torch.Size([7098])\n",
-      "torch.Size([2, 1136])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 34%|███▍      | 27/80 [00:04<00:09,  5.67it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 17254])\n",
-      "torch.Size([17254])\n",
-      "torch.Size([2, 2044])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 35%|███▌      | 28/80 [00:04<00:09,  5.75it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 18100])\n",
-      "torch.Size([18100])\n",
-      "torch.Size([2, 1870])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 36%|███▋      | 29/80 [00:04<00:08,  5.75it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 45740])\n",
-      "torch.Size([45740])\n",
-      "torch.Size([2, 3600])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 38%|███▊      | 30/80 [00:05<00:08,  5.83it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7286])\n",
-      "torch.Size([7286])\n",
-      "torch.Size([2, 1208])\n",
-      "torch.Size([2, 23350])\n",
-      "torch.Size([23350])\n",
-      "torch.Size([2, 2448])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 39%|███▉      | 31/80 [00:05<00:08,  5.57it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 15212])\n",
-      "torch.Size([15212])\n",
-      "torch.Size([2, 1946])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 41%|████▏     | 33/80 [00:05<00:08,  5.78it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 12366])\n",
-      "torch.Size([12366])\n",
-      "torch.Size([2, 1684])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 42%|████▎     | 34/80 [00:05<00:08,  5.64it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 61640])\n",
-      "torch.Size([61640])\n",
-      "torch.Size([2, 4768])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 44%|████▍     | 35/80 [00:06<00:07,  5.79it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5338])\n",
-      "torch.Size([5338])\n",
-      "torch.Size([2, 1126])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 45%|████▌     | 36/80 [00:06<00:07,  5.88it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 9758])\n",
-      "torch.Size([9758])\n",
-      "torch.Size([2, 1306])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 46%|████▋     | 37/80 [00:06<00:07,  5.90it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 19674])\n",
-      "torch.Size([19674])\n",
-      "torch.Size([2, 2208])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 48%|████▊     | 38/80 [00:06<00:07,  5.95it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 9620])\n",
-      "torch.Size([9620])\n",
-      "torch.Size([2, 1548])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 49%|████▉     | 39/80 [00:06<00:06,  5.86it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 65041])\n",
-      "torch.Size([65041])\n",
-      "torch.Size([2, 4212])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 50%|█████     | 40/80 [00:06<00:06,  5.72it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 47670])\n",
-      "torch.Size([47670])\n",
-      "torch.Size([2, 4380])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 51%|█████▏    | 41/80 [00:07<00:06,  5.76it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 39053])\n",
-      "torch.Size([39053])\n",
-      "torch.Size([2, 3478])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 52%|█████▎    | 42/80 [00:07<00:06,  5.84it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 2146])\n",
-      "torch.Size([2146])\n",
-      "torch.Size([2, 556])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 54%|█████▍    | 43/80 [00:07<00:06,  5.80it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 26480])\n",
-      "torch.Size([26480])\n",
-      "torch.Size([2, 2196])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 55%|█████▌    | 44/80 [00:07<00:06,  5.90it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 4498])\n",
-      "torch.Size([4498])\n",
-      "torch.Size([2, 394])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 56%|█████▋    | 45/80 [00:07<00:05,  5.98it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7242])\n",
-      "torch.Size([7242])\n",
-      "torch.Size([2, 1342])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 57%|█████▊    | 46/80 [00:07<00:05,  6.03it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6792])\n",
-      "torch.Size([6792])\n",
-      "torch.Size([2, 1284])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 59%|█████▉    | 47/80 [00:08<00:05,  6.06it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 8062])\n",
-      "torch.Size([8062])\n",
-      "torch.Size([2, 1136])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 60%|██████    | 48/80 [00:08<00:05,  6.04it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 13442])\n",
-      "torch.Size([13442])\n",
-      "torch.Size([2, 1546])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 62%|██████▎   | 50/80 [00:08<00:05,  5.51it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 18458])\n",
-      "torch.Size([18458])\n",
-      "torch.Size([2, 2190])\n",
-      "torch.Size([2, 9836])\n",
-      "torch.Size([9836])\n",
-      "torch.Size([2, 1392])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 65%|██████▌   | 52/80 [00:08<00:04,  5.75it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 25132])\n",
-      "torch.Size([25132])\n",
-      "torch.Size([2, 2522])\n",
-      "torch.Size([2, 12338])\n",
-      "torch.Size([12338])\n",
-      "torch.Size([2, 1728])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 68%|██████▊   | 54/80 [00:09<00:04,  5.91it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5718])\n",
-      "torch.Size([5718])\n",
-      "torch.Size([2, 994])\n",
-      "torch.Size([2, 16898])\n",
-      "torch.Size([16898])\n",
-      "torch.Size([2, 1758])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 70%|███████   | 56/80 [00:09<00:04,  5.85it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 8258])\n",
-      "torch.Size([8258])\n",
-      "torch.Size([2, 480])\n",
-      "torch.Size([2, 39463])\n",
-      "torch.Size([39463])\n",
-      "torch.Size([2, 3668])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 72%|███████▎  | 58/80 [00:09<00:03,  5.96it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 18288])\n",
-      "torch.Size([18288])\n",
-      "torch.Size([2, 1922])\n",
-      "torch.Size([2, 8986])\n",
-      "torch.Size([8986])\n",
-      "torch.Size([2, 1360])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 75%|███████▌  | 60/80 [00:10<00:03,  5.95it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 1970])\n",
-      "torch.Size([1970])\n",
-      "torch.Size([2, 544])\n",
-      "torch.Size([2, 14552])\n",
-      "torch.Size([14552])\n",
-      "torch.Size([2, 1710])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 76%|███████▋  | 61/80 [00:10<00:03,  5.27it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 30092])\n",
-      "torch.Size([30092])\n",
-      "torch.Size([2, 2752])\n",
-      "torch.Size([2, 7968])\n",
-      "torch.Size([7968])\n",
-      "torch.Size([2, 1288])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 80%|████████  | 64/80 [00:11<00:02,  5.67it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6534])\n",
-      "torch.Size([6534])\n",
-      "torch.Size([2, 1166])\n",
-      "torch.Size([2, 62811])\n",
-      "torch.Size([62811])\n",
-      "torch.Size([2, 3964])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 82%|████████▎ | 66/80 [00:11<00:02,  5.75it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 66162])\n",
-      "torch.Size([66162])\n",
-      "torch.Size([2, 4940])\n",
-      "torch.Size([2, 15754])\n",
-      "torch.Size([15754])\n",
-      "torch.Size([2, 2102])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 85%|████████▌ | 68/80 [00:11<00:02,  5.85it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 43104])\n",
-      "torch.Size([43104])\n",
-      "torch.Size([2, 3588])\n",
-      "torch.Size([2, 13614])\n",
-      "torch.Size([13614])\n",
-      "torch.Size([2, 1364])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 88%|████████▊ | 70/80 [00:12<00:01,  5.97it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 2210])\n",
-      "torch.Size([2210])\n",
-      "torch.Size([2, 538])\n",
-      "torch.Size([2, 27512])\n",
-      "torch.Size([27512])\n",
-      "torch.Size([2, 2586])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 90%|█████████ | 72/80 [00:12<00:01,  6.00it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 27678])\n",
-      "torch.Size([27678])\n",
-      "torch.Size([2, 2878])\n",
-      "torch.Size([2, 18042])\n",
-      "torch.Size([18042])\n",
-      "torch.Size([2, 1494])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 92%|█████████▎| 74/80 [00:12<00:00,  6.04it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 41784])\n",
-      "torch.Size([41784])\n",
-      "torch.Size([2, 3240])\n",
-      "torch.Size([2, 4340])\n",
-      "torch.Size([4340])\n",
-      "torch.Size([2, 992])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 95%|█████████▌| 76/80 [00:13<00:00,  5.89it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 28100])\n",
-      "torch.Size([28100])\n",
-      "torch.Size([2, 2488])\n",
-      "torch.Size([2, 50622])\n",
-      "torch.Size([50622])\n",
-      "torch.Size([2, 4474])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 98%|█████████▊| 78/80 [00:13<00:00,  5.78it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 72144])\n",
-      "torch.Size([72144])\n",
-      "torch.Size([2, 4544])\n",
-      "torch.Size([2, 37952])\n",
-      "torch.Size([37952])\n",
-      "torch.Size([2, 3244])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "100%|██████████| 80/80 [00:13<00:00,  5.83it/s]\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 34502])\n",
-      "torch.Size([34502])\n",
-      "torch.Size([2, 3376])\n",
-      "torch.Size([2, 7566])\n",
-      "torch.Size([7566])\n",
-      "torch.Size([2, 1204])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 20%|██        | 2/10 [00:00<00:01,  6.14it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 17506])\n",
-      "torch.Size([17506])\n",
-      "torch.Size([2, 1922])\n",
-      "torch.Size([2, 7544])\n",
-      "torch.Size([7544])\n",
-      "torch.Size([2, 1210])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 40%|████      | 4/10 [00:00<00:01,  5.76it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 24664])\n",
-      "torch.Size([24664])\n",
-      "torch.Size([2, 2802])\n",
-      "torch.Size([2, 14966])\n",
-      "torch.Size([14966])\n",
-      "torch.Size([2, 1682])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 60%|██████    | 6/10 [00:01<00:00,  5.70it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 12184])\n",
-      "torch.Size([12184])\n",
-      "torch.Size([2, 1552])\n",
-      "torch.Size([2, 29416])\n",
-      "torch.Size([29416])\n",
-      "torch.Size([2, 2206])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 80%|████████  | 8/10 [00:01<00:00,  5.85it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 13216])\n",
-      "torch.Size([13216])\n",
-      "torch.Size([2, 1212])\n",
-      "torch.Size([2, 25590])\n",
-      "torch.Size([25590])\n",
-      "torch.Size([2, 2852])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "100%|██████████| 10/10 [00:01<00:00,  5.84it/s]\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6970])\n",
-      "torch.Size([6970])\n",
-      "torch.Size([2, 1008])\n",
-      "torch.Size([2, 44808])\n",
-      "torch.Size([44808])\n",
-      "torch.Size([2, 3388])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 20%|██        | 2/10 [00:00<00:01,  5.58it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 9266])\n",
-      "torch.Size([9266])\n",
-      "torch.Size([2, 1496])\n",
-      "torch.Size([2, 23218])\n",
-      "torch.Size([23218])\n",
-      "torch.Size([2, 2370])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 40%|████      | 4/10 [00:00<00:01,  5.90it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 4230])\n",
-      "torch.Size([4230])\n",
-      "torch.Size([2, 770])\n",
-      "torch.Size([2, 14336])\n",
-      "torch.Size([14336])\n",
-      "torch.Size([2, 1992])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 60%|██████    | 6/10 [00:01<00:00,  5.73it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 109148])\n",
-      "torch.Size([109148])\n",
-      "torch.Size([2, 5882])\n",
-      "torch.Size([2, 9952])\n",
-      "torch.Size([9952])\n",
-      "torch.Size([2, 1452])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 80%|████████  | 8/10 [00:01<00:00,  5.95it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 18698])\n",
-      "torch.Size([18698])\n",
-      "torch.Size([2, 1710])\n",
-      "torch.Size([2, 2114])\n",
-      "torch.Size([2114])\n",
-      "torch.Size([2, 496])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "100%|██████████| 10/10 [00:01<00:00,  5.83it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 55732])\n",
-      "torch.Size([55732])\n",
-      "torch.Size([2, 3516])\n",
-      "torch.Size([2, 7484])\n",
-      "torch.Size([7484])\n",
-      "torch.Size([2, 1252])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\n"
-     ]
-    }
-   ],
-   "source": [
-    "graph_builder = run_metric_learning_inference(CONFIG)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# 3. Train graph neural networks"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "We have a set of graphs constructed. We now train a GNN to classify edges as either \"true\" (belonging to the same track) or \"false\" (not belonging to the same track). We train for 30 epochs, which should take around 10 minutes on a V100 GPU. Your mileage may vary."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 21,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:-------------------------  Step 3: Running GNN training  -------------------------\n",
-      "INFO:----------------------------- a) Initialising model -----------------------------\n",
-      "INFO:------------------------------ b) Running training ------------------------------\n",
-      "GPU available: True (cuda), used: True\n",
-      "TPU available: False, using: 0 TPU cores\n",
-      "IPU available: False, using: 0 IPUs\n",
-      "HPU available: False, using: 0 HPUs\n",
-      "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
-      "\n",
-      "  | Name                   | Type       | Params\n",
-      "------------------------------------------------------\n",
-      "0 | node_encoder           | Sequential | 34.0 K\n",
-      "1 | edge_encoder           | Sequential | 66.4 K\n",
-      "2 | edge_network           | Sequential | 82.8 K\n",
-      "3 | node_network           | Sequential | 82.8 K\n",
-      "4 | output_edge_classifier | Sequential | 83.2 K\n",
-      "------------------------------------------------------\n",
-      "349 K     Trainable params\n",
-      "0         Non-trainable params\n",
-      "349 K     Total params\n",
-      "1.397     Total estimated model params size (MB)\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 2: 100%|██████████| 90/90 [00:14<00:00,  6.43it/s, loss=0.728, v_num=1]"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "`Trainer.fit` stopped: `max_epochs=3` reached.\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 2: 100%|██████████| 90/90 [00:14<00:00,  6.41it/s, loss=0.728, v_num=1]\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:-------------------------------- c) Saving model --------------------------------\n"
-     ]
-    }
-   ],
-   "source": [
-    "# send_telegram_message('Started GNN training.', chat_id, api_key)\n",
-    "\n",
-    "gnn_trainer, gnn_model = train_gnn(CONFIG)\n",
-    "\n",
-    "# send_telegram_message('Finished GNN training.', chat_id, api_key)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "#### From checkpoint"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 22,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# from GNN.Models.interaction_gnn import InteractionGNN\n",
-    "# from pytorch_lightning import Trainer\n",
-    "# from pytorch_lightning.loggers import CSVLogger\n",
-    "\n",
-    "# version_number = 1\n",
-    "\n",
-    "# HPARAMS_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_1/hparams.yaml'\n",
-    "# CKPT_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_1/checkpoints/epoch=19-step=1600.ckpt'\n",
-    "# METRICS_PATH = f'/home/fgias/velo-gnn/LHCb_Pipeline/artifacts/gnn/velo_data/version_{version_number}/metrics.csv'\n",
-    "\n",
-    "# load_configs = {}\n",
-    "# with open(HPARAMS_PATH, 'r') as f:\n",
-    "#     load_configs = yaml.load(f, Loader=yaml.FullLoader)\n",
-    "    \n",
-    "# gnn_model = InteractionGNN(load_configs)\n",
-    "\n",
-    "# logger = CSVLogger('artifacts', name='gnn/velo_data')\n",
-    "\n",
-    "# gnn_trainer = Trainer(\n",
-    "#         gpus=1,\n",
-    "#         max_epochs=40,\n",
-    "#         logger=logger,\n",
-    "#         # callbacks=[EarlyStopping(monitor=\"val_loss\", mode=\"min\")]\n",
-    "# )\n",
-    "\n",
-    "# gnn_trainer.fit(gnn_model, ckpt_path=CKPT_PATH)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Plot training metrics"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "ename": "NameError",
-     "evalue": "name 'gnn_trainer' is not defined",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
-      "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m gnn_metrics \u001b[39m=\u001b[39m get_training_metrics(gnn_trainer)\n\u001b[1;32m      3\u001b[0m \u001b[39m# gnn_metrics = get_training_metrics(gnn_trainer, METRICS_PATH) # Use when loading from checkpoint\u001b[39;00m\n\u001b[1;32m      5\u001b[0m gnn_metrics\n",
-      "\u001b[0;31mNameError\u001b[0m: name 'gnn_trainer' is not defined"
-     ]
-    }
-   ],
-   "source": [
-    "gnn_metrics = get_training_metrics(gnn_trainer)\n",
-    "\n",
-    "# gnn_metrics = get_training_metrics(gnn_trainer, METRICS_PATH) # Use when loading from checkpoint\n",
-    "\n",
-    "gnn_metrics"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 24,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABwgAAAJYCAYAAAB2JbLWAAD88klEQVR4nOzdZ3RUZdv28WMSkgABQggBpAtIR6X3ZgSkI0iXXqQoSBUVCBFQKdJRpEtXBAtFEQUUkCpIUW46UkIxQCAEUmfeDzzkJSaUQGauyeT/W2vWcs9ux1x6Pzmffe59bYvNZrMJAAAAAAAAAAAAQKrgZjoAAAAAAAAAAAAAAMehQQgAAAAAAAAAAACkIjQIAQAAAAAAAAAAgFSEBiEAAAAAAAAAAACQitAgBAAAAAAAAAAAAFIRGoQAAAAAAAAAAABAKkKDEAAAAAAAAAAAAEhFaBACAAAAAAAAAAAAqQgNQgAAAAAAAAAAACAVoUEIAAAAAAAAAAAApCKprkHYo0cP1alTJ9HPgAEDknSs4OBg1alTR4GBgXbZ3lH+m+txcg4ePFh16tTRzZs3H3n80NBQhYaGPvaxn4azjjEAAK7MarUmqKuaNGmioUOH6uzZs0983MT+rt9fV6RUrlR7PQ1X+HcJAIA91atXL9HrV6+//nrcNr/99ps6d+6sBg0aSJIuX76soUOHqn79+tq+fbuWLl2qOnXqaMuWLQ89lzPXDKZRu91F7QYArieN6QCOVqlSJRUsWFCStHnzZlmtVgUEBEiScufOnaRjpUuXTgEBASpcuLBdtjcluXN269ZNnp6eWr58eYoZAwAAkHTu7u6qVauWrFarDh48qP379+uDDz7QnDlzZLFYkny8xOqG++sKV5Faay9X/HcJAEBys1gseumll+J95+PjE/fPX375pS5cuKDu3btLkrZs2aL9+/erZs2aKlCggCwWiwICApQ9e/aHnseZawZnQ+1G7QYAriLVNQi7desW98/bt29XRESEhg0b9kTH8vX1TdK+Sd3elOTMeebMGcXGxiomJkYnT55UwYIFU8QYAACApEubNm3c3/no6Gi1aNFC//zzj/79919ly5Ytycf7b02SWF3hClJj7eWq/y4BAEhuadKkeejf8jt37sjNzU2tW7eOW5ak2rVr65lnntEzzzyjKlWqPPI8KeWalTOgdqN2AwBXkeoahA9z8uRJ9erVS3Xq1JGfn5+OHj2q8ePH65tvvtE333yjkJAQ+fr6qkGDBmrfvr2Cg4PVqVMnValSRUFBQXH7165dW56entq+fbsyZcqkPn36qGLFikneXro7tcCkSZN06tQpvfLKK9q7d6+uXr2qVatWJcg/duxYbdmyRZMmTVKpUqUUEhKitm3bqlixYpo2bdoDf8d//TenJB07dkzTpk3T+fPnVa1aNUVHR8fb50HHHjt2rMLDwyVJ7777rqZMmZLg2BcuXNCsWbP0119/ydPTU2XKlFHPnj2VOXPmxxqjR3nY8SVpw4YNWrFihS5fvqysWbOqcePGatmy5SPXAQCAB/Pw8FCOHDl0+vRp3b59WwcPHtSgQYPUvHlz9e7dW5LUt29fHTt2TOvXr9fZs2cT1GFvv/12vLrhv3XFV199pXfffVd79+7VhAkT9OKLL+r27dtq3ry58ufPr1mzZiXIlZx1B7XXXQ+rl/bv36+5c+fq7Nmzyp49u7p166bKlSsn+u8SAAAkTY8ePXTu3DlJUp06ddS8eXOtXr1akjRq1CgNHDhQ165d08KFC/X++++rVq1aOnnypD777DMdP35cGTJk0CuvvKLXX39dFy9eTFAzPOjv+OPUCw86z3vvvUftRu0GAHASqe4dhI9jz549+uqrr5QhQwYdPHhQn376qby8vNS8eXOlS5dOCxcu1J9//vnA/bds2aILFy6oePHiCg4O1oQJEx56vgdtHxMTo1GjRunQoUOqUqWKdu3apdOnTz/wOPemnNi5c6ck6Y8//pB0966xJ/kd94SFhWno0KE6deqUatSooaNHj+rvv/+OW/+wY8+ZM0eZMmVS1qxZEy0ebt++rUGDBmnPnj2qWbOmSpUqpY0bN2rEiBGy2WxPPKaPe/zjx49r4sSJcnd3V9u2beXj46PZs2fr119/feg6AADwYFarVXv27NGZM2eUJk0a5ciR47H3vb8O+6/E6op7U8Xfq3/+/PNPxcbGqlatWgn2T+66g9pLD62Xzp07p2HDhikiIkKtWrWSJI0ePVrHjh17ZE4AAHBXdHR0gncQLl68WNLdRk22bNnk5uamadOmqXnz5qpbt64kqXv37qpcuXK8Y928eVODBw/WiRMn1KBBA2XJkkWLFi3SmjVrEpz3YX/H73lQvfCw81C7UbsBAJwHTxAmws3NTV9//bUyZsyoc+fO6f3339ezzz6rqKgo/fPPP/rnn3908eLFB06VVaxYMU2ePFnS3SlNz549qxs3bjzwfA/a/vjx4zp9+rTq1q2rwYMH6+rVq2rTps0Dj1O+fHllzJhRO3fuVI8ePbR3715ZLBbVqFFDt2/fTvLvuOfnn39WeHi4OnbsqA4dOig0NDTeU3S+vr4PPPaLL7740GNv3bpVV69eVZMmTfTWW29Jkq5fv64DBw7o6NGj8vDweOgY3T/v/pMcPywsTNLdpxyyZ8+ut99+WyEhIcqZM6cuXbr0wHUAACCh8PBw1alTJ953r776qtKmTfvYx7i/DgsODn7k9lWrVpWnp6d27typXr16ac+ePZKU6EWm5K47qL2k0NBQSYnXSz/88IOsVqsaNWqkEiVKKEuWLJoyZYq+/fZbDR069KE5AQDAXYm9g/DZZ5+VJBUoUEBeXl6S7v7tliR/f39JUp48eeJmTrrnt99+061bt+JqjBs3bmj27NmKiYlJcN6H/R1v0aJF3DkTqxe2bt36wPNQu1G7AQCcBw3CRJQuXVoZM2aUJKVPn17r16/XkSNHVKZMmXh35zxI7ty54/7Zz89PZ8+eldVqTfL258+flyQVLVo0bl3OnDl169atRI+TJk0aVa9eXevXr9eFCxe0b98+Pf/88/Lz85OkJP+Oe+7lKFmypCQpc+bMyps3r86ePSvpycbonntNuFKlSsV9V7JkSR04cEAXL15U3rx5JSV9TB/3+DVq1FDTpk21ZcuWuLurihYtqgEDBqhMmTIPXAcAABJyd3ePu7jj5eWlkiVLJmgYPsr9ddjjSJcunSpXrhx31/OePXtUtGjRRJ9aTO66g9pLD62XLl68KEn69NNP4+1z4cKFx84LAEBq96h3ECbF5cuXJSnu/XE+Pj4aMmSIJCW4Metx/o4/qF542HkkUbtRuwEAnAQNwkS4u7vH/fPKlSu1f/9+jRkzRhUrVtT06dMdliNLliySpBMnTki6O0XDpUuXEp1y656XXnpJ69ev1+LFi3Xz5k3Vrl1b0tP9jkyZMkmS/v77b5UuXVq3b9+OKxoe99gPKn6yZ88uSfrrr7/iLigePnxYkh55h9bjeNTx7zUJO3furODgYP3yyy9avXq1VqxYoY4dOz5w3XvvvffU2QAAcDVp06Z94AUsi8Ui6e4dz9LdaUjv3cF8v/vrsAf5b13x0ksv6ddff9XXX3+ty5cvq3nz5onuZ4+6I7XXXg+rpe7VsnPmzFH+/PkVGxur4OBgpUuX7pE5AQBA8suaNauku+8HrFKlim7evKkFCxaoQIECKlu2bLxtH/Z3/GGzZD3qPI0bN6Z2o3YDADgJGoSPkCbN3SH68ssvtX37dv3yyy+SpMjISLufu1y5csqUKZN++uknWSwWHT169JFPzZUqVUp+fn765Zdf5ObmpmrVqkl6ut9RqVIlLVmyRMuXL9fVq1d19OjReC9bftSxM2bMqIsXL+rHH3/U888/H+/Y1atX14IFC7R27VrZbDaFhYXpwIEDKly4sIoVK/bQdy4+jkcdf82aNZoxY4ZKliypihUrKiQkRJKUI0cO/fHHHw9cBwAAkiZnzpxyc3PTtm3b9NFHH+n8+fP6999/k3yc++uKV155RdLd6aIyZMigH374QZJUo0aNRPe1R92R2muvh9VLVatW1Zo1azRhwgS99NJL2rVrl/bv368hQ4aobt26if67BAAA8cXGxib6PrlevXoladYF6W4dMH/+fK1atUoRERE6dOiQjhw5ooEDBybYtm7dug/8O37vycAnPQ+1G7UbAMA5uJkO4Oxee+01vfDCCzp+/LguXryoDh06SJK2b99u93OnT59eH374ofLnz68tW7aoWLFiypcv30P3cXNzi7v7qUyZMnFzjT/N7yhSpIj69++vZ555Rr/88ovy5MkTN7f94xy7devWypIli1auXJng2N7e3po4caLKli2rTZs26c8//9TLL7+sMWPGyM3t6f/zfNTxGzdurPbt2yskJESLFi3SoUOH1KhRI73++usPXQcAAJLGz89Pffr0kbe3t/bt26eyZcuqUKFCST5OYnWFh4eHatSoIZvNplKlSsXdtf5f9qg7Unvt9bB6qUiRIho1apRiYmI0f/58Xb16VYMHD1bdunUfmRMAANxltVr1008/Jfg8yY3rWbJk0bhx4/Tss89qzZo1unbtmnr06KH69esn2PZRf8ef5jzUbtRuAADnYLHxbLjTunDhgr7++mtlzZpVzZo108mTJzV06FAVLVpUU6ZMMR0PAADAafz000+aMGGC+vXrp8aNG5uOAwAAgIegdgMAwDymGHVizzzzjNKnT6+lS5dq4cKFku7elZTY1A8AAACp1ebNm7Vq1Sp5eHioevXqpuMAAADgIajdAABwDjxBmAJERUUpJCREGTNmTPL88gAAAK7u9ddfl81mU6tWrdS0aVPTcQAAAPAQ1G4AADgHGoQAAAAAAAAAAABAKvJkb/QFAAAAAAAAAAAAkCLRIAQAAAAAAAAAAABSERqEAAAAAAAAgJ1YrVbTEQAAABJIYzqAIw0bNkz9+vUzHQMAADiIl5eX/Pz8krxfq20Ttff6CU0p001NcpW3QzLXQX0FAEDqkprqq02bNmnx4sWy2Wxq27at6tWrl2Cbjh07KiQkJG55woQJKlGiRNzy/PnzFRkZqd69ez/2eamvAABIXUzVVxabzWZL8l4plMVikb1+bnBwsHLmzGmXYyNxjLnjMeaOx5g7HmPuePYc86Qe+0ZEuF7fNlHrrx6S1Ror/7Q+ml2ht5rlqmiXfK6A+sq1MOaOx5g7HmPueIy541FfPb3Q0FD17dtXM2bMkJubm/r27aupU6fGu3hntVrVrl07rVixItFjHDx4UCNHjlS9evWS1CCkvnItjLnjMeaOx5g7HmPueK5YX6WqJwgBAADuF2O9oTNXP9PtqJNyt9jUfeM17YyNlrw9JEn/RtzQq1vH6sNCg5QvwzPKkcVX1f2zysNiMZwcAADAOblKfbV7926VK1dOvr6+kqTKlStrx44datSoUdw2ISEhD7zbPzw8XHPmzFHLli118+ZNh2QGAACuyV71FQ1CAACQKtkUrd9P1taNO/tlkeTlnkYh0XUlL0/p/+7YLuGbXT63XtB7vx+RslyUPD1UNFMm/VKrunKmTWv2BwAAADgZV6qvQkJClC1btrhlf39/Xb16Nd42ly5d0o0bNzR06FCdOXNGNWrUUJ8+feTm5qZp06apQ4cOunLlygMbhEFBQRo1alSi6ywWiwYNGqSBAwcm22+6Jzg4ONmPiYdjzB2PMXc8xtzxGHPHs9eYWx7SyLNnfeXSDcKHFVoAACB1u3H7D92M2B+37JuurHL5FNGJmNOSTXrjudp6Jqa8Pr74j/SMp2SxSFar/nfzpqYdP6GPS5U0mB4AAMD5uFJ9ldgUn1arNd5yxowZ9dprr6lJkyYKCwvTiBEjtG7dOqVLl07e3t6qUKGC1q5d+8BzBAYGKjAwMMH3TDHqWhhzx2PMHY8xdzzG3PHsPcXog9izvnLpBuF/C62HdWEBAEDqciU8RLcjJW8vyWqTfNKWlLuHt9xt7lpYsa+eSfO8Xt78i5TRS7Ja4+7KkqTT4eEGkwMAADgnV6qv/Pz8dPTo0bjlkJAQ5cmTJ942+fLlU/78+WWxWOTj46Pq1avr9OnTunLlik6dOqU//vhD4eHhiomJUXh4uAYPHuzonwEAAFI4e9ZXLt0gBAAAeBDrjbM6d00q+oxkkeThUUh18hfTxPxdVTrzs7oWFa3/NWuoE2FhOhZ2U8fDwnTkZpiOhN1SWnc30/EBAACcjivVVxUrVtTixYsVHh4ui8WinTt3qmXLlrLZbLp48aJy5Mih1atX6/Dhwxo+fLgiIiL0+++/q1GjRurXr1/ccdauXatz586pd+/eBn8NAABIqexZX9EgBAAAqY7t8lYV2T1WF7NV1ZGb25XfR/L0LKRhLzaN2yaLp4eyeHqoSAZvXQ3NqP2XbynTrUhlCw3XgctWhRSLVtYMHgZ/hRlM4Q4AABLjavWVr6+vunbtqkGDBslms6l9+/by9/dXRESEOnXqpK+++kpNmzbVv//+q27duikmJkZ169ZVQECA6egAAMBF2Lu+okEIAABSFduVHYrd0kGKvqnaYTFKl2eUTt8apUxpCz9wn5p5vfTx39dltUi2TN6KjY5Vn63/au7LOZTJw7nudrc3pnAHAAD/5ar1VUBAQIKGX9q0abVx48a45d69ez/06cBGjRrZLR8AAHBdjqivjFRcmzZtUpcuXdS5c2dt2LAh0W2WLVumdu3aqW3btlq0aFG8dRERERo6dKgjogIAABcT+3tf2SKuyiYp5uZfqnTlisoXWivPNDkeuE8+7zT69OWckkWyuEse6dPoUHisem3713HBAQAAnBT1FQAAQPJyRH3l8CcIQ0NDNW/ePM2YMUNubm7q27evypUrJz8/v7htjh07pnXr1mnOnDmyWCzq06ePypQpo5IlS+qHH37QDz/8oKioKEdHBwCkUlFRUbpz547c3JzjTmZX4+npqbCwsCTtY7FYlCFDhic6nyVrOdluHpck2SRFn1qkQjlrSz7ZHrhP9O1o5d/xP7UrVUDLDl2TzXr3hc9/XqUeAQDAmcTGxiosLEzu7u6moxhFfQUAQOoTHR2t27dvc/3KTlyxvnJ4g3D37t0qV66cfH19JUmVK1fWjh074k254ObmJnd3d3l6ekqSPDw84v6j9vHxUY0aNfTzzz87OjoAIJWyWq1Kly5d3N8lJK8MGTIkeZrKpBZk93OvPF22sBBZz22QxdMiuVkUvb2LPLIUlnyfT3SfiLBILR2yXs+/XkJ/1Kyu/124qfRuFn1c3i/R7QEAgBmxsbFKly6dvLy8TEcxivoKAIDU514dxPUr+3DF+srhreSQkBBly/b/O5z+/v66evVqvG0KFSqkihUrqkWLFnrttddUvHhxFS9eXJJUpUoVVaxY0aGZAQCAC3H3UppaC2WLKipraDbJo7QsftVkPffdA3e5fva6PNKm1/7Pd6r40nVK6+WhiRX9VC93OgcGBwAAcFLUVwAAAMnLAfWVw58gtNlsCb6zWq3xlg8dOqQDBw5o0qRJcnNz0/jx47V3716VK1fusc4RFBSkUaNGJbrOYrFo0KBBGjhwYJKzP0pwcHCyHxMPx5g7HmPueIy54yU25n5+fon+DUPySOrYRkZGPtZdWA+8sytdJtkyt1T01lWyhOaW+zMF5WbLKffYzXLLkU+WjL6yZPCV9dS/si3frJDChWW1xsrbL5turtmn4WXyKCBn9SRlBgAAcGnUVwAAAMnLzvWVwxuEfn5+Onr0aNxySEiI8uTJE2+bXbt2qUaNGipUqJAk6aWXXtLOnTsfu0EYGBiowMDABN9bLBa7XdwNDg5Wzpw57XJsJI4xdzzG3PEYc8dLbMwjIiJksViSPI0AHo/NZkvy2Hp5eSlr1qyP3O6hDfaYO7KGXZPCdin22K6737lZZIuJVvrB02S5UlC3e86WR64Y/ds6W1zWLJmzKX96pusAAABIgPoKAAAgedmxvnL4FKMVK1bU7t27FR4ertu3b2vnzp2qVKmSbDabgoODZbValS9fPu3evVu3bt1SeHi4du3apfz58zs6KgAAcGFuWXP//wWLRbJYZI2JksdL3RX7tXSr/TTZwiMV6XZbIcf/lU13bzTydPdSllzZzQUHAABwUtRXAAAAycue9ZXDnyD09fVV165dNWjQINlsNrVv317+/v6KiIhQp06d9NVXX+nll1/W6dOn1bNnT9lsNlWvXl0NGjRwdFQAAODCPGq3VtSOtYo9fVi26FjF3LqjNH61ZF2UTlF/rZdkkc0WrZtnz+ui7aJkkWSTfHJnUt5yuR91eAAAgFSH+goAACB52bO+cniDUJICAgIUEBAQ77u0adNq48aNccs9e/ZUz549E90/T548mjVrll0zAgAA12bxzqQMY79T7JHdirl0XtbgUEUO2K+YqOOSxSaLxV2xMbcV4+WmEg2LySaLfLJnVOnXSskjrZESCgAAwKlRXwEAACQve9ZXVF8AACBVcy9WQe7FKkiSPPIcVXivebJeDJUsUprqxZR/fm8VzJHNbEgAAIAUhPoKAAAgedmjvnL4OwgBAACcVZoaReT9eTe55/dXmpeKyueb4XLn4hUAAMATo74CAABIXslVX/EEIQAAwH3SVC+iTPvHmo4BAADgMqivAAAAkldy1Fc8QZhMboXeNh0BAAAAAABANpvNdAQ4Ka5fAQCAe1y6QRgUFCSLxRL3sZfZ7yzRyHrj9caLgxUVEWW38wAAAJjmqPoKAAAknc1mU0R4hCJvRyk6Mtp0HDgZrl8BAID7uXSDMDAwUDabLe5jDwtGLNe309fr6oXrOnXwH3UrPkBWq9Uu5wIA4GmdO3dOzZo1e6pjXL58WQ0aNEieQEhxHFFfAQDgSnr06KE6derEfZo1a6agoCBdu3Ytycd6VC0XeTtKVuvdv9Ex0bGKiYp5iuRwJVy/AgCY0LVr13h10L3P0KFD47bZsmWL2rRpo99//12SNHbsWLVt21aS1KJFC505c+ah50iOa12pFe8gfErH/zit6Ij/f1de5J1InfjzjAqXKWAwFQDA1fXr10/vvPOOcuXKlaT9smTJon79+tkpFQAAABLTu3dvvfzyy7LZbLp8+bI+/vhjzZgxQyNHjkzScf5by91fE1pjrfFu3rHZbIqNtXLhB5K4fgUAMKdv37566aWX4n3n7u4e989ff/21evXqpSpVquj06dP6888/tWTJEknSm2++qaxZsz70+FzrenIu/QShI9RuW1UZs2SIW86YJQPFFQDgoZLjqatLly4pOjrhtFFWq1WxsbEP3M/b2ztBUebKam+PUZGVZ03HAAAAKVhy1G7p0qVTpkyZ5OPjo8KFC6tJkybav39/ko5htVqVNm3aeLXc/TWhm7tbvOm/LRaL0ni4JzjO06K+SpkSXL/y4/oVAODhkmvWoPTp0ytTpkzxPt7e3nHrw8LClD179rh/zpw5s7y8vCRJtWvXVoYMGRI97j2ucK3LVH1Fg/Ap1elQU2/N7K5cRZ5RtVcrKkf+bNr9Q9KKfABA6nDt4nV90PITtczRXc2zdtEn3T57omJr6NChCg0N1ZAhQ7R//36FhISobdu22rp1q9q2batz585px44d6tmzpxo2bKj27dvru+++kyQFBwfHTbtw/fp1tWrVSitXrlTLli3VpEkTTZ48OcmZDh8+rDfffFONGzdWr169tGfPnrh1S5YsUZs2bdS4cWMNGzYs3lRa99Y1adIkwToAAACTYqJjNKHrp3rVr7Na+HfVmFaTdCPkZrId32KxxN3Ude7cObVo0SLe+h49eiRa5+3bty+ulvtvTThlyhTNnT9X7mnc5eZmUci1f9W4SWOFh4cnW26kXP+9fuXrn1kHf/3bdCwAgBMKvXJDo1t+opbZuulVv876pNtnio21z7TUI0aM0KVLlzRixAitWrVKH3zwgc6ePavOnTtLklq1ahU3xejBgwfVu3dvNW3aVIMHD9bZs3cbavdf65Kks2fPasiQIWrWrJkGDx6sXbt2SXr0dbDEjj916lR99tlncccODg5WgwYNXKa+okGYDGq3rqoPfxmmwFWDNXbde/pm6jrt/emA6VgAACdyNfiaupUYoK2rdurGvzcVdu2WflywSa1z9dSdWxFJOtb48eOVOXNmTZgwQaVLl5Z09w6rPXv2aM6cOcqWLZtGjx6tFi1aaPny5erVq5dmzpyZaPESGhqqY8eOafHixZowYYI2bNiggwcPPnaW0NBQvffee6pfv76WLVumtm3batSoUbp48aL279+v1atXa+zYsVqwYIFiY2O1fPlySYq3bv78+fHWAQAAmBR+47ba5emlnxZu1q3r4Qq7dku/fr1DXYr01/XLoU90zMjISIWHh+vWrVs6efKkvv/+e73wwguPte/9dd7908vfXxO+8PwLqlShknbs/F1e6Tzlld5LW7dtVaVKleLdoQ/nFBQUJIvFEvexl/uvX03cPEpz312qIzuP2e18AICU59rF6+pStL9+W7VTN66G6db1cP24YJPa5n5Dt2/eeaJjTpgwIcE7COfNmydJGj16tHLkyBF3HWvkyJHKmzevFi5cGO8YISEhGj58uNq0aaMFCxboueee09ixYxOcKyoqSsOGDVPZsmW1ePFitWrVSuPGjdPJkyclPfg62IOOX716dW3bti3u+Fu2bHGp+oqp6O3gox+H6526o+XmZlGZl583HQcAYJjValWXov0TbQRevxSqPuXe0YL/TX2qc0RGRqpDhw7KlCmTYmJiNHv2bOXOnVtWq1W+vr6yWCy6detWgv1sNptatmyptGnTqkiRIipatKhu3nz8u+O3bdumggULqmHDhpKkmjVratOmTdq8ebMKFSokq9WqkJAQ5c2bV+PGjZPVeveOs+jo6Lh1efLkibcOAADApN5lh+j6lRsJvg+7fktdivbX6qsL5OaWtPutZ86cqZkzZ0qSPDw89Pzzz6t///6Pte/9dV6i9ZzVpujIaJWvWF53Jt7RiRMnVLBgQW3ZskUdO3ZMUk6YERgYqMDAwLhlezYJ7zft97HqXXaoBs3trUKln3XIOQEAzstqtapLsf6JNgKvX757/WrhsWlJPm5i7yD09PRM0jE2b96sF154QTVr1pQkdenSRbly5Urwmp09e/bIzc1NrVq1kpubmypUqKCqVavq559/VqtWrR54HezYsWOJHr9kyZK6c8d16ysahHYy7qcRGhIQJDd3N71Yu6TpOAAAg35e/JseNmvntYvXdWTXcRWr+NwTn8NiscS9tNnNzU3btm3Tjz/+KA8PD+XLl++hFxkKFy4c989p0iStNAgJCVHOnDnjfZczZ06FhISoXbt26tq1qxYtWqTRo0erZMmS6tatm5577jlVqFDhgesAAABMObDlL928mrAJd4+bm0W/rdyhWq2rJum4AwcOVP369R97+/unfL+/zktMVGSUvNLffU9P5cqVtW3bNnl4eOjKlSuqWLFiknIi9fnsj/HqVmKAAr8epLzFcpuOAwAwaPPy7bI+ZCrR0Cs3dHjbEZWsVixJx733DsKnceXKlXjXnzw9PdWoUaME2128eFHXr19X+/bt431fvXr1uH9O7DrYw47vyvUVDUI7mvBLoAbVCpSbu5uer1HcdBwAgJ3dvBqmFv5dk7zf7bA76lf5vQTfZ/LLqFX/zn+sY9w/HdHOnTv1zTffaPr06cqWLZskxT3hl9yyZs2aYErSS5cuqVChQrp48aLKlCmjJk2aKDw8XMuXL9e0adM0ffr0eOtu3bqlFStWxK0DAABwhMYZOygiPGlTvYddD9fYtlM0tu2UBOvWhC1WWu+0T5Tl/rvfIyIidOnSpbjlB007abPaZLNJXum84r6rXr265s2bJzc3N1WvXl0eHh5PlAepy7y/JqtjoTc17qcReqZAdtNxAAB2Fn7jtpr5dkr6fjdva0CNkQm+9/ZJr2+vf5Ec0R7Iz89PR48ejVuOjo6Om0L0flmyZFGJEiU0fvz4uO/OnTuntGkfXqM97PiuXF/xDkI7+2RLkBYMX67D2/5nOgoAwM4y+WXURuvKBJ8hC/oqrbfXA/dLnzGdpu34MMF+j2oO3rmT+NzvYWFh8vDwkKenpyIjI7V06VJFRUUpMjLyqX5fYqpWraoTJ05ow4YNun37trZu3ao9e/aoVq1a2rdvn0aOHKkLFy7IarXKarUqJiZGkh66DgAAwBHWhC1OUH9N3DRK3j7pH7hPhszeen/524nWfE/aHMyYMaPCw8O1bds2xcbGatWqVY+s26xWmyLvRMliiV8Tli1bVpcvX9aaNWsSTOUFPMyiEzM0sOZIhVy4ZjoKAMDOvH3SJ1rLDFvc76HXr7wzpdfk3z5IsN+jmoP33sX8309S1KxZU3v37tXvv/+usLAwLV68WJs2bUrwLsDy5cvr1KlTWrduncLDw7V371716dNHISEhT3x8V66vXLpB6KiXPD/K5N9Ga847i/X3Dl78DACp0csdajx0vV9O3yRPL1qzZk0NGzZM+/btS7DupZdeUtGiRdWpUyf16tVLmTJlUp06dfTeewmfUnxavr6++vDDD/X999+rdevWWrJkiUaOHKlcuXKpXr16KlmypN566y21a9dOx44d0zvvvCNJ8da1b98+3joAAABTXqhVQhmzZHjgepvNppqtqiTrOTNnzqzevXtrwYIFatiwofbv36/ixR8+C1Hk7Uil9fZKUBN6eHioYsWKcnd31wsvvJCsOeH6lp/7XG+8OFg3r4aZjgIAMOCldtVkcXtwH8XHP1OSpxeVpGnTpqlZs2bxPi1btkzSMZ555hmNHDlSCxcuVLt27fTnn3/G9X/ulzFjRo0dO1Y//fST2rRpoxkzZqh///4qVuzhuR92fFeuryw228PeiuRaLBaL7PVzg4ODE7yD6b/eqvSu+k7rpqIVCtklQ2rzOGOO5MWYOx5j7niJjXlERITc3NyS/ALl+127FKpuxd7WrRvx75DyzZ5Zi07MeOgdWq7OZrMl+UaesLAwZcyY8ZHbFVl5VpJ0tGXeJOf6fdcepUmTRhXKlk7yvqmJ6foKyYsxdzzG3PEYc8dz5JhHRUXJZrPJy+vJa6s7YXfUodCbuvHvzXjfe/uk18Jj05XZ/+neofM0bDabIsIjlS7Dg59WnDJlitKmTatevXol6djUV87DdH3VJFMHfRk856H/neHx8XfH8Rhzx2PMHc9e169Cr9xQ56L9FR4a//pV5mw+WnRiRqr92+Cq9RXvIHSg6Ts/Ut8Kw9T/0x4qXK6g6TgAAAfKkiOzFhybpul95+rgb3/LGhurqq9W1MDZSSssHOHkyZNauXLlA9dXq1ZN1apVc2Aixzt56oxOnDotSfLz9VXBAvnNBgIAAA6TLmM6fRk8R1Pe+Fzbv9ktWaQyLz+vAbPekHfmB08/6ggPaw5GRkbq4sWL2rJliyZMmODgZI9GfZVyfH9zsep7tdWaW4uVxoNLhwCQmmTO5qPFJ2doau85+nPTYVmtVlVtVkGD5vY2Hc0IV6+v+CvvYDN3f6zeZYdq0NzeKlT6WdNxAAAOlNk/k0Z8NfCJnphzpIIFC2rYsGGmYxhz8tQZbd+1W5ky3b3Da/uu3ZLERSwAAFIRd3c3DZrbW4Pm9naa2u122B2lz5jugesPHTqksWPHqkGDBipUyLlmLqK+Snl+iFyuOm4ttdH64BsHAQCuKaNvBg1fMcBpaiCTXL2+okFowGd/jNcbLw7WO4veUoHn85mOAwBwsNReXKUEVStW0InTd+/AKvWIeeoBAIBrc4ba7VHNQUkqV66cvvnmG0my2/SUT4P6KuVZf2eZGqRrp/V3lpmOAgAwwBlqINNcvb5yS+5AeDyf/zlRH78+TacPnzUdBQAA6O6dVydPnVHBAvnj3W11b/ne+tTu3ku6730AAIB93bkVkWLf90N9lbJ5eHlo5eW5apa5k+koAADg/yRnfUWD0KDZBz/RmNaTdfbIedNRAABI1e5Ny/Ao23ftTvUXsQIDA2Wz2eI+AADAfu7cilBab68UeVMO9ZVr8M6UXguPT1fL7N1MRwEAINVL7vqKKUYNm/fXZHUp2l+jv39HuQvnNB0HAIBU5/dde3Ti1GllypRRJ06fjpua4d+Qq5KkDb9sjts2U6aM2r5rt65ev64KZUsbyQsAAFKHlNwcpL5yLZn9M2nm3nFqn6+3lv7zmek4AACkSvaor3iC0Aks+N9UDW/0kS6cuGQ6CgAAeAwxMTGmIwAAABcWER4pr/Qpszn4pKivnFu2PFk1/pdAdS78lukoAADgMT2qvnLpJwiDgoI0atQo0zEey8Jj09WhYF9N+DlQOZ7NZjoOAACpRpWK5ZXd31/bd+1WqWLF4uZvv3fnVb2A2pL+/zQOVStWiDfHOwAAQHKKCI+UVzpPWdxSbnOQ+so15SqUQ6O+GaoepQZqzqFJpuMAAJCq2KO+cuknCFPaO3IWn5ypQbUDdeVsiOkoAACkKgUL5FfVihUeuR0XrwAAgD1FhEek+ObgPdRXril/iTwasvBN9S3/jukoAACkOsldX7n0E4Qp0dIzn6ld3l6a+vtY+ef2Mx0HAIBU417h9N+XON9b5sIVAACwp8jbkfJM6xrNwXuor1xT4bIF1GdqV71dbbimbBtjOg4AAKlKctZXLv0EYUq17OwsvVXxXV29eN10FAAAUqXtu3brTkSE7kREaPuu3abjAAAAFxd5O1IeXh5yc3fdyzTUV66lRJUi6jy6jYYEBJmOAgBAqvW09ZXrVp4p3IoLs9Wr9BCFXrlhOgoAAKnKvekabt4M082bYUx7BQAA7CryTpTLNwepr1zTi7VLqtWQJnqvwYemowAAkOokR33lutWnC1h5aa66lxyoGyE3TUcBAKRwly9fVoMGDZJtO1dXsEB+FSrwrAoVeJaLVwAAwG4i70QpjYe7SzcH76G+ck3lXymthj1f1qjmE0xHAQAg1Xna+op3EDq5r6/MU3O/LvrixHRl9M1gOg4AAKlGlYrlTUcAAAAu7F5z0D2Nu+koDkN95ZqqNqug6MhojW07Re8vf9t0HAAAUpWnqa9c/xY1F7D66gJ1eLavwm/eNh0FAJAMbDab6QiArFar6QgAAKRaURHRck/jlqqag3BttVpXVYX6pTW+8wzTUQAAwGPiCcIU4tvQL9QkUwd9GTxH6TKkNR0HAPAEroSHa9TmX7TrwgXF2qyqV/A5ffxyHVksliQdZ/jw4SpcuLA6duwoSQoNDVXr1q31xRdf6PTp01qwYIEuXLigzJkzq1WrVmratOkTZz58+LBmzZqlf/75R7ly5VK3bt1UvvzdO5OWLFmitWvXKjw8XCVKlNDQoUOVJUuWR66DfWzatEmLFy+WzWZT27ZtVa9evQduO3/+fEVGRqp3796SpGXLlmnt2rWy2WyqX79+3H9bAAAg+UVFRMvN3U1pPGgOwrXU6VhTURFRmtJrtt6e1dN0HAAA8Ag0CFOQ728uViPv9loVskBe6TxNxwEAJMHlW7dUd/FC3YyMjPvuq78OafPpU9rSpZvSe3g89rFq1qyplStXxjVxfvvtN5UsWVKZMmXS6NGj1b9/f1WuXFkHDhzQ6NGj9fLLLz9R5tDQUL333nt64403VKNGDe3bt0+jRo3S3LlzdenSJa1evVoTJkyQj4+Pxo0bp+XLl6tv377av3//A9fBPkJDQzVv3jzNmDFDbm5u6tu3r8qVKyc/P78E2x48eFDff/99XAPx2LFjWrdunebMmSOLxaI+ffqoTJkyKlmypKN/BgAAT83d3V1hYWGKiooyHSVR544GK12GtMqaK4sUYb/zREZGysvLK0n7JPWmNSSfoKAgjRo1ynSMZNGwZx19O/0Hzew/X32ndjUdBwBSFXd3d92+fVuR9117QvJxxfrKpRuErlRg3bM2fKkapG2r724uloenS//rAwCXYbXZFPDFfIVHRydY9+/tcDVetkS/dOry2MerUqWKJk+erAsXLihXrlz69ddfVbduXXl6emr27NnKnTu3rFarfH19ZbFYdOvWrSfKvW3bNhUsWFANGzaUdLcxuWnTJm3evFmFChWS1WpVSEiI8ubNq3HjxsVNWRkdHf3AdbCP3bt3q1y5cvL19ZUkVa5cWTt27FCjRo3ibRceHq45c+aoZcuWunnzpiTJzc1N7u7u8vS8e/ORh4eH3NyYhR4AkDK5u7src+bMpmMk6rOBC5U9r7+av93Q7ucKCwtT1qxZ7X4eJI/AwEAFBgbGLTv7xcRHafZWfa2c+L1mD12snuM7mI4DAKmGh4eHfHx8TMdwWa5YX7l0h8nVCqx71kcs1yuebbTu9lLeVwAAKcA3R/7Ww946eCX8lv68dFEv5njmsY7n7e2tChUqaOvWrapTp46OHz+uMWPGyM3NTdu2bdOPP/4oDw8P5cuX76n+9oWEhChnzpzxvsuZM6dCQkLUrl07de3aVYsWLdLo0aNVsmRJdevWTc8995wqVKjwwHWwj5CQEGXLli1u2d/fX1evXk2w3bRp09ShQwdduXIlrkFYqFAhVaxYUS1atJDFYlGtWrVUvHjxBPs+7MYri8WiQYMGaeDAgcnzg+4THByc7MfEwzHmjseYOx5j7nipfcy/+vB7pfdJr0qtSjtsLFL7mMOsloObaOnYVVo4YoU6j25jOg4AAEiESzcIXdmPUStU172VNsR86TKNTwBI6a5H3FGZWZ8meb9bUVF6dcWyBN/7pk2nfb36JLpP7dq1tXLlSqVNm1bVqlVTunTp9Pvvv+ubb77R9OnT45pF957+exJZs2bVwYMH43136dIlFSpUSBcvXlSZMmXUpEkThYeHa/ny5Zo2bZqmT5/+0HWwD5stYQv6v09t/vzzz3HN5bVr18Z9f+jQIR04cECTJk2Sm5ubxo8fr71796pcuXLx9v/vjVf3WCyWRM+fHIKDgxM0qWFfjLnjMeaOx5g7Xmof88UfrFSWrFnUcVQrh53TvmN+1k7Hhatp/34LLRi+XMs+XK127zU3HQcAAPwHDcIU7KfYr1THraU2WleajgIA0N2G3um3ByX4ftXff2nk5l90O5EpRiUpg6enFjd/7bGfIJSkihUrauLEifr222/Vv39/SXenOvDw8JCnp6ciIyP19ddfKyoq6onmSJekqlWravbs2dqwYYOqV6+uP/74Q3v27FH37t21b98+rVq1SqNHj1amTJlktVoVExMjSQ9dB/vw8/PT0aNH45ZDQkKUJ0+eeNts2bJFp06d0h9//KHw8HDFxMQoPDxcmTNnVo0aNVSoUCFJ0ksvvaSdO3cmaBACAICkWzHuW0XdiVK3j9qbjgIY0WVMW80eskgrP1mjloMam44DAADuwwtmUrifYr9SXXfH3YUIAEi6V4sVf+gTVtm8MySpOShJadOmVaVKlRQdHa0XX3xR0t3GTtGiRdWpUyf16tVLmTJlUp06dfTee+89UW5fX199+OGH+v7779W6dWstWbJEI0eOVK5cuVSvXj2VLFlSb731ltq1a6djx47pnXfekaSHrnO0zVXT6GjLvEbO7UgVK1bU7t27FR4ertu3b2vnzp2qVKmSbDabgoODZbVaNWbMGC1btkxffPGFOnfurHr16mnw4MHKly+fdu/erVu3bik8PFy7du1S/vz5Tf8kAABSvNVT1un65VCXaw6mlvoKyafnhI668s+/+nbGD6ajAADglEzVVxabveaEckKuOgVWbEysGqZvrx+jVhg5vympfZoaExhzx2PMHS+xMY+IiJCbm5s8PT2f+Lj/hofr5UULdDMyMt73WdOn169duiu9h8cTHzuls9lsSZ4uOywsTBkzZnzkdqnpf0O//PKLVq5cKZvNpubNm6tevXqKiIhQ48aN9dVXX8nX1zdu27Vr1+rcuXPq3bu3bDab5syZoy1btshms6l69erq1auX3Nwe7z4yV62vUivG3PEYc8djzB0vNY75mlk/6fTBf9Tv0x5Gzm/PMU+N/z4dzVXrq8k9Z6lIhefUoHuAkfObwv9mHI8xdzzG3PEYc8dzxfqKKUZdgHsad60JW6wG6dpp/Z2E77ACAJjn7+2tTZ26auTmX7TrwnnFWq16pVBhffRyHYfmOHnypFaufPDU1NWqVVO1atUcmAjJJSAgQAEB8S+2pE2bVhs3bkywbaNGjeL+2WKxqGfPnurZs6fdMwIAkBpsWLBZR/ec0OB5ib9LGkitBszupfGdZsjDK43qdKhpOg4AAKkeDUIX4eHloW+uLVQj7/ZaG77UdBwAQCL80qfXzIaNn+iJueRSsGBBDRs2zMi5AQAAXN2mZVu175dDendJP9NRAKc09Is3NabNZHl6eahmqyqm4wAAkKrxDkIX4pXOUysvz1OTTB1MRwEAPISp5iAAAADsZ9vqXdq6ehfNQeARhq8YoE3Ltun37/eYjgIAQKrm0g3CoKAgWSyWuE9qkC5DWi0/97ma+XYyHQUAAAAAgFRh17o/9OOCzQr8erDpKECKEPTtUK357Cft3fCn6SgAAKRaLt0gDAwMlM1mi/ukFt4+6bX41Ew19+tiOgoAAAAAAC5t388HtXrqeo1ZwzTuQFJ89MP7WjHuWx3Y8pfpKAAApEou3SBMzTL6ZtCCo1P1WrZupqMAAAAAAOCSDm09oiWjv9a4n0aYjgKkSBM3jdL895fp7x3HTEcBACDVoUHownyyZtLcw5PUMkd301EAAHBaUdHROnn6jDZv3a6z5y9Ikrbv3K09+/6UJJ08dXfdydNnFBUdbTApAABwJkf3nNDngxdp0q8fmI7idKivkBRTt4/V9Dfn6sT+06ajAADgtOxRX9EgdHGZs/lo1v4JapOrp+koAAA4pXPnLmj3H/sVFRWl6Kj7C6j/Pz15VFSUdv+xX+fOXXB8QAAA4HROHfxHk3rM0oxdH5mO4pSor5BUn/0xXh93mKZ//j5vOgoAAE7JHvUVDcJUwO8ZX03f9ZHa5e1lOgoAAE7n7PnzyuKbWfUCaqtggfySpKqVKqh8mdKSpIIF8qteQG1l8c2ss+e5YAEAQGp37miwxrSepM//nGg6itOivsKTmHt4skY2Hafgk5dMRwEAwOnYo75KY6+wcC7+uf00ZdsYtc/fW0vPfGY6DgAATiNv7tyPtV2hZ5+1cxIAAODsLv/zr959ZYyWnP7UdBSnRn2FJ/XF8elqm+cNTd/5kbLmymI6DgAATsMe9RVPEKYi2fJm1Sebg9ShYF/TUQAAcBoFC+SPu/MqObZzdUFBQbJYLHEfAABSi2uXQtWv8ns0Bx8D9RWexvJzn6tX6SG6EXLTdBQAAJyGPeorniBMZXI8m00fbxihzoXf0sJj003HAQDAuO07d0u6Oy3D/W6Fh2vPvj916fIVRUdHK3s2f71QqoRyZMtmIqbTCAwMVGBgYNwyTUIAQGoQdv2WupcYoNVXF5iOkiJQX+FpfX1lnpr6dNTy858rfcZ0puMAAGCcPeorniBMhXIVyqExa99Vl6L9TUcBAMA4T08PeXp6xPvuVni41vzwk27duqUXS5VQ+TIvytPDQz/9skWXrlwxlBQAAJgQeSdKbXO/QXMwCaivkBy+u7FILbJ2VUx0jOkoAAAYZ4/6yqUbhEyB9WC5C+dU0DdD1K3EANNRAAAwqnyZ0nEvdL5nzx/7lcE7vRrXr6diRQqrWJHCql2jmrJn89eBQ38ZSgoAABzNarWqScYOWhu+1HSUFIX6Csnlh8jlqu/V1nQMAACMs0d95dINwsDAQNlstrgP4stbLLeGfzlAPZ8fZDoKAADGnDx1RmfPX4j33aUr/6pQgYQvdc6bO5euXQ91UDIAAGBafc+2+iFquekYKQ71FZLT+ojlapCWJiEAIHWzR33l0g1CPNqzJfNq2JJ+euPFwaajAABgxNnz53Xk6DHTMQAAgJNp5N1e34ctlpsbl06SivoKycnDM42+/ne+mvp0NB0FAABj7FFfpUnWoyFFKvB8Pg1Z0Fe9yw7VZ3+MNx0HAJyOm5ub7ty5o8jISNNRXFJkZKS8vLyStE9yTh2eN3du7d63Xxt+2axiRQorb+5cypHNXydOnVGxIoXjbXv2/AVl8c2cbOcGAADOqblfFy0//7m80nmajpIiUV8lTVBQkEaNGmU6hlNLnzGdvjgxQy2zd9PKy/NMxwEAwOHsUV/RIIQkqVDpZzXg8zfUt8Iwzdz9sek4AOBUPD095enJxSF7CQsLU9asWY2dP0+eXJLu3okVHRUtSSpftrTW/PCT1vzwkwoVyP9/6y/o8pV/VbJYUVNRAQCAA7TO2UNz/5qsjL4ZTEdJsaivkiYwMFCBgYFxy8l5M5wryeyfSZ/+MV7t8vbSsrOzTMcBAMCh7FFfMU8G4hQuV1Bvzeiutyq9azoKAAAO4+nhoYIF8qt2jWoq+H/FVAZvbzWuX1cZvNPrz0N/ac++PyVJJYsV1eEj/9PJU2eM5QUAAPbz+rN9NG3Hh8qSI7PpKCka9RXsxT+3nyZuHqVOz71lOgoAAA5lj/qKJwgRT9EKhdR7chf1r/q+pm4fazoOAADGZPD2Vu0a1RJ875Mpk7bv2i1f38ypfjosAABcSddi/fXRj8OVPZ+/6Sgui/oKySFnwRwK+naoepQaqDmHJpmOAwCAUU9TX/EEIRIoXrmweozroAE1RpiOAgCA0ylYIL8avVJXGTJ4m44CAACSyRsvDtbwLwcqT5GcpqOkStRXSKr8JfJo6Bdvqk+5d0xHAQDAKT1OfUWDEIkqWa2ouoxpq0G1Ah+9MQAAqUwW38zy9PAwHQMAACSDNyu+q4FzeqnA8/lMR0nVqK+QVM+VKaA3p3dT/6rvm44CAIBTelR95dINwqCgIFkslrgPkub5GsXVIbClhgQEmY4CAAAAAECyG1hzpN6Y2FFFyhcyHQXAEyheubC6jGnLtSsAAJ6ASzcIAwMDZbPZ4j5Iuhdrl1Tbd1/VO3VHm44CAAAAAECyeafuaL0+4jWVql7MdBQAT+HF2iXVakgTvdfgQ9NRAABIUVy6QYjkUebl59VycBO9+8oY01EAAAAAAHhqwxt/rOb9G6jMy8+bjgIgGZR/pbQavVFHga+ONx0FAIAUgwYhHku5ui/o1f4N9X5D7sYCACA1Ywp3AEBKF/TaRL3SpbYqNixrOgqAZFSlaXm91LaaxrSZbDoKAAApAg1CPLYK9Uurce96GtHkY9NRAACAIUzhDgBIyT56fZqqN6+oas0rmo4CwA5qtqqiig3KaHznGaajAADg9GgQIkkqNSqr+t0DFNiMKRsAAAAAACnHxG6fqkxAKb3UrrrpKADsqE7HmipZtagmv/G56SgAADi1NKYDIOWp0qS8rLFWBbWYqMBVg03HAQDgqR0+fPixtitZsqSdkwAAAHuY1meOipQvpHpdapuOkmpQX8GkBj1eVlRktGb2m6++07qajgMAQLJI7vqKBiGeSLVXK8oaa9XoVpM04quBpuMAAPBUuDAFAIDr+mzgQuUunFONe9U1HSVVob6Cac3erK+VE7/X7KGL1XN8B9NxAAB4asldXzHFKJ5Yjdcqq8ZrlXj5MwAAAADAKc17d6l8s2dW87cbmo4CwICWg5vI2ye9Fo5YYToKAABOhwYhnkrNVlVUpWl5fdR+qukoAAAAAADEWTTqK3mm81Sbd5qZjgLAoPbvt5AkLR27ynASAACci0s3CIOCgmSxWOI+sI+X2lZT+fqlNa7jdNNRAAAAAADQio+/UXRUjDqMbGk6CgAn0Hl0G4XfuK2VE783HQUAAKfh0g3CwMBA2Wy2uA/s5+XXa6jMy89rfOcZpqMAAAAAAFKx1VPW6fqVG+r2YTvTUQA4kZ7jO+jK2RB9O+MH01EAAHAKLt0ghGPV6VhTL9QsoYndPjUdBQAAAACQCq35bIPOH7+o3pM6m44CwAn1ndZVpw+d1fo5P5uOAgCAcTQIkazqdamt4pWLaHLPWaajAAAAAABSkR/nb9KxP06p38zupqMAcGIDPn9Dh7f/TxsX/Wo6CgAARtEgRLJr0D1AhcsV1JRes01HAQDALpi6HAAA57Jp2Vbt33RYg+b2Nh0FT4j6Co40dOGb2rV+n3796nfTUQAAsJtH1Vc0CGEXDXvWUcEX8mla37mmowAA8ED3l0mxsbH///v/FFBXr13XgcN/6fDfR3Tjxk1ZLBYHJQQAAI+yddVObftmt95d0s90FIj6CinH8BUDtGn5Nv3+3R7TUQAAeCh71VdpkjMkcL/Gvevp2xk/aGa/+eo7ravpOAAAJGCRFBZ2S38e/ktnz55X3jy59EKpEsqUMaMkKdZq1YGDh3X0xEnZbDZZbVYd/OuIShYrolIlinMhCwAAw3au/UM/fbFFo78fZjoK/g/1FVKSoG+G6r0GH8rDK43Kv1LadBwAABJlr/qKBiHsqtmb9fXNtPX69O0F6jOli+k4AADEczMsTL/8uk1R0dHK7JNJwZeu6Or1UNWuXlU+mTLqryP/U/CVEJUqXkxFCz+nWGusDv99RGfOBSttunQqXLCA6Z8AAECqte/ng/pm2nqN+2mE6Si4D/UVUpoP17+nwS+NkmdaT71Qq4TpOAAAJGCv+oopRmF3r/ZroOz5/DVr0BemowAAEM++Pw8qIiJS1StVUMNX6qh6lYqKio7WX0eOymaz6cjR40rnmUYlixdVmjTu8vL0VNkXX5CXZxod+uuI6fhGBAUFyWKxxH0AADDh0NYjWjL6a5qDToj6Kumor8ybuGmU5r+/TH/vOGY6CgAACdirvnLpBiEFlvNoMaCR/J7x1eyhi01HAQAgzpWQq8qXJ5dyPpND54ODlTNHduXMkU1nz59TZFSUrFarsmbNKunuHO/35nn3zZxZbu7uJqMbExgYKJvNFvcBAMDR/rf7hGYPWaRJv35gOgoSQX2VdNRXzmHq9rGa8dY8Hd93ynQUAADisVd95dINQgos59JycBP5ZM2kucOWmI4CAIAkycvLS76ZM+vk6TPau/+gTp4+oyyZMys21iqLJI807jofHCyr1SZ3d3e5u7srJiZGly5fVmxMtOn4AACkOicPnNGUNz7X9J0fmY6CB6C+Qkr26d5xGt9phs78dc50FAAA4tirvnLpBiGcT+uhTeXt46357y8zHQUAAMVaYxUdHS2fTBlVpUI5+WTKqOiYGFksbvLy8lKB/Pllk5s2/7ZV5y8E6+z58/rl162SxV3FCj9nOj4AAKnKuaPBGttmsmbtn2A6Ch6C+gop3ZxDkxTYbLyCT14yHQUAAEn2q69oEMLh2r77qrzSeWnhyBWmowAAUjk3i5vc0rjp35Cr2rP/oK6EXJW7m7ssFinWalXJ4sWU1jONbt66rd37D+jPQ3/rVvhtZc2SWUW5gAUAgMNcOnNF79Ufq/lHppqOgkegvoIr+OL4dA2uPUr/nr9qOgoAAHarr2gQwoj2w1vIPY27Fo36ynQUAEAqZrG4STapaOHnlCdnDhUr/Jxsd1fIGmuVp6eHfDJlVFRUpHI/k115cj6jyhXKqkrF8nJPpe/IAQDA0a5evK63qw7X4lMzTUfBY6C+gqtYdnaW+pQdqtB/b5qOAgBI5exVX9EghDEdRraU1WrV0jGrTEcBAKRSERF3dOPGTVksFj1fsrgsFotu3Lwhm82mNGncFR0doxOnTitThgyqULaMSr9QSjlz5DAdGwCAVCPs+i31KDlQKy7MNh0Fj4n6Cq5k5eV56lToTd0Ou2M6CgAgFbNXfeVUDcJNmzapS5cu6ty5szZs2JDoNsuWLVO7du3Utm1bLVq0yMEJkdw6f9BGkXcitfyjb0xHAQCkQtn9s+p88EVdunJFknTpyhUFX7qiPDmfkcVi0cVLl+SVNp3y58srm82m2NhY2Ww2w6kBAEgdIm5Hql2eXlp9dYHpKEgC6iu4mu9uLNJr/l0VHRVjOgoAIJWyV33lNA3C0NBQzZs3T5MmTdLUqVO1ePFiXb0af57vY8eOad26dZozZ47mzZunTZs26fDhw4YSI7l0HdtOt2/e1opx35qOAgBIZUo/X1Jp0qTRpl+36+fNv2rTr9uUxt1dz5csLkk6c+6coqOilDd3LlksFrm5uclisRhODQCA67PGWtXUp6PW3FpiOgqSiPoKrmh9xHI1SNvWdAwAQCplr/rKaRqEu3fvVrly5eTr6ysfHx9VrlxZO3bsiLeNm5ub3N3d5enpKQ8PD3l4eMjNzWl+Ap5Ct4/a6+bVMK2c+L3pKACAVMTHx0e1q1fVMzmy6XJIiJ7Jnk21qlWWT6ZMioqK0oXgS8rim1ne3ukliYtXAAA4SH2vtvohcrnpGHgC1FdwVTQJAQCm2Ku+SmPP0EkREhKibNmyxS37+/sneIKwUKFCqlixolq0aCGLxaJatWqpePHijo4KO+k5voNmDfpCqyavVYsBjUzHAQCkAjabTVl8M6t29aqKjY2Ne3GzzWaTh4eHalStrLReXoZTAgCQujTybq/vwxZzQ3AKRX0FV+XhmUZf/ztfTX066rsbvPYIAOA49qqvnKZBmNh8qFarNd7yoUOHdODAAU2aNElubm4aP3689u7dq3LlysXbLigoSKNGjUr0PBaLRYMGDdLAgQOTLfs9wcHByX7M1KbJoDpaGrhaCz5Ypnrdaz1ye8bc8Rhzx2PMHY8xdzx7jfmj7piyWCxxNYi7u3vcP9/bL9czj36hMwAASD6vZumsFRdmyyudp+koeELUV3Bl6TOm06KTM/Ratm76+so803EAAKmEveorp2kQ+vn56ejRo3HLISEhypMnT7xtdu3apRo1aqhQoUKSpJdeekk7d+5M0CAMDAxUYGBggnPcP4jJLTg4WDlz5rTLsVObIXPe1Mx+87V79QE1e7P+A7djzB2PMXc8xtzxGHPHs+eYP07j8f4mIlNcAQBgTqtnemj+kSnKkNnbdBQ8JeoruDKfrJk0a/8Etc3zhpaf+9x0HABAKmGP+spp5uuoWLGidu/erfDwcN2+fVs7d+5UpUqVZLPZFBwcLKvVqnz58mn37t26deuWwsPDtWvXLuXPn990dNhB32lddfbIBa35bIPpKAAAAAAAO3v92T6avvND+WbPbDoKADxS1lxZ9MmWIHV67i3TUQAAeGJO0yD09fVV165dNWjQIA0YMEDt27eXv7+/IiMj1alTJ924cUMvv/yySpYsqZ49e6p79+4qWLCgGjRoYDo67KTfzO46dfAfrf18o+koAAAAAAA76VK0vz7eMFzZ8/mbjgIAjy1nwRz64Lt31L3kANNRAAB4Ik4zxagkBQQEKCAgIN53adOm1caN/79B1LNnT/Xs2dPR0WBI/896anLPWVo/100Nugc8egcAAGBXD3vXMwAASdXzhUEauXKQchdmincAKU++4rk1bHE/9S47VJ/9Md50HAAAksRpniAEHmTA7F76e8dRbViw2XQUAABSvcDAQNlstrgPAABP6s2K72rQ3N56tlRe01EA4IkVKv2s3prRXf2rvm86CgAASUKDECnC4Hl9dPC3v/XTF1tMRwEAAAAAPKUBNUao1yedVKR8IdNRAOCpFa9cWF3HttPgl0aZjgIAwGOjQYgUY8iCvtr/yyH9vOQ301EAAAAAAE9oaJ0P1DGwlUpWK2o6CgAkmxdqlVCbd5rp3fpjTUcBAOCxONU7CIFHeWfRW/ro9Wlyc7OoaK2CpuMAAFzE4cOHH2u7kiVL2jkJAACubXijj9RiQCOVDihlOgrsjPoKqVG5ei8qKjJagc3GK+jboabjAABcTHLXVy7dIAwKCtKoUaNMx0Aye3dJP41tO0WhN26oeW9eZA8AeHpcmAIAwP6CXpuoV7q+pIoNypiOAgdwhfpq06ZNWrx4sWw2m9q2bat69eol2KZjx44KCQmJW54wYYJKlCihzz77TNu2bVNsbKwaNWqk119/3ZHRYVCVJuUVHRGtMW0ma/iKAabjAABcSHLXVy7dIAwMDFRgYGDcssViMZgGyen95W/rvcZjldXfTzVeq2w6DgAAAADgIT5qP1XVW1RSteYVTUcBHktoaKjmzZunGTNmyM3NTX379lW5cuXk5+cXt43ValVUVJTWr18fb989e/bo6NGjWrhwoSIiItS9e3dVrlxZBQsyE1JqUbNVFUVFRmt8pxl6/aPmpuMAAJAo3kGIFOvNz7to84rt2rZ6l+koAAAAAIAHmDtwqcrUeV4vta1mOgrw2Hbv3q1y5crJ19dXPj4+qly5snbs2BFvm5CQkHgNw3vSp0+vDh06yMPDQxkzZlTu3LkVGRnpqOhwEnU61FTJ6sU0f8gK01EAAEiUSz9BCNcX+PVgBb46Xm7ubqrStLzpOAAAAACA+0zrM0fPvphP9TrXNh0FSJKQkBBly5Ytbtnf319Xr16Nt82lS5d048YNDR06VGfOnFGNGjXUp08flShRQtLdKUrXr18vf39/FS1aNME5HvZqHIvFokGDBmngwIHJ96P+T3BwcLIfE4l7sUEx/XvpX43rNk0dRr9mOk6qwn/njseYOx5j7nj2GnNTs1/SIESKF/TNUI1o8rHc3N1UqVFZ03EAAAAAAJI+G7BQuYvkVKWWpU1HAZLMZrMl+M5qtcZbzpgxo1577TU1adJEYWFhGjFihNatW6fGjRtLkp5//nlJ0tKlS3X8+HEVKVIk3v7/fTXOPRaLJdHzJ4fg4GDlzJnTLsdG4up0raHty//Q2sk/q+eEjqbjpAr8d+54jLnjMeaOZ88xN9XsZYpRuITR3w/T2lk/adf6faajAAAAAECqN3fYEmV5xlfN+zc0HQV4In5+fgoJCYlbDgkJUdasWeNtky9fPjVt2lRubm7y8fFR9erVdfr0ae3atUvHjh1T1qxZ9dJLL6lixYravXu3o38CnEjLQY2VwTeDFgxfbjoKAABxaBDCZYxZ+66+nf6D9m7403QUAACc3n/vgAcAILksGvWVvNJ7qfXQpqajAE/sXlMvPDxct2/f1s6dO1WpUiXZbDYFBwfLarVq9erVCgoKUkxMjG7duqXff/9dJUqU0NWrV/XFF18oIiJCt27d0oEDB5QnTx7TPwmGtXuvuSwWi5aOXWU6CgAAkphiFC7mox/e1zt1R8vN3U1lXn7edBwAABxm06ZNWrx4sWw2m9q2bat69eo9cNv58+crMjJSvXv31tKlS7V06dK4dVarVWXLltXYsWMdERsA4GJWfPyNoqNi1O3DdqajAE/F19dXXbt21aBBg2Sz2dS+fXv5+/srIiJCnTp10ldffaWmTZvq33//Vbdu3RQTE6O6desqICBAVqtVJ06cUPfu3WWz2VS7dm3VrFnT9E+CE+g8uo1mD12slRO/V8vBTUzHAQCkcjQI4XLG/TRCQ1/+QBY3i0q/VMp0HAAA7C40NFTz5s3TjBkz5Obmpr59+6pcuXLy8/NLsO3Bgwf1/fffxzUQ27dvr/bt28etnzBhgmrXru2w7AAA17Fq8lqF/ntTvT7pZDoKkCwCAgIUEBAQ77u0adNq48aNccu9e/dW7969423j5uamfv36OSQjUp6e4ztoZv/5+nb6D2r2Vn3TcQAAqRhTjMIljf95pJaOXqWDv/5tOgoAIIXavnO3tu9MGe+K2b17t8qVKydfX1/5+PiocuXK2rFjR4LtwsPDNWfOHLVs2TLR4+zbt08Wi0XlypWzd2QAgIv5/tMNCj55ieYgHiol1VeAPfWd2lVn/jqndbM3PnpjAAAe4mnqK5d+gjAoKEijRo0yHQOGTNw8SgNqjFC3D9urZLWipuMAAFKYW+HhpiM8tpCQEGXLli1u2d/fX1evXk2w3bRp09ShQwdduXJFN2/ejLfOarVq/vz5CgoKSvQcD6urLBaLBg0apIEDBz75j3iA4ODgZD8mHo4xdzzG3PEY8+T16/IdOvHHGXWb2PaBY8uYO569xtxisTzxvimpvgLs7e1ZPTW+8wx5pvVUnY5MQQsAeDJPU1+5dIMwMDBQgYGBcctPU8QiZZr822i9XW24eozvoBJVipiOAwCAXdhstgTfWa3WeMs///yzvL29VaFCBa1duzbB9tu2bVPBggUTnZZUSlhX3WOxWBI9f3IIDg5Wzpw57XJsJI4xdzzG3PEY8+T1y9Kt+ufPCxqxbNADt2HMHc+eY06zF0g+Qxe+qbFtp8jDK41qta5qOg4AIJVx6QYhIElTto1Rv8rvqfeULipW8TnTcQAASHZ+fn46evRo3HJISIjy5MkTb5stW7bo1KlT+uOPPxQeHq6YmBiFh4dr8ODBkqRNmzapQYMGDs0NAEjZfvt6h37/bo9GfJX8T5ADQGrx/vK3Nar5BHl4eahqswqm4wAAUhHeQYhUYdqODzXjrXk6tvek6SgAACd27XqooqKjE3wfFR2ta9dDHR/oMVWsWFG7d+9WeHi4bt++rZ07d6pSpUqy2WwKDg6W1WrVmDFjtGzZMn3xxRfq3Lmz6tWrF9ccjIiI0KFDh/Tiiy+a/SEAgBRj59o/tHHRrzQH8Ugptb4CHGnU6iFaN/tn7flxv+koAIAUILnqKxqESDVm7v5YU3rN1vF9p0xHAQA4qQ2/bNaGnzfHK7KioqO14efN2vDLZoPJHs7X11ddu3bVoEGDNGDAALVv317+/v6KjIxUp06ddOPGjYfuv3fvXpUoUUKenp4OSgwASMn+2HhA307/QaO/H2Y6ClKAlFpfAY724fr39NWE7/Xn5sOmowAAnFxy1VdMMYpU5dO949Sr9BANWdhXBV/IbzoOAMDJ1AuoHVdkpUlzt0za8PNm3QoPV72A2obTPVxAQIACAgLifZc2bVpt3LgxwbaNGjWKt1ytWjVVq1bNrvkAAK7h4G9/a9nY1fpkS5DpKEghUnJ9BTjahF8C9Xa14eoxvoNKVCliOg4AwEklV33FE4RIdWbtn6BxHabr9OGzpqMAAJxMFt/MqhdQW7fCw3U9NFTXQ0PjiqssvplNxwMAwKj/7T6hOUMX0xxEklBfAUkzZdsYzew3nxmwAAAPlFz1FQ1CpEqzD36isW0m65+/z5uOAgBwAvfP3X6vyIqNjVVsbGy84op35QAAUquTB85oyhufa/rOj0xHQQpBfQU8uU/3jtP4TjN05q9zpqMAAJxIctdXNAiRas09PFlBLSbo3NFg01EAAIat/fEnXbt+PW75XpH13zuvrl2/rrU//mQgIQAA5pz93wV92HaKZu2fYDoKUhDqK+DpzDk0SaNeHa8LJy6ZjgIAcBLJXV+5dIMwKChIFosl7gP81/wjUzWi8UcUWwAARUVFx1vO5p9V2fyzPnQbAABc3aXTV/R+ww817+8ppqMgBaK+Ap7OwmPTNTQgSFfOhZiOAgBwEslZX6VJtlROKDAwUIGBgXHLNAmRmIXHpqtjoTc17qcReqZAdtNxAAAG5MmVU3v27deRo8ceut2t8HDlyZXTQakAADDr6sXrervacK24MNt0FKRA1FdA8lj6z2dqmb2b5hyerMz+mUzHAQAYlNz1lUs/QQg8rkUnZmhIQJAu//Ov6SgAAAPKly2tvLlzPXK7vLlzqXzZ0g5IBACAWWHXbqlHqYE0B/HEqK+A5LPy8jx1fu4thd+8bToKAMCg5K6vXPoJQiAplpz+VO3y9tLU38fKP7ef6TgAAAfK4O2t8mW4MAUAgCRFhEeoXb7eWhO22HQUpGDUV0Dy+jb0CzVI107fhX4hDy8P03EAAAYkd33FE4TAfZadnaW3Kr2nq8HXTEcBAAAAAIezxlrVNHMnmoMA4ITW31mmBunamY4BAHARNAiB/1hx/nP1LvuOrl8ONR0FAAAAABzqFc82+jFqhekYAIAH+CFyuep7tTUdAwDgAmgQAon46uIc9Sg1SDdCbpqOAgCAUwkKCpLFYon7AABcR8P07bU2fAn/9x0AnFgajzRafXWBmmTqYDoKACCFo0EIPMDXV+apS9H+Crt2y3QUAACcRmBgoGw2W9wHAOAaXs3SWV8Gz5ZnWk/TUQAAj5AuQ1otPjVTr2XrZjoKACAFo0EIPMTqkAXqULCvwm/cNh0FAAAAAOyi1TM9NP/IFGXI7G06CpAqMUMDnoRP1kyatX+C2uZ5w3QUAEAKRYMQeIRvr3+htnne0J1bEaajAAAAAECyap+/t2bs+ki+2TObjgKkWszQgCeVNVcWTfr1A3Us9KbpKACAFMilG4TcgYXk8v3NxWqVo7sibkeajgIAAAAAyaJzkX4av3GksuXNajoKAOAJPVMgu8asGaZuJQaYjgIASGFcukHIHVhITmtuLVFzvy6Kjow2HQUAAAAAnkrPFwYp8OvByvXcM6ajAACeUt5iufXukn7qXXao6SgAgBTEpRuEQHJbf2eZGmfsoNiYWNNRAAAAAOCJ9K0wTIPn9dGzpfKajgIASCaFSj+rfjO7q1+V901HAQCkEDQIgST6MWqFGqRtJ6vVajoKAAAAACTJgOoj1HtyZxUuV9B0FABAMitWqbC6f9Reg2uPMh0FAJAC0CAEnsCGmC9VL01r0zEAAAAA4LENrfOBOo5qpZJVi5qOAgCwk+drFlebYc30bv2xpqMAAJwcDULgCf0U+5XqurcyHQMAAAAAHml4o4/UYkAjlQ4oZToKAMDOytV7UY1711Vgs/GmowAAnBgNQuAJWSwW/Ri1QvU8eJIQAAAAgPMKajFRr3R7SRUblDEdBQDgIFWalNdL7atrTOtJpqMAAJwUDULgKbi5u2lt+FI1SNvWdBQAAAAASODDdlNUo2VlVXu1oukoAAAHq9mysio1LqdxHaebjgIAcEI0CIGn5OGZRt9c/0KNvNubjgIAAAAAcSZ2/VRl676g2m2qmo4CADDk5ddrqFSN4prcc5bpKAAAJ+PSDcKgoCBZLJa4D2AvXuk89fWVeWqcsYPpKAAAAACgqb1nq2jF51Svc23TUQAAhjXoHqACL+TXjLfmmY4CAHAiaUwHsKfAwEAFBgbGLdMkhD2l9U6rFRc+V7PMnfRt6Bem4wAAkuDa9VBlyOCtqKgoHTl6XJcuX9H10FBJUvZs/sqbO5cKFnhWnh4eZoMCAPAYPn17gfIWy61Gb9QxHQWpGPUV4Fya9n1FX09ao88HL9IbEzuajgMAeALJXV+59BOEgKN5Z0qvxadnqrlfF9NRAABJsPbHn3Ty1Gmt+eEnnTh1Wjmy+6tW9aqqWrGCMnh7689Df2nNDxt07Xqo6ajGMUMDADi3ucOWyC9nFr3ar4HpKEjlqK8A5/PawMbKmCWDFgxfbjoKAOAJJHd9RYMQSGYZfTNo4bFpauHf1XQUAEAS7Nn3pzJ4p1eLpo1Uvkzp/7vrKr+qVqqgFk0bKYO3tzZv3aao6GjTUY0KDAyUzWaL+wAAnMcXgV8qrXdatR7a1HQUQBL1FeCM2r3XXBY3i5aOWWU6CgDgCSRnfUWDELCDTH4ZNe+vyWqZo7vpKACAJLHowKG/Enzr6eGh2jWqKSoqWidPnTaQCwCAh1v+0TeKjYnV6yNeMx0F+A/qK8DZdP6gjW6H3dFXE74zHQUA8ESSp76iQQjYSeZsPpq1f4La5OppOgoA4BEKPptf2bP5y9PTQ1LiT8V5enioUIH8OnHqjEOzAQDwKKsmr9WNkJvqOrad6ShAHOorwLn1GPe6/j1/Vd9O/8F0FADAY0ru+ipN8sYDcD+/Z3w1Y/fHapvnDS0/97npOACAB6haqcJjbZcndy4uYAEAnMr3n25Q8MlLemsGs5fAuVBfAc6v79SumtJrttbN3qiGPeuYjgMAeITkrq94ghCws6y5smjq9rFqn7+36SgAgAdY/vU3unTlyiO3y5Etm9q+9qoDEgEA8Gg/zPtFJ/afpjkIp0R9BaQMb8/qqb93HNNPX2wxHQUA8AjJXV/xBCHgANnyZtUnm4PUoWBfLT4503QcAMB/ZPBOr3PnLyhHtmyJrt++c7duhYdLkrL4+qp8mRcdmA4AgIR+XvKbDv76t95Z9JbpKECiqK+AlGPIgr76sN0UeXh5qHabqqbjAAAeILnrK54gBBwkx7PZNO6nEer0HP8PPAA4m7y5c+vEqTOKio5+4DZRUVG6fOVfHTl6zIHJAABI6Levd2jH93tpDsKpUV8BKct7y97Wr1/9ru3f7jYdBQDwAMldX7l0gzAoKEgWiyXuA5iWs2AOjV33rroU7W86CgDgPsWKFpanh4c2/7Yt0SKrfNnSkqglAADm7VizVz8v/k0jvhpoOgrwUNRXQMozavUQrZ/zs3b/sN90FABAIpK7vnLpBmFgYKBsNlvcB3AGuQvnVNC3Q9Wt+NumowAA/o+nh4dq16imW7fCteq7tdq+c7dOnj6jk6fPaM++P7Xqu7W6FR7O1FcAAKP2/nRA38/8UR98947pKMAjUV8BKdPYde/p60/WaP+mQ6ajAAD+I7nrK95BCBiQt2gujVg5SD1KDdScQ5NMxwEASMrim1mNG9TTyVOndfb8BW3feXdqHd/MPipepLAKFsgvT09PZX/APO8AANjTwd/+1vIPV+uTLUGmowCPjfrq8QQFBWnUqFGmYwBxxv88Um9XGy7PtJ4qUaWI6TgAgPskZ31FgxAwJH+JPHp3aX+98eJgff7nRNNxAAC6eydWsSKFVaxI4Qduk8U3s+MCAQAg6ciu45r7zhJN2/Gh6ShAklFfPVpgYKACAwPjlnlNDpzBlG1j1Lf8O+o/6w0VLlvAdBwAwH2Sq75y6SlGAWdX4Pl8GrrwTfUqM8R0FAAAAABO6OSfZzS192yagwAAh5u5Z5wmdpmp04fPmo4CALADGoSAYQVfzK+Bc3qrb3neIwIAAADg/zv7vwv6sN0Uzdo3wXQUAEAqNfvgJwpqPkEXTlwyHQUAkMxoEAJOoHDZAnprZg+9Veld01EAAAAAOIFLp6/o/YYfat7fU0xHAQCkcguPTdfQgCBdORdiOgoAIBnRIAScRNEKhdRnShf1q/K+6SgAADxQUFCQLBZL3AcAkPyuBl/T29VHaPHJmaajAAAgSVr6z2fqW36YQq/cMB0FAJBMaBACTqRYpcLqOaGDBlQfYToKAACJCgwMlM1mi/sAAJLXzath6vnCYK04/7npKAAAxLPy0lx1LtJP4Tdum44CAEgGLt0g5A53pEQlqxZVl7FtNahWoOkoAAAAABwoIjxC7fP30ap/55uOAgBAor69/oVa5uiu6Mho01EAAE/JpRuE3OGOlOr5GsXVcVQrDX5plOkoAAAAABwgNiZWzXw7a03YYtNRAAB4qPV3lqlBunamYwAAnpJLNwiBlOyFWiXU/v0WGlrnA9NRAAAAANjZK55t9GPUCtMxAAB4LD9GrdArnm1MxwAAPAUahIATKx1QSq2GNNW7r4wxHQUAAACAnTRM317rbi81HQMAgMfmnsZd31xbqCaZOpiOAgB4QjQIASdXru4Lav52Q73X4EPTUQAAAAAks2a+nfTVxTnyTOtpOgoAAEmSLkNaLTn9qVr4dzUdBQDwBGgQAilA+VdKq2nfehre+GPTUQAAAAAkk5Y5umvh0Wny9klvOgoAAE8kk19GzT4wUW1yv2E6CgAgiWgQAilExYZl1aBHgAKbjTcdBQAAAMBTap+vt2bu+ViZs/mYjgIAwFPxy5lFU7aOVoeCfU1HAQAkAQ1CIAWp0qS86naupVHNJ5iOAgAAAOAJdS7ST+N/HqlsebKajgIAQLLI8Ww2jV37rrqVGGA6CgDgMdEgBFKYqs0qKKB9dX3Q8hPTUQAAAAAkUc/nBylw1WDleu4Z01EAAEhWeYvl1ntL+6tXmSGmowAAHgMNQiAFqt6ikmq2rKwxbSabjgIAAADgMfUt/44GL+irZ0vmNR0FAAC7KPhifvX/rKf6VX7PdBQAwCO4dIMwKChIFosl7gO4kpqtqqhqswr6sN0U01EAAAAAPMKA6iPUe0oXFS5bwHQUAADsqljF59T949c1uPYo01EAAA+RxnQAewoMDFRgYGDcMk1CuJrabarKGmvVxx2madjifqbjAIBLuHY9VNdDQ3XteqgkKYtvZvlmzqwsvpmN5gIApFxDX/5AHYNaqWTVoqajAEZQXwGpz/M1i6vNu6/q3VfG6KMfh5uOAwAuJznqK5duEAKpQUD76rLGWjW+8wwNXfim6TgAkKLt2bdfR44elyRlz+YvSTpy9Jgk6YVSJfRCyRLGsgEAUqb3G36o1wY1VumXSpmOAhhBfQWkXuXqvqDoyGiNbDpOH3z3juk4AOAykqu+okEIuIA6HWvKarVqYtdPNXh+H9NxACBFWvPDBt0Kv61a1asqb+5c8dadPX9B23fu1tlzF9S4fl1DCZ1DUFCQRo0aZToGAKQIQS0mqn73AFWoX9p0FMAI6isAlRuXU1REtMa0nqThXw40HQcAUrzkrK9c+h2EQGpSr3NtlahaRJN6zDIdBQBSnD379utW+G3VC6itvLlz6eSpM1r+9Tda/vU3OnL0mPLmzqV6AbV1KzxcBw79ZTquUYGBgbLZbHEfAEDiPmw3RTVaVla1VyuajgIYQX0F4J6aLSurUuNyGtdxuukoAJCiJXd9RYMQcCH1uwWoSPmCmtJrtukoAJBiXLseqiNHj6tqpQpx87Tv3rdfxYsU1oulSmjPvj917XqosvhmVtVKFXTg8F9x87sDAJCYCV1mqly9F1W7TVXTUQAjqK8A/NfLr9fQ8zWLc2M7ADwhe9RXNAgBF9OwZx0VfDG/pvWZYzoKAKQI1/+vWLp/Woa2r72qF0qVULEihRPd5joXsAAADzCl12wVr1xYdTvVMh0FMIb6KmmCgoJksVjiPoCrqt8tQIVKP6vpb841HQUAUhx71Fc0CAEX1LhXXeUrkUcz3ppnOgoAOL1rodfjXuh8v6joaG3eul2SlD37/1+fPZu/roVed1g+AEDK8enbC5SveG417FnHdBTAKOqrpGEKd6QmTfrU0zMFsuvzwYtMRwGAFMUe9RUNQsBFNe37inI994w+fXuB6SgAkCIdOHRYly5fUaNX6iqDt7fpOAAAJzfnnSXKmiuLXu3XwHQUwGlRXwGQpNcGNlYmv4ya//4y01EAIMV7mvqKBiHgwl7t10A58mfTZwMXmo4CAE4rS2ZfXb7yb6Lf3z+v+z2Xr/yrLJl9HZQOAJASLBy5QukzplOrIU1NRwGcAvUVgEdp++6rck/jriWjvzYdBQBSBHvUVy7dIGQOd0Bq/nZDZc3lp9lDmLoBABLj+38F1NnzF+J9nz27f4Li6t42vv/5HgCQei3/6BtZY61qP7yF6SiA06C+AvA4OgW11p1bEfpqwnemowCA07NHfeXSDULmcAfuajmosXz8fTR32BLTUQDA6WTxzaxiRZ7T9p27de2+lzcfOXpMR44ei1u+dj1U23fu1gslSyQovAAAqdPXk9bo5tUwdR3bznQUwKlQXwF4XD3Gva6QC9f0zbT1pqMAgFOzR33l0g1CAP9f66FNlSGzt+a9x/zuAPBf5cuUVgbv9Nrwy+a4u6zKlymt8mVKS7p759WGXzYrg3d6vVCqhMmoAAAn8d3MH3Xp9BW9MbGj6SiAU6K+AvC4+kzporNHzmvt5xtNRwEAp5bc9VUau6YF4FTaDHtVS8eu0sIRK9R5dBvTcQDAqTSuX0979u3Xlq3bJUnZs/lLUtz87i+ULOFSF6+sVqvc3LhXDACexA/zftHJP89o4JxepqMATi211VcAnlz/z3pqQpeZ8kzrobqdapmOAwBOKznrKxqEQCrT/v0WWvzBSi0a9ZU6jmplOg4AOJXyZUqr4LPP6vr1UF0LvS5JKvTss/L1zez0015t2rRJixcvls1mU9u2bVWvXr0Hbjt//nxFRkaqd+/ekqQjR45oxowZunr1qmrXrq033njDUbEBIMX5eclvOvjr33pn0VumowApQkqurwA41pAFffVhuyny8PJQ7TZVTccBAKeVXPUVDUIgFeowsqW+CPxSS0Z/rddHvGY6DgA4lSz/V0wVVH7TUR5baGio5s2bpxkzZsjNzU19+/ZVuXLl5Ofnl2DbgwcP6vvvv49rIEZEROjDDz/Uxx9/LH9/fw0aNEjHjh1T4cKFHf0zAMDp/bpyh3au2avhXw40HQVIUVJifQXAjPeWva2gFhPl4ZVG1V6taDoOADit5KivjMwrtWnTJnXp0kWdO3fWhg0bEqxfunSpGjRoEPd55ZVX9P7770uSFi9erPbt26tDhw5av56X1wJPqlNQa0VHRmvZh6tNRwEAPKXdu3erXLly8vX1lY+PjypXrqwdO3Yk2C48PFxz5sxRy5Yt477btWuXSpUqpVy5csnT01OTJk1SgQIFHBkfAFKE37/fo01Lt9IcBADAzgJXDdaP8zZp1/p9pqMAgEtzeIPw3h3ukyZN0tSpU7V48WJdvXo13jbt27fX+vXr4z4BAQF69dVXtW3bNv3+++/69NNPNWnSJK1YsUJnz5519E8AXEaXMW11J+yOVoz71nQUAMBTCAkJUbZs2eKW/f39E9RXkjRt2jR16NBBPj4+cd9dunRJt2/fVq9evdS6dWtNnz7dIZkBICXZ+9MBrfl0g4K+HWo6CgAAqcKYte9q1aS12r/pkOkoAOCyHD7F6P13uEuKu8O9UaNGiW6/b98+WSwWlStXTp9//rmqVKkSd1GrUqVK2rFjh/Lmzeuw/ICr6fZRe815Z4m+mvCdWg1pajoOAOAJ2Gy2BN9ZrdZ4yz///LO8vb1VoUIFrV27Nu77yMhIHT9+XFOmTFH69OkVGBiodevWqWnT+H8TgoKCNGrUqETPb7FYNGjQIA0cmPxP1QQHByf7MfFwjLnjMeaOl5QxP7LjuL6d9KPeXfkW/66eAmPnePYac4vFYpfjAsB/jf95pAZUHyEPLw+VrFrUdBwAcDkObxA+7h3u0t0LW/Pnz1dQUJAkKX/+/Fq/fr2aN2+u6Oho7d27V+XLl0+wHxewUg/GPHk07P+Sln/wreYFLlH9N1566LaMueMx5o7HmDseF7Cejp+fn44ePRq3HBISojx58sTbZsuWLTp16pT++OMPhYeHKyYmRuHh4SpSpIjKli0rf39/SXdvwDpz5kyCcwQGBiowMDDB9xaLJdEGZXIIDg5Wzpw57XJsJI4xdzzG3PGSMuZHdh7Td5/8pOm/f2TnVK6N/84dz55jTq0MwJEmbx2tvhWGqf+nPVS4XEHTcQDApTi8Qfg4d7jfs23bNhUsWFB+fn6SpDp16ujo0aPq1q2bMmbMqPz588vLyyvBflzASh0Y8+Q1aFYffTZgoXau3K/m/Rsmug1j7niMueMx5o7HBaynV7FiRS1evFjh4eGyWCzauXOnWrZsKZvNposXLypHjhwaM2ZM3PZr167VuXPn1Lt3b12+fFkrVqzQlStX5O3trW3btqlhw8T/DgBAanLyzzOa2meOZu2bYDoKAACp2szdH6vn84P07rL+erYkM8kBQHJx+DsI/fz8FBISErccEhKirFmzJrrtpk2bVLVq1Xjf9e3bVytWrNCcOXPk6+urHDly2DUvkJr0ntxZF09d1rfTfzAdBQCQBL6+vuratasGDRqkAQMGqH379vL391dkZKQ6deqkGzduPHDf7Nmzq3Pnzho8eLB69uypEiVK6OWXX3ZgegBwPmePnNeH7afSHAQAwEnMPviJglpM1IXjF01HAQCX4fAnCB/nDnc3NzdFRETo0KFDeu+99+L2PXv2rD7++GNNmzZNN2/e1M6dO9W5c2dH/wTApfWd2lXT35yr7z/doCZ96pmOAwB4TAEBAQoICIj3Xdq0abVx48YE2/733c916tRRnTp17JoPAFKKi6cua3jjj7XoxAzTUQAAwH0WHp2m9vl7a/Jvo5Utb+IPnAAAHp/DnyB83Dvc9+7dqxIlSsjT0zNu3/z586tChQrq2LGjRo4cqcGDBytjxoyO/gmAy3trRnedPvSP1n6e8KIyAAAA4KquBl/TgBojaQ4CAOCklp75TH0rDFPolQfPkgIAeDwOf4JQerw73KtVq6Zq1aol2Ldr167q2rWr3TMCqV3/z3pq8hufa/2cn9WgB1PNAQAAwLXdvBqmni8M1qp/55uOAgAAHmLlpblq5ttJS898Jm+f9KbjAECK5fAnCAGkHAM+f0NHdh3Xj/M3mY4CAAAA2M2dWxF6/dk+NAcBAEghvr3+hVo900NREVGmowBAikWDEMBDDZrbW4e2HtFPX2wxHQUAAABIdjHRMWru10Xf31xsOgoAAEiCdbeXqpH367LZbKajAECKRIMQwCMNWdBXf246rG1f7zYdBQAAAEhW9b3a6ofI5aZjAACAJ/BD5HLV92prOgYApEg0CAE8lqFfvKnDv/5Pm5ZtNR0FAAAASBYN0rXT+jvLTMcAAABPyD2Nu769vlCNM3YwHQUAUhyXbhAGBQXJYrHEfQA8nV7TO2rHmj+05cvtpqMAAAAAT6VZ5k5aeXmuPLw8TEcBAABPIa13Wi375zM1z9rFdBQASFFcukEYGBgom80W9wHw9N5f/ra2rd6lX1fuMB0FAAAAeCItc3TXwmPT5J0pvekoAMAN7kAyyJglg+Yc/ERtcr9hOgoApBgu3SAEYB/DvxyoLV9u17bVu0xHAQAAAJJkQIVAzdzzsTJn8zEdBQAkcYM7kFz8cmbRlK2jNbjKB6ajAECKQIMwGfxw4rh6/rJRb61fazoK4DCBXw/Wz0t+0/Zvd5uOAgAAADyWzoXf0jtfvqlsebKajgIAAOwgx7PZNPCLnupW/G3TUQDA6dEgfEq/nD6ldzdu0F9XQ7T22FG1/vpL05EAhxm1eog2LNisHWv2mo4CAHAQpsACkFL1KDVQo74ZqhzP+puOAgAA7Cjnczn03vK31av0ENNRAMCp0SB8SosO7NeNyMi45XOhN3T4yhWDiQDH+uC7d7Tu843atX6f6SgAAAdgCiwAKVHf8u9oyMI3lb9EHtNRAACAAxR8Ib/6z+qpfpXfMx0FAJwWDcKn9FwWP3m5u8cth9wOl7sbd9MjdRmz9l19N+NH7flxv+koAAAAQDxvVxuuPlO7qnDZAqajAAAABypW8Tl1H/e6BtUKNB0FAJwSDcKnNLxGLbUt9YJypE+v/Jl99UXz1/T2D+v0wZbNpqMBDvXh+ve0avI6/bHxgOkoAAAAgCRpSECQOo9uoxJVipiOAgAADHi+RnG1e7+5htUbYzoKADgdGoTJILBWbc16qY42d+6qyrnzaEOHzsqT2UclZk7T2mNHTccDHObjDcP15bjvtH/TIdNRAAAAkMq93/BDtRzcRC/WLmk6CgAAMKhsnRfU9M1XNLLpONNRAMCp0CBMJv7p08db7vJiGe3p2VsbThxXh9VfKzgszFAywLHG/zxSS8es0oEtf5mOAgAAgFRqVPMJatDjZVWoX9p0FAAA4AQqNy6nlzvU0OhWk0xHAQCn4dINwqCgIFkslriPo6X38ND0Bo30RrnyavnVck3e8bvDMwAmTNw0Sl8EfqlDW4+YjgIAAIBUZmzbKarVuoqqNqtgOgoAAHAiNV6rrCpNy+vjDtNMRwEAp+DSDcLAwEDZbLa4jynV8ubT9m495e5mUcU5s/TbP2eMZQEcZdKvH2jeu0v11+9MswsAAADHmNBlpsq/8qJqta5qOgoAAHBCAe2r64VaJTSpxyzTUQDAOJduEDqbfhUra027Dpq/7w/1Xvu9wiIjTUcC7GrKtjH6fPAiHdl5zHQUAAAAuLgpvWareOXCqtuplukoAADAidXvFqBCpZ/V9Dfnmo4CAEbRIHSwbN7eWvhqCzUtWkzV5s/R3H17TUcC7Gra72M1s/8CHd1zwnQUAAAAuKiZ/ecrf4k8atizjukoAAAgBWjSp55yFsyhWYO+MB0FAIyhQWjIK4We04Heb+ryrXC9/MUC7bsYbDoSYDczdn2kqb3n6Pi+U6ajAAAAwMXMHrpY2fJkVbO36puOAgAAUpAWAxops38mzXtvmekoAGAEDULD3q9RU7ObNNXY337VkJ9+NB0HsJtP947TJ90/08k/z5iOAgAAABexcOQKeWdKr5aDm5iOAgAAUqA2w15VGg93LRn9tekoAOBwNAidQAHfLFrVuq0q5s6jZ6d8ohWHD5mOBNjFrH0TNK7TdJ0+dNZ0FAAAAKRwyz5cLZvVpvbDW5iOAgAAUrBOQa0VER6hL8d/ZzoKADgUDUIn8lrxEjr99iAduHRRr65YqmNXr5qOBCS72Qc+0di2k/XP3+dNRwEAAEAKtfKTNbp1/Za6jGlrOgoAAHAB3T9+XdcuXtfqqetMRwEAh6FB6IQ+ermuAmsF6K31azT6182m4wDJbu7hyfrgtYk6+78LpqMAAAAghflu5o+6fOaKek7oaDoKAABwIb0nd9a5/13Q2s83mo4CAA7h0g3CoKAgWSyWuE9K8mKOHNrQobNyZ/JRiZnTtO74MdORgGQ17+8pGtl0nC4cv2g6CgAgCVJyfQUg5Vs/9xedOnBGb07vZjoKAABwQf0/66n/7TquDQt5aAOA63PpBmFgYKBsNlvcJyXqUrqM9vTsrR+OHVWH1V/r4q0w05GAZLPw6DS9W3+sLp66bDoKAOAxuUJ9BSBl2rj4Vx3eekQDZvcyHQUAALiwwfP7aN/Gg9q0fJvpKABgVy7dIHQV6T08NKNhY71RrrxarFiuyTt+Nx0JSDaLTszQ0Jc/0KUzV0xHAQAAgJP6deUO7Vr7h4Z+8abpKABSkU2bNqlLly7q3LmzNmzYkOg2HTt2VIMGDeI+f/31lyTpm2++UZcuXdS6dWtNnjxZsbGxjowO4Cm9u7S/tn69U9u+2WU6CgDYDQ3CFKRa3nz6vXtPubtZVGnO5/rtnzOmIwHJYvGpmRpUM1BXzoWYjgIAAAAn8/v3e7Rp6VYN/3Kg6SgAUoANGzbIarU+9XFCQ0M1b948TZo0SVOnTtXixYt19erVeNtYrVZFRUVp/fr1cZ8SJUro77//1rfffqtp06Zp/vz5Onv2rH788cenzgTAsQJXDdaP8zZp1/p9pqMAgF3QIEyB+lWsrO/atdf8fX+oz7o1CouKMh0JeGpL//lM/Sq/r6vB10xHAQAAgJPYu+FPrfnsJwV9O9R0FAApxPr169WnTx/t37//qY6ze/dulStXTr6+vvLx8VHlypW1Y8eOeNuEhITIz88vwb7Xrl1Tw4YNlTFjRnl7e6tSpUq6dOnSU+UBYMaYte9q1eS12v/LIdNRACDZpTEdAE8mu3cGLXy1hX44fkxV536u/pWqqFuZsqZjAU9lxfnP1TpnD322b4Ky5MhsOg4AAAAMOrDlL60Y960mbhplOgqAFGTq1KnaunWrpk6dqty5c6tHjx7Kly9fko8TEhKibNmyxS37+/sneILw0qVLunHjhoYOHaozZ86oRo0a6tOnj6pVqxa3zdWrV7Vx40YNHJjwKeigoCCNGjUq0fNbLBYNGjQo0f2eVnBwcLIfEw/HmDteco75219019jmU/XazUYqUrFgsh3X1fDfueMx5o5nrzG3WCx2Oe6j0CBM4eo/V1j1nyusMb9t0cuLFmh8nXoq80xO07GAJ/Zl8By1zN5Ncw5PVmb/TKbjAAAAwIAjO49p3nvLNO33saajAEiBqlevrsqVK2vt2rUaMmSIqlatqo4dO8rX1/exj2Gz2RJ899+pSzNmzKjXXntNTZo0UVhYmEaMGKF169apcePGkqQff/xRS5cuVe/evVW8ePEExwsMDFRgYGCC7y0WS6LnTw7BwcHKmZPrRo7EmDuePcZ85s5x6lthmPp/2kOFy9Ek/C/+O3c8xtzx7Dnmppq9TDHqIobXqKXPGzXV2N9+1dCNib84G0gpVl6ep67F+ivs2i3TUQAAAOBgJ/af1rS+c2kOAnhikZGRunz5sgoUKKAOHTpo27Zt6tSpk5YtW6bIyMjHOoafn59CQkLilkNCQpQ1a9Z42+TLl09NmzaVm5ubfHx8VL16dZ0+fVpWq1Vjx47V7t27NX36dFWpUiVZfx8AM2bu/lgTu32q04fOmo4CAMmCBqELKZgli1a1bqvyOXPp2Smf6MvDzI2NlGt1yAJ1LPSmboWGm44CAAAAB/nn7/P6uMM0ffbHeNNRAKRQzZs3V6NGjdStWzdNnDhRW7duVaVKldS6dWudP39ePXv21Pnz5x95nIoVK2r37t0KDw/X7du3tXPnTlWqVEk2m03BwcGyWq1avXq1goKCFBMTo1u3bun3339XiRIltHXrVt2+fVsjR45U5syZ7f+jATjM7AOf6IOWn+j8MaZ2BJDyMcWoC2pZoqRaliipYT//pBWHD2p83Vf0XJaEL80GnN031xaqqU9HLT//udJnTGc6DgAAAOzo4qnLGtHkYy06McN0FAAp2AcffCBvb29lyZJFPj4+CdZv27ZN48aN0/Tp0x96HF9fX3Xt2lWDBg2SzWZT+/bt5e/vr4iICHXq1ElfffWVmjZtqn///VfdunVTTEyM6tatq4CAAM2cOVP79+9Xs2bN4o7XuHFjdevWLbl/LgADFvxvqtrn763Jv41WtrxZH70DADgpl24QPuxlz6nBxy/X1Z+XLqnv2jWqni+fRtSsbToSkGTf3Vikxhle18or85Q2vZfpOAAAALCDkAvXNLDmSC0/97npKABSuAsXLmjq1Knq37+/6tWrp61btypDhgwqXbq0JKlcuXJavnz5Yx0rICBAAQEB8b5LmzatNm7cGLfcu3dv9e7dO942ffv2Vd++fZ/ylwBwZkvPfKZWz/TQ539OkG/2zKbjAMATcekpRgMDA2Wz2eI+qdGLOXLop46dlTuTj0rOnKZ1x4+ZjgQk2ZpbS9Qia1dFRUSZjgIAAIBkdiPkpnqVHkJzEECymDt3rj744APVq1dPkuTp6anAwEDt3btX0t0G38yZM01GBOAivro4R12Lvc3rcQCkWC7dIMT/16V0Ge3q2Vs/HDuqjqu/1sVbYaYjAUmy7vZSNfXppJjoGNNRAAAAkExuh91Rx4Jv6usr80xHAeAi3NzcVLBgwbjlihUratiwYVqwYIHBVABc1TfXFqpNrp6KvMNN7QBSHhqEqYi3h4dmNGysHuXKq8WK5Zqy83fTkYAk+SFyuRqmay+r1Wo6CgAAAJ5STHSMWmTtqu9uLDIdBYALef7557Vu3boE3509e9ZQIgCubm34UjXO8HqqncEOQMpFgzAVqp43n37v3lMWWVRpzuf67Z8zpiMBj21DzJeql6a16RgAkCw2bNjATQ8AUq36Xm31Q+TjvQcMAB5Xr169tHbtWn300Ufau3evTp8+rcWLFyt37tymowFwYT9GrdArnm1MxwCAJKFBmIr1r1RZ37Vrr3n7/lCfdWt0K4pH4ZEybLSuVB23lqZjAMBTW79+vfr06aP9+/ebjvLYgoKCZLFY4j4A8CQapG2r9RE0BwEkPz8/P82aNUt+fn767LPP9Oabb+r48eMaPny46WgAXJibu5u+u7FIjTO8bjoKADw2GoSpXHbvDPri1RZqXLiIKs/9XPP2/WE6EvBYNkR/qXoePEkIIGWbOnWq2rdvr6lTp2r48OH6559/TEd6pMDAQNlstrgPACRVs8ydtPLKPHl4pjEdBYALunnzpnbu3KnixYtr3LhxWrdunSZNmqRcuXKZjgbAxaVN76VlZ2epedYupqMAwGN57AbhwYMHNWLECMXExCgyMlLbtm3ThQsX7JkNDlT/ucI61OctXbwVpjqLFmr/xYumIwEP5ebupnW3l6q+V1vTUQDgqVSvXl1z585VuXLlNGTIEE2dOlXXr183HQsA7KJl9m5aeHy6vDOlNx0FgIsaMWKEFi1apK+++kodO3ZUmzZtFBQUpC+//NJ0NACpQMYsGTTn0CS1ydXTdBQAeKTHvmVzwYIFevbZZ+Xm5qbPP/9c27ZtU0REhN5//32VK1fOnhnhQMNr1FKbklc1dOMGPZfFT+Pq1DMdCXigNB5p9N2NL9QwfXutu73UdBwAeCKRkZEKCQlRgQIF1KFDBy1atEi//PKL2rRpoxYtWsjLy8t0RABIFu3y9tKnf4xXZv9MpqMAcGH//POPvvjiC/n4+CgmJkanTp3S//73P/3vf/8zHQ1AKuH3jK+mbB+jDgX6avGpmabjAMADPXaD8MSJE/rggw9ksVj0yy+/aMqUKTp79qwWLVpEg9DFFMrip9Wt2+mrvw7r2Smf6OOX66p1yVKmYwGJ8kzrqVX/zlPjjB20Jmyx6TgAkCTNmzdXWFiY3N3dlS1bNuXIkUOVKlVSjhw5dP78efXs2VNjx45V7ty5TUcFgKfSufBbmrBplPxz+5mOAsDFFSpUSLGxsZKkNGn+X3t3HR7lmfdt/DsUp0gaggR3txIIUKxYcPcgwV2DWwju7g7BKe5FSgvFKV4ItEhpU0oDxYIVMu8f+26eZYFugGSukfNzHPdx7Ewm95y5yLN7PfnN3BNTWbNmVdasWVW9enXDZQBcSYr0yTRyxwC1ytldC3+cYjoHAN4q0gPCtGnT6sKFC0qSJIlix46ttGnTKmXKlBo7dmx09n2UwMBADR061HSGw6qfK7fq58qtfnu/1poL5zW2go+yfMb/Qw/7EzdBXK0JmacaiZtp84NlpnMAINLy58+vDh06yN3dXTFivHnl90OHDmns2LGaPn26gToAiBpt8vTU0I19lCpzCtMpAFyAt7e3Ro0ape7du/MiKwBGpc2eSgNWdVf7Ar015/R40zkA8IZIfwZhy5YtNXbsWA0dOlQlSpSQ9K/PJYwdO3a0xX2sgIAAWa3WiAMfZky5ChpS+kt12rZVw789YDoHeKv4CeNpxc3ZqvWZn+kUAPifunbtqsGDB+vMmTO6deuWnj59+trXDx06JEny8vJSeHi4iUQAiBIdvfqqz9LOSp8rjekUAC7i8OHDCg4OVqtWrTRw4EAtW7ZMR48e1d27d02nAXBBmfKlV/e57dSlSH/TKQDwhki/g7BgwYKaNWuWrl+/rsKFC+vcuXPq16+fmjVrFp19sBP5U6TU1838tOj0KeWeOU3jKlRU5SxZTWcBr/k0SQItvTpddTxaav2fi0znAMA79erVSxcuXNAPP/ygOXPm6ObNm0qdOrVy5MihdOnSadmyZSpevLjixo2rmTP5zAoAjqnbFwPVeXorZfk8o+kUAC5k8uTJCg8P1y+//KLg4GBduXJFy5cv17Vr17Rjxw7TeQBcUPbCmdV2fDP1LDVEk74dZjoHACJEekAoSZ6envL09JQkZc2aVcuWLVPKlCmjJQz2qWWBgmqQO6/6fL1Lq8+f07gKFZXi009NZwERErkn1MIfp6he8lZa98dC0zkA8FZp06ZV2rRpFRYWpnr16unp06cKDg7W5cuX9eOPP6p+/fqmEwHgo/QuG6gWIxopZ1FeVAjAtqxWq7777jvdvHlTnp6e6tKliyTp5cuXhssAuLI8JXLId1Ad9fMZoTG7B5nOAQBJ73GJ0XPnzmnw4MF6+fKlnj9/rpMnT3LJKxeVIFYszaxSTW28CqnW6hWacvSw6STgNUk8Emnu2Ylq4NnGdAoAvKFFixY6d+6cJCl9+vR68OCB4sWLp/z586thw4YKCAhQ06ZNDVcCwIcbUHmU6veurvxf5jadAsAFLViwQBMnTtRvv/2mmTNn6tq1a5o7d+5bP+8ZAGypYPl8qtmlkgZXH2M6BQAkvceAcPHixfLw8FCMGDG0YMECzZw5U507d9bJkyejsw92rETadDrSup0ssqjogrn67uYN00lAhM9SJNHME2PVKE070ykA8JoePXrIw8NDkrRw4UI1aNBATZs21YgRI7Ru3TqdO3fujc8kBABHEVBrnKq2K69CFQuYTgHgonbu3KkxY8ZowIABkv51NazLly9r7dq1hssAQCpStaAqNC+tYfUmmk4BgMgPCH/66Se1aNFCFotF+/bt09ixY+Xv769ly5ZFZx8cQLciRbWxoa8W/nBKnbZv1eMXL0wnAZKkpKk+09TDI+WbroPpFACIkDdv3ohLtM+ZM0dbtmxR//79lStXLv3888+aPHmyatasaTYSAD7AyEZT9GXDL1SsRiHTKQBcWPz48SM+HkeS4saNq65du/L5gwDsRok6RfRFzcIa03Sa6RQALi7SA8K0adPqwoULunz5smLHjq20adPK29tb169fj84+OIgUn36qpbXqqErWbCq6YK4WnT5lOgmQJCVLk1QTvw1U04ydTKcAwGueP3+uJUuWKHbs2MqZM6dq1aqlfv36afHixdqwYYPpPAB4L+P8ZqhwpQIq3eAL0ykAXJy3t7eWLFny2mcOxo8fX3/99ZfBKgB4XVnfEsr/ZW5NbD3bdAoAFxbpAWHLli01duxYDR06VCVKlJD0r88ljB07drTFwfFUzpJV5zt20W8PH6n8siU6c/t300mAUqRPprF7Bqt5li6mUwAgQpw4cXTy5En99ttvb3wtQYIEBooA4MNMbjdXub/IrvLNSplOAQC1adNGV69eVceOHfXq1SsdPXpU06dPV548eUynAcBrKrYso6wFM2papwWmUwC4qEgPCAsWLKhZs2apa9euatu2rc6dO6d+/frZ9SWwAgMDZbFYIg7YzuBSpTW7ajUNO/CN+u7ZbToHkGemFBq1Y4D8snU1nQIAESpVqqRZs2bp4cOHplMA4IPM7LZIGXKnVeU25UynAICkf11SdMaMGapbt67y5s2rmTNnKnbs2Ordu7fptHfi71eA66rWwUepMqfQHP+lplMAuKBIDwgl6e7du7pz547OnDmjtGnTatmyZWratGl0tX20gIAAWa3WiAO2lfkzd21o2FgFPVMpw5SJWnvxgukkuLhUWVJq2Oa+apWzu+kUAJAk7d69W2fOnFHDhg3Vv39/BQUF6dixY7p//77ptHfiD1gA/m1enyAlS5NUNbtUMp0CwMW1aNFC586dkySdOHFCjx49UoUKFTRy5EgFBQVpyJAhcnNzM1z5bvz9CnBtdXpUVRKPRFo4YKXpFAAuxmKN5M5j9erVWr16tXLlyqUbN27o2bNnatWqlSpXrhzdjVGmRIkSOnjwYLSc++7du3J3d4+WczuLvnt26+q9uxpX3keZP/v4tWLNbc9Z1vzGxVsa2XCy5p+fZDrlf3KWNXckrLntReeaO8K/56tXr3Tjxg0FBwfrypUrCg4O1vXr17Vr1y7TaZHC/sq5sOa256hrvmTwasWKG0u+A+uYTnlvjrrmjow1tz1X21+dO3dOHh4eSpkypdq3b68bN27Iw8ND2bJliziyZMmiePHimU6NFPZXzoU1tz1HXfNlQ9fKEsOipkPqmU55b4665o6MNbc9Z9xfxYzsAzdu3KiRI0cqV65ckqQbN25o5MiRSpAggUqVcozPmjh06FC0nfv58+fRdm5nMba8j07//rs6bNuqkunSa3Cp0h91Ptbc9pxlzdPnSqMBK7urbT5/zTs70XTOP3KWNXckrLntReea2/u/58SJEyP+aFWhQoWIF179/fffhssij/2Vc2HNbc8R13zFyPWS5JDDQckx19zRsea252r7q7x580b85zlz5ujFixf66aefFBwcrODgYO3YsUMhISHavdsxPgKF/ZVzYc1tz1HXvNnQ+lrYf4VWj92khn1rms55L4665o6MNbc9Z9xfRXpA+PLlS6VMmTLidvr06dWrVy/NmjXLYQaEMK9AypTa08xPi06fUp5Z0zW2vI8qZ8lqOgsuKEOetOq7tIvaf95bc34YbzoHgItKmTKlTpw4oeXLl+vhw4fKlClTxMCwfPnypvMA4A3rJm5V2P0wtR3fzHQKALzT8+fPlSZNGuXMmTPivrCwMINFABA5rUb7anaPJdowdbtqd6tiOgeAk4v0ZxAWKFBAW7Zsee0+T09PXb9+Pcqj4PxaFiioI63bafuVYDXfuF63Hz82nQQXlCl/evWc30GdCvU1nQLARTVu3FiBgYFavXq1goKCVKhQIe3atUvfffed6TQAeMOmGTt15+afDAcB2LXdu3erQYMGOnz4sCTp4MGDOn36tBIkSGC4DAAip8NkP/0aHKKtc742nQLAyUV6QNiuXTsdOHBAgYGB2rNnjy5duqT58+crQ4YM0dkHJ/Zp7NiaWaWaWn1eULVWr9DUo0dMJ8EFZS2YUV1ntVFn7/6mUwC4OHd3dzVr1kwjRoyQh4eH6RwAeM2O+Xt1/fwv6jStpekUAPhHCxYs0LBhw+Tj4yNJih07tgICAnTy5EnDZQAQeV1ntVHwiZ+0e/E3plMAOLFIDwg9PDw0a9YsZcuWTRs3btSAAQN08+ZN+fv7R2cfXEDJdOl1pHU7WWVV0QVzdfCXm6aT4GKyFcqsTlNbqGuxgaZTALiYkydP6tGjR6/dly9fPp04ccJQEQC8aU/Qt7pw6LJ6zG1nOgUA/qcYMWIoU6ZMEbe9vb3Vr18/LV682GAVALy/Xgs76oe957R/VfR9LikA1xbpzyCUpPjx46thw4Zq2LChJCk8PJwPw0SU6V6kmBrmzqs+X+/S6vPnNK5CRSWIFct0FlxEjiJZ1W5CM3UvPkhTDo0wnQPARSxYsEDXr1+Xp6encuTIoezZs+vevXtvDA0BwJRv1x7Wse0/aNDqHqZTACBS8ubNq+3bt6tJkyav3Td69GiDVQDwYfqv6KbAuhMUO04sFa/tbToHgJOJ9DsI3+bp06eqUaNGVLUASvHpp1pWu66qZM0m73mztej0KdNJcCG5imVTq9G+6llqiOkUAC5izpw52rx5s3r06KG0adPqhx9+0OHDh9W+fXvTaQCgw5tPaP+qQwwHATiU9u3ba9u2bRo9erROnjyp69evKygoSKlTpzadBgAfJOCrXtq1+Bsd287fSQFErfd6B+HbWK3WqOiIFoGBgRo6dKjpDHyAylmyqnKWrBr+7QFVWLZE4yr4KH+KlKaz4ALylMih5oEN1KvMUE3YP9R0DgAn9OLFC33zzTd6+PChMmTIoPz58ytv3rzKmzev6TQAiHBy9xltnfO1Ru/kEuwA7N/9+/eVJEkSSf/6XOc5c+Zo7dq1mj17tm7fvq1s2bJp0KBBZiMB4COM2NpPfcoPU+y4sVWgbB7TOQCcxD8OCH/55RelTp1aMWJ81BsNjQkICFBAQEDEbYvFYrAGH2JwqdK6eu+u+n69W1mTJtWYchVMJ8EF5CudS+Hh4epTbpjG7eXdhACi1pgxY/T9998rW7ZsWrx4sdKnT68hQ4YoRYoUNu0IDw932D0egOh19sBFrR67iRdLAXAYDRs21KBBg1S8eHEtXbpU2bJlU926ddW2bVvTaQAQZcbtGaIeJQcrVpxYyl08u+kcAE7gHweErVq1Uty4cZU5c2ZlzZpVWbNmVZYsWRx6aAjHk+Uzd21o2FhrLpxXhikTNa68j+rlym06C06uQJk8Cn8Vrn4+IzRmN680BRB1Tpw4oQEDBqhUqVJ68uSJxo0bp6lTp3705+Ls379fQUFBslqtatSokXx8fN752EWLFun58+fq0KGDJKlZs2YKDQ2N+Pr48eOVK1euj+oB4Jh+PHJFiwau1NTvR5pOAYBI27Jli16+fClJevDggYKCgnTt2jUlSZJE2bJlU9asWZUtWzYVLFjQcCkAfJzJ3w1XZ+/+6jKjlbIVymw6B4CD+8cB4aZNm3T16lVduXJFV65c0dKlS/X7778rXrx4ypw5s9KnT2+jTEBqkDuPGuTOoz57dmvVhXPqla+APD09TWfBiRUsn0/hr8I1oPIojdoxwHQOACfx7Nkz5cuXT5IUP358tWjRQp07d/6oc96/f18LFy7UjBkzFCNGDHXq1EleXl5yd3d/47Hnzp3Tli1bIgaI4eHhevHihXbs2PFRDQAc39UfrmlGl4WadXKs6RQAeC9du3bVrFmzJElFihRR165d9ffff+v69esKDg5WcHCwDhw4oHnz5hkuBYCPN+PYaLXL30t9l3VRxrzpTOcAcGD/OCBMkCCB8ufPr/z580fc9/jxY129elXBwcG6evWqzS+HBYwr76PTv/+uHju2qdydPzSoZGnTSXBihSoWUHi4VYOqjtaIbf1N5wBwEv95JYakSZPq2bNnH3W+48ePy8vLS25ubpKkokWL6siRI6pateprjwsLC9P8+fNVr149PXz4UJIUGhr61kEiANdy88dfNbbZdC24MNl0CgC8t+TJkyswMFBFihTRsmXLtHz5csWKFSvialjVqlUznQgAUWrumQlqkb2bhm/pq9RZeQMFgA/zjwPCt/n0009VoEABFShQIDp6gEgpkDKlVlaqop23f1feWdM1tryPKmXJajoLTsq78ucKfxWuITXGatjmvqZzADiBe/fuKVGiRFF2vtDQUCVLlizitoeHh+7evfvG46ZNm6amTZvqzp07EQPC27dv68GDB+rTp49u3LihkiVLqmPHjlxOHnAhIT/f1pAaY7X06nTTKQDwQQYOHKitW7fq+++/V2hoqKpXr65MmTK9dnlRPi4HgLNZfHmqmmToqIkHApU8nYfpHAAO6L0HhIA9afV5QdXPnUd99+zW6gvnNa6Cj5In+NR0FpxQ0WpeCn8VrqG1x2voht6mcwA4sCRJkqhNmzZKlCiRMmXKpNSpU0uSQkJCPvjS2Var9Y37wsPDX7u9d+9eJUiQQIULF9a2bdsi7k+YMKHq1q2r6tWr69GjRxo8eLC2b9/+xivtAwMDNXTo0Lc+v8Vikb+/v3r27PlB/f8kJCQkys+Jf8aa257JNb8b8pdG1JiiyScCXerf3pV+VnvBmttedK25xWKJlvN+jMuXL6tOnTqqU6eOBg8erO7duys4OFhXrlzR/v37NXv2bP3999/aunWr6VQAiFLLr89SA882mv3DeH2WIonpHAAOhgEhHF7C2LE1q0o1fXfzhmqsXKFGefKqW5GiprPghL6oWVjWcKsC605QwFe9TOcAcFDr1q3TnTt3dOXKlYjPek6UKJGaN2+uhAkTKkeOHMqePbuaNm0a6XO6u7srODg44nZoaKjSpEnz2mMOHDiga9eu6dSpUwoLC9PLly8VFhamnj17Kn369LJYLEqcOLFKlCih69evv/EcAQEBCggIeON+i8Xy1gFlVPiYoSk+DGtueybX/EHoQ3WtPFhf3Vlo5PlN4ffc9lhz24vONbfHYe/YsWM1depUJU2aVIkSJZK7u7uKFSumYsWKRTzm999/N1gIANFnTch81frMT0HXZurTJAlM5wBwIAwI4TRKpkuvo23aacrRwyq2YJ7GVvBRibR8UC+iVvHa3nr1KlwjGkzSoDVR/04ZAK4hWbJkSpYsmYoXLx5x3x9//KErV67oypUrunDhwnudz9vbW0FBQQoLC5PFYtHRo0dVr149Wa1W/f7770qRIoVGjBgR8fht27bp1q1b6tChg7766itduHBBgwYN0rNnz3T48OE3PrsQgPN58uipmmXqrM0PlplOAYCP1rBhQ7Vu3Vrp0qXTzZs3lT9//jcuK5oyZUrDlQAQfTbeW6KqCXy1PnSx4sSLbToHgINgQAin071IMTXInUd9v96tNefPaWyFikoQK5bpLDiRUvWKKvxVuEY1nqIBK7ubzgHgJJInT67kyZOrRIkS7/29bm5uatmypfz9/WW1WuXr6ysPDw89e/ZMzZs319q1a+Xm5vbW761Ro4b+/PNPtWrVSi9fvlSFChVUtmzZj/1xANixv1+8VF2PltrxbJXpFACIEtWqVVOJEiV08eJFjRkzJuKyoi9fvlTWrFkjPoewVKlSplMBINpsC1shn5gNtPPFKj5zFUCkOPWA8J8+KwfOLeWnCbWsdl1tv3pF3vNmy79YcbUo8LnpLDiRLxt+IWt4uEY3mab+y7uazgEAlS1b9o3BXty4cbVnz543Hvuf7xCMFSuWOnTooA4dOkR7IwD7UDluI+0JX2c6AwCiVJIkSfTFF1+oR48eKlOmjCTp9u3bEZ9FuHXrVgaEAJzezherVCl2I+1+ucZ0CgAH4NQvJQgICJDVao044HqqZMmqC5266teHD1Rh2RKduX3bdBKcSJnGJeTlk0/jms8wnQIAABApleM24p2DAJzO6NGj9ezZM0mKGA5KUooUKVSqVCm1adNGEyZMMJUHADYTI0YMbX64TNU+bWI6BYADcOoBIfBvg0t9qZlVqynwwD712/u16Rw4kfJNSynfl7k0oeUs0ykAAAD/qEbiZvrqz0WKFdupLyQDwAXt379fL168iLg9e/bs126Hh4fr0aNHJtIAwObixo+jlbfmqLZ7C9MpAOwcA0K4jCyfuWtjQ18VSJFSGaZM1LqLF0wnwUn4+H2p3MWza2Lr2aZTAAAA3qpuslZa9vMMxU8Yz3QKAES7DRs2RLyjUJKePn2q2rVrGyz6Z4GBgbJYLBEHAHyshG6fasHFyWrg2cZ0CgA7xoAQLqdB7jy63t1fJ0J+U501q/TzvXumk+AEKrYsoxzeWTS53VzTKQAAAK9pnLa9Zv8wTomTJjKdAgB4Cz4iB0B0+CxFEk09PFJNM3YynQLATjEghMsaV95HA0uWUrttmzXyu29N58AJVG5TTpkLZNC0jvNNpwAAAEiSmmfpognfDJVHanfTKQAAALCxFOmTadTOgWqZo5vpFAB2iAEhXNrnKT21t1kLJf80gfLOmq5dP101nQQHV619BaXPnVbTOy8wnQIAAFxc69w9NGxzX3lmSmE6BQCiHZ8xCABvlyabpwat6al2+XuZTgFgZxgQApJaf+6l71u30+bLl+S3cb3uhIWZToIDq97RR2mypdLMbotMpwAAABfV0auv+i7ronQ5U5tOAYBolzBhQvn5+al58+YaM2aMJOny5csK4/+3BwBJUsa86dRjXnt1KdLfdAoAOxLTdABgLxLGjq3ZVavru5s3VG1lkHzz5lNX76Kms+CganappA1Ttmt2zyXqMMnPdA4AAHAh3b4YqM7TWynL5xlNpwCATWzYsEG3b99WcHCwrl69qgIFCmjUqFEKCwtTihQplCZNGtOJAGBc9sKZ1XZ8M/UsNUSTvh1mOgeAHWBACPyXkunS61ib9pp85LC+WDhPY8v7qHjadKaz4IBqd6+iryZt1dxey9RuQjPTOQAAwAX0KjNULUc2Vs6iWU2nAIBNpUiRQilSpFCpUqUi7gsJCdGVK1d05coVvXjxwmAdANiHPCVyqMnguupbYbjGfj3YdA4Aw5z6EqOBgYGyWCwRB/A+ehQtpnX1G2nuyRPqvH2rnvz9t+kkOKC6PavJLXlize+73HQKAABwcv0rjVTDvjWVr3Qu0ykAYBc8PT1VunRptW3bVhMmTDCdAwB24fNyeVW7W2UNqjbGdAoAw5x6QBgQECCr1RpxAO/LM2FCBdWuq0pZs6nQvNlafPoH00lwQPV711BCtwRaOGCl6RQA+Gi8AAuwTwG1xqla+wry8slvOgUAAAB2zrtKQfn4ldawehNNpwAwyKkHhEBUqZIlqy526qpfHz6QT9ASnbl923QSHEzDfrUU79O4WjxolekUAPgovAALsD8jGk5WmUbFVaxGIdMpAAAAcBAl6hRR8VqFNbrJNNMpAAxhQAi8h8GlvtT0ytUUeGCf+u/92nQOHEzjAbUVK04sLQ1YYzoFAAA4iXHNZ8i7yucqVb+Y6RQAAAA4mDKNS+jzsnk0odUs0ykADGBACLynrO7u2tjQV/lSpFSGKRP11Y8XTSfBgTQZXFeStHz4V4ZLAACAo5vcbq5yF8+u8k1LmU4BAACAg/Jp8aWyeWXStE4LTKcAsDEGhMAHapg7j65399exX2+pzppVuvbXPdNJcBDNAxvo5YuXWjFyvekUAADgoGZ2XaQMedKqcptyplMAAADg4Kp18FHqLCk1u+cS0ykAbMjIgHD//v1q0aKF/Pz8tHv37je+vmLFClWuXDniqFixogYOHChJWrlypRo3bqxGjRpp2bJltk4H3jC+QkUNLFlKbbds1sjvvjWdAwfhN7yhnoU91+oxG02nAAAABzOv9zIlS+ehmp0rmU4BAACAk6jdvYrckifRwv4rTKcAsBGbDwjv37+vhQsXatKkSZo6daqCgoJ09+7d1x7j6+urHTt2RBxly5ZVrVq1dOXKFW3fvl3z58/XwoULtX//fl24cMHWPwLwhs9Tempv8xZK/mkC5Zs9Q7t+umo6CQ6g1ajGevRXmNaO32w6BQAAOIglg1crQZIEqudfzXQKAAAAnEzDvjUVK04sBQ1bZzoFgA3YfEB4/PhxeXl5yc3NTYkTJ1bRokV15MiRdz7+hx9+kMVikZeXl2LEiKFPPvlEsWPHVqxYsRQrVizFiMFVUmE/Wn/upUMt22jz5Uvy27RBd8LCTCfBzrUZ20T37zzQuolbTacAAAA79+/Lk/sOrGO4BAAAAM6q2dD6evH0hVaP3WQ6BUA0i2nrJwwNDVWyZMkibnt4eLzxDsJ/Cw8P16JFixQYGChJypw5s7y9vVWnTh1ZLBaVLl1aOXPmfOP7AgMDNXTo0Lee02KxyN/fXz179vz4H+a/hISERPk58c/sdc0Hf+6lI7+HqErQUtXMnFktcuY2nRRl7HXNHVnVHuW0cuhGLQpcoYptvnzj66y57bHmthdda26xWKLlvABga+smbFHYgydqO66p6RQAAAA4uVajfTW75xJtmLJdtbtXMZ0DIJrYfEBotVrfuC88PPytjz106JAyZcokd3d3SdL58+d19uxZTZo0STFixNC4ceN08uRJeXl5vfZ9AQEBCggIeON8Fovlrc8fFUJCQuTp6Rkt58bb2fua1/H0VJ2CXpp05HvV27lN48pX1Bdp05rO+ij2vuaOrNe8TprZbZGOrz+rml3+7/OEWHPbY81tLzrXnGEvAGewafpO3bkVqk5TW5pOAQAAgIvoMMlP0zot0NbZu1Wtg4/pHADRwObX53R3d1doaGjE7dDQUCVNmvStj92/f7+++OKLiNvHjh1TyZIllTlzZmXMmFFlypTR0aNHo70Z+Bg9i36hdfUbafbJY+qyY5uevnxpOgl2qtPUlvr1Sog2z9xlOgUAANiJHfP36vqFXxgOAgAAwOa6zmyt4JM/a/fib0ynAIgGNh8Qent76/jx4woLC9OTJ0909OhRFSlSRFarVSEhIRHvJnz27JnOnz+v/PnzR3xvunTpdPz4cT1+/FhhYWE6duyY0qdPb+sfAXhvngkTanntevLJnEUF58zU4jM/mE6Cneo8vZVuXrylrXO+Np0CAAAM27PsW134/rJ6zG1nOgUAAAAuqtfCjvph33ntX3nQdAqAKGbzAaGbm5tatmwpf39/9ejRQ76+vvLw8NDz58/VvHlzPXjwQJJ08uRJ5cqVS7Fjx4743nLlyil37txq27atWrdurUyZMqly5cq2/hGAD1Y1azb92Lmbbt1/IJ+gJTr7x23TSbBDXWe10U+nr2vH/L2mUwAAgCEH1nyv4ztPq8+SzqZTAAAA4OL6L++qQxuP6+B6ruYHOBObfwahJJUtW1Zly5Z97b64ceNqz549EbeLFy+u4sWLv/YYi8Witm3bqm3btjbpBKLLkNJf6srdu+rz9S7l8PDQ6HIVTCfBzvSY206T2szRgwcP1KhXHdM5AADAhg5vPqFvVn+vwI19TKcAAAAAkqQh6/w1qNoYxY4bS95VCprOARAFbP4OQgD/ktXdXZsa+SpfipTKOGWivvrxoukk2Jme89vr6slr2r2E67wDAOAqTuw6rW1z9zAcBAAAgN0ZsbWfNkzdoR/2njOdAiAKMCAEDGuYO49+7u6vY7/eUt21q3Ttr3umk2BHWk/y1dlvLmpP0LemUwBAkhQYGCiLxRJxAIg6Z765oLXjt2jUjgGmUwAAAIC3Gvv1YC0f/pXOH7xkOgXAR2JACNgBi6TxFSqqf/FSartls0YdZBiE/9NnaWed+vqs9q3gw6ABmBcQECCr1RpxAIgaFw8Ha8ng1Rq/L8B0CgDAxngBFgBHM+nbYZrXe5kuH//JdAqAj8CAELAjBT09tbd5C3nET6B8s2do909XTSfBTvQL6qpj20/pm9Xfm04BAABR7OoP1zSz6yJNOTTCdAoAwABegAXAEU0/OlqT287RtXM3TacA+EBOPSDkFVhwVG0KeulQyzbaePmS/DZt0J9hYaaTYAcGrOyu7zce07frjphOAQAAUeTXy79rXPMZmnVyrOkUAAAA4L3MPTNBIxpMUshPf5hOAfABnHpAyCuw4MgSxomjOVWrq0X+AqqyMkjTjx01nQQ7MGhNT3279rAOruf3AQAAR/fbT7c1rfUCzT8/yXQKAAAA8EEWXZqqiU3n6PaNO6ZTALwnpx4QAs6gVPoMOt6mvf4Of6XiC+fr+19+MZ0Ew4as89e+FQf1/abjplMAAMAH+vPXu+pdZqjGHRpsOgUAAAD4KBOPBKhbsYG6d/u+6RQA74EBIeAgehb9QmvqN9Dsk8fUdcc2PX350nQSDBq6obd2L/5GR7aeNJ0CAADe0/0/H6pjwT5a+csc0ykAAABAlFgTMl+tc/XQo78em04BEEkMCAEHkiphIi2vXU8VMmdRwTkzteTMadNJMGjY5r7aPm+vjm0/ZToFAABEUtjDJ/LL0kXr/lhoOgUAAACIUhvuLlbjNO317Mlz0ykAIoEBIeCAqmbNph87d9PN+3+pYtBSnfvjtukkGDJiaz9tnrlbJ3YxLAYAwN79/eKl6iVrpU33l5pOAQAAAKLF1sfLVSNRM4WHh5tOAfA/MCAEHFhA6TKaWrmKBu/fpwH79pjOgSGjdgzQ+snbdWrPWdMpAADgH1SO20g7nq0ynQEAAABEq50vVqlS7EamMwD8DwwIAQeXzT2pNjfyVZ5kyZVxykSt//Gi6SQYMGb3IK0Zt1mn9503nQIAAN6iUpxG2vmc4SAAAACcX4wYMbTlUZCqJvA1nQLgHzAgBJxEozx59XN3fx399Zbqrl2la3/9ZToJNjZuzxCtGLleZw8wJAYAwJ5UT9RUG+4uVsxYMU2nAAAAADYRJ15srf5tnmp95mc6BcA7MCAEnIhF0vgKFdW/eCm12bJRow5+azoJNjZh/1AtG7pW57770XQKAACQVDdZKwVdm6l4n8Y1nQIAAADY1KdJEmjhj1PUwLON6RQAb+HUA8LAwEBZLJaIA3AVBT09ta95S3nET6B8s2do909XTSfBhiYeCNTigat04fvLplMAAHBpjdK005zT45U4aSLTKQAAAIARn6VIomlHRqlJho6mUwD8F6ceEAYEBMhqtUYcgKtpU9BLB1u20cbLl9Ri0wb9GRZmOgk2MvngcM3rHaRLR6+YTgEAwCU1y9xZk74dpqSpPjOdAgAAABiVPJ2HxuwepBbZu5lOAfAfnHpACEBKFCeO5lStrub5C6jKyiDNOH7UdBJsZNrhkZrVfbEuH//JdAoAJ8IVGoD/rXXuHhq+pZ9SZkxuOgUAAACwC6mzemrw2p5ql7+X6RQA/x8DQsBFlE6fQcfbtNfzl69UfOF8Hb71i+kk2MD0o6M1vdN8XTl1zXQKACfBFRqAf9ahYB/1C+qqdDlTm04BAAAA7ErGvOnUc357dfbubzoFgBgQAi7Hv9gXWlO/gWYeP6auO7bp2cuXppMQzWaeGKtJbWbr5zM3TKcAAODUuhYbqK4zWytzgQymUwAAAAC7lK1QZrWf2Fw9Sg42nQK4PAaEgAtKlTCRVtSppwqZs6jAnJlacua06SREszk/jNc4vxm6du6m6RQAAJxSrzJD1WpUY+UoktV0CgAAAGDXchfPrqZD6qlvheGmUwCXxoAQcGFVs2bTpc7ddPP+X6q0fKnO/XHbdBKi0dwzEzTad6puXLxlOgUAAKfSv9JINexbU/lK5zKdAgAAADiEz8vlVe1ulTWo2hjTKYDLYkAIQAGly2hyxSoavH+fBu7bYzoH0Wj++UkaXm+ifrn8m+kUAACcQkDNcarWoYK8fPKbTgEAAAAcineVgqrY4ksF1p1gOgVwSQwIAUiSsidNqs2NfJUrWXJlmjpJ6y9dNJ2EaLLwxykKqDlOv14JMZ0CAIBDG9Fgksr4llCx6oVMpwAAAAAOqXhtb5WoU0SjfaeaTgFcDgNCAK9pnCevrnbtoSO/3FK9tat17a+/TCchGiy+PFUDq4xWyM9cVhYAgA8xrvkMeVctqFL1ippOAQAAABxamUbF9Xm5vJrQapbpFMClOPWAMDAwUBaLJeIAEDkxLBZN8KmovsVLqM2WjRp98DvTSYgGS69OV9/yw3X7xh3TKQAAOJTJbecod4kcKt+0lOkUAAAAwCn4tPhS2Qpl1rSO802nAC7DqQeEAQEBslqtEQeA9+PlmUr7mreUe/x4yjd7hr799ZbpJESxoGsz5V86QHd+CTWdAgCAQ5jRZaEy5kuvyq3Lmk4BADgJXuAOAP9SrX0Fpc7mqdk9lphOAVyCUw8IAUSNtgUL6WDLNtp184ZabNqg0CdPTCchCq24MVvdvhio0N/umU4BAMCuzeu9TMnTJ1ONThVNpwAAnAgvcAeA/1O7WxW5pUiihf1XmE4BnB4DQgCRkihOHI3+ooSa5y+gysuXasbxo6aTEIVW3ZqrToX66t7t+6ZTAACwS4sHrdKnbp+qnn810ykAAACAU2vYt6Zix4utZUPXmk4BnBoDQgDvpXT6DDretoOev3ylEovm6/CtX0wnIYqsCZmvdvl76f6dB6ZTAACwKytGrJclhkWNB9Q2nQIAAAC4hKZD6unvFy+1esxG0ymA02JACOCD+Bf7QqvrNtDM48fUded2PXv50nQSosC62wvUKlcPPbz7yHQKAAB2Yd2ELQp7+ER+wxqaTgEAAABcSqtRjfXXnQfaMGW76RTAKTEgBPDBUiVKpBV16ql8xkwqMGemlp45bToJUWD9n4vUPEsXPb4fZjoFAACjNk3fqTu3QtV2XFPTKQAAAIBL6jDJT79e/V1bZ+82nQI4HQaEAD5atWzZdalzN12//5cqLV+q83f+MJ2Ej7Tx3hI1Sd9RYQ+fmE4BYGcCAwNlsVgiDsBZbZ+3Rzcu3lKnqS1NpwAAAAAurevM1rpy6pp2LdpvOgVwKgwIAUSZoaXLaHLFKhq4d48G7ttjOgcfadP9pWqYqp2ehT0znQLAjgQEBMhqtUYcgDP6eukB/XjkirrPaWs6BQAAAIAk/wUddOabC9q34qDpFMBpMCAEEKWyJ02qLY2bKFey5Mo8dZLWX7poOgkfYeujINXxaKUXz16YTgEAwCYOrPleJ3adUe/FnUynAAAAAPgP/YK66vtNx3Vw/VHTKYBTcOoBIZfAAsxpnCevgrv20JFfbqn+2tW6fv8v00n4QNufrFDNJM3194uXplMAAIhW3286rgNrDmvgqu6mUwAAAAC8xZB1/vp66QEd3XbKdArg8Jx6QMglsACzPrFYNMGnonoXL6FWmzZqzKHvTCfhA+14tkpVE/gq/FW46RQAAKLF8Z2ntWP+Xg3d0Nt0CgAAAIB/MHxLP22avlOn9pw1nQI4NKceEAKwD4U8U2m/X0u5xY2n/LNn6uuffzKdhA+w++818onVwHQGAABR7sw3F7RuwhaN3D7AdAoAAACASBize5BWjFiv8wcvmU4BHBYDQgA2086rkL5t2Urrf7yolps3KPTJE9NJeE97wtepfIx6pjMAAIgyFw8Ha8ng1Rq/L8B0CgAAAID3MOnbYZrXe5kuH+fNCMCHYEAIwKYSx4mrudVqqGneAqq8fKlmHj9mOgnvaffLNfKJyTsJAQCO78qpa5rVbZGmHBphOgUAAADAB5h+dLSmtJurn8/eMJ0COBwGhACM+DJDBh1v20FPX/6tEovm68itW6aTEEkxYsTQ9qcrVClOI9MpAAB8sOsXftGEFjM188RY0ykAAAAAPsKc0+M1qtEU/XL5N9MpgENhQAjAqF7Fimt13QaafvyIuu7cruevXppOQiTEjBVTWx4uU+V4jU2nAADw3n776bYCa4/XvHMTTacAAAAAiAILf5yigZVH6faNO6ZTAIfBgBCAcakSJdLKOvVVPmMm5Zs1U0vPnDadhEiIFSeWNtxdrGqfNjGdAuADhIeHv9f9gLO4cytUfcoGasmV6aZTAAAAAEShoGsz1f2LQbr7+1+mUwCHwIAQgN2oli27Lnfppuv3/1Ll5ct0/s4fppPwP8SNH0drfp+vGombmU4BXN7+/fvVokUL+fn5affu3f/42EWLFmnu3LmRvh9wFvfvPFCnQv204uZs0ykAAAAAosHq3+apTZ6eenTvsekUwO459YAwMDBQFosl4gDgGIaWLqOJFStp4N49GrRvr+kc/A/xE8bTyl/mqKZbc9MpgMu6f/++Fi5cqEmTJmnq1KkKCgrS3bt33/rYc+fOacuWLZG+H3AWYQ+fyC9rV627vcB0CgAAAIBotCF0sRqnba9nT56bTgHsmlMPCAMCAmS1WiMOAI4jR1IPbWncRDmTeSjz1EnacOlH00n4BwkSx1fQzzNVO2kL0ymASzp+/Li8vLzk5uamxIkTq2jRojpy5MgbjwsLC9P8+fNVr169SN0POIu/n/+teslba9P9paZTAAAAANjA1sfLVSNxM4W/4mM0gHdx6gEhAMfXOE8+BXftoe9/uan6a1frxv37ppPwDgk/+1SLLk1VveStTKcALic0NFTJkiWLuO3h4fHWdxBOmzZNTZs2VeLEiSN1P+AsKsdrrB1PV5rOAAA4mMhcwr1Zs2aqXLlyxHHx4sWIrz179kx9+vSxVS4A4L/serFaFWM3NJ0B2K2YpgMA4H/5xGLRRJ9KOhHym1psWi+fzFnUr3hJ01l4iyQeiTTv3ETVT9lGa3+fbzoHcBlvu1JCePjrr5Lcu3evEiRIoMKFC2vbtm3/8/7/FhgYqKFDh771axaLRf7+/urZs+eH/QD/ICQkJMrPiX/mbGveMkNPLbw20a5/Lntuc1asue2x5rYXXWvuKh/h8u9LuM+YMUMxYsRQp06d5OXlJXd394jHhIeH68WLF9qxY8cb379z507t3LlTL168sGU2AOA/WCwWbX28XFUT+Gpb2ArTOYDdYUAIwGEU8kylb/xaae7JEyowZ6bGlfdR+UyZTWfhv7glT6LZp8aqYep2Wv3rXNM5gEtwd3dXcHBwxO3Q0FClSZPmtcccOHBA165d06lTpxQWFqaXL18qLCxM9+/ff+v9vXr1eu37AwICFBAQ8MZzWyyWaLuUe0hIiDw9PaPl3Hg7Z1vz6omaauPdJYr3aVzTKe/kbGvuCFhz22PNbS8619xVhr3/eQl3SRGXcK9atWrEY0JDQ18bGP6nxIkTq2TJktq7d69NegEAbxcnXmyt/m2ean3mp433lpjOAewKA0IADqedVyE1yJ1Hfffs1uoL5zW2vI+Sxo9vOgv/wd3zM007MlK+6Tpoxc3ZpnMAp+ft7a2goCCFhYXJYrHo6NGjqlevnqxWq37//XelSJFCI0aMiHj8tm3bdOvWLXXo0OG187zrfsAR1fFoqeXXZ9n1cBAAYL8icwn327dv68GDB+rTp49u3LihkiVLqmPHjooRI4aKFSumW7du/eOAkCs0uA7W3PZYc9uz9zUfub+f6iZvqWmnR/zvBzsIe19zZ+RsV2hgQAjAISWJG1dzq9XQ/uvXVGn5Uvnl/1ydCnubzsJ/SJYmqSZ9N0xNMnTU8uuzTOcATs3NzU0tW7aUv7+/rFarfH195eHhoWfPnql58+Zau3ZtxKvfAVfQMHU7zTs7QYncE5pOAQA4qMhcwj1hwoSqW7euqlevrkePHmnw4MHavn27qlWrFqnn4AoNroE1tz3W3PYcYc09PT0168Q49Sg2WCtuOP6L2R1hzZ2NM16hgQEhAIdWJkNGnWjbQRMOH1KJRfM1rnxFFf2vy+rBnOTpPDR+X4CaZe6sZT/NMJ0DOLWyZcuqbNmyr90XN25c7dmz543H/uelsSJzP+BImmXurMnfDZO752emUwAADiwyl3BPly6d0qdPL4vFosSJE6tEiRK6fv26rVMBAJGULG1Sjf16sFpk76bFl6eazgGMi2E6AACiQq9ixbWqbgNNP35E3XZu1/NXL00n4f9LmTG5Ru8cKL9sXU2nAACcXKtcPTRiaz+lzJjcdAoAwMF5e3vr+PHjCgsL05MnT3T06FEVKVJEVqtVISEhCg8P14YNGxQYGKiXL1/q8ePHOnz4sHLlymU6HQDwD1Jn9dSQdf5qm8/fdApgHANCAE4jdaJEWlmnvspmzKR8s2Zq2dkzppPw/6XKklLDt/RTyxzdTKcAAJxU+897a8CKbkqbI7XpFACAE/jPS7j36NEj4hLuz58/V/PmzfXgwQPVqFFDyZMnV6tWrdSuXTvlz5//jSs6AADsT4Y8adVrYUd1KtzPdApglFMPCAMDA2WxWCIOAK6herbsutylm36+d1eVly/ThTt/mE6CpDTZPBWwvrda5+5hOgUA4GS6FhuobrPaKFP+9KZTAABOpGzZspozZ47mzp0rHx8fSf93CXc3NzfFihVLHTp00NKlS7VixQo1b978te9PkyaN5syZYyIdAPA/ZPXKpA6T/NSj5GDTKYAxTj0gDAgIkNVqjTgAuJbAL8tqYsVK6r93jwbt22s6B5LS5Uytgat6cBkHAECU6fXlULUe7ascRbKaTgEAAADgQHIXz65mAfXVp/ww0ymAEU49IASAHEk9tLVxE+VM5qEs0yZrw6UfTSe5vAx50qrvsi5qX6C36RQAgIPrX3GEGvavpbylcppOAQAAAOCACpTNozo9qmpQ1dGmUwCbY0AIwCU0zpNPlzp30/e/3FSDdWt04/5900kuLVO+9PJf2EEdvfqaTgEAOKiAmuNUraOPvCrkM50CAAAAwIF5V/5cFVuWUWDdCaZTAJtiQAjAZcSMEUMTfSrJv9gXarFpvcYe+s50kkvL8nlGdZvdRp29+5tOAQA4mBENJqmMbwkVq17IdAoAAAAAJ1C8trdK1Cmi0b5TTacANsOAEIDLKZwqtb7xa6XEceOpwJyZ2nPtZ9NJLitboczqNK2luhYdYDoFAOAgxjabriLVvFSqXlHTKQAAAACcSJlGxfV5+bya0HKW6RTAJhgQAnBZ7b0K6Ru/Vlp34bxabd6ou0+fmk5ySTm8s6jdxObqXnyQ6RQAgJ2b1GaO8pbKqXJNSppOAQAAAOCEfPy+VHbvLJraYZ7pFCDaMSAE4NKSxI2redVryjdvPvksW6xZJ46ZTnJJuYplU6vRvupZaojpFACAnZrRZaEy5U+vSq3Kmk4BAAAA4MSqtiuvNNlTaXaPJaZTgGjFgBAAJJXJkFEn23VU2Iu/VXLxAh399ZbpJJeTp0QO+Q1rqF5fDjWdAuAfBAYGymKxRByALczttUwpMiRTjU4VTacAAAAAcAG1u1XRZyndtKDfctMpQLRhQAgA/6H3F8W1onY9TT16RN137dCLV69MJ7mUvKVyyndwHfUpN8x0CoB3CAgIkNVqjTiA6LZo4Eolck+ouj2rmU4BAAAA4EIa9KmhuAniamnAGtMpQLRw6gEhr3AH8CHSJE6sVXXr68v0GZR31nQtO3vGdJJLKVAmjxr0raF+PiNMpwAADFsxYr1ifBJDjfrXMp0CAAAAwAU1GVxXL/9+pdVjNppOAaKcUw8IeYU7gI9RI3sOXe7SXT/fu6sqK5bpwp0/TCe5jILl86luz6rqX2mk6RQAgCFrx2/Wk0dP5TesoekUAAAAAC6s1ajGuv/nQ62fvM10ChClnHpACABRIfDLsppQoZL6792jQfv3ms5xGV4++VWzSyUNqjradAoAwMY2Ttuh0N/uqc3YJqZTAAAAAEDtJzZXyM+3tWXWbtMpQJRhQAgAkZDDw0NbGzdRjqQeyjJtsjZe+tF0kkvwrvy5qravoMHVx5hOAQDYyLa5e/TLpV/VcUoL0ykAAAAAEKHLjNb66fR17Vy4z3QKECUYEALAe/DNm0+XOnfTwV9uqsG6Nbr54L7pJKdXpGpBVWpVVgG1xplOAQBEs6+XHtClo1fUbXZb0ykAAAAA8Iae89vr7IGL2rfioOkU4KMxIASA9xQzRgxN8qkk/2JfqPmG9Rp76DvTSU6vWI1CKt+0lALrTjCdAgCIJt+s/l4nd59R78WdTKcAAAAAwDv1C+qqw5tP6LuvjphOAT4KA0IA+ECFU6XWgRatlDhuPH0+Z5b2XPvZdJJTK17bW182/ELD608ynQIAiGKHNh7Td+uOaMDK7qZTAAAAAOB/Gry2p/YGfacjW0+aTgE+GANCAPhI7b0KaZ9fC627cF6tN2/U3adPTSc5rZJ1i6pEHW+NbDTFdAoAIIoc33laOxfsU8D6XqZTAAAAACDShm3uq80zdunUnrOmU4APwoAQAKKAW9x4mle9phrlzSefZYs1+8Rx00lOq3SDL1S0WkGNbjLNdAoA4COd3n9eX03cqpHbB5hOAQAAAID3Nmb3IK0cuUHnvvvRdArw3hgQAkAUKpsho06266hHL56r5OIFOvbrr6aTnFKZxiVUqGJ+jW023XQKAOADXfj+spYFrNW4vUNMpwAAYFRgYKAsFkvEAQBwLBMPBGpB3+W6dOyq6RTgvTj1gJANFgBT+nxRQitq19OUo4fVfdcOvXj1ynSS0ynXpKQKlM2j8S1mmk4BALynK6euaXb3xZp8cLjpFAAAjAsICJDVao04AACOZ9qRUZrafp5+PnvDdAoQaU49IGSDBcCkNIkTa1Xd+voyfQblmTVdQWfPmE5yOhWal1aeEjk0sfVs0ykAgEi6fuEXTWgxUzNPjDWdAgAAAABRZs7p8RrVaIp+ufyb6RQgUpx6QAgA9qBG9hwK7tJdV+/dVZUVQbp4547pJKdSsWUZ5SiSVZPbzjGdAgD4H367+rsC60zQvHMTTacAAAAAQJRb+OMUDawySrev8/c/2D8GhABgI8O+LKvxFXzUd+9uDdq/13SOU6ncuqyyFMykqR3mmU4BnB6XcMeHuvNLqPqUH6YlwdNMpwAAAABAtAn6eaa6lxisuyH3TKcA/4gBIQDYUE6PZNrWuKlyJPVQ1mmTtfHSj6aTnEbVduWVIU86Te+8wHQK4NS4hDs+xP07D9SpcD+tuMEloQEAAAA4v9W/zlWbvP56dO+x6RTgnRgQAoABvnnz6WLnbjr4y001XLdGNx/cN53kFKp39FGa7Kk0s+si0ykAgP8v7MET+WXrqnW3eQEHAAAAANexIXSxGqfroGdhz0ynAG/FgBAADIkVI4Ym+VRSj2JfqPmG9Rp36KDpJKdQs3MlpcyUXLN7LDGdAgAu78WzF6qfso02/bXUdAoAAAAA2NzWR0Gq6eanVy9fmU4B3sCAEAAM806VWgdatFKiuHH0+ZxZ2nvtZ9NJDq92tyrySOOuub2WmU4BAJdWJb6vtj9ZYToDAAAAAIzZ+XyVKsVpZDoDeAMDQgCwE+29CmufXwutuXBerTdv1L2nT00nObS6PavpsxRJNK9PkOkUAHBJFWM31K4Xq01nAAAAAIBRFotF28KWq0p8X9MpwGsYEAKAHXGLG0/zq9dUo7z5VH7ZYi27dNF0kkOr16u6Erkn1ML+vHsFAGypWsKm2vTXEn0S8xPTKQAAAABgXOy4sbX29/mq6dbcdAoQwakHhIGBgbJYLBEHADiKshky6lS7jnry90uVWrxAx3791XSSw2rYt6biJYynxYNWmU4BAJdQx6OlVtyYpbgJ4ppOAQAAAAC7kSBxfC2+PFX1U7YxnQJIcvIBYUBAgKxWa8QBAI6mfd58CqpdT1OOHlaPXTv04hUfaPwhGg+ordhxY2vJEC51BwDRqWHqdpp3doISuSc0nQIAAAAAdscteRLNODZavuk7mE4BnHtACADOIG3ixFpVt75Kpc+gPLOma/m5M6aTHJLvoDqKESOGgoatM50CAE6paaZOmnJwuNw9PzOdAgAAAAB2K1napBq3Z4j8snU1nQIXx4AQABxEzew5FNylu4JD76rKiiD9+Ocd00kOp9nQ+nr19yutGLnedAoAOJVWObtr5PYBSpEhmekUAAAAALB7qbKkVMD6Xmqb1990ClwYA0IAcDDDy5TV+Ao+6v31bg3ev890jsPxG95Qz58816rRG02nAIBTaP95bw1Y2V1ps6cynQIAAAAADiND7rTqtaijOhXuZzoFLooBIQA4oJweybTdt6myJXVXtulTtOnyJdNJDqXlyMYKexCmNeM2m04BAIfWtegAdZvdVpnypzedAgAAAAAOJ6tXJnWY7KceJQabToELimniSffv36+goCBZrVY1atRIPj4+r319xYoVWrFiRcTt8PBwFSxYUDlz5nzr/SNHjrRZOwDYkyZ586t+rjzqu2e3Vp8/p3EVKipt4sSmsxxC6zFNNK/3Mq2buFX1/KuZzgEAh+NfOkCtxzZRDu8splMAAAAAwGHl/iK7mgXWV59ywzRu7xDTOXAhNh8Q3r9/XwsXLtSMGTMUI0YMderUSV5eXnJ3d494jK+vr3x9fSNujx8/Xl9++aW8vLzeej8AuLLYn3yiyRUr69hvv6rphnWqkiWb+hQvYTrLIbQd30xz/Jdq/eRtqtOjqukcAHAY/SuOUKMBtZW3ZE7TKQAAAADg8AqUyaMXz/7WoKqjNWJbf9M5cBE2v8To8ePH5eXlJTc3NyVOnFhFixbVkSNH3vn4H374QRaLRV5eXpG6HwBclXeq1Pq2RWslihtHBefO0t5rP5tOcgjtJzbXHzf/1MZpO0ynAA4hMDBQFosl4oDrGVJjrKp3qiivCvlMpwAAAACA0/Cu/LkqtiqjwDoTTKfARdh8QBgaGqpkyZJF3Pbw8NDdu3ff+tjw8HAtWrRILVq0iNT9AACpvVdh7WnWQmsunFebLZt07+lT00l2r+OUFvrt6u/aPHOX6RTA7gUEBMhqtUYccC3D609SuaYlVbQaL9IDAAAAgKhWvJa3StYrqlGNp5hOgQuw+SVG3/aHpPDw8Lc+9tChQ8qUKdNrlx/9p/v/LTAwUEOHDn3r1ywWi/z9/dWzZ8/3C4+EkJCQKD8n/hlrbnusue196JoHehXWwd9+VdklC9Uwa3Y1zcFl4P5J7f6VtHTAOj18+EBlm3OJVluLrv9u4R1uQNQZ22y6ilb3Usm6RU2nAAAAAIDT+rLhF3rx7IUmtJylXos6ms6BE7P5gNDd3V3BwcERt0NDQ5UmTZq3Pnb//v2qXLlypO//t4CAAAUEBLxxv8ViibZXuoeEhMjT0zNazo23Y81tjzW3vY9d8waenmpQqLDGHTqoRrt3aFyFivJOlToKC51L/yXdNLLpZJ3edlFV2pY3neMyovO/W3hRAxA1JrWZo7ylcqpck5KmUwAAAADA6fn4fam/n7/U1A7z1G12W9M5cFI2v8Sot7e3jh8/rrCwMD158kRHjx5VkSJFZLVaFRISEvFuwmfPnun8+fPKnz//a9//rvsBAO/Wp3gJBdWup8mHv1ePXTv09zveuQ2pxdgGCj7xs3Yu3Gc6BQDswvTOC5S5QAZValXWdAoAAE6Jz3gGALxN1XbllTZHas3qvth0CpyUzQeEbm5uatmypfz9/dWjRw/5+vrKw8NDz58/V/PmzfXgwQNJ0smTJ5UrVy7Fjh37te9/1/0AgH+WNnFira7XQKXSZ1CuGVO1/NwZ00l2q+f89rp4OFi7F39jOgUAjJrjv1SemVKoekcf0ykAADgtPuMZAPAutbpWVtJUn2l+3+WmU+CEbD4glKSyZctqzpw5mjt3rnx8/vXHhrhx42rPnj1yc3OTJBUvXlzDhg1743vfdT8AIHJqZs+hK117KDj0rqquDNKPf94xnWSXei3sqLPfXtSeZd+aTgEAIxYNXKnESROpTo+qplMAAAAAwGXV711D8T6Nq6UBa0ynwMkYGRACAMwbXqasxpbzUe+vd2vIN1xO8236LOmsU3vOat+Kg6ZTAMCmlg//Sp/E/ESN+tcynQIAAAAALq/J4Lp69fKVVo3eaDoFToQBIQC4sFzJkmm7b1Nl+cxd2aZP0ebLl0wn2Z1+QV11fMcP2r/qkOkUALCJNeM261nYMzUPbGA6BQAAAADw/7Uc2VgP7z7SV5O2mk6Bk2BACABQ03z5db5jF31z47oafbVWt/7/58HiX/qv6KbDm0/o27WHTacAQLT6euG3uhtyT63HNDGdAgAAAAD4L+0mNNPv1/7Q3iVc7QofjwEhAECSFPuTTzSlYmV1L1JMvhvWadz3bDT+06DVPfTtuiM6uP6o6RQAiBbb5u5RyNXb6jilhekUAAAAAMA7dJnRWjcv/qqdC/nIIHwcBoQAgNd4p06t71q0VsLYcVRw7iztu37NdJLdGLLOX/tXHtKhjcdMpwBAlNq95BtdPnZVfmO4rCgAAAAA2LtW4xvp3Lc/au/y70ynwIE59YAwMDBQFosl4gAARF6HQoW1p1kLrTp3Vm22bNJfz56aTrILAet7ac/Sb3V4ywnTKQAQJfavOqQf9pxTr0UdTacAAAAAACKp77IuOrr1pL5dd8R0ChyUUw8IAwICZLVaIw4AwPv5LF48LahRSw1y51HZJYs15+Rx00l2IXBTH+2Yv0/Htp8ynQIAH+XQxmM6+NVR9V/RzXQKAAAAAOA9DVrTU/uWf6cjW0+aToEDcuoBIQAgapTLmEk/tO+oh8+eq/TihTr226+mk4wbsbWftszareM7T5tOAWyKKzQ4j2M7ftCuhfsVsL6X6RQAAAAAwAcatrmvtszcpZNfnzWdAgfDgBAAEGl9ipfQ0tp1NPnw9+q5e6f+Dg83nWTUyO0DtHHqdjZgcClcocE5nN53Xusnb9OIbf1NpwAAAAAAPtLoXYO0evRGnfv2R9MpcCAMCAEA7yVd4iRaXa+BSqRNp1wzpmrFOdcejo3eNUhrx2/W6X3nTacAQKRc+P6ylg1dq3F7hphOAQAAAABEkQnfDNWCfst16dhV0ylwEAwIAQAfpFaOnLrStYcuhf6pqiuDdOnPP00nGTNuzxCtHLVBZ765YDoFAP7RlZM/a3aPJZp8cLjpFAAAAABAFJt2ZJSmdpinn8/cMJ0CB8CAEADwUUaUKaex5XzU6+udGvLNPtM5xozfF6CgwHU69x2XcgBgn66f/0UTWs3SzONjTKcAAAAAAKLJnB/Ga5TvVP1y6VfTKbBzDAgBAB8tV7Jk2u7bTFk+c1f26VO0+fIl00lGTDwQqMUDV+nC95dNpwDAa367+rsC607QvLMTTacAAAAAAKLZwouTNbDqaN2+fsd0CuwYA0IAQJRpmi+/znXsom9uXFejr9bq1oMHppNsbvLB4ZrfJ0g/HrliOgUAJEl3fglVn/LDtCR4mukUAAAAAICNBP08U91LDNbdkHumU2CnnHpAGBgYKIvFEnEAAKJf7E8+0ZSKldWtSFH5blin8d8fMp1kc1O/H6nZPRbr8vGfTKcAcHF//XFfnb37a8WN2aZTAAAAAAA2tvrXuWqbr5ce3n1kOgV2yKkHhAEBAbJarREHAMB2iqROo+9atFaC2LHkNXeW9l+/ZjrJpqYfHa3pnebryinX+rkB2I/H98PUMkd3rf19vukUAAAAAIAh6/9cpCYZOurp42emU2BnnHpACAAwr2Mhb+1u1kIrzp1V2y2b9Nezp6aTbGbmibGa3HaOfjp93XQKABfz4tkLNfBsq433lphOAQAAAAAYtuVhkGp95qdXL1+ZToEdYUAIAIh27vHiaWGNWqqXO4/KLlmsOSdPmE6ymdmnxml8i5m6du6m6RQALsJqtapqgiba/mSF6RQAAAAAgJ3Y9WK1KsZuaDoDdoQBIQDAZspnzKQf2nfUg2dPVXrxQh3/7VfTSTYx98wEjWkyTdcv/GI6BYgQHh5uOgHRpGLshtr1YrXpDAAAAACAndnxdKUqx2tsOgN2ggEhAMDm+hYvqaW162ji4e/Vc/dOvXSBQcW8cxM1osFk/XLJNYaisL39+/erRYsW8vPz0+7du//xsYsWLdLcuXMjbs+ePVu+vr5q2LChli9fHt2piEbVEjbV5vtLFeMTtvkAAAAAgNfFihNL624vUE235qZTYAf4ywEAwIh0iZNoTb0GKpE2nXLMmKoV586aTop2Cy9OVkCt8fr1SojpFDiZ+/fva+HChZo0aZKmTp2qoKAg3b17962PPXfunLZs2RJx+8SJEwoODtaSJUs0f/58bd26VT///LOt0hGFaidtoZU3ZytugrimUwAAAAAAdipB4vhaEjxN9VK0Np0CwxgQAgCMqpUjp6527aFLoX+q2srluvTnn6aTotXiy1M1qOpo/fbTbdMpcCLHjx+Xl5eX3NzclDhxYhUtWlRHjhx543FhYWGaP3++6tWrF3Ff/Pjx1bRpU8WKFUsJEyZU6tSp9fz5c1vmIwo0TNVW889PUsLPPjWdAgAA3lNgYKAsFkvEAQBAdEuSLLFmnhgj33QdTKfAoJimAwAAkKQRZcrpwp0/1OvrnfLyTKXAL8uaToo2S65MV9NMnTR+b4BSZEhmOgdOIDQ0VMmS/d/vkoeHx1vfQTht2jQ1bdpUd+7c0cOHDyVJuXLlkvSvS5Tu2LFDHh4eyp49+xvfGxgYqKFDh771+S0Wi/z9/dWzZ88o+GleFxLCO27/l17FhqnfV5313PpUISFPP/p8rLntsea2x5rbHmtue9G15gywol5AQIACAgIibrPGAABbSJYmqcbtHSK/bF21JHia6RwYwIAQAGA3cidLru2+zbTs7Bllnz5F4ypUVPVsbw4qnEHQzzPlm76DJn83XMnSJjWdAwdntVrfuC/8vz7bc+/evUqQIIEKFy6sbdu2vfH4vHnzSpJWrFihq1evKlu2bK99/b//cPVvFovlrc8fFUJCQuTp6Rkt53YWrXJ215hdg5U2e6ooOR9rbnusue2x5rbHmttedK45w14AAJxHqiwpFbC+l9rm9de8cxNN58DGnPoSo1yiAQAcU7N8+XWuYxftu/azGn21Vr/+/3c6OZsVN2are/FB+vPXt39WHBBZ7u7uCg0NjbgdGhqqpElfHzwfOHBAR48eVfPmzbVkyRLt3r1bEyZM0LFjx3TlyhUlTZpUZcqUkbe3t44fP27rHwEfoH2B3hqwqnuUDQcBAAAAAK4nQ+606rW4kzoV6ms6BTbm1APCgIAAWa3WiAMA4Dhif/KJplaqom5FiqrRV2s0/vtDppOixcpf5qiLd3/d/f0v0ylwYP8e6oWFhenJkyc6evSoihQpIqvVqpCQEIWHh2vEiBFauXKlli5dKj8/P/n4+KhXr166e/euli5dqmfPnunx48c6e/as0qRJY/pHwv/QpUh/dZ/bTpnypTedAgAAAABwcFkLZlTHqS3Vvfgg0ymwIaceEAIAHF+R1Gl0sGUbJYgdS4Xmzdb+69dMJ0W51b/NU/sCvXX/zgPTKXBQbm5uatmypfz9/dWjRw/5+vrKw8NDz58/V/PmzfXgwbt/typWrKjkyZOrdevWateunQoUKKBSpUrZsB7vy790gNqMa6rshTObTgEAAAAAOIlcxbKp+bAG6lNumOkU2AifQQgAcAgdC3mrfq486rtnt9ZcOK+x5X2UJG5c01lRZt3tBaqbrJUW/jhZiZMmMp0DB1S2bFmVLVv2tfvixo2rPXv2vPHYqlWrRvznGDFiqGvXrtHeh6jRz2eEGg+srbwlc5pOAQAAAAA4mQJl8ujv5y81sMoojdw+wHQOohnvIAQAOIyk8eNrYY1aqpszl75cslBzT54wnRSlvrqzUC2yddOjvx6bTgFghwZXH6OaXSqpYPl8plMAAAAAAE6qcKUCqtymnIbWHm86BdGMASEAwOGUz5RZp9t30l/PnurLJQt1/LdfTSdFmQ13F6tphk4Ke/jEdAoAOzK8/iSVb1ZKRaoWNJ0CAAAAAHByX9QsrFL1i2lU4ymmUxCNGBACABxWv+IltbhmHU08/L38d+/Uy/Bw00lRYtP9pWqUup2ePn5mOgWAHRjTdJqK1SikknWLmk4BAAAAALiILxt+IS+f/BrfYqbpFEQTBoQAAIeWPkkSranXQF+kTaccM6Zq5fmzppOixJaHQaqXvJWeP31hOgWAQRNbz1b+L3OrrG8J0ykAAAAAABdToXlp5SyaVVPazzOdgmjAgBAA4BRq58ipq1176Mc7f6rayuW6FPqn6aSPti1shWq5NdffL16aTgFgwLROC5S1YEZVbFnGdAoAAAAAwEVVaVte6XOl0cxui0ynIIoxIAQAOJURZctpdLny8t+1UwHf7DOd89F2PFulap820auXr0ynALChOf5LlSpzClXr4GM6BQAAAADg4mp2qSSP1O6a33e56RREIaceEAYGBspisUQcAADXkDtZcu1o0kyZPnNX9ulTtSX4sumkj7LrxWpVitNIVqvVdAoAG1g4YKWSeCRSnR5VTacAAAAAACBJqt+7huInjKclQ1abTkEUceoBYUBAgKxWa8QBAHAtzfLl19mOnbTv2s9qvH6tfn340HTSB/v61VpV+KS+6QwA0Sxo2DrFih1TDfvVMp0CAAAAAMBrfAfVkTXcqpWjNphOQRRw6gEhAABxPompqZWqqEvhomr01RpNOHzIdNIHY0gIOLc14zbr+ZPnajaU/zsHAAAAANinFiMa6dG9x/pq0lbTKfhIDAgBAC6haJo0OtiyjeLFjKVC82brm+vXTSe9N4vFop3PV6li7IamU+DCuIR79Ngwdbvu/f6XWo9pYjoFAAAAAIB/1G5CM92+fkebZ+4ynYKPwIAQAOBSOhX21s4mzRV07rTabd2sB8+fmU56L5/E/ERbHwWpcrzGplPgoriEe9TbOudr/Rocog6T/UynAAAAAAAQKZ2nt9K1sze0Y8E+0yn4QAwIAQAuJ2n8+FpUo7bq5sylUosWau7JE6aT3kusOLG08d4SVU3gazoFwEfaveQbBR//SV1ntTGdAgAAAADAe+kxr73Of/ej9i7/znQKPgADQgCAyyqfKbPOdOikv549VZkli3Qi5DfTSZEWJ15srftjoaonamo6BcAH2r/qkH7Yc069FnU0nQIAAAAAwAfpu6yLjm49qW/XHTGdgvfEgBAA4PL6FS+phTVrafyhgxpx7KheOchlE+N9Glerbs1VTbfmplMAvKdDG47p4Pqj6r+im+kUAAAAAAA+yqA1PbV/xUEd3uJYV+lydQwIAQCQlCGJm9bWb6jPkydTtmmTtfL8OdNJkZIgcXwFXZup2u4tTKcAiKRj209p1+JvFPBVL9MpAAAAAABEicBNfbR19tc6ufuM6RREEgNCAAD+Q+X0GfVTt566eOcPVV+5XJdC/zSd9D8ldPtUi4Onqm6yVqZTAPwPp/ed1/op2zViaz/TKQAAAAAARKnROwdq9ZhNOvftj6ZTEAlOPSAMDAyUxWKJOAAAiKyRZctrZLny8t+1U0MP7Ded8z8lTppI889PVP2UbUynAHiHC4cua1ngWo3bM8R0CgAAsCP8/QoA4EwmfDNUC/qv0KWjV0yn4H9w6gFhQECArFZrxAEAwPvIkyy5djRppgxJ3JR9+lRtDb5sOukfuSVPotk/jFPDVG1NpwD4L8EnftIc/6Wa/N1w0ykAAMDO8PcrAICzmXZ4pKZ1WqCfTl83nYJ/4NQDQgAAokLz/AV0tmMn7bn2sxqvX6vfHj40nfRO7indNP3YaDVO2950CoD/7/r5XzSx9WzNODbadAoAAAAAADYx+9Q4jW4yTb9c+tV0Ct6BASEAAJEQ55OYmlapiroULqqGX63RhMOHTCe9k0dqd00+OFxNMnQ0nQK4vF+vhGhYvYmad3ai6RQAAAAAAGxq4cXJGlRtjH6/9ofpFLwFA0IAAN5D0TRpdLBlG8WLGUuF583WN9ft81IJydN5aML+oWqaqZPpFMBl/XHzT/XzGaHFl6eaTgEAAAAAwIhlP81Qz1JDFPrbPdMp+C8MCAEA+ACdCntrR5PmCjp3Wu22btaD589MJ70hRYZkGrN7sPyydjGdAricv/64ry5FBmj59VmmUwAAAAAAMGrVrblql7+XHt59ZDoF/4EBIQAAHyhp/PhaVKO26uTMpVKLFmreqROmk96QKnMKDd/aXy1zdDOdAriMx/fD1DJHd639fb7pFAAAAAAA7ML6PxepSYaOevrY/l5k76oYEAIA8JEqZMqsMx066e6TpyqzZJFOhvxmOuk1abJ5auiG3mqVq4fpFMDpPX/6Qg1TtdXGe0tMpwAAAAAAYFe2PAxSbfcWevn3S9MpEANCAACiTP8SJbWwZi2NPXRQvXbvUrjVajopQtocqTVoTQ+1zetvOgUOLjAwUBaLJeLA/wkPD1f1hE21LWyF6RQAAAAAAOzSzuerVClOI9MZEANCAACiVIYkblpXv6GKpk2jLNMma+X5c6aTImTInVZ9g7qofYHeplPgwAICAmS1WiMO/J9KcRpp5/NVpjMAAAAAALBrO56uVOV4jU1nuDynHhDyCncAgCl1cuTSz9166uKdP1Rj1QpdDg01nSRJypQvvXot6qgOBfuYTgGcSrVPm2jzg2WK8YlTb68BAAAAAPhoseLE0ro/FqhmkuamU1yaU/8Fg1e4AwBMG1m2vIaXKaseu7Yr8MB+0zmSpMwFMqjH3HbqVLif6RTAKdR2b6GVt+Yobvw4plMAAAAAAHAICRLF15Kr01UveSvTKS7LqQeEAADYg7zJU2hnk+ZKl8RNOWZM1dbgy6aTlNUrkzpPb6WuRQeYTgEcWsNUbTX/wiQldPvUdAoAAAAAAA4liUcizTw5Vr7pOphOcUkMCAEAsBG//AV0un0n7bn2s3zXr9NvDx8a7cnhnUXtJ/mp2xcDjXYAjqppxk6a8v0Iuad0M50CAAAAAIBDSpYmqcbtC5Bf1i6mU1wOA0IAAGwobsyYmlapijoV9lbDr9Zo4uHvjfbkLJpVbcY2VY+Sg412AI6mZY5uGrVzoFKkT2Y6BQAAAAAAh5YqcwoN3dhHbfL0NJ3iUhgQAgBgQLE0aXWwZRvFifmJCs+brQM3rhtryV08u1oMb6ReXw411gA4kvYFemvg6h5Kk83TdAoAAAAAAE4hfa406r2kszoV6ms6xWUwIAQAwKDOhYtoR5PmWnrmtNpt3ayHz58b6chbKqeaDKmr3mUDjTw/4Ci6FOmv7nPbKVO+9KZTAAAAAABwKlkLZlTHqS3Vvfgg0ykugQEhAACGJY0fX4tr1ladnLlUYtF8zTt1wkhH/i9zq1H/WupbYbiR5wfsXc9SQ9R2fDNlL5zZdAoAAAAAAE4pV7Fs8hvekBex2wADQgAA7ESFTJl1tkNn3X3yVGWXLtLJkN9s3vB5ubyq519N/SuNtPlzA/asb4XhajK4rvKUyGE6BQAAAAAAp5b/y9yq37u6BlQeZTrFqTEgBADAzvQvUVLzq9fS2EMH1fvrXQq3Wm36/F4++VWra2UNrMImDJCkwdXHqFbXyvq8XF7TKQAAAAAAuIRCFQuoSttyGlp7vOkUp+XUA8LAwEBZLJaIAwAAR5HRzU3r6jdUkdRplGXaZK06f86mz1+4UgFV6+CjwdXH2PR5AXszrN5EVWheWkWqFjSdAgAA7MT+/fvVokUL+fn5affu3W99TLNmzVS5cuWI4+LFizauBADA8X1Rs7BKNyimkY2mmE5xSk49IAwICJDVao04AABwNHVy5tLP3Xrq/J0/VGPVCgXfDbXZcxepWlCVWpVVQK1xNntOwJ6MbjJNxWsVVok6RUynAAAAO3H//n0tXLhQkyZN0tSpUxUUFKS7d+++9pjw8HC9ePFCO3bsiDhy5cplqBgAAMdWusEXKlypgMb5zTCd4nScekAIAICzGFW2vIaXKatuO7Yr8MB+mz1vsRqFVL5ZKQXWmWCz5wTswcTWs1WgTG6VaVzCdAoAALAjx48fl5eXl9zc3JQ4cWIVLVpUR44cee0xoaGhcnd3N1QIAIDzKd+slHIVy6Yp7eeZTnEqMU0HAACAyMmbPIV2NW2uJWdOK+eMqRpXoaKqZs0W7c9bvJa3wl+Fa3j9SRq8tme0Px/sW2BgoIYOHWo6I1pN67RAWQtmVMWWZUynAAAAOxMaGqpkyZJF3Pbw8HjjHYS3b9/WgwcP1KdPH924cUMlS5ZUx44dFSPG66/T/6d9lcVikb+/v3r2jPr9d0hISJSfE/+MNbc91tz2WHPbc7U1L1A1l/68E6pxraaryfA6Rhqia81NfUQeA0IAAByMX/4CapA7j/p+vUurL5zT2PI+SpUwUbQ+Z8m6RWUNt2pEw8katLpHtD4X7FtAQIACAgIibjvb5zzP7rlEqbOkVLUOPqZTAACAHXrbR9iEh4e/djthwoSqW7euqlevrkePHmnw4MHavn27qlWr9trj/ntf9W8WiyXaPionJCREnp6e0XJuvB1rbnusue2x5rbnqmvuN6iR1k3Yom1T9qntuKY2fe7oXHNTw14uMQoAgAOKFzOmplWuqg5e3mqwdo0mHv4+2p+zVP1iKlajkEb7To325wJMWNh/hdySJ1Ht7lVMpwAAADvl7u6u0ND/+1zw0NBQJU2a9LXHpEuXTjVq1FCMGDGUOHFilShRQtevX7d1KgAATqler+pKkDi+lgxebTrF4TEgBADAgX2RNq0OtWqjODE/UeH5c3TgRvT+4aFMo+IqVKmAxjabHq3PA9ha0LB1ihUnlhr2rWk6BQAA2DFvb28dP35cYWFhevLkiY4ePaoiRYrIarUqJCRE4eHh2rBhgwIDA/Xy5Us9fvxYhw8fVq5cuUynAwDgNHwH1pHVatXKURtMpzg0BoQAADiBzoWLaHvjplp65rTab9uih8+fR9tzlWtSUp+Xy6txfjOi7TkAW1o9dpNePH2hZkPrm04BAAB2zs3NTS1btpS/v7969OghX19feXh46Pnz52revLkePHigGjVqKHny5GrVqpXatWun/Pnzq2zZsqbTAQBwKi1GNNLjvx5r3cStplMcFp9BCACAk/BIkECLa9bW7p+uqsSi+epcuIjaFPSKlucq36yUwl+Fa0KrWeq1sGO0PAdgCxumbNdff9xXh0l+plMAAICDKFu27BsDv7hx42rPnj0Rtzt06KAOHTrYOg0AAJfSdnwzzey6SJtm7FTNzpVM5zgc3kEIAICT8cmcRWc7dNafT8JUdukinYqmDzr2afGlchbNpslt50TL+YHotnXO1/r1SgjDQQAAAAAAHFSnaS11/dxN7Viwz3SKw3HqAWFgYKAsFkvEAQCAKxlQopTmV6+l0Ye+Ve+vd8kaDc9RuXVZZfXKpCnt50XD2YHos3vxNwo+8ZO6zmpjOgUAAAAAAHyEHvPa68LBS9oT9K3pFIfi1APCgIAAWa3WiAMAAFeT0c1NX9VvpCKp0yjTlIladf5clD9HlbbllSlfOk3rtCDKzw1Eh/0rD+qHfee5PC4AAAAAAE6iz9LOOrb9B3279rDpFIfh1ANCAADwL3Vy5tK17v46f+cP1Vy1QsF3Q6P0/NU6+ChtjlSa2XVRlJ4XiGqHNhzTwQ3H1H95V9MpAAAAAAAgCg1a3UP7Vx7S4S0nTKc4BAaEAAC4kFFlyyuwTFl127Fdww58E6Xnrtm5kjwzp9Cs7ouj9LxAVDm2/ZR2Lf5GAV/1Mp0CAAAAAACiQeCmPto6+2ud3H3GdIrdY0AIAICLyZc8hXY1ba40SRIr54yp2nYlOMrOXatrZSVP56E5/kuj7JxAVPhh7zltmLpDI7b2M50CAAAAAACi0eidA7V67CadPXDRdIpdY0AIAICLapH/c51q30m7f7qqJhvWKeTRoyg5b50eVeWe0k3z+gRFyfmAj3X+4CUtH/6Vxn492HQKAAAAAACwgQn7h2rRwJX68cgV0yl2iwEhAAAuLF7MmJpeuao6eHmr3tpVmnTk+yg5b71e1ZU4aSIt6Lc8Ss4HfKjgEz9pbq9lmvTtMNMpAAAAAADAhqZ+P1LTOy/QT6evm06xSwwIAQCAvkibVt+3aqtYMT6R9/w5+vbGx2+cGvSpoQSJE2jRwJVRUAi8v2vnbmpSmzmacWy06RQAAAAAAGDA7FPjNKbpNN388VfTKXaHASEAAIjQxbuItjZuqsVnTqv9ti169Pz5R52vUf9aihMvjpYMWR1FhTAtMDBQFosl4rBXt4JDNKLBJM09M8F0CgAAAAAAMGjBhckaUmOsQn6+bTrFrjAgBAAAr0mWIIGW1KytWtlzqPii+Zp/6uRHnc93UB19EvMTLRu6NooKYVJAQICsVmvEYY/+uPmn+lccoUWXpppOAQAAAAAAdmDp1enyLx2g0N/umU6xG049IHSUV7gDAGCPfDJn0dkOnfXnkzCVW7pYp0JCPvhcTYfUU3h4uFaMWB+FhcCb7t2+r65FB2j59VmmUwAAAAAAgB1ZdWuu2hforQehD02n2AWnHhA6wivcAQCwdwNKlNK86jU0+tC36v31Ln3o/6L6DWuo50+fa9XojVHaB/zbo78eq3WuHloTMt90CgAAAAAAsENf3VmoZpk668mjp6ZTjHPqASEAAIgaGd0+01f1G8k7dRplmjJRqy+c/6DztBzZWE8ePtHqsZuiNhAu7/nTF2qUup023F1sOgUAAAAAANixzQ+WqU7Slnr590vTKUYxIAQAAJFWN2cuXevur7O3f1fNVSt05e7d9z5Hq9G+enj3kdZN2KKvJm3Vgl4r9fu1P6KhFq4iPDxc1RM21bawFaZTAAAAAACAA9j5fJUqxWlkOsOomKYDAACA4xldroLO/nFbXXZs1Rdp0mlI6S/f6/vbjmuqDp/31rULvyj8Zbh+/O6qphwarhTpk0VTMZxZpdiNtPPFKtMZAAAAAADAgex4tkqV4zbSjmeu+TcF3kEIAAA+SL7kKbS7qZ/SJEmsXDOnaduV4Eh/78/nbure7fsKfxkuSbobck9TO8yLrlQ4saoJfLXlUZBixGBbCwAAAAAAIi9W7Jj66s9FqpG4mekUI/hLCgAA+Cgt8n+uE207aPdPV9V0w1cKefTof35PIvdPFStOrNfuS5bWI7oS4aRqu7fQql/nKk682KZTAAAAAACAA4qfMJ6W/jRD9ZK3Mp1ic0YGhPv371eLFi3k5+en3bt3v/H1FStWqHLlyhFHxYoVNXDgQEnSpUuX1KlTJzVs2FBz5861dToAAHiL+LFiaXrlqmrnVUj11q7S5COH//HxHqnc1S+oizzSuCtx0oTK4pVRPea2s1EtnEEDzzZacHGyErp9ajoFAADgowQGBspisUQcAADAtpJ4JNKsU+PUOG170yk2ZfMB4f3797Vw4UJNmjRJU6dOVVBQkO7evfvaY3x9fbVjx46Io2zZsqpVq5aePXumUaNGacCAAVq2bJkuXLigK1eu2PpHAAAA71A8bTp936qtPolhkff8Ofru5o13PjZ38RwavWuQWk9urFnHx9ouEg6vSYaOmnZklD5LkcR0CgAAwEcLCAiQ1WqNOAAAgO15pHbXhG+GqnmWLqZTbMbmA8Ljx4/Ly8tLbm5uSpw4sYoWLaojR4688/E//PCDLBaLvLy8dOzYMeXJk0epUqVS7NixNWnSJGXMmNGG9QAAIDK6ehfV1sZNteiHU+qwbYsevXjx1sely5Faeb/MaeM6SFJ4eLjphA/SMkc3jd41SMnTcUlaAAAAAAAQdTwzpVDgpj5qk6en6RSbiGnrJwwNDVWyZMkibnt4eLzxDsJ/Cw8P16JFixQYGChJun37tp48eaL27dvrr7/+kre3t7p27frG9wUGBmro0KFvPafFYpG/v7969oz6f+CQkJAoPyf+GWtue6y57bHmtseaR51R3kV14NdbKjp/jlrkzK1G2bK/9XHRteaudImm/fv3KygoSFarVY0aNZKPj887H7to0SI9f/5cHTp0kCRt3LhRW7Zs0ZMnT1SkSBF17dpVn3zyia3SI61d/l4atKan0mTzNJ0CAAAAAACcUPpcadRnaWd19OqrWSed+4pXNh8Qvu1SCe96BfuhQ4eUKVMmubu7S5KeP3+uq1evasqUKYofP74CAgK0fft21ahR47XvCwgIUEBAwBvns1gs0XaphpCQEHl68scqW2LNbY81tz3W3PZY86jX2NNTjQt7a+R336rZnt0aV8FHn6f8vzWOzjV3lWHvvy/hPmPGDMWIEUOdOnWSl5dXxB7qP507d05btmyJGCD++OOP2rRpU8T3Dho0SLt27VKVKlVs/WP8o87e/dVzfntlzJvOdAoAAAAAAHBiWT7PqM7TW6nbFwM19fuRpnOijc0HhO7u7goODo64HRoaqjRp0rz1sfv371flypUjbru5ualgwYLy8PjXJaWKFCmiGzduRGsvAACIGgNLllKjPHnU++vdyujmprHlfdR+2xb99Ocd9SheUtWyZjOd6LD+8xLukiIu4V61atXXHhcWFqb58+erXr16evjwoSTp3r17qlKlihImTCjpX/ur27dv2/YHeIt9Kw8qKHCt0udKqwehD9V+YnNlK5TZdBYAAAAAAHABOYtmVcuRjdWrzFAlSBxfNy7dUovAhird4AvTaVHG5gNCb29vBQUFKSwsTBaLRUePHlW9evVktVr1+++/K0WKFIoRI4aePXum8+fPa8CAARHfW7hwYa1evVp37txRggQJdOjQIbt7dTsAAHi3jG6faX2DRvrqx4vKNHVSxP0B3+zT369eqXYOPo/wQ0T2Eu7Tpk1T06ZNdefOnYgBYfHixSO+fvfuXe3Zs+etl2K35SXcv119VKuHbdSTh8/029XbSpkpmT7LmMhl3hFqGutse6y57bHmtsea2x6XcAcAAPg4+Urn0pQO83T2wEVJ0vTOC/X3i5cq37SU4bKoYfMBoZubm1q2bCl/f39ZrVb5+vrKw8NDz549U/PmzbV27Vq5ubnp5MmTypUrl2LHjh3xvcmTJ5efn5969eqlV69eqXTp0ipXrpytfwQAAPCRsronlUeCBPozLEyS9NfTp9p65TIDwg8UmUu47927VwkSJFDhwoW1bdu2Nx6/a9curVixQh06dFDOnG/+O9jyEu7n9vyoJw+fRdx+9vi5Hv/+VFkLZorS58GbuMyy7bHmtsea2x5rbntcwh0AAODjBZ/8WU8ePIm4/fDuIx1Y/T0Dwo9RtmxZlS1b9rX74saNqz179kTcLl68+GuvaP+38uXLq3z58tHeCAAAok+uZMkU+5NPIm7HihFD+ZOnNFjk2CJzCfcDBw7o2rVrOnXqlMLCwvTy5UuFhYWpZ8+eGj16tF69eqXp06crSZIkNq5/U/bCWXT2wI/6+/nfkqQ48eIoy+cZDVcBAAAAAABXkqVABsWKEyvidszYnyi7dxaDRVHLyIAQAAC4tk8sFu1t1kK11qzU3cePVT9PXnUrUtR0lsOKzCXcR4wYEfH4bdu26datW+rQoYO+/fZbPXnyRCNH2s+HbjcPbKCXf7/S10u/URKPxJp+dBSXMwMAAAAAADYV45MYWvjjFHUtOkB/3bmvyq3KqemQeqazogwDQgAAYETcmDG107eZrt68qSzp0pnOcWiRvYT721y4cEGnT59WzZo1I+6rVq2aWrVqZaP6t2s1qrFKNS+izNl45yAAAAAAADAjTrzYmntmgn6+ck2ZsjrX3ygYEAIAAKMSxIr1vx+E/ykyl3D/t6pVq0b8506dOqlTp07R3vch4ieMazoBAAAAAABA8T51vr9RxDAdAAAAAAAAAAAAAMB2nHpAGBgYKIvFEnEAAAAAAAAAAAAArs6pB4QBAQGyWq0RBwAAAAAAAAAAAODqnHpACAAAAAAAAAAAAOB1DAgBAAAAAAAAAAAAF8KAEAAAAAAAAAAAAHAhDAgBAAAAAAAAAAAAF8KAEAAAAAAAAAAAAHAhDAgBAAAAAAAAAAAAF8KAEAAAAJEWGBgoi8UScQAAAAAAAMDxMCAEAABApAUEBMhqtUYcAAAAAAAAcDxOPSDkFe4AAAAAAACwZ/z9CgAAmODUA0Je4Q4AAAAAAAB7xt+vAACACU49IAQAAAAAAAAAAADwOgaEAAAAAAAAAAAAgAthQAgAAAAAAAAAAAC4EAaEAAAAAAAAAAAAgAthQBhFJk2aZDrB5bDmtsea2x5rbnusue2x5ngXfjdsjzW3Pdbc9lhz22PNbY81x7vwu2F7rLntsea2x5rbHmtue8645har1Wo1HWErFotF0fXjRue58Xasue2x5rbHmtsea2570bnmISEh8vT0jJZz41/YXzkX1tz2WHPbY81tjzW3PfZXjo39lXNhzW2PNbc91tz2WHPbc8b9VUybP6NBxYsXl8ViibbzR+e58Xasue2x5rbHmtsea2570bXmffr00dixY6Pl3PgX9lfOhzW3Pdbc9lhz22PNbY/9leNif+V8WHPbY81tjzW3Pdbc9pxtf+VS7yB8m6ia+kbl9NiZm6LyXDTZ9jz2ei6abH8ummx7Hns9l7M34ePY47+pMzdF5blosu157PVcNNn+XDTZ9jz2ei5nb8LHscd/U2duispz0WTb89jruWiy/blosu157PVczt70sfgMQgAAAAAAAAAAAMCFMCAEAAAAAAAAAAAAXIjLDwiHDh1qOuENUdUUlT+bvZ4rqjjzmtvjekv2+fPZY1NUssefzx6booo9rlNUnsvZ1xwfxx7/Lezxd99ezxVVnHnN7XG9Jfv8+eyxKSrZ489nj01RxR7XKSrP5exrjo9jj/8W9vi7b6/niirOvOb2uN6Sff589tgUlezx57PHpqhij+sUledy9jX/WC7/GYRRxZ6uG+sqWHPbY81tjzW3Pdbc9lhzvAu/G7bHmtsea257rLntsea2x5rjXfjdsD3W3PZYc9tjzW2PNbc9Z1xzl38HYVSxp6mvq2DNbY81tz3W3PZYc9tjzfEu/G7YHmtue6y57bHmtsea2x5rjnfhd8P2WHPbY81tjzW3Pdbc9pxxzXkHIQAAAAAAAAAAAOBCeAchAAAAAAAAAAAA4EIYEAIAAAAAAAAAAAAuhAEhAAAAAAAAAAAA4EIYEAL4aOHh4aYTAAAAnAr7KwAAgKjF/goAXseAMArs379fLVq0kJ+fn3bv3m06x+lEZn03btyoFi1aqEGDBpo8ebJevXpl40rn8j6/04sWLdLcuXNtVOa8IrPmly5dUqdOndSwYUPWPApEZs1Xrlypxo0bq1GjRlq2bJmNC13Ds2fP1KdPH9MZsEPsr6IX+yvbY39le+yvbI/9lX1gf4V3YX8Vvdhf2R77K9tjf2V77K/sg9Pur6z4KH/99Ze1cePG1nv37lnv379v9fX1tYaGhprOchqRWd+LFy9amzVrZn348KH18ePH1u7du1u3bdtmqNjxvc/v9NmzZ601atSwzpo1y8aVziUya/706VNrkyZNrL/++qv1+fPn1s6dO1uDg4MNFTu+yKx5cHCwtXHjxtbHjx9bw8LCrM2bN7eeP3/eULFz2rFjh7VLly7Wdu3amU6BnWF/Fb3YX9ke+yvbY39le+yv7AP7K7wL+6voxf7K9thf2R77K9tjf2UfnHl/xTsIP9Lx48fl5eUlNzc3JU6cWEWLFtWRI0dMZzmNyKzvvXv3VKVKFSVMmFAJEiRQkSJFdPv2bUPFji+yv9NhYWGaP3++6tWrZ6DSuURmzY8dO6Y8efIoVapUih07tiZNmqSMGTMaKnZ8kVnzGDFi6JNPPlHs2LEVK1YsxYoVSzFi8D+bUSlx4sQqWbKk6QzYIfZX0Yv9le2xv7I99le2x/7KPrC/wruwv4pe7K9sj/2V7bG/sj32V/bBmfdXMU0HOLrQ0FAlS5Ys4raHh4fu3r1rsMi5RGZ9ixcvHvGf7969qz179qhnz542a3Q2kf2dnjZtmpo2bao7d+7o4cOHtkx0OpFZ89u3b+vJkydq3769/vrrL3l7e6tr1662TnUakVnzzJkzy9vbW3Xq1JHFYlHp0qWVM2dOW6c6tWLFiunWrVvau3ev6RTYGfZX0Yv9le2xv7I99le2x/7KPrC/wruwv4pe7K9sj/2V7bG/sj32V/bBmfdXjJI/ktVqfeM+PvA26rzP+u7atUvdu3dXy5Yt+S/BjxCZNd+7d68SJEigwoUL2yrLqUVmzZ8/f66rV69q+PDhWrRokUJCQrR9+3ZbJTqdyKz5+fPndfbsWU2aNEmTJ09WcHCwTp48aatEwKWxv4pe7K9sj/2V7bG/sj32V4B9Y38Vvdhf2R77K9tjf2V77K8Q3XgH4Udyd3dXcHBwxO3Q0FClSZPGYJFzicz6hoeHa/To0Xr16pWmT5+uJEmS2LjSuURmzQ8cOKBr167p1KlTCgsL08uXLxUWFqZevXrZOtcpRGbN3dzcVLBgQXl4eEiSihQpohs3btgy06lEZs2PHTumkiVLKnPmzJKkMmXK6OjRo/Ly8rJpK+CK2F9FL/ZXtsf+yvbYX9ke+yvAvrG/il7sr2yP/ZXtsb+yPfZXiG68g/AjeXt76/jx4woLC9OTJ0909OhRFSlSxHSW03jX+lqtVoWEhCg8PFwHDx7UkydPNGTIEDZXUSAyaz5ixAitXLlSS5culZ+fn3x8fNhcfYTIrHnhwoV16tQp3blzR2FhYTp06BCvNPwIkVnzdOnS6fjx43r8+LHCwsJ07NgxpU+f3nQ64BLYX0Uv9le2x/7K9thf2R77K8C+sb+KXuyvbI/9le2xv7I99leIbryD8CO5ubmpZcuW8vf3l9Vqla+vb8QrJPDx3rW+z549U/PmzbV27VpduHBBp0+fVs2aNSO+r1q1amrVqpW5cAcWmTV3c3MznelUIrPmyZMnl5+fn3r16qVXr16pdOnSKleunOl0hxWZNS9XrpyuX7+utm3bymq1qkSJEqpcubLpdMAlsL+KXuyvbI/9le2xv7I99leAfWN/Fb3YX9ke+yvbY39le+yvEN0s1rddyBYAAAAAAAAAAACAU+ISowAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuBAGhAAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuBAGhAAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuBAGhAAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuBAGhAAAAAAAAAAAAIALYUAIAAAAAAAAAAAAuJCYpgMAILJq166tR48evXF/mTJl1L9//2h5zmvXrql3795av359tJwfAADAJPZXAAAAUYv9FQBHwYAQgEO4ffu2Hj16pCVLlihhwoSvfS127NjR9rxXr15VpkyZou38AAAAprC/AgAAiFrsrwA4EgaEABxCcHCwPD09lSpVKps/LxssAADgjNhfAQAARC32VwAcCQNCAA7h6tWrypEjxzu//vLlS9WoUUP+/v7atGmTbt68qSJFiqhXr16KFSuW/vzzT82bN0+nT59WzJgxVbNmTTVs2FCSdPfuXc2ZM0fnzp2T1WpVq1at5OPjE/G8BQoUUN++fRUcHKy0adNq2LBhSpIkiS1+bAAAgGjD/goAACBqsb8C4EgYEAJwCFeuXNHp06e1b9++1+6vXbu2OnTooGvXrunvv//WDz/8oICAAD148EADBgzQrl27VLZsWfXu3VulS5dWhw4dFBISokGDBilXrlxKkyaNOnXqpKpVq0acZ8iQISpWrJjix4+vn3/+WTFjxtSgQYMUM2ZMtW3bVkePHlXFihUNrQQAAEDUYH8FAAAQtdhfAXAkDAgBOIQrV65o5MiRyp49+2v3x40bV5J0+fJlJU+eXN27d1fMmDHl7u6uIkWK6NatW9qyZYsyZMggPz8/SdJnn32mXLly6aefftKRI0eUL18+NWnSJOJr3bp1kyTduHFDf//9t7p27Sp3d3dJUvLkyfXpp5/a6KcGAACIPuyvAAAAohb7KwCOJIbpAAD4X0JCQhQWFqZcuXIpUaJErx3//oDny5cvq2DBgooZ8/9e9/DHH3/I09NT3333nYoVK/baOW/cuKHUqVPr2LFjKl++/Gtf8/HxUcKECXXlyhUVKFBAGTJkkPSvy0D89NNPb2zyAAAAHA37KwAAgKjF/gqAo2FACMDuXblyRSlSpFCCBAne+ZhLly699gHQjx490uXLl/X555/r999/V+rUqSO+duPGDT179ky5c+fW7du3I15dJUnHjh3TwYMHI573P68bf+3aNSVKlEhJkyaNyh8PAADA5thfAQAARC32VwAcDQNCAHbvypUrSpMmjcLCwt44wsPD9ejRI4WEhGjfvn365ZdfdPv2bY0cOVJffvml0qZNq7Rp02rnzp169OiRgoODNXLkSLVq1Urx4sVTtmzZtGvXLj1+/FiHDx/WyJEjIy7BcOXKFWXLli2i4/Lly//4QdMAAACOgv0VAABA1GJ/BcDR8BmEAOzelStXdPbsWdWsWfONr23YsEHBwcHKkCGDihUrpk6dOsnd3V0VKlRQw4YNJUk9e/bUxIkT1bhxY2XIkEFNmjRRqVKlJEn+/v4aPny4duzYobRp02rIkCEqUKCAXr58qevXr7+xweLyDAAAwBmwvwIAAIha7K8AOBqL1Wq1mo4AgI8RFBSke/fuRXw4MwAAAD4O+ysAAICoxf4KgL3hEqMAHB6vjAIAAIha7K8AAACiFvsrAPaGASEAh1eoUCEVLFjQdAYAAIDTYH8FAAAQtdhfAbA3XGIUAAAAAAAAAAAAcCG8gxAAAAAAAAAAAABwIf8PqmfO5g+G7PkAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "plot_training_metrics(gnn_metrics, 'GNN')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Evaluate model performance on sample test data\n",
-    "\n",
-    "Here we evaluate the model performace on one sample test data. We look at how the efficiency and purity change with the embedding radius."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 25,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAJYCAYAAABy5h8aAACVRklEQVR4nOzdeZzN1R/H8fcdM2MsY2bMgrHvS8gy9ogmkaVEwm+yRFlLtmjTGBEhIqWypLRaimxJIsRYilAi2c0wZswwi9nv7w+5mWYww537vXPn9Xw87uPhfu+53+/7nrEcn3vO+ZrMZrNZAAAAAAAAgJ1yMjoAAAAAAAAAcCsUsAAAAAAAAGDXKGABAAAAAADArlHAAgAAAAAAgF2jgAUAAAAAAAC7RgELAAAAAAAAdo0CFgAAAAAAAOwaBSwAAAAAAADYNQpYAAAAAAAAsGsUsAAAAAAAAGDXnI0OkJvatWun9PT0TMdLlCihTz/9VJK0detWLVq0SBEREVq3bp0uXLigt956SwcPHtSrr76qkydPavHixXrllVfUunXrm14rLCxMffv2VfPmzRUSEpJbHwkAAMDupKenq127dhmOFSpUSDVq1NCzzz6rcuXK3dF5sxpfxcTESJI8PT3vJjIAAMhjHLqAJUkmk0kPPPBAhmMeHh6WX3/11Vc6d+6cnn76aUnSli1btG/fPt1///2qVKmSTCaTAgMDVaJEiVtep1ChQgoMDFS1atWs/yEAAADygAIFCqh169ZKT0/XgQMHtG/fPk2cOFHz58+XyWTK8fmyGl8NGDBArq6u+uKLL6wZHQAA2DmHL2A5OzvrxRdfvOnrV69elZOTk3r06GF5Lklt2rRRqVKlVKpUKTVv3vy21/Hy8rrldQAAABydm5ubZTyUkpKibt266dSpU7p48aL8/PxyfL7/jq9OnjyptLQ0paam6u+//1blypWtlh0AANi3fL0H1jPPPKMzZ84oPT1dbdu21bx58/TZZ59JkiZMmKD169frs88+U9u2bbVlyxZJ0t9//60xY8bo0UcfVVBQkJYsWSKz2aywsDC1bdtWwcHBlvPv27dPw4YNU+fOnfX0009r586dlnO0bdtWb7zxhmbMmKHHHntMffv21a5duyzvvdl1XnrpJbVt21b79++XJCUkJKh9+/YaPHiwbToNAAAgG1xcXFSyZElJ18YrBw4csIy3rhs2bJjatm2rlJQUy/ho2rRpWrhwocaOHZtpfDV58mTFx8crJiZGL730kiQxNgIAIJ9w+AJWSkqK2rZtm+GxZMkSSdcGPH5+fnJyctKcOXPUtWtXPfTQQ5Kkp59+Ws2aNctwritXrmjMmDE6duyYOnTooOLFi+uTTz7R6tWrM133zJkzevHFF5WYmKgnnnhCkvT666/r6NGjljZbtmzRuXPnVKtWLYWFhWn69Om3vU5gYKAkKTQ0VJK0f/9+paWl3XJ/LgAAAFtKT0/Xnj17dPLkSTk7O1sKWdmxZ88eLV26VEWLFs302vz581WsWDH5+Pho6dKlksTYCACAfMLhlxBmtQdWxYoVJUmVKlVSwYIFJUk1a9aUJPn6+kqSypYtm2lz0K1btyouLk59+vRR7969dfnyZX344YdKTU3NdN3169crPT1dnTp10j333KPixYvr7bff1sqVK9WtWzfLNWfNmiXp2n4Op0+f1uXLl7Vt27abXqdFixZydXVVaGioBg8erD179kgSgzQAAGC4+Ph4tW3bNsOxxx57TG5ubtk+h5OTk5YvXy53d3eFhYXdtj1jIwAA8geHL2Ddbg+snLhw4YIkWfZb8PDw0AsvvCBJmQZY4eHhkqT33nsvw/Fz585Zfl2mTBnLr729vXX69Gmlp6ff8jqS1KxZM/300086c+aM9uzZoxo1auTom00AAIDccH0Td0kqWLCgateunamgdTv169eXu7t7ttsXKlSIsREAAPmAwxewrMnHx0fStf2pmjdvritXruijjz5SpUqV1LBhwwxtixcvLunaVPcKFSooLS1NYWFhKlSokC5fvnzH1+ncubMeeOAB/fTTT1q+fLkuXLigrl275sKnBQAAyJkbN3H/r+t3IYyOjpZ0bZlhTExMpnYFChS47XXMZnOG54yNAABwfA5fwEpLS7PsLXWjwYMH5+jbPUlq2bKlFi1apBUrVigxMVEHDx7U4cOHNWrUqExtH3roIa1evVrTp0/XAw88oF27dmnfvn164YUXbnvHnNtdp1GjRipatKjWr18vSWrVqlWOPgcAAICt+fv7y8nJSdu3b9eUKVN09uxZXbx4McfncXd3V3h4uL777ju1b99eEmMjAADyA4ffxD09PV3ff/99pkdSUlKOz1W8eHG9+eabqlixolavXq1Lly7pmWee0cMPP5ypbfXq1TVhwgSlpqZq0aJFioqK0pgxYyybxN/NdVxcXNSqVSuZzWbVqVPHMmMLAADAXnl7e2vo0KEqUqSIfv31VzVs2FBVqlTJ8Xl69Oih4sWLa9myZZZjjI0AAHB8JvN/52AjT/j+++81ffp0DR8+XJ07dzY6DgAAgKEYGwEA4NgcfgaWI9q8ebNWrFghFxcXtWzZ0ug4AAAAhmJsBACA43P4PbAc0cKFC2U2mzVo0CB5enoaHQcAAMBQjI0AAHB8LCEEAAAAAACAXWMJIQAAAJSYmKixY8caHQMAACBLLCEEAADI59avX6/169crOTnZ6CgAAABZYgYWAABAPufh4aFWrVoZHQMAAOCmHHIG1osvvqjhw4cbHQMAABisYMGC8vb2zvH7ntg+Q3ujj+ntBgP0SOlGuZDMvjRv3lxnzpzRDz/8cNM2ISEhmjBhwk1fHz16tEaNGpUL6QAAgD0xanzlkJu4m0wm5dbHCgsLk7+/f66cG7dH/xuL/jcW/W8s+t9Yd9r/OX3f5cR4Pbl9htZFHVR6epp83Tz0YeMh6lK6SY6vndecOXNGkydP1vvvv5+j91lz3MWfM9uiv22PPrc9+tz26HPbs3WfGzW+csgZWAAAANmRmn5ZJ6PmKSH5bxUwmfX0xksKTUuRirhIki4mXtZj2ybrjSqjVb5oKZUs7qWWvj5yMZkMTg4AAGCfcmt8RQELAADkS2alaMffbXT56j6ZJBUs4KzIlIekgq7SPzOK7vEqIY+4e/XyjsNS8XDJ1UU1ihXTptYt5e/mZuwHAAAAsDO5Ob5iE3cAAJAvXU74RVcS91meexVqqNIe1a99vWeWBlVto+6effVrrJdUyk9yKyhJ+vPKFc3565hBqQEAAOxXbo6vHKKAFRISIpPJZHkAAADcTkR8pBKSJCeTZJbk4VZbBVyKqECBAlrSfLi6lwrShGNnlOhe8No3hunplveeiI83LnguKVu2bI73vwIAALhRbo6vHGIJYXBwsIKDgy3PKWIBAIDbSb98WmcuSTVKSSZJLi5V1LZCTc2o0F/1PSvqUnKK/uzSUcdiY3U09or+io3V4SuxOhwbJ7cCDvEdIAAAgFXl5vjKIQpYAAAAOWG+sE3Vd09WuF8LHb7ysyp4SK6uVfRivUctbYq7uqi4q4uqFy2iqBh37bsQp2JxSfKLiddvF9IVWTNFPkVdDPwUAAAA9iO3x1d8fQgAAPIVc8ROpW3prbSUK2oTm6oGPhN0OUkq5lbtpu+5v1xB7b2aoiMmKalYEcW5FdbQbRd1JSX9pu8BAADIL2wxvqKABQAA8pW0HcNkToySWVLqld/VNCJCjaqskatzyZu+p3wRZ733oL9kkkwFJJfCzjoYn6bB2y/aLjgAAICdssX4iiWEAADkMXFxcTL/cxvi/MLV1VWxsbGW5yaTSUWLFr2jc5l8AmS+8peka5uLphz/RFX820gefjd9T0pCiirs/FP/q1NJnx+8JHP6tf7fH5V8RxkAAIB9ycvjq/+Ok+6UvY+vKGABAJDHmM1mubu7Gx3DpooWLZrhJi13M0gr0OwdmWMjlX5mg0yuJsnJpJSfn5JL8WqSV90s35MYm6TPXlinuk/eo1/ub6k/z11RYSeTpjbyvuMcAADAfuTl8dV/x0l3yt7HVywhBAAA+UuBgnJuvVjm5BpKj/GTXOrL5H2f0s+suulbok9Hy8WtsPZ9EKpan62VW0EXzWjirXZlCtkwOAAAgJ2ywfiKAhYAAMh/ChWT2bO7kg97K+lIGaWcDVDKaX+l7tus9PDjMsdFS5LSj19U2uSlijwZpfT0NBXx9lPi6l/16sW/FOhP8QoAAMAil8dXLCEEAAD5U+pVpcdekmJ3Ke3ormvHnEwyp6ao8Jg5MkVUVsLAD+VSOlUXe1zbv8FsNqu4p58qFHY1MDgAAICdysXxFQUsAACQLzn5lPn3yT/7RqSnJsv1gWeUtlxK/GCOTDIpySlJkX9dlFkmyWyWa4GCKl66hEGpAQAA7Fdujq9YQggAAPIllzY9VKBibUmSOSVNKdFxMrk0V/onhZT4wTpJJpnNKbpy+qzC94VL/+yN6lGmmMoFlLn5iQEAAPKp3BxfMQMLAADkS6YixVR08iqlHd6t1PNnlR4Wo6SR+5Sa/JdkMstkKqC01ASlFnTSPR1ryiyTPEq4q/7jdeTixhAKAADgv3JzfMXoCwAA5GsFajZWgZqNJUkuZY8ofvBCpYfHSCbJuWVNVVg0RJVL+hkbEgAAIA/JjfEVSwgBAAD+4dyquop8MEAFKvjK+YEa8vjmVRWgeAUAAHDHrDW+susZWImJiXrttdc0bdo0o6MAAIB8wrlldRXbN9noGAAAAA7DGuMru52BtX79eo0dO1ZXrlwxOkoGqcmpSk1JvW27y1Gx2TpfYkLibdskxF7N1rmyc82U5JRs5Y+JtK9+BwAAAAAA+ZfdFrA8PDzUqlUro2NkcGDrHxrdNES9Kw3Twe2Hb9ru9R4zNaL5K3qu6Us3bXMlKlZ9qz2nftWe18q562/a7stpK9W/1gj1r/n8TQtZZrNZg+u/oOFNX9Zbz8y76bn2bNivJysMU9+qz+nI3mM3bfdalzc18r5XNbLV+Ju2AQAAAAAAsBW7XULYvHlznTlzRj/88IPRUSRJ+zYf0qQes3Ql8ooks157dKrGfjRMNZpUy9Bu7vCF2rpsp67dC9KsoY3GafKajIWs6IjLerHdREWfvyzJpAUvfabU5FQFBrXM0G71Bxv1+RsrlJqcIpNMGlDzeb29Y7JcC7pkaDe6TbDO/HlOZpkVcTZSqSlpGvjmkxnzbzqo2UM/VPyVRJlk1vhOU/TCx8+qSr2KGdrNHjpfO7/dI8mks0fDNaLleL297fW76DkAQH63bds2vffeexo8eLBatGih8ePHKyoqSh9++KHR0QAAAJBH2G0BKztCQkI0YcKELF8zmUwaPXq0Ro0aZZVr/bbtwD/FK8lsNin2UoImB81RwUKuGdrFRcfLbDb9U74y6di+E+p/z0g5OZksbVKSU5UYm2hplxiXpEWvfK4vpn6T4VzxlxOUmpwmk5xklhQZHqOB946Ws8u/P7b0tHTFX06Q2Xzt/CmJqdr8+XbtXvdrhnMlJSQpMT5ZZpklmXQp4oomPv6WXP+TP/ZS3LVc/8S9cDpCJ46dUMHCBe+886wsLCzM6Aj5Gv1vLPrfWPbS/66uripatKjRMbJtxYoVGjBggFq1aqVffvlFERERmjdvnsxmc47Oc2P7pKQkxcbefum8yWS6bRsAAADYvzxdwAoODlZwcHCm4yaTKceD4tvp0K+tfvhouy6cuiiTSfIr56O3t78u3zI+GdotnbFKi8d/pZSkFJkkte7RQi9/9nyGNmmpaXqmziidOXLtP0JFPQprwjcvqF7r2hna7V6/T1OenK246HiZJFW+t7zm/TIt02B8Qtdp+nnltVlTLgVdNHB6b3V59uEMbU7/eU5j2kxQ9IUYSZJvWW+9t/dNefp6ZGi36NXPtWLmWiUnJkuSajWtropVMs7SMlJYWJj8/f2NjpFv0f/Gov+NZU/9Hxsbm6cKM1euXFHJkiVlMpkUFxcnb29vubq63v6NNzCbzRk+c8GCBeXj43OLd1xTfdlpSad1pHu5nMYGAADI09LT02U2m1WgQAGrnrfNz6kyYnxlt3tg2Ru/cr6a/fMkla9TRtUbVdE7oVMyFa8k6Ykxj+p/L3dVtYDKavdUm0zFK0kq4FxAH/z2lhp3qK/K9Spo/NJRmYpXktT44foau/hZVbinrJo/2kjv7Xkzy/+wTPh6rB7s3UpVG1bSoBl9MhWvJKlcjdKas2OyqjaspJpNquqDfTMyFa8kqf+k/6nriA6qFlBZnQa31ek/zurv305ms5cAAHnJN++s01M1hqtP5Wf1VI3ht9yT8XZOnz6tF154QV26dNGYMWO0a9cuSdLrr7+uc+fOacKECZo3b57mzJmjQ4cOafjw4db6GLCxkJAQmUwmywMAAPzLWuOrHTt26MUXX1RISIg6d+6s3r17a9WqVZKkM2fOqFu3bhnaP/PMM9q3b58iIyPVq1cvbdu2Tb169dKZM2fu+jPZizw9A8vWvP2La+L6F277DfyT4x/Xk+Mfv2UbF1dnTV7z8m2v2axzgJp1Drhtu3EfP3fbNiUr+um9PW/ett2AN4I04I1/nw+u/4JGLRiiag0r3fa9AIC84cOxS7R63gYlxidZji188TNFnbukAVOCcnSu5ORkvfjii3rkkUf02muv6fDhw5o6daqmT5+u8ePHq3///ho1apRq166tmjVrat26dZo2bZq1PxJs5L8z4CliAQBwjTXHV5L0yy+/6LHHHtOSJUt07NgxTZo0SaVLl1aJEiVu+b7Y2Fjt2bNH8+fPV7FixXJ8XXtl1zOwypYtq/fff9/oGPne+/uma/bgD3R4119GRwEAWME376zLNLiSpMSEJK18Z72+ffe7HJ1vz549cnJy0hNPPCF3d3c1btxYLVq0sJsbsQAAAOQ2a4+vJKlo0aIaOHCgPD09FRAQoE6dOmnjxo23fV9SUpJ69+7tUMUryc4LWLAf7+55U/NGfKRDP/9pdBQAwF36Zva6TIOr6xITknI81T08PFzR0dEKCgpSr1691KtXL+3du1dpaWnWiAsAAGD3rD2+kqQSJUrI2fnfhXNly5ZVRERElm1v3AfcZDJla6/QvIYlhMi2OTvf0MiW49Xv9Z66t/U9RscBANzGkpBl+iRkaY7fd+ZImNo6dc90vE/wE+odnPl48eLFdc8992RYFnjmzBm5ubnl+NoAAAD2zFbjK0mKiIhQamqqpYgVFhZmKUzd+EVhYmKizp8/b3nuqPtUUsBCjsza9rrGPDBBaalpavBgXaPjAABuoXdw9ywHRH2qPKvw4xdu+r6yNUpr0R9vZ/s6jRo10nvvvae1a9eqdevWOnz4sEJCQjRt2jT5+vreSXQAAAC7ZKvxlXRtL6uFCxcqKChIf//9t7799lu9+OKLcnd3V3x8vLZv365mzZppxYoVSkrKevaXI2EJIXJsxo8T9NW0Vdrz3T6jowAA7kC3kR1VsLBrlq8VLOyqrsM75Oh87u7umjx5sr7//nv17NlTc+fO1fPPP6+aNWtaIy4AAIDds/b4SpKqVKmitLQ09e3bV9OnT1ffvn3VpEkTeXp6asiQIfroo4/UsWNH7d+/X7Vq1brbj2D3mIGFO/Lm9+P1QmCIqjasLE9fx9oYDgAc3aPDHlbkmUta+e76DHs1FCzsqq7Pd1KnwQ/l+JzVq1fX7Nmzs3xt0aJFll+3bt1arVu3zvH5jbBj1x45OzurccP6RkcBAAB2LjfGVy4uLho6dKiGDh2a6bWuXbuqa9eukq7tf3XjksENGzbcwSewjbsZX1HAwh2bvilYwxq/qGGz+6tWs2pGxwEA5MCAqUHyLeetle+sV0pSqlzcXPTY8IfVeXA7o6PZhb+Pn9Sx4yckSd5eXqpcqYKxgQAAgN1jfHVrdzu+ooCFu/Lu7ql6suJQvbUlRCXKs88JAOQljwxtr0eGtjc6ht35+/hJ/bxrt4oVc5ck/bxrtyRRxAIAALdlrfGVv7+/HnjgASsksg/WGF9RwMJd+/TEe3q4YC+tjlsiZxd+SwEA8r4WTRrr2Ilr3xDWYS8vAABgYxUqVFCFChWMjmFVdzu+otoAq1gaPl9PlHpGX0d+ZHQUAADuyN/HT0r695vA6wOs68//+zoAAABuzZrjK+5CCKtwL15Ub20J0cC6o42OAgBAjl2f1n47P+/abRloAQAA4OasPb5iBhaspmLtcho4vbdeeniypqx/xeg4AABky45de3Ts+AkVK+auYydOWL4ZvBgZJUnasGmzpW2xYu76edduRUVHc3dCAACAm8iN8RUzsGBVAe3qqfUTzTVjwHtGRwEAINekpqYaHQEAAMCh3G58xQwsWF27p9ooMuySFo//Uv1e72l0HAAAbql5k0Yq4eurn3ftVp2aNS17MFz/ZrBdYBtJ/06Db9GkMftgAQAA3EJujK+YgYVcEfRKN12JitXq9783OgoAALdVuVIFtWjS+LbtKF4BAABkj7XHVw4xAyskJEQTJkwwOgb+Y/h7zyi4yzQV8y6q+7s3NzoOAAC39N+74VzH3QcBAADujDXHVw4xAys4OFhms9nygP0IWTlWR/b8rY1LfjI6CgAA2fbzrt26mpioq4mJ2bp7DgAAAG7tbsdXDjEDC/Zt4LTeerXTFCXGJarzkHZGxwEA4JaufxN4fWDFskEAAIC7Y43xlUPMwIL9m7TmJZ04dEbzx31qdBQAAG6rcqUKqlKpoqpUqkjxCgAAwArudnxFAQs2M/zdp+Xh465JPWcZHQUAgNtq3qSRmjdpZHQMAAAAh3E34ysKWLCpJ154VC27NtHwZi8bHQUAAAAAAOQR7IEFm7v/iebyK++rHv7P6PPT76uAcwGjIwEAAAAAADtGAQuGqNmkqub9Ol0dCwdp0eG35V+5pNGRACDPMJlMio2NNTqGTSUlJalgwYKW5yaTycA0AADA0eTl8dV/x0l3yt7HVxSwYJjiJT31XfKX6lv1OY38cJDqtaltdCQAyBOKFi1qdASbi42NlY+Pj9ExAACAg8rL46v8Mk5iDywY7uO/3tFnk1Zo/aIfjY4CAAAAAADsEAUs2IXpm4J1KSxaHQsH6cs3VxodBwAA3ERISIhMJpPlAQAAYAsUsGA3gl7tpm8ufaT4mHi1d+2pzyavMDoSAAD4j+DgYJnNZssDAADAFihgwa64urlqwJQgrU34TCmJKWrr1F2fTFjKABkAcEc2t3DWke7ljI4BAADgMIwaX1HAgl0q4FxA/V7vqY3py2RyMqmdcw8teuVzpSSlGB0NAAAAAADYGAUs2L3er3XX92lLVahoIb3Q4nX2yAIAAAAAIJ+hgIU8o9dLj+ntvRMVHxOvJysO1S8bfzM6EgAAAAAAsAEKWMhzBkwJ0ltbQrRsxmqFPD5DsZfijI4EAAAAAAByEQUs5Eklyvtq6oZXFfi/lupb7Tl9OfUboyMBAAAAAIBcQgELedp9XZvo68iPFH/lqoIqDGFZIQAAAAAADsghClghISEymUyWB/KfAW/8T7O2vn5tWWG3GYqNZlkhAAAAAACOwiEKWMHBwTKbzZYH8ie/cj7XlhU+2VJv9n5Hq9//3uhIAIA8IDklRX+fOKnN237W6bPnJEk/h+7Wnl/3S5L+Pn7ttb9PnFRySoqBSQEAAPKG3BhfOUQBC7jRfY810aQ1L+nEgVMa02aCLkdeMToSAMCOnTlzTrt/2afk5GSlJN84gPr3S7Hk5GTt/mWfzpw5Z/uAAAAAeUxujK+crZwRsBvD33tGB376QwNqjVSfCU/okaHtjI4EALBDp8+eVXEvT7ULbGM51qJpY8uvK1eqoMqVKmjDps06ffasKleqYEBKAACAvCM3xlfMwIJDq3t/LS2PWKhTf5zRqPtfU0zEZaMjAQDsTLkyZVSlYsXbtqtSsaLKlSljg0QAAAB5W26Mr5iBhXzhublP6+C2w3qm7mgFvdpNXZ592OhIAAA7kd0ZVcy8AgAAyJ7cGF9RwEK+UadlTS07v0DvDl+kkS3Ha/yy0Spe0tPoWAAAg/0cultSxmntkhQXH689v+7X+QsRSklJUQk/X91b5x6V9PMzIiYAAECekRvjK5YQIt8ZNqe/BkwN0qB6YxRxJtLoOAAAg7m6usjV1SXDsbj4eK1e/73i4uJUr849atSgnlxdXPT9pi06HxFhUFIAAIC8ITfGV8zAQr5Uu0UNLTu/QG2dumtj+jKj4wAADNSoQf1Mx/b8sk9FixRW54f/vQFIzerVtGHTZv128HeVDGQWFgAAwM3kxviKGVjI1559Z4DmPrfQ6BgAAAP9ffykTp/NePvm8xEXVaVS5o1Hy5UprUvRMTZKBgAAkDflxviKAhbytUeHtdfe73/Tub/CjY4CADDI6bNndfjIUaNjAAAAOIzcGF9RwEK+N/zdpzVn2AKjYwAADFKuTBldio7Rhk2bLd8UlvTz1bHjJzO1PX32nIp7edo2IAAAQB6TG+MrCljI9xo8WFcFC7lq5+q9RkcBABigbNnSatygvlxdXJSSnCJJatSwvmWj0cNHjurwkaPasGmzLkRclK+3t8GJAQAA7FtujK/YxB2Q9OzcARp533g16xxgdBQAgI25uriocqUKqlypguVY0SJF1Pnhh7Tnl33af/B3y22ea9esoUOH/5RHsWIZ2gMAAOBfuTG+ooAFSPIr66P7ezTXshnfqvuYR4yOAwCwA0WLFFGbVvdlOu5RrJh+3rVbXl6eLCcEAADIgbsZX1HAAv4xcFpvdSj0P3V57mG5FHQxOg4AwE5VrlRBXl6eKlq0iNFRAAAAHEJ2xlfsgQXcgA3dAQDZUdzLU64ufNkBAABgLbcbX1HAAm7Qvv8D+uuX4/r7t5NGRwEAwC6FhITIZDJZHgAAALZAAQv4j2fnDtDcZxcaHQMAALsUHBwss9lseQAAANiCQxSw+CYQ1lS7RQ15ly6un5buMDoKAAAAAACQgxSw+CYQ1vbc3AF6h1lYAAAAAADYBYcoYAHW5uFTTJ2HPKRPX19udBQAAAAAAPI9CljATfQN6aGv316r2Og4o6MAAAAAAJCvORsdALBn1zd0f+mz542OAgDIRYcOHcpWu9q1a+dyEgAAAMdg7fEVBSzgFh7odZ9+/eGAjuw9puoBVYyOAwDIJRSmAAAArMva4yuWEAK3MWbhUD3b+CWjYwAAAAAAkG9RwAKy4e3tkzTivleNjgEAAAAAQL5EAQvIhnuaV1ezRxppwYufGh0FAAAAAIB8hwIWkE09xj6qk7+f1a61vxgdBQAAAACAfIUCFpADk1a/qClPzlH85QSjowAAAAAAkG9QwAJyaPbPk/V8i1eMjgEAAAAAQL5BAQvIofK1yuix4R309uAPjY4CADCI2Ww2OgIAAIBDud34igIWcAc6DmyrxPhEbfpsm9FRAAB34cZhUlpa2r/H/zOAiroUrd8O/a5DfxzW5ctXZDKZbJQQAAAgb8mt8ZWzNUMC+cmLS4bryYpDVfu+GipR3tfoOACAO2CSFBsbp/2Hftfp02dVrmxp3VvnHhVzd5ckpaWn67cDh3Tk2N8ym81KN6frwO+HVbtmddW5pxaFLAAAgP/IrfEVBSzgLsz+eZKGNX5JX579wOgoAIA7cCU2Vpt+2q7klBR5ehRT2PkIRUXHqE3LFvIo5q7fD/+psIhI1alVUzWqVVVaepoO/XFYJ8+Eya1QIVWrXMnojwAAAGBXcmt8xRJC4C54+xfXkJl9NannLKOjAADuwK/7DygxMUktmzZWx/Zt1bJ5EyWnpOj3w0dkNpt1+MhfKuTqrNq1asjZuYAKurqqYb17VdDVWQd/P2x0fAAAALuTW+MrCljAXbr/ieby9vfSvFGLjY4CAMihiMgolS9bWv6lSupsWJj8S5aQf0k/nT57RknJyUpPT5ePj4+ka3s4XN/HwcvTU04FChgZHQAAwC7l1viKAhZgBUNm9pOPf3HNHsKdCQEgLylYsKC8PD3194mT2rvvgP4+cVLFPT2VlpYukyQX5wI6Gxam9HSzChQooAIFCig1NVXnL1xQWmqK0fEBAADsTm6NrxyigBUSEiKTyWR5AEboPuYRVa5XUQPrjtbVuESj4wAAsiEtPU0pKSnyKOau5o0D5FHMXSmpqTKZnFSwYEFVqlBBZjlp89ZtOnsuTKfPntWmn7ZJpgKqWa2q0fEBAADsTm6NrxyigBUcHCyz2Wx5AEbpNKitXvr8efXwf0Z7N+w3Og4A4DacTE5ycnbSxcgo7dl3QBGRUSrgVEAm07U75NSuVVNurs66Epeg3ft+0/6DfyguPkE+xT1VgwIWAABAJrk1vuIuhICVVaxdTt9eWaKXHp6sQz//qX4TexodCQBwEyaTk2SWalSvqpSUVNWsVlWHDh+RTCalp6XL1dVFHsXcFXUpWhXLl5WLs4tKlPCVf8mSRkcHAACwS7k1vnKIGViAPZqy/hW5uLrohcAQo6MAAG4iMfGqLl++IpPJpLq1a8lkMunylcsym81ydi6glJRUHTt+QsWKFlXjhg1U/946FK8AAABuIbfGVxSwgFwU9Go3Bb3aTR3ceumvX48bHQcA8B8lfH10Nixc5yMiJEnnIyIUdj5CZf1LyWQyKfz8eRV0K6QK5cvJbDYrLS2N7QoAAABuIbfGVxSwgFxWr01trbqyRLMGfqCNn/xkdBwAwA3q160tZ2dn/fjTz/ph80/68aftci5QQHVr15IknTxzRinJySpXprRMJpOcnJzy/Q1juHkOAAC4ldwaX1HAAmzAxdVZ7+19U3u+26ft3+wyOg4A4B8eHh5q07KFSpX004XISJUq4afW9zWTR7FiSk5O1rmw8yru5akiRQpLEgUbcfMcAABwa7k1vmITd8CGXv58hN55doEuhcfokaHtjI4DAPme2WxWcS9PtWnZQmlpaSpQoIDluIuLi1q1aCa3ggUNTgkAAJB35Nb4ihlYgI09N/dpHfjpd/20bKfRUQAg3zOZTJaZRAUKFLD8+vryuNKlSsq7uJfRMQEAAPKM3BpfUcACDPDqV6O0+r0NOvDTH0ZHAYB878a9nNjXCQAA4O7lxviKAhZgkBmbJ2jOsPk69cdZo6MAAAAAAGDXKGABBlpwaJbGtAlWzMUrRkcBAAAAAMBuUcACDLbswkJ1LzHA6BgAAAAAANgtCliAHVhxcZG6+fY3OgYAAAAAAHaJAhZgB4p5u2vW1okacM9Io6MAAAAAAGB3KGABdqJczTJ6ft4zGt062OgoAAAAAADYFWcjLvrjjz9qyZIlMpvN6tWrl9q1a5epzeeff641a9bIbDbr4YcfVp8+fQxICthW3Va1FPRqN73aeYomrX7J6DgAkG8cOnQoW+1q166dy0kAAAAcg7XHVzYvYMXExGjhwoWaO3eunJycNGzYMAUEBMjb29vS5ujRo1q7dq3mz58vk8mkoUOHqkGDBgwakS80eLCuPHyLaWTL8Zq17XWj4wBAvsAYAwAAwLqsPb6y+RLC3bt3KyAgQF5eXvLw8FCzZs20c+fOjKGcnFSgQAG5urrKxcVFLi4ucnJitSPyj8r3VtCAqUH6X7nBRkcBAAAAAMBwNq8KRUZGys/Pz/Lc19dXUVFRGdpUqVJFTZo0Ubdu3fT444+rVq1aqlWrlq2jAoaq3aKGZu+YrLZO3XXh1EWj4wAAAAAAYBibLyE0m82ZjqWnp2d4fvDgQf3222+aOXOmnJycNG3aNO3du1cBAQEZ2oWEhGjChAlZXsdkMmn06NEaNWqU1bJfFxYWZvVzIvvyVf87SR+fna0RTV/VM7OCVKNZFaMT5a/+t0P0v7Hof2PdSf+bTKZcSAIAAABbs3kBy9vbW0eOHLE8j4yMVNmyZTO02bVrl1q1aqUqVa79Z/2BBx5QaGhopgJWcHCwgoMz37HNZDJlWSizhrCwMPn7++fKuXF7+bX/vzj9gUa3DlZagllte99vWI782v/2gv43Fv1vrDvtf4qOAAAAjsHmSwibNGmi3bt3Kz4+XgkJCQoNDVXTpk1lNpsVFham9PR0lS9fXrt371ZcXJzi4+O1a9cuVahQwdZRAbvy1pYQ7fvhoD6btMLoKAAAAAAA2JTNC1heXl7q37+/Ro8erZEjRyooKEi+vr5KSkpS3759dfnyZT344IOqXbu2Bg4cqKefflqVK1dWhw4dbB0VsDtjP35WKckpeuvpeUZHAQAAAADAZmy+hFCSAgMDFRgYmOGYm5ubNm7caHk+cOBADRw40NbRALvXb2JPfbfoR41tO1HTNr5mdBwAAAAAAHKdzWdgAbh77fs/oF4vPqbnmr5kdBQAAAAAAHIdBSwgj6ofWEejFw5Vv+rDjY4CAA7p59Dd+jl0t9ExAAAAHMbdjK8oYAF5WIV7ymrympf0v3KDjY4CAA4nLj5ecfHxRscAAABwGHczvjJkDywA1lO6ainN3jFZ3Xz7a8XFRUbHAQDYmR9//FFLliyR2WxWr1691K5du0xt+vTpo8jISMvz6dOn65577rFlTAAAgFuigAU4AN8y3vroz9nqXPRJrY771Og4AAA7ERMTo4ULF2ru3LlycnLSsGHDFBAQIG9vb0ub9PR0JScna926dQYmBQAAuDWWEAIOopi3u5ZFLFRbp+5KSU41Og4A5EmXomOUnJKS6XhySoouRcfYPtBd2r17twICAuTl5SUPDw81a9ZMO3fuzNAmMjIyQ0ELAADAmqw1vqKABTgQt8IFtTF9mR4t1lvxlxOMjgMAec6GTZu14YfNGQZZySkp2vDDZm3YtNnAZHcmMjJSfn5+lue+vr6KiorK0Ob8+fO6fPmyxo4dqyeeeEJz585Venq6raMCAAAHZa3xFUsIAQe0LvELdfHqq0WHZ6t4SU+j4wBAntEusI1lkOXsfG2YtOGHzYqLj1e7wDYGp8s5s9mc6dh/i1Pu7u56/PHH9cgjjyg2Nlbjx4/X2rVr1blz5wztQkJCNGHChCyvYzKZNHr0aI0aNequM4eFhd31OZB99Lft0ee2R5/bHn1ue7bsc5PJlKP21hpfUcACHNTK6I/Vw/8ZvbNrivzK+hgdBwDyhOJenpZB1vXij8lkUrvANiru5WlsuDvg7e2tI0eOWJ5HRkaqbNmyGdqUL19eFSpUkMlkkoeHh1q2bKkTJ05kOldwcLCCg4MzHTeZTFkWyu5EWFiY/P39rXIu3B79bXv0ue3R57ZHn9uerfs8p8Uya42vWEIIOLCvwuZr7nMLte/Hg0ZHAQC7duPeDNcHWWlpaUpLS8swuMpre2E1adJEu3fvVnx8vBISEhQaGqqmTZvKbDYrLCxM6enp+vrrrxUSEqLU1FTFxcVpx44d3IEQAADcNWuPryhgAQ5u4spx+uKNb7Tmg41GRwEAu7Xmu+91KTra8vz6IOu/3wxeio7Wmu++NyDhnfHy8lL//v01evRojRw5UkFBQfL19VVSUpL69u2ry5cv69FHH1WJEiU0YMAADRo0SPXq1VNgYKDR0QEAQB5n7fEVSwiBfGDaD69p9pAP9cGYTzRoRh+j4wCAXUpOznh3HD/fzMuv/9smLwgMDMxUkHJzc9PGjf9+sTFkyBANGTLE1tEAAICDs+b4igIWkE88P2+gls9crdcefVMTV40zOg4A2JWypf2159d9Onzk6C3bxcXHq2xp9vUAAAC4HWuPr1hCCOQjj4/qrIefDtSAWiOMjgIAdqVRw/oqV6b0bduVK1NajRrWt0EiAACAvM3a4yuHmIF1q9s6A8ioWecAla5aSu1de+qTY3PlV447FAJA0SJF1KgBhSkAAABrsfb4yiFmYAUHB8tsNlseAG6tXI3SWpvwmUa2Gq99m7hDIQAAAADAvjlEAQtAzhVwLqDPTs7TF1O/0er3884dtQAAAAAA+Q8FLCCfm7bxNZ04cEpLJi4zOgoAAAAAAFmigAVAw997RsVLeenFdpOMjgIAAAAAQCYUsABIkjo+86C6j+msnmUGKSH2qtFxAAAAAACwoIAFwKJh23v17u4p6lVmkA6HHjU6DgAAAAAAkihgAfgPb//iWnX5E80b9bG+W/Sj0XEAAAAAAKCABSBrc3ZM1u87jmjeqMVGRwEAAAAA5HMUsADc1OgFQ1SinC+buwMAAAAADEUBC8AtdR3RUd3HdFavsoOUlJBkdBwAAAAAQD5EAQvAbTVse6/eCZ2iCR3eUkpSitFxAAAAAAD5DAUsANniU7q4pmx5WT38Byo2Os7oOAAAAACAfIQCFoAc+TrqIz1R8hmlpqQaHQUAAAAAkE9QwAKQY6vjlqhz0d5GxwAAAAAA5BMUsADkmLOLs5aen6+u3k8ZHQUAAAAAkA9QwAJwR9y9iur9/dMVVH6I0VEAAAAAAA7O2egAAPIuv7I+emP9K3q69kgtODTL6DgAcMcuRceoaNEiSk5O1uEjf+n8hQhFx8RIkkr4+apcmdKqXKmiXF1cjA0KAACQR1h7fEUBC8BdKV+rjMYsGqbnmr6kd0KnGB0HAO7Imu++V6MG9bT/4O+SpCqVKujeOvcoJTlF5yMitP/g7/rjyFG1aXmfint5GhsWAAAgD7D2+MohlhCGhITIZDJZHgBsq0bjKur/xv809sGJRkcBgDu259f9KlqksLo92kmNGtT/51vBCmrRtLG6PdpJRYsU0eZt25WckmJ0VEMx7gIAANllzfGVQxSwgoODZTabLQ8Atlf/gTrq8tzDCn5smtFRAOAumPTbP98S3sjVxUVtWt2n5OQU/X38hAG57AfjLgAAkDPWGV85RAELgH1o/mgjBQa11LvPLzI6CgDkSOWKFVTCz1euri6Ssi7KuLq4qEqlCjp2/KRNswEAAORF1h5fsQcWAKtq9Xgzhf19QQtf+kwDpgQZHQcAsqVF08bZale2TGkKWAAAANlg7fEVM7AAWF3PcV10JSpW6xZsMjoKAGTLF8u/0fmIiNu2K+nnp16PP2aDRAAAAHmbtcdXzMACkCtGfjhYYx+cqFKV/FT/gTpGxwGAWypapLDOnD2nkn5+Wb7+c+huxcXHS5KKe3mpUYN6NkwHAACQ91h7fMUMLAC5ZtoPr+mtAfN04dRFo6MAwC2VK1NGx46fvOUdcJKTk3Uh4qIOHzlqw2QAAAB5k7XHVxSwAOSqT0+8pycrDjU6BgDcUs0a1eTq4qLNW7O+jXOjhvUlmWwfDAAAII+y9viKJYQAct0nx+aqT5Vn9cmxuUZHAYAsXb+N8+at27Vi1RqVK1NaJUtcm+5+KTpGx/65tXOjBvW059f9BiYFAADIG6w9vqKABSDXlapUQiPeH6hxD72uN78fb3QcAMhScS9Pde7QTn8fP6HTZ8/p59DdkiQvTw/Vql5NlStVkKurq0rcZB8HAAAAZGTN8RUFLAA20eDBugr7+4JmD/lQz88baHQcAMiSq4uLalavpprVq920TXEvT9sFAgAAyOOsNb5iDywANtNpUFsVci+kZTO+NToKAAAAACAPoYAFwKYGTuutP0KPavvXu4yOAgAAAADIIyhgAbC54OVjtPr9Dfrr1+NGRwEAAAAA5AEUsAAYovdrT+i9ER8ZHQMAAAAAkAdQwAJgiNr31VD0+RidO3be6CgAAAAAADtHAQuAYTo886DWzf/B6BgAAAAAADvnbHQA2J+0tDQ98MAD2rp1q9FRkE8MnNbb6Ah3pG3btvr++++NjgEAAAAADo8CFjJJTU3Vrl27ZDabjY6SSUpKilxcXIyOkW/lRv+H/X1exbzdVdSziFXPm9uSkpLk4eFhdAwAAAAAyBccYglhSEiITCaT5QEg7/DwKaYrkbFGxwAAAAAA2DGHKGAFBwfLbDZbHgDyjiIehZWYkKS01DSjowAAAAAA7JRDFLAA5G0ePsV0mVlYAAAAAICbYA8sZEt6erp++OEHbdmyRceOHVNcXJy8vLxUt25dPf7446pcubLREe3O33//rbS0NFWrVs2q5922bZu+/PJLnTt3TlWqVNGQIUNu2f/bt29XSEhIpuMPP/ywRo0aZdVsd8rDx11nj4areElPo6MAAAAAAOwQBSzc1qlTpzRx4kRFR0froYceUocOHeTk5KSjR48qNDRUQ4cO1RNPPKE+ffqwwfoNli1bpqtXr2ZZPLpTu3bt0sSJE9W5c2f16NFD69ev14gRI7Rw4UL5+fll+Z7w8HB5enqqb9++GY6XK1fOarnulrOrs5xdCygh9qoKuxcyOg4AAAAAwM5QwMItnThxQiNGjFClSpU0bdo0eXt7W15r3ry5+vTpo6VLl+rjjz9WdHS0xowZY2DajFJSUmQymeTs7Di/zZctW6aAgAANHz5cktSkSRM99dRTWrNmjfr375/le8LDw1WxYkV16tTJllFz7Ppm7hSwAAAAAAD/5Tj/s4fVJSYmKiQkRA0aNND48ePl5JR5yzQnJyf17NlTbm5uevfdd9WgQQM98MADWZ7v+PHjmj9/vg4fPiwnJyfVrVtXQ4cOtcwcSk9P15IlS7RlyxbFxMSoevXqGjx4sCpUqGB5/YsvvtBPP/2kixcvqnz58goKClLTpk0t13jiiSc0bNgwHTlyROvXr9f777+vEiVK6Pvvv9fKlSt1+vRplSxZUt27d1e7du1u+tlvl6VDhw4aPXq0AgMDLe+ZPn26Ll++rEmTJmn48OE6fPiwJKlt27ZauXKlihQpkqP+/6/Y2Fj99ttvGj16tOVYwYIF1aRJE23evPmWBaxSpUrd1bVtwb14UV04dVHp6elZ/l4DAAAAAORf/C8RN7V8+XLFxsbq+eefl5OTk8xms5YvX66BAweqS5cuWrBggbZu3ao5c+aoS5cuqlevnhYvXpzluZKSkjRu3DglJCTo+eef14ABA/Tnn3/qrbfesrSZNWuWvvnmGz322GN67rnnlJSUpOeee04RERGSpHfffVdffvml2rZtq1deeUXly5fX+PHjtWPHjgzXWrp0qc6dO6eRI0fKy8tLK1eu1MyZM9WkSRO99tpratiwoWbMmKHVq1ff9LPfLsvtTJ48Wffdd58CAgK0dOlSFS5cOFvvu5WoqChJmZf+lStXTufPn1dKSkqW7wsPD1dERISGDBmizp07a9CgQVq7du1d58kN12dhAQDsV0hIiEwmk+UBAABgC8zAwk19/fXX6t+/vzw9PSVJU6ZM0dGjRzVu3Dh5e3tr1qxZWrdunR588EFJUsuWLfXOO+8oIiIi035Mp06dUkxMjF5++WXVr19fkuTl5aVDhw5Jks6dO6cNGzbolVde0f333y9Juvfee/Xkk0/q559/1n333ac1a9Zo4MCB6tatm6Rry+diYmL0ySefqHnz5pZrpaSkaMKECTKZTEpMTNQnn3yi3r17KygoSJLUuHFjy/HOnTtn+ty3y/LYY4/dtu/c3d1VsGBBpaeny8vLK9t9fivR0dGSpKJFi2a6liQlJCTIw8Mjw2vp6em6cOGCrly5ot69e6tEiRIKDQ3V22+/rYSEBHXv3t0q2aylmI+7zp+IkKefx+0bA0AuuRQdo+iYGF2KjpEkFffylJenp4p7eRqay14EBwcrODjY8pwiFgAAuB1rjK8oYCFLHh4eio2NtRRwtm/frp9++knz58+3zABq37699u7da2lTpUoVSdcKKf9VsmRJFSpUSPPmzVO3bt0UEBCg5s2bWwpPf/zxh0wmk+677z7Le7y9vbVixQo5Ozvrl19+UXp6ulq2bJnhvPfff7+mT5+ulJQUywbyjRs3tgymT548qdjYWNWvX19XrlyxvK9OnTpat25dlsW222WxhqNHj2rYsGE3fb179+4aOHBghmNms1lS5v8oXD+e1bK7tLQ0jRs3TtWrV7csI2zevLlSU1P16aefqlu3bna1XK9gIVc5OZmUlJCkgoULGh0HQD6059d9OnzkL0lSCT9fSdLhI0clSffWuUf31r7HsGwAAAB5kbXGVxSwkCU3Nze5u7tbZvfs2LFD1atXz7B87cyZM/L29latWrUkSefPn5eLi4vKli2b6XzFihXTW2+9pU8++USzZ89WSkqKKleurCeffFL33XefIiIi5OHhoQIFCmR43/Wld1FRUTKZTJbZYNd5e3vLbDYrOjraUoi6ccbThQsXJEnPP/98lp8zPj4+07HbZbGGihUr6tNPP73p61ld6/rniouLy3A8Pj5eLi4ulp/VjVxcXNS6detMx5s3b66NGzfq/Pnz8vf3z2H63FXMp5guR8bKrxwFLAC2tXr9BsXFJ6h1yxYqV6Z0htdOnz2nn0N36/SZc+r88EMGJQQAAMhbrDm+ooCFLJlMJsXFxSk+Pl5FihRRdHR0hpk/6enp2rhxo1q2bGk5vmrVKj3wwAOZCj/XVa1aVa+//rqSkpJ06NAhLV++XK+//roWLFig4sWLKzY2NtMG3n///bcKFixoKVRdvnxZvr6+ltevL6u7sbB1Y87rS+qWLVuWqfh1M7fLUqZMmSzf99/C0q24uLioRIkS2W4vST4+PpKks2fPqmbNmpbj586ds7z2XzExMYqIiFDVqlUz9Mv1n1GhQvZ3xz8PH3f99Wuk/Mpl/ZkAIDfs+XWf4uIT1C6wjYp7eerv4ye1+9d9kqR6de5RzerVVDSwjTZs2qzfDv6ue+swEwsAAOBWrD2+sp+1Q7ArCQkJMpvNljvpBQQE6I8//tCuXbsUFRWlmTNn6vz58ypWrJgiIiI0bdo0Xbx4UYMGDcryfD/99JP69eunxMREFSxYUA0bNtTzzz+v9PR0nT9/XtWqVVNqaqp27dpleU9ycrJeeOEFhYaGqnLlynJyctK2bdsynbdixYpydXXN8roVKlSQi4uLQkNDMxxfvHixxo4dm+V7bpdFurZcLywszPJ6YmKi/vjjj5t1ZyZHjx5V27Ztb/r48MMPM73H3d1d9erVy7BpfVpamkJDQ9WqVassr3P8+HENGzZMmzdvznB8165d8vPzs9r+XNbmXryIrkSxmTsA27gUHaPDR/5Si6aNLfsw7P51n2pVr6Z6de7Rnl/361J0jIp7eapF08b67dDvlv0bAAAAkFlujK+YgYUsXb58WZUqVdKCBQtUt25ddenSRRcuXNCbb74pDw8P9evXTyVKlNCnn36qL774Qg0aNNC7776b5TI26dr+WBcuXNCkSZPUuXNnJSQkaMOGDSpWrJhq1Kghd3d3tWrVStOnT9eAAQNUsmRJrVq1Sunp6WrdurV8fHzUsWNHLVy4UGlpaapYsaK2bdumnTt3KiQk5Kafw9PTU127dtXs2bMVFRWlqlWrav/+/Vq2bJmGDh2a5XsqV658yyySVKlSJa1Zs0YlS5ZUiRIl9MUXX+jy5csZzuPs7Kxz587p6NGjqlKlSobZXHeyhFC6tjfW+PHjtWTJEtWvX1+rV69WXFycOnXqZGmzdu1a7d+/X2PHjlW9evVUo0YNzZs3T+Hh4apSpYr27t2rdevW6dVXX830ntGjR8vNze2muWzFw6eYIs9dUjHvrH8/AYA1Rf8zWLpxWnuvx/+9YceeX/cr+p8B1vU2158DAAAgs9wYX5nM13eAdiAmk0m59bHCwsLsbs8ga0tKSpKHh4eOHz+uoUOHqkGDBho5cmSWxanExEQ5Oztna3Pz0NBQffLJJzpz5oxcXV1Vo0YN9e/fX5UrV5Z07e6BH330kbZv366YmBhVrVpVAwcOVPXq1SVdW7a4ZMkSbd26VRERESpfvryCgoLUrFkzyzWeeOIJ9ezZU127drUcM5vNWr58ub7//nuFh4erRIkSeuyxxzIUff7rdllOnz6tt99+W0eOHFFycrKqVaummjVr6vz585o0aZIk6bffftOMGTN0+fJlffHFFypSpEg2ev/2tm7dqqVLl+rs2bOqVq2aBg0aZOlDSZo5c6bWr1+v1atXy83NTUlJSVq0aJH27NmjyMhIVaxYUU8++aQaNWqU6T0rV668Zc4bN8vPbSd/P6PSVUrKpaBtrpdT1/+cJCYm2uya+eHvH3tG/xvrTvs/O+/b8+s+XYqOUbvANhmOJ6ek6OfQ3Tpz9py6PtJRRf/5+3HDps0q7uWpRg3q5ziPI7LmuIs/Z7ZFf9sefW579Lnt0ee2Z+s+N2p8RQErh/LDH8Yb/2P+22+/afr06bp69ap69uypmjVrqnz58nJxcVFERIQOHz6s+++/32azdmxZQMmO6/tyZXd/LXv25ptvatSoUbfsX1v2f/SFy0pLTZNP6eI2uV5OUcDKf+h/YxlRwNrz6z4dO37Ssm/DdRSwMqKAlXfR37ZHn9sefW579Lnt5aUC1t2Mr1hCiFu69957tWjRIi1btkzr16/XggULlJ6ebnm9YsWKqlixoqpVq2ZgSuNkdWfEvOj333+Xq6urXRUHPXzcdfLQGbstYAFwHMU9vSy3dv7v8RZN/TJNZb8QcVFVKla0UToAAIC8JzfGVxSwcFuurq4KCgpSUFCQUlJSdPbsWZlMJvn4+Kho0aJGx4MVuLm5aeDAgUbHyMCpgJPcihZUXEy8inpaZ/klAGTF658B1Omz5zLs01CihG+mtqfPnsvwHgAAAGSWG+Mr7kKIHHFxcVHFihVVoUIFilcOpHLlylbbo8uaPHyK6UokdyMEkLuKe3mqZvWq+jl0d4a73xw+clSHjxy1PL8UHaOfQ3fr3tr3sIE7AADALeTG+MohClghISEymUyWBwDHUMSjsGQyKS01zegoABxcowb1VbRIYW3YtNnyLWCjBvUt+zCcPntOGzZtVtEihXVvnXuMjAoAAJAnWHt85RBLCIODgxUcHGx5ThELcBzFvIvqwqmL8q9c0ugoABxc54fbac+v+7Rl28+SpBJ+16a4X4i4KEm6t/Y9FK8AAABywJrjK4coYAFwXEU9i+jyxStKuJKgwsUKGx0HgINr1KC+KlesqOjoGF2KiZYkValYUV5eniwbBAAAuAPWGl9RwAJg9/zK+ejcX+GqULuc0VEA5APF/xlMVVYFo6MAAAA4BGuMrxxiDywAjs2loIuKeBZR9IXLRkcBAAAAABiAAhaAPMG3jLcuhUfLnG42OgoAAAAAwMYoYAHIM/zK+SjidKTRMQAAAAAANkYBC0Ce4V68qJKTUnQ1LtHoKAAAAAAAG2ITd9yVixcvau7cudq3b5/mzZsnf39/ffDBB9q0aZOCgoLUpUsXq11r27Zt+uKLLxQWFqYqVapoyJAhqly58k3bb9++XSEhIZmOP/zwwxo1apTl+enTp7Vo0SIdOHBARYoUUbdu3TLkvnr1qhYvXqwdO3YoJiZGZcuWVc+ePdWqVSurfTZkn185H50/EaHytcoYHQUAAAAAYCMUsHBX1q1bpz/++ENvvPGG/Pz8dPToUa1YsUIjR45UixYtrHadXbt2aeLEierYsaN69uyp9evXa8SIEVq4cKH8/PyyfE94eLg8PT3Vt2/fDMfLlfv3Tnbnzp3T6NGjVbVqVY0cOVJHjx7Vu+++K3d3dwUGBkqSZs+erR07dqhfv34qU6aMtm7dqtdff11vvvmmGjRoYLXPiOwpWMhVhYq66fLFK/LwLWZ0HAAAAACADVDAwl1JSEhQmTJlVLt2bctzSbr//vtVpEgRq11n2bJlCggI0LBhw+Ti4qImTZroqaee0po1a9S/f/8s3xMeHq6KFSuqU6dONz3vihUr5OnpqZCQELm4uKhly5Y6dOiQvv32WwUGBio+Pl6bNm3S2LFj1bZtW0lSo0aN9Pvvv2vTpk0UsAziV85HR385TgELAAAAAPIJ9sDCLX3//fcaOnSoOnXqpKefflobNmywvBYcHKyvv/5ahw4dUtu2bbVw4UKNHTtWktSlSxctW7bMKhliY2P122+/6f7777ccK1iwoJo0aaLNmzff9H3h4eEqVarUTV9PTU3Vli1b1LZtW7m4uFiOv/baaxoxYoQkKSYmRvfee6/uuecey+smk0leXl5KSkq6i0+Fu1WivC8bugMAAABAPsEMLNzUypUr9f7776tXr17q16+ffvnlF82YMUPJycnq3LmzXnjhBc2fP19///23Xn/9dbm5ualKlSqaNGmSPvroI/n4+FglR1RUlKSMS/+uP1+zZo1SUlIyFKCuCw8PlyQNGTJEZ8+elb+/vx555BF17NhRkhQZGanY2FhVr15daWlpOnPmjDw9PeXl5SUvLy9JUunSpTVjxgzLOc1ms/bs2aMjR45o5MiRVvl8uDMePu46ffiKkq4mq2AhV6PjAAAAAAByEQUsZMnJyUmffPKJevfuraCgIElS48aNlZiYqE8++USdO3dW0aJF5ebmJhcXF0vBp1ixa0u6vLy85ObmZpUs0dHRkqSiRYtmOO7u7i7p2rJFDw+PDK+lp6frwoULunLlinr37q0SJUooNDRUb7/9thISEtS9e3fLeX///XeNHz9eV69elSQFBARo7Nixls903TfffKP58+crJSVFXbt21YMPPmiVz4c751fORxGnLqpsjdJGRwEAAAAA5CIKWMhS4cKFFRsbq/r16+vKlSuW43Xq1NG6desUERFx083Tb+Xo0aMaNmzYTV/v3r27Bg4cmOGY2WyWdG3pXlbHnZwyr4RNS0vTuHHjVL16dcsywubNmys1NVWffvqpunXrZvlcq1atUnBwsGrVqqW//vpLb7zxht566y1NmjQpwzmbNWsmPz8//f777/r666/l4+Oj7t2757AHYE1uRQrKxc1FV6JiVczb3eg4AJAvhISEaMKECUbHAAAA+QwFLGTp+uyp559/PsvX4+Pj7+i8FStW1KeffnrT1wsXLpzp2PWZUHFxcZkyuLi4WGZi3cjFxUWtW7fOdLx58+bauHGjzp8/b3lf//791bBhQ0lS3bp1FRQUpDlz5iguLi7DrK+SJUuqZMmSatGihdLS0rR69WoKWHbAr5yPjv92igIWANhIcHCwgoODLc//+wUTAABAbjCkgPXjjz9qyZIlMpvN6tWrl9q1a5epzeHDhzV37lxFRUWpTZs2GjRokAFJ86+UlBRJ1+7+5+npabXzuri4qESJEjl6z/W9tM6ePasqVapYjp87d+6m+2zFxMQoIiJCVatWzTCwLlCggCSpUKFClplbJUuWzPDe688vX76sX3/9VRs2bNCkSZMynKdChQr6+uuvlZiYaLWlkrgzTk5O8i3rrUvh0Speyuv2bwAAAAAA5Dk2vwthTEyMFi5cqJkzZ2r27NlasmSJZZPu6xITE/XGG2/o5Zdf1ieffKJDhw7p6NGjto6ar12f3RQaGprh+OLFiy13GrwTR48eVdu2bW/6+PDDDzO9x93dXfXq1dOOHTssx9LS0hQaGqpWrVpleZ3jx49r2LBhme5SuGvXLvn5+cnLy0slS5ZUuXLltHfv3gxt9u/fr0KFCqlUqVJyc3PT7t27M/3+++OPP+Tj40Pxyk54+BRT9IXLMqebjY4CAAAAAMgFNp+BtXv3bgUEBFiWhTVr1kw7d+5Up06dLG127dqlOnXqqHTpaxszz5w5k+npNpaamqquXbtq9uzZioqKUtWqVbV//34tW7ZMQ4cOvePz3skSQuna3ljjx4/XZ599poCAAK1evVpxcXEZft+sXbtW+/fv19ixY1WvXj3VqFFD8+bNU3h4uKpUqaK9e/dq3bp1evXVVy3v6d27t6ZOnSqTyaQ6dero4MGDWr58uQYNGiQnJyc1aNBAtWrV0qRJk9S7d28VL17cMitr+PDhd9wPsD6vEh66dD5a3v7FjY4CAAAAALAymxewIiMjM2z+7evrm2kG1vnz55WQkKDBgwcrOjpaTZo0ybJYcKtNRE0mk0aPHq1Ro0ZZNb8khYWFWf2c9iQpKUmS1KdPHxUtWlQ//PCDvvjiC/n5+enZZ59Vhw4dLEsM09PTZTabLc9TU1MlXVuCeP3YfxUvfusCQ1bvq1+/vsaNG6cVK1Zo5cqVqlq1qqZOnSpvb29L+8OHD2vLli0aPny43NzcNGXKFH388cfatGmTvvrqK1WoUEEhISEKCAiwvKdFixYaM2aMvvnmG33zzTfy9/fXiBEj9OCDD1raTJw4UfPnz9cXX3yhyMhIlS1bVi+88IJat25908/oyOz1MxctXkSnfj+rYr622Qvrej/Y+u8DR//7x97R/8a6k/7nCzAAAADHYDJfv5WbjXz22WeSpKCgIEnS0qVLFR8fr6eeesrS5pNPPtGGDRv09ttvq3DhwgoODlbLli316KOPZusaJpNJufWxwsLC5O/vnyvnthdJSUny8PBQYmKi0VEySUlJkYuLi9Ex8i177/+LZyLlUtBFnn4euX4tI/6c5Ie/f+wZ/W+sO+1/fm65z5rjLn5etkV/2x59bnv0ue3R57Zn6z436mds8z2wvL29FRkZaXkeGRmZaSNuLy8vNWzYUL6+vipSpIiaNm2qkydP2jgpgLzGq6SXLp2PMToGAAAAAMDKbF7AatKkiXbv3q34+HglJCQoNDRUTZs2ldlsVlhYmNLT09W4cWP98ssvioiIUHx8vLZv365atWrZOiqAPMbZpYAKuxdS7KU4o6MAAAAAAKzI5ntgeXl5qX///ho9erTMZrOCgoLk6+urxMRE9e3bV0uXLlWJEiXUr18/jRkzRmlpaWrdurUefPBBW0cFkAd5lfTU+RMRci9e1OgoAAAAAAArsXkBS5ICAwMVGBiY4Zibm5s2btxoed62bVu1bdvW1tEA5HEFC7nK2aWAEq5cVeFihYyOAwAAAACwApsvIQSA3OZV0lOXzkcbHQMAAAAAYCUUsAA4nMLuhWRONyspIcnoKAAAAAAAK6CABcAheZbw4I6EAAAAAOAgKGABcEjuXkWVlJCs1ORUo6MAAAAAAO4SBSwADotZWAAAAADgGChgAXBYnr7FFHspTuZ0s9FRAAAAAAB3gQIWAIfmVcKDOxICAAAAQB7nbHQA5E2jR4/WgQMHFBQUpH79+mV4berUqTp69KgWLVqU6X0nT57UM888o5CQEDVv3jzDazt27NDq1at14sQJXb16VaVLl1anTp3Uvn17OTllv9a6bds2ffnllzp37pyqVKmiIUOGqHLlylm23bdvn8aOHXvTc4WEhKhQoUK3bdO8eXNt375dISEhmV5/+OGHNWrUKElSamqqvvzyS/3444+6dOmSqlWrpgEDBqh69eoZ3nP69GktWrRIBw4cUJEiRdStWzd16dLF8npaWpqWLVum7777TlFRUSpTpox69eqlVq1a5agvrJXnv3bt2qWUlBTdd999OcpjrczZ+VlYs58BAAAAALmLAhZyLDIyUgcPHpSbm5u2bNmSqYB1Jz744AMtX75c9913n3r16iUnJyf99ttvmjVrlk6cOKFhw4Zl6zy7du3SxIkT1blzZ/Xo0UPr16/XiBEjtHDhQvn5+WVqX7ZsWT3//POZjv/111/auHGjKlasKBcXl9u2kaTw8HB5enqqb9++GdqVK1fO8uu33npLO3fuVJ8+fVS6dGn9+OOPGjNmjObMmWM5z7lz5zR69GhVrVpVI0eO1NGjR/Xuu+/K3d1dgYGBkqQlS5Zo6dKl6tOnjypWrKjQ0FC9/vrrmjRpkpo0aZLtvshpnueee07Hjx/PlOdGZ86c0euvv6777rsvQwErO3mslfm/P4vYS3Eq4FxANWr/W+S6236uV69eps8OAAAAAMgdFLCQY1u2bJHJZNLTTz+tuXPn6tixY6pSpcodn+/QoUNavny5RowYoY4dO1qOd+7cWTVr1tT777+vDh06WIoTt7Js2TIFBARo+PDhkqQmTZroqaee0po1a9S/f/9M7X18fNSpU6cMx9LT0zVs2DD16dNHpUqVkqRstQkPD1fFihUztb3u9OnT+uGHH/TKK6+odevWlnzjxo3T0qVLNW7cOEnSihUr5OnpqZCQELm4uKhly5Y6dOiQvv32W0th5bvvvlPnzp3Vs2dPy3mOHj2qDRs2WApYt+uLO8kjSW3atMmU57rU1FRNmTJFSUlJd/SzsVbm//4sUlPSdPrwWVWqW96S5277mQIWAAAAANgOe2AhxzZv3qxGjRqpXbt2KliwoLZs2XJX55s/f75q1qyZoXh1XYcOHXTvvffqxIkTkqSDBw+qbdu2WrVqVaa2sbGx+u2333T//fdbjhUsWFBNmjTR5s2bs51n1apVSktLU/fu3XPUJjw83FLMysqxY8ckSffee2+G440aNdKOHTskXSsAbdmyRW3btpWLi4ulzWuvvaYRI0ZYnqempqpo0aIZzuPp6ank5GRJ2esLa+a5bvHixXJyclLVqlUzHM9OHmtlljL/LJxdCqiweyHFXorL0ee6XT8DAK6Z0f89oyMAAAAHRwELORIWFqajR48qMDBQbm5uatSo0V0VsNLT0/XXX39lKFrcqFChQpoxY4YeeOABSVKxYsXUsmVL+fv7Z2obFRUlKeOSvevPz58/r5SUlNvmuXLlihYvXqyBAweqQIECOWoTHh6uiIgIDRkyRJ07d9agQYO0du1ay+uenp6SpAsXLmQ434ULF5SQkKDExERFRkYqNjZW1atXV1pamk6ePKmYmBh5eXllmIHWsmVLrV27Vn/++aeuXLmitWvX6pdfflHLli2z3Rd3kufUqVNZ5pGkAwcOaNWqVXrxxRfl7Jxxcmd28lgrs5T1zyJ0/05dOh8jSVbrZwDANfFXErRtRajRMQAAgANjCSFyZPPmzXJzc1OzZs0kSffff7+2b9+uw4cPq2bNmjk+X3h4uFJSUlSyZMlstS9fvrxee+21LF+Ljr52p7n/zphxd3eXJCUkJMjDw+OW51+2bJnKlSungICAHLVJT0/XhQsXdOXKFfXu3VslSpRQaGio3n77bSUkJKh79+6qVauWSpQooXfffVcvvPCCfHx8tGPHDq1Zs0bStcLY9c/w+++/a/z48bp69aokKSAgQGPHjpWXl5ckadiwYTp69Kiee+45S4bOnTurXbt22e4La+aJi4vTm2++qYEDB6pMmTKZ+iw7eayV2dXVNcufxbvvzdX/nghSj7I9rNLPWS2TBID8Knj5GHVw66WmnRrKpaDL7d8AAACQQw4xAyskJEQmk8nyQO7ZvHmzWrZsKTc3N0lS06ZN5erqesezsNLS0qyWzWw2S1Km3wPXj9/uToaXL1/WypUr9b///S/HbdLS0jRu3Di9++67euyxx9S8eXONGjVKbdu21aeffqr09HS5ubkpJCRECQkJGjBggB599FF99NFHevTRRyVdm1125coVSdeWKAYHB+vbb7/VW2+9pRMnTuitt96yXO+dd95RVFSUxowZo1mzZql///764YcftG7dumz3xZ3kWbFiRZZ53n77bZUvX16dO3fOst+yk8damW/1s1i5+htdPBNptX4GAPxr8tqX9UrHKUbHAAAADsohZmAFBwcrODjY8pwiVu44ceKETp06pVOnTmnjxo0ZXvvpp580ePDgHPd96dKl5ezsrLCwsJu2WbVqlUwmkx555JFbnuvG2UA3io+Pl4uLi2Umz8388MMPcnNzU+PGjXPcxsXFxbKp+I2aN2+ujRs36vz58/L391flypW1YMEChYWFKTU1VWXLltU333yjQoUKyc3NzZKxf//+atiwoSSpbt26CgoK0pw5cxQXF6fo6GitW7dOU6dOtbSpXbu20tPTtWDBArVv3z7bfZHTPCkpKZny7NmzR7/++qsWLFhw037LTh5rZZZ0y5/FpSvRcnZyuet+btOmzU0/LwDkR/UD6yh07S9aMWuNuo3M+oYmAAAAd8ohCliwjR9//FFubm6aOHFihr2fDh06pI8++kiHDh1SnTp1VLRo0UxFiOtiY2Ml/btMrECBAqpUqZK2bNmS5abpKSkp+uijjyxL427Fx8dHknT27NkMyxnPnTtnee1Wvv/+e7Vu3fqme1/dqk1MTIwiIiJUtWrVDEW86+0KFSqk1NRUnT17ViVKlFDp0qUtbY4ePWrZd6l48eKSlGlJ5fXnly9f1p9//ilJmTZKr1atmmJjYxUeHp6tvrBmntjYWPXo0SNDm8OHD2vTpk0KCQlRnTp1bpvHWplv97PwL19SZ4+du+t+Pn/+vAAAGQ2Z2U/9qg9Xk44NVKZa5v0qAQAA7pRDLCGEbWzZskVNmjRR/fr1VbduXcujS5cucnFxsSwjrFatmqKjo3Xo0KFM5/jhhx/k7OysKlWqWI71799fR48e1ddff52p/SeffKL4+Hi1aNHitvnc3d1Vr169DHejS0tLU2hoqFq1anXL9549e1bHjx9X8+bN76jN8ePHNWzYsEx3O9y1a5f8/Pwss4uee+45LV682PJ6TEyMdu7cqQcffFDStQJKuXLltHfv3gzn2b9/vwoVKqRSpUqpbNmykpSpf3///Xe5uLioRIkS2e4La+Tp3Lmzpk2bluFRrlw51a9fX9OmTVOtWrWylcdamW/3syhRyk/+pf1VunSZu+5nAMiPbrd1A0sJAQBAbmAGFrLl8OHDOn/+vJ5++ulMrxUuXFgNGjTQ1q1bNWzYMAUGBmrNmjV65ZVX1KFDB1WpUkVXr17Vzp07tXv3bg0ZMkSFCxe2vL9hw4bq1KmT5s2bp/3796tBgwZycnLSL7/8oh07dqhTp06qW7euJOn06dP68ssv1a5duyw3Wu/evbvGjx+vJUuWqH79+lq9erXi4uLUqdO/SxnWrl2r/fv3a+zYsXJxubaUbN++fXJyclKNGjVu2ge3alOvXj3VqFFD8+bNU3h4uKpUqaK9e/dq3bp1evXVVyVJzs7Oat++vdauXasyZcrI3d1dX331lfz8/Cx3WZSk3r17a+rUqTKZTKpTp44OHjyo5cuXa9CgQZbrN27cWDNmzFCfPn1UpkwZHTx4UF999ZV69+5tuQPg7friTvLUrFlThw8fzpCnTJkymTZuL1KkiIoXL6769evn6GdjjczZ+Vn4lC6uDoEdteizBXfcz7eaqQcAjux2WzeUrlJSjw5rr3kjF2vIrH42TgcAAByVyXx9h2QHYjKZlFsfKywsTP7+jj0lPikpSR4eHkpMTLQcmzdvntasWaMVK1ZY9hm60YYNGzRjxgxNmzZN9evXV2JiopYvX65t27YpLCxMhQoVUoUKFdS9e3c1atQoy+tu2bJFq1ev1qlTp5SWlqayZcuqY8eOeuihhyyD419//VXjxo3Ts88+a9m4+7+2bt2qpUuX6uzZs6pWrZoGDRqkypUrW16fOXOm1q9fr9WrV1s+y8SJExUWFqb333//pv1yuzZJSUlatGiR9uzZo8jISFWsWFFPPvlkhs+bnJyshQsXavPmzXJyclL9+vU1ePDgTHdH3Lx5s1asWKFTp06pdOnS6tq1qx566CHL64mJifrss8+0bds2RUVFqXTp0nrkkUf08MMPZ/iPxO36wlp5/mv48OHy9/fXiy++mOH47fJYK3N2fhYXTl7Urwf3au2GtXfUz8nJyZn+nOS2/PD3jz2j/411p/3Pzy333WzcNbbtRPUc10UNHqyb7XPx87It+tv26HPbo89tjz63PVv3uVE/YwpYOZQf/jBmVcCyFykpKZZZU7A9R+r/1ORUnT0argq1y97R+434c5If/v6xZ/S/sShg2a+bjbtSklP1iHtvrU/6Itvn4udlW/S37dHntkef2x59bnv5pYDFHlgA8iVnV2cVcnfT5cgrRkcBAIfk4uqsV74coQldpxsdBQAAOAAKWADyLW//4ooKizY6BgA4rPseayL34kW1fuEmo6MAAIA8jk3ckYmzs7MaN26c5Z2FAPzrVvuAAQCuGb1giLqXfFpNOzWUVwlPo+MAAIA8igIWMilQoIC2bt1qdIwssZ7aWI7Y/7HRcepb5Tl9HfWR0VEAwGFNXvuyXuk4Re/tfdPoKAAAII9iCSGAfM3dq6ja9r1fX7+91ugoAOCwqjWspGaPBOjj4K+MjgIAAPIoClgA8r2nJvXSR69m/y5ZAICc6/1ad+35br/+3H3M6CgAACAPooAFIN9zK1xQjz7bXl9NW2V0FABwaJPXvqRXOr5hdAwAAJAHUcACAEn9J/9Pi1753OgYAODQPHyKaeD03pr+1LtGRwEAAHkMBSwAkORUwEn/e7mrPn19udFRAMChtevXRlfjErV1+U6jowAAgDyEAhYA/KNvSA99MmGpzGaz0VEAwKG9tmy03uwzV0lXk42OAgAA8ggKWABwAzZ0BwDbYD8sAACQExSwAOAGvV56TL//fERRYZeMjgLAwSUlJWnx4sVGxzBMvTa1VbVBJS17a7XRUQAAQB7gEAWskJAQmUwmywMA7sbUDa+qd+VnjY4BwMEVLFhQe/fu1blz54yOYphBM/po3fwfdOZImNFRAACAnbtlAWvw4MFKT0+XJO3evdsmge5EcHCwzGaz5QEAd8OloIvm7JisIQ3HGh0FgIN7+OGH9d577+nKlStGRzEMSwkBAEB23LKAVaJECYWEhGj9+vWaNWuW0tLSbJULAAxVpX5FdRvZSW/2ecfoKAAc2IYNG7R//3717NlTL730kpYsWaJdu3YpJibG6Gg241+5pB4b3kHvPr/I6CgAAMCOOd/qxVdeeUWrV6/Wzz//rMjISD3yyCOqXLmyqlevrmrVqql69eoqU6aMnJwcYiUiAGTw4JOtdPLQaX01bZV6jH3U6DgAHNCcOXOUlpamkydP6siRIzp69KgWL16sEydO6LvvvjM6ns08NryDXmw3SQd/+lP+vfyNjgMAAOzQLQtYf/75p7p166Zu3bpp/PjxGjFihGVw9eOPP2revHlKSUnR6tVsvgnAMT099UmNf2Sqytcqo6adGhodB4CDeeutt1S9enVVr15dDz30kDp06CBJSklJMTiZ7U1e+5I6FPqf2vV6wOgoAADADt2ygPXmm29q9uzZ8vHxUbFixeTt7a3mzZurefPmljbh4eG5HhIAjPT6ty+qd+VhqnBPWZWs6Gd0HAAOpFSpUtqzZ48+/fRTXblyxTLTvXr16mrbtq3R8WyqgHMBPfvBUwp+bJpCvmEPQgAAkNEtC1g9e/bU008/rfLly+vUqVOqV69epmWDpUqVsklQADDSoj/e1qOefbXu6udGRwHgQP73v/9Zfh0VFaW1a9dq6dKlunDhQr4rYElSw/Z19dfOk1q3YJM6PB1odBwAAGBHblnA6ty5s1q2bKnff/9dU6dOtSwbTE1NVbVq1Sz7YN1///22ygsAhnAp6KLZP0/S0IBxem/vm0bHAeCAvL291adPH9WtW1dbt2616bV//PFHLVmyRGazWb169VK7du1sev0bjZo/WD38n1GTjg3kVcKDvVZtzGw2y2QyGR0DgIPh7xbbc8Q+v+2IwNPTUy1atNDIkSM1ZcoUff311/rwww/VuXNnmUwm9r8CkG9UbVBJXUd05M6EAKxm7969io2NzXDs3nvv1Z49e2yWISYmRgsXLtTMmTM1e/ZsLVmyRFFRUTa7flYmr31ZwxqN05MVh+qFwBClpqQamie/WPTqF+pdaZjGPTTR6Cj5xpxh8/VkpWF6rQtfjtnK+EemqnelYZo7fKHRUfIFs9mscQ+9rt6Vhunj4C+NjpMvpCSnaswDExRUfoi+mbPW6DhWdcsZWDd64IF/N9QsWbKkSpYsycwrAPkOdyYEYE0LFizQiRMn5O/vr5o1a6pGjRq6dOlSpqJWbtq9e7cCAgLk5eUlSWrWrJl27typTp062SzDf+3ffEgxFy4rLTVdF89EaXD9F7Tg0CzD8uQHH479RCvnfqeUxBRdOHVRI1q+qre3TTI6lkObNeh9rZu/SZJ04WQE+7/ZwPhHpip0zS+SpFVzv1Naarqef+8Zg1M5tuEtXtWfoUclSctmrFZKUqqenvqkwakcl9ls1uD6L+j04bOSpPnjPpXZbFbX5437N92aTGaz2ZydhmazWT/99JNOnTolf39/u96XoWXLltq2bVuunDsqKkre3t65cm7cHv1vLPr/X3OGzlfzLo0V8NC9Nrsm/W8s+t9Yd9r/eeHnlpiYqKNHj+qPP/7Qn3/+qbCwMHXt2lXt27e3yfU///xzmc1mBQUFSZKWLl2qq1evqm/fvhnahYSEaMKECTc9z+jRozVq1CirZJoRNE8Hf/pTZkmOtfghD6DTbc4Rl/nYO/rc9uhz49RpXVNjPh1s1XO6uLjI19fXqufMjmzPwFqwYIG+/fZbNWvWTN98840qV66sjRs36plnnrG7vQm2b9+ea+dOSkrKtXPj9uh/Y9H//xr+3jPqVXaQ3gmdIp/SxW1yTfrfWPS/se60//PCz83NzU1169ZV3bp1Dbl+Vt9lpqenZzoWHBys4ODgTMdNJlOW57gTYWFh8vf3131dmupI6N9KTkqRJFWoXVbzD8y0yjXwr+v9LUnzX/xUK+esV3JisiSpdsuamvUTSwmt7cY+nz30Q615f6PlP/X3PdZYwSteMDKeQ7qxz4Mfm6Ydq/ZY+rzz0HYaPvdpI+M5pBv7/Pn7XtUfO47IZDLJpaCLuo3sqAFvBBmc0PHc2OdP1x6pU39cm4HlUtBFrbo2s7xmzesZIduVp/Xr12vq1Kl6+eWXJUn+/v76888/tXTp0lwLBwD27P190zW4PgNNAHcuJSVFq1ev1nvvvaeVK1fq9OnTNs/g7e2tyMhIy/PIyEj5+PjYPMeNuj7fUf2n/E9+ZX1Ur01tzftlmqF58oNnpj6px0d3Uonyvgp46F6KVzbw/HsD9ciw9ipZwU8tulC8soWQb8aqWecAlazgqy7DO1C8soHZ2ycp4KF7VaK8r3q8+CjFKxuY9+t01Wtzj3zL+ui5dweoy7MPGx3JarI9A6tw4cIZqnZubm4aPny4goOD1bNnz1wJBwD2zMOnmF78dLheaj9JU7571eg4APKg6dOn68CBA2ratKl27dqljz/+WG3atNFzzz1ns6UWTZo00ZIlSxQfHy+TyaTQ0FB1797dJte+lW4jOumx4R3sbqa/I3vq9V7qN7Eny3xs6Ll3BkjvDDA6Rr4ycdU4oyPkO1O+e5UlhDbk4uqs6ZsmKD093eH+Dc12AatJkyZavHixnnvuOcuxwoULKzo6OleCAUBeEPDQvTq274QWvvSZBkzhGyUAORMaGqrZs2erYsWKkqTY2FhNnjxZX375pXr16mWTDF5eXurfv79Gjx5t2QvLiH0tsuJoA++8gP9gAsgN/N1ie474b2i2P9Ezzzyjv/76S0OHDlVaWppCQ0P1zjvvqE6dOrmZDwDsXs9xXRT29wVtXb7T6CgA8pjy5curWLFilufu7u4aMWKENm7caNMcgYGBev/99/XBBx+oXbt2Nr02AABAdmS7gOXm5qa5c+fq8ccfV926dfXuu+/K1dVVL7zAWm0AGL90lBa8+JnCj18wOgqAPKRLly5avHixUlNTLceSk5N18eJFA1MBAADYn2wvIZSuTUF76KGH9NBDD+VWHgDIsz7YP0M9/J/Rt1eWGB0FQB4xc+ZMpaSkaP/+/WrYsKFKly6tTZs26YknnjA6GgAAgF3JUQELAHBzhYq6adKalzS6dbDe2hJidBwAecCqVat0/Phx/fnnn/rzzz+1bt06y62pL126pBo1aqhhw4aG3xUQAADAaBSwAMCK6raqpRZdGmveqMUaMrOf0XEA2DlnZ2dVq1ZN1apV0yOPPCLp2kbuR44c0eHDh7V161ZdvXpVXbp0MTYoAACAwRxiW/qQkBCZTCbLAwCM1HVER12+eEWbPttmdBQAeZC7u7sCAgLUu3dvTZ48meIVAACAHKSAFRwcLLPZbHkAgNFeXDJcX0z5Wqf+OGt0FAAAAADI8xyigAUA9ujDA2/pnWcXGB0DAAAAAPI8ClgAkEucnJzUfXRnvdp5qtFRAAAAACBPo4AFALmoSceGKlHeR9++t8HoKAAAAACQZ1HAAoBc9tzcp7V85mqFH79gdBQAAAAAyJMoYAGADUzd8KpebDfJ6BgAAAAAkCdRwAIAG/CvXFJdR3TU3OcWGh0FAAAAAPIcClgAYCOPDmuv8OMXtHv9PqOjAAAAAECeQgELAGxo8tqX9WqnKTKbzUZHAQAAAIA8gwIWANgY+2EBAAAAQM5QwAIAG2vwYF1VrFNOK2atMToKAAAAAOQJFLAAwACD3+qrdQs26fThs0ZHAQAAAAC7RwELAAzCUkIAAAAAyB4KWABgEN8y3npy/OOaNegDo6MAAAAAgF2jgAUABurwzIOKi4nXjm/3GB0FAAAAAOwWBSwAMNj4r0Zp7rMLdfFslNFRAOC2QkJCZDKZLA8AAABboIAFAHbg0xPv6cmKQ42OAQC3FRwcLLPZbHkAAADYAgUsALADTgWctOiPt9Wv+nCjowAAAACA3XGIAhZT2QE4gtJVS2nY7Kf0coc3jI4CAAAAAHbFIQpYTGUH4Cgata+vpp0a6p1nFxgdBQAAAADshkMUsADAkTwytJ1cCrpoxaw1RkcBAAAAALtAAQsA7NDgt/rqwE9/aMe3e4yOAgAAAACGo4AFAHYqZOVYLX71S504dNroKAAAAABgKApYAGDHPjzwloY3fVmJCUlGRwEAAAAAw1DAAgA7t+TEe+pdcajRMQAAAADAMBSwAMDOefoW08RV4zTxkVlGRwEAAAAAQ1DAAoA8oGbTamo/sLXe7POO0VEAAAAAwOYoYAFAHtG4U31VqV9R74/+2OgoAAAAAGBTFLAAIA/pNrKTTCaTls9cbXQUAAAAALAZClgAkMcMmtFHR/f+rc1f/mx0FAAAAACwCQpYAJAHvfz5CK15/3sd2PqH0VEAAAAAINdRwAKAPOqtLSGa+fQ8nTt23ugoAAAAAJCr8kQBKz093egIAGCXFh99R4PuHa2kq8lGRwEAAACAXGNIAevHH3/UU089pX79+mnDhg23bLto0SJ98MEHNkoGAHnPV+Hz1aPUM0bHAAAAAIBcY/MCVkxMjBYuXKiZM2dq9uzZWrJkiaKiorJse+DAAX377bc2TggAeUuRYoU1J/QNDag1wugoAAAAAJArbF7A2r17twICAuTl5SUPDw81a9ZMO3fuzNQuPj5e8+fPV/fu3W0dEQDynHI1SuvZuQM09sGJRkcBAAAAAKuzeQErMjJSfn5+lue+vr5ZzsCaM2eOevfuLQ8PD1vGA4A8q/4DddRx4IP64IVPjI4CAAAAAFblbOsLms3mTMf+u0n7Dz/8oCJFiqhx48Zas2bNTc8VEhKiCRMmZPmayWTS6NGjNWrUqLvKm5WwsDCrnxPZR/8bi/431u36v+p9FXT6+FlN6fu2+k55wkap8g9+/xvrTvrfZDLlQhIAAADYms0LWN7e3jpy5IjleWRkpMqWLZuhzZYtW3T8+HH98ssvio+PV2pqquLj4zVmzJgM7YKDgxUcHJzpGiaTKctCmTWEhYXJ398/V86N26P/jUX/Gyu7/d/7xSf09ey1WjX9ew2Z1S/3g+UT/P431p32P0VHAAAAx2DzJYRNmjTR7t27FR8fr4SEBIWGhqpp06Yym80KCwtTenq6Jk2apM8//1wff/yx+vXrp3bt2mUqXgEAbq7r8x1VvJSXFrz4qdFRAAAAAOCu2byA5eXlpf79+2v06NEaOXKkgoKC5Ovrq6SkJPXt21eXL1+2dSQAcEg9xj6qQkULafFrXxodBQAAAADuis2XEEpSYGCgAgMDMxxzc3PTxo0bM7Xt1KmTrWIBgMMJerWbPnr1C33+xtf638tdjY4DAAAAAHfE5jOwAAC29dSkXoqLjtOyt1YbHQWAAwgJCZHJZLI8AAAAbIECFgDkAwOn91HEqYtaOXe90VEA5HHBwcEym82WBwAAgC1QwAKAfGLYnP46cfC01s3/wegoAAAAAJAjFLAAIB8Z+cEgHfr5T2385CejowAAAABAtlHAAoB8ZuziZ3X84Cn9vGqP0VEAAAAAIFsoYAFAPjRoeh+tX7BJu9b+YnQUAAAAALgtClgAkE9NWv2ils1YrQM//WF0FAAAAAC4JQpYAJCPzdg8QR+M+VhHfzludBQAAAAAuCkKWACQz727501NCZqts0fDjI4CAAAAAFmigAUA0Ed/ztaYB0IUFXbJ6CgAAAAAkAkFLACAJOnLsx9oQK2Rir+SYHQUAAAAAMiAAhYAwGJlzMd6zKufzGaz0VEAAAAAwIICFgAggzXxn6pTkSeNjgEAAAAAFhSwAAAZuLq56vPT8/S43wCjowAAAACAJAcpYIWEhMhkMlkeAIC74+FTTHP3TNX4R6caHQUAAAAAHKOAFRwcLLPZbHkAAO5eyfK+6juhh4Y0HGt0FAAAAAD5nEMUsAAAuaNK/YoaOL23xj440egoAAAAAPIxClgAgFuq/0AddR7ykCZ2f8voKAAAAADyKQpYAIDbatmtqQLa1dOsge8bHQUAAABAPkQBCwCQLR2eDlTpqqU0f9ynRkcBAAAAkM9QwAIAZNsTLzwqk0n6atoqo6MAAAAAyEcoYAEAcuTpqU8q7O/zWjf/B6OjAAAAAMgnKGABAHJs5AeD9MvGA9q6fKfRUQAAAADkAxSwAAB3ZPzSUVrzwUbt23TQ6CgAAAAAHBwFLADAHZu28TUtmbhMf+07YXQUAAAAAA6MAhYA4K7M/Gminm/+ilKSUoyOAgAAAMBBUcACANy1WVsnamSr14yOAcAGQkJCZDKZLA8AAABboIAFALhr1RtV0f3dm+nDsUuMjgIglwUHB8tsNlseAAAAtkABCwBgFd3HPKLTf5zVrnW/Gh0FAAAAgIOhgAUAsJpJa17SpCdmKjEhyegoAAAAABwIBSwAgFXN3DpRo9gPCwAAAIAVUcACAFhV1QaVFBjUUu+P/tjoKAAAAAAcBAUsAIDVdRvZSWHHzmvn6r1GRwEAAADgAByigMXtnAHA/kxcNU5v9n5H8VcSjI4CAAAAII9ziAIWt3MGAPvEflgAAAAArMEhClgAAPtUqW55PTwgUO8+v8joKAAAAADyMApYAIBc1eW5h3XxTJR+Xrnb6CgAAAAA8igKWACAXDfh6xe06t3vFBsdZ3QUAAAAAHkQBSwAgE30fq27grtMMzoGAAAAgDyIAhYAwCbqtKypSnXLa9W73xkdBQAAAEAeQwELAGAzz74zQJ++vlwxEZeNjgIAAAAgD6GABQCwqeDlYxTy+AyjYwAAAADIQyhgAQBsqvZ9NVT53gosJQQAAACQbRSwAAA2x1JCAAAAADlBAQsAYAiWEgIAAADILgpYAABD1L6vhqrUq6iVc9cbHQUAAACAnaOABQAwzLA5/fX55K8VfSHG6CgAAAAA7BgFLACAoV5bPloTH3/L6BgAAAAA7BgFLACAoWq3qKEqDSpq5TssJQQAAACQNQpYAADDDZvdX5+/wVJCAAAAAFmjgAUAsAssJQQAAABwMxSwAAB2gaWEAAAAAG7GIQpYISEhMplMlgcAIG+6vpQwMSHJ6CgAboJxFwAAMIJDFLCCg4NlNpstDwBA3tXv9Z6aN+Ijo2MAuAnGXQAAwAgOUcACADiODk8H6tD2P3X6z3NGRwEAAABgJyhgAQDszpBZ/TRv5GKjYwAAAACwExSwAAB2J6BdPZnTzfpl429GRwEAAABgByhgAQDsErOwAAAAAFxHAQsAYJfK1yqjGk2qasNHm42OAgAAAMBgFLAAAHZr6NtP6T3uSAgAAADkexSwAAB2q7B7IXUb2UlLJi4zOgoAAAAAA1HAAgDYtT4TntCyGd/qalyi0VEAAAAAGIQCFgDA7rGUEAAAAMjfKGABAOxe+/4P6I+dR3X68FmjowAAAAAwAAUsAECeMPTtfnpvxGKjYwAAAAAwAAUsAECe0LDtvTKZpL3f/2Z0FAAAAAA2RgELAJBnDJnVT/NGLjY6BgAAAAAbo4AFAMgzytUso3uaV9f6hZuMjgIAAADAhihgAQDyFGZhAQAAAPkPBSwAQJ5SqKib+k7sqa9nrzU6CgAAAAAboYAFAMhzuo3oyCwsAAAAIB9xiAJWSEiITCaT5QEAcHy9X+uuJROXGR0DAAAAgA04RAErODhYZrPZ8gAAOL4+E57QJxOWGh0DAAAAgA04RAELAJA/UcQCAAAA8gcKWACAPItlhAAAAED+QAELAJCn9Q3poY+DvzI6BmC3fvzxRz311FPq16+fNmzYkGWbPn36qEOHDpbH77//buOUAAAAt+ZsdAAAAO7Gk+MfV1un7uob0sPoKIDdiYmJ0cKFCzV37lw5OTlp2LBhCggIkLe3t6VNenq6kpOTtW7dOgOTAgAA3BozsAAAeV6/iT21+LUvjY4B2J3du3crICBAXl5e8vDwULNmzbRz584MbSIjIzMUtAAAAOwRBSwAQJ4X9Go3fT75a+5EC/xHZGSk/Pz8LM99fX0VFRWVoc358+d1+fJljR07Vk888YTmzp2r9PR0W0cFAAC4JZYQAgAcQt+JPfTxa1+p3+s9jY4C2I2sirr/LU65u7vr8ccf1yOPPKLY2FiNHz9ea9euVefOnTO0CwkJ0YQJE7K8jslk0ujRozVq1Ki7zhwWFnbX50D20d+2R5/bHn1ue/S57dmyz00mk82udSMKWAAAhxD0Sje1c+6hPiFPyMmJCcbIX77++mtt2bIlwzEnJye1b99eR44csRyLjIxU2bJlM7QrX768KlSoIJPJJA8PD7Vs2VInTpzIdI3g4GAFBwdnOm4ymaw2+zEsLEz+/v5WORduj/62Pfrc9uhz26PPbc/WfW5UgZICFgDAYVyfhfXUpF5GRwFsqmvXruratWum49HR0VqyZIni4+NlMpkUGhqq7t27y2w2Kzw8XCVLltTXX3+tQ4cO6dVXX1ViYqJ27NihTp06GfApAAAAbo4CFgDAYfzv5a5q59JDfUN6yKkAs7AALy8v9e/fX6NHj5bZbFZQUJB8fX2VmJiovn37aunSpXr00Ud18eJFDRgwQKmpqXrooYcUGBhodHQAAIAMKGABABzK9TsS9p/8P6OjAHYhMDAwU0HKzc1NGzdutDwfMmSIhgwZYutoAAAA2cbX0wAAh9Lrpce0dPq3SktNMzoKAAAAACuhgAUAcDj9JvbQ4te+MjoGAAAAACuhgAUAcDg9X3xMy99ardSUVKOjAAAAALACQwpYP/74o5566in169dPGzZsyLLNN998o6eeeko9evTQrFmzlJbGUhAAQPZdvyMhAAAAgLzP5gWsmJgYLVy4UDNnztTs2bO1ZMkSRUVFZWjzxx9/aOXKlZozZ44WLVqk06dP67vvvrN1VABAHtZzXBf9ufsYX4AAAAAADsDmBazdu3crICBAXl5e8vDwULNmzbRz584MbS5duqSOHTvK3d1dRYoUUdOmTXX+/HlbRwUA5HGV61XQyjnrjY4BAAAA4C452/qCkZGR8vPzszz39fXNNAPrvvvus/w6KipKGzdu1KhRozKdKyQkRBMmTMjyOiaTSaNHj87yfXcrLCzM6udE9tH/xqL/jUX/50yzJxpoave5atajgVXOR/8b607632Qy5UISAAAA2JrNC1hmsznTsfT09Czbfvfdd/rss880ZMgQ1apVK9PrwcHBCg4OznTcZDJleR1rCAsLk7+/f66cG7dH/xuL/jcW/Z9z/v7+qnxvRZ3ZF64mHRve1bnof2Pdaf9TdAQAAHAMNi9geXt768iRI5bnkZGRKlu2bIY26enpmjJlitLS0vTOO+/I09PTxikBAI6iy3MPa8XM1XddwAIAAABgHJvvgdWkSRPt3r1b8fHxSkhIUGhoqJo2bSqz2aywsDClp6dr27ZtSkhI0GuvvUbxCgBwVwIeulfhxy/o3DH2UgQAAADyKpvPwPLy8lL//v01evRomc1mBQUFydfXV4mJierbt6+WLl2qQ4cOad++ferSpYvlfZ07d9aAAQNsHRcA4AC6DO+glXPWadic/kZHAQAAAHAHbF7AkqTAwEAFBgZmOObm5qaNGzdKkoYNG6Zhw4YZEQ0A4IC6PPuw2jp1p4AFAAAA5FE2X0IIAIARHhnaTt++t8HoGAAAAADuAAUsAEC+8NjwDvpmzjqjYwAAAAC4AxSwAAD5Qplq/vIr56NffzhgdBQAAAAAOUQBCwCQb3R57mGtfGe90TEAAAAA5BAFLABAvtGsc4D+3n9SEWcijY4CAAAAIAcoYAEA8pUuwztoJXthAQAAAHkKBSwAQL7S5dn2Wjn3O6NjAAAAAMgBClgAgHzFpaCLHnyyldYv3GR0FAAAAADZRAELAJDvPDa8g75hGSEAAACQZ1DAAgDkOxXrlFNRzyI6uO2w0VGAPCckJEQmk8nyAAAAsAUKWACAfKnLcw9r5TvrjY4B5DnBwcEym82WBwAAgC1QwAIA5EutHm+mA1v/UEzEZaOjAAAAALgNClgAgHyLvbAAAACAvIECFgAg33r02fZaNfc7o2MAAAAAuA2HKGCxmSgA4E4UKVZYzR4J0A+fbjU6CgAAAIBbcIgCFpuJAgDuVKfBD2nN+98bHQMAAADALThEAQsAgDt1T/Pqiom4rHPHzhsdBQAAAMBNUMACAOR77QcE6ruFm4yOAQAAAOAmKGABAPK99k+10XcfbTY6BgAAAICboIAFAMj3PP08VLVBJe35bp/RUQAAAABkgQIWAACS2vdvo+8WMQsLAAAAsEcUsAAAkNTq8Wbave5XJSYkGR0FAAAAwH9QwAIA4B/t+z+g7xb9aHQMAAAAAP9BAQsAgH9QwAIAAADsEwUsAAD+UbleBZnTzTp+4JTRUQAAAADcgAIWAAA3YBYWAAAAYH8oYAEAcIN2T7XRho+4GyEAAABgTyhgAQBwg8LuhdSgbV1t/3qX0VEAAAAA/IMCFgAA/8EyQgAAAMC+UMACAOA/mnRooD93H9PlyCtGRwEAAAAgClgAAGSJvbAAAAAA+0EBCwCALLCMEAAAALAfFLAAAMhC2er+KupVVIdDjxodBQAAAMj3HKKAFRISIpPJZHkAAGANzMICAAAA7INDFLCCg4NlNpstDwAArKH9U230HftgAQAAAIZziAIWAAC5wamAk9r0bPH/9u4/Lqo63+P4exBFRUR07YeWolmW5VqJCKyiZl6ztrRS1PwtlRnKWhpquRKWtdnN1eyWW2u3LukW7a2tpbRyXX+Ughc1f5WohagRKSgpg/wQzv1jb+xlCR2Y4ZzD4fV8POYP4euZN2/mPOb7+HBmRn9bvcXqKIBtcOU7AACwAgMsAAAugJcRAlVx5TsAALACAywAAC7gxkE3KOebXOUdP2V1FAAAAKDRYoAFAMBF3Db1Fm1+J83qGAAAAECjxQALAICLGDplkLa8k251DAAAAKDRYoAFAMBFXHLlL9Q9opv2fXHA6igAAABAo8QACwAAD1wd1kUb+DRCAAAAwBIMsAAA8ED4r2/Upne3WR0DAAAAaJQYYAEA4IGgtq3UpWcn7d643+ooAAAAQKPDAAsAAA8NHP0rbXznC6tjAAAAAI0OAywAADw0ICZSm1J4GSEAAABgNgZYAAB4KCiklbrd1EW7Nuy1OgoAAADQqDDAAgCgFgaOjtLGd7ZaHQMAAABoVBhgAQBQCwNiorQphQEWAAAAYCYGWAAA1EJgcEt179NNO9fvsToKAAAA0GgwwAIAoJZ4GSEAAABgLgZYAADUUvSoSG1+l08jBAAAAMziiAFWUlKSXC5X5Q0AgPoU2Lqlru17tXZ8ttvqKAAAAECj4IgBVmJiogzDqLwBAFDfeBkhAAAAYB5HDLAAADAbn0YIAAAAmIcBFgAAddCiVXNd/6trlfHJl1ZHAQAAAByPARYAAHXEywgBAAAAczDAAgCgjngZIQAAAGAOBlgAANRR85YB+uWAHtq+dpfVUQAAAABHY4AFAIAXBo7+lTa+84XVMQAAAABHY4AFAIAXokdFavO726yOAQAAADgaAywAALwQ0KKZbhx0g9I/3ml1FMAUSUlJcrlclTcAAAAzMMACAMBLA0ZHaROfRohGIjExUYZhVN4AAADMwAALAAAvDYyJ0kY+jRAAAACoNwywAADwUtOApuo95JdKS91hdRQAAADAkRhgAQDgA3waIQAAAFB/GGABAOADA2IitSmFTyMEAAAA6gMDLAAAfMC/qb/Ch92krR/+j9VRAAAAAMdhgAUAgI8MHBOlXX/ba3UMAAAAwHEYYAEA4CODxvRT9lfHGWIBAAAAPsYACwAAH1ry2ULNH7ZY5efLrY4CAAAAOIYjBlhJSUlyuVyVNwAArPT7zYv0SPRCq2MAAAAAjuGIAVZiYqIMw6i8AQBgpesirlHU8D5aNX+11VEAAAAAR3DEAAsAALsZM3eEDn95RBmffGl1FAAAAKDBY4AFAEA9eXbtE1o4YonKSsqsjgIAAAA0aAywAACoR7wfFgAAAOA9BlgAANSj7n26acCoSL2akGx1FAAAAKDBYoAFAEA9GzXnLh396rjSP95pdRQAAACgQWKABQCACZ5Ona+nR/9exe5iq6MAAAAADQ4DLAAATML7YQEAAAB1wwALAACTdLupi4ZMGKCX4ldZHQUAAABoUBhgAQBgontm3aHLulyqlOc/sDoKAAAA0GAwwAIAwGQjH/m1vt2TzRALAAAA8BADLAAALDAvOV4/5p3Vy7P+0+ooAAAAgO0xwAIAwCIPPDdel3e9VE/FLLU6CgAAAGBrDLAAALDQ3fG3a0BMpGb1W2B1FAAAAMC2/K0OAABAYxc9MlLtOrTVhK5xSv72P6yOAwAAANiOba/A2rBhg6ZMmaLJkyfrk08+sToOAAD16vqo7np+Q6Jubz5WhQVuq+MAAAAAtmLLAVZBQYFWrVqlpUuXavny5UpOTlZ+fr7VsQAAqFeXhV6iD84ka0LXOGV/dfyi6wtOntGM8Hl6OCxBuUdO1Ljuv5elanrvBP1uwos1rjlfdl6/vet3ir3+EW37a0aN67av3aUHb5yjBb9+VmWl52tc99ykFXo4LEFvPfVujWtOHs/X9N4JerjPXOXnnKpxHewlKSlJLper8gYAAGAGWw6wtm/frrCwMIWEhCg4OFiRkZHatm2b1bEAAKh3TZv56/1Tb+ipmBeU8dluZXzypfZ9fkCHd2Xp+MEcnTyer7OnC/V91gnF9ZmrzIxvdGhnluIjH9fRA9WHXn/+fapWzV+tw7uy9LfVW7RwxHPV1lRUVOjhsLlKS92ho18f15LJLyntox3V1mV8+qWeGbdcWXuylf7xTk3rNVsV5RXV1i2KeUHrkzfr0M4s/enZ9/XO8x9UW/N91g+a1f+3OrwrS4d2fKv4qMd14ujJOrYGMyUmJsowjMobAACAGVyGDXcea9askWEYGjdunCQpJSVF586d06RJk6qsS0pK0pNPPlnjcWbPnq1HH320PqMCAFBvkhf8WT8cOamSotLKW+m5UpWcK9W5s8WVw6N/PJW7FNCymZo1b1rlGEVnzqn8fIVckgxJfn4utWjdXH5+//wbVnlZuc65S2RU/HNL4N+siVq0al7lWMWFJSorPS9Dhlxyyc/PpYDAAPk3bVK5xqgwVHT2nCrKDbn+b2UTfz+1bN2iyrFKi8tUUlQqSfrpIp5xSXfr32IHelfav3C5XLr88st9ekxU5XK5fDbIysnJUYcOHXxyLFwcfZuPzs1H5+ajc/OZ3blVv2Nbvon7z22CKiqq/4U3MTFRiYmJ1b7uy43Uv+JktBb9W4v+rUX/1rKi/7mvx9f4va/TDylxxHM6/cOPcrlcatU2ULNeeVA3DrqhyrqVs9/UxpStOl9yXi4ZuvLajlq6aVGVNSVFJZoZ9bhO5ZyW5FKTpk00KSlGt99/a5V1n7z5dyUn/VnFhcWSDLW5NFhLNy1SUEirKuvm3/a0Du38VpIhl6QBMZGKWz61ypr9Ww9oyZSX5T5dKMml1u2C1OeWm2vsuK795+Tk1Pr/AAAAwH5sOcBq166dMjMzK/+dl5enK6+80sJEAADYy3V9r9ZTf52vRSP/XedLz2veW/G66Zae1dbNfXOmmjZrqi//vk/BvwjSi9ue+dn3LXr9q+Wa2Xe+3D8WadRjd2nkI3dWWxMze7iaBTTTn555Ty1bt9SKtGfUqk1gtXUvZyzRzMjHdSb/rK4Nv1rz36o+iIu6K1xPfxCkxWOXyeVy6Ym3Z+n6qGvr2AYAAACczpYDrL59+yo5OVlut1sul0tpaWkaNWqU1bEAALCV7mFX6b8OvyTDMOTftOan9Edfe0juH90KDK4+bPpJYOuWev3r5SopLlVA82Y1rhsxY5huf2CwmgXUvEaSVmx75qL3eUO/6/RW1suSpCb+TWpcBwAAANhygBUSEqKpU6dq9uzZle+F1b59e6tjAQBgO54Ofi40SPr/LjS8+snFhle1uU8GVwAAAPCELQdYkjR48GANHjzY6hgAAAAAAACwmN/FlwAAAAAAAADWYYAFAAAAAAAAW2OABQAAAAAAAFtjgAUAAAAAAABbY4AFAAAAAAAAW2OABQAAAAAAAFtjgAUAAAAAAABbY4AFAAAAAAAAW2OABQAAAAAAAFtjgAUAAAAAAABbY4AFAAAAAAAAW2OABQAAAAAAAFtjgAUAAAAAAABbc8QAKykpSS6Xq/IGAAAAAAAA53DEACsxMVGGYVTeAAAAAAAA4ByOGGABAADAO8XFxUpISLA6BgAAwM9igFVLS5cutTpCo0b/1qJ/a9G/tejfWvRfv9auXauEhASdOXPG0hz8ns1F3+ajc/PRufno3HyNpXOX4cDX3Llcrnp7KWF9HhsXR//Won9r0b+16N9ade0/JydHHTp0qIdEzrJ161bl5ORo/fr1WrlyZa3+ry/PDc4zc9G3+ejcfHRuPjo3n9mdW7W/8jf9Hk3Qr1+/en0zd94o3lr0by36txb9W4v+rVWX/hMSEvTcc8/VQxpniYqK0rFjx7R+/foa1yQlJenJJ5/82e/58tzgPDMXfZuPzs1H5+ajc/OZ2blV+ytHXoH1r+z6l0G7HsvXx+NY1h3L18fjWNYej2NZezyOZd2x6uN4qO7YsWNavHhxra/A8iVf/Z7t+Fgmk/nHIpP5xyKTucex67HIZP6x7JipPjjyCiwAAABU9d5772njxo1Vvubn56dly5ZZkgcAAKA2GGABAAA0Avfcc4/uueceq2MAAADUSaP4FMKa3q/Bar7M5euf0c7ZfMWuP6Odf5e+ZNfO6N85x6qP4/mKXTuz67GA2rLjY9mOmXzJjj+fHTP5kh1/Pjtm8iWn90TnDftYvmLHTD9pFO+B5Ut2fj1oY0D/1qJ/a9G/tejfWvTfOPB7Nhd9m4/OzUfn5qNz8zWWzhvFFVi+ZOdpZGNA/9aif2vRv7Xo31r03zjwezYXfZuPzs1H5+ajc/M1ls65AgsAAAAAAAC2xhVYAAAAAAAAsDUGWAAAAAAAALA1BlgAAAAAAACwNQZYALxWUVFhdQQAAACgTtjLAg2Dv9UBGpINGzYoOTlZhmFo7NixGjp0qNWRHMuTrt9//319+OGHKioqUkREhOLj49WkSRML0jpPbR7rr7/+ukpKSjR9+nQTEzqbJ/1//fXXeumll5Sfn69BgwZp2rRpFiR1Jk/6X7NmjVJTU2UYhoYNG6aJEydakLTxKC4u1sKFC7VkyRKro8AL3pxbnHPe8aT75ORkrVu3Tn5+fho7dqxuv/12C5I2bN70zL62bnzx2GYvWzvedM7+tW686dxxz58GPHL69GnjvvvuM06dOmUUFBQY48aNM/Ly8qyO5UiedL1//35j4sSJxpkzZ4zCwkJj1qxZRmpqqkWJnaU2j/Xdu3cbw4cPN15++WWTUzqXJ/2fO3fOGD9+vHH8+HGjpKTEmDFjhpGZmWlRYmfxpP/MzEzjvvvuMwoLCw23221MmjTJ2Lt3r0WJne/jjz82Zs6caUybNs3qKPCCN+cW55x3POl+y5YtxkMPPWQUFBQYJ06cMCZMmGBkZ2dblLhh8qZn9rV144vHNnvZ2vGmc/avdeNN5058/uQlhB7avn27wsLCFBISouDgYEVGRmrbtm1Wx3IkT7o+deqU7rjjDgUFBSkwMFARERHKzc21KLGzePpYd7vdeu211zRq1CgLUjqXJ/2np6erZ8+e6tixo5o1a6alS5eqa9euFiV2Fk/69/PzU5MmTdSsWTM1bdpUTZs2lZ8fT6f1JTg4WNHR0VbHgJe8Obc457zjSff79+9XVFSUgoOD1b59e0VERLDPrSVvemZfWzfePrbZy9aeN52zf60bbzp34vNnw05vory8PF1yySWV/27fvr3y8/MtTORcnnTdr18/xcTESJLy8/P12WefKTIy0tScTuXpY/3FF1/UhAkTFBwcbGY8x/Ok/9zcXBUVFemhhx7S6NGjtWLFCrNjOpYn/Xfr1k19+/bVvffeq5EjR6pHjx7q0aOH2VEbjaioKPXt29fqGPCSN+cW55x3POk+NDRUGRkZcrvdKigoUEZGhk6dOmV21AbNm57Z19aNt49t9rK1503n7F/rxpvOnfj8yXtgecgwjGpf483+6kdtul63bp1Wr16t6dOnN/iT0S486X/9+vUKDAxUeHi4UlNTzYrWKHjSf0lJiQ4dOqRly5apZcuWSkxM1EcffaThw4ebFdOxPOl/79692r17t5YuXSo/Pz8tWbJEGRkZCgsLMysm0OB4c24FBARwznnBk+6HDBmizMxMxcbGKigoSKGhoQoICDAroiP4omf2tbXjTefsZevGm87Zv9aNN507cc/KAMtD7dq1U2ZmZuW/8/LydOWVV1qYyLk86bqiokLPPvusysvLtWLFCrVp08bklM7lSf8bN27Ut99+qx07dsjtduv8+fNyu92aM2eO2XEdx5P+Q0JC1Lt3b7Vv316SFBERoSNHjpgZ07E86T89PV3R0dHq1q2bJOmWW25RWlpag94MAPXNm3OrefPmnHNe8HQPGxcXp/j4eEnSihUrdNlll5mW0Qm86Zl9bd140zl72brxpvPy8nL2r3XgTedO3LPyEkIP9e3bV9u3b5fb7VZRUZHS0tIUERFhdSxHqqlrwzCUk5OjiooKbdmyRUVFRVq4cCFP8j7mSf9PP/201qxZozfffFOTJ0/W0KFDecL3EU/6Dw8P144dO3TixAm53W59/vnn/KXWRzzpv3Pnztq+fbsKCwvldruVnp6u0NBQq6MDtubNucU55x1Puj969Kji4uJUWlqqvLw8paWlqX///lZHb1C86Zl9bd140zl72brxpnP2r3XjTedOfP7kCiwPhYSEaOrUqZo9e7YMw9C4ceMqp8fwrZq6Li4u1qRJk5SSkqJ9+/Zp165dGjFiROX/u/POOxUbG2tdcIfwpP+QkBCrYzqWJ/1feumlmjx5subMmaPy8nINHDhQt956q9XRHcGT/m+99VZlZWXpwQcflGEY6t+/Px83D1yEN+eWy+XinPOCJ92HhoYqPDxcEydOVNu2bTVnzhwFBQVZHb1B8aZn9rV1w2PbfN50HhQUxP61Drzp3Il7Vpfxcy+qBAAAAAAAAGyClxACAAAAAADA1hhgAQAAAAAAwNYYYAEAAAAAAMDWGGABAAAAAADA1hhgAQAAAAAAwNYYYAEAAAAAAMDWGGABAAAAAADA1hhgAQAAAAAAwNYYYAEAAAAAAMDWGGABAAAAAADA1hhgAQAAAAAAwNYYYAGAF44ePar4+HirYwAAADgSey0AP2GABcCRSktLTbmfffv2qXXr1qbcFwAAgF2w1wJgNpdhGIbVIQA0Pjt37tSqVat07NgxdevWTVOmTFHPnj0lSfn5+Vq5cqX27NkjwzAUGxuroUOHSpJOnjypV199Vbt27ZK/v79GjBihMWPGSJLi4+N12223ae3aterdu7fGjBmjP/7xj0pPT1dRUZGGDRum2NhYuVyuankudJ/Tpk3TAw88oLCwMEnS6tWrlZubq06dOumNN95QQECABg8erLi4ODOqAwAAuCj2WgCchiuwAJguJydHixYt0rhx47R69WqFhoYqJSVFklRQUKC4uDh17txZr7zyihISErR8+XKdPXtWRUVFeuyxx9SxY0e9+uqrWrBggd5++23t3btX5eXl+uabb/TFF19o3rx5mjhxoh599FGVlZVp+fLlSkpK0gcffKBNmzZVy3Oh+ywuLtaRI0fUvXv3yvUHDx5U9+7dNWrUKHXs2FELFixgQwUAAGyDvRYAJ/K3OgCAxicrK0sBAQEKCQlRq1atNGPGDFVUVEiSUlJS1KtXL40fP16S1LZtW/3mN7+RJH344Yfq0qWLJk+eXPm966+/XocPH1bLli1lGIYSEhIUHBysTz/9VGVlZZo5c6b8/f3Vtm1bRUZGKjs7u1qeC93nwYMH1aFDBwUFBVWuz8zM1Pjx43Xu3DllZ2dX2XABAABYjb0WACdigAXAdOHh4YqOjlZSUpJKS0s1ePBg3X///fL391d6erqmT59eZf1Pl5dv3rxZd999d5XvHTlyRCNGjFBmZqZ69eql4OBgSdKmTZuUm5urkSNHVln/c3+9u9B9fvXVV7ruuusqv56fn68zZ86oS5cu2rdvn6644goFBgbWsQkAAADfY68FwIkYYAEwVXFxsQ4ePKi4uDjFxcUpOztb8+bNU69evdSvXz/l5uaqXbt2levT09NVWlqq/v376/vvv9cVV1xR+b0jR46ouLhYN9xwg/7whz+oR48eld87evSonnjiCUVERFTeb05Ojrp27Vot04Xu88CBA7r55psrv/fRRx/pqquukr+/vw4cOFBlwwUAAGA19loAnIr3wAJgqtOnT2v27NnauXOnysrKdPz4cRUXFys0NFSS1L17d61bt06FhYXaunWrFi9erFatWkmSOnXqpLVr1+rs2bPKzMzU4sWLFRsbqxYtWigzM1PXXHNN5f1cffXVSk1N1Q8//KDs7GzNnz9fn3766c9mutB95uTk6NSpUzIMQ7t371ZKSkrlZeyZmZnq3LlzPbYFAABQO+y1ADgVn0IIwHTJycn6y1/+otLSUnXu3FmTJk1Snz59JEnfffednnrqKX333Xfq1KmTpkyZUvmJNNnZ2XrhhReUlZWlLl266N5779WAAQNUVlamO++8U2+//bbatGkj6R+bt+eff1579uxRSEiI7rjjDsXExMjPr/rc/kL3uW7dOq1cuVKBgYEKDw9XXl6eoqOjNWTIECUnJyslJUVz585Vv379zCkPAADgIthrAXAiBlgAAAAAAACwNV5CCAAAAAAAAFtjgAUAAAAAAABbY4AFAAAAAAAAW2OABQAAAAAAAFv7X6bhh7x75FgGAAAAAElFTkSuQmCC",
-      "text/plain": [
-       "<IPython.core.display.Image object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "plot_edge_performance(gnn_model)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Step 4: GNN inference "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 26,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:--------------------- Step 4: Scoring graph edges using GNN  ---------------------\n",
-      "INFO:---------------------------- a) Loading trained model ----------------------------\n",
-      "INFO:----------------------------- b) Running inferencing -----------------------------\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Training finished, running inference to filter graphs...\n",
-      "Building train\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "100%|██████████| 80/80 [00:03<00:00, 23.62it/s]\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Building val\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "100%|██████████| 10/10 [00:00<00:00, 28.12it/s]\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Building test\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "100%|██████████| 10/10 [00:00<00:00, 22.84it/s]\n"
-     ]
-    }
-   ],
-   "source": [
-    "run_gnn_inference(CONFIG)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Step 5: Build track candidates from GNN"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 27,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:-----------  Step 5: Building track candidates from the scored graph  -----------\n",
-      "INFO:---------------------------- a) Loading scored graphs ----------------------------\n",
-      "INFO:---------------------------- b) Labelling graph nodes ----------------------------\n",
-      "100%|██████████| 100/100 [00:00<00:00, 698.73it/s]\n"
-     ]
-    }
-   ],
-   "source": [
-    "build_track_candidates(CONFIG)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Step 6: Evaluate track candidates"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "We can control the matching style in the pipeline config file. The following all require at least a majority of hits to match in each scheme (i.e. matching fraction = 50%).\n",
-    "A discussion of each matching style and some worked examples can be found in the [Documentation](https://hsf-reco-and-software-triggers.github.io/Tracking-ML-Exa.TrkX/performance/matching_definitions/)."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "ATLAS style matching is the default."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:------------ Step 6: Evaluating the track reconstruction performance ------------\n",
-      "INFO:--------------------------- a) Loading labelled graphs ---------------------------\n",
-      "100%|██████████| 100/100 [00:01<00:00, 57.16it/s]\n",
-      "INFO:--------------------- b) Calculating the performance metrics ---------------------\n",
-      "INFO:Number of reconstructed particles: 17074\n",
-      "INFO:Number of particles: 23405\n",
-      "INFO:Number of matched tracks: 17157\n",
-      "INFO:Number of tracks: 17651\n",
-      "INFO:Number of duplicate reconstructed particles: 83\n",
-      "INFO:Efficiency: 0.730\n",
-      "INFO:Fake rate: 0.028\n",
-      "INFO:Duplication rate: 0.005\n",
-      "INFO:------------------------------ c) Plotting results ------------------------------\n"
-     ]
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHJCAYAAAB0RmgdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABO9ElEQVR4nO3deVxWdf7//8elrCJeKshWhLhEKO6WYk6Su4ZmVjpZpJNDNW6ROqZWZpuolWYfxmUalTTNmkmbJh1yCS1T3JJcM0sx/QaSiReuqHB+f/jjjJegsooHn/fb7brdvM71Oue832+O8vR9lstmGIaBiIiIiMVUqegGiIiIiJSEQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjFQ4m81WpNfatWsruqliMRs2bGDixImcOHGioptSZHXr1mXQoEHm+7Vr15bo+J85cyaJiYnFWqewfQ0aNIjq1asXazvXc62fS1RUFFFRUWW6P6m8XCq6ASIbN250ev/666+TnJzMV1995bS8UaNGN7JZUgls2LCBV199lUGDBlGzZs2Kbk6JtGzZko0bNxb7+J85cya+vr5Ogai89lVc1/q5zJw5s1z3LZWLQoxUuLZt2zq9r1OnDlWqVCmw/EpnzpyhWrVq5dm0cmMYBufOncPT07OimyI3uRo1alz370JpXbhwAZvNdkP2dT36z4oUh04niSVERUURERHB119/Tbt27ahWrRpPPfUUAB9//DFdu3YlMDAQT09PwsPDGTt2LKdPn3baRv60+E8//UTPnj2pXr06wcHBjBo1ipycHODSP+Z+fn7ExMQUaMOJEyfw9PRk5MiR5rLs7GxGjx5NaGgobm5u3HbbbcTFxRXYt81mY9iwYcyePZvw8HDc3d354IMPAJg1axbNmjWjevXqeHt7c9dddzF+/Hin9TMyMnjmmWe4/fbbcXNzIzQ0lFdffZWLFy9ed+zq1q1LdHQ0X3zxBS1atDDH6IsvvgAgMTGR8PBwvLy8uOeee9i6dWuBbXz++edERkZSrVo1vL296dKlS4EZtIkTJ2Kz2dixYwePPvoodrud2rVrM3LkSC5evMi+ffvo3r073t7e1K1bl6lTpxbYT3HHc+HChYSHh1OtWjWaNWtm9im/PX/9618BCA0NLXBa0mazMXHixELH6/LZi8TERGw2G1999RWxsbH4+PhQo0YNnnzySU6fPk1GRgb9+vWjZs2aBAYGMnr0aC5cuHDdn8uFCxcYM2YMAQEBVKtWjfbt27N58+YCdYWd4jlw4AB//OMfCQoKwt3dHX9/fzp16kRqaqrZh927d7Nu3Tqz33Xr1nXa3sKFCxk1ahS33XYb7u7u/PTTT9c8dbV79246deqEl5cXderUYdiwYZw5c8b8PC0tDZvNVugprMvH+no/l8JOJx0/fpwhQ4Zw22234ebmRr169XjxxRfNv7eX7+d6x4VULpqJEctIT0/niSeeYMyYMUyaNIkqVS5l8P3799OzZ0/i4uLw8vLihx9+YMqUKWzevLnAKakLFy7Qu3dvBg8ezKhRo/j66695/fXXsdvtTJgwAVdXV5544glmz57N3/72N2rUqGGu+9FHH3Hu3Dn+9Kc/AZdmgjp06MCRI0cYP348TZs2Zffu3UyYMIGdO3eyevVqbDabuf5nn33GN998w4QJEwgICMDPz48lS5YwZMgQhg8fzttvv02VKlX46aef2LNnj7leRkYG99xzD1WqVGHChAnUr1+fjRs38sYbb5CWlsb8+fOvO3bff/8948aN48UXX8Rut/Pqq6/St29fxo0bx5o1a5g0aRI2m40XXniB6OhoDh48aM4SLV68mMcff5yuXbvy0UcfkZOTw9SpU4mKimLNmjW0b9/eaV/9+vXjiSee4JlnnmHVqlVMnTqVCxcusHr1aoYMGcLo0aNZvHgxL7zwAg0aNKBv374lGs/ly5ezZcsWXnvtNapXr87UqVN56KGH2LdvH/Xq1ePPf/4zx48f5//+7/9YunQpgYGBQMn/p//nP/+Zvn37smTJErZv38748ePNcNa3b1+efvppVq9ezZQpUwgKCnIKu4WJjY1lwYIFjB49mi5durBr1y769u3LyZMnr9uWnj17kpuby9SpU7njjjs4duwYGzZsMK8xWbZsGY888gh2u908PePu7u60jXHjxhEZGcns2bOpUqUKfn5+ZGRkFLq/Cxcu0LNnT5555hnGjh3Lhg0beOONNzh06BD/+c9/ijB6/1Pcn8u5c+e4//77+fnnn3n11Vdp2rQp33zzDfHx8aSmprJ8+XKn+usdF1LJGCI3mYEDBxpeXl5Oyzp06GAAxpo1a665bl5ennHhwgVj3bp1BmB8//33TtsFjE8++cRpnZ49exphYWHm+x07dhiA8fe//92p7p577jFatWplvo+PjzeqVKlibNmyxanuX//6lwEYK1asMJcBht1uN44fP+5UO2zYMKNmzZrX7NMzzzxjVK9e3Th06JDT8rffftsAjN27d19z/ZCQEMPT09M4cuSIuSw1NdUAjMDAQOP06dPm8s8++8wAjM8//9wwDMPIzc01goKCjCZNmhi5ublm3cmTJw0/Pz+jXbt25rJXXnnFAIx33nnHaf/Nmzc3AGPp0qXmsgsXLhh16tQx+vbtay4r7nj6+/sb2dnZ5rKMjAyjSpUqRnx8vLnsrbfeMgDj4MGDBcYFMF555ZVCx2vgwIHm+/nz5xuAMXz4cKe6Pn36GIAxbdq0Av1t2bJlge1ebu/evQZgPP/8807LFy1aZABO+09OTjYAIzk52TAMwzh27JgBGO++++4199G4cWOjQ4cOBZbnb+++++676mf5+zKM//29mTFjhlPtm2++aQDG+vXrDcMwjIMHDxqAMX/+/ALbvXKsr/Vz6dChg1O7Z8+eXejf2ylTphiAsXLlSqf9FOW4kMpDp5PEMmrVqkXHjh0LLD9w4AADBgwgICCAqlWr4urqSocOHQDYu3evU63NZqNXr15Oy5o2bcqhQ4fM902aNKFVq1ZOMxx79+5l8+bN5iksgC+++IKIiAiaN2/OxYsXzVe3bt0KnZLv2LEjtWrVclp2zz33cOLECR577DH+/e9/c+zYsQL9++KLL7j//vsJCgpy2k+PHj0AWLdu3bWGDYDmzZtz2223me/Dw8OBS1P3l19XlL88fzz27dvHr7/+SkxMjDnzBVC9enUefvhhUlJSnE4pAERHRzu9Dw8Px2azme0FcHFxoUGDBk7jXtzxvP/++/H29jbf+/v74+fn57TNslRYvwAeeOCBAsuv14bk5GQAHn/8cafl/fr1w8Xl2hPktWvXpn79+rz11ltMmzaN7du3k5eXV6Q+XO7hhx8uVv2VbR0wYADwv76Ul6+++govLy8eeeQRp+X5p/zWrFnjtPxGHxdSsRRixDLyp50vd+rUKf7whz+wadMm3njjDdauXcuWLVtYunQpAGfPnnWqr1atGh4eHk7L3N3dOXfunNOyp556io0bN/LDDz8AMH/+fNzd3XnsscfMmqNHj7Jjxw5cXV2dXt7e3hiGUSCQFNb+mJgY5s2bx6FDh3j44Yfx8/OjTZs2rFq1ymk///nPfwrsp3HjxgCFBp8r1a5d2+m9m5vbNZfnj8fvv/9+1bYHBQWRl5dHVlbWdfdV2Li7ubk5jXtxx9PHx6dAm9zd3Qv8zMtKccbwyuPpSvnjGhAQ4LTcxcWl0H5dzmazsWbNGrp168bUqVNp2bIlderUYcSIEUU6FZWvsJ/p1RTWrvy25/elvPz+++8EBAQ4nUoE8PPzw8XFpcD+b/RxIRVL18SIZVz5jxhc+l/ar7/+ytq1a83ZF6DUzwV57LHHGDlyJImJibz55pssXLiQPn36OM2k+Pr64unpybx58wrdhq+v73XbD/CnP/2JP/3pT5w+fZqvv/6aV155hejoaH788UdCQkLw9fWladOmvPnmm4WuHxQUVMJeXl/+L4T09PQCn/36669UqVKlwOxSSRV3PEvL3d29wIWhUP6/lOF/45qRkeE0Q3bx4sUi7T8kJIS5c+cC8OOPP/LJJ58wceJEzp8/z+zZs4vUhqsdj4XJb9flASH/+pn8Zfkh9coxLe14+vj4sGnTJgzDcGpzZmYmFy9eLPPjQqxFIUYsLf8ftSsvWpwzZ06ptlurVi369OnDggULiIyMJCMjw+lUElw6vTBp0iR8fHwIDQ0t1f4AvLy86NGjB+fPn6dPnz7s3r2bkJAQoqOjWbFiBfXr1y+zwFBUYWFh3HbbbSxevJjRo0eb43369Gk+/fRT846lslDW4wn/Oy4K+1943bp12bFjh9Oyr776ilOnTpXJvq8l/+6bRYsW0apVK3P5J598UqQ7zi5355138tJLL/Hpp5/y3XffmcvLevZh0aJFjBgxwny/ePFi4H998ff3x8PDo8CY/vvf/y6wrWv9XK7UqVMnPvnkEz777DMeeughc/mCBQvMz+XWpRAjltauXTtq1arFs88+yyuvvIKrqyuLFi3i+++/L/W2n3rqKT7++GOGDRvG7bffTufOnZ0+j4uL49NPP+W+++7j+eefp2nTpuTl5fHLL7+wcuVKRo0aRZs2ba65j9jYWDw9Pbn33nsJDAwkIyOD+Ph47HY7d999NwCvvfYaq1atol27dowYMYKwsDDOnTtHWloaK1asYPbs2dx+++2l7m9hqlSpwtSpU3n88ceJjo7mmWeeIScnh7feeosTJ04wefLkMttXWYznlZo0aQLAjBkzGDhwIK6uroSFheHt7U1MTAwvv/wyEyZMoEOHDuzZs4eEhATsdnuZ9elqwsPDeeKJJ3j33XdxdXWlc+fO7Nq1i7ffftvpjrjC7Nixg2HDhvHoo4/SsGFD3Nzc+Oqrr9ixYwdjx44165o0acKSJUv4+OOPqVevHh4eHuZ4FJebmxvvvPMOp06d4u677zbvTurRo4d5d5rNZuOJJ55g3rx51K9fn2bNmrF582Yz7FzuWj+XKz355JP87W9/Y+DAgaSlpdGkSRPWr1/PpEmT6NmzZ4G/l3JrUYgRS/Px8WH58uWMGjWKJ554Ai8vLx588EE+/vhjWrZsWaptd+7cmeDgYA4fPsyLL77odGErXJo5+eabb5g8eTJ///vfzduS77jjDjp37mw+l+Na/vCHP5CYmMgnn3xCVlYWvr6+tG/fngULFlCnTh3g0rULW7du5fXXX+ett97iyJEjeHt7ExoaSvfu3ct9dmbAgAF4eXkRHx9P//79qVq1Km3btiU5OZl27dqV2X7KYjyvFBUVxbhx4/jggw94//33ycvLIzk5maioKP7617+SnZ1NYmIib7/9Nvfccw+ffPIJDz74YJn16Vrmzp2Lv78/iYmJvPfeezRv3pxPP/2UP/7xj9dcLyAggPr16zNz5kwOHz6MzWajXr16vPPOOwwfPtyse/XVV0lPTyc2NpaTJ08SEhJCWlpaidrq6urKF198wYgRI3jjjTfw9PQkNjaWt956y6nunXfeAWDq1KmcOnWKjh078sUXXxT42V3r53IlDw8PkpOTefHFF3nrrbf47bffuO222xg9ejSvvPJKifojlYfNMAyjohshIiIiUly6O0lEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCyp0j4nJi8vj19//RVvb+9iPV5bREREKo5hGJw8eZKgoKACz+e6UqUNMb/++ivBwcEV3QwREREpgcOHD1/3aeSVNsTkP7768OHD132Mt4iIiNwcsrOzCQ4OLvRrKK5UaUNM/imkGjVqKMSIiIhYTFEuBdGFvSIiImJJCjEiIiJiSQoxIiIiYkmV9poYEREpndzcXC5cuFDRzZBKxtXVlapVq5bJthRiRETEiWEYZGRkcOLEiYpuilRSNWvWJCAgoNTPcVOIERERJ/kBxs/Pj2rVqumBoVJmDMPgzJkzZGZmAhAYGFiq7SnEiIiIKTc31wwwPj4+Fd0cqYQ8PT0ByMzMxM/Pr1SnlnRhr4iImPKvgalWrVoFt0Qqs/zjq7TXXCnEiIhIATqFJOWprI4vhRgRERGxJIUYERGRW9igQYPo06eP+T4qKoq4uLhrrlO3bl3efffdcm1XUejCXhERKZK6Y5ffsH2lTX7ghu2rIkVFRdG8efMbEgjS0tIIDQ1l+/btNG/e3Fw+Y8YMDMMo9/2XB4UYERGplM6fP4+bm1tFN6PUDMMgNzcXF5fy+ZVtt9vLZbs3gk4niYhIpRAVFcWwYcMYOXIkvr6+dOnShT179tCzZ0+qV6+Ov78/MTExHDt2zFwnLy+PKVOm0KBBA9zd3bnjjjt48803zc937txJx44d8fT0xMfHh6effppTp06Zn+efinn77bcJDAzEx8eHoUOHOt11M3PmTBo2bIiHhwf+/v488sgj5rrr1q1jxowZ2Gw2bDYbaWlprF27FpvNxpdffknr1q1xd3fnm2++KXDaByAuLo6oqKgi9Sc0NBSAFi1aYLPZzPUK2+7FixcZNmwYNWvWxMfHh5deeumaszUOh4Onn34aPz8/atSoQceOHfn++++v/0MrJYUYERGpND744ANcXFz49ttvmTx5Mh06dKB58+Zs3bqVpKQkjh49Sr9+/cz6cePGMWXKFF5++WX27NnD4sWL8ff3B+DMmTN0796dWrVqsWXLFv75z3+yevVqhg0b5rTP5ORkfv75Z5KTk/nggw9ITEwkMTERgK1btzJixAhee+019u3bR1JSEvfddx9w6TROZGQksbGxpKenk56eTnBwsLndMWPGEB8fz969e2natGmR+n+t/mzevBmA1atXk56eztKlS687jps2beK9995j+vTp/OMf/yi01jAMHnjgATIyMlixYgXbtm2jZcuWdOrUiePHjxep3SWl00kVoDTnlW+V88QiIiXRoEEDpk6dCsCECRNo2bIlkyZNMj+fN28ewcHB/PjjjwQGBjJjxgwSEhIYOHAgAPXr16d9+/YALFq0iLNnz7JgwQK8vLwASEhIoFevXkyZMsUMB7Vq1SIhIYGqVaty11138cADD7BmzRpiY2P55Zdf8PLyIjo6Gm9vb0JCQmjRogVw6TSOm5sb1apVIyAgoEBfXnvtNbp06VLkvp88efKa/alTpw4APj4+he7vcsHBwUyfPh2bzUZYWBg7d+5k+vTpxMbGFqhNTk5m586dZGZm4u7uDsDbb7/NZ599xr/+9S+efvrpIvehuDQTIyIilUbr1q3NP2/bto3k5GSqV69uvu666y4Afv75Z/bu3UtOTg6dOnUqdFt79+6lWbNmZoABuPfee8nLy2Pfvn3mssaNGzs9dTYwMNB8rH6XLl0ICQmhXr16xMTEsGjRIs6cOVPsvhTF9fpTHG3btnV6lktkZCT79+8nNze3QO22bds4deoUPj4+TmN98OBBfv7551K35Vo0EyMiIpXG5YEjLy/PnDW5UmBgIAcOHLjmtgzDuOpD2S5f7urqWuCzvLw8ALy9vfnuu+9Yu3YtK1euZMKECUycOJEtW7ZQs2bNIvcFoEqVKgWuS7n82pv8x/nfaHl5eQQGBrJ27doCn12vj6WlmRgREamUWrZsye7du6lbty4NGjRwenl5edGwYUM8PT1Zs2ZNoes3atSI1NRUTp8+bS779ttvqVKlCnfeeWeR2+Hi4kLnzp2ZOnUqO3bsIC0tja+++goANze3Qmc3ClOnTh3S09OdlqWmppp/vl5/8u/UKsr+UlJSCrxv2LBhod9z1LJlSzIyMnBxcSkwzr6+vtfdV2koxIiISKU0dOhQjh8/zmOPPcbmzZs5cOAAK1eu5KmnniI3NxcPDw9eeOEFxowZw4IFC/j5559JSUlh7ty5ADz++ON4eHgwcOBAdu3aRXJyMsOHDycmJsa8HuZ6vvjiC9577z1SU1M5dOgQCxYsIC8vj7CwMODSQ+M2bdpEWloax44dM2dwCtOxY0e2bt3KggUL2L9/P6+88gq7du0yP79ef/z8/PD09DQvcHY4HFfd1+HDhxk5ciT79u3jo48+4v/+7/947rnnCq3t3LkzkZGR9OnThy+//JK0tDQ2bNjASy+9xNatW4s0TiWlECMiIpVSUFAQ3377Lbm5uXTr1o2IiAiee+457HY7Vapc+vX38ssvM2rUKCZMmEB4eDj9+/c3r2epVq0aX375JcePH+fuu+/mkUceoVOnTiQkJBS5DTVr1mTp0qV07NiR8PBwZs+ezUcffUTjxo0BGD16NFWrVqVRo0bUqVOHX3755arb6tatGy+//DJjxozh7rvv5uTJkzz55JNONdfqj4uLC++99x5z5swhKCiIBx988Kr7evLJJzl79iz33HMPQ4cOZfjw4Ve9QNdms7FixQruu+8+nnrqKe68807++Mc/kpaWVuSwV1I2w6qP6buO7Oxs7HY7DoeDGjVqVHRznOjuJBG5WZ07d46DBw8SGhqKh4dHRTdHKqlrHWfF+f2tmRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJD3sroRu5FfSi4iISEGaiRERERFLUogRERERS1KIEREREUtSiBERERFLUogRERGRYklLS8Nmszl9AWVF0N1JIiJSNBPtN3BfV/9ywsokKiqK5s2b8+6775b7vtLS0ggNDWX79u00b9683Pd3IxRrJmbWrFk0bdqUGjVqUKNGDSIjI/nvf/9rfj5o0CBsNpvTq23btk7byMnJYfjw4fj6+uLl5UXv3r05cuSIU01WVhYxMTHY7XbsdjsxMTGcOHGi5L0UEZFbzvnz5yu6CWXCMAwuXrxY0c24KRUrxNx+++1MnjyZrVu3snXrVjp27MiDDz7I7t27zZru3buTnp5uvlasWOG0jbi4OJYtW8aSJUtYv349p06dIjo6mtzcXLNmwIABpKamkpSURFJSEqmpqcTExJSyqyIiUplFRUUxbNgwRo4cia+vL126dGHPnj307NmT6tWr4+/vT0xMDMeOHTPXycvLY8qUKTRo0AB3d3fuuOMO3nzzTfPznTt30rFjRzw9PfHx8eHpp5/m1KlT5ueDBg2iT58+vP322wQGBuLj48PQoUO5cOGCWTNz5kwaNmyIh4cH/v7+PPLII+a669atY8aMGeZ//NPS0li7di02m40vv/yS1q1b4+7uzjfffGPu63JxcXFERUUVqT+hoaEAtGjRApvN5rTe/PnzCQ8Px8PDg7vuuouZM2c67Wfz5s20aNECDw8PWrduzfbt20v2QypjxTqd1KtXL6f3b775JrNmzSIlJcX8WnF3d3cCAgIKXd/hcDB37lwWLlxI586dAfjwww8JDg5m9erVdOvWjb1795KUlERKSgpt2rQB4P333ycyMpJ9+/YRFhZW7E6KiMit4YMPPuAvf/kL3377LcePH6dDhw7ExsYybdo0zp49ywsvvEC/fv346quvABg3bhzvv/8+06dPp3379qSnp/PDDz8AcObMGbp3707btm3ZsmULmZmZ/PnPf2bYsGEkJiaa+0xOTiYwMJDk5GR++ukn+vfvT/PmzYmNjWXr1q2MGDGChQsX0q5dO44fP84333wDwIwZM/jxxx+JiIjgtddeA6BOnTqkpaUBMGbMGN5++23q1atHzZo1i9T/a/Vn8+bN3HPPPaxevZrGjRvj5uYGXPod+8orr5CQkECLFi3Yvn07sbGxeHl5MXDgQE6fPk10dDQdO3bkww8/5ODBgzz33HOl/VGViRJfE5Obm8s///lPTp8+TWRkpLl87dq1+Pn5UbNmTTp06MCbb76Jn58fANu2bePChQt07drVrA8KCiIiIoINGzbQrVs3Nm7ciN1uNwMMQNu2bbHb7WzYsOGWDzGleVJw2uQHyrAlIiI3nwYNGjB16lQAJkyYQMuWLZk0aZL5+bx58wgODubHH38kMDCQGTNmkJCQwMCBAwGoX78+7du3B2DRokWcPXuWBQsW4OXlBUBCQgK9evViypQp+Pv7A1CrVi0SEhKoWrUqd911Fw888ABr1qwhNjaWX375BS8vL6Kjo/H29iYkJIQWLVoAYLfbcXNzo1q1aoX+5/+1116jS5cuRe77yZMnr9mfOnXqAODj4+O0v9dff5133nmHvn37ApdmbPbs2cOcOXMYOHAgixYtIjc3l3nz5lGtWjUaN27MkSNH+Mtf/lLktpWXYoeYnTt3EhkZyblz56hevTrLli2jUaNGAPTo0YNHH32UkJAQDh48yMsvv0zHjh3Ztm0b7u7uZGRk4ObmRq1atZy26e/vT0ZGBgAZGRlm6Lmcn5+fWVOYnJwccnJyzPfZ2dnF7ZqIiFhc69atzT9v27aN5ORkqlevXqDu559/5sSJE+Tk5NCpU6dCt7V3716aNWtmBhiAe++9l7y8PPbt22eGmMaNG1O1alWzJjAwkJ07dwLQpUsXQkJCqFevHt27d6d79+489NBDVKtWrVh9KYq9e/desz+F+e233zh8+DCDBw8mNjbWXH7x4kXsdru53WbNmjm1+fLJi4pU7BATFhZGamoqJ06c4NNPP2XgwIGsW7eORo0a0b9/f7MuIiKC1q1bExISwvLly82EVxjDMLDZbOb7y/98tZorxcfH8+qrrxa3OyIiUolcHjjy8vLMWZMrBQYGcuDAgWtu61q/dy5f7urqWuCzvLw8ALy9vfnuu+9Yu3YtK1euZMKECUycOJEtW7Zc9xTR5X0BqFKlCoZhOC27/NobT0/Pa26vMPntfP/9953OgABmMLtynzeTYj8nxs3NjQYNGtC6dWvi4+Np1qwZM2bMKLQ2MDCQkJAQ9u/fD0BAQADnz58nKyvLqS4zM9NMtAEBARw9erTAtn777TezpjDjxo3D4XCYr8OHDxe3ayIiUom0bNmS3bt3U7duXRo0aOD08vLyomHDhnh6erJmzZpC12/UqBGpqamcPn3aXPbtt99SpUoV7rzzziK3w8XFhc6dOzN16lR27NhBWlqaeU2Om5ub040t11KnTh3S09Odll3+nJbr9Sf/GpjL9+fv789tt93GgQMHCoxR/oXAjRo14vvvv+fs2bPmeikpKUVqc3kr9cPuDMNwOo1zud9//53Dhw8TGBgIQKtWrXB1dWXVqlVmTXp6Ort27aJdu3bApSkqh8PB5s2bzZpNmzbhcDjMmsK4u7ubt37nv0RE5NY1dOhQjh8/zmOPPcbmzZs5cOAAK1eu5KmnniI3NxcPDw9eeOEFxowZw4IFC/j5559JSUlh7ty5ADz++ON4eHgwcOBAdu3aRXJyMsOHDycmJuaa/6m+3BdffMF7771Hamoqhw4dYsGCBeTl5ZnXd9atW5dNmzaRlpbGsWPHzJmRwnTs2JGtW7eyYMEC9u/fzyuvvMKuXbvMz6/XHz8/Pzw9PUlKSuLo0aM4HJeexTNx4kTi4+PNC4137tzJ/PnzmTZtGnDpjuEqVaowePBg9uzZw4oVK3j77beL/wMpB8UKMePHj+ebb74hLS2NnTt38uKLL7J27Voef/xxTp06xejRo9m4caN5i1ivXr3w9fXloYceAi5dxDR48GBGjRrFmjVr2L59O0888QRNmjQx71YKDw+ne/fuxMbGkpKSQkpKCrGxsURHR9/yF/WKiEjRBQUF8e2335Kbm0u3bt2IiIjgueeew263U6XKpV9/L7/8MqNGjWLChAmEh4fTv39/MjMzAahWrRpffvklx48f5+677+aRRx6hU6dOJCQkFLkNNWvWZOnSpXTs2JHw8HBmz57NRx99ZN7RO3r0aKpWrUqjRo2oU6cOv/zyy1W31a1bN15++WXGjBnD3XffzcmTJ3nyySedaq7VHxcXF9577z3mzJlDUFAQDz74IAB//vOf+cc//kFiYiJNmjShQ4cOJCYmmjMx1atX5z//+Q979uyhRYsWvPjii4WeoqsINqMYJ7sGDx7MmjVrSE9Px26307RpU1544QW6dOnC2bNn6dOnD9u3b+fEiRMEBgZy//338/rrrxMcHGxu49y5c/z1r39l8eLFnD17lk6dOjFz5kynmuPHjzNixAg+//xzAHr37k1CQkKRbzGDSxf22u12HA5HuczKlOYuoYqiu5NE5HrOnTvHwYMHCQ0NxcPDo6KbI5XUtY6z4vz+LlaIsRKFmIIUYkTkehRi5EYoqxCjL4AUERERS1KIEREREUtSiBERERFLUogREZECKunlknKTKKvjSyFGRERM+U+fPXPmTAW3RCqz/OPryqcdF1eJvwBSREQqn6pVq1KzZk2nZ6Vc6ytfRIrDMAzOnDlDZmYmNWvWdPrOqZJQiBERESf533CcH2REylrNmjUL/ebu4lKIERERJzabjcDAQPz8/Jy+YFCkLLi6upZ6BiafQoyIiBSqatWqZfbLRqQ86MJeERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkhRgRERGxJIUYERERsSSFGBEREbEkl4pugNw4dccuL/G6aZMfKMOWiIiIlF6xZmJmzZpF06ZNqVGjBjVq1CAyMpL//ve/5ueGYTBx4kSCgoLw9PQkKiqK3bt3O20jJyeH4cOH4+vri5eXF7179+bIkSNONVlZWcTExGC327Hb7cTExHDixImS91JEREQqnWKFmNtvv53JkyezdetWtm7dSseOHXnwwQfNoDJ16lSmTZtGQkICW7ZsISAggC5dunDy5ElzG3FxcSxbtowlS5awfv16Tp06RXR0NLm5uWbNgAEDSE1NJSkpiaSkJFJTU4mJiSmjLouIiEhlYDMMwyjNBmrXrs1bb73FU089RVBQEHFxcbzwwgvApVkXf39/pkyZwjPPPIPD4aBOnTosXLiQ/v37A/Drr78SHBzMihUr6NatG3v37qVRo0akpKTQpk0bAFJSUoiMjOSHH34gLCysSO3Kzs7GbrfjcDioUaNGabpYqNKcmrEinU4SEZEboTi/v0t8YW9ubi5Llizh9OnTREZGcvDgQTIyMujatatZ4+7uTocOHdiwYQMA27Zt48KFC041QUFBREREmDUbN27EbrebAQagbdu22O12s0ZERESk2Bf27ty5k8jISM6dO0f16tVZtmwZjRo1MgOGv7+/U72/vz+HDh0CICMjAzc3N2rVqlWgJiMjw6zx8/MrsF8/Pz+zpjA5OTnk5OSY77Ozs4vbNREREbGQYs/EhIWFkZqaSkpKCn/5y18YOHAge/bsMT+32WxO9YZhFFh2pStrCqu/3nbi4+PNC4HtdjvBwcFF7ZKIiIhYULFDjJubGw0aNKB169bEx8fTrFkzZsyYQUBAAECB2ZLMzExzdiYgIIDz58+TlZV1zZqjR48W2O9vv/1WYJbncuPGjcPhcJivw4cPF7drIiIiYiGlftidYRjk5OQQGhpKQEAAq1atMj87f/4869ato127dgC0atUKV1dXp5r09HR27dpl1kRGRuJwONi8ebNZs2nTJhwOh1lTGHd3d/PW7/yXiIiIVF7FuiZm/Pjx9OjRg+DgYE6ePMmSJUtYu3YtSUlJ2Gw24uLimDRpEg0bNqRhw4ZMmjSJatWqMWDAAADsdjuDBw9m1KhR+Pj4ULt2bUaPHk2TJk3o3LkzAOHh4XTv3p3Y2FjmzJkDwNNPP010dHSR70wSERGRyq9YIebo0aPExMSQnp6O3W6nadOmJCUl0aVLFwDGjBnD2bNnGTJkCFlZWbRp04aVK1fi7e1tbmP69Om4uLjQr18/zp49S6dOnUhMTKRq1apmzaJFixgxYoR5F1Pv3r1JSEgoi/6KiIhIJVHq58TcrPScmLKl58SIiMiNcEOeEyMiIiJSkRRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSXCq6AbeiNI8BJV637rnFZdgSERER61KIsRgFIBERkUt0OklEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsqVghJj4+nrvvvhtvb2/8/Pzo06cP+/btc6oZNGgQNpvN6dW2bVunmpycHIYPH46vry9eXl707t2bI0eOONVkZWURExOD3W7HbrcTExPDiRMnStZLERERqXSKFWLWrVvH0KFDSUlJYdWqVVy8eJGuXbty+vRpp7ru3buTnp5uvlasWOH0eVxcHMuWLWPJkiWsX7+eU6dOER0dTW5urlkzYMAAUlNTSUpKIikpidTUVGJiYkrRVREREalMXIpTnJSU5PR+/vz5+Pn5sW3bNu677z5zubu7OwEBAYVuw+FwMHfuXBYuXEjnzp0B+PDDDwkODmb16tV069aNvXv3kpSUREpKCm3atAHg/fffJzIykn379hEWFlasToqIiEjlU6prYhwOBwC1a9d2Wr527Vr8/Py48847iY2NJTMz0/xs27ZtXLhwga5du5rLgoKCiIiIYMOGDQBs3LgRu91uBhiAtm3bYrfbzRoRERG5tRVrJuZyhmEwcuRI2rdvT0REhLm8R48ePProo4SEhHDw4EFefvllOnbsyLZt23B3dycjIwM3Nzdq1arltD1/f38yMjIAyMjIwM/Pr8A+/fz8zJor5eTkkJOTY77Pzs4uaddERETEAkocYoYNG8aOHTtYv3690/L+/fubf46IiKB169aEhISwfPly+vbte9XtGYaBzWYz31/+56vVXC4+Pp5XX321uN0QERERiyrR6aThw4fz+eefk5yczO23337N2sDAQEJCQti/fz8AAQEBnD9/nqysLKe6zMxM/P39zZqjR48W2NZvv/1m1lxp3LhxOBwO83X48OGSdE1EREQsolghxjAMhg0bxtKlS/nqq68IDQ297jq///47hw8fJjAwEIBWrVrh6urKqlWrzJr09HR27dpFu3btAIiMjMThcLB582azZtOmTTgcDrPmSu7u7tSoUcPpJSIiIpVXsU4nDR06lMWLF/Pvf/8bb29v8/oUu92Op6cnp06dYuLEiTz88MMEBgaSlpbG+PHj8fX15aGHHjJrBw8ezKhRo/Dx8aF27dqMHj2aJk2amHcrhYeH0717d2JjY5kzZw4ATz/9NNHR0bozSURERIBihphZs2YBEBUV5bR8/vz5DBo0iKpVq7Jz504WLFjAiRMnCAwM5P777+fjjz/G29vbrJ8+fTouLi7069ePs2fP0qlTJxITE6latapZs2jRIkaMGGHexdS7d28SEhJK2k8RERGpZGyGYRgV3YjykJ2djd1ux+FwlMuppbpjl5d43TSPAWXYkqKre25xiddNm/xAGbZERESkcMX5/a3vThIRERFLUogRERERS1KIEREREUtSiBERERFLUogRERERS1KIEREREUtSiBERERFLUogRERERSyrxt1iL9ZTuIXuOMmuHiIhIWdBMjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJusZYiqTt2eYnXTZv8QBm2RERE5BLNxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJRUrxMTHx3P33Xfj7e2Nn58fffr0Yd++fU41hmEwceJEgoKC8PT0JCoqit27dzvV5OTkMHz4cHx9ffHy8qJ3794cOXLEqSYrK4uYmBjsdjt2u52YmBhOnDhRsl6KiIhIpVOsELNu3TqGDh1KSkoKq1at4uLFi3Tt2pXTp0+bNVOnTmXatGkkJCSwZcsWAgIC6NKlCydPnjRr4uLiWLZsGUuWLGH9+vWcOnWK6OhocnNzzZoBAwaQmppKUlISSUlJpKamEhMTUwZdFhERkcrAZhiGUdKVf/vtN/z8/Fi3bh333XcfhmEQFBREXFwcL7zwAnBp1sXf358pU6bwzDPP4HA4qFOnDgsXLqR///4A/PrrrwQHB7NixQq6devG3r17adSoESkpKbRp0waAlJQUIiMj+eGHHwgLC7tu27Kzs7Hb7TgcDmrUqFHSLl5V3bHLS7xumseAMmzJjVH33OISr5s2+YEybImIiFRmxfn9XaprYhwOBwC1a9cG4ODBg2RkZNC1a1ezxt3dnQ4dOrBhwwYAtm3bxoULF5xqgoKCiIiIMGs2btyI3W43AwxA27ZtsdvtZo2IiIjc2lxKuqJhGIwcOZL27dsTEREBQEZGBgD+/v5Otf7+/hw6dMiscXNzo1atWgVq8tfPyMjAz8+vwD79/PzMmivl5OSQk5Njvs/Ozi5hz0RERMQKSjwTM2zYMHbs2MFHH31U4DObzeb03jCMAsuudGVNYfXX2k58fLx5EbDdbic4OLgo3RARERGLKlGIGT58OJ9//jnJycncfvvt5vKAgACAArMlmZmZ5uxMQEAA58+fJysr65o1R48eLbDf3377rcAsT75x48bhcDjM1+HDh0vSNREREbGIYoUYwzAYNmwYS5cu5auvviI0NNTp89DQUAICAli1apW57Pz586xbt4527doB0KpVK1xdXZ1q0tPT2bVrl1kTGRmJw+Fg8+bNZs2mTZtwOBxmzZXc3d2pUaOG00tEREQqr2JdEzN06FAWL17Mv//9b7y9vc0ZF7vdjqenJzabjbi4OCZNmkTDhg1p2LAhkyZNolq1agwYMMCsHTx4MKNGjcLHx4fatWszevRomjRpQufOnQEIDw+ne/fuxMbGMmfOHACefvppoqOji3RnkoiIiFR+xQoxs2bNAiAqKspp+fz58xk0aBAAY8aM4ezZswwZMoSsrCzatGnDypUr8fb2NuunT5+Oi4sL/fr14+zZs3Tq1InExESqVq1q1ixatIgRI0aYdzH17t2bhISEkvRRREREKqFSPSfmZqbnxJQtPSdGRERuhBv2nBgRERGRilLi58Tc6qw4myIiIlKZaCZGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELElfOyBFUrqvWXCUWTtERETyaSZGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJ350k5a7u2OUlXjdt8gNl2BIREalMNBMjIiIilqQQIyIiIpakECMiIiKWpBAjIiIilqQQIyIiIpakECMiIiKWpBAjIiIilqQQIyIiIpakECMiIiKWpBAjIiIilqQQIyIiIpZU7BDz9ddf06tXL4KCgrDZbHz22WdOnw8aNAibzeb0atu2rVNNTk4Ow4cPx9fXFy8vL3r37s2RI0ecarKysoiJicFut2O324mJieHEiRPF7qCIiIhUTsUOMadPn6ZZs2YkJCRctaZ79+6kp6ebrxUrVjh9HhcXx7Jly1iyZAnr16/n1KlTREdHk5uba9YMGDCA1NRUkpKSSEpKIjU1lZiYmOI2V0RERCqpYn+LdY8ePejRo8c1a9zd3QkICCj0M4fDwdy5c1m4cCGdO3cG4MMPPyQ4OJjVq1fTrVs39u7dS1JSEikpKbRp0waA999/n8jISPbt20dYWFhxmy0iIiKVTLlcE7N27Vr8/Py48847iY2NJTMz0/xs27ZtXLhwga5du5rLgoKCiIiIYMOGDQBs3LgRu91uBhiAtm3bYrfbzRoRERG5tRV7JuZ6evTowaOPPkpISAgHDx7k5ZdfpmPHjmzbtg13d3cyMjJwc3OjVq1aTuv5+/uTkZEBQEZGBn5+fgW27efnZ9ZcKScnh5ycHPN9dnZ2GfZKREREbjZlHmL69+9v/jkiIoLWrVsTEhLC8uXL6du371XXMwwDm81mvr/8z1eruVx8fDyvvvpqKVouIiIiVlLut1gHBgYSEhLC/v37AQgICOD8+fNkZWU51WVmZuLv72/WHD16tMC2fvvtN7PmSuPGjcPhcJivw4cPl3FPRERE5GZS7iHm999/5/DhwwQGBgLQqlUrXF1dWbVqlVmTnp7Orl27aNeuHQCRkZE4HA42b95s1mzatAmHw2HWXMnd3Z0aNWo4vURERKTyKvbppFOnTvHTTz+Z7w8ePEhqaiq1a9emdu3aTJw4kYcffpjAwEDS0tIYP348vr6+PPTQQwDY7XYGDx7MqFGj8PHxoXbt2owePZomTZqYdyuFh4fTvXt3YmNjmTNnDgBPP/000dHRujNJREREgBKEmK1bt3L//feb70eOHAnAwIEDmTVrFjt37mTBggWcOHGCwMBA7r//fj7++GO8vb3NdaZPn46Liwv9+vXj7NmzdOrUicTERKpWrWrWLFq0iBEjRph3MfXu3fuaz6YRERGRW4vNMAyjohtRHrKzs7Hb7TgcjvI5tTTRXvbbrKTqnltc4nXTJj9Qhi0REZGbXXF+f+u7k0RERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkhRiRERExJIUYkRERMSSFGJERETEkor9BZAixZXmMaAUazvKrB0iIlK5aCZGRERELEkhRkRERCxJIUZEREQsSSFGRERELEkhRkRERCxJIUZEREQsSSFGRERELEnPiZGbWt2xy0u8btrkB8qwJSIicrPRTIyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSQoyIiIhYUrFDzNdff02vXr0ICgrCZrPx2WefOX1uGAYTJ04kKCgIT09PoqKi2L17t1NNTk4Ow4cPx9fXFy8vL3r37s2RI0ecarKysoiJicFut2O324mJieHEiRPF7qCIiIhUTsUOMadPn6ZZs2YkJCQU+vnUqVOZNm0aCQkJbNmyhYCAALp06cLJkyfNmri4OJYtW8aSJUtYv349p06dIjo6mtzcXLNmwIABpKamkpSURFJSEqmpqcTExJSgiyIiIlIZ2QzDMEq8ss3GsmXL6NOnD3BpFiYoKIi4uDheeOEF4NKsi7+/P1OmTOGZZ57B4XBQp04dFi5cSP/+/QH49ddfCQ4OZsWKFXTr1o29e/fSqFEjUlJSaNOmDQApKSlERkbyww8/EBYWdt22ZWdnY7fbcTgc1KhRo6RdvLqJ9rLfphRQ99ziEq+bNvmBMmyJiIjcCMX5/V2m18QcPHiQjIwMunbtai5zd3enQ4cObNiwAYBt27Zx4cIFp5qgoCAiIiLMmo0bN2K3280AA9C2bVvsdrtZIyIiIrc2l7LcWEZGBgD+/v5Oy/39/Tl06JBZ4+bmRq1atQrU5K+fkZGBn59fge37+fmZNVfKyckhJyfHfJ+dnV3yjoiIiMhNr1zuTrLZbE7vDcMosOxKV9YUVn+t7cTHx5sXAdvtdoKDg0vQchEREbGKMg0xAQEBAAVmSzIzM83ZmYCAAM6fP09WVtY1a44ePVpg+7/99luBWZ5848aNw+FwmK/Dhw+Xuj8iIiJy8yrT00mhoaEEBASwatUqWrRoAcD58+dZt24dU6ZMAaBVq1a4urqyatUq+vXrB0B6ejq7du1i6tSpAERGRuJwONi8eTP33HMPAJs2bcLhcNCuXbtC9+3u7o67u3tZdkduAmkeA0qxtqPM2iEiIjefYoeYU6dO8dNPP5nvDx48SGpqKrVr1+aOO+4gLi6OSZMm0bBhQxo2bMikSZOoVq0aAwZc+mVkt9sZPHgwo0aNwsfHh9q1azN69GiaNGlC586dAQgPD6d79+7ExsYyZ84cAJ5++mmio6OLdGeSiIiIVH7FDjFbt27l/vvvN9+PHDkSgIEDB5KYmMiYMWM4e/YsQ4YMISsrizZt2rBy5Uq8vb3NdaZPn46Liwv9+vXj7NmzdOrUicTERKpWrWrWLFq0iBEjRph3MfXu3fuqz6YRERGRW0+pnhNzM9NzYoSJOp0kImI1FfacGBEREZEbpUwv7BW5mdQdu7zE6+ppvyIiNz/NxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIgluVR0A0TKS5rHgFKs7SizdoiISPnQTIyIiIhYkkKMiIiIWJJOJ4kUou7Y5SVeN23yA2XYEhERuRrNxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIglKcSIiIiIJZV5iJk4cSI2m83pFRAQYH5uGAYTJ04kKCgIT09PoqKi2L17t9M2cnJyGD58OL6+vnh5edG7d2+OHDlS1k0VERERCyuXmZjGjRuTnp5uvnbu3Gl+NnXqVKZNm0ZCQgJbtmwhICCALl26cPLkSbMmLi6OZcuWsWTJEtavX8+pU6eIjo4mNze3PJorIiIiFlQu32Lt4uLiNPuSzzAM3n33XV588UX69u0LwAcffIC/vz+LFy/mmWeeweFwMHfuXBYuXEjnzp0B+PDDDwkODmb16tV069atPJos4iTNY0Ap1naUWTtEROTqymUmZv/+/QQFBREaGsof//hHDhw4AMDBgwfJyMiga9euZq27uzsdOnRgw4YNAGzbto0LFy441QQFBREREWHWiIiIiJT5TEybNm1YsGABd955J0ePHuWNN96gXbt27N69m4yMDAD8/f2d1vH39+fQoUMAZGRk4ObmRq1atQrU5K9fmJycHHJycsz32dnZZdUlkWKpO3Z5iddNm/xAGbZERKRyK/MQ06NHD/PPTZo0ITIykvr16/PBBx/Qtm1bAGw2m9M6hmEUWHal69XEx8fz6quvlqLlIiIiYiXlfou1l5cXTZo0Yf/+/eZ1MlfOqGRmZpqzMwEBAZw/f56srKyr1hRm3LhxOBwO83X48OEy7omIiIjcTMo9xOTk5LB3714CAwMJDQ0lICCAVatWmZ+fP3+edevW0a5dOwBatWqFq6urU016ejq7du0yawrj7u5OjRo1nF4iIiJSeZX56aTRo0fTq1cv7rjjDjIzM3njjTfIzs5m4MCB2Gw24uLimDRpEg0bNqRhw4ZMmjSJatWqMWDApbtB7HY7gwcPZtSoUfj4+FC7dm1Gjx5NkyZNzLuVRERERMo8xBw5coTHHnuMY8eOUadOHdq2bUtKSgohISEAjBkzhrNnzzJkyBCysrJo06YNK1euxNvb29zG9OnTcXFxoV+/fpw9e5ZOnTqRmJhI1apVy7q5IiIiYlE2wzCMim5EecjOzsZut+NwOMrn1NJEe9lvUyqFuucWl3hd3Z0kIre64vz+1ncniYiIiCUpxIiIiIglKcSIiIiIJSnEiIiIiCUpxIiIiIgllcu3WIvcykrzDdh1x+rOJhGRotJMjIiIiFiSQoyIiIhYkkKMiIiIWJJCjIiIiFiSLuwVqSTqjl1e4nV1UbCIWJFmYkRERMSSFGJERETEkhRiRERExJJ0TYzITaRUD8o7V/IH5YmIWJFmYkRERMSSFGJERETEknQ6SaSSKM2pKHCUWTtERG4UhRgR0TNmRMSSdDpJRERELEkhRkRERCxJIUZEREQsSdfEiEip6HoaEakomokRERERS9JMjIhU2JOCNYsjIqWhECMipaKvShCRiqLTSSIiImJJmokRkQqjpwyLSGloJkZEREQsSSFGRERELEmnk0TEknRnk4goxIjILac0Aag0FJ5EypZOJ4mIiIglaSZGRCypdHc2VYy6Y0v+XBzN4ogUpBAjImIBugZIpCCFGBGRG0RPNxYpWzd9iJk5cyZvvfUW6enpNG7cmHfffZc//OEPFd0sEZEbqlQBqBSnsSqKZo+kKG7qEPPxxx8TFxfHzJkzuffee5kzZw49evRgz5493HHHHRXdPBERS7Di9UN6IrMUhc0wDKOiG3E1bdq0oWXLlsyaNctcFh4eTp8+fYiPj7/mutnZ2djtdhwOBzVq1Cj7xk20l/02RUTkkoklDzEVdQs9aAapLBTn9/dNOxNz/vx5tm3bxtixY52Wd+3alQ0bNlRQq0RE5EYo1YXMFTnzNLHkq1bUdU9WDl43bYg5duwYubm5+Pv7Oy339/cnIyOjQH1OTg45OTnme4fjUorPzs4unwbm3LQTWCIilrfD9liJ183OuX7Nzag0fS6N7HGlWHnckTJrR77839tFOVF004aYfDabzem9YRgFlgHEx8fz6quvFlgeHBxcbm0TERG5pU0uv0srTp48id1+7e3ftCHG19eXqlWrFph1yczMLDA7AzBu3DhGjhxpvs/Ly+P48eP4+PgUGnpKIzs7m+DgYA4fPlw+19tUIhqrotNYFZ3Gqug0VsWj8Sq68horwzA4efIkQUFB1629aUOMm5sbrVq1YtWqVTz00EPm8lWrVvHggw8WqHd3d8fd3d1pWc2aNcu1jTVq1NBBXkQaq6LTWBWdxqroNFbFo/EquvIYq+vNwOS7aUMMwMiRI4mJiaF169ZERkby97//nV9++YVnn322opsmIiIiFeymDjH9+/fn999/57XXXiM9PZ2IiAhWrFhBSEhIRTdNREREKthNHWIAhgwZwpAhQyq6GU7c3d155ZVXCpy+koI0VkWnsSo6jVXRaayKR+NVdDfDWN3UD7sTERERuZoqFd0AERERkZJQiBERERFLUogRERERS1KIEREREUtSiLmKmTNnEhoaioeHB61ateKbb765Zv26deto1aoVHh4e1KtXj9mzZ9+glla84ozV2rVrsdlsBV4//PDDDWxxxfj666/p1asXQUFB2Gw2Pvvss+uuc6seV8Udq1v1uIqPj+fuu+/G29sbPz8/+vTpw759+6673q14XJVkrG7V4wpg1qxZNG3a1HyQXWRkJP/973+vuU5FHFcKMYX4+OOPiYuL48UXX2T79u384Q9/oEePHvzyyy+F1h88eJCePXvyhz/8ge3btzN+/HhGjBjBp59+eoNbfuMVd6zy7du3j/T0dPPVsGHDG9TiinP69GmaNWtGQkJCkepv5eOquGOV71Y7rtatW8fQoUNJSUlh1apVXLx4ka5du3L69OmrrnOrHlclGat8t9pxBXD77bczefJktm7dytatW+nYsSMPPvggu3fvLrS+wo4rQwq45557jGeffdZp2V133WWMHTu20PoxY8YYd911l9OyZ555xmjbtm25tfFmUdyxSk5ONgAjKyvrBrTu5gUYy5Ytu2bNrXxcXa4oY6Xj6pLMzEwDMNatW3fVGh1XlxRlrHRcOatVq5bxj3/8o9DPKuq40kzMFc6fP8+2bdvo2rWr0/KuXbuyYcOGQtfZuHFjgfpu3bqxdetWLly4UG5trWglGat8LVq0IDAwkE6dOpGcnFyezbSsW/W4Ko1b/bhyOBwA1K5d+6o1Oq4uKcpY5bvVj6vc3FyWLFnC6dOniYyMLLSmoo4rhZgrHDt2jNzc3ALflO3v71/gG7XzZWRkFFp/8eJFjh07Vm5trWglGavAwED+/ve/8+mnn7J06VLCwsLo1KkTX3/99Y1osqXcqsdVSei4uvTNvyNHjqR9+/ZERERctU7HVdHH6lY/rnbu3En16tVxd3fn2WefZdmyZTRq1KjQ2oo6rm76rx2oKDabzem9YRgFll2vvrDllVFxxiosLIywsDDzfWRkJIcPH+btt9/mvvvuK9d2WtGtfFwVh44rGDZsGDt27GD9+vXXrb3Vj6uijtWtflyFhYWRmprKiRMn+PTTTxk4cCDr1q27apCpiONKMzFX8PX1pWrVqgVmEjIzMwukzHwBAQGF1ru4uODj41Nuba1oJRmrwrRt25b9+/eXdfMs71Y9rsrKrXRcDR8+nM8//5zk5GRuv/32a9be6sdVccaqMLfSceXm5kaDBg1o3bo18fHxNGvWjBkzZhRaW1HHlULMFdzc3GjVqhWrVq1yWr5q1SratWtX6DqRkZEF6leuXEnr1q1xdXUtt7ZWtJKMVWG2b99OYGBgWTfP8m7V46qs3ArHlWEYDBs2jKVLl/LVV18RGhp63XVu1eOqJGNVmFvhuLoawzDIyckp9LMKO67K9bJhi1qyZInh6upqzJ0719izZ48RFxdneHl5GWlpaYZhGMbYsWONmJgYs/7AgQNGtWrVjOeff97Ys2ePMXfuXMPV1dX417/+VVFduGGKO1bTp083li1bZvz444/Grl27jLFjxxqA8emnn1ZUF26YkydPGtu3bze2b99uAMa0adOM7du3G4cOHTIMQ8fV5Yo7VrfqcfWXv/zFsNvtxtq1a4309HTzdebMGbNGx9UlJRmrW/W4MgzDGDdunPH1118bBw8eNHbs2GGMHz/eqFKlirFy5UrDMG6e40oh5ir+9re/GSEhIYabm5vRsmVLp9vwBg4caHTo0MGpfu3atUaLFi0MNzc3o27dusasWbNucIsrTnHGasqUKUb9+vUNDw8Po1atWkb79u2N5cuXV0Crb7z82zWvfA0cONAwDB1XlyvuWN2qx1VhYwQY8+fPN2t0XF1SkrG6VY8rwzCMp556yvx3vU6dOkanTp3MAGMYN89xZTOM///KGxEREREL0TUxIiIiYkkKMSIiImJJCjEiIiJiSQoxIiIiYkkKMSIiImJJCjEiIiJiSQoxIiIiYkkKMSIiImJJCjEiIiJiSQoxInLTiYqKwmazYbPZSE1NrbB2DBo0yGzHZ599VmHtEJHCKcSIyE0pNjaW9PR0IiIinJZnZGTw3HPP0aBBAzw8PPD396d9+/bMnj2bM2fOFGnbvXr1onPnzoV+tnHjRmw2G9999x0zZswgPT291H0RkfLhUtENEBEpTLVq1QgICHBaduDAAe69915q1qzJpEmTaNKkCRcvXuTHH39k3rx5BAUF0bt37+tue/DgwfTt25dDhw4REhLi9Nm8efNo3rw5LVu2BMBut5ddp0SkTGkmRkTKxNGjR7HZbMyYMYMWLVrg4eFB48aNWb9+fZntY8iQIbi4uLB161b69etHeHg4TZo04eGHH2b58uX06tULAMMwmDp1KvXq1cPT05NmzZrxr3/9y9xOdHQ0fn5+JCYmOm3/zJkzfPzxxwwePLjM2iwi5UchRkTKxPbt2wGYOXMm06dP5/vvv6du3bo8/vjj5OXllXr7v//+OytXrmTo0KF4eXkVWmOz2QB46aWXmD9/PrNmzWL37t08//zzPPHEE6xbtw4AFxcXnnzySRITEzEMw1z/n//8J+fPn+fxxx8vdXtFpPwpxIhImfj+++9xdXUlKSmJqKgowsLCeO211/jll1948803ad68OREREbi7u9O8eXOaN2/OnDlzirz9n376CcMwCAsLc1ru6+tL9erVqV69Oi+88AKnT59m2rRpzJs3j27dulGvXj0GDRrEE0884bS/p556irS0NNauXWsumzdvHn379qVWrVqlHg8RKX+6JkZEykRqaip9+/YlNDTUXObu7g5cusvn5Zdf5rvvvmP48OF8++23Jd5P/mxLvs2bN5OXl8fjjz9OTk4Oe/bs4dy5c3Tp0sWp7vz587Ro0cJ8f9ddd9GuXTvmzZvH/fffz88//8w333zDypUrS9w2EbmxFGJEpEykpqYycOBAp2Xfffcdvr6+3HbbbQDs3r2bxo0bl2j7DRo0wGaz8cMPPzgtr1evHgCenp4A5qmr5cuXm/vNlx+q8g0ePJhhw4bxt7/9jfnz5xMSEkKnTp1K1D4RufF0OklESu3s2bPs37+f3Nxcc1leXh4zZsxg4MCBVKly6Z+aXbt2lTjE+Pj40KVLFxISEjh9+vRV6xo1aoS7uzu//PILDRo0cHoFBwc71fbr14+qVauyePFiPvjgA/70pz8VmOkRkZuXZmJEpNR27tyJzWbjww8/pGPHjtSsWZMJEyZw4sQJXnrpJbNu9+7ddO3atcT7mTlzJvfeey+tW7dm4sSJNG3alCpVqrBlyxZ++OEHWrVqhbe3N6NHj+b5558nLy+P9u3bk52dzYYNG6hevbrTbFH16tXp378/48ePx+FwMGjQoNIMg4jcYAoxIlJqqamp3HXXXYwdO5ZHHnmEEydOEB0dzcaNG6lZs6ZZV5qZGID69euzfft2Jk2axLhx4zhy5Aju7u40atSI0aNHM2TIEABef/11/Pz8iI+P58CBA9SsWZOWLVsyfvz4AtscPHgwc+fOpWvXrtxxxx0lbpuI3Hg24/L7C0VESmDo0KFkZWWxePHiq9acOnWK0NBQfvvtt+tuLyoqiubNm/Puu++WYStLzmazsWzZMvr06VPRTRGRy+iaGBEptdTUVJo2bXrNmj179tCoUaMib3PmzJlUr16dnTt3lrZ5Jfbss89SvXr1Ctu/iFybZmJEpFQMw8But7NkyRJ69uxZJtv8f//v/3H27FkA7rjjDtzc3Mpku8WVmZlJdnY2AIGBgVd9yJ6IVAyFGBEREbEknU4SERERS1KIEREREUtSiBERERFLUogRERERS1KIEREREUtSiBERERFLUogRERERS1KIEREREUtSiBERERFLUogRERERS1KIEREREUv6/wD45+1oGdxgAQAAAABJRU5ErkJggg==",
-      "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHJCAYAAABtzYa7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJXklEQVR4nO3deVxU9f7H8feAMqgoLiTgEuCSSuYGqUB2MwtzKa1b0r2Fa7drO9mmWZZmkd6baQuUN5VsUSq1vLlii8tPsjS0krJFDTKQtATLBMHv7w8vk9OAwggMeF7Px+M8YL7zPd/zPd85w/nw/X7POTZjjBEAAICFeHm6AgAAADWNAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAItV5KSopsNlu5y4cffujI+/PPP+v6669Xy5YtZbPZNHz4cEnS3r17NWTIEDVv3lw2m00JCQnau3evbDabUlJSKlWfDz/80GW7cPX6669r9uzZnq4GLOTIkSN69NFH+W6iQup5ugJARS1YsECdO3d2SQ8PD3f8/thjj2nZsmWaP3++2rdvr+bNm0uS7r77bm3ZskXz589XUFCQgoODFRQUpPT0dLVv375S9ejVq5fS09OdtgtXr7/+ur744gslJCR4uiqwiCNHjmjq1KmSpEsuucSzlUGtRwCEOqNr166KjIw8ZZ4vvvhC7du31w033OCS3rt3b0ePUKm+fftWuh5NmjRxaz2Ur6SkRMXFxbLb7Z6uSrU5cuSIGjZs6OlqAPgfhsBwVigdzlq3bp2+/PJLp+Exm82mb7/9VqtWrXKk7927t9whsK+++kp/+9vfFBgYKLvdrnPPPVcjR45UYWGhpPKHwLZu3aqrrrpKzZs3l6+vr3r27Kk33njDKU/pcN4HH3ygW265RQEBAWrRooWuueYa/fjjjy779frrrysqKkp+fn7y8/NTjx49NG/ePEknervq1aun7Oxsl/XGjh2rFi1a6OjRo2W21+zZsx3t8mcPPPCAfHx8dODAAUlSRkaGhg4dqpYtW8put6tVq1YaMmSIfvjhh7I/DJ3473vFihX6/vvvnYYrpT8+q5kzZ2r69OkKCwuT3W7XBx98oKNHj+qee+5Rjx495O/vr+bNmysqKkrvvPOOyzZsNptuv/12vfLKK+rSpYsaNmyo7t27691333XK99NPP+nmm29W27ZtZbfbdc455ygmJkbr1q2TJCUkJKhRo0YqKChw2UZcXJwCAwN17NgxR1pqaqqioqLUqFEj+fn5aeDAgcrIyHBab/To0fLz89Pnn3+u2NhYNW7cWAMGDKhwexpjlJSUpB49eqhBgwZq1qyZrr32Wu3evbvcNi/16KOPymaz6bPPPtN1113naMcJEyaouLhYu3bt0hVXXKHGjRsrNDRUM2fOdCkjKytLN954o6OOXbp00VNPPaXjx4878pR+jv/61780Y8YMhYaGqkGDBrrkkkv09ddf69ixY5o4caJatWolf39/XX311crLy3PZVmXa89tvv9XgwYPl5+entm3b6p577nF8L/fu3atzzjlHkjR16lTHMTd69GhHGaGhoeW218lKj60FCxaoU6dOatCggSIjI/XRRx/JGKN//etfCgsLk5+fny699NIyv0eoAwxQyy1YsMBIMh999JE5duyY01JcXGyMMebo0aMmPT3d9OzZ07Rr186kp6eb9PR0k5+fb9LT001QUJCJiYlxpB89etTs2bPHSDILFixwbGv79u3Gz8/PhIaGmhdeeMG899575tVXXzUjRowwBQUFxhhjPvjgAyPJfPDBB4713n//fePj42P69etnUlNTzerVq83o0aNdyi/dl3bt2pk77rjDrFmzxrz00kumWbNmpn///k77/fDDDxtJ5pprrjFvvvmmWbt2rZk1a5Z5+OGHjTHG7N+/39jtdjN58mSn9Q4ePGgaNGhg7rvvvnLb9KeffjI+Pj4u6xYXF5tWrVqZa665xhhjzK+//mpatGhhIiMjzRtvvGHWr19vUlNTzfjx401mZma55e/cudPExMSYoKAgR5unp6cbY4yj3Vu3bm369+9v3nrrLbN27VqzZ88ec+jQITN69GjzyiuvmPfff9+sXr3a3HvvvcbLy8u8/PLLTtuQZEJDQ03v3r3NG2+8YVauXGkuueQSU69ePfPdd9858g0cONCcc845Zu7cuebDDz80b7/9tpkyZYpZvHixMcaYHTt2GEnmP//5j1P5v/zyi7Hb7WbChAmOtMcff9zYbDYzduxY8+6775qlS5eaqKgo06hRI7Nz505HvlGjRpn69eub0NBQk5iYaN577z2zZs2aCrfnP/7xD1O/fn1zzz33mNWrV5vXX3/ddO7c2QQGBprc3Nxy290YYx555BEjyXTq1Mk89thjJi0tzdx///1Gkrn99ttN586dzTPPPGPS0tLMmDFjjCSzZMkSx/p5eXmmdevW5pxzzjEvvPCCWb16tbn99tuNJHPLLbc48pV+jiEhIebKK6807777rnn11VdNYGCgOe+880x8fLwZO3asWbVqlXnhhReMn5+fufLKK53qWpn29PHxMV26dDH//ve/zbp168yUKVOMzWYzU6dONcac+BuwevVqI8mMGzfOccx9++23jjJCQkLKba+Tle5XdHS0Wbp0qVm2bJk577zzTPPmzc3dd99thg0bZt59913z2muvmcDAQNOtWzdz/PjxU34uqH0IgFDrlQYNZS3e3t5Oef/yl7+Y888/36WMkJAQM2TIEKe0sgKgSy+91DRt2tTk5eWVW5+yAqDOnTubnj17mmPHjjnlHTp0qAkODjYlJSVO+3Lrrbc65Zs5c6aRZHJycowxxuzevdt4e3ubG264ofyGMSf+qLds2dIUFhY60mbMmGG8vLzMnj17TrnuNddcY9q0aeOomzHGrFy50kgy//3vf40xxmzdutVIMm+//fYpyyrLkCFDyjzhlLZ7+/btTVFR0SnLKC4uNseOHTPjxo0zPXv2dHpPkgkMDHQEpsYYk5uba7y8vExiYqIjzc/PzyQkJJxyO7169TLR0dFOaUlJSUaS+fzzz40xxmRlZZl69eqZO+64wynf4cOHTVBQkBkxYoQjbdSoUUaSmT9/vlPeirRnenq6kWSeeuopp/Ts7GzToEEDc//9959yX0pP6H9ev0ePHkaSWbp0qSPt2LFj5pxzznEEvMYYM3HiRCPJbNmyxWn9W265xdhsNrNr1y5jzB+fY/fu3Z2OodmzZxtJ5qqrrnJaPyEhwUgy+fn5xhj32vONN95wyjt48GDTqVMnx+uffvrJSDKPPPKIS7tUNgAKCgoyv/76qyPt7bffNpJMjx49nIKd0v397LPPXMpG7cYQGOqMhQsX6pNPPnFatmzZUmXlHzlyROvXr9eIESMcXekV8e233+qrr75yzDsqLi52LIMHD1ZOTo527drltM5VV13l9Lpbt26SpO+//16SlJaWppKSEt12222n3PZdd92lvLw8vfnmm5Kk48ePKzk5WUOGDCmzu/9kY8aM0Q8//OAYCpJOTDQPCgrSoEGDJEkdOnRQs2bN9MADD+iFF15QZmbmaVqj4q666irVr1/fJf3NN99UTEyM/Pz8VK9ePdWvX1/z5s3Tl19+6ZK3f//+aty4seN1YGCgWrZs6WhHSerdu7dSUlI0ffp0ffTRR07DWaXGjBmjzZs3O31OCxYs0IUXXqiuXbtKktasWaPi4mKNHDnS6TP29fXVX/7ylzKvPPrrX//q9Loi7fnuu+/KZrPpxhtvdNpOUFCQunfvXuErnIYOHer0ukuXLrLZbI7PVpLq1aunDh06OLXX+++/r/DwcPXu3dtp/dGjR8sYo/fff98pffDgwfLy+uNU0qVLF0nSkCFDXLYvnRhekyrfnjabTVdeeaVTWrdu3ZzqXpX69++vRo0audR/0KBBTkNmpenVVQ9UHwIg1BldunRRZGSk0xIREVFl5f/yyy8qKSlRmzZtKrXe/v37JUn33nuv6tev77TceuutkuSYT1OqRYsWTq9LJ//+/vvvkk7MW5F02rr07NlT/fr10/PPPy/pxMlz7969uv32209b70GDBik4OFgLFiyQdGL/ly9frpEjR8rb21uS5O/vr/Xr16tHjx568MEHdf7556tVq1Z65JFHygwkKiM4ONglbenSpRoxYoRat26tV199Venp6frkk080duzYMucz/bkdpRNtWdqO0ok5JqNGjdJLL72kqKgoNW/eXCNHjlRubq4jzw033CC73e6YD5aZmalPPvlEY8aMceQp/ZwvvPBCl885NTXV5TNu2LChmjRp4pRWkfbcv3+/jDEKDAx02c5HH33ksp3ylF4BWcrHx0cNGzaUr6+vS/rJbXvw4MEyP5tWrVo53j/ddk6VXrotd9rzz3W32+3lznM7U+7uF+oOrgID/qd58+by9vY+5eTesgQEBEiSJk2apGuuuabMPJ06dapUmaU9UD/88IPatm17yrx33nmnrrvuOn366ad67rnndN555+nyyy8/7Ta8vb0VHx+vZ555RocOHdLrr7+uwsJCp5O+JF1wwQVavHixjDH67LPPlJKSomnTpqlBgwaaOHFipfbrZH+eeCpJr776qsLCwpSamur0fulEV3cEBARo9uzZmj17trKysrR8+XJNnDhReXl5Wr16tSSpWbNmGjZsmBYuXKjp06drwYIF8vX11d/+9jenciTprbfeUkhIiFv7J52+PQMCAmSz2bRx48Yyr4qr7ivlWrRooZycHJf00kn6pe1wpirbnmfK19e3zOOoogElzj4EQMD/NGjQQH/5y1/05ptv6vHHH6/wH/pOnTqpY8eO2rFjh5544okqqUtsbKy8vb2VnJysqKioU+a9+uqrde655+qee+7R+vXr9fTTT5d78v2zMWPGaObMmVq0aJFSUlIUFRVV5r2WpBMn9O7du+vpp59WSkqKPv3001OW/eeemIqw2Wzy8fFxqn9ubm6ZV4G549xzz9Xtt9+u9957T//3f//n9N6YMWP0xhtvaOXKlXr11Vd19dVXq2nTpo73Bw4cqHr16um7775zGdpyR3ntOXToUD355JPat2+fRowYccbbqawBAwYoMTFRn376qXr16uVIX7hwoWw2m/r3718l26nq9pRce1JPFhoaqry8PO3fv1+BgYGSpKKiIq1Zs6ZKto26hwAIdcYXX3yh4uJil/T27dtXas7OqcyaNUsXXXSR+vTpo4kTJ6pDhw7av3+/li9frhdffNFpvsnJXnzxRQ0aNEgDBw7U6NGj1bp1a/3888/68ssv9emnnzrm6FRUaGioHnzwQT322GP6/fff9be//U3+/v7KzMzUgQMHHDd7k0705Nx222164IEH1KhRI8dlvxXRuXNnRUVFKTExUdnZ2Zo7d67T+++++66SkpI0fPhwtWvXTsYYLV26VIcOHTptL9MFF1ygpUuXKjk5WREREfLy8jrtfZyGDh2qpUuX6tZbb9W1116r7OxsPfbYYwoODtY333xT4f0qlZ+fr/79++vvf/+7OnfurMaNG+uTTz7R6tWrXXrrYmNj1aZNG916663Kzc116QkLDQ3VtGnTNHnyZO3evVtXXHGFmjVrpv379+vjjz9Wo0aNnD6XslSkPWNiYnTzzTdrzJgx2rp1qy6++GI1atRIOTk52rRpky644ALdcsstlW6Lirr77ru1cOFCDRkyRNOmTVNISIhWrFihpKQk3XLLLTrvvPOqZDtV0Z5/1rhxY4WEhOidd97RgAED1Lx5cwUEBCg0NFRxcXGaMmWKrr/+et133306evSonnnmGZWUlFTJ/qDuIQBCnfHnE1Kp//znP7rpppuqZBvdu3fXxx9/rEceeUSTJk3S4cOHFRQUpEsvvdQx1l+W/v376+OPP9bjjz+uhIQE/fLLL2rRooXCw8Pd/i9+2rRp6tixo5599lndcMMNqlevnjp27Kg777zTJW9cXJweeOABxcfHy9/fv1LbGTNmjG6++WY1aNBAcXFxTu917NhRTZs21cyZM/Xjjz/Kx8dHnTp1UkpKikaNGnXKcu+66y7t3LlTDz74oPLz82VOXHV62rrk5eXphRde0Pz589WuXTtNnDhRP/zwQ6VPhtKJYY8+ffrolVde0d69e3Xs2DGde+65euCBB3T//fc75fXy8tLIkSP1xBNPqG3bto779pxs0qRJCg8P15w5c7Ro0SIVFhYqKChIF154ocaPH3/a+lS0PV988UX17dtXL774opKSknT8+HG1atVKMTExLpOTq9o555yjzZs3a9KkSZo0aZIKCgrUrl07zZw5UxMmTKjSbZ1pe5Zl3rx5uu+++3TVVVepsLBQo0aNUkpKisLCwvTOO+/owQcf1LXXXqvg4GBNmDBBP/30k1vHFuo+mzndXyQAtd6zzz6rO++8U1988YXOP/98T1cHAGo9AiCgDsvIyNCePXv0z3/+UzExMXr77bc9XSUAqBMIgIA6LDQ0VLm5uerXr59eeeUVBQUFebpKAFAnEAABAADL4UaIAADAcgiAAACA5RAAAQAAy+E+QGU4fvy4fvzxRzVu3LjCd9QFAACeZYzR4cOH1apVK6eH9JaFAKgMP/7442mfvwQAAGqn7Ozs0z5MmgCoDKWPO8jOznZ5mjMAAKidCgoK1LZt23IfW3QyAqAylA57NWnShAAIAIA6piLTV5gEDQAALIcACAAAWI7HA6CkpCSFhYXJ19dXERER2rhx4ynzP//88+rSpYsaNGigTp06aeHChS55lixZovDwcNntdoWHh2vZsmXVVX0AAFAHeTQASk1NVUJCgiZPnqyMjAz169dPgwYNUlZWVpn5k5OTNWnSJD366KPauXOnpk6dqttuu03//e9/HXnS09MVFxen+Ph47dixQ/Hx8RoxYoS2bNlSU7sFAABqOY8+C6xPnz7q1auXkpOTHWldunTR8OHDlZiY6JI/OjpaMTEx+te//uVIS0hI0NatW7Vp0yZJUlxcnAoKCrRq1SpHniuuuELNmjXTokWLKlSvgoIC+fv7Kz8/n0nQAADUEZU5f3usB6ioqEjbtm1TbGysU3psbKw2b95c5jqFhYXy9fV1SmvQoIE+/vhjHTt2TNKJHqA/lzlw4MByyywtt6CgwGkBAABnL48FQAcOHFBJSYkCAwOd0gMDA5Wbm1vmOgMHDtRLL72kbdu2yRijrVu3av78+Tp27JgOHDggScrNza1UmZKUmJgof39/x8JNEAEAOLt5fBL0n6/VN8aUe/3+ww8/rEGDBqlv376qX7++hg0bptGjR0uSvL293SpTkiZNmqT8/HzHkp2d7ebeAACAusBjAVBAQIC8vb1demby8vJcenBKNWjQQPPnz9eRI0e0d+9eZWVlKTQ0VI0bN1ZAQIAkKSgoqFJlSpLdbnfc9JCbHwIAcPbzWADk4+OjiIgIpaWlOaWnpaUpOjr6lOvWr19fbdq0kbe3txYvXqyhQ4c6HnoWFRXlUubatWtPWyYAALAOjz4KY8KECYqPj1dkZKSioqI0d+5cZWVlafz48ZJODE3t27fPca+fr7/+Wh9//LH69OmjX375RbNmzdIXX3yhl19+2VHmXXfdpYsvvlgzZszQsGHD9M4772jdunWOq8QAALXHkaJihU9ZI0nKnDZQDX14QhNqhkePtLi4OB08eFDTpk1TTk6OunbtqpUrVyokJESSlJOT43RPoJKSEj311FPatWuX6tevr/79+2vz5s0KDQ115ImOjtbixYv10EMP6eGHH1b79u2VmpqqPn361PTuAQCAWsqj9wGqrbgPEABUryNFxf/7WaLI6eskSVsfukwNfU5c0EJPENxRmfM3RxgAoMaVDnudrDQQkqS9Tw6pyerAgjx+GTwAAEBNowcIAFDjMqcNlFT+EBhQ3QiAAAA1rqw5Pg19vJn7gxrDEBgAALAcQm0AgMc09KnHhGd4BD1AAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHIIgAAAgOUQAAEAAMshAAIAAJZDAAQAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALMfjAVBSUpLCwsLk6+uriIgIbdy48ZT5X3vtNXXv3l0NGzZUcHCwxowZo4MHDzreT0lJkc1mc1mOHj1a3bsCAADqCI8GQKmpqUpISNDkyZOVkZGhfv36adCgQcrKyioz/6ZNmzRy5EiNGzdOO3fu1JtvvqlPPvlEN910k1O+Jk2aKCcnx2nx9fWtiV0CAAB1gEcDoFmzZmncuHG66aab1KVLF82ePVtt27ZVcnJymfk/+ugjhYaG6s4771RYWJguuugi/fOf/9TWrVud8tlsNgUFBTktAAAApTwWABUVFWnbtm2KjY11So+NjdXmzZvLXCc6Olo//PCDVq5cKWOM9u/fr7feektDhgxxyvfrr78qJCREbdq00dChQ5WRkXHKuhQWFqqgoMBpAQAAZy+PBUAHDhxQSUmJAgMDndIDAwOVm5tb5jrR0dF67bXXFBcXJx8fHwUFBalp06Z69tlnHXk6d+6slJQULV++XIsWLZKvr69iYmL0zTfflFuXxMRE+fv7O5a2bdtWzU4CAAAnR4qKFTpxhUInrtCRomKP1cPjk6BtNpvTa2OMS1qpzMxM3XnnnZoyZYq2bdum1atXa8+ePRo/frwjT9++fXXjjTeqe/fu6tevn9544w2dd955TkHSn02aNEn5+fmOJTs7u2p2DgAA1Er1PLXhgIAAeXt7u/T25OXlufQKlUpMTFRMTIzuu+8+SVK3bt3UqFEj9evXT9OnT1dwcLDLOl5eXrrwwgtP2QNkt9tlt9vPYG8AAMCplPb2HCkqOSntj98b+tRsSOKxAMjHx0cRERFKS0vT1Vdf7UhPS0vTsGHDylznyJEjqlfPucre3t6STvQclcUYo+3bt+uCCy6oopoDAIDKCp+yxiUtcvo6x+97nxzi8n518lgAJEkTJkxQfHy8IiMjFRUVpblz5yorK8sxpDVp0iTt27dPCxculCRdeeWV+sc//qHk5GQNHDhQOTk5SkhIUO/evdWqVStJ0tSpU9W3b1917NhRBQUFeuaZZ7R9+3Y9//zzHttPAABQu3g0AIqLi9PBgwc1bdo05eTkqGvXrlq5cqVCQkIkSTk5OU73BBo9erQOHz6s5557Tvfcc4+aNm2qSy+9VDNmzHDkOXTokG6++Wbl5ubK399fPXv21IYNG9S7d+8a3z8AAHBC5rSBkk4Me5X2/Gx96DI19PH2SH1spryxIwsrKCiQv7+/8vPz1aRJE09XBwCAs8aRomLHcFjmtIFVOvenMudvj18FBgAAUNM8OgQGAACspaFPvRqf8FwWeoAAAIDlEAABAADLIQACAACWQwAEAIAbasszreAeAiAAAGA5XAUGAEAl1LZnWsE9fEoAAFRCbXumFdzDEBgAALAceoAAAKiE2vZMK7iHAAgAUGdV53OlylPWNhr6eDP3p45hCAwAAFgO4SoAoM6pDVdi1ZZnWsE9BEAAgDqHK7FwphgCAwAAlkMPEACgzuFKLJwpAiAAQJ3DlVg4UwyBAQAAyyFUBlCreOK+Lqi7uBIL7qIHCAAAWA7/WgGoFWrDfV0AWAd/UQDUCtzXBUBNYggMAABYDj1AAGoF7usCoCYRAAGoFbivC4CaxBAYAACwHP61AlCrcF8XADWBHiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAE4KxypKhYoRNXKHTiCsfzxQDgzwiAAACA5XAfIABnBZ4mD6AyPN4DlJSUpLCwMPn6+ioiIkIbN248Zf7XXntN3bt3V8OGDRUcHKwxY8bo4MGDTnmWLFmi8PBw2e12hYeHa9myZdW5CwBqgfApaxQ+ZY3TE+Qjp69zpJ/tGPoDKsejAVBqaqoSEhI0efJkZWRkqF+/fho0aJCysrLKzL9p0yaNHDlS48aN086dO/Xmm2/qk08+0U033eTIk56erri4OMXHx2vHjh2Kj4/XiBEjtGXLlpraLQAAUMvZjDHGUxvv06ePevXqpeTkZEdaly5dNHz4cCUmJrrk//e//63k5GR99913jrRnn31WM2fOVHZ2tiQpLi5OBQUFWrVqlSPPFVdcoWbNmmnRokUVqldBQYH8/f2Vn5+vJk2auLt7AGrQyUNgZT1N/mwdArPqfgNlqcz522M9QEVFRdq2bZtiY2Od0mNjY7V58+Yy14mOjtYPP/yglStXyhij/fv366233tKQIX88Nyg9Pd2lzIEDB5ZbpiQVFhaqoKDAaQFQtzT0qfe/xfukNG9H+tnK6kN/gLs8FgAdOHBAJSUlCgwMdEoPDAxUbm5umetER0frtddeU1xcnHx8fBQUFKSmTZvq2WefdeTJzc2tVJmSlJiYKH9/f8fStm3bM9gzAABQ23n83yKbzeb02hjjklYqMzNTd955p6ZMmaKBAwcqJydH9913n8aPH6958+a5VaYkTZo0SRMmTHC8LigoIAiqQkeKih3/iWZOG3hW/zcOz7Pa0+Qzpw2UVP4QGICyeexMFBAQIG9vb5eemby8PJcenFKJiYmKiYnRfffdJ0nq1q2bGjVqpH79+mn69OkKDg5WUFBQpcqUJLvdLrvdfoZ7BAA1r6x/KEqH/gCUz2NDYD4+PoqIiFBaWppTelpamqKjo8tc58iRI/Lycq6yt/eJ/3JK53JHRUW5lLl27dpyy0T1OVJU/L/F+b4spekAAHiKR/9FmDBhguLj4xUZGamoqCjNnTtXWVlZGj9+vKQTQ1P79u3TwoULJUlXXnml/vGPfyg5OdkxBJaQkKDevXurVatWkqS77rpLF198sWbMmKFhw4bpnXfe0bp167Rp0yaP7adVlTUB8+SJmlYapgCqmyeH/hjmRl3k0aM0Li5OBw8e1LRp05STk6OuXbtq5cqVCgkJkSTl5OQ43RNo9OjROnz4sJ577jndc889atq0qS699FLNmDHDkSc6OlqLFy/WQw89pIcffljt27dXamqq+vTpU+P7BwAAaieP3geotuI+QFWD+5MAZze+46htKnP+5uhEtWFyJnB2Y5gbdZnHnwUGVCdPPh+JZzMBQO3Fv+Kodla7LwtgFdyDCHUZARDOSifPTfgj7Y/fq3MYzpPbBmoSw9yoyzhKcVby5NwE5kUAQO1HAAQAtUBdvpcOw9yoi+rONwyW5c6JwZNzE5gXAQC1HwEQzkqenJvAvAhUBnPGAM/gm4VaixMDrIA5Y4BncAZBrVUVJwZPzk1gXgQA1F4EQADgQcwZAzyDAAi1FicGWAFzxgDP4BuGWosTAwCgunAmAYBagDljQM0iAEKtx4kBAFDVeBo8AACwHAIgAABgOQRAwCkcKSpW6MQVCp24wnFjRgBA3UcAhNMiCAAAnG2YBG0RdflJ057AYzgA4OzGX3GUy8pBAM9nAoCz29l7BoOkMwtiCAIAAGcrAqCzHEGMe3gMh/sYbgVqP76nBEA4BSsHATyGAwDObvw1P8udSRBDEIDKsPKcMaCu4Hv6B+vsqUURxJwZHsNRcQy3ArUf39M/cBbEaREEWA/zAwCc7firZhEEMahuVp4zBtQVfE//QAAEwOFM5gcw3ArUfnxP/2C9PQZQLuYHALAKAiAAVYrhVqD243tKAATgJMwPAGAVBEAAHJgfAMAqvDxdAQAAgJrGv3UAXDA/AMDZjh4gAABgOR4PgJKSkhQWFiZfX19FRERo48aN5eYdPXq0bDaby3L++ec78qSkpJSZ5+jRozWxOwDqsCNFxQqduEKhE1c47okE4Ozk0QAoNTVVCQkJmjx5sjIyMtSvXz8NGjRIWVlZZeafM2eOcnJyHEt2draaN2+u6667zilfkyZNnPLl5OTI19e3JnYJAADUAR4NgGbNmqVx48bppptuUpcuXTR79my1bdtWycnJZeb39/dXUFCQY9m6dat++eUXjRkzximfzWZzyhcUFFQTuwOgjjpSVPy/xfkO2KXpAM4+HpsEXVRUpG3btmnixIlO6bGxsdq8eXOFypg3b54uu+wyhYSEOKX/+uuvCgkJUUlJiXr06KHHHntMPXv2LLecwsJCFRYWOl4XFBRUYk8A1HXcARuwHo/1AB04cEAlJSUKDAx0Sg8MDFRubu5p18/JydGqVat00003OaV37txZKSkpWr58uRYtWiRfX1/FxMTom2++KbesxMRE+fv7O5a2bdu6t1NAFWI+St3DZwbUHR6/DN5mszm9Nsa4pJUlJSVFTZs21fDhw53S+/btq759+zpex8TEqFevXnr22Wf1zDPPlFnWpEmTNGHCBMfrgoICgiDAQrgDNmA9HguAAgIC5O3t7dLbk5eX59Ir9GfGGM2fP1/x8fHy8fE5ZV4vLy9deOGFp+wBstvtstvtFa88UI3O5InscM+Z3gGbzwyoezz2rfTx8VFERITS0tJ09dVXO9LT0tI0bNiwU667fv16ffvttxo3btxpt2OM0fbt23XBBReccZ2BmlAV81GOFBU7ysmcNpATcDVjDhFQ93j0r+KECRMUHx+vyMhIRUVFae7cucrKytL48eMlnRia2rdvnxYuXOi03rx589SnTx917drVpcypU6eqb9++6tixowoKCvTMM89o+/btev7552tknwDUXdwBG7AOjwZAcXFxOnjwoKZNm6acnBx17dpVK1eudFzVlZOT43JPoPz8fC1ZskRz5swps8xDhw7p5ptvVm5urvz9/dWzZ09t2LBBvXv3rvb9AarCmcxHYSjGM5hDBNQ9NmOMqexKo0eP1tixY3XxxRdXR508rqCgQP7+/srPz1eTJk08XR1YlDvDWKETV5zyfXo3qhdDj4BnVeb87dZl8IcPH1ZsbKw6duyoJ554Qvv27XOrogAAAJ7gVg+QJB08eFCvvvqqUlJS9MUXX+iyyy7TuHHjNGzYMNWvX7+q61mj6AFCXXXyEFhZQzH0SAA4m1V7D5AktWjRQnfddZcyMjL08ccfq0OHDoqPj1erVq109913n/KycwDVo6FPvf8t3ieleTvSAQAnnPGdoHNycrR27VqtXbtW3t7eGjx4sHbu3Knw8HA9/fTTVVFHAACAKuXWENixY8e0fPlyLViwQGvXrlW3bt1000036YYbblDjxo0lSYsXL9Ytt9yiX375pcorXd0YAgMAoO6pzPnbrT7x4OBgHT9+XH/729/08ccfq0ePHi55Bg4cqKZNm7pTPAAAQLVyKwB6+umndd1118nX17fcPM2aNdOePXvcrhgAAEB1cWsO0FVXXaUjR464pP/8888qKCg440oBAABUJ7cCoOuvv16LFy92SX/jjTd0/fXXn3GlAAAAqpNbAdCWLVvUv39/l/RLLrlEW7ZsOeNKAQAAVCe3AqDCwkIVFxe7pB87dky///77GVcKAACgOrkVAF144YWaO3euS/oLL7ygiIiIM64UAABAdXLrKrDHH39cl112mXbs2KEBAwZIkt577z198sknWrt2bZVWEAAAoKq51QMUExOj9PR0tW3bVm+88Yb++9//qkOHDvrss8/Ur1+/qq4jAABAlXL7Yahns9p4J+gjRcUKn7JGkpQ5bSDPdQIA4E+q/U7QknT8+HF9++23ysvL0/Hjx53eu/jii90tFgAAoNq5FQB99NFH+vvf/67vv/9ef+5AstlsKikpqZLK4UTPz4mfJSel/fE7PUEAAFSeW2fP8ePHKzIyUitWrFBwcLBsNltV1wv/UzrsdbLI6escv+99ckhNVgcAUEWY2uBZbrX2N998o7feeksdOnSo6voAAABUO7cCoD59+ujbb78lAKoBmdMGSjox7FXa87P1ocvU0Mfbk9UCALiJqQ21g1utfMcdd+iee+5Rbm6uLrjgAtWvX9/p/W7dulVJ5VD2F6GhjzdfEACoo5jaUDu4dRb961//KkkaO3asI81ms8kYwyRoAABQ67l1H6Dvv//+lO+HhIS4XaHaoDbeBwgAcHY4eQisrKkNFenhZwJ12ar9PkB1PcABAMBTmNpQO7j1KAxJeuWVVxQTE6NWrVo5eoRmz56td955p8oqBwAA/nCkqPh/i/ME6tJ0VJxb4WZycrKmTJmihIQEPf744445P02bNtXs2bM1bNiwKq0kAABnm4Y+9So94ZkJ1FXHrR6gZ599Vv/5z380efJkeXv/cTl2ZGSkPv/88yqrHAAAQHVwqwdoz5496tmzp0u63W7Xb7/9dsaVAgAArrg3XNVxqwcoLCxM27dvd0lftWqVwsPDz7ROAACgDA196v1v8T4pzduRjopzq7Xuu+8+3XbbbTp69KiMMfr444+1aNEiJSYm6qWXXqrqOgIAAFQpt+4DJEn/+c9/NH36dGVnZ0uSWrdurUcffVTjxo2r0gp6AvcBAgCg7qnM+dvtAKjUgQMHdPz4cbVs2fJMiqlVCIAAAKh7qv1GiCcLCAg40yIAAABqVIUDoF69eum9995Ts2bN1LNnT9lstnLzfvrpp1VSOQAAgOpQ4QBo2LBhstvtkqThw4dXV30AAACq3RnPATpTSUlJ+te//qWcnBydf/75mj17tvr161dm3tGjR+vll192SQ8PD9fOnTsdr5csWaKHH35Y3333ndq3b6/HH39cV199dYXrxBwgAADqnsqcv926D9Ann3yiLVu2uKRv2bJFW7durXA5qampSkhI0OTJk5WRkaF+/fpp0KBBysrKKjP/nDlzlJOT41iys7PVvHlzXXfddY486enpiouLU3x8vHbs2KH4+HiNGDGizPoCAABrcqsHqHfv3rr//vt17bXXOqUvXbpUM2bMqHCw0adPH/Xq1UvJycmOtC5dumj48OFKTEw87fpvv/22rrnmGu3Zs8fxhPq4uDgVFBRo1apVjnxXXHGFmjVrpkWLFlWoXvQAAQBQ91R7D1BmZqZ69erlkt6zZ09lZmZWqIyioiJt27ZNsbGxTumxsbHavHlzhcqYN2+eLrvsMkfwI53oAfpzmQMHDqxwmQAA4Ozn1mXwdrtd+/fvV7t27ZzSc3JyVK9exYo8cOCASkpKFBgY6JQeGBio3Nzc066fk5OjVatW6fXXX3dKz83NrXSZhYWFKiwsdLwuKCioyC4AAIA6yq0eoMsvv1yTJk1Sfn6+I+3QoUN68MEHdfnll1eqrD9fTm+MOeUl9qVSUlLUtGnTMq9Iq2yZiYmJ8vf3dyxt27atWOUBAECd5FYA9NRTTyk7O1shISHq37+/+vfvr7CwMOXm5uqpp56qUBkBAQHy9vZ26ZnJy8tz6cH5M2OM5s+fr/j4ePn4+Di9FxQUVOkyS4O50qX08R4AAODs5FYA1Lp1a3322WeaOXOmwsPDFRERoTlz5ujzzz+vcO+Jj4+PIiIilJaW5pSelpam6OjoU667fv16ffvtt2U+dywqKsqlzLVr156yTLvdriZNmjgtAADg7OX2ozAaNWqkm2+++Yw2PmHCBMXHxysyMlJRUVGaO3eusrKyNH78eEknemb27dunhQsXOq03b9489enTR127dnUp86677tLFF1+sGTNmaNiwYXrnnXe0bt06bdq06YzqCgAAzh4VDoCWL1+uQYMGqX79+lq+fPkp81511VUVKjMuLk4HDx7UtGnTlJOTo65du2rlypWOq7pycnJc7gmUn5+vJUuWaM6cOWWWGR0drcWLF+uhhx7Sww8/rPbt2ys1NVV9+vSpUJ0AwGqOFBUrfMoaSVLmtIFq6HPGj4kEar0K3wfIy8tLubm5atmypby8yh85s9lsKikpqbIKegL3AQJgJQRAOFtUy9Pgjx8/XubvAIC66UhR8f9+lpyU9sfvBEI4m1X46G7evLm+/vprBQQEaOzYsZozZ44aN25cnXUDAFSj0l6fk0VOX+f4fe+TQ2qyOjWOni9rq/BVYEVFRY4bBL788ss6evRotVUKAACgOlU43I2KitLw4cMVEREhY4zuvPNONWjQoMy88+fPr7IKAgCqR+a0gZJODHuV9vxsfegyNfTx9mS1qh1Df5AqEQC9+uqrevrpp/Xdd99JOnE1Fr1AAFB3lXWib+jjfdYHAFYf+sMJFT7KAwMD9eSTT0qSwsLC9Morr6hFixbVVjEAAIDq4tYk6P79+7s8ggIAUDc19KlnqV4Pqw79wRmToAEAltLQp97/Fu+T0rwd6bAGJkEDAADLcWsStM1mYxI0AKBOs9rQH5xV+FEYJwsLC9PWrVvP2knQPAoDAIC6pzLn7wrPAZKkwYMHKz8/X3v27FGLFi30+OOP69ChQ473Dx48qPDwcLcqDQAAUFMqFQCtXr1ahYWFjtczZszQzz//7HhdXFysXbt2VV3tAAAAqkGlAqA/c2P0DAAAwOPOKAACAACoiyoVANlsNtlsNpc0AACAuqRSd3wyxmj06NGy2+2SpKNHj2r8+PFq1KiRJDnNDwIAAKitKhUAjRo1yun1jTfe6JJn5MiRZ1YjAACAalapAGjBggXVVQ8AAIAawyRoAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHIIgAAAgOUQAAEAAMshAAIAAJZDAAQAACyHAAgAAFgOARAAALAcAiAAAGA5Hg+AkpKSFBYWJl9fX0VERGjjxo2nzF9YWKjJkycrJCREdrtd7du31/z58x3vp6SkyGazuSxHjx6t7l0BAAB1RD1Pbjw1NVUJCQlKSkpSTEyMXnzxRQ0aNEiZmZk699xzy1xnxIgR2r9/v+bNm6cOHTooLy9PxcXFTnmaNGmiXbt2OaX5+vpW234AAIC6xaMB0KxZszRu3DjddNNNkqTZs2drzZo1Sk5OVmJiokv+1atXa/369dq9e7eaN28uSQoNDXXJZ7PZFBQUVK11BwAAdZfHhsCKioq0bds2xcbGOqXHxsZq8+bNZa6zfPlyRUZGaubMmWrdurXOO+883Xvvvfr999+d8v36668KCQlRmzZtNHToUGVkZJyyLoWFhSooKHBaAADA2ctjPUAHDhxQSUmJAgMDndIDAwOVm5tb5jq7d+/Wpk2b5Ovrq2XLlunAgQO69dZb9fPPPzvmAXXu3FkpKSm64IILVFBQoDlz5igmJkY7duxQx44dyyw3MTFRU6dOrdodBAAAtZbHJ0HbbDan18YYl7RSx48fl81m02uvvabevXtr8ODBmjVrllJSUhy9QH379tWNN96o7t27q1+/fnrjjTd03nnn6dlnny23DpMmTVJ+fr5jyc7OrrodBAAAtY7HeoACAgLk7e3t0tuTl5fn0itUKjg4WK1bt5a/v78jrUuXLjLG6Icffiizh8fLy0sXXnihvvnmm3LrYrfbZbfb3dwTAABQ13isB8jHx0cRERFKS0tzSk9LS1N0dHSZ68TExOjHH3/Ur7/+6kj7+uuv5eXlpTZt2pS5jjFG27dvV3BwcNVVHgAA1GkeHQKbMGGCXnrpJc2fP19ffvml7r77bmVlZWn8+PGSTgxNjRw50pH/73//u1q0aKExY8YoMzNTGzZs0H333aexY8eqQYMGkqSpU6dqzZo12r17t7Zv365x48Zp+/btjjIBAAA8ehl8XFycDh48qGnTpiknJ0ddu3bVypUrFRISIknKyclRVlaWI7+fn5/S0tJ0xx13KDIyUi1atNCIESM0ffp0R55Dhw7p5ptvVm5urvz9/dWzZ09t2LBBvXv3rvH9AwAAtZPNGGM8XYnapqCgQP7+/srPz1eTJk08XR0AAFABlTl/e/wqMAAAgJpGAAQAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHIIgAAAgOUQAAEAAMshAAIAAJZDAAQAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwHI8HQElJSQoLC5Ovr68iIiK0cePGU+YvLCzU5MmTFRISIrvdrvbt22v+/PlOeZYsWaLw8HDZ7XaFh4dr2bJl1bkLAACgjvFoAJSamqqEhARNnjxZGRkZ6tevnwYNGqSsrKxy1xkxYoTee+89zZs3T7t27dKiRYvUuXNnx/vp6emKi4tTfHy8duzYofj4eI0YMUJbtmypiV0CAAB1gM0YYzy18T59+qhXr15KTk52pHXp0kXDhw9XYmKiS/7Vq1fr+uuv1+7du9W8efMyy4yLi1NBQYFWrVrlSLviiivUrFkzLVq0qEL1KigokL+/v/Lz89WkSZNK7hUAAPCEypy/PdYDVFRUpG3btik2NtYpPTY2Vps3by5zneXLlysyMlIzZ85U69atdd555+nee+/V77//7siTnp7uUubAgQPLLVM6MaxWUFDgtAAAgLNXPU9t+MCBAyopKVFgYKBTemBgoHJzc8tcZ/fu3dq0aZN8fX21bNkyHThwQLfeeqt+/vlnxzyg3NzcSpUpSYmJiZo6deoZ7hEAAKgrPD4J2mazOb02xriklTp+/LhsNptee+019e7dW4MHD9asWbOUkpLi1AtUmTIladKkScrPz3cs2dnZZ7BHAACgtvNYD1BAQIC8vb1demby8vJcenBKBQcHq3Xr1vL393ekdenSRcYY/fDDD+rYsaOCgoIqVaYk2e122e32M9gbAABQl3isB8jHx0cRERFKS0tzSk9LS1N0dHSZ68TExOjHH3/Ur7/+6kj7+uuv5eXlpTZt2kiSoqKiXMpcu3ZtuWUCAADr8egQ2IQJE/TSSy9p/vz5+vLLL3X33XcrKytL48ePl3RiaGrkyJGO/H//+9/VokULjRkzRpmZmdqwYYPuu+8+jR07Vg0aNJAk3XXXXVq7dq1mzJihr776SjNmzNC6deuUkJDgiV0EAAC1kMeGwKQTl6wfPHhQ06ZNU05Ojrp27aqVK1cqJCREkpSTk+N0TyA/Pz+lpaXpjjvuUGRkpFq0aKERI0Zo+vTpjjzR0dFavHixHnroIT388MNq3769UlNT1adPnxrfPwAAUDt59D5AtRX3AQIAoO6pE/cBAgAAdc+RomKFTlyh0IkrdKSo2NPVcRsBEAAAsByPzgECAAB1Q2lvz5GikpPS/vi9oU/dCinqVm0BAIBHhE9Z45IWOX2d4/e9Tw6pyeqcMYbAAACA5dADBAAATitz2kBJJ4a9Snt+tj50mRr6eHuyWm4jAAIAAKdV1hyfhj7edW7uTymGwAAAgOXUzbANAAB4REOfenVuwnNZ6AECAACWQwAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHIIgAAAgOUQAAEAAMshAAIAAJZDAAQAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAsx+MBUFJSksLCwuTr66uIiAht3Lix3LwffvihbDaby/LVV1858qSkpJSZ5+jRozWxOwAAoA6o58mNp6amKiEhQUlJSYqJidGLL76oQYMGKTMzU+eee2656+3atUtNmjRxvD7nnHOc3m/SpIl27drllObr61u1lQcAAHWWRwOgWbNmady4cbrpppskSbNnz9aaNWuUnJysxMTEctdr2bKlmjZtWu77NptNQUFBVV1dAABwlvDYEFhRUZG2bdum2NhYp/TY2Fht3rz5lOv27NlTwcHBGjBggD744AOX93/99VeFhISoTZs2Gjp0qDIyMqq07gAAoG7zWAB04MABlZSUKDAw0Ck9MDBQubm5Za4THBysuXPnasmSJVq6dKk6deqkAQMGaMOGDY48nTt3VkpKipYvX65FixbJ19dXMTEx+uabb8qtS2FhoQoKCpwWAABw9vLoEJh0YrjqZMYYl7RSnTp1UqdOnRyvo6KilJ2drX//+9+6+OKLJUl9+/ZV3759HXliYmLUq1cvPfvss3rmmWfKLDcxMVFTp049010BAAB1hMd6gAICAuTt7e3S25OXl+fSK3Qqffv2PWXvjpeXly688MJT5pk0aZLy8/MdS3Z2doW3DwAA6h6PBUA+Pj6KiIhQWlqaU3paWpqio6MrXE5GRoaCg4PLfd8Yo+3bt58yj91uV5MmTZwWAABw9vLoENiECRMUHx+vyMhIRUVFae7cucrKytL48eMlneiZ2bdvnxYuXCjpxFVioaGhOv/881VUVKRXX31VS5Ys0ZIlSxxlTp06VX379lXHjh1VUFCgZ555Rtu3b9fzzz/vkX0EAAC1j0cDoLi4OB08eFDTpk1TTk6OunbtqpUrVyokJESSlJOTo6ysLEf+oqIi3Xvvvdq3b58aNGig888/XytWrNDgwYMdeQ4dOqSbb75Zubm58vf3V8+ePbVhwwb17t27xvcPAADUTjZjjPF0JWqbgoIC+fv7Kz8/n+EwAADqiMqcvz3+KAwAAICaRgAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAA1aAjRcUKnbhCoRNX6EhRsaerAwCAZREAAQAAy/HoozCsorS350hRyUlpf/ze0IePAQCAmsSZtwaET1njkhY5fZ3j971PDqnJ6gAAYHkMgQEAAMuhB6gGZE4bKOnEsFdpz8/Why5TQx9vT1YLAADLIgCqAWXN8Wno483cHwAAPIQhMAAAYDl0QdSghj71mPAMAEAtQA8QAACwHAIgAABgOQRAAADAcgiAAACA5RAAAQAAyyEAAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIAAAYDkEQAAAwHJ4FlgZjDGSpIKCAg/XBAAAVFTpebv0PH4qBEBlOHz4sCSpbdu2Hq4JAACorMOHD8vf3/+UeWymImGSxRw/flw//vijGjduLJvNVql1CwoK1LZtW2VnZ6tJkybVVMOzD+3mHtqt8mgz99Bu7qHd3ONuuxljdPjwYbVq1UpeXqee5UMPUBm8vLzUpk2bMyqjSZMmHOxuoN3cQ7tVHm3mHtrNPbSbe9xpt9P1/JRiEjQAALAcAiAAAGA5BEBVzG6365FHHpHdbvd0VeoU2s09tFvl0Wbuod3cQ7u5pybajUnQAADAcugBAgAAlkMABAAALIcACAAAWA4BEAAAsBwCIDckJSUpLCxMvr6+ioiI0MaNG0+Zf/369YqIiJCvr6/atWunF154oYZqWrtUpt0+/PBD2Ww2l+Wrr76qwRp71oYNG3TllVeqVatWstlsevvtt0+7Dsda5duNY01KTEzUhRdeqMaNG6tly5YaPny4du3addr1rH68udNuHG9ScnKyunXr5rjJYVRUlFatWnXKdarjWCMAqqTU1FQlJCRo8uTJysjIUL9+/TRo0CBlZWWVmX/Pnj0aPHiw+vXrp4yMDD344IO68847tWTJkhquuWdVtt1K7dq1Szk5OY6lY8eONVRjz/vtt9/UvXt3PffccxXKz7F2QmXbrZSVj7X169frtttu00cffaS0tDQVFxcrNjZWv/32W7nrcLy5126lrHy8tWnTRk8++aS2bt2qrVu36tJLL9WwYcO0c+fOMvNX27FmUCm9e/c248ePd0rr3LmzmThxYpn577//ftO5c2entH/+85+mb9++1VbH2qiy7fbBBx8YSeaXX36pgdrVfpLMsmXLTpmHY81VRdqNY81VXl6ekWTWr19fbh6ON1cVaTeOt7I1a9bMvPTSS2W+V13HGj1AlVBUVKRt27YpNjbWKT02NlabN28uc5309HSX/AMHDtTWrVt17NixaqtrbeJOu5Xq2bOngoODNWDAAH3wwQfVWc06j2PtzHCs/SE/P1+S1Lx583LzcLy5qki7leJ4O6GkpESLFy/Wb7/9pqioqDLzVNexRgBUCQcOHFBJSYkCAwOd0gMDA5Wbm1vmOrm5uWXmLy4u1oEDB6qtrrWJO+0WHBysuXPnasmSJVq6dKk6deqkAQMGaMOGDTVR5TqJY809HGvOjDGaMGGCLrroInXt2rXcfBxvzirabhxvJ3z++efy8/OT3W7X+PHjtWzZMoWHh5eZt7qONZ4G7wabzeb02hjjkna6/GWln+0q026dOnVSp06dHK+joqKUnZ2tf//737r44ourtZ51Gcda5XGsObv99tv12WefadOmTafNy/H2h4q2G8fbCZ06ddL27dt16NAhLVmyRKNGjdL69evLDYKq41ijB6gSAgIC5O3t7dJrkZeX5xKdlgoKCiozf7169dSiRYtqq2tt4k67laVv37765ptvqrp6Zw2Otapj1WPtjjvu0PLly/XBBx+oTZs2p8zL8faHyrRbWax4vPn4+KhDhw6KjIxUYmKiunfvrjlz5pSZt7qONQKgSvDx8VFERITS0tKc0tPS0hQdHV3mOlFRUS75165dq8jISNWvX7/a6lqbuNNuZcnIyFBwcHBVV++swbFWdax2rBljdPvtt2vp0qV6//33FRYWdtp1ON7ca7eyWO14K4sxRoWFhWW+V23H2hlNobagxYsXm/r165t58+aZzMxMk5CQYBo1amT27t1rjDFm4sSJJj4+3pF/9+7dpmHDhubuu+82mZmZZt68eaZ+/frmrbfe8tQueERl2+3pp582y5YtM19//bX54osvzMSJE40ks2TJEk/tQo07fPiwycjIMBkZGUaSmTVrlsnIyDDff/+9MYZjrTyVbTeONWNuueUW4+/vbz788EOTk5PjWI4cOeLIw/Hmyp1243gzZtKkSWbDhg1mz5495rPPPjMPPvig8fLyMmvXrjXG1NyxRgDkhueff96EhIQYHx8f06tXL6dLHkeNGmX+8pe/OOX/8MMPTc+ePY2Pj48JDQ01ycnJNVzj2qEy7TZjxgzTvn174+vra5o1a2Yuuugis2LFCg/U2nNKL5f98zJq1ChjDMdaeSrbbhxrpsz2kmQWLFjgyMPx5sqdduN4M2bs2LGOc8E555xjBgwY4Ah+jKm5Y81mzP9mEgEAAFgEc4AAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwHAIgAABgOQRAAADAcgiAAACA5RAAATirXHLJJbLZbLLZbNq+fbvH6jF69GhHPd5++22P1QNA2QiAAJx1/vGPfygnJ0ddu3Z1Ss/NzdVdd92lDh06yNfXV4GBgbrooov0wgsv6MiRIxUq+8orr9Rll11W5nvp6emy2Wz69NNPNWfOHOXk5JzxvgCoHvU8XQEAqGoNGzZUUFCQU9ru3bsVExOjpk2b6oknntAFF1yg4uJiff3115o/f75atWqlq6666rRljxs3Ttdcc42+//57hYSEOL03f/589ejRQ7169ZIk+fv7V91OAahS9AAB8Lj9+/fLZrNpzpw56tmzp3x9fXX++edr06ZNVbaNW2+9VfXq1dPWrVs1YsQIdenSRRdccIH++te/asWKFbryyislScYYzZw5U+3atVODBg3UvXt3vfXWW45yhg4dqpYtWyolJcWp/CNHjig1NVXjxo2rsjoDqD4EQAA8LiMjQ5KUlJSkp59+Wjt27FBoaKhuuOEGHT9+/IzLP3jwoNauXavbbrtNjRo1KjOPzWaTJD300ENasGCBkpOTtXPnTt1999268cYbtX79eklSvXr1NHLkSKWkpMgY41j/zTffVFFRkW644YYzri+A6kcABMDjduzYofr162v16tW65JJL1KlTJ02bNk1ZWVl6/PHH1aNHD3Xt2lV2u109evRQjx499OKLL1a4/G+//VbGGHXq1MkpPSAgQH5+fvLz89MDDzyg3377TbNmzdL8+fM1cOBAtWvXTqNHj9aNN97otL2xY8dq7969+vDDDx1p8+fP1zXXXKNmzZqdcXsAqH7MAQLgcdu3b9c111yjsLAwR5rdbpd04mqqhx9+WJ9++qnuuOMO/d///Z/b2ynt5Sn18ccf6/jx47rhhhtUWFiozMxMHT16VJdffrlTvqKiIvXs2dPxunPnzoqOjtb8+fPVv39/fffdd9q4caPWrl3rdt0A1CwCIAAet337do0aNcop7dNPP1VAQIBat24tSdq5c6fOP/98t8rv0KGDbDabvvrqK6f0du3aSZIaNGggSY7hthUrVji2W6o0ICs1btw43X777Xr++ee1YMEChYSEaMCAAW7VD0DNYwgMgEf9/vvv+uabb1RSUuJIO378uObMmaNRo0bJy+vEn6kvvvjC7QCoRYsWuvzyy/Xcc8/pt99+KzdfeHi47Ha7srKy1KFDB6elbdu2TnlHjBghb29vvf7663r55Zc1ZswYlx4mALUXPUAAPOrzzz+XzWbTq6++qksvvVRNmzbVlClTdOjQIT300EOOfDt37lRsbKzb20lKSlJMTIwiIyP16KOPqlu3bvLy8tInn3yir776ShEREWrcuLHuvfde3X333Tp+/LguuugiFRQUaPPmzfLz83PqpfLz81NcXJwefPBB5efna/To0WfSDABqGAEQAI/avn27OnfurIkTJ+raa6/VoUOHNHToUKWnp6tp06aOfGfSAyRJ7du3V0ZGhp544glNmjRJP/zwg+x2u8LDw3Xvvffq1ltvlSQ99thjatmypRITE7V79241bdpUvXr10oMPPuhS5rhx4zRv3jzFxsbq3HPPdbtuAGqezZx8HScA1LDbbrtNv/zyi15//fVy8/z6668KCwvTTz/9dNryLrnkEvXo0UOzZ8+uwlq6z2azadmyZRo+fLinqwLgJMwBAuBR27dvV7du3U6ZJzMzU+Hh4RUuMykpSX5+fvr888/PtHpuGz9+vPz8/Dy2fQCnRg8QAI8xxsjf31+LFy/W4MGDq6TMffv26ffff5cknXvuufLx8amScisrLy9PBQUFkqTg4OByb8AIwDMIgAAAgOUwBAYAACyHAAgAAFgOARAAALAcAiAAAGA5BEAAAMByCIAAAIDlEAABAADLIQACAACWQwAEAAAshwAIAABYDgEQAACwnP8HrqhjBdDm4TkAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "evaluated_events, reconstructed_particles, particles, matched_tracks, tracks = evaluate_candidates(CONFIG)\n",
-    "\n",
-    "# send_telegram_message('Finished evaluation.', chat_id, api_key)\n",
-    "\n",
-    "# send_telegram_message(\"======================\", chat_id, api_key)"
-   ]
-  },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Get all graph files"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import montetracko as mt\n",
-    "import montetracko.lhcb as mtb\n",
-    "from Scripts import Step_6_Evaluate_Reconstruction as evalreco\n",
-    "mt_config = {\n",
-    "    \"aliases\": {\n",
-    "        \"n_hits\": \"nhits\",\n",
-    "        \"hit_id\": \"lhcbid\",\n",
-    "    },\n",
-    "    \"fake_particle_id\": 0,\n",
-    "}"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "with open(CONFIG) as file:\n",
-    "    all_configs = yaml.load(file, Loader=yaml.FullLoader)\n",
-    "\n",
-    "common_configs = all_configs[\"common_configs\"]\n",
-    "track_building_configs = all_configs[\"track_building_configs\"]\n",
-    "evaluation_configs = all_configs[\"evaluation_configs\"]\n",
-    "\n",
-    "\n",
-    "input_dir = track_building_configs[\"output_dir\"]\n",
-    "output_dir = evaluation_configs[\"output_dir\"]\n",
-    "os.makedirs(output_dir, exist_ok=True)\n",
-    "\n",
-    "all_graph_files = os.listdir(input_dir)\n",
-    "all_graph_files = [os.path.join(input_dir, graph) for graph in all_graph_files]"
-   ]
-  },
-  {
-   "attachments": {},
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Get tracks"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import os\n",
-    "import os.path as op\n",
-    "import yaml"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "graph_file = all_graph_files[0]\n",
-    "\n",
-    "# particles_df = evalreco.load_particles_df(graph_file)\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "with open(CONFIG) as file:\n",
-    "    all_configs = yaml.load(file, Loader=yaml.FullLoader)\n",
-    "preprocessed_dir = all_configs[\"processing_configs\"][\"preprocessed_dir\"]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import pyarrow.csv as pac\n",
-    "from tqdm.notebook import tqdm"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# %%timeit\n",
-    "\n",
-    "# dict_paths = {\n",
-    "#     \"particles\": op.join(preprocessed_dir, \"event{event_id_str}-particles.csv\"),\n",
-    "#     \"hits_particles\": op.join(preprocessed_dir, \"event{event_id_str}-truth.csv\"),\n",
-    "# }\n",
-    "# dict_convert_options = {\n",
-    "#     \"hits_particles\": pac.ConvertOptions(include_columns=[\"particle_id\", \"lhcbid\"]),\n",
-    "# }\n",
-    "# dict_columns = {\n",
-    "#     \"hits_particles\": [\"particle_id\", \"lhcbid\"],\n",
-    "# }\n",
-    "\n",
-    "# dict_list_dataframes = {\n",
-    "#     \"particles\": [],\n",
-    "#     \"hits_particles\": [],\n",
-    "#     \"tracks\": [],\n",
-    "# }\n",
-    "\n",
-    "# first_iteration: bool = True\n",
-    "# for graph_file in tqdm(all_graph_files):\n",
-    "#     # Event ID from graph file name\n",
-    "#     event_id_str = op.basename(graph_file)\n",
-    "#     event_id = int(event_id_str)\n",
-    "\n",
-    "#     # Load dataframe of tracks\n",
-    "#     reconstruction_df = evalreco.load_reconstruction_df(graph_file)\n",
-    "#     df_tracks = reconstruction_df[[\"hit_id\", \"track_id\"]].drop_duplicates()\n",
-    "\n",
-    "#     # Particles and hit-particle truth association\n",
-    "#     tables_event = {}\n",
-    "#     for name, path in dict_paths.items():\n",
-    "#         tables_event[name] = pac.read_csv(\n",
-    "#             path.format(event_id_str=event_id_str),\n",
-    "#             convert_options=dict_convert_options.get(name),\n",
-    "#         )\n",
-    "\n",
-    "#     if first_iteration:\n",
-    "#         first_iteration = False\n",
-    "#         for name, table in tables_event.items():\n",
-    "#             dict_convert_options[name] = pac.ConvertOptions(\n",
-    "#                 column_types=table.schema,\n",
-    "#                 include_columns=table.column_names,\n",
-    "#             )\n",
-    "\n",
-    "#     # Retrieve read options\n",
-    "#     if not dict_convert_options:\n",
-    "#         for name, table in tabtables_eventles.items():\n",
-    "#             dict_convert_options[name] = pac.ConvertOptions()\n",
-    "\n",
-    "#     # Convert to pandas DataFrame\n",
-    "#     dataframes_event = {name: table.to_pandas() for name, table in tables_event.items()}\n",
-    "#     dataframes_event[\"tracks\"] = df_tracks\n",
-    "\n",
-    "#     # Rename column\n",
-    "#     dataframes_event[\"hits_particles\"].rename(columns={\"lhcbid\": \"hit_id\"}, inplace=True)\n",
-    "\n",
-    "#     # Add event ID column\n",
-    "#     for dataframe in dataframes_event.values():\n",
-    "#         dataframe[\"event_id\"] = event_id\n",
-    "\n",
-    "#     # Append to list for concatenation\n",
-    "#     for name, dataframe in dataframes_event.items():\n",
-    "#         dict_list_dataframes[name].append(dataframe)\n",
-    "\n",
-    "# dataframes = {\n",
-    "#     name: pd.concat(list_dataframes)\n",
-    "#     for name, list_dataframes in dict_list_dataframes.items()\n",
-    "# }"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "b8d68af13f204cb6b52b2244a0fef3f3",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "  0%|          | 0/100 [00:00<?, ?it/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "dict_paths = {\n",
-    "    \"particles\": op.join(preprocessed_dir, \"event{event_id_str}-particles.csv\"),\n",
-    "    \"hits_particles\": op.join(preprocessed_dir, \"event{event_id_str}-truth.csv\"),\n",
-    "}\n",
-    "dict_list_dataframes = {\n",
-    "    \"particles\": [],\n",
-    "    \"hits_particles\": [],\n",
-    "    \"tracks\": [],\n",
-    "}\n",
-    "dict_convert_options = {\n",
-    "    \"hits_particles\": pac.ConvertOptions(\n",
-    "        include_columns=[\"particle_id\", \"lhcbid\", \"hit_id\"]\n",
-    "    ),\n",
-    "}\n",
-    "\n",
-    "for graph_file in tqdm(all_graph_files):\n",
-    "    # Event ID from graph file name\n",
-    "    event_id_str = op.basename(graph_file)\n",
-    "    event_id = int(event_id_str)\n",
-    "\n",
-    "    # Load dataframe of tracks\n",
-    "    reconstruction_df = evalreco.load_reconstruction_df(graph_file)\n",
-    "    df_tracks = reconstruction_df[[\"hit_id\", \"track_id\"]].drop_duplicates()\n",
-    "\n",
-    "    # Particles and hit-particle truth association\n",
-    "    dataframes_event = {}\n",
-    "    for name, path in dict_paths.items():\n",
-    "        dataframes_event[name] = pac.read_csv(\n",
-    "            path.format(event_id_str=event_id_str),\n",
-    "            convert_options=dict_convert_options.get(name),\n",
-    "        ).to_pandas()\n",
-    "    dataframes_event[\"tracks\"] = df_tracks\n",
-    "\n",
-    "    # Add event ID column\n",
-    "    for dataframe in dataframes_event.values():\n",
-    "        dataframe[\"event_id\"] = event_id\n",
-    "\n",
-    "    dataframes_event[\"tracks\"][\"lhcbid\"] = mt.array_utils.transform.replace(\n",
-    "        array=np.asarray(dataframes_event[\"tracks\"][\"hit_id\"]),\n",
-    "        values_to_replace=np.asarray(dataframes_event[\"hits_particles\"][\"hit_id\"]),\n",
-    "        replacement_values=np.asarray(dataframes_event[\"hits_particles\"][\"lhcbid\"]),\n",
-    "    )\n",
-    "\n",
-    "    # Append to list for concatenation\n",
-    "    for name, dataframe in dataframes_event.items():\n",
-    "        dict_list_dataframes[name].append(dataframe)\n",
-    "\n",
-    "dataframes = {\n",
-    "    name: pd.concat(list_dataframes)\n",
-    "    for name, list_dataframes in dict_list_dataframes.items()\n",
-    "}\n",
-    "dataframes[\"hits_particles\"].drop(\"hit_id\", axis=1, inplace=True)\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div>\n",
-       "<style scoped>\n",
-       "    .dataframe tbody tr th:only-of-type {\n",
-       "        vertical-align: middle;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe tbody tr th {\n",
-       "        vertical-align: top;\n",
-       "    }\n",
-       "\n",
-       "    .dataframe thead th {\n",
-       "        text-align: right;\n",
-       "    }\n",
-       "</style>\n",
-       "<table border=\"1\" class=\"dataframe\">\n",
-       "  <thead>\n",
-       "    <tr style=\"text-align: right;\">\n",
-       "      <th></th>\n",
-       "      <th>particle_id</th>\n",
-       "      <th>lhcbid</th>\n",
-       "      <th>event_id</th>\n",
-       "    </tr>\n",
-       "  </thead>\n",
-       "  <tbody>\n",
-       "    <tr>\n",
-       "      <th>0</th>\n",
-       "      <td>2829</td>\n",
-       "      <td>671094942</td>\n",
-       "      <td>7212930</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>2259</td>\n",
-       "      <td>604074443</td>\n",
-       "      <td>7212930</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>0</td>\n",
-       "      <td>537154464</td>\n",
-       "      <td>7212930</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>3</th>\n",
-       "      <td>501</td>\n",
-       "      <td>537143928</td>\n",
-       "      <td>7212930</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>4</th>\n",
-       "      <td>2828</td>\n",
-       "      <td>536908207</td>\n",
-       "      <td>7212930</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>...</th>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "      <td>...</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2265</th>\n",
-       "      <td>1858</td>\n",
-       "      <td>591324376</td>\n",
-       "      <td>4206903</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2266</th>\n",
-       "      <td>2236</td>\n",
-       "      <td>590901436</td>\n",
-       "      <td>4206903</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2267</th>\n",
-       "      <td>601</td>\n",
-       "      <td>658027554</td>\n",
-       "      <td>4206903</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2268</th>\n",
-       "      <td>3974</td>\n",
-       "      <td>591239709</td>\n",
-       "      <td>4206903</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>2269</th>\n",
-       "      <td>3250</td>\n",
-       "      <td>591260403</td>\n",
-       "      <td>4206903</td>\n",
-       "    </tr>\n",
-       "  </tbody>\n",
-       "</table>\n",
-       "<p>194437 rows × 3 columns</p>\n",
-       "</div>"
-      ],
-      "text/plain": [
-       "      particle_id     lhcbid  event_id\n",
-       "0            2829  671094942   7212930\n",
-       "1            2259  604074443   7212930\n",
-       "2               0  537154464   7212930\n",
-       "3             501  537143928   7212930\n",
-       "4            2828  536908207   7212930\n",
-       "...           ...        ...       ...\n",
-       "2265         1858  591324376   4206903\n",
-       "2266         2236  590901436   4206903\n",
-       "2267          601  658027554   4206903\n",
-       "2268         3974  591239709   4206903\n",
-       "2269         3250  591260403   4206903\n",
-       "\n",
-       "[194437 rows x 3 columns]"
-      ]
-     },
-     "execution_count": 12,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "dataframes[\"hits_particles\"]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 33,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "trackEvaluator = mt.TrackMatcher(config=mt_config).full_matching(\n",
-    "    df_events_hits_particles=dataframes[\"hits_particles\"],\n",
-    "    df_events_particles=dataframes[\"particles\"],\n",
-    "    df_events_tracks_hits=dataframes[\"tracks\"],\n",
-    "    matching_condition=mt.matchcond.MinMatchingFraction(0.7),\n",
-    "    track_condition=mt.matchcond.MinLengthTrack(2),\n",
-    ")\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 34,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "0.9149435564993853"
-      ]
-     },
-     "execution_count": 34,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "trackEvaluator.compute_metric(\n",
-    "    \"efficiency\",\n",
-    "    category=mtb.category.allen_categories[0],\n",
-    ")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 35,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "TrackChecker output                               :       678/    18902   3.59% ghosts\n",
-      "01_velo                                           :      8186/     8947  91.49% ( 92.65%),        86 (  1.04%) clones, pur  99.19%, hit eff  94.86% \n",
-      "02_long                                           :      4846/     5143  94.23% ( 95.52%),        47 (  0.96%) clones, pur  99.28%, hit eff  95.94% \n",
-      "03_long_P>5GeV                                    :      3161/     3330  94.92% ( 96.32%),        34 (  1.06%) clones, pur  99.32%, hit eff  96.42% \n",
-      "04_long_strange                                   :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "05_long_strange_P>5GeV                            :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "06_long_fromB                                     :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "07_long_fromB_P>5GeV                              :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "08_long_electrons                                 :       253/      381  66.40% ( 70.75%),         6 (  2.32%) clones, pur  98.26%, hit eff  74.89% \n",
-      "09_long_fromB_electrons                           :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "10_long_fromB_electrons_P>5GeV                    :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "\n"
-     ]
-    }
-   ],
-   "source": [
-    "trackEvaluator.print_report(\n",
-    "    reporter=mt.AllenReporter(),\n",
-    "    categories=mtb.category.allen_categories,\n",
-    ")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 36,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "+----------------------+--------------+----------------------+------------+--------------------------+----------------------+\n",
-      "| Categories           | Efficiency   | Average efficiency   | % clones   | Average hit efficiency   | Average hit purity   |\n",
-      "+======================+==============+======================+============+==========================+======================+\n",
-      "| Velo, only electrons | 60.08%       | 63.28%               | 3.84%      | 98.22%                   | 72.04%               |\n",
-      "+----------------------+--------------+----------------------+------------+--------------------------+----------------------+\n",
-      "| Velo, no electrons   | 91.49%       | 92.65%               | 1.04%      | 99.19%                   | 94.86%               |\n",
-      "+----------------------+--------------+----------------------+------------+--------------------------+----------------------+\n",
-      "+--------------+------------+------------+------------+\n",
-      "| Categories   |   # ghosts | # tracks   | % ghosts   |\n",
-      "+==============+============+============+============+\n",
-      "| Everything   |        678 | 18,902     | 3.59%      |\n",
-      "+--------------+------------+------------+------------+\n"
-     ]
-    }
-   ],
-   "source": [
-    "trackEvaluator.print_report(\n",
-    "    reporter=mt.TabReporter(\n",
-    "        [\n",
-    "            \"efficiency\",\n",
-    "            \"efficiency_per_event\",\n",
-    "            \"clone_rate\",\n",
-    "            \"hit_purity_per_candidate\",\n",
-    "            \"hit_efficiency_per_candidate\",\n",
-    "        ],\n",
-    "        mode=\"markdown\",\n",
-    "        tablefmt=\"grid\",\n",
-    "    ),\n",
-    "    categories=mtb.category.velo_categories,\n",
-    ")\n",
-    "trackEvaluator.print_report(\n",
-    "    reporter=mt.TabReporter(\n",
-    "        metric_names=[\"n_ghosts\", \"n_tracks\", \"ghost_rate\"],\n",
-    "        mode=\"markdown\",\n",
-    "        tablefmt=\"grid\",\n",
-    "    ),\n",
-    ")\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 21,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAADFgAAAk3CAYAAAAXtVqvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f3Bb533nfX9EUhFIKRVIZQtRye5WQLcdQ3IbA2J960fv3crA3YxH3BltCCmevWWrcUQw9Ywz8bRE9Udnnkz/UKju2FPvzJqA66xSduOxwa3uLT1RpoDleizZk5KA/WxkeLrz8Cj1VoTViQEwEUWoJonnD92ABROgiINDAiDfrxlNgnPO9zqXLsDQBeD6Xt8thUKhIAAAAAAAAAAAAAAAAAAAAAAAgE2srdEdAAAAAAAAAAAAAAAAAAAAAAAAaDQSLAAAAAAAAAAAAAAAAAAAAAAAwKZHggUAAAAAAAAAAAAAAAAAAAAAANj0SLAAAAAAAAAAAAAAAAAAAAAAAACbHgkWAAAAAAAAAAAAAAAAAAAAAABg0yPBAgAAAAAAAAAAAAAAAAAAAAAAbHokWAAAAAAAAAAAAAAAAAAAAAAAgE2PBAsAAAAAAAAAAAAAAAAAAAAAALDpkWABAAAAAAAAAAAAAAAAAAAAAAA2PRIsAAAAAAAAAAAAAAAAAAAAAADAptfR6A4AAAAAaF3pZFpT4SnlM3mlk2nZ7DZ5g155B71VY/K5vN4695YkqWtXlzLTGbn8LrkH3A2PAQAAAAAAAAAAAAAAALB5bSkUCoVGdwIAAABA60lEEpJUlkxhxA1FA1F19nRqMDEom91WFpPP5RXxRhSIBtTr6S0dnwhOyGa3yT/iX3af9YoBAAAAAAAAAAAAAAAAsLm1NboDAAAAAFpP1sgqn8svq1Th9Dn1+OuPK2tkFQ1El8VFA1E9MPBAWdKDJPWH+5WMJGXEjYbFAAAAAAAAAAAAAAAAANjcSLAAAAAAULOp8NSy5IqiXk+vnD6njLihrJEtHc8aWRlxQweCByrGuU+4dXXkatmx9YoBAAAAAAAAAAAAAAAAABIsAAAAANTsevy6/mzvnymfy1c8v9uzW5KUTqZLx6bCU5Kkbmd3xZgeV4+MuFHW5nrFAAAAAAAAAAAAAAAAAEBHozuA2iwsLOjdd9+Vw+FQWxv5MQAAAFhbS0tLunnzph566CF1dHz68aGzp1PpZFpZI6teT++q2voo+ZFsdlvV88WEiJmpGTl9znWNaRbM9wEAALBeqs31sTaY6wMAAGC9MNdfX8z1AQAAsJ6Y768PRrbFvPvuu/qt3/qtRncDAAAAm8zf/d3fqa+vr/T4VOyUska2apWInJGTpLLki6yRVWdPZ9V7FJMiskZ23WOaBfN9AAAArLfPzvWxNpjrAwAAYL0x118fzPUBAADQCMz31xYJFi3G4XBIkt555x196UtfanBvWt/CwoKSyaQ8Hg+ZXBZgPK3FeFqL8bQW42ktxtNajGd9Fv55QUt3lkqPb8zc0P/p+z9L89B7VUuukKTUeEq9nt6ya+Yz8yvGFJMi8rn8usc0C+b7qIT3NVTC6wLV8NpAJbwuUMk//uM/6uDBgxXn+rBecZz/7u/+Tr29q6sCiObB+2hr4/lrbTx/rY3nr7Xx/LWudDqt3/qt32Kuv074Xt9avPdYi/G0FuNpLcbTWoyntRhPazGe1uK7/fXBK7XFFMsJ7t69mw9mFlhYWNBPf/pTfelLX+KN2wKMp7UYT2sxntZiPK3FeFqL8azP3/5//lZvfufN0uPZtllJqqms9dXzVyVJ/S/2lx1fbULD7Y9vr3tMs2C+j0p4X0MlvC5QDa8NVMLrApUsLCxIqm2uD/OK49zb28tcvwXxPtraeP5aG89fa+P5a208f62Puf764Ht9a/HeYy3G01qMp7UYT2sxntZiPK3FeFqL7/bXB69UAAAAACVHzh7RwWcOlh5/+OGHeu7B51Ydn06mFQ/FFYgG1OthV1YAAAAAAAAAAAAAAAAArYMECwAAAAAlHds61LHt048JW3dsrSk+GojqWPiY3APuZedsdtuqqkt07epa9xgAAAAAAAAAAAAAAAAAoD4IAAAAAEtEA1F5g155B70Vz3f2dK4YP5+Zl3Q3QWK9YwAAAAAAAAAAAAAAAACABAsAAAAAdYuFYtrTt0eHhw9Xvabb2V1KbqikWHWi29m97jEAAAAAAAAAAAAAAAAAQIIFAAAAgLokIgn1uHoqJlcUkxkkabdnd9njz8oaWUmS0+dc9xgAAAAAAAAAAAAAAAAAIMECAAAAgGmp8ZQkyTvoXXYua2RlxI3S4/0n90uS0sl0xbZmJmeWJT2sVwwAAAAAAAAAAAAAAAAAkGABAAAAwJR0Mq35zHzF5ApJMuKGej29pce9nl45fU5de+VaxetT4ykdDpVXwVivGAAAAAAAAAAAAAAAAADoaHQHAAAAALSerJFVNBDVXt9ezQRnlp3PZ/Iy4oZC2VDZ8UA0oIg3ov0n95clX0wEJ3Ro+FDFyhLrFQMAAAAAAAAAAAAAAABgcyPBAgAAAEDNxvxjyhpZZSPZqtd0O7uXHbPZbRpMDCoWislmt6lrV5cy0xm5/C65B9wV21mvGAAAAAAAAAAAAAAAAACbGwkWAAAAAGr29PTTpmNtdpv6w/1NGQMAAAAAAAAAAAAAAABg82prdAcAAAAAAAAAAAAAAAAAAAAAAAAajQQLAAAAAAAAAAAAAAAAAAAAAACw6ZFgAQAAAAAAAAAAAAAAAAAAAAAANr2ORnegkYLBoAKBgHw+X13t5HI5nTt3TpK0a9cuTU9Py+/3a2BgwNIYAAAAAAAAAAAAAAAAAAAAAACwNjZdgoVhGIrH4wqHw0omkwoEAnW1l8vl5PV6FY1G5fF4SseDwaAmJyc1MjJiSQwAAAAAAAAAAAAAAAAAAAAAAFg7bY3uwHqKRCIKhUKSZFkSQyAQ0MDAQFmihCSFw2FFIhHF43FLYgAAAAAAAAAAAAAAAAAAAAAAwNrZVAkWg4ODikajGhwcVE9PT93tFathBIPBiudPnDixLJHDTAwAAAAAAAAAAAAAAAAAAAAAAFhbmyrBwmrhcFiS5HQ6K553uVyKx+PK5XJ1xQAAAAAAAAAAAAAAAAAAAAAAgLVFgkUdksmk7HZ71fPFJIqpqam6YgAAAAAAAAAAAAAAAAAAAAAAwNrqaHQHWplhGOrp6al6vphIYRhGXTGVLC0taXFxcfWdRUWLi4ulsdyyZUuju9PyGE9rMZ7WYjytxXhai/G0llXjOTc3Zyrun/7pn/TNb35TiURCXq9XL7zwgn75l3/ZVFvbt283FWelpaWlRndhU2K+j3vx7wQq4XWBanhtoJLFxUXNzc3p5z//uTo6av9K2Ko5bjPMb5tJoz9z/OIXvzB1f9RncXGRuX4L4t/X1sbz19p4/lobz19r4/lrXcw3G4Pv9a3Be4+1GE9rMZ7WYjytxXhai/G0Fut4rMU6nvVBgkUdMplMqeJEJcVEilwuV1dMJe+8847+/u//vvS4vb3d1I+jm93S0pL+9//+31paWlJbGwVd6sV4WovxtBbjaS3G01qMp7WsGs8/+ZM/MRX3P//n/1Qmk5EkxeNxPfzww/qN3/gNU2398R//sak4K3388ceN7sKmxHwf9+LfCVTC6wLV8NpAJUtLS/pP/+k/mY63ao7bDPPbZtLozxwLCwum7o/6XL16Vd3d3aXHzPVbA/++tjaev9bG89faeP5aG89f68pms43uwqbE9/rW4L3HWoyntRhPazGe1mI8rcV4Wot1PNZiHc/6YCZfh/slQRTd+2I2E1PJ6Oho2Qex3/zN39SXv/zlVbWNTxUKBc3OzkoSmYYWYDytxXhai/G0FuNpLcbTWo0ez5///OcrPq7Fhx9+WG936lZP/2Ee833cq9Hva2hOvC5QDa8NVFIoFOqKt2qO2wzz243Ays8cWH8vvPACc/0WxL+vrY3nr7Xx/LU2nr/WxvPXuqhW1xh8r28N3nusxXhai/G0FuNpLcbTWoyntRo9nqzjgRkkWLSoY1uPqdv26S5XW/9/W9VxfX2fzsCrgXW931pYWFjQO++8o4MHD7JzgAUYT2sxntZiPK3FeFqL8bSWVeP57//9vzcVd+LECf3t3/6tFhcX1d7ern/7b/+tXn31VVNtNUNpwQ8//FDf+ta3Gt2NTafR8/2NMNffSPh3ApXwukA1vDZQycLCgr7whS/o4YcfNvW6sGqO2wzz22bS6M8cH374oR566CFTfYB5//k//2d98YtfLD3etm2btm3b1sAeYTXW8t/X6Imope2ZtZE/BzI/am08f62N56+18fy1rhs3bujpp59udDc2neeff15f+tKXSo8381y/njluYUtBWxxb1HGzQ1sK5hdgbuT5bS14L7cW42ktxtNajKe1GE9rsY7HWqzjWR/8l18Hu92+qooUu3btqiumkq72Ln2+/fPlB5fu26ylNsIHwWJJxm3btvEPoQUYT2sxntZiPK3FeFqL8bSWVeNpdq7z3/7bf9Pp06c1OTmpvr4+XbhwQT09Pab70Whbt25tdBc2pUbP9zfCXH8j4d8JVMLrAtXw2kAl7e3t+vznP6+enh5Tr4uNNsdtFo3+zMEuV43xhS98Qf/iX/yLRncDNVrLf1/bl9otbc+sjfw5kPlRa+P5a208f62N5691fe5zn2t0Fzal7u5u5vr/r3rmuEtbltSmNrUttamt0Ga6nY08v60F7+XWYjytxXhai/G0FuNpLdbxWIt1POuD//LrcL//wDKZjKS7SRX1xAAAAKB1OBwOXbp0qdHdAAAAACzDHLe58HwAAAAAAAAAALA6fKcOM8yn+kJOp7OUEFFJsVKF0+msKwYAAAAAAAAAAAAAAAAAAAAAAKwtEizq4PF4SgkRlRiGIUny+Xx1xQAAAAAAAAAAAAAAAAAAAAAAgLVFgkUdTp48KUlKJpMVz09OTi5LlDATAwAAAAAAAAAAAAAAAAAAAAAA1hYJFveRy+UUCoUUj8eXnfN4PPL5fHrllVcqxo6PjysUCtUdAwAAAAAAAAAAAAAAAAAAAAAA1tamTbAwDEPS3QSKlUQiEZ0/f16BQKDi+Wg0qvHx8WUVKYLBoIaHhytWozATAwAAAAAAAAAAAAAAAAAAAAAA1k5HozuwnsbHxxUOhyVJU1NTkqQzZ86UjgUCAQ0ODpbF+Hw+2e12nThxomKbdrtdiURCoVBIdrtdu3bt0vT0tPx+vwYGBiyLAQAAAAAAAAAAAAAAAAAAAAAAa2dTJVgMDAzUnMDg8XiUzWZXvMZut5eSNFbLTAwAAAAAAAAAAAAAAAAAAAAAAFgbbY3uAAAAAAAAAAAAAAAAAAAAAAAAQKORYAEAAAAAAAAAAAAAAAAAAAAAADY9EiwAAAAAAAAAAAAAAAAAAAAAAMCmR4IFAAAAAAAAAAAAAAAAAAAAAADY9EiwAAAAAAAAAAAAAAAAAAAAAAAAmx4JFgAAAAAAAAAAAAAAAAAAAAAAYNMjwQIAAAAAAAAAAAAAAAAAAAAAAGx6JFgAAAAAAAAAAAAAAAAAAAAAAIBNjwQLAAAAAAAAAAAAAAAAAAAAAACw6ZFgAQAAAAAAAAAAAAAAAAAAAAAANj0SLAAAAAAAAAAAAAAAAAAAAAAAwKZHggUAAAAAAAAAAAAAAAAAAAAAANj0SLAAAAAAAAAAAAAAAAAAAAAAAACbHgkWAAAAAAAAAAAAAAAAAAAAAABg0+todAcAAAAAAAAAAAAANM7L/S83ugt6bOKxRncBAAAAAAAAAKhgAQAAAAAAAAAAAAAAAAAAAAAAQIIFAAAAAAAAAAAAAAAAAAAAAADY9Doa3QEAAAAAAAAAAAAAAAAA6ycRSSgVTclmt0mS7E67/CP+itfmc3m9de4tSVLXri5lpjNy+V1yD7irtm8mBgAAAACaAQkWAAAAAAAAAAAAAICm9JOXf6Ibz95QW6GtYX14bOKxht0bAKyWz+X1F4/8hfb69upU7FTpeNbIKhaKLUuyyOfyingjCkQD6vX0lo5PBCd0Y/JGxaQMMzEAAAAA0Cwa9y0UAAAAAAAAAAAAAAAAgHVTTK74bJLDa8HXlIwkl10fDUT1wMADZYkSktQf7lcykpQRNyyJAQAAAIBmQYIFAAAAAAAAAAAAAAAAsMFdPX9VWSNbsYKEzW7TngN7yo5ljayMuKEDwQMV23OfcOvqyNW6YwAAAACgmXQ0ugMAAAAAAAAAAKD5ZI2sroxckSTlM3nlc3k5/U4dHj5c8fpEJKFUNCVv0Cunzymb3aaskVU6mdb7r7yvI2ePLNvBVpLyubzeOveWJKlrV5cy0xm5/C65B9xV+2YmBkBze7n/5TVpd2nLkjK9Gd149obaCvffe+6xicfWpB8AADSDK+euyDPoqXguEA0sOzYVnpIkdTu7K8b0uHqUjCSVz+Vls9tMxwAAAABAMyHBAgAAAAAAAAAAlEmNp3Rj8ob6w/1lxyPeiBLhhJ6efnpZTD6XlxE3ZMSNsuM2u02BaKBqckXEG1l2fiI4oRuTNyrurGsmBgAAANjsUuMp5XN57T+5f9UxHyU/WjEJophEMTM1I6fPaToGAAAAAJrJ/bdpAQAAAAALpMZTje4CAAAAgFXI5/J6/5X3KyYq9L/Yr6yR1URwomLssfAxHRo+JPeAW55Bj46FjymUDVVdOBUNRPXAwAPLki/6w/1KRpLLkjXMxgAAAACb3fuvvC9JpXl0OplWIpJQOpmuGpM1surs6ax6vphIkTWydcUAAAAAQDMhwQIAAADAmsvn8ooGokpEEsrn8o3uDgAAAIAVzEzNKDWeUiwUW3auuBjrevx6xdh9J/bJP+JXIBpQf7hf3kFv1ftkjayMuKEDwQMVz7tPuHV15GrdMQAAAMBGtnBnQXd+fqf0559/8c8Vr7s3keLq+auaz8yX5utj/rGKicrzmfkVq1EUEynu/d7fTAwAAAAANJOORncAAAAAQOubCE5oX2Bf1V1piztRvRZ8Ta8FX1uxrUA0IPeAW5KUiCSUiqbkDXrl9Dlls9uUNbJKJ9N6/5X3deTskWW71kp3f5h569xbkqSuXV3KTGfk8rtK7QIAAACorrOnUza7TV27uqpes9KCqdWaCk9Jkrqd3RXP97h6lIwklc/lS/czE4Pm83L/y43ugiTpsYnHGt0FAACAul05d0VvfufN0uNZzVa8rpj4kIgkdHj4cOl4r6dXgWhAf7b3zxSIBsq+519tEsTtj2/XFQMAAAAAzYQECwAAAACmFHeOTYTvlhDfF9i34rXdzm71enpl66m8yCmfyStrZMuSIPK5vIy4sWznLJvdpkA0UDW5IuKNLDs/EZzQjckb8o/4a/2rAgAAAJtKr6dXoWyo4rnirrd7fXvrvs9HyY9WTIIoJlHMTM2UFnmZiQEAAAA2siNnj+jgMwdLj2/cuKHn3M8tu66Y+FCsIHEvm90mp8+p14Kv6enpp9euswAAAADQAkiwgGnsMAUAALB5JSIJGTFDTr9TvhGfxvxjK15/Y/KGTsVOVd1lVpJioZh8I75lx4+FjykznVHOyMnWY9Me755S2fJKooGoHhh4YFnyRX+4XyPdI3L5XSy0AgAAAEyKh+LqdnbfN3E5nUxrZmpGew7sqZgYLd1NxK60uKuomEhRrIhnNgYAAADYyDq2dahj26fLfz73889VvM5mtymfy1f9ftzpdyo1nlI6mS7N4Ysx93Nv9TszMQAAAADQTEiwAAAAAFAz76C3lORQ3MH2flZKrkgn0+px9VS8Zt+JfSvuUHuvYlWNY+FjFc+7T7h1deQqCRYAAADYdBbuLGjxzmLp8Se3PqkpPmtkdWXkiuxOu07FTlW9zogbyhpZOX1OeQe9SifTGvOP6XDo8LJ5+HxmfsXPCcVEinsXZ5mJAYBasMEYAGCj6uzpVD6Xr/p9e3EuPTM1U0qwWCm5Wbo7P5dU1qaZGAAAAABoJiRYAAAAAFhzB4IHVjw/FZ5Sf7i/7vtMhackVU/m6HH1KBlJrvgjEgAAALARXTl3RW9+583S49m22VXFpcZTujF5QzkjJ7vTLpffVfXa4jz88PDh0rFeT68C0YBGukc0mBgsq2ax2iSI2x/frisGAGDO3Nyc6dibN29qaGhIiURCXq9Xo6OjcjgcNbezsLBgug8AgHK9nt5VVXq7d87d7ezWzNTMfa+99zt5MzEAAAAA0ExIsAAAAACw5lb6oSQWisk/4rfkPh8lP1oxcaLYj5mpGapYAAAAYFM5cvaIDj5zsPT4ww8/1HMPPnffOPeAW+4Bd+nxmH9MiXBC/S/2L5t733vdvWx2m9wDbkUDUT09/bTJvwEAYL3t2LHDknZisZhcruoJevfz/ODzlvQDADa7PX17lBpPVd2AqFhZ4t6k6N2e3TLiRtU2iwkb937fbiYGAAAAAJpJW6M7AAAAAKB5LNxZ0J2f3yn9+eTWJ2t6v3QyrR5Xz6qqSaSTaSUiCaWT6arXZI3siuXHi/dZzS5dAAAAwEbSsa1D235pW+nP1h1bTbUTiAaUGk8pGojWFLenb4+yRrZsLm6z21ZVkaJrV1ddMQAAAAA+TYiulvyQmc5IkvYc2FM6tv/kfkmq+r38zOTyzYzMxAAAAABAM6GCBQAAAICSK+eu6M3vvFl6PNs2u+b3C0QDK15jxA1ljaycPqe8g16lk2mN+cd0OHR42Y8w85n5FatlFJMvVrMgCwAAAMByxWoUqfGUjLix6oVRxWTndDJdmrOvlBwtfbqD7r0J2WZiAADm3Lp1y3Ts8ePHdfnyZS0uLqq9vV1Hjx7VxYsXa25nYWFBfzH8F6b7AQD4VLezW+4Bt66cu1Kx+twH4x/o0PChsrl0r6dXTp9T1165VlbZoig1ntKp2KmyY2ZiAAAA0Lzm5uZMx968eVPBYFA//vGP9fDDDyscDsvhcJhqa/v27ab7sRklIgmloqnS/N7utMs/4q94bT6X11vn3pJ0d/OizHRGLr+ratVqszGthAQLAAAAACVHzh7RwWcOlh5/+OGHeu7B59bkXqnxlOxO+4rXFBdeHR4+XDrW6+lVIBrQSPeIBhODZT/QrDZx4vbHt2vvMAAAALBJ5HP5FZOXi/P46dh0KcFiIjih6/Hrenr66VXfp9vZrZmpmRX7UbyunhgAgDn1LFwYGxvT6dOnNTk5qb6+Pl24cMFUewsLC6b7AABYrv/FfkW8ESUiCXkHvaXj0UBU3c7uiguuAtGAIt6I9p/cX/Z9/ERwQoeGD1VMujYTAwAAgOa0Y8cOS9qJx+NyuVym4wuFgiX92Ojyubz+4pG/0F7f3rLE5qyRVSwUWzbnz+fyingjCkQDy+buNyZvVPyMYCam1ZBgAQAAAKCkY1uHOrZ9+jFh646ta3avK+euqP/F/hWvqZbZXtw1NxqI1rSACwAAAMD9jXSPSJJC2VDFShBdu7oklSc4p6fSpeoRlRSvvffHlt2e3TLiRtWYrJGVpLLFV2ZiAADrz+Fw6NKlS43uBgDgM2x2mwYTg3rr3FuKBqKS7s7V3QF3WcJFpZhYKCab3baq3WnNxAAAAACoXzG54rNJDq8FX9PM1Myy49FAVA8MPLCs+lx/uF8j3SNy+V3Lvm83E9NqSLAAAAAAsO6yRlbpZLpiefDV2tO3R6nxlLJGtrQ7rc1uW1UVi+KCMAAAAADL2ew2dfZ0VkyukKTMdEaStMe7p3Rsr2+vBkcGq7Y5Mzkjm91WVlli/8n9evv821U/G8xMziz7EcZMTDO5ffu25ubmao67efOmhoaGlEgk5PV6NTo6KofDYaoP9exIDwAAgNZns9tq3lHWZrepP7zyhklWxAAAAKD53Lp1y3Ts8ePHdfnyZS0uLqq9vV1Hjx7VxYsXLewd7nX1/FVljWzF7+ptdpv2HNhTdixrZGXEDR0LH6vYnvuEW1dHrpZ9524mphWRYAEAAABg3U2Fp8oWVplRXOyVTqZLbXX2dK4YU9xRt9pCMQAAAACSZ9CjA8EDVc+nXk3JZrdp34l9pWP7T+5XIpKouOtt1sgqNZ5SIBooO97r6ZXT59S1V65VTJZIjafKSpibjWkmv/7rv153G7FYTC6Xy3R8oVCouw8AAAAAmo+ZZO4iK5O6AQDAxlLPhi1jY2N64okn9M477+jgwYP6/ve/zwYwa+jKuSvyDHoqnvvs9/PS3bU7kqqu3+lx9SgZSSqfy5fW2ZiJaUVtje4AAAAAgM3nevz6fRMsJoITet71fE3tdju7S0kUlRSrW9Sb3AEAAABsZP4Rv66MXJERN5adiwaikqTHX3+87MeRXk+v8rm8rp6/WnZ91sgq4o3o0PAhuQfcy9oLRAP6YPwDpZPpsuMTwQkdGj5UcZcrMzEAAAAAsNHt2LHD9B+Xy6VYLKZMJlNK6jbbFgAAQJHD4dBrr72m//E//odee+01EjjXUGo8pXwur/0n96865qPkRysmQRTX1sxMzdQV04qoYAEAAABg3aWT6YqLq8qumUqvKlni3l1rd3t2V1wEVpQ1spLEgisAAADgPvrD/UqNpxQNRGXrsSmfySufy2u3Z7e+df1bFX9AOTx8WEbc0ERwonS9zW7T468/XrHahHS3utxgYlCxUEw2u01du7qUmc7I5XdV/cxgJqZZ/P3f/72++MUv1hx3/PhxXb58WYuLi2pvb9fRo0d18eLFNejh5vJy/8urum5py5IyvRndePaG2grsXQYAAAAAAACgubz/yvuSPl1Dk06mNTM1oz0H9lT9fj5rZNXZ01m1zeLvAMW1NmZjWhEJFgAAAADWVXGXWVvPyqUA9/r2anBksOr5mckZ2ey2smoU+0/u19vn31Y6ma74AXFmcobkCgAAAGCV3APumhMWnD5nzXNum92m/nD/msc0g66uLm3fvr3muLGxMZ0+fVqTk5Pq6+vThQsXTLUDAAAAYOO6deuW6Vgrk7r/+mt/bbofAAAAKLdwZ0GLdxZLjz+59UnF6+6t+Hz1/FX1enrlHfQqnUxrzD+mw6HDy767n8/Ml625+axiIkVxA1SzMa2IBAsAAAAA62qlqhT32n9yvxKRhLyD3mXnskZWqfGUAtFA2fFeT6+cPqeuvXKtYoJFajylU7FT5joOAAAAAA3icDh06dKlRncDAAAAQBOrJwmbpG4AAIDmdOXcFb35nTdLj2fbZiteN5+Zl81uUyKS0OHhw6XjvZ5eBaIB/dneP1MgGihLslhtEsTtj2/XFdOKSLAAAAAAUJdiWb/VfogqXl8sC1hNr6dXRtzQ1fNXyz78ZY2sIt6IDg0fqribbiAaUMQb0f6T+8uSLCaCEzo0fIgKFgAAAACAppFfML+T2+ydWb30k5d0ffa69u7cqycffFI7t+001ZatY+XP6AAAANjYSOoGAABoTkfOHtHBZw6WHn/44Yd67sHnll1XXLNTrCBxL5vdJqfPqdeCr+np6afXrrMbCAkWAAAAAGqWGk8pEU5IkmamZiRJE2cmSsfcAXfFyhOStOfAHtnsNn2x74v3vc/h4cMy4oYmghPKZ/LK5/Ky2W16/PXHK1aokO5+MBxMDCoWislmt6lrV5cy0xm5/K6KCRkAAAAAADTK13/0dUvaufaza/r2G982Hf+DYz+wpB8AAAAAmsv8/Lzm5ubU0VH7MsGbN29qaGhIiURCXq9Xo6OjcjgcpvpBRRQAAMzp2Nahjm2f/ju+dcfWitfZ7Dblc/mqm446/U6lxlNKJ9Ol9TbFmPvp2tW17D61xLQiEiwAAAAA1Mw94DadrNDr6VUoG1r19U6fs+aqEza7Tf3h/lq7BgAAAAAAAAAAAGwYjz76qCXtxGIxuVwu0/GFQsGSfgAAgMo6ezpLm5ZWOy/d3US1mGBRqdrFveYz85JU1qaZmFZEggUAAAAAAAAAAADQAN/7yvdMxz479axSH6e0VFhS25Y2uXe59cyBZyzsHQAAAAAAAIBW0OvpVdbI3ve6e6tPdDu7NTM1c99ru53ddcW0IhIsAAAAAAAAAAAAgAawdZjfye2ph57S6Hujms5Ny2V3aejLQ3W1BwAAAGDj+eEPf6hDhw6po6P2ZYLHjx/X5cuXtbi4qPb2dh09elQXL15cg14CAIB67enbo9R4qmoVi2JliWL1Ckna7dktI25UbbOYsOH0OeuKaUUkWAAAAAAAAADYkObm5kzH3rx5U0NDQ0okEvJ6vRodHZXD4ai5ne3bt5vuAwCshZf7X250F2CRndt2KvRwqNHdAAAAANDEOjs7tX37dlMJFmNjYzp9+rQmJyfV19enCxcu8F0XAABNyj3gVjwUlxE35B5wLzufmc5IkvYc2FM6tv/kfr19/m2lk+myxIuimcmZZYkSZmJaEQkWAAAAAAAAADakHTt2WNJOLBaTy+UyFVsoFCzpAwAAAAAAALCeHA6HLl261OhuAACAVeh2dss94NaVc1cqJlh8MP6BDg0fKqtu0evpldPn1LVXrlVMlkiNp3QqdqrsmJmYVtTW6A4AAAAAAAAAAAAAAAAAAAAAAABz+l/sVz6XVyKSKDseDUTV7eyWf8S/LCYQDeiD8Q+UTqbLjk8EJ3Ro+FDFahRmYloNFSwAAAAAAAAAbEi3bt0yHXv8+HFdvnxZi4uLam9v19GjR3Xx4kULewcAAIBW8XL/y43ugiTpsYnHGt0FAAAAAADQpGx2mwYTg3rr3FuKBqKSpHwuL3fALe+gd8WYWCgmm92mrl1dykxn5PK7KlbCMBvTakiwAAAAAAAAALAhbd++3XTs2NiYTp8+rcnJSfX19enChQt1tQcAAAAAAAAAAACsJZvdVrFSxf1i+sP9ax7TSkiwAAAAAAAAAIDPcDgcunTpUqO7AQAAAAAAAAAAAGAdtTW6AwAAAAAAAAAAAAAAAAAAAAAAAI1GBYsWdWfhjvIL+ZrjZu/M6qWfvKTrs9e1d+dePfngk9q5baepPtg6bKbiAAAAAKysGeb7AAAAAAAAANBK5ubmTMfevHlTQ0NDSiQS8nq9Gh0dlcPhMNXW9u3bTfcDAIDNZH5+XnNzc+roqH0ZK/92AwDWEgkWLeoP//YP627j2s+u6dtvfNt0/Pe+8j3TsSz8AgAAAKpr9Hz/9/R7dd8fAAAAAAAAANbTjh07LGknFovJ5XKZji8UCpb0AwCAje7RRx+1pB3+7QYAWI0EC5j29R993ZJ26k30YPEXAAAAAAAAAAAAAACN0yzVIwBAap73JHbFBwAAaE0kWLSoP/13f6pdtl01xz079axSH6e0VFhS25Y2uXe59cyBZ0z1waoECwAAAADlmmG+DwAAAAAAGsfsokAWBAJolGaoHnHr1i3T9z1+/LguX76sxcVFtbe36+jRo7p48aLp9gA0VjO8J0nsig/czw9/+EMdOnRIHR21L2Pl324AwFoiwaJFbevYJluHrea4px56SqPvjWo6Ny2X3aWhLw+ZakeSvveV75mKk1j4BQBAs+KHW6A5NMN8HwAAAAAANI4ViwJZEAhgs6nn94WxsTGdPn1ak5OT6uvr04ULF/i9AgCANdbZ2ant27ebSrDg324AwFralAkWuVxO586dkyTt2rVL09PT8vv9GhgYqKvNUCgkScpkMpIkv9+vwcHBmmL6+vo0PDxsuh/3s3PbToUeDlnSVj0LtVj4BQBAc+KHW6C1WTnfBwAAAAAAAIDVavXqEQ6HQ5cuXVrXewJYO63+ngTg/vi3GwCwljZdgkUul5PX61U0GpXH4ykdDwaDmpyc1MjISM1tJpNJBQIBhcNh+Xy+0nG/36/p6emKbSaTSYXDYY2MjMhut5eOj4+Py+v1KpFI1NyPVsLCLwAAAAAAAAAAAKAys4sCWRAIoFGoHgGgmfCeBAAAgHpsugSLQCCggYGBsuQKSQqHw+ru7pbf7y9Lkqilzc/GhcNhuVyuim2GQiHFYrFlbQ0MDCiTySgYDCocDtfUDwAAgHrxwy0AAAAAAGvn/zn9/2hX565GdwNACzC7iI8FgdgsXu5/udFdkCQ9NvFYo7uwIbADNYBmwnsSAAAANlWChWEYisfjVRMXTpw4oZGRkZoSLM6fPy/DMHT27Nll55xOp3w+37I2k8mknE5n1TaL/QAAAFhv/HALAAAAAMDGll/Im4qbvTOrl37ykq7PXtfenXv15INPaue2nabasnXYTMUBuD8WBAIAAAAAAAD12VQJFsXEimrJDS6XS5FIRLlcTna7fVVtFqtQVLve4/Ho/PnzZceKiR7VZDKZVd8fAACgGfDDLQAAAAAAreHrP/p63W1c+9k1ffuNb5uO/8GxH9TdB2Cja5bd+RttacuS1NvoXgAAAAAAAGAzaWt0B9ZTMplcMXGhmHgxNTW16janpqZWbNPlcpXuXeTxeGQYhgKBQMWYcDiskydPrroPAAAAAAAAAAAAAAAAAAAAAACgPpuqgoVhGOrp6al6vpgoYRjGqtvs6elRJpO573VTU1PyeDyS7iZyDA4OKhKJyOVyKRwOy+fzSZLi8bhyuZxGRkZW3QcAAAAAsNLc3Jzp2Js3b2poaEiJREJer1ejo6NyOBym2tq+fbvpfgAAAACo7Htf+Z6puGennlXq45SWCktq29Im9y63njnwjMW9AwAAAAAAAACgsTZVgkUmkylVqaikmHyRy+VW3abH49H4+HjV89PT0xXbDIfDcrlcCoVC8vv9GhwclMvlksfjUTgcvu995xfmdWvhVunx1rat2tq+ddX93kgWFhbqil1aWqqrjWZSz0K4f/qnf9Lv//7vlxbC/Zf/8l/0y7/8yzW1sdHGs9EYT2sxntZiPK3FeFqL8bTW0tJSo7uwKTV6vr9jxw5L2onFYqWqfmZ88sknlvSj1fG+hkp4XaAaXhuohNcFKmGu3xi3F29r28K20uNGfLf/ua2fMxX3Tc83FX43LCNnyGl3KvhQ0HRbS2qt119hS0EFFVTYUmi5voPnr9Xx/JVrtfncWs5Dl7Y0x+uh1Z6TWvA5onXxnDXG7Oxs2Qat27Zt07Zt21aI2LjqeY+26t9+/ju4i/dyazGe1mI8rcV4WovxtBbjaS2+218fmyrBYrWJEx9//PGq2wwGgxofH1cymSxVqLhXPB6v2ubw8LDsdruCwaAikYjsdrui0eiq7hv621DZ4694vqJHDzy66n5vJFeuXDEdu7S0pA8//FCS1NbWZlWXGuZ3fud3LGknHo/r137t10zF/tf/+l8lbYzxbLSN9vpsNMbTWoyntRhPazGe1qplbgzrMN+/q565/kbC+xoq4XWBanhtoBJeF6iEuX5jtPpc/xu/8o3S/1/UojK6f4XvjaCgguY/P6+MMtqiLY3uDmrE89faeP7Ktdp3JWs5D830Nse/Qa32nNSCzxGt695F/lg/X/7yl8seP/HEEzp9+nRD+tJo9bxHW/Vv/0Z+f64F7+XWsmo85+fnTcdms1k9++yz+l//63/p137t1/TMM8+ou7vbVFudnZ2m+2EFXp/WYjytxXhai/G0Ft/tr49NlWCxFnw+n3w+n86dO7csOSIej8vn8ymZTGrXrl3LYkOhkFwulwqFgkKhkM6fP1+qZnG/KhYj/25E3bZPJ0db27Zqa3pzVrA4cuSI6dhiRtyhQ4fU0cF/Dlb4V//qXzGeFuH1aS3G01qMp7UYT2sxntYqfsjF+mr0fL+Wqn6fNTAwoDfeeEOLi4tqb2/X7/zO76xY9W8l27dvN92PjYT3NVTC6wLV8NpAJbwuUAlz/cZo9Fwf5hS2FJRRRj0f9WhLgQXerYbnr7Xx/JWr53fRRljLeeiNZ29Y2p5Zrfac1ILPEa3rH//xHxvdhU3pvffe07/8l/+y9HgzV7Co5z3aqn/7N/L7cy14L7eWVeO5das13wMkEgn9x//4H03HN7qSPK9PazGe1mI8rcV4Wovv9tfHpnql2u32VS0UqpQMsZJYLKZgMKhQKKSzZ89K+rRyhcvlKt37Xn6/X6FQSD6fT5I0MjKikydPKhAIKBKJKJPJrFjNorOjUzs6dpQfLNTU7Q2j3jfctrY2dXR0bIg37lu3bpmOPX78uC5fvlxaCHf06FFdvHixpjYWFhb07rvvbpjxbAYb6fXZDBhPazGe1mI8rcV4WofdAxqj0fP9nTt3mo79y7/8S50+fVqTk5Pq6+vThQsX6moPd/G+hkp4XaAaXhuohNcFPou5fmN0tXfx3X4LWtKStmiLthS2qK2wMf/byS/kTcfO3pnVSz95Sddnr2vvzr168sEntXNb7Z8DbR02031YyWZ4/jYynr9yrTiXW6t5aLO8HlrxOakFnyNaE89XY+zcuVM9PT2N7kZTqOc92qp/+/nv4FO8l1trI41nM/wdNtJ4NgPG01qMp7UYT+vw3f762FSv1Pt9kCmWSfxsMsRqhMNh5XK5UmKFz+eT3W7X+fPnJUkHDhwoXXv+/Hl5PJ5SckWRx+PR9PS0gsGgIpFIqQIGsFr17PA7Nja2bCFcre0VMw0BAACweTkcDl26dKnR3QAAAAAA1ODrP/q6Je1c+9k1ffuNb5uK/cGxH1jSBwAAAADNZ25uznTszZs3NTQ0pEQiIa/Xq9HRUTkcjprbaZbK6Y3eQBcAANzfpkqwcDqdmpqaqnq+WN3C6XSaat9ut2tgYKDs2OTkpKS7yRNF4XBYiUSiajvhcFhTU1OKxWIkWGDdsBAOAAAAAAAAAAAAaF4v97/c6C7osYnHGt0FSc1ReQcAAKzejh077n/RKsRiMblcLlOxhUJzlJBs9Aa6AADg/jZVgoXH4ylVmKjEMAxJsjSpIZlManBwcNl97lclIxgMrpiEgU/V80Xi0pYlZXozuvHsjbpKCzbLF4kAAAAAAAAAAAC1+t5Xvmc69tmpZ5X6OKWlwpLatrTJvcutZw48Y2HvAGC5Zqi8I0m/p9+zpB8AAACrwQa6AACsj02VYHHy5EmdP39eyWSyrKJE0eTkZM3JFclkUo888oii0eiy2GQyKcMwFAqFyo47nU4ZhrFipYzp6Wl5vd6a+gIAAAAAAAAAAADUytZhMx371ENPafS9UU3npuWyuzT05aG62gNQHVUbAABAq7p165bp2OPHj+vy5ctaXFxUe3u7jh49qosXL1rYOwAAgHKbKsHC4/HI5/PplVdeqZhgMT4+rlgstux4LpfTuXPn5Pf7lyVRFKteVHLmzBmNjIwsS6QYGBhQKBRSNBqtGJfL5ZRMJnX27NnV/LUAAAAAAAAAAACAhti5badCD4fufyGAujVD1YZmqdhA5R0AAFrL9u3bTceOjY3p9OnTmpycVF9fny5cuFBXewAAAPfT1ugOrLdoNKrx8XElk8my48FgUMPDwxUrWEQiEZ0/f16BQGDZOZ/PV/pTlMvlFAgE5PP5NDw8vCxmZGSkdM9cLld2LplMKhAIaGRkRHa73cTfEAAAAAAAAAAAAACAjcvWYTP956mHntKDX3hQO7bu0INfeFBPPfSU6bYAAMDaczgcunTpkn72s5/p0qVLcjgcje4SAADY4DZVBQtJstvtSiQSCoVCstvt2rVrl6anp+X3+zUwMFAxxufzyW6368SJExXbGxkZKSVfFBMmQqFQxWSNomg0qng8rjNnzpQddzqdFatooDqzpXCLZXCNXxhyft5JGVwAAAAAAAAAAAAATYuqDdag8g4AAIA0NzdnKu7mzZsaGhpSIpGQ1+vV6OioqaSXhYUFU/dfC40ei3rdvHlTwWBQP/7xj/Xwww8rHA6b7gfVYQDgrk2XYCHdTYoIh8Orvt7j8SibzVY973Q6FY1Ga+7HZytfwBwrSuFeu2O+DK7UPKVwAQAAAAAAAAAAWpHZDbWkTzfVuj57XXt37i3bVGtpy5LufHJH+YW82gpt922LHenRzOp5fT710FMafW9U07lpuewuDX15iNc7AADAJrZjx46624jFYnK5XKbj33jjjbr7YIVmGAurxOPxuvpRKBQs7A0AtK5NmWABAAAAAAAAAAAAoHlYsaGWJF37WX2bav3g2A8s6QfQbKjaAAAAAAAAsDokWKDlmS2FSxlcAAAAAAAAAAAAAAAAAGthbm7OVNzNmzc1NDSkRCIhr9er0dFRORyOmttZWFgwdX9sDrdu3TIVd/z4cV2+fFmLi4tqb2/X0aNHdfHixZrbWVhY0LvvvmuqD1Zr9FjUq1n6AQAbCQkWaHlmS9c+9dBTeuG9FzT982m5fsmlb375m5TBBQAAAIAmZ/YHKcm6H6Ukafv27ab7AQAAAGA5sxtqSStvqrW0ZUnZ3Vl1f9SttkKbVd0FAABAFfmFvKm42TuzeuknL8n4hSHn55168sEntXPbTot7t7527NhRdxuxWEwul8t0/BtvvFF3H7Axmf2dY2xsTKdPn9bk5KT6+vp04cIFU201UwJQo8eiXmNjY3riiSf0zjvv6ODBg/r+97/P71gAUCcSLLBp7dy2U8P/x7AyvRn1pHv4Uh0AAABoMs2wkJ4vH5uPFT9ISfX/KFUoFCzpBwAAAIC76tkE66mHntLoe6Oazk3LZXdp6MtDpfaWtixp29ZtsnXY+C0IAABgHXz9R1+vu41rd67p229823T87+n36u4DgMocDocuXbrU6G40hWYZC4fDoddee01XrlzRkSNH1NHBsmAAqBfvpAAAAACAptQMC+lZRA8AAAAAzW/ntp0KPRxqdDewgZndiVv6dDfu67PXtXfn3rp2464nEQkAAKy/W7dumYo7fvy4Ll++rMXFRbW3t+vo0aO6ePFize0sLCzo3XffNdUHAACAzYwECwAAAAAA0DLM/iAlWfejFAAAAABgc7FiJ25Juvaz+nbj/sGxH1jSDwAA1tL3vvI9U3HPTj2r1McpLRWW1LalTe5dbj1z4BmLe7e+zFbJHhsb0+nTpzU5Oam+vj5duHDBVFsLCwum7g8AALDZkWABWGBubs507M2bNzU0NKREIiGv16vR0VE5HA5TbZn9YAYAAAA0IxbSo5J6PvdY9aMUAAAAAAAAADSbl/tfbnQXJJmvuPTUQ0/phfde0PTPp+X6JZe++eVvbtrqTQ6HQ5cuXWp0NwAAADYtEiwAC+zYscOSdmKxmFwul+n4QqFgST8AAACAZsBCeliNH6UAAAAAAGaY3Ylb2pi7cQMAsBZ2btup4f9jWJnejHrSPWortDW6SwAAANikSLAAAAAAAGw4LKQHAAAAAABWqWf37Kceekqj741qOjctl92loS8PbdrduAEAAAAAAFoBCRaABW7dumU69vjx47p8+bIWFxfV3t6uo0eP6uLFixb2DgAAAAAAAAAAfFZ+Ib+q65a2LOnOJ3eUX8iXdtGdvTOrl37ykq7PXtfenXv15INPaue2nTX3gUXWwMa3c9tOhR4ONbobAAAAAAAAWCUSLAALbN++3XTs2NiYTp8+rcnJSfX19enChQt1tddo8/PzmpubU0dH7W8vN2/e1NDQkBKJhLxer0ZHR+VwOEz1o5XHEAAAAPgs5tkAAKARskZWV0auSJLymbzyubycfqcODx+uGpPP5fXWubckSV27upSZzsjld8k94G54DPBZX//R1y1p59rPrunbb3zbVOwPjv3Akj4AAAAAAAAAAKxBggXQYA6HQ5cuXWp0Nyzz6KOPWtJOLBaTy+UyHV8oFCzpBwAAANAMmmWebbZ6H0keAAC0ntR4Sjcmb6g/3F92POKNKBFO6Onpp5fF5HN5RbwRBaIB9Xp6S8cnghO6MXlD/hF/w2IAAAAAYC3dvn1bc3NzNcdZ+d0pAAAAAGuQYAEAAAAAAFZlx44ddbdBMjUAAM0vn8vr/VfeVyAaWHau/8V+RbwRTQQnliVfRANRPTDwQFnSgyT1h/s10j0il98lp8/ZkBigku995Xurum5py5Kyu7Pq/qhbbYU2SdKzU88q9XFKS4UltW1pk3uXW88ceGYtuwsAAFqEmUX2RVYstr99+7bp+8O8ffv21d1Gvd+dUh0NAAAAsAYJFgAs9cMf/lCHDh1SR0ftby/Hjx/X5cuXtbi4qPb2dh09elQXL15cg14CAACrTQQntC+wb8VFTIlIQqloSt6gV06fUza7TVkjq3QyrfdfeV9Hzh5ZtkBKuru4661zb0mSunZ1KTOdkcvvknvAXfVeZmKAZtYs82wrEiwAAJtXoxcZFVEN6f5mpmaUGk8pFootqwZRnLNfj18vO541sjLiho6Fj1Vs033CrasjV8s+M6xXDFCNrcO2quuWtixp29ZtsnXYSgkWTz30lEbfG9V0blouu0tDXx5adXsAAGBjs+o7tHoX2wMAAAAAzCHBAoClOjs7tX37dlMLv8bGxnT69GlNTk6qr69PFy5caOkfvOtdNBAMBvXjH/9YDz/8sMLhMIsGAABNp7iwKRFOKJ1Ma19g5d2Z8rm8jLghI26UHbfZbQpEA1WTKyLeyLLzE8EJ3Zi8sWyxl9kYoNk1yzz71q1bpuJIpgYASM2zyIhqSPfX2dMpm92mrl1dVa+x2csXkk+FpyRJ3c7uitf3uHqUjCSVz+VLsesVA6yFndt2KvRwqNHdAAAAQJN4//339a//9b+uOc7K707/+mt/bSoOAAAAQDkSLAA0DYfDoUuXLjW6G5axatFAPB5n0QAAoOkkIgkZMUNOv1O+EZ/G/GOrijsWPqbMdEY5Iydbj017vHvkHfRWvT4aiOqBgQeWJV/0h/s10j0il9+1bGdaMzHARmblPNtsYsZGS6YGAGCj6/X0KpStvHA8nUxLkvb69pYd/yj50YoJDcWEiJmpmdJ8fL1iAAAAgPVkdpMSyZrF9jdu3NCv//qvm+4DzOnq6jL1nSffnQIAAADNhwQLAAAAADXzDnpLiRHFBVarse/EvlXvIluskHEsfKziefcJt66OXC1bNGUmBsDa22jJ1AAAcxq9yAjWiIfi6nZ2L6sMlzWy6uzprBpX/ByQNbLrHgMAAACsp3oWx1ux2L6rq3olOqydiTMT+oLtC6ZiH+94XI8ffFySdPkbl63sFgAAAAATSLAAgDXCogEAAOozFZ6S9OkOtJ/V4+pRMpJUPpcvLaIyEwMAAID10ehFRpvdwp0FLd5ZLD3+5NYnNcVnjayujFyR3WnXqdipZefnM/NV5+GSSkkR+Vx+3WMAAACAVrHWG5UkIgmloil5g145fU7Z7DZljazSybTef+V9HTl7ZFl1aOnu/Pqtc29Jkrp2dSkznZHL75J7wF31XmZiAAAAAKAZkGABAGuk3kUDTzzxhN555x0dPHhQ3//+91k0AADYdD5KfrRiEkRxUdXM1EypIoWZGAAAADQ/qiHV78q5K3rzO2+WHs+2za4qLjWe0o3JG8oZOdmddrn8rorXrTah4fbHt9c9BgAAAMBd+VxeRtyQETfKjtvsNgWigarJFRFvZNn5ieCEbkzeWFbdzmwMAAAAADQLEiwAoAk5HA699tprunLlio4cOaKODt6uN5K5uTlTcTdv3tTQ0JASiYS8Xq9GR0flcDhMtUXCDoBGSyfTmpma0Z4Deyr+YCPd3SG3uPtsJcVEiqyRrSsGAAAA2AyOnD2ig88cLD3+8MMP9dyDz903zj3gLtthdsw/pkQ4of4X+6kKB2BDyi+Yr4Aze2dWL/3kJV2fva69O/fqyQef1M5tO021ZevgPRYAsDaOhY8pM51RzsjJ1mPTHu8eeQe9Va+PBqJ6YOCBZd/l94f7NdI9IpfftWxDIzMxAAAAANAsWLELAMA627FjR91txGIxuVyVd4xcjUKhUHcfAGxMC3cWtHhnsfT4k1ufWNq+ETeUNbJy+pzyDnqVTqY15h/T4dDhZT+mzGfmSxUnKikmUty7g62ZGAAAAGAz6NjWoY5tn/4ksHXHVlPtBKIBjXSPKJ/L61TsVOm4zW5b1Ty7a1fXuscAQC2+/qOvW9LOtZ9d07ff+Lbp+B8c+4El/QAA4LP2ndi36mTprJGVETd0LHys4nn3Cbeujlwt+37fTAwAAAAANBMSLAAAAACUXDl3RW9+583S49m2WcvaLiY+HB4+XDrW6+ktLdAaTAyW7Wa12iSI2x/frisGAAAAwOrZ7Da5B9xKjadkxI3SoqiVKslJd5Ohi/FF6xUDAAAAwJyp8JQkVd3YqMfVo2QkqXwuX5qDm4kBAAAAgGZCggUAAOvs1q1bpuKOHz+uy5cva3FxUe3t7Tp69KguXrxoce8AbHZHzh7RwWcOlh5/+OGHeu7B5yxp2z3grni8uEArGojq6emnLbkXAAAAAPPyufyK1eHsTrskaTo2XUqw6HZ2a2ZqZsU2i9cVrVcMANTie1/5nunYZ6eeVerjlJYKS2rb0ib3LreeOfCMhb0DAGB9fZT8aMUkiOK8e2ZqpvTZwEwMAKyHubk507E3b95UMBjUj3/8Yz388MMKh8NyOBym2tq+fbvpfgAAgPVBggUAAOvM7IflsbExnT59WpOTk+rr69OFCxf44A3Ach3bOtSx7dOPCVt3bF2X++7p26PUeEpZI1v6ccVmt62qIkXXrq7S/zcTAwAAAKDcSPeIJCmUDVVcGFWcT987997t2S0jblRtM2tkJalsAdV6xQBALWwd5nfSfuqhpzT63qimc9Ny2V0a+vJQXe0BALCW0sm0ZqZmtOfAnrLq0vfKGtkVq8gVPy8U5+FmYwBgPezYscOSduLxuFwul+n4QqFgST8AAMDaIcECwIZUb9b50NCQEomEvF6vRkdHTWWds/AdVnM4HLp06VKjuwEAa6L4g0o6mS4lWKz0A4wkzWfmy2LNxgAAAAAoZ7Pb1NnTWXXenJnOSJL2ePeUju0/uV9vn39b6WS64uKsmcnlu9OuVwwArJed23Yq9HCo0d0AAGwyC3cWtHhnsfT4n3/xzyteb8QNZY2snD6nvINepZNpjfnHdDh0eNlceqXKdtKn38nfm3xtJgYAAAAAmgkJFgA2JKuyzmOxmOmsczLOAQD41ERwQtfj1/X09NOrjul2dmtmaqbq+eKPL/f+UGMmBgAAAEA5z6BHB4IHqp5PvZqSzW7TvhP7Ssd6Pb1y+py69sq1iokPqfGUTsVOlR1brxg0n/yC+cV0s3dm9dJPXtL12evau3OvnnzwSe3cttNUW1QWAAAAG8GVc1f05nfeLD2e1WzVa4vfjR8ePlw61uvpVSAa0Ej3iAYTg2Xz7NUmQdz++HZdMQCwHm7dumU69vjx47p8+bIWFxfV3t6uo0eP6uLFixb2DgAANBMSLAAAAACsufRUulQ9opLiDy73/nCz27NbRtyoGlMsH37vjlpmYgAAAACU84/4NRGc0L7AvmVz52ggKkl6/PXHl1W4CEQDingj2n9yf9ncfiI4oUPDhyrOw9crBs3l6z/6uiXtXPvZNX37jW+bjv/BsR9Y0g8AAIBGOnL2iA4+c7D0+MaNG3rO/VzFa90D7orHbXab3ANuRQPRmjZKAoBWsn37dtOxY2NjeuKJJ/TOO+/o4MGD+v73v19XewAAoD7G64aMmCFtkXpcPdpzYI92f3m3Ze2TYAFgQyLrHACA5rLXt1eDI4NVz89Mzshmt5VVlth/cr/ePv+20sl0xZ1pZyZnli2cMhMDAAAAYLn+cL9S4ylFA1HZemzKZ/LK5/La7dmtb13/1rLkCunuoqzBxKBioZhsdpu6dnUpM52Ry+9acSHXesQAAAAAG1XHtg51bPt0+c/nfv45U+3s6duj1HhKWSNb+q7eZretqiJF166u0v83EwMAzc7hcOi1117TlStXdOTIEXV0sOwSAIC1dH7XeQ1/PFz1vPMRp5yPOJWfzWs+My8jbmgqPCX/iF/bfmlb3ffnX3oAG1K9WeenT5/W5OSk+vr6dOHCBbLOAQCo0/6T+5WIJOQd9C47lzWySo2nFIgGyo73enrl9Dl17ZVrFZMlUuMpnYqdqjsGAAAAQGXuAXfNCQs2u0394f6mjEHz+N5Xvmc69tmpZ5X6OKWlwpLatrTJvcutZw48Y2HvAAAANqdiEnU6mS4lWHT2dK4YU6xcfW8CtpkYAAAAALhXoVBY1XW2nTbZdtrkPeNVfjavWCimYy8cq/v+bXW3AAAbjMPh0KVLl/Szn/1Mly5dksPhaHSXAABoalkjK0kr7kjV6+lVPpfX1fNXl8VGvBEdGj5UceFWIBrQB+MfKJ1Mlx2fCE7o0PChitUozMQAAAAAANaPrcNm+s9TDz2lB7/woHZs3aEHv/CgnnroKdNtAQAAbCYTwQk973q+pphuZ3cpIaKS4u8C91anNhMDAAAAAPfasmVLzTG2ndZ950sFCwAAAAA1S42nlAgnJEkzUzOSpIkzE6Vj7oB7WbWKw8OHZcQNTQQnlM/klc/lZbPb9Pjrj1esNiHd3cFqMDGoWCgmm92mrl1dykxn5PK7qu6kayYGAAAAANAadm7bqdDDoUZ3AwAAoOWkp9KrSny49/v63Z7dMuJG1ZjiBkz3bmxkJgYAAABA/RKRhFLRlLxBr5w+p2x2m7JGVulkWu+/8r6OnD1ScX1OPpfXW+fekqRVr7ExE7PW8rN5pafS979wFUiwAAAAAFAz94Db1Icip89Z848mNrtN/eH+NY8BAAAAAAAAAGCj2uvbq8GRwarnZyZnZLPbyipL7D+5X2+ff1vpZLriQqyZyZll3/mbiQEAAABQv3wuLyNuLEt4ttltCkQDVZMrIt7IsvMTwQndmLwh/4jfkphKcj/NVTxeKBTunv+HnFRYuY18Lq/5zLzSybSunLsi9wlrEjxIsAAAAAAAAABgqbm5OdOxN2/e1NDQkBKJhLxer0ZHR+VwOEy1tX37dtP9AAAAAABgI9l/cr8SkcSy6tPS3aoSqfGUAtFA2fFeT6+cPqeuvXKt4mKs1HhKp2Kn6o4BAAAAYI1j4WPKTGeUM3Ky9di0x7un4meAomggqgcGHlg2d+8P92uke0Quv2tZgrSZmEpmEjOamZxR1sjKiBu6M3un7Pzzzufv20ZRoVCQ0+fUsReOrTpmJSRYAAAAAE2qGRYm3r5923QfAADA5rVjxw5L2onFYnK5XKbjizvcAAAAAACw2fV6emXEDV09f1WHhw+XjmeNrCLeiA4NH6pYuToQDSjijWj/yf3Ldqc9NHyo4sIpMzEAAAAA6rfvxD7Z7LZVXVtMbDgWrpyU4D7h1tWRq2XzdzMx1bi/6pb7q59+Bkkn04qH4jJeN7RlyxY98NUHVvX36HZ2y+l3yvmIdZ8zSLAAAAAAmlSzLEwEAAAAAAAAAACt7/DwYRlxQxPBCeUzeeVzednsNj3++uMVq01Iks1u02BiULFQTDa7TV27upSZzsjld1VMyDAbAwAAAGB9TYWnJN1NUKikx9WjZCRZ+txgNma1ej29OhU7pYnghD4Y/0CBVwP3D1ojJFgAAAAAAAAAsNStW7dMxx4/flyXL1/W4uKi2tvbdfToUV28eNHC3gEAAAAAsHk5fc6aK0jY7Db1h/vXPAYAAADA+vko+dGKSRDFJIqZqZnSZwgzMbXqD/crnUibirUKCRYAAABAk2qGhYn/8A//oH379pnuBwAA2Jy2b99uOnZsbEynT5/W5OSk+vr6dOHChbraAwAAAAAAAAAAADaTdDKtmakZ7Tmwp2q1uqyRVWdPZ9U2iokUWSNbV4wZR84eMRUXPxuX75yvrntLJFgAAAAATasZFiZ2dXWZ7gMAAIAZDodDly5danQ3AAAAAAAAAAAAgIZauLOgxTuLpcef3PpkxeuNuKGskZXT55R30Kt0Mq0x/5gOhw4vqygxn5kvVZyopJhIkc/l64oxw/1Vt6m4ZCRJggUAAACAyliYCFhjbm7OdOzNmzc1NDSkRCIhr9er0dFRORyOmttZWFgw3QcAAAAAAAAAAAAAANCarpy7oje/82bp8WzbbNVri4kPh4cPl471enoViAY00j2iwcRgWTWL1SZB3P74dl0x9cr9NLeqihjpZLruxI4iEiwAAAAAAKhix44dlrQTi8XkcrlMx7/xxhuW9AMAAAAAAAAby1ptELKwsKD5+XnNzc2po+P+S0vqqcgMAAAAAKjsyNkjOvjMwdLjDz/8UM89+FzFa90Dlas+2Ow2uQfcigaienr66TXp51pI/nlS8VDcsqSJWpBgAQAAAAAAAAAAAAAA0IKaZYOQQqFgST8AAADQOGuVvFsLEneBch3bOtSx7dPl/lt3bDXVzp6+PUqNp5Q1sqVKFza7bVXJC127ukr/30yMGcbrhiYGJ9Tt7JY74JbNbrtvTDqR1vXL1+u6bxEJFgAAAAAAVHHr1i3TscePH9fly5e1uLio9vZ2HT16VBcvXqy5nYWFBb377rum+wEAAAAAAAAAAAAA99MMybsk7gJro5igkE6mSwkWnT2dK8bMZ+bLYs3GmPH6H72uQDQg91crV+Wo5vyu83Xdt4gECwAA0DBkvgMAml09/06MjY3p9OnTmpycVF9fny5cuGCqvYWFBdN9AAAAAAAAwMa2VhuELCws6O2339ahQ4fU0cHSEgAAAGC9NcO6Kom1Va1iIjih6/Hrenr66VXHdDu7NTM1U/V8sVJFMSHDbIwZtm5bzckVkmTfa6/rvkV8CgYAAA1D5jsAYCNzOBy6dOlSo7sBAAAAAACADWytNghZWFhQZ2entm/fToIFAADAJrFWybswpxnWVUmsrWoV6al0qXpEJcXEh15Pb+nYbs9uGXGjakzWyEqSnD5nXTFm3NvPWgxODdZ13yI+BQMA1oXZjFqrsmnZ+RkAAAAAAAAAAAD4FBuEAAAA4F5rlbwLYO3t9e3V4Ej15IKZyRnZ7LayyhL7T+7X2+ffVjqZrpjQMDM5syxRwkyMGcWEkEYhwQIAsC6syKitN5v2jTfeqLsPsBaZ7wAAAAAAAAAAoFW93P9yo7uwZpa2LCnTm9GNZ2+ordB23+sfm3hsHXoFAACAZkXyrvVYV4Va7D+5X4lIQt5B77JzWSOr1HhKgWig7Hivp1dOn1PXXrlWMVkiNZ7SqdipumPMcAfc+uCvPtAD/+GBmuLiZ+PynfPVfX8SLAAAQMOQ+Q4AAAAAAAAAAAAAAAAA5VhXhVr0enplxA1dPX9Vh4cPl45njawi3ogODR+Se8C9LC4QDSjijWj/yf1lCRMTwQkdGj5UsRqFmZhaOR9x6uqfXq05ySIZSZJgAQBoHWYzaq3Kpl1YWNC7775rqg9oTmS+AwAAoGhubs507M2bNzU0NKREIiGv16vR0VE5HA5TbTXLF9Pz8/Oam5tTR0dtX/1txLEAAAAAAAAAAADYbFhXtTkdHj4sI25oIjihfCavfC4vm92mx19/vGK1CUmy2W0aTAwqForJZrepa1eXMtMZufyuigkZZmNqlftpTvsC+/R+9H292Pei9vr2qsfVo25nd9WYdDKtfC5vyf1JsAAArAuzi2usyqZdWFgwdX8AAAAAzW/Hjh2WtBOLxeRyuUzHFwoFS/pRr0cffbTuNjbKWAAAAKD13fnkjvILebUV2mqOnb0zq5d+8pKuz17X3p179eSDT2rntp01t2PrsNUcAwAAAAAAsN6cPmfNFSRsdpv6w/1rHlOLsCesO7N3JN393XEmMaMtW7as2f0+iwQLAEBTI5sWAAAAQKtohkoaJJcDAABgo/nD//qHlrRz7WfX9O03vm0q9gfHfmBJHwAAAAAAAHB/nT2dkqR9J/bJZl/dxhfpRFrXL1+35P4kWADABtcMC3wk8xUsAAAAAOB+bt26ZTr2+PHjunz5shYXF9Xe3q6jR4/q4sWLptpqlkoaP/zhD3Xo0CF1dNT21Z+VYwEAAAAAAAAAAAAAZnQ7u3Xkj47I8w1PTXHnd5235P4kWADABtcsC3wKhYIl/QAAAACAz6onoXtsbEynT5/W5OSk+vr6dOHChZZPEO/s7NT27dtrTrDYiGMBAACA1venv/en6v6oW22Ftppjn516VqmPU1oqLKltS5vcu9x65sAza9BLAAAAAAAAWKXb2a1uZ3fNcfa9dkvuT4IFAACbUL2VTYLBoH784x/r4YcfVjgcprIJAAAAWpbD4dClS5csaasZKmksLCzo3XffNdUHK8cCAAAAsMq2rdtk67CZSrB46qGnNPreqKZz03LZXRr68pBsHbY16CUAAAAAAACscmz0mKm4walBS+5PggUAbHDNsMAHzceqyibxeJzKJgAAAMD/qxkqaSwsLJjuAwAAALDR7Ny2U6GHQ43uxoZSywZOCwsLmp+f19zcnDo6OnTz5k0NDQ0pkUjI6/VqdHTU9AZOAAAAAAAAa4UECwDY4JphgQ8AAAAAYGVUjwAAAADQCqzawCkWi9W1gdMPjv3Akn4AAAAAAICNIT+bV/LFpA79waG62yLBAgBQFQt8Ni4qmwAAAAAAAAAAANQnv5A3FTd7Z1Yv/eQlXZ+9rr079+rJB5/Uzm07TbVl67CZigMAAAAAYCPJGlm9/8r7JFgAAABz6q1s8sQTT+idd97RwYMH9f3vf5/KJgAAAAAAAAAAbAK1bOC0sLCgt99+W4cOHVJHR4elGzj99df+2lSc1b7+o6/X3ca1n13Tt9/4tul4qnkAAAAAADaa65ev1xxzdeSq8jlzGyF81qZMsMjlcjp37pwkadeuXZqenpbf79fAwEBdbYZCIUlSJpORJPn9fg0ODt43NhKJKBqNym63S5KcTqdGRkZM9wUAgLXkcDj02muv6cqVKzpy5Ig6OjbldAIAAAAAAAAAgE2nlg2XFhYW1NnZqe3bt6ujo0NjY2M6ffq0Jicn1dfXpwsXLrCBEwAAAAAAWObVgVd1Z/ZOTTGFQkGd3Z2W3H/TrYjM5XLyer2KRqPyeDyl48FgUJOTk6YSG5LJpAKBgMLhsHw+X+m43+/X9PR01TZzuZweeeQR+Xw+xWKx0nHDMBQKhUiyAAAAAAAAAAAAAABsCA6HQ5cuXWp0Nyz1va98z1Tcs1PPKvVxSkuFJbVtaZN7l1vPHHjG4t4BAAAAANCaOnvuJkrsO7FPNrut4jX5XF5ZI6uZqRk5fU7t6dtj2f03XYJFIBDQwMBAWXKFJIXDYXV3d8vv95clSdTS5mfjwuGwXC5X1TaLyRWfTaQIBoOampoiwQIAAAAAAAAAAAAA0DRe7n951dcubVlSpjejG8/eUFuhbQ171Ti2jsqLPO7nqYee0uh7o5rOTctld2noy0Om2wIAAAAAYKPpdnbryB8dkecbnvtfLOnqn15VZ3fnqq+/n435LUYVhmEoHo8rGAxWPH/ixImakxrOnz8vwzB09uzZZeecTmfFBIp74yqds9vtOnDgQE39AAAAAAAAAAAAAAAAzW/ntp0KPRxS5HcjCj0c0s5tOxvdJQAAAAAAmka3s1vdzu5VX3/4Dw/L1m3T9cvXLbn/pqpgEQ6HJd1NfKjE5XIpEokol8vJbrevqs1YLCZJVa/3eDw6f/78suPnzp3T4OBgxZhoNLqqewMAAAAAAAAAAAAAADRaLdVN1spjE481ugsAAAAAAAscGz1Wc4z7q27Fz8a19+jeuu+/qRIsksnkiokTxcSLqakp+Xy+VbU5NTW1Ypsul6t0b4/nbtmR8fFx5XI5nTx5cnUdBwAAAAAA+Iz5+XnNzc2po6P2r3du3rypoaEhJRIJeb1ejY6OyuFwmOrH9u3bTcUBAAAAAAAAAAAAANBsNlWChWEY6unpqXq+mChhGMaq2+zp6VEmk7nvdVNTU6UEi1deeUWSSo+TyaSmpqZ04MCB0jEAAAAAAICVPProo5a0E4vFShtEmFEoFCzpBwAAAAAAAAAAAAAAZuWMnCXtbKoEi0wmU6pSUUkx+SKXy626TY/Ho/Hx8arnp6enl7WZTCZL///8+fPyeDwaHBxUMpmU3+9XKBS6bwWN+YV53Vq4VXq8tW2rtrZvXXW/cVdhS0EFFVTYUtCSlky3s7CwYGGvWtfCwoKWlpYYD4swntZiPK3FeFqL8bQW42mtpSXzcySY1+j5Pv/9NBfe11BJM70emqkv4D0DlfG6QCXM9Rvj9uJtbVvYVnrMd/utwarfEtAYPH+tjeevtfH8tbZWfP74zHMX49AYjf5ef6NgHY+1+E7IWoyntRhPazGe1mI8rcV4Wovv9qvLz+Y1n523pK1NlWCx2sSJjz/+eNVtBoNBjY+PK5lMVqw+EY/Hl7WZyWRkt9sViUQ0PDxcOu7xeBSNRrV3715Fo9EVkyxCfxsqe/wVz1f06AFrdq7cTAoqaP7z88oooy3aYrqdK1euWNir1rW0tKQPP/xQktTW1tbg3rQ+xtNajKe1GE9rMZ7WYjytVcvcGNZp9Hyf+W1z4X0NlSwtLWl0dFRf+tKXTL0u/viP/1jvvvuulpaW1NbWpoceekh/8id/YqovvGc0F94zUAmvC1TCXL8xGj3XhzlW/ZaAxuD5a208f62N56+1teLzx3cUd2UymUZ3YVNirm8N1vFYi++ErMV4WovxtBbjaS3G01qMp7U2y3f71y9fX/W1+VxeWSOrRDghb9Bryf03VYLFWvD5fPL5fDp37pyi0WjZuXg8Lp/Pp2QyqV27dpWOFxM9ihUz7mW32+Xz+RQMBkvVLyoZ+Xcj6rZ1lx5vbduqrWky32tV2FJQRhn1fNSjLQXzH8yOHDliYa9aVzHD8NChQ+ro4O2lXoyntRhPazGe1mI8rcV4Wqv4IRfrq9Hzfea3zYX3NVRS7+viN37jN/Tkk09qampKBw4c0EsvvSSHw2F1N9EAvGegEl4XqIS5fmM0eq4Pc6z6LQGNwfPX2nj+WhvPX2trxeeP7zXv+sd//MdGd2FTYq5vDdbxWIvvhKzFeFqL8bQW42ktxtNajKe1Nst3+68OvKo7s3dWfX2hUJDT59ShPzhkyf031SvVbrevqorFvckQqxGLxRQMBhUKhXT27FlJn1aucLlcpXt/th/VKlT4/f4Vq2JIUmdHp3Z07Cg/WKip25C0pCVt0RZtKWxRW8F8Zhxv+p9qa2tTR0cHY2IRxtNajKe1GE9rMZ7WYjytw+4BjdHo+T7/7TQf3tdQST2viy9+8Yv60Y9+tAa9QjPgPQOV8LrAZzHXb4yu9i6+229BVv2WgMbg+WttPH+tjeevtbXi88fnnbsYh8Zo9Pf6GwXreKzHd0LWYjytxXhai/G0FuNpLcbTOpvlu/3Onk5J0r4T+2Sz21a+dlenej29cj7itOz+m+qVWqlixL2KZRLvTYZYrXA4rFwuV0qs8Pl8stvtOn/+vCTpwIEDZf3I5XJV71Ps59TUVNUECzSXl/tfbnQXJEmPTTzW6C4AAAAAAAAAAAAAAAAAAAAAgCndzm4d+aMj8nyjMevoN1WChdPp1NTUVNXzxeoWTqe5DBa73a6BgYGyY5OTk5JUlijh8XhkGMZ921tNtQ0AAAAAAAAAAAAAAAAAAAAAwNqZm5szHXvz5k0NDQ0pkUjI6/VqdHRUDoej5nZu375tug+tpNvZrW5nd8Puv6kSLDweT6nCRCXFpAefz2fZPZPJpAYHB8uO9fX1aXx8vGoVi2IlDapXAAAAAAAAAAAAAAAAAAAAAEBj7dixw5J2YrGYXC6XJW1tVMdGjzX0/m0Nvfs6O3nypKS7SQ+VTE5O1pxckUwm1d3dXTFxI5lMyjAMhUKhsuPFKhfVkj2mp6clSQcOHKipLwAAAAAAAAAAAAAAAAAAAAAAwJxNV8HC5/PplVdeqVgdYnx8XLFYbNnxXC6nc+fOye/3L0vAKFa9qOTMmTMaGRmR0+ksO+50OjUwMKBz586Vki0+24/h4eGK1S0AAAAAAAAAAAAAAAAAAAAAAOvn1q1bpmOPHz+uy5cva3FxUe3t7Tp69KguXrxYczv/8A//oH379pnuR6vK/TSnqfCUPkp+pPnMvDp7OmV32nUgeEC7v7zb8vttqgQLSYpGo/J6vTp58mRZkkUwGNTw8HDFChaRSETnz59XJBJRNpstO+fz+Up/inK5nM6cOSOfz6fh4eGK/XjxxRfl9XoViUQ0ODhYOh4IBOR0OjUyMlLvXxUAAKAlzc3NmY69efOmgsGgfvzjH+vhhx9WOByWw+Ew1db27dtN9wMAAAAAAAAAAAAAAADAxlHPWqKxsTGdPn1ak5OT6uvr04ULF0y119XVZboPrSp+Nq63z7+tQqGw7FwykpQ74FZ/pF/bfmmbZffcdAkWdrtdiURCoVBIdrtdu3bt0vT0tPx+f8VqEtLdJAq73a4TJ05UbG9kZESBQEDS3eQKSQqFQhWTNT7bj3PnzpXFBgKBsoQLAACwtupdzD80NKREIiGv16vR0VFTi/kXFhZM92Ej2rFjhyXtxONxuVwu0/GVJuUAAAAAAAAAAAAAAADY2Obn5zU3N6eOjtqXWVu1noiNQTcWh8OhS5cuNbobLSU/m1fEG9F8Zl4PfPUB7enbI5vddvdcLq/5j+eVTqT1/qvvy4gb+tb1b2nb561Jsth0CRbS3eSGcDi86us9Hs+yyhX3cjqdikajpvpBpQoAABrLqsX8sVisrsX8b7zxhiX9AAAAWG/NkLDKF8wAAAAAAAAAAACwyqOPPmpJO/WsJ2JjUGx20UBUTp9Tx0aPrXhdfjav2HBMf3H0L3Rm8owl996UCRYAAABoXrdu3TIde/z4cV2+fFmLi4tqb2/X0aNHdfHiRQt7BwAAPqsZElb5ghkArJdOpjUVnlI+k1c6mZbNbpM36JV30Fvx+kQkoVQ0JW/QK6fPKZvdpqyRVTqZ1vuvvK8jZ4+o19O7LC6fy+utc29Jkrp2dSkznZHL75J7wF21b2ZiAAAAAAAAAABAa0i8mFC3s/u+yRWSZNtpU3+4X68Nvabknyfl+Yan7vuTYAEAADa1ZljMv7CwoHfffdd0PzaaenagHhsb0xNPPKF33nlHBw8e1Pe//312tAYAAACAGiUiCUlSf7i/dMyIG4oGoro6clWDicFSGe6ifC4vI27IiBtlx212mwLRQNXkiog3suz8RHBCNyZvyD/ityQGAAAAAAAAAGrxwx/+UIcOHVJHR+3LrNkcFKjf9fh1DbwyUFPMsdFj+svf/UsSLAAAAOpV72L+06dPa3JyUn19fbpw4YKp9hYWFkz3AeUcDodee+01XblyRUeOHDH1QRcAANSmGRJWAQDWyRpZ5XN5HR4+XHbc6XPq8dcfV8QbUTQQ1anYqWWxx8LHlJnOKGfkZOuxaY93T9WKF9Ld8t4PDDywLPmiP9yvke4RufwuOX3OumMAAAAAAAAAoBadnZ3avn27qXUnVq0nAjYzW7ft/hdVYN9rt+T+rDgDAAAwyeFw6NKlS43uBtAUJoIT2hfYd9+FTOlkWlPhKeUzeaWTadnsNnmD3qqLrhKRhFLRlLxBr5w+p2x2m7JGVulkWu+/8r6OnD1SdSfct869JUnq2tWlzHRGLr9L7gF3/X9ZAECZZkhYBQBYZyo8pd8++9sVz/V6euX0OWXEDWWNrLqd3WXn953Yt6yyRTVZIysjbuhYuHJ5b/cJt66OXC37jGEmBgAAAAAAAADWE+uJAAtsWee4zyDBAgAAAIApxcVNiXBC6WRa+wL7Vrw+EUlIuruzbJERNxQNRHV15KoGE4PLFmPlc3kZcUNG3Cg7brPbFIgGqiZXRLyRZecnghO6MXlD/hF/zX9XAPisubk507E3b97U0NCQEomEvF6vRkdH5XA4ampjo1TA4gtmAGg+1+PXlYwk9a3r36qYLLHbs1tG3FA6mV6WYFGLqfCUJFVto8fVo2QkqXwuX+qHmRgAAAAAAAAAANBa8pm8qbickbPk/iRYAAAAAKhZIpKQETPk9DvlG/FpzD+24vVZI6t8Lq/Dw4fLjjt9Tj3++uOKeCOKBqI6FTu1LPZY+Jgy0xnljJxsPTbt8e6pWvFCkqKBqB4YeGBZ8kV/uF8j3SNy+V3saAugbjt27LCknVgsJpfLZSr2jTfesKQPAADcq7OnU+lkWlkjWzGh2SofJT9aMQmimEQxMzVTmr+biQEAAAAAAAAAAK3FvteuDy5+oAeOP7DqmLf/09va/dBuS+5PggUAAACAmnkHvaUkh3Qyfd/rp8JT+u2zv13xXK+nV06fU0bcUNbILtuNdt+JfavefbZYVeNY+FjF8+4Tbl0ducpiKwAAAKCKU7FTFeflRcXdn1ZKvkgn05qZmtGeA3uqXpc1surs6azaRvEzQNbI1hUDAAAAAAAAAABai++7Pj3/q89L0qqSLBIvJnTl3BUNfzxsyf1JsAAAAACw5q7HrysZSepb179VMVlit2e3jLihdDJddSHXakyFpySpahs9rh4lI0nlc/lVJ20AQCW3bt0yHXv8+HFdvnxZi4uLam9v19GjR3Xx4sWa2lhYWNC7775rug8AgM1n4c6CFu8slh5/cuuTqteuNCdPjafU6+mteE0xadrpc8o76FU6mdaYf0yHQ4eXJTnPZ+ZXvE8xkSKf+7QMuJkYAAAAAAAAAADQegKvBhQ5EJHr/3LJPeDWngN7Smt98rm85jPzmo5N64PxD5Q1sjozdcaye5NgAQAAAGDNdfZ0Kp1MK2tkV9zptl4fJT9aMXGiuBhrZmqGKhYA6rJ9+3bTsWNjYzp9+rQmJyfV19enCxcu1NzewsKC6fsDADanK+eu6M3vvFl6PNs2W3MbV89flST1v9i/7Fxxrn14+HDpWK+nV4FoQCPdIxpMDJZ9FlhtEsTtj2/XFQMAAAAAAAAAAFpPr6dXg1ODmjgzoYnBCW3ZsmXZNYVCQd3Obv3ff/N/q/ch69YjNTTB4vLlyzp69GgjuwAA2ETm5+c1Nzenjo7a//m7efOmhoaGlEgk5PV6NTo6KofDYaof9SzGA4C1VsuutrU4FTulrJGtuttszshJ0orJF+lkWjNTM9pzYE/V67JGtrRrbSXF5IuskV1lzwHAeg6HQ5cuXWp0NwAAm8yRs0d08JmDpccffvihnnvwuVXHp5NpxUNxBaKBivNx94C7YpzNbpN7wK1oIKqnp5+uveMAAAAAAAAAAGBT6vX0ajAxqEQkoUQ4ofS76dK5bme3vEGvDv/h4RVaMKehCRZ+v1+Li4v3vxAAAAs8+uijlrQTi8XkcrlMxxcKBUv6AQBrwYpdbaupllwhSanxlHo9vRWvMeKGskZWTp9T3kGv0sm0xvxjOhw6vKwKxXxmfsX7FJMvVrvzLQAAALBRdGzrUMe2T38S2Lpja03x0UBUx8LHqiZSrGRP3x6lxlNlSdc2u21V8/KuXV2l/28mBgAAAAAAAAAAtDbvoFfeQe+63a9t3e5Uwc6dO/X7v//7jewCAAAAgHscOXtEfzT7R6U/3/z/fnPN73n1/FVJUv+L/cvOFRdfHR4+XNolt9fTq0A0oDH/mNLJdNn1q02cuP3x7Xq6DAAAAGwq0UBU3qD5Hy+KleTunb+vVHlOups8fW+s2RgAAAAAAAAAAIBaNDTBIpfLKRwO63d/93f13nvvNbIrAIBN4Ic//KFyuZxu3bpV8x+/36/29nZJUnt7u/x+v6l2bt261eBRAICVdWzr0LZf2lb6U+uutrVKJ9OKh+IKRAOlBIp7uQfcFXfItdltcg+4FQ1E17R/AAAAwGYXC8W0p2+PDg9XL7E9EZzQ867na2q329ldSoiopJg8fW+FOjMxAAAAAAAAAACgNaX+e0p/+bt/qRd/60Xlfppbdj57Pavoiaje/k9vW3rfhiZYSFI4HNbo6KgmJyd18uRJ/fmf/7l+/vOfN7pbAIANqLOzU9u3bzf1Z2xsTH6/X7t27ZLf79fY2JjptgAAn4oGojoWPlYxieJ+9vTtUdbIKmtkS8dsdtuqqlh07eqq+X4AAADAZpOIJNTj6qmYXHHvvDs9lV5V4sO9SdW7PbtXnLsX5/lOn7OuGAAAAAAAAAAA0HriZ+OSpBuTN5ROpMuqZBd17+1W4NWAdj+0u3S9FRqaYBEOh/WNb3xDe/fu1ZkzZ/TKK6/I6/VqeHhY3/zmN6lqAQBoGg6HQ5cuXdLPfvYzXbp0SQ6Ho9FdAoCWFw1E5Q165R30moq32W2SVPYBqrOnc8WY4qKvYiwAAACAylLjKUmqOF/PGlkZcaP0eK9vr0LZUNW2ZiZnZLPbyipL7D+5X5Iq/iBSjPlsooSZGAAAAAAAAAAA0FquX76ubme33F91qz/Sr0e++4ge+A8PVL3e+YhTTp9TH/zVB5bcv6EJFmfOnFl27KGHHtLo6Ki++93vllW1AAAAALBxxEIx7enbU3En3KKJ4ISedz1fU7vdzu5V7Zx778IuAAAAAOXSybsVKaolQxtxo6waxf6T+5WIJCpemzWySo2n1P9if9nxXk+vnD6nrr1yrWJcajylw6HDdccAAAAAAAAAAIDW8n70fXnP3P2Nwj3g1uE/vP93/85HnJqOTVty/w5LWlkDO3fu1JkzZ3TmzBm9++67Ghoa0pYtWzQ0NKTf/M3fbHT3AAAAAJiUiCTU4+qpuFgrn8t/WpliKr2qZIl7F3bt9uwu20n3s7JGVpLY1RYAAACoImtkFQ1Etde3VzPBmWXn85m8jLhRVrGi19MrI27o6vmrZUnUWSOriDeiQ8OH5B5wL2srEA0o4o1o/8n9ZfP6ieCEDg0fqjhvNxMDAAAAAAAAAABaSKGxt2/aBIt7uVwuuVwunTt3TpFIRE6nU6FQSN/4xjca3TUAAAAANUiNpySpYnJF1sgqnUyXFl7t9e3V4Mhg1bZmJmdks9vKqlHsP7lfb59/W+lkumyx1b0xLLgCAAAAqhvzjylrZJWNZKteU6ki3OHhwzLihiaCE8pn8qXk6cdff7zi3FySbHabBhODioVistlt6trVpcx0Ri6/q2JChtkYAAAAAAAAAADQOvLZvKm4nJGz5P5NnWBx+fJljYyMKB6PS5IKhYIGBwcVDAYlqVTVIhQK6Vd+5Vca2FMAAAAA95NO3q1IUSm5QpKMuFGW/LD/5H4lIomqyRip8ZQC0UDZ8V5Pr5w+p669cq3iIq7UeEqnYqfq/JsAAAAAG9fT00+bjnX6nDUnNNvsNvWH+9c8BgAAAAAAAAAAtIbMdKbmmPxsXrc/vm3J/RuaYHH58mUdPXq07NjPf/5zRSIRhcNhGYahQqFQqlhx5syZsmtHR0c1OzurSCSiTCajs2fP6pd+6ZfW868AAAAAbHpZ4+7Otvlc9ezxrJFVNBDVXt9ezQRnlp3PZ/Iy4oZC2VDpWK+nV0bc0NXzV3V4+HBZWxFvRIeGD1XcoTYQDSjijWj/yf1lSRYTwQkdGj5EBQsAAAAAAAAAAD5jIjihI6EjFSvWSXd/A3jr3FuStOpKcmZiAAAAAGDfiX0aPzmugVcGVh0zfmJc+7+235L7NzTBwu/3a3FxUdLdZItwOKzx8XEVCgVJKlWreOihh6q2sXPnTv3hH/6hZmdn9Y1vfEPnz5+nmgUAAACwxlLjKSXCCUnSzNTdhImJMxOlY+6Au6zyxJh/TFkjq2wkW7XNSj/aHB4+LCNuaCI4oXwmr3wuL5vdpsdff7xihQrp7m62g4lBxUIx2ew2frQBAAAAAAAAAGAF6WRayUhSB4IHKp7P5/KKeCMKRAPLNja6MXlD/hG/JTEAAAAAIN1dL/T8rz6v8a+Nq//Ffm37/Laq13703keaODOhfC6vQ39wyJL7NzTBYufOnfo3/+bfSNKyahUnTpzQzp07a2rr1Vdf1Te/+U298MILa9VlAAAAAJLcA+6akhWenn7a9L2cPmfNVSdsdpv6w/2m7wkAAAAAAAAAwGYRD8VXPB8NRPXAwAPLNj7qD/drpHtELr9r2ff4ZmIAAAAAoOjU35zS87/6vFLRlJz+u2uHbHabOns6NZ+ZV2Y6o+vx60on0yoUCgomg5bdu6EJFpI0PT0tSRoYGNDZs2dXrFaxGrUkZQAAAAAAAAAAAAAAAACbVSKSkDvglhE3Kp7PGlkZcUPHwscqnnefcOvqyNWyZAkzMQAAAABwr25nt0KZkKKBqKb/ZlpGbPlnlkKhIKfPqWPhY+re223ZvRueYBEMBvXd7363rsSI2dlZffe731UwGNTs7KyFvQMAAAAAAAAAAAAAAECze7n/5UZ3QZL02MRjje7CqmWNrKS7C5eqmQpPrXhNj6tHyUhS+VxeNrvNdAwAAAAAfJbNbtOp2CkZrxtKRVOamZopfY7odnbLG/TK+Yj1idsNT7B44YUX6m7j1Vdf1cjIiMbHxxUKhSzoFQAAAAAAAAAAAAAAALBxTYWn5B/xV61eIUkfJT9aMQmimEQxMzVTqkhhJgbA2vjJyz/RjWdvqK3Q1tB+tFLyGQAAaD7OR5xrkkhRTUMTLE6cOGFZO9PT0+rr69NXv/pVS9oEAAAAAAAAAAAAAAAANqLUeEoHggfue13WyKqzp7Pq+WIiRbEahtkYAAAAAGgWDU2wGB0dtaSdnTt36rvf/a4lbQEAAAAAAAAAAAAAAACtYOHOghbvLJYe//Mv/vm+MflcXlkjK/eA+77XzmfmSxUnKikmUuRz+bpiAAAAAKBZNDTBoui///f/rkgkomw2q1dffVW/8iu/Unb++vXrCoVC+q3f+i39wR/8QWM6CQAAAAAAAAAAAAAAADSRK+eu6M3vvFl6PKvZ+8a8de4t+Uf8q2p/tUkQtz++XVcMAAAAADSLhidYnD17VgcOHNDk5KRmZ2eVTCaXJVjs3btXr776ql5//XWdPXtW586da0xnAQAAAAAAAAAAAAAAgCZx5OwRHXzmYOnxjRs39Jz7uarXG3FDLr9rPboGAE3l5f6X64pf2rKkTG9GN569obZCm+l2Hpt4rK5+AACAtdfQBIvLly/L6XTqq1/9qgqFgq5fv67/8B/+Q9XrH3nkEUnSX/3VX614HQAAAAAAAAAAAAAAALDRdWzrUMe2T5f/fO7nn1vx+unY9KqrV0iSzW5bVUWKrl1ddcUAAAAAWDsTwQkdCR1Rt7O74vl8Lq+3zr0l6e48PTOdkcvvknvAXbVNMzGtoqEJFtFoVC+88IIkaWBgYFUxjzzyiL75zW+SYAEAAAAAAAAAAAAAAACs0tXzV/XbZ3+7ppjOns4Vz89n5iXdTaqoJwYAAADA2kgn00pGkjoQPFDxfD6XV8QbUSAaUK+nt3R8IjihG5M3KiZom4lpJeZrVVmgUCg08vYAAAAAAAAAAAAAAADAhpc1srLZbTUnNXQ7u0sJEZUUK1XcuxOumRgAAAAAayMeiq94PhqI6oGBB8oSJSSpP9yvZCQpI25YEtNKGlrBIpvNmoozjNYedAAAAAAAAACbw9zcnOnYmzdvamhoSIlEQl6vV6Ojo3I4HDW3s7CwYLoPAAAAAICNIZ1MKxVNKRVNLTuXNe6u35k4M1GqPnEqdkqStNuze8XFUcVYp89ZOmYmBgAAAID1EpGE3AF31fl51sjKiBs6Fj5W8bz7hFtXR66Wzd3NxLSahiZYTE9P1xwzOzurjz/+eA16AwAAAAAAAADW2rFjhyXtxGIxuVwu0/FvvPGGJf0AAAAAALQm94Bb7gF3xXOp8ZSigaj6X+xftgPt/pP79fb5t5VOppedk6SZyZllC6fMxAAAAACwVjGxeaXKcVPhqRWv6XH1KBlJKp/Ll6rhmYlpNW2NvPmJEyd08uTJmmO+9rWvrVGPAAAAAAAAAAAAAAAAAEhSr6dXTp9T1165VvF8ajylw6HDdccAAAAAsNZUeEreQe+K13yU/GjFJIhiEsXM1ExdMa2moQkWw8PDSiQS+trXvqZf/OIXK1773nvvqa+vT4Zh6A/+4A/WqYcAAAAAAAAAYN6tW7dM//H7/Wpvb5cktbe3y+/3m2onl8s1dhAAAAAAAE2tuLNt8X8/KxAN6IPxD5ROpsuOTwQndGj4UMVqFGZiAAAAAFgjNZ7SgeCB+16XNbLq7Omser6YSHHvZwUzMa2mo9Ed+Ju/+Rv96q/+qqLRqPx+v3w+n+x2u3p6epTJZDQ9Pa14PK5kMqlCoaBkMtnoLgMAAAAAAADAqmzfvt107NjYmE6fPq3JyUn19fXpwoULptpbWFgw3QcAAAAAwMY1EZxQzsiVdpadODOhRDih3Z7d8o/4S9fZ7DYNJgYVC8Vks9vUtatLmemMXH6X3APuim2biQEAAABQbuHOghbvLJYef3Lrk/vG5HN5ZY3squbd85n5UsWJSoqJFPlcvq6Y9RI/G5fvnK/udhqeYOF0OpXJZBQIBPQ3f/M3isViy64pFAry+XwKh8Pau3dvA3oJAAAAAAAAAOvL4XDo0qVLje4GAAAAAGCD6g/3r/pam91W0/VmYwAAAAB86sq5K3rzO2+WHs+2zd435q1zb5UlTK9ktUkQtz++XVfMeklGkhsjwUKS7Ha7YrGYXn/9dUWjUU1NTSmXy8lut8vpdCoYDOqRRx5pdDcBAAAAAAAAAAAAAAAAAAAAAFhzR84e0cFnDpYef/jhh3ruweeqXm/EDbn8rvXo2rrJ/TSnrJG973XpZNqyqhlNkWBR9Mgjj5BIAQAAAAAAAAAAAAAAAAAAAADY1Dq2dahj26fL/bfu2Lri9dOx6VVXr5DuVp1bTVJC166uumLMSP55UvFQ3LKkiVo0VYIFAAAAAAAAAAAAAAAAAAAAAABYvavnr+q3z/52TTGdPZ0rnp/PzEu6m1RRT0ytjNcNTQxOqNvZLXfAvaq20om0rl++bvqe92rJBIuzZ8/q3Llzje4GAAAAAAAAAAAAAAAAAAAAAAANkzWystltNSc1dDu7NTM1U/V8sXpEt7O7rphavf5HrysQDcj9VXdNced3nTd9z3u1ZIJFJBIhwQIAAAAAAAAAAAAAAAAAAAAAsKmlk2mloimloqll57JGVpI0cWaiVH3iVOyUJGm3Z7eMuFG13WKs0+csHTMTUytbt63m5ApJsu+1m77nvZomweKnP/2pDKP6YBclk0nlcrm17xAAAAAAAAAAAAAAAAAAAAAAAE3MPeCWe6ByQkJqPKVoIKr+F/vV6+ktO7f/5H69ff5tpZPpZeckaWZyZlmihJmYWlVqdzUGpwbrum9RwxMs/vzP/1yhUIikCQAAAAAAAAAAAAAAAAAAAAAA1kGvp1dOn1PXXrlWMakhNZ4qVbuoJ6ZW+Vy+rvh6NTTB4vXXX9fg4KCcTqcCgYDsdvt9YxKJhC5fvrz2ncP/n70/jI3rPBME3ZeyDJeUTFykgI2oALtRsWcB0x7cuCj3nZbUwExUnG40xAtMzJLGuOtggInIZH+4gb4d0Zo/i15cjEIlSGN6gW2T7h8z61lo7eK4fzB3ehCWPZO1lR8RWZ1BYhnYCUueDCR6dsdVpXTaLE0U1v2hJS2aRYosHrJY4vMAQlLnO+93Xn/nqPRV1XnPBwAAAAAAAAAAAABAh6qWqyv/26wgIl/Ix+TAZDxz/plV7dOj03Hy4smmq1G0ErMV/fn+eP/N9+Oprzy1pbjipWLkLue2deyINhdYvPzyy1EoFOL555/fUtyRI0d2KCMAAAAAAAAAAGjN1aGrbT3+R4sftfX4AADA3jA9Oh21ci1uz96+//rCdMxNzMXR7NEYHB9c2S+VTsXI3EjMjM1EKp2Kw0cOR2W+En2DfdE/3N+071ZitiJzJhPXvn1ty0UWpclS5xdYdHd3b7m4IiLi+PHjO5ANAAAAAAAAAAAAAAB0tqGJoU3vm0qntrR/qzGbVfugFk/nn473Cu/Fq8+9Gsdzx6Onrye6M93rxiyUFqJeqydy/LYWWGSz2ZbiZmdnE84EAAAAAAAAAAAAAABop4nsRNy9czciIhqNRtyeux1dXV27dvy2FljUarV2Hh4AAAAAAAAAAAAAANgjDvUcioiIp889Hal0alMxC3MLcfPtm4kcv60FFvl8Pt588834yle+sqW4S5cuxeXLl3coKwAAAAAAAAAAAAAAYLd1Z7rj9MunI/u17Jbirhy5ksjxDyTSS4vOnDkT8/Pz8eabb24pbnJycocyAgAAAAAAAAAAAAAA2qE70x3dme4tx6WPpxM5fltXsPjggw8in89HoVCI5557LnK5XPT19UUmk1k3plQqRa1W270kAQAAAAAAAAAAAACAHXf2lbMtxY3MjiRy/LYWWGSz2bhz505ERDQajZibm4uurq52pgQAAAAAAAAAAAAAAOxDbS2w6OnpiYiIc+fORTqd3lTM3NxcvP322zuYFQAAAAAAAAAAAAAA0G61D2oxOzEbH5Y+jMXKYhzqORTpTDpOjJ6Io186mvjx2lpgkclk4uWXX46vfe1rW4o7cuTIDmUEAAAAAAAAAAAAAAC0W/FSMX545YfRaDTWtJUmS9Gf74+hyaF44nNPJHbMthdYZDKZLccdP358B7IBAAAgIuLq0NV2pxARES9Mv9DuFAAAAAAAAAAA2GX1O/WYHJiMxcpiPPX8U3HsuWORSqfut9XqsfjRYizMLcR7b7wX5WI5fv/m78cTfyOZIou2Fli88sorLcXNzs4mnAkAAAAAAAAAAAAAANBuhXwhMrlMnH3l7Ib71e/UY+biTPwvX/5f4sL1C4kcu60FFs384he/iEqlEl/84hd37Bi1Wi0uX74cERFHjhyJ+fn5GBwcjOHh4W31OTY2FhERlUolIiIGBwdjZGRkS/2Mjo7G2NhYSyt7AAAAAAAAAAAAAABAp5p7dS66M90PLa6IiEg9mYqhiaH43te/F6U/K0X2a9ltH//AtntIwAcffBDf+MY34rHHHovu7u74jd/4jVXtN2/ejHPnzsWf/dmfbftYtVotBgYG4vz58zE+Ph4XL16MiYmJmJmZWSmQ2KpSqRQDAwORz+djYmIiCoXCyp+t9FkqlWJycjJqtVpLeQAAAAAAAAAAAAAAQKe6Wby5qeKKB5195WzcKNxI5PhtL7B4++23I5PJxMTERBw/fjzOnDkTx48fX7XP8ePH44033ojjx4/Hd77znW0dL5/Px/DwcGSzq6tTJiYmYnJyMorFYst95nK5NX1euXJl0322WuABAAAAAAAAAAAAAACdLtWdaikufTydyPHbWmBx8+bNGB4ejpGRkZifn4+f/exn8f3vfz+ef/75pvsvF1+8/fbbLR2vXC5HsViM0dHRpu3nzp2L8fHxLfV55cqVKJfLcenSpTVtmUwmcrncpvqcnJyMfD6/pWMDAAAAAAAAAAAAAMAjo2uX4z6lrQUWL7/8coyPj8crr7yyatWKrq71/+uef/75KBQKLR1vYmIiIu4XPjTT19cXxWIxarXapvucmZmJiIh0Ot20PZvNPnQFi3K5vGFeAAAAAAAAAAAAAADwqKtX6i3F1cq1RI7f1gKLarUaFy5c2HJco9Fo6XilUmndQoiITwocZmdnN93n7Ozshn329fWtHHs9ExMTMTIysuljAgAAAAAAAAAAAADAoyZ9PB3v//n7W4r54Xd+GEefPZrI8dtaYNHqig3VarWluHK5HD09Peu2LxdKLK8osRkb9feg9Yo2pqamYnR0dNPHAwAAAAAAAAAAAACAR1HuW7mY+ebMposs5l6di3cvvxu5b+USOf7BRHpp0XYKJVpRqVQ2LOpYLpao1Wqb7jObzcbU1NS67fPz8+v2WavVolwux/Dw8KaPt2zx3mL88t4vV14/fuDxePyxx7fcz37X6GpEIxrR6GrEUiy1O51tu3fvXtuPv7S01PY8HhXGM1nGM1nGM1nGM1nGM1lLS50/R+pE5vv3+Xt8n/c1mnFdsB7XBs24LmjGXL89Pv71x/HEvSdWXu/XuX6nedR+S9hvnL/O5vx1Nuevszl/navR1Wh3CvuS7/WTkdR7j+9A7rt3796eeS/fC+dkqWt7Y+D6TJbvLJNlPJNlPJNlPJO1n77bz7+Rj8kTk9H39/qif7g/jp04Fql0KiIi6rV6LFYWY35mPt6fej+q5WpcmL2Q2LHbWmDR3d0d/+bf/Jv4u3/372465tKlS3HmzJmWjrfZwomPPvpo032Ojo7G1NRUlEqlyGaza9qLxeK6fV6+fDnGx8c3fawHjf3bsVWvfzf7u/F7J36vpb72s0Y0YvFvLEYlKtEVXe1OZ9vefffdth5/aWkpfv7zn0dExIEDbV0g55FgPJNlPJNlPJNlPJNlPJO1lbkxyTHfv6/d89u9wvsazbguWI9rg2ZcFzTzsLn+QmkhZidmo16px0JpIVLpVAyMDsTAyMC6MfVaPd65/E5ERBw+cjgq85XoG7z/w0e7Y/YKc/3O9Kj9lrDfOH+dzfnrbM5fZ3P+OtdfLf5Vu1PYl8z1k5HUe4/fF+5bWlraM+/le+GcVHor24p3fSbLd5bJMp7JMp7JMp7J2k/38fRme2NkdiSmL0zH9Mh0dHWt/fe30WhEd6Y7/rvv/3fR+2xvYsdua4HFxYsX4+/9vb8Xr7766qaKLL7zne/E1NRU/Pt//+93IbvNyeVykcvl4vLly1EoFFa1FYvFyOVyUSqV4siRI2vaBgcHWz7u+N8Zj+5U98rrxw88Ho8vqHzfqkZXIypRiZ4Pe6Kr0flfCp0+fbqtx1+uMDx58mQcPNjWt5dHgvFMlvFMlvFMlvFMlvFM1vKHXHaX+f597Z7f7hXe12jGdcF6XBs047qgmY3m+nOTcxERMTQxtLKtXCxHIV+Ia+PXYmRuZOUpUcvqtXpMDkxGvpCP3uwnP2JMj07Hreu3YnB87ffhuxWzl5jrd6ZH7beE/cb562zOX2dz/jqb89fBFtudwP5krp+MpN57/L5w37179+Knr/90T7yX74Vzcuu7t7YV7/pMlu8sk2U8k2U8k2U8k7Xf7uPpzfbGyNxIzE3OxdzEXCz85cJKW3emOwZGB+LUN08lfty2XqmZTCZeeeWVOHPmTJw4cSLOnz8fzz77bNRqtfjggw+iVqtFpVKJUqkUExMTUS6XY25uruXjpdPpTa1i8eliiIeZmZmJ0dHRGBsbi0uXLkXEJytX9PX1rRz70zGtrl4REXHo4KH47MHPrt5olcctW4ql6Iqu6Gp0xYFG51fG7YV/fA4cOBAHDx7cE7k8Coxnsoxnsoxnsoxnsoxncjb79IDp0el4Ov90ZHKZDffzRNvNMd+/z9/hT3hfoxnXBetxbdCM64JPW2+uXy1Xo16rx6mLq3+QyOQy8dW3vhqTA5NRyBfixZkXV7UX8oV4avipVUUPEfeLNMa7x6NvsG/N54XditlLDj922Fy/Az1qvyXsN85fZ3P+Opvz19mcv87V7puo9yvf6ycjqfce3398Yq+8l++Fc7LdMXB9Js93lskynskynskynsnZr6uADIxsvMJ20tp+peZyuXjjjTdiZGQkLl68uLJ9cnJy5f83Go3IZDIxOzsbX/rSl1o+Vk9Pz4btlcr9ZcA+XQyxGRMTE1Gr1VYKK3K5XKTT6bhy5UpERJw4cWJl3ytXrqwUYkCSrg5dbevxl7qW4gt/8IW25gAA7J5quRrlYvl+hXhpIZ7OP73h/p5oCwAAe9/sxGz89qXfbtrWm+2NTC4T5WI5quVqdGfuP511+bPB2YmzTeP6z/XHtfFrqwofdisGAAAAAABgK/ZEGcvw8HBUKpW4fPlyfOlLX4pGo7Hy5/jx4zE+Ph4/+9nP4tlnn93WcTKZzEoRRTPLq1tkMq39+JJOp2N4eDiGh4dXijSuX78eERHZbDYiIsrlcqTT6ZaKOAAAYK+Ym5yL4tj/XVw8nttUzEZPmi1NlqJcLLctBgAAuO9m8Wb80+P/NOq1etP2o9mjERGxUPpkGe7ZidmIiJWCi0/r6euJcrG8qs/digEAAAAAAPaH9998P5F+2r6CxYMuXry4ahWLpGWz2ZUVJpopl+/faJXLbe4Gsc0olUoxMjKy6nWhUIhCobDu8S9cuLCy2sbMzExiuQAAQFIeXHrvwRur1uOJtgAA0BkO9RyKhdJCVMvVNUXL6/mw9GGk0ql125cLIm7P3l6Zi+9WDAAAAAAAsD9MX5iOp77y1Lb72VMFFjvt/PnzceXKlSiVSisrSjzo+vXrWy6uKJVKcebMmSgUCmtiS6VSlMvlGBsbW9m2vMJFM1NTU5HP5+PVV19tmh8AAHSqzTxptjRZinqtvnLD1G7FAAAAn3hx5sWolqvrzqlr5VpExKrii2q5God6Dq3b5/Lcu1qu7noMAAAAAACw93z44w/j6JeOrtu2FYuVxaiWq4mtcN2RBRZvvvlmfOUrX9lyXDabjVwuF6+//nrTAoapqammK0bUarW4fPlyDA4OrimiWF51opkLFy7E+Ph4ZDKelAUAwP7mibYAANBe9+7ei1/f/fXK61/98lfr7rtecUVExI2pG9Gb7V21z2JlccOY5aKIB3/Y2K0YAAAAAABgbym+XIwffvuH0TvQGxd+dGFN+z//8j+Pu3futiGz+zqywOLChQstFVhERBQKhRgYGIjz58+vKrIYHR2NixcvNl3BYnJyMq5cuRKTk5NRra5+8lUul1v5s6xWq8WFCxcil8vFxYsXN53bcrFGuVy2ggUAAI8UT7QFAID2evfyu/GDP/rByus7B+5suY9rV65FRMTQq0Ortm+2oOHjjz7e9RgAAAAAAGBvqZar0Wg0ol5t/r3/8r0/AyMD918fWf9eoIiIxY8WozpfjffffD+R/Ha8wOLHP/5xfOlLX1q3bSsqlUqUy+Wo1Wot55NOp2Nubi7GxsYinU7HkSNHYn5+PgYHB2N4eLhpTC6Xi3Q6HefOnWva3/j4eOTz+YiIldzGxsaaFms0Mzo6GuVyOWZnZyPifgHJxMREZLPZGB8fb+G/EgAAWrOVp9puhSfaAgBAe52+dDp+6w9+a+X1z3/+8/jjv/XHm45fKC1EcawY+UI+erO9O5EiAAAAAACwDwy9OhSZwUxkcpmm7d2Z7jj98unIfm1rCxZcOXIlifR2tsDi5Zdfjm9/+9sxMDAQP/rRj9a0f/nLX447d7b+lKztSqfTMTExsen9s9nsmpUrHpTJZKJQKLScz1ZyAQCAnZTEU22b8URbAABor4NPHIyDT3zyk8Djn318S/GFfCHOTpyN/uH+NW2pdGpTc/HDRw7vegwAAAAAALC3pJ5MxcCFgXXbM4OZOHbi2Jb7TR9PbyOrT+xogUW5XI5Go7FucUJPT09ERIyMjERExJEjRzbs76OPPor5+fl48803k00UAACIiO0/1RYAAHj0FPKFGBgdWFmK+9OWV4pbz2JlMSLuF0jsdgwAAAAAANBZTn3zVEtxI7MjiRx/RwssXn311RgcHIxcLte0PZPJxMsvvxxf+9rXttTvwwoxAACA1mz3qbbr8URbAADoTDNjM3HsuWNx6uL6P2Z0Z7rj9uztdduX5+jdme5djwEAAAAAANiKHS2wePLJJ+PChQvrtg8ODsaJEye23O/x48e3kxYAALDLPNEWAAA6z9zkXPT09TRduaJeq6/Mq49mj0a5WF63n2r5/irXmVxmZdtuxQAAAAAAAI+W8lvlKM+UI7oievp64tiJY3H0S0cT6/9AYj214Jvf/GZ86Utf2nLc7Oxs8skAAAA7pjvTvVLc0Mx6T6fdjRgAAGCtG1M3IiKaFldUy9VVhQ7PnH8mIiIWSgtN+7p9/faaoofdigEAAAAAADrLlSNXNmzPnMlE7lu5OP3y6Th+5njcun4rvveN78XdX9xN5PhtLbAAAAD2h6PZoyvFDc2s93Ta3YgBAABWWygtxGJlsWlxRUREuViO3mzvyuvebG9kcpn46es/bbr/jakbcWrs1KptuxUDAAAAAAB0lkajsan9Uk+movt4dwxcGIjct3IxMzaTyPH3RIHFv/yX/zJ+53d+J37zN38zPvjggzXtN2/ejHPnzsV3vvOd3U8OAADYNk+0BQCAzlAtV6OQL8TtudsxPTq95k8hX4jiWHHNqnD5Qj7en3p/zVx8enQ6Tl482XQevlsxAAAAAABA5+jq6tpyTOrJVGLHP5hYTy26dOlSnDhxIq5fvx537tyJUqkUX/ziF1ftc/z48XjjjTfirbfeikuXLsXly5fbkywAANCSB580++CTbpfdmLoRL8682JYYAADgE68NvhbVcjWqk9V19/l0cUVERCqdipG5kZgZm4lUOhWHjxyOynwl+gb7on+4v2k/uxUDAAAAAAA82up36rEw2/yBrFvV1gKLt99+OzKZTDz//PPRaDTi5s2b8ZWvfGXd/c+cORMREW+++eaG+wEAALunWr5/41W9Vt9wv3whH5MDk/HM+WdWFT887Om0uxEDAADc99L8Sy3HptKpGJoY2pMxAAAAAADA3lH7oNZ0e6PRuN/+H2oRjY37qNfqsVhZjIXSQrx7+d3oP5fMg5jaWmBRKBTiT//0TyMiYnh4eFMxZ86ciW984xsKLAAAoI1uTN2IuYm5iIi4PXs7IiKmL0yvbOvP98fAyMCqGE+0BQAAAAAAYKddHbra7hT2hKWupYi1C74DAOwJt+dux+3rt6Narka5WI67d+6uav+TzJ9suq9GoxGZXCbO/unZRHJra4HFcoUJAADQWfqH+1sqVvBEWwAAAAAAAAAA2N/6n++P/uc/ufdoobQQxbFilN8qR1dXVzz1/FOb6qc70x2ZwUxkzmQSy62tBRbVarWluHK5nHAmAAAAAAAAAAAAAADAbuvN9saLMy/G9Oh0vD/1fuTfyLctlwNtO3JEzM/Pbznmzp078dFHH+1ANgAAAAAAAAAAAAAAQDsMTQxF+ni6rTm0tcDi3Llzcf78+S3H/IN/8A92KCMAAAAAAAAAAAAAAKAdTl863dbjt7XA4uLFizE3Nxf/4B/8g/irv/qrDff98Y9/HM8991yUy+X4wz/8w13KEAAAAAAAAAAAAAAA2A39z/e39fgH23r0iPj+978fv/EbvxGFQiEGBwcjl8tFOp2Onp6eqFQqMT8/H8ViMUqlUjQajSiVSu1OGQAAAAAAAAAAANiEq0NX250CAPCIq9+pR+nVUpz8w5Pb7qvtBRaZTCYqlUrk8/n4/ve/HzMzM2v2aTQakcvlYmJiIo4fP96GLAEAAAAAAAAAAAAAgL2mWq7Ge6+/92gUWEREpNPpmJmZibfeeisKhULMzs5GrVaLdDodmUwmRkdH48yZM+1OEwBgxywuLsZf//Vfx8GDW5+e/af/9J/i61//eszNzcXAwEC88sor8fnPf76lPD7zmc+0FAcAAAAAAAAAAADbdfPtm1uOuTZ+Leq1eiLH3xMFFsvOnDmjkAIA2Jd+7/d+L5F+ZmZmoq+vr+X4RqORSB4AAAAAAAAAAACwVW8MvxF379zdUkyj0YhD3YcSOf6eKrAAAAAAAAAAAAAAAAD2p0M99wslnj73dKTSqab71Gv1qJarcXv2dmRymTj23LHEjt+RBRbf+MY34k//9E/bnQYAQGL+1b/6V3Hy5Mk4eHDr07O///f/frz99tvx61//Oh577LH48pe/HH/+53++A1kCAAAAAAAAAADAzunOdMfpl09H9mvZTe1/7dvX4lD3oU3v/zAdWWDxxhtvKLAAAB4phw4dis985jMtFVi89tpr8Q//4T+M69evx3PPPRf/7J/9s/jMZz6zA1kCAAAAAADQ6arlarw7/m5ERNQr9ajX6pEZzMSpi6fWjanX6vHO5XciIuLwkcNRma9E32Bf9A/3JxoDAADQnemO7kz3pvc/9c1TceNf3oibb9+M418+vu3j73iBxY9//OP40pe+tGb7nTt34q233tpyf9evX49arbb9xAAAHhGf//zn4y/+4i/anQYAAAAAAAB73I2pG3Hr+q0YmhhatX1yYDLmJubipfmX1sTUa/WYHJiMfCEfvdnele3To9Nx6/qtGBwfTCQGAAAgIuLsK2e3HNP/fH8ULxX3doHFW2+9FaOjo3Hz5s3o6+uL/+P/+D9Wtc/Ozsbw8HB0dXVtqd9Go7HlGAAAAAAAAAAA2M/qtXq89/p7kS/k17QNvToUkwOTMT06vab4opAvxFPDT60qlIiIGJoYivHu8egb7ItMLrPtGAAAgL1gRwos7ty5ExMTEzExMRGDg4Px5JNPrtmnp6cnIiKef/75eO655yKdTj+031qtFj/72c/iz/7sz5JOGQAAAAAAAAAAHlm3Z2/HjakbMTM2s2YFieVCiJvFm6u2V8vVKBfLcXai+RNk+8/1x7Xxa6uKJVqJAQAA2K5auZZIPztSYPHWW2/FpUuX4tlnn41qtdq0wCKTyURXV1e88cYbW+6/UCgkkSYAAAAAAAAAAOwLh3oORSqdisNHDq+7TyqdWvV6dmI2IiK6M91N9+/p64nSZCnqtfpKbCsxAAAA21G/U4/F6mIife1IgcX169fjK1/5SkRE0+KK5e3rtT1MLpdrOTcAAAAAAAAAANhverO9MVYda9q2UFqIiIjjueOrtn9Y+nDDIojlIorbs7dXVqRoJQYAAGDZzbdvPnyn/1u9Vo9quRpzE3MxMDqQyPF3pMCip6cnPvjgg/jiF7+44X5dXV0t9d/KqhcAAAAAAAAAAMBaxbFidGe6Y3B8cNX2arkah3oOrRu3XEhRLVe3FQMAALDsjeE34u6du5vev9FoRCaXiZN/eDKR4+9IgUUul4uJiYm4fPnyTnQfv/jFL+Jzn/vcjvQNAAAAAAAAAACdYOnXS9FYanzy+t7SluKr5Wq8O/5upDPpeHHmxTXti5XFlRUnmlkupKjX6tuKAQAAWLb8meHpc09vuDpeRMShI4eiN9sbmTPJrY63IwUWzz77bOTz+fj6178e/81/898k3v/x48fjo48+SrxfAAAAAAAAAADoFJWfVaLy7ysrr+/EnU3F3Zi6Ebeu34pauRbpTDr6Bvua7rfZIoiPP/p4WzEAAEAylouoIyLqlXrUa/XIDGbi1MVT68bUa/V45/I7ERFx+MjhqMxXom+wL/qH+xON2azuTHecfvl0ZL+W3XZfrdiRAouIiFdeeSUymUxMTk7GP/pH/yjRvhuNxsN3AgAAAAAAAACAR1jPb/SsWi2iUq9E/ODhcf3D/atufHpt8LWYm5iLoVeHHvqEWAAAYG9aLqQemhhatX1yYDLmJubipfmX1sTUa/WYHJiMfCEfvdnele3To9Nx6/qtGBwfTCRmK7oz3RuuirfTdqzAIpfLxfPPPx8jIyMxMjIS2Ww2MpnVS2/UarX4nd/5nU33WalUolwux507m6u2BwAAAAAAAACAR9WBxw5EPPbA63sHWuonX8jHePd41Gv1eHHmxZXtqXRqUytSHD5yeFsxAADA9tRr9Xjv9fciX8ivaRt6dSgmByZjenR6TfFFIV+Ip4afWlUoERExNDEU493j0TfYF5lcZtsxW3H2lbMtxyZhxwosvv71r0e5XF5ZbWJubi7m5ubW7DczM7Plvru6uradHwAAAAAAAAAAcL8oon+4P25M3YhysbxyM9ShnkMbxi1WFlfil7USAwAAbM/t2dtxY+pGzIzNrFlBYrkQ4mbx5qrt1XI1ysVynJ1oXtDQf64/ro1fW1Us0UpMp2mtbP0h/vIv/zLS6XS89dZbkcvlYnx8PJaWltb8SafTTbdv9Gd2dnYnUgYAAAAAAAAAgEdWvVaParm6bns6k46IiPmZ+ZVt3ZnulYKI9fpc3m87MQAAwPYc6jkUqXRqw5XiPl3kPDtx/7789ebmPX09US6WV61Q10pMEmof1OL9N9+P0p+V4ubbN6P2QS3R/h+0IytYvPXWW/H1r389nnzyyfj+97+/7n6trESRzWbjySef3E56AAAAAAAAAACwr4x3j0dExFh1rOnqEcs3Yj14I9TR7NEoF8vr9rlcsPHg02lbiQEAALanN9sbY9Wxpm0LpYWIiDieO75q+4elDzdcWW65iOL27O2V+XsrMdtx8+2b8b3R7zUtFu8d6I2hV4fi6P/j6LaP86AdWcGi0WhET0/PTnQdERGFQmHH+gYAAAAAAAAAgEdNKp2K7kz3ujdDVeYrERFxbODYyrZnzj8TEZ/ckPVpt6+vvWmqlRgAAGCte3fvxd1f3F3586tf/qqlfopjxejOdMfg+OCq7dVyNQ71HFo3bvmzw4PFDa3EtGrq/FS8NvhaVOYr0Wg0In08Henj6XjiySei0WjE7dnbMZmdjLf+8VvbPtaDdmQFi0wmE7Ozs/HlL395J7qPM2fO7Ei/AAAAAAAAAADwKMqOZOPE6Il122+8cSNS6VQ8fe7plW292d7I5DLx09d/Gr3Z3rUxUzfixZkXV21rJQYAAFjr3cvvxg/+6Acrr+8cuLOl+Gq5Gu+OvxvpTLrpHHyxsriy4kQzy4UUD65y10pMK4ovF2N+Zj7OfOtM9A/3R/fxtcdc+MuF+On/9tN491vvxqEjh+Lk/+fkto65bEdWsMjlcjE+Pr4TXUdExHe+850d6xsAAAAAAAAAAB41g+OD8e74u1Eulte0FfKFiIj46ltfXbPCRb6Qj/en3l+zIsX06HScvHiy6WoUrcQAAACrnb50Ol6+8/LKn2/8u29sKu7G1I2YGZuJ4ljxfhF1/umm+222COLjjz7eVsxWld8qR7lYjt+/+ftx6punmhZXRET0Ptsbg+OD8dLPXorZP52N2n+otXzMB+3IChZPPvlkHD9+PP7xP/7H8U/+yT9JvP/Lly/HH/7hHybeLwAAAAAAAAAAPKqGJobixtSNKOQLkepJRb1Sj3qtHkezR+P3b/7+muKKiIhUOhUjcyMxMzYTqXQqDh85HJX5SvQN9kX/cH/T47QSAwAArHbwiYNx8IlPbvd//LOPbyquf7h/1bz7tcHXYm5iLoZeHWo6599rSpOl+8XfT24u1+5Md+TfyEfxYjGGXx/e9vF3pMAiImJ8fDyOHz8exWIxRkdH48yZM9HT07PS3mg0IiLiP/yH/7Dy/zdjbm4uarVa0ukCAAAAAAAAAMAj79M3W21GKp2KoYmhHY8BAACSly/kY7x7POq1erw48+LK9lQ6takVKQ4fObytmK1qNBqbLq5Y1pvt3VJNwkZ2rMDiySefjHK5HAMDA3HhwoXo6upqul8mY8k/AAAAAAAAAAAAAABIWiqdiv7h/rgxdSPKxXJkcvfv3z/Uc2jDuMXK4kr8slZitqo7072rcZ+2YwUWERHpdDrm5+djamoqZmdnV6080Wg04tVXX42RkZEt9Xn9+vX48Y9/nGyiAAAAAAAAAAAAAADQgeq1eixWFtctMkhn0hERMT8zv1Jg0Z3pjtuztzfsc3m/Za3EbFnzdR12Lu5TdrTAYtnw8HAMDw+v2T41NRWvvPLKlvs7cuRIEmkBAAAAAAAAAAAAAEBHG+8ej4iIsepY09UjDh85HBGfFEBERBzNHo1ysbxun9VyNSJipSCj1Zit6s50R+2DWqS/mN50zN1f3H3o6hqbdSCRXlrUaDRaiuvuTmb5DgAAAAAAAAAAAAAA6GSpdCq6M91NiysiIirzlYiIODZwbGXbM+efiYiIhdJC05jb12+vKZRoJWarBi4MxOwrs3H3F3c3HTNzcSZOjJ7Y1nGX7coKFut59dVXW4r72c9+lnAmAAAAAAAAAAAAAADQebIj2Q0LDG68cSNS6VQ8fe7plW292d7I5DLx09d/Gr3Z3rUxUzfixZkXV21rJeZBtQ9qm/iviXj6/NNRyBdi4OsD0X18/cUZquVqvPf6e5Ebz8UTn3tiU30/TFsLLJ5//vl2Hh4AAAAAAAAAAAAAADra4PhgTI9Ox9P5p9esIFHIFyIi4qtvfXXNChf5Qj4mBybjmfPPrCqYmB6djpMXTzZdjaKVmGUT2Ym4e2dzK1M0Go0oF8sP3S+VTsXsxGz89qXfTqTIoq0FFut5+eWX4+bNm5HJZKKvry8ymUycOHEiPve5z7U7NQAAAAAAAAAAAAAA2FOGJobixtSNKOQLkepJRb1Sj3qtHkezR+P3b/7+muKKiPvFCSNzIzEzNhOpdCoOHzkclflK9A32Rf9wf9PjtBKz7FDPoajX6tE/3B+Heg4l8t8dEVGv1uO9N96L7Ney2+5rxwosfvzjH0elUolyuRzz8/NRLpejVqtFOp2OTCYTly9fXjf2W9/6VkRE3Lx5M0qlUnzrW9+KYrEYXV1dK0UX//pf/+udSh0AAAAAAAAAAAAAADpK/3D/Q4scPi2VTsXQxNCOx0REdGe64/TLpxMphNgpO1Zg8eUvfznu3LkTjUYj8vl8vPzyy/Hss89uqY/jx4/H8ePH4/nnn49yuRz5fD7+8i//Msrlhy/1AQAAAAAAAAAAAAAA7A3dme7oznS3O40N7ViBxbK5ubktF1Y0k8lkYm5uLrq7u+MXv/hFApkBAAAAAAAAAAAAAAC74ewrZ9udwkMd2MnOR0ZGEimueND4+Hii/QEAAAAAAAAAAAAAAOxogUU+n0+8z8HBwcT7BAAAAAAAAAAAAAAAOtP7b76fSD8HE+llHSdOnGi6/YMPPnho7Be/+MWm248fPx6NRmMbWQEAAAAAAAAAAAAAAI+K6QvT8dRXntp2PztWYNHV1RWf+9znmrYVCoX46KOPolgsxl/+5V+ubM9kMjE8PBxHjhyJkZGRdePT6fROpAwAAAAAAAAAAAAAAOygD3/8YRz90tF127ZisbIY1XI16rV6Eqnt7AoW6/nmN7+58v/Hxsbi29/+duTz+Xj99dc3Fd/V1bVTqQEAAAAAAAAAAAAAADug+HIxfvjtH0bvQG9c+NGFNe3//Mv/PO7euduGzO5rS4HFg8bHx+Pb3/52jI+PtzsVAAAAAAAAAAAAAABgh1TL1Wg0GlGvNl9x4lDPoYiIGBgZuP/6yKEN+1v8aDGq89V4/833E8mv7QUWERHpdDq++MUvtjsNAABgC25M3Yj+4f52pwEAAOyg6dHpeDr/dGRymXX3mZucixuFGzEwOhCZXCZS6VRUy9VYKC3Ee6+/F6cvnY7ebO+auHqtHu9cficiIg4fORyV+Ur0DfZt+DmjlRgAAAAAAGDvGHp1KDKDmXV/e+jOdMfpl09H9mvZLfV75ciVJNLbGwUWXV1d7U4BAADYgnqtHoV8Ic5OnI2nzz0dqXSq3SkBAAAJqZarUS6WY25iLhZKC/F0/ukN96/X6lEulqNcLK/ankqnIl/Ir1tcMTkwuaZ9enQ6bl2/FYPjg4nEAAAAAAAAe0vqyVQMXBhYtz0zmIljJ45tud/08fQ2svrEniiw2G21Wi0uX74cERFHjhyJ+fn5GBwcjOHh4W31OTY2FhERlUolIiIGBwdjZGRk3ZhSqRQTExNRqVSiVCpFOp2O0dHRDWMAAGAvqJarERHxvdHvxfdGv7fhvvlCfuVpsrv5ZFsAAGDr5ibnojxTjsxgJnLjuXht8LVNxZ2dOBuV+UrUyrVI9aTi2MCxlaW7mynkC/HU8FNr5v9DE0Mx3j0efYN9a55c1UoMAAAAAADQWU5981RLcSOzydyD35EFFrVabVuxAwMDUSgUIpv9ZNmQ0dHRuH79eoyPj2+5z1KpFPl8PiYmJiKXy61sHxwcjPn5+aZ9Tk5ORkTExMTEyrZisRj5fD7Gx8djbm4u0un0lnMBAIDdUC1XozvTHb3Z3kj1NF+9ol6pR7VcXVUEsVtPtgUAAFozMDKwUhixUFrYdNxWVrZbXiHj7MTZpu395/rj2vi1VcUSrcQAAAAAAACd6f0334/ebG+kv5je9WPvWIFFo9GIv/k3/+amigRqtVo899xzm+p3O8UVERH5fD6Gh4dXFVdE3C906O7ujsHBwVVFElvp89NxExMT0dfXt6bPcrkctVotLl68uGr/XC4Xb731VgwMDEQ+n4+ZmZkt/tcBAMDuuHX9Vrw482J0Z7rX3WdmbCZy42vn1rvxZFsAAGDvmp2YjYhY9/NET19PlCZLUa/VV4o2WokBAAAAAAA6z/e+/r0ovVqKVHcqLv7niw8PSNiOrmAxPz+/6X3n5uY2vW9XV1cr6US5XI5isbhq1YgHnTt3LsbHx7dUYHHlypUol8tx6dKlNW2ZTCZyudyaPicmJpruHxGRzWYjl8tFsViMcrkcmYwbxQAA2Js2Kq5YKC1ET19P0312+sm2AADA3vZh6cMNPxMsf464PXt7Za7fSgwAAAAAANB5FiuLcfzM8TUPY90tO1pgsVwscOTIkUT6++ijj2Jubi7efvvtluKXCyvWK1ro6+uLycnJqNVqm1p5IyJWVplYb/9sNhtXrlxZta1YLMbk5GTcvHmzaVw2m41isRilUkmBBQAAe9KJ0RMbts9OzMbQxNC2j+MptQAA0FkWSgtxe/Z2HDtxbN0fPqrlahzqObRuH8tz+2q5uq0YAAAAAACg83RnuiP3rc0vmJC0HSuw6Orqirfffjs+97nPJd73Y4891lJcqVTasHBiuZhhdnZ206tYzM7ObthnX1/fyrGz2WxERPT09ESpVIpyubyyDQAAOslGq1fMjM3E4PhgIsfxlFoAAEjGvbv34td3f73y+le//FWi/ZeL5aiWq5HJZWJgZCAWSgvx2uBrcWrs1Jq5+mJlccPPFMuFFPVafVsxAAAAAMDmXR262u4U4oXpF9qdArAHHDpyKGof1CL9xfSW4q4cuRIXP7q47ePvWIFFo9HYkeKKiIgnn3yypbhyuRw9PT3rti8XSpTL5U332dPTE5VK5aH7zc7OrhRTzMzMRLlcXnd1iuXjK74AAGC3bfemq4XSQvT09WxqNYmderItAACw1ruX340f/NEPVl7fOXAnsb6XCx9OXTy1sq032xv5Qj7Gu8djZG5k1Zx/s0UQH3/08bZiAAAAAACAznPqm6eicK4QJ75+Io5/+fim4xqNRiLH37ECi7feemunum6570qlsm5RQ0SsFF/UarVN95nNZmNqamrd9vn5+aZ9bpTH1NRUZLPZDfdZvLcYv7z3y5XXjx94PB5/7PFNZs2yRlcjGtGIRlcjlmKp3el0vEZXI5aWluLevXvtTuWRcO/ePeOZIOOZLOOZLOOZLOO5Pf/75f893vn/vrPyeqs3Xb17+d3IF/Ib7rPTT7Z9FJjv3+fv8X3e12jGdcF6XBs047ogIuJvf/Nvx3MvPbfy+j/+x/8Yf/ylP06k7/7h/qbbU+lU9A/3RyFfiJfmX0rkWJ3u419/HE/ce2Ll9X6d63cavyV0Nuevszl/nc3562zOX+dqdCVzQxFb43v9ZHjvSZbxTFZS4+k7uvt8Z5mspMZzqav97xV74ZpwfSbLeCZraan9f093S/6NfPzwOz+MuYm5OPbc/Ye3Huo5tO5DX+dn5uPunbuJHHvHCiyeffbZneq65b43Wzjx0UcfbbrP0dHRmJqailKp1HTFiWKxuKU+r1y5EhERr7766ob7jf3bsVWvfzf7u/F7J35vU8fgE41oxOLfWIxKVKIrutqdTsdrRCPu/fz+P4IHDhxoczadb2lpKX7+859HhPFMgvFMlvFMlvFMlvHcptMRp/5/nzx1tvJRJeL/vbnQG1M3Ip1Jb7jPbjzZ9lFgvn/fu+++2+4U9gTvazTjumA9rg2acV3QzFa+B9+OY88dixtTN6Jarq58HkilU5ua6x8+cnjl/7cSsxeZ63cmvyV0Nuevszl/nc3562zOX+f6q8W/ancK+5K5fjK89yTLeCYrqfH0+9d9vrNMVlLjWemtJJVSy/bC3xHXZ7KMZ7J267v9dvujA38UXV33/71tNBpxY+rGrh5/xwos9otcLhe5XC4uX74chUJhVVuxWIxcLhelUimOHDny0L5KpVKMjY1FoVBoWqzxoPG/Mx7dqU+e5Pv4gcfj8QWV71vV6GpEJSrR82FPdDV8kNiuRlcjjv3Xx+LkyZNx8KC3l+1artg0nskwnskynskynskynsla/pC7Ge9efjeGXh3acB9Ptt0c8/37Tp8+3e4U9gTvazTjumA9rg2acV3QzFbm+tux/CSphdLCSoHF8kp061msLK6KbTVmLzLX70x+S+hszl9nc/46m/PX2Zy/DrbY7gT2J3P9ZHjvSZbxTFZS4+n3r/t8Z5mspMbz1ndvJZVSy7bzcPf/8//8P+O//+//+5ibm4uBgYH4n//n/zn+q//qv9pyP67PZBnPZO3Wd/vt1p3pjmq5Gv3D/Q/9fWDZ7eu348Mff5jI8ffVlZpOpze1isVmiiEeNDMzE6OjozE2NhaXLl2KiE9Wrujr61s59sPk8/mYmJiI4eHhh+576OCh+OzBz67eaJXHLVuKpeiKruhqdMWBhsq47VqKpThw4EAcPHjQP4QJMZ7JMp7JMp7JMp7JMp7J2ezTA6rlaiyUFlatPrFVST3Z9lFgvn+fv8Of8L5GM64L1uPaoBnXBZ+W1JPCpken42bx5pYKpbsz3XF79va67cufAZY/F7QasxcdfuywuX4H8ltCZ3P+Opvz19mcv87m/HUuN1G3h+/1k+G9J1nGM1lJjafv5z7hO8tkJTGee+G9YjP32m5GsViM//a//W9bjv83/+bfuD4T5O97cvbLKiDdme44/fLpyH5t4wULPu3KkSuJHH9fXak9PT0btlcq95c3auUNemJiImq12kphRS6Xi3Q6HVeu3D9RJ06c2DA+n8/H6OhojIyMbPnYAADQbrMTs9u+kSmpJ9sCAAC7Z2F2YWVe3sxy4cODxdhHs0ejXCyvG1MtVyMiIpPLbCsGAAAAAADoPN2Z7pbuQ0p1J3P/0P4oY/m/ZTKZlSKKZpZXt8hkWvsBJp1Ox/DwcAwPD68UaVy/fj0iIrLZ9StoxsbG4rnnnouLFy+2dFwAAGi3m8WbD/1gMz06HX/S9ydb6rc7072pm7X2+lNqAQDgUXU8dzzGqmPrtt++fjtS6dSqOfsz55+JiPvF1evFfLpQopUYAAAAAKCz/PKXv2z5z+DgYDz22GMREfHYY4/F4OBgS/0s30sMtM/ZV87G8S8f33LcSz/b/GrbG9lXBRbZbHbDN75y+f7Tr3K5XGLHLJVKG65KMTk5GX19fU2LK7xJAwDQKRZKCw9dRaLVJ9sub2/GU2oBAKC9njn/TMxNzjVtq5arcWPqRgy9OrRqe2+2NzK5TPz09Z82jbsxdSNOjZ3adgwAAAAA0Fk+85nPtPzntddei8HBwThy5EgMDg7Ga6+91nJfwP52sN0J7Kbz58/HlStXolQqNV1R4vr161suriiVSnHmzJkoFAprYkulUpTL5Rgba/70rqmpqYiIpgUY5XI5SqVSDA8PbykfaLefXP1J3PrurTjQaG/91gvTL7T1+ACwnyw/QTbVs3GBxfHc8RgZX7/4eL0n2/7wyg9jobSwqvDiwRjFFQAAsDOWC5o3KnruzfZGuViOa1euxamLnxQ4VMvVmByYjJMXT0b/cP+auHwhH5MDk/HM+WdWzfWnR6fj5MWTTef5rcQAAAAAAPvD5z//+fiLv/iLdqcB7ILyW+Uoz5QjuiJ6+nri2IljcfRLRxPrf18VWGSz2cjlcvH66683LbCYmpqKmZmZNdtrtVpcvnw5BgcH1xRRLK960cyFCxdifHw8Mpm1P+qUSqWoVCrrrm5RLBYTXUkDAAB2ykarUjxo+cm2AyMDa9qWn2ybL+RXbX/wKbXNCixuTN2IF2debC1xAABgjRtTN2Ju4v6KFLdnb0dExPSF6ZVt/fn+NXP6UxdPRblYjunR6ahX6lGv1SOVTsVX3/pq03l8REQqnYqRuZGYGZuJVDoVh48cjsp8JfoG+5oWZLQaAwAAAAAAdJYrR67ExY8urtueOZOJzJlM1O/UY7GyGOViOWYnZmNwfDCe+NwT2z7+viqwiIgoFAoxMDAQ58+fX1VkMTo6GhcvXmxa1DA5ORlXrlyJycnJqFarq9pyudzKn2W1Wi0uXLgQuVwuLl5ce3LL5XLk8/nI5XIxOjq6pr1SqUSxWFxzLAAA2IuWn2qbSm+8gsVuPtkWAABoTf9wf0vFCplcZstz81Q6FUMTQzseAwAAAAAAdI5Go7Gp/VJPpiL1ZCoGLgxE/U49ZsZm4uyfnt328fddgUU6nY65ubkYGxuLdDodR44cifn5+RgcHIzh4eGmMblcLtLpdJw7d65pf+Pj45HP33/Sbq1Wi4iIsbGxdVegGBwcjHK5HJOTk+vm2WzVCwAA2IuOnTgWqXQqvvDcFx6672492RYAAAAAAAAAAOg8XV1dW45JPbnxg2G3Yt8VWETcL4qYmJjY9P7ZbHbD1SQymUwUCoVN9zc/P7/pfQEAYK/rzfbGWHVs0/vv1pNtAQAAAAAAAACAR1/9Tj0WZhcS6WtfFlgAAAAAAAAAAAAAAAC7r/ZBren2RqNxv/0/1CIaG/dRr9VjsbIYC6WFePfyu9F/rj+R3BRYAAAAAAAAAAAAAAAAu+L23O24ff12VMvVKBfLcffO3VXtf5L5k0331Wg0IpPLxNk/PZtIbgosAAAAAAAAAAAAAACAXdH/fH/0P//JihMLpYUojhWj/FY5urq64qnnn9pUP92Z7sgMZiJzJpNYbgosAAAAAAAAAAAAAACAtujN9saLMy/G9Oh0vD/1fuTfyLctFwUWAAAAAAAAAAAAADvs6tDVdqcQEREvTL/Q7hQAoKmhiaFYmFtoaw4H2np0AAAAAAAAAAAAAACAiDh96XRbj28FCwAAAAAAAAAAAAAAoO36n+9/6D43374Z1XI1ujPdcezEsXjic08kdnwFFgAAAAAAAAAAAAAAQNsVXy5G/U591bazf3o2IiLqd+rxWu61WCgtRKPRiO5Md9Sr9chP5eP43z2eyPEVWAAAAAAAAAAAAAAAAG03MDoQf9L3JzEwOhADIwPR+2zvSlshX4jbc7fj1MVTkftWLiIi6rV6FM4Vovt4d6S/mN728RVYAAAAAAAAAAAAALBrfnL1J3Hru7fiQONAW/N4YfqFth4fgLU+/MsPI1/IR//z/au23/iXN6JcLMfT+adXiisiIlLpVOTfyEfxUnFlpYvtaO+/TAAAAAAAAAAAAAAAABFx6/qtNcUVERHvvf5edHV1xelLp9e0pdKpSD2ZSuT4CiwAAAAAAAAAAAAAAID2azTfXC6WIyLi6JeONt+hK5nDK7AAAAAAAAAAAAAAAADa7tCRQ2u2VW9Wo16rR2+2d924eq2eyPEVWAAAAAAAAAAAAAAAAG3X1bV2KYobUzciIuJ47vj6geusfLFVCiwAAAAAAAAAAAAAAIC2+/g/fxx3f3F31ba5ibno6uqKZ84/0zSmeKkYA6MDiRxfgQUAAAAAAAAAAAAAANB2py+djkK+EB/+uw/jwx9/GFPnp6Jarkb/cH8c/dLRVft++OMP41/8zr+Iw0cOR++zvYkc/2AivQAAAAAAAAAAAAAAAGxD6slUnLl8Jt54/o2olqsREfF0/ukYfn14ZZ/vff17US6WV9rLxXJ8/NHHkbuc2/bxFVgAAAAAAAAAAAAAAAB7Qm+2N1762UtRv1OP1JOpNe2nxk7FqbFTq7Yd6jmUyLEVWAAAAAAAAAAAAAAAAHtKs+KKiIju4907dswDO9YzAAAAAAAAAAAAAADADnv/zfcT6UeBBQAAAAAAAAAAAAAA0LGmL0wn0s/BRHoBAAAAAAAAAAAAYM+7OnS1rcdf6lqK6G1rCgC02Yc//jCOfunoum1bsVhZjGq5GvVaPYnUFFgAAAAAAAAAAMB+sFBaiNmJ2ahX6rFQWohUOhUDowMxMDKwbky9Vo93Lr8TERGHjxyOynwl+gb7on+4P9EYAABgfyi+XIwffvuH0TvQGxd+dGFN+z//8j+Pu3futiGz+xRYAAAAsCe1+8k5EREvTL/Q7hQAAAAAABIxNzkXERFDE0Mr28rFchTyhbg2fi1G5kYilU6tiqnX6jE5MBn5Qj56s588anx6dDpuXb8Vg+ODa47TSgwAALB/VMvVaDQaUa82X3HiUM+hiIiVQvBDRw5t2N/iR4tRna/G+2++n0h+CiwAAAAAAAAAAOARVi1Xo16rx6mLp1Ztz+Qy8dW3vhqTA5NRyBfixZkXV7UX8oV4avipVYUSEfeLNMa7x6NvsC8yucy2YwAAgP1j6NWhyAxm1v1c0J3pjtMvn47s17Jb6vfKkStJpBcHEukFAAAAAAAAAADYk2YnZlee/vppvdneyOQyUS6Wo1qurmyvlqtRLpbjxOiJpnH95/rj2vi1VdtaiQEAAPaX1JOpGLgwEN3Hu5u2ZwYzcezEsS33mz6e3mZm9ymwAAAAAAAAAACAR9jN4s34p8f/adRr9abtR7NHIyJiobSwsm12YjYi7j89tpmevp4oF8ur+mwlBgAA4EGnvnkqjn7p6JbjRmZHEjn+wUR6AQAAAAAAAAAA9qRDPYdiobQQ1XI1erO9m4r5sPRhpNKpdduXiyhuz96OTC7TcgwAAJCMhdJCzE7MRr1Sj4XSQqTSqRgYHVh3NbuIiHqtHu9cficiIg4fORyV+Ur0DfZF/3B/ojGdRIEFAAAAAAAAAAB0oKVfL0VjqfHJ63tLTfd7cebFqJar664sUSvXIiJWFV9Uy9U41HNo3WMvF1JUy9VtxQAAANs3NzkXERFDE0Mr28rFchTyhbg2fi1G5kbWFEPXa/WYHJiMfCG/6rPA9Oh03Lp+KwbHB9ccp5WYrah9UItysRyV+crK55RUTyp6+nqiN9sbx798fFv9b4YCCwAAAAAAAAAA6ECVn1Wi8u8rK6/vxJ11912vuCIi4sbUjejN9q7aZ7GyuGHMciFFvVbfVgwAALA91XI16rV6nLp4atX2TC4TX33rqzE5MBmFfCFenHlxVXshX4inhp9as8rd0MRQjHePR99g35qV51qJeZi7v7gbc5Nz8e7ldzf1WWFgdCBOXTwV6S+mt3SczVJgAQAAAAAAAAAAHajnN3pWFTRU6pWIH2ytj2tXrkVExNCrQ6u2b7YI4uOPPt5WDAAAsD2zE7Px25d+u2lbb7Y3MrlMlIvlVavaVcvVKBfLcXbibNO4/nP9cW382qpiiVZiHqb0Z6X43uj3IiKi0WisakulU3Go51AsVhZXfdaYfWU25ibm4tTYqTjzT85s+libpcACAAAAAAAAAAA60IHHDkQ89sDrewe2FL9QWojiWDHyhfyaJ9ACAACd4WbxZpQmS/H7N38/UunUmvaj2aNRLpZjobSwUmAxOzEbEeuvdNfT1xOlyVLUa/WVPluJ2cjU+am4MXUjGo1GZHKZyAxmIpPLRO+zzT+b1O/Uo1wsx/z356P0aimujV+LcrEcF3504aHH2oqtfaoCAAAAAAAAAAAeCYV8Ic5OnI3+4f41bal0alMrUhw+cnhbMQAAwPYc6jkU9Vo9quXqpmM+LH24YRHEchHF7dnb24pZz7/4nX8R7xXei6eefypemn8pXvz+i3Hqm6fWLa6IiEg9mYr+5/tjaGIo/oel/yF+6w9/K27P3o5Xf/PVhx5vK6xgAQAAAAAAAAAA+0whX4iB0YEYGBlo2n6o59CG8YuVxYiIVTdYtRIDAABsz4szL0a1XF13ZYlauRYRsWrVumq5uuH8fXnO/mDRRisxzVz79rWYn5mPocmhyH4tu+G+GxkcH4y+wb547e+9Fm/947fizD8503JfD7KCBQAAAAAAAAAA7CMzYzNx7LljceriqXX36c50rxRENLO8UsWDN3G1EgMAADR37+69uPuLuyt/fvXLX62770Zz7BtTN6I327tqn8XK4oaFz8uFFA+uUNdKzKfV79SjOFaMwSuD2yquWJbJZSL/Rj6ujV+L2ge1bfcXYQULAAAAAAAAAADYN+Ym56Knr6fpyhX1Wn3lhqmj2aNRLpbX7Wf5qbSZXGZlWysxAABAc+9efjd+8Ec/WHl958CdLfdx7cq1iIgYenVo1faNiiAe9PFHH28r5tPmJueiN9sbJ//w5Kb62oz+4f44+uzRuDF1I5F+rWABAAAAAAAAAAD7wI2pGxERTYsrquXqquKIZ84/ExERC6WFpn3dvn57TaFEKzEAAEBzpy+djpfvvLzy5xv/7htbil8oLURxrBj5Qj56s707lOXWvPf6e/Hb//i3E+/39Mun473X30ukLwUWAAAAAAAAAADwiFsoLcRiZbFpcUVERLlYXnXTVW+2NzK5TPz09Z823f/G1I04NXZq1bZWYgAAgOYOPnEwnvjcEyt/Hv/s41uKL+QLcXbibPQP969pS6VTm1qR4vCRw9uK+bTazdqOFF1nBjMrK+Zt18FEegEAAAAAAAAAAPakarkahXwhjueOx+3R22va65V6lIvlGKuOrdqeL+RjcmAynjn/zKrii+nR6Th58WTTG6NaiQEAAJJVyBdiYHRg3QLrQz2HNoxfrCxGxP2iiu3EfFq9Vo8nPvfEhv20IvXk5oo/NkOBBQAAAAAAAAAAPMJeG3wtquVqVCfXf6Jrd6Z7zbZUOhUjcyMxMzYTqXQqDh85HJX5SvQN9jV9Cm6rMQAAQHJmxmbi2HPH4tTF9VeP6850x+3ZtcXXy5aLFR78nNBKzKc98WTyxRVJ963AAgAAAAAAAAAAHmEvzb/UcmwqnYqhiaEdjwEAALZvbnIuevp6mq5cUa/VV1aXOJo9GuVied1+quX7xdkPrkDXSsyndXV1bfwfsA1J9X0gkV4AAAAAAAAAAAAAAIC2uDF1IyKiaXFFtVxdVRzxzPlnIiJiobTQtK/b12+vKZRoJaYTKbAAAAAAAAAAAAAAAIAOtVBaiMXKYtPiioiIcrEcvdnelde92d7I5DLx09d/2nT/G1M34tTYqVXbWonpRAfbnQAAAAAAAAAAAAAAALB11XI1CvlCHM8dj9ujt9e01yv1KBfLMVYdW7U9X8jH5MBkPHP+mVXFF9Oj03Hy4smmq1G0ErMql1p9q/95m5ZU3wosgEfS1aGr7U4hXph+od0pAAAAAAAAAAAAAPAIe23wtaiWq1GdrK67T3eme822VDoVI3MjMTM2E6l0Kg4fORyV+Ur0DfZF/3B/035aiXlQo9GI/+lv/k9N89mOann9//atUmABAAAAAAA0NT06HU/nn97UE6feufxORMSmf0zZrRgAAAAAAHiUvTT/UsuxqXQqhiaGdjzmQZX5SlTmKy3Hr6erqyuRfhRYAAAALZmbnIsbhRsxMDoQmVwmUulUVMvVWCgtxHuvvxenL51etRTgMjdRAQDA3lYtV6NcLMfcxFwslBbi6fzTG+5fr9VjcmAy8oX8muXAb12/FYPjg22LAQAAAAAA9pZMLhOZwY0f7LRVt390O95/8/1E+lJgAQAAtKReq0e5WI5ysbxqeyqdWnPD04MxbqICAIC9a25yLsoz5cgMZiI3novXBl97aEwhX4inhp9a8xlgaGIoxrvHo2+wb80KGLsVAwAAAAAA7B1dXV3x4vdf3JG+/8fH/sdE+lFgAQAAtOzsxNmozFeiVq5FqicVxwaOxcDIwLr7u4kKAAD2toGRgZU5/UJp4aH7L692cXbibNP2/nP9cW382qo5+27FAAAAAAAAe8sTTz6x5/tWYAEAALTs6XNPRyqd2tS+bqICAIBHz+zEbEREdGe6m7b39PVEabIU9Vp95bPDbsUAAAAAAAB7y1ff+uqe7/tAIr0AAAA8xGZuiCoXy1Gv1bcVAwAA7J4PSx9uWNCwPJe/PXt712MAAAAAAIC9pffZ3j3ftwILAABgV7iJCgAAHj3VcjUO9Rxat315Pl8tV3c9BgAAAAAAYKsUWAAAANu2UFqIucm5WCgtrLuPm6gAAKB97t29F3d/cXflz69++atE+l2sLG5YFL08n39w1bndigEAAAAAANiqg+1OAAAA2Dvu3b0Xv77765XXD7vpqlwsR7VcjUwuEwMjA7FQWojXBl+LU2OnIpPLrNp3sbK4suJEM+vdRLXVGAAAYK13L78bP/ijH6y8vnPgTiL9bnYu/vFHH+96DAAAAAB0gqtDV7cVv9S1FJXeStz67q040PDcdYDtUmABAACs2MpNV8uFD6cunlrZ1pvtjXwhH+Pd4zEyNxK92d6VNjdRAQBA+5y+dDp+6w9+a+X1z3/+8/jjv/XHbcwIAAAAAABg71FgAQAArNjKTVf9w/1Nt6fSqegf7o9CvhAvzb+0I3kCAABbc/CJg3HwiU9+Enj8s48n0m8qndpUYfThI4d3PQYAAAAAAGCrrAUEAACsOPjEwXjic0+s/Gn1pqtjzx2Larka1XJ1ZZubqAAA4NFzqOfQhu2LlcWIuD+33+0YAAAAAACArVJgAQAAJG75pqaF0sLKNjdRAQDAo6c7070yL29muWC6O9O96zEAAAAAAABbdfDhuzx6arVaXL58OSIijhw5EvPz8zE4OBjDw8Pb6nNsbCwiIiqVSkREDA4OxsjIyK7mAQAAu2F6dDpuFm/GS/MvbTqmO9Mdt2dvr9u+3k1UW40BAAB2z9Hs0SgXy+u2L69ql8lldj0GAAAAAABgq/ZdgUWtVouBgYEoFAqRzWZXto+Ojsb169djfHx8y32WSqXI5/MxMTERuVxuZfvg4GDMz8837XMn8gAAgN2yMLuwqafH9mZ7V7a5iQoAAB49z5x/Jn545YexUFpYNf9fdvv67TXz9d2KAQAAAAAA2KoD7U5gt+Xz+RgeHl5V1BARMTExEZOTk1EsFlvu88HiiuU+r1y50rTPncgDAAB2y/Hc8Rirjq3bfvv67UilU6tWlnjm/DMREbFQWlg3ptlNVFuNAQAAdk9vtjcyuUz89PWfNm2/MXUjTo2daksMAAAAAADAVu2rAotyuRzFYjFGR0ebtp87d27LK0dcuXIlyuVyXLp0aU1bJpOJXC63ps+dyAMAAHbTM+efibnJuaZt1XI1bkzdiKFXh1ZtdxMVAAB0luUV45ZXqFtPvpCP96feX1MYPT06HScvnmxaFL1bMQAAAAAAAFtxsN0J7KaJiYmIuF/40ExfX19MTk5GrVaLdDq9qT5nZmYiItbdP5vNxpUrV3Y8DwAA2E292d4oF8tx7cq1OHXxkwKHarkakwOTcfLiyegf7l8Tly/kY3JgMp45/0z0ZntXtj/sJqqtxgAAAK25MXUj5ibuF1Pfnr0dERHTF6ZXtvXn+2NgZGBVTCqdipG5kZgZm4lUOhWHjxyOynwl+gb7mn4u2M0YAAAAAACArdhXBRalUmnDgoXlgofZ2dnI5XKb6nN2dnbDPvv6+laOnc1mdywPAADYbacunopysRzTo9NRr9SjXqtHKp2Kr7711VWFEA9yExUAAOxt/cP9Lc2zU+lUDE0MPXzHNsQAAAAAAABs1r4qsCiXy9HT07Nu+3LRQ7lc3nSfPT09UalUHrrf7OzsSoFFEnks3luMX9775crrxw88Ho8/9vgms2ZZo6sRjWhEo6sRS7HU7nQ6nvFc7d69e9uOX1pa2nY/3Gc8k2U8k2U8k2U8k7W0tPG/6ZlcZssrSLiJ6uHM9/eOvfBe4n2NZlwXrMe1QTOuC5p52FyfnfHxrz+OJ+49sfLaXL8z+O67szl/nc3562zOX2dz/jpXo6vR7hT2Jd/rJ8N7T7KMZ7KMZ7L20njuhe9Nl7q2NwZ7aTy3ay+cD9+pJ8t4Jst3+7tjXxVYVCqVldUhmlkueqjVapvuM5vNxtTU1Lrt8/Pza/pMIo+xfzu26vXvZn83fu/E720iYx7UiEYs/o3FqEQluqKr3el0POO52rvvvrut+KWlpfj5z38eEREHDhxIIqV9zXgmy3gmy3gmy3gm66OPPmp3CvuS+f7esd05XRK8r9GM64L1uDZoxnVBM+b67WGu35l8993ZnL/O5vx1Nuevszl/neuvFv+q3SnsS+b6yfDekyzjmSzjmay9NJ574ffASu/DH/K9kb00ntu1F86H79STZTyT5bv93bGvCiw2WzixlYtvdHQ0pqamolQqraxQ8aBisbimzyTyGP8749Gd6l55/fiBx+PxBZXvW9XoakQlKtHzYU90NTp7YrEXGM/VTp8+va345YrNkydPxsGD++rtekcYz2QZz2QZz2QZz2Qtf8hld5nv7x3bndMlwfsazbguWI9rg2ZcFzRjrt8e5vqdyXffnc3562zOX2dz/jqb89fBFtudwP5krp8M7z3JMp7JMp7J2kvjuRd+D7z13Vvbit9L47lde+F8+E49WcYzWb7b3x2u1G3K5XKRy+Xi8uXLUSgUVrUVi8XI5XJRKpXiyJEjiR730MFD8dmDn1290SqPW7YUS9EVXdHV6IoDDZVx22U8V0tiMnDgwIE4ePCgiUVCjGeyjGeyjGeyjGdyPD2gPcz394698j7ifY1mXBesx7VBM64LPs1cvz0OP3bYXL8D+e67szl/nc3562zOX2dz/jpXp99U2al8r58M7z3JMp7JMp7J2kvjuRe+M93uGOyl8dyuvXA+InynnjTjmRzf7e+OfTXK6XR6U6tHbLUYYmZmJnp6emJsbCxqtVrUarWYmpqKWq0WfX19K8fe6TwAAAAAAAAAAAAAAIDW7KtSoJ6eng3bK5VKRKwuhtisiYmJqNVqUSwWI+L+yhbpdDquXLkSEREnTpzYlTwAAAAAAAAAAAAAAICt21cFFplMJmZnZ9dtX15VIpPJtNR/Op2O4eHhVduuX78eERHZbHbX8gAAAAAAAAAAAAAAALbmQLsT2E3ZbHaleKGZcrkcEfdXn0hKqVSKkZGRtucBAAAAAAAAAAAAAACsb18VWJw/fz4i7hc9NHP9+vUtFzWUSqXo7u6OYrHYtK1cLsfY2NiO5wEAAAAAAAAAAAAAALRuXxVYZLPZyOVy8frrrzdtn5qaWlMMERFRq9VibGysaRHF8moTzVy4cCHGx8cjk8kkkgcAAAAAAAAAAAAAALAz9lWBRUREoVCIqampNatHjI6OxsWLF5uuHDE5ORlXrlyJfD6/pi2Xy638WVar1SKfz0cul4uLFy8mlgcAAAAAAAAAAAAAALAzDrY7gd2WTqdjbm4uxsbGIp1Ox5EjR2J+fj4GBwdjeHi4aUwul4t0Oh3nzp1r2t/4+PhK8UWtVouIiLGxsQ2LJFrJAwAAAAAAAAAAAAAA2Bn7rsAi4n5xw8TExKb3z2azUa1W123PZDJRKBR2PA8AAAAAAAAAAAAAAGBnHGh3AgAAAAAAAAAAAAAAAO2mwAIAAAAAAAAAAAAAANj3DrY7AYBH1dWhq9uKX+paikpvJW5991YcaLReD/fC9AvbygMAAAAAAAAAAAAA9gMrWAAAAAAAAAAAAAAAAPueAgsAAAAAAAAAAAAAAGDfO9juBAAAAGCvujp0td0pxFLXUnzhD77Q7jQAAAAAAAAAAB55VrAAAAAAAAAAAAAAAAD2PQUWAAAAAAAAAAAAAADAvqfAAgAAAAAAAAAAAAAA2PcOtjsBAAAAAAAAAAAAANhtV4eutjsFAPYYK1gAAAAAAAAAAAAAAAD7ngILAAAAAAAAAAAAAABg31NgAQAAAAAAAAAAAAAA7HsKLAAAAAAAAAAAAAAAgH1PgQUAAAAAAAAAAAAAALDvKbAAAAAAAAAAAAAAAAD2PQUWAAAAAAAAAAAAAADAvqfAAgAAAAAAAAAAAAAA2PcUWAAAAAAAAAAAAAAAAPueAgsAAAAAAAAAAAAAAGDfU2ABAAAAAAAAAAAAAADsewosAAAAAAAAAAAAAACAfe9guxMAAAAAAAAAAAB2z/TodDydfzoyucyG+9Vr9Xjn8jsREXH4yOGozFeib7Av+of7E40BAADYKxRYAAAAAAAAAADAI65arka5WI65iblYKC3E0/mnN9y/XqvH5MBk5Av56M32rmyfHp2OW9dvxeD4YCIxAAAAe8mBdicAAAAAAAAAAADsnLnJuSiOFSMiIjee21RMIV+Ip4afWlUoERExNDEUpclSlIvlRGIAAAD2EitYAAAAAAAAAADAI2xgZCAGRgYiImKhtPDQ/ZdXuzg7cbZpe/+5/rg2fi0yucy2YgAAgORNj07H0/mnHzr3rtfq8c7ldyIi4vCRw1GZr0TfYF/0D/cnGtNpFFgAAAAAAAAAAAArZidmIyKiO9PdtL2nrydKk6Wo1+qRSqdajgEAAJKxXPA8NzEXC6WFeDr/9Ib712v1mByYjHwhv2oFuunR6bh1/VYMjg8mEtOJFFgAAADAHveTqz+JW9+9FQcaB9qaxwvTL7T1+AAAAADA7viw9OGGRRDLRRS3Z2+vPBW3lRgAAGD75ibnojxTjsxgJnLjuXht8LWHxhTyhXhq+KlVhRIREUMTQzHePR59g31r5u2txHSi9t6ZAQAAAAAAAAAA7CnVcjUO9Rxat325kKJarm4rBgAA2L6BkYHIF/IxMDKw4Zx82fJqFydGTzRt7z/XH9fGr207plNZwQLgEXd16Gq7U4gITzsGAAAAAAAASNrSr5eisdT45PW9pUT6Xawsrqw40czyTVv1Wn1bMQAAwO6bnZiNiFh3/t7T1xOlyVLUa/WVQulWYjqVAgsAAAAAAAAAAOhAlZ9VovLvKyuv78SdRPrdbBHExx99vK0YAABg931Y+nDDIojlIorbs7cjk8u0HNOpFFgAAAAAAAAAAEAH6vmNnlVPkK3UKxE/aGNCAADAnlctV1dWmGtmuZCiWq5uK6ZTKbAAAAAAAAAAAIAOdOCxAxGPPfD63oFE+k2lU5takeLwkcPbigEAANZ37+69+PXdX6+8/tUvf5VIv4uVxVWF2p+2XEjx4Py+lZhOpcACAAAAAAAAAABYsdGTaSPu31wV8clTaluNAQB40NWhq+1OIZa6luILf/CFdqcBERHx7uV34wd/9MkSdXcO3Emk380WQXz80cfbiulUCiwAAAAAAIAVc5NzcaNwIwZGByKTy0QqnYpquRoLpYV47/X34vSl09Gb7V0TV6/V453L70TE/SfSVuYr0TfYF/3D/eseq5UYAABg53VnuuP27O1125dvrnrwCbatxAAAAOs7fel0/NYf/NbK65///Ofxx3/rj9uY0f6gwAIAAGjZQmkhZidmo16px0JpIVLpVAyMDsTAyEDT/XfzRi0AAKA19Vo9ysVylIvlVdtT6VTkC/l15+yTA5Nr2qdHp+PW9VsxOD6YSAwAALA7jmaPrvlM8KBquRoREZlcZlsxAADA+g4+cTAOPvHJ7f6Pf/bxRPpNpVObWpHi8JHD24rpVAosAACAlsxNzkVExNDE0Mq2crEchXwhro1fi5G5kTXLfO/WjVoAAMD2nJ04G5X5StTKtUj1pOLYwLF1C6kjIgr5Qjw1/NSaOf3QxFCMd49H32DfmpuoWokBAAB2xzPnn4kfXvlhLJQWmn53f/v67TXz9VZiAACgU1wdutruFOI/1/9zIv0c6jm0YftiZTEiYtV9P63EdCoFFgAAwJZVy9Wo1+px6uKpVdszuUx89a2vxuTAZBTyhXhx5sU1sbtxoxYAALA9T597etM/glTL1SgXy3F24mzT9v5z/XFt/NqqeXsrMQAAwO7pzfZGJpeJn77+06bFEjembqz5DaCVGAAAYPd1Z7rj9uztdduXV6roznRvK6ZTHWh3AgAAQOeZnZhdtyhi+QeUcrG8stz3g54+93QMjg9GvpCPoYmhDYsrlm+6OjF6omn78k1XAABA+8xOzEbE+j+a9PT1RLlYXrV0eCsxAABAMpa/u3/YfDtfyMf7U+/HQmlh1fbp0ek4efFk04LoVmIAAIDddTR7dMPPA8ufGR6cv7cS06msYAEAAGzZzeLNKE2W4vdv/n7Tp9oezR6NcrEcC6WFbVWmb+amq9JkKeq1+iOxxCAAAHSiD0sfbjgfX57P3569vfLDSisxAABA625M3Yi5ibmIiJWnzk5fmF7Z1p/vX/NApFQ6FSNzIzEzNhOpdCoOHzkclflK9A32Rf9wf9PjtBIDAADsrmfOPxM/vPLDWCgtNF197vb1td/NtxLTqRRYAAAAW3ao51AslBaiWq42/dCUFDddAQBAey2UFuL27O04duLYunP/arkah3oOrdvH8pz+wRXuWokBAABa1z/c31KBQyqdiqGJoR2PAQAAdk9vtjcyuUz89PWfNv3u/8bUjXhx5sVtx3SqA+1OAAAA2Dvu3b0Xd39xd+XPr375q6b7vTjzYrw0/9K6N1jVyrWIiA2LLxZKCzE3ObdmmfAHuekKAACSsdm5/rJysRzXrlyLiFh5iu1rg69FuVhes+9iZXHDwujlOf2DS4e3EgMAAAAAAGxs+R6ah32/ni/k4/2p99fctzM9Oh0nL55s+qDTVmI6kRUsAACAFe9efjd+8Ec/WHl958CddfddXj2imRtTN6I329t0n3KxHNVyNTK5TAyMDMRCaSFeG3wtTo2dWvNBa7GyuOFx3HQFAACb08pc/9TFUyvberO9kS/kY7x7PEbmRlYVU292Pv7xRx9vKwYAAAAAYL+4OnS13SlERMQL0y+0O4WI2DvjsVfdmLoRcxNzERFxe/Z2RERMX5he2daf7195mNKyVDoVI3MjMTM2E6l0Kg4fORyV+Ur0Dfatu/pdKzGdSIEFAACw4vSl0/Fbf/BbK69//vOfxx//rT/eUh/LT7kdenXt8t+7caMWAACw1lbm+hv9cNI/3B+FfCFemn9pR/IEAAAAAGDv2G5hw1LXUlR6K3Hru7fiQONAQlnxaf3D/S0VOKTSqRiaWHt/T9IxncaVCgAArDj4xMF44nNPrPx5/LOPbyl+obQQxbFi5Av5VYUSy9b7QPfgjVoAAEDytjvXX3bsuWNRLVdXlhiPuD+f30xx9OEjh7cVAwAAAAAAsNMUWAAAAIkp5AtxduJsS1XxSd2oBQAA7JxUOhUR94urlx3qObRhzGJlcVVsqzEAAAAAAAA7TYEFAACQiEK+EAOjAzEwMtBSfFI3agEAAK2bHp2OP+n7ky3FdGe6V+bmzSwXTXdnurcVAwAAAAAAsNMUWAAAANs2MzYTx547Fqcunlp3n926UQsAAGjdwuzCpubgvdnelW1Hs0c3XHlueZW6TC6zrRgAAAAAAICddrDdCQCwP1wdutrW4y91LcUX/uALbc0B4FE1NzkXPX09TVeuqNfqn6xM0eKNWuVied0YN10BAECyjueOx8j4yLrtt6/fjlQ6tarI+Znzz8QPr/wwFkoLq+bzD8Z8es7eSgwAAAAAAMBOs4IFAADQshtTNyIimhZXVMvVVcURx3PHY6w6tm5f692oFRGxUFpYN8ZNVwAAkJxnzj8Tc5NzTduq5WrcmLoRQ68Ordrem+2NTC4TP339p03jbkzdiFNjp7YdAwAAAAAAsNMUWAAAAC1ZKN1fkaJZcUVERLlYXvUk2t26UQsAAGhdb7Y36rV6XLtybdX2arkakwOTcfLiyegf7l8Tly/k4/2p99cUR0+PTsfJiyebFka3EgMAAAAAALCTDrY7AQAAoPNUy9Uo5AtxPHc8bo/eXtNer9SjXCyvWrGiN9sb5WI5rl25FqcunlrV18Nu1JocmIxnzj+zqmDDTVcAALAzTl08FeViOaZHp6NeqUe9Vo9UOhVffeurq+bkD0qlUzEyNxIzYzORSqfi8JHDUZmvRN9gX9N5fqsxAAAAAAAAO0mBBQAAsGWvDb4W1XI1qpPVdffpznSv2bZbN2oBAADbk8lltlzMnEqnYmhi6OE7bjMGAAAAAABgpyiwAAAAtuyl+Zdajt2tG7WA5F0dutruFOKF6RfanQIAAAAAAAAA8Ig60O4EAAAAAAAAAAAAAAAA2s0KFgAAAAAAAAAAAAAAEfGTqz+JW9+9FQcanmMP+5G/+QAAAAAAAAAAAAAAwL63L1ewqNVqcfny5YiIOHLkSMzPz8fg4GAMDw9vq8+xsbGIiKhUKhER8dxzz8XFixcTjQEAAAAAAAAAAAAAAJK37wosarVaDAwMRKFQiGw2u7J9dHQ0rl+/HuPj41vus1QqxcTERIyPj0c6nV7ZPjU1FQMDAzE3N5dIDAAAAAAAAAAAAAAAsDP2XYFFPp+P4eHhVcUVERETExPR3d0dg4ODkcvlttTn2NhYzMzMrNk+PDwclUolRkdHY2JiYtsxAAAAAAAAAAAAAADAzjjQ7gR2U7lcjmKxGKOjo03bz507t+UVLEqlUmQymXXbz507F8VicdsxAAAAAAAAAAAAAADAztlXBRbLK0KsV9zQ19cXxWIxarXapvtcLtpYT6VSiXQ6ve0YAAAAAAAAAAAAAABg5+yrAotSqbRh4cJy4cXs7Oym+8xms1EulyOfzzdtn5iYiPPnz287BgAAAAAAAAAAAAAA2Dn7qsCiXC5HT0/Puu3LxRflcnnTfWYymRgZGYmpqamVFTCWLa+GcfHixW3HAAAAAAAAAAAAAAAAO+dguxPYTZVKZWWVimaWiy9qtdqW+p2YmIi+vr4YGxuLwcHBGBkZib6+vshmszExMZFYzIMW7y3GL+/9cuX14wcej8cfe3xLeRPR6GpEIxrR6GrEUiy1O52OZzyTZTyT1ehqxNLSUty7d6/dqTwS7t27ZzwTZDyTZTyTtbTk36B2MN/nQeaFq/2v/6//td0pRETE+Tfbu/Kkf+9Yj2uDZlwXNGOu3x4f//rjeOLeEyuvzfU7gzl5Z3P+Opvz19mcv87m/HWuRlej3SnsS77XT4b3nmQZz2QZz2QZz2QZz2QZz2QZz2Q1wnx/N+yrAovNFk589NFHW+774sWLkU6nY3R0NCYnJyOdTkehUEg8ZtnYvx1b9fp3s78bv3fi97ac937XiEYs/o3FqEQluqKr3el0POOZLOOZrEY04t7P799IcuDAvlrAaUcsLS3Fz3/+84gwnkkwnskynslqZW7M9pnv8yDzwr3p3Xffbevx/XvHelwbNOO6oBlz/fYw1+9M5uSdzfnrbM5fZ3P+Opvz17n+avGv2p3CvmSunwzvPckynskynskynskynskynskynsn6Zf2XD9+JbdtXBRY7aWxsLPr6+qLRaMTY2FhcuXJlZWWK9VakaCVm2fjfGY/uVPfK68cPPB6PL6h836pGVyMqUYmeD3uiq+GNe7uMZ7KMZ7IaXY049l8fi5MnT8bBg/75267lp54az2QYz2QZz2Qt34jH7jLf50HmhXvT6dOn23p8/96xHtcGzbguaMZcvz3M9TuTOXlnc/46m/PX2Zy/zub8dbDFdiewP5nrJ8N7T7KMZ7KMZ7KMZ7KMZ7KMZ7KMZ7Iai1aw2A376te0dDq9qVUsjhw5sqV+BwcHY2xsLHK5XEREjI+Px/nz5yOfz8fk5GRUKpU1K1O0EvOgQwcPxWcPfnb1Rn9ntmwplqIruqKr0RUHGp7et13GM1nGM1lLsRQHDhyIgwcPupkkIcYzWcYzWcYzOZ5w3B7m+zzIvHBv2gv/xvj3jvW4NmjGdcGnmeu3x+HHDpvrdyBz8s7m/HU256+zOX+dzfnrXG5aaw/f6yfDe0+yjGeyjGeyjGeyjGeyjGeyjGeyrAKyO/bVr2k9PT0btlcqlYi4X4ixWVeuXIlsNrtSKLEsm83G/Px8jI6OxuTkZBSLxZV9WokBYPt+cvUnceu7t9o+UXth+oW2Hh8AAAAAAAAAAACAtfZVKVAmk1kpomhmeXWLTCaz6T4nJibi0qVLG7Zns9mYmZnZVgwAAAAAAAAAAAAAALBz9lWBRTabXSmiaKZcLkdEbGnViHK5/NAVL0ZHR1cdt5UYAAAAAAAAAAAAAABg5xxsdwK76fz583HlypUolUqRzWbXtF+/fn1LxRUR91e7KJfLG656MT8/HwMDA9uKAeDRcXXoartTiBemX2h3CgAAAAAAAAAAAAB7yr5bwSKXy8Xrr7/etH1qairGxsbWbK/VajE2NhbFYnFN2/DwcNOYB2NLpVKcO3duWzEAAAAAAAAAAAAAAMDO2VcFFhERhUIhpqamolQqrdo+OjoaFy9ebLqCxeTkZFy5ciXy+fyatvHx8ZX4Wq22qq1UKkU+n4/x8fFIp9PbigEAAAAAAAAAAAAAAHbOwXYnsNvS6XTMzc3F2NhYpNPpOHLkSMzPz8fg4GAMDw83jcnlcpFOp9ddUaJQKESxWIwLFy6s2p7JZGJmZiaxGAAAAAAAAAAAAAAAYGfsuwKLiPtFFhMTE5veP5vNRrVa3XCfXC7XdPWLpGMAAAAAAAAAAAAAAIDkHWh3AgAAAAAAAAAAAAAAAO2mwAIAAAAAAAAAAAAAANj3DrY7AQAAAIBOc3XoaluPv9S1FJXeStz67q040Gjv8zNemH6hrccHAAAAAAAAgKRYwQIAAAAAAAAAAAAAANj3rGABAPvQdp+4nNQTkz3tGAAAAAAAAAAAANgrrGABAAAAAAAAAAAAAADse1awAAAAAABg3/jrv/7rlmP/03/6T/H1r3895ubmYmBgIF555ZX4/Oc/31Jfn/nMZ1rOAwAAAAAAgJ2hwAIAAAAAgH3js5/9bCL9zMzMRF9fX8vxjUYjkTwAAAAAAABIzoF2JwAAAAAAAAAAAAAAANBuVrAAANrm6tDVdqcQL0y/0O4UAAAA2EW//OUvW479+3//78fbb78dv/71r+Oxxx6LL3/5y/Hnf/7nCWYHAAAAAABAOymwAAAAAKBlimaBTvOZz3ym5djXXnst/uE//Idx/fr1eO655+Kf/bN/tq3+AAAAAAAA2FsUWAAAAAAAwCZ8/vOfj7/4i79odxoAAAAAAADskAPtTgAAAAAAAAAAAAAAAKDdrGABAAAAQEe7OnS13SlERMQL0y+0OwUAAAAAAAAAtkGBBQCwr+2Fm/GWupbiC3/whXanAQAAAAAAAAAAAPvagXYnAAAAAAAAAAAAAAAA0G5WsAAA2AN+cvUnceu7t+JAo731ry9Mv9DW4wMAAAAAAAAAAEC7KLAAAGDF1aGr7U5BkQcA0LH2wlxqqWspvvAHX2h3GgAAAAAAAAAdqb2PSAYAAAAAAAAAAAAAANgDFFgAAAAAAAAAAAAAAAD73sF2JwAAAA+6OnR1W/FLXUtR6a3Ere/eigON1uuJX5h+YVt5AAAAAAAAAAAA0FkUWAAAAADAI+QnV3+y7WLT7VKsCgAAAAAAAHSi9v3KCgAAAAAAAAAAAAAAsEdYwQIAAJq4OnS13Sl48jMAwDaZ0wEAAAAAAABbocACAAD2qL1wQ+B/rv/nDdvrtXq8c/mdiIg4fORwVOYr0TfYF/3D/buRHgCwR+2FecxesRfGYqlrKb7wB19odxp0GHN9AAB4NJnrAwDAo8t8PxkKLAAAgJbUa/WYHJiMfCEfvdnele3To9Nx6/qtGBwfbGN2AABAq8z1AQDg0WSuDwAAjy7z/eQosAAAAFpSyBfiqeGnVn0oi4gYmhiK8e7x6Bvsi0wu06bsAAB40E+u/iRuffdWHGgcaFsOL0y/0LZjszXm+gAA8Ggy1wcAgEeX+X5yFFh0mP/yX/5LRET8aulXbc7k0fCrX/8q/tXsv4rzR8/HEweeaHc6Hc94Jst4Jst4Jst4Jst4Jst4Jmt53rk8D11WLVejXCzH2YmzTeP6z/XHtfFrPphtkfk+zXhfoxnXBetxbdDMXrkurg5dbduxH6TQ477luae5PjzcXnkfpTXOX2dz/jqb89fZnL9Hj7n+zvC9frK89yTLeCbLeCbLeCbLeCbLeCbLeCbLfTy7Q4FFh7l7925ERNxbutfmTB4Nv1r6Vfzr0r+Or/zuV7xxJ8B4Jst4Jst4Jst4Jst4Jst4Jmt53rk8D102OzEbERHdme6mcT19PVGaLEW9Vo9UOrWzST5CzPdpxvsazbguWI9rg2ZcF6sp9Lhvee5prg8P5320szl/nc3562zOX2dz/h495vo7w/f6yfLekyzjmSzjmSzjmSzjmSzjmSzjmSz38ewOBRYAAMCWfVj6cMMPXMsf2G7P3lb9DgAATbS70OM//vI/Nt1urg8AAI8mc30AAHh0me8n60C7EwAAADpPtVyNQz2H1m1f/tBWLVd3KyUAACAB5voAAPBoMtcHAIBHl/l+sqxg0WGWlpYiIqJWr8Xhxw63OZvO9/GvP46IiGq9Gncfu/uQvXkY45ks45ks45ks45ks45ks47k9S79eimh88rr61/c/WC3PQ5ctVhbXXVYwIlY+tNVr9eSTfISZ79OM9zWacV2wHtcGzbguiDDXb7flca7W/XjVibyPdjbnr7M5f53N+etszl/n+PRcv1av3d9urr8rfK+fLO89yTKeyTKeyTKeyTKeyTKeyTKe2+O7/fboajQajYfvxl7x7rvvxm//9m+3Ow0AAPaZd955J06fPr3y+o+6/ih6s70xMjfSdP+F0kJMDkzGyYsnY3B8cLfS7Hjm+wAA7DZz/d1x/fr1+M3f/M12pwEAwD7yox/9KJ577rmV1+b6O8P3+gAAtIPv9neWFSw6zN/+2387fvSjH8XnP//5OHDgQLvTAQDgEXPvv9yLpbufVLkvLS3F/1X7v+K5/+dzG0SRFPN9AAB2irl+ez377LPm+gAA7Ij15vrPPvtsG7PaP3yvDwDATvLdfnsosOgwBw8eXPWEAQAA2Gm/Eb+xZlsqndrUsoGHj1gOeyvM9wEA2E3m+rvHXB8AgN1krr97zPUBANht5vs7T+k0AACwZYd6Dm3YvlhZjIj7H+AAAIDOYa4PAACPJnN9AAB4dJnvJ0uBBQAAsGXdme6VD1/NLFfFd2e6dyslAAAgAeb6AADwaDLXBwCAR5f5frIUWAAAAFt2NHt0w6UFq+VqRERkcpndSgkAAEiAuT4AAPz/2fvj2Djv+07w/0iWq5Hs1kNqDxbVHlAN9x/T6l4ylNuzpB52bbJdFOIfWXOkC7BOc9iYTHEHBxtsxei/618q1SLB5g6oZ9wFutXhDHm4zR0YXIFy7Daw5GBX5KS7a9M4XDnKeiuOA6w5o6xjjRtZ/P2hH8diOKTI4SOSI75egJDM8zyf7/PVd0bj78w87+f7cDLXBwCAh5f5frIELAAAgA07dvZYRERUy9WW++evzftQBgAAHchcHwAAHk7m+gAA8PAy30+WgAUAALBhPdmeyAxk4p3L77TcPzsxGyfHTm5xrwAAgM0y1wcAgIeTuT4AADy8zPeTJWABAAC0JVfMxXsT761Iv0+OTsaJcyck3wEAoEOZ6wMAwMPJXB8AAB5e5vvJ2bO4uLi43Z0AAAA6U6PeiKmxqUilU3Hw0MFYmFuI3sHe6Bvu2+6uAQAAm2CuDwAADydzfQAAeHiZ7ydDwAIAAAAAAAAAAAAAANj19m53BwAAAAAAAAAAAAAAALabgAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOvt2+4OAAAAnatarsZ0fjoaC42olquRSqeif7Q/+kf6V61p1Bvx1oW3IiLi4KGDsTC3EL2DvdE33LftNQAAAAAAAAAAwO61Z3FxcXG7OwEAAHSemcJMRMSyMEWlVIlirhgHug/EyMxIpNKpZTWNeiMK/YXIFXPRk+1pbp8cnYxUOhWD44MrzrNVNQAAAAAAAAAAwO62d7s7AAAAdJ5apRaNemPFShWZgUx86Y0vRa1Si2KuuKKumCvGU8NPLQs9REQM5YeiXChHpVTZthoAAAAAAAAAAGB3E7AAAAA2bDo/vSJcsaQn2xOZgUxUSpWoVWrN7bVKLSqlShwfPd6yru9MX1wdv7ps21bVAAAAAAAAAAAACFgAAAAbdr10Pf7l0X8ZjXqj5f7D2cMREVEtV5vbpvPTERHRlelqWdPd2x2VUmVZm1tVAwAAAAAAAAAAsG+7O8DG3L59O37wgx/Ek08+GXv3yscAAPBg3blzJ370ox/F5z//+di377OPDwe6D0S1XI1apRY92Z51tfVB+YNIpVOr7l8KRMxPz0dmILOlNTuF+T4AAFtltbk+D4a5PgAAW8Vcf2uZ6wMAsJXM97eGke0wP/jBD+JXf/VXt7sbAADsMv/u3/27eOaZZ5qPX5x6MWqV2qqrRNQr9YiIZeGLWqUWB7oPrHqOpVBErVLb8pqdwnwfAICt9rNzfR4Mc30AALaauf7WMNcHAGA7mO8/WAIWHebJJ5+MiIjvf//78Uu/9Evb3JvOd/v27SiXy5HNZiW5EmA8k2U8k2U8k2U8k2U8k2U8N+f2392OO5/caT6+MX8j/oeB/6E5D73XauGKiIjZidnoyfYsO+bWwq01a5ZCEY16Y8trdgrzfVrxvkYrXhesxmuDVrwuaOVv//Zv49lnn2051yd5S+P87/7dv4uenvWtAsjO4X20s3n+Opvnr7N5/jqb569zVavV+NVf/VVz/S3ie/1kee9JlvFMlvFMlvFMlvFMlvFMlvFMlu/2t4ZXaodZWk7w8OHDPpgl4Pbt2/HDH/4wfumXfskbdwKMZ7KMZ7KMZ7KMZ7KMZ7KM5+b81f/6V/G93/te8/HNvTcjIja0rPXVi1cjImLo1aFl29cbaPj4w4+3vGanMN+nFe9rtOJ1wWq8NmjF64JWbt++HREbm+vTvqVx7unpMdfvQN5HO5vnr7N5/jqb56+zef46n7n+1vC9frK89yTLeCbLeCbLeCbLeCbLeCbLeCbLd/tbwysVAABoOnX+VDz79Webj99///341q98a9311XI1SmOlyBVz0ZN1V1YAAAAAAAAAAKBzCFgAAABN+/bvi337P/uY8Ojjj26ovpgrxun86egb7luxL5VOrWt1iYOHDm55DQAAAAAAAAAAgPVBAACARBRzxegf7Y/+kf6W+w90H1iz/tbCrYi4G5DY6hoAAAAAAAAAAAABCwAAYNOmxqbiyDNH4uS5k6se05XpaoYbWlladaIr07XlNQAAAAAAAAAAAAIWAADApswUZqK7t7tluGIpzBARcTh7eNnjn1Wr1CIiIjOQ2fIaAAAAAAAAAAAAAQsAAKBtsxOzERHRP9K/Yl+tUotKqdJ8fOzssYiIqJarLduavza/IvSwVTUAAAAAAAAAAAACFgAAQFuq5WrcWrjVMlwREVEpVaIn29N83JPticxAJt65/E7L42cnZuPk2PJVMLaqBgAAAAAAAAAAYN92dwAAAOg8tUotirliHB04GvOj8yv2NxYaUSlVYqw2tmx7rpiLQn8hjp09tix8MTk6GSfOnWi5ssRW1QAAAAAAAAAAALubgAUAALBhlwYvRa1Si1qhtuoxXZmuFdtS6VSMzIzE1NhUpNKpOHjoYCzMLUTvYG/0Dfe1bGeragAAAAAAAAAAgN1NwAIAANiwl+debrs2lU7FUH5oR9YAAAAAAAAAAAC7197t7gAAAAAAAAAAAAAAAMB2E7AAAAAAAAAAAAAAAAB2PQELAAAAAAAAAAAAAABg19u33R3oNKOjo5HL5WJgYGBT7dTr9bhw4UJERBw6dCjm5uZicHAwhoeHk+gmAAAAAAAAAAAAAACwAQIW61CpVKJUKkU+n49yuRy5XG5T7dXr9ejv749isRjZbLa5fXR0NK5duxbj4+Ob7TIAAAAAAAAAAAAAALABe7e7AztdoVCIsbGxiIjEgg+5XC6Gh4eXhSsiIvL5fBQKhSiVSomcBwAAAAAAAAAAAAAAWB8Bi/sYGRmJYrEYIyMj0d3dven2llbDGB0dbbn/zJkzVrAAAAAAAAAAAAAAAIAtJmCxxfL5fEREZDKZlvt7e3ujVCpFvV7fwl4BAAAAAAAAAAAAAMDuJmCxxcrlcqTT6VX3LwUvpqent6hHAAAAAAAAAAAAAADAvu3uwG5TqVSiu7t71f1L4YtKpbJmO3fu3IlPP/00ya7tSp9++mlzLPfs2bPd3el4xjNZxjNZxjNZxjNZxjNZxjNZd+7c2e4u7Erm+9zL+xqteF2wGq8NWvG6oBVz/e3x6aefmut3IO+jnc3z19k8f53N89fZPH+dy3xze/hePxnee5JlPJNlPJNlPJNlPJNlPJNlPJPlu/2tIWCxxRYWFpqrVLSyFL6o1+trtvP9738//t//9/9tPn7kkUdi3z5P50bduXMn/vN//s9x586d2LvXgi6bZTyTZTyTZTyTZTyTZTyTZTyT9eGHH253F3Yl833u5X2NVrwuWI3XBq14XdCKuf72uHr1anR1dTUfm+t3Bu+jnc3z19k8f53N89fZPH+dq1arbXcXdiXf6yfDe0+yjGeyjGeyjGeyjGeyjGeyjGeyfLe/Nczkt9j9ghNL7vcP4JVXXln2Qey/++/+u/jc5z63iZ7tTouLi3Hz5s2ICMm4BBjPZBnPZBnPZBnPZBnPZBnPZP34xz/e7i7sSub73Mv7Gq14XbAarw1a8bqgFXP97fFHf/RH5vodyPtoZ/P8dTbPX2fz/HU2z1/n+q//9b9udxd2Jd/rJ8N7T7KMZ7KMZ7KMZ7KMZ7KMZ7KMZ7J8t781BCw61OlHT0dX6rO7XD36N4/Gvutb+3TmXs9t6fkehNu3b8f3v//9ePbZZ905IAHGM1nGM1nGM1nGM1nGM1nGM1nvv/9+fO1rX9vubuw62z3ffxjm+g8T72u04nXBarw2aMXrglbM9bfH//a//W/xi7/4i83H+/fvj/37929jj1iPB/k+WjxTTLS9dj3MnwP9d7Czef46m+evs3n+OteNGzfi5Zdf3u5u7Drf/va345d+6Zeaj3fzXH8zc9zFPYux58k9se9H+2LPYvsXYD7M89uN8F6eLOOZLOOZLOOZLOOZLOOZLN/tbw2v1C2WTqfXtYrFoUOH1tx/8JGD8fOP/PzyjXc20bE2PAwfBJeWZNy/f7837gQYz2QZz2QZz2QZz2QZz2QZz2Q9+uij292FXWm75/sPw1z/YeJ9jVa8LliN1wateF3Qirn+9vh7f+/vxX/z3/w3290NNuhBvo8+cueRRNtr18P8OdB/Bzub56+zef46m+evc/3cz/3cdndhV+rq6jLX///bzBz3zp47sTf2xt47e2Pv4t6223mY57cb4b08WcYzWcYzWcYzWcYzWcYzWb7b3xrtz0RpS3d395r7FxYWIuJuEAMAAAAAAAAAAAAAANgaAhZbLJPJNEMUrSytbpHJZLaoRwAAAAAAAAAAAAAAgIDFFstms80QRSuVSiUiIgYGBraoRwAAAAAAAAAAAAAAgIDFFjt79mxERJTL5Zb7r127JlwBAAAAAAAAAAAAAABbTMDiAajX6zE2NhalUmnFvmw2GwMDA3H58uWWtRMTEzE2NvaguwgAAAAAAAAAAAAAANxDwGIDKpVKRNwNUKylUCjExYsXI5fLtdxfLBZjYmJixSoWo6Ojce7cOStYAAAAAAAAAAAAAADAFtu33R3Y6SYmJiKfz0dExPT0dEREvPTSS81tuVwuRkZGltUMDAxEOp2OM2fOtGwznU7HzMxMjI2NRTqdjkOHDsXc3FwMDg7G8PDwA/zbAAAAAAAAAAAAAAAArQhY3Mfw8PCGQw/ZbDZqtdqax6TT6WZIAwAAAAAAAAAAAAAA2F57t7sDAAAAAAAAAAAAAAAA203AAgAAAAAAAAAAAAAA2PUELAAAAAAAAAAAAAAAgF1PwAIAAAAAAAAAAAAAANj1BCwAAAAAAAAAAAAAAIBdT8ACAAAAAAAAAAAAAADY9QQsAAAAAAAAAAAAAACAXU/AAgAAAAAAAAAAAAAA2PUELAAAAAAAAAAAAAAAgF1PwAIAAAAAAAAAAAAAANj1BCwAAAAAAAAAAAAAAIBdT8ACAAAAAAAAAAAAAADY9QQsAAAAAAAAAAAAAACAXU/AAgAAAAAAAAAAAAAA2PX2bXcHAAAAAAAAgO3z2tBr292F+OLkF7e7CwAAAAAAVrAAAAAAAAAAAAAAAAAQsAAAAAAAAAAAAAAAAHa9fdvdAQAAAAAAAABo5T++9h/jxjdvxN7F7bt34Bcnv7ht5wZ4UGYKMzFbnI1UOhUREelMOgbHB1se26g34q0Lb0VExMFDB2NhbiF6B3ujb7hv1fbbqQEAANgJBCwAAAAAAAAAAGAXaNQb8afP/2kcHTgaL0692Nxeq9RiamxqRciiUW9Eob8QuWIuerI9ze2To5Nx49qNlqGMdmoAAAB2iu27zQcAAAAAAAAAALBllsIVPxty+O7od6NcKK84vpgrxlPDTy0LSkREDOWHolwoR6VUSaQGAABgpxCwAAAAAAAAAACAh9zVi1ejVqm1XEEilU7FkeNHlm2rVWpRKVXi+Ojxlu31nemLq+NXN10DAACwk+zb7g4AAAAAAAA7T61SiyvjVyIiorHQiEa9EZnBTJw8d7Ll8TOFmZgtzkb/aH9kBjKRSqeiVqlFtVyNdy+/G6fOn1pxB9uIiEa9EW9deCsiIg4eOhgLcwvRO9gbfcN9q/atnRpgZ3tt6LUH0u6dPXdioWchbnzzRuxdvP+95744+cUH0g8A2AmuXLgS2ZFsy325Ym7Ftun8dEREdGW6WtZ093ZHuVCORr0RqXSq7RoAAICdRMACAAAAAABYZnZiNm5cuxFD+aFl2wv9hZjJz8TLcy+vqGnUG1EpVaJSqizbnkqnIlfMrRquKPQXVuyfHJ2MG9dutLyzbjs1AACw281OzEaj3ohjZ4+tu+aD8gdrhiCWQhTz0/ORGci0XQMAALCT3P82LQAAAAmYnZjd7i4AAADr0Kg34t3L77YMKgy9OhS1Si0mRydb1p7On44T505E33BfZEeycTp/OsZqY6teOFXMFeOp4adWhC+G8kNRLpRXhDXarQEAgIfV7U9uxyc//qT55+/+69+1PO7dy+9GRDTn0dVyNWYKM1EtV1dtu1apxYHuA6vuXwpS1Cq1TdUAAADsJFawAAAAHrhGvRHFXDFO50/H02eetuw3AADsYPPT8zE7MRtTY1MrQhZLF2NdL11vWbuR+X6tUotKqRKn86db7u870xdXx68uC2e0UwMAAA+zKxeuxPd+73vNxzfjZsvj7g1SXL14NXqyPdE/0h/VcjUuDV6Kk2MnV8yjby3caq440cpSkKJRb2yqBgAAYCcRsAAAADZtcnQyns49vepFTEt3ovru6Hfju6PfXbOtXDEXfcN9ERExU5iJ2eJs9I/2R2YgE6l0KmqVWlTL1Xj38rtx6vypFXetjbj7w8xbF96KiIiDhw7GwtxC9A72NtsFAABWd6D7QKTSqTh46OCqxyQRmp7OT0dErHrxVXdvd5QL5WjUG83ztVPDzvPa0Gvb3YWIiPji5Be3uwsAAJt26vypePbrzzYf37hxI77V960Vx91auBWpdCpmCjNx8tzJ5vaebE/kirn4l0f/ZeSKuWXf8683BPHxhx9vqgYAAGAnEbAAAADasnTn2Jn83SXEn849veaxXZmu6Mn2RKq79UVOjYVG1Cq1ZSGIRr0RlVIlKqXKsmNT6VTkirlVwxWF/sKK/ZOjk3Hj2o0Vd+AFAACW68n2xFhtrOW+pbveHh04uunzfFD+YM0QxFKIYn56vnmRVzs1AADwMNu3f1/s2//Z5T8/9+Ofa3ncUvBhaQWJe6XSqcgMZOK7o9+Nl+defjAdBQAA6BACFrTNHaYAAHavmcJMVKYqkRnMxMD4QFwavLTm8Teu3YgXp15cc1nwqbGpGBgfWLH9dP50LMwtRL1Sj1R3Ko70H4n+kf5V2ynmivHU8FMrwhdD+aEY7xqP3sFeF1oBAECbSmOl6Mp03Te4XC1XY356Po4cP9IyGB1xN4jd6uKuJUtBiqUV8dqtAQAA7s6VG/XGqt+PZwYzMTsxG9VytTmHX6q5n3tXv2unBgAAYCcRsAAAADasf6S/GXJYuoPt/awVrqiWq9Hd293ymKfPPL3mHWrvtbSqxun86Zb7+870xdXxqwIWAADsOrc/uR2ffvJp8/FPP/rphuprlVpcGb8S6Uw6Xpx6cdXjKqVK1Cq1yAxkon+kP6rlalwavBQnx06umIffWri15ueEpSDFvRdntVMDsBFuMAbAw+pA94Fo1Burft++NJeen55vBizWCjdH3J2fR8SyNtupAQAA2EkELAAAgAfu+OjxNfdP56djKD+06fNM56cjYvUwR3dvd5QL5TV/RAIAgIfRlQtX4nu/973m45t7b66rbnZiNm5cuxH1Sj3SmXT0DvaueuzSPPzkuZPNbT3ZnsgVczHeNR4jMyPLVrNYbwji4w8/3lQNAABwd26+npXe7p1zd2W6Yn56/r7H3vudfDs1AAAAO4mABQAA8MCt9UPJ1NhUDI4PJnKeD8ofrBmcWOrH/PS8VSwAANhVTp0/Fc9+/dnm4/fffz++9Svfum9d33Bf9A33NR9fGrwUM/mZGHp1aMXc+97j7pVKp6JvuC+KuWK8PPdym38DAABgM448cyRmJ2ZXvQHR0soS94aiD2cPR6VUWbXNpcDGvd+3t1MDAACwk+zd7g4AAAA7x+1PbscnP/6k+eenH/30gZ6vWq5Gd2/3ulaTqJarMVOYiWq5uuoxtUptzeXHl86znrt0AQDAw2Tf/n2x/xf2N/88+vijbbWTK+ZidmI2irnihuqOPHMkapXasrl4Kp1a14oUBw8d3FQNAADwWSB6tfDDwtxCREQcOX6kue3Y2WMREat+Lz9/beXNjNqpAQAA2EmsYAEAADRduXAlvvd732s+vrn35gM/X66YW/OYSqkStUotMgOZ6B/pj2q5GpcGL8XJsZMrfoS5tXBrzdUylsIX67kgCwAAWGlpNYrZidmolCrrvjBqKexcLVebc/a1wtERn91B995Adjs1AADA3RWe+4b74sqFKy1Xn3tv4r04ce7Esrl0T7YnMgOZeOfyO8tWtlgyOzEbL069uGxbOzUAAECyZgozMVucbc7v05l0DI4Ptjy2UW/EWxfeioi7Ny9amFuI3sHeVVetbremk1jBAgAAaDp1/lR84+Y3mn9+59//zgM71+zEbKQz6TWPWbrw6uS5k80fYnqyPZEr5uLS4KUVd8Bab3Di4w8/3niHAQBgl2jUG2uu+rY0j5+bmmtumxydjG/3fntD5+nKdDUDEav1Y+m4zdQAAAB3Db06FI16I2YKM8u2F3PF6Mp0tbzgKlfMxXsT7634Pn5ydDJOnDvRMnTdTg0AALB5jXojCv2FWJhbiBenXoxcMRe5Yi6Ojx6PqbGpVY8/dvZYDI4PxslzJ2MoPxRzU3Mtj2+3ptNYwQIAAGjat39f7Nv/2ceERx9/9IGd68qFKzH06tCax6yWbF+6a24xV4yX515+EN0DAIBda7xrPCIixmpjLVeCOHjoYEQsDzhXp6vrCj7cewfbw9nDUSlVVq1ZCnnce/FVOzUAAMBdqXQqRmZG4q0Lb0UxV4yIu3P1vlxf9I/0r1kzNTYVU2f9qwABAABJREFUqXRqXXenbacGAADYvD99/k/j6MDRFeHp745+N+an51dsL+aK8dTwUytWnxvKD8V413j0Dvau+L69nZpOI2ABAABsuVqlFtVyteXy4Ot15JkjMTsxG7VKrXl32lQ6ta5VLJYuCAMAAFZKpVNxoPtAy3BFRMTC3EJERBzpP9LcdnTgaIyMj6za5vy1+UilU8tWljh29li8ffHtVT8bzF+bX/EjTDs1AADAZ1LpVMuVKu5XM5Rf+4ZJSdQAAADtu3rxatQqtZbf1afSqThy/MiybbVKLSqlSpzOn27ZXt+Zvrg6fnXZd+7t1HSivdvdAQAAYPeZzk8vu7CqHUsXe927xPiB7gNr1izdUXe1C8UAAICI7Eg2Xpx6cdX9s6/PRiqdiqfPPN3cduzssZgpzLQ8vlapxezE7IoV7HqyPZEZyMQ7l99pfZ6J2Tg5dnLTNQAAAAAA8LC7cuFKZEeyLfflirkV3/tP56cjIla9fqe7tzsqpcqyG522U9OJBCwAAIAtd710/b4Bi8nRyfh277c31G5XpqsZomhl6QPcZsMdAADwMBscH4wr41eiUqqs2FfMFSMi4ktvfGlZcLkn2xONeiOuXry67PhapRaF/kKcOHci+ob7VrSXK+bivYn3lgWnI+5+Hjhx7kTLu1y1UwMAAAAAAA+r2YnZaNQbcezssXXXfFD+YM0blC5dWzM/Pb+pmk60b7s7AAAA7D7VcrXlxVXLjpmuriss0ZPtaW47nD3c8iKwJbVKLSLCBVcAAHAfQ/mhmJ2YjWKuGKnuVDQWGtGoN+Jw9nB87frXWv6AcvLcyaiUKjE5Otk8PpVOxZfe+NKyefu9UulUjMyMxNTYVKTSqTh46GAszC1E72Dvqp8Z2qmBVl4bem1dx93ZcycWehbixjdvxN5F9y4DAAAAAHaWdy+/GxGfXUNTLVdjfno+jhw/sur387VKLQ50H1i1zaXfAZautWm3phMJWAAAAFtq6S6zqe7VE+0REUcHjsbI+Miq++evzUcqnVq2GsWxs8fi7YtvR7VcbfkBcf7avHAFAACsU99w34YDC5mBzIbn3Kl0KobyQw+8BgAAAAAAOsntT27Hp5982nz8049+2vK4e1d8vnrxavRke6J/pD+q5WpcGrwUJ8dOrvju/tbCrWXX3PyspSDF0g1Q263pRAIW61Sv1+PChQsREXHo0KGYm5uLwcHBGB4e3lSbY2NjERGxsLAQERGDg4MxMrL6RWQAANDp1lqV4l7Hzh6LmcJM9I/0r9hXq9RidmI2csXcsu092Z7IDGTincvvtAxYzE7MxotTL7bXcQAAAAAAAAAA2CJXLlyJ7/3e95qPb+692fK4Wwu3IpVOxUxhJk6eO9nc3pPtiVwxF//y6L+MXDG3LGSx3hDExx9+vKmaTiRgsQ71ej36+/ujWCxGNpttbh8dHY1r167F+Pj4htssl8uRy+Uin8/HwMBAc/vg4GDMzc211SYAAGyHpWX91vshaun4pWUBV9OT7YlKqRJXL15d9uGvVqlFob8QJ86daHk33VwxF4X+Qhw7e2xZyGJydDJOnDthBQsAAAAAAAAAAHa8U+dPxbNff7b5+P33349v/cq3Vhy3dM3O0goS90qlU5EZyMR3R78bL8+9/OA6+xARsFiHXC4Xw8PDy8IVERH5fD66urpicHBwWUhiI23+bF0+n4/e3t622gQAgK0yOzEbM/mZiIiYn56PiIjJlyab2/pyfS1XnoiIOHL8SKTSqfjFZ37xvuc5ee5kVEqVmBydjMZCIxr1RqTSqfjSG19quUJFxN0PhiMzIzE1NhWpdCoOHjoYC3ML0TvY2zKQAQAAAAAAAAAAO82+/fti3/7PLvd/9PFHWx6XSqeiUW+setPRzGAmZidmo1quNq+3Waq5n4OHDq44z0ZqOpGAxX1UKpUolUqRz+db7j9z5kyMj49vKAxx8eLFqFQqcf78+RX7MplMDAwMbLhNAADYSn3DfW2HFXqyPTFWG1v38ZmBzIZXnUilUzGUH9po1wAAAAAAAAAAoKMc6D7QvGnpavsj7t5EdSlg0Wq1i3vdWrgVEbGszXZqOtHe7e7ATrcUrMhkWl/Q1dvbG6VSKer1+rrbnJqaioiIdDrdcn82m41SqbShfgIAAAAAAAAAAAAAsLsshSbu597VJ7oyXc1AxFrHdmW6NlXTiQQs7qNcLq8ahIj4LHgxPT297janp6fXbLO3t7d5bgAAAAAAAAAAAAAAaOXIM0ciYnmA4l5LoYh7gxiHs4dXPT4iolapRUREZuCzRQraqelE+7a7AztdpVKJ7u7uVfcvBSUqlcq62+zu7o6FhYX7Hjc9PR3ZbHbd7QIAAAAAAKzltaHXtrsLAAAAAAAkqG+4L0pjpaiUKtE33Ldi/8Lc3evWjxw/0tx27OyxePvi21EtV1uugDF/bX5FUKKdmk4kYHEfCwsLzVUqWlkKX9Tr9XW3mc1mY2JiYtX9c3Nz923z1u1b8dHtj5qPH937aDz6yKPr7sPD5Pbt25uqvXPnzqba4DPGM1nGM1nGM1nGM1nGM1nGM1l37tzZ7i7sSts93/fvZ2fxvkYrXhesxmuDVrwuaMVcf3vUarU4ePBg8/H+/ftj//79W9qHO3s89xu1uGcxFmMxFvcsxp0wfp2mU58//92+6/bt2zvi+fN8tMc8tLN5/jqX52x73Lx5c9nNVrdjrr9TbOYzR1JzN/8O7vJenizjmSzjmSzjmSzjmSzjmazVvtvvynRF33BfXLlwpWXA4r2J9+LEuRORSqea23qyPZEZyMQ7l99pGZaYnZiNF6deXLatnZpOJGBxH+sNTnz44YfrbnN0dDQmJiaiXC63XKGiVCrdt82xvxpb9vgfZ/9x/Nbx31p3Hx4mV65cabv2zp078f7770dExN69e5Pq0q5lPJNlPJNlPJNlPJNlPJNlPJO1kXkuydnu+f5m5tgkz/sarXhdsBqvDVrxuqAVc/3t8Q/+wT9Y9vi3f/u348tf/vKW9mGh5/4rbLPcYizGrZ+/FQuxEHtiz3Z3hw3q1OfPZ/O77ty5syOevz/6n/9o2859r1/54q9sdxc2xDy0s3n+Ote9F/mzdT73uc8te7wdc/2dYjOfOZKau5lL3eW9PFnGM1nGM1nGM1nGM1nGM1lrfbc/9OpQFPoLMVOYif6R/ub2Yq4YXZmuGBwfXFGTK+ai0F+IY2ePLQtMTI5OxolzJ1quRtFOTacRsNgGAwMDMTAwEBcuXIhisbhsX6lUioGBgSiXy3Ho0KFV2xj/h+PRlepqPn5076PxaHV3rmBx6tSptmuXEnEnTpyIffv8c9gs45ks45ks45ks45ks45ks45mspQ+5bK3tnu9vZo5N8ryv0YrXBavx2qAVrwtaMdffHv/hP/yH+MVf/MXm4+24q+2Nb97Y0vM9DBb3LMZCLET3B92xZ7FzLtDnrk59/nw2v+v27dvxzuV3Ou75e1A67XVhHtrZPH+d62//9m+3uwu70l//9V/Hf/vf/rfNx7t5BYvNfOZIau7Waf/NfFC8lyfLeCbLeCbLeCbLeCbLeCZrre/2U+lUjMyMxFsX3opi7u716Y16I/pyfcsCF61qpsamIpVOxcFDB2NhbiF6B3tbroTRbk2n8Uq9j3Q6va5VLNYKQ7QyNTUVo6OjMTY2FufPn4+Iz1au6O3tbZ57NQf2HYjH9z2+fOPihrrw0NjsG+7evXtj37593rgTYjyTZTyTZTyTZTyTZTyTZTyT4+4B22O75/v+7ew83tdoxeuC1Xht0IrXBT/LXH97dHV1RXd397b2Ye+i536j7sSd2BN7Ys/iHuPXgTr1+fPf7M904vP3oHTi68I8tLN5/jqT52t7PPHEE9s+198pNvPf7KTmbv4dfMZ7ebKMZ7KMZ7KMZ7KMZ7KMZ3Lu991+Kp1quVLF/WqG8kMPvKaTeKXex/0+/CwtrbhWGGI1+Xw+6vV6M1gxMDAQ6XQ6Ll68GBERx48f33CbAAAAAAAAAAAAAADAxglY3Ecmk4np6elV9y+tbpHJZNpqP51Ox/Dw8LJt165di4iIbDbbVpsAAAAAAAAAAAAAAMDGWEf1PrLZbDNE0UqlUomIu6tPJKVcLsfIyEhi7QEAAAAAAAAAAAAAAGsTsLiPs2fPRsTd0EMr165d23C4olwuR1dXV5RKpZb7KpVKjI2NbbyzAAAAAAAAAAAAAABAWwQs7iObzcbAwEBcvny55f6JiYmWYYh6vR5jY2MtQxRLq1608tJLL8X4+HhkMpn2Ow0AAAAAAAAAAAAAAGyIgMU6FIvFmJiYWLGKxejoaJw7d67lChaFQiEuXrwYuVxuxb6BgYHmnyX1ej1yuVwMDAzEuXPnkv9LAAAAAAAAAAAAAAAAq9q33R3oBOl0OmZmZmJsbCzS6XQcOnQo5ubmYnBwMIaHh1vWDAwMRDqdjjNnzrRsb3x8vBm+qNfrERExNjbWMqwBAAAAAAAAAAAAAAA8WAIW65ROpyOfz6/7+Gw2G7VabdX9mUwmisViEl0DAAAAAAAAAAAAAAA2ae92dwAAAAAAAAAAAAAAAGC7WcECAAAAAABgC/xfX/6/4tCBQ9vdDQDoeK8NvbbdXYiIiC9OfnG7uwAAAAAkzAoWAAAAAAAAAAAAAADArmcFCwAAAAAAAIAdZKfcnX+73dlzJ6Jnu3sBAAAAwG5iBQsAAAAAAAAAAAAAAGDXE7AAAAAAAAAAAAAAAAB2PQELAAAAAAAAAAAAAABg1xOwAAAAAAAAAAAAAAAAdj0BCwAAAAAAAAAAAAAAYNcTsAAAAAAAAAAAAAAAAHY9AQsAAAAAAAAAAAAAAGDX27fdHQAAAAAAAAAA1vba0Gvb3YX44uQXt7sLAAAAAA+UgAUdbzNfJN7ZcycWehbixjdvxN7F9hd08UUiAAAAAAAAAAAAAEBna/+KcgAAAAAAAAAAAAAAgIeEgAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu56ABQAAAAAAAAAAAAAAsOsJWAAAAAAAAAAAAAAAALuegAUAAAAAAAAAAAAAALDrCVgAAAAAAAAAAAAAAAC7noAFAAAAAAAAAAAAAACw6wlYAAAAAAAAAAAAAAAAu96+7e4AAAAAAAAAAAAA7Xtt6LXt7gIAADwUrGABAAAAAAAAAAAAAADsegIWAAAAAAAAAAAAAADAridgAQAAAAAAAAAAAAAA7Hr7trsDAAAAAADAzlOr1OLK+JWIiGgsNKJRb0RmMBMnz51ctaZRb8RbF96KiIiDhw7GwtxC9A72Rt9w37bXAAAAAAAA3I+ABQAAAAAAsMzsxGzcuHYjhvJDy7YX+gsxk5+Jl+deXlHTqDei0F+IXDEXPdme5vbJ0cm4ce1GDI4PblsNAAAAAADAeuzd7g4AAAAAAAA7R6PeiHcvv9syqDD06lDUKrWYHJ1csa+YK8ZTw08tCz1ERAzlh6JcKEelVNm2GgAAAAAAgPUQsAAAADZtcnTyvhcxzRRm4tLgpZidmI1GvREREbVKLWYnZqOYK0a1XG1Z16g3YmpsKqbGpuLqxasxOToZsxOza56rnRoAAOCu+en5mJ2YjamxqRX7lkIN10vXl22vVWpRKVXi+Ojxlm32nemLq+NXt6UGAAAAAABgvfZtdwcAAIDOtHRh00x+Jqrlajyde3rN4xv1RlRKlRVBjFQ6FblibsXdZ5dqCv2FFfsnRyfjxrUbLe+o204NAADwmQPdByKVTsXBQwdXPSaVTi17PJ2fjoiIrkxXy+O7e7ujXChHo95o1m5VDQAAAAAAwHpZwQIAANiwmcJMlMZKERExMD6w7rrT+dNx4tyJ6Bvui+xINk7nT8dYbSwyA5mWxxdzxXhq+KkV4Yuh/FCUC+WWq2a0UwMAAHymJ9sTY7WxOHnu5Ip9SyvPHR04umz7B+UP1gw0LAUi5qfnt7wGAAAAAABgvaxgAQAAbFj/SH/0j/RHxGcXWK3H02eeXvddZJdWyDidP91yf9+Zvrg6fnVZOKOdGgAAYP1KY6XoynStWBmuVqnFge4Dq9YtfQ6oVWpbXgMAAPCgTb40GX8v9fe2uxsAAEACBCwAAIAdaTo/HRGf3YH2Z3X3dke5UI5GvdG8iKqdGgAA2A1uf3I7Pv3k0+bjn3700w3V1yq1uDJ+JdKZdLw49eKK/bcWbq06D4+IZiiiUW9seQ0AAHDXTGEmZouz0T/aH5mBTKTSqahValEtV+Pdy+/GqfOnVqwOHXF3fv3WhbciIuLgoYOxMLcQvYO90Tfct+q52qkBAADYCQQsAACAHemD8gdrhiCWLqqan55vrkjRTg0AAOwGVy5cie/93veaj2/uvbmuutmJ2bhx7UbUK/VIZ9LRO9jb8rj1Bho+/vDjLa8BAADuatQbUSlVolKqLNueSqciV8ytGq4o9BdW7J8cnYwb126sWN2u3RoAAICdQsACAADYctVyNean5+PI8SMtf7CJuHuH3KW7z7ayFKSoVWqbqgEAgN3g1PlT8ezXn20+fv/99+Nbv/Kt+9b1Dfctu8PspcFLMZOfiaFXh6wKBwAAHeh0/nQszC1EvVKPVHcqjvQfif6R/lWPL+aK8dTwUyu+yx/KD8V413j0DvauuKFROzUAAAA7hYAFAADQdPuT2/HpJ582H//0o58m2n6lVIlapRaZgUz0j/RHtVyNS4OX4uTYyRU/ptxauNVccaKVpSDFvXewbacGAAB2g33798W+/Z/9JPDo44+21U6umIvxrvFo1Bvx4tSLze2pdGpd8+yDhw5ueQ0AAPCZp888ve6wdK1Si0qpEqfzp1vu7zvTF1fHry77fr+dGgAAgJ1EwAIAAGi6cuFKfO/3vtd8fHPvzcTaXgo+nDx3srmtJ9vTvEBrZGZk2d2s1huC+PjDjzdVAwAArF8qnYq+4b6YnZiNSqnSvChqrZXkIu6GoZfql2xVDQAA0J7p/HRExKo3Nuru7Y5yoRyNeqM5B2+nBgAAYCcRsFiner0eFy5ciIiIQ4cOxdzcXAwODsbw8PCm2hwbG4uIiIWFhYiIeOaZZ+LcuXOb7zAAALTh1PlT8ezXn20+fv/99+Nbv/KtRNruG+5ruX3pAq1irhgvz72cyLkAAID2NeqNNVeHS2fSERExNzXXDFh0Zbpifnp+zTaXjluyVTUAAEB7Pih/sGYIYmnePT893/xs0E4NAADATiJgsQ71ej36+/ujWCxGNpttbh8dHY1r167F+Pj4htssl8uRz+djfHw80ul0c/vExET09/fHzMxMEl0HAIAN2bd/X+zb/9nHhEcff3RLznvkmSMxOzEbtUqt+eNKKp1a14oUBw8dbP7/dmoAAIDlxrvufuc9VhtreWHU0nz63rn34ezhqJQqq7ZZq9QiIpZdQLVVNQAAwErVcjXmp+fjyPEjy1aXvletUltzFbmlzwtL8/B2awAAWOknP/lJ27U/+tGP4qtf/WrMzMxEf39/vPLKK/Hkk0+21dZjjz3Wdj+gUwlYrEMul4vh4eFl4YqIiHw+H11dXTE4OBgDAwMbanNsbCympqZWbB8eHo6FhYUYHR2NfD6/qX4DAECnWPpBpVquNgMWa/0AExFxa+HWstp2awAAgOVS6VQc6D6w6rx5Ye7uisxH+o80tx07eyzevvh2VMvVlhdnzV9beXfaraoBAICH2e1Pbsenn3zafPx3//Xv1jy+UqpErVKLzEAm+kf6o1quxqXBS3Fy7OSKufRaK9tFfPad/L3h63ZqAABY6fHHH0+knampqejt7W27fnFxMZF+QCfZu90d2OkqlUqUSqUYHR1tuf/MmTMbXsGiXC5HJrP6DzxnzpyJUqm0oTYBAGAnmxydjG/3fntDNV2ZrmYgopWlH1/u/aGmnRoAAGC57Eg2Xpx6cdX9s6/PRiqdiqfPPN3c1pPticxAJt65/E7rmonZODl2ctm2raoBAICH2ZULV+L3n/j95p//ve9/X/XYpe/GT5472Qws92R7IlfMxaXBS1EtV5cdv94QxMcffrypGgAAgJ1EwOI+llaRWC0Q0dvbG6VSKer1+rrbXAptrGZhYSHS6fRGugkAADtadbq6ruDDvXegPZw9vOYPMUvLh997R612agAAgOUGxwfjyviVqJQqK/YVc8WIiPjSG19ascJFrpiL9ybeW3FR1uToZJw4d6LlPHyragAA4GF16vyp+MbNbzT//C+z/8uqx/YN90XfcN+K7al0KvqG+5rzfQAAtt9HH33U9p/BwcF45JFHIiLikUceicHBwbbbgp2o8kYlSt8oRel8Kcp/XI4P/vqDRNvfl2hrD6Fyubxm2GEpeDE9PR0DAwPrajObzUalUolcLhfF4soPp/l8Ps6ePdtWfwEAYCc6OnA0RsZHVt0/f20+UunUspUljp09Fm9ffDuq5eqy4MW9NT974VQ7NQAAwEpD+aGYnZiNYq4Yqe5UNBYa0ag34nD2cHzt+tdWhCsi7l6UNTIzElNjU5FKp+LgoYOxMLcQvYO9LS/i2soaAAB4WO3bvy/27f/s8p+f+/HPtdXOkWeOxOzEbNQqteZ39al0al0rUhw8dLD5/9upAQBgpccee6zt2kuXLsWXv/zluHbtWjzzzDPxJ3/yJ5tqD7baxUMX49yH51bdn3k+E5nnM9G42YhbC7eiUqrEdH46BscHY/8v7N/0+QUs7qNSqUR3d/eq+5fCF5XKyjt5rSaTycTIyEgUCoXo7e2NfD7fDGcsrYYxPj6+qX4DAMBOcuzssZgpzET/SP+KfbVKLWYnZiNXzC3b3pPticxAJt65/E7LsMTsxGy8OPXipmsAAIDWVru77VpS6VQM5Yd2ZA0AALC6pRB1tVxtBiwOdB9Ys2Zp5ep7A9jt1AAAkKwnn3wy/vzP/3y7uwFtW1xcXNdxqSdSkXoiFf0v9UfjZiOmxqbi9B+d3vT5BSzuY2FhoblKRStL4Yt6vb6hdvP5fPT29sbY2FgMDg7GyMhI9Pb2RjabjXw+f9/6W7dvxUe3P1t659G9j8ajjzy6oT4QsbhnMRZjMRb3LMaduNN2O7dv306wV53r9u3bcefOHeOREOOZLOOZLOOZLOOZLOOZrDt37j9HqlVqERFr3pGqJ9sTlVIlrl68GifPnVxWW+gvxIlzJ1peuJUr5qLQX4hjZ48tC0xMjk7GiXMnWq5G0U7NTrPd833/fnYW72u04nXBarw2aMXrglbWM9cneR9/+nHsv/3Z3bN8t98Zkvotge3h+etsnr+dZyNzygc5D72zZ2e8Hh7mObbPEZ1rtedscnQyrpeux8tzL6+7ra5MV8xPz6+6f+l3gXtXp26n5mGw3d/rPyxcx5Ms7+XJMp7JMp7JMp7JMp7JMp7J2i3f7e/Zs2fDNaknkgtxC1jcx3qDEx9++OGG2z537lyk0+kYHR2NQqEQ6XQ6isXiumrH/mps2eN/nP3H8VvHf2vDfdjtFmMxbv38rViIhdgTG//HuOTKlSsJ9qpz3blzJ95///2IiNi7d+8296bzGc9kGc9kGc9kGc9kGc9krTbPnZ2YjZn8TERE84eSyZcmm9v6cn0rVqs4ee5kVEqVmBydjMZCIxr1RqTSqfjSG19qudpExN07WI3MjMTU2FSk0qk4eOhgLMwtRO9g76p30m2nZqfZ7vm++e3O4n2NVrwuWI3XBq14XdBKO99ps3nbPdenPUn9lsD28Px1Ns/fzrOR740e5Dx0oWch0fba9TB/j+ZzROdaWGj976M6XW2uHtHKUvDh3u/rD2cPR6VUWbVm6QZM997YqJ2ah4G5fjJcx5Ms7+XJMp7JMp7JMp7JMp7JMp7JWuu7/ZnCTMwWZ6N/tD8yA5lIpVNRq9SiWq7Gu5ffjVPnT7W8PqdRb8RbF96KiFj3NTbt1DxojZuNqE5XE2lLwGIbjY2NRW9vbywuLsbY2FhcvHixuZrF/VaxGP+H49GV+izN/+jeR+PRquT7Ri3uWYyFWIjuD7pjz2L7H8xOnTqVYK8611LC8MSJE7Fvn7eXzTKeyTKeyTKeyTKeyTKeyVr6kPuz+ob72vpQlBnIbPhHk1Q6FUP5oQdes5Ns93zf/HZn8b5GK14XrMZrg1a8Lmhltbk+D9Z2z/VpT1K/JbA9PH+dzfO382zke6MHOQ+98c0bibbXrof5ezSfIzrX3/7t37bcfnTgaIyMj6xaN39tPlLp1LKVJY6dPRZvX3w7quVqywux5q/Nr/jOv52ah4G5fjJcx5Ms7+XJMp7JMp7JMp7JMp7JMp7JWuu7/Ua9EZVSZUXgOZVORa6YWzVcUegvrNg/OToZN67diMHxwURqWqn/sN5y++Li4t39/6kesbh2G416I24t3IpquRpXLlyJvjPJBDy8Uu8jnU6vaxWLQ4cObajdwcHBGBsbi4GBgYiIGB8fj7Nnz0Yul4tCoRALCwtrrmZxYN+BeHzf48s33udFxEp34k7siT2xZ3FP7F1sPxnnTf8ze/fujX379hmThBjPZBnPZBnPZBnPZBnP5Lh7wPbY7vm+fzs7j/c1WvG6YDVeG7TidcHPMtffHgcfOei7/Q6U1G8JbA/PX2fz/O08G51PPqh56E55PTzs82ufIzrTas/XsbPHYqYws2L16Yi7q0rMTsxGrphbtr0n2xOZgUy8c/mdlhdjzU7MxotTL2665mGw3d/rPyxcx5M87+XJMp7JMp7JMp7JMp7JMp7Jud93+6fzp2NhbiHqlXqkulNxpP9Iy88AS4q5Yjw1/NSKuftQfijGu8ajd7B3RUC6nZpW5mfmY/7afNQqtaiUKvHJzU+W7f925tv3bWPJ4uJiZAYycfqPTq+7Zi1eqffR3d295v6lpRXT6fS627x48WJks9lmuGJJNpuNubm5GB0djUKhEKVSacUxAAAAAAAAAACwET3ZnqiUKnH14tU4ee5kc3utUotCfyFOnDvRcuXqXDEXhf5CHDt7bMXdaU+cO9Hywql2agAAgM17+szTkUqn1nXsUrDhdL51KKHvTF9cHb+6bP7eTs1q+l7oi74XPvsMUi1XozRWisobldizZ0889cJT6/p7dGW6IjOYiczzyX3OELC4j0wmE9PT06vuX1rdIpNZ/5OSz+djZmZmzf3T09MxNTUlYAEAAAAAAAAAwKadPHcyKqVKTI5ORmOhEY16I1LpVHzpjS+1XG0iIiKVTsXIzEhMjU1FKp2Kg4cOxsLcQvQO9rYMZLRbAwAAbK3p/N3r47syXS33d/d2R7lQbn5uaLdmvXqyPfHi1IsxOToZ7028F7nXc/cvekAELO4jm81GqVRadX+lUomI2FAQolKp3HfFi9HR0TVDGAAAAAAAAAAAsBGZgcyGV5BIpVMxlB964DUAAMDW+aD8wZohiKUQxfz0fPMzRDs1GzWUH4rqTLWt2qTs3dazd4CzZ89GRES5XG65/9q1axteZSKTyTSDGauZm5uL/v7+DbULAAAAAAAAAAAAAMDuVS1XY6YwE9Xy6kGFWqUWB7oPrLp/KUhRq9Q2VdOOU+dPtVVXOr/6ogobIWBxH9lsNgYGBuLy5cst909MTMTY2NiK7fV6PcbGxlqufjE8PNyy5t7acrkcZ86cab/jAAAAAAAAAAAAAAB0pNuf3I5PfvxJ889PP/rpmsdXSpW4evFqRET0j9y90f+lwUtRKa1cGODWwq01V6NYClI06o1N1bSj74W+turKhdYLKmzUvkRaecgVi8Xo7++Ps2fPRjabbW4fHR2Nc+fOtVzBolAoxMWLF6NQKESttjyFMz4+HrlcLkZHR2N8fDzS6XRzX7lcjrGxsRXbAQAAAAAAAAAAAADYHa5cuBLf+73vNR/f3Htz1WO7Ml0REXHy3Mnmtp5sT+SKuRjvGo+RmZHoyfY09603BPHxhx9vqmaz6j+sr2tFjGq5uulgxxIBi3VIp9MxMzMTY2NjkU6n49ChQzE3NxeDg4MxPDzcsmZgYCDS6fSqq1AUi8UolUrx0ksvLdueyWRiamoq8b8DAAAAAAAAAAAAAMB6/eQnP2m79kc/+lGMjo7Gv/23/zZ+7dd+LfL5fDz55JNttfXYY4+13Y9Odur8qXj26882H7///vvxrV/5Vstj+4Zbr/qQSqeib7gvirlivDz38gPp54NQ/uNylMZKiYUmNkLAYp3S6XTk8/l1H5/NZlesXPGzBgYGWq5+AQAAAAAAAAAAAACwnR5//PFE2imVStHb29t2/eLiYiL96DT79u+Lffs/u9z/0ccfbaudI88cidmJ2ahVas2VLlLp1LrCCwcPHWz+/3Zq2lF5oxKTI5PRlemKvlxfpNKp+9ZUZ6px/c3rmzrvEgELAAAAAAAAAAAAAAB4CC0FFKrlajNgcaD7wJo1txZuLattt6Ydb3zjjcgVc9H3QutVOVZz8dDFTZ13iYAFAAAAAAAAAAAAAADLfPTRR23XfuELX4g333wzPv3003jkkUfiueeei+985zsJ9o4lk6OTcb10PV6ee3ndNV2Zrpifnl91/9JKFUuBjHZr2pHqSm04XBERkT6a3tR5lwhYAAAAAAAAAAAAAACwzGOPPdZ27aVLl+K3f/u34/vf/348++yz8a//9b/eVHusrjpdba4e0cpS8KEn29Pcdjh7OCqlyqo1tUotIiIyA5lN1bTj3n5uxMj0yKbOu2RvIq0AAAAAAAAAAAAAAEBEPPnkk/Hd7343/u//+/+O7373u/Hkk09ud5ceWkcHjsZYbWzV/fPX5iOVTi1bWeLY2WMREVEtV1et+dmgRDs17VgKhGwXK1gAAAAAAAAAAGzQa0OvbXcXHpg7e+7EQs9C3Pjmjdi7eP97d35x8otb0CsAAABaOXb2WMwUZqJ/pH/FvlqlFrMTs5Er5pZt78n2RGYgE+9cfqflihGzE7Px4tSLm65pR1+uL977s/fiqX/y1IbqSudLMXBhYNPnt4IFAAAAAAAAAAAAAAB0oJ5sTzTqjbh68eqy7bVKLQr9hThx7kT0DfetqMsVc/HexHsrVqSYHJ2ME+dOtFyNop2ajco8n4mFuYV478/e21BduVDe9LkjrGABAAAAAAAAAAAAAAAd6+S5k1EpVWJydDIaC41o1BuRSqfiS298qeVqExERqXQqRmZGYmpsKlLpVBw8dDAW5haid7C3ZSCj3ZqNqv+wHk/nno53i+/Gq8+8GkcHjkZ3b3d0ZbpWramWq9GoNxI5v4AFAAAAAAAAAAAAAAB0sMxAZsMrSKTSqRjKDz3wmo3IZ/Pxyc1PIiJicXEx5mfmY8+ePQ/sfD9LwAIAAAAAAAAAAAAAANh2B7oPRETE02eejlQ6ta6a6kw1rr95PZHzC1gAAAAAAAAAAAAAAADbrivTFae+cSqyX8luqO7ioYuJnH9vIq0AAAAAAAAAAAAAAABsQlemK7oyXRuuSx9NJ3J+K1gAAAAAAAAAAAAAAADb7vQrp9uqG5keSeT8VrAAAAAAAAAAAAAAAAB2PQELAAAAAAAAAAAAAACgIzVuNuLtP3w7kbYELAAAAAAAAAAAAAAAgI5Uq9Ti3cvvJtLWvkRaAQAAAAAAAAAAAAAA2ITrb17fcM3V8avRqDcSOb+ABQAAAAAAAAAAAAAAsO1eH349Prn5yYZqFhcX40DXgUTOL2ABAAAAAAAAAAAAAABsuwPdd4MST595OlLpVMtjGvVG1Cq1mJ+ej8xAJo48cySx8wtYAAAAAAAAAAD39drQa+s+9s6eO7HQsxA3vnkj9i7ufYC9AgAAAB4mXZmuOPWNU5H9SnZdx1/9g6txoOvAuo+/H99iAAAAAAAAAAAAAAAA264r0xVdma51H3/yd09GqisV19+8nsj5rWABAAAAAAAAAEDbNrK6yYPyxckvbncXAAAASMDpV05vuKbvhb4onS/F0eeObvr8VrAAAAAAAAAAAAAAAAB2PQELAAAAAAAAAAAAAACgY9Ur9UTaEbAAAAAAAAAAAAAAAAA6UuNmI27VbiXS1r5EWgEAAAAAAAAAAAAAANiE629eX/exjXojapVazORnon+0P5HzC1gAAAAAAAAAAAAAAETErVu34ic/+Uns27fxy6x/9KMfxVe/+tWYmZmJ/v7+eOWVV+LJJ5/ccDuPPfbYhmvgYfH68Ovxyc1P1n384uJiZAYyceJfnEjk/AIWAAAAAAAAAAAAAAAR8Vu/9VuJtDM1NRW9vb1t1S4uLibSh4fFT37yk7bqkgq8RAi9bKUD3QciIuLpM09HKp1a+9hDB6In2xOZ5zOJnV/AAhLw2tBr292FiIj44uQXt7sLAAAAAAAAAAAAAJCYxx9/fNNtbCbwEiH0spW6Ml1x6hunIvuV7LacX8ACAAAAAAAAAAAAACAi/p//5/+JEydOxL59G7/M+gtf+EK8+eab8emnn8YjjzwSzz33XHznO995AL2Eh1dXpiu6Ml3bdn4BCwAAAAAAAAAAAACAiDhw4EA89thjbQUsLl26FF/+8pfj2rVr8cwzz8Sf/MmfxGOPPfYAerm7fPTRR23VCbx0ptOvnN7W8wtYAAAAAAAAAAAAAABs0pNPPhl//ud/vt3deOi0G1IReKEdAhYAAAAAAAAAAAAAADxUBF4eDvUf1mM6Px0flD+IWwu34kD3gUhn0nF89Hgc/tzhxM8nYAEAAAAAAAAAAAAAAOwopfOlePvi27G4uLhiX7lQjr5cXwwVhmL/L+xP7JwCFgAAAAAAAAAAAAAAwI7QuNmIQn8hbi3ciqdeeCqOPHMkUunU3X31Rtz68FZUZ6rx7uvvRqVUia9d/1rs//lkQhYCFgAAAAAAAAAAAAAAwI5QzBUjM5CJ06+cXvO4xs1GTJ2bij997k/jpWsvJXJuAQsAAAAAAGCZarka0/npaCw0olquRiqdiv7R/ugf6W95/ExhJmaLs9E/2h+ZgUyk0qmoVWpRLVfj3cvvxqnzp6In27OirlFvxFsX3oqIiIOHDsbC3EL0DvZG33Dfqn1rpwYAAAAAADbjJz/5Sdu1P/rRj+KrX/1qzMzMRH9/f7zyyivx5JNPbridjz/+uO0+dJKZV2eiK9N133BFRETqiVQM5Yfiu1/9bpT/uBzZr2Q3fX4BCwAAAAAAoGmmMBMREUP5oea2SqkSxVwxro5fjZGZkeYy3Esa9UZUSpWolCrLtqfSqcgVc6uGKwr9hRX7J0cn48a1GzE4PphIDQAAAAAAbNbjjz+eSDtTU1PR29ubSFsPq+ul6zF8eXhDNadfOR3/x2/+H4kELPZuugXaMjExsd1dAAAAAACAZWqVWjTqjRUrVWQGMvGlN74UtUotirliy9rT+dNx4tyJ6Bvui+xINk7nT8dYbSwyA5mWxxdzxXhq+KkV4Yuh/FCUC+UVYY12awAAAAAAgM6R6krd/6AW0kfTiZzfChbboF6vRy6Xi3w+H2fOnIl0Or3dXQIAgE2ZHJ2Mp3NPr3rh1JJquRrT+eloLDSiWq5GKp2K/tH+FRdvLZkpzMRscTb6R/sjM5CJVDoVtUotquVqvHv53Th1/tSqd8J968JbERFx8NDBWJhbiN7B3ugb7tv8XxYAAB5i0/np+PXzv95yX0+2JzIDmaiUKlGr1KIr07Vs/9Nnnl6xssVqapVaVEqVOJ1vvbx335m+uDp+ddlnjHZqAAAAAAAgCR999FHbtV/4whfizTffjE8//TQeeeSReO655+I73/nOhtv5T//pP8XTTz/ddj86xp4trvsZAhbrVK/X48KFCxERcejQoZibm4vBwcEYHt7Y8iMREZXK3TtojY6Oxujo6JrHFovFts4BAAAP2tLFTTP5maiWq/F0bu0PcDOFmYi4e2fZJZVSJYq5YlwdvxojMyMrLsZq1BtRKVVW3IU2lU5FrphbNVxR6C+s2D85Ohk3rt2IwfHBDf9dAQBgt7heuh7lQjm+dv1rLcMSh7OHo1KqRLVcXRGw2Ijp/HRExKptdPd2R7lQjka90exHOzUAAAAAAJCExx57rO3aS5cuxZe//OW4du1aPPPMM/Enf/InbbV38ODBtvvQSRoLjbbq6pV6IucXsFiHer0e/f39USwWI5vNNrePjo7GtWvXYnx8fEPtVSqVyGQykc1mo7u7u+UxCwsLUalUhCsAANiRZgozUZmqRGYwEwPjA3Fp8NKax9cqtWjUG3Hy3Mll2zMDmfjSG1+KQn8hirlivDj14ora0/nTsTC3EPVKPVLdqTjSf2TVFS8iIoq5Yjw1/NSK8MVQfijGu8ajd7DXHW0BAGAVB7oPRLVcjVql1jLQnJQPyh+sGYJYClHMT8835+/t1AAAAAAAwHZ78skn48///M+3uxsdI300He9957146gtPrbvm7T98Ow5//nAi5xewWIdcLhfDw8PLwhUREfl8Prq6umJwcDAGBgbW3d61a9diamoqMpnVf+AZGxvbcHADAAC2Sv9IfzPkUC1X73v8dH46fv38r7fc15PticxAJiqlStQqtRV3o336zNPrvvvs0qoap/OnW+7vO9MXV8evutgKAABW8eLUiy3n5UuW7v60VviiWq7G/PR8HDl+ZNXjapVaHOg+sGobS58BapXapmoAAAAAAIDOMvD7A/Htv//tiIh1hSxmXp2JKxeuxLkPzyVyfgGL+6hUKlEqlSKfz7fcf+bMmRgfH99QwCIi1gxXlMvl6O3tXfOYT25/Eo3bG1/+5OYnN+Nf/cd/FddvXo+jTxyNf/Yr/yye2P/EhtuJiEjts8Q6AADrc710PcqFcnzt+tdahiUOZw9HpVSJarm66oVc6zGdn46IWLWN7t7uKBfK0ag31h3aAACAh8HtT27Hp5982nz8049+uuqxa83JZydmoyfb0/KYpdB0ZiAT/SP9US1X49LgpTg5dnJFyPnWwq01z7MUpGjUP/sevJ0aAAAAAACg8+Rez0XheCF6f6M3+ob74sjxI81rfRr1RtxauBVzU3Px3sR7UavU4qXplxI7t4DFfSwFK1YLO/T29kahUIh6vR7pdHpdbY6Ojt73nKsFOpb87l/97rrOtZZ3/ss78c//8p+3Xf9/nv4/N90HAAB2hwPdB6JarkatUlvzTreb9UH5gzWDE0sXY81Pz1vFAgCAXeXKhSvxvd/7XvPxzb03N9zG1YtXIyJi6NWhFfuW5tonz51sbuvJ9kSumIvxrvEYmRlZ9llgvSGIjz/8eFM1AAAAAABA5+nJ9sTI9EhMvjQZkyOTsWfPnhXHLC4uRlemK/7pX/zT6Pl8ctcjCVjcR7lcXjM4sRS8mJ6eXvcqFmutTDE2Nhbj4+Mb6iMAACRlI3e13YgXp16MWqW26t1m65V6RMSa4YtquRrz0/Nx5PiRVY+rVWrNu9a2shS+qFVq6+w5AAA8HE6dPxXPfv3Z5uP3338/vvUr31p3fbVcjdJYKXLFXMv5eN9wX8u6VDoVfcN9UcwV4+W5lzfecQAAAAAAYFfqyfbEyMxIzBRmYiY/E9UfVJv7ujJd0T/aHyd/9+QaLbRHwOI+KpVKdHd3r7p/KXxRqVQ2fa5yuRy9vb3rWgnjD/7hH8Sh1KENn+Ob09+M2Q9n487indi7Z2/0HeqLrx//ehu9BQDgYZTEXW1Xs1q4IiJidmI2erI9LY+plCpRq9QiM5CJ/pH+qJarcWnwUpwcO7liFYpbC7fWPM9S+GK9d74FAICHxb79+2Lf/s9+Enj08Uc3VF/MFeN0/vSqQYq1HHnmSMxOzC4LXafSqXXNyw8eOtj8/+3UAAAAAAAAna1/pD/6R/q37HwCFvexsLCw5ooTS+GLer2+6XNduHAhisXiuo69E3fidtxuPn5076Px6CP3/0Hsd7K/E/kf5KNSr0QmnYnRz4/Gzz36c231907caatuJ1ncsxiLsRiLexYfir/P7du373/QAz7/nTt3tr0fDwvjmSzjmSzjmSzjmSzjuTn//e/+9/HMy880H//n//yf41ufW/9dbdtx9eLViIgYenVoxb6li69Onvssbd6T7YlcMRfjXeMxMjOy7O656w1OfPzhx5vp8gN36/at+Oj2R83H653vJ8W/n53F+xqteF2wGq8NWvG6oJU7d9b/fWgxV4z+0fZ/vFhaSa5arjbn+GutPBdxNzx9b227NTvNx59+HPtv728+3uq5Pu152H5L2G08f53N89fZPH+drROfP5957jIO22O7v9d/WCT13uPfwV2+E0qW8UyW8UyW8UyW8UyW8UzWRr7bp30CFvex3uDEhx9+uKnzTExMrBnk+FljfzW27PE/zv7j+K3jv7Wu2q/88lea///T+DQWYmHd533YLMZi3Pr5W7EQC7En9mx3dzbtypUr23r+O3fuxPvvvx8REXv37t3WvjwMjGeyjGeyjGeyjGeyjGeyNjvPvZ9quRqlsVLkirllQYklq90dN5VORd9wXxRzxXh57uUH2sftsJn5fhK2e17Jct7XaMXrgtV4bdCK1wWtrHeuPzU2FUeeObIs9PyzJkcn43rp+obm5l2Zrpifnl91/1J4+t4V6tqp2Wm2e65Pex623xJ2G89fZ/P8dTbPX2frxOfP95p3LSzs3mtAtpO5fjKSeu/xfnCX74SSZTyTZTyTZTyTZTyTZTyT9aCv49lpZv/NbJQL5bhVuxW513OR/uX0sv2167UojZXiF3/1F+PEvziR2HkFLHaICxcuxKuvvrru48f/4Xh0pT77kejRvY/Go1XJ941a3LMYC7EQ3R90x57FzvhSaC2nTp3a1vMvJQxPnDgR+/Z5e9ks45ks45ks45ks45ks45mspQ+5D0oxV4zT+dOrBinWcuSZIzE7MRu1Sq15AVUqnVrXKhYHDx3c8Pm20nbP97d7Xsly3tdoxeuC1Xht0IrXBa2sZ64/U5iJ7t7ulitXNOqNz1ammK42V49oZWmOfm+o+nD2cFRKlVVrapVaRERkBj67MVE7NTvNds/1ac/D9lvCbuP562yev87m+etsnfj8+V7zrr/927/d7i7sSub6yUjqvcf7wV2+E0qW8UyW8UyW8UyW8UyW8UzWg76OZycpnS/FkeNH4sa1G/HJzU+iWq6uCFh0He2K3Ou5qLxRidL5UgxcGEjk3F6p95FOp9e1isWhQ4faPkelUolyuRzZbHbdNQf2HYjH9z2+fONi213Yte7EndgTe2LP4p7Yu9j5ybid8B+fvXv3xr59+3ZEXx4GxjNZxjNZxjNZxjNZxjM5D/LuAcVcMfpH+1terLUezYu5ytVmwOJA94E1a5Yu+lqq3am2e77v387O432NVrwuWI3XBq14XfCz7jfXn52YjYhoOV+vVWpRLVebQemjA0djZHxk1bbmr81HKp1atrLEsbPH4u2Lb0e1XG25mt38tfkVQYl2anaag48c9N1+B3rYfkvYbTx/nc3z19k8f52tE58/n3fuMg7bY7u/139YJPXe49/BZ3wnlCzjmSzjmSzjmSzjmSzjmZzdsgrI9TevR1emK/pe6ItYvLtSxVP/5KlVj888f/e3gff+7L01j1uv3THKm9Dd3b3m/qWlFdPpdNvnyOfzkcns7B99AAAgSVNjU3HkmSNx8tzJVY+ZHJ2Mb/d+e0PtdmW61nXn3Hsv7AIAAJarlu+uSLFaGLpSqiwLOBw7eyxmCjMtj61VajE7MRtDrw4t296T7YnMQCbeufxOy7rZidk4OXZy0zUAAAAAAEBnebf4bvS/dPc3ir7hvjj5u/f/7j/zfCbmpuYSOf9DGQV68803o1KpRCaTiePHj8cv/MIvtN1WJpOJ6enpVfcvrW6xmYBEqVQSsAAAYNeYKcxEd293y4u1GvXGZytTTFfXFZa498Kuw9nDUSlVVq2pVWoRETv+rrYAALBdapVaFHPFODpwNOZH51fsbyw0olKqxFhtrLmtJ9sTlVIlrl68uixEXavUotBfiBPnTjRXu7hXrpiLQn8hjp09tmxePzk6GSfOnWg5b2+nBgAAAAAA6CDbvBpcxwUsvvGNb8TNmzeXbfujP/qjiIi4efNmDAwMRLlcjsXFxchkMlGr1WJiYiL+0T/6R22dL5vNRqlUWnV/pXL34q2BgYG22o+IKJfLMTw83HY9AAB0itmJ2YiIluGKWqUW1XK1eeHV0YGjMTI+smpb89fmI5VOLVuN4tjZY/H2xbejWq4uu9jq3hoXXAEAwOouDV6KWqUWtUJt1WNarQh38tzJqJQqMTk6GY2FRjM8/aU3vtRybh4RkUqnYmRmJKbGpiKVTsXBQwdjYW4hegd7WwYy2q0BAAAAAAA6R6PWaKuuXqkncv6OC1iMjo5Gb29vjI6OxsjISHz+859v7svlcjEzMxPnzp2L3//934+IuytMnDlzJo4ePRq//Mu/vOHznT17Ni5evBjlcjmy2eyK/deuXdt0uCIioru7u+02AACgE1TLd1ekaBWuiIiolCrLwg/Hzh6LmcLMqmGM2YnZyBVzy7b3ZHsiM5CJdy6/0/IirtmJ2Xhx6sVN/k0AAODh9fLcy23XZgYyGw40p9KpGMoPPfAaAAAAAACgMyzMLWy4pnGzER9/+HEi5++4gMUPfvCDKBaL8cILLyzb/m/+zb+JUqkUuVyuGa6IiEin0/H666/H+fPnmytdbEQ2m42BgYG4fPlyy4DFxMRETE1Nrdher9fjwoULMTg4uGYAY2Fh4y8AAADYSWqVu3e2bdRXT4/XKrUo5opxdOBozI/Or9jfWGhEpVSJsdpYc1tPticqpUpcvXg1Tp47uaytQn8hTpw70fIOtbliLgr9hTh29tiykMXk6GScOHfCChYAAAAAAPAzJkcn49TYqZYr1kXc/Q3grQtvRUSseyW5dmoAAACePvN0TJydiOHLw+uumTgzEcf+x2OJnL/jAhbXrl2LCxcurNh++fLl2LNnT5w/f37FvnQ6HU888UTb5ywWi9Hf3x9nz55dFrIYHR2Nc+fOtQxQFAqFuHjxYhQKhajVVl9KvVKpNPsIAACdYnZiNmbyMxERMT99NzAx+dJkc1tfrm/ZyhOXBi9FrVKLWmH1uXGrH21OnjsZlVIlJkcno7HQiEa9Eal0Kr70xpdarlARcfdutiMzIzE1NhWpdMqPNgAAAAAAsIZquRrlQjmOjx5vub9Rb0ShvxC5Ym7FjY1uXLsRg+ODidQAAABE3L1e6Nt//9sx8T9OxNCrQ7H/5/eveuwHf/1BTL40GY16I078ixOJnL/jAhaLi4stt5dKpYiI+NznPtdy/549e9o+ZzqdjpmZmRgbG4t0Oh2HDh2Kubm5GBwcjOHh1smYgYGBSKfTcebMmTXbPn78eKTT6XjmmWfa7h8AAGy1vuG+DYUVXp57ue1zZQYyG151IpVOxVB+qO1zAgAAAADAblEaK625v5grxlPDT6248dFQfijGu8ajd7B3xff47dQAAAAsefEvXoxv//1vx2xxNjKDd68dSqVTcaD7QNxauBULcwtxvXQ9quVqLC4uxmh5NLFzd1zA4tChQyu2Xb9+Per1evT397eouKter2/qvOl0OvL5/LqPz2aza65csdHjAAAAAAAAAAAgSTOFmejL9UWlVGm5v1apRaVUidP50y33953pi6vjV5eFJdqpAQAAuFdXpivGFsaimCvG3F/MRWVq5WeWxcXFyAxk4nT+dHQd7Urs3B0XsGi1EsXExERE3F01YjWrrXwBAAAAAAAAAEBne23ote3uQkREfHHyi9vdhXWrVe7eELQrs/qFSNP56TWP6e7tjnKhHI16I1LpVNs1AAAAPyuVTsWLUy9G5Y1KzBZnY356vvk5oivTFf2j/ZF5PvngdscFLP7Lf/kv8eMf/zh+4Rd+obktn8/Hnj174uzZsy1rzp8/H6OjyS37AQAAAAAAAAAAnWw6Px2D44Orrl4REfFB+YM1QxBLIYr56fnmihTt1AAPxn987T/GjW/eiL2Le7e1H50UPgMAdp7M85kHEqRYzfbOnNpw/vz5yOVy8e///b+Pv/7rv46zZ89GpVKJ4eHh+NznPrfs2L/+67+O3/zN34xDhw7F5z//+e3pMAAAAAAAAAAA7CCzE7NxfPT4fY+rVWpxoPvAqvuXghRLq2G0WwMAALBTdNwKFk888URcuHAhXnjhhahU7iboh4eH4/Lly81jvvrVr0apVGruL5VK8eGHH8aFCxe2pc8AAAAAAAAAAJC025/cjk8/+bT5+O/+69/dt6ZRb0StUou+4b77Hntr4VZzxYlWloIUjXpjUzUAAAA7RccFLCIistls/M3f/E3cvHkznnjiiRX7x8bGYmxsbNm27u7ureoeAAAAAAAAAAA8cFcuXInv/d73mo9vxs371rx14a0YHB9cV/vrDUF8/OHHm6oBAADYKToyYLFkKVzx4x//OBYWFuKXf/mXIyLi6NGj29grAAAAAAAAAAB48E6dPxXPfv3Z5uMbN27Et/q+terxlVIlegd7t6JrADvKa0Ovbar+zp47sdCzEDe+eSP2Lu5tu50vTn5xU/0AAB68jg1Y/PCHP4zx8fEoFAoREbFnz564fft2c//169djbGwsfuM3fiO+8pWvbFc3AQAAAAAAAADggdi3f1/s2//Z5T8/9+OfW/P4uam5da9eERGRSqfWtSLFwUMHN1UDAAA8OJOjk3Fq7FR0Zbpa7m/UG/HWhbci4u48fWFuIXoHe6NvuG/VNtup6RQdGbB48803Y2BgICIiMplMZDKZuH79+rJjjh49Gq+//nq88cYb8Yd/+IfxL/7Fv9iOrgIAAAAAAAAAwLa7evFq/Pr5X99QzYHuA2vuv7VwKyLuhio2UwMAADwY1XI1yoVyHB893nJ/o96IQn8hcsVc9GR7mtsnRyfjxrUbLQPa7dR0kvbXqtom169fj+Hh4RgZGYm5ubn4m7/5m/iLv/iLeOGFF1oe//zzz8fRo0fjzTff3OKeAgAAAAAAAADA9qtVapFKpzYcaujKdDUDEa0srVRx751w26kBAAAejNJYac39xVwxnhp+allQIiJiKD8U5UI5KqVKIjWdpONWsPjGN74R4+Pj8dJLLy3bvmfPnlVrXnjhhfid3/mdeO655x509wAAAAAAAAAAYEeplqsxW5yN2eLsin21Si0iIiZfmmyuPvHi1IsREXE4e3jNi6OWajMDmea2dmoAAIDkzRRmoi/Xt+r8vFapRaVUidP50y33953pi6vjV5fN3dup6TQdF7Co1WorwhXrsbi4+AB6AwAAAAAAAAAAO1vfcF/0Dfe13Dc7MRvFXDGGXh1acQfaY2ePxdsX345qubpiX0TE/LX5FRdOtVMDAAAkaynYvNbKcdP56TWP6e7tjnKhHI16o7kaXjs1nWbvdndgozKZ9j5g1Wq1hHsCAAAAAAAAAAAPr55sT2QGMvHO5Xda7p+dmI2TYyc3XQMAACRrOj8d/SP9ax7zQfmDNUMQSyGK+en5TdV0mo4LWLQblKhUVl96EAAAAAAAAAAAdqOlO9su/e/PyhVz8d7Ee1EtV5dtnxydjBPnTrRcjaKdGgAAIBmzE7NxfPT4fY+rVWpxoPvAqvuXghT3flZop6bT7NvuDmxUV1dX/OVf/mX8o3/0j9Zdc/78+Xj++ecfYK8AAAAAAAAAAKBzTI5ORr1Sb95ZdvKlyZjJz8Th7OEYHB9sHpdKp2JkZiSmxqYilU7FwUMHY2FuIXoHe6NvuK9l2+3UAAAAy93+5HZ8+smnzcc//ein961p1BtRq9TWNe++tXCrueJEK0tBika9samarVI6X4qBCwObbqfjAhbnzp2L3/iN34hXX311XSGLP/zDP4yJiYn4//6//28LegcAAAAAAAAAADvfUH5o3cem0qkNHd9uDQAA8JkrF67E937ve83HN/fevG/NWxfeWhaYXst6QxAff/jxpmq2SrlQ3p0Bi0wmE6+88ko8//zzcfz48Th79mx8/vOfj3q9Hj/84Q+jXq/HwsJClMvlyOfzUalUYmZmZru7DQAAAAAAAAAAAAAA63Lq/Kl49uvPNh+///778a1f+daqx1dKlegd7N2Krm2Z+g/rUavU7ntctVxNbNWMjgtYREQMDAzE66+/HiMjI3Hu3Lnm9kKh0Pz/i4uLkclkYnp6Oj73uc9tQy8BAAAAAAAAAAAAAGDj9u3fF/v2f3a5/6OPP7rm8XNTc+tevSLi7qpz6wklHDx0cFM17Sj/cTlKY6XEQhMb0ZEBi4iI4eHhGB4ejosXL8bly5fjBz/4QXNfJpOJ0dHR+N3f/d1t7CEAAAAAAAAAAAAAADxYVy9ejV8//+sbqjnQfWDN/bcWbkXE3VDFZmo2qvJGJSZHJqMr0xV9ub51tVWdqcb1N6+3fc57dWzAYsm5c+eWrWIBAAAAAAAAAAAAAAC7Qa1Si1Q6teFQQ1emK+an51fdv7R6RFema1M1G/XGN96IXDEXfS/0baju4qGLbZ/zXh0fsAAAAAAAAAAAAAAAgN2oWq7GbHE2ZouzK/bVKrWIiJh8abK5+sSLUy9GRMTh7OGolCqrtrtUmxnINLe1U7NRqa7UhsMVERHpo+m2z3mvXROwOH/+fFy4cGG7uwEAAAAAAAAAAAAAERHxk5/8pO3aH/3oRzE6Ohr/9t/+2/i1X/u1yOfz8eSTT7bV1mOPPdZ2P4Dt1TfcF33DrQMJsxOzUcwVY+jVoejJ9izbd+zssXj74ttRLVdX7IuImL82vyIo0U7NRrVqdz1Gpkc2dd4luyZgUSgUBCwAAAAAAAAAAAAA2DEef/zxRNoplUrR29vbdv3i4mIi/QA6R0+2JzIDmXjn8jstQw2zE7PN1S42U7NRjXpjU/Wb1dEBix/+8IdRqay+xMiScrkc9Xr9wXcIAAAAAAAAAIBd67Wh17b1/B/e+nBbzw8AAOwstUqt+b+tAhG5Yi4K/YU4dvbYsv2To5Nx4tyJlqtRtFOzEX25vnjvz96Lp/7JUxuqK50vxcCFgU2dO6JDAxZ//Md/HGNjY0ITAAAAAAAAAAAAAHSsjz76qO3aL3zhC/Hmm2/Gp59+Go888kg899xz8Z3vfCfB3m2tn/zkJ23X/uhHP4qvfvWrMTMzE/39/fHKK6/Ek08+ueF2bt++3XYfYCeZHJ2MeqUe89Pzdx+/NBkz+Zk4nD0cg+ODzeNS6VSMzIzE1NhUpNKpOHjoYCzMLUTvYG/0Dfe1bLudmo3IPJ+Jq39wdcMhi3KhvDsDFm+88UaMjIxEJpOJXC4X6XT6vjUzMzPx5ptvPvjOAQAAAAAAAAAAAMA6PfbYY23XXrp0KX77t387vv/978ezzz4b//pf/+tNtbfdHn/88UTamZqait7e3rbr//Iv/zKRfsB2GsoPrfvYVDq1oePbrVmv+g/r8XTu6Xi3+G68+syrcXTgaHT3dkdXpmvVmmq5Go16I5Hzd1zA4hvf+EYUi8V44YUXNlR36NChB9QjAAAAAAAAAAAAANhaTz75ZHz3u9+NK1euxKlTp2Lfvo67LBhghXw2H5/c/CQiIhYXF2N+Zj727NmzZefvuHfSrq6uDYcrIiKOHj36AHoDAAAAAAAAAAAAAGzWRx991HbtF77whXjzzTfj008/jUceeSSee+65+M53vrPhdm7fvh0/+MEP2u4HsHkHug9ERMTTZ56OVDq1rprqTDWuv3k9kfN3XMAim822VTc9PZ1wTwAAAB6MT25/Eo3bG1+28OYnN+Nf/cd/FddvXo+jTxyNf/Yr/yye2P/EA+ghAAAAAAAAACTrsccea7v20qVL8eUvfzmuXbsWzzzzTPzJn/xJW+3dvn277T4AyejKdMWpb5yK7Fc2lhu4eOhiIufvuIBFvV7f7i4AAAA8UL/7V7+76Tbe+S/vxD//y3/eVu3/FP/Tps8PAAAAAAAAAFvlySefjD//8z/f7m4ACejKdEVXpmvDdemj6UTOvzeRVrZQLpeLP/uzP9tw3fnz5x9AbwAAAAAAAAAAAAAAgCScfuV0HH3u6IbrRqZHEjl/x61g8fzzz8cf/MEfxJ/92Z/FP/kn/2TddYVCIS5cuPAAewYAAJCMP/iHfxCHUoc2XPfN6W/G7IezcWfxTuzdszf6DvXF149//QH0EAAAAAAAAAAAHj4dF7D44Q9/GLlcLorFYjzzzDMxMDAQvb29kclkVq0pl8tRr9e3rpMAAACbsH/f/kjtS2247n/+/P8cr/z1KzFXn4vedG989XNfbasdAAAAAAAAAADYCeo/rMd0fjo+KH8QtxZuxYHuA5HOpOP46PE4/LnDiZ+v4wIW2Ww2bt68GRERi4uLMTMzE3v27NnmXgEAAGy/J/Y/EWO/Nrbd3QAAAAAAAAAAgE0rnS/F2xffjsXFxRX7yoVy9OX6YqgwFPt/YX9i5+y4gEV3d3dERJw5cybS6fS6amZmZuLNN998gL0CAAB4eLw29Np2dyEiIr44+cXt7gIAAAAAAAAAAFuscbMRhf5C3Fq4FU+98FQceeZIpNKpu/vqjbj14a2ozlTj3dffjUqpEl+7/rXY//PJhCw6LmCRyWTiG9/4RnzlK1/ZUN2hQ4ceUI8AAAAAAAAAAAAAAIAkFHPFyAxk4vQrp9c8rnGzEVPnpuJPn/vTeOnaS4mce28irWyhTCYTmUxmw3VHjx59AL0BAAAAAAAAAAAAAACSMPPqTHRluu4broiISD2RiqH8UPT090T5j8uJnL/jAhavvPJKPPfccxuum56efgC9AQAAAAAAAAAAAAAAknC9dH1d4Yp7nX7ldMwWZxM5f8cFLAAAAAAAAAAAAAAAgIdPqivVVl36aDqR8+9LpJVt9MMf/jDy+XyUy+VYWFiI7u7uyGQyMTo6Gp/73Oe2u3sAAAAAAAAAAAAAAMB67Nniup/R0QGL8+fPx8WLF2NxcXHFvkKhELlcLgqFQvzCL/zCNvQOAAAAAAAAAAAAAABYr8ZCo626eqWeyPk7MmBx8+bN6O/vj4WFhXjhhRfimWeeiXQ6HRER9Xo9Pvzww5iZmYnXX389SqVSXL9+PX7+539+U+es1+tx4cKFiIg4dOhQzM3NxeDgYAwPD2/2rxOFQiGKxWLz75DJZGJ8fHzT7QIAAAAAAAAAAAAAQKdIH03He995L576wlPrrnn7D9+Ow58/nMj5OzJgkcvlYmBgIF555ZU1j7t582acO3cunnvuubh27Vrb56vX69Hf3x/FYjGy2Wxz++joaFy7dq3tMES9Xo/nn38+BgYGYmpqqrm9UqnE2NiYkAUAAAAAAAAAAAAAALvGwO8PxLf//rcjItYVsph5dSauXLgS5z48l8j5Oy5g8eqrr0Ymk7lvuCIi4oknnoh8Ph9f/epX44//+I/jK1/5SlvnzOVyMTw8vCxcERGRz+ejq6srBgcHY2BgYMPtLoUrfjZIMTo6GtPT0wIWAAAAAAAAAAAAAADsKrnXc1E4Xoje3+iNvuG+OHL8SKTSqYiIaNQbcWvhVsxNzcV7E+9FrVKLl6ZfSuzcHRewKJVKcfny5Q3VvPLKK/Gbv/mbbQUsKpVKlEqlyOfzLfefOXMmxsfHNxywuHjxYlQqlZYhinQ6HcePH99wXwEAAAAAIAnVcjWm89PRWGhEtVyNVDoV/aP90T/Sv2pNo96Ity68FRERBw8djIW5hegdvPvDx3bXAAAAAAAAnaMn2xMj0yMx+dJkTI5Mxp49e1Ycs7i4GF2Zrvinf/FPo+fzPYmdu+MCFl1dXW3VHT16tK26pWBFJpNpub+3tzcKhULU6/VIp9PrbvfChQsxMjLScl+xWNxwPwEAAAAAIAkzhZmIiBjKDzW3VUqVKOaKcXX8aozMjDTvErWkUW9Eob8QuWIuerKf/YgxOToZN67diMHxwRXn2aoaAAAAAACg8/Rke2JkZiRmCjMxk5+J6g+qzX1dma74/7H3/7Ft3Xee7//SD68oS60oqYAsD+5ORXYXG9q+G5P2ZmK7+O4q4tx8A2sBN6I9wV5nPHEtKTCQWXsaKd5/LmaArSt34O7tBbYiXXtcaBBfh5r6DwV1UdL2FLUzmBHJZG4cZe/u6KiTgaUYG5NUa1sUIpPfP/yVYkWkLB4eiaT0fABGy3PO+3Pe/hyG/vDw8z4fT49He9/ca/l5y67AIlv1yWrGxWKxZQsn5gsvIpHIilexGB4eVjKZ1KFDh0zlBAAAAJSakZ4RbfNtk6Mje2HyPJ5oCwAAAJS2hJFQKpnS3r7FP0g4Ohx69dqrCngCCvqCOhw6vGh/0BfUM13PLCp6kB4XaQw0DsjpdS75vrBWMQAAAAAAAAAAoHx5updfYdtqZVdgEY/HTcUZhmE6rqmpKef++eKLfNq/fPmyJMntdkt6XMQRiUS0a9euhW2AGZc6LxX1/OmKtH7n5O8UNQcAALB2EkZCRth4XCEem9I237Zlj+eJtgAAAEDpi/gj+uapb2bd1+pulaPDISNsKGEk1Oh4vOL0/HeD/f79WeNcB126NXBrUeHDWsUAAAAAAAAAAADko+wKLNra2nTlyhUdOHBgxTF//ud/rp07d5o6XzweX1ilIpv54otkMrniNmOx2ML/P3PmjNxut7q7uxWLxeT1etXf3//U1TBm5mZ0f+7+wutNlZu0qWrTinPAY5mKjDLKKFORUVrpYqdT9jIVGaXTac3NzRU7lXVhbm6O/rQQ/Wkt+tNa9Ke16E9rpdPZx0jRQFRGyJDD61DHQIeGvENPbYsn2q4c4/3H+O/4MT7XkA3vC+TCewPZ8L5ANrnG+hPhCcUCMf3xxB/LZrct2b/FvUVG2NBUbGqhwCLij0jSwusva3I2KRaIKZVMLbS5VjGl5uGjh6qZq1l4vVHH+uWG3xLKG9evvHH9yhvXr7xx/cpXpiJT7BQ2JO7rW8Oqzx7ugTw2NzdXMp/lpXBN0hWF9QHvT2txz9Ja9Ke16E9r0Z/WynVvH499/NOP9cy3nim4nbIrsPje976nb3zjG5K0oiKLc+fO6fTp07p3756p8620cCKf9uPxuOx2uwKBgPr6+ha2u91uBYNBtbW1KRgMLltk0f/X/Ytev+h+US/temnFOeCxjDKa+cqM4oqrQhXFTqfsZZTR3CeP/xGsrKwscjblL51O65NPPpFEf1qB/rQW/Wkt+tNa9Ke1co1zn1x6byo29dR2eKJtfhjvP3bz5s1ip1AS+FxDNrwvkAvvDWTD+wLZ5Brr1zbVaio2pYSRWFK0nMunsU+XLWiYL4iYjEwujMXXKqbUMNYvT/yWUN64fuWN61feuH7ljetXvn4789tip7AhMda3hlWfPfy+8Fg6nS6Zz/JSuCbx1nhB8bw/rcU9S2vRn9aiP61Ff1rL7Hz4jWLk2MjGLLCQpHfeeUe7du3S7//+76urq0u7du2S3W6X9LggIh6PKxQKaXh4WIZhKBKJFDfhL5kv2phf/eJJdrtdHR0d6unp0fj4eM42Bv7tgBptXzyla1PlJm2aovI9X5mKjOKKq+nTJlVkuClUqExFRlv/+Vbt2bNH1dVl+fFSUuYrNulPa9Cf1qI/rUV/Wov+tNb8l9xC8UTb/DDef2zfvn3FTqEk8LmGbHhfIBfeG8iG9wWyyTXWPxw6rISRyDmmThpJSVpUfJEwEqptqs15rvmxd8JIrHlMqWGsX574LaG8cf3KG9evvHH9yhvXr4zNFDuBjYmxvjWs+uzh94XH5ubmdPvy7ZL4LC+Fa3Ln7J2C4nl/Wot7ltaiP61Ff1qL/rSWVfN4SsGnH3yqLc9uybkvHzPxGSWMhFLJlBWplWeBhdvtViQS0bFjx9Td3a2KiqUDlkwmI4fDoV/84hfauXOn6XPZ7fYVrWLR3Nycd5u5Vqjwer0aHh5WLBaT2+3Oekxtda3qq+sXb2SVx7yllVaFKlSRqVBlhsq4QqWVVmVlpaqrq/mH0CL0p7XoT2vRn9aiP61Ff1rHqqcH8ETb/DDef4z/hr/A5xqy4X2BXHhvIBveF5ibndOj2UcLrx89fJTz2FzFFZI0NjymVnfromNm4jPLxswXRTz5w8ZaxZSazVWbGeuXIX5LKG9cv/LG9StvXL/yxvUrX8WeRL1RcV/fGlZ99nD/4wul8lleCtek0D7g/Wk97llai/60Fv1pLfrTOutlFZDwW2G99/331Opp1bG/O7Zk/0/af6LZ6dkiZPZY2b5T3W63otGoAoGA/H6/3n///YV9DodDPT09evPNNws+T7ZVJp4Ujz9eOmx+BY2VtplMJnPGzJ8zEonkLLAAAAAAyglPtAUAAACK6+bpm/rln/5y4fV05XTebdw6c0uS1Hmuc9H2lRY0PLz3cM1jAAAAAAAAAABAaUkYCWUyGaUS2e/7z8/98XR7Hr9uzj0XSJJm7s0oMZ7Qxz/92JL8yrbAYl53d7e6u7tXrX2Hw6FIJJJz//zqFg7Hyp9+63a7ZRjGU49bycoZAAAAgJW+/FTbz+9/bkm7PNEWAAAAKK59p/bp+ZPPL7z+5JNP9IMdP1hx/FRsSuH+sHxBn1rdrauRIgAAAAAAAAAA2AA6z3XK4XXI0ZF9/n2jo1H73ton97fzW6jgTPMZK9Ir/wKL1eZ2uxUOh3Puny+U6OjoWHGbu3fv1vDwcM5VLOZXxWD1CgAAAKw1K55qmw1PtAUAAACKq7qmWtU1X/wksKl+U17xQV9Q+/375epyLdlns9tWNBbf3Lx5zWMAAAAAAAAAAEBpsTXY5Dnmybnf4XVo666tebdrb7MXkNUXKi1ppQycOnXKVNyhQ4ckSbFYLOv+0dHRvIorJKmrq0uSchZujI+PS5J27dqVV7sAAABAofad2qe3pt9a+PP6379e7JQAAAAAFFnQF5Snx7OwFPeXza8Ul8tMfEbS4wKJtY4BAAAAAAAAAADlZe+be7Xl2S15x3VHui05/4YpsAgEAqbi3G63Ojo6dPny5az7h4eH1d/fv2R7MplUf39/1iIKh8Ohrq4unT59OmebfX19WVe3AAAAAFZTdU21ar5as/An36fa5sITbQEAAIDyFOoPaevurdrbtzfnMY2OxoXihmzmx+iNjsY1jwEAAAAAAAAAAMhH9dMPWTsffPCB5W3G43EZhqFkMmm6jWAwKI/Ho0OHDsntdi9s7+npUV9fX9YVLAKBgM6cOaNAIKBEIrFk/7lz5+TxeBQIBNTd/UW1jM/nk8Ph0MDAgOl8AQAAgFLDE20BAACA8hMNRNXkbMq6ckUqmVoYV29xb5ERNnK2kzAe3yN3dDgWtq1VDAAAAAAAAAAAWF+Ma4aMkCFVSE3OJm3dtdXUihe5lFSBRXt7u6anp4udxhJ2u13RaFT9/f2y2+1qbm7W+Pi4vF6vurq6ssZ0dHTIbrfr4MGDy7Z5+vRp+Xw+SY9XvfD5fIsKLgAAAID1oNHRqMnIZM79uZ5OuxYxAAAAAJYaGx6TpKzFFQkjoanYlFxdLknS9kPb9d6Z9zQVm1Kru3XJ8ZOjk0uKHtYqBgDylZp7+sqYuUzPTuv8h+c1MT2htoY2Hd1xVA01DabaslXzcAgAAAAAAABsTGeaz6jvXl/O/Y4XHHK84FBqOqWZ+IyMsKGIPyLvgFc1X60p+PwlVWDR1NQkSQsFBs3NzQW3ee/ePY2Pj+unP/1pQe3Y7Xb5/f4VH+92u7OuXPHlNlmpAgAAABsBT7QFAAAAysdUbEoz8ZmsxRWSZISNRWPqVnerHB0O3b58O2vhw9jwmA6HDi/atlYxAJCv137+miXt3P7stk7cOGE6/u39b1uSBwAAAAAAAFBuMpnMio6zNdhka7DJc8yj1HRKof6Q9v9of8HnL6kCC4fDobfeekvf/va3LW/bimINAAAAAObwRFsAAACgPCSMhIK+oNo62jTZs3R1uFQ8JSNsqD/Rv2i7L+hTwBPQ9kPbF43FR3pGtKdvT9Zx+FrFAAAAAAAAAACA8lFRUZF3jK3BuhVhS6rAwu12y+FYnR8/2traVqVdAAAAAE/HE20BAACA8jDkHVLCSCgRyL1Cc6Ojcck2m92m7mi3Qv0h2ew2bW7erPh4XE6vU64uV9Z21ioGAPJx4cULpmPPRs5q7N6Y0pm0Kisq5Wp26eSukxZmBwAAAAAAACCb1HRKU5EpS9oqqQKL733ve6vWdiQSWbW2AQAAgI0sYTyeeJVKppY9jifaAgAAAKXvjfE3TMfa7DZ1+jtLMgYAVspWbf5Jd8d3HtfgB4MaT47LaXeq99negtoDAAAAAAAA1qvkr5NZt2cymcf7/zEpZZZvI5VMaSY+o6nYlG6evinXQWsexFRSBRYAAAAAysPY8Jii/qgkaTIyKUkaOTaysM3lc8nT7VkUwxNtAQAAAADAetZQ06D+5/qLnQYAAMCGd6nzUrFTKAnpirS0dMF3AACAkjAZndTk6KQSRkJG2NDs9Oyi/T90/HDFbWUyGTk6HNr/o/2W5Fa2BRZ/9Vd/pUAgoEQioXfeeUdf//rXF+2fmJhQf3+//s2/+Tf6zne+U5wkAQAAgHXK1eUyVazAE20BAAAAAAAAAAAAAACAjc31skuul7+YezQVm1K4PyzjmqGKigo98/IzK2qn0dEoh9chxwsOy3IrywKLU6dOadeuXRodHdX09LRisdiSAou2tja98847unbtmk6dOqXTp08XJ1kAAAAAAAAAAAAAAAAAAAAAAJBVq7tVh0OHNdIzoo+HP5bvHV/Rcim7Aovr16/L4XDo5ZdfViaT0cTEhL71rW/lPP6FF16QJP30pz9d9jgAAAAAAAAAAAAAAAAAAABsHA8ePDAVd/fuXfX29ioajcrj8WhwcFAtLS2m2qqrqzMVBwDrUae/U1PRqaLmUHYFFsFgUD/60Y8kSV1dXSuKeeGFF/T6669TYAEAAAAAAAAAAAAAAAAAAABJUn19fcFthEIhOZ1O0/GZTKbgHABgPdl3al9Rz19Z1LObwD8kAAAAAAAAAAAAAAAAAAAAAACsP66XXUU9f9mtYJFIJEzFGYZhcSYAAAAAAAAAAAAAAAAAAGA5lzovFTsFIKf79++bijtw4ICuX7+uR48eqaqqSu3t7bpy5YrF2QEAVio1nVLsXEx7vrOn4LbKrsBifHw875jp6Wndu3dvFbIBAAAAAAAAAAAAAAAAAABAOaqrqzMVNzQ0pCNHjmh0dFS7d+/WxYsXTbcFAChcwkjoo8sfbcwCi4MHD+rQoUO6fPlyXjF/8Ad/sIpZAQAAAAAAAAAAAAAAAAAAYCNoaWnR1atXi50GAKxLE9cn8o65NXBLqWTKkvOXXYFFX1+fvvGNb+gP/uAPdO7cOX3lK1/JeewHH3ygY8eOKZlM6jvf+c4aZgkAAAAAAAAAAAAAAAAAAAAAAPLxTtc7mp2ezSsmk8motrHWkvOXXYGFJP3iF7/QN77xDQWDQXm9XnV0dMhut6upqUnxeFzj4+MKh8OKxWLKZDKKxWLFThkAAAAAAAAAAAAAAAAAAAAoSQ8ePDAde/fuXfX29ioajcrj8WhwcFAtLS15t1NXV2c6BwDrR23T40KJbQe3yWa3ZT0mlUwpYSQ0GZmUo8Ohrbu3Wnb+siywcDgcisfj8vl8+sUvfqFQKLTkmEwmo46ODvn9frW1tRUhSwAAAAAAAAAAAAAAAAAAAKD01dfXW9JOKBSS0+k0FZvJZCzJAUB5a3Q0at9b++T+tntFx9/6/i3VNtau+PinKcsCC0my2+0KhUK6du2agsGgIpGIksmk7Ha7HA6Henp69MILLxQ7TQAAAAAAAAAAAAAAAKBkJIyEbg7clCSl4imlkik5vA7t7dubMyaVTOlXp38lSdrcvFnx8bicXqdcXS5LYwAAAACg0dGoRkfjio/f++Zejf3VmCauT6itvfCFGcq2wGLeCy+8QCEFAAAAAAAAAAAAAAAA8BRjw2O6M3pHnf7ORdsDnoCi/qjeGH9jSUwqmVLAE5Av6FOru3Vh+0jPiO6M3pF3wGtJDAAAKK779++bjj1w4ICuX7+uR48eqaqqSu3t7bpy5YqF2QHYSPYP7s87xvWyS+FTYUsKLCoLbgEAAAAAAAAAAAAAAABASUslU/ro8kdZixs6z3UqYSQ00jOyZF/QF9QzXc8sKpSQpE5/p2KBmIywYUkMAAAorrq6OtN/hoaG5PV61dzcLK/Xq6GhIVPtAEApoMACAAAAAAAAAAAAAAAAWOcmI5MaGx5TqD+0ZN98IcREeGLR9oSRkBE2tKtnV9Y2XQddujVwq+AYAABQ3lpaWnT16lV99tlnunr1qlpaWoqdEoANKGkkLWmHAgsAAAAAAAAAAAAAAABgnattqpXNbtPm5s05j7HZbYteR/wRSVKjozHr8U3OJhlhQ6lkqqAYAAAAAChEajqlmcSMJW1VW9IKAAAAAAAAAAAAAADrUGrO/ATg6dlpnf/wvCamJ9TW0KajO46qoabBVFu2atvTDwKAZbS6W9Wf6M+6byo2JUlq62hbtP3T2KdLii6eNF9EMRmZlKPDYToGAAAAAOZNXJ94+kH/f6lkSgkjoag/Kk+Px5LzU2ABAAAAAAAAAAAAAEAOr/38NUvauf3ZbZ24ccJ0/Nv737YkDwDIJtwfVqOjUd4B76LtCSOh2qbanHHzhRQJI1FQDABsFA8ePDAde/fuXfX29ioajcrj8WhwcFAtLS2m2qqrqzOdBwAAq+2drnc0Oz274uMzmYwcHQ7t+c4eS85PgQVM40ktAAAAAAAAAAAA5a8UfvPh9x4AAMxJP0ork8588XounVd8wkjo5sBN2R12HQ4dXrJ/Jj6zsOJENvOFFKnkF+MJMzEAsFHU19db0k4oFJLT6TQdn8lknn4QAKAszY/xJSkVTymVTMnhdWhv396cMalkSr86/StJ0ubmzYqPx+X0OuXqclkas1Lz3xm2Hdy27Op4klTbXKtWd6scL1i3Oh4FFjCNJ7UAAAAAAAAAAACUv1L4zYffe1DKLrx4wXTs2chZjd0bUzqTVmVFpVzNLp3cddLC7ABsdPF/iCv+P+ILr6c1vaK4seEx3Rm9o6SRlN1hl9ObfZLuSosgHt57WFAMAAAAgMLNj/M7/Z2Ltgc8AUX9Ub0x/saSmFQypYAnIF/Qp1Z368L2kZ4R3Rm9s2SVO7Mx+Wh0NGrfW/vk/ra7oHbMosACAAAAAAAAAABgDczOzZpaKYBVoQEUQymsbJKuyO8p7KulkM/O4zuPa/CDQY0nx+W0O9X7bC+fxQAs1fSNpkWrRcRTcemXT49zdbkWPVl2yDukqD+qznOdT31CLADAvPv375uOPXDggK5fv65Hjx6pqqpK7e3tunLlioXZAQDKWSqZ0keXP5Iv6Fuyr/NcpwKegEZ6RpYUXwR9QT3T9cyiQglJ6vR3aqBxQE6vU44OR8Ex+Wh0NC67Kt5qo8ACpvGkFgAAAAAAAAAAVu47v/xOwW2wKjRWA7/5IJtSWNlEkn7Y/UNL8iiWhpoG9T/XX+w0AKxjlVWVUtUTr+cqTbXjC/o00DigVDKlw6HDC9ttdtuKVqTY3Ly5oBgA2Cjq6upMxw4NDenIkSMaHR3V7t27dfHixYLaAwCsL5ORSY0NjynUH1qygsR8IcREeGLR9oSRkBE2tN+/P2ubroMu3Rq4tahYwkxMvvYPZm97rVBgAdN4UgsAAAAAAAAAAED54zcfAABgs9vk6nJpbHhMRthYmAxV21S7bNxMfGYhfp6ZGADA07W0tOjq1avFTgMAUKJqm2pls9uWLWT+8hg84o9IUs7VIpqcTYoFYkolUwuxZmLKDQUWKAqe1AIAAAAAAAAA2Gj+/P/z52qqbco7br2tEJCae/rTjHOZnp3W+Q/Pa2J6Qm0NbTq646gaahpMtUURgDX4zWf9KoWVTdIVaT3UQ9N5AAAWSyVTmonP5JwIZXfYJUnjofGFAotGR6MmI5PLtjl/3DwzMQAAAAAK0+puVX8i+326qdiUJKmto23R9k9jny5bBDE/Zp+MTC58RzATY4Xkr5Oaik0tfKdpdDTK/nW7Ze0/iQILAAAAAAAAAACANVBTXWNqUv96WyHgtZ+/Zkk7tz+7rRM3TpiOf3v/25bkAaxXpbCyCQUWAGCtgcYBSVJ/oj/rhKj5J93OF0BI0hb3FhlhI2ebCSMhSYsmTpmJAQAAALB6wv1hNToa5R3wLtqeMBLLrkA3/71hfgxvNqYQE9cn9G7Pu1nba/W0qvNcp7b86y2WnGveuimw+PWvf63BwUFNT08vbMtkMqqoqJDX69W3vvWtImYHAAAAAAAAAABgDisEACg3fG4BQGmy2W2qbarN+bTZ+HhckrTVs3Vh2/ZD2/Xemfc0FZtSq7t1Sczk6NKn0pqJAQAAALDU3OycHs0+Wnj9+f3P84pPGAndHLgpu8Ouw6HDS/Yvt8KdpIVCiieLsM3EmDV8aFhjw2PKZDKSvlgdYyY+o1QypcnIpALugPb279UL332h4PPNWxcFFr29vfrGN76hU6dOqaFh6TLQ165d06FDh9TT06P29vYiZAgAAAAAAAAAAFB8qTlzP2pNz07r/IfnNTE9obaGNh3dcVQNNUt/k1mJCy9eMBUnSWcjZzV2b0zpTFqVFZVyNbt0ctdJ0+0BAABsJO5ut3b17Mq5f+ydMdnsNm07uG1hW6u7VY4Oh25fvp21WGJseGzJRC0zMQAAAACWunn6pn75p79ceD1dOb3M0V8YGx7TndE7ShpJ2R12Ob3OrMettAji4b0vVhg1E2NG+K2wxkPjeuF7L8jV5VJj29Kijqn3p3T7/76tm9+7qdrmWu35kz0FnXNeyRRY/OY3v9FXv/rVvONef/119ff3q62tLecxL7zwgl544QV9//vflySKLAAAAAAAAAAAwIb02s9fK7iN25/d1okbJ0zHv73/bdOxx3ce1+AHgxpPjstpd6r32V7ZqrM/gbkcmC14kawteinnPgQAACvnHfBqpGdE23zblqwgEfQFJUmvXnt1yQoXvqBPAU9A2w9tX1QwMdIzoj19e7KuRmEmBgAAAMBi+07t0/Mnn194/cknn+gHO37w1DhXl0uuLtfC6yHvkKL+qDrPdeZc0a6UGNcMGWFDfzzxx7I15M63dWerWne2alfPLg39/pBcXS7Zf9de8PlLosDi3Llzeuutt3TmzBkdPXp0xXE//vGP1dXVtWxxxZPefPNNvf766xRYAAAAAAAAAAAAlKGGmgb1P9df7DQsY0XBi1TcohcAAFBeOv2dGhseU9AXlK3JplQ8pVQypS3uLY8nL2WZbGWz29Qd7VaoPySb3abNzZsVH4/L6XUumrRVaAwAAACAxaprqlVd88V0/031m0y14wv6NNA4oFQytWg1OZvdtqIVKTY3by4oJl+xQOxx8fcyxRVPanQ0yveOT+G+sLoud5k+77ySKLA4duyYIpGIjh07Jr/fr2AwqN/93d99alwikdDBgwfzOpfdbjeZJQAAAAAAAAAAQHm78OIFU3FnI2c1dm9M6UxalRWVcjW7dHLXSYuzA4ClZj+fVWoupcpMZd6xVq30wiovANabLz/NdiVsdps6/Z2rHgMAAADAeja7Ta4ul8aGx2SEjYUV5WqbapeNm4nPLMTPMxOTr0wms+Liinmt7lZlMhnT53xSSRRYSJLf75ckXbt2TQ6HQ2fOnNGf/MmfLBvT0dGh06dP6/Tp0ys6x29+8xslEomCcwUAAAAAAAAAAChHZicJH995XIMfDGo8OS6n3aneZ3uZcGwBswUvEkUv2Dje/Is3LWmnkJVeWOUFAAAAAACUulQypZn4jBodjVn32x12SdJ4aHyhwKLR0ajJyOSybc4fN89MTL7MxhZyzifl/5iPVeT3+9XR0aF33nlH//k//2f9i3/xL/T3f//3OY/fuXOnxsfHderUKf32t79dtu2f/vSneuGFF9Tb22t12gAAAAAAAAAAAOtaQ02D+p/rV+B/C6j/uX5TT4DHUrZqm+k/x3ce146v7VD9pnrt+NoOHd953HRbAAAAAAAAAMrbQOOAfuj84UKBw5dtbt4sSYv2b3FvyXm8JCWMxwsbzBdkmI3JW8Uax31JyaxgMc/pdMrr9WpiYkJ9fX3auXOnent79V//63/Nevw777wjn88nu90uh8Mht9utpqYmSVI8HpdhGIrFYrLb7XrnnXf07LPPruHfBgAAAAAAAAAAALDefNELsN59/4++r8ZPG1WZyf/Zgaz0Yr3UXO4JFF+Wrkhr9vNZpeZSqsxUanp2Wuc/PK+J6Qm1NbTp6I6jpgv2KA4DAAAAAGAxm92m2qZa2ezZvzPHx+OSpK2erQvbth/arvfOvKep2JRa3a1LYiZHJ5cUSpiJyVejo1HJXydl/7p9xTGzv5lVbVNtQeedV3IFFh0dHYpEImpvb5ff71dPT48OHjyo5uZm/fjHP9aBAweWxASDQRmGoYGBAUWjUQWDQUmSw+GQw+HQ4OCgjh07ttZ/FQAAAAAAAAAAAABAAWo21chWbTNVYHF853ENfjCo8eS4nHanep/tZWJ+gV77+WuWtHP7s9s6ceOE6fi3979tSR4AAAAAAKwX7m63dvXsyrl/7J0x2ew2bTu4bWFbq7tVjg6Hbl++nbVYYmx4TIdDhxdtMxOTL88xj8JvhfXN//RN1Xy1ZkUxob6QvGe8BZ13XskVWOzcuVN//ud/rvb2dkmS2+3WP/zDP+jMmTN6+eWXdfDgQZ07d05f+cpXFsU5HA75/f5ipAwAAAAAAAAAAAAAKDGs9AIAAAAAADYK74BXIz0j2ubbtmQFiaDv8eIFr157dckKF76gTwFPQNsPbV9UMDHSM6I9fXuyrkZhJmZe8tfJFf19th3apqAvKE+vR41tjTmPSxgJfXT5I3UMdKy4GONpSq7AQpLu3bu3ZFtfX5+6urrk8/lkt9sVCAR09OjRImQHAAAAAAAAAAAAAMDGc+HFCys+Nl2RVmJLQo2fNqoyU6mzkbMauzemdCatyopKuZpdOrnr5CpmCwAAAADAxtLp79TY8JiCvqBsTTal4imlkiltcW/RH0/88ZLiCkmy2W3qjnYr1B+SzW7T5ubNio/H5fQ65epyZT2PmZh5frdfs9OzK/r7ZDIZGWHjqcfZ7DZF/BF989TKV7xYTskVWExMTKipqSnrPofDoWg0qkAgoDfffFN+v1/BYFC/+7u/u+p5JZNJnT59WpLU3Nys8fFxeb1edXV1mWovEAgoGAyqp6dHHR0dstvtMgxDsVhMly9f1qlTp+R2u638KwAAAAAAAAAAAAAAYJqteulEjFzSFWnVbKqRrdqmykylju88rsEPBjWeHJfT7lTvs715tQcAAAAAAJ7O1eV6apHDl9nsNnX6O1c9RpJqm2qVSqbk6nKptqk27/hcUomUPnrnI7m/Xfj8+5IrsHj//ffV0dGx7DHd3d06ePCgjh07JofDof7+fn33u99dtZySyaQ8Ho+CweCiooeenh6Njo5qYGDAVJvhcFjhcHjRdrvdvuQ8AAAAAAAAAAAAAACUs4aaBvU/11/sNAAAAAAAQBE1Ohq17619lhRCrJaSK7AIhUL60Y9+9NTj5gsRwuGwDh48qGAwqOHhYf3rf/2vLc/J5/Opq6trSdGD3+9XY2OjvF7vU4tCsvH7/RofH5dhGGpqapLH41F3d7dVaQMAAAAAAAAAAAAAAAAAAAAAUBIaHY1qdDQWO41llVSBxa9//Ws5nU598MEHGh0dlWEYkiSn0ymHw6Fdu3bpq1/96qKYjo4OxeNx9ff3a+fOnert7dX3vve9JceZZRiGwuGw/H5/1v0HDx7UwMCAqQKLgwcPym63F5ghAAAAAAAAAAAA8pWaS63ouHRFWrOfzyo1l1JlplKSND07rfMfntfE9ITaGtp0dMdRNdQ05J2DrdqWdwwAAAAAAAAAlKv9g/uLncJTlVSBRXd3t+LxuCRp586d6ujoUFNTkwzDkGEY6uvrU0VFhXp6evTss88uih0YGNChQ4fU3d2ttrY2/fjHP9aBAwcKzmm+sMLhcGTd73Q6FQgElEwmKZYAAAAAAAAAAAAoE6/9/DVL2rn92W2duHHCVOzb+9+2JAcAAAAAAAAAgDVKpsDi1KlT8vl8Onbs2JJ9O3fu1M6dO/Xyyy9Lkt566y0ZhqFvfetbi45zu92KRCI6c+aMXn75Zf3+7/++gsGgvvKVr5jOKxaLLVs4MV94EYlETK1iAQAAAAAAAAAAAAAAAAAAAAAAzPv4px/rmW89U3A7JVFg8f7776upqSlrcUU23/ve9/TWW2/J7Xbr61//+pL9fX196u7uls/nk91uVyAQ0NGjR03lZhiGmpqacu6fL74wDMNU+9LjIo5IJKJdu3bJ7XabbgcAAAAAAAAAAAArc+HFCys6Ll2RVmJLQo2fNqoyUylJOhs5q7F7Y0pn0qqsqJSr2aWTu06uZroAgBKUmkuZipuendb5D89rYnpCbQ1tOrrjqBpqGky1Zau2mYoDAAAAAGC9GTk2sn4KLK5du6aenp68Yg4dOqRwOKxvf/vbWffb7XaFQiENDw+ru7tbfr9fwWBQv/u7v5vXeeLx+MIqFdnMF18kk8m82pWkcDgswzDU0dGh7u5uxWIxeb1e9ff3P3U1jJm5Gd2fu7/welPlJm2q2pR3DhtdpiKjjDLKVGSUVrrY6ZS9TEVG6XRac3NzxU5lXZibm6M/LUR/Wov+tBb9aS3601rpNGOkYmC8/xj/HT/G5xqy4X2BXHhvIBveF8iGsX5xPHz0UDVzNQuvN+pYv1T8s03/bEXHZSoy+meb/plqNtWoIlMhSXrd/br87/tlJA057A717OxZcXtP4reJ1cdvQeWN61feNsL1e+3nrxXcxu3PbuvEjROm4/+y8y8LziGbjXD91qtMRabYKWxI3Ne3Bp891qI/rWVVf3KP7jHuWVqL/rQW/Wkt+tNa6+ne/qcffKotz27JuS8fM/EZJYyEUklzD0L4spIosGhra1MkElF7e/uKYyYmJuTxeJ56XFdXl7xer/r6+uRwONTf36/vfve7Kz7PSgsn7t27t+I2JS0UbfT19S1sc7vdCgaDamxsVDQaXXY1i/6/7l/0+kX3i3pp10t55QApo4xmvjKjuOKqUEWx0yl7GWU098njfwQrKyuLnE35S6fT+uSTTyTRn1agP61Ff1qL/rQW/WmtfMe5sAbj/cdu3rxZ7BRKAp9ryIb3BXLhvYFseF8gG8b6xcFYvzzl+i3h21//4iFgj/RIccWLkd66Mfv5rOnY3878Vpd/dVn/9Nk/6X/52v+iQ988pK/UfkXS4+uXsqU02zy7ot+CajbVPPUYrB1+yytvXL+1EW9dnX9/uH7l67czvy12ChsSY31r8NljLfrTWlb1J79/PcY9S2vRn9aiP61Ff1prvdzbD78V1nvff0+tnlYd+7tjS/b/pP0nmp02f7+wUCVRYPHyyy9r165d+qu/+qsVrTBx7do1nT59WqOjoytqv6GhQX6/Xz09PQoEAoWma4murq6s2+12u7q6uuTz+TQ+Pp4zfuDfDqjR1rjwelPlJm2aovI9X5mKjOKKq+nTpoWnTsG8TEVGW//5Vu3Zs0fV1SXx8VLW5is26U9r0J/Woj+tRX9ai/601vyX3GzGhsfk6nKtYTYbR7HH+6k58xX907PT+ov/5y80MT2htoY2/dH/+kdqqGkw1da+fftM57Ge8LmGbHhfIBfeG8iG9wWyWW6sj9VT7LE+zOG3hLXxv4/875a08//e+X/1Z//3n5mOX60nwcMc/vsrbxvh+v34//tjU3H/ZfS/aOzemNKZtCorKuVqduk/7v6PptqyTdlMxT3NRrh+69ZMsRPYmBjrW4PPHmvRn9ayqj/5/esx7llai/60Fv1pLfrTWuvl3n7CSCiTySiVyD4/pbapVpLk6X68GENtc+2y7c3cm1FiPKGPf/qxJfmVzDv1nXfe0c6dO7V79255vV653W41NTUt7DcMQ6OjowqHw0omk4pEInmfw+12a3BwMK8Yu92+olUsmpub884nl927d2t4eFiGYSysdPFltdW1qq+uX7yRVR7zllZaFapQRaZClRkq4wqVVlqVlZWqrq7mH0KL0J/Woj+tRX9ai/60Fv1pnVxPD0glUwr6gtrv369tB7fJZl+dH/E2qmKP97999dtPP2gFbn92W39y/U9Mxx+tPmpJHusBn2vIhvcFcuG9gWx4X+DLVvqksJGeEW3zbZOjI/u9akmKBqIaC47J0+ORo8Mhm92mhJHQVGxKH13+SPtO7VOru3VJXCqZ0q9O/0qStLl5s+LjcTm9zmULuc3ElJLNVZu5t1+G+C1hY+Ealxb++ytvG+H6ba7abCru+M7jGvxgUOPJcTntTvU+22u6rdUaS2yE67deMYm6OIp9X3+94LPHWvSntazqT+7PfYF7ltaiP61Ff1qL/rTOelkFpPNcpxxeR87fHhodjdr31j65v+3Oq90zzWesSK90CiwcDocmJib03e9+V319fZKkioovvvRlMhnZ7XadOnVKb7755prl9WSRRzbx+OPlNu12u2XnnG8rFovlLLAAAAAAiilhJCRJ7/a8q3d73l32WF/QtzDZaS0nXgEAAAAwJ2EkZIQNRf1RTcWmtM23bdnjU8mUjLAhI2ws2m6z2+QL+nKO8QOewJL9Iz0jujN6R94BryUxAMrHhRcvmI49Gzm75EnwJ3edlCSlK9JKbEmo8dNGJpUBKBkNNQ3qf66/2GkAAAAAAFAUtgabPMc8Ofc7vA5t3bU173btbfYCsvpCyRRYSFJDQ4MGBgY0MDCgiYkJGYaxsIqDw+FQW1vbmufkcDiWXS1jfnWLfAohenp6FA6HNT4+Xmh6AAAAQFEkjIQaHY1qdbfK1pR99YpUPKWEkVhUBLFWE69QmNWa1AIAAIDSFw1EZYQMObwOdQx0aMg7tKK4/f79io/HlTSSsjXZtNWzdWHp7myCvqCe6XpmyXeATn+nBhoH5PQ6lzy5ykwMgPJhqza/Oma2J8HPt5euSKtmU41s1bayKrBIzaVMxU3PTuv8h+c1MT2htoY2Hd1xVA01DabaKuSaAAAAAAAAAGbtfXOvqbjuSLcl5y+pAosntbW1qa2tTS+88EJR83C73QqHwzn3G8bjiWEdHR0rbjMSiSysfJHNfNGG253fsiYAAADAWrkzekeHQ4fV6GjMeUyoP6SOgaXj5LWYeIXCrNakFgAAAJQ+T7dnYXw+FZtacdy2g9tks69s3De/QsZ+//6s+10HXbo1cGvRON9MDICNYz0+Cf61n79WcBu3P7utEzdOmI5/e//bBecAAAAAAAAAmPHxTz9Wq7tV9q/b1/zcJVtgUSoOHTqkM2fOKBaLZS14GB0dzau4QnpcjDEwMJBz/+joqOx2e16rYgAAAABrbbniiqnYlJqcTVmPWe2JVyiu9TipBQAAANaK+B+vGp3rO0WTs0mxQEypZGrhu4OZGAAAAAAAAAAAUH7e7X1XsXMx2Rpt6vusb83PT4HFU7jdbnV0dOjy5ctZCyyGh4cVCoWWbE8mkzp9+rS8Xu+SAoxDhw4pEAiou3vpMiSGYWh4eFjBYNC6vwQAAABgsV09u5bdH/FH1OnvLPg8TKICAAAA1p9PY58uO36fH/9PRiYXiqnNxABAObvw4gVTcWcjZzV2b0zpTFqVFZVyNbt0ctdJi7MDAAAAAAAAVs9MfEZtL7Sp1d1alPNXFuWsZSYYDGp4eFixWGzR9p6eHvX19WVdwSIQCOjMmTPy+XxL9rndbiWTSZ05c2bRdsMw5PF41NfXp66uLmv/EgAAAICFllu9ItQfknfAa8l58plEBQAAAKD4pmJTigaimopN5TwmYSRU21Sbc//8d4CEkSgoBgDKma3aZurP8Z3HteNrO1S/qV47vrZDx3ceN90WAAAAAAAAUAyNjkYd/sVhdXxv6Rz9tcAKFitgt9sVjUbV398vu92u5uZmjY+Py+v15iyE6OjokN1u18GDB7Pu7+vrUzgcVk9Pj+LxuJLJpOx2u65du5Z1pQwAAACgHEzFptTkbFrRahJTsSlNRia1ddfWnBXnTKICAAAArDE3O6dHs48WXn9+/3NL2zfChhJGQo4OhzzdHk3FpjTkHdLe/r1LVpSYic8sW7Q9/x0glUwVFAMAG1FDTYP6n+svdhoAAAAAgDJ0qfNSsVPQKyOvFDsFACWgtrlWyV8nZf+6Pa+4M81n1Hevr+DzU2CxQna7XX6/f8XHu91uJRLLT/Lq6OjIuvoFAAAAUCyFTrq6efqmfMGlq7g9abUnXgEAAABY6ubpm/rln/5y4fV05bRlbc+P2ff27V3Y1upulS/o00DjgLqj3YuKqlc6fn9472FBMQAAAFg7qTnz92inZ6d1/sPzmpieUFtDm47uOKqGmoa822H1HQAAAABYH/a+uVfBg0Ht6t2ltva2FcdlMhlLzk+BBQAAAIAFhUy6Ghsek91hX/aYtZh4BQAAAGCpfaf26fmTzy+8/uSTT/SDHT+wpG1XlyvrdpvdJleXS0FfUG+Mv2HJuQAAAFCaXvv5a5a0c/uz2zpx44Sp2Lf3v21JDgAAAACA4vO949N7f/6eov6otu7eqlZ3q2qbamWzZy+uHw+Na3Z61pJzU2ABAAAAYEEhk65unr6pznOdyx7DxCsAAACgOKprqlVd88VPApvqN63Jebfu3qqx4TEljMRCwbXNbltRMfXm5s0L/99MDAAAWL9KYbUEqTRWTFitvkhXpDX7+axScylVZiqtShcAAAAAgKf608o/VUVFhaTHq1KMDY+t6fkpsAAAAACwwOykq4SR0FRsatHqE/myauIVAAAAgNIx/ySpqdjUwji/tql22ZiZ+MyiWLMxAABg/SqF1RKk0lgxoVT64sKLF0zHno2c1di9MaUzaVVWVMrV7NLJXSdNtwcAAAAAKG+NjkYljIRcXa6n/j4wb3J0Up9+8Kkl56fAAgAAAEDBIv7IwmQps6yaeAUAAABg7Yz0jGgiPJHXSnSNjkZNRiZz7p8vsn7yO4aZGAAAAKydQlbzOL7zuAY/GNR4clxOu1O9z/aWxOogAAAAAIDiaHQ0at9b++T+tjuvuDPNZyw5PwUWAAAAAAo2EZ546kSmtZp4BQAAAGDtTEWmFgqfs5kfsz+52t0W9xYZYSNnTMJISJIcHY6CYgAAwPrFaglfWK2+SFekldiSUOOnjarMVFqVblYNNQ3qf65/Vc8BAAAAACgfjY5GU3OBbI3WFOuv7rdgAAAAABvCVGzqqatImJ14Nb89GyZRAQAAAMXV1tGm/kTuyXCTo5Oy2W2LfgjZfmi7pMffI3LFfHmMbyYGAACsX7Zqm+k/x3ce146v7VD9pnrt+NoOHd953HRbpWA1+6JmU01Z9QUAAAAAYH3YP7hfbe1tece98Q8rf+jrcljBAgAAAEBB5ic42ZqW/xGtraNN3QPdOffnmnj13pn3NBWbWlR48WQMk6gAAACA4tl+aLuigag83Z4l+xJGQmPDY/IFfYu2t7pb5ehw6Pbl21nH+WPDYzocOlxwDAAAQDaslvAF+gIAAAAAgKUosABgqQ8vfag7Z++s+jKxT/PKyCtFPT8AABvJcqtSPGmtJl4BAAAAsMb8inHLrSrX6m6VETZ068wt7e3buyg24AloT98eubpcS+J8QZ8CnoC2H9q+aKw/0jOiPX17shZSm4kBAAAAAAAAAADri3HNkBEypAqpydmkrbu2asuzWyxrnwILAAAAAAWZn3Rlsy+/gsVaTrwCAAAAYM7Y8Jii/qgkaTIyKUkaOTaysM3lcy0pmt7bt1dG2NBIz4hS8ZRSyZRsdptevfZq1kJp6fH3h+5ot0L9IdnsNm1u3qz4eFxOrzPr9wKzMQAAAAAAAAAAoLycaT6jvnt9Ofc7XnDI8YJDqemUZuIzMsKGIv6IvANe1Xy1puDzU2ABAAAAoCBbd22VzW7T7+z+naceu1YTrwAAAACY4+pymRpnOzoceRc/2+w2dfo7Vz0GAAAAAAAAAACUj0wms6LjbA022Rps8hzzKDWdUqg/pP0/2l/w+SmwAAAAAFCQVner+hP9Kz5+rSZeAQAAAAAAAAAAAAAAACgvFRUVecfYGmyWnb/SspYAAAAAAAAAAAAAAAAAAAAAAADWUGo6panIlCVtsYIFAAAAAAAAAAAAAAAAAAAAAABYE8lfJ7Nuz2Qyj/f/Y1LKLN9GKpnSTHxGU7Ep3Tx9U66DLktyo8ACAAAAAAAAAAAAAAAAAAAAAACsicnopCZHJ5UwEjLChmanZxft/6HjhytuK5PJyNHh0P4f7bckNwosUPZScylTcdOz0zr/4XkZvzXk+IpDR3ccVUNNg6m2bNU2U3EAAAAAAAAAAAAAAAAAAAAAsJG4XnbJ9fIXK05MxaYU7g/LuGaooqJCz7z8zIraaXQ0yuF1yPGCw7LcKLBA2Xvt568V3Mbt2ds6ceOE6fi3979dcA4AAAAAAAAAAAAAAAAAsN6YfYCu9MVDdCemJ9TW0Gb6Ibo8QBcAgNLW6m7V4dBhjfSM6OPhj+V7x1e0XCiwAAAAAAAAAAAAAAAAAAAAq8KKB+hK0u3PzD9Et1QeoHup81KxU5AkvTLySrFT0MzMjB48eKDq6vynsd69e1e9vb2KRqPyeDwaHBxUS0uLqTzq6upMxQEAVkenv1NT0ami5kCBBcrehRcvmIo7GzmrsXtjSmfSqqyolKvZpZO7TlqcHQAAAAAAAAAAAAAAAAAAeNJLL71kSTuhUEhOp9N0fCaTsSQPAIB19p3aV9TzU2CBsmd2+bbjO4/rRx/8SOO/GZfzq069/uzrLAUHAAAAAAAAAAAAAEAZSs2lTMdOz07r/IfnNTE9obaGNh3dcVQNNQ2m2mLeAQAsZfYBuhIP0QUAYCNyvex66jET1yeUMBJqdDRq666tqvlqjWXnp8ACG1ZDTYP6fq9P8da4mqaaVJmpLHZKAAAAAAAAAAAAAADAhNd+/pol7dz+7LZO3DhhOv7t/W9bkgcArCeFFJ8d33lcgx8Majw5Lqfdqd5neylmWyd+9rOfac+ePaquzn8a64EDB3T9+nU9evRIVVVVam9v15UrV1YhSwBAMYTfCis1vbiIfv+P9kuSUtMpDXUMaSo2pUwmo0ZHo1KJlHzDPrX9uzZLzk+BBQAAAAAAAAAAAAAAAAAAKDkNNQ3qf66/2GlgFdTW1qqurs5UgcXQ0JCOHDmi0dFR7d69WxcvXlRdXd0qZAkAKAZPj0c/dP5Qnh6PPN0ete5sXdgX9AU1GZ3U3r696vhehyQplUwpeDCoxrZG2b9uL/j8FFgAAAAAAAAAAAAAAACgrF148YLp2LORsxq7N6Z0Jq3Kikq5ml06ueukhdkBAIAv+/DSh7pz9o4qM5Wm4l+tflWvPv+qJOn6t6+bzuOVkVdMxwIAVsen738qX9An18uuRdvH/mpMRtjQNt+2heIKSbLZbfK941P4VHhhpYtCUGABAAAAAAAAAAAAAACAsmartpmOPb7zuAY/GNR4clxOu1O9z/YW1B4AAAAAwLw7o3fUcbpjyfaPLn+kiooK7Tu1b8k+m90mW4M13+MosAAAAAAAAAAAAAAAoMSl5lKmY6dnp3X+w/OamJ5QW0Obju44qoaahrzbYcI51quGmgb1P9df7DQAAAAAAJKUyb7ZCBuSpC3Pbsl+QIU1p6fAAgAAAAAAAAAAAACAEvfaz1+zpJ3bn93WiRsnTMW+vf9tS3IAAAAAAADIpba5dsm2xERCqWRKWz1bc8alkuYfTvGkSktaAQAAAAAAAAAAAAAAAAAAAAAAKEBFxdKlKMaGxyRJbR1tuQNzrHyRL1awAAAAAAAAAAAAAACgxF148YLp2LORsxq7N6Z0Jq3Kikq5ml06ueukhdkBAAAAAABY4+FnDzX7m1nVfLVmYVvUH1VFRYW2H9qeNSZ8KixPj8eS81NgAVggNWd+SZnp2Wmd//C8JqYn1NbQpqM7jqqhpsFUW7Zqm+k8AAAAAAAAAAAAAJSuQn4LPL7zuAY/GNR4clxOu1O9z/by2yIAAAAAAChJ+07tU9AXVMeZDikj3Tx9UwkjoW2+bdry7JZFx376wacK94fl8DrUurPVkvNTYAFY4LWfv2ZJO7c/u60TN06Yjn97/9uW5AEAAAAAAAAAAABg/WioaVD/c/3FTgMAAAAAAOCpbA02vXD6Bb3z8jtKGAlJ0jbfNnVd7lo45t3ed2WEjYX9RtjQw3sP1XG6o+DzU2ABAAAAAAAAAAAAAAAAAAAAAABKQqu7VW/8wxtKTadka1i6Cufe/r3a27930bbaplpLzk2BBWCBCy9eMB17NnJWY/fGlM6kVVlRKVezSyd3nbQwOwAAAAAAAAAAAAAAAAAAHnvw4IGpuLt376q3t1fRaFQej0eDg4NqaWnJu525uTlT5wcAbDzZiiskqbGtcdXOSYEFYAFbdfb/eFfi+M7jGvxgUOPJcTntTvU+21tQewAAAAAAAAAAAAAAAAAA5FJfX19wG6FQSE6n03T8D7t/WHAOAAA86eOffqxnvvVMwe1QYAEUWUNNg/qf6y92GgAAAAAAAAAAAAAAAAAAAABQlkaOjVBgAQAAAAAAAAAAAAAAAGBlpmJTivgjSsVTmopNyWa3ydPjkafbkzMmlUzpV6d/JUna3LxZ8fG4nF6nXF0uS2MAq6TmUqZjp2endf7D85qYnlBbQ5uO7jiqhpoGU23Zqm2m8wBW24UXL5iKOxs5q7F7Y0pn0qqsqJSr2aWTu07m3U66Iq2HemgqBwDA+vDpB59qy7Nbcu7Lx0x8RgkjoVTS/DjwSRRYAAAAAAAAAAAAAAAAAOtcNBCVJHX6Oxe2GWFDQV9QtwZuqTvaLZt98YTwVDKlgCcgX9CnVnfrwvaRnhHdGb0j74B3yXnMxABWeu3nr1nSzu3PbuvEjROm49/e/7YleQCrwWwB0PGdxzX4waDGk+Ny2p3qfbbXVFsUWADAxhZ+K6z3vv+eWj2tOvZ3x5bs/0n7TzQ7PVuEzB6jwAIAAAAAUJIudV4qdgp6ZeSVYqcAAAAAAAAAAAWbf5rr3r69i7Y7Ohx69dqrCngCCvqCOhw6vGh/0BfUM13PLCqUkB4XaQw0DsjpdcrR4Sg4BgBQHhpqGtT/XH+x0wAAlLmEkVAmk1EqkX3FidqmWklaWGmvtrl22fZm7s0oMZ7Qxz/92JL8KLAAAAAAAAAAAAAAAAAA1rGIP6Jvnvpm1n2t7lY5OhwywoYSRkKNjkZJjyc9GWFD+/37s8a5Drp0a+DWomIJMzGA1S68eMF07NnIWY3dG1M6k1ZlRaVczS6d3HXSwuwAAADQea5TDq8j5/eCRkej9r21T+5vu/Nq90zzGSvSU6UlrQAAAAAAAAAAAAAAAAAoSRPhCf2fbf+nUsnsT4jd4t4iSZqKTS1si/gjkrRQcPFlTc4mGWFjUZtmYgCr2aptpv8c33lcO762Q/Wb6rXjazt0fOdx020BAAAgO1uDTZ5jHjW2Zf/e4PA6tHXX1rzbtbfZC8zsMVawAAAAAAAAAAAAAAAAANax2qZaTcWmlDASanW3rijm09instlzTxKfL6KYjEwuPHnWTAxQShpqGtT/XH+x0wAAANjQ9r6511Rcd6TbkvNTYAEAAAAAAAAAAAAAAACsY4dDh5UwEjlXlkgaSUlaVHyRMBKqbarN2eZ8IUXCSBQUAwAAAMAaU7EpRfwRpeIpTcWmZLPb5OnxyNPtyRmTSqb0q9O/kiRtbt6s+HhcTq9Tri6XpTHlhAKLFUomkzp9+rQkqbm5WePj4/J6verq6rL0PD09Perv75fDQZU+AAAAAAAAAAAAAAAAcks/SiuTznzxei6d89hcxRWSNDY8plZ366JjZuIzy8bMF1KkkqmCYgAAAAAULhqISpI6/Z0L24ywoaAvqFsDt9Qd7V6y2lwqmVLAE5Av6FtUbD3SM6I7o3fkHfAuOY+ZmHwkf52UETYUH48vFILbmmxqcjap1d2qtva2gtpfCQosViCZTMrj8SgYDMrtdi9s7+np0ejoqAYGBiw5TywWUyAQUE9PjyXtAQAAAAAAAAAAAAAAYP2K/0Nc8f8RX3g9rem827h15pYkqfNc56LtKy2CeHjvYUExAAAAAAqTMBJKJVPa27d30XZHh0OvXntVAU9AQV9Qh0OHF+0P+oJ6puuZRYUS0uMijYHGATm9Tjk6HAXHPM3sb2YVDUR18/TNFX2n8PR4tLdvr+xft+d1npWiwGIFfD6furq6FhVXSJLf71djY6O8Xq86OjoKPk9/f3/BbQAAAAAAAAAAAAAAAGBjaPpG06IVI+KpuPTLlcdPxaYU7g8vefosAAAAgPIR8Uf0zVPfzLqv1d0qR4dDRthQwkgsfH9IGAkZYUP7/fuzxrkOunRr4NaiYgkzMU8T+3FM7/a8K0nKZDKL9tnsNtU21WomPrOo8CIyGFHUH9Xe/r164bsvrPhcK0WBxVMYhqFwOCy/3591/8GDBzUwMFBwgUUgEJDP51M4HC6oHQAAAAAAAAAAAAAAAGwMlVWVUtUTr+cq84oP+oLa798vV5dryT6b3baip8dubt5cUAwAAACAwkyEJxQLxPTHE38sm922ZP8W9xYZYUNTsamFAouIPyJJiwq2n9TkbFIsEFMqmVpo00zMcoYPDWtseEyZTEaODoccXoccHQ617sxe/J2aTskIGxr/xbhi52K6NXBLRtjQsb879tRz5SO/b1Ub0HxhhcORvZLG6XQqHA4rmUyaPodhGMueAwAAAAAAAAAAAAAAALBS0BeUp8cjT7cn6/7aptpl42fiM5K0aOKUmRgAAAAAhaltqlUqmVLCSKw45tPYp8uOy+eLKCYjkwXF5PKX/9tf6qPgR3rm5Wf0xvgbOvyLw9r75t6cxRWSZGuwyfWyS53+Tv0f6f9Dz3/neU1GJnXu35x76vnyQYHFU8RiMdnt9pz754siIpGI6XP4/X51d3ebjgcAAAAAAAAAAAAAAABWKtQf0tbdW7W3b2/OYxodjQsFEdnMr1Tx5NNrzcQAAAAAyG5udk6zv5ld+PP5/c+zHnc4dFhvjL+hVnf24oSkkZSkRfsTRmLZAun5QoonizbMxGRz6/u3NB4aV2egU753fGpsM/f9wDvg1eFfHNZkZFLX/tM1U21kU21ZS+uUYRhqamrKuX+++GJ+FYp8DQ8Pq6enx1QsAAAAAAAAAAAAAAAAkI9oIKomZ1PWlStSydTCpKgt7i0ywrnnw8xPmnJ0OBa2mYkBAAAAkN3N0zf1yz/95cLr6crpnMcuV8Q8NjymVnfromNm4jPLxswXUswXSZuN+bLUdErh/rC8Z7xyf9ud87iVcnQ45HvHp+FDw/J0e2T/ur3gNimweIp4PL6wSkU288UXyWQy77aTyaQMw1BXV1fesTNzM7o/d3/h9abKTdpUtSnvdja6TEVGGWWUqcgorXSx0yl7pdSfc3NzRT2/Febm5pROp9fF36UU0J/Woj+tRX9ai/60VjrNGKkYGO8/lprL/YX7aaZnp/UX/89faGJ6Qm0Nbfqj//WP1FDTkHc7pfBZwucasuF9gVx4byAb3hfIhrF+cTx89FA1czULrzfqWL/clNK9b+SP61feuH7ljetX3rh+5StTkVl2/9jwmCRlLa5IGAlNxabk6nJJkrYf2q73zrynqdhU1ifhTo5OLimUMBOzHnBf3xp89liL/rQW/WmtUurP9XDf1Kp7wOmK4r+3S+F6cE/dWvRnYX7vzd/T7jd2L7z+p3/6J/3g2R/k1catM7ckSZ3nOhdtX64I4kkP7z0sKObLooGoWt2t2vOdPStqayVcXS5t2blFY8NjlrRLgcVTrLRw4t69e3m3ffr0aQ0MDOQdJ0n9f92/6PWL7hf10q6XTLW1kWWU0cxXZhRXXBWqKHY6Za+U+vPmzZtFPb8V0um0PvnkE0lSZWVlkbMpf/SntehPa9Gf1qI/rWVmnIvCMd5/7I3AG5a0c/uz2/qT639iKtZ502lJDoXgcw3Z8L5ALrw3kA3vC2TDWL84GOuXp1K69438cf3KG9evvHH9yhvXr3z9dua3OfdNxaY0E5/JWlwhSUbYWFT80OpulaPDoduXb2ctlhgbHtPh0OFF28zErAeM9a3BZ4+16E9r0Z/WKqX+ZJ7ZF+KtcatSMq0Urgf31K1Ff1or33v7U7EphfvD8gV9WcfnxfDR5Y/0zf/0Tcvb3ffWPt0auEWBRTkLh8Pyer2m4wf+7YAabV8ssbKpcpM2TVH5nq9MRUZxxdX0aZMqMgx8C1VK/blv376int8K8xWbe/bsUXU1H9eFoj+tRX9ai/60Fv1prfkvuVhbjPdLRymMK/lcQza8L5AL7w1kw/sC2TDWLw7G+uWplO59I39cv/LG9StvXL/yxvUrYzPZNyeMhIK+oNo62jTZM7lkfyqekhE21J9YXCjgC/oU8AS0/dD2RROyRnpGtKdvT9bVKMzElDvG+tbgs8da9Ke16E9rlVJ/lsLvgYWy6h7wnbN3rErJtFK4HtxTtxb9aa187+0HfUHt9+9fWKXuSTa7bUUrUmxu3lxQzJclJ5Kr8p3A4XXo3Z53LWmLd+pT2O32Fa1i0dzcnFe7oVDI9OoVklRbXav66vrFG5df5RFZpJVWhSpUkalQZYbKuEKVUn+ul3+IKysrVV1dvW7+PsVGf1qL/rQW/Wkt+tM6PD2gOBjvP3bhxQumY89Gzmrs3pjSmbQqKyrlanbp5K6TebdTKp8jfK4hG94XyIX3BrLhfYEvY6xfHJurNjPWL0OldO8b+eP6lTeuX3nj+pU3rl/5yjVJdcg7pISRUCKQyBnb6Ghcss1mt6k72q1Qf0g2u02bmzcrPh6X0+vMOknLbEy5476+NfjssRb9aS3601ql1J/r5Z6pFfeAi30tpNK5HtxTtxb9aZ187u0HfUF5ejw5V7CrbapdNn4m/rh622a3FRTzZalkSjVfrVm2HTNsDSsr/lgJ3qlP0dTUtOz+ePzxkkh2u33FbZ45c0anTp0qJC0AAAAAWPds1bm/cD/N8Z3HNfjBoMaT43Lanep9treg9gAAAAAAAACgnL0x/obpWJvdpk5/56rHAAAAALBGqD+krbu3am/f3pzHNDoaNRlZurrdvPlihScLsc3EfFlNg/XFFVa3TYHFUzgcDkUikZz751e3cDhWtlSJYRiy2+15FWQAAAAAAPLTUNOg/uf6n34gAAAAAAAAAAAAAADAOhENRNXkbMq6ckUqmVpYXWKLe4uMsJGznYTxePU7R8cXc+TNxHxZRUX2VfesYFXbFFg8hdvtVjgczrnfMB6/STo6OlbUXiwWUzAYVDAYzNnWsWPHFlbOCIVC+aYMAAAAAAAAAAAAAAAAAAAAANhAxobHJClrcUXCSGgqNiVXl0uStP3Qdr135j1NxabU6m5dcvzk6OSSQgkzMeWIAounOHTokM6cOaNYLCa3271k/+jo6IqLKySpq6tLXV1dWfcNDw/L5/Pp3LlzWc8FAAAAAAAAAAAAAAAAAAAAAMCTpmJTmonPZC2ukCQjbCwqfmh1t8rR4dDty7ezFkuMDY/pcOjwom1mYsoRBRZP4Xa71dHRocuXL2ctehgeHs66ykQymdTp06fl9XrzKsAAAAAAAAAAAAAAAAAAAAAAAGAlEkZCQV9QbR1tmuyZXLI/FU/JCBvqT/Qv2u4L+hTwBLT90PZFBRMjPSPa07cn62oUZmIW5ZJM5fvXWzGr2qbAYgWCwaA8Ho8OHTq0qMiip6dHfX19WQsoAoGAzpw5o0AgoEQisaLzGIax8L+sYAEU5lLnpWKnoFdGXil2CgAAACjQgwcPTMfevXtXvb29ikaj8ng8GhwcVEtLS97tzM3Nmc7Bamb7w6q+kKS6ujpTcQAAAAAAAAAAAAAArEdD3iEljIQSgdxz1hsdjUu22ew2dUe7FeoPyWa3aXPzZsXH43J6nXJ1ubK2YybmSZlMRv/Xv/i/suZTiISxsvn6K0GBxQrY7XZFo1H19/fLbrerublZ4+Pj8nq96urqyhrT0dEhu92ugwcPPrX9np4eGYahSCQiSTp27Jj8fr/cbrcGBgYs/bsAAAAAAFauvr7eknZCoZCcTqfp+Bs3bliSR6Gs6I9C+yKTyRScAwAAWLmRnhFt821b0ROnfnX6V5K04h9T1ioGAAAAAAAAAID17I3xN0zH2uw2dfo7Vz3mSfHxuOLjcdPxuVRUVFjSDgUWK2S32+X3+1d8vNvtXvHKFfm0CwAAAJSKaCCqseCYPD0eOTocstltShgJTcWm9NHlj7Tv1L5FSwHOYxIVAAAAUNoSRkJG2FDUH9VUbErbfNuWPT6VTCngCcgX9C1ZDvzO6B15B7xFiwEAAAAAAAAAAKXF0eGQw7v8g53yNfl3k/r4px9b0hYFFgAAAABMSSVTMsKGjLCxaLvNblsy4enJGCZRoZzcv3/fdOyBAwd0/fp1PXr0SFVVVWpvb9eVK1fybmdubk7vv/++6TysZLY/rOoLAACw+qKBqIyQIYfXoY6BDg15h54aE/QF9UzXM0u+A3T6OzXQOCCn17lkBYy1igEAAAAAAAAAAKWjoqJCh39xeFXa/rOqP7OkHQosAAAAAJi2379f8fG4kkZStiabtnq2ytPtyXk8k6hQburq6kzHDg0N6ciRIxodHdXu3bt18eJFU+3Nzc2ZzsFqZvvDqr4AAACrz9PtWRjTT8Wmnnr8/GoX+/37s+53HXTp1sCtRWP2tYoBAAAAAAAAAAClpaahpuTbpsACAABsaA8ePDAde/fuXfX29ioajcrj8WhwcFAtLS15t1NKE2eBfG07uE02u21FxzKJChtNS0uLrl69Wuw0SgJ9AQDA+hXxRyRJjY7GrPubnE2KBWJKJVML3x3WKgYAAAAAAAAAAJSWV6+9WvJtU2ABAAA2tPr6ekvaCYVCcjqdpuNv3LhhSR5AKWMSFQAAALD+fBr7dNmx+PxYfjIyuVAYvVYxAAAAAAAAAACgtLTubC35timwAAAAALAmmEQFAAAArD8JI6Haptqc++fH8wkjseYxAAAAAAAA81JzKdOx07PTOv/heRm/NeT4ikNHdxxVQ02DqbZs1Tw0DgCAUkeBBbCOWPFFYGJ6Qm0Nbaa+CKQr0qbPDwDFcv/+fdOxBw4c0PXr1/Xo0SNVVVWpvb1dV65cybudubk5vf/++6bzAErBVGxKk5FJbd21Va3u7NXgTKICAAAAimdudk6PZh8tvP78/ueWtDsTn8m54pykhfF8KvnFvcu1igEAAAAAAJj32s9fs6Sd27O3deLGCdPxb+9/25I8AADA6qHAAlhHLPsi8Jn5LwI/7P6hJTkAwFqpq6szHTs0NKQjR45odHRUu3fv1sWLF021Nzc3ZzoHwGr5TroywoYSRkKODoc83R5NxaY05B3S3v69S1aUYBIVAAAAUDw3T9/UL//0lwuvpyunLWl3pWPxh/cernkMAAAAAAAAUA4udV4qKD5dkVa8Na47Z++oMlNpUVYAsHFRYAHAUrOfzyo1lzI1ULNiFY15LKcHYC20tLTo6tWrxU4DsFQ+k67mCx/29u1d2NbqbpUv6NNA44C6o92LVrNgEhUAAABQPPtO7dPzJ59feP3JJ5/oBzt+UMSMAAAAAAAA1s6FFy+Yjj0bOauxe2NKZ9KqrKiUq9mlk7tOWpgdAAAoJRRYAOtIsb8IpCvS+vZffNt0Dk8qZBUNieX0AAAwK59JV64uV9btNrtNri6Xgr6g3hh/Y1XyBAAAAJCf6ppqVdd88ZPApvpNlrRrs9tWVBi9uXnzmscAAAAAAADMK+Rhrcd3HtePPviRxn8zLudXnXr92dd5+CsAAOsYBRbAOlLoF4HBDwY1nhyX0+5U77O9ebeXrkibPj8AACgNVk262rp7q8aGx5QwEgsrXTCJCgAAAFh/aptql90/E5+R9Hhsv9YxAAAAAAAAVmioaVDf7/Up3hpX01STKjOVxU4JAACsIgosAEh6/EWg/7n+gtv5/h99X42fNpr6IsFyegAArB/zk5qmYlMLBRZMogIAAADWn0ZHoyYjkzn3zxdMz38vWMsYAAAAAAA2utnPZ5WaS5maxzM9O63zH57XxPSE2hradHTHUTXUNJjKg9UeAABAOaHAAoClajbVyFZtM/XFzIpVNErJgwcPTMfevXtXPT09+tu//Vs999xz8vv9amlpMdVWXV2d6TwAAMhlpGdEE+EJvTH+xopjmEQFAAAArD9b3FtkhI2c+xNGQpLk6HCseQwAAAAAABvdm3/xpiXt3P7stk7cOGE6/u39b1uSBwAAwFqgwAJAybBqFY1SUV9fb0k74XBYTqfTdHwmk7EkDwAAnjQVmVpYPSKb+cKHVnfrwjYmUQEAAADrz/ZD2/Xemfc0FZtaNP6fNzk6uWS8vlYxAAAAAAAAAAAA+aLAAgAAAEDe2jra1D3QnXP/5OikbHbbopUlmEQFAAAArD+t7lY5Ohy6ffl21jH72PCYDocOFyUGAAAAAICN7vt/9H01ftqoykxl3rFnI2c1dm9M6UxalRWVcjW7dHLXyVXIEgAAoLTkP3ICAKzI/fv3Tf/xer2qqqqSJFVVVcnr9ZpuCwCA1bD90HZFA9Gs+xJGQmPDY+o817lo+5MTorIZGx7T3v69BccAAAAAsMb8inHzK9Tl4gv69PHwx5qKTS3aPtIzoj19e7IWRa9VDAAAAAAAG1nNphrZqm2m/hzfeVw7vrZD9ZvqteNrO3R853HTbQEAAJQTVrAAgFVSV1dnOnZoaEh/+Id/qL/5m7/R888/r5/85CcFtQcAgNVa3a0ywoZunbmlvX1fFDgkjIQCnoD29O2Rq8u1JM4X9CngCWj7oe2Lnjr7tElU+cYAAAAAMGdseExR/+Ni6snIpCRp5NjIwjaXzyVPt2dRjM1uU3e0W6H+kGx2mzY3b1Z8PC6n15n1e8FaxgAAAAAAAHMaahrU/1x/sdMAAABYcxRYAEAJamlp0bvvvqubN29q3759qq7m4xoAUHr29u2VETY00jOiVDylVDIlm92mV6+9uqgQ4klMogIAAABKm6vLZWqcbbPb1OnvfPqBRYgBAAAAAAAAAABYKWbsAgDWxIMHD0zF3b17V729vYpGo/J4PBocHFRLS0ve7czNzZk6PwBgeY4OR94rSDCJCgAAAAAAAAAAAAAAAEAposACALAm6uvrC24jFArJ6XSajr9x40bBOQAAAAAAAAAAAAAAAAAAAGB9osACAAAAAAAAALDqzK5uKVm3wqUk1dXVmc4DAAAAAAAAAAAA6xsFFgCANXH//n1TcQcOHND169f16NEjVVVVqb29XVeuXMm7nbm5Ob3//vumcgAAAAAAAIWzYnVLqfAVLjOZjCV5AAAAAAAAAAAAYP2hwAIAsCbMPh1yaGhIR44c0ejoqHbv3q2LFy+aamtubs7U+QEAAAAAAAAAAAAAAAAAALAxUGABAChpLS0tunr1arHTAAAAAAAABTK7uqVk3QqXAAAAAAAAAAAAwHIosAAAAEBJefDggenYu3fvqqenR3/7t3+r5557Tn6/Xy0tLabaMrvyDgAAAIDsChljW7XCJQAAAAAAAAAAALAcCiwAAABQUurr6y1pJxwOy+l0mo7PZDKW5AEAAACgcKxwCQAAAAAAAAAAgLVQWewEAAAAAAAAAAAAAAAAAAAAAAAAio0VLAAAAFBS7t+/bzr2wIEDun79uh49eqSqqiq1t7frypUrFmYHAAAAANZ48OCBqbi7d++qt7dX0WhUHo9Hg4ODamlpybudhw8fmjo/AAAAgOWl5lKmY6dnp3X+w/OamJ5QW0Obju44qoaahrzamJ2bNX1+AAAAAAAFFgAAACgxdXV1pmOHhob0h3/4h/qbv/kbPf/88/rJT35SUHsAAAAAsFrq6+sLbiMUCsnpdFqQDQAAAACrvPbz1yxp5/Znt3XixglL2gIAAAAArBwFFgAAAFg3Wlpa9O677+rmzZvat2+fqqsZ7gIAAAAAAAAAAAAAAAAAVoYZZwAAAAAAAAAArLH79++bijtw4ICuX7+uR48eqaqqSu3t7bpy5Ure7fzjP/6jtm3bZioHAAAAALldePGC6dizkbMauzemdCatyopKuZpdOrnrZF5txGfi+s4vv2M6BwAAAADY6CiwAAAAAACgxM3MzOjBgwemVua5e/euent7FY1G5fF4NDg4qJaWFlN51NXVmYoDAABLmf13dWhoSEeOHNHo6Kh2796tixcvmmpr8+bNps4PAAAAYHm2apvp2OM7j2vwg0GNJ8fltDvV+2xv3u3VVNeYPj8AAAAAgAILAFg1lzovFRSfrkgr3hrXnbN3VJmpNN3OKyOvFJQHAAAAiu+ll16ypJ1QKCSn02k6PpPJWJIHAAAwr6WlRVevXi12GgAAAABWQUNNg/qf6y92GgAAAACwoZmfsQsAAAAAAAAAAAAAAAAAAAAAALBOsIIFgHUpNZcyHTs9O63zH57XxPSE2hradHTHUTXUNOTdTiFLv2J1zMzM6MGDB6quzv+fv7t376q3t1fRaFQej0eDg4NqaWkxlUddXZ2pOAAAsHH97Gc/0549e0yNYw4cOKDr16/r0aNHqqqqUnt7u65cubIKWQJ48OCB6VirvnPMzc2ZzgEAAAAAAAAAAAAANjoKLACsS6/9/DVL2rn92W2duHHCVOzb+9+2JAdY56WXXrKknVAoJKfTaTo+k8lYkgcAANg4amtrVVdXZ6rAYmhoSEeOHNHo6Kh2796tixcvUvC5TlBAXHrq6+staafQ7xw3btywJA8AAAAAAAAAAAAA2GgosAAAAAAAIIdLnZeKnYLSFWn9zsnfMR3f0tKiq1evWpgRSgUFxAAAAAAAAAAAAAAAWIsCCwDr0oUXL5iOPRs5q7F7Y0pn0qqsqJSr2aWTu05amB2K5Wc/+5n27Nlj6gm/Bw4c0PXr1/Xo0SNVVVWpvb1dV65cWYUsAQAAAJSr+/fvm4616jvH3Nyc3n//fdN5AAAAAAAAAAAAAMBGRoEFgHXJVm0zHXt853ENfjCo8eS4nHanep/tLag9lI7a2lrV1dWZKrAYGhrSkSNHNDo6qt27d+vixYuqq6tbhSwBAACwnAcPHpiOvXv3rnp7exWNRuXxeDQ4OKiWlhZTbZXCWJAC4tJTyPvCqu8cc3NzpnMAAAAAAAAAAAAAgI2OAgsA+JKGmgb1P9df7DRQYlpaWnT16tVipwEAALDh1dfXW9JOKBSS0+k0HZ/JZCzJoxAUEK8vfOdYv0qhMIzCGwAAAAAAAAAAAGBlKLBYoWQyqdOnT0uSmpubNT4+Lq/Xq66uLtNtGoahgYEBSVI8HlcymZTX61VfX58lOQMAkEuhE3x6enr0t3/7t3ruuefk9/vL+snPAAAAGxGT+YG1UyqFYTdu3LAkDwAAAAAAAABYTy51Xip2CgCAEkOBxQokk0l5PB4Fg0G53e6F7T09PRodHV0oksjH8PCwRkdH5ff7F233eDzy+/0aHx8vOG8AAHKxaoJPOBwu+yc/AwCA8nL//n3TsQcOHND169f16NEjVVVVqb29XVeuXLEwOwAAAAAAAAAAAAAAUM4osFgBn8+nrq6uRcUVkuT3+9XY2Civ16uOjo4Vt5dMJnX58mUFg8El+86dOyePx6Oenp4lxRcAAAAAAGx0hayANTQ0pCNHjmh0dFS7d+/WxYsXWVELwKorhcKwubk5vf/++6bzAAAAAAAAAAAAADYKCiyewjAMhcPhnMUOBw8e1MDAQF4FFpFIRMPDw+rv71+y+sV8EUc4HDafNAAAT1EKE3wAAADWWktLi65evVrsNABsMKVQGDY3N2c6BwAAAAAAAAAAAGAjocDiKeYLKxwOR9b9TqdTgUBAyWRSdrt9RW02NTXJbrerubk55zErbQsAADMKneDzh3/4h/qbv/kbPf/88/rJT37Ck58tMDMzowcPHqi6Ov/h2d27d9Xb26toNCqPx6PBwUG1tLSYyoNr+YUHDx6YiuN6AAAAwCoUhgEAAAAAAAAAAABriwKLp4jFYssWO8wXXkQikRWvYuF2u5VIJHKeT1JeK2IAALCWWlpa9O677+rmzZvat2+fqYIALPXSSy9Z0k4oFJLT6TQdn8lkLMljPaivry+4Da4HAAAAAAAAAAAAAAAAAJQPZkQ+hWEYampqyrl/vvjCMAxLztff3y+Hw6GBgQFL2gMAlB6eig8AAAAAAAAAAAAA68fs3KxSc6m846Znp3X+w/OamJ5QW0Obju44qoaaBlM52KptpuIAAAAALEaBxVPE4/GFVSqymS++SCaTBZ3HMAwNDAzI4XAoFAo99fiZuRndn7u/8HpT5SZtqtpUUA4bUaYio4wyylRklFa62OmUPfrTWlb159zcnIVZla+5uTml0+mS6I9SeCr+559/XtD5S6k/14O5uTm9++67+r3f+z1TK4J0dXXpxo0bevTokaqqqvTv/t2/0/DwsOlcyp1V70+z47v1dj3Saf5NLwbG+3hSpiLDv7tYgvEYcuG9gWx4XyAbxvrF8fDRQ9XM1Sy8ZqxfHrj3Xd64fuWN61feuH7ljetXvjIVrI5dDG/+9ZsFt3H7s9s6ceOE6fi/7PzLgnMoNj57rEV/Wov+tBb9aa311J+lcB+be+rWoj+txb39tUGBxVOsdGLdvXv3TLU/PDys0dFRGYYhh8Mhr9e7orj+v+5f9PpF94t6addLpnLYyDLKaOYrM4orrgpVFDudskd/Wsuq/rx586aFWZWvdDqtTz75RJJUWVlZ5GyKr9D3Bf1prXQ6rf/5P/+n/v7v/95Uf77++uv6zW9+o//23/6b/tW/+ld6/fXX9f77769CpuWh2O/P9XY9zI5zURjG+3hSRhnNffL4ZhP/7mJesf+9Q+nivbHYzMyM6dhEIqGzZ8/qv//3/65/+S//pU6ePKnGxsa826mtrTWdg1V4XyAbxvrFwVi/PHHvu7xx/cob16+8cf3KG9evfP125rfFTgFFEm+NFzuFgvHZYy3601r0p7XoT2utp/4shblu3FO3Fv1pLe7trw0KLIqsq6tLXV1dC6+9Xq/8fr/OnTsnu92eM27g3w6o0fbFD7qbKjdp0xRPucpXpiKjuOJq+rRJFZnyHliUAvrTWlb15759+yzMqnzNV8Du2bPH1AoBViqFp+LX1dWZiptXSv25HljRn//+3/97K1Mqa6Xw/lxP12P+Sy7WFuN9PClTkdHWf76Vf3exSCn8e4fSxHtjsU2brPn3MxqN6j/8h/9gKrbQFQStwPsC2TDWLw7G+uWJe9/ljetX3rh+5Y3rV964fmXM/LMGUIA/++afqbFm8Vi/uurp38H/y+h/0di9MaUzaVVWVMrV7NJ/3P0fTeVgm7KZiislfPZYi/60Fv1pLfrTWuupP0thrhv31K1Ff1qLe/trg3fqU9jt9hVNhG1ubrbkfMFgUI2NjUomkwqFQjmPq62uVX11/eKNrPKYt7TSqlCFKjIVqsxQGVco+tNaVvUng5IvVFZWqrq6uuh90tDQYCruL//yL3XkyBGNjo5q9+7dunjxoum2rFAq/ble0J/Woj+tw9MDioPxPp6UVprPNWTF+wK58N4oLaVyHXhf4MsY6xfH5qrNjPXLEPe+yxvXr7xx/cob16+8cf3KV7lPqixX9hq7mm35zx06vvO4Bj8Y1HhyXE67U73P9mpz1WZzSayD7xZ89liL/rQW/Wkt+tNa66k/S+UeNvfUrUV/Wod7+2uDd+pTNDU1Lbs/Hn+8vN5yq03kw263q6urS8PDwwqHw+ro6LCkXQBA+WtpadHVq1eLnQYAAAAAlI379++bjj1w4ICuX7++sIpge3u7rly5YmF2AAAAAABgo2uoaVD/c/3FTgMAAADAEyiweAqHw6FIJJJz//zqFg6HY8VtJpNJxePxnDHz20OhEAUWAAAAAAAAgEl1dXWmY4eGhpasIlhIewAAAAAAAAAAAABKHwUWT+F2uxUOh3PuNwxDkvIqhGhsbJQkJRKJrCtfNDc/XjJwvngDAID16sGDB6Zj7969q97eXkWjUXk8Hg0ODqqlpSXvdpggBQAAACAbVhEEAAAAAKxnIz0j2ubbJkfH8g8UTSVT+tXpX0mSNjdvVnw8LqfXKVeXy9IYAAAAACgVFFg8xaFDh3TmzBnFYjG53e4l+0dHR/NeZcJut6upqSlrcYUkjY+PS5I8Hk/e+QIAUE7q6+staScUCsnpdJqKzWQyluQAAAAAAAAAAAAAlLKEkZARNhT1RzUVm9I237Zlj08lUwp4AvIFfWp1ty5sH+kZ0Z3RO/IOeC2JAQAAAIBSUlnsBEqd2+1WR0eHLl++nHX/8PCw+vv7l2xPJpPq7+/PuvpFd3e3QqFQznO+8847stvtOnjwoPnEAQAAAAAAAAAAAAAAAEnRQFTh/sdzWDoGVvYg0aAvqGe6nllUKCFJnf5OxQIxGWHDkhgAAAAAKCWsYLECwWBQHo9Hhw4dWrSKRU9Pj/r6+rKuYBEIBHTmzBkFAgElEolF+wYGBtTT0yOfz7ck1ufzSZKuXbuWc4ULAADWi/v375uOPXDggK5fv65Hjx6pqqpK7e3tunLlioXZAQAAAAAAAAAAAOuDp9sjT7dHkjQVm3rq8fOrXez378+633XQpVsDt+TocBQUAwAAAMB6Iz0j2ubb9tSxdyqZ0q9O/0qStLl5s+LjcTm9Trm6XJbGlBsKLFbAbrcrGo2qv79fdrtdzc3NGh8fl9frVVdXV9aYjo6OZVeh8Pv9Gh4els/nU1NTk+LxuJLJpNxutyYmJiiuAABsCHV1daZjh4aGdOTIEY2Ojmr37t26ePFiQe0BAADAnAcPHpiOvXv3rnp7exWNRuXxeDQ4OKiWlpa822EcCAAAAAAAYK2IPyJJanQ0Zt3f5GxSLBBTKpmSzW4zHQMAAADAGvMFz1F/VFOxKW3zbVv2+FQypYAnIF/Qt2gFupGeEd0ZvSPvgNeSmHJEgcUK2e12+f3+FR/vdruXrFzxZV1dXTkLNAAAwPJaWlp09erVYqcBAMCa+PDSh7pz9o4qM5VFzeOVkVeKen6Upvr6ekvaCYVCcjqdpmIzmYwlOQAAAAAAAOCxT2OfLlsEMV9EMRmZXHgqrpkYAAAAAIWLBqIyQoYcXoc6Bjo05B16akzQF9QzXc8sKpSQpE5/pwYaB+T0OpeM283ElCMKLAAAAAAAAAAAAAAAAAAsSBgJ1TbV5tw/X0iRML54+KiZGKw/qbmUqbjp2Wmd//C8jN8acnzFoaM7jqqhpsFUW7ZqVkgBAAAbi6fbI0+3R5I0FZt66vHzq13s9+/Put910KVbA7cWFUuYiSlXFFgAwDp3qfNSsVOQxNOOAQAAgPXq/v37pmMPHDig69ev69GjR6qqqlJ7e7uuXLliYXYAAAAAAADrW/pRWpn0F6t7pufSlrQ7E59ZWHEim/lCilTyi8n0ZmKw/rz289cKbuP27G2duHHCdPzb+98uOAcAAID1LOKPSFLO8XuTs0mxQEypZGqhUNpMTLmiwAIAAAAAAACm1dXVmY4dGhrSkSNHNDo6qt27d+vixYsFtQcAAAAAALDRxP8hrvj/iC+8nta0Je2utAji4b2HBcUAAAAAWHufxj5dtghivohiMjK5sCKFmZhyRYEFAAAAAAAAiqKlpUVXr14tdhoAAAAAAABlq+kbTYueIBtPxaVfFjEhbHgXXrxgKu5s5KzG7o0pnUmrsqJSrmaXTu46aXF2AAAAkKSEkVhYYS6b+UKKhJEoKKZcUWABAAAAAAAAAAAAAAAAlKHKqkqp6onXc5WWtGuz21a0IsXm5s0FxWD9sVXnfqrxco7vPK4fffAjjf9mXM6vOvX6s6+bbgsAAGC9mJud06PZRwuvP7//uSXtzsRnFhVqf9l8IcWT43szMeWKAgsAAAAsePDggam4u3fvqre3V9FoVB6PR4ODg2ppaTHVVl1dnak4AAAAAAAAAAAAWGO5J9NKjydXSV88pdZsDDCvoaZBfb/Xp3hrXE1TTarMWFMsBAAoL5c6LxU7BaUr0vqdk79T7DQASdLN0zf1yz/9Yom66cppS9pdaRHEw3sPC4opVxRYAAAAYEF9fX3BbYRCITmdTtPxmUym4BywdqZiU4r4I0rFU5qKTclmt8nT45Gn25P1+GggqrHgmDw9Hjk6HLLZbUoYCU3FpvTR5Y+079Q+tbpbl8Slkin96vSvJD1+slV8PC6n1ylXl2tV/34AAADARrSW43bG+gAAAEBpanQ0ajIymXP//OSqJ59gayYGAAAAQG77Tu3T8yefX3j9ySef6Ac7flDEjDYGCiwAYJ1LzZlfbml6dlrnPzyviekJtTW06eiOo2qoabAwOwBAOYsGopKkTn/nwjYjbCjoC+rWwC11R7uXPIUqlUzJCBsywsai7Ta7Tb6gL+ckrYAnsGT/SM+I7ozekXfAa+VfCwAAANjw1mrczlgfAAAAKF1b3FuWfCd4UsJISJIcHY6CYgAAAADkVl1TreqaL6b7b6rfZEm7NrttRStSbG7eXFBMuaLAAgDWudd+/pol7dz+7LZO3DhhOv6P9EeW5AFgdd2/f99U3IEDB3T9+nU9evRIVVVVam9v15UrVyzODqUkYSSUSqa0t2/vou2ODodevfaqAp6Agr6gDocOL4nd79+v+HhcSSMpW5NNWz1bc654IUlBX1DPdD2zZBJXp79TA40Dcnqd/BgDAAAAWGwtxu2M9QEAAIDStf3Qdr135j1NxaayFllPjk4uGa+biQEAAADKxaXOS8VOQZ+lPrOkndqm2mX3z8RnJGnRg1XNxJQrCiwAAACwoK6uzlTc0NCQjhw5otHRUe3evVsXL1403RbKQ8Qf0TdPfTPrvlZ3qxwdDhlhQwkjsWSp720Ht634y1TCSMgIG9rv3591v+ugS7cGbvGDDAAAAFbswYMHpmPv3r2r3t5eRaNReTweDQ4OqqWlxVRbpf6dabXH7Yz1AQAAgNI2f6//9uXbWYslxobHljxkyUwMAAAAgLXX6GjUZGQy5/75lSqenPNjJqZcUWABAOvchRcvmI49GzmrsXtjSmfSqqyolKvZpZO7TlqYHYD1oqWlRVevXi12GlhDE+EJxQIx/fHEH2eddDW/DPhUbKqgL04Rf0RS7i9fTc4mxQIxpZKpdVEBDwAAgNVXX19vSTuhUEhOp9N0fCaTsSSPUmBm3M5YHwAAACiehJGQ9MUEqFx8QZ8CnoC2H9q+qGBipGdEe/r2ZC2INhMDAAAAYG3Nz+vJZf47w5PjdzMx5YoCCwBY52zV5n+APr7zuAY/GNR4clxOu1O9z/YW1B4AYP2obarVVGxKCSOR9SlUVvk09umyk6nmJ2NNRlhWHAAAACgWM+N2xvoAAADA2hobHlPUH5WkhafOjhwbWdjm8rnk6fYsirHZbeqOdivUH5LNbtPm5s2Kj8fl9Drl6nJlPY+ZGAAAAABra/uh7XrvzHuaik1lnfczObr03ryZmHJFgQUAIKeGmgb1P9df7DQAACXocOiwEkYi59Nmk0ZSkpYtvpiKTWkyMqmtu7bmPC5hJFTbVJuzjfkJWfNV8AAAAMDT3L9/33TsgQMHdP36dT169EhVVVVqb2/XlStXLMyu9KzWuJ2xPgAAALC2XF0uUwUONrtNnf7OVY8BAAAAsHZa3a1ydDh0+/LtrPf+x4bHdDh0uOCYclVZ7AQAAAAAlI652TnN/mZ24c/n9z/PeWyu4grp8ZemVndr1mOMsKFbZ25J0sLTsIa8Q1mXEZyJzyz7VNv5CVlPW8YcAAAAmFdXV2f6z9DQkLxer5qbm+X1ejU0NGS6rbWWz1hfWv1xO2N9AAAAAAAAAACsN//goqfdX/cFffp4+GNNxaYWbR/pGdGevj1ZV6MwE1OOWMECAAAAwIKbp2/ql3/6y4XX05XTebcxPwmr89zSp1PNF1zs7du7sK3V3Spf0KeBxgF1R7sXVbmvdDLVw3sP884TAAAAyFdLS4uuXr1a7DRMyWesvxbjdsb6AAAAAAAAAJDbpc5LxU5BkvTKyCvFTkFS6fRHqRobHlPUH5UkTUYmJUkjx0YWtrl8roWHKc2z2W3qjnYr1B+SzW7T5ubNio/H5fQ6c65+ZyamHFFgAQAAAGDBvlP79PzJ5xdef/LJJ/rBjh+sOH4qNqVwf1i+oC/rcoDLfQFzdbkU9AX1xvgb+ScOAAAAYFn5jPUZtwMAAAAAAAAApMILG9IVacVb47pz9o4qM5UWZYUvc3W5TBU42Ow2dfqXPkDV6phywzsVAAAAwILqmmrVfLVm4c+m+k15xQd9Qe337zf1pW3r7q1KGImFpQqlx1/KVvJk283Nm/M+HwAAALCRFDrWn2fVuJ2xPgAAAAAAAAAAKEUUWAAAAACwRNAXlKfHs2RJwZWy2W2SHq+CMa+2qXbZmJn4zKJYAAAAAKvLqnE7Y30AAAAAAAAAAFCKKLAAAAAAULBQf0hbd2/V3r69OY8Z6RnRD50/zKvdRkfjwsSqbOafeNvoaMyrXQAAAADZrdW4nbE+AAAAAAAAAAAoRdXFTgAAAABAeYsGompyNmVduSKVTH3xhNvI1IomULW6Wxe2bXFvkRE2csYkjIQkydHhMJU7AGB9ePDggenYu3fvqre3V9FoVB6PR4ODg2ppaTHVVl1dnek8AKBUrNW4nbE+AAAAAAAAAAAoRRRYAADWxKXOS0U9f7oird85+TtFzQEA1qOx4TFJylpckTASmopNydXlkiS1dbSpe6A7Z1uTo5Oy2W2LnlC7/dB2vXfmPU3FphZN4HoyhglXAID6+npL2gmFQnI6nabjM5mMJXkAQDGt1bidsT4AAAAAAAAAAChFlcVOAAAAAEB5moo9frJttuIKSTLCxqKJUtsPbVc0EM16bMJIaGx4TJ3nOhdtb3W3ytHh0O3Lt7PGjQ2PaW//XpN/AwAAAABftlbjdsb6AAAAAAAAAACgFLGCBQAAAIC8JYyEgr6g2jraNNkzuWR/Kp6SETbUn+hf2NbqbpURNnTrzC3t7du7qK2AJ6A9fXsWVrt4ki/oU8AT0PZD2xcVbIz0jGhP3x6eagugKB48eGA69u7du+rt7VU0GpXH49Hg4KBaWlryamNubs70+dej+/fvm449cOCArl+/rkePHqmqqkrt7e26cuWKhdkBQHlZy3E7Y30AAAAAAAAAAFBqKLAAAAAAkLch75ASRkKJQCLnMY2OxiXb9vbtlRE2NNIzolQ8pVQyJZvdplevvbpoQtWTbHabuqPdCvWHZLPbtLl5s+LjcTm9zqwTuwBgLdTX11vSTigUktPpNBV748YNS3JYD+rq6kzHDg0N6ciRIxodHdXu3bt18eLFgtoDgPVgrcbtjPUBAAAAAAAAAECpocACAAAAQN7eGH/DdKyjw5H3k2htdps6/Z2mzwkAQC4tLS26evVqsdMAgJKzVuN2xvoAAAAAAAAAAKCUUGABAAAAAABW5FLnpWKnoFdGXil2CpKk+/fvm449cOCArl+/rkePHqmqqkrt7e26cuVKXm3Mzc3p/fffN50DAAAAAAAAAAAAAABYigILAAAAAACAPNXV1ZmOHRoa0pEjRzQ6Oqrdu3fr4sWLebc3Nzdn+vwAAAAAAAAAgNWXmkuZipuendb5D89rYnpCbQ1tOrrjqBpqGvJuJ12RNnV+AACAjY4CCwAAAAAAgDXU0tKiq1evFjsNAAAAAAAAAMAqeu3nrxXcxu3PbuvEjROm43/Y/cOCcwCAjejDSx/qztk7qsxUFjsVAEXAf/kAAAAAAAAAAAAAAAAAAAAAAGDDYwULAAAAAAAAYB2ZmZnRgwcPVF2d362/u3fvqre3V9FoVB6PR4ODg2ppaTGVQ11dnak4AAAAAAAAYL248OIFU3FnI2c1dm9M6UxalRWVcjW7dHLXybzbSVek9VAPTeUAAACwkVFgAQAAAAAAAKwjL730UsFthEIhOZ1O0/GZTKbgHAAAAAAAAIByZqu2mYo7vvO4Bj8Y1HhyXE67U73P9ppqiwILAAAAcyiwAAAAAAAAAAAAAAAAAACgBDTUNKj/uf5ipwEAALBhUWABAAAAAAAArCM/+9nPtGfPHlVX53fr78CBA7p+/boePXqkqqoqtbe368qVK6uUJQAAAAAAAAAAAACUHgosAAAAAAAAgHWktrZWdXV1eRdYDA0N6ciRIxodHdXu3bt18eJF1dXVrVKWAAAAAAAAAAAAAFB6KLAAAAAAAAAAoJaWFl29erXYaQAAAAAAAAAAAABA0VQWOwEAAAAAAAAAAAAAAAAAAAAAAIBiYwULAAAAAABQNi51Xip2CpKkV0ZeKXYKAAAAAAAAAAAAAADAYqxgAQAAAAAAAAAAAAAAAAAAAAAANjwKLAAAAAAAAAAAAAAAAAAAAAAAwIZHgQUAAAAAAAAAAAAAAAAAAAAAANjwqoudQLlIJpM6ffq0JKm5uVnj4+Pyer3q6uoy3WYsFpPf71c8HlcsFpPdbldPT4+6u7utShsA8IQPL32oO2fvqDJT3PrCV0ZeKer5AZSPBw8emI69e/euent7FY1G5fF4NDg4qJaWlrzbefjwoekcAAAAAAAAAAAAAAAAAKCcUGCxAslkUh6PR8FgUG63e2F7T0+PRkdHNTAwkHebgUBAkuT3+xe2hcNh+Xw+DQwMKBqNym63F5w7AAAAyld9fb0l7YRCITmdTkvaAgAAAAAAAAAAAAAAAID1qriP8C4TPp9PXV1di4orpMfFEYFAQOFwOK/2DMNQMplcslJFR0eHrl27JsMw5PP5Cs4bAAAAAAAAAAAAAAAAAAAAAACsDCtYPIVhGAqHw4tWmnjSwYMHNTAwoI6OjhW36ff7derUqaz73G63Ojo6FA6HZRiGHA6HqbwBAKXrUuelYqegV0ZeKXYKAFbg/v37pmMPHDig69ev69GjR6qqqlJ7e7uuXLmSdzv/+I//qG3btpnOAwAAAAAAAAAAAAAAAADKBQUWTzFfWJGr0MHpdCoQCOj/x97/x9Z13geC91cSXV39aHVJzZam2l1Ul5nFmna2MSklY0mzMyOTad9AGsAJrxQD60RvE5PyFHA3QSJa2H/eYv9QqRbJtgNMRLop3NFODJuceAEZUREySgNLCRqS15mNw+xiXl7l9VSi3YnJq1Sy6IYi3z9U0qJ5SZGXR7y84ucDCPA953yf8/Vzjo6ee+75nqdQKEQ6nV5Sm/39/dHd3R2XL18uGtPY2Bj9/f2Ry+UUWAAArGPbtm0rOfbs2bNx7NixGBgYiL1798YLL7xQUntbt24tOQcAANaOmzdvxo0bN6Kqavm3hN9+++04fvx4DA0NRVNTU5w5cyZqa2uX3c5KxrcAAADA4iYmJ0qOvfbetfj6j78el69djt07dsfnPvy52LF5R0ltpapSJecBAABrgQKLu8jlcosWTswUQAwODi55FouamprI5XKRz+ejsbExiTQBAGCO2traOH/+fLnTAABgjfjEJz6RSDt9fX1RX19fUuz09HQiOQAAAADz/d5f/V4i7bzx8zfiC9/9Qsnx3zj0jUTyAACAclFgcRf5fD5qamoWXD9TfJHP55fcZl9fX+Tz+QVnp5hpS/EFAAAAAAAAAAAAAACsDgUWdzE2NrZgIUREzBZfFAqFZbW7WJu9vb3R2Ni46DY3J2/G9cnrs58f2PhAPLDpgWXlQMT0humYjumY3jAdUzFV7nQqnv5Mlv5Mlv6ca3JycsXxU1NTK26H2/RnsvRnsqamXDPLwXifOxnHrE3l/nfGv3csxLlBMZOTk/Hqq6/GP/tn/yyqqpZ/S7i1tTW++93vxq1bt2LTpk3xr/7Vv4re3t6S8mDtMNYvj3dvvRubJzfPfjbWrwzG5JXN8atsjl9lc/wqm+NXuaY3mD2wHNbCff0//3/9ecmx//vA/x7D7wzH1PRUbNywMRp2NsT/svd/KamtqQ2lXzNce5KlP5OlP5OlP5OlP5OlP5OlP5M1Hcb7q0GBxV0stXDinXfeSWR/p0+fjoiI559/ftHtOv66Y87n32383fjEnk8kksN6Mh3TcfNXb8ZYjMWG2FDudCqe/kyW/kyW/pzr4sWLK4qfmpqKN998MyIiNm7cmERK65r+TJb+TFZS41yWx3ifOxnHrE0rHU+tlH/vWIhzg2Kmpqbiv/7X/xr/6T/9p5LOi2eeeSZ+8YtfxP/9f//f8T/8D/9DPPPMM/H666/fg0xZTcb65WGsX5mMySub41fZHL/K5vhVNsevcv39zb8vdwrrUqWP9T+989PxH773H+LNv3sz/rtf/+/i0//i0/Hu1ndLauvdKC0uwrUnafozWfozWfozWfozWfozWfozWdcnrt99I1ZMgcUaksvloqOjI3p6eqKxsXHRbTv/ZWdUp6pnPz+w8YF4YNRbrpZresN0jMVY1LxVExumXbhXSn8mS38mS3/OdeDAgRXFz7x1dN++fSW9/ZS59Gey9GeyZh7QZHUZ73Mn45i1aaXjqZXy7x0LcW5QTBLnxb/+1/86yZRYA4z1y8NYvzIZk1c2x6+yOX6VzfGrbI5fBbtZ7gTWp0of69dETfyvH/lf319w7R//rDLXnmTpz2Tpz2Tpz2Tpz2Tpz2Tpz2RN3zSDxWrwK+tdpNPpJc1isXPnzhXvK5vNRldXV7S2tt512y1VW2J71fa5C/2dWbapmIoNsSE2TG+IjdPe6rhS+jNZ+jNZ+nOuJB602rhxY1RVVXloKyH6M1n6MznefF0exvvcyThmbep5oqes+5/aMBVjdWMx+r+Plv28ePLck2XdP/MZC1GM84IPMtYvj62bthrrVyBj8srm+FU2x6+yOX6VzfGrXB5aKw/39ZPh2pMs/Zks/Zks/Zks/Zks/Zks/Zkss4CsDr+m3UVNTc2i68fGxiLidiHGSmSz2Whvb4+2trYVtQMAS/Hi4RdXFD/zQN+Vr1xZ0cDXw3gAAAAAAAAAAADAWqEU6C4ymcxsEUUxM7NbZDKZkvfR0dERe/fujRMnTpTcBgAAAAAAAAAAAAAAUDoFFnfR2Ng4W0RRTD6fj4iI5ubmktrv7u6O+vr6osUVi+0XAAAAAAAAAAAAAABIjgKLuzh69GhERORyuaLrBwYGSi6u6O3tjYiItra2eevy+Xz09/eX1C4AAAAAlNONGzdK/pPP5+PjH/947Ny5Mz7+8Y9HPp8vuS0AAAAAAACA5agqdwJrXWNjYzQ3N8dLL70UjY2N89b39vZGX1/fvOWFQiFOnToVLS0tRQswcrlcjI2NFS2uiIjo7+8vuXADAAAAAMpp+/btibTT19cX9fX1JcdPT08nkgcAAAAAAACwPiiwWIKenp5oamqKo0ePzimyaG9vjxMnThQthOju7o7Tp09Hd3d3jI+Pz1mXz+cjm81Gc3NztLe3z4sdGxuL/v7+eXEAAAAAAAAAAAAAAMC9ocBiCdLpdAwNDUVHR0ek0+nYuXNnjIyMREtLS7S2thaNaW5ujnQ6HUeOHJm3rqWlJfL5fHR3dy+4z0wmk1j+ALBWvXj4xXKnEE+ee7LcKQAAwH3n+vXrJcc+8cQTceHChbh161Zs2rQpDh48GK+88kqC2QEAAAAAAAAUp8BiidLpdHR1dS15+8bGxgVnoBgZGUkqLQAAAICyUjRLMdu2bSs59uzZs3Hs2LEYGBiIvXv3xgsvvLCi9gAAAAAAAACWSoEFAAAAALBm1NbWxvnz58udBgAAAAAAALAObSx3AgAAAAAAAAAAAAAAAOVmBgsAYF178fCL5U4hpjZMxW988TfKnQYAQMVaC2O6iIgnzz1Z7hQAAAAAAAAAWAEzWAAAAAAAAAAAAAAAAOueAgsAAAAAAAAAAAAAAGDdqyp3AgAARPz4xR/Hla9ciY3T5a1/ffLck2XdPwAAAAAAAAAAAJSLAgsAAGa9ePjFcqegyAMAqFhrYSw1tWEqfuOLv1HuNAAAAAAAAAAqUnlfkQwAAAAAAAAAAAAAALAGmMECAIA1ZaVvfp7aMBVjdWNx5StXYuN06fXEZtIAAAAAAAAAAABYX8xgAQAAAAAAAAAAAAAArHtmsAAAAACA+8iPX/zximfzWimzgQEAAAAAAACVyAwWAAAAAAAAAAAAAADAumcGCwAAKOLFwy+WOwVvfgYAKtZaGEutFcZ0AAAAAAAAUDkUWAAAwBq1Fh5M/PnEzxddP1GYiNdOvRYREVt3bo2xkbGob6mPhtaG1UgPAGDNWwtjuqkNU/EbX/yNcqdBhTHWBwCA+5OxPgAA3L+M95OhwAIAACjJRGEiupu6I9uTjbrGutnl59rPxZWBK9HS2VLG7AAAgFIZ6wMAwP3JWB8AAO5fxvvJUWABAACUpCfbEw+1PjTnS1lExOGuw9FZ3Rn1LfWRac6UKTsAAO704xd/HFe+ciU2Tm8sWw5PnnuybPtmeYz1AQDg/mSsDwAA9y/j/eQosKgw//AP/xAREb+c+mWZM7k//PLWL+Nbg9+Kow8ejc0bN5c7nYqnP5OlP5OlP5OlP5OlP5OlP5M1M+6cGYfOGM+PR74/H4e6DhWNazjSEJc6L/litkzG+xTjukYxzgsW4tygmLVyXrx4+MWy7ftOCj1umxl7GuvD3a2V6yilcfwqm+NX2Ry/yub43X+M9e8N9/WT5dqTLP2ZLP2ZLP2ZLP2ZLP2ZLP2ZLM/xrA4FFhXmvffei4iIyanJMmdyf/jl1C/jr3J/FZ/83U+6cCdAfyZLfyZLfyZLfyZLfyZLfyZrZtw5Mw6dMdg1GBER1ZnqonE19TWR687FRGEiUunUvU3yPmK8TzGuaxTjvGAhzg2KcV7MpdDjtpmxp7E+3J3raGVz/Cqb41fZHL/K5vjdf4z17w339ZPl2pMs/Zks/Zks/Zks/Zks/Zks/Zksz/GsDgUWAADAsr2Ve2vRL1wzX9iuDl5V/Q4AAEWUu9Djv1z/L0WXG+sDAMD9yVgfAADuX8b7ydpY7gQAAIDKM54fjy01WxZcP/OlbTw/vlopAQAACTDWBwCA+5OxPgAA3L+M95NlBosKMzU1FRERhYlCbN20tczZVL53b70bERHjE+Px3qb37rI1d6M/k6U/k6U/k6U/k6U/k6U/V2bq1lTE9Pufx2/c/mI1Mw6dcXPs5oLTCkbE7Je2icJE8knex4z3KcZ1jWKcFyzEuUExzgsijPXLbaafxyf8eFWJXEcrm+NX2Ry/yub4VTbHr3J8cKxfmCjcXm6svyrc10+Wa0+y9Gey9Gey9Gey9Gey9Gey9OfKuLdfHhump6en774Za8XFixfjn//zf17uNAAAWGdee+21OHDgwOznP9zwh1HXWBdtQ21Ftx/NjUZ3U3fsO7EvWjpbVivNime8DwDAajPWXx0DAwPx0Y9+tNxpAACwjvzwhz+MvXv3zn421r833NcHAKAc3Nu/t8xgUWH+2T/7Z/HDH/4wamtrY+PGjeVOBwCA+8zkP0zG1HvvV7lPTU3Ffy3819j7sb2LRJEU430AAO4VY/3yevTRR431AQC4JxYa6z/66KNlzGr9cF8fAIB7yb398lBgUWGqqqrmvGEAAADutQ/Fh+YtS6VTS5o2cOtO02Evh/E+AACryVh/9RjrAwCwmoz1V4+xPgAAq814/95TOg0AACzblpoti66/OXYzIm5/gQMAACqHsT4AANyfjPUBAOD+ZbyfLAUWAADAslVnqme/fBUzUxVfnalerZQAAIAEGOsDAMD9yVgfAADuX8b7yVJgAQAALNuDjQ8uOrXgeH48IiIyzZnVSgkAAEiAsT4AANyfjPUBAOD+ZbyfLAUWAADAsj1y9JGIiBjNjRZdf3Xgqi9lAABQgYz1AQDg/mSsDwAA9y/j/WQpsAAAAJatrrEuMs2ZeOOlN4quH+4djv0d+1c5KwAAYKWM9QEA4P5krA8AAPcv4/1kKbAAAABKku3Jxk97fzqv+v1c+7nYd2KfyncAAKhQxvoAAHB/MtYHAID7l/F+cjZMT09PlzsJAACgMk0UJqKvoy9S6VRs3bk1xkbGor6lPhpaG8qdGgAAsALG+gAAcH8y1gcAgPuX8X4yFFgAAAAAAAAAAAAAAADr3sZyJwAAAAAAAAAAAAAAAFBuCiwAAAAAAAAAAAAAAIB1T4EFAAAAAAAAAAAAAACw7imwAAAAAAAAAAAAAAAA1j0FFgAAAAAAAAAAAAAAwLqnwAIAAAAAAAAAAAAAAFj3FFgAAAAAAAAAAAAAAADrngILAAAAAAAAAAAAAABg3VNgAQAAAAAAAAAAAAAArHsKLAAAAAAAAAAAAAAAgHVPgQUAAAAAAAAAAAAAALDuKbAAAAAAAAAAAAAAAADWPQUWAAAAAAAAAAAAAADAuqfAAgAAAAAAAAAAAAAAWPcUWAAAAAAAAAAAAAAAAOueAgsAAAAAAAAAAAAAAGDdU2ABAAAAAAAAAAAAAACsewosAAAAAAAAAAAAAACAdU+BBQAAAAAAAAAAAAAAsO4psAAAAAAAAAAAAAAAANY9BRYAAAAAAAAAAAAAAMC6p8ACAAAAAAAAAAAAAABY9xRYAAAAAAAAAAAAAAAA654CCwAAAAAAAAAAAAAAYN1TYAEAAAAAAAAAAAAAAKx7CiwAAAAAAAAAAAAAAIB1T4EFAAAAAAAAAAAAAACw7imwAAAAAAAAAAAAAAAA1j0FFgAAAAAAAAAAAAAAwLqnwAIAAAAAAAAAAAAAAFj3FFgAAAAAAAAAAAAAAADrngILAAAAAAAAAAAAAABg3VNgAQAAAAAAAAAAAAAArHsKLAAAAAAAAAAAAAAAgHVPgQUAAAAAAAAAAAAAALDuKbAAAAAAAAAAAAAAAADWvapyJwAAAFSu0dxoDHYNxsTYRIzmRiOVTkVTe1M0tTUtGDNRmIjXTr0WERFbd26NsZGxqG+pj4bWhrLHAAAAAAAAAAAA69eG6enp6XInAQAAVJ6h7qGIiDnFFPn+fPRke2JLzZZoG2qLVDo1J2aiMBHdTd2R7clGXWPd7PJz7ecilU5FS2fLvP2sVgwAAAAAAAAAALC+bSx3AgAAQOUZz4/HRGFi3kwVmeZMfOY7n4nx/Hj0ZHvmxfVke+Kh1ofmFD1ERBzuOhy57lzk+/NliwEAAAAAAAAAANY3BRYAAMCyDXYNziuumFHXWBeZ5kzk+/Mxnh+fXT6eH498fz72tO8pGtdwpCEudV6as2y1YgAAAAAAAAAAABRYAAAAy3a5/3L86e4/jYnCRNH1DzY+GBERo7nR2WWDXYMREVGdqS4aU1NfE/n+/Jw2VysGAAAAAAAAAACgqtwJsDyTk5Px+uuvR21tbWzcqD4GAIB7a2pqKt5+++149NFHo6rq/a8PW2q2xGhuNMbz41HXWLektt7KvRWpdGrB9TMFEVcHr0amObOqMWuF8T4AAKtlobE+94axPgAAq8VYf3UZ6wMAsJqM91eHnq0wr7/+enz0ox8tdxoAAKwzP/zhD2Pv3r2zn5/qeyrG8+MLzhJRyBciIuYUX4znx2NLzZYF9zFTFDGeH1/1mLXCeB8AgNX2wbE+94axPgAAq81Yf3UY6wMAUA7G+/eWAosKU1tbGxERP/jBD+I3f/M3y5xN5ZucnIxcLheNjY0quRKgP5OlP5OlP5OlP5OlP5OlP1dm8h8mY+q9qdnPV65eif+p+X+aHYfeaaHiioiI4d7hqGusm7PNzbGbi8bMFEVMFCZWPWatMN6nGNc1inFesBDnBsU4Lyjmb//2b+Oxxx4rOtYneTP9/MMf/jDq6pY2CyBrh+toZXP8KpvjV9kcv8rm+FWu0dHR+OhHP2qsv0rc10+Wa0+y9Gey9Gey9Gey9Gey9Gey9Gey3NtfHc7UCjMzneCDDz7oi1kCJicn42c/+1n85m/+pgt3AvRnsvRnsvRnsvRnsvRnsvTnyvz1/+ev43t/+L3Zz9c2XouIWNa01pdOX4qIiMPPH56zfKkFDe++8+6qx6wVxvsU47pGMc4LFuLcoBjnBcVMTk5GxPLG+pRupp/r6uqM9SuQ62hlc/wqm+NX2Ry/yub4VT5j/dXhvn6yXHuSpT+TpT+TpT+TpT+TpT+TpT+T5d7+6nCmAgAAsw6cPBCPffGx2c9vvvlmfPXDX11y/GhuNPo7+iPbk426Rm9lBQAAAAAAAAAAKocCCwAAYFbV5qqo2vz+14QHtj+wrPiebE8c6joUDa0N89al0qklzS6xdefWVY8BAAAAAAAAAAAwPwgAAJCInmxPNLU3RVNbU9H1W2q2LBp/c+xmRNwukFjtGAAAAAAAAAAAAAUWAADAivV19MWuvbti/4n9C25TnameLW4oZmbWiepM9arHAAAAAAAAAAAAKLAAAABWZKh7KGrqa4oWV8wUM0REPNj44JzPHzSeH4+IiExzZtVjAAAAAAAAAAAAFFgAAAAlG+4djoiIprameevG8+OR78/Pfn7k6CMRETGaGy3a1tWBq/OKHlYrBgAAAAAAAAAAQIEFAABQktHcaNwcu1m0uCIiIt+fj7rGutnPdY11kWnOxBsvvVF0++He4djfMXcWjNWKAQAAAAAAAAAAqCp3AgAAQOUZz49HT7YndjfvjqvtV+etnxibiHx/PjrGO+Ysz/Zko7upOx45+sic4otz7edi34l9RWeWWK0YAAAAAAAAAABgfVNgAQAALNvZlrMxnh+P8e7xBbepzlTPW5ZKp6JtqC36OvoilU7F1p1bY2xkLOpb6qOhtaFoO6sVAwAAAAAAAAAArG8KLAAAgGV7duTZkmNT6VQc7jq8JmMAAAAAAAAAAID1a2O5EwAAAAAAAAAAAAAAACg3BRYAAAAAAAAAAAAAAMC6p8ACAAAAAAAAAAAAAABY96rKnUBS2tvbI5vNRnNz84raKRQKcerUqYiI2LlzZ4yMjERLS0u0trYmFlPKPgAAAAAAAAAAAAAAgHunogss8vl89Pf3R1dXV+Ryuchmsytqr1AoRFNTU/T09ERjY+Ps8vb29hgYGIjOzs4Vx5SyDwAAAAAAAAAAAAAA4N7aWO4EStXd3R0dHR0REYkVJWSz2WhtbZ1T+BAR0dXVFd3d3dHf37/imFL2AQAAAAAAAAAAAAAA3FsVW2DR1tYWPT090dbWFjU1NStub2Y2jPb29qLrjxw5Mq+QY7kxpewDAAAAAAAAAAAAAAC49yq2wCJpXV1dERGRyWSKrq+vr4/+/v4oFAolx5SyDwAAAAAAAAAAAAAA4N5TYPGPcrlcpNPpBdfPFEUMDg6WHFPKPgAAAAAAAAAAAAAAgHuvqtwJrBX5fD5qamoWXD9TGJHP50uOKWUfC5mamopbt27ddTsWd+vWrdm+3LBhQ7nTqXj6M1n6M1n6M1n6M1n6M1n6M1lTU1PlTmFdMt7nTq5rFOO8YCHODYpxXqxNN27cKCnu7/7u7+KZZ56JoaGhaGpqiq997Wvx67/+68tu5+///u9L2j8rc+vWLWP9CuQ6Wtkcv8rm+FU2x6+yOX6Vy3izPNzXT4ZrT7L0Z7L0Z7L0Z7L0Z7L0Z7L0Z7I8x7M6FFj8o7GxsdkZJIqZKYwoFAolx5Syj4X84Ac/iP/n//l/Zj9v2rQpqqoczuWampqK//Jf/ktMTU3Fxo0mdFkp/Zks/Zks/Zks/Zks/Zks/Zmsd955p9wprEvG+9zJdY1inBcsxLlBMc6Ltel/+9/+t5Li/q//6/+KsbGxiIjo7++Pj33sY/E//o//47LbmZycLGn/rMylS5eiurp69rOxfmVwHa1sjl9lc/wqm+NX2Ry/yjU+Pl7uFNYl9/WT4dqTLP2ZLP2ZLP2ZLP2ZLP2ZLP2ZLM/xrA4j+X+0lKKGiLkn5nJjStnHQs6cOTPni9hv//Zvx0c+8pEltc/7pqen49q1axERKuMSoD+TpT+TpT+TpT+TpT+TpT+T9Ytf/KLcKaxLxvvcyXWNYpwXLMS5QTHOi/vLB8foxuyV5Wtf+5qxfgVyHa1sjl9lc/wqm+NX2Ry/ymW2uvJwXz8Zrj3J0p/J0p/J0p/J0p/J0p/J0p/J8pvA6lBgUaEOPXAoqlPvv+Xqgf/vA1F1eXUPZ/bl7Kru716YnJyMH/zgB/HYY495c0AC9Gey9Gey9Gey9Gey9Gey9Gey3nzzzfiDP/iDcqex7pR7vH8/jPXvJ65rFOO8YCHODYpxXqxN//pf/+uS4o4cORJ//dd/Hbdu3YpNmzbFv/gX/yJefvnlZbfz5ptvxqOPPlpSDpTu3/7bfxu/8Ru/Mft58+bNsXnz5jJmxFLcy+toz5GeRNsr1f38PdC/g5XN8atsjl9lc/wq15UrV+LZZ58tdxrrzp/92Z/Fb/7mb85+Xs9j/ZWMcac3TMeG2g1R9XZVbJgu/QHM+3l8uxyu5cnSn8nSn8nSn8nSn8nSn8nyHM/qcKb+o3Q6vaQZJnbu3FlyTCn7WMjWTVvjVzf96tyFU3cNS9T98EVwZkrGzZs3u3AnQH8mS38mS38mS38mS38mS38m64EHHih3CutSucf798NY/37iukYxzgsW4tygGOfF2lTqmOs//If/EMeOHYuBgYHYu3dvvPDCC1FTU7Psdrzlqjz+yT/5J/Hf/Df/TbnTYJnu5XV009SmRNsr1f38PdC/g5XN8atsjl9lc/wq16/8yq+UO4V1qbq62lj/H61kjDu1YSo2xsbYOLUxNk5vLLmd+3l8uxyu5cnSn8nSn8nSn8nSn8nSn8nyHM/qcKb+o7v9ADU2NhYRt4skSo0pZR8AAAAAADCjtrY2zp8/X+40AAAAAAAA7kull/reZzKZzGyBQzEzM09kMpmSY0rZBwAAAAAAAAAAAAAAcO8psPhHjY2NswUOxeTz+YiIaG5uLjmmlH0AAAAAAAAAAAAAAAD3ngKLf3T06NGIiMjlckXXDwwMzCt8WG5MKfsAAAAAAAAAAAAAAADuvXVVYFEoFKKjoyP6+/vnrWtsbIzm5uZ46aWXisb29vZGR0fHimJK2QcAAAAAAAAAAAAAAHDv3RcFFvl8PiJuF1Aspru7O06fPh3ZbLbo+p6enujt7Z03w0R7e3ucOHGi6OwSy40pZR8AAAAAAAAAAAAAAMC9VVXuBErV29sbXV1dERExODgYERFPP/307LJsNhttbW1zYpqbmyOdTseRI0eKtplOp2NoaCg6OjoinU7Hzp07Y2RkJFpaWqK1tTWRmFL2AQAAAAAAAAAAAAAA3FsVW2DR2tq67IKExsbGGB8fX3SbdDo9W6SxVMuNKWUfAAAAAAAAAAAAAADAvbOx3AkAAAAAAAAAAAAAAACUmwILAAAAAAAAAAAAAABg3VNgAQAAAAAAAAAAAAAArHsKLAAAAAAAAAAAAAAAgHVPgQUAAAAAAAAAAAAAALDuKbAAAAAAAAAAAAAAAADWPQUWAAAAAAAAAAAAAADAuqfAAgAAAAAAAAAAAAAAWPcUWAAAAAAAAAAAAAAAAOueAgsAAAAAAAAAAAAAAGDdU2ABAAAAAAAAAAAAAACsewosAAAAAAAAAAAAAACAdU+BBQAAAAAAAAAAAAAAsO5VlTsBAAAAAAAAoHxePPxiuVOIJ889We4UAAAAAADMYAEAAAAAAAAAAAAAAKDAAgAAAAAAAAAAAAAAWPeqyp0AAAAAAAAAAACweoa6h2K4ZzhS6VRERKQz6WjpbCm67URhIl479VpERGzduTXGRsaivqU+GlobFmy/lBgAAIC1QIEFAAAAAAAAAGvSj1/8cVz5ypXYOL2xbDk8ee7Jsu0bIGkThYn494//+9jdvDue6ntqdvl4fjz6OvrmFVlMFCaiu6k7sj3ZqGusm11+rv1cXBm4UrQoo5QYAACAtaJ8d6EAAAAAAAAAAIBVM1Nc8cEih1fbX41cd27e9j3Znnio9aE5hRIREYe7DkeuOxf5/nwiMQAAAGuFAgsAAAAAAAAAALjPXTp9Kcbz40VnkEilU7Frz645y8bz45Hvz8ee9j1F22s40hCXOi+tOAYAAGAtqSp3AgAAAAAAAAAAwL118dTFaGxrLLou25Odt2ywazAiIqoz1UVjauprItedi4nCRKTSqZJjAAAA1hIFFgAAAAAAwDzj+fG42HkxIiImxiZiojARmZZM7D+xv+j2Q91DMdwzHE3tTZFpzkQqnYrx/HiM5kbjJy/9JA6cPBB1jXXz4iYKE/HaqdciImLrzq0xNjIW9S310dDasGBupcQAa9uLh1+8J+1ObZiKsbqxuPKVK7FxeuNdt3/y3JP3JA8AKLfh3uGYKEzEI0cfWXLMW7m3Fi2CmCmiuDp4NTLNmZJjAAAA1hIFFgAAwKoY7h32sBMAAFSI4d7huDJwJQ53HZ6zvLupO4a6huLZkWfnxUwUJiLfn498f37O8lQ6Fdme7ILFFd1N3fPWn2s/F1cGrkRLZ0siMQAAsN795KWfRETMjqFHc6NxdfBq7Nqzq+hYPeJ20fWWmi0LtjlTSDGeH19RDAAAwFpy99e0AAAArNBEYSJ6sj0x1D0UE4WJcqcDAAAsYqIwET956SdFCxUOP384xvPjca79XNHYQ12HYt+JfdHQ2hCNbY1xqOtQdIx3LPhm2p5sTzzU+tC8B7oOdx2OXHduXrFGqTEAAHC/mnxvMt77xXuzf/7h7/+h6HajudHZ/750+lLcHLsZTW1NERFxtuVs0XH0zbGbi85GMVNIced9/1JiAAAA1hIzWAAAACt2rv1cPJx9eMGHpmbeRPVq+6vxavuri7aV7cnOznQx1D0Uwz3D0dTeFJnmTKTSqRjPj8dobjR+8tJP4sDJAwu+Bfe1U69FRMTWnVtjbGQs6lvqzaABAABLcHXwagz3DkdfR9+8IouZ8ffl/stFYx8+8vCiD1PdaTw/Hvn+fBzqOlR0fcORhrjUeWnO94xSYgAA4H528dTF+N4ffm/287W4VnS7mcKHoe6h2H9i/+zyusa6yPZk4093/2lke7JzxtJLLYJ49513VxQDAACwliiwAAAASjLzYNNQ11CM5kbj4ezDi25bnamOusa6SNUUf9hqYmwixvPjc4ogJgoTke/Pz3tzViqdimxPdsHiiu6m7nnrz7WfiysDV4q+hRcAAHjflpotkUqnYuvOrQtus9QiisUMdg1GRER1prro+pr6msh152KiMDG7v1JiWHtePPxiuVOIiIgnzz1Z7hQAAFbswMkD8dgXH5v9fOXKlfhqw1fnbTdT+DAzg8SdUulUZJoz8Wr7q/HsyLP3LlkAAIAKoMACAABYtqHuocj35SPTkonmzuY423J20e2vDFyJp/qeWvAhqIiIvo6+aO5snrf8UNehGBsZi0K+EKmaVOxq2jU7bXkxPdmeeKj1oXnFF4e7DkdndWfUt9R7my0AACyirrEuOsY7iq4bzY1GRMTu5t0r3s9bubcWLYKY+f5wdfDq7Bi+lBgAALifVW2uiqrN7z/+8yu/+JWi26XSqZgoTCw4Ts60ZGK4dzhGc6Oz99dnYu7mzuLsUmIAAADWEgUWlMwbpgAA1q+mtqbZIoeZB6zuZrHiitHcaNTU1xTd5uEjDy/5zbMzs2oc6jpUdH3DkYa41HnJg1YAAFCi/o7+qM5U33VmuNHcaFwdvBq79uwqOvNcxO3xe7G3586Y+R4wnh9fUQwAAHB75orFZnqbGWdfHbw6O4ZfbOwdEXFz7GZEzJ3hrpQYAACAtUSBBQAAcM/tad+z6PrBrsE43HV4xfsZ7BqMiIWLOWrqayLXnVv0RyQAALgfTb43GbfeuzX7+ZfXf7ms+PH8eFzsvBjpTDqe6ntqwe3y/fkYz49HpjkTTW1NMZobjbMtZ2N/x/55hc43x24uWog982DWnW+/LSUGYDm8YAyA+1VdY92SCpHvHEtXZ6rj6uDVu2575xi9lBgAAIC1RIEFAABwzy32Q0lfR99d3367VG/l3lq0cGImj6uDV81iAQDAunLx1MX43h9+b/bztY3XlhQ33DscVwauRCFfiHQmHfUt9QtuOzPe3n9i/+yyusa6yPZko7O6M9qG2ubMZrHUIoh333l3RTEAAEDErr27Yrh3eMEXEM3MLHHnmP3Bxgcj359fsM2Zgo0777eXEgMAALCWbCx3AgAAwPo1mhuNmvqaJc0mMZobjaHuoRjNjS64zXh+fNHpx2f2s5S3dAEAwP3kwMkD8dy152b/PPOfnllSXENrQ7R0tkS2JxstnS1xqfNS9GR7ihY6NLQ2RENrw7zlqXQqGloboifbs+L/DwAAoDQzY/WFih/GRsYiImLXnl2zyx45+khExIL35a8OzH+ZUSkxAAAAa4kCCwAAYNbke5Px3i/em/3zy+u/vKf7u3jqYjS1NS26Tb4/H5dOX4qImN32bMvZoj8C3Ry7uWixxkzxxVLfegsAAPeLqs1VsfnXNs/+eWD7AyW1k+3JxnDv8LKLJXbt3RXj+fE5xc6pdGpJY/OtO7euKAYAALg941xDa0NcPHWx6Pqf9v409p3YN+cee11jXWSaM/HGS28UjRnuHY79HfvnLCslBgAAYC2pKncCAADA2nHx1MX43h9+b/bztY3X7tm+hnuHI51JL7pNdaY6IiL2n3j/x5a6xrrI9mSjs7oz2oba5kxXvtTCiXffeXf5CQMAALOzUQz3Dke+P7/kN8/OPKQ1mhudHecvNvtcxO0C6jtjS40BAABuO/z84ehu6o6h7qE5Lz/qyfZEdaY6Wjpb5sVke7LR3dQdjxx9ZM79+HPt52LfiX1FvxOUEgMAACRnqHsohnuGZ++VpzPpouP9iNvP2rx26rWIuP3yorGRsahvqS86Y/VKYiqJAgsAAGDWgZMH4rEvPjb7+c0334yvfvir92RfF09djMPPH150m4W+eM081NWT7YlnR569F+kBAMC6NVGYiJtjN2cLIT5oplB6pG9k9sGoc+3n4nL/5WWNz6sz1XF18Oqiecxst5IYAADgtlQ6FW1DbfHaqddmZ6WbKExEQ7ZhwdmmZ2L6OvoilU4t6eGpUmIAAICVmyhMxL9//N/H7ubd8VTfU7PLx/Pj0dfRN6/IYqIwEd1N3ZHtyc4rjr4ycKVoUUYpMZVGgQUAADCranNVVG1+/2vCA9sfuCf7Gc+Px2hudM4XreXatXdXDPcOx3h+fPbhqVQ6taRZLLbu3FryfgEA4H7XWd0ZEREd4x1FZ4KYGU/fOfYeHRydnT2imJlt7/wO8GDjg5Hvzy8YM54fj4iY83bbUmIAAID3pdKpZT/wlEqn4nDX4i9MSiIGAABYmZniig+O+V9tfzWuDl6dt7wn2xMPtT407/mdw12Ho7O6M+pb6ufdby8lptJsLHcCAADA+jPYNbjiN8rOPOg1mhudXbalZsuiMTMPfBV7SAwAALgtlU5FdaZ6wXHz2MhYRETsato1u2x38+7oGO9YsM2rA1dn253xyNFHImLumP6DMR/8EaaUGAAAAAAAuN9dOn0pxvPjRQuqU+lU7Nqza86y8fx45Pvzsad9T9H2Go40xKXOSyuOqUQKLAAAgFV3uf/yXQsszrWfiz+r/7NltVudqV7SW3NXWtwBAAD3s8a2xjlTh3/Q8MvDkUqn4uEjD88ue+ToIzHUPVR0+/H8eAz3Dsfh5+e+vbausS4yzZl446U3iu+ndzj2d+xfcQwAAAAAANzvLp66GI1tjUXXZXuy8+77D3YNRsTCz9DU1NdEvj8/ZzbrUmIqUVW5EwAAANaf0dxoNLQ2LL7N4OiSiiXunHLwwcYHI9+fXzBmPD8eEeGNtgAAsIiWzpY4134uHs4+XHTq74iIz3znM3NmuKhrrIt8fz4unb4U+0+8X+Awnh+P7qbu2HdiX9HvANmebHQ3dccjRx+ZM7Y/134u9p3YV3TsXkoMFPPi4ReXtN3UhqkYqxuLK1+5EhunvbsMAAAAAFhbhnuHY6IwMTsL9FK8lXtrwZmsI94vorg6+P7M0aXEVCIFFgAAwKoazY1GRESqZuEvXBERu5t3R1tn24Lrrw5cjVQ6Nacq/pGjj8T3T38/RnOjcx60ujOmkr/AAQDAajncdTiGe4ejJ9sTqZpUTIxNxERhIh5sfDD+4PIfFP0BZf+J/ZHvz8e59nOz26fSqfjMdz5TdHwecXta8rahtujr6ItUOhVbd26NsZGxqG+pX7Aou5QYAAAAAAC4X/3kpZ9ExPsvKR3NjcbVwauxa8+uBe/Pj+fHY0vNlgXbnPkdYOZlpqXGVCIFFgAAwKpabFaKOz1y9JEY6h6KprameevG8+Mx3Dsc2Z7snOV1jXWRac7EGy+9UfQL4nDv8LwpDwEAgOIaWhuWXbCQac4su6g5lU7F4a7D9zwGAAAAAAAqyeR7k3HrvVuzn395/ZdFt5t52WlExKXTl6KusS6a2ppiNDcaZ1vOxv6O/fPu3d8cuznnpaYfNFNIMVGYWFFMJVJgAQAArMhM1flSvxzNbL/YlIERt4sl8v35uHT6Uuw/sX9OfHdTd+w7sa/ow17Znmx0N3XHI0cfmVNkca79XOw7sc8MFgAAAAAAAAAArHkXT12M7/3h92Y/X9t4reh2N8duRiqdiqHuoTnP2NQ11kW2Jxt/uvtPI9uTnfPMzFKf83n3nXdXFFOJFFgAAADLNtw7HENdQxERcXXwakREnHv63OyyhmxD0ZknIiJ27dkVqXQqfmPvb9x1P/tP7I98fz7OtZ+LibGJmChMRCqdis985zMLTmGYSqeibagt+jr6IpVOxdadW2NsZCzqW+qX/fZdAAAAAAAAAAAohwMnD8RjX3xs9vObb74ZX/3wV+dtN1P4MDODxJ1S6VRkmjPxavur8ezIs/cu2fuIAgsAAGDZGlobSi5WqGusi47xjiVvn2nOLHvWiVQ6FYe7Di83NQAAAAAAAAAAWBOqNldF1eb3H/d/YPsDRbdLpVMxUZhY8PmaTEsmhnuHYzQ3OvtC05mYu9m6c+u8/SwnphJtLHcCAAAAAAAAAAAAAADA8s3MXJFKpxZdf3Xw6rxlC7k5dnNem6XEVCIFFgAAAAAAAAAAAAAAUIFmZqW4mztnn6jOVM8WRCy2bXWmekUxlUiBBQAAAAAAAAAAAAAAVKBde3dFxNwCijvNFEXcWYjxYOODC24fETGeH4+IiExzZkUxlaiq3AkAAAAAAACwOl48/GK5UwAAAAAAIEENrQ3R39Ef+f58NLQ2zFs/NjIWERG79uyaXfbI0Ufi+6e/H6O50aIzYFwduDqvUKKUmEpkBgsAAAAAAAAAAAAAAKhA1ZnqaGhtiIunLhZd/9Pen8a+E/silU7NLqtrrItMcybeeOmNojHDvcOxv2P/nGWlxFQiM1gAAAAAAAAAwALWyuw/T557stwpAAAAAGvU4ecPR3dTdwx1D0VTW9Ps8p5sT1RnqqOls2VeTLYnG91N3fHI0UfmzEhxrv1c7Duxr+hsFKXEVBoFFgAAAAAAAAAAAAAAUKFS6VS0DbXFa6dei55sT0RETBQmoiHbMKfgolhMX0dfpNKp2Lpza4yNjEV9S300tDYkFlNpFFgAAAAAAAAAAAAAAEAFS6VTRWequFvM4a7D9zymkmwsdwIAAAAAAAAAAAAAAADlZgYLAKBsbty4UXLs22+/HcePH4+hoaFoamqKM2fORG1t7bLb2bZtW8k5AAAAAAAAAAAAAPcPBRYAQNls3749kXb6+vqivr6+pNjp6elEcgAAAAAAAAAAAAAq28ZyJwAAAAAAAAAAAAAAAFBuZrAAAMrm+vXrJcc+8cQTceHChbh161Zs2rQpDh48GK+88kqC2QEAAAAAAAAAAADriQILAKBstm3bVnLs2bNn49ixYzEwMBB79+6NF154YUXtwQfduHGjpLi33347jh8/HkNDQ9HU1BRnzpyJ2traktpyTgMAAAAAAAAAAKyeii+wKBQKcerUqYiI2LlzZ4yMjERLS0u0trauqM2Ojo6IiBgbG4uIiJaWlmhra0ssptj2e/fujRMnTpScNwCsJ7W1tXH+/Plyp8F9bPv27Stuo6+vL+rr60uOn56eXnEOAAAAAAAAAAAALE1FF1gUCoVoamqKnp6eaGxsnF3e3t4eAwMD0dnZuew2c7lcZLPZ6Orqiubm5tnlLS0tMTIyUrTN5cbkcrno6uqKzs7OSKfTs8t7e3ujqakphoaGlp03AAAAAAAAAAAAAABQuoousMhms9Ha2jqnuCIioqurK6qrq6OlpWVOwcNy2vxgXFdXV9TX1xdtc7kxHR0d0dfXN2/fra2tMTY2Fu3t7dHV1bWsvAEASNb169dLinviiSfiwoULcevWrdi0aVMcPHgwXnnllYSzAwAAAAAAAAAAIGkVW2CRz+ejv79/wUKEI0eORGdn57IKLE6fPh35fD5Onjw5b10mk4nm5uZ5bS43JpfLRSaTWTCHmbwBACivbdu2lRR39uzZOHbsWAwMDMTevXvjhRdeKLktAAAA7i//57H/M3Zu2VnuNACg4r14+MVypxAREU+ee7LcKQAAAAAJ21juBEo1U1ixULFCfX199Pf3R6FQWHKbM7NKpNPpousbGxujv79/RTEzhSELGRsbW7AtAADWvtra2jh//nz8/Oc/j/Pnz0dtbW25UwIAAAAAAAAAAGAJKnYGi1wut2ghwkzhxeDg4JJnsRgcHFy0zfr6+tl9NzY2lhTT2NgY+Xw+stls9PT0zNu+q6srjh49uqR8AQAAAAAAgPvPWnk7f7lNbZiKqCt3FgAAAACsJxU7g0U+n4+ampoF188UPeTz+SW3uVh7dxocHCw5JpPJRFtbW/T29s7OsjFjZsaNEydOLDlnAAAAAAAAAAAAAABg5Sp2BouxsbHZWSqKmSl8KBQKS26zsbExent7F1w/MjIyr81SYrq6uqK+vj46OjqipaUl2traor6+PhobG6Orq2tJud6cvBnXJ6/Pfn5g4wPxwKYHlhR7v5mcnFxR7NTU1Ira4H36M1n6M1n6M1n6M1n6M1n6M1lTU1PlTmFdKvd439+ftcV1jWKcFyzEuUExzguKMdYvj3dvvRubJzfPfl7P9/YryfSG6ZiO6ZjeMB1T4e9OpXH8KpvjN1eljefu5Th0asPaOB8q7Zgsh+8RlcsxK49r167F2NjY7OfNmzfH5s2bF4m4f63kGp3Uv/3+HtzmWp4s/Zks/Zks/Zks/Zks/Zks9/ZXR8UWWCy1cOKdd95Zcpvt7e3R29sbuVwuGhsb562fmW3izjZLiYmIOHHiRKTT6Whvb4/u7u5Ip9PR09Oz5Fw7/rpjzuffbfzd+MSeTyw5/n5y8eLFkmOnpqbizTffjIiIjRsrdkKXNUN/Jkt/Jkt/Jkt/Jkt/Jkt/Jms542mSU+7x/krG2CTPdY1inBcsxLlBMc4LijHWL49yj/UpzXRMx81fvRljMRYbYkO502GZHL/K5vjNVWn3bO7lOHSsbuzuG62CSjsmy+F7ROW68yF/Vs9HPvKROZ8/+9nPxrFjx8qSS7mt5Bqd1L/99/P1eTlcy5OlP5OlP5OlP5OlP5OlP5Pl3v7qqNgCi3uhubk5mpub49SpU/OKHfr7+6O5uTlyuVzs3LlzRTERER0dHVFfXx/T09PR0dERp0+fnp3NYimzWHT+y86oTiTbnsoAAQAASURBVFXPfn5g4wPxwOj6fMvVgQMHSo6dqYjbt29fVFX567BS+jNZ+jNZ+jNZ+jNZ+jNZ+jNZM19yWV3lHu+vZIxN8lzXKMZ5wUKcGxTjvKAYY/3yKPdYn9JMb5iOsRiLmrdqYsO0B7wrjeNX2Ry/uSrtns29HIde+cqVRNsrVaUdk+XwPaJy/e3f/m25U1iXfvSjH8V/+9/+t7Of1/MMFiu5Rif1b//9fH1eDtfyZOnPZOnPZOnPZOnPZOnPZLm3vzoq9kxNp9NLmsXig4UNd9PX1xft7e3R0dERJ0+ejIj3Z6Gor6+f3fdKYlpaWqKjoyOam5sjIqKzszOOHj0a2Ww2uru7Y2xs7K6zWWyp2hLbq7bPXTi9rP/V+8ZKL7gbN26MqqoqF+6E6M9k6c9k6c9k6c9k6c9k6c/keHtAeZR7vO/vztrjukYxzgsW4tygGOcFH2SsXx5bN211b78CTcVUbIgNsWF6Q2yc9nen0jh+lc3xm6sSx3L3ahy6Vs6HSjwmy+F7RGVyvMpjx44dUVNTU+401oSVXKOT+rff34P3uZYnS38mS38mS38mS38mS38mx7391VGxZ+rdvpTMTHn4wWKIpejq6opCoTBbJNHc3BzpdDpOnz4dERF79uwpOeb06dPR2Ng4W1wxo7GxMUZGRqK9vT26u7tnZ78AAAAAAAAAAAAAAADuvYotsMhkMjE4OLjg+pnZLTKZTEntp9PpaG1tnbNsYGAgIm4XQ5Qa09XVFUNDQwvut6urKwYHB6Ovr0+BBQAAAAAAAAAAAAAArJKKLbBobGycnS2imHw+HxGRaJFCLpeLtra2FcXk8/m7zqrR3t6+aBEGAAAAAAAAAOvLi4dfLHcK8eS5J8udAgAAAMA9VbEFFkePHo3Tp09HLpcrOqPEwMDAsosrcrlcPP7449HT0zMvNpfLRT6fj46OjhXFZDKZyOfzi86sMTIyEk1NTcvKfT1byY3EqQ1TMVY3Fle+ciU2Tm8suR03EgEAAAAAAAAAAAAAKlvpT5SXWWNjYzQ3N8dLL71UdH1vb++8YoiIiEKhEB0dHUVnv5iZ9aKYp59+Ojo7O+cVRiw3prW1tWhed+aXy+XiyJEjC24DAAAAAAAAAAAAAAAkq2ILLCIienp6ore3N3K53Jzl7e3tceLEiaIzWHR3d8fp06cjm83OW9fc3Dz7Z0ahUIhsNhvNzc1x4sSJFcd0dnbO5lgoFOasy+Vykc1mo7OzM9Lp9F3//wEAAAAAAAAAAAAAgGRUlTuBlUin0zE0NBQdHR2RTqdj586dMTIyEi0tLdHa2lo0prm5OdLpdNEZItLpdHR2ds4WX8wUQHR0dBQt1ig1pqenJ/r7++Ppp5+eszyTyURfX99d/78BAAAAAAAAAAAAAIBkVXSBRcTtAoeurq4lb9/Y2Bjj4+MLrs9kMtHT07OsHEqJ+eCsFwAAAAAAAAAAAAAAQPlsLHcCAAAAAAAAAAAAAAAA5VbxM1gAAAAAUD43btwoOfbtt9+O48ePx9DQUDQ1NcWZM2eitrZ22e1s27at5BwAAAAAAAAAYIYCCwAAAABKtn379kTa6evri/r6+pJip6enE8kBAAAAAAAAgPVtY7kTAAAAAAAAAAAAAAAAKLdEZ7C4cOFCHDx4MMkmAQAAAFjDrl+/XnLsE088ERcuXIhbt27Fpk2b4uDBg/HKK68kmB0AAAAAAAAALF2iBRYtLS1x69atJJsEAAAAYA3btm1bybFnz56NY8eOxcDAQOzduzdeeOGFFbUHAAAAAAAAACuRaIHFjh074t/8m38T/+7f/bskmwUAAADgPlRbWxvnz58vdxpwT924caPk2LfffjuOHz8eQ0ND0dTUFGfOnIna2tpltzM5OVlyDgAAAEBlePHwi+VOAQAA7guJFlgUCoXo6uqKkZGR6OzsjI985CNJNg8AwDqw0gfQ2tvb42/+5m/iYx/7WHR1dZX0AFrEyt7GDQAAM7Zv355IO319fVFfX19y/He/+91E8gAAAAAAAID7WaIFFhERXV1d8fjjj0d/f3+cOnUqWlpa4siRI/Frv/ZrSe8KAID7UFIPoPX396/oAbTp6elE8gAAAAAAAAAAAKAyJFpg0dXVFZ///OcjIuLpp5+Op59+Ol5//fU4ceJEbNiwIdrb281qAQAAAACsG9evXy859oknnogLFy7ErVu3YtOmTXHw4MF45ZVXlt3O5ORkvP766yXnAQAAAAAAAOtFogUWTz/99Lxljz76aJw5cyauXbsWL7/88uysFjOFGAAAcKe18AAaAAAkZdu2bSXHnj17No4dOxYDAwOxd+/eeOGFF0pqb3JysuQcAAAAAAAAYD1JtMBiMTt27Jgzq8Xx48djw4YNcfz48fjt3/7t1UoDAIA1bqUPoH32s5+NH/zgB/HYY4/FX/7lX66oPQAAKKfa2to4f/58udNgHRvPj8fFzosRETExNhEThYnItGRi/4n9C8ZMFCbitVOvRUTE1p1bY2xkLOpb6qOhtaHsMQAAAAAAAHezagUWd6qvr4/6+vo4depUdHd3RyaTiY6ODrNaAACwIrW1tfHqq6/GxYsX48CBA1FVVZbhLgAAQMUb7h2OKwNX4nDX4TnLu5u6Y6hrKJ4deXZezERhIrqbuiPbk426xrrZ5efaz8WVgSvR0tlSthgAAAAAAICl2LiaO7tw4UL8zu/8TlRXV8dzzz0XhUIhnn766Xj55Zejqakpjh8/Hs8880z87Gc/W820AAAAAKhgN27cKPlPPp+Pj3/847Fz5874+Mc/Hvl8vuS2AO4XE4WJ+MlLPylaqHD4+cMxnh+Pc+3n5q3ryfbEQ60PzSl6iIg43HU4ct25yPfnyxYDAAAAAACwFIm+0vfChQtx8ODBOct+8YtfRHd3d3R1dUU+n4/p6enZGSuefvrpOdueOXMmrl27Ft3d3TE2NhYnT56MX/u1X0syRQAA4B44134uHs4+HJnmzILbDHUPxXDPcDS1N0WmOROpdCrG8+MxmhuNn7z0kzhw8sC8B6Qibj/c9dqp1yIiYuvOrTE2Mhb1LfXR0Nqw4L5KiQGgcm3fvj2Rdvr6+qK+vr7k+Onp6UTyACi3q4NXY7h3OPo6+uYVWcyM2S/3X56zfDw/Hvn+fBzqOlS0zYYjDXGp89Kc7wyrFQMAAAAAALBUiRZYtLS0xK1btyLidrFFV1dX9Pb2zv643NbWFu3t7fHoo48u2MaOHTviy1/+cly7di0+//nPx+nTp+O3fuu3kkwTAABIwMyDTUNdQzGaG42Hsw8vuv1EYSLy/fl5b5NNpVOR7ckuWFzR3dQ9b/259nNxZeBK0TfqlhIDAAC8b0vNlkilU7F159YFt0mlU3M+D3YNRkREdaa66PY19TWR687FRGFiNna1YgAAAAAAAJYq0QKLHTt2xD/9p/80ImLebBVHjhyJHTt2LKutl19+OZ555pn42te+lmSaAADACg11D0W+Lx+Zlkw0dzbH2ZazS4o71HUoxkbGopAvRKomFbuadkVTW9OC2/dke+Kh1ofmFV8c7jocndWdUd9SP+/NtKXEAFDZrl+/XnLsE088ERcuXIhbt27Fpk2b4uDBg/HKK68kmB1A5alrrIuO8Y6i60ZzoxERsbt595zlb+XeWrSgYaYg4urg1dnx+GrFAABw7924caPk2LfffjuOHz8eQ0ND0dTUFGfOnIna2tplt7Nt27aScwAAAIAZiRZYRESMjIxERERra2ucPHly0dkqlmI5RRkAAMDqaGprmi2MmHnAaikePvLwkt8iOzNDxqGuQ0XXNxxpiEudl+Y8NFVKDACVbyUPUJw9ezaOHTsWAwMDsXfv3njhhRc8kAGwiP6O/qjOVM+bGW48Px5barYsGDfzPWA8P77qMQAA3Hvbt29PpJ2+vr6or68vKXZ6ejqRHKAU554+F/8k9U/KnQYAAJCAxAss2tvb44/+6I9WVBhx7dq1+KM/+qNob2+Pa9euJZgdAABQKQa7BiPi/TfQflBNfU3kunMxUZiYfYiqlBgA1rfa2to4f/58udMAuOcm35uMW+/dmv38y+u/XFb8eH48LnZejHQmHU/1PTVv/c2xmwuOwyNitihiojCx6jEAAMBtQ91DMdwzHE3tTZFpzkQqnYrx/HiM5kbjJy/9JA6cPDBvduiI2+Pr1069FhERW3dujbGRsahvqY+G1oYF91VKDAAAwFqQeIHF1772tRW38fLLL0dnZ2f09vZGR0fxacgBAID721u5txYtgph5qOrq4NXZGSlKiQEAgPXg4qmL8b0//N7s52sbl/Zyo+He4bgycCUK+UKkM+mobyn+NuGlFjS8+867qx4DAMC9d/369ZJjn3jiibhw4ULcunUrNm3aFAcPHoxXXnklweyYMVGYiHx/PvL9+TnLU+lUZHuyCxZXdDd1z1t/rv1cXBm4Mm92u1JjAAAA1opECyyOHDmSWDsjIyOxd+/e+NSnPpVImwAAwNoxmhuNq4NXY9eeXUV/sIm4/YbcmbfPFjNTSDGeH19RDAAArAcHTh6Ix7742OznN998M7764a/eNa6htWHOG2bPtpyNoa6hOPz8YbPCAQAwa9u2bSXHnj17No4dOxYDAwOxd+/eeOGFF1bUHos71HUoxkbGopAvRKomFbuadkVTW9OC2/dke+Kh1ofm3cs/3HU4Oqs7o76lft4LjUqJAQAAWCsSLbA4c+ZMIu3s2LEj/uiP/iiRtgAAgKWbfG8ybr13a/bzL6//MtH28/35GM+PR6Y5E01tTTGaG42zLWdjf8f+eT+m3By7OTvjRDEzhRR3vsG2lBgAAFgPqjZXRdXm938SeGD7AyW1k+3JRmd1Z0wUJuKpvqdml6fSqSWNs7fu3LrqMQAArG21tbVx/vz5cqexbjx85OElF0uP58cj35+PQ12Hiq5vONIQlzovzbm/X0oMAADAWrLxXjT6H//jf4zf+Z3fiY9+9KPxs5/9bN76y5cvx5EjR+JP/uRP7sXuAQCAEl08dTH+aMcfzf752m9/LbG2Zwof9p/YP/vWqrrGusj2ZONsy9kYzY3O2X6pRRDvvvPuimIAAIClS6VT0dDaEPn+fOT787PLF5tJLuJ2MfRM/GrHAAAApRnsGoyIWPDFRjX1NZHvz8+5N19KDAAAwFqSeIHFyZMnIyJiYGAghoaGIpfLzdtm9+7d8fLLL8ejjz46uz0AAFB+B04eiOeuPTf755n/9ExibTe0NkRDa8O85TMPaPVkexLbFwBARMSNGzdK/pPP5+PjH/947Ny5Mz7+8Y9HPp8vqR2oRBOFiRjPjy+4Pp1JR0TESN/I7LLqTPVsccNCbc5st9oxAABAad7KvbVo8fLMuPvq4NUVxQAAAKwlVXffZOkuXLgQmUwmPvWpT8X09HRcvnw5PvnJTy64/eOPPx4REd/85jcX3Q4AAFgdVZuromrz+18THtj+wKrsd9feXTHcOxzj+fHZH1dS6dSS3mC1defW2f8uJQYAuH9t3749kXb6+vqivr6+pNjp6elEcoDV1FndGRERHeMdRR+MmhlP3zn2frDxwTkzWnzQTMFGpjmz6jEAAKwPKylyf/vtt+P48eMxNDQUTU1NcebMmaitrS2prW3btpWcx2oazY3G1cGrsWvPrtlZpz9oPD++6CxyM98X7izQLiUGAABgLUm0wKKnpye+9rWvRUREa2vrkmIef/zxeOaZZxRYAADAOjbzg8pobnS2wGKxH2AiYvattXc+8FVKDAAAMFcqnYotNVsWHDePjYxFRMSupl2zyx45+kh8//T3YzQ3WvThrKsDV+cVPaxWDAAA68NaKLKPWP1C+8n3JuPWe7dmP//D3//Dotvn+/Mxnh+PTHMmmtqaYjQ3Gmdbzsb+jv3zxtI3x24uOjvczD35O4uvS4kBAABYSxItsPA2NgAAoJhz7eficv/leHbk2SXHVGeqF50ifObHlzt/qCklBgC4f12/fr3k2CeeeCIuXLgQt27dik2bNsXBgwfjlVdeSTA7WLsa2xpjT/ueBdcPvzwcqXQqHj7y8Oyyusa6yDRn4o2X3iha+DDcOxxP9T01Z9lqxQAAwP3s4qmL8b0//N7s52txbcFtZ+6N7z+xf3ZZXWNdZHuy0VndGW1DbXPG2Ustgnj3nXdXFAMAALCWJFpgMT5e2vR9+fzC03kDANxLa2G66MnJyZJzgEoxOjg6O3tEMTM/uNz5w82DjQ9Gvn/h7woz04ff+UatUmIAgPvXtm3bSo49e/ZsHDt2LAYGBmLv3r3xwgsvrKg9qCQtnS1xrv1cPJx9eN7YuSfbExERn/nOZ+bNcJHtyUZ3U3c8cvSROWP7c+3nYt+JfUXH4asVAwDA/W+9FtkfOHkgHvviY7Ofr1y5El9t+GrRbRtaG4ouT6VT0dDaED3ZnmW9KAkAAKAc8t/JR74vH7Ehoqa+Jnbt2RUPfuTBxNpPtMBiZGRk2THXrl2Ld955J8k0AACWbK1MF/3d7343kTxgrdrdvDvaOtsWXH914Gqk0qk5M0s8cvSR+P7p78dobrTom2mvDlyd9+BUKTEAAMXU1tbG+fPny50GlM3hrsMx3DscPdmeSNWkYmJsIiYKE/Fg44PxB5f/YF5xRcTth7Lahtqir6MvUulUbN25NcZGxqK+pX7RB7lWIwYAgPvfei2yr9pcFVWb33/851d+8SsltbNr764Y7h2O8fz47L36VDq1pBkptu7cOvvfpcQAAADc6fTO03HinRMLrs88nonM45mYuDYRN8duRr4/H4Ndg9HS2RKbf23zivefaIHFkSNH4ujRo/HSSy8tK+bTn/50kmkAAABrzCNHH4mh7qFoamuat248Px7DvcOR7cnOWV7XWBeZ5ky88dIbRYslhnuH46m+p1YcAwCwHty8eTNu3LgRVVXLvyWc1Ox9lfJwEu9raG1YdsFCKp2Kw12H12QMAAAsRJF9zBZRj+ZGZwssttRsWTRmZubqOwuwS4kBWE9u3LhRcmxS9+ki3KsDlm6l16329vb4m7/5m/jYxz4WXV1drlssyfT09JK2S+1IRWpHKpqeboqJaxPR19EXh752aMX7T7TA4sSJE/GhD30oPv3pT8fzzz8fv/qrv7rgtj/60Y/i6aefjkKhEF/60peSTAMAYMnWwnTRk5OT8frrr5ecB5TbeH48ImLRN1LVNdZFvj8fl05fiv0n9s+J7W7qjn0n9hV9cCvbk43upu545OgjcwomzrWfi30n9hWdjaKUGACA+90nPvGJRNpZyex9S70ZDgAAQPLOtZ+Ly/2X49mRZ5ccU52pjquDVxdcP/O7wJ2zU5cSA7CebN++PZF2VnKfLsK9OmDpkrpu9ff3u26xZBs2bFh2TGpHckXciRZYRER8+9vfjg996EPR09MTLS0t0dzcHOl0OmpqamJsbCxGRkaiv78/crlcTE9PRy6XSzoFAIAlWwvTRU9OTpacA5TLcO9wDHUNRUTM/lBy7ulzs8sasg3zZqvYf2J/5Pvzca79XEyMTcREYSJS6VR85jufKTrbRMTtN1i1DbVFX0dfpNKp2Lpza4yNjEV9S/2Cb9ItJQYAAAAAAO5no4Ojs7NHFDNT+HDn/foHGx+MfH9+wZiZFzDd+WKjUmIAAICVG+oeiuGe4Whqb4pMcyZS6VSM58djNDcaP3npJ3Hg5IGiz+dMFCbitVOvRUQs+RmbUmLutYlrEzE6OJpIW4kXWGQymRgbG4tsNhvf/va3o6+vb94209PT0dzcHF1dXbF79+6kUwAAWBWmi2Y9a2htKOlLUaY5s+wfTVLpVBzuOnzPYwAA7mff+ta3Yt++fVFVtfxbwknN3gcAAED57G7eHW2dbQuuvzpwNVLp1JyZJR45+kh8//T3YzQ3WvRBrKsDV+fd8y8lBmA9uX79esmx7tMB5eC6VTkmChOR78/PK3hOpVOR7ckuWFzR3dQ9b/259nNxZeBKtHS2JBJTTOFnhaLLZ2YrKfz/ChF3mbhkojARN8duxmhuNC6euhgNR5Ip8Ei8wCIiIp1OR19fX3znO9+Jnp6eGBwcjEKhEOl0OjKZTLS3t8fjjz9+L3YNAAAAsC7cvHkzbty4UdLD0m+//XYcP348hoaGoqmpKc6cORO1tbUl5bGSGcGA1bNly5bYtm1bSdeMpGbvAwAAoHweOfpIDHUPzZt9OuL2rBLDvcOR7cnOWV7XWBeZ5ky88dIbRR/GGu4djqf6nlpxDMB6spL7au7TAeWw0uvWZz/72fjBD34Qjz32WPzlX/6l69Y9dqjrUIyNjEUhX4hUTSp2Ne0q+h1gRk+2Jx5qfWje2P1w1+HorO6M+pb6eQXSpcQUc3XoalwduBrj+fHI9+fjvWvvzVn/Z5k/u2sbM6anpyPTnIlDXzu05JjF3JMCixmPP/64QgoAAACAe+ATn/hEIu309fVFfX19yfEzbxAB7l9m7wNgPZmYnCg59tp71+LrP/56XL52OXbv2B2f+/DnYsfmHSW1lapKlZwHABRT11gX+f58XDp9Kfaf2D+7fDw/Ht1N3bHvxL6iM1dne7LR3dQdjxx9ZN7bafed2Ff0walSYgC4O/fpgEpTW1sbr776aly8eDEOHDhQ0kugWJ6HjzwcqfTS7ivNFDYc6ipelNBwpCEudV6aM34vJWYhDZ9qiIZPvf8dZDQ3Gv0d/ZH/Tj42bNgQD33qoSX9f1RnqiPTkonM48l9z3CmAgAAAAAAAETE7/3V7yXSzhs/fyO+8N0vlBz/jUPfSCQPALjT/hP7I9+fj3Pt52JibCImChORSqfiM9/5TNHZJiIiUulUtA21RV9HX6TSqdi6c2uMjYxFfUt90YKMUmMAAIDVNdg1GBG3CxSKqamviVx3bvZ7Q6kxS1XXWBdP9T0V59rPxU97fxrZl7N3D7pH1kSBxcmTJ+PUqVPlTgMAAACgYnzrW9+Kffv2lfSmlyeeeCIuXLgQt27dik2bNsXBgwfjlVdeuQdZAgAAALCWZJozy55BIpVOxeGuw/c8BgDgxo0bJce+/fbbcfz48RgaGoqmpqY4c+ZM1NbWLrudycnJknOASvJW7q1FiyBmiiiuDl6d/Q5RSsxyHe46HKNDoyXFJmVNFFh0d3crsAAAAABYhi1btsS2bdtKKrA4e/ZsHDt2LAYGBmLv3r3xwgsvxLZt2+5BlgAAUFn+4nf/ouTYrwx+JYbfGY6p6anYuGFjNOxsiC/u+WKC2QEAAMD9bfv27Ym009fXF/X19SXHf/e7300kDyiX0dxoXB28Grv27Fpwtrrx/HhsqdmyYBszhRTj+fEVxZTiwMkDJcX1n+yP5lPNK9p3xD0ssPjZz34W+Xz+rtvlcrkoFAr3Kg0AAAAAPqC2tjbOnz9f7jQAAGDNSVUt/Aa+u/n9R38/zvzoTIwURqI+XR/HP3J8Re0BAAAAsL5NvjcZt967Nfv5l9d/uej2+f58jOfHI9Ociaa2phjNjcbZlrOxv2P/vBklbo7dnJ1xopiZQoqJwsSKYkrR8KmGkuJy3bm1WWDx53/+59HR0aFoAgAAAAAAAFg3dmzeER0f6yh3GgAAAFCxrl+/XnLsE088ERcuXIhbt27Fpk2b4uDBg/HKK68su53Jycl4/fXXS84DknTx1MX43h9+b/bztY3XFtx2pvBh/4n9s8vqGusi25ONzurOaBtqmzObxVKLIN59590VxaxU4WeFJc2IMZobXXFhx4xECyy+853vRFtbW2Qymchms5FOp+8aMzQ0FBcuXEgyDQAAAAAAAAAAAACggmzbtq3k2LNnz8axY8diYGAg9u7dGy+88EJJ7U1OTpacAyTtwMkD8dgXH5v9/Oabb8ZXP/zVots2tBaf9SGVTkVDa0P0ZHvi2ZFn70me90Luz3PR39GfWNHEciRaYPHcc89FT09PfOpTn1pW3M6dO5NMAwAAAAAAAAAAAABYJ2pra+P8+fPlTgMSVbW5Kqo2v/+4/wPbHyipnV17d8Vw73CM58dnZ7pIpVNLKl7YunPr7H+XElOK/Hfyca7tXFRnqqMh2xCpdOquMaNDo3H5wuUV7XdGogUW1dXVyy6uiIjYvXt3kmkAAAAAAAAAAAAAAMC6N1OgMJobnS2w2FKzZdGYm2M358SWGlOK7zz3ncj2ZKPhU8Vn5VjI6Z2nV7TfGYkWWDQ2NpYUNzg4mGQaAAAAAAAAAEDCbty4seRtJycn4+bNm3Hjxo2oqqqKt99+O44fPx5DQ0PR1NQUZ86cidra2nuYLQAAAKwP59rPxeX+y/HsyLNLjqnOVMfVwasLrp+ZqWKmIKPUmFKkqlPLLq6IiEjvTq9ovzMSLbAoFApJNgcAAAAAAAAArBHbt29PpJ2+vr6or68vOf4bh76RSB4AcC8tpzDxTkkVJU5OTpa0fwDWhlL/HYlI7t+SiIht27aVnAerZ3RwdHb2iGJmCh/qGutmlz3Y+GDk+/MLxoznxyMiItOcWVFMKe7McznaBttWtN8ZiRZYZLPZ+OY3vxmf/OQnlxV38uTJOHXqVJKpAAAAAAAAAADcMy8efrHcKdwzUxumYqxuLK585UpsnN541+2fPPfkKmQFUFmSKExcaVHid7/73RXnAEB5rJUC9+np6UTy4N7a3bw72joXLi64OnA1UunUnJklHjn6SHz/9PdjNDdatKDh6sDVeYUSpcSUYqYgpFzu/i14GR5//PEYGRmJb37zm8uK6+7uTjINAAAAAAAAACBh169fX/KfQqEQ3/rWt6JQKMT169ejpaUlNm3aFBERmzZtipaWlmW1d+cfAAAA4H2PHH0khrqHiq4bz4/HcO9wHH7+8JzldY11kWnOxBsvvVE0brh3OPZ37F9xTCkasg3x02/+dNlx/Sf7V7zviIRnsPjZz34W2Ww2enp6Yu/evdHc3Bz19fWRySxciZLL5aJQKCSZBgAAAAAAAACQsG3bti1528nJydiyZUts27Ytqqqq4uzZs3Hs2LEYGBiIvXv3xgsvvLCs9gCg0pRaFPjEE0/EhQsX4tatW7Fp06Y4ePBgvPLKK8tuZ3JyMl5//fWScgCg/FZSXJ7UvyVUjrrGusj35+PS6Uux/8T7BQ7j+fHobuqOfSf2RUNrw7y4bE82upu645Gjj8yZkeJc+7nYd2Jf0dkoSolZrszjmbj0x5fip9/8aTz0yYeWHJfrzkXzqeYV7z/RAovGxsa4du1aRNyeEmZoaCg2bNiQ5C4AAAAAAAAAgApTW1sb58+fL3caALBqSi0kTKoocXJysqT9A7A2rKQgXYH7+rT/xP7I9+fjXPu5mBibiInCRKTSqfjMdz4zpxDiTql0KtqG2qKvoy9S6VRs3bk1xkbGor6lvmhBRqkxy1X4WSEezj4cP+n5STy/9/nY3bw7auprojpTvWDMaG40JgoTiew/0QKLmpqaiIg4cuRIpNPpJcUMDQ3FhQsXkkwDAAAAAAAAAAAAKo6iRABWyr8l61emObPsGSRS6VQc7jp8z2OWo6uxK9679l5E3J704erQ1VWd9CHRAotMJhPPPfdcfP7zn19W3M6dO5NMAwAAAAAAAAAAAAAAqDBbarZERMTDRx6OVDq1pJjRodG4fOFyIvtPvMAik1le1UtExO7du5NMAwAAAACANebGjRslx7799ttx/PjxGBoaiqampjhz5kzU1taW1JZp0AEAAAAAANau6kx1HHjuQDR+vnFZcad3nk5k/4kWWJw5c6akuMHBwSTTAAAAAABgjdm+fXsi7fT19UV9fX3J8dPT04nkAQBA+UxMTpQce+29a/H1H389Ll+7HLt37I7PffhzsWPzjpLaSlUt7S2aAAAAwNJVZ6qjOlO97Lj07nQi+0+0wKKYX/ziFzE2Nha/9Vu/da93BQAAAAAAAADc537vr34vkXbe+Pkb8YXvfqHk+G8c+kYieQAAAADvO3TmUElxbYNtiez/nhRY/OxnP4vOzs7o7u6OiIgNGzbE5OTk7PrLly9HR0dHfPzjH4/Pf/7z9yIFAAAAAADWkOvXr5cc+8QTT8SFCxfi1q1bsWnTpjh48GC88sorCWYHAAAAAKxHN27cKCnu7bffjuPHj8fQ0FA0NTXFmTNnora2tqS2tm3bVlIcAPdG4gUWFy5ciObm5oiIyGQykclk4vLly3O22b17d7z88svxne98J/7kT/4kvvSlLyWdBgAAAAAAa8hKfiQ8e/ZsHDt2LAYGBmLv3r3xwgsv+NERAGAd+4vf/YuSY78y+JUYfmc4pqanYuOGjdGwsyG+uOeLCWYHAEAl2b59+4rb6Ovri/r6+pLjp6enV5wDwHo3cW0ics/nYt+X9q24rUQLLC5fvhytra3R1tYWHR0dsXv37oiIeO6554pu//jjj0ehUIgLFy7EwYMHk0wFAKCi3Lx5M27cuBFVVcsfnnkrAgAAcL+rra2N8+fPlzsNAADWiFRVquTY33/09+PMj87ESGEk6tP1cfwjx1fUHgAAAFB+4/nx+MlLP1l7BRbPPfdcdHZ2xtNPPz1n+YYNGxaM+dSnPhXPPPOMAgsAYF37xCc+kUg73ooAAAAAAAAL27F5R3R8rKPcaQAAsEZcv369pLgnnngiLly4ELdu3YpNmzbFwYMH45VXXkk4O4D16fKFy8uOudR5KSYKE4nsP9ECi/Hx8XnFFUuxkgf5CoVCnDp1KiIidu7cGSMjI9HS0hKtra0rarOj4/YNlbGxsYiIaGlpiba2tkRjIiK6u7ujp6cn0ul0RERkMpno7OwsOXcAAAAAAAAAAAAA7m7btm0lxZ09ezaOHTsWAwMDsXfv3njhhRdKbguAuV5ufTneu/besmKmp6djS/WWRPafaIFFJpMpKW58fLykuEKhEE1NTdHT0xONjY2zy9vb22NgYKCkQoVcLhfZbDa6urqiubl5dnlLS0uMjIwUbbOUmEKhEI8//ng0NzdHX1/f7PJ8Ph8dHR2KLABgnfnWt74V+/bti6qq5Q/PvBUBAAAAAAAAAGD11NbWxvnz58udBsB9aUvN7UKJh488HKl0qug2E4WJGM+Px9XBq5FpzsSuvbsS23/iM1iUIp/PlxSXzWajtbV1TnFFRERXV1dUV1dHS0vLnIKH5bT5wbiurq6or68v2mYpMTPFFR8spGhvb4/BwUEFFgCwzmzZsiW2bdtWUoGFtyIAAAAAALAaXjz84pK3ndowFWN1Y3HlK1di4/TGe5gVAAAAcD+pzlTHgecOROPnG+++cURc+uNLsaV6y5K3v5tE72JUV1fHd7/73WXFnDx5Mh5//PFl7yufz0d/f3+0t7cXXX/kyJFlFymcPn068vl8nDx5ct66TCZTtCBiJTHF8kun07Fnz55l5Q0ArG8zb0X4+c9/HufPn4/a2tpypwQAAAAAAAAAAADLVp2pjupM9ZK33//l/ZGqTsXlC5cT2X+iM1icOHEiPv7xj8fzzz8f/+pf/au7bv8nf/In0dvbG//5P//nZe+rq6srIm4XMRRTX18f3d3dUSgUIp1OL6nNvr6+iIgFt29sbIzTp0+vOObUqVPR1tZWdPuenp4l5QoAAAAAAAD3i4nJiZJjr713Lb7+46/H5WuXY/eO3fG5D38udmzeERG336D/3i/fi4nJiSW9QT9VlSo5D4D1bDmzm9wrT557stwpAAAAkIBDZw4tO6bhUw3Rf7I/dh/cveL9J1pgkclk4syZM/H444/Hnj174ujRo/Hoo49GoVCIn/3sZ1EoFGJsbCxyuVx0dXVFPp+PoaGhkvaVy+UWLZyYKbwYHByM5ubmJbU5ODi4aJv19fWz+25sbCwppre3NwqFQhw9enRJOQEAAAAAAMD97vf+6vcSaeeNn78RX/juF0qO/8ahbySSBwAAAABQmRItsIiIaG5ujpdffjna2trixIkTs8u7u7tn/3t6ejoymUwMDg7GRz7ykZL2k8/no6amZsH1M0UP+Xx+yW3W1NTE2NjYXbcbHBycLbBYbsxLL70UETEbn8vlYnBwMPbs2TO7bCluTt6M65PXZz8/sPGBeGDTA0uO57bpDdMxHdMxvWE6pmKq5HYmJycTzKpyTU5OxtTUlP5IiP5Mlv5Mlv5Mlv5Mlv5M1tRU6WMkSlfu8b6/P2uL6xrFOC9YiHODYpwXFGOsXx7v3no3Nk9unv3s3n5lSOq3BCrD1AbHeC3x96+yOX6VrRKPn+88t+mH8ij3ff37hed4kuWeULL0Z7L0Z7L0Z7L0Z7L0Z7Lc219cIV9IpJ3ECywiIlpbW6O1tTVOnz4dL730Urz++uuz6zKZTLS3t8eXv/zlFe1jbGxsdpaKYmaKLwqFwpLbnJlhYiEjIyPz2lxuTC6Xm113+vTpaGxsjLa2tsjlctHS0hIdHR1LmnGj46875nz+3cbfjU/s+cRd45hrOqbj5q/ejLEYiw2xoeR2Ll68mGBWlWtqairefPPNiIjYuPHu02yzOP2ZLP2ZLP2ZLP2ZLP2ZrHfeeafcKaxL5R7vG9+uLa5rFOO8YCHODYpxXlCMsX55lHusT2mS+i2Bxf3x//uPS47982//efznq/85pqanYuOGjfFPd/3T+PzHPx8Rt4/fxK9OROrvU0s6fmMP3P3Faqwef/8qm+NX2Srx+LmvedtSXhJK8oz1k+E5nmS5J5Qs/Zks/Zks/Zks/Zks/Zks9/YXNnFtIm6O30ykrXtSYDHjxIkTc2axSNJSCyeWcyK1t7dHb29v5HK5orNJ9Pf3z2tzuTFjY2ORTqeju7t7Tt80NjZGT09P7N69O3p6eu5aZNH5LzujOlU9+/mBjQ/EA6Mq35dresN0jMVY1LxVExumS/9iduDAgQSzqlwzFYb79u2Lqqp7enlZF/RnsvRnsvRnsvRnsvRnsma+5LK6yj3eXyvj2xs3bpQc+3d/93fxb/7Nv4mhoaFoamqKf/fv/l38+q//+rLb2bZtW8k5JMV1jWKcFyzEuUExzguKMdYvj3KP9SlNUr8lcO88+/Cz0fUPXZEv5COTzkT7w+2x4+c7IuIfj98DY1HzjuNXifz9q2yOX2WrxOO3Vu5rltvf/u3fljuFdclYPxme40mWe0LJ0p/J0p/J0p/J0p/J0p/JWi/39i9fuLzkbScKEzGeH4+hrqFoam9KZP/O1Ds0NzdHc3NznDp1Knp6euas6+/vj+bm5sjlcrFz586SY2YKQ2Zm2LhTOp2O5ubmaG9vn535YiEbY2NU3XH4pqem4x+m/uGu/4/X3rsWX//x1+Pytcuxe8fu+NyHPxc7Nu+4a1wxqapUSXFryVRMxYbYEBumN8TG6dIr41z037dx48aoqqrSJwnRn8nSn8nSn8nSn8nSn8nx9oDy2FK1JbZXbZ+7cHr19r9W/u6k0+lE2unv74///r//70uKnZ5exY5fhOsaxTgvWIhzg2KcF3yQsX55bN20taxjfUqT1G8J3DvVv1Idz33subkL//HvluNX2Ry/yub4VbZKPH6+79ymH8qj3Pf17xee40mee0LJ0p/J0p/vW8mL595+++1ob2+Pv/mbv4mPfexj0dXVFbW1tSW1tRZePrdWOD+TpT+Ts17u7b/c+nK8d+29JW8/PT0dmeZM7PvSvkT2vybO1G9+85vxyU9+clkx6XR6SbNY3FkMsRR9fX3R3t4eHR0dcfLkyYh4fxaK+vr62X2XGjOT90IzVLS0tCw6I8aML//1l5f1/1XMGz9/I77w3S+UHP+NQ99YcQ4AAAAAAAAAAAAA69X27dvvvtES9Pf3zz6zWoq18vI5gC01WyIi4uEjD0cqvfiEAFt2bom6xrrIPJ5JbP9rosDi6aefXnaBRbEZIO40NjYWEaW98bSrqysKhcJskURzc3Ok0+k4ffp0RETs2bOn5JiampooFAoL5jXz/zU4OLhogQVry4uHXyx3ChER8eS5J8udAgAAJOb69eslxz7xxBNx4cKFuHXrVmzatCkOHjwYr7zySoLZAQAAAAAAsBQrfTv/8ePHY2hoKJqamuLMmTMlvZ3fm/kBoHJUZ6rjwHMHovHz5XmWftkFFj/60Y/iIx/5yILrlmNsbCzy+fySZqL4oEwmE4ODgwuun2kzkymtGiWdTkdra+ucZQMDAxERCxY+LCWmsbEx8vn8Xfd/tz7543/5x7EztbzZOSIivjL4lRh+Zzimpqdi44aN0bCzIb6454vLbgcAAOBeW8mN7rNnz8axY8diYGAg9u7dGy+88IIb5wAAAEBFm5icKDn22nvX4us//npcvnY5du/YHZ/78Odix+Ydy24nVbX4WyMBAIpJ6u38fX19Jb+d35v5Wcu8eA5grupMdVRnqsu2/2UVWDz33HPxx3/8x9HU1BQ//OEP560/ePBgXLt2LbHkFtPY2Dg7W0QxM0UMzc3Nie0zl8tFW1vbimL27t0bvb29C85iMTPzxt1mr9hctbmkm1e//+jvx5kfnYmRwkjUp+vj+EeOuwkGAADcd2pra+P8+fPlTgMAAAAgMb/3V7+XSDtv/PyN+MJ3v1BS7DcOfSORHAAAgPet9MVzn/3sZ+MHP/hBPPbYY/GXf/mXXjwHVLxDZw6Vdf/LKrDI5/MxPT0d4+PjRdfX1NRERMwWFOzcufgMC++8806MjIzEN7/5zeWkERERR48ejdOnT0culytajDAwMLDs4opcLhePP/549PT0zIvN5XKRz+ejo6NjRTGtra3R0dER/f3982a7iIgYGRmJiIg9e/YsK/el2rF5R3R8rOPuGwIAAAAAAAAAAMAKeTs/3Du1tbXx6quvxsWLF+PAgQNRVbWsx4IBKGJZV9Lnn38+WlpaFixcyGQy8dxzz8XnP//5ZSVxt0KMYhobG6O5uTleeumlogUWvb290dfXN295oVCIU6dOFf3/mJn1opinn346Ojs7I5PJrCgmk8lEa2trnDp1qmiBRW9vb5w4caLo7BYAAAAAAAAArE9/8bt/UXLsVwa/EsPvDMfU9FRs3LAxGnY2xBf3fDHB7ADWt/cm34uJyYllx11771p8/cdfj8vXLsfuHbvjcx/+XOzYvKOkHFJVqZLiYDWs9O38x44di4GBgdi7d2+88MIL3s4PAOtM4WeFGOwajLdyb8XNsZuxpWZLpDPp2NO+Jx78yIOJ729ZBRY7duyIp59+esH1LS0tJc28sHv37mXHRET09PREU1NTHD16dE6RRXt7e5w4caJoIUh3d3ecPn06uru7583E0dzcPPtnRqFQiKeffjqam5vjxIkT89orJeb555+Ppqam6O7unp3tIyIim81GJpOJzs7O5XUEAAAAAAAAAPe1lTw4+/uP/n6c+dGZGCmMRH26Po5/5LgHcQES9OW//vKK23jj52/EF777hZLjv3HoGyvOAdai2traOH/+fLnTAADKpP9kf3z/9Pdjenp63rpcdy4asg1xuPtwbP61zYntM9G5gL785dK+LAwODpYUl06nY2hoKDo6OiKdTsfOnTtjZGQkWlpais4OEXG7ICKdTseRI0eKttfZ2RnZbDYibhdKRER0dHQsOGtHqTFDQ0Nx6tSpOXHZbHZOwQUAAAAAAAAArNSOzTui42Md5U4DAAAAYEkmrk1Ed1N33By7GQ996qHYtXdXpNK3XxYxUZiIm+/cjNGh0fjJyz+JfH8+/uDyH8TmX02myCLRAotySKfT0dXVteTtGxsb581ccadMJhM9PT3LyqGUmJnCDOD+dePGjZJj33777Whvb4+/+Zu/iY997GPR1dUVtbW1JbVlWkQAAAAAAAAAuHf++F/+cexM7Vx23FcGvxLD7wzH1PRUbNywMRp2NsQX93zxHmQIAACVpSfbE5nmTBw6c2jR7SauTUTfib749wf/fTw98HQi+74nBRb/8T/+x+ju7o7x8fF4+eWX47d+67fmrL98+XJ0dHTERz/60fjSl750L1IAKLvt27cn0k5/f3/U19eXHF9sWiQAAAAAWMxobjQGuwZjYmwiRnOjkUqnoqm9KZramopuP9Q9FMM9w9HU3hSZ5kyk0qkYz4/HaG40fvLST+LAyQNR11g3L26iMBGvnXotIiK27twaYyNjUd9SHw2tDQvmVkoMAADAvbS5anOkqlLLjvv9R38/zvzoTIwURqI+XR/HP3K8pHYAAOB+MvT8UFRnqu9aXBERkdqRisNdh+PV469G7s9z0fj5xhXvP/ECi5MnT8aePXtiYGAgrl27Frlcbl6Bxe7du+Pll1+O73znO3Hy5Mk4depU0mkAAAAAAAAlGOoeioiIw12HZ5fl+/PRk+2JS52Xom2obXYa7hkThYnI9+cj35+fszyVTkW2J7tgcUV3U/e89efaz8WVgSvR0tmSSAwAAMBatWPzjuj4WEe50wAAgDXlcv/laH2pdVkxh84civ/jd/6PtVdgceHChchkMvGpT30qpqen4/Lly/HJT35ywe0ff/zxiIj45je/ueh2AJXo+vXrJcc+8cQTceHChbh161Zs2rQpDh48GK+88kqC2QFAss61n4uHsw9Hpjmz6HZr+S24AABAxHh+PCYKE7H/xP45yzPNmfjMdz4T3U3d0ZPtiaf6npoXe6jrUIyNjEUhX4hUTSp2Ne1acKwfcXt674daH5o3pj/cdTg6qzujvqV+3neMUmIAAAAAAIDKkaoubVa39O50IvtPtMCip6cnvva1r0VERGvr0qpGHn/88XjmmWcUWAD3nW3btpUce/bs2fjsZz8bP/jBD+Kxxx6Lv/zLv1xRewBwL4znxyPfn4+hrqEYzY3Gw9mHF91+Lb8FFwAAuG2wazD++cl/XnRdXWNdZJozke/Px3h+PKoz1XPWP3zk4Xlj+oXMfJ841FV8eu+GIw1xqfPSnGKJUmIAAAAAAIAKs2GV4z4g0QKL6enpJJsDWLdqa2vj1VdfjYsXL8aBAweiqirRyzUArNhQ91Dk+/KRaclEc2dznG05u+j2a/0tuAAAwG2X+y9HrjsXf3D5D4oWSzzY+GDk+/MxmhudV2CxHINdgxERC7ZRU18Tue5cTBQmZvMoJQYWMzE5saTtpjZMxXu/fC8mJidi4/TGiIi49t61+PqPvx6Xr12O3Tt2x+c+/LnYsXnHsnNIVTlXAQAAAADuNDG2tHu3H1TIFxLZf6JP7I6Pj5cUl8/n774RAACwZjS1Nc0WOYzmRu+6/Vp+Cy4AAPC+LTVbYjQ3GuP58aIzxiXlrdxbi47zZ74XXB28Ojt+LyUGFvN7f/V7ibTzxs/fiC989wslxX7j0DcSyQEAAAAA4H6R3p2On77y03joiYeWHPP9P/l+PPjog4nsf2MirfyjkZGRZcdcu3Yt3nnnnSTTAAAA1pjL/ZfjT3f/aUwUileYP9h4+wvOUoo1FrOUN9rm+/ML5gEAAOvdU31PxbMjzy5YXDHz9qfFii9Gc6Mx1D206Ph+PD8eW2q2LLh+ppBiPP/+i51KiQEAAAAAACpL8x81R9+X++Knr/x0SdsPPT8UF09djOY/ak5k/4nOYHHkyJE4evRovPTSS8uK+fSnP51kGgAAwBqzlt+CCwAA68Hke5Nx671bs59/ef2XC267UMFyRMRw73DUNdYV3WZmVrpMcyaa2ppiNDcaZ1vOxv6O/fPG3zfHbi66n5lCijuLo0uJgcX8xe/+xZK2m9owFeMPjkf1W9Wxcfr2u8u+MviVGH5nOKamp2Ljho3RsLMhvrjni/cyXQAAAACAdSP7cja693RH/cfro6G1IXbt2TX7TNBEYSJujt2Mkb6R+GnvT2M8Px5PDz6d2L4TLbA4ceJEfOhDH4pPf/rT8fzzz8ev/uqvLrjtj370o3j66aejUCjEl770pSTTAOAON27cKDn27bffjuPHj8fQ0FA0NTXFmTNnora2tqS2tm3bVnIeAFS+p/qeivH8+IIPQy31LbhXB6/Grj27FtzOG20BAKC4i6cuxvf+8Huzn69tvLbsNi6dvhQREYefPzxv3cxYf/+J/bPL6hrrItuTjc7qzmgbapszjl9qEcS777y7ohhYTKpq4QL9O01tmIrND2yOVFVqtsDi9x/9/TjzozMxUhiJ+nR9HP/I8SW3BwAAAADA4uoa66JtsC3OPX0uzrWdiw0bNszbZnp6Oqoz1fE/f/t/jrpHk3vha6IFFhER3/72t+NDH/pQ9PT0REtLSzQ3N0c6nY6ampoYGxuLkZGR6O/vj1wuF9PT05HL5ZJOAYA7bN++PZF2+vr6or6+vuT46enpRPIA4N5azlttl2utvgUXAADWgwMnD8RjX3xs9vObb74ZX/3wV5ccP5objf6O/sj2ZIsWPDe0NhSNS6VT0dDaED3Znnh25NnlJw5r1I7NO6LjYx3lTgMAAAAA4L5V11gXbUNtMdQ9FENdQzH6+ujsuupMdTS1N8X+L+9fpIXSJF5gkclkYmxsLLLZbHz729+Ovr6+edtMT09Hc3NzdHV1xe7du5NOAQAAKFESb7VdrnK/BRcAANaDqs1VUbX5/Z8EHtj+wLLie7I9cajr0IKFFIvZtXdXDPcOz5nVLpVOLWn8vnXn1tn/LiUG4P/P3h8Gt3WfeZ7vj5S8AiXFBMipS1E9NW0eZF6YVrotQNqeSErNmASU3JS4VYoIqVN3lVFikaDLVe5NbkRIvTUveudWy6Q97p1s1ZignKx61RuvBLb1grlRyoDoztry1IQA5K7YdNXEPFQ8JdK6FQGgWzKhCkXcFwohUQQp4OCQBKjvp4oV4/zP8/yfHMDwAXCe8wcAAAAAAABQ3bzdXnm7vas2n+0NFpLkdDoVjUZ1+fJlRSIRxeNxZTIZOZ1OGYahYDCo9vb2lZgaAPCQW7duWY49ePCgRkZGdPfuXW3YsEFtbW26ePGijdUBACpNuXe1LRV3wQUAAAAqXyQQkTdo/ccLh9Mh6d75/3yDxfzqckuZSc0siLUaAwAAAAAAAAAAUIoVabCY197eTiMFAKyxLVu2WI49d+6cjh07ptHRUe3evVtnz54tKx8AoPKVe1fbUlXCXXABVJfbt29bjr1x44Z6enqUSCTk9Xo1MDCgpqYmS7k4LwYAPC6ioai2796+YFW5hw0HhzURmyip+dlluDQZn1xyfP68fv5c32oMAAAAAAAAAACoTmN/P6bkYFIz6RkFLgTkfMq5YDw9kVYsFNMf/fd/pD0/3GPbvCvaYAEAqG5NTU26dOnSWpcBAFinKuUuuACqy9atW23JE41G5Xa7Lcfncjlb6gAAoJIlBhNqcDcUPGfPZrL3z8njU/lz7ULmGx8eXLVum2ebzJi5ZEzaTEuSDJ9RVgwAAAAAAAAAAKg+sVMxbd+1XddHr+vO9B1NJacWNVi4WlwKXAjIvGwqdiom32mfLXPX2pKlTC+88MJalwAAAABgFRV7F9wfuX9UUl6X4Srqwi7uaItqMzMzo9u3b1v6M01T+/fvV2Njo/bv3y/TNC3nAgAAj4+xoTFJKthckTbTCxodWnwtCqVDS+aaHJ2Uw+lYcB6+48gOSfcappeKebhRwkoMAAAAAAAAAACoLhMjE3IZLrUealXHYIfaX27X0996esn9jXZDhs/Qx299bMv8FbGCxYULF/T666+vdRkAAAAAVkGl3QUXqAbf/OY3bcmzHlZtuHXrluXYgwcPamRkRHfv3tWGDRvU1tamixcv2lgdAADrw1Ty3rn4UqvNmTFzwTn1jiM7lBhMLNmMMTY0pkAksGB7s6dZhs/Qh+c/XHBOP29saExHo0fLjgEAAAAAAAAAANXlo8hHOvD6AUlSa2drUTFGu6GfvfCzZRsxilVyg8UHH3ygZ599dtH26elpXb58ueQCRkdHlclkSo4DAAAAUH0edRfcqeRU/oNRi69F3X3dS+Za6i647/e/r6nkVMELrrijLVD9tmzZYjn23LlzOnbsmEZHR7V7926dPXu2rHwAAKxHaTOtSCCiFl+LJoOTi8azqazMmLlgxYpmT7PMmKkr/VcWrFKXNtMa9A5qT++egj+ABCIBDXoHtePIjgXn78PBYe3p3VPw3N1KDAAAAAAAAAAAqCJrfO/HohssLl++rGAwqImJCbndbv3X//pfF4zH43F1dnaqpqampAJyuVzJMQAq18zMjG7fvq2NG0tfIOfGjRvq6elRIpGQ1+vVwMCAmpqaLNXBRVIAAFSeSr0LLlANfv7zn2vPnj2WzrNZteG+pqYmXbp0aa3LAACgop3zn1PaTCs9mF5ynwebnOft7d0rM2ZqODisbCqbX53uO5e/U/DcXJIcToe6E92KhqJyOB3a3LhZqfGU3H73knekshIDAAAAAAAAAACqRzadtRSXMTO2zF/UlRnT09MKh8MKh8Py+/2qr69ftE9DQ4Mk6dChQ9q9e7ecTucj82YyGX3yySd64403SqsaQMX65je/aUueaDQqt9ttOT6XW+P2NQAAHiNp896FV9nM0h9uKv0uuEClq6ur05YtWyw1WLBqAwAAKMVL4y9ZjjV8Rsnn2w6nQx3hjhWPAQAAAAAAAAAA1SE1nio5Jjud1Rc3v7Bl/qKuzLh8+bJOnTqlnTt3Kp1OF2ywMAxDNTU1unDhQslFRCKRkmMAAAAArJ2xoTElwglJ0mT8XsPEcNdwfltroHXByhOVfhdcYD1j1QYAAAAAAAAAjzIcHNa+0L6C39VL926y9O7pdyWp6O/drcQAAAAAwDOHn9HQkSF1nu8sOmbo8JB2/PkOW+YvqsFidHRU3/rWtySpYHPF/Palxh7F5/NZigNQeX7+859rz549lu6se/DgQY2MjOju3bvasGGD2tradPHixRWoEgAAlKu1s7WkH0Cq4S64AAAAAAAAAAA8jqaSU0oOJrUruKvgeDaT1aB3UIFIYNHK0ddHr8vf57clBgAAAACkezdk/dGXf6ShPx9Sx5kObfrSpiX3/eyDzzTcNaxsJqs9P9xjy/xFXQHd0NCga9eu6amnnlp2v5qaGktFWFn1AkBlqqur05YtWyw1WJw7d07Hjh3T6Oiodu/erbNnz2rLli0rUCUAAAAAAAAAAAAAAJCkWCi27HgkENHTnU8vWlm6I9yhPlef3H73ohslWYkBAAAAgHlH3z6qH335RxqLjMnw37s5q8PpUF1DnWZSM0qNpzQRm9BUckq5XE7BZNC2uYu6Atrn8ykcDuv06dO2Tfygzz//XE8++eSK5AZQPZqamnTp0qW1LgMAAAAAAAAAAAAAgMdCYjCh1kCrzJhZcDxtpmXGTB0IHyg43nq4VVf6rixolrASAwAAAAAPchkuhVIhRQIRjb89LjO6+DNLLpeT4TN0IHxArhaXbXMX1WCxc+dOBQIB9fT06I//+I9tm3xeS0uLbt68aXteAAAAAAAAAAAAAAAArH9vdry51iVIkv6H/+t/sBx748YN9fT0KJFIyOv1amBgQE1NTSXl+OKLL4reN22mJd27cGkp8XB82X0a3A1KDiaVzWTlcDosxwAAAADAwxxOh45Gj8q8bGosMqbJ+GT+c4TLcMkb9Mpot79xu6gGC0kaGBiQYRgaHBzU888/b2sRuVzO1nwAAAAAUM3uzN5RdjZbctz0nWn9+Nc/1sT0hFrqW/T8V55X/ab6FagQAAAAAAAAAFDI1q1bbckTjUbldrttybWUeDguf59/ydUrJOmz5GfLNkHMN1FMxifzK1JYiQGwMn795q91/bXrqs3Vrmkd3x7+9prODwAAqpvRbqxII8VSim6w8Pl8OnTokLq7u9Xd3S2PxyPDWFhoJpPR17/+9aInT6VSMk1T09PTxVcMPMTKhWfS/YvPzH8yZXzJWLOLz+y8CO727duW67DjThizs7OW5wcAAMB9J/7hRNk5Pvzdh/r+O9+3FPtdfbfs+QEAAAAAQHWz+hucZN/vX3M1c5ZrAAAsb2xoTLuCux65X9pMq66hbsnx+UaK+dUwrMYAAAAAQKUousGip6dHpmnmV5tIJBJKJBKL9otGoyUXUVNTU3IMMO97v/he2Tk+vGP94jM7lXMRnCR9b2v5x0Iq704Y77zzji01AAAAAAAAAAAAYO3Y8RucVP7vXz/q/pEtdQDAarl165bl2IMHD2pkZER3797Vhg0b1NbWposXLy4bM3tnVnfv3M0/vj51XX/i/ZNlY7KZrNJmWq2drY+saSY1k19xopD5Rops5n5jnpUYAAAAAKgURTVYXL16VU6nU5cvX1YgEJDf79eJE4vvqNrQ0KBUKlVSAclkUrt37y4pBgAAAADWs1f+zStqdDSWHPda/DWN3RzTXG5OtTW1am1s1Q92/WAFKgQAAAAAAFgdd35/R9nZrGpztSXH2rWShmOjo+QYAI+vLVu2WI49d+6cjh07ptHRUe3evVtnz559ZL5/eOUf9Mu/+mX+8bSmHznPu6fflb/PX1RNxTZBfHHzi7JiAAAAAKBSFNVgcfnyZfX09Ki+vl5vv/32kvtZWYnC4/Govr70L7GAeT/5xk8sxVXKxWd21nF46LDlOqzcCeNhs7Ozunr1quUaAAAAcM+mjZss/XD/4s4XNfDBgMYz43I73ep5tocLAAAAAAAAgCVWf4OT7Pv9a65mTsf/9+OW63hQOStp/PTAT22pAQAepampSZcuXSopZt+pffrqD76af3z9+nX9TevfLLm/GTPl9rst1wgA1erNjjfLip+rmVOqOaXrr1231Pw779vD3y6rDgAAsPKKarDI5XJqaGhYsSIikciK5cb6Z/WCsRd3vqjXP3hd45+Py/2kWy88+8KaXHxm50Vwq30njIfNzs5anh8AAADlq99Ur9Cfhda6DAAAAAAAsA6U87uZXb9/zdXMWa4BAB4XGzdt1MZN9y//+e8+/++W3X88Ol706hWS5HA6ilqRYnPj5rJiUL7sbHErhxRi16pPEis/AQAAVKLh4LD2hfbJZbgKjmczWb17+l1J987TU+Mpuf1utXa2LpnTSky1KKrBwjAMxeNxtbW1rUgR7e3tK5IXWE79pnr1/qtepZpTaphqKKuzuNw6KuEiOCt3wgAAAAAAAAAAAAAeZufvX6989xW5PnNZ+i2vUla0B4BKcaX/ir526mslxdQ11C07PpOakXSvqaKcGJTve7/4ni15yln1SWLlJwAAgEozlZxScjCpXcFdBcezmawGvYMKRAJq9jTntw8Hh3V99HrBBm0rMdWkqG+hfD6f+vr6VqyIV199dcVyAwAAAABKc/v2bct/pmlq//79amxs1P79+2WapuVcAAAAAAAAm57YJMdGh6W/F3e+qK/8s69o6xNb9ZV/9hW9uPNFS3kAYD1Im2k5nI6SmxpchivfEFHI/EoVD94J10oMAAAAgJURC8WWHY8EInq68+kFjRKS1BHuUHIwKTNm2hJTTYpawaK+vl4tLS36y7/8S/31X/+17UWcPn1aP/zhD23PCwAAAAAo3datW23JE41G5Xa7Lcfncjlb6gAAAAAAAI+nSllJHgAqwVRySmORMY1FxhaNpc20JGm4azi/+sTR6FFJ0jbPtmUvjpqPNXxGfpuVGJTvJ9/4ieVYVn0CAABYnxKDCbUGWpc8P0+baZkxUwfCBwqOtx5u1ZW+KwvO3a3EVJuiGiwkqa+vTy0tLYrFYgoGg2pvb1dDQ0N+fP7Cl9/+9rclXQSTSCSUyWSKrxgAAAAAAAAAAAAAAABA0Vo7W9Xa2VpwbGxoTJFARB1nOhbdgXbHkR16v/99TSWnFo1J0uTo5KILp6zEoHzlrLr04s4XNfDBgMYz43I73ep5todVnAAAAKrcfGPzcivHxcPxZfdpcDcoOZhUNpPNr4ZnJabaFN1gUV9fL9M05fV61dXVpZqamoL7GQYfgAAAAACgmt26dcty7MGDBzUyMqK7d+9qw4YNamtr08WLF22sDgAAAEC1y85mLcdO35nWj3/9Y01MT6ilvkXPf+V51W+qt5SLC8YAAAAerdnTLMNn6MPzHxZslhgbGsuvdlFODNYWqz4BAACsP/FwXP4+/7Kry32W/GzZJoj5JorJ+P0maSsx1aboBgtJcjqdGh8f19DQkOLx+IKVJ3K5nM6cOaPu7u6SChgdHdUHH3xQUgwAAAAAYOVs2bLFcuy5c+d07NgxjY6Oavfu3Tp79mxZ+QAAAOx2+/Zty7E3btxQT0+PEomEvF6vBgYG1NTUZCkX50h4nH3vF9+zJc+Hv/tQ33/n+5bjf3rgp7bUAQAAUO3m72ybNtMFGyICkYAGvYPacWTHgvHh4LD29O4peNGUlRgAAAAA9hgbGtOu4K5H7pc206prqFtyfL6RYv4zg9WYalNSg8W8zs5OdXZ2Lto+NDSkgYGBkvM1NjZaKQMAAAAAUGGampp06dKltS4DAABgSVu3brUlTzQaldvtthyfy+VsqQMAAKw8Vt4BsF4NB4eVMTOajE/ee9w1rEQ4oW2ebfL3+fP7OZwOdSe6FQ1F5XA6tLlxs1LjKbn9brV2thbMbSUGAAAAwEKzd2Z1987d/OPf3/r9I2OymazSZrqo8+6Z1Ex+xYlC5hspspn7341YiVktsVMx+U77ys5jqcFiKVZ/EHK5lj7IAAAAAACslUq4w/Xs7KzlGgAAAIBK9JNv/MRy7Gvx1zR2c0xzuTnV1tSqtbFVP9j1AxurA4DFWHkHwHrVEe4oel+H01HS/lZjAAAAANz33un39Mu/+mX+8XTt9CNj3j397oKG6eUU2wTxxc0vyopZLcnBZOU1WJw5c8ZS3CeffGJnGQAAAAAA2KJS7nD9zjvv2FIHAACQbt26ZTn24MGDGhkZ0d27d7Vhwwa1tbXp4sWLNlYHPB7KuQP7iztf1MAHAxrPjMvtdKvn2R7u6G6DSrg7P88jAAAAAAAAsNC+U/v01R98Nf/4008/1d985W+W3N+MmXL7rV+bUIky1zJKm+lH7jeVnLJt1QxbGywOHTq0aNvnn3+uVCqlp556ys6pAAAAAAAAAAAo2ZYtWyzHnjt3TseOHdPo6Kh2796ts2fPlpUPQOnqN9Ur9GehtS5j3amEu/NzZ35UMlbeAQCgeFabd+cbd81/MmV8ybDcuAsAALCebNy0URs33b/c/4mtTyy7/3h0vOjVK6R7q84V05SwuXFzWTFWJN9IKhaK2dY0UQpbGyzmXbt2TX19fRocHJQk1dTUaHZ2Nj8+MTGhUCik/fv36/jx4ytRAgAAAAAAZauEO1zPzs7q6tWrlusAAAD2aWpq0qVLl9a6DAAAsMpYeQcAgOLZ0bz74R3rjbuS9F19t+waAAAAqs2V/iv62qmvlRRT11C37PhMakbSvaaKcmJKZV42Ndw9LJfhUmugtahcU4kpTYxMWJ7zQbY3WIyMjMjn80mSDMOQYRiamFhYbEtLiy5cuKDLly/r1Vdf1Q9/+EO7ywAAAAAAoGyVcIfrB29YAAAAAAArgbvzAyuHlXcAAAAAAMBKS5tpOZyOkpsaXIZLk/HJJcfnV49wGa6yYkp1+eRlBSIBtR5qLSmuv7Hf8pwPsrXBYmJiQp2dneru7lYoFFJLS4sk6eTJkwX3b29vVyaT0cjIiNra2uwsBQAAAACANcUdrgEAAABUC+7ODwAAALtYbd6lcRcAAMC6qeSUxiJjGouMLRpLm2lJ0nDXcH71iaPRo5KkbZ5tMmPmknnnYw2fkd9mJaZUDpej5OYKSXK2OC3P+SBbGyxOnjypvr4+dXV1LdheU1OzZMyhQ4f0wgsv0GABAAAAAAAAAAAAVBnuzg8AAIAHWW22fXHni3r9g9c1/vm43E+69cKzL9C4a4M7v7+j7GxWtbnakmOn70zrx7/+sSamJ9RS36Lnv/K86jfVr0CVAACgXK2drWrtLNyQMDY0pkggoo4zHWr2NC8Y23Fkh97vf19TyalFY5I0OTq5qFHCSkypCuUtRne8u6x559naYJFOpxc1VxQjl8vZWQYAAAAAAAAAAAAAAAAAoErUb6pX77/qVao5pYapBksNAVjsxP9+wpY8H/7uQ33/ne9bjv+uvmtLHbDP7du3LcXduHFDPT09SiQS8nq9GhgYUFNTU8l5ZmdnLc0PALBXs6dZhs/Qh+c/LNjUMDY0ll/topyYUmUz2bLiy2Vrg4VhWOs2SafTdpYBAAAAAAAAAAAAVLzsrPUfCu28myx3BgYAwD5vdry5pvPfnLm5pvMDAKrD1q1by84RjUbldrstx7/zzjtl1wAAeLS0mc7/b6GGiEAkoEHvoHYc2bFgfDg4rD29ewquRmElphStgVZ9/NbHevpbT5cUFzsVk++0r6y5pRVYwcIK0zTtLAMAAAAAAAAAAACoeN/7xfdsyVPu3WR/euCnttQB+1htvqHxBgAAAA965buvyPWZy9KKIK/FX9PYzTHN5eZUW1Or1sZW/WDXD1agSgAAsBKGg8PKmBlNxifvPe4aViKc0DbPNvn7/Pn9HE6HuhPdioaicjgd2ty4WanxlNx+t1o7WwvmthJTCqPd0JVXrpTcZJEcTFZeg4XL5dI777yj5557ruiYU6dOqb293c4yAAAAAAAAAAAAAKBq2dF8Q+MNAAAANj2xSY6NDksNFi/ufFEDHwxoPDMut9Otnmd7aMJdR27dumUp7uDBgxoZGdHdu3e1YcMGtbW16eLFiyXnmZ2d1dWrVy3VAAAoTke4o+h9HU5HSftbjSlW5lpGzwSe0UeRj3Rm9xm1+FrU4G6Qy3AtGTOVnFI2Y33F4AfZ2mDR29ur/fv368yZM0U1Wbz66qsaGhrSb37zGzvLwCph2WoAAAAAAAAAAADrfvKNn1iO5W6yAAAAQGG3b9+2HHvjxg319PQokUjI6/VqYGBATU1NlnJt2bLFch2VoH5TvUJ/FlrrMrBCrL4+z507p2PHjml0dFS7d+/W2bNnLeWanZ21ND8A4PEQ9oR1Z/qOJCmXy2kyMamamppVm9/WBgvDMDQwMKD29nbt2rVLR44c0c6dO5XJZHTt2jVlMhmlUiklk0mFw2GZpqlEImFnCVhFLFsNAAAAAAAAAABgXTk3keJusuub1eYbGm8AAACkrVu32pInGo3K7XZbjs/lcrbUAXvYcTNh859MGV8yyrqZcLVramrSpUuX1roMAMA6V9dQJ0l65vAzcjiL+85zKjGliZEJW+a3tcFCknw+ny5cuKDu7m719vbmtw8ODub/OZfLyTAMxeNxPfvss3aXAAAAAAAAAAAAAKxr3E12fbPaLEPjDQAAAFCYbTcTvlPezYS/q+/aUgcAAOuZy3Bp38l98hz3lBTX39hvy/y2N1hIUmdnpzo7O9Xf36/z58/r6tWr+THDMBQMBnXixImVmBqriGWrAQAAAAAAAAAAgMpB4w0AAIB069Yty7EHDx7UyMiI7t69qw0bNqitrU0XL160sToAAAA8istwyWW4So5ztjhtmX9FGizm9fb2LljFAusLy1ajkt2+fdty7I0bN9TT06NEIiGv16uBgQE1NTWVnGfLli2WawAAAAAAVJ9K+Cw6OztruQYAAAAAAABgPSjneo1z587p2LFjGh0d1e7du3X27Fmu/1gnuJkwAADV48DAAUtx3fFuW+Zf0QYLYCncPQcrbevWrbbkiUajcrvdlmJzuZwtNQAAAAAAqkMlfBaVpHfeeceWOgAAAAAAAIDHTVNTky5durTWZWAFlHsz4dc/eF3jn4/L/aRbLzz7AjcTBgBgHaPBAgAAAAAAAAAAAAAAAAAAoID6TfXq/Ve9SjWn1DDVoNpc7VqXBADAYyVzLaN4OK7Pkp9pJjWjuoY6OQ2ndgV3aduz22yfjwYLAOvSrVu3LMcePHhQIyMjunv3rjZs2KC2tjZdvHjRxuoAAAAAAOtRJXwWnZ2d1dWrVy3XAQAAAAAAAAAAAACVInYqpvf731cul1s0lhxMqjXQqo7BDm16cpNtc9JgAWBd2rJli+XYc+fO6dixYxodHdXu3bt19uzZsvIBAABUmzc73lzrEiRJ3x7+9lqXACzp9u3blmNv3Lihnp4eJRIJeb1eDQwMqKmpqaQcs7OzlufHyqmEz6K8NgAAAAAAAAAAAABUu+x0VoPeQc2kZvT0oae1ffd2OZyOe2OZrGZuzmgqMaWPLnwkM2bqLyb+Qpu+ZE+TRdU3WGQyGZ0+fVqS1NjYqPHxcfn9fnV2dpaVMxQKSZJSqZQkye/3q7u729aYhwWDQYVCIRmGYbV0ADZoamrSpUuX1roMAAAAABVs69attuSJRqNyu92WYt955x1bakBl4LMoAAAAAAAAAAAAANwTCURk+AwdGDiw7H7Z6ayivVH9H23/h7pGu2yZu6obLDKZjLxeryKRiDweT357MBjU6Oio+vr6Ss6ZTCYVCAQUDofl8/ny2/1+v8bHxwvmtBJTKMfg4KCCwWDJNQMAAAAAAAAAAAAAAAAAAAAAUO0SZxJyGa5HNldIkqPeoY5wh37W8zMl30jKc9zzyJhHqeoGi0AgoM7OzgXNFZIUDoflcrnk9/sXNDyUkvPhuHA4LLfbXTCnlZiHza9+AQAAAAAAKt+tW7csxx48eFAjIyO6e/euNmzYoLa2Nl28eLGkHLOzs7p69arlGgAAAAAAAAAAAAAAqEQTsQl1nu8sKebAwAH93df/zpYGi9qyM6wR0zQVi8WWXPHh8OHDJa9g0d/fL9M0derUqUVjhmHI5/Mtymkl5mGDg4MKBAIl1QoAAAAAANbOli1bLP+dO3dOfr9fjY2N8vv9OnfunKU8AAAAAAAAAAAAAACsNw6Xw1Kcs8Vpy/xVu4JFOByWdK+JoRC3263BwUFlMhk5nc6ickajUUlacn+Px6P+/v6yYx5kmqakpf9/AAAAAACA9aWpqUmXLl1a6zIAAMBjKjubtRQ3fWdaP/71jzUxPaGW+hY9/5XnVb+p3lIux0ZrP44BAAAAAAAAAB4DNasc95CqbbBIJpPLNk7MNyzE43H5fL6icsbj8WVzut3u/Nwej8dyzIPC4bD6+voUi8WKqhEAAAAAAAAAAMCq7/3ie2Xn+PB3H+r773zfcvxPD/y07BoAAAAAAAAAAOtTNmXtRkEZM2PL/LW2ZFkDpmmqoaFhyfH5pof5FSKKsVy+B8Xj8bJi5g0NDSkYDBZXHAAAAAAAAAAAAAAAAAAAAABg1d2+fdvyn2ma2r9/vxobG7V//36ZpmkpzxdffLHWh2FVOFuc+vjixyXFvP/q+9q2c5st86/qChaXL19WNBpVTU2N3G63du3apWeffdZSrlQqlV+lopD5xodMJlN0To/Ho6GhoSXHx8fHF+W0EjP/2DRNdXZ2Fl3fg2ZmZ3Rr9lb+8RO1T+iJDU9YyvU4y9XklFNOuZqc5jS31uWUbXZ2ds3nn5ubW/M61guOp704nvbieNqL42kvjqe95uaq/xypGnG+fw//Ht/D+xoK4XWBpfDaQCG8LlAI5/pr44u7X2jT7Kb847U413/j//mGpbj/dfR/1djNMc3l5lRbU6vWxlb9T7v/J0u55mqq6/W33n5LeNzw/FU3nr/qxvNX3Xj+qleuJrfWJTyW+F7fHna99/AdyD2zs7MV815eCc9JuZ9FeX3ai+8s7cXxtBfH017r6Xhu3brVljzRaFRut9uWXOuV72WffvTlH0mSnj749CP3T5xJ6L3T76n3Zq8t89vaYNHY2KibN28uOd7e3q729nZNT08rlUopFospHA6rr69PTz75ZElzFds4sVw9DwsGgxoaGlIymZTH41k0HovFFuW0EiNJp0+fVl9fX9G1PSz0D6EFj7/h+Ya+ueublvM9rnLKaeZLM0oppRrVrHU5ZXvvvffWdP65uTl9+umnkqTa2qpdIKdicDztxfG0F8fTXhxPe3E87VXK+TTsw/n+PWt9flspeF9DIbwusBReGyiE1wUK4Vx/bVTzuf6fN/65/s9f/p/69P/3qf7F/+Nf6M//9Z/ri83W7pb2harrLmvr7beExw3PX3Xj+atuPH/Vjeevev3TzD+tdQmPpWo+168kdr338PvCPXNzcxXzXl4Jz0mqOVVWPK9Pe/Gdpb04nvbieNqL4wmrAhcCGtw1KPd+t1o7W7V913Y5nA5JUjaT1UxqRuPRcX089LHSZlpd8S7b5ra1wSKXK64Lvr6+XvX19erq6tL09LRCoZBef/11O0uxxOfzyefz6fTp04pEIgvGYrGYfD6fksmkGhsby4qJxWLy+/1l1dr3b/rkcrjyj5+ofUJPTNH5XqpcTU4ppdTwWYNqctX/pdC+ffvWdP75DsM9e/Zo48ZVXSBnXeJ42ovjaS+Op704nvbieNpr/kMuVhfn+/es9fltpeB9DYXwusBSeG2gEF4XKORR5/pTySnFw3FlU1lNJafkcDrkDXrl7fYuGZPNZPXu6XclSZsbNys1npLbf++Hj7WOqRTVfK7foAb9z8/+z/c3TP/h7zGw3n5LeNzw/FU3nr/qxvNX3Xj+qtjMWhfweKrmc/1KYtd7D78v3DM7O6sPz39YEe/llfCcXH/telnxvD7txXeW9uJ42ovjaa/1dDyLXRygkM7OTr3zzju6e/euNmzYoOeee05DQ0Ml5/n000/1J3/yJ5brqCbNnmZ1x7s13DWs4e5h1dQs/u9vLpeTy3Dpf3z7f1Tzzmbb5rb1lVqo8Eepr6+3NJfT6SzqhfpgY0MxotGogsGgQqGQTp06Jen+KhTzy7E4nc6yYqLRaFmrV0hS3cY6bd340FIzrPJYsjnNqUY1qsnVqDZX/Z1xlfAfn9raWm3cuLEialkPOJ724njed/v2bcuxN27cUDAY1H/5L/9Ff/Znf6ZwOKympiZLubZs2WK5jvWG16e9OJ724e4Ba4Pz/Xv4d/g+3tdQCK8LLKUSXhvlfubo6elRIpGQ1+vVwMAAnzlsUAmvC1SW5c71E4MJSVJHuCO/zYyZigQiutJ3Rd2J7vxdouZlM1kNegcViATU7Ln/I8ZwcFjXR6/L37f4pkOrFVNJNm/YzLl+FVpvvyU8bnj+qhvPX3Xj+atuPH/Va60von5c8b2+Pex67+H7j/sq5b28Ep6Tco8Br0/78Z2lvTie9uJ42mu9HE+r17xL0t/93d/p2LFjGh0d1e7du3X27FlL+b70pS9ZrqEaNXua1Z3oVmIwoUQ4oamrU/kxl+GSN+jV3hN7bZ93zV+p09PTisfjJcc1NDQsO55K3VvS6+FmiGKEw2FlMpl8k4TP55PT6VR/f78kadeuXZZj+vv7800YAACsla1btz56pyLEYrF8M6EVxa5+BaDyDQeH9UzgGRk+Y9n9uKMtAACPB7s+c0SjUT5zAKssbaaVzWS1t3fhDxKGz9B3Ln9Hg95BRQIRHY0eXTAeCUT0dOfTC5oepHtNGn2uPrn97kWfF1YrBgAAAAAAAACAtdTU1KRLly6tdRlVy9u9/Arbdiu5weLatWsFt8//WPnb3/72kT9cZjIZpVIpJZNJnT59WocPHy61DBmGsWxjxvzqFoZh7YcUp9Opzs7OBdtGR0clSR6Px1KMaZpyOp2Wmj6AYrzZ8eaazj9XM6c/+sEfrWkNAABg9aTNtMyYea9DPDmlZwLPLLs/d7QFAAAAKl88HNfXTn2t4Fizp1mGz5AZM5U203IZLkn3PxscCB8oGNd6uFVX+q4saHxYrRgAAAAAAAAAAIBSlNxgkUgkNDo6KtM0FYvFND09vWC8lIaGXC4nn8+n119/vdQy5PF48qtFFGKapqR7K0nYJZlMqru723JMMplUJBJRJBJZtN98vV1dXfnVOaLRaJkVAwBQ2K1btyzHHjx4UCMjI7p79642bNigtrY2Xbx40cbqAFSDxGBCZtSU4Tfk6/PpnP/cI2O4oy0AAI8PPnMA1WsiNqHkYFJ/MfEXcjgdi8a3ebbJjJmaSk7lGyzi4Xs3Q5p//LAGd4OSg0llM9l8ztWKAQAAAAAAAAAAj4eP3/pYT3/r6bLzlNxgcejQIR06dCj/OJlMKhQK6fLly6qpqVkwthzDMOT3+9Xe3l5qCZKkI0eOqL+/X8lksuCKEqOjoyU3VySTSbW3tysSiSyKTSaTMk1ToVDIckxnZ+eiFS7mDQ0NKRAI6MyZM0uukAEAgF22bNliOfbcuXP6t//23+o//+f/rK9+9av627/927LyAahODy69N5WceuT+3NEWAIDHS7mfOY4dO6bR0VHt3r1bZ8+e5TMHsIrqGuo0lZxS2kwvalpeymfJz5ZtaJhviJiMT+bPxVcrBgAAAAAAAAAAPB6Gu4bXpsHiYR6PR9FoVMFgUENDQ7pw4ULZRRU7r8/n0/nz5ws2JAwNDRVcASKTyej06dPy+/2LGiLmV5EopKurS319fYtW6LASAwBANWtqatLPfvYzvffee9q3b582biz7dALAY4A72gIAgGI1NTXp0qVLa10G8Ng6Gj2qtJle8pw6Y2YkaUHzRdpMq66hbsmc8+feaTO96jEAAAAAAAAAAKDyfPbBZ9r27LYlx0oxk5pR2kwrm8naUVr5DRbzwuGwEomEXemKEolE5PV6deTIkQVNFsFgUL29vQVXsBgcHFR/f78GBweVTi/8kcXn8+X/5mUyGXV1dcnn86m3t3dRPisxhcw3apimyQoWAAAAWHe4oy0AAACwtmbvzOrunbv5x7+/9fsl912quUKSxobG1OxpXrDPTGpm2Zj5pogHf9hYrRgAAAAAAAAAAFBZYidjev+V99XsbVbXr7oWjf9t29/qzvSdNajsHltvOX3q1Ck70z2S0+lUIpFQKBSS0+lUY2OjxsfH5ff71dnZWTDG5/PJ6XTq8OHDBfP19fUpEAhIutcoIUmhUKhgs4bVmAcFg0GZpql4/N6ddru6uhQOh+XxeNTX1/fIeAAAAKAacEdbAAAAYG29d/o9/fKvfpl/PF07XXKOK/1XJEkdZzoWbC+2oeGLm1+segwAAAAAAAAAAKgsaTOtXC6nbLrw9/7z1/54u733HjcufS2QJM3cnFF6PK2P3/rYlvpsbbA4dOiQnemK4nQ6FQ6Hi97f4/EsWrniQYZhKBKJlFSDlZh5pdQOAAAArLRS7mpbCu5oCwAAAKytfaf26as/+Gr+8aeffqq/+crfFB0/lZxSLBRTIBJQs6d5JUoEAAAAAAAAAACPgY4zHTL8hgyfUXDcZbi07+Q+eY57Ssrb39hvR3n2NlhY9dZbb+lb3/rWWpcBAAAAPPbsuKttIdzRFgAAAFhbGzdt1MZN938SeGLrEyXFRwIRHQgfUGtn66Ixh9NR1Ln45sbNqx4DAAAAAAAAAAAqi6PeIW+Xd8lxw29o+67tJed1tjjLqOq+imiw6OrqosECAAAAqADl3tUWAAAAwPoTCUTkDXrzS3E/bH6luKXMpGYk3WuQWO0YAAAAAAAAAABQXfae2Gsprjvebcv8JTdYfPDBB3r22WeXHCtFKpWSaZrKZDKllgEAAABgBZR7V9ulcEdbAAAAoDpFQ1Ft371de3uX/jHDZbg0GZ9ccnz+HN1luFY9BgAAAAAAAAAAoBQlNVicPHlSr7zyirxer371q18tGm9ra9P09LRtxQEAAABYH7ijLQAAAFB9EoMJNbgbCq5ckc1k8+fV2zzbZMbMJfOkzbQkyfAZ+W2rFQMAAAAAAAAAANYX87IpM2pKNVKDu0Hbd23Xtme32Za/pAYL0zSVy+WUTqcLjjc0NEiSurvvLa/R2Ni4bL6bN29qfHxcb731VillAAAAAKgy3NEWAAAAqC5jQ2OSVLC5Im2mNZWcUmtnqyRpx5Eder//fU0lp9TsaV60/+To5KKmh9WKAQAAAAAAAAAA1aW/sV+9N3uXHDfaDRnthrLTWc2kZmTGTMXDcfn7/Nr05Kay5y+pweLMmTPy+/3y+XyFizUMnTx5UsePHy+piEc1YgAAAACobtzRFgAAAKgeU8kpzaRmCjZXSJIZMxecUzd7mmX4DH14/sOCjQ9jQ2M6Gj26YNtqxQAAAAAAAAAAgOqSy+WK2s9R75Cj3iFvl1fZ6ayioagOvH6g7PlrS9m5vr5eXV1damlpKTju9/u1a9eukotYKh8AAACA9WHHkR2S7l2oVchSd6ddjRgAAAAA96XNtCKBiCYTkxoODi/6iwQiioVii1aFC0QC+njo40Xn4sPBYe3p3VPwPHy1YgAAAAAAAAAAQPWoqakpOcZR77Bt/pJWsHiUEydOWIqLx+N2lgEAAACgwnBHWwAAAKA6nPOfU9pMKz2YXnKfh5srJMnhdKg70a1oKCqH06HNjZuVGk/J7XertbO1YJ7VigEAAFgp2dmspbjpO9P68a9/rInpCbXUt+j5rzyv+k31lnI5Ntp3AQkAAAAAANUqO53VVLzwDVlLZWuDBQAAAIDHT9q8d+FVNrP8j4mBSECD3kHtOLJjQfPDo+5OuxoxAAAAAO55afwly7EOp0Md4Y6KjAEAAFgJ3/vF98rO8eHvPtT33/m+5fifHvhp2TUAAAAAALDaMtcyBbfncrl747/NSLnlc2QzWc2kZjSVnNJ7p99T62F7bsRUEQ0Wp06d0unTp9e6DAAAAABFGhsaUyKckCRNxiclScNdw/ltrYFWebu9C2K4oy0AAAAAAAAAAABW2psdb651CRVhrmZOWrzgOwAAQEWYTExqcnRSaTMtM2bqzvSdBeM/Mn5UdK5cLifDZ+jA6wdsqa0iGiwGBwdpsAAAAACqSGtnq6VmBe5oCwAAAAAAAGC9+Mk3fmIp7rX4axq7Oaa53Jxqa2rV2tiqH+z6gc3VAQAAAABQuVoPtar10P1rj6aSU4qFYjIvm6qpqdHTh54uKo/LcMnwGzLaDdtqW7EGi2vXrsk0zUful0wmlclkVqoMAAAAAAAAAAAAAAAA2zk2OizFvbjzRQ18MKDxzLjcTrd6nu2xnAsAAAAAgPWg2dOso9GjGg4O6+OhjxW4EFizWmxvsHjjjTcUCoVomgAAAAAAAAAAAAAAAHhI/aZ6hf4stNZlAAAAAABQcTrCHZpKTK1pDbY2WFy+fFnd3d0yDEOBQEBOp/ORMYlEQiMjI3aWAQAAAAAAAAAAAAAAAAAAAAAAqsy+U/vWdH5bGyxOnjypSCSiQ4cOlRTX2NhoZxkAAAAAAAAAAAAAAAAAAAAAAKDKtB5qXdP5bW2wcLlcJTdXSFJLS4udZQAAAAAAgBVw+/ZtS3E3btxQT0+PEomEvF6vBgYG1NTUZCnXli1bLMUBAAAAAAAAAIC18WbHm2tdAgAAWOey01klzyS154d7ys5la4OFx+OxFBePx+0sAwAAAAAArICtW7eWnSMajcrtdluOz+VyZdcAAAAAAAAAAAAAAADWj7SZ1kfnP6q8BotMJmNnOgAAAAAAAAAAAAAAAAAAAAAA8JiYGJkoOeZK3xVlM1lb5re1wSIQCOitt97St771rZLiTp06pdOnT9tZCgAAAAAAsNmtW7csxR08eFAjIyO6e/euNmzYoLa2Nl28eNHm6gAAAAAAAAAAAAAAQLW70HlBd6bvlBSTy+VU56qzZX5bGyza29v1yiuvlNxkMTg4SIMFAAAAAAAVbsuWLZbizp07p2PHjml0dFS7d+/W2bNnLecCAAAAAAAAAAAAAADrV13DvUaJZw4/I4fTUXCfbCartJnWZHxShs/Q9t3bbZu/6AaLDz74oKj9/H6/otGodu/eLZ/PJ7fbLcMwltw/mUwqk8kUWwYAAAAAAKgyTU1NunTp0lqXAQAAAAAAAAAAAAAAKpzLcGnfyX3yHPcUtf+VV66ozlVX9P6PUnSDRVtbm6anp4tOnMvllEgkVFNTY6kwAAAAAAAAAAAAAAAAAPZKm2m91/eeJCmbyiqbycrwG9rbu3fJmGwmq3dPvytJ2ty4WanxlNx+t1o7W22NAQAAAACX4ZLLcBW9/94TezX292OaGJlQS1tL2fMX3WDR0NAgSTp8+LCcTmfZE89LJBIaGRmxLR8AAAAAAAAAAEAlujN7R9nZbMlx03em9eNf/1gT0xNqqW/R8195XvWb6i3V4NhYeDl1AAAAPB7GhsZ0ffS6OsIdC7YPegeVCCf00vhLi2KymawGvYMKRAJq9jTntw8Hh3V99Lr8fX5bYgAAAABAkg4MHCg5pvVQq2KnYqvbYGEYhk6ePKnjx4+XPenDGhsbbc8JAAAAAAAAAABQSX74yx+WnePD332o77/zfcvxPz3w07JrAAAAQHXKZrL66PxHCkQCi8Y6znRo0Duo4eDwouaLSCCipzufXtAoIUkd4Q71ufrk9rtl+IyyYwAAAACgEtQWu6NhGDKMlflg09JSfqcIAAAAAAAAAAAAAAAAgMIm45MaGxpTNBRdNDbfCDERm1iwPW2mZcZM7QruKpiz9XCrrvRdKTsGAAAAAMqVMTO25Cl6BYuBgQFbJiwkHo+vWG4AAAAAAAAAAIBK8Oq/flUNdQ0lx70Wf01jN8c0l5tTbU2tWhtb9YNdP1iBCgEAALCe1TXUyeF0aHPj5iX3cTgdCx7Hw/eu6XEZroL7N7gblBxMKpvJ5mOtxAAAAABAObLTWc2kZ2zJVXSDBQAAAAAAAAAAAKzbtHGTHBtLv4DsxZ0vauCDAY1nxuV2utXzbI+lPAAAAHi8NXuaFUqHCo5NJackSS2+lgXbP0t+tmwTxHwTxWR8UobPsBwDAAAAAPMmRiYevdMfZDNZpc20EuGEvEGvLfPTYAEAAAAAAAAAAFDB6jfVK/RnhS+EAwAAwONt7u6ccnO5+49n5yzliYVichku+fv8C7anzbTqGuqWjJtvpEib6bJiAAAAAGDehc4LujN9p+j9c7mcDJ+hPT/cY8v8NFgAAAAAAAAAAAAAAAAAVSj1SUqp36Tyj6c1XVJ82kzrvb735DScOho9umh8JjWTX3GikPlGimwmW1YMAAAAAHvMn+NLUjaVVTaTleE3tLd375Ix2UxW755+V5K0uXGzUuMpuf1utXa22hpTrPnPDM8cfmbZ1fEkqa6xTs2eZhnt9q2OR4MFAAAAAAAAAAAAAAAAUIUavtywoJkhlU1Jv3x03NjQmK6PXlfGzMhpOOX2uwvuV2wTxBc3vygrBgAAAED55s/zO8IdC7YPegeVCCf00vhLi2KymawGvYMKRAJq9jTntw8Hh3V99PqiVe6sxpTCZbi07+Q+eY57yspjVe2azAoAAAAAAAAAAAAAAACgLLUbarXhiQ35v9qNxV0K1NrZKn+fX4FIQP4+v670XVEkEGFVCQAAAKBKZTNZfXT+o4LNDR1nOpQ20xoODi8aiwQierrz6QWNEpLUEe5QcjApM2baElMKl+FadlW8lUaDBQAAAAAAAAAAAAAAAPAYC0QCGhsaUyQQWbDd4XQU1XSxuXFzWTEAAAAAyjMZn9TY0JiioeiisflGiInYxILtaTMtM2ZqV3BXwZyth1t1pe9K2TGlOjBwQC1tLWXlKAcNFgAAAAAAAAAAAAAAAMBjzOF0qLWzVWbMXHC32bqGumXjZlIz+fhyYgAAAACUp66hTg6nY9lG5ofPwePhuCQtuVpEg7tBZsxc0EBtJaba0GABAAAAAAAAAAAAAAAArHPZTFZpM73kuNNwSpLGo+P5bS7DlW+IWCrn/H7lxAAAAAAoT7OnWaF0SHt79y4am0pOSZJafAtXhfgs+dmyjc/z5+yT8cmyYuyQuZbRx299rOQbSU2MTChzLWNr/gdtXLHMAAAAAAAAAAAAAAAAACpCn6tPkhRKhwpeEDV/p9sH7zS7zbNtwYoWD5tv2DB8RlkxAAAAAFZOLBSTy3DJ3+dfsD1tppddgW7+c8ODjdpWYsoxMTKhnwV/VjBfs7dZHWc6tO1Pt9ky1zxWsAAAAAAAAAAAAAAAAADWOYfTIZfhWvJus6nxlCRpu3d7ftuOIzsk3b/j7cMmRycXNUpYiQEAAACw2OydWd35/E7+7/e3fl9SfNpMazg4LKfh1EvjLy0an0nNLLsaxXwjxYNN2FZirBo6MqRz/nNKjaeUy+XkbHHK2eLUpvpNyuVymoxPatAzqMt/ebnsuR604itYfP7550qlUnrqqadWeioAAAAAAAAAAAAAAAAABXi6PdoV3LXk+NiFMTmcDj1z+Jn8tmZPswyfoQ/Pf6hmT/PimKExHY0eXbDNSgwAAACAxd47/Z5++Ve/zD+erp0uKm5saEzXR68rY2bkNJxy+90F9yu2CeKLm1+UFWNF7GRM49Fxtb/crtbOVrlaXIv2mbo6pQ//rw/13svvqa6xTnv+33vKmnPeiqxgce3aNb3wwgvasGGDXC6XvvzlLy8Yn5iY0OHDh/XGG2+sxPQAAAAAAAAAAAAAAAAAHuDv8+u9vvdkxsxFY5FARJL0ncvfWXQ32kAkoI+HPl60IsVwcFh7evcUXI3CSgwAAACAhfad2qeT0yfzfy/84wtFxbV2tsrf51cgEpC/z68rfVcUCURsWVViNZiXTZkxU38x8Rfae2JvweYKSWre2Sx/n18vffKS4q/Hlfltxpb5bV/BYmRkRD6fT5JkGIYMw9DExMSCfVpaWnThwgVdvnxZr776qn74wx/aXQYAAAAAAAAAAAAAAACAB3SEOzQ2NKZIICJHg0PZVFbZTFbbPNv0FxN/sai5QpIcToe6E92KhqJyOB3a3LhZqfGU3H63WjtbC85jJQYAAADAQhs3bdTGTfcv939i6xOW8gQiAfW5+pTNZBesJudwOopqutjcuLmsmFIlB5P3mr/rF38+KcRluBS4EFCsN6bO852W551na4PFxMSEOjs71d3drVAopJaWFknSyZMnC+7f3t6uTCajkZERtbW12VkKAAAAAAAAAAAAAAAAgIe0draW3OTgcDrUEe5Y8RgAAAAA9nM4HWrtbNXY0JjMmJlfUa6uoW7ZuJnUTD5+npWYUuVyuaKbK+Y1e5qVy+Usz/kgWxssTp48qb6+PnV1dS3YXlNTs2TMoUOH9MILL9BgAQAAAAAAAAAAAAAAAAAAAABY4Pbt25bibty4oZ6eHiUSCXm9Xg0MDKipqclSri1btliKWy3ZTFYzqRm5DFfBcafhlCSNR8fzDRYuw6XJ+OSyOef3m2clplRWY8uZ80G2Nlik0+lFzRXFsKtbBAAAAAAAAAAAAAAAAAAAAACwfmzdurXsHNFoVG6323J8pV/v3ufqkySF0qGCq0dsbtws6X4DhCRt82yTGTOXzJk205KUb8iwGlOypdd2WJm4h9Tak+Yew7B2INLptJ1lAAAAAAAAAAAAAAAAAAAAAADwWHA4HXIZroLNFZKUGk9JkrZ7t+e37TiyQ5I0lZwqGDM5OrmoUcJKTKlchkuZa5mSYu58fkd1DXVlzTvP1gYLq40Sprl0FwsAAAAAAAAAAAAAAAAAAAAA4PF069YtS39+v18bNmyQJG3YsEF+v99yrkrn6fboaPTokuNjF8bkcDr0zOFn8tuaPc0yfIY+PP9h4ZihMe0N7V2wzUpMqbxdXsUH4rrz+Z2iY6K9Ue0K7ipr3nkbbcnyBy6XS++8846ee+65omNOnTql9vZ2O8sAAAAAAAAAAAAAAAAAAAAAAKwDW7ZssRR37tw5HTt2TKOjo9q9e7fOnj1rOVel8/f5NRwc1jOBZxatIBEJRCRJ37n8nUUrXAQiAQ16B7XjyA41e5rz24eDw9rTu6fgahRWYuYVuzLFM0eeUSQQkbfHK1eLa8n90mZaH53/SL4+nzY9uamo3I9ia4NFb2+v9u/frzNnzhTVZPHqq69qaGhIv/nNb+wsAwAAAAAAAAAAAAAAAAAAAADwGGtqatKlS5fWuoxV0xHu0NjQmCKBiBwNDmVTWWUzWW3zbNNfTPzFouYKSXI4HepOdCsaisrhdGhz42alxlNy+91q7WwtOI+VmHlhT1h3potbmSKXy8mMmY/cz+F0KB6O62unvmZLk4WtDRaGYWhgYEDt7e3atWuXjhw5op07dyqTyejatWvKZDJKpVJKJpMKh8MyTVOJRMLOEgAAAAAAAAAAAAAAAAAAAAAAeOy0drY+ssnhYQ6nQx3hjhWPkaS6hjplM1m1draqrqGu5PilZNNZfXThI3mOe8rOZWuDhST5fD5duHBB3d3d6u3tzW8fHBzM/3Mul5NhGIrH43r22WftLgEAAAAAAAAAAAAAAAAAAAAAAFQQl+HSvpP7bGmEWCm1K5G0s7NTqVRKp0+f1rPPPqtcLpf/a2lpUV9fnz755BPt3LlzJaYHAAAAAAAAAAAAAAAAAAAAAAAVxGW45DJca13GsmxfweJBvb29C1axAAAAAAAAAAAAAAAAAAAAAAAAj58DAwfWuoRHsnUFiw8++EBvvfWWnSkBAAAAAAAAAAAAAAAAAAAAAABWnK0NFp2dnQqFQpZiX331VTU2NmrDhg1qbGzUxYsX7SwNAAAAAAAAAAAAAAAAAAAAAACsQx+/9bEteWxtsAgGg/rNb35Tctzhw4cVCoUUCAR04cIFHT9+XMePH9c777xjZ3kAAAAAAAAAAAAAAAAAAAAAAGCdGe4atiXPRluy/EEqlSo55urVqxoaGlIwGNTrr78uSTp06JCOHDmiI0eOWGrYAAAAAAAAAAAAAAAAAAAAAAAAleezDz7Ttme3LTlWipnUjNJmWtlM1o7S7G2w2LVrl0ZGRiRJfX19isfjymQy8vv9CoVCeu655xbFnD9/XjU1Nerr61uw3ePxqLu7W2+99Za+9a1v2VkmAAAAAAAAAAAAAAAAAAAAAABYZbGTMb3/yvtq9jar61ddi8b/tu1vdWf6zhpUdo+tDRaHDh3S/v37dfnyZeVyufz2t99+W9FoVKFQSH/913+9ICYWi8nj8ejJJ59clO/EiRM6cuQIDRYAAABABRobGlNrZ+talwEAAAAAAAAAAAAAAACgSqTNtHK5nLLpwitO1DXUSZK83d57jxvrls03c3NG6fG0Pn7rY1vqs7XBYnp6WvF4PN8YsXPnTknSxMSEotGoTp48Kb/fv2AlC9M0deTIkSVzulwuO0sEAAAAYINsJqtIIKID4QN65vAzcjgda10SAAAAgBUwHBzWM4FnZPiMJfdJDCY0FhmTN+iV4TPkcDqUNtOaSk7po/Mfad+pfWr2NC+Ky2ayevf0u5KkzY2blRpPye13L9vIbSUGAAAAAAAAAABUjo4zHTL8xpK/PbgMl/ad3CfPcU9Jefsb++0oz94Gi5dfflmXL1/ON1bMa2lpUXd3tw4fPqxgMLigwSKTycjpdC6Zs6amZtk5M5mMTp8+LUlqbGzU+Pi4/H6/Ojs7Lf//yGQyCoVCkqRUKiVJ8vv96u7uti0mmUwqHA4rlUopmUzK6XQqGAwuOwcAYH24ffu2pbgbN26op6dHiURCXq9XAwMDampqspRry5YtluIAYF7aTEuSfhb8mX4W/Nmy+wYigfzFTqt54RUAAAAAa9JmWmbMVCKc0FRySs8Enll2/2wmKzNmyoyZC7Y7nA4FIoElz/EHvYOLxoeDw7o+el3+Pr8tMQAAAAAAAAAAoLI46h3ydnmXHDf8hrbv2l5yXmeLs4yq7rO1wSKdTi9qrniQ0+m0dUWKTCYjr9erSCQij+d+h0owGNTo6Kj6+vpKzplMJhUIBBQOh+Xz+fLb/X6/xsfHC+YsNWZwcFCSFA6H89tisZgCgYD6+vqUSCSWbToBAFS3rVu3lp0jGo3K7XZbjs/lcmXXAODxljbTchkuNXua5WgovHpFNpVV2kwvaIJYrQuvAAAAAFiTGEzIjJoy/IZ8fT6d858rKu5A+IBS4yllzIwcDQ5t927PL91dSCQQ0dOdTy/6DNAR7lCfq09uv3vRnausxAAAAAAAAAAAgOqy98ReS3HdcXsWOrC1waKY5olHrUhRikAgoM7OzgXNFdK9xgWXyyW/37+g4aGUnA/HhcNhud3ugjlLiTFNU5lMRr29vQv29fl8unz5srxerwKBgKLRaEl1AwAAAKvp+uh1HY0elctY+jNANBSVr2/x+fhqXHgFAAAAwBpvtzd/fj6VnCo67pnDz8jhLNx8/bD5FTIOhA8UHG893KorfVcWnOdbiQEAAAAAAAAAANXp47c+VrOnWc6nnKs+t60NFrlcTv/4j/+oP/3TPy04/vnnn+vmzZsl5Vxqf9M0FYvFFqwC8aDDhw+rr6+vpAaL/v5+maapU6dOLRozDEM+n29RzlJjwuFwwX0lyePxyOfzKRaLyTRNGQY/BAHAenTr1i1LcQcPHtTIyIju3r2rDRs2qK2tTRcvXrS5OgAo3nLNFVPJKTW4Gwrus9IXXgEAAACobPFwXNLSnyka3A1KDiaVzWTznx2sxAAAAAAAAAAAgOrzs56fKXkmKYfLod7f9T46wGa1dibr7u7Wc889p//wH/6Drl27lt/++eef64033lBLS4t6enry269evSrpXrNEIW+99ZZ2795dcGy+sWKpJgS3261YLKZMJlN0/fOrRjidzoLjHo9HsVisrJhYLKaWlpYl65pfjSOZTBZdNwCgumzZssXS37lz5+T3+9XY2Ci/369z585ZzgUA5doV3LXseDwcX3ZVimIVcxGVGTOVzWTLngsAAADA6vgs+dmyTRDz5/+T8cmyYgAAAAAAAAAAQPWZSc2opb1FnuOeNZnf1hUsDMPQyy+/rJ6eHvX2Lu4W2blzp5LJpBoaGjQ6Oqq+vr58Q8Fvf/tb/fEf/3F+3+npaYVCISUSiYJzJZPJJZsa5muRpHg8XvQqFvF4fNmcbrc7P/d83aXGNDQ0KJlMyjTNfA4AAIrR1NSkS5curXUZACBp+dUroqGo/H1+W+Yp5SIqVrEAAAAA1t5UckqT8Ult37VdzZ7mgvukzbTqGuqWzDH/GSBtpsuKAQAAAAAAQOWamZnR7du3tXFj6Zex3rhxQz09PUokEvJ6vRoYGFBTU5OlOrhRKQBUHpfhku/l4q7/Xwm2NlhI91ax2LVrl0KhkC5fvizpXrNDKBRSV1eXJiYmFA6Hlclk8tvmmw/6+/vV3t4u0zQVDAZ16NAhPfnkkwXnMU1TDQ0NS9Yx3/Sw1OoYhTQ0NCiVSj1yv3g8nm+OKDUmGo3KNM0lV96Yr5fmCwAAAFSjqeSUGtwNyzZFPLjvSlx4BQAAAGCx2Tuzunvnbv7x72/93tb8ZsxU2kzL8Bnydns1lZzSOf857Q3tXdQMPZOaWbZpe/4zwIMr1VmJAQAAAAAAQOX65je/aUueaDSavxG2FblczpY61oM3O95c6xL07eFvr3UJACpAXWOdMtcycj7lLCmuv7FfvTcXLxJRKtsbLCTlGwkKaWlp0csvv7xo/3A4rMOHD6umpkaS1NXVtWi/B6VSqSWbFCTlmy8ymUxJdQ8NDS05Pj4+viinlZjl6h4aGpLH41l2H0mamZ3Rrdlb+cdP1D6hJzY8sWwMFsvV5JRTTrmanOY0t9blVL1cTU5zc3OanZ1d61LWhdnZWY6njTie9uJ42ovjaS+OZ3kevugqO13axUnvnX5PgUhg2X1W+sKr9YDz/Xv49/ge3tdQCK8LLIXXBgrhdQFJ+r9P/9969//zbv7xdO20bbnnz9n39u7Nb2v2NCsQCajP1afuRPeCpupiz9+/uPlFWTGV6Iu7X2jT7Kb848f1XL/a8FtCdeP5q248f9WN56+68fxVr1wNF4muBb7XtwfvPfbieNrLruPJd3T3VNJxqKRarLLrO+C5mrV/r6iE54Pv1O3F8bTX3Nza/3u6Gvae2KvI4Yh29exSS1tL0XF2Nc2tSIOFFZ2dnZqbm9Ply5dlGIZaWpY/GMU2Tty8ebPoGoLBoIaGhvIrajwsFostymklZin9/f2SpDNnzjxy39A/hBY8/obnG/rmLns6Oh8nOeU086UZpZRSjWrWupyql1NOs5/e+49gbW3tGldT/ebm5vTpp59K4njageNpL46nvTie9uJ4lufaP1zTb3/52/zj23dvFx07NjQmp+Fcdp/VuPBqPeB8/5733ntvrUuoCLyvoRBeF1gKrw0UwusCkqR90t7/7/3z8NTNlPT/sid1a2drwe0Op0Otna2KBCJ6afwleyarcpzrVyd+S6huPH/VjeevuvH8VTeev+r1TzP/tNYlPJY417cH7z324njay67jye9f98zNzWlgYED//J//c0vfWf67f/fvdPXqVc3Nzam2tlY7d+7Uv//3/95SLevhObHrO+BUc8qukiyrhOeD79TtxfG0VynXxVe7wIWA3n/1fSXCCW3fvV3NnmbVNdTJ4XQU3H88Oq4703dsmXtNGix6enryK1X4/X5961vfyo+1t7evRUmSJJ/PJ5/Pp9OnTysSiSwYi8Vi8vl8SiaTamxsLCumkGQyqVAopEgkUrBR42F9/6ZPLsf9O/k+UfuEnpii871UuZqcUkqp4bMG1eT4IFGuXE1O2//Fdu3Zs0cbN1ZM/1bVmu/Y5Hjag+NpL46nvTie9uJ4ludf7f5XuvvS/RUs/tt/+2965dlXiop97/R76jjTsew+XHhVHM7379m3b99al1AReF9DIbwusBReGyiE1wUKmf9Ba6Vt371dY0NjSpvpfMO1w+koqpl6c+Pm/D9bialEnOtXJ35LqG48f9WN56+68fxVN56/Kjaz1gU8njjXtwfvPfbieNrLruPJ71/3lPud5Z/8yZ/o+eefVzwe165du/TjH/9YTU1NdpdZNez6Dvj6a9ftKsmySvh3hO/U7cXxtNdqfbe/1v6q9q/yvQa5XE5jQ2OrOv+avFIHBgby/3z58mW98cYbOn78eEk5nE5nUatYPKqx4WHRaFTBYFChUEinTp2SdH8VCrfbnZ+73JiHBQIBhcNhdXZ2FlVn3cY6bd24deFGVnks2ZzmVKMa1eRqVJujM65cc7rXEbxx40b+Q2gTjqe9OJ724njai+NpL46ndRs3bpS23H/s+Lxw1/fD0mZaU8mpBatPlMquC6/WA8737+Hf4ft4X0MhvC6wFF4bKITXBR62WncKm7+T1FRyKn+eX9dQt2zMTGpmQazVmEq0ecNmzvWrEL8lVDeev+rG81fdeP6qG89f9eIi6rXB9/r24L3HXhxPe9l1PPl+7r5yvrP8oz/6I/3iF79Ygaqqlx3fAVfCe0Wl/DvCd+r24nja53FZBcRluJQ202rtbH3k7wPzJkcn9dkHn9ky/5q/Utvb27V79+6SGywaGhqWHU+l7i1V9KjGhkLC4bAymUy+ScLn88npdKq/v1+StGvXLlti5gUCAQWDQXV3d5dcKwAAAFAJ4uF4/mIpq+y68AoAAADA6hkODmsiNlHSSnQuw6XJ+OSS4/NN1g9+xrASAwAAAAAAAAAAqo/LcGnfyX3yHPeUFNff2G/L/CvWYPHBBx/INM0lx1OplDKZjM6fP//IZolCDMNQPB5fcnx+dQvDMErOLd1rzHh4NYnR0VFJksdT+MmyEhMKhbR792719vZaqhMAAMBOt2/fthR348YN9fT0KJFIyOv1amBgwPLym1u2bHn0Tqg4E7GJR17ItFoXXgEAAABYPVPxqXzjcyHz5+wPrna3zbNNZmzp3w/SZlqSZPjuf79vJQYAAAAAAAAAAFQfl+GydC2Qw2XPDVptb7C4du2a/H7/ss0VD2ppaVEkEil5Ho/Hk18topD5+X0+X8m5l5JMJkteZWK5mMHBQbnd7oLjmUzG0uobAAAA5di6deujd3qEaDQqt9ttOT6XY73kajSVnFJrZ+vy+6zShVcAAAAAVk+Lr0XdfUt/bz45OimH07Hgh5AdR3bo/f73NZWcWnD+/2DMw+f4VmIAAAAAAAAAAED1OTBwwFLcS58Uf9PX5djeYOHz+ZRKpXTo0CHt3r1bTqdTkUhEfr8/3zCQyWQUjUbldDp14cIFS/McOXJE/f39SiaTBVeHGB0dLbm5IplMqr29XZFIZFFsMpmUaZoKhUJlx0jS0NCQJBVsrjBNU8lkctFqGEA1+PWbv9b1166rNle7pnV8e/jbazo/AACPk6nklCTJ0bB8F/hqXXgFAAAAYPXsOLJDicGEvN3eRWNpM62xoTEFIoEF25s9zTJ8hj48/2HB8/yxoTEdjR4tOwYAAAAAAAAAAKBUtjZYnDlzRoZhKJFIqL6+fsHYkSNH9OSTT+YfnzhxQhMTEzp16pROnz5d8lwej0c+n0/nz58v2GAxNDSkaDS6aHsmk9Hp06fl9/sXNUQst+pGV1eX+vr6ZBgLL96yEpNMJpVKpZZc2SIWi9m68gYAAECxbt26ZSnu4MGDGhkZ0d27d7Vhwwa1tbXp4sWLNleHSrXcqhQPWq0LrwAAAADYY37FuPnV5gpp9jTLjJm60n9Fe3v3Logd9A5qT++egqvdBSIBDXoHtePIjgXn+sPBYe3p3VOwkdpKDAAAwHqXnV36XO1Rpu9M68e//rEmpifUUt+i57/yvOo33bvWY65mTnd+f0fZ2WxRN9dzbFz+BjwAAAAAANjFvGzKjJpSjdTgbtD2Xdu17dlttuW3tcFiaGhIQ0NDCxopJMkwDMXjcbW1tS3Y3tLSou7ubr3xxhs6fvx4yfNFIhF5vV4dOXJkQZNFMBhUb29vwSaFwcFB9ff3a3BwUOl0esGYz+fL/83LZDLq6uqSz+dTb2/vonylxpimqUAgIJ/Pp2AwuChfKpVSLBZbVBsAVLvbt29birtx44Z6enqUSCTk9Xo1MDCgpqamkvPMzs5amh943GzZssVS3Llz53Ts2DGNjo5q9+7dOnv2rOVcqD7zF105nMv/gLaaF14BAAAAsGZsaEyJcEKSNBmflCQNdw3nt7UGWhc1Te/t3SszZmo4OKxsKqtsJiuH06HvXP5OwUZp6d7nh+5Et6KhqBxOhzY3blZqPCW3313wc4HVGAAAgPXue7/4ni15Pvzdh/r+O9+3HP/TAz+1pQ4AAAAAAPob+9V7c/F1+/OMdkNGu6HsdFYzqRmZMVPxcFz+Pr82Pbmp7PltbbBoaWlZ1FwhSQ0NDbpw4cKiBov5mPHxcUvzOZ1OJRIJhUIhOZ1ONTY2anx8XH6/X52dnQVjfD6fnE6nDh8+XDBfX1+fAoF7d83NZDKSpFAotOSKEqXG+P1+maapwcHBJf9/PbziBQCsB1u3bi07RzQaldvtthz/zjvvlF0DgMKampp06dKltS4Da2T7ru1yOB36o91/9Mh9V+vCKwAAAADWtHa2WjrPNnxGyc3PDqdDHeGOFY8BAAAAAAAAAADVI5fLFbWfo94hR71D3i6vstNZRUNRHXj9QNnz29pg4XK5Cm7fuXOnuru7dfr0aTunk3SvwSEcDhe9v8fjWXZ1CMMwFIlESqqhlBirzSQAAABApWr2NCuUDhW9/2pdeAUAAAAAAAAA691PvvETy7GvxV/T2M0xzeXmVFtTq9bGVv1g1w8kSXM1c0pvS8v1mUu1uVq7ygUAAAAA4JFqampKjnHUO2yb39YGi+W6Rbxery5evKiDBw8uGjNN084yAAAV6NatW5biDh48qJGREd29e1cbNmxQW1ubLl68WHKe2dlZXb161VINAAAAAAAAAAAAQCVybLR+AcmLO1/UwAcDGs+My+10q+fZnny+uZo5bXpikxwbHTRYAAAAAAAqXnY6q6n4lC25bG2w8Pv9euutt/Stb31Lb7zxhqLRqM6cOaMnn3xSnZ2d+vrXv65YLKbnnnsuH3P58mUaLADgMbBlyxZLcefOndOxY8c0Ojqq3bt36+zZs5Zyzc7OWpofAAAAAAAAAAAAWI/qN9Ur9GfFr04MAAAAAIBdMtcyBbfPL/iQ+W1GWnrtB0lSNpPVTGpGU8kpvXf6PbUebrWlNlsbLNrb2/XKK6/olVdeUSgUUk1Njfx+v44fPy6fz6e2tjb5fD75/X7t3LlTpmlqaGhI4XDYzjIAAOtIU1OTLl26tNZlAAAAAAAAAAAAAAAAAAAAwAaTiUlNjk4qbaZlxkzdmb6zYPxHxo+KzpXL5WT4DB14/YAttdnaYCFJJ06c0NWrV3XixAlNT0/r8OHD+bGhoSG1tbXp7bffVjQaVS6Xk8fj0fHjx+0uAwAAAAAAAAAAAAAAAAAAAAAAVJjWQ61qPXR/xYmp5JRioZjMy6Zqamr09KGni8rjMlwy/IaMdsO22mxvsJCknTt3aufOnYu219fXK5FIaGhoSLFYTG63W93d3StRAgAAAAAAAAAAAAAAAAAAQMV4s+PNtS5BkvTt4W+vdQkAACzQ7GnW0ehRDQeH9fHQxwpcCKxZLSvSYPEonZ2d6uzsXIupAQAAAAAAAAAAAAAAAAAAAABAhekId2gqMbWmNdTanfCtt97StWvX7E4LAAAAAAAAAAAAAAAAAAAAAADWsX2n9q3p/LauYNHT06MzZ87I5XLpd7/7nZ2pAQAAAAAAAAAAAAAAAAAAAADAOtZ6qPWR+0yMTChtpuUyXNq+a7s2PbnJtvltbbBIpVJqb2+Xx+OxMy0AAAAAAAAAAAAAAAAAAAAAAFjnYidjyk5nF2w78PoBSVJ2OqtzvnOaSk4pl8vJZbiUTWcVGAqo5bkWW+a3tcHCMAy9/PLLdqYEAAAAAAAAAAAAAAAAAAAAAACPAW/Qqx+5fyRv0Ctvt1fNO5vzY5FARJOJSe3t3Svfyz5JUjaTVeRwRK4Wl5xPOcue39YGi8bGRl27dk1PPfVUyXE3b960sxQAAAAAAAAAAAAAAAAAAABUoF+/+Wtdf+26anO1a1rHt4e/vabzAwAW++zqZwpEAmo91Lpg+9jfj8mMmXom8Ey+uUKSHE6HAhcCip2K5Ve6KIet/2U6ceKEent7NTIyUlJcLpezswwAAAAAAAAAAAAAAAAAAAAAAFBlro9eX9RcIUkfnf9INTU12ndq36Ixh9MhR73DlvltXcFCki5cuKBXX31V4XBYu3fvlsfjUUNDg5xOZ8H9o9Gopqen7S4DAAAAAAAAAAAAAAAAAAAAAABUkyXWbjBjpiRp27PbCu9QY8/0tjZY1NbWqqbmXmW5XE5DQ0N2pgcAAAAAAAAAAAAAAAAAAAAAAOtUXWPdom3pibSymay2e7cvGZfNZG2Z39YGC8MwZJqmOjs71dDQUFTM6OioPvjgAzvLAAAAAAAAAAAAAAAAAAAAAAAAVWZ+wYcHjQ2NSZJafC1LBy6x8kWpbG+wOHnypI4fP15SXGNjo51lAAAAAAAAAAAAAAAAAAAAAACAKvPF777Qnc/vaNOTm/LbEuGEampqtOPIjoIxsVMxeYNeW+avtSXLHxiGIcMwSo5zuVx2lgEAAAAAAAAAAAAAAAAAAAAAAKrMvlP7FAlE9Nk/fqbPPvhMQ0eGlDbTau1s1bZnty3Y97MPPtPfff3vtLlxs5p3Ntsyv60rWAwMDFiK++STT+wsAwAAAAAAAAAAAAAAAAAAAAAAVBlHvUPtp9t14dAFpc20JOmZwDPqPN+Z3+dnPT+TGTPz42bM1Bc3v5DvtK/s+W1tsCjk888/VyqV0lNPPbXSUwEAAAAAAAAAAAAAAAAAAAAAgCrW7GnWS5+8pOx0Vo56x6LxvaG92hvau2BbXUOdLXPX2pLlIdeuXdMLL7ygDRs2yOVy6ctf/vKC8YmJCR0+fFhvvPHGSkwPAAAAAAAAAAAAAAAAAAAAAACqWKHmCklytbgW/S21b6lsb7AYGRmRYRgKh8NqaWlRe3u7WlpaFuzT0tKiCxcuqKWlRa+++qrdJQAAAAAAAAAAAAAAAAAAAAAAgMfEx299bEseWxssJiYm1NnZqe7ubo2Pj+uTTz7R22+/rUOHDhXcf775YmRkxM4yAAAAAAAAAAAAAAAAAAAAAADAY2K4a9iWPBttyfIHJ0+eVF9fn7q6uhZsr6mpWTLm0KFDeuGFF9TW1mZnKQAAAAAAAAAAAAAAAAAeMJWcUjwcVzaV1VRySg6nQ96gV95u75Ix2UxW755+V5K0uXGzUuMpuf1utXa22hoDAFg9b3a8uabzz9XMSc1rWgIAYI199sFn2vbstiXHSjGTmlHaTCubydpRmr0NFul0elFzRTFyuZydZQAAAAAA1oG1/mJXkr49/O21LgEAAAAAAAAAbJEYTEiSOsId+W1mzFQkENGVvivqTnTL4XQsiMlmshr0DioQCajZc/9K2OHgsK6PXpe/z79oHisxAAAAAB4fsZMxvf/K+2r2NqvrV4t7D/627W91Z/rOGlR2j60NFoZhWIpLp9N2lgEAAAAAAAAAAAAAAADgD+bv5rq3d++C7YbP0Hcuf0eD3kFFAhEdjR5dMB4JRPR059MLGiWke00afa4+uf1uGT6j7BgAAAAAj4+0mVYul1M2XXjFibqGOknKr7RX11i3bL6ZmzNKj6f18Vsf21Kf7StYWGGapp1lAAAAAAAAAAAAAAAAAPiDeDiur536WsGxZk+zDJ8hM2YqbablMlyS7l30ZMZMHQgfKBjXerhVV/quLGiWsBIDAAAA4PHScaZDht9Y8nOBy3Bp38l98hz3lJS3v7HfjvJUa0uWP3C5XHrnnXdKijl16pTa29vtLAMAAAAAAAAAAAAAAADAH0zEJvQfW/6jspnCd4jd5tkmSZpKTuW3xcNxSco3XDyswd0gM2YuyGklBgAAAMDjxVHvkLfLK1dL4c8Nht/Q9l3bS87rbHGWWdk9tq5g0dvbq/379+vMmTN67rnnHrn/q6++qqGhIf3mN7+xswwAAAAAAAAAAAAAAAAAf1DXUKep5JTSZlrNnuaiYj5LfiaH07Hk+HwTxWR8Mn/nWSsxAAAAAOwxlZxSPBxXNpXVVHJKDqdD3qBX3m7vkjHZTFbvnn5XkrS5cbNS4ym5/W61drbaGlOKvSf2WorrjnfbMr+tDRaGYWhgYEDt7e3atWuXjhw5op07dyqTyejatWvKZDJKpVJKJpMKh8MyTVOJRMLOEgAAAAAAAAAAAAAAAAA84Gj0qNJmesmVJTJmRpIWNF+kzbTqGuqWzDnfSJE202XFAAAAAChfYvDeNfkd4Y78NjNmKhKI6ErfFXUnuhc1Q2czWQ16BxWIBBZ8FhgODuv66HX5+/yL5rESU21sbbCQJJ/PpwsXLqi7u1u9vb357YODg/l/zuVyMgxD8Xhczz77rN0lAAAAAAAAAAAAAAAAAOve3N055eZy9x/Pzi2571LNFZI0NjSmZk/zgn1mUjPLxsw3UmQz2bJiAAAAAJQnbaaVzWS1t3fhyg+Gz9B3Ln9Hg95BRQIRHY0eXTAeCUT0dOfTi1a56wh3qM/VJ7ffvWjlOSsxpchcy8iMmUqNp/KN4I4GhxrcDWr2NKulrcVy7mLZ3mAhSZ2dners7FR/f7/Onz+vq1ev5scMw1AwGNSJEydWYmoAAAAAAAAAAAAAAADgsZD6JKXUb1L5x9OaLjnHlf4rkqSOMx0LthfbBPHFzS/KigEAAABQnng4rq+d+lrBsWZPswyfITNmLljVLm2mZcZMHQgfKBjXerhVV/quLGiWsBJTjDuf31FiMKH3Tr9X1GcKb9Crvb175XzKWdI8xaq1M9nIyMiCx729vUokEpqbm8v/ffLJJzRXAAAAAAAAAAAAAAAAAGVq+HKD3F935/+e+tdPlRQ/lZxSLBRTIBJYdAdaAAAAANVhIjah/9jyH5dsTtjm2Sbp3vn/vHg4Lmnple4a3A0yY+aCnFZiHiX5RlJ9rj7FQjHNpGeUy+Xyf5vqN8nZ4tSm+k0LtscH4vqR+0e6/JeXi56nFLauYOH3+5XJZPSlL33JzrQAAAAAAAAAAAAAAAAAHlK7oVba8MDj2dLutRoJRHQgfECtna2LxhxOR1EXRm1u3FxWDAAAAIDy1DXUaSo5pbSZLrpx+rPkZ3I4HUuOzzdRTMYn8ytSWIlZztCRIY0NjSmXy8nwGTL8hgyfoeadhf8/ZKezMmOmxt8eV/JMUlf6rsiMmer6Vdcj5yqFrQ0W9fX1CoVC+k//6T/ZmRYAAAAAAAAAAAAAAACAjSKBiLxBr7zd3oLjdQ11y8bPpGYkacEFVlZiAAAAAJTnaPSo0mZ6yZUlMmZGkhY0X6TN9LLn7/Pn7GkzXVbMUv7u63+n8ei4Wjtb5evzydVSuPYF+esdaj3UqtZDreoIdygaiur9V97Xmf/+jK1NFqW1rT9CJpNROBzW7t27NTIyYmdqAAAAAAAAAAAAAAAAADaIhqLavnu79vbuXXIfl+HKN0QUMr9SxYMXcVmJAQAAAFDY7J1Z3fn8Tv7v97d+v+S+y51jjw2NqdnTvGCfmdTMso3P840UD65QZyWmkCuvXNF4dFwdgx0KXAgU1VxRiL/Pr6NvH9VkfFKX//KypRyF2NpgIUnhcFixWEzj4+Pav3+/Xn31VX3++ed2TwMAAAAAAAAAAAAAAACgRInBhBrcDQWbKx68EGqbZ9uyF0bN35XW8BllxQAAAAAo7L3T7+nl+pfzf6//6esl57jSf0WS1HGmY8H2RzVBzPvi5hdlxTwsO51VLBSTv98vz3FPUfmWY/gMBS4EdKXvijLXMmXnk2xusAiHwzp+/Ljq6+vV1dWlt99+W+3t7ert7dWRI0dY1QIAAAAAAAAAAAAAAABYI2NDY5Ikb7d30VjaTMuMmfnHO47skCRNJacK5pocnVzUKGElBgAAAEBh+07t08npk/m/F/7xhZLip5JTioViCkQCavY0r1CVpUkMJtTsadaeH+6xLWdrZ6u27dyW/7xTLlsbLLq6uhZt27lzpwYGBnT+/HmNj4/r8OHDrGoBAAAAAAAArJCZmRndvn275D/TNLV//341NjZq//79Mk3TUp7bt2+v9SEAAAAAAAAFTCWnNJOaKdhcIUlmzFxw0VWzp1mGz9CH5z8suP/Y0Jj2hhaugmElBgAAAEBhGzdt1KYnN+X/ntj6REnxkUBEB8IH1NrZumjM4XQUtSLF5sbNZcU87KPzH+lrf/m1R+Yo1b6T+/TR+Y9sybXRlixF6urqUldXl65evare3l7V1NSop6dHf/qnf7qaZQAAAAAAAADr1je/+c2yc0SjUbndbsvxuVyu7BoAAAAAAIB90mZakUBELb4WTQYnF41nU1mZMVOhdGjB9kAkoEHvoHYc2bGg+WI4OKw9vXsKrkZhJQYAAACAvSKBiLxB75IN1nUNdcvGz6RmJN1rqign5mGZicyKfCYw/IZ+FvyZLblWtcFintvtltvt1unTpzU4OCiPx6PR0dG1KAUAAAAAAAAAAAAAAABY1875zyltppUeTC+5j8twLdrmcDrUnehWNBSVw+nQ5sbNSo2n5Pa7C94F12oMAAAAAPtEQ1Ft371de3uXXj3OZbg0GV/cfD1vfqWKBz8nWIkptM+mJzctOW6Vo7641TWKsaoNFiMjIwqHwxoaGpJ070523d3dCgaDq1kGAAAAAAAAsG79/Oc/1549e7RxY2lf/R08eFAjIyO6e/euNmzYoLa2Nl28eHGFqgQAAAAAAKvppfGXLMc6nA51hDtWPAYAAABA+RKDCTW4GwquXJHNZPOrS2zzbJMZM5fMkzbvNWc/uNqElZiHbaq3v7nC7ty1tmT5g5GRkUXbPv/8c7366qtqbGyU3+9XJBLRzp07NTAwoLm5OQ0MDGjnzp12lgEAAAAAAAA8turq6rRly5aS/86dOye/35//Hu/cuXOW8mzZsmWtDwEAAAAAAAAAAADw2BkbGpOkgs0VaTO9oDlix5EdkqSp5FTBXJOjk4saJazEPKympmbZ8XLYldvWFSz8fr/u3r0raeFqFblcTpLyq1XQUAEAAAAAAABUlqamJl26dGmtywAAAAAAAAAAAABQoqnklGZSMwWbKyTJjJkLmh+aPc0yfIY+PP+hmj3Ni/YfGxrT0ejRBdusxFQjWxss6uvrtXv3bpmmqUwmo1wuJ4/Ho2AwqK6uLjunAgAAAAAAAAAAAAAAAAAAAADgsZY204oEImrxtWgyOLloPJvKyoyZCqVDC7YHIgENege148iOBQ0Tw8Fh7endU3A1Cisx1cbWBgtJSiQSklitAsDaerPjzbUuQd8e/vZalwAAAAAAAAAAAAAAAAAAAIB17Jz/nNJmWunB9JL7uAzXom0Op0PdiW5FQ1E5nA5tbtys1HhKbr9brZ2tBfNYiXlQNpMt/v9YiezKbXuDRTAY1Ouvv253WgAAAAAAAAAAAAAAAAAAAAAA8ICXxl+yHOtwOtQR7ljxmHm5XE7/27/83wo2fJQjbS7dXFIqWxssMpkMzRUAAAAAAAAAAKwTw8FhPRN45pFLemczWb17+l1JKvpuVasVAwAAAAAAAAAAKkdqPKXUeMr2vDU1NbbksbXBoru72850AAAAACpYYjChsciYvEGvDJ8hh9OhtJnWVHJKH53/SPtO7VOzp3lRHBdRAQAAAJUtbaZlxkwlwglNJaf0TOCZZffPZrIa9A4qEAks+AwwHBzW9dHr8vf51ywGAAAAAAAAAABUFsNnyPAvf2OnUk3+alIfv/WxLblsbbAYGBiwMx0AAACACpbNZGXGTJkxc8F2h9Ox6IKnB2O4iAoAAACoXInBhMyoKcNvyNfn0zn/uUfGRAIRPd359KLPAB3hDvW5+uT2uxetgLFaMQAAAAAAAAAAoHLU1NTo6NtHVyT3/7Lhf7ElT60tWcrU2Ni41iUAAAAAsOBA+ID29O5Ra2erPN0eHQgfUCgdWvKipuUuiEoOJhc1a1iNAQAAAGCNt9urQCQgb7dXdQ11j9x/frWLXcFdBcdbD7fqSt+VNYkBAAAAAAAAAACVZVP9porPbesKFlblcrm1LgEAAACABc8cfkYOp6OofecviDoQPlBwfP6CqAebM6zEAAAAAFg98XBckuQyXAXHG9wNSg4mlc1k858dVisGAAAAAAAAAABUlu9c/k7F517zFSxOnjyp6enptS4DAAAAwAor5oIoM2Yqm8mWFQMAAABg9XyW/GzZhob5c/nJ+OSqxwAAAAAAAAAAgMrSvLO54nOvSYPFyMiIjhw5og0bNuiVV15ZixIAAAAArDIuogIAAADWn7SZVl1D3ZLj8+fzaTO96jEAAAAAAAAAAACl2rhaE33wwQc6f/68BgcHlclkJEm5XE6SVFNTs1plAAAAAFgBU8kpTcYntX3XdjV7CneDcxEVAAAAsHZm78zq7p27+ce/v/V7W/LOpGaWXHFOUv58/sFV51YrBgAAAAAAAAAAoFQr2mBx7do1DQ0NKRwOyzRNSfebKnw+n4LBoHK5nI4cObKSZQAAAAAoUqkXXZkxU2kzLcNnyNvt1VRySuf857Q3tFeGz1iwLxdRAQAAAGvnvdPv6Zd/9cv84+naaVvyFnsu/sXNL1Y9BgAAAAAAAKgGb3a8WVb8XM2cUs0pXX/tumpztTZVBQCPL9sbLD7//HNduHBB4XBYyWRS0v2mCsMwFAwG1d3drfr6+nzMg/8MAAAAYO2UctHVfOPD3t69+W3NnmYFIgH1ufrUnehesJoFF1EBAAAAa2ffqX366g++mn/86aef6m++8jdrWBEAAAAAAAAAAEDlsa3B4q233tL58+c1NDQk6X5ThdPp1PT0tMbHx/XUU08VjI1EInaVAQAAAKAMpVx01drZWnC7w+lQa2erIoGIXhp/aUXqBAAAAFCajZs2auOm+z8JPLH1CVvyOpyOohqjNzduXvUYAAAAAAAAAACAUpXVYDEyMqJIJKLBwUFJC5sqDh8+rGAwqJ07d6qhoWHJ5gpJam9vt1xDJpPR6dOnJUmNjY0aHx+X3+9XZ2dnWTlDoZAkKZVKSZL8fr+6u7tti1mJugEAAIBy2XXR1fbd2zU2NKa0mc6vdMFFVAAAAMD6U9dQt+z4TGpG0r1z+9WOAQAAAAAAAAAAKFXJDRbXrl1TOBzW4OCgMpmMpPuNFZ2dnQoGg4saJmpqasqvtIBMJiOv16tIJCKPx5PfHgwGNTo6qr6+vpJzJpNJBQIBhcNh+Xy+/Ha/36/x8fGCOUuNWYm6AQAAgEoyf1HTVHIq32DBRVQAAADA+uMyXJqMTy45Pt8wPf+5YDVjAAAAAAAAAAAASlVb7I5nzpzRv/yX/1Jut1v9/f1Kp9PK5XJqb29XOBzW3NycLly4UNZqFKUKBALq7Oxc0KQgKd8AEovFLOd8sFFiPmd/f3/BnKXGrETdAAAAwGoaDg7rR+4flRTjMlz5hohClrqIqtQYAAAAAKtnm2fbsqvOpc20JMnwGaseAwAAAAAAAAAAUKqiGyyi0ajGx8eVy+VkGEa+yeLtt99WV1fXStZYkGmaisViCgaDBccPHz5c8koQ/f39Mk1Tp06dWjRmGIZ8Pt+inKXGrETdAAAAwGqbik8V1fjQ7GnOb+MiKgAAAGD92XFkh6R7q9cVMjk6ueh8fbViAAAAAAAAAAAASlV0g8WFCxc0NzengYEBtbS0aHR0VIlEYiVrW1Y4HJZ0r4mhELfbrVgspkwmU3TOaDQqSXI6nQXHPR7PotUlSo1ZiboBAACA1dbia1EoHVpyfHJ0Ug6nY8HKElxEBQAAAKw/zZ5mGT5DH57/sOD42NCY9ob2rkkMAAAAAAAAAABAqYpusJjX3d2tt99+W4ODg0okEtq/f79eeOEFffDBBytQ3tKSyeSSTQ3S/QaGeDxedM54PL5sTrfbnZ/basxK1A0AAACsth1HdigxWLjhOm2mNTY0po4zHQu2cxEVAAAAUF3mV4xbblU5SQpEAvp46ONFjdHDwWHt6d1TsCl6tWIAAAAAAAAAAABKsdFqYH19vU6cOKETJ05oYmJC4XBYXV1d8vl8CgaDeuqpp2wsczHTNNXQ0LDk+HwTg2maRedsaGhQKpV65H7xeFwej8dSzErUDQAAAKy2Zk+zzJipK/1XtLf3foND2kxr0DuoPb171NrZuiguEAlo0DuoHUd2qNnTnN/+qIuoSo0BAAAAYM3Y0JgS4XvN1JPxSUnScNdwfltroFXebu+CGIfToe5Et6KhqBxOhzY3blZqPCW3313wc8FqxgAAAAAAAAAAAJTCcoPFg1paWvTyyy9Lkq5evaqXX35ZExMT8vv96urqsmOKRVKpVH61h0LmmxgymUzROT0ej4aGhpYcHx8fX5Sz1Bi76p6ZndGt2Vv5x0/UPqEnNjyxbAwWy9XklFNOuZqc5jS31uVUPY7nQrOzs2XHz83NlZ0H93A87cXxtBfH014cT3vNzS393/S9vXtlxkwNB4eVTWWVzWTlcDr0ncvfWdAI8SAuoioO5/uVoxLeS3hfQyG8LrAUXhsohNcFClnqXL+1s9XSebbD6VBHuOPRO65BTCX54u4X2jS7Kf+Yc/3qwHff1Y3nr7rx/FU3nr/qxvNXvXI1ubUu4bHE9/r24L3HXhxPe3E87VVJx7MSvjedqynvGFTS8SxXJTwffKduL46nvZa7jgf2saXB4kE7d+7UwMCAJOnv//7v1dXVpVwupzfeeEPHjx8vGPPqq6/qhz/8YUnzFNs4cfPmzaJzBoNBDQ0NKZlM5leoeFAsFluUs9QYu+oO/UNoweNveL6hb+76ZlG5cV9OOc18aUYppVSjmrUup+pxPBd67733yoqfm5vTp59+Kkmqra21o6THGsfTXhxPe3E87cXxtNejzksNn1HyChKP40VUpeJ8v3KUe05nB97XUAivCyyF1wYK4XWBQkr57hz24Vy/OvHdd3Xj+atuPH/VjeevuvH8Va9/mvmntS7hscS5vj1477EXx9NeHE97VdLxrITfA1PNqbLiK+l4lqsSng++U7cXx9NefLe/OmxvsHjQoUOHdOjQIU1PT+vChQvav3+/XC6XgsGg2traJEkTExMKhUIlN1isBJ/PJ5/Pp9OnTysSiSwYi8Vi8vl8SiaTamxsLCvGDn3/pk8uhyv/+InaJ/TEFJ3vpcrV5JRSSg2fNagmV90nFpWA47nQvn37yoqf79jcs2ePNm5c0bfrxwLH014cT3txPO3F8bTX/IdcrC7O9ytHued0duB9DYXwusBSeG2gEF4XKIRz/bXBuX514rvv6sbzV914/qobz1914/mrYjNrXcDjiXN9e/DeYy+Op704nvaqpONZCb8HXn/telnxlXQ8y1UJzwffqduL42kvvttfHavySq2vr1dXV5e6uro0PT2twcFBvfzyy6qpqcmv8FAqp9NZ1GoQpTY2RKNRBYNBhUIhnTp1StL9VSjcbnd+bqsxdtVdt7FOWzduXbiRVR5LNqc51ahGNbka1ebojCsXx3MhO04GamtrtXHjRk4sbMLxtBfH014cT3txPO3D3QPWBuf7laNS3kd4X0MhvC6wFF4bKITXBR7Guf7a2LxhM+f6VYjvvqsbz1914/mrbjx/1Y3nr3pV+0WV1Yrv9e3Be4+9OJ724njaq5KOZyV8Z1ruMaik41muSng+JL5TtxvH0z58t786Vv2VWl9frxMnTujEiROKxWL61a9+pc8//7zkPA0NDcuOp1L3lkx6uBmiGOFwWJlMJt8k4fP55HQ61d/fL0natWuX5ZiVrBsAAAAAAAAAAAAAAAAAAAAAAFizpq1APp9PkUhEX//610uONQxD8Xh8yfH5VSIMw7BUm9PpVGdn54Jto6OjkiSPx2M5ZqXrBgAAAAAAAAAAAAAAAAAAAEqRnc1ajp2+M60f//rHmpieUEt9i57/yvOq31RvY3UAsHrWfK0Vn8+n+vrS30Q9Hk9+tYhCTNPM57dLMplUd3d3WTFrUTcAAAAAAAAAAAAAAAAAAACwlO/94nu25Pnwdx/q++9831Lsd/VdW2oAgHLUrnUBknT58uWSY44cOSLpXgNDIaOjoyU3KSSTSblcroINEMlkUqZpKhQKlRWzEnUDAAAAAAAAAAAAAAAAAAAAAIDyrPkKFpK0c+fOkmM8Ho98Pp/Onz8vj8ezaHxoaEjRaHTR9kwmo9OnT8vv9y9qZJhfPaKQrq4u9fX1yTCMsmKs1g0AAAAAAAAAAAAAAAAAAACshJ984yeWY1+Lv6axm2Oay82ptqZWrY2t+sGuH9hYHQCsnopYwcKqSCSioaGhRatBBINB9fb2FlwJYnBwUP39/QoEAovGfD5f/m9eJpNRIBCQz+dTb2+vLTFW6gYAAAAAAAAAAAAAAAAAAABWgmOjw/Lfiztf1Ff+2Ve09Ymt+so/+4pe3PmipTwAUAkqYgULq5xOpxKJhEKhkJxOpxobGzU+Pi6/36/Ozs6CMT6fT06nU4cPHy6Yr6+vL998kclkJEmhUGjJpgerMaXWDQAAAAAAAAAAAAAAAAAAAFSa+k31Cv1ZaK3LAABbVHWDhXSvWSEcDhe9v8fjUTqdXnLcMAxFIpGSarASU2rdAIDyzczM6Pbt29q4sfT//N24cUM9PT1KJBLyer0aGBhQU1OTpTq2bNliKQ4AAAAAAAAAAAAAAAAAAAArp+obLAAAKNY3v/lNW/JEo1G53W7L8blczpY6AAAAAAAAAAAAAAAAAAAAYJ/atS4AAAAAAAAAAAAAAAAAAAAAAABgrbGCBQDgsfHzn/9ce/bs0caNpf/n7+DBgxoZGdHdu3e1YcMGtbW16eLFiytQJQAAAAAAAAAAAAAAAABgrczMzOj27duWrjO7ceOGenp6lEgk5PV6NTAwoKamppLzbNmypeQYAPagwQIAVsibHW+WFT9XM6dUc+r/z94fxsZ1ngmC7iuZbpVkT1ykZiBT6bloF2d+mFbPJEWrdyx5FguHBBqB+CMTlgT/cMZYxKR7Fkhjg20x/nfzZ9TUDBJ0Bpi4mMEiGAErOMXbWYBBey7IuCewlF5EZKV34jAY3GU57WmRNrZdVUo7VrkjkfeHlmXRLFJk8ZDFIp8HEOA657zf+fydo9J7Tp33fHHzGzfj8HLzEw49P/n8tvqxnxw9ejQeeeSRphLfK1euxIsvvhg3btyI06dPx3e/+11JLAAAAAAAAAAAwD7z+c9/PpF2pqamoqenp6nY5eXlRPoAbJ0CCwDYhBMnTsTrr7/e6m4AAAAAAAAAAAAAsEMUWAAAAAAAAAAAAAAARMSf/dmfxZkzZ6KjY+uPWX/hC1+IN954I+7evRsPPfRQPPfcc/H9739/B3oJ7BQFFgAAAAAAAAAAAAAAEXH06NF45JFHmiqwuHLlSrz44otx48aNOH36dHz3u9+NRx55ZAd6CewUBRYAAACwjquDV1vdhVg6tBSf/uqnW90NAAAAAAAAAB7gxIkT8frrr7e6G8A2HG51BwAAAAAAAAAAAAAAAFpNgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOvI5WdwAAAAAAAAAAAAAAdtvVwaut7gIAe4wZLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgafAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA0+BBQAAAAAAAAAAAAAAcOApsAAAAAAAAAAAAAAAAA48BRYAAAAAAAAAAAAAAMCB19HqDgAAAAAAAAAAALtncmQynso9FZn+zIbb1aq1ePPSmxERcez4sSjPl6NnoCd6h3oTjQEAANgrFFgAAAAAAAAAAMA+VylVojRditn8bCwWF+Op3FMbbl+r1mK8bzxyhVx0Z7vryydHJuPmjZsxMDaQSAwAAMBecrjVHQAAAAAAAAAAAHbO7PhsTI9OR0RE/1j/pmIKuUI8OfTkqkKJiIjB/GAUx4tRmi4lEgMAALCXmMECAAAAAAAAAAD2sb7hvugb7ouIiMXi4gO3X5nt4lz+XMP1ved74/rY9cj0Z7YVAwAAJG9yZDKeyj31wNy7Vq3Fm5fejIiIY8ePRXm+HD0DPdE71JtoTLtRYAEAAAB73M+u/ixufuNmHF5u7USUz08+39L9AwAAAAC7YyY/ExERnZnOhuu7erqiOF6MWrUWqXSq6RgAACAZKwXPs/nZWCwuxlO5pzbcvlatxXjfeOQKuVUz0E2OTMbNGzdjYGwgkZh21NonMwAAAAAAAAAAgD3l3eK7GxZBrBRRLMwsbCsGAADYvtnx2ZgenY6IiP6x/k3FFHKFeHLoyVWFEhERg/nBKI4XozRdSiSmHSmwAAAAAAAAAAAA6iqlShztOrru+pVCikqpsq0YAABg+/qG+yJXyEXfcN+GOfmKldkunh55uuH63vO9cX3s+rZj2lVHqzsAwM66Oni11V2IiIjnJ59vdRcAAAAAAAAA9pWlu0uxvLT88ec7S4m0e7t8uz7jRCMrD23VqrVtxQAAALtvJj8TEbFu/t7V0xXF8WLUqrV6oXQzMe1KgQUAAAAAAAAAALSh8v9VjvL/r1z/fCtuJdLuZosgPnz/w23FAAAAu+/d4rsbFkGsFFEszCxEpj/TdEy7UmABAAAAAAAAAABtqOsfda16g2y5Vo74UQs7BAAAJObOR3fi7kd3659/88FvEmm3UqrUZ5hrZKWQolKqbCumXSmwAAAAAAAAAACANnT4ocMRD933+c7hRNpNpVObmpHi2PFj24oBAADWd+3StfjR1z+uoL51OJkZ626Xb68q1P6klUKK+/P7ZmLalQILAAAAAAAAAACgbqM300bce7gq4uO31DYbAwBwv6uDV1vdhVg6tBSf/uqnW90NiIiIZ195Np756jP1z++8805883e/ue12N1sE8eH7H24rpl0psAAAAJq2WFyMmfxM1Mq1WCwuRiqdir6Rvugb7mu4/ez4bMwV5qJvpC8y/ZlIpVNRKVVisbgYP3/t5/HsK89Gd7Z7TVytWos3L70ZEffebFWeL0fPQE/0DvXu6P8fAAAcRLuZt8v1AQBgb+rMdMbCzMK661cerrr/DbbNxAAAAOvrONIRHUc+ftz/4UcfbmFvDg4FFgAAQFNmx2cjImIwP1hfVpouRSFXiOtj12N4dnjNW6hq1VqUpktRmi6tWp5KpyJXyK37kNZ43/ia9ZMjk3Hzxs0YGBtI8n8LAAAOvN3K2+X6AACwdz2efXzNNcH9KqVKRERk+jPbigEAgHaxF2ZY+Zva3yTSTiqd2tSMFMeOH9tWTLs63OoOAAAA7adSqkStWlszU0WmPxNf+uGXolKqRCFXaBh7Ln8uzlw8E71DvZEdzsa5/LkYrYyu+4NKIVeIJ4eeXPMQ12B+MIrjxQ1/rAEAAJqzG3m7XB8AAPauUxdORcS9mawbWbixsOb6oJkYAABg9x3tOrrh+tvl2xERq16s2kxMuzKDBQAAsGUz+Zn456/884brurPdkenPRGm6FJVSZc1U30+df2rTF1OVUiVK06U4lz/XcH3v+d64PnbdDzIAAJCwnc7b5foAALC3rdzrf+u1txrOYjc3MRcvTL2w7RgAAGD3dWY6Y2FmYd31KzNV3P/MTzMx7coMFgAAwJa9Pf12/MkTf7Lu1H+PZx+PiPXfUrVZM/mZiFj/4qurpytK06VNTUEIAADsjGbydrk+AAC0TqVUiYh4YL6dK+TiFxO/WHOvf3JkMs5cPNOwILqZGAAAYHc9nn18w+uBlWuG+/P3ZmLalRksAACALTvadTQWi4tRKVUavoUqKe8W393wrbkrD2MtzJhWHAAAWqWZvF2uDwAAu2tuYi5m87MREfW3zk6+NFlf1pvrjb7hvlUxqXQqhmeHY2p0KlLpVBw7fizK8+XoGeiJ3qHehvtpJgYAANhdpy6cih9f/nEsFhcbPvezcGPtvflmYtqVAgsAAGDLXph6ISqlyrpvm62WqhERGxZfLBYXY2FmIU4+fXLd7SqlShztOrpuGysPZK1UwQMAAMnaqbxdrg8AALurd6i3qQKHVDoVg/nBHY8BAAB2T3e2OzL9mXjrtbca3vufm5iLF6Ze2HZMu1JgAQAA1N356E7c/ehu/fNvPvjNutuuV1wRce+iqTvb3XCb0nQpKqVKZPoz0TfcF4vFxbgycCXOjp5dU8l+u3x7w/2sPJD1oGnMAQDgoNtKrh+x83m7XB8AAAAAgM26Oni11V1oGysvLnrQ/fVcIRfjfeNx6sKpVQUTkyOTcebimYazUTQT044UWAAAAHXXLl2LH339R/XPtw7f2nIb1y9fj4iIwe+sfTvVygNUZy+erS/rznZHrpCLsc6xGJ4dXnUBttmHqT58/8Mt9xMAAA6SreT6u5G3y/UBAAAAANa3VwoKnp98vtVdYBPmJuZiNj8bERELMwsRETH50mR9WW+uN/qG+1bFpNKpGJ4djqnRqUilU3Hs+LEoz5ejZ6Bn3dnvmolpRwosAACAumdfeTae+eoz9c/vvPNOfPN3v7np+MXiYkyPTkeukGs4HeBGF2C9Q71RyBXiK/Nf2XrHAQCADW0l15e3AwAAAAAQsf1Cj6VDS1HuLsfNb9yMw8uHE+oVn9Q71NtUgUMqnYrB/NoXqCYd026cqQAAQF3HkY448qkj9T8PP/rwluILuUKcy59r6qLt5OmTUSlV6lMVRty7KNvMm22PHT+25f0BAMBBst1cf0VSebtcHwAAAAAA2IsUWAAAAIko5ArRN9K3ZkrBzUqlUxFxbxaMFUe7jm4Yc7t8e1UsAACws5LK2+X6AAAAAADAXqTAAgAA2Lap0ak4efpknL14dt1tJkcm41s939pSu52ZzvqDVY2svPG2M9O5pXYBAIDGditvl+sDAAAAAAB7kQILAABgW2bHZ6Orp6thccXKQ1EREYszi5t6gKo7211f9nj28VVtfFKlVImIiEx/Zsv9BgAA1tqtvF2uDwAAAAAA7EUdre4AAAfD1cGrLd3/0qGl+PRXP93SPgDsR3MTcxER0Tfct2ZdpVSJxeJi9A71RkTEE/1PxPDY8LptLdxYiFQ6teoNtacunIofX/5xLBYXVz3AdX+MB64AACA5u5W3y/UBAAAAAIC9yAwWAABAUxaL995s26i4IiKiNF1a9aDUqQunYnZ8tuG2lVIl5ibmYvA7g6uWd2e7I9Ofibdee6th3NzEXJwdXTtzBgAA0Jzdytvl+gAAAAAAwF6kwAIAANiySqkShVwhFmYXYnJkcs2fQq4Q06PTq95q253tjlq1FtcvX1/T1njfeJy5eKY+28X9coVc/GLiF7FYXFy1fHJkMs5cPOOttgAAkKDdzNvl+gAAAAAAwF7T0eoOAAAA7efKwJWolCpRGa+su839xRUrzl48G6XpUkyOTEatXItatRapdCq+9MMvrZrt4n6pdCqGZ4djanQqUulUHDt+LMrz5egZ6Gn4YBcAALA9u5W3y/UBAAAAAIC9RoEFAACwZV+Z/0rTsZn+zJbfRJtKp2IwP9j0PgEAgK3Zrbxdrg8AAAAAAOwlCiwAAACATbk6eLXVXYjnJ59vdRcAAAAAAAAAgH3qcKs7AAAAAAAAAAAAAAAA0GpmsAAAAAAAAAAAAAAAiIifXf1Z3PzGzTi87D32cBC1fYFFtVqNS5cuRUTE8ePHY35+PgYGBmJoaGhbbY6OjkZERLlcjoiIgYGBGB4e3lLM6dOn4+LFi4lsDwAAAAAAAAAAAAAA7Jy2LrCoVqvR19cXhUIhstlsffnIyEjcuHEjxsbGttxmsViMXC4X+Xw++vv768sHBgZifn6+YZvFYjHy+XyMjY1FOp2uL5+YmIi+vr6YnZ3d1vYAAAAAAAAAAAAAAMDOausCi1wuF0NDQ6uKKyIi8vl8dHZ2xsDAwKoiia20+cm4fD4fPT09DdscHR2NqampNW0NDQ1FuVyOkZGRyOfzTW8PAAAAAAAAAAAAAADsrMOt7kCzSqVSTE9Px8jISMP158+f3/IMFpcvX45SqRSvvPLKmnWZTCb6+/vXtFksFiOTyazb5vnz52N6errp7QEAAAAAAAAAAAAAgJ3XtgUWKzM8rFes0NPTE9PT01GtVjfd5sqsEul0uuH6bDa7pvhhpdBjPeVyeVV7W90eAAAAAAAAAAAAAADYeW1bYFEsFjcsRFgpvJiZmdl0mzMzMxu22dPTU9/3imw2G6VSKXK5XMOYfD4fFy5caHp7AAAAAAAAAAAAAABg53W0ugPNKpVK0dXVte76lUKJUqm06Ta7urqiXC4/cLuZmZnIZrMRca+QY3h4OMbHx6Onpyfy+Xz09/dHRNRn0BgbG6vHbnX79dy+czs+uPNB/fPDhx+Ohx96eNP/r9yzfGg5lmM5lg8tx1Istbo7bc94Jst4Jmv50HIsLS3FnTt3Wt2VfeHOnTvGM0HGM1nGM1lLS/4NagX5PveTF67m+/0e/96xHucGjTgvaESu3xof3v0wjtw5Uv8s128PcvL25vi1N8evvTl+7c3xa1/Lh5Zb3YUDyX39ZPjuSZbxTJbxTJbxTJbxTJbxTJbxTNZyyPd3Q9sWWJTL5fosFY2sFF9Uq9VNt5nNZmNiYmLd9fPz8w3bzOfz0dPTE6OjozEwMBDDw8PR09MT2Ww28vn8mna2un0jo/95dNXn38/+fnz+6c9vKpaPLcdy3P57t6Mc5TgUh1rdnbZnPJNlPJO1HMtx5517D5IcPty2EzjtGUtLS/HOO+9EhPFMgvFMlvFM1vvvv9/qLhxI8n3uJy9c7dq1a63uwp7g3zvW49ygEecFjcj1W0Ou357k5O3N8Wtvjl97c/zam+PXvv729t+2ugsHklw/Gb57kmU8k2U8k2U8k2U8k2U8k2U8k/VB7YMHb8S2tW2BxWYLJ7byI9HIyEhMTExEsVisz1Bxv+np6XXbvHjxYqTT6RgZGYnx8fFIp9NRKBTW3ddWt/+ksf9hLDpTnfXPDx9+OB5eVPm+VcuHlqMc5eh6tysOLfvi3i7jmSzjmazlQ8tx8v91Ms6cORMdHW37z9+esfLWU+OZDOOZLOOZrJUH8dhd8n3uJy9c7eY3bra6CxERceFPL7R0//69Yz3ODRpxXtCIXL815PrtSU7e3hy/9ub4tTfHr705fm3sdqs7cDDJ9ZPhuydZxjNZxjNZxjNZxjNZxjNZxjNZy7fNYLEb/Jp2n/7+/ujv749Lly6tKXaYnp6O/v7+KBaLcfz48TWxo6Oj0dPTE8vLyzE6OhqXL1+uz07RaFaKrW7/SUc7jsajHY+uXujvzJYtxVIcikNxaPlQHF729r7tMp7JMp7JWoqlOHz4cHR0dHiYJCHGM1nGM1nGMznecNwa8n3uJy/cm/bCvzH+vWM9zg0acV7wSXL91jj20DG5fhuSk7c3x6+9OX7tzfFrb45f+/LQWmu4r58M3z3JMp7JMp7JMp7JMp7JMp7JMp7JMgvI7mjbMzWdTm9qFotGxRAbmZqaiq6urhgdHY1qtRrVajUmJiaiWq1GT09Pfd/3GxgYqBdHRESMjY3F7OxsZDKZGB8fj1wut63tAQAAAAAAAAAAAACAndW2BRZdXV0bri+XyxGxthhiM/L5fLzyyisxPT1dn7liaGioXtDx9NNP17e9fPlyZLPZ6O/vX9VGNpuN+fn5GB4ejomJiZienm5qewAAAAAAAAAAAAAAYOe17XzwmUwmZmZm1l2/UgyRyWSaaj+dTsfQ0NCqZTdu3IiIe8UQK/L5fMzOzq7bTj6fj5mZmZiamor+/v4tbw9Acn529Wdx8xs3Wz7V2POTz7d0/wAAAAAAAAAAAACs1bYzWGSz2XoRRSOlUikiItEihWKxGMPDw2v286BZMkZGRup93er2AAAAAAAAAAAAAADAzmvbGSwuXLgQly9fjmKxuGpGiRU3btzYcnFFsViMz33uc1EoFNbEFovFKJVKMTo6ump5JpOJUqm04UwZ8/Pz0dfX19T2AOw/VwevtroLZtEAAAAAAAAAAAAA+IS2nsGiv78/XnvttYbrJyYm1hRDRERUq9UYHR2N6enpNetWZr1o5KWXXoqxsbE1hRFDQ0MN93P//orFYpw/f76p7QEAAAAAAAAAAAAAgJ3XtgUWERGFQiEmJiaiWCyuWj4yMhIXL15sOIPF+Ph4XL58OXK53Jp1/f399T8rqtVq5HK56O/vj4sXL66JGRsbq++zWq2uWlcsFiOXy8XY2Fik0+mmtgcAAAAAAAAAAAAAAHZeR6s7sB3pdDpmZ2djdHQ00ul0HD9+PObn52NgYCCGhoYaxvT390c6nW44Q0Q6nY6xsbF68cVKAcTo6GjDYo0VhUIhpqen46WXXlq1PJPJxNTU1La3BwAAAAAAAAAAAAAAdlZbF1hE3CuKyOfzm94+m81GpVJZd30mk4lCobDlfnxy5ouktwcAAAAAAAAAAAAAAHbO4VZ3AAAAAAAAAAAAAAAAoNUUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODA62h1BwAAAADazdXBqy3d/9KhpSh3l+PmN27G4eXWvj/j+cnnW7p/AAAAAAAAAEiKAgsAOIC2+0BgUg/0eRgPAAAAAAAAAAAA2Cta+4pDAAAAAAAAAAAAAACAPUCBBQAAAAAAAAAAAAAAcOB1tLoDAABAY7/+9a+bjn3vvffi5ZdfjtnZ2ejr64tXX301Tpw4seV2Pvzww6b7AAAAAAAAAAAA0E4UWAAAwB716KOPJtLO1NRU9PT0JNIWAAAAAAAAAADAfnW41R0AAAAAAAAAAAAAAABoNTNYAAAtc3Xwaqu7EM9PPt/qLsC6Pvjgg6Zjv/CFL8Qbb7wRd+/ejYceeiiee+65+P73v7/ldv7qr/4qnnrqqab7AQAAAAAAAAAA0C4UWAAAwB71yCOPNB175cqVePHFF+PGjRtx+vTp+O53v9tUe8eOHWu6DwAcDIpmAQAAAAAAANgvFFgAAMA+dOLEiXj99ddb3Q0AAAAAAAAAAIC2cbjVHQAAAAAAAAAAAAAAAGg1M1gAAAfa1cGrre5CLB1aik9/9dOt7gYAQNvaCzldRMTzk8+3ugsAAAAAAAAAbIMZLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgdbS6AwAARPzs6s/i5jduxuHl1ta/Pj/5fEv3DwAAAAAAAAAAAK2iwAIAgLqrg1db3QVFHgBA29oLudTSoaX49Fc/3epuAAAAAAAAALSl1r4iGQAAAAAAAAAAAAAAYA8wgwUAAHvKdt/8vHRoKcrd5bj5jZtxeLn5emIzaQAAAAAAAAAAABwsZrAAAAAAAAAAAAAAAAAOPDNYAAAAAMA+8rOrP9v2bF7bZTYwAAAAAAAAoB2ZwQIAAAAAAAAAAAAAADjwzGABAAANXB282uou7Al/U/ubVncBAGhDcqmPmc0DAAAAAAAA2ocCCwAAoGm1ai3evPRmREQcO34syvPl6Bnoid6h3hb3DABgb9gLxSZLh5bi01/9dKu7QZuR6wMAwP4k1wcAgP1Lvp8MBRYAAEBTatVajPeNR66Qi+5sd3355Mhk3LxxMwbGBlrYOwAAoFlyfQAA2J/k+gAAsH/J95OjwAIAAGhKIVeIJ4eeXHVRFhExmB+Msc6x6BnoiUx/pkW9AwDgfj+7+rO4+Y2bcXj5cMv68Pzk8y3bN1sj1wcAgP1Jrg8AAPuXfD85CizazN/93d9FRMRvln7T4p7sD7+5+5v4s5k/iwuPX4gjh4+0ujttz3gmy3gmy3gmy3gmy3gmy3gmayXvXMlDV1RKlShNl+Jc/lzDuN7zvXF97LoLsy2S79OI7zUacV6wHucGjeyV8+Lq4NWW7XsvanXByUruKdeHB9sr36M0x/Frb45fe3P82pvjt//I9XeG+/rJ8t2TLOOZLOOZLOOZLOOZLOOZLOOZLM/x7I7Wva6Mpnz00UcREXFn6U6Le7I//GbpN/Gfiv/JhW5CjGeyjGeyjGeyjGeyjGeyjGeyVvLOlTx0xUx+JiIiOjOdDeO6erqiNF2KWrW2sx3cZ+T7NOJ7jUacF6zHuUEjzgsaWck95frwYL5H25vj194cv/bm+LU3x2//kevvDPf1k+W7J1nGM1nGM1nGM1nGM1nGM1nGM1me49kdZrAAAAC27N3iu5FKp9Zdv3LBtjCzoPodAAAaaPWMHv/tg//WcLlcHwAA9ie5PgAA7F/y/WSZwQIAANiySqkSR7uOrrt+5aKtUqrsVpcAAIAEyPUBAGB/kusDAMD+Jd9Plhks2szS0lJERFRr1Tj20LEW96b9fXj3w4iIqNQq8dFDHz1gax7EeCbLeCbLeCbLeCbLeCbLeG7P0t2liOWPP1d+fe/CaiUPXXG7fHvdaQUjon7RZmrBrZHv04jvNRpxXrAe5waNOC+IkOu32so4V2p+vGpHvkfbm+PX3hy/9ub4tTfHr318Mtev1qr3lsv1d4X7+sny3ZMs45ks45ks45ks45ks45ks47k97u23xqHl5eXlB2/GXnHt2rX45//8n7e6GwAAHDBvvvlmPPvss/XPXz/09ejOdsfw7HDD7ReLizHeNx5nLp6JgbGB3epm25PvAwCw2+T6u+PGjRvxe7/3e63uBgAAB8hPfvKTOH36dP2zXH9nuK8PAEAruLe/s8xg0Wb+2T/7Z/GTn/wkTpw4EYcPH251dwAA2Gfu/N2dWPro4yr3paWl+L+r/3ec/u9ObxBFUuT7AADsFLl+a332s5+V6wMAsCPWy/U/+9nPtrBXB4f7+gAA7CT39ltDgUWb6ejoWPWGAQAA2Gn/KP7RmmWpdGpT0wYeO2467K2Q7wMAsJvk+rtHrg8AwG6S6+8euT4AALtNvr/zlE4DAABbdrTr6Ibrb5dvR8S9CzgAAKB9yPUBAGB/kusDAMD+Jd9PlgILAABgyzoznfWLr0ZWquI7M5271SUAACABcn0AANif5PoAALB/yfeTpcACAADYssezj284tWClVImIiEx/Zre6BAAAJECuDwAA+5NcHwAA9i/5frIUWAAAAFt26sKpiIhYLC42XL9wY8FFGQAAtCG5PgAA7E9yfQAA2L/k+8lSYAEAAGxZd7Y7Mv2ZeOu1txqun5uYi7OjZ3e5VwAAwHbJ9QEAYH+S6wMAwP4l30+WAgsAAKApuUIufjHxizXV75Mjk3Hm4hmV7wAA0Kbk+gAAsD/J9QEAYP+S7yfn0PLy8nKrOwEAALSnWrUWU6NTkUqn4tjxY1GeL0fPQE/0DvW2umsAAMA2yPUBAGB/kusDAMD+Jd9PhgILAAAAAAAAAAAAAADgwDvc6g4AAAAAAAAAAAAAAAC0mgILAAAAAAAAAAAAAADgwFNgAQAAAAAAAAAAAAAAHHgKLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgafAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA0+BBQAAAAAAAAAAAAAAcOApsAAAAAAAAAAAAAAAAA48BRYAAAAAAAAAAAAAAMCBp8ACAAAAAAAAAAAAAAA48BRYAAAAAAAAAAAAAAAAB54CCwAAAAAAAAAAAAAA4MBTYAEAAAAAAAAAAAAAABx4CiwAAAAAAAAAAAAAAIADT4EFAAAAAAAAAAAAAABw4CmwAAAAAAAAAAAAAAAADjwFFgAAAAAAAAAAAAAAwIGnwAIAAAAAAAAAAAAAADjwFFgAAAAAAAAAAAAAAAAHngILAAAAAAAAAAAAAADgwFNgAQAAAAAAAAAAAAAAHHgKLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgafAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA6+j1R0AAADa12JxMWbyM1Er12KxuBipdCr6Rvqib7hv3ZhatRZvXnozIiKOHT8W5fly9Az0RO9Qb8tjAAAAAAAAAACAg+vQ8vLycqs7AQAAtJ/Z8dmIiFXFFKXpUhRyhTjadTSGZ4cjlU6tiqlVazHeNx65Qi66s9315ZMjk5FKp2JgbGDNfnYrBgAAAAAAAAAAONgOt7oDAABA+6mUKlGr1tbMVJHpz8SXfvilqJQqUcgV1sQVcoV4cujJVUUPERGD+cEojhejNF1qWQwAAAAAAAAAAHCwKbAAAAC2bCY/s6a4YkV3tjsy/ZkoTZeiUqrUl1dKlShNl+LpkacbxvWe743rY9dXLdutGAAAAAAAAAAAAAUWAADAlr09/Xb8yRN/ErVqreH6x7OPR0TEYnGxvmwmPxMREZ2ZzoYxXT1dUZourWpzt2IAAAAAAAAAAAA6Wt0BtubOnTvx05/+NE6cOBGHD6uPAQBgZy0tLcV7770Xn/3sZ6Oj4+PLh6NdR2OxuBiVUiW6s92bauvd4ruRSqfWXb9SELEwsxCZ/syuxuwV8n0AAHbLerk+O0OuDwDAbpHr7y65PgAAu0m+vzuMbJv56U9/Gr/3e7/X6m4AAHDA/OQnP4nTp0/XP78w9UJUSpV1Z4molqoREauKLyqlShztOrruPlaKIiqlyq7H7BXyfQAAdtsnc312hlwfAIDdJtffHXJ9AABaQb6/sxRYtJkTJ05ERMRf/MVfxG//9m+3uDft786dO1EsFiObzarkSoDxTJbxTJbxTJbxTJbxTJbx3J47f3cnlj5aqn++uXAz/vv+/76eh95vveKKiIi5ibnoznav2uZ2+faGMStFEbVqbddj9gr5Po34XqMR5wXrcW7QiPOCRv76r/86nnnmmYa5PslbGeef/OQn0d29uVkA2Tt8j7Y3x6+9OX7tzfFrb45f+1pcXIzf+73fk+vvEvf1k+W7J1nGM1nGM1nGM1nGM1nGM1nGM1nu7e8OZ2qbWZlO8PHHH3dhloA7d+7EL3/5y/jt3/5tX9wJMJ7JMp7JMp7JMp7JMp7JMp7b85//3/85fvT1H9U/3zp8KyJiS9NaX798PSIiBr8zuGr5ZgsaPnz/w12P2Svk+zTie41GnBesx7lBI84LGrlz505EbC3Xp3kr49zd3S3Xb0O+R9ub49feHL/25vi1N8ev/cn1d4f7+sny3ZMs45ks45ks45ks45ks45ks45ks9/Z3hzMVAACoe/aVZ+OZrz5T//zOO+/EN3/3m5uOXywuxvTodOQKuejOeisrAAAAAAAAAADQPhRYAAAAdR1HOqLjyMeXCQ8/+vCW4gu5QpzLn4veod4161Lp1KZmlzh2/NiuxwAAAAAAAAAAAJgfBAAASEQhV4i+kb7oG+5ruP5o19EN42+Xb0fEvQKJ3Y4BAAAAAAAAAABQYAEAAGzb1OhUnDx9Ms5ePLvuNp2ZznpxQyMrs050Zjp3PQYAAAAAAAAAAECBBQAAsC2z47PR1dPVsLhipZghIuLx7OOrPn9SpVSJiIhMf2bXYwAAAAAAAAAAABRYAAAATZubmIuIiL7hvjXrKqVKlKZL9c+nLpyKiIjF4mLDthZuLKwpetitGAAAAAAAAAAAAAUWAABAUxaLi3G7fLthcUVERGm6FN3Z7vrn7mx3ZPoz8dZrbzXcfm5iLs6Orp4FY7diAAAAAAAAAAAAOlrdAQAAoP1USpUo5ArxRP8TsTCysGZ9rVyL0nQpRiujq5bnCrkY7xuPUxdOrSq+mByZjDMXzzScWWK3YgAAAAAAAAAAgINNgQUAALBlVwauRKVUicp4Zd1tOjOda5al0qkYnh2OqdGpSKVTcez4sSjPl6NnoCd6h3obtrNbMQAAAAAAAAAAwMGmwAIAANiyr8x/penYVDoVg/nBPRkDAAAAAAAAAAAcXIdb3QEAAAAAAAAAAAAAAIBWU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA6+j1R1oNyMjI5HL5aK/v39b7VSr1bh06VJERBw/fjzm5+djYGAghoaGkugmAAAAAAAAAAAAAACwBQosNqFUKsX09HTk8/koFouRy+W21V61Wo2+vr4oFAqRzWbry0dGRuLGjRsxNja23S4DAAAAAAAAAAAAAABbcLjVHdjrxsfHY3R0NCIiscKHXC4XQ0NDq4orIiLy+XyMj4/H9PR0IvsBAAAAAAAAAAAAAAA2R4HFAwwPD0ehUIjh4eHo6uradnsrs2GMjIw0XH/+/HkzWAAAAAAAAAAAAAAAwC5TYLHL8vl8RERkMpmG63t6emJ6ejqq1eou9goAAAAAAAAAAAAAAA42BRa7rFgsRjqdXnf9SuHFzMzMLvUIAAAAAAAAAAAAAADoaHUHDppSqRRdXV3rrl8pviiVShu2s7S0FHfv3k2yawfS3bt362N56NChVnen7RnPZBnPZBnPZBnPZBnPZBnPZC0tLbW6CweSfJ/7+V6jEecF63Fu0Ijzgkbk+q1x9+5duX4b8j3a3hy/9ub4tTfHr705fu1Lvtka7usnw3dPsoxnsoxnsoxnsoxnsoxnsoxnstzb3x0KLHZZuVyuz1LRyErxRbVa3bCdv/iLv4j/+l//a/3zQw89FB0dDudWLS0txX/7b/8tlpaW4vBhE7psl/FMlvFMlvFMlvFMlvFMlvFM1vvvv9/qLhxI8n3u53uNRpwXrMe5QSPOCxqR67fG9evXo7Ozs/5Zrt8efI+2N8evvTl+7c3xa2+OX/uqVCqt7sKB5L5+Mnz3JMt4Jst4Jst4Jst4Jst4Jst4Jsu9/d0hk99lDyqcWPGgvwCvvvrqqguxf/pP/2l85jOf2UbPDqbl5eW4detWRITKuAQYz2QZz2QZz2QZz2QZz2QZz2T96le/anUXDiT5PvfzvUYjzgvW49ygEecFjcj1W+Pb3/62XL8N+R5tb45fe3P82pvj194cv/b1t3/7t63uwoHkvn4yfPcky3gmy3gmy3gmy3gmy3gmy3gmy7393aHAok2de/hcdKY+fsvVw//Xw9Hx9u4eztz3cru6v51w586d+Iu/+It45plnvDkgAcYzWcYzWcYzWcYzWcYzWcYzWe+880784R/+Yau7ceC0Ot/fD7n+fuJ7jUacF6zHuUEjzgsakeu3xr/7d/8uPv3pT9c/HzlyJI4cOdLCHrEZO/k9WjhfSLS9Zu3n60D/DrY3x6+9OX7tzfFrXzdv3oyvfOUrre7GgfOtb30rfvu3f7v++SDn+tvJcZcPLcehE4ei472OOLTc/AOY+zm/3Qrf5ckynskynskynskynskynslyb393OFN3WTqd3tQsFsePH99w/bGHjsXfe+jvrV64tI2ONWE/XAiuTMl45MgRX9wJMJ7JMp7JMp7JMp7JMp7JMp7Jevjhh1vdhQOp1fn+fsj19xPfazTivGA9zg0acV7QiFy/Nf7+3//78Q/+wT9odTfYop38Hn1o6aFE22vWfr4O9O9ge3P82pvj194cv/b1W7/1W63uwoHU2dkp1/9/bCfHXTq0FIfjcBxeOhyHlw833c5+zm+3wnd5soxnsoxnsoxnsoxnsoxnstzb3x3NZ6I0paura8P15XI5Iu4VYgAAAAAAAAAAAAAAALtDgcUuy2Qy9SKKRlZmt8hkMrvUIwAAAAAAAAAAAAAAQIHFLstms/UiikZKpVJERPT39+9SjwAAAAAAAAAAAAAAAAUWu+zChQsREVEsFhuuv3HjhuIKAAAAAAAAAAAAAADYZQosdkC1Wo3R0dGYnp5esy6bzUZ/f3+89tprDWMnJiZidHR0p7sIAAAAAAAAAAAAAADcR4HFFpRKpYi4V0CxkfHx8bh8+XLkcrmG6wuFQkxMTKyZxWJkZCQuXrxoBgsAAAAAAAAAAAAAANhlHa3uwF43MTER+Xw+IiJmZmYiIuKll16qL8vlcjE8PLwqpr+/P9LpdJw/f75hm+l0OmZnZ2N0dDTS6XQcP3485ufnY2BgIIaGhnbw/wYAAAAAAAAAAAAAAGhEgcUDDA0NbbnoIZvNRqVS2XCbdDpdL9IAAAAAAAAAAAAAAABa63CrOwAAAAAAAAAAAAAAANBqCiwAAAAAAAAAAAAAAIADT4EFAAAAAAAAAAAAAABw4CmwAAAAAAAAAAAAAAAADjwFFgAAAAAAAAAAAAAAwIGnwAIAAAAAAAAAAAAAADjwFFgAAAAAAAAAAAAAAAAHngILAAAAAAAAAAAAAADgwFNgAQAAAAAAAAAAAAAAHHgKLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgdfR6g4AAAAAAAAArXN18GqruxDPTz7f6i4AAAAAAJjBAgAAAAAAAAAAAAAAQIEFAAAAAAAAAAAAAABw4HW0ugMAAAAAAAAAAMDumR2fjbnCXKTSqYiISGfSMTA20HDbWrUWb156MyIijh0/FuX5cvQM9ETvUO+67TcTAwAAsBcosAAAAAAAAABgT/rZ1Z/FzW/cjMPLh1vWh+cnn2/ZvgGSVqvW4j9+7j/GE/1PxAtTL9SXV0qVmBqdWlNkUavWYrxvPHKFXHRnu+vLJ0cm4+aNmw2LMpqJAQAA2CtadxcKAAAAAAAAAADYNSvFFZ8scvjByA+iOF5cs30hV4gnh55cVSgRETGYH4zieDFK06VEYgAAAPYKBRYAAAAAAAAAALDPXb98PSqlSsMZJFLpVJx8+uSqZZVSJUrTpXh65OmG7fWe743rY9e3HQMAALCXdLS6AwAAAAAAAAAAwM66dulaZIezDdflCrk1y2byMxER0ZnpbBjT1dMVxfFi1Kq1SKVTTccAAADsJQosAAAAAACANSqlSlwbuxYREbVyLWrVWmQGMnH24tmG28+Oz8ZcYS76Rvoi05+JVDoVlVIlFouL8fPXfh7PvvJsdGe718TVqrV489KbERFx7PixKM+Xo2egJ3qHetftWzMxwN52dfDqjrS7dGgpyt3luPmNm3F4+fADt39+8vkd6QcAtNrcxFzUqrU4deHUpmPeLb67YRHEShHFwsxCZPozTccAAADsJQosAACAXTE3MedhJwAAaBNzE3Nx88bNGMwPrlo+3jces/nZ+Mr8V9bE1Kq1KE2XojRdWrU8lU5FrpBbt7hivG98zfrJkcm4eeNmDIwNJBIDAAAH3c9f+3lERD2HXiwuxsLMQpx8+mTDXD3iXtH10a6j67a5UkhRKVW2FQMAALCXPPg1LQAAANtUq9aikCvE7Phs1Kq1VncHAADYQK1ai5+/9vOGhQqD3xmMSqkSkyOTDWPP5c/FmYtnoneoN7LD2TiXPxejldF130xbyBXiyaEn1zzQNZgfjOJ4cU2xRrMxAACwX9356E589KuP6n/+7m//ruF2i8XF+n9fv3w9bpdvR99wX0REXBm40jCPvl2+veFsFCuFFPff928mBgAAYC8xgwUAALBtkyOT8VTuqXUfmlp5E9UPRn4QPxj5wYZt5Qq5+kwXs+OzMVeYi76Rvsj0ZyKVTkWlVInF4mL8/LWfx7OvPLvuW3DfvPRmREQcO34syvPl6BnoMYMGAABswsLMQsxNzMXU6NSaIouV/Pvt6bcbxj51/qkNH6a6X6VUidJ0Kc7lzzVc33u+N66PXV91ndFMDAAA7GfXLl2LH339R/XPt+JWw+1WCh9mx2fj7MWz9eXd2e7IFXLxJ0/8SeQKuVW59GaLID58/8NtxQAAAOwlCiwAAICmrDzYNJufjcXiYjyVe2rDbTszndGd7Y5UV+OHrWrlWlRKlVVFELVqLUrTpTVvzkqlU5Er5NYtrhjvG1+zfnJkMm7euNnwLbwAAMDHjnYdjVQ6FceOH1t3m80WUWxkJj8TERGdmc6G67t6uqI4XoxatVbfXzMx7D1XB6+2ugsREfH85POt7gIAwLY9+8qz8cxXn6l/vnnzZnyz95trtlspfFiZQeJ+qXQqMv2Z+MHID+Ir81/Zuc4CAAC0AQUWAADAls2Oz0ZpqhSZgUz0j/XHlYErG25/88bNeGHqhXUfgoqImBqdiv6x/jXLz+XPRXm+HNVSNVJdqTjZd7I+bXkjhVwhnhx6ck3xxWB+MMY6x6JnoMfbbAEAYAPd2e4YrYw2XLdYXIyIiCf6n9j2ft4tvrthEcTK9cPCzEI9h28mBgAA9rOOIx3RceTjx39+61e/1XC7VDoVtWpt3Tw5M5CJuYm5WCwu1u+vr8Q8yP3F2c3EAAAA7CUKLGiaN0wBABxcfcN99SKHlQesHmSj4orF4mJ09XQ13Oap809t+s2zK7NqnMufa7i+93xvXB+77kErAABo0vTodHRmOh84M9xicTEWZhbi5NMnG848F3Evf2/09twVK9cBlVJlWzEAAMC9mSs2multJc9emFmo5/Ab5d4REbfLtyNi9Qx3zcQAAADsJQosAACAHff0yNMbrp/Jz8RgfnDb+5nJz0TE+sUcXT1dURwvbvgjEgAA7Ed3ProTdz+6W//8mw9+s6X4SqkS18auRTqTjhemXlh3u9J0KSqlSmT6M9E33BeLxcW4MnAlzo6eXVPofLt8e8NC7JUHs+5/+20zMQBb4QVjAOxX3dnuTRUi359Ld2Y6Y2Fm4YHb3p+jNxMDAACwlyiwAAAAdtxGP5RMjU498O23m/Vu8d0NCydW+rEws2AWCwAADpRrl67Fj77+o/rnW4dvbSpubmIubt64GdVSNdKZdPQM9Ky77Uq+ffbi2fqy7mx35Aq5GOsci+HZ4VWzWWy2COLD9z/cVgwAABBx8vTJmJuYW/cFRCszS9yfsz+efTxK06V121wp2Lj/fnszMQAAAHvJ4VZ3AAAAOLgWi4vR1dO1qdkkFouLMTs+G4vFxXW3qZQqG04/vrKfzbylCwAA9pNnX3k2vnbra/U/f/B//sGm4nqHemNgbCByhVwMjA3E9bHrUcgVGhY69A71Ru9Q75rlqXQqeod6o5ArbPv/AwAAaM5Krr5e8UN5vhwRESefPllfdurCqYiIde/LL9xY+zKjZmIAAAD2EgUWAABA3Z2P7sRHv/qo/uc3H/xmR/d37dK16Bvu23Cb0nQprl++HhFR3/bKwJWGPwLdLt/esFhjpfhis2+9BQCA/aLjSEcc+dSR+p+HH324qXZyhVzMTcxtuVji5OmTUSlVVhU7p9KpTeXmx44f21YMAABwb8a53qHeuHbpWsP1v5j4RZy5eGbVPfbubHdk+jPx1mtvNYyZm5iLs6NnVy1rJgYAAGAv6Wh1BwAAgL3j2qVr8aOv/6j++dbhWzu2r7mJuUhn0htu05npjIiIsxc//rGlO9sduUIuxjrHYnh2eNV05ZstnPjw/Q+33mEAAKA+G8XcxFyUpkubfvPsykNai8XFep6/0exzEfcKqO+PbTYGAAC4Z/A7gzHeNx6z47OrXn5UyBWiM9MZA2MDa2JyhVyM943HqQunVt2PnxyZjDMXzzS8JmgmBgAASM7s+GzMFebq98rTmXTDfD/i3rM2b156MyLuvbyoPF+OnoGehjNWbyemnSiwAAAA6p595dl45qvP1D+/88478c3f/eaO7OvapWsx+J3BDbdZ78Jr5aGuQq4QX5n/yk50DwAADqxatRa3y7frhRCftFIoPT81X38wanJkMt6efntL+XlnpjMWZhY27MfKdtuJAQAA7kmlUzE8OxxvXnqzPitdrVqL3lzvurNNr8RMjU5FKp3a1MNTzcQAAADbV6vW4j9+7j/GE/1PxAtTL9SXV0qVmBqdWlNkUavWYrxvPHKF3Jri6Js3bjYsymgmpt0osAAAAOo6jnREx5GPLxMefvThHdlPpVSJxeLiqgutrTp5+mTMTcxFpVSpPzyVSqc2NYvFsePHmt4vAADsd2OdYxERMVoZbTgTxEo+fX/uvTizWJ89opGVbe+/Bng8+3iUpkvrxlRKlYiIVW+3bSYGAAD4WCqd2vIDT6l0KgbzG78wKYkYAABge1aKKz6Z8/9g5AexMLOwZnkhV4gnh55c8/zOYH4wxjrHomegZ8399mZi2s3hVncAAAA4eGbyM9t+o+zKg16LxcX6sqNdRzeMWXngq9FDYgAAwD2pdCo6M53r5s3l+XJERJzsO1lf9kT/EzFaGV23zYUbC/V2V5y6cCoiVuf0n4z55I8wzcQAAAAAAMB+d/3y9aiUKg0LqlPpVJx8+uSqZZVSJUrTpXh65OmG7fWe743rY9e3HdOOFFgAAAC77u3ptx9YYDE5Mhnf6vnWltrtzHRu6q252y3uAACA/Sw7nF01dfgnzX1vLlLpVDx1/qn6slMXTsXs+GzD7SulSsxNzMXgd1a/vbY72x2Z/ky89dpbjfczMRdnR89uOwYAAAAAAPa7a5euRXY423BdrpBbc99/Jj8TEes/Q9PV0xWl6dKq2aybiWlHHa3uAAAAcPAsFhejd6h3421mFjdVLHH/lIOPZx+P0nRp3ZhKqRIR4Y22AACwgYGxgZgcmYynck81nPo7IuJLP/zSqhkuurPdUZouxfXL1+PsxY8LHCqlSoz3jceZi2caXgPkCrkY7xuPUxdOrcrtJ0cm48zFMw1z92ZioJGrg1c3td3SoaUod5fj5jduxuFl7y4DAAAAAPaWuYm5qFVr9VmgN+Pd4rvrzmQd8XERxcLMxzNHNxPTjhRYAAAAu2qxuBgREamu9S+4IiKe6H8ihseG112/cGMhUunUqqr4UxdOxY8v/zgWi4urHrS6P6adL+AAAGC3DOYHY25iLgq5QqS6UlEr16JWrcXj2cfjD9/+w4Y/oJy9eDZK06WYHJmsb59Kp+JLP/xSw/w84t605MOzwzE1OhWpdCqOHT8W5fly9Az0rFuU3UwMAAAAAADsVz9/7ecR8fFLSheLi7EwsxAnnz657v35SqkSR7uOrtvmyu8AKy8zbTamHSmwAAAAdtVGs1Lc79SFUzE7Pht9w31r1lVKlZibmItcIbdqeXe2OzL9mXjrtbcaXiDOTcytmfIQAABorHeod8sFC5n+zJaLmlPpVAzmB3c8BgAAAAAA2smdj+7E3Y/u1j//5oPfNNxu5WWnERHXL1+P7mx39A33xWJxMa4MXImzo2fX3Lu/Xb696qWmn7RSSFGr1rYV044UWAAAANuyUnW+2Yujle03mjIw4l6xRGm6FNcvX4+zF8+uih/vG48zF880fNgrV8jFeN94nLpwalWRxeTIZJy5eMYMFgAAAAAAAAAA7HnXLl2LH339R/XPtw7farjd7fLtSKVTMTs+u+oZm+5sd+QKufiTJ/4kcoXcqmdmNvucz4fvf7itmHakwAIAANiyuYm5mM3PRkTEwsxCRERMvjRZX9ab620480RExMmnT0YqnYpPn/70A/dz9uLZKE2XYnJkMmrlWtSqtUilU/GlH35p3SkMU+lUDM8Ox9ToVKTSqTh2/FiU58vRM9Cz5bfvAgAAAAAAAABAKzz7yrPxzFefqX9+55134pu/+801260UPqzMIHG/VDoVmf5M/GDkB/GV+a/sXGf3EQUWm1StVuPSpUsREXH8+PGYn5+PgYGBGBoa2labo6OjERFRLpcjImJgYCCGh4e332EAANhBvUO9TRcrdGe7Y7QyuuntM/2ZLc86kUqnYjA/uNWuAQAAAAAAAADAntBxpCM6jnz8uP/Djz7ccLtUOhW1am3d52syA5mYm5iLxeJi/YWmKzEPcuz4sTX72UpMO1JgsQnVajX6+vqiUChENputLx8ZGYkbN27E2NjYltssFouRy+Uin89Hf39/ffnAwEDMz8831SYAAAAAAAAAAAAAAAfH0a6jUavWIpVOrbs+ImJhZqFeYNFotov73S7fjohY1WYzMe3ocKs70A5yuVwMDQ2tKq6IiMjn8zE+Ph7T09NNt3l/ccVKm5cvX26qTQAAAAAAAAAAAAAADo6VookHuX/2ic5MZ70gYqNtOzOd24ppRwosHqBUKsX09HSMjIw0XH/+/PktzzZx+fLlKJVK8corr6xZl8lkor+/3wwWAAAAAAAAAAAAAABs6OTpkxGxuoDifitFEfcXYjyefXzd7SMiKqVKRERk+jPbimlHHa3uwF6Xz+cj4l7hQyM9PT0xPj4e1Wo10un0ptqcmpqKiFh3+2w2G5cvX95yXwEAAAAAADZydfBqq7sAAAAAAECCeod6Y3p0OkrTpegd6l2zvjxfjoiIk0+frC87deFU/Pjyj2OxuNhwBoyFGwtrCiWaiWlHZrB4gGKxuGHhxErhxczMzKbbnJmZ2bDNnp6e+r4BAAAAAAAAAAAAAKCRzkxn9A71xrVL1xqu/8XEL+LMxTORSqfqy7qz3ZHpz8Rbr73VMGZuYi7Ojp5dtayZmHZkBosHKJVK0dXVte76lUKJUqm06Ta7urqiXC4/cLuZmZnIZrObbhcAAAAAAACAZO2V2X+en3y+1V0AAAAA9qjB7wzGeN94zI7PRt9wX315IVeIzkxnDIwNrInJFXIx3jcepy6cWjUjxeTIZJy5eKbhbBTNxLQbBRYPUC6X67NUNLJSfFGtVjfdZjabjYmJiXXXz8/PP7DN23duxwd3Pqh/fvjww/HwQw9vug/7yZ07d7YVu7S0tK02+JjxTJbxTJbxTJbxTJbxTJbxTNbS0lKru3AgtTrf9/dnb/G9RiPOC9bj3KAR5wWNyPVbo1KpxLFjx+qfjxw5EkeOHNnVPiwdcuy3avnQcizHciwfWo6lMH7tpl2Pn3+377lz505bHr+d0m7nhTy0vTl+7csxa41bt26tetlqK3L9vWI71xxJ5W7+HtzjuzxZxjNZxjNZxjNZxjNZxjNZG93bT6VTMTw7HG9eejMKuUJERNSqtejN9a4quGgUMzU6Fal0Ko4dPxbl+XL0DPRE71BvYjHtRoHFA2y2cOL999/fdJsjIyMxMTERxWKx4QwV09PTD2xz9D+Prvr8+9nfj88//flN92E/uXat8XQ2m7G0tBTvvPNOREQcPnw4qS4dWMYzWcYzWcYzWcYzWcYzWcYzWVvJc0lOq/P97eTYJM/3Go04L1iPc4NGnBc0ItdvjX/yT/7Jqs//8l/+y3jxxRd3tQ/l7gfPsM1qy7Ect//e7ShHOQ7FoVZ3hy1q1+Pn2vyepaWltjx+O6Xdzgt5aHtz/NrX/Q/5s3s+85nPrPrcilx/r9jONUdSuVu7/Zu5U3yXJ8t4Jst4Jst4Jst4Jst4JutB9/ZT6VTDmSoeFDOYH9zxmHaiwKIF+vv7o7+/Py5duhSFQmHVuunp6ejv749isRjHjx9ft42x/2EsOlOd9c8PH344Hl48mDNYPPvss03HrlTEnTlzJjo6/HXYLuOZLOOZLOOZLOOZLOOZLOOZrJWLXHZXq/P97eTYJM/3Go04L1iPc4NGnBc0Itdvjf/yX/5LfPrTn65/bsVbbW9+4+au7m8/WD60HOUoR9e7XXFo2QPe7aZdj59r83vu3LkTb732Vtsdv53SbueFPLS9OX7t66//+q9b3YUD6S//8i/jH/7Df1j/fJBnsNjONUdSuVu7/Zu5U3yXJ8t4Jst4Jst4Jst4Jst4Jsu9/d3hTH2AdDq9qVksNiqGaGRqaipGRkZidHQ0XnnllYj4eOaKnp6e+r7Xc7TjaDza8ejqhctb6sK+sd0v3MOHD0dHR4cv7oQYz2QZz2QZz2QZz2QZz2QZz+R4e0BrtDrf93dn7/G9RiPOC9bj3KAR5wWfJNdvjc7Ozujq6mppHw4vO/ZbtRRLcSgOxaHlQ8avDbXr8fNv9sfa8fjtlHY8L+Sh7c3xa0+OV2s89thjLc/194rt/JudVO7m78HHfJcny3gmy3gmy3gmy3gmy3gmx7393eFMfYAHXfysTK24UTHEevL5fFSr1XphRX9/f6TT6bh8+XJERDz99NNbbhMAAAAAAAAAAAAAANg6BRYPkMlkYmZmZt31K7NbZDKZptpPp9MxNDS0atmNGzciIiKbzTbVJgAAAAAAAAAAAAAAsDXmCXmAbDZbL6JopFQqRcS92SeSUiwWY3h4OLH2AAAAAAAAAAAAAACAjSmweIALFy5ExL2ih0Zu3Lix5eKKYrEYnZ2dMT093XBdqVSK0dHRrXcWAAAAAAAAAAAAAABoigKLB8hms9Hf3x+vvfZaw/UTExMNiyGq1WqMjo42LKJYmfWikZdeeinGxsYik8k032kAAAAAAAAAAAAAAGBLFFhsQqFQiImJiTWzWIyMjMTFixcbzmAxPj4ely9fjlwut2Zdf39//c+KarUauVwu+vv74+LFi8n/TwAAAAAAAAAAAAAAAOvqaHUH2kE6nY7Z2dkYHR2NdDodx48fj/n5+RgYGIihoaGGMf39/ZFOp+P8+fMN2xsbG6sXX1Sr1YiIGB0dbVisAQAAAAAAAAAAAAAA7CwFFpuUTqcjn89vevtsNhuVSmXd9ZlMJgqFQhJdAwAAAAAA2sD//uL/HsePHm91NwCg7V0dvNrqLkRExPOTz7e6CwAAAEDCFFgAAAAAAAAA7CF75eHxVls6tBTR3epeAAAAAHCQHG51BwAAAAAAAAAAAAAAAFpNgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgafAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceB2t7gAAAAAAAAAAsLGrg1db3YV4fvL5VncBAAAAYEcpsKDtbedG4tKhpSh3l+PmN27G4eXmJ3RxIxEAAAAAAAAAAAAAoL01/0Q5AAAAAAAAAAAAAADAPqHAAgAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAAAAAeeAgsAAAAAAAAAAAAAAODAU2ABAAAAAAAAAAAAAAAceAosAAAAAAAAAAAAAACAA0+BBQAAAAAAAAAAAAAAcOApsAAAAAAAAAAAAAAAAA48BRYAAAAAAAAAAAAAAMCBp8ACAAAAAAAAAAAAAAA48Dpa3QEAAAAAAAAAAACad3Xwaqu7AAAA+4IZLAAAAAAAAAAAAAAAgANPgQUAAAAAAAAAAAAAAHDgKbAAAAAAAAAAAAAAAAAOPAUWAAAAAAAAAAAAAADAgdfR6g4AAAAAAAB7T6VUiWtj1yIiolauRa1ai8xAJs5ePLtuTK1aizcvvRkREceOH4vyfDl6Bnqid6i35TEAAAAAAAAPosACAAAAAABYZW5iLm7euBmD+cFVy8f7xmM2Pxtfmf/KmphatRbjfeORK+SiO9tdXz45Mhk3b9yMgbGBlsUAAAAAAABsxuFWdwAAAAAAANg7atVa/Py1nzcsVBj8zmBUSpWYHJlcs66QK8STQ0+uKnqIiBjMD0ZxvBil6VLLYgAAAAAAADZDgQUAALBtkyOTD3yIaXZ8Nq4MXIm5ibmoVWsREVEpVWJuYi4KuUIsFhcbxtWqtZganYqp0am4fvl6TI5MxtzE3Ib7aiYGAAC4Z2FmIeYm5mJqdGrNupWihren3161vFKqRGm6FE+PPN2wzd7zvXF97HpLYgAAAAAAADaro9UdAAAA2tPKg02z+dlYLC7GU7mnNty+Vq1Fabq0phAjlU5FrpBb8/bZlZjxvvE16ydHJuPmjZsN36jbTAwAAPCxo11HI5VOxbHjx9bdJpVOrfo8k5+JiIjOTGfD7bt6uqI4XoxatVaP3a0YAAAAAACAzTKDBQAAsGWz47MxPTodERH9Y/2bjjuXPxdnLp6J3qHeyA5n41z+XIxWRiPTn2m4fSFXiCeHnlxTfDGYH4zieLHhrBnNxAAAAB/rznbHaGU0zl48u2bdysxzT/Q/sWr5u8V3NyxoWCmIWJhZ2PUYAAAAAACAzTKDBQAAsGV9w33RN9wXER8/YLUZT51/atNvkV2ZIeNc/lzD9b3ne+P62PVVxRnNxAAAAJs3PTodnZnONTPDVUqVONp1dN24leuASqmy6zEAAAA7bfKlyfj7qb/f6m4AAAAJUGABAADsSTP5mYj4+A20n9TV0xXF8WLUqrX6Q1TNxAAAwEFw56M7cfeju/XPv/ngN1uKr5QqcW3sWqQz6Xhh6oU162+Xb6+bh0dEvSiiVq3tegwAAHDP7PhszBXmom+kLzL9mUilU1EpVWKxuBg/f+3n8ewrz66ZHTriXn795qU3IyLi2PFjUZ4vR89AT/QO9a67r2ZiAAAA9gIFFgAAwJ70bvHdDYsgVh6qWphZqM9I0UwMAAAcBNcuXYsfff1H9c+3Dt/aVNzcxFzcvHEzqqVqpDPp6BnoabjdZgsaPnz/w12PAQAA7qlVa1GaLkVpurRqeSqdilwht25xxXjf+Jr1kyOTcfPGzTWz2zUbAwAAsFcosAAAAHbdYnExFmYW4uTTJxv+YBNx7w25K2+fbWSlkKJSqmwrBgAADoJnX3k2nvnqM/XP77zzTnzzd7/5wLjeod5Vb5i9MnAlZvOzMfidQbPCAQBAGzqXPxfl+XJUS9VIdaXiZN/J6BvuW3f7Qq4QTw49ueZe/mB+MMY6x6JnoGfNC42aiQEAANgrFFgAAAB1dz66E3c/ulv//JsPfpNo+6XpUlRKlcj0Z6JvuC8Wi4txZeBKnB09u+bHlNvl2/UZJxpZKaS4/w22zcQAAMBB0HGkIzqOfPyTwMOPPtxUO7lCLsY6x6JWrcULUy/Ul6fSqU3l2ceOH9v1GAAA4GNPnX9q08XSlVIlStOlOJc/13B97/neuD52fdX9/WZiAAAA9hIFFgAAQN21S9fiR1//Uf3zrcO3Emt7pfDh7MWz9WXd2e76A1rDs8Or3mZiOP/jAADsLklEQVS12SKID9//cFsxAADA5qXSqegd6o25ibkoTZfqD0VtNJNcxL1i6JX4FbsVAwAANGcmPxMRse6Ljbp6uqI4XoxatVbPwZuJAQAA2EsOt7oDAADA3vHsK8/G1259rf7nD/7PP0is7d6h3ugd6l2zfOUBrUKukNi+AACA5tWqtaiUKuuuT2fSERExPzVfX9aZ6awXN6zX5sp2ux0DAAA0593iuxsWQazk3QszC9uKAQAA2EvarsDijTfeaHUXAABg3+o40hFHPnWk/ufhRx/elf2ePH0yKqXKqoe4UunUpmakOHb82LZiAACA1cY6x+JbPd9aN7deyafvX/949vENc/GVXH9lxovdjAEAANZaLC7G7PhsLBYX192mUqpsOIvcSiHF/ff2m4kBAADYS9quwGJgYKDVXQAAABK28oPK/T/kbPQDTETU31p7/5uwmokBAABWS6VT0ZnpXDdvLs+XIyLiZN/J+rJTF05FRKz7cNbCjYU1RQ+7FQMAAPvZnY/uxEe/+qj+5+/+9u823L40XYrrl69HRETfcF9ERFwZuBKl6dKabW+Xb294P33lnvz9RdDNxAAAAOwlHa3uwFY99thj8a/+1b+Kf//v/32ruwIAAGzS5MhkvD39dnxl/iubjunMdG44RfjKjy8r04k3GwMAJO/Xv/5107HvvfdevPzyyzE7Oxt9fX3x6quvxokTJ5pq65FHHmm6H3CQZYez8fTI0+uun/veXKTSqXjq/FP1Zd3Z7sj0Z+Kt196K7mz32piJuXhh6oVVy3YrBgAA9rNrl67Fj77+o/rnW3Fr3W1X7o2fvXi2vqw72x25Qi7GOsdieHZ4VZ692SKID9//cFsxAAAAe0nbFVhUq9XI5/MxPz8fY2Nj8ZnPfGbX9nvp0qWIiDh+/HjMz8/HwMBADA0NbavN0dHRiIgol++98ev06dNx8eLF7XcYAAD2kMWZxfrsEY2s/OBy/w83j2cfb/jGrBUr04ff/3baZmIAgOQ9+uijibQzNTUVPT09TccvLy8n0g84aAbGBmJyZDKeyj21Jncu5AoREfGlH35pzVtpc4VcjPeNx6kLp1bl9pMjk3Hm4pmGefhuxQAAwH717CvPxjNffab++ebNm/HN3m823LZ3qLfh8lQ6Fb1DvVHIFbb0oiQAAIBWKP2wFKWpUsShiK6erjj59Ml4/DOPJ9Z+2xVYRETk8/n43Oc+F9PT03Hp0qUYGBiI8+fPx6c+9akd2V+1Wo2+vr4oFAqRzWbry0dGRuLGjRsxNja25TaLxWLk8/kYGxuLdDpdXz4xMRF9fX0xOzubRNcBAGBPeKL/iRgeG153/cKNhUilU6tmljh14VT8+PKPY7G42PDNtAs3FtY8ONVMDAAAsNZgfjDmJuaikCtEqisVtXItatVaPJ59PP7w7T9cU1wRce+hrOHZ4ZganYpUOhXHjh+L8nw5egZ6NnyQazdiAABgv+o40hEdRz5+/Oe3fvVbTbVz8vTJmJuYi0qpUr9Xn0qnNjUjxbHjx+r/3UwMAADA/S4fvxwX319/woLM5zKR+Vwmardqcbt8O0rTpZjJz8TA2EAc+dSRbe+/7Qos8vl8fPnLX46IiJdeeileeuml+OlPfxoXL16MQ4cOxcjISOKzWuRyuRgaGlpVXLHSl87OzhgYGIj+/v4ttTk6OhpTU1Nrlg8NDUW5XI6RkZHI5/Pb6jcAAOwVpy6citnx2egb7luzrlKqxNzEXOQKuVXLu7PdkenPxFuvvdWwWGJuYi5emHph2zEAQPI++OCDpmO/8IUvxBtvvBF3796Nhx56KJ577rn4/ve/n2DvgM3qHerdcsFCKp2KwfzgnowBAADWt1JEvVhcrBdYHO06umHMyszV9xdgNxMDAABwv83OUp96LBWpx1LR91Jf1G7VYmp0Ks59+9y293942y3sspdeemnNss9+9rPx6quvxh//8R/HjRs34sKFC/Ef/sN/SGR/pVIppqenY2RkpOH68+fPb3kGi2KxGJnM+m/NPX/+fExPT2+pTQAAaJVKqRIRseEbqbqz3VGr1uL65etrYsf7xuPMxTMNH9zKFXLxi4lfxGJxcdXyyZHJOHPxTMPZKJqJAQCS9cgjjzT958qVKzEwMBDHjx+PgYGBuHLlStNtAQAAAPdMjkzGt3q+taWYzkxnvSCikZXfBe6fnbqZGAAAgPsdOnRoyzGpx5Ir4m67GSw28thjj62a1eLll1+OQ4cOxcsvvxz/9J/+06baXJlFYr2CiJ6enhgfH49qtRrpdHpTba4UbaynXC5vui0AAGiFuYm5mM3PRkTEwsxCRERMvjRZX9ab610zW8XZi2ejNF2KyZHJqJVrUavWIpVOxZd++KWGs01E3HuD1fDscEyNTkUqnYpjx49Feb4cPQM9675Jt5kYAGDvOHHiRLz++uut7gYAAADsK4szi5sqfLj/fv3j2cejNF1aN2blBUz3v9iomRgAAGD7ZsdnY64wF30jfZHpz0QqnYpKqRKLxcX4+Ws/j2dfebbh8zm1ai3evPRmRMSmn7FpJman1W7VYnFm8cEbbsK+KrC4X09PT/T09MSlS5difHw8MplMjI6Oxpe//OUttVMsFjcsdlgpvJiZmYn+/v5NtZnNZqNUKkUul4tCobBmfT6fjwsXLmypnwAAsJt6h3qbuijK9Ge2/KNJKp2KwfzgjscAAAAAAMB+9UT/EzE8Nrzu+oUbC5FKp1bNLHHqwqn48eUfx2JxseGDWAs3Ftbc828mBgAA2L5atRal6dKagudUOhW5Qm7d4orxvvE16ydHJuPmjZsxMDaQSEwj1V9WGy5fXl6+t/6vqhHLG7dRq9bidvl2LBYX49qla9F7PpkCj31XYPHGG2/E2NhYfYaI5eXlGB4ejpGRkYiI+qwWo6Oj8Tu/8zsPbK9UKkVXV9e661eKL0ql9avvPymTycTw8HCMj49HT09P5PP5enHG9PR0VKvVGBsb23R7AAAAAAAAAACwnlMXTsXs+Oya2acj7s0qMTcxF7lCbtXy7mx3ZPoz8dZrbzV8GGtuYi5emHph2zEAAEAyzuXPRXm+HNVSNVJdqTjZd7LhNcCKQq4QTw49uSZ3H8wPxljnWPQM9KwpkG4mppGF2YVYuLEQlVIlStOl+OjWR6vWfyvzrQe2sWJ5eTky/Zk49+1zm47ZSNsVWLzxxhvx3HPPrVr2q1/9KsbHxyOfz0epVLo3SP/PjBUvvfTSqm1fffXVuHXrVoyPj0e5XI5XXnklPvWpT627v3K5XJ+lopGV4otqtbql/498Ph89PT0xOjoaAwMDMTw8HD09PZHNZiOfzz8w/vad2/HBnQ/qnx8+/HA8/NDDW+oDEcuHlmM5lmP50HIsxVLT7dy5cyfBXrWvO3fuxNLSkvFIiPFMlvFMlvFMlvFMlvFM1tJS8zkSzWt1vu/vz97ie41GnBesx7lBI84LGpHrt8aHdz+MI3eO1D+7t98ekvotgdZw/Nqb47f3bCWn3Mk8dOnQ3jgf9nOO7Tqifa13zLqz3VGaLsX1y9fj7MWz9eWVUiXG+8bjzMUzDWeuzhVyMd43HqcunFrzdtozF880fHCqmZh21+r7+vuF53iS5bs8WcYzWcYzWcYzWcYzWcYzWQ+6t//U+acilU5tqq2VwoZz+cZFCb3ne+P62PVV+XszMevp/WJv9H7x42uQxeJiTI9OR+mHpTh06FA8+cUnN/X/0ZnpjMxAJjKfS+46o+0KLAYGBuLu3bsRca/YIp/Px8TERH06kJXZKj772c+u28Zjjz0Wf/RHfxS3bt2KL3/5y3H58uV1Z7PYbOHE+++/v6X/j4iIixcvRjqdjpGRkRgfH490Oh2FQmFTsaP/eXTV59/P/n58/unPb7kPB91yLMftv3c7ylGOQ3Go6XauXbuWYK/a19LSUrzzzjsREXH48OEW96b9Gc9kGc9kGc9kGc9kGc9kNZPnsn2tzvflt3uL7zUacV6wHucGjTgvaESu3xqtzvVpTlK/JdAajl97c/z2nq3cN9rJPLTcXU60vWbt5/toriPaV7m8/t+PsxfPRmm6FJMjk1Er16JWrUUqnYov/fBLDWebiIhIpVMxPDscU6NTkUqn4tjxY1GeL0fPQE/DgoxmY9qdXD8ZnuNJlu/yZBnPZBnPZBnPZBnPZBnPZCV5b38mPxMR9woUGunq6YrieLF+3dBszGZ1Z7vjhakXYnJkMn4x8YvIfS/34KAd0nYFFo899lj843/8jyMi1sxWcf78+Xjssce21Nb3vve9+IM/+IP49re/vVNdXtfo6Gj09PTE8vJyjI6OxuXLl+uzWTxoFoux/2EsOlMfn5wPH344Hl5U+b5Vy4eWoxzl6Hq3Kw4tN39h9uyzzybYq/a1UmF45syZ6Ohou6+XPcd4Jst4Jst4Jst4Jst4JmvlIpfd1ep8X367t/heoxHnBetxbtCI84JG5Pqt0epcn+Yk9VsCreH4tTfHb+/Zyn2jncxDb37jZqLtNWs/30dzHdG+/vqv/3rD9Zn+zJZnkEilUzGYH9zxmHYm10+G53iS5bs8WcYzWcYzWcYzWcYzWcYzWUne23+3+O6GRRArRRQLMwv1a4hmYrZqMD8Yi7OLTcUmpS3P1Pn5+YiIGBoaildeeWXD2So2Y6OijHQ6valZLI4fP76lfQ4MDMTo6Gj09/dHRMTY2FhcuHAhcrlcjI+PR7lc3nA2i6MdR+PRjkdXL1zeUheIiKVYikNxKA4tH4rDy81XxvnS/9jhw4ejo6PDmCTEeCbLeCbLeCbLeCbLeCbH2wNao9X5vr87e4/vNRpxXrAe5waNOC/4JLl+axx76Jh7+20oqd8SaA3Hr705fnvPVvPJncpD98r5sN/za9cR7cnxao1W39ffLzzHkzzf5ckynskynskynskynskynsnZ7L39xeJiLMwsxMmnT647W12lVImjXUfXbWOlkKJSqmwrphnPvtJcwez0K9PRf6l/W/uOiNgbdx22aGRkJCqVSnzve99rurji1q1b8corr8Qvf/nLuHXr1rrbdXV1bdjOytSK6XR60/u+fPlyZLPZenHFimw2G/Pz8zE8PBwTExMxPT296TYBAAAAAAAAAAAAANgf7nx0Jz761Uf1P7/54Dcbbl+aLsX1y9cjIqJvuC8iIq4MXInSdGnNtrfLtzecjWKlkKJWrW0rphm9X+xtKq44XtzWfle0ZSnQt7/97W238b3vfS/GxsZiYmIiRkdH190uk8nEzMzMuutXZrfIZDY/jUk+n4/Z2dkN18/MzMTU1NSaIgwAAAAAAAAAAAAAAPa3a5euxY++/qP651uH159UoDPTGRERZy+erS/rznZHrpCLsc6xGJ4dXjWbxWaLID58/8NtxWxX9ZfVTc2IsVhc3HZhx4q2K7A4f/58Yu3Mz8/H6dOn44tf/OK622Wz2Q1nkiiV7lX0bKUQolQqPXDGi5GRkQ2LMAAAAAAAAAAAAAAA2J+efeXZeOarz9Q/v/POO/HN3/1mw217hxrP+pBKp6J3qDcKuUJ8Zf4rO9LPnVD8D8WYHp1OrGhiK9quwOLVV1/dcP0Pf/jDmJqaikOHDkVPT088/fTT8ZnPfGbNdo899lj88R//8QP3d+HChbh8+XIUi8XIZrNr1t+4cWPLs0xkMpkolUobznoxPz8ffX19W2oXAAAAAAAAAAAAAID213GkIzqOfPy4/8OPPtxUOydPn4y5ibmolCr1mS5S6dSmiheOHT9W/+9mYppR+mEpJocnozPTGb253kilUw+MWZxdjLffeHtb+13RdgUWx48fj/fff3/d9Z/73Ofic5/7XNy6dSvK5XJMT09HPp+PsbGx+NSnPrXl/WWz2ejv74/XXnutYYHFxMRETE1NrVlerVbj0qVLMTAwsKYAY2hoKEZHR6NQKDTcZ7VajWKxGK+88sqW+wsAAAAAAAAAAAAAABFRL1BYLC7WCyyOdh3dMOZ2+faq2GZjmvHDr/0wcoVc9H6x8awc67l8/PK29rvicCKt7KLl5eVNbffYY4/FE088ES+99FL88R//cYyOjja9z0KhEBMTE1EsFlctHxkZiYsXLzacwWJ8fDwuX74cuVxuzbqxsbF6fLVaXbWuWCxGLpeLsbGxSKfTTfcZAAAAAAAAAAA4GGp3ak3/ee/X78W//j/+dbz0/30p/vX/8a/jvV+/13RbAADsvsmRyfhWz7e2FNOZ6awXRDSyMlPFSkFGszHNSHWmtlxcERGRfiK9rf2uaLsZLA4dOrTlmMcee2xb+0yn0zE7Oxujo6ORTqfj+PHjMT8/HwMDAzE0NNQwpr+/P9LpdJw/f77h+kKhENPT0/HSSy+tWp7JZBrOiAEAAAAA0Kzbt2/Hr3/96+jo2Pot4ffeey9efvnlmJ2djb6+vnj11VfjxIkTW27nkUce2XIMAAAAsDn/43/6HxNp562/eSv+5z//n5uO/9/O/W+J9AMAgM1bnFncVOFDd7a7vuzx7ONRmi6tG1MpVSIiItOf2VZMM+7v51YMzwxva78r2q7Aohm3bt2KmZmZbbWRTqcjn89vevtsNhuVSmXDbfr7+xvOfgEAAAAAkKTPf/7zibQzNTUVPT09TcVudnZiAABoF1cHr7a6Cztm6dBSlLvLcfMbN+Pw8uEHbv/85PO70CsAAAAaeaL/iRgeW7+4YOHGQqTSqVUzS5y6cCp+fPnHsVhcbFjQsHBjYU2hRDMxzVgpCGmVPVlg8ctf/rLh8pUf4P7qr/7qgT/GVavVKJfLUSwW49KlS+vOJAEAAAAAAAAAANDO/tff/1+bjv3GzDdi7v25WFpeisOHDkfv8d746tNfTbB3AADspFMXTsXs+Gz0DfetWVcpVWJuYi5yhdyq5d3Z7sj0Z+Kt195qWCwxNzEXL0y9sO2YZvTmeuMXf/qLePJfPLmluOlXpqP/0vYnP9iTBRazs7Nx48aNKJVKMT09Hbdu3Vq1PpPZfGXL8vJy9Pf3x7e//e2kuwkAAAAA0Bb+7M/+LM6cORMdHVu/JfyFL3wh3njjjbh792489NBD8dxzz8X3v//9HeglAAAA0KxUR6rp2P/ps/9TvPqXr8Z8dT560j3x8mde3lZ7AADsru5sd5SmS3H98vU4e/FsfXmlVInxvvE4c/FM9A71ronLFXIx3jcepy6cWlUwMTkyGWcunmk4G0UzMVuV+Vwmrv+b61susiiOF/dvgcUXv/jF+OIXv1j/XCwWY3R0NH74wx/GoUOHVq3bSCaTiYGBgfjc5z63U10FAAAAANjzjh49Go888khTBRZXrlyJF198MW7cuBGnT5+O7373u/HII4/sQC8BAACAVnjsyGMx+t+NtrobAABsw9mLZ6M0XYrJkcmolWtRq9YilU7Fl374pYazTUREpNKpGJ4djqnRqUilU3Hs+LEoz5ejZ6CnYUFGszFbVf1lNZ7KPRU/L/w8vnP6O/FE/xPR1dMVnZnOdWMWi4tRq9YS2f+eLLD4pGw2G1NTUzEyMhITExPxve99r9VdAgAAAAA4EE6cOBGvv/56q7sBAAAAAADABjL9mS3PIJFKp2IwP7jjMVuRz+bjo1sfRUTE8vJyLMwuxKFDh3Zsf5/UFgUWK/L5fMzOzra6GwAAAAAAAAAAAAAAQMKOdh2NiIinzj8VqXRqUzGLs4vx9htvJ7L/tiqwiIh45ZVXWt0FAAAAANizbt++Hb/+9a+jo2Nrt/7ee++9ePnll2N2djb6+vri1VdfjRMnTjTVh0ceeaSpOAAAAAAAAOBg68x0xrNfezayX85uKe7y8cuJ7L/tCiy++MUvtroLAAAAALBnff7zn992G1NTU9HT09N0/PLy8rb7AAAAAAAAABw8nZnO6Mx0bjku/UQ6kf0fTqSVNvCnf/qnre4CAAAAAAAAAAAAAACwjnOvnosnnntiy3HDM8OJ7L/tZrBo1ksvvRT/4l/8i1Z3AwAAAAB21J/92Z/FmTNnoqNja7f+vvCFL8Qbb7wRd+/ejYceeiiee+65+P73v79DvQQAAACA/e3Xv/51U3HvvfdevPzyyzE7Oxt9fX3x6quvxokTJ7bczp07d5raPwDAQbcnCyz+8i//Mj7zmc+su24ryuVylEqlqFar2+4XAAAAAOx1R48ejUceeWTLBRZXrlyJF198MW7cuBGnT5+O7373u/HII4/sUC8BAAAAYH979NFHt93G1NRU9PT0NB3/53/+59vuAwBAO6jdqkXxO8U487+c2XZbe67A4mtf+1r8m3/zb6Kvry9+8pOfrFn/3HPPxa1bt1rQMwAAAADYv06cOBGvv/56q7sBAAAAAAAAsCWVUiV+/trP92eBRalUiuXl5ahUKg3Xd3V1RUTE8PBwREQcP358w/bef//9mJ+fjz/90z9NtqMAAAAAAAAAAADQwAcffNBU3Be+8IV444034u7du/HQQw/Fc889F9///ve33M6dO3fipz/9aVN9AABopbffeHvLMdfHrketWktk/3uuwOI73/lODAwMRH9/f8P1mUwmvva1r8WXv/zlLbX7oEIMAAAAAAAAAAAASMIjjzzSVNyVK1fixRdfjBs3bsTp06fju9/9blNt3blzp6n9AwC02veGvhcf3fpoSzHLy8txtPNoIvvfcwUWjz32WLz00kvrrh8YGIinn356y+0+8cQT2+kWAAAAAAAAAAAA7KgTJ07E66+/3upuAAC0zNGue4UST51/KlLpVMNtatVaVEqVWJhZiEx/Jk6ePpnY/vdcgcWD/NEf/VFTcTMzMwn3BAAAAAAAAAAOjquDVze97dKhpSh3l+PmN27G4eXDO9grAAAAYD/pzHTGs197NrJfzm5q++v/5noc7Ty66e0fpO0KLCIi/vRP/zSy2Wz8zu/8Tqu7AgAAAECL/frXv2469r333ouXX345Zmdno6+vL1599dU4ceJEU2098sgjTfcDAAAAAAAAgHsFFp2Zzk1vf/aPzsbc/2cu3n7j7XjiuSe2vf+2K7B4+eWX4zvf+U50dnbG3/zN37S6OwAAAMAB1OoH+u/cudP0/vejRx99NJF2pqamoqenp+n45eXlRPoBAAAA7WYrs5vslOcnn291FwAAAEjAuVfPbTmm94u9Mf3K9MEssCiXy/G5z30ustlkpvAAAAAA2Kq98ED/n//5nyfSBwAAAAAAAADgnrYrsMhkMvHHf/zHre4GAAAAAHvEBx980HTsF77whXjjjTfi7t278dBDD8Vzzz0X3//+9xPsHQAAAAAAAAA7rVqqJtJO2xVYHD9+PH75y1/G7/zO72w57v3339+ZTgEAAAAHSqsf6L9z50789Kc/bboP+80jjzzSdOyVK1fixRdfjBs3bsTp06fju9/97rbaAwAAAAAAAGB31W7V4nbldiJttV2BxR/90R/F+fPn4+WXX47nnntu03HLy8s72CsAAADgIGn1A/137txpev+sduLEiXj99ddb3Q0AAAAAAAAAIuLtN97e9La1ai0qpUrM5mejb6Qvkf23XYFFRMT3vve9+Lf/9t9GPp+P06dPRzabja6urkin0w23n5qailu3bu1uJwEAAAAa8EA/AAAAAAAAADT2vaHvxUe3Ptr09svLy5Hpz8SZ/+XM/5+9/w9u677ze/8XKbkEJcUEyDulqJ25awL73a0heWMB1E0jKfc2FODNZMTOyCKkm2mVdWzxh+uZZOyNCKmd3plt70Sm7HqnuTM1AcVep9qxK4Gx/qAnzjeA6OZa8t4NAUi9kem2Gx4qbkVK/UYA6JVMaEIR3z84pEQTpIiDQwIgn48Zj8Vzzvtz3jqAwAPgvM7Hkv1XXMCiurpaVVVVkmYORn9/f4k7AgAAAAAAAAAAAAAAAAAAAAAAxaqtr5UkbT+0XTa7beltG2rV5GmSc5/Tsv1XXMDC6XTKMAy1t7ervr5+WTVDQ0O6cuXKyjaGde2dtndK3YIk6VsD3yp1CwAAAACAdebOnTuma2/evKnu7m4lEgl5vV719fWpsbGx4HE2b95sugcAAAAAAAAAAAAAQPlwOB3ae3yvPEc9Jdl/RQYsjh8/rqNHjxZU19DQsEIdAQAAAAAArF9btmyxZJxoNCqXy2WqNpfLWdIDAAAAAAAAAAAAAKC0HE6HHE5HyfZfkQELp7PwKTwcjtIdZAAAAAAAAAAAAAAAAAAAAAAAsLT9fftLuv+KC1j09fWZqvv1r39tcScAAAAAAAC4ffu26doDBw5ocHBQ9+7d04YNG9Ta2qrz589b2B0AAAAAAAAAAAAAAMtXcQELAAAAYDXcuXPHVN3NmzfV3d2tRCIhr9ervr4+NTY2mhpr8+bNpuoAAFhNxfy+OnPmjJ555hkNDQ1p165deuutt/j9BwAAAAAAAAAAAACYk7mWUTwU143kDU2mJlVbXyu7066WrhZtfXKr5ftbFwGLiYkJnT59Wt///vdL3QoAAAAqxJYtW4oeIxqNyuVyma7P5XJF9wAAQDlrbGzU+++/X+o2AAAAAAAAAAAAAABlKHYipo9OfZT3OqpkOCl3wK22cJtqHq2xbJ/rImBhGIbOnj1LwAIAAAAAAAAAAAAAAAAAAAAAgDKWncgq7A1rMjWpxw8+rm27tslmt82sy2Q1eWtS44lxfXzuYxkxQ98b/Z5qvmRNyKLiAhaDg4MF1/T29iqTyVjfDAAAANas27dvm6o7cOCABgcHde/ePW3YsEGtra06f/68xd0BAAAAAAAAAAAAAAAAwNoUCUTk9Dm1v2//kttlJ7KK9kT171v/vTqGOizZd8UFLNrb2zUxMVFQTS6Xk8PhWKGOAAAAsBZt3rzZVN2ZM2f0zDPPaGhoSLt27dJbb71leiwAAAAAKJXx5LjiobiyqazGk+Oy2W3ydnnl7fTm3T4RTmg4Mixvl1dOn1M2u01pI63x5Lg+Pvux9p7YqyZP04K6bCarD09+KEna1LBJqZGUXH6X3O3uRXszUwMAAAAAAAAAACpD4nRCDqfjoeEKSbLV2dQWatN73e8p+aOkPEc9Re+/4gIW9fX1kqRDhw7Jbrfn3SaTycgwDMXjcfl8Pu3atWsVOwQAAMB61tjYqPfff7/UbQAAAACAaYlwQpLUFmqbW2bEDEUCEV3qvaTOROfcNNyzspmsjJghI2bMW26z2xSIBBYNV4S94QXrB7oGdH3ouvy9fktqAAAAAAAAAABA5RiNjar9bHtBNfv79uuv/uSv1mfAwul06vjx4zp69Oiytn/llVfkcDiWvT0AAACAwg10DWh7YLucPueS25XzXXABAAAASGkjrWwmqz09e+Ytd/qc+vaFbyvsDSsSiOhI9MiC2v2h/UqNpJQxMrLV27TNu23Rc31pZnrvx9sfX3BO3xZqU6+jVy6/a8F7DDM1AAAAAAAAAACgctgctodvlIe92W7J/isyYOF0Lv/LkWPHjuknP/mJBgcH1drauoKdAUB5unPnjunamzdvqru7W4lEQl6vV319fWpsbDQ11ubNm033AQAoT2kjLSNmKBFKaDw5ru2B7UtuX853wQUAAAAwIx6K62snvpZ3XZOnSU6fU0bMUNpIy+F0zFu//dD2Bef0i5l9P7E/lH96b/chty71XpoXljBTAwAAAABYXdmprKm6ibsTeuNXb8j4O0POLzn13BPPqa6mzuLuAAAAUBGqVrnuCyouYNHX11dwzcGDB3XixAkCFgDWpS1btlgyTjQalcvlMl2fy+Us6QMAUB4S4YSMqCGn3ylfr09n/GeW3L7c74ILAADWpnK46QA3HEClGY2NKhlO6nuj38sbltjq2SojZmg8Ob4gYFGIeCguSYuOUe+qVzKcVDaTnevDTA0AAAAAYHU9+7Nnix7j6t2revGDF03Xf0ffKboHAAAAlE42ZS60mzEyluy/4gIWAAAAAErP2+mdCzmMJ8cfun053wUXAACsXeVw0wFuOIBKU1tfq/HkuNJGOu+McVa5kbyx5Hn+7PuCsfjY3Pm7mRoAAAAAAAAAAFBZ7M12fXL+Ez1+4PFl13z06kfaunOrJftfNwELwzBK3QIAlMTt27dN1x44cECDg4O6d++eNmzYoNbWVp0/f97C7gDMmpyc1J07d7RxY+GnZ1bdWVfi7rpYOeV8F1wAAACsL+Uws4lUvu+/jkSP5A0+z5q9+9NS4Yvx5LjG4mPa1rJt0e3SRlq19bWLjjF7vp420kXVAAAAAABW15vfeNNU3Wvx1zR8a1jTuWlVV1XL3eDWSy0vWdwdAAAAKoHvZZ9++Ac/lKRlhSwSpxO6ePKiem71WLL/dRGwmJiYUDrNFyoA1qdivqw/c+aMnnnmGQ0NDWnXrl166623yvbLf6DSffOb37RknGLurCtxd12snHK+Cy4AAFi7uOkA8imHmU2k1X//NXV3Svfu3pv7+Xe3f7fotkuFnof7h9Xkacq7zeysdE6fU95Or8aT4zrjP6M9wT0Lzr8nU5NL7mc2SJHN3J8G3EwNAAAAAGB12Taau8HVCztf0OtXXtfIZyNyPerS808+b3osAAAAVL7AuYDCLWG5nnLJ3e7WtpZtc9cEZTNZTaYmNRId0Sf9nyhtpNUR77Bs3xUXsBgcHFz2tplMRoZhKBQKqaurawW7AoC1qbGxUe+//36p2wAArAHlfBdcAACwdnHTAeC+iycv6hd//ou5nyeqJwoe49KpS5KkttNtC9bNnuvv6dkzt6zJ06RAJKBeR686E53zzuOXG4L4/NbnRdUAAAAAACpDXU2dev5hj1JNKdWP16s6V13qlgAAAFBCTZ4mdcY7NdAxoIHOAVVVVS3YJpfLyeF06J/+/J+qaad1N3ytuIBFe3u7JiaW/8VPLpeTz+fT97///RXsqnD9/f1qb28vdRsAAKBM/PSnP9Xu3bu1cWPhp2fcWRdWKuSutoUq17vgAgAA5MNNB9au9Tqzyd4Te/XVl7469/Onn36qv3jiL5ZdP54cVywYUyASyBt4dre789bZ7Da5292KBCL67sh3C28cAAAAAAAAAACsS02eJnUmOpUIJ5QIJTR+eXxuncPpkLfLqz3H9iwxgjkVF7Cor6+XJB06dEh2u33JbRsaGuTxeLRv375V6Gz5MpmMAoGAQqHQsv4eAABg7autrdXmzZtNBSy4sy6sZMVdbQtV6rvgAgAAYH1ZrzObbKzZqI01999zPrLlkYLqI4GI9of2LxqkWMq2Xds03D88b1Y7m922rPP3TQ2b5v5spgYAAAAAAAAAAFQ2b6dX3k7vqu2v4gIWTqdTx48f19GjR1d1v5lMRidPnpQ0E9wYGRmR3+83NQuFYRiSpK6uLnV1dS25bSQSYaYLAACwJO6sCysVe1fbQnEXXAAAAFSS9fr+KxKIyNtl/ssLm90maeb8fzZgMTu73GImU5Pzas3WAAAAAAAAAAAAFKIiAxZOp3NV95nJZOT1ehWJROTxeOaWd3V1aWhoSL29vQWNZxiGnE6nPB7P3IwcX5RKpWQYBuEKAAAArKpi72pbqHK4Cy4AAACAxUWDUW3btW3erHJfNNA1oNHYaEHhZ4fTobH42KLrZ8/rZ8/1zdYAAAAAAAAAAIDKNPyTYSXDSU2mJxU4F5D9Mfu89enRtGLBmH7vf/k97f7+bsv2W3EBi76+vlXfZyAQUHt7+7xwhSSFQiE5HA75/X75fL5ljzc0NKRoNLpkUCQYDBYc3AAAAAAqSbncBRcAAABAfolwQvWu+rzn7NlM9v45eXx87lw7n9ngw4Oz1m31bJURMxatSRtpSZLTd/9zdDM1AAAAAAAAAACg8sROxLStZZuuD13X3Ym7Gk+OLwhYOJodCpwLyLhgKHYiJt/J5V/Pv5RqS0ZZwwzDUCwWU1dXV971hw4dMhWEWCpckUwm5XK5Vn2mDgDA6rhz546p/wzD0FNPPaWGhgY99dRTMgzD9FgAUGrLvQvuD10/LGhch9OxrAu7uKMtAAAAsLTh/mFJyhuuSBvpeUGHZl+zgungomONDY3JZrfNOw/fcXiHpJnA9GI1XwxKmKkBAAAAAAAAAACVZXRwVA6nQ+6DbrWF27Tv5X16/OnHF93euc8pp8+pT979xJL9V9wMFvlcu3ZNyWRSqVRKTqdTTqdTjz32mCVjh0IhSYsHIlwul8LhsDKZjOx2+7LGXCys8eA+Z/cLAFh7tmzZUvQY0WhULpfLdH0ulyu6BysUE/a4efOmuru7lUgk5PV61dfXp8bGxoLH2bx5s+keAJhTbnfBBQAAADDfeHLmXHyx2eaMmDHvnHrH4R1KhBOLhjGG+4cViATmLW/yNMnpc+rq2avzzulnDfcP60j0SNE1AAAAAAAAAACgsnwc+Vj7X98vSXK3u5dV49zn1HvPv7dkEGO5KjpgMTg4qK6uLhnGwguovF6vTp8+rS9/+ctF7SOZTC4ZnJgNXsTjcfl8y5tWZKmZKYLBoKkZMQAAqERWhE2k4gIn5RI2AdaLh90Fdzw5PvfGqNnXrM7ezkXHWuwuuB+d+kjjyfG8F1xxR1sAAABgaWkjrUggomZfs8a6xhasz6ayMmLGvBkrmjxNMmKGLp26NG+WurSRVtgb1u6e3Xm/AAlEAgp7w9pxeMe88/eBrgHt7tmd99zdTA0AAAAAAAAAAKggJb6kr2IDFocPH1Z/f//cRZF2u1319fVzYYt4PC6Px6NgMKgf/OAHpvdjGIbq6+sXXT8bvsgX8ihUMpmUy+Va1kwYk1OTuj11e+7nR6of0SMbHim6h/UmV5VTTjnlqnKa1nSp2yna1NRUyfc/PT1d8j7WCo6ntcrpeGYyGVN17e3t+uCDD3Tv3j1t2LBBX//619Xf329qrGKPQzkdz2KVw99hLR3PcsDxtNb0tHXnSOV6F9xyVOrzff79lBde15APzwsshucG8uF5gXwWO9c/4z+jtJFWOpxetPbBkPOsPT17ZMQMDXQNKJvKzs1O9+0L3857bi5JNrtNnYlORYNR2ew2bWrYpNRISi6/a9E7UpmpKSef3/tcNVM1cz/z2X5lWGvfJaw3PH6VjcevsvH4VbZKfPx4zzOD41Aapf5cf62w6rWHfwcz+EzIWhxPa3E8rcXxtBbH01ocT2tZeR1POcums6bqMkbGkv1XZMDi+eefVyQSkcfjUW9vr1paWlRXVze3fmJiQtFoVCdPnlRvb68aGhr0Z3/2Z6b2lUqllpxxYjZ8YfZi2QedPHlSkUhkWdsG/2Nw3s/f8HxD32z5ZtE9rDc55TT5pUmllFKVqkrdTtEuXrxY0v1PT0/r008/lSRVV1eXtJe1gONprbVwPJ9//nl99tln+s//+T/rH/yDf6Dnn39ely9fNjXW5OSk6T7S6bT+zb/5N/ov/+W/6I/+6I/0Z3/2Z3I4Fl5YsRw//elPTffxL//lv9Tly5c1PT2t6upq7dy5U//6X//rgscp9WunVF7PT7PPjXQ6rddee03/9b/+V/3hH/6hXnrpJdPPi9raWlN1s8rpeK4Ft27deug2aWPmwqtsZvE3N+V+F9xyU+rz/XJ4bcR9vK4hH54XWAzPDeTD8wL5LHau/92R75oe0+lzFny+bbPb1BZqW/GaclHqc32Ys9a+S1hvePwqG49fZePxq2yV+PjxueaMVCpV6hbWJc71rWHVaw+vBzP4TMhaHE9rcTytxfG0FsfTWhxPay3nOp61IDVS+Pua7ERWn9/63JL9V1zA4sKFCwqFQurv79fTTz+dd5u6ujq1t7ervb1d4XBYzz//vNrb2/X7v//7Be9vucGJYp+w/f39SwY5vqj3H/XKYbt/0eIj1Y/okXGS74XKVeWUUkr1N+pVlauMD4WWsnfv3pLufzZhuHv3bm3cWHEvL2WH42mttXI8//E//seWjPPII9b8zkgmk/on/+SfmK7/3e9+Z7r2j//4j/Xcc88pHo+rpaVFb7zxhhobG02PV0rl9Py04rmRSCRK9ryQyut4rgWzb3K/aLh/WIlQQpI0Fp8JTAx0DMwtcwfc82aeKPe74JabUp/vl/q8EvPxuoZ8pqamNDk5qS9/+cumnhf/43/8D/2zf/bPlEgk5PV69e/+3b/T3//7f99UL5s3bzZVh5XBawby4XmBfBY718fKKvW5PsxZa98lrDc8fpWNx6+y8fhVtkp8/Phcc8Z//+//3VTdQNeA9gb35v2sXpq5ydKHJz+UpGV/7m6mplL9q6/9Kzlq5p/rb/xvD38PPnF3Qn/5//6lRidG1VzXrO/88XdUV1P30Lp8bBttpurKiVWvPbwezOAzIWtxPK3F8bQWx9NaHE9rcTyttV4+299+aLv6D/er/Wz7smv6D/Vrx/++w5L9V9wz9dSpU4pGo9q3b9+ytu/s7JQk9fT06OzZsyvZWlFOnjyp06dPL3v72o212rJxy/yFOYubWgemNa0qVakqV6XqXOUn48rhl091dbU2btxYFr2sBRxPa3E8y08xj8Xv/d7v6Wc/+5mF3ZQWz8/7rDgGHE/rLHb3AHe7u6AvQCrhLrjlpNTn+/zbKT+8riGf/fv3WzJOLBbTH/7hH5quz+X4QKLc8JqBfHhe4Iu4U1hpbNqwic/2K9Ba+y5hveHxq2w8fpWNx6+yVeLjx/udGWaOw3hyXMlwUi1dLXnXZzNZhb1hBSKBBTNHXx+6Ln+v35KaSvZ/fPh/FD3G1d9e1Z8N/pnp+rf3v110D6Vm1WsPrwf38ZmQtTie1uJ4WovjaS2Op7U4ntZZL5/t7+nZox/+wQ/V/7/3q+10m2q+VLPotjeu3NBAx4Cymax2f3+3JfuvuGdqLpdbdrhiVmdnp/r7+03tz263L2sWi4aGBlPjS5JhGEomk/J4PKbHAACgELdv3zZde+DAAQ0ODurevXvasGGDWltbdf78eQu7QymZfW7wvAAAAADwMHfu3DFde/PmTXV3d8/NvNPX12d6FkNm3gEAAACA+WLB2JLrI4GIHm9/fMHM0m2hNvU6euXyuxbcKMlMDQAAAADMOvLzI/rhH/xQw5FhOf0zN2e12W2qra/VZGpSqZGURmOjGk+OK5fLqSvZZdm+Ky5g4XSae3NlNrxQX1+/5PpUKiVpJohhVigUMv33AgDAjGIuJjlz5oz+9E//VH/913+tr371q/rxj3/MxSlriNnH8syZM3rmmWc0NDSkXbt26a233uJ5AQDACvvpT39qeipdwpEASmHLli0P32gZotGoXC6X6Xpm3gEAAACA+xLhhNwBt4yYkXd92kjLiBnaH8o/m6r7kFuXei/NC0uYqal0r/yjV9RgK/zmrK/FX9PwrWFN56ZVXVUtd4NbL7W8tAIdAgAAAJXF4XQomAoqEoho5OcjMqIL37Pkcjk5fU7tD+2Xo9lh2b4rLmBhVlVVlak6p9OpeDy+6PrZ2S2KCUjEYjECFgCAitHY2Kj33ntPFy9e1N69e5m6DZJmnhfvv/9+qdsAAGBdqa2t1ebNm02djxGOBAAAAAAAa807be+UugVJ0rcGvlXqFpYtbaQlzVy4tJh4KL7kNvWueiXDSWUzWdnsNtM1la5mY41sGwv/u7yw8wX1XenTSGZELrtL3U92mxoHAAAAWItsdpuORI/IuGBoODKssfjY3PsIh9Mhb5dXzn3WX4NfcVdEer1eXbt2TY899tiyayYmJpacieLEiRM6efJk3nUej0ex2OJTIRrGTBrG5/Mtu58vSiaTam9vN10PAAAAAMB6cefOHdO1N2/eVHd3txKJhLxer/r6+tTY2GhqrEoPIxCOBFAKt2/fNl3LzDsAAAAAYL14KC5/r3/R2Ssk6UbyxpIhiNkQxVh8bG5GCjM161VdTZ2CXwmWug2sYb9651e6/tp1VeeqS9pHJYXPAABA+XHuc65IkGIxFRew6OjoUHd3t06dOqVHH310WTUvv/zyogEKSQqHw4uuP3z4sE6dOqVkMimPx7Ng/dDQUNHhCklLBkAAAAAAAMCMLVu2WDJONBqVy+UyXZ/L5SzpA2tLOQSApqamTPcArLRiwmnMvAMAAAAA1hruH1ZLV8tDt0sbadXW1y66fjZIMTsbhtkaAAAAACgXFRewuHbtmgKBgAKBgLq7u9Xc3LzotoZhKBQKKRgM6sqVK3m3GRoaUiaTWXQMj8cjn8+ns2fP5g1Y9Pf3KxqNLlieyWR08uRJ+f3+JQMYqVRq0XUAzCuHi1r4kh8AAAAA1pdyCQB98MEHlvQBlBNm3gEAAABQKVb7u+qpu1O6d/fe3M/p//Hw0EI2k1XaSMvd7n7otpOpybkZJ/KZDVJkM9miagAAAACgXFRcwMLj8WhiYkK5XE6xWOyh2y93u6VEIhF5vV4dPnx4Xsiiq6tLPT09eQMU4XBYp06dUjgcVjq9+JtXw5iZZtFutxfVI4D5yuGiFu5oCwAAAFjv9u3bpmsPHDigwcFB3bt3Txs2bFBra6vOnz9vYXcAAAAAAABY78rhu+qH+fDkh/L3+pe17XJDEJ/f+ryoGgAAAAAoFxUXsKivr1cmk1F7e7vq6+uLHm9oaGjR2S1m2e12JRIJBYNB2e12NTQ0aGRkRH6/X+3t7XlrfD6f7Ha7Dh06tOTYLS0tstvt2rVrl9m/AgAAANaocpiR6fPP+XIDKAeTk5O6c+eONm4s/G28Va8HUnnM0lZMD2fOnNEzzzyjoaEh7dq1S2+99VZZ/J2wdpRDAGhqakqXL1823QcAAAAAAFjbjJghl39lghsAUM7eaXunqPrpqmmlmlK6/tp1VeeqTY/zrYFvFdUHAABYeRUXsHA6nTp+/LiOHj1q2ZgNDQ0P3cZutysUCi17TI/Hs+TMFYVuB6Aw5XBRCwAAxaqEu1wBWB3f/OY3LRmn2NeDSp+lrbGxUe+//36p28AaVg4BoKmpKdM9AAAAAACA4pX6u+rr16/rj/7ojxZdPxIdWfbsFZJks9uWNSPFpoZNRdUAAAAAWDkDXQPaG9wrh9ORd302k9WHJz+UNHOenhpJyeV3yd3uXnRMMzWVoiIDFk6n09IxHY78TxYAlascLmoBAAAAAGC5CAABAAAAALA2lPq76k2bFg8tXDp1SV878bWCxqutr11y/WRqUtJMqKKYGgAAAAArYzw5rmQ4qZaulrzrs5mswt6wApGAmjxNc8sHugZ0feh63oC2mZpKUnEBi76+PsvH/PWvf235mAAqFxe1AADKRanvciVJv/nNb7R9+3bTfQCwxk9/+lPt3r1bGzcW/jaeGdoAAAAAAACAyrCS31WnjbRsdlvBoQaH06Gx+Nii62dnqnjwTrhmagAAAACsjFgwtuT6SCCix9sfnxeUkKS2UJt6Hb1y+V1y+pxF11SSigtYAABg1uTkpO7cuWPqwsSbN2+qu7tbiURCXq9XfX19amxsNNUHM6IAWK5S3+VKWvpOVwBWT21trTZv3mzqPIYZ2gAAAAAAAACMJ8c1HBnWcGR4wbq0kZYkDXQMzM0+cSR6RJK01bNVRsxYdNzZ2gcvnjJTAwAAAMB6iXBC7oB70fPztJGWETO0P7Q/73r3Ibcu9V6ad+5upqbSELAAAKwb3/zmNy0ZJxqNyuVyma7P5XKW9AEAS2FGJgCzeD0AAAAAAAAA4G53y93uzrtuuH9YkUBEbafbFtyBdsfhHfro1EcaT44vWCdJY0NjCy6cMlMDAAAAwFqzwealZo6Lh+JLblPvqlcynFQ2k52bDc9MTaWpLnUDAAAAAAAAAAAAAAAAAMpPk6dJTp9TV89ezbt+uH9Ye4J7iq4BAAAAYK14KC5vp3fJbW4kbywZgpgNUYzFx4qqqTTMYAEAWDd++tOfavfu3dq4sfBffwcOHNDg4KDu3bunDRs2qLW1VefPn1+BLgEAAAAAa8mdO3dM1968eVPd3d1KJBLyer3q6+tTY2NjweNMTU2Z7gEAAAAAsPbN3tk2baTzzjgRiAQU9oa14/COeesHuga0u2d33tkozNQAAAAAsMZw/7Bauloeul3aSKu2vnbR9bNBitn3DGZrKg0BCwDAulFbW6vNmzebClicOXNGzzzzjIaGhrRr1y699dZb2rx58wp0CQAAAABYS7Zs2WLJONFoVC6Xy3T9Bx98YEkfAAAAAIC1Y6BrQBkjM3dn2YGOASVCCW31bJW/1z+3nc1uU2eiU9FgVDa7TZsaNik1kpLL75K73Z13bDM1AAAAAOabujule3fvzf38u9u/e2hNNpNV2kgv67x7MjU5N+NEPrNBimwmW1TNaomdiMl30lf0OAQsAABYhsbGRr3//vulbgMAAAAAAAAAAAAALNEWalv2tja7raDtzdYAAAAAuO/iyYv6xZ//Yu7nieqJh9Z8ePLDeYHppSw3BPH5rc+LqlktyXCSgAUAAADWnjt37piuvXnzprq6uvQ3f/M3+spXvqJQKKTGxkZTYzFLDQAAAKxw+/Zt07UHDhzQ4OCg7t27pw0bNqi1tVXnz58veJypqSldvnzZdB8AAAAAAAAAAABYfXtP7NVXX/rq3M+ffvqp/uKJv1h0eyNmyOU3PyN6OcpcyyhtpB+63Xhy3LJZMwhYAAAAoKxs2bLFknFisZhcLvNvGHK5nCV9AAAAYH0rJrh75swZPfPMMxoaGtKuXbv01ltvmRpvamrKdA8AAAAAAAAAAAAojY01G7Wx5v7l/o9seWTJ7UeiI8uevUKamXVuOaGETQ2biqoxI/mjpGLBmGWhiUIQsAAAAAAAAACAMtTY2Kj333+/1G0AAAAAAAAAAACgzF06dUlfO/G1gmpq62uXXD+ZmpQ0E6oopqZQxgVDA50DcjgdcgfcyxprPDGu0cFR0/t8EAELAAAAlJXbt2+brj1w4IAGBwd17949bdiwQa2trTp//ryF3QEAAAAAAAAAAAAAAABA+UgbadnstoJDDQ6nQ2PxsUXXz84e4XA6iqop1IXjFxSIBOQ+6C6o7lTDKdP7fBABCwAAAJSVzZs3m649c+aM/vRP/1R//dd/ra9+9av68Y9/XNR4AAAAAAAAAAAAAAAAAFDOxpPjGo4MazgyvGBd2khLkgY6BuZmnzgSPSJJ2urZKiNmLDrubK3T55xbZqamUDaHreBwhSTZm+2m9/mgNRewuHDhgqLRqKqqquRyudTS0qInn3yy1G0BAABgFTQ2Nuq9997TxYsXtXfvXm3cuOZOdwEAAAAAAAAAAAAAAABgjrvdLXd7/kDCcP+wIoGI2k63qcnTNG/djsM79NGpjzSeHF+wTpLGhsYWBCXM1BQq37jL0RnvLGq/s6otGWUVNTQ0LLl+3759evnll3X8+HHt27dPQ0NDev755/XZZ5+tUocAAAAAAAAAAAAAAAAAAAAAAJSvJk+TnD6nrp69mnf9cP+w9gT3FF1TqGwmW1R9sSrulr65XG5Z29XV1amurk4dHR2amJhQMBjU66+/vsLdAQAAAAAAAAAAAAAAYL16p+2dku7/1uStku4fAAAAQHlJG+m5/+ebGSIQCSjsDWvH4R3z1g90DWh3z+68s1GYqSmEO+DWJ+9+oseffrygutiJmHwnfUXtW6rAgEVVVVXBNXV1dSvQCQAAAAAAAAAAAAAAAAAAAAAA5WWga0AZI6Ox+NjMzx0DSoQS2urZKn+vf247m92mzkSnosGobHabNjVsUmokJZffJXe7O+/YZmoK4dzn1KVXLhUcskiGk+szYGHGxMSE4vF4qdsAAAAAAAAAAAAAAAAAAAAAAGBFtYXalr2tzW4raHuzNcuVuZbR9sB2fRz5WKd3nVazr1n1rno5nI5Fa8aT48pmspbsvywDFteuXcu7PJfLSZJ+85vfzP15MZlMRqlUSslkUidPntShQ4esbhMAAAAAAAAAAAAAAAAAAAAAAFgk5Anp7sRdSTP5gbHEmKqqqlZt/2UZsEgkEhoaGpJhGIrFYpqYmJi33ul0LnusXC4nn8+n119/3eo2AQAAAAAAAAAAAAAAAAAAAACARWrrayVJ2w9tl81uW1bNeGJco4Ojluy/LAMWBw8e1MGDB+d+TiaTCgaDunDhgqqqquatW4rT6ZTf79e+fftWqlUAwDLduXPHVN3NmzfV3d2tRCIhr9ervr4+NTY2FjzO1NSUqf0DAAAAAAAAAAAAAABUoru/u6vsVFbVueqCayfuTuiNX72h0YlRNdc167knnlNdTd0KdAkAADCfw+nQ3uN75TnqKajuVMMpS/ZflgGLL/J4PIpGo+rq6lJ/f7/OnTtX6pYAAAXasmVL0WNEo1G5XC7T9R988EHRPQAAAAAAAAAAAAAAAFSCY395zJJxrv72ql784EXT9d/RdyzpAwAArA8Op0MOp6PgOnuz3ZL9V0TAYlYoFFIikSh1G0DZMjtDgGTNLAHMEAAAAAAAAAAAAAAAAAAAAADArP19+03VdcY7Ldl/RQUsJOnEiROlbgEoW1bMECAVN0sAMwTcV2zgpaurS3/zN3+jr3zlKwqFQgUHXmZt3rzZdB9Wun37tqm6AwcOaHBwUPfu3dOGDRvU2tqq8+fPFzzO1NSULl++bKoHAAAAAAAAAAAAAACASvPKd16R44ZD1bnqgmtfi7+m4VvDms5Nq7qqWu4Gt15qeWkFugQAACgvFRewOHjwYKlbALCEyclJ3blzRxs3Fv7yYsUsGrPKIVRgVeAlFouZDrxIUi6Xs6SPYpl9TM6cOaNnnnlGQ0ND2rVrl9566y1TYzHDCgAAAAAAAAAAAAAAWE9qHqmRbaPNVMDihZ0vqO9Kn0YyI3LZXep+slu2jbYV6BIAAGBpmWsZxUNx3Uje0GRqUrX1tbI77WrpatHWJ7davr+KC1iY9e677+rpp58udRvAijI7Q4BkzSwBU1NTstvtpnt4UDGzaEjlEypA8RobG/X++++Xug0AAAAAAAAAAAAAAIB1o66mTsGvBEvdBgAAWOdiJ2L66NRHea8LToaTcgfcagu3qebRGsv2uW4CFh0dHQQssOYVM2uDFbMEMEPAfKUOvAAAAJj1Tts7pW5BkvStgW+VugUAAAAAAAAAAAAAAACssuxEVmFvWJOpST1+8HFt27VNNvvMbFrZTFaTtyY1nhjXx+c+lhEz9L3R76nmS9aELMoyYHHlyhU9+eSTi64rRCqVkmEYymQyRfcFrGVWzRLw05/+VLt379bGjYW/vKy1UEGxgZc//dM/1V//9V/rq1/9qn784x8XNR4AAAAAAAAAAAAAAAAAAABQCSKBiJw+p/b37V9yu+xEVtGeqP59679Xx1CHJfsuu4DF8ePH9corr8jr9eqXv/zlgvWtra2amJgoQWcAlqO2tlabN282FbCwYhaNtaKxsVHvvfeeLl68qL1795o6ngAAAAAAAAAAAAAAAAAAAEAlSZxOyOF0PDRcIUm2OpvaQm16r/s9JX+UlOeop+j9l90Vu4ZhKJfLKZ1O511fX18vSers7JQkNTQ0LDnerVu3NDIyonfffdfaRgFYzqpZNACgEHfu3DFde/PmTXV3dyuRSMjr9aqvr0+NjY0FjzM1NWW6BwAAVpPZ35tW/c6UipspDgAAAAAAAAAAAAAAlLfR2Kjaz7YXVLO/b7/+6k/+am0GLE6fPi2/3y+fz5d3vdPp1PHjx3X06NGCxn1YEAMAAKxPW7ZssWScaDQql8tluv6DDz6wpA8AgLUI4s1nxe/NYn9n5nK5onsAAAAAAAAAAAAAAADlyeawmaqzN9st2X/ZBSzq6urU0dGx6Hq/36+WlpaCx21ubi6mLQAAAADAOkQQDwAAAAAAAAAAoPJlp7KmayfuTuiNX70h4+8MOb/k1HNPPKe6mjoLuwMAAPNUrXLdF5RdwOJhjh07ZqouHo9b3AkAAFgLbt++bbr2wIEDGhwc1L1797Rhwwa1trbq/PnzBY8zNTWly5cvm+4DAIDVYvb3plW/MwEAAAAAAAAAAMx49mfPWjLO1btX9eIHL5qu/46+Y0kfAACsZdmUuWBkxshYsv+KC1gAAABYafPmzaZrz5w5o2eeeUZDQ0PatWuX3nrrLVPjTU1Nme4BALCyCOLNZ/b3plW/MwEAAAAAAAAAAAAAwNpmb7brk/Of6PEDjy+75qNXP9LWnVst2f+6CVicOHFCJ0+eLHUbAABgDWlsbNT7779f6jYAACuIIJ41+J0JAAAAAAAAAABK6c1vvGm69rX4axq+Nazp3LSqq6rlbnDrpZaXLOwOAAA8yPeyTz/8gx9K0rJCFonTCV08eVE9t3os2f+6CViEw2ECFgAAAACAVUOoAAAAAAAAAAAAoDzYNtpM176w8wW9fuV1jXw2ItejLj3/5PNFjQcAAB4ucC6gcEtYrqdccre7ta1lm2z2md+/2UxWk6lJjURH9En/J0obaXXEOyzbd0UHLK5duybDMB66XTKZVCaTWfmGAAAAAAAAAABYA8aT44qH4sqmshpPjstmt8nb5ZW307toTTaT1YcnP5QkbWrYpNRISi7/zBcfpa4BAAAAAAAwq66mTj3/sEepppTqx+tVnasudUsAAKx5TZ4mdcY7NdAxoIHOAVVVVS3YJpfLyeF06J/+/J+qaWeTZfuuyIDFj370IwWDQUITAAAAAAAAAABYLBFOSJLaQm1zy4yYoUggoku9l9SZ6Jy7S9SsbCarsDesQCSgJs/9LzEGugZ0fei6/L3+BftZrRoAAAAAAAAAAFB5mjxN6kx0KhFOKBFKaPzy+Nw6h9Mhb5dXe47tsXy/FRewuHDhgjo7O+V0OhUIBGS32x9ak0gkNDg4uPLNASX2Tts7Jd3/dNW0fu+l3ytpDwAAoDQGuga0PbBdTp9zye24oy0AAABQ3tJGWtlMVnt65n8h4fQ59e0L31bYG1YkENGR6JF56yOBiB5vf3xe6EGaCWn0Onrl8rsWvF9YrRoAAAAAAAAAAFC5vJ1Lz7BttYoLWBw/flyRSEQHDx4sqK6hoWGFOgIAAADWp7SRlhEzZhLiyXFtD2xfcnvuaAsAAACUv3gorq+d+FredU2eJjl9ThkxQ2kjLYfTIen+e4P9of1569yH3LrUe2le8GG1agAAAAAAAAAAAApRXeoGCuVwOAoOV0hSc3PzCnQDAAAArE+JcEKxYEyS5Ov1LatmqTvNJsNJGTGjZDUoT3fu3DH9n2EYeuqpp9TQ0KCnnnpKhmGYGgcAAGC9GY2N6t82/1tlM9m867d6tkqSxpP3p+GOh+KSNBe4+KJ6V72MmDFvzNWqAQAAAAAAAAAA68Mn735iyTgVN4OFx+MxVRePxy3uBAAAAFi/Hpx678ELqxbDHW1hxpYtWywZJxqNyuVymarN5XKW9AAAAFApautrNZ4cV9pILwgtL+ZG8oZsdtui62cDEWPxsblz8dWqAQAAAAAAAAAA68NAx4Aef/rxosepuIBFJpMp2X5PnjwpSWpoaNDIyIj8fr/a29uLHjscDisSichut0uSnE6nent7ix4XAAAAKBfLudNsMpxUNpOdu2BqtWoAAAAA3HckekRpI73oOXXGyEjSvPBF2kirtr520TFnz73TRnrVawAAAAAAAAAAQPm5ceWGtj65ddF1hZhMTSptpC2b4briAhaBQEDvvvuunn766YLqTpw4MReQKFQmk5HX61UkEpk3g0ZXV5eGhoZMhyEymYz27dsnn8+naDQ6t9wwDAWDQUIWAAAAWDO4oy3MuH37tunaAwcOaHBwUPfu3dOGDRvU2tqq8+fPW9gdAABAce7cuWOq7ubNm+ru7lYikZDX61VfX58aGxsfWjd1d0r37t6b+3ni/zex6LaLhSskabh/WE2epnnbTKYml6yZDUU8+MXGatUAAAAAAAAAAIDyEjse00evfKQmb5M6ftmxYP2PW3+suxN3S9DZjIoLWOzbt0+vvPJKwSGLcDhsOmARCATU3t4+L1whSaFQSA6HQ36/Xz6fr+BxZ8MVXwxSdHV1KR6PE7AAAADAmsEdbWHG5s2bTdeeOXNGzzzzjIaGhrRr1y699dZbRY0HAABgtS1bthQ9RjQalcvlsqCb5bl06pIkqe1027zlyw00fH7r81WvAQAAAAAAAAAA5SVtpJXL5ZRN5//cf/baH2+nd+bnhsWvBZKkyVuTSo+k9cm7n1jSX1kFLK5cubKs7fx+v6LRqHbt2iWfzyeXyyWnc/G7zyaTSWUyGVM9GYahWCymUCiUd/2hQ4fU29tbcMDi1KlTMgwjb4jCbrerpaXFVL8AAABAMb54V9vf3f6dJeNyR1ustsbGRr3//vulbgMAAGDNGE+OKxaMKRAJqMnTVOp2AAAAAAAAAABAhWo73San3ymnL//1/w6nQ3uP75XnqCfv+sWcajhlRXvlFbBobW3VxMTi05J/US6XUyKRUFVV1Yr1NBusWCzA4XK5FA6HlclkZLfblz3uyZMn1dnZmXddJBIpuE8AAADAChdPXtQv/vwXcz9PVC///Hwp3NEWAAAAmO/27dum6g4cOKDBwUHdu3dPGzZsUGtrq86fP1/wOL/5zW+0ffv2ZW8fCUS0P7Rf7nb3gnU2u21Z5+KbGjateg0AAAAAAAAAACgvtjqbvB3eRdc7/U5ta9lW8Lj2ZnsRXd1XVgGL+vp6STOzQhQSVniYRCKhwcFBU7XJZHLJXmaDF/F4fNmzWPT39yuTyejw4cOmegIAAABWyt4Te/XVl7469/Onn36qv3jiL0rYEQAAALA2bd682VTdmTNn9Mwzz2hoaEi7du3SW2+9ZWqsTZuWH0KIBCLydnnnpuL+otmZ4hYzmZqUNBOQWO0aAAAAAAAAAABQWfYc22OqrjOef/KDQpVVwMLpdOr48eM6evSo5WM3NDSYqjMMYy74kc9s+MIwjGWPefbsWUmSxzMzbUkymVQ8HldLS8vcsoeZnJrU7an7dzh7pPoRPbLhkWX3gBm5qpxyyilXldO0pkvdTsXLVeU0PT2tqampUreyJkxNTXE8LcTxtBbH01ocT2txPIu0QdqwacP9Hx/4czG4o21hON+fwb/jGbyuIR+eF1gMzw3kw/NibWloaNDAwMC8ZWYe2+np5X0eGg1GtW3XNu3pWfzLDIfTobH42KLrZ8/RHU7HqteUm8/vfa6aqZq5n9fruX6l4buEysbjV9l4/Cobj19l4/GrXLmqXKlbWJf4XN8aVr328BnIjKmpqbJ5LS+Hx2S6qrhjwPPTWnxmaS2Op7U4ntbieFpruZ/tozhlF7CYnRHCas3NzabqUqnUkj3Nhi8ymcyyx0wmk3N/PnXqlDwejzo7O5VMJuX3+xUMBh86G0bwPwbn/fwNzzf0zZZvLrsHzMgpp8kvTSqllKpUVep2Kl5OOU19OvNLsLq6usTdVL7p6Wl9+umnkjieVuB4WovjaS2Op7U4nta6deuWJeNwR9vCcL4/4+LFi6VuoSzwuoZ8eF5gMTw3kA/PC+SznHP9RDiheld93pkrspns3Hn1Vs9WGbHFb0KUNtKSJKfv/mftq1VTbjjXr0x8l1DZePwqG49fZePxq2w8fpXr7yb/rtQtrEuc61vDqtcevl+YMT09XTav5eXwmKSaUkXV8/y0Fp9ZWovjaS2Op7U4ntay6jqeSmdcMGREDalKqnfVa1vLNm19cqtl45dVwKKvr2/Fxo7H46bqlhucKOQJm0qlZLfbFQ6H1dPTM7fc4/EoEomoublZkUhkyZBF7z/qlcN2/y5cj1Q/okfGSb4XKleVU0op1d+oV1WOD4WKlavKadv/vE27d+/Wxo1l9fJSkWYTmxxPa3A8rcXxtBbH01ocT2vNvsktFne0LQzn+zP27t1b6hbKAq9ryIfnBRbDcwP58LxAPg871x/uH5akvOGKtJHWeHJc7na3JGnH4R366NRHGk+Oq8nTtGD7saGxBaGH1aopN5zrVya+S6hsPH6VjcevsvH4VTYevwo2WeoG1ifO9a1h1WsP3y/MmJqa0tWzV8vitbwcHpPrr10vqp7np7X4zNJaHE9rcTytxfG0llXX8ZS7Uw2n1HOrZ9H1zn1OOfc5lZ3IajI1KSNmKB6Ky9/rV82jNYvWLRfP1BKYDW3Mzn7xILvdLp/Pp66uLo2MjCw6Ru3GWm3ZuGX+QmZ5LNi0plWlKlXlqlSdIxlXrGlNq7q6Whs3buQXoUU4ntbieFqL42ktjqe1OJ7WseruAdzRtjCc78/g3/B9vK4hH54XWAzPDeTD8wJftNS5/nhyXJOpybzhCkkyYsa8c+omT5OcPqeunr2aN/gw3D+sI9Ej85atVk252bRhE+f6FYjvEiobj19l4/GrbDx+lY3Hr3KV+iLq9YrP9a1h1WsPn3/cVy6v5eXwmBR7DHh+Wo/PLK3F8bQWx9NaHE/rrJdZQHK55Z1M2+psstXZ5O3wKjuRVTQY1f7X9xe9//VxlItgt9uXNYtFQ0NDQWNKWnSGCr/fL8MwlEwmlz0mAAAAUM52HN4haeZCrXwWuzvtatQAAAAAuC9tpBUJRDSWGNNA18CC/yKBiGLB2IJZ4QKRgD7p/2TBufhA14B29+zOex6+WjUAAAAAAAAAAKByVFUVHhy31dks2z9RoIfIN8vEg1KplKT7oYnljpnJZBatmd1nPB6Xx+NZ9rgAAABAueKOtgAAAEBlOOM/o7SRVjqcXnSbL4YrJMlmt6kz0aloMCqb3aZNDZuUGknJ5XfJ3e7OO85q1QAAAAAAAAAAgLUtO5HVeDz/DVkLRcDiIZxOp+Lx+KLrZ2e3cDqXf1csj8cjwzAeut1yZs4AAAAASi1tzFx4lc1kl9wuEAko7A1rx+Ed88IPD7s77WrUAAAAAJjx3ZHvmq612W1qC7WVZQ0AAAAAAAAAACgfmWuZvMtzudzM+t9kpNzSY2QzWU2mJjWeHNfFkxflPmTNjZgIWDyEx+NRLBZbdP1sUMLn8y17zF27dqm/v3/RWSxmZ8Vg9goAAACUq+H+YSVCCUnSWHxMkjTQMTC3zB1wy9vpnVfDHW0BAAAAAAAAAACw0t5pe6fULZSF6appaeGE7wAAAGVhLDGmsaExpY20jJihuxN3563/ofOHyx4rl8vJ6XNq/+v7LemNgMVDHD58WKdOnVIymcwbeBgaGiooXCFJ7e3tCgaDisViam9vX7B+ZGREktTS0mKuaay67NTSd2teysTdCb3xqzc0OjGq5rpmPffEc6qrqTM1lm2jzXQfAAAAhXC3u02FFbijLQAAAAAAAAAAAAAAALC+uQ+65T54/9qj8eS4YsGYjAuGqqqq9PjBx5c1jsPpkNPvlHOf07LeCFg8hMfjkc/n09mzZ/MGLPr7+xWNRhcsz2QyOnnypPx+/4IAhtPpVHt7u06ePJk3YNHf36+enp68s1ugPD37s2ctGefqb6/qxQ9eNF3/9v63LekDAAAAAAAAAAAAAAAAAAAAAFZDk6dJR6JHNNA1oE/6P1HgXKBkvVSXbM8VJBKJqL+/X8lkct7yrq4u9fT05J3BIhwO69SpUwoE8j+4p0+fViaTUTgcnrc8EAjI6XSqt7fXur8AAAAAAAAAAAAAAAAAAAAAAABlrC3UJnuzvaQ9MIPFMtjtdiUSCQWDQdntdjU0NGhkZER+vz/vDBSS5PP5ZLfbdejQoSXHPHny5FwII5PJKBAIqLOzc8X+LlgZb37jTdO1r8Vf0/CtYU3nplVdVS13g1svtbxkYXcAAAAAAAAAAAAAAAAAAAAAUP72nthb0v0TsFgmu92uUCi07O09Ho/S6fRDx2SmirXBttFmuvaFnS+o70qfRjIjctld6n6yu6jxAAAAAAAAAAAAAAAAgPUqO5U1XTtxd0Jv/OoNjU6MqrmuWc898ZzqaupMjcX1PwAAAOa4D7pLuv81EbD47LPPlEql9Nhjj5W6FaBgdTV1Cn4lWOo2AAAAAAAAAAAAAAAAgIr37M+etWScq7+9qhc/eNF0/dv737akj7XgnbZ3St0CAABY47ITWSVPJ7X7+7uLHqtiAxbXrl1Tb2+vwuGwJKmqqkpTU1Nz60dHRxUMBvXUU0/p6NGjpWoTAAAAAAAAAAAAAAAAK4w71gMAsHx37twxVXfz5k11d3crkUjI6/Wqr69PjY2NBY/z4LWeAABYIW2k9fHZj9dvwGJwcFA+n0+S5HQ65XQ6NTo6Om+b5uZmnTt3ThcuXNCrr76q73//+6VoFQAAAAAAAAAAAAAAACuMO9YDmPXmN940Xfta/DUN3xrWdG5a1VXVcje49VLLSxZ2B5SHLVu2FD1GNBqVy+UyXf/BBx8U3QMAYG0aHRx9+EZfcKn3krIZ88H7B1VcwGJ0dFTt7e3q7OxUMBhUc3OzJOn48eN5t9+3b58ymYwGBwfV2tq6mq0CAAAAAAAAAAAAAAAAAFZRMTPJvLDzBfVd6dNIZkQuu0vdT3YzMw0AAMAqO9d+Tncn7hZUk8vlVOuotWT/FRewOH78uHp7e9XR0TFveVVV1aI1Bw8e1PPPP0/AAgAAAAAAAAAAAAAAYA3ijvUArFBXU6fgV4KlbgNYcbdv3zZVd+DAAQ0ODurevXvasGGDWltbdf78+YLHmZqa0uXLl031AABY+2rrZ4IS2w9tl82eP+yazWSVNtIai4/J6XNq265tlu2/4gIW6XR6QbhiOXK53Ap0AwAAAAAAAAAAAAAAgFLjjvXLlzbSuth7UZKUTWWVzWTl9Du1p2fPojXZTFYfnvxQkrSpYZNSIym5/C65292W1gAAVsfmzZtN1Z05c0bPPPOMhoaGtGvXLr311lumxpqamjK1fwDA+uBwOrT3+F55jnqWtf2lVy6p1lG77O0fpuICFk6n01RdOp22uBMAAAAAAAAAAAAAAABUuvV0x/rh/mFdH7qutlDbvOVhb1iJUELfHfnugppsJquwN6xAJKAmT9Pc8oGuAV0fui5/r9+SGgBA+WtsbNT7779f6jYAAGucw+mQw+lY9vZ7ju3R8E+GNTo4qubW5qL3X130CKvMbFDCMAyLOwEAAAAAAAAAAAAAAAAqQzaT1cdnP84bbmg73aa0kdZA18CCdZFARI+3Pz4vKCFJbaE2JcNJGbGF1+SYqQEAAAAASdrft7/goIT7oFsj0RFL9l9xAQuHw6EPPvigoJoTJ05o3759K9QRAAAAAAAAAAAAAAArKzuVNf3fzTs39YP/5wfq+P926Af/zw90885NU+MAqGxj8TEN9w8rGowuWDcbhBiNjc5bnjbSMmKGWrpa8o7pPuTWpd5LRdcAAAAAQLnYWOoGCtXT06OnnnpKp0+f1te//vWHbv/qq6+qv79ff/u3f7sK3QEAAAAAAAAAAAAAYL1nf/asJeNc/e1VvfjBi6Zq397/tiU9ACiN2vpa2ew2bWrYtOg2Nrtt3s/xUFyS5HA68m5f76pXMpxUNpOdqzVTAwAAAADFyhgZS8apuICF0+lUX1+f9u3bp5aWFh0+fFg7d+5UJpPRtWvXlMlklEqllEwmFQqFZBiGEolEqdsGAAAAAAAAAAAAAAAASqbJ06RgOph33XhyXJLU7Guet/xG8saSIYjZEMVYfExOn9N0DQAAAAAUIzuR1WR60pKxKi5gIUk+n0/nzp1TZ2enenp65paHw+G5P+dyOTmdTsXjcT355JMl6BIAAAAAAAAAAAAAAGu8+Y03Tde+Fn9Nw7eGNZ2bVnVVtdwNbr3U8pKF3QGodLFgTA6nQ/5e/7zlaSOt2vraRetmgxRpI11UDQAAAADMGh0cXfa22UxWaSOtRCghb5fXkv1XZMBCktrb29Xe3q5Tp07p7Nmzunz58tw6p9Oprq4uHTt2rIQdYrVkp7Km6ibuTuiNX70h4+8MOb/k1HNPPKe6mjpTY9k2MmUlAAAAAAAAAAAAgJVTzHeSL+x8QX1X+jSSGZHL7lL3k918xwmsEdP3ppWbzt3/eWq6oPq0kdbF3ouyO+06Ej2yYP1kanJuxol8ZoMU2cz9azfM1AAA1p/JyUnduXNHGzcWfhnrzZs31d3drUQiIa/Xq76+PjU2NprqY/PmzabqAAAr51z7Od2duLvs7XO5nJw+p3Z/f7cl+6/YgMWsnp6eebNYYP159mfPFj3G1btX9eIHL5quf3v/20X3AAAAAAAAAAAAAAAroa6mTsGvBEvdBoAVkPp1Sqm/Tc39PKGJZdUN9w/r+tB1ZYyM7E67XH5X3u2WG4L4/NbnRdUAANafb37zm5aME41G5XLl/z22HLlc7uEbAUAFmQ1RS1I2lVU2k5XT79Senj2L1mQzWX148kNJ0qaGTUqNpOTyu+Rud1tas1yzoezth7bPzYC36LYNtWryNMm5z1n0fmdVXMDiypUrMgxDTz/9dKlbAQAAAAAAAAAAAAAAAEqm/g/q580WkcqmpF88vM7d7p534dMZ/xklQgm1nW576AVMAAAAAMrTbJC6LdQ2b3nYG1YilNB3R767oCabySrsDSsQCajJ0zS3fKBrQNeHrsvf67ekphAOp0N7j++V56inqHHMqriARXt7u6qqqkwFLF599VWdPHlSmUxGdrtdP/rRj3TgwIEV6BKr6c1vvGmq7rX4axq+Nazp3LSqq6rlbnDrpZaXLO4OAAAAAAAAAAAAAABgZVRvqJY2PPDzVLWpcQKRgHodvcpmsjoSPTK33Ga3LWtGik0Nm4qqAbC2ZaeWN7NNPhN3J/TGr97Q6MSomuua9dwTz6mupq7gcWwbCY+Vm5/+9KfavXu3Nm4s/DLWAwcOaHBwUPfu3dOGDRvU2tqq8+fPr0CXAFA5spmsPj77sQKRwIJ1bafbFPaGNdA1sCB8EQlE9Hj74/OCEpLUFmpTr6NXLr9LTp+z6JpCOJyOeUHy1VZxAYuuri4dO3as4LpDhw7pJz/5iTo6OuT3+/XLX/5SR48eld1u19e//vUV6BSrxezJ7ws7X9DrV17XyGcjcj3q0vNPPs+JNAAAAAAAAAAAAAAABeLC2cpns9vkbndruH9YRsyYuxiqtr52ybrJ1ORc/SwzNQDWtmd/9qwl41z97VW9+MGLpmrf3v+2JT3AOrW1tdq8ebOpgMWZM2f0zDPPaGhoSLt27dJbb72lzZs3r0CXAFA5xuJjGu4fVjQYXTCDxGwQYjQ2Om952kjLiBnaH9qfd0z3Ibcu9V6aF5YwU1Oo/X35x14tFRewSKVSBddcvnxZ/f396urq0uuvvy5JOnjwoA4fPqzDhw/rb//2b61uExWgrqZOPf+wR6mmlOrH61WdM3cXBwAAAAAAAAAAAAAA1jMunK0M2UxWk6nJRe8Ea3faJUkj0ZG5i6EcTofG4mNLjjm73SwzNQAAFKKxsVHvv/9+qdsAgLJSW18rm9225ExxXww5x0NxSYufm9e76pUMJ5XNZOdqzdRUmooLWLS0tGhwcFCS1Nvbq3g8rkwmI7/fr2AwmHc2irNnz6qqqkq9vb3zlns8HnV2durdd9/V008/vSr9AwAAAAAAAAAAAAAAWGGlZo6YrprW3d/dVXYqy80K15Bex8x1M8F0MO+FTrMXYs0GICRpq2erjJix6JhpIy1J8+5Oa6YGwNr25jfeNF37Wvw1Dd8a1nRuWtVV1XI3uPVSy0sWdgcAwNrQ5GlSMB3Mu248OS5JavY1z1t+I3ljyRDEbIhiLD42d/5upsYKmWsZjSfH50LjDqdD9sfslo3/oIoLWBw8eFBPPfWULly4oFwuN7f85z//uaLRqILBoH7wgx/Mq4nFYvJ4PHr00UcXjHfs2DEdPnyYgAUAAAAAAAAAAAAAAKgo5TBzhMSFs5XCZrfN3dU2n9RISpK0zbttbtmOwzv00amPNJ4cV5OnaUHN2NDCi6bM1ABY22wbzd+9+oWdL6jvSp9GMiNy2V3qfrK7qPEAAFiPYsGYHE6H/L3+ecvTRlq19bWL1s2+d5gNSZutKcbo4Kje63ov73hN3ia1nW7T1i9vtWRfsyouYDExMaF4PD4XjNi5c6ckaXR0VNFoVMePH5ff7583k4VhGDp8+PCiYzocTDkIAAAAAAAAAAAAAABgBhfOVgZPp0ctXS2Lrh8+Nyyb3abth7bPLWvyNMnpc+rq2at5wxLD/cM6Ej0yb5mZGgBYTF1NnYJfyX83bgAA1rqpu1O6d/fe3M+/u/27gurTRloXey/K7rTnPQefnQ1iMbNBigdnuTNTY1b/4X4N9w/PTcowu9/J1KSymazG4mMKe8LaE9yjfT/YV/T+ZlVcwOLll1/WhQsX5oIVs5qbm9XZ2alDhw6pq6trXsAik8nIbrcvOmZVVdVKtQsAAAAAAAAAAAAAALAiVmrmiOmqaaW3puW44VB1rtqqdvPiwtnV4+/1a6BrQNsD2xfMIBEJRCRJ377w7QUzXAQiAYW9Ye04vGNeYGKga0C7e3bnnY3CTA0AAACA+S6evKhf/Pkv5n6eqJ5YVt1w/7CuD11XxsjI7rTL5Xfl3W65IYjPb31eVI0ZseMxjURHtO/lfXK3u+VoXhjqGL88rqv/4aouvnxRtQ212v1nu4va56yKC1ik0+kF4YoH2e12ZqQAAAAAAAAAAAAAAABr3krNHDFdNa2aR2pk22hb8YAFVldbqE3D/cOKBCKy1duUTWWVzWS11bNV3xv93oJwhSTZ7DZ1JjoVDUZls9u0qWGTUiMpufwuudvdefdjpgYAAADAfHtP7NVXX/rq3M+ffvqp/uKJv3honbvdPe+8+4z/jBKhhNpOt+U95y83xgVDRsyYeY9St3i/TTub1LSzSS1dLTrz1Bm5292y/7696P1XXMBiOeEJZqQAAAAAAAAAAAAAAABYHDNHrF9fvNhqOWx2m9pCbSteAwAAAOC+jTUbtbHm/uX+j2x5xNQ4gUhAvY5eZTNZHYkemVtus9uWNSPFpoZNRdUUKhlOzsyut0S44kEOp0OBcwHFemJqP9tuer+zKi5gkcvl9J/+03/Sl7/85bzrP/vsM926daugMQvdHgAAAAAAAAAAAAAAlEZ26uEXcixm4u6E3vjVGxqdGFVzXbOee+I51dXUmRqrmNkjAAAAAABYLTa7Te52t4b7h2XEDDl9TklSbX3tknWTqcm5+llmagqVy+WWHa6Y1eRpUi6XM73PB1VcwKKzs1MtLS36F//iX+jgwYN67LHHJM0EK86dO6dgMKhIJDK3/eXLlyVJhmHkHe/dd9/Vrl27VrxvAAAAAAAAAAAAAABQvGd/9qwl41z97VW9+MGLpuvf3v+2JX0AAAAAAFCsbCarydSkHE5H3vV2p12SNBIdmQtYOJwOjcXHlhxzdrtZZmoKZba2mH0+qOICFk6nUy+//LK6u7vV09OzYP3OnTuVTCZVX1+voaEh9fb2yuPxSJJ+85vf6Pd///fntp2YmFAwGFQikVi1/gEAAAAAAAAAAAAAAAAAAAAAsEqvo1eSFEwH884esalhk6T7AQhJ2urZKiOWfxIDSUobaUmaC2SYrSlY1SrXfUHFBSyk+7NYBINBXbhwQdJM8CIYDKqjo0Ojo6MKhULKZDJzy5LJpDwej06dOqV9+/bJMAx1dXXp4MGDevTRR0v8NwIAAAAAAAAAAAAAAMvx5jfeNF37Wvw1Dd8a1nRuWtVV1XI3uPVSy0sWdgcAAAAAwOqz2W2qra/NG66QpNRISpK0zbttbtmOwzv00amPNJ4cV5OnaUHN2NDYgqCEmZpCOZwOZa5lZH/Mvuyau5/dVW19bVH7nVWRAQtJ8ng8ikajedc1Nzfr5ZdfXrB9KBTSoUOHVFU1E0/p6OhYsB0AAAAAAAAAAAAAAChfto35LxZZjhd2vqC+K30ayYzIZXep+8nuosYDAAAAAKAceDo9aulqWXT98Llh2ew2bT+0fW5Zk6dJTp9TV89ezRuWGO4f1pHokXnLzNQUytvhVex4TF/7519TzaM1y6qJ9kTlP+Uvar+zKjZgYUZ7e7ump6d14cIFOZ1ONTc3l7olAAAAAAAAAAAAAACwSupq6hT8SrDUbQAAAAAAYCl/r18DXQPaHti+YAaJSCAiSfr2hW8vmOEiEAko7A1rx+Ed8wITA10D2t2zO+9sFGZqZmWuZZb199l+eLsigYi83V45mh2Lbpc20vr47Mfy9fqWHcZ4mDUbsOju7p6bqcLv9+vpp5+eW7dv375StQUAAAAAAAAAAAAAAAAAAAAAgKXaQm0a7h9WJBCRrd6mbCqrbCarrZ6t+t7o9xaEKyTJZrepM9GpaDAqm92mTQ2blBpJyeV3yd3uzrsfMzWzQp6Q7k7cXdbfJ5fLyYgZD93OZrcpHorrayeWP+PFUtZswKKvr2/uzxcuXNCPfvQjHT16tIQdAQAAAAAAAAAAAAAAAAAAAACwMtzt7oeGHL7IZrepLdS24jWSVFtfq2wmK3e7W7X1tQXXLyabzurjcx/Lc9RT9FhrNmDxoH379mnXrl0ELAAAAAAAAAAAAAAAAAAAAAAAKAGH06G9x/daEoRYKRUdsLhy5YoMY/FpP1KplDKZjM6ePav6+vpV7AwAAAAAKld2Kmu6duLuhN741RsanRhVc12znnviOdXV1FnYHQAAAAAAAAAAAAAAACqRw+mQw+kodRtLqsiAxbVr1+T3+5cMVzyoublZkUhkhbsCAAAAgLXh2Z89a8k4V397VS9+8KLp+u/oO5b0AQAAAABApTF78wMrb3xg22gzVQcAAAAAAAAsZn/f/lK38FAVGbDw+XxKpVI6ePCgdu3aJbvdrkgkIr/fL7vdLknKZDKKRqOy2+06d+5caRsGAAAAAAAAAAAAgGWy4uYHxd744O39bxfdAwAAAAAAAFBpKi5gcfr0aTmdTiUSCdXVzb/byuHDh/Xoo4/O/Xzs2DGNjo7qxIkTOnny5Gq3CgAAAAAV6c1vvGm69rX4axq+Nazp3LSqq6rlbnDrpZaXLOwOAAAAAAAAAAAAAAAAmO+Tdz/R408/XvQ4FRew6O/vV39//7wghSQ5nU7F43G1trbOW97c3KzOzk796Ec/0tGjR1ezVQAAAACoSLaNNtO1L+x8QX1X+jSSGZHL7lL3k91FjQcAAAAAwHpk9uYH3PgAWF3Zqaypuom7E3rjV29odGJUzXXNeu6J51RXU/fwwjz47A0AAAAAgBkDHQPrM2DR3Ny8IFwhSfX19Tp37tyCgMVszcjIyGq0BwAAAADrWl1NnYJfCZa6DQAAAAAAKprZC6a58QGwup792bNFj3H1t1f14gcvmq5/e//bRfcAAAAAAMBqu3HlhrY+uXXRdYWYTE0qbaSVzZi7EcIXVVzAwuFw5F2+c+dOdXZ26uTJk6vcEQAAAAAAAAAAAACUHjc+AAAAAAAAQLmLHY/po1c+UpO3SR2/7Fiw/setP9bdibsl6GxGxQUscrncouu8Xq/Onz+vAwcOLFhnGMZKtgUAAACsO8P9w3K3u0vdBgAAAAAAAACUxJvfeNNU3Wvx1zR8a1jTuWlVV1XL3eDWSy0vWdwdAAAAAADlKW2klcvllE3nn3Gitr5WkuTt9M783FC75HiTtyaVHknrk3c/saS/igtY+P1+vfvuu3r66af1ox/9SNFoVKdPn9ajjz6q9vZ2/cmf/IlisZi+/vWvz9VcuHCBgAUAAABgoWwmq0ggov2h/dp+aLtsdlupWwIAAACwAga6BrQ9sF1On3PRbRLhhIYjw/J2eeX0OWWz25Q20hpPjuvjsx9r74m9avI0LajLZrL68OSHkqRNDZuUGknJ5XctGeQ2UwMAALBSbBvNfS76ws4X1HelTyOZEbnsLnU/2W16LAAAAAAAKk3b6TY5/c5Fv3twOB3ae3yvPEc9BY17quGUFe1VXsBi3759euWVV/TKK68oGAyqqqpKfr9fR48elc/nU2trq3w+n/x+v3bu3CnDMNTf369QKFTUfjOZjE6ePClJamho0MjIiPx+v9rb202NFw6HFYlE1NXVJZ/PJ7vdLsMwlEwmdfbsWZ04cUIeT2FPCgAAAGC1pI20JOm9rvf0Xtd7S24biATmLnZazQuvAAAAAJiTNtIyYoYSoYTGk+PaHti+5PbZTFZGzJARm3+jI5vdpkAksOg5ftgbXrB+oGtA14euy9/rt6QGQOXITuW/W91yTNyd0Bu/ekOjE6NqrmvWc088p7qaOknSdNW07v7urrJTWVXnqh86Fhc4A1gNdTV1Cn4lWOo2AAAAAAAoCVudTd4O76LrnX6ntrVsK3hce7O9iK7uq7iAhSQdO3ZMly9f1rFjxzQxMaFDhw7Nrevv71dra6t+/vOfKxqNKpfLyePx6OjRo6b3l8lk5PV6FYlE5oUeurq6NDQ0pN7eXlNjxmIxxWKxecvtdvuC/QAAAADlJm2k5XA61ORpkq0+/4UH2VRWaSM9LwSxWhdeAQAAADAnEU7IiBpy+p3y9fp0xn9mWXX7Q/uVGkkpY2Rkq7dpm3fb3NTd+UQCET3e/viC9wBtoTb1Onrl8rsW3LnKTA2AyvHsz561ZJyrv72qFz940XT92/vftqQPAAAAAAAAAObsObbHVF1nvNOS/VdkwEKSdu7cqZ07dy5YXldXp0Qiof7+fsViMblcLnV2FnewAoGA2tvbF4QeQqGQHA6H/H6/fD5fweOGQiGNjIzIMAzV19fL6/UW3SsAAACwGq4PXdeR6BE5nI5Ft4kGo/L1LjxPXo0LrwAAAACY4+30zp2fjyfHl123/dB22ezLu+v77AwZ+0P78653H3LrUu+leef5ZmqAh1nujAn5ZkBYasaEQjBbAgAAAAAAAAAs9Mm7n6jJ0yT7Y/ZV33fFBiwepr29Xe3t7UWPYxiGYrGYQqFQ3vWHDh1Sb2+vqYDFoUOHZLfbi+wQAAAAKI2lwhXjyXHVu+rzbrPSF14BAAAAKG/xUFzS4u8p6l31SoaTymayc+8dzNQAD1MOMyYwW8J9b37jTdO1r8Vf0/CtYU3nplVdVS13g1svtbwkaSYgk96aluOGYy4gAwAAAAAAAKB8vdf9npKnk7I5bOr5bc+q778iP0V89913de3atVXZ12ywwunMf8GWy+VSLBZTJpNZlX4AAACActDS1bLk+ngovuSsFMu1nIuojJihbGZ5dx0FAAAAUHo3kjeWDEHMnv+PxceKqgFQWWwbbab/e2HnC3rif3pCWx7Zoif+pyf0ws4X5q2veaRm2WMBAAAAAAAAKK3J1KSa9zXLc9RTkv1X3AwW3d3dOn36tBwOh37729+u+P6SyeSSs0zMBi/i8bipWSwAAACASrTU7BXRYFT+Xr8l+ynkIipmsQAAAABKbzw5rrH4mLa1bFOTpynvNmkjrdr62kXHmH0PkDbSRdUAD7PcGRPyzYCw1IwJWH11NXUKfiVY6jYAAAAAAAAAWMDhdMj3cumuy6+4gEUqldK+ffvk8axOIsUwDNXX1y+6fjZ8YRiG6X0kk0nF43G1tLQs++81OTWp21O3535+pPoRPbLhEdM9rFe5qpxyyilXldO0pkvdTsXLVeU0PT2tqampUreyJkxNTXE8LcTxtBbH01ocT2txPK01PV3YOdJ4clz1rvolQxEPbrsSF16tBZzvz+Df8Qxe15APzwsshucG8uF5AUmaujule3fvzf2cnbB2FjgjZihtpOX0OeXt9Go8Oa4z/jPaE9yzIAw9mZpcMrQ9+x7gwZnqzNSUo8/vfa6aqZq5n9fruX65+HuP/L1lbZeryunvPfL3VPNIjapyVZKk5z3PK3Q5JCNjyGl3qmtn17LHexDfTaw8vguqbDx+5Sc7tfzftbmqnLK/y2ry3qSqclWauDuhv/x//1KjE6NqrmvWd/74O6qrqTPVBzPOrDz+/VWuXFWu1C2sS3yubw1ee6zF8bSWVceTz+hm8Jmltaw6nmefPmtRR+YdfvdwqVvg+Wkxjqe1Cr2Op1LVNtQqcy0j+2P2gupONZxSz62eovdfcQELp9Opl19+edX2l0ql5mapyGc2fJHJZAoeOxaLyTAM+Xw+dXZ2KplMyu/3KxgMPnQ2jOB/nH8Xnm94vqFvtnyz4B7Wu5xymvzSpFJKqUpVpW6n4uWU09SnM78Eq6urS9xN5Zuentann34qieNpBY6ntTie1uJ4WovjWZzpqWlN37v/Zix1K1VQ/cWTFxWIBJbcZqUvvFoLON+fcfHixVK3UBZ4XUM+PC+wGJ4byIfnBSTp2n+8pt/84jdzP9+5d8eysWfP2ff07Jlb1uRpUiASUK+jV52Jznmh6uWev39+6/OiasoR5/qVabHvEo4+dnTuz/d0TykV9h4aq4Pvgiobj1/5+W74u5aMc/W3V/Vng39muv6HnT+0pA8sjn9/levvJv+u1C2sS5zrW4PXHmtxPK1l1fHk+68ZfGZpLauOZ6qp9J9tlMO/EZ6f1uJ4WuvWrVulbmFV7Dm2R5FDEbV0t6i5tXnZdbmcNYHzigtYNDQ06Nq1a3rssccKrjPzpFpucKLQsWdDGz0991MyHo9HkUhEDodDiURiydksev9Rrxy2+xeaPVL9iB4ZJ/leqFxVTimlVH+jfu6uUzAvV5XTtv95m3bv3q2NGyvu5aXszCY2OZ7W4Hhai+NpLY6ntTiexfm//8//W5f+z0tzP09UTyy7drh/WHanfcltVuPCq7WA8/0Ze/fuLXULZYHXNeTD8wKL4bmBfHheQJL+4a5/qHvfvT+DxX/7b/9Nrzz5iiVju9vdeZfb7Da5292KBCL67og1F2NWOs71KxPfJVQ2Hr/KxuOHxdSP15e6hTWPf38VbLLUDaxPnOtbg9cea3E8rWXV8eT7rxl8Zmktq47n9deuW9WSaeXwb4Tnp7U4ntaaDausB4FzAX306kdKhBLatmubmjxNqq2vlc2ef1bLkeiI7k7ctWTfFfdMPXbsmA4dOqTu7m61trYuu86qRIpV2tvb8y632+1qb29XIBDQyMjIovW1G2u1ZeOW+QvL669YEaY1rSpVqSpXpeocybhiTWta1dXV2rhxI78ILcLxtBbH01ocT2txPK3F8TTvfz3xv2rPS/fDD59++qn+4om/WFbtxZMX1Xa6bcltuPBqeTjfn8G/4ft4XUM+PC+wGJ4byIfnBTZu3Chtvv+z7bP8X0BYbduubRruH1baSM8Frm1227LC1JsaNs392UxNOdq0YRPn+hWI7xIqG49fZePxKz9vfuPNZW87XTWt9Na0HDccqs5V67X4axq+Nazp3LSqq6rlbnDrpZaXTPXB82Hl8e+vcnERdWnwub41eO2xFsfTWlYdTz6fu4/PLK1lxfEsh9eKcnk+8Py0FsfTOutlFpA/r/5zVVXNvLfJ5XIa7h9e1f1X5DP13LlzevXVVxUKhbRr1y55PB7V19fLbrfn3T4ajWpiYvl33n2Q3W5f1iwWDQ0NpsbPZ9euXerv75dhGHMzXQAAAACrYWPNRm2suf824ZEty7u7UtpIazw5Pm/2iUJZdeEVAAAAgPIxeyep8eT43Hl+bX3tkjWTqcl5tWZrAACA9Wwbl/+7drpqWjWP1Mi20abqXLVe2PmC+q70aSQzIpfdpe4nuwsaDwAAAAAArA8Op0NpIy13u/uh3w/MGhsa040rNyzZf8UFLKqrq+clUvr7+1d0f/X1S08tmkqlJGnRcIcZs2Mlk0kCFgAAAKgI8VB87mIps6y68AoAAADA6hnoGtBobLSgmegcTofG4mOLrp8NWT/4HsNMDQAAKC91NXUKfiVY6jYAAAAAAECZczgd2nt8rzxHPQXVnWo4Zcn+Ky5g4XQ6ZRiG2tvbHxp+mDU0NKQrV66Y3l88Hl90/ezsFoUEIbq6uhSLxTQyMmKqJwAAAKDcjMZGH3oh02pdeAUAAABg9YzHx+eCz/nMnrM/ONvdVs9WGTFj0Zq0kZYkOX33P3c3UwMAAAAAAAAAACqPw+kwdS2QzWHNDVorMmBx/PhxHT16tKC6hoYGU/vzeDyKxWKLrjeMmS90fD7fsseMx+NzM1/kMxva8HgKS90AAAAApTKeHJe73b30Nqt04RUAAACA1dPsa1Znb+ei68eGxmSz2+Z9EbLj8A59dOojjSfH553/P1jzxXN8MzUAAAAAAAAAAKDy7O/bb6ruu79e/k1fl1KRAYtCZouY5XCYu6Pt4cOHderUKSWTybyBh6GhoYLCFdJMGKO3t3fR9UNDQ7Lb7ab+nkCp/eqdX+n6a9dVnasuaR/fGvhWSfcPAMB6Mp4clyTZ6pdOga/WhVcAAAAAVs+OwzuUCCfk7fQuWJc20hruH1YgEpi3vMnTJKfPqatnr+Y9zx/uH9aR6JGia5Bfdiprqm7i7oTe+NUbGp0YVXNds5574jnV1dSZGsu20Zq7iAFYH+7+7q6yU1lT3z1Z9drF6xYAAAAAAMD6UXEBi76+PlN1v/71r03VeTwe+Xw+nT17Nm/Aor+/X9FodMHyTCajkydPyu/3LwhgHD58WOFwWJ2dCy8uMwxD/f39ikQipvoFAAAAVttSs1I8aLUuvAIAAABgjdkZ42Znm8unydMkI2bo0qlL2tOzZ15t2BvW7p7deWe7C0QCCnvD2nF4x7xz/YGuAe3u2Z03SG2mBgs9+7Nnix7j6m+v6sUPXjRd//b+t4vuYa0wG3iRCL1g/Tj2l8csGaeY1y5etwAAAAAAAMqHccGQETWkKqneVa9tLdu09cmtlo1fcQGLfD777DOlUik99thjKzJ+JBKR1+vV4cOH54Usurq61NPTk3cGi3A4rFOnTikcDiudTs9b5/F4FIvFdOrUKfX09MwtNwxDXq9XPT09am9vX5G/CwAAAGC12YuubPalL8ZYzQuvAAAAAJgz3D+sRCghSRqLj0mSBjoG5pa5A+4Foek9PXtkxAwNdA0om8oqm8nKZrfp2xe+nTcoLc28f+hMdCoajMpmt2lTwyalRlJy+V153xeYrQHKnRWBF4nQCwAAAAAAAIC141TDKfXc6ll0vXOfU859TmUnsppMTcqIGYqH4vL3+lXzaE3R+6/YgMW1a9fU29urcDgsSaqqqtLU1NTc+tHRUQWDQT311FM6evRoUfuy2+1KJBIKBoOy2+1qaGjQyMiI/H7/okEIn88nu92uQ4cO5V3f09OjWCymrq4upVIpZTIZ2e12XbhwIe9MGQAAAEC52tayTTa7Tb+36/ceuu1qXXgFAAAAwBx3u9vUebbT5yw4/Gyz29QWalvxGsz35jfeNFX3Wvw1Dd8a1nRuWtVV1XI3uPVSy0sWdwcAC73ynVfkuOFQda664FpeuwAAAAAAACpPLpdb1na2OptsdTZ5O7zKTmQVDUa1//X9Re+/IgMWg4ODc7NGOJ1OOZ1OjY6OztumublZ586d04ULF/Tqq6/q+9//flH7tNvtCoVCy97e4/EsmLnii3w+X97ZLyoF01YDAABAmpmZIpgOLnv71brwCgAAAACwkNnP1F/Y+YL6rvRpJDMil92l7ie7+XzeAmYDLxIXjmP9qHmkRraNNlMBC167AAAAAAAAKk9VVVXBNbY66z7zqbiAxejoqNrb29XZ2algMKjm5mZJ0vHjx/Nuv2/fPmUyGQ0ODqq1tXU1W13zmLYaAAAAAAAAAID1oa6mTsGvLD9cj+Up5kJvKy8cL4ebanHRO1YCr10AAAAAAADrQ3Yiq/H4uCVjVVzA4vjx4+rt7VVHR8e85UslVQ4ePKjnn3+egAUAAAAAAAAAAADWBCsvHC+Hm2pxQy0AAAAA68GdO3dM1968eVPd3d1KJBLyer3q6+tTY2OjqbE2b95sug8AAKyQuZbJuzyXy82s/01Gyi09RjaT1WRqUuPJcV08eVHuQ25Lequ4gEU6nV4QrliO2YMN6zBtNQAAAAAAAAAAAAAAAAAAy7NlyxZLxolGo3K5XKbruZ4SAFBqY4kxjQ2NKW2kZcQM3Z24O2/9D50/XPZYuVxOTp9T+1/fb0lvFRewcDqdpurS6bTFnaBcpq0GAAAAAAAAAACVIzuVNV07cXdCb/zqDY1OjKq5rlnPPfGc6mrqTI3F9xL3cVMtAAAAAAAAAKvJfdAt98H7M06MJ8cVC8ZkXDBUVVWlxw8+vqxxHE6HnH6nnPvMZQzyqbiAhdmghGEYFneCYlg5bTUAAAAAAAAAAKgcz/7sWUvGufrbq3rxgxdN17+9/21L+lgLuKkWAAAAAKwOAu4AAOTX5GnSkegRDXQN6JP+TxQ4FyhZLxUXsHA4HPrggw/09a9/fdk1J06c0L59+1awKwAAAAAAAAAAAGD94aZaa1c5zDYzXTVtugcrlcOxkJh5BwAAYC0g4A4AwNLaQm0aT4yXtIeKC1j09PToqaee0unTp5cVsnj11VfV39+vv/3bv12F7gAAAAAAAAAAAPK7O3XX1EW6a+3iXO7WCVSGcplt5oedP7Skj2KUy7Fg5h0AAID1jYA7AGC92Htib0n3X3EBC6fTqb6+Pu3bt08tLS06fPiwdu7cqUwmo2vXrimTySiVSimZTCoUCskwDCUSiVK3DQAAAAAAAAAA1rnv/+L7RY+xFi7O5W6dAAAAAAAAAIDFuA+6H7rN6OCo0kZaDqdD21q2qebRGsv2X3EBC0ny+Xw6d+6cOjs71dPTM7c8HA7P/TmXy8npdCoej+vJJ58sQZcAAAAAAAAAAACwEnfrBFZPOcw2M101rc/1uek+rFIOxwIAAAAAAGC9iB2PKTsxfzbo/a/vlyRlJ7I64zuj8eS4crmcHE6HsumsAv0BNX+92ZL9V2TAQpLa29vV3t6uU6dO6ezZs7p8+fLcOqfTqa6uLh07dqyEHQIAAAAAAAAAANz36v/2qupr6wuu4+JcAKVQDrPNlEvAohyOBQAAAAAAwHrh7fLqh64fytvllbfTq6adTXPrIoGIxhJj2tOzR76XfZKkbCaryKGIHM0O2R+zF73/igtYDA4OqrW1de7nnp6eebNYAAAAAAAAAAAAlKOajTWmLqrl4lwAlYbZZu7jWAAAAAD5/eqdX+n6a9dVnasuaR/fGvhWSfcPAFjoxuUbCkQCch90z1s+/JNhGTFD2wPb58IVkmSz2xQ4F1DsRGxupotiVFzAwu/3K5PJ6Etf+lKpWwEAAAAAAAAAAFhxXJwLAAAAAAAAAFgvrg9dl++kb8Hyj89+rKqqKu09sXfBOpvdJludNTcmKm30z4S6ujoFg3yJAAAAAAAAAAAAAAAAAAAAAADAmpLLv9iIGZKkrU9uzb9BlTW7r7iARSaTUSgU0q5duzQ4OFjqdgAAAAAAAAAAAAAAAAAAAAAAgAVqG2oXLEuPppXNZNXkaVq0LpvJWrL/igtYSFIoFFIsFtPIyIieeuopvfrqq/rss89K3RYAAAAAAAAAAAAAAAAAAAAAADCpqmrhVBTD/cOSpGZf8+KFi8x8UaiKC1iEQiEdPXpUdXV16ujo0M9//nPt27dPPT09Onz4MLNaAAAAAAAAAAAAAAAAAAAAAABQgT7/7ee6+9ndecsSoYSqqqq04/COvDWxEzF5u7yW7L/iAhYdHR0Llu3cuVN9fX06e/asRkZGdOjQIWa1AAAAAAAAAAAAAAAAAAAAAACgguw9sVeRQEQ3/tMN3bhyQ/2H+5U20nK3u7X1ya3ztr1x5Yb+6k/+SpsaNqlpZ5Ml+99oyShlpKOjQx0dHbp8+bJ6enpUVVWl7u5uffnLXy51awAAAAAAAAAAAAAAAAAAAAAAYBG2Opv2ndyncwfPKW2kJUnbA9vVfrZ9bpv3ut+TETPm1hsxQ5/f+ly+k76i97/mAhazXC6XXC6XTp48qXA4LI/Ho6GhoVK3BQAAAAAAAAAAAAAAAAAAAAAAFtHkadJ3f/1dZSeystXZFqzfE9yjPcE985bV1tdasu81F7AYHBxUKBRSf3+/JCmXy6mzs1NdXV0l7gwAAAAAAAAAAAAAAAAAAAAoP9mprOnaibsTeuNXb2h0YlTNdc167onnVFdTZ2F3ANarfOEKSXI0O1ZsnxUXsBgcHFRra+u8ZZ999pnC4bBOnjypTCajXC4nj8ejrq4udXR0lKhTAAAAAAAAAAAAAAAAAAAAoPw9+7NnLRnn6m+v6sUPXjRV+x19x5IeAKxPn7z7iR5/+vGix6m4gIXf79e9e/ckzZ+tIpfLSdLcbBU7d+4sZZsAAAAAAAAAAAAAAAAAAAAAAGAVDHQMrM+ARV1dnXbt2iXDMJitAgAAAAAAAAAAAAAAAFim8eS44qG4sqmsxpPjstlt8nZ55e30LlqTzWT14ckPJUmbGjYpNZKSy++Su91taQ0AYPW80/ZOSfc/XTUtNZW0hTl37twxVXfz5k11d3crkUjI6/Wqr69PjY2NpsbavHmzqTqrvfmNN03XvhZ/TcO3hjWdm1Z1VbXcDW691PKShd0BWGtuXLmhrU9uXXRdISZTk0obaWUzWStaq7yAhSQlEglJzFYBAAAAAGtZqT/YlaRvDXyr1C0AAAAAAAAAgCUS4ZnrbdpCbXPLjJihSCCiS72X1JnolM1um1eTzWQV9oYViATU5Ll/JexA14CuD12Xv9e/YD9magAAKJUtW7YUPUY0GpXL5TJdn8vliu7BCraNtodvtIgXdr6gvit9GsmMyGV3qfvJ7qLGA7C2xY7H9NErH6nJ26SOXy6cYOHHrT/W3Ym7JehsRkUGLLq6uvT666+Xug0AAAAAAAAAAAAAAACg7M3ezXVPz555y50+p7594dsKe8OKBCI6Ej0yb30kENHj7Y/PC0pIMyGNXkevXH6XnD5n0TUAAKCy1dXUKfiVYKnbAFAh0kZauVxO2XT+GSdq62slaW6mvdqG2iXHm7w1qfRIWp+8+4kl/VVcwCKTyRCuAAAAAAAAAAAAAAAAAJYpHorraye+lnddk6dJTp9TRsxQ2kjL4XRImrnoyYgZ2h/an7fOfcitS72X5oUlzNQAAFBKt2/fNlV34MABDQ4O6t69e9qwYYNaW1t1/vx5i7sDgLWp7XSbnH7nou8LHE6H9h7fK89RT0Hjnmo4ZUV7lRew6OzsLHULAAAAAAAAAAAAAAAAQMUYjY0qGU7qe6Pfk81uW7B+q2erjJih8eT4XMAiHopL0tzPX1TvqlcynFQ2k50b00wNAACltHnzZlN1Z86c0TPPPKOhoSHt2rVLb731lumxAGC9sdXZ5O3wLrre6XdqW8u2gse1N9uL6Oq+igtY9PX1lboFAAAAAAAAAAAAAAAAoGLU1tdqPDmutJFWk6dpWTU3kjeWDEHMhijG4mNzd541UwMAQCVqbGzU+++/X+o2AGCe8eS44qG4sqmsxpPjstlt8nZ55e1cPMyQzWT14ckPJUmbGjYpNZKSy++Su91taU0h9hzbY6quM27NRA4VF7Awq6GhQbdu3Sp1GwAAAAAAAAAAAAAAAMCqOhI9orSRXnRmiYyRkaR54Yu0kVZtfe2iY84GKdJGuqgaAAAAAMVLhBOSpLZQ29wyI2YoEojoUu8ldSY6F4Shs5mswt6wApHAvPcCA10Duj50Xf5e/4L9mKmpNOsmYJHL5UrdAgAAAAAAAAAAAIAylp3Kmq6duDuhN371hkYnRtVc16znnnhOdTV1psaybVz8zt8AADxo+t60ctP3r4mZnppedNvFwhWSNNw/rCZP07xtJlOTS9bMBimymfu/P83UAAAAAChO2kgrm8lqT8/8mR+cPqe+feHbCnvDigQiOhI9Mm99JBDR4+2PL5jlri3Upl5Hr1x+14KZ58zUFCJzLSMjZig1kpoLgtvqbap31avJ06Tm1mbTYy/XughYHD9+XBMTE6VuAwAAAAAAAAAAAEAZe/Znz1oyztXfXtWLH7xouv7t/W9b0gcAYO1L/Tql1N+m5n6eUOHXx1w6dUmS1Ha6bd7y5YYgPr/1eVE1AAAAAIoTD8X1tRNfy7uuydMkp88pI2bMm9UubaRlxAztD+3PW+c+5Nal3kvzwhJmapbj7md3lQgndPHkxWW9p/B2ebWnZ4/sj9kL2s9yVa/IqGVgcHBQhw8f1oYNG/TKK6+Uuh0AAAAAAAAAAAAAAADAUvV/UC/Xn7jm/nvsf3usoPrx5LhiwZgCkcCCO9ACAAAAqAyjsVH92+Z/u2g4Yatnq6SZ8/9Z8VBc0uIz3dW76mXEjHljmql5mOSPkup19CoWjGkyPalcLjf3X01djezNdtXU1cxbHu+L64euH+rCP7+w7P0UYk3NYHHlyhWdPXtW4XBYmUxGkpTLzUyDWFVVVcLOAAAAAAAAAAAAAJS7N7/xpuna1+KvafjWsKZz06quqpa7wa2XWl6ysDsAABaq3lAtbXjg56nC7rUaCUS0P7Rf7nb3gnU2u21ZF0ZtathUVA0AAACA4tTW12o8Oa60kV52cPpG8oZsdtui62dDFGPxsbkZKczULKX/cL+G+4eVy+Xk9Dnl9Dvl9DnVtDP/3yE7kZURMzTy8xElTyd1qfeSjJihjl92PHRfhaj4gMW1a9fU39+vUCgkwzAk3Q9V+Hw+dXV1KZfL6fDhw6VsEwAAAAAAAAAAAECZs21c/Avih3lh5wvqu9KnkcyIXHaXup/sLmo8AABWWiQQkbfLK2+nN+/62vraJesnU5OSNO8CKzM1AAAAAIpzJHpEaSO96MwSGSMjSfPCF2kjveT5++w5e9pIF1WzmL/6k7/SSHRE7na3fL0+OZrz9z5v/Dqb3Afdch90qy3Upmgwqo9e+Uin/5fTloYsKjJg8dlnn+ncuXMKhUJKJpOS7ocqnE6nurq61NnZqbq6urmaB/8MAAAAAAAAAAAAAFaqq6lT8CvBUrcBAMCyRINRbdu1TXt69iy6jcPp0Fh8bNH1szNVPHgRl5kaAAAAAPlN3Z3Svbv35n7+3e3fLbrtUufYw/3DavI0zdtmMjW5ZM1skOLBGerM1ORz6ZVLGomOqC3cJs9Rz5LbLsXf65fL79KZp87owj+/oH0/2Gd6rAdVVMDi3Xff1dmzZ9Xf3y/pfqjCbrdrYmJCIyMjeuyxx/LWRiKR1WoTAAAAAAAAAAAAAAAAKEuJcEL1rvq8M1dkM9m5u85u9WyVETMWHWf2rrROn3NumZkaAAAAAPldPHlRv/jzX8z9PFE9UfAYl05dkiS1nW6bt/xhIYhZn9/6vKiaL8pOZBULxuQ/5S8qXDHL6XMqcC6g/sP98nZ6ZX/MXvSY1UWPsMIGBwf1/PPPa8OGDQoEAopEIsrlcqqrq1NnZ6cSiYRSqZTq6uoWDVdI0r591iRSAAAAAAAAAAAAAAAAgEo03D8sSXnDFWkjPS8csePwDknSeHI871hjQ2MLghJmagAAAADkt/fEXh2fOD733/P/6fmC6seT44oFYwpEAmryNK1Ql4VJhBNq8jRp9/d3Wzamu92trTu3zr3fKVZZBiyuXbumEydOqKGhQX6/X+FwWLlcTrlcTu3t7YpGo0qlUurr69POnTslSVVVVSXuGgAAAAAAAAAAAAAAAChP48lxTaYm84YrJMmIGfMuumryNMnpc+rq2at5tx/uH9ae4J55y8zUAAAAAMhvY81G1TxaM/ffI1seKag+Eohof2i/3O3uBetsdtuyZqTY1LCpqJov+vjsx/raP//aQ8co1N7je/Xx2Y8tGWujJaNY5PTp0zp16pQMYyYNn8vlJEk+n0+BQEAdHR2lbA8AAAAAAAAAAAAAAACoOGkjrUggomZfs8a6xhasz6ayMmKGgungvOWBSEBhb1g7Du+YF74Y6BrQ7p7deWejMFMDAAAAwFqRQETeLu+iAeva+tol6ydTk5JmQhXF1HxRZjSzIu8JnH6n3ut6z5KxyipgEY1GNTIyIklyuVzq6upSR0eH6urqStwZAAAAAAAAAAAAAAAAUJnO+M8obaSVDqcX3cbhdCxYZrPb1JnoVDQYlc1u06aGTUqNpOTyu/LeBddsDQAAAADrRINRbdu1TXt6Fp89zuF0aCy+MHw9a3amigffJ5ipybdNzaM1i643y1a3vNk1lqOsAhbnzp2TJIXDYfX392toaEgej0etra0l7gwAAAAAAAAAAAAAAACoTN8d+a7pWpvdprZQ24rXAAAAACheIpxQvas+78wV2Ux2bnaJrZ6tMmLGouOkjZlw9oOzTZip+aKaOuvDFVaPXW3JKBbr7OzUz3/+c4XDYSUSCT311FN6/vnndeXKlZL1lMlkFAwGFQwGderUKXV1dam/v9/y/XR1dckwFn/iAQAAAAAAAAAAAAAAAAAAAADwoOH+YUnKG65IG+l54Ygdh3dIksaT43nHGhsaWxCUMFPzRVVVVUuuL4ZVY5dlwGJWXV2djh07pp///Ofq6enRf/gP/0G7du3SiRMndO3atVXrI5PJyOv16vDhw+rt7VVPT49CoZCi0aiCwaBl+0kmkwqHw8pkMpaNCQAAAAAAAAAAAAAAAAAAAABYu8aT45pMTeYNV0iSETPU5Gma+7nJ0ySnz6mrZ6/m3X64f1h7gnvmLTNTU4k2lrqB5WpubtbLL78sSbp8+bJefvlljY6Oyu/3q6OjY0X3HQgE1N7eLo/HM295KBSSw+GQ3++Xz+crej9WhjUAAAAAAAAAAAAAAAAAAAAAAGtb2kgrEoio2dessa6xBeuzqayMmKFgev616oFIQGFvWDsO75gXvhjoGtDunt15Z6MwU1NpKiZg8aCdO3eqr69PkvSTn/xEHR0dyuVy+tGPfqSjR4/mrXn11Vf1/e9/v+B9GYahWCymUCiUd/2hQ4fU29tbdMAiHA4rEAgoFosVNQ6AGe+0vVPqFvStgW+VugUAAAAAAAAAAAAAAAAAAACsYWf8Z5Q20kqH04tu43A6Fiyz2W3qTHQqGozKZrdpU8MmpUZScvldcre7845jpuZB2Ux2+X+xAlk1dkUGLB508OBBHTx4UBMTEzp37pyeeuopORwOdXV1qbW1VZI0OjqqYDBoKmAxG6xwOvOnaVwul8LhsDKZjOx2u6m/g2EYS+4DAAAAAAAAAAAAAAAAAAAAAIAv+u7Id03X2uw2tYXaVrxmVi6X0//1//m/8gY+ipE2Fg+XFKriAxaz6urq1NHRoY6ODk1MTCgcDuvll19WVVVVUbNCJJPJJYMTs6GIeDxuehaLUCik3t5eZq8AAAAAAAAAAJSVga4BbQ9sf+iU3tlMVh+e/FCSln23qtWqAQAAAAAAAAAA5SM1klJqJGX5uFVVVZaMs2YCFg+qq6vTsWPHdOzYMcViMf3yl7/UZ599ZmoswzBUX1+/6PrZ8MXsLBSF6u/vV1dXl6laAAAAoJQS4YSGI8Pydnnl9Dlls9uUNtIaT47r47Mfa++JvWryNC2o4yIqAAAAoLyljbSMmKFEKKHx5Li2B7YvuX02k1XYG1YgEpj3HmCga0DXh67L3+svWQ0AAAAAAAAAACgvTp9TTv/SN3Yq1Ngvx/TJu59YMtaaDFg8yOfzKRKJ6E/+5E9M1adSqblZKvKZDV9kMpmCx85kMjIMQ+3t7QXXTk5N6vbU7bmfH6l+RI9seKTgcda7XFVOOeWUq8ppWtOlbqficTznm5qaKrp+enq66HEwg+NpLY6ntTie1uJ4Wmt6evHf6dlMVkbMkBGbHza22W0LLnh6sIaLqB6O8/3yUQ6vJbyuIR+eF1gMzw3kw/MC+Sx2rp8IJ2REDTn9Tvl6fTrjP/PQsSKBiB5vf3zBe4C2UJt6Hb1y+V0LZsBYrZpy8/m9z1UzVTP3M+f6lYHPvisbj19l4/GrbDx+lY3Hr3LlqnKlbmFd4nN9a/DaYy2Op7U4ntYqp+O5Fj43teoz4Omq0j+3y+Hx4DN1a3E8rbXUdTyVoqqqSkd+fmRFxv5XG/6VJeOs+YCFNBOyqKurM1X7/2/v72IjPe8D0fPPVguiZCUqsg8gtwPMQsWzwKQtY0dF9SSRFCATkziGV32Rg6ru0UUMb7xieWAgC3sxJHSXc9VgD6DszLmIig0HPuOBG60qbIA0EAfDUpyB7bkIycpg7NFc7LJ01udIbeNErNLEVrfGLdZe9FSp2axiffBlfbB+P4CQWPV+PHye5336/37836fXxIn333+/721fvXo11tfX+14vImLtr9cO/P6FzBfii89/caBtTbNGNOLOr9yJvdiLmUhmWphppj4P+sEPfnCs9ff39+MnP/lJREScOXMmiSJNNfWZLPWZLPWZLPWZrG5x7suFl2Nvdy/q1XrMzs/GZxY/E4srix2Xn9aHqPol3h8fx43pkmBcox39gk70DdrRL2inU6y/uLLYiulvV2533U5ztouXCy+3/f7C5Qvxw/UfHojZh7XOOBLrTybXvieb9pts2m+yab/Jpv0m19/f+ftRF2EqifWTYexJlvpMlvpM1jjV5zjcDzyupK4B753fS6pIAxuH9nBNPVnqM1mDPK8+bh576rHuC41421ORYBER8dZbb426CAeUy+VYXh78Tbvrv7Mec7Nzrd8fPfNoPHpb5nu/GjON2Iu9mP/pfMw0BL7HpT4Peumll461fjNj84UXXoizZ6dmuD4x6jNZ6jNZ6jNZ6jNZzZPcTj57+bMxm5rtaVvT/BBVv8T74+O4MV0SjGu0o1/Qib5BO/oF7XSL9Xu1XdiOiIi59Fzb7+cX5qOyUYm79butc4dhrTOOxPqTybXvyab9Jpv2m2zab7Jpvwl2Z9QFmE5i/WQYe5KlPpOlPpM1TvU5DvcDjyupa8Dvvv5uUkUa2Di0h2vqyVKfyUrq2v4ofemtL439tqempz733HMDrZdKpXqaxeLcuXN9bXdzc3Pg2SsiIh4/+3g8efbJgx+a5bFv+7EfMzETM42ZONOQGXdc6vOgJIKBM2fOxNmzZwUWCVGfyVKfyVKfyVKfyUny7QHT/BBVv8T742NcxhHjGu3oF3Sib9COfsHDkor1f1r56ZGxeDOWf2/7vVZi9LDWGUdPPPKEWH8CufY92bTfZNN+k037TTbtN7lG/ZDqtHJdPxnGnmSpz2Spz2SNU32elmumSVwDHnVbRIxPe7imniz1mZzTMAvI+efOj/22J7+WT9j8/PyR3+/t3Z8SKZVK9bzNa9euxWuvvXacYgEAwMTp54Go46wDAAAMT61ai8fnH+/4fTOer1VrQ18HAAAAAACgXxIsukin060kinaas1uk0729EatarUYqleorIQMAAIbl3kf34qP/8lHr55c//2VP692u3I6djZ24XbndcRkPUQEAwOgMGut3c2fvzpFJ0c14/m797tDXAQAAAAAA6Je5VrrIZDJRLpc7fl+tViMiYmlpqaftVSqVKBaLUSwWO27r1Vdfbc2csbm52W+RAQBgYD+4+oP4d//Tv2v9/sGZD45cvlquRq1ai/RSOhZXFuN25XZ8e/nb8eLai5FeOpiEfGfvTmvGiXY6PUTV7zoAAMBh/cb6veo1Fv/w/Q+Hvg4AAAAATIIbl24ca/39mf3YO78X777+bpxpeO86wHFJsOjiypUrce3atahUKpHJZA59v7W11XNyRURENpuNbDbb9rtSqRS5XC6uX7/edl8AAHDSXnrtpfitb/xW6/ef/OQn8cef++O2yzYTH15cfbH12fnM+cgVc7E+tx4rOytxPnO+9Z2HqAAAYHT6ifUBAAAAAACmlVS1LjKZTCwtLcXNmzfbfl8qlWJtbe3Q5/V6PdbW1o6c/QIAAMbN2cfOxmO/+ljr59EnH+247IXshbiQvXDo89nUbFzIXohi7vCsbQAAwGj0E+v3YzY121Ni9BPnnhj6OgAAAAAAAP2SYNGDYrEYpVIpKpXKgc/z+Xysrq62ncFiY2Mjrl27Frlcruf9VKvVA/8FAIBJ9ZmLn4latRa1aq31mYeoAADg9Hl8/vEjv7+zdyci7sf2w14HAAAAAACgX2dHXYBJkEqlYmdnJ9bW1iKVSsW5c+did3c3lpeXI5vNtl1naWkpUqlUXL58uev28/l8VKvV2N7ejoiIV199NQqFQmQymVhfX0/0bwEAgGFoPtR0u3I75tJzEeEhKgAAOI3m0nPx3vZ7Hb9vJkw3zwuGuQ4AAAAAAEC/JFj0KJVKRaFQ6Hn5TCYTtVqt+4IRfW0XAADGwa38rXin/E784e4f9ryOh6h699G9j+Luve4zdzzsg48+iG/+6JvxzgfvxDNPPRNf+dxX4qnHnup7O7NnJawAANCbT2c+HdVy51mZm7PapZfSQ18HAAAAAACgXxIsAACAvt3evt2aPaKdZuLD+cz51mceourdP//rf37sbfz4734cX//e1wda9zsvf+fY+wcAYDo8e+XZ+PfX/n3crtw+EP83vbf13qF4fVjrAAAAAAAA9OvMqAsAAABMnmeWnom12lrH79/bei9mU7MHZpZ49sqzERFxu3K74zrtHqLqdx0AAGB4zmfOR3opHT+++eO2379dejteXHtxJOsAAAAAAAD0ywwWAABA35698mzsbOzE4srioe9q1Vq8XXo7csXcgc8ffCCq3Rtn3y69Hb+/+fvHXuc0+Be/8y/i3Oy5vtd7ffv1ePv9t2O/sR9nZs7EhXMX4hvPf+MESggAwDRozhjXnKGuk1wxFxuLG/HslWcPxO238rfihdUX2iZFD2sdAAAAAACAfkiwAAAA+nY+cz6q5Wr88NoP48XVT94SW6vWYmNxI15YfSEuZC8cWs9DVL157OxjMXt2tu/1vvbc1+KN//BG7NZ3YyG1EF/9R18daDsAAEyvt0tvx05hJyIi3tt+LyIibr16q/XZhdyFQ4nWs6nZWNlZic21zZhNzcYT556Ivd29WFheaHteMMx1AAAAAAAA+iHBAgAAGMiLqy9GtVyNW/lbcXfvbtyt343Z1Gx86a0vtZ1tIsJDVCftqceeirXfWBt1MQAAmGAXshcGirNnU7NxqXBpLNcBAAAAAADolQQLAABgYOmldN8zSHiICgAAAAAAAAAAGEcSLAAAAAAAAAAAAACAkfrFL34x8Lo/+9nP4qtf/Wrs7OzE4uJivPHGG/H000/3vZ179+4NXAbgdJBgAQAAAAAAAAAAAACM1JNPPpnIdjY3N2NhYWHg9b/3ve8lUg5gMkmwAAAAAAAAAAAAAIARuHvv7sDrfvDRB/HNH30zqn9fjfSvpOMrn/tKPPXYUwNta/bs7MDlADhNJFgAAAAAAAAAAAAAwAj8wV/+QSLb+fFHP46vf+/rA6//nZe/k0g5juPnP//5wOv+3u/9XvzVX/1VfPzxx/HII4/E7/7u78af/dmf9b2de/fuxd/+7d8OXA5g8kmwAAAAAAAAAAAAAABG6lOf+tTA637729+OL3/5y7G1tRUXL16Mb33rWwNt7969ewOXATgdJFgAAAAAAAAAAAAAwAj86Rf+dOB1X99+Pd5+/+3Yb+zHmZkzceHchfjG899IsHST4+mnn47vfve7oy4GcApIsAAAAAAAAAAAAACAEZg9Ozvwul977mvxJ//hT2L3v+zGwq8uxD/7R//sWNsDQIIFAAAAAAAAAAAAAEycpx57KlZ/czX2zu/F/O35ONM4M+oiAUw8IykAAAAAAAAAAAAAADD1JFgAAAAAAAAAAAAAAABTT4IFAAAAAAAAAAAAAAAw9SRYAAAAAAAAAAAAAAAAU0+CBQAAAAAAAAAAAAAAMPXOjroAAKfVjUs3jrX+/sx+7J3fi3dffzfONAbPh3vl1ivHKgcAAAAAAAAAAAAATAMzWAAAAAAAAAAAAAAAAFNPggUAAAAAAAAAAAAAADD1JFgAAAAAAAAAAAAAAABT7+yoCwAAAADj6salG6MuQuzP7MevfePXRl0MAAAAAAAAAIBTzwwWAAAAAAAAAAAAAADA1JNgAQAAAAAAAAAAAAAATD0JFgAAAAAAAAAAAAAAwNQ7O+oCAAAAAAAAAAAAAMCw3bh0Y9RFAGDMmMECAAAAAAAAAAAAAACYehIsAAAAAAAAAAAAAACAqSfBAgAAAAAAAAAAAAAAmHoSLAAAAAAAAAAAAAAAgKknwQIAAAAAAAAAAAAAAJh6EiwAAAAAAAAAAAAAAICpJ8ECAAAAAAAAAAAAAACYehIsAAAAAAAAAAAAAACAqSfBAgAAAAAAAAAAAAAAmHoSLAAAAAAAAAAAAAAAgKknwQIAAAAAAAAAAAAAAJh6EiwAAAAAAAAAAAAAAICpd3bUBQAAAAAAAAAAAIbnVv5WfDb32UgvpY9c7m79bnz/6vcjIuKJc0/E3u5eLCwvxIXshUTXAQAAGBcSLAAAAAAAAAAA4JSrVWtRLVdjp7ATtyu347O5zx65/N363dhY3IhcMRfnM+dbn9/K34p3t96N5fXlRNYBAAAYJxIselSv1+Pq1asREXHu3LnY3d2N5eXlyGazA2+zWq3G+vp6RETs7e1FvV6P5eXlWF1d7bruR/c+irv37va9zw8++iC++aNvxjsfvBPPPPVMfOVzX4mnHnuq7+1ERMyenR1oPQAAAAAAAAAAhmdnYyeqm9VIL6djaX0pvr387a7rFHPF+PXsrx9IlIiIuFS4FOtz67GwvHBoBoxB1gEAAJJlxrrjkWDRg3q9HouLi1EsFiOTybQ+z+fzsbW11UqS6EepVIqtra0oFAoHPl9cXIxCoRC7u7tHrv/P//qf973Ph/34734cX//e1wde/zsvf+fYZQAAAAAAAAAA4GQtrizG4spiRETcrtzuunxztouXCy+3/f7C5Qvxw/UfHnhga5B1AACAZJixLjkSLHqQy+Uim80eSK6IiCgUCjE3NxfLy8uxtLTU8/bq9XrcvHkzisXioe+uX78ei4uLkc/nDyVfAAAAMJ1+dONH8e7r78aZxpmRluOVW6+MdP8AAAAAwHBsF7YjImIuPdf2+/mF+ahsVOJu/W7MpmYHXgcAADg+M9YlS4JFF9VqNcrlcsdkh8uXL8f6+npfCRbb29tRKpVibW3t0OwXzSSOcrl85Db+xe/8izg3e67nfTa9vv16vP3+27Hf2I8zM2fiwrkL8Y3nv9H3dgAAAAAAAAAAOJ1+WvnpkUkQzSSK97bfaz1ANcg6AADA8ZmxLlmjffXlBGgmVqTT7Rt7YWEhyuVy1Ov1nrc5Pz8fqVQqzp3rnCCRSqWO3MZjZx+L2bOzff987bmvxef+u8/Fk48+GZ/77z4XX3vuawNtZ/asNwkAAAAAAAAAAJxGtWotHp9/vOP3zUSKWrV2rHUAAIDh62X2uWq5Gnfrd4+1zqQyg0UXlUrlyGSHZuLF9vZ2z7NYZDKZqNXanyxWKpWIiL5mxOjHU489FWu/sXYi2wbG041LN0ZdhIiIeOXWK6MuAgAAAAAAAMCpsv/xfjT2G5/8fm8/ke3e2bvT8cGpiGglUjz48NQg6wAAAMNnxrqjSbDoolqtxvz8fMfvm8kX1Wo1kf2tra1FOp2O9fX1RLYHAAAAAAAAAMDptPf/3Yu9/89e6/cP4oNEtttrEsSH7394rHUAAGBS/OIXvxh43Z/97Gfx1a9+NXZ2dmJxcTHeeOONePrpp/vezocfJhNLm7HuaBIsutjb22vNUtFOM/miXq8faz/VajXW19cjnU7H5uZm1+Xv3LsTP7/389bvj555NB595NFjlWEaNWYa0YhGNGYasR/JvMVhmqnPZJ22+rx3797I97+/vz/ycpwW6jNZ6jNZ6jNZ+/uT/2/QJBLv86BxiguNrePDv3d0om/Qjn5BO2L90fjw4w/jsXuPtX4X60+GcYrJ6Z/2m2zab7Jpv8mm/SbH3P95LlILqdbve3f3Iv56ZMWZWq7rJ8PYkyz1mSz1mSz1mazTVJ/jcB3bNfVknab6fPLJJxPZzubmZiwsLCSyrUGZse5oEiy66DVx4v333x9o+6VSKba2tqJarUY6nY7l5eWe1lv767UDv38h84X44vNfHKgM06wRjbjzK3diL/ZiJmZGXZyJpz6Tddrq8wc/+MFI97+/vx8/+clPIiLizJkzIy3LaaA+k6U+k6U+kzVonMvxiPd50DjFhaOO6fiEf+/oRN+gHf2CdsT6oyHWn0zjFJPTP+032bTfZNN+k037Ta5f3Bn8rboPmk3N9vRg1BPnnjjWOqeFWD8Zxp5kqc9kqc9kqc9knab6HIf7ka6pJ0t9jicz1h1NgsWIZbPZyGazrd+Xl5ejUCjE9evXI5VKdVxv/XfWY272kyygR888Go/elvner8ZMI/ZiL+Z/Oh8zjckOLMaB+kzWaavPl156aaT7b2bAvvDCC3H2rH/+jkt9Jkt9Jkt9Jqt5kstwifd50DjFhaOO6fiEf+/oRN+gHf2CdsT6oyHWn0zjFJPTP+032bTfZNN+k037TbA7yWym+fbZjrvZu7+j2dTssdY5LcT6yTD2JEt9Jkt9Jkt9Jus01ee7r7876iJEY6YR/+D/8Q9cU0/IabpH0etL+9vJZrPxve99Lz7++ON45JFH4p/8k38SpVKp63r3ProXH3/0cev3d999NzK/lRm4HPRmsnvqEKRSqZ4OiHPnziWyv2KxGHNzc1Gv12Nzc7Pjco+ffTyePPvQVDONRIowVfZjP2ZiJmYaM3GmITPuuNRnsk5bfY5DcHTmzJk4e/bsWJTlNFCfyVKfyVKfyen29oDblduxXdiOu3t343bldsymZmMxvxiLK4ttl9/Z2Im3i2/HYn4x0kvpmE3NRq1ai9uV2/Gfbv6neOm1l+J85vyh9e7W78b3r34/Iu6/2Wpvdy8WlhfiQvbC8f/IMSTe50HjFBcaV8eLf+/oRN+gHf2Chx0V6w8zbp+2WP+JR54Q60+gcYrJ6Z/2m2zab7Jpv8mm/SZXUg9VzqXn4r3t9zp+33x77Vz6k6SCQdY5LVzXT4axJ1nqM1nqM1nqM1nqM1n7se+aesJOS30+9dRTA6/7b/7Nv4kvf/nLsbW1FRcvXoxvfetbA23vw4+TmR3CjHVHm+yeOgTz8/NHfr+3txcRceRsE/1IpVKRzWajVCpFuVyOpaWlRLYLAABJ29nYiYiIS4VLrc+q5WoUc8X44foPY2Vn5dBbqO7W70a1XI1quXrg89nUbOSKuY4PaW0sbhz6/lb+Vry79W4sry8n+WcBAMDUG1bcLtYHAIDx9enMpw+dEzyoVq1FRER6KX2sdQAAoBe/+MUvBlrvZz/7WXz1q1+NnZ2dWFxcjDfeeCOefvrpgbb15//0zwdar+lLZ78UX/qtL0VExF/93/9qoG383d2/O1YZmsxYdzQJFl2k0+nY3t7u+H1zdot0uveTv3q9Hnt7ex3XaX6+ubkpwQIAgLFUq9bibv1uvLj64oHP00vp+NJbX4qNxY0o5orx+5u/f2jdlwsvx97uXtSr9Zidn43PLH6m44wXERHFXDF+Pfvrhx7iulS4FOtz67GwvOBmDAAAJGwYcbtYHwAAxtezV56Nf3/t38ftyu22Sdbvbb13KF4fZB0AAOjFk08+2X2hLjY3N2NhYWHg9b/z8neOXYZxYca6o0mw6CKTyUS5XO74fbV6P/O+n0SIubn7HadWq7Wd+eLcuXMR8UnyBgAAjJvtwnb89mu/3fa785nzkV5KR7VcjVq1dujE6bOXP9tztnqtWotquRovF15u+/2Fyxfih+s/dEMGAAASdtJxu1gfAADGW/Na/49v/rhtssTbpbcPvWRpkHUAAIDhM2Pd0c6MugDj7sqVKxERUalU2n6/tbXV9ywTqVQq0ul02+SKiIjd3d2IiFhc7Pw2MAAAGKV3yu/Ev3zmX7ayzx/26cynIyLiduX2sfazXbg/m1yn7Pb5hfmolqsdywEAAJy8QeJ2sT4AAIxO88GnbvF2rpiL/1z6z4eu9d/K34oXVl9o++DUIOsAAEA3P//5zwf6WV5ejkceeSQiIh555JFYXl4eeFunybNXno2Izs/1dJqxrt91JpUZLLrIZDKxtLQUN2/ejEwmc+j7UqkUm5ubhz6v1+tx9erVWF5ePpSAsbKyEvl8vuM+33zzzUilUnH58uXj/wEAAHACHp9/PG5XbketWmv7Fqqk/LTy0yPfmtt8GOu97dNzkgYAAJNmkLhdrA8AAMP1dunt2CnsRMT9ODsi4tart1qfXchdiMWVgy8CnU3NxsrOSmyubcZsajaeOPdE7O3uxcLyQlzIXmi7n0HWAQAYN3fu3Ilf/OIXcfZs/49Z/+xnP4uvfvWrsbOzE4uLi/HGG2/E008/3fd2PvWpT/W9zmk2aH18+9vfji9/+cuxtbUVFy9ejG9961vqNsxY140Eix4Ui8VYXFyMK1euHEiyyOfzsbq62nYGi42Njbh27VpsbGxErVY78N36+nrk8/nI5XKH1s3lchER8dZbb3Wc4QIAAEbt9zd/P2rVWse3zdar9YiII5Mvbldux3vb78Vnnv9Mx+Vq1Vo8Pv94x200H8hqvm0LAABo795H9+Ljjz5u/f7Ln/+yp/VOKm4X6wMAwHBdyF4YKMFhNjUblwqXTnwdAIBx8sUvfjGR7WxubsbCwsJA6zYajUTKMO2efvrp+O53vzvqYgxVPzPWbSxuxLNXnj1w/b/bjHX9rjOJJFj0IJVKxc7OTqytrUUqlYpz587F7u5uLC8vRzabbbvO0tLSkbNQFAqFKJVKkcvlYn5+Pvb29qJer0cmk4l33nlHcgUAACPRz0NXnZIrIu5npZ/PnG+7TLVcjVq1FumldCyuLMbtyu349vK348W1Fw+daN3Zu3PkfpoPZHU7KQQAgGn3g6s/iH/3P/271u8fnPngyOVPOm4X6wMAAAAA0Ksbl26MughjzYx1yZJg0aNUKhWFQqHn5TOZzKGZKx6WzWY7JmgAAMAo9PvQVTs/vPbDiIi4dP3w26maD1C9uPpi67PzmfORK+ZifW49VnZWDmS49/ow1Yfvf9h3OQEAYJq89NpL8Vvf+K3W7z/5yU/ijz/3x22XHUbcLtYHAAAAAMbVX/zFX8QLL7wQZ8/2/5j17/3e78Vf/dVfxccffxyPPPJI/O7v/m782Z/9Wd/bGZeEglduvTLqItADM9YlS4IFAADQ0s9DV+3crtyO8lo5csXcgQeumo7KcL+QvRDFXDH+cPcP+y84AABwpLOPnY2zj31yS+DRJx/tuKy4HQAAAACYZo8//nh86lOfGijB4tvf/nZ8+ctfjq2trbh48WJ861vfik996lMnUMrhOG6ix/7Mfuyd34t3X383zjTOJFQqOFkSLAAAgJZ+Hrpqp5grxsuFlwfKiv/Mxc/E26W3o1attd6YO5ua7enNtk+ce6Lv/QEAAP1LKm4X6wMAAAAAp9HTTz8d3/3ud0ddDOAYpAIBAACJKOaKsZhfjMWVxYHWn03NRsT9WTCaHp9//Mh17uzdObAuAABwspKK28X6AAAAAADAOJJgAQAAHNvm2mZ85uJn4sXVFzsucyt/K/7Vwr/qa7tz6bnWg1XtNN9423xzLgAAcDzDitvF+gAAAAAAwDg6O+oCADAdbly6MdL978/sx69949dGWgaA02pnYyfmF+bbzlxxt373kzfcbt/u6QGq85nzrc8+nfl0VMvVjuvUqrWIiEgvpQcqOwAAcNCw4naxPgAAAAAAMI7MYAEAAAzs7dLbERFtkytq1dqBB6aeWXom1mprHbf13tZ7MZuaPfCG2mevPBsREbcrtzuu44ErAABIzrDidrE+AAAAAAAwjiRYAAAAA7lduf9m23bJFRER1XL1wFttn73ybOxs7LRdtlatxdult+PS9UsHPj+fOR/ppXT8+OaP2673dunteHHtxQH/AgAA4GHDitvF+gAAAAAAwDiSYAEAAPStVq1FMVeM93bei1v5W4d+irlilNfKB95qez5zPu7W78YPr/3w0LY2FjfihdUX4kL2wqF95Yq5+M+l/3zozba38rfihdUXvNUWAAASNMy4XawPAAAAAACMm7OjLgAAADB5vr387ahVa1HbqHVc5sHkiqYXV1+Markat/K34u7e3bhbvxuzqdn40ltfOjDbxYNmU7OxsrMSm2ubMZuajSfOPRF7u3uxsLzQ9sEuAADgeIYVt4v1AQAAAACAcSPBAgAA6Nsf7v7hwOuml9J9v4l2NjUblwqXBt4nAADQn2HF7WJ9AAAAAABgnEiwAAAAAHpy49KNURchXrn1yqiLAAAAAAAAAACcUmdGXQAAAAAAAAAAAAAAAIBRM4MFAAAAAAAAAAAAAEBE/OjGj+Ld19+NMw3vsYdp5MgHAAAAAAAAAAAAAACmngQLAAAAAAAAAAAAAABg6kmwAAAAAAAAAAAAAAAApp4ECwAAAAAAAAAAAAAAYOpJsAAAAAAAAAAAAAAAAKaeBAsAAAAAAAAAAAAAAGDqSbAAAAAAAAAAAAAAAACmngQLAAAAAAAAAAAAAABg6p0ddQEAAAAAenXj0o1RFyEiIl659cqoiwAAAAAAAAAAJMwMFgAAAAAAAAAAAAAAwNSTYAEAAAAAAAAAAAAAAEw9CRYAAAAAAAAAAAAAAMDUOzvqAgDAsPzoxo/i3dffjTON0eYXvnLrlZHuHwAAAAAAAAAAALq5e+/uwOt+8NEH8c0ffTOqf1+N9K+k4yuf+0o89dhTA21r9uzswOWAfkmwAAAAAAAAAAAAAADggD/4yz9IZDs//ujH8fXvfX3g9b/z8ncSKQf0QoIFAAzZjUs3Rl0Es2gAAAAAAAAAAAAAPESCBQAAAAAAAAAAAAAAB/zpF/504HVf33493n7/7dhv7MeZmTNx4dyF+Mbz30iwdHAyJFgAAAAAAAAAAAAAAHDA7NnZgdf92nNfiz/5D38Su/9lNxZ+dSH+2T/6Z8faHgyLBAsAAAAAAAAAAAAAABLz1GNPxepvrsbe+b2Yvz0fZxpnRl0k6ImeCgAAAAAAAAAAAAAATD0JFgAAAAAAAAAAAAAAwNSTYAEAAAAAAAAAAAAAAEw9CRYAAAAAAAAAAAAAAMDUOzvqAgAAAABMmhuXbox0//sz+7F3fi/eff3dONMY7fszXrn1ykj3DwAAAAAAAABJkWABAFPouA8EJvVAn4fxAAAAAAAAAAAAgHEx2lccAgAAAAAAAAAAAAAAjAEJFgAAAAAAAAAAAAAAwNQ7O+oCAAAAAAAAAAAAAABw3917dwde94OPPohv/uib8c4H78QzTz0TX/ncV+Kpx54aaFuzZ2cHLgdMKgkWAAAAAAAAAAAAAABj4g/+8g8S2c6P/+7H8fXvfX3g9b/z8ncSKQdMkjOjLgAAAAAAAAAAAAAAAMComcGiR/V6Pa5evRoREefOnYvd3d1YXl6ObDY78DYrlUoUCoXY29uLSqUSqVQq8vl8rKysJFVsABhrNy7dGHUR4pVbr4y6CAAAAAAAAAAAAC1/+oU/HXjd17dfj7fffzv2G/txZuZMXDh3Ib7x/DcSLB2cbhIselCv12NxcTGKxWJkMpnW5/l8Pra2tmJ9fb3vbW5sbERERKFQaH1WLpcjl8vF+vp67OzsRCqVOnbZAQAAAE6SpFkAAAAAAABI1uzZ2YHX/dpzX4s3/sMbsVvfjYXUQnz1H331WNuDaSPBoge5XC6y2eyB5IqI+8kRc3Nzsby8HEtLSz1vr1qtRr1ej9XV1QOfLy0txVtvvRWLi4uRy+Vic3MzkfIDAAAAAAAAAAAAAKffU489FWu/sTbqYsDEOjPqAoy7arUa5XI58vl82+8vX77c9wwWhUIhVlZW2n6XyWRiaWkpyuVyVKvVvssLAAAAAAAAAAAAAAD0zwwWXRQKhYiISKfTbb9fWFiIjY2NqNfrkUqletpmuVyOjY2NeOedd9quk8lkolwuR6VS6bhfACAZNy7dGHURYn9mP37tG7826mIAAEyscYjpIiJeufXKqIsAAAAAAAAAwDGYwaKLSqVyZOJEMwFie3u7523Oz89HvV43QwUAAAAAAAAAAAAAAIwJM1h0Ua1WY35+vuP3zeSLfpIlNjc3o1qtdpydormtTCbTe0EBAAAAAAAAAAAAAICBSbDoYm9vr2MiRES0ki/q9Xpf2z1qm6VSKTKZzJHL3Ll3J35+7+et3x8982g8+sijfZWBiMZMIxrRiMZMI/Zjf9TFmXjqM1nqM1nqM1nqM1mNmUb8xxv/Mf73P/7fY6YxM9KyXPl/Xxnp/pNw79692N/fj3v37o26KKfC/r5jfBTE+zzIv7u0o1+Mp3GIP8RCtKNf0I5YfzQ+/PjDeOzeY63fxfqTQew12bTfZNN+k037TTbtN7kaM41RF2Equa6fDGNPstRnstRnstRnstRnstRnstRnshoh3h8GCRZd9Jo48f777yeyv2vXrkVExPXr149cbu2v1w78/oXMF+KLz38xkTJMk0Y04s6v3Im92IuZGO0DraeB+kyW+kyW+kyW+kzWONXnn3ztT0a6/4iIz73yuWOtv7+/Hz/5yU8iIuLMmTNJFGmqJRXn0h/xPg8ap38nGB/6xXgah1iqEY341d/61YgQC/EJMTLtiPVHQ6w/mcRek037TTbtN9m032TTfpPr7+/8/aiLMJXE+skw9iRLfSZLfSZLfSZLfSZLfSZLfSbr53d/3n0hjk2CxRipVCqxtrYWxWIxMpnMkcuu/856zM3OtX5/9Myj8ehtme/9asw0Yi/2Yv6n8yN/Y/hpoD6TpT6TpT6TpT6TpT4Peumll461fvOtvC+88EKcPSvcPa7mg3gMl3ifB/l3gnb0CzppzDTiM//gM2IhDhAj045YfzTE+pNJ7DXZtN9k036TTftNNu03we6MugDTSayfDGNPstRnstRnstRnstRnstRnstRnshp3zGAxDO6mdZFKpXqaxeLcuXPH3lcul4tCoRDZbLbrso+ffTyePPvkwQ8dM33bj/2YiZmYaczEmYa39x2X+kyW+kyW+kyW+kyW+jyo+HvFY62/P7Mfe+f34vb/6/ax6vOVW68cqxynhTccj4Z4nwf5d4J29As62Y/9OHPmTJw9e9aD9BygX/Awsf5oPPHIE2L9CST2mmzab7Jpv8mm/Sab9ptcHlobDdf1k2HsSZb6TJb6TJb6TJb6TJb6TJb6TJZZQIbD3bQu5ufnj/x+b28vIu4nYhxHLpeLfD4fKysrx9oOAAAAANPtRzd+FO++/u5IL1JLVgUAAAAAAAAmkVSgLtLpdCuJop3m7BbpdHrgfaytrcXFixdjdXV14G0AAAAAAAAAAAAAAACDk2DRRSaTaSVRtFOtViMiYmlpaaDtb2xsxMLCQtvkiqP2CwAAAAAAAAAAAAAAJOfsqAsw7q5cuRLXrl2LSqUSmUzm0PdbW1sDJ1eUSqWIiFhZWTn0XbVajUqlEtlsdqBtAwBwPDcu3Rh1EcbC3939u1EXAQCYQGKpT7xy65VRFwEAAAAAAADokQSLLjKZTCwtLcXNmzfbJliUSqXY3Nw89Hm9Xo+rV6/G8vJy2wSMSqUSe3t7bZMrIiLK5fLAiRsAADAsd+t34/tXvx8REU+ceyL2dvdiYXkhLmQvjLhkAADjYRySTfZn9uPXvvFroy4GE0asDwAAp5NYHwAATi/xfjIkWPSgWCzG4uJiXLly5UCSRT6fj9XV1baJEBsbG3Ht2rXY2NiIWq124LtqtRq5XC6WlpYin88fWndvby/K5fKh9QAAYJzcrd+NjcWNyBVzcT5zvvX5rfyteHfr3VheXx5h6QAAgEGJ9QEA4HQS6wMAwOkl3k+OBIsepFKp2NnZibW1tUilUnHu3LnY3d2N5eXlyGazbddZWlqKVCoVly9fPvTd8vJyVKvV2NjY6LjPdDrd9vP/+l//a0RE/HL/lwP8JTzslx//Mv5i+y/iyqevxGNnHht1cSae+kyW+kyW+kyW+kyW+kyW+kxWM+5sxqEPKuaK8evZXz9wUhYRcalwKdbn1mNheSHSS+3jWtoT79OOcY129As60Tdo55cf/zLW/5/r8b9++n8dab945dYrI9s3hzVjT7E+dOff18mm/Sab9pts2m+yab/TSayfPNf1k2XsSZb6TJb6TJb6TJb6TJb6TJb6TJbneIZDgkWPUqlUFAqFnpfPZDIdZ6DY3d0duBwfffRRRETc27838Db4xC/3fxl/WfnL+B+/8D8auBOgPpOlPpOlPpOlPpOlPpOlPpPVjDubcWhTrVqLarkaLxdebrvehcsX4ofrP3Ri1ifxPu0Y12hHv6ATfYN2xqVf3Lh0Y2T7HkejTjhpxp5ifehuXMZRBqP9Jpv2m2zab7Jpv9NHrH8yXNdPlrEnWeozWeozWeozWeozWeozWeozWZ7jGY4zoy4AAAAwebYL2xERMZeea/v9/MJ8VMvVuFu/O8xiAQAAxyTWBwCA00msDwAAp5d4P1lmsAAAAPr208pPYzY12/H75gnbe9vvyX4HAIA2Rj2jx//28/+t7edifQAAOJ3E+gAAcHqJ95MlwWLC7O/vR0RE/W49nnjkiRGXZvJ9+PGHERFRu1uLjx75qMvSdKM+k6U+k6U+k6U+k6U+k6U+j2f/4/2Ixie/135Ru//5f4tDW59Xa/H4/OMdt9M8aatVa8kX8hQT79OOcY129As60TdoR78gQqw/as16rt1Vb5PIODrZtN9k036TTftNNu03OR6O9et36/c/F+sPhev6yTL2JEt9Jkt9Jkt9Jkt9Jkt9Jkt9Ho9r+6Mx02g0Gt0XY1z84Ac/iN/+7d8edTEAAJgy3//+9+Oll15q/b4+tx5z6blY2Vlpu/ztyu3YWNyIpfWleHH1xWEVc+KJ9wEAGDax/nBsbW3FP/7H/3jUxQAAYIr8zd/8TVy8eLH1u1j/ZLiuDwDAKLi2f7LMYDFhfvM3fzP+5m/+Jp5++uk4c+bMqIsDAMApc++/3ov9jz7Jct/f34//o/5/xMXfuHhgubv1uz1t78P3P0y0fKedeB8AgJMi1h+t5557TqwPAMCJ6BTrP/fccweWE+ufDNf1AQA4Sa7tj4YEiwlz9uzZA28YAACAk/bfx38/6iJMDfE+AADDJNYfHrE+AADDJNYfHrE+AADDJt4/eVKnAQCAvs2mZnvKfn/i3BNDKA0AAJAUsT4AAJxOYn0AADi9xPvJkmABAAD07fH5x4/8/s7enYi4fwIHAABMDrE+AACcTmJ9AAA4vcT7yZJgAXACSqXSqIsAcKoYV8fPXHqudfLVTjMrfi49N6wiAQAACRDrAwDA6STWBzjMfWiAZBlXR0e8nywJFgAJq9frkcvlYmNjI+r1+qiLAzDxjKvj6dOZTx85tWCtWouIiPRSelhFAgAAEiDWBwCA00msD3CQ+9AAyTKujpZ4P1kzjUajMepCcLR6vR5Xr16NiIhz587F7u5uLC8vRzabHXHJRq9SqUShUIi9vb2oVCqRSqUin8/HyspK2+U3NjaiWCxGPp+PpaWlSKVSUa1Wo1KpxM2bN+O1116LTCZzaL1paINh1s1pr89KpRKLi4s9LVssFlt/t/55UD6fj1wuF0tLS0cuN6w+OOn13Gt9Gld700t9Gld7160+javd9XvsRhy/rz1699H4y3/1l5Ffz8erq68eWraYK8bd+t24VLw0cfU5TJPY37jvNMQq+l+yRjEWj9s6tFetVmN9fT0iIvb29qJer8fy8nKsrq52XGec21nfODn5fD7W1tYinW5/YXuc21i/OJ5xO3+8XbkdG4sbsbKzEucz5w+ts/nGZvzDJ/9h/M//8X8+1n5gVAaJ244y6DHMYAaJrboxZg1P0u3n+Bu9bjFsN46/0TpO+zn+JtPDsf7Dmtf1f3/z90dQusli/BrMsO5FT4Npug96koZ9H/q0Grd7ZpNu3J7vmXTj9nzPpBu353sm1UndV07i2j4PaDDWarVaI51ON3Z2dg58vrKy0lhdXR1RqcZDoVBoFAqFA59tbm42UqlUI51ON2q12qF11tfXGxFx6CeVSjU2Nzfb7mda2mBYdTMN9VksFhvpdLqRzWYbKysrbX+y2Wwjk8kcWE//bDR2d3cbhUKhkclkGhHR8e9uGlYfnNR67rc+jatH67c+jatH66c+jatHG+TYTaqv/eulf9344v/li23X+aP4o8bf/tnfTlx9DtMk9rdpd5piFf0vWaMci8dlHdorFott6yyTyTTS6XTbdca5nfWNk7Ozs9OIiEN12zTObaxfHN84nj/+66V/3fi3q/+27Tp/FH/U+Kf/13+qTzCRBonbuhnkGGYwg8RW3Rizhuck2s/xN1rdYthuHH+jddz2c/xNrmas384fxR81djd3h1yiyWP8Gsyw7kVPi2m5D3rShnkf+rQZ13tmk2pcn++ZVOP6fM+kGtfneybVSd9XPs61fQ6SYDHmlpaWOnbm0zh49Gp3d7exvr7e9rvmxaClpaVD362vrzcKhUJjdXW1NYg/PFg9bFraYFh1Mw31ubq62tjdPfrCU7tlpr1/FgqFRjabbRQKhcbm5mZPAe6w+uAk1nO/9WlcPdog/dO42lm/9Wlc7WzQYzepvnandqfxL9P/svHUrzx1YJ0/X/nzxr9d/bcTV5/Dpn4my2mLVfS/5Ix6LB6XdTisVqs1stls2++afWNlZeXQd+PczvrGyVlaWjry4aZxbmP94vjG8fyxGev/9m/89oF1mrF+UvuBYRo0butmkGOY/g0aW3VjzBqOk2o/x99odYthe1nf8Tc6x20/x9/kasb67+28d+DzB2N9jmb86t8w70VPi2m4DzoMw7wPfZqM8z2zSTTOz/dMonF+vmcSjfPzPZNoGPeVj3Ntn4MkWIyx3d3dRkR0HHBWVlYGuth/Gqyurh75JqnmBaF2A3E/b6CapjYYRt1MS312y/Db2dlpGwDon59oBgzdThiG0QdPQz33Up/G1d71Up+NhnG1V732z27bmNZxdZBjN+m+dqd2p/E//MP/ofHc/+m5xg/Wf9D485U/b/yn4n+ayPocJvUz2SY9VtH/kjUOY/Go16G95oXmTrFMRBx6U+84t7O+cXKabyvq9HDTOLexfpGMcT1/fPtv325ERON/WflfDsT6Se8HhmXQ61/d9HsMM5hBYqtujFnDcxLt12g4/kapWwzbjeNvtI7bfo2G42/S3andaT1g1S7WpzPj12CGdS96mkzDfdBhGNZ96NNsnO6ZnQbj9HzPaTBOz/ecBuP0fM+kGtZ95UGu7XPYmWBsFQqFiIhIp9Ntv19YWIhyuRz1en2IpRoP5XI5nnnmmY5/eyaTiYiISqVyrP1og84GqZtpqc98Pn/k94VCIVZWVo69n2mpz06G1QenpZ6Nq6Onf3ZmXO1skGM36b42m5qN3/2//W787f/vb+OzK5+NS4VLcSF7YSLrc5jUz+k3zrGK/pescRiLR70O7c3Pz0cqlYpz5851XCaVSh34fZzbWd84GdVqNSI612vEeLexfjEaw2qrb934VkREfKnwpXhx9cVWrJ/0fmBYhnX9i5MxSGzVjTFreE6i/RidXmLYbhx/o5NE+zH5ZlOzcalwKZbXl9vG+nRm/BqMWHz09N32hnUfetq57pgsY+ro6Z+dGVePNqz7yoNc2+cwCRZjrFKpHHkxsXnAbG9vD6lE42N+fj7q9XrrAtBJ0QadDVI301KfR12QXFtbi/X19UT2My312cmw+uC01LNxdfT0z86Mq50NcuwaP8eD+jn9xvlY0/+SddrGYv0jOZlMJmq1Wqyurh76rnlhdGlp6dDn49rO+sbJ6OVmwji3sX4xGuPcvvoE42xY1784GYPEVt0Ys4bnJNqP0UnigRjH3+hM+wNNcFzGr8GIxUdP321vWPehp51rTMkypo6e/tmZcfVo43xfmcPOjroAdFatVmN+fr7j980DYBr/sdzc3IxqtdpxQG7WSTOjq51KpRLb29vx/PPPd1xuWtvgpOpmWuuzqVKpxMLCQk9vYdI/uxtWH5yWejaunizj6skwrg527Bo/x4P6Of3G+VjT/5J12sZi/WM41tbWIp1OH7qQPM7trG8kr1QqdX2bU8R4t7F+kbxxOn/UJzhtkrj+1U0vxzDJ6xRbdWPMGg+Dtt/DHH/D0WsM243jbzSSar+HOf6YJsavwQzrXvS0Oq33QUcp6fvQ0841pmQZU0+WMfVkGFfvG+f7yhxmBosxtre3d+SA0jwApnWalqOy3UqlUmQymbbLlMvluHbtWkRE6+0cy8vLUS6XDy07bW1w0nUzbfX5sKtXr3Z9I4z+2bth9cFpqmfjavKMqyfLuHpfv8eu8XM8qJ/Tb5yPNf0veadpLNY/Tla1Wo18Ph/pdDp2d3cPfT/O7axvJKv5hqKjxo+mcW5j/SI543j+qE9wGg16/aubfo5hktMtturGmDVax22/Jsff8PQTw3bj+Bu+JNuvyfHHNDJ+DW4Y96KnzTTcBx2VpO9DTzvXmJJnTE2eMfVkGVc/Ma73lTnMDBZjrNfO+/77759sQSZMc5C9fv36oe+aA8+DUxBnMpkoFosxNzcXOzs7B7K/pqkNhlE301SfDyuVSl0vWOqf/RlWH5z2eo4wrg7KuHqyjKvddTp2jZ/jQf2cfuN8rOl/wzOJY7H+cTJKpVJsbW21HmZZXl5uu9w4t7O+kayrV6/2/JbmcW5j/SIZ43r+qE8wTY66/tVNv8cwx9drbNWNMWs0kmq/CMffsPUTw3bj+Bu+JNsvwvHH9DJ+JS/Je9HTZNrvg56kk7gPPe1cYxoeY+pgjKkny7jam1HfV+YwCRacKpVKJdbW1qJYLLYdULPZbNv1UqlUZLPZyOVyx3pLziRTNyfr6tWrXW/OaQPGkXF1cOrmZBlXj9bt2AXg5BmLeVA2mz0QmywvL0ehUIjr16/3NB0yp0u5XD7Wg4ScPtN87gLj4Lhxm2N4+MRWky3J9nP8DY8YdrKdRPs5/oAkuBc9OHVzctyHZlIZUwenbk6WcbU795XH05lRF4DOUqlUT5lE586dO/nCTIhcLheFQqHjgHuUixcvRrVajWq12vpMG9yXVN1Ma31Wq9WoVCrH+sdP/zxsWH1w2uvZuHoyjKvHY1zt7qhj1/g5HtTP6TfOx5r+NxyTOhbrH8NRLBajVCpFLpc78Pk4t7O+kZzNzc1YWlrqeflxbmP94uSN8vxRn2BaHOf6VzftjmGS1ym26saYNR4Gbb9uHH/J6jeG7cbxN1xJt183jj9OM+NXspK+F819p/0+6Ek6qfvQ0841puEwpp4MY+rxGFd7Mw73lTlMgsUYm5+fP/L7vb29iAhv4/lvcrlc5PP5WFlZGWj9Zj1WKpXWZ9rgvqTqZlrrs1AodJ3mqhv987Bh9cFprmfj6skxrh6PcfVo3Y5d4+d4UD+n3zgfa/rfyZvksVj/GI7Uf3vjTrlcjnK53Pp8nNtZ30jGtWvX4rXXXutrnXFuY/3i5I3y/FGfYBoc9/pXN+2OYZLXKbbqxpg1HgZtv162G+H4S8IgMWw3jr/hOYn268bxx2lm/ErOSdyL5r7TfB/0pJ3Ufehp5xrTyTOmnhxj6vEYV7sbl/vKHCbBYoyl0+lWR26nmWF03AHoNFhbW4uLFy/G6upqx2Xy+XwsLCz0td1paYNh1c201OfDyuVy179J/+zfsPrgtNazcfV4jKsny7jaWS/HrvFzPKif02+cjzX972RN+lisfySnXq8f+TadZh1ubm4e+Gxc21nfOL5qtRqpVKrvC9bj3Mb6xfGN8/mjPsFp10vc1s0gxzCDGSS26saYNTwn0X6Ov+EYNIbtxvE3HCfVfo4/ppnxKxkndS96WkzrfdBhOKn70NPONaaTZUw9HmPqyTKuHm2c7itzmASLMZbJZI6cpqV5IXKY03mOo42NjVhYWGg7yDxYf9vb2z0NGg9ORzQtbTCsupmW+nxYpVLpeuFS/+zfsPrgNNazcfX4jKsny7jaXq/HrvFzPKif02+cjzX97+SchrFY/0jO3NxcLCwsdKzP5rS7+sb0qFQqUSwWY3l5+dBPPp+PiIhXX3219VnTOLexfnF843z+qE9wmvUat3UzyDHMYAaJrboxZg3PSbSf4284Bo1hu3H8DcdJtZ/jj2lm/Dq+k7wXPS2m8T7osJzUfehp5xrTyTGmHp8x9WQZVzsbt/vKHCbBYoxduXIlIjpPbbO1tTX1HbxUKkVEtJ0ep1qtHphKeGlpKWq1WsdtbW1tRSqVOpCVNS1tMKy6mZb6fFDzb+027ZL+2b9h9cFpq2fjajKMqyfHuNpeP8eu8XM8qJ/Tb5yPNf3vZJyWsVj/SE4z1uh04Xh3dzciIhYXF1ufjXM76xvHl81mY3Nzs+3P+vp6RERcv3699VnTOLexfnF843z+qE9wWvUTt3UzyDHMYAaJrboxZg3PSbSf4284Bo1hu3H8DcdJtZ/jj2lm/Dqek74XPS2m7T7osJzkfehp5xrTyTCmJsOYenKMq52N431l2mgw1paWlhqrq6ttv4uIxubm5pBLND52dnYahUKh4/eFQqGxu7vb0/K7u7uNiGgUi8VD301DGwyzbqahPh+0ubnZiIjGysrKkcvpnwft7Oz0VP5h9cFJr+de69O42pte6tO42rte+2eTcfWwfo/dRsP4OS7Uz+Q6DbGK/pes0zYW6x/JWF1dPdTuD0qlUo1UKtWo1WoHPh/ndtY3Tk6xWGxERGNnZ6ft9+PcxvrF8Yz7+aM+wWkzSNxWq9Uaq6urbfvuoMcw/Rs0tjqq/RoNY9awnET7Of5Gr1sM6/gbb8dpP8cf0874NZhh3YueBtN0H3SYTvo+9Gk1bvfMJt24Pd8z6cbt+Z5JN27P90yqcb6vzEESLMZcrVZrpNPpQxc2VlZWOnb+abC7u9tIp9ONlZWVtj/ZbLaRSqUOrbe+vt5YX18/tK1UKtWxPqelDYZVN9NSn02FQqERET39bfrnJ5oXdbsFR8Pqg5Nez73Up3G1d732T+Nqb3qtzybj6kGDHrvGz/GgfibXaYhV9L/knMaxWP9IzsrKStsLlM1+0e5BlnFuZ33j5Kyvrx/5b8s4t7F+cXzjfP6oT3CaHOf6V0S0/a75fb/HMIMZJLbq1n7GrOE5ifZz/I1WtxjW8Tfejtt+jj+mmfGrf8O8Fz0tpuE+6LCd9H3o02rc7plNunF7vmfSjdvzPZNu3J7vmUTjfl+Zg2YajUaj2ywXjFa9Xo+1tbVIpVJx7ty52N3djeXl5chms6Mu2sgsLCxEtVo9cpl0Ot2aUvhB5XI5isVi7O3tRb1ej1QqFa+99lpkMpmO25qWNhhW3UxLfUbcn2bp85//fFy/fr2nv2+a+2epVIpCoRAREdvb262///nnn4+IiFwu13ZarGH1wUmr537r07h6tEH7p3G1vUHrM8K4+rDjHLvGz/GgfibHaYxV9L9knNaxWP9ITqlUips3b8b8/HwrJslkMvHaa69FKpVqu844t7O+kax8Ph/VavXQvy2ZTCbW19cPLDvObaxfHN84nz/qE5wWg8ZtzWsRly9fbp0TPGyQY5jB9Btb9dJ+xqzhOYn2c/wNX68xrONvPCXZfo4/ppnxqz/Dvhc9LU77fdBhG8Z96NNi3O+ZTZpxf75n0oz78z2TZtyf75k0k3BfmU9IsAAAAAAAAAAAAAAAAKbemVEXAAAAAAAAAAAAAAAAYNQkWAAAAAAAAAAAAAAAAFNPggUAAAAAAAAAAAAAADD1JFgAAAAAAAAAAAAAAABTT4IFAAAAAAAAAAAAAAAw9SRYAAAAAAAAAAAAAAAAU0+CBQAAAAAAAAAAAAAAMPUkWAAAAAAAAAAAAAAAAFNPggUAAAAAAAAAAAAAADD1JFgAAAAAAAAAAAAAAABTT4IFAENXKpViZmbmwE+9Xh91sSZePp8/9jbW1tYOtMvc3FwCJQMA4DQQx58McTwAAAAAAHQ2bfcnXPMHGD0JFgCMRCqVip2dndZPKpUadZEmWrlcjo2NjWNv57XXXmu1yfr6egIlAwDgNBHHJ0scDwAAAAAA3U3T/QnX/AFGT4IFACMxPz8fmUym9dNUrVZjbm7uUOZ5tVodeF8LCwuHMrtLpdKxyp/P52Nubu7Qz8zMTFy7dq2nbdTr9VZ5Hlx/kAesisViZLPZvtd7WCqVatsuAAAQIY6PEMcDAAAAAMCwdbo/cRq55g8wehIsABgr6XQ6arVaNBqNyGazrROFQqEw0PbK5XKk0+nWthuNRtRqtWM/xFQoFKJWq0WxWIx6vR71ej2Wlpai0WjE6upqT9tIpVJRq9Xi+eefj3q9HisrK1Gr1WJlZaXv8mxsbMSVK1f6Xg8AAJIgjhfHAwAAAAAAAJwGEiwAGFsXL16MfD4fETHQ22AjIjY3N2N5eTki4kSyupeWlmJpaWng9VOpVORyuchms7G+vj7QFIblcjkiIpE33wIAwHGJ43sjjgcAAAAA4KSUSqVjzTINANNMggUAYyuVSsXzzz8f6XQ66vV6VCqVY21vfn4+oZId1Hx4rFQqDbT+zs5OrK+vD7z/QqHgoSwAAMaGOL434ngAAAAAAE7K1tbWqIsAABNLggUAY6/54FOhUOhrvVKpFFeuXDmJIh2QzWZbb6wd5A291Wo10un0wPsvlUqtOgIAgHEhjj+aOB4AAAAAgJNi9goAGJwECwDG3srKSkREvPnmm32tt7m5GZlM5iSKdMjly5cjov+HxzY2NiKXyw2831KpFKlUKpaWlgbeBgAAnARxfGfieAAAAAAATlK5XB51EQBgYkmwAGDsNR88qtfrUSqVelqnXq/HwsLCCZfsE803z1Yqlb7eAlAsFlsPng3i5s2brYfCAABgnIjjOxPHAwAAAABwUiqVStTr9VEXAwAmlgQLACZC8+2wN2/e7Gn5jY2NYz3w1K9MJhPpdDoien/7bbVaba0zqFKpdKw35wIAwEkSx7cnjgcAgIPq9XrkcrlYXFyMxcXFqFQqB76/du1aLC8vx/LyciwuLkYul+srSRoAAKbJ2traqIsAABNNggUAE6H5kFWpVOopy353dzdSqdTJFuohzRPUjY2NnpYvFAqtN+YOolQqtd4KDAAA40gcf5g4HgAADsvlcrG+vh47OzsxPz8fi4uLUa/Xo1KpxOLiYmQymdjc3IzNzc3Y2dmJSqUSCwsL3soLAAAPyefzUS6XR10MAJhoEiwAJlw+n4/l5eVYWFiIUqnU+rxer0c+n49cLhfLy8un4m1O2Ww2IiLefPPNI5erVquxuLg40D6q1Wqr3pp122vdXb58OSLu130vJ6vlcjkymcxA5Yy4/2BXc5+9uHbtWuvNXvl83kk1AMApMAnnA+L4g8TxAABwUKVSiXQ63ZoprvnftbW1ePXVV+Ott946lKDcPM/oNVEaAABGYW1t7cC13Vwu1zaGzefzMTMzE3Nzc62fmZmZtteCNzY2YmZmprV8c7lSqRSLi4sHrsUvLi4e2Obc3Fzru+Xl5UPfzczMHLquXq1WD+yvudy4ePA+ydzcXKv85XI58vl8rK2ttWbCe/A+yoPLNLexuLh45PX3Ye4LgNGSYAEwwZonX5ubm5HNZiOXy0WlUolyuRy5XC7W1taiWCzG5uZmXLx4MRYWFg5Nqz1Jmm+JLRQKRy5XKBRab8rtR7lcbj2IVSwWo1AoxObmZs8nNqlUqnVTZ319veu+rly50ncZm5oPf/Xy5txqtRoLCwuxtbUVOzs7rb+tUChEtVo1NSQAwISalPMBcfwnxPEAAHDY1atXD8TIzYeU3nzzzXjrrbfaznJ37ty5iIjY2toaShkBAKAfzRnXLl68eODabrFYjJ2dnVheXj4wG1uhUIhGoxGXL1+Oer0e6XQ6Go1G25mQV1ZWWtfbL1++HLVaLZaWliKbzcbOzk7UarXWNe/m7w/+NG1ubkatVovr169HvV6Per0exWKxlfDclE6nY3V1NSIilpaWolgsRqPRSLrKBpbL5SKXy8Xe3l6rTq9duxb1ej0KhUKsr6/H5uZmvPbaawcSXB5cpnlfoZn88HByxCj2BcBoSbAAmFD1ej2q1WrrZGphYSEi7gfzzWD8wZOe1dXVSKVSkcvlRlLeJCwtLUUqlYpKpZL423dLpVIsLy9HoVA4dIK6srISly9fjuXl5a77bd4EKpfLR05NPujDY01vvvlmpFKprm/OrdfrsbCwEJlMJorF4qHvV1ZW4uLFi07YAAAmzCSdD4jjPyGOBwCAw6rV6oEYuZkkff369bbJFRERu7u7ERExPz9/4uUDAIB+VCqVWFxcjPX19Vaiw4MKhUKk0+m2Mzo3Eye6XdO+fPlyZDKZKBQKHWPmXmWz2dZ+b9682XaZer0e6+vrUSwW2yZ9jNLS0lLrfkDE/fsG6XT6UN1ns9lIp9OxtrYW5XK57TIrKyuRTqfj1VdfHfm+ABgtCRYAE2pjY+PAw1HNmwl7e3ttH8CJuJ9VXq1WD7y1tjl13cLCQiwuLsby8nLHzxYXF1ufj+ptqQ+epLTTfHttv1599dXIZDIdTwSbf2+3N9o2Hx6L6Dw1efOBreOc5BaLxZ4e7Gr2kevXr7f9vlQqxauvvtr1bcIAAIyXpM4HhkUcf584HgAADnsw7n3wfKXdw2hNzSSMdg+lAQDAKL366qutGSU6KRQKsbe31/bZm5WVldZsyJ28+eabXa9792NlZSWy2WyUSqVD18grlUqkUqnWLBbjqnnt/ubNmx3rfmlpqZUs0mmZTCbTesnVOOwLgNGQYAEwoTY3N1sPKUV8cjPhqBOo5gNB29vbEXE/4317ezvW19djd3c3dnZ2YnNzMzY3NyOVSkW1Wo1isdj6bGdnJ3Z2diKVSrWm3x625ptlOz1ItLm52Xe2fHMqvitXrnRcJp1ORzqd7viw1YOaD0x1KuPGxsaR++qmeSLdbRvlcjnK5fKBh8UeVq1Wo16vx97e3sDlAQBg+JI4Hxgmcbw4HgAAOmk3e8VR5wcPPoD04HkRAACM2sbGRlQqlZ5mk15aWopr164deri+2/X0iDiRmSSKxWKk0+nI5/OtxOd6vR5Xr15NNJnjpB1VL81r7kfNMt2cJe+o2a5HsS8AhkuCBcCEWl9fP/CwTfPk5qjgvXlS1gzMS6VSXL9+vW2mdKVSaT2M9KBUKhVXrlw59PmwZDKZxN+825zi8KiTmoho/c3dTmyaJ7udynhUBnsv3nzzzUin013L23xz8VFvAl5dXY1isdjxLccAAIynJM4HhkkcL44HAIBebG5uRsTR8XAzCSOdTh9rhjkAAEhaMyni+eef77rsxYsXD6zTlMlkIpPJRKlUantdu1KpDDQjdC+a8Xgul4t6vR6vvvpqx5mWx9XCwkLXZZp1P0n7AmC4zo66AAAMpt0bnVKpVMfEhwcz3pvL7O7utp3Cr9sbolKpVNeHgk5SPp+PtbW1KBQKB040S6XSQG+UbT481Zyto5NmHe7t7R150yadTsfS0lKUy+VDZaxUKsd+i0ChUOjpwa7mm4m73WA6zkNiAACMRhLnA8MmjhfHAwBAN83zm6Pi3Wb8n/QbewEA4Lia1617SQRuLtPuhT/5fD7y+XxsbGwceq6nUCic2IwS6XQ6isVi5HK5eOaZZ+Ktt96auKTmXu6BJPU3DXNfAAyXBAuAU6B5M+GoqbCbNyUi7j+MVa1WY3Fx8cjtdcp4393djZWVlUGLe2zZbDbW1tbizTffPPDQ09bW1rEeMlpbWzvy5KefE9R8Ph/lcjk2NjYOlLFQKMTa2trAZazX61GpVHp6U23zTQbNKQUBADidBjkfGAVxvDgeAACO0kvy+IPLndRbewEAYJj29vYOfbayshL5fD6uXr16KMGi28uEjiubzbZeRrS9vT3SF7ACwKicGXUBADi+Xm4mNB+6SqfTkU6no16vd3wAq5kd3+kkadQ3LdLpdGQymajX662/vV6vx7lz54613XZTKw7qwQfESqVS6/+r1eqx3hi8sbHRasNumifU7U7GAQA4PQY5HxgFcbw4HgAAjtLLzBT1er01S50ZLAAAGFe9XLfu9rKdlZWVA9fTI+5fa87n88cq24Pba6darUYqlYpMJhP5fL7tDBsAcNpJsAA4BZonM0fdTGg+HNR862omk+mY0V4ul498Q9Q43LRonjA23yr75ptvDvzW2+bfmfQDTM1ZPq5evRoR9090c7ncsbZ58+bNnk+Wm3/X7u7usfYJAMB4G+R8YFTE8d2J4wEAmFa9JI83l0mn0yf61l4AABhEP9et33///QPrPOzh6+kR95OSj/vMTjOxuZO1tbUoFoutGZn7uT6+sbERc3Nzsbi4eCDJZNT3JgCgXxIsACZcLzcTNjY2Wss0HxbqpJeHs8ZBc/aN5oNiu7u7A79RtnlS2kvWffPNWP1ut1qtRrFY7Fr/3fZdqVR6fgCtuf9ubx9obhsAgMmT9PnASRPH975/cTwAANOml/sTN2/e7LoMAACMSvP6brckhohP4t9OL+fJZDKRyWSiVCpFvV6PSqUSFy9e7Ks8D8+k0W1mjXw+H+vr6xFx/55CsViMarXaU5JFqVSK9fX1uHz5ctTr9fj85z8f9Xo9rl271ne5AWDUJFgATLjmSVmnh5Lq9XorE7yZXX6UXt4QNSz1er1jVn8qlWrdQFlbW4uFhYWB97O6uhrpdPpA1n8n/WTVZzKZVrusra0N/OBYU6lUOrDNbpaWlmJpaSkqlUrXh868LQAAYDIlfT6QBHH8QeJ4AADornlv4qjZtR9cbhzuYQAAwMOa162bLxnqpF6vR7lcjmw2G5lMpuNyzeSLjY2NKBQKPb8MqNNMGnt7ex2vy1+7di1yudyBeDybzcbq6mqUSqW4du3akfvc3NyM3d3dKBQKsbu7G9evX4+1tbV4//33B57JGgBGRYIFwIRr3kzY3t5u+30ul4t6vR7FYvHIk7Km5gNa4/D2p/fff//I7PnmieS1a9dab8I9ylFTMDaz7o86ISyXy33ftGmWsVQqdXzrQK8KhUJcuXKl73UiIl599dWOy5TLZW8LAACYUEmfDyRBHH+QOB4AALqbn5+PVCrVeltuO9VqtXWuMQ73MAAAoJ1CoRDVarU1u3Q7a2trkUql4vr160duq5lQcfXq1YiIjjNZP6x5Tfzhl/iUy+V4/vnnDy1fKpVia2urbZy9vr4emUwm1tbWjnwp0MMvQ0qlUl1j/HF21L2JSd4XAL2RYAEw4ZonL9evXz80JV8+n4/t7e3Y3NzsORu8XC53fUPUMJTL5bh27dqRJ2jNvymbzR55Erm1tRURh08cH5TJZGJnZycKhULbt8CWSqWoVCo9vw2gqbl8Op0+1gNt1Wo1qtVq3/tPp9Oxs7MT9Xo9lpeXDz3oVi6XY3NzM1ZXVwcuGwAAo5P0+cBxieMPEscDAEBvMplM1Gq1I2PnZoJ5JpPp+cEyAAAYtqWlpdjZ2Ym1tbW2LwdqXrt/5513eoprV1ZWol6v9/UyoOZMyVevXm1dX67X67Gzs3Pgmne1Wo18Pn/o/kK77UVEfP7zn+8683LE/ev6pVJpqMkVzXIdVb5elqlWqwf+O+p9ATAaEiwAJljzZkI6nY5sNhtXrlyJxcXFWF5ejsXFxUilUvHOO+/0/CanZlA/yjc/VavVmJmZaWXTV6vVWFxcjJmZmbbLr6ystD2JrFQqMTc3F3Nzc62pF6vV6qHPHpTJZGJ3dzciIhYXFyOXy0U+n498Ph+pVGqgh5dSqVRks9lE3no76E2j5t+1vLwcn//852N5ebn1d9Xr9Yl9WwAAwLRL+nzgOMTx7YnjAQAgOeM0AzcAABylmUD8/vvvH7i227x+v7Oz0/N143w+H5lMpu+XAW1ubsbly5fj85//fOTz+VhbWztwXXlubi4WFhZaM200X1j0sFKp1EoUqdfrsbi4GHNzc21fehRx/97F9vb20F4Q1CxP857J2traofINskw+n09kO4PuC4DRmmk0Go1RFwKAwTSz3VdWVg5NtTeIjY2NyOfzsb6+fqInOqVSKdbW1loPQdHdwsJCrK2t9f3m2+Mol8uRy+WiVqsNbZ8AAPQu6fOBbsTx/RPHAwBAcubm5qJer8fm5qYkCwAAGEOlUilSqVTi8fo0359wzR9gNMxgATDBmpnMzbfEHpe3P42narUa1Wo1Ll++POqiAAAwRpI+HyBZ4ngAAEhOtVqNer0eEe5hAADAOLp27Vqk0+lD8frGxkZUq9URlQoABiPBAmCCNafm63cawE6aD2gltT2SUSgUYmlpqefpIQEAmA5Jnw+QLHE8AAAkp1QqRYTzHwAAGEcbGxuxtbV1KJGiXC5HsViMdDo9opIBwGAkWABMqGYyRCqVSuREpFKpRL1ed3NiDJVKpcjlcqMuBgAAYyTp8wGSJ44HAIDkmIEbAADGU6VSiZ2dnbh+/XpsbW3F3Nxc5PP5yOVykcvlolAojLqIANC3s6MuAACDSeJmQqlUips3b0a9Xo/t7e2IuD/N9vLycqRSqVheXo6VlZVEystgKpVKVKvVuHz58qiLAgDAGPFw0XgTxwMAQLLS6XSk0+l47bXXRl0UAADgATdv3mwlUayvr0fE/Rkt0ul07OzseEkUABNJggXABKrX663psI8jm81GNptNoESclJs3b8bS0lKkUqlRFwUAgDGR1PkAJ0ccDwAAyfLWWwAAGE/NpIoHf3/4MwCYNGdGXQAA+jM3Nxdzc3Oxt7cXEfdnoZiZmYm5ubkRl4yTsLGxEfl8ftTFAABgTDgfmAzieAAAAAAAAIDJJMECYMLUarVoNBqt/zZ/arXaqIvWl2q1GjMzM62fer0+6iKNnUqlEvV6faizjKytrbXaZHl5eWj7BQCgN6M+HxDHdyeOBwAAAACAZE3T/QnX/AFGb6bRaDRGXQgApku9Xo9qtXrgs0wmM6LSjK9KpRLlcjlWV1eHtk9tAwBAJ2LF3ojjAQAAAAAgOdN2DXza/l6AcSTBAgAAAAAAAAAAAAAAmHpnRl0AAAAAAAAAAAAAAACAUZNgAQAAAAAAAAAAAAAATD0JFgAAAAAAAAAAAAAAwNSTYAEAAAAAAAAAAAAAAEw9CRYAAAAAAAAAAAAAAMDUk2ABAAAAAAAAAAAAAABMPQkWAAAAAAAAAAAAAADA1JNgAQAAAAAAAAAAAAAATL3/P4Oky9Ye9UalAAAAAElFTkSuQmCC",
-      "text/plain": [
-       "<Figure size 3200x2400 with 32 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "import matplotlib as mpl\n",
-    "# mpl.rcParams.update(**mpl.rcParamsDefault)\n",
-    "mpl.rcParams.update(\n",
-    "    **{\n",
-    "        # Font\n",
-    "        'font.family': 'serif',\n",
-    "        'font.serif': 'Computer Modern Roman',\n",
-    "        # Latex\n",
-    "        'text.latex.preamble': r'\\usepackage{amsmath}',\n",
-    "        'text.usetex': True,  # Put to False to disable Latex\n",
-    "        # Fontsizes    \n",
-    "        'legend.fontsize': 20,\n",
-    "        'axes.titlesize': 24,\n",
-    "        'xtick.labelsize': 20,\n",
-    "        'ytick.labelsize': 20,\n",
-    "        'axes.labelsize': 25,\n",
-    "        'font.size': 20,    \n",
-    "        # Lines\n",
-    "        'lines.markersize': 6.,\n",
-    "        'lines.linestyle': '-',\n",
-    "        'lines.linewidth': 1.5,\n",
-    "        # Figure\n",
-    "        \"figure.figsize\": (8, 6),\n",
-    "        # \"figure.dpi\": 200,\n",
-    "        # Ticks\n",
-    "        # Ticks settings\n",
-    "        \"xtick.direction\": \"in\",\n",
-    "        \"ytick.direction\": \"in\",\n",
-    "    }\n",
-    ")\n",
-    "\n",
-    "columns = [\"pt\", \"p\", \"eta\", \"vz\"]\n",
-    "\n",
-    "metric_names = [\n",
-    "    \"efficiency\",\n",
-    "    # \"ghost_rate\",\n",
-    "    \"clone_rate\",\n",
-    "    \"hit_purity_per_candidate\",\n",
-    "    \"hit_efficiency_per_candidate\",\n",
-    "]\n",
-    "\n",
-    "\n",
-    "# _ = trackEvaluator.plot_histogram(\n",
-    "#     column=\"vz\",\n",
-    "#     metric_name=\"efficiency\",\n",
-    "#     column_label=column_labels[\"vz\"],\n",
-    "#     range=column_ranges[\"vz\"],\n",
-    "#     category=mtb.category.velo_category,\n",
-    "#     bins=\"auto\",\n",
-    "# )\n",
-    "\n",
-    "_ = trackEvaluator.plot_histograms(\n",
-    "    columns=columns,\n",
-    "    metric_names=metric_names,\n",
-    "    column_labels=column_labels,\n",
-    "    column_ranges=column_ranges,\n",
-    "    category=mtb.category.velo_category,\n",
-    "    bins=20,\n",
-    ")\n",
-    "\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3 (ipykernel)",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.8.15"
-  },
-  "vscode": {
-   "interpreter": {
-    "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
-   }
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
-- 
GitLab


From 73d1b7baa4ee814de81cc4a6d9c794112cc8ec99 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Thu, 23 Mar 2023 19:42:22 +0100
Subject: [PATCH 13/30] add MonteTracko evaluation script to full pipeline

---
 LHCb_Pipeline/full_pipeline.ipynb | 108 +++++++++++++++++++++++++++---
 1 file changed, 100 insertions(+), 8 deletions(-)

diff --git a/LHCb_Pipeline/full_pipeline.ipynb b/LHCb_Pipeline/full_pipeline.ipynb
index 943dc542..bc08ec5c 100644
--- a/LHCb_Pipeline/full_pipeline.ipynb
+++ b/LHCb_Pipeline/full_pipeline.ipynb
@@ -60,6 +60,9 @@
     "from Scripts.Step_4_Run_GNN import train as run_gnn_inference\n",
     "from Scripts.Step_5_Build_Track_Candidates import train as build_track_candidates\n",
     "from Scripts.Step_6_Evaluate_Reconstruction import evaluate as evaluate_candidates\n",
+    "from Scripts.Step_6_Evaluate_Reconstruction_MonteTracko import (\n",
+    "    evaluate as evaluate_candidates_montetracko\n",
+    ")\n",
     "\n",
     "import os\n",
     "import sys\n",
@@ -127,17 +130,20 @@
     "import json\n",
     "# from datetime import datetime\n",
     "\n",
-    "def send_telegram_message(message: str,\n",
-    "                          chat_id: str,\n",
-    "                          api_key: str,\n",
-    "                         ):\n",
-    "    responses = {}\n",
+    "# def send_telegram_message(message: str,\n",
+    "#                           chat_id: str,\n",
+    "#                           api_key: str,\n",
+    "#                          ):\n",
+    "#     responses = {}\n",
     "\n",
-    "    url = f'https://api.telegram.org/bot{api_key}/sendMessage?chat_id={chat_id}&text={message}'\n",
+    "#     url = f'https://api.telegram.org/bot{api_key}/sendMessage?chat_id={chat_id}&text={message}'\n",
     "    \n",
-    "    response = requests.post(url)\n",
+    "#     response = requests.post(url)\n",
     "    \n",
-    "    return response"
+    "#     return response\n",
+    "\n",
+    "def send_telegram_message(*args, **kwargs):\n",
+    "    pass"
    ]
   },
   {
@@ -9801,6 +9807,92 @@
     "ATLAS style matching is the default."
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:---------------------- Step 6: Evaluation using MonteTracko ----------------------\n",
+      "INFO:1) Load the dataframes\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "7d4c05583c584ea9aeaf706af0d8ea70",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "  0%|          | 0/100 [00:00<?, ?it/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:2) Matching\n",
+      "INFO:3) Reporting\n",
+      "INFO:4) Plotting\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "TrackChecker output                               :       678/    18902   3.59% ghosts\n",
+      "01_velo                                           :      8186/     8947  91.49% ( 92.65%),        86 (  1.04%) clones, pur  99.19%, hit eff  94.86% \n",
+      "02_long                                           :      4846/     5143  94.23% ( 95.52%),        47 (  0.96%) clones, pur  99.28%, hit eff  95.94% \n",
+      "03_long_P>5GeV                                    :      3161/     3330  94.92% ( 96.32%),        34 (  1.06%) clones, pur  99.32%, hit eff  96.42% \n",
+      "04_long_strange                                   :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "05_long_strange_P>5GeV                            :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "06_long_fromB                                     :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "07_long_fromB_P>5GeV                              :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "08_long_electrons                                 :       253/      381  66.40% ( 70.75%),         6 (  2.32%) clones, pur  98.26%, hit eff  74.89% \n",
+      "09_long_fromB_electrons                           :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "10_long_fromB_electrons_P>5GeV                    :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "\n",
+      "+----------------------+--------------+----------------------+------------+----------------------+--------------------------+\n",
+      "| Categories           | Efficiency   | Average efficiency   | % clones   | Average hit purity   | Average hit efficiency   |\n",
+      "+======================+==============+======================+============+======================+==========================+\n",
+      "| Velo, only electrons | 60.08%       | 63.28%               | 3.84%      | 98.22%               | 72.04%                   |\n",
+      "+----------------------+--------------+----------------------+------------+----------------------+--------------------------+\n",
+      "| Velo, no electrons   | 91.49%       | 92.65%               | 1.04%      | 99.19%               | 94.86%                   |\n",
+      "+----------------------+--------------+----------------------+------------+----------------------+--------------------------+\n",
+      "+--------------+------------+------------+------------+\n",
+      "| Categories   |   # ghosts | # tracks   | % ghosts   |\n",
+      "+==============+============+============+============+\n",
+      "| Everything   |        678 | 18,902     | 3.59%      |\n",
+      "+--------------+------------+------------+------------+\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAADGQAAAk3CAYAAABlejgZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9cXBb933ne39IUSFIqRVAdpei2p2tgO52DMnbGBCTx5K6z44MPE094s6oIaT47pWj2BGh1DPOtbclovvXk5k7q5B717nNzjQEUnvVcm88MtjqzqXHylPAcn0tObclAeduZHg6vTzKeiPC2hsBYCKZUE0Szx9aQKIJUMDBIQGQ79eMJsE55/s7P/9wBP1wcL6/b1uhUCgIAAAAAAAAAAAAAAAAAAAAAAAAVWtvdAcAAAAAAAAAAAAAAAAAAAAAAABaDQkZAAAAAAAAAAAAAAAAAAAAAAAANSIhAwAAAAAAAAAAAAAAAAAAAAAAoEYkZAAAAAAAAAAAAAAAAAAAAAAAANSIhAwAAAAAAAAAAAAAAAAAAAAAAIAakZABAAAAAAAAAAAAAAAAAAAAAABQIxIyAAAAAAAAAAAAAAAAAAAAAAAAakRCBgAAAAAAAAAAAAAAAAAAAAAAQI1IyAAAAAAAAAAAAAAAAAAAAAAAAKgRCRkAAAAAAAAAAAAAAAAAAAAAAAA16mh0BwAAAABsDulkWjPhGeUzeaWTadnsNnmDXnmHvRVj8rm83jn3jiSpu7dbmdmMXH6X3EPuhscAAAAAAAAAAAAAAAAAwFraCoVCodGdAAAAANDaEpGEJK1IvjDihqKBqLp6ujScGJbNblsRk8/lFfFGFIgG1O/pL22fCk7JZrfJP+pfdZ6NigEAAAAAAAAAAAAAAACAh2lvdAcAAAAAtLaskVU+l19VCcPpc+rpN59W1sgqGoiuiosGonpk6JEVSRKSNBgeVDKSlBE3GhYDAAAAAAAAAAAAAAAAAA9DQgYAAACAusyEZ1YlYxT1e/rl9DllxA1ljWxpe9bIyogbOhA8UDbOfdytq6NXV2zbqBgAAAAAAAAAAAAAAAAAqAYJGQAAAADqcj1+XX+094+Uz+XL7t/t2S1JSifTpW0z4RlJksPpKBvT4+qRETdWtLlRMQAAAAAAAAAAAAAAAABQjY5GdwC1WVxc1Hvvvae+vj61t5NPAwAAgI2zvLysmzdv6rHHHlNHx/2vEl09XUon08oaWfV7+qtq66PkR7LZbRX3FxMo5mbm5PQ5NzSmWTD3BwAAQCNUmvdjfTDvBwAAQKMw999YzP0BAADQCMz7NwYj22Lee+89fe5zn2t0NwAAALCF/c3f/I0GBgZKr0/GTiprZCtWocgZOUlakayRNbLq6umqeI5iEkXWyG54TLNg7g8AAIBG+vS8H+uDeT8AAAAajbn/xmDuDwAAgEZi3r++SMhoMX19fZKkH/7wh/q1X/u1Bvdmc1hcXFQymZTH4yH7ywKMp7UYT+sxptZiPK3FeFqPMa3P4t8vavnucun1jbkb+ue+f16akz6oUjKGJKUmU+r39K84ZiGzsGZMMYkin8tveEyzYO6PSvhsQyVcG6iEawOVcG2gnJ/+9Kd6/PHHy877Yb3iOP/N3/yN+vurqziI5sJnaWvj/Wt9vIetjfev9fEetrZ0Oq3Pfe5zzP03CPf8rcXnj/UYU2sxntZiPK3HmFqL8bQW42kt7vlvDK7UFlMsW7h7926+oFlkcXFRP/nJT/Rrv/ZrfHhbgPG0FuNpPcbUWoyntRhP6zGm9fmr/+9f6e1vvl16Pd8+L0k1ldK+OnZVkjT4vcEV26tNgPj41scbHtMsmPujEj7bUAnXBirh2kAlXBsoZ3FxUVJt836YVxzn/v5+5v0tis/S1sb71/p4D1sb71/r4z3cHJj7bwzu+VuLzx/rMabWYjytxXhajzG1FuNpLcbTWtzz3xhcqQAAAADKOnz2sB5/8fHS6w8//FDffvTbVcenk2nFQ3EFogH1e1jpFQAAAAAAAAAAAAAAAMDmQkIGAAAAgLI6OjvU0Xn/K8P2ndtrio8GojoaPir3kHvVPpvdVlX1iu7e7g2PAQAAAAAAAAAAAAAAAIBqUH8EAAAAgOWigai8Qa+8w96y+7t6utaMX8gsSLqXULHRMQAAAAAAAAAAAAAAAABQDRIyAAAAAFgqFoppz8AeHRo5VPEYh9NRSoYop1jVwuF0bHgMAAAAAAAAAAAAAAAAAFSDhAwAAAAAlklEEupx9ZRNxigmP0jSbs/uFa8/LWtkJUlOn3PDYwAAAAAAAAAAAAAAAACgGiRkAAAAALBEajIlSfIOe1ftyxpZGXGj9Hr/if2SpHQyXbatuem5VUkSGxUDAAAAAAAAAAAAAAAAANUgIQMAAABA3dLJtBYyC2WTMSTJiBvq9/SXXvd7+uX0OXXtwrWyx6cmUzoUWlllY6NiAAAAAAAAAAAAAAAAAKAaHY3uAAAAAIDWljWyigai2uvbq7ng3Kr9+UxeRtxQKBtasT0QDSjijWj/if0rkjWmglM6OHKwbOWKjYoBAAAAAAAAAAAAAAAAgIchIQMAAABAXSb8E8oaWWUj2YrHOJyOVdtsdpuGE8OKhWKy2W3q7u1WZjYjl98l95C7bDsbFQMAAAAAAAAAAAAAAAAAD0NCBgAAAIC6PD/7vOlYm92mwfBgU8YAAAAAAAAAAAAAAAAAwFraG90BAAAAAAAAAAAAAAAAAAAAAACAVkNCBgAAAAAAAAAAAAAAAAAAAAAAQI1IyAAAAAAAAAAAAAAAAAAAAAAAAKhRR6M70EjBYFCBQEA+n6+udnK5nM6dOydJ6u3t1ezsrPx+v4aGhiyNAQAAAAAAAAAAAAAAAAAAAAAAzWHLJWQYhqF4PK5wOKxkMqlAIFBXe7lcTl6vV9FoVB6Pp7Q9GAxqenpao6OjlsQAAAAAAAAAAAAAAAAAAAAAAIDm0d7oDmykSCSiUCgkSZYlPQQCAQ0NDa1IrJCkcDisSCSieDxuSQwAAAAAAAAAAAAAAAAAAAAAAGgeWyohY3h4WNFoVMPDw+rp6am7vWK1jWAwWHb/8ePHVyV+mIkBAAAAAAAAAAAAAAAAAAAAAADNZUslZFgtHA5LkpxOZ9n9LpdL8XhcuVyurhgAAAAAAAAAAAAAAAAAAAAAANBcSMioQzKZlN1ur7i/mHQxMzNTVwwAAAAAAAAAAAAAAAAAAAAAAGguHY3uQCszDEM9PT0V9xcTLwzDqCumnOXlZS0tLVXfWVS0tLRUGs+2trZGd6flMZ7WYjytx5hai/G0FuNpPcbUWsvLy43uwpbE3B+fxmcbKuHaQCVcG6iEawPlMO9vjKWlJeb9LYrP0tbG+9f6eA9bG+9f6+M9bG3MPxuDe/7W4PPHeoyptRhPazGe1mNMrcV4WovxtBb3/DcGCRl1yGQypYoW5RQTL3K5XF0x5fzwhz/U3/7t35Zeb9u2TR0dvJ1mLC8v67/8l/+i5eVltbdTNKZejKe1GE/rMabWYjytxXhajzG11q1btxrdhS2JuT8+jc82VMK1gUq4NlAJ1wbKYd7fGFevXpXD4Si9Zt7fOvgsbW28f62P97C18f61Pt7D1pbNZhvdhS2Je/7W4PPHeoyptRhPazGe1mNMrcV4WovxtBb3/DcGM/o6PCxpoujBi9lMTDnj4+MrvpD91m/9lj772c9W1TZWKhQKmp+flySy6SzAeFqL8bQeY2otxtNajKf1GFNr/fznP290F7Yk5v74ND7bUAnXBirh2kAlXBsoh3l/Y3z3u99l3t+i+Cxtbbx/rY/3sLXx/rU+3sPW9otf/KLRXdiSuOdvDT5/rMeYWovxtBbjaT3G1FqMp7UYT2txz39jkJDRoo5uPyqH7f5qWdv/7+3quL6xb2fgtcCGnm+9LC4u6oc//KEef/xxVh2wAONpLcbTeoyptRhPazGe1mNMrfXhhx/q61//eqO7seUw98en8dmGSrg2UAnXBirh2kA5zPsb49//+3+vX/3VXy297uzsVGdnZwN7hGqt52dp9HjU0vbM2szfCfm3sPXxHrY23r/Wx3vY2m7cuKHnn3++0d3Ycr7zne/o137t10qvt+rcv965bqGtoLa+NnXc7FBbwfyDmpt5rlsrPtOtxXhai/G0HmNqLcbTWoyntbjnvzG4Uutgt9urqnjR29tbV0w53du69UvbfmnlxuWHNmupzfKFsFj+sbOzkw9vCzCe1mI8rceYWovxtBbjaT3G1Frbt29vdBe2JOb++DQ+21AJ1wYq4dpAJVwbKId5f2P8yq/8iv7BP/gHje4GTFjPz9Jty9ssbc+szfydkH8LWx/vYWvj/Wt9vIet7TOf+Uyju7AlORwO5v6qf6673LasdrWrfbld7YV20+1s5rlurfhMtxbjaS3G03qMqbUYT2sxntbinv/GMD8jhXp6etbcn8lkJN1LwqgnBgAAAAAAAAAAAAAAAAAAAAAANBcSMurgdDpLCRTlFCthOJ3OumIAAAAAAAAAAAAAAAAAAAAAAEBzISGjDh6Pp5RAUY5hGJIkn89XVwwAAAAAAAAAAAAAAAAAAAAAAGguJGTU4cSJE5KkZDJZdv/09PSqxAozMQAAAAAAAAAAAAAAAAAAAAAAoLmQkPEQuVxOoVBI8Xh81T6PxyOfz6cLFy6UjZ2cnFQoFKo7BgAAAAAAAAAAAAAAAAAAAAAANJctm5BhGIakewkXa4lEIhobG1MgECi7PxqNanJyclXFi2AwqJGRkbLVLszEAAAAAAAAAAAAAAAAAAAAAACA5tHR6A5spMnJSYXDYUnSzMyMJOn06dOlbYFAQMPDwytifD6f7Ha7jh8/XrZNu92uRCKhUCgku92u3t5ezc7Oyu/3a2hoyLIYAAAAAAAAAAAAAAAAAAAAAADQPLZUQsbQ0FDNCQ8ej0fZbHbNY+x2eympo1pmYgAAAAAAAAAAAAAAAAAAAAAAQHNob3QHAAAAAAAAAAAAAAAAAAAAAAAAWg0JGQAAAAAAAAAAAAAAAAAAAAAAADUiIQMAAAAAAAAAAAAAAAAAAAAAAKBGJGQAAAAAAAAAAAAAAAAAAAAAAADUiIQMAAAAAAAAAAAAAAAAAAAAAACAGpGQAQAAAAAAAAAAAAAAAAAAAAAAUCMSMgAAAAAAAAAAAAAAAAAAAAAAAGpEQgYAAAAAAAAAAAAAAAAAAAAAAECNSMgAAAAAAAAAAAAAAAAAAAAAAACoEQkZAAAAAAAAAAAAAAAAAAAAAAAANSIhAwAAAAAAAAAAAAAAAAAAAAAAoEYkZAAAAAAAAAAAAAAAAAAAAAAAANSIhAwAAAAAAAAAAAAAAAAAAAAAAIAakZABAAAAAAAAAAAAAAAAAAAAAABQo45GdwAAAAAAAAAAAABAc3p18NVGd0GS9NTUU43uAgAAAAAAAACsQoUMAAAAAAAAAAAAAAAAAAAAAACAGlEhAwAAAAAAAAC2qIWFBd25c0cdHbXdKr5586bOnDmjRCIhr9er8fFx9fX1merDjh07TMUBAAAAAAAAAAAAjUZCBgAAAAAAAABsUU8++WTdbcRiMblcLtPxhUKh7j4AAAAAANZHIpJQKpqSzW6TJNmddvlH/WWPzefyeufcO5Kk7t5uZWYzcvldcg+5K7ZvJgYAAAAAmgkJGQAAAAAAAAAAAACAlvTjV3+sGy/dUHuhvWF9eGrqqYadGwDWSz6X15898Wfa69urk7GTpe1ZI6tYKLYqKSOfyyvijSgQDajf01/aPhWc0o3pG2WTOMzEAAAAAECzadxdKQAAAAAAAABAQ73xxhvK5XK6fft2TX/8fr+2bdsmSdq2bZv8fn/NbRT/AAAAAACaTzEZ49NJEa8HX1cyklx1fDQQ1SNDj6xIrJCkwfCgkpGkjLhhSQwAAAAANBsqZAAAAAAAAADAFtXV1aUdO3aoo6O2W8UTExM6deqUpqenNTAwoPPnz2vHjh3r1EsAAAAAwEa6OnZVWSOr4dHhVftsdpv2HNizYlvWyMqIGzoaPlq2Pfdxt66OXpXT56wrBgAAAACaEQkZAAAAAAAAAICa9PX16dKlS43uBhoka2R1ZfSKJCmfySufy8vpd+rQyKGyxyciCaWiKXmDXjl9TtnsNmWNrNLJtN6/8L4Onz28akVcScrn8nrn3DuSpO7ebmVmM3L5XXIPuSv2zUwMgNbw6uCrlre53LasTH9GN166ofZCe1UxT009ZXk/AABoNlfOXZFn2FN2XyAaWLVtJjwjSXI4HWVjelw9SkaSyufystltpmMAAAAAoBmRkAEAAAAAAAAAAKqSmkzpxvQNDYYHV2yPeCNKhBN6fvb5VTH5XF5G3JARN1Zst9ltCkQDFZMxIt7Iqv1TwSndmL4h/6jfkhgAAAAAK6UmU8rn8tp/Yn/VMR8lP1ozaaKYdDE3M1eqeGEmBgAAAACaUXVLvQAAAACAhVKTqUZ3AQAAAECN8rm83r/wftnEhsHvDSprZDUVnCobezR8VAdHDso95JZn2KOj4aMKZUMVH6yKBqJ6ZOiRVckag+FBJSPJVckdZmMAAAAArPT+hfclqTSvTifTSkQSSifTFWOyRlZdPV0V9xcTL7JGtq4YAAAAAGhGJGQAAAAA2FD5XF7RQFSJSEL5XL7R3QEAAABQpbmZOaUmU4qFYqv2FR/Wuh6/XjZ23/F98o/6FYgGNBgelHfYW/E8WSMrI27oQPBA2f3u425dHb1adwwAAACwlSzeXdTdn98t/fn7X/x92eMeTLy4OnZVC5mF0vx9wj9RNtF5IbOwZrWLYuLFg78JmIkBAAAAgGbU0egOAAAAANhcpoJT2hfYV3Gl2+JqVq8HX9frwdfXbCsQDcg95JYkJSIJpaIpeYNeOX1O2ew2ZY2s0sm03r/wvg6fPbxqJVzp3o8175x7R5LU3dutzGxGLr+r1C4AAACA6nT1dMlmt6m7t7viMWs9UFWtmfCMJMnhdJTd3+PqUTKSVD6XL53PTAya06uDrza6C5Kkp6aeanQXAAAALHXl3BW9/c23S6/nNV/2uGKiRCKS0KGRQ6Xt/Z5+BaIB/dHeP1IgGljxG0C1SRMf3/q4rhgAAAAAaEYkZAAAAAAPcefOHVNxN2/e1JkzZ5RIJOT1ejU+Pq6+vj5Tbe3YscNU3EYprkabCN8rW74vsG/NYx1Oh/o9/bL1lH8QKp/JK2tkVyRN5HN5GXFj1epbNrtNgWigYjJGxBtZtX8qOKUb0zfkH/XX+p8KAAAAbFn9nn6FsqGy+4qr6O717a37PB8lP1ozaaKYdDE3M1d6CMxMDAAAALCVHD57WI+/+Hjp9Y0bN/Rt97dXHVdMlChWqHiQzW6T0+fU68HX9fzs8+vXWQAAAABoISRkwDRWqQIAAFvFzp07624jFovJ5XKZji8UCnX3Yb0kIgkZMUNOv1O+UZ8m/BNrHn9j+oZOxk5WXLlWkmKhmHyjvlXbj4aPKjObUc7IydZj0x7vnlKp9HKigageGXpkVbLGYHhQo45RufwuHsYCAGCDmE1ylbZWoivQquKhuBxOx0OTntPJtOZm5rTnwJ6ySdXSvSTucg9/FRUTL4rV98zGAAAAAFtJR2eHOjrvPyb0mZ9/puxxNrtN+Vy+4r1zp9+p1GRK6WS6NKcvxjzMg9X2zMQAAAAAQDMiIQMAAABAXbzD3lJSRHFV3IdZKxkjnUyrx9VT9ph9x/etuertg4pVO46Gj5bd7z7u1tXRqyRkAACwQaxIcpU2d6Ir0AiLdxe1dHep9PqT25/UFJ81sroyekV2p10nYycrHmfEDWWNrJw+p7zDXqWTaU34J3QodGjVnHwhs7Dmd4Zi4sWDD2+ZiQEAM5phwTIWKwMArKeuni7lc/mK9+KLc+u5mblSQsZaydHSvfm6pBVtmokBAAAAgGZEQgYAAADwELdv3zYVd+zYMV2+fFlLS0vatm2bjhw5oosXL1rcu9ZzIHhgzf0z4RkNhgfrPs9MeEZS5eSPHlePkpHkmj8sAQAAAJvdlXNX9PY33y69nm+fryouNZnSjekbyhk52Z12ufyVE6WKc/JDI4dK2/o9/QpEAxp1jGo4MbyiWka1SRMf3/q4rhgAAAAAq/V7+quqLPfgHNzhdGhuZu6hxz54v95MDAAAAAA0IxIyAAAAgIfYsWOHqbiJiQmdOnVK09PTGhgY0Pnz5023tZms9eNJLBSTf9RvyXk+Sn60ZqJFsR9zM3NUyQAAYAOYTXKVSHQF1tPhs4f1+IuPl15/+OGH+vaj335onHvILfeQu/R6wj+hRDihwe8NrpqHP3jcg2x2m9xDbkUDUT0/+7zJ/wIAAAAAVtozsEepyVTFxYyKlSseTKre7dktI25UbLOY4PHgvXgzMQAAAADQjNob3QEAAABgs+rr69OlS5f0s5/9TJcuXVJfX1+ju1STxbuLuvvzu6U/n9z+ZF3Pl06m1ePqqapaRTqZViKSUDqZrnhM1siuWfK8eJ5qVvoCAAD127Fjh+k/ExMT8vv96u3tld/v18TEhOm2AKzU0dmhzl/uLP3ZvnO7qXYC0YBSkylFA9Ga4vYM7FHWyK6Yl9vstqoqXnT3dtcVAwAAAGC1YkJ1pWSJzGxGkrTnwJ7Stv0n9ktSxXv2c9OrF0YyEwMAAAAAzYgKGQAAAADKunLuit7+5tul1/Pt8+t+vkA0sOYxRtxQ1sjK6XPKO+xVOpnWhH9Ch0KHVv0ws5BZWLMaRzFZo5qHtgAAQGMVE10BNK9itYvUZEpG3Kj6walionQ6mS7N39dKrJbur8j7YDK3mRgAAAAAqzmcDrmH3Lpy7krZancfTH6ggyMHV8yt+z39cvqcunbh2orKGUWpyZROxk6u2GYmBgAAAMD6SEQSSkVTpXm+3WmXf9Rf9th8Lq93zr0j6d4iSJnZjFx+V8Vq2WZjWgkVMgAAAACUdfjsYX1j/hulP1/7v762budKTaZkd9rXPKb4cNahkUOlH2f6Pf0KRAOa8E+sWkWr2kSLj299XHuHAQAAgC0on8uvWWGuOKefjc2Wtk0Fp/Qd13dqOo/D6SglUFTqR/G4emIAAAAAlDf4vUHlc3klIokV26OBqBxOR9kHswLRgD6Y/GDVvfqp4JQOjhwsm7RtJgYAAACAdfK5vCLeiDKzGZ2MnVQgGlAgGtCB4AHFQrGKx+8/sV/+Ub8OjRzSYHhQs7HZssebjWk1VMgAAAAAUFZHZ4c6Ou9/Zdi+c/u6nevKuSsa/N7gmsdUyoovrsQbDUT1/Ozz69E9AAAAAJJGHaOSpFA2VLbSRHdvt6SVydHpmXRViRIProi727NbRtyoGFNMCnnw4SwzMQAAAADKs9ltGk4M651z7ygaiEq6N3d3B9zyDnvXjImFYrLZbVWtemsmBgAAAIB1/uyJP9Ne395VSdevB1/X3Mzcqu3RQFSPDD2yqsrdYHhQo45RufyuVffhzcS0GhIyAAAAADRU1sgqnUyXLUlerT0De5SaTClrZEsr3trstqqqZBQfGgMAAACwNpvdpq6errLJGJKUmc1IkvZ495S27fXt1fDocMU256bnZLPbVlSu2H9iv94de7fi94S56blVP86YiQEAAABQmc1uK1sJ42Exg+G1F1+yIgb1uXPnjunYmzdv6syZM0okEvJ6vRofH1dfX5+FvQMAAMBGuTp2VVkjW/Yevs1u054De1ZsyxpZGXFDR8NHy7bnPu7W1dGrK+7Fm4lpRSRkAAAAAGiomfDMioevzCg+EJZOpkttdfV0rRlTXKW30sNkAAAAAFbyDHt0IHig4v7UaynZ7DbtO76vtG3/if1KRBJlV9HNGlmlJlMKRAMrtvd7+uX0OXXtwrWyyRWpyZROxk7WHQMAAAAAW9HOnTstaScWi8nlcpmK/f7R71vSBwAAAJh35dwVeYY9Zfd9+r69dO/5HkkVn/HpcfUoGUkqn8uXnsUxE9OK2hvdAQAAAABb2/X49YcmZEwFp/Qd13dqatfhdJSSLsopVs+oNxkEAAAA2Cr8o35dGb0iI26s2hcNRCVJT7/59IofTfo9/crn8ro6dnXF8Vkjq4g3ooMjB+Uecq9qLxAN6IPJD5ROpldsnwpO6eDIwbKrZZmJAQAAAAAAAABgq0lNppTP5bX/xP6qYz5KfrRm0kTx+Zu5mbm6YloRFTIAAAAANFQ6mS77ANaKY2bSVSVXPLgS7m7P7rIPihVljawk8VAWAAAAUIPB8KBSkylFA1HZemzKZ/LK5/La7dmtr1//etkfVg6NHJIRNzQVnCodb7Pb9PSbT5etZiHdq2Q3nBhWLBSTzW5Td2+3MrMZufyuit8fzMQAlbw6+GpVxy23LSvTn9GNl26ovcA6aAAAAGh+t2/fNh177NgxXb58WUtLS9q2bZuOHDmiixcv1tzO//6l/910HwAAAFC/9y+8L+n+czbpZFpzM3Pac2BPxfv2WSOrrp6uim0Wfx8oPo9jNqYVkZABAAAAoGGKK9faetYuO7jXt1fDo8MV989Nz8lmt62odrH/xH69O/au0sl02S+Lc9NzJGMAAAAAJriH3DUnODh9zprn3za7TYPhwXWPAQAAAICtZMeOHaZjJyYmdOrUKU1PT2tgYEDnz5+vqz0AAABYa/HuopbuLpVef3L7k7LHPVhp+urYVfV7+uUd9iqdTGvCP6FDoUOr7ukvZBZWPJfzacXEi+KiqmZjWhEJGQAAAAAaZq2qFw/af2K/EpGEvMPeVfuyRlapyZQC0cCK7f2efjl9Tl27cK1sQkZqMqWTsZPmOg4AAAAAAAAAALDF9PX16dKlS43uBgAAACq4cu6K3v7m26XX8+3zZY9byCzIZrcpEUno0Mih0vZ+T78C0YD+aO8fKRANrEjKqDZp4uNbH9cV04qonQwAAADAMsUSgtV+oSoeXyxBWEm/p1/5XF5Xx66uio94Izo4crDsCr2BaEAfTH6wIrNfkqaCUzo4cpAKGQAAAAAAAAAAAAAAANgUDp89rG/Mf6P052v/19fKHpfP5ZXP5UsVKh5ks9vk9Dn1evD19e7upkGFDAAAAAB1SU2mlAgnJElzM3OSpKnTU6Vt7oC7bGULSdpzYI9sdpt+deBXH3qeQyOHZMQNTQWnlM/c+2Jos9v09JtPl62AId37kjicGFYsFJPNblN3b7cysxm5/K6yCRwAAAAAAAAAAAAAAABAK+ro7FBH5/30gO07t5c9zma3KZ/LV1zI1Ol3KjWZUjqZLj2TU4x5mO7e7lXnqSWmFZGQAQAAAKAu7iG36eSGfk+/QtlQ1cc7fc6aq1rY7DYNhgdr7RoAAAAAAAAAAAAAAACw6XT1dJUWQq20X7q3MGsxIaNcNY0HLWQWJGlFm2ZiWtGWTMjI5XI6d+6cJKm3t1ezs7Py+/0aGhqqq81Q6N6DZJlMRpLk9/s1PDxc9vhIJKJoNKpgMCifzye73S7DMJRMJnXhwgWdPXtWHo/HdH8AAGgld+7cMR178+ZNnTlzRolEQl6vV+Pj4+rr6zPV1o4dO0z3AwAAAAAAAAAAAAAAAACAZtfv6VfWyD70uAerWzicDs3NzD30WIfTUVdMK9pyCRm5XE5er1fRaHRFwkMwGNT09LRGR0drbjOZTCoQCCgcDsvn85W2+/1+zc7Olm0zl8spHo8rHo+v2G6321f1DQCAzW7nzp2WtBOLxeRyuUzHFwoFS/oBAAAAAAAAAAAAAAAAAEAz2jOwR6nJVMUqGcXKFcXqGJK027NbRtyo2GYxwcPpc9YV04q2XEJGIBDQ0NDQqoSHcDgsh8Mhv9+/IqmiljY/HRcOh+VyuSq2GQ6HNTs7K8Mw1NPTI6/XW7GiBgAAAAAAAAAAwHp5dfDVRncBAAAAAAAAALAB3ENuxUNxGXFD7iH3qv2Z2Ywkac+BPaVt+0/s17tj7yqdTK9I1Ciam55blVhhJqYVbamEDMMwFI/HFQ6Hy+4/fvy4RkdHa0rIGBsbk2EYOnv27Kp9TqdTPp+vYpvHjx+X3W6v+lwAAGxWt2/fNh177NgxXb58WUtLS9q2bZuOHDmiixcvWtg7AAAAAAAAAAAAAIBV8ot507Hzd+f18o9flvELQ85fcurZR5/Vrs5dFvYOAABg83M4HXIPuXXl3JWyCRkfTH6ggyMHV1TP6Pf0y+lz6tqFa2WTK1KTKZ2MnVyxzUxMK9pSCRnFRAyns3wmjcvlUiQSUS6XqzpRIhaLSVLF4z0ej8bGxmruKwAAW8mOHTtMx05MTOjUqVOanp7WwMCAzp8/X1d7AAAAAAAAAAAAAID188wPnrGknWt3r+mFt14wHf8VfcWSfgAAALSiwe8NKuKNKBFJyDvsLW2PBqJyOB3yj/pXxQSiAUW8Ee0/sX9FgsVUcEoHRw6WrXZhJqbVbKmEjGQyuWaiRTFRY2ZmpuoqGTMzM2u26XK5Suf2eDxV9xUAAFSnr69Ply5danQ3AAAAAAAAAABb1KuDrza6C5Kkp6aeanQXAAAAAABAi7DZbRpODOudc+8oGohKkvK5vNwB94oEjXIxsVBMNrtN3b3dysxm5PK7ylbaMBvTarZUQoZhGOrp6am4v5hYYRhG1W329PQok8k89LiZmZmKCRnJZFIzMzM6cOBA1UkbC4sLur14u/R6e/t2bd+2vbpObzKLi4t1xy8vL9fdDu5hPK3FeFqPMbUW42ktxtN6jKm1lpeXG92FLakZ5v78HWoufLahEq4NVMK1gUq4NlAO8/7GyGaz6u7uLr3u7OxUZ2fnhvZhuY333oxCW0EFFVRoK2hZjGGradX3j3+771tcXGzJ93C9tNq1wXy09fEetjbet8aYn59f8ZxRI+b+zeBPfvdPTMf+L9P/i1K3UlouLKu9rV3uXrf+h4H/wVRb/D24j890azGe1mI8rceYWovxtBbjaa2H3fO32W1lK2E8LGYwPLjuMa1kSyVkZDKZUhWMcorJGrlcruo2PR6PJicnK+6fnZ2t2GY8HpdhGPL5fBoeHlYymZTf71coFHpohY7QX4VWvP6C5wt68sCTVfd7M7ly5Upd8cvLy/rwww8lSe3t7VZ0aUtjPK3FeFqPMbUW42ktxtN6jKm1bt261egubEnNMPevd84Na/HZhkq4NlAJ1wYq4dpAOcz7G+Of/bN/tuL1l7/8ZZ06dWpD+5Dpf/jiU1itoIIWfmlBGWXUprZGdwc1atX3j+/p9y0vL7fke7heWu3aYD7a+ngPW1s1i4/Cep/97GdXvG7E3L8ZfPyPPjYd+6XeL+l/fft/1X/+f/6z/vE/+Mf60v/7S/q421x7rfZv53riM91ajKe1GE/rMabWYjytxXhai3v+G2NLJWRUm2hRy8UXDAY1OTmpZDJZtrpFPB4v22YxMWRkZKS0zePxKBqNyuFwKJFIrFktY/RfjMphc5Reb2/fru3prVkh4/Dhw3XFF7PoDh48qI6OLfVXYl0wntZiPK3HmFqL8bQW42k9xtRaxS+82FjNMPevd84Na/HZhkq4NlAJ1wYq4dpAOcz7G+M//af/pF/91V8tvW7EKrk3XrqxoefbLAptBWWUUc9HPWor8DB4q2nV94/v6fctLi7q2oVrLfcerpdWuzaYj7Y+3sPW9tOf/rTRXdiSfvSjH+kf/aN/VHq9VStk1PP9o0c9+h8f+x+V2f3f5nHzbdK8ubZa7d/O9cRnurUYT2sxntZjTK3FeFqL8bQW9/w3BldqnXw+n3w+n86dO6doNLpiXzwel8/nUzKZVG9v74p9Q0NDZduz2+0aGhpSIBAoVdcop6ujSzs7dq7cWDD339DqrPjAbW9vV0dHBx/eFmE8rcV4Wo8xtRbjaS3G03qMqXVYeaAxmmHuz9+f5sNnGyrh2kAlXBuohGsDn8a8vzEcDkepinejtBd4781Y1rLa1Ka2Qhtj2IJa9f3j3+2VWvE9XC+teG0wH219vIeti/esMbZv374qAePu3bsPjbt586bOnDmjRCIhr9er8fFx9fX1merDjh07TMVZqd5/t62ax/H3YKW7d+/q7t27Wlpaqilus12fVuHfSGsxntZjTK3FeFqL8bQO9/w3xpa6Uu12e1VVMj6dPPEwsVhMwWBQoVBIZ8+elXS/MobL5Sqdu1oDAwOanJyUYRilShoAAAAAAAAAsBnduXPHdCw/+AMAAAAAWsm+ffvqbiMWi5WeRzKjUNiiK77ioZ588sm62+D6BAAAW9GWSsh42OpSmUxGUm3JE0XhcFi5XK6UiOHz+WS32zU2NiZJOnDgQNVtFc+fTCZJyAAAAAAAAGhhzfCgebG0M9Csdu7c+fCDqsAP/gAAAAAAAAAAANhoWyohw+l0amZmpuL+YvUMs0kQdrtdQ0NDK7ZNT09LkjweT2lbMBhUPB7X7OysqfMAAAAAAACgNTTLg+ZvvfWWJf0AAAAAAACAee+//77+8T/+xzXHHTt2TJcvX9bS0pK2bdumI0eO6OLFi+vQQ2xlb7zxhg4ePKiOjtoeKeT6BAAAW92WSsjweDylChblGIYh6V51C6skk0kNDw+v2DYzM1OqxlFOMTHkwSQOAAAAAAAAANiMbt++bTqWH/wBAAAAAK2ku7tbO3bsqDluYmJCp06d0vT0tAYGBnT+/HlT7QBr6erq0o4dO2pOyOD6BAAAW92WSsg4ceKExsbGlEwmyyY7TE9P15yMkUwm9cQTTygaja6KTSaTMgxDoVBoxXafz6fR0dGKbU5PT8tut5uu1AEAAAAAALDV3blzx3TszZs3debMGSUSCXm9Xo2Pj6uvr89UW83woPni4qLee+890/0A1ls9P9Dzgz8AAAAAYCvo6+vTpUuXGt0NoCyuTwAAsNVtqYQMj8cjn8+nCxculE3ImJycVCwWW7U9l8vp3Llz8vv9q5IuilU1yjl9+rRGR0dXJVacOHFCkUhkVeWMYnuTk5OKRqPV/mcBAAAAAADgU3bu3GlJO7FYTC6Xy3R8oVAwHWvVg+aLi4um+wA0O37wBwAAAAAAAAAAQCNtqYQMSYpGo/J6vTpx4sSKpIxgMKiRkZGyFTIikYjGxsYUiUSUzWZX7PP5fKU/RblcTqdPn5bP59PIyMiq9jwej+LxuMbGxlbsNwxDXq9XIyMjGhoasuI/FwAAAAAAAC2KB80BYOv43079b+rt6m10NwAA2FReHXy10V3QU1NPNboLAAAAAABgnW25hAy73a5EIqFQKCS73a7e3l7Nzs7K7/dXTILw+Xyy2+06fvx42fZGR0cVCAQk3UvGkKRQKFQ2uaNoZGRE8XhcwWBQmUxGuVxOdrtdb775ZtnqHQAAAAAAAKje7du3TcceO3ZMly9f1tLSkrZt26YjR47o4sWLFvZu4y0sLOjOnTvq6Kj9duDNmzd15swZJRIJeb1ejY+Pq6+vr+Z2zFT3AAAAAAAAAAAAAIBmtuUSMqR7SRThcLjq4z0ez6rKGA9yOp2KRqM19+PTlTUAAAAAAABgjXoe/p+YmNCpU6c0PT2tgYEBnT9/vuWTCZ588klL2onFYnK5XKZiC4WCJX0AAADY6pph1f9msdy2LPU3uhcAAAAAAADYyrZkQgYAAAAAAABQSV9fny5dutTobgAAAAAAAAAAAAAAmhwJGQAAAAAAAMAm98Ybb+jgwYPq6Kj9duCxY8d0+fJlLS0tadu2bTpy5IguXry4Dr3cGHfu3DEde/PmTZ05c0aJREJer1fj4+Pq6+sz1VarV10BAAAAAAAAAAAAQEIGAAAAAAAAsOl1dXVpx44dphIyJiYmdOrUKU1PT2tgYEDnz59v6WSCnTt3WtJOLBaTy+UyHV8oFCzpBwAAAAAAAFpbMywgsri4aLoPAAAAWx0JGQAAAAAAtJiFhQXduXPH1IPVrO4OoFZ9fX26dOlSo7sBAAAAAAAAbErNsoDIW2+9ZUk/AAAAthoSMgAAAAAAaDFPPvmkJe2wujuArej27dumY48dO6bLly9raWlJ27Zt05EjR3Tx4kULewcAAAAAAAAAAACglZCQAQAAAAAAAGDLqKe6z8TEhE6dOqXp6WkNDAzo/PnzVAsCAAAAAABAXZphAZHFxUW99957pvsBAACwlZGQAQAAAABAi3njjTd08OBBdXTU/rWe1d0BwLy+vj5dunSp0d0AAAAAAADAJtIMC4gsLi6a7gMAAMBWR0IGAAAAAAAtpqurSzt27DCVkMHq7uvjzp07pmNv3rypM2fOKJFIyOv1anx8XH19fTW3ww9mAAAAALC1vTr4aqO7IEl6auqpRncBAIAtgwVEAAAAGo+EDLS8em8sLrctK9Of0Y2Xbqi90G66HW4sAgAAAGgF/DizPnbu3GlJO7FYTC6Xy3T8W2+9ZUk/AAAAAAAAAAAAAADAw5GQAQAA0EQWFhZ0584dUyueW7W6tlRfWVwAAAAAAAAAAAAAAAAAALYCEjIAAACayJNPPmlJO/Wurl0oFCzpBwAAW8Xt27dNxx47dkyXL1/W0tKStm3bpiNHjujixYs1t7O4uKj33nvPdD8AAAAAAAAAAAAAAEBtSMgAAAAAAACoUz3VpSYmJnTq1ClNT09rYGBA58+fN9Xe4uKi6T4AAAAAAAAAAAAAAIDakZABYNO6c+eO6dibN2/qzJkzSiQS8nq9Gh8fV19fn6m26nkwC5sX1ycqeeONN3Tw4EF1dNQ+TbNqdW0AALCx+vr6dOnSpUZ3AwAAAAAAAAAAAAAA1IiEDGATaYYHvJtpRdadO3da0k4sFpPL5TIdXygULOkHNheuz+Zk9nPUys/Qrq4u7dixw1RChlWrawMAAAAAAAAAAAAAAAAAgIcjIQPYRJrlAe+33nrLkn4AwEaz4nO0kZ+hrK4NAAAAAAAAAAAAAAAAAMDGISEDwKZ1+/Zt07HHjh3T5cuXtbS0pG3btunIkSO6ePGihb3DVsf1iWbXDFWXJFHhAwAAAAAAAAAAAAAAAADQtEjIADaRZnjAe3FxUe+9957pflipnod4JyYmdOrUKU1PT2tgYEDnz5/noWBYiuuzOZn9HN2Mn6HNUnWpUChY0g8AALBxSOwEAAAAAAAAAAAAAGwVJGQAm0gzPOC9uLhoug/NpK+vT5cuXWp0N4CyuD7Xj9nPUT5DAQAA7iOxEwAAAAAAAACA+jXDAkgsfgQAwMORkAFAEg94A0A9NuNnaDNUXQIAoBrN8GOExA8SAAAAAAAAAADAWs2wABKLHwEA8HAkZAAAAGCVZqi6BABANZrhxwiJHyQeRGInAAAAAAAAAAAAAGCrICEDAAAAltqMFUMAAOWZrU5hZWUKNB8SOwEAAAAAAIDm9ergq43uAoAqsQASAACtgYQMAAAAAABgihXVKeqtTMGPEZsLiZ0AAAAAAAAAANzDAkgAALQGEjIAWG5hYUF37txRR0ftHzFWrpTLlwgAAABYzWxFCMm6ue7i4qLpPmxG/BgBAAAAAAAAAACwEgsgAQCwcUjIAGC5J5980pJ26l0pt1AoWNIPAAAAoMiKihBS/XPdt956y5J+1MtsdYpmqUyxGX+MaIYEeZJaAAAAAAAAAAAAAABbBQkZAAAAAADAFLMP3lOZYv00Q4I8yfEAsPlljayujF6RJOUzeeVzeTn9Th0aOVQxJp/L651z70iSunu7lZnNyOV3yT3kbngMAAAAAAAAAACAWSRkALDcG2+8oYMHD5pakbVZVsoFAAAAyjFbEUKybq67uLio9957z3Q/msFmrEwBAMBWkZpM6cb0DQ2GB1dsj3gjSoQTen72+VUx+VxeEW9EgWhA/Z7+0vap4JRuTN+Qf9TfsBgAAAAAAAAAAIB6kJABwHJdXV3asWOHqYQMVsoFAABAOXfu3DEde/PmTZ05c0aJREJer1fj4+Pq6+sz1VY9c1Or5rqLi4um+4DNjwR5AMB6yufyev/C+wpEA6v2DX5vUBFvRFPBqVXJGtFAVI8MPbIiSUKSBsODGnWMyuV3yelzNiQGAAAAAAAAAACgHiRkAGgqrJQLAEDrmwpOaV9g35oPOiUiCaWiKXmDXjl9TtnsNmWNrNLJtN6/8L4Onz286iEq6d4DYO+ce0eS1N3brcxsRi6/S+4hd8VzmYlB89m5c6cl7cRiMblcLtPxhULBdCxzXWwEEuQBAOtpbmZOqcmUYqHYqmoTxfn79fj1FduzRlZG3NDR8NGybbqPu3V19OqK7w8bFQMAAAAAAAAAAFAvEjIAAAAA1K348FMinFA6mda+wL41j8/n8jLihoy4sWK7zW5TIBqomIwR8UZW7Z8KTunG9I1VD4SZjQGArYqkIQDAw3T1dMlmt6m7t7viMTa7bcXrmfCMJMnhdJQ9vsfVo2QkqXwuX4rdqBgAAAAAAAAAAIB6kZABAAAAoC6JSEJGzJDT75Rv1KcJ/0RVcUfDR5WZzShn5GTrsWmPd4+8w96Kx0cDUT0y9MiqZI3B8KBGHaNy+V2rVrs1E4PmdPv2bdOxx44d0+XLl7W0tKRt27bpyJEjunjxooW9AwAA2Br6Pf0KZUNl96WTaUnSXt/eFds/Sn60ZgJEMYFibmauNDffqBgAAAAAAAAAAIB6kZABAAAAoC7eYW8pkaL4EFY19h3fV/XKtMUKHEfDR8vudx936+ro1RUPVpmJQfPasWOH6diJiQmdOnVK09PTGhgY0Pnz5+tqDwAAAKvFQ3E5nI5VVeiyRlZdPV0V44rfCbJGdsNjAADYbPKLedOx83fn9fKPX9b1+evau2uvnn30We3q3GVh7wAAkjR1ekq/YvuVRncDAAAAgIVIyAAAAADQ9GbCM5Lur2r7aT2uHiUjSeVz+dKDVmZisDn19fXp0qVLje4GAABAU1q8u6ilu0ul15/c/qSm+KyR1ZXRK7I77ToZO7lq/0JmoeKcXFIpiSKfu/8A6UbFAABglWZJhHjmB8+Y7seDrv3sml546wXT8V/RVyzpB4DGSUQSSkVT8ga9cvqcstltyhpZpZNpvX/hfR0+e3hVZWrp3nz7nXPvSJK6e7uVmc3I5XfJPeSueC4zMQAAAADQTEjIAAAAAND0Pkp+tGbSRPHBq7mZuVLFCzMxAAAAwFZz5dwVvf3Nt0uv59vnq4pLTaZ0Y/qGckZOdqddLr+r7HHVJkB8fOvjDY8BAMAqzZIIAQBWyefyMuKGjLixYrvNblMgGqiYjBHxRlbtnwpO6cb0jVXV9MzGAFa6c+eO6dibN2/qzJkzSiQS8nq9Gh8fV19fn6m2qOoNAADQ2kjIAAAAANBQ6WRaczNz2nNgT9kfcaR7q+4WV7Qtp5h4kTWydcUAAAAAW83hs4f1+IuPl15/+OGH+vaj335onHvIvWLF2gn/hBLhhAa/N0gFOgAAGuSVL7xiOvalmZeUupXScmFZ7W3tcve69eKBFy3sHYBWczR8VJnZjHJGTrYem/Z498g77K14fDQQ1SNDj6y6zz8YHtSoY1Quv2vV4khmYgAr7dy505J2YrGYXK7yCxVUo1AoWNIPAAAANAYJGQAAAADKWry7qKW7S6XXn9z+xNL2jbihrJGV0+eUd9irdDKtCf+EDoUOrfqBZSGzUKpoUU4x8eLBVXHNxAAAAABbTUdnhzo67/9UsH3ndlPtBKIBjTpGlc/ldTJ2srTdZrdVNefu7u3e8BgAAKzSLIkQtg7zSZHPPfacxn80rtncrFx2l8589kxd7TWD/KK5+37zd+f18o9f1vX569q7a6+effRZ7ercZXHvgOa37/i+qpOts0ZWRtzQ0fDRsvvdx926Onp1xb1/MzEAAAAA0IxIyAAAAABQ1pVzV/T2N98uvZ5vn7es7WKixKGRQ6Vt/Z7+0kNcw4nhFStiVZs08fGtj+uKAQAAAGCOzW6Te8it1GRKRtwoPTS1VtU66V4idTG+aKNiAACwymZIhNjVuUuhz4c2/Lzr6ZkfPFN3G9d+dk0vvPWC6fiv6Ct19wFoBTPhGUmquEhSj6tHyUhS+Vy+NCc3EwNY7fbt26Zjjx07psuXL2tpaUnbtm3TkSNHdPHiRQt7BwAAgFZBQgYAbAF37twxHXvz5k2dOXNGiURCXq9X4+Pj6uvrM9XWjh07TPcDALDxDp89rMdffLz0+sMPP9S3H/22JW27h9xltxcf4ooGonp+9nlLzgUAAADAGvlcfs1KdHanXZI0G5stJWQ4nA7Nzcyt2WbxuKKNigEAoBlsxkQIAFvPR8mP1kyaKM7D52bmSt8VzMQAVqvnGYaJiQmdOnVK09PTGhgY0Pnz53kmAlhHCwsLunPnjjo6an/klWefAADrjYQMANgCdu7caUk7sVhMLpfLdHyhULCkHwCAjdHR2aGOzvtfGbbv3L4h590zsEepyZSyRrb0g4vNbquq4kV3b3fp/5uJAQAAAFDZqGNUkhTKhso+OFWcWz84D9/t2S0jblRsM2tkJWnFA1YbFQMAADa3V77wiqm4l2ZeUupWSsuFZbW3tcvd69aLB160uHdA60gn05qbmdOeA3tWVLZ+UNbIrlm1rvj9oTgvNxsDNJO+vj5dunSp0d0Atownn3zSknZ49gkAsB7aG90BANjs7ty5Y+qPYRj63d/9Xf3Lf/kv9bu/+7syDMN0WwAAtJLijyzpZLq0ba0fZSRpIbOwItZsDAAAAIDKbHabHE5HxTl0ZjYjSdrj3VPatv/Efkkr5/cPmptevdrtRsUAAIDNzdZhM/Xnucee06O/8qh2bt+pR3/lUT332HOm2wKayeLdRd39+d3Sn7//xd+vebwRN3R17KokyTvslSRN+CfKJkIvZBbWvNdevF//YPK2mRgAAAAAaEZUyACAdWZFdYp4PF5Xdvbt27dNxx47dkyXL1/W0tKStm3bpiNHjujixYum2wMAYCo4pevx63p+9vmqYxxOh+Zm5iruL/4gU6yoYTYGAAAAQGWeYY8OBA9U3J96LSWb3aZ9x/eVtvV7+uX0OXXtwrWyq+mmJlM6GTu5YttGxQAAAJSzq3OXQp8PNbobgOWunLuit7/5dun1vOYrHlu8b35o5FBpW7+nX4FoQKOOUQ0nhlfMu6tNmvj41sd1xQDARqln8dObN28qGAzqr//6r/X5z39e4XBYfX19ptrasWOH6X5sNm+88YYOHjyojo7aH3nl2ScAwHojIQMAtoB6vqBNTEzo1KlTmp6e1sDAgM6fP88XPgBAXdIz6VJ1inKKP8I8+GPObs/usqtuFRVLlj+44q2ZGAAAAACV+Uf9mgpOaV9g36p5dDQQlSQ9/ebTq1a5DUQDingj2n9i/4p5/lRwSgdHDpadk29UDAAAALBVHD57WI+/+Hjp9Y0bN/Rt97fLHusecpfdbrPb5B5yKxqI1rToEgC0GisWX5XqX4C1UChY0o/NoKurSzt27DCVkMGzTwAASTLeNGTEDKlN6nH1aM+BPdr92d2WtE1CBgCsM7PVKZolO7uvr0+XLl3a8PMCADavvb69Gh4drrh/bnpONrttReWK/Sf2692xd5VOpsuudjs3Pbfq4SozMQAAAADWNhgeVGoypWggKluPTflMXvlcXrs9u/X1619flYwh3XtoazgxrFgoJpvdpu7ebmVmM3L5XWs+6LURMQAAAMBW0dHZoY7O+48JfebnnzHVzp6BPUpNppQ1sqX7+Da7raqKF9293aX/byYGAAAzePYJALaGsd4xjdwaqbjf+YRTziecys/ntZBZkBE3NBOekX/Ur85f7qzr3CRkABapt1TdmTNnlEgk5PV6NT4+bqpUHZm7zcns+zIxMaEvf/nL+uEPf6jHH39cf/qnf8p7DADYFPaf2K9EJCHvsHfVvqyRVWoypUA0sGJ7v6dfTp9T1y5cK5tckZpM6WTsZN0xAAAAAB7OPeSuOcHBZrdpMDzYlDEAAAAAqldMwk4n06WEjK6erjVjilWzH0zgNhMDABvF7OKrUvMswAoAwFZTbWUp2y6bbLts8p72Kj+fVywU09HvHq3r3FsyISOXy+ncuXOSpN7eXs3Ozsrv92toaKiuNkOhkCQpk8lIkvx+v4aHK6/8ux79QONYVaouFouZLlVHmbrNpa+vT6+//rquXLmiw4cPmyq5BwDARssaWUlac1Wrfk+/jLihq2NXdWjk0IrYiDeigyMHyz7cFYgGFPFGtP/E/hUJFlPBKR0cOVi22oWZGAAAAAAAAAAA1lMzLPj48ccfl90+FZzS9fh1PT/7fNVtOZwOzc3MVdxf/M3gwcrYZmIAYKPUs2AqC7ACANAYbW1tNcfYdlmTAL7lnu7N5XLyer2KRqPyeDyl7cFgUNPT0xodHa25zWQyqUAgoHA4LJ/PV9ru9/s1Oztbts316AcAAADQCKnJlBLhhCSVfjyZOj1V2uYOuFdVwzg0ckhG3NBUcEr5TF75XF42u01Pv/l02WoW0r1VsIYTw4qFYrLZberu7VZmNiOX31VxdV4zMQAAAAAAAM0sv1h5IYyHmb87r5d//LKuz1/X3l179eyjz2pX5y4Le7ex/VhuW16H3gHA+muGBR8rSc+kS9UpyikmSjx4L3+3Z7eMuFExpriY04OLJJmJAYBWwAKsAIBWkYgklIqm5A165fQ5ZbPblDWySifTev/C+zp89nDZZ3jyubzeOfeOJFX9HI6ZmI2Qn88rPZOuu50t9699IBDQ0NDQiiQISQqHw3I4HPL7/SuSKmpp89Nx4XBYLperbJvr0Q80FqXqAADAVuUecpv6guT0OWv+IcVmt2kwPLjuMQAAAAAAAM3qmR88Y0k71352TS+89YIlbTWyH98Z/o6FvQEA7PXt1fDocMX9c9NzstltKypX7D+xX++Ovat0Ml32ga256blVvweYiQEAAABgnXwuLyNurEqUttltCkQDFZMxIt7Iqv1TwSndmL4h/6jfkphKcj/Jld1eKBTu7f/POamwdhv5XF4LmQWlk2ldOXdF7uP1J4VsqYQMwzAUj8cVDofL7j9+/LhGR0drSoQYGxuTYRg6e/bsqn1Op1M+n29Vm+vRDzRevaXqTp06penpaQ0MDOj8+fOUqgPW0cLCgu7cuWNqFQKrSgDzdxwAAAAAAAAAAADYmpphwccbN27oN3/zN1dt339ivxKRxKrK19K9qhWpyZQC0cCK7f2efjl9Tl27cK3sQ1upyZROxk7WHQNg87tz547pWKue55B4pgMAsHUcDR9VZjajnJGTrcemPd49Zb8LFEUDUT0y9MiqOfxgeFCjjlG5/K5VidVmYiqZS8xpbnpOWSMrI27o7vzdFfu/46x+4Y5CoSCnz6mj3z1adUwlWyoho5gA4XSWf9NcLpcikYhyuZzsdntVbcZiMUmqeLzH49HY2Ni69wOtra+vT5cuXWp0N4At48knn7SknXpKABczMgEAAAAAAAAAqMUrX3jFdOxLMy8pdSul5cKy2tva5e5168UDL1rYu43tx3Lbsj7Wx+vQQwBYX82w4GN3d3fZ7f2efhlxQ1fHrurQyKHS9qyRVcQb0cGRg2WrZgeiAUW8Ee0/sX/VqrcHRw6WfcDKTAyAzW3nzp2WtFPP8xwSz3QAALaOfcf3yWa3VXVsMQniaLh8AoP7uFtXR6+umMebiVmL+4tuub94//tIOplWPBSX8aahtrY2PfLFR6pqx+F0yOl3yvmENd85tlRCRjKZXDPBoZggMTMzU3V1ipmZmTXbLE7sksmkPB7PuvUDAAAAAAAAAAAAwOZn66juR/JynnvsOY3/aFyzuVm57C6d+eyZutprdD9IyACwFW3Ego+HRg7JiBuaCk4pn8krn8vLZrfp6TefLlvNQpJsdpuGE8OKhWKy2W3q7u1WZjYjl99VNoHDbAwAAACAxpgJz0i6l8xQTo+rR8lIsvT9wWxMLfo9/ToZO6mp4JQ+mPxAgdcCDw9aB1sqIcMwDPX09FTcX0ySMAyj6jZ7enqUyWQeetzMzEwpIWM9+gEAqN4bb7yhgwcPqqOj9n8GrSoBDAAAAAAAAADARtvVuUuhz4ca3Y2m6QcAoDKnz1lzhQqb3abB8OC6xwDYvG7fvm06luc5AABYXx8lP1ozaaKYdDE3M1f6LmEmxozB8KDSibTp+HptqYSMTCZTqj5RTjFJIpfLVd2mx+PR5ORkxf2zs7Or2rSiHwuLC7q9eH8Cur19u7Zv215lr/GgQltBBRVUaCtoWcum21lcXLSwV61rcXFRy8vLjIdFGE/rLS4uqrOzU52dnaYSMv7Df/gPevbZZzUzM6MDBw7o5ZdfVmdnp6l+bAZco9ZiPK3HmFpredn8XAnmNcPcn79DzYXPNlTCtYFKuDZQCdcGymHe3xgfL32szsX795i45986rPqNAY3B+9f6eA+bU7Xzy/Wejy63Nf6a2Oxzbb5TtDbet8Zohnv+mwHP+livWT7TzTx/UWTV8xxS/ddGs4znZsF4Wo8xtRbjaS3G01rV3vNPJ9Oam5nTngN7KlbFyxpZdfV0VWyjmHiRNbJ1xZh1+OxhU3Hxs3H5zvnqOveWSsioNtHi1q1bVbcZDAY1OTmpZDJZqoDxoHg8vqpNK/oR+quVK8Z8wfMFPXngyaraxUoFFbTwSwvKKKM2tZlu58qVKxb2qnUtLy/rww8/lCS1t7c3uDetj/G0nhVj+o1vfKP0///u7/5Of/d3f2dJ3xphYWHBdGw2m9W/+3f/Tn/7t3+r3/zN39S//tf/Wg5H+dJiD9PVVXnStZXwd956jKm1apknwzrNMPdnrttc+GxDJVwbqIRrA5VwbaAc5v2N0Qzzfphj1W8MaAzev9bHe9icqr2XtN7z0Ux/xvI2a7XZ76vxnaK1ZTKN/zuyFTH3twbP+lhvs3ymN8vzHJtlPJsF42k9xtRajKe1GM/6LC8ua3npfhJG5tba834jbihrZOX0OeUd9iqdTGvCP6FDoUOrKlYsZBZKFS3KKSZe5HP5umLMcn/RbSouGUmSkNFoPp9PPp9P586dUzQaXbEvHo/L5/MpmUyqt7fX0vOO/otROWz3L9Dt7du1PU3GvBmFtoIyyqjnox61Fcx/STt82Fxm1WZTzEo8ePCgqeoDWInxtB5jutL27db825FMJvWv/tW/Mh3/ySefWNKPVsf1aT3G1FrFL7zYWM0w92eu21z4bEMlXBuohGsDlXBtoBzm/Y3RDPN+mGPVbwxoDN6/1sd72JyqvZe03vPRGy/dsLzNWm32+2p8p2htP/3pTxvdhS2Jub81eNbHenymW4vxtBbjaT3G1FqMp7UYz/r8H//T/6Gr/9PV0uv59vmKxxYTJQ6NHCpt6/f0KxANaNQxquHE8IpqGdUmTXx86+O6YqyQ+0muqqob6WTakmSQLXWl2u32qqpT1Jo8EYvFFAwGFQqFdPbsWUn3K2O4XK7Sua3sR1dHl3Z27Fy5sVBTt/HfLGtZbWpTW6FN7QXz2XR88N/X3t6ujo4OxsQijKf1GNPmw3txH9en9RhT67DyQGM0w9yfvz/Nh882VMK1gUq4NlAJ1wY+jXl/Y3Rv6274vB/mWPUbAxqD96/18R42p1rmlus5H22Ga2IrzLP5TtG6eM8aoxnu+W8GPOuzPvhMtxbjaS3G03qMqbUYT2sxnub987P/XIdevJ9g8eGHH+rbj3677LHuofIVJWx2m9xDbkUDUT0/+/y69HO9JP8kqXgobkmSRS221JXa09Oz5v5iOcYHkyeqFQ6HlcvlSokYPp9PdrtdY2NjkqQDBw5sSD8AAKjF7du3TcceO3ZMly9f1tLSkrZt26YjR47o4sWLFvYOAAAAAAAAAAAAAAAAAABUo6OzQx2d99MDtu80V41tz8AepSZTyhrZUiUNm91WVaJDd2936f+biTHLeNPQ1PCUHE6H3AG3bHbbQ2PSibSuX75e97m3VEKG0+nUzMxMxf3FqhVOp9NU+3a7XUNDQyu2TU9PS5I8Hs+G9QMAgGrt2LHDdOzExIS+/OUv64c//KEef/xx/emf/mld7QEAAAAAAAAAAAAAAAAAgMYqJjOkk+lSQkZXT9eaMQuZhRWxZmPMevMbbyoQDcj9xfKVPyoZ6x2r+9xbKiHD4/GUKliUYxiGpHvVLaySTCY1PDzc8H5sZvlF82Vl5u/O6+UfvyzjF4acv+TUs48+q12duyzsHQBsXn19fXr99dd15coVHT58mBJxAAAAAAAAAAAAAAAAm8idO3dMx968eVNnzpxRIpGQ1+vV+Pi4+vr6am5ncXHRdB8AAOVNBad0PX5dz88+X3WMw+nQ3Mxcxf3FShjFBA6zMWbZHLaakzEkyb7XXve5t9STkydOnNDY2JiSyeSKihVF09PTNSdBJJNJPfHEE4pGo6tik8mkDMNQKBRa935sZc/84BlL2rl295peeOsF0/Ff0Vcs6QcAALiv3ps7wWBQf/3Xf63Pf/7zCofDpm7uSPVVkwEAAAAAAAAAAAAAoBXt3LnTknZisZhcLpfp+LfeesuSfgAA7knPpEvVKcopJkr0e/pL23Z7dsuIGxVjskZWkuT0OeuKMevBvtZieGb44Qc9xJZKyPB4PPL5fLpw4ULZRIjJyUnFYrFV23O5nM6dOye/378qUaJYzaKc06dPa3R0VE7nyovEbD8AAAC2Gqtu7sTj8bpu7hQKBUv6AbSqZlj5hsQoAAAAAAAAAAAAAACA+u317dXwaOVEhLnpOdnsthWVK/af2K93x95VOpkum/wwNz23KrHCTIxZxSSSRthSCRmSFI1G5fV6deLEiRXJEMFgUCMjI2UrU0QiEY2NjSkSiSibza7Y5/P5Sn+KcrmcTp8+LZ/Pp5GREcv6gfJe+cIrpmNfmnlJqVspLReW1d7WLnevWy8eeNHC3gEAAACtrxlWviExCgAAAAAAAK3m1cFXG92FdbXctqxMf0Y3Xrqh9kL7Q49/auqpDejVw5ldgMaqxWckFqABALSO27dvm449duyYLl++rKWlJW3btk1HjhzRxYsXa25ncXFR7733nul+AABW239ivxKRhLzD3lX7skZWqcmUAtHAiu39nn45fU5du3CtbHJFajKlk7GTdceY5Q649cFffKBHfu+RmuLiZ+Pynavvuf0tl5Bht9uVSCQUCoVkt9vV29ur2dlZ+f1+DQ0NlY3x+Xyy2+06fvx42fZGR0cVCNy76HK5nCQpFAqtmVRhph8oz9ZhMx373GPP6bs/+q5mfz4r1y+79LXPfq2u9gAAgLWa4eYOAAAAAAAAAADYPKxYgKaexWckFqABALSOepIIJyYmdOrUKU1PT2tgYEDnz5831d7i4qLpPgAAyuv39MuIG7o6dlWHRg6VtmeNrCLeiA6OHJR7yL0qLhANKOKNaP+J/SsSLKaCUzo4crBstQszMWY4n3Dq6r+9WnNSRjKSJCHDDLvdrnA4XPXxHo9nVWWMBzmdTkWj0XXvB6y3q3OXRv5fI8r0Z9ST7qlq1Q4AALBx6r258+Uvf1k//OEP9fjjj+tP//RPWXEKMInkKAAAAAAAAAAAAAC16Ovr06VLlxrdDQBABYdGDsmIG5oKTimfySufy8tmt+npN58uW81Ckmx2m4YTw4qFYrLZberu7VZmNiOX31U2gcNsjBm5n+S0L7BP70ff1/cGvqe9vr3qcfXI4XRUjEkn08rn8nWfe0smZAAAAGDz6+vr0+uvv64rV67o8OHD6uhg6guY1Qwr3wAAAAAAAACAFcwuQMPiMwAAAAA2G6fPWXOFCpvdpsHw4LrH1CrsCevu/F1J96oSziXm1NbWtq7nLOKpNAAAAADAumHlGwAAAAAAAGxV+UXzq2zO353Xyz9+Wdfnr2vvrr169tFntatzl6m2bB020/3YjMwuGMPiMwAAAADQvLp6uiRJ+47vk81e3ffgdCKt65ev131uEjIAAAAAAAAAAAAAAAAs9swPnrGknWs/u6YX3nrBdPz3j37fkn5sdSw+AwAAAADNy+F06PA3DsvzVU9NcWO9Y3Wfu73uFgAAAAAAAAAAAAAAAAAAAAAAABrA4XTI4XTUHGffa6/73FTIAAAAAAAAAAAAAAAAsNgrX3jFdOxLMy8pdSul5cKy2tva5e5168UDL5pqK7+YN92P+bvzevnHL+v6/HXt3bVXzz76rHZ17pIkLbct6+4nd5VfzKu9wHqgAAAAAIDGOTp+1FTc8Mxw3ecmIQMAAAAAAAAAAAAAAMBitg6b6djnHntO4z8a12xuVi67S2c+e8Z0e//d6/+d6X486NrPrumFt14wHf8VfcWSfgAAAAAA0ExIyAAAAAAAAAAAAAAAAGgiuzp3KfT5UKO7AQAAAADAppWfzyv5vaQO/sHButohIQMAAAAAAAAAAAAAAGCTeuULr5iOfWnmJaVupbRcWFZ7W7vcvW69eOBFSdJy27Kyu7NyfORQe6Hdqu4CAAAAALAhskZW7194n4QMAAAAAAAAAAAAAAAAlGfrsJmOfe6x5zT+o3HN5mblsrt05rNnSu0tty2rc3unbB02EjIAAAAAAA11/fL1mmOujl5VPpev+9wkZAAANsydO3dMx968eVNnzpxRIpGQ1+vV+Pi4+vr6am5ncXHRdB8AAAAAAAAAAACArWRX5y6FPh9qdDcAAAAAAFjTa0Ov6e783ZpiCoWCuhxddZ+bhAwAwIbZuXOnJe3EYjG5XC7T8W+99ZYl/QAAAAAAAAAAAABQnWZYvE2SduzYYbofAAAAAIDm1NVzL7Fi3/F9stnLV4rM5/LKGlnNzczJ6XNqz8AeS85NQgYAAAAAAAAAAAAAALDEq4OvVnXcctuyMv0Z3XjphtoL7evcKzSDZlm8rVAoWNIPAAAAAEDzcDgdOvyNw/J81VPV8Vf/7VV1ObqqPn4tJGQAADbM7du3TcceO3ZMly9f1tLSkrZt26YjR47o4sWLNbezuLio9957z3Q/AAAAAAAAAAAAAAAAAAAA0DwcToccTkfVxx/6w0NK/XlK1y9f194je+s6NwkZAIANU0/534mJCZ06dUrT09MaGBjQ+fPnTbW3uLhoug8AAAAAAAAAAAAAzHnlC6+Yjn1p5iWlbqW0XFhWe1u73L1uvXjgRQt7BwAAAABoZUfHj9Yc4/6iW/GzcRIyAABbQ19fny5dutTobgAAAAAAAAAAAAAwwdZhMx373GPPafxH45rNzcpld+nMZ8/U1R4AAAAAAFYhIQMAAAAAAAAAAAAAAABNa1fnLoU+H2p0NwAAAAAAm0zOyNXdRnv93QAAAAAAAAAAAAAAAAAAAAAAAGgN+fm8FrILdbdDhQwAAAAAAAAAAAAAAAAAAAAAANCSrl++XvWx+VxeWSOrRDghb9Bb97lJyAAAAAAAAAAAAAAAAAAAAAAAAC3ptaHXdHf+btXHFwoFOX1OHfyDg3Wfm4QMAAAAAAAAAAAAAAAAAAAAAADQkrp6uiRJ+47vk81uW/vY3i71e/rlfMJpyblJyAAs8urgq43ugp6aeqrRXQAAAAAAAAAAAAA2zN1P7iq/mFd7ob3m2Pm783r5xy/r+vx17d21V88++qx2de6quR1bx9o/8gMAAAAAAGB9OZwOHf7GYXm+6tnwc5OQAQAAAAAAAAAAAABoSX/4H/7Qknau/eyaXnjrBVOx3z/6fUv6sFnkF/NVHbfctrwqocaqJBmJRBkAAAAAALYSh9Mhh9PRkHOTkAEAAAAAAAAAAAAAACzxzA+esaSdepJkJBJlAAAAAADYSo6OH23YuUnIAAAAAAAAAAAAAAC0pH/7lX8rx0eOUoWFWrw085JSt1JaLiyrva1d7l63Xjzw4jr0EgAAAAAAAJsVCRkAAAAAAAAAAAAAgJbUub1Ttg6bqYSM5x57TuM/GtdsblYuu0tnPntGtg7bOvRya3nlC69Uddxy27Kyu7MrEmpIkgEAAAAAAFbI/SSnmfCMPkp+pIXMgrp6umR32nUgeEC7P7vb0nORkAEAAAAAAAAAAAAA2HJ2de5S6POhRndj06k2qWW5bXlVQg1JMgAAAAAAoF7xs3G9O/auCoXCqn3JSFLugFuDkUF1/nKnJecjIQMAAAAAAAAAAAAAADQcSTIAAAAAAMCs/HxeEW9EC5kFPfLFR7RnYI9s9nsLPeRzeS3cWlA6kdb7r70vI27o69e/rs5fqj8pg4QMAAAAAAAAAAAAAAAAAAAAAADQsqKBqJw+p46OH13zuPx8XrGRmP7syJ/p9PTpus9LQgYAAAAAAAAAAKhKOpnWTHhG+Uxe6WRaNrtN3qBX3mFv2eMTkYRS0ZS8Qa+cPqdsdpuyRlbpZFrvX3hfh88eVr+nf1VcPpfXO+fekSR193YrM5uRy++Se8hdsW9mYgAAAAAAAAAAQOtLfC8hh9Px0GQMSbLtsmkwPKjXz7yu5J8k5fmqp65zk5ABAAAAAAAAAAAeKhFJSJIGw4OlbUbcUDQQ1dXRqxpODJdKfxflc3kZcUNG3Fix3Wa3KRANVEzGiHgjq/ZPBad0Y/qG/KN+S2IAAAAAAAAAAMDmcD1+XUMXhmqKOTp+VP/xd/4jCRlonPxi3nTs/N15vfzjl3V9/rr27tqrZx99Vrs6d5lqy9Zhe/hBAAAAAAAAAADTskZW+Vxeh0YOrdju9Dn19JtPK+KNKBqI6mTs5KrYo+GjysxmlDNysvXYtMe7p2JFDeleSfFHhh5ZlawxGB7UqGNULr9LTp+z7hgAAAAAAAAAALA52Bzmnie377XXfW4SMmDaMz94xpJ2rv3sml546wXT8d8/+n1L+gEAAABrTAWntC+w76EPO6WTac2EZ5TP5JVOpmWz2+QNeis+mJWIJJSKpuQNeuX0OWWz25Q1skon03r/wvs6fPZwxdV13zn3jiSpu7dbmdmMXH6X3EPu+v9jAQAAgC1iJjyj3z7722X39Xv65fQ5ZcQNZY2sHE7Hiv37ju9bVTmjkqyRlRE3dDRcvqS4+7hbV0evrvi+YSYGAAAAAAAAAABsIm0bHPcAEjIAAAAA1K34AFQinFA6mda+wL41j09EEpLurVZbZMQNRQNRXR29quHE8KoHtvK5vIy4ISNurNhus9sUiAYqJmNEvJFV+6eCU7oxfUP+UX/N/60AAADAVnQ9fl3JSFJfv/71sskVuz27ZcQNpZPpVQkZtZgJz0hSxTZ6XD1KRpLK5/KlfpiJAQAAAAAAAAAAm0c+kzcVlzNydZ+bhAyY9soXXjEd+9LMS0rdSmm5sKz2tna5e9168cCLFvYOAAAAGyURSciIGXL6nfKN+jThn1jz+KyRVT6X16GRQyu2O31OPf3m04p4I4oGojoZO7kq9mj4qDKzGeWMnGw9Nu3x7qlYUUOSooGoHhl6ZFWyxmB4UKOOUbn8LlbJBQAAAKrQ1dOldDKtrJEtmwxtlY+SH62ZNFFMupibmSvN5c3EAGg9+UVzP6hK0vzdeb3845d1ff669u7aq2cffVa7OndpuW1Zdz+5q/xiXu2F9qrasnWQ2AUAAAAAAAA0G/teuz64+IEeOfZI1THv/s/vavdju+s+NwkZMK2eG87PPfacxn80rtncrFx2l8589gw3sAEAAFqUd9hbSopIJ9MPPX4mPKPfPvvbZff1e/rl9DllxA1ljeyqFW73Hd9X9Yq2xaodR8NHy+53H3fr6uhVHsgCAAANcefOHdOxN2/e1JkzZ5RIJOT1ejU+Pq6+vr6a21lcXDTdB2w9J2Mny87Ri4orSK2VrJFOpjU3M6c9B/ZUPC5rZNXV01WxjeL3gayRrSsGQOt55gfPWNLOtZ9d0wtvvWA6/vtHv29JPwAAAAAAAABYx/ctn77zG9+RpKqSMhLfS+jKuSsauTVS97lJyEBD7OrcpdDnQ43uBgAAABrgevy6kpGkvn7962WTK3Z7dsuIG0on0xUf9qrGTHhGkiq20ePqUTKSVD6XrzrJAwAAwCo7d+60pJ1YLCaXy2U6/q233rKkH2hdi3cXtXR3qfT6k9ufVDx2rfl5ajKlfk9/2WOKCddOn1PeYa/SybQm/BM6FDq0KkF6IbOw5nmKiRf53P2V8s3EAAAAAAAAAACAzSXwWkCRAxG5/j8uuYfc2nNgT+mZoHwur4XMgmZjs/pg8gNljaxOz5y25LwkZAAAAADYUF09XUon08oa2TVXz63XR8mP1ky0KD6wNTczR5UMAAAAbFlXzl3R2998u/R6vn2+5jaujl2VJA1+b3DVvuK8+9DIodK2fk+/AtGARh2jGk4Mr/heUG3SxMe3Pq4rBkDreeULr5iOfWnmJaVupbRcWFZ7W7vcvW69eOBFLbctK7s7K8dHDrUX2i3sLQAAAAAAAICN1u/p1/DMsKZOT2lqeEptbW2rjikUCnI4Hfrv//K/V/9j1jy31NCEjMuXL+vIkSON7AIAAACACmpZKbcWJ2MnlTWyFVewzRk5SVozWSOdTGtuZk57DuypeFzWyJZWwi2nmKyRNbJV9hwAAMA6t2/fNh177NgxXb58WUtLS9q2bZuOHDmiixcv1tzO4uKi3nvvPdP9wOZw+OxhPf7i46XXH374ob796Lerjk8n04qH4gpEA2Xn5u4hd9k4m90m95Bb0UBUz88+X3vHAWw5tg7z1S2fe+w5jf9oXLO5WbnsLp357BnZOmxabltW5/ZO2TpsJGQAAAAAAAAAm0C/p1/DiWElIgklwgml30uX9jmcDnmDXh36w0NrtFC7hiZk+P1+LS0tPfxAAAAAABvOipVyK6mUjCFJqcmU+j39ZY8x4oayRlZOn1PeYa/SybQm/BM6FDq0qsrFQmZhzfMUkzWqXU0XAADASjt27DAdOzExoVOnTml6eloDAwM6f/68qfYWFxdN9wGbR0dnhzo67/9UsH3n9prio4GojoaPVky8WMuegT1KTaZWJGzb7Laq5ujdvd2l/28mBsDWsqtzl0KfDzW6GwAAAAAAAAA2iHfYK++wd0PO1dCEjF27dun3f//39cd//MeN7AYAAACAMupdKdeMq2NXJUmD3xtcta/4gNahkftZ6v2efgWiAY06RjWcGF6xIm+1iRYf3/q4ni4DAABsuL6+Pl26dKnR3QAUDUTlDZr/QaNYtS6dTJfm+2tVuZPuJV4/GGs2BgAAAAAAAAAAwAoNrb2by+UUDof1O7/zO/rRj37UyK4AAAAA+JSOzg51/nJn6U+tK+XWKp1MKx6KKxANrEisKHIPucuuumuz2+QecisaiK5r/wAAAADcFwvFtGdgz4qE6U+bCk7pO67v1NSuw+koJVCUU0y8frAanpkYAAAAAAAAAACw+aT+PKX/+Dv/Ud/73PeU+0lu1f7s9ayix6N6939+17JzNjQhQ5LC4bDGx8c1PT2tEydO6E/+5E/085//vNHdAgAAALDBooGojoaPlk26eJg9A3uUNbLKGtnSNpvdVlWVjO7e7prPBwAAAGxliUhCPa6esskYD87B0zPpqhIlHkzI3u3ZveY8vjjnd/qcdcUAAAAAAAAAAIDNJX42Lkm6MX1D6URa6WR61TGOvQ4FXgto92O7S8fXq6EJGeFwWF/96le1d+9enT59WhcuXJDX69XIyIi+9rWvUTUDAAAA2CKigai8Qa+8w15T8Ta7TZJWfJHq6ulaM6b4YFgxFgAAAMDDpSZTklR27p41sjLiRun1Xt9ehbKhim3NTc/JZretqFyx/8R+SSr7I0kx5tOJFWZiAAAAAAAAAADA5nH98nU5nA65v+jWYGRQT3zrCT3ye49UPN75hFNOn1Mf/MUHdZ+7oQkZp0+fXrXtscce0/j4uL71rW+tqJphpVwup1AopFAopLGxMQWDQU1OTtbdZjAYVDAYVCAQUCAQ0NjYWMXjI5GI/H6/JicnlcvlJEmGYWhyclKBQEDJZLKu/gAAAACtIhaKac/AnrKr6xZNBaf0Hdd3amrX4XRUtRrvgw9/AQAAAKgsnbxX8aJSIrURN1ZUu9h/Yr8SkUTZY7NGVqnJlAa/N7hie7+nX06fU9cuXCsbl5pM6VDoUN0xAAAAAAAAAABg83g/+r68p+/9fuEecuvQHz78dwHnE07NxmbrPndH3S2sk127dun06dM6ffq03nvvPZ05c0ZtbW06c+aMfuu3fst0u7lcTl6vV9FoVB6Pp7Q9GAxqenpao6OjNbeZTCYVDoc1Ojoqu91e2j45OSmv16tEYvUPTrlcTvF4XPH4ylIndrt9Vd8AAACAzSoRSajH1VP2ga58Ln+/8sVMuqrkigcf/trt2b1idd5PyxpZSWKlXAAAAKAKWSOraCCqvb69mgvOrdqfz+RlxI0VFTH6Pf0y4oaujl1dkYCdNbKKeCM6OHJQ7iH3qrYC0YAi3oj2n9i/Yo4/FZzSwZGDZefwZmIAAAAAAAAAAMAmUWjcqZs2IeNBLpdLLpdL586dUyQSkdPpVCgU0le/+tWa2woEAhoaGlqV8BAOh+VwOOT3++Xz+WpqMxQKKRaLrdo+NDSkTCajYDCocDi8an84HNbs7KwMw1BPT4+8Xq+Gh4dr+w8CAAAAWlRqMiVJZZMxskZW6WS69HDWXt9eDY9WnivPTc/JZretqHax/8R+vTv2rtLJ9IoHsh6M4aEsAAAAoDoT/glljayykWzFY8pVnzs0ckhG3NBUcEr5TL6UeP30m0+XnadLks1u03BiWLFQTDa7Td293crMZuTyu8omcJiNAQAAAAAAAAAAm0M+mzcVlzNydZ+7qRMyLl++rNHR0VIViUKhoOHhYQWDQUkqVc0IhUL69V//9Ye2ZxiG4vF42eQISTp+/LhGR0drSshIJpNyOis/xFVss9K+BytqAAAAAFtFOnmv4kW5ZAxJMuLGimSJ/Sf2KxFJVEzeSE2mFIgGVmzv9/TL6XPq2oVrZR/0Sk2mdDJ2ss7/EgAAAGBreH72edOxTp+z5mRom92mwfDguscAQK3yi+Z+2J2/O6+Xf/yyrs9f195de/Xso89qV+cuU23ZOmym4gAAAAAAAIDNKjObqTkmP5/Xx7c+rvvcDU3IuHz5so4cObJi289//nNFIhGFw2EZhqFCoVCqiHH69OkVx46Pj2t+fl6RSESZTEZnz57VL//yL1c8XzERo1IChcvlUiQSUS6XqzpRopjkUUkmkyHpAgAAAFtG1ri3Wm4+V/nhhKyRVTQQ1V7fXs0F51btz2fyMuKGQtlQaVu/p19G3NDVsas6NHJoRVsRb0QHRw6WXfU2EA0o4o1o/4n9K5IypoJTOjhykAoZAAAAAACgJs/84Jm627j2s2t64a0XTMd//+j36+4DAABmTQWndDh0uGyFPOne7wPvnHtHkqquXGcmBgAAAAAetO/4Pk2emNTQhaGqYyaPT2r/l/bXfe6GJmT4/X4tLS1JupecEQ6HNTk5qUKhIEmlahiPPfZYxTZ27dqlP/zDP9T8/Ly++tWvamxsrGK1jGQyuWZyRDFRY2ZmpuoqGR6PR4ZhKBAIKBqNrtofDod14sSJqtoCAAAAWlFqMqVEOCFJmpu5l2AxdXqqtM0dcK+obDHhn1DWyCobyVZss9wPOYdGDsmIG5oKTimfySufy8tmt+npN58uWwFDurdC7nBiWLFQTDa7jR9yAAAAAAAAAAAwKZ1MKxlJ6kDwQNn9+VxeEW9EgWhg1SJJN6ZvyD/qtyQGAAAAAD7t0Mghfec3vqPJL01q8HuD6vylzorHfvSjjzR1ekr5XF4H/+Bg3eduaELGrl279E/+yT+RpFXVMI4fP65du6ov07tr1y699tpr+trXvqbvfve7ZY8xDEM9PT0V2ygmaxiGUfV5nU6nhoeHFYlE5HK5FA6HS8kc8XhcuVxOo6Oja7aRTCY1MzOjAwcOyOPxVH1uAAAAoBm4h9w1JTc8P/u86XM5fc6aq1rY7DYNhgdNnxMAAAAAAKDolS+8YirupZmXlLqV0nJhWe1t7XL3uvXigRct7h0AAOsrHoqvuT8aiOqRoUdWLaI0GB7UqGNULr9r1T1+MzEAAAAAUM7Jvzyp7/zGd5SKpuT033vGyGa3qaunSwuZBWVmM7oev650Mq1CoaBgMmjJeRuakCFJs7OzkqShoSGdPXt2zWoY1VgriSOTyZSqYJRTTNbI5XI1nTMcDsvlcikUCsnv92t4eFgul0sej0fhcLhiXDwel2EY8vl8Gh4eVjKZlN/vVygUemiFjoXFBd1evF16vb19u7Zv215Tv3FPoa2gggoqtBW0rOVGd6cui4uLje6CFhcXtby83BR92QwYT+sxptZiPK3FeFqPMbXW8nJrz5VaVTPM/fk71Fz4bEMlXBuohGsDlXBtoBzm/Y3x8dLH6ly8v1oX9/xbx2b6jWErMvP+fWb7Z0yd62ueryn8XlhGzpDT7lTwsaDptrjW7uPvYGvj/Wt9rfoe8h3onlrHIRFJyB1wy4iXX+Q0a2RlxA0dDR8tu9993K2ro1dXJFeYiWl1zXDPfzOw6vOHz4P7uE9kLcbTWoyn9RhTazGe1mI8rbXV7vk7nA6FMiFFA1HN/uWsjNjq7y+FQkFOn1NHw0fl2Ouw5LwNT8gIBoP61re+VVM1jE+bn5/Xt771LQWDQc3Pz1c8rtpEi1u3btXch5GREdntdgWDQUUiEdntdkWj0YrHFxNDRkZGSts8Ho+i0agcDocSicSa1TJCfxVa8foLni/oyQNP1txvSAUVtPBLC8oooza1Nbo7dbly5Uqju6Dl5WV9+OGHkqT29vYG96b1MZ7WY0ytxXhai/G0HmNqLTPzZNSvGeb+zTDPxH18tqESrg1UwrWBSrg2UA7z/sZohnk/zNlMvzFsRRv9/n31179a+v9LWlJGmXU/52bH38HWxvvX+lr1Pfzuc99tdBf06FOPNroLymSq/3coa2Ql3Xu4qZKZ8Myax/S4epSMJJXP5WWz20zHtDrm/taw6vOH3z/u4z6RtRhPazGe1mNMrcV4WovxtNZWvOdvs9t0MnZSxpuGUtGU5mbmSt8pHE6HvEGvnE9Ym/Td8ISM7363/i+6r732mkZHRzU5OalQKPTwgHUQCoXkcrlUKBQUCoU0NjZWqpZRrkrG0NBQ2XbsdruGhoYUCARK1UPKGf0Xo3LY7n8h3d6+XdvTZMybUWgrKKOMej7qUVuhdW4SlXP48OFGd6GUlXjw4EF1dDT8I6blMZ7WY0ytxXhai/G0HmNqreIXXmysZpj7N8M8E/fx2YZKuDZQCdcGKuHaQDnM+xujGeb9MGcz/cawFfH+tT7ew9bG+9f6eA/Na4Z7rj/96U+rPnYmPCP/qL9idQxJ+ij50ZpJE8Wki7mZuVLFCzMxrY65vzWs+vxphr+LzWJxcVHXLlzT3MW5hn6mn/iLEw07t5W472atZhrPO3fumI79r//1v+r3f//3lUgk5PV69cd//Mf6h//wH5pqa8eOHab7ITXXmG4GjKe1GE9rbeV7/s4nnJYnXlTS0Cv1+PHjlrUzOzurgYEBffGLX6x4nN1ur6pKRm9vb03n9/v9CoVC8vl8kqTR0VGdOHFCgUBAkUhEmUxmzWoZnzYwMKDJyUkZhlGqpPFpXR1d2tmxc+XGQk3dxn+zrGW1qU1thTa1F1o7m65Z/vFpb29XR0dH0/Sn1TGe1mNMrcV4WovxtB5jah1WHmiMZpj78/en+fDZhkq4NlAJ1wYq4drApzHvb4zubd0Nn/fDnM30G8NWxPvX+ngPWxvvX+vjPTSvGb6DVduH1GRKB4IHHnpc1siqq6er4v5i4kWx2obZmFbXDPf8NwOrPn+a4e9iM2mGz/TN9J5w381azTKedrvdknbi8bj+6T/9p6bjC4X6//FoljHdLBhPazGe1uGe/8Zo6CiPj49b0s6uXbv0rW99a81kDEnq6elZc3+xHGMt/2iOjY3J4/GUkjGKPB6PZmdnNTw8rMnJScXj8arbLJ4/mUxWHQMAAAAAAAAAAAAAAACUs3h3UXd/frf05+9/8fcPjcnn8soa2VKlirUsZBbWrHZRTLzI5/J1xQAAAABAs2mK1KE///M/VyQSUTab1WuvvaZf//VfX7H/+vXrCoVC+tznPqc/+IM/MH0ep9OpmZmZivuL1TMqVaUoJxwOK5FIrLl/ZmZGsVislLQRDAYVj8c1Oztb9XkAAAAAAAAAAAAAAAAAM66cu6K3v/l26fW85h8a8865d+Qf9VfVfrVJEx/f+riuGAAAGun27dumY48dO6bLly9raWlJ27Zt05EjR3Tx4kULewcAaJSGJ2ScPXtWBw4c0PT0tObn55VMJlclZOzdu1evvfaa3nzzTZ09e1bnzp0zdS6Px7NmpQrDMCRpVbWLtRiG8dCKGsFgcEXSxszMTKkaRznFxBCPx1N1PwAAAAAAAAAAAAAAAIByDp89rMdffLz0+saNG/q2+9sVjzfihlx+10Z0DQCazquDr9YVv9y2rEx/RjdeuqH2Qrvpdp6aeqqufsB6O3bsMB07MTGhU6dOaXp6WgMDAzp//nxd7QEAmkdDEzIuX74sp9OpL37xiyoUCrp+/bp+7/d+r+LxTzzxhCTpL/7iL9Y8rpITJ05obGxMyWSybLLD9PR0TckY0r1qGoZhrFlVY3Z2Vl6vt/Ta5/NpdHS04vHT09Oy2+01VeoAAAAAAAAAAJh3584d07E3b97UmTNnlEgk5PV6NT4+rr6+PlNt8SMsAAAAgPXQ0dmhjs77jwl95uefWfP42dhs1dUxJMlmt1VV8aK7t7uuGAAAWlVfX58uXbrU6G4AQFWmglM6HDosh9NRdn8+l9c7596RdG++npnNyOV3yT3krtimmZhW0dCEjGg0qu9+97uSpKGhoapinnjiCX3ta18zlZDh8Xjk8/l04cKFsgkZk5OTisViq7bncjmdO3dOfr9/VcLG0NCQQqGQotFo2XPmcjklk0mdPXu2tO3EiROKRCIaHh5edbxhGJqcnKzYHgAAAAAAAADAejt37rSknVgsJpfL/CqyhULBkn4AAAAAgFlXx67qt8/+dk0xXT1da+5fyCxIupeEUU8MAAAAgPWVTqaVjCR1IHig7P58Lq+IN6JANKB+T39p+1RwSjemb5RN7DYT00rM18OyQCN+WIpGo5qcnFQymVyxPRgMamRkpGyFjEgkorGxMQUCgVX7ipUugsGgcrncin3JZFKBQECjo6Oy2+2l7R6PR7lcTmNjYyuONwxDXq9XIyMjVSeoAAAAAAAAAAAAwFr5xXzVf+5+crf0/2/eual/83/+G53+/53Wv/k//41u3rlZU1sP/gEAAGiErJGVzW6rOQnC4XSUEijKKVbCeHCFXTMxAAAAANZXPBRfc380ENUjQ4+sSKyQpMHwoJKRpIy4YUlMK2lohYxsNmsqzjDMD7rdblcikVAoFJLdbldvb69mZ2fl9/srJkH4fD7Z7XYdP3687P5oNKp4PK7Tp0+v2O50OstW3JCkkZERxeNxBYNBZTIZ5XI52e12vfnmm2WrdwAAAAAAAAAA1s/t27dNxx47dkyXL1/W0tKStm3bpiNHjujixYsW9g7ARnvmB8/U3ca1n13TC2+9YDr++0e/X3cfAAAAapVOppWKppSKplbtyxr3nvOZOj1Vqm5xMnZSkrTbs3vNh6iKsU6fs7TNTAwAAACA9ZOIJOQOuCvO07NGVkbc0NHw0bL73cfdujp6dcUc3kxMq2loQsbs7GzNMfPz87p161Zd57Xb7QqHw1Uf7/F4Hpo84vP5ylbXsDoGAAAAAAAAAGC9HTt2mI6dmJjQqVOnND09rYGBAZ0/f76u9gAAAACgUdxDbrmH3GX3pSZTigaiGvze4KqVbfef2K93x95VOpletU+S5qbnVj1gZSYGAAAAwPooJkSvVaFuJjyz5jE9rh4lI0nlc/lS1T0zMa2moQkZx48f14kTJ3ThwoWaYr70pS+tY68AAAAAAAAAAKheX1+fLl261OhuALDQK194parjltuWld2dleMjh9oL7Xpp5iWlbqW0XFhWe1u73L1uvXjgxXXuLQAAQOP1e/rl9Dl17cK1sskVqclUqZpGPTEAAAAA1sdMeEb+Uf+aVew+Sn60ZtJEMelibuZ+crWZmFbT3siTj4yMKJFI6Etf+pJ+8YtfrHnsj370Iw0MDMgwDP3BH/zBBvUQAAAAAAAAAAAAW42tw1b1n87tnaX//9xjz+nRX3lUO7fv1KO/8qiee+y5mtp68A8AAECzKa6YW/zfTwtEA/pg8gOlk+kV26eCUzo4crDsw1VmYgAAAABYKzWZ0oHggYcelzWy6urpqri/mHjx4HcGMzGtpqEVMiTpL//yL/Ubv/Ebikaj8vv98vl8stvt6unpUSaT0ezsrOLxuJLJpAqFgpLJZKO7DAAAAAAAAAAAAKyyq3OXQp8PNbobAAAAlpoKTiln5DQ3M3fv9ekpJcIJ7fbsln/UXzrOZrdpODGsWCgmm92m7t5uZWYzcvldcg+5y7ZtJgYAAABAeYt3F7V0d6n0+pPbnzw0Jp/LK2tkq5p/L2QWShUtyikmXuRz+bpiNlL8bFy+c7662mh4QobT6VQmk1EgENBf/uVfKhaLrTqmUCjI5/MpHA5r7969DeglAAAAAAAAAAAAAAAAsPUMhgerPtZmt9V0vNkYAAAAAKtdOXdFb3/z7dLr+fb5h8a8c+6dFYnWa6k2aeLjWx/XFbORkpFk6ydkSJLdblcsFtObb76paDSqmZkZ5XI52e12OZ1OBYNBPfHEE43uJgAAAAAAAAAAAAAAAAAAAAAATefw2cN6/MXHS68//PBDffvRb1c83ogbcvldG9G1DZX7SU5ZI/vQ49LJtCWVOZoiIaPoiSeeIPECAAAAAAAAAAAAAAAAAAAAAIAadHR2qKPzfnrA9p3b1zx+NjZbdXUM6V51u2oSGLp7u+uKMSv5J0nFQ3FLkixq0VQJGQAAAAAAAAAAAAAAAAAAAAAAYP1cHbuq3z772zXFdPV0rbl/IbMg6V4SRj0xZhhvGpoanpLD6ZA74K6qvXQireuXr9d1XqlFEzLOnj2rc+fONbobAAAAAAAAAAAAAAAAAAAAAAC0jKyRlc1uqzkJwuF0aG5mruL+YmUKh9NRV4wZb37jTQWiAbm/6K4pbqx3rK7zSi2akBGJREjIAAAAAAAAAAAAAAAAAAAAAACgBulkWqloSqloatW+rJGVJE2dnipVtzgZOylJ2u3ZLSNuVGy3GOv0OUvbzMSYYXPYak7GkCT7Xntd55WaKCHjJz/5iQyj8mAXJZNJ5XK59e8QAAAAAAAAAAAAsMXlF/OmY+fvzuvlH7+s6/PXtXfXXj376LPa1bnLVFu2jtpW6wMAAAD+/+z9UWxc550g+P4py1BJ9kRFagGLCrAbFXseTDn32kVpettS487YxelGQ3xIzJLGwDrIdmLSQQA3kk1Ee14WvQ+jphK4Mb0PMenu3sxqEV+7OPEDg3WjSbk7iJWLbZGV7I1NAzNhycnAooMbV5XSjlVCy6z7oCFtmkWKrCqqWOLvBwhJnXP+3/fXd45LX1Wd//kAAKitd7A3egdrFy/MTcxFLpuLgRcGojvdvWLfA6cfiB+f+3Es5BdW7YuIuHLpyqrCinpi6lGr7Y0YmhlquO+WF2T85V/+ZYyMjCiyAAAAAAAAgG3mj//mj5vSzhu/fiO+9ndfqzv+eye/15Q8AAAAAID6dKe7I5VJxRsvvVGzAGJuYm55NY1GYupRKdf/YJlGtbQg48KFCzE0NBSpVCqy2Wwkk8lbxszOzsZrr7229ckBAAAAAAAAAAAAAMAOUSqUlv+3VgFFNpeN8b7xeOD0Ayv2Tw5PxsNnHq652kU9MZvVm+2Nt77/Vtz/+fs3FTf97HRkzmYa6rulBRnPPPNM5HK5eOyxxzYVd+DAgS3KCAAAAAAAAFjy13/413XHPjfzXMy9NxeL1cXY1bEreg/0xtePfr2J2QFAe3px4MVWpxDvXXuv1SkAAG3st7/9bd2xv/rVr+Kpp56K2dnZ6Ovri+effz7uu+++utq655576s4DWGlyeDLKhXJcmbly8/WTkzE7NhsH0wejf7R/+bhEMhFDs0MxNTIViWQi9h3YF8X5YvT090TvYG/NtuuJ2azUo6m4+K2Lmy7KyI/n27sgo7Ozc9PFGBERhw8f3oJsAAAAAAAAgI9L7E7UHfvVh74az//0+Zgvz0dPsieeevCphtoDAAAAtod77723Ke1MTU1FT09P3fHVarUpeQARA2MDGz42kUxs6vh6Yzaj/HY5jmSPxJu5N+OFYy/E4czh6Orpis5U55oxC/mFqJQrDffd0oKMdDpdV9zMzEyTMwEAAAAAAACaaf+e/THyuyOtTgMAAAAAuMONpcfi+tXrEXGzWOvK7JXo6Oi4LX23tCCjXC63snsAAAAAAADYlio36n8y29XrV+OvfvZXcfnq5Ti8/3B86bNfiv179tfVlhUtAAAAgE96//3364793Oc+F6+99lp8+OGHcdddd8UjjzwSr7zyShOzA3aivV17IyLiyKkjkUhu7DvNhdmFuPza5Yb7bmlBRjabje9///vx+c9/flNxzz77bJw9e3aLsgIAAAAAAIDW+uO/+eOmtPPGr9+Ir/3d1+qO/97J7zUlDwAAAODOcc8999Qde/78+fjiF78Yly5dimPHjsV3v/vdhtoDiIjoTHXGiWdORPrL6U3FnTtwruG+dzXcQgMeffTRmJ+fj+9///ubihsfH9+ijAAAAAAAAAAAAACArXDffffFq6++Gr/+9a/j1Vdfjfvuu6/VKQF3gM5UZ3SmOjcdlzycbLjvlq6Q8fbbb0c2m41cLhfHjh2LTCYTPT09kUql1ozJ5/NRLpdvX5IAAAAAAABwm/31H/513bHPzTwXc+/NxWJ1MXZ17IreA73x9aNfb2J2AAAAAADbx8nnT9YVNzQz1HDfLS3ISKfTcfXq1YiIqFarMTs7Gx0dHa1MCQAAAAAAAFousTtRd+xXH/pqPP/T52O+PB89yZ546sGnGmoPAAAAAIDaWlqQ0dXVFRERp06dimQyuaGY2dnZeO2117YwKwAAAAAAAGhf+/fsj5HfHWl1GgAAAAAALVF+uxwzYzPxbv7duFa8Fnu79kYylYyjw0fj4IMHm9pXSwsyUqlUPPPMM/HlL395U3EHDhzYoowAAAAAAAAAAAAAYHv67W9/W3fsr371qxgeHo7/6//6v+J3f/d3Y2xsLO67775Nt3PPPffUnQPAVpt+djp+fO7HUa1WV+3Lj+ejN9sbA+MDsedTe5rSX8sLMlKp1KbjDh8+vAXZAAAAUMuLAy+2OoV4fPLxVqcAAAAAAAAA0HL33ntvU9qZnp6Onp6eumJr3eQM0GqVq5UY7xuPa8Vrcf9j98ehY4cikUzc3FeuxLX3rsXC7EK8+fKbUZguxJ9c/pPY888aL8poaUHG888/X1fczMxMkzMBAAAAAAAAAAAAAADaUS6bi1QmFSefP7nucZWrlZg6MxX/+yP/ezx56cmG+21pQUYtv/nNb6JYLMZnPvOZVqcCAAAAAAAAAAAAANvG+++/X3fs5z73uXjttdfiww8/jLvuuiseeeSReOWVV5qYHUBrzL4wG52pzlsWY0REJPYnYmBsIH7w1A8i/5f5SH853VDfuxqKbpK33347vvKVr8Rdd90VnZ2d8Tu/8zsr9l++fDlOnToVf/mXf9miDAEAAAAAAAAAAACgte655566/5w/fz4ymUx86lOfikwmE+fPn6+rHYDt5vL05Q0VY3zcyedPxlxuruG+W75CxmuvvRaZTCYiIlKpVKRSqbh8+fKKYw4fPhwvv/xyXLhwIb797W/HN77xjVakCgAAAAAAAAAAAABt6b777osf/OAH8frrr8eJEydi9+6W30YM0BSJzkRdccnDyYb7buk76eXLl2NwcDCGhoZiZGQkDh8+HBERzzzzTM3jH3300SiXy/Haa6/FI488cjtTBQAAAACALffb3/627thf/epX8dRTT8Xs7Gz09fXF888/H/fdd9+m2vjggw/q7h8AAAAAAKAlOm5z3Me0tCDjmWeeidHR0XjyySdXbO/oWPtv9thjj8VXvvIVBRkAAAAAANxx7r333qa0MzU1FT09PU1pCwAAAAAAYDurFCt1xZUL5Yb73tVwCw0olUqrijE2olqtbkE2AAAAAAAAAAAAAABAO0keTsZbr7y1qZgff/vHcfChgw333dIVMlKpVF1xpVKpyZkAAAAAAEDrvf/++3XHfu5zn4vXXnstPvzww7jrrrvikUceiVdeeWVTbfziF7+II0eO1J0DAAAAAADA7Zb5s0z8xe/8RURE3P+5+295/OwLs/H62dfjzHtnGu67pQUZ9RZWFAqFJmcCAAAAAACtd88999Qde/78+fjiF78Yly5dimPHjsV3v/vdTbe3b9++uvsHAAAAAABolezL2Rg/Oh49/7onegd749DRQ5FIJiIiolKuxLXitZifmo+3Jt6KUqEUT8482ZR+W1qQ0dnZGX/3d38X/+pf/asNxzz77LPx6KOPbmFWAAAAAADQfu6777549dVXt7SPhfxCzIzNRKVYiYX8QiSSiegb7ou+ob41YyrlSvzo7I8iImLfgX1RnC9GT//NH0NaHQMAAAAAANwZutPdMTQzFJNPTsbk0GR0dHSsOqZarUZnqjP+h7/9H6L7oe6m9NvSgowzZ87Ev/7X/zpeeOGFDRVlfPvb346JiYn4z//5P9+G7AAAAAAAgCWz47MRETEwNrC8rTBdiFw2FxdHL8bQ7NDyk6aWVMqVGO8bj2wuG93pj37YmByejHcuvRP9o/2r+rldMQAAAAAAwJ2lO90dQ7NDMTs+G7Njs7Hwk4XlfZ2pzugb7ovj3zze1D5bWpCRSqXi+eefj0cffTSOHj0ap0+fjoceeijK5XK8/fbbUS6Xo1gsRj6fj7GxsSgUCjE7O9vKlAEAgFuYHJ6MI9kjkcqk1j3OU3IBAKB9lAqlqJQrcfzMyh8pUplUfOHCF2K8bzxy2Vw8MfXEiv25bC7uH7x/RZFExM2ijtHO0ejp71n12eF2xQAAAAAAAHemvqH1V/duppYWZEREZDKZePnll2NoaCjOnDmzvH18fHz5/1er1UilUjEzMxMPPvhgC7KE9vDiwIutTiEWOxbj01//dKvTAABus1KhFIXpws3K8vxCHMkeWfd4T8kFAID2MjM2E7//7O/X3Ned7o5UJhWF6UKUCqXoTHVGxEefE06OnawZ13uqNy6OXlxRKHG7YgAAAAAAAJphV6sTiIgYHByMYrEYZ8+ejQcffDCq1eryn8OHD8fo6Gj8/Oc/j4ceeqjVqQIAAJ8wOz4b0yPTERGRGc1sKGa9p9fmx/NRmC60LAYAAFjt8vTl+PeH/31UypWa+w+mD0ZExEL+o6W/Z8ZmIiKWCzQ+qaunKwrThRVt3q4YAAAAAACAt77/VsNtbIuCjCVnzpyJ2dnZWFxcXP7z85//PL75zW+2OjUAAGANfUN9kc1lo2+oL/Z27b3l8UtPrz06fLTm/qWn17YiBgAAqG1v196olCtRKpQ2HPNu/t1IJBNr7l8qoLgyc+W2xwAAAAAAAEw+OdlwG7ubkAcAAMCGbeTptfnxfFTKleWbqm5XDAAAUNsTU09EqVBac35dLpQjIlasTlcqlNYt2l6ah3+8yON2xQAAAAAAAO3l3Z++GwcfPLjmvs24VrwWpUKpKatrt2VBxve///34/Oc/3+o0AACAOmzm6bWpTOq2xgAAwE5z4/qN+PD6h8uv/+n9f1rz2LWKMSIi5ibmojvdveKYa8Vr68YsFVF8/MeO2xUDAAAAALS/3/72t3XH/upXv4qnnnoqZmdno6+vL55//vm47777Nt3OjRs36s4B2LjpZ6bjx9/6cXT3dceT//Dkqv3/4ZH/ENevXm9BZm1akPHkk08qyAAAgDblKbkAALB9vH729fjhn/5w+fXVXVc33cbFcxcjImLghYEV2zdaAPHBex/c9hgAAAAAoP3de++9TWlnamoqenp66o7/u7/7u6bkAaytVChFtVqNSqn2bwJL9wj1DfXdfH1g7XuGIiKuvXctSvOleOv7bzWc25YXZPz0pz+NBx98cM19m1EsFqNQKES5XG44LwAAaCeteKrDJ5+Ue/X/t/kbs2rxlFwAANg+Tjx7In7v67+3/PqXv/xl/Pln/3zD8Qv5hZgemY5sLhvd6e6tSBEAAAAAANjhBl4YiFR/KlKZVM39nanOOPHMiUh/Ob2pds8dONdwbltakPHMM8/Et771rejr64t/+Id/WLX/kUceiatXm3NTFwAA3Mm2y1MdmsFTcgEAYPvYvWd37N7z0U8Fd99796bic9lcnBw7Gb2Dvav2JZKJDc3L9x3Yd9tjAAAAAID29/7779cd+7nPfS5ee+21+PDDD+Ouu+6KRx55JF555ZVNt3Pjxo34yU9+UncewMYk9iei78m+Nfen+lNx6OihTbebPJxsIKubtrQgo1AoRLVajVKpVHN/V1dXREQMDQ1FRMSBAwfWbe+9996L+fn5+P73v99QXuVyOc6ePbvc5/z8fPT398fg4GBDbY6MjETEzZU8IiKOHTsWZ86cua15AAAAAADA7ZDL5qJvuG95+e9PWlqVbi3Xitci4mZBxe2OAQAAAADa3z333FN37Pnz5+OLX/xiXLp0KY4dOxbf/e5362rvxo0bdecANM/xbx6vK25oZqjhvre0IOOFF16I/v7+yGQyNfenUql45pln4stf/vKm2r1V4cZ6yuVy9PX1RS6Xi3T6oyVJhoeH49KlSzE6OrrpNvP5fIyNjcXo6Ggkk8nl7RMTE9HX1xezs7O3JQ8AAO5c2+GpDr/4xS/iyJEjdeexxFNyAQCg/U2NTMWhY4fi+Jm1f+DoTHXGlZkra+5fmq93pjpvewwAAAAAsLPdd9998eqrr7Y6DeAOsKUFGfv3748nn3xyzf39/f1x9OjRTbd7+PDhunPKZrMxODi4oggiImJsbCw6OzvXLSBZy8jISExNTa3aPjg4GMViMYaHh2NsbGzL8wAA4M61HZ7qsG9fcwoXPCUXAADa2+z4bHT1dNVcGaNSrizPsQ+mD0ZhurBmO6XCzdW1U5nU8rbbFQMAAAAAAOwchQuFKEwVIjoiunq64tDRQ3HwwYNNaXtXU1qp0ze/+c148MEHNx03MzNTV3+FQiGmp6djeHi45v5Tp05temWKfD4fqdTaP+KcOnUqpqentzwPAABYy9JTHX7961/Hq6++Gvfdd19L8+lMdS4XQ9Sy1hNvb0cMAACwvrmJuYiImsUYpUJpRWHEA6cfiIiIhfxCzbauXLqyqkjidsUAAAAAAAB3jnMHzq27P/VoKjJ/lokTz5yIw48ejncuvRM/+MoP4vpvrjfcd0sLMm63pVUq1iqg6Onpienp6SiXyxtuc6m4Yi3FYjGSyeSW5wEAAO3iYPrgcjFELWs98fZ2xAAAAGtbyC/EteK1msUYERGF6UJ0p7uXX3enuyOVScUbL71R8/i5ibk4PnJ8xbbbFQMAAAAAANw5qtXqho5L7E9E5+HO6HuyLzJ/lompkamG+94WBRn/8T/+x/iDP/iD+Bf/4l/E22+/vWr/5cuX49SpU/Htb3+7oX7y+fyq4oiPWyqQ2MwKHOl0OgqFQmSz2Zr7x8bG4vTp01ueBwAAtAtPyQUAgPZTKpQil83FldkrMTk8uepPLpuL6ZHpVSvQZXPZeGvirVXz8snhyXj4zMM15+S3KwYAAAAAALgzdHR0bDomsT/RlL53N6WVBjz77LNx9OjRuHTpUly9ejXy+Xx85jOfWXHM4cOH4+WXX44LFy7Es88+G2fPnq2rr0KhEF1dXWvuXyqSKBQKax7zSalUKoaGhmJ8fDx6enpibGwsMplMRMTyKhejo6NbngcAALSLjz+99uNPz10yNzEXT0w90ZIYAACgtvP956NUKEVpvLTmMZ8sxoiISCQTMTQ7FFMjU5FIJmLfgX1RnC9GT39P9A721mzndsUAAAAAAAA7V+VqJRZmaj/odTNaWpDx2muvRSqVisceeyyq1Wpcvnw5Pv/5z695/KOPPhoREd///vfXPW4txWJxefWJWpaKJMrl8qbaHRsbi56enhgZGYn+/v4YGhqKnp6eSKfTMTY2tiV5XLtxLd6/8f7y67t33R1333X3pvLmpmpHNapRjWpHNRZjsdXptL1qRzUWFxfjxo0brU7ljnDjxg3j2WTGtLmMZ3MZz+Yzps21uHjruVKpcPPmrEq5su5x2Vw2xvvG44HTD6wolrjVE29vR8x2Y+5/k/+OP+K9jbW4NliLa4O1uDaoZa15/9PzT9fdZiKZiIGxgW0Zs1188OEHsefGnuXXO3Xe3478xtDenL/25xy2N+ev/TmH7a3aUW11CjuS7/ybo1nvP74T+ciNGze2xXv6djknix2NjYFrtLl8j9l8xrS5jGdzGc/m2si9Pu2k/Ha55vZq9ebnm/IvyhG3+KhTKVfiWvFaLOQX4vWzr0fvqcYf6tTSgoxcLhff+c53IiJicHBwQzGPPvpofOUrX6mrIGOjhRbvvffepts+c+ZMJJPJGB4ejvHx8Ugmk5HL5bYsj5G/H1nx+g/Tfxh/dPSPNpwvH6lGNa79s2tRjGJ0xOaXq2GlalTjxi9v/kO4a9euFmfT/hYXF+OXv/xlRBjPZjGmzWU8m8t4Np8xba615qdzE3MxOzYbERFXZq5ERMTkk5PL23qzvdE31LcixlNyN87c/6bXX3+91SlsG97bWItrg7W4NliLa4Na6vl+nMaZ97cvvzG0N+ev/TmH7c35a3/OYXv7x2v/2OoUdiRz/+Zo1vvPd776nSZm1d62y3v6dvk9qNhdbCi+WeO5Xcaj1XyP2XzGtLmMZ3MZz+a6077zvzJ7Ja5cuhKlQikK04W4fvX6iv1/kfqLDbdVrVYjlUnFye+cbDivlhZkLFWj3AlGRkaip6cnqtVqjIyMxLlz55ZXy6i1SkajRv/laHQmPlr+/e5dd8fdCyrm61HtqEYxitH1bld0VH1J1KhqRzUO/beH4uGHH47du1v6FnNHWKryNJ7NY0yby3g2l/FsPmPaXEsfeD+pd7C3ruIGT8ndGHP/m06cONHqFLYN722sxbXBWlwbrMW1QS1rzfvZWub9H6ncWH/FxfVcvX41/rf/7/8Wl69ejsP7D8f/+P/4H2P/nv11tZXYndjQcX5jaG/OX/tzDtub89f+nMM2d63VCexM5v7N4f2n+bbLmG6X34Peee6dhuKbNZ7bZTxazfeYzWdMm8t4NpfxbK477Tv/3sd6o/exj+5RWsgvxPTIdBQuFKKjoyPuf+z+DbXTmeqMVH8qUo+mmpJXS6/UUqlUV1yhUKgrLplMbmh1igMHDmyq3f7+/hgZGYlMJhMREaOjo3H69OnIZrMxPj4exWJxxWoZzchj7+69ce/ue1duvHPqW26rxViMjuiIjmpH7KqqpmvUYizGrl27Yvfu3f4xbBLj2XzGtLmMZ3MZz+Yzps3jyQOtYe5/k/+GV/LexlpcG6zFtcFaXBt8knl/a+y7a595/3/15Ve/3JR23vj1G/E/vfY/1R3/vZPf29BxfmNob85f+3MO25vz1/6cw/bmJvbW8J1/c3j/ab7tMqbb5TuqRsegWeO5XcZjO/A9ZvMZ0+Yyns1lPJvnTv/OvzvdHU9MPRGTw5Px1sRbkX0525I8WjrK8/Pzm465evVq3cundHV1rbu/WLy51Fgymdxwm+fOnYt0Or1cjLEknU7H/Px8DA0NxcTERExPT29pHgAAAAAAAAAAAAAAsJMMjA1E8nCyZf23tHTo1KlTcfr06XjppZc2FfNv/s2/qau/VCoVMzMza+5fWrUildr48iNjY2MxOzu77v6ZmZmYmppaLtrYijwAAAAAAADa3V//4V/XHfvczHMx995cLFYXY1fHrug90BtfP/r1JmYHAAAAAMB2dOLZEy3ru6UrZJw5cyZmZ2fj3/ybfxP/+I//uO6xP/3pT+PYsWNRKBTiG9/4Rl39pdPp5WKHWgqFQkTEqtUu1lMoFG65ksXw8PCKfrciDwAAAAAAgHaX2J2o+89XH/pqfPa/+Wzce/e98dn/5rPx1Ye+WndbAAAAAAC0j97HelvWd0tXyIiI+Nu//dv4nd/5ncjlctHf3x+ZTCaSyWR0dXVFsViM+fn5mJ6ejnw+H9VqNfL5fN19nT59Os6dOxf5fD7S6fSq/ZcuXdp0EUQqlYpCobDuahbz8/PR19e3pXkAAAAAAADsZPv37I+R3x1pdRoAAADU6cWBF1udAgCwg1SuViL/Qj4e/sbDDbXT8oKMVCoVxWIxstls/O3f/m1MTU2tOqZarUYmk4mxsbE4fPhw3X2l0+nIZDLx0ksv1SyEmJiYqNl/uVyOs2fPLheMfNzg4GCMjIxELper2We5XI58Ph/PPvtsw3kAAAAAAAAAAAAAAACNKRVK8eZLb7Z/QUZERDKZjKmpqbhw4ULkcrmYmZmJcrkcyWQyUqlUDA8Px6OPPtqUvnK5XPT19cXp06dXFEMMDw/HmTNnaq5MMT4+HufOnYvx8fEolUor9o2OjkY2m43h4eEYHR2NZDK5vC+fz8fIyMiq7fXmAQAAAAAAAAAAAAAAfOTya5c3HXNx9GJUypWG+94WBRlLHn300aYVXqwlmUzG7OxsjIyMRDKZjAMHDsT8/Hz09/fH4OBgzZhMJhPJZDJOnTpVc38ul4vp6el48sknV2xPpVJrrnRRTx4AAAAAAAAAAAAAAMBHXh58Oa5fvb6pmGq1Gns79zbc97YqyLhdkslkjI2Nbfj4dDq9amWMT8pkMpte1WKzeQAAAAAAAAAAAAAAAB/Z23WzsOLIqSORSCZqHlMpV6JUKMWVmSuRyqTi0LFDTem7LQsyvvKVr8R3vvOdVqcBAAAAAAAAAAAAAAC0UGeqM048cyLSX05v6PiL37oYezv3bvj49bRlQcbLL7+sIAMAAAAAAAAAALZIqVCK10dfj4iISrESlXIlUv2pOH7m+JoxlXIlfnT2RxERse/AvijOF6Onvyd6B3ubGgMAAPBxnanO6Ex1bvj44988HnP/cS4uv3Y5Dj9yuKG+t7wg46c//Wk8+OCDq7ZfvXo1Lly4sOn2Ll26FOVyufHEAAAAAAAAAACAVeYm5uKdS+/EwNjAiu3jfeMxOzYbT88/vSqmUq7EeN94ZHPZ6E53L2+fHJ6Mdy69E/2j/U2JAQAA+KSTz5/cdEzvY70x/ez09i3IuHDhQgwPD8fly5ejp6cn/tN/+k8r9s/MzMTg4GB0dHRsqt1qtbrpGAAAAAAAAAAA4NYq5Uq8+dKbkc1lV+0beGEgxvvGY3J4clWxRi6bi/sH719RWBERMTA2EKOdo9HT3xOpTKrhGAAAgO1kSwoyrl69GmNjYzE2Nhb9/f2xf//+Vcd0dXVFRMRjjz0Wx44di2Qyect2y+Vy/PznP4+//Mu/bHbKAAAAAAAAAACw412ZuRJzE3MxNTK1aoWKpcKJy9OXV2wvFUpRmC7EybHaT6XtPdUbF0cvriiuqCcGAACgmcqFcsNtbElBxoULF+LZZ5+Nhx56KEqlUs2CjFQqFR0dHfHyyy9vuv1cLteMNAEAAAAAAAAAgI/Z27U3EslE7Duwb81jEsnEitczYzMREdGZ6qx5fFdPV+TH81EpV5Zj64kBAABolsrVSlwrXWu4nS0pyLh06VJ8/vOfj4ioWYyxtH2tfbeSyWTqzg0AAAAAAICVKjcqdcdevX41/upnfxWXr16Ow/sPx5c++6XYv6e+34ASu91oBwDQat3p7hgpjdTct5BfiIiIw5nDK7a/m3933aKJpaKLKzNXlle8qCcGAACglsuvXb71Qf9VpVyJUqEUs2Oz0Tfc13DfW1KQ0dXVFW+//XZ85jOfWfe4jo6OutqvZ1UNAAAAAAAAavvjv/njprTzxq/fiK/93dfqjv/eye81JQ8AALbG9Mh0dKY6o3+0f8X2UqEUe7v2rhm3VHhRKpQaigEAAKjl5cGX4/rV6xs+vlqtRiqTioe/8XDDfW9JQUYmk4mxsbE4e/bsVjQfv/nNb+JTn/rUlrQNAAAAAAAAAAB3ksUPF6O6WP3o9Y3FTcWXCqV4ffT1SKaS8cTUE6v2XyteW17RopalwotK+aOV2eqJAQAAqGXp88ORU0fWXYkvImLvgb3Rne6O1KPNWYlvSwoyHnroochms/HUU0/Ff/ff/XdNb//w4cPx3nvvNb1dAAAAAACAneiv//Cv6459bua5mHtvLhari7GrY1f0HuiNrx/9ehOzAwCgUcWfF6P4n4vLr6/G1Q3FzU3MxTuX3olyoRzJVDJ6+ntqHrfRookP3vugoRgAAKC5loqvIyIqxUpUypVI9afi+Jnja8ZUypX40dkfRUTEvgP7ojhfjJ7+nugd7G1qzGZ0pjrjxDMnIv3ldFPa24wtKciIiHj++ecjlUrF+Ph4fOlLX2pq29Vq9dYHAQAAAAAAsCGJ3es/MWw9X33oq/H8T5+P+fJ89CR74qkHn2qoPQAAmq/rd7pWrEZRrBQjfnjruN7B3hU3SJ3vPx+zY7Mx8MLALZ86CwAAbG9LBdgDYwMrto/3jcfs2Gw8Pf/0qphKuRLjfeORzWWjO929vH1yeDLeufRO9I/2NyVmszpTneuuwLeVtqwgI5PJxGOPPRZDQ0MxNDQU6XQ6UqmVy3qUy+X4gz/4gw23WSwWo1AoxNWrG6vSBwAAAAAAYGvt37M/Rn53pNVpAACwjl137Yq462Ovb+yqq51sLhujnaNRKVfiiaknlrcnkokNrXix78C+hmIAAIDmqJQr8eZLb0Y2l121b+CFgRjvG4/J4clVxRq5bC7uH7x/RWFFRMTA2ECMdo5GT39PpDKphmM26+TzJxuKb8SWFWQ89dRTUSgUllezmJ2djdnZ2VXHTU1Nbbrtjo6OhvMDAAAAAAAAAAA2LpFMRO9gb8xNzEVhurB809Terr3rxl0rXluOX1JPDAAA0BxXZq7E3MRcTI1MrVqhYqlw4vL05RXbS4VSFKYLcXKsdvFD76neuDh6cUVxRT0x7aa+cvdb+MlPfhLJZDIuXLgQmUwmRkdHY3FxcdWfZDJZc/t6f2ZmZrYiZQAAAAAAAAAA2PEq5UqUCqU19ydTyYiImJ+aX97WmepcLqBYq82l4xqJAQAAmmNv195IJBPrrkj3yeLombGb9/GvNUfv6umKwnRhxUp49cQ0S/ntcrz1/bci/5f5uPza5Si/XW56HxFbtELGhQsX4qmnnor9+/fH3/7t3655XD0rXaTT6di/f38j6QEAAAAAAAAAADWMdo5GRMRIaaTm6hRLN2x9/Iapg+mDUZgurNnmUoHHx596W08MAADQHN3p7hgpjdTct5BfiIiIw5nDK7a/m3933RXslooursxcWZ7H1xPTqMuvXY4fDP+gZqF5d193DLwwEAf/nweb0lfEFq2QUa1Wo6urayuajoiIXC63ZW0DAAAAAAAAAMBOlUgmojPVueZNU8X5YkREHOo7tLztgdMPRMRHN2590pVLq2+uqicGAABY243rN+L6b64v//mn9/+prnamR6ajM9UZ/aP9K7aXCqXY27V3zbilzxAfL4SoJ6YRE6cn4nz/+SjOF6NarUbycDKSh5OxZ/+eqFarcWXmSoynx+PCv73QlP4itmiFjFQqFTMzM/HII49sRfPx6KOPbkm7AAAAAAAAAACwk6WH0nF0+Oia++denotEMhFHTh1Z3tad7o5UJhVvvPRGdKe7V8dMzMUTU0+s2FZPDAAAsLbXz74eP/zTHy6/vrrr6qbiS4VSvD76eiRTyZpz8WvFa8srWtSyVHjx8dX06omp1/Qz0zE/NR+P/tmj0TvYG52HV/e78JOFeOP//Ua8/mevx94De+Ph/+nhhvvdkhUyMplMjI6ObkXTERHx7W9/e8vaBgAAAAAAAACAnap/tD9eH309CtOFVfty2VxERHzhwhdWraCRzWXjrYm3Vq14MTk8GQ+febjmahf1xAAAALWdePZEPHP1meU/X/m/v7KhuLmJuZgamYrpkembxdfZIzWP22jRxAfvfdBQTD0KFwpRmC7En1z+kzj+zeM1izEiIrof6o7+0f54+udPx8x3ZqL8i3JD/UZs0QoZ+/fvj8OHD8e//bf/Nv7dv/t3TW//7Nmz8Y1vfKPp7QIAAAAAAAAAwE43MDYQcxNzkcvmItGViEqxEpVyJQ6mD8afXP6TVcUYERGJZCKGZodiamQqEslE7DuwL4rzxejp74newd6a/dQTAwAA1LZ7z+7Yveej8oC77717Q3G9g70r5t/n+8/H7NhsDLwwUHPuvx3lx/M3C8f3byzfzlRnZF/OxvSZ6Rh8abChvrekICMiYnR0NA4fPhzT09MxPDwcjz76aHR1dS3vr1arERHxi1/8Yvn/b8Ts7GyUy+VmpwsAAAAAAAAAAPxXn7wpayMSyUQMjA1seQwAALB1srlsjHaORqVciSemnljenkgmNrTixb4D+xqKqUe1Wt1wMcaS7nT3puoY1rJlBRn79++PQqEQfX198eSTT0ZHR0fN41IpSwsCAAAAAAAAAAAAAECrJZKJ6B3sjbmJuShMFyKVuXm//96uvevGXSteW45fUk9MPTpTnbc17uO2rCAjIiKZTMb8/HxMTEzEzMzMipUtqtVqvPDCCzE0NLSpNi9duhQ//elPm5soAAAAAAAAAAAAAADsAJVyJa4Vr61ZkJBMJSMiYn5qfrkgozPVGVdmrqzb5tJxS+qJqUvttSO2Lu5jtrQgY8ng4GAMDg6u2j4xMRHPP//8pts7cOBAM9ICAAAAAAAAAAAAAIAdZbRzNCIiRkojNVen2HdgX0R8VDAREXEwfTAK04U12ywVShERywUc9cbUozPVGeW3y5H8THLDMdd/c/2WK3hsxK6GW2hAtVqtK66zs/GlQQAAAAAAAAAAAAAAYKdJJBPRmeqsWYwREVGcL0ZExKG+Q8vbHjj9QERELOQXasZcuXRlVWFFPTH16HuyL2aen4nrv7m+4ZipM1NxdPhow33flhUy1vLCCy/UFffzn/+8yZkAAAAAAAAAAAAAAMCdLz2UXrcYYe7luUgkE3Hk1JHlbd3p7khlUvHGS29Ed7p7dczEXDwx9cSKbfXEfFL57fIt/jY3HTl9JHLZXPQ91Redh9deAKJUKMWbL70ZmdFM7PnUng21vZ6WFmQ89thjreweAAAAAAAAAAAAAAB2lP7R/pgcnowj2SOrVqjIZXMREfGFC19YtYJGNpeN8b7xeOD0AysKLCaHJ+PhMw/XXO2inpiPG0uPxfWrG1v5olqtRmG6cMvjEslEzIzNxO8/+/sNF2W0tCBjLc8880xcvnw5UqlU9PT0RCqViqNHj8anPvWpVqcGAAAAAAAAAAAAAABtbWBsIOYm5iKXzUWiKxGVYiUq5UocTB+MP7n8J6uKMSJuFjIMzQ7F1MhUJJKJ2HdgXxTni9HT3xO9g701+6kn5uP2du2NSrkSvYO9sbdrb8N/7yWVUiXefPnNSH853VA7W1aQ8dOf/jSKxWIUCoWYn5+PQqEQ5XI5kslkpFKpOHv27Jqxf/ZnfxYREZcvX458Ph9/9md/FtPT09HR0bFcpPE3f/M3W5U6AAAAAAAAAAAAAADc0XoHezdUFPFxiWQiBsYGtjxmSWeqM048c6LhwomtsmUFGY888khcvXo1qtVqZLPZeOaZZ+Khhx7aVBuHDx+Ow4cPx2OPPRaFQiGy2Wz85Cc/iULh1suIAAAAAAAAAAAAAAAA7asz1Rmdqc5Wp7GmLSvIWDI7O7vpQoxaUqlUzM7ORmdnZ/zmN79pQmYAAAAAAAAAAAAAAMB2dfL5k61OYV27trLxoaGhphRjfNzo6GhT2wMAAAAAAAAAAAAAANisLS3IyGazTW+zv7+/6W0CAAAAAAAAAAAAAAA7x1vff6vhNnY3IY81HT16tOb2t99++5axn/nMZ2puP3z4cFSr1QayAgAAAAAAAAAAAAAAdrLJJyfj/s/f31AbW1aQ0dHREZ/61Kdq7svlcvHee+/F9PR0/OQnP1nenkqlYnBwMA4cOBBDQ0NrxieTya1IGQAAAAAAAAAAAAAA2Gbe/em7cfDBg2vu24xrxWtRKpSiUq40nNeWrpCxlm9+85vL/39kZCS+9a1vRTabjZdeemlD8R0dHVuVGgAAAAAAAAAAAAAAsE1MPzMdP/7Wj6O7rzue/IcnV+3/D4/8h7h+9XoLMmtRQcbHjY6Oxre+9a0YHR1tdSoAAAAAAAAAAAAAAMA2UiqUolqtRqVUe0WLvV17IyKib6jv5usDe9dt79p716I0X4q3vv9Ww7m1vCAjIiKZTMZnPvOZVqcBAADUaW5iLnoHe1udBgAAcJtMDk/GkeyRSGVSax4zOz4bc7m56Bvui1QmFYlkIkqFUizkF+LNl96ME8+eiO5096q4SrkSPzr7o4iI2HdgXxTni9HT37PuZ456YgAAAAAAgPYw8MJApPpTa/4u0ZnqjBPPnIj0l9ObavfcgXMN57YtCjI6OjpanQIAAFCnSrkSuWwuTo6djCOnjkQimWh1SneU6zeuR+VG7er+9Vy9fjX+6md/FZevXo7D+w/Hlz77pdi/Z39dOSR2O6cAANx8+lRhuhCzY7OxkF+II9kj6x5fKVeiMF2IwnRhxfZEMhHZXHbNYozxvvFV+yeHJ+OdS+9E/2h/U2IAAAAAAGCr/fa3v6079le/+lU89dRTMTs7G319ffH888/Hfffdt6k2Pvjgg7r7324S+xPR92TfmvtT/ak4dPTQpttNHk42kNVN26IgAwAAaF+lQikiIn4w/IP4wfAP1j02m8suP6H2dj4tt5198++/2XAbb/z6jfja332t7vjvnfxewzkAANDeZsdnozBViFR/KjKjmTjff35DcSfHTkZxvhjlQjkSXYk41HdoebnwWnLZXNw/eP+qzwIDYwMx2jkaPf09q55+VU8MAAAAAABstXvvvbcp7UxNTUVPT09T2rpTHf/m8brihmaGGu67LQsyyuVyq1MAAAD+q1KhFJ2pzuhOd0eiq/ZKCpViJUqF0oqiidv1tFwAAKBxfUN9y4UUC/mFDcdtZhW9pRU4To6drLm/91RvXBy9uKK4op4YAAAAAADgzvPW99+K7nR3JD+TvK39bllBRrVajX/+z/95JJPJWx5bLpfj2LFjG2pXMQYAAGwv71x6J56YeiI6U51rHjM1MhWZ0cyq7bfjabnt7lv/8ltxIHFg03HPzTwXc+/NxWJ1MXZ17IreA73x9aNf34IMAQCgOWbGZiIi1vxs0dXTFfnxfFTKleUij3piAAAAAADgdnj//ffrjv3c5z4Xr732Wnz44Ydx1113xSOPPBKvvPLKptr4xS9+EUeOHKk7h3byg6d+EPkX8pHoTMSZX5+5rX1v6QoZ8/PzGz52dnZ2w8d2dHTUkw4AALBF1ivGWMgvRFdPV81jtvppuXeCPbv3RGL35m8c++pDX43nf/p8zJfnoyfZE089+FRd7QAAwO3ybv7ddT8fLH2muDJzZXneX08MAAAAAADcDvfcc0/dsefPn48vfvGLcenSpTh27Fh897vf3XR7+/btq7v/dnOteC0OP3p41UNeb4ctLchIp9ORyWTiwIHNP821lvfeey9mZ2fjtddea0p7zTIxMRGDg4OtTgMAAFri6PDRdffPjM3EwNhAw/148u3m7N+zP0Z+d6TVaQAAQETcLNS+MnMlDh09tOaPIaVCKfZ27V2zjaV5fqlQaigGAAAAAAC2u/vuuy9effXVVqfRNjpTnZH5s0xL+t6ygoyOjo547bXX4lOf+lTT277rrrua3ma9yuVyZLPZGBsbi1OnTkUymWx1SgAAcFuttzrG1MhU9I/2N6UfT74FAIDmu3H9Rnx4/cPl1//0/j81tf3CdCFKhVKkMqnoG+qLhfxCnO8/H8dHjq+at18rXlv388VS4UWlXGkoBgAAAABozIsDL7Y6hYiIeHzy8VanAGwTew/sjfLb5Uh+JrmpuHMHzsWZ98401PeWFWRUq9UtKcaIiNi/f39D8eVyOc6ePRsREQcOHIj5+fno7++va5WLQqEQERHDw8MxPDy87rG5XG65j/Hx8cjlcjE8PByZTCaSyWQUCoXI5/Px0ksvxbPPPhvpdHrT+QAAQLM0emPWQn4hunq6NrRaxVY9LRcAAFjf62dfjx/+6Q+XX1/ddbVpbS8VShw/c3x5W3e6O7K5bIx2jsbQ7NCK+f9GiyY+eO+DhmIAAAAAAIA7y/FvHo/cqVwcfepoHH7k8IbjqtVqw31vWUHGhQsXtqrphtoul8vR19cXuVxuRcHD8PBwXLp0KUZHRzfVXqFQiFQqFel0Orq6umoeUywWo1AorCj4KJfLMT09HdPT0yuOTSaTq3IDAIBWaPTGrNfPvh7ZXHbdY7b6abkAAMD6Tjx7In7v67+3/PqXv/xl/Pln/7wpbfcO9tbcnkgmonewN3LZXDw9/3RT+gIAAAAAAHa27MvZ+PG3fxyzY7Nx6NjNh8Lu7dq75sNk56fm4/rV6w33u2UFGQ899NBWNd1Q29lsNgYHB1cVPIyNjUVnZ2f09/dHJpPZcHuXLl2KqampSKVSax4zMjJSs9BjbGws5ufno1AoRFdXV/T19cXQ0NDG/zIAALCFGrkxa25iLpKp5LrH3I6n5QIAAOvbvWd37N7z0U8Fd997923p99CxQzE3MRelQmn5s0EimdjQvH/fgX3L/7+eGAAAAAAA4M7yp7v+NDo6OiLi5qoXcxNzt63vLSvI2I4KhUJMT0/H2NhYzf2nTp2K0dHRTRVkRMS6xRj5fD56enpqHnPq1KlIJpOb6gsAAG6XRm7Mev3s6zHwwsC6x3haLgAA7FxLT6NayC8sF2QsrXq3lmvFayti640BAAAAAADuLJ2pzigVStE72HvL3w6WXLl0Jd796bsN972jCjKWCjHWKqDo6emJ8fHxKJfLGy6UGB4evmWfaxWAAADAnahUKMVCfmHF6hab1ayn5QIAAK0xOTwZl6cvb6rIujPVGVdmrqy5f+nzwNJnhHpjAAAAAACAO0tnqjNOPHMi0l9Obyru3IFzDfe9q+EW2kg+n1+30GKpUGNmZmbDba63OsbIyEiMjo5uuC0AALgTzIzNNHyz08eflrvEk28BAKB9LMwsLM/Ra1kqlPh4IffB9MF1i7BLhVJERKQyH30vX08MAAAAAABwZ+lMddZ1v1Kis/H7jHbUChmFQiG6urrW3L9UrFEoFBruK5/PR09Pz4ZW2sjn8zEzMxNHjx6NdHpjVTnXblyL92+8v/z67l13x9133V1vujtataMa1ahGtaMai7HY6nTaXrWjGouLi3Hjxo1Wp3JHuHHjhvFsMmPaXMazuYxn8xnT5lpc3Nhc6fL05Vt+wLldT8u9E5j73+S/4494b2Mtrg3W4tpgLa4NatnovP9WDmcOx9Do0Jr7r1y6EolkYsX8/YHTD8SPz/14zRX3rly6sqqwop6Y7eiDDz+IPTf2LL/eqfP+duQ3hvbm/LU/57C9OX/tzzlsb9WOaqtT2JF8598c3n+az5g2V7PG0/d2N/kes/maMaaLHdvjvWI7XBeu0eYyns3VrO/828HJ50/WFff0zzd+79JadlRBRrFYXHdFi6VijXK53HBfZ8+ejVwut+4x09PTUSgUIpPJxNDQUOTz+ejv74+RkZHIZDLrxo78/ciK13+Y/sP4o6N/1HDeO1E1qnHtn12LYhSjIzpanU7bq0Y1bvzy5j+Eu3btqEV4tsTi4mL88pe/jAjj2SzGtLmMZ3MZz+Yzps313nvvbei4hfxC9A72rn9MnU/LLUyvXTx9pz751tz/ptdff73VKWwb3ttYi2uDtbg2WItrg1o2Ou+/lQdOPxCz47PRN9S3al+pUIq5ibnI5rIrtnenuyOVScUbL71Rs7hibmIunph6ouGY7ci8v335jaG9OX/tzzlsb85f+3MO29s/XvvHVqewI5n7N4f3n+Yzps3VrPH0+9hNvsdsvmaMabG72MyU6rYd/jtxjTaX8WyuZn3nz/p2VEHGRgstGr34JiYm1i38iIjl/WfOnFnelk6nI5fLRWdnZ8zOzq67WsbovxyNzsRHTw67e9fdcfeCivl6VDuqUYxidL3bFR1VHygaVe2oRvH/U4wrr1xp+Xie/v7plvbfDEtVng8//HDs3r2j3rK3jDFtLuPZXMaz+Yxpcy194F3PQn4hIiISXesv53e7npZ7JzD3v+nEiROtTmHb8N7GWlwbrMW1wVpcG9SykXn/UjH0UiF1Ld3p7ihMF+LiuYtx/MzxFbHjfePx8JmHaxZyZ3PZGO8bjwdOP7Bi3j85PBkPn3m45py/npjtxry/ffmNob05f+3POWxvzl/7cw7b3NrPTGILmfs3h/ef5jOmzdWs8fT72E2+x2y+ZozpO8+908yU6rYd/jtxjTaX8WyujXznv1MULhSiMFWI6Ijo6umKQ0cPxcEHDzalbVfqFjh79my88MIL6x4zODhYc3symYzBwcHIZrMxPz+/Zvze3Xvj3t33rtxoNcm6LMZidERHdFQ7YldVNV2jttN43in/GO/atSt27959x/x9tgNj2lzGs7mMZ/MZ0+bZyJMH1lv14uNu19Ny7wTm/jf5b3gl722sxbXBWlwbrMW1wSetNe+fm5iL2bHZiIi4MnMlIiImn5xc3tab7V01vz9+5ngUpgsxOTwZlWIlKuVKJJKJ+MKFL9Sc00dEJJKJGJodiqmRqUgkE7HvwL4ozhejp79nzZX46onZbvbdtc+8v01tp+/E2Tznr/05h+3N+Wt/zmF7c8N1a/jOvzm8/zSfMW2uZo2n7+w+4nvM5mt0TLfLe8V2uSZco81lPJtnJ60ycu7AuTjz3pk196ceTUXq0VRUrlbiWvFaFKYLMTM2E/2j/bHnU3sa6ntHXanJZHJDq2QcOHCg7j4KhULk8/l1V7e4lWPHjsXExEQUCoVbrrQBAADbydKTchPJ9VfIuJ1PywUAABrXO9hbV3FDKpPa9Dw9kUzEwNjAlscAAAAAAAB3hmp1Y5XOif2JSOxPRN+TfVG5Wompkak4+Z2TDfW9owoyurq61t1fLBYj4mbhRr3GxsYaLqJY6j+fzyvIAACgrRw6eigSyUR8+tinb3ns7XpaLgAAAAAAAAAAcOfq6Nj8KoCJ/es/cHajdlRBRiqVipmZmTX3L62e0UgRxPT09C3jh4eHY3p6Oubn5+vuBwAAtqPudHeMlEY2fPztelouAAAAAAAAAADAksrVSizMLDTczo4qyEin0zE9Pb3m/kKhEBERmUym7j7y+XwMDg6ue8zMzMzyahy1LBWGpNPpuvMAAAAAAAAAAAAAAIA7Qfntcs3t1Wr15v5flCOq67dRKVfiWvFaLOQX4vWzr0fvqd6G89pRBRmnT5+Oc+fORT6fr1nscOnSpYaLMSIiurq61j0uk8nE6OjomvsvXboUyWSyoZU6AAAAAAAAAAAAAADgTnBl9kpcuXQlSoVSFKYLcf3q9RX7/yL1Fxtuq1qtRiqTipPfOdlwXjuqICOdTkcmk4mXXnqpZkHGxMRETE1NrdpeLpfj7Nmz0d/fv27BxnqrXnzc6dOnY3x8PIaGhlbtKxQKMTExEblcbkNtAQAAAAAAAAAAAADAnaz3sd7ofeyjFS0W8gsxPTIdhQuF6OjoiPsfu39D7XSmOiPVn4rUo81ZPGFHFWRERORyuejr64vTp0+vKMoYHh6OM2fO1Cy4GB8fj3PnzsX4+HiUSqU12y4UChERkUwm180hnU7H9PR0nDt3Ls6cObMivq+vL86cORODg4Ob/JsBAAAAAAAAAAAAAMCdrzvdHU9MPRGTw5Px1sRbkX0525I8dlxBRjKZjNnZ2RgZGYlkMhkHDhyI+fn56O/vX7MIIpPJRDKZjFOnTq3b9tGjRyOZTMaxY8dumceZM2dieno6hoeHo1gsRrlcjmQyGRcuXKi5egcAAAAAAAAAAACwM7w48GKrU4jHJx9vdQoAcEsDYwOxMLvQsv53XEFGxM2ijLGxsQ0fn06n110ZY7PHLclkMjVX5AAAAAAAAAAAAAAAAG7txLMnWtb3jizIAAAAAAAAAAAAAAAA2l/vY723PObya5ejVChFZ6ozDh09FHs+tacpfSvIAAAAAAAAAAAAAADgjvDb3/627thf/epX8dRTT8Xs7Gz09fXF888/H/fdd19dbd1zzz1158HmTD8zHZWrlRXbTn7nZEREVK5W4nzmfCzkF6JarUZnqjMqpUpkJ7Jx+F8dbrhvBRkAAAAAAAAAAAAAANwR7r333qa0MzU1FT09PXXHV6vVpuTBrfUN98Vf9PxF9A33Rd9QX3Q/1L28L5fNxZXZK3H8zPHI/FkmIiIq5UrkTuWi83BnJD+TbKhvBRkAAAAAAAAAAAAAbEs/e/Fn8c5z78Su6q6W5vH45OMt7R+Atb37k3cjm8tG72O9K7bP/ce5KEwX4kj2yHIxRkREIpmI7MvZmH52enkljXopyAAAAAAAAAAAAAAAaGO//e1v64r71a9+FU899VTMzs5GX19fPP/883HffffV1dY999xTV1yzvf/++3XHfu5zn4vXXnstPvzww7jrrrvikUceiVdeeaWJ2bEV3rn0TmTOZlZtf/OlN6OjoyNOPHti1b5EMhGJ/YmG+1aQAQAAAAAAAAAAAADQxu69996G25iamoqenp6646vVasM5NEMjhSHnz5+PL37xi3Hp0qU4duxYfPe73902hSasY41LrzBdiIiIgw8erH1AR+NdK8gAAAAAAABooes3rkflRmXTcVevX42/+tlfxeWrl+Pw/sPxpc9+Kfbv2V9XDondjT8FDAAAAACg3d13333x6quvtjoNNmnvgb2rtpUul6JSrsShvkNrxlXKm/9u/pMUZAAAAAAAALTQN374jYbbeOPXb8TX/u5rdcd/7+T3Gs4BAAAAAGid999/v664z33uc/Haa6/Fhx9+GHfddVc88sgj8corrzQ5O9haHR2rl7qYm5iLiIjDmcNrBzZhURcFGQAAAAAAAAAAAAAAbeyee+6pK+78+fPxxS9+MS5duhTHjh2L7373u3W3Ba3ywa8/iOu/uR57PrVnedvs2Gx0dHTEA6cfqBkz/ex09A33Ndy3ggwAAAAAAIAW+vb/69vRtbdr03HPzTwXc+/NxWJ1MXZ17IreA73x9aNf34IMAQAAAIA71X333Revvvpqq9OAhpx49kTksrnInMtEVCNeP/t6lAqlOJI9EgcfPLji2Hd/+m5Mj0xHqj8V3Q91N9y3ggwAAAAAAIAW2rN7TyR2JzYd99WHvhrP//T5mC/PR0+yJ5568Km62gEAAAAAgHaW2J+IR88+Gi8/9nKUCqWIiDiSPRKDLw0uH/ODp34QhenC8v7CdCE+eO+DyJzNNNS3ggwAAAAAAIA2tH/P/hj53ZFWpwEAAAAAAC3Xne6Op3/+dFSuViKxf/XDi46PHI/jI8dXbNvbtbfhfhVkAAAAAAAAAAAAAAAAba9WMUZEROfhzi3pb9eWtAoAAAAAAAAAAAAAALBNvfX9txpuQ0EGAAAAAAAAAAAAAACwo0w+OdlwG7ubkAcAAAAAAAAAAAAAd5AXB15sdQqx2LEY0d3qLADYDt796btx8MGDa+7bjGvFa1EqlKJSrjScl4IMAAAAAAAAAABg2UJ+IWbGZqJSrMRCfiESyUT0DfdF31DfmjGVciV+dPZHERGx78C+KM4Xo6e/J3oHe5saAwAA7DzTz0zHj7/14+ju644n/+HJVfv/wyP/Ia5fvd6CzBRkAAAA0Aa2w9N3IiIen3y81SkAAAAAAGyp2fHZiIgYGBtY3laYLkQum4uLoxdjaHYoEsnEiphKuRLjfeORzWWjO/3RY8wnhyfjnUvvRP9o/6p+6okBAAB2plKhFNVqNSql2ita7O3aGxGxXES+98Deddu79t61KM2X4q3vv9VwbgoyAAAAAAAAAACAKBVKUSlX4viZ4yu2pzKp+MKFL8R433jksrl4YuqJFftz2VzcP3j/isKKiJtFHaOdo9HT3xOpTKrhGAAAYGcaeGEgUv2pNT8jdKY648QzJyL95fSm2j134FzDue1quAUAAAAAAAAAAKDtzYzNLD9R9pO6092RyqSiMF2IUqG0vL1UKEVhuhBHh4/WjOs91RsXRy+u2FZPDAAAsHMl9iei78m+6DzcWXN/qj8Vh44e2nS7ycPJBjNTkAEAAAAAAAAAAETE5enL8e8P//uolCs19x9MH4yIiIX8wvK2mbGZiLj5RNpaunq6ojBdWNFmPTEAAABrOf7N43HwwYObjhuaGWq4790NtwAAAAAAAAAAALS9vV17YyG/EKVCKbrT3RuKeTf/biSSiTX3LxVdXJm5EqlMqu4YAACguRbyCzEzNhOVYiUW8guRSCaib7hvzVXzIiIq5Ur86OyPIiJi34F9UZwvRk9/T/QO9jY1pp0oyAAAAAAAAAAAgDvY4oeLUV2sfvT6xmLN456YeiJKhdKaK1eUC+WIiBXFGqVCKfZ27V2z76XCi1Kh1FAMAADQPLPjsxERMTA2sLytMF2IXDYXF0cvxtDs0Koi6kq5EuN945HNZVd8Jpgcnox3Lr0T/aP9q/qpJ2azym+XozBdiOJ8cfkzS6IrEV09XdGd7o7DjxxuuI/1KMgAAAAAAAAAAIA7WPHnxSj+5+Ly66txdc1j1yrGiIiYm5iL7nT3imOuFa+tG7NUeFEpVxqKAQAAmqNUKEWlXInjZ46v2J7KpOILF74Q433jkcvm4ompJ1bsz2Vzcf/g/atW0xsYG4jRztHo6e9ZtcJdPTEbcf0312N2fDZeP/v6hj439A33xfEzxyP5meSm+7oVBRkAAAAAAAAAAHAH6/qdrhUFEMVKMeKHm2vj4rmLEREx8MLAiu0bLZr44L0PGooBAACaY2ZsJn7/2d+vua873R2pTCoK04UVq+eVCqUoTBfi5NjJmnG9p3rj4ujFFcUV9cRsRP4v8/GD4R9ERES1Wl2xL5FMxN6uvXGteG3F546Z52didmw2jo8cj0f/3aOb6u9WFGQAAAAAAAAAAMAdbNdduyLu+tjrG7s2Fb+QX4jpkenI5rKrnmwLAAC0l8vTlyM/no8/ufwnkUgmVu0/mD4YhelCLOQXlgsyZsZmImLtFfW6eroiP56PSrmy3GY9MbcycXoi5ibmolqtRiqTilR/KlKZVHQ/VPtzSuVqJQrThZj/2/nIv5CPi6MXozBdiCf/4ckN9bcRm/t0BQAAAAAAAAAA7Ci5bC5Ojp2M3sHeVfsSycSGVrzYd2BfQzEAAEBz7O3aG5VyJUqF0oZj3s2/u27RxFLRxZWZKw3FrOf/+IP/I97MvRn3P3Z/PD3/dDzxt0/E8W8eX7MYIyIisT8RvY/1xsDYQPzPi/9z/N43fi+uzFyJF/7FCxvqcyOskAEAAAAAAAAAANSUy+aib7gv+ob6au7f27V33fhrxWsREStuxKonBgAAaI4npp6IUqG05soV5UI5ImLF6nilQmndefzS3P3jRR71xKzl4rcuxvzUfAyMD0T6y+lbHr+W/tH+6OnvifP/+nxc+LcX4tF/92jdbS2xQgYAAAAAAAAAALDK1MhUHDp2KI6fOb7mMZ2pzuUCilqWVsL4+M1e9cQAAADru3H9Rlz/zfXlP//0/j+teex6c+25ibnoTnevOOZa8dq6BdNLhRcfXwmvnphaKlcrMT0yHf3n+hsqxliSyqQi+3I2Lo5ejPLb5Ybbs0IGAAAAAAAAAACwwuz4bHT1dNVcGaNSrizfWHUwfTAK04U121l62m0qk1reVk8MAACwvtfPvh4//NMfLr++uuvqptu4eO5iREQMvDCwYvutiiaWfPDeBw3F1DI7Phvd6e54+BsPb6i9jegd7I2DDx2MuYm5htu1QgYAAAAAAAAAALBsbmIuIqJmMUapUFpRTPHA6QciImIhv1CzrSuXrqwqrKgnBgAAWN+JZ0/EM1efWf7zlf/7K5uKX8gvxPTIdGRz2ehOd29Rlpv35ktvxu//299versnnjkRb770ZsPtKMgAAAAAAAAAAAAi4uZNWNeK12oWY0REFKYLK27O6k53RyqTijdeeqPm8XMTc3F85PiKbfXEAAAA69u9Z3fs+dSe5T9333v3puJz2VycHDsZvYO9q/YlkokNrXix78C+hmJqKV8ub0nBdqo/tbw6XyN2NyEXAAAAAAAAAACgzZUKpchlc3E4cziuDF9Ztb9SrERhuhAjpZEV27O5bIz3jccDpx9YUawxOTwZD595uObNU/XEAAAAWyOXzUXfcN+ahdl7u/auG3+teC0ibhZhNBJTS6VciT2f2rPuMfVI7N9YwcitKMgAAAAAAAAAAADifP/5KBVKURpf+ymxnanOVdsSyUQMzQ7F1MhUJJKJ2HdgXxTni9HT31Pz6br1xgAAAM03NTIVh44diuNn1l6lrjPVGVdmVhdtL1kqbPj454V6YmrZs7/5xRjNbFtBBgAAAAAAAAAAEE/PP113bCKZiIGxgS2PAQAAmmd2fDa6erpqroxRKVeWV684mD4YhenCmu2UCjeLuj++0l09MbV0dHSsu78RzWh7VxPyAAAAAAAAAAAAAAAA2sTcxFxERM1ijFKhtKKY4oHTD0RExEJ+oWZbVy5dWVVYUU9MO1KQAQAAAAAAAAAAAAAAO8RCfiGuFa/VLMaIiChMF6I73b38ujvdHalMKt546Y2ax89NzMXxkeMrttUT0452tzoBAAAAAAAAAAAAAABg65UKpchlc3E4cziuDF9Ztb9SrERhuhAjpZEV27O5bIz3jccDpx9YUawxOTwZD595uOZqF/XErMqnXNnMX29TmtG2ggzgjvXiwIutTiEiIh6ffLzVKQAAAAAAAAAAAABAnO8/H6VCKUrjpTWP6Ux1rtqWSCZiaHYopkamIpFMxL4D+6I4X4ye/p7oHeyt2U49MZ9UrVbjf/3n/2vNnBpRKqz9998MBRkAAAAAAMCmTA5PxpHskVs+uapSrsSPzv4oImLDP7LcrhgAAAAAANiJnp5/uu7YRDIRA2MDWx7zScX5YhTniw21UUtHR0fDbSjIAAAAGjY7PhtzubnoG+6LVCYViWQiSoVSLOQX4s2X3owTz55YsezgEjdaAQBA+ygVSlGYLsTs2Gws5BfiSPbIusdXypUY7xuPbC67ahnydy69E/2j/S2LAQAAAAAA2kcqk4pU//oPidqsK/9wJd76/lsNt6MgowkmJiZicHCw1WkAAEDLVMqVKEwXojBdWLE9kUysuinq4zFutAIAgPYwOz4bhalCpPpTkRnNxPn+87eMyWVzcf/g/as+DwyMDcRo52j09PesWmHjdsUAAAAAAADtoaOjI5742ye2pO3/5a7/peE2djUhjx2tXC5HNpuN8fHxKJfLrU4HAABa5uTYyXj4zMPRO9gb6aF0nBw7GSOlkTVvfFrvpqn8eH5VcUe9MQAAQOP6hvoim8tG31Bf7O3ae8vjl1bTODp8tOb+3lO9cXH0YktiAAAAAACA9rFn/55t3faOXCGjXC7H2bNnIyLiwIEDMT8/H/39/XWtclEo3Lzha3h4OIaHh9c9NpfLreijmXkAAECrHTl1JBLJxIaOXbpp6uTYyZr7l26a+ngxRz0xAABAa8yMzURERGeqs+b+rp6uyI/no1KuLH+OuF0xAAAAAABA+/jChS9s67Z3XEFGuVyOvr6+yOVykU6nl7cPDw/HpUuXYnR0dFPtFQqFSKVSkU6no6urq+YxxWIxCoXCqmKMZuYBAADtxI1WAABwZ3s3/+668/Klef2VmSvLRdW3KwYAAAAAAGgf3Q91b+u2d1xBRjabjcHBwRVFEBERY2Nj0dnZGf39/ZHJZDbc3qVLl2JqaipSqbV/yBkZGVlVYNHsPAAAoJ240QoAAO5spUIp9nbtXXP/0ty+VCjd9hgAAAAAAIBm2dXqBG6nQqEQ09PTMTw8XHP/qVOn6lqZYr1ijHw+Hz09PSuO2ao8AABgO1jIL8Ts+Gws5BfWPMaNVgAAsD3cuH4jrv/m+vKff3r/n5rS7rXitXULqpfm9pVy5bbHAAAAAAAANMuOWiFjbGwsItYuoOjp6Ynx8fEol8uRTCY31OZaRRUf73Op363MAwAAmu3G9Rvx4fUPl1/f6saswnQhSoVSpDKp6Bvqi4X8QpzvPx/HR46vWrHiWvHa8ooWtax1o9VmYwAAgPW9fvb1+OGf/nD59dVdV5vS7kbn5R+898FtjwEAAACAdvbiwIsNxS92LEaxuxjvPPdO7KruqOe6A2yJHVWQkc/n1y1wWCqQmJmZiUwms6E211sdY2RkpOZKF1uRBwAANNtmbsxaKpQ4fub48rbudHdkc9kY7RyNodmh6E53L+9zoxUAAGwPJ549Eb/39d9bfv3LX/4y/vyzf97CjAAAAAAAANrHjirIKBQK0dXVteb+pSKJQqHQcF/5fD56enpqFl7czjwAAKBem7kxq3ewt+b2RDIRvYO9kcvm4un5p7ckTwAAoH679+yO3Xs++qng7nvvbkq7iWRiQ0XV+w7su+0xAAAAAAAAzbKjCjKKxeK6K1osFUmUy+WG+zp79mzkcrkty+PajWvx/o33l1/fvevuuPuu5vxQttNUO6pRjWpUO6qxGIutTqftGc/Vbty40VDs4uJiQ22wkjFtLuPZXMaz+Yxpg+6KuGvfXR+9/Nj/34xDxw7F3MRclAql5ZU03Gi1ceb+28t2eD/x3sZaXBusxbXBWlwb1LK42Jzv9PZ27V13/7XitYi4Oc+/3THb0QcffhB7buxZfm3e3z58J97enL/25xy2N+ev/TmH7a3aUW11CjuS7/ybw/tP8xnT5jKezbWdxnO7fJe62NHYOGynMW3UdjgnvmtvLuPZXM36zp/17aiCjI0WWrz33nsN9TMxMbFuwUUz8hj5+5EVr/8w/YfxR0f/aEPtslI1qnHtn12LYhSjIzpanU7bM56rvf7663XHLi4uxi9/+cuIiNi1a1ezUtrRjGlzGc/mMp7NZ0ybq9558tKNTwv5heWCjJ18o9VmmftvL43M7ZrFextrcW2wFtcGa3FtUEuj348v6Ux1xpWZK2vuXyq2XvqMcDtjtiPz/vblO/H25vy1P+ewvTl/7c85bG//eO0fW53CjmTu3xzef5rPmDaX8Wyu7TSe2+G3woiIYnexofjtNKaN2g7nxHftzWU8m6tZ3/mzvh1VkHG7nD17Nl544YUt7WP0X45GZ+KjH5Du3nV33L2gYr4e1Y5qFKMYXe92RUe1vScX24HxXO3EiRN1xy5VeT788MOxe7e37GYwps1lPJvLeDafMW2upQ+8nzQ5PBmXpy/H0/NPb7itnXyj1WaZ+28vjcztmsV7G2txbbAW1wZrcW1Qy1rz/s06mD4YhenCmvtLhVJERKQyHz3c6HbFbEfm/e3Ld+Ltzflrf85he3P+2p9z2OautTqBncncvzm8/zSfMW0u49lc22k8t8NvhRER7zz3TkPx22lMG7Udzonv2pvLeDZXs77zZ3076kpNJpMbWp3iwIEDdfdRKBQin89HOp3e0jz27t4b9+6+d+VGq0nWZTEWoyM6oqPaEbuqqukaZTxXa3RSsGvXrti9e7fJRRMZ0+Yyns1lPJvPmDbPWk8eWJhZWF6dopalQonudPfytp18o9VmmftvL9vlvcR7G2txbbAW1wZrcW3wSc164tgDpx+IH5/7cSzkF1Z8Flhy5dKVVXP32xWzHe27a595f5vynXh7c/7an3PY3py/9ucctrd2v/myXfnOvzm8/zSfMW0u49lc22k8t8v3qI2Ow3Ya00Ztm3Piu/amMp7NY5WR22NHjXJXV9e6+4vFm8s4JZPJuvsYGxuLVGr9H3duRx4AAHC7HM4cjpHSyJr7r1y6EolkYsXKFQ+cfiAiIhbyC2vG1LrRarMxAABAa3SnuyOVScUbL71Rc//cxFwcHznekhgAAAAAAIBm2VEFGalUarnYoZalVStuVVCxnunp6VvG3448AADgdnng9AMxOz5bc1+pUIq5ibkYeGFgxXY3WgEAQPtaWp1uaTW8tWRz2Xhr4q1VRdWTw5Px8JmHaxZU364YAAAAAACAZthRa7mk0+mYnp5ec3+hUIiIiEwmU3cf+Xw+BgcHW54HAADcLt3p7ihMF+LiuYtx/MxHBRGlQinG+8bj4TMPR+9g76q4bC4b433j8cDpB6I73b28/VY3Wm02BgAAaNzcxFzMjt0sxL4ycyUiIiafnFze1pvtjb6hvhUxiWQihmaHYmpkKhLJROw7sC+K88Xo6e+p+RnhdsYAAAAAAAA0w44qyDh9+nScO3cu8vl8pNPpVfsvXbrUcDFGRERXV1dL8wAAgNvt+JnjUZguxOTwZFSKlaiUK5FIJuILF76wonDi49xoBQAA7aN3sLeuOXcimYiBsYFbH9iCGAAAAAAAgEbtqIKMdDodmUwmXnrppZqFEBMTEzE1NbVqe7lcjrNnz0Z/f/+6hRLFYnFL8wAAgO0slUlteoUKN1oBAAAAAAAAAADtalerE7jdcrlcTExMLK9msWR4eDjOnDlTs+BifHw8zp07F9lsdt22C4VCREQkk8ktyQMAAAAAAAAAAAAAANgedtQKGRE3iyVmZ2djZGQkkslkHDhwIObn56O/vz8GBwdrxmQymUgmk3Hq1Kl12z569Ggkk8k4duzYluQBAAAAAAAAAAAAAABsDzuuICPiZjHE2NjYho9Pp9NRKpWadly9eQAAAAAAAAAAAAAAANvDrlYnAAAAAAAAAAAAAAAA0G4UZAAAAAAAAAAAAAAAAGySggwAAAAAAAAAAAAAAIBNUpABAAAAAAAAAAAAAACwSQoyAAAAAAAAAAAAAAAANml3qxMAAAAAAAAAAAAAAGhH165di9/+9rexe/fmb8v+1a9+FU899VTMzs5GX19fPP/883HffffVlcc999xTVxzQGAUZAAAAAAAAAAAAAAB1+KM/+qOmtDM1NRU9PT11x1er1abkAWzOrlYnAAAAAAAAAAAAAAAA0G6skAEAAAAAAAAAAAAAUIf/8//8P+Phhx+O3bs3f1v25z73uXjttdfiww8/jLvuuiseeeSReOWVV7YgS2CrKMgAAAAAAAAAAAAAAKjD3r1745577qmrIOP8+fPxxS9+MS5duhTHjh2L7373u3HPPfdsQZbAVlGQAQAAAAAAAAAAAABwm913333x6quvtjoNoAEKMgC22IsDL9Ydu9ixGMXuYrzz3Duxq7qr7nYen3y87lgAAAAAAAAAAAAAYLX67+4FAAAAAAAAAAAAAADYoRRkAAAAAAAAAAAAAAAAbNLuVicAAAAA7eLFgRdbnUIsdizGp7/+6VanAQAAAAAAAACw41khAwAAAAAAAAAAAAAAYJMUZAAAAAAAAAAAAAAAAGySggwAAAAAAAAAAAAAAIBN2t3qBAAAAAAAAAAAAABgO3tx4MVWpwDANmSFDAAAAAAAAAAAAAAAgE2yQkabun7jelRuVDYdd/X61firn/1VXL56OQ7vPxxf+uyXYv+e/XXlkNidqCsOAAAAAAAAAAAAAADanYKMNvXNv/9mw2288es34mt/97W647938nsN5wAAAAAAAAAAAAAAAO1oV6sTAAAAAAAAAAAAAAAAaDdWyGhT3/qX34oDiQObjntu5rmYe28uFquLsatjV/Qe6I2vH/36FmQIAAAAAAAAAAAAAAB3LgUZbWrP7j2R2J3YdNxXH/pqPP/T52O+PB89yZ546sGn6moHAAAAAAAAAAAAAAB2MgUZO8z+Pftj5HdHWp0GAAAAAAAAAAAAAAC0tV2tTgAAAAAAAAAAAAAAAKDdKMgAAAAAAAAAAAAAAADYJAUZAAAAAAAAAAAAAAAAm6QgAwAAAAAAAAAAAAAAYJMUZAAAAAAAAAAAAAAAAGzS7lYnAAAAAAAAAAAAbD+Tw5NxJHskUpnUusdVypX40dkfRUTEvgP7ojhfjJ7+nugd7G1qDAAAwHajIAMAAAAAAAAAAIiIiFKhFIXpQsyOzcZCfiGOZI+se3ylXInxvvHI5rLRne5e3j45PBnvXHon+kf7mxIDAACwHe1qdQIAAAAAAAAAAEDrzY7PxvTIdEREZEYzG4rJZXNx/+D9KworIiIGxgYiP56PwnShKTEAAADbkRUyAAAAAAAAAACA6Bvqi76hvoiIWMgv3PL4pdU0To6drLm/91RvXBy9GKlMqqEYAABg60wOT8aR7JFbzsEr5Ur86OyPIiJi34F9UZwvRk9/T/QO9jY1pt0oyAAAAAAAAAAAADZtZmwmIiI6U50193f1dEV+PB+VciUSyUTdMQAAQHMtFUrPjs3GQn4hjmSPrHt8pVyJ8b7xyOayK1a6mxyejHcuvRP9o/1NiWlHCjIAAACgzfzsxZ/FO8+9E7uqu1qax+OTj7e0fwAAAACgtd7Nv7tu0cRS0cWVmSvLT9utJwYAAGie2fHZKEwVItWfisxoJs73n79lTC6bi/sH719RWBERMTA2EKOdo9HT37Nq/l5PTDtq7Z0bAAAAAAAAAABAWyoVSrG3a++a+5cKL0qFUkMxAABA8/QN9UU2l42+ob515+ZLllbTODp8tOb+3lO9cXH0YsMx7coKGQA7wIsDL7Y6hYjwBGUAAAAAAACAVlj8cDGqi9WPXt9YbEq714rXlle0qGXp5q5KudJQDAAA0DozYzMREWvO47t6uiI/no9KubJcYF1PTLtSkAEAAAAAAAAAAHew4s+LUfzPxeXXV+NqU9rdaNHEB+990FAMAADQOu/m3123aGKp6OLKzJVIZVJ1x7QrBRkAAAAAAAAAAHAH6/qdrhVPpi1WihE/bGFCAABA2ygVSssr2dWyVHhRKpQaimlXCjIAAAAAAAAAAOAOtuuuXRF3fez1jV1NaTeRTGxoxYt9B/Y1FAMAANzajes34sPrHy6//qf3/6kp7V4rXltR4P1JS4UXH5/n1xPTrhRkAAAAAAAAAAAAm7beE28jbt6EFfHR02/rjQEAqOXFgRdbnUIsdizGp7/+6VanARER8frZ1+OHf/rRUnhXd11tSrsbLZr44L0PGoppVzuyIKNcLsfZs2cjIuLAgQMxPz8f/f39MTg42HDb4+PjkcvlIplMRkREKpWK0dHRNY8bHh6OTCYTyWQyCoVC5PP5eOmll+LZZ5+NdDrdcD4AAAAAANAMs+OzMZebi77hvkhlUpFIJqJUKMVCfiHefOnNOPHsiehOd6+Kq5Qr8aOzP4qIm0+4Lc4Xo6e/J3oHe9fsq54YAADg9utMdcaVmStr7l+6CevjT8atJwYAALi1E8+eiN/7+u8tv/7lL38Zf/7ZP29hRjvDjivIKJfL0dfXF7lcbkXBw/DwcFy6dKlm8cRG23300Ucjk8nE1NTU8vZCoRAjIyOr2i2XyzE9PR3T09MrtieTyVW5AQBAO1jIL8TM2ExUipVYyC9EIpmIvuG+6Bvqq3n87byZCwAAaFylXInCdCEK04UV2xPJRGRz2TXn7+N946v2Tw5PxjuX3on+0f6mxAAAAK1xMH1w1WeEjysVShERkcqkGooBAABubfee3bF7z0flAXffe3dT2k0kExta8WLfgX0NxbSrHVeQkc1mY3BwcFXBw9jYWHR2dkZ/f39kMplNt7tUjPHJwovh4eGYmZmpWegxNjYW8/PzUSgUoqurK/r6+mJoaGjTfQMAQKvNjs9GRMTA2MDytsJ0IXLZXFwcvRhDs0Orlha/XTdzAQAAzXNy7GQU54tRLpQj0ZWIQ32H1izCjojIZXNx/+D9q+b3A2MDMdo5Gj39PatusqonBgAAaI0HTj8QPz7341jIL9T8Xv/KpSur5u/1xAAAQDt6ceDFlvb/68qvm9LO3q696+6/VrwWEbHi3qB6YtrVjirIKBQKMT09HWNjYzX3nzp1KkZHRzddkHHu3LkoFAo1iy6SyWQcPXp0zf6SyeSm+gIAgO2mVChFpVyJ42eOr9ieyqTiCxe+EON945HL5uKJqSdWxd6Om7kAAIDmOXLqyIZ/HCkVSlGYLsTJsZM19/ee6o2LoxdXzOHriQEAAFqnO90dqUwq3njpjZrFFXMTc6t+H6gnBgAAaJ3OVGdcmbmy5v6llTA6U50NxbSrXa1O4HZaKsRIpWr/UNPT0xPT09NRLpc31e7Zs2fXXNkil8vF1NTUptoDAIB2MjM2s2YRxdKPKoXpwvIS4x935NSR6B/tj2wuGwNjA+sWYyzdmHV0uHbB89KNWQAAwPYwMzYTEWv/mNLV0xWF6cKKJcvriQEAALbG0vf6t5p/Z3PZeGvirVjIL6zYPjk8GQ+febhmQXU9MQAAQGscTB9c93PB0meHj8/j64lpVztqhYx8Pr/uihRLhRozMzMbXiVjYmIiyuVynD59uhkpAgBA27k8fTny4/n4k8t/UvNJuQfTB6MwXYiF/EJDVe0buTErP56PSrlyRyxnCAAA7e7d/Lvrzs2X5vZXZq4s/+BSTwwAANA8cxNzMTs2GxGx/DTbyScnl7f1ZntXPVwpkUzE0OxQTI1MRSKZiH0H9kVxvhg9/T3RO9hbs596YgAAgNZ44PQD8eNzP46F/ELNVe6uXFr9nX09Me1qRxVkFAqF6OrqWnP/UrFGoVDYcJsvvfRSRESk0+mIuFn0MTMzE0ePHl3ediv1xAAAwHaxt2tvLOQXolQo1fwA1SxuzAIAgO1jIb8QV2auxKGjh9b8HFAqlGJv194121ia3398Nb16YgAAgObpHeytqyAikUzEwNjAlscAAAC3X3e6O1KZVLzx0hs1fxOYm5iLJ6aeaDimXe2ogoxisbi8CkYtS8Ua5XJ5w23m8/nl/3/u3LlIp9MxNDQU+Xw++vv7Y2RkZM3VNqanp6NQKEQmk9lwzJJrN67F+zfeX35996674+677t5w3nyk2lGNalSj2lGNxVhsdTptz3g21502njdu3Gh1CnHjxo1YXFzcFrncCYxncxnP5jOmjblx/UZ8eP3D5deVq7WXEXxi6okoFUprrlxRLpQjItYt1tiqm7nuBOb+fNJ2miN6f91e/LvHWlwbrMW1QcTG5/1LCtOFKBVKkcqkom+oLxbyC3G+/3wcHzm+qjD6WvHauqvkLc3vP75keT0xd4IPPvwg9tzYs/zavL99bKf5OZvn/LU/57C9OX/tzzlsb9WOaqtT2JF8598c3n+az5g2l/FsLuPZfMa0uaodVd+1N9Gd9tvFYkdr/xurxq3n/Uv32dzqe/dsLhvjfePxwOkHVtzbMzk8GQ+febjmw1PriWlHO6ogY6OFFu+9996G2ywWi5FMJmN8fDzOnDmzvD2dTkcul4vDhw9HLpdbVWCxVBhSK6azszNmZ2fXXS1j5O9HVrz+w/Qfxh8d/aMN581HqlGNa//sWhSjGB3R0ep02p7xbK47bTxff/31VqcQi4uL8ctf/jIiInbt2tXibNqf8Wwu49l8xrQxb//92/GLH/5i+fVvP/ztmseud8PU3MRcdKe7ax6z1Tdz3QnM/fmk7TRH3A7zOz7i3z3W4tpgLa4NIuqb9x8/c3x5W3e6O7K5bIx2jsbQ7NCKH1Q2Ojf/4L0PGoq5E5j3t6/tND9n85y/9ucctjfnr/05h+3tH6/9Y6tT2JHM/ZvD+0/zGdPmMp7NZTybz5g2VzWqceOXN4sHWv1d+89e/FlL+4+I+Ozjn20ovlm/XWyHsYiIiLWfXXpbvF95v+b2uYm5mB2bjYiIKzNXIiJi8snJ5W292d7oG+pbEZNIJmJodiimRqYikUzEvgP7ojhfjJ7+njVX2asnph3tqIKMrbBU5LG0usbHJZPJyGQyMTw8HPPz8yv2DQ4O1mwvmUzG4OBgZLPZVTEfN/ovR6Mz8dHNaHfvujvuXlAxX49qRzWKUYyud7uio2py0Sjj2Vx32nieOHGi1SksV84+/PDDsXu3fwYbZTyby3g2nzFtzH9/7L+PD5/+6Em5/+W//Jf41oPf2lQbF89djIiIgRdWLzl+O27muhOY+/NJ22mOuB3md3zEv3usxbXBWlwbRGxu3r/eDyq9g72Ry+bi6fmntyTPO515f/vaTvNzNs/5a3/OYXtz/tqfc9jmrrU6gZ3J3L85vP80nzFtLuPZXMaz+Yxpc1U7qnHovz20Lb5rf+e5d1rafzNyqHZU4zcHfxNXXrnS0PXZFavv696Jqtdqr5DRO9hbV0FEIpmIgbHV9wA1O6bd7Khf2ZLJ5IZWyThw4MCm2/zkChhL+vv7Y2JiIvL5/LorXnzcsWPHYmJiIgqFwvJKGp+0d/feuHf3vSs3Wk2yLouxGB3RER3VjthV9STARhnP5rrTxrPVE84lu3btit27d2+bfNqd8Wwu49l8xrR+u3fvjrjno9eJ3yQ2Fb+QX4jpkenI5rIrCiuWuJlrY8z9+aTtNEf03rr9+HePtbg2WItrg0bn/UsOHTsUcxNzUSqUlouvE8nEhgqr9x3Y91H/dcTcCfbdtc+8v01tp/k5m+f8tT/nsL05f+3POWxvbr5sDd/5N4f3n+Yzps1lPJvLeDafMW2uxVjcNt+13wnn0/XZXFbBuT121JVaaxWLjysWixFxs8his22uFbO0f2ZmZsNtLrWVz+c3HAMAANtNLpuLk2Mn66qoP3TsUJQKpSgVSsvbduqNWQAA0A4SyZuFHAv5heVte7v2rhtzrXhtRWy9MQAAAAAAAK2yowoyUqnUctFFLUurZ6y1KkUtG1314uMrcwwPD0dPT8+G+wAAgHaTy+aib7gv+ob66opv1s1cAABAc0wOT8Zf9PzFpmI6U53L8/Ralgqul1bUqDcGAAAAAACgVXZUQUY6nV5RGPFJhUIhIiIymcyG2zx27FhExJrtLhWAfLxwY2ZmZkOFIRst9gAAgO1kamQqDh07FMfPHF/zmNt1MxcAANAcCzMLG5qPd6e7l7cdTB9cd5W7pRXxUpmPHpJUTwwAAAAAAECr7G51ArfT6dOn49y5c5HP52sWO1y6dGlTxRgREYODgzEyMhLT09MxODi4av/8/HxERBw9enR5WyaTidHR0TXbvHTpUiSTyU2t1AHQDl4ceLHVKcRix2J8+uufbnUaAHes2fHZ6OrpqrkyRqVc+Wjlizpv5ipMF9aMcWMWAABsncOZwzE0OrTm/iuXrkQimVhRIP3A6Qfix+d+HAv5hRVz+4/HfHL+Xk8MAAAAAABAq+y4FTIymUy89NJLNfdPTEzEyMjIqu3lcnm56OKTUqlUDA4OxtmzZ9ds88yZM5FMJpe3nT59OsbHx2seXygUYmJiIl544YUN/I0AAGD7mJuYi4ioWYxRKpRWFFMczhyOkdLqufeStW7miohYyC+sGePGLAAA2BoPnH4gZsdna+4rFUoxNzEXAy8MrNjene6OVCYVb7z0Rs24uYm5OD5yvOEYAAAAAACAVtlRBRkREblcLiYmJiKfz6/YPjw8HGfOnKm5Qsb4+HicO3custlszTZfeOGFKJfLq4osstlspFKpVathpNPpKJfLce7cuRXbC4VC9PX1xZkzZ2qutgEAANvVQv7mihe1ijEiIgrThRVPt71dN3MBAADN0Z3ujkq5EhfPXVyxvVQoxXjfeDx85uHoHexdFZfNZeOtibdWFVZPDk/Gw2cerllUXU8MAAAAAABAK+xudQK3WzKZjNnZ2RgZGYlkMhkHDhyI+fn56O/vX7MIIpPJRDKZjFOnTq3b5tmzZ5eLNsrlcmSz2Rgaqr2E+5kzZ2J6ejqGh4ejWCxGuVyOZDIZFy5ciHQ63Zy/LAAA3AalQily2VwczhyOK8NXVu2vFCtRmC6sWBGjO90dhelCXDx3MY6fOb6irVvdzDXeNx4PnH5gRYGHG7MAAGDrHT9zPArThZgcnoxKsRKVciUSyUR84cIXVszPPy6RTMTQ7FBMjUxFIpmIfQf2RXG+GD39PTXn/PXGAAAAAAAAtMKOK8iIuFlAMTY2tuHj0+l0lEqlW7b5yZUwbiWTydRckQMAANrJ+f7zUSqUojS+9py5M9W5atvtupkLAABonlQmtelC6EQyEQNjA7c+sMEYAAAAAACA221HFmQAAADN8/T803XH3q6buYCt8eLAi61OIR6ffLzVKQAAAAAAAAAAO9SuVicAAAAAAAAAAAAAAADQbqyQAQAAAAAAAAAAAABQh5+9+LN457l3YlfVc/JhJ/JfPgAAAAAAAAAAAAAAwCYpyAAAAAAAAAAAAAAAANgkBRkAAAAAAAAAAAAAAACbpCADAAAAAAAAAAAAAABgkxRkAAAAAAAAAAAAAAAAbJKCDAAAAAAAAAAAAAAAgE1SkAEAAAAAAAAAAAAAALBJCjIAAAAAAAAAAAAAAAA2aXerEwAAAACo14sDL7Y6hYiIeHzy8VanAAAAAAAAAADcZlbIAAAAAAAAAAAAAAAA2CQFGQAAAAAAAAAAAAAAAJukIAMAAAAAAAAAAAAAAGCTdrc6AQC43X724s/inefeiV3V1tUlPj75eMv6BgAAAAAAAAAAAKBxVsgAAAAAAAAAAAAAAADYJAUZAAAAAAAAAAAAAAAAm7S71QkAwE704sCLrU4hIiIen3y81SkAAAAAAAAAAAAAtCUrZAAAAAAAAAAAAAAAAGySggwAAAAAAAAAAAAAAIBNUpABAAAAAAAAAAAAAACwSQoyAAAAAAAAAAAAAAAANklBBgAAAAAAAAAAAAAAwCYpyAAAAAAAAAAAAAAAANik3a1OAAAAAKDdvTjwYqtTiMWOxSh2F+Od596JXdXWPYPj8cnHW9Y3AAAAAAAAANxOVsgAAAAAAAAAAAAAAADYJCtkAMAO1uiTnJv1FGZPUQYAAAAAAAAAAADajRUyAAAAAAAAAAAAAAAANskKGQAAAAAAAAAAAAAANKRyo1J37NXrV+OvfvZXUfjHQqT+WSq+9Nkvxf49++tqK7E7UXcesFkKMgAAAAAAAAAAAAAAaMgf/80fN6WdN66/EV/7u6/VHf+9k99rSh6wEbtanQAAAAAAAAAAAAAAAEC7sUIGANByLw682OoUIiLi8cnHW50CAAAAAAAAAABAW/rrP/zrumOfm3ku5t6bi8XqYuzq2BW9B3rj60e/3sTsYGsoyAAAAACgaRTbAgAAAAAAwM6U2J2oO/arD301vvPT78T8b+aj51M98ZUHv9JQe3C7KMgAAAAAAAAAAAAAAKBl9u/ZH2f++zNR7C5G10JX7KruanVKsCGuVAAAAAAAAAAAAAAAgE2yQgYAAAAAd5wXB15sdQoREfH45OOtTgEAAAAAAACALaIgAwDgv2r1TXuLHYvx6a9/uqU5AAAAAAAAAAAAABuzq9UJAAAAAAAAAAAAAAAAtBsrZAAAbCM/e/Fn8c5z78SuamvrZh+ffLyl/QMAAAAAAAAAAMB2pyADAIBVXhx4sdUpRITCEACg/W2HedVix2J8+uufbnUaAAAAAAAAAHec1j56GQAAgP8/e38Y29ad34neP3ucmvZOZyh5F7Xc7mJN9XkRxcXOUE6fHdu92E6kblFYD3A3on0D3Mzui4nU4rnIAMVWioGLi2deufIWHTT7oiNmXjW9CBxquxfQXFygYmY7iJ0+qCXOFE0ULLais9laSnE3JD2dxsyMYz0v/JCxIlIWKVoUrc8HMCY85/zO+ft/jjl/kud7/gAAAAAAAAAAQA8SyAAAAAAAAAAAAAAAAGjRoW43oBsqlUpcvnw5IiKOHTsWKysrMTo6GuPj4zvedzabjVwuF8lkMiIiUqlUzMzM7Ho7AAAeB6+Nvbaj+nsH7kVpoBS3fv9WHFxvP4v83PxzO2oHAAAAAAAAAAAAj599F8ioVCoxPDwcuVwu0ul0ffnk5GTcuHGjaXhiO/t95plnYmRkJBYWFurLi8ViTE9Pb9rvo2oHAAAAAHzWX732VzsOqe6UkCsAAAAAAADwuOneL7BdkslkYnx8fEMIIiJidnY2stls5PP5tvZbC2N8NkgxOTkZ2Wx219oBAAAAAAAAAAAAAAA8evtqhoxisRj5fD5mZ2cbrr9w4ULMzMzEyMhIS/u9cuVKFIvFhrNaJJPJOH369K60AwCAR+O1sde63QRPlAYA6JC9MLaLML4DAAAAAACAx8G+CmTUAhCpVKrh+sHBwchms1GpVCKZTG57v5cvX46JiYmG63K53K61AwCAx9deuHHwv1f/+5brq5VqvHn5zYiIOHrsaJRWSjE4OhhD40O70TwAYI/bC+OZvWQv9Me9A/fi53/757vdDHqMcT8AAOwPxv4AAPD4M+7vjH0VyCgUClsGHGoBicXFxW3PTjE3NxeVSiUuXrzY1XYAAEA3VSvVyA5nI5PLxEB6oL58fnI+bt24FaMzo11sHQAA0AnG/QAAsD8Y+wMAwOPPuL9z9lUgo1gsRn9/f9P1tZBEsVjc9j6vXr0aERHpdDoi7octFhcX4/Tp0/Vlu9EOAADoplwmF0+OP7nhA1pExNjsWMz0zcTg6GCkRhrPEAcAQPf81Wt/Fbd+/1YcXD/YtTY8N/9c145Na4z7AQBgfzD2BwCAx59xf+fsq0BGqVSqzz7RSC0kUalUtr3PQqFQ/+8rV65EOp2OiYmJKBQKMTo6GtPT05tmudhJO37yk59ERMSPfvqjSBxK1Jc/cfCJeOJzT2y73XzqJ/d+Ev9X4f+KzM9l4mcO/ky3m9Pz9Gdn6c/O06edpT87S392nj7trJ+s3x+L1sakNeViOYr5YpyfPd+wbujCUFyfue5DWouM/WnGexvNuDZoxrVBM3vl2vjf/1//e9eO/aCLf7L9WZAfZ3fu3IkI4/7d9tEnH8Xhu4frr437e8deeS+lPc5f73MOe5vz1/ucw962fmC94XJj/0fDd/6d5f2n8/RpZ+nPztKfnadPO0t/dpb+7Cz3+uyOfRXI2G7Q4sMPP9z2PkulUiSTychmszE1NVVfnk6nI5fLxcmTJyOXy20IZeykHR9//HFERPyv3/9fNyz/9fSvx2+c/o1tt5tP/eTeT+LO39+J0kDJm3cH6M/O0p+dp087S392lv7sPH3aWT/+6McR8emYtGZxdjEiIvpSfQ3r+gf7o5AtRLVSjUQy0XAbNjP2pxnvbTTj2qAZ1wbNuDY2+sP/9x92uwkREfFLz/1SV4+/uroaEcb9u236z6Y3vDbu7x3eS3ub89f7nMPe5vz1Puewt/3dnb9ruNzY/9HwnX9nef/pPH3aWfqzs/Rn5+nTztKfnaU/O8u9PrtjXwUyHoVauKI2q8WDkslkjIyMxOTkZKysrHT0uN/8lW/GwD/4dIqYJw4+EU+sScy34+/v/n28+eab8dyR5+IfHPoH3W5Oz9OfnaU/O0+fdpb+7Cz92Xn6tLPu/PhOw+UfFD7Y8sNX7cPb6uKq5HwbjP35LO9tNOPaoBnXBs24NvamW79/q7vH/3Hj4xv3P1oz/2Im+hKf/vBl3N87vJf2Nuev9zmHvc35633OYY9r/JW/sf8j5jv/zvD+03n6tLP0Z2fpz87Tp52lPztLf3aWe312x74KZCSTyW3NTnHs2LGW9/ngDBgPGh0djbm5uSgUCpFOpzvWjsTnEvH5Q5/fuLDxbJI8xIH1A/HJJ5/EgfUDcXD9YLeb0/P0Z2fpz87Tp52lPztLf3aePu2wJuPNcrEcR/qPNC2rfYArF8uPolWPPWN/Pst7G824NmjGtUEzrg0aMu7viqOfO2rc36O8l/Y256/3OYe9zfnrfc5hbzuwfqDhcmP/R8t3/p3h/afz9Gln6c/O0p+dp087S392lv7sMN/574p9FchoNIvFg0qlUkTcD0y0ss9KpdK0pnbMxcXFeiBjJ+24d+9eRERUqpU4+rmj224nzX30yUcREVGuluPjz338kK15GP3ZWfqz8/RpZ+nPztKfnadPd+beJ/c2fDAr//39D1m1MWnNndKdplMYRkT9A1y1Uu18Ix9jxv40472NZlwbNOPaoBnXBhHG/d1W6+dy1Y9avcp7aW9z/nqfc9jbnL/e5xz2ls+O/SvVyv3lxv67wnf+neX9p/P0aWfpz87Sn52nTztLf3aW/twZ3/l3x74KZKRSqVhcXGy6vjZrRSq1/alV0ul0FIvFh2734IwYO2lHuXz/H8bl/+/lbbeR7Zn+s+luN+Gxoj87S392nj7tLP3ZWfqz8/RpZ9XGpDXb/fD10YcfPYrmPLaM/XkY720049qgGdcGzbg2aMS4f3f87d/+bURE/G/X/7cut4Sd8l7a25y/3ucc9jbnr/c5h73tb//2b+Of/JN/Un9t7P9o+M7/0fD+03n6tLP0Z2fpz87Tp52lPztLf3aW7/wfrX0VyEin05HP55uurwUrRkZGtr3Pp59+Oubm5prOklGb7aI2O8ZO2/HP//k/j7/4i7+In/u5n4uDB03FAwDAo3P3J3fj3sefJuTv3bsX/3fl/46n/59Pd7FV+4exPwAAu8G4v7u+/OUvG/cDALArmo39v/zlL3exVfuH7/wBANgNvvPvjn0VyLh48WJcuXIlCoXChoBEzY0bN1oKY0REjI+Px/T0dOTz+RgfH9+0fmVlJSIiTp8+3ZF2HDp0KJ5+2j8KAAC64xfjFzctSyQT20rOHz1mCu5WGPsDANAtxv27x7gfAIBuMvbfPcb+AAB0i3H/o7evItfpdDpGRkbi6tWrDdfPzc3F9PTmKW4qlUo9dPFZqVQqxsfH4/LlxlMKzs3NxdTU1IbZM9ptBwAA7EVH+o9suf5O6U5E3P8wBwAA9CbjfgAA2B+M/QEA4PFn3N9Z+yqQERGRy+Vibm4uCoXChuWTk5MxNTXVcGaKbDYbV65ciUwm03Cfr7zySlQqlchmsxuWZzKZSKVSMTMz05F2AADAXtSX6qt/EGuklqjvS/XtVpMAAIAOM+4HAID9wdgfAAAef8b9nXWo2w3YbclkMpaWlmJ6ejqSyWQcO3YsVlZWYnR0NMbHxxvWjIyMRDKZjAsXLmy5z8uXL9dDG5VKJTKZTExMTHSsHQAAsBcdTx+PYr7YdH25WI6IiNRIareaBAAAdJhxPwAA7A/G/gAA8Pgz7u+sfRfIiLgfhpidnd329ul0Osrl8kP32WgmjE62AwAA9qJTF0/FW1feirXCWgykBzatX72x6gMaAAD0OON+AADYH4z9AQDg8Wfc31kHu90AAACgtw2kByI1koq3r77dcP3y3HKcnT67y60CAAA6ybgfAAD2B2N/AAB4/Bn3d5ZABgAAsGOZXCbenXs31gprG5bPT87HmakzUvMAAPAYMO4HAID9wdgfAAAef8b9nXNgfX19vduNAAAAel+1Uo2F6YVIJBNx9NjRKK2UYnB0MIbGh7rdNAAAoEOM+wEAYH8w9gcAgMefcX9nCGQAAAAAAAAAAAAAAAC06GC3GwAAAAAAAAAAAAAAANBrBDIAAAAAAAAAAAAAAABaJJABAAAAAAAAAAAAAADQIoEMAAAAAAAAAAAAAACAFglkAAAAAAAAAAAAAAAAtEggAwAAAAAAAAAAAAAAoEUCGQAAAAAAAAAAAAAAAC0SyAAAAAAAAAAAAAAAAGiRQAYAAAAAAAAAAAAAAECLBDIAAAAAAAAAAAAAAABaJJABAAAAAAAAAAAAAADQIoEMAAAAAAAAAAAAAACAFglkAAAAAAAAAAAAAAAAtEggAwAAAAAAAAAAAAAAoEUCGQAAAAAAAAAAAAAAAC0SyAAAAAAAAAAAAAAAAGiRQAYAAAAAAAAAAAAAAECLBDIAAAAAAAAAAAAAAABaJJABAAAAAAAAAAAAAADQIoEMAAAAAAAAAAAAAACAFglkAAAAAAAAAAAAAAAAtEggAwAAAAAAAAAAAAAAoEUCGQAAAAAAAAAAAAAAAC0SyAAAAAAAAAAAAAAAAGiRQAYAAAAAAAAAAAAAAECLBDIAAAAAAAAAAAAAAABaJJABAAAAAAAAAAAAAADQIoEMAAAAAAAAAAAAAACAFglkAAAAAAAAAAAAAAAAtEggAwAAAAAAAAAAAAAAoEUCGQAAAAAAAAAAAAAAAC0SyAAAAAAAAAAAAAAAAGiRQAYAAAAAAAAAAAAAAECLBDIAAAAAAAAAAAAAAABaJJABAAAAAAAAAAAAAADQIoEMAAAAAAAAAAAAAACAFh3qdgMAAIDHw1phLRZnF6NaqsZaYS0SyUQMTw7H8MRw05pqpRpvXn4zIiKOHjsapZVSDI4OxtD4UNdrAAAAAAAAAAAAtnJgfX19vduNAAAAettSdikiYkP4opgvRi6TiyP9R2JiaSISycSGmmqlGtnhbGRymRhID9SXz0/ORyKZiNGZ0U3H2a0aAAAAAAAAAACAhznY7QYAAAC9rVwsR7VS3TQTRmokFV9742tRLpYjl8ltqstlcvHk+JMbQhIREWOzY1HIFqKYL3atBgAAAAAAAAAA4GEEMgAAgB1ZnF3cFMaoGUgPRGokFcV8McrFcn15uViOYr4YpydPN6wbujAU12eub1i2WzUAAAAAAAAAAADbIZABAADsyM38zfiDk38Q1Uq14frj6eMREbFWWKsvW5xdjIiIvlRfw5r+wf4o5osb9rlbNQAAAAAAAAAAANtxqNsNoDV3796NH/zgB/FzP/dzcfCgPA0AALvn3r178bd/+7fx5S9/OQ4d+vSjxJH+I7FWWItysRwD6YFt7euDwgeRSCaarq8FKFYXVyM1ktrVmr3C2B8AgG5oNu7n0TDuBwCgW4z9d5exPwAA3WDcvzv0bI/5wQ9+EL/8y7/c7WYAALCP/cVf/EU8/fTT9dfPLzwf5WK56SwUlWIlImJDWKNcLMeR/iNNj1ELUZSL5V2v2SuM/QEA6KbPjvt5NIz7AQDoNmP/3WHsDwBANxn3P1oCGT3m537u5yIi4s///M/jF37hF7rcmsfD3bt3o1AoRDqdlv7qAP3ZWfqz8/RpZ+nPztKfnadPd+buT+7GvY/v1V/fWr0V/8PI/1Afkz6oWRgjImJ5bjkG0gMbtrlTurNlTS1EUa1Ud71mrzD2pxnvbTTj2qAZ1wbNuDZo5G/+5m/iK1/5SsNxP51X6+e/+Iu/iIGB7c04yN7ivbS3OX+9zznsbc5f73MOe9va2lr88i//srH/LvGdf2d5/+k8fdpZ+rOz9Gfn6dPO0p+dpT87y3f+u8OV2mNq0xYeP37cB7QOuXv3brz33nvxC7/wC968O0B/dpb+7Dx92ln6s7P0Z+fp0535s//Pn8X3v/n9+uvbB29HRLQ0lfb1K9cjImLslbENy7cbgPjow492vWavMPanGe9tNOPaoBnXBs24Nmjk7t27EdHauJ/21fp5YGDAuL9HeS/tbc5f73MOe5vz1/ucw8eDsf/u8J1/Z3n/6Tx92ln6s7P0Z+fp087Sn52lPzvLd/67w5UKAAA0dO7SufjKb3+l/vr999+Pb/3St7Zdv1ZYi/x0PjK5TAykPekVAAAAAAAAAAB4vAhkAAAADR06fCgOHf70I8MTn3+ipfpcJhfnZ8/H0PjQpnWJZGJbs1ccPXZ012sAAAAAAAAAAAC2w/wjAABAx+UyuRieHI7hieGG64/0H9my/k7pTkTcD1Tsdg0AAAAAAAAAAMB2CGQAAAAdtTC9ECeePhFnp8423aYv1VcPQzRSm9WiL9W36zUAAAAAAAAAAADbIZABAAB0zFJ2KfoH+xuGMWrhh4iI4+njG15/VrlYjoiI1Ehq12sAAAAAAAAAAAC2QyADAADoiOW55YiIGJ4Y3rSuXCxHMV+svz518VRERKwV1hrua/XG6qaQxG7VAAAAAAAAAAAAbIdABgAAsGNrhbW4U7rTMIwREVHMF2MgPVB/PZAeiNRIKt6++nbD7ZfnluPs9MZZNnarBgAAAAAAAAAAYDsOdbsBAABAbysXy5HL5OLkyMlYnVzdtL5aqkYxX4zp8vSG5ZlcJrLD2Th18dSGsMb85HycmTrTcOaK3aoBAAAAAAAAAAB4GIEMAABgR14dfTXKxXKUs+Wm2/Sl+jYtSyQTMbE0EQvTC5FIJuLosaNRWinF4OhgDI0PNdzPbtUAAAAAAAAAAAA8jEAGAACwIy+uvNh2bSKZiLHZsT1ZAwAAAAAAAAAAsJWD3W4AAAAAAAAAAAAAAABArxHIAAAAAAAAAAAAAAAAaJFABgAAAAAAAAAAAAAAQIsOdbsBvWZycjIymUyMjIzsaD+VSiUuX74cERHHjh2LlZWVGB0djfHx8U40EwAAAAAAAAAAAAAAeIQEMrahWCxGPp+P2dnZKBQKkclkdrS/SqUSw8PDkcvlIp1O15dPTk7GjRs3YmZmZqdNBgAAAAAAAAAAAAAAHqGD3W7AXpfNZmN6ejoiomNBiUwmE+Pj4xvCGBERs7Ozkc1mI5/Pd+Q4AAAAAAAAAAAAAADAoyGQ8RATExORy+ViYmIi+vv7d7y/2mwbk5OTDddfuHDBDBkAAAAAAAAAAAAAALDHCWTsstnZ2YiISKVSDdcPDg5GPp+PSqWyi60CAAAAAAAAAAAAAABaIZCxywqFQiSTyabra0GNxcXFXWoRAAAAAAAAAAAAAADQqkPdbsB+UywWo7+/v+n6WlijWCxuuZ979+7FJ5980smm7VuffPJJvT8PHDjQ7eb0PP3ZWfqz8/RpZ+nPztKfnadPO+vevXvdbsK+ZOzPZ3lvoxnXBs24NmjGtUEjxv3d8cknnxj39yjvpb3N+et9zmFvc/56n3PY24w/u8N3/p3h/afz9Gln6c/O0p+dp087S392lv7sLN/57w6BjF1WKpXqs2A0UgtrVCqVLffz53/+5/Gf//N/rr/+3Oc+F4cOOZ3tuHfvXvy3//bf4t69e3HwoEljdkp/dpb+7Dx92ln6s7P0Z+fp08768MMPu92EfcnYn8/y3kYzrg2acW3QjGuDRoz7u+P69evR19dXf23c3zu8l/Y256/3OYe9zfnrfc5hbyuXy91uwr7kO//O8P7Tefq0s/RnZ+nPztOnnaU/O0t/dpbv/HeHEf0ue1jQouZh/wC+/e1vb/hA9s/+2T+LL33pSzto2f61vr4et2/fjoiQpusA/dlZ+rPz9Gln6c/O0p+dp08760c/+lG3m7AvGfvzWd7baMa1QTOuDZpxbdCIcX93/OEf/qFxf4/yXtrbnL/e5xz2Nuev9zmHve3v/u7vut2Efcl3/p3h/afz9Gln6c/O0p+dp087S392lv7sLN/57w6BjB51/onz0Zf49GlZT/z1E3Ho5u6ezszrmV093qNy9+7d+PM///P4yle+4qkDHaA/O0t/dp4+7Sz92Vn6s/P0aWe9//778Y1vfKPbzdh3jP35LO9tNOPaoBnXBs24NmjEuL87/v2///fx8z//8/XXhw8fjsOHD3exRWzXo3wvzV3IdXR/7XqcPxP6/8Le5xz2Nuev9zmHve3WrVvx4osvdrsZ+87LL78cv/ALv1B/vV/H/jsd664fWI8DP3cgDv3toTiw3v6Nmo/zWLdV3tM7S392lv7sPH3aWfqzs/RnZ/nOf3e4UndZMpnc1iwZx44d23L90c8djZ/93M9uXHhvBw1rw+PygbA2/ePhw4e9eXeA/uws/dl5+rSz9Gdn6c/O06ed9cQTT3S7CfuSsT+f5b2NZlwbNOPaoBnXBo0Y93fHP/yH/zD+0T/6R91uBm14lO+ln7v3uY7ur12P82dC/1/Y+5zD3ub89T7nsLf9zM/8TLebsC/19fUZ+8fOx7r3DtyLg3EwI0NdEAABAABJREFUDt47GAfXD7a9n8d5rNsq7+mdpT87S392nj7tLP3ZWfqzs3znvzvaH5HSlv7+/i3Xl0qliLgf3AAAAAAAAAAAAAAAAPYmgYxdlkql6qGLRmqzZ6RSqV1qEQAAAAAAAAAAAAAA0CqBjF2WTqfroYtGisViRESMjIzsUosAAAAAAAAAAAAAAIBWCWTssosXL0ZERKFQaLj+xo0bwhgAAAAAAAAAAAAAALDHCWQ8ApVKJaanpyOfz29al06nY2RkJK5evdqwdm5uLqanpx91EwEAAAAAAAAAAAAAgB0QyGhBsViMiPuBi61ks9m4cuVKZDKZhutzuVzMzc1tmiVjcnIypqamzJABAAAAAAAAAAAAAAB73KFuN2Cvm5ubi9nZ2YiIWFxcjIiIF154ob4sk8nExMTEhpqRkZFIJpNx4cKFhvtMJpOxtLQU09PTkUwm49ixY7GyshKjo6MxPj7+CP82AAAAAAAAAAAAAABAJwhkPMT4+HjLIYl0Oh3lcnnLbZLJZD3UAQAAAAAAAAAAAAAA9JaD3W4AAAAAAAAAAAAAAABArxHIAAAAAAAAAAAAAAAAaJFABgAAAAAAAAAAAAAAQIsEMgAAAAAAAAAAAAAAAFokkAEAAAAAAAAAAAAAANAigQwAAAAAAAAAAAAAAIAWCWQAAAAAAAAAAAAAAAC0SCADAAAAAAAAAAAAAACgRQIZAAAAAAAAAAAAAAAALRLIAAAAAAAAAAAAAAAAaJFABgAAAAAAAAAAAAAAQIsEMgAAAAAAAAAAAAAAAFokkAEAAAAAAAAAAAAAANAigQwAAAAAAAAAAAAAAIAWHep2AwAAAAAAAIC96bWx17rdhIiIeG7+uW43AQAAAABgEzNkAAAAAAAAAAAAAAAAtEggAwAAAAAAAAAAAAAAoEWHut0AAAAAAAAAAGjHX732V3Hr92/FwfXuPYvwufnnunZsgEdtKbsUy7nlSCQTERGRTCVjdGa04bbVSjXevPxmREQcPXY0SiulGBwdjKHxoab7b6cGAABgLxHIAAAAAAAAAAAA6qqVavzRM38UJ0dOxvMLz9eXl4vlWJhe2BTKqFaqkR3ORiaXiYH0QH35/OR83Lpxq2GIo50aAACAvaZ7jwkBAAAAAAAAAAD2nFoY47OhiO9OfjcK2cKm7XOZXDw5/uSGYEVExNjsWBSyhSjmix2pAQAA2GsEMgAAAAAAAAAAgIiIuH7lepSL5YYzVCSSiThx+sSGZeViOYr5YpyePN1wf0MXhuL6zPUd1wAAAOxFh7rdAAAAAAAAoHeUi+W4NnMtIiKqpWpUK9VIjabi7NTZhtsvZZdiObccw5PDkRpJRSKZiHKxHGuFtXjn6jtx7tK5TU/EjYioVqrx5uU3IyLi6LGjUVopxeDoYAyNDzVtWzs1QG94bey1ju/z3oF7URooxa3fvxUH17f3HLvn5p/reDsAYK+5dvlapCfSDddlcplNyxZnFyMioi/V17Cmf7A/CtlCVCvVSCQTbdcAAADsRQIZAAAAAADAtizPLcetG7dibHZsw/LscDaWZpfixZUXN9VUK9Uo5otRzBc3LE8kE5HJZZqGMbLD2U3r5yfn49aNWw2f1NtODQAAsNHy3HJUK9U4dfHUtms+KHywZWiiFrpYXVyN1Eiq7RoAAIC9aHuPegEAAOig5bnlbjcBAABoUbVSjXeuvtMw2DD2yliUi+WYn5xvWHt+9nycmToTQ+NDkZ5Ix/nZ8zFdnm56Y1Uuk4snx5/cFNYYmx2LQrawKdzRbg0AAOwXdz++Gx//6OP6n5/83U8abvfO1XciIurj6rXCWixll2KtsNZ03+ViOY70H2m6vha8KBfLO6oBAADYi8yQAQAA7KpqpRq5TC7Oz56Ppy48ZapxAADoEauLq7E8txwL0wubQhm1m7Vu5m82rG1l7F8ulqOYL8b52fMN1w9dGIrrM9c3hDnaqQEAgP3k2uVr8f1vfr/++nbcbrjdg8GL61eux0B6IIYnhmOtsBavjr4aZ6fPbhpX3yndqc9o0UgteFGtVHdUAwAAsBcJZAAAAB01PzkfT2WeanqjU+1pVt+d/G58d/K7W+4rk8vE0PhQREQsZZdiObccw5PDkRpJRSKZiHKxHGuFtXjn6jtx7tK5TU/Cjbj/Y82bl9+MiIijx45GaaUUg6OD9f0CAADbc6T/SCSSiTh67GjTbToRuF6cXYyIaHpzVv9gfxSyhahWqvXjtVPD3vTa2GvdbkJERDw3/1y3mwAA0FHnLp2Lr/z2V+qvb926Fd8a+tam7e6U7kQimYil7FKcnTpbXz6QHohMLhN/cPIPIpPLbPgNYLuhiY8+/GhHNQAAAHuRQAYAALBjtafRLs3en7b8qcxTW27bl+qLgfRAJPob3whVLVWjXCxvCE1UK9Uo5otRzBc3bJtIJiKTyzQNY2SHs5vWz0/Ox60btzY91RcAAGhuID0Q0+XphutqT9E9OXJyx8f5oPDBlqGJWuhidXG1fhNYOzUAALCfHDp8KA4d/vQ2oZ/50c803K4WlKjNUPGgRDIRqZFUfHfyu/HiyouPpqEAAAA9RiCDtnlKFQAAEfdnriguFCM1moqRmZF4dfTVLbe/deNWPL/w/JZTkS9ML8TIzMim5ednz0dppRSVYiUS/Yk4MXwihieGm+4nl8nFk+NPbgprjM2OxUzfTAyODroZCwAAOiA/nY++VN9DQ89rhbVYXVyNE6dPNAxVR9wPcTe6+aumFryozb7Xbg0AALBZIpmIaqXa9Lvz1GgqlueWY62wVh/T12oe5sHZ9tqpAQAA2IsEMgAAgB0ZnhiuhyJqT8V9mK3CGGuFtegf7G+4zVMXntryqbcPqs3acX72fMP1QxeG4vrMdYEMAAD2tbsf341PPv6k/vqnP/5pS/XlYjmuzVyLZCoZzy8833S7Yr4Y5WI5UiOpGJ4YjrXCWrw6+mqcnT67aUx+p3Rny88MteDFgzdvtVMD0I698MAyDysD4FE60n8kqpVq0+/ia2Pr1cXVeiBjq3B0xP3xekRs2Gc7NQAAAHuRQAYAALCrTk+e3nL94uxijM2O7fg4i7OLEdE8/NE/2B+FbGHLH5YAAOBxd+3ytfj+N79ff3374O1t1S3PLcetG7eiUqxEMpWMwdHBptvWxuRnp87Wlw2kByKTy8RM30xMLE1smC1ju6GJjz78aEc1AADAZgPpgW3NLPfgGLwv1Reri6sP3fbB7+vbqQEAANiLBDIAAIBdtdWPJwvTCzE6M9qR43xQ+GDLoEWtHauLq2bJAABg3zp36Vx85be/Un/9/vvvx7d+6VsPrRsaH4qh8aH661dHX42l2aUYe2Vs0zj8we0elEgmYmh8KHKZXLy48mKbfwMAAKCTTjx9Ipbnlps+zKg2c8WDoerj6eNRzBeb7rMW8Hjwu/h2agAAAPaig91uAAAAsDfd/fhufPyjj+t/fvrjnz7S460V1qJ/sH9bs1WsFdZiKbsUa4W1ptuUi+UtpzyvHWc7T/oCAIDH1aHDh+LwFw7X/zzx+Sfa2k8ml4nlueXIZXIt1Z14+kSUi+UN4/JEMrGtGS+OHju6oxoAAGCzWqC6WViitFKKiIgTp0/Ul526eCoioul39qs3Nj8YqZ0aAACAvcgMGQAAQEPXLl+L73/z+/XXtw/efuTHy+QyW25TzBejXCxHaiQVwxPDsVZYi1dHX42z02c3/TBzp3Rny9k4amGN7dy0BQAAbK0228Xy3HIU88Vt3zhVC0qvFdbq4/etgtURnz6R98Ewdzs1AADAZn2pvhgaH4prl681nO3u3bl348zUmQ1j64H0QKRGUvH21bc3zJxRszy3HM8vPL9hWTs1AADAo7GUXYrl3HJ9nJ9MJWN0ZrThttVKNd68/GZE3H8IUmmlFIOjg01ny263ppeYIQMAAGjo3KVz8dLtl+p/fusvf+uRHWt5bjmSqeSW29Ruzjo7dbb+48xAeiAyuUy8OvrqpqdobTdo8dGHH7XeYAAA2IeqleqWM8zVxvQrCyv1ZfOT8/Hy4MstHacv1VcPUDRrR227ndQAAACNjb0yFtVKNZaySxuW5zK56Ev1NbwxK5PLxLtz7276rn5+cj7OTJ1pGNpupwYAAOicaqUa2eFslFZK8fzC85HJZSKTy8TpydOxML3QdPtTF0/F6MxonJ06G2OzY7GysNJw+3Zreo0ZMgAAgIYOHT4Uhw5/+pHhic8/8ciOde3ytRh7ZWzLbZql4mtP4s1lcvHiyouPonkAAEBEzPTNRETEdHm64UwTR48djYiN4ei1xbVtBSUefCLu8fTxKOaLTWtqoZAHb85qpwYAAGgskUzExNJEvHn5zchlchFxf+w+lBmK4YnhLWsWphcikUxs66m37dQAAACd80fP/FGcHDm5KXT93cnvxuri6qbluUwunhx/ctMsd2OzYzHTNxODo4Obvodvp6bXCGQAAABdVS6WY62w1nBK8u068fSJWJ5bjnKxXH/ibSKZ2NYsGbWbxgAAgK0lkok40n+kYRgjIqK0UoqIiBPDJ+rLTo6cjImZiab7XL2xGolkYsPMFacunoq3rrzV9HPC6o3VTT/OtFMDAAA0l0gmGs6E8bCasdmtH77UiRoAAGDnrl+5HuViueF3+IlkIk6cPrFhWblYjmK+GOdnzzfc39CFobg+c33Dd/Ht1PSig91uAAAAsL8tzi5uuPmqHbUbwh6c1vxI/5Eta2pP6W12MxkAALBReiIdzy8833T98uvLkUgm4qkLT9WXnbp4KpaySw23LxfLsTy3vGm2vIH0QKRGUvH21bcbH2duOc5On91xDQAAAAAA7FfXLl+L9ES64bpMLrPp94DF2cWIiKb3+PQP9kcxX9zw8NR2anqRQAYAANBVN/M3HxrImJ+cj5cHX25pv32pvnroopHah7mdhkEAAGC/GJ0ZjWsz16KYL25al8vkIiLia298bUPoeSA9ENVKNa5fub5h+3KxHNnhbJyZOhND40Ob9pfJZeLduXc3hK4j7n82ODN1puHTstqpAQAAAACA/WZ5bjmqlWqcunhq2zUfFD7Y8qGntftvVhdXd1TTiw51uwEAAMD+tlZYa3gD1oZtFte2Fa4YSA/Ulx1PH294o1hNuViOiHBTFgAAtGBsdiyW55Yjl8lFoj8R1VI1qpVqHE8fj2/c/EbDH1bOTp2NYr4Y85Pz9e0TyUR87Y2vbRjDPyiRTMTE0kQsTC9EIpmIo8eORmmlFIOjg00/P7RTA828Nvbatra7d+BelAZKcev3b8XBdc9BAwAAAAD2vneuvhMRn95ns1ZYi9XF1Thx+kTT7+3LxXIc6T/SdJ+13wdq9+O0W9OLBDIAAICuqT25NtHfPA0fEXFy5GRMzEw0Xb96YzUSycSG2S5OXTwVb115K9YKaw0/LK7eWBXGAACANgyND7UccEiNpFoefyeSiRibHXvkNQAAAAAA8Di4+/Hd+OTjT+qvf/rjnzbc7sGZpq9fuR4D6YEYnhiOtcJavDr6apydPrvpO/07pTsb7sv5rFrwovZQ1XZrepFABgAA0DVbzXrxoFMXT8VSdimGJ4Y3rSsXy7E8txyZXGbD8oH0QKRGUvH21bcbBjKW55bj+YXn22s4AAAAAAAAAADsIdcuX4vvf/P79de3D95uuN2d0p1IJBOxlF2Ks1Nn68sH0gORyWXiD07+QWRymQ2hjO2GJj768KMd1fQicycDAAAdU5tCcLsfqGrb16YgbGYgPRDVSjWuX7m+qT47nI0zU2caPqE3k8vEu3Pvbkj2R0TMT87HmakzZsgAAAAAAAAAAOCxcO7SuXjp9kv1P7/1l7/VcLtqpRrVSrU+Q8WDEslEpEZS8d3J7z7q5j42zJABAADsyPLccizNLkVExOriakREzL8wX182lBlqOLNFRMSJ0ycikUzEzz/98w89ztmps1HMF2N+cj6qpfsfDBPJRHztja81nAEj4v6HxImliViYXohEMhFHjx2N0kopBkcHGwY4AAAAAAAAAACgFx06fCgOHf40HvDE559ouF0imYhqpdr0Qaap0VQszy3HWmGtfk9OreZhjh47uuk4rdT0IoEMAABgR4bGh9oONwykB2K6PL3t7VMjqZZntUgkEzE2O9Zq0wAAAAAAAAAA4LFzpP9I/UGozdZH3H8way2Q0Wg2jQfdKd2JiNiwz3ZqetHBbjcAAAAAAAAAAAAAAAB49Gohi4d5cHaLvlRfPUCx1bZ9qb4d1fQigQwAAAAAAAAAAAAAANgHTjx9IiI2Bi4eVAtRPBjcOJ4+3nT7iIhysRwREamR1I5qetGhbjcAAAAAAACA7npt7LVuNwEAAAAAgF0wND4U+el8FPPFGBof2rS+tFKKiIgTp0/Ul526eCreuvJWrBXWGs6wsXpjdVOwop2aXmSGDAAAAAAAAAAAAAAA2Af6Un0xND4U1y5fa7j+3bl348zUmUgkE/VlA+mBSI2k4u2rbzesWZ5bjrPTZzcsa6emF5khAwAAAAAAAADatFdmGXpu/rluNwEAAADoEWOvjEV2OBtL2aUYnhiuL89lctGX6ovRmdFNNZlcJrLD2Th18dSGGS/mJ+fjzNSZhrNdtFPTawQyAAAAAAAAAAAAAABgn0gkEzGxNBFvXn4zcplcRERUK9UYygxtCGg0qlmYXohEMhFHjx2N0kopBkcHY2h8qGM1vUYgAwAAAAAAAAAAAAAA9pFEMtFwJoyH1YzNjj3yml5ysNsNAAAAAAAAAAAAAAAA6DUCGQAAAAAAAAAAAAAAAC0SyAAAAAAAAAAAAAAAAGiRQAYAAAAAAAAAAAAAAECLBDIAAAAAAAAAAAAAAABaJJABAAAAAAAAAAAAAADQIoEMAAAAAAAAAAAAAACAFglkAAAAAAAAAAAAAAAAtEggAwAAAAAAAAAAAAAAoEWHut0AAAAAAACA/ez/+Df/Rxw7cqzbzQCAx8prY691uwnx3Pxz3W4CAAAA8IiZIQMAAAAAAAAAAAAAAKBFZsgAAAAAAAAA6BF74an/e8W9A/ciBrrdCgAAAAD2MzNkAAAAAAAAAAAAAAAAtEggAwAAAAAAAAAAAAAAoEUCGQAAAAAAAAAAAAAAAC0SyAAAAAAAAAAAAAAAAGiRQAYAAAAAAAAAAAAAAECLBDIAAAAAAAAAAAAAAABaJJABAAAAAAAAAAAAAADQokPdbgAAAAAAAAAAsDOvjb3W7SZERMRz8891uwkAAAAAu0Ygg5630y8W7x24F6WBUtz6/VtxcL39SWN8sQgAAAAAAAAAAAAAsH+0f/c5AAAAAAAAAAAAAADAPiWQAQAAAAAAAAAAAAAA0CKBDAAAAAAAAAAAAAAAgBYJZAAAAAAAAAAAAAAAALRIIAMAAAAAAAAAAAAAAKBFh7rdgF5RqVTi8uXLERFx7NixWFlZidHR0RgfH9/RPqenpyMiolQqRUTE008/HVNTUztvMAAAAAAAAAAAAAAA8MgIZGxDpVKJ4eHhyOVykU6n68snJyfjxo0bMTMz0/I+C4VCzM7OxszMTCSTyfryubm5GB4ejqWlpU40HQAAAAAAAAAAAAAAeAQEMrYhk8nE+Pj4hjBGRMTs7Gz09fXF6OhojIyMtLTP6enpWFhY2LR8fHw8SqVSTE5Oxuzs7I7aDQAAAAAAAAAAAAAAPBoHu92Ava5YLEY+n4/JycmG6y9cuNDyDBmFQiFSqVTT9RcuXIh8Pt/SPgEAAAAAAAAAAAAAgN0jkPEQtVkqmgUoBgcHI5/PR6VS2fY+ayGPZkqlUiSTyVaaCQAAAAAAAAAAAAAA7CKBjIcoFApbhiNqQY3FxcVt7zOdTkexWIxMJtNw/ezsbFy8eLGldgIAAAAAAAAAAAAAALvnULcbsNcVi8Xo7+9vur4W1igWi9veZyqViomJichmszE4OBizs7MxMjISEVGfbWNmZmZH7QYAAAAAAAAAAHjQa2OvdbsJAADwWBHIeIhSqVSfBaORWlijUqm0tN/Z2dkYHByM6enpGB0djYmJiRgcHIx0Oh2zs7MPrb9z9078+O6P66+fOPhEPPG5J1pqA/etH1iP9ViP9QPrcS/utb2fu3fvdrBVvevu3btx7949/dEh+rPz9Gln6c/O0p+dp08769699sdKtG8vjP39G9pbvLfRjGuDZlwbNOPaoBHj/u746JOP4vDdw/XXvvPvHZ36jYHucP56n3O4N213fPmox6P3DnT/mnjcx9o+U/Q25607bt++HaVSqf768OHDcfjw4S0qOm8vvD/ulHt9Os97emfpz87Sn52nTztLf3aW/uws3/nvDoGMh9hu0OLDDz9sed9TU1ORTCZjcnIystlsJJPJyOVy26qd/rPpDa9/Pf3r8Runf6PlNhCxHutx52fvRClKcSAOtL2fa9eudbBVvevevXvx/vvvR0TEwYMHu9ya3qc/O0+fdpb+7Cz92Xn6tLPaGfOyc3th7G+su7d4b6MZ1wbNuDZoxrVBI8b93bEXxv20p1O/MdAdzl/vcw73pu1+l/Sox6OlgdLDN3rEHvfv1Xym6G0PhgLYPV/60pc2vP7X//pfx7/5N/9mV9uwF94fd8q9Pp3nPb2z9Gdn6c/O06edpT87S392lu/8d4dARhdNT0/H4OBgrK+vx/T0dFy5cqU+W8bDZsmY+Rcz0Zfoq79+4uAT8cSap2W1Y/3AepSiFP0f9MeB9fY/pJ07d66DrepdtVTimTNn4tAhbzE7pT87T592lv7sLP3Zefq0s2ofeNlde2Hsb6y7t3hvoxnXBs24NmjGtUEjxv3dsRfG/bSnU78x0B3OX+9zDvem7X6X9KjHo7d+/1bH99mqx/17NZ8petvf/M3fdLsJ+9IPf/jD+Mf/+B/XX3djhoy98P64U+716Tzv6Z2lPztLf3aePu0s/dlZ+rOzfOe/O1ypD5FMJrc1S8axY8da2u/o6GhMT0/HyMhIRETMzMzExYsXI5PJRDabjVKptOVsGUcOHYnPH/r8xoXrLTWB/797cS8OxIE4sH4gDq63n6bzxv+pgwcPxqFDh/RJh+jPztOnnaU/O0t/dp4+7RxPHuiOvTD29+9n7/HeRjOuDZpxbdCMa4PP2s64v1wsx7WZ+08RrZaqUa1UIzWairNTZ5vWVCvVePPymxERcfTY0SitlGJwdDCGxoe6XrMXHP3c0a6P+2lPp35joDucv97nHO5NrYwtH+V4dC9cE/thnO0zRe9yzrrji1/8YvT393e1DXvh/XGn3OvzaHhP7yz92Vn6s/P0aWfpz87Sn53jXp/d4Up9iId9CKpN4ZhMJre9zytXrkQ6na6HMWrS6XSsrKzE5ORkZLPZyOfzm7YBAAAAAIBuWZ5bjls3bsXY7NiG5dnhbCzNLsWLKy9uqqlWqpEdzkYml4mB9EB9+fzkfNy6cStGZ0a7VgMAAAAAALATYi8PkUql6qGLRmqzZ6RSqW3vc3Z2Ni5durTl+nQ6HQsLC9veJwAAAAAAPErVSjXeufpOw2DD2CtjUS6WY35yftO6XCYXT44/uSEkERExNjsWhWwhivli12oAAAAAAAB2QiDjIdLpdD100UixeP8HnFZmsigWiw+dUWNycnLL4wIAwF41Pzn/0BudlrJL8eroq7E8txzVSjUiIsrFcizPLUcuk4u1wlrDumqlGgvTC7EwvRDXr1yP+cn5WJ5b3vJY7dQAAACbrS6uxvLccixMb36YUC0EcTN/c8PycrEcxXwxTk+ebrjPoQtDcX3meldqAAAAAAAAdupQtxuw1128eDGuXLkShUIh0un0pvU3btxoKYwRcX82jWKxuOWsGisrKzE8PNxyewEAoBtqNz8tzS7FWmEtnso8teX21Uo1ivnipuBGIpmITC6z6Ym2tZrscHbT+vnJ+bh141bDp/S2UwMAADR2pP9IJJKJOHrsaNNtEsnEhteLs4sREdGX6mu4ff9gfxSyhahWqvXa3aoBAAAAAADYKTNkPEQ6nY6RkZG4evVqw/Vzc3MxPT29aXmlUonp6enI5/Ob1o2PjzesebC2UCjEhQsX2m84AADskqXsUuSn7497R2a2H1Y+P3s+zkydiaHxoUhPpOP87PmYLk9HaqRxcDmXycWT409uCmuMzY5FIVtoOCtHOzUAAEBjA+mBmC5Px9mps5vW1Wa5OzlycsPyDwofbBmAqAUoVhdXd70GAAAAAABgp8yQsQ25XC6Gh4fj4sWLG2bJmJycjKmpqYYzZGSz2bhy5Upks9kol8sb1s3MzEQmk4nJycmYmZmJZDJZX1coFGJ6enrTcgAA2KuGJ4ZjeOL+7G61m7C246kLT237ybS1GTjOz55vuH7owlBcn7m+IczRTg0AANCe/HQ++lJ9m2ahKxfLcaT/SNO62meCcvHT79F3qwYAAGC3zb8wH/8w8Q+73QwAAKCDBDK2IZlMxtLSUkxPT0cymYxjx47FyspKjI6Oxvj4eMOakZGRSCaTTWe5yOVykc/n44UXXtiwPJVKxcLCQsf/DgAA0MsWZxcj4tOn2n5W/2B/FLKFqFaq9Rut2qkBAID95u7Hd+OTjz+pv/7pj3/aUn25WI5rM9cimUrG8wvPb1p/p3Sn6Zg8Iuohimqluus1AABAY0vZpVjOLcfw5HCkRlKRSCaiXCzHWmEt3rn6Tpy7dG7TzNQR98fbb15+MyIijh47GqWVUgyODsbQ+FDTY7VTAwAAsJcIZGxTMpmM2dnZbW+fTqc3zYzxWSMjIw1n1wAAADb6oPDBlqGJ2o1Xq4ur9Rkv2qkBAID95trla/H9b36//vr2wdvbqlueW45bN25FpViJZCoZg6ODDbfbbgDiow8/2vUaAACgsWqlGsV8MYr54obliWQiMrlM0zBGdji7af385HzcunFr02x67dYAAADsNQIZAABAV60V1mJ1cTVOnD7R8EeciPtP3a090baRWvCiXPw0FN1ODQAA7DfnLp2Lr/z2V+qv33///fjWL33roXVD40Mbnlj76uirsTS7FGOvjJmBDgAAHgPnZ89HaaUUlWIlEv2JODF8IoYnhptun8vk4snxJzd9zz82OxYzfTMxODq46eFI7dQAAADsNQIZAABAQ3c/vhuffPxJ/fVPf/zTju6/mC9GuViO1EgqhieGY62wFq+Ovhpnp89u+oHlTulOfUaLRmrBiwefittODQAA7DeHDh+KQ4c//angic8/0dZ+MrlMzPTNRLVSjecXnq8vTyQT2xpzHz12dNdrAACA5p668NS2w9blYjmK+WKcnz3fcP3QhaG4PnN9w3f/7dQAAADsRQIZAABAQ9cuX4vvf/P79de3D97u2L5rQYmzU2frywbSA/WbuCaWJjY8EWu7oYmPPvxoRzUAAEB7EslEDI0PxfLcchTzxfpNU1vNWhdxP0hdq6/ZrRoAAKAzFmcXIyKaPiSpf7A/CtlCVCvV+pi8nRoAAIC96GC3GwAAAOxN5y6di5duv1T/81t/+Vsd2/fQ+FAMjQ9tWl67iSuXyXXsWAAAQGdUK9UoF8tN1ydTyYiIWFlYqS/rS/XVwxDN9lnbbrdrAACAzvig8MGWoYnaOHx1cXVHNQAAAHuRQAYAANDQocOH4vAXDtf/PPH5J3bluCeePhHlYnnDjV6JZGJbM14cPXZ0RzUAAEBzM30z8fLgy03H2bWx9YPrj6ePbzkur437azNq7GYNAADwcGuFtVjKLsVaYa3pNuViectZ62rBiwe/92+nBgAAYC8SyAAAAPaU2o8sD/64s9WPMhFRfxLug0/TaqcGAABoLpFMRF+qr+kYurRSioiIE8Mn6stOXTwVEdH05q3VG6ubQhK7VQMAAPvJ3Y/vxsc/+rj+5yd/95Mtty/mi3H9yvWIiBieGI6IiFdHX41ivrhp2zulO1t+1177vv7BEHU7NQAAAHvRoW43AAAA2F/mJ+fjZv5mvLjy4rZr+lJ9W05LXvtBpjaFebs1AABAc+mJdJyePN10/fLry5FIJuKpC0/Vlw2kByI1koq3r74dA+mBzTVzy/H8wvMblu1WDQAA7CfXLl+L73/z+/XXt+N2021r35ufnTpbXzaQHohMLhMzfTMxsTSxYdy93dDERx9+tKMaAACAvcgMGQAAwK5aW1yrz07RSO1HmAd/zDmePr7ljzO1KcsffOJtOzUAAEBzozOjcW3mWsMn4uYyuYiI+NobX9v0lNtMLhPvzr27afaK+cn5ODN1puGYfLdqAABgvzh36Vy8dPul+p//Zfl/abrt0PhQDI0PbVqeSCZiaHyoPv4HAADoFcU3ipF/KR/5S/kofKcQH/zwg47t2wwZAADArjo5cjImZiaarl+9sRqJZGLDzBWnLp6Kt668FWuFtYZPu129sbrp5qp2agAAgK2NzY7F8txy5DK5SPQnolqqRrVSjePp4/GNm9/YFMaIuH/T1sTSRCxML0QimYijx45GaaUUg6ODDW/y2s0aAADYLw4dPhSHDn96m9DP/Ohn2trPiadPxPLccpSL5fr3+IlkYlszXhw9drT+3+3UAAAANHPl2JWY+nCq6frUM6lIPZOK6u1q3CndiWK+GIuzizE6MxqHv3B4R8cWyAAAAHbVqYunYim7FMMTw5vWlYvlWJ5bjkwus2H5QHogUiOpePvq2w3DFctzy/H8wvM7rgEAAB6u2dNyt5JIJmJsdmxP1gAAANtXC2GvFdbqgYwj/Ue2rKnNmv1ggLudGgAAgGbW19e3tV3ii4lIfDERwy8MR/V2NRamF+L8H57f0bEP7qgaAADgAeViOSJiy6daDaQHolqpxvUr1zfVZoezcWbqTMObuzK5TLw7926sFdY2LJ+fnI8zU2caznbRTg0AAAAAAOxX85Pz8fLgyy3V9KX66gGKRmq/GTw4M3Y7NQAAAM0cOHCg5ZrEFzsTADdDBgAAsCPLc8uxNLsUERGri6sRETH/wnx92VBmaNNsGGenzkYxX4z5yfmolqpRrVQjkUzE1974WsPZLCLuPwVrYmkiFqYXIpFMxNFjR6O0UorB0cGmT+dtpwYAAAAAAPartcW1bQUlHvwu/3j6eBTzxaY1tYc5PfiQpHZqAACAzlnKLsVybjmGJ4cjNZKKRDIR5WI51gpr8c7Vd+LcpXMN7+GpVqrx5uU3IyK2fR9OOzW7oXq7GmuLaw/f8CEEMgAAgB0ZGh9q6wNSaiTV8g8piWQixmbHHnkNAAAAAADsRydHTsbEzETT9as3ViORTGyYueLUxVPx1pW3Yq2w1vCGrdUbq5t+D2inBgAA6JxqpRrFfHFTUDqRTEQml2kaxsgOZzetn5+cj1s3bsXozGhHapqpvFdpuHx9ff3++v9aiVjfeh/VSjXulO7EWmEtrl2+FkMXdh4KEcgAAAAAAAAAAADi1MVTsZRd2jTzdcT9WSuW55Yjk8tsWD6QHojUSCrevvp2w5u2lueW4/mF53dcAwAAdNb52fNRWilFpViJRH8iTgyfaPhZoCaXycWT409uGsOPzY7FTN9MDI4ObgpWt1PTzOrSaqzeWI1ysRzFfDE+vv3xhvUvp17e1n4i7oc4UiOpOP+H57dd04xABgAAAAAAAAAAEAPpgSjmi3H9yvU4O3W2vrxcLEd2OBtnps40nDU7k8tEdjgbpy6e2vTU2zNTZxreYNVODQAA0DlPXXgqEsnEtrathSDOzzYOMAxdGIrrM9c3jOPbqdnK0LNDMfTsp59H1gprkZ/OR/GNYhw4cCCefPbJbe2nL9UXqdFUpJ7pzGcOgQwAAAAAAAAAACAiIs5OnY1ivhjzk/NRLVWjWqlGIpmIr73xtYazWUREJJKJmFiaiIXphUgkE3H02NEorZRicHSwYYCj3RoAAKA7FmcXI+J+mKGR/sH+KGQL9c8P7da0YiA9EM8vPB/zk/Px7ty7kXk98/CiR0AgAwAAAAAAAAAAqEuNpFqeoSKRTMTY7NgjrwEAAHbfB4UPtgxN1EIXq4ur9c8S7dS0Y2x2LNaW1tqu36mDXTsyAAAAAAAAAAAAAADQNWuFtVjKLsVaoXmooVwsx5H+I03X14IX5WJ5RzXtOnfpXFt1+Uv5HR9bIAMAAAAAAAAAAAAAAHrY3Y/vxsc/+rj+56c//umW2xfzxbh+5XpERAxPDEdExKujr0YxX9y07Z3SnS1nu6gFL6qV6o5q2jX07FBbdYVsYcfHPrTjPQAAAAAAAAAAAAAAAF1z7fK1+P43v19/ffvg7abb9qX6IiLi7NTZ+rKB9EBkcpmY6ZuJiaWJGEgP1NdtNzTx0Ycf7aimEyrvVbY168ZaYa0jYRCBDAAAAAAAAAAAAAAA6GHnLp2Lr/z2V+qv33///fjWL32r4bZD441nlEgkEzE0PhS5TC5eXHnxkbTzUSl8pxD56XxHQhatEMgAAAAAAAAAAAAAAIAedujwoTh0+NN4wBOff6Kt/Zx4+kQszy1HuViuz6SRSCa2FXQ4euxo/b/bqWlX8Y1izE/MR1+qL4YyQ5FIJh5as7a0Fje/d3PHxxbIAAAAAAAAAAAAAAAA6mGGtcJaPZBxpP/IljV3Snc21LZb0643XnojMrlMDD3beOaPZq4cu7LjYx/c8R4AAAAAAAAAAAAAAIA9b35yPl4efLmlmr5UXz1A0UhtJoxagKPdmnYl+hIthzEiIpInkzs+tkAGAAAAAAAAAAAAAADsA2uLa9sKSgykB+rLjqeP15c3Ui6WIyIiNZLaUU27HmxrKyYWJ3Z8bIEMAAAAAAAAAAAAAADYB06OnIzp8nTT9as3ViORTGyYueLUxVMREbFWWGta89lgRTs17doq+PGoHerakQEAAAAAAAAAHlOvjb3W7SY8UvcO3IvSQClu/f6tOLj+8OeBPjf/3C60CgAAgIc5dfFULGWXYnhieNO6crEcy3PLkcllNiwfSA9EaiQVb199u+FsFMtzy/H8wvM7rmnXUGYo3v2Td+PJf/VkS3X5S/kYuTyyo2ObIQMAAAAAAAAAAAAAAPaBgfRAVCvVuH7l+obl5WI5ssPZODN1JobGhzbVZXKZeHfu3U0zXsxPzseZqTMNZ7top6YdqWdSUVopxbt/8m5LdYVsYcfHNkMGAAAAAAAAAAAAAADsE2enzkYxX4z5yfmolqpRrVQjkUzE1974WsPZLCIiEslETCxNxML0QiSSiTh67GiUVkoxODrYMMDRbk07Ku9V4qnMU/FO7p145elX4uTIyegf7I++VF/TmrXCWlQr1R0fWyADAAAAAAAAAAAAAAD2kdRIquUZKhLJRIzNjj3ymlbNpmfj49sfR0TE+vp6rC6txoEDBx7pMWsEMgAAAAAAAAAAAAAAgJ50pP9IREQ8deGpSCQT26pZW1qLm9+7ueNjC2QAAAAAAAAAAAAAAAA9qS/VF+deOhfpr6dbqrty7MqOj31wx3sAAAAAAAAAAAAAAADogr5UX/Sl+lquS55M7vjYZsgAAAAAAAAAAAAAAAB60vlvn2+rbmJxYsfHNkMGAAAAAAAAAAAAAABAiwQyAAAAAAAAAAAAAACAfaN6uxpv/d5bO96PQAYAAAAAAAAAAAAAALBvlIvleOfqOzvez6EOtAUAAAAAAAAAAAAAAGDX3fzezZZrrs9cj2qluuNjC2QAAAAAAAAAAAAAAAA96fXx1+Pj2x+3VLO+vh5H+o7s+NgCGQAAAAAAAAAAAAAAQE860n8/WPHUhacikUw03KZaqUa5WI7VxdVIjaTixNMnOnJsgQwAAAAAAAAAoCNeG3ttW9vdO3AvSgOluPX7t+Lg+sFH3CoAAADgcdaX6otzL52L9NfT29r++r+7Hkf6jmx7+634VgMAAAAAAAAAAAAAAOhJfam+6Ev1bXv7s79zNhJ9ibj5vZs7PrYZMgAAAAAAAAAAeKS2O3vKo/bc/HPdbgIAAAAddv7b51uuGXp2KPKX8nHyqyd3dGwzZAAAAAAAAAAAAAAAALRIIAMAAAAAAAAAAAAAANhXKsXKjvchkAEAAAAAAAAAAAAAAOwb1dvVuFO+s+P9HOpAWwAAAAAAAAAAAAAAAHbdze/d3Pa21Uo1ysVyLM0uxfDk8I6PLZABAAAAAAAAAAAAAAD0pNfHX4+Pb3+87e3X19cjNZKKM//2zI6PLZABAAAAAAAAAAAAAAD0pCP9RyIi4qkLT0Uimdh622NHYiA9EKlnUh05tkAGdMhrY691uwnx3Pxz3W4CAAAAAAAAAAAAAMCu6Uv1xbmXzkX66+ldP/bBXT8iAAAAAAAAAAAAAABAB/Sl+qIv1deVY5shAwAAAAAAAAAAAAAA6Ennv32+a8c2QwYAAAAAAAAAAAAAAECLzJABAAAAAAAAAAAAAAA8FirvVWJxdjE+KHwQd0p34kj/kUimknF68nQc/9Lxjh5LIAMAAAAAAAAAAAAAAOh5+Uv5eOvKW7G+vr5pXSFbiKHMUIxlx+LwFw535HgCGQAAAAAAAAAAAAAAQM+q3q5Gdjgbd0p34slnn4wTT5+IRDJxf12lGnc+vBNrS2vxzuvvRDFfjG/c/EYc/tmdhzIEMgAAAAAAAAAAAAAAgJ6Vy+QiNZKK898+v+V21dvVWJhaiD/66h/FCzde2PFxBTIAAAAAAIBtWSusxeLsYlRL1VgrrEUimYjhyeEYnhhuuP1SdimWc8sxPDkcqZFUJJKJKBfLsVZYi3euvhPnLp2LgfTAprpqpRpvXn4zIiKOHjsapZVSDI4OxtD4UNO2tVMDAAAAAAD0vqVXlqIv1ffQMEZEROKLiRibHYvv/uZ3o/CdQqS/nt7RsQUyAAAAAACAh1rKLkVExNjsWH1ZMV+MXCYX12eux8TSRH3q75pqpRrFfDGK+eKG5YlkIjK5TNMwRnY4u2n9/OR83LpxK0ZnRjtSAwAAAAAAPB5u5m/G+NXxlmrOf/t8/PG//OMdBzIO7qgaAAAAAAB47JWL5ahWqptmwkiNpOJrb3wtysVy5DK5hrXnZ8/HmakzMTQ+FOmJdJyfPR/T5elIjaQabp/L5OLJ8Sc3hTXGZseikC1sCne0WwMAAAAAADweEn2Jh2/UQPJkcsfHNkMGAADQUfOT8/FU5qmmN1fVrBXWYnF2MaqlaqwV1iKRTMTw5PCmG7xqlrJLsZxbjuHJ4UiNpCKRTES5WI61wlq8c/WdOHfpXNOn6755+c2IiDh67GiUVkoxODoYQ+NDO//LAgDAPrE4uxi/culXGq4bSA9EaiQVxXwxysVy9KX6Nqx/6sJTm2bOaKZcLEcxX4zzs42nFB+6MBTXZ65v+LzRTg0AAAAAAPAYObDLdQ8QyAAAAHasdgPU0uxSrBXW4qnMU1tuv5Rdioj7T6utKeaLkcvk4vrM9ZhYmth0w1a1Uo1ivrjpybaJZCIyuUzTMEZ2OLtp/fzkfNy6cStGZ0Zb/rsCAMB+dDN/MwrZQnzj5jcahiuOp49HMV+MtcLapkBGKxZnFyMimu6jf7A/CtlCVCvVejvaqQEAAAAAAB4f1VK1rbpKsbLjYx/c8R4AAIB9bSm7FPnpfEREjMyMPHT7crEc1Up100wYqZFUfO2Nr0W5WI5cJtew9vzs+TgzdSaGxociPZGO87PnY7o83fRJt7lMLp4cf3JTWGNsdiwK2cKmcAcAANDYkf4jUa1Uo1wsP9LjfFD4YMvQRC10sbq4uqMaAAAAAADg8ZE8mYx3/+O7LdW89XtvxfEvH9/xsc2QAQAA7MjwxHA9XLFWWHvo9ouzi/Erl36l4bqB9ECkRlJRzBejXCxvesLtUxee2vYTbWuzdpyfPd9w/dCFobg+c71pmAMAAPjU8wvPNxyj19SeINVo5rqatcJarC6uxonTJ5puVy6W40j/kab7qH0eeDAY0k4NAAAAAADw+Bj53ZF4+RdfjoiIJ//HJx+6/dIrS3Ht8rWY+nBqx8c2QwYAALCrbuZvxh+c/IOoVhpPFXg8fT95vp1wx1YWZxcjIpreMNY/2B/FfLFpOwAAYD+4+/Hd+PhHH9f//PTHP226bbOxdUTE8txyDKQHGm5TzBfj+pXrERH1MPero682nLHuTunOliHsWvDiwXF8OzUAAAAAAMDjJfN6Jl5/9vX441//4yh8pxAf/PCDqLxXicp7lfjghx/Eze/djPylfPz7/8e/j//zN//PeD7/fEeOa4YMAABgVx3pPxJrhbUoF8tbPj13pz4ofLDlTVm1G8VWF1fNkgEAwL517fK1+P43v19/ffvg7Zb3UQtbjL0ytmldbdx9dupsfdlAeiAyuUzM9M3ExNLEhs8F2w1NfPThRzuqAQAAAAAAHi8D6YGYWJyI+RfmY35iPg4cOLBpm/X19ehL9cX//Kf/cwx8uTP3LQlkAAAADd39+G588vEn9ddbPSm3Fc8vPB/lYrnp03UrxUpExJZhjbXCWqwursaJ0yeablculutPwm2kFtYoF8vbbDkAADx+zl06F1/57a/UX7///vvxrV/61rbr1wprkZ/ORyaXaTg2HxofaliXSCZiaHwocplcvLjyYusNBwAAAAAA+IyB9EBMLE3EUnYplmaXYu0Ha/V1fam+GJ4cjrO/c3aLPbROIAMAAGioE0/KbaZZGCMiYnluOQbSAw23KeaLUS6WIzWSiuGJ4VgrrMWro6/G2emzm2a5uFO6s+VxamGN7T5NFwAAHkeHDh+KQ4c//angic8/0VJ9LpOL87PnmwYvtnLi6ROxPLe8IbCdSCa2NUY/euxo/b/bqQEAAAAAAB5fwxPDMTwxvCvHEsgAAAAa2umTcttx/cr1iIgYe2Vs07raDVpnpz5NqQ+kByKTy8RM30xMLE1seCLvdoMWH3340U6aDAAA+1Yuk4vhyfZ/0KjNWrdWWKuP97ea5S7ifvD6wdp2awAAAAAAADrhYLcbAAAA7E2HDh+Kw184XP/T6pNyW7VWWIv8dD4yucyGYEXN0PhQw6fuJpKJGBofilwm90jbBwAAfGpheiFOPH1iQ2D6s+Yn5+PlwZdb2m9fqq8eoGikFrx+cDa8dmoAAAAAAIDHz/J/WI4//pd/HK/88itRea+yaX35ZjlyF3Lx1u+91bFjCmQAAAB7Qi6Ti/Oz5xuGLh7mxNMnolwsR7lYri9LJBPbmiXj6LGjLR8PAAD2s6XsUvQP9jcMYzw4Bl9bXNtWUOLBQPbx9PEtx/G1MX9qJLWjGgAAAAAA4PGSv5SPiIhbN27F2tJarBXWNm3Td7IvMq9n4viXj9e33ymBDAAAoOtymVwMTw7H8MRwW/WJZCIiYsMHqSP9R7asqd0YVqsFAAAebnluOSKi4di9XCxHMV+svz45cjKmy9NN97V6YzUSycSGmStOXTwVEdHwR5JazWeDFe3UAAAAAAAAj4+b37sZfam+GHp2KMayY/HM7z4TT/6rJ5tun3omFamRVLz7J+/u+NgCGQAAQFctTC/EiadPNHy6bs385Hy8PPhyS/vtS/Vt62m8D978BQAANLdWuD/jRbMgdTFf3DDbxamLp2Ipu9Rw23KxHMtzyzH2ytiG5QPpgUiNpOLtq283rFueW46z02d3XAMAAAAAADw+3sm9E8Mv3P/9Ymh8KM7+zsN/F0g9k4qVhZUdH/vQjvewB33ve9+LYrEYqVQqTp8+HV/4whe63SQAAKCBpexS9A/2N7yhq1qpfjrzxeLatsIVD978dTx9fMPTeT+rXCxHRHhSLgAAbEO5WI5cJhcnR07G6uTqpvXVUjWK+eKGGTEG0gNRzBfj+pXrGwLY5WI5ssPZODN1JobGhzbtK5PLRHY4G6cuntowxp+fnI8zU2cajuHbqQEAAAAAAB4T6907dM8FMl566aW4ffv2hmV/+Id/GBERt2/fjpGRkSgUCrG+vh6pVCrK5XLMzc3Fr/7qr3ajuQAAQBPLc8sREQ3DGOViOdYKa/Wbs06OnIyJmYmm+1q9sRqJZGLDbBenLp6Kt668FWuFtQ03ZD1Y46YsAADYnldHX41ysRzlbLnpNo1mnzs7dTaK+WLMT85HtVStB6+/9sbXGo7TIyISyURMLE3EwvRCJJKJOHrsaJRWSjE4OtgwwNFuDQAAAAAA8Hiolqtt1VWKlR0fu+cCGZOTkzE4OBiTk5MxMTERX/7yl+vrMplMLC0txdTUVPzu7/5uRERUKpW4cOFCnDx5Mv7pP/2nXWo1AADwoLXC/RkvGoUxIiKK+eKGsMSpi6diKbvUNLyxPLccmVxmw/KB9ECkRlLx9tW3G97otTy3HM8vPL/DvwkAAOwPL6682HZtaiTVchg6kUzE2OzYI68BAAAAAAB6X2ml1HJN9XY1Pvrwox0fu+cCGT/4wQ8il8vFs88+u2H5f/gP/yHy+XxkMpl6GCMiIplMxuuvvx6XLl2qz6TRjkqlEpcvX46IiGPHjsXKykqMjo7G+Ph42/usyWazkcvlIplMRkREKpWKmZmZHe8XAAB2W7l4/2m51Urz1Hm5WI5cJhcnR07G6uTqpvXVUjWK+WJMl6frywbSA1HMF+P6letxdurshn1lh7NxZupMw6feZnKZyA5n49TFUxtCGfOT83Fm6owZMgAAAAAAoAXzk/NxbvpcwxnyIu7/PvDm5TcjIrY9c107NQAAAA966sJTMXdxLsavbv/e/rkLc3Hqfzq142P3XCDjxo0b9WDEg65evRoHDhyIS5cubVqXTCbji1/8YtvHrFQqMTw8HLlcLtLpdH355ORk3Lhxo+3wRKVSiWeeeSZGRkZiYWGhvrxYLMb09LRQBgAAPWF5bjmWZpciImJ18X7AYv6F+fqyoczQhpktXh19NcrFcpSz5ab7bPRDztmps1HMF2N+cj6qpWpUK9VIJBPxtTe+1nAGjIj7T8idWJqIhemFSCQTfsgBAAAAAIA2rRXWopAtxOnJ0w3XVyvVyA5nI5PLbHpI0q0bt2J0ZrQjNQAAAJ91dupsvPyLL8fc/zQXY6+MxeGfPdx02w9++EHMvzAf1Uo1zvzbMzs+ds8FMtbX1xsuz+fzERHxpS99qeH6AwcOtH3MTCYT4+PjG8IYERGzs7PR19cXo6OjMTIy0vJ+a2GMzwYvJicnY3FxUSADAICeMDQ+1FK44cWVF9s+Vmok1fKsFolkIsZmx9o+JgAAAAAAEJGfzm+5PpfJxZPjT256iNLY7FjM9M3E4Ojgpu/426kBAABo5Pk/fT5e/sWXYzm3HKnR+/cYJZKJONJ/JO6U7kRppRQ38zdjrbAW6+vrMVmY7Mhxey6QcezYsU3Lbt68WZ/FoplKpdLW8YrFYuTz+ZidnW24/sKFCzEzM9NyIOPKlStRLBYbhi6SyWScPt34aQIAAAAAAAAAALCblrJLMZQZimK+2HB9uViOYr4Y52fPN1w/dGEors9c3xCuaKcGAACgmb5UX0yXpiOXycXKn65EcWHz55f19fVIjaTi/Oz56DvZ15Hj9lwgo9FMF3NzcxERW4Yims2s8TC1IEYq1fjD3eDgYGSz2ahUKpFMJre938uXL8fExETDdblcruV2AgAAAAAAAACwtdfGXut2E+K5+ee63YSWlIvliLh/c1Mzi7OLW27TP9gfhWwhqpVqJJKJtmsAAAC2kkgm4vmF56P4RjGWc8uxurha/0zRl+qL4cnhSD3T2dB3zwUy/vt//+/xox/9KL7whS/Ul83OzsaBAwfi4sWLDWsuXboUk5PtTSlSKBS2DFrUghqLi4vbniVjbm4uKpVK0/YCAAAAAAAAAMBesDi7GKMzo01nx4iI+KDwwZahiVroYnVxtT7jRTs1wKPzV6/9Vdz6/VtxcP1g19rQa4E1AGDvSj2T6njwopnujZ7adOnSpchkMvGXf/mX8cMf/jAuXrwYxWIxxsfH40tf+tKGbX/4wx/Gv/yX/zKOHTsWX/7yl9s6XrFYjP7+/qbra2GNYrH5h87Punr1akREpNPpiLgf+shms1EoFNpqIwAAAAAAAAAAdNry3HKcnjz90O3KxXIc6T/SdH0teFGbbaPdGgAAgL2m52bI+OIXvxiXL1+OZ599th6CGB8fr4ccIiJ+8zd/M/L5fH19Pp+PDz/8MC5fvtzy8UqlUn0WjEZqYY1KpbLtfT4YvLhy5Uqk0+mYmJiIQqEQo6OjMT09/dDZNu7cvRM/vvvj+usnDj4RT3zuiW23gU+tH1iP9ViP9QPrcS/udbs5O3L37t1uNyHu3r0b9+7d2xNteRzoz87Tp52lPztLf3aePu2se/d6e6zUq/bC2N+/ob3FexvNuDZoxrVBM64NGjHu746PPvkoDt89XH/tO//e8Tj9xrAfOX+9zznsbc5f73MO29eNz2F3P74bn3z8Sf31ncqdh9ZUK9UoF8sxND700G3vlO7UZ7RopBa8qFaqO6rpdXvhO//HQafef3wn8qm7d+/uiff0x+Wc+N6ts/Rn5+nTztKfnaU/O8t3/ruj5wIZEfdnlvjrv/7ruH37dnzxi1/ctH56ejqmp6c3LNtqloutbDdo8eGHH257n6VSKZLJZGSz2ZiamqovT6fTkcvl4uTJk5HL5bYMZUz/2ca/36+nfz1+4/RvbLsNfGo91uPOz96JUpTiQBzodnN25Nq1a91uQty7dy/ef//9iIg4eLDnJuHZc/Rn5+nTztKfnaU/O0+fdlYrY146Zy+M/ffCOJNPeW+jGdcGzbg2aMa1QSPG/d2xF8b9tOdx+o1hP3L+ep9z2Nucv97nHLavG9+5vvdn78V//f5/rb/++7t//9CaNy+/GaMzo9va/3ZDEx99+NGOanqdsX9ndOr9x+8fn7p3796eeE9/XM6J7906S392nj7tLP3ZWfqzs3znvzt6MpBRUwtj/OhHP4pSqRT/9J/+04iIOHnyZBdb9XC1kEejkEgymYyRkZGYnJyMlZWVpvuY+Rcz0Zf49CkBTxx8Ip5Yk5hvx/qB9ShFKfo/6I8D6739JdG5c+e63YR6KvHMmTNx6FBPv8XsCfqz8/RpZ+nPztKfnadPO6v2gZfdtRfG/nthnMmnvLfRjGuDZlwbNOPaoBHj/u7YC+N+2vM4/cawHzl/vc857G3OX+9zDtvXje9c//nT/zw+efHTGTJWV1fj3/3Sv2u6fTFfjMHRwd1o2r5i7N8ZnXr/8fvHp+7evRtvX3276+/pe+WcXP1XV3dUv35gPX50/Eex+h9Xd9SfF//k4o7a8bjwPWbn6dPO0p+dpT87y3f+u6Nnr9T33nsvZmZmIpvNRkTEgQMHNkxPc/PmzZieno5f+7Vfi69//ettHyeZTG5rloxjx461vM9mM2CMjo7G3NxcFAqFSKfTDbc5cuhIfP7Q5zcuXN92E3jAvbgXB+JAHFg/EAfXeztNt1f+z+fgwYNx6NChPdOeXqc/O0+fdpb+7Cz92Xn6tHM8eaA79sLY37+fvcd7G824NmjGtUEzrg0+y7i/O45+7mjXx/2053H6jWE/cv56n3PY25y/3ucctq8bn8EOHToU8Q8+fX3koyNbbr+ysLLt2TEiIhLJxLZmvDh67OiOanrdXvjO/3HQqfcf34dstBfe0/fKOdlpH7hGO8/3mJ2nTztLf3aW/uycdr/zn5+cj3PT56Iv1ddwfbVSjTcvvxkR98frpZVSDI4OxtD4UNN9tlPTK3rySv3e975XDzOkUqlIpVJx8+bNDducPHkyXn/99XjjjTfi937v9+Lf/tt/29axGs1i8aBSqRQR90MWreyzUqk0rakdc3FxsWkgAwAAAAAAAAAAOu36levxK5d+paWaI/1bBzzulO5ExP0Qxk5qAACAR2utsBaFbCFOT55uuL5aqUZ2OBuZXCYG0gP15fOT83Hrxq2Gwe52anpJzz2i4ObNmzE+Ph4TExOxsrISf/3Xfx1/+qd/Gs8++2zD7Z955pk4efJkfO9732vreKlUqh66aKQ2e0Yqldr2PrcbstjOzBwAAAAAAAAAANAJ5WI5EslEyyGIvlRfPUDRSG0mjAefsNtODQAA8Gjlp/Nbrs9lcvHk+JMbghUREWOzY1HIFqKYL3akppf03AwZL730UszMzMQLL7ywYfmBAwea1jz77LPxW7/1W/HVr3615eOl0+nI55tfWMXi/QugNmPHdjz99NMxNzfXdJaMWgDE7BgAAAAAAAAAAOyWtcJaLOeWYzm3vGlduViOiIj5F+brs1s8v/B8REQcTx/f8iaqWm1q5NMHnrZTAwAAPDpL2aUYygw1HaeXi+Uo5otxfvZ8w/VDF4bi+sz1DWP4dmp6Tc/NkFEulzeFMbZjfX29reNdvHgxIiIKhULD9Tdu3GgpjBERMT4+HhHRNOixsrISERGnTzee6gUAAAAAAAAAADptaHwonl94vuGfkZn798eMvTJWX1Zz6uKpiLgf6Ghk9cbqphus2qkBAAAejVogeqsZ6hZnF7fcpn+wP4r5Yn22u3Zrek3PBTJSqfY+aJXL5bbq0ul0jIyMxNWrVxuun5ubi+np6U3LK5VKTE9PNwxdpFKpGB8fj8uXLzfd59TUVMPZMwAAAAAAAAAAYC8ZSA9EaiQVb199u+H65bnlODt9dsc1AADAo7E4uxjDE8NbbvNB4YNIJBNN19dCF6uLqzuq6TU9F8hoN1hRLDaf4vBhcrlczM3NbZolY3JyMqamphrOkJHNZuPKlSuRyWQa7vOVV16JSqUS2Wx2w/JMJhOpVCpmZmbabi8AAAAAAAAAAHRS7Ym5tf/9rEwuE+/Ovbtpxov5yfk4M3Wm4WwX7dQAAACdtTy3HKcnTz90u3KxHEf6jzRdXwtePPiZoZ2aXnOo2w1oVV9fX/yn//Sf4ld/9Ve3XXPp0qV45pln2j5mMpmMpaWlmJ6ejmQyGceOHYuVlZUYHR2N8fHxhjUjIyORTCbjwoULW+7z8uXL9dBGpVKJTCYTExMTbbcVAAAAAAAAAAA6ZX5yPirFSv2JtfMvzMfS7FIcTx+P0ZnR+naJZCImliZiYXohEslEHD12NEorpRgcHYyh8aGG+26nBgAAaOzux3fjk48/qb/+6Y9/+tCaaqUa5WJ5W+PvO6U79RktGqkFL6qV6o5qdlP+Uj5GLm+enKEVPRfImJqail/7tV+LV155ZVuhjN/7vd+Lubm5+C//5b/s6LjJZDJmZ2e3vX06nX7obB7JZNJMGAAAAAAAAAAA7Fljs2Pb3jaRTLS0fbs1AADAZtcuX4vvf/P79de3D95+aM2bl9/cELTeynZDEx99+NGOanZTIVvYf4GMVCoV3/72t+OZZ56J06dPx8WLF+PLX/5yVCqVeO+996JSqUSpVIpCoRCzs7NRLBZjaWmp280GAAAAAAAAAAAAAIBH4tylc/GV3/5K/fX7778f3/qlbzXdvpgvxuDo4G40bVdV3qtEubj1xAoREWuFtY7MzNFzgYyIiJGRkXj99ddjYmIipqam6suz2Wz9v9fX1yOVSsXi4mJ86Utf6kIrAQAAAAAAAAAAAADg0Tt0+FAcOvxpPOCJzz+x5fYrCyvbnh0j4v7sdtsJMBw9dnRHNe0qfKcQ+el8R0IWrejJQEZExPj4eIyPj8eVK1fi6tWr8YMf/KC+LpVKxeTkZPzO7/xOF1sIAAAAAAAAAAAAAAB7y/Ur1+NXLv1KSzVH+o9suf5O6U5E3A9h7KSmHcU3ijE/MR99qb4Yygxta39rS2tx83s3d3TciB4OZNRMTU1tmCUDAAAAAAAAAAAAAADYrFwsRyKZaDkE0Zfqi9XF1abrazNT9KX6dlTTjjdeeiMyuUwMPTvUUt2VY1d2dNyIxyCQAQAAAAAAAAAAAAAAPNxaYS2Wc8uxnFvetK5cLEdExPwL8/XZLZ5feD4iIo6nj0cxX2y631ptaiRVX9ZOTTsSfYmWwxgREcmTyR0dN2IfBTIuXboUly9f7nYzAAAAAAAAAAAAAACgK4bGh2JovHF4YXluOXKZXIy9MhYD6YEN605dPBVvXXkr1gprm9ZFRKzeWN0UrGinph2N9r0dE4sTOz72wR3voUdks9luNwEAAAAAAAAAAAAAAHrOQHogUiOpePvq2w3XL88tx9npszuuaUe1Ut3xPtrV0zNkvPfee1EsNp/CpKZQKESlUnn0DQIAAAAAAAAAgC28NvZat5sQH975sNtNAAAA9qBysVz/30azTmRymcgOZ+PUxVMb1s9PzseZqTMNZ7top6ZVQ5mhePdP3o0n/9WTLdXlL+Vj5PLIjo7dk4GM73znOzE9PS1kAQAAAAAAAAAAAAAAOzA/OR+VYiVWF1fvv35hPpZml+J4+niMzozWt0skEzGxNBEL0wuRSCbi6LGjUVopxeDoYAyNDzXcdzs1rUo9k4rr/+56y6GMQraw/wIZb7zxRkxMTEQqlYpMJhPJZPKhNUtLS/G9733v0TcOAAAAAAAAAAAAAAB6yNjs2La3TSQTLW3fbk0rKu9V4qnMU/FO7p145elX4uTIyegf7I++VF/TmrXCWlQr1R0fu+cCGS+99FLkcrl49tlnW6o7duzYI2oRAAAAAAAAAAAAAADQDbPp2fj49scREbG+vh6rS6tx4MCBXTl2zwUy+vr6Wg5jREScPHnyEbQGAAAAAAAAAAAAAADoliP9RyIi4qkLT0UimdhWzdrSWtz83s0dH7vnAhnpdLqtusXFxQ63BAAAAAAAAAAAAAAA6Ka+VF+ce+lcpL/eWtbgyrErOz72wR3vYZdVKpVuNwEAAAAAAAAAAAAAANgD+lJ90Zfqa7kueTK542P3XCAjk8nEn/zJn7Rcd+nSpUfQGgAAAAAAAAAAAAAAoFvOf/t8nPzqyZbrJhYndnzsngtkPPPMM7GystJyKCObzT6iFgEAAAAAAAAAAAAAAPvNoW43oFXvvfdeZDKZyOVy8fTTT8fIyEgMDg5GKpVqWlMoFKJSqexeIwEAAAAAAAAAAAAAgF1Xea8Si7OL8UHhg7hTuhNH+o9EMpWM05On4/iXjnf0WD0XyEin03H79u2IiFhfX4+lpaU4cOBAl1sFAAAAAAAAAAAAAAB0U/5SPt668lasr69vWlfIFmIoMxRj2bE4/IXDHTlezwUy+vv7IyLiwoULkUwmt1WztLQU3/ve9x5hqwAAAB5fr4291u0mxHPzz3W7CQAAAAAAAAAA7FHV29XIDmfjTulOPPnsk3Hi6RORSCbur6tU486Hd2JtaS3eef2dKOaL8Y2b34jDP7vzUEbPBTJSqVS89NJL8fWvf72lumPHjj2iFgEAAAAAAAAAAAAAAN2Sy+QiNZKK898+v+V21dvVWJhaiD/66h/FCzde2PFxD+54D7sslUpFKpVque7kyZOPoDUAAAAAAAAAAAAAAEC3LL2yFH2pvoeGMSIiEl9MxNjsWAwMD0ThO4UdH7vnAhnf/va346tf/WrLdYuLi4+gNQAAAAAAAAAAAAAAQLfczN/cVhjjQee/fT6Wc8s7PnbPBTIAAAAAAAAAAAAAAAAiIhJ9ibbqkieTOz72oR3vocvee++9mJ2djUKhEKVSKfr7+yOVSsXk5GR86Utf6nbzAAAAAAAAAAAAAACAR+XALtc9oKcDGZcuXYorV67E+vr6pnXZbDYymUxks9n4whe+0IXWAQAAAAAAAAAAAAAAj1K1VG2rrlKs7PjYPRnIuH37dgwPD0epVIpnn302nn766UgmkxERUalU4sMPP4ylpaV4/fXXI5/Px82bN+Nnf/Znu9toAAAAAAAAAAAAAACgo5Ink/Huf3w3nvwfn9x2zVu/91Yc//LxHR+7JwMZmUwmRkZG4tvf/vaW292+fTumpqbiq1/9aty4cWOXWgcAAAAAAAAAAAAAAOyGkd8diZd/8eWIiG2FMpZeWYprl6/F1IdTOz52zwUyXnnllUilUg8NY0REfPGLX4zZ2dn4zd/8zfjOd74TX//613ehhQAAAAAAAAAAAAAAwP+PvT8Mjus8DwTdFxS1bFCy2QC3rgh6ZhI2nB+ClBkToJKYpGtnJCCTTRE/HKHJaGvkeMYmIE+qlB3fiJB2f2xltyY06Iyz4/lhAUpmnFI2vBIYu+ZCFU8ZkBOXSE+NCcBOWYZ+JGh6NUNAuht1g44kNEcUcH9wABFCAwS6D9Dd4PNUqZI+57zfef2dZuPr0997vu2SfTEbQ0eGovWXW6Otpy0OHjkYqXQqIiKKc8WYz8/H9Oh0vHbhtSjkCnF6/HQi5627goyxsbF44YUXNhXz7LPPxj/+x/9YQQYAAAAAAFRgdnI2xgfHo5gvxuzkbKTSqejo64iO3o41Y4pzxXjl7CsREbF3/97IT+ejtevmjyHVjgEAAAAAAHaGlvaW6B3vjZHTIzHSOxINDQ2rjllcXIymTFP8k2//k2g53JLIeeuuIKOpqamsuEOHDiWcCQAAAAAA3DkmhiYiIqJ7sHt5W24sF8PZ4bg0cCl6J3qXnzS1pDhXjKGOocgOZ6Ol/YMfNkb6RuLq5avRNdC16jzbFQMAAAAAAOwsLe0t0TvRGxNDEzExOBGzP5hd3teUaYqOvo449tSxRM9ZdwUZpSpVtjIOAADYnJG+kXgg+0BkOjPrHucpuQAAUD8KuUIU54px7MzKHykynZn4zMufiaGOoRjODsfjo4+v2D+cHY77e+5fUSQRcbOoY6BpIFq7Wld9d9iuGAAAAAAAYGfq6F1/de8k1V1BRj6fLysul8slnAnUnvPd56udQiw0LMTHvvixaqcBAGyzQq4QubHczcryydl4IPvAusd7Si4AANSX8cHx+NQznyq5r6W9JTKdmciN5aKQK0RT5uZK10vfE04MnigZ13ayLS4NXFpRKLFdMQAAAAAAAEnYVe0ENuvQoUPxzW9+c1Mxv/d7vxeHDx/eoowAAODONjE0EWP9YxER0TnQuaGY9Z5eOzk0Gbmx1QXV2xUDAACsdmXsSvzrQ/86inPFkvsPtB+IiIjZyQ+W/h4fHI+IWC7Q+LDm1ubIjeVWtLldMQAAAAAAAK9947WK26i7gowvfelL8dRTT224KOO5556Ls2fPxpe+9KUtzgwAAO5MHb0dkR3ORkdvRzQ2N972+KWn1x7pO1Jy/9LTa6sRAwAAlNbY3BjFuWIUcoUNx7wx+Uak0qk19y8VUMyMz2x7DAAAAAAAwMjpkYrb2J1AHtvuxRdfjCNHjsQv//IvR09PTxw5ciTS6XRERMzNzUU+n4/R0dG4cOFC5HK5GB8fr27CAADAso08vXZyaDKKc8XlSVXbFQMAAJT2+OjjUcgV1hxfz+XmIiJWrE5XyBXWLdpeGoffWuSxXTEAAAAAAEB9eeOHb8SBTxxYc99mzOfno5ArJLK6dl0WZLS3t8f4+HicPn06ent7o6GhYdUxi4uLkclk4tvf/nYcPny4ClkCAAClbObptZnOzLbGAADAnebG9Rvx/vX3l1+/9/Z7ax67VjFGRMTUhaloaW9Zccx8fn7dmKUiilt/7NiuGAAAAAAAoH6MPT0W3/vy96KloyVOf//0qv1/9PAfxfVr16uQWZ0WZETcLMqYmJiIoaGhGBwcjB/84AfL+zKZTPT19cVTTz1VxQwBAIBSPCUXAABqx8WzF+O7v/Pd5dfXdl3bdBuXzl2KiIju57pXbN9oAcS7b7277TEAAAAAAED9KOQKsbi4GMVC6d8EluYIdfR23Hy9f+05QxER82/NR2G6EK9947WKc6vbgowlvb290dvbW+00AABgx9nMk3I3w1NyAQCgdhx/5nh88oufXH79+uuvx+///O9vOH52cjbG+sciO5yNlvaWrUgRAAAAAAC4w3U/1x2ZrkxkOjMl9zdlmuL408ej/fPtm2r33P5zFedW9wUZAADA1kjiSbmleEouAADUjt17dsfuPR/8VHD3vXdvKn44OxwnBk9EW0/bqn2pdGpD4/K9+/duewwAAAAAAFA/UvtS0XG6Y839ma5MHDxycNPtpg+lK8jqpjumIOOZZ56Js2fPVjsNAACoG5U+KRcAANjZhrPD0dHXsbz894ctrUq3lvn8fETcLKjY7hgAAAAAAGDnOPbUsbLiesd7Kz73ropbqBNDQ0PVTgEAAOrK7j27Y89H9yz/t9kn5a7FU3IBAKD+jfaPxsGHDsaxM2v/wNGUaVouhihlabzelGna9hgAAAAAAIAk1NQKGT/84Q8TbzOfz0cul4u5ubnE2wYAADbPU3IBAKC+TQxNRHNrc8mVMYpzxeUx9oH2A5Eby63ZTiFXiIiITGdmedt2xQAAAAAAAHeO3Mu5yI3mIhoimlub4+CRg3HgEwcSabumCjIefvjhuHbtWrXTAAAAtlBTpilmxmfW3L/WE2+3IwYAAFjf1IWpiIiSxRiFXCFmJ2ejractIiIePPVgfO/c92J2cjZa2ltWHT9zeWZVkcR2xQAAAAAAADvHuf3n4sxbZ9bcn3kkE5lHMlG8Voz5/HzkxnIxPjgeXQNdseejeyo6d00VZDQ3N0dERG9vb0RE7N+/v+I233rrrZieno5vfOMbFbcFAABUzlNyAQCgPs1OzsZ8fr5kMUZERG4st2J83dLeEpnOTLz6wqslCyWmLkzF46OPr9i2XTEAAAAAAMDOsbi4uKHjUvtSkdqXio7THVG8VozR/tE48bUTFZ27pgoyMplMPP300/H5z38+8baTKO4AAAAq5ym5AABQfwq5Qgxnh+NQ56GY6Vu9El0xX4zcWC76C/0rtmeHszHUMRQPnnpwxbh8pG8kjp45WnJMvl0xAAAAAADAztDQ0LDpmNS+VCLnrqmCjPb29shktuZHkUOHDm1JuwAAwOZ4Si4AANSf57uej0KuEIWhwprHNGWaVm1LpVPRO9Ebo/2jkUqnYu/+vZGfzkdrV2u09bSVbGe7YgAAAAAAgDtX8VoxZsdnK26npgoyvvSlL21Z2+Pj41vWNgAAcFMhd3NyVnGuuO5xnpILAAD15cnpJ8uOTaVT0T3YXZMxAAAAAABAfZj7yVzJ7YuLizf3/99zEYvrt1GcK8Z8fj5mJ2fj4tmL0Xay8oc61VRBBgAAUH+mLkzFxOBERETMjM9ERMTI6ZHlbW3Ztujo7VgR4ym5AAAAAAAAVNP57vPVTqFmLDQsRKxecB4AoKbMTMzEzOWZKOQKkRvLxfVr11fs/2rmqxtua3FxMTKdmTjxtRMV51W3BRl/+qd/GkNDQ1EoFOLFF1+Mn/3Zn12x/8qVK9Hf3x+/8Au/EL/9279dnSQBAOAO0NbTVlZxg6fkAgAAAAAAAAAAG9H2aFu0PfrBHKXZydkY6x+L3Mu5aGhoiPsfvX9D7TRlmiLTlYnMI5lE8qrLgoxnnnkmjhw5EpcvX45r167F5OTkqoKMQ4cOxYsvvhgvv/xyPPPMM3H27NnqJAsAAAAAAAAAAAAAACSmpb0lHh99PEb6RuK1C69F9sVsVfKou4KM73znO5HJZOLRRx+NxcXFuHLlSvzar/3amsc/8sgjERHxjW98Y93jAAAAAAAAAAAAAACA+tE92B2zE7NVO/+uqp25TMPDw3H69OmIiOjp6YmnnnrqtjGPPPJIjI6ObnVqAAAAAAAAAAAAAADANjr+zPGqnbvuCjIWFxernQIAAAAAAAAAAAAAAFAD2h5tq9q5d1ftzGUqFAplxeVyuYQzAQAAAAAAAAAAAJJwvvt8tVMAAO4gxWvFmHxuMo7+9tGK2qm7FTKmp6c3HXPt2rV46623tiAbAAAAAAAAAAAAAACgnhRyhfjxCz+uuJ26WyHj5MmTcerUqXjhhRc2FfPrv/7rW5gVAAAAAAAAAAAAAACw3a5858qmYy4NXIriXLHic9ddQcaZM2fi4x//ePz6r/96PPfcc/GRj3xkzWN/+MMfxunTp2Nubi5++7d/exuzBAAAAAAAAAAAAAAAttqLPS/G9WvXNxWzuLgYjU2NFZ+77goyIiK+/e1vx8c//vEYHh6Orq6u6OzsjHQ6Hc3NzZHP52N6ejrGxsZicnIyFhcXY3JystopAwAAAAAAAAAAAAAACWtsvllY8cDJByKVTpU8pjhXjEKuEDPjM5HpzMTBhw4mcu66LMjIZDKRz+cjm83Gt7/97RgdHV11zOLiYnR2dsbg4GAcOnSoClkCAAAAAAAAAAAAAABbqSnTFMefPh7tn2/f0PGXvnwpGpsaN3z8euqyICMiIp1Ox+joaLz88ssxPDwc4+PjMTc3F+l0OjKZTPT19cUjjzxS7TQBAAAAAAAAAKDuFHKFuDhwMSIiivliFOeKkenKxLEzx9aMKc4V45Wzr0RExN79eyM/nY/WrtZo62lLNAYAAOBWTZmmaMo0bfj4Y08di6k/nYor37kShx6ubPGHui3IWPLII48ovAAAAAAAAAAAgIRMXZiKq5evRvdg94rtQx1DMTE4EU9OP7kqpjhXjKGOocgOZ6OlvWV5+0jfSFy9fDW6BroSiQEAAPiwE8+e2HRM26NtMfbMWMUFGbsqigYAAAAAAAAAAHaM4lwxfvzCj0sWQ3Q/1x2FXCFG+kZW7RvODsf9PfevKKyIiOge7I7JocnIjeUSiQEAAKglCjIAAAAAAAAAAICIiJgZn4mpC1Mx2j+6at9S4cSVsSsrthdyhciN5eJI35GSbbadbItLA5cqjgEAAEjSXG6u4jYUZAAAAAAAAAAAABER0djcGKl0Kvbu37vmMal0asXr8cHxiIhoyjSVPL65tTlyY7kozhUrigEAAEhK8Vox5gvzFbezO4FcAAAAAAAAAACAHaClvSX6C/0l981OzkZExKHOQyu2vzH5xqoijVstFV3MjM9EpjNTdgwAAEApV75z5fYH/TfFuWIUcoWYGJyIjr6Ois+tIAMAAAAAAAAAALitsf6xaMo0RddA14rthVwhGpsb14xbKrwo5AoVxQAAAJTyYs+Lcf3a9Q0fv7i4GJnOTBz97aMVn1tBBgAAAAAAAAAA7GAL7y/E4sLiB69vLGwqvpArxMWBi5HOpOPx0cdX7Z/Pzy+vaFHKUuFFca5YUQwAAJCspbF+REQxX4ziXDEyXZk4dubYmjHFuWK8cvaViIjYu39v5Kfz0drVGm09bYnGbMbS94cHTj6w7kp8ERGN+xujpb0lMo8ksxKfggwAAAAAAAAAANjB8n+dj/xf5ZdfX4trG4qbujAVVy9fjbncXKQz6Wjtai153EaLJt59692KYgAAgOQsjfe7B7tXbB/qGIqJwYl4cvrJVTHFuWIMdQxFdjgbLe0ty9tH+kbi6uWrq1bTKzdms5oyTXH86ePR/vn2itvarF3bfkYAAAAAAAAAAGDbNH+8OVr/cevyfz/7P/zshuLaetqia6ArssPZ6BroiksDl2I4O2zVCgAAqHPFuWL8+IUflyyG6H6uOwq5Qoz0jazaN5wdjvt77l9RWBER0T3YHZNDk5EbyyUSs1lNmaZ1V+DbSgoyAAAAAAAAAABgB9t116646+67lv/btbu8KUPZ4WxMXZiK4ezwiu2pdGpDRRp79++tKAYAAEjGzPhMTF2YitH+0VX7lgonroxdWbG9kCtEbiwXR/qOlGyz7WRbXBq4VHFMOU48eyIOPXyo4nbKoSADAAAAAAAAAAC4rVQ6FW09bZEby614im1jc+O6cfP5+eX4SmIAAIBkNDY3RiqdWrcA+sNj8fHB8YiINVeiaG5tjtxYbkXhdTkx9UZBBgAAAAAAAAAAEBERxbliFHKFNfenM+mIiJgenV7e1pRpWi6gWKvNpeMqiQEAAJLR0t4S/YX+OHbm2Kp9s5OzERFxqHPlihNvTL6xbsH00th9ZnymopikzP1kLl77xmsx+QeTceU7V2LuJ3OJnyMiYveWtAoAAAAAAAAAANSdgaaBiIjoL/SXnDi19ATdW59ge6D9wIoVMz5sqcAj05mpKAYAANh6Y/1j0ZRpiq6BrhXbC7nCuivdLX1/uLXAu5yYSl35zpV4qe+lkm22dLRE93PdceAfHEjsfDumIOMnP/lJPPvss3Ht2rXlbYuLi9HQ0BBdXV3xa7/2a1XMDgAAAAAAAAAAal8qnYrG5sY1n2Kbn85HRMTBjoPL2x489WB879z3YnZyNlraW1bFzFyeWVVYUU4MAACwthvXb8T7199ffv3e2+9tKr6QK8TFgYuRzqTj8dHHV+2fz8+vu4LdUuHFrcXb5cRU4sKpCzF1YSoWFxcj4oMVOObz81GcK8bM+EwMtQ/Fsf5j8cjvPpLIOXdEQcYTTzwRH//4x+OZZ56Jffv2rdr/8ssvx6lTp6Kvry8efvjhKmQIAAAAAAAAAAC1r723PY70HVlz/9SLU5FKp+KBkw8sb2tpb4lMZyZefeHVksUVUxemVk3oKicGAABY28WzF+O7v/Pd5dfXdl1b5+gPTF2YiquXr8Zcbi7SmXS0drWWPG6jRRPvvvVuRTHlGnt6LKZHp+ORLz0SbT1t0XRodSHI7A9m49X/z6tx8UsXo3F/Yxz9fx+t+Lw1U5Dx05/+ND760Y9uOu4LX/hC9Pf3x6FDh9Y85pFHHolHHnkkvvzlL0dEKMoAAAAAAAAAAIASuga6YqRvJB7IPrBqhYrh7HBERHzm5c+sWkEjO5yNoY6hePDUgysKLEb6RuLomaMlV7soJwYAACjt+DPH45Nf/OTy69dffz1+/+d//7ZxbT1t0dbTtvz6+a7nY2JwIrqf615z5bxak3s5F7mxXPzWld+K1L61c2453BIth1viSN+ReP6Xn4+2nrZI/0y6onPXREHGc889F08//XScO3cuPve5z2047g/+4A+ip6dn3WKMWz311FPxhS98QUEGAAAAAAAAAACsoXuwO6YuTMVwdjhSzako5otRnCvGgfYDNyc4lZiUlUqnoneiN0b7RyOVTsXe/XsjP52P1q7WFZO7Ko0BAABK271nd+ze80F5wN333l1WO9nhbAw0DURxrrhi1bpUOrWhFS/27t9bUUw5JocmbxaOr1OMcaumTFNkX8zG2Jmx6Hmhp6Jz10RBxunTp2N8fDxOnz4dg4ODMTw8HD/zMz9z27hCoRAnT57c1LnS6XRZOc7NzcXZs2cjImL//v0xPT0dXV1d0dNT2QX4sL6+vujv749MRoU/AAAAAAAAAADV8eGn5G5EKp2K7sHuLY8BAAC2Tiqdiraetpi6MBW5sdzyynWNzY3rxs3n55fjl5QTU47FxcUNF2MsaWlvicXFxYrOGxGxq+IWEjI4OBinT5+OfD4fmUwm/tW/+le3jens7FwuktiIn/70p1EoFDad29zcXHR0dMSpU6diYGAgzpw5E4ODgzE6Ohr9/f2bbm8tk5OTMTQ0FHNzc4m1CQAAAAAAAAAAAAAAS4pzxSjk1p5Xn86kIyJienR6eVtTpmm5gGKtNpeOqySmHOXGV3reiBoqyIi4WZTR2dkZL774YvzLf/kv4+d+7ufiL//yL9c8/vDhwzE9PR3PPPNM/O3f/u26bX/jG9+IRx55JJ544olN55XNZqOnpyfa29tX5Ts0NBRjY2ObbrOUJIs7AAAAAAAAAAAAAADgwwaaBuKrrV9dLoj4sL3790ZErNh/oP3AmsdHxHKBx9KKGuXGlKVhm+NuUVMFGRERra2t0dXVFVeuXImHH344Dh8+HP/8n//zNY9/8cUX46//+q8jnU7Hz/3cz8WpU6fiC1/4QnzhC1+IU6dOxUMPPRR33XVXnD59Or70pS/FJz7xiU3lk8vlYmxsLPr6+kruP3nyZAwMDGyqzVKGhoYim81W3A4AAAAAAAAAAAAAAKwllU5FU6YpUulUyf356XxERBzsOLi87cFTD0ZExOzkbMmYmcszqworyokpR1OmKeZ+MrepmOs/vR6NzY0Vn7vmCjI6OztjfHw89u3bF4ODgzE+Ph7f/va3Y//+/fHNb36zZMzw8HD81V/9VTz88MMxPT0dg4ODMTg4GBMTE9HU1BTPPvtsvPXWW/HII49sOp/BwcGIiMhkSl/o1tbWGBsbi7m5uU23vSSXy617DgAAAAAAAAAAAAAASEJ7b3s8Pvr4mvunXpyKVDoVD5x8YHlbS3tLZDoz8eoLr5aOuTAVx/qPrdhWTkw5Ok53xPiz43H9p9c3HDN6ZjSO9B2p+Ny7K24hYYcPH47f+73fi4cffjgiItrb2+Ov//qv49y5c/Hoo4/GyZMn47nnnouPfOQjK+Iymcxy8USSJicnI51Or7l/qYhifHw8Ojs7yzrH4OBgDAwMxNjYWFnxAAAAAAAAAAAAAACwEV0DXTHSNxIPZB9YtULFcHY4IiI+8/JnVq2gkR3OxlDHUDx46sFoaW9Z3j7SNxJHzxwtudpFOTG32ujKFw+ceiCGs8PR8URHNB1qWvO4Qq4QP37hx9E50Bl7PrpnQ22vp+YKMiIi3nrrrVXbzpw5Ez09PZHNZiOdTsfQ0FB87nOf2/JccrlcNDc3r7l/qVhjaZWLzbpw4UL09fWVFQsAAAAAAAAAAAAAAJvVPdgdUxemYjg7HKnmVBTzxSjOFeNA+4H4rSu/taoYIyIilU5F70RvjPaPRiqdir3790Z+Oh+tXa3R1tNW8jzlxNxqsH0wrl/b2MoXi4uLkRu7/bz+VDoV44Pj8alnPlVxUUbNFWRcuXJlzQKITCYTExMTMTQ0FE899VQMDg7G8PBw/MzP/MyW5ZPP55dXwShlKde5ublNtz03Nxe5XC56eno2HTt/Yz7evvH28uu7d90dd99196bbIWKxYTEWYzEWGxZjIRaqnU7dW2xYjIWFhbhx40a1U9kRbty4oT8Tpk+TpT+TpT+Tp0+TtbBgrFQNxv43+Xf8AZ9trMV7g7V4b7AW7w1KMe6vjnfffzf23PjgB587ddxfj/zGUN9cv/rnGtY316/+uYb1bbFhsdop3JHc80+Gz5/k6dNkJdWf7tvd5D5m8vRpsvRnsvRnsjZyz7+tp21DRRG3SqVT0T3YveUxSxqbG6M4V4y2nrZobG4sq41SioVi/PjFH0f759sraqfmCjJ+8IMfRGdn57rH9Pb2xsmTJ+P06dORyWSiv78/fvd3f3dL8tlooUWpVT1u5+zZszEwMLDpuIiI/r/oX/H6V9p/JX71yK+W1dadbjEWY/4j85GPfDREQ7XTqXuLsRg3Xr/5h3DXrl1Vzqb+LSwsxOuvvx4R+jMp+jRZ+jNZ+jN5+jRZ5Yx5qZyx/00XL16sdgo1w2cba/HeYC3eG6zFe4NSjPurw7i/fvmNob65fvXPNaxvrl/9cw3r29/O/221U7gjGfsnw+dP8vRpspLqT7+P3eQ+ZvL0abL0Z7L0Z7J2yj3/pkxTHH/6eMWFE1ul5goyRkdH42tf+9ptj0un0zE8PBxjY2Nx8uTJGB4ejgsXLsQ/+Af/YBuyrNzY2Fh0dXWVHT/wDweiKdW0/PruXXfH3bMq5sux2LAY+chH8xvN0bDoC0WlFhsW4+DfOxhHjx6N3btr7iOm7ixVeerP5OjTZOnPZOnP5OnTZC194WV7GfvfdPz48WqnUDN8trEW7w3W4r3BWrw3KMW4vzqM++uX3xjqm+tX/1zD+ub61T/XsM7NVzuBO5OxfzJ8/iRPnyYrqf70+9hN7mMmT58mS38mS38ma6fc82/KNEVTpun2B1ZJTb1Tf/KTn0Rra2v88Ic/jMuXL0cul4uIiNbW1shkMnHkyJH46Ec/uiKms7Mz8vl89Pf3x+HDh+OJJ56IL33pS6uOK1c6nd7QKhn79+/fVLujo6Nlr44REdG4uzHu3X3vyo1WkyzLQixEQzREw2JD7FpUTVephViIXbt2xe7du/0xTIj+TJ4+TZb+TJb+TJ4+TY4nD1SHsf9N/g2v5LONtXhvsBbvDdbivcGHGfdXx9679hr31ym/MdQ316/+uYb1zfWrf65hfTPhujrc80+Gz5/k6dNkJdWf7tl9wH3M5OnTZOnPZOnP5OyUe/4nnj1R7RTWVVPv1N7e3sjn8xERcfjw4ejs7Izm5ubI5XKRy+XizJkz0dDQEH19ffGJT3xiRezAwECcOnUqent749ChQ/EHf/AH8elPf7rinJqbm9fdv5RvOp3ecJvnzp2LZ555ppK0AAAAAAAAAAAAAACAKqqZgoxnnnkmstlsnD59etW+w4cPx+HDh+PRRx+NiIinn346crlc/Nqv/dqK49rb22N8fDzOnTsXjz76aPzyL/9yDA8Px0c+8pGy88pkMjE+Pr7m/qXVMzKZzIbay+VykU6nN1XAAQAAAAAAAAAAAAAAJOe1b7wW9//a/RW1URPrkPzgBz+I5ubmksUYpXzpS1+K73//+/GTn/yk5P4zZ85EPp+P999/P9LpdPzhH/5h2bm1t7cvF12UksvlIiKis7NzQ+1NTk7G8PBwdHV1rfqvr68vIiJOnz69vA0AAAAAAAAAAAAAAEjWyOmRituoiRUyXn755eVihI06depUjI2Nxec///mS+9PpdIyOjsaFCxeit7c3BgcHY3h4OH7mZ35m0+c5d+5cTE5ORnt7+6r9ly9f3nAxRkRET09P9PT0lNx34cKFyGaz8dxzz5U8FwAAAAAAAAAAAAAA3Gne+OEbceATB9bctxnz+fko5ApRnCtWnFdNFGQcOnQoxsfH4+GHH95wzJUrV6Kjo+O2x/X09ERXV1ecOXMmMplM9Pf3x+/+7u9u+Dzt7e3R2dkZL7zwQskiiQsXLsTo6Oiq7XNzc3H27Nno6uraVMEGAAAAAAAAAAAAAABw09jTY/G9L38vWjpa4vT3T6/a/0cP/1Fcv3a9CpnVSEHGo48+GkeOHIk//dM/3dAKFi+//HKcPXs2Ll++vKH29+3bF4ODg9HX1xdDQ0Obzm94eDg6Ojri1KlTK4oy+vr64syZMyULLoaGhuLcuXMxNDQUhUJhQ+fJ5XLL/9cKGQAA1JOpC1PR1tNW7TQAAAAAAAAAAIAdppArxOLiYhQLpVe0aGxujIiIjt6bCz407m9ct735t+ajMF2I177xWsW51URBRkTEiy++GIcPH46HHnoourq6or29PZqbm5f353K5uHz5coyNjcXc3FyMj49v+hzt7e3x7LPPbjounU7HxMRE9Pf3Rzqdjv3798f09HR0dXVFT09PyZjOzs5Ip9Nx8uTJ27bf19cXuVxu+X/T6dOnY3BwMNrb22NgYGDT+QIAwHYqzhVjODscJwZPxAMnH4hUOlXtlAAAgC020jcSD2QfiExnZs1jJoYmYmp4Kjr6OiLTmYlUOhWFXCFmJ2fjxy/8OI4/czxa2ltWxRXnivHK2VciImLv/r2Rn85Ha1frukXg5cQAAAAAAAD1ofu57sh0Zdb8XaIp0xTHnz4e7Z/f3KII5/afqzi3minIyGQyceXKlfjd3/3dOHPmTERENDQ0LO9fXFyMdDodzzzzTDz11FPbnl86nY7BwcENH9/e3r7hlTE20y4AANSaQu7muPelvpfipb6X1j02O5xdnhC1nZOzAACAyhVyhciN5WJicCJmJ2fjgewD6x5fnCtGbiwXubHciu2pdCqyw9k1x/tDHUOr9o/0jcTVy1eja6ArkRgAAAAAAKB+pPalouN0x5r7M12ZOHjk4KbbTR9KV5DVTTVTkBERsW/fvhgYGIiBgYG4cuVK5HK5yOVykclkIpPJxKFDh6qdIgAA8CGFXCGaMk3R0t4SqebSq2MU88Uo5Aoriia2a3IWAABQuYmhiciN5iLTlYnOgc54vuv5DcWdGDwR+el8zOXmItWcioMdB5eXCy9lODsc9/fcv+r7QPdgdww0DURrV+uqp1+VEwMAAAAAAOwcx546VlZc73hvxeeuqYKMWx06dCgOHToUjzzySLVTAQAA1nH18tV4fPTxaMo0rXnMaP9odA50rtq+HZOzAACAynX0diyP1WcnZzcc98DJByKVLl24/WFLK3CcGDxRcn/byba4NHBpxZi/nBgAAAAAAGDnee0br0VLe0ukfza9reet2YIMAACgfqxXjDE7ORvNrc0lj9nqyVkAAED9GB8cj4i1v180tzbH5NBkFOeKy98jyokBAAAAAAB2lpeeeCkmn5uMVFMqzvzNmW09965tPRsAALDjHOk7su7+8cHxdVe92KiNTLTKjeWiOFes+FwAAMD2e2PyjXWLJpa+C8yMz1QUAwAAAAAA7Czz+fk49MihaP98+7af2woZAABARdZbHWO0fzS6BroSOc9mJlpZJQMAAGrL7ORszIzPxMEjB6OlvaXkMYVcIRqbG9dsY+n7QCFXqCgGAAAAAADYWZoyTdH5pc6qnFtBBgAAsCVmJ2ejubV53SKKW4/dislZAADA+m5cvxHvX39/+fV7b7+XaPu5sVwUcoXIdGaio7cjZidn4/mu5+NY/7FVhdTz+fl1C76Xvg/cuipeOTEAAAAAQGXOd5+vdgoREfHYyGPVTgGoEY37G2PuJ3OR/tn0puLO7T8XZ946U9G5FWQAAAAlVTox6+LZi5Edzq57zFZPzgIAANZ38ezF+O7vfHf59bVd1xJre2n8fuzMseVtLe0tkR3OxkDTQPRO9K4oyN7oWP7dt96tKAYAAAAAANhZjj11LIZPDseRJ47EoYcPbThucXGx4nMryAAAAEqqZGLW1IWpSGfS6x6zHZOzAACA9R1/5nh88oufXH79+uuvx+///O8n0nZbT1vJ7al0Ktp62mI4OxxPTj+ZyLkAAAAAAIA7W/bFbHzv974XE4MTcfChg9HS3hKNzY2RSqdKHj89Oh3Xr12v+LwKMgAAgJIqmZh18ezF6H6ue91jTM4CAIDq271nd+ze88FPBXffe/e2nPfgQwdj6sJUFHKF5WLtVDq1oULsvfv3Lv//5cQAAAAAAAA7y+/s+p1oaGiIiJurXkxdmNq2cyvIAAAASip3YlYhV4jZydkVq1tsVlKTswAAgNq09DSq2cnZ5TF/Y3PjujHz+fkVseXGAAAAAAAAO0tTpikKuUK09bTd9reDJTOXZ+KNH75R8bkVZAAAAIkaHxxfnlBVrqQmZwEAANUx0jcSV8aubGrVu6ZMU8yMz6y5f6lA+9bvG+XEAAAAAAAAO0tTpimOP3082j/fvqm4c/vPVXzuXRW3AAAAcIsrY1duO9lppG8kvtr61U2125RpWi66KMVEKwAAqB2z47MbGr/furLegfYD666KV8gVIiIi05mpKAYAAAAAANhZmjJNZc0ZSjVV/uBXBRkAAECiZidnb7tKxXZNzgIAAKrjUOeh6C/0r7l/5vJMpNKpFT+OPHjqwYi4+Z1irZgPj/fLiQEAAAAAAHaWE8+eiEMPH9p03JN/vfGVvteiIAMAAEjM0iSoVPP6BRnbNTkLAACojgdPPRgTQxMl9xVyhZi6MBXdz3Wv2N7S3hKZzky8+sKrJeOmLkzFsf5jFccAAAAAAAAkZXe1EwB2nh+d/1Fc/crV2LVY3Zqvx0Yeq+r5AeBOtN6qF7dampzV0duxat/S5KzscHbF9lsnWt26csaSqQtT8fjo4+UlDgAAbNjS6nTrrWDX0t4SubFcXDp3KY6d+aAgopArxFDHUBw9czTaetpWxWWHszHUMRQPnnpwxbh/pG8kjp45WrIIu5wYAAAAAADgzpF7ORe50VxEQ0Rza3McPHIwDnziQCJtK8gAAAASszQxK5Vef4WM7ZycBQAAVG7qwlRMDN5c8WJmfCYiIkZOjyxva8u2rSq4PnbmWOTGcjHSNxLFfDGKc8VIpVPxmZc/U7LIOuLmd4neid4Y7R+NVDoVe/fvjfx0Plq7Wkt+Ryg3BgAAAAAA2DnO7T8XZ946s+b+zCOZyDySieK1Yszn5yM3lovxwfHoGuiKPR/dU9G5FWQAAACJOXjkYKTSqfjYQx+77bHbNTkLAACoXFtPW1lj7kxnZtOF06l0KroHu7c8BgAAAAAA2BkWFxc3dFxqXypS+1LRcbojiteKMdo/Gie+dqKicyvIAAAAEtPS3hL9hf4NH79dk7MAAAAAAAAAAICdqaGhYdMxqX2pRM69K5FWAAAAAAAAAAAAAAAA6kDxWjFmx2crbscKGQAAAAAAAAAAAAAAQM2a+8lcye2Li4s39//fcxGL67dRnCvGfH4+Zidn4+LZi9F2sq3ivBRkAAAAAAAAAAAAAAAANWtmYiZmLs9EIVeI3Fgurl+7vmL/VzNf3XBbi4uLkenMxImvnag4LwUZAAAAAAAAAAAAAABAzWp7tC3aHv1gRYvZydkY6x+L3Mu5aGhoiPsfvX9D7TRlmiLTlYnMI5lE8lKQAQAAAAAAAAAAAAAA1I2W9pZ4fPTxGOkbidcuvBbZF7NVyUNBBgAAAAAAAAAAAEANOd99vtopxGMjj1U7BQC4re7B7pidmK3a+XdV7cwAAAAAAAAAAAAAAAAVOP7M8aqd2woZAAAAAAAAAAAAAABAXWp7tO22x1z5zpUo5ArRlGmKg0cOxp6P7knk3AoyAAAAAAAAAAAAAACAujT29FgUrxVXbDvxtRMREVG8VoznO5+P2cnZWFxcjKZMUxQLxcheyMahf3So4nMryAAAAAAAAAAAAAAAAOpSR19HfLX1q9HR1xEdvR3Rcrhled9wdjhmJmbi2Jlj0fmlzoiIKM4VY/jkcDQdaor0z6YrOreCDAAAAAAAAAAAAABq0o/O/yiufuVq7FrcVdU8Hht5rKrnB2Btb/zgjcgOZ6Pt0bYV26f+dCpyY7l4IPvAcjFGREQqnYrsi9kYe2ZseSWNclX3rxMAAAAAAAAAAAAAAECZrl6+uqoYIyLixy/8OBoaGuL4M8dX7UulU5Hal6r43AoyAAAAAAAAAAAAAACA+rRYenNuLBcREQc+caD0AQ2Vn1pBBgAAAAAAAAAAAAAAUJca9zeu2la4UojiXDFa2lvWjCvOFSs+t4IMAAAAAAAAAAAAAACgLjU0rF7qYurCVEREHOo8tHbgGitrbIaCDAAAAAAAAAAAAAAAoC69+zfvxvWfXl+xbWJwIhoaGuLBUw+WjBl7Ziw6+joqPreCDAAAAAAAAAAAAAAAoC4df+Z4DGeH442/fCPe+OEbceHUhSjkCtHW0xYHPnFgxbFv/PCN+ON//Mexd//eaDncUvG5d1fcAgAAAAAAAAAAAAAAQBWk9qXikbOPxIuPvhiFXCEiIh7IPhA9L/QsH/PSEy9Fbiy3vD83lot333o3Os92VnRuBRkAAAAAAAAAAAAAAEDdamlviSf/+skoXitGal9q1f5j/cfiWP+xFdsamxsrPq+CDAAAAAAAAAAAAAAAoO6VKsaIiGg61LQl59u1Ja0CAAAAAAAAAAAAAADUqNe+8VrFbSjIAAAAAAAAAAAAAAAA7igjp0cqbmN3AnkAAAAAAAAAAAA7xOzkbIwPjkcxX4zZydlIpVPR0dcRHb0da8YU54rxytlXIiJi7/69kZ/OR2tXa7T1tCUaA8D2Od99vtopxELDQkRLtbMAoBa88cM34sAnDqy5bzPm8/NRyBWiOFesOC8FGQAAAAAAAAAAQERETAxNRERE92D38rbcWC6Gs8NxaeBS9E70RiqdWhFTnCvGUMdQZIez0dL+wazZkb6RuHr5anQNdK06TzkxAADAnWns6bH43pe/Fy0dLXH6+6dX7f+jh/8orl+7XoXMFGQAAABQB2rh6TsREY+NPFbtFAAAAAAAtszSE2KPnTm2YnumMxOfefkzMdQxFMPZ4Xh89PEV+4ezw3F/z/0rCisibhZ1DDQNRGtXa2Q6MxXHAAAAd6ZCrhCLi4tRLJRe0aKxuTEiYnlVv8b9jeu2N//WfBSmC/HaN16rODcFGQAAAAAAAAAAQIwPjsennvlUyX0t7S2R6cxEbiwXhVwhmjJNEXFzYlRuLBcnBk+UjGs72RaXBi6tKK4oJwYAALhzdT/XHZmuzJrfEZoyTXH86ePR/vn2TbV7bv+5inPbVXELAAAAAAAAAABA3bsydiX+9aF/HcW50k+dPdB+ICIiZidnl7eND45HRCwXaHxYc2tz5MZyK9osJwYAALhzpfalouN0RzQdKv0dItOViYNHDm663fShdIWZKcgAAAAAAAAAAAAiorG5MYpzxSjkChuOeWPyjUilU2vuXyq6mBmfqSgGAABgLceeOhYHPnFg03G9470Vn3t3xS0AAAAAAAAAAAB17/HRx6OQK6y5csVcbi4iIlraW5a3FXKFaGxuXLPNpcKLW4s8yokBAACSNTs5G+OD41HMF2N2cjZS6VR09HVER2/HmjHFuWK8cvaViIjYu39v5Kfz0drVGm09bYnG1BMFGQAAAAAAAAAAsIMtvL8QiwuLH7y+sbDmsWsVY0RETF2Yipb2lhXHzOfn141ZKrwozhUrigEAAJIzMTQRERHdg93L23JjuRjODselgUvRO9G7alW74lwxhjqGIjucXVGkPdI3ElcvX42uga5V5yknZrPmfjIXubFc5Kfzy0XkqeZUNLc2R0t7Sxx6+FDF51iPggwAAAAAAAAAANjB8n+dj/xf5ZdfX4trm27j0rlLERHR/Vz3iu0bLZp49613K4oBAACSUcgVojhXjGNnjq3YnunMxGde/kwMdQzFcHY4Hh99fMX+4exw3N9z/4rCioibRR0DTQPR2tUamc5MxTEbcf2n12NiaCIunr24oe8XHX0dcezMsUj/bHrT57odBRkAAAAAAAAAALCDNX+8ecWKFPliPuK7G4+fnZyNsf6xVU+1BQAA6s/44Hh86plPldzX0t4Smc5M5MZyUcgVlr9HFHKFyI3l4sTgiZJxbSfb4tLApRXFFeXEbMTkH0zGS30vRUTE4uLiin2pdCoamxtjPj+/olBj/NnxmBiciGP9x+KR331kU+e7HQUZAAAAAAAAAACwg+26a1fEXbe8vrFrU/HD2eE4MXgi2nraVu1LpVMbeiLt3v17K4oBAACScWXsSkwOTcZvXfmtSKVTq/YfaD8QubFczE7OLhdkjA+OR0SsKPS+VXNrc0wOTUZxrrjcZjkxt3Ph1IWYujAVi4uLkenMRKYrE5nOTLQcLl04XrxWjNxYLqa/PR2Tz03GpYFLkRvLxenvn97Q+TZic9+uAAAAAAAAAACAO8Zwdjg6+jqio7ej5P7G5sZ14+fz8xERKyZYlRMDAAAko7G5MYpzxSjkChuOeWPyjXXH50tFFzPjMxXFrOeP//Efx4+Hfxz3P3p/PDn9ZDz+7cfj2FPH1izGiIhI7UtF26Nt0T3YHf/bwv8Wn/ztT8bM+Ew89wvPbeicG6EgAwAAAAAAAAAAWGW0fzQOPnQwjp05tuYxTZmm5QKKUpZWwrj1qbjlxAAAAOu7cf1GXP/p9eX/3nv7vZLHPT76eDw5/WS0tJcuZJjLzUVErNhfyBXWLaxeKry4tcijnJi1XPrypZgenY7uoe7IvpiNpkPlfVfoGuiKx7/9eMyMz8TL/8vLZbXxYbsTaQUAAAAAAAAAANgxJoYmorm1ueTKGMW54vLkqQPtByI3lluznaXJVZnOzPK2cmIAAID1XTx7Mb77O99dfn1t17U1j12v+HnqwlS0tLesOGY+P79uzFLhxVJxdbkxpRSvFWOsfyy6znVF++fb1z12IzKdmci+mI0Lpy5ER29HpH82XVF7VsgAAAAAAAAAAACWTV2YiogoWYxRyBVWFFM8eOrBiIiYnZwt2dbM5ZlVhRXlxAAAAOs7/szxePra08v/feEvv7DpNi6duxQREd3Pda/YfruiiSXvvvVuRTGlTAxNREt7Sxz97aMbam8j2nra4sDhA8vffSqhIAMAAAAAAAAAAIiIm0US8/n5ksUYERG5sVy0tLcsv25pb4lMZyZefeHVksdPXZiKY/3HVmwrJwYAAFjf7j27Y89H9yz/d/e9d28qfnZyNsb6xyI7nF0x5q+2H7/w4/jU//KpxNs9/vTx+PELP664nd0J5AIAAAAAAAAAANS5Qq4Qw9nhONR5KGb6ZlbtL+aLkRvLRX+hf8X27HA2hjqG4sFTD66YuDXSNxJHzxwtudpFOTEAAMDWGc4Ox4nBE9HW07ZqXyqd2tCKF3v3760oppS5K3Nb8v0g05WJl/peqrgdBRkAAAAAAAAAAEA83/V8FHKFKAwV1jymKdO0alsqnYreid4Y7R+NVDoVe/fvjfx0Plq7WktO5io3BgAA2BrD2eHo6OtYc6W8xubGdePn8/MRcXOcX0lMKcW5Yuz56J51jylHat/GCkZuR0EGAAAAAAAAAAAQT04/WXZsKp2K7sHuLY8BAACSNdo/GgcfOhjHzhxb85imTFPMjK9eRW/JUmHDrQXc5cSUsmdf8sUYSba9K4E8AAAAAAAAAAAAAACAOjIxNBHNrc0lizFuXT3iQPuBdVeTKORurrKX6cxUFFNKQ0PDuvsrkUTbCjIAAAAAAAAAAAAAAOAOMnVhKiIiOno7Vu0r5AqRG8stv37w1IMRETE7OVuyrZnLM6sKK8qJqUcKMgAAAAAAAAAAAAAA4A4xOzkb8/n5ksUYERG5sVy0tLcsv25pb4lMZyZefeHVksdPXZiKY/0rV9koJ6Ye7a52AgAAAAAAAAAAAAAAwNYr5AoxnB2OQ52HYqZvZtX+Yr4YubFc9Bf6V2zPDmdjqGMoHjz14IpijZG+kTh65mjJ1S7KiVmVz1xxM//zNiWJthVkADvW+e7z1U4hIiIeG3ms2ikAAAAAAAAAAAAAQDzf9XwUcoUoDBXWPKYp07RqWyqdit6J3hjtH41UOhV79++N/HQ+Wrtao62nrWQ75cR82OLiYvybn/s3JXOqRCG39v/+zVCQAQAAAAAAbMpI30g8kH3gtk+uKs4V45Wzr0REbPhHlu2KAQAAAACAO9GT00+WHZtKp6J7sHvLYz4sP52P/HS+ojZKaWhoqLgNBRkAAEDFJoYmYmp4Kjr6OiLTmYlUOhWFXCFmJ2fjxy/8OI4/c3zFsoNLTLQCAID6UcgVIjeWi4nBiZidnI0Hsg+se3xxrhhDHUORHc6uWob86uWr0TXQVbUYAAAAAACgfmQ6M5HpWv8hUZs18/2ZeO0br1XcjoIMAACgYsW5YuTGcpEby63YnkqnVk2KujXGRCsAAKgPE0MTkRvNRaYrE50DnfF81/O3jRnODsf9Pfev+j7QPdgdA00D0drVumqFje2KAQAAAAAA6kNDQ0M8/u3Ht6Tt//2u/73iNhRkAAAAiTgxeCLy0/mYy81FqjkVBzsORkdvx5rHm2gFAAD1o6O3Y3l8Pzs5e9vjl1bTODF4ouT+tpNtcWng0orx+3bFAAAAAAAA9WPPvj013baCDAAAIBEPnHwgUunUho410QoAAHa28cHxiIhoyjSV3N/c2hyTQ5NRnCsuf4/YrhgAAAAAAKB+fOblz9R027sSyAMAAGBTNjJpKjeWi+JcsaIYAACgOt6YfGPdAoilcf3M+My2xwAAAAAAAPWj5XBLTbetIAMAANh2JloBAMDOVsgVorG5cc39S2P7Qq6w7TEAAAAAAABJUZABAAAkanZyNiaGJmJ2cnbNY0y0AgCA2nDj+o24/tPry/+99/Z7ibQ7n59ft6B6aWx/6wp32xUDAAAAAACQlN3VTgAAAKhNN67fiPevv7/8+nYTs3JjuSjkCpHpzERHb0fMTs7G813Px7H+Y5HpzKw4dj4/v7yiRSlrTbTabAwAALC+i2cvxnd/57vLr6/tupZIuxsdl7/71rvbHgMAAAAA9ex89/mK4hcaFiLfko+rX7kauxY91x2gUgoyAACAkjYzMWupUOLYmWPL21raWyI7nI2BpoHoneiNlvaW5X0mWgEAQG04/szx+OQXP7n8+vXXX4/f//nfr2JGAAAAAAAA9UNBBgAAUNJmJma19bSV3J5Kp6Ktpy2Gs8Px5PSTW5InAABQvt17dsfuPR/8VHD3vXcn0m4qndpQUfXe/Xu3PQYAAAAAACAp1hoCAABK2r1nd+z56J7l/8qdmHXwoYNRyBWikCssbzPRCgAAdrbG5sZ198/n5yPi5jh/u2MAAAAAAACSYoWMDZqbm4uzZ89GRMT+/ftjeno6urq6oqenp+w2JycnY3BwMPL5fExOTkY6nY6+vr7o7e1NKm0AAKi6pYlPs5Oz0ZRpiggTrQAAYKdryjTFzPjMmvuXiq2XviNsZwwAAAAAAEBSFGRswNzcXHR0dMTw8HC0t7cvb+/r64vLly/HwMDAptscGhqKiIjBwcHlbWNjY5HNZmNgYCAmJiYinU5XnDsAAGy1kb6RuDJ2JZ6cfnLDMSZaAQDAznag/UDkxnJr7l9aQS/Tmdn2GAAAAAAAgKTsqnYC9SCbzUZPT8+KYoyIm8UUQ0NDMTY2tqn2crlczM3NrVoJo7OzM15++eXI5XKRzWYrzhsAALbD7Pjs8uoUpSwVSrS0tyxvO9B+YHl7KWtNtNpsDAAAUB0PnnowIm6ulFfKzOWZVWP37YoBAAAAAABIioKM28jlcjE2NhZ9fX0l9588eXLTK2QMDg6uKsZY0t7eHp2dnTE2Nha53NpP9QIAgFpxqPNQ9Bf619w/c3kmUunUipUrTLQCAICdraW9JTKdmXj1hVdL7p+6MBXH+o9VJQYAAAAAACApCjJuY3BwMCIiMpnSE7taW1tjbGws5ubmNtzm2NhYHDp0aM2YpZU4JicnN5UrAABUw4OnHoyJoYmS+wq5QkxdmIru57pXbDfRCgAA6tfS6nTrrWAXEZEdzsZrF15bVVQ90jcSR88cLVlQvV0xAAAAAAAASdhd7QRq3eTkZKTT6TX3LxVqjI+PR2dn54babG5ujsnJycjlcsvFFwAAUK9a2lsiN5aLS+cuxbEzHxREFHKFGOoYiqNnjkZbT9uquOxwNoY6huLBUw9GS3vL8vbbTbTabAwAAFC5qQtTMTF4sxB7ZnwmIiJGTo8sb2vLtkVHb8eKmFQ6Fb0TvTHaPxqpdCr27t8b+el8tHa1lvyOsJ0xAAAAAAAASVCQcRu5XC6am5vX3L9UrJHL5Tbc5ujoaORyuTVX3VhqS7EGAAD14tiZY5Eby8VI30gU88UozhUjlU7FZ17+zIrCiVuZaAUAAPWjraetrDF3Kp2K7sHu2x9YhRgAAAAAAIBKKci4jXw+v2bhREQsF2vMzc1tqt312rxw4UK0t7eve8z8jfl4+8bby6/v3nV33H3X3ZvKgZsWGxZjMRZjsWExFmKh2unUPf252o0bNyqKXVhYqKgNVtKnydKfydKfydOnyVpYWP9ve6Yzs+kVKky0uj1j/9pSC58nPttYi/cGa/HeYC3eG5Ryu3E/W+Pd99+NPTf2LL827q8f7onXN9ev/rmG9c31q3+uYX1bbFisdgp3JPf8k+HzJ3n6NFn6M1m11J+1ci91oaGyfqilPq1ULVwT99qTpT+T5Z7/9lCQcRsbLbR46623EjnfuXPnIiLiueeeW/e4/r/oX/H6V9p/JX71yK8mksOdZjEWY/4j85GPfDREQ7XTqXv6c7WLFy+WHbuwsBCvv/56RETs2rUrqZTuaPo0WfozWfozefo0WUmNedkcY//aUsnYLik+21iL9wZr8d5gLd4blGLcXx3G/fXLPfH65vrVP9ewvrl+9c81rG9/O/+31U7hjmTsnwyfP8nTp8nSn8mqpf6shd8KIyLyLfmK4mupTytVC9fEvfZk6c9kuee/PRRk1JDJycno7++P4eHhaG9vX/fYgX84EE2ppuXXd++6O+6eVTFfjsWGxchHPprfaI6GxfoeXNQC/bna8ePHy45dqvI8evRo7N7tIzsJ+jRZ+jNZ+jN5+jRZS1942V7G/rWlkrFdUny2sRbvDdbivcFavDcoxbi/Ooz765d74vXN9at/rmF9c/3qn2tY5+arncCdydg/GT5/kqdPk6U/k1VL/VkLvxVGRFz9ytWK4mupTytVC9fEvfZk6c9kuee/PbxTbyOdTm9olYz9+/dXfK5sNhuDg4PR09Nz22MbdzfGvbvvXbnRapJlWYiFaIiGaFhsiF2LqukqpT9Xq3RQsGvXrti9e7fBRYL0abL0Z7L0Z/L0aXI8eaA6jP1rS618lvhsYy3eG6zFe4O1eG/wYcb91bH3rr3G/XXKPfH65vrVP9ewvrl+9c81rG/1PvmyXrnnnwyfP8nTp8nSn8mqpf6slfuolfZDLfVppWrmmrjXnij9mRz3/LeHXr6N5ubmdffn8zeXfkqn0xWdJ5vNRl9fX/T29lbUDgAAAAAAAAAAAAAAsPUUZNxGJpNZLrooZWn1jEwmU/Y5+vv746GHHoozZ86U3QYAAAAAAAAAAAAAALB9FGTcRnt7+3LRRSm5XC4iIjo7O8tqf2hoKFpbW0sWY6x3XgAAAAAAAAAAAAAAoHoUZNzGqVOnIiJicnKy5P7Lly+XXYxx4cKFiIjo7e1dtS+Xy8XY2FhZ7QIAAAAAAAAAAAAAAFtLQcZttLe3R2dnZ7zwwgsl91+4cCH6+/tXbZ+bm4v+/v41iyomJycjn8+XLMaIiBgbG4v29vbyEwcAAAAAAAAAAAAAALbM7monUA+Gh4ejo6MjTp06taJIoq+vL86cOVNyhYyhoaE4d+5cDA0NRaFQWLEvl8tFNpuNzs7O6OvrWxWbz+djbGxsVRwAAAAAAAAAAAAAAFAbFGRsQDqdjomJiejv7490Oh379++P6enp6Orqip6enpIxnZ2dkU6n4+TJk6v2dXV1RS6Xi6GhoTXPmclkEssfAAAAAAAAAAAAAABIloKMDUqn0zE4OLjh49vb29dc4WJ6ejqptAAAAAAAAAAAAAAAgCrYVe0EAAAAAAAAAAAAAAAA6o2CDAAAAAAAAAAAAAAAgE3aXe0EAHa6893ny45daFiIfEs+rn7lauxaLL+G7rGRx8qOBQAAAAAAAAAAAABWs0IGAAAAAAAAAAAAAADAJinIAAAAAAAAAAAAAAAA2CQFGQAAAAAAAAAAAAAAAJu0u9oJAAAAQL04332+2inEQsNCfOyLH6t2GgAAAAAAAAAAdzwrZAAAAAAAAAAAAAAAAGySggwAAAAAAAAAAAAAAIBNUpABAAAAAAAAAAAAAACwSburnQAAAAAAAAAAAAAA1LLz3eernQIANcgKGQAAAAAAAAAAAAAAAJukIAMAAAAAAAAAAAAAAGCTFGQAAAAAAAAAAAAAAABskoIMAAAAAAAAAAAAAACATVKQAQAAAAAAAAAAAAAAsEkKMgAAAAAAAAAAAAAAADZJQQYAAAAAAAAAAAAAAMAmKcgAAAAAAAAAAAAAAADYJAUZAAAAAAAAAAAAAAAAm6QgAwAAAAAAAAAAAAAAYJMUZAAAAAAAAAAAAAAAAGySggwAAAAAAAAAAAAAAIBN2l3tBAAAAAAAAAAAgNoz0jcSD2QfiExnZt3jinPFeOXsKxERsXf/3shP56O1qzXaetoSjQEAAKg1CjIAAAAAAAAAAICIiCjkCpEby8XE4ETMTs7GA9kH1j2+OFeMoY6hyA5no6W9ZXn7SN9IXL18NboGuhKJAQAAqEW7qp0AAAAAAAAAAABQfRNDEzHWPxYREZ0DnRuKGc4Ox/09968orIiI6B7sjsmhyciN5RKJAQAAqEVWyAAAAAAAAAAAAKKjtyM6ejsiImJ2cva2xy+tpnFi8ETJ/W0n2+LSwKXIdGYqigEAALbOSN9IPJB94LZj8OJcMV45+0pEROzdvzfy0/lo7WqNtp62RGPqjYIMAAAAAAAAAABg08YHxyMioinTVHJ/c2tzTA5NRnGuGKl0quwYAAAgWUuF0hODEzE7ORsPZB9Y9/jiXDGGOoYiO5xdsdLdSN9IXL18NboGuhKJqUcKMgAAAKDO/Oj8j+LqV67GrsVdVc3jsZHHqnp+AAAAAKC63ph8Y92iiaWii5nxmeWn7ZYTAwAAJGdiaCJyo7nIdGWic6Aznu96/rYxw9nhuL/n/hWFFRER3YPdMdA0EK1dravG7+XE1KPqztwAAAAAAAAAAADqUiFXiMbmxjX3LxVeFHKFimIAAIDkdPR2RHY4Gx29HeuOzZcsraZxpO9Iyf1tJ9vi0sClimPqlRUyAO4A57vPVzuFiPAEZQAAAAAAAIBqWHh/IRYXFj94fWMhkXbn8/PLK1qUsjS5qzhXrCgGAAConvHB8YiINcfxza3NMTk0GcW54nKBdTkx9UpBBgAAAAAAAAAA7GD5v85H/q/yy6+vxbVE2t1o0cS7b71bUQwAAFA9b0y+sW7RxFLRxcz4TGQ6M2XH1CsFGQAAAAAAAAAAsIM1f7x5xZNp88V8xHermBAAAFA3CrnC8kp2pSwVXhRyhYpi6pWCDAAAAAAAAAAA2MF23bUr4q5bXt/YlUi7qXRqQyte7N2/t6IYAADg9m5cvxHvX39/+fV7b7+XSLvz+fkVBd4ftlR4ces4v5yYeqUgAwAAAAAAAAAA2LT1nngbcXMSVsQHT78tNwYAoJTz3eernUIsNCzEx774sWqnUTPeeeedsmPffPPN6Ovri//0n/5T/OIv/mIMDg7GfffdV1Zb99xzT9l51LOLZy/Gd3/ng6Xwru26lki7Gy2aePetdyuKqVcKMgAAgETMTs7G+OB4FPPFmJ2cjVQ6FR19HdHR21Hy+ImhiZganoqOvo7IdGYilU5FIVeI2cnZ+PELP47jzxyPlvaWVXHFuWK8cvaViLj5dKz8dD5au1qjradtS//3AQDAnW47x/DG/QAAUB+aMk0xMz6z5v6lSVi3Phm3nBgAAOrDvffem0g7Y2Nj0draWnb84uJiInnUm+PPHI9PfvGTy69ff/31+P2f//0qZnRnUJABAABUbGJoIiIiuge7l7flxnIxnB2OSwOXoneid9WTrIpzxciN5SI3lluxPZVORXY4u+ZErqGOoVX7R/pG4urlq9E10JXk/ywAAOAW2zWGN+4HAID6caD9wKrvCLcq5AoREZHpzFQUAwAA3N7uPbtj954PygPuvvfuRNpNpVMbWvFi7/69FcXUKwUZAABARQq5QhTninHszLEV2zOdmfjMy5+JoY6hGM4Ox+Ojj6+KPTF4IvLT+ZjLzUWqORUHOw6uuaJGRMRwdjju77l/1USv7sHuGGgaiNauVj/QAADAFtqOMbxxPwAA1I8HTz0Y3zv3vZidnC1ZpD1zeWbV+L2cGAAA6sPbb79dduynP/3p+M53vhPvv/9+3HXXXfHwww/HN7/5zQSz237nu89X9fx/U/ybRNppbG5cd/98fj4iYsXDWsuJqVcKMgAAgIqMD47Hp575VMl9Le0tkenMRG4sF4VcYdXy4g+cfGDDX6wKuULkxnJxYvBEyf1tJ9vi0sAlP9IAAMAW2uoxvHE/AADUl6XfAV594dWSxRVTF6ZWPbCpnBgAAOrDPffcU3bs888/H7/xG78R//E//sf45Cc/GX/0R39UUXskpynTFDPjM2vuX1oJ49Z5QeXE1Ktd1U4AAACob1fGrsS/PvSv11xm8ED7gYiImJ2creg844PjEbH2F7Hm1ubIjeU2tNwhAACw9coZwxv3AwBA7SjkChERtx1/Z4ez8dqF11b9DjDSNxJHzxwtWVBdTgwAADvbfffdFy+99FL8+3//7+Oll16K++67r9op8d8caD+w7veCpe8Ot47jy4mpV1bIAAAAKtLY3Bizk7NRyBVKPskqKW9MvrHuk3iXJmzNjFvKHAAAakE5Y3jjfgAAqK6pC1MxMTgREbH8NNuR0yPL29qybdHR27EiJpVORe9Eb4z2j0YqnYq9+/dGfjofrV2t0dbTVvI85cQAAADV8eCpB+N7574Xs5OzJecGzVxefc++nJh6pSADAACoyOOjj0chV1jzCbZzubmIiHWLNWYnZ2NmfCYOHjm45nGFXCEamxvXbGNp0tZSBT0AALB1tmoMb9wPAADV1dbTVlZBRCqdiu7B7i2PAQAAtl9Le0tkOjPx6guvlvxNYOrCVDw++njFMfVqV7UTAAAAatON6zfi+k+vL//33tvvrXnsWsUYETe/QLW0t5Q8JjeWi0vnLkVELD9R6/mu5yM3llt17Hx+ft0n5S5N2rrd0ukAAMAHNjPuj9j6MbxxPwAAAAAAbJ+lByDd7r57djgbr114LWYnZ1dsH+kbiaNnjpZc7aKcmHpkhQwAAKCki2cvxnd/57vLr6/turbpNpYmanU/t/oJV0sFGsfOHFve1tLeEtnhbAw0DUTvRO+KCvmNTrh69613N50nAADcqTYz7t+OMbxxPwAAAABAec53n692CvHYyGPVTiEiaqMvatnUhamYGJyIiIiZ8ZmIiBg5PbK8rS3btvxQpiWpdCp6J3pjtH80UulU7N2/N/LT+Wjtal1zlb1yYuqRggwAAKCk488cj09+8ZPLr19//fX4/Z///Q3Hz07Oxlj/WGSHsyWXHlzvy1hbT1sMZ4fjyeknN584AACwYZsZ9xvDAwAAAACwnkoLIRYaFiLfko+rX7kauxZ3JZQVH9bW01ZWQUQqnYruwdUPZU06pt54pwIAACXt3rM79nx0z/J/d99796bih7PDcWLwRFlf4A4+dDAKucLysogRN7+gbeRpuXv37930+QAA4E5V6bh/SVJjeON+AAAAAACgnijIAAAAEjecHY6Ovo5VyxduVCqdioibq2wsaWxuXDdmPj+/IhYAANg+SY3hjfsBAAAAAIB6oiADAABI1Gj/aBx86GAcO3NszWNG+kbiq61f3VS7TZmm5clXpSw9Rbcp07SpdgEAgNvbrjG8cT8AAAAAAFBPFGQAAACJmRiaiObW5pLFGEsTpyIiZsdnNzTJqqW9ZXnbgfYDK9r4sEKuEBERmc7MpvMGAADWt11jeON+AAAAAACgnuyudgIA3DnOd5+vdgqx0LAQH/vix6qdBsCONHVhKiIiOno7Vu0r5AoxOzkbbT1tERFxqPNQ9A70rtnWzOWZSKVTK556++CpB+N7574Xs5OzKyZ53RpjUhYAAGyN7RrDG/cDAAAAAAD1xAoZAABAxWYnbz4tt1QxRkREbiy3YjLVg6cejImhiZLHFnKFmLowFd3Pda/Y3tLeEpnOTLz6wqsl46YuTMWx/tUrcwAAAJXbrjG8cT8AAAAAAFBPFGQAAAAVKeQKMZwdjpmJmRjpG1n133B2OMb6x1Y8KbelvSWKc8W4dO7SqraGOobi6Jmjy6tp3Co7nI3XLrwWs5OzK7aP9I3E0TNHPSkXAAC2yHaO4Y37AQAAAACAerG72gkAAAD17fmu56OQK0RhqLDmMbcWYyw5duZY5MZyMdI3EsV8MYpzxUilU/GZlz+zYjWNW6XSqeid6I3R/tFIpVOxd//eyE/no7WrteTkLwAAIDnbNYY37gcAAAAAAOqFggwAAKAiT04/WXZspjOz6afbptKp6B7sLvucAABA+bZrDG/cDwAAAAAA1AMFGQAAAEBZznefr3YK8djIY9VOAQAAAAAAAAC4Q+2qdgIAAAAAAAAAAAAAAAD1xgoZAAAAAAAAAAAAAABl+NH5H8XVr1yNXYuekw93IgUZAAAAAABUzTvvvFN27JtvvhlPPPFETExMREdHRzz77LNx3333ldXWPffcU3YeAAAAAAAA3JkUZAAAAAAAUDX33ntvIu2Mjo5Ga2tr2fGLi4uJ5AEAAAAAAMCdw9o4AAAAAAAAAAAAAAAAm2SFDAAAAAAAqubtt98uO/bTn/50fOc734n3338/7rrrrnj44Yfjm9/8ZoLZAQAAAAAAwNoUZAAAAAAA3KHm5+fjnXfeid27N3er+M0334wnnngiJiYmoqOjI5599tm47777ysrhnnvuKSsuIuL555+Pz372s3H58uV46KGH4utf/3pF7QEAAAAAQL0q3iiWFXft+rX4wx/9YVy5diUO7TsUn/v5z8W+PfvKaiu1O1VWHNQzBRkAAAAAAHeoX/3VX624jdHR0WhtbS07fnFxsezY++67L771rW+VHQ8AAAAAADvFP/sP/6ziNl79m1fjX/z5vyg7/k9O/EnFOUC92VXtBAAAAAAAAAAAAAAAAOqNFTIAAAAAAO5Qf/ZnfxZHjx6N3bs3d6v405/+dHznO9+J999/P+666654+OGH45vf/OYWZQkAAPWpeKNYduy169fiD3/0h3Hl2pU4tO9QfO7nPxf79uwrq63U7lTZeQAAALd3/b3rUbxRjF2Lm39OfpJj/3/7K/+2rLivjH8lpt6aioXFhdjVsCva9rfFF498say24E6kIAMAAACoW+e7z1c7hYiIeGzksWqnAFCWxsbGuOeeezZdkPH888/HZz/72bh8+XI89NBD8fWvfz3uueeeLcoSAADq0z/7D/8skXZe/ZtX41/8+b8oO/5PTvxJInkAAAClPfXvnkqknWqN/X/z8G/Gsz98NqbnpqM13RpPfOIJhd2wCQoy6tT1G9fLepqGp2gAAAAAAJW677774lvf+la100jUO++8U3bsm2++GU888URMTExER0dHPPvss3HfffeV1ZbCFgAAAACAjamFVekWGhbKzqFW7NuzL/p/sb/aaUDdUpBRp576i8qr6TxFAwAAAADgpnvvvTeRdkZHR6O1tbXs+MXFxUTyAACg+v7tr/zbsmO/Mv6VmHprKhYWF2JXw65o298WXzzyxQSzAwCA+lcrq9J9+Z9+OZreaIpdi7s2HWvsD/VPQQYAAAAAAAAAkIiNPqF2oWEhrr93PYo3isuTlpJ6Qm1ERGp3qqy4JFWSw28e/s149ofPxvTcdLSmW+OJTzxRE/+bAAAgojZWpqgle+7eE6ndqbIKMoz9of4pyKhTX/6HX479qf2bjlNJBxDxo/M/iqtfuVrWADgpj408VrVzAwAAAKu9/fbbZcd++tOfju985zvx/vvvx1133RUPP/xwfPOb30wwOwCA+lErT6j9kxN/kkge1bJvz77o/8X+aqcBAAAl1cq4vxZWpVtoWIh3492y8zD2h/qnIKNO7dm9p6wKOJV0AAAAAACr3XPPPWXHPv/88/HZz342Ll++HA899FB8/etfr6g9AAAAAABurxZWpau0IAOofwoy7jAq6QAAAAAAknXffffFt771rWqnAQBUSfFGsezYa9evxR/+6A/jyrUrcWjfofjcz38u9u3ZV1ZbtfIgvo0+oXahYSEKBwrR9EbT8qrmST2hlpW26j260LAQ19+7HsUbxQ2tTF8r71EAACpXCytTVMp8WiApCjIAoArOd5+vdgoREfHYyGPVTgHW9c4775Qd++abb0ZfX1/8p//0n+IXf/EXY3BwMO67776y2vJkWwAAAABgLf/sP/yzRNp59W9ejX/x5/+i7Pg/OfEnieRRqY1Oul9oWIg9d++J1O7U8mT+pJ5Qy0reowAAJK0WVqYAqBUKMgAAqFn33ntvIu2MjY1Fa2tr2fGLi4uJ5AEAAAAAO0UtrAqx0LBQdg7UJk+oBQCAnc+4H9hpFGQAANSQ+fn5eOedd2L37s0P095888144oknYmJiIjo6OuLZZ58te0WIStRKHrBTXL9xvawJDklNbIio7OkmAAAAwM5UK0/c/2rvVxPJoxL/9lf+bdmxXxn/Sky9NRULiwuxq2FXtO1viy8e+WKC2cHWvUcXGhaicKAQTW80La9yAgAAAHcaBRkAADXkV3/1VxNpZ3R0tKIVIZJSaR5vv/122bGf/vSn4zvf+U68//77cdddd8XDDz8c3/zmN8tuD6rlqb94quI2Kp3Y8Ccn/qTiHAAAAGAnKHdVCA9O2DrX37v5MItyJoMndV0quSa/efg349kfPhvTc9PRmm6NJz7xhGtM4rbqPbrQsBB77t4Tqd0pBRkAAADcsRRkULZaWIY4wk3nW9XCNbE0NPWg3n+cYeu88847ZcUltSLEjRs3yjr/TnbPPfeUHfv888/Hb/zGb8R//I//MT75yU/GH/3RH1XUHgDUg1pYbcvfWwAAdrIkVoXYKQ9OqIVVIRYaFuLz/+7zZedxq0quSyXXZN+efdH/i/1lx7M2BVTJ2InvUe8NAOpFLcwF8zerNiXx3sj9bS4yH8l4b8AWq/Zn+fUb18s+PxunIGOD5ubm4uzZsxERsX///pieno6urq7o6empqTa3U60sQ1zJzd6kBhcRtTHAqJVrUgtLQ8N6nvp3lT9pPKJ6P87sROUWQkQkN3EwIuLee+8tO48lla4I8Wd/9mdx9OjRsiZR1sqKELWSx3333RcvvfRSXLx4MY4fP15Wn0It+PI//HLsT+3fdFxSExtqRbVvUiyphXF/LamFH68rUSt5JKkWVtuqZIWrJMd2CkMAAHaWrfheuNCwUNEDfKplJ3xHTmpVCA8KYz0KqFiL9wYA9aIW5oL5m1WbEntvXPfegK1WC5/lbD2z0jZgbm4uOjo6Ynh4ONrb25e39/X1xeXLl2NgYKAm2rxT1cLgIsIAAzaiFn4k8uNMbUqiECKi8mKIWtDY2Bj33HNPWcUDzz//fHz2s5+Ny5cvx0MPPRRf//rXqzIRsVbygJ1iz+49ZU1ISGpiQ0Rt/A2vlZsUtTLur4UVvyJq48frpFSax8l3TpYdu9NW26qVsd3i4mIieVSqFoqPa+W9AQBsTi18F4uoncL0WvleWO6DwpJ8cEKt9EWtrArx5X/65Wh6o6ms78geaPGBnfi5AQBA5WphjGmuDwC1TkHGBmSz2ejp6VlROBERMTg4GE1NTdHV1RWdnZ1Vb3O71cIyxBHJ3XTeCWrhmiw0LEThvUJNTA6rhJvOW6NWfiTy4wxrKfdpzkmtCHHjxo34wQ9+UFYOETdXhPjWt75VdnxSaiUPuNMlObGhVv6G14JauelcCyt+sVKtFCHUwljX9/SVauW98ed//ueJ5AEAbJ9a+S5WK4XptaLce/5JPjiBlfbcffNhFuV8D9pp18Xnxkq1UEBFbfLegOpL4l577m9zkflIxnyOBJX7MChzbLZOLcwFq5Ux5ld7v5pIHpWqhd8KI2rjvQFsTLX/vb5VfCue+otk5hewNgUZt5HL5WJsbCwGBwdL7j958mQMDAxsqnhiK9qshlpYhjii+h9WS2phsFUL12QnTg6r1tOy3ETYOn6c+cD57vMVxS80LES+JR9Xv3K1rP5cUm4hRERyxRARUfYqDkmtCOHJxQBrq5Vxf63cdK4V9f7jdS2+NypVC2PdWhnbAQBUYqP3/BcaFlZMWqqVhw4lqRZ+/4jYmu+FCw0LUThQKLuoeTOSfHBCrXxH3gmSvC7UHgVUtadW/qbUwnujFvri+o3rZedA+a7fuF7W9a+VcWbNrYp9fWcUEdaKJOb7VGuOTUTt/Tup9nwfY5qtUSu/FVby+fWbh38zvvbDr8X0T6ej9aOt8YVPfMF7A7ZQtT/L9+zeU/b52biGxcXFxWonUcv6+/vj3LlzsVY3nTt3Lvr7+6NQKEQ6nd7yNv/Lf/kv8Xf/7t+Nr3Z+Nf771H+/mf8plHDt+rVVg4tyB8D/00v/U8LZbV4tfFFcaFiIfzLyT6qdBh+yE76wJrmKy7t/991onm3e8h/Y7gRLBRmV9udjI4+VHfvmm2+uKoa47777ym6vmm7cuBEXL16M48ePx+7d6maToE+T9ZOf/CQOHToU//k//+f4O3/n71Q7nR2vlsb+lfw4mNTf8EpuUly7fm3VTYp6HvdH1MYqCBHlX5ckr0klksyjFv6d1MpY19hupXfeeafs2KRXYjMm4sOMlynFuH97LY37/80j/yb2N+6vai61MCkwonYeLlMLY/9amXRfK8XHlfwGstbYP6n7m/WkVr6PJeVOvIbrqYXvphEb/yx3/erfZq9hLfx9jaiN39VrpS8iwth/myyN/aktO2EuRZKrc3/+W5/fggypRC38zaqFMWat/P4RUTt/wyt9bxiLJ0t/Jkt/Jutvin8TT449ady/xfzKdhuTk5PrFlpkMpmIiBgfH9/wihZb0Sbl2bdnX5z5pTM+vBNWK5PDKrHTfqzaKdXZSa3i8m68W3Ye1J777rsvvvWtb1U7DYAdrdpPbKjUTnsK6ULDQrx797tVXwWhErXyBNIk86iFfyc7Yay7E8d25a7CFmElNgC2V63cQ9wJE6KSUgtjzJ2iVr6D1AJ9sbP53ACgXtTCvfaI2vkelJRK8yh3vk8tXhOSUwtjzFr6/aNWPr8AqC0KMm4jl8tFc3PzmvuXCityuVxV26T6DLY+sOfuPXU9OSzpPMp9b/jCutJO+5GoVp44WIkkl9mEWlfuk63ffPPNeOKJJ2JiYiI6Ojri2WefrcpTvpPK4913a+MmF/Vlp/0N3wk3nXfaNdkJXJOtUcnKFEn+Da+kICPJApX5+fl45513yloFoRbGNLWQw07MQ7FObar255dxf3Vcv3G9rPtFtXKfKEm1MiFqo/d1FxoWonCgsDxpqVbu9++0wnRg6/luynbwN+UDtdAX+fl8/PZ3f7vsPCjPl//hl2N/avOr49XKv4FaWBX7Nw//Znzth1+L6Z9OR+tHW+MLn/iCIsKElDvfpxbm2ETsvH8nO0GSY8zr7928d1LOfLRaWdmzVubFwZ2iVubn+Xd+Z2hYXFxcrHYStaypqSkymUxMTEyU3D85ORkdHR0xMDAQZ86c2fI2l5YwHPiHA9GUalrefveuu+Puu+7e4P8qbrXYsBj5A/lofqM5GhYbqpLDtevXYvAHg5Gby0UmnYm+w311+6NZLfTnTrH0vli6iVDJ+6KSwcX/efn/XPVF8X9+6H8uq61aGFzUynv0n4z8k6qduxa999571U6hJty4cSO+973vxdGjR8uaKMdqSfXp3XcbZ93KMobbw9iftdTKeIbaUyvvjVPfOFW1c9+qVv5+18JY98aNG9HY2FjtNKhRL7/8su8gNaZWPr+M+7fH0ri/FvzB//gHZccmeQ/x89/6fNl5JOmPu/94Q8d9eAy2k+73J6HW+6NWxtCUzzWsb65f/dvOa1jrf1O2U1J9kZ/Px5NjTxr7b5NK7/nXyr+BWskjqc+fWplLUYmk8lhsWIx3/867df13uVben0nO9+GmxYbFePz/+3i104iIjd8vqHXG4snSn8lKqj9rZX5etT833pp/K35r7LeM+7eYX9luY25ubkPHvfXWW9vaZv9frKwc/ZX2X4lfPfKrG86BDyzGYsx/ZD7ykY+GqN4fw8//7Ac/Mr0f70c+8lXLpRK10p87xed+9nMx/5H5aPzbxqq9L359/6/H//Xd/yte//+9Hn/v//X34tf/h1+Pd/eW96TEWlg+0Hu0Nl28eLHaKdSEhYWFeP311yMiYteuzT/VgdX0KTuBsT8fZjzDWmrlvWFst1It9MfCwkK1U6CGGS8DS979u+Xfu0vyHuKX/+mXy87jD779B/FXM3+1PBHp5w7+XHz+l8sr8MjfvbF7saXGYDvlfn9Sark/amUMTflcw/rm+tW/7b6Gtfw3Zbsl0Rd/O/+3SabEBlVyz79W/g3UQh618Dckye9BtZBHLfRpEmrh/RlRG/N9dpLFqJ1njudbdsa13Cn/5muF/kzWTuvPan9uvF18u6rnv1MoyKhTJSvmZ2vjyWn1ZrFhMfKhOjEp+jNZtdCfzdEc/+sn/tcPNlz7b//VqVro04jaeeJgJZLM4+pXriabXJmq/TTnGzduRER4Om2CkurTjRbUflhPT0/8+Z//ebz//vtx1113xT/6R/8oLly4UHYe5Uoqj9dffz3+/t//+1uQIesx9ufDamU8Q+2plffG8ePHq3buW5X79zsi2b/h99xzT9l5JOXGjRvx0ksvxS/90i+VNSaqhTFNLeSwE/O4ceNG/OVf/qXvIDWm2p9fxv3V8X986v+I9J708uu7d90du++6/b/LRFe3nS1/ddtauYf45ANPxuB/veVpqA/0xb6/2dqnkNbKGIzyuH71zzWsb65f/XMN69x8tRO4M7nnn4xa+Pyple9BSeVRC326k+jPZC02LMa5f3oumt5sKqs/a+X+SS3xHk2W/kxWUv1ZK/Pzqv25sThfO0VtO5lf2W4jnU5v6Aew/fv3b2ubjbsb497d967c6N9MWRZiIRqiIRoWG2LXoicBVkp/Jkt/Jq9W+nTvXXvLjv3Nw78Zz/7w2Ziem47WdGs88YknKmqvkjy+9sOvLS+z+YVPfKH8PGrkb1gtTEDatWtX7N69uyZy2SmS6NN9+8qbvPHHf/zH8dnPfjYuX74cDz30UHz9618vu61KJJXHRz7ykS3Ijtsx9ufDamU8Q+2plffG8KeHq3buWz028ljZsbXyNzxJ99xzT+zbt6+sMVEt9Ect5LAT87hx44bvIDWokvdUEu8N4/7qSP936dif2vjvDEsSvU+0A75nNP13TfH0Lz69cuMW/++qlTEY5XH96p9rWN9cv/rnGtY3kwWrwz3/ZPj8SZ4+TZb+TNZCLETq7lQ03tVYVn+6f7Ka92iy9GeykurPmpmfV+XPjZ2wykg98CvbbTQ3N6+7P5+/uZRMOp2uapsA3Dn27dkX/b/Yf/sDtyGPM790JvIt+WiebfaFAkq477774lvf+la106iZPACgXvjbuVIt9Ect5CAP6oH3xp2nVu4TAQAAANQq90+AzfK5wWaZOXkbmUxmuUCilKWVLjKZTFXbBAAAAAAAAAAAAAAAto8VMm6jvb09xsbG1tyfy+UiIqKzs7OqbQIAlTvffb6q519oWIiPffFjVc0BAGCnqPbYbsljI49VOwUAAAAAAAAAtogVMm7j1KlTERExOTlZcv/ly5c3XTixFW0CAAAAAAAAAAAAAADbR0HGbbS3t0dnZ2e88MILJfdfuHAh+vv7V22fm5uL/v7+kithlNsmAAAAAAAAAAAAAABQG3ZXO4F6MDw8HB0dHXHq1Klob29f3t7X1xdnzpwpuZrF0NBQnDt3LoaGhqJQKCTSJgCw8/3o/I/i6leuxq7F6tbNPjbyWFXPDwAAAAAAAAAAALVOQcYGpNPpmJiYiP7+/kin07F///6Ynp6Orq6u6OnpKRnT2dkZ6XQ6Tp48mVibAADb5Xz3+WqnEBEKQwCA+lcL46qFhoX42Bc/Vu00AAAAAAAAAHYcBRkblE6nY3BwcMPHt7e3l1wZo5I2AQAAAAAAAAAAAACA2qAgAwCAmlXpE6UXGhYi35KPq1+5GrsWd5XdjpU6AAAAAAAAAAAA+LDyZ6UBAAAAAAAAAAAAAADcoayQAQAAAAA73I/O/6jiVcMqZdUxAAAAAAAAYKexQgYAAAAAAAAAAAAAAMAmWSEDAABu43z3+Wqn4InSAEDdq4UxVS0xvgMAAAAAAID6pyADAADqQC1MYPyb4t+su784V4xXzr4SERF79++N/HQ+Wrtao62nbTvSAwCoK7UwvltoWIiPffFj1U6DOmPcDwAAdwZjfwAA2PmM+5OhIAMAAKhYca4YQx1DkR3ORkt7y/L2kb6RuHr5anQNdFUxOwAAIAnG/QAAcGcw9gcAgJ3PuD85CjIAAICKDWeH4/6e+1d8QYuI6B7sjoGmgWjtao1MZ6ZK2QEAsJYfnf9RXP3K1di1uKtqOTw28ljVzs3mGPcDAMCdwdgfAAB2PuP+5CjIqDP/9b/+14iIeG/hvSpnsnO89/578WfjfxanDpyKPbv2VDuduqc/k6U/k6dPk6U/k6U/k6dPk7U0Bl0aky4p5AqRG8vFicETJePaTrbFpYFLvqRtkrE/a/HZxlq8N1iL9wZrqZX3xvnu81U7960Uhty0NA417oeNqZXPUsrj+tU/17C+uX71zzXcmYz9t4Z7/sny+ZM8fZos/Zks/Zk8fZos/Zks/Zksc322h4KMOnP9+vWIiLixcKPKmewc7y28F/9h8j/Er/3Kr/nwToD+TJb+TJ4+TZb+TJb+TJ4+TdbSGHRpTLpkfHA8IiKaMk0l45pbm2NyaDKKc8VIpVNbm+QOYuzPWny2sRbvDdbivcFavDdWUhhy09I41LgfNsZnaX1z/eqfa1jfXL/65xruTMb+W8M9/2T5/EmePk2W/kyW/kyePk2W/kyW/kyWuT7bQ0EGAABQkTcm31j3y9fSl7eZ8RmV8wAAcBvVLgz5z2//55LbjfsBAODOYOwPAAA7n3F/snZVOwEAAKC+FXKFaGxuXHP/0he4Qq6wXSkBAAAJM+4HAIA7g7E/AADsfMb9ybJCRp1ZWFiIiIi54lzsvWtvlbPZGd59/92IiCgUC3H9ruu3OZrb0Z/J0p/J06fJ0p/J0p/J06eVWXh/IWLxg9eFd25+yVoaky6Zz8+vuYRhRCx/gSvOFZNPcgcz9mctPttYi/cGa/HeYC3eG0QY91fbUj8Xin7Uqlc+S+ub61f/XMP65vrVP9ewvnx47D9XnLu53dh/W7jnnyyfP8nTp8nSn8nSn8nTp8nSn8nSn5Vxz786GhYXFxdvfxi14uLFi/GpT32q2mkAAHAHe+WVV+L48ePLr3+n4Xeipb0leid6Sx4/OzkbQx1DcfTM0ega6NquNOuesT8AANVk3L89Ll++HL/wC79Q7TQAALiDff/734+HHnpo+bWx/9Zwzx8AgGpyz39rWSGjzvzSL/1SfP/734/77rsvdu3aVe10AADYwW781xuxcP2DCvmFhYX4f+b+n3joFx9aJ4qkGPsDALAdjPur6/Dhw8b9AABsi7XG/ocPH65iVncO9/wBANgO7vlXh4KMOrN79+4VTyYAAIDt9PH4+KptqXRqQ0sU7t1vCe7NMPYHAKBajPu3j3E/AADVZOy/fYz9AQCoFuP+rafkGgAAqEhjc+O6++fz8xFx88scAABQn4z7AQDgzmDsDwAAO59xf7IUZAAAABVpyjQtfxErZamivinTtF0pAQAACTPuBwCAO4OxPwAA7HzG/clSkAEAAFTkQPuBdZcxLOQKERGR6cxsV0oAAEDCjPsBAODOYOwPAAA7n3F/shRkAAAAFXnw1IMRETE7OVty/8zlGV/QAACgzhn3AwDAncHYHwAAdj7j/mQpyAAAACrS0t4Smc5MvPrCqyX3T12YimP9x7Y5KwAAIEnG/QAAcGcw9gcAgJ3PuD9ZCjIAAICKZYez8dqF11ZVzo/0jcTRM0dVzQMAwA5g3A8AAHcGY38AANj5jPuT07C4uLhY7SQAAID6V5wrxmj/aKTSqdi7f2/kp/PR2tUabT1t1U4NAABIiHE/AADcGYz9AQBg5zPuT4aCDAAAAAAAAAAAAAAAgE3aVe0EAAAAAAAAAAAAAAAA6o2CDAAAAAAAAAAAAAAAgE1SkAEAAAAAAAAAAAAAALBJCjIAAAAAAAAAAAAAAAA2SUEGAAAAAAAAAAAAAADAJinIAAAAAAAAAAAAAAAA2CQFGQAAAAAAAAAAAAAAAJukIAMAAAAAAAAAAAAAAGCTFGQAAAAAAAAAAAAAAABskoIMAAAAAAAAAAAAAACATVKQAQAAAAAAAAAAAAAAsEkKMgAAAAAAAAAAAAAAADZJQQYAAAAAAAAAAAAAAMAmKcgAAAAAAAAAAAAAAADYJAUZAAAAAAAAAAAAAAAAm6QgAwAAAAAAAAAAAAAAYJMUZAAAAAAAAAAAAAAAAGySggwAAAAAAAAAAAAAAIBNUpABAAAAAAAAAAAAAACwSQoyAAAAAAAAAAAAAAAANklBBgAAAAAAAAAAAAAAwCYpyAAAAAAAAAAAAAAAANgkBRkAAAAAAAAAAAAAAACbpCADAAAAAAAAAAAAAABgkxRkAAAAAAAAAAAAAAAAbJKCDAAAAAAAAAAAAAAAgE1SkAEAAAAAAAAAAAAAALBJCjIAAAAAAAAAAAAAAAA2SUEGAAAAAAAAAAAAAADAJinIAAAAAAAAAAAAAAAA2CQFGQAAAAAA8P9n7/9j27rzO9//pR+uKEsdUVK3sjy96Jjc7W5oT5uQVnP9o3e3MtU7CKwCbkR7A2xm3EksKQ2QQbIzUvxHge/cAtcjT5Ggs0AjMpusp2on16F2fHEVxIMlozSInWAqkQ52HM0uWh2n2bEYF2OSmloR3Uji9w+XtBWRMnl4JJLS8wEEE55z3p/zng8Z6kPy8/58AAAAAAAAAAAAgCJRkAEAAAAAAAAAAAAAAAAAAAAAAFAkCjIAAAAAAAAAAAAAAAAAAAAAAACKREEGAAAAAAAAAAAAAAAAAAAAAABAkSjIAAAAAAAAAAAAAAAAAAAAAAAAKBIFGQAAAAAAAAAAAAAAAAAAAAAAAEWqL3cCAAAAALaGWDSmaf+0UvGUYtGYbHabPAMeefo9eWNSyZTePfOuJGln+07FZ+Ny9jjl6nOVPQYAAAAAAAAAAAAAAAAA1lOTTqfT5U4CAAAAQHWLBCKStKr4wggbCvqCamxrVH+kXza7bVVMKplSwBOQL+hTp7sze3xiYEI2u009Iz1r7rNZMQAAAAAAAAAAAAAAAABwP7XlTgAAAABAdUsYCaWSqTU7YTi8Dn31ra8qYSQU9AXXxAV9QT3Q98CqIglJ6vX3KhqIyggbZYsBAAAAAAAAAAAAAAAAgPuhIAMAAABASab902uKMTI63Z1yeB0ywoYSRiJ7PGEkZIQN7R/YnzPOddylyyOXVx3brBgAAAAAAAAAAAAAAAAAKAQFGQAAAABKci18TX+258+USqZynt/l3iVJikVj2WPT/mlJUqujNWdMm7NNRthY1eZmxQAAAAAAAAAAAAAAAABAIerLnQCKs7S0pCtXrqijo0O1tdTTAAAAYPOsrKzoxo0beuihh1Rff/ejRGNbo2LRmBJGQp3uzoLa+iT6iWx2W97zmQKKuek5ObyOTY2pFIz9AQAAUA75xv3YGIz7AQAAUC6M/TcXY38AAACUA+P+zUHPVpkrV67ot3/7t8udBgAAALaxv/mbv1FXV1f28eOhx5UwEnl3oUgaSUlaVayRMBJqbGvMe49MEUXCSGx6TKVg7A8AAIBy+vy4HxuDcT8AAADKjbH/5mDsDwAAgHJi3L+xKMioMh0dHZKk999/X7/2a79W5my2hqWlJUWjUbndbqq/LEB/Wov+tB59ai3601r0p/Xo09Is/dOSVm6vZB9fn7uu/8P7f2THpPfKV4whSTPjM+p0d666ZjG+uG5MpogilUxtekylYOyPfHhvQz68NpAPrw3kw2sDufzsZz/TgQMHco77Yb1MP//N3/yNOjsL23EQlYX30urG81f9eA6rG89f9eM5rG6xWEy//du/zdh/k/Cdv7V4/7EefWot+tNa9Kf16FNr0Z/Woj+txXf+m4NXapXJbFu4a9cuPqBZZGlpSR999JF+7dd+jTdvC9Cf1qI/rUefWov+tBb9aT36tDR//f/7a73z7Xeyj+dr5yWpqK20L5+9LEnqfbl31fFCCyA+vfnppsdUCsb+yIf3NuTDawP58NpAPrw2kMvS0pKk4sb9MC/Tz52dnYz7qxTvpdWN56/68RxWN56/6sdzuDUw9t8cfOdvLd5/rEefWov+tBb9aT361Fr0p7XoT2vxnf/m4JUKAAAAIKfDpw/rwHMHso8//vhjvfjlFwuOj0VjCg+H5Qv61OlmpVcAAAAAAAAAAAAAAAAAWwsFGQAAAAByqm+oV33D3Y8MO5p3FBUf9AV11H9Urj7XmnM2u62g3St2tu/c9BgAAAAAAAAAAAAAAAAAKAT7jwAAAACwXNAXlGfAI0+/J+f5xrbGdeMX44uS7hRUbHYMAAAAAAAAAAAAAAAAABSCggwAAAAAlgoNh7S7a7cODR3Ke02rozVbDJFLZleLVkfrpscAAAAAAAAAAAAAAAAAQCEoyAAAAABgmUggojZnW85ijEzxgyTtcu9a9fjzEkZCkuTwOjY9BgAAAAAAAAAAAAAAAAAKQUEGAAAAAEvMjM9Ikjz9njXnEkZCRtjIPt53Yp8kKRaN5WxrbmpuTZHEZsUAAAAAAAAAAAAAAAAAQCEoyAAAAABQslg0psX4Ys5iDEkywoY63Z3Zx53uTjm8Dl09fzXn9TPjMzo0vHqXjc2KAQAAAAAAAAAAAAAAAIBC1Jc7AQAAAADVLWEkFPQFtce7R3MDc2vOp+IpGWFDw4nhVcd9QZ8CnoD2ndi3qlhjYmBCB4cO5ty5YrNiAAAAAAAAAAAAAAAAAOB+KMgAAAAAUJKxnjEljIQSgUTea1odrWuO2ew29Uf6FRoOyWa3aWf7TsVn43L2OOXqc+VsZ7NiAAAAAAAAAAAAAAAAAOB+KMgAAAAAUJJnZp8xHWuz29Tr763IGAAAAAAAAAAAAAAAAABYT225EwAAAAAAAAAAAAAAAAAAAAAAAKg2FGQAAAAAAAAAAAAAAAAAAAAAAAAUiYIMAAAAAAAAAAAAAAAAAAAAAACAItWXOwGrDAwMyOfzyev1ltROMpnUmTNnJEnt7e2anZ1VT0+P+vr6LIsxcw8AAAAAAAAAAAAAAAAAAAAAAFA5qrogwzAMhcNh+f1+RaNR+Xy+ktpLJpPyeDwKBoNyu93Z4wMDA5qamtLIyEjJMWbuAQAAAAAAAAAAAAAAAAAAAAAAKkttuRMwKxAIaHh4WJIsK2Lw+Xzq6+tbVSghSX6/X4FAQOFwuOQYM/cAAAAAAAAAAAAAAAAAAAAAAACVpWoLMvr7+xUMBtXf36+2traS28vstjEwMJDz/PHjx9cUfhQbY+YeAAAAAAAAAAAAAAAAAAAAAACg8lRtQYbV/H6/JMnhcOQ873Q6FQ6HlUwmTceYuQcAAAAAAAAAAAAAAAAAAAAAAKg8FGT8s2g0Krvdnvd8pohienradIyZewAAAAAAAAAAAAAAAAAAAAAAgMpTX+4EKoVhGGpra8t7PlNIYRiG6Rgz98hnZWVFy8vL970O97e8vJztz5qamnKnU/XoT2vRn9ajT61Ff1qL/rQefWqtlZWVcqewLTH2x+fx3oZ8eG0gH14byIfXRmVaWFgwHfsP//APeuqppxSJROTxePTSSy/pV3/1V4tq4x//8R9N3x/mLS8vM+6vUryXVjeev+rHc1jdeP6qH89hdWP8WR58528N3n+sR59ai/60Fv1pPfrUWvSntehPazHXZ3NQkPHP4vF4doeKXDKFFMlk0nSMmXvk8/777+t//s//mX1cV1en+nqeTjNWVlb0v/7X/9LKyopqa9k0plT0p7XoT+vRp9aiP61Ff1qPPrXWzZs3y53CtsTYH5/Hexvy4bWBfHhtIB9eG5XpT/7kT0zH/vf//t8Vj8clSeFwWA8//LB+8zd/s6g2lpaWTN8f5l2+fFmtra3Zx4z7qwfvpdWN56/68RxWN56/6sdzWN0SiUS5U9iW+M7fGrz/WI8+tRb9aS3603r0qbXoT2vRn9Zirs/mYET/zwopgpBWvzCLjTFzj3xGR0dXfSD7rd/6LT344IMFtY/V0um05ufnJYlqOgvQn9aiP61Hn1qL/rQW/Wk9+tRav/jFL8qdwrbE2B+fx3sb8uG1gXx4bSAfXhtbz+fH7Izhq8dLL73EuL9K8V5a3Xj+qh/PYXXj+at+PIfVjd3xyoPv/K3B+4/16FNr0Z/Woj+tR59ai/60Fv1pLX4n2BwUZFSpozuOqtV2d7WsHX+3Q/XXNvfp9L3u29T7bZSlpSW9//77OnDgAKsOWID+tBb9aT361Fr0p7XoT+vRp9b6+OOP9Y1vfKPcaWw7jP3xeby3IR9eG8iH1wby4bVRmX7/93/fdOzx48f113/911peXlZdXZ3+7b/9t3r99deLauPjjz/WQw89ZDoHmPOf/tN/0he/+MXs44aGBjU0NJQxIxRqI99Lg8eDlrZn1lb+TMjfwurHc1jdeP6qH89hdbt+/bqeeeaZcqex7Xzve9/Tr/3ar2Ufb9exf6lj3XRNWjUdNaq/Ua+atPmJmlt5rFss3tOtRX9ai/60Hn1qLfrTWvSntZjrszl4pf4zu91e0A4W7e3tpmPM3COfnXU79ct1v7z64Mp9wyy1VT4QZrZ/bGho4M3bAvSntehP69Gn1qI/rUV/Wo8+tdaOHTvKncK2xNgfn8d7G/LhtYF8eG0gH14blamUsddf/dVf6eTJk5qamlJXV5fOnTuntra2otpgtazy+JVf+RX9i3/xL8qdBkzYyPfSupU6S9szayt/JuRvYfXjOaxuPH/Vj+ewuv3SL/1SuVPYllpbWxn7q/Sx7krNimpVq9qVWtWma023s5XHusXiPd1a9Ke16E/r0afWoj+tRX9ai7k+m4NX6j+7349S8Xhc0p2iCrMxZu4BAAAAAAAAAEAhOjo6dPHixXKnAQAAAAAAAAAAsG2YLxHeYhwOR7YgIpfMzhYOh8N0jJl7AAAAAAAAAAAAAAAAAAAAAACAykNBxj9zu93ZgohcDMOQJHm9XtMxZu4BAAAAAAAAAAAAAAAAAAAAAAAqDwUZ/+zEiROSpGg0mvP81NTUmkKJYmPM3AMAAAAAAAAAAAAAAAAAAAAAAFSebVWQkUwmNTw8rHA4vOac2+2W1+vV+fPnc8aOj49reHi4pBgz9wAAAAAAAAAAAAAAAAAAAAAAAJVnSxRkGIYh6U7BxXoCgYDOnj0rn8+X83wwGNT4+PiaHSwGBgY0NDSUc/eKYmPM3AMAAAAAAAAAAAAAAAAAAAAAAFSW+nInYNb4+Lj8fr8kaXp6WpJ06tSp7DGfz6f+/v5VMV6vV3a7XcePH8/Zpt1uVyQS0fDwsOx2u9rb2zU7O6uenh719fVZEmPmHgAAAAAAAAAAAAAAAAAAAAAAoLJUbUFGX19f0QUMbrdbiURi3Wvsdnu2qKNQxcaYuQcAAAAAAAAAAAAAAAAAAAAAAKgcteVOAAAAAAAAAAAAAAAAAAAAAAAAoNpQkAEAAAAAAAAAAAAAAAAAAAAAAFAkCjIAAAAAAAAAAAAAAAAAAAAAAACKREEGAAAAAAAAAAAAAAAAAAAAAABAkSjIAAAAAAAAAAAAAAAAAAAAAAAAKBIFGQAAAAAAAAAAAAAAAAAAAAAAAEWiIAMAAAAAAAAAAAAAAAAAAAAAAKBIFGQAAAAAAAAAAAAAAAAAAAAAAAAUiYIMAAAAAAAAAAAAAAAAAAAAAACAIlGQAQAAAAAAAAAAAAAAAAAAAAAAUCQKMgAAAAAAAAAAAAAAAAAAAAAAAIpEQQYAAAAAAAAAAAAAAAAAAAAAAECRKMgAAAAAAAAAAAAAAAAAAAAAAAAoUn25EwAAAAAAAAAAAABQmV7rfa3cKUiSHpt4rNwpAAAAAAAAAMAa7JABAAAAAAAAAAAAAAAAAAAAAABQJAoyAAAAAAAAAAAAAAAAAAAAAAAAilRf7gQAAAAAAAAAAAAAAAAAVJ5IIKKZ4Ixsdpskye6wq2ekJ+e1qWRK7555V5K0s32n4rNxOXuccvW58rZvJgYAAAAAKgkFGQAAAAAAAAAAAACAqvST136i6y9cV226tmw5PDbxWNnuDQAbJZVM6S+O/IX2ePfo8dDj2eMJI6HQcGhNUUYqmVLAE5Av6FOnuzN7fGJgQtenrucs4jATAwAAAACVpnzfSgEAAAAAAAAAAAAAAACoOJlijM8XRbwx8Iaigeia64O+oB7oe2BVYYUk9fp7FQ1EZYQNS2IAAAAAoNJQkAEAAAAAAAAAAAAAAABAknT57GUljETOHSpsdpt279+96ljCSMgIG9o/sD9ne67jLl0euVxyDAAAAABUovpyJwAAAAAAAAAAAAAAAACgMlw6c0nufnfOc76gb82xaf+0JKnV0Zozps3ZpmggqlQyJZvdZjoGAAAAACoRBRkAAAAAAAAAAKBgCSOhSyOXJEmpeEqpZEqOHocODR3KeX0kENFMcEaeAY8cXodsdpsSRkKxaEwfnv9Qh08fVqe7c01cKpnSu2felSTtbN+p+Gxczh6nXH2uvLmZiQFQHV7rfc3yNldqVhTvjOv6C9dVm64tKOaxiccszwMAgEoyMz6jVDKlfSf2FRzzSfSTdYsmMkUXc9NzcngdpmMAAAAAoBJRkAEAAMpuYWHBdOyNGzc0ODioSCQij8ej0dFRdXR0mGqrqanJdB4AijMzPsOEKAAAAKAKzYzP6PrUdfX6e1cdD3gCivgjemb2mTUxqWRKRtiQETZWHbfZbfIFfXmLMQKewJrzEwMTuj51XT0jPZbEAAAAAFjtw/MfSlJ2TB2LxjQ3Pafd+3fnHLtLd4q2G9sa87aZKbxIGImSYgAAAACgElGQAQAAyq65udmSdkKhkJxOp+n4dDptSR4A1pdKphT0BXXUf1R7j+9lq3EAAACgSqSSKX14/kP5gr4153pf7lXAE9DEwMSaYg1JOuo/qvhsXEkjKVubTbs9u+Xp9+S9V9AX1AN9D6yZ8NXr79VI64icPc41q+SaiQEAAAC2i6XbS1q+vZx9/E//+E85r4tFY9l/v3z2sjrdnfL0exSLxjTWM6ZDw4fWjKsX44vZHS1yyRRepJKpkmIAAAAAoBJRkAEAAADAUhMDE9rr25t3olNmNas3Bt7QGwNvrNuWL+jL7qQRCUQ0E5yRZ8Ajh9chm92mhJFQLBrTh+c/1OHTh/OurPvumXclSTvbdyo+G5ezx8kOHQAAAECR5qbnNDM+o9BwaM1uE5mx+LXwtZyxxRRjJ4yEjLCho/6jOc+7jrt0eeTyqs8cZmIAAACA7eTSmUt659vvZB/Paz7ndYvxRdnsNkUCER0aOpQ93unulC/o05/t+TP5gr5VY+tCiyY+vflpSTEAAAAAUIkoyAAAAGV369Yt07HHjh3T5OSklpeXVVdXp+7ubl24cMHC7AAUIjP5KeKPKBaNaa9v77rXtjpa1enulK0t94SsVDylhJFYVTSRSqZkhA0ZYWPVtTa7Tb6gL28xRsATWHN+YmBC16eur5lEBgAAACC/xrZG2ew27WzfmfcaK3bAm/ZPS1Le1XLbnG2KBqJKJVPZ+5mJQWV6rfe1cqcgSXps4rFypwAAAGCpw6cP68BzB7KPr1+/rhddL665LlMokdmh4l42u00Or0NvDLyhZ2af2bhkAQAAAKCKUJABAADKrqmpyXTs2NiYTp48qampKXV1dencuXMltQegeJFAREbIkKPHIe+IV2M9Y+tef33quh4PPb7uVuSh4ZC8I941x4/6jyo+G1fSSMrWZtNuz255+j152wn6gnqg74E1xRq9/l6NtI7I2eNkhVwAAACgQJ3uTg0nhnOei0VjkqQ93j0l3+eT6CfrFk1kPkvMTc9lx/NmYgAAAIDtpL6hXvUNd6cJ/dIvfinndTa7TalkKu+42dHj0Mz4jGLRWPa790zM/dxb3G0mBgAAAAAqEQUZMI1VqgAAlaCjo0MXL14sdxrY4hYWFkzF3bhxQ4ODg4pEIvJ4PBodHVVHR4eptiq50MjT78kWRWQmYd3PesUYsWhMbc62nNfsPb634NVsM7t2HPUfzXneddylyyOXmYwFAAAAWCA8HFaro/W+u9DFojHNTc9p9/7dOXe5k+6M5XOtxpuR+UyQMBIlxQAAAABYq7Gtcd2d5TLj7rnpueyYfr2xuCQtxhclrd5Rz0wMAAAAAFQiCjIAAACA+2hubi65jVAoJKfTaTo+nU6XnEOl2D+wf93z0/5p9fp7S77PtH9aUv7ijzZnm6KB6Lo/LAEAAABb3dLtJS3fXs4+/uzWZ0XFJ4yELo1ckt1h1+Ohx/NeZ4QNJYyEHF6HPP0exaIxjfWM6dDwoTVF0ovxxXWLuDMTt+5dTddMDACYUQkLlrFYGQBgI3W6OwsqZL53bN3qaNXc9Nx9r713zG4mBgAAAAAqEQUZAAAAADbVej+ehIZD911Rt1CfRD9Zt9Aik8fc9By7ZAAAAGDbunTmkt759jvZx/O18wXFzYzP6PrUdSWNpOwOu5w9+QvQM2PvQ0OHssc63Z3yBX0aaR1Rf6R/1W4ZhRZNfHrz05JiAAAAAKy1u2u3ZsZn8i5mlNm54t4x/C73LhlhI2+bmQKPe7+LNxMDAAAAAJWIggwAAADgPm7dumUq7tixY5qcnNTy8rLq6urU3d2tCxcuWJzd1hGLxtTmbCtot4pYNKa56Tnt3r971Y8+90oYiXW3PM/cp5CVvgAAAICt6vDpwzrw3IHs448//lgvfvnF+8a5+lxy9bmyj8d6xhTxR9T7cu+aMf29193LZrfJ1edS0BfUM7PPmPx/AAAAAMBKrj6XwsNhGWEj51g+PhuXJO3evzt7bN+JfXrv7HuKRWM5v7Ofm1q7MJKZGAAAAACoRLXlTgAAAACodE1NTab+GRsbU09Pj9rb29XT06OxsTHTbZXD0u0l3f7F7ew/n936bEPvd+nMJXn6PeteY4QNXT57WZKy1471jOVcRWsxvrhucUemWKPQlXQBAACArai+oV4NX2jI/rOjeYepdnxBn2bGZxT0BYuK2921WwkjsapQ2ma3FTRO39m+s6QYAAAAAGu1Olrl6nPp0plLOc//dPynOjh0cNX3753uTjm8Dl09fzVnzMz4jA4NH1p1zEwMAAAAAFQidsgAAAAANkhHR4cuXrxY7jRMu3Tmkt759jvZx/O18xt2r5nxGdkd9nWvaXW0SpIODd39AabT3Slf0KeR1hH1R/pXraJVaKHFpzc/LT5hAAAAAKtkdruYGZ+RETYKXsk2M4krFo1lx/zr7XQn3Sm+vjfWbAwAAACA3Hpf7lXAE1AkEFm1kFLQF1Sro1U9Iz1rYnxBnwKegPad2Lfqu/qJgQkdHDqY8zOCmRgAAAAA1osEIpoJzmS/Q7c77DnH/dKd+TjvnnlX0p1FkOKzcTl7nHl3yzYbU00oyAAAAACQ0+HTh3XguQPZxx9//LFe/PKLG3KvS2cuqffl3nWvyfchLDPxK+gL6pnZZzYiPQAAAAC684PJYnwxWzjxeZki69nQbHbi1MTAhK6FrxU1Vm91tGpuem7dPDLXlRIDAAAAIDeb3ab+SL/ePfNudhe8VDIll8+Vd6frTExoOCSb3VbQJCszMQAAAACsk0qm9BdH/kJ7vHv0eOjx7PGEkVBoOLSmKCOVTCngCcgX9K0pqr4+dT1nEYeZmGpDQQYAAACAnOob6lXfcPcjw47mHRtyn4SRUCwaW/Whq1i7u3ZrZnxGCSORnWBls9sK2iVjZ/tO0/cFAAAAtpOR1hFJ0nBiOOdOE5mx9b3j8Nh0LLs7RS6Za+/9PLDLvUtG2MgbkzASkrRqtVwzMQAAAADys9ltRU+Mstlt6vWvv/iSFTEAAAAArJEpxvj82P+NgTc0Nz235njQF9QDfQ+smePT6+/VSOuInD3ONd/Dm4mpNrXlTgAAAADA9jbtny55ldrMZLBYNJY91tjWuG5MZlJYrolkAAAAANay2W1qdbTmHUPHZ+OSpN2e3dlje7x7NJwYztvm3NRctt2MfSf2SVo9vv98zOd/nDETAwAAAAAAAADAdnX57GUljETOQmyb3abd+3evOpYwEjLChvYP7M/Znuu4S5dHLpccU40oyAAAAABQVtfC1+5bkDExMKHvOb9XVLutjtaCVuIttRgEALDawsKC6X8Mw9Dv/d7vqb29Xb/3e78nwzBMtwUAsJ67371qy/LPm3l9Rja7TXuP780e23dinyKBSM7rE0ZCM+Mz6n159Wq4ne5OObwOXT1/Nfd9xmd0aPhQyTEAAAAAAAAAAGxXl85ckrvfnfOcL+hb83vAtH9aUv55Nm3ONhlhY9Uu2mZiqlF9uRMAAAAAsL3FojG5+lzrXzMdK6i44t7tDXe5d8kIG3ljEkZCklglFwAs1tzcbEk7oVBITqfTdHw6nbYkDwDAXT0jPZoYmNBe396cW45L0lff+uqqHTQ63Z0ywoYun72sQ0N3CyISRkIBT0AHhw7m/DzgC/oU8AS078S+VeP8iYEJHRw6mHMcbyYGyOe13tcKum6lZkXxzriuv3BdtWnWQQMAAAAAAABQ+WbGZ5RKprK7Txfik+gneXfQlu4WXcxN392x2kxMNaIgAwAAAEDZxKIxSZKtLf+HL0na492j/pH+vOfnpuZks9tWVdTvO7FP7519T7FobNVkrHtjqvnDHAAAAFAOvf5ezYzPKOgLytZmUyqeUiqZ0i73Ln3j2jdy/rByaOiQjLChiYGJ7PU2u01ffeurOcfq0p3t0Psj/QoNh2Sz27Szfafis3E5e5x5C7rNxAAAAAAAAAAAsN18eP5DSXcXPo1FY5qbntPu/bvzfm+fMBJqbGvM22bm94HMAqlmY6oRBRkAAAAAyma9XS/ute/EPkUCEXn6PWvOJYyEZsZn5Av6Vh3vdHfK4XXo6vmrOT8szozPrNleEQBQulu3bpmOPXbsmCYnJ7W8vKy6ujp1d3frwoULFmYHALCCq89VdIGDw+souiDaZrep19+74TEAAAAAAAAAAGwFS7eXtHx7Ofv4s1uf5bwus4CqJF0+e1md7k55+j2KRWMa6xnToeFDa77TX4wvrloo9fMyhRepZKqkmGpEQQYAAAAAy2Qq1gv9oJS5fr3tCaU7xRVG2NDls5d1aOjQqviAJ6CDQwdzTgjzBX0KeALad2LfqqKMiYEJHRw6yA4ZALABmpqaTMeOjY3p5MmTmpqaUldXl86dO2e6vYWFBdN53LhxQ4ODg4pEIvJ4PBodHVVHR4eptkrpDwAAAAAAAAAAAAAo1KUzl/TOt9/JPp6vnc953WJ8UTa7TZFAZNU8nE53p3xBn/5sz5/JF/StmldT6FygT29+WlJMNaIgAwAAAEBJZsZnFPFHJElz03OSpIlTE9ljLp8r584WkrR7/27Z7DZ9seuL973PoaFDMsKGJgYmlIqnlEqmZLPb9NW3vpp3u0Sb3ab+SL9CwyHZ7DbtbN+p+Gxczh5n0Sv6AgA2XkdHhy5evGhJW83NzZa0EwqF5HQ6Tcen02lL8gAAAAAAAAAAAACA9Rw+fVgHnjuQffzxxx/rxS+/uOa6TKFEZoeKe9nsNjm8Dr0x8IaemX1m45LdQijIAAAAAFASV5/LdHFDp7tTw4nhgq93eB1F72phs9vU6+8tNjUAAAAAAAAAAAAAAACgatQ31Ku+4W55wI7mHTmvs9ltSiVTeefgOHocmhmfUSwayy6Smom5n53tO9fcp5iYakRBBgAAAAAAALacW7dumY49duyYJicntby8rLq6OnV3d+vChQsWZgdUjsXFRS0sLKi+vrivim/cuKHBwUFFIhF5PB6Njo6qo6PDVA5NTU2m4gAAAAAAAAAAAFC8xrZGpZIp2ey2vOclaW56LluQkWs3jXstxhclaVWbZmKqEQUZAAAAAAAA2HJKmeA9NjamkydPampqSl1dXTp37hwTxrFlPfLIIyW3EQqF5HQ6Tcen0+mScwAAAAAAAAAAAEBhOt2dShiJ+1537+4WrY5WzU3P3ffaVkdrSTHVqLbcCQAAAAAAAACVpKOjQxcvXtTPf/5zXbx40fSq/wAAAAAAAAAAAABQaXZ37Za0uuDiXpmdKzK7Y0jSLveuvNdLyhZ4OLyOkmKqETtkAAAAoGItLCyYjr1x44YGBgb04x//WA8//LD8fr/pyZSsiA0AAACrlTrWHRwcVCQSkcfj0ejoqKmx7tLSkt58800dPHhQ9fXFfVV87NgxTU5Oanl5WXV1deru7taFCxeKzgFA5Xit97VypwAAAAAAAAAA2ASuPpfCw2EZYUOuPtea8/HZuCRp9/7d2WP7TuzTe2ffUywaW1WokTE3NbemsMJMTDWiIAMAAAAVq7m52ZJ2wuGwnE6n6fh0Om1JHgAAAECGVWPdUChU0lj37bffVlNTU9EFGWNjYzp58qSmpqbU1dWlc+fOUcgMAAAAAAAAAABQBVodrXL1uXTpzKWcBRk/Hf+pDg4dlM1uyx7rdHfK4XXo6vmrOYsrZsZn9Hjo8VXHzMRUIwoyAAAAAAAAAABF6ejo0MWLF8udBgAAQEWolF2GHpt4rNwpAAAAAACAKtH7cq8CnoAigYg8/Z7s8aAvqFZHq3pGetbE+II+BTwB7Tuxb1WBxcTAhA4OHcy524WZmGpDQQYAAAAq1q1bt0zHHjt2TJOTk1peXlZdXZ26u7t14cIFC7MDAAAAzKuEse7S0pKuXLliOg8AAAAAAAAAAABUJ5vdpv5Iv949866CvqAkKZVMyeVzrSrQyBUTGg7JZrdpZ/tOxWfjcvY4c+60YTam2lCQAQAAgIrV1NRkOnZsbExf+9rX9P777+vAgQP6/ve/X1J7AAAAgJVKHeuePHlSU1NT6urq0rlz50y1t7S0ZDoHAAAAAAAAAAAAVDeb3ZZzJ4z7xfT6ezc8pppQkAEAAIAtqaOjQ2+88YYuXbqkw4cPq76eoS8AAACkhYUF07E3btzQ4OCgIpGIPB6PRkdH1dHRYaqtUgoyOjo6dPHiRdPxAAAAAAAAAAAAAKzBrDQAAAAAAAAA20Zzc7Ml7YRCITmdTtPx6XTakjwAAAAAAAAAAAAAlE9tuRMAAAAAAAAAAAAAAAAAAAAAAACoNuyQAQAAAAAAAGDbuHXrlunYY8eOaXJyUsvLy6qrq1N3d7cuXLhgYXYAAAAAAAAAAAAAqknVF2Qkk0mdOXNGktTe3q7Z2Vn19PSor6+vpDaHh4clSfF4XJLU09Oj/v5+S2ICgYCCwaAGBgbk9Xplt9tlGIai0ajOnz+v06dPy+12m84fAAAAAAAAQG5NTU2mY8fGxnTy5ElNTU2pq6tL586dK6k9AAAAANhOFhYWTMfeuHFDg4ODikQi8ng8Gh0dVUdHh6m2+BwHAAAAALBSVRdkJJNJeTweBYPBVQUMAwMDmpqa0sjISNFtRqNR+Xw++f1+eb3e7PGenh7Nzs7mbLPYmGQyqXA4rHA4vOq43W5f8/8FAAAAAAAAQGXo6OjQxYsXy50GAAAAAFSl5uZmS9oJhUJyOp2m49PptCV5AAAAAAAgVXlBhs/nU19f35oCBr/fr9bWVvX09KwqkCimzc/H+f1+OZ3OnG2aifH7/ZqdnZVhGGpra5PH41l3Bw4AAAAAAAAAAAAAAAAAwNZSCTsILS0tmc4BAABgu6vaggzDMBQOh+X3+3OeP378uEZGRooqyDh79qwMw9Dp06fXnHM4HPJ6vWvaNBOTyc9utxecGwAAAAAAwP0sLi5qYWFB9fXFf+Vj1Q93TU1NRccAAAAAAICt79atW6Zjjx07psnJSS0vL6uurk7d3d26cOGChdkBQPlUyg5Cb7/9tiV5AAAAbDdVW5CRKcRwOBw5zzudTgUCASWTyYILH0KhkCTlvd7tduvs2bMlxwAAAAAAAGyERx55xJJ2SvnhLp1OW5IDAAAAAADYWkpZxGFsbEwnT57U1NSUurq6dO7cORaFAAAAAABUhKotyIhGo+sWWmQKNaanpwveJWN6enrdNjMTEaLRqNxut+kYAABQmcxuBcs2sAAAAAAAoBT/78n/V+2N7eVOAwCALeW13tfKnYIem3is3ClsGR0dHbp48WK50wCADVEJOwgtLS3pypUrpvMAAADYzqq2IMMwDLW1teU9nymSMAyj4Dbb2toUj8fve9309HS2uMJMzL2i0aimp6e1f/9+CjYAACgzK7aCZRtYAABQTm+++aYOHjyo+vriv/Kx6oc7AAAAAAAAAEDhKmEHIRYPBAAAMK9qCzLi8Xh2F4xcMsUayWSy4DbdbrfGx8fznp+dnV3TppkYSQqHwzIMQ16vV/39/YpGo+rp6dHw8HBBO3osLi3q1tLd6ugdtTu0o27HfeO2olI/ECwtLWllZYUPFhahP61Ff1qPPrUW/Wk9+tNavEattbKyUu4UtqVKGPvz31Bl4b0N+SwtLamhoUENDQ2mCjL+y3/5L3riiSeyC0e88soramhoMJUHKgvvG8iH1wZyYdxfHp8uf6qGpbt/d7fzd/7VJl2TVlpppWvSWhH//VSban3+/ur3/6rcKVSMdE1a6V3V9xxulGob1230eHSlpvyviWp7TorFZ4rqxvNWHvPz86sWfs18n7fdlPoebdU4biv8d9De3q6JiYlVx8z8/+I93Vr0p7XoT+vRp9aiP61Ff1qL7/w3R9UWZBRaaHHz5s2C2xwYGND4+Lii0WjO3SrC4fCaNs3EZApJhoaGssfcbreCwaBaW1sViUTuu1vG8F8Pr3r8FfdX9Mj+R+73f3FLunTpUknxKysr+vjjjyVJtbW1VqS0rdGf1qI/rUefWmur9eebb75pKu6P//iPdeXKFa2srKi2tlYPPfSQ/uRP/qTodrZaf1YC+tRaxYytYZ1KGPuXOuaGtXhvQz5WvDaef/757L//7d/+rf72b//WktxQXrxvIB9eG8iFcX95VMK4H+akldbiLy8qrrhqVFPudFAknr/qx3O4WrV9h7PR49F4Z/z+F22wantOisVniup2b1EANs+DDz646vHXvvY1nTx5siy5lFOp79FWjQG2+vt0MXhPtxb9aS3603r0qbXoT2vRn9biO//NUbUFGRvB6/XK6/XqzJkzCgaDq86Fw2F5vV5Fo1G1t7eXFNPX15fz/na7XX19ffL5fNmdNfIZ+XcjarW1Zh/vqN2hHbHtuVrW4cOHS4rPVNEdPHjQ1AqiWI3+tBb9aT361Fr05x2/+Zu/uWY16Y6OjqLbWVpa0nvvvbft+9NKvEatlfnAi81VCWP/UsfcsBbvbciH1wby4bWBfHhtIBfG/eVRCeN+mJOuSSuuuNo+aVNNmsng1Ybnr/rxHK5Wbd/hbPR49PoL1y1vs1jV9pwUi88U1e1nP/tZuVPYlt5//3198YtfzD4udIeMf/iHf9Af/dEfKRKJyOPx6M///M/1q7/6q6ZyaGpqMhVnpVLfo60aA2z19+li8J5uLfrTWvSn9ehTa9Gf1qI/rcV3/pujal+pdru9oF0y7i2EKEQoFNLAwICGh4d1+vRpSXd3uXA6ndl7lxqTT1dXl8bHx2UYRnYnjVwa6xvVXN+8+mC6oFtsOVa84dbW1qq+vp43b4vQn9aiP61Hn1qL/pS++MUv6kc/+pElbdGf1qNPrcPKA+VRCWN//vupPLy3IR9eG8iH1wby4bWBz2PcXx4763aWfdwPc1a0ohrVqCZdo9o0//1UG56/6sdzuFo1juk2cjxaCa+JanxOisVniurFc1YeBw4cKLmNcDis3/iN3zAdn06X/8NGqe/RVo0B+O9gNd7TrbVV+nNhYcF07I0bNzQ4OJgtJhsdHTW9uOVW6c9KQp9ai/60Fv1pHb7z3xxV+0pta2tb93xma8VCCyHu5ff7lUwms0UVXq9XdrtdZ8+elSTt37/fkphcMvlGo9F1CzIAAMDWtLi4qIWFBVMfKKz6MkOqjJVxAAAAAAAAAAAAAABA+TQ3N9//ogKEQqHs4tZmvP3225bkAQDARqjaggyHw6Hp6em85zO7Z5gtarDb7err61t1bGpqSpLkdrtNxwwMDCgcDmt2dtZUXgAAYGt75JFHLGmn1C8zKmFlHAAAAAAAAAAAAGAr+fDDD/Xrv/7rRccdO3ZMk5OTWl5eVl1dnbq7u3XhwoUNyBAAAABAsaq2IMPtdmd3o8jFMAxJd3aqsEo0GlV/f39JMdPT09ndO3LJFJLkK/oAAAAAAAAAgK1kYWHBdCw7BQIAAAAAqsnOnTtNff4cGxvTyZMnNTU1pa6uLp07d47PsQA2xa1bt0zHWlVMtrS0pCtXrpjOAwCAjVa1BRknTpzQ2bNnFY1GcxYvTE1NFV2MEY1GdeTIEQWDwTWx0WhUhmFoeHi4pBiv16uRkZG8OUxNTclut5ve2QMAAFS3N998UwcPHlR9ffHDNFbGAQAAAFCNmpubLWmHnQIBAAAAAFtVR0eHLl68WO40AGxDpRR/WVVMtrS0ZDoHAAA2Q9UWZLjdbnm9Xp0/fz5nQcb4+LhCodCa48lkUmfOnFFPT8+aAorMrhq5nDp1SiMjI2sKJYqNOXHihAKBQM6dNgzD0Pj4uILBYN42AQDA1tbY2KimpiZTBRmsjAMAAAAAAAAA29drva+VOwVJ0mMTj5U7BQAAAFQAiskAANtF1RZkSFIwGJTH49GJEydWFWUMDAxoaGgo5w4ZgUBAZ8+eVSAQUCKRWHXO6/Vm/8lIJpM6deqUvF6vhoaG1rRXbIzb7VY4HNbZs2dXnTMMQx6PR0NDQ+rr6yu+M7axUr9YXKlZUbwzrusvXFdtutZ0O3yxCAAoN77MAAAAAFCNbt26ZTqWnQIBAAAAAAAAAABQTlVdkGG32xWJRDQ8PCy73a729nbNzs6qp6cnb1GD1+uV3W7X8ePHc7Y3MjIin88n6U5hhSQNDw/nLO4wGzM0NKRwOKyBgQHF43Elk0nZ7Xa99dZbOXf7AAAAAAAAAICtqpSd/dgpEAAAAAAAAAAAAOVU1QUZ0p2CCL/fX/D1brd7zc4Y93I4HAoGg0XlYCbm87tqAAAAAAAAAACKw06BAAAAAIq1sLBgKu7GjRsaHBxUJBKRx+PR6OioOjo6TLVFITkAAAAAbB1VX5ABAAAAAAAAAAAAAAAAFKK5ubnkNkKhkJxOp+n4dDpdcg4AAAAAgMpQW+4EAAAAAAAAAAAAAAAAAAAAAAAAqg07ZAAAAAAAAAAAAAAAAGBbuHXrlqm4Y8eOaXJyUsvLy6qrq1N3d7cuXLhgcXYAAAAAgGpDQQYAAAAAAAAAAAAAAAC2haamJlNxY2NjOnnypKamptTV1aVz586ZbgsAAAAAsHVQkAEAAAAAAAAAAAAAAACso6OjQxcvXix3GgAAAACAClNb7gQAAAAAAAAAAAAAAAAAAAAAAACqDQUZAAAAAAAAAAAAAAAAAAAAAAAARaIgAwAAAAAAAAAAAAAAAAAAAAAAoEj15U4AAAAAAAAAAAAAAAAAALDxXut9rdwpAAAAAFsKBRkAAAAAAAAAAAAAAGBLSS2lTMXN357XKz95Rdfmr2lPyx498eUn1NLQYnF2AAAAAABgq6AgAwC2gYWFBdOxN27c0ODgoCKRiDwej0ZHR9XR0WGqraamJtN5AAAAAAAAAAAAAIX6+o++XnIbV39+Vc++/azp+D/UH5acAwBYzWzBmmRd0Zqt3mY6BwAAAKDSUJABANtAc3OzJe2EQiE5nU7T8el02pI8AAAAAAAAAAAAAABA8awoWJNKK1r7wdEfWJIDAAAAUAkoyAAAAAAAAAAAAACAAphdUdqq1aQlVpQGCvXqV141FffC9AuauTmjlfSKamtq5Wp36bn9z1mcHQAAAAAA2CooyACAbeDWrVumY48dO6bJyUktLy+rrq5O3d3dunDhgoXZAQAAAAAAoJokjIQujVySJKXiKaWSKTl6HDo0dChvTCqZ0rtn3pUk7WzfqfhsXM4ep1x9rrLHAEAxrFhRupTVpCVWlAYKZbZ46emHntboB6OaTc7KaXdq8MFBCqEAbClmC9YkitYAAACAXCjIAIBtoKmpyXTs2NiYTp48qampKXV1dencuXMltQcAAAAAAIDqNTM+o+tT19Xr7111POAJKOKP6JnZZ9bEpJIpBTwB+YI+dbo7s8cnBiZ0feq6ekZ6yhYDAMBWYnYHF8naXVyqXUtDi4YfHi53GgCwYUopMrOqaM2Kv1nGPxpy/LJjW//NAgAAQGWgIAMAsK6Ojg5dvHix3GkAAAAAAACgzFLJlD48/6F8Qd+ac70v9yrgCWhiYGJNsUbQF9QDfQ+sKpKQpF5/r0ZaR+TsccrhdZQlBgCKZXZFaVaTxmawYgcXqfRdXP5Qf2hJHgCAymNV0Zplf7Nu8zcLAAAA5UdBBgAAAABLTQxMaK9v77oTnSKBiGaCM/IMeOTwOmSz25QwEopFY/rw/Ic6fPrwmklU0p0JYO+eeVeStLN9p+KzcTl7nHL1ufLey0wMAAAAgLXmpuc0Mz6j0HBozW4TmfH7tfC1VccTRkJG2NBR/9GcbbqOu3R55PKqzw+bFQMAZphdUdqq1aQBAAAAAAAAVBYKMgAAAACULDP5KeKPKBaNaa9v77rXp5IpGWFDRthYddxmt8kX9OUtxgh4AmvOTwxM6PrU9TUTwszGAAAAAMitsa1RNrtNO9t35r3GZl89uXjaPy1JanW05ry+zdmmaCCqVDKVjd2sGADYTFatJg2sx+wOLhK7uAAANhd/s4DCLCwsmI69ceOGBgcHFYlE5PF4NDo6qo6OjqLbaWpqMp0DAADbBQUZAAAAAEoSCURkhAw5ehzyjng11jNWUNxR/1HFZ+NKGknZ2mza7dktT78n7/VBX1AP9D2wplij19+rkdYROXuca1a7NRODylQJXzhLfOlciXhtAACswt+U++t0d2o4kXsycSwakyTt8e5ZdfyT6CfrFkBkCijmpueyY/PNigEAYKspZdcVdnEBAGymUv9mvfTBS5r9xaycX3DqqQef4m8Wtqzm5mZL2gmFQnI6naZi0+m0JTkAALCVUZABABvM7I/5N27c0MDAgH784x/r4Ycflt/v35I/5AMAqp+n35MtpMhMwirE3uN7C16ZNrMDx1H/0ZznXcddujxyedXEKjMxqFyV8IWzVDlfOi8uLmphYUH19cV/rN9qE0Z5bQAArMLflNKEh8NqdbSu2YUuYSTU2NaYNy7zmSBhJDY9BgAA3MUuLgCwOSZOTehXbL9S7jSqWktDi4b+9yHFO+Nqi7WpNl1b7pQAAACwzVGQAWwhlbCK39LSkukctiorfswPh8Pb8od8AAAypv3Tku6uavt5bc42RQNRpZKp7EQrMzFAtXjkkUcsaWe7ThgFAAB3Ld1e0vLt5ezjz259VlR8wkjo0sgl2R12PR56fM35xfhi3jG5pGwRRSqZ2vQYAAAAALlFAhHNBGfkGfDI4XXIZrcpYSQUi8b04fkPdfj04TU7U0t3xtvvnnlXkrSzfafis3E5e5xy9bny3stMDABsF7du3TIde+zYMU1OTmp5eVl1dXXq7u7WhQsXLMwOAABkUJABbCGVsorf22+/bUkeAAAAGZ9EP1m3aCIz8Wpuei6744WZGFQuvnBGPrw2AABW2a5/Uy6duaR3vv1O9vF87XxBcTPjM7o+dV1JIym7wy5nT+7vEwstgPj05qebHgMAAAAgt1QyJSNsyAgbq47b7Db5gr68xRgBT2DN+YmBCV2fur5mNz2zMQCwnZSyU/nY2JhOnjypqakpdXV16dy5cxWx8zkAAFsRBRkAsMHM/phfzT/kAwBQjFg0prnpOe3evzvnjzjSnVV3Myva5pIpvEgYiZJiULn4wnm1N998UwcPHlR9ffEf67faOJPXBgDAKtv1b8rh04d14LkD2ccff/yxXvzyi/eNc/W5Vq1YO9Yzpog/ot6Xe9mBDgAAANgCjvqPKj4bV9JIytZm027Pbnn6PXmvD/qCeqDvgTXf8/f6ezXSOiJnj3PN4khmYgAAheno6NDFixfLnQYAANsCBRnAFlIJq/gtLS3pypUrpvPYisz++D42Nqavfe1rev/993XgwAF9//vfr5of8gEAW8PS7SUt317OPv7s1meWtm+EDSWMhBxehzz9HsWiMY31jOnQ8KE1P7AsxhezO1rkkim8uHdVXDMx2Jq24hfOjY2NampqMlWQUc0TRq22FV8bAIDyqOa/KfUN9apvuDum2NG8w1Q7vqBPI60jSiVTejz0ePa4zW4raMy9s33npscAAAAAyG/v8b0FF1snjISMsKGj/qM5z7uOu3R55PKq7/7NxAAAAABAJaIgA9hCKmEVv6WlJdM5YLWOjg698cYbunTpkg4fPmxqsh0AAKW4dOaS3vn2O9nH87XzlrWdKZQ4NHQoe6zT3ZmdxNUf6V+1IlahRROf3vy0pBhgO6jmCaMAqtvCwoLp2Bs3bmhwcFCRSEQej0ejo6Pq6Ogw1dZ2LUIDNprNbpOrz6WZ8RkZYSM7aWq9XeukO4XUmfiMzYoBAAAAYI1p/7Qk5V0kqc3ZpmggqlQylR2Tm4kBAAAAgErE7F4AkpiUBQAA1jp8+rAOPHcg+/jjjz/Wi19+0ZK2XX2unMczk7iCvqCemX3GknsBVqqEycQUQQOoVs3NzZa0EwqF5HQ6Tcen02lL8gC2o1Qyte5OdHaHXZI0G5rNFmS0Olo1Nz23bpuZ6zI2KwYAAACANT6JfrJu0URmHD43PZf9rGAmBgAAAAAqkaUFGZOTk+ru7raySQAAAABlUt9Qr/qGux8ZdjTv2JT77u7arZnxGSWMRPYHF5vdVtCOFzvbd2b/3UwMcD+VMpn47bfftiQPAACAYoy0jkiShhPDOSdOZcbW947Dd7l3yQgbedtMGAlJWjXBarNiAADAxih0QYulpSUtLi5qYWEhu1O8lbvjAbBGLBrT3PScdu/fvWpn63sljMS6u9ZlPj9kxuVmYwAAAACgEllakNHT06Pl5WUrmwQAAACwzWR+ZIlFY9mCjPV+lJGkxfjiqlizMQAAYOPcunXLdOyxY8c0OTmp5eVl1dXVqbu7WxcuXLAwOwCFsNltamxrzDuGjs/GJUm7Pbuzx/ad2Kf3zr6nWDSWc/LW3NTa1W43KwYAAGyMSlnQ4gdHf2BJHsBWsXR7Scu3787p+ad//Kd1rzfChhJGQg6vQ55+j2LRmMZ6xnRo+NCasfV6O+lJd7+vv7d420wMAAAAAFQiSwsyWlpa9Ed/9Ef68z//cyubBQAAALCFTAxM6Fr4mp6ZfabgmFZHq+am5/Kez/wgc++PN2ZigPuphMnES0tLunLliuk8sDEKXf0zF6tW/1xaWjKdA7AZmpqaTMeOjY3p5MmTmpqaUldXl86dO1dSewDMcfe7tX9gf97zM6/PyGa3ae/xvdljne5OObwOXT1/NWehxMz4jB4PPb7q2GbFAEC1Si2Zn5g6f3ter/zkFV2bv6Y9LXv0xJefUEtDi6m2bPUscgEA1eTSmUt659vvZB/Paz7vtZnvzQ8NHcoe63R3yhf0aaR1RP2R/lXj7kKLJj69+WlJMQAAAFif2d8srdytkN9vsB1ZWpCRTCbl9/s1OzurkZERPfjgg1Y2DwAAAGALiE3HsrtT5JL5EebeH3N2uXfJCBt5YzJblt+7KpeZGOB+KmEyMZPuK1OlrP759ttvW5IHUGk6Ojp08eLFcqcBbHs9Iz2aGJjQXt/eNePooC8oSfrqW19ds4OGL+hTwBPQvhP7Vo3zJwYmdHDoYM4x+WbFAKgeG1GEsFKzotuf3VZqKaXadG1BbVVCEcLXf/R1S9q5+vOrevbtZ03Hs/sA8il0QYulpSW99957OnjwoOrr70xdsHJ3vP/v3/9/puKArerw6cM68NyB7OPr16/rRdeLOa919blyHrfZbXL1uRT0BYtadAkAAACbw4rfLEv9vTKdTpecA7ARjLcMGSFDqpHanG3avX+3dj24y5K2LS3IkCS/368jR44oHA7rzJkz6unp0fHjx/WFL3zB6lsBqFCLi4taWFjIfnFaDCotAQDY+vZ496h/pD/v+bmpOdnstlU7V+w7sU/vnX1PsWgs52q3c1NzayZXmYkBNhKTiQEAwFbQ6+/VzPiMgr6gbG02peIppZIp7XLv0jeufWNNMYZ0Z9JWf6RfoeGQbHabdrbvVHw2LmePc92JXpsRA6B6UIQAVI9Cf6NbWlpSY2Ojmpqasr8rsjsetouy7bZad/dfl+rMLfyyu2u3ZsZnlDAS2e/xbXZbQTte7Gzfmf13MzEAAAAAkM/Z9rMaujmU97zjiEOOIw6l5lNajC/KCBua9k+rZ6RHDV9oKOnelhZk+P1+Pfnkk5KkU6dO6dSpU7py5YqGhoZUU1OjgYEBds0AtoFHHnnEknaotAQAYGvad2KfIoGIPP2eNecSRkIz4zPyBX2rjne6O+XwOnT1/NWcxRUz4zN6PPR4yTEAYFahq2RaUTIAAQAASURBVH/mYtXqn0tLS7py5YrpPAAAKJSrz1V0gYPNblOvv7ciYwCg2rz6lVdNx74w/YJmbs5oJb2i2ppaudpdem7/cxZmB5SGBS2wXVTKbqtmZIqwY9FYtiCjsa1x3ZjMrtn3FnCbiQEAAMD6zP5maeVuhUC5FDpn2NZik63FJs8pj1LzKYWGQzr60tGS7m1pQcapU6fWHHvooYc0Ojqq+fl5vf7669ldMzKFGwAAAAC2joSRkKR1V7XqdHfKCBu6fPayDg0dWhUb8AR0cOhgzsldvqBPAU9A+07sW1VgMTEwoYNDB3PudmEmBgDMKGW1TqtW/1xaMreqIQAAAFANNqIIYaVmRYldCbV+0qradK2F2W4sW735ialPP/S0Rj8Y1WxyVk67U4MPDpbUHgBg65kYmNC18DU9M/tMwTGtjlbNTc/lPZ/5zeDenbHNxAAAAGB9Zn+zZLdCbAU1NTVFx9harPlezNKCjPW0tLSs2jVjcHBQNTU1Ghwc1G/91m9tVhoANsGbb76pgwcPZrcWLgaVlgAAVJ+Z8RlF/BFJyv54MnFqInvM5XOt2Q3j0NAhGWFDEwMTSsVTSiVTstlt+upbX825m4V0ZxWs/ki/QsMh2ew27WzfqfhsXM4eZ97Vec3EAMBmY/VPAAAA4P42oghhpWZFDTsaZKu3VVVBRilaGlo0/PBwudMAgG2vEnZbvX79uv71v/7Xa47HpmPZ3SlyyRRK3Ptd/i73LhlhI29MZjGnexdJMhMDYOtbWFgwHXvjxg0NDg4qEonI4/FodHRUHR0dptpiEjKA7YbfK7enSCCimeCMPAMeObwO2ew2JYyEYtGYPjz/oQ6fPpxzDk8qmdK7Z96VpILn4ZiJ2Qyp+ZRi07GS29m0gox7OZ1OOZ1OnTlzRoFAQA6HQ8PDw+yagapWCR8IKuXDQGNjo5qamkwVZFBpCQBA9XH1uUx9QHJ4HUX/kGKz29Tr793wGAAAAAAAsHVQhAAAqDSVsNvqzp07cx7f492j/pH+vHFzU3Oy2W2rdq7Yd2Kf3jv7nmLRWM4JW3NTc2t+DzATA2Dra25utqSdUCgkp9NpOj6dTluSBwAAlSyVTMkIG2sKpW12m3xBX95ijIAnsOb8xMCErk9dV89IjyUx+SQ/SuY8nvnbnfz7pHSfP+OpZEqL8UXFojFdOnNJruOlF4VsakHG5OSkRkZGFA6HJd35P9/f36+BgQFJyu6aMTw8rC996UubmRpQskr4QLAVPgxQaQkAAAAAAAAAAAAAQG4b/Zv6vhP7FAlE1ux8Ld3ZtWJmfEa+oG/V8U53pxxeh66ev5pz0tbM+IweDz1ecgwAAAAAax31H1V8Nq6kkZStzabdnt05PwtkBH1BPdD3wJoxfK+/VyOtI3L2ONcUVpuJyWcuMqe5qTkljISMsKHb87dXnf+e43sFtSPdmXPt8Dp09KWjBcfkY2lBxuTkpLq7u1cd+8UvfqFAICC/3y/DMO4k/887Ypw6dWrVtaOjo5qfn1cgEFA8Htfp06f1hS98wcoUAQAAAAAAAAAAgHWlllIFXbdSs6Lbn91Waiml2nSt5m/P65WfvKJr89e0p2WPnvjyE2ppaDGVg63eZioOAACgFJ3uThlhQ5fPXtahoUPZ4wkjoYAnoINDB3Pumu0L+hTwBLTvxL41q94eHDqYc4KVmRgAW9utW7dMxx47dkyTk5NaXl5WXV2duru7deHCBQuzAwBg69l7fK9s9sK+h8wUQRz15y5gcB136fLI5VXjeDMx63E96pLr0bufR2LRmMLDYRlvGaqpqdEDjz5QUDutjlY5ehxyHLHmM4elBRk9PT1aXl6WdKc4w+/3a3x8PLtqf2Y3jIceeihvGy0tLfrWt76l+fl5Pfnkkzp79iy7ZaAq8IEAAAAAAAAAAICt4es/+nrJbVz9+VU9+/azpuN/cPQHJecAYHMUWsSVC4VcACrRoaFDMsKGJgYmlIqnlEqmZLPb9NW3vppzNwtJstlt6o/0KzQcks1u0872nYrPxuXsceYs4DAbA2Bra2pqMh07NjamkydPampqSl1dXTp37lxJ7QEAgNWm/dOS7hQz5NLmbFM0EM1+fjAbU4xOd6ceDz2uiYEJ/XT8p/K97rt/0AawtCCjpaVF/+pf/StJWrMbxvHjx9XSUvgXRy0tLXr99df11FNP6aWXXrIyTWBD8IEAAAAAAAAAAAAA2H6sKOKSKOQCUFkcXkfRO1TY7Db1+ns3PAYAcuno6NDFixfLnQYAAFvWJ9FP1i2ayBRdzE3PZT9LmIkxo9ffq1gkZjq+VJYWZEjS7OysJKmvr0+nT59edzeMQhRTxAFUKz4QAAAAAACwNS0sLJiOvXHjhgYHBxWJROTxeDQ6OqqOjo6i21laWjKdAwAA29WrX3m1oOtWalaU2JVQ6yetqk3X6oXpFzRzc0Yr6RXV1tTK1e7Sc/uf2+BsAQAAAAAAAMC8WDSmuek57d6/O++ueAkjoca2xrxtZAovEkaipBizDp8+bCoufDos7xlvSfe2vCBjYGBA3/nOd0oqpJifn9d3vvMdDQwMaH5+3sLsAAAAAAAAgM3T3NxsSTuhUEhOp9N0/Ntvv21JHgAAbBe2+vyrtt1rpWZFDTsaZKu3qTZdq6cfelqjH4xqNjkrp92pwQcHC24LQPUqtIgrFwq5AAAAAACAVZZuL2n59nL28We3Plv3eiNsKGEk5PA65On3KBaNaaxnTIeGD63ZsWIxvpjd0SKXTOFFKpkqKcYs16MuU3HRQLTyCjJeeumlktt4/fXXNTIyovHxcQ0PD1uQFQAAAAAAAAAAALCxWhpaNPwwv20B200phVcUcgEAAAAAAKtcOnNJ73z7nezj+dr8GyNkCiUODR3KHut0d8oX9GmkdUT9kf5Vu2UUWjTx6c1PS4qxQvKjZEG7bsSiMUuKQSwtyDh+/Lhl7czOzqqrq0uPPvqoJW0C2H4WFhZMx964cUODg4OKRCLyeDwaHR1VR0eHqbaamppM5wEAAAAAqG63bt0yHXvs2DFNTk5qeXlZdXV16u7u1oULF4puZ2lpSVeuXDGdBwAAAICNQyEXAADlw7wSAACw1Rw+fVgHnjuQffzxxx/rxS+/mPNaV1/uHSVsdptcfS4FfUE9M/vMhuS5UaL/OarwcNiSIotiWFqQMTo6uu75t956S6FQSDU1NXI6ndq/f78efPDBNde1tLToO9/5jpWpAdiGmpubLWknFArJ6XSajk+n05bkAQAAAACoPqX8mDo2NqaTJ09qampKXV1dOnfunKn2lpaWTOcAAAAAAAAAbFXMKwEAAFtNfUO96hvulgfsaN5hqp3dXbs1Mz6jhJHI7qRhs9sKKnTY2b4z++9mYswy3jI00T+hVkerXD6XbPb770Aai8R0bfJayfe2tCCjvb1dN2/ezHv+yJEjOnLkiObn5xWPxxUOh+X3+zUyMqIvfOELVqYCAAAAAAAAVLWOjg5dvHix3GkAAAAAAAAA2AYWFxe1sLCg+vriphSyWwgAAFtPppghFo1lCzIa2xrXjVmML66KNRtj1lvPvyVf0CfXo7l3/sjnbPvZku9taUFGodW6LS0tamlp0alTpzQ/P6/h4WG99NJLVqYCALp165bp2GPHjmlyclLLy8uqq6tTd3e3Lly4YGF2AAAAAAAAAAAAAAAAKBfmlaz2yCOPlNwGu4UAAFAdJgYmdC18Tc/MPlNwTKujVXPTc3nPZ3bCyBRwmI0xy9ZqK7oYQ5Lse+wl39vSgoyampqiY1paWqxMAQCySqmaHxsb08mTJzU1NaWuri6dO3eOKnwAAAAAAAAAAAAABVtYWDAdy2rjALDxmFcCAAC2q9h0LLs7RS6ZQolOd2f22C73LhlhI29MwkhIkhxeR0kxZt2bazH6p/tLvrelBRlmzM/Pa3p6utxpAMAqHR0dunjxYrnTAAAAAAAAAAAAAFClmpubLWmn1NXGf3D0B5bk8XkrNSuKd8Z1/YXrqk3X3vf6xyYe25A8AKActuK8kjfffFMHDx5UfX1xUwq34m4hAABsdXu8e9Q/kr8QYW5qTja7bdXOFftO7NN7Z99TLBrLWfwwNzW3prDCTIxZmSKScii6IOOjjz7KeTyzXdjf//3f33frsGQyqXg8rmg0qjNnzuj48ePFpgEAAAAAAAAAAAAAAAAAACzQ2Niopqamogsy2C0EAIDqs+/EPkUCEXn6PWvOJYyEZsZn5Av6Vh3vdHfK4XXo6vmrOYsrZsZn9Hjo8ZJjzHL5XPrpD3+qB/7ggaLiwqfD8p7xlnTvogsyIpGIpqamZBiGwuGw5ufnV513OAqvUkmn0/J6vXrppZeKTQPISi2Zr2iavz2vV37yiox/NOT4ZYee+PITamlosTA7AAAAAAAAAAAAAMB29OpXXjUd+8L0C5q5OaOV9Ipqa2rlanfpuf3PWZgdAADW2Iq7hQAAsNV1ujtlhA1dPntZh4YOZY8njIQCnoAODh2Uq8+1Js4X9CngCWjfiX2rCiwmBiZ0cOhgzt0uzMSY4Tji0OXvXi66KCMaiG5+Qcajjz6qRx999G4S0aiGh4f11ltvqaamZtW59TgcDvX09OjIkSPFpgCs8vUffd2Sdq7evqpn337WdPwf6g8tyQMAAACoNAsLC6Zjb9y4ocHBQUUiEXk8Ho2Ojqqjo6PodlhJCQAAAAAAANXGVm8zHfv0Q09r9INRzSZn5bQ7NfjgYEntAQAAAABwr0NDh2SEDU0MTCgVTymVTMlmt+mrb301524WkmSz29Qf6VdoOCSb3aad7TsVn43L2ePMWcBhNsaM5EdJ7fXt1YfBD/Vy18va492jNmebWh2teWNi0ZhSSfMbA2QUXZDxeW63W6FQSAMDAxofH9frr79eclIAAAAAgMrR3NxsSTuhUEhOp9NUbDqdtiQHAAAAAAAAoBq0NLRo+OHhcqcBAAAAANjCHF5H0TtU2Ow29fp7NzymWH63X7fnb0u6M8dkLjKnmpqaDb1nRskFGRl+v1+RSMSq5oCCsc0rAAAAAAAAAAAAAAAAAAAAAGxPjW2NkqS9x/fKZi9sh8lYJKZrk9dKvrdlBRmSdPr0aSubAwpS6javL33wkmZ/MSvnF5x66sGn2OYVwLaysLBgOvbGjRsaGBjQj3/8Yz388MPy+/3q6Ogw1VZTU5PpPAAAG+/WrVumY48dO6bJyUktLy+rrq5O3d3dunDhgoXZAQAAAAAAAAAAANZhLgUAANWn1dGqw88flvtJd1FxZ9vPlnxvSwsyHn30USubAzZcS0OLhv73IcU742qLtak2XVvulABgUzU3N1vSTjgcltPpNB2fTqctyQMAsDFK+bJ3bGxMJ0+e1NTUlLq6unTu3Dm+PAYAAAAAAAAAAEDFYi4FAADVp9XRqlZHa9Fx9j32ku9taUGGWT/84Q/1B3/wB6Zik8mkzpw5I0lqb2/X7Oysenp61NfXZzqfZDKp4eFhSVI8Hpck9fT0qL+/37KYjcgbAAAAACpNR0eHLl68WO40AAAAAACAxVJLKdOx87fn9cpPXtG1+Wva07JHT3z5CbU0tBTdzkrNiukcAAAAAAAAsHUcHT1qKq5/On99QKEqoiDj1KlTpgoyksmkPB6PgsGg3O6724sMDAxoampKIyMjRbcZjUbl8/nk9/vl9Xqzx3t6ejQ7O5uzzWJjNiJvAADMuHXrlunYY8eOaXJyUsvLy6qrq1N3d7cuXLhgYXYAAAAAAAAAgEr19R993ZJ2rv78qp59+1nT8d/r/54leQAAAAAZzKUAAADFKLog44MPPtCDDz6Y91wx4vG4DMNQMpksNg1Jks/nU19f36qiBkny+/1qbW1VT0/PqgKJYtr8fJzf75fT6czZZrExG5E3AABmNDU1mY4dGxvT1772Nb3//vs6cOCAvv/975fUHgAAAAAAAAAAAAAAQLkxlwIAgO0hNZ9S9OWoDn7zYEntFFWQ8fzzz+u73/2uPB6P/uZv/mbN+e7ubs3Pz5eUUKEMw1A4HJbf7895/vjx4xoZGSmqsOHs2bMyDEOnT59ec87hcMjr9a5ps9iYjcgbAIBy6Ojo0BtvvKFLly7p8OHDqq+viI23AAAAAAAAAACb4NWvvGo69oXpFzRzc0Yr6RXV1tTK1e7Sc/ufK7qdlZoVfapPTecBAAAAWI25FAAAVI+EkdCH5z/c3IIMwzCUTqeVSCRynm9ra5Mk9ff3S5La29vXbe/mzZuanZ3VD3/4w2LSkKRsQYPD4ch53ul0KhAIKJlMym63F9RmKBSSpLzXu91unT17tqSYjcgbAAAAAAAAAAAAADaTrd5mOvbph57W6Aejmk3Oyml3avDBQVPtUZABAAAAYDMtLCyYjr1x44YGBwcViUTk8Xg0Ojqqjo4OU22x6woArHVt8lrRMZdHLiuVTJV876IKMl5++WX19PTk3b3B4XDo+eef15NPPllUEvcr3MglGo2uW7CQKXiYnp4ueLeJ6enpddt0Op3Ze7vdblMxG5E3AAAAAAAAAAAAAFSLloYWDT88XO40AAAAAKAozc3NlrQTCoWyc0vNSKfTluSxFVRCkczS0pLpHABY5/W+13V7/nZRMel0Wo2tjSXfu6iCjJaWFp06dSrv+Z6eHu3fv7/oJPbs2VN0jGEY2R05cskUPRiGUXCbbW1tisfj971ueno6W5BRbMxG5A0AAAAAAAAAAAAAAAAAAABsJ5VSJPP2229bkgcA8xrb7hRW7D2+VzZ77p1YU8mUEkZCc9Nzcngd2t2125J7F1WQcT/f+ta3TMVNT08XHROPx7O7SeSSKXpIJpMFt+l2uzU+Pp73/Ozs7Jo2i42xKu/FpUXdWrqVfbyjdod21O1YNwa5pWvSSiutdE1aK1ox3Q5VjncsLS1pZWWF/rAI/Wk9+tRa9Ke16E/r0afWWlkxP1aCeZUw9ue/ocpSSe9tZlec+Yd/+Af90R/9UXa1mT//8z/Xr/7qr5pqiy2Z76qk1wYqC68N5MNrA7kw7i+PT5c/VcNSQ/Yx3/lXD6t+Y0B58PxVP57DyvRXv/9XBV2Xrkkrviuun734M9Wka6xPZAOaxGrF/jfIZ4/KwvNRHpXwnf9WwFwf6/E9kbXoT2tVUn8WMx/18/r6+vT2229reXlZdXV1+t3f/d11556up9S+qKQ+3SroT+vw+rTWdvrOv9XRqsPPH5b7SXdB11/+7mU1tjYWfP16LC3IkKQf/vCHcrvd+tKXvmR106sU+oft5s2bBbc5MDCg8fFxRaPR7A4Y9wqHw2vaLDbGqryH/3r1Fr5fcX9Fj+x/pKC2rXL7s+K2dbnXPy7+o86/e17/6+f/S//br/xvOvE7J/TLjb9sqq2GHQ33v2gdaaW1+MuLiiuumhK+lbt06VJJeWwVKysr+vjjjyVJtbW1Zc6m+tGf1qNPrUV/Wov+tB59aq1ixtawTiWM/RnrVpZKem/73d/93ZLbCIfD+o3f+A3T8aw2c1clvTZQWXhtIB9eG8iFcX95VMK4H+ZY9RsDyoPnr/rxHFY3nr/qV+xzyPeMlSUej5c7hW2Jsb81mOtjPb4nshb9aa2t0p9PPfWUfvGLX+h//I//oX/zb/6NnnrqKV25cqUsuWyVPpWkN99803TsH//xH+vKlStaWVlRbW2tHnroIf3Jn/xJ0e1spf6sBPSntbbTd/6tjla1OloLvv7Qtw5p5r/O6NrkNe3p3lPSvS0tyBgcHNTLL7+s1tZW/fznP7ey6U3h9Xrl9Xp15swZBYPBVefC4bC8Xq+i0aja29tLirHCyL8bUavt7otmR+0O7YhtbsX8f5j4D5a08z+v/0/9X//P/2U6/i97/7Kk+6dr0oorrrZP2kpaeeXw4cMl5bFVZKoSDx48qPp6y2u+th3603r0qbXoT2vRn9ajT62V+cCLzVUJY3/GupWF97bVeH3exWsD+fDaQD68NpAL4/7yqIRxP8yx6jcGlAfPX/XjOaxuPH/Vr9jn8PoL1zchq/s78cMT5U6hIvzsZz8rdwrbEmN/azDXx3p8T2Qt+tNaW6k/f//3f7/cKUjaWn1ait/8zd/UE088oenpae3fv1+vvPKKOjo6im5naWlJ77333rbvT6vw+rTWdvrO/+jo0aJjXI+6FD4drqyCjHg8riNHjuTcKcJqdru9oN0mii2ECIVCGhgY0PDwsE6fPi3p7i4XTqcze2+zMVbl3VjfqOb65tUH0/dtdkuqTZdWAbeiFdWoRjXpmpLa4o3/rtraWtXX19MnFqE/rUefWov+tBb9aT361DqsPFAelTD257+fylMp7223bt0yFXfs2DFNTk5mt2Tu7u7WhQsXTLVV7j6oNJXy2kDl4bWBfHht4PMY95fHzrqdZR/3wxyrfmNAefD8VT+ew+rG81f9qvU55PPPHfRDeVTCd/5bAXN9NgbfE1mL/rQW/Wk9+lT64he/qB/96EeWtEV/Wov+tA7f+W8OS1+pDodD3/nOd6xsMq+2trZ1z2e2Vvx88UQh/H6/kslktqjC6/XKbrfr7NmzkqT9+/ebjtnIvDfbq1951XTsC9MvaObmjFbSK6qtqZWr3aXn9j9nYXYAAAAAgI3W1NRkKm5sbEwnT57U1NSUurq6dO7cOdNtAQAAAAAAAAAAAAAAmJE0kiW3YWlBRnt7uz766CN96UtfKjru5s2bRcU4HA5NT0/nPZ/ZhcLhcBTVbobdbldfX9+qY1NTU5KUdweQQmI2Ou/NZKu3mY59+qGnNfrBqGaTs3LanRp8cLCk9gAAAAAA1aOjo0MXL14sdxoAAAAAAAAAAAAAAGCbSs2ntJhYLLkdSwsyvvWtb+n48eMaHBxUd3d3wXHpdPF777nd7uxuFLkYhiHpzk4VVolGo+rv7y8pphx5V6KWhhYNPzxc7jQAAAAAAAAAAAAAAAAAAAAAAFXs2uS1gq9NJVNKGAlF/BF5Bjwl39vSggxJev311/Wnf/qn8vv96urqktvtVltbm+x2e87rQ6GQ5ufni77PiRMndPbsWUWj0Zw7VkxNTRVd1BCNRnXkyBEFg8E1sdFoVIZhaHh4uKSYjcgbAAAAAAAAAAAAALaj25/dVmoppdp0bdGx87fn9cpPXtG1+Wva07JHT3z5CbU0tBTdjq3eVnQMAAAAAAAArPN63+u6PX+74OvT6bQcXocOfvNgyfe2tCCjtrZWNTU1ku4kOT4+bmXzq7jdbnm9Xp0/fz5nYcP4+LhCodCa48lkUmfOnFFPT8+awofM7hS5nDp1SiMjI3I4HCXFmM0bAAAAAAAAAAAAALDat/7Ltyxp5+rPr+rZt581FfuDoz+wJAcAAAAAAACY09jWKEnae3yvbPb1F89obG9Up7tTjiOOda8rlKUFGQ6HQ4ZhqK+vT21tbQXFTE1N6YMPPjB1v2AwKI/HoxMnTqwqbhgYGNDQ0FDOnSYCgYDOnj2rQCCgRCKx6pzX683+k5FMJnXq1Cl5vV4NDQ2tac9MjJm8Ufle632t3CnosYnHyp0CAAAAAAAAAAAAAAAAAAAAAGyaVkerDj9/WO4n126YsNEsL8h4/vnn9eSTTxYV197ebup+drtdkUhEw8PDstvtam9v1+zsrHp6etTX15czxuv1ym636/jx4znbGxkZkc/nk3SnsEKShoeH8xZJmI0pNm8AAAAAAAAAAABgs6WWUqZj52/P65WfvKJr89e0p2WPnvjyE2ppaDHVlq1+/VXtsH199w+/q9ZPWlWbri069oXpFzRzc0Yr6RXV1tTK1e7Sc/uf24AsAQAAAAAAsJFaHa1qdbSW5d6WF2Q4HMVv3dHaav7/vN1ul9/vL/h6t9u9ZmeMezkcDgWDwaJyMBNTbN4AAAAAAAAAAADAZvv6j75uSTtXf35Vz779rOn4Hxz9gSV5YOtp2NEgW73NVEHG0w89rdEPRjWbnJXT7tTgg4MU/wAAAAAAAFSho6NHy3ZvSwsyRkdHTcX93d/9nZVpAAAAAAAAAAAAAACwrpaGFg0/PFzuNAAAAAAAAFDFLC3IAAAAAAAAAAAAALB1vPqVV03HvjD9gmZuzmglvaLamlq52l16bv9zFmYHAAAAAAAAAGslP0pq2j+tT6KfaDG+qMa2Rtkddu0f2K9dD+6y9F5lL8iYn5/Xyy+/rG9+85vlTgUAAAAAAAAAAADAPWz1NtOxTz/0tEY/GNVsclZOu1ODDw6W1B4AAAAAAAAA3E/4dFjvnX1P6XR6zbloICqXz6XeQK8avtBgyf3KXpBhGIbOnz9PQQYAAAAAAAAAAACwhbQ0tGj44eFypwEAAAAAAABgG0jNpxTwBLQYX9QDjz6g3V27ZbPfWSAmlUxp8eaiYpGYPnz9QxlhQ9+49g01/HLpRRmWFmRMTk4WHTMyMqJkMmllGgAAAAAAAAAAAAAAAAAAAAAAYJsI+oJyeB06Onp03etS8ymFhkL6i+6/0KmpUyXf19KCjL6+Ps3PzxcVk06n1draamUaAAAAAAAAAABgA8SiMU37p5WKpxSLxmSz2+QZ8MjT78l5fSQQ0UxwRp4Bjxxeh2x2mxJGQrFoTB+e/1CHTx9Wp7tzTVwqmdK7Z96VJO1s36n4bFzOHqdcfa68uZmJAQAAAAAAAAAA1S/yckStjtb7FmNIkq3Fpl5/r94YfEPR/xyV+0l3Sfe2tCCjra1NknT8+HHZ7fac1ySTSRmGoenpaXm9XnV1dVmZAgAAAAAAAAAA2ACRQESS1OvvzR4zwoaCvqAuj1xWf6Q/u/V3RiqZkhE2ZISNVcdtdpt8QV/eYoyAJ7Dm/MTAhK5PXVfPSI8lMQAAAAAAAAAAYGu4Fr6mvvN9RcUcHT2qv/w//7KyCjIcDoeef/55PfnkkwVd/93vfletra0FXw8AAACg8k0MTGivb68cXse611XyyroAAAAAVksYCaWSKR0aOrTquMPr0Fff+qoCnoCCvqAeDz2+Jvao/6jis3EljaRsbTbt9uzOO+6X7mwp/kDfA2vG973+Xo20jsjZ41zzecNMDAAAAAAAAAAA2Bpsrbb7X5SDfY+95HtbXpDhcBT+g8a3vvUt/df/+l81OTmp7u5uK1MBAAAAsIkSRkJG2FDEH1EsGtNe3951r6/klXUBAAAArDXtn9bvnP6dnOc63Z1yeB0ywoYSRkKtjtZV5/ce37tmfJ9P5rPFUX/uLcVdx126PHJ5VXGFmRgAAAAAAAAAALCF1Gxy3D1qS2/irtHR0aILKx599FGFQiEr0wAAAACwiSKBiMLDYUmSd8R73+szK+t+fkXczMq6CSOhoC+YM/ao/6gODh2Uq88ld79bR/1HNZwYzjuxar1VcqOB6JriDgAAAAC5XQtf05/t+TOlkqmc53e5d0m6sxNeKab905K0pqgjo83ZJiNsrMrDTAwAAAAAAAAAANg6UnFzvwEkjWTJ97Z0hwwAAABsDQsLC6Zjb9y4ocHBQUUiEXk8Ho2Ojqqjo8NUW01NTabzwObx9HuyxRWFTL6q5JV1AQAAAOTW2NaoWDSmhJHIuTudVT6JfrLumD/zGWFuei47ljcTAwAAAAAAAAAAtg77Hrt+euGneuDYAwXHvPen72nXQ7tKvndFFGQYBqvSAgAAVJLm5mZL2gmFQnI6nabj0+m0JXmgslwLX1M0ENU3rn0j56SpXe5dMsKGYtFY3hVuC1HIKrnRQFSpZKrgIg8AAABgu3o89HjOoumMzApS6xVrxKIxzU3Paff+3XmvSxgJNbY15m0jM3ZPGImSYgAAAAAAAAAAwNbh/Y5X3/uX35OkgooyIi9HdOnMJQ3dHCr53mUvyJifn1ciwY8gAIDthd0HAGxnlbyyLgAAALDdLN1e0vLt5ezjz259lvfa9QqmZ8Zn1OnuzHlNZgc8h9chT79HsWhMYz1jOjR8aM1YfDG+uO59MoUXqeTdrcfNxAAAAAAAAAAAgK3F97pPgf0BOX/PKVefS7v3787OHUolU1qML2o2NKufjv9UCSOhU9OnLLmvpQUZk5OTBV+bTCZlGIb8fr8GBgasTAMAgIrH7gOodLdu3TIde+zYMU1OTmp5eVl1dXXq7u7WhQsXLMwO1a6SV9YFAAAAtptLZy7pnW+/k308XztfdBuXz16WJPW+3LvmXGbcf2joUPZYp7tTvqBPI60j6o/0rxrTF1o08enNT0uKAQAAAAAAAAAAW0unu1P90/2aODWhif4J1dTUrLkmnU6r1dGq//Df/oM6H7JmIVlLCzL6+vo0P1/4jzXpdFper1ff/OY3rUwDAAAAJSpl95SxsTGdPHlSU1NT6urq0rlz59iNpUoVs1JusSp1ZV0AAABguzl8+rAOPHcg+/jjjz/Wi19+seD4WDSm8HBYvqAvZ7G0q8+VM85mt8nV51LQF9Qzs88UnzgAAAAAAAAAAMDndLo71R/pVyQQUcQfUexKLHuu1dEqz4BHh751aJ0WimdpQUZbW5sk6fjx47Lb7ete297eLrfbrSNHjliZAgAAVYHdB7CVdXR06OLFi+VOAxawYqXcYpV7ZV0AAABgu6lvqFd9w92fCnY07ygqPugL6qj/aN7Ci/Xs7tqtmfGZVTvo2ey2gsbyO9t3Zv/dTAwAAAAAAAAAANi6PP0eefo9m3IvSwsyHA6Hnn/+eT355JNWNgsAwJbD7gMAqkGpK+UWi5V1AQAAgOoS9AXlGTD/g4bNbpN057NApiAjs5NdPovxxVWxZmMAAAAAAAAAAACsUGtlYw6HQw6Hw8omAQDA52R2H/j5z3+uixcvqqOjo9wpAdii6hvq1fCFhuw/xa6UW6xSV9ZNGAkljET2GKvkAgAAABsnNBzS7q7dq3aw+7yJgQl9z/m9otptdbRmCyhyyYzxMwUcZmMAAAAAAAAAAMDWM/NfZ/SX/+df6uXfflnJj5JrzieuJRQ8HtR7f/qeZfe0tCBjdHRU3d3dVjYJAAAAYBuwcmXdDFbJBQAAADZGJBBRm7MtZzHGvUXRselYQYUS9+6Qt8u9a93C6kwRtsN7d3EoMzEAAAAAAAAAAGBrCZ8OS5KuT11XLBJbNY8oo3VPq3yv+7TroV3Z60tlaUEGAAAAABSrklbWBQAAALC+mfEZScpZTJ0wEjLCRvbxHu8eDSeG87Y1NzUnm922aky+78Q+Scr5I0km5vOFFWZiAAAAAAAAAADA1nFt8ppaHa1yPepSb6BXR75zRA/8wQN5r3ccccjhdeinP/xpyfeuL7mF+/joo48UjUYVj8flcDjkcDj0pS99aaNvCwBAXouLi1pYWFB9ffF/Bm/cuKHBwUFFIhF5PB6Njo6qo6Oj6HaampqKjgGArSizsm6uyVypZOruzhcmV9a9dzLY57FKLgAAAFCcWPTOuDzfznZG2Fg1vt53Yp8igUje4o2Z8Rn5gr5VxzvdnXJ4Hbp6/uqq8X3GzPiMHg89XnIMAAAAAAAAAADYOj4MfqijLx2VJLn6XAXFOI449MZTb6xbuFGIDSvImJyc1MDAgAxj7QQoj8ejl19+Wb/1W7+1UbcHACCvRx55xJJ2QqGQnE6nqdh0Om1JDgBQze63sm4sGst+QNrj3aP+kf68beVbWfe9s+8pFo3lnJTFKrkAAABA4RJGQkFfUHu8ezQ3MLfmfCqekhE2Vu2I0enulBE2dPns5VU74iWMhAKegA4OHcz5o4gv6FPAE9C+E/tWjeUnBiZ0cOhgznG8mRisllpKmY6dvz2vV37yiq7NX9Oelj164stPqKWhxVRbtnqb6TwAAAAAAAAAANtUGadkbkhBxokTJzQ+Pp6dbGq329XW1pYtzpienpbb7dbw8LD+7//7/96IFAAAAABUsEpdWbcS3V66bWpilJUTogAA1Y+dAgGUaqxnTAkjoUQgkfeaewukMw4NHZIRNjQxMKFUPJXdCe+rb3015zhdkmx2m/oj/QoNh2Sz27Szfafis3E5e5x5V7UyE4PVvv6jr1vSztWfX9Wzbz9rOv4HR39gSR4AAAAAAAAAgO0jlTC36FDSSJZ8b8sLMp566ikFg0G53W6NjIxo//79amm5O+lnfn5eoVBIZ86c0cjIiNrb2/Uf/+N/tDqNLa8SJmWxShWAavXmm2/q4MGDpiYiHTt2TJOTk1peXlZdXZ26u7t14cKFDcgSAKpTwrgzOSuVzD9WrfSVdSvNt/76WyW3UeqEqD/UH5acAwCgvNgpEECpnpl9xnSsw+soeuxts9vU6+/d8BgAAAAAAAAAAFD94rPxomNS8yl9evPTku9taUHGW2+9Jb/fr/Hxcf3BH/xBzmtaWlrU19envr4+BQIBPfXUU+rr69Ov//qvW5nKllcJk7JYpQpAtWpsbFRTU5OpgoyxsTGdPHlSU1NT6urq0rlz51jlFcC2NzM+o4g/Ikmam75TYDFxaiJ7zOVzrdrZotJX1gUAAACA7ejVr7xqOvaF6Rc0c3NGK+kV1dbUytXu0nP7n7MwOwAAAFSKiYEJHR4+nPN7fOnOgk3vnnlXkgr+Tt5MDAAAAADca+/xvRo/Ma6+830Fx4wfH9e+f7+v5HtbWpBx9uxZhUIhHTlypKDr+/v7JUlDQ0M6f/68lakAALAhOjo6dPHixXKnAQAVxdXnKupHkWpYWbeSfPfffVfttvai45gQBQC4FzsFAgDup5RdsZ9+6GmNfjCq2eSsnHanBh8cZJdtAACALSgWjSkaiGr/wP6c51PJlAKegHxB35pdq69PXVfPSI8lMQAAAADweYeGDul7//J7Gv/34+p9uVcNv9yQ99pPPvhEE6cmlEqmdPCbB0u+t6UFGel0uuBijIz+/n6Nj49bmca2wKQsAAAAYHtoqG8wNZGJCVEAgHuxUyAAYCO1NLRo+OHhcqcBAACADRYeDq97PugL6oG+B9bsat3r79VI64icPc41iy6ZiQEAAACAXB7/b4/re//ye5oJzsjRc2fRV5vdpsa2Ri3GFxWfjeta+Jpi0ZjS6bQGogOW3NfSggyHw9wHILfbbWUa2wKTsgAAAACshwlRAACrsFMgAGy820u3lVpKFR03f3ter/zkFV2bv6Y9LXv0xJefUEtDi6kc+K0AAAAA64kEInL5XDLCRs7zCSMhI2zoqP9ozvOu4y5dHrm8qrjCTAwAAAAA5NPqaNVwfFhBX1Cz/21WRmjt55d0Oi2H16Gj/qNq3dNqyX0tLcgwq6amptwpbBtMygIAAAAAAAAAoLJ8851vltzG1Z9f1bNvP2s6/gdHf1ByDrCWmSKdDIp1AADI77Xe18qdgh6beKzcKRQlYSQk3ZnclM+0f3rda9qcbYoGokolU7LZbaZjAAAAAGA9NrtNj4cel/GWoZngjOam57KfKVodrfIMeOQ4Ym3Rt6UFGR6PRx999JG+9KUvFRwzPz+vtra2vOdPnz6tM2fOWJAdAAAAAAAAAAAAUB2+/qOvW9IOxToAAKBU0/5p9Yz05N0dQ5I+iX6ybtFEpuhibnouu+OFmRgAG+cnr/1E11+4rtp0bdlyqLaCNQAAULkcRxyWF17kY2lBxqlTpzQ4OKizZ8/qC1/4QkEx3/nOd9YtuAgEAhRkAAAAAAAAAACALetP/+2fqq0x/+JV+bww/YJmbs5oJb2i2ppaudpdem7/cxuQIQAAALarmfEZ7R/Yf9/rEkZCjW2Nec9nCi8yu22YjQEAAACASmNpQcZHH30kn88nn8+nwcFB7dmzJ++1hmHI7/dreHhYH3zwQc5rpqamlEwmrUwRAAAAAAAAAACgojTUN8hWn39l4HyefuhpjX4wqtnkrJx2pwYfHDTVDirTq1951XQsxToAAODzlm4vafn2cvbxP/3jP903JpVMKWEk5Opz3ffaxfhidkeLXDKFF6lkqqQYAAAAAKg0lhZkuN1uzc/PK51OKxwO3/f6Qq8DAAAAAAAAAADAai0NLRp+eLjcaWCDlFJcQ7EOAAD4vEtnLumdb7+TfTyv+fvGvHvmXfWM9BTUfqFFE5/e/LSkGAAAAACoNJYWZLS1tSmZTKqvr09tbcVvrf15U1NTeXfPAAAAAAAAAAAAALAWxToAAODzDp8+rAPPHcg+vn79ul50vZj3eiNsyNnj3IzUAKDivNb7WknxKzUrinfGdf2F66pN15pu57GJx0rKAwAAbA5LCzIcDoeef/55Pfnkk5a12d7ebllbAAAAAAAAAAAAAAAAwHZT31Cv+oa704R+6Re/tO71s6HZgnfHkCSb3VbQjhc723eWFAMAAABg400MTOjw8GG1Olpznk8lU3r3zLuS7ozX47NxOXuccvW58rZpJqZaWF6Q4XA4rGxSra25n0gAAAAAAAAAAAAAAAAA1rp89rJ+5/TvFBXT2Na47vnF+KKkO0UYpcQAAAAA2FixaEzRQFT7B/bnPJ9KphTwBOQL+tTp7swenxiY0PWp6zkLu83EVBPz+2HlMDo6qu7ubiub1N/93d9Z2h4AAAAAAAAAAAAAAACAtRJGQja7regiiFZHa7aAIpfMThj3rrBrJgYAAADAxgoPh9c9H/QF9UDfA6sKKySp19+raCAqI2xYElNNLN0hAwAAAAAAAAAAAAAAAEB1ikVjmgnOaCY4s+ZcwkhIkiZOTWR3t3g89LgkaZd717qTqDKxDq8je8xMDAAAAICNEwlE5PK58o7TE0ZCRtjQUf/RnOddx126PHJ51RjeTEy1oSADAAAAAAAAAAAAAAAAgFx9Lrn6XDnPzYzPKOgLqvfl3jUr2+47sU/vnX1PsWhszTlJmpuaWzPBykwMAACQFhYWTMfeuHFDAwMD+vGPf6yHH35Yfr9fHR0dRbfT1NRkOgcAlSlTEL3eDnXT/ul1r2lztikaiCqVTGV33TMTU20oyAAAAAAAAAAAAAAAAABgWqe7Uw6vQ1fPX81ZXDEzPpPdTaOUGAAAIDU3N1vSTjgcltPpNBWbTqctyQFA5Zj2T6tnpGfdXew+iX6ybtFEpuhibvpucbWZmGpDQQYAAAAAAAAAAAAqQmopZTp2/va8XvnJK7o2f017WvboiS8/oZaGFlNt2eqrcyU2AACAjZRZMTdhJHIWUPiCPgU8Ae07sW/V+YmBCR0cOphzcpWZGAAAAADWmhmf0f6B/fe9LmEk1NjWmPd8pvAi89nBbEy1oSADAAAAAAAAAAAAFeHrP/q6Je1c/flVPfv2s6bjf3D0B5bkAQAAsBVMDEwoaSQ1Nz135/GpCUX8Ee1y71LPSE/2Opvdpv5Iv0LDIdnsNu1s36n4bFzOHqdcfa6cbZuJAQBgu7t165bp2GPHjmlyclLLy8uqq6tTd3e3Lly4YGF2AMpp6faSlm8vZx9/duuz+8akkikljERB4+/F+GJ2R4tcMoUXqeTdhXfMxGym8OmwvGe8JbVBQQYAYNMsLCyYjr1x44YGBwcViUTk8Xg0Ojqqjo6OottZWloynQMAAAAAAAAAAAAAbDe9/t6Cr7XZbUVdbzYGAIDtrKmpyXTs2NiYvva1r+n999/XgQMH9P3vf7+k9gBUlktnLumdb7+TfTxfO3/fmHfPvLuq0Ho9hRZNfHrz05JiNlM0EKUgAwBQPZqbmy1pJxQKyel0mo5/++23LckDAAAAAAAAgLVe/cqrpmNfmH5BMzdntJJeUW1NrVztLj23/zkLswMAAAAAAKhuHR0deuONN3Tp0iUdPnxY9fVMIwa2ksOnD+vAcweyjz/++GO9+OUX815vhA05e8zPxaxUyY+SShiJ+14Xi8Ys2ZmDd1IAAAAAAAAAAABUBFu9zXTs0w89rdEPRjWbnJXT7tTgg4MltQcAAAAAAAAA1aS+oV71DXfLA3Y071j3+tnQbMG7Y0h3drcrpIBhZ/vOkmLMiv7nqMLDYUuKLIpBQQYAYNPcunXLdOyxY8c0OTmp5eVl1dXVqbu7WxcuXCi6naWlJV25csV0HgAAAAAAAAAqU0tDi4YfHi53GgAAAAAAAABQ8S6fvazfOf07RcU0tjWue34xvijpThFGKTFmGG8ZmuifUKujVS6fq6D2YpGYrk1eK+m+EgUZAIBN1NTUZDp2bGxMJ0+e1NTUlLq6unTu3DlT7S0tLZnOAQAAAAAAAAAAAAAAAAAAoJoljIRsdlvRRRCtjlbNTc/lPZ/ZmaLV0VpSjBlvPf+WfEGfXI+6ioo72362pPtKFGQAAKpER0eHLl68WO40AAAAAAAAAAAAAAAAAAAAqlYsGtNMcEYzwZk15xJGQpI0cWoiu7vF46HHJUm73LtkhI287WZiHV5H9piZGDNsrbaiizEkyb7HXtJ9pU0uyHjrrbcUCoVUU1Mjp9Op/fv368EHH9zMFAAAAAAAAAAAAAAAAAAAAAAA2JZcfS65+nIXL8yMzyjoC6r35V51ujtXndt3Yp/eO/ueYtHYmnOSNDc1t6awwkyMGbnaLkT/dH/J964tuYV7tLe3r3v+yJEj+s53vqPnn39eR44c0dTUlJ566in94he/sDINAAAAAAAAAAAAAAAAAAAAAABgkU53pxxeh66ev5rz/Mz4jA4NHyo5xoxUMlVyG2ZZukNGOp0u6LqWlha1tLTo1KlTmp+f1/DwsF566SUrUwEAAAAAAAAAAAAAAAAqzmu9r5U7Bd1cvFnuFAAAAABUoISRyP5vrl0nfEGfAp6A9p3Yt+r8xMCEDg4dzLnbhZmYYrl8Lv30hz/VA3/wQFFx4dNhec94S7q3pQUZNTU1Rce0tLRYmQIAAAAAAAAAAAAAAAD+WWrJ/Cqh87fn9cpPXtG1+Wva07JHT3z5CbU03JnnsVKzotuf3VZqKaXadO1927LV20znAQAAAADYWBMDE0oaSc1Nz915fGpCEX9Eu9y71DPSk73OZrepP9Kv0HBINrtNO9t3Kj4bl7PHKVefK2fbZmKK5Tji0OXvXi66KCMaiFZWQYYZ8/Pzmp6eLncaAAAAAAAAAAAAAAAAW87Xf/R1S9q5+vOrevbtZ03H/+DoDyzJAwAAAABgvV5/b8HX2uy2oq43G1OM5EdJ7fXt1YfBD/Vy18va492jNmebWh2teWNi0ZhSSfOLGGQUXZDx0Ucf5TyeTqclSX//93+f/fd8ksmk4vG4otGozpw5o+PHjxebBgAAAAAAAAAAAAAAAAAAAAAA2Ob8br9uz9+WdKeuYS4yp5qamk25d9EFGZFIRFNTUzIMQ+FwWPPz86vOOxyOgttKp9Pyer166aWXik0DAAAAAAAAAAAAAAAA9/HqV141HfvC9Av/f/b+P8apO8/z/V9VgHCRTHNc9QcUI91NHc/9IwWjaWz4rhro+90GO91qUSt1sKtupEt2/qDstK6UkfrblKnZv+ZqtcSVqFvTV9rGJivNXGbFgD2JVhVtS7Fhtm+gV9tlOxl1Uvljug5MVlTRUmObTDpl1KT8/YO1wfgH/nGqXIbnQ0KKzznvz3nzsWM+ts/7vLV4Z1FrpTUNDgxqfGRcPzjwA0nS2sCa8rvzct52arA0aFe6AAAAAAC0bWh4SJK0d3KvHIajpZiVzIpuXL3R9bnbLsg4ceKETpw4UXmczWYVDod15coVDQwMVO1rxjRN+Xw+HTt2rN0UqhQKBZ09e1aSNDIyoqWlJfl8Pvn9/q7GDIfDkqRcLidJ8vl8CgaDbcUcPHhQMzMzNcfGYjHF43GFQiF5vV4ZhiHLspTNZnXp0iXNzs7K7XZ3nD8AAAAAAAAAAAAAAIAkOba2diFKPf/n/v9T5z46p6XCklyGS699/bXKeGsDa9q+bbscWx0UZAAAAAAAesppOnXkzBG5T7V3Df7cyFzX5267IONxbrdbyWRSoVBIiURCly9f7jqpVhUKBXk8HsXj8aoChlAopIWFBUUikbbHzGazCgQCikaj8nq9le0+n09LS0t1x8xms4pGo4pEIjIMo7I9kUjI4/Eok8nU5J1KpZRKpaq2G4ZR83cBAAAAAAAAAAAAAADohZ3bdyr8L8O9TgMAAAAAgKacplNO09l2nDFmdH3urgsyyqLRaE3hwXoLBALy+/01BQzRaFROp1M+n6+qqKKdMR+Pi0ajcrlcdccMh8NKJpM1Y/n9fuVyOYVCIUWj0ZrxlpaWZFmWhoeH5fF4mnbgAAAAAAAAAAAAAAAAAAAAAAAA1Y6fO95RXDDd/fX7thVkSNLs7KydwzVlWZZSqVRNoUPZ5OSkIpFIWwUZc3Nzsiyr7t/DNE15vd6aMbPZrEzTbDhmOY962x/tpgEAAAAAAAAAAAAAAAAAAAAAAPqHrQUZJ06csHO4psqFGI2KIVwul2KxmAqFQsuFD+UuF42Od7vdmpubq9pWLgxpJJfLUXgBAAAAAAAAAAAAAAAAAAAAAMAGKNwsKB1N63b2tlZzqxoaHpJhGjoQOqDdX99t67kGbR2tQ++8807bMdlstmmhQ7lQI51OtzxmOp1uOqbL5aqcu8ztdsuyLAUCgbox0WhUU1NTLecAAAAAAAAAAAAAAAAAAAAAAADal5pN6Seun+h65LqWkktazixrKbmkTDSjmCemxP+e0L3P79l2Pls7ZHRqenpaL7/8clsxlmVpeHi44f5yYYVlWS2POTw8rFwu98Tj0um03G63pAeFH8FgULFYTC6XS9FoVF6vV5KUSqVUKBQUiUQajpXNZpVOp3XgwIHKmK1Yvb+qL+5/UXm8bXCbtm3Z1nI8HioNlFRSSaWBkta01ut0unL//v1ep6D79+9rbW1tU+TyNGA+7cec2ov5tBfzaT/m1F5ra/29VupXm2Ht/5/+9X/a0PPVM/UOhe5lvLehEV4baITXBhrhtYF6WPf3xpdffant97dXHvOdf/94mn5jeBbx/PU/nsP+xvPX/3gO+1tpoNTrFJ5Jm+E7/6eBXe8/fCfy0P379zfFe/pmeU7WBrqbA16j9uJ7TPsxp/ZiPu3FfNrrWfvOv3i3qJgnptXcql488aL2HNwjh+F4sK9Q1OqdVa1kVvTJ5U9kpSz92Y0/0/Y/2P6EUZ+s7YKMjz76SF//+tcb7mtHLpeTZVkqFArtpqFcLlfpglFPuVijnbHdbrcSiUTD/UtLS3XHjEajcrlcCofD8vl8CgaDcrlccrvdikajdcdKpVKyLEter1fBYFDZbFY+n0/hcLhS0NFM+L+Gqx5/x/0dfffAd58Yh1ollbT6B6vKKacBDfQ6na5cu3at1ylobW1Nn332mSRpcHBTNOHpa8yn/ZhTezGf9mI+7cec2uvOnTu9TuGZxNr/gc2w1t0seG9DI7w20AivDTTCawP1sO7vDdb9/etp+o3hWcTz1/94Dvsbz1//4znsb/+8+s+9TuGZxNrfHna9//Dbw0Nra2ub4j19szwnudEn39S5GV6j9uJ7TPsxp/ZiPu3FfNrrWfvOPx6Iy/SaOn7ueNPjineLSs4k9f8c/X80vTDd9XnbKsg4c+aM3nzzTXk8Hv3yl7+s2X/06FHdvXu366Ra0WqhRTsvpFAopEQioWw2W7dbRSqVajjmzMyMDMNQKBRSLBaTYRiKx+N1z1MuJJmZmalsc7vdisfjcjqdymQyT+yWEflXETkdzsrjbYPbtG2FivlOlAZKyimn4dvDGij195dER44c6XUKlarEQ4cOaevWTdGEp68xn/ZjTu3FfNqL+bQfc2qv8gdebCzW/g9shrXuZsF7GxrhtYFGeG2gEV4bqId1f2+w7u9fT9NvDM8inr/+x3PY33j++h/PYZ9b7XUCzybW/vaw6/2H3x4eun//vj6+9HHP39M3y3Ny60e3uornNWovvse0H3NqL+bTXsynvZ6l7/wz5zNyms4nFmNIkmOnQxPRCb332nvKvp2V+1Tz6/afpK1XqmVZKpVKyufzdfeXu1IEg0FJ0sjISNPx7ty5o6WlJb3zzjvtpLFuvF6vvF6vzp49W1NMkUql5PV6lc1m6/69wuGwXC6XSqWSwuGw5ubmKt0yHu+S4ff7657fMAz5/X4FAoFKN45GhrYO6fmtz1dvpJtkR9a0pgENaKA0oMFSf1fTbZZ/fAYHB7V169ZNk0+/Yz7tx5zai/m0F/NpP+bUPtx5oDdY+z/A/8PVeG9DI7w20AivDTTCawOPY93fGzu27GDd36eept8YnkU8f/2P57C/8fz1P57D/kYRTW/wnb897Hr/4fuQapvhPX2zPCfdzgGvUfvxPab9mFN7MZ/2Yj7t8yx9538jdUP+S/Wv0W/k+Lnj+ptv/83GFmScP39ePp9PXq+37n7TNHXmzBmdOnWqrSSeVLhRj2EYLXXJaHfsZDKpUCikcDis2dlZSQ87Y7hcrsq5H+Xz+RQOhyvzEolENDU1pUAgoFgsplwu17BbxuMOHjyoRCIhy7IqnTQAAAAAAAAAAAAAAAAAAAAAAEAth9PRUZwxZnR97rYKMnbu3Knp6emG+30+nw4cONB2EmNjY23HlLtxNJLL5STVFk+0IhqNqlAoVAoxvF6vDMPQ3NycJFX9Hefm5uR2u2uKVNxut5aWlhQKhRSLxSodNp6knG82m6UgAwAAAAAAAAAAAAAAAAAAAACAZjptAmhD80Bbe7mcPn26o7h0Ot12jGmaTePK3TM6LWowDEN+f3XbkoWFBUkPii3KotGoMplMw3Gi0ajS6bSSyaS8Xq9CoZBSqZSWlpY6ygsAAAAAAAAAAAAAAAAAAAAAADxQzBU7iitYha7PPdj1CD3idrsrRRf1WJYlSS11pWhVNptVMBisOc+TunCEQqFKrul0utK9o57ycY8WfQAAAAAAAAAAAAAAAAAAAAAAgFrGmKFP3/20rZhfvPUL7d6/u+tzb4qCjNnZ2bZjpqamJD0okqhnYWGh7WKMbDYrp9OpVCpVd59lWQqHw1XbTdOsFH80srS0JI/HI+lBgUg+n2947MLCggzD6LizBwAAAAAAAAAAAAAAAAAAAAAAzwrvG14lTydbLsrInM/o2tlr8r7RffOHrV2PYINYLKazZ8+2FeN2u+X1enXp0qW63SQSiYSSyWTN9kKhoLNnz8rn89UUbDQrrJienlYkEqkplPD7/QqHw4rH43XjCoWCstlspehkampKsVisptNG+fyJRKLhWAAAAAAAAAAAAAAAAAAAAM+S1dVV/e53v9PWre1f8vqb3/xGr732mjKZjDwej86dO6ddu3Z1lMdzzz3XURwAYGMELgcUOxCT6yWXxv3j2nNgjxyGQ5JULBS1mlvVUnJJnyY+Vd7Kazo9bct5160g4+bNm0/sHCE96DxRKBQ6Okc8HpfH49HU1FRVUUYoFNLMzEzdDhmxWExzc3OKxWI1nSq8Xm/lT1mhUND09LS8Xq9mZmZqxotEIgoEAgqFQopEIjIMo+rvFg6Hq7a73W6lUinNzc1VjWdZljwej2ZmZuT3+zuaDwAAAAAAAAAA1tNKdkXpaFrFXFEr2RU5DIc8IY88QU/DmGKhqA/OfiBJ2jGyQ7mlnFy+Bz+G9DoGAAAAAAAAm993v/tdW8ZJJpNyuVwdx5dKJVvyAACsj1H3qILpoOan5zUfnNfAwEDNMaVSSU7Tqf/j/f9Do/tHbTmv7QUZb7/9tsLhcMdFFu0wDEOZTEbhcFiGYWhkZERLS0vy+XwNixq8Xq8Mw9Dk5GTd8coFFpIqf4dwOFy3uKMsHo8rlUpperq6SsY0zbpdOmZmZpRKpRQKhZTL5VQoFGQYhq5cuVK32wcAAAAAAAAAAL2WiWUkSRPRico2K2UpHojreuS6gplg5U5TZcVCUTFPTIF4QKPuhz9szIfmdWvhlnwRX815NioGAAAAAAAAAAA8XUbdowpmgsrEMspEM1r5cKWyz2k65Ql5dPj0YVvPaWtBxpUrVxQMBmWapgKBQFW3iEYymYyuXr3a8TkNw1A0Gm35eLfbXdMZ41GmaSoej7edx+OdNew+HgAAAOgX86F57Q3slek1mx7HXXIBAACA/pG38ioWijo8U/0jhek19eqVVxXzxBQPxHUyebJqfzwQ14v+F6uKJKQHRR0RZ0Qun6vms8NGxQAAAAAAAKA//Jf/8l906NAhbd3a/iWv3/ve93T16lV99dVX2rJli44ePap33313HbIEAGwmnmDz7t52srUg48yZM4rH4zpx4kRbcSMjI3amATyzLk5c7HUKWhtY0x/+4A97nQYAANhgeSsvK2U9qCzPrmhvYG/T47lLLgAAANBf0tG0vjn7zbr7Rt2jMr2mrJSlvJWX03RKevg54Xj0eN248clxXY9cryqU2KgYAAAAAAAA9I+hoSE999xzHRVkXLhwQX/6p3+qhYUFHTx4UH/1V3+l5557bh2yBAA8qwbtHMzpdLZdjCFJY2NjdqYBAAAAYANlYhmlwilJkjfSWhe4ZnevzcayslJWz2IAAAAA1LqRuqG/HPtLFQvFuvt3u3dLklayD1t/p6NpSaoUaDxu2DUsK2VVjblRMQAAAAAAAHg27Nq1Sz/72c/029/+Vj/72c+0a9euXqcEANhEPn3n067HsLUgw+12dxSXTqftTAMAAADABvIEPQrEA/IEPRoaHnri8eW71x4IHai7v3z32l7EAAAAAKhvaHhIxUJReSvfcszt7G05DEfD/eUCiuX08obHAAAAAAAAAAAAzE/Pdz1G+/2bmigUCnYOBwAAAOAp1Mrda7OxrIqFYuWiqo2KAQAAAFDfyeRJ5a18w/V1wSpIUlV3uryVb1q0XV6HP1rksVExAAAAAAAAAACgv9z+6LZ2f313w33tWM2tKm/lbemubWtBRiAQ0DvvvKOXX365rbjZ2VmdPXvWzlQAAAAAbFLt3L3W9JobGgMAAAA8a+7fu6+v7n1Vefz7L37f8NhGxRiStJhY1Kh7tOqY1dxq05hyEcWjP3ZsVAwAAAAAAAAAAOgfqTMp/eLNX2jUM6rpX07X7P/ro3+te3fv9SAzmwsyjh07pjfffLPtooxYLEZBBgAAAPCM4C65AAAAwOZx7ew1/fwvfl55fHfwbttjXJ+7LkmaOD9Rtb3VAogv73y54TEAAAAAAAAAAKB/5K28SqWSivn6vwmUrxHyBD0PHo80vmZIklbvrCq/lNen73zadW4tF2R89NFHLR3n8/mUTCZ18OBBeb1euVwumWbju81ms1kVCoVW0wAAAACwQdq5U247uEsuAAAAsHkcmT2ib/zgG5XHn332mX78xz9uOX4lu6JUOKVAPKBR9+h6pAgAAAAAAAAAAJ5xE+cnZPpMmd76dQlO06kjZ47Ifcrd1rhzI3Nd59ZyQcbRo0d1927rd8YqlUrKZDIaGBjoKDEAAAAAvWXHnXLr4S65AAAAwOaxdftWbd3+8KeCbc9vays+HojrePS4xv3jNfschqOldfmOkR0bHgMAAAAAAAAAAPqHY6dDnmlPw/2mz9SeA3vaHtcYM7rI6oGWCzKGh4clSZOTkzKM7k9clslkdPXqVdvGAwAAAGCPbu+UCwAAAODpFg/E5Ql5Ku2/H1fuStfIam5V0oOCio2OAQAAAAAAAAAAT4/Dpw93FBdMB7s+d8sFGaZp6syZMzp16lTXJ33cyMiI7WMCAAAA6E63d8pthLvkAgAAAP0vGU5qz8E9OjzT+AcOp+nUcnq54f7yet1pOjc8BgAAAAAAAAAAwA5tFWSYprkuSYyNja3LuAAAAAA2H+6SCwAAAPS3TCyjYddw3c4YxUKxssbe7d4tK2U1HCdv5SVJpvfhbw8bFQMAAAAAAAAAAJ4d1hVLVtKSBqRh17D2HNij3V/fbcvYg60eeO7cOR09etSWkz4unU6vy7gAAAAANh+n6awUQ9TT6I63GxEDAAAAoLnFxKIk1S3GyFv5qsKIfVP7JEkr2ZW6Yy0vLNcUSWxUDAAAAAAAAAAAeHrMjcw13W8eM+V9w6sjZ45o7NiYbi3c0nvff0/3Pr/X9blbLsgAAAAAADvsdu+uFEPU0+iOtxsRAwAAAKCxleyKVnOrdYsxJMlKWRp1j1Yej7pHZXpNfXzp47rHLyYWdTh8uGrbRsUAAAAAAAAAAICnR6lUauk4x06HnGNOeaY98r7hVTKc7PrcFGQAAAAA2FDcJRcAAADoP3krr3ggruXMsuZD8zV/4oG4UuFUTQe6QDygTxOf1qzL50PzOjRzqO6afKNiAAAAAAAAAADA02FgYKDtGMdOhy3n3mrLKAAAAADQokfvXvvo3XPLFhOLOpk82ZMYAAAAAPVd8F1Q3sorH8s3PObxYgxJchgOBTNBJcNJOQyHdozsUG4pJ5fPpXH/eN1xNioGAAAAAAAAAAA8u4p3i1pJ17/RazsoyAAAAABgm7z14OKsYqHY9LhAPKCYJ6Z9U/uqiiWedMfbjYgBAAAAUOv1pdc7jnUYDk1EJzZlDAAAAAAAAAAA6A+Fm4W620ul0oP9/1SQSs3HKBaKWs2taiW7omtnr2l8svubOlGQAQAAAKAri4lFZaIZSdJyelmSND89X9k2HhiXJ+ipiuEuuQAAAAAAAAAAAOilixMXe53CprE2sCbVNpwHAADYVJYzy1peWFbeystKWbp3917V/p+YP2l5rFKpJNNr6vhPj3edFwUZAAAAALoy7h/vqLiBu+QCAAAAAAAAAAAAAAAAaMX4iXGNn3h4jdJKdkWpcErWFUsDAwN68cSLLY3jNJ0yfabMY6YteVGQAQAAAAAAAAAAAAAAAAAAAAAA+saoe1Qnkyc1H5rXp4lPFbgc6Ekegz05KwAAAAAAAAAAAAAAAAAAAAAAQBcmohMyxoyenZ+CDAAAAAAAAAAAAAAAAAAAAAAA0JeOzB7p2bkpyAAAAAAAAAAAAAAAAAAAAAAAAH1p/MR4z869db1P8PnnnyuXy+mFF15Y71MBAAAAAAAAAAAAAAAAAIA+dHHiYq9TAAAAz5Di3aKy57M69MNDXY2zLh0ybt68qe9///vasmWLnE6n/uiP/qhq/40bNzQ5Oam33357PU4PAAAAAAAAAAAAAAAAAAAAAABQV97K65NLn3Q9ju0dMq5evSqv1ytJMk1Tpmnqxo0bVceMjY3p8uXLunLlit566y398Ic/tDsNAAAAAAAAAAAAAAAAAAAAAADwlLtx9caTD3rM9ch1FQvFrs9ta0HGjRs35Pf7FQwGFQ6HNTY2Jkk6c+ZM3eOPHTumQqGgq1ev6ujRo3amAgAAAAAAAAAAAAAAAAAAAAAAnnKX/Zd17+69tmJKpZKGnENdn9vWgowzZ84oEoloenq6avvAwEDDmBMnTuj73/8+BRkAAAAAAAAAAAAAAAAAAAAAAKAtQ8MPCiv2Tu6Vw3DUPaZYKCpv5bWcXpbpNbXn4B5bzm1rQUY+n68pxmhFqVSyMw0AAAAAAAAAAAAAAAAAAAAAAPAMcJpOHTlzRO5T7paOv/7mdQ05h1o+vhlbCzJM0+woLp/P25kGAAAAAAAAAAAAAAAAgC7krbyuRa5Jkoq5ooqFokyfqcMzhxvGFAtFfXD2A0nSjpEdyi3l5PK5NO4ftzUGAAAAAB7lNJ1yms6Wjz98+rAW/25RN67e0NjRsa7ObXuHjE5YlmVnGgAAAAAAAAAAAAAAAAA6tJhY1K2FW5qITlRtj3liykQzen3p9ZqYYqGomCemQDygUfdoZft8aF63Fm7JF/HZEgMAAAAAjzt+7njbMeMnxpWaTXVdkDHYVfRjnE6n/v7v/76tmNnZWR07dszONAAAAAAAAAAAAAAAAAB0oFgo6pNLn9Qthpg4P6G8ldd8aL5mXzwQ14v+F6sKKyRpIjqhbCwrK1V7w9ZOYgAAAABgM7G1IGNmZkbT09MtF2W89dZbSiQSeuONN+xMAwAAAAAAAAAAAAAAAEAHltPLWkwsKhlO1uwrF07cSN2o2p638rJSlg6EDtQdc3xyXNcj17uOAQAAAAA7FaxC12Ns7T6Nh0zT1Llz53Ts2DEdOHBAU1NT2r9/vwqFgm7evKlCoaBcLqdsNqtoNCrLspTJZOxMAQAAAAAAAAAAAAAAAECHhoaH5DAc2jGyo+ExDsNR9TgdTUuSnKaz7vHDrmFlY1kVC8VKbCcxAAAAAGCX4t2iVvOrXY9ja0GGJHm9Xl2+fFnBYFAzMzOV7bFYrPLfpVJJpmkqnU7r61//ut0pAAAAAAAAAAAAAAAAAOjAqHtU4Xy47r6V7Iokacw7VrX9dvZ206KJctHFcnpZptfsOAYAAAAA6rlx9caTD/qfioWi8lZemWhGnpCn63PbXpAhSX6/X36/X3Nzc7p06ZI+/PDDyj7TNBUKhXT69On1ODUAAAAAAAAAAAAAAACAR6x9tabSWunh4/trHY2TCqfkNJ3yRXxV2/NWXkPDQw3jyoUXeSvfVQwAAAAA1HPZf1n37t5r+fhSqSTTa+rQDw91fe51Kcgom5mZqeqSAQAAAAAAAAAAAAAAAGBj5X6dU+4fc5XHd3W3rfi8lde1yDUZpqGTyZM1+1dzq5WOFvWUCy+KhWJXMQAAAADsVV7rS1IxV1SxUJTpM3V45nDDmGKhqA/OfiBJ2jGyQ7mlnFw+l8b947bGtKP8+WHv5N6mnfgkaWhkSKPuUZnH7OnEZ2tBxkcffSTLsvTyyy/bOSwAAAAAAAAAAAAAAACADg3/0XBV8UOumJN+/uS4xcSibi3cUsEqyDANuXyuuse1WjTx5Z0vu4oBAAAAYJ/yen8iOlG1PeaJKRPN6PWl12tiioWiYp6YAvGARt2jle3zoXndWrhV002v05h2OU2njpw5Ivcpd9djtWvQzsH8fr/C4XBHsW+99ZZGRka0ZcsWjYyM6N1337UzNQAAAAAAAAAAAAAAAOCZNLhlUFu2ban8Gdza2iVD4/5x+SI+BeIB+SI+XY9cVzwQp2sFAAAA0OeKhaI+ufRJ3WKIifMTylt5zYfma/bFA3G96H+xqrBCkiaiE8rGsrJSli0x7XKazqYd+NaTrQUZoVBI//iP/9h23OTkpMLhsAKBgC5fvqxTp07p1KlT+vu//3s70wMAAAAAAAAAAAAAAADQoUA8oMXEouKBeNV2h+FoqUhjx8iOrmIAAAAA2GM5vazFxKKS4WTNvnLhxI3UjarteSsvK2XpQOhA3THHJ8d1PXK965hOHD93XGNHx7oepxO2FmTkcrm2Yz788EMlEgkFg0GdO3dOJ06cUCQSUTKZVDAYtDM9AAAAAAAAAAAAAAAAAB1yGA6N+8dlpayqu9gODQ81jVvNrVbiu4kBAAAAYI+h4SE5DEfTAujH1+LpaFqSGnaiGHYNy0pZVYXXncT0G1sLMg4cOKCrV6/q6tWr+va3v62RkRFt2bJF3/nOdxp2u7h06ZIGBgYUiUSqtrvdbgWDQb3zzjt2pggAAAAAAAAAAAAAAACggWKhqLyVb7jfMA1J0lJyqbLNaTorBRSNxiwf100MAAAAAHuMukcVzod1eOZwzb6V7Iokacxb3XHidvZ204Lp8tp9Ob3cVYxdCjcL+vSdT5V9O6sbV2+ocLNg+zkkaaudg504cUIvvfSSrly5olKpVNn+/vvvK5lMKhwO69//+39fFZNKpeR2u/W1r32tZrzTp09rampKL7/8sp1pAgAAAAAAAAAAAAAAAKgj4nxwU9VwPlz3wqnyHXQfvYPtbvfuqo4ZjysXeJhes6sYAAAAAOsvFU7JaTrli/iqtuetfNNOd+XPD48WeHcS060bV2/ovdB7dccc9Yxq4vyEdv/JbtvOZ2uHjLt37yqdTuv06dPKZDJaW1vT2tqalpaW9NOf/lTnzp2r6ZRhWZYOHDjQcEynkyp3AAAAAAAAAAAAAAAAYCM4DIecprPhXWxzSzlJ0h7Pnsq2fVP7JD28k+7jlheWaworOokBAAAA0Nj9e/d17/N7lT+//+L3bcXnrbzmQ/MyTEOvL71es381t9q020W58OLR4u1OYrqRmErogu+Ccks5lUolGWOGjDFD23duV6lU0nJ6WTF3TFf+/Iot55Ns7pDxxhtv6MqVK9q/f3/V9rGxMQWDQU1OTioUCulb3/pWZV+hUJBhGA3HHBgYsDNFAAAAAAAAAAAAAAAAAA24g24dCDW+ueri5UU5DIf2Tu6tbBt1j8r0mvr40scadY/WxiQWdTJ5smpbJzEAAAAAGrt29pp+/hc/rzy+O3i3pbjFxKJuLdxSwSrIMA25fK66x7VaNPHlnS+7iulU6kxKS8klHXvjmMb943KO1TaGWPlwRR//7ce69sY1DY0M6dD/71DX57W1ICOfz9cUYzzKMAw6XgAAAAAAAAAAAAAAAACblC/i03xoXnsDe2s6VMQDcUnSq1derbnLbSAeUMwT076pfVUFFvOheR2aOVS320UnMQAAAADqOzJ7RN/4wTcqjz/77DP9+I9//MS4cf+4xv3jlccXfBeUiWY0cX6iaXeLzcS6YslKWfqzG38mx87GOY/uH9Xo/lEdCB3QhZcuaNw/LuNfGF2d29aCjFaKLeh4AQAAAAAAAAAAAAAAAGxeE9EJLSYWFQ/E5Rh2qJgrqlgoard794MLnOpclOUwHApmgkqGk3IYDu0Y2aHcUk4un6vq4q5uYwAAAADUt3X7Vm3d/rA8YNvz2zoaJxAPKOKMqFgoVnWtcxiOljpe7BjZ0VVMJ7Kx7IPC8SbFGI9ymk4FLgeUmknJf8nf1bltLcgolUr6h3/4B/3Jn/xJ3f2ff/657ty509aY7R4PAAAAPI1+97vfdRz7m9/8Rq+99poymYw8Ho/OnTunXbt2tT3Ol1923xoQAAAAAAAAAAD0h8fvktsKh+HQRHRi3WMAAAAArB+H4dC4f1yLiUVZKavSuW5oeKhp3GputRJf1klMJ0qlUsvFGGWj7lGVSqWuzivZXJARDAZ14MAB/dt/+2914sQJvfDCC5IeFGJcvnxZ4XBY8Xi8cvyHH34oSbIsq+5477zzjg4ePGhnigAAAEBfev75520ZJ5lMyuVy2TIWAAAAAAAAAAAAAAB49myGm0pK0nPPPddxHsCzrlgoajW3KqfprLvfMA1J0lJyqVKQ4TSdWk4vNx2zfFxZJzGd6DS+2/NKNhdkmKapN954Q6+99ppmZmZq9u/fv1/ZbFbDw8NaWFhQJBKR2+2WJP3TP/2T/sW/+BeVY+/evatwOKxMJmNnigAAAAAAAAAAAAAAAAAAAAA6tFluKmnHne2BZ1XEGZEkhfPhut0pdozskPSwYEKSdrt3y0rVb8QgSXkrL0mVAo5OYzoysMFxjxjsfohqwWBQ6XRaR48eValUUqlU0tjYmM6dO6d0Oq0TJ07ob//2b5XJZBQOh5VOpxUOh+V2u/Uf/+N/1M2bN3X16lUdOHBAJ06c0Ne+9jW7UwQAAAD6zhdffNHxH5/Ppy1btkiStmzZIp/P19E4n3zySY9nAQAAAAAAAAAAAAAAAEC3HIZDTtNZtxhDknJLOUnSHs+eyrZ9U/skSSvZlboxywvLNYUVncR0wmk6VbhZaCvm3uf3NDQ81PW5be2QUeZ2u5VMJuvuGxsb0xtvvFFzfDQa1eTkpAYGHpSZTE9P1xwHAAAAPKu6abN54cIF/emf/qkWFhZ08OBB/dVf/VVH4+3YsaPjHAAAAAAAAAAAAAAAwNPhiy++6Dj2e9/7nq5evaqvvvpKW7Zs0dGjR/Xuu+/amB2AVriDbh0IHWi4f/HyohyGQ3sn91a2jbpHZXpNfXzpY426R2tjEos6mTxZta2TmE54pj1KnUnpm3/+TW3/2vaWYpIzSfnmfF2fe10KMjrh9/u1tramK1euyDRNjY2N9TolAAAA4Kmwa9cu/exnP+t1GgAAAAAAAAAAAAAA4CmwGW4qCaA7vohP86F57Q3srelQEQ/EJUmvXnm1poNGIB5QzBPTvql9VQUW86F5HZo5VLfbRScxj2q188Xeqb2KB+LyvOaRc8zZ8Li8ldcnlz6RN+JtuXijmZ4UZLz22muVThg+n08vv/xyZd+xY8d6kRIAAAAAAAAAAAAAAAAAAACAdcRNJYHNYyI6ocXEouKBuBzDDhVzRRULRe1279af3fizmmIMSXIYDgUzQSXDSTkMh3aM7FBuKSeXz6Vx/3jd83QS86ioO6p7d++19HcqlUqyUtYTj3MYDqWjaX1ztvWOGo30pCDj3Llzlf++cuWK3n77bZ06daoXqQAAAAAAAAAAAAAAAAAAAAAA8MwZ94+3VBTxKIfh0ER0Yt1jyoaGh1QsFDXuH9fQ8FBHY9RTzBf1yeVP5D7l7mqcnhRkPOrYsWM6ePAgBRkAAAAAAAAAAAAAAAAAAAAAAKDCaTp15MyRrgsn1su6FWR89NFHsqzG7T5yuZwKhYIuXbqk4eHhjs9TKBR09uxZSdLIyIiWlpbk8/nk9/u7GjMcDlfylCSfz6dgMNhWzMGDBzUzM7NheQMAAAAAAAAAAAAAAAAAAAAAeu93v/tdx7G/+c1v9NprrymTycjj8ejcuXPatWtXW2N8+eWXHZ9/M3GaTjlNZ6/TaMj2goybN2/K5/M1LcZ41NjYmOLxeEfnKhQK8ng8isfjcrsfVryEQiEtLCwoEom0PWY2m1UgEFA0GpXX661s9/l8WlpaqjtmNptVNBpVJBKRYRiV7YlEQh6PR5lMZt3zBgAAAAAAAAAAAAAAAAAAAABsDs8//7wt4ySTSblcLlvG6kfHzx3vdQpN2V6Q4fV6lcvldOLECR08eFCGYSgej8vn81WKFQqFgpLJpAzD0OXLlzs+VyAQkN/vrypqkKRoNCqn0ymfz1dVVNHOmI/HRaNRuVyuumOGw2Elk8masfx+v3K5nEKhkKLR6LrmDQAAAAAAAAAAAAAAAAAAAAAANo6tBRnnz5+XaZrKZDLauXNn1b6pqSl97Wtfqzw+ffq0bty4odnZWZ09e7btc1mWpVQqVVXo8KjJyUlFIpG2Chvm5uZkWZZmZ2dr9pmmKa/XWzNmNpuVaZoNxyznsZ55AwAAAAAAAAAAAAAAAAAAAAA2jy+++KLj2O9973u6evWqvvrqK23ZskVHjx7Vu+++29YY//RP/6S9e/d2nMOz4NN3PtWLL7/Y1RiDNuUiSUokEkokEjXFGKZpKp1O1xw/NjamYDCot99+u+1zlQsaGhVDuFwupVIpFQqFlscsd7kod/J4nNvtViqVqtpWLrBoJJfLVY23HnkDAAAAAAAAAAAAAAAAAAAAADaP5557ruM/Fy5ckM/n08jIiHw+ny5cuND2GDt27Oj1FGx689PzXY9ha4eMsbGxqi4YZcPDw7p8+bKOHj1aN2Zpaantc2Wz2YaFE9LDgod0Ot1yt4l0Ot10TJfLVTm32+2W9KBIw7IsBQIBxePxmphoNKqpqal1zRsAAAAAAAAAAAAAAAAAAAAA8HTYtWuXfvazn/U6jU3l9ke3tfvruxvua8dqblV5K69iodh1XrYWZDidzrrb9+/fr2AwqLNnz9p2LsuyNDw83HB/uejBsqyWxxweHlYul3vicel0ulKQYZqmgsGgYrGYXC6XotFopZCi3OkiEonYnvfq/VV9cf9hG5ttg9u0bcu2J+aOWqWBkkoqqTRQ0prWep1O3ysNlLS2tqb79+/3OpWnwv3795lPmzGn9mI+7cV82o85tdfaGmulXmDt/wD/Hz/Eexsa4bWBRnhtoBFeG6iHdX9vfPnVl9p+f3vl8bO67u9H/MbQ33j++h/PYX/j+et/PIf9rTRQ6nUKzyS+87cH7z/2Y07tZdd88r3dA3yPaT/m1F7Mp72YT3s9Td/5p86k9Is3f6FRz6imfzlds/+vj/617t2914PMbC7IKJUaf1jzeDx699139b3vfa9mXztFE2W5XK7STaKectFDoVBoeUy3261EItFwf7mTx+NjRqNRuVwuhcNh+Xw+BYNBuVwuud1uRaPRdck7/F/DVY+/4/6Ovnvgu01jUF9JJa3+wapyymlAA71Op++VVNL9zx78Qzg4ONjjbPrf2tqaPvvsM0nMp12YU3sxn/ZiPu3HnNrrzp07DfctJhY17h/fwGyeHaz9H7h27VqvU9g0eG9DI7w20AivDTTCawP1NFv3Y/2w7u9f/MbQ33j++h/PYX/j+et/PIf97Z9X/7nXKTyTWPvbg/cf+zGn9rJrPvl97AG+x7Qfc2ov5tNezKe9nqbv/PNWXqVSScV8/Y4WQ8NDkiRP0PPg8chQ0/FW76wqv5TXp+982nVuthZk+Hw+vfPOO3r55Zf19ttvK5lM6vz58/ra174mv9+vb3/720qlUvrWt75Vibly5UpHBRmtFlq080IKhUJKJBLKZrOVDhiPSqVSDcecmZmRYRgKhUKKxWIyDEPxeHzd8o78q4icjocdSbYNbtO2FSrmO1EaKCmnnIZvD2ugxAeKbpUGStrzv+zRoUOHtHWrrW8xz6RylSfzaR/m1F7Mp72YT/sxp/Yqf+B9XLFQVDwQ1/Hoce2d3CuH4djgzJ5urP0fOHLkSK9T2DR4b0MjvDbQCK8NNMJrA/U0Wvc/bj40r72BvTK9jW9AlIlltBhflCfkkek15TAcylt5rWRX9MmlT3Rk9ohG3aM1ccVCUR+c/UCStGNkh3JLObl8rqZF4J3EbCas+/sXvzH0N56//sdz2N94/vofz2GfW+11As8m1v724P3HfsypveyaT34fe4DvMe3HnNqL+bQX82mvVr/z7wcT5ydk+syGv0s4TaeOnDki96naGoBm5kbmus7N1lfqsWPH9Oabb+rNN99UOBzWwMCAfD6fTp06Ja/Xq6NHj8rr9crn82n//v2yLEuJRKKmi0SveL1eeb1enT17tqaYIpVKyev1KpvNamRkpCY2HA7L5XKpVCopHA5rbm6u0i1jPf5+Q1uH9PzW56s30k2yI2ta04AGNFAa0GCJarpurWlNg4OD2rp1K/8Y2oT5tB9zai/m017Mp/2YU/s0uvNA3spLkt4Lvaf3Qu81HSMQD1QuiNrIi7P6GWv/B/h/uBrvbWiE1wYa4bWBRnht4HHN7jiWt/KyUpYy0YxWsivaG9jbdKxioSgrZclKVd+UyWE4FIgHGq73Y55Yzf750LxuLdySL+KzJWaz2bFlB+v+PsVvDP2N56//8Rz2N56//sdz2N+44Lo3+M7fHrz/2I85tZdd88l3dg/xPab9mFN7MZ/2Yj7t8zR1GXHsdMgz7Wm43/SZ2nNgT9vjGmNGF1k9YPsr9fTp0/rwww91+vRp3b17V5OTk5V9iURCR48e1fvvv69kMqlSqSS3261Tp061fR7DMFrqNlGveKKZZDKpUCikcDis2dlZSQ87Y7hcrsq5H+Xz+RQOh+X1eiVJkUhEU1NTCgQCisViyuVylQKP9cobAAAA6JW8lZfTdGrUPSrHcP3uGMVcUXkrX1U0sVEXZwEAAADoXiaWkZW0ZPpMeSNeXfBdaCnuePS4cks5FayCHMMO7fHsqbQLryceiOtF/4s1nwcmohOKOCNy+Vw1d7/qJAYAAAAAAAAAADw9Dp8+3FFcMB3s+tzrUjq0f/9+7d+/v2b7zp07lclklEgklEql5HK5FAx29pcYHh5uuj+Xy0mqLZ5oRTQaVaFQqBRieL1eGYahubkHLUkOHDhQOXZubk5ut7tSjFHmdru1tLSkUCikWCxW6bCxnnkDAAAAvXBr4ZZOJk/KaTobHpMMJ+WNeGu2b8TFWQAAAAC65wl6Kmv1lexKy3F7J/fKYdQv3H5cuQPH8ejxuvvHJ8d1PXK9as3fSQwAAAAAAAAAYH387ne/6zj2N7/5jUKhkP77f//v+pf/8l8qGo1q165dHY313HPPdZwH+ten73yqUfeojBeMDT1vT3q5+P1++f3+rsYwTVPpdLrh/nIXCtPs7EcWwzBqclxYWJD0oNiiLBqNKpPJNBwnGo0qnU4rmUzK6/Wue94AAABALzQrxljJrmjYNVz3mPW+OAsAAABA/0hHH3x33ujzxbBrWNlYVsVCsfI5opMYAAAAAAAAAMD6eP75520Zp3zj/06VSiVb8kD/eO+195Q9n5XD6dDMb2c29NyDdg/4zjvv6ObNm3YPW8PtdleKF+qxLEuSajpXdCObzdZ09LAs64ndLEKhUCXXXuQNAAAArKcDoQNN96ej6aZdL1rVyoVWVspSsVDs+lwAAAAANt7t7O2mRRPlzwLL6eWuYgAAAAAAAAAAwNNlNbeqsWNjcp9yP/lgm9lakPHaa68pEAjowIHmF2TZYWpqStKDIol6FhYW2i5qyGazcjqdSqVSdfdZlqVwOFy13TTNShFFI0tLS/J4POuWNwAAANBLzbpjJMNJ+SI+W87DhVYAAABA/1rJrigTy2glu9LwmLyV19DwUMP95c8DeSvfVQwAAAAAAAAAYH188cUXHf/x+XzasmWLJGnLli3y+Xwdj4Vnj9N06uT7J+V9Y+Ovw99q52C5XE7Hjh2T273+lSVut1ter1eXLl2qe75EIqFkMlmzvVAo6OzZs/L5fDWFD80KK6anpxWJRGSaZtV2v9+vcDiseDxeN65QKCibzWp2drarvAEAAIB+s5Jd0bBruGkRxaPHLqeXtefAHo26R+sew4VWAAAAgP3u37uvr+59VXn8+y9+b+v4VspS3srL9JryBD1aya7ogu+CDocPy/RWf9++mlttWvBd/jzwaFe8TmIAAAAAAAAAdOfixMVepyBJemX+lV6ngMc899xzHcdeuHBB/+bf/Bv9t//23/SNb3xDf/3Xf93VeHi2DI0MqXCzIOMFo624uZE5zdyZ6erctnbIME1T77//vt544w07h20oHo8rkUjUdJsIhUKamZmp22kiFotpbm5OgUCgZp/X6638KSsUCgoEAvJ6vZqZqZ3sSCRSOWehUKjal81mFQgEFIlEZBhGV3kDAAAAG+3+vfu69/m9yp92L8y6dvaaPEFP02OslKXrc9clqXLsBd8FWanaYunV3GrT4g4utAIAAADad+3sNb2x843Kn5/+yU9tG7tcKHF45nCl8HrUPapAPKALvgs13TJaXct/eefLrmIAAAAAAAAAAJvPrl279N577+k//+f/rPfee0+7du3qdUroI4dPH1ZyJqkbV2+0FVcqlbo+t60dMkZGRnTz5k298MILbcfduXOn7fMZhqFMJqNwOCzDMDQyMqKlpSX5fD75/f66MV6vV4ZhaHJysu54kUikUqxRLrAIh8NNiyTi8bhSqZSmp6ertpumWbfbRSd5AwAAABvt2tlr+vlf/Lzy+O7g3ZZjFxOLMkyj6TGPXpxVVr44K+KMKJgJVnXL4EIrAAAAwH5HZo/oGz/4RuXxZ599ph//8Y9tGXvcP153u8NwaNw/rnggrteXXrflXAAAAAAAAAAA4NkWuBzQL976hTLRjPYc3KNR96iGhoca3gB2Kbmke3fvdX1eWwsyTp8+rcnJSb322ms6evRoy3HdVJYYhqFoNNry8W63W/l8vuF+0zQVj8fbzuPxzhpP0m7eAAAAwEbr5sKsa2evaeL8RNNjuDgLAAAA6L2t27dq6/aHPxVse37bhpx3z8E9WkwsKm/lK8XaDsPRUiH2jpEdlf/uJAYAAAAAAAAAADxd/mLwLzQwMCDpQW3CYmJxw85ta0GGJF2+fFlvvfWWotGoDh48KLfbreHhYRmGUff4ZDKpu3dbv9MuAAAAgI3R6YVZeSuvlexKVXeLdtl1cRYAAACAzal8N6qV7EplzT80PNQ0ZjW3WhXbaQwAAAAAAAAAAHi6OE2n8lZe4/7xJ/52ULa8sKzbH93u+ty2FmQMDg5WVZYkEgk7hwcAAADQB9LRdOWCqk7ZdXEWAAAAgN6YD83rRupGW13vnKZTy+nlhvvLBdqPft7oJAYAAAAAAAAAADxdnKZTR84ckfuUu624uZG5rs9ta0GGaZqyLEt+v1/Dw8MtxSwsLOijjz6yMw0AAAAAPXQjdeOJFztt1MVZAAAAAHpjJb1SKZqup7x+f7Sz3m73blkpq2FM3spLkkyv2VUMAAAAAAAAAAB4ujhNZ0fXDDmc3d/41faCjDNnzujUqVNtxY2MjNiZBgAAAIAeWsmuaNw/3vyYDbo4CwAAAEBvjHnHFIwEG+5fXliWw3BU/Tiyb2qffjH3C61kV6o+Czwa8/h6v5MYAAAAAAAAAADwdDl+7nhHca//uvWbyTZie0GGabb/w4bTyR1sgafJry7+Srd+dEuDpcGe5vHK/Cs9PT8AAM+ileyKJMkx3Lx6fKMuzgIAAADQG/um9ikTy8gT9NTsy1t5LSYWFYgHqraPukdlek19fOnjumv+xcSiTiZPdh0DAAAAAAAAAABgF1uvlj537pyOHj3adtyvf/1rO9MAAAAA0CPNul48qnxxVj3li7Mmzk9UbX/0Qqt6FhOLOhw+3F7CAAAAANpW7k5X7mxXz6h7VMVCUdfnrtfExjwxHZo5VLezXiAe0KeJTyvF3mXzoXkdmjlUtwi7kxgAAAAAAAAAAPDssK5YSp1JKTWbUvbtrG5/dNu2sW3tkFHP559/rlwupxdeeGG9TwUAAACgx8oXZjmM5h0yRt2jslKWrs9d1+GZh0UUrVycFfPEtG9qX9Xdb7nQCgAAAFhfi4lFZaIPiqqX08uSpPnp+cq28cB4TTeMwzOHZaUszYfmVcwVVSwU5TAcevXKq3W7WUgPPksEM0Elw0k5DId2jOxQbiknl89V9zNCpzEAAAAAAAAAAODpMTcyp5k7Mw33m8dMmcdMFe8WtZpblZWylI6m5Yv4tP1r27s697oUZNy8eVORSESxWEySNDAwoPv371f237hxQ+FwWC+99JJOnTq1HikAAAAA6IE9B/bIYTj0hwf/8InHbtTFWQAAAAC6N+4f72jNbXrNtgunHYZDE9GJJx/YZQwAAAAAAAAAAHg6lEqllo5z7HTIsdMhz7RHxbtFJcNJHf/p8a7ObXtBxtWrV+X1eiVJpmnKNE3duHGj6pixsTFdvnxZV65c0VtvvaUf/vCHdqcBAAAAoAdG3aMK58MtH79RF2cBAAAAAAAAAAAAAAAAeDoNDAy0HePY6bDl3IO2jPI/3bhxQ36/X8FgUEtLS/r1r3+t999/XydOnKh7/LFjxzQ2NqarV6/amQYAAAAAAAAAAAAAAAAAAAAAAEBdxbtFraRXuh7H1g4ZZ86cUSQS0fT0dNX2ZhUnJ06c0Pe//30dPXrUzlQAAAAAAAAAAAAAAAAAAAAAAMBToHCzUHd7qVR6sP+fClKp+RjFQlGruVWtZFd07ew1jU+Od52XrQUZ+Xy+phijFeVJAAAAAAAAAAAAAAAAAAAAAAAAeNRyZlnLC8vKW3lZKUv37t6r2v8T8yctj1UqlWR6TR3/6fGu87K1IMM0zY7i8vm8nWkAAAAAAAAAAAAAAAAAAAAAAICnxPiJcY2feNjRYiW7olQ4JeuKpYGBAb144sWWxnGaTpk+U+axzmofHmd7h4xOWJZlZxoAAAAAAAAAAAAAAAAAAAB96+LExV6noFfmX+l1CgAANDTqHtXJ5EnNh+b1aeJTBS4HepLHoJ2DOZ1O/f3f/31bMbOzszp27JidaQAAAAAAAAAAAAAAAAAAAAAAgKfcRHRCxpjRs/Pb2iFjZmZGL730ks6fP69vfetbTzz+rbfeUiKR0D/+4z/amQYAAAAAAAAAAAAAAAAAAAAAAHgGHJk90rNz21qQYZqmzp07p2PHjunAgQOamprS/v37VSgUdPPmTRUKBeVyOWWzWUWjUVmWpUwmY2cKAAAAAAAAAAAAAAAAAAAAAADgGTF+YvyJx9y4ekN5Ky+n6dSeA3u0/WvbbTm3rQUZkuT1enX58mUFg0HNzMxUtsdiscp/l0olmaapdDqtr3/963anAAAAAAAAAAAAAAAAAAAAAAB4Bv3ud7/rOPY3v/mNXnvtNWUyGXk8Hp07d067du3qaKznnnuu4zzQntSZlIp3i1Xbjv/0uCSpeLeoC94LWsmuqFQqyWk6VcwXFUgENPatsa7PbXtBhiT5/X75/X7Nzc3p0qVL+vDDDyv7TNNUKBTS6dOn1+PUAAAAAAAAAAAAAAAAAAAAAIBn1PPPP2/LOMlkUi6Xq+P4UqlkSx54Mk/Io5+4fiJPyCNP0KPR/aOVffFAXMuZZR2eOSzvG15JUrFQVHwyLueYU8YLRlfntrUg4+rVqzp69Gjl8czMTFWXDAAAAAAAAAAAAAAAAAAAAKBVv7r4K9360S0NlgZ7mscr86/09PwAgMZuf3hbgXhA4yfGq7Yv/t2irJSlvYG9lWIMSXIYDgUuB5SaTVU6aXTK1oIMn8+nQqGgP/iDP7BzWAAAAAAAAAAAAAAAAAAAAAAAnuiLL77oOPZ73/uerl69qq+++kpbtmzR0aNH9e6779qYHdbDrYVb8p711mz/5NInGhgY0JHZIzX7HIZDjp2Ors9ta0HGzp07FQ6H9R/+w3+wc1gAAAAAAAAAAAAAAAAAAAAAAJ7oueee6zj2woUL+tM//VMtLCzo4MGD+qu/+quuxsMGKdXfbKUsSdLur++uf8BA96e2tX9ToVBQNBrVwYMHdfXqVTuHBgAAAAAAAAAAAAAAAAAAAABg3ezatUs/+9nP9Nvf/lY/+9nPtGvXrl6nhBYMjQzVbMvfyKtYKGrUPdowrlgodn1uWwsyJCkajSqVSmlpaUkvvfSS3nrrLX3++ed2nwYAAAAAAAAAAAAAAAAAAAAAADzjBgZqW10sJhYlSWPescaBDTprtMPWgoxoNKpTp05p586dmp6e1vvvv69jx45pZmZGU1NTdM0AAAAAAAAAAAAAAAAAAAAAAAC2+fK3X+re5/eqtmWiGQ0MDGjf1L66ManZlDwhT9fntrUgY3p6umbb/v37de7cOV26dElLS0uanJykawYAAAAAAAAAAAAAAAAAAAAAAOjakdkjigfiuv0Pt3X7o9tKTCWUt/Ia949r99d3Vx17+6Pb+ptv/412jOzQ6P7Rrs+9tesR2jA9Pa3p6Wl9+OGHmpmZ0cDAgF577TX9yZ/8yUamAQAAAAAAAAAAAAAAAAAAAAAAngKOnQ4dO3tMl09cVt7KS5L2BvbKf8lfOea9196TlbIq+62UpS/vfCnvWW9X597Qgowyl8sll8uls2fPKhaLye12a2FhoRepAAAAAAAAAAAAAAAAAAAAAACAPjbqHtXrv35dxbtFOXY6avYfDh/W4fDhqm1Dw0Ndn3dDCzKuXr2qaDSqRCIhSSqVSgoGgwqFQhuZBgAAAAAAAAAAAAAAAAAAAAAAeMrUK8aQJOeYc13ON2jnYFevXq3Z9vnnn+utt97SyMiIfD6f4vG49u/fr3PnzmltbU3nzp3T/v377UwDAAAAAAAAAAAAAAAAAAAAAACgoU/f+bTrMWztkOHz+fTVV19Jqu6GUSqVJKnSDYMCDAAAAAAAAAAAAAAAAAAAAAAA0Cvz0/N68eUXuxrD1oKMnTt36uDBg7IsS4VCQaVSSW63W6FQSNPT03aeCgAAAAAAAAAAAAAAAMA6WMmuKB1Nq5graiW7IofhkCfkkSfoaRhTLBT1wdkPJEk7RnYot5STy+fSuH/c1hgAwMa5OHGx1ylobWBNGu11FgCAzeD2R7e1++u7G+5rx2puVXkrr2Kh2HVethZkSFImk5FENwwAAAAAgH02w5e9kvTK/Cu9TgEAAAAAAAAA1lUm9uDan4noRGWblbIUD8R1PXJdwUxQDsNRFVMsFBXzxBSIBzTqfnjV7HxoXrcWbskX8dWcp5MYAAAAAM+m1JmUfvHmLzTqGdX0L2sbRfz10b/Wvbv3epDZOhRkhEIh/fSnP7V7WAAAAAAAAAAAAAAAAADrqHyH2MMzh6u2m15Tr155VTFPTPFAXCeTJ6v2xwNxveh/saqwQnpQ1BFxRuTyuWR6za5jAAAAADyb8lZepVJJxXz9jhZDw0OSVOnqNzQy1HS81Turyi/l9ek7n3adm60FGYVCgWIMAAAAAAAAAAAAAAAAoA+lo2l9c/abdfeNukdlek1ZKUt5Ky+n6ZT04MIoK2XpePR43bjxyXFdj1yvKq7oJAYAAADAs2vi/IRMn9nwM4LTdOrImSNyn3K3Ne7cyFzXuQ12PcIjgsGgncMBAAAAAAAAAAAAAAAA2CA3Ujf0l2N/qWKh/l1nd7t3S5JWsiuVbeloWpIqBRqPG3YNy0pZVWN2EgMAAADg2eXY6ZBn2iPnWP3PEKbP1J4De9oe1xgzuszM5g4Z586ds3M4AAAAAAAAAAAAAAAAABtkaHhIK9kV5a28Rt2jLcXczt6Ww3A03F8uulhOL1fuZttJDAAAAAB7rWRXlI6mVcwVtZJdkcNwyBPyyBP0NIwpFor64OwHkqQdIzuUW8rJ5XNp3D9ua0y7Dp8+3FFcMN19QwpbCzI6NTIyojt37vQ6DQAAAAAAAAAAAAAAAOCZdTJ5Unkr37BzRcEqSFJVsUbeymtoeKjhmOXCi7yV7yoGAAAAgH0ysYwkaSI6UdlmpSzFA3Fdj1xXMBOsKaIuFoqKeWIKxANVnwnmQ/O6tXBLvoiv5jydxPSbTVGQUSqVep0CAAAAAAAAAAAAAAAA8FRa+2pNpbWH1+es3V9reGyjYgxJWkwsatQ9WnXMam61aUy58KJYKHYVAwAAAMAeeSuvYqGowzPVXSVMr6lXr7yqmCemeCCuk8mTVfvjgbhe9L9Y001vIjqhiDMil89V0+Guk5h2FW4WZKUs5ZZylSJyx7BDw65hjbpHNXZ0rKvxn6TnBRlnzpzR3bt3e50GAAAAAAAAAAAAAAAA8FTK/Tqn3D/mKo/vqv1rda7PXZckTZyfqNreatHEl3e+7CoGAAAAgD3S0bS+OfvNuvtG3aMyvaaslFXVPS9v5WWlLB2PHq8bNz45ruuR61XFFZ3EtOre5/eUiWV07ey1lj5feEIeHZ45LOMFo+1zPcmg7SO24OrVq5qamtKWLVv05ptv9iIFAAAAAAAAAAAAAAAA4Jkw/EfDcn3bVfnzwv/3hbbiV7IrSoVTCsQDNXe2BQAAANBfbqRu6C/H/rJhIcNu925JDz4HlKWjaUmNO+oNu4ZlpayqMTuJaUX27awizohS4ZRW86sqlUqVP9t3bpcxZmj7zu1V29Pn0vqJ6ye68udX2jpXKzasQ8ZHH32kS5cuKRaLqVAoSJJKpQetEAcGBjYqDQAAAAAAAAAAAAAAAOCZMrhlUNryyOP77d3DNR6I63j0uMb94zX7HIajpQuodozs6CoGAAAAgD2Ghoe0kl1R3sq3XHB9O3tbDsPRcH+56GI5vVzpeNFJzJMkphJaTCyqVCrJ9JoyfaZMr6nR/fX/HsW7RVkpS0vvLyl7PqvrkeuyUpamfznd0vlasa4FGTdv3lQikVA0GpVlWZIeFmF4vV6FQiGVSiVNTU2tZxoAAAAAAAAAAAAAAAAAOhAPxOUJeeQJeuruHxoeahq/mluVpKoLsTqJAQAAAGCPk8mTylv5hp0rClZBkqqKNfJWvuk6vrx2z1v5rmKa+Ztv/42Wkksa94/LG/HKOVY//6pz7HRo/MS4xk+MayI6oWQ4qV+8+Qud//+ct60ow/aCjM8//1yXL19WNBpVNpuV9LAIwzRNhUIhBYNB7dy5sxLz6H8DAAAAAAAAAAAAAAAA6L1kOKk9B/fo8Mzhhsc4TaeW08sN95c7YTx6sVcnMQAAAACau3/vvr6691Xl8e+/+H3DY5uttRcTixp1j1Yds5pbbRpTLrx4tBNeJzGNXH/zupaSS5qITch9yv3E4xvxRXxy+Vy68NIFXfnzKzr27491PFaZbQUZ77zzji5duqREIiHpYRGGYRi6e/eulpaW9MILL9SNjcfjdqUBAAAAAAAAAAAAAAAAoEuZWEbDruG6nTGKhWLlbra73btlpayG45Tvdmt6zcq2TmIAAAAANHft7DX9/C9+Xnl8d/Bu22Ncn7suSZo4P1G1vZWiCUn68s6XXcXUU7xbVCqckm/O11UxRpnpNRW4HFBiKiFP0CPjBaOr8Qa7Cb569aq+//3va8uWLQoEAorH4yqVStq5c6eCwaAymYxyuZx27tzZsBhDko4d676yBAAAAAAAAAAAAAAAAED3FhOLklS3GCNv5auKKfZN7ZMkrWRX6o61vLBcU1jRSQwAAACA5o7MHtGZu2cqf77/D99vK34lu6JUOKVAPKBR9+g6Zdm+TCyjUfeoDv3wkG1jjvvHtXv/7spnn260XZBx8+ZNzc7OamRkRD6fT7FYTKVSSaVSSX6/X8lkUrlcTufOndP+/fslSQMDA10nCgAAAAAAAAAAAAAAAGB9rWRXtJpbrVuMIUlWyqq6OGvUPSrTa+rjSx/XPX4xsajD4cNV2zqJAQAAANDc1u1btf1r2yt/tj2/ra34eCCu49HjGveP1+xzGI6WOl7sGNnRVUw9n1z6RN/8828+cZx2HTlzRJ9c+qTrcba2euD58+c1Nzcny3pQ4V4qlSRJXq9XgUBA09PTXScDAAAAAAAAAAAAAAAAoDfyVl7xQFxj3jEth5Zr9hdzRVkpS+F8uGp7IB5QzBPTvql9VcUa86F5HZo5VLfbRScxAAAAANZHPBCXJ+RpWJg9NDzUNH41tyrpQRFGNzH1FG4U1uXzgekz9V7ova7HabkgI5lMamlpSZLkcrkUCoU0PT2tnTt3dp0EAAAAAAAAAAAAAAAAgN664LugvJVXPpZveIzTdNZscxgOBTNBJcNJOQyHdozsUG4pJ5fPVffuup3GAAAAALBfMpzUnoN7dHimcZc6p+nUcrq2aLus3Anj0c8LncQ0Om7717Y3PaYTjp2tdfB4kpYLMi5fvixJisViSiQSWlhYkNvt1tGjR7tOAgAAAAAAAAAAAAAAAEBvvb70esexDsOhiejEuscAAAAAsE8mltGwa7huZ4xioVjpXrHbvVtWymo4Tt56UNT9aCeLTmLq2b7T/mIMO8cebDcgGAzq/fffVywWUyaT0UsvvaTvf//7+uijj7pOBgAAAAAAAAAAAAAAAAAAAAAArK/FxKIk1S3GyFv5qmKKfVP7JEkr2ZW6Yy0vLNcUVnQSU8/AwMATj+mUHWO3XZBRtnPnTp0+fVrvv/++ZmZm9Ld/+7c6ePCgZmdndfPmza4TAwAAAAAAAAAAAAAAAAAAAAAA9lrJrmg1t1q3GEOSrJSlUfdo5fGoe1Sm19THlz6ue/xiYlGHw4ertnUS04+22jHI2NiY3njjDUnShx9+qDfeeEM3btyQz+fT9PS0HafY1BKJhPx+f6/TAAAAAAAAAAAAAAAAAAAAAACgobyVVzwQ15h3TMuh5Zr9xVxRVspSOB+u2h6IBxTzxLRval9VscZ8aF6HZg7V7XbRSUy/saUg41H79+/XuXPnJEl/93d/p+npaZVKJb399ts6depU3Zi33npLP/zhD+1OZUMUCgUFAgFFo1FNTk7KMIxepwTgf7o4cbHXKUiSXpl/pdcpAAAAAAAAAAAAAAAAAAAAALrgu6C8lVc+lm94jNN01mxzGA4FM0Elw0k5DId2jOxQbiknl8+lcf943XE6iXlcsVBs7S/WATvGtr0g41EnTpzQiRMndPfuXV2+fFkvvfSSnE6nQqGQjh49Kkm6ceOGwuFwxwUZhUJBZ8+elSSNjIxoaWlJPp+vq44VhUJB4fCDip5cLidJ8vl8CgaDNcdaliVJCoVCCoVCTceNx+Py+/2KxWKKx+MKhULyer0yDEOWZSmbzerSpUuanZ2V2+3uOH8AAAAAAAAAAAAAAAAAAAAAAB73+tLrHcc6DIcmohPrHvOoUqmk//t//b/rFol0I281Lkhpx7oWZJTt3LlT09PTmp6e1t27dxWLxfTGG29oYGBAqVSq43ELhYI8Ho/i8XhVAUMoFNLCwoIikUjbY2az2UrHC6/XW9nu8/m0tLRUM6ZlWTJNU263W8PDw3XHzOVysiyrUiRSKBSUSqVq/u6GYdT8XQAAAAAAAAAA2GzmQ/PaG9j7xFbixUJRH5z9QJJavuvVRsUAAAAAAAAAAID+kFvKKbeUs33cgYGBrsfYkIKMR+3cuVOnT5/W6dOnlUql9Mtf/lKff/55R2MFAgH5/f6aAoZoNCqn0ymfz1dVVNHOmI/HRaNRuVyumjEXFhaUTCZlmo1/dAqHwzWFHNFoVEtLS7IsS8PDw/J4PHU7cAAAAAD9IBPLaDG+KE/II9NrymE4lLfyWsmu6JNLn+jI7BGNukdr4rjQCgAAAOgfeSsvK2UpE81oJbuivYG9TY8vFoqKeWIKxANVnwfmQ/O6tXBLvoivZzEAAAAAAAAAAKB/mF5Tpq/5TaLatfzLZX36zqddj7PhBRmP8nq9isfj+va3v912rGVZSqVSikajdfdPTk4qEom0VZAxNzcny7I0Oztbs880TXm93rpjNivGyGazcrlcNcdMTk7KMIyWcwMAAAA2s2KhKCtlyUpZVdsdhqPmoqhHY7jQCgAAAOgPmVhGVtKS6TPljXh1wXfhiTHxQFwv+l+s+TwwEZ1QxBmRy+eq6bCxUTEAAAAAAAAAAKA/DAwM6OT7J9dl7P9ry//V9RiDNuTRFa/Xq507d7YdVy7EaFQM4XK5lEqlVCgUWh4zmUxKUsNCCbfbrVQqVbUtFAo9MU86XwAAAOBZcDx6XIdmDmncPy530K3j0eMK58MNL3xqdtFUNpatKe7oNAYAAABA9zxBjwLxgDxBj4aGh554fLmbxoHQgbr7xyfHdT1yvScxAAAAAAAAAACgf2zfuX1Tj93zggxJunLlStsx2Wy2aYeJcqFGOp1uecx0Ot10TJfLVTn34+epJxwOKxKJtHx+AAAAoJ/tndwrX8SnQDygieiEPEFPw2O50AoAAAB4uqWjD76bd5rOuvuHXcOyUpaKheKGxwAAAAAAAAAAgP7x6pVXN/XYm6IgY//+/W3HWJal4eHhhvvLhRWW1fodcpuN96hWijyy2axcLlfTAo/ycbFYrKrIAwAAAHjacaEVAAAA8HS7nb0th+FouL+8rl9OL294DAAAAAAAAAAA6B+j+0c39dhbbcijJ3K5XNPuFOXiikKh0PKYbrdbiUSi4f6lpaWWxzx79qzi8XjD/alUSpZlyev1KhgMKpvNyufzKRwOy+v1PnH81fur+uL+F5XH2wa3aduWbU+MQ63SQEkllVQaKGlNa71Op+8xn7Xu37/fVeza2lpXY6Aac2ov5tNezKf9mFN7ra3Z9297OxdNmV6z45inAWv/zWUzvJ/w3oZGeG2gEV4baITXBuqxa92ft/IaGh5quL+8ts9b+Q2P2Yy+/OpLbb//sC066/7+wXfi/Y3nr//xHPY3nr/+x3PY30oDpV6n8EziO3978P5jP+bUXsynvTbTfD4t36Xa8d3w2sDmeG1vhueE79rtxXzay85rfdBY3xZktFpocefOnZbHDIVCSiQSymazcrvdNftTqVRLYyYSiabFIuV9MzMzlW1ut1vxeFxOp1OZTKbu+R8V/q/hqsffcX9H3z3w3aYxqK+kklb/YFU55TSggV6n0/eYz1rXrl3rOHZtbU2fffaZJGlwcFM0Nep7zKm9mE97MZ/2Y07t1eraeiW7ouX0svYc2KNRd/0q8mf5Qqt2sfbfXLpZ29mF9zY0wmsDjfDaQCO8NiBJa/fXtPbVwx9kcndytoy7mltt2N1OUmVt/2iHu42K2YxY9/cvvhPvbzx//Y/nsL/x/PU/nsP+9s+r/9zrFJ5JrP3twfuP/ZhTezGf9tpM87kZfiu0gx3fDedG7fkesVub4Tnhu3Z7MZ/2auc6enSubwsy1oPX65XX663b3SKVSsnr9SqbzWpkZKTpOGfPntX58+cb7vf7/XW3G4Yhv9+vQCBQ6cbRSORfReR0PPyRadvgNm1boWK+E6WBknLKafj2sAZKLIC7xXzWOnLkSMex5SrPQ4cOaetW3rLtwJzai/m0F/NpP+a0O/fv3ddX976qPP4f/+N/ND3eSlnKW3mZXlOeoEcr2RVd8F3Q4fDhmo4Vz/KFVu1i7b+5dLO2swvvbWiE1wYa4bWBRnhtQJL+33/3/+r6v7teeXx38K4t47a6Lv/yzpcbHrMZse7vX3wn3t94/vofz2F/4/nrfzyHfW611wk8m1j724P3H/sxp/ZiPu21meZzM/xWKEmXXr7UVXxpoKTPd3+u5XeXO57TYQ13lYNdNsNzwnft9mI+7VUubsH66ttXqmEYLXXJeFLxxOOSyaRCoZDC4bBmZ2clPeyM4XK5KuduxLKshh02WnHw4EElEglZltW0y8bQ1iE9v/X56o10k+zImtY0oAENlAY0WKKarlvMZ61uFwWDg4PaunUriwsbMaf2Yj7txXzajznt3LV/d00//4ufVx43uzCrXChxeOZwZduoe1SBeEARZ0TBTLCqW8azfKFVu1j7by6b5b2E9zY0wmsDjfDaQCO8NvC/zf5vOvyDh+v4zz77TD/+4x/3MKNn044tO1j39ym+E+9vPH/9j+ewv/H89T+ew/7W6wtan1V8528P3n/sx5zai/m012aaz83yPWq387CZ5rRbm+Y54bt2WzGf9qHLyMbo21fq8HDz6rpc7kE7pGbFE41Eo1EVCoVKIYbX65VhGJqbm5MkHThwoGlss0KKJynnm81muxoHAAAA6NaR2SP6xg++UXnc7MKscf943e0Ow6Fx/7jigbheX3p9XfIEAAAA0Lmt27dq6/aHPxVse96eO7M6DEdLRdU7RnZseAwAAAAAAAAAAIBd+rbsxTTNStFFPeXuGZ0WNRiGIb/fL7/fXymSWFhYkKSm3S9SqVTTc4ZCoUqnDQAAAGAz27p9q7Z/bXvlT6cXZu05uEd5K6+8la9s40IrAAAA4Ok2NDzUdP9qblXSg3X+RscAAAAAAAAAAADYpW8LMtxud6Xooh7LsiQ96G5hl2w2q2Aw+MRjmnXlSKfTLRWSNCv6AAAAAPpJ+cKnlexKZRsXWgEAAABPN6fprKzR6ykXWztN54bHAAAAAAAAAAAA2KVvCzKmpqYkPSiAqGdhYaHtYoxsNiun06lUKlV3n2VZCofDTeMlaXh4uOExXq9X+Xy+4f6FhQUZhtFxZw8AAABgo82H5vUT10/aiuFCKwAAAODpttu9u2mHu3IHPdP78LvwjYoBAAAAAAAAAACwS98WZLjdbnm9Xl26dKnu/kQiUbd4olAoKBwO1y26KHfVqGd6elqRSKRpoUSzzhdlU1NTisVidfdZlqVEIqHz588/cRwAAABgs1hJr7RUKDHqHq1s40IrAAAA4Om2b2qfpOpOeY9aXliuWbtvVAwAAAAAAAAAAIBd+rYgQ5Li8bgSiURNl4xQKKSZmZm6HTJisZjm5uYUCARq9nm93sqfskKhoEAgIK/Xq5mZmab5lAs6DMNoeIzb7VahUNDc3FxNrMfj0czMjPx+f9PzAAAAAJvJmHdM4XzjTnLLC8tyGI6qzhVcaAUAAAA83UbdozK9pj6+9HHd/YuJRR0OH+5JDAAAAAAAAAAAgF229jqBbhiGoUwmo3A4LMMwNDIyoqWlJfl8voZFDV6vV4ZhaHJysu54kUikUqxRKBQkSeFwuG5xx+MOHDggwzB08ODBpsfNzMwolUopFAopl8upUCjIMAxduXJFbrf7iecBAAAANpN9U/uUiWXkCXpq9uWtvBYTiwrEqwuiH71o6tHOGWWLiUWdTJ7sOgYAAACA/crd6Zp1sJOkQDygmCemfVP7qtbw86F5HZo5VLegeqNiAAAAAAAAAAAA7NDXBRnSgyKKaDTa8vFut1v5fL7hftM0FY/HO8rlSWM/6vFOHAAAAEC/GnWPykpZuj53XYdnHt55Nm/lFfPEdGjmkMb94zVxXGgFAAAA9I/FxKIy0YwkaTm9LEman56vbBsPjNcUaTsMh4KZoJLhpByGQztGdii3lJPL56r7GWEjYwAAAAAAAAAAAOzQ9wUZAAAAAHrv8MxhWSlL86F5FXNFFQtFOQyHXr3yat1uFhIXWgEAAAD9ZNw/3tGa22E4NBGd2JQxAAAAAAAAAAAA3aIgAwAAAIAtTK/ZdocKLrQCAAAAAAAAAAAAAAAA0K8Ge50AAAAAAAAAAAAAAAAAAAAAAABAv6EgAwAAAAAAAAAAAAAAAAAAAAAAoE0UZAAAAAAAAAAAAAAAAAAAAAAAALSJggwAAAAAAAAAAAAAAAAAAAAAAIA2UZABAAAAAAAAAAAAAAAAAAAAAADQJgoyAAAAAAAAAAAAAAAAAAAAAAAA2kRBBgAAAAAAAAAAAAAAAAAAAAAAQJsoyAAAAAAAAAAAAAAAAAAAAAAAAGgTBRkAAAAAAAAAAAAAAAAAAAAAAABtoiADAAAAAAAAAAAAAAAAAAAAAACgTRRkAAAAAAAAAAAAAAAAAAAAAAAAtImCDAAAAAAAAAAAAAAAAAAAAAAAgDZRkAEAAAAAAAAAAAAAAAAAAAAAANCmrb1OAACedhcnLnYcuzawptxoTrd+dEuDpc5r6F6Zf6XjWAAAAAAAAAAAAAAAAAAAAAC16JABAAAAAAAAAAAAAAAAAAAAAADQJgoyAAAAAAAAAAAAAAAAAAAAAAAA2kRBBgAAAAAAAAAAAAAAAAAAAAAAQJu29joBAAAAAAD6xcWJi71OQWsDa/rDH/xhr9MAAAAAAAAAAAAAAAB45tEhAwAAAAAAAAAAAAAAAAAAAAAAoE0UZAAAAAAAAAAAAAAAAAAAAAAAALSJggwAAAAAAAAAAAAAAAAAAAAAAIA2be11AgAAAAAAAAAAAAAAAAAAAMBmdnHiYq9TAABsQnTIAAAAAAAAAAAAAAAAAAAAAAAAaBMFGQAAAAAAAAAAAAAAAAAAAAAAAG2iIAMAAAAAAAAAAAAAAAAAAAAAAKBNFGQAAAAAAAAAAAAAAAAAAAAAAAC0iYIMAAAAAAAAAAAAAAAAAAAAAACANlGQAQAAAAAAAAAAAAAAAAAAAAAA0CYKMgAAAAAAAAAAAAAAAAAAAAAAANpEQQYAAAAAAAAAAAAAAAAAAAAAAECbKMgAAAAAAAAAAAAAAAAAAAAAAABoEwUZAAAAAAAAAAAAAAAAAAAAAAAAbaIgAwAAAAAAAAAAAAAAAAAAAAAAoE0UZAAAAAAAAAAAAAAAAAAAAAAAALRpa68TAAAAAAAAAAAAAAAAALD5zIfmtTewV6bXbHpcsVDUB2c/kCTtGNmh3FJOLp9L4/5xW2MAAAAAYLOhIAMAAAAAAAAAAAAAAACAJClv5WWlLGWiGa1kV7Q3sLfp8cVCUTFPTIF4QKPu0cr2+dC8bi3cki/isyUGAAAAADajwV4nAAAAAAAAAAAAAAAAAKD3MrGMUuGUJMkb8bYUEw/E9aL/xarCCkmaiE4oG8vKSlm2xAAAAADAZkSHDAAAAAAAAAAAAAAAAADyBD3yBD2SpJXsyhOPL3fTOB49Xnf/+OS4rkeuy/SaXcUAAAAAWD/zoXntDex94hq8WCjqg7MfSJJ2jOxQbiknl8+lcf+4rTH9hoIMAAAAAAD6zK8u/kq3fnRLg6XeNr58Zf6Vnp4fAAAAAAAAQG+lo2lJktN01t0/7BpWNpZVsVCUw3B0HAMAAADAXuVC6Uw0o5XsivYG9jY9vlgoKuaJKRAPVHW6mw/N69bCLfkiPlti+lFvr9wAAAAAAAAAAAAAAAAA0JduZ283LZooF10sp5e7igEAAABgn0wso1Q4JUnyRrwtxcQDcb3of7GqsEKSJqITysayslKWLTH9iIIMAAAAAAAAAAAAAAAAAG3LW3kNDQ813F8uvMhb+a5iAAAAANjHE/QoEA/IE/Q0XZuXlbtpHAgdqLt/fHJc1yPXu47pV1t7nQAAYP1dnLjY6xQkSa/Mv9LrFAAAAAAAAAAAAADgmbP21ZpKa6WHj++v2TLuam610tGinvLFXcVCsasYAAAAAL2TjqYlqeE6ftg1rGwsq2KhWCmw7iSmX1GQAQAAAAAAAAAAAAAAADzFcr/OKfePucrju7pry7itFk18eefLrmIAAAAA9M7t7O2mRRPloovl9LJMr9lxTL+iIAMAAAAAAAAAAAAAAAB4ig3/0XDVnWlzxZz08x4mBAAAAMB29+/d11f3vqo8/v0Xv7dl3LyVr3Syq6dceJG38l3F9CsKMgAAAAAAAAAAAAAAAICn2OCWQWnLI4/vD9oyrsNwtNTxYsfIjq5iAAAAADzZtbPX9PO/eFh5fXfQns54q7nVqgLvx5ULLx5d53cS068oyAAAAAAAAAAAAAAAAADQtmZ3vJUeXIQlPbz7bacxAAAA9VycuNjrFLQ2sKY//MEf9joNQJJ0ZPaIvvGDb1Qef/bZZ/rxH/+463FbLZr48s6XXcX0KwoyAAAAANhiJbuidDStYq6oleyKHIZDnpBHnqCn7vGZWEaL8UV5Qh6ZXlMOw6G8lddKdkWfXPpER2aPaNQ9WhNXLBT1wdkPJD24O1ZuKSeXz6Vx//i6/v0AAACAZ91GruFZ9wMAAAD9wWk6tZxebri/fBHWo3fG7SQGAAAAwJNt3b5VW7c/LA/Y9vy2Hmbz7KAgAwAAAEDXMrGMJGkiOlHZZqUsxQNxXY9cVzATrLmTVbFQlJWyZKWsqu0Ow6FAPNDwQq6YJ1azfz40r1sLt+SL+Oz8awEAAAB4xEat4Vn3AwAAAP1jt3t3zWeER+WtvCTJ9JpdxQAAAAD9qNddXH5b/K0t4zgMR0sdL3aM7Ogqpl8N9joBAAAAAP0tb+VVLBRrOmGYXlOvXnlVeSuveCBeN/Z49LgOzRzSuH9c7qBbx6PHFc6HG/7IEg/E9aL/xZoLvSaiE8rGsk1/wAEAAADQvY1Yw7PuBwAAAPrHvql9kh500a5neWG55vNCJzEAAAAAemdoeKjp/tXcqiRV3ay1k5h+RYcMAAAAAF1JR9P65uw36+4bdY/K9JqyUpbyVr6mvfjeyb0tf7DKW3lZKUvHo8fr7h+fHNf1yHV+pAEAAADW0Xqv4Vn3AwAAAP2l/DvAx5c+rts1bzGxqJPJk13HAAAAAOgdp+nUcnq54f5yJ4xHrwvqJKZf0SEDAAAAQFdupG7oL8f+smGbwd3u3ZIa3+mqVeloWlLjD2LDrmFZKauldocAAAAA1l8na3jW/QAAAMDmkbfykvTE9XcgHtCniU9rfgeYD83r0MyhugXVncQAAAAA6I3d7t1NPxeUPzs8uo7vJKZf0SHDBolEQn6/v9dpAAAAAD0xNDykleyK8la+7p2s7HI7e7vpnXjLF2wtp2llDgAAAGwGnazhWfcDAAAAvbWYWFQmmpGkyt1s56fnK9vGA+PyBD1VMQ7DoWAmqGQ4KYfh0I6RHcot5eTyuTTuH697nk5iAAAAAPTGvql9+sXcL7SSXal7bdDyQu139p3E9CsKMrpUKBQUCAQUjUY1OTkpwzB6nRIAAACwoU4mTypv5RvewbZgFSSpabHGSnZFy+ll7Tmwp+FxeSuvoeGhhmOUL9oqV9ADAAAAWD/rtYZn3Q8AAAD01rh/vKOCCIfh0ER0Yt1jAAAAAGy8UfeoTK+pjy99XPc3gcXEok4mT3Yd06/6viCjUCjo7NmzkqSRkREtLS3J5/N11bGiUCgoHA5LknK5nCTJ5/MpGAzWHGtZliQpFAopFAo1HTcej1fyWo+8AQAAADvdv3dfX937qvL491/8vuGxjYoxpAcfoEbdo3WPsVKW8lZepteUJ+jRSnZFF3wXdDh8uKYKfjW32vQ85Yu2ntQ6HQAAAMBD7az7pfVfw7PuBwAAAAAAAAB06+LExV6n0DfKN0B60vfugXhAMU9M+6b2VRVYzIfmdWjmUN1uF53E9KO+LsgoFAryeDyKx+Nyu92V7aFQSAsLC4pEIm2Pmc1mKx0vvF5vZbvP59PS0lLNmJZlyTRNud1uDQ8P1x0zl8vJsqyqYgy78wYAAADsdu3sNf38L35eeXx38G7bY1yfuy5Jmjhfe4er8kVWh2cOV7aNukcViAcUcUYUzASrPoy1esHVl3e+bDtPAAAA4FnVzrp/I9bwrPsBAAAAAAAAoDOboQjhlflXep0CWrCYWFQmmpEkLaeXJUnz0/OVbeOBcXmCnqoYh+FQMBNUMpyUw3Box8gO5ZZycvlcDbvsdRLTj/q6ICMQCMjv91cVNUhSNBqV0+mUz+erKqpoZ8zH46LRqFwuV82YCwsLSiaTMs3GFTrhcLiqyGI98gYAAADsdmT2iL7xg29UHn/22Wf68R//uOX4leyKUuGUAvFA3daDzT6MjfvHFQ/E9frS6+0nDgAAAKBl7az7WcMDAAAAAAAAAJrptihkbWBNudGcbv3olgZLgzZlhceN+8c7KohwGA5NRGtvymp3TL/p21eqZVlKpVIKhUJ1909OTrbdaWJubk6WZWl2drZmn2ma8nq9dcdsVoyRzWblcrkqx6xH3gAAAMB62Lp9q7Z/bXvlz7bnt7UVHw/EdTx6vKMPcHsO7lHeylfaIkoPPqC1crfcHSM72j4fAAAA8Kzqdt1fZtcannU/AAAAAAAAAADoJ31bkBGNRiU1LoZwuVxKpVIqFAotj5lMJiVJhmHU3e92u5VKpaq2NSqseDTPYDBY9ViyN28AAABgs4kH4vKEPDXtC1vlMBySHnTZKBsaHmoas5pbrYoFAAAAsHHsWsOz7gcAAAAAAAAAAP2kbwsystlsw8IJ6WHBQzqdbnnMdDrddEyXy1U59+PnqSccDtd0u1iPvAEAAIDNJBlOas/BPTo8c7jhMfOhef3E9ZO2xnWazsrFV/WU76LrNJ1tjQsAAADgyTZqDc+6HwAAAAAAAAAA9JO+LciwLEvDw8MN95eLHizLannMZuM9qpViiWw2K5fLVVN8sR55AwAAAJtFJpbRsGu4bjFG+cIpSVpJr7R0kdWoe7Sybbd7d9UYj8tbeUmS6W1cNA0AAACgMxu1hmfdDwAAAAAAAAAA+snWXifQqVwu17Q7RbnooVAotDym2+1WIpFouH9paanlMc+ePat4PF6z3a68V++v6ov7X1Qebxvcpm1btj0xL9QqDZRUUkmlgZLWtNbrdPoe82mvp20+/9O//k+9TkGlgZL2/Nke3b9/v9epPBXu37+vtbU15tMmzKf9mFN7ra01/7doMbEoSfIEPTX78lZeK9kVjfvHJUlj3jEFI8GGYy0vLMthOKruertvap9+MfcLrWRXqi7yejTmabwoi7U/HreZ1oi8v24u/LuHRnhtoBFeG6in0bp/o9bwz+q6/8uvvtT2+9srj1n394/NtD5H+3j++h/PYX/j+et/PIf9rTRQ6nUKzyS+87cH7z/2Y07txXzai/m0H3Nqr9JAadN817420P/PJ69Pe5XEun8j9G1BRquFFnfu3Gl5zFAopEQioWw2K7fbXbM/lUq1NGYikWhYdGFX3uH/Gq56/B33d/TdA99taWxUK6mk1T9YVU45DWig1+n0PebTXsyn/Uoq6f5nDxa/g4N92yhq01hbW9Nnn30mifm0A/NpP+bUXs3WqCvZB3fLrVeMIUlWyqq6aGrf1D5lYpmGxRuLiUUF4oGq7aPuUZleUx9f+rjuhVmLiUWdTJ5s9a/TN1j743GbaY147dq1np4f1fh3D43w2kAjvDZQT6N1/0at4Vn3P8C6v39spvU52sfz1/94Dvsbz1//4znsb/+8+s+9TuGZxNrfHrz/2I85tRfzaS/m037Mqb020/VoudFcT89vB16f9vqi+MWTD0LX+rYgYz14vV55vd663S1SqZS8Xq+y2axGRkaajnP27FmdP39+PVNV5F9F5HQ8vNPYtsFt2rZCxXwnSgMl5ZTT8O1hDZR48+4W82kv5tN+pYGS9vwve3To0CFt3co/g90qV3Yzn/ZgPu3HnNqrfLHe4/JWXvFAXGPeMS2Hlmv2F3NFWSlL4fzDHxlG3aOyUpauz13X4ZnDVWPFPDEdmjlU6abxqEA8oJgnpn1T+6ouzpoPzevQzKGn8k65rP3xuM20Rjxy5EhPz49q/LuHRnhtoBFeG6in0bp/I9fwrPtZ9/eTzbQ+R/t4/vofz2F/4/nrfzyHfW611wk8m1j724P3H/sxp/ZiPu3FfNqPObXXZroe7daPbvX0/Hbg9Wmv0iodMjZC3/7KZhhGS90mnlQ88bhkMqlQKKRwOKzZ2VlJDztjuFyuyrkbsSyrYYcNO/Me2jqk57c+X72R/2c6sqY1DWhAA6UBDZa4E2C3mE97MZ/2W9OaBgcHtXXr1p4vgJ8WzKe9mE/7Maf2aXQnhwu+C8pbeeVj+YaxTtNZs+3wzGFZKUvzoXkVc0UVC0U5DIdevfJq3TvhSpLDcCiYCSoZTsphOLRjZIdySzm5fK66F389DVj743GbaY3Ie+vmw797aITXBhrhtYHHNbuD20at4Z/Fdf+OLTtY9/epzbQ+R/t4/vofz2F/4/nrfzyH/Y2L23qD7/ztwfuP/ZhTezGf9mI+7cec2mszXY/2NDyfvD7tRZeRjdG3v7INDw833Z/LPWi706x4opFoNKpCoVApxPB6vTIMQ3Nzc5KkAwcONI01zcZ351rPvAEAAIBeeH3p9Y5jTa/Z9t1tHYZDE9GJjs8JAAAAoHMbtYZn3Q8AAAAAAAAAAPpB3xZkmKapdDrdcH+5C0Wz4ohmDMOQ3++v2rawsCBJDbtfSA+6aTQ753rnDQAAAADARrk4cbHXKeiV+Vd6nQIAAAAAAAAAAAAAAHhG9W0vF7fbXSleqMeyLEkPulvYJZvNKhgMPvGYZt0tepE3AAAAAAAAAAAAAAAAAAAAAACwV992yJiamtLc3Jyy2WzdjhULCwttFzVks1kdO3ZM8Xi8JjabzcqyLIXD4abxkjQ8PLyheQMAAAAAAAAAAAAAAAAAAADYeL+6+Cvd+tEtDZb69j75ALrQt//nu91ueb1eXbp0qe7+RCJRt3iiUCgoHA4rlUrV7Ct3p6hnenpakUhEpmk2PCaXy61b3gAAAAAAAAAAAAAAAAAAAAAAYPPo24IMSYrH40okEpXOFGWhUEgzMzN1O03EYjHNzc0pEAjU7PN6vZU/ZYVCQYFAQF6vVzMzM03zKRd0GIZhe94AAAAAAAAAAAAAAAAAAAAAAGDz2NrrBLphGIYymYzC4bAMw9DIyIiWlpbk8/nk9/vrxni9XhmGocnJybrjRSKRSrFGoVCQJIXD4ZaKJA4cOCDDMHTw4EHb8wYAAAAAAAAAAAAAAAAAAAAAAJtHXxdkSA+KG6LRaMvHu91u5fP5hvtN01Q8Hu8olyeN/ah28wYAAAAAAAAAAAAAAAAAAAAAAJvHYK8TAAAAAAAAAAAAAAAAAAAAAAAA6DcUZAAAAAAAAAAAAAAAAAAAAAAAALSJggwAAAAAAAAAAAAAAAAAAAAAAIA2UZABAAAAAAAAAAAAAAAAAAAAAADQpq29TgAAAAAAAKBTFycu9joFSdIr86/0OgUAAAAAAAAAAAAAALDB6JABAAAAAAAAAAAAAAAAAAAAAADQJgoyAAAAAAAAAAAAAAAAAAAAAAAA2kRBBgAAAAAAAAAAAAAAAAAAAAAAQJu29joBAAA22q8u/kq3fnRLg6Xe1SW+Mv9Kz84NAAAAAAAAAAAAAAAAAACA7tEhAwAAAAAAAAAAAAAAAAAAAAAAoE10yAAAoAcuTlzsdQqS6NQBAAAAAAAAAAAAAAAAAADQKTpkAAAAAAAAAAAAAAAAAAAAAAAAtImCDAAAAAAAAAAAAAAAAAAAAAAAgDZRkAEAAAAAAAAAAAAAAAAAAAAAANAmCjIAAAAAAAAAAAAAAAAAAAAAAADaREEGAAAAAAAAAAAAAAAAAAAAAABAmyjIAAAAAAAAAAAAAAAAAAAAAAAAaBMFGQAAAAAAAAAAAAAAAAAAAAAAAG3a2usEAAAAAAAA+t3FiYu9TkFrA2vKjeZ060e3NFjq3T04Xpl/pWfnBgAAAAAAAAAAAABgI1GQAQDAM6zbCwftuuiPi/YAAAAAAAAAAAAAAAAAAEC/6d3tEgEAAAAAAAAAAAAAAAAAAAAAAPrU/5+9/w2O6zoPBO+HfxQ2/yRsgNmFwGRrw4ZndgXRFQkg7Yjk7LshgUxeFzlVsgEyqlrZim0C9LhKWatswvz25hMDJiVvslVjAo498jBrlQTG2lqqrJQBUeMSaVcMoO2UJXh3EzQdTUhIMxEadEgRjEHg/aABJAgNEui+QDeA369KVep773Pu0emL1unb9zmPhAwAAAAAAAAAAAAAAIBF2ljuDgAAAAAAAAAAAAAArES3f3E7xifGY/3U4tfJv377enz9J1+PK9evxK7tu+IzH/5MbN+0vah+pDamiooDSiMhAwAAAAAAAAAAAACgCF/6919KpJ3X/vG1+MIrXyg6/luHv5VIP4DFWXwqFgAAAAAAAAAAAAAAwBqnQgYAUHbPHnm23F2IiIjHLjxW7i4AAAAAAAAAAAAryB///h9H1ZtVsX5q8evkPz3wdAy9PRSTU5Oxft36qN9RH0/teWoJegksFQkZAAAAACRGsi0AAAAAAABryab7NkVqY6qohIzPP/z5OPvjszE8Nhx16bo48dCJSG1MLUEvgaUiIQMAAAAAAAAAAAAAYJlt37Q9Oj7aUe5uACVYfCoWAAAAAAAAAAAAAADAGqdCBgDAf/XskWfLev7JdZPxa0/9Wln7AACwWpR7bjftsQuPlbsLAAAAAAAAACwRFTIAAAAAAAAAAAAAAAAWSUIGAAAAAAAAAAAAAADAIm0sdwcAAHjPT579SVx9+mqsnypv3uxjFx4r6/kBAAAAAAAAAACg0knIAABgjmePPFvuLkSExBAAYOWrhHnV5LrJ+LWnfq3c3QAAAAAAAABYdcq79DIAAAAAAAAAAAAAAMAKpEIGAAAVq9QVpSfXTcZo7WhcffpqrJ8qPhdZpQ4AAAAAAAAAAAA+SIUMAAAAAAAAAAAAAACARVIhAwAAAABWuZ88+5OSq4aVStUxAAAAAAAAYLVRIQMAAAAAAAAAAAAAAGCRVMgAAIB7ePbIs+XuQkX4x/F/LHcXAIAVzJxqNhVDAAAAAAAAYOWTkAEAACRifGw8Xj39akREbNmxJUaHR6OuuS7qW+rL3DMAgMpTCQkqk+sm49ee+rVyd4MVxrwfAADWBnN/AABY/cz7kyEhAwAAKNn42Hh0N3ZHa09r1DbUzmy/0H4hrvZfjebO5jL2DgAASIJ5PwAArA3m/gAAsPqZ9ydHQgYAAFCyntaeeKDlgVlf0CIijnQdic6qzqhrrotMU6ZMvQMAYD4/efYncfXpq7F+an3Z+vDYhcfKdm4Wx7wfAADWBnN/AABY/cz7kyMhY4X553/+54iI+MXkL8rck9XjF3d+Ed8Z+E4cu/9YbFq/qdzdWfGMZ7KMZ/KMabKMZ7KMZ/KMabKm56DTc9Jp+Vw+cn25ONx1uGBc/dH6uNx52Ze0RTL3Zz4+25iPa4P5uDaYT6VcG88eebZs565E5U5QmZ6HmvfDwlTKZynF8f6tfN7Dlc37t/J5D1cnc/+l4Z5/snz+JM+YJst4Jst4Js+YJst4Jst4JsuzPsujfMueUZTbt29HRMTE5ESZe7J6/GLyF/FX2b/ypTchxjNZxjN5xjRZxjNZxjN5xjRZ03PQ6TnptIGugYiIqMpUFYyrrquOXF8uxsfGl7aDq4y5P/Px2cZ8XBvMx7XBfFwbFDI9DzXvh4XxWbqyef9WPu/hyub9W/m8h6uTuf/ScM8/WT5/kmdMk2U8k2U8k2dMk2U8k2U8k+VZn+WhQgYAAFCSN7NvRiqdmnf/9Je3awPXZM4DAMA9lLtiyH+68Z8KbjfvBwCAtcHcHwAAVj/z/mSpkAEAAJQkn8vH5urN8+6f/gKXz+WXq0sAAEDCzPsBAGBtMPcHAIDVz7w/WSpkrDCTk5MRETE2PhZbNmwpc29Wh3fuvBMREfnxfNzecPseR3MvxjNZxjN5xjRZxjNZxjN5xrQ0k3cmI6bee52/+e6XrOk56bRbo7fmLWEYETNf4JQxXBxzf+bjs435uDaYj2uD+bg2iDDvL7fpcc6P+1FrpfJZurJ5/1Y+7+HK5v1b+byHK8sH5/5j42Pvbjf3Xxbu+SfL50/yjGmyjGeyjGfyjGmyjGeyjGdp3PMvj3VTU1NT9z6MSnHp0qX4V//qX5W7GwAArGGvvvpqHDhwYOb1H677w6htqI22wbaCx49kR6K7sTv2ndwXzZ3Ny9XNFc/cHwCAcjLvXx79/f3xkY98pNzdAABgDfvhD38Ye/funXlt7r803PMHAKCc3PNfWipkrDC/9Vu/FT/84Q+jpqYm1q9fX+7uAACwik3880RM3n4vQ35ycjL+y9h/ib0f3XuXKJJi7g8AwHIw7y+vhx9+2LwfAIBlMd/c/+GHHy5jr9YO9/wBAFgO7vmXh4SMFWbjxo2zViYAAIDl9KH40JxtqXRqQSUKt+xQgnsxzP0BACgX8/7lY94PAEA5mfsvH3N/AADKxbx/6Um5BgAASrK5evNd998avRUR736ZAwAAVibzfgAAWBvM/QEAYPUz70+WhAwAAKAkVZmqmS9ihUxn1FdlqparSwAAQMLM+wEAYG0w9wcAgNXPvD9ZEjIAAICS3N9w/13LGOZz+YiIyDRllqtLAABAwsz7AQBgbTD3BwCA1c+8P1kSMgAAgJLsPrY7IiJGsiMF91/rv+YLGgAArHDm/QAAsDaY+wMAwOpn3p8sCRkAAEBJahtqI9OUideee63g/qHzQ7G/Y/8y9woAAEiSeT8AAKwN5v4AALD6mfcnS0IGAABQstae1vjp+Z/OyZy/0H4h9p3cJ2seAABWAfN+AABYG8z9AQBg9TPvT866qampqXJ3AgAAWPnGx8ajt6M3UulUbNmxJUaHR6OuuS7qW+rL3TUAACAh5v0AALA2mPsDAMDqZ96fDAkZAAAAAAAAAAAAAAAAi7S+3B0AAAAAAAAAAAAAAABYaSRkAAAAAAAAAAAAAAAALJKEDAAAAAAAAAAAAAAAgEWSkAEAAAAAAAAAAAAAALBIEjIAAAAAAAAAAAAAAAAWSUIGAAAAAAAAAAAAAADAIknIAAAAAAAAAAAAAAAAWCQJGQAAAAAAAAAAAAAAAIskIQMAAAAAAAAAAAAAAGCRJGQAAAAAAAAAAAAAAAAskoQMAAAAAAAAAAAAAACARZKQAQAAAAAAAAAAAAAAsEgSMgAAAAAAAAAAAAAAABZJQgYAAAAAAAAAAAAAAMAiScgAAAAAAAAAAAAAAABYJAkZAAAAAAAAAAAAAAAAiyQhAwAAAAAAAAAAAAAAYJEkZAAAAAAAAAAAAAAAACyShAwAAAAAAAAAAAAAAIBFkpABAAAAAAAAAAAAAACwSBIyAAAAAAAAAAAAAAAAFklCBgAAAAAAAAAAAAAAwCJJyAAAAAAAAAAAAAAAAFgkCRkAAAAAAAAAAAAAAACLJCEDAAAAAAAAAAAAAABgkSRkAAAAAAAAAAAAAAAALJKEDAAAAAAAAAAAAAAAgEWSkAEAAAAAAAAAAAAAALBIEjIAAAAAAAAAAAAAAAAWSUIGAAAAAAAAAAAAAADAIknIAAAAAAAAAAAAAAAAWCQJGQAAAAAAAAAAAAAAAIskIQMAAAAAAAAAAAAAAGCRJGQAAAAAAAAAAAAAAAAskoQMAAAAAAAAAAAAAACARZKQAQAAAAAAAAAAAAAAsEgby90BAABgdRjJjsRA10CMj47HSHYkUulUNLY3RmNb47wx42Pj8erpVyMiYsuOLTE6PBp1zXVR31Jf9hgAAAAAAAAAAIC7WTc1NTVV7k4AAAAr22D3YETErOSLXF8uelp7YnP15mgbbItUOjUrZnxsPLobu6O1pzVqG2pntl9ovxCpdCqaO5vnnGe5YgAAAAAAAAAAAO5lfbk7AAAArGz5XD7Gx8bnVMLINGXiky9/MvK5fPS09syJ62ntiQdaHpiVJBERcaTrSGS7s5Hry5UtBgAAAAAAAAAA4F4kZAAAACUZ6BqYk4wxrbahNjJNmcj15SKfy89sz+fykevLxZ72PQXj6o/Wx+XOy7O2LVcMAAAAAAAAAADAQkjIAAAASnKl70r86a4/jfGx8YL772+4PyIiRrIjM9sGugYiIqIqU1UwprquOnJ9uVltLlcMAAAAAAAAAADAQmwsdwdYnImJifjRj34UNTU1sX69fBoAAJbP5ORkvPXWW/Hwww/Hxo3vfZXYXL05RrIjkc/lo7ahdkFtvZl9M1Lp1Lz7pxMorg1ci0xTZlljKoW5PwAA5TDfvJ+lYd4PAEC5mPsvL3N/AADKwbx/eRjZFeZHP/pRfOQjHyl3NwAAWMN++MMfxt69e2deP977eORz+XmrUIzlxiIiZiVr5HP52Fy9ed5zTCdR5HP5ZY+pFOb+AACU0wfn/SwN834AAMrN3H95mPsDAFBO5v1LS0LGClNTUxMRET/4wQ/i13/918vcm9VhYmIistlsNDQ0yP5KgPFMlvFMnjFNlvFMlvFMnjEtzcQ/T8Tk7cmZ11evXY3/qel/mpmTvt98yRgREUPnh6K2oXbWMbdGb901ZjqJYnxsfNljKoW5P/Px2cZ8XBvMx7XBfFwbFPIP//AP8cgjjxSc95O86XH+4Q9/GLW1C6s4SGXxWbqyef9WPu/hyub9W/m8hyvbyMhIfOQjHzH3Xybu+SfL50/yjGmyjGeyjGfyjGmyjGeyjGey3PNfHq7UFWa6bOH999/vC1pCJiYm4mc/+1n8+q//ug/vBBjPZBnP5BnTZBnPZBnP5BnT0vzH/99/jO/94fdmXl9ffz0iYlGltC+fuRwREUe+dmTW9oUmQLzz9jvLHlMpzP2Zj8825uPaYD6uDebj2qCQiYmJiFjcvJ/iTY9zbW2tef8K5bN0ZfP+rXzew5XN+7fyeQ9XB3P/5eGef7J8/iTPmCbLeCbLeCbPmCbLeCbLeCbLPf/l4UoFAAAKOnDqQDzy1CMzr9944434yoe/suD4kexI9HX0RWtPa9Q2WOkVAAAAAAAAAABYXSRkAAAABW3ctDE2bnrvK8N92+5bVHxPa08c7joc9S31c/al0qkFVa/YsmPLsscAAAAAAAAAAAAshPojAABA4npae6KxvTEa2xoL7t9cvfmu8bdGb0XEuwkVyx0DAAAAAAAAAACwEBIyAACARPV29MbOvTtj/8n98x5TlamaSYYoZLqqRVWmatljAAAAAAAAAAAAFkJCBgAAkJjB7sGorqsumIwxnfwQEXF/w/2zXn9QPpePiIhMU2bZYwAAAAAAAAAAABZCQgYAAJCIofNDERHR2NY4Z18+l49cX27m9e5juyMiYiQ7UrCta/3X5iRJLFcMAAAAAAAAAADAQkjIAAAASjaSHYlbo7cKJmNEROT6clHbUDvzurahNjJNmXjtudcKHj90fij2d8yusrFcMQAAAAAAAAAAAAuxsdwdAAAAVrZ8Lh89rT2xq2lXXGu/Nmf/+Oh45Ppy0ZHvmLW9tac1uhu7Y/ex3bOSNS60X4h9J/cVrFyxXDEAAAAAAAAAAAD3IiEDAAAoybnmc5HP5SPfnZ/3mKpM1ZxtqXQq2gbborejN1LpVGzZsSVGh0ejrrku6lvqC7azXDEAAAAAAAAAAAD3IiEDAAAoyZPDTxYdm0qn4kjXkYqMAQAAAAAAAAAAuJv15e4AAAAAAAAAAAAAAADASiMhAwAAAAAAAAAAAAAAYJEkZAAAAAAAAAAAAAAAACzSxnJ3oJza29ujtbU1mpqaSmpnbGwsTp8+HRERO3bsiOHh4Whubo6WlpZEYwAAAAAAAAAAAAAAgMqw5hIycrlc9PX1RVdXV2Sz2WhtbS2pvbGxsWhsbIyenp5oaGiY2d7e3h79/f3R2dmZSAwAAAAAAAAAAAAAAFA51pe7A8upu7s7Ojo6IiISS3pobW2NlpaWWYkVERFdXV3R3d0dfX19icQAAAAAAAAAAAAAAACVY00lZLS1tUVPT0+0tbVFdXV1ye1NV9tob28vuP/o0aNzEj+KiQEAAAAAAAAAAAAAACrLmkrISFpXV1dERGQymYL76+rqoq+vL8bGxkqKAQAAAAAAAAAAAAAAKouEjBJks9lIp9Pz7p9OuhgYGCgpBgAAAAAAAAAAAAAAqCwby92BlSyXy0V1dfW8+6cTL3K5XEkxhUxOTsadO3cW3lnmdefOnZnxXLduXbm7s+IZz2QZz+QZ02QZz2QZz+QZ02RNTk6Wuwtrkrk/H+Szjfm4NpiPa4P5uDYoxLy/PO7cuWPev0L5LF3ZvH8rn/dwZfP+rXzew5XN/LM83PNPhs+f5BnTZBnPZBnP5BnTZBnPZBnPZLnnvzwkZJRgdHR0pqJFIdOJF2NjYyXFFPKDH/wg/p//5/+Zeb1hw4bYuNHbWYzJycn4T//pP8Xk5GSsX69oTKmMZ7KMZ/KMabKMZ7KMZ/KMabLefvvtcndhTTL354N8tjEf1wbzcW0wH9cGhZj3l8fly5ejqqpq5rV5/8rhs3Rl8/6tfN7Dlc37t/J5D1e2fD5f7i6sSe75J8PnT/KMabKMZ7KMZ/KMabKMZ7KMZ7Lc818eZvQluFfSxLT3X8zFxBRy9uzZWV/IfvM3fzMeeuihBbXNbFNTU3H9+vWICNl0CTCeyTKeyTOmyTKeyTKeyTOmyfr5z39e7i6sSeb+fJDPNubj2mA+rg3m49qgEPP+8vjqV79q3r9C+Sxd2bx/K5/3cGXz/q183sOV7Z/+6Z/K3YU1yT3/ZPj8SZ4xTZbxTJbxTJ4xTZbxTJbxTJZ7/stDQsYKdfi+w1GVem+1rPv+7r7YeGV5387W51uX9XxLZWJiIn7wgx/EI488YtWBBBjPZBnP5BnTZBnPZBnP5BnTZL3xxhvxB3/wB+Xuxppj7s8H+WxjPq4N5uPaYD6uDQox7y+P//1//9/j137t12Zeb9q0KTZt2lTGHrFQS/lZ2nO0J9H2irWavxP6f+HK5z1c2bx/K5/3cGW7evVqPPnkk+XuxprzZ3/2Z/Hrv/7rM6/X6ty/1Lnu1LqpWFezLja+tTHWTRX/oOZqnusuls/0ZBnPZBnP5BnTZBnPZBnPZLnnvzxcqSVIp9MLqnixY8eOkmIK2bJhS/zyhl+evXHyns0marV8IZwu/7hp0yYf3gkwnskynskzpskynskynskzpsm67777yt2FNcncnw/y2cZ8XBvMx7XBfFwbFGLeXx6/+qu/Gv/Nf/PflLsbFGEpP0s3TG5ItL1irebvhP5fuPJ5D1c279/K5z1c2X7pl36p3F1Yk6qqqsz9o/S57uS6yVgf62P95PpYP7W+6HZW81x3sXymJ8t4Jst4Js+YJst4Jst4Jss9/+VR/IyUqK6uvuv+0dHRiHg3CaOUGAAAAAAAAAAAAAAAoLJIyChBJpOZSaAoZLoSRiaTKSkGAAAAAAAAAAAAAACoLBIyStDQ0DCTQFFILpeLiIimpqaSYgAAAAAAAAAAAAAAgMoiIaMEx44di4iIbDZbcH9/f/+cxIpiYgAAAAAAAAAAAAAAgMoiIeMexsbGoqOjI/r6+ubsa2hoiKampnjuuecKxp4/fz46OjpKjgEAAAAAAAAAAAAAACrLmk3IyOVyEfFuwsXddHd3x5kzZ6K1tbXg/p6enjh//vycihft7e1x8uTJgtUuiokBAAAAAAAAAAAAAAAqx8Zyd2A5nT9/Prq6uiIiYmBgICIijh8/PrOttbU12traZsU0NTVFOp2Oo0ePFmwznU7H4OBgdHR0RDqdjh07dsTw8HA0NzdHS0tLYjEAAAAAAAAAAAAAAEDlWFMJGS0tLYtOeGhoaIh8Pn/XY9Lp9ExSx0IVEwMAAAAAAAAAAAAAAFSG9eXuAAAAAAAAAAAAAAAAwEojIQMAAAAAAAAAAAAAAGCRJGQAAAAAAAAAAAAAAAAskoQMAAAAAAAAAAAAAACARZKQAQAAAAAAAAAAAAAAsEgby90BAADg3m7evFl07FtvvRUnTpyIwcHBaGxsjLNnz0ZNTc2i23nnnXeK7gMAAAAAAAAAAMBqIyEDAABWgG3btiXSTm9vb9TV1SXSFgAAAAAAAAAAwFq2vtwdAAAAAAAAAAAAAAAAWGlUyAAAgBXgxo0bRcc++uijcfHixbhz505s2LAhDh48GC+88MKi2/n7v//7ePDBB4vuBwAAAAAAAAAAwGoiIQMAAFaArVu3Fh177ty5eOKJJ6K/vz/27t0bzzzzTFHtbdmypeg+AAAAAAAAAAAArDYSMgAAYJWrqamJl156qdzdAAAAAAAAAAAAWFXWl7sDAAAAAAAAAAAAAAAAK42EDAAAAAAAAAAAAAAAgEXaWO4OAAAAAAAsl5s3bxYd+9Zbb8WJEydicHAwGhsb4+zZs1FTU1NUW1u3bi26HwCwnJ498my5uxAREY9deKzcXQAAAAAAmENCBgAA3EOxD+15YA8AqBS3bt2KmzdvxsaNi78dmNScplLmM9u2bUuknd7e3qirqys6fmpqKpF+AAAAAAAAAOUjIQMAAO4hiYf2PLAHAJTTxz72sUTaKWVOYz4DAAAAAAAArDYSMgAAAACANePGjRtFxz766KNx8eLFuHPnTmzYsCEOHjwYL7zwQoK9AwAAgMoy2D0YQz1DkUqnIiIinUlHc2dzwWPHx8bj1dOvRkTElh1bYnR4NOqa66K+pX7e9ouJAQAAqCQSMgAA4B6KfWjPA3sAQKX4zne+E/v27YuNGxd/O3C1zWm2bt1adOy5c+fiiSeeiP7+/ti7d28888wzJbUHAEDpfvLsT+Lq01dj/dT6svXhsQuPle3cAEtlfGw8/sOh/xC7mnbF472Pz2zP5/LR29E7JyljfGw8uhu7o7WnNWobame2X2i/EFf7rxZM4igmBgAAoNJIyAAAgHso9iE7D+wBQPncvHmz6Ni33norTpw4EYODg9HY2Bhnz56NmpqaotqqlP/3b968ObZu3VpUQoY5zXtqamripZdeKnc3AAAAYMlNJ2N8MCnixfYX49rAtTnbe1p74oGWB2YlVkREHOk6Ep1VnVHXXBeZpkzJMbAaVcK9zImJiaL7AACw1knIAACAJeKBPQAon23btiXSTm9vb9TV1RUdPzU1lUg/ysmcZmn4oR0AAIBKdfnM5cjn8tHW2TZnXyqdip17ds7als/lI9eXi8Ndhwu2V3+0Pi53Xp6VXFFMDKxWlXIv85VXXkmkHwAAa42EDAAAAACAZeaHdgAAACrVpdOXoqGtoeC+1p7WOdsGugYiIqIqU1UwprquOrLd2RgfG49UOlV0DAAAQCWSkAEAAADAqnPjxo2iYx999NG4ePFi3LlzJzZs2BAHDx6MF154IcHeAaxs+Vw+LnVeioiI8dHxGB8bj0xzJvaf3F/w+MHuwRjqGYrG9sbINGUilU5FPpePkexIvP7c63Hg1IGobaidEzc+Nh6vnn41IiK27NgSo8OjUddcF/Ut9fP2rZgYYGV49sizibc5uW4yRmtH4+rTV2P91PoFxTx24bHE+wEAlWTo/FCMj43H7mO7FxzzZvbNuyZNTCddXBu4NlPxopgYWK0q4V7mxMRE/OhHPyq6HwAAa5mEDAAAYNkNnR/yQBQAS2rr1q1Fx547dy6eeOKJ6O/vj71798YzzzxTUntQiB/aWamGzg/F1f6rcaTryKzt3Y3dMdg1GE8OPzknZnxsPHJ9ucj15WZtT6VT0drTOm8yRndj95z9F9ovxNX+q9Hc2ZxIDAAAMNvrz70eETEzpx7JjsS1gWuxc8/OgnP3iHeTtjdXb563zenEi3wuX1IMrFaVcC9zYmKi6D4AAKx1EjIAAIBlNT42Hj2tPXG463A8ePRBpcYBqDg1NTXx0ksvlbsbrHJ+aGclGh8bj9efez1ae1rn7DvytSPR3dgdF9ovzEnWiIg43HU4RodHYyw3FqnqVOxs3BmNbY3znquntSceaHlgzgNfR7qORGdVZ9Q1181ZJbeYGAAAWCsmbk/Endt3Zl7/8z/9c8HjRrIjM/9++czlqG2ojca2xhjJjsS55nOxv2P/nHn1rdFbMxUtCplOvBgfGy8pBpjLvUwAgPKTkAEAACTqQvuFeLD1wXkfdJpezerF9hfjxfYX79pWa0/rTCWNwe7BGOoZisb2xsg0ZSKVTkU+l4+R7Ei8/tzrceDUgXlX1n319KsREbFlx5YYHR6NuuY6FToAgBXLD+2Uy7WBazF0fih6O3rnVJuYnotf6btSMHYxydj5XD5yfbk43HW44P76o/VxufPyrO8cxcQAAMBacun0pfjeH35v5vX1uF7wuFujtyKVTsVg92DsP7l/ZnttQ2209rTGn+7602jtaZ01t15o0sQ7b79TUgwAAEAlkpABAACUbPrhp8GuwRjJjsSDrQ/e9diqTFXUNtRGqrrwA1njo+ORz+VnJU2Mj41Hri8Xub7crGNT6VS09rTOm4zR3dg9Z/+F9gtxtf/qnIfIAACA+W2u3hypdCq27Ngy7zFJVMAb6BqIiJh3tdzquurIdmdjfGx85nzFxFCZnj3ybLm7EBERj114rNxdAABI1IFTB+KRpx6ZeX316tX4Sv1X5hw3nSgxXaHi/VLpVGSaMvFi+4vx5PCTS9dZAACAFURCBgAAUJLB7sHI9eYi05yJps6mONd87q7HX+2/Go/3Pn7XUuS9Hb3R1Nk0Z/vhrsMxOjwaY7mxSFWnYmfjzmhsa5y3nZ7Wnnig5YE5yRpHuo5EZ1Vn1DXXWSEXAAAWqLahNjryHQX3jWRHIiJiV9Ouks/zZvbNuyZNTH+XuDZwbWY+X0wMAACsJRs3bYyNm957TOiXfv5LBY9LpVMxPjY+77w505yJofNDMZIdmbn3Ph1zL+9P7i4mBgAAoBJJyKBoVqkCACAiorGtcSYpYvohrHu5WzLGSHYkquuqCx7z4NEHF7ya7XTVjsNdhwvurz9aH5c7L3sYCwAAEtDX0RdVmap7VqEbyY7EtYFrsXPPzoJV7iLencsXWo132vR3gnwuX1IMAAAw1+bqzXetLDc97742cG1mTn+3uXhExK3RWxExu6JeMTEAAACVSEIGAACwrPa077nr/oGugTjSdaTk8wx0DUTE/Mkf1XXVke3O3vWHJQAAWO0mbk/Endt3Zl7/4sYvFhWfz+XjUuelSGfS8Xjv4/Mel+vLRT6Xj0xTJhrbGmMkOxLnms/F/o79c5Kkb43eumsS9/SDW+9fTbeYGIBiVMKCZRYrA2Ap1TbULiiR+f1z66pMVVwbuHbPY98/Zy8mBgAAoBJJyAAAAJbV3X486e3oveeKugv1ZvbNuyZaTPfj2sA1VTIAAFizLp2+FN/7w+/NvL6+/vqC4obOD8XV/qsxlhuLdCYddc118x47Pffef3L/zLbahtpo7WmNzqrOaBtsm1UtY6FJE++8/U5JMQAAwFw79+6MofND8y5mNF254v1z+Psb7o9cX27eNqcTPN5/L76YGAAAgEq0vtwdAAAAiIgYyY5EdV31gqpVjGRHYrB7MEayI/Mek8/l71ryfPo8C1npCwAAVqsDpw7El69/eeafz/3N5xYUV99SH82dzdHa0xrNnc1xufNy9LT2FEyMqG+pj/qW+jnbU+lU1LfUR09rT8n/HQAAQDKm5+7zJUuMDo9GRMTOPTtntu0+tjsiYt579tf65y6MVEwMAABAJZKQAQAAFDRxeyJu//z2zD+/uPGLJT3fpdOXorGt8a7H5PpycfnM5YiImWPPNZ8r+MPQrdFbd03umE7WWOhKugAAsBpt3LQxNv3Kppl/7tt2X1HttPa0xtD5oUUnV+zcuzPyufysROlUOrWgefqWHVtKigEAAOaqylRFfUt9XDp9qeD+n57/aew7uW/W/ffahtrINGXitedeKxgzdH4o9nfsn7WtmBgAAIBKtLHcHQAAyufmzZtFx7711lvR3t4ef/3Xfx0f/ehHo6urK2pqaopqa+vWrUX3A1g6l05fiu/94fdmXl9ff33JzjV0fijSmfRdj6nKVEVExP6T7/0AU9tQG609rdFZ1Rltg22zSqQvNNHinbffWXyHAT6g1HnViRMnYnBwMBobG+Ps2bNFzasmJiaK7gMAlGq62sXQ+aHI9eUWvJLt9ENcI9mRmTn/3SrdRbybfP3+2GJjAACAwo587Uh0N3bHYPfgrIWUelp7oipTFc2dzXNiWntao7uxO3Yf2z3rXv2F9gux7+S+gt8RiomhdJVwLxMAgMoy2D0YQz1DM/fQ05l0wXl/xLvP47x6+tWIeHcRpNHh0ahrritYKbuUmJVEQgYArGHbtm1LpJ2+vr6oq6srOn5qaiqRfgDJOnDqQDzy1CMzr9944434yoe/siTnunT6Uhz52pG7HjPfl7DpB796WnviyeEnl6J7APeU1Lyqt7e3pHnVK6+8kkg/AKCQ8bHxuDV6ayZx4oOmk6yHe4dnHpy60H4hrvRdWdRcvSpTFdcGrt21H9PHlRIDAAAUlkqnom2wLV49/epMFbzxsfGob62ft9L1dExvR2+k0qkFPWRVTAylq4R7md86/K1E+gAAQGnGx8bjPxz6D7GraVc83vv4zPZ8Lh+9Hb1zkjLGx8aju7E7Wnta5yRVX+2/WjCJo5iYlUZCBgAAUNDGTRtj46b3vjLct+2+JTlPPpePkezIrC9di7Vz784YOj8U+Vx+5gGrVDq1oCoZW3ZsKfq8AACwlnRWdUZEREe+o2Cliem59fvn4SMDIzPVKQqZPvb93wfub7g/cn25eWPyuXxExKzVcouJAQAA5pdKpxb9YFQqnYojXXdffCmJGAAAIBnTyRgfnPu/2P5iXBu4Nmd7T2tPPNDywJxnfI50HYnOqs6oa66bcx++mJiVZn25OwAAlM+NGzeK/qe5uTk2bNgQEREbNmyI5ubmotsC1raBroGSV6mdfhhsJDsys21z9ea7xkw/FFboQTKAxaqEedXY2Fh5BwGAVS+VTkVVpmreOfTo8GhEROxs3DmzbVfTrujId8zb5rX+azPtTtt9bHdEzJ7ffzDmgz/OFBMDAACwFlXCvUwAAMrv8pnLkc/lCyZip9Kp2Lln56xt+Vw+cn252NO+p2B79Ufr43Ln5ZJjViIVMgBgDdu6dWvRsefOnYtPfepT8YMf/CAeeeSR+OY3v1lSe8DadaXvyj0TMi60X4grfVfiyeEnF9xuVaYqrg1cm3f/9Eq8pSaDAESUPq964oknor+/P/bu3RvPPPNMUe1NTEwU3QcAWIiGtoZ5fzSJiBh6fihS6VQ8ePTBmW27j+2Owe7BaGxrnHN8PpePofND0drTOmt7bUNtZJoy8dpzrxWspDd0fmhW6fRiYwAAANaiSriXCQBA+V06fSka2hoK7vvgffuIdxdcjZj/OZvquurIdmdjfGx8ZmGnYmJWIgkZAEBRampq4sUXX4xLly7FgQMHYuNG0wqgOCPZkahvqb/7MQMjMxUtCplOrnj/g1f3N9wfub7cvDH5XD4iwiq5QNnV1NTESy+9VO5uAMA9NXc2x4X2C/Fg64MFS45HRHzy5U/O+tGktqE2cn25uHzmcuw/uX9mez6Xj+7G7th3cl/B7wOtPa3R3dgdu4/tnjXPv9B+Ifad3FdwHl9MDMzn2SPPLui4yXWTMVo7GlefvhrrpxSmBwBgdUvqXub4xHjRsddvX4+v/+TrkfunXGR+OROf+fBnYvum7SX3CQBgLRk6PxTjY+Mz1acX4s3sm3dNmphOurg28F7F6mJiViJPTgJAGdy8ebPo2LfeeitOnDgRg4OD0djYGGfPno2ampqi2rJaCVBuI9mRiIhIVd89y31X065o62ybd/+1/muRSqdmZdTvPrY7vn/m+zGSHSm4Qu61/pX9ZQ4AAMrhSNeRGDo/FD2tPZGqTsX46HiMj43H/Q33xx9c+YOCP6zsP7k/cn25uNB+Yeb4VDoVn3z5kwXn6hHvlkNvG2yL3o7eSKVTsWXHlhgdHo265rp5E7qLiQEAAGD5ffqvPp1IO6/dfi2+8MoXio7//fj9RPoBALDSvP7c6xHx3sKnI9mRuDZwLXbu2Tnvfft8Lh+bqzfP2+b07wPTC6QWG7MSScgAgDLYtm1bIu309vZGXV1d0fFTU1OJ9AOgWHerevF+u4/tjsHuwWhsa5yzL5/Lx9D5oTnlEmsbaiPTlInXnnut4JfFofND8Xjv48V1HIB5ST4GWP3qW+oXneCQacosOiE6lU7Fka4jSx4DAAAAAACrwcTtibhz+87M61/c+EXB46YXUI2IuHzmctQ21EZjW2OMZEfiXPO52N+xf849/Vujt2YtlPpB04kX42PvVUMrJmYlkpABAAAkZjpjfaFflKaPv1t5woh3kytyfbm4fOZy7D+5f1Z8d2N37Du5r+ADYa09rdHd2B27j+2elZRxof1C7Du5T4UMgCUg+RgAAAAAuJtv/O43io59euDpGHp7KCanJmP9uvVRv6M+ntrzVIK9AwBYuS6dvhTf+8Pvzby+vv56weNujd6KVDoVg92Ds57DqW2ojdae1vjTXX8arT2ts56rWeizQO+8/U5JMSuRhAwAKIMbN24UHfvoo4/GxYsX486dO7Fhw4Y4ePBgvPDCCwn2DmBxhs4PxWDXYEREXBu4FhERF45fmNlW31pfsLJFRMTOPTsjlU7Fr+39tXueZ//J/ZHry8WF9gsxPjoe42PjkUqn4pMvf3LecompdCraBtuit6M3UulUbNmxJUaHR6OuuW7RK/oCAKVRPQUAAACAiIjUxrsv1HU3n3/48/HVH381hn8+HHW/Uhefe+hzJbUHALCaHDh1IB556pGZ12+88UZ85cNfmXPcdKLEdIWK90ulU5FpysSL7S/Gk8NPLl1nVxEJGQBQBqU8AHTu3Ll44oknor+/P/bu3RvPPPOMB4qAsqpvqS86uaG2oTY68h0LPj7TlFl0VYtUOhVHuo4stmsAFEny8WyVkIQwMTFRdB+SpHoKAAAAAKXavml7nPytkzFaOxrVI9Wxfmp9ubsEAFAxNm7aGBs3vZcecN+2+woel0qnYnxsfN5ncDLNmRg6PxQj2ZGZRVKnY+5ly44tc86zmJiVSEIGAKwwNTU18dJLL5W7GwAAUJDk49kqJQnhlVdeSaQfAAAAAAAAwMq2uXpzjI+NRypduNLYdOWMawPXZhIyClXTeL9bo7ciIma1WUzMSiQhAwAAAICKIPl4dVM9BQAAAAAAAMqvtqE28rn8PY97f3WLqkxVXBu4ds9jqzJVJcWsRBIyAAAAYIW5detW3Lx5MzZuXPzX+rfeeitOnDgRg4OD0djYGGfPno2ampqi+rHSKxfAcqiEJISJiYn40Y9+VHQ/kqJ6CgAAAAAAAJTfzr07Y+j80LxVMqYrV0xXx4iIuL/h/sj15eZtczrBI9OUKSlmJZKQAbAG3Lx5s+hYD+wBAFSej33sY4m009vbG3V1dUXHT01NJdIPklMJyTrm/bNVQhLCxMRE0X2oFKqnACy9Z488W+4uAAAAAACwDOpb6qOvoy9yfbmob6mfs390eDQiInbu2Tmzbfex3fH9M9+PkezIrESNadf6r81JrCgmZiWSkAGwBmzbti2RdjywBwBApZF8PFslJOuY9ydHEgIAAAAAAACQtKpMVdS31Mel05cKJmT89PxPY9/JfbOqZ9Q21EamKROvPfdaweSKofND8Xjv47O2FROzEknIAAAAgBXmO9/5Tuzbt6+oKgiPPvpoXLx4Me7cuRMbNmyIgwcPxgsvvLAEvVweko8BAAAot0qpMvTYhcfK3QUAAABghTjytSPR3dgdg92D0djWOLO9p7UnqjJV0dzZPCemtac1uhu7Y/ex3bMSLC60X4h9J/cVrHZRTMxKIyEDWLWslPueGzduFB272h7YAwBYDTZv3hxbt24tKiHj3Llz8cQTT0R/f3/s3bs3nnnmmYqYs5IMyToAAAAAAAAA3EsqnYq2wbZ49fSr0dPaExER42PjUd9aPytBo1BMb0dvpNKp2LJjS4wOj0Zdc13BShvFxqw0EjKAVctKue8p5QE7D+wBAKwuNTU18dJLL5W7G4mRfDybZB0AAAAAAAAAFiKVThWshHGvmCNdR5Y8ZiWRkAGwxIqt1PHWW29Fe3t7/PVf/3V89KMfja6urrJU6VhtD+wBALC6SD5Ojrk/AAAAwPIo9jfkiHd/Rz5x4kQMDg5GY2NjnD17tqjfkd95552i+wAAAMB7JGQAq1alrJSbRKWOvr6+FV+lAwAAKo0EBAAAAADKIYnfkCMient7S/odGeD9bt26FTdv3lx0BeakEsUiSluECQCgXCRkAKuWlXIBAAAAAAAAAODePvaxj5XcRqmJYhYcBQBWIgkZAAUkuVJusZU6kqzSAbBSlVqyu729Pf76r/86PvrRj0ZXV5eVWAAAAAAAgLIr9jfkiOR+R7569Wr8D//D/1B0PyjOO++8U9TvXyoQAABA5VqTCRljY2Nx+vTpiIjYsWNHDA8PR3Nzc7S0tJTUZkdHR0REjI6ORkREc3NztLW1FTy+u7s7enp6or29PZqamiKdTkcul4tsNhvPPfdcnDp1KhoaGoruD1A5ir2Zce7cufjUpz4VP/jBD+KRRx6Jb37zm26MAGtOUiW7+/r6rMQCAAAAAABUhFJ+9z137lw88cQT0d/fH3v37o1nnnmmqPa2bNlSdB8o3oMPPlhyGyoQsFS+853vxL59+2LjxsU9UmjBUQBgrVtzCRljY2PR2NgYPT09sxIe2tvbo7+/Pzo7OxfdZjabjdbW1ujq6oqmpqaZ7c3NzTE8PFywzbGxsejr64u+vr5Z29Pp9Jy+AWtTTU1NvPjii3Hp0qU4cODAor/wAgAAAAAAALC61NTUxEsvvVTubgCr0ObNm2Pr1q2Lfj4lqUQxAICVas093dva2hotLS1zEh66urqiqqoqmpubZyVVLKbND8Z1dXVFXV3dvG12dXXF8PBw5HK5qK6ujsbGxnkragAArEWVULIbgPndvHmzqLi33norTpw4EYODg9HY2Bhnz56Nmpqaotryow4AAAAAsFK8/vrr8d//9//9ouP87kUlkygGAKx1ayohI5fLRV9fX3R1dRXcf/To0ejs7FxUQsaZM2cil8vFqVOn5uzLZDLR1NQ0b5tHjx6NdDq94HPBSnHr1q24efNmURUdPJi1uhX7wF5EctfGxMRE0X0All+pJbs/9alPxQ9+8IN45JFH4pvf/Kb/NwAkbNu2bSW30dvbG3V1dUXHT01NldwHAAAAAIDlsGXLlqJ+r1KBAAAAKteaSsiYTsTIZDIF99fV1UV3d3eMjY0tOFGit7c3ImLe4xsaGuLMmTOL7iusZB/72McSaceDWatPEg/sRZR+bbzyyiuJ9AOobDU1NfHiiy/GpUuX4sCBA0UlCgIAAAAAAEC5qUAAAACVa009lZbNZu+aaDGdqDEwMLDgKhkDAwN3bXP6geFsNhsNDQ0L7isrTyWs/G/1AwAAYDnduHGjqLhHH300Ll68GHfu3IkNGzbEwYMH44UXXki4dwAAK8f/+cT/GTs27yh3NwBgVXn2yLPl7kI8duGxcncBgLuohGd9IjzvAwCw0q2phIxcLhfV1dXz7p9OrMjlcgtus7q6OkZHR+953MDAwLwJGdlsNgYGBmLPnj0LTtq4NXErbky89+DLfevvi/s23LewTq8yExMTJcdPTk6W3E4lrPz/i1/8IpE+lGJiYiJefPHF+K3f+q2iViJvaWmJV155ZebBrN/+7d+O8+fPF92XlS6p67NSjI2NFR2b1LUxMTERf/M3f7NqxrTcVts1Wm7GM3nGNFmTk5Pl7sKaVAlzf39DlaWSPts2bdpUVNy///f/Pj7zmc/MfBf++te/XnRblTAOlaKSrg0qi2uD+bg2KMS8vzzeufNObJp4bz60lu/5rzRT66ZiKqZiat1UTIa/n5Vmpb5//8e/+T/K3YWKMbVuKqbuX3nv4VJZafO6pZ6PTq4r/zWx0t6TxfKdYmXzvpXH9evXZz1ntGnTpqLvja5kpX5GJzWPq4RnfSIq53kfn+nvKSVZ5z//5/8cJ06ciP7+/ti7d2+cPXs2/tv/9r8tqi3JOu9yfSbPmCbLeCbLeCbLPf/lsaYSMkZHR2eqYBQynayxmAeGGxoa7vpA8PDw8Lxt9vX1RS6Xi6ampmhra4tsNhvNzc3R0dFxzwodHf+xY9br32343fjYno8tuN+ryaVLl0qKn5ycjDfeeCMiItavX59El8qm1LFIwuTkZPyX//Jf4m/+5m+KGs/Pfe5z8fOf/zz+7//7/47/8X/8H+Nzn/tc/OhHP1qCnq4Mq+n6LFVS14YxTZbxTJbxTJ4xTdbbb79d7i6sSZUw96+EeSbvWS2fbV/+8pdn/v1v//Zv42//9m/L2JvVYbVcGyTPtcF8XBsUYt5fHpUw76c4UzEVt375VozGaKyLdeXuDovk/Vv5vIezrbR7OEs9Hx2tvffCikttpb0ni+U7xcq2kMVHSd5DDz006/WnPvWpeOKJJ8rSl3Iq9TN6tc0BKuH/Fz7TZ/vt3/7tRNq5ePFi/Mt/+S+Ljn/llVcS6cdK5/pMnjFNlvFMlvFMlnv+y2NNJWQsNNFiMRdfe3t7nD9/PrLZbMHqFn19fQXbnE4MOXny5My2hoaG6OnpiaqqqhgcHLxrtYzO/7kzqlJVM6/vW39f3DeyNlfLOnDgQEnx01l0+/btK6qiw7RKWPm/FP/5P//n+Lf/9t/OlFL8d//u3xWVnZ3EeP6bf/NviopbjZK6PleLJK6NiYmJuHXrVvzmb/5mUWOa1N/KalnFwDWaLOOZPGOarOkvvCyvSpj7lzrnJlk+25iPa4P5uDaYj2uDQsz7y6MS5v0UZ2rdVIzGaFS/WR3rplb+g2Brjfdv5fMezrbS7uEs9Xz06tNXE29zsVbae7JYvlOsbP/wD/9Q7i6sST/+8Y/jv/vv/ruZ12u1Qkapn9FJzQEq5VmfSnh+wGd6ZVrtc4mFcn0mz5gmy3gmy3gmyz3/5eFKLVFTU1M0NTXF6dOno6enZ9a+vr6+aGpqimw2Gzt27Ji1r6WlpWB76XQ6WlpaorW1daa6RiGbN26ObRs/UDZvqrj/hpUuiQ/c9evXx8aNG0tqa/v27UXH/sVf/EU88cQTM6XqnnnmmaLaW7cumRvNfX19JWdnlzqevCeJ65PZDh8+nEg7pfytTE2tng9t12iyjGfyjGlyrDxQHpUw9/f3855SSlS/9dZbceLEiZnEzrNnz0ZNTc2i25mYmPDZxrxcG8zHtcF8XBt8kHl/eWzZsKXs836KMxmTsS7WxbqpdbF+yt/PSuP9W/m8h7OtxDndUs5HK+GaWInvyWIt5j2shHtrEZXx4HMlWAvXZyXavn17VFdXl7sbZVfqZ3RSc4BKeNankrhP9J4bN24UHfvoo4/GxYsXZ5J1Dh48GC+88EJRbXkv3uP6TJ4xTZbxTJbxTI57/stjTV2p6XR6QZnNH0yeuJfe3t5ob2+Pjo6OOHXqVES8Vxmjrq5u5twLtXfv3jh//nzkcrmZShqsbjU1NfHSSy+VuxsAAMA9bNu27d4HLUBvb+/M98ViKFENAKtXuR9Se+edd4o+PwAA3E2l3FtbTQunAeXjWZ/VrZTkvXPnzsWnPvWp+MEPfhCPPPJIfPOb35QMCACr3JpKyLhXhvno6GhELC55YlpXV1eMjY3NJGI0NTVFOp2OM2fORETEnj17FtzW9Pmz2ayEDBalErKzJyYm4kc/+lHR/YDl8J3vfKfokmZJrmQAAAAA8EGV8pAaAAAAAItXU1MTL774Yly6dCkOHDiw4ld3L/fiIRHvPo8GAJVsZf/ffpEymUwMDAzMu3+6ekaxSRDpdDpaWlpmbevv74+IiIaGhplt7e3t0dfXF8PDw0WdB+ZTanb2B0spFtOeCTArwebNm2Pr1q1FfelN6m8FAFiZJEEDAAAAQHEq4d4aALA4lbJ4iOrxAFSyNZWQ0dDQMFPBopBcLhcR71a3SEo2m422trZZ2wYGBmaqcRQynRjy/iQOWGpKKcLC+FsBgLVNEjQAsNTK/ZDa3//938eDDz5YdB8AAGA+lXBvDQAAAJK2phIyjh07FmfOnIlsNlsw2aG/v3/RyRjZbDYOHToUPT09c2Kz2Wzkcrno6OiYtb2pqSk6OzvnbbO/vz/S6XTRlToAAACoPBI7AYCFKPdDalu2bCn6/AAAsFTcWwOA8ij34iERqscDUPnWVEJGQ0NDNDU1xXPPPVcwIeP8+fPR29s7Z/vY2FicPn06mpub5yRdTFfVKOT48ePR2dk5J7Hi2LFj0d3dPadyxnR758+fj56enoX+ZwEAAKx6N2/eLDr2rbfeihMnTsTg4GA0NjbG2bNno6ampqi2rLoHAFQyD6kBwNr27JFny92FiIh47MJj5e4CALBC+T2o8pR78ZAI1eMBqHxrKiEjIqKnpycaGxvj2LFjs5Iy2tvb4+TJkwUrZHR3d8eZM2eiu7s78vn8rH1NTU0z/0wbGxuL48ePR1NTU5w8eXJOew0NDdHX1xdnzpyZtT+Xy0VjY2OcPHkyWlpakvjPXRNKvbE4uW4yRmtH4+rTV2P91Pqi23FjEYAk3Lp1K27evBkbNy5+muYGE7Cabdu2LZF2ent7o66uruj4qampRPoBAAAAAADAbH4PWl0sHgLAWrHmEjLS6XQMDg5GR0dHpNPp2LFjRwwPD0dzc/O8SRBNTU2RTqfj6NGjBdvr7OyM1tbWiHg3GSMioqOjo2Byx7STJ09GX19ftLe3x+joaIyNjUU6nY6XX365YPUOAGBt+NjHPpZIO24wAQAAAAAAAAAAwNJacwkZEe8mUXR1dS34+IaGhjmVMd4vk8lET0/PovvxwcoaAEB5FVv+NKnKFMpsAszvxo0bRcc++uijcfHixbhz505s2LAhDh48GC+88EKCvQMAAAAAAKBUfg9iPrdu3YqbN2/Gxo2Lf+Q1qWc6IiK2bt1aVBwAq9uaTMgAACgkifKnpVam+M53vhP79u0r6iaCG0zAalbKzc1z587FE088Ef39/bF379545pln3CwFAAAAAACoMH4PYj4f+9jHEmmn1Gc6pqamEukHAKuLhAwAgAqyefPm2Lp1a1EJGW4wARRWU1MTL730Urm7AQAAAAAAwBLxexAAUC4SMgAA/qtiy58mVZliYmIifvSjHxXVhwg3mAAAAAAAAO7l5s2bRcW99dZbceLEiRgcHIzGxsY4e/Zs1NTUFNWWBbUAYHG+853vxL59+4pa3DKpZzoAYD4SMgAA/qtib34nVZliYmKiqPMDAACsZMU+DBXhgSgAAGDxtm3bVnIbvb29UVdXV3T81NRUyX0AgLVk8+bNsXXr1qISMpJ6pgMA5iMhAwCgRCpTAAAAFC+Jh6EiPBAFAAAAAMzlmQ4AlpqEDAAAAACANerWrVtx8+bNRa8sl2RlCgAAgOV048aNouIeffTRuHjxYty5cyc2bNgQBw8ejBdeeCHh3gEAALDSlDUh4+LFi3Hw4MFydgEAAAAAYM362Mc+VnIbpVamKPZhqAgPRAEAAIu3devWouLOnTsXTzzxRPT398fevXvjmWeeKbotAAAAVo+yJmQ0NzfHnTt3ytkFVoHxifGiY6/fvh5f/8nXI/dPucj8ciY+8+HPxPZN2xPsHQAAAABwN6U8wOSBKAAAYLnU1NTESy+9VO5uAAAAUGHKmpCxffv2+Lf/9t/Gv/t3/66c3WCF+/RffTqRdl67/Vp84ZUvFB3/+/H7ifQDACrBzZs3i45966234sSJEzE4OBiNjY1x9uzZqKmpKaotD1IBAMDS+s53vhP79u2LjRsXd6u4UipTeCAKAAAAFufZI8+WuwsAALCqlDUhY2xsLLq6umJ4eDg6OzvjoYceKmd3AAD4r7Zt25ZIO729vVFXV1d0/NTUVCL9AAAACtu8eXNs3bp10QkZKlMAAAAAAABAmRMyIiK6urri0KFD0dfXF6dPn47m5uY4evRo/Mqv/Eq5u8YK8Y3f/UbRsU8PPB1Dbw/F5NRkrF+3Pup31MdTe55KsHcALIRqDAAAACuLyhQAAAAAAABQ5oSMrq6u+OxnPxsREcePH4/jx4/Hj370ozh58mSsW7cu2tvbVc3gnlIbU0XHfv7hz8dXf/zVGP75cNT9Sl187qHPldQeAMVRjaHy3Lhxo+jYRx99NC5evBh37tyJDRs2xMGDB+OFF15IsHcAAAAAAAAAAABQfmVNyDh+/PicbQ8//HCcPXs2rl+/Hs8///xM1YzpxA1I0vZN2+Pkb52M0drRqB6pjvVT68vdJQCoCKVUCzl37lw88cQT0d/fH3v37o1nnnlG9RFY4SqhkpHPEQBgqVXCnCfCvAcAKN74xHjRsddvX4+v/+TrceX6ldi1fVd85sOfie2btifYOwAAAIDVqawJGXezffv2WVUzTpw4EevWrYsTJ07Eb/7mb5a7ewBAglRjWF1qamripZdeKnc3gARVQiUjVYwAgKVWCXOeiJUx78nn8nGp81JERIyPjsf42HhkmjOx/+T+eWPGx8bj1dOvRkTElh1bYnR4NOqa66K+pb7sMQCwWnz6rz6dSDuv/eNr8YVXvlB0/O/H7yfSDwAAAICVoGITMt6vrq4u6urq4vTp09Hd3R2ZTCY6OjpUzQCAVUI1BgAAAFgZhs4PxdX+q3Gk68is7d2N3THYNRhPDj85J2Z8bDy6G7ujtac1ahtqZ7ZfaL8QV/uvRnNnc9liYD4LXWV+ct1k3P7F7RifGI/1U+sTXWE+tTFVVBwAAAAAAMunohMyLl68GJ2dndHX1xcR764M1tbWFu3t7RERM1UzOjo64jd+4zfK2FMAoFxUYwBYeioZAQBrgTnPvY2Pjcfrz70erT2tc/Yd+dqR6G7sjgvtF+Yka/S09sQDLQ/MSpKIiDjSdSQ6qzqjrrkuMk2ZssTAfJJYZb7UFea/dfhbJfcBWFu+8bvfKDr26YGnY+jtoZicmoz169ZH/Y76eGrPUwn2DgAAAGB1KmtCxsWLF+PgwYOztv385z+P7u7u6OrqilwuF1NTUzMVMY4fPz7r2LNnz8b169eju7s7RkdH49SpU/Erv/Iry/mfAAAAfMCF9gvxYOuDd33QabB7MIZ6hqKxvTEyTZlIpVORz+VjJDsSrz/3ehw4dWDOQ1QR7z4A9urpVyMiYsuOLTE6PBp1zXVR31I/77mKiWE2lYwAgLXAnOferg1ci6HzQ9Hb0Tun2sT0/P1K35VZ2/O5fOT6cnG463DBNuuP1sflzsuzvj8sVwywsiy0akkh81Uu+WCFk4VQuYRKVsr1+fmHPx9nf3w2hseGoy5dFyceOuF6BwAAAFiAsiZkNDc3x507dyLi3eSMrq6uOH/+fExNTUVEzFTDePjhh+dtY/v27fGlL30prl+/Hp/97GfjzJkzqmUAAMAym374abBrMEayI/Fg64N3PX58bDxyfbnI9eVmbU+lU9Ha0zpvMkZ3Y/ec/RfaL8TV/qtzHggrNoZkqWQEAKwFa2XOs7l6c6TSqdiyY8u8x6TSsx/cHOgaiIiIqkxVweOr66oj252N8bHxmdjlioG7Wegq85PrJiN/fz6q3qyK9VPrrTC/hJKoWhKhcgnMZ/um7dHx0Y5ydwMAAABgxSlrQsb27dvjX/yLfxERMacaxtGjR2P79u2Lauv555+Pz33uc/HVr351qboMAAB8wGD3YOR6c5FpzkRTZ1Ocaz63oLjDXYdjdHg0xnJjkapOxc7GndHY1jjv8T2tPfFAywNzkjWOdB2JzqrOqGuum7PabTExAABAYbUNtdGRL/yg5kh2JCIidjXtmrX9zeybd02AmE6guDZwbWZuvlwxcDcLXRV+ct1kbLpvU6Q2pmL91HorzAMAAAAArDFlTciIiBgeHo6IiJaWljh16tRdq2EsxGKSOAAAgNI1tjXOJFJMP4S1EA8efXDBK9NOV+A43HW44P76o/VxufPyrAeriokBAACK09fRF1WZqjlV6PK5fGyu3jxv3PR3gnwuv+wxsBSsML90Flq1pJD5Kpd8sMIJAMBSu3D8Qvxq6lfL3Q0AACBBZU/IaG9vjz/6oz8qKZHi+vXr8Ud/9EfR3t4e169fT7B3AABAJRjoGoiI91a1/aDquurIdmdjfGx85kGrYmIAAGCtmbg9EXdu35l5/Ysbv1hUfD6Xj0udlyKdScfjvY/P2X9r9Na8c/KImEmiGB8bX/YYYGUppdLIfJVLPljhBAB412D3YAz1DEVje2NkmjKRSqcin8vHSHYkXn/u9Thw6sCcytQR7863Xz39akREbNmxJUaHR6OuuS7qW+rnPVcxMQAAAJWk7AkZX/3qV0tu4/nnn4/Ozs44f/58dHRYdQgAAFabN7Nv3jVpYvrBq2sD12YqXhQTAwAAa82l05fie3/4vZnX19cvbNGjofNDcbX/aozlxiKdSUddc13B4xaaAPHO2+8sewywdqy2yiXjE8Unl12/fT2+/pOvx5XrV2LX9l3xmQ9/JrZvKm7hvFKSZACobONj45Hry0WuLzdreyqditae1nmTMbobu+fsv9B+Ia72X51TTa/YGAAAgEpT1oSMo0ePJtbO8PBw7N27Nz7xiU8k0iYAALA8RrIjcW3gWuzcs7PgjzgR7666O72ibSHTiRf5XL6kGAAAWGsOnDoQjzz1yMzrN954I77y4a/cM66+pX7WirXnms/FYNdgHPnaERXoYJXx8H/l+fRffTqRdl77x9fiC698oej4bx3+ViL9AKAyHe46HKPDozGWG4tUdSp2Nu6MxrbGeY/vae2JB1oemHOf/0jXkeis6oy65ro5iyMVEwMAAFBpypqQcfbs2UTa2b59e/zRH/1RIm0BAADvmrg9EXdu35l5/Ysbv0i0/VxfLvK5fGSaMtHY1hgj2ZE413wu9nfsn/MDy63RWzMVLQqZTrx4/6q4xcQAAMBas3HTxti46b2fCu7bdl9R7bT2tEZnVWeMj43H472Pz2xPpVMLmnNv2bFl2WOAhfHwPwCsTQ8efXDBydb5XD5yfbk43HW44P76o/VxufPyrHv/xcQAAABUorImZEz7y7/8y+ju7o58Ph/PP/98/MZv/Mas/VeuXImOjo74yEc+El/84hfL00kAAFhjLp2+FN/7w+/NvL6+/npibU8nSuw/uX9mW21D7cxDXG2DbbNWxFpo0sQ7b79TUgwAAFCcVDoV9S31MXR+KHJ9uZmHpu5WtS7i3UTq6fhpyxUDsFJ943e/UXTs0wNPx9DbQzE5NRnr162P+h318dSepxLsHQBr0UDXQETEvIskVddVR7Y7G+Nj4zNz8mJiAAAAKlHZEzJOnToVe/bsif7+/rh+/Xpks9k5CRm7du2K559/Pl5++eU4depUnD59ujydBQCANeTAqQPxyFOPzLx+44034isf/koibde31BfcPv0QV09rTzw5/GQi5wIAAJIxPjZ+10p06Uw6IiKGe4dnEjKqMlVxbeDaXducPm7acsUAC+Ph/8qT2lj8Q6mff/jzcfbHZ2N4bDjq0nVx4qETJbUHABERb2bfvGvSxPQ8/NrAtZnvCsXEAAAAVKKyJmRcvHgxMplMfOITn4ipqam4cuVKfPzjH5/3+EOHDkVExLe//e27HgcAAJRu46aNsXHTe18Z7tt237Kcd+fenTF0fijyufzMDy6pdGpBFS+27Ngy8+/FxAAAAPPrrOqMiIiOfEfBB6em59bvn4ff33B/5Ppy87aZz+UjImY9YLVcMcDCePh/ddm+aXt0fLSj3N0AYAUZyY7EtYFrsXPPzlmVrd8vn8vftWrd9PeH6Xl5sTEAAACVaH05T97T0xPHjx+PiIiWlpb40pe+dM+YQ4cORW9v71J3DQAAKJPpH1lGsiMz2+72o0xExK3RW7Nii40BAADml0qnoipTNe8cenR4NCIidjbunNm2+9juiJg9v3+/a/1zV7tdrhhg6U0//N/9r7uj46MdsX3T9nJ3CQDWrInbE3H757dn/vnnf/rnux6f68vF5TOXIyKisa0xIiLONZ8rmAh9a/TWXe+1T9+vf3/ydjExAFBuN2/eLPqfXC4Xv/M7vxM7duyI3/md34lcLld0WwBUlrJWyJiamirn6QEAgDK40H4hrvRdiSeHn1xwTFWmKq4NXJt3//QPMtMVNYqNAQAA5tfQ1hB72vfMu3/o+aFIpVPx4NEHZ7bVNtRGpikTrz33WsHVdIfOD8XjvY/P2rZcMQAAsJZcOn0pvveH35t5fT2uz3vs9H3z/Sf3z2yrbaiN1p7W6KzqjLbBtlnz7oUmTbzz9jslxQBAuW3bti2Rdnp7e6Ourq7oeM/eAlSWsiZk5PPFlRXM5eYvOw4AAFS2kYGRmeoUhUz/CPP+H3Pub7i/4Kpb06ZLlr9/xdtiYgAAgPk1dzbHhfYL8WDrg3Pm0T2tPRER8cmXPzlnldvWntbobuyO3cd2z5rnX2i/EPtO7is4J1+uGAAAWCsOnDoQjzz1yMzrq1evxlfqv1Lw2PqW+oLbU+lU1LfUR09rz6IWXQKgOKVUQnjrrbfixIkTMTg4GI2NjXH27NmoqalZdDtbt24tug8AUElyL+ci15uLWBdRXVcdO/fsjPsfuj+RtsuakDE8PLzomOvXr8fbb7+9BL0BAACWw66mXdHW2Tbv/mv91yKVTs2qXLH72O74/pnvx0h2pOBqt9f6r815uKqYGAAA4O6OdB2JofND0dPaE6nqVIyPjsf42Hjc33B//MGVP5iTjBHx7kNbbYNt0dvRG6l0Krbs2BKjw6NR11x31we9liMGKtn4xMJWjS7k+u3r8fWffD2uXL8Su7bvis98+DOxfdP2otpKbZz7dw0ArDwbN22MjZvee0zol37+S0W1s3Pvzhg6PxT5XH7mPn4qnVpQxYstO7bM/HsxMQBrTSVUY1CJYbYbN24UHfvoo4/GxYsX486dO7Fhw4Y4ePBgvPDCCwn2DmBtO7PjTJx8++S8+zOHMpE5lInx6+Nxa/RW5PpyMdA1EM2dzbHpVzaVdO6yJmQcPXo0jh07Fs8999yiYn7v935vCXsFAAAspd3Hdsdg92A0tjXO2ZfP5WPo/FC09rTO2l7bUBuZpky89txrBZMrhs4PxeO9j5ccAwAA3Ft9S/2iExxS6VQc6TpSkTFUFkkI7/n0X306kXZe+8fX4guvfKHo+G8d/lYi/QAAVofpJOyR7MhMQsbm6s13jZmumv3+BO5iYgCg3EqpGHLu3Ll44oknor+/P/bu3RvPPPOMCiQACVpoEmFqeypS21PReLwxxq+PR29Hbxz+6uGSzl3WhIyTJ0/Ghz70ofi93/u9+NrXvha//Mu/PO+xP/7xj+P48eMxNjYWX/ziF5exlwAAwELlc/mIiLuualXbUBu5vlxcPnM59p/cPyu2u7E79p3cV/Dhrtae1uhu7I7dx3bPSrC40H4h9p3cV7DaRTExAAAAlI8kBACA8rrQfiGu9F2JJ4efXHBMVaYqrg1cm3f/9G8G76+MXUwMwFqjGsPqUlNTEy+99FK5uwGwaq1bt27RMantySSAlzUhIyLiu9/9bnzoQx+Knp6eaG5ujqampkin01FdXR2jo6MxPDwcfX19kc1mY2pqKrLZbLm7DAAAvM/Q+aEY7BqMiJj58eTC8Qsz2+pb6+dUw9h/cn/k+nJxof1CjI+Ox/jYeKTSqfjky58sWM0i4t1VsNoG26K3ozdS6VRs2bElRodHo665bt7VeYuJAQAAgErwjd/9RtGxTw88HUNvD8Xk1GSsX7c+6nfUx1N7nkqwdwDAajUyMDJTnaKQ6USJ99/Lv7/h/sj15eaNmV7M6f2LJBUTA7DWqMYAwFIa7B6MoZ6haGxvjExTJlLpVORz+RjJjsTrz70eB04dKPgMz/jYeLx6+tWIiAU/h1NMzHIYvz4eIwMjJbdT9oSMTCYTo6Oj0draGt/97nejt7d3zjFTU1PR1NQUXV1dsWvXrjL0EgAAmE99S31RX5AyTZlF/5CSSqfiSNeRJY8BAACgPCQhvCe1sfjV2T7/8Ofj7I/PxvDYcNSl6+LEQydKag9gJRqfmL+K791cv309vv6Tr8eV61di1/Zd8ZkPfya2b9qecO+gcu1q2hVtnW3z7r/Wfy1S6dSsyhW7j+2O75/5foxkRwo+sHWt/9qc3wOKiQFg4VRjAOBexsfGI9eXm5MonUqnorWndd5kjO7G7jn7L7RfiKv9V6O5szmRmPmM/Wys4Papqal39//9WMTU3dsYHxuPW6O3YiQ7EpdOX4r6o6UnhZQ9ISMiIp1OR29vb7z88svR09MTAwMDMTY2Ful0OjKZTLS3t8ehQ4fK3U0AAAAAAACWkCSEZGzftD06PtpR7m4AlNWn/+rTJbfx2j++Fl945QtFx/9+/H7JfYDltvvY7hjsHpxT+Tri3aoVQ+eHorWnddb22obayDRl4rXnXiv40NbQ+aF4vPfxkmMAAIBkHe46HKPDozGWG4tUdSp2Nu4s+F1gWk9rTzzQ8sCcOfyRriPRWdUZdc11cxKri4mZz7XBa3Gt/1rkc/nI9eXi9vXbs/b/WebPFtROxLtJHJmmTBz+6uEFx8ynIhIyph06dEjiBQAAAAAAAIsmCQEAoHS1DbWR68vF5TOXY//J/TPb87l8dDd2x76T+wpWzW7taY3uxu7YfWz3nFVv953cV/ABq2JiAACA5Dx49MFIpRe2qM10EsThrsIJDPVH6+Ny5+VZ8/hiYu6m/hP1Uf+J976PjGRHoq+jL3Iv52LdunXxwCceWFA7VZmqyDRnInMome8cFZWQAQAAAAAAAABQqm/87jeKint64OkYensoJqcmY/269VG/oz6e2vNUwr2Dyrb/5P7I9eXiQvuFGB8dj/Gx8UilU/HJlz9ZsJpFREQqnYq2wbbo7eiNVDoVW3ZsidHh0ahrriuYwFFsDAAAUB4DXQMR8W4yQyHVddWR7c7OfH8oNmYxahtq4/Hex+NC+4X46fmfRuvzrfcOWgIrMiHj1KlTcfr06XJ3AwAAAAAAAACoQKmNi3+QIyLi8w9/Ps7++GwMjw1HXbouTjx0oui2YCXLNGUWXaEilU7Fka4jSx4DAAAsvzezb941aWI66eLawLWZ7xLFxBTjSNeRGBkcKTq+VOvLduYSdHd3l7sLAAAAAAAAAMAqs33T9uj4aEd0/+vu6PhoR2zftL3cXQIAAIAlNZIdicHuwRjJzp/UkM/lY3P15nn3Tyde5HP5kmKKdeDUgaLi+k71lXzuiqmQ8bOf/Sxyudw9j8tmszE2Nrb0HQIAAAAAAAAAFuXmzZsLOm5iYiJu3boVN2/ejI0b33104a233ooTJ07E4OBgNDY2xtmzZ6OmpmYpuwsAAACrxsTtibhz+87M61/c+MVdj8/15SKfy0emKRONbY0xkh2Jc83nYn/H/jkVK26N3pqpaFHIdOLF+Nh4STHFqv9EfVFx2e5sNJ1uKuncZU/I+PM///Po6OiQZLECjU8Uf/Ffv309vv6Tr8eV61di1/Zd8ZkPf6bolUWUhwUAAAAAAACoDNu2bUuknd7e3qirqys6/luHv5VIP1aDhSbJFHK3JJlCSTV3s3Xr1qL7AQAAwL1dOn0pvveH35t5fX399XmPnU6U2H9y/8y22obaaO1pjc7dr7+cAADHCUlEQVSqzmgbbIvahtqZfQtNmnjn7XdKiknC2M/GFlR1YyQ7kkgySFkTMl5++eVoa2uLTCYTra2tkU6n7xkzODgYFy9eXPrOcU+f/qtPJ9LOa//4WnzhlS8UHe9GGgAAAAAAAAAUVilJMlNTU4n0AwAAgMIOnDoQjzz1yMzrN954I77y4a8UPLa+pXBFiVQ6FfUt9dHT2hNPDj+5JP1cKtk/z0ZfR18iSRaLUdaEjC9/+cvR09MTn/jEJxYVt2PHjiXqEQAAAAAAwNqjKjawWJXwuTG5brLoPrB0bty4saDjJiYm4vvf/37s27dvprrCo48+GhcvXow7d+7Ehg0b4uDBg/HCCy8U1Y//6/f+r6LiAAAAYKXauGljbNz0XnrAfdvuK6qdnXt3xtD5ocjn8jOVNFLp1IISHbbs2DLz78XEFCv3ci4utF2IqkxV1LfWRyp973vNI4MjceXilZLPXdaEjKqqqkUnY0RE7Nq1awl6w2J943e/UXTs0wNPx9DbQzE5NRnr162P+h318dSepxLsHQAAAAAAsFCqYgOLVSmfG3/W9meJ9IPkbN26dUHHTUxMxObNm2Pr1q0zCRnnzp2LJ554Ivr7+2Pv3r3xzDPPLLg95rfQJJlC7pYkUyipBgAAgJVvOplhJDsyk5CxuXrzXWNujd6aFVtsTLFe/vLL0drTGvWfKFz5Yz5ndpwp+dxl/Ubc0NBQVNzAwEDCPaEYpaxS9fmHPx9nf3w2hseGoy5dFyceOmHVKwAAAAAAAIA1rKamJl566aVyd2PVKSWp5W5JMoWSagAAAKh8F9ovxJW+K/Hk8JMLjqnKVMW1gWvz7p+uhDGdwFFsTLFSValFJ2NERKR3pUs+d1m/EY+NjZXz9JTR9k3bo+OjHeXuBgAAAAAAlN3tidsxPnHvsu0fdP329fj6T74eV65fiV3bd8VnPvyZ2L5pe1F9UBUbFqaYv9WIZP9eK2WRs0r43JhcNxnvxDtF9wO4N0kyAAAAq8/IwMhMdYpCphMlahtqZ7bd33B/5Ppy88bkc/mIiMg0ZUqKKdb7+7oYbQNtJZ+7rAkZra2t8e1vfzs+/vGPLyru1KlTcfr06SXqFQAAAAAAwPL54ve+WHIbr/3ja/GFV75QdPy3Dn+r6FhVsVlLPv1Xny65jXL+vSaplL/zpD43JtdNRv4X+RifGI/1U+sXHZ9UoozPPObz7JFny92FJTW5bjJGa0fj6tNXF/Q3+NiFx5ahVwAAANzLrqZd0dY5fyLCtf5rkUqnZlWu2H1sd3z/zPdjJDtSMPnhWv+1OYkVxcQUazqJpBzKmpBx6NCh+OM//uNFJ2V0d3dLyAAAAAAAAKgAqmIDi5Xk58aX/v2XEmmnlESZSkmSAQAAAFiI3cd2x2D3YDS2Nc7Zl8/lY+j8ULT2tM7aXttQG5mmTLz23GsFkyuGzg/F472PlxxTrPrW+vjpt38aD3z8gUXF9Z3qi6bTTSWdu6wJGT/72c+itbU1enp6Yu/evdHU1BR1dXWRycyf6ZLNZmNsbGz5OgkAAAAAALCE/uT/8ydRvbl60XFPDzwdQ28PxeTUZKxftz7qd9THU3ueWoIeAtO+8bvfKCrO3ysAAAAAlaK2oTZyfbm4fOZy7D+5f2Z7PpeP7sbu2HdyX9S31M+Ja+1pje7G7th9bPesBIsL7Rdi38l9BatdFBNTjMyhTFz+48uLTsrIdmdXdkJGQ0NDXL9+PSIipqamYnBwMNatW1fOLgEAAAAAACyrTRs3RWpjatFxn3/483H2x2djeGw46tJ1ceKhE0W1AyxcsX9j/l6Xzh///h9H1ZtVsX5q/aJjJcoAAAAAa9X+k/sj15eLC+0XYnx0PMbHxiOVTsUnX/5kwWoWERGpdCraBtuit6M3UulUbNmxJUaHR6Ouua5gAkexMcUY+9lYPNj6YLze83p8be/XYlfTrqiuq46qTNW8MSPZkRgfGy/53GVNyKiufne1p6NHj0Y6nV5QzODgYFy8eHEJewUAAAAAAFD5tm/aHh0f7Sh3N4AF8Pe6dDbd925SWzEJGRJlAAAAgLUs05RZdIWKVDoVR7qOLHnMYnU1dMXt67cj4t1CEdcGry1boYiyJmRkMpn48pe/HJ/97GcXFbdjx44l6hEAAAAAAAAAa4FEGQAAAIDVYXP15oiIePDog5FKL2zBjZHBkbhy8UrJ5y57QkYms7ismoiIXbt2LUFvAAAAAAAAAGBxxifGi469fvt6fP0nX48r16/Eru274jMf/kxs37S9qLZU9wAAAADWqqpMVRz48oFo+GzDouLO7DhT8rnLmpBx9uzZouIGBgZKOu/Y2FicPn06It6ttjE8PBzNzc3R0tJSUpsdHe+unjI6OhoREc3NzdHW1ras/QAAAAAAAABg+Xz6rz6dSDuv/eNr8YVXvlB0/LcOfyuRfgAAAACsNFWZqqjKVC06Lr0rXfK5y5qQUcjPf/7zGB0djd/4jd9YkvbHxsaisbExenp6oqHhvQyY9vb26O/vj87OzkW3mc1mo7W1Nbq6uqKpqWlme3NzcwwPDxdscyn6AQAAAAAAAAAAAAAAa8nhs4eLimsbmL/4wkJVRELGz372s+js7Izu7u6IiFi3bl1MTEzM7L9y5Up0dHTE7/zO78RnP/vZks7V2toaLS0ts5IgIiK6urqiqqoqmpubZyVVLKbND8Z1dXVFXV1dwTaXoh8AAAAAAAAALK9v/O43io59euDpGHp7KCanJmP9uvVRv6M+ntrzVIK9AwAAAGAprS93By5evBiZTCa6urpi165dcejQodi1a9esY3bt2hXPP/987Nq1K/7kT/6k6HPlcrno6+uL9vb2gvuPHj266MoUZ86ciVwuF6dOnZqzL5PJRFNT05w2l6IfAAAAAAAAACy/1MZU0f98/uHPx4d/9cOx7b5t8eFf/XB8/uHPF90WAAAAAAs3fn08vv8n3y+5nbImZFy5ciVaWlqira0thoeH4+/+7u/iu9/9bnziE58oePx0ssbFixeLOl9XV1dEvJsoUUhdXV309fXF2NjYgtvs7e2NiIh0Ol1wf0NDQ/T19S15PwAAAAAAAABYWbZv2h4dH+2I7n/dHR0f7Yjtm7aXu0sAAAAAa0I+l4/Xn3u95HY2JtCXon35y1+Ozs7OOH78+Kzt69atmzfmE5/4RHzuc5+LgwcPLvp82Wx23sSJiPcSJAYGBqKpqWlBbQ4MDNy1zbq6uplzNzQ0LFk/AAAAAAAAAAAAAABgrbly8cqiYy53Xo7xsfGSz13WhIx8Pj8nGWMhpqamijpfLpeL6urqefdPJ0nkcrkFt1ldXR2jo6P3PG5gYGAmIWMp+gEAAAAAAAAAVI7xieIf6rh++3p8/SdfjyvXr8Su7bviMx/+TNEVVFIbU0X3AwAAAFaC51uej9vXby8qZmpqKjZXbS753GVNyJiuBLFY+Xy+qLjR0dG7nnM6SWJsbGzBbTY0NMT58+fn3T88PDynzST6cWviVtyYuDHz+r7198V9G+5bYK95v6l1UzEVUzG1biomY7LodiYmJhLs1co1MTERk5OTxiMhxjN5xjRZxjNZxjN5xjRZk5PFz5UoXiXM/f0NVRafbczHtcF8XBvMx7VBIeb95fHOnXdi08Smmdfu+a8cSf3GQHl4/1Y+72FlWuj8cqnno5Pryn9NfPqvPp1IO6/942vxhVe+UHT8Xxz5i0T68UGL/Rv03aOyeD/KoxLu+a8GnvVJnvtEyTKeyTKeyTOmyTKeyTKeyVpL9/w3V7+bWPHg0QcjlS68MMH42Hjkc/m4NnAtMk2Z2Ll3ZyLnLnuFjGIUWzlioYkWb7/99oLbbG9vj/Pnz0c2m52pgPF+fX19c9pMoh8d/7Fj1uvfbfjd+Niejy2oXWabiqm49cu3YjRGY12sK7qdS5cuJdirlWtycjLeeOONiIhYv359mXuz8hnP5BnTZBnPZBnP5BnTZC1mnkxyKmHub65bWXy2MR/XBvNxbTAf1waFmPeXRyXM+ylOUr8xUB7ev5XPe1iZvvr5ry7ouOn377XnXlua9682+SZXqtHa0SVpd7F/g+4zVpbR0aW5Lrg7c/9keNYnee4TJct4Jst4Js+YJst4Jst4Jmst3fOvylTFgS8fiIbPzn2ev5DLf3w5NldtXvDxd1PWhIyqqqp45ZVX4rd/+7cXHHPq1Kk4dOjQEvZqcZqamqKpqSlOnz4dPT09s/b19fVFU1NTZLPZ2LFjR6Ln7fyfO6MqVTXz+r7198V9IzLmizG1bipGYzSq36yOdVPFf0k7cOBAgr1auaazEvft2xcbN5b1I2ZVMJ7JM6bJMp7JMp7JM6bJmv7Cy/KqhLm/uW5l8dnGfFwbzMe1wXxcGxRi3l8elTDvpzhJ/cZAeXj/Vj7v4cq2Ft6/P////nnRsf9b//8WQ28PxeTUZKxftz7qd9TH/7r3fy2qrdRI4ZVBS7XY99B9xsryD//wD+Xuwppk7p8Mz/okz32iZBnPZBnP5BnTZBnPZBnPZK2le/5VmaqoylTd+8D/av+X9sfQXw7FlYtXYtfBXSWdu6xX6smTJ+N3fud34mtf+9qCkjL+5E/+JM6fPx9/+7d/W9T50un0gqpTLDZ5ore3N9rb26OjoyNOnToVEe9Vxqirq5s5d5L92Lxxc2zbuG32xqlFdZv/ajImY12si3VT62L9VPHZdD7437N+/frYuHGjMUmI8UyeMU2W8UyW8UyeMU2OlQfKoxLm/v5+Ko/PNubj2mA+rg3m49rgg8z7y2PLhi1ln/dTnKR+Y6A8vH8rn/dwZVsL79+WDVuKjv38w5+Psz8+G8Njw1GXrosTD50ovr0lmlcs9j3sebTnnscsh8cuPFbuLlQE3wPLoxLu+a8GnvVZGu4TJct4Jst4Js+YJst4Jst4Jmct3fM/fPbwomPqP1Effaf6VnZCRiaTibNnz8ahQ4diz549cezYsXj44YdjbGwsfvazn8XY2FiMjo5GNpuNrq6uyOVyMTg4WPT5qqur77p/uhzj+5MnFqqrqyvGxsZmEjGampoinU7HmTNnIiJiz549y9IPAAAAAAAAAGBl275pe3R8tKPc3QAAAADuoeypQ01NTfH8889HW1tbnDx5cmZ7d3f3zL9PTU1FJpOJgYGBeOihh4o+13Qb85muWpHJZIpqP51OR0tLy6xt/f39ERHR0NCwbP0AAAAAAAAAAAAAAADmN5YbK7mNiqhD0tLSEqOjo3H69Ol46KGHYmpqauafXbt2RWdnZ/zd3/1dPPzwwyWdp6GhYSbZoZBcLhcR7yaJJCWbzUZbW1vZ+wEAAAAAAAAAAAAAAESMXx+PW/lbJbdT9goZ73fy5MlZVTKSduzYsThz5kxks9lZFSum9ff3LzoJIpvNxqFDh6Knp2dObDabjVwuFx0ds8uILkU/AAAAAAAAAAAAAABgrbly8cqCjx0fG498Lh+DXYPR2N5Y8rkrKiFjqTU0NERTU1M899xzBRMhzp8/H729vXO2j42NxenTp6O5uXlOosR0NYtCjh8/Hp2dnZHJZBLpBwAAAAAAAAAAAAAA8J7nW56P29dvL/j4qampyDRlYt8X95V87hWZkPHtb387Pv7xjxcV29PTE42NjXHs2LFZyRDt7e1x8uTJgpUpuru748yZM9Hd3R35fH7Wvqamppl/po2NjcXx48ejqalp3oofxfQDAAAAAAAAAAAAAAB4z+bqzRER8eDRByOVTt392B2bo7ahNjKHMnc9bqFWZELG8ePHi07ISKfTMTg4GB0dHZFOp2PHjh0xPDwczc3N0dLSUjCmqakp0ul0HD16tGB7nZ2d0draGhHvJmNERHR0dNw1qaKYflDZnj3ybLm7EI9deKzcXQAAAAAAAAAAAAAAWDZVmao48OUD0fDZhnsfnLAlT8j48Y9/HA899NC8+xZjdHQ0crncTNJDsdLpdHR1dS34+IaGhjmVMd4vk8lET0/PkvcDAAAAAAAAAAAAAAB4T1WmKqoyVWU595ImZHz5y1+OP/7jP47Gxsb44Q9/OGf/wYMH4/r160vZBQAAAAAAAAAAAAAAYJU6fPZw2c69pAkZuVwupqam5q0uUV1dHRERbW1tERGxY8eOu7b39ttvx/DwcHz7299OtqMAAAAAAAAAAAAAAACLsKQJGV/72teiubk5mpqaCu7PZDLx5S9/OT772c8uqt17JW4AAAAAAAAAAAAAAABrz9jPxmKgayDezL4Zt0ZvxebqzZHOpGNP+564/6H7Ez3XkiZkbN++PY4fPz7v/ubm5tizZ8+i2921a1cp3QIAAAAAAAAAAAAAAFaZvlN98f0z34+pqak5+7Ld2ahvrY8j3Udi069sSuR8S5qQcS9f+tKXioobGBhIuCcAAAAAAAAAAAAAAMBKNH59PLobu+PW6K144BMPxM69OyOVTr27b2w8br19K0YGR+L151+PXF8u/uDKH8SmXy49KaOsCRkAAAAAAAAAAAAAAACl6GntiUxTJg6fPXzX48avj0fvyd74Dwf/QxzvP17yeSsiIeMv//Ivo7u7O/L5fDz//PPxG7/xG7P2X7lyJTo6OuIjH/lIfPGLXyxPJwEAAAAAYI0byY7EQNdAjI+Ox0h2JFLpVDS2N0ZjW2PB4we7B2OoZyga2xsj05SJVDoV+Vw+RrIj8fpzr8eBUweitqF2Ttz42Hi8evrViIjYsmNLjA6PRl1zXdS31M/bt2JiAAAAAACAlW/wa4NRlam6ZzJGRERqeyqOdB2JF0+8GNk/z0bDZxtKOnfZEzJOnToVe/bsif7+/rh+/Xpks9k5CRm7du2K559/Pl5++eU4depUnD59ujydBQAAAACANWqwezAiIo50HZnZluvLRU9rT1zuvBxtg20zpb+njY+NR64vF7m+3KztqXQqWnta503G6G7snrP/QvuFuNp/NZo7mxOJAQAAAAAAVocrfVei5bmWRcUcPns4/uJf/8XKTsi4ePFiZDKZ+MQnPhFTU1Nx5cqV+PjHPz7v8YcOHYqIiG9/+9t3PQ4AACifC+0X4sHWByPTlLnrcZW8si4AADBbPpeP8bHx2H9y/6ztmaZMfPLlT0Z3Y3f0tPbE472Pz4k93HU4RodHYyw3FqnqVOxs3DnvvD/i3ZLiD7Q8MGd+f6TrSHRWdUZdc92c7xvFxAAAAADASnTz5s2iY996661ob2+Pv/7rv46PfvSj0dXVFTU1NYtuZ+vWrUX3AWAppKpS9z6ogPSudMnnLmtCRk9PT3z1q1+NiIiWloVlpBw6dCg+97nPScgAAIAKks/lI9eXi8GuwRjJjsSDrQ/e9fhKXlkXAACYa6BrIP7VqX9VcF9tQ21kmjKR68tFPpePqkzVrP0PHn1wzvx+PtPfLQ53FS4pXn+0Pi53Xp6VXFFMDAAAAACsVNu2bUuknb6+vqirqysqdmpqKpE+ACRm3TLHvc/60psong9kAABY+Qa7B6Ovoy8iIpo6m+55/PTKuh9cEXd6Zd18Lh89rT0FYw93HY59J/dFfUt9NLQ1xOGuw9GR75j3waq7rZKb7c7OSe4AAAAKu9J3Jf5015/G+Nh4wf33N9wfEe9WwivFQNdARMScpI5p1XXVkevLzepHMTEAAAAAAMDqMT5a3G8AY7mxks9d1goZ+Xy+qLhczkNTAABQKRrbGmeSKxby8FUlr6wLAAAUtrl6c4xkRyKfyxesTpeUN7Nv3nXOP/0d4drAtZm5fDExAAAAALBS3bhxo+jYRx99NC5evBh37tyJDRs2xMGDB+OFF15YdDs3b94sug9vvfVWnDhxIgYHB6OxsTHOnj0bNTU1RbW1devWovsBrC7pXen46Qs/jQcefWDBMd//k+/H/Q/fX/K5y5qQMTw8vOiY69evx9tvv70EvQEAAJbDlb4rke3Oxh9c+YOCD03d33B/5PpyMZIdmXeF24VYyCq52e5sjI+NLzjJAwAA1qrHex8vmDQ9bXoFqbsla4xkR+LawLXYuWfnvMflc/nYXL153jam5+753HsLPhUTAwAAAAArVSlJCOfOnYtPfepT8YMf/CAeeeSR+OY3v1lUe+vWrSu6D+/X29sbdXV1RcdPTU0l0g9g5Wv6o6b4sw/9WUTEgpIyBr82GJdOX4qTb58s+dxlTcg4evRoHDt2LJ577rlFxfze7/3eEvYKAABYSpW8si4AAKw1E7cn4s7tOzOvf3HjF/Mee7eE6aHzQ1HbUFvwmOkKeJmmTDS2NcZIdiTONZ+L/R3758zFb43euut5phMvxsfeKz1eTAwAAAAArEU1NTXx4osvxqVLl+LAgQOxcWNZHyMGSFTr863Rvac76n6nLupb6mPnnp0zzw6Nj43HrdFbMdw7HD89/9PI5/JxfOB4Iuct6yfpyZMn40Mf+lD83u/9Xnzta1+LX/7lX5732B//+Mdx/PjxGBsbiy9+8YvL2EsAACBJlbyyLgAArDWXTl+K7/3h92ZeX19/fdFtXD5zOSIijnztyJx90/P+/Sf3z2yrbaiN1p7W6KzqjLbBtllz+oUmTbzz9jslxQAAAAAAxbtx40bRsY8++mhcvHgx7ty5Exs2bIiDBw/GCy+8kGDvgLWqtqE22gba4sLxC3Gh7ULBaj5TU1NRlamK/+W7/0vUPpzMQrJlT2377ne/Gx/60Ieip6cnmpubo6mpKdLpdFRXV8fo6GgMDw9HX19fZLPZmJqaimw2W+4uAwDAmrCYlXIXq1JX1gUAgLXmwKkD8chTj8y8fuONN+IrH/7KguNHsiPR19EXrT2tBZOl61vqC8al0qmob6mPntaeeHL4ycV3HAAAAAAom61btxYde+7cuXjiiSeiv78/9u7dG88880xJ7QG8X21DbbQNtsVg92AMdg3GyI9GZvZVZaqisb0x9n9p/11aWLyyJ2RkMpkYHR2N1tbW+O53vxu9vb1zjpmamoqmpqbo6uqKXbt2laGXAACw9iSxUu5ilXtlXQAAWGs2btoYGze991PBfdvuW1R8T2tPHO46PG/ixd3s3Lszhs4Pzaqgl0qnFjSX37Jjy8y/FxMDAAAAAJRHTU1NvPTSS+XuBrDKNbY1RmNb47Kcq+wJGRER6XQ6ent74+WXX46enp4YGBiIsbGxSKfTkclkor29PQ4dOlTubgIAwJpS6kq5i2VlXQAAWFl6Wnuisb34HzRS6VREvPtdYDohY7qS3Xxujd6aFVtsDAAAAAAAQBIqIiFj2qFDhyReAABAhSh1pdzFqoSVdQEAgIXp7eiNnXt3zqpg90EX2i/Elb4ri0qcrspUxbWBa/Pun57jT8/7i40BAAAAAABWn6G/HIpsdzZu5W9F6/Otkf6N9Kz9+Sv56Ovoi1/7yK/Fvi/uS+Sc6xNpBQAAoARJrqw7zSq5AACwNAa7B6O6rrpgMsb7k6JHBkZm5t2FTB/7/gp59zfcf9fE6nwuHxERmaZMSTEAAAAAAMDq0neqLyIirvZfjZHBkVnPEU2r2lUVrc+3xv0P3z9zfKlWZELG5z73uXJ3AQAASMhCV9b9s7o/W1S7VZmqBT38ZZVcAABYuKHzQxERBZOp87l85PpyM693Ne2KjnzHvG1d678WqXRq1px897HdEREFfySZjvlgYkUxMQAAAAAAwOpx5eKVqMpURf0n6uNI95E49EeH4oGPPzDv8ZlDmcg0ZeKn3/5pyedekQkZzz//fLm7AAAAJKDSVtYFAADmN5J9d14+X2W7XF9u1px897HdMdg9WPDYfC4fQ+eH4sjXjszaXttQG5mmTLz23GsF44bOD8X+jv0lxwAAAAAAAKvH6z2vR+Pxd3+/qG+pj/1fuvfvAplDmRjuHS753BtLbuEefvzjH8dDDz00Z/v169fj5ZdfXnR7/f39MTY2VnrHAACAsrrXyroj2ZGob6mPiHdX1m3rbJu3rflW1v3+me/HSHZk1kNh74+RjAEAAAuTz+Wjp7UndjXtimvt1+bsHx8dj1xfblZFjNqG2sj15eLymcuzkrDzuXx0N3bHvpP7Zub879fa0xrdjd2x+9juWXP5C+0XYt/JfQXn8cXEAAAAAAAAq8RU+U69ZAkZL7/8crS3t8eVK1eirq4u/t//9/+dtX9gYCBaWlpi3bp1i2p3ampq0TEAAEBlWcjKuu9/YGp6Zd35kjeGzg9Fa0/rrO3vXyW3UELG0PmheLz38RL/SwAAYG0413wu8rl85Lvz8x7z/gTpaftP7o9cXy4utF+I8dHxGB8bj1T6/8/eH8a2daf3vu9PsnNMedKIpF6M5QJ3R4vTF6FdNCbtezC2B3fHIj1FYV2gMSmdAMdBD2qRGWwgxZ47Fu2+m4OLOnS8Z26zgR2Tzgba457ja5P1vNCcXSCkPR3EzouKZFxMoryYaMmTDYsuUJNUmonoM454X/iKNkNSFsklUbS+H0AYc/3X8/8/WuQoi+R61mPT69dfb3ieLkk2u02hbEipSEo2u007h3aqMFeQy+9qWMDRbgwAAAAAAAAAAHg2lIvltuJKZqnjtdelIGNxcVGxWEyxWEx+v1+Dg4N1+zidTknS8ePHdeDAAdnt9qfOWyqV9Nlnn+m9996zOmUAAAAAFiiajy7OKpeav8nZ7HfWBQAAAFDvzbk32441fEbL5942u01jsbF1jwEAAAAAAAAAAL2vMFdoOaa8WNZX97/qeO11Kci4fv26zpw5o3379qlYLDYsyDAMQ319fbp69WrL8ycSCSvSBAAAAGCB2eSssrGsJGkh86jAYnpyurrNHXTXdLbY7HfWBQAAAAAAAAAAjU2Hp3U4crjh5/jSoxs2fXD2A0la82fy7cQAAAAAwJP2jO9RciKpwJXAmmOS40nt/Z/2drz2uhRkzMzM6NVXX5WkhsUYK9ubjT2Nz+drOzcAAAAA1nIH3C19KdILd9YFAAAAAAAAAAC18rm8cvGc9of3Nxwvl8qKe+MKJoJ1XavvztyVP+q3JAYAAAAAvunQ1CG98513lPyfkhq7OKYdv7ej6b73bt/T9OS0yqWyDv7oYMdrr0tBhtPp1J07d/Tiiy+uul9fX19b87fTVQMAAAAAAAAAAAAAAABAe9KR9KrjiWBCLwVequtqPRYbU9QRlcvvqrvpUjsxAAAAANDIifdP6J3vvKPZxKwM/6ObvtrsNg04B7RUWFJhrqD59LzyubwqlYrCubAl665LQYbP51MsFtPZs2fXY3p98cUXeuGFF9ZlbgAAAAAAAAAAAAAAAACPZeNZuYNumWmz4XjRLMpMmzoWO9Zw3D3u1q3orZriinZiAAAAAKAZh+FQpBBRIpjQ3PtzMlP1718qlYoMn6FjsWNyjDgsWXddCjL27dunYDCoN954Q//u3/07y+cfGRnR/fv3LZ8XAAAAAAAAAAAAAAAAz67LY5e7nYJem36t2ym0pGgWJT26uKmZTCyz6j5Ol1O5eE7lUlk2u63tGAAAAABYjc1u04nUCZnXTc0mZrWQWai+p3AYDnnDXhmj1hZ9r0tBhiRduHBBhmEoHo/rz//8zy2du1KpWDofAAAAAAAAAAAAAAAAgHqZWEb+qL9pdwxJupe7t2rRxErRxUJmodrxop0YAOvnV5d/pbs/uav+Sn/Xcui1gjUAALB5GaOG5YUXzaxbQYbP59Px48cVCoUUCoXk8XhkGLW/VKlU0ve///01z1koFGSaphYXF61OFwAAAAAAAAAAAAAAAMATZpOz2h/e/9T9imZRA86BpuMrhRcr3TbajQEAAACAzWbdCjLeeOMNmaZZ7WaRzWaVzWbr9kulUi3P3dfX13F+AAAAAAAAAAAAAAAAwFbw8MFDff3g6+rj/+vf/q+nxpRLZRXNotwB91P3XSosVTtaNLJSeFEulTuKAQAAAIDNZl0KMj766CPZ7XZdv35dwWBQfr9fp06dqtvP6XSqUCi0NHcul9OBAwesShUAAAAAAAAAAAAAAAB4pt08e1O//PEvq48XtfjUmA/OfiB/1L+m+ddaNPHV/a86igEAAACAzWZdCjKuX7+uN954Q4ODg3r//feb7tdOpwuPx6PBwcFO0gMAAAAAAAAAAAAAAAC2jMNnDuu7P/xu9fHdu3f1U/dPm+5vpk25/K6NSA0ANp3LY5c7il/uW1ZhuKC7P7mr/kp/2/O8Nv1aR3kAAICNsS4FGZVKRU6ncz2mliQlEol1mxsAAAAAAAAAAAAAAAB4lmzfsV3bdzy+TOh/+OJ/WHX/udTcmrtjSJLNbltTx4udQzs7igEAAACw/qbD0zocOSyH4Wg4Xi6V9cHZDyQ9Ol8vzBXk8rvkDribztlOTK9Yl4IMwzCUyWR05MiR9Zheo6Oj6zIvAAAAAAAAAAAAAAAAsJXdOndL3zvzvZZiBpwDq44vFZYkPSrC6CQGAAAAwPrK5/LKxXPaH97fcLxcKivujSuYCGrYM1zdPh2e1t2Zuw0Lu9uJ6SXt98Nahc/nUzQaXY+pJUnnz59ft7kBAAAAAAAAAAAAAACArahoFmWz21ougnAYjmoBRSMrnTCevMNuOzEAAAAA1lc6kl51PBFM6KXASzWFFZI0FhtTLp6TmTYtiekl69IhY3BwUCMjI/rLv/xL/dVf/ZXl8589e1Y/+tGPLJ8XAAAAAAAAAAAAAAAA2KryubxmE7OaTczWjRXNoiRpenK62t3iROqEJGmXZ9eqF1GtxBo+o7qtnRgAAAAA6ycbz8oddDc9Ty+aRZlpU8dixxqOu8fduhW9VXMO305Mr1mXggxJikajGhkZUTqdVjgc1ujoqJxOZ3W8UqlIkn7zm99U/70W2WxWpVLJ6nQBAAAAAAAAAAAAAACALc0dcMsdcDccm03OKhFMaOziWN2dbfdO7NWH5z5UPpevG5OkhZmFugus2okBAAAAsD5WCqJX61CXiWVW3cfpcioXz6lcKle77rUT02vWrSBjcHBQpmnK6/VqcnJSfX19DfczDN44AQAAAAAAAAAAAAAAAL1q2DMsw2fo4ysfNyyumE3OVrtpdBIDAAAAYH1kYhn5o/5Vu9jdy91btWhipehiIfO4uLqdmF6zbgUZkmS32zU3N6dkMqlMJlPT2aJSqejixYsKhUItzTkzM6Pbt29bmygAAAAAAAAAAAAAAACAplbumFs0iw0LKIKJoOLeuPZO7K0Znw5P6+DUwYYXV7UTAwAAAMBas8lZ7Q/vf+p+RbOoAedA0/GVwouV9w7txvSadS3IWBEIBBQIBOq2J5NJXbhwoeX5hoaGrEgLAAAAAAAAAAAAAAAAwCqmw9MqmSUtZBYePZ6cVjaW1S7PLvmj/up+NrtNoWxIqUhKNrtNO4d2qjBXkMvvkjvgbjh3OzEAAAAAGnv44KG+fvB19fHvvvzdU2PKpbKKZnFN599LhaVqR4tGVgovyqVyRzEbKX0mLd9ZX0dzbEhBRjOVSqWtOIej+ZMCAAAAAAAAAAAAAAAAwBpjsbE172uz21rav90YAAAAAPVunr2pX/74l9XHi/2LT4354OwHNYXWq1lr0cRX97/qKGYj5eK53i7IuHjxYltxn332mcWZAAAAAMDm9ODhA5Uftn4XgMUHi/qvv/qvml+c18jgiP78D/9cgzsG1yFDAAAAAAAAAAAAAAAAdNvhM4f13R9+t/r4888/10//8KdN9zfTplx+10aktqFKd0oqmsWn7pfP5S3pzNHVgozjx4/Xbfviiy9UKBT04osvbnxCAAAAALDJnPrHUx3P8fG/fqz/+Iv/2Hb8/6L/peMcAAAAAAAAAAAAAAAAsH6279iu7Tselwc89/xzq+4/l5pbc3cM6VF3u7UUMOwc2tlRTLty7+WUjqQtKbJoRVcLMlbcuXNH0WhU8XhcktTX16eHDx9Wx+fn5xWJRHT06FGdPHmyW2kCAAAAAAAAAAAAAAAAAAAAANDTbp27pe+d+V5LMQPOgVXHlwpLkh4VYXQS0w7zuqnp0LQchkPuoHtN8+Wzec3fmO9oXWkTFGTcuHFDPp9PkmQYhgzD0Px87S82MjKiq1ev6vr16zp//rx+9KMfdSNVAAAAANhwb//7tzVkG2o57ieZn2j2/qyWK8vq7+uXe8itH+7/4TpkCAAAAAAAAAAAAAAAgF5RNIuy2W0tF0E4DIcWMgtNx1c6UzgMR0cx7bh++rqCiaDcx90txZ0bOtfRulKXCzLm5+cVCAQUCoUUiUQ0MjIiSTp9+nTD/UdHR1UqlXTjxg0dOXJkI1MFAAAAgK7YsX2HbNtbvwvAf9j3H3Th9gXNlebksrv0xstvtDUPAAAAAAAAAAAAAAAAnh35XF6ziVnNJmbrxopmUZI0PTld7W5xInVCkrTLs0tm2mw670qs4TOq29qJaYfNYWu5GEOS7CP2jtaVulyQcfr0aUWjUU1OTtZs7+vraxpz/Phx/eAHP6AgAwAAAABWMbhjUJH/MdLtNAAAAAAAAAAAAAAAALCJuANuuQONixdmk7NKBBMauzimYc9wzdjeib368NyHyufydWOStDCzUFdY0U5MOxrNvRahTKjjtfs7nqEDxWKxrhhjLSqVyjpkAwAAAAAAAAAAAAAAAAAAAAAAvmnYMyzDZ+jjKx83HJ9NzupQ5FDHMe0ol8odz9GurnbIMIz2qlmKxaLFmQAAAAAAAAAAAAAAAADr7/LY5W6noPtL97udAgAAAIBNqGgWq//bqOtEMBFU3BvX3om9NePT4WkdnDrYsNtFOzGtcgfd+vTap3rp1ZdaikufSct31tfR2l0tyGi3sMI0TYszAQAAAAAAAAAAAAAAAAAAAABg65kOT6tklrSQWXj0eHJa2VhWuzy75I/6q/vZ7DaFsiGlIinZ7DbtHNqpwlxBLr9L7oC74dztxLTKGDV06+1bLRdl5OK53i7IcDgc+sUvfqFXXnllzTFnzpzR6OjoOmYFAAAAAAAAAAAAAAAAAAAAAMDWMBYbW/O+Nrutpf3bjWlF6U5Je4J79EniE108cFEjvhE5XU45DEfTmHwur3Kp3PHaXS3ImJqa0tGjR3Xx4sU1FWWcP39eyWRSv/71rzcgOwAAAAAAAAAAAAAAAAAAAAAAsJnFPDE9WHwgSapUKlrILqivr29D1u5qQYZhGLpw4YJGR0e1f/9+TUxMaN++fSqVSrpz545KpZIKhYJyuZxisZhM01Q2m+143VKppLNnz0qShoaGNDc3J7/fr0Ag0NGckUhEklQoFCRJBw4c0NTUVMP94/G4EomEwuGwfD6f7Ha7TNNULpfTlStXdObMGXk8nrbzAQAAAAAAAAAAAAAAAAAAAADgWTfgHJAk7RnfI5vdtqaYfDav+RvzHa/d1YIMSfL5fLp69apCoVBN8UI8Hq/+u1KpyDAMZTIZvfzyyx2tVyqV5PV6lUgkagoewuGwZmZmFI1GW55zpWAkGo3KbrdXtyeTSXm93oZFJKVSSel0Wul0uma73W6vyw0AAAAAAAAAAAAAAAAAAAAAANRzGA4dPn1YnpOtXYN/buhcx2t3vSBDkgKBgAKBgM6dO6crV67oo48+qo4ZhqFwOKxTp05ZslYwGFQgEKgreIjFYnI4HPL7/fL5fC3NGYlElEql6rYHAgEVCgWFw2HFYrG68Vgsprm5OZmmKafTKa/Xq1Ao1NovBAAAAAAAAAAAAAAAAAAAAADAFuUwHHIYjpbj7CP2jtfeFAUZK6ampmq6ZFjNNE2l0+mGxRGSND4+rmg02lJBRi6Xk2EYTcdX5mw29mRHDQAAAAAAAAAAAAAAAAAAAAAAsHbHLhxrKy6U6byZQn/HM/SQlUKMZgUULpdL6XRapVJpzXOuFHk0UygUKLoAAAAAAAAAAAAAAAAAAAAAAOAZs6k6ZKy3XC63anHESqFGJpNZc5cMj8cj0zQVDAaVSCTqxmOxmCYmJtrKFwAAAAAAAAAAAAAAAAAAAAAArF3pTkmZWEb3cve0VFjSgHNAdsOu/eH92vXyLkvX2lIFGaZpyul0Nh1fKdYwTXPNcxqGoVAopHg8LpfLpVgsVi3mWOm2EY1GV50jl8spk8lo//798ng8a14bAAAAAAAAAAAAAAAAAAAAAAA8kj6T1ofnPlSlUqkby8VzcgfdGouPaccLOyxZb0sVZBQKhWoXjEZWijVKpVJL88ZiMblcLkUiEfn9foVCIblcLnk8HsVisaZx6XRapmnK5/MpFAopl8vJ7/crEok8tUPH0sMlffnwy+rj5/qf03PbnmspbzxS6auooooqfRUta7nb6XTk4cOH3U5BDx8+1PLy8qbI5VnA8bQex9RaHE9rcTytxzG11vJyb58r9arNcO7/v/8///cNXa+RiWt0HlzB3zY0w2sDzfDaQDO8NtAI5/3d8dXXX2nHw8df/PCZf+94lr5j2Ip4/nofz2Fv4/nrfTyHva3SV39hEtbfZvjM/1lg1d8fPhN57OHDh5vib/pmeU6W+zo7BrxGrcXnmNbjmFqL42ktjqe1ttpn/uXFsuLeuJYKS3rp+EvafWC3bHbbo7FSWUv3l5TP5vXJ1U9kpk39xfxfaMfvdV6UsaUKMtZaaHH//v2W556ampLdblc4HFY8HpfdblcikWi6/0phyNTUVHWbx+NRIpGQw+FQNptdtVtG5B8jNY//2PPH+pP9f9Jy3pAqqmjp95ZUUEF96ut2Oh25efNmt1PQ8vKyPv/8c0lSf39/l7PpfRxP63FMrcXxtBbH03ocU2u1c56MznHu/8hmONfdLPjbhmZ4baAZXhtohtcGGuG8vzs47+9dz9J3DFsRz1/v4znsbTx/vY/nsLf929K/dTuFLYlzf2tY9feH7x4eW15e3hR/0zfLc1IYLnQUz2vUWnyOaT2OqbU4ntbieFprq33mnwgmZPgMHbtwbNX9yotlpaZS+t+O/G+anJnseN0tVZCxniKRiFwulyqViiKRiM6dO1ftltGoS0YgEGg4j91uVyAQUDAY1NzcXNP1ov8+KofNUX38XP9zei5PxXw7Kn0VFVSQ855TfZXe/pDo8OHD3U6hWpV48OBBbd/On5hOcTytxzG1FsfTWhxP63FMrbXyhhcbi3P/RzbDue5mwd82NMNrA83w2kAzvDbQCOf93cF5f+96lr5j2Ip4/nofz2Fv4/nrfTyHPW6p2wlsTZz7W8Oqvz989/DYw4cP9fGVj7v+N32zPCd3f3K3o3heo9bic0zrcUytxfG0FsfTWlvpM//sxawchuOpxRiSZBu0aSw2pp+/8XPl3svJc7J5E4W12FKvVLvdvqYuGUNDQy3N6/f7FYlE5PP5JEnRaFQTExMKBoOKx+MqFAqrdsv4pgMHDiiZTMo0zWonjW8a2D6g57c/X7uRbpJtWday+tSnvkqf+iu9XU23Wf7j09/fr+3bt2+afHodx9N6HFNrcTytxfG0HsfUOtx5oDs493+E/w/X4m8bmuG1gWZ4baAZXhv4Js77u2Pntp2c9/eoZ+k7hq2I56/38Rz2Np6/3sdz2NsooukOPvO3hlV/f/g8pNZm+Ju+WZ6TTo8Br1Hr8Tmm9Tim1uJ4WovjaZ2t9Jn/fHpegSuNGyY0c+zCMf3d9/+u44KMrXOUJTmdzlXHC4VHrcbsdvua5zx37pw8Hk+1GGOFx+PR3NycQqGQksmk0un0mudcWT+Xy605BgAAAAAAAAAAAAAAAAAAAACArcbmsLUVZx+xd7z2lirIMAyjWnTRyEr3jGZdKRqJxWI6c+bMquMej0epVKq6LRwOy+VyrXkNAAAAAAAAAAAAAAAAAAAAAADQQLtNAC1oHrilCjI8Hk+16KIR0zQlqa7bxWpM03xqR41wOFyzbiaTWVNhiMfTWfsTAAAAAAAAAAAAAAAAAAAAAACeZeVCua24klnqeO0tVZAxMTEhScrlcg3HZ2ZmWirGkB5101gp5Ghmbm5OXq+3+tjn86lYLDbdf2ZmRna7vaVOHQAAAAAAAAAAAAAAAAAAAAAAbDX2Ebs+/dmnLcV8eP5D7dq3q+O1N3VBxvXr13X69GmdOXNG7733nm7fvt3RfB6PRz6fT1euXGk4nkwmFYlE6raXSiVFIhGl0+m6sUAg0DDmydhcLqfx8fHqtomJCcXj8Yb7m6apZDKpixcvPu3XAQAAAAAAAAAAAAAAAAAAAABgS/O95VPqVGrNRRnZi1ndPHtTvrdaa+bQSFcLMoaGhlYdHx0d1VtvvaXTp09rdHRUMzMz+sEPfqAvvvii7TUTiYSSyWRdl4xwOKypqamGHTLi8bjOnTunYDBYNxaNRqvxpVKpZiyXyykYDCoajcput1e3ezwelUolnTt3rmZ/0zTl9Xo1NTWlQCDQ5m8IAAAAAAAAAAAAAAAAAAAAAMDWEbwa1NXjV/V3f/x3yr2X073b91S6U1LpTkn3bt/T/I15pc+k9Z//4D/r/3zj/9SJ9AlL1t1uySxtqlQqa9pvcHBQg4ODmpyc1OLioiKRiN5999221rTb7cpms4pEIrLb7RoaGtLc3Jz8fn/TIgifzye73V7T5eJJiURC6XRak5OTNdsNw1AqlWoYMzU1pXQ6rXA4rEKhoFKpJLvdruvXr8vj8bT1uwEAAAAAAAAAsJ7yubwysYzKhbLyubxsdpu8Ya+8IW/TmHKprA/OfiBJ2jm0U4W5glx+l9wBd9djAAAAAAAAAADAs2HYM6xQJqTpyWlNh6bV19dXt0+lUpHDcOh/fv9/1vC+YUvW7WpBRqNf8mkGBwc7XtdutysWi615f4/Ho2KxuOo+Pp+vYXcNq2MAAAAAAAAAAOiGbDwrSRqLjVW3mWlTiWBCt6K3FMqGZLPbamLKpbLi3riCiaCGPY+/2JgOT+vuzF35o/66dTYqBgAAAAAAAAAAPFuGPcMKZUPKxrPKxrLKf5SvjjkMh7xhrw6dOmTpml0tyGjH4uKiMplMt9MANqXLY5e7nYKW+5b1+z/8/W6nAQAAumg6PK09wT0yfMaq+3GXXAAAAKB3FM2iyqWyDk3Vfklh+Ay9fv11xb1xJYIJnUjVtvdOBBN6KfBSTZGE9KioI+qIyuV31b132KgYAAAAAAAAAADwbPKGVu/ubaV1L8i4c+dOw+2VSkWS9Jvf/Kb672ZKpZIKhYJyuZzOnj2r8fFxq9MEAAAA0IGiWZSZNh9Vlufy2hPcs+r+3CUXAAAA6C2ZWEbfO/O9hmPDnmEZPkNm2lTRLMphOCQ9fp9wLHasYZx73K1b0Vs1hRIbFQMAAAAAAAAAAGCFdS/IyGazmpmZkWmaSqfTWlxcrBk3jLV/AVKpVOTz+fTuu+9anSYAAACANmXjWZkpU4bfkC/q0yX/pafGcJdcAAAAoLfMp+eVi+f0F/N/IZvdVje+y7NLZtpUPpevFmRkYo+6Xa88/iany6lcPKdyqVydc6NiAAAAAAAAAAAAPr32qV569aWO5lj3gozjx4/r+PHj1ce5XE6RSETXr19XX19fzdhqDMOQ3+/X6OjoeqUKAAAAoA1PtvjL5/JP3Z+75AIAAAC9Z8A5oHwur6JZrCt4buZe7t6qBRArBRQLmYXqeflGxQAAAAAAAAAAAExPTm/+goxv8ng8SqVSCofDSiaTunr16kanAAAAAKCLuEsuAAAA0HtOpE6oaBabnl+XzJIk1RRrFM2iBpwDTedcOQ8vmsUNjwEAAAAAAAAAAL3l3u172vXyrqZjrVgqLKloFlUulTvOa8MLMlbEYjFls9luLQ8AAACgS7hLLgAAALB5PHzwUF8/+Lr6+Hdf/q7pvs2KMSRpNjmrYc9wzT5LhaVVY1aKKJ78smOjYgAAAAAAAAAAQO9In07rw7c/1LB3WJP/NFk3/rdH/lYPFh90IbMuFmRI0pkzZ7q5PAAAAIAu4C65AAAAwOZx8+xN/fLHv6w+XuxfbHmOW+duSZLGLo7VbF9rAcRX97/a8BgAAAAAAAAAve+3v/1t27H/8i//ojfeeEPZbFZer1cXLlzQt7/97ZbnefjwYds5AFi7ollUpVJRudj4O4GVa4S8Ie+jx0PNrxmSpKX7SyrOFfXptU87zq2rBRnHjx/v5vIAAAAAVtHKnXJbwV1yAQAAgM3j8JnD+u4Pv1t9/Pnnn+unf/jTNcfnc3mlI2kFE0ENe4bXI0UAAAAAAAAAaOj555+3ZJ5UKiWXy9V2/C9+8QtL8gDQ3NjFMRl+Q4bPaDjuMBw6fPqwPCc9Lc17buhcx7l1tSCjXdeuXdOrr77a7TQAAACAZ5oVd8pthLvkAgAAAJvH9h3btX3H468Knnv+uZbiE8GEjsWOyR1w143Z7LY1nZfvHNq54TEAAAAAAAAAAKB32AZt8k56m44bfkO79+9ueV77iL2DrB7pyYKMyclJCjIAAACAddbpnXIBAAAAPNsSwYS8YW+1/fc3rXSla2apsCTpUUHFRscAAAAAAAAA6H1ffvll27F/+qd/qhs3bujrr7/Wtm3bdOTIEf3sZz9reZ6HDx/qo48+ajsPANY4dOpQW3GhTKjjtde9IOP27dt6+eWXm461olAoyDRNlUqljvMCAAAAsLpO75TbDHfJBQAAAHpfKpLS7gO7dWiq+RccDsOhhcxC0/GV83WH4djwGAAAAAAAAAC971vf+lbbsZcuXdKf/dmfaWZmRgcOHNDf/M3ftDXfw4cP284BwLNhXQsyTp8+rbffflter1f/9E//VDd+5MgRLS4urmcKAAAAADYZ7pILAAAA9LZsPCuny9mwM0a5VK6eY+/y7JKZNpvOUzSLkiTDZ1S3bVQMAAAAAAAAgK3t29/+tv7hH/6h22kA2CDmdVNmypT6JKfLqd37d2vXy7ssmXtdCzJM01SlUlGxWGw47nQ6JUmh0KNWH0NDQ6vOd//+fc3NzenatWvWJgoAAABgw3CXXAAAAKB3zSZnJalhMUbRLCqfy8sdcEuS9k7s1YfnPlQ+l9ewZ7hu/4WZhboiiY2KAQAAAAAAAAAAz45zQ+c0dX+q6bgxasgYNVReLGupsCQzbSoTy8gf9WvHCzs6WntdCzIuXrwov98vn8/XcNwwDJ0+fVonT55sad6nFW4AAAAA2Ly4Sy4AAADQm/K5vJYKSw2LMSTJTJs159fDnmEZPkMfX/m4YaHEbHJWJ1InarZtVAwAAAAAAAAAAHh2VCqVNe1nG7TJNmiTd9Kr8mJZqUhKx9491tHa/R1FP8Xg4KAmJyc1MjLScNzv92v//v0tz9tsPgAAAACb396JvZIeXczVSLM73m5EDAAAAIDGimZRiWBCC9kFTYen634SwYTSkXRdB7pgIqhPk5/WnZdPh6d1cOpgw3PyjYoBAAAAAAAAAADPhr6+vpZjbIM2S9Ze1w4ZT3Pq1Km24jKZjMWZAAAAANgo3CUXAAAA6D2X/JdUNIsqxotN9/lmMYYk2ew2hbIhpSIp2ew27RzaqcJcQS6/S+6Au+E8GxUDAAAAAAAAAAC2rvJiWflM4xu9tqKrBRkAAAAAni1F89HFWeVSedX9gomg4t649k7srSmWeNodbzciBgAAAEC9N+febDvWZrdpLDa2KWMAAAAAAAAAAEBvKN0pNdxeqVQejf+mJFVWn6NcKmupsKR8Lq+bZ2/KPd75TZ16siDjzJkzOnv2bLfTAAAAAKBHnSaysawkaSGzIEmanpyubnMH3fKGvDUx3CUXAAAAAAAAAAAA3XR57HK3U9g0lvuWpfqG8wAAAJvKQnZBCzMLKppFmWlTDxYf1Iy/Y7yz5rkqlYoMn6Fj7x7rOK+eLMiIx+MUZAAAAACbhDvgbqu4gbvkAgAAAAAAAAAAAAAAAFgL93G33McfX6OUz+WVjqRlXjfV19enl46/tKZ5HIZDht+QMWpYktemKci4c+eOTNN86n65XE6lUmn9EwIAAAAAAAAAAAAAAAAAAAAAAJvOsGdYJ1InNB2e1qfJTxW8GuxKHl0vyHjvvfcUiUQosgAAAAAAAAAAAAAAAAAAAAAAAGs2FhtTPpvv2vpdLci4fv26QqGQDMNQMBiU3W5/akw2m9WNGzfWPzkAAAAAAAAAAAAAAAAAAAAAALCpHT5zuGtrd7Ug4/Tp00okEjp+/HhLcUNDQ+uUEQAAAAAAAAAAAAAAAAAAAAAA6BXu4+6urd3VggyHw9FyMYYkjYyMrEM2AAAAAAAAAAAAAAAAAACgGy6PXe52CgAAYAspL5aVu5jTwR8d7GiefovyaYvH42krLpPJWJwJAAAAAAAAAAAAAAAAAAAAAADYCopmUZ9c+aTjebraIaNUKnVzeQAAAAAAAAAAAAAAAAAAAAAA0MPmb8y3HHMrekvlUrnjtbtakBEMBnXt2jW9+uqrLcWdOXNGZ8+eXaesAAAAAAAAAAAAAAAAAAAAAABAL7gauKoHiw9aiqlUKhpwDHS8dlcLMkZHR/X222+3XJQRj8cpyAAAAAAAAAAAAAAAAAAAAAAAYIsbcD4qrNgzvkc2u63hPuVSWUWzqIXMggyfod0Hdluy9roVZNy+fXtN+/n9fqVSKR04cEA+n08ul0uGYTTdP5fLqVQqWZMkAAAAAAAAAAAAAAAAgDpFs6ib0ZuSpHKhrHKpLMNv6NDUoaYx5VJZH5z9QJK0c2inCnMFufwuuQNuS2MAAAAA4EkOw6HDpw/Lc9Kzpv1vvX1LA46BNe+/mnUryDhy5IgWFxfXvH+lUlE2m1VfX996pQQAAAAAAAAAAAAAAADgKWaTs7o7c1djsbGa7XFvXNlYVm/OvVkXUy6VFffGFUwENewZrm6fDk/r7sxd+aN+S2IAAAAA4JschkMOw7Hm/Q+dOqTZv5/V/I15jRwZ6WjtdSvIcDqdkqTx8XHZ7XbL5s1ms7px44Zl8wEAAAAAAAAAAAAAAAB4pFwq65MrnyiYCNaNjV0cU9wb13R4uq5YIxFM6KXASzWFFZI0FhtT1BGVy++S4TM6jgEAAACAbzp24VjLMe7jbqXPpDdvQYZhGDp9+rROnjxp+dxDQ0OWzwkAAAAAAAAAAAAAAABsdQuZBc0mZ5WKpOo6VKwUTsyn52u2F82izLSpY7HGF0G5x926Fb1VU1zRTgwAAAAAbDb96zWxYRgyjPV5QzQy0lkVCgAAAAAAAAAAAAAAAIB6A84B2ew27Rza2XQfm91W8zgTy0iSHIaj4f5Ol1Nm2lS5VO4oBgAAAACsVDJLHc+xbh0yLly4sF5TK5PJrNvcAAAAAAAAAAAAAAAAwFY17BlWpBhpOJbP5SVJI77am6ney92rK9J40krRxUJmodrxop0YAAAAALBKebGspeJSx/OsW0EGAAAAAAAAAAAAAAAAgGdHOpKWw3DIH/XXbC+aRQ04B5rGrRReFM1iRzEAAAAA0Mj8jfk171sulVU0i8rGsvKGvR2vTUEGAAAAAAAAAAAAAAAA8Axb/npZleXK48cPl1uKL5pF3YzelN2w60TqRN34UmGp2tGikZXCi3Kp3FEMAAAAADRyNXBVDxYfrHn/SqUiw2fo4I8Odrw2BRkAAAAAAAAAAAAAAADAM6zwWUGFXxeqjxe1uKa42eSs7s7cVcksyW7Y5fK7Gu631qKJr+5/1VEMAAAAAGutFF9LUrlQVrlUluE3dGjqUNOYcqmsD85+IEnaObRThbmCXH6X3AG3pTGtWCno3jO+p9ptr+m+QwMa9gzLGDUsWZuCDAAAAAAAAAAAAAAAAOAZ5vyOs6YbRaFckH759Dh3wF1zgdQl/yVlY1mNXRx76kVOAAAAADa3lQLssdhYzfa4N65sLKs3596siymXyop74womghr2DFe3T4endXfmrvxRvyUxrXIYDh0+fViek56O52pV/4avCAAAAAAAAAAAAAAAAGDD9G/r17bntlV/+re3d8lQMBHUbHJWiWCiZrvNbltTx4udQzs7igEAAABgjXKprE+ufNKwGGLs4piKZlHT4em6sUQwoZcCL9UUVkjSWGxMuXhOZtq0JKZVDsNRU4S+kSjIAAAAAAAAAAAAAAAAAPBUNrtN7oBbZtqsuWhqwDmwatxSYaka30kMAAAAAGssZBY0m5xVKpKqG1spnJhPz9dsL5pFmWlT+8P7G87pHnfrVvRWxzHtOHbhmEaOjHQ8TzsoyAAAAAAAAAAAAAAAAAAg6dGdcotmsem43bBLkuZSc9VtDsNRLaBoNufKfp3EAAAAALDGgHNANrtt1Y503yyOzsQykpqfoztdTplps6YTXjsxvYaCDAAAAAAAAAAAAAAAAACSpKgjqndc7zS9IGrlgq0nx3d5dq16AdVKgYfhMzqKAQAAAGCNYc+wIsWIDk0dqhvL5/KSpBFfbceJe7l7q3awWym6WMgsdBRjldKdkj699qly7+U0f2NepTsly9eQpO3rMisAAAAAAAAAAAAAAACAnmOz26p3y22kMFeQJO327q5u2zuxVx+e+1D5XF7DnuG6mIWZhbrCinZiAAAAAKy/dCQth+GQP+qv2V40ixpwDjSNW3kP8WTHvXZiOjV/Y14/D/+84ZzD3mGNXRzTrj/aZdl6dMgAAAAAAAAAAAAAAAAAIEnyhDw6kTrRdHz26qxsdpv2jO+pbhv2DMvwGfr4yseNY5KzOhSpvfNuOzEAAAAAmnv44KEefPGg+vO7L3/XUnzRLGo6PC27Ydebc2/WjS8VllbtdrFSePFkJ7x2YjqRnEjqkv+SCnMFVSoV2Ufsso/YtWNwhyqVihYyC4p74rr+l9ctWU/ahB0yvvjiCxUKBb344ovdTgUAAAAAAAAAAAAAAADYUvxRv6bD09oT3FPXoSIRTEiSXr/+et1FVcFEUHFvXHsn9tZ0vJgOT+vg1MGG3S7aiQEAAADQ2M2zN/XLH/+y+nixf3FNcbPJWd2duauSWZLdsMvldzXcb61FE1/d/6qjmHalT6c1l5rT6Fujcgfccow46vbJf5TXx//fj3XzrZsaGBrQwf/XwY7X3RQFGXfu3FE0GlU8Hpck9fX16eHDh9Xx+fl5RSIRHT16VCdPnuxWmgAAAAAAAAAAAAAAAMAzbyw2ptnkrBLBhGxOm8qFssqlsnZ5dukv5v+i4R1ubXabQtmQUpGUbHabdg7tVGGuIJffJXfA3XCddmIAAAAANHb4zGF994ffrT7+/PPP9dM//OlT49wBd8359yX/JWVjWY1dHFu1u8VmYl43ZabNR+9XBpvnPLxvWMP7hrU/vF+Xjl6SO+CW/d/ZO1q76wUZN27ckM/nkyQZhiHDMDQ/P1+zz8jIiK5evarr16/r/Pnz+tGPftSNVAEAAAAAAAAAAAAAAIAt4ZsXZa2FzW7TWGxs3WMAAAAA1Nu+Y7u273hcHvDc88+1NU8wEVTUEVW5VNaJ1InqdpvdtqaOFzuHdnYU045cPPeok98qxRhPchgOBa8GlZ5KK3Al0NHa/R1Fd2h+fl6BQEChUEhzc3P67LPP9P777+v48eMN9x8dHdXIyIhu3LixwZkCAAAAAAAAAAAAAAAAAAAAAPBss9ltcgfcMtOPuk6sGHAOrBq3VFiqxncS045KpbLmYowVw55hVSqVjtaVulyQcfr0aUWjUV24cEEjIyPV7X19fU1jjh8/rkQisRHpAQAAAAAAAAAAAAAAAAAAAADwTCmXyiqaxabjdsMuSZpLzVW3OQxHtYCi2Zwr+3US04524ztdV+pyQUaxWNTk5GTLcVZUogAAAAAAAAAAAAAAAAAAAAAAsNVEHVG943qnWhDxTTuHdkpSzfguz66m+0uqFngYPqOjmLY07wexPnFP6GpBhmG0d+CKxebVOAAAAAAAAAAAAAAAAAAAAAAAoDGb3SaH4ZDNbms4XpgrSJJ2e3dXt+2d2CtJyufyDWMWZhbqCivaiWmHw3CodKfUUsyDLx5owDnQ8dpd75DRDtM0Lc4EAAAAAAAAAAAAAAAAAAAAANDrfvvb37b9Y5qmjh49qqGhIR09elSmabY912bmCXl0InWi6fjs1VnZ7DbtGd9T3TbsGZbhM/TxlY8bxyRndShyqGZbOzHt8E56lbmQ0YMvHqw5JjWV0v7w/o7X3t7xDB1wOBz6xS9+oVdeeWXNMWfOnNHo6Og6ZgUAAAAAAAAAAAAAAAAAAAAA6EXPP/+8JfOkUim5XK624yuViiV5rAd/1K/p8LT2BPfUdahIBBOSpNevv17XQSOYCCrujWvvxF4Ne4ar26fD0zo4dbBht4t2Yp601s4Xeyb2KBFMyPuGV44RR9P9imZRn1z5RL6oTzte2LGmuVfT1YKMqakpHT16VBcvXlxTUcb58+eVTCb161//egOyAwAAAAAAAAAAAAAAAAAAAADg2TMWG9NsclaJYEI2p03lQlnlUlm7PLv0F/N/UVeMIUk2u02hbEipSEo2u007h3aqMFeQy++SO+BuuE47MU+KeWJ6sLi2zheVSkVm2nzqfja7TZlYRt87872OizK6WpBhGIYuXLig0dFR7d+/XxMTE9q3b59KpZLu3LmjUqmkQqGgXC6nWCwm0zSVzWa7mTIAAAAAAAAAAAAAAAAAAAAAYJP68ssv24790z/9U924cUNff/21tm3bpiNHjuhnP/uZhdltLu6Ae01FEU+y2W0ai42te8yKAeeAyqWy3AG3BpwDbc3RSLlY1idXP5HnpKejebpakCFJPp9PV69eVSgU0tTUVHV7PB6v/rtSqcgwDGUyGb388ssdr1kqlXT27FlJ0tDQkObm5uT3+xUIBDqaMxKJSJIKhYIk6cCBAzW/00bkAQAAAAAAAAAAAAAAAAAAAABb1be+9a22Yy9duqQ/+7M/08zMjA4cOKC/+Zu/6Wg+dM5hOHT49OGOCyfWS9cLMiQpEAgoEAjo3LlzunLlij766KPqmGEYCofDOnXqlCVrlUoleb1eJRIJeTyPn5RwOKyZmRlFo9GW51zp4BGNRmW326vbk8mkvF5vw64e65EHAAAAAAAAAAAAAAAAAAAAgI2ztLSk3/72t9q+vfXLsv/lX/5Fb7zxhrLZrLxery5cuKBvf/vbbeVB0YA1vv3tb+sf/uEfup0GnuAwHHIYjm6n0dSmKMhYMTU1tWpHCSsEg0EFAoGaIghJisVicjgc8vv98vl8Lc0ZiUSUSqXqtgcCARUKBYXDYcVisXXPAwAAAAAAAAAAAAAAAAAAAMDG+ZM/+RNL5kmlUnK5XG3HVyoVS/IANptjF451O4VV9Xdz8du3b+vatWsbtp5pmkqn0wqHww3Hx8fHW+5MkcvlZBhG0/Hx8XGl0+l1zwMAAAAAAAAAAAAAAAAAAAAAAGycrhZkBAIBRSKRtmLPnz+voaEhbdu2TUNDQ/rZz3721JiVLhXNCihcLpfS6bRKpdKa81gprmimUCjIbrevex4AAAAAAAAAAAAAAAAAAAAANtZ/+2//TaVSSV9++WXLP36/X9u2bZMkbdu2TX6/v615vvzyyy4fBaA3fXrt047n6GpBRjgc1q9//euW48bHxxWJRBQMBnX16lWdPHlSJ0+e1C9+8YtV43K5XF1xxJNWCiQymcyac/F4PDJNU8FgsOF4LBbTxMTEuucBAAAAAAAAAAAAAAAAAAAAYGMNDAzoW9/6Vls/ly5dkt/v19DQkPx+vy5dutT2XABaNz053fEc2y3Io22FQqHlmI8++kjJZFLhcFjvvvuuJOn48eOamJjQxMTEqgUepmnK6XQ2HV8pkjBNc835GIahUCikeDwul8ulWCwmn88nSdUuF9Fo1PI8lh4u6cuHj6vZnut/Ts9te27NeeOxSl9FFVVU6atoWcvdTqfnVfoqWl5e1sOHD7udyjPh4cOHHE+LcUytxfG0FsfTehxTay0vc67UDZz7P8L/jx/jbxua4bWBZnhtoBleG2iE8/7u+Orrr7Tj4Y7q46163t+L+I6ht/H89T6ew97G89f7eA57W6Wv0u0UtiQ+87cGf3+sxzG1llXHk8/tHuFzTOtxTK3V6fEcGhrS9HTtBeFb+bnh9WmtZ+0z/3u372nXy7uajrViqbCkollUuVTuOK+uFmTs379fN27ckCRFo1FlMhmVSiX5/X5FIhG98sordTFXrlxRX19fXZGDx+NRKBTStWvX9OqrrzZcr1AoVLtPNLJSJFEqlVr6PWKxmFwulyKRiPx+v0KhkFwulzwej2Kx2LrkEfnHSM3jP/b8sf5k/5+0lDceqaiipd9bUkEF9amv2+n0vIoqevj5o/8Q9vd3tQnPM2F5eVmff/65JI6nVTim1uJ4WovjaT2OqbXu37/f7RS2JM79H7l582a3U9g0+NuGZnhtoBleG2iG1wYa4by/Ozjv7118x9DbeP56H89hb+P56308h73t35b+rdspbEmc+1uDvz/W45hay6rjyfdjj/A5pvU4ptbieFqL42mtZ+kz//TptD58+0MNe4c1+U+TdeN/e+Rv9WDxQRcy63JBxvHjx3X06FFdv35dlcrjyvv3339fqVRKkUhEf/VXf1UTk06n5fF49MILL9TNd+rUKU1MTDQtyFhroUU7L76pqSnZ7XaFw2HF43HZ7XYlEol1yyP676Ny2BzVx8/1P6fn8lTMt6PSV1FBBTnvOdVX4Q1Fpyp9Fe3+v+3WwYMHtX17V//EPBNWqjw5ntbhmFqL42ktjqf1OKbWWnnD28hsclbugHsDs9k6OPd/5PDhw91OYdPgbxua4bWBZnhtoBleG2hktfN+rB/O+3sX3zH0Np6/3sdz2Nt4/nofz2GPW+p2AlsT5/7W4O+P9Tim1rLqePL92CN8jmk9jqm1OJ7W4nha61n6zL9oFlWpVFQuNu5oMeAckCR5Q95Hj4cGVp1v6f6SinNFfXrt045z6+ordXFxUZlMplpIsW/fPknS/Py8UqmUTp8+Lb/fX9MpwzRNTUxMNJ3T4XA0HVtPkUhELpdLlUpFkUhE586dq3bLaNQlo1MD2wf0/PbnazfSTbIty1pWn/rUV+lTf4Vquk4ta1n9/f3avn07/zG0CMfTehxTa3E8rcXxtB7H1DrN7jxQLpWVCCZ0LHZMe8b3yGa3bXBmzzbO/R/h/8O1+NuGZnhtoBleG2iG1wa+aa13HJsOT2tPcI8MX/Nu0Nl4VrOJWXnDXhk+Qza7TUWzqHwur0+ufKLDZw5r2DNcF1culfXB2Q8kSTuHdqowV5DL71q1CLydmM1k57adnPf3KL5j6G08f72P57C38fz1Pp7D3sYF193BZ/7W4O+P9Tim1rLqePKZ3WN8jmk9jqm1OJ7W4nha51nqMjJ2cUyG32j6vYTDcOjw6cPynPS0NO+5oXMd59bVV+pbb72l69evVwsxVoyMjCgUCml8fFzhcLimIKNUKslutzeds6+v+RtGu92+pu4UQ0NDT93nSX6/X5FIRD6fT5IUjUY1MTGhYDCoeDyuQqFQ0y1jvfIAAAAAuqFoFiVJPw//XD8P/3zVfYOJYPWCqI28OAsAAABA54pmUWbaVDaWVT6X157gnlX3L5fKMtOmzLRZs91mtymYCDY9349743Xj0+Fp3Z25K3/Ub0kMAAAAAAAAAADoHbZBm7yT3qbjht/Q7v27W57XPmLvIKtHulqQUSwW64oxnmS32y3teOF0OlcdLxQK1XXX6ty5c/J4PNVijBUej0dzc3MKh8OKx+NKp9PVfdYjDwAAAKBbimZRDsOhYc+wbM7G3THKhbKKZrGmaGKjLs4CAAAA0LlsPCszZcrwG/JFfbrkv7SmuGOxYyrMFVQyS7I5bdrt3V1tF95IIpjQS4GX6t4PjMXGFHVE5fK76u5+1U4MAAAAAAAAAAB4dhw6daituFAm1PHaXS3IWEuxxWodL1plGIYymUzT8ZWuFYax9i9mYrGYstnsquOZTEapVKpakLEeeQAAAADdcnfmrk6kTshhND+/T0VS8kV9dds34uIsAAAAAJ3zhrzVc/V8Lr/muD3je2SzNy7c/qaVDhzHYscajrvH3boVvVVzzt9ODAAAAAAAAAAAePZ8eu1TDXuGZX/RvqHrdrUgo1Kp6J//+Z/1R3/0Rw3Hv/jiC92/f7+lOVfb3+PxKJ1ONx03zUd35v1mt4vVmKb51E4W4XC4pmhjPfIAAAAAumm1Yox8Li+ny9lwn/W+OAsAAABA78jEHt3IqNn7C6fLqVw8p3KpXH0f0U4MAAAAAAAAAAB4tvz8jZ8rdzEnm8OmqX+d2tC1+zd0tW8IhUJ65ZVX9J/+03/SnTt3qtu/+OILvffeexoZGdEbb7xR3f7RRx9Jelyw8E3Xrl3TgQMHmq43MTEhScrlcg3HZ2ZmWi6CMAyjaT4r5ubm5PU+vsvveuQBAAAAdMv+8P5VxzOxzKpdL9ZqLRdamWlT5VK547UAAAAAbLx7uXurFk2svBdYyCx0FAMAAAAAAAAAAJ4tS4UljYyOyHPSs+Frd7UgwzAMvfXWWzp16pRcLpe2bdumbdu2yeFwKBwOa2RkRLlcTrdv39bFixcVDAbl8Tw6SL/5zW9q5lpcXFQkElE4HG66nsfjkc/n05UrVxqOJ5NJRSKRuu2lUkmRSKRhV4tAINAw5snYXC6n8fHxjvMAAAAANqPVumOkIin5o35L1uFCKwAAAKB35XN5ZeNZ5XP5pvsUzaIGnANNx1feDxTNYkcxAAAAAAAAAADg2eIwHDrx/gn53tr4pgjbN3zFbwiFQtq/f78ikYiuX78u6VGhRiQS0eTkpObn5xWLxapFEZOTk8rlcvJ4PDp37pxGR0dlmqbC4bCOHz+uF154YdX1EomEvF6vJiYmqsUdkhQOhzU1NdWwM0U8Hte5c+cUj8dVLNZ+aRONRhUMBhUOhxWNRmW326tjuVxOkUikbnu7eQAAAAC9JJ/Ly+lyrlpE8eS+C5kF7d6/W8Oe4Yb7cKEVAAAAYL2HDx7q6wdfVx//7svfWTq/mTZVNIsyfIa8Ia/yubwu+S/pUOSQDJ9Rs+9SYWnVgu+V9wNPdsVrJwYAAAAAAABAZy6PXe52CpKk16Zf63YKADaJgaEBle6UZH/R3lLcuaFzmro/1dHaXS/IkB51jEilUg3HRkZG9NZbb9XtH4vFND4+rr6+PknS5ORk3X6N2O12ZbNZRSIR2e12DQ0NaW5uTn6/X4FAoGGMz+eT3W6v6XLxpEQioXQ6rcnJyZrthmE0/b3ayeNJDx4+UPlh618gLT5Y1H/91X/V/OK8RgZH9Od/+Oca3DHY8jySZNv+9AvrAAAA0Ls6vTDr5tmbCiaCq+6z3hdnAQAAAFjdzbM39csf/7L6eLF/0bK5V87fD00dqm4b9gwrmAgq6ogqlA3VFGSv9Vz+q/tfdRQDAAAAAAAAAACeLYdOHVJiPKH9b+zXyJGRNcdVKpWO194UBRntCAQCWl5e1vXr12UYhkZG1n7g7Ha7YrHYmvf3eDx1nTG+yefztdzVotU8nnTqH0+1Ffekj//1Y/3HX/zHtuP/j2P/R8c5AAAAYPPq5MKs2eSs7IZ91X024uIsAAAAAKs7fOawvvvD71Yff/755/rpH/7UkrndAXfD7Ta7Te6AW4lgQm/OvWnJWgAAAAAAAAAAYGsLXg3qw/MfKhvLaveB3Rr2DGvAOSCbvXETgrnUnB4sPuh43Z4oyHjjjTeqnTD8fr9effXV6tjo6Gi30gIAAACeaZ1cmHXz7E2NXRxbdR8uzgIAAAC6b/uO7dq+4/FXBc89/9yGrLv7wG7NJmdVNIvVYm2b3bamQuydQzur/24nBgAAAAAAAAAAPFt+3P/jar1BpVLRbHJ2w9buiYKMCxcuVP99/fp1vffeezp58mQXM+q+t//92xqyDbUc95PMTzR7f1bLlWX19/XLPeTWD/f/cB0yBAAAQK9r98KsollUPpev6W7RKqsuzgIAAACwOa3cjSqfy1fP+QecA6vGLBWWamLbjQEAAAAAAAAAAM8Wh+FQ0SzKHXA/9buDFQszC7p3+17Ha/dEQcaTRkdHdeDAgS1fkLFj+w7Ztrf+BdJ/2PcfdOH2Bc2V5uSyu/TGy2+0NQ8AAADQTCaWqV5Q1S6rLs4CAAAA0B3T4WnNp+db6nrnMBxayCw0HV8p0H7y/UY7MQAAAAAAAAAA4NniMBw6fPqwPCc9LcWdGzrX8dqbpiDj9u3bMk2z6XihUFCpVNKVK1fkdDo3MLNny+COQUX+x0i30wAAAMAzbD49/9SLnTbq4iwAAAAA3ZHP5KtF042snL8/2Vlvl2eXzHTz7wmKZlGSZPiMjmIAAAAAAAAAAMCzxWE42rpmyObo/MavXS/IuHPnjvx+/6rFGE8aGRlRIpFY56wAAAAAtCufy8sdcK++zwZdnAUAAACgO0Z8IwpFQ03HF2YWZLPbar4c2TuxVx+e+1D5XL7mvcCTMd88328nBgAAAAAAAAAAPFuOXTjWVtybn639ZrLNdL0gw+fzqVAo6Pjx4zpw4IDsdrsSiYT8fr/sdrskqVQqKZVKyW636+rVq91NGMBT/eryr3T3J3fVX+nvah6vTb/W1fUBANiK8rm8JMnmXL16fKMuzgIAAADQHXsn9iobz8ob8taNFc2iZpOzCiaCNduHPcMyfIY+vvJxw3P+2eSsTqROdBwDAAAAAAAAAABgla4WZFy8eFGGYSibzWpwcLBmbGJiQi+88EL18alTpzQ/P68zZ87o7NmzG50qAAAAgDVYrevFkzbq4iwAAAAA1lvpTrfS2a6RYc+wzLSpW+du6dDUoZrYuDeug1MHG3bWCyaCinvj2juxt+a8fzo8rYNTBxsWYbcTAwAAAAAAAAAAtg7zuikzZUp9ktPl1O79u7Xr5V2WzN3VgoxkMqlkMllTeCFJhmEok8noyJEjNdtHRkYUCoX03nvv6eTJkxuZKgAAAIA1WLkwy2ZfvUPGRl6cBQAAAKBzs8lZZWNZSdJCZkGSND05Xd3mDrrrCq4PTR2SmTY1HZ5WuVBWuVSWzW7T69dfb1hkLT16LxHKhpSKpGSz27RzaKcKcwW5/K6G7xHajQEAAAAAAAAAAM+Oc0PnNHV/qum4MWrIGDVUXixrqbAkM20qE8vIH/Vrxws7Olq7qwUZIyMjdcUYkuR0OnX16tW6goyVmLm5uY1IDwAAAECLdu/fLZvdpt8/8PtP3XejLs4CAAAA0Dl3wN3WObfhM1ounLbZbRqLja17DAAAAAAAAAAAeDZUKpU17WcbtMk2aJN30qvyYlmpSErH3j3W0dpdLchwOBwNt+/bt0+hUEhnz57d4IwAAAAAdGLYM6xIMbLm/Tfq4iwAAAAAAAAAAAAAAAAAz6a+vr6WY2yDNkvW7rdkljatVoni9Xr1s5/9rOGYaZrrlRIAAAAAAAAAAAAAAAAAAAAAAHiGlRfLymfyHc/T1Q4Zfr9f165d06uvvqr33ntPqVRKFy9e1AsvvKBAIKDvf//7SqfTeuWVV6ox169fpyADAAAAAAAAAAAAAAAAAAAAAIAtonSn1HD7SpOI0m9KUvN+EZKkcqmspcKS8rm8bp69Kfe4u+O8ulqQMTo6qrfffltvv/22IpGI+vr65Pf7dfLkSfl8Ph05ckQ+n09+v1/79u2TaZpKJpOKxWLdTBsAAAAAAAAAAAAAAAAAAAAAAGyQheyCFmYWVDSLMtOmHiw+qBl/x3hnzXNVKhUZPkPH3j3WcV5dLciQpFOnTumjjz7SqVOntLi4qPHx8epYMpnUkSNH9P777yuVSqlSqcjj8ejkyZNdzBgAAAAAAAAAAAAAAAAAAAAAAGwU93G33Mcfd7TI5/JKR9Iyr5vq6+vTS8dfWtM8DsMhw2/IGDUsyavrBRmStG/fPu3bt69u++DgoLLZrJLJpNLptFwul0KhUBcyBAAAAAAAAAAAAAAAAAAA2BiXxy53OwW9Nv1at1MAAKCpYc+wTqROaDo8rU+Tnyp4NdiVPDZFQcbTBAIBBQKBbqcBAAAAAAAAAAAAAAAAAAAAAAA2ibHYmPLZfNfW7+/ayv9/165d0507d7qdBgAAAAAAAAAAAAAAAAAAAAAA6DGHzxzu2tpd7ZDxxhtv6OLFi3I4HPrXf/3XbqYCAAAAAAAAAAAAAAAAAAAAAAB6jPu4+6n7zN+YV9EsymE4tHv/bu14YYcla3e1IKNQKGh0dFQej6ebaQAAAAAAAAAAAAAAAAAAAAAAgB6UPp1WebFcs+3Yu8ckSeXFsi75Limfy6tSqchhOFQulhVMBjXyykjHa3e1IMMwDL311lvdTAEAAAAAAAAAAAAAAAAAAAAAAPQob9ird1zvyBv2yhvyanjfcHUsEUxoIbugQ1OH5HvLJ0kql8pKjCfkGHHI/qK9o7W7WpAxNDSkO3fu6MUXX2w57v79++uTFAAAAAAAAAAAAAAAAAAAADaFX13+le7+5K76K/1dzeO16de6uj4AoLl7H91TMBGU+7i7Zvvs38/KTJvaE9xTLcaQJJvdpuDVoNJn0tVOGu3q6n+dTp06pampKd24caOluEqlsk4ZAQAAAAAAAAAAAAAAAAAAAACAXnF35m5dMYYkfXLlE/X19enwmcN1Yza7TbZBW8drd7VDhiRdvXpV58+fVywW04EDB+TxeOR0OmW32xvun0qltLi4uLFJAgAAAAAAAAAAAAAAAAAAAACAzadJvwczbUqSdr28q/EOfZ0v3dWCjP7+fvX1PfotKpWKkslkN9MBAAAAAAAAAAAAAAAAAAAAAAA9ZGBooG5bcb6ocqms3d7dTePKpXLHa3e1IMMwDJmmqUAgIKfTuaaYmZkZ3b59e30TAwAAAAAAAAAAAAAAAAAAAAAAm95Kk4gnzSZnJUkjvpHmgU06a7Si6wUZp0+f1smTJ1uKGxoaWqeMAAAAAAAAAAAAAAAAAAAAAABAr/jqX7/Sgy8eaMcLO6rbsrGs+vr6tHdib8OY9Jm0vGFvx2v3dzxDBwzDkGEYLcc5HI51yAYAAAAAAAAAAAAAAAAAAAAAAPSSw2cOKxFM6N4/39O92/eUnEiqaBblDri16+VdNfveu31Pf/f9v9POoZ0a3jfc8dpd7ZBx4cKFtuI+++wzizMBAAAAAAAAAAAAAAAAAAAAAAC9xjZo0+jZUV09flVFsyhJ2hPco8CVQHWfn7/xc5lpszpupk19df8r+c76Olq7qwUZjXzxxRcqFAp68cUXu50KAAAAAAAAAAAAAAAAAAAAAADY5IY9w3rzszdVXizLNmirGz8UOaRDkUM12wacAx2v29/xDBa4c+eOfvCDH2jbtm1yOBz6zne+UzM+Pz+v8fFxvffee13KEAAAAAAAAAAAAAAAAAAAAAAAbGaNijEkyTHiqPtptm8rul6QcePGDRmGoVgsppGREY2OjmpkZKRmn5GREV29elUjIyM6f/58lzIFAAAAAAAAAAAAAAAAAAAAAADPgk+vfdrxHF0tyJifn1cgEFAoFNLc3Jw+++wzvf/++zp+/HjD/VeKNW7cuLHBmQIAAAAAAAAAAAAAAAAAAAAAgGfF9OR0x3NstyCPtp0+fVrRaFSTk5M12/v6+prGHD9+XD/4wQ905MiR9U4PAAAAAAAAAAAAAAAA2HLyubwysYzKhbLyubxsdpu8Ya+8IW/TmHKprA/OfiBJ2jm0U4W5glx+l9wBt6UxAICNc3nscrdT0HLfsjTc7SwAAJvBvdv3tOvlXU3HWrFUWFLRLKpcKnecV1cLMorFYl0xxlpUKpV1yAYAAAAAsFlthg97Jem16de6nQIAAAAAAAAArKtsPCtJGouNVbeZaVOJYEK3orcUyoZks9tqYsqlsuLeuIKJoIY9j6+anQ5P6+7MXfmj/rp12okBAAAAsDWlT6f14dsfatg7rMl/qq8/+Nsjf6sHiw+6kFmXCzIMw2grrlgsWpwJAAAAAAAAAAAAAAAAsLWt3CH20NShmu2Gz9Dr119X3BtXIpjQidSJmvFEMKGXAi/VFFZIj4o6oo6oXH6XDJ/RcQwAAACAraloFlWpVFQuNu5oMeAckKRqV7+BoYFV51u6v6TiXFGfXvu049y63iGjHaZpWpwJAAAAAAAAAAAAAAAAsLVlYhl978z3Go4Ne4Zl+AyZaVNFsyiH4ZD06MIoM23qWOxYwzj3uFu3ordqiivaiQEAAACwdY1dHJPhN5q+R3AYDh0+fViek56W5j03dK7j3Po7nqEDDodDv/jFL1qKOXPmjEZHR9cpIwAAAAAAAAAAAAAAAGBrmk/P669H/lrlUuO7zu7y7JIk5XP56rZMLCNJ1QKNb3K6nDLTZs2c7cQAAAAA2LpsgzZ5J71yjDR+D2H4De3ev7vlee0j9g4z63KHjKmpKR09elQXL17UK6+88tT9z58/r2QyqV//+tcbkB0AAAAAAAAAAAAAAACwdQw4B5TP5VU0ixr2DK8p5l7unmx2W9PxlaKLhcxC9W627cQAAAAAsFY+l1cmllG5UFY+l5fNbpM37JU35G0aUy6V9cHZDyRJO4d2qjBXkMvvkjvgtjSmVYdOHWorLpQJdbx2VwsyDMPQhQsXNDo6qv3792tiYkL79u1TqVTSnTt3VCqVVCgUlMvlFIvFZJqmstlsN1MGAAAAAAAAAAAAAAAAnkknUidUNItNO1eUzJIk1RRrFM2iBpwDTedcKbwomsWOYgAAAABYJxt/dE3+WGysus1Mm0oEE7oVvaVQNlRXRF0ulRX3xhVMBGveE0yHp3V35q78UX/dOu3E9JquFmRIks/n09WrVxUKhTQ1NVXdHo/Hq/+uVCoyDEOZTEYvv/xyF7IEAAAAAAAAAAAAAAAAetPy18uqLFceP3643HTfZsUYkjSbnNWwZ7hmn6XC0qoxK4UX5VK5oxgAAAAA1iiaRZVLZR2aqu0qYfgMvX79dcW9cSWCCZ1InagZTwQTeinwUl03vbHYmKKOqFx+V12Hu3ZiWlW6U5KZNlWYK1SLyG1Om5wup4Y9wxo5MtLR/E/T9YIMSQoEAgoEAjp37pyuXLmijz76qDpmGIbC4bBOnTrVxQwBAAAAAAAAAAAAAACA3lT4rKDCrwvVx4tabHmOW+duSZLGLo7VbF9r0cRX97/qKAYAAACANTKxjL535nsNx4Y9wzJ8hsy0WdM9r2gWZaZNHYsdaxjnHnfrVvRWTXFFOzFr9eCLB8rGs7p59uaa3l94w14dmjok+4v2ltd6mn7LZ2zBjRs3ah5PTU0pm81qeXm5+vPZZ59RjAEAAAAAAAAAAAAAAAC0yfkdp1zfd1V/Xvx/vNhSfD6XVzqSVjARrLuzLQAAAIDeMp+e11+P/HXTQoZdnl2SHr0PWJGJZSQ176jndDllps2aOduJWYvcezlFHVGlI2ktFZdUqVSqPzsGd8g+YteOwR012zMXMnrH9Y6u/+X1ltZai652yPD7/SqVSvq93/u9bqYBAAAAAAAAAAAAAAAAPLP6t/VL2554/LC1e7gmggkdix2TO+CuG7PZbWu6gGrn0M6OYgAAAABYY8A5oHwur6JZXHPB9b3cPdnstqbjK0UXC5mFaseLdmKeJjmR1GxyVpVKRYbPkOE3ZPgMDe9r/HuUF8sy06bm3p9T7mJOt6K3ZKZNTf7T5JrWW4uuFmQMDg4qEonov/yX/9LNNAAAAAAAAAAAAAAAAAA0kAgm5A175Q15G44POAdWjV8qLElSzYVY7cQAAAAAsMaJ1AkVzWLTzhUlsyRJNcUaRbO46nn8yrl70Sx2FLOav/v+32kuNSd3wC1f1CfHSOP8a9YYtMl93C33cbfGYmNKRVL68O0PdfH/ftGyoozWyt0tViqVFIvFdODAAd24caObqQAAAAAAAAAAAAAAAAB4QiqS0u4Du3Vo6lDTfRyGo1pA0chKJ4wnL/ZqJwYAAADA6h4+eKgHXzyo/vzuy9813Xe1c+3Z5KyGPcM1+ywVllYtmF4pvHiyE147Mc3cevuW5lJzGouPKXg1uKZijEb8Ub9OvH9CC5kFXf/L623N8U1dLciQpFgspnQ6rbm5OR09elTnz5/XF1980e20AAAAAAAAAAAAAAAAgC0rG8/K6XI2LMZ48oKpXZ5dq15AtXK3W8NndBQDAAAAYHU3z97UW4NvVX/e/aN3W57j1rlbkqSxi2M129dSNCFJX93/qqOYRsqLZaUjafnP+eU56VnTnKsxfIaCV4O6Fb2l0p1Sx/N1tSAjFovp5MmTGhwc1OTkpN5//32Njo5qampKExMTdM0AAAAAAAAAAAAAAAAANthsclaS5A1568aKZlFm2qw+3juxV5KUz+UbzrUws1BXWNFODAAAAIDVHT5zWKcXT1d/fvDPP2gpPp/LKx1JK5gIatgzvE5Zti4bz2rYM6yDPzpo2ZzugFu79u2qvvfpRFcLMiYnJ+u27du3TxcuXNCVK1c0Nzen8fFxumYAAAAAAAAAAAAAAAAAGyCfy2upsNSwGEOSzLRZc3HWsGdYhs/Qx1c+brj/bHJWhyK1XTbaiQEAAAB6zW9/+9u2f0zT1NGjRzU0NKSjR4/KNM2nxjx4+EAPtz2s/vyu/3ct5ZsIJnQsdkzugLtuzGa3ranjxc6hnR3FNPLJlU/0vb/83lPnadXh04f1yZVPOp5nuwW5rJvJyUlNTk7qo48+0tTUlPr6+vTGG2/oj/7oj7qdGgAAAAAAAAAAAAAAAPBMKZpFJYIJjfhGtBBeqBsvF8oy06YixUjN9mAiqLg3rr0Te2uKNabD0zo4dbBht4t2YgAAAIBe8vzzz1syTyqVksvlsmSuZhLBhLxhb9PC7AHnwKrxS4UlSY+KMDqJaaQ0X1qX9weG39DPwz/veJ5NXZCxwuVyyeVy6ezZs4rH4/J4PJqZmel2WgAAAAAAAAAAAAAAAMAz45L/kopmUcV4sek+DsNRt81mtymUDSkVSclmt2nn0E4V5gpy+V0N767bbgwAAAAA66UiKe0+sFuHppp3qXMYDi1k6ou2V6x0wnjy/UI7Mc322/HCjlX3aYdtcG0dPJ5mUxdk3LhxQ7FYTMlkUpJUqVQUCoUUDoe7nBkAAAAAAAAAAAAAAADwbHlz7s22Y212m8ZiY+seAwAAAPSKL7/8su3YP/3TP9WNGzf09ddfa9u2bTpy5Ih+9rOftTTHb37zG+3Zs2fVfbLxrJwuZ8POGOVSudq9Ypdnl8y02XSeovmoqPvJThbtxDSyY9D6Ygwr5+63II+23bhxo27bF198ofPnz2toaEh+v1+JREL79u3ThQsXtLy8rAsXLmjfvn1dyBYAAAAAAAAAAAAAAAAAAAAAgKf71re+1fbPpUuX5Pf7q9fUX7p0qeU5du7cuWp+s8lZSWpYjFE0izXFFHsn9kqS8rl8w7kWZhbqCivaiWmkr6/vqfu0y4q5u9ohw+/36+uvv5ZU2w2jUqlIUrUbxmYvwEgmkwoEAt1OAwAAAAAAAAAAAAAAAAAAAADQ47797W/rH/7hH9Zt/nwur6XCUsNiDEky02ZNscSwZ1iGz9DHVz7WsGe4bv/Z5KxOpE7UbGsnphd1tSBjcHBQBw4ckGmaKpVKqlQq8ng8CofDmpyc7GZqa1YqlRQMBhWLxTQ+Pi673d7tlAAAAAAAAAAAAAAAAAAAAAAAqFM0i0oEExrxjWghvFA3Xi6UZaZNRYqRmu3BRFBxb1x7J/bWFFhMh6d1cOpgw24X7cT0mq4WZEhSNpuVtLHdMEqlks6ePStJGhoa0tzcnPx+f1tdLkzzUSuWcDiscDi86r6JRKK6RjweVyKRUDgcls/nk91ul2mayuVyunLlis6cOSOPx9NyPgAeuzx2udspSJJem36t2ykAAAAAAAAAAAAAAAAAAAAAuuS/pKJZVDFebLqPw3DUbbPZbQplQ0pFUrLZbdo5tFOFuYJcfpfcAXfDedqJ+aZyqby2X6wNVszd9YKMcDisd999d8PWK5VK8nq9SiQSNQUP4XBYMzMzikajLc1nmqYMw5DH45HT6Wy4T6FQkGmaNQUfpVJJ6XRa6XS6Zl+73V6XGwAAAAAAAAAAAAAAAAAAAAAAnXpz7s22Y212m8ZiY+se86RKpaL//Af/uWGRSCeKZvOClFZ0tSCjVCptaDGGJAWDQQUCgbqCh1gsJofDIb/fL5/Pt+b5ZmZmlEqlZBjN26VEIpGGhR6xWExzc3MyTVNOp1Ner1ehUGjtvwwAAAAAAAAAAF0wHZ7WnuCep7YSL5fK+uDsB5K05rtebVQMAAAAAAAAAADoDYW5ggpzBcvn7evr63iOrhZkbHTxgWmaSqfTisViDcfHx8cVjUZbKsiQtGoxRi6Xk8vlarjP+Pi47HZ7S2sBAAAAm1E2ntVsYlbesFeGz5DNblPRLCqfy+uTK5/o8JnDGvYM18VxoRUAAADQO4pmUWbaVDaWVT6X157gnlX3L5fKinvjCiaCNe8HpsPTujtzV/6ov2sxAAAAAAAAAACgdxg+Q4Z/9ZtEtWrhnxb06bVPO56nqwUZFy5c2ND1VgoxmhVQuFwuxeNxlUqlNRdKhMPhp67ZrAAEAAAAeFaUS2WZaVNm2qzZbrPb6i6KejKGC60AAACA3pCNZ2WmTBl+Q76oT5f8l54akwgm9FLgpbr3A2OxMUUdUbn8rroOGxsVAwAAAAAAAAAAekNfX59OvH9iXeb+X7f9rx3P0W9BHhtuaGiorbhcLrdqocVKoUYmk1nznKt1x4hEIopGo2ueCwAAAOhlx2LHdHDqoNwBtzwhj47FjilSjDS98Gm1i6Zy8VxdcUe7MQAAAAA65w15FUwE5Q15NeAceOr+K9009of3Nxx3j7t1K3qrKzEAAAAAAAAAAKB37Bjcsann7mqHjHZVKpW24kzTlNPpbDq+Uqxhmp1fxJXL5eRyudbUaSOXyymTyWj//v3yeDwdrw0AAAB0w57xPbLZbWvad+WiqWOxYw3HVy6aerKYo50YAAAAAN2RiT268ZHDcDQcd7qcysVzKpfK1fcRGxUDAAAAAAAAAAB6x+vXX9/Uc/dcQcbp06e1uLjYVmyhUFi1o8VKsUapVGpr/iedPXtWiURi1X3S6bRM05TP51MoFFIul5Pf71ckEpHP51s1dunhkr58+GX18XP9z+m5bc91nPdWVOmrqKKKKn0VLWu52+n0PI5nvYcPH3YUu7y83NEcqMUxtRbH01ocT+txTK21vGzdf9u50GrtOPffXDbD3xP+tqEZXhtohtcGmuG1gUasOu+/l7u36nn5ynn9QmahWlS9UTGb0Vdff6UdDx/fhYvz/t7BZ+K9jeev9/Ec9jaev97Hc9jbKn3t3QwVneEzf2vw98d6HFNrcTyttZmO57PyWaoVnw0v922O1/ZmeE74rN1aHE9rWXmtTzcN7xve1HP3REHGjRs3FIvFlEwmO5pnrYUW9+/f72idZDK5auGHpOr41NRUdZvH41EikZDD4VA2m121W0bkHyM1j//Y88f6k/1/0kHWW1dFFS393pIKKqhPfd1Op+dxPOvdvHmz7djl5WV9/vnnkqT+/n6rUtrSOKbW4nhai+NpPY6ptTo9T37SVr7QqlWc+28unZzbWYW/bWiG1waa4bWBZnhtoBGrzvuLZlEDzoGm4yvn9kWzuOExmxHn/b2Lz8R7G89f7+M57G08f72P57C3/dvSv3U7hS2Jc39r8PfHehxTa3E8rbWZjudm+K7QClZ8NlwYLliZUts2w3PCZ+3W4nhay8prfdDcpi3IuH37tq5cuaJ4PF4tpKhUHlXn9/Vt7pOUs2fP6uLFi6vuEwgEGm632+0KBAIKBoOam5trGh/991E5bI/vDPxc/3N6Lk/FfDsqfRUVVJDznlN9lc392uoFHM96hw8fbjt2pcrz4MGD2r590/7J7ikcU2txPK3F8bQex7QzDx881NcPvq4+/u///b+vKS6fy2shs6Dd+3dr2NO4inwrX2jVKs79N5dOzu2swt82NMNrA83w2kAzvDYgtX/e/zRLhaWm3e0kVc/ty6XyhsdsRpz39y4+E+9tPH+9j+ewt/H89T6ewx631O0EtibO/a3B3x/rcUytxfG01mY6npvhu0IrWPHZ8N2f3LUypbZthueEz9qtxfG01kpxC9bXpnql3rlzR8lkUrFYTKZpSnpchOHz+RQOh1WpVDQxMdHW/Ha7fU1dMoaGhtqaX5JM01Qul1u1u8XTHDhwQMlkUqZpNu20MbB9QM9vf752I90k27KsZfWpT32VPvVXqKbrFMezXqcnBf39/dq+fTsnFxbimFqL42ktjqf1OKbtu/n/vqlf/viX1ceL/Yur7m+mTRXNogyfIW/Iq3wur0v+SzoUOVTXsWIrX2jVKs79N5fN8reEv21ohtcGmuG1gWZ4baDV8/61Wut5+Vf3v9rwmM1o57adnPf3KD4T7208f72P57C38fz1Pp7D3tbtC1q3Kj7ztwZ/f6zHMbUWx9Nam+l4bpbPUS+PXe4ofrlvWYXhgvL/n3zbx7Rfm+O1vVmeEz5rtxbH0zp0GdkYXX+lfvHFF7p69apisZhyuZykx0UYhmEoHA4rFAppcHCwGvPkv1vhdDpXHS8UHrVQstvtbc0vSbFYrGkRxVqtrJ/L5TqeCwAAAGjX4TOH9d0ffrf6+PPPP9dP//CnDfddKZQ4NHWoum3YM6xgIqioI6pQNlTTLWMrX2gFAAAAbCatnPcDAAAAAAAAAACgVtcKMq5du6YrV64omUxKelyEYbfbtbi4qLm5Ob344osNYxOJRFtrGoahTCbTdHyle0YnRRDpdPqp8eFwWOl0WnNzc22vAwAAAKy37Tu2a/uOx28Znnu+ectsd8DdcLvNbpM74FYimNCbc29aniMAAACAzrRy3t8Km922pqLqnUM7NzwGAAAAAAAAAADAKhvah+TGjRv6wQ9+oG3btikYDCqRSKhSqWhwcFChUEjZbFaFQkGDg4NNizEkaXR0tK31PR5PteiiEdM0JUk+n6+t+aVHXS2e1mEjk8lUu3E0spKjx+NpOw8AAABgs9h9YLeKZlFFs1jdxoVWAAAAwLNtwDmw6vhSYUnSo/P8jY4BAAAAAAAAAACwyroXZNy5c0dnzpzR0NCQ/H6/4vG4KpWKKpWKAoGAUqmUCoWCLly4oH379kmS+vr61iWXiYkJSY+KJhqZmZnpuBhDkpxO56r7+Xw+FYvFpuMzMzOy2+0ddeoAAAAANouVC5/yuXx1GxdaAQAAAM82h+GonqM3slJs7TAcGx4DAAAAAAAAAABglXUryLh48aL+4A/+QC6XS+fOnVOxWFSlUtHo6KhisZiWl5d19erVtrtdtMPj8cjn8+nKlSsNx5PJpCKRSN32UqmkSCSidDq96vyrdb140sTEhOLxeMMx0zSVTCZ18eLFNc0FAAAAdNt0eFrvuN5pKYYLrQAAAIBn2y7PrlU73K100DN8j29MtFExAAAAAAAAAAAAVlm3goxUKqW5uTlVKhUZhlEtynj//fc1OTm5Xss+VSKRUDKZrOuSEQ6HNTU11bBDRjwe17lz5xQMBled2zRNSZLdbl91P4/Ho1KppHPnztXFe71eTU1NKRAIrOG3AQAAALovn8mvqVBi2DNc3caFVgAAAMCzbe/EXkm1nfKetDCzUHfuvlExAAAAAAAAAAAAVtm+XhNfvXpV0qNihmQyqZmZGXk8Hh05cmS9llwTu92ubDarSCQiu92uoaEhzc3Nye/3Ny2C8Pl8stvtGh8fX3Xu/fv3y26368CBA0/NY2pqSul0WuFwWIVCQaVSSXa7XdevX5fH42nrdwMAAAC6YcQ3olA01HR8YWZBNrutpnPF3om9+vDch8rn8jWFGk/GNLrQqtUYAAAAAN0x7BmW4TP08ZWPG56/zyZndSJ1oisxAAAAAAAAAAAAVlm3gowVoVBIoVBIi4uLisfjeuutt+RyuRQOh/Xyyy+v9/IN2e12xWKxNe/v8XhULBYt22+Fz+dr2JEDAAAA6CV7J/YqG8/KG/LWjRXNomaTswomarvNcaEVAAAA0LtWutOt1sFOkoKJoOLeuPZO7K05h58OT+vg1MGGBdUbFQMAAAAAAAAAAGCFdS/IWDE4OKhTp07p1KlTmp+fVywW0+TkpHw+n8LhsF588cWNSgUAAACAhYY9wzLTpm6du6VDU4eq24tmUXFvXAenDsodcNfFcaEVAAAA0Dtmk7PKxrKSpIXMgiRpenK6us0ddNcVadvsNoWyIaUiKdnsNu0c2qnCXEEuv6vhe4SNjAEAAAAAAAAAALDChhVkPGlkZERvvfWWJOmjjz7SW2+9pfn5efn9fk1OTnYjJQAAAAAdODR1SGba1HR4WuVCWeVSWTa7Ta9ff71hNwuJC60AAACAXuIOuNs657bZbRqLjW3KGAAAAAAAAAAAgE51pSDjSfv27dOFCxckSX//93+vyclJVSoVvffeezp58mTDmPPnz+tHP/rRRqYJAAAA4CkMn9FyhwoutAIAAAAAAAAAAAAAAADQq/q7ncCTjh8/rqtXr2p+fl6VSkVHjx7VxMSEbty4Ud1nfn5ekUiki1kCAAAAAAAAAAAAAAAAAAAAAICtblMVZKwYHBzU5OSk3n//fcXjcWWzWR09elTf//739Z3vfKfb6QEAAAAAAAAAAAAAAAAAAAAAgC1uUxZkPGlwcFCnTp3S+++/r1OnTumFF17odkoAAAAAAAAAAAAAAAAAAAAAAGCL2/QFGU/y+XxKJBLdTgMAAAAAAAAAAAAAAAAAAAAAAGxxPVWQIT0qyhgcHOx2GgAAAAAAAAAAAAAAAAAAAAAAYAvruYIMSbp+/Xq3UwAAAAAAAAAAAAAAAAAAAAAAAFtYTxZk7Nu3r9spAAAAAAAAAAAAAAAAAAAAAACALawnCzIAAAAAAAAAAAAAAAAAAAAAAAC6iYIMAAAAAAAAAAAAAAAAAAAAAACAFlGQAQAAAAAAAAAAAAAAAAAAAAAA0CIKMgAAAAAAAAAAAAAAAAAAAAAAAFpEQQYAAAAAAAAAAAAAAAAAAAAAAECLKMgAAAAAAAAAAAAAAAAAAAAAAABo0fZuJwAAz7rLY5fbjl3uW1ZhuKC7P7mr/kr7NXSvTb/WdiwAAAAAAAAAAAAAAAAAAACAenTIAAAAAAAAAAAAAAAAAAAAAAAAaBEFGQAAAAAAAAAAAAAAAAAAAAAAAC2iIAMAAAAAAAAAAAAAAAAAAAAAAKBF27udAAAAAAAAveLy2OVup6DlvmX9/g9/v9tpAAAAAAAAAAAAAAAAbHl0yAAAAAAAAAAAAAAAAAAAAAAAAGgRBRkAAAAAAAAAAAAAAAAAAAAAAAAtoiADAAAAAAAAAAAAAAAAAAAAAACgRdu7nQAAAAAAAAAAAAAAAAAAAACwmV0eu9ztFAAAmxAdMgAAAAAAAAAAAAAAAAAAAAAAAFpEQQYAAAAAAAAAAAAAAAAAAAAAAECLKMgAAAAAAAAAAAAAAAAAAAAAAABoEQUZAAAAAAAAAAAAAAAAAAAAAAAALaIgAwAAAAAAAAAAAAAAAAAAAAAAoEUUZAAAAAAAAAAAAAAAAAAAAAAAALSIggwAAAAAAAAAAAAAAAAAAAAAAIAWUZABAAAAAAAAAAAAAAAAAAAAAADQIgoyAAAAAAAAAAAAAAAAAAAAAAAAWkRBBgAAAAAAAAAAAAAAAAAAAAAAQIsoyAAAAAAAAAAAAAAAAAAAAAAAAGgRBRkAAAAAAAAAAAAAAAAAAAAAAAAt2t7tBAAAAAAAAAAAAAAAAABsPtPhae0J7pHhM1bdr1wq64OzH0iSdg7tVGGuIJffJXfAbWkMAAAAAGw2FGQAAAAAAAAAAAAAAAAAkCQVzaLMtKlsLKt8Lq89wT2r7l8ulRX3xhVMBDXsGa5unw5P6+7MXfmjfktiAAAAAGAzoiADAAAAAAAAAAAAAAAAgLLxrMyUKcNvyBf16ZL/0lNjEsGEXgq8VFNYIUljsTFFHVG5/K66DhvtxAAAAABYH3TG6wwFGQAAAAAAAAAAAAAAAADkDXnlDXklSflc/qn7r3TTOBY71nDcPe7Wreitmgu72okBAAAAYC0641mHggwAAAAAAHrMry7/Snd/clf9lf6u5vHa9GtdXR8AAAAAAABAd2ViGUmSw3A0HHe6nMrFcyqXyrLZbW3HAAAAALAOnfGs1d0rNwAAAAAAAAAAAAAAAAD0pHu5e6sWTawUXSxkFjqKAQAAAGAdb8irYCIob8irAefAU/df6aaxP7y/4fhKl7tOY3oVBRkAAAAAAAAAAAAAAAAAWlY0i6tewLVSeFE0ix3FAAAAAOietXS5M9OmyqVyRzG9anu3EwAArL/LY5e7nYIk6bXp17qdAgAAAAAAAAAAAABsOctfL6uyXHn8+OGyJfMuFZaaXmAlqVp48eRFVu3EAAAAAOieVrrcGT6j7ZheRUEGAAAAAAAAAAAAAAAA8AwrfFZQ4deF6uNFLVoy71qLJr66/1VHMQAAAAC6h854q6MgAwAAAAAAAAAAAAAAAHiGOb/jrOlKUSgXpF92MSEAAAAAlnv44KG+fvB19fHvvvydJfPSGW91FGQAAAAAAAAAAAAAAAAAz7D+bf3SticeP+y3ZF6b3bamC6h2Du3sKAYAAADA0908e1O//PHjyuvFfjrjbQQKMgAAAAAAAAAAAAAAAAC0bOWuts0sFZYkPSrC6CQGAACgkctjl7udgpb7lvX7P/z9bqcBSJIOnzms7/7wu9XHn3/+uX76hz/tYkZbAwUZAAAAACyRz+WViWVULpSVz+Vls9vkDXvlDXkb7p+NZzWbmJU37JXhM2Sz21Q0i8rn8vrkyic6fOawhj3DdXHlUlkfnP1A0qO7YxXmCnL5XXIH3Ov6+wEAAABb3Uaew3PeDwAAAPQGh+HQQmah6fjKXXEdhqOjGAAAAABPt33Hdm3f8bg84Lnnn7NkXjrjrY6CDAAAAAAdy8azkqSx2Fh1m5k2lQgmdCt6S6FsqO5OVuVSWWbalJk2a7bb7DYFE8GmF3LFvfG68enwtO7O3JU/6rfy1wIAAADwhI06h+e8HwAAAOgduzy76t4jPKloFiVJhs/oKAYAAADoRd3u4vKv5X+1ZB46462uv9sJAAAAAOhtRbOocqlc1wnD8Bl6/frrKppFJYKJhrHHYsd0cOqg3AG3PCGPjsWOKVKMNP2SJRFM6KXAS3UXeo3FxpSL51b9AgcAAABA5zbiHJ7zfgAAAKB37J3YK+lRF+1GFmYW6t4vtBMDAAAAoHschqNaQNFIs854rcb0KjpkAAAAAOhIJpbR9858r+HYsGdYhs+QmTZVNIt1b6L2jO9Zc6V70SzKTJs6FjvWcNw97tat6C2+pAEAAADW0Xqfw3PeDwAAAPSWle8BPr7yccOuebPJWZ1Ineg4BgAAAED30BlvdXTIsEAymex2CgAAAEDXzKfn9dcjf12tXP+mXZ5dkprf6WqtMrGMpOaV8U6XU2babJoHAAAAgI3Vzjk85/0AAADA5rFygdTTzr+DiaA+TX5a9z3AdHhaB6cONrzAqp0YAAAAAN1BZ7zV0SGjQ6VSScFgULFYTOPj47Lb7d1OCQAAANhQA84B5XN5Fc1iwztZWeVe7t6qd+JduWBrIfPsvGEDAAAAelk75/Cc9wMAAADdNZucVTaWlfTovFuSpienq9vcQbe8IW9NjM1uUygbUiqSks1u086hnSrMFeTyu+QOuBuu004MAAAAgO6gM97qtmRBRqlU0tmzZyVJQ0NDmpubk9/vVyAQaHku03zUSiUcDiscDq+6byKRqFnDyjwAAACAbjmROqGiWWx6B9uSWZKkVYs18rm8FjIL2r1/d9P9imZRA86BpnOsXLS1cscuAAAAAE/38MFDff3g6+rj3335uzXFrdc5POf9AAAAQHe5A+62CiJsdpvGYmPrHgMAAADAWq10xot749o7sbfme4GndcZrNaYXbbmCjFKpJK/Xq0QiIY/HU90eDoc1MzOjaDTa0nymacowDHk8Hjmdzob7FAoFmaZZV4xhZR4AAACA1Vq5MKtZMYb0qKJ92DPccB8zbapoFmX4DHlDXuVzeV3yX9KhyKG6N11LhaVV11m5aOtpbxABAAAAPHbz7E398se/rD5e7F9cdf/1PofnvB8AAAAAAAAA0KnLY5e7ncKmRmc8a225goxgMKhAIFBTBCFJsVhMDodDfr9fPp9vzfPNzMwolUrJMJpX6EQikboCC6vzAAAAAKzW6oVZjdw6d0uSNHax/g5XKxdZHZo6VN027BlWMBFU1BFVKBuqqY5f6wVXX93/quU8AQAAgK3q8JnD+u4Pv1t9/Pnnn+unf/jThvtuxDk85/0AAAAAAAAA0J7NUITw2vRr3U4Ba0BnPGttqYIM0zSVTqcVi8Uajo+PjysajbZcCLFaMUYul5PL5arZZ73yAAAAAKzUyoVZjeRzeaUjaQUTwZqLslasVh3vDriVCCb05tybrScOAAAAYM2279iu7Tsef1Xw3PPPNd2Xc3gAAAAAAAAAwGo6LQpZ7ltWYbiguz+5q/5Kv0VZAetrS71SVwogmhVQuFwupdNplUqlNc8ZDoefumYoFFr3PAAAAACrbd+xXTte2FH9We3CrEYSwYSOxY61VVG/+8BuFc2iimaxus1mt63pbrk7h3a2vB4AAACAzlh1Ds95PwAAAAAAAAAA6CVbqiAjl8vJbrc3HV8pkMhkMmuec7XuGJFIRNFodEPyAAAAADaTRDAhb9grb8jbVrzNbpP0qMvGigHnwKoxS4WlmlgAAAAAG8eqc3jO+wEAAAAAAAAAQC/ZUgUZpmnK6XQ2HV8pkjBNs+O1crmcXC5Xw8KLjcwDAAAA2GipSEq7D+zWoalDTfeZDk/rHdc7Lc3rMBzVi68aWbmLrsNwtDQvAAAAgKfbqHN4zvsBAP+/9u4uxrHsPgz8v9otqCU4K1b3gzUWEGBYfkgEBRuxum1DH8gCwwIMr2cDBGS3ZwH7wUYXkxjIwlqgiHnzW6P6QdggDzGrYSNOEDe6yScNkDVMClnAch7UXUywUuYhcFGBg9F4EU8VvdZqWta4uQ/ty+nqIotfl+Ql+fsBhZkmL3lPnXPuqf+95wsAAAAAVsnVZSdgkU5PTy/d0SKZJNHtdmc+171796Jer88tHR9+9GH84KMf9P/9iSufiE/8xCemS+yG6231ohe96G314nk8X3ZyVp78TNe65ee//V/+7bKTEL2tXvz0//bT8dFHHy07KWvho48+iufPn8vPlMjP9MnTdD1/Pvpv0fHRcVzfuT5wZ4xn3Wcfr5r79P2xBlm9Vnit/9pnC5+NTmv4pOWzzllEROSLw2PtVST251VZihG1r9ni7x7DqBsMo24wyLC4f1Ex/KbG/T/86x/GJz/6ZP/f4v7VkaX4nMkpv9WnDFeb8lt9ynC19bZ6y07CRvLMPx3an/TJ03TJz3TJz/TJ03T1tnqZedb+fGv1y1P9TFcvxP2LsFETMsadaPHBBx/MdJ5Go3HphIs00lH9v6rn/v0LhV+IX7z5i2N9L+f1ohcf/q0P4zROYyu2lp2clSc/0yU/09eLXnz0py+C3ytXNmqjqLl4/vx5/Omf/mlEyM80yM/0ydN0jYqT3228GxExcDLGWecs3m+/H58vfT4iIl4vvh77h/tDv+v7T74f13LXzq16+4U7X4j/cP8/xPvt988N8nr5M+s2KCtC7M9FWYoRv/Wtby31/Jzn7x7DqBsMo24wyLC4f1ExvLj/BXH/6shSfM7klN/qU4arTfmtPmW42v7yw79cdhI2ktg/Hdqf9MnTdMnPdMnP9MnTdGVpPNrpa6dLPX8a1M90/eDZD0YfxMw2akLGoty7dy8ePHgw13Mc/k+HsX3t446tT1z5RHzifTPmp9Hb6sVpnMb1P7seWz2N96zkZ7rkZ/p6W7346b/90/GlL30prl71Z3BWycxu+ZkO+Zk+eZquZLDeIO+3X6yWO2gyRkREp9U5N2jqC3e+EMdHx0Mnb7zbeDfK9fK5118rvBb5Yj6+++i7Awdmvdt4N36l+Svj/jorQ+zPq7IUI37lK19Z6vk5z989hlE3GEbdYJBhcf+iYnhx/wvi/tWRpficySm/1acMV5vyW33KcMUN3wCPORL7p0P7kz55mi75mS75mT55mq4sjUd77+vvLfX8aVA/09X70A4Zi7BRvWy5XG6s3Slu3Lgx9Tk6nU602+0oFApzTcenrn4qfvLqT55/0TUzlefxPLZiK7Z6W3GlZyXAWcnPdMnP9D2P53HlypW4evXq0gPgdSE/0yU/0ydP0zNsJYezzlnUy/V4vfh6fL/y/QvvPzt9Fp1WJ6pnH6/69Frhtei0OvHH9/84vnzw5XPfdbR7FF86+FJ/N42XlevlONo9ii/c+cK5wVnvVN6JLx18aS1XyhX786osxYja1uzxd49h1A2GUTd41bC4f5Ex/CbG/Z/+iU+L+1dUluJzJqf8Vp8yXG3Kb/Upw9VmcNtyeOafDu1P+uRpuuRnuuRn+uRpurI0Hm0dylP9TJddRhZjo3rZrl+/fun7p6cvturJ5XJTn6NWq0U+f3ln0CLSAQAAi/Jv9v5NnHXO4uzobOgx2/ntC699+eDL0Wl14p3KO/Hs9Fk86z6La7lr8avf/NWBK+FGRFzLXYv94/1oVptxLXctPn3j03F6cho7ezsDB38BAADpWVQML+4HAAAAAABWxUZNyMjn8/H06dOh7ye7VoyaUHGZVqs18vOLSAcAACzKPzv5Z1N/Nl/MT7y67bXctXiz9ubU5wQAAKa3qBhe3A8AAAAAAKyCjZqQUSgUotVqDX2/0+lERESxWJz6HO12O0ql0tLTAQAAAPP28M2Hy05CvPXOW8tOAgAAAAAAAACwoa4sOwGLdOfOnYh4MWlikCdPnsw8GSMi4vr160tNBwAAAAAAAAAAAAAAMF8bt0NGsViMR48eRaFQuPB+o9GIZrN54fVutxv37t2Lvb29SydKnJ6ezjUdAAAAAAAAAAAAAEB2fOfhd+K9r78XV3obtU4+8Dc27sqv1+vRaDQu7E5RqVTi4OBg4ISLo6OjuH//fpTL5Uu/u9PpRERELpebSzoAAAAAAAAAAAAAAIBs2KgdMiJeTJY4Pj6OarUauVwubty4EScnJ7G3txelUmngZ4rFYuRyubh9+/al333z5s3I5XJx69atuaQDAAAAAAAAAAAAAADIho2bkBHxYjJErVYb+/hCoRBnZ2epHTdtOgAAAAAAAAAAAAAAXvXso2dTfe4vfvQX8Tvf+Z343l98L17/zOvx63/v1+Mzn/zMVN917eq1qT4Hq2wjJ2QAAAAAAAAAAAAAAKyLX/uDX5v5O77759+N3/z3vzn153//l35/5jTAqrmy7AQAAAAAAAAAAAAAAACsGjtkAAAAAAAAAAAAAACssN/9hd+d6nNff/r1ePeDd+N573lc2boSn7/x+fjaza+lnDpYXyZkAAAAAAAAAAAAAACssGtXr031ud/44m/Eb/+n346T7kns5HbiH//9fzz1d8EmMiEDAAAAAAAAAAAAAGADfeaTn4nqz1WXnQxYWSZkAAAAACvr4ZsPl52EiIh46523lp0EAAAAAAAAAGDBriw7AQAAAAAAAAAAAAAAAKvGhAwAAAAAAAAAAAAAAIAJmZABAAAAAAAAAAAAAAAwoavLTgAALNp3Hn4n3vv6e3Glt7x5iW+989bSzg0AAAAAAAAAAADA7OyQAQAAAAAAAAAAAAAAMCE7ZADAEjx88+GykxARduoAAAAAAAAAAAAAmJYdMgAAAAAAAAAAAAAAACZkQgYAAAAAAAAAAAAAAMCETMgAAAAAAAAAAAAAAACYkAkZAAAAAAAAAAAAAAAAEzIhAwAAAAAAAAAAAAAAYEImZAAAAAAAAAAAAAAAAEzIhAwAAAAAAAAAAAAAAIAJXV12AgAAAABW3cM3Hy47CfF863mcvnYa7339vbjSW94aHG+989bSzg0AAAAAAAAAi2RCBgBssFkHDqY16M+gPQAAAAAAAAAAAGDVLG+5RAAAAAAAAAAAAAAAgBVlQgYAAAAAAAAAAAAAAMCEri47AQAAAAAAAAAAAAAArLZnHz2b+rN/8aO/iN/5zu9E5y87kf9b+fj1v/fr8ZlPfmaq77p29drU6YBJmZABAAAAAAAAAAAAAMBMfu0Pfi2V7/nuj74bv/nvf3Pqz//+L/1+KumAcVxZdgIAAAAAAAAAAAAAAABWjR0yAICle/jmw2UnISIi3nrnrWUnAQAAAAAAAAAAYCX97i/87tSf/frTr8e7H7wbz3vP48rWlfj8jc/H125+LcXUwXyYkAEAAABAaky2BQAAAAAAgM107eq1qT/7G1/8jfiX/+lfxsn/exI7/8NO/JO//09m+j5YFBMyAAAAAAAAAAAAAABYms988jNx8PMHcfraaVx//3pc6V1ZdpJgLGoqAAAAAAAAAAAAAADAhOyQAQDwNx6++XCp53++9Tw+97XPLTUNAADrYtmxXeKtd95adhIAAAAAAAAAmBM7ZAAAAAAAAAAAAAAAAEzIhAwAAAAAAAAAAAAAAIAJXV12AgAA+Nh3Hn4n3vv6e3Glt9x5s2+989ZSzw8AAAAAAAAAAABZZ0IGAAAXPHzz4bKTEBEmhgAAqy8LcdXzrefxua99btnJAAAAAAAAAFg7y116GQAAAAAAAAAAAAAAYAXZIQMAgMyadUXp51vP4/S103jv6+/Fld70c5Ht1AEAAAAAAAAAAMCrTMgAAAAAgDX3nYffmXmS6qxMcgUAAAAAAADWzfJ6YAEAAAAAAAAAAAAAAFaUCRkAAAAAAAAAAAAAAAATurrsBAAAQNY9fPPhspOQCX/+7M+XnQQAYIWJqc576523lp0EAAAAAAAAYEYmZAAAAKl41n0Wf3TvjyIi4tM3Ph2nJ6exs7cTny99fskpAwDInixMUHm+9Tw+97XPLTsZrBhxPwAAbAaxPwAArD9xfzpMyAAAAGb2rPssjnaPolwvx2uF1/qvv1N5J9578l7sHe4tMXUAAEAaxP0AALAZxP4AALD+xP3pMSFjxfzVX/1VRET8+PmPl5yS9fHjv/5x/Lun/y7ufPZOfPLKJ5ednJUnP9MlP9MnT9MlP9MlP9MnT9OVxKBJTPqyerkef7f0d8/doEVEvFl7Mw63D2NnbyfyxfxC0rkuxP4Mo21jGHWDYdQNhvnxX/84Dv/3w/ivn/2vS60bb73z1tLOzUVJHCruh/H4O7valN/qU4arTfmtPmW4vsT+6fPMP13an/TJ03TJz3TJz/TJ03TJz3TJz3QZ67MYJmSsmB/96EcREfHR84+WnJL18ePnP44/aP9B/KNf+Eca7xTIz3TJz/TJ03TJz3TJz/TJ03QlMWgSkybOOmfRaXXil2q/NPBzn7/9+fjjwz92kzYhsT/DaNsYRt1gGHWDYbJSNx6++XBp586iZU9QSeJQcT+MJyttKdNRfqtPGa425bf6lOF6EvvPh2f+6dL+pE+epkt+pkt+pk+epkt+pkt+pstYn8W4suwEAAAAq+1p7WlERGzntwe+f33nenRanXjWfbbIZAEAACkS9wMAwGYQ+wMAwPoT96fLDhkAAMBM/qz9Z3Etd23o+8nN2/efft/MeQAAGGHZO4b8tx/8t4Gvi/sBAGAziP0BAGD9ifvTZULGinn+/HlERHSfdePTP/HpJadmPfzwr38YERFnz87iRz/xoxFHM4r8TJf8TJ88TZf8TJf8TJ88nc3zv34e0fv432f/39mL1/8mJu2/3jmLT13/1NDvSW7gzjpn6SdyjYn9GUbbxjDqBsOoGwyjbhAh7l+2JJ/Pnsm3VaUtXW3Kb/Upw9Wm/FafMlwtr8b+3WfdF6+L/RfCM/90aX/SJ0/TJT/TJT/TJ0/TJT/TJT9n45n/cmz1er3e6MPIim9961vx1a9+ddnJAABgg/3RH/1RfOUrX+n/+3D7MLbz27F/vD/w+Pfb78fR7lEUD4vx5YMvLyqZK0/sDwDAMon7F+PJkyfxsz/7s8tOBgAAG+zb3/523Lp1q/9vsf98eOYPAMAyeeY/X3bIWDE///M/H9/+9rfjp37qp+LKlSvLTg4AAGvso7/6KJ7/6OMZ8s+fP4//3v3vcevnbp077ln32Vjf98MPfphq+tad2B8AgEUQ9y/XF7/4RXE/AAALMSz2/+IXv3juOLH/fHjmDwDAInjmvxwmZKyYq1evnluZAAAAFuln4meWnYSNIfYHAGBZxP2LI+4HAGCZxP6LI/YHAGBZxP3zZ8o1AAAwk2u5a2PNnP/0jU8vIDUAAMA8iPsBAGAziP0BAGD9ifvTZUIGAAAwk09d/9Sl7394+mFEvLiZAwAAVpO4HwAANoPYHwAA1p+4P10mZADMSaPRWHYSANaOtjWbtvPb/RuxQZIZ9dv57UUlCQAASJm4HwAANoPYH2AwfdUA6dO2Lo+4P10mZADMQbfbjXK5HEdHR9HtdpedHIC1oG3Nrs8WPnvpNoZnnbOIiMgX84tKEgAAkDJxPwAAbAaxP8BF+qoB0qdtXS5xf7q2er1eb9mJ4HLdbjfu3bsXERE3btyIk5OT2Nvbi1KptOSUZUO73Y5arRanp6fRbrcjl8tFpVKJ/f39gccfHR1FvV6PSqUSxWIxcrlcdDqdaLfb8ejRo3j77bejUChc+NwmlMMi82bd87Pdbsfu7u5Yx9br9f7vrX6eV6lUolwuR7FYvPS4RdXBdcjncfNU2zqecfJT2zq+UfmpbR3fpNdwxGx17gf/zw/iv/zef4nP/qPPxj986x9e+Ey9XI9n3WfxK81fWel8XQT5s7rWIW5R/9K16LY4i59huE6nE4eHhxERcXp6Gt1uN/b29uLg4GDoZ7Jc1urHfFUqlahWq5HPD37gneVyVjdml6V7yvfb78fR7lHsH+/Ha4XXLnzmvf/zvfj+6ffjn/4f/1S9YCVNE79dZtrrl9lME2eNot1anLTLz3WYDaPi2VFcg8s1S/m5BlfXoNj/ZS8/8+dy2rDpLKqvehNsYj/pvCy6r3pdZa0/bdVlbQzQOsjaOKBVl7VxQKtqXv3Or8b9r36m+dvN+Ds/+XfiX/zf/2K+v+C66JFpZ2dnvXw+3zs+Pj73+v7+fu/g4GBJqcqOWq3Wq9Vq515rNpu9XC7Xy+fzvbOzswufOTw87EXEhZ9cLtdrNpsDz7Mp5bCovNmE/KzX6718Pt8rlUq9/f39gT+lUqlXKBTOfU797PVOTk56tVqtVygUehEx9PdOLKoOrnI+T5qn2tbLTZqf2tbLTZKf2tbxTHMNp1Hn/nXxX/f+8OAPB37mt+K3eifNk5XO10WQP6tnneIW9S9dy2qLs/QZhqvX6wPzrVAo9PL5/MDPZLms1Y/5Oj4+7kXEhfxNZLmc1Y10ZO2eMon7B30mifvVC1bRNPHbKNNcv8xmmjhrFO3W4syj/FyHyzcqnh3FNbhcs5afa3C1vRz7vyqJ/bmcNmw6i+qr3hSb1k86T4vsq143We1PW1VZHQO0yrI6DmhVZXUc0Kqad79zEvcP+sxvxW/1fvl//uW1q6PzYkJGxhWLxaGVeR0bj0mcnJz0Dg8PB76XPBwqFosX3js8POzVarXewcFBvyF/tcF61aaUw6LyZhPy8+DgoHdycvlDqEHHbHr9rNVqvVKp1KvVar1mszlWkLuoOriq+TxpnmpbLzdNHdW2DjdpfmpbR5v2Gk6jzn149mHvn+f/ee/7x98/95lv7H+j32mzqvm6KPJntaxb3KL+pWeZbXGWPsNgZ2dnvVKpNPC9pH7s7+9feC/LZa1+zFexWLx0AFSWy1ndSEfW7ilfjvtf/szLcX8a54FFmjZ+G2Wa65fpTRtnjaLdWox5lZ/rcPlGxbPjfN41uDyzlp9rcLW9HPu/7NXYn+G0YZNbZF/1ptikftJ5W2Rf9TrJcn/aKsryGKBVleVxQKsoy+OAVtEi+p2TuP+rP/fVc595Oe5fpzo6TyZkZNjJyUkvIoY2OPv7+1N1AqyLg4ODS1elSh4QDWqMJ1nNapPKYRF5syn5OWpW4PHx8cAgQP38WBI0jLpxWEQdXJd8HidPta3jGyc/ez1t67jGrZ+jvmPT29ZpruE069yHZx/2vrH/jd4v/o+/2Lv5Mzd739j/Ru8/1//z1OfZJPJnta163KL+pWvZbXEWPsNwycPnYXFNRFxY/TfLZa1+zFey6tGwAVBZLmd1Iz1ZvKf88OzD3tEvH/Uiovfo4NG5uD/N88CiTPs8bJRJr19mM02cNYp2a3HmUX69nutw2UbFs6O4Bpdr1vLr9VyD6yB55v+HB3/Y+9bhtwbG/gymDZvOovqqN8km9ZPO26L6qtdZlvrT1kGWxgCtiyyNA1oHWRoHtKoW1e/87n98txcRvd/b/72Bcf+61tG0XQkyq1arRUREPp8f+P7Ozk60Wq3odrsLTFV2tFqteP3114f+/oVCISIi2u32TOdRDsNNkzebkp+VSuXS92u1Wuzv7898nk3Jz2EWVQc3KZ+1rcunjg6nbR1tmms4zTp3LXct3qy9Gf/gf/0H8fRPnsZXD78any99furzbBL5s/6yHLeof+ladluchc8w3PXr1yOXy8WNGzeGHpPL5c79O8tlrX7MT6fTiYjheRuR7XJWN5ZnEeV1LXct/uRv/0lERNw+vB1v1t7sx/1pngcWZVHPw5ivaeKsUbRbizOP8mO5xolnR3ENLk8a5cd6SJ757x3uxZcPvjww9mcwbdh0xObLp+4Ot6i+6k3nWWS6tKvZoI4Op2293KL6nf/Vw38VERG/WvvVgXH/JtfRSZiQkWHtdvvSh4vJBfP06dMFpShbrl+/Ht1ut/9AaF6Uw3DT5M2m5OdlDyir1WocHh6mcp5Nyc9hFlUHNymfta3Lp44Op20dbZprWFuaDfJn/WX5WlP/0rVubbH6ka5CoRBnZ2dxcHBw4b3kYWmxWLzwelbLWv2Yn3E6GbJczurG8mS5jNULsmpRz8OYr2nirFG0W4szj/JjudIYNOMaXJ5NH/QEadCGTUdsvnzq7nCL6qvedJ45pUu7mg3q6HDa1stlud+Zi64uOwEM1+l04vr160PfTy6ATf2D2Ww2o9PpDG2Uk3xJZoEN0m634+nTp3Hz5s2hx21qOcwrbzY1PxPtdjt2dnbGWslJ/RxtUXVwk/JZ2zpf2tb50LZ+bJprWFuaDfJn/WX5WlP/0rVubbH6sTjVajXy+fyFh8tZLmv1Yz4ajcbIVaEisl3O6sZ8ZOmeUr1gnaTxPGyUca5f5mdYnDWKdisbpi2/V7kOF2fceHYU1+BypFV+r3INsmm0YdNZVF/1plr3ftJlSbuvetN55pQu7er8aVvnQ9v6Qpb7nbnIDhkZdnp6emmDklwAm7wNzGUz5BqNRhQKhYHHtFqtuH//fkREf3WPvb29aLVaF47dtHKYd95sWn6+6t69eyNXlFE/x7eoOrhp+axtTZ+2db60redNeg1rS7NB/qy/LF9r6l/61qktVj/mr9PpRKVSiXw+HycnJxfez3JZqx/pS1Y6uqwdSWS5nNWNdGXxnlK9YN1M+zxslEmuX9I3Ks4aRbu1XLOWX8J1uFiTxLOjuAYXL83yS7gG2VTasOktoq9602xSP+kypN1Xvek8c0qfdnU+tK3zpW39WFb7nbnIDhkZNm7l/eCDD+abkBWUNLQPHjy48F7S+Ly87XGhUIh6vR7b29txfHx8bsbYJpXDIvJmk/LzVY1GY+QDTPVzMouqg5uezwlt63S0rfOlbR3fsGtYW5oN8mf9ZflaU/8WZxXbYvVjfhqNRjx58qQ/2GVvb2/gcVkua/Ujfffu3Rt79ecsl7O6kZ6s3lOqF2yKy56HjTLp9Ut6xo2zRtFuLUda5RfhOlyGSeLZUVyDi5dm+UW4Btls2rD0pdlXvUn0k87XPPqqN51nToujXZ2etnW+tK3jWXa/MxeZkMHaabfbUa1Wo16vD2xUS6XSwM/lcrkolUpRLpdnWmlnlcmb+bp3797IjjtlQFZpW6cnb+ZL2zqeUdcwAPOnLeZVpVLpXJyyt7cXtVotHjx4MNYWzKyfVqs104BD1pP7GVieWeM31+/yiLNWW5rl5zpcLPHsaptH+bkGgbToq56evJkvfdWsKu3qbOTPfGlbR9PvnE1Xlp0AhsvlcmPNPLpx48b8E7NCyuVy1Gq1oY3uZW7duhWdTic6nU7/NeXwQlp5s6n52el0ot1uz/QHUP28aFF1cNPzOULbOi/a1tloW8d32TWsLc0G+bP+snytqX+LsaptsfqxOPV6PRqNRpTL5XOvZ7ms1Y90NZvNKBaLYx+f5XJWNxZjmfeU6gWbYJbnYaMMun6Zn2Fx1ijarWyYtvxGcR2mb9J4dhTX4GKlXX6juAZZd9qwdKXdV80Lm9JPOi/z6qvedJ45LYZ2dX60rbPRto4nC/3OXGRCRoZdv3790vdPT08jIqzm85JyuRyVSiX29/en+nySl+12u/+acnghrbzZ1Pys1Wojt9IaRf28aFF1cNPzWds6P9rW2WhbxzPqGtaWZoP8WX9ZvtbUv/lb5bZY/Vic3N+s2tNqtaLVavVfz3JZqx/puX//frz99tsTfSbL5axuLMYy7ynVC9bdrM/DRhl0/TI/w+KsUbRb2TBt+Y3zvRGuw7RME8+O4hpcnHmU3yiuQdadNiw98+ir5oVN6Cedp3n1VW86z5zmT7s6X9rW2WhbR8tKvzMXmZCRYfl8vl+RB0lmJM3aAK2LarUat27dioODg6HHVCqV2NnZmeh7N6UcFpU3m5Kfr2q1WiN/J/Vzcouqg5ucz9rW2Whb50vbOto417C2NBvkz/rL8rWm/s3XqrfF6ke6ut3upSvyJPnYbDbPvZbVslY/0tHpdCKXy038IDvL5axupCPL95TqBetsnPhtlGmuX2YzTZw1inZrceZRfq7DxZk2nh3FNbgY8yo/1yCbThuWjnn1VW+KTe8nnbd59VVvOs+c5ku7Ojtt63xpWy+XpX5nLjIhI8MKhcKl28AkDyYXuXVoVh0dHcXOzs7AhublPHz69OlYDcfLWx5tSjksKm82JT9f1W63Rz7IVD8nt6g6uKn5rG2dnbZ1vrStlxv3GtaWZoP8WX9ZvtbUv/lZh7ZY/UjX9vZ27OzsDM3TZKtf9WOztNvtqNfrsbe3d+GnUqlERMTdu3f7ryWyXM7qRjqyfE+pXrCuxo3fRpnm+mU208RZo2i3Fmce5ec6XJxp49lRXIOLMa/ycw2y6bRhs5tnX/Wm2OR+0kWYV1/1pvPMaX60q+nQts6XtnW4rPU7c5EJGRl2586diBi+dc6TJ09U8IhoNBoREQO34Ol0Oue2Ly4Wi3F2djb0u548eRK5XO7cTK5NKYdF5c2m5OfLkt911NZO6ufkFlUHNzGfta3p0LbOj7b1cpNcw9rSbJA/6y/L15r6Nx/r0harH+lK4o5hD5NPTk4iImJ3d7f/WpbLWv1IR6lUimazOfDn8PAwIiIePHjQfy2R5XJWN9KR5XtK9YJ1NEn8Nso01y+zmSbOGkW7tTjzKD/X4eJMG8+O4hpcjHmVn2uQTacNm828+6o3xab2ky7CPPuqN51nTvOhXU2PtnV+tK3DZbHfmQF6ZFqxWOwdHBwMfC8ies1mc8Epypbj4+NerVYb+n6tVuudnJyMdfzJyUkvInr1ev3Ce5tQDovMm03Iz5c1m81eRPT29/cvPU79PO/4+His9C+qDq5DPo+bp9rW8YyTn9rW8Y1bPxPa1uEmvYZ7PW1pVsif1bUOcYv6l651a4vVj/QcHBxcKPuX5XK5Xi6X652dnZ17PctlrX7MV71e70VE7/j4eOD7WS5ndWN2Wb+nVC9YJ9PEb2dnZ72Dg4OB9Xba65fpTRtnXVaOvZ52a1HmUX6uw2wYFc+6BrNtlvJzDYI2bFqL6qveBJvYT7oo8+6rXldZ609bdVkbA7QOsjYOaNVlbRzQqspyvzPnmZCRcWdnZ718Pn/hIcf+/v7Qyr8pTk5Oevl8vre/vz/wp1Qq9XK53IXPHR4e9g4PDy98Vy6XG5qnm1IOi8qbTcnPRK1W60XEWL+b+vmx5CHvqABpUXVwHfJ5nDzVto5v3DqqbR3PuPmZ0LYONu01rC3NBvmzutYhblH/0rOObbH6ka79/f2BDy2TujFooEuWy1r9mK/Dw8NL/8ZkuZzVjXRk+Z5SvWBdzPI8LCIGvpe8P+n1y2ymibNGlaN2a3HmUX6uw+UbFc+6BrNt1vJzDbLptGGTW2Rf9abYpH7SRZp3X/W6ylp/2qrL2higdZC1cUCrLmvjgFZR1vudOW+r1+v1Ru2iwXJ1u92oVquRy+Xixo0bcXJyEnt7e1EqlZadtKXa2dmJTqdz6TH5fL6/jfHLWq1W1Ov1OD09jW63G7lcLt5+++0oFApDv2tTymFRebMp+RnxYiunN954Ix48eDDW77fJ9bPRaEStVouIiKdPn/Z//5s3b0ZERLlcHrj11qLq4Crm86R5qm293LR1VNs62LT5GaFtHWaWa1hbmg3yZ3WsY9yi/qVjXdti9SNdjUYjHj16FNevX+/HJ4VCId5+++3I5XIDP5PlslY/0lepVKLT6Vz4G1MoFOLw8PDcsVkuZ3UjHVm+p1QvWAfTxm/Js4nbt2/37w1eNc31y2wmjbPGKUft1uLMo/xch8sxbjzrGsymNMvPNcim04ZNZtF91ZtiU/pJF2kRfdXrIuv9aasm62OAVlHWxwGtmqyPA1o1q9DvzMdMyAAAAAAAAAAAAAAAAJjQlWUnAAAAAAAAAAAAAAAAYNWYkAEAAAAAAAAAAAAAADAhEzIAAAAAAAAAAAAAAAAmZEIGAAAAAAAAAAAAAADAhEzIAAAAAAAAAAAAAAAAmJAJGQAAAAAAAAAAAAAAABMyIQMAAAAAAAAAAAAAAGBCJmQAAAAAAAAAAAAAAABMyIQMAAAAAAAAAAAAAACACZmQAQAAAAAAAAAAAAAAMCETMgBYmkajEVtbW+d+ut3uspO18iqVyszfUa1Wz5XL9vZ2CikDAGDdiOnnQ0wPAAAAAACT27R+C30BANlgQgYAS5XL5eL4+Lj/k8vllp2kldZqteLo6Gjm73n77bf7ZXJ4eJhCygAAWFdi+nSJ6QEAAAAAYHqb1G+hLwAgG0zIAGCprl+/HoVCof+T6HQ6sb29fWHWeqfTmfpcOzs7F2aFNxqNmdJfqVRie3v7ws/W1lbcv39/rO/odrv99Lz8+WkGYdXr9SiVShN/7lW5XG5guQAAwKvE9GJ6AAAAAADIimH9FutIXwBANpiQAUAm5fP5ODs7i16vF6VSqX/TUKvVpvq+VqsV+Xy+/929Xi/Ozs5mHuhUq9Xi7Ows6vV6dLvd6Ha7USwWo9frxcHBwVjfkcvl4uzsLG7evBndbjf29/fj7Ows9vf3J07P0dFR3LlzZ+LPAQBA2sT0YnoAAAAAAACAdWdCBgCZd+vWrahUKhERU60wGxHRbDZjb28vImIuM8KLxWIUi8WpP5/L5aJcLkepVIrDw8OptktstVoREamspgsAAGkS049HTA8AAAAAwKI1Go2ZdrcGgE1nQgYAmZfL5eLmzZuRz+ej2+1Gu92e6fuuX7+eUsrOSwaYNRqNqT5/fHwch4eHU5+/VqsZuAUAQCaJ6ccjpgcAAAAAYNGePHmy7CQAwEozIQOAlZEMjqrVahN9rtFoxJ07d+aRpHNKpVJ/FdxpVv3tdDqRz+enPn+j0ejnEQAAZJGY/nJiegAAAAAAFs3uGAAwGxMyAFgZ+/v7ERHx+PHjiT7XbDajUCjMI0kX3L59OyImH2B2dHQU5XJ56vM2Go3I5XJRLBan/g4AAJg3Mf1wYnoAAAAAAJah1WotOwkAsNJMyABgZSSDk7rdbjQajbE+0+12Y2dnZ84p+1iymm273Z5oBYF6vd4fnDaNR48e9QeOAQBAVonphxPTAwAAAACwaO12O7rd7rKTAQArzYQMAFZKsuLso0ePxjr+6OhopkFRkyoUCpHP5yNi/BV1O51O/zPTajQaM63GCwAAiyKmH0xMDwAAw3W73SiXy7G7uxu7u7vRbrfPvX///v3Y29uLvb292N3djXK5PNEEawAA2FTVanXZSQCAlWdCBgArJRmI1Wg0xpqhf3JyErlcbr6JekVys3p0dDTW8bVarb8K7zQajUZ/pWEAAMg6Mf1FYnoAALhcuVyOw8PDOD4+juvXr8fu7m50u91ot9uxu7sbhUIhms1mNJvNOD4+jna7HTs7O1b6BQCAS1QqlWi1WstOBgCsPBMyANZEpVKJvb292NnZiUaj0X+92+1GpVKJcrkce3t7a7EqVKlUioiIx48fX3pcp9OJ3d3dqc7R6XT6+Zbk7bh5d/v27Yh4kffj3Li2Wq0oFApTpTPixeCv5JzjuH//fn+FsEql4gYbAGDNrMK9gZj+PDE9AAAM1263I5/P93elS/5brVbj7t278c1vfvPC5ObknmPcSdYAALBs1Wr13DPfcrk8MJ6tVCqxtbUV29vb/Z+tra2Bz4iPjo5ia2urf3xyXKPRiN3d3XPP6Hd3d8995/b2dv+9vb29C+9tbW1deN7e6XTOnS85Lite7j/Z3t7up7/VakWlUolqtdrfde/l/pWXj0m+Y3d399Ln8os8FwDLZ0IGwBpIbsSazWaUSqUol8vRbrej1WpFuVyOarUa9Xo9ms1m3Lp1K3Z2di5s571KkpVna7XapcfVarX+6ruTaLVa/cFa9Xo9arVaNJvNsW9ycrlcv7Pn8PBw5Lnu3LkzcRoTyQCxcVbj7XQ6sbOzE0+ePInj4+P+71ar1aLT6diGEgBgDazKvYGY/mNiegAAuNy9e/fOxcvJQKbHjx/HN7/5zYE76t24cSMiIp48ebKQNAIAwLSS3d1u3bp17plvvV6P4+Pj2NvbO7fzW61Wi16vF7dv345utxv5fD56vd7AHZj39/f7z+Fv374dZ2dnUSwWo1QqxfHxcZydnfWfhSf/fvkn0Ww24+zsLB48eBDdbje63W7U6/X+ZOlEPp+Pg4ODiIgoFotRr9ej1+ulnWVTK5fLUS6X4/T0tJ+n9+/fj263G7VaLQ4PD6PZbMbbb799bkLMy8ck/Q3JZIlXJ1Ms41wALJ8JGQArrtvtRqfT6d9Y7ezsRMSLwD4JzF++ATo4OIhcLhflcnkp6U1DsViMXC4X7XY79RV9G41G7O3tRa1Wu3Czur+/H7dv3469vb2R5006h1qt1qVbok87wCzx+PHjyOVyI1fj7Xa7sbOzE4VCIer1+oX39/f349atW27eAABW2CrdG4jpPyamBwCAy3U6nXPxcjLB+sGDBwMnY0REnJycRETE9evX554+AACYVrvdjt3d3Tg8POxPjHhZrVaLfD4/cCfpZKLFqGfdt2/fjkKhELVabWj8PK5SqdQ/76NHjwYe0+124/DwMOr1+sBJIstULBb7/QQRL/oT8vn8hbwvlUqRz+ejWq1Gq9UaeMz+/n7k8/m4e/fu0s8FwPKZkAGw4o6Ojs4NoEo6GU5PTwcO0ol4MSO90+mcWwk32SZvZ2cndnd3Y29vb+hru7u7/deXtQLryzcsgyQr4k7q7t27USgUht4UJr/vqFVykwFmEcO3RE8Gdc1yw1uv18ca/JXUkQcPHgx8v9FoxN27d0euUAwAQHaldW+wKGL6F8T0AABwuZdj4JfvXQYNWEskkzYGDVwDAICsuHv3bn/HimFqtVqcnp4OHJ+zv7/f34V5mMePH498Hj6J/f39KJVK0Wg0Ljw7b7fbkcvl+rtkZFXyTP/Ro0dD875YLPYnlww7plAo9BfLysK5AFgeEzIAVlyz2ewPZIr4uJPhspupZNDQ06dPI+LFbPmnT5/G4eFhnJycxPHxcTSbzWg2m5HL5aLT6US9Xu+/dnx8HMfHx5HL5frbfi9aslrtsMFGzWZz4pn2ybZ/d+7cGXpMPp+PfD4/dEDWy5JBVcPSeHR0dOm5Rkluqkd9R6vVilardW5A2as6nU50u904PT2dOj0AACxXGvcGiySmF9MDAMA4Bu2Ocdm9wsuDlF6+RwIAgCw5OjqKdrs91i7WxWIx7t+/f2Ew/qjn7BExl50q6vV65PP5qFQq/UnT3W437t27l+rkj3m7LF+SZ/GX7W6d7Mh32S7byzgXAItnQgbAijs8PDw3ICe50bkskE9u0JIgvdFoxIMHDwbOsm632/0BSy/L5XJx586dC68vSqFQSH0132Q7xctucCKi/zuPuslJbnyHpfGy2e/jePz4ceTz+ZHpTVZDvmx14YODg6jX60NXTgYAIPvSuDdYJDG9mB4AACbVbDYj4vLYOJm0kc/nZ9rNDgAA5imZRHHz5s2Rx966devcZxKFQiEKhUI0Go2Bz7vb7fZUO1GPI4nNy+VydLvduHv37tAdnrNqZ2dn5DFJ3q/SuQBYvKvLTgAAsxm0MlQulxs6UeLl2fLJMScnJwO3Cxy10lQulxs5cGieKpVKVKvVqNVq5246G43GVKvUJgOskt1Ahkny8PT09NLOnHw+H8ViMVqt1oU0ttvtmVcgqNVqYw3+SlY7HtXxNMtAMgAAli+Ne4NFE9OL6QEAYBLJvc5lsW9yL5D2KsAAAJCm5Hn2OJOIk2MGLRxUqVSiUqnE0dHRhbE/tVptbjtW5PP5qNfrUS6X4/XXX49vfvObKzchepy+kbR+p0WeC4DFMyEDYI0knQyXbcGddFZEvBiw1el0Ynd399LvGzZb/uTkJPb396dN7sxKpVJUq9V4/PjxuYFRT548mWkgUrVavfRGaJKb1UqlEq1WK46Ojs6lsVarRbVanTqN3W432u32WKvfJqsgJNsXAgCw/qa5N1gGMb2YHgAAxjXOxPOXj5vXSsAAALAsp6enF17b39+PSqUS9+7duzAhY9SiRLMqlUr9RY2ePn261EVdAWCZriw7AQCkZ5xOhmRgVj6fj3w+H91ud+ggrWRm/bAbpmV3ZuTz+SgUCtHtdvu/e7fbjRs3bsz0vYO2cZzWy4PIGo1G//87nc5MqxAfHR31y3CU5OZ60I05AADraZp7g2UQ04vpAQBgXOPsfNHtdvs74tkhAwCAVTDO8+xRi/bs7++fe84e8eIZdKVSmSltL3/fIJ1OJ3K5XBQKhahUKgN38ACATWBCBsAaSW5sLutkSAYQJSu5FgqFobPhW63WpStNZaEzI7l5TFaqffz48dQr6Sa/Z9qDnJJdRO7duxcRL256y+XyTN/56NGjsW+ck9/r5ORkpnMCALA6prk3WBYx/WhiegAAGG/ieXJMPp+f60rAAAAwq0meZ3/wwQfnPvOqV5+zR7yY0DzruJ5kUvQw1Wo16vV6fyfoSZ6bHx0dxfb2duzu7p6blLLsPgsAmIYJGQBrYpxOhqOjo/4xyYCiYcYZwJUFye4eyWCyk5OTqVepTW5Qx5mxn6ywNen3djqdqNfrI/N/1Lnb7fbYg9SS849auSD5bgAAVlva9wbzJqYf//xiegAANtk4/RaPHj0aeQwAAGRB8tx31KSHiI9j4WGL/BQKhSgUCtFoNKLb7Ua73Y5bt25NlJ5Xd+oYtXNHpVKJw8PDiHjR11Cv16PT6Yw1KaPRaMTh4WHcvn07ut1uvPHGG9HtduP+/fsTpxsAssCEDIA1kdygDRu41O12+7PIk5nplxlnpalF6Xa7Q1cEyOVy/Y6VarUaOzs7U5/n4OAg8vn8uRUDhplkRn6hUOiXS7VanXpwWaLRaJz7zlGKxWIUi8Vot9sjB6ZZaQAAYPWlfW+QBjH9eWJ6AACYTNJncdmu3i8fl4W+DQAAuEzyPDtZrGiYbrcbrVYrSqVSFAqFocclkzWOjo6iVquNvajQsJ06Tk9Phz6vv3//fpTL5XOxealUioODg2g0GnH//v1Lz9lsNuPk5CRqtVqcnJzEgwcPolqtxgcffDD1DtoAsEwmZACsiaST4enTpwPfL5fL0e12o16vX3qDlkgGcWVhFakPPvjg0pn3yU3l/fv3+6vrXuay7R6TGfuX3Ry2Wq2JO3OSNDYajaErFoyrVqvFnTt3Jv5MRMTdu3eHHtNqtaw0AACwBtK+N0iDmP48MT0AAEzm+vXrkcvl+ivwDtLpdPr3HVno2wAAgFFqtVp0Op3+rtaDVKvVyOVy8eDBg0u/K5mAce/evYiIoTtovyp5Vv7qYkCtVitu3rx54fhGoxFPnjwZGHMfHh5GoVCIarV66eJCry6qlMvlRsb7WXZZn8UqnwuA8ZmQAbAmkhuZBw8eXNj+r1KpxNOnT6PZbI49k7zVao1caWoRWq1W3L9//9KbteR3KpVKl95QPnnyJCIu3kS+rFAoxPHxcdRqtYEryzYajWi322OvJJBIjs/n8zMNeut0OtHpdCY+fz6fj+Pj4+h2u7G3t3dhMFyr1YpmsxkHBwdTpw0AgGxI+95gVmL688T0AAAwuUKhEGdnZ5fG0cnk9EKhMPbgMwAAWKZisRjHx8dRrVYHLjKUPNP/3ve+N1aMu7+/H91ud6JFhZIdmu/du9d/7tztduP4+Pjcs/BOpxOVSuVCv8Og74uIeOONN0bu+Bzx4nl/o9FY6GSMJF2XpW+cYzqdzrn/LvtcACyPCRkAayDpZMjn81EqleLOnTuxu7sbe3t7sbu7G7lcLr73ve+NvSJUEuAvcwWpTqcTW1tb/Zn4nU4ndnd3Y2tra+Dx+/v7A28o2+12bG9vx/b2dn+bx06nc+G1lxUKhTg5OYmIiN3d3SiXy1GpVKJSqUQul5tqgFMul4tSqZTKSrrTdiYlv9fe3l688cYbsbe31/+9ut3uyq40AADAx9K+N5iFmH4wMT0AAMxHlnb+BgCAcSWTjz/44INzz3yT5/rHx8djP0+uVCpRKBQmXlSo2WzG7du344033ohKpRLVavXc8+bt7e3Y2dnp7+SRLHz0qkaj0Z9Y0u12Y3d3N7a3twcunhTxok/j6dOnC1toKElP0pdSrVYvpG+aYyqVSirfM+25AFi+rV6v11t2IgCYTTJTfn9//8K2ftM4OjqKSqUSh4eHc73paTQaUa1W+wOlGG1nZyeq1erEq+nOotVqRblcjrOzs4WdEwCA6aR9bzCKmH5yYnoAAJiP7e3t6Ha70Ww2TcoAAICMazQakcvlUo/dN7nfQl8AwPLYIQNgDSSzoJOVZ2dlFals6nQ60el04vbt28tOCgAAGZX2vQHpEtMDAMB8dDqd6Ha7EaFvAwAAsu7+/fuRz+cvxO5HR0fR6XSWlCoAmJ4JGQBrINkGcNItB4dJBnGl9X2ko1arRbFYHHsrSgAANk/a9wakS0wPAADz0Wg0IsK9EAAAZN3R0VE8efLkwsSLVqsV9Xo98vn8klIGANMzIQNgxSWTJ3K5XCo3Je12O7rdrk6LDGo0GlEul5edDAAAMirtewPSJ6YHAID5sPM3AABkX7vdjuPj43jw4EE8efIktre3o1KpRLlcjnK5HLVabdlJBICpXF12AgCYTRqdDI1GIx49ehTdbjeePn0aES+2997b24tcLhd7e3uxv7+fSnqZTrvdjk6nE7dv3152UgAAyCgDkLJNTA8AAPOTz+cjn8/H22+/veykAAAAQzx69Kg/6eLw8DAiXuyYkc/n4/j42GJTAKwsEzIAVli32+1vwz2LUqkUpVIphRQxL48ePYpisRi5XG7ZSQEAIIPSujdgfsT0AAAwP1bSBQCA7EsmYbz871dfA4BVdGXZCQBgOtvb27G9vR2np6cR8WKXi62trdje3l5yypiHo6OjqFQqy04GAAAZ5N5gNYjpAQAAAAAAANaPCRkAK+rs7Cx6vV7/v8nP2dnZspM2kU6nE1tbW/2fbre77CRlTrvdjm63u9BdTKrVar9M9vb2FnZeAAAmt+x7AzH9aGJ6AAAAAABYjE3qt9AXAJANW71er7fsRACwmbrdbnQ6nXOvFQqFJaUmu9rtdrRarTg4OFjYOZUNAADjEDeOR0wPAAAAAADzt2nPxjft9wXIKhMyAAAAAAAAAAAAAAAAJnRl2QkAAAAAAAAAAAAAAABYNSZkAAAAAAAAAAAAAAAATMiEDAAAAAAAAAAAAAAAgAmZkAEAAAAAAAAAAAAAADAhEzIAAAAAAAAAAAAAAAAmZEIGAAAAAAAAAAAAAADAhEzIAAAAAAAAAAAAAAAAmJAJGQAAAAAAAAAAAAAAABP6/wH5WL1xM788DwAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 3200x2400 with 32 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "trackEvaluator = evaluate_candidates_montetracko(\n",
+    "    CONFIG,\n",
+    "    min_track_length=2,\n",
+    "    whether_to_plot=True,\n",
+    "    allen_report=True,\n",
+    ")"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": 28,
-- 
GitLab


From 764b8c71af2a12745c6b7655ef4d65f729e7f76d Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 14:25:24 +0100
Subject: [PATCH 14/30] fix range ovtxz

---
 LHCb_Pipeline/Embedding/embedding_base.py              | 10 +++++-----
 .../Scripts/utils/plotting_utils_validation.py         |  2 +-
 2 files changed, 6 insertions(+), 6 deletions(-)

diff --git a/LHCb_Pipeline/Embedding/embedding_base.py b/LHCb_Pipeline/Embedding/embedding_base.py
index d662c98e..ac95056a 100644
--- a/LHCb_Pipeline/Embedding/embedding_base.py
+++ b/LHCb_Pipeline/Embedding/embedding_base.py
@@ -304,8 +304,8 @@ class EmbeddingBase(LightningModule):
                 on_epoch=True,
                 on_step=False
             )
-            print("eff= ", eff)
-            print("pur= ", pur)
+            # print("eff= ", eff)
+            # print("pur= ", pur)
 
         if verbose:
             logging.info("Efficiency: {}".format(eff))
@@ -313,9 +313,9 @@ class EmbeddingBase(LightningModule):
             logging.info(batch.event_file)
 
         
-        print(e_spatial.shape)
-        print(y_cluster.shape)
-        print(e_bidir.shape)
+        # print(e_spatial.shape)
+        # print(y_cluster.shape)
+        # print(e_bidir.shape)
 
         return {
             "loss": loss,
diff --git a/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py b/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py
index 9797a469..b4468337 100644
--- a/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py
+++ b/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py
@@ -13,7 +13,7 @@ column_ranges = {
     "pt": (0, 2000),
     "p": (0, 50000),
     "eta": None,
-    "vz": (0, 200),
+    "vz": (-200, 700),
 }
 
 
-- 
GitLab


From 9dd52537b37083615a664026f8ada72c1643de27 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 14:38:33 +0100
Subject: [PATCH 15/30] comment out print statements + formatting

---
 LHCb_Pipeline/Embedding/Models/inference.py | 17 ++---------------
 1 file changed, 2 insertions(+), 15 deletions(-)

diff --git a/LHCb_Pipeline/Embedding/Models/inference.py b/LHCb_Pipeline/Embedding/Models/inference.py
index 7cf17e54..4ff31111 100644
--- a/LHCb_Pipeline/Embedding/Models/inference.py
+++ b/LHCb_Pipeline/Embedding/Models/inference.py
@@ -31,7 +31,6 @@ class EmbeddingTelemetry(Callback):
         logging.info("Constructing telemetry callback")
 
     def on_test_start(self, trainer, pl_module):
-
         """
         This hook is automatically called when the model is tested after training. The best checkpoint is automatically loaded
         """
@@ -47,7 +46,6 @@ class EmbeddingTelemetry(Callback):
     def on_test_batch_end(
         self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx
     ):
-
         """
         Get the relevant outputs from each batch
         """
@@ -65,7 +63,6 @@ class EmbeddingTelemetry(Callback):
         self.truth_graph.append(outputs["truth_graph"].cpu())
 
     def on_test_end(self, trainer, pl_module):
-
         """
         1. Aggregate all outputs,
         2. Calculate the ROC curve,
@@ -80,7 +77,6 @@ class EmbeddingTelemetry(Callback):
         self.save_metrics(metrics_plots, pl_module.hparams.output_dir)
 
     def get_pt_metrics(self):
-
         pt_true_pos = np.concatenate(self.pt_true_pos, axis=1)
         pt_true = np.concatenate(self.pt_true, axis=1)
 
@@ -99,28 +95,26 @@ class EmbeddingTelemetry(Callback):
         return centers, ratio_hist
 
     def get_eff_pur_metrics(self):
-
         self.distances = torch.cat(self.distances)
         self.truth = torch.cat(self.truth)
         self.truth_graph = torch.cat(self.truth_graph, axis=1)
 
         r_cuts = np.arange(0.01, self.hparams["r_test"], 0.01)
 
-        print(r_cuts)
+        # print(r_cuts)
 
         positives = np.array([(self.distances < r_cut**2).sum() for r_cut in r_cuts])
         true_positives = np.array(
             [self.truth[self.distances < r_cut**2].sum() for r_cut in r_cuts]
         )
 
-        print(positives, true_positives)
+        # print(positives, true_positives)
         eff = true_positives / self.truth_graph.shape[1]
         pur = true_positives / positives
 
         return eff, pur, r_cuts
 
     def calculate_metrics(self):
-
         centers, ratio_hist = self.get_pt_metrics()
 
         eff, pur, r_cuts = self.get_eff_pur_metrics()
@@ -132,7 +126,6 @@ class EmbeddingTelemetry(Callback):
         }
 
     def make_plot(self, x_val, y_val, x_lab, y_lab, title):
-
         # Update this to dynamically adapt to number of metrics
         fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(20, 20))
         axs = axs.flatten() if type(axs) is list else [axs]
@@ -146,7 +139,6 @@ class EmbeddingTelemetry(Callback):
         return fig, axs
 
     def plot_metrics(self, metrics):
-
         centers, ratio_hist = (
             metrics["pt_plot"]["centers"],
             metrics["pt_plot"]["ratio_hist"],
@@ -185,7 +177,6 @@ class EmbeddingTelemetry(Callback):
         }
 
     def save_metrics(self, metrics_plots, output_dir):
-
         os.makedirs(output_dir, exist_ok=True)
 
         for metric, (fig, axs) in metrics_plots.items():
@@ -208,7 +199,6 @@ class EmbeddingBuilder(Callback):
         self.overwrite = False
 
     def on_test_end(self, trainer, pl_module):
-
         print("Testing finished, running inference to build graphs...")
 
         datasets = self.prepare_datastructure(pl_module)
@@ -264,7 +254,6 @@ class EmbeddingBuilder(Callback):
         return datasets
 
     def get_truth(self, batch, e_spatial, e_bidir):
-
         e_spatial_easy_fake = e_spatial[
             :, batch.pid[e_spatial[0]] != batch.pid[e_spatial[1]]
         ]
@@ -283,7 +272,6 @@ class EmbeddingBuilder(Callback):
         return e_spatial, y_cluster
 
     def construct_downstream(self, batch, pl_module, datatype):
-
         input_data = pl_module.get_input_data(batch)
 
         spatial = pl_module(input_data)
@@ -319,7 +307,6 @@ class EmbeddingBuilder(Callback):
         self.save_downstream(batch, pl_module, datatype)
 
     def save_downstream(self, batch, pl_module, datatype):
-
         with open(
             os.path.join(self.output_dir, datatype, batch.event_file[-4:]), "wb"
         ) as pickle_file:
-- 
GitLab


From a6b0a32fd492c45486abfb878b6d779f62204dbd Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 14:39:29 +0100
Subject: [PATCH 16/30] formatting with black

---
 LHCb_Pipeline/GNN/Models/interaction_gnn.py   | 12 ++---
 LHCb_Pipeline/GNN/gnn_base.py                 |  5 +-
 .../Scripts/Step_1_Train_Metric_Learning.py   | 25 +++++-----
 .../Scripts/Step_2_Run_Metric_Learning.py     | 40 +++++++++++-----
 LHCb_Pipeline/Scripts/Step_3_Train_GNN.py     | 25 +++++-----
 LHCb_Pipeline/Scripts/Step_4_Run_GNN.py       | 34 +++++++++-----
 .../Scripts/Step_5_Build_Track_Candidates.py  | 38 ++++++++-------
 ...p_6_Evaluate_Reconstruction_MonteTracko.py | 22 +++++----
 LHCb_Pipeline/notebooks/build_embedding.py    | 47 ++++++++-----------
 9 files changed, 138 insertions(+), 110 deletions(-)

diff --git a/LHCb_Pipeline/GNN/Models/interaction_gnn.py b/LHCb_Pipeline/GNN/Models/interaction_gnn.py
index 7537d468..ee9ead7f 100644
--- a/LHCb_Pipeline/GNN/Models/interaction_gnn.py
+++ b/LHCb_Pipeline/GNN/Models/interaction_gnn.py
@@ -11,15 +11,13 @@ from ..utils import make_mlp
 
 
 class InteractionGNN(GNNBase):
-
-    """
-    An interaction network class
+    """An interaction network class
     """
-
     def __init__(self, hparams):
         super().__init__(hparams)
         """
-        Initialise the Lightning Module that can scan over different GNN training regimes
+        Initialise the Lightning Module that can scan over different GNN training
+        regimes
         """
 
         concatenation_factor = (
@@ -72,14 +70,12 @@ class InteractionGNN(GNNBase):
         )
 
     def reset_parameters(self):
-
         for layer in self.modules():
             if type(layer) is Linear:
                 eval(self.hparams["initialization"])(layer.weight)
                 layer.bias.data.fill_(0)
 
     def message_step(self, x, start, end, e):
-
         # Compute new node features
         if self.hparams["aggregation"] == "sum":
             edge_messages = scatter_add(e, end, dim=0, dim_size=x.shape[0])
@@ -110,13 +106,11 @@ class InteractionGNN(GNNBase):
         return x_out, e_out
 
     def output_step(self, x, start, end, e):
-
         classifier_inputs = torch.cat([x[start], x[end], e], dim=1)
 
         return self.output_edge_classifier(classifier_inputs).squeeze(-1)
 
     def forward(self, x, edge_index):
-
         start, end = edge_index
 
         # Encode the graph features into the hidden space
diff --git a/LHCb_Pipeline/GNN/gnn_base.py b/LHCb_Pipeline/GNN/gnn_base.py
index 8b2b419a..dcd8e08e 100644
--- a/LHCb_Pipeline/GNN/gnn_base.py
+++ b/LHCb_Pipeline/GNN/gnn_base.py
@@ -23,8 +23,8 @@ class GNNBase(LightningModule):
         self.save_hyperparameters(hparams)
 
     def setup(self, stage):
-        # Handle any subset of [train, val, test] data split, assuming that ordering
-
+        """Handle any subset of [train, val, test] data split, assuming that ordering
+        """
         input_subdirs = [None, None, None]
         input_subdirs[: len(self.hparams["datatype_names"])] = [
             os.path.join(self.hparams["input_dir"], datatype)
@@ -40,7 +40,6 @@ class GNNBase(LightningModule):
         ]
 
     def setup_data(self):
-
         self.setup(stage="fit")
 
     def train_dataloader(self):
diff --git a/LHCb_Pipeline/Scripts/Step_1_Train_Metric_Learning.py b/LHCb_Pipeline/Scripts/Step_1_Train_Metric_Learning.py
index 6f3d2865..1cc819f7 100644
--- a/LHCb_Pipeline/Scripts/Step_1_Train_Metric_Learning.py
+++ b/LHCb_Pipeline/Scripts/Step_1_Train_Metric_Learning.py
@@ -7,7 +7,8 @@ import os
 import yaml
 import argparse
 import logging
-logging.basicConfig(level=logging.INFO, format='%(levelname)s:%(message)s')
+
+logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(message)s")
 
 from pytorch_lightning import Trainer
 from pytorch_lightning.loggers import CSVLogger
@@ -19,6 +20,7 @@ sys.path.append("../../")
 from Embedding.Models.layerless_embedding import LayerlessEmbedding
 from Scripts.utils.convenience_utils import headline
 
+
 def parse_args():
     """Parse command line arguments."""
     parser = argparse.ArgumentParser("1_Train_Metric_Learning.py")
@@ -28,12 +30,11 @@ def parse_args():
 
 
 def train(config_file="pipeline_config.yaml"):
-
     logging.info(headline("Step 1: Running metric learning training"))
 
     with open(config_file) as file:
         all_configs = yaml.load(file, Loader=yaml.FullLoader)
-    
+
     common_configs = all_configs["common_configs"]
     metric_learning_configs = all_configs["metric_learning_configs"]
 
@@ -41,13 +42,15 @@ def train(config_file="pipeline_config.yaml"):
 
     model = LayerlessEmbedding(metric_learning_configs)
 
-    logging.info(headline("b) Running training" ))
+    logging.info(headline("b) Running training"))
 
-    save_directory = os.path.join(common_configs["artifact_directory"], "metric_learning")
+    save_directory = os.path.join(
+        common_configs["artifact_directory"], "metric_learning"
+    )
     logger = CSVLogger(save_directory, name=common_configs["experiment_name"])
 
     trainer = Trainer(
-        accelerator='gpu' if torch.cuda.is_available() else 'cpu',
+        accelerator="gpu" if torch.cuda.is_available() else "cpu",
         gpus=common_configs["gpus"],
         max_epochs=metric_learning_configs["max_epochs"],
         logger=logger,
@@ -56,18 +59,18 @@ def train(config_file="pipeline_config.yaml"):
 
     trainer.fit(model)
 
-    logging.info(headline("c) Saving model") )
+    logging.info(headline("c) Saving model"))
 
     os.makedirs(save_directory, exist_ok=True)
-    trainer.save_checkpoint(os.path.join(save_directory, common_configs["experiment_name"]+".ckpt"))
+    trainer.save_checkpoint(
+        os.path.join(save_directory, common_configs["experiment_name"] + ".ckpt")
+    )
 
     return trainer, model
 
 
 if __name__ == "__main__":
-
     args = parse_args()
     config_file = args.config
 
-    trainer, model = train(config_file)    
-
+    trainer, model = train(config_file)
diff --git a/LHCb_Pipeline/Scripts/Step_2_Run_Metric_Learning.py b/LHCb_Pipeline/Scripts/Step_2_Run_Metric_Learning.py
index c2df6d27..46601a9d 100644
--- a/LHCb_Pipeline/Scripts/Step_2_Run_Metric_Learning.py
+++ b/LHCb_Pipeline/Scripts/Step_2_Run_Metric_Learning.py
@@ -7,7 +7,8 @@ import os
 import yaml
 import argparse
 import logging
-logging.basicConfig(level=logging.INFO, format='%(levelname)s:%(message)s')
+
+logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(message)s")
 import torch
 
 sys.path.append("../../")
@@ -16,6 +17,7 @@ from Embedding.Models.layerless_embedding import LayerlessEmbedding
 from Scripts.utils.convenience_utils import headline, delete_directory
 from notebooks.build_embedding import EmbeddingInferenceBuilder
 
+
 def parse_args():
     """Parse command line arguments."""
     parser = argparse.ArgumentParser("2_Run_Metric_Learning.py")
@@ -23,40 +25,54 @@ def parse_args():
     add_arg("config", nargs="?", default="pipeline_config.yaml")
     return parser.parse_args()
 
-def train(config_file="pipeline_config.yaml", checkpoint=''):
 
+def train(config_file="pipeline_config.yaml", checkpoint=""):
     logging.info(headline("Step 2: Constructing graphs from metric learning model"))
 
     with open(config_file) as file:
         all_configs = yaml.load(file, Loader=yaml.FullLoader)
-    
+
     common_configs = all_configs["common_configs"]
     metric_learning_configs = all_configs["metric_learning_configs"]
 
     logging.info(headline("a) Loading trained model"))
 
     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-    if checkpoint=='':
-        model = LayerlessEmbedding.load_from_checkpoint(os.path.join(common_configs["artifact_directory"], "metric_learning", common_configs["experiment_name"]+".ckpt")).to(device)
+    if checkpoint == "":
+        model = LayerlessEmbedding.load_from_checkpoint(
+            os.path.join(
+                common_configs["artifact_directory"],
+                "metric_learning",
+                common_configs["experiment_name"] + ".ckpt",
+            )
+        ).to(device)
     else:
-        model = LayerlessEmbedding.load_from_checkpoint(checkpoint_path=checkpoint).to(device)
-
-
-
+        model = LayerlessEmbedding.load_from_checkpoint(checkpoint_path=checkpoint).to(
+            device
+        )
 
     logging.info(headline("b) Running inferencing"))
     if common_configs["clear_directories"]:
         delete_directory(metric_learning_configs["output_dir"])
 
-    graph_builder = EmbeddingInferenceBuilder(model, metric_learning_configs["train_split"], overwrite=True, knn_max=metric_learning_configs["knn"], radius=metric_learning_configs["r_test"])
+    model.hparams["input_dir"] = metric_learning_configs["input_dir"]
+    model.hparams["output_dir"] = metric_learning_configs["output_dir"]
+    
+    graph_builder = EmbeddingInferenceBuilder(
+        model,
+        metric_learning_configs["train_split"],
+        overwrite=True,
+        knn_max=metric_learning_configs["knn"],
+        radius=metric_learning_configs["r_test"],
+    )
+    
     graph_builder.build()
 
     return graph_builder
 
 
 if __name__ == "__main__":
-
     args = parse_args()
     config_file = args.config
 
-    gb = train(config_file) 
\ No newline at end of file
+    gb = train(config_file)
diff --git a/LHCb_Pipeline/Scripts/Step_3_Train_GNN.py b/LHCb_Pipeline/Scripts/Step_3_Train_GNN.py
index 530f8168..df1f6cec 100644
--- a/LHCb_Pipeline/Scripts/Step_3_Train_GNN.py
+++ b/LHCb_Pipeline/Scripts/Step_3_Train_GNN.py
@@ -7,7 +7,8 @@ import os
 import yaml
 import argparse
 import logging
-logging.basicConfig(level=logging.INFO, format='%(levelname)s:%(message)s')
+
+logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(message)s")
 
 import torch
 from pytorch_lightning import Trainer
@@ -19,6 +20,7 @@ sys.path.append("../../")
 from GNN.Models.interaction_gnn import InteractionGNN
 from Scripts.utils.convenience_utils import headline
 
+
 def parse_args():
     """Parse command line arguments."""
     parser = argparse.ArgumentParser("3_Train_GNN.py")
@@ -28,26 +30,25 @@ def parse_args():
 
 
 def train(config_file="pipeline_config.yaml"):
-
     logging.info(headline(" Step 3: Running GNN training "))
 
     with open(config_file) as file:
         all_configs = yaml.load(file, Loader=yaml.FullLoader)
-    
+
     common_configs = all_configs["common_configs"]
     gnn_configs = all_configs["gnn_configs"]
 
-    logging.info(headline("a) Initialising model" ))
+    logging.info(headline("a) Initialising model"))
 
     model = InteractionGNN(gnn_configs)
 
-    logging.info(headline( "b) Running training" ))
+    logging.info(headline("b) Running training"))
 
     save_directory = os.path.join(common_configs["artifact_directory"], "gnn")
     logger = CSVLogger(save_directory, name=common_configs["experiment_name"])
 
     trainer = Trainer(
-        accelerator='gpu' if torch.cuda.is_available() else 'cpu',
+        accelerator="gpu" if torch.cuda.is_available() else "cpu",
         gpus=common_configs["gpus"],
         max_epochs=gnn_configs["max_epochs"],
         logger=logger,
@@ -56,18 +57,18 @@ def train(config_file="pipeline_config.yaml"):
 
     trainer.fit(model)
 
-    logging.info(headline( "c) Saving model" ))
-    
+    logging.info(headline("c) Saving model"))
+
     os.makedirs(save_directory, exist_ok=True)
-    trainer.save_checkpoint(os.path.join(save_directory, common_configs["experiment_name"]+".ckpt"))
+    trainer.save_checkpoint(
+        os.path.join(save_directory, common_configs["experiment_name"] + ".ckpt")
+    )
 
     return trainer, model
 
 
 if __name__ == "__main__":
-
     args = parse_args()
     config_file = args.config
 
-    train(config_file)    
-
+    train(config_file)
diff --git a/LHCb_Pipeline/Scripts/Step_4_Run_GNN.py b/LHCb_Pipeline/Scripts/Step_4_Run_GNN.py
index 8f73b525..da667d99 100644
--- a/LHCb_Pipeline/Scripts/Step_4_Run_GNN.py
+++ b/LHCb_Pipeline/Scripts/Step_4_Run_GNN.py
@@ -1,5 +1,6 @@
 """
-This script runs step 4 of the TrackML Quickstart example: Inferencing the GNN to score edges in the event graphs.
+This script runs step 4 of the TrackML Quickstart example: Inferencing the GNN
+to score edges in the event graphs.
 """
 
 import sys
@@ -7,7 +8,8 @@ import os
 import yaml
 import argparse
 import logging
-logging.basicConfig(level=logging.INFO, format='%(levelname)s:%(message)s')
+
+logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(message)s")
 import torch
 
 sys.path.append("../../")
@@ -24,36 +26,44 @@ def parse_args():
     add_arg("config", nargs="?", default="pipeline_config.yaml")
     return parser.parse_args()
 
-def train(config_file="pipeline_config.yaml", checkpoint=''):
 
-    logging.info(headline( "Step 4: Scoring graph edges using GNN " ))
+def train(config_file="pipeline_config.yaml", checkpoint=""):
+    logging.info(headline("Step 4: Scoring graph edges using GNN "))
 
     with open(config_file) as file:
         all_configs = yaml.load(file, Loader=yaml.FullLoader)
-    
+
     common_configs = all_configs["common_configs"]
     gnn_configs = all_configs["gnn_configs"]
 
-    logging.info(headline( "a) Loading trained model" ))
+    logging.info(headline("a) Loading trained model"))
 
     if common_configs["clear_directories"]:
         delete_directory(gnn_configs["output_dir"])
 
     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-    if checkpoint=='':
-        model = InteractionGNN.load_from_checkpoint(os.path.join(common_configs["artifact_directory"], "gnn", common_configs["experiment_name"]+".ckpt")).to(device)
+    if checkpoint == "":
+        model = InteractionGNN.load_from_checkpoint(
+            os.path.join(
+                common_configs["artifact_directory"],
+                "gnn",
+                common_configs["experiment_name"] + ".ckpt",
+            )
+        ).to(device)
     else:
-        model = InteractionGNN.load_from_checkpoint(checkpoint_path=checkpoint).to(device)
+        model = InteractionGNN.load_from_checkpoint(checkpoint_path=checkpoint).to(
+            device
+        )
 
     model.setup_data()
 
-    logging.info(headline( "b) Running inferencing" ))
+    logging.info(headline("b) Running inferencing"))
     graph_scorer = GNNInferenceBuilder(model)
     graph_scorer.infer()
 
-if __name__ == "__main__":
 
+if __name__ == "__main__":
     args = parse_args()
     config_file = args.config
 
-    train(config_file) 
\ No newline at end of file
+    train(config_file)
diff --git a/LHCb_Pipeline/Scripts/Step_5_Build_Track_Candidates.py b/LHCb_Pipeline/Scripts/Step_5_Build_Track_Candidates.py
index 2b981049..57de0958 100644
--- a/LHCb_Pipeline/Scripts/Step_5_Build_Track_Candidates.py
+++ b/LHCb_Pipeline/Scripts/Step_5_Build_Track_Candidates.py
@@ -7,19 +7,19 @@ import os
 import yaml
 import argparse
 import logging
-logging.basicConfig(level=logging.INFO, format='%(levelname)s:%(message)s')
+
+logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(message)s")
 import torch
 import numpy as np
 import scipy.sparse as sps
 
-from tqdm.contrib.concurrent import process_map
 from tqdm import tqdm
-from functools import partial
 
 from Scripts.utils.convenience_utils import headline, delete_directory
 
 sys.path.append("../../")
 
+
 def parse_args():
     """Parse command line arguments."""
     parser = argparse.ArgumentParser("5_Build_Track_Candidates.py")
@@ -28,8 +28,9 @@ def parse_args():
     return parser.parse_args()
 
 
-def label_graph(graph, score_cut=0.8, save_dir="datasets/quickstart_track_building_processed"):
-
+def label_graph(
+    graph, score_cut=0.8, save_dir="datasets/quickstart_track_building_processed"
+):
     os.makedirs(save_dir, exist_ok=True)
 
     edge_mask = graph.scores > score_cut
@@ -40,35 +41,42 @@ def label_graph(graph, score_cut=0.8, save_dir="datasets/quickstart_track_buildi
     N = graph.x.size(0)
     sparse_edges = sps.coo_matrix((edge_attr, (row.numpy(), col.numpy())), (N, N))
 
-    _, candidate_labels = sps.csgraph.connected_components(sparse_edges, directed=False, return_labels=True)  
+    _, candidate_labels = sps.csgraph.connected_components(
+        sparse_edges, directed=False, return_labels=True
+    )
     graph.labels = torch.from_numpy(candidate_labels).long()
 
     torch.save(graph, os.path.join(save_dir, graph.event_file[-9:]))
 
 
 def train(config_file="pipeline_config.yaml"):
-
-    logging.info(headline( " Step 5: Building track candidates from the scored graph " ))
+    logging.info(headline(" Step 5: Building track candidates from the scored graph "))
 
     with open(config_file) as file:
         all_configs = yaml.load(file, Loader=yaml.FullLoader)
-    
+
     common_configs = all_configs["common_configs"]
     gnn_configs = all_configs["gnn_configs"]
     track_building_configs = all_configs["track_building_configs"]
 
-    logging.info(headline("a) Loading scored graphs" ))
+    logging.info(headline("a) Loading scored graphs"))
 
     all_graphs = []
     for subdir in ["train", "val", "test"]:
         subdir_graphs = os.listdir(os.path.join(gnn_configs["output_dir"], subdir))
-        all_graphs += [torch.load(os.path.join(gnn_configs["output_dir"], subdir, graph), map_location="cpu") for graph in subdir_graphs]
+        all_graphs += [
+            torch.load(
+                os.path.join(gnn_configs["output_dir"], subdir, graph),
+                map_location="cpu",
+            )
+            for graph in subdir_graphs
+        ]
 
-    logging.info(headline( "b) Labelling graph nodes" ) )
+    logging.info(headline("b) Labelling graph nodes"))
 
     score_cut = track_building_configs["score_cut"]
     save_dir = track_building_configs["output_dir"]
-    
+
     if common_configs["clear_directories"]:
         delete_directory(track_building_configs["output_dir"])
 
@@ -77,10 +85,8 @@ def train(config_file="pipeline_config.yaml"):
         label_graph(graph, score_cut=score_cut, save_dir=save_dir)
 
 
-
 if __name__ == "__main__":
-
     args = parse_args()
     config_file = args.config
 
-    train(config_file) 
\ No newline at end of file
+    train(config_file)
diff --git a/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction_MonteTracko.py b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction_MonteTracko.py
index 9112f111..1b82137e 100644
--- a/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction_MonteTracko.py
+++ b/LHCb_Pipeline/Scripts/Step_6_Evaluate_Reconstruction_MonteTracko.py
@@ -164,7 +164,7 @@ def report(
                 "hit_efficiency_per_candidate",
             ],
             mode="markdown",
-            tablefmt="grid",
+            # tablefmt="grid",
         ),
         categories=mtb.category.velo_categories,
     )
@@ -172,12 +172,12 @@ def report(
         reporter=mt.TabReporter(
             metric_names=["n_ghosts", "n_tracks", "ghost_rate"],
             mode="markdown",
-            tablefmt="grid",
+            # tablefmt="grid",
         ),
     )
 
 
-def plot(trackEvaluator):
+def plot(trackEvaluator, category: mt.requirement.CategoryBase):
     """Generate and display histograms of track evaluation metrics in specified
     particle-related columns (`pt`, `p`, `eta` and `vz`)
 
@@ -197,10 +197,10 @@ def plot(trackEvaluator):
         ],
         column_labels=plotutils.column_labels,
         column_ranges=plotutils.column_ranges,
-        category=mtb.category.velo_category,
+        category=category,
         bins=20,
     )
-    fig.savefig("track_evaluation.pdf", dpi=200, bbox_inches="tight")
+    fig.savefig(f"eval_{category.name}.pdf", dpi=200, bbox_inches="tight")
 
 
 def evaluate(
@@ -208,7 +208,7 @@ def evaluate(
     min_track_length: int = 2,
     whether_to_plot: bool = True,
     allen_report: bool = False,
-):
+) -> mt.TrackEvaluator:
     """Runs truth-based tracking evaluation.
 
     Args:
@@ -218,7 +218,7 @@ def evaluate(
         allen_report: whether to report in Allen categories using the Allen reporter
 
     Returns:
-        mt.TrackEvaluator: object containing the results of the evaluation.
+        object containing the evaluation.
     """
     logging.info(headline("Step 6: Evaluation using MonteTracko"))
 
@@ -272,7 +272,13 @@ def evaluate(
 
     # Plot
     if whether_to_plot:
-        plot(trackEvaluator=trackEvaluator)
+        for category in [
+            mtb.category.category_velo,
+            mtb.category.category_long,
+            mtb.category.category_long_only_electrons,
+        ]:
+            plot(trackEvaluator=trackEvaluator, category=category)
+
     return trackEvaluator
 
 
diff --git a/LHCb_Pipeline/notebooks/build_embedding.py b/LHCb_Pipeline/notebooks/build_embedding.py
index 49f6ea86..f2c6d1e8 100644
--- a/LHCb_Pipeline/notebooks/build_embedding.py
+++ b/LHCb_Pipeline/notebooks/build_embedding.py
@@ -9,9 +9,11 @@ from tqdm import tqdm
 
 device = "cuda" if torch.cuda.is_available() else "cpu"
 
+
 class EmbeddingInferenceBuilder:
-    def __init__(self, model, split = [80, 10, 10], overwrite=False, knn_max = 1000, radius = 0.1):
-        
+    def __init__(
+        self, model, split=[80, 10, 10], overwrite=False, knn_max=1000, radius=0.1
+    ):
         self.model = model
         self.output_dir = self.model.hparams["output_dir"]
         self.input_dir = self.model.hparams["input_dir"]
@@ -19,29 +21,25 @@ class EmbeddingInferenceBuilder:
         self.split = split
         self.knn_max = knn_max
         self.radius = radius
-        
+
         single_file_split = [1, 1, 1]
         model.hparams["train_split"] = single_file_split
         model.setup(stage="fit")
-        
 
     def build(self):
         print("Training finished, running inference to build graphs...")
 
         # By default, the set of examples propagated through the pipeline will be train+val+test set
         datasets = self.prepare_datastructure()
-        
+
         self.model.eval()
         with torch.no_grad():
             for datatype, dataset in datasets.items():
                 for event in tqdm(dataset):
-                    
                     event_file = os.path.join(self.input_dir, event)
                     if (
                         not os.path.exists(
-                            os.path.join(
-                                self.output_dir, datatype, event_file[-4:]
-                            )
+                            os.path.join(self.output_dir, datatype, event_file[-4:])
                         )
                     ) or self.overwrite:
                         batch = torch.load(event_file).to(self.model.device)
@@ -61,27 +59,26 @@ class EmbeddingInferenceBuilder:
         all_events = os.listdir(self.model.hparams["input_dir"])
         random.shuffle(all_events)
         self.dataset_list = np.split(np.array(all_events), np.cumsum(self.split))
-        
+
         # By default, the set of examples propagated through the pipeline will be train+val+test set
         datasets = {
             "train": list(self.dataset_list[0]),
             "val": list(self.dataset_list[1]),
             "test": list(self.dataset_list[2]),
         }
-        
+
         return datasets
-                        
-    def construct_downstream(self, batch, datatype):
 
+    def construct_downstream(self, batch, datatype):
         batch = self.select_data(batch)
-        
+
         y_cluster, e_spatial, e_bidir = self.get_performance(
             batch=batch, r_max=self.radius, k_max=self.knn_max
         )
-        
+
         module_mask = batch.modules[e_spatial[0]] != batch.modules[e_spatial[1]]
         y_cluster, e_spatial = y_cluster[module_mask], e_spatial[:, module_mask]
-        
+
         # Arbitrary ordering to remove half of the duplicate edges
         R_dist = torch.sqrt(batch.x[:, 0] ** 2 + batch.x[:, 2] ** 2)
         e_spatial = e_spatial[:, (R_dist[e_spatial[0]] <= R_dist[e_spatial[1]])]
@@ -107,23 +104,19 @@ class EmbeddingInferenceBuilder:
         return results["truth"], results["preds"], results["truth_graph"]
 
     def save_downstream(self, batch, datatype):
-
         with open(
             os.path.join(self.output_dir, datatype, batch.event_file[-9:]), "wb"
         ) as pickle_file:
             torch.save(batch, pickle_file)
-            
+
     def select_data(self, event):
-    
         event.signal_true_edges = event.modulewise_true_edges
-        
-        if (
-            ("pt" in event.keys and self.model.hparams["pt_signal_cut"] > 0)
-        ):
+
+        if "pt" in event.keys and self.model.hparams["pt_signal_cut"] > 0:
             edge_subset = (
-                (event.pt[event.signal_true_edges] > self.model.hparams["pt_signal_cut"]).all(0)
-            )
+                event.pt[event.signal_true_edges] > self.model.hparams["pt_signal_cut"]
+            ).all(0)
 
             event.signal_true_edges = event.signal_true_edges[:, edge_subset]
-        
-        return event
\ No newline at end of file
+
+        return event
-- 
GitLab


From d731e335a7a4f63b54bb0ac5e788f3f497e99a5d Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 14:39:51 +0100
Subject: [PATCH 17/30] add apply_selection flag

---
 LHCb_Pipeline/Processing/utils/preprocessing.py | 13 +++++++------
 1 file changed, 7 insertions(+), 6 deletions(-)

diff --git a/LHCb_Pipeline/Processing/utils/preprocessing.py b/LHCb_Pipeline/Processing/utils/preprocessing.py
index b59374fe..6c43583d 100644
--- a/LHCb_Pipeline/Processing/utils/preprocessing.py
+++ b/LHCb_Pipeline/Processing/utils/preprocessing.py
@@ -102,6 +102,7 @@ def preprocess(
     output_num: str,
     clear_directories: bool = True,
     num_true_hits_threshold: int = 0,
+    apply_selection: bool = True,
 ):
     """Preprocess the first `output_num` events in the input files,
     into the form of the TrackML dataset.
@@ -132,11 +133,11 @@ def preprocess(
     hits = hits.merge(particles, on=["event", "particle_id"], how="left")  # Merge
     # NB: left join!: keep fake hits
 
-    # Filter
-    # Remove hits with has_velo == 0
-    # hits = hits[hits["has_velo"] == 1]
-    # Remove electrons and positrons ?
-    # hits = hits[np.abs(hits["pid"]) != 11]
+    # if apply_selection:
+    #     # Remove hits with has_velo == 0
+    #     hits = hits[hits["has_velo"] == 1]
+    #     # Remove electrons and positrons ?
+    #     hits = hits[np.abs(hits["pid"]) != 11]
 
     event_list = hits["event"].unique()  # The order is not mixed
     i = 0  # Count the number of events outputed
@@ -149,7 +150,7 @@ def preprocess(
         #: String representation of the event ID
         event_id_str = str(event_num).zfill(9)
 
-        if enough_true_hits(
+        if (not apply_selection) or enough_true_hits(
             event_hits=event_hits,
             num_true_hits_threshold=num_true_hits_threshold,
             event_id_str=event_id_str,
-- 
GitLab


From 7cf396ed538c6a083120bf3cf17bf1f86545a107 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 15:43:28 +0100
Subject: [PATCH 18/30] formatting with black

---
 LHCb_Pipeline/Embedding/Models/inference.py | 9 ++++-----
 1 file changed, 4 insertions(+), 5 deletions(-)

diff --git a/LHCb_Pipeline/Embedding/Models/inference.py b/LHCb_Pipeline/Embedding/Models/inference.py
index 4ff31111..5e9b2706 100644
--- a/LHCb_Pipeline/Embedding/Models/inference.py
+++ b/LHCb_Pipeline/Embedding/Models/inference.py
@@ -1,3 +1,5 @@
+"""Class-based Callback inference for integration with Lightning
+"""
 import sys
 import os
 import copy
@@ -15,10 +17,6 @@ import numpy as np
 
 from ..utils import build_edges, graph_intersection
 
-"""
-Class-based Callback inference for integration with Lightning
-"""
-
 
 class EmbeddingTelemetry(Callback):
 
@@ -32,7 +30,8 @@ class EmbeddingTelemetry(Callback):
 
     def on_test_start(self, trainer, pl_module):
         """
-        This hook is automatically called when the model is tested after training. The best checkpoint is automatically loaded
+        This hook is automatically called when the model is tested after training.
+        The best checkpoint is automatically loaded
         """
         self.preds = []
         self.truth = []
-- 
GitLab


From 369c713937dd80f696a158d57b1288156d29e7ae Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 15:43:48 +0100
Subject: [PATCH 19/30] add apply selection argument to prepare_data method

---
 .../Processing/Models/feature_construction.py | 19 ++++++++++++++-----
 1 file changed, 14 insertions(+), 5 deletions(-)

diff --git a/LHCb_Pipeline/Processing/Models/feature_construction.py b/LHCb_Pipeline/Processing/Models/feature_construction.py
index 20899c21..ab4c20e1 100644
--- a/LHCb_Pipeline/Processing/Models/feature_construction.py
+++ b/LHCb_Pipeline/Processing/Models/feature_construction.py
@@ -11,21 +11,23 @@ from ..feature_store_base import FeatureStoreBase
 from ..utils.event_utils import prepare_event
 from ..utils.preprocessing import preprocess
 
+
 class FeatureStore(FeatureStoreBase):
     def __init__(self, hparams):
         super().__init__(hparams)
 
-    def prepare_data(self):
+    def prepare_data(self, apply_selection: bool = True):
         # Preprocess in the needed form
         # Split calculation in separate file
         # To be able to run on trackml and velo at the same time
         if self.needs_preprocessing:
             preprocess(
-                input_dir=self.input_dir, 
+                input_dir=self.input_dir,
                 output_dir=self.preprocessed_dir,
                 output_num=self.n_files,
                 clear_directories=self.clear_directories,
-                num_true_hits_threshold=self.num_true_hits_threshold
+                num_true_hits_threshold=self.num_true_hits_threshold,
+                apply_selection=apply_selection,
             )
 
         # Find the input files
@@ -33,12 +35,19 @@ class FeatureStore(FeatureStoreBase):
         if self.needs_preprocessing:
             all_files = os.listdir(self.preprocessed_dir)
             all_events = sorted(
-                np.unique([os.path.join(self.preprocessed_dir, event[:14]) for event in all_files])
+                np.unique(
+                    [
+                        os.path.join(self.preprocessed_dir, event[:14])
+                        for event in all_files
+                    ]
+                )
             )[: self.n_files]
         else:
             all_files = os.listdir(self.input_dir)
             all_events = sorted(
-                np.unique([os.path.join(self.input_dir, event[:14]) for event in all_files])
+                np.unique(
+                    [os.path.join(self.input_dir, event[:14]) for event in all_files]
+                )
             )[: self.n_files]
 
         # Define the cell features to be added to the dataset
-- 
GitLab


From bf32cf8d88860a44cea2f5732ce2043b178b42ac Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 16:26:51 +0100
Subject: [PATCH 20/30] set up new module

---
 .gitmodules | 3 +++
 montetracko | 1 +
 2 files changed, 4 insertions(+)
 create mode 100644 .gitmodules
 create mode 160000 montetracko

diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 00000000..cf5c44ea
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,3 @@
+[submodule "montetracko"]
+	path = montetracko
+	url = ssh://git@gitlab.cern.ch:7999/gdl4hep/montetracko.git
diff --git a/montetracko b/montetracko
new file mode 160000
index 00000000..d59d51b6
--- /dev/null
+++ b/montetracko
@@ -0,0 +1 @@
+Subproject commit d59d51b6637f9cf496d203d3fe608a7a3f6c265e
-- 
GitLab


From f67963590418c200baa0b4eee2095690da278e40 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 16:27:00 +0100
Subject: [PATCH 21/30] set up instruction to run with montetracko

---
 montetracko-setup.sh | 32 ++++++++++++++++++++++++++++++++
 1 file changed, 32 insertions(+)
 create mode 100755 montetracko-setup.sh

diff --git a/montetracko-setup.sh b/montetracko-setup.sh
new file mode 100755
index 00000000..b61baa3f
--- /dev/null
+++ b/montetracko-setup.sh
@@ -0,0 +1,32 @@
+# Some instruction to be able to use MonteTracko
+
+# 1. Initialise the MonteTracko git sub-module
+# git submodule init
+# git submodule update
+
+# # 2. Install new required packages
+# conda activate ext4velo # don't forget to activate your environment!
+# mamba install -c conda-forge ipywidgets tabular black
+# jupyter nbextension enable --py widgetsnbextension  # activate jupyter widgets
+
+# # 3. Add MonteTracko to your PYTHONPATH
+currentdir=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
+montetracko_dir="$currentdir/montetracko"
+
+cd $CONDA_PREFIX
+mkdir -p ./etc/conda/activate.d
+mkdir -p ./etc/conda/deactivate.d
+touch ./etc/conda/activate.d/env_vars.sh
+touch ./etc/conda/deactivate.d/env_vars.sh
+
+cat <<EOF > ./etc/conda/activate.d/env_vars.sh
+#!/bin/sh
+
+export PYTHONPATH="$PYTHONPATH:$montetracko_dir"
+EOF
+
+cat <<EOF > ./etc/conda/deactivate.d/env_vars.sh
+#!/bin/sh
+
+unset PYTHONPATH
+EOF
\ No newline at end of file
-- 
GitLab


From d36c0eb7a52cc031d80659959ae8c997fbb54aff Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 16:27:44 +0100
Subject: [PATCH 22/30] Use config to set up path to artifacts

---
 LHCb_Pipeline/evaluation_pipeline.ipynb | 2788 ++++-------------------
 1 file changed, 445 insertions(+), 2343 deletions(-)

diff --git a/LHCb_Pipeline/evaluation_pipeline.ipynb b/LHCb_Pipeline/evaluation_pipeline.ipynb
index bb794c5b..40c31c99 100644
--- a/LHCb_Pipeline/evaluation_pipeline.ipynb
+++ b/LHCb_Pipeline/evaluation_pipeline.ipynb
@@ -9,327 +9,12 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 3,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:Loading faiss with AVX2 support.\n",
-      "INFO:Successfully loaded faiss with AVX2 support.\n"
-     ]
-    },
-    {
-     "data": {
-      "text/html": [
-       "<style>\n",
-       "        .bk-notebook-logo {\n",
-       "            display: block;\n",
-       "            width: 20px;\n",
-       "            height: 20px;\n",
-       "            background-image: url();\n",
-       "        }\n",
-       "    </style>\n",
-       "    <div>\n",
-       "        <a href=\"https://bokeh.org\" target=\"_blank\" class=\"bk-notebook-logo\"></a>\n",
-       "        <span id=\"p1001\">Loading BokehJS ...</span>\n",
-       "    </div>\n"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "application/javascript": [
-       "(function(root) {\n",
-       "  function now() {\n",
-       "    return new Date();\n",
-       "  }\n",
-       "\n",
-       "  const force = true;\n",
-       "\n",
-       "  if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n",
-       "    root._bokeh_onload_callbacks = [];\n",
-       "    root._bokeh_is_loading = undefined;\n",
-       "  }\n",
-       "\n",
-       "const JS_MIME_TYPE = 'application/javascript';\n",
-       "  const HTML_MIME_TYPE = 'text/html';\n",
-       "  const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n",
-       "  const CLASS_NAME = 'output_bokeh rendered_html';\n",
-       "\n",
-       "  /**\n",
-       "   * Render data to the DOM node\n",
-       "   */\n",
-       "  function render(props, node) {\n",
-       "    const script = document.createElement(\"script\");\n",
-       "    node.appendChild(script);\n",
-       "  }\n",
-       "\n",
-       "  /**\n",
-       "   * Handle when an output is cleared or removed\n",
-       "   */\n",
-       "  function handleClearOutput(event, handle) {\n",
-       "    const cell = handle.cell;\n",
-       "\n",
-       "    const id = cell.output_area._bokeh_element_id;\n",
-       "    const server_id = cell.output_area._bokeh_server_id;\n",
-       "    // Clean up Bokeh references\n",
-       "    if (id != null && id in Bokeh.index) {\n",
-       "      Bokeh.index[id].model.document.clear();\n",
-       "      delete Bokeh.index[id];\n",
-       "    }\n",
-       "\n",
-       "    if (server_id !== undefined) {\n",
-       "      // Clean up Bokeh references\n",
-       "      const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n",
-       "      cell.notebook.kernel.execute(cmd_clean, {\n",
-       "        iopub: {\n",
-       "          output: function(msg) {\n",
-       "            const id = msg.content.text.trim();\n",
-       "            if (id in Bokeh.index) {\n",
-       "              Bokeh.index[id].model.document.clear();\n",
-       "              delete Bokeh.index[id];\n",
-       "            }\n",
-       "          }\n",
-       "        }\n",
-       "      });\n",
-       "      // Destroy server and session\n",
-       "      const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n",
-       "      cell.notebook.kernel.execute(cmd_destroy);\n",
-       "    }\n",
-       "  }\n",
-       "\n",
-       "  /**\n",
-       "   * Handle when a new output is added\n",
-       "   */\n",
-       "  function handleAddOutput(event, handle) {\n",
-       "    const output_area = handle.output_area;\n",
-       "    const output = handle.output;\n",
-       "\n",
-       "    // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n",
-       "    if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n",
-       "      return\n",
-       "    }\n",
-       "\n",
-       "    const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
-       "\n",
-       "    if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n",
-       "      toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n",
-       "      // store reference to embed id on output_area\n",
-       "      output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
-       "    }\n",
-       "    if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
-       "      const bk_div = document.createElement(\"div\");\n",
-       "      bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
-       "      const script_attrs = bk_div.children[0].attributes;\n",
-       "      for (let i = 0; i < script_attrs.length; i++) {\n",
-       "        toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
-       "        toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n",
-       "      }\n",
-       "      // store reference to server id on output_area\n",
-       "      output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
-       "    }\n",
-       "  }\n",
-       "\n",
-       "  function register_renderer(events, OutputArea) {\n",
-       "\n",
-       "    function append_mime(data, metadata, element) {\n",
-       "      // create a DOM node to render to\n",
-       "      const toinsert = this.create_output_subarea(\n",
-       "        metadata,\n",
-       "        CLASS_NAME,\n",
-       "        EXEC_MIME_TYPE\n",
-       "      );\n",
-       "      this.keyboard_manager.register_events(toinsert);\n",
-       "      // Render to node\n",
-       "      const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
-       "      render(props, toinsert[toinsert.length - 1]);\n",
-       "      element.append(toinsert);\n",
-       "      return toinsert\n",
-       "    }\n",
-       "\n",
-       "    /* Handle when an output is cleared or removed */\n",
-       "    events.on('clear_output.CodeCell', handleClearOutput);\n",
-       "    events.on('delete.Cell', handleClearOutput);\n",
-       "\n",
-       "    /* Handle when a new output is added */\n",
-       "    events.on('output_added.OutputArea', handleAddOutput);\n",
-       "\n",
-       "    /**\n",
-       "     * Register the mime type and append_mime function with output_area\n",
-       "     */\n",
-       "    OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
-       "      /* Is output safe? */\n",
-       "      safe: true,\n",
-       "      /* Index of renderer in `output_area.display_order` */\n",
-       "      index: 0\n",
-       "    });\n",
-       "  }\n",
-       "\n",
-       "  // register the mime type if in Jupyter Notebook environment and previously unregistered\n",
-       "  if (root.Jupyter !== undefined) {\n",
-       "    const events = require('base/js/events');\n",
-       "    const OutputArea = require('notebook/js/outputarea').OutputArea;\n",
-       "\n",
-       "    if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
-       "      register_renderer(events, OutputArea);\n",
-       "    }\n",
-       "  }\n",
-       "  if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n",
-       "    root._bokeh_timeout = Date.now() + 5000;\n",
-       "    root._bokeh_failed_load = false;\n",
-       "  }\n",
-       "\n",
-       "  const NB_LOAD_WARNING = {'data': {'text/html':\n",
-       "     \"<div style='background-color: #fdd'>\\n\"+\n",
-       "     \"<p>\\n\"+\n",
-       "     \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
-       "     \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
-       "     \"</p>\\n\"+\n",
-       "     \"<ul>\\n\"+\n",
-       "     \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n",
-       "     \"<li>use INLINE resources instead, as so:</li>\\n\"+\n",
-       "     \"</ul>\\n\"+\n",
-       "     \"<code>\\n\"+\n",
-       "     \"from bokeh.resources import INLINE\\n\"+\n",
-       "     \"output_notebook(resources=INLINE)\\n\"+\n",
-       "     \"</code>\\n\"+\n",
-       "     \"</div>\"}};\n",
-       "\n",
-       "  function display_loaded() {\n",
-       "    const el = document.getElementById(\"p1001\");\n",
-       "    if (el != null) {\n",
-       "      el.textContent = \"BokehJS is loading...\";\n",
-       "    }\n",
-       "    if (root.Bokeh !== undefined) {\n",
-       "      if (el != null) {\n",
-       "        el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n",
-       "      }\n",
-       "    } else if (Date.now() < root._bokeh_timeout) {\n",
-       "      setTimeout(display_loaded, 100)\n",
-       "    }\n",
-       "  }\n",
-       "\n",
-       "  function run_callbacks() {\n",
-       "    try {\n",
-       "      root._bokeh_onload_callbacks.forEach(function(callback) {\n",
-       "        if (callback != null)\n",
-       "          callback();\n",
-       "      });\n",
-       "    } finally {\n",
-       "      delete root._bokeh_onload_callbacks\n",
-       "    }\n",
-       "    console.debug(\"Bokeh: all callbacks have finished\");\n",
-       "  }\n",
-       "\n",
-       "  function load_libs(css_urls, js_urls, callback) {\n",
-       "    if (css_urls == null) css_urls = [];\n",
-       "    if (js_urls == null) js_urls = [];\n",
-       "\n",
-       "    root._bokeh_onload_callbacks.push(callback);\n",
-       "    if (root._bokeh_is_loading > 0) {\n",
-       "      console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
-       "      return null;\n",
-       "    }\n",
-       "    if (js_urls == null || js_urls.length === 0) {\n",
-       "      run_callbacks();\n",
-       "      return null;\n",
-       "    }\n",
-       "    console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
-       "    root._bokeh_is_loading = css_urls.length + js_urls.length;\n",
-       "\n",
-       "    function on_load() {\n",
-       "      root._bokeh_is_loading--;\n",
-       "      if (root._bokeh_is_loading === 0) {\n",
-       "        console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n",
-       "        run_callbacks()\n",
-       "      }\n",
-       "    }\n",
-       "\n",
-       "    function on_error(url) {\n",
-       "      console.error(\"failed to load \" + url);\n",
-       "    }\n",
-       "\n",
-       "    for (let i = 0; i < css_urls.length; i++) {\n",
-       "      const url = css_urls[i];\n",
-       "      const element = document.createElement(\"link\");\n",
-       "      element.onload = on_load;\n",
-       "      element.onerror = on_error.bind(null, url);\n",
-       "      element.rel = \"stylesheet\";\n",
-       "      element.type = \"text/css\";\n",
-       "      element.href = url;\n",
-       "      console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n",
-       "      document.body.appendChild(element);\n",
-       "    }\n",
-       "\n",
-       "    for (let i = 0; i < js_urls.length; i++) {\n",
-       "      const url = js_urls[i];\n",
-       "      const element = document.createElement('script');\n",
-       "      element.onload = on_load;\n",
-       "      element.onerror = on_error.bind(null, url);\n",
-       "      element.async = false;\n",
-       "      element.src = url;\n",
-       "      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
-       "      document.head.appendChild(element);\n",
-       "    }\n",
-       "  };\n",
-       "\n",
-       "  function inject_raw_css(css) {\n",
-       "    const element = document.createElement(\"style\");\n",
-       "    element.appendChild(document.createTextNode(css));\n",
-       "    document.body.appendChild(element);\n",
-       "  }\n",
-       "\n",
-       "  const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.0.3.min.js\"];\n",
-       "  const css_urls = [];\n",
-       "\n",
-       "  const inline_js = [    function(Bokeh) {\n",
-       "      Bokeh.set_log_level(\"info\");\n",
-       "    },\n",
-       "function(Bokeh) {\n",
-       "    }\n",
-       "  ];\n",
-       "\n",
-       "  function run_inline_js() {\n",
-       "    if (root.Bokeh !== undefined || force === true) {\n",
-       "          for (let i = 0; i < inline_js.length; i++) {\n",
-       "      inline_js[i].call(root, root.Bokeh);\n",
-       "    }\n",
-       "if (force === true) {\n",
-       "        display_loaded();\n",
-       "      }} else if (Date.now() < root._bokeh_timeout) {\n",
-       "      setTimeout(run_inline_js, 100);\n",
-       "    } else if (!root._bokeh_failed_load) {\n",
-       "      console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
-       "      root._bokeh_failed_load = true;\n",
-       "    } else if (force !== true) {\n",
-       "      const cell = $(document.getElementById(\"p1001\")).parents('.cell').data().cell;\n",
-       "      cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
-       "    }\n",
-       "  }\n",
-       "\n",
-       "  if (root._bokeh_is_loading === 0) {\n",
-       "    console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
-       "    run_inline_js();\n",
-       "  } else {\n",
-       "    load_libs(css_urls, js_urls, function() {\n",
-       "      console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n",
-       "      run_inline_js();\n",
-       "    });\n",
-       "  }\n",
-       "}(window));"
-      ],
-      "application/vnd.bokehjs_load.v0+json": "(function(root) {\n  function now() {\n    return new Date();\n  }\n\n  const force = true;\n\n  if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n    root._bokeh_onload_callbacks = [];\n    root._bokeh_is_loading = undefined;\n  }\n\n\n  if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n    root._bokeh_timeout = Date.now() + 5000;\n    root._bokeh_failed_load = false;\n  }\n\n  const NB_LOAD_WARNING = {'data': {'text/html':\n     \"<div style='background-color: #fdd'>\\n\"+\n     \"<p>\\n\"+\n     \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n     \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n     \"</p>\\n\"+\n     \"<ul>\\n\"+\n     \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n     \"<li>use INLINE resources instead, as so:</li>\\n\"+\n     \"</ul>\\n\"+\n     \"<code>\\n\"+\n     \"from bokeh.resources import INLINE\\n\"+\n     \"output_notebook(resources=INLINE)\\n\"+\n     \"</code>\\n\"+\n     \"</div>\"}};\n\n  function display_loaded() {\n    const el = document.getElementById(\"p1001\");\n    if (el != null) {\n      el.textContent = \"BokehJS is loading...\";\n    }\n    if (root.Bokeh !== undefined) {\n      if (el != null) {\n        el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n      }\n    } else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(display_loaded, 100)\n    }\n  }\n\n  function run_callbacks() {\n    try {\n      root._bokeh_onload_callbacks.forEach(function(callback) {\n        if (callback != null)\n          callback();\n      });\n    } finally {\n      delete root._bokeh_onload_callbacks\n    }\n    console.debug(\"Bokeh: all callbacks have finished\");\n  }\n\n  function load_libs(css_urls, js_urls, callback) {\n    if (css_urls == null) css_urls = [];\n    if (js_urls == null) js_urls = [];\n\n    root._bokeh_onload_callbacks.push(callback);\n    if (root._bokeh_is_loading > 0) {\n      console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n      return null;\n    }\n    if (js_urls == null || js_urls.length === 0) {\n      run_callbacks();\n      return null;\n    }\n    console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n    root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n    function on_load() {\n      root._bokeh_is_loading--;\n      if (root._bokeh_is_loading === 0) {\n        console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n        run_callbacks()\n      }\n    }\n\n    function on_error(url) {\n      console.error(\"failed to load \" + url);\n    }\n\n    for (let i = 0; i < css_urls.length; i++) {\n      const url = css_urls[i];\n      const element = document.createElement(\"link\");\n      element.onload = on_load;\n      element.onerror = on_error.bind(null, url);\n      element.rel = \"stylesheet\";\n      element.type = \"text/css\";\n      element.href = url;\n      console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n      document.body.appendChild(element);\n    }\n\n    for (let i = 0; i < js_urls.length; i++) {\n      const url = js_urls[i];\n      const element = document.createElement('script');\n      element.onload = on_load;\n      element.onerror = on_error.bind(null, url);\n      element.async = false;\n      element.src = url;\n      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n      document.head.appendChild(element);\n    }\n  };\n\n  function inject_raw_css(css) {\n    const element = document.createElement(\"style\");\n    element.appendChild(document.createTextNode(css));\n    document.body.appendChild(element);\n  }\n\n  const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.0.3.min.js\"];\n  const css_urls = [];\n\n  const inline_js = [    function(Bokeh) {\n      Bokeh.set_log_level(\"info\");\n    },\nfunction(Bokeh) {\n    }\n  ];\n\n  function run_inline_js() {\n    if (root.Bokeh !== undefined || force === true) {\n          for (let i = 0; i < inline_js.length; i++) {\n      inline_js[i].call(root, root.Bokeh);\n    }\nif (force === true) {\n        display_loaded();\n      }} else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(run_inline_js, 100);\n    } else if (!root._bokeh_failed_load) {\n      console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n      root._bokeh_failed_load = true;\n    } else if (force !== true) {\n      const cell = $(document.getElementById(\"p1001\")).parents('.cell').data().cell;\n      cell.output_area.append_execute_result(NB_LOAD_WARNING)\n    }\n  }\n\n  if (root._bokeh_is_loading === 0) {\n    console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n    run_inline_js();\n  } else {\n    load_libs(css_urls, js_urls, function() {\n      console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n      run_inline_js();\n    });\n  }\n}(window));"
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "import os\n",
+    "import os.path as op\n",
     "import yaml\n",
     "import torch\n",
     "\n",
@@ -337,2116 +22,451 @@
     "from Scripts.Step_4_Run_GNN import train as run_gnn_inference\n",
     "from Scripts.Step_5_Build_Track_Candidates import train as build_track_candidates\n",
     "from Scripts.Step_6_Evaluate_Reconstruction import evaluate as evaluate_candidates\n",
+    "from Scripts.Step_6_Evaluate_Reconstruction_MonteTracko import (\n",
+    "    evaluate as evaluate_candidates_montetracko\n",
+    ")\n",
     "\n",
     "import warnings\n",
-    "warnings.filterwarnings(\"ignore\")\n",
-    "\n",
-    "CONFIG = 'evaluation_config.yaml'\n",
-    "\n",
-    "ML_CKPT_PATH = '/home/fgias/etx4velo/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_0/checkpoints/epoch=49-step=4000.ckpt'\n",
-    "\n",
-    "GNN_CKPT_PATH = '/home/fgias/etx4velo/LHCb_Pipeline/artifacts/gnn/velo-minbias-sim10b-xdigi/version_0/checkpoints/epoch=49-step=4000.ckpt'"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# 1. Download data"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# path = 'data/input/2'\n",
-    "# os.makedirs(path, exist_ok=True)\n",
-    "# ! xrdcp -r root://eoslhcb.cern.ch//eos/lhcb/user/a/anthonyc/tracking/data/csv/v2/minbias-sim10b-xdigi/2 data/input  --parallel 4"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Saving event 003324721, 1/100, contains 511 true hits.\n",
-      "Saving event 003324722, 2/100, contains 3132 true hits.\n",
-      "Saving event 003324723, 3/100, contains 993 true hits.\n",
-      "Saving event 003324724, 4/100, contains 1528 true hits.\n",
-      "Saving event 003324725, 5/100, contains 2849 true hits.\n",
-      "Saving event 003324726, 6/100, contains 923 true hits.\n",
-      "Saving event 003324727, 7/100, contains 926 true hits.\n",
-      "Saving event 003324728, 8/100, contains 907 true hits.\n",
-      "Saving event 003324729, 9/100, contains 647 true hits.\n",
-      "Saving event 003324730, 10/100, contains 1769 true hits.\n",
-      "Saving event 003324731, 11/100, contains 507 true hits.\n",
-      "Saving event 003324732, 12/100, contains 1170 true hits.\n",
-      "Saving event 003324733, 13/100, contains 1098 true hits.\n",
-      "Saving event 003324734, 14/100, contains 2107 true hits.\n",
-      "Saving event 003324735, 15/100, contains 2493 true hits.\n",
-      "Saving event 003324736, 16/100, contains 1103 true hits.\n",
-      "Saving event 003324737, 17/100, contains 2431 true hits.\n",
-      "Saving event 003324738, 18/100, contains 1232 true hits.\n",
-      "Saving event 003324739, 19/100, contains 1923 true hits.\n",
-      "Saving event 003324740, 20/100, contains 534 true hits.\n",
-      "Saving event 003324741, 21/100, contains 1418 true hits.\n",
-      "Saving event 003324742, 22/100, contains 1850 true hits.\n",
-      "Saving event 003324743, 23/100, contains 2080 true hits.\n",
-      "Saving event 003324744, 24/100, contains 1494 true hits.\n",
-      "Saving event 003324745, 25/100, contains 2428 true hits.\n",
-      "Saving event 003324746, 26/100, contains 2623 true hits.\n",
-      "Saving event 003324747, 27/100, contains 372 true hits.\n",
-      "Saving event 003324748, 28/100, contains 2356 true hits.\n",
-      "Saving event 003324749, 29/100, contains 1631 true hits.\n",
-      "Saving event 003324750, 30/100, contains 1056 true hits.\n",
-      "Saving event 003324751, 31/100, contains 2199 true hits.\n",
-      "Saving event 003324752, 32/100, contains 1834 true hits.\n",
-      "Saving event 003324753, 33/100, contains 421 true hits.\n",
-      "Saving event 003324754, 34/100, contains 982 true hits.\n",
-      "Saving event 003324755, 35/100, contains 1844 true hits.\n",
-      "Saving event 003324756, 36/100, contains 1619 true hits.\n",
-      "Saving event 003324757, 37/100, contains 1206 true hits.\n",
-      "Saving event 003324758, 38/100, contains 761 true hits.\n",
-      "Saving event 003324759, 39/100, contains 1573 true hits.\n",
-      "Saving event 003324760, 40/100, contains 1145 true hits.\n",
-      "Saving event 003324761, 41/100, contains 1763 true hits.\n",
-      "Saving event 003324762, 42/100, contains 2743 true hits.\n",
-      "Saving event 003324763, 43/100, contains 2700 true hits.\n",
-      "Saving event 003324764, 44/100, contains 921 true hits.\n",
-      "Saving event 003324765, 45/100, contains 2131 true hits.\n",
-      "Saving event 003324766, 46/100, contains 3022 true hits.\n",
-      "Saving event 003324767, 47/100, contains 1743 true hits.\n",
-      "Saving event 003324768, 48/100, contains 1867 true hits.\n",
-      "Saving event 003324769, 49/100, contains 271 true hits.\n",
-      "Saving event 003324770, 50/100, contains 907 true hits.\n",
-      "Saving event 003324771, 51/100, contains 1132 true hits.\n",
-      "Saving event 003324772, 52/100, contains 2625 true hits.\n",
-      "Saving event 003324773, 53/100, contains 1103 true hits.\n",
-      "Saving event 003324774, 54/100, contains 303 true hits.\n",
-      "Saving event 003324775, 55/100, contains 3346 true hits.\n",
-      "Saving event 003324776, 56/100, contains 1760 true hits.\n",
-      "Saving event 003324777, 57/100, contains 603 true hits.\n",
-      "Saving event 003324778, 58/100, contains 649 true hits.\n",
-      "Saving event 003324779, 59/100, contains 1464 true hits.\n",
-      "Saving event 003324780, 60/100, contains 2651 true hits.\n",
-      "Saving event 003324781, 61/100, contains 1455 true hits.\n",
-      "Saving event 003324782, 62/100, contains 1246 true hits.\n",
-      "Saving event 003324783, 63/100, contains 1566 true hits.\n",
-      "Saving event 003324784, 64/100, contains 1030 true hits.\n",
-      "Saving event 003324785, 65/100, contains 2739 true hits.\n",
-      "Saving event 003324786, 66/100, contains 1510 true hits.\n",
-      "Saving event 003324787, 67/100, contains 808 true hits.\n",
-      "Saving event 003324788, 68/100, contains 786 true hits.\n",
-      "Saving event 003324789, 69/100, contains 1061 true hits.\n",
-      "Saving event 003324790, 70/100, contains 2266 true hits.\n",
-      "Saving event 003324791, 71/100, contains 1171 true hits.\n",
-      "Saving event 003324792, 72/100, contains 2426 true hits.\n",
-      "Saving event 003324793, 73/100, contains 829 true hits.\n",
-      "Saving event 003324794, 74/100, contains 1381 true hits.\n",
-      "Saving event 003324795, 75/100, contains 3826 true hits.\n",
-      "Saving event 003324796, 76/100, contains 87 true hits.\n",
-      "Saving event 003324797, 77/100, contains 837 true hits.\n",
-      "Saving event 003324798, 78/100, contains 2052 true hits.\n",
-      "Saving event 003324799, 79/100, contains 1069 true hits.\n",
-      "Saving event 003324800, 80/100, contains 4375 true hits.\n",
-      "Saving event 003324801, 81/100, contains 1420 true hits.\n",
-      "Saving event 003324802, 82/100, contains 2193 true hits.\n",
-      "Saving event 003324803, 83/100, contains 2032 true hits.\n",
-      "Saving event 003324804, 84/100, contains 988 true hits.\n",
-      "Saving event 003324805, 85/100, contains 158 true hits.\n",
-      "Saving event 003324806, 86/100, contains 1983 true hits.\n",
-      "Saving event 003324807, 87/100, contains 1137 true hits.\n",
-      "Saving event 003324808, 88/100, contains 1293 true hits.\n",
-      "Saving event 003324809, 89/100, contains 968 true hits.\n",
-      "Saving event 003324810, 90/100, contains 200 true hits.\n",
-      "Saving event 003324811, 91/100, contains 2669 true hits.\n",
-      "Saving event 003324812, 92/100, contains 3045 true hits.\n",
-      "Saving event 003324813, 93/100, contains 1283 true hits.\n",
-      "Saving event 003324815, 94/100, contains 1685 true hits.\n",
-      "Saving event 003324816, 95/100, contains 538 true hits.\n",
-      "Saving event 003324817, 96/100, contains 167 true hits.\n",
-      "Saving event 003324818, 97/100, contains 763 true hits.\n",
-      "Saving event 003324819, 98/100, contains 1097 true hits.\n",
-      "Saving event 003324820, 99/100, contains 578 true hits.\n",
-      "Saving event 003324821, 100/100, contains 881 true hits.\n",
-      "Writing outputs to data/processed\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:Preparing event 003324722\n",
-      "INFO:Preparing event 003324723\n",
-      "INFO:Preparing event 003324721\n",
-      "INFO:Preparing event 003324727\n",
-      "INFO:Preparing event 003324730\n",
-      "INFO:Preparing event 003324729\n",
-      "INFO:Preparing event 003324724\n",
-      "INFO:Preparing event 003324726\n",
-      "INFO:Preparing event 003324725\n",
-      "INFO:Preparing event 003324728\n",
-      "INFO:Preparing event 003324731\n",
-      "INFO:Preparing event 003324732\n",
-      "INFO:Preparing event 003324733\n",
-      "INFO:Preparing event 003324735\n",
-      "INFO:Preparing event 003324742\n",
-      "INFO:Preparing event 003324740\n",
-      "INFO:Preparing event 003324743\n"
-     ]
-    },
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "a4abcb6a1ec3490788133edc53593089",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "  0%|          | 0/100 [00:00<?, ?it/s]"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:Preparing event 003324738\n",
-      "INFO:Preparing event 003324737\n",
-      "INFO:Preparing event 003324739\n",
-      "INFO:Preparing event 003324744\n",
-      "INFO:Preparing event 003324752\n",
-      "INFO:Preparing event 003324751\n",
-      "INFO:Preparing event 003324734\n",
-      "INFO:Preparing event 003324750\n",
-      "INFO:Preparing event 003324736\n",
-      "INFO:Preparing event 003324747\n",
-      "INFO:Preparing event 003324749\n",
-      "INFO:Preparing event 003324748\n",
-      "INFO:Preparing event 003324741\n",
-      "INFO:Preparing event 003324746\n",
-      "INFO:Preparing event 003324745\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324727 with size (2, 755)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324724 with size (2, 1275)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324721 with size (2, 422)\n",
-      "INFO:Preparing event 003324753\n",
-      "INFO:Preparing event 003324755\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324729 with size (2, 535)\n",
-      "INFO:Preparing event 003324754\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324726 with size (2, 765)\n",
-      "INFO:Preparing event 003324756\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324747 with size (2, 317)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324735 with size (2, 2054)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324731 with size (2, 417)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324730 with size (2, 1434)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324739 with size (2, 1589)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324740 with size (2, 434)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324744 with size (2, 1217)\n",
-      "INFO:Preparing event 003324758\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324733 with size (2, 891)\n",
-      "INFO:Preparing event 003324759\n",
-      "INFO:Preparing event 003324760\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324723 with size (2, 830)\n",
-      "INFO:Preparing event 003324757\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324753 with size (2, 338)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324736 with size (2, 906)\n",
-      "INFO:Preparing event 003324762\n",
-      "INFO:Preparing event 003324763\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324738 with size (2, 1011)\n",
-      "INFO:Preparing event 003324761\n",
-      "INFO:Preparing event 003324764\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324741 with size (2, 1157)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324754 with size (2, 802)\n",
-      "INFO:Preparing event 003324765\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324728 with size (2, 770)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324751 with size (2, 1788)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324755 with size (2, 1510)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324737 with size (2, 2008)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324756 with size (2, 1344)\n",
-      "INFO:Preparing event 003324768\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324732 with size (2, 964)\n",
-      "INFO:Preparing event 003324766\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324750 with size (2, 902)\n",
-      "INFO:Preparing event 003324770\n",
-      "INFO:Preparing event 003324767\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324722 with size (2, 2578)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324749 with size (2, 1366)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324752 with size (2, 1497)\n",
-      "INFO:Preparing event 003324771\n",
-      "INFO:Preparing event 003324774\n",
-      "INFO:Preparing event 003324769\n",
-      "INFO:Preparing event 003324773\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324743 with size (2, 1673)\n",
-      "INFO:Preparing event 003324772\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324742 with size (2, 1516)\n",
-      "INFO:Preparing event 003324776\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324748 with size (2, 1963)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324734 with size (2, 1743)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324760 with size (2, 948)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324746 with size (2, 2230)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324725 with size (2, 2354)\n",
-      "INFO:Preparing event 003324777\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324757 with size (2, 1003)\n",
-      "INFO:Preparing event 003324775\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324758 with size (2, 629)\n",
-      "INFO:Preparing event 003324778\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324745 with size (2, 2005)\n",
-      "INFO:Preparing event 003324779\n",
-      "INFO:Preparing event 003324780\n",
-      "INFO:Preparing event 003324784\n",
-      "INFO:Preparing event 003324786\n",
-      "INFO:Preparing event 003324781\n",
-      "INFO:Preparing event 003324785\n",
-      "INFO:Preparing event 003324783\n",
-      "INFO:Preparing event 003324790\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324761 with size (2, 1447)\n",
-      "INFO:Preparing event 003324787\n",
-      "INFO:Preparing event 003324788\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324764 with size (2, 787)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324763 with size (2, 2237)\n",
-      "INFO:Preparing event 003324791\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324765 with size (2, 1759)\n",
-      "INFO:Preparing event 003324782\n",
-      "INFO:Preparing event 003324789\n",
-      "INFO:Preparing event 003324794\n",
-      "INFO:Preparing event 003324792\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324768 with size (2, 1523)\n",
-      "INFO:Preparing event 003324793\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324769 with size (2, 219)\n",
-      "INFO:Preparing event 003324796\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324773 with size (2, 921)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324767 with size (2, 1448)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324770 with size (2, 770)\n",
-      "INFO:Preparing event 003324795\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324759 with size (2, 1319)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324771 with size (2, 946)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324774 with size (2, 249)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324762 with size (2, 2274)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324777 with size (2, 504)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324772 with size (2, 2146)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324766 with size (2, 2518)\n",
-      "INFO:Preparing event 003324799\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324784 with size (2, 847)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324787 with size (2, 659)\n",
-      "INFO:Preparing event 003324803\n",
-      "INFO:Preparing event 003324798\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324788 with size (2, 638)\n",
-      "INFO:Preparing event 003324805\n",
-      "INFO:Preparing event 003324800\n",
-      "INFO:Preparing event 003324804\n",
-      "INFO:Preparing event 003324802\n",
-      "INFO:Preparing event 003324797\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324791 with size (2, 949)\n",
-      "INFO:Preparing event 003324806\n",
-      "INFO:Preparing event 003324808\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324776 with size (2, 1454)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324786 with size (2, 1240)\n",
-      "INFO:Preparing event 003324801\n",
-      "INFO:Preparing event 003324809\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324779 with size (2, 1217)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324781 with size (2, 1194)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324793 with size (2, 682)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324780 with size (2, 2213)\n",
-      "INFO:Preparing event 003324807\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324782 with size (2, 1044)\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:Preparing event 003324811\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324778 with size (2, 540)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324785 with size (2, 2274)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324789 with size (2, 864)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324790 with size (2, 1883)\n",
-      "INFO:Preparing event 003324816\n",
-      "INFO:Preparing event 003324812\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324775 with size (2, 2779)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324794 with size (2, 1140)\n",
-      "INFO:Preparing event 003324810\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324783 with size (2, 1324)\n",
-      "INFO:Preparing event 003324818\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324797 with size (2, 679)\n",
-      "INFO:Preparing event 003324817\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324792 with size (2, 2027)\n",
-      "INFO:Preparing event 003324813\n",
-      "INFO:Preparing event 003324815\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324796 with size (2, 73)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324805 with size (2, 128)\n",
-      "INFO:Preparing event 003324821\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324803 with size (2, 1657)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324804 with size (2, 832)\n",
-      "INFO:Preparing event 003324819\n",
-      "INFO:Preparing event 003324820\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324808 with size (2, 1078)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324809 with size (2, 808)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324801 with size (2, 1185)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324799 with size (2, 885)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324802 with size (2, 1820)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324817 with size (2, 143)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324818 with size (2, 633)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324798 with size (2, 1722)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324795 with size (2, 3141)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324800 with size (2, 3617)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324813 with size (2, 1062)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324815 with size (2, 1373)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324810 with size (2, 161)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324806 with size (2, 1671)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324807 with size (2, 950)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324819 with size (2, 887)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324821 with size (2, 743)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324820 with size (2, 484)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324816 with size (2, 447)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324811 with size (2, 2172)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event003324812 with size (2, 2542)\n"
-     ]
-    }
-   ],
-   "source": [
-    "from Processing.Models.feature_construction import FeatureStore\n",
-    "\n",
-    "fs = FeatureStore(CONFIG)\n",
-    "fs.prepare_data()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# 2. Load models from artifacts and run\n",
     "\n",
-    "## Metric learning model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "INFO:------------- Step 2: Constructing graphs from metric learning model -------------\n",
-      "INFO:---------------------------- a) Loading trained model ----------------------------\n",
-      "INFO:----------------------------- b) Running inferencing -----------------------------\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Training finished, running inference to build graphs...\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "  1%|▏         | 1/80 [00:00<01:05,  1.21it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5142])\n",
-      "torch.Size([5142])\n",
-      "torch.Size([2, 1456])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  2%|â–Ž         | 2/80 [00:01<00:36,  2.12it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 16426])\n",
-      "torch.Size([16426])\n",
-      "torch.Size([2, 3128])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  4%|▍         | 3/80 [00:01<00:27,  2.80it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6324])\n",
-      "torch.Size([6324])\n",
-      "torch.Size([2, 1696])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  5%|▌         | 4/80 [00:01<00:23,  3.30it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5352])\n",
-      "torch.Size([5352])\n",
-      "torch.Size([2, 1642])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  6%|â–‹         | 5/80 [00:01<00:20,  3.67it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 3742])\n",
-      "torch.Size([3742])\n",
-      "torch.Size([2, 1060])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  8%|â–Š         | 6/80 [00:01<00:18,  3.94it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6060])\n",
-      "torch.Size([6060])\n",
-      "torch.Size([2, 1704])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "  9%|â–‰         | 7/80 [00:02<00:17,  4.11it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5470])\n",
-      "torch.Size([5470])\n",
-      "torch.Size([2, 1542])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 10%|â–ˆ         | 8/80 [00:02<00:16,  4.24it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 11242])\n",
-      "torch.Size([11242])\n",
-      "torch.Size([2, 2426])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 11%|█▏        | 9/80 [00:02<00:16,  4.33it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5446])\n",
-      "torch.Size([5446])\n",
-      "torch.Size([2, 1292])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 12%|█▎        | 10/80 [00:02<00:15,  4.40it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 10616])\n",
-      "torch.Size([10616])\n",
-      "torch.Size([2, 2228])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 14%|█▍        | 11/80 [00:03<00:15,  4.42it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 9410])\n",
-      "torch.Size([9410])\n",
-      "torch.Size([2, 2028])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 15%|█▌        | 12/80 [00:03<00:15,  4.48it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 2802])\n",
-      "torch.Size([2802])\n",
-      "torch.Size([2, 918])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 16%|█▋        | 13/80 [00:03<00:14,  4.53it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 264])\n",
-      "torch.Size([264])\n",
-      "torch.Size([2, 140])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 18%|█▊        | 14/80 [00:03<00:14,  4.48it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 31716])\n",
-      "torch.Size([31716])\n",
-      "torch.Size([2, 4404])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 19%|█▉        | 15/80 [00:03<00:14,  4.46it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 18440])\n",
-      "torch.Size([18440])\n",
-      "torch.Size([2, 3406])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 20%|██        | 16/80 [00:04<00:14,  4.45it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 21988])\n",
-      "torch.Size([21988])\n",
-      "torch.Size([2, 3750])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 21%|██▏       | 17/80 [00:04<00:14,  4.43it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 25832])\n",
-      "torch.Size([25832])\n",
-      "torch.Size([2, 4284])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 22%|██▎       | 18/80 [00:04<00:13,  4.44it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 27162])\n",
-      "torch.Size([27162])\n",
-      "torch.Size([2, 4068])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 24%|██▍       | 19/80 [00:04<00:13,  4.43it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 23016])\n",
-      "torch.Size([23016])\n",
-      "torch.Size([2, 3712])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 25%|██▌       | 20/80 [00:05<00:13,  4.44it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 12592])\n",
-      "torch.Size([12592])\n",
-      "torch.Size([2, 2574])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 26%|██▋       | 21/80 [00:05<00:13,  4.46it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 13254])\n",
-      "torch.Size([13254])\n",
-      "torch.Size([2, 2708])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 28%|██▊       | 22/80 [00:05<00:12,  4.47it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 10868])\n",
-      "torch.Size([10868])\n",
-      "torch.Size([2, 2464])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 29%|██▉       | 23/80 [00:05<00:12,  4.46it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 14746])\n",
-      "torch.Size([14746])\n",
-      "torch.Size([2, 2948])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 30%|███       | 24/80 [00:05<00:12,  4.49it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 2674])\n",
-      "torch.Size([2674])\n",
-      "torch.Size([2, 816])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 31%|███▏      | 25/80 [00:06<00:12,  4.51it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 2532])\n",
-      "torch.Size([2532])\n",
-      "torch.Size([2, 844])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 32%|███▎      | 26/80 [00:06<00:11,  4.54it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5606])\n",
-      "torch.Size([5606])\n",
-      "torch.Size([2, 1444])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 34%|███▍      | 27/80 [00:06<00:11,  4.55it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5064])\n",
-      "torch.Size([5064])\n",
-      "torch.Size([2, 1530])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 35%|███▌      | 28/80 [00:06<00:11,  4.56it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 2336])\n",
-      "torch.Size([2336])\n",
-      "torch.Size([2, 788])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 36%|███▋      | 29/80 [00:07<00:11,  4.47it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 49022])\n",
-      "torch.Size([49022])\n",
-      "torch.Size([2, 5912])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 38%|███▊      | 30/80 [00:07<00:11,  4.49it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 14932])\n",
-      "torch.Size([14932])\n",
-      "torch.Size([2, 2796])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 39%|███▉      | 31/80 [00:07<00:10,  4.49it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 13008])\n",
-      "torch.Size([13008])\n",
-      "torch.Size([2, 2578])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 40%|████      | 32/80 [00:07<00:10,  4.53it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 1206])\n",
-      "torch.Size([1206])\n",
-      "torch.Size([2, 482])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 41%|████▏     | 33/80 [00:07<00:10,  4.47it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 37536])\n",
-      "torch.Size([37536])\n",
-      "torch.Size([2, 4918])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 42%|████▎     | 34/80 [00:08<00:10,  4.45it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 26440])\n",
-      "torch.Size([26440])\n",
-      "torch.Size([2, 4372])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 44%|████▍     | 35/80 [00:08<00:10,  4.45it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 13396])\n",
-      "torch.Size([13396])\n",
-      "torch.Size([2, 2720])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 45%|████▌     | 36/80 [00:08<00:09,  4.43it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 16908])\n",
-      "torch.Size([16908])\n",
-      "torch.Size([2, 3264])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 46%|████▋     | 37/80 [00:08<00:09,  4.43it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 20602])\n",
-      "torch.Size([20602])\n",
-      "torch.Size([2, 3318])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 48%|████▊     | 38/80 [00:09<00:09,  4.54it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7324])\n",
-      "torch.Size([7324])\n",
-      "torch.Size([2, 1796])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 49%|████▉     | 39/80 [00:09<00:09,  4.53it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 8348])\n",
-      "torch.Size([8348])\n",
-      "torch.Size([2, 1876])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 50%|█████     | 40/80 [00:09<00:08,  4.51it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 18080])\n",
-      "torch.Size([18080])\n",
-      "torch.Size([2, 3202])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 51%|█████▏    | 41/80 [00:09<00:08,  4.50it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 19512])\n",
-      "torch.Size([19512])\n",
-      "torch.Size([2, 3452])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 52%|█████▎    | 42/80 [00:09<00:08,  4.50it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6708])\n",
-      "torch.Size([6708])\n",
-      "torch.Size([2, 1748])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 54%|█████▍    | 43/80 [00:10<00:08,  4.51it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 9876])\n",
-      "torch.Size([9876])\n",
-      "torch.Size([2, 2216])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 55%|█████▌    | 44/80 [00:10<00:07,  4.53it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 9496])\n",
-      "torch.Size([9496])\n",
-      "torch.Size([2, 2164])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 56%|█████▋    | 45/80 [00:10<00:07,  4.55it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 1284])\n",
-      "torch.Size([1284])\n",
-      "torch.Size([2, 438])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 57%|█████▊    | 46/80 [00:10<00:07,  4.55it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5700])\n",
-      "torch.Size([5700])\n",
-      "torch.Size([2, 1560])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 59%|█████▉    | 47/80 [00:11<00:07,  4.55it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6108])\n",
-      "torch.Size([6108])\n",
-      "torch.Size([2, 1748])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 60%|██████    | 48/80 [00:11<00:07,  4.47it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 34780])\n",
-      "torch.Size([34780])\n",
-      "torch.Size([2, 4742])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 61%|██████▏   | 49/80 [00:11<00:06,  4.47it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 13538])\n",
-      "torch.Size([13538])\n",
-      "torch.Size([2, 2682])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 62%|██████▎   | 50/80 [00:11<00:06,  4.48it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 8190])\n",
-      "torch.Size([8190])\n",
-      "torch.Size([2, 1932])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 64%|██████▍   | 51/80 [00:11<00:06,  4.51it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5652])\n",
-      "torch.Size([5652])\n",
-      "torch.Size([2, 1252])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 65%|██████▌   | 52/80 [00:12<00:06,  4.53it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7654])\n",
-      "torch.Size([7654])\n",
-      "torch.Size([2, 1956])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 66%|██████▋   | 53/80 [00:12<00:05,  4.54it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 5586])\n",
-      "torch.Size([5586])\n",
-      "torch.Size([2, 1568])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 68%|██████▊   | 54/80 [00:12<00:05,  4.49it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 35366])\n",
-      "torch.Size([35366])\n",
-      "torch.Size([2, 4792])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 69%|██████▉   | 55/80 [00:12<00:05,  4.53it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 584])\n",
-      "torch.Size([584])\n",
-      "torch.Size([2, 216])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 70%|███████   | 56/80 [00:13<00:05,  4.50it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 14508])\n",
-      "torch.Size([14508])\n",
-      "torch.Size([2, 2782])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 71%|███████▏  | 57/80 [00:13<00:05,  4.38it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 62114])\n",
-      "torch.Size([62114])\n",
-      "torch.Size([2, 6836])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 72%|███████▎  | 58/80 [00:13<00:04,  4.41it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 20394])\n",
-      "torch.Size([20394])\n",
-      "torch.Size([2, 3866])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 74%|███████▍  | 59/80 [00:13<00:04,  4.43it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7198])\n",
-      "torch.Size([7198])\n",
-      "torch.Size([2, 1700])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 75%|███████▌  | 60/80 [00:13<00:04,  4.41it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 25146])\n",
-      "torch.Size([25146])\n",
-      "torch.Size([2, 4218])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 76%|███████▋  | 61/80 [00:14<00:04,  4.46it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 2582])\n",
-      "torch.Size([2582])\n",
-      "torch.Size([2, 772])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 78%|███████▊  | 62/80 [00:14<00:04,  4.49it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 3446])\n",
-      "torch.Size([3446])\n",
-      "torch.Size([2, 998])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 79%|███████▉  | 63/80 [00:14<00:03,  4.51it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 4232])\n",
-      "torch.Size([4232])\n",
-      "torch.Size([2, 1274])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 80%|████████  | 64/80 [00:14<00:03,  4.51it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 12142])\n",
-      "torch.Size([12142])\n",
-      "torch.Size([2, 2418])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 81%|████████▏ | 65/80 [00:15<00:03,  4.54it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 2074])\n",
-      "torch.Size([2074])\n",
-      "torch.Size([2, 610])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 82%|████████▎ | 66/80 [00:15<00:03,  4.54it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 4406])\n",
-      "torch.Size([4406])\n",
-      "torch.Size([2, 1240])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 84%|████████▍ | 67/80 [00:15<00:02,  4.56it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 2948])\n",
-      "torch.Size([2948])\n",
-      "torch.Size([2, 1018])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 85%|████████▌ | 68/80 [00:15<00:02,  4.57it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 638])\n",
-      "torch.Size([638])\n",
-      "torch.Size([2, 262])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 86%|████████▋ | 69/80 [00:15<00:02,  4.52it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 21366])\n",
-      "torch.Size([21366])\n",
-      "torch.Size([2, 3498])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 88%|████████▊ | 70/80 [00:16<00:02,  4.49it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 23234])\n",
-      "torch.Size([23234])\n",
-      "torch.Size([2, 3716])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 89%|████████▉ | 71/80 [00:16<00:02,  4.44it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6084])\n",
-      "torch.Size([6084])\n",
-      "torch.Size([2, 1688])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 90%|█████████ | 72/80 [00:16<00:01,  4.42it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 4894])\n",
-      "torch.Size([4894])\n",
-      "torch.Size([2, 1512])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 91%|█████████▏| 73/80 [00:16<00:01,  4.44it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 1634])\n",
-      "torch.Size([1634])\n",
-      "torch.Size([2, 630])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 92%|█████████▎| 74/80 [00:17<00:01,  4.42it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 26672])\n",
-      "torch.Size([26672])\n",
-      "torch.Size([2, 4086])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 94%|█████████▍| 75/80 [00:17<00:01,  4.46it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 10676])\n",
-      "torch.Size([10676])\n",
-      "torch.Size([2, 2240])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 95%|█████████▌| 76/80 [00:17<00:00,  4.48it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 12438])\n",
-      "torch.Size([12438])\n",
-      "torch.Size([2, 2526])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 96%|█████████▋| 77/80 [00:17<00:00,  4.50it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 13934])\n",
-      "torch.Size([13934])\n",
-      "torch.Size([2, 2786])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 98%|█████████▊| 78/80 [00:17<00:00,  4.52it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7108])\n",
-      "torch.Size([7108])\n",
-      "torch.Size([2, 1636])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 99%|█████████▉| 79/80 [00:18<00:00,  4.51it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 15404])\n",
-      "torch.Size([15404])\n",
-      "torch.Size([2, 2848])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "100%|██████████| 80/80 [00:18<00:00,  4.35it/s]\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7480])\n",
-      "torch.Size([7480])\n",
-      "torch.Size([2, 1814])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 10%|â–ˆ         | 1/10 [00:00<00:01,  4.63it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 14632])\n",
-      "torch.Size([14632])\n",
-      "torch.Size([2, 2956])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 20%|██        | 2/10 [00:00<00:01,  4.45it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 37500])\n",
-      "torch.Size([37500])\n",
-      "torch.Size([2, 5244])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 30%|███       | 3/10 [00:00<00:01,  4.54it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 4004])\n",
-      "torch.Size([4004])\n",
-      "torch.Size([2, 1182])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 40%|████      | 4/10 [00:00<00:01,  4.56it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 7468])\n",
-      "torch.Size([7468])\n",
-      "torch.Size([2, 1696])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 50%|█████     | 5/10 [00:01<00:01,  4.58it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6318])\n",
-      "torch.Size([6318])\n",
-      "torch.Size([2, 1806])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 60%|██████    | 6/10 [00:01<00:00,  4.57it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 11022])\n",
-      "torch.Size([11022])\n",
-      "torch.Size([2, 2318])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 70%|███████   | 7/10 [00:01<00:00,  4.58it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 4944])\n",
-      "torch.Size([4944])\n",
-      "torch.Size([2, 1470])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 80%|████████  | 8/10 [00:01<00:00,  4.53it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 26252])\n",
-      "torch.Size([26252])\n",
-      "torch.Size([2, 4192])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 90%|█████████ | 9/10 [00:01<00:00,  4.55it/s]"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 4628])\n",
-      "torch.Size([4628])\n",
-      "torch.Size([2, 1222])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "100%|██████████| 10/10 [00:02<00:00,  4.54it/s]\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 29436])\n",
-      "torch.Size([29436])\n",
-      "torch.Size([2, 4348])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      " 10%|â–ˆ         | 1/10 [00:00<00:01,  4.56it/s]"
-     ]
-    },
+    "warnings.filterwarnings(\"ignore\")\n",
+    "\n",
+    "CONFIG = \"evaluation_config.yaml\"\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "with open(CONFIG, 'r') as f:\n",
+    "    configs = yaml.load(f, Loader=yaml.FullLoader)\n",
+    "\n",
+    "experiment_name = configs[\"common_configs\"][\"experiment_name\"]\n",
+    "artifact_directory = configs[\"common_configs\"][\"artifact_directory\"]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ML_CKPT_PATH = op.abspath(\n",
+    "    op.join(\n",
+    "        artifact_directory,\n",
+    "        \"metric_learning\",\n",
+    "        experiment_name,\n",
+    "        \"version_4\",\n",
+    "        \"checkpoints\",\n",
+    "        \"epoch=49-step=4000.ckpt\",\n",
+    "    )\n",
+    ")\n",
+    "\n",
+    "GNN_CKPT_PATH = op.abspath(\n",
+    "    op.join(\n",
+    "        artifact_directory,\n",
+    "        \"gnn\",\n",
+    "        experiment_name,\n",
+    "        \"version_2\",\n",
+    "        \"checkpoints\",\n",
+    "        \"epoch=49-step=4000.ckpt\",\n",
+    "    )\n",
+    ")\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 1. Download data"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# path = 'data/input/2'\n",
+    "# os.makedirs(path, exist_ok=True)\n",
+    "# ! xrdcp -r root://eoslhcb.cern.ch//eos/lhcb/user/a/anthonyc/tracking/data/csv/v2/minbias-sim10b-xdigi/2 data/input  --parallel 4"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "torch.Size([2, 15026])\n",
-      "torch.Size([15026])\n",
-      "torch.Size([2, 2676])\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      " 20%|██        | 2/10 [00:00<00:01,  4.56it/s]"
+      "Writing outputs to data/processed\n"
      ]
     },
     {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 6990])\n",
-      "torch.Size([6990])\n",
-      "torch.Size([2, 1778])\n"
-     ]
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "7b42d359b5a54d55b454b8c05a1bfa35",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "  0%|          | 0/100 [00:00<?, ?it/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "\r",
-      " 30%|███       | 3/10 [00:00<00:01,  4.59it/s]"
+      "INFO:Preparing event 003324722\n",
+      "INFO:Preparing event 003324728\n",
+      "INFO:Preparing event 003324733\n",
+      "INFO:Preparing event 003324730\n",
+      "INFO:Preparing event 003324734\n",
+      "INFO:Preparing event 003324729\n",
+      "INFO:Preparing event 003324726\n",
+      "INFO:Preparing event 003324732\n",
+      "INFO:Preparing event 003324735\n",
+      "INFO:Preparing event 003324725\n",
+      "INFO:Preparing event 003324727\n",
+      "INFO:Preparing event 003324736\n",
+      "INFO:Preparing event 003324741\n",
+      "INFO:Preparing event 003324740\n",
+      "INFO:Preparing event 003324738\n",
+      "INFO:Preparing event 003324742\n",
+      "INFO:Preparing event 003324731\n",
+      "INFO:Preparing event 003324743\n",
+      "INFO:Preparing event 003324744\n",
+      "INFO:Preparing event 003324745\n",
+      "INFO:Preparing event 003324749\n",
+      "INFO:Preparing event 003324752\n",
+      "INFO:Preparing event 003324746\n",
+      "INFO:Preparing event 003324750\n",
+      "INFO:Preparing event 003324748\n",
+      "INFO:Preparing event 003324737\n",
+      "INFO:Preparing event 003324739\n",
+      "INFO:Preparing event 003324724\n",
+      "INFO:Preparing event 003324747\n",
+      "INFO:Preparing event 003324751\n",
+      "INFO:Preparing event 003324721\n",
+      "INFO:Preparing event 003324723\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324729 with size (2, 671)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324745 with size (2, 2307)\n",
+      "INFO:Preparing event 003324754\n",
+      "INFO:Preparing event 003324753\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324738 with size (2, 1168)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324721 with size (2, 455)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324742 with size (2, 1708)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324744 with size (2, 1350)\n",
+      "INFO:Preparing event 003324757\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324725 with size (2, 2759)\n",
+      "INFO:Preparing event 003324756\n",
+      "INFO:Preparing event 003324755\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324735 with size (2, 2340)\n",
+      "INFO:Preparing event 003324759\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324750 with size (2, 1090)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324733 with size (2, 982)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324747 with size (2, 420)\n",
+      "INFO:Preparing event 003324758\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324749 with size (2, 1591)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324731 with size (2, 596)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324726 with size (2, 826)\n",
+      "INFO:Preparing event 003324761\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324727 with size (2, 915)\n",
+      "INFO:Preparing event 003324762\n",
+      "INFO:Preparing event 003324760\n",
+      "INFO:Preparing event 003324764\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324728 with size (2, 860)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324748 with size (2, 2431)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324743 with size (2, 1995)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324753 with size (2, 377)\n",
+      "INFO:Preparing event 003324763\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324724 with size (2, 1511)\n",
+      "INFO:Preparing event 003324769\n",
+      "INFO:Preparing event 003324768\n",
+      "INFO:Preparing event 003324765\n",
+      "INFO:Preparing event 003324766\n",
+      "INFO:Preparing event 003324770\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324754 with size (2, 965)\n",
+      "INFO:Preparing event 003324767\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324741 with size (2, 1354)\n",
+      "INFO:Preparing event 003324771\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324752 with size (2, 1671)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324746 with size (2, 2622)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324760 with size (2, 1212)\n",
+      "INFO:Preparing event 003324772\n",
+      "INFO:Preparing event 003324774\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324756 with size (2, 1572)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324736 with size (2, 979)\n",
+      "INFO:Preparing event 003324777\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324732 with size (2, 1101)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324723 with size (2, 962)\n",
+      "INFO:Preparing event 003324778\n",
+      "INFO:Preparing event 003324775\n",
+      "INFO:Preparing event 003324780\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324761 with size (2, 1682)\n",
+      "INFO:Preparing event 003324776\n",
+      "INFO:Preparing event 003324773\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324730 with size (2, 1698)\n",
+      "INFO:Preparing event 003324779\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324757 with size (2, 1174)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324758 with size (2, 769)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324740 with size (2, 493)\n",
+      "INFO:Preparing event 003324783\n",
+      "INFO:Preparing event 003324782\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324764 with size (2, 886)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324762 with size (2, 2704)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324759 with size (2, 1570)\n",
+      "INFO:Preparing event 003324781\n",
+      "INFO:Preparing event 003324786\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324751 with size (2, 2086)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324755 with size (2, 1765)\n",
+      "INFO:Preparing event 003324784\n",
+      "INFO:Preparing event 003324788\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324734 with size (2, 2003)\n",
+      "INFO:Preparing event 003324785\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324763 with size (2, 2569)\n",
+      "INFO:Preparing event 003324791\n",
+      "INFO:Preparing event 003324789\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324774 with size (2, 283)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324722 with size (2, 3041)\n",
+      "INFO:Preparing event 003324793\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324777 with size (2, 602)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324739 with size (2, 1851)\n",
+      "INFO:Preparing event 003324794\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324768 with size (2, 1796)\n",
+      "INFO:Preparing event 003324790\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324769 with size (2, 254)\n",
+      "INFO:Preparing event 003324792\n",
+      "INFO:Preparing event 003324787\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324770 with size (2, 874)\n",
+      "INFO:Preparing event 003324796\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324771 with size (2, 1179)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324767 with size (2, 1676)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324772 with size (2, 2484)\n",
+      "INFO:Preparing event 003324795\n",
+      "INFO:Preparing event 003324797\n",
+      "INFO:Preparing event 003324798\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324782 with size (2, 1237)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324737 with size (2, 2349)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324778 with size (2, 626)\n",
+      "INFO:Preparing event 003324799\n",
+      "INFO:Preparing event 003324803\n",
+      "INFO:Preparing event 003324801\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324779 with size (2, 1397)\n",
+      "INFO:Preparing event 003324800\n",
+      "INFO:Preparing event 003324804\n",
+      "INFO:Preparing event 003324802\n",
+      "INFO:Preparing event 003324805\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324765 with size (2, 2103)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324784 with size (2, 932)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324773 with size (2, 1051)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324794 with size (2, 1426)\n",
+      "INFO:Preparing event 003324806\n",
+      "INFO:Preparing event 003324807\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324788 with size (2, 800)\n",
+      "INFO:Preparing event 003324808\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324776 with size (2, 1841)\n",
+      "INFO:Preparing event 003324811\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324780 with size (2, 2586)\n",
+      "INFO:Preparing event 003324809\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324789 with size (2, 1002)\n",
+      "INFO:Preparing event 003324814\n",
+      "INFO:Preparing event 003324813\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324783 with size (2, 1546)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324790 with size (2, 2185)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324785 with size (2, 2564)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324781 with size (2, 1347)\n",
+      "INFO:Preparing event 003324817\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324798 with size (2, 2013)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324803 with size (2, 1964)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324793 with size (2, 844)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324792 with size (2, 2556)\n",
+      "INFO:Preparing event 003324812\n",
+      "INFO:Preparing event 003324810\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324787 with size (2, 784)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324775 with size (2, 3208)\n",
+      "INFO:Preparing event 003324815\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324797 with size (2, 797)\n",
+      "INFO:Preparing event 003324820\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324804 with size (2, 998)\n",
+      "INFO:Preparing event 003324816\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324766 with size (2, 3053)\n",
+      "INFO:Preparing event 003324818\n",
+      "INFO:Preparing event 003324819\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324799 with size (2, 1057)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324796 with size (2, 97)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324805 with size (2, 142)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324795 with size (2, 3625)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324786 with size (2, 1434)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324807 with size (2, 1086)\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "torch.Size([2, 6102])\n",
-      "torch.Size([6102])\n",
-      "torch.Size([2, 1616])\n"
+      "Exception with file: "
      ]
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "\r",
-      " 40%|████      | 4/10 [00:00<00:01,  4.57it/s]"
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324791 with size (2, 1098)\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "torch.Size([2, 11416])\n",
-      "torch.Size([11416])\n",
-      "torch.Size([2, 2034])\n"
+      "data/preprocessed/event003324814"
      ]
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "\r",
-      " 50%|█████     | 5/10 [00:01<00:01,  4.60it/s]"
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324819 with size (2, 1098)\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "torch.Size([2, 672])\n",
-      "torch.Size([672])\n",
-      "torch.Size([2, 316])\n"
+      " "
      ]
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "\r",
-      " 60%|██████    | 6/10 [00:01<00:00,  4.57it/s]"
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324811 with size (2, 2446)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324817 with size (2, 172)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324820 with size (2, 542)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324815 with size (2, 1599)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324810 with size (2, 182)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324800 with size (2, 4314)\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "torch.Size([2, 15546])\n",
-      "torch.Size([15546])\n",
-      "torch.Size([2, 3150])\n"
+      "Exception: "
      ]
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "\r",
-      " 70%|███████   | 7/10 [00:01<00:00,  4.58it/s]"
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324812 with size (2, 3062)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324813 with size (2, 1267)\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "torch.Size([2, 4462])\n",
-      "torch.Size([4462])\n",
-      "torch.Size([2, 1342])\n"
+      "arrays used as indices must be of integer (or boolean) type"
      ]
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "\r",
-      " 80%|████████  | 8/10 [00:01<00:00,  4.58it/s]"
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324809 with size (2, 928)\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "torch.Size([2, 11494])\n",
-      "torch.Size([11494])\n",
-      "torch.Size([2, 2346])\n"
+      "\n"
      ]
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "\r",
-      " 90%|█████████ | 9/10 [00:01<00:00,  4.57it/s]"
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324818 with size (2, 703)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324806 with size (2, 1987)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324802 with size (2, 2137)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324816 with size (2, 508)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324801 with size (2, 1367)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event003324808 with size (2, 1271)\n"
      ]
-    },
+    }
+   ],
+   "source": [
+    "from Processing.Models.feature_construction import FeatureStore\n",
+    "\n",
+    "fs = FeatureStore(CONFIG)\n",
+    "fs.prepare_data(apply_selection=False)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 2. Load models from artifacts and run\n",
+    "\n",
+    "## Metric learning model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [
     {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "torch.Size([2, 16640])\n",
-      "torch.Size([16640])\n",
-      "torch.Size([2, 3222])\n"
-     ]
-    },
+     "data": {
+      "text/plain": [
+       "'/home/acorreia/Documents/PhD/tracking/etx4velo/LHCb_Pipeline/artifacts/metric_learning/velo-minbias-sim10b-xdigi/version_4/checkpoints/epoch=49-step=4000.ckpt'"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "ML_CKPT_PATH"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "100%|██████████| 10/10 [00:02<00:00,  4.56it/s]"
+      "INFO:------------- Step 2: Constructing graphs from metric learning model -------------\n",
+      "INFO:---------------------------- a) Loading trained model ----------------------------\n",
+      "INFO:----------------------------- b) Running inferencing -----------------------------\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "torch.Size([2, 23886])\n",
-      "torch.Size([23886])\n",
-      "torch.Size([2, 3834])\n"
+      "Training finished, running inference to build graphs...\n"
      ]
     },
     {
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "\n"
+      "100%|██████████| 80/80 [00:13<00:00,  5.81it/s]\n",
+      "100%|██████████| 10/10 [00:01<00:00,  5.69it/s]\n",
+      "100%|██████████| 9/9 [00:01<00:00,  5.82it/s]\n"
      ]
     }
    ],
@@ -2463,7 +483,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": null,
    "metadata": {},
    "outputs": [
     {
@@ -2487,7 +507,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "100%|██████████| 80/80 [00:02<00:00, 39.87it/s]\n"
+      "100%|██████████| 80/80 [00:07<00:00, 10.26it/s]\n"
      ]
     },
     {
@@ -2501,7 +521,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "100%|██████████| 10/10 [00:00<00:00, 38.00it/s]\n"
+      "100%|██████████| 10/10 [00:01<00:00,  8.98it/s]\n"
      ]
     },
     {
@@ -2515,7 +535,7 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "100%|██████████| 10/10 [00:00<00:00, 45.19it/s]\n"
+      "100%|██████████| 9/9 [00:00<00:00,  9.28it/s]\n"
      ]
     }
    ],
@@ -2525,7 +545,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": null,
    "metadata": {},
    "outputs": [
     {
@@ -2535,7 +555,7 @@
       "INFO:-----------  Step 5: Building track candidates from the scored graph  -----------\n",
       "INFO:---------------------------- a) Loading scored graphs ----------------------------\n",
       "INFO:---------------------------- b) Labelling graph nodes ----------------------------\n",
-      "100%|██████████| 100/100 [00:00<00:00, 160.70it/s]\n"
+      "100%|██████████| 99/99 [00:00<00:00, 258.43it/s]\n"
      ]
     }
    ],
@@ -2552,7 +572,89 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:---------------------- Step 6: Evaluation using MonteTracko ----------------------\n",
+      "INFO:1) Load the dataframes\n"
+     ]
+    },
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "63f9c2b1151745fbae4906d00678460c",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "  0%|          | 0/99 [00:00<?, ?it/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:2) Matching\n",
+      "INFO:3) Reporting\n",
+      "INFO:4) Plotting\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "TrackChecker output                               :      1031/    21885   4.71% ghosts\n",
+      "01_velo                                           :      9391/    10690  87.85% ( 89.86%),       115 (  1.21%) clones, pur  98.95%, hit eff  93.89% \n",
+      "02_long                                           :      5512/     6094  90.45% ( 92.19%),        66 (  1.18%) clones, pur  99.07%, hit eff  94.80% \n",
+      "03_long_P>5GeV                                    :      3589/     3903  91.95% ( 93.65%),        49 (  1.35%) clones, pur  99.13%, hit eff  95.35% \n",
+      "04_long_strange                                   :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "05_long_strange_P>5GeV                            :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "06_long_fromB                                     :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "07_long_fromB_P>5GeV                              :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "08_long_electrons                                 :       336/      493  68.15% ( 70.98%),         9 (  2.61%) clones, pur  97.86%, hit eff  74.20% \n",
+      "09_long_fromB_electrons                           :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "10_long_fromB_electrons_P>5GeV                    :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
+      "\n",
+      "| Categories           | Efficiency   | Average efficiency   | % clones   | Average hit purity   | Average hit efficiency   |\n",
+      "|:---------------------|:-------------|:---------------------|:-----------|:---------------------|:-------------------------|\n",
+      "| Velo, no electrons   | 87.85%       | 89.86%               | 1.21%      | 98.95%               | 93.89%                   |\n",
+      "| Long, only electrons | 68.15%       | 70.98%               | 2.61%      | 97.86%               | 74.20%                   |\n",
+      "| Velo, only electrons | 59.01%       | 60.84%               | 3.88%      | 98.14%               | 70.97%                   |\n",
+      "| Categories   | # ghosts   | # tracks   | % ghosts   |\n",
+      "|:-------------|:-----------|:-----------|:-----------|\n",
+      "| Everything   | 1,031      | 21,885     | 4.71%      |\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAADFgAAAk4CAYAAADm4+h6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9bXBc930n+P74ILP5kLABzhYJJrkbNrwPguQaCSCda1KpO6GA3JSLmCpZAGXvjjyMbQHUukpeq2xCerU1L27RoFNyrbdqTUCxVzvcskoCY20tUlHWgKjxWFSqQgD23EjQ7k7QVLwhIdW10A2bFJoJCNwXDCCBeCDQOER3A59PFcvuc87vf35iH3b36T7f8980PT09HQAAAAAAAAAAAAAAABvY5lI3AAAAAAAAAAAAAAAAUGoCFgAAAAAAAAAAAAAAwIYnYAEAAAAAAAAAAAAAAGx4AhYAAAAAAAAAAAAAAMCGJ2ABAAAAAAAAAAAAAABseAIWAAAAAAAAAAAAAADAhidgAQAAAAAAAAAAAAAAbHgCFgAAAAAAAAAAAAAAwIa3tdQNrCeTk5Pxs5/9LPbu3RubN8uuAACQnKmpqXj//ffjwQcfjK1bfYwvF84BAAC4W5wDlCfnAAAA3C3OAcqX8wAAAO4G5wDly7ORoJ/97Gfx6U9/utRtAACwjv31X/91HDp0qNRt8E+cAwAAcLc5BygvzgEAALjbnAOUH+cBAADcTc4Byo+ARYL27t0bERF/9Vd/Fb/9279d4m7gI5OTkzE0NBT19fVSbpQNxyXlyrFJufr7v//7+MxnPjP7mZPy4ByAhXgv4XaOCW7nmOB2jgkW4hygPM08H3/9138dNTU1Je6GlfBaW9k8f5XLc1e5PHeVy3NXuUZHR+PTn/60c4Ay5LcAkuR1miQ5nkiS44kkOZ6WxzlA+XLUJmhmGsB9+/Y5oaKsTE5Oxrvvvhu//du/7c2KsuG4pFw5NilXk5OTERGmni4zzgFYiPcSbueY4HaOCW7nmGAhzgHK08zzUVNT4xygwnitrWyev8rluatcnrvK5bmrfM4Byo/fAkiS12mS5HgiSY4nkuR4WhnnAOXHMwIAAAAAAAAAAAAAAGx4AhYAAAAAAAAAAAAAAMCGJ2ABAAAAAAAAAAAAAABseAIWAAAAAAAAAAAAAADAhidgAQAAAAAAAAAAAAAAbHgCFgAAAAAAAAAAAAAAwIYnYAEAAAAAAAAAAAAAAGx4AhYAAAAAAAAAAAAAAMCGJ2ABAAAAAAAAAAAAAABseAIWAAAAAAAAAAAAAADAhidgAQAAAAAAAAAAAAAAbHgCFgAAAAAAAAAAAAAAwIa3tdQNAAAAAAAAAAAAAAAAH8llc/FG5xsREVEYK0QhX4hMUyaOnDqyaE0hX4ifnv5pRETs2LMjxkbGorapNupa6kpeUynWTcCivb09Wltbo7GxcVXj5PP5OH36dERE7NmzJ0ZGRqKpqSlaWlqSaBMAAAAAAAAAAAAAABY1fH44rly6Es1dzXOWdzd0x2DXYDw18tS8mkK+EN0N3dHa0xo19TWzy3vbe+PKpSvR1NlUsppKsrnUDaxGNpuN7u7uaGhoiO7u7lWPl8/no6GhIR577LHo7OyMU6dORVdXV/T19UVHR0cCHQMAAAAAAAAAAAAAwMIK+UK8/dLbCwYVmp9vjlw2F73tvfPW9bT2xL0t984JPURENHc1x1D3UGT7syWrqSQVG7Do7u6eDT10dnYmMmZra2u0tLREfX39nOVdXV3R3d0d/f39iewHAAAAAAAAAAAAAABud3XgagyfH46+jr5562ZCDZf7L89ZnsvmItufjYPtBxccs+54XVzsvFiSmkpTsQGLtra26Onpiba2tqiurl71eNlsNvr7+6O9vX3B9cePH08syAEAAAAAAAAAAAAAALfbXr09UulU7NizY9FtUunUnMcDXQMREVGVqVpw++ra6sj2Z6OQL6x5TaWp2IBF0rq6uiIiIpPJLLi+trY2+vv7I5/Pr2FXAAAAAAAAAAAAAABsFDX1NdGR64gjp47MWzc6NBoREQcaD8xZ/t7Qe/NCFx83E4i4OnB1zWsqjYDFPxkaGop0Or3o+pngxcDAwBp1BAAAAAAAAAAAAAAAt/R39EdVpiqaOpvmLM9lc7G9evuidTOhiFw2t+Y1lWZrqRsoF9lsNqqrqxddPxO+yGazdxxramoqbt68mVRrsGo3b96cPS43bdpU6nYgIhyXlC/HJuVqamqq1C2wBOcAfJz3Em7nmOB2jglu55hgIc4BytvNmzedA1QYr7WVzfNXuTx3lctzV7k8d5XL58vy57cAkuB1miQ5nkiS44kkOZ4WNnljMm7e+Ojz5ER+YkX1uWwu3uh8I9KZdDze9/i89RNjE7OzRyxkJhRRyBfWvKbSCFj8k7GxsdlZKhYyE77I5/N3HOuv/uqv4v/8P//P2cdbtmyJrVv9VVM6U1NT8X//3/93TE1NxebNJq6hPDguKVeOTcrVBx98UOoWWIJzAD7Oewm3c0xwO8cEt3NMsBDnAOXt4sWLUVX10Q9IzgHKn9fayub5q1yeu8rluatcnrvKlctV7t1dNwq/BZAEr9MkyfFEkhxPJMnxtLC/+/d/F7/497+YfXx98vqy6obPD8eVS1cin81HOpOO2qbaBbdbbqDhww8+XPOaSuNT/j9ZTnAiYnk/ap09e3bOCdQ//+f/PB544IEiO4PVm56ejvHx8YgIaUDKhuOScuXYpFz96le/KnULLME5AB/nvYTbOSa4nWOC2zkmWIhzgPL2ve99zzlAhfFaW9k8f5XLc1e5PHeVy3NXuX7961+XugXuwG8BJMHrNElyPJEkxxNJcjwt4v8R8Tv/1e/MPvz1tV9H/PTOZXUtdVHXUjf7+FzTuRjsGozm55sjlU7djU43PAGLu+DYPceiKvXRnavu+dt7Yuvltfurbn25dc32RWWYnJyMv/qrv4rPfOYz7p5A2XBcUq4cm5SrX/ziF/G1r32t1G2wiFKfA0Q4Dygn3ku4nWOC2zkmuJ1jgoU4Byhv/8P/8D/Eb/3Wb80+3rZtW2zbtq2EHXEnXmsr20qfv57jPWvQ1dKcp9/i317l8txVLs9d5bpy5Uo89dRTpW6DJXz3u9+N3/7t35597DxgYyv2M+f0punYtHdTbH1/a2yaXt0Fpz5z4n2fJDmeSJLjaXmuXLkS/+3X/9sV17X2tEZnVWcU8oV4vO/x2eWpdGpZs0vs2LNjzWsqjaP2n6TT6WXNYrFnz547brNjy474jS2/MXfhVJGNFcHJG7ebmZZy27Zt3qwoG45LypVjk3J1zz33lLoFllDqc4AI5wHlxHsJt3NMcDvHBLdzTLAQ5wDl7Z/9s38W/8l/8p+Uug1WwGttZVvp87dlassadLU05+m3+LdXuTx3lctzV7k+8YlPlLoF7qCqqsp5ALOK/cw5tWkqNsfm2Dy1OTZPb15VDz5z4n2fJDmeSJLjaXmKPQdIpVNR11IXw+eHI9ufjUxjJiIitldvX7JuYmxitn7GWtVUmtV9SltHqqurl1w/NjYWEbeCGAAAAAAAAAAAAAAAkLRCvhC5bG7R9elMOiIiRvpGZpdVZapmww2LjTmz3VrXVBoBi3+SyWRmQxQLmZndIpPJrFFHAAAAAAAAAAAAAABsJJ1VnfHd2u/OhhVut2PPjoiIOev31e9bdPuImA1szMx4sZY1lUbA4p/U19fPhigWks1mIyKisbFxjToCAAAAAAAAAAAAAGAjSaVTUZWpilQ6teD6sZFbkwrsb9g/u+z+x+6PiIjRodEFa65eujov9LBWNZVGwOKfPPbYYxERMTQ0tOD6S5cuCVcAAAAAAAAAAAAAAHDX1LfVx+N9jy+6fvjl4UilU3Hf8ftml9XU10SmMRNvvfTWwjXnh+NIx5E5y9aqptJsqIBFPp+Pjo6O6O/vn7euvr4+Ghsb46WXXlqw9vz589HR0XG3WwQAAAAAAAAAAAAAYINq6myKNzrfiGx/dt66ntaeiIj44mtfnDfDRWtPa7xz/p15s0v0tvfG4VOHF5xZYq1qKsnWUjeQhGz21sGTz+eX3K67uzvOnDkT3d3dkcvl5q3v6emJhoaGeOyxx6K+vn52eXt7e5w6dcoMFgAAAAAAAAAAAAAA3FXNXc0xfH44elp7IlWdisJYIQr5Quyr3xdfu/y1eeGKiIhUOhVtg23R19EXqXQqduzZEWMjY1HbVBt1LXUL7metaipJxQYszp8/H11dXRERMTAwEBERTzzxxOyy1tbWaGtrm1PT2NgY6XQ6jh8/vuCY6XQ6BgcHo6OjI9LpdOzZsydGRkaiqakpWlpa7uJ/DQAAAAAAAAAAAAAA3FLXUrfiwEIqnYrmruayrKkUFRuwaGlpWXHoob6+fsGZKz4unU7PhjQAAAAAAAAAAAAAAICNYXOpGwAAAAAAAAAAAAAAACi1ip3BAgAAAAAAgI3txeYXl7Xd1KapGKsZiyvPXYnN08nff+wLvV9IfEwAAAAAANaeGSwAAAAAAAAAAAAAAIANT8ACAAAAAAAAAAAAAADY8LaWugEAAAAAAAAqz4vNL5a6BQAAAAAASJQZLAAAAAAAAAAAAAAAgA1PwAIAAAAAAAAAAAAAANjwBCwAAAAAAAAAAAAAAIANb2upGwAAAAAAgBnXr18vuvb999+PkydPxuDgYDQ0NMTZs2dj7969Kx5n586dRfcAsJG92PziXRl3atNUjNWMxZXnrsTmafePAwAAAADuHgELAAAAAGBDK/UF/ZOTk0Xvfz3atWtXIuP09fVFbW1tUbXT09OJ9AAAAAAAAEBlEbAAAAAAADa0crig//XXX0+kBwAAANaf4fPDUddSV+o2AAAANgQBCwAAAAAAysa1a9eKrn3kkUfiwoULcfPmzdiyZUscPXo0XnnllQS7AwAAWFuFfCF6WnviWNexuO/4fZFKp0rdEgAAwLomYAEAAAAAbGilvqB/cnIyfvaznxXdw3qzc+fOomvPnTsXJ06ciEuXLsWhQ4fihRdeWNV4AAAApZbL5iIi4s/b/zz+vP3Pl9y2tad1zkwXhXwhfnr6pxERsWPPjhgbGYvaptolZ8MopgYAAGA9EbAAAAAAADa0Ul/QPzk5WfT+mWvv3r3x6quvlroNAACAxOSyuajKVEVNfU2kqheevaIwVohcNjcvXNHd0B2tPa1RU18zu7y3vTeuXLoSTZ1N88cpogYAAGC9EbAAAAAAACiSC/oBAAC4m65cuhKP9z0eVZmqRbfp6+iLxs7GOct6Wnvi3pZ75wQlIiKau5qjs6ozaptqI9OYWXUNAADAerO51A0AAAAAAAAAAAALWypcMTo0GtW11XO2yWVzke3PxsH2gwvW1B2vi4udF+csK6YGAABgPTKDBQAAAMAGcP369aJr33///Th58mQMDg5GQ0NDnD17Nvbu3bvicXbu3Fl0DwAAAAAb0WKBhxkDXQPR3NU8b1nE4sGM6trqGOoeikK+EKl0qugaAACA9UjAAgAAAGAD2LVrVyLj9PX1RW1tbVG109PTifQAAES82PxiqVsAAGANLDV7RV9HXzR1Ns1b/t7Qe0uGIGbGvDpwNTKNmaJrAAAA1qPNpW4AAAAAAAAAAABYvtGh0aiurV4wFJHL5mJ79fZFa2dqctncqmoAAADWIzNYAAAAAGwA165dK7r2kUceiQsXLsTNmzdjy5YtcfTo0XjllVcS7A4AAABgY5m8MRk3b9ycffwPv/6HFdW/cfqNaO1pXXDdxNjEkjNfzAQpCvnCqmoAAADWIwELAAAAgA1g586dRdeeO3cuTpw4EZcuXYpDhw7FCy+8sKrxAAAAADa6N06/ET/5Nz+ZfTwe48uuHT4/HOlMetH1yw1BfPjBh6uqAQAAWI8ELAAAAABY0t69e+PVV18tdRsAAAAA68ZDzz4Un3n6M7OPr1y5Et+p+86yat84/UY0P998t1oDAADY0AQsAAAAAAAAAABgDW3dtjW2bvvosp1P/OoTy6rLZXMxOjQaNfU1i26TSqeWNSPFjj07VlUDG1lhcnmzvtxuatNU/PJXv4zuv+qOy+OX48DuA/HlT305dm/bnXCHAAAUS8ACAAAAAAAAAAAqwEDXQFRlqpbcZnv19iXXT4xNRMStUMVqamAj+9JffimRcd765Vvx9de/XlTtH8cfJ9IDAABzbS51AwAAAAAAAAAAwJ1d7r98x4BFVaZqNhCxkJmZKj4+TjE1AAAA65EZLAAAWNT169eLqnv//ffj5MmTMTg4GA0NDXH27NnYu3dvUWPt3LmzqDoAAAAAgIiIF5tfLHUL8YXeL5S6BWCdGB0ajbqWuiW32Ve/L7L92UXX57K5iIjINGZWVQMb2Q/+6AdF1U1tmopv/3+/Hf/x6n+Mqemp2Lxpc9TtqYunDz6dcIcAABRLwAIAgEXt2rVr1WP09fVFbW1t0fXT09Or7gEAgPIl1AsAySiHC8gBgLtrdGg0IiJS1aklt7v/sfvjzTNvxujQaNTU18xbf/XS1XlBiWJqYCNLbV363+FipjZNxeN/8Hi8/L+/HNl8NmrTtXHygZNFjwcAQPIELAAAAACAkhHqBQAAgOWZGJtY1nY19TWRaczEWy+9tWBYYvj8cDze9/iqa4Di/OaO34xT/89TsXl6c6lbAQBgAQIWAAAs6tq1a0XVPfLII3HhwoW4efNmbNmyJY4ePRqvvPJKwt0BAAAAAABsHLlsLiIiUuk73+m+tac1uhu64/7H7p8TmOht743Dpw4vOBtFMTVQCuUwI2o5KPbvIcLssAAASxGwAABgUcV+GXbu3Lk4ceJEXLp0KQ4dOhQvvPCCL9YAAFiQUC8AwN3xYvOLpW4hpjZNxW89/VulbgNg3dh/cH+k0qn4rUN3fm1NpVPRNtgWfR19kUqnYseeHTE2Mha1TbVR11KXWA2UQjnMiPrDYz9cdQ+rlcTfQ4TZYQEAbidgAUDJTExMxPXr12Pr1pW/HbmbApS3vXv3xquvvlrqNgAAFlTqO9xNTk4Wtf/1SqgXAAAAlqemviY6ch3L3j6VTkVzV/OK9lFMDQAAwHoiYAFAyXz2s59NZBx3UwAAyk2xQdJymZ48qT5c6Ey5Koc73L3++uur7mG1ig2aRJRH6F2oFwAAAGBjKocZUf+3z/9vRdUlqdi/hwizwwIALEXAYh0qh+l+IyK+0PuFUrcAAABQEkkESVd78XZSVtNHuQRZzVYAC0siaBIh9A4AAADA2jIj6i2r6X29/V0AACRJwAKAkvmLv/iLOHz48Irv7BzhbgoAAJWgXO6Ob7YCblfqO9xNTk7Gz372s6J6AADKU7nc/AoAAFicGVE/4u8CAGBxAhYAlMz27dtj586dRQUs1tvdFMrh4sNK/vsDgHJTbJC0XEKkSfVRLnfHh9uV+g53k5OTMTExEdevXy/qfCipc4BigyYR5fN6BQAAAAAAAJAkAQsAKtJ6u5tCOVx8OD09nUgPAEDxQdJyCZGWSx9JMVsBSUnyPOSzn/1sIuOU6hxgvb1OAAAAAAAAAEQIWACURLGzFSR1l9IIsxUAAJSjcgmRJtVHudwdvxxmK4D1plxer9aTcpjVJML3BQBA8v7mxb+JK89dic3Tm0vdCgAAAADckYAFQAkkMVvBau5SGmG2gnJTLhcfloNSB5BcAAlQvGJfwyOSex13UWh5Wc3zUQ53x3cBOXfTX/zFX8Thw4eLuph+vZ0DcEs5zGoSUfz5qZAHAMz1YvOLpW4BAAAAACiCgAUAlIFKv/gwSeUQQPqLv/iLkt85tpKfQ2DjSuI1PGJ1r+NCpOuHcMP6VA5BrIjy+Ky1ffv22LlzZ1GfOdfbOQDlpRzOybyfAwAAAAAAUCoCFrBBTExMFHWx8Hq7gKVcFHs3yCTvUlrqC5vMEpAcFx8mrxzuHOuCIgBgPSqHIFZE5X/Wcg6wPpXLrCZJ/TuldHrbe+OhjoeiKlO14PpCvhA/Pf3TiIjYsWdHjI2MRW1TbdS11C065lrVVJL/9cT/Gnu27yl1GwAAAAAAQMIELGCDSOJi4Y1+AUuSig2bJHmX0k2bNhVVd7vVHBevv/56Ij2wvpQ6gDQ5ORnpdLqoHpJU6hDUDOE4YCWKfQ2PSPbCUACoROUyq0mpz8lYndGh0RjqHoqD7QcXXF/IF6K7oTtae1qjpr5mdnlve29cuXQlmjqbSlYDAAAAAABQDgQs4C4rhwtkzRSwfrhLKRtBqQNIk5OTZXHnWHd3BirRakJZSV4YCpQvQSy4O5L8vqDU52SsTn9H/5Lre1p74t6We+eEHiIimruao7OqM2qbaiPTmClJDQAAAAAAQDkQsIC7rFwukC32YmEXsKxfpb6waXJyMn72s58V3QPcLskLisrlzrEAG4kgKevdxMREXL9+fcWfL9bbzFSCWLB+eS8vvcHuwahrrYtsf3bB9blsLrL92TjWdWzB9XXH6+Ji58U5wYe1qgEA1s5ybw43OTk551x2vZ2fAgAAACxGwAI2iGIvFnYBy/pV6gubzKzCepXURUWlDkFRWUaHRmOgayAKY4UYHRqNVDoVDe0N0dDWsGhNIV+In57+aURE7NizI8ZGxqK2qTbqWupKXgOwHn32s59d9RgbfWYqF28DLC6XzUVERFWmatFtBroGltymurY6hrqHopAvRCqdWtMaAGDtJHFzuI1+fgoAAACsbwIWcJeVwwWyq5kpYL1dwLLcu/IsxJ15PrLejgsoR6UOQVE5BrsHIyKiuat5dlm2Pxs9rT1xsfNitA22zbtoqZAvRHdDd7T2tEZNfc3s8t723rhy6Uo0dTbN289a1QAAACs30DUQTZ1Ni85eERHx3tB7SwYaZgIRVweuzs4usVY1AAAbVbG/XS71u+Xts4/cid8PAAAAYC4BC7jLyuECWTMFfCSJu/JEuDMPUN6EoDaOXDYXhXwhjpw6Mmd5pjETX3zti9Hd0B09rT3xeN/jc9b3tPbEvS33zgk9RNwKaXRWdUZtU+28C53WqgZgvfqLv/iLOHz48IpnFTQzFQB3Mnx+OA62H7zjdrlsLrZXb190/UwoYmY2jLWsAQDWznJvDjc5ORlvvvnm7Lms89O7w4wiAAAAUH4ELFjXymG2gtUELFwgCwAsZaBrIH7/2d9fcF1NfU1kGjOR7c9GLpubvUtsLpuLbH82jnUdW7Cu7nhdXOy8OCf4sFY1AOvZ9u3bY+fOnSsOWJiZCoClFPKFyGVzUddSd8dtJ8YmZs8LFjITiijkC2teAwB3W2Gy+Ped8Rvj8f2/+X5cHr8cB3YfiC9/6suxe9vuBLtbW8s9p5ycnJxzLuv8FAAAANgoBCxY18phtgJ3/Cgvy70rz0LcmQeAcnO5/3IMdQ/F1y5/bfYusB+3r35fZPuzMTo0OnuB00DXQETEohc8VddWx1D3UBTyhdkx16oGgPkE7wE2jskbk3Hzxs3Zx/947R/vWPPT0z+Nps6mZY2/3EDDhx98uOY1AHC3fekvv5TIOG/98q34+utfL6r2j+OPE+mhVJyf3h3F/na51O+Wt88+UgnK4caJEau7eSIAAADrR2WcTQMkZDVfirkzDwDlZnv19hgdGo1cNhc19TXLqnlv6L0lAw0zgYirA1dnZ5dYqxoAANjI3jj9Rvzk3/xk9vH45vElt8/2Z6O2qbibwgAAa+/F5hdL3UJERHyh9wulboGPKfa3xqV+t7x99pFKUA43Toxw80QAAABuqYyzaSiS2QrKSznceWQ1gQh35gGg3Dze93jksrlFZ4nIZ/MREXPCF7lsLrZXb190zJlQRC6bW/MaSEI5fOacnJwsugcAYON66NmH4jNPf2b28S9+8Yv4zqe+s+j2I30jy569IuLWZ/DlzC6xY8+ONa8BgLvtB3/0g6Jrnxt4LoY/GI6p6anYvGlz1O2pi6cPPp1gd7ByfrcEAACAu0fAgrum2AubymUKT7MVJK8c7jziriMAVIrJG5Nx88bN2cf/eO0fF9xusXBFRMTw+eGoqa+Zs83E2MSSNTOhiI9fELVWNZCEcvjMGRHx+uuvJ9IHALBxbN22NbZu++gr+3t23bPothfPXIzff/b3VzT+UgHoiFuf4SNizkx0a1UDAHdbamvx7ztfffCrcfbnZ2MkPxK16do4+cDJosYrTBb/Pdj4jfH4/t98Py6PX44Duw/Elz/15di9bXfR48HHlcMNS9w4ESpHObxmRKzueiAAALgTAQvumiQubCrlFJ7u+gEAzCjFl8X//v/z7+ON02/MPh7fNL6i/V48czEiIpqfb56zfLmBhg8/+HDNawAAgDvLZXORSqdWHFCoylTF1YGri66f+Qz/8aD0WtUAQDnbvW13dPxex6rH+dJffimBbiLe+uVb8fXXv150/R/HHyfSB+tHOdywZDW/67txIqytcnjNiHBzTQAA7i4BC2DNuPMIAJWqLL4sXsH3xKNDo9Hf0R+tPa1RU19T3P6gQpXDZ87Jycn42c9+VnQfAABLGR0ajeGe4RjuGZ63LpfNRURE7xO9szNJPN73eERE7KvfF9n+7KLjztRmGjOzy9aqBgDYWMrh7ucuwF8/3DgRAACApAlYcNcUe2GTC+nXr9V8UenOIwCwfD2tPXGs61jUtdTNW5dKp5Y1u8SOPTvWvAaSUA6fOScnJ4vuAQDgTupa6hb8rB8RMXx+OHpae6L5+eZ5Yev7H7s/3jzzZowOjS4YxL566eq80MNa1QDARvCDP/pB0bXPDTwXwx8Mx9T0VGzetDnq9tTF0wefTrC7tVUON7Rx5/OPlMMNS4DK4TWDhRQbnkwqOBkhPAkAJEvAgrum2A+uLqRnIe48wt3kZB+4k3L4svjv/u7v4r777rvjdj2tPdHQ3hANbQ0Lrp+5i+1iJsYmIuJWQGKta1gd72er5zMnALCe1dTXRKYxE2+99NaCwYfh88Ozs12sdQ0AbASprcV/D/bVB78aZ39+NkbyI1Gbro2TD5xc1XjwceVwwxKgcnjNYCFJhCdXE5yMEJ4EAJIlYEHZcVETsNac7N9SDlNyR1T+xbmsT+XwZfGOHXee6aGvoy/2H9ofR04dWXSbqkxVXB24uuj6mVknqjJVa17D6ng/AwAgl83N/u9C4YbWntbobuiO+x+7f8763vbeOHzq8IIzS6xVDQCwuN3bdkfH73WUuo3ElMMNbUiG3/aBlfCaAQBApRCwAAAiojym5I5wcS7rz1p9WTzYPRjVtdULzlxRyBdmZ4rYV78vsv3ZRceZuSDr4xc8rVUNAABQnN723shn87Mh594nemOwazD21e+Lps6m2e1S6VS0DbZFX0dfpNKp2LFnR4yNjEVtU23UtdQtOPZa1QAAG0c53NAGAEhOseFJwUkAoFwJWACw4TnZByrd8PnhiIgFwxW5bC5Gh0ZnL2K6/7H7480zb8bo0OiCd7S9eunqvNDDWtWwOt7PAAA2ruau5mVvm0qnVrT9WtYAkKzCZKHo2vEb4/H9v/l+XB6/HAd2H4gvf+rLsXvb7hWPM7VpqugeYCHufg4A5afYsKPgJABQrgQsANjwnOzfYkpuqEyjQ6MxMTaxYLgiIiLbn50TZKipr4lMYybeeumtBYMPw+eH4/G+x+csW6saVsf7GQAAAPBxX/rLLyUyzlu/fCu+/vrXi67/btt3E+kDAID1RXASAChXAhYAUKT1drJvSm6oPLlsLnpae+JA44G42n513vrCWCGy/dnoyHXMWd7a0xrdDd1x/2P3zwk/9Lb3xuFThxecWWKtalh76+39DAAAAADu5Pr160XXvv/++3Hy5MkYHByMhoaGOHv2bOzdu7eosfyWUl6KPS6SOiY+/PDDovYPAABAsgQsAIBVc3EulMa5pnORy+Yi151bdJuqTNW8Zal0KtoG26Kvoy9S6VTs2LMjxkbGorapNupa6hYcZ61qAAAAAEjGD/7oB0XXPjfwXAx/MBxT01OxedPmqNtTF08ffHrF40xtmooPwwXDlJ9du3YlMk5fX1/U1tYWXT89PZ1IHyQjieNitccEAAAApSdgAQAAFeqpkaeKrk2lU9Hc1VyWNQAAAACsXmprqujarz741Tj787Mxkh+J2nRtnHzgZFHjCVgAAAAAUGkELAAAAAAAAACYtXvb7uj4vY5StwF3zbVr14qufeSRR+LChQtx8+bN2LJlSxw9ejReeeWVBLujVIo9LpI6Jq5cuRL/xX/xXxTVAwAAAMkRsAAAAAAAAAAANoydO3cWXXvu3Lk4ceJEXLp0KQ4dOhQvvPDCqsajfBT7PCZ1TOzYsaOo/QMAAJAsAQsAAAAAAAAAgGXYu3dvvPrqq6VugzLimAAAAO6G0aHRGOgaiMJYIUaHRiOVTkVDe0M0tDUsuP1g92AM9wxHQ3tDZBozkUqnIpfNxejQaLz90tvx0LMPRU19zby6Qr4QPz3904iI2LFnR4yNjEVtU23UtdQt2lsxNZVEwAIAAAAAAAAAAAAAAMrAYPdgREQ0dzXPLsv2Z6OntScudl6MtsG2SKVTc2oK+UJk+7OR7c/OWZ5Kp6K1p3XRcEV3Q/e89b3tvXHl0pVo6mxKpKbSbC51AwAAAAAAAAAAAAAAsNHlsrko5AvzZqrINGbii699MXLZXPS09ixYe6zrWBw+dTjqWuqivq0+jnUdi45cR2QaMwtu39PaE/e23DsvfNHc1RxD3UPzwhrF1lQaM1gAAAAAAAAAcFfc+McbUZgsxObpld37b/zGeHz/b74fl8cvx4HdB+LLn/py7N62u6geUltTd94IAAAAoAwMdA3E7z/7+wuuq6mviUxjJrL92chlc1GVqZqz/r7j982b2WIxuWwusv3ZONZ1bMH1dcfr4mLnxTnhjGJqKpGABQAAAAAAABWpMFlY1nZTm6bmXeTt4m1YG9/8n7656jHe+uVb8fXXv150/Q+P/XDVPQAAAACshcv9l2Ooeyi+dvlrC4Yl9tXvi2x/NkaHRucFLFZioGsgImLRMaprq2OoeygK+cJsH8XUVCIBCwAAAAAAACrSl/7yS4mM4+JtAAAAAKAcbK/eHqNDo5HL5qKmvuau7ee9ofeWDEHMhCiuDlydnZGimJpKJGABAAAAAAAAwF3x7T/+dlS9VzU7e8xyPTfwXAx/MBxT01OxedPmqNtTF08ffPoudQkAAABQHh7vezxy2dyis0Tks/mIiCXDF6NDo3F14GrsP7h/0e1y2Vxsr96+6BgzQYpcNreqmkokYAEAAAAAAEBF+sEf/WBZ201tmorcvtyci7xdvM3dVJgsFF07fmM8vv8334/L45fjwO4D8eVPfTl2b9u94nFSWxe/m+Ba2nbPtkhtTa04YPHVB78aZ39+NkbyI1Gbro2TD5wsm/8mAAAAgJWavDEZN2/cnH38D7/+h0W3XSxcERExfH44auprFtwm25+NXDYXmcZMNLQ1xOjQaJxrOhdHOo7Mm1FiYmxiyf3MBCkK+Y++5yqmphIJWAAAAAAAAFCRlnux9dSmqXkXebt4m7vpS3/5pUTGeeuXb8XXX/96UbU/PPbDRHoold3bdkfH73WUug0AAACARLxx+o34yb/5yezj8Rhf8RgXz1yMiIjm55vnrZsJPhw5dWR2WU19TbT2tEZnVWe0DbbNmc1iuSGIDz/4cFU1lUjAAgAAAAAAgA3HxdvrV7GzRyQ1cwQAAAAA3O6hZx+Kzzz9mdnHV65cie/UfWfZ9aNDo9Hf0R+tPa1zghIz6lrqFqxLpVNR11IXPa098dTIUytvfAMSsAAAAAAAAIAKV2yoICK5YEG5zACSxOwRq5k5IiLiB3/0g6Jrnxt4LoY/GI6p6anYvGlz1O2pi6cPPl30eAAAAACU3tZtW2Prto8u3f/Erz6xovqe1p441nVs0SDFUvYf2h/D54cjl83NznSRSqeWNSPFjj07Zv9/MTWVSMBiHSqHL9ABAAAAAABYO0mECiJWFyz44bEfJtLDerCasMlXH/xqnP352RjJj0RtujZOPnCybMIrAABQjq5fv1507fvvvx8nT56MwcHBaGhoiLNnz8bevXtXPM7OnTuL7gEA7qSntSca2huioa2hqPpU+tZ3S6NDo7MBi+3V25esmRibmFNbbE0lqviART6fj9OnT0dExJ49e2JkZCSampqipaVlVWN2dNyaEnpsbCwiIg4dOhSnTp1afcNroBy+QI+I+OP440T6AAAAAAAAgOUqdvaIcpk5Yve23dHxex1rvl8AAKhUu3btSmScvr6+qK2tLap2eno6kR4A4HZ9HX2x/9D+OHLqyKLb9Lb3xuX+y/HUyFPLHrcqUxVXB64uun5mpoqZQEaxNZWoogMW+Xw+GhoaoqenJ+rr62eXt7e3x6VLl6Kzs3PFYw4NDUVXV1d0dnZGOp2eXX7+/PloaGiIwcHBJFoHAAAAAACAxBQbKohILlhwt2ZZn9o0FTf+8UYUJguxeXrzHccqdrYHM0cAAAAAUE4GuwejurZ6wZkrCvnCRzNTDIzOzh6xkJngQ019zeyyffX7ItufXbQml81FRESmMbOqmkpU0QGL1tbWaGlpmROuiIjo6uqKqqqqaGpqisbGxhWN2dHREX19ffOWt7S0xNjYWLS3t0dXV9eq+r7byuELdAAAAAAAgI2i2GDBUqGClVpNECCpYMF/9ef/VdE9fNxqZ1n/4bEfFlVn5ggAAKhM165dK7r2kUceiQsXLsTNmzdjy5YtcfTo0XjllVcS7A4AijN8fjgiYsFwRS6bi9Gh0ahrqYuIiAONB6Kts23Rsa5euhqpdGrOzBL3P3Z/vHnmzRgdGp0TvPh4ze1BiWJqKlHFBiyy2Wz09/cvGnY4fvx4dHZ2rihgMTQ0FJnM4k/qzJjlrhy+QI+IeLH5xaL7SMoXer9Q6hYAAAAAAIB17kt/+aVVj1GqUEGEYAEAAFDZdu7cWXTtuXPn4sSJE3Hp0qU4dOhQvPDCC6saDwCSMDp0a0aKhcIVERHZ/uycIMP9j90fg92Di4Yxhs8PR2tP65zlNfU1kWnMxFsvvbVgWGL4/HA83vf4qmsqUcUGLGaCFYsFImpra6O7uzvy+Xyk0+lljTkT2ljM2NjYsseqVL5ABwAAAAAAoBh3a5b1qU1TkduXi6r3qmLz9Oak2gWAijTYPRjDPcORSt+6WWY6k46mzqYFty3kC/HT0z+NiIgde3bE2MhY1DbVzt7lNqkagEq2d+/eePXVV0vdBgDMymVz0dPaEwcaD8TV9qvz1hfGCpHtz0ZH7qPrvWvqayLbn42LZy7GkVNH5ozV3dAdh08dXvAzfWtPa3Q3dMf9j90/JzDR294bh08dXnA2imJqKk3FBiyGhoaWDDvMBC8GBgaWPYtFfX19ZLPZaG1tjZ6ennnru7q64rHHHiuqXwAAAAAAANanYoMFS4UKKtHdmmV9atNUbLtnW6S2pgQsANiwCvlC/NuH/20caDww546wuWwu+jr65oUsCvlCdDd0R2tP67yLnq5curJgKKOYGgAAIFnnms5FLpuLXHdu0W2qMlXzlh05dSSy/dnobe+NwlghCvlCpNKp+OJrX1xwtomIiFQ6FW2DbdHX0RepdGpZIetiaipNxQYsstlsVFdXL7p+JnyRzWaXPWYmk4m2trbo7u6O2tra6Orqmg1n9Pf3Rz6fj87OzlX1DQAAAAAAwPpSbLBgqVDBRmOWdQBY2ky44vaQw5+3/3lcHbg6b3lPa0/c23LvvAupmruao7OqM2qbaufdWbaYGgAAIFlPjTxVdG2mMbPiz+ypdCqau5rvek0lqdiAxdjY2OwsFQuZCV/k8/kVjdvV1RW1tbXR0dERTU1N0dbWFrW1tVFfXx9dXV2raRkAAAAAAABmCRUAAMtx8czFyGVz0dbZNm9dKp2K/Qf3z1mWy+Yi25+NY13HFhyv7nhdXOy8OOfCq2JqAAAA1qOKDVgsNzjxwQcfrHjsU6dORTqdjvb29uju7o50Oh09PT3Lrp+YnIhrk9dmH9+z+Z64Z8s9K+6D1ZucnCx1C2VhcnIypqam/H1QVhyXlCvHJuVqamqq1C2whHI4B/C6VT68l3A7xwS3c0xwO8cEC3EOUN4+vPlhbJvcNvvY7wDlb3rTdEzHdExvmo6p8O+r0nj+Kpfnrvws9zOnz6iVy3NXuZZ6zt44/UbUt9UvuK61p3XesoGugYiIqMpULVhTXVsdQ91DUcgXIpVOFV2z0YyPj8fY2Njs423btsW2bduWqGA9m9pU3GebJD8fea3H+z5JcjyRJMfT8vj7KV8VG7C4mzo6OqK2tjamp6ejo6Mjzpw5MzubxXJmsej4d3PvNPRH9X8Unz342bvVLkt44403St1CWZiamopf/OIXERGxefPmEncDtzguKVeOTcpVMcFh1k45nAP47Fs+vJdwO8cEt3NMcDvHRPmZmJgoujaXy8Vzzz0X/9f/9X/Ff/6f/+fx9NNPR1XVwhcoLeXjF+1QfsrhHICVmY7pmPiNiRiLsdgUm0rdDivk+atcnrvys9zvkHxGrVyeu8q12DnA8PnhKOQLcf9j9y97rPeG3lsyBDETorg6cHV2RopiajaaBx54YM7jf/2v/3WcOHGiJL1QemM1xZ23J/n5yG9DeN8nSY4nkuR4Wh6/A5Svig1YpNPpZc1isWfPnhWN29TUFB0dHdHY2BgREZ2dnfHYY49Fa2trdHd3x9jY2B1ns+j8F51RlfroB7N7Nt8T94y6c1UpPPTQQ6VuoSzMpNwOHz4cW7dW7D971hnHJeXKsUm5mjnxpDyVwzmAz77lw3sJt3NMcDvHBLdzTJSfe+5J5rPc4OBg/Nf/9X+dyFiUl3I4B2BlpjdNx1iMRfV71bFp2kXelcbzV7k8d+Vnud8h+YxauTx3levv//7vF1z+9ktvR0RETX1NRESMDo3G1YGrsf/g/tllt8tlc7G9evui+5oJUuSyuVXVbDQ///nP43d+53dmH5vBYmO78tyVouqS/HzktyG875MkxxNJcjwtz2LnAJRexR611dXVS66fSfWk0+llj3nmzJmor6+fDVfMqK+vj5GRkWhvb4/u7u7o7++ft83Hbd+6PXZt3TV34fSy2yBBXpg/snnz5ti6dau/E8qK45Jy5dikHEn0l7dyOAfwmlVevJdwO8cEt3NMcDvHBFSWHVt2lPwcgJWZiqnYFJti0/Sm2DztHLvSeP4ql+eu/Kzk86bPqJXLc1cZJm9Mxs0bN2cfT01MLbjd6NDo7P+/eOZi1NTXRENbQ4wOjca5pnNxpOPIvBklJsYmZmecWMhMkKKQL6yqZqPZvXv3Ha9XYuMo9rNNkp+PvM4T4X2fZDmeSJLj6c783ZSvin1mMplMDAwMLLp+ZnaLTGb50xJ2dXXF4ODgkusHBgair69vyYAFAAAAAACV69q1a0XXPvLII3HhwoW4efNmbNmyJY4ePRqvvPLKisf5u7/7u7jvvvuK7gMAAChvb5x+I37yb34y+3g8xhfcbmJsIlLpVAx2D8aRU0dml9fU10RrT2v89wf++2jtaZ0TslhuCOLDDz5cVQ0AAMB6VLEBi/r6+ujv7190fTabjYhYURAim83eccaL9vb2JUMYAAAk6/r160XXvv/++3Hy5MkYHByMhoaGOHv2bOzdu3fF4+zcubPoHgAAgMqzmnOAc+fOxYkTJ+LSpUtx6NCheOGFF4oab8eOHUX3AAAAlL+Hnn0oPvP0Z2YfX7lyJb5T9515280EH2ZmkPi4VDoVmcZM/Hn7n8dTI0/dvWYBAAA2kIoNWDz22GNx5syZGBoaivr6+nnrL126tOJZJjKZTGSz2SVnvRgZGYmGhoYV9wsAQHF27dqVyDh9fX1RW1tbVO309HQiPQAAAOvf3r1749VXXy11GwAAQJnbum1rbN320WU7n/jVJxbcLpVORSFfmDNDxcdlmjIxfH44RodGo6a+Zk7NnezY81Gwu5gaAACA9ahiAxb19fXR2NgYL7300oIBi/Pnz0dfX9+85fl8Pk6fPh1NTU3zAhgtLS3R0dERPT09C+4zn8/H0NBQPPvss8n8RwAAAAAAAADAGnmx+cVlbTe1aSrGasbiynNXYvP05kR7+ELvFxIdD9a77dXbo5AvRCqdWnR9RMTVgauzAYuFZrv4uImxiYiIOWMWUwMAALAeJftNyBrr6emJ8+fPx9DQ0Jzl7e3tcerUqQVnsOju7o4zZ85Ea2vrvHWdnZ2z9fl8fs66oaGhaG1tjc7Ozkin04n9NwAAsLRr164V/aepqSm2bNkSERFbtmyJpqamosYBAAAAAAAohZnQxJ18fPaJqkzVbCBiqW2rMlWrqgEAAFiPKnYGi4iIdDodg4OD0dHREel0Ovbs2RMjIyPR1NQULS0tC9Y0NjZGOp2O48ePL7i+p6cn+vv744knnpizPJPJLDgjBgAAd9fOnTuLrj137lycOHEiLl26FIcOHYoXXnhhVeMBAAAAAACspf2H9sfw+eFFZ7GYCUV8PIixr35fZPuzi46Zy+YiIiLTmFlVDQAAwHpU0QGLiFshi66urmVvX19fH7lcbsltGhsbF5z9AgCAyrJ379549dVXS90GAAAAAABAUepa6qK/oz+y/dmoa6mbt35sZCwiIvYf3D+77P7H7o83z7wZo0OjC86AcfXS1XlBiWJqAAAA1qOKD1gAAAAAAAAAACzXi80vlrqFiIj4Qu8XSt0CFaAqUxV1LXXxxuk3FgxYvHP+nTh86vCc2S1q6msi05iJt156a8GwxPD54Xi87/E5y4qpAQAAWI82l7oBAAAAAAAAAABgYc3PN0chX4jB7sE5y3tae6IqUxVNnU3zalp7WuOd8+/E6NDonOW97b1x+NThBWejKKYGAABgvTGDBQAAAAAAAADAGrsbM2lMbZqKsZqxuPLcldg8fed7bppFozKk0qloG2yLn57+afS09kRERCFfiLrWumhoa1iypq+jL1LpVOzYsyPGRsaitql2wZkwiq0BAABYbwQsAAAAAAAAAACgjKXSqQVnqrhTTXNX812vAQAAWE/ufLsCAAAAAAAAAAAAAACAdU7AAgAAAAAAAAAAAAAA2PC2lroBAAAAAAAAAAAAFnf9+vWia99///04efJkDA4ORkNDQ5w9ezb27t274nF27txZdA8AAFApBCwAAAAAAAAAAADK2K5duxIZp6+vL2pra4uqnZ6eTqQHAAAoZwIWAAAAAAAAAAAAAABA2cu+lo1sXzZiU0R1bXXsP7g/9j2wL7HxBSwAAAAAAAAAAADK2LVr14qufeSRR+LChQtx8+bN2LJlSxw9ejReeeWVBLsDAIDknNlzJk59cGrR9ZmHM5F5OBOF8UJMjE1Etj8bA10D0dTZFNt+c9uq9y9gAQAAAAAAsAI3Jm9EYbKw4rrxG+Px/b/5flwevxwHdh+IL3/qy7F72+6iekhtTRVVBwAAVKadO3cWXXvu3Lk4ceJEXLp0KQ4dOhQvvPDCqsYrtRebXyx1CwAA3EXT09PL2i61OxWp3aloeKIhCuOF6Ovoi2PfO7bq/QtYAAAAAAAArMA3fvKNVY/x1i/fiq+//vWi63947Ier7gEAANgY9u7dG6+++mqp2wAAgGXZtGnTimtSu5O7KdHmxEYCAAAAAAAAAAAAAABYQ4XxQowOjCYylhksAAAAAAAAVuBP/l9/EtXbq1dc99zAczH8wXBMTU/F5k2bo25PXTx98Om70CEAAAAAAJSv/Lv5BZdPT0/fWv93+Yjppcco5AsxMTYRo0Oj8cbpN6LueF0ivQlYAAAAAAAArMC2rdsitXXl041/9cGvxtmfn42R/EjUpmvj5AMnixqnXBQmC0XXjt8Yj+//zffj8vjlOLD7QHz5U1+O3dt2r3icSv77AwAAAADYqK4OXo2rl65GLpuLbH82bozfmLP+u5nvLnus6enpyDRm4tj3jiXSm4AFAAAAAADAGti9bXd0/F5HImMVG25IKtgQEfGlv/xSUXW3e+uXb8XXX/96UbU/PPbDRHoAAAAAAGDt1D1aF3WPfjTjxOjQaPR39Ef2tWxs2rQp7n303mWNU5WpikxTJjIPZxLrTcACAAAAAACgwiQRblhNsAEAAAAAAJJSU18Tj/c9Hr3tvfHO+Xei9eXWkvUiYAEAAAAAAMCK/eCPflB07XMDz8XwB8MxNT0Vmzdtjro9dfH0wacT7A4AAAAAgErT3NUco4OjJe1BwAIAAAAAAKDCFBtuSDLYkNqaKqouIuKrD341zv78bIzkR6I2XRsnHzi5qvEAAAAAAFgfHnr2oaLq+p/tj8bTjavev4AFAAAAAABAhSk2jFAuwYbd23ZHx+91rPl+ASi9F5tfLHULAAAAQBmre7SuqLqh7iEBCwAAAAAAAJZPsAEAAAAAgEqRfzcfuWzujtuNDo1GIV9IZJ8CFgAAAAAAAAAAAAAAQFkY+tOh6O/oTyw0sRICFgAAAKt0Y/JGFCZXfkI3fmM8vv8334/L45fjwO4D8eVPfTl2b9t9FzoEAAAAAAAAAIDyl30tG71tvVGVqYq61rpIpVN3rBkdHI3LFy4nsn8BCwAAgFX65r/75qrHeOuXb8XXX/960fV/HH+86h4AAAAAAAAAAKCUXnvmtWjtaY26R+tWVHdmz5lE9r85kVEAAAAAAAAAAAAAAABWIVWVWnG4IiIifSCdyP7NYAEAALBK3/4X3449qT0rrntu4LkY/mA4pqanYvOmzVG3py6ePvj0XegQAAAAAAAAgLVy/fr1omvff//9OHnyZAwODkZDQ0OcPXs29u7dW9RYO3fuLLoPgFKpqa8pqq5toC2R/QtYAAAArNK2rdsitTW14rqvPvjVOPvzszGSH4nadG2cfOBkUeMAAAAAAAAAUD527dqVyDh9fX1RW1tbdP309HQifQCspUK+UNL9C1gAAACUyO5tu6Pj9zpK3QYAAAAAsEG92PxiqVuIL/R+odQtAAAAUEbqWuvinR+9E/d+7t4V1fU/2x+NpxtXvf/Nqx4BAAAAAAAAAAAAAIiIiGvXrhX9p6mpKbZs2RIREVu2bImmpqaixwKoRJmHMzE2Mhbv/OidFdUNdQ8lsn8zWAAAAAAAAAAAAABAQnbu3Fl07blz5+LEiRNx6dKlOHToULzwwgurGg+g0uTfzcd9rffF2z1vx/OHno8DjQeiurY6qjJVi9aMDo1GIV9IZP8CFgAAAAAAAAAAAABQBvbu3RuvvvpqqdsAKJmu+q64MX4jIiKmp6fj6uDV2LRp05rtX8ACAAAAAAAAAAAAAAAoue3V2yMi4r7j90UqnVpWzejgaFy+cDmR/QtYAAAAAAAAAAAAAAAAJVeVqYqHnnko6r9Sv6K6M3vOJLL/zYmMAgAAAAAAAAAAAAAAsApVmaqoylStuC59IJ3I/s1gAQAAAAAAAAAAAAAAlNyxs8eKqmsbaEtk/2awAAAAAAAAAAAAAAAANjwBCwAAAAAAAAAAAAAAoCIVxgvx5p+8mchYAhYAAAAAAAAAAAAAAEBFymVz8fZLbycy1tZERgEAAAAAAAAAAAAAAFiFyxcur7jmYufFKOQLiexfwAIAAAAAAAAAAAAAACi5l1tejhvjN1ZUMz09HdurtieyfwELAAAAAAAAAAAAAACg5LZX3wpK3Hf8vkilUwtuU8gXIpfNxdWBq5FpzMT+Q/sT27+ABQAAAAAAAAAAAAAAUHJVmap46JmHov4r9cva/uK3L8b2qu3L3v5ONicyCgAAAAAAAAAAAAAAwCpUZaqiKlO17O2PfPNIpKpScfnC5UT2L2ABAAAAAAAAAAAAAACU3LGzx+LA0QMrqql7tC5G+kYS2b+ABQAAAAAAAAAAAAAAsOEJWAAAAAAAAAAAAAAAABUrn80nMs7WREaBMvVi84ulbiG+0PuFUrcAAAAAAAAAAAAAbDDXr19f1naTk5MxMTER169fj61bt8b7778fJ0+ejMHBwWhoaIizZ8/G3r17i+ph586dRdUBrERhvBATuYlExhKwAAAAAAAAAAAAAIB1ZteuXaseo6+vL2pra4uun56eXnUPwMZy+cLlZW9byBcil83FYNdgNLQ3JLJ/AQsAAAAAAAAAAAAAAKDkXm55OW6M31j29tPT05FpzMThbxxOZP8CFgAAAAAAAAAAAACwzly7dm1Z201OTsabb74Zhw8fjq1bt8YjjzwSFy5ciJs3b8aWLVvi6NGj8corr9zlbgFu2V69PSIi7jt+X6TSqaW33bM9auprIvNwJrH9C1gAAAAAAAAAAAAAwDqzc+fOZW03OTkZ27dvj507d8bWrVvj3LlzceLEibh06VIcOnQoXnjhhWWPBbBaVZmqeOiZh6L+K/Ul2b+ABQAAAAAAAAAAAAAQERF79+6NV199tdRtABtUVaYqqjJVJdu/gAUAAAAAAAAAAJSpwe7BGO4Zjob2hsg0ZiKVTkUum4vRodF4+6W346FnH4qa+pp5dYV8IX56+qcREbFjz44YGxmL2qbaqGupW3RfxdQAAAAk6djZYyXdv4AFAAAAAAAAAACUqUK+ENn+bGT7s3OWp9KpaO1pXTRc0d3QPW99b3tvXLl0JZo6mxKpAQAA7o7RodEY6BqIwlghRodGI5VORUN7QzS0NSxas1Yh6/UezBawuAtuTN6IwmRhxXXjN8bj+3/z/bg8fjkO7D4QX/7Ul2P3tt0rHie1NbXiGgAAAAAAAAAAytOxrmMxNjIW+Ww+UtWp2N+wf8kLq3pae+LelnvnhS+au5qjs6ozaptqI9OYWXUNAACQvMHuwYi49Vl8RrY/Gz2tPXGx82K0DbZFKj33evG1ClmXIpidfzcfA10D8d7QezExNhHbq7dHOpOOg+0HY98D+xLfn4DFXfDNf/fNVY/x1i/fiq+//vWian947Ier3j8AAAAAAOUtl83FG51vREREYawQhXwhMk2ZOHLqyKI17l4FAACV6b7j9827gGoxuWwusv3ZONZ1bMH1dcfr4mLnxTlhiWJqAACA5OWyuSjkC/O+6880ZuKLr30xuhu6o6e1Jx7ve3zO+rUKWa91MLv/2f5488ybMT09PW/dUPdQ1LXWRXN3c2z7zW2J7VPAAgAAAAAAKszw+eG4cunKnLtXRUR0N3THYNdgPDXy1Lya9Xz3KgAA4CMDXQMREVGVqVpwfXVtdQx1D0UhX5gNbRRTAwAAJG+gayB+/9nfX3BdTX1NZBozke3PRi6bm/38vlYh67UMZhfGb/3WMDE2Efc+em/sP7R/9lykkC/ExAcTMTo4Gm+//HZk+7Pxtctfi22/kUzIQsDiLvj2v/h27EntWXHdcwPPxfAHwzE1PRWbN22Ouj118fTBp+9ChwAAAAAAVKpCvhBvv/R2tPa0zlvX/HxzdDd0R29777zwxXq9exUAADDXe0PvLRmCmLkI6+rA1dnP5sXUAAAAybvcfzmGuofia5e/tuBn9H31+yLbn43RodHZz+lrFbJey2B2T2tPZBozcezswmGOGYXxQvSd6ot/e/TfxhOXnljVPmdsTmQU5ti2dVuktqZW/OerD341PvXPPhW77tkVn/pnn4qvPvjVosYBAGBj6m3vjWx/dsltBrsH41zTuRg+PxyFfCEibqXLh88PR09rT4wOjS5YV8gXoq+jL/o6+uLimYvR294bw+eHl9xXMTUAAMCdXR24GsPnh6Ovo2/euplQw+X+y3OWz9xV6mD7wQXHnLmrVClqAACA5RsdGo3B7sFFv8+PuPW5fHv19kXXz1zolMvmVlUDAAAkb3v19ijkCyv67L2SwPRa1xRj8PnBqMpU3TFcERGR2p2K5q7mqGmoiaE/HVrVfmeYwaKM7N62Ozp+r6PUbQAAUEFmLl4a7Lr1Y8p9rfctuX0hX4hsf3ZeECOVTkVrT+u8O8zO1HQ3dM9b39veG1cuXYmmzqZEagAAgOXZXr09UulU7NizY9Ftbv+BYz3evQoAACrZ5I3JuHnj5uzjf/j1Pyy5fbY/G7lsLjKNmWhoa4jRodE413QujnQcmTejxMTYxKKfySNiNkgxcyOmYmsAAIDkPd73eOSyuUU/n+ez+YiIOdfjrFXIeq2C2Zf7L0fLSy0rqjl29lj8L//v/yXqv1K/qn1HCFgAAEDFGuwejGxfNjJNmWjsbIxzTeeWVXes61iMjYxFPpuPVHUq9jfsj4a2hkW372ntiXtb7p0Xvmjuao7Oqs6obaqd9+NNMTUAAMDy1NTXREdu4Zv1zNzF9kDjgTnLV3JXqZnP6mtVAwAAG9Ebp9+In/ybn8w+Ho/xRbed+Rx95NSR2WU19TXR2tManVWd0TbYNuf7+OWGID784MNV1QAAAMu3kpD1UuHn4fPDUVNfM2ebtQpZr1UwO1VV3A2a0gfSq9rvDAELAACoUA1tDbPBiKWmAr/dfcfvW/adYmdmyDjWtfCUe3XH6+Ji58U5F0YVUwMAACSjv6M/qjJV82aNW293rwIAgEr30LMPxWee/szs4ytXrsR36r6z4LZ1LXULLk+lU1HXUhc9rT3x1MhTd6VPAAAgGSsJWS/m4pmLERHR/HzznOVrFbJes2D2pjWuu42ABQAAsKiBroGIWDwZX11bHUPdQ1HIF2YvlCqmBgAAWJ1cNhdvdL4R6Uw6Hu97fN769Xb3KgAAqHRbt22Nrds+umznE7/6RFHj7D+0P4bPD0cum5v9LJ5Kp5b1mXvHnh2z/7+YGgAAYPlWErJeyOjQaPR39EdrT+ucGezWo8JYcb8h5LP5RPa/OZFRAACAdem9ofeWDEHM/FhzdeDqqmoAAGCjm7wxGTd+dWP2zz9e+8dl1Q2fH46+jr7o7+iPVDoV97Xet+B26+7uVQAAQER8NEvcx2e6XmpWuYhbweiP1xZbAwAALN/WbVtj229um/3zid9YWci6p7UnjnUdW3CGu7UKWa9VMDt9IB3vvPLOimre/JM3Y9+D+1a13xlmsAAAgA1qdGg0rg5cjf0H9y+abM9lc0v+qDLzQ0oum1tVDQAAbHTzpgbfvLypweta6ub8mHKu6VwMdg1G8/PNLnwCAIB1oLe9Ny73X46nRp5adk1VpmrJmxzNXBD18dnniqkBAADWRk9rTzS0N0RDW8OC69cqZL1WwezGbzXGdz/53YiIuPeRe++4/eDzg/HG6Tfi1AenVrXfGQIWAACwwWT7s5HL5iLTmImGtoYYHRqNc03n4kjHkcg0ZuZsOzE2seSPJTMnTh9PpxdTAwAAG93tU4P/4he/iO98avlTg89o7WmNzqrOKOQL8Xjf47PL19vdqwAAYKMYHRidvUhpITOfvz9+I6V99fsi259dtGbmBkgf/02gmBoAAODu6+voi/2H9seRU0cW3WatQtZrGcxufbk1ug92R+0f1kZdS13sP7h/NrhRyBdiYmwiRvpG4p3z70Qum4snBp5Y9T5nbE5sJAAAIDGTNybjxq9uzP75x2v/mMi4MycwR04dmf2xpaa+Jlp7WuNc07k5U4hHLD8E8eEHH66qBgAANrrbpwa/Z9c9RY2TSqeirqUusv3ZORdHrbe7VwEAwEZxoPFAdOQ6Fl1/9dLVSKVTcy5guv+x+yMi5n3n//Ga24MSxdQAAAB312D3YFTXVi8Yrvj49Tn76vcteb3OYiHrtagpVk19TbQNtMWH/78Po7etN7obuuO7td+N79Z+N7obuuNc07m42Hkxpqen41/9+F9FzYM1dx50mRINWFy4cCHJ4QAAYMN64/Qb8a3d35r9871//r1Exq1rqYu6lrp5y2cuwupp7UlkPwAAwN1TyBdmf6RYSDqTjoiIkb6R2WVVmapl3fX29jtRrUUNAACwuPsfuz8GuwcXXJfL5mL4/HA0P988Z3lNfU1kGjPx1ktvLVg3fH44jnQcWXUNAABw9wyfH46IiIa2hnnrctncnJssrVXIeq2D2TX1NdE22BbHzh6LfQ/si+np6dk/6QPpaOxsjKf+9qnIPJxsGDzRgEVTU1OSwwEAwIb10LMPxTPjz8z+efI/PHnX97n/0P7IZXNzLtRKpVPLmpFix54dq6oBAACWr7OqM75b+91FP3fPfNZe73evAgCAjaCmviYK+UJcPHNxzvJcNhfdDd1x+NThBW+s1NrTGu+cf2fehU+97b1x+NThBT+TF1MDAAAkb3RoNCbGJhYMV0REZPuzUVP/0YwNaxWyLlUwu6GtIdoG2+K/m/rvZv889bdPxZFv3p0Q+NYkB9u9e3f8N//NfxP/4//4PyY5LAAAbDhbt22Nrds++rh+z6577vo+U+lURNw6SZu5m+z26u1L1szcmXamttgaAABg+VLpVGyv3r7oZ+qxkbGIiNjfsH922f2P3R9vnnkzRodG5/zoMmOxO1GtRQ0AALC0I6eORLY/G73tvVEYK0QhX4hUOhVffO2LC37ujrh13tA22BZ9HX2RSqdix54dMTYyFrVNtQsGMoqtAQAAkpXL5qKntScONB6Iq+1X560vjBUi25+NjlzHnOWtPa3R3dAd9z92/5zzhDuFrNeiptIkGrDI5/PR1dUVIyMj0dnZGQ888ECSwwMAAKvQ294bl/svx1MjTy27pipTFVcH5p+szZi5M+1MIKPYGgAAYPnq2+rjYPvBRdcPvzwcqXQq7jt+3+yyj99VaqELsIbPD8fjfY/PWbZWNQAAwJ1lGjMrvlAplU5Fc1fzXa8BAACSc67pXOSyuch15xbdZqFrbtYqZL2WwezhPxuOoe6hmMhNROvLrZH+3fSc9bnLuejv6I/f+vRvxeFvHE5sv4kGLCIiurq64uGHH47+/v44ffp0NDU1xfHjx+M3f/M3k94VAACwAqMDo7OzRyxkJvjw8Yug9tXvi2x/dtGaXPbWydzHf9QppgYAAFi+ps6m6G3vjfta75v3ubqntSciIr742hfnzXDh7lUAAAAAAFDeVnLj1NutVch6LYLZ/c/2x/6D++PKpStxY/xGjA6NzgtYVB2oitaXWyP7Wjb6n+2PxtONiew70YBFV1dXfOUrX4mIiCeeeCKeeOKJ+NnPfhanTp2KTZs2RXt7u1ktAACgRA40Hoi2zrZF11+9dDVS6dSclPv9j90fb555M0aHRhe8++zVS1fnXRxVTA0AALAyzV3NMXx+OHpaeyJVnYrCWCEK+ULsq98XX7v8tXnhioj1efcqAAAq34vNL5a6hYiI+ELvF0rdAgAAABFx+cLlqMpURd2jdRHTt2aquPdz9y66febhW9chvfOjd5bcbrkSDVg88cQT85Y9+OCDcfbs2RgfH4+XX355dlaLmSAGAACwNu5/7P4Y7B6MhraGeety2VwMnx+O1p7WOctr6msi05iJt156a8GwxPD54Xi87/FV1wAAACtX11K34sDCerp7FQAAAAAAsP683fN2HPvesYiIZf8Oknk4E3/+5J8nErDYvOoRlmn37t3xxBNPxEsvvRQNDQ1x8uTJePLJJ+M//If/sFYtAADAupXL5iIiopAvLLpNTX1NFPKFuHjm4rza7obuOHzq8IInJa09rfHO+XdidGh0zvLe9t44fOrwgrNRFFMDAAAAAAAAAABscNOl3X2iM1gsV21tbdTW1sbp06eju7s7MplMdHR0mNUCAABWYPj8cAx2DUZExNWBqxER0ftE7+yyuta6ebNVHDl1JLL92eht743CWCEK+UKk0qn44mtfXHC2iYhbd55tG2yLvo6+SKVTsWPPjhgbGYvaptpFU+LF1AAAAAAAAAAAABtbIbf4DWaXks/mE9n/mgYsLly4EJ2dndHf3x8REdPT09HW1hbt7e0REXHy5MnYtGlTdHR0xO/+7u+uZWsAAFBx6lrqigorZBozK55BIpVORXNX812vAQAAAAAAAAAANq6xkbEV1xTGC/HhBx8msv9EAxYXLlyIo0ePzln2q1/9Krq7u6Orqyuy2WxMT0/PzljxxBNPzNn27NmzMT4+Ht3d3TE2NhbPPvts/OZv/uaS+8zn83H69OmIiNizZ0+MjIxEU1NTtLS0rPq/p7u7O3p6eiKdTkdERCaTic7OzlWPCwAAAAAAAAAAAAAAzHXf8fvi/GPno+Wl5ecBzh8/H/d//v5E9p9owKKpqSlu3rwZEbfCFl1dXXH+/PmYnp6OiJidreLBBx9cdIzdu3fHN7/5zRgfH4+vfOUrcebMmUVns8jn89HQ0BA9PT1RX18/u7y9vT0uXbpUdBgin8/Hww8/HI2NjdHX1ze7PJvNRkdHh5AFAAAAAAAAAAAAAAAk7MipI/HdT343zn/+fDQ/3xzbfmPbotu+9/P3oveJ3ijkC3H4G4cT2X+iAYvdu3fHf/af/WcREfNmqzh+/Hjs3r17RWO9/PLL8eSTT8b3vve9BbdpbW2NlpaWOeGKiIiurq6oqqqKpqamaGxsXPF/x0y44vYgRXt7ewwMDAhYAAAAAAAAAAAAUDIvNr9Y6hYiIuILvV8odQsAwDr0+I8fj+9+8rsx3DMcmaZMZBozkUqnYnv19pgYm4ixkbG43H85RodGY3p6OtqH2hPbd6IBi4iIkZGRiIhoaWmJZ599dsnZKpZjsVBGNpuN/v7+6OrqWnD98ePHo7Ozc8UBizNnzkQ2m10wRJFOp+PgwYMrGg8AAAAAAAAAAAAAAFieqkxVdIx1RE9rT4z8eCSyfdl520xPT0emMRPHuo5F1YGqxPadeMCivb09vvWtb61otorbjY+Px7e+9a1ob2+P8fHxBbeZCVZkMpkF19fW1kZ3d3fk8/lIp9PL3vfp06ejra1twXU9PT3LHgcAAAAAAAAAAAAAAFi5VDoVj/c9HtnXsjHcMxxXB65GIV+IVDoVVZmqaGhviMzDC2cJViPxgMX3vve9VY/x8ssvR2dnZ5w/fz46OjoW3GZoaGjJ4MRM8GJgYGDZs1icP38+8vl8PPbYYyvuGQAAAAAAAAAAAIDSun79etG177//fpw8eTIGBwejoaEhzp49G3v37l3xODt37iy6BwDmyjycuStBisUkGrA4fvx4YuOMjIzEoUOH4tFHH11wm2w2G9XV1YuOMRO+yGbnTweymJdeeikiIurr6yPiVohjYGAgDh48OLsMAAAAAAAAAAAAgPK0a9euRMbp6+uL2traomqnp6cT6QGAtbc5ycHOnj2byDi7d++Ob33rW4uGKyIixsbGlpzBYiZ8kc/nl73foaGh2f9/5syZGBsbi7a2toiIaGpqiv7+/mWPBQAAAAAAAAAAAAAAVI5EZ7CY8Wd/9mfR3d0duVwuXn755fjd3/3dOesvX74cHR0d8elPfzq+8Y1vFLWP5QYnPvjgg2WPORPa6O7ujlOnTs0ur6+vj56enjhw4ED09PREY2PjkuNMTE7Etclrs4/v2XxP3LPlnmX3wfoyOTlZ6hZicnIypqamyqIXmOG4pFw5NilXU1NTpW6BJZTDOYDXrfLhvYTbOSa4nWOC2zkmWIhzgPL24c0PY9vkttnHfgcof9ObpmM6pmN603RMhX9flcbzV7k8d5XLc1e5PHfFK/U5Wan3z52Nj4/H2NjY7ONt27bFtm3blqjgbpnaVLmvb+vxddrrV+n4XnFxK7kx9+1aWlri9ddfj5s3b8aWLVviD/7gD+L8+fMrHqfSnhfHE0lyPC2Pv5/ylXjA4tlnn42DBw/GpUuXYnx8PIaGhuYFLA4cOBAvv/xyvPbaa/Hss8/G6dOnk26jKDNvqjOzX3xcOp2OxsbGaG9vj5GRkSXH6fh3HXMe/1H9H8VnD342sT6pLG+88UapW4ipqan4xS9+ERERmzcnOnENFM1xSblybFKuVhIcZu2VwzlAOXzu5BbvJdzOMcHtHBPczjHBQpwDlLdyOAdgZaZjOiZ+YyLGYiw2xaZSt8MKef4ql+eucnnuKpfnrnil/o714xfuU54eeOCBOY//9b/+13HixImS9LLRjdVU7r+X9fg6XerXz43M94p3x5NPPhm/+tWv4v/4P/6P+C//y/8ynnzyyfjZz35W6rbuOscTSXI8LY9zgPKVaMDiwoULkclk4tFHH43p6em4fPlyfO5zn1t0+4cffjgiIn70ox8tud1C0un0slKGe/bsWfGYi81Q0dTUFOfPn4+hoaGor69fdJzOf9EZVamq2cf3bL4n7hl156qN6qGHHip1C7Mpt8OHD8fWrXdl4hpYMccl5cqxSbmaOfGkPJXDOUA5fO7kFu8l3M4xwe0cE9zOMcFCnAOUt3I4B2BlpjdNx1iMRfV71bFpen1cxLSReP4ql+eucnnuKpfnrnil/o717//+70u6f+7s5z//efzO7/zO7GMzWJTOleeulLqFoq3H1+lSv35uZL5XvHv+5b/8l6VuYc05nkiS42l5nAOUr0SP2p6envje974XEbemSVqOhx9+OJ588skVBywWmmXi42ZSPel0ekVj5vP5RWtm9jkwMLBkwGL71u2xa+uuuQunl90G60y5vDls3rw5tm7dWjb9QITjkvLl2KQcSfSXt3I4B/CaVV68l3A7xwS3c0xwO8cEt3MOUN52bNlR8nMAVmYqpmJTbIpN05ti87R/X5XG81e5PHeVy3NXuTx3xSv1+Vip98+d7d69+47XK7E2Kvn1bT2+Tnv9Ki3fK5IkxxNJcjzdmb+b8pXop7Tp6bX79SCTySw5NcrM7BaZTGbZYy4VmlhobAAAAAAAAAAAAAAAYH1INGCRy+WKqstmsyuuqa+vXzLoMDNmY2Pjssc8dOhQRCweoJgJdCw3iAEAAAAAAAAAAAAAAFSGRAMWIyMjK64ZHx+PDz74YMV1jz32WEREDA0NLbj+0qVLKwpXRES0tLRERER/f/+C62f++w4ePLiicQEAAAAAAAAAAAAAgPKWaMDi+PHjs8GHldR8/vOfX/G+6uvro7GxMV566aUF158/fz46OjrmLc/n89HR0bFgiCKTyURLS0ucPn160TFPnToV6XR6xf0CAAAAAAAAAAAAAADlK9GAxalTp2JwcDA+//nPx69//eslt/35z38ehw4dimw2G9/4xjeK2l9PT0+cP39+3iwW7e3tcerUqQVnsOju7o4zZ85Ea2vrgmM+//zzkc/no7u7e87y1tbWyGQy0dnZWVSvAAAAAAAAAAAAAABA+dqa9IA//vGP45Of/GT09PREU1NTNDY2Rjqdjurq6hgbG4uRkZHo7++PoaGhmJ6enheOWIl0Oh2Dg4PR0dER6XQ69uzZEyMjI9HU1BQtLS0L1sz0c/z48SXHPH369GwII5/PR2tra7S1tRXdKwAAAAAAAAAAAAAAkLz+Z/uj8fT8CRpWKvGARSaTibGxsWhtbY0f//jH0dfXN2+b6enpaGxsjK6urjhw4MCq9pdOp6Orq2vZ29fX10cul7vjmGaqAAAAAAAAAAAAAACA8jfUPVSeAYuIWwGFvr6+eO2116KnpycGBgYin89HOp2OTCYT7e3t8fDDD9+NXQMAAAAAAAAAAAAAABUu/24+ctmlJ1eIiBgdGo1CvpDIPu9KwGLGww8/LEgBAAAAAAAAAAAAAAAsy9CfDkV/R39ioYmVuKsBCwAAAAAAAAAAAAAAgOXIvpaN3rbeqMpURV1rXaTSqTvWjA6OxuULlxPZf1kELJ599tk4ffp0qdsAAAAAAAAAAAAAAABK5LVnXovWntaoe7RuRXVn9pxJZP+bExlllbq7u0vdAgAAAAAAAAAAAAAAUEKpqtSKwxUREekD6UT2f9dmsHj33Xcjm83ecbuhoaHI5/N3qw0AAAAAAAAAAAAAAKAC1NTXFFXXNtCWyP4TD1j86Z/+aXR0dAhNAAAAAAAAAAAAAOve9evXi659//334+TJkzE4OBgNDQ1x9uzZ2Lt37x3rJicnY2JiIq5fvx5bt966FHTnzp1F9wEA5aKQL5R0/4kGLF577bVoa2uLTCYTra2tkU6n71gzODgYFy5cSLINAAAAAAAAAAAAgDWxa9euRMbp6+uL2traouunp6cT6QMASqmutS7e+dE7ce/n7l1RXf+z/dF4unHV+080YPHMM89ET09PPProoyuq27NnT5JtAAAAAAAAAAAAAAAAFSbzcCYufvviikMWQ91D5RewqKqqWnG4IiLiwIEDSbYBAAAAAAAAAAAAsCauXbtWdO0jjzwSFy5ciJs3b8aWLVvi6NGj8corr9yxbnJyMt588804fPhwbN2a6KWgAFBS+XfzcV/rffF2z9vx/KHn40DjgaiurY6qTNWiNaNDo1HIFxLZf6LvqvX19UXVDQwMJNkGAAAAAAAAAAAAwJrYuXNn0bXnzp2LEydOxKVLl+LQoUPxwgsvLGu8ycnJ2L59e+zcuVPAAoB1pau+K26M34iIiOnp6bg6eDU2bdq0ZvtP9F01n88nORwAAAAAAAAAAADAurV379549dVXS90GAJSN7dXbIyLivuP3RSqdWlbN6OBoXL5wOZH9JxqwaG1tjR/96Efxuc99bkV1zz77bJw+fTrJVgAAADaUF5tfLHUL8YXeL5S6BQAAAAAAAAAAKlhVpioeeuahqP9K/Yrqzuw5k8j+Nycyyj95+OGHY2RkJH70ox+tqK67uzvJNgAAAAAAAAAAAAAAgApTlamKqkzViuvSB9KJ7D/RGSzefffdaG1tjZ6enjh06FA0NjZGbW1tZDKZRWuGhoYin88n2QYAAAAAAAAAAAAAAFBhjp09VlRd20BbIvtPNGBRX18f4+PjERExPT0dg4ODsWnTpiR3AQAAAAAAAAAAAAAAkLhEAxbV1dUREXH8+PFIp9PLqhkcHIwLFy4k2QYAAAAAAAAAAAAAAFDh8u/mY6BrIN4bei8mxiZie/X2SGfScbD9YOx7YF/i+0s0YJHJZOKZZ56Jr3zlKyuq27NnT5JtAAAAAAAAAAAAAAAAFaz/2f5488ybMT09PW/dUPdQ1LXWRXN3c2z7zW2J7TPxgEUmk1lx3YEDB5JsAwAAAAAAAAAAAAAAqECF8UJ0N3THxNhE3PvovbH/0P5IpVO31uULMfHBRIwOjsbbL78d2f5sfO3y12LbbyQTskg0YHH27Nmi6gYGBpJsAwAAAAAAAAAAAAAAqEA9rT2RaczEsbPHltyuMF6IvlN98W+P/tt44tITiex7cyKjLOFXv/pVvPvuu3d7NwAAAAAAAAAAAAAAQAUbfH4wqjJVdwxXRESkdqeiuas5ahpqYuhPhxLZ/10JWLz77rvx5JNPxpYtW6Kqqio++clPzll/+fLlOH78ePzpn/7p3dg9AAAAAAAAAAAAAFBi169fL/pPNpuNP/zDP4w9e/bEH/7hH0Y2my1qHKCyXO6/vKxwxccdO3sshnuGE9n/1kRG+ZgLFy5EY2NjRERkMpnIZDJx+fLlOdscOHAgXn755XjttdfiT/7kT+Ib3/hG0m0AAAAAAAAAAAAAACW0a9euRMbp6+uL2traomqnp6cT6QFYG6mqVFF16QPpRPafaMDi8uXL0dLSEm1tbdHR0REHDhyIiIhnnnlmwe0ffvjhyOfzceHChTh69GiSrQAAAAAAAAAAwLrW294bD3U8FFWZqgXXF/KF+Onpn0ZExI49O2JsZCxqm2qjrqVu0TGLqQEAAEjMpjWuu02iAYtnnnkmOjs744knnpizfNOmxbt99NFH48knnxSwAAAAAAAAAACAZRodGo2h7qE42H5wwfWFfCG6G7qjtac1auprZpf3tvfGlUtXoqmzKZEaAPi469evF137/vvvx8mTJ2NwcDAaGhri7NmzsXfv3hWPs3PnzqJ7IHnXrl0ruvaRRx6JCxcuxM2bN2PLli1x9OjReOWVVxLsDihHhbFCUXX5bD6R/ScasMjlcvPCFcth6h0AAAAAAAAAAFi+/o7+Jdf3tPbEvS33zglKREQ0dzVHZ1Vn1DbVRqYxs+oaAPi4Xbt2JTJOX19f1NbWFlXrmtTysprAy7lz5+LEiRNx6dKlOHToULzwwgsCNLABpA+k451X3ol7H7l32TVv/smbse/BfYnsf3Mio/yTTKa4E6hcLpdkGwAAAAAAAAAAsG4Ndg9GXWvdoutz2Vxk+7OLzm5Rd7wuLnZeXHUNAMDdtHfv3nj11Vfjl7/8Zbz66qtFzWgCVJ7GbzVG3zf74p1X3lnW9oPPD8Ybp9+Ixm81JrL/xGewKEY2m02yDQAAAAAAAAAAWJdy2VvX51RlqhbdZqBrYMltqmurY6h7KAr5QqTSqaJrAOB2165dK7r2kUceiQsXLsTNmzdjy5YtcfTo0XjllVcS7A6AStH6cmt0H+yO2j+sjbqWuth/cP/seUghX4iJsYkY6RuJd86/E7lsLp4YeCKxfScasKiqqorXX389/uAP/mDZNc8++2w8/PDDSbYBAAAAAAAAAADL9mLziyXd/wcTHyx724GugWjqbIps/+I3NH1v6L0lQxAzIYqrA1cj05gpugYAbrdz586ia8+dOxcnTpyIS5cuxaFDh+KFF15Y1XgAVK6a+ppoG2iL3id6o7etNzZt2jRvm+np6ajKVMW/+vG/ipoHaxLbd6IBi1OnTsUf/uEfxvPPP7+skMWf/MmfxPnz5+M//sf/mGQbAAAAAAAAAACw7gyfH46D7QfvuF0um4vt1dsXXT8TpJiZDaPYGgBI0t69e+PVV18tdRsAlIma+ppoG2yLwe7BGOwajNGfjc6uq8pURUN7Qxz55pHE95towCKTycTZs2fj4YcfjoMHD8Zjjz0WDz74YOTz+Xj33Xcjn8/H2NhYDA0NRVdXV2Sz2RgcHEyyBQAAAAAAAAAAWHcK+ULksrmoa6m747YTYxOzM04sZCZIUcgXVlUDAABwtzW0NURDW8Oa7S/RgEVERGNjY7z88svR1tYWp06dml3e3d09+/+np6cjk8nEwMBAPPDAA0m3AAAAAAAAAAAAZWvq5lRMT01/9Hhy6o41Pz3902jqbFrW+MsNQXz4wYerqgEAAFhvNt+NQVtaWmJsbCxOnz4dDzzwQExPT8/+OXDgQHR2dsbf/u3fxoMPPng3dg8AAAAAAAAAAGVr7G/HYuR/H5n98+5P3l1y+2x/NmqbatemOQAAgAr0zo/eSWScxGew+LhTp07NmcUCAAAAAAAAAAA2uupPVkdVpmr28VhhLOIni28/0jey7NkrIiJS6dSyZqTYsWfHqmoAAADKRe8TvXHv5+5d9Th3NWABAAAAAAAAAADMtXnL5ogtH3s8uXnRbS+euRi//+zvr2j87dXbl1w/MTYREbdCFaupAQAAKMZ7P38v9j2wb9F1KzExNhG5bG5ZgfHlKIuAxY9+9KP43Oc+V+o2AAAAAAAAAACgbOSyuUilUysONVRlquLqwNVF189cePTxWTSKqQGgvFy/fr2ouvfffz9OnjwZg4OD0dDQEGfPno29e/cWNdbOnTuLqgNg4+h/pj/e/PabUdNQE0/89RPz1v/PR//nuDF+owSd3VIWAYsnnnhCwAIAAAAAAAAAAD5mdGg0hnuGY7hneN66XDYXERG9T/TOzj7xeN/jERGxr35fZPuzi447U5tpzMwuK6YGgPKya9euVY/R19cXtbW1RddPT0+vugdIWrHhowgBJLgbctlcTE9PRyG38IwTM+c3DW0Ntx7vucNsex9MRG4kF+/86J1E+ltxwOLnP/95PPDAA4uuW4mxsbHIZrORz+dX2gYAAAAAAAAAAKxrdS11UddSt+C64fPD0dPaE83PN0dNfc2cdfc/dn+8eebNGB0anbcuIuLqpavzghLF1AAAVIIkwkcRAkiQlObnmyPTlFn0/KIqUxUPPfNQ1H+lfkXjntlzJon2VhaweOaZZ+Lb3/52NDQ0xF//9V/PW3/06NEYHx9PpDEAAAAAAAAAAGDlauprItOYibdeemvBsMTw+eHZ2S5WUwPwYvOLpW4hvtD7hVK3UDauXbtWVN0jjzwSFy5ciJs3b8aWLVvi6NGj8corryTcHQDcktqdioYnGhZdn2nKxP6D+1c8bvpAehVdfWRFAYtsNhvT09ORy+UWXF9dXR0REW1tbRERsWfPniXH++CDD2JkZCR+9KMfraQNqCjlcBIxtWkqfuvp3yp1GwAAAAAAAABAQnLZ3Oz/LhSIaO1pje6G7rj/sfvnrO9t743Dpw4veLfYYmoAKB87d+4squ7cuXNx4sSJuHTpUhw6dCheeOGFoseCclRs+ChCAAlK4cg3jxRV1zbQlsj+VxSweP7556OpqSkaGxsXXJ/JZOKZZ56Jr3zlKytq4k5BDAAAAAAAAAAA4FbYIZ/Nx9WBq7ceP9Ebg12Dsa9+XzR1Ns1ul0qnom2wLfo6+iKVTsWOPTtibGQsaptqo66lbsGxi6kBoPLt3bs3Xn311VK3AXfNagJDAkiw8awoYLF79+544oknFl3f1NQUBw8eXHETBw4cWHENAAAAAAAAAABsNM1dzcveNpVOrWj7YmsAANarJANI169fL6ru/fffj5MnT8bg4GA0NDTE2bNnY+/evUWNJRxSeXrbe+O+1vuWnE1usHswhnuGo6G9ITKNmUilU5HL5mJ0aDTefunteOjZhxac9a6QL8RPT/80ImLZ4epiapKWfS0b2b5sxKaI6trq2H9wf+x7YF9i468oYHEn3/zmN4uqGxgYSLINAAAAAAAAAAAAAICysWvXrlWP0dfXF7W1tUXXT09Pr7oH7r5cNhfZ/mwMdg3G6NBo3Nd635LbF/KFyPZnI9ufnbM8lU5Fa0/rouGK7obueet723vjyqUrc2bHW01NMc7sOROnPji16PrMw5nIPJyJwnghJsYmItufjYGugWjqbIptv7lt1ftPNGABAAAAAAAAAAAAAACs3GD3YGT7spFpykRjZ2Ocazq3rLpjXcdibGQs8tl8pKpTsb9hfzS0NSy6fU9rT9zbcu+88EVzV3N0VnVGbVPtvFkziqkpxnKDQKndqUjtTkXDEw1RGC9EX0dfHPvesVXv/64ELP7sz/4suru7I5fLxcsvvxy/+7u/O2f95cuXo6OjIz796U/HN77xjbvRAgAAAAAAAAAAAABAWbh27VpRdY888khcuHAhbt68GVu2bImjR4/GK6+8knB3lIuGtobZYMTo0Oiy6+47fl+k0qllbTszQ8axroXDCHXH6+Ji58U5YYliaoq1adOmFdekdi/vv305Nic20j959tlnIyLi0qVLMTg4GENDQ/O2OXDgQLz88svx4IMPzm4PAAAAAAAAAAAAALAe7dy5s6g/586di6amptizZ080NTXFuXPnih4LIiIGugYiIqIqU7Xg+ura6sj2Z6OQL6yqZi0VxgsxOrD8QMpSEp3B4sKFC5HJZOLRRx+N6enpuHz5cnzuc59bdPuHH344IiJ+9KMfLbkdAAAAAAAAAAAAAMBGs3fv3nj11VdL3QbryHtD7y0528VMiOLqwNXZGSmKqVlK/t38gsunp6dvrf+7fMT00mMU8oWYGJuI0aHReOP0G1F3vO6O+12ORAMWPT098b3vfS8iIlpaWpZV8/DDD8eTTz4pYAEAAAAAAAAAAAAAAEUaHRqNqwNXY//B/VFTX7PgNrlsLrZXb190jJkgRS6bW1XNUq4OXo2rl65GLpuLbH82bozfmLP+u5nvLmuciFuhjExjJo5979iya5aSaMBiJjECAAAAAAAAAAAAAABETN6YjJs3bs4+/odf/0Oi42f7s5HL5iLTmImGtoYYHRqNc03n4kjHkXkzSkyMTczOOLGQmSBFIV9YVc1S6h6ti7pHP5pxYnRoNPo7+iP7WjY2bdoU9z5677LGqcpURaYpE5mH7zxrxnIlGrDI5ZaXOLldNptNsg0AAAAAAAAAAAAAACgLb5x+I37yb34y+3g8xhMbeyb4cOTUkdllNfU10drTGp1VndE22DZnNovlhiA+/ODDVdWsRE19TTze93j0tvfGO+ffidaXW4saJwmJBixGRkZWXDM+Ph4ffPBBkm0AAAAAAAAAAAAk5sMPP4zr16+vqOb999+PkydPxuDgYDQ0NMTZs2dj7969Re1/586dRdUBAFAeHnr2ofjM05+ZfXzlypX4Tt13Ehm7rqVuweWpdCrqWuqip7Unnhp5KpF93W3NXc0xOjha0h4SDVgcP348HnvssXjppZdWVPP5z38+yTYAAAAAAAAAAAASc999962qvq+vL2pra4uun56eXtX+AQAora3btsbWbR9duv+JX31iTfa7/9D+GD4/HLlsbnami1Q6tawZKXbs2TH7/4upKdZDzz606jFWY3OSg506dSoGBwfj85//fPz6179ectuf//zncejQochms/GNb3wjyTYAAAAAAAAAAAAAAGBDS6VTERExOvTRrBDbq7cvWTMxNjGnttiaYtU9uvCMHGsl0RksIiJ+/OMfxyc/+cno6emJpqamaGxsjHQ6HdXV1TE2NhYjIyPR398fQ0NDMT09HUNDQ0m3AAAAAAAAAAAAkJi33347/tP/9D9dUc0jjzwSFy5ciJs3b8aWLVvi6NGj8corr9ylDgEA2Ih623vjcv/leGrkqWXXVGWq4urA1UXXz8xUMTPjRbE1a6kwXoih54fi8DcOr3qsxAMWmUwmxsbGorW1NX784x9HX1/fvG2mp6ejsbExurq64sCBA0m3AAAAAAAAAAAAkJgdO3bEzp07V1Rz7ty5OHHiRFy6dCkOHToUL7zwworHAACApYwOjM7OHrGQmeBDTX3N7LJ99fsi259dtCaXzUVExP+fvf+LjfO68wTvH2m6VVTSURU5A4tOZyYq9lyY1mDiot3vRFIDMzG53WiIFz1hSdALOJ2LNum+cfbNuxHjvlig92IUKoMEm1kgJj0D9MAN6LXJ7V6AwWbQpDOTteReRCTj3Tg0ZiYspz0R6WDHVaX8MUtpmXwvFNImWaT4p8iqYn0+QDBdz3l+5zmj57hYh6zvc9I96X3VHKZCrhA/fOmHtRmwiIhIJpMxOTkZr7zySoyNjcX09HQUi8VIJpORTqdjcHAwnnzyyYO4NAAAAAAAAAAAQNU99NBD8e1vf7vawwAA4Ag71XMqBoYHtmxfuLkQiWRi3c4Spy+ejteuvhaLs4vrghcfrtkYlNhLzV699Z23dl1zY/jGWphkvw4kYLHqySefFKQAAAAAAAAAAAAAAIAKO33xdMyMzkT3QPemtkKuEHPjc5Edy6473pHpiHRPOt546Y2yYYm58bl4avKpfdfs1cv9L8ed23d2VbOyshKtqdaKXP9AAxYAAAAAAAAAAAAAAMDuFHKFiIhtd2boyHREbioXN67eiLOXz66rHe0ejTOXz0RXf9emuuxYNka7R+P0xdPrAhMTgxNx5vKZsrtR7KVmL1rb7gUlHr3waCSSibLnlIqlKOQKsTB9b+eMh594uCLXjqiRgMWf/MmfxDe/+c1qDwMAAAAAAAAAAAAAAKpibnwuZkZmIiJiYXohIiImnp5YO9aV7dq0W8XZy2cjN5WLicGJKOVLUSqWIpFMxOde+VzZ3SYiIhLJRAzMDMTk0GQkkok43n488vP56OztLBvI2GvNXqTSqTj35XOR+ePMjs6/8dUb0Zpq3fH591MTAYuXX35ZwAIAAAAAAAAAAAAAgIbV1d+1p7BCuie96x0kEslE9I30HXjNbqXSqUilUzs+/+yXzsbc/zoXb33nrTj1mVP7vv6uAxavv/56fOpTn9p0/Pbt2/HKK6/segA3b96MYrG46zoAAAAAAAAAAAAAAODoOP/8+V3XdH22K6aemzrcgMUrr7wSg4OD8dZbb0VnZ2f85//8n9e1T09PR39/fzQ1Ne1qACsrK7uuAQAAAAAAAAAAAAAAqKQdBSxu374dIyMjMTIyEr29vXHixIlN57S1tUVExGc/+9l44oknIplM3rffYrEYP/rRj+Lf/Jt/s7tRAwAAAAAAAAAAAAAAREQxV6xIPzsKWLzyyivx3HPPxWOPPRaFQqFswCKdTkdTU1O8/PLLux7E2NjYrmsAAAAAAAAAAAAAAIDGVrpdiqXCUkX62lHA4ubNm/Ev/sW/iIgoG65YPb5V2/309PTsqQ4AAAAAAAAAAAAAADga3vrOWzs+t1QsRSFXiJmRmege7K7I9XcUsGhra4sf//jH8clPfnLb85qamvY0iL3segEAAAAAAAAAAAAAABwdL/e/HHdu39nx+SsrK5HuSceZ/+FMRa6/o4BFT09PjIyMxJUrVypy0Y1+9rOfxcc+9rED6RsAAAAAAAAAAAAAAKh9rW2tERHx6IVHI5FMbH9ue2t0ZDoi/WS6YtffUcDisccei2w2G88880z8w3/4Dyt28VWnTp2Kd999t+L9AgAAAAAAAAAAAAAA9SGVTsW5L5+LzB9nqnL95p2e+Pzzz0c6nY5/+2//bcUHsbKyUvE+AQAAAAAAAAAAAACA+pFKpyKVTlXt+jvawSIioqenJz772c/GwMBADAwMRCaTiXR6/VYaxWIxfu/3fm/HF8/n85HL5eL27ds7HzEAAAAAAAAAAAAAAHDknH/+fFWvv+OAxTPPPBO5XG5tt4mZmZmYmZnZdN7k5OSuB9HU1LTrGgAAAAAAAAAAAAAAgErZUcDi+9//fiSTyXjllVcim81Gb29vfOlLX9p0XltbW+Tz+V0NYHZ2Np544old1QAAAAAAQCNbnF2M6ZHpKOVLsTi7GIlkIroHu6N7oHvLmlKxFK9eeTUiIo63H4/8fD46ezujq7+r6jUAAAAAAABbKf64GIuzi7GUX4pUOhWpdCqSn0weyLV2FLB45ZVX4plnnokTJ07EX//1X2953l52oshkMnHixIld1wEAAAAAQCOaGb23u3TfSN/asdxULsayY3Fj+EYMzAxEIplYV1MqlmK0ezSyY9noyHSsHZ8YnIhbN29F73DvpuscVg0AAAAAAEA5b33nrfjW4LeikCtsauvo7oi+F/ri5D85WdFr7ihgsbKyEm1tbRW98IeNjY0dWN8AANAoJgYn4tHso5HuSW97nqfWAgBA/SrkClEqluLs5bPrjqd70vG5Vz4Xo92jMZYdi6cmn1rXPpYdi0f6H1kXeoi4F9IYTg1HZ2/nprXEYdUAAAAAAABsNH5xPObG52JlZSUiIlLpVERELOWXolQsxcL0QoxmRuPs0Nl48l8+WbHr7ihgkU6nY3p6Oj7zmc9U7MIf9uSTlfv/EAAANJJCrhC5qVzMjMzE4uxiPJp9dNvzPbUWAADq2/TIdPzuc79btq0j0xHpnnTkpnJRyBXW/tCwum44P3K+bF3Xha64MXxjXfDhsGoAAAAAAAA2mvryVMxPzseTX3kyuvq7InUqtemcxe8vxhv/vzfi+leuR2t7a5z5/56pyLWbd3JST09PDA8PV+SC5fyrf/WvDqxvAAA4qmZGZ2JqaCoiInqGe3ZUs93TZGdHZyM3lataDQAAcH9vTb0V//Op/zlKxVLZ9pOZe9tgL84urh2bHpmOiA+e7LRRW2db5KZy6/o8rBoAAAAAAIAPy72Si9xULr7w1hfi7JfOlg1XRER0PNYRvcO98eyPno3pb05H8W+LFbn+jgIWJ06ciFOnTsWf/umfVuSiG125cuVA+gUAgKOse6A7smPZ6B7ojta21vuev/o02ccHHy/bvvo02WrUAAAAO9Pa1hqlYikKucKOa96ZfScSycSW7auBiIXphUOvAQAAAAAA+LDZ0dn43Cufi8SJrf/m8GGpdCqyL2dj6vJURa7fstMTh4eH49SpUzE1NRWDg4Px5JNPRltb21r7yspKRET87d/+7dr/vRMzMzNRLBZ3PuINisXiWkCjvb095ufno7e3N/r7+/fcZzmDg4MxNDQU6bStywEAqE87eZrs7OhslIqltS9FHVYNAACwM09NPhWFXGHLz9vFXDEiYt1ucoVcYdtQ9urn8g+HNg6rBgAAAAAA4MNWVlZ2HK5Y1ZHp2FWGYTs7DlicOHEicrlcdHd3x9NPPx1NTU1lzzvMAEKxWIzu7u4YGxuLTCazdnxwcDBu3rwZw8PDFbnO7OxsjI6OxuDgYEX6AwCAatjN02TTPelDrQEAgEZ3987deP/O+2uv/+4Xf7fluVuFKyIi5sbnoiPTse6cpfzStjWroYhSsXToNQAAAAAAAB+23d8aDqJuox0HLCIikslkzM/Px/j4eExPT6/beWJlZSVeeOGFGBgY2NUAbt68Ga+//vqualZls9no7+9fF66IiBgZGYlUKhW9vb3R09Ozp74/bGhoaN99AABAtXlqLQAA1K7rV67Hd//su2uvbzff3nUfN67eiIiIvhf61h3faaDhvXffO/QaAAAAAACAdcrvA3FwdRvsKmCxqr+/P/r7+zcdHx8fj+eff37X/bW3t++6JpfLxdTUVIyMjJRtv3DhQgwPD+87YDE6OhrZbDampqb21Q8AAOzGbp5eu1OeWgsAALXr3HPn4tNf/PTa67fffju+/o+/vuP6xdnFmBqaiuxYNjoyHQcxRAAAAAAAgAOXSqei+ONiJD+Z3HHNnZ/d2faBsLuxp4DFVlZWVvZUl0rtfjuO1WBFOp0u297Z2Rmjo6NRLBYjmUzuaVy5XG7bawAAwEGpxNNrN/LUWgAAqF0tx1qi5dgHv7J/8KMP7qp+LDsW50fOR1d/16a2RDKxo8/px9uPH3oNAAAAAADAh3U/3R1TX56K3/3T341jHzu2o5rJy5PRe7W3ItevaMDihRde2FPdj370o13XzM7ObhucWA1FTE9P73kXi5GRkRgeHrZ7BQAAh26/T68FAAAax1h2LLoHu6N7oLts+/2e2LSUX4qIewGJw64BAAAAAAAaR/HHxR2d9+jFR+/9/eOZ7kid2nozh0KuED986YfRM9yz4zDG/VQ0YPHZz362kt1tK5fLRVtb25btq+GL1V0odmt8fDwGBwf3VAsAAPu136fXluOptQAAcPRMDk3Gw088HGcvn93ynFQ6FQvTC1u2r35+T6U/+APFYdUAAAAAAACNYyQzEndu39nRuSsrK5Gbun8WIJFMxPTIdPzuczvf8WI7FQ1YbOXLX/5yvPXWW5FOp6OzszPS6XQ8/vjj8bGPfWzPfebz+bVdKspZDV8Ui8Vd910sFiOXy0V/f/9ehwcAADXHU2sBAOBomRmdibbOtrI7V5SKpbXP3CczJ7f9A0QhV4iIiHTPB79zP6waAAAAAACgcbS2tUapWIqu/q77fsdoN0qFUvzw5R9G5o8z++5rxwGL119/PfL5fORyuZifn49cLhfFYjGSyWSk0+m4cuXKlrVf+cpXIiLirbfeitnZ2fjKV74SU1NT0dTUtBa6+Pf//t/vauA7DU68++67u+o3IuLKlSsxPDy867pVS3eX4hd3f7H2+sHmB+PBB/b/xGHYq5WmlVheXo67d+9Weyiw5u7du+YlNcncpFYtLy/vuw9PrT041gD3eO+8x88SNjIn2MicYCNzgnLutwaYG5+LiCgbrijkCrE4uxhd/V0REXH64ul47eprsTi7GB2Zjk3nL9xc2BR6OKyaevXe++/FsbsfPAWrUdcA9WSlaSVWYuXe78tj/2tsDpf7V7/cu/rl3tUv965+rTStVHsI3Mft27cjn8+vvT527FgcO7b/p+Oye8tN9fv+5n36YDTq79X8XpFKMp+oJPNpZxr13yeVTsW5L5+rSBDioOw4YPGZz3wmbt++HSsrK5HNZuPLX/5yPPbYY7u62KlTp+LUqVPx2c9+NnK5XGSz2fj+978fudz9t+44LFNTU9Hb27uvPob+49C617+f+f34g8f/YF99wn6sxErcffveG3Fzc3OVRwP3LC8vx9tvvx0R5iW1xdykVu0lOLyRp9YeHGuAe65fv17tIdQEP0vYyJxgI3OCjcwJytluDbA4uxhL+aWy4YqIiNxUbt3n7Y5MR6R70vHGS2+UDT7Mjc/FU5NPrTt2WDX1yhqg/qzESiz95lLkIx9N0VTt4bBL7l/9cu/ql3tXv9y7+vXzpZ9Xewjcx6c+9al1r//oj/4oPv/5z1dlLI0u35G//0k1yvv0wWjUv1H5vSKVZD5RSebTznw4vNtIUulUzT+UdccBi1UzMzO7DlaUk06nY2ZmJlKpVPzsZz/bdX0ymdzRLhbt7e276ndycnJfu1dERAz/s+FIJT648Q82PxgPLnpyFdWz0rQSD/+Dh+PMmTPR0rLr/+zhQKymL81Lao25Sa1aXXjuh6fWHhxrgHvOnTtX7SHUBD9L2MicYCNzgo3MCcrZag1QyBViLDsWp3pOxcLg5p3jSvlS5KZyMVRYHwDIjmVjtHs0Tl88ve5z+sTgRJy5fKbsZ/TDqqlH1gD1Z6VpJfKRj7Z32qJpxZeY6o37V7/cu/rl3tUv966OLVV7ANzP66+/Hp/4xCfWXtvBonpufe1WtYewZ96nD0aj/o3K7xWpJPOJSjKfduYnP/lJtYdQFeefP1/tIdzXrmbtwMBARcIVHzY8PBx/8id/suu6tra2bdtXUz3JZHLHfV69ejWee+65XY9lo9aW1vhoy0fXH7STI1W0HMvR3NwcLS0tflhRU8xLapW5SS2qRKLfU2sPjjXAPd43P+BnCRuZE2xkTrCROcFGW60BXux9MQq5QhRGC1vWlnvyUyKZiIGZgZgcmoxEMhHH249Hfj4fnb2d0dXfVbafw6qpR8cfOG4NUGeWYzmaoimaVpqiecVT8+qN+1e/3Lv65d7VL/eufvmide07ceLEfb+vxOGo5/c379MHo5F/p+b3ilSS+UQlmU/359+mdu3qzmSz2YoPoLe3d0916XQ6pqent2xf3d0ind7Z07ByuVwkk8ldBTIAAKBWFHL3vlxVKpa2Pc9TawEAoL49O//snmsTyUT0jfTVZA0AAAAAAMB+vPmXb8Yj/+KRffezq4DF448/Xvb4j3/84/vWfvKTnyx7/NSpU7GysvvHOmUymZiamtqyPZfLRURET0/PjvqbnZ2NsbGxGBsb27Kvp59+ei2JPjk5udshAwBARc2Nz8XMyExERCxML0RExMTTE2vHurJd0T3Qva7GU2sBAAAAAAAAAICjZuLpicMNWDQ1NcXHPvaxsm1jY2Px7rvvxtTUVHz/+99fO55Op6O/vz/a29tjYGBgy/q97Bpx8eLFuHr1aszOzkYmk9nUfvPmzR2HKyIi+vv7o7+/v2zb+Ph4ZLPZeOGFF8peCwAAqqGrv2tPYQVPrQUAAAAAgPpTyBXi+vD1iIgo5UtRKpYi3ZuOs5fPbllTKpbi1SuvRkTs+GFIe6kBAADYjXdefydOfurklm27sZRfikKuEKViqRJD290OFlv50pe+tPZ/Dw0NxVe/+tXIZrPx0ksv7ai+qalp19fMZDLR09MTL730UtnQw/j4eNldJorFYly5ciV6e3t3FcAAAAAAAAAAAIBqmBufi1s3b216sNFo92jMjMzEs/PPbqopFUsx2j0a2bFsdGQ61o5PDE7ErZu3one4tyI1AAAAuzH15al47auvRUd3Rzz9vac3tf+7z/y7uHP7ThVGdk9FAhYfNjw8HF/96ldjeHi40l1vMjY2Ft3d3XHx4sV1IYvBwcG4fPly2QDF6OhoXL16NUZHR6NQKOzoOrlcbu3/tYMFAAAAAAAAAACHpVQsxQ9f+mFkx7Kb2vpe6IvR7tGYGJzYFL4Yy47FI/2PrAtKRET0jfTFcGo4Ons7I92T3ncNAADAbhRyhVhZWYlSofyOE61trRER0T3Qfe91e+u2/S29uxSF+UK8+ZdvVmR8FQ9YREQkk8n45Cc/eRBdb7rOzMxMDA0NRTKZjPb29pifn4/e3t7o7+8vW9PT0xPJZDIuXLhw3/4HBwcjl8vF9PR0REQ8/fTTMTIyEplM5lACJAAAAAAAAAAANLaF6YWYG5+LyaHJTTtIrAYh3pp6a93xQq4QualcnB85X7bPrgtdcWP4xrqwxF5qAAAAdqvvhb5I96a3XFuk0qk49+Vzkfnj3W2McLX9aiWGdzABi6ampoPotqxkMhkjIyM7Pj+Tyex454rd9AsAAAAAAAAAAJXW2tYaiWQijrcf3/KcRDKx7vX0yL2HiabSqbLnt3W2xezobJSKpbXavdQAAADsVuJEIrqf7t6yPd2bjocff3jX/SZPJfcxqg8cSMACAAAAAAAAAADYv45MRwwVhsq2Lc4uRkTEqZ5T646/M/vOtiGI1RDFwvTC2lNj91IDAABQaWe/dHZPdQPTAxW5fnNFetmnYrFY7SEAAAAAAAAAAEBdmRqailQ6Fb3DveuOF3KFaG1r3bJuNUhRyBX2VQMAAHAQ3vzLN6P442JVrr3jHSxWVlbiH/2jfxTJZPK+5xaLxXjiiSd21K9wBQAAAAAAAAAAjWT5/eVYWV754PXd5V3VF3KFuD58PZLpZDw1+dSm9qX80tqOE+WsBilKxdK+agAAACrtW898K2ZfmI1EKhGX/9vlQ7/+jgMWERHz8/M7PndmZmbH5zY1Ne1mGAAAAAAAAAAAULfyP8pH/r/k117fjts7qpsbn4tbN29FMVeMZDoZnb2dZc/baQjivXff21cNAABApS3ll+LUk6eiI9NRlevvKmCRyWSip6cn2tvbK3Lxd999N2ZmZuI73/lORfoDAAAAAAAAAIBa1/bbbet2i8iX8hHfvX9dV39XdPV3rb1+sffFmBmZib4X+iKRTBzEUAEAAA5VKp2Knq/0VO36Ow5YNDU1xXe+85342Mc+VvFBPPDAAxXvEwAAAAAAAAAAalHzA80RH/q6TPPd5j31kx3LxnBqOErFUjw1+dTa8UQysaMdKY63H99XDQAAQKW1trdG8cfFSH4yuau6q+1X4/K7l/d9/R2vzlZWVg4kXBERceLEiQPpFwAAAAAAAAAAjqpEMhFd/V2Rm8pFbiq3dry1rXXbuqX80lr9fmoAAAAq7eyXzsbk5cl46ztv7apuZWWlItff8Q4Wr7zySkUueNh9AwAAAAAAAABAvSoVS7GUX4pUOlW2PZlORkTE/OR8pHvSERGRSqdiYXph2z5Xz1u1lxoAAICDkH05G6/9q9diZmQmHn7i4ejIdERrW+uWge/5yfm4c/tORa6944DFY489VpELHnbfAAAAAAAAAABQr4ZTwxERMVQYKvtlouPtxyPigwBERMTJzMl1O1psVMgVIiLWAhl7rQEAAKi0P2v+s2hqaoqIe7tSzI3PHer1dxywAAAAAAAAAAAADlcimdj2Sa35+XxERDzc/fDasdMXT8drV1+LxdnF6Mh0bKpZuLmwKSixlxoAAIBKS6VTUcgVoqu/K1rbWndUs3BzId55/Z2KXF/AAgAAAAAAAAAAalRmIBOPDz6+Zfvcy3ORSCbi0QuPrh3ryHREuicdb7z0RtmwxNz4XDw1+dS6Y3upAQAAqLRUOhXnvnwuMn+c2VXd1farFbl+c0V6AQAAAAAAAAAAKq53uDeuD1+P3FRuU9tYdiwiIj73yuc27XCRHcvGm+NvxuLs4rrjE4MTcebymbK7UeylBgAAoJJS6VSk0qld1yVS5Xf92y07WAAAAAAAAAAAQA3rG+mLufG5GMuORaItEaV8KUrFUpzMnIwvvPWFTeGKiIhEMhEDMwMxOTQZiWQijrcfj/x8Pjp7O6Orv6vsdfZSAwAAUEnnnz+/p7pnf/RsRa4vYAEAAAAAAAAAADWuq79r1yGHRDIRfSN9B14DAABwVAhYAAAAAAAAAAAAAAAANS/3Si5yk7mIpoi2zrZ4+PGH4+SnTlas/+aK9QQAAAAAAAAAAAAAALBHV9uvbtuefjIdPV/piXNfPhennjwVt27eim/9ybfizs/uVOT6drAAAAAAAAAAAAAAAACqbmVlZUfnJU4kInEiEd1Pd0fpdikmhybj/DfP7/v6drAAAAAAAAAAAAAAAACqrqmpadc1iROJil1fwAIAAAAAAAAAAAAAAKhLpdulWJxerEhfLRXpBah5P7j2g7j1tVvRvFK9XNWliUtVuzYAAAAAAAAAAAAAUH3FHxfLHl9ZWbnX/rfFiJXt+ygVS7GUX4rF2cW4fuV6dF3oqsjYBCwAAAAAAAAAAAAAAIBDsTCzEAs3F6KQK0RuKhd3bt9Z1/6N9Dd23NfKykqke9Jx/pvnKzI2AQsAAAAAAAAAAAAAAOBQdH22K7o++8GOE4uzizE1NBW5V3LR1NQUj3z2kR31k0qnIt2bjvST6YqNTcACAAAAAAAAAAAAAACoio5MRzw1+VRMDE7Em+NvRvblbNXG0ly1KwMAAAAAAAAAAAAAAERE30hfJE8lqzoGAQsAAAAAAAAAAAAAAKDqzj13rqrXb6nq1QEAAAAAAAAAAAAAACKi67Nd9z3nre+8FYVcIVLpVDz8+MNx7GPHKnZ9AQsAAAAAAAAAAAAAAKDqpr48FaXbpXXHzn/zfERElG6X4sWeF2NxdjFWVlYilU5FqVCK7Hg2Tv3zUxW5voAFAAAAAAAAAAAAAABQdd2D3fGNzm9E92B3dA90R8djHWttY9mxWJhZiLOXz0bPV3oiIqJULMXYhbFInUpF8pPJfV+/ed89AAAAAAAAAAAAAAAA7NM7338nsmPZOP/N8+vCFXP/61zkpnLxaPbRtXBFREQimYjsy9m4Pny9Ite3gwUAAAAAAAAAAAAAANSYicGJeDT7aKR70tueVyqW4tUrr0ZExPH245Gfz0dnb2d09XdVvWa3bt28FT1XejYd/+FLP4ympqY499y5TW2JZCISJxIVub6ABQAAAAAAAAAAAAAA1IBCrhC5qVzMjMzE4uxiPJp9dNvzS8VSjHaPRnYsGx2ZD3Z8mBiciFs3b0XvcG/VavZkpfzh3FQuIiJOfupk+ROaKnP55sp0AwAAAAAAAAAAAAAA7NXM6ExMDU1FRETP8OZdHMoZy47FI/2PrAs9RET0jfTF7OjsWjChGjV70dreuulY4a1ClIqlTdf+sFKxVJHrC1gAAAAAAAAAAAAAAECVdQ90R3YsG90D3dHatjlosNHqbhePDz5etr3rQlfcGL5RlZq9amravBXF3PhcRESc6jm1deEWO1/sloAFAAAAAAAAAAAAAADUmemR6YiISKVTZdvbOtsiN5Vbt7vDYdXs1Xv/7b2487M7647NjMxEU1NTnL54umzN1HNT0T3Yve9rRwhYAAAAAAAAAAAAAABA3Xln9p1IJBNbtq8GIhamFw69Zq/OPXcuxrJj8c7/9U688/o7MX5xPAq5QnT1d8XJT51cd+47r78Tf/F7fxHH249Hx2Md+752RERLRXoBAAAAAAAAAAAAAAAOTSFXiNa21i3bV0MRhVzh0Gv2KnEiEU9eeTJe/uzLa/09mn00+l/qXzvnW898K3JTubX23FQu3nv3vei50rPv6wtYAAAAAAAAAAAAAADAAbl75268f+f9tde/+vmvKtLvUn5pbfeIclZDEaVi6dBr9qMj0xHP/ujZKN0uReLE5p0zzg6djbNDZ8uOYb8ELAAAAAAAAAAAAAAA4IBcv3I9vvtn3117fTtuV6TfnQYa3nv3vUOvqYRy4YqIiNSprcMe+yVgAQAAAAAAAAAAAAAAB+Tcc+fi01/89NrrW7duxde7vl7FER09b/7lm/HIv3hk3/00V2AsAAAAAAAAAAAAAABAGS3HWuLYx46t/e83fvM3KtJvIpnY0e4Sx9uPH3rNYZt4eqIi/djBAgAAAAAAAAAAAAAA6kxrW+u27Uv5pYi4F5A47JrtvPP6O3HyUye3bNuNpfxSFHKFHQVAdkLAAgAAAAAAAAAAAAAA6kwqnYqF6YUt21dDB6l06tBrtjL15al47auvRUd3Rzz9vac3tf+7z/y7uHP7zn37OSgCFgAAAAAAAAAAAAAAUGdOZk5Gbiq3ZXshV4iIiHRP+tBrtjt3ZWUlSoXyO06s7pbRPdB973X7fXbPeHcpCvOFePMv37zvtXdCwAIAAAAAAAAAAAAAAOrM6Yun47Wrr8Xi7GJ0ZDo2tS/cXNgUejismq30vdAX6d70luen0qk49+VzkfnjzI76W3W1/equzt9Kc0V6AQAAAAAAAAAAAAAADk1HpiPSPel446U3yrbPjc/F2aGzVanZSuJEIrqf7o7UqVTZ9nRvOh5+/OEd9fVhyVPJXdeUYwcLAAAAAAAAAAAAtnWt71q1hwAA0FAKuUJERJSKpW3Py45lY7R7NE5fPL1ud4mJwYk4c/lM2Z0iDqtmL85+aWdBjY0Gpgcqcn0BCwAAAAAAAAAAAAAAqLK58bmYGZmJiIiF6YWIiJh4emLtWFe2K7oHutfVJJKJGJgZiMmhyUgkE3G8/Xjk5/PR2dsZXf1dZa9zWDX1SMACAAAAAAAAAAAAAACqrKu/a09hhUQyEX0jfTVZsxvFHxcjN5WL/Hw+irnivWu2JaKtsy06Mh1x6jOnDuzaqwQsAAAAAAAAAAAAAACAQ3fnZ3diZnQmrl+5HqVi6b7ndw92x9nLZyP5yeSBjEfAAgAAAAAAAAAAAADgiPvlL3+559qf/vSn8cwzz8TMzEx0d3fH888/Hw899NCm8+7evRtLS0vxy1/+MlpaNn9V/SMf+ciex8DRM/tvZuNbg9+KiIiVlZV1bYlkIlrbWmMpv7QueDH9/HTMjMzE2aGz8eS/fLLiYxKwAAAAoCKu9V2r9hDi0sSlag8BAAAAAAAAAGrSRz/60Yr0Mzk5GZ2dnXuq3fglehrX+MXxmBufi5WVlUj3pCPdm450Tzo6Husoe37pdilyU7mY/+v5mH1hNm4M34jcVC6e/t7TFR2XgAUAAAAAAAAAAAAAAHAo/uL3/iLmJ+ejq78reoZ7InUqdd+axIlEdH22K7o+2xV9I30xOTQZr331tXjhd16oaMhCwAIAAAAAAAAAAAAA4Ij7xS9+sefaP/zDP4zvfOc78f7778cDDzwQn/nMZ+Kv/uqvNp139+7deO211+LMmTPR0uKr6mx246s3Yn5yPvpG+yLzx5k999M73BudvZ3x4n/3Yrzyp6/Ek//yyYqMz6wFAAAAAAAAAAAAADjiPvKRj+y59sUXX4zPf/7zcfPmzXjiiSfiz//8z8v2d/fu3WhtbY2PfOQjAhZsUrpdiqmhqei92ruvcMWqdE86si9nY/zieHQPdEfyk8l992nWAgAAAAAAAAAAAACwpYceeii+/e1vV3sY1LmZ0ZnoyHTEmf/hTMX67OrvipOPnYy58bmK9NtcgTEBAAAAAAAAAAAAAABs6Ycv/TB+909/t+L9nvvyufjhSz+sSF8CFgAAAAAAAAAAAAAAwIEqvlWMdE+64v2me9NRyBUq0peABQAAAAAAAAAAAAAAcKBKxVIc+9ixivebOJGIUrFUkb4ELAAAAAAAAAAAAAAAgAN17ETlwxWV7lvAAgAAAAAAAAAAAAAAOFBNTU0137eABQAAAAAAAAAAAAAA0PAELAAAAAAAAAAAAAAAgIbXUu0BAAAAAAAAAAAAW1ucXYzpkeko5UuxOLsYiWQiuge7o3uge8uaUrEUr155NSIijrcfj/x8Pjp7O6Orv6uiNQAAADtVKpZqvm8BCwAAAAAAAAAAqFEzozMREdE30rd2LDeVi7HsWNwYvhEDMwORSCbW1ZSKpRjtHo3sWDY6Mh1rxycGJ+LWzVvRO9y76Tp7qQEAANiNlZWV+Nf/6F9HKp2qaL+FXKFifQlYAAAAAAAAAABADSrkClEqluLs5bPrjqd70vG5Vz4Xo92jMZYdi6cmn1rXPpYdi0f6H1kXlIi4F9IYTg1HZ29npHvS+64BAADYrfx8PvLz+Yr329TUVJF+BCwAAAAAAAAAAKAGTY9Mx+8+97tl2zoyHZHuSUduKheFXGHtCbCFXCFyU7k4P3K+bF3Xha64MXxjXVhiLzUAAAB7ke5JR7q3smuLhe8txJt/+WZF+hKwAAAAAAAAAACAGvTW1FsxOzobX3jrC5FIJja1n8ycjNxULhZnF9cCFtMj0xERa683autsi9nR2SgVS2t97qUGAABgt5qamuKpv37q/ifuwf/0wP9UkX6aK9ILAAAAAAAAAABQUa1trVEqlqKQK+y45p3Zd7YNQayGKBamF/ZVAwAAsFvHThyr+b7tYAEAAAAAAAAAADXoqcmnopArbLmzRDFXjIiIjkzH2rFCrhCtba1b9rkapPhwaGMvNQAAALv1uVc+V/N928ECAAAAAAAAAABq1FbhioiIufG56Mh0rDtnKb+07W4Uq0GKUrG0rxoAAIDd6nis4/4nVblvO1gAAAAAAAAAAMAhWn5/OVaWVz54fXd5133cuHojIiL6Xuhbd3ynIYj33n1vXzUAAABHkYAFAAAAAAAAAAAcovyP8pH/L/m117fj9q7qF2cXY2poKrJj2ejIHNwTYAEAABqNgAVwaK71Xav2EOLSxKVqDwEAAAAAAACABtf2222RSqfWXudL+Yjv7rx+LDsW50fOR1d/16a2RDKxox0pjrcf31cNAADAUSRgAQAAAAAAAAAAh6j5geaIBz70+m7zjmvHsmPRPdgd3QPdZdtb21q3rV/KL0XEvVDFfmoAAACOop2vzgAAAAAAAAAAgKqZHJqMh594OM5ePrvlOal0ai0QUc7qThUf3kFjLzUAAABHkYAFAAAAAAAAAADUuJnRmWjrbCsbrlgNQEREnMycXPd6o0KuEBER6Z70vmoAAACOIgELAAAAAAAAAACoYXPjcxER0T3QvamtkCtEbiq39vr0xdMREbE4u1i2r4WbC5uCEnupAQAAOIpaqj2A/SoWi3HlypWIiGhvb4/5+fno7e2N/v7+Pfc5OzsbIyMjkc/nY3Z2NpLJZAwODsbAwEClhg0AAAAAAAAAAPe1OLsYS/mlsuGKiIjcVG5d+KEj0xHpnnS88dIb0ZHp2HT+3PhcPDX51Lpje6kBAAA4iuo6YFEsFqO7uzvGxsYik8msHR8cHIybN2/G8PDwrvscHR2NiIiRkZG1Y1NTU5HNZmN4eDhmZmYimUzue+wAAAAAAAAAALCdQq4QY9mxONVzKhYGFza1l/KlyE3lYqgwtO54diwbo92jcfri6XWBiYnBiThz+UzZ3Sj2UgMAAHDU1HXAIpvNRn9//7pwRcS9cEQqlYre3t7o6enZcX+5XC6KxWJcvnx53fGenp545ZVXoru7O7LZbExOTlZk/AAAAAAAAAAAsJUXe1+MQq4QhdHCluek0qlNxxLJRAzMDMTk0GQkkok43n488vP56OztjK7+rrL97KUGAADgqKnbgEUul4upqal1O0182IULF2J4eHhXAYuRkZF47rnnyrZlMpno6emJqampyOVykU5L5QMAAAAAAAAAcHCenX92z7WJZCL6RvoOvAYAAOAoaa72APZqNVixVdChs7Mzpqamolgs7rjPqampOHXq1JY1qztlzM7O7mqsAAAAAAAAAAAAAABAbavbgMXs7Gwkk8kt21eDF9PT0zvus62tLYrFYuRyuf0ODwAAAAAAAAAAAAAAqCMt1R7AXuVyuWhra9uyfTV8sZuwxOTkZORyuS13xVjta3UnCwAAAAAAAAAAAAAA4Gio2x0s8vn8tjtYrIYvisXirvrdKlwRETE+Ph6ZTGbbcwAAAAAAAAAAAAAAgPpTtztY7DQ48e6771bkelevXo2IiBdeeOG+5y7dXYpf3P3F2usHmx+MBx94sCLjgL1YaVqJlViJlaaVWI7lag+nqu7evVvtIfBrd+/ejeXlZfeEmmNuUquWlxv7Z3itswaoHbXw/u1nCRuZE2xkTrCROUE51gC17b3334tjd4+tvbYGqH1+T17f3L/65d7VL/eufrl39WulaaXaQ+A+bt++Hfl8fu31sWPH4tixY9tUHD3LTd5X9sv79MFo1N+r+b0ilWQ+UUnm087496lddRuwOEyzs7MxNDQUY2Njkclk7nv+0H8cWvf69zO/H3/w+B8c1PDgvlZiJZZ+cynykY+maKr2cKrq+vXr1R4Cv7a8vBxvv/12REQ0N9fthkocQeYmtapSwWEOhjVA7aiFz3t+lrCROcFG5gQbmROUs9M1wMTgRDyafTTSPdvvvFwqluLVK69GRMTx9uORn89HZ29ndPV3Vb2mHlkD1B+/J69v7l/9cu/ql3tXv9y7+vXzpZ9Xewjcx6c+9al1r//oj/4oPv/5z1dlLNWS78jf/yS25X36YNTC34eqwe8VqSTziUoyn3bmw+FdakvdBiySyeSOdrFob2/f97Wy2WyMjIxEf3//js4f/mfDkUqk1l4/2PxgPLjoyVVUz0rTSuQjH23vtEXTSmMvzs6dO1ftIfBrq+nLM2fOREtL3f444ggyN6lVqwvPjWZGZ2JubC66B7sj3ZOORDIRhVwhFmcX44cv/TDOPXcuOjIdm+p8UaqyrAFqRy183vOzhI3MCTYyJ9jInKCcrdYAERGFXCFyU7mYGZmJxdnFeDT76LZ9lYqlGO0ejexYdt36YGJwIm7dvBW9w71Vq6lX1gD1x+/J65v7V7/cu/rl3tUv966OLVV7ANzP66+/Hp/4xCfWXjfiDha3vnar2kOoe96nD0Yt/H2oGvxekUoyn6gk82lnfvKTn1R7CGyhbmdtW1vbtu2rqZ5kMrmv62Sz2RgcHIyBgYEd17S2tMZHWz66/qCdHKmi5ViOpmiKppWmaF5p7DSgH9a1pbm5OVpaWtwXao65SS3aKtFfKpYiN5WL3FRu3fFEMrHpS00frvFFqcqyBqgdtfLe7WcJG5kTbGROsJE5wUZbrQFmRmciN5mLdG86eoZ74sXeF+/b11h2LB7pf2TT+qBvpC+GU8PR2du5aQeMw6qpV8cfOG4NUGf8nry+uX/1y72rX+5d/XLv6pcvWte+EydO3Pf7Sked95X98z59MBr5d2p+r0glmU9Ukvl0f/5talfdfkpLp9Pbbo2yurtFOr33P9YMDQ3FE088EZcvX95zHwAAcNDOj5yPM5fPRFd/V2QGMnF+5HwMFYa2/OLSdl96mh2d3RTW2GsNAABQed0D3ZEdy0b3QHe0trXe9/zV3S4eH3y8bHvXha64MXyjKjUAAAAAAAC1pm6jL5lMJqamprZsz+XufcGrp6dnT/2Pjo5GZ2dn2Z0risXivnfGAACASnn0wqORSCZ2dO7ql57Oj5wv2776pacPhzP2UgMAANSG6ZHpiIhIpVNl29s622J2dDZKxdLauuKwagAAAAAAAGpN3e5gcfHixYiImJ2dLdt+8+bNPYcrxsfHIyLKhityudy2wQ4AAKhlO/nSU24qF6ViaV81AABAbXhn9p1tAw2rn/MXphcOvQYAAAAAAKDW1G3AIpPJRE9PT7z00ktl28fHx2NoaGjT8WKxGENDQ1uGJGZnZyOfz5cNV0RETE1NRSaT2fvAAQCginxRCgAAGkshV4jWttYt21c/6xdyhUOvAQAAAAAAqDUt1R7AfoyNjUV3d3dcvHhxXehhcHAwLl++XHYHi9HR0bh69WqMjo5GobD+Dzm5XC6y2Wz09PTE4ODgptp8Ph9TU1Ob6gAAoBYszi7GwvRCPPz4w9GR6Sh7ji9KAQBAbbp75268f+f9tdd/94u/q0i/S/mlLXeji4i1z/of3pHusGoAAAAAAABqTV0HLJLJZMzMzMTQ0FAkk8lob2+P+fn56O3tjf7+/rI1PT09kUwm48KFC5vaent7I5fLxejo6JbXTKfTFRs/AABsZTdfrspN5aKQK0S6Jx3dA92xOLsYL/a+GGeHzka6Z/3nV1+UAgCA2nT9yvX47p99d+317ebbFel3p5/T33v3vUOvAQAAAKiEa33Xqj2EuDRxqdpDAAAqpK4DFhH3QhYjIyM7Pj+TyWy5A8X8/HylhgUAAPuy0y9XrQYfzl4+u3asI9MR2bFsDKeGY2BmYN1uFr4oBQAAtencc+fi01/89Nrrt99+O77+j79exREBAAAAAAA0nroPWAAAwFG00y9XdfV3la1PJBPR1d8VY9mxeHb+2QMbJwAAUBktx1qi5dgHv7J/8KMPVqTfRDKxo9D08fbjh14DAAAAAABQa5qrPQAAAGCzlmMtcexjx9b+t5cvVz38xMNRyBWikPtgBzdflAIAgMbS2ta6bftSfiki7n3uP+waAAAAAACAWiNgAQAAR9TqF5cWZxfXjvmiFAAANJZUOrX2mb2c1TB1Kp069BoAAAAAAIBaI2ABAAB1amJwIr7R+Y1d1fiiFAAANJaTmZPb7ki3uuNduid96DUAAAAAAAC1pqXaAwA4TNf6rlV7CBERcWniUrWHAMARsDi9uKPgQ0emY+3YyczJyE3ltqzZ6otSu60BAABqw+mLp+O1q6/F4uziurXBqoWbC5s+yx9WDQAAAAAAQK2xgwUAANSpUz2nYqgwtGX7ws2FSCQT63aWOH3xdERELM4ubllT7otSu60BAABqQ0emI9I96XjjpTfKts+Nz8XZobNVqQEAAAAAAKg1drAAAIA6dfri6ZgZnYnuge5NbYVcIebG5yI7ll13/MNfeir3VNm58bl4avKpfddAtdTCjmXLTcvx8S9+vNrDAAAawOpucqu7120lO5aN0e7ROH3x9LrP9BODE3Hm8pmygenDqgEAAAAAAKglAhYAAFCnOjIdkZvKxY2rN+Ls5Q+eBFvIFWK0ezTOXD4TXf1dm+p8UQoAAOrX3PhczIzMRETEwvRCRERMPD2xdqwr27UphJ1IJmJgZiAmhyYjkUzE8fbjkZ/PR2dvZ9k1w2HWAAAAAAAA1BIBCwAAqGNnL5+N3FQuJgYnopQvRalYikQyEZ975XNld5uI8EUpAACoZ139XXv6DJ5IJqJvpK8mawAAAAAAAGqFgAUAANS5dE961ztI+KIUAAAAAAAAAADAes3VHgAAAAAAAAAAAAAAAEC1CVgAAAAAAAAAAAAAAAANT8ACAAAAAAAAAAAAAABoeAIWAAAAAAAAAAAAAABAwxOwAAAAAAAAAAAAAAAAGp6ABQAAAAAAAAAAAAAA0PAELAAAAAAAAAAAAAAAgIbXUu0BAAAAAAAAAAAAAAAAETOjMzE3Nhfdg92R7klHIpmIQq4Qi7OL8cOXfhjnnjsXHZmOTXWlYilevfJqREQcbz8e+fl8dPZ2Rld/15bX2kvNUSdgAQAAAAAAAAAAAAAANaBULEVuKhe5qdy644lkIrJj2S3DFaPdo5vaJwYn4tbNW9E73FuRmkYgYAEAAAAAAAAAAAAAADXi/Mj5yM/no5grRqItEQ93PxzdA91bnj+WHYtH+h/ZFL7oG+mL4dRwdPZ2Rronve+aRiBgAQAAAAAAAAAAAAAANeLRC49GIpnY0bmFXCFyU7k4P3K+bHvXha64MXxjXVhiLzWNornaAwAAAAAAAAAAAAAAAHZvemQ6IiJS6VTZ9rbOtshN5aJULO2rplEIWAAAAAAAAAAAAAAAQB16Z/adbXe7WA1RLEwv7KumUQhYAAAAAAAAAAAAAABAjVmcXYyZ0ZlYnF3c8pxCrhCtba1btq8GKQq5wr5qGoWABQAAAAAAAAAAAAAAHJC7d+7GnZ/dWfvfr37+q23Pz03l4sbVGxER0T3QHRERL/a+GLmp3KZzl/JL2+5GsRqkKBVL+6ppFC3VHgAAAAAAAAAAAAAAABxV169cj+/+2XfXXt+O21uem0qnIiLi7OWza8c6Mh2RHcvGcGo4BmYGoiPTsda20xDEe+++t6+aRiFgAQAAAAAAAAAAAAAAB+Tcc+fi01/89NrrW7duxde7vl723K7+rrLHE8lEdPV3xVh2LJ6df/ZAxklEc7UHAAAAAAAAAAAAAAAAR1XLsZY49rFja//7jd/8jT318/ATD0chV4hCrrB2LJFM7GhHiuPtx/dV0yjsYAFQBdf6rlV7CHFp4lK1hwAAAAAAAAAAAADADiWSiYiIWJxdjFQ6FRERrW2t29Ys5ZfW1e61plHYwQIAAAAAAAAAAAAAAKpsYnAivtH5jV3VpNKptUBEOas7VawGMvZa0ygELAAAAAAAAAAAAAAAoMoWpxd3FHzoyHSsHTuZObl2vJxCrhAREeme9L5qGkVLtQcAAAAAR80Prv0gbn3tVjSvVO+5BpcmLlXt2gAAAAAAAADA7p3qORUDwwNbti/cXIhEMrFuZ4nTF0/Ha1dfi8XZxXXBiw/XbAxK7KWmUdjBAgAAAAAAAAAAAAAAquz0xdMxMzpTtq2QK8Tc+Fz0vdC37nhHpiPSPel446U3ytbNjc/F2aGz+65pFAIWAAAAAAAAAAAAAABQZR2ZjigVS3Hj6o11xwu5Qox2j8aZy2eiq79rU112LBtvjr8Zi7OL645PDE7Emctnyu5GsZeaRtBS7QEAAAAAAAAAAAD3NzE4EY9mH73vF51KxVK8euXViIg43n488vP56OztLPtFrP3UAAAAlXf28tnITeViYnAiSvlSlIqlSCQT8blXPhcdmY6yNYlkIgZmBmJyaDISycSOPtPvpaYRCFgAAAAAAAAAAECNKuQKkZvKxczITCzOLsaj2Ue3Pb9ULMVo92hkx7Lrvnw1MTgRt27eit7h3orUAAAAByfdk971DhKJZCL6RvoOvOaoa672AAAAAAAAAAAAgM1mRmdiamgqIiJ6hnt2VDOWHYtH+h/Z9GTbvpG+mB2djdxUriI1AAAAR5EdLAAAAAAAAAAAoAZ1D3RH90B3REQszi7e9/zV3S7Oj5wv2951oStuDN9Y9yTcvdQAsN61vmuHfs3lpuXId+Tj1tduRfPKvWdtX5q4dOjjAICjRsACAAAAAAAAAACOgOmR6YiISKVTZdvbOttidnQ2SsVSJJKJPdcAAMBe/fKXv9xz7U9/+tN45plnYmZmJrq7u+P555+Phx56aE99feQjH9nzODjaBCwAAAAAAAAAAOAIeGf2nW1DEKshioXphbUdKfZSAwAAe/XRj360Iv1MTk5GZ2fnnutXVlYqMg6OnuZqDwAAAAAAAAAAANi/Qq4QrW2tW7avBikKucK+agAAAI4qO1gAAAAAAAAAAMAhWn5/OVaWP3hi7vLd5Yr0u5RfWttxopzVIEWpWNpXDQAA7NUvfvGLPdf+4R/+YXznO9+J999/Px544IH4zGc+E3/1V39VwdGBgAUAAAAAAAAAAByq/I/ykf8v+bXXt+N2RfrdaQjivXff21cNAADs1Uc+8pE917744ovx+c9/Pm7evBlPPPFE/Pmf//m++oNyBCwAAAAAAAAAAOAQtf1227pdI/KlfMR3qzggAACoAw899FB8+9vfrvYwOOIELAAa1LW+a1W9/nLTcnz8ix+v6hgAAAAAAAAAqqH5geaIBz70+m5zRfpNJBM72pHiePvxfdUAAAAcVZVZnQEAAAAAAAAAAFXV2ta6bftSfiki7oUq9lMDAABwVAlYAAAAAAAAAADAEZBKp9YCEeWs7lSRSqf2VQMAAHBUtVR7AAAAAAAAAAAAwP6dzJyM3FRuy/ZCrhAREeme9L5qAKhN1/quVXsIcWniUrWHAAD7YgcLAAAAAAAAAAA4Ak5fPB0REYuzi2XbF24ubApK7KUGAADgqBKwAAAAAAAAAACAI6Aj0xHpnnS88dIbZdvnxufi7NDZfdcAAAAcVQIWAAAAAAAAAABQ4wq5QkRElIqlbc/LjmXjzfE3N+1IMTE4EWcunym7G8VeagAAAI6ilmoPAAAAAAAAAAAA2GxufC5mRmYiImJheiEiIiaenlg71pXtiu6B7nU1iWQiBmYGYnJoMhLJRBxvPx75+Xx09nZGV39X2evspQYAAOAoErAAAAAAAAAAAIAa1NXftaeAQyKZiL6RvgOvAQAAOGoELAAAAOAIutZ3rdpDiEsTl6o9BAAAAAAAAACAHWuu9gAAAAAAAAAAAAAAAACqTcACAAAAAAAAAAAAAABoeC3VHgAAAAAAAAAAAABbu9Z3rdpDAACAhmAHCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4LdUeAACN6wfXfhC3vnYrmleqm/e7NHGpqtcHAAAAAAAAAAAAoPrsYAEAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAAKDhCVgAAAAAAAAAAAAAAAANT8ACAAAAAAAAAAAAAABoeC3VHgAAAAAAAAAAAAAA9e9a37VqDyEuTVyq9hAAqGN2sAAAAAAAAAAAAAAAABqegAUAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAICG11LtAQAAAABH07W+a9UeQkREXJq4VO0hAAAAAAAAAAB1QMACgIZXC1/886U/AAAAAAAAAAAAgOpqrvYAAAAAAAAAAAAAAAAAqk3AAgAAAAAAAAAAAAAAaHgCFgAAAAAAAAAAAAAAQMMTsAAAAAAAAAAAAAAAABpeS7UHAAAAAAAAAAAAAACVcK3vWrWHEJcmLlV7CADskYAFAAAAcKRV+5foy03L8fEvfryqYwAAAAAAAAAA7q/uAxbFYjGuXLkSERHt7e0xPz8fvb290d/fX1N9AgAAAAAAAAAAAAAAtauuAxbFYjG6u7tjbGwsMpnM2vHBwcG4efNmDA8P10SfAAAAAAAAAAAAAABAbavrgEU2m43+/v51QYiIiJGRkUilUtHb2xs9PT1V7xMAAAAAAAAAAAAAAKhtzdUewF7lcrmYmpqKwcHBsu0XLlzY9W4TB9EnAAAAAAAAAAAAAABQ++p2B4uRkZGIiEin02XbOzs7Y3R0NIrFYiSTyar1CQAAAAAAAAAAAABQbdf6rh34NZabliPfkY9bX7sVzSub9wK4NHHpwMcA+1G3O1jMzs5uG3JYDUlMT09XtU8AAAAAAAAAAAAAAKD21e0OFrlcLtra2rZsXw1K5HK5qvYJADtxGMngeiGhDAAAAAAAAAAAAFRD3QYs8vn82o4S5awGJYrFYlX7BAAAAAAAAAAAAIDDttOHvi43LUe+Ix+3vnYrmleaKzoGD1ulVv3yl7/cU91Pf/rTeOaZZ2JmZia6u7vj+eefj4ceemjX/bz33nt7uj4Hr24DFjsNObz77ruH3ufS3aX4xd1frL1+sPnBePCBB3c8Dqi0laaVWImVWGlaieVYrvZwICLMS7Z29+7dql9/eXm56uOAjZaXvVfWMmsAPsznHDZaaVqJ//va/x0/+fpPommlqWrjuPiXF6t2bdbzmZONzAnKsQaobe+9/14cu3ts7bU1QO3zOb2+uX/1y72rX+5d/XLv6tdK00q1h8B93L59O/L5/NrrY8eOxbFjx7apqKzlJv9NHwXep6kk86m21crve3f68+Mg51Ot/Ftwz2F8prjffKqVOfHRj350331MTk5GZ2dnBUZDLanbgEUtG/qPQ+te/37m9+MPHv+DKo0GIlZiJZZ+cynykY+mqN6XeeDDzEu2cv369apef3l5Od5+++2IiGhurmwiH/ZjN8FhDp81AB/mcw4b1cqcqPbnLD7gMycbmROUYw1Q26wB6k+tfCZjb9y/+uXe1S/3rn65d/Xr50s/r/YQuI9PfepT617/0R/9UXz+858/tOvnO/L3P4ma532aSjKfalut/F1mpz8/DnI+1cK/xQ+u/aDaQ4iIiH986R9XewiH8pnifvOpFuYEbKduAxbJZHJHO060t7cfep/D/2w4UonU2usHmx+MBxc9uYrqWWlaiXzko+2dtqo+LRU+zLxkK+fOnavq9VcT0mfOnImWlrr9qMQRtPqFO2qTNQAf5nMOG9XKnKj25yw+4DMnG5kTlGMNUNusAepPrXwmY2/cv/rl3tUv965+uXd1bKnaA+B+Xn/99fjEJz6x9vqwd7C49bVbh3YtDo73aSrJfKpttfJ3mZ3+/DjI+VQL/xa18nO0Uf4t7jefauHfISJ29J3xcvr7++M//If/EO+//3488MAD8c//+T+P8fHxXfdz69atePTRR/c0Bg5W3f61rq2tbdv21S35ksnkoffZ2tIaH23ZsG2MnRypouVYjqZoiqaVpmhe8RREaoN5yVZq4ctEzc3N0dLSUhNjgVWeZFzbrAH4MJ9z2KhW5oTPNrXFZ042MifYyBqgth1/4Lg1QJ2plc9k7I37V7/cu/rl3tUv965++WJs7Ttx4sR9v1t0kPw3fTR4n6aSzKfaViu/693p3DjI+VQL/xa18t9Io/xb3G8+jf3h2IGPYScuTVzaU91f/MVfxOc///m4efNmPPHEE/Hnf/7nceLEiV338/Of28WuVlX/v9Q9SqfTMT09vWX7aqoonU5XtU8AAACAWnCt71q1h7DnX1ICAAAAAAAA1IKHHnoovv3tb1d7GByg2ohk7UEmk9l2a5ZcLhcRET09PVXtEwAAAAAAAAAAAAAAqH11G7C4ePFiRETMzs6Wbb958+augxAH0ScAAAAAAAAAAAAAAFD76jZgkclkoqenJ1566aWy7ePj4zE0NLTpeLFYjKGhoZiamqpYnwAAAAAAAAAAAAAAQH1rqfYA9mNsbCy6u7vj4sWLkclk1o4PDg7G5cuXy+42MTo6GlevXo3R0dEoFAoV6RMAqJxrfdeqev3lpuX4+Bc/XtUxAAAcVdX+rLfq0sSlag8BAAAAAACABlMrfysDtlfXAYtkMhkzMzMxNDQUyWQy2tvbY35+Pnp7e6O/v79sTU9PTySTybhw4ULF+gQAAAAAAAAAAAAAAOpbXQcsIu4FIkZGRnZ8fiaTKbtzxX76BACOlh9c+0Hc+tqtaF5prtoYPFUZAODgVPvpQHZNAwAAAAAAAKhNdR+wAAA4iqr9pb9Vgh4AAAAAAAAAALtTK9/7qAX+LYB6I2ABAAAAAIfMrmkAAAAAAAAAtUfAAgCALdXCUwR88Q8A4GDUwme9CJ/3AAAAAAAAgNohYAEAQE2rhS/++dIfAAAAAAAAAADA0ddc7QEAAAAAAAAAAAAAAABUmx0sAACgzpWKpXj1yqsREXG8/Xjk5/PR2dsZXf1dVR4ZAMD92bEM9sY6AAAAGos1AAAANBZrgOoRsAAAgDpWKpZitHs0smPZ6Mh0rB2fGJyIWzdvRe9wbxVHBwBQH6od8lhuWo6Pf/HjVR0D9cU6AAAAGos1AAAANBZrgOoSsAAAgPuo9hfuIiL+W+m/lT0+lh2LR/ofWbeYiojoG+mL4dRwdPZ2RronfRhDBABgH35w7Qdx62u3onmluarjsJtHfbAOAACAxmINAAAAjcUaoLoELAAAoE4VcoXITeXi/Mj5su1dF7rixvANCyoAAHasFsLFQh7bsw4AAIDGYg0AAACNxRqg+gQsKuhXv/pVRET83fLfVXkksN7fvf938b9P/+9x8eTFONZ8rNrDgYgwL6ld5ia1avUz5upnzoiI6ZHpiIhIpVNla9o622J2dDZKxVIkkomDH2QDsgagHD9L2MicYCNzgo3MifVqIeRRCxbfW4yI9WuACOsA2CvvtfXN/atf7l39cu/ql3t39FgDVN/qumzj+gz2wvs0lWQ+UUnmE5VkPu2PNUD1VXe/+SPmzp07ERFxd/lulUcC6/3d8t/Fv5/99774R00xL6lV5ia1avUz5upnzoiId2bf2XahtLrQWpheONjBNTBrAMrxs4SNzAk2MifYyJygnHJrgAjrANgr77X1zf2rX+5d/XLv6pd7d/RYA1Tf6rps4/oM9sL7NJVkPlFJ5hOVZD7tjzVA9dnBAgAA6lQhV4jWttYt21cXW4Vc4bCGBAAAHDDrAAAAaCzWALXj289+O9746BvVHgYAAEecNUD12cECAADq1FJ+advE+upiq1QsHdaQAACAA2YdAAAAjcUaAAAAGos1QPXZwaKClpeXIyKiWCrG8QeOV3k08IH33n8vIiIKpULcecCWldQG85JaZW5SK5bfX45Y+eB14Zf3Uuernzkjdr5Qeu/d9yo6Nj5gDUA5fpawkTnBRuYEG5kTROxsDRBhHVBtq/ejUPJksHrjvba+uX/1y72rX+5d/XLv6sfGNUCxVLx33Bqg5vhbAJXkfZpKMp+oJPOJSqqX+fS/9Pwvh3o9a4D6IWBRQYXCvT+oXPk/r1R5JFDe0H8cqvYQYBPzklplblKrVj9zUhusAdiOnyVsZE6wkTnBRuYE5VgD1Jaf/vSnERHxP974H6s8EvbKe219c//ql3tXv9y7+uXe1a+f/vSn8Q/+wT+o9jD4EH8L4CB4n6aSzCcqyXyiksynnbEGqD0CFhX0T//pP43vfe978dBDD0Vzc3O1hwMAQB27+6u7sXzng4T68vJy/D/F/yee+H89sXYskUzsKLV+vN3TlA6KNQAAAJWykzVAhHVAtT322GPWAAAAVMRWa4DHHnts3XnWANXnbwEAAFSCNUD9ELCooJaWlnjiiSfufyIAAOzBb8dvr3vd2ta67flL+aWIuLfw4mBYAwAAcJA2rgEirAOqzRoAAICDZA1Qm6wDAAA4KNYAtUmsGgAA6lQqnVpbNJWzmmZPpVOHNSQAAOCAWQcAAEBjsQYAAIDGYg1QfQIWAABQp05mTm67JWAhV4iIiHRP+rCGBAAAHDDrAAAAaCzWAAAA0FisAapPwAIAAOrU6YunIyJicXaxbPvCzQWLKQAAOGKsAwAAoLFYAwAAQGOxBqg+AQsAAKhTHZmOSPek442X3ijbPjc+F2eHzh7yqAAAgINkHQAAAI3FGgAAABqLNUD1CVgAAEAdy45l483xNzel1icGJ+LM5TMS6wAAcARZBwAAQGOxBgAAgMZiDVBdTSsrKyvVHgQAALB3pWIpJocmI5FMxPH245Gfz0dnb2d09XdVe2gAAMABsQ4AAIDGYg0AAACNxRqgegQsAAAAAAAAAAAAAACAhtdc7QEAAAAAAAAAAAAAAABUm4AFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8FqqPYCj5O7du/H9738/HnrooWhull0BAKBylpeX46c//Wk89thj0dLiY3ytsAYAAOCgWAPUJmsAAAAOijVA7bIOAADgIFgD1C53o4K+//3vx+/8zu9UexgAABxh3/ve9+KJJ56o9jD4NWsAAAAOmjVAbbEGAADgoFkD1B7rAAAADpI1QO0RsKighx56KCIi/uZv/iZ+67d+q8qjgQ/cvXs3ZmdnI5PJSLlRM8xLapW5Sa36yU9+Ep/+9KfXPnNSG6wBKMfPEjYyJ9jInGAjc4JyrAFq0+r9+N73vhcdHR1VHg274b22vrl/9cu9q1/uXf1y7+rX4uJi/M7v/I41QA3ytwAqyfs0lWQ+UUnmE5VkPu2MNUDtMmsraHUbwJMnT1pQUVPu3r0bP/7xj+O3fuu3/LCiZpiX1Cpzk1p19+7diAhbT9cYawDK8bOEjcwJNjIn2MicoBxrgNq0ej86OjqsAeqM99r65v7VL/eufrl39cu9q3/WALXH3wKoJO/TVJL5RCWZT1SS+bQ71gC1xx0BAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANLyWag8AAAAAAAAAAAAAAAD4QCFXiOvD1yMiopQvRalYinRvOs5ePrtlTalYilevvBoREcfbj0d+Ph+dvZ3R1d9V9Zp6cWQCFoODg5HNZqOnp2df/RSLxbhy5UpERLS3t8f8/Hz09vZGf39/JYYJAAAAAAAAAAAAAABbmhufi1s3b0XfSN+646PdozEzMhPPzj+7qaZULMVo92hkx7LRkelYOz4xOBG3bt6K3uHeqtXUk+ZqD2A/crlcjI6ORnd3d4yOju67v2KxGN3d3XHx4sUYHh6Oy5cvx8jISExOTsbQ0FAFRgwAAAAAAAAAAAAAAOWViqX44Us/LBtU6HuhLwq5QkwMTmxqG8uOxSP9j6wLPURE9I30xezobOSmclWrqSd1G7AYHR1dCz0MDw9XpM9sNhv9/f2RyWTWHR8ZGYnR0dGYmpqqyHUAAAAAAAAAAAAAAGCjhemFmBufi8mhyU1tq6GGt6beWne8kCtEbioXjw8+XrbPrgtdcWP4RlVq6k3dBiwGBgZibGwsBgYGoq2tbd/95XK5mJqaisHBwbLtFy5cqFiQAwAAAAAAAAAAAAAANmpta41EMhHH249veU4imVj3enpkOiIiUulU2fPbOtsiN5WLUrF06DX1pm4DFpU2MjISERHpdLpse2dnZ0xNTUWxWDzEUQEAAAAAAAAAAAAA0Cg6Mh0xVBiKs5fPbmpbnF2MiIhTPafWHX9n9p1NoYsPWw1ELEwvHHpNvRGw+LXZ2dlIJpNbtq8GL6anpw9pRAAAAAAAAAAAAAAAcM/U0FSk0qnoHe5dd7yQK0RrW+uWdauhiEKucOg19aal2gOoFblcLtra2rZsXw1f5HK5+/a1vLwc77//fqWGBvv2/vvvr83Lpqamag8HIsK8pHaZm9Sq5eXlag+BbVgD8GF+lrCROcFG5gQbmROUYw1Q295//31rgDrjvba+uX/1y72rX+5d/XLv6pfPl7XP3wKoBO/TVJL5RCWZT1SS+VTe3Tt34/07H3yeXCou7aq+kCvE9eHrkUwn46nJpza1L+WX1naPKGc1FFEqlg69pt4IWPxaPp9f26WinNXwRbFYvG9ff/M3fxP/6T/9p7XXDzzwQLS0+KemepaXl+O//tf/GsvLy9HcbOMaaoN5Sa0yN6lV7777brWHwDasAfgwP0vYyJxgI3OCjcwJyrEGqG03btyIVOqDPyBZA9Q+77X1zf2rX+5d/XLv6pd7V78Khfp9umuj8LcAKsH7NJVkPlFJ5hOVZD6V97f/x9/G2//H22uvf3n3lzuqmxufi1s3b0UxV4xkOhmdvZ1lz9tpoOG9d9879Jp641P+r+0kOBGxsz9qPf/88+sWUP/kn/yT+NSnPrXHkcH+raysxO3btyMipAGpGeYltcrcpFb97Gc/q/YQ2IY1AB/mZwkbmRNsZE6wkTlBOdYAte2b3/ymNUCd8V5b39y/+uXe1S/3rn65d/Xr5z//ebWHwH34WwCV4H2aSjKfqCTziUoyn7bwDyI+8f/+xNrLn//i5xGv3r+sq78ruvq71l6/2PtizIzMRN8LfZFIJg5ipA1PwOIAnH/wfKQSHzy56sEfPRgtbx3eP3X25eyhXYv6cPfu3fibv/mb+PSnP+3pCdQM85JaZW5Sq95+++34whe+UO1hsIVqrwEirANqiZ8lbGROsJE5wUbmBOVYA9S2f/2v/3V8/OMfX3t97NixOHbsWBVHxP14r61vu71/YxfGDmFU27NOv8d/e/XLvatf7l39unXrVjz77LPVHgbb+MY3vhG/9Vu/tfbaOqCx7fUz50rTSjQ91BQtP22JppX9feHUZ0783KeSzCcqyXzamVu3bsV////573ddlx3LxnBqOErFUjw1+dTa8UQysaPdJY63Hz/0mnpj1v5aMpnc0S4W7e3t9z3n+APH4zcf+M31B5f3OLA9sHhjo9VtKY8dO+aHFTXDvKRWmZvUqgcffLDaQ2Ab1V4DRFgH1BI/S9jInGAjc4KNzAnKsQaobX/v7/29+Pt//+9Xexjsgvfa+rbb+/fA8gOHMKrtWaff47+9+uXe1S/3rn79xm/8RrWHwH2kUinrANbs9TPnctNyNEdzNC83R/NK877G4DMnfu5TSeYTlWQ+7cxe1wCJZCK6+rtibnwuclO5SPekIyKita1127ql/NJa/arDqqk3+/uUdoS0tbVt257P5yPiXhADAAAAAAAAAAAAAAAqrVQsRSFX2LI9mU5GRMT85PzasVQ6tRZu2KrP1fMOu6beCFj8WjqdXgtRlLO6u0U6nT6kEQEAAAAAAAAAAAAA0EiGU8Pxjc5vrIUVNjrefjwiYl37yczJLc+PiLXAxuqOF4dZU28ELH4tk8mshSjKyeVyERHR09NzSCMCAAAAAAAAAAAAAKCRJJKJSKVTkUgmyrbn5+9tKvBw98Nrx05fPB0REYuzi2VrFm4ubAo9HFZNvRGw+LWLFy9GRMTs7GzZ9ps3bwpXAAAAAAAAAAAAAABwYDIDmXhq8qkt2+denotEMhGPXnh07VhHpiPSPel446U3yteMz8XZobPrjh1WTb1pqIBFsViMoaGhmJqa2tSWyWSip6cnXnrppbK14+PjMTQ0dNBDBAAAAAAAAAAAAACgQfUO98b14euRm8ptahvLjkVExOde+dymHS6yY9l4c/zNTbtLTAxOxJnLZ8ruLHFYNfWkpdoDqIRc7t7kKRaL2543OjoaV69ejdHR0SgUCpvax8bGoru7Oy5evBiZTGbt+ODgYFy+fNkOFgAAAAAAAAAAAAAAHKi+kb6YG5+LsexYJNoSUcqXolQsxcnMyfjCW1/YFK6IiEgkEzEwMxCTQ5ORSCbiePvxyM/no7O3M7r6u8pe57Bq6kndBizGx8djZGQkIiKmp6cjIuLpp59eO5bNZmNgYGBdTU9PTySTybhw4ULZPpPJZMzMzMTQ0FAkk8lob2+P+fn56O3tjf7+/gP8/w0AAAAAAAAAAAAAANzT1d+168BCIpmIvpG+mqypF3UbsOjv79916CGTyZTdueLDksnkWkgDAAAAAAAAAAAAAABoDM3VHgAAAAAAAAAAAAAAAEC11e0OFgAAAAAAADS2a33XdnTectNy5Dvycetrt6J5pfLPH7s0canifQIAAAAAcPjsYAEAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAAKDhtVR7AAAAAAAAANSfa33Xqj0EAAAAAACoKDtYAAAAAAAAAAAAAAAADU/AAgAAAAAAAAAAAAAAaHgCFgAAAAAAAAAAAAAAQMNrqfYAAAAAAAAAgPp3re/agfS73LQc+Y583PrarWhe8fw4AAAAAODg+A0kAAAAAAAAAAAAAADQ8AQsAAAAAAAAAACgRs2Nz1V7CAAAAA1DwAIAAAAAAAAAAGpQqViKsexYzIzORKlYqvZwAAAAjryWag8AAAAAAAAAAADYrJArRETEtwa/Fd8a/Na252bHstHV37X2ulQsxatXXo2IiOPtxyM/n4/O3s5152y0lxoAAICjRMACAAAAAAAAAABqUCFXiFQ6FR2Zjki0JcqeU8qXopArbApXjHaPRnYsGx2ZjrXjE4MTcevmregd7t3czx5qAAAAjhoBCwAAAAAAAAAAqEG3bt6KpyafilQ6teU5k0OT0TPcs+7YWHYsHul/ZF1QIiKib6QvhlPD0dnbGeme9L5rAAAAjprmag8AAAAAAAAAAAAob7twxeLsYrR1tq07p5ArRG4qF48PPl62putCV9wYvrHu2F5qAAAAjiIBCwAAAAAAAAAAqEFbBR5WTY9MR/dA96ZjEVsHM9o62yI3lYtSsbSvGgAAgKOopdoDAAAAAAAAYHeu9V2r9hAAADgE2+1eMTk0Gb3DvZuOvzP7TiSSifv2uTC9EOme9J5rAAAAjiI7WAAAAAAAAAAAQB1ZnF2Mts62sqGIQq4QrW2tW9au1hRyhX3VAAAAHEUCFgAAAAAAAAAAcIju3rkbd352Z+1/v/r5r3ZVf/3K9ege6C7btpRf2nY3itUgRalY2lcNAADAUdRS7QEAAAAAAAAAAEAjuX7lenz3z7679vp23N5x7dz4XCTTyS3bdxqCeO/d9/ZVAwAAcBQJWAAAAAAAAAAAwCE699y5+PQXP732+tatW/H1rq/vqPb6levR90LfQQ0NAACgoQlYAAAAAAAAAADAIWo51hItxz742s5v/Ow3dlRXyBVicXYxOjIdW56TSCZ2tCPF8fbj+6oBAAA4ipqrPQAAAAAAAAAAAOD+pkemI5VObXtOa1vrtu1L+aWIuBeq2E8NAADAUWQHCwAAAAAAAACOrGt916o9hLg0canaQwCOiLem3rpvwCKVTsXC9MKW7as7VXy4n73UAAAAHEV2sAAAAAAAAAAAgDqwOLt4310kTmZOrgUiyinkChERke5J76sGAADgKLKDBQAAAAAAANS5WnhCPwBwsBZnFyMiItG2fcDi9MXT8drV12JxdjE6Mh2b2hduLmwKSuylBgAA4CiygwUAAAAAAAAAANS4pfzSjs7ryHREuicdb7z0Rtn2ufG5ODt0dt81AAAAR5GABQAAAAAAAAAA1LhCrhAREYnk9jtYRERkx7Lx5viba7terJoYnIgzl8+U3Y1iLzUAAABHTUu1BwAAAAAAAABAZV3ru1btIcRy03J8/Isfr/YwAI6Mhx9/OBLJRHz8ifu/tyaSiRiYGYjJoclIJBNxvP145Ofz0dnbGV39XRWrAQAAOGoELAAAAAAAAAAAoMZ1ZDpiqDC04/MTyUT0jfTt6hp7qQEAADhKmqs9AAAAAAAAAAAAAAAAgGqzg8URVAvb/UZEXJq4VO0hAAAAAAAAAAAAAADAjghYAAAAAAAAwD7UysOvAAAAAADYn+ZqDwAAAAAAAAAAAAAAAKDaBCwAAAAAAAAAAAAAAICG11LtAQAAAAAAAABwNP3g2g/i1tduRfOKZ/8BAAAAUPsELAAAAAAAAAAq6FrftWoPAQAAAADYA48JAQAAAAAAAAAAAAAAGp4dLAAAAAAA4IiYGJyIc0PnIpVOlW0vFUvx6pVXIyLiePvxyM/no7O3M7r6u7bs87Bq6sn/9vn/Ldpb26s9DAAAAAAAoMIELAAAAAAA4AhYnF2M2dHZeHzw8bLtpWIpRrtHIzuWjY5Mx9rxicGJuHXzVvQO91atBgAAgP8/e/8XG/d534n+H6pyNRKaaIa6EbXob8Nh9kKUFmsP5QKRFPxOIzJdLMSLRhypAdZpgbXIFFi4QDcmrd9dL05laoMNmosTc5RzsesC/lnDZi+Yq3Dsc4JIvjgiJy5OTF9s+JVrVKSB33pm5BbmqFXE34UOaVEcUvwz4h/p9QIIe77P83meR5qvyPly5v19AACAnWDPdi8AAAAAAADYvNJQadX2Yr4YR/uOLgk9RET0jvRGuVCOpJRsWw0AAAAAAMBOIGABAAAAAAC73GRhMjrznSu2V5NqJKVkxd0tOs93xo3hG9tSAwAAAAAAsFPs3e4FAAAAmzNbno2JkYmoV+oxW56NVDoVXQNd0dXftWJNvVaPX1z+RUREHDh0ICrTlejo6YjOvpU/kLVVNQAAwPpUk2pERGSymRX7TIxMrNqntaM1yoVy1Gv1SKVTW1oDAAAAAACwUwhYAADALjZZmIyIiN6R3sVjSSmJYr4YN4ZvRP9k/7IPLdVr9Sh0FSJfzEdbrm3x+NjAWNy+eTt6hnuWzbNVNQAAwPpNjExEz3BPJKVkxT6flD9ZNdCwEIiYmZiJbHd2S2sAAAAAAAB2ij3bvQAAAGBjqkk16rX6sp0qst3Z+M4734lqUo1ivrisrpgvxtG+o0tCDxEPQhrlQrnhh7K2qgYAAFifqdGpODFw4rH9qkk19rfuX7F9IRSxsBvGVtYAAAAAAADsFAIWAACwS02MTCwLVyxoy7VFtjsbSSlZ9mGnpJSs+AGszvOdcWP4xpJjW1UDAACsT71Wj2pSXdwVYjVzlblVd5ZYCEXUa/UtrwEAAAAAANgpBCwAAGCXulW6FX/V/lcrfjDpcO5wRETMlmcXj02MTERErPgBrNaO1khKyZIxt6oGAACeZffu3ou7n91d/Prnf/znx9b84vIv4tTgqTWNv9bX3p9/+vmW1wAAAAAAAOwUe7d7AQAAwMbsb90fs+XZqCbVaMu1ranmk/Inq95NdiEQMTMxE9nu7JbWAADAs+z65evx87/4+eLjO3vurNo/KSXR0dPxpJcFADTJW71vbfcSIiLi22Pf3u4lAAAAAOxoAhYAALBLvTT+UlST6oq7RNSSWkTEkvBFNanG/tb9K465EIqoJtUtrwEAgGfZ6Uun42t//rXFxx9//HH84F//YMX+0+PT0TPcs+bxU+nUmnaXOHDowJbXAAAAAAAA7BQCFgAAsAPdu3svfnP3N4uP//kf/7lhv5XCFRERU6NT0ZZrW9JnrjK3as1CKOLhD0RtVQ0AADzL9u7bG3v3ffEr++d+57kV+964ciO+funr6xp/tQB0xIPX8BGxZCe6raoBAAAAAADYKQQsAABgB7p++Xr8/C9+vvj4zp4766q/ceVGRET0Xu1dcnytgYbPP/18y2sAAIDHqybVSKVT6w4oZLKZmJmYWbF94TX8w0HpraoBAAAAAADYKQQsAABgBzp96XR87c+/tvj4448/jh/86x+sqXa2PBuloVLki/loy7U9qSUCAADbYLY8G1PFqZgqTi1rqybViIgYuzi2uJPES+MvRUTE4dzhSErJiuMu1Ga7s4vHtqoGAAAAAABgpxCwAACAHWjvvr2xd98XL9ef+53n1lxbzBfj7MjZ6OzrXNaWSqfWtLvEgUMHtrwGAAB4vM6+zoav9SMipkanopgvRu/V3mVh6+MXjsd7V96L2fJswyD2zM2ZZaGHraoBAAAAAADYKfZs9wIAAIDmKeaL0TXQFV39XQ3bF+5iu5K5ylxEPAhIbHUNAADw5LTl2iLbnY1fvf2rhu1To1NxaujUttQAAAAAAADsFAIWAADwlBgfGo8jLx6JU4Mrf1gpk80shhsaWdh1IpPNbHkNAACwOdWkuuS/j8oX8/Hh6IcxW55dcnxsYCxODp5suLPEVtUAAAAAAADsBHu3ewEAAMDmTRYmo7WjteHOFfVafXGniMO5w5GUkhXHWfgg1sMfeNqqGgAAYGPGBsailtRiZmLmweOLYzE5MhmHc4ejZ7hnsV8qnYr+yf4YHxqPVDoVBw4diMp0JTp6OqKzr7Ph2FtVAwAAAAAAsBMIWAAAwC43NToVEdEwXFFNqjFbnl38ENPxC8fjvSvvxWx5Ntpybcv6z9ycWRZ62KoaAABgY3pHetfcN5VOrav/VtYAAAAAAABstz3bvQAAAGDjZsuzMVeZaxiuiIhISsmSgENbri2y3dn41du/ath/anQqTg2dWnJsq2oAAAAAAAAAAAC2kx0sAABgl6om1Sjmi9He3R4zAzPL2uuVeiSlJIaqQ0uO54v5KHQV4viF40vCF2MDY3Fy8GTDnSW2qgYAAAAAAAAAAGC7CFgAAMAu9WbPm1FNqlEtVFfsk8lmlh1LpVPRP9kf40PjkUqn4sChA1GZrkRHT0d09nU2HGeragAAAAAAAAAAALaLgAUAAOxSr0y/suHaVDoVvSO9O7IGAAAAAAAAAABgO+zZ7gUAAAAAAAAAAAAAAABsNwELAAAAAAAAAAAAAADgmbd3uxcAAAAAAAAAAAAAAAA8MFuejYmRiahX6jFbno1UOhVdA13R1d/VsP9kYTKmilPRNdAV2e5spNKpqCbVmC3PxgdvfxCnL52Otlzbsrp6rR6/uPyLiIg4cOhAVKYr0dHTEZ19nSuubSM1u4mABQAAAAAAAAAAAAAA7ACThcmIiOgd6V08lpSSKOaLcWP4RvRP9kcqnVpSU6/VIyklkZSSJcdT6VTki/kVwxWFrsKy9rGBsbh983b0DPc0pWa32bPdCwAAAAAAAAAAAAAAgGddNalGvVZftlNFtjsb33nnO1FNqlHMFxvWnh05GycHT0ZnX2fk+nNxduRsDFWHItudbdi/mC/G0b6jy8IXvSO9US6Ul4U1Nlqz29jBAgAAAAAAAAAAAAAAttnEyER8/dLXG7a15doi252NpJRENalGJptZ0n7s/LFlO1uspJpUIyklcXbkbMP2zvOdcWP4xpJwxkZqdiM7WAAAAAAAAAAAAAAAwDa7VboVf9X+V1Gv1Ru2H84djoiI2fLspuaZGJmIiFgW0ljQ2tEaSSlZso6N1OxGAhYAAAAAAAAAAAAAALDN9rfuj3qtHtWk+kTn+aT8yaq7XSyEKGYmZjZVsxvt3e4FAAAAAAAAAAAAAADAs+6l8ZeimlRX3CWiltQiIqIt17biGLPl2ZiZmIkjJ46s2K+aVGN/6/4Vx1gIUjwc9NhIzW5kBwsAAAAAAAAAAAAAAHhC7t29F3c/u7v49U//8E8r9l0pXBERMTU6FW25toZ9klISN67ciIiIrv6uiIh4s+fNSErJsr5zlblVd6NYCFLUa/VN1exGdrAAAAAAAAAAAAAAAIAn5Prl6/Hzv/j54uM7cWfdYyyEJ3qv9i5rWwhcnBo8tXisLdcW+WI+hjPD0T/Zv2Q3i7WGID7/9PNN1exGAhYAAAAAAAAAAAAAAPCEnL50Or72519bfHz79u34QecP1lw/W56N0lAp8sX8kqDEgs6+zoZ1qXQqOvs6o5gvxivTr6x/4c+gPdu9AAAAAAAAAAAAAAAAeFrt3bc39n153+LXb3/pt9dVX8wX4+zI2RWDFKs58uKRqCbVqCbVxWOpdGpNO1IcOHRgUzW7kYAFAAAAAAAAAAAAAADsQMV8MboGuqKrv2tD9al0KiIe7IKxYH/r/lVr5ipzS2o3WrMb7d3uBWxWrVaLy5cvR0TEoUOHYnp6Onp6eqKvr29TYw4NDUVERKVSiYiIF198MQYHBze/YAAAAAAAAAAAAAAAeIzxofE48uKRODV4asU+YwNjcat0K16ZfmXN42aymZiZmFmxfWGnikw2s6ma3WhXByxqtVp0dXVFsViMXC63eHxgYCBu3rwZw8PD6x6zXC7HyMhIDA8PRzqdXjw+OjoaXV1dMTk52YylAwAAAAAAAAAAAABAQ5OFyWjtaG24c0W9Vv9iZ4qJ2cXdIxpZCD605doWjx3OHY6klKxYU02qERGR7c5uqmY32rPdC9iMfD4ffX19S8IVEREjIyNRKBSiVCqte8yhoaEYGRlZEq6IiOjr64uBgYEYGBjYzJIBAAAAAAAAAAAAAGBFU6NTERENwxXVpLok6NDe3R5D1aEVx5q5OROpdGrJzhLHLxyPiIjZ8uyKNY8GJTZSsxvt2h0skiSJUqkUIyMjDdvPnz8fw8PD0d3dveYxy+VyZLMrP6kLY7I2b/W+td1LiG+PfXu7lwAAAAAAAAAA0BSThcmYKk4t3qk2nU1Hz3BPw771Wj1+cfkXERFx4NCBqExXoqOnIzr7OlccfyM1AABAc82WH+xI0ShcERGRlJIlQYbjF47HZGFyxTDG1OhU5Iv5Jcfbcm2R7c7Gr97+1ZKdLRZMjU7FS+MvbbpmN9q1AYuFYMVKgYiOjo4oFApRq9WW7UaxkoXQxkoqlcqaxwIAAAAAAAAAgGao1+rx3878t2jvbl/ygaVqUo3xofFlIYt6rR6FrkLki/klH3waGxiL2zdvNwxlbKQGAABormpSjWK+GO3d7TEzMLOsvV6pR1JKluxY0ZZri6SUxI0rN+LU4KklYxW6CnFy8GTD0HS+mI9CVyGOXzi+7Brg5ODJhrtRbKRmt9m1AYtyubxq2GEheDExMbHmXSxyuVwkSRL5fD6KxeKy9pGRkbhw4cKG1gsAAAAAAAAAABuxEK54NOTw04GfxszEzLLjxXwxjvYdXXZX2d6R3hjODEdHT8eyDz5tpAYAAGiuN3vejGpSjWqhumKfTDaz7NipwVORlJIYGxiLeqUe9Vo9UulUfOed7zTcbSIiIpVORf9kf4wPjUcqnVrTLnYbqdltdm3AIkmSaG1tXbF9IXyRJMmax8xms9Hf3x+FQiE6OjpiZGRkMZxRKpWiVqvF8PDwptYNAAAAAAAAAABrdePKjagm1egf7l/Wlkqn4siJI0uOVZNqJKUkzo6cbThe5/nOuDF8Y0lYYiM1AABA870y/cqGa7Pd2XW/Zk+lU9E70vvEa3aTXRuwqFQqi7tUNLIQvqjVausad2RkJDo6OmJoaCh6enqiv78/Ojo6IpfLxcjIyGaWDAAAAAAAAAAA63L98vXI9ecatuWL+WXHJkYmIqLxXW0jIlo7WqNcKC/e0XajNQAAAE+jXRuwWGtw4tNPP1332IODg5FOp2NgYCAKhUKk0+koFotrrp+7Nxf/eO8fFx8/t+e5eO63nlv3Oti8e/fubfcSdoR79+7F/fv3/X2wozgv2amcm+xU9+/f3+4lsIqdcA3g+9bO4WcJj3JO8CjnBI9yTtCIa4Cd7fPffB777u1bfOx9gJ1vvmU+5mM+5lvm437497XbeP52L8/dzrPW15xeo+5enrvda6XnbGp0Kuq1ehy/cHzNY31S/mTVEMRCiGJmYmbx7rYbqXnW3LlzJyqVyuLjffv2xb59+1ap4Gl2v2Vjr22a+frI93r83KeZnE80k/Npbfz97Fy7NmDxJA0NDUVHR0fMz8/H0NBQXLlyZXE3i7XsYjH0fw4tefxvc/82/t2Jf/eklssqrl+/vt1L2BHu378fH3/8cURE7NmzZ5tXAw84L9mpnJvsVBsJDrN1dsI1gNe+O4efJTzKOcGjnBM8yjlBI64BdradcA3A+szHfMx9aS4qUYmWaNnu5bBOnr/dy3O386z1d0heo+5enrvd6+EP7j/sg7c/iIiItlxbRETMlmdjZmImjpw4snjsUdWkGvtb968410KQoppUN1XzrHn++eeXPP7jP/7j+JM/+ZNtWQvbr9LW+N/s4zTz9ZH3hvBzn2ZyPtFMzqe1WekagO23awMW6XR6TbtYHDp0aF3j9vT0xNDQUHR3d0dExPDwcFy4cCHy+XwUCoWoVCqP3c1i+H8Zjkzqiy0Tn9vzXDw3685V2+H06dPbvYQdYSHldvLkydi7d9f+s+cp47xkp3JuslMtXHiyM+2EawCvfXcOP0t4lHOCRzkneJRzgkZcA+xsO+EagPWZb5mPSlSi9ZPWaJn3Ie/dxvO3e3nudp61/g7Ja9Tdy3O3e/393/99w+Oz5dnF/79x5Ua05dqiq78rZsuz8WbPm3Fq6NSyHSXmKnOLO040shCkqNfqm6p51rz//vvxu7/7u4uP7WDxbLv9X25vqK6Zr4+8N4Sf+zST84lmcj6tzUrXAGy/XXvWtra2rtq+kOpJp9NrHvPKlSuRy+UWwxULcrlcTE9Px8DAQBQKhSiVSsv6PGz/3v3xO3t/Z+nB+TUvgybyjfkLe/bsib179/o7YUdxXrJTOTfZiST6d7adcA3ge9bO4mcJj3JO8CjnBI9yTvAo1wA724HfOrDt1wCsz/24Hy3REi3zLbFn3r+v3cbzt3t57nae9bze9Bp19/Lc7Q737t6L39z9zeLj+3P3G/abq8xFKp2KycJknBo8tXi8LdcW+WI+/qr9ryJfzC8JWaw1BPH5p59vquZZc/Dgwcd+Xolnx0Zf2zTz9ZHv80T4uU9zOZ9oJufT4/m72bl27TOTzWZjYmJixfaF3S2y2eyKfR41MjISk5OTq7ZPTEzE+Pj4qgELAAAAAAAAAABYyfXL1+Pnf/Hzxcd34k7DfgvBh4UdJB6WSqci252Nnw78NF6ZfuXJLBQAAOAZs2tvE5LL5RZDFI0kSRIRsa4gRJIkj93xYmBgYNV5AQAAAAAAAABgNacvnY7X7ry2+PUfp/5jw36pdCoiYskOFQ/L9mSjmlRjtjy7pGYtO1IcOHRgUzUAAABPo10bsLhw4UJERJTL5YbtN2/eXPcuE9lsdjGYsZLp6eno6upa17gAAAAAAAAAALBg7769se/L+xa/fvtLv92w38LOFQtBi5XaZyZmlh1byVxlbtmYG6kBAAB4Gu3d7gVsVC6Xi+7u7nj77bcjl8stax8dHY3x8fFlx2u1Wly+fDl6enqWBTD6+vpiaGgoisViwzlrtVqUy+W4dOlSc/4QAAAAAAAAALBF3up9a0397rfcj0pbJW7/l9uxZ76592389ti3mzoePO3acm1RTaqP7ffw7hOZbGZJ4GKlvplsZlM1AAAAT6Ndu4NFRESxWIzR0dFlu1gMDAzE4OBgwx0sCoVCXLlyJfL5/LK24eHhxfparbakrVwuRz6fj+Hh4Uin0037MwAAAAAAAAAAQCNHXjwSEUsDFA9b2FmiLde2eOxw7vCK/SNiMbCR7c5uqgYAAOBptGt3sIiISKfTMTk5GUNDQ5FOp+PQoUMxPT0dPT090dfX17Cmu7s70ul0nD9/vmF7sViMUqkUFy9eXHI8m8023BEDAAAAAAAAAACehM6+zigNlSIpJdHZ17msvTJdiYiIIyeOLB47fuF4vHflvZgtzy4JXiyYuTmzLCixkRoAAICn0a4OWEQ8CFmMjIysuX8ul4tqdfWtE7u7uxvufgEAAAAAAAAAAFslk81EZ19nXL98vWHA4sPRD+Pk4MlIpVOLx9pybZHtzsav3v5Vw7DE1OhUvDT+0pJjG6kBAAB4Gu36gAUAAAAAAAAAwFq91fvWdi8hIiK+Pfbt7V4Cu0Tv1d4odBVisjAZXf1di8eL+WJkspnoGe5ZVpMv5qPQVYjjF44vCUyMDYzFycGTDXej2EgNAADA00bAAgAAAAAAAAAAdqhUOhX9k/3xi8u/iGK+GBER9Vo9OvOdSwIXjWrGh8YjlU7FgUMHojJdiY6ejoY7YWy0BgAA4GkjYAEAAAAAAAAAsMWexE4a91vuR6WtErf/y+3YM7/nsf3torF7pNKphjtVPK6md6T3idcAAAA8TR5/NQ0AAAAAAAAAAAAAAPCUE7AAAAAAAAAAAAAAAACeeQIWAAAAAAAAAAAAAADAM0/AAgAAAAAAAAAAAAAAeOYJWAAAAAAAAAAAAAAAAM+8vdu9AAAAAAAAAAAAAAAAgMdJ3kkiGU8iWiJaO1rjyIkjcfj5w00b3w4WAAAAAAAAAAAAAADAtrty6Mqq7dkz2eh+vTtOv3Y62s+0x+2bt+Onf/rTuPvZ3abMbwcLAAAAAAAAAAAAdoW3et/a7iUAAPAEzc/Pr6lf6mAqUgdT0XWxK+p36jE+NB5nf3R20/PbwQIAAAAAAAAAAAAAANh2LS0t665JHUw1bX4BCwAAAAAAAAAAAAAAYFeq36nH7MRsU8ba25RRAAAAAAAAAAAAAAAAHqP2Ua3h8fn5+Qftf1eLmF99jHqtHnOVuZgtz8b1y9ej83xnU9YmYAEAAAAAAAAAAAAAAGyJmcmZmLk5E9WkGkkpibt37i5p/2H2h2sea35+PrLd2Tj7o7NNWZuABQAAAAAAAAAAAAAAsCU6z3VG57kvdpyYLc9GaagUyTtJtLS0xNFzR9c0TiabiWxPNrJnsk1bm4AFAAAAAAAAAAAAAACwLdpybfHS+EsxNjAWH45+GPlr+W1by55tmxkAAAAAAAAAAAAAACAiekd6I92e3tY1CFgAAAAAAAAAAAAAAADb7vSl0xuqK10qNWX+vU0ZBQAAAAAAAADgMd7qfWu7lwAAAADsYJ3nOjdUVy6Uo/ty96bnF7AAAAAAAAAAAAAAAAB2lNpHtagm1cf2my3PRr1Wb8qcAhYAAAAAAAAAAAAAAMCOUP5xOUpDpaaFJtZDwAIAAAAAAAAAAAAAANh2yTtJjPWPRSabic58Z6TSqcfWzE7Oxq13bzVlfgELAAAAAAAAAAAAAABg273z2juRL+aj81znuuquHLrSlPn3NGUUAAAAAAAAAAAAAACATUhlUusOV0REpNvTTZlfwAIAAAAAAAAAAAAAANh2bbm2DdX1T/Q3ZX4BCwAAAAAAAAAAAAAAYNvVa/VtnX/vts4OAAAAAAAAAMC2eKv3re1eQnx77NvbvQQAAAB2kM58Z3z4kw/j6LeOrquudKkU3Ze7Nz2/HSwAAAAAAAAAAAAAAIBtlz2Tjcp0JT78yYfrqisXyk2Z3w4WAAAAAAAAAAAAAADAtqt9VItj+WPxQfGDuPri1Wjvbo/WjtbIZDMr1syWZ6NeqzdlfgELAAAAAAAAAAAAAABg243kRuLunbsRETE/Px8zkzPR0tKyZfMLWAAAAAAAAAAAAAAAANtuf+v+iIg4dv5YpNKpNdXMTs7GrXdvNWV+AQsAAAAAAAAAAAAAAGDbZbKZOP3a6ci9nFtX3ZVDV5oy/56mjAIAAAAAAAAAAAAAALAJmWwmMtnMuuvS7emmzG8HCwAAAAAAAAAAAAAAYNudfePshur6J/qbMr8dLAAAAAAAAAAAAAAAgGeegAUAAAAAAAAAAAAAALAr1e/U473vv9eUsQQsAAAAAAAAAAAAAACAXamaVOODtz9oylh7mzIKAAAAAAAAAAAAAADAJtx699a6a24M34h6rd6U+QUsAAAAAAAAAAAAAACAbXet71rcvXN3XTXz8/OxP7O/KfMLWAAAAAAAAAAAAAAAANtuf+uDoMSx88cilU417FOv1aOaVGNmYiay3dk48uKRps0vYAEAAAAAAAAAAAAAAGy7TDYTp187HbmXc2vqf+M/34j9mf1r7v84e5oyCgAAAAAAAAAAAAAAwCZkspnIZDNr7n/q1VORyqTi1ru3mjK/gAUAAAAAAAAAAAAAALDtzr5xNtq/0b6ums5znTE9Pt2U+QUsAAAAAAAAAAAAAACAZ56ABQAAAAAAAAAAAAAAsGvVklpTxtnblFFgh3qr963tXkJ8e+zb270EAAAAAAAAAAAAAICnUv1OPeaqc00ZS8ACAAAAAAAAAAAAAADYdrfevbXmvvVaPapJNSZHJqNroKsp8wtYAAAAAAAAAAAAAAAA2+5a37W4e+fumvvPz89HtjsbJ793sinzC1gAAAAAAAAAAAAAAADbbn/r/oiIOHb+WKTSqdX7Htofbbm2yJ7JNm1+AQsAAAAAAAAAAAAAAGDbZbKZOP3a6ci9nNuW+fdsy6wAAAAAAAAAAAAAAAAPyWQzkclmtm1+O1gAAAAAAAAAAMAONVmYjKniVHQNdEW2OxupdCqqSTVmy7PxwdsfxOlLp6Mt17asrl6rxy8u/yIiIg4cOhCV6Up09HREZ1/ninNtpAYAAKCZzr5xdlvnF7AAAAAAAAAAAIAdql6rR1JKIiklS46n0qnIF/MrhisKXYVl7WMDY3H75u3oGe5pSg0AAPBkzJZnY2JkIuqVesyWZyOVTkXXQFd09XetWLNVIeunPZgtYAEAAAAAAAAAADvY2ZGzUZmuRC2pRao1FUe6jqz6wapivhhH+44uC1/0jvTGcGY4Ono6Itud3XQNAADQfJOFyYh48Fp8QVJKopgvxo3hG9E/2R+pdGpJzVaFrLcjmF37qBYTIxPxSfmTmKvMxf7W/ZHOpuPEwIk4/Pzhps8nYAEAAAAAALtQNanG9eHrERFRr9SjXqtHticbpwZPrVjj7lUAALA7HTt/bNkHqFZSTaqRlJI4O3K2YXvn+c64MXxjSVhiIzUAAEDzVZNq1Gv1Zb/rz3Zn4zvvfCcKXYUo5ovx0vhLS9q3KmS91cHs0qVSvHflvZifn1/WVi6UozPfGb2F3tj35X1Nm1PAAgAAAAAAdpmp0am4ffP2krtXRUQUugoxOTIZr0y/sqzmab57FQAA8IWJkYmIiMhkMw3bWztao1woR71WXwxtbKQGAABovomRifj6pa83bGvLtUW2OxtJKYlqUl18/b5VIeutDGbX7zx4r2GuMhdHzx2NIy8eWbwWqdfqMffpXMxOzsYH1z6IpJTEn936s9j3peaELPY0ZRQAAAAAAGBL1Gv1+ODtDxoGFXqv9kY1qcbYwNiyttXuKlUulCMpJdtWAwAANM8n5U9WDUEsfAhrZmJmUzUAAEDz3Srdir9q/6uo1+oN2w/nDkdExGx5dvHYWgLTSSlZMuZW1WxUMV+MbHc2hipDkb+Wj1Ovnoqui13RdbErTr16Krpf746Xxl+KoepQHD13NP7bN/7bpudcIGABAABPibGBscd+UGmyMBlv9rwZU6NTixcz1aQaU6NTUcwXl1x8Paxeq8f40HiMD43HjSs3YmxgLKZGp1adayM1AADA481MzMTU6FSMD40va1sINdwq3VpyfOGuUicGTjQcc+GuUttRAwAArN1seTYmC5Mr/j4/4sHr8v2t+1dsXwhSVJPqpmoAAIDm29+6P+q1+rpee29VyHqrgtmTVycjk83E2Tca75TxsNTBVPSO9EZbV1uUf1ze1LwL9jZlFAAAYFssfHhpcuTBmynH8sdW7V+v1SMpJcuCGKl0KvLF/LI7zC7UFLoKy9rHBsbi9s3bDe+au5EaAABgbfa37o9UOhUHDh1Ysc+jb3Cs5a5S5UI56rX6Yu1W1QAAwLPo3t178Zu7v1l8/E//8E+r9k9KSVSTamS7s9HV3xWz5dl4s+fNODV0KrLd2SV95ypzK74mj4jFIMXDd5XdSA0AANB8L42/FNWkuuLr81pSi4hY8nmcrQpZb1Uw+1bpVvS93beumrNvnI2//oO/jtzLuU3NHSFgAQAAu9ZkYTKS8SSyPdnoHu6ON3veXFPd2ZGzUZmuRC2pRao1FUe6jkRXf9eK/Yv5YhztO7osfNE70hvDmeHo6OlY9ubNRmoAAIC1acu1xVB1qGHbwl1s27vblxxfz12lFl6rb1UNAAA8i65fvh4//4ufLz6+E3dW7LvwOvrU4KnFY225tsgX8zGcGY7+yf4lv49fawji808/31QNAACwdusJWa8Wfp4anYq2XNuSPlsVst6qYHYqs7EbNKXb05uad4GABQAA7FJd/V2LwYjVtgJ/1LHzx9Z8p9iFHTLOjjTecq/zfGfcGL6x5INRG6kBAACaozRUikw2s2zXuKft7lUAALDbnb50Or72519bfHz79u34QecPGvbt7OtseDyVTkVnX2cU88V4ZfqVJ7JOAACgOdYTsl7JjSs3IiKi92rvkuNbFbLesmB2yxbXPULAAgAAWNHEyERErJyMb+1ojXKhHPVaffGDUhupAQAANqeaVOP68PVIZ9Px0vhLy9qftrtXAQDAbrd3397Yu++Lj+389me/vaFxjrx4JKZGp6KaVBdfi6fSqTW95j5w6MDi/2+kBgAAWLv1hKwbmS3PRmmoFPlifskOdk+jemVj7yHUklpT5t/TlFEAAICn0iflT1YNQSy8WTMzMbOpGgAAeNbdu3sv7n52d/Hrn//xn9dUNzU6FeND41EaKkUqnYpj+WMN+z11d68CAAAi4otd4h7e6Xq1XeUiHgSjH67daA0AALB2e/ftjX1f3rf49dtfWl/IupgvxtmRsw13uNuqkPVWBbPT7en48L9/uK6a977/Xhx+4fCm5l1gBwsAAHhGzZZnY2ZiJo6cOLJisr2aVFd9U2XhjZRqUt1UDQAAPOuWbQ2+Z21bg3f2dS55M+XNnjdjcmQyeq/2+uATAAA8BcYGxuJW6Va8Mv3Kmmsy2cyqNzla+EDUw7vPbaQGAADYGsV8MboGuqKrv6th+1aFrLcqmN39enf88Ks/jIiIo3949LH9J69OxvXL12Pw08FNzbtAwAIAAJ4xSSmJalKNbHc2uvq7YrY8G2/2vBmnhk5Ftju7pO9cZW7VN0sWLpweTqdvpAYAAJ51j24N/vHHH8cP/vXatwZfkC/mYzgzHPVaPV4af2nx+NN29yoAAHhWzE7MLn5IqZGF198P30jpcO5wJKVkxZqFGyA9/J7ARmoAAIAnb3xoPI68eCRODZ5asc9Whay3Mpidv5aPwolCdHyzIzr7OuPIiSOLwY16rR5zlbmYHp+OD0c/jGpSjYsTFzc954I9TRsJAABomnt378Xdz+4ufv3zP/5zU8ZduIA5NXhq8c2Wtlxb5Iv5eLPnzSVbiEesPQTx+aefb6oGAACedY9uDf7c7zy3oXFS6VR09nVGUkqWfDjqabt7FQAAPCvau9tjqDq0YvvMzZlIpVNLPsB0/MLxiIhlv/N/uObRoMRGagAAgCdrsjAZrR2tDcMVD38+53Du8Kqf11kpZL0VNRvVlmuL/on++Pz/93mM9Y9FoasQP+z4Yfyw44dR6CrEmz1vxo3hGzE/Px///mf/PtpeaHv8oGskYAEAADvQ9cvX4/WDry9+/ejf/Kgp43b2dUZnX+ey4wsfwirmi02ZBwAAeHLqtfrimxSNpLPpiIiYHp9ePJbJZtZ019tH70S1FTUAAMDKjl84HpOFyYZt1aQaU6NT0Xu1d8nxtlxbZLuz8au3f9Wwbmp0Kk4Nndp0DQAA8ORMjU5FRERXf9eytmpSXXKTpa0KWW91MLst1xb9k/1x9o2zcfj5wzE/P7/4lW5PR/dwd7zy61cie6a5YfC9TR0NAABoitOXTsfX/vxri48//vjj+MG//sETnfPIi0dianQqqkl18cNOqXRqTTtSHDh0YPH/N1IDAACs3XBmOCIihqpDDXeCWHit/ejdqx5+s+VRK92JaitqAACAlbXl2iIpJXHjyo0ld62tJtUodBXi5ODJhjdWyhfzUegqxPELxxd3tI6IGBsYi5ODJxu+Jt9IDQAA0Hyz5dmYq8w1DFdERCSlZMnr84cD0w+/ll8wNToVL42/tOTYVtU0Q1d/14p/F0+CgAUAAOxAe/ftjb37vni5/tzvPPfE51z4YNZseXYxYLG/df+qNQt3pn34Q10bqQEAANYulU7F/tb9K76mrkxXIiLiSNeRxWPHLxyP9668F7Pl2YZveqx0J6qtqAEAAFZ3avBUJKUkxgbGol6pR71Wj1Q6Fd955zsNX3dHPLhu6J/sj/Gh8UilU3Hg0IGoTFeio6ejYSBjozUAAEBzVZNqFPPFaO9uj5mBmWXt9Uo9klISQ9WhJce3KmT9LASzBSwAAOAZMTYwFrdKt+KV6VfWXJPJZmJmYvnF2oKFO+IuBDI2WgMAAKxdrj8XJwZOrNg+dW0qUulUHDt/bPHY0373KgAAeNplu7Pr/qBSKp2K3pHeJ14DAAA0z5s9b0Y1qUa1UF2xT6PP3GxVyHorg9lTfzMV5UI55qpzkb+Wj/RX0kvaq7eqURoqxb/4vX8RJ793smnzClgAAMAzYnZidnH3iEYWgg8PfwjqcO5wJKVkxZpq8uBi7uE3dTZSAwAArF3PcE+MDYzFsfyxZa+ri/liRER8553vLNvhwt2rAAAAAABgZ1vPjVMftVUh660IZpculeLIiSNx++btuHvnbsyWZ5cFLDLtmchfy0fyThKlS6XovtzdlLkFLAAA4BnR3t0e/cP9K7bP3JyJVDq1JOV+/MLxeO/KezFbnm1499mZmzPLPhy1kRoAAGB9ekd6Y2p0Kor5YqRaU1Gv1KNeq8fh3OH4s1t/tixcEfF03r0KAIDd763et7Z7CRER8e2xb2/3EgAAAIiIW+/eikw2E53nOiPmH+xUcfRbR1fsnz3z4HNIH/7kw1X7rZWABQAAPCOOXzgek4XJ6OrvWtZWTaoxNToV+WJ+yfG2XFtku7Pxq7d/1TAsMTU6FS+Nv7TpGgAAYP06+zrXHVh4mu5eBQAAAAAAPH0+KH4QZ390NiJize+DZM9k46d/+tOmBCz2bHoEAABg21WTakRE1Gv1Ffu05dqiXqvHjSs3ltUWugpxcvBkw4uSfDEfH45+GLPl2SXHxwbG4uTgyYa7UWykBgAAAAAAAAAAeMbNb+/0W76DxbvvvhtJkkQ2m40TJ07El7/85a1eAgAAPBWmRqdicmQyIiJmJmYiImLs4tjisc5857LdKk4NnoqklMTYwFjUK/Wo1+qRSqfiO+98p+FuExEP7jzbP9kf40PjkUqn4sChA1GZrkRHT8eKKfGN1AAAAAAAAAAAAM+2enXlG8yuppbUmjJ/UwMWr732Wty5c2fJsR/96EcREXHnzp3o7u6Ocrkc8/Pzkc1mo1qtxujoaPz+7/9+M5cBAADPhM6+zg2FFbLd2XXvIJFKp6J3pPeJ1wAAAAAAAAAAAM+uynRl3TX1O/X4/NPPmzJ/UwMWAwMD0dHREQMDA9Hf3x8vvPDCYls+n4/JyckYHByM119/PSIiarVanD9/Ptrb2+MrX/nKhuas1Wpx+fLliIg4dOhQTE9PR09PT/T19W36z1MoFKJYLEY6nY6IiGw2G8PDw5seFwAAAAAAAAAAAAAAWOrY+WMxemE0+t5eex5g9PxoHP+j402Zv6kBi1/+8pdRLBbj3LlzS47/zd/8TZRKpcjn84vhioiIdDod165di0uXLi3udLEetVoturq6olgsRi6XWzw+MDAQN2/e3HAYolarxZkzZ6K7uzvGx8cXjydJEkNDQ0IWAAAAAAAAAAAAAADQZKcGT8UPv/rDGP2j0ei92hv7vrRvxb6fvP9JjF0ci3qtHie/d7Ip8zc1YHHz5s3F3SQe9vbbb0dLS0tcunRpWVs6nY6DBw9uaL58Ph99fX1LwhURESMjI5HJZKKnpye6u7vXPe5CuOLRIMXAwEBMTEwIWAAAAAAAAAAAALBt3up9a7uXEBER3x779nYvAQB4Cr30s5fih1/9YUwVpyLbk41sdzZS6VTsb90fc5W5qExX4lbpVsyWZ2N+fj4GygNNm7upAYv5+fmGx0ulUkREPP/88w3bW1pa1j1XkiRRKpViZGSkYfv58+djeHh43QGLK1euRJIkDUMU6XQ6Tpw4se61AgAAAAAAAAAAAAAAj5fJZmKoMhTFfDGmfzYdyXiyrM/8/Hxku7NxduRsZNozTZu7qQGLQ4cOLTt269atqNVq0dXVtWJdrVZb91wLwYpsNtuwvaOjIwqFQtRqtUin02se9/Lly9Hf39+wrVgsrnudAAAAAAAAAAAAAADA2qXSqXhp/KVI3kliqjgVMxMzUa/VI5VORSabia6BrsieaZwl2IymBiwa7UQxOjoaEbHqThIr7XyxmnK5vGpwYiF4MTExseZdLEZHR6NWq8WFCxfWvR4AAAAAAAAAAAAAAKB5smeyTyRIsZI9zRzsf/7P/xmfffbZkmMjIyPR0tKyYmjh0qVLMTAwsO65kiSJ1tbWFdsXwhdJsnw7kJW8/fbbERGRy+Ui4kGIo1AoRLlcXvf6AAAAAAAAAAAAAACA3aOpAYtLly5FPp+Pv/3bv433338/Lly4EEmSRF9fXzz//PNL+r7//vvxB3/wB3Ho0KF44YUX1j1XpVJZdQeLhfBFrVZb85gPBymuXLkSlUol+vv7IyKip6cnjK5A0gABAABJREFUSqXSutcJAAAAAAAAAAAAAADsfHubOdjBgwfj8uXLce7cucWdI/r6+hZ3hoiI+O53vxulUmmxvVQqxaeffhqXL19e11xrDU58+umnax5zIbRRKBRicHBw8Xgul4tisRjt7e1RLBaju7t71XHm7s3FP977x8XHz+15Lp77refWvA6eLvfu3dvuJcS9e/fi/v37O2ItsMB5yU7l3GSnun///nYvgVXshGsA37d2Dj9LeJRzgkc5J3iUc4JGXAPsbJ//5vPYd2/f4mPvA+x88y3zMR/zMd8yH/fDv6/dxvO3e3nudi/P3e7ludu47b4m2+75ebw7d+5EpVJZfLxv377Yt2/fKhU8Kfdbdu/3t6fx+7TvX9vH7xVpJucTzeR8Wht/PztXUwMWEQ/CCL/+9a/jzp07cfDgwWXtQ0NDMTQ0tOTYwm4T220htNFoPel0Orq7u2NgYCCmp6dXHWfo/1z65/u3uX8b/+7Ev2vaOtldrl+/vt1LiPv378fHH38cERF79jR14xrYMOclO5Vzk51qPcFhtt5OuAbYCa87ecDPEh7lnOBRzgke5ZygEdcAO9tOuAZgfeZjPua+NBeVqERLtGz3clgnz9/u5bnbvTx3u5fnbuO2+3esD39wn53p+eefX/L4j//4j+NP/uRPtmUtz7pK2+799/I0fp/e7u+fzzK/V6SZnE80k/NpbVwD7FxND1gsWAhXfPbZZ1GpVOIrX/lKRES0t7c3Zfx0Or2mXSwOHTq07jFX2qGip6cnRkdHo1wuRy6XW3Gc4f9lODKpzOLj5/Y8F8/NunPVs+r06dPbvYTFlNvJkydj794n9s8e1sV5yU7l3GSnWrjwZGfaCdcAO+F1Jw/4WcKjnBM8yjnBo5wTNOIaYGfbCdcArM98y3xUohKtn7RGy/zT8SGmZ4nnb/fy3O1enrvdy3O3cdv9O9a///u/39b5ebz3338/fvd3f3fxsR0sts/t/3J7u5ewYU/j9+nt/v75LPN7RZrJ+UQzOZ/WxjXAzvVEztqPPvoohoeHo1AoRERES0vLkm1Mbt26FUNDQ/HNb34zXn755Q3N8bhdLxZSPel0el1j1mq1FWsW5pyYmFg1YLF/7/74nb2/s/Tg/JqXwVNmp/xw2LNnT+zdu3fHrAcinJfsXM5NdiKJ/p1tJ1wD+J61s/hZwqOcEzzKOcGjnBM8yjXAznbgtw5s+zUA63M/7kdLtETLfEvsmffva7fx/O1enrvdy3O3e3nuNm67r8e2e34e7+DBg4/9vBJbYzd/f3sav0/7/rW9/F6RZnI+0UzOp8fzd7NzNf1V2rvvvhvZbDZGRkaivb09zpw5s2zXivb29rh27Vq0t7fH97///Q3Nk81mV90aZWF3i2w2u+YxVwtNNBobAAAAAAAAAAAAAAB4OjQ1YHHr1q3o6+uL/v7+mJ6ejl//+tfxs5/9LM6dO9ew/0L44t133133XLlcbtWgQ5IkERHR3d295jFffPHFiFg5QLEQ6FhrEAMAAAAAAAAAAAAAANgdmhqweO2112J4eDjeeOONJbtWtLS0rFhz7ty5KBaL657rwoULERFRLpcbtt+8eXNd4YqIiL6+voiIKJVKDdunp6cjIuLEiRPrGhcAAAAAAAAAAAAAANjZmhqwqFarcfHixXXXzc/Pr7sml8tFd3d3vP322w3bR0dHY2hoaNnxWq0WQ0NDDUMU2Ww2+vr64vLlyyuOOTg4GOl0et3rBQAAAAAAAAAAAAAAdq6mBiyy2eyG6qrV6obqisVijI6OLtvFYmBgIAYHBxvuYFEoFOLKlSuRz+cbjnn16tWo1WpRKBSWHM/n85HNZmN4eHhDawUAAAAAAAAAAAAAAHauvc0cbKNBiSRJNlSXTqdjcnIyhoaGIp1Ox6FDh2J6ejp6enqir6+vYU13d3ek0+k4f/78qmNevnx5MYRRq9Uin89Hf3//htYJAAAAAAAAAAAAAAA8GaVLpei+vHyDhvVqasAik8nE//F//B/x+7//+2uuuXTpUpw5c2bDc6bT6RgZGVlz/1wu99ggSDqdtlMFAAAAAAAAAAAAAADsAuVCeecFLAYHB+Ob3/xmXL16dU0hi+9///sxOjoa/+N//I9mLgMAAAAAAAAAAAAAANjFah/VopqsvrlCRMRseTbqtXpT5mxqwCKbzcYbb7wRZ86ciRMnTsSFCxfihRdeiFqtFh999FHUarWoVCpRLpdjZGQkkiSJycnJZi4BAAAAAAAAAAAAAADYpco/LkdpqNS00MR6NDVgERHR3d0d165di/7+/hgcHFw8XigUFv9/fn4+stlsTExMxPPPP9/sJQAAAAAAAAAAAAAAALtM8k4SY/1jkclmojPfGal06rE1s5OzcevdW02Zv+kBi4iIvr6+6OvriytXrsTbb78dv/zlLxfbstlsDAwMxKuvvvokpgYAAAAAAAAAAAAAAHahd157J/LFfHSe61xX3ZVDV5oy/xMJWCwYHBxcsosFAAAAAAAAAAAAAABAI6lMat3hioiIdHu6KfPvacooAAAAAAAAAAAAAAAAm9CWa9tQXf9Ef1Pm3xEBi0uXLm33EgAAAAAAAAAAAAAAgG1Ur9W3df4dEbAoFArbvQQAAAAAAAAAAAAAAGAbdeY748OffLjuutKlUlPm39uUURr46KOPIkmSx/Yrl8tRq9We1DIAAAAAAAAAAAAAAIBdIHsmGzf+84348CcfxtFvHV1zXblQju7L3Zuev+kBix//+McxNDQkNAEAAAAAAAAAAAAAAKxZ7aNaHMsfiw+KH8TVF69Ge3d7tHa0RiabWbFmtjwb9Vq9KfM3NWDxzjvvRH9/f2Sz2cjn85FOpx9bMzk5Ge+++24zlwEAAAAAAAAAAAAAAOwyI7mRuHvnbkREzM/Px8zkTLS0tGzZ/E0NWLz22mtRLBbj3Llz66o7dOhQM5cBAAAAAAAAAAAAAADsMvtb90dExLHzxyKVTq2pZnZyNm69e6sp8zc1YJHJZNYdroiIaG9vb+YyAAAAnjlv9b613UuIb499e7uXAAAAAAAAAADALpbJZuL0a6cj93JuXXVXDl1pyvx7mjLK/yOXW98fYsHExEQzlwEAAAAAAAAAAAAAAOwymWwmMtnMuuvS7emmzN/UHSxqtVozhwMAAAAAAAAAAAAAAJ4RZ984u6G6/on+pszf1B0s8vl8/OQnP1l33aVLl5q5DAAAAAAAAAAAAAAAgHVpasDizJkzMT09ve6QRaFQaOYyAAAAAAAAAAAAAACAXa72US1Kl0rx13/w13H1xavx13/w1/HTP/1pfPL+J09kvr3NHOyjjz6KfD4fxWIxXnzxxeju7o6Ojo7IZrMr1pTL5ajVas1cBgAAAAAAAAAAAAAAsIuVLpXivSvvxfz8/LK2cqEcnfnO6C30xr4v72vanE0NWORyubhz505ERMzPz8fk5GS0tLQ0cwoAAAAAAAAAAAAAAOApVb9Tj0JXIeYqc3H03NE48uKRSKVTD9pq9Zj7dC5mJ2fjg2sfRFJK4s9u/Vns+1JzQhZNDVi0trZGRMT58+cjnU6vqWZycjLefffdZi4DAAAAAAAAAAAAAADYhYr5YmS7s3H2jbOr9qvfqcf44Hj8t2/8t7h482JT5m5qwCKbzcZrr70WL7/88rrqDh061MxlAAAAAAAAAAAAAAAAu8zk1cnIZDOPDVdERKQOpqJ3pDd++t2fRvnH5ci9nNv0/Hs2PcJDstlsZLPZdde1t7c3cxkAAAAAAAAAAAAAAMAuc6t0a03hioedfeNsTBWnmjJ/U3eweOONNzZUNzEx0cxlAAAAAAAAAAAAAAAAu0wqk9pQXbo93ZT5mxqwAAAAAAAAAAAAtsbYwFicHjodmWymYXu9Vo9fXP5FREQcOHQgKtOV6OjpiM6+zhXH3EgNAABA07Rscd0jnmjA4qOPPoqRkZEol8tRqVSitbU1stlsDAwMxPPPP/8kpwYAAAAAAAAAgKfWbHk2yoVynBg40bC9XqtHoasQ+WI+2nJti8fHBsbi9s3b0TPc05QaAACAZqpX6huqqyW1psy/pymjNHDp0qXo6OiI4eHhGB8fj8nJyRgfH4+RkZHo6uqKP/qjP4rPPvvsSU0PAAAAAAAAAABPrdJQadX2Yr4YR/uOLglKRET0jvRGuVCOpJQ0pQYAAKCZ0u3p+PC/f7iumve+/14cfuFwU+Zv+g4Wd+7cia6urqhUKnHu3Ll48cUXI51OR0RErVaLTz/9NCYnJ+PatWtRKpXi1q1b8aUvfanZywAAAAAAAAAAgKfSZGEyOvOdKwYeqkk1klISZ0fONmzvPN8ZN4ZvRLY7u6kaAACAZut+vTt++NUfRkTE0T88+tj+k1cn4/rl6zH46WBT5m96wCKfz0d3d3e88cYbq/a7c+dODA4Oxje+8Y24efNms5cBAAAAAAAAAABPnWpSjYiITDazYp+JkYlV+7R2tEa5UI56rR6pdGrDNQAAAE9C/lo+CicK0fHNjujs64wjJ44sXofUa/WYq8zF9Ph0fDj6YVSTalycuNi0uZsasLh69Wpks9nHhisiIg4ePBgjIyPx3e9+N3784x/Hyy+/3MylAAAAAAAAAADAmrzV+9a2zv/p3Kdr7jsxMhE9wz0r7l4REfFJ+ZNVQxALIYqZiZnFHSk2UgMAAPAktOXaon+iP8YujsVY/1i0tLQs6zM/Px+ZbCb+/c/+fbS90Na0ufc0baSIKJVKawpXPOyNN96IYrHYzGUAAAAAAAAAAMBTZ2p0Kk4MnHhsv2pSjf2t+1dsXwhSLOyGsdEaAACAJ6Ut1xb9k/1x9o2zcfj5wzE/P7/4lW5PR/dwd7zy61cie6a5AfCm7mCRyay89eBq2tvbm7kMAAAAAAAAAAB4qtRr9agm1ejs63xs37nK3OKOE40sBCnqtfqmagAAAJ60rv6u6Orv2rL5mhqwaLT1xpOsAwAAAAAAAACA3eb+b+7H/P35Lx7fu//Yml9c/kX0DPesafy1hiA+//TzTdUAAAA8bZoasKhUKhuqS5KkmcsAAAAAAAAAAIAdq/LrSlT+xxefs7kTd1btn5SS6OjpeNLLAgAA2LU+/MmHcfRbRzc9zp4mrGVRe3t7/Pf//t/XVfP9738/XnjhhWYuAwAAAAAAAAAAdqzWr7ZGxx90LH595f/9lVX7T49PR7Y7u+bxU+nUmnakOHDowKZqAAAAdoqxi2NNGaepO1i8/vrr8dWvfjUiIv7wD//wsf2vXr0aly9fjk8//bSZywAAAAAAAAAAgB1rz2/tifithx7fW/keqTeu3IivX/r6usbf37p/1fa5ylxEPAhVbKYGAABgIz55/5M4/PzhFdvWY64yF9WkuqbA+Fo0NWAREXHt2rU4ceJEfPOb34y+vr44ceJEpNPpiIio1WpRqVRifHw8RkdHI0mSmJiYaPYSAAAAAAAAAABg16sm1UilU+sONWSymZiZmFmxfeGDR5lsZlM1AAAA61V6rRTv/ef3oq2rLS7+XxeXtf/Xb/zXuHvn7jas7IGmByxyuVxMTEzExYsXo7+/P1paWpb1mZ+fj2w2Gz/72c/ihRdeaPYSAAAAAAAAAABg15stz8ZUcSqmilPL2qpJNSIixi6OLe4+8dL4SxERcTh3OJJSsuK4C7XZ7uzisY3UAAAArFc1qcb8/HzUq413nFi4vunq73rw+NBjdtv7dC6q09X48CcfNmV9TQ9YRDwIWUxOTkahUIiRkZH45S9/udiWzWZjYGAgXn311ScxNQAAAAAAAAAAPBU6+zqjs6+zYdvU6FQU88Xovdobbbm2JW3HLxyP9668F7Pl2WVtEREzN2eWBSU2UgMAALBevVd7I9uTXfH6IpPNxOnXTkfu5dy6xr1y6EozlvdkAhYL+vv7o7+//0lOAQAAAAAAAAAAPKQt1xbZ7mz86u1fNQxLTI1OLe52sZkagLd639ruJcS3x7693UsAANYhdTAVXRe7VmzP9mTjyIkj6x433Z7exKq+8EQDFsDOuIi433I//sWf/4vtXgYAAAAAAAAA0CTVpLr430aBiHwxH4WuQhy/cHxJ+9jAWJwcPNnwbrEbqQEAAGimU6+e2lBd/0RzNobYEQGLS5cuxeXLl7d7GQAAAAAAAAAAsKONDYxFLanFzMTMg8cXx2JyZDIO5w5Hz3DPYr9UOhX9k/0xPjQeqXQqDhw6EJXpSnT0dERnX2fDsTdSAwAA8DTZEQGLQqEgYAEAAAAAAAAAAI/RO9K75r6pdGpd/TdaAwAAPBljA2NxLH9s1d3kJguTMVWciq6Brsh2ZyOVTkU1qcZseTY+ePuDOH3pdMNd7+q1evzi8i8iItYcrt5ITbMl7ySRjCcRLRGtHa1x5MSROPz84aaNv+aAxfvvv9+0SRdUKpVIkiRqtVrTxwYAAAAAAAAAAAAAgN2kmlQjKSUxOTIZs+XZOJY/tmr/eq0eSSmJpJQsOZ5KpyJfzK8Yrih0FZa1jw2Mxe2bt5fsjreZmo24cuhKDH46uGJ79kw2smeyUb9Tj7nKXCSlJCZGJqJnuCf2fXnfpudfc8DiG9/4Rty5c2fTEwIAAAAAAAAAAAAAAEtNFiYjGU8i25ON7uHueLPnzTXVnR05G5XpStSSWqRaU3Gk60h09Xet2L+YL8bRvqPLwhe9I70xnBmOjp6OZbtmbKRmI+bn59fUL3UwFamDqei62BX1O/UYHxqPsz86u+n51xywaG1tjYiI/v7+iIg4dOjQpif/9NNPY3p6On7yk59seiwAAAAAAAAAAAAAANituvq7FoMRs+XZNdcdO38sUunUmvou7JBxdqRxGKHzfGfcGL6xJCyxkZqNamlpWXdN6uDa/uxrseaARTabjddeey1efvnlpk2+oBlhDQAAAAAAAAAAAAAAYGUTIxMREZHJZhq2t3a0RrlQjnqtvhja2EjNVqrfqcfsxNoDKatZc8Ail8tFNrv5REkj7e3tT2RcAAAAAAAAAAAAAADggU/Kn6waglgIUcxMzCzuSLGRmtXUPqo1PD4/P/+g/e9qEfOrj1Gv1WOuMhez5dm4fvl6dJ7vfOy8a7HmgMXrr7/elAkbmZiYeGJjAwAAAAAAAAAAAADA0262PBszEzNx5MSRaMu1NexTTaqxv3X/imMsBCmqSXVTNauZmZyJmZszUU2qkZSSuHvn7pL2H2Z/uKZxIh6EMrLd2Tj7o7NrrlnNmgMWAAAAAAAAAAAAAADA+ty7ey9+c/c3i4//6R/+qanjJ6Ukqkk1st3Z6OrvitnybLzZ82acGjq1bEeJucrc4o4TjSwEKeq1+qZqVtN5rjM6z32x48RseTZKQ6VI3kmipaUljp47uqZxMtlMZHuykT3z+F0z1uqJBCz+5m/+JgqFQlSr1bh27Vp85StfWdJ+69atGBoait/7vd+L733ve09iCQAAAAAAAAAAAAAAsO2uX74eP/+Lny8+vhN3mjb2QvDh1OCpxWNtubbIF/MxnBmO/sn+JbtZrDUE8fmnn2+qZj3acm3x0vhLMTYwFh+Ofhj5a/kNjdMMe5o94KVLlyIi4ubNmzE5ORnlcnlZn/b29rh27Vq88MILi/0BAAAAAAAAAAAAAOBpc/rS6XjtzmuLX/9x6j82bezOvs7o7OtcdjyVTkVnX2cU88WmzfWk9Y70Rro9va1raOoOFu+++25ks9k4d+5czM/Px61bt+Jb3/rWiv3PnDkTERE/+clPVu0HAAAAAAAAAAAAAAC70d59e2Pvvi8+uv/bn/32lsx75MUjMTU6FdWkurjTRSqdWtOOFAcOHVj8/43UbNTpS6c3PcZmNHUHi2KxGBcvXoyIiL6+vnj11VcfW3PmzJkYHx9v5jIAAAAAAAAAAAAAAOCZlkqnIiJitjy7eGx/6/5Va+Yqc0tqN1qzUZ3nlu/GsZWaGrCYn59v5nAAAAAAAAAAAAAAAEADYwNj8cOOH66rJpPNLAYiGlnYqWJhx4uN1myl+p16vPf995oyVlMDFtVqdUN1SZI0cxkAAAAAAAAAAAAAAPBUm52YXVPwoS3XtnjscO7w4vFGqsmDTEC2O7upmq1UTarxwdsfNGWsvU0Z5f8xPT297po7d+7Ep59+2sxlAAAAAAAAAAAAAADAU629uz36h/tXbJ+5OROpdGrJzhLHLxyP9668F7Pl2SXBi4drHg1KbKRmo269e2vdNTeGb6waAFmPpgYszp8/HxcuXIi33357XTV/9Ed/1MxlAAAAAAAAAAAAAADAU+34heMxWZiMrv6uZW3VpBpTo1ORL+aXHG/LtUW2Oxu/evtXDcMSU6NT8dL4S5uu2ahrfdfi7p2766qZn5+P/Zn9TZm/qQGLwcHB+OpXvxp/9Ed/FFevXo0vfelLK/Z9//334+LFi1Gr1eJ73/teM5cBAAAAAAAAAAAAAAC7VjWpRkSsujNDW64tklISN67ciFODp5bUFroKcXLwZHT2dS6ryxfzUegqxPELx5cEJsYGxuLk4MmGu1FspGYj9rc+CEocO38sUulUwz71Wj2qSTVmJh7snHHkxSNNmTuiyQGLiIif/exn8dWvfjWKxWL09PREd3d3pNPpaG1tjUqlEtPT01EqlaJcLsf8/HyUy+VmLwEAAAAAAAAAAAAAAHaVqdGpmByZjIiImYmZiIgYuzi2eKwz37lst4pTg6ciKSUxNjAW9Uo96rV6pNKp+M4732m420RERCqdiv7J/hgfGo9UOhUHDh2IynQlOno6GgYyNlqzEZlsJk6/djpyL+fW1P/Gf74R+zP719z/cZoesMhms1GpVCKfz8fPfvazGB8fX9Znfn4+uru7Y2RkJNrb25u9BAAAAAAAAAAAAAAA2FU6+zo3FFbIdmfXvYNEKp2K3pHeJ16zXplsJjLZzJr7n3r1VEz9zVTcevdWtH9j89mEpgcsIiLS6XSMj4/HO++8E8ViMSYmJqJWq0U6nY5sNhsDAwNx5syZJzE1AAAAAAAAAAAAAACwC5194+y6azrPdUbpUmnnBiwWnDlzRpACAAAAAAAAAAAAAADY8fZs9wIAAAAAAAAAAAAAAAA2qpbUmjKOgAUAAAAAAAAAAAAAALAr1e/UY64615Sx9jZlFAAAAAAAAAAAAAAAgE249e6tNfet1+pRTaoxOTIZXQNdTZlfwAIAAAAAAAAAAAAAANh21/quxd07d9fcf35+PrLd2Tj5vZNNmV/AAgAAAAAAAAAAAAAA2Hb7W/dHRMSx88cilU6t3vfQ/mjLtUX2TLZp8wtYAAAAAAAAAAAAAAAA2y6TzcTp105H7uXctsy/Z1tmBQAAAAAAAAAAAAAAeEgmm4lMNrNt89vBAgAAAAAAAAAAAAAA2HZn3zi7rfPbwQIAAAAAAAAAAAAAAHjm2cECAAAAAAB2mdnybEyMTES9Uo/Z8myk0qnoGuiKrv6uFWvqtXr84vIvIiLiwKEDUZmuREdPR3T2dW57DQAAAAAAwEpqH9Vitjwbc5W5yGQzkclmIv2V9BOZS8ACAAAAAAB2kcnCZERE9I70Lh5LSkkU88W4MXwj+if7I5VOLamp1+pR6CpEvpiPtlzb4vGxgbG4ffN29Az3LJtnq2oAAAAAAAAaufXurfjpwE+jmlSXtbV1tUXv1d44/G8ON3VOAQsAAHhKjA2MxbH8sch2Z1ft5661AACwe1WTatRr9Tg1eGrJ8Wx3Nr7zznei0FWIYr4YL42/tKS9mC/G0b6jS0IPEQ9CGsOZ4ejo6Vh2LbFVNQAAAAAAAI8avTAaU6NTMT8/HxERmWwmIiLmKnNRr9VjZmImCrlCnBo6FWf+8kzT5t2SgMVHH30Ub7zxRty5c2fx2Pz8fLS0tERPT09861vf2oplAADAU6eaVCMpJTE5Mhmz5dk4lj+2an93rQUAgN1tYmQivn7p6w3b2nJtke3ORlJKoppUF99oWLhuODtytmFd5/nOuDF8Y0nwYatqAAAAAAAAHlV6rRTT49Nx5vUz0dnXGZn2zLI+s7+cjV/9f38V11+/HvsP7Y+T/+lkU+be05RRVvHd7343RkdH49KlS/GjH/1o8euNN96IH/3oR3Hw4MG4cOFCvPvuu096KQAA8FSZLExGaagUERHdw91rqlntbrLlQjmSUrJtNQAAwOPdKt2Kv2r/q6jX6g3bD+cebIM9W55dPDYxMhERX9zZ6VGtHa2RlJIlY25VDQAAAAAAwMOSd5JISkn82a0/i1OvnmoYroiIaHuhLXqGe+KVX78SEz+aiNrf1Zoy/5oCFp999tmGBv/TP/3TGBoaiu9973tx8ODBhn3OnDkTb7/9dkxOTgpZAADAOnT1d0W+mI+u/q7Y37r/sf0X7iZ7YuBEw/aFu8luRw0AALA2+1v3R71Wj2pSXXPNJ+VPIpVOrdi+EIiYmZjZ8hoAAAAAAICHlQvl+M4734nUwZXfc3hYJpuJ/LV8lAZLTZn/sQGLq1evRnt7e/zv//v/vq6Bf/zjH0dfX1+0t7evqf+rr74axWJxXXNERNRqtRgaGoqhoaG4cuVKDAwMxOjo6LrHeZyBgYFIEnfZBQBg93LXWgAA2P1eGn8pXpl+ZdlucQtqSS0iYkl7NamuGspeCEU8HNrYqhoAAAAAAICHzc/PrzlcsaAt1xbz8/NNmf+xAYuLFy9GX19fXLx4MX7v934v/u7v/m5NA1er1XjxxRfXtZh0Or2u/rVaLbq6uuLChQsxPDwcg4ODMTIyEuPj4zE0NLSusVZTLpejUChErVZr2pgAALDV3LUWAAB2rnt378Xdz+4ufv3zP/7zin1XCjNHREyNTkVbrm1Jn7nK3Kqv0RdCEQ+HoLeqBgAAAAAA4GGrvQ/yJOoetXctnUZGRiIi4p133olsNhtXrlyJ//Sf/tOqNd3d3XH58uW4fPnymhby2WefRbW6vrtW5fP56Ovri1wut2y9mUwmenp6oru7e11jNtLMsAYAAGwXd60FAICd6/rl6/Hzv/j54uM7e+6se4wbV25ERETv1d4lx9caaPj808+3vAYAAAAAAGCJli2ue8Rjd7BYMDIyEt3d3XHt2rX4X//X/zX+1b/6V/G3f/u3K/Z/4YUXYnp6Oi5duhT/8A//sOrYP/nJT+LMmTPx3e9+d80LT5IkSqVSDAwMNGw/f/58DA8Pr3m8lRQKhcjn85seBwAA1mM9d69dK3etBQCAnev0pdPx2p3XFr/+9G//dF31s+XZKA2VIl/MR1uu7QmtEgAAAAAA4MnKZDNR+6i2rpq7n91d9Yaw67GmHSwWdHR0RE9PT9y6dSsGBwfjhRdeiO9+97vxv/1v/1vD/teuXYt8Ph/pdDqy2WzkcrlobW2NiIhKpRJJkkS5XI50Oh3Xrl2L559/fs1rWdhVI5vNrrjWQqEQtVot0un0ev6Yi5IkWXUOAAB4Uppx99pHuWstAADsXHv37Y29+774lf1zv/PcuuqL+WKcHTkbnX2dy9pS6dSaXqcfOHRgy2sAAAAAAAAe1nWxK0qvleLr/5+vx74v71tTzfjgePRc6WnK/OsKWHR3d8fExER84xvfiJGRkRgYGIjz58/HoUOH4sc//nH84R/+4bKaYrEYSZLE8PBwTE5ORrFYjIgHoYVsNhtvvPFGXLx4cd0LXwhmrGQhFDExMRHd3d3rHj/iQYhjeHg4SqXShuoBAGCjTl86HV/7868tPv7444/jB//6B9u4IgAAYKcq5ovRNdAVXf1dDdsfd8emucpcRMSSnei2qgYAAAAAAHh2rHVnimMXjj14/+O7XZFpz6zYr5pU44O3P4ju4e41hzEeZ10BixdeeCG+//3vxze+8Y2IiMjlcvHrX/86rly5EufOnYvz58/H1atX40tf+tKSumw2u7jjRLMkSbK4G0YjC+GLhV0o1mt0dDQGBgY2VAsAAJu12bvXNuKutQAA8PQZHxqPIy8eiVODp1bsk8lmYmZiZsX2hdfvmewXb1BsVQ0AAAAAAPDsGMmNxN07d9fUd35+PpLS47MAqXQqJkYm4uuX1r7jxWrWFbCIiPj000+XHRscHIy+vr7I5/ORTqejUCjEf/gP/2HTi1tNpVJZ3KWikYXwRa1WW/fYtVotkiSJvr6+jS4PAAB2HHetBQCAp8tkYTJaO1ob7lxRr9UXX3Mfzh1e9Q2IalKNiIhs9xe/c9+qGgAAAAAA4Nmxv3V/1Gv16OzrfOxnjNajXq3HB9c+iNzLuU2Pta6Axa1bt1bcNSKbzcbk5GQUCoV49dVXY2RkJIrFYvzLf/kvN73IRtYanGgUCHmcy5cvx/Dw8LrrFszdm4t/vPePi4+f2/NcPPdbm7/jMGzUfMt83L9/P+7du7fdS4FF9+7dc16yIzk32anu37+/6THctfbJcQ3wgO+dD/hZwqOcEzzKOcGjnBM08rhrgKnRqYiIhuGKalKN2fJsdPZ1RkTE8QvH470r78VseTbacm3L+s/cnFkWetiqmt3q8998HvvufXEXrGf1GmA3mW+Zj/mYf/D78tj8NTZby/O3e3nudi/P3e7ludu95lvmt3sJPMadO3eiUqksPt63b1/s27f5u+Oyfvdbdu/3N9+nn4xn9fdqfq9IMzmfaCbn09o8q38/mWwmTr92uilBiCdlXQGLX/7yl9Hd3b1qn/7+/jh//nxcvHgxstlsDA0NxV/+5V9uapFbqVQqRU9Pz6bGGPo/h5Y8/re5fxv/7sS/29SYsBnzMR/3Pn7wjXjPnj3bvBp44P79+/Hxxx9HhPOSncW5yU61keDwo9y19slxDfDA9evXt3sJO4KfJTzKOcGjnBM8yjlBI6tdA8yWZ2OuMtcwXBERkZSSJa+323Jtke3Oxq/e/lXD4MPU6FS8NP7SkmNbVbNbuQbYfeZjPua+NBeVqERLtGz3clgnz9/u5bnbvTx3u5fnbvf6h7l/2O4l8BjPP//8ksd//Md/HH/yJ3+yLWt51lXaKo/vtEP5Pv1kPKvvUfm9Is3kfKKZnE9r83B491mSyWZ2/E1Z1xWwGB8fjx/96EeP7ZdOp6NYLEapVIrz589HsViM0dHR+Df/5t9seKGN5ljLLhaHDh1a17jj4+Ob2r0iImL4fxmOTOqLJ/65Pc/Fc7PuXMX2mW+ZjyP/ryNx8uTJ2Lt3Xf/s4YlZSF86L9lpnJvsVAsXnpvhrrVPjmuAB06fPr3dS9gR/CzhUc4JHuWc4FHOCRpZ6RqgmlSjmC9Ge3d7zAws3zmuXqlHUkpiqLo0AJAv5qPQVYjjF44veZ0+NjAWJwdPNnyNvlU1u5FrgN1nvmU+KlGJ1k9ao2Xeh5h2G8/f7uW52708d7uX524Xm9vuBfA477//fvzu7/7u4mM7WGyf2//l9nYvYcN8n34yntX3qPxekWZyPtFMzqe1+fu///vtXsK2OPvG2e1ewmOt+az96KOPoqOjI95///24efNmJMmDO9J2dHRENpuNEydOxJe//OUlNd3d3VGpVGJoaCheeOGF+O53vxuvv/76sn4b0draumr7QqonnU6vecwrV67EpUuXNrOsiIjYv3d//M7e31l60E6ObKP7cT/27NkTe/fu9cOKHcV5yU7l3GQnakai311rnxzXAA/4vvkFP0t4lHOCRzkneJRzgketdA3wZs+bUU2qUS1UV6xtdOenVDoV/ZP9MT40Hql0Kg4cOhCV6Up09HREZ19nw3G2qmY3OvBbB1wD7DL34360REu0zLfEnnl3zdttPH+7l+du9/Lc7V6eu93LB613voMHDz7280psjd38/c336SfjWf6dmt8r0kzOJ5rJ+fR4/m52rjU/M/39/YuhhRdeeCG6u7ujtbU1kiSJJElicHAwWlpaYmBgYNmWeMPDw3HhwoXo7++P9vb2+PGPfxx/+Id/uKmFZ7PZmJiYWLF9YXeLbHZtd8NKkiTS6fS6AhkAALBTVJMHH66q1+qr9nPXWgAA2N1emX5lw7WpdCp6R3p3ZA0AAAAAAMBmfPiTD+Pot45uepw1BSwuXboU+Xw+Ll68uKzthRdeiBdeeCHOnTsXERGvvfZaJEkS3/rWt5b0y+VyMTExEVeuXIlz587FN7/5zSgWi/GlL31pQwvP5XJRKpVWbF/YYaO7u3tN45XL5SgWi1EsFlcc6+LFi4tJ9PHx8fUuGQAAmmpqdComRyYjImJmYiYiIsYuji0e68x3Rld/15Iad60FAAAAAAAAAACeNmMXx7YmYPHLX/4yWltbG4YrGnn99dfjtddei1wuF1/5yleWtQ8ODkZ/f3/k8/lIp9NRKBTiP/yH/7DuhV+4cCGuXLkS5XI5crncsvabN2+uOVwREdHX1xd9fX0N20ZHRyOfz8fVq1cbzgUAANuhs69zQ2EFd60FAAAAAIDdp5pU4/rw9YiIqFfqUa/VI9uTjVODp1asqdfq8YvLv4iIWPPNkDZSAwAAsB6fvP9JHH7+8Ipt6zFXmYtqUo16rd6MpT0+YPHOO+/EwMDAuga9cOFClEqlePnllxu2p9PpGB8fj9HR0ejv74+RkZEoFovxL//lv1zzHLlcLrq7u+Ptt99uGHoYHR1tuMtErVaLy5cvR09Pz7oCGAAAAAAAAAAAsB2mRqfi9s3by25sVOgqxOTIZLwy/cqymnqtHoWuQuSL+WjLtS0eHxsYi9s3b0fPcE9TagAAANaj9Fop3vvP70VbV1tc/L+WbwLxX7/xX+PunbvbsLIHHhuwaG9vj4mJifjGN76x5kFv3boVXV1dj+3X19cXPT09MTg4GNlsNoaGhuIv//Iv1zxPsViMrq6uuHDhwpKQxcDAQAwODjYMUBQKhbhy5UoUCoWoVqtrmidJksX/2sECAAAAAAAAAICtUq/V44O3P4h8Mb+srfdqbxS6CjE2MLYsfFHMF+No39ElQYmIiN6R3hjODEdHT0dku7ObrgEAAFiPalKN+fn5qFcb7zixv3V/RER09T/II+w/tH/V8eY+nYvqdDU+/MmHTVnfYwMW586dixMnTsTf/M3frGmHiXfeeScuX74cN2/eXNMCDh48GCMjIzEwMBCFQmFNNQvS6XRMTk7G0NBQpNPpOHToUExPT0dPT0/09fU1rOnu7o50Oh3nz59/7PgDAwORJElMTExERMTFixdjZGQkcrlcDA8Pr2utAAAAAAAAAACwXjMTMzE1OhXjQ+PLdpBYCELcKt1acryaVCMpJXF25GzDMTvPd8aN4RtLwhIbqQEAAFiv3qu9ke3Jrnhtkclm4vRrpyP38vo2Rrhy6Eozlvf4gEVExLVr1+KFF16IF198MXp6eiKXy0Vra+tie5IkcfPmzSiVSlGr1RYDCeuRy+XijTfeWHddOp2OkZGRdc2z1p0r1jMuAAAAAAAAAAA02/7W/ZFKp+LAoQMr9kmlU0seT4w8+OxOJptp2L+1ozXKhXLUa/XF2o3UAAAArFfqYCq6Lnat2J7tycaRE0fWPW66Pb2JVX1hTQGLbDYbt27dir/8y7+MwcHBiIhoaWlZbJ+fn490Oh2XLl2KV199tSkLAwAAAAAAAACAZ11bri2GqkMN22bLsxER0d7dvuT4J+VPVg1BLIQoZiZmFu8au5EaAACAZjv16qkN1fVP9Ddl/jUFLCIiDh48GMPDwzE8PBy3bt2KJEkiSZLIZrORzWajvb398YMAAAAAAAAAAABNURoqRSabiZ7hniXHq0k19rfuX7FuIUhRTaqbqgEAAHgSPvzJh9GWa4v0V9JbPveaAxYPa29vj/b29jhz5kyz1wMAAAAAAAAAAE+1+7+5H/P35794fO/+uuqrSTWuD1+PdDYdL42/tKx9rjK3uONEIwtBinqtvqkaAACAZvvpd38a5avlSGVSMfg/B7d8/g0FLAAAAAAAAAAAgI2p/LoSlf9RWXx8J+6sqW5qdCpu37wdtaQW6Ww6Ono6GvZbawji808/31QNAABAs81V5qL9THu05dq2ZX4BCwAAAAAAAAAA2EKtX21dsltEpV6J+Pnj6zr7OqOzr3Px8Zs9b8bkyGT0Xu2NVDr1JJYKAACwpTLZTHS/3r1t8+/ZtpkBAAAAAAAAAOAZtOe39sRvPfdbi1979m7sIzz5Yj6mRqeimC8uOZ5Kp9a0I8WBQwc2VQMAANBs+w/tj9pHtXXXXTl0pSnzC1gAAAAAAAAAAMAulEqnorOvM5JSEkkpWTy+v3X/qnVzlbnF+s3UAAAANNupV0/F+OB43Hr31rrq5ufnmzL/3qaMAgAAAAAAAAAANF29Vo+5ylxkspmG7elsOiIipsenI9udjYiITDYTMxMzq4650G/BRmoAAACehPy1fLz3/fdicmQyjrx4JNpybbG/df+Kge/p8em4e+duU+YWsAAAAAAAAAAAgB1qODMcERFD1aGGHyY6cOhARHwRgIiIOJw7vGRHi0dVk2pExGIgY6M1AAAAzfYXe/4iWlpaIuLBrhRTo1NbOr+ABQAAAAAAAAAA7FCpdGrVO7VWpisREXGk68jiseMXjsd7V96L2fJstOXaltXM3JxZFpTYSA0AAECzZbKZqCbV6OzrjP2t+9dUM3NzJj55/5OmzC9gAQAAAAAAAAAAO1SuPxcnBk6s2D51bSpS6VQcO39s8Vhbri2y3dn41du/ahiWmBqdipfGX1pybCM1AAAAzZbJZuL0a6cj93JuXXVXDl1pyvx7mjIKAAAAAAAAAADQdD3DPXF9+HokpWRZWzFfjIiI77zznWU7XOSL+fhw9MOYLc8uOT42MBYnB0823I1iIzUAAADNlMlmIpPNrLsulWm869962cECAAAAAAAAAAB2sN6R3pganYpivhip1lTUK/Wo1+pxOHc4/uzWny0LV0REpNKp6J/sj/Gh8UilU3Hg0IGoTFeio6cjOvs6G86zkRoAAIBmOvvG2Q3VvfLrV5oyv4AFAAAAAAAAAADscJ19nesOOaTSqegd6X3iNQAAAE8LAQsAAAAAAAAAAAAAAGDHS95JIhlPIloiWjta48iJI3H4+cNNG39P00YCAAAAAAAAAAAAAADYoCuHrqzanj2Tje7Xu+P0a6ej/Ux73L55O376pz+Nu5/dbcr8drAAAAAAAAAAAAAAAAC23fz8/Jr6pQ6mInUwFV0Xu6J+px7jQ+Nx9kdnNz2/HSwAAAAAAAAAAAAAAIBt19LSsu6a1MFU0+YXsAAAAAAAAAAAAAAAAHal+p16zE7MNmWsvU0ZBdjx/u+3/u+4/V9ux5757ctVfXvs29s2NwAAAAAAAAAAAACw/Wof1Roen5+ff9D+d7WI+dXHqNfqMVeZi9nybFy/fD06z3c2ZW0CFgAAAAAAAAAAAAAAwJaYmZyJmZszUU2qkZSSuHvn7pL2H2Z/uOax5ufnI9udjbM/OtuUtQlYAAAAAAAAAAAAAAAAW6LzXGd0nvtix4nZ8myUhkqRvJNES0tLHD13dE3jZLKZyPZkI3sm27S1CVgAAAAAAAAAAAAAAADboi3XFi+NvxRjA2Px4eiHkb+W37a17Nm2mQEAAAAAAAAAAAAAACKid6Q30u3pbV2DgAUAAAAAAAAAAAAAALDtTl86va3z793W2QEAAAAAAAAAAAAAACKi81znY/vcevdWVJNqZLKZOHLiSOz78r6mzS9gAQAAAAAAAAAAAAAAbLvSa6Wo36kvOXb2R2cjIqJ+px5vdr8Zs+XZmJ+fj0w2E/VqPfKj+Wj//famzC9gAQAAAAAAAAAAAAAAbLuuga74YccPo2ugK7r6u6LthbbFtmK+GDOTM3Fq8FR0v94dERH1Wj2K54uRac9E+ivpTc+/Z9MjAAAAAAAAAAAAAAAAbNInv/wk8sV8nP3R2SXhiqm/mYqklMSx/LHFcEVERCqdivy1fFwfvt6U+e1gAQAAAAAAAAAAAAAAO8zYwFgcyx+LbHd21X71Wj1+cfkXERFx4NCBqExXoqOnIzr7Ore9Zr1u37wd3Ze7lx3/4O0PoqWlJU5fOr2sLZVORepgqinzC1gAAAAAAAAAAAAAAMAOUE2qkZSSmByZjNnybBzLH1u1f71Wj0JXIfLFfLTlvtjxYWxgLG7fvB09wz3bVrMh840PJ6UkIiIOP3+4cYeW5ky/pznDAAAAAAAAAAAAAAAAGzVZmIzSUCkiIrqHl+/i0EgxX4yjfUeXhB4iInpHeqNcKC8GE7ajZiP2H9q/7Fj1VjXqtfqyuR9Wr9WbMr+ABQAAAAAAAAAAAAAAbLOu/q7IF/PR1d8V+1uXBw0etbDbxYmBEw3bO893xo3hG9tSs1EtLcu3opganYqIiPbu9pULV9j5Yr0ELAAAAAAAAAAAAAAAYJeZGJmIiIhMNtOwvbWjNZJSsmR3h62q2ajP/+fncfezu0uOTY5MRktLSxy/cLxhTelSKboGujY9d4SABQAAAAAAAAAAAAAA7DqflD+JVDq1YvtCIGJmYmbLazbq9KXTUcwX45O//SQ+ef+TGL0wGtWkGp19nXH4+cNL+n7y/ifx13/w13Hg0IFoe6Ft03NHROxtyigAAAAAAAAAAAAAAMCWqSbV2N+6f8X2hVBENaluec1GpQ6m4szlM3Ht3LXF8Y7lj0Xf232LfX763Z9GUkoW25NSEp9/+nl0X+7e9PwCFgAAAAAAAAAAAAAA8ITcu3svfnP3N4uP/+kf/qkp485V5hZ3j2hkIRRRr9W3vGYz2nJt8cqvX4n6nXqkDi7fOePU0Kk4NXSq4Ro2S8ACAAAAAAAAAAAAAACekOuXr8fP/+Lni4/vxJ2mjLvWQMPnn36+5TXN0ChcERGRaV857LFZAhYAAAAAAAAAAAAAAPCEnL50Or72519bfHz79u34QecPtnFFT58Pf/JhHP3W0U2Ps6cJawEAAAAAAAAAAAAAABrYu29v7PvyvsWv3/7Sbzdl3FQ6tabdJQ4cOrDlNVtt7OJYU8axgwUAAAAAAAAAAAAAAOwy+1v3r9o+V5mLiAcBia2uWc0n738Sh58/vGLbesxV5qKaVNcUAFkLAQsAAAAAAAAAAAAAANhlMtlMzEzMrNi+EDrIZDNbXrOS0muleO8/vxdtXW1x8f+6uKz9v37jv8bdO3cfO86TImABAAAAAAAAAAAAAAC7zOHc4UhKyYrt1aQaERHZ7uyW16zWd35+PurVxjtOLOyW0dXf9eDxocfsnvHpXFSnq/HhTz587NxrIWABAAAAAAAAAAAAAAC7zPELx+O9K+/FbHk22nJty9pnbs4sCz1sVc1Keq/2RrYnu2L/TDYTp187HbmXc2sab8GVQ1fW1X8le5oyCgAAAAAAAAAAAAAAsGXacm2R7c7Gr97+VcP2qdGpODV0altqVpI6mIqui12Rac80bM/2ZOPIiSNrGuth6fb0umsasYMFAAAAAAAAAAAAq3qr963tXgIAwDOlmlQjIqJeq6/aL1/MR6GrEMcvHF+yu8TYwFicHDzZcKeIrarZiFOvri2o8aj+if6mzC9gAQAAAAAAAAAAAAAA22xqdComRyYjImJmYiYiIsYuji0e68x3Rld/15KaVDoV/ZP9MT40Hql0Kg4cOhCV6Up09HREZ19nw3m2qmY3ErAAAAAAAAAAAAAAAIBt1tnXuaGwQiqdit6R3h1Zsx61j2qRlJKoTFeiltQezNmaitaO1mjLtUX7N9qf2NwLBCwAAAAAAID/P3t/GBzXeR+G3n+AkLmk5HABthUhxU20aKYjSGktQGptUplJbSBJPcIHXwPkMK0cNbUItelVbz0NUeXD7eR+eBnQM/atbycR4DT1XKXhyOBc3yk8dt4CkuOR6HRCAHZfS/BkUqxjWQSkNtpd2pK4tCDg/UADFIAFCOwusGcXv98Mx95zzv/sX3se7J7nnOd/HgAAAAAAgD13/YfXY3p0Ol4892IUC8Vbbt892B0nzp6I9M+mdyUfBRYAAAAAAAAAAAAAAMCemvn9mfjK4FciImJ5eXnNulQ6FYfaDsW13LU1hRdTT0/F9Mh0nBg6ER/9/3y06jkpsAAAAKAqLvRdqHUKcXr8dK1TAAAAAAAAAADgFi6euhizF2djeXk5Mj2ZyPRmItOTifYH2ktuX7xajOxkNub+y1zMfGEmLg1fiuxkNh7/s8ermpcCCwAAAAAAAAAAAAAAYE/84S//YcxNzEVnf2f0DPdE6z2tt4xJHUlF5yc6o/MTndE30hcTQxPxzc98M77w975Q1SKL5qrtCQAAAAAAAAAAAAAAYBOXPnMp5ibmom+0Lwa+NLCt4opSeod749H/8mjMT83Hc7/1XNXyU2ABAAAAAAAAAAAAAADsquLVYkwOTUbv+d7o+lRXxfvL9GRi4EsDcWn4UhT+slB5gqHAAgAAAAAAAAAAAAAA2GXTo9PR3tUex//18arts7O/M449cCxmL85WZX8KLAAAAAAAAAAAAAAAgF318rMvxy/81i9Ufb8P/5uH4+VnX67KvhRYAAAAAAAAAAAAAAAAu6rwvUJkejJV32+mNxP5bL4q+1JgAQAAAAAAAAAAAAAA7KpioRgHf+pg1febOpKKYqFYlX0psAAAAAAAAAAAAAAAAHbVwSPVL66o9r4VWAAAAAAAAAAAAAAAALuqqakp8ftWYAEAAAAAAAAAAAAAAOx7CiwAAAAAAAAAAAAAAIB9r6XWCQAAAAAAAAAAAJtbmFmIqZGpKOaKsTCzEKl0KroHu6P7TPemMcVCMV4490JERBw+ejhyc7no6O2Izv7OqsYAAABsV7FQTPy+FVgAAAAAAAAAAEBCTY9OR0RE30jf6rLsZDbGBsbi0vClODN9JlLp1JqYYqEYo92jMTA2EO1d7avLxwfH48rlK9E73LvhfcqJAQAA2Inl5eX4v37u/4rWTGtV95vP5qu2LwUWAAAAAAAAAACQQPlsPoqFYpw4e2LN8kxPJj753CdjtHs0xgbG4tGJR9esHxsYi3v7711TKBFxo0hjuHU4Ono7ItOTqTgGAABgp3JzucjN5aq+36ampqrsR4EFAAAAAAAAAAAk0NTIVPzCU79Qcl17V3tkejKRncxGPptffQJsPpuP7GQ2Hhl5pGRc58nOuDR8aU2xRDkxAAAA5cj0ZCLTW92+xfyfzcd3/5/vVmVfCiwAAAAAAAAAACCBvjf5vZgZnYl/+b1/Gal0asP6Y13HIjuZjYWZhdUCi6mRqYiI1dfrtXW0xczoTBQLxdV9lhMDAACwU01NTfHof3n01huW4f848H9UZT/NVdkLAAAAAAAAAABQVYfaDkWxUIx8Nr/tmNdmXtuyCGKliGJ+ar6iGAAAgJ06eORg4vdtBgsAAAAAAAAAAEigRycejXw2v+nMEoVsISIi2rvaV5fls/k41HZo032uFFK8t2ijnBgAAICd+uRzn0z8vs1gAQAAAAAAAAAACbVZcUVExOzF2Wjval+zzbXctS1no1gppCgWihXFAAAA7FT7A+233qjG+zaDBQAAAAAAAAAA7KGld5dieWn55uvFpR3v49L5SxER0feFvjXLt1sE8fYbb1cUAwAA0IgUWAAAAAAAAAAAwB7K/fdc5P4it/r6alzdUfzCzEJMDk3GwNhAtHft3hNgAQAA9hsFFsCeudB3odYpxOnx07VOAQAAAAAAAIB9ru1vtUVrpnX1da6Yi/jG9uPHBsbikZFHorO/c8O6VDq1rRkpDh89XFEMAABAI1JgAQAAAAAAAAAAe6j5QHPEgfe8XmzeduzYwFh0D3ZH95nukusPtR3aMv5a7lpE3CiqqCQGAACgEW2/dwYAAAAAAAAAANTMxNBE3PXQXXHi7IlNt2nNtK4WRJSyMlPFe2fQKCcGAACgESmwAAAAAAAAAACAhJsenY62jraSxRUrBRAREce6jq15vV4+m4+IiExPpqIYAACARqTAAgAAAAAAAAAAEmz24mxERHSf6d6wLp/NR3Yyu/r6/lP3R0TEwsxCyX3NX57fUChRTgwAAEAjaql1ApUqFApx7ty5iIg4evRozM3NRW9vb/T395e9z5mZmRgZGYlcLhczMzORTqdjcHAwzpw5U620AQAAAAAAAADglhZmFuJa7lrJ4oqIiOxkdk3xQ3tXe2R6MvHSsy9Fe1f7hu1nL87GoxOPrllWTgwAAEAjqusCi0KhEN3d3TE2NhZdXV2rywcHB+Py5csxPDy8432Ojo5GRMTIyMjqssnJyRgYGIjh4eGYnp6OdDpdce4AAAAAAAAAALCVfDYfYwNjcU/PPTE/OL9hfTFXjOxkNobyQ2uWD4wNxGj3aNx/6v41BRPjg+Nx/OzxkrNRlBMDAADQaOq6wGJgYCD6+/vXFFdE3CiOaG1tjd7e3ujp6dn2/rLZbBQKhTh79uya5T09PfHcc89Fd3d3DAwMxMTERFXyBwAAAAAAAACAzTzT+0zks/nIj+Y33aY107phWSqdijPTZ2JiaCJS6VQcPno4cnO56OjtiM7+zpL7KScGAACg0dRtgUU2m43Jyck1M02818mTJ2N4eHhHBRYjIyPx1FNPlVzX1dUVPT09MTk5GdlsNjIZVfkAAAAAAAAAAOyeJ+eeLDs2lU5F30jfrscAAAA0kuZaJ1CulcKKzQodOjo6YnJyMgqFwrb3OTk5Gffcc8+mMSszZczMzOwoVwAAAAAAAAAAAAAAINnqtsBiZmYm0un0putXCi+mpqa2vc+2trYoFAqRzWYrTQ8AAAAAAAAAAAAAAKgjLbVOoFzZbDba2to2Xb9SfLGTYomJiYnIZrObzoqxsq+VmSwAAAAAAAAAAAAAAIDGULczWORyuS1nsFgpvigUCjva72bFFRERFy9ejK6uri23AQAAAAAAAAAAAAAA6k/dzmCx3cKJN954oyrvd/78+YiI+MIXvnDLba8tXos3F99cfX1b821x24HbqpIHlGO5aTmWYzmWm5ZjKZZqnU5NLS4u1joFfmJxcTGWlpYcExJH2ySplpb292940ukDJEcSvr/9lrCeNsF62gTraROUog+QbG+/+3YcXDy4+lofIPlcJ69vjl/9cuzql2NXvxy7+rXctFzrFLiFq1evRi6XW3198ODBOHjw4BYRjWepyfdKpXxP7479el3NdUWqSXuimrSn7fH5JFfdFljspZmZmRgaGoqxsbHo6uq65fZDfzK05vWvdP1KfOzBj+1WenBLy7Ec195/LXKRi6ZoqnU6NfXiiy/WOgV+YmlpKV555ZWIiGhurtsJlWhA2iZJVa3CYXaHPkByJOF8z28J62kTrKdNsJ42QSnb7QOMD47HfQP3RaZn65mXi4VivHDuhYiIOHz0cOTmctHR2xGd/Z01j6lH+gD1x3Xy+ub41S/Hrn45dvXLsatfP7r2o1qnwC188IMfXPP6137t1+Kxxx6rSS61kmvP3XojtuR7enck4f5QLbiuSDVpT1ST9rQ97y3eJVnqtsAinU5vaxaLo0ePVvxeAwMDMTIyEv39/dvafvgXh6M11br6+rbm2+K2BU+uonaWm5YjF7loe60tmpb3d+fs4YcfrnUK/MRK9eXx48ejpaVuf45oQNomSbXS8VxvenQ6Zsdmo3uwOzI9mUilU5HP5mNhZiFefvblePiph6O9q31DnIFS1aUPkBxJON/zW8J62gTraROsp01QymZ9gIiIfDYf2clsTI9Mx8LMQtw3cN+W+yoWijHaPRoDYwNr+gfjg+Nx5fKV6B3urVlMvdIHqD+uk9c3x69+OXb1y7GrX45dHbtW6wS4lW9/+9vxgQ98YPX1fpzB4spnr9Q6hbrne3p3JOH+UC24rkg1aU9Uk/a0Pa+++mqtU2ATddtq29ratly/UtWTTqcrep+BgYEYHByMM2fObDvmUMuhuKPljrULzeRIDS3FUjRFUzQtN0Xz8v6uBvRjnSzNzc3R0tLiuJA42iZJtFlFf7FQjOxkNrKT2TXLU+nUhkFN740xUKq69AGSIynf3X5LWE+bYD1tgvW0CdbbrA8wPTod2YlsZHoz0TPcE8/0PnPLfY0NjMW9/fdu6B/0jfTFcOtwdPR2bJgBY69i6tXhA4f1AeqM6+T1zfGrX45d/XLs6pdjV78MtE6+I0eO3HK8UqPzvVI539O7Yz9fU3NdkWrSnqgm7enWfDbJVbdnaZlMZsupUVZmt8hkyr9ZMzQ0FA899FCcPXu27H0AAMBue2TkkTh+9nh09ndG15mueGTkkRjKD206cGmrQU8zozMbijXKjQEAAKqv+0x3DIwNRPeZ7jjUduiW26/MdvHg4IMl13ee7IxLw5dqEgMAAAAAAJA0dVv60tXVFZOTk5uuz2ZvDPDq6ekpa/+jo6PR0dFRcuaKQqFQ8cwYAABQLfedvC9S6dS2tl0Z9PTIyCMl168MenpvcUY5MQAAQDJMjUxFRERrprXk+raOtpgZnYliobjar9irGAAAAAAAgKSp2xksTp06FRERMzMzJddfvny57OKKixcvRkSULK7IZrNbFnYAAECSbWfQU3YyG8VCsaIYAAAgGV6beW3LgoaV8/z5qfk9jwEAAAAAAEiaui2w6Orqip6ennj22WdLrr948WIMDQ1tWF4oFGJoaGjTIomZmZnI5XIliysiIiYnJ6Orq6v8xAEAoIYMlAIAgP0ln83HobZDm65fOdfPZ/N7HgMAAAAAAJA0LbVOoBJjY2PR3d0dp06dWlP0MDg4GGfPni05g8Xo6GicP38+RkdHI59feyMnm83GwMBA9PT0xODg4IbYXC4Xk5OTG+IAACAJFmYWYn5qPu568K5o72ovuY2BUgAAkEyL1xfj3evvrr5+5813qrLfa7lrm85GFxGr5/rvnZFur2IAAAAAAACSpq4LLNLpdExPT8fQ0FCk0+k4evRozM3NRW9vb/T395eM6enpiXQ6HSdPntywrre3N7LZbIyOjm76nplMpmr5AwDAZnYyuCo7mY18Nh+Znkx0n+mOhZmFeKb3mTgxdCIyPWvPXw2UAgCAZHrx3Ivxjd/+xurrq81Xq7Lf7Z6nv/3G23seAwAAAFANF/ou1DqFOD1+utYpAABVUtcFFhE3iixGRka2vX1XV9emM1DMzc1VKy0AAKjIdgdXrRQ+nDh7YnVZe1d7DIwNxHDrcJyZPrNmNgsDpQAAIJkefurh+PCnP7z6+pVXXonP/fznapgRAAAAAADA/lP3BRYAANCItju4qrO/s2R8Kp2Kzv7OGBsYiyfnnty1PAEAgOpoOdgSLQdvXrK/7Y7bqrLfVDq1raLpw0cP73kMAAAAAABA0jTXOgEAAGCjloMtcfCnDq7+K2dw1V0P3RX5bD7y2ZszuBkoBQAA+8uhtkNbrr+WuxYRN8779zoGAAAAAAAgaRRYAABAg1oZuLQws7C6zEApAADYX1ozravn7KWsFFO3Zlr3PAYAAAAAACBpFFgAAECdGh8cj893fH5HMQZKAQDA/nKs69iWM9KtzHiX6cnseQwAAAAAAEDStNQ6AYC9dKHvQq1TiIiI0+Ona50CAA1gYWphW4UP7V3tq8uOdR2L7GR205jNBkrtNAYAAEiG+0/dH988/81YmFlY0zdYMX95fsO5/F7FAAAAAAAAJI0ZLAAAoE7d03NPDOWHNl0/f3k+UunUmpkl7j91f0RELMwsbBpTaqDUTmMAAIBkaO9qj0xPJl569qWS62cvzsaJoRM1iQEAAAAAAEgaM1gAAECduv/U/TE9Oh3dZ7o3rMtn8zF7cTYGxgbWLH/voKdST5WdvTgbj048WnEM1EoSZixbalqKuz99d63TAAD2gZXZ5FZmr9vMwNhAjHaPxv2n7l9zTj8+OB7Hzx4vWTC9VzEAAAAAAABJosACAADqVHtXe2Qns3Hp/KU4cfbmk2Dz2XyMdo/G8bPHo7O/c0OcgVIAAFC/Zi/OxvTIdEREzE/NR0TE+OPjq8s6Bzo3FGGn0qk4M30mJoYmIpVOxeGjhyM3l4uO3o6SfYa9jAEAAAAAAEgSBRYAAFDHTpw9EdnJbIwPjkcxV4xioRipdCo++dwnS842EWGgFAAA1LPO/s6yzsFT6VT0jfQlMgYAAAAAACApFFgAAECdy/RkdjyDhIFSAAAAAAAAAAAAazXXOgEAAAAAAAAAAAAAAIBaU2ABAAAAAAAAAAAAAADsewosAAAAAAAAAAAAAACAfU+BBQAAAAAAAAAAAAAAsO8psAAAAAAAAAAAAAAAAPY9BRYAAAAAAAAAAAAAAMC+p8ACAAAAAAAAAAAAAADY91pqnQAAAAAAAAAAAAAAABAxPTods2Oz0T3YHZmeTKTSqchn87EwsxAvP/tyPPzUw9He1b4hrlgoxgvnXoiIiMNHD0duLhcdvR3R2d+56XuVE9PoFFgAAAAAAAAAAAAAAEACFAvFyE5mIzuZXbM8lU7FwNjApsUVo92jG9aPD47HlctXone4tyox+4ECCwAAAAAAAAAAAAAASIhHRh6J3FwuCtlCpNpScVf3XdF9pnvT7ccGxuLe/ns3FF/0jfTFcOtwdPR2RKYnU3HMfqDAAgAAAAAAAAAAAAAAEuK+k/dFKp3a1rb5bD6yk9l4ZOSRkus7T3bGpeFLa4olyonZL5prnQAAAAAAAAAAAAAAALBzUyNTERHRmmktub6toy2yk9koFooVxewXCiwAAAAAAAAAAAAAAKAOvTbz2pazXawUUcxPzVcUs18osAAAAAAAAAAAAAAAgIRZmFmI6dHpWJhZ2HSbfDYfh9oObbp+pZAin81XFLNfKLAAAAAAAAAAAAAAAIBdsnh9Ma7/8Prqvx//6Mdbbp+dzMal85ciIqL7THdERDzT+0xkJ7Mbtr2Wu7blbBQrhRTFQrGimP2ipdYJAAAAAAAAAAAAAABAo3rx3Ivxjd/+xurrq3F1021bM60REXHi7InVZe1d7TEwNhDDrcNxZvpMtHe1r67bbhHE22+8XVHMfqHAAgAAAAAAAAAAAAAAdsnDTz0cH/70h1dfX7lyJT7X+bmS23b2d5ZcnkqnorO/M8YGxuLJuSd3JU8immudAAAAAAAAAAAAAAAANKqWgy1x8KcOrv573/vfV9Z+7nrorshn85HP5leXpdKpbc1Icfjo4Ypi9gszWADUwIW+C7VOIU6Pn651CgAAAAAAAAAAAABsUyqdioiIhZmFaM20RkTEobZDW8Zcy11bE1tuzH5hBgsAAAAAAAAAAAAAAKix8cHx+HzH53cU05ppXS2IKGVlpoqVgoxyY/YLBRYAAAAAAAAAAAAAAFBjC1ML2yp8aO9qX112rOvY6vJS8tl8RERkejIVxewXLbVOAAAAABrNdy58J6589ko0L9fuuQanx0/X7L0BAAAAAAAAgJ27p+eeODN8ZtP185fnI5VOrZlZ4v5T98c3z38zFmYW1hRevDdmfaFEOTH7hRksAAAAAAAAAAAAAACgxu4/dX9Mj06XXJfP5mP24mz0faFvzfL2rvbI9GTipWdfKhk3e3E2TgydqDhmv1BgAQAAAAAAAAAAAAAANdbe1R7FQjEunb+0Znk+m4/R7tE4fvZ4dPZ3bogbGBuI7178bizMLKxZPj44HsfPHi85G0U5MftBS60TAAAAAAAAAAAAbm18cDzuG7jvlgOdioVivHDuhYiIOHz0cOTmctHR21FyIFYlMQAAQPWdOHsispPZGB8cj2KuGMVCMVLpVHzyuU9Ge1d7yZhUOhVnps/ExNBEpNKpbZ3TlxOzHyiwAAAAAAAAAACAhMpn85GdzMb0yHQszCzEfQP3bbl9sVCM0e7RGBgbWDP4anxwPK5cvhK9w71ViQEAAHZPpiez4xkkUulU9I307XpMo2uudQIAAAAAAAAAAMBG06PTMTk0GRERPcM924oZGxiLe/vv3fBk276RvpgZnYnsZLYqMQAAAI3IDBYAAAAAAAAAAJBA3We6o/tMd0RELMws3HL7ldkuHhl5pOT6zpOdcWn40pon4ZYTA8BaF/ou7Pl7LjUtRa49F1c+eyWal288a/v0+Ok9zwMAGo0ZLAAAAAAAAAAAoAFMjUxFRERrprXk+raOtshOZqNYKFYUAwAA0KgUWAAAAAAAAAAAQAN4bea1SKVTm65fKaKYn5qvKAYAAKBRKbAAAAAAAAAAAIAGkM/m41DboU3XrxRS5LP5imIAAAAalQILAAAAAAAAAADYQ0vvLsW777y7+m9pcakq+72Wu7blbBQrhRTFQrGiGAAAgEbVUusEAAAAAAAAAABgP8n991zk/iK3+vpqXK3KfrdbBPH2G29XFAMAANCoFFgAAAAAAAAAAMAeavtbbdGaaV19nSvmIr5Rw4QAAACICAUWAPvWhb4LNX3/paaluPvTd9c0BwAAAAAAAIBaaD7QHHHgPa8Xm6uy31Q6ta0ZKQ4fPVxRDAAAQKOqTu8MAAAAAAAAAACoqUNth7Zcfy13LSJuFFVUEgMAANCoFFgAAAAAAAAAAEADaM20rhZElLIyU0VrprWiGAAAgEbVUusEAAAAAAAAAACAyh3rOhbZyeym6/PZfEREZHoyFcUAkEwX+i7UOoU4PX661ikAQEXMYAEAAAAAAAAAAA3g/lP3R0TEwsxCyfXzl+c3FEqUEwMAANCoFFgAAAAAAAAAAEADaO9qj0xPJl569qWS62cvzsaJoRMVxwAAADQqBRYAAAAAAAAAAJBw+Ww+IiKKheKW2w2MDcR3L353w4wU44Pjcfzs8ZKzUZQTAwAA0Ihaap0AAAAAAAAAAACw0ezF2ZgemY6IiPmp+YiIGH98fHVZ50BndJ/pXhOTSqfizPSZmBiaiFQ6FYePHo7cXC46ejuis7+z5PuUEwMAANCIFFgAAAAAAAAAAEACdfZ3llXgkEqnom+kb9djAAAAGo0CCwAAAGhAF/ou1DqFOD1+utYpAAAAAAAAAABsW3OtEwAAAAAAAAAAAAAAAKg1BRYAAAAAAAAAAAAAAMC+11LrBAAAAAAAAAAAANjchb4LtU4BAAD2BQUWAAAAAAAAAAAACVZcLJYde/X61fgP3/kP8b2r34t7jtwT//Tn/2kcOXhkx/tJtaTKzgEAAOqFAgsAAAAAAAAAAIAE+/U//vWq7Oelv3op/tXX/1VZsX/0yB9VJQcAAEiy5lonAAAAAAAAAAAAAAAAUGtmsACgZr5z4Ttx5bNXonm5tvV+p8dP1/T9AQAAAAAAAGArf/Arf1B27GenPhuzb8zG0vJSNDc1R+fRzvj0g5+uYnYAN7311ltlx77++uvxxBNPxPT0dHR3d8fTTz8dd9555473c/vtt5edAwAosAAAAAAAAAAAAEiwVEuq7NjfeOA34ulvPx1zhbnoSHfEEx98oqL9AWzljjvuqMp+JiYmoqOjo6zY5eXlquQAwP6kwAIAAAAAAAAAAKBBHTl4JIb+/lCt0wAAgLqgwAIAAAAAAAAAAACAir355ptlx3784x+P559/Pt599904cOBAfOQjH4kvf/nLVcwOAG5NgQUAAAAAAAAAAAAAFbv99tvLjn3mmWfisccei8uXL8dDDz0UX/ziFyvaHwCUQ4EFAAAAwD7w1ltvlR37+uuvxxNPPBHT09PR3d0dTz/9dNx555073o+bIAAAAABQv4qLxbJjr16/Gv/hO/8hvnf1e3HPkXvin/78P40jB4+Uta9US6rsPIDdd6HvQkXxn2z5ZHzyw5+MiIjnP/V8Wfs4PX66ohwA2N8UWOyC64vXy+pQVKsjoRMBAFBdSRiQ+vbbb5edAwBERNxxxx1V2c/ExER0dHSUFbu8vFyVHAAAAKARlDtQeauxBUtNS3H9nRtjFpqXm2+5L+MLgJ349T/+9ars56W/ein+1df/Vdnxf/TIH1UlDwAAKEWBxS74zT/5zYr3UUlHQicCAKC6kjAgFQAAAACAxlKNgcoGKQMAAEB1KbAAAAAAGlq5MxFVaxaixcXFst6/2t58882yYz/+8Y/H888/H++++24cOHAgPvKRj8SXv/zlKmYHtVXrGcuS8j0BAAAAsJU/+JU/KDv2s1Ofjdk3ZmNpeSmam5qj82hnfPrBT1cxO6itcmemith6dqqt7HTmqt3IoRQzZN1Q6+vOK26//fay8wDYrxRY7ILP/OJn4mjq6I7jdCQAAJIpCQNSv//978d9991Xdh4AtXCh70KtU4iIiF/9yq9WvI9KZyH6+te/XnEOlarkAvozzzwTjz32WFy+fDkeeuih+OIXv+iCPA0lCTOWJeF7AgAA2FvlDlTeamzBUtNS5I/lo/W11ooHWgKsV8mg6d944Dfi6W8/HXOFuehId8QTH3zCIGwaSjVmpoqofHaqJORghqwbknDdOSJieXm5KnkA7CcKLHbBwZaDZXUAdCQAaiMJA/9Oj5+udQrAFpIwIPXw4cNl5wAAlbrzzjvja1/7Wq3ToEHVepYZAAB2V7lP1K3mE3QrUa083PellHLbxVZjC5aaluLgbTfGLCiwAJLkyMEjMfT3h2qdBgAA3JICiwTRkQAAaDwGpALUXrkzEVVrFqLFxcX41re+VVYOsB9U4ylelT7Bq9YzlvmeAAAa2W/+x9+seB9JeIpvpXl4ii/VZGwBACRPuTNTRWw9O9VWqjlzVbk5sLlaX3cGoHwKLAAAAICGVu5MRNWahWhxcbGs9wf2Tq1nLPM9AQDQ+IqLxbJjqzmbRxJm0kjCZ5GEzwEAaCyVnF9sNTvVVqo5c1W5ObC5Wl93BqB8CiwA9qlaX7xealoq+/0BIGmuL14v67e10W6OQ6MxCxHsjVrPMlOpRvuueOutt8qKe/311+OJJ56I6enp6O7ujqeffjruvPPOsvblRiEANJbP/JPPlPVE3aQ8Qbdaefz6H/96VfKpdDaPJMykkYTPIgmfAwDAiiTMTpWEHLip0a47A9QbBRbAvlLrooIVSRgAmYSL158/8/mq5EB1lDuIJsJAmkZmcBVsz2/+yW9WvI9GuDkOAOWo9SwzrHXHHXdUvI+JiYno6OgoO355ebniHACA5Cj3ibpJeYJuUvKolu3eK1tqWorr79x4qEjzcnNV75MBAFRbEsYD1fM5IgCwlgILYF9JQlFBhAGQJFM1BtFEGEhTLUkpeDG4CqA87x2AsBONVtQLsJs8wQsAkme3BjWtH+h9K/pDNyRhkFkls1kn5Qm61crjD37lD8qOreZsHtW4V1bpfbKkfBYAQONIwnggY4GS5ULfhVqnEKfHT9c6BQDKpMACYJ+q9cXrpaaleDveLjsH2E3Xrl2Lt956K1padn6qVK3ihqQUvADb85lf/EwcTR3dcZwbwo3rN/+jWU2SpNYX0ZealqLtn7WVdX5hVihgr7355ptlxX384x+P559/Pt599904cOBAfOQjH4kvf/nLVc4OgKRLwqCmCP2hFUk5HmazvqGSwp9Gm0UjCZ9FEgqQIhSEAQDslqSc7wFQn+q+wKJQKMS5c+ciIuLo0aMxNzcXvb290d/fn6h97qV6PzlwQYrdVOuigiSp9cXrJBVYlPu9mYTvzGoqdxBNROMNpPnYxz5Wlf00QnGDwVWwPQdbDpb129poN8eT0Bep58+PxlaN8wuzQgF7odxirGeeeSYee+yxuHz5cjz00EPxxS9+UWEXwB5LQp8M2B3VnM1ju/fKlpqWIn8sH62vtUbzcnNi7pNV67NISgGSgrAbkvIb5toi1I8k3OP3nZEsxgOxXhLO9/5J/JOq5EB1vPXWW2XHeiAa7D91XWBRKBSiu7s7xsbGoqura3X54OBgXL58OYaHhxOxz72WhJODanFBqrEk4cJYrYsKVtR7Zz8p03JXSxKmw05Cp6qSE3gDaaovKQUvBlfB7vKbWlolv6uVXECv1rnWUtNSfOaffGZ1AMJOuIgP7CU3E6imO++8M772ta/VOg2Afa3e+2Rb9YfWD/SuB0m4J5KEQWZJetgSN2z3/tBS01IcvO3GQ0Wal5sb7kEhJEsSfsMijC+AepKEe/xJ+M5IwjlnRDKKTZIyHghIrjvuuKMq+/FANNgf6rrAYmBgIPr7+9cUQkREjIyMRGtra/T29kZPT0/N90ntJKEj4YT7piRcGKukg1vNAZA6+zSaRhtI89WvfjWOHz8eLS07P1WqVnFDvRe8NFqbgHqQhALOJEjCOWdExOfPfH51AMJOuIjfuMo9vzArVOO6du1avPXWW2Wdc1aruMHNBAAq5Ro86+3WoKb1A73rQRL6p5XcB6hW/1SBReNotAeFJKEAKSmS8HueFLW+xnp98XpZ7w/sX0k454wo/3c1KUUejXaeww3O9wCoRN0WWGSz2ZicnIyRkZGS60+ePBnDw8M7KobYjX3WQr2fHFQzhyR0JJLyBN3r71yP4mJxxzceGu2iGJRS7t9pEr4z2R2HDh2K22+/vazBboobgFpJQgFnEvoi1eoD1Eo1L+In4ea4wW43lXt+kYRzi2oyY8JNH/vYx6qyn0qLGwCgEvV0Db7UdfKkDOapliT0ySqRhP6QeyI3GWRGo/OU65vq6fe8lKSNL6j0GiuwPUm4x1/uOedS01L81Q//Kkb/dLRhzjuT8P3pIaOs53yP9d58882yYz0QDfafui2wWCmCyGQyJdd3dHTE6OhoFAqFSKfTNdtnLdT7yUEScqimJFyQqpZGGHCXFEno7HNTud8xjfZ9RXUobgD2syT0RZJwzpmUp3MmoS+ShILziGQMditXo51bmDEhWdxMAKARJOG8N6L+n9jaaNc6kzDAKwn9U2B3KECqPr9hwE4l4R7/r37lV8uKW0+BGiSP873GVMnDtxrtgWgX+i7s+nssNS1Frj0XVz57peRDwU+Pn971HKASdVtgMTMzs2WRw0qRxNTU1LZnnNiNfdabJJwcVDOHJHQkdCJucmHspiR09qlcEr4zAWBFvRdwVut3NQnnnEkpsEiCpAx28+QqkuirX/1qHD9+vKxZ06pV3OBmAgCVcg3+piQM6K/kvNe1zupLQv8UYDuS8HteiSSML6jW55C7lot//Y1/XVYOwPY02nlvUs45a/39CbDbGu2BaMCt1W2BRTabjba2tk3XrxRKZLPZmu6T2kpCRyIJF6SWmpYifywfra+1lqwG3IscKtVondxy+Rwa115UBtcLFcoA5VHAWblGO9dKQl8kKYPdSA4zJtx06NChuP3228sqsEhCcYObCcB+d33xehQXizuOq+ZsBeVqtBkTtnveW+o6uSe2Nq56H+DVaP1TINmS8HueFLW+xnqw5WBZ7w/URrnnnEtNS/GZ/99n4i/m/6JhCtRq/f0JAFBtdVtgkcvlVmeUKGWlUKJQKNR0n9SvRnuC7sHbDkaqJbXjAgudGXbT9Xdu3IjeabuMSM6N4Gop54b8imp9Fkn4HCIi3nrrrbLiXn/99XjiiSdieno6uru74+mnn44777xzx/tZXFws6/3ZPeW2iYjqtQtPY6aRGbTRuJLQF0lCkQfJkpQZE+r9nFNxQ2O6du1avPXWW2UV3VSrbUYk49w3CX2ASlQrh7ffNiNWklXjycKVzlZQDY0wY8J2z1NLXSf3xNbGZYAXwN5wbfEGn8P+8fbbb++4z5qEfiq7o9zzxKWmpXj0HzwaX/r/fimyhey+Pu/0/Ql74z/+w/+4re1WHk4xd34umpebqzo26+TFk2XFRTTeuI9a36OK2JtxaktNS1uODUzKfYCktAuSp2l5eXm51kmUo6mpKbq6umJ6errk+pmZmeju7o6zZ8/G8PDwnuzz1VdfjQ984AMx/IvD0ZpqXV1+W/NtcduB27aVA+yG5ablyB3LRdtrbdG03FTrdCAibrTLR//zo7VOIyIi/rDvD2udQvzj8X9c6xQS8TlEJOOzeO655+L48eNlDWyi+m67rfbnUe+8806tU4hXXnklOjo64gc/+EH89E//dK3T4Sf0ASjF+Xd1XL1+NUa+NRLZQjYy6UwMPjC45093rpaktIlT/8+pmr130iTh/MI5J++1uLgYhw4dqnUaEZGMc98k/I0miT5Asqz0AbghKdeTtiMp52TrNdJ5725K6vHj1hy7+uXY1S/Hrn7lruXiyckn9QESKCn9gHo6/2ZzvqepJu0p2ZJyX8b11huScO07wvFImlq3i1dffTXuuecefYAEcgd3Fwz9ydrK2l/p+pX42IMfq1E2ELEcy3Ht/dciF7loCifTJMNyJKe+L9eeq3UKieBzuOmVV16JiIjm5p3PrkJjevHFF2udQrzxxhu1ToEt6APwXs6/q+dTP/up1f//brwbuajP85WktIkk/J5xk3NO3mtpaanWKazyXQHl6fm7PfHLXb98y+1+/7/8fvzF/F+szlbwc3f9XHzqlz51y7hqqmYOudvq5/wsKedkpTTKee9uSvLxY2uOXf1y7OqXY1e/fnTtR7VOgYRzP7cx+J6mmrSnZHOtNVl+7zd+r9YpkEC1/jvN5ZzfJVXdFlik0+koFAq33O7o0aN7vs+ST69dUHVG7Sw3LUcuVCuTLMtNy3H+n5yP1tdby2qX/+fl/zNm35hdvRHcebQz/reH/reyckkt1H6qzd//h79fdmy1PoskfA4Rsa3f4lL6+/vj61//erz77rtx4MCB+Af/4B/ExYsXd7yfxcXF+G//7b95mnCClNsmIqrXLpIwJeDKIEySSR+A93L+zXpJaRMPP/xwzd47aZxzkjSLi4vxla98JT70oQ+V1Saq1TYjknHum4Q+QCWqlcMrr7wSf+fv/J1dyJBqKNkH+Ktb9wGevO/JGPnxe2YruG8wjvzV3s5WkIQcaiEp52SUx/GrX45d/XLs6pdjV8eu1ToBbuVP//RP4+677159ffDgwTh48OCWMdXsp37l0a+UFUey+J6mmrSnZEvKfZntjklablqO/J351bFc1Ryb1X+hv6y4iOr9libld7TW96giIi6eLv+a+Xbbxfr2tF4S2kRE7e+JvPrqqzV9fzZXt3dw29ratly/UtWTTqf3fJ+HWg7FHS13rF2YnAe1sw8txVI0RVM0LTdF87InY5IMS7EUqdtScejAobLa5W888Bvx9LefjrnCXHSkO+KJDz4Rhw8cLi+ZBHxHl517VPGzSMDnEBFx5Eh5N/T/8A//MB577LG4fPlyPPTQQ/HFL36xrH0tLi5Gc3NztLS0GOyWEOW2iYjqtYsk8HTrZNMH4L2cf7NeUtqEc5ubnHOSRLfffnscOXKkrDbRSOe9EfXfB6hWDu9///t3ITuq5fCBw2X1AVrf1xr/5u//mx3HVVMScqiFpJyTUR7Hr345dvXLsatfjl39MjA2+Y4dOxYf+MAHdhRTzX6qv+nG4HuaatKeki0p1/+3O4ZoqWkprt12bXUsVzXHZiXhmm9S/kZqfY8qYm/Gqa1vT+t99R9/tewcPtH0ififbf9zNYdPNH2i7P2dHj9ddh7VkJTvCTaq2yOTyWRiampq0/UrVV6ZTKam+wRgdxw5eCSG/v5QrdNIBJ/FDXfeeWd87Wtfq3UaJIx2AQA3Xei7UOsUan6RslLOLUgqbfOmJHwWScgBAACAZNBHBKBeJWU8kt/SG5LyOSShXSQhBxpfMkqyytDV1bXlVDnZbDYiInp6emq6TwAAAAAAAAAAAAAAIPnqtsDi1KlTERExMzNTcv3ly5d3XAixG/sEAAAAAAAAAAAAAACSr24LLLq6uqKnpyeeffbZkusvXrwYQ0Mbp4ApFAoxNDQUk5OTVdsnAAAAAAAAAAAAAABQ31pqnUAlxsbGoru7O06dOhVdXV2rywcHB+Ps2bMlZ5sYHR2N8+fPx+joaOTz+arsEwCongt9F2r6/ktNS3H3p++uaQ4AAI2q1ud6K06Pn651CgAAAAAAAOwzSblXBmytrgss0ul0TE9Px9DQUKTT6Th69GjMzc1Fb29v9Pf3l4zp6emJdDodJ0+erNo+AQAAAAAAAAAAAACA+lbXBRYRNwoiRkZGtr19V1dXyZkrKtknANBYvnPhO3Hls1eiebm5Zjl4qjIAwO6p9dOBzJoGAAAAAAAAkEx1X2ABANCIaj3ob4VCDwAAAAAAAACAnUnKuI8k8FkA9UaBBQAAAADsMbOmAQAAAAAAACSPAgsAADaVhKcIGPgHALA7knCuF+F8DwAAAAAAAEgOBRYAACRaEgb+GfQHAAAAAAAAAADQ+JprnQAAAAAAAAAAAAAAAECtmcECAADqXLFQjBfOvRAREYePHo7cXC46ejuis7+zxpkBANyaGcugPPoBAACwv+gDAADA/qIPUDsKLAAAoI4VC8UY7R6NgbGBaO9qX10+PjgeVy5fid7h3hpmBwBQH2pd5LHUtBR3f/rumuZAfdEPAACA/UUfAAAA9hd9gNpSYAEAALdQ6wF3ERF/VfyrksvHBsbi3v5713SmIiL6RvpiuHU4Ono7ItOT2YsUAQCowHcufCeufPZKNC831zQPs3nUB/0AAADYX/QBAABgf9EHqC0FFlX04x//OCIi3ll6p8aZwFrvvPtOfHXqq3Hq2Kk42Hyw1ulARGiXJJe2SVKtnGOunHNGROSz+chOZuORkUdKxnSe7IxLw5d0qHaRPgCl+C1hPW2C9bQJ1ktSm0hCcXESJKHQZOVc8719gAj9AChXkr5r2TnHr345dvXLsatfjl3j0Qeovc36Z1AO39NUk/ZENWlPVJP2VBl9gNpTYFFF169fj4iIxaXFGmcCa72z9E788cwfx//yK/+LHysSQ7skqbRNkmrlHHPlnDMiYmpkKiIiWjOtJWPaOtpiZnQmioVipNKp3U9yH9IHoBS/JaynTbCeNsF62kTyJKHQ5Adv/iAi1vYBIvQDoFy+a+ub41e/HLv65djVL8eu8egD1N5Kv2x9/wzK4XuaatKeqCbtiWrSniqjD1B7tZ1vHgAAKNtrM69t2VFa6WjNT83vVUoAAMAu0w8AAID9RR8AAAD2F32A2jODBQAA1Kl8Nh+H2g5tun6ls5XP5vcqJQAAYJfpBwAAwP6iD5AcX3vya/HSHS/VOg0AABqcPkDtKbCooqWlpYiIKBQLcfjA4RpnAze9/e7bERGRL+bj+gFTVpIM2iVJpW2SFEvvLkUs33ydf+tGp2jlnDMi4lru2qbTAUbEamerWCjuTpLoA1CS3xLW0yZYT5tgPW2CiO31ASL0A2pt5Xjki25c1RvftfXN8atfjl39cuzql2NXP9b3AQrFwo3l+gCJ414A1eR7mmrSnqgm7Ylqqpf29Oqrr+7p+y3+eDGWrt883194bSEi9AGSSIFFFeXzN26onPuv52qcCZQ29CdDtU4BNtAuSSptk6RaOeeM2H5H6e033t6tdPY9fQC24reE9bQJ1tMmWE+boJT39gEi9ANq7fXXX4+IiP/90v9e40wol+/a+ub41S/Hrn45dvXLsatfr7/+evzNv/k3V1/rA9SeewHsBt/TVJP2RDVpT1RT0tvT//qB/7XWKUSEPkASKbCoog996EPxZ3/2Z3HnnXdGc3NzrdMBAKCOra9aX1paiv9Z+J/x0N9/qIZZsZ4+AAAA1aIPUB8eeOABfQAAAKpisz7AAw88UMOsKMW9AAAAqkEfoH4osKiilpaWeOghN7sAANgdfyv+1prXqXRqW1Xrh4+arnq36AMAALCb1vcBIvQDak0fAACA3aQPkEz6AQAA7BZ9gGRSVg0AAHXqUNuhLddfy12LiBsdLwAAoDHoBwAAwP6iDwAAAPuLPkDtKbAAAIA61ZppXe00lbJSzd6aad2rlAAAgF2mHwAAAPuLPgAAAOwv+gC1p8ACAADq1LGuY1tOCZjP5iMiItOT2auUAACAXaYfAAAA+4s+AAAA7C/6ALWnwAIAAOrU/afuj4iIhZmFkuvnL8/rTAEAQIPRDwAAgP1FHwAAAPYXfYDaU2ABAAB1qr2rPTI9mXjp2ZdKrp+9OBsnhk7scVYAAMBu0g8AAID9RR8AAAD2F32A2lNgAQAAdWxgbCC+e/G7G6rWxwfH4/jZ4yrWAQCgAekHAADA/qIPAAAA+4s+QG01LS8vL9c6CQAAoHzFQjEmhiYilU7F4aOHIzeXi47ejujs76x1agAAwC7RDwAAgP1FHwAAAPYXfYDaUWABAAAAAAAAAAAAAADse821TgAAAAAAAAAAAAAAAKDWFFgAAAAAAAAAAAAAAAD7ngILAAAAAAAAAAAAAABg31NgAQAAAAAAAAAAAAAA7HsKLAAAAAAAAAAAAAAAgH1PgQUAAAAAAAAAAAAAALDvKbAAAAAAAAAAAAAAAAD2PQUWAAAAAAAAAAAAAADAvqfAAgAAAAAAAAAAAAAA2PcUWAAAAAAAAAAAAAAAAPueAgsAAAAAAAAAAAAAAGDfU2ABAAAAAAAAAAAAAADsewosAAAAAAAAAAAAAACAfU+BBQAAAAAAAAAAAAAAsO8psAAAAAAAAAAAAAAAAPY9BRYAAAAAAAAAAAAAAMC+p8ACAAAAAAAAAAAAAADY9xRYAAAAAAAAAAAAAAAA+54CCwAAAAAAAAAAAAAAYN9TYAEAAAAAAAAAAAAAAOx7CiwAAAAAAAAAAAAAAIB9T4EFAAAAAAAAAAAAAACw7ymwAAAAAAAAAAAAAAAA9j0FFgAAAAAAAAAAAAAAwL6nwAIAAAAAAAAAAAAAANj3FFgAAAAAAAAAAAAAAAD7ngILAAAAAAAAAAAAAABg31NgAQAAAAAAAAAAAAAA7HsKLAAAAAAAAAAAAAAAgH1PgQUAAAAAAAAAAAAAALDvKbAAAAAAAAAAAAAAAAD2PQUWAAAAAAAAAAAAAADAvqfAAgAAAAAAAAAAAAAA2PcUWAAAAAAAAAAAAAAAAPueAgsAAAAAAAAAAAAAAGDfU2ABAAAAAAAAAAAAAADsey21TqBaBgcHY2BgIHp6eiraT6FQiHPnzkVExNGjR2Nubi56e3ujv7+/GmkCAAAAAAAAAAAAAAAJVNcFFtlsNiYnJ2NkZCRmZmZiYGCgov0VCoXo7u6OsbGx6OrqWl0+ODgYly9fjuHh4UpTBgAAAAAAAAAAAAAAEqi51gmUa3R0NIaGhiIiqlb4MDAwEP39/WuKKyIiRkZGYnR0NCYnJ6vyPgAAAAAAAAAAAAAAQLI0LS8vL9c6iUrNzMxEd3d3TExMRE9PT1n7yGaz0dHREXNzc5HJZDasHxwcjGw2GxMTE5WmCwAAAAAAAAAAAAAAJEzdzmBRbSMjIxERJYsrIiI6OjpicnIyCoXCHmYFAAAAAAAAAAAAAADsBQUWPzEzMxPpdHrT9SuFF1NTU3uUEQAAAAAAAAAAAAAAsFdaap1AUmSz2Whra9t0/UrxRTab3XSbxcXF+Na3vhV33nlnNDerXQEAoHqWlpbi9ddfjwceeCBaWpzGJ4U+AAAAu0UfIJn0AQAA2C36AMmlHwAAwG7QB0guR+Mncrnc6iwVpawUXxQKhU23+da3vhV/7+/9vWqnBgAAq/7sz/4sHnrooVqnwU/oAwAAsNv0AZJFHwAAgN2mD5A8+gEAAOwmfYDkUWDxE1sVTrzXG2+8sem6O++8MyIiPvShD62pJLrvvvvivvvuqyg/qMTy8nK8+eabcccdd0RTU1Ot04GI0C5JLm2TpHrzzTfjt37rt1bPOUkGfQBK8VvCetoE6yWlTSwuLpYd+6Mf/Sj+6I/+KH7wgx/EBz7wgfjVX/3VeP/731/WvpLwRJ5afxbLy8tRLBZr3ia46Utf+lLZsX/6p38a77777urrAwcOxIc//OEd72dxcTH+63/9r/oACaMPUL+S8vtLeRy/+uXY1S/Hrn45dvXrrbfeiqeeekofIIH0A6gm39NUk/ZENWlPVNOt2lMSrsFHRJw8ebLsPKpBHyC5an/3soGsTAP4u7/7u/HTP/3Tq8sPHjwYBw8erFVaEIuLi/Gnf/qn8eEPfzgRgxYgQrtMorfeeqvs2P/xP/5H/It/8S9iZmYmurq64t//+38ff+Nv/I2y9nX77beXnUc1aJsk1SuvvBK/9Vu/ZerphNEHoJSk/JYk4be91r/rSZGUNkFyJKVNVPI3+t4L13/+538e//bf/ts4cOBAWfuq5PuqWpLwWfzxH/9xzdsEN/2jf/SPyo49efJk/Mmf/Em8++67ceDAgfjFX/zFsm4WvfLKK/HAAw/oAyTMyvH4vd/7vbj77rtXl+sDJF9Sfn8pj+NXvxy7+uXY1S/Hrn5duXIlnnrqKX2ABHIvgGryPU01aU/JloR7dRHbv/6tPVFNt2pPSbgGH1H7+9n6AMnlW/An0un0tmaxOHr06C23aW1tjb/+1/96FbKC6jhw4EC0tLTEwYMHnfyQGNpl8qRSqars57nnnot777237Pjl5eWq5FEubXOtcjv8r7/+ejzxxBMxPT0d3d3d8fTTT5ddbV3rzkxS3HbbbbVOgS3oA/BeSfktScJv+5tvvln2+zbSb8mBAwfinXfeKesJ+Y30OURUdjOhkT6LpHxPvLcwoJb7S8JAhCR8FkloE9xUSbv8T//pP8Vjjz0Wly9fjoceeii++MUvRltb247388Mf/rDsHNh9f+2v/TV9gDqTlN9fyuP41S/Hrn45dvXLsStfre+JVDK7InvDvQCqwfc01aQ9JVsS7tVFbH8cjvZENd2qPSXhGnwSvO9976t1CmzCt+BP3OqPK5fLRcSNQgwAoLFdu3Yt3nrrrbI6jNW6iF7rQX8r7rjjjor3MTExER0dHWXH17roBoDyVeN3JKIxfks+9rGPVbyPSj+HJBS8aBPJUkmb+PjHPx7PP//86tOBPvKRj8SXv/zlsvZV6wEsEbX/LBYXF+Nb3/pW2TmQLHfeeWd87Wtfq3UaAJCIAufFxcWyr7c2UpF1kmy3Xaw/do12PJLw91GJrXLY6d+d43FTEu6JANuThOtJ5VpcXIz5+fn4h//wH8bMzExD3FMGYPuS8BtW778frsGzFxRY/EQmk4mpqalN16/MbpHJZPYoo/Il5eJDEnJIwg9BEo5HUi5eV6LRBiw7UbohCYPYK9Fox6PWA4pW1PrvY3FxsSoDICMqu4hu0B9Qj5Jw7luJRnvSXBJ+26s1mJ7qSEpxA8lRST/kmWee2fB0oHL319TUVHYeK2pZdFONzyIpvx0A0ChqfY2xUo1W4JyEHJJQcJ6E+wARyRhAnoTj4e/jJscDqEdJ+D2rlkrySMJ3eCUabcwFrJeEe3UkTxJ+w4xJgltrWm6Av5SVat6JiYno6ekpax9DQ0Nx/vz5Tb84zp8/H0NDQ1t+sbz66qvxgQ98IL73ve/Fz/7sz5aVRzVU46Z0o0hCR8KAomRJQpuISEa7qPVnsbi4aFag96j3n+PXX399w4Cicv8+/I7dUOu/0UpVs7PvYtgNf/mXfxn33HNP/OAHP4if/umfrnU6/ERS+gARyRg8koRznKT46le/GsePH6/bp3NW67e9kqKbJFw4rmbRzTe/+c2y2kQ1P4ck/I3W+82EJLSJauaRlPOsJPQBat0nW1xcjBdffDEefvhhU6+zSh8gmVb6AH/+538ed999947jk3K+10h28iT29b+/jXY8GrnofafnT0k494X1knLN198HbK7cv9NqXbO4cuVK/O2//bf1ARIoSfcCuCEJ15NIllpf36sV1xUbVzXH4WyX9rQ3kvAbthffmdrT9qycZ+oDJI8Ci3X7mJ6ejq6urg3rBwYGolAoxMTExKb7WGnoL7/8cvzMz/zMjnMwoB9g/2qAn+OqSUJHotxBsRGN98TvcttmLTr7jc7gqmRKSh8gIjnfGyRHvZ9fNFoB59e//vWyLiBW83NIQsFLEgp/IpLRJpIgKd8T5bbNRirqdaOBUvQBkmmlD5AESfker7Wk/K6XOyBTv5DdlIQCZwXnybPddrH+2DXa8UjC30cltsqhHovSknI8yu0bVuuahcFVyaXAInmScD2pXIuLi/HRj340vv3tbzfMPeUk2K99ZNcVqabdbE+N/FCIvZKE37CI7X8Wt+qX1Pq+TFLoAyTXviqwKBQKce7cuejt7S25XW9vb3R1dcXw8PCGdU1NTbfcf1JurCTl4kMSckhCRyIJxyMpF68r0WgDlmv99JOIZHwWSRjEXokkXLBtRLW+GLa4uBjf+ta3yu4wVusielIGBzTAqWLDMLgqmZLSB0iKJJz7VqKavyVJmKnLd/hNSfhdLbfAIikarXgyCW0iCer9e6KR2qUboWsl4WZbEvrp+gDJlKQ+QL1/j1eL33VKScI1+Eo0UoFzJec5jVZwnoT7MhHb//1Yf+wa7Xgk4e+jElvlsNO/O8cjOQyuSq6kFFjoL1cuCd8Zi4uL8Z//83+O0dHRmJqa2tezSBtzUTnXFamm3WxPrt/clIQHnSbheLi2eYM+QHI1RIHFxYsXY2BgIMbGxqK/v3/T7c6fPx9DQ0ORTqcjn89vWF8oFKK7uzvGxsbWzGIxODgY6XS6ZOHFeyXlxkolhzQJHQkX525qtIvXlahWHkloExG1f/pJRO0/i6QMYq9EEnLgpiR8Z1ZTrf9GVyThQpSLxTcYXJVMSekDRCRj8EgSzn0rUc3fkomJiZoXOCfhuysp6r2Ak+pLQpso90EI1czD90RyJKUfElH+30ejPYE9CZfN9QGSaaUP8Od//udx99137zi+0c73ktBn365Sv7+N9kCbRi563+n5UxKuwVciKXlUQ5LOc8q1X+9RJfXYNdLfx27Zy2PneFSXwVXJlZQCC4MhG0NSfmOT8B2elDEw9XxPuVR7SsL1vUrU8/FIqu22ifV970a75psUSfgtdU6RHPoAyVW3BRYXL16MkZGRiIiYmpqKQqEQ6XQ6HnzwwYiIGBgYiDNnzqyJmZmZiY9+9KNx8uTJ1dj1CoXCahHG0aNHY25uLnp7e7cs3Fix0tBffvnl+Jmf+Zkd/ze5OZ4sSehIVEtSOmf1rpHaRKWq8Vlol2vt185+EjVC22y076skdOwqGaBQrb/R73//+3HffffpVCVMUvoAEfU/eKSRNEKBMzc0WgEnlUtKm/Bd0XgqKc6LaLzihiRIwmVzBRbJVOkNryQMHmm074xyn8QekYzjkYR+YUQyzi+q+TR2ksOxq45a/I06dvXLsatfBlcllwKLm5Jwzyyivu9t+57eHUn4+6jF9aRS7SkJn0USJOH6XlIkoU008kMhdioJv2F78QCAWz0sIwmfQxLoAyRX3RZYJFGlHaokXLymMemckUTa5VpJ6Mw4JbhB20yeJPx9JIlOVbLoA1CK3xLW0yZYT5tgvcXFxbjttttqnUZiJOFmWxJu7iiwSKYk3fDSX76hkgKLJNAv3J6kHj9uzbGrX45d/XLs6leSzjVZKykFFkmYDSkJRdYR9X1v2/f07khCH7kWBUilBjAn5e+01pJQEJaEa4wRyfj7qOR7OwnXTpKQQ1Js97Pwe7c9+gDJpdUmyJ133hlf+9rXap0GAECiJGFwlYtQ7BZ9AAAgaco9/07KE7yeeeaZDTd3knIjExpREvrs9U6/EACA7dJfhs0loX9arXvKExMT0dHRUXZ8Eq7vVaKRjkdSisG22ybWF+wkpU0k4dpJEnJICp8F+4UCCwBIgCR09iGpknCxOAl/o9///vfjvvvuKzsPAACS7atf/eqmU2XfShKKG5IyUMPNHfaTJAyYSEKfHQAAuLVq9ZeTcM8MStE/vaner+8lJY9Gst3Pb3FxMQ4dOhS33357tLS0OBbAvqbAAgASQGcfdke1LhYn4W/08OHDZecAAEDyvffG1U4loV+osAH2Xr0PmPC9AQAA9ScJ98yg2uq5AGn9jAOVSEo/vZ6PR6NJSpsAqAUFFgBQ53RoINn8jQIAsNuccwI74TsDAACoBX0RGl0tCpDWzzjATQrCgEaRz+bjxeEXIyKimCtGsVCMTG8mTpw9sWlMsVCMF869EBERh48ejtxcLjp6O6Kzv7PmMfXCryoAAAAAAAAAAABADShAShbHA0iK2YuzceXylegb6VuzfLR7NKZHpuPJuSc3xBQLxRjtHo2BsYFo72pfXT4+OB5XLl+J3uHemsXUk+ZaJwAAAAAAAAAAAAAAANwoYHj52ZdLFir0faEv8tl8jA+Ob1g3NjAW9/bfu6boISKib6QvZkZnIjuZrVlMPVFgAQAAAAAAAAAAAAAACTA/NR+zF2djYmhiw7qVoobvTX5vzfJ8Nh/ZyWw8OPhgyX12nuyMS8OXahJTbxRYAAAAAAAAAAAAAABAAhxqOxSpdCoOHz286TapdGrN66mRqYiIaM20lty+raMtspPZKBaKex5TbxRYAAAAAAAAAAAAAABAArR3tcdQfihOnD2xYd3CzEJERNzTc8+a5a/NvLah6OK9Vgoi5qfm9zym3iiwAAAAAAAAAAAAAACAhJscmozWTGv0DveuWZ7P5uNQ26FN41aKIvLZ/J7H1BsFFgAAAAAAAAAAAAAAsEsWry/G9R9eX/334x/9eEfx+Ww+xgfHI51Jx5NzT25Yfy13bcuZJVaKIoqF4p7H1JuWWicAAAAAAAAAAAAAAACN6sVzL8Y3fvsbq6+vxtVtxc1enI0rl69EIVuIdCYdHb0dJbfbbkHD22+8vecx9UaBBQAAAAAAAAAAAAAA7JKHn3o4PvzpD6++vnLlSnyu83O3jOvs74zO/s7V18/0PhPTI9PR94W+LWeSoHwKLHbB+OPj8ddSf61m7396/HTN3hsAAPajWvcBIvQDAAAAYMWFvgu1TkE/HQCgwZV7zrnUtBS59lxc+eyVaF5urigH55wAUF9aDrZEy8GbQ/ff98P3lbWfgbGBGG4djmKhGI9OPLq6PJVObWt2icNHD+95TL2p7CwNAAAAAAAAAAAAAADYdal0Kjr7OyM7mY3sZHZ1+aG2Q1vGXctdW43f65h6o8ACAAAAAAAAAAAAAAASoFgoRj6b33R9OpOOiIi5ibnVZa2Z1tXihs32ubLdXsfUGwUWAAAAAAAAAAAAAACQAMOtw/H5js+vFiusd/jo4YiINeuPdR3bdPuIWC3YyPRk9jym3iiwAAAAAAAAAAAA2MLbb78db7311o7+ZbPZ+KVf+qU4evRo/NIv/VJks9kd72PlHwAA+0cqnYrWTGuk0qmS63NzuYiIuKv7rtVl95+6PyIiFmYWSsbMX57fUPSwVzH1pqXWCQAAAAAAAAAAACTZfffdV1H8xMREdHR0lB2/vLxc0fsDAFA/us50xYODD266fvZLs5FKp+K+kzfPUdu72iPTk4mXnn0p2rvaN8ZcnI1HJx5ds2yvYuqNGSwAAAAAAAAAAAAAACABeod748XhFyM7md2wbmxgLCIiPvncJzfMcDEwNhDfvfjdDbNLjA+Ox/Gzx0vOLLFXMfXEDBYAAAAAAAAAAABbePnll+NnfuZndhTz8Y9/PJ5//vl4991348CBA/GRj3wkvvzlL+9ShgAANJK+kb6YvTgbYwNjkWpLRTFXjGKhGMe6jsW//N6/3FBcERGRSqfizPSZmBiaiFQ6FYePHo7cXC46ejuis7+z5PvsVUw9UWABAAAAAAAAAACwhcOHD8ftt9++o5hnnnkmHnvssbh8+XI89NBD8cUvfnHH+wAAYP/q7O/cccFCKp2KvpG+RMbUCwUWAAAAAAAAAAAAVXbnnXfG1772tVqnAQAA7EBzrRMAAAAAAAAAAAAAAACoNTNYAAAAAAAAUJcu9F3Y1nZLTUuRa8/Flc9eiebl6j9/7PT46arvEwAAAACAvWcGCwAAAAAAAAAAAAAAYN9TYAEAAAAAAAAAAAAAAOx7LbVOAAAAAAAAgPpzoe9CrVMAAAAAAICqMoMFAAAAAAAAAAAAAACw7ymwAAAAAAAAAAAAAAAA9j0FFgAAAAAAAAAAAAAAwL7XUusEAAAAAAAAgPp3oe/Crux3qWkpcu25uPLZK9G87PlxAAAAAMDucQUSAAAAAAAAAAAAAADY9xRYAAAAAAAAAABAQs1enK11CgAAAPuGAgsAAAAAAAAAAEigYqEYYwNjMT06HcVCsdbpAAAANLyWWicAAAAAAAAAAABslM/mIyLiK4Nfia8MfmXLbQfGBqKzv3P1dbFQjBfOvRAREYePHo7cXC46ejvWbLNeOTEAAACNRIEFAAAAAAAAAAAkUD6bj9ZMa7R3tUeqLVVym2KuGPlsfkNxxWj3aAyMDUR7V/vq8vHB8bhy+Ur0Dvdu3E8ZMQAAAI1GgQUAAAAAAAAAACTQlctX4tGJR6M107rpNhNDE9Ez3LNm2djAWNzbf++aQomIiL6RvhhuHY6O3o7I9GQqjgEAAGg0zbVOAAAAAAAAAAAAKG2r4oqFmYVo62hbs00+m4/sZDYeHHywZEznyc64NHxpzbJyYgAAABqRAgsAAAAAAAAAAEigzQoeVkyNTEX3me4NyyI2L8xo62iL7GQ2ioViRTEAAACNqKXWCQAAAAAAALAzF/ou1DoFAAD2wFazV0wMTUTvcO+G5a/NvBapdOqW+5yfmo9MT6bsGAAAgEZkBgsAAAAAAAAAAKgjCzML0dbRVrIoIp/Nx6G2Q5vGrsTks/mKYgAAABqRAgsAAAAAAAAAANhDi9cX4/oPr6/++/GPfryj+BfPvRjdZ7pLrruWu7blbBQrhRTFQrGiGAAAgEbUUusEAAAAAAAAAABgP3nx3Ivxjd/+xurrq3F127GzF2cjnUlvun67RRBvv/F2RTEAAACNSIEFAAAAAAAAAADsoYefejg+/OkPr76+cuVKfK7zc9uKffHci9H3hb7dSg0AAGBfU2ABAAAAAAAAAAB7qOVgS7QcvDls530/fN+24vLZfCzMLER7V/um26TSqW3NSHH46OGKYgAAABpRc60TAAAAAAAAAAAAbm1qZCpaM61bbnOo7dCW66/lrkXEjaKKSmIAAAAakRksAAAAAAAAAGhYF/ou1DqFOD1+utYpAA3ie5Pfu2WBRWumNean5jddvzJTxXv3U04MAABAIzKDBQAAAAAAAAAA1IGFmYVbziJxrOvYakFEKflsPiIiMj2ZimIAAAAakRksAAAAAAAAoM4l4Qn9AMDuWphZiIiIVNvWBRb3n7o/vnn+m7EwsxDtXe0b1s9fnt9QKFFODAAAQCMygwUAAAAAAAAAACTctdy1bW3X3tUemZ5MvPTsSyXXz16cjRNDJyqOAQAAaEQKLAAAAAAAAAAAIOHy2XxERKTSW89gERExMDYQ37343dVZL1aMD47H8bPHS85GUU4MAABAo2mpdQIAAAAAAAAAVNeFvgu1TiGWmpbi7k/fXes0ABrGXQ/eFal0Ku5+6Nbfral0Ks5Mn4mJoYlIpVNx+OjhyM3loqO3Izr7O6sWAwAA0GgUWAAAAAAAAAAAQMK1d7XHUH5o29un0qnoG+nb0XuUEwMAANBImmudAAAAAAAAAAAAAAAAQK2ZwaIBJWG634iI0+Ona50CAAAAAAAAAAAAAABsiwILAAAAAAAAqEBSHn4FAAAAAEBlmmudAAAAAAAAAAAAAAAAQK0psAAAAAAAAAAAAAAAAPa9llonAAAAAAAAAEBj+s6F78SVz16J5mXP/gMAAAAg+RRYAAAAAAAAAFTRhb4LtU4BAAAAACiDx4QAAAAAAAAAAAAAAAD7nhksAAAAAACgQYwPjsfDQw9Ha6a15PpioRgvnHshIiIOHz0cublcdPR2RGd/56b73KuYevL/Pvb/xtFDR2udBgAAAAAAUGUKLAAAAAAAoAEszCzEzOhMPDj4YMn1xUIxRrtHY2BsINq72leXjw+Ox5XLV6J3uLdmMQAAAAAAAEnQXOsEAAAAAACAyk0OTW65fmxgLO7tv3dN0UNERN9IX8yMzkR2MluzGAAAAAAAgCRQYAEAAAAAAHVuenQ6Ogc6N12fz+YjO5nddHaLzpOdcWn4Uk1iAAAAAAAAkqKl1gkAAACVWZhZiKmRqSjmirEwsxCpdCq6B7uj+0z3pjHFQjFeOPdCREQcPno4cnO56OjtiM7+zQdk7VUMAACwM/lsPiIiWjOtm24zNTK15TZtHW0xMzoTxUIxUunUnsYAAAAAAAAkhQILAACoY9Oj0xER0TfSt7osO5mNsYGxuDR8Kc5Mn9kwaKlYKMZo92gMjA1Ee1f76vLxwfG4cvlK9A73bnifvYoBAAB2bmpkKnqHeyM7md10m9dmXtuyoGGlIGJ+aj4yPZk9jQEAAAAAAEiK5lonAAAAlCefzUexUNwwU0WmJxOffO6Tkc/mY2xgbEPc2MBY3Nt/75qih4gbRRozozMlB2XtVQwAALAzsxdn48HBB2+5XT6bj0NthzZdv1IUsTIbxl7GAAAAAAAAJIUCCwAAqFNTI1MbiitWtHe1R6YnE9nJ7IbBTtnJ7KYDsDpPdsal4Utrlu1VDAAAsDPFQjHy2fzqrBBbuZa7tuXMEitFEcVCcc9jAAAAAAAAkkKBBQAA1KnvTX4v/t09/27TgUnHuo5FRMTCzMLqsqmRqYiITQdgtXW0RXYyu2afexUDAAD72eL1xbj+w+ur/955851bxrxw7oU4cfbEtva/3XPvt994e89jAAAAAAAAkqKl1gkAAADlOdR2KBZmFiKfzUd7V/u2Yl6beW3Lp8muFETMT81HpiezpzEAALCfvXjuxfjGb39j9fXV5qtbbp+dzEZHb8dupwUAVMmFvgu1TiEiIk6Pn651CgAAAACJpsACAADq1KMTj0Y+m990lohCthARsab4Ip/Nx6G2Q5vuc6UoIp/N73kMAADsZw8/9XB8+NMfXn39yiuvxOd+/nObbj83MRe9w73b3n8qndrW7BKHjx7e8xgAAAAAAICkUGABAAAJtHh9Md69/u7q63fefKfkdpsVV0REzF6cjfau9jXbXMtd2zJmpSjivQOi9ioGAAD2s5aDLdFy8OYl+9vuuG3TbS+dvxS/8NQv7Gj/WxVAR9w4h4+INTPR7VUMAAAAAABAUiiwAACABHrx3Ivxjd/+xurrq81XdxR/6fyliIjo+0LfmuXbLWh4+4239zwGAAC4tXw2H6l0ascFCq2Z1pifmt90/co5/HsLpfcqBgAAAAAAICkUWAAAQAI9/NTD8eFPf3j19SuvvBKf+/nPbSt2YWYhJocmY2BsINq72ncrRQAAoAYWZhZidmw2ZsdmN6zLZ/MRETH++PjqTBKPTjwaERHHuo5FdjK76X5XYjM9mdVlexUDAAAAAACQFAosAAAggVoOtkTLwZun67fdcdu2Y8cGxuKRkUeis79zw7pUOrWt2SUOHz285zEAAMCtdfZ3ljzXj4iYvTgbYwNj0feFvg3F1vefuj++ef6bsTCzULIQe/7y/Iaih72KAQAAAAAASIrmWicAAABUz9jAWHQPdkf3me6S61eeYruZa7lrEXGjQGKvYwAAgN3T3tUemZ5MvPTsSyXXz16cjRNDJ2oSAwAAAAAAkBQKLAAAoEFMDE3EXQ/dFSfObj5YqTXTulrcUMrKrBOtmdY9jwEAACqTz+bX/O96A2MD8d2L342FmYU1y8cHx+P42eMlZ5bYqxgAAAAAAIAkaKl1AgAAQOWmR6ejraOt5MwVxUJxdaaIY13HIjuZ3XQ/KwOx3jvgaa9iAACA8owPjkchW4j5qfkbrx8fj+mR6TjWdSx6h3tXt0ulU3Fm+kxMDE1EKp2Kw0cPR24uFx29HdHZ31ly33sVAwAAAAAAkAQKLAAAoM7NXpyNiChZXJHP5mNhZmF1ENP9p+6Pb57/ZizMLER7V/uG7ecvz28oetirGAAAoDx9I33b3jaVTu1o+72MAQAAAAAAqLXmWicAAACUb2FmIa7lrpUsroiIyE5m1xQ4tHe1R6YnEy89+1LJ7WcvzsaJoRNrlu1VDAAAAAAAAAAAQC2ZwQIAAOpUPpuPsYGxuKfnnpgfnN+wvpgrRnYyG0P5oTXLB8YGYrR7NO4/df+a4ovxwfE4fvZ4yZkl9ioGAAAAAAAAAACgVhRYAABAnXqm95nIZ/ORH81vuk1rpnXDslQ6FWemz8TE0ESk0qk4fPRw5OZy0dHbEZ39nSX3s1cxAAAAAAAAAAAAtaLAAgAA6tSTc0+WHZtKp6JvpC+RMQAAAAAAAAAAALXQXOsEAAAAAAAAAAAAAAAAaq3uZ7AoFApx7ty5iIg4evRozM3NRW9vb/T391e0z6GhoYiIyOVyERHx0EMPxdmzZytPGAAAAAAAAAAAAAAASJy6LrAoFArR3d0dY2Nj0dXVtbp8cHAwLl++HMPDwzve58zMTIyMjMTw8HCk0+nV5RcvXozu7u6Ynp6uRuoAAAAAAAAAAAAAALDBwsxCTI1MRTFXjIWZhUilU9E92B3dZ7pLbj89Oh2zY7PRPdgdmZ5MpNKpyGfzsTCzEC8/+3I8/NTD0d7VviGuWCjGC+deiIiIw0cPR24uFx29HdHZ37lpbuXE1JO6LrAYGBiI/v7+NcUVEREjIyPR2toavb290dPTs6N9Dg0NxcTExIbl/f39kcvlYnBwMEZGRirKGwAAAAAAAAAAAAAA1psevTEhQN9I3+qy7GQ2xgbG4tLwpTgzfSZS6dSamGKhGNnJbGQns2uWp9KpGBgb2LS4YrR7dMP68cHxuHL5SvQO91Ylpt401zqBcmWz2ZicnIzBwcGS60+ePLnjGSxmZmYik8lsuv7kyZMxOTm5o30CAAAAAAAAAAAAAMCt5LP5KBaKG2aqyPRk4pPPfTLy2XyMDYyVjH1k5JE4fvZ4dPZ3RteZrnhk5JEYyg9Fpqf0+PixgbG4t//eDcUXfSN9MTM6s6FYo9yYelO3M1iszCKxWUFER0dHjI6ORqFQiHQ6va19rhRtbCaXy217XwAAAAAAAAAAAAAAsF1TI1PxC0/9Qsl17V3tkenJRHYyG/lsPlozrWvW33fyvg0zW2wmn81HdjIbj4w8UnJ958nOuDR8aU1xRjkx9ahuZ7CYmZnZsthhpfBiampq2/vs6uqKbDYbAwMDJdePjIzEqVOndpQnAAAAAAAAAAAAAADcyvcmvxf/7p5/F8VCseT6Y13HIiJiYWahoveZGrkxxn59kcaKto62yE5m1+RRTkw9qtsCi2w2G21tbZuuXym+yGa3P81IJpOJM2fOxMWLF6Ojo2PNbBaTk5NRKBTi7NmzZecMAAAAAAAAAAAAAAClHGo7FMVCMfLZ/K6+z2szr20528VKEcX81HxFMfWopdYJlCuXy63OUlHKSvFFoVDY0X5HRkaio6MjhoaGore3N86cORMdHR3R1dUVIyMjlaQMAAAAAAAAAAAAAAAlPTrxaOSz+U1niShkCxER0d7Vvuk+FmYWYn5qPu568K5Nt8tn83Go7dCm+1gppHhvoUc5MfWobgsstls48cYbb+x432fPno10Oh2Dg4MxOjoa6XQ6xsbGth1/bfFavLn45urr25pvi9sO3LbjPOrd4uJirVPgJxYXF2NpackxIVG0S5JK2ySplpaWap0CW0hCH8D3VnL4LWE9bYL1tAnW0yYoRR8g2d5+9+04uHhw9fV+vQ9QT5ablmM5lmO5aTmWwt9XvXH86pdjlzzbPed0jlq/HLv65Zgl39WrVyOXy62+PnjwYBw8eHCLCBrZUlN55zbVPD/yvYHffapJe6KatKfSFq8vxrvX3119fa1wbdNtNyuuiIiYvTgb7V3tJbfJTmYjn81HpicT3We6Y2FmIZ7pfSZODJ2ITM/aiQ2u5a5t+T4rhRTFQrGimHpUtwUWu2loaCg6OjpieXk5hoaG4vz586uzWWxnFouhPxla8/pXun4lPvbgx3Yr3cR68cUXa50CP7G0tBSvvPJKREQ0NzfXOBu4QbskqbRNkqqcwmH2ThL6AM6/k8NvCetpE6ynTbCeNkEp+gDJloQ+ADuzHMtx7f3XIhe5aIqmWqfDDjl+9cuxS57tXkNyjlq/HLv69d6B+yTTBz/4wTWvf+3Xfi0ee+yxmuRC7eXay/ubreb5kXtD+N2nmrQnqkl7Ku0v/+Qv4/vf+P7q67cW39rxPi6dvxQREX1f6NuwbqXw4cTZE6vL2rvaY2BsIIZbh+PM9Jk1s1lstwji7TferiimHtVtgUU6nd7WLBZHjx7d0X57e3tjaGgoenp6IiJieHg4Tp06FQMDAzE6Ohq5XO6Ws1kM/+JwtKZuVufc1nxb3Law/55c9fDDD9c6BX5ipQrw+PHj0dJSt3/2NBjtkqTSNkmqlY4nyZSEPoDz7+TwW8J62gTraROsp01Qij5AsiWhD8DOLDctRy5y0fZaWzQtG+Rdbxy/+uXYJc92ryE5R61fjl39evXVV2udArfw7W9/Oz7wgQ+svjaDxf525bNXyoqr5vmRe0P43aeatCeqSXsq7UMPfSjeffLmDBbz8/PxmZ//zLbjF2YWYnJoMgbGBtYUSqzo7O8sGZdKp6KzvzPGBsbiybknd574PlS3rbatrW3L9SuV/el0etv7PH/+fHR1da0WV6zo6uqKubm5GBwcjNHR0ZicnNywzXsdajkUd7TcsXbh8rbTaBi+FJOlubk5WlpaHBcSRbskqbRNkkhFf7IloQ/gOytZ/JawnjbBetoE62kTrKcPkGyHDxyueR+AnVmKpWiKpmhabormZX9f9cbxq1+OXfLs5HzTOWr9cuzqk+OVfEeOHLnleCX2j3LPbap5fuR7gwi/+1SX9kQ1aU8btbS0RNx+8/Whtw/tKH5sYCweGXlk00KKrdz10F0xe3E28tn86kwXqXRqWzNSHD56ePX/lxNTj+r2KlYmk9lyesSV2S0ymcy29zkyMhJPPfXUluu7urpiYmJi2/sEAAAAAAAAAAAAAIByjA2MRfdgd3Sf6S4rPpVORcSNWTBWHGrbusDjWu7amthyY+pR3RZYdHV1rRZRlJLNZiMitpxpolTMrWa8GBwc3PJ9AQAAAAAAAAAAAACgUhNDE3HXQ3fFibMnNt1mfHA8Pt/x+R3ttzXTuloQUcrKTBUrM16UG1OP6rbA4tSpUxERMTMzU3L95cuXd1RcEXFjtouVwozNzM3NRXd3edU/AAAAAAAAAAAAAABwK9Oj09HW0VayuGKlmCEiYmFqYVuFD+1d7avLjnUdW7OP9fLZfEREZHoyFcXUo7otsOjq6oqenp549tlnS66/ePFiDA0NbVheKBRiaGgoJicnN6zr7+8vGfPe2JmZmTh58mT5iQMAAAAAAAAAAAAAwCZmL85GRET3mY0TA+Sz+chO3pxU4J6ee2Iov/kY+PnL85FKp9bMLHH/qfsjImJhZmHTmPWFEuXE1KOWWidQibGxseju7o5Tp05FV1fX6vLBwcE4e/ZsyRksRkdH4/z58zE6Ohr5fH7NuuHh4RgYGIjBwcEYHh6OdDq9um5mZiaGhoY2LGdzF/ou1DqFOD1+utYpAAAAAAAAAABUxfTodMyOzUYqnYqIiHQmHb3DvSW3LRaK8cK5FyIi4vDRw5Gby0VHb0d09nduuv9yYgAAgOpamLkxI0Wp4oqIiOxkdk0hw/2n7o/p0elNizFmL87GwNjAmuXtXe2R6cnES8++tGZmixWzF2fj0YlHK46pR3VdYJFOp2N6ejqGhoYinU7H0aNHY25uLnp7e6O/v79kTE9PT6TT6U1noRgbG4vJycl4/PHH1yzPZDIxMTFR9f8GAAAAAAAAAADYSrFQjP/7o/933NNzz5oBS/lsPiaGJjYUWRQLxRjtHo2BsYE1A5/GB8fjyuUrJYsyyokBAACqK5/Nx9jAWNzTc0/MD85vWF/MFSM7mV0zY0V7V3tkJ7Nx6fylOHH2xJp9jXaPxvGzx0sWTQ+MDcRo92jcf+r+DX2A42ePl5yNopyYelPXBRYRN4osRkZGtr19V1fXhpkr1uvp6Sk5+wUAAAAAAAAAAOy1leKK9UUOXxn8SsxPzW9YPjYwFvf237vhqbJ9I30x3DocHb0dGwY+lRMDAABU1zO9z0Q+m4/86Obj3VszrRuWnTh7IrKT2RgfHI9irhjFQjFS6VR88rlPlpxtIiIilU7FmekzMTE0Eal0aluz2JUTU2/qvsACAAAAAAAAAAAa1aXzlyKfzceZ4TMb1qXSqbjrwbvWLMtn85GdzMYjI4+U3F/nyc64NHxpTbFEOTEAAED1PTn3ZNmxmZ7Mjs/ZU+lU9I307XpMPVFgAQAAAAAAAAAACfXiuRej60xXyXUDYwMblk2NTEVE6afaRkS0dbTFzOjM6hNty40BAABoRM21TgAAAAAAAAAAANho9uJsFAvFuP/U/duOeW3mtS2LIFaKKOan5iuKAQAAaEQKLAAAAAAAAAAAIIFefvbliIho72qPiIiFmYWYHp2OhZmFTWPy2Xwcaju06fqVQop8Nl9RDAAAQCNSYAEAAAAAAAAAAAn03kKKS+cvxbXcteg+0x0REc/0PhPZyeyGmGu5a1vORrFSSFEsFCuKAQAAaEQKLAAAAAAAAAAAYA8tXl+M6z+8vvrvxz/6ccntVgofpken48TZE5HpyUTEjRktBsYGYmxgbEORxXaLIN5+4+2KYgAAABpRS60TAAAAAAAAAACA/eTFcy/GN377G6uvr8bVktutFD6szCDxXql0KjI9mfjK4FfiybkndydRAACAfUaBBQAAAAAAAAAA7KGHn3o4PvzpD6++vnLlSnyu83MbtkulU1EsFFdnrlgv05uJ2YuzsTCzEO1d7WtibuXw0cMb3mcnMQAAAI2oudYJAAAAAAAAAADAftJysCUO/tTB1X/ve//7Sm63MnNFKp3acv381PyGZZu5lru2YZ/lxAAAADQiM1gAAAAAAAAAwD5woe/CtrZbalqKXHsurnz2SjQvV/e5jafHT1d1f9Do2rvaI5/N33K7984+0ZppXVNwsdm2rZnWimIAAAAakRksAAAAAAAAAAAgge566K6IWFtA8V4rM0u0d7WvLjvWdWzT7SNitWAj05OpKAYAAKARKbAAAAAAAAAAAIAE6uzvjIiI7GS25PrcXC4iIu568K7VZfefuj8iIhZmFkrGzF+e31AoUU4MAABAI1JgAQAAAAAAAAAACdSaaY3O/s548dyLJdd/9+J34/jZ45FKp1aXtXe1R6YnEy89+1LJmNmLs3Fi6MSaZeXEAAAANKKWWicAAAAAAAAAALBXLvRdqHUKERFxevx0rVOgTvR9oS9Gu0djenQ6us90ry4fGxiL1kxr9A73bogZGBuI0e7RuP/U/dHe1b66fHxwPI6fPV5yNopyYgAAABqNAgsAAAAAAAAAAEioVDoVZ6bPxAvnXoixgbGIiCgWitE50Lmm4KJUzMTQRKTSqTh89HDk5nLR0dsRnf2dVYsBAABoNAosAAAAAAAAAAD22G7MpLHUtBS59lxc+eyVaF5uvuX2ZtGoH6l0quRMFbeK6Rvp2/UYAACARnLr3jQAAAAAAAAAAAAAAECDU2ABAAAAAAAAAAAAAADsewosAAAAAAAAAAAAAACAfa+qBRbPP/98NXcHAAAAAAAAAAAAAACwJ6paYNHb21vN3QEAAAAAAAAAAAAAAOyJlmru7MiRI/HP//k/j9/93d+t5m4BAAAAAAAAAAAAAIB9LvtcNrIT2YimiLaOtrjrwbvi2AePVW3/VZ3BolAoxMjISPzyL/9yfPvb367mrgEAAAAAAAAAAAAAgAZ2/uj5LddnPpqJnt/piYf/zcNxz0fviSuXr8RX/tlX4voPr1fl/as6g0VExMjISHz0ox+NycnJOHfuXPT29sbJkyfjp37qp6r9VgAAAAAAAAAAAOwjF/ou1DoFAAB20fLy8ra2Sx1JRepIKrof747i1WJMDE3EI7/3SMXvX9UCi5GRkfjUpz4VERGPP/54PP744/Gtb30rzp49G01NTTE4OBgf/OAHq/mWAAAAAAAAAAAAAABAA2hqatpxTOpIqmrv31y1PcWNoor1HnjggXj66afjd37nd+Ly5ctx6tSp+P3f//1qvi0AAAAAAAAAAAAAALAPFa8WY2FqoSr7quoMFls5cuTImlktnnjiiWhqaoonnngi/u7f/bt7lQYAAAAAAAAAAAAAAFAjhb8slFy+vLx8Y/33CxHLW++jWCjGtdy1WJhZiBfPvRidJzurktueFVi8V0dHR3R0dMS5c+didHQ0MplMDA0Nxac+9alapAMAAAAAAAAAAAAAAOyB+en5mL88H/lsPrKT2bh+9fqa9Z/PfH7b+1peXo5MTyYe+b1HqpLbnhZYPP/88zE8PByTk5MRceM/5syZMzE4OBgRsTqrxdDQUPzsz/7sXqYGAAAAAAAAAAAAAADsss5PdEbnJ27OOLEwsxCTQ5ORfS4bTU1Nce8n7t3WflozrZHpzUTmo5mq5VbVAovnn38+PvKRj6xZ9sMf/jBGR0djZGQkstnsjQqRn8xY8fjjj6/Z9umnn46rV6/G6Oho5HK5eOqpp+KnfuqnqpkiAAAAAAAAAAAAAACQEO1d7fHoxKMxPjge37343Rj40kDNcqlqgUVvb2+8++67EXGj2GJkZCQuXrwYy8vLERGrs1U88MADm+7jyJEj8Zu/+Ztx9erV+NSnPhXnz583mwUAAAAAAAAAAAAAADSwvpG+WJheqGkOVS2wOHLkSPzcz/1cRMSG2SpOnjwZR44c2dG+vvSlL8U/+2f/LH7v936vmmkCAAAAAAAAADVwoe9CrVMAAAAAEuzhpx4uK27yqcnoOddT8fs3V7yHdebm5mJubi4+8YlPxPT0dPz3//7f4/HHH99RccV7lRsHAAAAAAAAAAAAAADUj85PdJYVNzM6U5X3r+oMFhERg4OD8Tu/8zsVFUZcvXo1fud3ficGBwfj6tWrVcwOAAAAAAAA/v/s/U9sXOedJ3r/qMijktBtVZEbUYN+r1nsd2HKg7aL8gCx1MBticwMBtJiIpZ0A4zTvZBIB+9FGug3FqV7V30XLVP2nWByFxap3MWMG8hI5LgXzCosqSeI5UVEMh7cmF50eKQEbdLAO64quhtmaVpRvQuFtCiSEv8c8Y/0+QBCVOd5fs/zRHVM1iHP9zwAAAAAAGx11dvVqCSVx/abHp+OWrWWypypByzefffddY9x9erV6Ovri6Ghoejt7U1hVQAAAAAAAAAAAAAAwFY3/sPxKPWWUgtNrEaqAYuTJ0+mNs7k5GS8+uqrceLEiVTGBAAAAAAAAAAAAAAAtq7kWhLD3cORy+eirdgWmWzmsTXTY9Nx6/qtVOZPNWBx6dKlR7Zfu3YtRkZGoqGhIVpbW+PgwYPx8ssvL+q3d+/eeOutt9JcGgAAAAAAAAAAAAAAsIVdO3ctioPFaDvRtqq6i00XU5k/1YBFU1NTfP7558u2Hz16NI4ePRozMzNRLpejVCpFf39/9PX1xfPPP5/mUgAAAAAAAAAAAAAAgG0kk8usOlwREZFtyaYyf6oBi3q9vqJ+e/fujb1798aZM2diZmYment74913301zKQAAAAAAAAAAAAAAwDbSXGheU133aHcq8+9IZZTfaWhoWHXN3r1701wCAAAAAAAAAAAAAACwDdWqtU2dP9UdLNZiZmYmRkdHN3sZAAAAAAAAAADPlB8d/9FmLyG+NfytzV4CAAAAW0hbsS0+ef+TePGbL66qrnS+FB0XOtY9/6oDFrdv317yeL1ej4iIX//61/N/X061Wo1yuRzj4+Nx4cKFOHny5GqXAQAAAAAAAAAAAAAAPEXyR/Nx4+0bqw5ZjA+Mb07AYmxsLG7evBlJkkSpVIqZmZkF7fl8fsVj1ev16OjoiHfffXe1ywAAAAAAAAAAAAAAAJ4i1dvVOFA8EB8PfhyXX70cLR0t0djaGLl8btma6fHpqFVrqcy/6oDFiRMn4sSJE/Ovx8fHo7e3N65duxYNDQ0L2h4ln89HZ2dnHD16dLVLAAAAAAAAAAAAAAAAnjL9hf64M3MnIu5v6DA1NhUNDQ0bNv+qAxYPKxQKMTIyEj09PTE0NBRXr15NY10AAAAAAAAAAAAAAMAzZHfj7oiIOHDyQGSymRXVTI9Nx63rt1KZf90Bizn9/f0xNjaW1nAAAAAAAAAAAAAAAMAzJJfPxeFzh6NwurCquotNF1OZf0cqo/zO+fPn0xwOAAAAAAAAAAAAAAB4RuTyucjlc6uuy7ZkU5k/tR0sIiJOnDiR5nAAAAAAAAAAAAAAAMAz4tilY2uq6x7tTmX+VHewWKv3339/s5cAAAAAAAAAAAAAAAA8w7ZEwOLMmTObvQQAAAAAAAAAAAAAAGCbqc3U4sN3PkxlrJ2rLfjoo4/i5ZdfXrZtNcrlciRJEtVqdbXLAAAAAAAAAAAAAAAAnnGVpBIfX/k4Xvvea+sea1UBi3PnzsXbb78d7e3t8fOf/3xR+5EjR2JmZmbdiwIAAAAAAAAAAAAAAJ4tt67fWnXNjb4bUavWUpl/VQGLJEmiXq9HpVJZsr2xsTEiIrq7uyMioqmp6ZHjff755zE5ORnvv//+apYBAAAAAAAAAAAAAAA8Za52XY07M3dWVVOv12N3bncq868qYHH58uXo7OyMjo6OJdvz+XycO3cuTp8+vapFPC6IAQAAAAAAAAAAAAAAPN12N94PShw4eSAy2cySfWrVWlSSSkyNTkW+Ix/7X92f2vyrCljs3bs3zpw5s2x7Z2dnHDx4cNWLaGlpWXUNAAAAAAAAAAAAAADw9Mjlc3H43OEonC6sqP+Nt2/E7tzuFfd/nB2pjPI7b775Zrz88surrhsdHU1zGQAAAAAAAAAAAAAAwDaTy+cil8+tuP+hNw9FJpeJW9dvpTJ/qgGLiIj3338/bt++nfawAAAAAAAAAAAAAADAU+zYpWPRcqRlVTVtJ9picmQylflTDVi88cYbUSwW4+DBg2kOCwAAAAAAAAAAAAAA8ETtTHOwcrkcR48ejUKhkOawAAAAAAAAAAAAAAAAS6om1VTGSTVgkc/n46233kpzSFiXHx3/0WYvIb41/K3NXgIAAAAAAAAAAAAAwFOpNlOL2cpsKmOlGrBoamqK27dvxwsvvLDqus8//zzNpQAAAAAAAAAAAAAAANvIreu3Vty3Vq1FJanEWP9YtPe0pzJ/qgGLN998M06ePBlvvPFGHDlyZMV19Xo9zWUAAAAAAAAAAAAAAADbzNWuq3Fn5s6K+9fr9ch35OO1772WyvypBiwiIq5evRrvvPNO9Pf3x6uvvhqFQiEaGxsjm80u2X9kZCRmZmbSXgYAAAAAAAAAAAAAALCN7G7cHRERB04eiEw28+i+TbujudAc+aP51OZPNWCxY8eOaGhoiIj7SZChoaE0hwcAAAAAAAAAAAAAAJ5SuXwuDp87HIXThU2ZP9WART6fjyRJoqurKxobG1dUc/Pmzfjoo4/SXAYAAAAAAAAAAAAAALDN5PK5yOVzmzZ/6gGLc+fOxenTp1dV19TUlOYyAAAAAAAAAADgqTA2MBYTgxPR3tMe+Y58ZLKZqCSVmB6fjo+vfByHzx+O5kLzorpatRY/u/CziIjY07QnypPlaO1sjbautmXnWksNAABAmo5dOrap86cesMjn86uuy+U2L2ECAAAAAAAAAABbVa1ai6SURFJKFhzPZDNRHCwuG64YaB9Y1D7cMxyf3vw0Ovs6U6kBAACejOnx6RjtH41auRbT49ORyWaivac92rvbl63ZqJD10x7MTjVgcenSpTXV/epXv0pzGQAAAAAAAAAA8NQ41n8sypPlqCbVyDRmYn/7/kfeWDVYHIwXu15cFL443n88+nJ90drZGvmO/LprAACA9I0NjEXE/c/ic5JSEoPFwbjRdyO6x7ojk80sqNmokPVmBLOrt6sx2j8an41/FrPl2djduDuy+Wwc7DkY+17el/p8qQYsAAAAAACAjVFJKvFB3wcREVEr16JWrUW+Mx+Hzh5atsbTqwAAYHs6cPLAohuollNJKpGUkjjWf2zJ9raTbXGj78aCsMRaagAAgPRVkkrUqrVFP+vPd+Tj29e+HQPtAzFYHIzXR15f0L5RIeuNDmaXzpfiw4sfRr1eX9Q2PjAebcW2OD5wPHY9vyu1OTc9YDEzMxOXL1+O733ve5u9FAAAAAAA2BYmhibi05ufLnh6VUTEQPtAjPWPxXcnv7uo5ml+ehUAAPCV0f7RiIjI5XNLtje2Nsb4wHjUqrX50MZaagAAgPSN9o/GH5//4yXbmgvNke/IR1JKopJU5j+/b1TIeiOD2bWZ+79rmC3PxosnXoz9r+6fvxapVWsx+/lsTI9Nx8dXP46klMSf3/rz2PX76YQsdqQyyjokSRJXrlzZ7GUAAAAAAMC2UKvW4uMrHy8ZVDh++XhUkkoM9wwvanvUU6XGB8YjKSWbVgMAAKTns/HPHhmCmLsJa2p0al01AABA+m6VbsV/aPkPUavWlmzfV9gXERHT49Pzx1YSmE5KyYIxN6pmrQaLg5HvyEdvuTeKV4tx6M1D0X6mPdrPtMehNw9Fx1sd8frI69Fb6Y0XT7wY/+nIf1r3nHNS3cHi+vXrq67p6+uLarWa5jIAAOCZNNwzHAeKBx6ZAh8bGIuJwYlo72mPfEc+MtlMVJJKTI9Px8dXPo7D5w8vugkq4v4NXD+78LOIiNjTtCfKk+Vo7WyNtq62ZedaSw0AAPB4U6NTMTE0ESO9I4tCFnOf52+Vbi04/jQ+vQoAAJ5F0+PTMTU6FfsP7l/y5/kR9z+X727cvewYc0GKSlJZVw0AAJC+3Y27Y3p8OipJZdnP/A9bTWB67ufzG1WzFmOXxyKXz8WxS0v/ruFBmb2ZON5/PH78xo9j/IfjUThdWPO8c1INWHR1dcXMzMyqaur1euRyS6dYAACAR5u7eWmsfyymx6fjQPHAI/vXqrVISsmiJ8ZmspkoDhaXDVcMtA8sah/uGY5Pb3665FNz11IDAACszO7G3ZHJZmJP055l+zz8C46VPFVqfGA8atXafO1G1QAAwLPo7p278ds7v51//T/+4X88sn9SSqKSVCLfkY/27vaYHp+O9zrfi0O9hxbduDRbnl32M3lEzAcpHnyq7FpqAACA9L0+8npUksqyn8+rSTUiYsH9OBsVst6oYPat0q3outK1qppjl47FX/+rv956AYvGxsaIiDh58mRks9kl+1Sr1UiSJEZHR6OjoyNeffXVNJcAAADPjLGBsUhGksh35qOjryPe63xvRXXH+o9FebIc1aQamcZM7G/fH+3d7cv2HywOxotdLy4KXxzvPx59ub5o7Wxd9MubtdQAAAAr01xojt5K75Jtc1uCt3S0LDj+tD29CgAAtrsPLnwQP/3Ln86/nonlH2g69zn60NlD88eaC81RHCxGX64vuse6F/w8fqUhiC8//3JdNQAAwMqtJmT9qPDzxNBENBeaF/TZqJD1RgWzM7m1PaAp25Jd17xzUg1Y5PP5OHfuXJw+fXpF/d9+++3I5XIr7g8AAHylvbt9PhgxdxPVShw4eWDFT4qd2yHjWP/SW+61nWyLG303FtwYtZYaAAAgHaXeUuTyuUW7xj1tT68CAIDt7vD5w/H1v/j6/OtPP/00vt/2/SX7tnW1LXk8k81EW1dbDBYH47uT330i6wQAANKxmpD1cm5cvBEREccvH19wfKNC1hsWzG7Y4LqH7EhnmPvy+Xzk8yu/SerNN9+MXC4X169fT3MZAABASkb7RyNi+WR8Y2tjJKVkwQXUWmoAAID1qSSVGO4Zjmw+u+SNVbPl2UcGrZd7EtVG1AAAwLNo566dsev5XfN//tnv/7M1jbP/1f1RSSoLQsyZbGZFn7n3NO1ZVw0AALByh88fjnMz5+b//K8T/+uq6qfHp6PUW4riYHHBDnZPo1p5bb9DqCbVVOZPNWBx6dKlOHLkyKpqTpw4ESMjI2kuAwAASMln45898uaouRDF1OjUumoAAOBZd/fO3bjzxZ35P//0j/+0orqJoYkY6R2JUm8pMtlMHCgeWLLfU/f0KgAAICK+2iXuwZ2uH7WrXMT9YPSDtWutAQAAVm69IevB4mAc6z+25A53GxWy3qhgdrYlG5/8zSerqvnwnQ9j3yv71jXvnJ2pjAIAAGw70+PTMTU6FfsP7l822V5JKo/8pcrcL1IefDLWWmoAAOBZt2hr8B0r2xq8rattwS9T3ut8L8b6x+L45eNufAIAgKfAcM9w3CrdWnKnuuXk8rlHPuRo7oaoB3eiXksNAACwMQaLg9He0x7t3e1Ltm9UyHqjgtkdb3XED/7wBxER8eK/ffGx/ccuj8UHFz6Is5+fXde8c7ZEwCJJks1eAgAAPDOSUhKVpBL5jny0d7fH9Ph0vNf5XhzqPRT5jvyCvrPl2Uf+smTuwunBdPpaagAA4Fl3+Pzh+PpffH3+9W9+85v4/r/4/qrHKQ4Woy/XF7VqLV4feX3++NP29CoAAHhWTI9Oz9+ktJS5z98PPkhpX2FfJKXl78WZewDSg78TWEsNAADw5I30jsT+V/fHobOHlu2zUSHrjQxmF68WY+DgQLR+ozXautpi/8H988GNWrUWs+XZmByZjE+GPolKUokzo2fWPeecHamNtEYzMzNRqXhyLQAAPOjunbtx54s783/+6R//KZVx5y5gDp09NP/LluZCcxQHi/Fe53sLthCPWHkI4svPv1xXDQAAPOse3hr8ud97bk3jZLKZaOtqi6SULLg56ml7ehUAADwrWjpaorfSu2z71M2pyGQzC25geunUSxERi37m/2DNw0GJtdQAAABP1tjAWDS2Ni4Zrnjw/px9hX2PvF9nuZD1RtSsVXOhObpHu+PL/9+XMdw9HAPtA/GD1h/ED1p/EAPtA/Fe53txo+9G1Ov1+Hc/+XfR/Erz4wddoVR3sLh+/fqK+1ar1UiSJPr7+6OnpyfNZQAAwLb3wYUP4qd/+dP51zM7ZlIZt62rbcnjczdhDRYHV7XNOAAAsPHmnsy03BOgsvlsRERMjkzO/xLjaXx6FQAAPAteOvVSjA2MRXt3+6K2SlKJiaGJKA4WFxxvLjRHviMfv7zyywU7W8yZGJpYsOPdWmsAAIAnZ2JoIiJi2WuB6fHp+fuAXjr1Unx48cOYHp9e8vP8ciHrjahZj+ZCc3SPdcfYwFiM9Y/F9C++CoTn8rlo72mPQ28uv7PHWqUasOjq6oqZmZXf+FWv16OjoyO+973vpbkMAADY9g6fPxxf/4uvz7/+zW9+E9//F99/onPuf3V/TAxNRCWpzN/slMlmVrQjxZ6mPfN/X0sNAACwcn25voiI6K30LrkTxNxn7YefXvXgjhYPW+5JVBtRAwAALK+50BxJKYkbF28seGptJanEQPtAvHb2tSUfrlQcLMZA+0C8dOqlBTc+DfcMx2tnX1vyM/laagAAgPRNj0/HbHl2yXBFRERSShZ8Pt+okPVmBbPbu9uX/bd4ElINWDQ2NkZExMmTJyObzT6yb1NTUxQKhTh69GiaSwAAgKfCzl07Y+eurz6uP/d7zz3xOeduzJoen54PWOxu3P3Imtny7ILatdYAAAArl8lmYnfj7mU/U5cnyxERsb99//yxp/XpVQAA8Cw4dPZQJKUkhnuGo1auRa1ai0w2E9++9u0lP3dH3L9u6B7rjpHekchkM7GnaU+UJ8vR2tn6yN2uV1sDAACkq5JUYrA4GC0dLTHVs3jH6Fq5Fkkpid5K74LjGxWyfhaC2akGLPL5fJw7dy5Onz6d5rAAAEAKhnuG41bpVnx38rsrrsnlczE1uvhibc7cE3HnAhlrrQEAAFau0F2Igz0Hl22fuDoRmWwmDpw8MH/saX96FQAAPO3yHflV36iUyWbieP/xJ14DAACk573O96KSVKIyUFm2z1L33GxUyHojg9kT/2UixgfGY7YyG8Wrxci+kF3QXrlViVJvKf75v/zn8dr3Xktt3tQDFvn89k+dAADA02h6dHp+94ilzAUfHrwJal9hXySlZNmaSnL/Yu7BX+qspQYAAFi5zr7OGO4ZjgPFA4s+Vw8WByMi4tvXvr1ohwtPrwIAAAAAgK1tNQ9OfdhGhaw3IphdOl+K/Qf3x6c3P407M3dienx6UcAi15KL4tViJNeSKJ0vRceFjlTmTjVgcenSpTSHAwAAUtTS0RLdfd3Ltk/dnIpMNrMg5f7SqZfiw4sfxvT49JJPn526ObXo5qi11AAAAKtzvP94TAxNxGBxMDKNmaiVa1Gr1mJfYV/8+a0/XxSuiHg6n14FAMD296PjP9rsJURExLeGv7XZSwAAACAibl2/Fbl8LtpOtEXU7+9U8eI3X1y2f/7o/fuQPnn/k0f2W6lUAxaboVqtxoULFyIioqmpKSYnJ6OzszO6urrWPfbAwEAMDg5GNpuNiPs7dPT19a17XAAA2AwvnXopxgbGor27fVFbJanExNBEFAeLC443F5oj35GPX1755ZJhiYmhiXh95PV11wAAAKvX1tW26sDC0/T0KgAAAAAA4Onz8eDHcezdYxERK/49SP5oPn78nR9vj4DF7du3Y3x8PMrlcuTz+cjn8/HCCy+kMna1Wo329vYYHByMQqEwf7ynpydu3ry55jBEtVqNo0ePRkdHR4yMjMwfT5Ikent7hSwAANhyKkklIiJq1dqyfZoLzZGUkrhx8UYcOntoQe1A+0C8dva1JS9KioPFGGgfiJdOvbQgMDHcMxyvnX1tyd0o1lIDAAAAAAAAAAA84+qbO/0TC1hcv349enp6IkmSRW3t7e1x+fLl+KM/+qN1zVEsFqOrq2tBuCIior+/P3K5XHR2dkZHR8eqx50LVzwcpOjp6YnR0VEBCwAAtoSJoYkY6x+LiIip0amIiBg+Mzx/rK3Ytmi3ikNnD0VSSmK4Zzhq5VrUqrXIZDPx7WvfXnK3iYj7T57tHuuOkd6RyGQzsadpT5Qny9Ha2bpsSnwtNQAAAAAAAAAAwLOtVln+AbOPUk2qqcz/RAIWp06diqGhoajX78dHstlsNDY2zoctRkdHo1AoRG9vb/zVX/3VmuZIkiRKpVL09/cv2X7y5Mno6+tbdcDi4sWLkSTJkiGKbDYbBw8eXNN6AQAgbW1dbWsKK+Q78qveQSKTzcTx/uNPvAYAAAAAAAAAAHh2lSfLq66pzdTiy8+/TGX+HamM8oDvfOc7MTg4GK+88kqMjIxEpVKJcrkcv/rVr+LevXtRqVTi6tWr8fLLL0dfX1/8n//n/7mmeeaCFfn80jeGtba2RqlUimq1uqpxL1y4EN3d3Uu2DQ4OxsjIyKrGAwAAAAAAAAAAAAAAHu/AyQMxdGpoVTVDJ4fipf/lpVTmTzVgce3atejv74+hoaEYHR2No0ePxt69exf02bt3b3R1dcXY2Fi8++67cfbs2fj1r3+96rnGx8cjm80u2z4XvBgdHV3xmENDQ1GtVuPUqVOrXg8AAAAAAAAAAAAAALB2h84eiqmxqRj6X4bizj/ceWTfzz76LC6/ejkqSSVe+95rqcy/M5VRfufixYsxMjISR48eXVH/uZ0izp49G1euXFnVXEmSRGNj47Ltc+GLJElWPObcGgqFQkTcD3GMjo7GwYMH548BAAAAAAAAAADAZvrR8R9t9hIiIuJbw9/a7CUAAE+h13/yevzgD38QE4MTke/MR74jH5lsJnY37o7Z8myUJ8txq3Qrpseno16vR894T2pzpxqwqNfrKw5XzOnu7o6hodVt4RERUS6X53epWMpc+KJara54zPHx8fm/X7x4MQqFQnR3d8f4+Hh0dnZGb29vdHR0rHqtAAAAAAAAAAAAAADA4+Xyuegt98ZgcTAmfzIZycjiTRfq9XrkO/JxrP9Y5Fpyqc2dasDiUYGHR1nL7hArDU58/vnnKx6zXC5HNpuNgYGBOHv27PzxQqEQg4OD0dLSEoODg48NWczenY1/vPuP86+f2/FcPPe151a8Dp4ud+/e3ewlxN27d+PevXtbYi0wx3nJVuXcZKu6d+/eZi+BR9gK1wC+bm0dvpfwMOcED3NO8DDnBEtxDbC1ffnbL2PX3V3zr/0eYOurN9SjHvWoN9TjXvjva7vx/m1f3rvty3u3fXnv1m6zr8k2e34eb2ZmJsrl8vzrXbt2xa5dux5RwZNyr2H7fn17Gr9O+/q1efxckTQ5n0iT82ll/Ps8XiabiddHXo/kWhITgxMxNToVtWotMtlM5PK5aO9pj/zRteUXHiXVgMVaNTQ0bPYSIuKr0Mbc7hcPymaz0dHRET09PTE5OfnIcXr/a++C1/+68K/j3xz8N6mtk+3lgw8+2OwlxL179+I3v/lNRETs2LFjk1cD9zkv2aqcm2xVqwkOs/G2wjXAVvjcyX2+l/Aw5wQPc07wMOcES3ENsLVthWsAVqce9Zj9/dkoRzkaYmv8XoqV8/5tX9677ct7t31579Zus3/G+uCN+2xNL7/88oLXf/qnfxp/9md/tilredaVm7fvfy9P49fpzf76+Szzc0XS5HwiTc6nlXENsHL5o/knEqRYTqoBi/b29rh9+3a88MILK66ZmZlZMtAw5/z583HhwoVFx7PZ7Ip2sWhqalrxWubGXG6His7OzhgaGorx8fFH7rrR9z/3RS7z1TYjz+14Lp6b9uSqZ9Xhw4c3ewnzKbfXXnstdu7cErkqcF6yZTk32armLjzZmrbCNcBW+NzJfb6X8DDnBA9zTvAw5wRLcQ2wtW2FawBWp95Qj3KUo/GzxmioPx03MT1LvH/bl/du+/LebV/eu7Xb7J+x/v3f//2mzs/jffTRR/EHf/AH86/tYLF5Pv33n272Etbsafw6vdlfP59lfq5ImpxPpMn5tDKuAbauVM/aM2fOxBtvvBEXL16M559/fkU1b7311pIBijkDAwNLtj8qlBHxVaonm82uaB1zY1ar1WVr5uYcHR19ZMBi987d8Xs7f2/hwfqKl8FTZqt8c9ixY0fs3Llzy6wHIpyXbF3OTbYiif6tbStcA/iatbX4XsLDnBM8zDnBw5wTPMw1wNa252t7Nv0agNW5F/eiIRqiod4QO+r++9puvH/bl/du+/LebV/eu7Xb7OuxzZ6fx9u7d+9j71diY2znr29P49dpX782l58rkibnE2lyPj2ef5utK9V35vbt21EsFqNYLMYbb7wRLS0ty/ZNkiT6+/ujt7c3PvrooyX73Lx5c9ldKvL5fIyOji47/lxdPr/y7UAKhUIkSfLYfivZOQMAAAAAAAAAAAAAANg+Ug1YFAqFmJmZiXq9HqVS6bH9V9pvubkeVTsXlOjo6FjxmK+++moMDQ0tu4vF3K4Yj9q9AgAAAAAAAAAAAAAA2H5SDVg0NjZGtVqNrq6uVLbEu3nz5rK7W5w6dSouXrwY4+PjSwYebt68uapwRUREV1dX9Pb2RqlUiq6urkXtk5OTERFx8ODBVY0LAAAAAAAAAAAAAABsbakGLPL5fJw7dy5Onz6d2phNTU1LHi8UCtHR0RFXrlxZMmAxNDQUIyMji45Xq9W4cOFCdHZ2Lgpg5PP56OrqigsXLiwZsBgaGoqzZ88uubsFAAAAAAAAAAAAAACwfe1Ic7B8Ph/5fD7NISOXyy3bNjg4GENDQzE+Pr7geE9PT5w9e3bJHSwGBgbi4sWLUSwWlxzz8uXLUa1WY2BgYMHxYrEY+Xw++vr61vD/AgAAAAAAAAAAAAAA2MpS3cHi0qVLaQ4XERG/+tWvlm3LZrMxNjYWvb29kc1mo6mpKSYnJ6Ozs3PJHSgiIjo6OiKbzcbJkycfOeaFCxfmQxjVajWKxWJ0d3ev//8QAAAAAAAAAAAAAACw5aQasNgM2Ww2+vv7V9y/UChEpVJ57Jh2qgAAAAAAAAAAAAAAgGfHjs1eAAAAAAAAAAAAAAAAwGYTsAAAAAAAAAAAAAAAAJ55AhYAAAAAAAAAAAAAAMC2VTpfSmUcAQsAAAAAAAAAAAAAAGDbGh8YT2WcnamMAgAAAAAAAAAAAAAAkJLq7WpUkspj+02PT0etWktlTgELAAAAAAAAAAAAAABgSxj/4XiUekuphSZWQ8ACAAAAAAAAAAAAAADYdMm1JIa7hyOXz0VbsS0y2cxja6bHpuPW9VupzC9gAQAAAAAAAAAAAAAAbLpr565FcbAYbSfaVlV3seliKvPvSGUUAAAAAAAAAAAAAACAdcjkMqsOV0REZFuyqcwvYAEAAAAAAAAAAAAAAGy65kLzmuq6R7tTmX9nKqOs0LVr12JkZCQaGhqitbU1Dh48GC+//PJGLgEAAAAAAAAAAAAAANiCatXaps6f6g4WTU1Nj2w/evRovPXWW3Hu3Lk4evRo3Lx5M77zne/EF198keYyAAAAAAAAAAAAAACAbaat2BafvP/JqutK50upzJ9qwKJer6+o3969e6OlpSXOnDkTb731VvT29qa5DAAAAAAAAAAAAAAAYJvJH81HebK86pDF+MB4KvPvTGWU32loaFh1zd69e9NcAgAAAAAAAAAAAAAAsA1Vb1fjQPFAfDz4cVx+9XK0dLREY2tj5PK5ZWumx6ejVq2lMn+qAYu1mJmZidHR0c1eBgAAAAAAAAAAAAAAsIn6C/1xZ+ZORETU6/WYGpta00YQa7XqgMXt27eXPF6v1yMi4te//vX835dTrVajXC7H+Ph4XLhwIU6ePLnaZQAAAAAAAAAAAAAAAE+R3Y27IyLiwMkDkclmVlQzPTYdt67fSmX+VQcsxsbG4ubNm5EkSZRKpZiZmVnQns/nVzxWvV6Pjo6OePfdd1e7DAAAAB7wo+M/2uwlxLeGv7XZSwAAAAAAAAAAYBvL5XNx+NzhKJwurKruYtPFVOZfdcDixIkTceLEifnX4+Pj0dvbG9euXYuGhoYFbY+Sz+ejs7Mzjh49utolAAAAAAAAAAAAAAAAT5lcPhe5fG7VddmWbCrzrzpg8bBCoRAjIyPR09MTQ0NDcfXq1TTWBQAAAAAAAAAAAAAAPEOOXTq2prru0e5U5t+RyigR0d/fHy0tLWkNBwAAAAAAAAAAAAAAsGHWvYPFg86fP5/mcAAAAAAAAAAAAAAAwDOqersao/2j8dn4ZzFbno3djbsjm8/GwZ6Dse/lfanPl2rA4sSJE2kOBwAAAAAAAAAAAAAAPINK50vx4cUPo16vL2obHxiPtmJbHB84Hrue35XanKkGLNbq/fffj29+85ubvQwAAAAAAAAAAAAAAGAT1WZqMdA+ELPl2XjxxIux/9X9kclm7rdVazH7+WxMj03Hx1c/jqSUxJ/f+vPY9fvphCy2RMDizJkzAhYAAAAAAAAAAAAAAPCMGywORr4jH8cuHXtkv9pMLUbOjsR/OvKf4szNM6nMveqAxUcffRQvv/zysm2rUS6XI0mSqFarq10GAAAAAAAAAAAAAADwFBm7PBa5fO6x4YqIiMzeTBzvPx4/fuPHMf7D8SicLqx7/lUFLM6dOxdvv/12tLe3x89//vNF7UeOHImZmZl1LwoAAAAAAAAAAAAAAHi23Crdiq4rXauqOXbpWPz1v/rrjQ9YJEkS9Xo9KpXKku2NjY0REdHd3R0REU1NTY8c7/PPP4/Jycl4//33V7MMAAAAAAAAAAAAAADgKZPJZdZUl23JpjL/qgIWly9fjs7Ozujo6FiyPZ/Px7lz5+L06dOrWsTjghgAAAAAAAAAAMBCwz3Dcbj3cOTyuSXba9Va/OzCzyIiYk/TnihPlqO1szXautqWHXMtNQAAAKlp2OC6h6wqYLF37944c+bMsu2dnZ1x8ODBVS+ipaVl1TUAAAAAAAAAAPCsmh6fjvGB8TjYs/S9OrVqLQbaB6I4WIzmQvP88eGe4fj05qfR2deZSg0AAECaauXamuqqSTWV+XekMsrvvPnmm/Hyyy+vum50dDTNZQAAAAAAAAAAwFOt1Ft6ZPtgcTBe7HpxQVAiIuJ4//EYHxiPpJSkUgMAAJCmbEs2PvmbT1ZV8+E7H8a+V/alMn+qAQsAAAAAAAAAAODJGhsYi7Zi27LtlaQSSSlZdneLtpNtcaPvxrprAAAA0tbxVkeMvDmy4pDF2OWx+ODCB9HxVkcq8+9MZZR1On/+fFy4cGGzlwEAAAAAAAAAAFtaJalEREQun1u2z2j/6CP7NLY2xvjAeNSqtchkM2uuAQAAeBKKV4sxcHAgWr/RGm1dbbH/4P7565BatRaz5dmYHJmMT4Y+iUpSiTOjZ1Kbe0sELAYGBgQsAAAAAAAAAADYFD86/qNNnf/z2c9X3He0fzQ6+zojKSXL9vls/LNHhiDmQhRTo1OR78ivuQYAAOBJaC40R/dodwyfGY7h7uFoaGhY1Kder0cun4t/95N/F82vNKc29xMLWNy+fTuSZPkLuTnj4+NRrVaf1DIAAAAAAAAAAOCpMDE0EQd7Dj62XyWpxO7G3cu2zwUp5nbDWGsNAADAk9JcaI7use4YGxiLsf6xmP7F9HxbLp+L9p72OPTmodTnTT1g8cMf/jB6e3uFJgAAAAAAAAAAICW1ai0qSSXautoe23e2PDu/48RS5oIUtWptXTUAAABPWnt3e7R3t2/YfKkGLK5duxbd3d2Rz+ejWCxGNpt9bM3Y2Fhcv349zWUAAAAAAAAAAMCWde+396J+r/7V67v3Hlvzsws/i86+zhWNv9IQxJeff7muGgAAgKdNqgGLc+fOxeDgYJw4cWJVdU1NTWkuAwAAAAAAAAAAtqzyr8pR/rvy/OuZmHlk/6SURGtn65NeFgAAwLb1yfufxIvffHHd46QasMjlcqsOV0REtLS0pLkMAAAAAAAAAADYshr/sDFy+dz863KtHPHT5ftPjkyuePeKiIhMNrOiHSn2NO1ZVw0AAMBWMXxmeOsFLAqFwprqRkdH01wGAAAAAAAAAABsWTu+tiPiaw+8vrtj2b43Lt6IPz7/x6saf3fj7ke2z5ZnI+J+qGI9NQAAAGvx2Uefxb6X9y3bthqz5dmoJJUVBcZXItWARbVaTXM4AAAAAAAAAAB4ZlWSSmSymVWHGnL5XEyNTi3bPnfj0YO7aKylBgAAYLVK50rx4dsfRnN7c5z5+ZlF7f/xyH+MOzN3NmFl96UasCgWi/H+++/HN7/5zVXVnT9/Pi5cuJDmUgAAAAAAAAAAYFubHp+OicGJmBicWNRWSSoRETF8Znh+94nXR16PiIh9hX2RlJJlx52rzXfk54+tpQYAAGC1Kkkl6vV61CpL7zgxd33T3t1+/3XTY3bb+3w2KpOV+OT9T1JZX6oBi6NHj8bbb7+96pDFwMCAgAUAAAAAAAAAADygrast2rralmybGJqIweJgHL98PJoLzQvaXjr1Unx48cOYHp9e1BYRMXVzalFQYi01AD86/qPNXkJ8a/hbm70EAGAVjl8+HvnO/LLXF7l8Lg6fOxyF04VVjXux6WIay1t5wOKjjz5aUb/Ozs4YGRmJV199NTo6OqK1tTXy+eUvrsbHx6Nara50GQAAAAAAAAAAwCM0F5oj35GPX1755ZJhiYmhifndLtZTAwAAsFqZvZloP9O+bHu+Mx/7D+5f9bjZluw6VvWVFQcsjhw5EjMzMyseuF6vx9jYWDQ0NKxpYfC02Aop7XsN9+Kf/8U/3+xlAAAAAAAAAAApqSSV+f9dKhBRHCzGQPtAvHTqpQXtwz3D8drZ15Z8WuxaagAAANJ06M1Da6rrHu1OZf4VBywaGxsjIuLkyZORzWZTmTwiYmxsLK5fv57aeAAAAAAAAAAA8LQa7hmOalKNqdGp+6/PDMdY/1jsK+yLzr7O+X6ZbCa6x7pjpHckMtlM7GnaE+XJcrR2tkZbV9uSY6+lBgAA4Gmy4oBFPp+Pc+fOxenTp1NfRFNTU+pjAgAAAAAAAADA0+Z4//EV981kM6vqv9YaAADgyRjuGY4DxQOP3E1ubGAsJgYnor2nPfId+chkM1FJKjE9Ph0fX/k4Dp8/vOSud7VqLX524WcRESsOV6+lJm3JtSSSkSSiIaKxtTH2H9wf+17el9r4qwpY5PNPZpu/lpaWJzIuAAAAAAAAAAAAAABsF5WkEkkpibH+sZgen44DxQOP7F+r1iIpJZGUkgXHM9lMFAeLy4YrBtoHFrUP9wzHpzc/XbA73npq1uJi08U4+/nZZdvzR/ORP5qP2kwtZsuzkZSSGO0fjc6+ztj1/K51z7/igMWlS5fWPdlyRkdHn9jYAAAAAAAAAAAAAACw1Y0NjEUykkS+Mx8dfR3xXud7K6o71n8sypPlqCbVyDRmYn/7/mjvbl+2/2BxMF7senFR+OJ4//Hoy/VFa2frol0z1lKzFvV6fUX9MnszkdmbifYz7VGbqcVI70gce/fYuudfccACAAAAAAAAAAAAAAB4Mtq72+eDEdPj0yuuO3DyQGSymRX1ndsh41j/0mGEtpNtcaPvxoKwxFpq1qqhoWHVNZm9K/v/vhI7UhsJAAAAAAAAAAAAAADYskb7RyMiIpfPLdne2NoYSSmJWrW2rpqNVJupxfToygMpj2IHCwAAAAAAAAAAAAAAeAZ8Nv7ZI3e7mAtRTI1Oze9IsZaaR6neri55vF6v32//dTWi/ugxatVazJZnY3p8Oj648EG0nWx77LwrIWABAAAAAAAAAAAAAADb3PT4dEyNTsX+g/ujudC8ZJ9KUondjbuXHWMuSFFJKuuqeZSpsamYujkVlaQSSSmJOzN3FrT/IP+DFY0TcT+Uke/Ix7F3j6245lEELAAAAAAAAAAAAAAA4Am5e+du/PbOb+df/49/+B+pjp+Ukqgklch35KO9uz2mx6fjvc734lDvoUU7SsyWZ+d3nFjKXJCiVq2tq+ZR2k60RduJr3acmB6fjlJvKZJrSTQ0NMSLJ15c0Ti5fC7ynfnIH338rhkrJWABAAAAAAAAAAAAAABPyAcXPoif/uVP51/PxExqY88FHw6dPTR/rLnQHMXBYvTl+qJ7rHvBbhYrDUF8+fmX66pZjeZCc7w+8noM9wzHJ0OfRPFqcU3jpEHAAgAAAAAAAAAAAAAAnpDD5w/H1//i6/OvP/300/h+2/dTGbutq23J45lsJtq62mKwOBjfnfxuKnM9acf7j8f02PSmrmHHps4OAAAAAAAAAAAAAABPsZ27dsau53fN//lnv//PNmTe/a/uj0pSiUpSmT+WyWZWtCPFnqY966pZq8PnD697jPUQsAAAAAAAAAAAAAAAgKdMJpuJiIjp8a92hdjduPuRNbPl2QW1a61Zq7YTS+/IsVEELAAAAAAAAAAAAAAAYJsZ7hmOH7T+YFU1uXxuPhCxlLmdKnL53LpqNlJtphYfvvNhKmM98YDFF198Ebdv337S0wAAAAAAAAAAAAAAwDNjenR6RcGH5kLz/LF9hX3zx5dSSSoREZHvyK+rZiNVkkp8fOXjVMbamcooD7l9+3b09fXFwMBAREQ0NDTE3bt359tv3boVvb298Y1vfCNOnz79JJYAAAAAAAAAAAAAAABPrZaOluju6162fermVGSymQU7S7x06qX48OKHMT0+vSB48WDNw0GJtdSs1a3rt1Zdc6PvxiMDIKuResDi+vXr0dHRERER+Xw+8vl83Lq18P9kS0tLXL16Na5duxbvvPNOfO9730t7GQAAAAAAAAAAAAAA8NR66dRLMTYwFu3d7YvaKkklJoYmojhYXHC8udAc+Y58/PLKL5cMS0wMTcTrI6+vu2atrnZdjTszd1ZVU6/XY3dudyrzpxqwuHXrVnR1dUV3d3f09vZGS0tLREScO3duyf5Hjx6NarUa169fjyNHjqS5FAAAAAAAAAAAAAAA2JYqSSUi4pE7MzQXmiMpJXHj4o04dPbQgtqB9oF47exr0dbVtqiuOFiMgfaBeOnUSwsCE8M9w/Ha2deW3I1iLTVrsbvxflDiwMkDkclmluxTq9aiklRiavT+zhn7X92fytwRKQcszp07F319fXHmzJkFxxsaGpatOXHiRHznO98RsAAAAAAAAAAAAAAA4Jk1MTQRY/1jERExNToVERHDZ4bnj7UV2xbtVnHo7KFISkkM9wxHrVyLWrUWmWwmvn3t20vuNhERkclmonusO0Z6RyKTzcSepj1RnixHa2frkoGMtdasRS6fi8PnDkfhdGFF/W+8fSN253avuP/jpBqwqFQqi8IVK1Gv19NcBgAAAAAAAAAAAAAAbCttXW1rCivkO/Kr3kEik83E8f7jT7xmtXL5XOTyuRX3P/TmoZj4LxNx6/qtaDnSsu75d6x7hAfk82vb1qNSqaS5DAAAAAAAAAAAAAAAYJs5dunYqoMSbSfaYnJkMpX5Uw1YrDUokSRJmssAAAAAAAAAAAAAAABYlVQDFrlcLv72b/92VTXnz5+Po0ePprkMAAAAAAAAAAAAAADgGVFNqqmMszOVUX7n7Nmz8Y1vfCMuX74cf/Inf/LY/u+8804MDQ3F3/3d36W5DAAAAAAAAAAAAAAA4BlQm6nFbGU2lbFSDVjk8/m4dOlSHD16NA4ePBinTp2KV155JarVaty+fTuq1WqUy+UYHx+P/v7+SJIkxsbG0lwCAAAAAAAAAAAAAACwDd26fmvFfWvVWlSSSoz1j0V7T3sq86casIiI6OjoiKtXr0Z3d3ecPXt2/vjAwMD83+v1euTz+RgdHY2XX3457SUAAAAAAAAAAAAAAADbzNWuq3Fn5s6K+9fr9ch35OO1772WyvypBywiIrq6uqKrqysuXrwYV65ciV/84hfzbfl8Pnp6euLNN998ElMDAAAAAAAAAAAAAADb0O7G3RERceDkgchkM4/u27Q7mgvNkT+aT23+JxKwmHP27NkFu1gAAAAAAAAAAAAAAAAsJZfPxeFzh6NwurAp8+9Ic7CPPvoo3n///TSHBAAAAAAAAAAAAAAAngG5fC5y+dymzZ9qwKKrqyt6e3vXVPvOO+9EU1NTfO1rX4umpqb4m7/5mzSXBgAAAAAAAAAAAAAAbGHHLh2LliMtmzZ/qgGLnp6e+Lu/+7tV1508eTJ6e3ujWCzG1atX4/Tp03H69On427/92zSXBwAAAAAAAAAAAAAAsKSdaQ5WLpdXXfOLX/wihoaGoqenJ959992IiDhx4kScOnUqTp06tabABgAAAAAAPM2mx6djtH80auVaTI9PRyabifae9mjvbl+2platxc8u/CwiIvY07YnyZDlaO1ujratt02sAAAAAAACWU71djenx6Zgtz0Yun4tcPhfZF7JPZK5UAxYHDx6M69evR0REX19fjI6ORrVajc7Ozujt7Y0/+ZM/WVRz5cqVaGhoiL6+vgXHC4VCdHd3x/vvvx/f/OY301wmAAAAAABsW2MDYxERcbz/+PyxpJTEYHEwbvTdiO6x7shkMwtqatVaDLQPRHGwGM2F5vnjwz3D8enNT6Ozr3PRPBtVAwAAAAAAsJRb12/Fj3t+HJWksqitub05jl8+Hvv+aF+qc6YasDhx4kR84xvfiGvXrkW9Xp8//pOf/CRGRkait7c3/uqv/mpBTalUikKhEM8///yi8d588804deqUgAUAAKzAcM9wHCgeiHxH/pH9PLUWAAC2r0pSiVq1FofOHlpwPN+Rj29f+3YMtA/EYHEwXh95fUH7YHEwXux6cUHoIeJ+SKMv1xetna2LriU2qgYAAAAAAOBhQ6eGYmJoYj6XkMvnIiJitjwbtWotpkanYqAwEId6D8XRvzqa2rypBixmZmZidHR0PhjxyiuvRETErVu3YmRkJM6dOxednZ0LdrJIkiROnTq17Ji5XC7NJQIAwFOlklQiKSUx1j8W0+PTcaB44JH9PbUWAAC2t9H+0fjj83+8ZFtzoTnyHflISklUksr8LxrmrhuO9R9bsq7tZFvc6LuxIPiwUTUAAAAAAAAPK50rxeTIZBx962i0dbVFrmVxpmD6F9Pxy//8y/jgrQ9id9PueO3/+1oqc+9IZZTfeeutt+LatWvx1ltvzYcrIiJaWlqiu7s7kiSJS5cuLaipVquRzWaXHbOhoSHNJQIAwFNjbGAsSr2liIjo6OtYUc2jniY7PjAeSSnZtBoAAODxbpVuxX9o+Q9Rq9aWbN9XuL8N9vT49Pyx0f7RiPjqyU4Pa2xtjKSULBhzo2oAAAAAAAAelFxLIikl8ee3/jwOvXloyXBFRETzK83R2dcZ3/3Vd2P03dGo/rqayvypBiwqlcqCYMXDstmsHSkAACAl7d3tURwsRnt3e+xu3P3Y/nNPkz3Yc3DJ9rmnyW5GDQAAsDK7G3dHrVqLSlJZcc1n459FJptZtn0uEDE1OrXhNQAAAAAAAA8aHxiPb1/7dmT2Lv87hwfl8rkoXi1G6WwplflTDVisJDxhRwoAANgcnloLAADb3+sjr8d3J7+7aLe4OdWkGhGxoL2SVB4Zyp4LRTwY2tioGgAAAAAAgAfV6/UVhyvmNBeao16vpzJ/qgGLer0e/+2//bdl27/44ov4/PPPVzXmavsDAABL89RaAADYuu7euRt3vrgz/+ef/vGflu27XJg5ImJiaCKaC80L+syWZx/5GX0uFPFgCHqjagAAAAAAAB70qN+DPIm6h+1MZZTf6e7ujoMHD8b//r//73HixIl44YUXIuJ+sOLq1avR29sbg4OD8/1/8YtfREREkiRLjvf+++/Hq6++muYSAQDgmeWptQAAsHV9cOGD+Olf/nT+9cyOmVWPcePijYiIOH75+ILjKw00fPn5lxteAwAAAAAAsEDDBtc9JNWART6fj7feeiveeOONOHv27KL2V155JcbHx6OxsTFu3rwZfX19USgUIiLi17/+dfxP/9P/NN93ZmYment7Y2xsLM0lAgDAtnD3zt347Z3fzr9+1NNrV2q2PPvIpPZyT6DdiBoAAHjWHT5/OL7+F1+ff/2b3/wmvv8vvr/i+unx6Sj1lqI4WIzmQvOTWCIAAAAAAMATl8vnonq7GtkXsiuuufPFnUc+EHY1dqQyygO6u7tjdHQ0jhw5EvV6Per1erS0tMSlS5didHQ0Tpw4Ef/5P//nGBsbi97e3hgdHY3e3t4oFArxf//f/3fcvn07rl+/HgcPHowTJ07E888/n/YSAQBgy/vgwgfx1t635v+8+0fvrntMT60FAICta+eunbHr+V3zf577vedWVT9YHIxj/ceirattUVsmm1nR5/Q9TXs2vAYAAAAAAOBB7WfaY/TSaNz54s6Ka0bOjsTBnoOpzJ/qDhZzCoVCjIyMLNnW0tISb7311qL+/f39cfLkyWhouL83x5kzZxb1AwCAZ8V6n14LAAA8OwaLg9He0x7t3e1Ltj/uiU2z5dmIuB+Q2OgaAAAAAADg2VG9XV1RvwOnDtz//ccb7ZFryS3br5JU4uMrH0dHX0fsen5XKmt8IgGLtejq6op79+7FtWvXIp/PR0tLy4rqqtVqXLhwISIimpqaYnJyMjo7O6OrqyvV9fX09ERvb2/k8/lUxwUAgKXs3LUzdu766uP6ap9euxRPrQUAgKfPSO9I7H91fxw6e2jZPrl8LqZGp5Ztn/v8nst/9QuKjaoBAAAAAACeHf2F/rgzs7KdKer1eiSl5LH9MtlMjPaPxh+f/+NUQhabErB444035neq6OzsjG9+85vzbUePHl3xONVqNdrb22NwcDAKhcL88Z6enrh582b09fWlst7x8fEYGBiInp6eVMYDAIDN4Km1AADwdBkbGIvG1sYld66oVWvzn7n3FfY98hcQlaQSERH5jq8eMLRRNQAAAAAAwLNjd+PuqFVr0dbV9th7jFajVqnFx1c/jsLpwuM7P8amBCwuXbo0//dr167FD3/4wzh9+vSqxykWi9HV1bUgXBER0d/fH7lcLjo7O6Ojo2Pd6+3t7V33GAAAsNk8tRYAAJ4eE0MTERFLhisqSSWmx6ejrastIiJeOvVSfHjxw5gen47mQvOi/lM3pxaFHjaqBgAAAAAAeHbk8rk4fO5wKkGIJ2XHZi/g6NGj0d/fv+q6JEmiVCotu6vEyZMnU9nBYmBgIIrF4rrHAQCAzbavsG8+3LCU5Z5AuxE1AADAyk2PT8dseXbJcEVERFJKFgQcmgvNke/Ixy+v/HLJ/hNDE3Go99CCYxtVAwAAAAAAPDty+dyWfyjrE9vB4qOPPookWX4r8HK5HNVqNa5cuRKNjY2rHn8ulJHPL31TVmtrawwMDES1Wo1sNrvq8SNifv3LzQEAANuJp9YCAMD2V0kqMVgcjJaOlpjqWbxzXK1ci6SURG9l4c7MxcFiDLQPxEunXlrwOX24ZzheO/vakp/RN6oGAAAAAAB4Nhy7dGyzl/BYqQcsbt++HZ2dnY8MVzyopaUlBgcHVz3P+Pj4I4MTc6GI0dHR6OjoWPX4EfdDHH19fVEqldZUDwAAW8mDT5NdKvgwMTQRr4+8vik1AADAyrzX+V5UkkpUBirL9lnqyU+ZbCa6x7pjpHckMtlM7GnaE+XJcrR2tkZbV9uS42xUDQAAAAAAwFaResCio6MjyuVynDhxIl599dXIZrMxODgYnZ2d84GIarUaIyMjkc1m4+rVq2uaJ0mSR+58MTfXSoMeDxsaGoqenp411QIAwEarJPdvrqpVa4/s56m1AACwvX138rtrrs1kM3G8//iWrAEAAAAAAFiPT97/JF785ovrHifVgMXly5cjn8/H2NhY7N27d0HbqVOn4vnnn59//eabb8atW7fi/PnzceHChVXPVS6X53epWMpc+KJara567Gq1GkmSRFdX16prIyJm787GP979x/nXz+14Lp772nNrGgvSUG+ox7179+Lu3bubvRSYd/fuXeclW5Jzk63q3r17i45NDE3EWP9YRERMjU5FRMTwmeH5Y23Ftmjvbl9Q46m1T4ZrgPt87bzP9xIe5pzgYc4JHuacYClLXQOwdXz52y9j191d86+f1WuA7aTeUI961O//vDz897XdeP+2L+/d9uW92768d9tXvaG+2UvgMWZmZqJcLs+/3rVrV+zatesRFTwp9xq279c3X6efjGf152p+rkianE+kyfm0Mv590jd8ZnjrBSyGhoZiaGhoQZAiIiKfz8fo6GgcOXJkwfGWlpbo7u6OH/7wh3H69OlVzbXS4MTnn3++qnEjIi5cuBB9fX2rrpvT+197F7z+14V/Hf/m4L9Z83iwXvWox93f3P9CvGPHjk1eDdx37969+M1vfhMRzku2FucmW9VSn2vbutrWFFbw1Nr0uQa474MPPtjsJWwJvpfwMOcED3NO8DDnBEtZy8+22TiuAbafetRj9vdnoxzlaIiGzV4Oq+T92768d9uX92778t5tX/8w+w+P7VNJKvFB3/2fw9bKtahVa5HvzMehs4eWralVa/GzCz+LiFjxw5DWUvMsePnllxe8/tM//dP4sz/7s01Zy7Ou3Fx+fKctytfpJ+NZ/R2VnyuSJucTaXI+rcyD4d1n0WcffRb7Xt63bNtqzJZno5JUolatpbG0dAMWLS0ti8IVEfd3k7h69eqigMVczeTkZJrLWJdSqRSdnZ3rGqPvf+6LXCY3//q5Hc/Fc9OeXMXmqTfUY///a3+89tprsXNnqv/Zw5rNpS+dl2w1zk22qrkLT7Ym1wD3HT58eLOXsCX4XsLDnBM8zDnBw5wTLMU1wNbmGmD7qTfUoxzlaPysMRrqbmLabrx/25f3bvvy3m1f3rttbPbRzRNDE/HpzU8XPdhooH0gxvrH4ruT311UU6vWYqB9IIqDxWguNM8fH+4Zjk9vfhqdfYvvj1lLzbPio48+ij/4gz+Yf20Hi83z6b//dLOXsGa+Tj8Zz+rvqPxckTQ5n0iT82ll/v7v/36zl7BpSudK8eHbH0Zze3Oc+fmZRe3/8ch/jDszdzZhZfeletbmcrklj7/yyivR3d0dFy5cSG2ubDa7ol0smpqaVjXuyMjIunaviIjYvXN3/N7O31t40E6ObKJ7cS927NgRO3fu9M2KLcV5yVbl3GQrkujf2lwD3Ofr5ld8L+Fhzgke5pzgYc4JHuYaYGvb87U9rgG2mXtxLxqiIRrqDbGj7r+v7cb7t31577Yv79325b3bvh51o3WtWouPr3wcxcHiorbjl4/HQPtADPcMLwpfDBYH48WuFxcEJSIijvcfj75cX7R2tka+I7/ummfF3r17o7GxcbOXQcS2/vrm6/ST8Sz/TM3PFUmT84k0OZ8e71n+t6kklajX61GrLL3jxO7G3RER0d7dfv910+5Hjjf7+WxUJivxyfufpLK+VN+Zen353x60t7fH3/zN38S//bf/dlFbkiSrnutxFyxz26Zks9kVj3nx4sU4f/78qtcCAAAAAAAAAABPwtToVEwMTcRI78iiHSTmghC3SrcWHK8klUhKSRzrP7bkmG0n2+JG340FYYm11AAAAKzW8cvHI9+ZX/baIpfPxeFzh6NwurCqcS82XUxjeZFqDLazszPef//9iIj44Q9/GKdOnYovvvgiIiK6urqiq6sr/vZv/3ZBzbVr19YUsMjn8/MhiqXM7W6Rz6/soi5Jkshms6sKZAAAAAAAAAAAwJO0u3F3ZLKZ2NO0Z9k+mWxmwevR/tGIuH9j0lIaWxsjKSVRq9bWVQMAALBamb2ZaD/THrmWpa898p352H9w/6rHzbZk17my+1LdweLo0aPx9ttvx9tvvx29vb3R0NAQnZ2dcfr06ejo6IgjR45ER0dHdHZ2xiuvvBJJksTQ0FD09/eveq5CoRClUmnZ9rnQRkdHx4rGGx8fj8HBwRgcHFx2rDNnzszvnDEyMrLaJQMAAAAAAAAAwKo0F5qjt9K7ZNv0+HRERLR0tCw4/tn4Z4tCFw+aC1FMjU7NPzV2LTUAAABpO/TmoTXVdY92pzJ/qgGLiIg333wzfvGLX8Sbb74ZMzMzcfLkyfm2oaGhOHLkSPzkJz+JkZGRqNfrUSgU4vTp06ue59SpU3Hx4sUYHx+PQmHx9h83b95ccbgi4qsdNpYyNDQUxWIxLl++vORcAAAAAAAAAACw0Uq9pcjlc9HZ17ngeCWpxO7G3cvWzQUpKkllXTUAAABPwifvfxLNhebIvpDd8LlTD1hERLzyyivxyiuvLDq+d+/eGBsbi6GhoSiVStHa2hrd3WtLihQKhejo6IgrV64sGXoYGhpacpeJarUaFy5ciM7OzlUFMAAAAAAAAAAAIA33fnsv6vfqX72+e29V9ZWkEh/0fRDZfDZeH3l9UftseXZ+x4mlzAUpatXaumoAAADS9uM3fhzjl8cjk8vE2f9+dsPnfyIBi8d51G4RqzE4OBjt7e1x6tSpBSGLnp6eOHv27JIBioGBgbh48WIMDAxEpbKyRH2SJPP/awcLAAAAAAAAAADWo/yrcpT/rjz/eiZmVlQ3MTQRn978NKpJNbL5bLR2ti7Zb6UhiC8//3JdNQAAAGmbLc9Gy9GWaC40b8r8qQcs3n///SgUCvHCCy+kPfQi2Ww2xsbGore3N7LZbDQ1NcXk5GR0dnYuG+Do6OiIbDYbJ0+efOz4PT09kSRJjI6ORkTEmTNnor+/PwqFQvT19aX6/wUAAAAAAAAAgGdD4x82LtgtolwrR/z08XVtXW3R1tU2//q9zvdirH8sjl8+Hpls5kksFQAAYEPl8rnoeGvxRgsbJdWAxRtvvBGXL1+OXC4X//2///c0h15WNpuN/v7+FfcvFAor3rliNeMCAAAAAAAAAMBK7PjajoivPfD67o41jVMcLEZfri9q1Vq8PvL6/PFMNrOiHSn2NO1ZVw0AAEDadjftjurtamRfyK6q7mLTxTj7+dl1z7+2q7NllMvlOHr0aJw+fTrNYQEAAAAAAAAAgIdksplo62qLpJREUkrmj+9u3P3Iutny7Hz9emoAAADSdujNQzFydiRuXb+1qrp6vZ7K/KnuYJHP5+Ott95Kc0gAAAAAAAAAAHhm1aq1mC3PRi6fW7I9m89GRMTkyGTkO/IREZHL52JqdOqRY871m7OWGgAAgCeheLUYH77zYYz1j8X+V/dHc6E5djfuXjbwPTkyGXdm7qQyd6oBi6amprh9+3a88MILq677/PPP01wKAAAAAAAAAABse325voiI6K30Lnkz0Z6mPRHxVQAiImJfYd+CHS0eVkkqERHzgYy11gAAAKTtL3f8ZTQ0NETE/V0pJoYmNnT+VAMWb775Zpw8eTLeeOONOHLkyIrr0tqOAwAAAAAAAAAAniaZbOaRT2otT5YjImJ/+/75Yy+deik+vPhhTI9PR3OheVHN1M2pRUGJtdQAAACkLZfPRSWpRFtXW+xu3L2imqmbU/HZR5+lMn+qAYuIiKtXr8Y777wT/f398eqrr0ahUIjGxsbIZrNL9h8ZGYmZmZm0lwEAAAAAAAAAANteobsQB3sOLts+cXUiMtlMHDh5YP5Yc6E58h35+OWVXy4ZlpgYmojXR15fcGwtNQAAAGnL5XNx+NzhKJwurKruYtPFVOZPNWCxY8eOBdtxDA0NpTk8AAAAAAAAAAA8Uzr7OmO4ZzgOFA8s2kFisDgYERHfvvbtRTtcFAeLMdA+EC+demlBYGK4ZzheO/vakrtRrKUGAAAgTbl8LnL53KrrMrmld/1brVQDFvl8PpIkia6urmhsbFxRzc2bN+Ojjz5KcxkAAAAAAAAAAPDUON5/PCaGJmKwOBiZxkzUyrWoVWuxr7Av/vzWny8KV0REZLKZ6B7rjpHekchkM7GnaU+UJ8vR2tkabV1tS86zlhoAAIA0Hbt0bE113/3Vd1OZP/WAxblz5+L06dOrqmtqakpzGQAAAAAAAAAA8FRp62pbdcghk83E8f7jT7wGAADgaZF6wCKfX/1WgLnc6rfwAAAAAAAAAAAAAAAAnh3JtSSSkSSiIaKxtTH2H9wf+17el9r4qQYsLl26tKa6X/3qV2kuAwAAAAAAAAAAAAAA2GYuNl2Ms5+fXbY9fzQf+aP5qM3UYrY8G0kpidH+0ejs64xdz+9a9/w71j3CY3zxxRdx+/btJz0NAAAAAAAAAAAAAACwjdXr9RX1y+zNRK4lF+1n2qPjrY4Y6R1JZf4nErC4fft2fOc734mvfe1rkcvl4g//8A8XtN+6dStOnjwZP/zhD5/E9AAAAAAAAAAAAAAAwDbT0NCw6prM3kxq86cesLh+/Xrk8/no7++PlpaWOHr0aLS0tCzo09LSElevXo2WlpZ455130l4CAAAAAAAAAAAAAADwDKjN1GJ6dDqVsXamMsrv3Lp1K7q6uqK7uzt6e3vngxXnzp1bsv/Ro0ejWq3G9evX48iRI2kuBXjI//Oj/yc+/fefxo76E9m4ZkW+NfytTZsbAAAAAAAAAAAAANh81dvVJY/X6/X77b+uRtQfPUatWovZ8mxMj0/HBxc+iLaTbamsLdWAxblz56Kvry/OnDmz4Pijtuk4ceJEfOc73xGwAAAAAAAAAAAAAACAp9zU2FRM3ZyKSlKJpJTEnZk7C9p/kP/Biseq1+uR78jHsXePpbK2VAMWlUplUbhiJeaSJgAAAAAAAAAAAAAAwNOr7URbtJ34aseJ6fHpKPWWIrmWRENDQ7x44sUVjZPL5yLfmY/80Xxqa0s1YJHPr21hlUolzWUAAAAAAAAAAAAAAADbQHOhOV4feT2Ge4bjk6FPoni1uGlr2ZHmYGsNSiRJkuYyAAAAAAAAAAAAAACAbeR4//HItmQ3dQ2pBixyuVz87d/+7apqzp8/H0ePHk1zGQAAAAAAAAAAAAAAwDZz+PzhTZ1/Z5qDnT17Nr7xjW/E5cuX40/+5E8e2/+dd96JoaGh+Lu/+7s0lwEAAAAAAAAAAAAAAGwzbSfaHtvn1vVbUUkqkcvnYv/B/bHr+V2pzZ9qwCKfz8elS5fi6NGjcfDgwTh16lS88sorUa1W4/bt21GtVqNcLsf4+Hj09/dHkiQxNjaW5hIAAAAAAAAAAAAAAIBtqHSuFLWZ2oJjx949FhERtZlavNfxXkyPT0e9Xo9cPhe1Si2KQ8Vo+ZOWVOZPNWAREdHR0RFXr16N7u7uOHv27PzxgYGB+b/X6/XI5/MxOjoaL7/8ctpLAAAAAAAAAAAAAAAAtpn2nvb4QesPor2nPdq726P5leb5tsHiYEyNTcWhs4ei462OiIioVWsxeHIwci25yL6QXff8O9Y9whK6urqiXC7HhQsX4uWXX456vT7/p6WlJfr6+uJXv/pVvPLKK09iegAAAAAAAAAAAAAAYJv57BefRXGwGMfePbYgXDHxXyYiKSVxoHhgPlwREZHJZqJ4tRgf9H2Qyvyp7mBx/fr1OHLkyPzrs2fPLtjFAgAAAAAAAAAAAAAAeLzhnuE4UDwQ+Y78I/vVqrX42YWfRUTEnqY9UZ4sR2tna7R1tW16zWp9evPT6LjQsej4x1c+joaGhjh8/vCitkw2E5m9mVTmTzVg0dnZGdVqNX7/938/zWEBAAAAAAAAAAAAAOCpV0kqkZSSGOsfi+nx6ThQPPDI/rVqLQbaB6I4WIzmwlc7Pgz3DMenNz+Nzr7OTatZk/rSh5NSEhER+17et3SHhnSm35HOMPft3bs3ent70xwSAAAAAAAAAAAAAACeemMDY1HqLUVEREff4l0cljJYHIwXu15cEHqIiDjefzzGB8bngwmbUbMWu5t2LzpWuVWJWrW2aO4H1aq1VOZPNWBRrVajv78/Xn311bh+/XqaQwMAAAAAAAAAAAAAwFOrvbs9ioPFaO9uj92Ni4MGD5vb7eJgz8El29tOtsWNvhubUrNWDQ2Lt6KYGJqIiIiWjpblC5fZ+WK1Ug1YRET09/dHqVSKycnJ+MY3vhHvvPNOfPHFF2lPAwAAAAAAAAAAAAAAz6zR/tGIiMjlc0u2N7Y2RlJKFuzusFE1a/Xlf/8y7nxxZ8Gxsf6xaGhoiJdOvbRkTel8Kdp72tc9d0TKAYv+/v44ffp07N27N86cORM/+clP4ujRo3H27Nk4deqUXS0AAAAAAAAAAAAAACAFn41/FplsZtn2uUDE1OjUhtes1eHzh2OwOBif/bfP4rOPPouhU0NRSSrR1tUW+17et6DvZx99Fn/9r/469jTtieZXmtc9d0TEzlRG+Z0zZ84sOvbKK6/EpUuXIiLi8uXLcenSpfiX//JfRnd3dzz//PNpTg8AAAAAAAAAAAAAAM+ESlKJ3Y27l22fC0VUksqG16xVZm8mjl44GldPXJ0f70DxQHRd6Zrv8+M3fhxJKZlvT0pJfPn5l9FxoWPd86casHicM2fOxJkzZ+IXv/hFnD17NhoaGuKNN96IP/qjP9rIZQAAAAAAAAAAAAAAwIa4e+du/PbOb+df/49/+B+pjDtbnp3fPWIpc6GIWrW24TXr0Vxoju/+6rtRm6lFZu/inTMO9R6KQ72HllzDem1owGJOa2trtLa2xoULF2JgYCAKhULcvHlzM5YCAAAAAAAAAAAAAABPzAcXPoif/uVP51/PxEwq46400PDl519ueE0algpXRETkWpYPe6zXhgYsrl+/Hv39/TE0NBQREfV6Pbq7u6Onp2cjlwEAAAAAAAAAAAAAABvi8PnD8fW/+Pr8608//TS+3/b9TVzR0+eT9z+JF7/54rrHSTVgcf369Thy5MiCY1988UUMDAzEhQsXolqtRr1ej0KhED09PXHmzJk0pwcAAAAAAAAAAAAAgC1l566dsXPXV7fu/7Mv/lkq42aymRXtLrGnac+G12y04TPDWy9g0dnZGb/97W8jYuFuFfV6PSJifreKV155Jc1pAQAAAAAAAAAAAADgmbK7cfcj22fLsxFxPyCx0TWP8tlHn8W+l/ct27Yas+XZqCSVFQVAViLVgMXevXvj1VdfjSRJ7FYBAAAAAAAAAAAAAABPSC6fi6nRqWXb50IHuXxuw2uWUzpXig/f/jCa25vjzM8XZwz+45H/GHdm7jx2nCcl1YBFRMTY2FhE2K0CAAAAAAAAAAAAAACelH2FfZGUkmXbK0klIiLyHfkNr3lU33q9HrXK0jtOzO2W0d7dfv9102N2z/h8NiqTlfjk/U8eO/dKpB6w6OnpiXfffTftYQEAAAAAAAAAAAAAgN956dRL8eHFD2N6fDqaC82L2qduTi0KPWxUzXKOXz4e+c78sv1z+VwcPnc4CqcLKxpvzsWmi6vqv5wdqYzyO9VqVbgCAAAAAAAAAAAAAACesOZCc+Q78vHLK79csn1iaCIO9R7alJrlZPZmov1Me+Racku25zvzsf/g/hWN9aBsS3bVNUtJdQeL7u7uNIcDAAAAAAAAAABgC/jR8R9t9hIAAJ4plaQSERG1au2R/YqDxRhoH4iXTr20YHeJ4Z7heO3sa0vuFLFRNWtx6M2VBTUe1j2aTpYh1YDFpUuX0hwOAAAAAAAAAAAAAACeCRNDEzHWPxYREVOjUxERMXxmeP5YW7Et2rvbF9RkspnoHuuOkd6RyGQzsadpT5Qny9Ha2RptXW1LzrNRNdtRqgGLtWpqaorPP/98s5cBAAAAAAAAAAAAAACboq2rbU1hhUw2E8f7j2/JmtWo3q5GUkqiPFmOalK9P2djJhpbG6O50BwtR1qe2NxztkTAol6vb/YSAAAAAAAAAAAAAACADXTnizsxNjAWH1z4IGrV2mP7t/e0x6GzhyL7QvaJrGfTAxbnzp2LmZmZzV4GAAAAAAAAAAAAAACwQcZ/OB4/7vlxRCzetCGTzcTuxt0xW55dELwYvTQaY/1jcaj3UBz9q6Opr2lTAhbXr1+P/v7+GBoa2ozpAQAAeAJ+dPxHm72E+NbwtzZ7CQAAAAAAAAAAPMbQqaGYGJqIer0e+Y585Dvzke/IR/MrzUv2r83UIiklMfmTyRi/PB43+m5EUkrizM/PpLquDQtYfPTRR3HlypUYGBiIarUaEV+lTBoaGjZqGQAAAAAAAAAAAAAAwCb563/11zE5MhltXW3R0dcRuZbcY2syezPRdqIt2k60xfH+4zHSOxIfvv1hXP6Xl1MNWTzRgMXt27djaGgo+vv7I0mSiPgqVNHR0RE9PT1Rr9fj1KlTT3IZAAAAAAAAAAAAAADAJrvx9o2YHJmM4wPHo3C6sOZxOvs6o7WzNd77xntx7X+7Fkf/6mgq60s9YPHFF1/E1atXo7+/P8bHxyPiq1BFPp+Pnp6e6O7ujr17987XPPh3AAAAAAAAAAAAAADg6VKbqUWptxSdFzvXFa6Yk+/IR/FqMYZODUV7d3tkX8iue8zUAhbvv/9+XLlyJYaGhiLiq1BFNpuNmZmZmJycjBdeeGHJ2sHBwbSWAQAAAAAAAAAAAAAAbDFjA2PRXGiO1773WmpjtnW1xb5X9sXE0EQq4+5YT/H169fjO9/5Tnzta1+LYrEYg4ODUa/XY+/evdHd3R1jY2NRLpdj7969y4YrIiKOHk1nOw4AAAAAAAAAAAAAAGDr+fjKx/HH/9sfpz7u4XOH4+MrH6cy1qp3sLh9+3b09/fHwMBAVKvViPhqt4qurq7o6elZFJhoaGhY/0oBAAAAAAAAAAAAAIBtqXqrGvmOfOrj5jvz8eOeH6cy1ooDFpcvX46LFy9GkiQR8VWooqOjI4rFYpw5cyaVBQEAAAAAAAAAAAAAAE+XWrUWu57flfq4mb2ZqFVrqYy14oDFyMhITE5ORkREa2tr9PT0xJkzZ2Lv3r2pLAQAAAAAAAAAAAAAAHg67dqbfrgi7bF3rLTj1atX4969e3Hp0qVoaWmJmzdvxtjYWCqLAAAAAAAAAAAAAAAAnl4NDQ1bfuwVByzmdHd3x09+8pMYGBiIsbGx+MY3vhHf+c534qOPPkplQQAAAAAAAAAAAAAAABtt1QGLOXv37o0333wzfvKTn8TZs2fjP//n/xyvvvpqnD9/Pm7fvp3iEpYOTRoAAQAASURBVAEAAAAAAAAAAAAAAJ6snWkM0tLSEm+99VZERPziF7+It956K27duhWdnZ1x5syZNKYAAAAAAAAAAIBn0vT4dIz2j0atXIvp8enIZDPR3tMe7d3ty9bUqrX42YWfRUTEnqY9UZ4sR2tna7R1taVaAwAAsFK1am3Lj51KwOJBr7zySly6dCkiIv7Lf/kvcebMmajX6/HDH/4wTp8+vWTNO++8E9/73vfSXgoAAAAAAAAAAGxrYwNjERFxvP/4/LGklMRgcTBu9N2I7rHuyGQzC2pq1VoMtA9EcbAYzYXm+ePDPcPx6c1Po7Ovc9E8a6kBAABYjXq9Hv/X//v/ilw+l+q4laSS2lipBywedOLEiThx4kTMzMzE1atX4xvf+Ebkcrno6emJI0eORETErVu3ore3V8ACAAAAAAAAAAAeUEkqUavW4tDZQwuO5zvy8e1r346B9oEYLA7G6yOvL2gfLA7Gi10vLghKRNwPafTl+qK1szXyHfl11wAAAKxWebIc5cly6uM2NDSkMs4TDVjM2bt3b5w5cybOnDkTMzMzMTAwEG+99VY0NDREqVTaiCUAAAAAAAAAAMC2Mto/Gn98/o+XbGsuNEe+Ix9JKYlKUpl/AmwlqURSSuJY/7El69pOtsWNvhsLwhJrqQEAAFiLfEc+8p3pXltM/XwqPnn/k1TG2pCAxYP27t0bb775Zrz55ptRKpXi5z//eXzxxRcbvQwAAAAAAAAAANjSbpVuxfjAePz5rT+PTDazqH1fYV8kpSSmx6fnAxaj/aMREfOvH9bY2hjjA+NRq9bmx1xLDQAAwGo1NDTE6z95/fEd1+D/+Nr/kco4O1IZZY06OjpicHBwM5cAAAAAAAAAAABb0u7G3VGr1qKSVFZc89n4Z48MQcyFKKZGp9ZVAwAAsFq79u7a8mNv+A4WD+vo6Ii9e/du9jIAAAAAAAAAAGBLeX3k9agklWV3lqgm1YiIaC40zx+rJJXY3bh72THnghQPhjbWUgMAALBa37727S0/9qbuYDHn2rVrm70EAAAAAAAAAADYcpYLV0RETAxNRHOheUGf2fLsI3ejmAtS1Kq1ddUAAACsVvMrzY/vtMljb/oOFhERr7zyymYvAQAAAAAAAAAANsS9396L+r36V6/v3lv1GDcu3oiIiOOXjy84vtIQxJeff7muGgAAgKfRlghYAAAAAAAAAADAs6L8q3KU/648/3omZlZVPz0+HaXeUhQHi9FceHJPgAUAAHjWCFgAG+ZHx3+02UuIbw1/a7OXAAAAAAAAAMAzrvEPGyOXz82/LtfKET9def1gcTCO9R+Ltq62RW2ZbGZFO1LsadqzrhoAAICnkYAFAAAAAAAAAABsoB1f2xHxtQde392x4trB4mC097RHe3f7ku27G3c/sn62PBsR90MV66kBAAB4Gq386gwAAAAAAAAAANg0I70jsf/V/XHo7KFl++TyuflAxFLmdqp4cAeNtdQAAAA8jQQsAAAAAAAAAABgixsbGIvG1sYlwxVzAYiIiH2FfQteP6ySVCIiIt+RX1cNAADA00jAAgAAAAAAAAAAtrCJoYmIiGjvbl/UVkkqkZSS+dcvnXopIiKmx6eXHGvq5tSioMRaagAAAJ5GAhYAAAAAAAAAALBFTY9Px2x5dslwRUREUkqiudA8/7q50Bz5jnz88sovl+w/MTQRh3oX7oKxlhoAAICn0c7NXgAAAAAAAAAAALBYJanEYHEwWjpaYqpnalF7rVyLpJREb6V3wfHiYDEG2gfipVMvLQhfDPcMx2tnX1tyN4q11AAAADxtBCwAAAAAAAAAAGALeq/zvagklagMVJbtk8vnFh3LZDPRPdYdI70jkclmYk/TnihPlqO1szXautqWHGctNQAAAE8bAQsAAAAAAAAAANiCvjv53TXXZrKZON5//InXAAAAPE12bPYCAAAAAAAAAAAAAAAANpuABQAAAAAAAAAAAAAA8MwTsAAAAAAAAAAAAAAAAJ55AhYAAAAAAAAAAAAAAMAzT8ACAAAAAAAAAAAAAAB45u3c7AUAAAAAAABrM9wzHAeKByLfkX9kv1q1Fj+78LOIiNjTtCfKk+Vo7WyNtq62Ta8BAAAAAADYKgQsAABgGxsbGIuJwYlo72mPfEc+MtlMVJJKTI9Px8dXPo7D5w9Hc6F5UZ0bpQAAYPuqJJVISkmM9Y/F9Ph0HCgeeGT/WrUWA+0DURwsLrg+GO4Zjk9vfhqdfZ2bVgMAAAAAALCVCFgAAMA2VqvWIiklkZSSBccz2cyim5oerHGjFAAAbE9jA2ORjCSR78xHR19HvNf53mNrBouD8WLXi4uuD473H4++XF+0drYu2gFjo2oAAAAAAAC2EgELAADY5o71H4vyZDmqSTUyjZnY374/2rvbl+3vRikAANi+2rvb5z/vT49PP7b/3G4Xx/qPLdnedrItbvTdWPB5fqNqAAAAAAAAthoBCwAA2OYOnDwQmWxmRX3dKAUAAM+W0f7RiIjI5XNLtje2Nsb4wHjUqrX564qNqgEAAAAAANhqdmz2AgAAgI2zkpueklIStWptXTUAAMDW8Nn4Z48MNMx9zp8andrwGgAAAAAAgK1m2+9gUa1W48KFCxER0dTUFJOTk9HZ2RldXV1rHnN8fDz6+/ujXC7H+Ph4ZLPZ6Onpie7u7rSWDQAAm2I1Nz3N7UixlhoAAGBrqCSV2N24e9n2uc/6laSy4TUAAAAAAABbzbYOWFSr1Whvb4/BwcEoFArzx3t6euLmzZvR19e36jEHBgYiIqK/v3/+WKlUimKxGH19fTE2NhbZbHbdawcAgLRNj0/H1OhU7D+4P5oLzUv2caMUAABsTXfv3I3f3vnt/Ot/+sd/SmXc2fLssrvRRcT8Z/0Hd6TbqBoAAAAAAICtZlsHLIrFYnR1dS0IV0TcD0fkcrno7OyMjo6OFY+XJElUq9U4e/bsguMdHR1x7dq1aG9vj2KxGCMjI6msHwAAlrOam6uSUhKVpBL5jny0d7fH9Ph0vNf5XhzqPbRoRwk3SgEAwNb0wYUP4qd/+dP51zM7ZlIZd6Wf07/8/MsNrwEAAABIw4+O/2izlxDfGv7WZi8BAEjJtg1YJEkSpVJpwU4TDzp58mT09fWtKmDR398f58+fX7KtUChER0dHlEqlSJIk8vn8kv0AACANK725ai74cOjsofljzYXmKA4Woy/XF91j3Qt2s3CjFAAAbE2Hzx+Or//F1+df/+Y3v4nv/4vvb+KKAAAAAAAAnj07NnsBazUXrFgu6NDa2hqlUimq1eqKxyyVStHS0rJszdxOGePj46taKwAArNbh84fj3My5+T/f+W/fWbJfW1dbtHW1LTqeyWairastBouDT3qpAABACnbu2hm7nt81/+e533sulXEz2cyKQtN7mvZseA0AAAAAAMBWs20DFuPj45HNZpdtnwtejI6OrnjMxsbGqFarkSTJepcHAADrksbNVftf3R+VpBKVpDJ/zI1SAADwbNnduPuR7bPl2Yi4/7l/o2sAAAAAAAC2mm0bsEiSJBobG5dtnwtfrCYsMTIyEpOTk/M7VSw1Z0Qs2w4AAFvJ3I1L0+PT88fcKAUAAM+WXD43/5l9KXNh6lw+t+E1AAAAAAAAW83OzV7AWpXL5fldKpYyF76oVqurGvdRYw4NDUWhUHhkn4iI2buz8Y93/3H+9XM7novnvpbOdu6wFvWGetSjHvWGetyLe5u9nE119+7dzV4Cv3P37t24d++e94Qtx7nJVnXv3uLv4cM9w3GrdCu+O/ndFY+Ty+dianRq2fblbpRabc2zxjXA1rEVvn77XsLDnBM8zDnBw5wTLGWpa4C12FfYF0lp+QcRze14l+/46ufeG1WznX352y9j191d869dA2x9fk6+vXn/ti/v3fblvdu+vHfbV72hvtlL4DFmZmaiXC7Pv961a1fs2rXrERVPn3sNvq6sl6/TT6/N+NmenyuSJucTaXI+rYx/n61r2wYsVhqc+Pzzz1OZ7+LFixERcfny5cf27f2vvQte/+vCv45/c/DfpLIOWIt61GP292ejHOVoiIbNXs6mevf/8+5mLyEiIv7Ft/7FZi9h0927dy9+85vfRETEjh3bdkMlnkLOTbaqpT7XTo9Or+gJsc2F5vljbpR6MlwDbB0ffPDBZi/B9xIWcU7wMOcED3NOsJS0frb90qmX4sOLH8b0+PSCa4M5UzenFn2W36ia7cw1wPbj5+Tbm/dv+/LebV/eu+3Le7d9/cPsP2z2EniMl19+ecHrP/3TP40/+7M/25S1bJZyc/nxnXgkX6efXpvxOyo/VyRNzifS5HxamQfDu2wt2zZgsZHGx8ejt7c3BgcHo1AoPLZ/3//cF7nMV0/vfW7Hc/HctCdXsXnqDfUoRzkaP2uMhrqLs63g8OHDm72ETTeXvnzttddi507fjtg6nJtsVXMXng9q6WiJ7r7uZWumbk5FJptZsLOEG6WeDNcAW8dW+JzlewkPc07wMOcED3NOsJSlrgHWornQHPmOfPzyyi+X/Dw/MTQRr4+8vik125lrgO3Hz8m3N+/f9uW92768d9uX924bW/55SmwRH330UfzBH/zB/OtncQeLT//9p5u9hG3P1+mn12b8jsrPFUmT84k0OZ9W5u///u83ewksY9uetdlsdkW7WDQ1Na17rmKxGP39/dHV1bWi/rt37o7f2/l7Cw/ayZFNdC/uRUM0REO9IXbUpQG3Ah8a7tuxY0fs3LnTvwdbjnOTrWipRP9Lp16KsYGxaO9uX9RWSSoxMTQRxcHiguNulHoyXANsHYP/dnCzlxD3Gu7FP/+Lf+57CQv4fMHDnBM8zDnBw1byVK+53eTmdq9bTnGwGAPtA/HSqZcWfKYf7hmO186+tmRgeqNqtqs9X9vjGmCb8XPy7c37t31577Yv79325b3bvtxovfXt3bs3GhsbN3sZm8rXlfXzdfrptVk/1/NzRdLkfCJNzqfH82+zdW3bd+ZxFyxz26Zks9l1zVMsFqOnpye6u5d/MjAAAGyG5kJzJKUkbly8EYfOHpo/XkkqMdA+EK+dfS3autoW1blRCgAAtq+JoYkY6x+LiIip0amIiBg+Mzx/rK3YtiiEnclmonusO0Z6RyKTzcSepj1RnixHa2frktcMG1kDAAAAAACwlWzbgEU+n4/R0dFl2+d2t8jn136jV29vb7z66qtx9uzZNY8BAABP0qGzhyIpJTHcMxy1ci1q1Vpkspn49rVvL7nbRIQbpQAAYDtr62pb02fwTDYTx/uPb8kaAAAAAACArWLbBiwKhUKUSqVl25MkiYiIjo6ONY0/MDAQra2tS+5cUa1W170zBgAApCXfkV/1DhJulAIAAAAAAAAAAFhox2YvYK1OnToVERHj4+NLtt+8eXPN4YqhoaGIiCXDFUmSPDLYAQAAAAAAAAAAAAAAbD/bNmBRKBSio6Mjrly5smT70NBQ9Pb2LjperVajt7d32ZDE+Ph4lMvlJcMVERGlUikKhcLaFw4AAAAAAAAAAAAAAGw5Ozd7AesxODgY7e3tcerUqQWhh56enjh79uySO1gMDAzExYsXY2BgICqVyoK2JEmiWCxGR0dH9PT0LKotl8tRKpUW1QEAAAAAAAAAAAAAANvbtg5YZLPZGBsbi97e3shms9HU1BSTk5PR2dkZXV1dS9Z0dHRENpuNkydPLmrr7OyMJEliYGBg2Tnz+Xxq6wcAAAAAAAAAAAAAALaGbR2wiLgfsujv719x/0KhsOwOFJOTk2ktCwAAAAAAAAAA/v/s/W9sXOd5IHxfopho9KfRkOqCptN9UA2zKEw725i00o3sArsyme0TiB8ck3KNhbNqE4vKBnARoxFjYPdDsQsoVIoE2wU2ItP0MVYPKthU4werIupb0vIGttwX5R8HbxwGxVYjb7YSLTwxZ5RK1iihyPeDQ9oU/4gcHnJmOL8fILRzzrnuc8Xn5sy5Z+7r3AAAAFSQmlInAAAAAAAAAAAAAAAAUGoKLAAAAAAAAAAAAAAAgKpXW+oEAAAAAAAAAAAAAACAiNH+0RgfGI/W7tbItGUilU5FLpuLibGJ+NELP4pHnnskGlsaF8QV8oV49firERGxY8+OmLw4GU3tTdHc2bzkuYqJ2ewUWAAAAAAAAAAAAAAAQBko5AuRHcpGdig7b3sqnYquga4liyv6W/sX7D/bfTYuD1+O9t72RGKqgQILAAAAAAAAAAAAAAAoEwf7DsbkxcnIZ/ORqk/Fva33RuuR1iWPH+gaiPs671tQfNHR1xG9db3R1N4UmbbMmmOqgQILAAAAAAAAAAAAAAAoE/cfuj9S6dSKjs1lc5EdysbBvoOL7m8+1BwXei/MK5YoJqZa1JQ6AQAAAAAAAAAAAAAAYPVG+kYiIqIuU7fo/vqm+sgOZaOQL6wpploosAAAAAAAAAAAAAAAgAr09tjby652MVtEcWXkyppiqoUCCwAAAAAAAAAAAAAAKDMTYxMx2j8aE2MTSx6Ty+Zie/32JffPFlLksrk1xVQLBRYAAAAAAAAAAAAAALBOpm5Nxa2f3Zr79/N//Pmyx2eHsnHhxIWIiGg90hoREafaT0V2KLvg2JuTN5ddjWK2kKKQL6wpplrUljoBAAAAAAAAAAAAAADYrF47/lp8/4++P/f6Wlxb8ti6TF1ERDx87OG5bY0tjdE10BW9db1xZPRINLY0zu1baRHEu++8u6aYaqHAAgAAAAAAAAAAAAAA1skjzz0Sn3r2U3OvL1++HN9s/uaixzZ3Ni+6PZVORXNncwx0DcQzF59ZlzyJqCl1AgAAAAAAAAAAAAAAsFnVbquNbR/ZNvfvw7/y4aLauXffvZHL5iKXzc1tS6VTK1qRYseeHWuKqRZWsAAogdMdp0udQjx59slSpwAAAAAAAAAAAADACqXSqYiImBibiLpMXUREbK/fvmzMzcmb82KLjakWVrAAAAAAAAAAAAAAAIASO9t9Nv6k6U9WFVOXqZsriFjM7EoVswUZxcZUCwUWAAAAAAAAAAAAAABQYhMjEysqfGhsaZzbdk/LPXPbF5PL5iIiItOWWVNMtagtdQIAAACw2fzw9A/j8jcuR81M6Z5r8OTZJ0t2bgAAAAAAAABg9fa27Y0jvUeW3H9l+Eqk0ql5K0s88MQD8fqJ12NibGJe4cUHY+4slCgmplpYwQIAAAAAAAAAAAAAAErsgSceiNH+0UX35bK5GD8zHh3f7pi3vbGlMTJtmXjzhTcXjRs/Mx4P9zy85phqocACAAAAAAAAAAAAAABKrLGlMQr5Qlw4cWHe9lw2F/2t/bH/2P5o7mxeENc10BU/PvPjmBibmLf9bPfZ2H9s/6KrURQTUw1qS50AAAAAAAAAAABwd2e7z8b9XfffdaJTIV+IV4+/GhERO/bsiMmLk9HU3rToRKy1xAAAAMl7+NjDkR3Kxtnus1GYLEQhX4hUOhWfe/lz0djSuGhMKp2KI6NHYrBnMFLp1Iru6YuJqQYKLAAAAAAAAAAAoEzlsrnIDmVjtG80JsYm4v6u+5c9vpAvRH9rf3QNdM2bfHW2+2xcHr4c7b3ticQAAADrJ9OWWfUKEql0Kjr6OtY9ZrOrKXUCAAAAAAAAAADAQqP9ozHUMxQREW29bSuKGegaiPs671vwZNuOvo4Y6x+L7FA2kRgAAIDNyAoWAAAAAAAAAABQhlqPtEbrkdaIiJgYm7jr8bOrXRzsO7jo/uZDzXGh98K8J+EWEwPAfKc7Tm/4Oae3TMdk42Rc/sblqJl571nbT559csPzAIDNxgoWAAAAAAAAAACwCYz0jURERF2mbtH99U31kR3KRiFfWFMMAADAZqXAAgAAAAAAAAAANoG3x96OVDq15P7ZIoorI1fWFAMAALBZKbAAAAAAAAAAAIBNIJfNxfb67Uvuny2kyGVza4oBAADYrBRYAAAAAAAAAADABpq+PR23f3F77t/01HQi7d6cvLnsahSzhRSFfGFNMQAAAJtVbakTAAAAAAAAAACAajL595Mx+T8n515fi2uJtLvSIoh333l3TTEAAACblQILAAAAAAAAAADYQPUfq4+6TN3c68nCZMT3S5gQAAAAEaHAAqBqne44XdLzT2+Zjo8++9GS5gAAAAAAAABQCjVbayK2fuD1VE0i7abSqRWtSLFjz441xQAAAGxWyYzOAAAAAAAAAACAktpev33Z/Tcnb0bEe0UVa4kBAADYrBRYAAAAAAAAAADAJlCXqZsriFjM7EoVdZm6NcUAAABsVrWlTgAAAAAAAAAAAFi7e1ruiexQdsn9uWwuIiIybZk1xQBQnk53nC51CvHk2SdLnQIArIkVLAAAAAAAAAAAYBN44IkHIiJiYmxi0f1Xhq8sKJQoJgYAAGCzUmABAAAAAAAAAACbQGNLY2TaMvHmC28uun/8zHg83PPwmmMAAAA2KwUWAAAAAAAAAABQ5nLZXEREFPKFZY/rGuiKH5/58YIVKc52n439x/YvuhpFMTEAAACbUW2pEwAAAAAAAAAAABYaPzMeo32jERFxZeRKREScffrs3LbmruZoPdI6LyaVTsWR0SMx2DMYqXQqduzZEZMXJ6OpvSmaO5sXPU8xMQAAAJuRAgsAAAAAAAAAAChDzZ3NRRU4pNKp6OjrWPcYAACAzUaBBQAAAGxCpztOlzqFePLsk6VOAQAAAAAAAABgxWpKnQAAAAAAAAAAAAAAAECpKbAAAAAAAAAAAAAAAACqXm2pEwAAAAAAAAAAAGBppztOlzoFAACoClawAAAAAAAAAAAAAAAAqp4CCwAAAAAAAAAAAAAAoOopsAAAAAAAAAAAAAAAAKpebakTAKB6/fD0D+PyNy5HzUxp6/2ePPtkSc8PAAAAAAAAAAAAQOlZwQIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqldb6gQAAAAAAAAAAAAAqHynO06XOoV48uyTpU4BgApmBQsAAAAAAAAAAAAAAKDqKbAAAAAAAAAAAAAAAACqngILAAAAAAAAAAAAAACg6tWWOgEAAABgczrdcbrUKURExJNnnyx1CgAAAAAAAABABVBgAUDVK4eJfyb9AQAAAAAAAAAAAJRWTakTAAAAAAAAAAAAAAAAKDUFFgAAAAAAAAAAAAAAQNVTYAEAAAAAAAAAAAAAAFQ9BRYAAAAAAAAAAAAAAEDVqy11AgAAAAAAAAAAAACQhNMdp0udQjx59slSpwBAkRRYAAAAAJtaqb9En94yHR999qMlzQEAAAAAAAAAuLuaUicAAAAAAAAAAAAAAABQagosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKpXW+oEAAAAAAAAAAAAAABYX6c7Tq/7Oaa3TMdk42Rc/sblqJlZuBbAk2efXPccYC2sYAEAAAAAAAAAAAAAAFQ9K1gAQBnYiMrgSqFCGQAAAAAAAAAAACgFBRYAAAAAAAAAAAAAsMms9KGv01umY7JxMi5/43LUzNQkmoOHrQKVRoEFAAAAwDr74ekfrssX0qvhy2sAAAAAAAAAWJ4CCwAAAAAAAAAAAABgU1rpSh7rzQPRoDKU7rGJAAAAAAAAAAAAAAAAZcIKFgAAAAAAAAAAAAAArDsrilDuFFgAAAAAVIFy+KLSl5QAAAAAAAAAlLOaUicAAAAAAAAAAAAAAABQagosAAAAAAAAAAAAAACAqldb6gQAAD7odMfpkp5/est0fPTZj5Y0BwAAAAAAAAAAAGDjKbAAAAAAYEOUuph21pNnnyx1CgAAAAAAAFSZcvmtDFheTakTAAAAAAAAAAAAAAAAKDUrWAAA3OGHp38Yl79xOWpmSleL6qnKAADrp9RPB5reMh0fffajJc0BAAAAAAAAgIUUWAAAlKFST/qbpdADAAAAAAAAAGB1ymXeRznw3wKoNAosAAAAAGCDWTUNAAAAAAAAoPwosAAAYEnl8BQBE/8AANZHOdzrRbjfAwAAAAAAAMqHAgsAAMpaOUz8M+kPAAAAAAAAAABg86spdQIAAAAAAAAAAAAAAAClVvErWOTz+Th+/HhEROzZsycuXrwY7e3t0dnZWVZtAgDAeinkC/Hq8VcjImLHnh0xeXEymtqbormzucSZAQDcnRXLoDjGAQAAUF2MAQAAoLoYA5RORRdY5PP5aG1tjYGBgWhpaZnb3t3dHcPDw9Hb21sWbQIAwHop5AvR39ofXQNd0djSOLf9bPfZuDx8Odp720uYHQBAZSh1kcf0lun46LMfLWkOVBbjAAAAqC7GAAAAUF2MAUqrogssurq6orOzc14hREREX19f1NXVRXt7e7S1tZW8TQAAKlupJ9xFRPy08NNFtw90DcR9nffNG0xFRHT0dURvXW80tTdFpi2zESkCALAGPzz9w7j8jctRM1NT0jys5lEZjAMAAKC6GAMAAEB1MQYorYotsMhmszE0NBR9fX2L7j906FD09vauqhhirW3+/Oc/j4iIX0z/YsXnhI3wi9u/iO+NfC+euOeJ2FazrdTpQETol5QvfZNyNXuPOXvPGRGRy+YiO5SNg30HF41pPtQcF3ovGFCtI2MAFuOzhDvpE9xJn+BO5dQnyqG4uByUQ6HJ7L3mB8cAEcYBUKxyeq9l9Vy/yuXaVS7XrnK5dpuPMUDpLTU+g2J4nyZJ+hNJ0p9Ikv60NsYApVexBRazRRCZzOKdo6mpKfr7+yOfz0c6nd6QNm/duhUREVPTUys6H2yUX0z/Iv5q7K/is7/zWR9WlA39knKlb1KuZu8xZ+85IyJG+kYiIqIuU7doTH1TfYz1j0UhX4hUOrX+SVYhYwAW47OEO+kT3Emf4E76RPkph0KT/339f0fE/DFAhHEAFMt7bWVz/SqXa1e5XLvK5dptPsYApTc7LrtzfAbF8D5NkvQnkqQ/kST9aW2MAUqvtOvNr8HY2NiyhROzRRIjIyMlbRMAANbL22NvLztQmh1oXRm5slEpAQAA68w4AAAAqosxAAAAVBdjgNKr2BUsstls1NfXL7l/tlAim82WtE0AAFgvuWwuttdvX3L/7GArl81tVEoAAMA6Mw4AAIDqYgxQPs49cy7e3PVmqdMAAGCTMwYovYotsJicnJxbUWIxs4US+Xx+w9qcnp6OiIi3b7w9b3ttTW18qOZDK84Dknbz9s2oqamJ3K1cFKYKpU4HIkK/pHzpm5SL6dvTETPvv87deG9QNHvPGRFxc/LmkssBRsTcYKuQ15fXizEAi/FZwp30Ce6kT3AnfYKIlY0BIowDSm32ely5cSXevf3u3HZjgPLnvbayuX6Vy7WrXK5d5XLtKsedY4B8If/edmOAsuO3AJLkfZok6U8kSX8iSZXSn956660NPd/0L6bj9q3bc6/fvvre/aUxQPmp2AKLlRZOvPPOOxvWZi733g9e3xz+5orPCRup55WeUqcAC+iXlCt9k3I1e88ZsfKB0rvvvHv3gyiKMQDL8VnCnfQJ7qRPcCd9gsV8cAwQYRxQalevXo2IiOP/3+MlzoRiea+tbK5f5XLtKpdrV7lcu8p19erV+D/+j/9j7rUxQOn5LYD14H2aJOlPJEl/Iknl3p+e2ftMqVOICGOAclSxBRbl6F/8i38Rr776atTV1UVNTc3c9m3btsWHP/zhEmYGAEClmfr5VEzfer9CfXp6Ov7f/P8b+35rXwmz4k7GAAAAJMUYoDI8+OCDxgAAACRiqTHAgw8+WMKsWIzfAgAASIIxQOWo2AKLdDq9ohUn9uzZs2Ft1tbWxiOPPLLi8wEAwGp8LD4273UqnVpR1fqOPTvWK6WqZwwAAMB6unMMEGEcUGrGAAAArCdjgPJkHAAAwHoxBihPNXc/pDzV19cvu39ycjIi3iuaKGWbAACwXrbXb192/83JmxHx3sALAADYHIwDAACguhgDAABAdTEGKL2KLbDIZDJzBQ+LmV2JIpPJlLRNAABYL3WZurlB02Jmq9nrMnUblRIAALDOjAMAAKC6GAMAAEB1MQYovYotsGhpaZkreFhMNpuNiIi2traStgkAAOvlnpZ7ll0SMJfNRUREpk2BMAAAbBbGAQAAUF2MAQAAoLoYA5RexRZYPPHEExERMTY2tuj+4eHhVRdCrEebAACwXh544oGIiJgYm1h0/5XhKwZTAACwyRgHAABAdTEGAACA6mIMUHoVW2DR0tISbW1t8cILLyy6/8yZM9HT07Ngez6fj56enhgaGkqsTQAAKIXGlsbItGXizRfeXHT/+JnxeLjn4Q3OCgAAWE/GAQAAUF2MAQAAoLoYA5TelpmZmZlSJ1GsfD4fra2tMTAwEC0tLXPbu7u7I51OR29v74KYEydORE9PT6TT6cjlcom0CQAApVLIF6K/tT+6BrqisaVxbvvZ7rORSqeivbe9hNkBAADrwTgAAACqizEAAABUF2OA0qroAouI91ekSKfTsWfPnrh48WK0t7dHZ2fnosePjY3Fo48+GocOHYq+vr5E2gQAgFIq5Asx2DMYqXQqduzZEZMXJ6OpvSmaO5tLnRoAALBOjAMAAKC6GAMAAEB1MQYonYovsAAAAAAAAAAAAAAAAFirmlInAAAAAAAAAAAAAAAAUGoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqldb6gQ2k6mpqXjjjTeioaEhamrUrgAAkJzp6em4evVqPPjgg1Fb6za+XBgDAACwXowBypMxAAAA68UYoHwZBwAAsB6MAcrXprka3d3d0dXVFW1tbWtqJ5/Px/HjxyMiYs+ePXHx4sVob2+Pzs7Ou8a+8cYb8clPfnJN5wcAgOX87d/+bezbt6/UafBLxgAAAKw3Y4DyYgwAAMB6MwYoP8YBAACsJ2OA8lPRBRbZbDaGhoair68vxsbGoqura03t5fP5aG1tjYGBgWhpaZnb3t3dHcPDw9Hb27tsfENDQ0RE/M3f/E382q/92ppygSRNTU3F2NhYtLS0qHKjbOiXlCt9k3L1D//wD/GpT31q7p6T8mAMwGJ8lnAnfYI76RPcSZ9gMcYA5Wn2evzt3/5tNDY2ljgbVsN7bWVz/SqXa1e5XLvK5dpVromJifjkJz9pDFCG/BZAkrxPkyT9iSTpTyRJf1oZY4DyVbG9tr+/PwYHB6O9vT16e3ujvb19zW12dXVFZ2fnvOKKiIi+vr6oq6uL9vb2ZVfImF0G8J577jGgoqxMTU3FW2+9Fb/2a7/mw4qyoV9SrvRNytXU1FREhKWny4wxAIvxWcKd9AnupE9wJ32CxRgDlKfZ69HY2GgMUGG811Y2169yuXaVy7WrXK5d5TMGKD9+CyBJ3qdJkv5EkvQnkqQ/rY4xQPmp2Cty5MiRGBgYiCNHjkR9ff2a25tdDaO7u3vR/YcOHbrrChYAAAAAAAAAAAAAAEBlUhb0S319fRERkclkFt3f1NQU/f39kc/nI51Ob2BmAAAAAABspBs3bhQde/Xq1Th69GiMjo5Ga2trnDx5sqjlvd99992icwAAAAAAAKA4Cix+aWxsbNnCidnCi5GRkWhra9ugrAAAAAAA2Gi7du1KpJ3BwcFoampKpC0AAAAAAADWnwKLX8pms1FfX7/k/tnii2w2e9e2pqen4/bt20mlBmt2+/btuX65ZcuWUqcDEaFfUr70TcrV9PR0qVNgGcYAfJDPEu6kT3AnfYI76RPlZ+vWrUXHLnZfWEx7MzMzxgFl7Pbt28YAFcZ7bWVz/SqXa1e5XLvK5dpVLveX5c9vASTB+zRJ0p9Ikv5EkvSnlXFvWb4UWPzS5OTk3CoVi5ktvsjn83dt62/+5m/i7/7u7+Zeb926NWpr/aemdKanp+N//+//HdPT01FTU1PqdCAi9EvKl75JuXrnnXdKnQLLMAbgg3yWcCd9gjvpE9xJnyg/f/mXf1l07L//9/8+3njjjbnr+eCDD8Z/+k//adXtTE5Oxr/5N/+m6DxYXxcuXIi6urq518YA5c97bWVz/SqXa1e5XLvK5dpVrlwuV+oUuAu/BZAE79MkSX8iSfoTSdKfVsYYoHy5y/+llRRORKxsYtvJkyfnDaB+8zd/Mz7xiU8UmRms3czMTFy7di0iQjUgZUO/pFzpm5Srn/3sZ6VOgWUYA/BBPku4kz7BnfQJ7qRPbC5PPfVU/PznP49Lly7F3r1746mnnoq333571e0YA5S3b33rW8YAFcZ7bWVz/SqXa1e5XLvK5dpVrn/8x38sdQrchd8CSIL3aZKkP5Ek/Ykk6U8rYwxQvhRYrIM/+ZM/iV/7tV+be71t27bYtm1bCTOi2k1NTcXf/M3fxKc+9SlPT6Bs6JeUK32TcvWTn/wk/uAP/qDUabAEYwA+yGcJd9InuJM+wZ30ic3n6NGja27DGKC8/Zf/8l/iox/96NxrY4Dy5722srl+lcu1q1yuXeVy7SrX5cuX45lnnil1GizDbwEkwfs0SdKfSJL+RJL0p5UxBihfeu0vpdPpFa1isWfPnrseU1dXF//kn/yTBLKCZMwuS7lt2zYfVpQN/ZJypW9Srj70oQ+VOgWWYQzAB/ks4U76BHfSJ7iTPsFijAHK26/+6q8aA1QY77WVzfWrXK5d5XLtKpdrV7k+/OEPlzoF7sJvASTB+zRJ0p9Ikv5EkvSnlTEGKF81pU6gXNTX1y+7f3JyMiLeK8QAAAAAAAAAAAAAAAA2FwUWv5TJZOaKKBYzu7pFJpPZoIwAAAAAAAAAAAAAAICNosDil1paWuaKKBaTzWYjIqKtrW2DMgIAAAAAAAAAAAAAADaKAotfeuKJJyIiYmxsbNH9w8PDiisAAAAAAAAAAAAAAGCTqi11Ahspn8/H8ePHo729fUGxREtLS7S1tcULL7wQLS0tC2LPnDkTg4ODG5UqAAAAAAAAAAAAAABVKpfNxWu9r0VERGGyEIV8ITLtmXj42MNLxhTyhXj1+KsREbFjz46YvDgZTe1N0dzZXPKYSrEpCiyy2WxEvFdAsZz+/v44ceJE9Pf3Ry6XW7B/YGAgWltb44knnphXZNHd3R3Hjh2zggUAAAAAAAAAAAAAAOtq/Mx4XB6+HB19HfO297f2x2jfaDxz8ZkFMYV8Ifpb+6NroCsaWxrntp/tPhuXhy9He297yWIqSU2pEyjWmTNnor29Pdrb2+Ppp5+OiIinn356blt/f/+CmLa2tkin03Ho0KFF20yn0zE6Ohp9fX3R09MTJ06ciO7u7mhvb4/e3t51/d8DAAAAAAAAAAAAAEB1K+QL8aMXfrRooULHtzsil83F2e6zC/YNdA3EfZ33zSt6iIjo6OuIsf6xyA5lSxZTSSp2BYvOzs7o7OxcVUxLS8uiK1d8UDqdjr6+vrWkBgAAAAAAAAAAAAAAq3Zl5EqMnxmPwZ7BBUUWs0UNl4Yuzduey+YiO5SNg30HF22z+VBzXOi9EJm2zIbHVJqKLbAAAKA63Lhxo+jYq1evxtGjR2N0dDRaW1vj5MmT0dDQsOp2du7cWXQOAAAAAAAAAAAAK7W9fnuk0qnYsWfHksek0ql5r0f6RiIioi5Tt+jx9U31MdY/FoV8YS52o2IqjQILAADK2q5duxJpZ3BwMJqamoqKnZmZSSQHAAAAAAAAAACA5TS2NEZPrmfRfRNjExERsbdt77ztb4+9vWxBw2xBxJWRK3OrS2xUTKWpKXUCAAAAAAAAAAAAAADA8oZ6hqIuUxftve3ztueyudhev33JuNmiiFw2t+ExlcYKFgAAlLXr168XHfvYY4/F+fPn4/bt27F169Y4cOBAvPTSSwlmBwAAAAAAAAAAsLypW1Nx+9btudc//8efryo+l83Fa72vRTqTjqcGn1qw/+bkzbnVIxYzWxRRyBc2PKbSKLAAAKCs7dy5s+jYU6dOxeHDh2N4eDj27dsXzz///JraAwAAAAAAAAAAWK3Xjr8W3/+j78+9vhbXVhQ3fmY8Lg9fjnw2H+lMOpramxY9bqUFDe++8+6Gx1QaBRYAAGxaDQ0Nce7cuVKnAQAAAAAAAAAAVLFHnnskPvXsp+ZeX758Ob7Z/M27xjV3NkdzZ/Pc61Ptp2K0bzQ6vt0RqXRqXXKtdgos1sHZp8/Gr6Z+tWTnf/LskyU7NwAAVKNSjwEijAMoTzdu3Cg69urVq3H06NEYHR2N1tbWOHnyZDQ0NBTVltWLAACgupzuOF3qFIzTAQA2uWLvOae3TMdk42Rc/sblqJmpWVMO7jkBoLLUbquN2m3vT93/8M8+XFQ7XQNd0VvXG4V8IZ4afGpueyqdWtHqEjv27NjwmEqjwAIAAABYF7t27UqkncHBwWhqWnyZ05WYmZlJJA/WTtENAAAAAAAAQPFS6VQ0dzbH+JnxyA5lI9OWiYiI7fXbl427OXlzLn7WRsVUGgUWAFAGymGimUlmAADr5+bNm3Hjxo2orV3dVzGbrahA0Q0AAAAAsBkUpu7+1ObFTG+Zjp/+7KfR/zf9cenapdi7e298/uOfj93bdiecIQBQyQr5QtycvBl1mbpF96cz6YiIuDh4ca7Aoi5TF1dGrizb5uxxszYqptIosACAMlAOE81MMgMAknb9+vWiYx977LE4f/583L59O7Zu3RoHDhyIl156KcHsNtZnPvOZNbehqAAAAAAAoDz8/l/9fiLtvPnTN+PLr3y5qNjfi99LJAcAoPz01vVGRERPrmfRlSB27NkREe8XM0RE3NNyT2SHsku2mcvmIiLmCjI2MqbSKLAAAAAA1sVaVkw4depUHD58OIaHh2Pfvn3x/PPPl8UKDKxNuRTdFLuCXFIrikxNTRV1fgAAAAAAAGDzS6VTsb1++6LFFRERkxcnIyLi3tZ757Y98MQD8fqJ12NibCIaWxoXxFwZvrKg6GGjYiqNAguoEjdv3owbN25Ebe3q/uyTmjwSsbbJVWxOxfbLiM3XN8tlohkAQLloaGiIc+fOlTqNxHzve9+L/fv3r/red7Pd65VL0c2WLVuKzmPWWlcUeeWVV9acAwAAAABQGn/2O39WVNz0lun4+v/v6/E/r/zPmJ6ZjpotNdG8pzmefejZhDMEACpZy5GWeKj7oSX3j784Hql0Ku4/dP/ctsaWxsi0ZeLNF95ctPBh/Mx4PDX41LxtGxVTaRRYQJX4zGc+s+Y21jp5ZGZmZs05sLkk0S8jNkffLJeJZgAArI/t27fHzp07V11g4V7vfZut6AYAAAAAqFyp2sWfJn0301um46l/9VS8+P95MbL5bDSlm+LoJ44W3R4AsDm197bH2e6zcX/X/QtWgxjoGoiIiM+9/LkFK1x0DXRFf2t/PPDEA/OKH852n439x/YvurLERsVUEgUWAFS9GzduFBVXLqtomGiWvHJYXaVcJk5W+t8HAFQ693rro9gV5JJaUWRqaipef/1195wAAAAAUIU+suMjcexfHIuamZpSpwIAlLGOvo4YPzMeA10DkapPRWGyEIV8Ie5puSf+4NIfLCiuiIhIpVNxZPRIDPYMRiqdih17dsTkxcloam+K5s7mRc+zUTGVRIEFVInvfe97sX///lVP3Ehq8ggspth+GZFs39y1a1dRcR+0GVbR4H3lsLpKufQJfx8AwGZUbGFBUiuKTE1NuecEAAAAAAAAltXc2bzqgoVUOhUdfR1lGVMpFFhAldi+fXvs3Llz1RPZk5o8ElH8U9AjPJ1zsyq2X0Yk2zcBADYj99+QPCuKwMbwGQYAAABwd+XwHUqE71EAgM1HgQWss3IYzExNTRWdQ5KTR5J4CnrE5ng6Z7H9wgD3fUn2zevXrxcVZ4WXzatcVlcpB/4+gEpT6fffSXL/DeWtHO45y+E9M6Lyx6ckz2cYAAAAwN2Vw3coEb5HAQA2HwUWsM7KZTDzyiuvJJIHyUiiXxjgJqfYyTxW0di8rK7yPn8fQKUpl/vv733ve3Hjxo1Vf5YkOWEZKG/lcM+5ZcuWVccsxvgUgFI63XF6RcdNb5mOycbJuPyNy1EzU5N4Hk+efTLxNgEAAAAA2HgKLIANU+xT0CM8CZ3ylOQqGmwe+sV7/HcAqt1nPvOZNbex1gnL7r9h83KvxWbnMwwAAABYTrErs262hxz5DgUAYH0osGBTK3ZAFZHcoKocBjNTU1PxxhtvFJ1HUtby5PLN9iT0YvtFkgPcUv99TE1NFX1+1kep+8SsSv7bBqD0yuX+O51OF51HUtx/A3dTDu+ZvO/mzZtFrX4UsfnGZD7DAACguviNClitJFazXutDjv784J+vOYe18h0KAMD6UGDBppbEgCpibYOqmZmZos+b1GBmM0xk32xP5yx2UJrkAHfLli1Fxd1pLX8fr7zySiI5kIxyeM+MWNv7JgCUw48JU1NT8b3vfS/279+/6kmy5TJhebPdfwOLK4f3TN6XxOpHEcZkPsNgY53uOF3qFACATcBvVAAbz3coAABLU2ABZcxghjvpE1A9PK0JYOMlea+1ffv22Llz56oLLExYBipFku+Zxd77uu8FAAAAqE7Frsya5EOO/vvv/vei4gAAKH8KLNjUih1QRZTPk2NhvZT672NqaireeOONonMgeaXuE8znaU0A1UlBLVCNkrj33Qz3vcWufhRhTAYAAFQ2v1EBq1XswzI85AgAgJVQYMGmtpZBkEEVm12p/z6mpqaKPj/ro9R9AgAAoJoVu/pRhDEZAABQ2fxGBWwUDzkCAGAlFFjAEgyqYGn+PriTPpE8T2sCKtGNGzeKjr169WocPXo0RkdHo7W1NU6ePBkNDQ2rbsePpyym2L6ZVL9UXAzLK/be133v+4zJACgXpztOr0u701umY7JxMi5/43LUzNSsyzkAqEzGQwAAACRNgQVQVcph0l+EiX/A3XlaE1CJdu3alUg7g4OD0dTUVFTszMxMIjmwuSTRN9fSLyMiXnnllTXnAJtVsfeq7nvXR6mL0iJ8bwIAAAAAAEDpKLAAqko5TPqLMPEPWF+e1gTVqRwmQwLARkryvrfUD2Qop5VuyqEozfcmAAAA842fGY/mzuZSpwEAAFAVFFiwbsphgpen3QEAUC3KYTLk9evXi4597LHH4vz583H79u3YunVrHDhwIF566aWi24MPKrZvJtUvp6am4o033igqhySVegJ5hHE65ascHshgpRuAyuY3EQAqle8L3lfqz/N333130e2FfCEGugbiYN/BuP/Q/ZFKp4rKEwAAgJVRYMG6KYcJXp52x51M+gMAWD9r+SH01KlTcfjw4RgeHo59+/bF888/XzY/rFL5iu1LSfXLcnkyfTlMIDdOh/JX6qI0gErlNxEAKpXvC95XDp/ni8llcxER8Zfdfxl/2f2Xyx7bNdA1b6WLQr4Qrx5/NSIiduzZEZMXJ6OpvWnZ1TCKiQGqW6kL1CLKp1gPANgcFFgAVcWkPyh/pf7ypVwmQAKsVqVPhmxoaIhz585t+HlhOfolVI9SP5ChXFa6iSh9URoAAADz5bK5qMvURWNLY6TqF1+9ojBZiFw2t6C4or+1P7oGuqKxpXFu+9nus3F5+HK097YvbKeIGIByKFArl2I9AGBzUGDBuqn0CV5wJ5OrYGOUw5cvr7zyyppzANhoJkMCd1PqCeRQzkr9QIbNUOjtexOoToWpQtGx125di+/88Dtx6dql2Lt7b3z+45+P3dt2J5jdfNNbpuPWL25FYaoQNTM1iefgNxEAKpXvC95X6s/zy5cvx2/8xm8s3D58OZ4afCrqMnVLxg72DEZbb9u8bQNdA3Ff533zCiUiIjr6OqK3rjea2psi05ZZcwwAAMBmo8CCdWOCFwAAlD+TIaF6lHoCOWxWPkuBavb7f/X7ibTz5k/fjC+/8uVE2ipVDr+38/eKinOfBVAaxa6mHZHcitoRaxurJ8X3Be8r9RyHHTt2LLlvueKKibGJqG+qn3dMLpuL7FA2DvYdXDSm+VBzXOi9MK9YopgYgIjSF6gBACRNgQVlx4/SANWt1F++TE1NxRtvvFFUDgAAm5WxOgCUn2InhiY5KZS1S/I+q1wmC5eDYldX2eiVVaBalcP7VRKraUesfUXtmZmZRPIoFd8XvGe9/zs81P3QsvtH+kaio69jwbaIpQsz6pvqY6x/LAr5QqTSqaJjACJKX6AGAJA0BRYAQFkp9ZcvU1NTRZ0fAAAAYCMlMTF0rZNC/+x3/qzo2G+MfCPG3xmP6ZnpqNlSE817muPZh54tur27md4yHbl7clH3dl3UzNSUJIf1Vg6Thf/84J8nksNaJbG6ylpXNTl041DRseVQ8JJUDr5vZTHl8H4FlWS51SsGewajvbd9wfa3x95etghits0rI1fmVqQoJgZgLRTqAQDlSoEFALAp+PIFAAAAYGOlaot/cvGXHvxSnPzBybiYvxhN6aY4+omja2rvbqa3TMe2D22LVG1qrsBio3OgumymCeRrzeGVV15JMBtIRrGraUckt6I2rNXE2ETUN9UvWhSRy+Zie/32JWNnY3LZ3JpiAAAANiMFFgAAAAAAABWm2NUjymXVht3bdkfPb/Vs+HnLLYcklcNk4Rc7Xyw6h2u3rsV3fviduHTtUuzdvTc+//HPx+5tuyPivQKZW7+4FYWpwlyBzHLK4e8jiVU0YLMqh/erYlfTjkhuRW2YujUVt2/dnnv983/8+ariXzv+WnQNdC267+bkzWVXvpgtpCjkC2uKAQAA2IwUWAAAAAAAAFSYYldasGrD5lUOk4WTKip486dvxpdf+XLR8X9+8M+Likvy76McJpCvRVI5TE1NxRtvvLEOGVLJyuH9ai2sqE1SXjv+Wnz/j74/9/paXFtx7PiZ8Uhn0kvuX2kRxLvvvLumGAAAgM1IgQUAAAAAAECV2GyrNpAMk4Xfk+TfR6VPIE8qh6mpqXXIjmrm/YrN5JHnHolPPfupudeXL1+ObzZ/c0Wxrx1/LTq+3bFeqQEAAFQ1BRab0I0bN4qOvXr1ahw9ejRGR0ejtbU1Tp48GQ0NDUW1ZRlUAGCzKIf7q3ff9UQoAAAAoLz92e/8WdGx3xj5Roy/Mx7TM9NRs6Ummvc0x7MPPRsREdNbpiN3Ty7q3q6LmpmapNItW+UwgbwccgDY7Gq31Ubttven7Xz4Zx9eUVwum4uJsYlobGlc8phUOrWiFSl27NmxphgAAIDNSIHFJrRr165E2hkcHIympqai42dmZhLJAwCg1Mrl/goAAACgnKVqU0XHfunBL8XJH5yMi/mL0ZRuiqOfODrX3vSW6dj2oW2Rqk1VRYEFm1M5PMRlNaampuLmzZtx48aNqK2t9aA+KCMjfSNRl6lb9pjt9duX3X9z8mZEvFdUsZYYAACAzUiBBQAAAAAAwCq8++67RU2ULcUEWagUu7ftjp7f6il1GmxS/9f/+X8VHXvt1rX4zg+/E5euXYq9u/fG5z/++di9bfeq2/n9v/r9onP4oHJ4iIsH9UFpXRq6dNcCi7pMXVwZubLk/tmVKj7YTjExAAAAm5ECi03o+vXrRcc+9thjcf78+bh9+3Zs3bo1Dhw4EC+99FKC2QEAVJ5yuL/6X//rf8X9999fdB4AAAAk5zd+4zfW3MZaJ6f++cE/X3MOABvhg6sgrEaSRWlJFTe8+dM348uvfDmRtiCi+JVNlvv7uHP1kbuxokjlmRibiObO5mWPuaflnsgOZZfcn8vmIiIi05ZZUwwAAMBmpMBiE1rLFyCnTp2Kw4cPx/DwcOzbty+ef/55X6gAAFWvHO6vduzYUXQOAAAAwOZ3uuN0qVOARX3mM59ZcxvlsGrDWpXDQ1xWY2pqKl5//fXYv39/1NbWelDfOtm1a9ea27CiSHWZGJuIiIhUfWrZ4x544oF4/cTrMTE2EY0tjQv2Xxm+sqBQopgYAACAzUiBBfM0NDTEuXPnSp0GAMCm4f4KAABg8/m7v/u7+OhHP7rquCQnp/733/3vRcUBVKM/+50/Kzr2GyPfiPF3xmN6ZjpqttRE857mePahZ1fdTjk8xGU1pqamYvv27bFz586ora31oD4oEzcnb67ouMaWxsi0ZeLNF95ctFhi/Mx4PDX41JpjAAAANiMFFgAAAAAAAKuwY8eOoiaVmpwKVKPvfe97c6sgrEa5FKV96cEvxckfnIyL+YvRlG6Ko584Gqna5Z8cn7RyeIhLOeSwGRW7sslyfx93rj7C5pLL5iIiIpW++/tQ10BX9Lf2xwNPPDCvYOJs99nYf2z/oqtRFBMDAACw2RhNAwAAAAAAbACTU4GNdLrjdKlTiOkt0/HRZz86twrCapRLUdrubbuj57d6Nvy8VIdi+/Ryfx93rj7C5nLvQ/dGKp2Kj+67+2pqqXQqjoweicGewUilU7Fjz46YvDgZTe1N0dzZnFgMAADAZmM0DQAAAAAAAEBZUZQGS/P3Ub0aWxqjJ7fyoq9UOhUdfR2rOkcxMQAAAJtJTakTAAAAAAAAAAAAAAAAKDUrWGxC5bDcb0TEk2efLHUKAAAAAAAAAAAAAACwIgosAAAAAAAAYA3K5eFXAACwnm7cuFF07NWrV+Po0aMxOjoara2tcfLkyWhoaCiqrZ07dxadBwAA3I0CCwAAAAAAAAAAAJa1a9euRNoZHByMpqamouNnZmYSyQMAABZTU+oEAAAAAAAAAAAAAAAASs0KFgAAAAAAAACsix+e/mFc/sblqJnx7D8AqHTXr18vOvaxxx6L8+fPx+3bt2Pr1q1x4MCBeOmllxLMDgAAkqHAAgAAAAAAACBBpztOlzoFAIDE7dy5s+jYU6dOxeHDh2N4eDj27dsXzz///JraAwCA9aLAAgAAAAAAAAAAgHXT0NAQ586dK3UaAABwVwosAAAAAABgkzjbfTYe6Xkk6jJ1i+4v5Avx6vFXIyJix54dMXlxMpram6K5s3nJNjcqppL8P4f/n9izfU+p0wAAAAAAABKmwAIAAAAAADaBibGJGOsfi4e6H1p0fyFfiP7W/uga6IrGlsa57We7z8bl4cvR3tteshgAAAAAAIByUFPqBAAAAAAAgLUb6hladv9A10Dc13nfvKKHiIiOvo4Y6x+L7FC2ZDEAAAAAAADlQIEFAAAAAABUuNH+0Wjual5yfy6bi+xQdsnVLZoPNceF3gsliQEAAAAAACgXtaVOAAAAWJuJsYkY6RuJwmQhJsYmIpVORWt3a7QeaV0yppAvxKvHX42IiB17dsTkxcloam+K5s6lJ2RtVAwAALA6uWwuIiLqMnVLHjPSN7LsMfVN9THWPxaFfCFS6dSGxgAAAAAAAJQLBRYAAFDBRvtHIyKio69jblt2KBsDXQNxofdCHBk9smDSUiFfiP7W/uga6IrGlsa57We7z8bl4cvR3tu+4DwbFQMAAKzeSN9ItPe2R3You+Qxb4+9vWxBw2xBxJWRK5Fpy2xoDAAAAAAAQLmoKXUCAABAcXLZXBTyhQUrVWTaMvG5lz8XuWwuBroGFsQNdA3EfZ33zSt6iHivSGOsf2zRSVkbFQMAAKzO+JnxeKj7obsel8vmYnv99iX3zxZFzK6GsZExAAAAAAAA5UKBBQAAVKiRvpEFxRWzGlsaI9OWiexQdsFkp+xQdskJWM2HmuNC74V52zYqBgAAWJ1CvhC5bG5uVYjl3Jy8uezKErNFEYV8YcNjAAAAAAAAykVtqRMAAACKc2noUoz1j8UfXPqDRScw3dNyT2SHsjExNjE34WqkbyQiYskJWPVN9THWPxaFfGGuzY2KqWS3pm5FYWr1E8Su3boW3/nhd+LStUuxd/fe+PzHPx+7t+1ehwwBACh3U7em4vat23Ovf3H9F3eNefX4q9He276i9lda0PDuO+9ueAwAAAAAAEC5UGABAAAVanv99pgYm4hcNheNLY0rinl77O1lCxpmCyKujFyJTFtmQ2Mq2Vf+x1fW3MabP30zvvzKl4uO/734vTXnAABA6bx2/LX4/h99f+71tZpryx6fHcpGU3vTeqcFACTkdMfpUqcQERFPnn2y1CkAAAAAlDUFFgAAUKGeGnwqctnckqtE5LP5iIh5xRe5bC62129fss3ZoohcNrfhMQAAUM0eee6R+NSzn5p7/ZOf/CS++fFvLnn8xcGLK169IuK9e/CVrC6xY8+ODY8BAAAAAAAoFwosAACgDE3dmorbt27Pvf7F9V8setxSxRUREeNnxqOxpXHeMTcnby4bM1sU8cEJURsVU8m+/i+/HntSe1Yd942Rb8T4O+MxPTMdNVtqonlPczz70LPrkCEAAOWudltt1G57/yv7D+360JLHXjhxIX77ud9eVfvLFUBHvHcPHxHzVqLbqBgAAAAAAIByocACAADK0GvHX4vv/9H3515fq7m2qvgLJy5ERETHtzvmbV9pQcO777y74TGVbFvttkjVrn6C2Jce/FKc/MHJuJi/GE3ppjj6iaNFtQMAQPXIZXORSqdWXaBQl6mLKyNXltw/ew//wULpjYoBAAAAAAAoFwosAACgDD3y3CPxqWc/Nff6Jz/5SXzz499cUezE2EQM9QxF10BXNLY0rleKJGD3tt3R81s9pU4DAIAKMjE2EeMD4zE+ML5gXy6bi4iIs0+fnVtJ4qnBpyIi4p6WeyI7lF2y3dnYTFtmbttGxQAAAHB3N27cKDr26tWrcfTo0RgdHY3W1tY4efJkNDQ0rLqdnTt3Fp0DAABUCgUWAABQhmq31Ubttvdv1z+060Mrjh3oGoiDfQejubN5wb5UOrWi1SV27Nmx4TEAAMDdNXc2L3qvHxExfmY8BroGouPbHQuKrR944oF4/cTrMTE2sWgh9pXhKwuKHjYqBgAAgLvbtWtXIu0MDg5GU1NTUbEzMzOJ5AAAAOVMgQUAAGwiA10D0drdGq1HWhfdP/sU26XcnLwZEe8VSGx0DAAAsH4aWxoj05aJN194c9HCh/Ez43OrXWx0DAAAAMBaWOEFAEiSAgsAANgkBnsG495998bDxx5e8pi6TF1cGbmy5P7ZVSfqMnUbHgMAAKxNLpub+7+LFTd0DXRFf2t/PPDEA/P2n+0+G/uP7V90ZYmNigEAAGB5169fLzr2sccei/Pnz8ft27dj69atceDAgXjppZcSzA5KywovAECSFFgAAMAmMNo/GvVN9YuuXFHIF+ZWirin5Z7IDmWXbGd2QtYHJzxtVAwAAFCcs91nI5/NzxU5n336bIz2jcY9LfdEe2/73HGpdCqOjB6JwZ7BSKVTsWPPjpi8OBlN7U3R3Nm8aNsbFQMAAMDy1vJ0/FOnTsXhw4djeHg49u3bF88//7yn7QMAwBIUWAAAQIUbPzMeEbFocUUum4uJsYm5SUwPPPFAvH7i9ZgYm1j0ibZXhq8sKHrYqBgAAKA4HX0dKz42lU6t6viNjAEAAGB9NDQ0xLlz50qdBqwbK7wAAElSYAEAABVsYmwibk7eXLS4IiIiO5SdV8jQ2NIYmbZMvPnCm4sWPoyfGY+nBp+at22jYgAAAAAAAABWywovAECSFFgAAECFymVzMdA1EHvb9saV7isL9hcmC5EdykZPrmfe9q6Bruhv7Y8HnnhgXvHD2e6zsf/Y/kVXltioGAAAAAAAAICNYoUXAOBOCiwAAKBCnWo/FblsLnL9uSWPqcvULdiWSqfiyOiRGOwZjFQ6FTv27IjJi5PR1N4UzZ3Ni7azUTEAAAAAAAAAAAClosACAAAq1DMXnyk6NpVORUdfR1nGAAAAAAAAAAAAlEJNqRMAAAAAAAAAAAAAAAAoNQUWAAAAAAAAAAAAAABA1astdQIAAAAAAAAAAAAAAMB7JsYmYqRvJAqThZgYm4hUOhWt3a3ReqR10eNH+0djfGA8WrtbI9OWiVQ6FblsLibGJuJHL/woHnnukWhsaVwQV8gX4tXjr0ZExI49O2Ly4mQ0tTdFc2fzkrkVE1NJFFgAAAAAAAAAAAAAAEAZGO0fjYiIjr6OuW3ZoWwMdA3Ehd4LcWT0SKTSqXkxhXwhskPZyA5l521PpVPRNdC1ZHFFf2v/gv1nu8/G5eHL0d7bnkhMpakpdQIAAAAAAAAAAAAAAFDtctlcFPKFBStVZNoy8bmXPxe5bC4GugYWjT3YdzD2H9sfzZ3N0XKkJQ72HYyeXE9k2jKLHj/QNRD3dd63oPiio68jxvrHFhRrFBtTaaxgAQAAAAAAAAAAAAAAJTbSNxK//dxvL7qvsaUxMm2ZyA5lI5fNRV2mbt7++w/dv2Bli6XksrnIDmXjYN/BRfc3H2qOC70X5hVnFBNTiaxgAQAAAAAAAAAAAAAAJXZp6FL8573/OQr5wqL772m5JyIiJsYm1nSekb6RiIgFRRqz6pvqIzuUnZdHMTGVqOJXsMjn83H8+PGIiNizZ09cvHgx2tvbo7Ozc01t9vT0RETE5ORkRETs27cvjh07tvaEAQAAAAAAAAAAAADgDtvrt8fE2ETksrlobGlct/O8Pfb2sqtdzBZRXBm5MrciRTExlaiiCyzy+Xy0trbGwMBAtLS0zG3v7u6O4eHh6O3tXXWbY2Nj0dfXF729vZFOp+e2nzlzJlpbW2N0dDSJ1AEAAAAAAAAAAAAAYM5Tg09FLptbcpWIfDYfEbFs8cXE2ERcGbkS9z5075LH5bK52F6/fck2ZgspctncmmIqUU2pE1iLrq6u6OzsnFdcERHR19cX/f39MTQ0tOo2e3p6oq+vb15xRUREZ2dndHd3R3d391pSBgAAAAAAAAAAAACgikzdmopbP7s19+/n//jzJY9dqrgiImL8zHg0tjQuekx2KBsXTlyIiIjWI60REXGq/VRkh7ILjr05eXPZ1ShmCykK+cKaYipRxa5gkc1mY2hoKPr6+hbdf+jQoejt7Y22trYVtzk2NhaZzNLLkcy2CQAAAAAAAAAAAAAAK/Ha8dfi+3/0/bnX1+LaqtuYLZ7o+HbHgn2zBRcPH3t4bltjS2N0DXRFb11vHBk9Mm81i5UWQbz7zrtriqlEFVtgMVtYsVRBRFNTU/T390c+n1+wGsVSZos2ljI5ObnitgAAAAAAAAAAAAAA4JHnHolPPfupudeXL1+ObzZ/c8XxE2MTMdQzFF0DXfMKJWY1dzYvGpdKp6K5szkGugbimYvPrD7xKlRT6gSKNTY2tmyxw2zhxcjIyIrbbGlpiWw2G11dXYvu7+vriyeeeGJVeQIAAAAAAAAAAAAA1e3GjRtF/ctms/HpT3869uzZE5/+9Kcjm80W3RalU7utNrZ9ZNvcvw//yodXFT/QNRAH+w4uWUixnHv33Ru5bC5y2dzctlQ6taIVKXbs2bGmmEpUsStYZLPZqK+vX3L/bPFFNptdcZuZTCaOHDkS/f390dTUFH19fdHW1hYREUNDQ5HP56O3t3dNeQMAAAAAAAAAAAAA1WXXrl1rbmNwcDCampqKjp+ZmVlzDmy8ga6BaO1ujdYjrUXFp9KpiHhvFYy6TF1ERGyv375szM3Jm/Nii42pRBVbYDE5OTm3SsViZosv8vn8qtrt6+uLpqam6Onpifb29jhy5Eg0NTVFS0tL9PX1raiNm1M34/rU9bnXH6r5UHxo64dWlcdmMDU1VeoU+KWpqamYnp52TSgr+iXlSt+kXE1PT5c6BZZRDmMA71vlw2cJd9InuJM+wZ30CRZjDFDe3r39bmyb2jb3ulp/B6gkM1tmYiZmYmbLTEyHv69K4/pVLteu/Kz0ntM9auVy7SqXa1b+rl27FpOTk3Ovt23bFtu2bVsmgs1sektx9zZJ3h9538DnPknSn6rHRlxj/WllVvrfZ7BnMO7dd288fOzhJY852302Lg1dimcuPrPi89dl6uLKyJUl98+uVDFbkFFsTCWq2AKLlRZOvPPOO6tu+9ixY5FOp6O7uzv6+/sjnU7HwMDAiuN7/kfPvNe/0/I78ZmHPrPqPCrda6+9VuoU+KXp6en4yU9+EhERNTU1Jc4G3qNfUq70TcpVMfe1bJxyGAO4/y4fPku4kz7BnfQJ7qRPsBhjgPJWDmMAVmcmZuLmr9yMyZiMLbGl1OmwSq5f5XLtys9Kv0Nyj1q5XLvK9cGJ+5SnT3ziE/Ne/9t/+2/j8OHDJcmF0ptsLO5vNsn7I78N4XOfJOlPG+N73/teUXH/4T/8h3jjjTdieno6ampq4sEHH4z/+B//Y1FtbcTnh/60MisZA4z2j0Z9U/2iK1cU8oX3V6YYmZhbPWIxs4UPjS2Nc9vuabknskPZJWNy2VxERGTa3l8QoZiYSlSxBRbrqaenJ5qammJmZiZ6enrixIkTc6tZrGQVi95/2Rt1qfcrbz5U86H40ET1PbnqkUceKXUK/NJsldv+/fujttafPeVBv6Rc6ZuUq9mBJ+WpHMYA7r/Lh88S7qRPcCd9gjvpEyzGGKC8lcMYgNWZ2TITkzEZ9W/Xx5YZk7wrjetXuVy78rPS75Dco1Yu165y/cM//EOpU+AufvCDH8Q//af/dO61FSyq2+VvXC4qLsn7I78N4XOfJOlP5e2f//N/Hp///OdjZGQkHnroofjOd74TDQ0NpU5rSfrTytxtDDB+ZjwiYtHiilw2FxNjE9Hc2RwREXvb9saR3iNLtnVl+Eqk0ql5K0s88MQD8fqJ12NibGJe4cUHY+4slCgmphJVbK9Np9MrWsViz549q2q3vb09enp6oq2tLSIient744knnoiurq7o7++PycnJu65msb12e+yq3TV/48yq0tgUBh5b+aof6+XJs0+WOoWyUVNTE7W1tT6sKCv6JeVK36Qcqegvb+UwBvCeVV58lnAnfYI76RPcSZ/gTsYA5W3H1h0lHwOwOtMxHVtiS2yZ2RI1M/6+Ko3rV7lcu/KzmvtN96iVy7WrTCu9XqP9ozE+MD73pNp0Jh3tve2LHlvIF+LV469GRMSOPTti8uJkNLU3zU3CSiqmWuzevTvq6+tLnQZloth7myTvj7zPE+Fzn2StV3+6ceNG0bFXr16No0ePxujoaLS2tsbJkyeLKizYuXNn0TmUg49+9KPxV3/1V6VOY1W8P93dcv9tJsbeW5FiseKKiIjsUHZeIcMDTzwQo/2jSxZjjJ8Zj66BrnnbG1saI9OWiTdfeHPRYonxM+Px1OBTa46pRIn22vPnz8eBAweSbHJJdxuwzC6bkk6nV9zmiRMnoqWlZa64YlZLS0tcvHgxuru7o7+/P4aGhhYcAwAAAAAAAAAA66GQL8R/e/S/xd62vfMmLOWyuRjsGVxQZFHIF6K/tT+6BrrmTXw62302Lg9fXrQoo5gYAIC72bVr190PWoHBwcFoamoqKvb69etFnzepIo+Iyi/0YGPksrkY6BqIvW1740r3lQX7C5OFyA5loyfXM7etsaUxskPZuHDiQjx87OF5bfW39sf+Y/sXLZruGuiK/tb+eOCJBxaMAfYf27/oahTFxFSaRAss2tvb4/bt20k2uaRMJhMjIyNL7p9d3SKTWflF6uvri9HR0WX3j4yMxODg4LIFFrembkVhqrDi8866dutafOeH34lL1y7F3t174/Mf/3zs3rZ71e2kalOrjgEAAAAAAAAAoDzNFlfcWeTwl91/GVdGrizYPtA1EPd13rfgqbIdfR3RW9cbTe1NCyY+FRMDAFAJyqHIIyJiZsYyuNzdqfZTkcvmItefW/KYukzdgm0PH3s4skPZONt9NgqThSjkC5FKp+JzL39u0dUmIiJS6VQcGT0Sgz2DkUqnVrSKXTExlSbRAovdu3fHv/t3/y7+63/9r0k2u6iWlpYYGhpacn82m42IWNVKE9ls9q4rXnR3dy9bhBER8ZX/8ZUVn3Mpb/70zfjyK18uKvbPD/75ms8PAAAAAAAAAEDpXThxIXLZXBzpPbJgXyqdinsfunfetlw2F9mhbBzsO7hoe82HmuNC74V5xRLFxAAArMRaVo947LHH4vz583H79u3YunVrHDhwIF566aVVt5NUgQVshGcuPlN0bKYts+p79lQ6FR19HeseU0kSLbDI5/PR19cXFy9ejN7e3vjEJz6RZPPzPPHEE3HixIkYGxuLlpaWBfuHh4dXVVwR8d5qF9lsdtlVLy5evBitra2rzhcAAAAAAAAAAFbrteOvRcuRhXNjIiK6BroWbBvpG4mIxZ9qGxFR31QfY/1jc0+0LTYGAGAldu7cWXTsqVOn4vDhwzE8PBz79u2L559/vqj2yqHIA6gciRZYRET09fXFo48+GkNDQ3H8+PFob2+PQ4cOxUc+8pFEz9PS0hJtbW3xwgsvLFpgcebMmRgcHFywPZ/Pz+V1ZwFGZ2dn9PT0xMDAwKLnzOfzMTY2Fs8999yyuX39X3499qT2rOJ/zXu+MfKNGH9nPKZnpqNmS00072mOZx96dtXtAAAAAAAAAABQ+cbPjEchX4gHnnhgxTFvj729bBHEbBHFlZErc0+3LSYGAGC9NTQ0xLlz59bcTjkUeQCVoybJxvr6+uILX/hC7N27N55++ul44YUXorW1NY4dOxZf/OIX4wc/+EGSp4uBgYE4c+ZMjI2Nzdve3d0dx44dW3QFi/7+/jhx4kR0dS2s4O/t7Z2Lz+fz8/aNjY1FV1dX9Pb2RjqdXjavbbXbIlWbWvW/Lz34pfj4r348dn1oV3z8Vz8eX3rwS0W1AwAAAAAAAABA5fvRCz+KiIjGlsaIiJgYm4jR/tGYGJtYMiaXzcX2+u1L7p8tpMhlc2uKAQCoBrNFHj/96U/j3Llz0dDQUOqUgHWW6AoWTz/99IJtDz74YJw8eTKuXbsWL7744tzqEV/4whfWfL50Oh2jo6PR09MT6XQ69uzZExcvXoz29vbo7OxcNKatrS3S6XQcOnRo0f0DAwMxNDS04H9LJpNZdEWMJO3etjt6fqtnXc8BAAAAAAAAAEBl+GAhxYUTF6KxpTFaj7TGxNhEnGo/FQ/3PLxgRYmbkzfnVpxYzGwhRSFfWFMMAADAZpRogcVydu/eHU8//XQ8/fTT8cYbb8TRo0djy5YtcfTo0fjN3/zNottNp9PR19e34uNbWloil1u+mr6trW3R1S8AAAAAAAAAAGCtpm5Nxe1bt+de//wff77ocTcnb0YqnYrR/tF4+NjDc9sbWxqja6Ar/vPe/xxdA13ziixWWgTx7jvvrikGAACKcePGjaJjr169GkePHo3R0dFobW2NkydPFr2qyM6dO4vOg81twwosPqipqSmampri+PHj0d/fH5lMJnp6ehJZ1QIAAAAAAAAAAMrZa8dfi+//0ffnXl+La4seN1v4MLuCxAel0qnItGXiL7v/Mp65+Mz6JAoAAAnbtWtXIu0MDg5GU1NT0fEzMzOJ5MHms6EFFufPn4/e3t4YGhqKiPc65pEjR6K7uzsiYm5Vi56envj1X//1jUwNAAAAAAAAAAA2xCPPPRKfevZTc68vX74c32z+5oLjUulUFPKFeStUfFCmPRPjZ8ZjYmwiGlsa58XczY49OxacZzUxAAAAm1GiBRbnz5+PAwcOzNv2s5/9LPr7+6Ovry+y2WzMzMzMrVjx9NNPzzv25MmTce3atejv74/Jycl47rnn4iMf+UiSKQIAAAAAAAAAQEnVbquN2m3vT9v58M8+vOhx2+u3RyFfiFQ6teT+iIgrI1fmCiwWW+3ig25O3oyImNdmMTEAAFCM69evFx372GOPxfnz5+P27duxdevWOHDgQLz00ksJZgcJF1i0t7fH7du3I+K9You+vr44c+bM3BIqs6tVPPjgg0u2sXv37vjKV74S165diy984Qtx4sQJq1kAAAAAAAAAwBqd7ji9ouOmt0zHZONkXP7G5aiZqUk0hyfPPploe7DZNbY0Ri6bu+txH1x9oi5TF1dGrtz12LpM3ZpiAACgGDt37iw69tSpU3H48OEYHh6Offv2xfPPP7+m9mAxiRZY7N69O/7ZP/tnERELVqs4dOhQ7N69e1Vtvfjii/HFL34xvvWtbyWZJgAAAAAAAAAAlL17990b42fGl1zFYnZlidnVKyIi7mm5J7JD2SXbnC3YyLRl1hQDAAAbraGhIc6dO1fqNNjkkn3URERcvHgxLl68GI8//niMjo7G3//938fTTz+9quKKDyo2DgAAAAAAAAAAKllzZ3NExJLFD5MXJyMi4t6H7p3b9sATD0RExMTYxKIxV4avLCiUKCYGAFjajRs3iv6XzWbj05/+dOzZsyc+/elPRzabLbotAFYv0RUsIiK6u7vja1/72poKI65duxZf+9rXoru7O65du5ZgdgAAAAAAAAAAUBnqMnXR3Nkcrx1/ba7Y4oN+fObHsf/Y/nmrWzS2NEamLRNvvvDmvJUtZo2fGY+nBp+at62YGABgabt27UqkncHBwWhqaio6fmZmJpE8AKpJ4gUW3/rWt9bcxosvvhi9vb1x5syZ6OnpSSArAAAAAAAAAICI0x2nS51CREQ8efbJUqdAhej4dkf0t/bHaP9otB5pnds+0DUQdZm6aO9tXxDTNdAV/a398cATD8wrmDjbfTb2H9u/6GoUxcQAAABsNokWWBw6dCixdi5evBj79u2Lxx9/PJE2AQAAAAAAAACg0qTSqTgyeiRePf5qDHQNREREIV+I5q7meQUXi8UM9gxGKp2KHXt2xOTFyWhqb1p0JYxiYwCAxV2/fr3o2MceeyzOnz8ft2/fjq1bt8aBAwfipZdeSjA7AJaTaIHFyZMnE2ln9+7d8bWvfS2RtgAAAAAAAAAAys16rKQxvWU6Jhsn4/I3LkfNTM1dj7eKRuVIpVOLrlRxt5iOvo51jwEAFtq5c2fRsadOnYrDhw/H8PBw7Nu3L55//vk1tQfA6iRaYDHrL/7iL6K/vz9yuVy8+OKL8eu//uvz9l+6dCl6enrik5/8ZPzhH/7heqQAAAAAAAAAAAAAABWloaEhzp07V+o02KRu3LhRdOzVq1fj6NGjMTo6Gq2trXHy5MloaGhYcNzU1FTcvHkzbty4EbW1C6eqKxii3CVeYPHcc8/FQw89FMPDw3Ht2rUYGxtbUGCxd+/eePHFF+Pll1+O5557Lo4fP550GgAAAAAAAAAAAAAA/NKuXbsSaWdwcDCampqKip2ZmUkkB1gviRZYnD9/PjKZTDz++OMxMzMTly5dis9+9rNLHv/oo49GRMR3v/vdZY8DAAAAAAAAAAAAAABYT4kWWAwMDMS3vvWtiIjo7OxcUcyjjz4aX/ziFxVYAAAAAAAAAAAAAACsk+vXrxcd+9hjj8X58+fj9u3bsXXr1jhw4EC89NJLC46bmpqK119/Pfbv3x+1tYlOVYcNkWivtWQLAAAAAAAAAAAAAJTejRs3VnTc1NRU3Lx5M27cuBG1tbVx9erVOHr0aIyOjkZra2ucPHkyGhoaisph586dRcWxPtZyPU6dOhWHDx+O4eHh2LdvXzz//POLtjc1NRXbt2+PnTt3KrCgIiXaa3O5XFFx2Ww2yTQAAAAAAAAAAAAAqEIrLSpYTFKFBeVSVLBr1641tzE4OBhNTU1Fx3t4++bR0NAQ586dK3UaENmXs5EdzEZsiahvqo97H7o37vnEPYm1n2iBxcWLF1cdc+3atXjnnXeSTAMAAAAAAAAAAACAKpREUUHE2goLFBUAFO/EnhNx7J1jS+7PPJqJzKOZKFwrxM3Jm5EdysZI30i097bHto9sW/P5Ey2wOHToUDzxxBPxwgsvrCrmd3/3d5NMAwAAAAAAAAAAgE3odMfpUqcAUDGuX7++ouOmpqbi9ddfj/3790dtbW089thjcf78+bh9+3Zs3bo1Dhw4EC+99NI6ZwvwnpUWqaV2pyK1OxWtT7dG4VohBnsG4+C3Dq75/IkWWBw7diw+9rGPxe/+7u/Gt7/97fiVX/mVJY/9wQ9+EE8//XTk8/n4wz/8wyTTAAAAAAAAAAAAAKAKrbSoYDGbrbBg586dKzpuamoqtm/fHjt37oza2to4depUHD58OIaHh2Pfvn3x/PPPr7gtgLXasmXLqmNSu1OJnT/RAouIiL/+67+Oj33sYzEwMBDt7e3R1tYW6XQ66uvrY3JyMi5evBhDQ0MxNjYWMzMzMTY2lnQKAAAAAAAAAAAAAFShtRQCKCx4T0NDQ5w7d67UaQCsWOFaISZGJhJpK/ECi0wmE5OTk9HV1RV//dd/HYODgwuOmZmZiba2tujr64u9e/cmnQIAAAAAAAAAAAAArIrCAoCNkX8rv+j2mZmZ9/b/r3zEzPJtFPKFuDl5MybGJuK1469F86HmRHJLvMAiIiKdTsfg4GC8/PLLMTAwECMjI5HP5yOdTkcmk4nu7u549NFH1+PUAAAAAAAAAAAAiXr33Xfjxo0bq4q5evVqHD16NEZHR6O1tTVOnjwZDQ0NRZ2/Gp+eDgDA5nVl9EpcGb4SuWwuskPZuHXt1rz9f5L5kxW3NTMzE5m2TBz81sFEcluXAotZjz76qEIKAAAAAAAAAACgot1///1rih8cHIympqai42ef5AsAAJtB8+PN0fz4+ytOTIxNxFDPUGRfzsaWLVvivsfvW1E7dZm6yLRnIvNoJrHc1rXAAgAAAAAAAAAAAAAAYCmNLY3x1OBTcbb7bPz4zI+j68WukuVSU7Izf8Bzzz1X6hQAAAAAAAAAAAAW9aMf/SiuX7++qn/t7e2xdevWiIjYunVrtLe3r7qN2X8AAFANOvo6Ir03XdIcymIFi/7+/jh+/Hip0wAAAAAAAAAA1tHpjtOlTgGgKDt27IidO3euKubUqVNx+PDhGB4ejn379sXzzz+/6jYAAKDaPPLcI0XFDT03FG3H29Z8/nUrsHjrrbcim83e9bixsbHI5/PrlQYAAAAAAAAAAMCGa2hoiHPnzpU6DQAAqCjNjzcXFTfWP1aeBRZ/+qd/Gj09PYomAAAAAAAAAAAAAACAouTfykcum7vrcRNjE1HIFxI5Z6IFFi+//HIcOXIkMplMdHV1RTqdvmvM6OhonD9/Psk0AAAAAAAAAAAAAACACjT2p2Mx1DOUWNHEaiRaYPHVr341BgYG4vHHH19V3J49e5JMAwAAAAAAAAAAAAAAqDDZl7Nx9sjZqMvURXNXc6TSqbvGTIxOxKXzlxI5f6IFFnV1dasuroiI2Lt3b5JpAAAAAAAAAAAAAFSVGzduFBV39erVOHr0aIyOjkZra2ucPHkyGhoaimpr586dRcUBwKyXv/pydA10RfPjzauKO7HnRCLnT7TAoqWlpai4kZGRJNMAAAAAAAAAAAAAqCq7du1acxuDg4PR1NRUdPzMzMyacwCguqXqUqsuroiISO9NJ3L+mkRa+aV8Pp9kcwAAAAAAAAAAAAAAQJVobGksKu7IyJFEzp9ogUVXV1d897vfXXXcc889l2QaAAAAAAAAAAAAAFXl+vXrRf1rb2+PrVu3RkTE1q1bo729vei2AGCtCvlCSc9fm2Rjjz76aHz961+P7373u/HZz352xXH9/f1x/PjxJFMBAAAAAAAAAGAZpztOlzqFePLsk6VOAQA2jZ07dxYVd+rUqTh8+HAMDw/Hvn374vnnny+6LQBYq+au5vjxd38c9332vlXFDT03FG3H29Z8/kQLLN56663o6uqKgYGB2LdvX7S1tUVTU1NkMpklY8bGxiKfzyeZBgAAAAAAAAAAAAAr0NDQEOfOnSt1GgAQERGZRzNx4esXVl1kMdY/Vn4FFi0tLXHt2rWIiJiZmYnR0dHYsmVLkqcAAAAAAAAAAAAAAAA2ofxb+bi/6/740cCP4tv7vh172/ZGfVN91GXqloyZGJuIQr6QyPkTLbCor6+PiIhDhw5FOp1eUczo6GicP38+yTQAAAAAAAAAAAAAAIAK09fSF7eu3YqI9xZ9uDJ6ZUMXfUi0wCKTycRXv/rV+MIXvrCquD179iSZBgAAAAAAAAAAAAAAUGG212+PiIj7D90fqXRqRTEToxNx6fylRM6feIFFJpNZddzevXuTTAMAAAAAAAAAAABgQ9y4caPo2KtXr8bRo0djdHQ0Wltb4+TJk9HQ0HDXuKmpqbh582bcuHEjamvfmwq6c+fOovMAgHJRl6mLR776SLR8oWVVcSf2nEjk/IkWWJw8ebKouJGRkSTTAAAAAAAAAAAAANgQu3btSqSdwcHBaGpqKjp+ZmYmkTwAoJTqMnVRl6lbdVx6bzqR8ydaYLGYn/3sZzE5ORm//uu/vt6nAgAAAAAAAAAAAAAAKtTBkweLijsyciSR89ck0sod3nrrrfjiF78YW7dujbq6uvjYxz42b/+lS5fi0KFD8ad/+qfrcXoAAAAAAAAAAACADXH9+vWi/7W3t8fWrVsjImLr1q3R3t6+orh8Ph/f+973Ip/Pz20DANYu8RUszp8/H21tbRERkclkIpPJxKVLl+Yds3fv3njxxRfj5Zdfjj/+4z+OP/zDP0w6DQAAAAAAAAAAAIB1t3PnzqJjT506FYcPH47h4eHYt29fPP/88ytqb2pqKrZv3x47d+6M2trEp4ICQEUpXCvE2LfHYv8f7l9zW4muYHHp0qXo7OyMI0eOxMWLF+Pv//7v46//+q/j8ccfX/T4Rx99NPbu3Rvnz59PMg0AAAAAAAAAAACAstfQ0BDnzp2Ln/70p3Hu3LloaGgodUoAUHFy2Vz86IUfJdJWomWLX/3qV6O3tzeefvrpedu3bNmyZMzjjz8eX/ziF+PAgQNJpgIAAAAAAAAAAAAAAFSQS+cvrTrmQu+FKOQLiZw/0QKLXC63oLhiJWZmZpJMAwAAAAAAAAAAAAAAqDAvdr4Yt67dWlXMzMxMbK/bnsj5Ey2wyGQyRcXlcrkk0wAAAAAAAAAAAAAAACrM9vr3CiXuP3R/pNKpRY8p5AuRy+biysiVyLRl4t599yZ2/sRXsChGNptNMg0AAAAAAAAAAAAANtiNGzeKjr169WocPXo0RkdHo7W1NU6ePBkNDQ2rbmfnzp1F5wBA6dVl6uKRrz4SLV9oWdHxF75+IbbXbV/x8XeTaIFFXV1dvPLKK/Gv/tW/WnHMc889F48++miSaQAAAAAAAAAAAACwwXbt2pVIO4ODg9HU1FRU7MzMTCI5AFAadZm6qMvUrfj4h7/ycIz/xXhcOn8p9h7Yu+bz16y5hQ84duxYPP300/HKK6+s6Pg//uM/jjNnzsTXvva1JNMAAAAAAAAAAAAAAAAqzMGTB1ddKNH8eHNcHLyYyPkTXcEik8nEyZMn49FHH42HHnoonnjiiXjwwQcjn8/HW2+9Ffl8PiYnJ2NsbCz6+voim83G6OhokikAAAAAAAAAAAAAUALXr18vOvaxxx6L8+fPx+3bt2Pr1q1x4MCBeOmllxLMDgDuLtECi4iItra2ePHFF+PIkSNx7Nixue39/f1z///MzExkMpkYGRmJT3ziE0mnAAAAAAAAAAAAAMAG27lzZ9Gxp06disOHD8fw8HDs27cvnn/++TW1B0B1yWfzibSTeIFFRERnZ2d0dnbGiRMn4oUXXog33nhjbl8mk4nu7u74yle+sh6nhnlOd5wudQrx5NknS50CAAAAAAAAAAAAlLWGhoY4d+5cqdMAoAIVrhXiZu5mIm2tS4HFrGPHjs1bxQIAAAAAAAAAAAAAAGAxl85fWvGxhXwhctlcjPaNRmt3ayLnX9cCCwAAAAAAAAAAAAAAgJV4sfPFuHXt1oqPn5mZiUxbJvb/4f5Ezl8WBRbf/e5347Of/Wyp0wAAAAAAAAAAAAAAAEpke/32iIi4/9D9kUqnlj92z/ZobGmMzKOZxM5fFgUWTz/9tAILAAAAAAAAAAAAAACoYnWZunjkq49EyxdaSnL+VRdY/OAHP4hPfOITS+5bjcnJychms5HP51ebBgAAAAAAAAAAAAAAsInUZeqiLlNXsvOvqsDiq1/9anz961+P1tbW+Nu//dsF+w8cOBDXrl1LLDkAAAAAAAAAAKhmo/2jMT4wHq3drZFpy0QqnYpcNhcTYxPxoxd+FI8890g0tjQuiCvkC/Hq8VcjImLHnh0xeXEymtqbormzeclzFRMDAACQpIMnD5b0/KsqsMhmszEzMxO5XG7R/fX19RERceTIkYiI2LNnz7LtvfPOO3Hx4sX47ne/u5o0AAAAAAAAAACgKhTyhcgOZSM7lJ23PZVORddA15LFFf2t/Qv2n+0+G5eHL0d7b3siMQAAwPqYGJuIkb6RKEwWYmJsIlLpVLR2t0brkdYlYzaqyHqzF2avqsDi29/+drS3t0dbW9ui+zOZTHz1q1+NL3zhC6tK4m6FGAAAAAAAAAAAUK0O9h2MyYuTkc/mI1Wfintb7112YtVA10Dc13nfguKLjr6O6K3rjab2psi0ZdYcAwAAJG+0fzQi3rsXn5UdysZA10Bc6L0QR0aPRCqdmhezUUXWpSjMzr+Vj5G+kXh77O24OXkzttdvj3QmHQ91PxT3fOKexM+3qgKL3bt3x9NPP73k/vb29njooYdWncTevXtXHQMAAAAAANUsl83Fa72vRUREYbIQhXwhMu2ZePjYw0vGeHoVAABUpvsP3b9gAtVSctlcZIeycbDv4KL7mw81x4XeC/OKJYqJAQAAkpfL5qKQLyz4rj/TlonPvfy56G/tj4GugXhq8Kl5+zeqyHqjC7OHnhuK10+8HjMzMwv2jfWPRXNXc3T0d8S2j2xL7JyrKrC4m6985StFxY2MjCSZBgAAAAAAbGrjZ8bj8vDleU+viojob+2P0b7ReObiMwtiNvPTqwAAgPeN9L03D6cuU7fo/vqm+hjrH4tCvjBXtFFMDAAAkLyRvpH47ed+e9F9jS2NkWnLRHYoG7lsbu7+faOKrDeyMLtw7b3fGm5O3oz7Hr8v7t1379xYpJAvxM13bsbE6ET86MUfRXYoG39w6Q9i268kU2RRk0grAAAAAADAhijkC/GjF360aKFCx7c7IpfNxdnuswv2LfdUqbH+scgOZUsWAwAAJOftsbeXLYKYnYR1ZeTKmmIAAIDkXRq6FP9573+OQr6w6P57Wu6JiIiJsYm5bSspmM4OZee1uVExxRroGohMWyZ6Jnui68WuePgrD0fr063R+nRrPPyVh6Pta23x1OBT0ZPrifsevy/+24H/tuZzzlqXAou/+Iu/iH/9r/91fPKTn4y33nprwf5Lly7FoUOH4o//+I/X4/QAAFCVznafvetEpdH+0TjVfirGz4zPDWZy2VyMnxmPga6BeYOvDyrkCzHYMxiDPYNx4cSFONt9NsbPjC97rmJiAACAu7syciXGz4zHYM/ggn2zRQ2Xhi7N2z77VKmHuh9atM3Zp0qVIgYAAFi5ibGJGO0fXfL7/Ij37su3129fcv9sIUUum1tTDAAAkLzt9dujkC+s6t57o4qsN6owe/Tbo1GXqYuDJxdfKeODUrtT0dHXEY2tjTH2p2NrOu+s2kRa+YDnnnsuHnrooRgeHo5r167F2NhY/Pqv//q8Y/bu3RsvvvhivPzyy/Hcc8/F8ePHk04DAACqwuzkpdG+935Mub/r/mWPL+QLkR3KLijESKVT0TXQteAJs7Mx/a39C/af7T4bl4cvL/rU3GJiAACAldlevz1S6VTs2LNjyWPu/IFjJU+VGusfi0K+MBe7UTEAAFCNpm5Nxe1bt+de//wff77s8dmhbOSyuci0ZaL1SGtMjE3EqfZT8XDPw5Fpy8w79ubkzSXvySNirpDig0+VLSYGAABI3lODT0Uum1vy/jyfzUdEzJuPs1FF1htVmH1p6FJ0vtC5qpiDJw/G//2v/+9o+ULLms4dkXCBxfnz5yOTycTjjz8eMzMzcenSpfjsZz+75PGPPvpoRER897vfXfY4AABgodH+0cgOZiPTnom23rY41X5qRXEH+w7G5MXJyGfzkapPxb2t90brkdYljx/oGoj7Ou9bUHzR0dcRvXW90dTetODHm2JiAACAlWlsaYyeXM+i+2afYru3be+87at5qtTsvfpGxQAAQDV67fhr8f0/+v7c62txbcljZ++jHz728Ny2xpbG6Broit663jgyemTe9/ErLYJ495131xQDAACs3GqKrJcrfh4/Mx6NLY3zjtmoIuuNKsxO1RX3gKb03vSazjsr0QKLgYGB+Na3vhUREZ2dK6saefTRR+OLX/yiAgsAAFil1iOtc4URyy0Ffqf7D92/4ifFzq6QcbBv8SX3mg81x4XeC/MmRhUTAwAAJGOoZyjqMnULVo3bbE+vAgCASvfIc4/Ep5791Nzry5cvxzebv7nosc2dzYtuT6VT0dzZHANdA/HMxWfWJU8AACAZqymyXsqFExciIqLj2x3ztm9UkfWGFWZv2eC4OyRaYDEzM5NkcwAAQImN9I1ExNKV8fVN9THWPxaFfGFuolQxMQAAwNrksrl4rfe1SGfS8dTgUwv2b7anVwEAQKWr3VYbtdven7bz4Z99uKh27t13b4yfGY9cNjd3L55Kp1Z0z71jz465/7+YGAAAYOVWU2S9mImxiRjqGYquga55K9htRoXJ4n5DyGfziZy/JpFWfimXK+6JU9lsNsk0AACAhLw99vayRRCzP9ZcGbmyphgAAKh2U7em4tbPbs39+8X1X6wobvzMeAz2DMZQz1Ck0qm4v+v+RY/bdE+vAgAAIuL9VeI+uNL1cqvKRbxXGP3B2GJjAACAlavdVhvbPrJt7t+Hf2V1RdYDXQNxsO/goivcbVSR9UYVZqf3puPHL/14VTGv//Hrcc+D96zpvLMSXcHi4sWLq465du1avPPOO0mmAQAArMDE2ERcGbkS9z5075KV7blsbtkfVWZ/SMll3y+2LiYGAACq3YKlwWtWtjR4c2fzvB9TTrWfitG+0ej4doeJTwDA/5+9/4ut6szzRO+fKTJsUHfY29xgRn2mvF3vRRxGE7bhSAW0dCrYqdEILqbwho40qW7pBLtKr5SW+q3YYc7FUZ+LIaaiLp06F4VNzsW8GSkN9mQu3DcnNvQpVchFYbvSmoojnYoXdKmxI72TvTfpVrwzTbHfC9oOxjb4z8J/Px8Jhb2e5/c8D+wVs5e9vusBtoDBzsG4NXwrXpt4bck1uXzusQ85mrkh6uHd51ZSAwAArI3+Yn+0dLZES0fLgu1rFbJeq2B265ut8dNv/TQiIp77t889sf/o5dH44MIH0fV516rmnZFqwOLMmTNx9uzZuHLlyrJq/uiP/ijNZQAAAI+RDCdRTsqRb81HS0dLTI1NxTtt78Sx7mORb83P6Ttdmn7sD0tmLpweTqevpAYAALa7R7cG/+1vfxs/+ZdL3xp8RrG/GD25nqhWqvHK0Cuzx7fa06sAAGC7mBqZmr1JaSEzn78ffpDS/sL+SIaTRWtmHoD08M8EVlIDAAA8fUPdQ3HgyIE41nVs0T5rFbJey2B28Wox+g73RdNLTdHc3hwHDh+YDW5UK9WYLk3HxNBEfDLwSZSTcpwbObfqOWfsSG2kiOjq6orR0dH4oz/6o/j7v//7x/b96KOP4siRI5EkSfzoRz9KcxkAALDp3fvqXnz1xVezv/7xH/4xlXFnLmCOdR2b/WFLQ6Ehiv3FeKftnTlbiEcsPQTx5edfrqoGAAC2u0e3Bn/m955Z0TiZbCaa25sjGU7m3By11Z5eBQAA20Vja2N0l7sXbZ+8ORmZbGbODUwHzx6MiJj3Pf+Hax4NSqykBgAAeLpG+0ajvql+wXDFw/fn7C/sf+z9OouFrNeiZqUaCg3RMdIRX/7/vozBjsHoa+mLnzb9NH7a9NPoa+mLd9reiRs9N6JWq8W/e//fRcOhhicPukSp7mAREfH+++/Ht771rejv74+2trZobW2NbDYb9fX1USqVYmJiIoaHh2NsbCxqtVqMjY2lvQQAANj0PrjwQfz8z38++/rujrupjNvc3rzg8ZmbsPqL/cvaZhwAAFh7M09mWuwJUNl8NiIiJoYmZn+IsRWfXgUAANvBwbMHY7RvNFo6Wua1lZNyjA+MR7G/OOd4Q6Eh8q35+PWVX8/Z2WLG+MD4nB3vVloDAAA8PeMD4xERi14LTI1Nzd4HdPDswfjw4ocxNTa14Of5xULWa1GzGg2FhugY7YjRvtEY7R2NqV99HQjP5XPR0tkSx15ffGePlUo9YJHP56NUKkWxWIz3338/hoaG5vWp1WrR2toavb290djYmPYSAABg0zt+/nh8+8++Pfv6t7/9bfzkX/7kqc554MiBGB8Yj3JSnr3ZKZPNLGlHij379sz+fiU1AADA0vXkeiIiorvcveBOEDOftR99etXDO1o8arEnUa1FDQAAsLiGQkMkw0ncuHhjzlNry0k5+lr64mjX0QUfrlTsL0ZfS18cPHtwzo1Pg52DcbTr6IKfyVdSAwAApG9qbCqmS9MLhisiIpLhZM7n87UKWa9XMLulo2XRv4unIfWARURENpuNoaGhuHbtWvT398fIyEhUKpXIZrORz+ejs7MzTpw48TSmBgCALWHnrp2xc9fXH9ef+b1nnvqcMzdmTY1NzQYsdtfvfmzNdGl6Tu1KawAAgKXLZDOxu373op+pSxOliIg40HJg9thWfXoVAABsB8e6jkUynMRg52BUS9WoVqqRyWbi+9e+v+Dn7ogH1w0dox0x1D0UmWwm9uzbE6WJUjS1NT12t+vl1gAAAOkqJ+XoL/ZHY2tjTHbO3zG6WqpGMpxEd7l7zvG1Cllvh2D2UwlYzDhx4oQgBQAAbBCDnYNxa/hWvDbx2pJrcvlcTI7Mv1ibMfNE3JlAxkprAACApSt0FOJw5+FF28evjkcmm4nnzzw/e2yrP70KAAC2unxrftk3KmWymTjVe+qp1wAAAOl5p+2dKCflKPeVF+2z0D03axWyXstg9vh/Ho+xvrGYLk9H8Woxst/Mzmkv3yrHcPdw/PP/8Z/H0R8dTW3epxqwAAAANo6pkanZ3SMWMhN8ePgmqP2F/ZEMJ4vWlJMHF3MP/1BnJTUAAMDStfW0xWDnYDxffH7e5+r+Yn9ERHz/2vfn7XDh6VUAAAAAALCxLefBqY9aq5D1WgSzh88Px4HDB+LOzTvx1d2vYmpsal7AIteYi+LVYiTXkhg+PxytF1pTmXtDBCx++MMfxs9+9rP1XgYAAGxpja2N0dHTsWj75M3JyGQzc1LuB88ejA8vfhhTY1MLPn128ubkvJujVlIDAAAsz6neUzE+MB79xf7I1GeiWqpGtVKN/YX98ae3/nReuCJiaz69CgCAze/dU++u9xIiIuLlwZfXewkAAABExK3rtyKXz0Xz6eaI2oOdKp773nOL9s+feHAf0ifvffLYfku1IQIWV69eFbAAAICn7ODZgzHaNxotHS3z2spJOcYHxqPYX5xzvKHQEPnWfPz6yq8XDEuMD4zHK0OvrLoGAABYvub25mUHFrbS06sAAAAAAICt5+P+j+Pkz05GRCz55yD5E/n4qx/+1foELD766KN44YUX5h2/e/duXLt2bdkLuHnzZlQqlWXXAQAAXysn5YiIqFaqi/ZpKDREMpzEjYs34ljXsTm1fS19cbTr6IIXJcX+YvS19MXBswfnBCYGOwfjaNfRBXejWEkNAAAAAAAAAACwzdXWd/olByyuXbsWnZ2dcevWrWhqaor/5//5f+a0j4yMRHt7e9TV1S1rAbVabdk1AADAg50gRntHIyJicmQyIiIGzw3OHmsuNs/breJY17FIhpMY7ByMaqka1Uo1MtlMfP/a9xfcbSLiwZNnO0Y7Yqh7KDLZTOzZtydKE6VoamtaNCW+khoAAAAAAAAAAGB7q5YXf8Ds41SSSirzLylgcffu3ejt7Y3e3t5oa2uLvXv3zutTX18fERGnT5+OI0eORDabfeK4lUolPv3003j77beXt2oAACCa25tXFFbIt+aXvYNEJpuJU72nnnoNAAAAAAAAAACwfZUmSsuuqd6txpeff5nK/EsKWFy7di3Onz8fhw4dinK5vGDAIp/PR11dXVy9enXZi+jv7192zYxKpRIXLlyIiIh9+/bFxMREtLW1RXt7+4rHnNHX1xf9/f2zYZF8Ph89PT2rHhcAAAAAAAAAAAAAAJjr+TPPx8DZgWi/svQ8wMCZgTj4RwdTmX9JAYubN2/G9773vYiIBcMVM8cXa3uS1tbWFdVVKpVoaWmJ/v7+KBQKs8c7Ozvj5s2bKw5DVCqVOHHiRLS2tsbQ0NDs8SRJoru7W8gCAAAAAAAAAAAAAABSdqzrWPz0Wz+NgT8aiFOXT8Wu39+1aN/PPvosBs8NRrVSjaM/OprK/EsKWNTX18ft27fjm9/85mP71dXVrWgRK9n1IiKiWCxGe3v7nHBFRERvb2/kcrloa2tbUXhjJlzxaJCis7MzRkZGBCwAAAAAAAAAAABYN++eene9lxARES8PvrzeSwAAtqBX3n8lfvqtn8Z4/3jk2/KRb81HJpuJ3fW7Y7o0HaWJUtwavhVTY1NRq9Wic6wztbmXFLBobW2N3t7euHDhQmoTP+yLL76IZ599dlk1SZLE8PBw9Pb2Lth+5syZ6OnpWXbA4uLFi5EkyYIhimw2G4cPH17WeAAAAAAAAAAAAAAAwNLk8rnoLnVHf7E/Jt6fiGQomdenVqtFvjUfJ3tPRq4xl9rcSwpYHDp0KIrFYvzgBz+If/Ev/kVqk89obGyMzz//fFk1M8GKfD6/YHtTU1P09fVFpVKJbDa75HEvXLgQHR0dC7b19/cva40AAAAAAAAAAAAAAMDyZLKZeGXolUiuJTHePx6TI5NRrVQjk81ELp+Lls6WyJ9YOEuwGksKWEREXLp0KfL5fPT19cX//D//z6kuolarLbtmbGzsscGJmeDFyMjIknexGBgYiEqlEmfPnl32egAAAAAAAAAAAAAAgPTkT+SfSpBiMUsOWLS2tsbp06ejo6MjOjo6olAozNs9olKpxHe/+90lT14qlSJJkrh79+7SV/xPkiSJ+vr6RdtnwhdJMn87kMVcuXIlIiIKhUJEPAhxjIyMxOHDh2ePAQAAAAAAAAAAAAAAW8+SAxY/+MEPIkmS2d0mRkdHY3R0dF6/oaGhZS+irq5u2TWlUmlewONhM+GLSqWy5DHHxsZmf3/x4sUoFArR0dERY2Nj0dbWFt3d3UveDQMAAAAAAAAAAAAAANg8lhSw+NWvfhXZbDauXbsWxWIx2tra4vXXX5/Xr76+Pkql0rIWMDY2FkeOHFlWTcTSgxOff/75kscslUqRzWajr68vurq6Zo8XCoXo7++PxsbG6O/vf2LIYvredPzDvX+Yff3MjmfimW88s+R1sLXcu3dvvZcQ9+7di/v372+ItcAM5yUblXOTjer+/fvrvQQeYyNcA/i6tXH4t4RHOSd4lHOCRzknWIhrgI3ty999Gbvu7Zp97ecAG1+trha1qEWtrhb3w/9fm433b/Py3m1e3rvNy3u3cut9Tbbe8/Nkd+/enXNf1K5du2LXrl2PqeBpuV+3eb++bcWv075+rR/fVyRNzifS5HxaGn8/G9eSAhbXrl2LH/zgB7F37954//33F+23kp0oCoVC7N27d9l1T8NMaGNm94uHZbPZaG1tjc7OzpiYmHjsON3/d/ec1/+68K/j3xz+N6mtk83lgw8+WO8lxP379+O3v/1tRETs2LFjnVcDDzgv2aicm2xUywkOs/Y2wjXARvjcyQP+LeFRzgke5ZzgUc4JFuIaYGPbCNcALE8tajH9+9NRilLUxfJ/nsX68v5tXt67zct7t3l571Zuvb/HutwHmrL2XnjhhTmv//iP/zj+5E/+ZF3Wst2VGjbv/y9b8ev0en/93M58X5E0OZ9Ik/NpaVwDbFxLCljUarUFQwdp6e/vX3ZNNptd0i4W+/btW/aYi+1Q0dbWFgMDAzE2NhaFQmHRcXr+p57IZXKzr5/Z8Uw8M+XJVdvV8ePH13sJsym3o0ePxs6dS/rfHp465yUblXOTjWrmwpONaSNcA2yEz5084N8SHuWc4FHOCR7lnGAhrgE2to1wDcDy1OpqUYpS1H9WH3W1rXET03bi/du8vHebl/du8/Lerdx6f4/17/7u79Z1fp7so48+ij/4gz+YfW0Hi/Vz5y/urPcSVmwrfp1e76+f25nvK5Im5xNpcj4tjWuAjWtJZ20+n4+RkZF48cUXn8oiTpw4seyaJwU+ZlI92Wx2WWNWKpVFa2bmHBkZeWzAYvfO3fF7O39v7sHakpfBFrNR/nHYsWNH7Ny5c8OsByKcl2xczk02Ion+jW0jXAP4mrWx+LeERzkneJRzgkc5J3iUa4CNbc839qz7NQDLcz/uR13URV2tLnbU/P+12Xj/Ni/v3eblvdu8vHcrt97XY+s9P0+2d+/ep/qAWpZuM39924pfp339Wl++r0ianE+kyfn0ZP5uNq4lfUprbW2Nnp6ep7aIt956a9k1+Xz+sVujzOxukc/nlzzm40ITC40NAAAAAAAAAAAAAABsDUsKWOzduzcaGxvj3//7f/9UFnHhwoVl1xQKhccGHZIkiYgH4ZClOnLkSEQsHqCYCXQsNYgBAAAAAAAAAAAAAABsDkveW6SnpycaGxtjeHg4Ojs748SJE3O2vavVHux9/bd/+7ezv1+K0dHRFe0Icfbs2bh48WKMjY0tGHi4efPmssIVERHt7e3R3d0dw8PD0d7ePq99YmIiIiIOHz687PUCAAAAAAAAAAAAAAAb15IDFnv37o0kSaKlpSXOnTsXdXV1C/bL5/OpLe5xCoVCtLa2xpUrVxYMWAwMDMTQ0NC845VKJS5cuBBtbW3zAhj5fD7a29vjwoULCwYsBgYGoqurK7LZbGp/DgAAAAAAAAAAAAAAYP0tOWAREZHNZmNiYiIGBgZiZGRkzs4TtVotLl++HB0dHctawM2bN+Ojjz5aVs2M/v7+aGlpibNnz84JWXR2dkZXV9eCO1j09fXFxYsXo6+vL8rl8rz2y5cvR0tLS/T19c35sxSLxcjn89HT07OitQIAAAAAAAAAAAAAABvXsgIWM9rb2xfd4eHSpUvLHm/fvn0rWUZks9kYHR2N7u7uyGazsW/fvpiYmIi2trYF1xcR0draGtlsNs6cOfPYMS9cuBDFYjEiHux6USwWlx0eAQAAAAAAAAAAAAAAnq7h88PRemH+Bg3LtaKAxWJqtdqK6nK53IrnzGaz0dvbu+T+hUJhwZ0rHh3TThUAAAAAAAAAAAAAALDxjfWNbbyAxeXLl1dU9+mnn6a5DAAAAAAAAAAAAAAAYBOr3K5EOXn85goREVNjU1GtVFOZM9WAxenTp+cd++KLL6JUKsU3v/nNNKcCAAAAAAAAAAAAAAC2mLG3x2K4ezi10MRypBqwmHH79u3o6emJvr6+iIioq6uLe/fuzbbfunUruru746WXXopXX331aSwBAAAAAAAAAAAAAADYRJJrSQx2DEYun4vmYnNkspkn1kyNTsWt67dSmT/1gMX169ejtbU1IiLy+Xzk8/m4dWvuYhsbG+Pq1atx7dq1eOutt+JHP/pR2ssAAAAAAAAAAAAAAAA2kWtvXItifzGaTzcvq+7ivoupzL8jlVH+ya1bt6K9vT06OjpiYmIiPv3003j//ffj9OnTC/Y/ceJENDY2xvXr19NcBgAAAAAAAAAAAAAAsMlkcpllhysiIrKN2VTmTzVg8cYbb0RPT09cunQpGhsbZ4/X1dUtWnP69Ono7+9PcxkAAAAAAAAAAAAAAMAm01BoWFFdx0hHKvOnGrAol8tx7ty5ZdfVarU0lwEAAAAAAAAAAAAAAGwy1Up1XedPNWCRz+dXVFcul9NcBgAAAAAAAAAAAAAAsMk0F5vjk/c+WXbd8PnhVOZPfQeLlUiSJM1lAAAAAAAAAAAAAAAAm0z+RD5KE6VlhyzG+sZSmX9nKqP8k1wuF3/9138d3/nOd5Zcc/78+Thx4kSaywAAAAAAAAAAAAAAADaZyu1KPF98Pj7u/zguH7kcja2NUd9UH7l8btGaqbGpqFaqqcyfasCiq6srXnrppbh8+fKSQhZvvfVWDAwMxG9+85s0lwEAAAAAAAAAAAAAAGwyvYXe+OruVxERUavVYnJ0Murq6tZs/lQDFvl8Pi5duhQnTpyIw4cPx9mzZ+PQoUNRqVTi9u3bUalUolQqxdjYWPT29kaSJDE6OprmEgAAAAAAAAAAAAAAgE1od/3uiIh4/szzkclmllQzNToVt67fSmX+VAMWERGtra1x9erV6OjoiK6urtnjfX19s7+v1WqRz+djZGQkXnjhhbSXAAAAsO28e+rd9V5CvDz48novAQAAAAAAAACATSyXz8XxN45H4dXCsuou7ruYyvw7UhnlEe3t7VEqleLChQvxwgsvRK1Wm/3V2NgYPT098emnn8ahQ4eexvQAAAAAAAAAAAAAAMAmk8vnIpfPLbsu25hNZf7Ud7B4WFdX15xdLAAAAAAAAAAAAAAAABZy8tLJFdV1jHSkMv9T2cECAAAAAAAAAAAAAABgM3mqO1gAAAAAAAAAAAAAAACsROV2JUZ6R+Kzsc9iujQdu+t3RzafjcOdh2P/C/tTn0/AAgAAAAAAAAAAAAAA2FCGzw/Hhxc/jFqtNq9trG8smovNcarvVOx6dldqcwpYAAAAAAAAAAAAAAAAG0L1bjX6WvpiujQdz51+Lg4cORCZbOZBW6Ua059Px9ToVHx89eNIhpP401t/Grt+P52QhYAFAAAAAAAAAAAAAACwIfQX+yPfmo+Tl04+tl/1bjWGuobi//vi/zfO3TyXytw7UhkFAAAAAAAAAAAAAABgFUYvj0Yun3tiuCIiIrM3E6d6T0VDS0OMvT2WyvwCFgAAAAAAAAAAAAAAwLq7NXxrSeGKh528dDLG+8dTmV/AAgAAAAAAAAAAAAAAWHeZXGZFddnGbCrz70xlFAAAAAAAAAAAYE0Ndg7G8e7jkcvnFmyvVqrxiwu/iIiIPfv2RGmiFE1tTdHc3rzomCupAQAASE3dGtc9QsACAAAAAAAAAAA2mamxqRjrG4vDnYcXbK9WqtHX0hfF/mI0FBpmjw92Dsadm3eiractlRoAAIA0VUvVFdVVkkoq8+9IZRQAAAAAAAAAAGDNDHcPP7a9v9gfz7U/NycoERFxqvdUjPWNRTKcpFIDAACQpmxjNj75L58sq+bDtz6M/Yf2pzL/mu5gce3atRgaGoq6urpoamqKw4cPxwsvvLCWSwAAAAAAAAAAgE1ttG80movNiwYeykk5kuEkTvaeXLC9+Uxz3Oi5EfnW/KpqAAAA0tb6Zmv89Fs/jYiI5/7tc0/sP3p5ND648EF0fd6VyvypBiz27dsXn3/++aLtJ06ciBMnTsTdu3ejVCrF8PBw9Pb2Rk9PTzz77LNpLgUAAAAAAAAAALacclKOiIhcPrdon5Hekcf2qW+qj7G+sahWqpHJZlZcAwAA8DQUrxaj73BfNL3UFM3tzXHg8IHZ65BqpRrTpemYGJqITwY+iXJSjnMj51KbO9WARa1WW1K/vXv3xt69e+PcuXNx9+7d6O7ujp/97GdpLgUAAAAAAAAAAJbk3VPvruv8n08v/kDTR430jkRbT9uiu1dERHw29tljQxAzIYrJkcnZHSlWUgMAAPA0NBQaomOkIwbPDcZgx2DU1dXN61Or1SKXz8W/e//fRcOhhtTmTjVgsdDCn2Tv3r1pLgEAAAAAAAAAALak8YHxONx5+In9ykk5dtfvXrR9JkgxsxvGSmsAAACeloZCQ3SMdsRo32iM9o7G1K+mZtty+Vy0dLbEsdePpT5vqgGLlbh7926MjIys9zIAAAAAAAAAAGDDqlaqUU7K0dze/MS+06Xp2R0nFjITpKhWqquqAQAAeNpaOlqipaNlzeZbdsDi9u3bCx6v1WoREfG3f/u3s79fTKVSiVKpFGNjY3HhwoU4c+bMcpcBAAAAAAAAAACb0v3f3Y/a/a/vr7l/7/4Ta35x4RfR1tO2pPGXGoL48vMvV1UDAACw1Sw7YDE6Oho3b96MJElieHg47t69O6c9n88veaxarRatra3xs5/9bLnLAAAAAAAAAACATan0aSlKvynNvr4bdx/TOyIZTqKprelpLwsAAGDT+uS9T+K57z236nGWHbA4ffp0nD59evb12NhYdHd3x7Vr16Kurm5O2+Pk8/loa2uLEydOLHcJAAAAAAAAAACwadV/qz5y+dzs61K1FPHzxftPDE0sefeKiIhMNrOkHSn27NuzqhoAAICNYvDc4PoELB5VKBRiaGgoOjs7Y2BgIK5evbrqRQEAAAAAAAAAwFa14xs7Ir7x0Ot7Oxbte+PijfjD83+4rPF31+9+bPt0aToiHoQqVlMDAACwEp999Fnsf2H/om3LMV2ajnJSXlJgfClWHbCY0dvbG6Ojo2kNBwAAAAAAAAAA21o5KUcmm1l2qCGXz8XkyOSi7TM3Hj28i8ZKagAAAJZr+I3h+PDHH0ZDS0Oc++W5ee3/8cX/GF/d/WodVvZAagGLiIjz58+nORwAAAAAAAAAAGxbU2NTMd4/HuP94/Paykk5IiIGzw3O7j7xytArERGxv7A/kuFk0XFnavOt+dljK6kBAABYrnJSjlqtFtXywjtOzFzftHS0PHi97wm77X0+HeWJcnzy3ieprC/VgMXp06fTHA4AAAAAAAAAALat5vbmaG5vXrBtfGA8+ov9ceryqWgoNMxpO3j2YHx48cOYGpua1xYRMXlzcl5QYiU1AO+eene9lxAvD7683ksAAJbh1OVTkW/LL3p9kcvn4vgbx6PwamFZ417cdzGN5cWOVEZZpffee2+9lwAAAAAAAAAAAFtCQ6Eh8q35+PWVXy/YPj4wHse6j626BgAAYLkyezPRcq4lco25Bdvzbfk4cPjAssfNNmZXubIHUt3BYqXOnTsX3/ve99Z7GfBUbISU9v26+/HP/+yfr/cyAAAAAAAAAICUlJPy7H8X2nGi2F+Mvpa+OHj24Jz2wc7BONp1dMGnxa6kBgAAIE3HXl9ZsLtjpCOV+ZcdsPjoo4/ihRdeWLRtOUqlUiRJEpVKZbnLAAAAAAAAAACAbWewczAqSSUmRyYfvD43GKO9o7G/sD/aetpm+2WymegY7Yih7qHIZDOxZ9+eKE2UoqmtKZrbmxcceyU1AAAAW8myAhZvvPFG/PjHP46Wlpb45S9/Oa/9xRdfjLt376a2OAAAAAAAAAAA4Gunek8tuW8mm1lW/5XWAAAAT8dg52A8X3z+sbvJjfaNxnj/eLR0tkS+NR+ZbCbKSTmmxqbi4ysfx/Hzxxfc9a5aqcYvLvwiImLJ4eqV1KQtuZZEMpRE1EXUN9XHgcMHYv8L+1Mbf1kBiyRJolarRblcXrC9vr4+IiI6Oh5sr7Fv377Hjvf555/HxMREvPfee8tZBgAAAAAAAAAAAAAAbDnlpBzJcBKjvaMxNTYVzxeff2z/aqUayXASyXAy53gmm4lif3HRcEVfS9+89sHOwbhz886c3fFWU7MSF/ddjK7PuxZtz5/IR/5EPqp3qzFdmo5kOImR3pFo62mLXc/uWvX8ywpYXL58Odra2qK1tXXhxebz8cYbb8Srr766rEU8KYgBAAAAAAAAAAAAAABb2WjfaCRDSeTb8tHa0xrvtL2zpLqTvSejNFGKSlKJTH0mDrQciJaOlkX79xf747n25+aFL071noqeXE80tTXN2zVjJTUrUavVltQvszcTmb2ZaDnXEtW71RjqHoqTPzu56vmXFbDYu3dvnDt3btH2tra2OHz48LIX0djYuOwaAAAAAAAAAAAAAADYKlo6WmaDEVNjU0uue/7M85HJZpbUd2aHjJO9C4cRms80x42eG3PCEiupWam6urpl12T2Lu3PvhQ7UhspIl5//fV44YUXll03MjKS5jIAAAAAAAAAAAAAAIBHjPQ+uHc/l88t2F7fVB/JcBLVSnVVNWupercaUyNLD6Q8zrJ2sAAAAAAAAAAAAAAAADanz8Y+e+xuFzMhismRydkdKVZS8ziV25UFj9dqtQftf1uJqD1+jGqlGtOl6Zgam4oPLnwQzWeanzjvUmyIgMX58+fjwoUL670MAAAAAAAAAAAAAADYlKbGpmJyZDIOHD4QDYWGBfuUk3Lsrt+96BgzQYpyUl5VzeNMjk7G5M3JKCflSIaT+OruV3Paf5r/6ZLGiXgQysi35uPkz04uueZxNkTAoq+vT8ACAAAAAAAAAAAAAIAt595X9+J3X/1u9vV///v/nur4yXAS5aQc+dZ8tHS0xNTYVLzT9k4c6z42b0eJ6dL07I4TC5kJUlQr1VXVPE7z6eZoPv31jhNTY1Mx3D0cybUk6urq4rnTzy1pnFw+F/m2fORPPHnXjKV6agGL27dvR5IkT+w3NjYWlUrlaS0DAAAAAAAAAAAAAADWzQcXPoif//nPZ1/fjbupjT0TfDjWdWz2WEOhIYr9xejJ9UTHaMec3SyWGoL48vMvV1WzHA2Fhnhl6JUY7ByMTwY+ieLV4orGSUPqAYu33347uru7hSYAAAAAAAAAAAAAANj2jp8/Ht/+s2/Pvr5z5078pPknqYzd3N684PFMNhPN7c3RX+yP1yZeS2Wup+1U76mYGp1a1zWkGrC4du1adHR0RD6fj2KxGNls9ok1o6Ojcf369TSXAQAAAAAAAAAAAAAAG8LOXTtj566vb93/Z1/8szWZ98CRAzE+MB7lpDy700Umm1nSjhR79u2Z/f1Kalbq+Pnjqx5jNVINWLzxxhvR398fp0+fXlbdvn370lwGAAAAAAAAAAAAAABsa5lsJiIipsamZgMWu+t3P7ZmujQ9p3alNSvVfHrhHTnWyo40B8vlcssOV0RENDY2prkMAAAAAAAAAAAAAADY0gY7B+OnTT9dVk0un5sNRCxkZqeKmUDGSmvWUvVuNT5868NUxko1YFEoFFZUNzIykuYyAAAAAAAAAAAAAABgS5samVpS8KGh0DB7bH9h/+zxhZSTckRE5Fvzq6pZS+WkHB9f+TiVsXamMso/qVQqaQ4HAAAAAAAAAAAAAAAsoLG1MTp6OhZtn7w5GZlsZs7OEgfPHowPL34YU2NTc4IXD9c8GpRYSc1K3bp+a9k1N3puPDYAshypBiyKxWK899578b3vfW9ZdefPn48LFy6kuRQAAAAAAAAAAAAAANiyDp49GKN9o9HS0TKvrZyUY3xgPIr9xTnHGwoNkW/Nx6+v/HrBsMT4wHi8MvTKqmtW6mr71fjq7lfLqqnVarE7tzuV+VMNWJw4cSJ+/OMfLztk0dfXJ2ABAAAAAAAAAAAAAADxICAREY/dmaGh0BDJcBI3Lt6IY13H5tT2tfTF0a6j0dzePK+u2F+Mvpa+OHj24JzAxGDnYBztOrrgbhQrqVmJ3fUPghLPn3k+MtnMgn2qlWqUk3JMjjzYOePAkQOpzB2xjIDFRx99tKR+bW1tMTQ0FEeOHInW1tZoamqKfH7xv6yxsbGoVCpLXQYAAAAAAAAAAAAAAGw54wPjMdo7GhERkyOTERExeG5w9lhzsXnebhXHuo5FMpzEYOdgVEvVqFaqkclm4vvXvr/gbhMREZlsJjpGO2Koeygy2Uzs2bcnShOlaGprWjCQsdKalcjlc3H8jeNReLWwpP43fnwjdud2L7n/kyw5YPHiiy/G3bt3lzxwrVaL0dHRqKurW9HCAAAAAAAAAAAAAABgu2hub15RWCHfml/2DhKZbCZO9Z566jXLlcvnIpfPLbn/sdePxfh/Ho9b129F44uNq55/yQGL+vr6iIg4c+ZMZLPZVU88Y3R0NK5fv57aeAAAAAAAAAAAAAAAwOZz8tLJZdc0n26O4fPDaxuwyOfz8cYbb8Srr7666kkftW/fvtTHBAAAAAAAAAAAAAAAWKodS+2Yz+cjn1/etiFL1di4+qQIAAAAAAAAAAAAAACw/VSSSirjLHkHi0uXLqUy4UJGRkae2tgAAAAAAAAAAAAAAMDWVL1bjenydCpjLTlgAQAAAAAAAAAAAAAA8LTcun5ryX2rlWqUk3KM9o5GS2dLKvMLWAAAAAAAAAAAAAAAAOvuavvV+OruV0vuX6vVIt+aj6M/OprK/AIWAAAAAAAAAAAAAADAuttdvzsiIp4/83xkspnH9923OxoKDZE/kU9tfgELAAAAAAAAAAAAAABg3eXyuTj+xvEovFpYl/l3rMusAAAAAAAAAAAAAAAAD8nlc5HL59ZtfjtYAAAAAAAAAAAAAAAA6+7kpZPrOr8dLAAAAAAAAAAAAAAAgG3PDhYAAAAAALDJTI1NxUjvSFRL1Zgam4pMNhMtnS3R0tGyaE21Uo1fXPhFRETs2bcnShOlaGpriub25nWvAQAAAAAAWEzldiWmxqZiujQduXwucvlcZL+ZfSpzCVgAAAAAAMAmMto3GhERp3pPzR5LhpPoL/bHjZ4b0THaEZlsZk5NtVKNvpa+KPYXo6HQMHt8sHMw7ty8E209bfPmWasaAAAAAACAhdy6fiv+qvOvopyU57U1tDTEqcunYv+/2p/qnAIWAACwRQx2Dsbzxecj35p/bD9PrQUAgM2rnJSjWqnGsa5jc47nW/Px/Wvfj76Wvugv9scrQ6/Mae8v9sdz7c/NCT1EPAhp9OR6oqmtad61xFrVAAAAAAAAPGrg7ECMD4xHrVaLiIhcPhcREdOl6ahWqjE5Mhl9hb441n0sTvyHE6nN+9QDFl988UWUSqX45je/+bSnAgCAbaeclCMZTmK0dzSmxqbi+eLzj+3vqbUAALC5jfSOxB+e/8MF2xoKDZFvzUcynEQ5Kc/+oGHmuuFk78kF65rPNMeNnhtzgg9rVQMAAAAAAPCo4TeGY2JoIk68eSKa25sj15ib12fqV1Px67/8dXzw5gexe9/uOPr/OZrK3DtSGeURt2/fjh/+8IfxjW98I3K5XHzrW9+a037r1q04c+ZMvP32209jegAA2BZG+0ZjuHs4IiJae1qXVPO4p8mO9Y1FMpysWw0AAPBkt4Zvxf/e+L9HtVJdsH1/4cE22FNjU7PHRnpHIuLrJzs9qr6pPpLhZM6Ya1UDAAAAAADwsORaEslwEn9660/j2OvHFgxXREQ0HGqItp62eO3T12LkZyNR+dtKKvOnHrC4fv165PP56O3tjcbGxjhx4kQ0NjbO6dPY2BhXr16NxsbGeOutt9JeAgAAbAstHS1R7C9GS0dL7K7f/cT+M0+TPdx5eMH2mafJrkcNAACwNLvrd0e1Uo1yUl5yzWdjn0Umm1m0fSYQMTkyueY1AAAAAAAADxvrG4vvX/t+ZPYu/jOHh+XyuSheLcZw13Aq86casLh161a0t7dHR0dHTExMxKeffhrvv/9+nD59esH+M+GL69evp7kMAABgAZ5aCwAAm98rQ6/EaxOvzdstbkYlqUREzGkvJ+XHhrJnQhEPhzbWqgYAAAAAAOBhtVptyeGKGQ2FhqjVaqnMn2rA4o033oienp64dOnSnF0r6urqFq05ffp09Pf3p7kMAABgAZ5aCwAAG9e9r+7FV198NfvrH//hHxftu1iYOSJifGA8GgoNc/pMl6Yf+xl9JhTxcAh6rWoAAAAAAAAe9rifgzyNukftTGWUf1Iul+PcuXPLrksrLQIAACzOU2sBAGDj+uDCB/HzP//57Ou7O+4ue4wbF29ERMSpy6fmHF9qoOHLz79c8xoAAAAAAIA5Ft/b4enUPSLVgEU+n19RXbnsxioAAHjYva/uxe+++t3s68c9vXappkvTj01qL/YE2rWoAQCA7e74+ePx7T/79uzr3/72t/GTf/mTJddPjU3FcPdwFPuL0VBoeBpLBAAAAAAAeOpy+VxUblci+83skmu++uKrxz4QdjlS38FiJZIkSXMZAACw6aXx9NpHeWotAABsXDt37Yydu77+lv0zv/fMsur7i/1xsvdkNLc3z2vLZDNL+py+Z9+eNa8BAAAAAAB4WMu5lhh+Yzj+8N//Yex6dteSaoa6hqLtYlsq86casMjlcvHXf/3X8Z3vfGfJNefPn48TJ06kuQwAANj0Vvv0WgAAYPvoL/ZHS2dLtHS0LNj+pCc2TZemI+JBQGKtawAAAAAAgO2jcruypH7Pn33+wc8/ftASucbcov3KSTk+vvJxtPa0LjmM8SSpBiy6urripZdeisuXLy8pZPHWW2/FwMBA/OY3v0lzGQAAsOmt9um1C/HUWgAA2HqGuofiwJEDcazr2KJ9cvlcTI5MLto+8/k9l//6BxRrVQMAAAAAAGwfvYXe+OruV0vqW6vVIhlOntgvk83ESO9I/OH5pe948TipBizy+XxcunQpTpw4EYcPH46zZ8/GoUOHolKpxO3bt6NSqUSpVIqxsbHo7e2NJElidHQ0zSUAAACL8NRaAADYWkb7RqO+qX7BnSuqlersZ+79hf2P/QFEOSlHRES+NT97bK1qAAAAAACA7WN3/e6oVqrR3N78xHuMlqNarsbHVz+OwquFVY+VasAiIqK1tTWuXr0aHR0d0dXVNXu8r69v9ve1Wi3y+XyMjIzECy+8sKr5KpVKXLhwISIi9u3bFxMTE9HW1hbt7e2rGvdRnZ2d0d3dHfm8H/wAALA5eWotAABsHeMD4xERC4Yrykk5psamorm9OSIiDp49GB9e/DCmxqaiodAwr//kzcl5oYe1qgEAAAAAALaPXD4Xx984nkoQ4mnZ8TQGbW9vj1KpFBcuXIgXXngharXa7K/Gxsbo6emJTz/9NA4dOrSqeSqVSrS0tMTZs2ejp6cnurq6ore3N4aGhqK7uzulP03E2NhY9PX1RaVSSW1MAABYa/sL+2fDDQtZ7Am0a1EDAAAs3dTYVEyXphcMV0REJMPJnIBDQ6Eh8q35+PWVXy/Yf3xgPI51H5tzbK1qAAAAAACA7SOXz234h7I+lYDFjK6urhgdHY379+/P/vr000/j9ddfT2X8YrEY7e3tUSjMTbD09vZGX19fDA8PpzJPmmENAABYLwfPHoyIBzdjLWSxJ9CuRQ0AALA05aQc/cX+mBydjMHOwXm/+ov9Mdw9PO+HE8X+Ynwy8Mm8z+mDnYNxtOvogp/R16oGAAAAAADYHk5eOhmNLzau9zIea2eag3300UeRJEl873vfS3PYBSVJEsPDw9Hb27tg+5kzZ6KnpydaW1tXNU9fX18Ui8XUwhoAALBeHn6a7MNPs50xPjAerwy9si41AADA0rzT9k6Uk3KU+8qL9lnoyU+ZbCY6RjtiqHsoMtlM7Nm3J0oTpWhqa4rm9uYFx1mrGgAAAAAAgI0i1YBFe3t71NXVrShg8dZbb8WFCxeiUqlENpuNt99+O/7tv/23i/afCVbk8ws/7aqpqSn6+vpmx1uJJEkeOwcAAGwU5eTBzVXVSvWx/Yr9xehr6YuDZw/OCT886Qm0a1EDAAA82WsTr624NpPNxKneUxuyBgAAAAAAYDU+ee+TeO57z616nFQDFp2dnfH6668vu+7MmTPxn//zf45z585FW1tb/PKXv4xXX301stlsfOc731mwZmxs7LHBiZlQxMjIyIp3sejt7Y2enh67VwAAsCGND4zHaO9oRERMjkxGRMTgucHZY83F5mjpaJlT46m1AAAAAAAAAADAVjN4bnDjBSxKpdKya371q1/FwMBAdHZ2xs9+9rOIiDh9+nScPXs2zp49G7/5zW8WrEuSJOrr6xcddyZ8MbMLxXLNrAkAADaq5vbmFYUVPLUWAAAAAAA2n3JSjg96PoiIiGqpGtVKNfJt+TjWdWzRmmqlGr+48IuIiCU/DGklNQAAAMvx2Uefxf4X9i/athzTpekoJ+WoVqppLC3dgMXhw4fj+vXrERHR09MTIyMjUalUoq2tLbq7uxfcjeLKlStRV1cXPT09c44XCoXo6OiI9957L773ve/NqyuVSrO7VCxkJnxRqVSW/eeoVCqRJEm0t7cvuxYAAAAAAAAAANI0PjAed27emfdgo76WvhjtHY3XJl6bV1OtVKOvpS+K/cVoKDTMHh/sHIw7N+9EW09bKjUAAADLMfzGcHz44w+joaUhzv3y3Lz2//jif4yv7n61Dit7INWAxenTp+Oll16Ka9euRa1Wmz3+/vvvx9DQUHR3d8d/+A//YU7N8PBwFAqFePbZZ+eN9/rrr8fZs2cXDFgsNTjx+eefL+8PEREXLlyYF/hYjul70/EP9/5h9vUzO56JZ77xzIrHg9Wq1dXi/v37ce/evfVeCsy6d++e85INybnJRnX//v31XgKP4RrgAV87H/BvCY9yTvAo5wSPck6wENcAG9uXv/sydt3bNft6u14DbCa1ulrUovbg++Xh/6/Nxvu3eXnvNi/v3eblvdu8anW1RduqlWp8fOXjKPYX57Wdunwq+lr6YrBzcF74or/YH8+1PzcnKBERcar3VPTkeqKprSnyrflV12wXd+/ejVKpNPt6165dsWvXrsdU8LTcr9u8X998nX46tuv31XxfkTQ5n0iT82lptvPfTzkpR61Wi2p54R0ndtfvjoiIlo6WB6/37X7seNOfT0d5ohyfvPdJKutLNWBx9+7dGBkZmQ1GHDp0KCIibt26FUNDQ/HGG29EW1vbnJ0skiSJs2fPLjpmLpdLc4lPNDw8HG1tq0vbd//f3XNe/+vCv45/c/jfrGpMWI1a1OLebx98Id6xY8c6rwYeuH//fvz2t7+NCOclG4tzk41qJcFh1o5rgAc++OCD9V7ChuDfEh7lnOBRzgke5ZxgIa4BNjbXAJtPLWox/fvTUYpS1EXdei+HZfL+bV7eu83Le7d5ee82r7+f/vtF2yZHJmN8YDyGuofm7SAxE4S4NXxrzvFyUo5kOImTvScXHLP5THPc6LkxJyyxkprt5IUXXpjz+o//+I/jT/7kT9ZlLdtdqaH05E4blK/TT8d2/RmV7yuSJucTaXI+Lc3D4d3t5tTlU5Fvyy96bZHL5+L4G8ej8GphWeNe3HcxjeWlG7B4880349q1a7PBihmNjY3R0dERZ86cic7OzjkBi0qlEtlsdtEx6+oW/iCZzWaXtIvFvn37lrT2GUNDQ6vavSIioud/6olc5utgyDM7nolnpjy5ivVTq6vFgf/hQBw9ejR27kz1f3tYsZn0pfOSjca5yUY1c+HJxuQa4IHjx4+v9xI2BP+W8CjnBI9yTvAo5wQLcQ2wsbkG2HxqdbUoRSnqP6uPupqbmDYb79/m5b3bvLx3m5f3bhObXrxpd/3uyGQzsWffnkX7ZLKZOa9Hekci4sGNSQupb6qPsb6xqFaqs7UrqdlOPvroo/iDP/iD2dd2sFg/d/7iznovYcV8nX46tuvPqHxfkTQ5n0iT82lp/u7v/m69l7BuMnsz0XKuZdH2fFs+Dhw+sOxxs43ZVazqa6meteVyeV644mHZbDa1HSnq6+sf2z6T6nlceONRFy9ejPPnz69mWRERsXvn7vi9nb839+DiOznCU3c/7seOHTti586d/rFiQ3FeslE5N9mIJPo3NtcAD/i6+TX/lvAo5wSPck7wKOcEj3INsLHt+cYe1wCbzP24H3VRF3W1uthR8//XZuP927y8d5uX927z8t5tXo+70bqh0BDd5e4F26bGpiIiorG1cc7xz8Y+e2wIYiZEMTkyOfvU2JXUbCd79+594v1KrI3N/PXN1+mnYzt/T833FUmT84k0OZ+ezN/N4o69fmxFdR0jHanMn+qntKWEJxbbkWK58vn8Y7dGmdndIp9f2gVdkiSRzWaXFcgAAAAAAAAAAID1Mtw9HLl8Ltp62uYcLyfl2F2/e9G6mSBFOSmvqgYAAOBp+OS9T6Jyu7Iuc6cafanVavE3f/M38a/+1b9asP2LL76Izz//fFljLta/UCjE8PDwonVJkkRERGtr65LmGRsbi/7+/ujv7190rHPnzs0m0YeGhpY0LgAAAAAAAAAAPOz+7+5H7f7X26Ddv3d/WfXlpBwf9HwQ2Xw2Xhl6ZV77dGl6dseJhcwEKaqV6qpqAAAA0vZXP/irGLs8FplcJrr+W9eaz59qwKKjoyMOHz4c/8v/8r/E6dOn45vf/GZEPAhWXL16Nbq7u+cEGH71q19FxNcBhke99957ceTIkQXbzp49GxcvXoyxsbEoFArz2m/evLnkcEVERHt7e7S3ty/YNjAwEMViMS5fvrzgXAAAAAAAAAAAsFSlT0tR+k1p9vXduLukuvGB8bhz805Ukkpk89loamtasN9SQxBffv7lqmoAAADSNl2ajsYTjdFQaFiX+VMNWOTz+XjzzTfjBz/4QXR1zU+LHDp0KMbGxqK+vj5u3rwZPT09s4GFv/3bv41/8S/+xWzfu3fvRnd3d4yOji44V6FQiNbW1rhy5cqCoYeBgYEFd5moVCpx4cKFaGtrW1YAAwAAAAAAAAAA0lD/rfo5u0WUqqWInz+5rrm9OZrbm2dfv9P2Toz2jsapy6cik808jaUCAACsqVw+F61vrt99/jvSHrCjoyNGRkbixRdfjFqtFrVaLRobG+PSpUsxMjISp0+fjr/8y7+M0dHR6O7ujpGRkeju7o5CoRD/5//5f8bt27fj+vXrcfjw4Th9+nQ8++yzi87V398fAwMDMTY2Nud4Z2dndHV1LRig6Ovri4sXL0axWFzyn2lmh43FdtoAAAAAAAAAAICl2vGNHfGNZ74x+2vHzpXdwlPsL8b4wHj0F/vnHM9kM0vakWLPvj2rqgEAAEjb7n27o3K7suy6i/supjJ/qjtYzCgUCgvuHhER0djYGG+++ea8/r29vXHmzJmoq6uLiIhz587N6/eobDY7G9TIZrOxb9++mJiYiLa2tmhvb1+wprW1NbLZbJw5c+aJf47Ozs5IkiRGRkZm19Tb2xuFQiF6enqeWA8AAAAAAAAAAE9LJpuJ5vbmGB8Yj2Q4iXxrPiIidtfvfmzddGl6tn7GSmoAAADSduz1Y9F/pj8O/+BwNL7YuOS6Wq2WyvxPJWCxEu3t7XH//v24du1a5PP5aGxc2l9GNpuN3t7eJc9TKBSiXC4vqe9yxgUAAAAAAAAAgLRVK9WYLk1HLp9bsD2bz0ZExMTQxGzAIpfPxeTI5GPHnOk3YyU1AAAAT0PxajE+fOvDGO0djQNHDkRDoSF21+9eNPA9MTQRX939KpW51yVg8YMf/GB2p4q2trb43ve+N9t24sSJ9VgSAAAAAAAAAABsOD25noiI6C53L3gz0Z59eyLi6wBERMT+wv5IhpNFxywnDx5OOhPIWGkNAABA2v58x5/PZg1qtVqMD4yv6fzrErC4dOnS7O+vXbsWb7/9drz66qvrsRQAAAAAAAAAANiwMtnMY5/UWpooRUTEgZYDs8cOnj0YH178MKbGpqKh0DCvZvLm5LygxEpqAAAA0pbL56KclKO5vTl21+9eUs3kzcn47KPPUpl/XQIWDztx4kQcOXJEwAIAAAAAAAAAAB5R6CjE4c7Di7aPXx2PTDYTz595fvZYQ6Eh8q35+PWVXy8YlhgfGI9Xhl6Zc2wlNQAAAGnL5XNx/I3jUXi1sKy6i/supjL/UwtYfPTRR5Eki28bWCqVolKpxJUrV6K+vv5pLQMAAAAAAAAAADattp62GOwcjOeLz8/bQaK/2B8REd+/9v15O1wU+4vR19IXB88enBOYGOwcjKNdRxfcjWIlNQAAAGnK5XORy+eWXZfJLbzr33KlHrC4fft2tLW1PTZc8bDGxsbo7+9PexkAAAAAAAAAALAlnOo9FeMD49Ff7I9MfSaqpWpUK9XYX9gff3rrT+eFKyIiMtlMdIx2xFD3UGSymdizb0+UJkrR1NYUze3NC86zkhoAAIA0nbx0ckV1r336Wirzpx6waG1tjVKpFKdPn44jR45ENpuN/v7+aGtri2w2GxERlUolhoaGIpvNxtWrV9NeAgAAAAAAAAAAbCnN7c3LDjlkspk41XvqqdcAAABsFakGLC5fvhz5fD5GR0dj7969c9rOnj0bzz777Ozr119/PW7duhXnz5+PCxcupLkMAAAAAAAAAAAAAABgi0muJZEMJRF1EfVN9XHg8IHY/8L+1MbfkdpIETEwMBADAwPzwhX5fD5GRkbm9W9sbIyOjo54++2301wGAAAAAAAAAAAAAACwyVzcd/Gx7fkT+Wh9szWOv3E8Gk80xp2bd+KvfvhX8dUXX6Uyf6oBi8bGxjm7VMyor6+PoaGhRWsmJibSXAYAAAAAAAAAAAAAALDJ1Gq1JfXL7M1ErjEXLedaovXN1hjqXjivsFypBixyudyCxw8dOhTDw8NpTgUAAAAAAAAAAAAAAGwhdXV1y67J7M2kNn+qAYvHpUVaWlriv/yX/7JgW5IkaS4DAAAAAAAAAAAAAADYBqp3qzE1MpXKWDtTGeWftLW1xXvvvRff+9734u23346hoaG4fPlyPPvss9He3h7f/e53Y3h4OL7zne/M1ly7dk3AAtbAf333v8adv7gTO2qp5qqW5eXBl9dtbgAAAAAAAAAAAABg/VVuVxY8PrPhQ+VvKxGL7/0QERHVSjWmS9MxNTYVH1z4IJrPNKeytlQDFidOnIgf//jH8eMf/zi6u7ujrq4u2tra4tVXX43W1tZ48cUXo7W1Ndra2uLQoUORJEkMDAxEb29vmssAAAAAAAAAAAAAAAA2oMnRyZi8ORnlpBzJcBJf3f1qTvtP8z9d8li1Wi3yrfk4+bOTqawt1YBFRMTrr78ev/rVr+L111+Pu3fvxpkzZ2bbBgYG4sUXX4z3338/hoaGolarRaFQiFdffTXtZQAAAAAAAAAAAAAAABtM8+nmaD799Y4TU2NTMdw9HMm1JOrq6uK5088taZxcPhf5tnzkT+RTW1vqAYuIiEOHDsWhQ4fmHd+7d2+Mjo7GwMBADA8PR1NTU3R0dDyNJQAAAAAAAAAAAAAAABtcQ6EhXhl6JQY7B+OTgU+ieLW4bmt5KgGLJ2lvb4/29vb1mBoAAAAAAAAAAAAAANhgTvWeiqnRqXVdw460B3zvvffi9u3baQ8LAAAAAAAAAAAAAABsYcfPH1/X+VPdweIHP/hBXL58OXK5XPy3//bf0hwaAAAAAAAAAAAAAADYwppPNz+xz63rt6KclCOXz8WBwwdi17O7Ups/1YBFqVSKEydORKFQSHNYAAAAAAAAAAAAAABgixt+Yziqd6tzjp382cmIiKjercY7re/E1NhU1Gq1yOVzUS1XozhQjMbvNKYyf6oBi3w+H2+++WaaQwIAAAAAAAAAAAAAANtAS2dL/LTpp9HS2RItHS3RcKhhtq2/2B+To5NxrOtYtL7ZGhER1Uo1+s/0R64xF9lvZlc9/45Vj/CQffv2xe3bt1dUBwAAAAAAAAAAAAAAbF+f/eqzKPYX4+TPTs4JV4z/5/FIhpN4vvj8bLgiIiKTzUTxajE+6PkglflT3cHi9ddfjzNnzsQPfvCDePHFF5dcV6vV0lwGAAAAAAAAAAAAAABsaoOdg/F88fnIt+Yf269aqcYvLvwiIiL27NsTpYlSNLU1RXN787rXLNedm3ei9ULrvOMfX/k46urq4vj54/PaMtlMZPZmUpk/1YBFRMTVq1fjrbfeit7e3jhy5EgUCoWor6+PbDa7YP+hoaG4e/du2ssAAAAAAAAAAAAAAIBNpZyUIxlOYrR3NKbGpuL54vOP7V+tVKOvpS+K/cVoKHy948Ng52DcuXkn2nra1q1mRRbZuyEZTiIiYv8L+xfuUJfO9KkGLHbs2BF1dQ9WVqvVYmBgIM3hAQAAAAAAAAAAAABgSxrtG41kKIl8Wz5ae1rjnbZ3nljTX+yP59qfmxN6iIg41XsqenI90dTWNG8HjLWqWYnd+3bPO1a+VY5qpRoHWg4sWletVFc9d0TKAYt8Ph9JkkR7e3vU19cvqebmzZvx0UcfpbkMAAAAAAAAAAAAAADYVFo6WqKloyUiIqbGpp7Yf2a3i5O9Jxdsbz7THDd6bswJPqxVzUrNbPjwsPGB8YiIaGxtXLxwkZ0vliv1gMUbb7wRr7766rLq9u3bl+YyAAAAAAAAAAAAAABgSxvpHYmIiFw+t2B7fVN9jPWNRbVSjUw2s6Y1K/Xlf/syvvriq9j17K7ZY6O9o1FXVxcHzx5csGb4/HC0dLasat4ZO1IZ5Z/k8/nI55efOsnlFv6LBgAAAAAAAAAAAAAA5vts7LPHBhpmAhGTI5NrXrNSx88fj/5if3z2N5/FZx99FgNnB6KclKO5vTn2v7B/Tt/PPvos/tN3/1Ps2bcnGg41rHruiJR3sLh06dKK6j799NM0lwEAAAAAAAAAAAAAAFtaOSnH7vrdi7bPhCLKSXnNa1YqszcTJy6ciKunr86O93zx+Wi/0j7b569+8FeRDCez7clwEl9+/mW0Xmhd9fypBiwW8sUXX0SpVIpvfvObT3sqAAAAAAAAAAAAAADYUO59dS9+99XvZl//97//76mMO12ant09YiEzoYhqpbrmNavRUGiI1z59Lap3q5HZO3/njGPdx+JY97EF17BaTyVgcfv27ejp6Ym+vr6IiKirq4t79+7Ntt+6dSu6u7vjpZdeildfffVpLAEAAAAAAAAAAAAAANbdBxc+iJ//+c9nX9+Nu6mMu9RAw5eff7nmNWlYKFwREZFrXDzssVqpByyuX78era0PttbI5/ORz+fj1q1bc/o0NjbG1atX49q1a/HWW2/Fj370o7SXAQAAAAAAAAAAAAAA6+74+ePx7T/79uzrO3fuxE+af7KOK9p6Pnnvk3jue8+tepwdKaxl1q1bt6K9vT06OjpiYmIiPv3003j//ffj9OnTC/Y/ceJENDY2xvXr19NcBgAAAAAAAAAAAAAAbAg7d+2MXc/umv31z37/n6UybiabWdLuEnv27VnzmrU2eG4wlXFS3cHijTfeiJ6enjh37tyc43V1dYvWnD59On74wx/Giy++mOZSAAAAAAAAAAAAAABgy9pdv/ux7dOl6Yh4EJBY65rH+eyjz2L/C/sXbVuO6dJ0lJPykgIgS5FqwKJcLs8LVyxFrVZLcxkAAAAAAAAAAAAAALCl5fK5mByZXLR9JnSQy+fWvGYxw28Mx4c//jAaWhri3C/nZw/+44v/Mb66+9UTx3laUg1Y5PP5FdWVy+U0lwEAAAAAAAAAAAAAAFva/sL+SIaTRdvLyYP79POtX9/nv1Y1j+tbq9WiWl54x4mZ3TJaOloevN73hN0zPp+O8kQ5PnnvkyfOvRSp72CxEkmy+F82AAAAAAAAAAAAAAAw18GzB+PDix/G1NhUNBQa5rVP3pycF3pYq5rFnLp8KvJt+UX75/K5OP7G8Si8WljSeDMu7ru4rP6L2ZHKKP8kl8vFX//1Xy+r5vz583HixIk0lwEAAAAAAAAAAAAAAFtaQ6Eh8q35+PWVXy/YPj4wHse6j61LzWIyezPRcq4lco25Bdvzbfk4cPjAksZ6WLYxu+yahaS6g0VXV1e89NJLcfny5fjOd77zxP5vvfVWDAwMxG9+85s0lwEAAAAAAAAAAECK3j317novAQBgWykn5YiIqFaqj+1X7C9GX0tfHDx7cM7uEoOdg3G06+iCO0WsVc1KHHt9aUGNR3WMdKQyf6oBi3w+H5cuXYoTJ07E4cOH4+zZs3Ho0KGoVCpx+/btqFQqUSqVYmxsLHp7eyNJkhgdHU1zCQAAAAAAAAAAAAAAsOmMD4zHaO+D++snRyYjImLw3ODsseZic7R0tMypyWQz0THaEUPdQ5HJZmLPvj1RmihFU1tTNLc3LzjPWtVsRqkGLCIiWltb4+rVq9HR0RFdXV2zx/v6+mZ/X6vVIp/Px8jISLzwwgtpLwEAAAAAAAAAAAAAADaV5vbmFYUVMtlMnOo9tSFrlqNyuxLJcBKliVJUksqDOeszUd9UHw2Fhmh8sfGpzT0j9YBFRER7e3u0t7fHxYsX48qVK/GrX/1qti2fz0dnZ2e8/vrrT2NqAAAAAAAAAAAAAABgE/jqi69itG80PrjwQVQr1Sf2b+lsiWNdxyL7zexTWU+qAYvr16/Hiy++OPu6q6trzi4WAAAAAAAAAAAAAAAAY2+PxV91/lVERNRqtTltmWwmdtfvjunS9JzgxcilkRjtHY1j3cfixH84kfqaUg1YtLW1RaVSid///d9Pc1gAAAA2gXdPvbveS4iXB19e7yUAAAAAAAAAAPAEA2cHYnxgPGq1WuRb85Fvy0e+NR8NhxoW7F+9W41kOImJ9ydi7PJY3Oi5EclwEud+eS7Vde1Ic7C9e/dGd3d3mkMCAAAAAAAAAAAAAABbxH/67n+Kj/s/judOPxevTbwWr7z/Shx7/dii4YqIiMzeTDSfbo5Tvafif73/v8a3f/TtmByZjMv/4+VU15ZqwKJSqURvb28cOXIkrl+/nubQAAAAAAAAAAAAAADAJnbjxzdiYmgiTvWdiuLVYuQacysap62nLV55/5WYHJmMa//+WmrrSzVgERHR29sbw8PDMTExES+99FK89dZb8cUXX6Q9DQAAAAAAAAAAAAAAsElU71ZjuHs42i62ReHVwqrHy7fmo3i1GDd6bkTldmX1C4yUAxa9vb3x6quvxt69e+PcuXPx/vvvx4kTJ6KrqyvOnj1rVwsAAAAAAAAAAAAAANiGRvtGo6HQEEd/dDS1MZvbm2P/of0xPjCeynipBizOnTs379ihQ4fi0qVLceXKlZiYmIgzZ87Y1QIAAAAAAAAAAAAAALaRj698HH/47/8w9XGPv3E8Pr7ycSpjpRqweJJz587F1atXZ3e1+OEPfxh/8zd/s5ZLAAAAAAAAAAAAAAAA1ljlViXyrfnUx8235aOclFMZa00DFjOampqiqakprly5EoVCIY4cObIeywAAAAAAAAAAAAAAANZAtVKNXc/uSn3czN5MVCvVVMbamcooS3T9+vXo7e2NgYGBiIio1WrR0dERnZ2da7kMAAAAAAAAAAAAAABgDe3am364Iu2xUw1YXL9+PV588cU5x7744ovo6+uLCxcuRKVSiVqtFoVCITo7O+PcuXNpTg8AAAAAAAAAAAAAAGxAdXV1G37sVAMWbW1t8bvf/S4i5u5WUavVIiJmd6s4dOhQmtMCAAAAAAAAAAAAAACsSqoBi71798aRI0ciSRK7VQAAAAAAAAAAAAAAAJtGqgGLiIjR0dGIsFsFAAAAAAAAAACkYWpsKkZ6R6JaqsbU2FRksplo6WyJlo6WRWuqlWr84sIvIiJiz749UZooRVNbUzS3N6daAwAAsFTVSnXDj516wKKzszN+9rOfpT0sAAAAAAAAAABsO6N9Dx52eqr31OyxZDiJ/mJ/3Oi5ER2jHZHJZubUVCvV6Gvpi2J/MRoKDbPHBzsH487NO9HW0zZvnpXUAAAALEetVov/4//1f0Qun0t13HJSTm2sVAMWlUpFuAIAAAAAAAAAAFJQTspRrVTjWNexOcfzrfn4/rXvR19LX/QX++OVoVfmtPcX++O59ufmBCUiHoQ0enI90dTWFPnW/KprAAAAlqs0UYrSRCn1cevq6lIZJ9WARUdHR5rDAQAAAAAAAADAtjXSOxJ/eP4PF2xrKDREvjUfyXAS5aQ8+wTYclKOZDiJk70nF6xrPtMcN3puzAlLrKQGAABgJfKt+ci3pXttMfnLyfjkvU9SGSvVgMWlS5fSHA4AAAAAAAAAALatW8O3YqxvLP701p9GJpuZ176/sD+S4SSmxqZmAxYjvSMREbOvH1XfVB9jfWNRrVRnx1xJDQAAwHLV1dXFK++/8uSOK/C/feN/S2WcHamMskr79u1b7yUAAAAAAAAAAMCGsrt+d1Qr1Sgn5SXXfDb22WNDEDMhismRyVXVAAAALNeuvbs2/Nip7mCxUrVabb2XAAAAAAAAAAAAG8orQ69EOSkvurNEJalERERDoWH2WDkpx+763YuOOROkeDi0sZIaAACA5fr+te9v+LHXfQeLN954I+7evbveywAAAAAAAAAAgA1nsXBFRMT4wHg0FBrm9JkuTT92N4qZIEW1Ul1VDQAAwHI1HGp4cqd1HntddrC4fv169Pb2xsDAwHpMDwAAAAAAAAAA6+b+7+5H7X7t69f37i97jBsXb0RExKnLp+YcX2oI4svPv1xVDQAAwFa0ZgGLjz76KK5cuRJ9fX1RqVQiIqJWe3ChWFdXt1bLAAAAAAAAAACAdVX6tBSl35RmX9+Nu8uqnxqbiuHu4Sj2F6Oh8PSeAAsAALDdPNWAxe3bt2NgYCB6e3sjSZKI+DpU0draGp2dnVGr1eLs2bNPcxnABvHuqXfXewnx8uDL670EAAAAAAAAALa5+m/VRy6fm31dqpYifr70+v5if5zsPRnN7c3z2jLZzJJ2pNizb8+qagAAALai1AMWX3zxRVy9ejV6e3tjbGwsIr4OVeTz+ejs7IyOjo7Yu3fvbM3DvwcAAAAAAAAAgK1sxzd2RHzjodf3diy5tr/YHy2dLdHS0bJg++763Y+tny5NR8SDUMVqagAAALai1AIW7733Xly5ciUGBgYi4utQRTabjbt378bExER885vfXLC2v78/rWUAAAAAAAAAAMCWNNQ9FAeOHIhjXccW7ZPL52JyZHLR9pmdKh7eQWMlNQAAAFvR0uPvC7h+/Xr88Ic/jG984xtRLBajv78/arVa7N27Nzo6OmJ0dDRKpVLs3bt30XBFRMSJEydWswwAAAAAAAAAANjSRvtGo76pfsFwxUwAIiJif2H/nNePKifliIjIt+ZXVQMAALAVLTtgcfv27Th//nzs27cv2traoq+vL2q1WtRqtWhvb4+hoaEolUpx6dKlOHToUERE1NXVpb5wAAAAAAAAAADYDsYHxiMioqWjZV5bOSlHMpzMvj549mBEREyNTS041uTNyXlBiZXUAAAAbEU7l9rx8uXLcfHixUiSBxdktVotIiJaW1ujWCzGuXPnns4KAQAAAAAAAABgm5oam4rp0vSC4YqIiGQ4mRN+aCg0RL41H7++8utoKDTM6z8+MB6vDL0y59hKagAAALaiJQcshoaGYmJiIiIimpqaorOzM86dOxd79+59aosDAAAAAAAAAIDtqpyUo7/YH42tjTHZOTmvvVqqRjKcRHe5e87xYn8x+lr64uDZg3MCE4Odg3G06+iCu1GspAYAAGCrWXLA4urVqxER0dfXFwMDA3Hz5s0oFArx4osvPrXFAQAAAAAAAADAdvVO2ztRTspR7isv2ieXz807lslmomO0I4a6hyKTzcSefXuiNFGKpramaG5vXnCcldQAAABsNUsOWMzo6OiIjo6OuHv3bvT19cWbb745u6PFCy+88BSWCAAAAAAAAAAA289rE6+tuDaTzcSp3lNPvQYAAGAr2bHSwr1798brr78e77//fnR1dcVf/uVfxpEjR+L8+fNx+/btFJcIAAAAAAAAAAAAAADwdC17B4uFNDY2xptvvhkREb/61a/izTffjFu3bkVbW1ucO3cujSkAAAAAAAAAAAAAAACemhXvYLGYQ4cOxaVLl+L/+r/+r2hsbIxz585FrVaLt99+e9Gat956K+1lAAAAAAAAAAAAAAAALFnqAYuHnT59Oq5evRq3bt2KWq0WL730Upw9ezauX78+2+fWrVvR3d39NJcBAAAAAAAAAAAAAADwWE81YDFj7969ce7cuXj//fejr68vRkdH46WXXorvfve78a1vfWstlgAAAAAAAAAAAAAAALConWs94d69e+P111+P119/PYaHh+OXv/xlfPHFF2u9DAAAAAAA2PQGOwfj+eLzkW/NP7ZftVKNX1z4RURE7Nm3J0oTpWhqa4rm9uZ1rwEAAAAAANgo1jxg8bDW1tbo7++P7373u+u5DAAA2LRG+0ZjvH88WjpbIt+aj0w2E+WkHFNjU/HxlY/j+Pnj0VBomFfnRikAANi8ykk5kuEkRntHY2psKp4vPv/Y/tVKNfpa+qLYX5xzfTDYORh3bt6Jtp62dasBAAAAAADYSNY1YBHxIGSxd+/e9V4GAABsStVKNZLhJJLhZM7xTDYz76amh2vcKAUAAJvTaN9oJENJ5Nvy0drTGu+0vfPEmv5ifzzX/ty864NTvaeiJ9cTTW1N83bAWKsaAAAAAACAjWTdAxYREdeuXVvvJQAAwKZ1svdklCZKUUkqkanPxIGWA9HS0bJofzdKAQDA5tXS0TL7eX9qbOqJ/Wd2uzjZe3LB9uYzzXGj58acz/NrVQMAAAAAALDRbIiAxaFDh9Z7CQAAsGk9f+b5yGQzS+rrRikAANheRnpHIiIil88t2F7fVB9jfWNRrVRnryvWqgYAAAAAAGCj2bHeCwAAANbOUm56SoaTqFaqq6oBAAA2hs/GPntsoGHmc/7kyOSa1wAAAAAAAGw0AhYAALCNuFEKAAC2l3JSjt31uxdtn/msX07Ka14DAAAAAACw0exc7wWsVqVSiQsXLkRExL59+2JiYiLa2tqivb19xWOOjY1Fb29vlEqlGBsbi2w2G52dndHR0ZHWsgEAIHVTY1MxOTIZBw4fiIZCw4J93CgFAAAb072v7sXvvvrd7Ot//Id/TGXc6dL0orvRRcTsZ/2Hd6RbqxoAAAAAAICNZlMHLCqVSrS0tER/f38UCoXZ452dnXHz5s3o6elZ9ph9fX0REdHb2zt7bHh4OIrFYvT09MTo6Ghks9lVrx0AAB5nOTdXJcNJlJNy5Fvz0dLRElNjU/FO2ztxrPtY5Fvzc/q6UQoAADamDy58ED//85/Pvr67424q4y71c/qXn3+55jUAAAAAaXj31LvrvYR4efDl9V4CAJCSTR2wKBaL0d7ePidcEfEgHJHL5aKtrS1aW1uXPF6SJFGpVKKrq2vO8dbW1rh27Vq0tLREsViMoaGhVNYPAACLWerNVTPBh2Ndx2aPNRQaothfjJ5cT3SMdszZzcKNUgAAsDEdP388vv1n3559/dvf/jZ+8i9/so4rAgAAAAAA2H42bcAiSZIYHh6es9PEw86cORM9PT3LClj09vbG+fPnF2wrFArR2toaw8PDkSRJ5PP5BfsBAEAalnpzVXN784L1mWwmmtubo7/YH69NvPbU1gkAAKRj566dsXPX19+yf+b3nkll3Ew2s6TQ9J59e9a8BgAAAAAAYKPZsd4LWKmZYMViQYempqYYHh6OSqWy5DGHh4ejsbFx0ZqZnTLGxsaWtVYAAFiunbt2xq5nd83+WsnNVQeOHIhyUo5yUp495kYpAADYXnbX735s+3RpOiIefO5f6xoAAAAAAICNZtMGLMbGxiKbzS7aPhO8GBkZWfKY9fX1UalUIkmS1S4PAADW3cyNS1NjU7PH3CgFAADbSy6fm/3MvpCZMHUun1vzGgAAAAAAgI1m0wYskiSJ+vr6RdtnwhfLCUsMDQ3FxMTE7E4VC80ZEYu2AwDAWhrsHIyfNv10WTVulAIAgO1lf2H/Y3ekm9nxLt/69W7Ra1UDAAAAAACw0exc7wWsVKlUmt2lYiEz4YtKpbKscR835sDAQBQKhcf2ATa2d0+9u95LiIiIlwdfXu8lALAFTI1MLSn40FBomD22v7A/kuHFQ8iL3Si13BoAAGBjOHj2YHx48cOYGpuac20wY/Lm5LzP8mtVAwAAAAAAsNFs2oDFUoMTn3/+eSrzXbx4MSIiLl++/MS+0/em4x/u/cPs62d2PBPPfOOZVNYBK1Grq0UtalGrq8X9uL/eyyEi7t27t95LWHf37t2L+/fv+7tgw3FuslHdvz//3/DG1sbo6OlYtGby5mRkspk5O0u4UerpcA2wcWyEr9/+LeFRzgke5ZzgUc4JFrLQNcBKNBQaIt+aj19f+fWCn+fHB8bjlaFX1qVmM/vyd1/Grnu7Zl+7Btj4fJ98c/P+bV7eu83Le7d5ee82r1pdbb2XwBPcvXs3SqXS7Otdu3bFrl27HlOx9dyv83VltXyd3rrW43t7vq9ImpxPpMn5tDT+fjauTRuwWEtjY2PR3d0d/f39USgUnti/+//unvP6Xxf+dfybw//maS0PnqgWtZj+/ekoRSnqom69l0NEfPDBB+u9hHV3//79+O1vfxsRETt27Fjn1cDXnJtsVAsFhw+ePRijfaPR0tEyr62clGN8YDyK/cU5x90o9XS4Btg4fvb//tl6LyFqUYtnv/1sRPi3hAd8vuBRzgke5ZxgIUt5eNDMbnIzu9ctpthfjL6Wvjh49uCcz/SDnYNxtOvogoHptarZrFwDbD6+T765ef82L+/d5uW927y8d5vX30///XovgSd44YUX5rz+4z/+4/iTP/mTdVnLeik1lJ7cicfydXrrWo97gXxfkTQ5n0iT82lpHg7vsrFs2oBFNptd0i4W+/btW/VcxWIxent7o729fUn9e/6nnshlvn5K8DM7nolnpjy5ivVTq6tFKUpR/1l91NVcnG0Ex48fX+8lrLuZ9OXRo0dj585N+88RW5Bzk41q5sLzYQ2FhkiGk7hx8UYc6zo2e7yclKOvpS+Odh2N5vbmeXVulEqfawAeVqurxYH/4YB/S5jl8wWPck7wKOcEC1noGiDiQcB5tHc0IiImRyYjImLw3ODsseZi87wQdiabiY7RjhjqHopMNhN79u2J0kQpmtqaFrxmWMuazco1wObj++Sbm/dv8/LebV7eu83Le7eJTa/3AniSjz76KP7gD/5g9vV23MHizl/cWe8lbHq+Tm9d63EvkO8rkibnE2lyPi3N3/3d3633EljEpj1r6+vrH9s+k+rJZrOrmqdYLEZnZ2d0dHQsuWb3zt3xezt/b+5BOzmyju7H/aiLuqir1cWOmjTgRuBDwwM7duyInTt3+vtgw3FushEtlug/1nUskuEkBjsHo1qqRrVSjUw2E9+/9v0Fd5uIcKPU0+AagIfdj/v+LWEe5wSPck7wKOcEj1rsGqC5vXlFn8Ez2Uyc6j21IWs2oz3f2OMaYJPxffLNzfu3eXnvNi/v3eblvdu83Gi98e3du/eJ9yttdb6urJ6v01vXen1fz/cVSZPziTQ5n57M383GtWnfmXw+HyMjI4u2z+xukc+v/Em63d3dceTIkejq6lrxGAAA8LTlW/PL3kHCjVIAAAAAAAAAAABzbdoYbKFQmA1RLCRJkoiIaG1tXdH4fX190dTUtGC44nHzAgAAAAAAAAAAAAAAm8+mDVicPXs2IiLGxsYWbL958+aKwxUDAwMREdHR0TGvLUmSGB4eXtG4AAAAAAAAAAAAAADAxrRpAxaFQiFaW1vjypUrC7YPDAxEd3f3vOOVSiW6u7sXDUmMjY1FqVRaMFwRETE8PByFQmHlCwcAAAAAAAAAAAAAADacneu9gNXo7++PlpaWOHv27JzQQ2dnZ3R1dS24g0VfX19cvHgx+vr6olwuz2lLkiSKxWK0trZGZ2fnvNpSqRTDw8Pz6gAAAAAAAAAAAAAAgM1tUwcsstlsjI6ORnd3d2Sz2di3b19MTExEW1tbtLe3L1jT2toa2Ww2zpw5M6+tra0tkiSJvr6+RefM5/OprR8AAAAAAAAAAAAAANgYNnXAIuJByKK3t3fJ/QuFwqI7UExMTKS1LAAAAAAAAAAAAAAAYBPZsd4LAAAAAAAAAAAAAAAAWG+bfgcLAAAAAAAAAAAAAADYCkb7RmO8fzxaOlsi35qPTDYT5aQcU2NT8fGVj+P4+ePRUGiYV1etVOMXF34RERF79u2J0kQpmtqaorm9edG5VlKz1QlYAAAAAAAAAAAAAADABlCtVCMZTiIZTuYcz2QzUewvLhqu6Gvpm9c+2DkYd27eibaetlRqtgMBCwAAAAAAAAAAAAAA2CBO9p6M0kQpKkklMvWZONByIFo6Whbt31/sj+fan5sXvjjVeyp6cj3R1NYU+db8qmu2AwELAAAAAAAAAAAAAADYIJ4/83xkspkl9S0n5UiGkzjZe3LB9uYzzXGj58acsMRKaraLHeu9AAAAAAAAAAAAAAAAYPlGekciIiKXzy3YXt9UH8lwEtVKdVU124WABQAAAAAAAAAAAAAAbEKfjX322N0uZkIUkyOTq6rZLgQsAAAAAAAAAAAAAABgg5kam4rRvtGYGptatE85Kcfu+t2Lts8EKcpJeVU124WABQAAAAAAAAAAAAAAPCX3vroXX33x1eyv//73//2x/ZPhJG5cvBERES0dLRER8U7bO5EMJ/P6TpemH7sbxUyQolqprqpmu9i53gsAAAAAAAAAAAAAAICt6oMLH8TP//zns6/vxt1F++byuYiIONZ1bPZYQ6Ehiv3F6Mn1RMdoRzQUGmbblhqC+PLzL1dVs10IWAAAAAAAAAAAAAAAwFNy/Pzx+PaffXv29Z07d+InzT9ZsG9ze/OCxzPZTDS3N0d/sT9em3jtqayTiB3rvQAAAAAAAAAAAAAAANiqdu7aGbue3TX765/9/j9b0TgHjhyIclKOclKePZbJZpa0I8WefXtWVbNd2MECYB28e+rd9V5CvDz48novAQAAAAAAAAAAAIAlymQzERExNTYVuXwuIiJ21+9+bM10aXpO7Uprtgs7WAAAAAAAAAAAAAAAwDob7ByMnzb9dFk1uXxuNhCxkJmdKmYCGSut2S4ELAAAAAAAAAAAAAAAYJ1NjUwtKfjQUGiYPba/sH/2+ELKSTkiIvKt+VXVbBc713sBAAAAsNX813f/a9z5izuxo7Z+zzV4efDldZsbAAAAAAAAAFi+xtbG6OjpWLR98uZkZLKZOTtLHDx7MD68+GFMjU3NCV48XPNoUGIlNduFHSwAAAAAAAAAAAAAAGCdHTx7MEb7RhdsKyflGB8Yj1OXT8053lBoiHxrPn595dcL1o0PjMex7mOrrtkuBCwAAAAAAAAAAAAAAGCdNRQaolqpxo2LN+YcLyfl6Gvpi6NdR6O5vXleXbG/GJ8MfBJTY1Nzjg92DsbRrqML7kaxkprtYOd6LwAAAAAAAAAAAHiywc7BeL74/BNvdKpWqvGLC7+IiIg9+/ZEaaIUTW1NC96ItZoaAAAgfce6jkUynMRg52BUS9WoVqqRyWbi+9e+Hw2FhgVrMtlMdIx2xFD3UGSymSV9pl9JzXYgYAEAAAAAAAAAABtUOSlHMpzEaO9oTI1NxfPF5x/bv1qpRl9LXxT7i3NuvhrsHIw7N+9EW09bKjUAAMDTk2/NL3sHiUw2E6d6Tz31mq1ux3ovAAAAAAAAAAAAmG+0bzSGu4cjIqK1p3VJNf3F/niu/bl5T7Y91XsqxvrGIhlOUqkBAADYiuxgAQAAAAAAAAAAG1BLR0u0dLRERMTU2NQT+8/sdnGy9+SC7c1nmuNGz405T8JdSQ0Ac7176t01n/N+3f0oNZTizl/ciR21B8/afnnw5TVfBwBsNXawAAAAAAAAAACALWCkdyQiInL53ILt9U31kQwnUa1UV1UDAACwVQlYAAAAAAAAAADAFvDZ2GeRyWYWbZ8JUUyOTK6qBgAAYKsSsAAAAAAAAAAAgC2gnJRjd/3uRdtnghTlpLyqGgAAgK1KwAIAAAAAAAAAANbQ/d/dj9/94+9mf92/dz+VcadL04/djWImSFGtVFdVAwAAsFXtXO8FAAAAAAAAAADAdlL6tBSl35RmX9+Nu6mMu9QQxJeff7mqGgAAgK1KwAIAAAAAAAAAANZQ/bfqI5fPzb4uVUsRP1/HBQEAABARAhYA29a7p95d1/nv192Pf/5n/3xd1wAAAAAAAACwHnZ8Y0fENx56fW9HKuNmspkl7UixZ9+eVdUAAABsVelcnQEAAAAAAAAAAOtqd/3ux7ZPl6Yj4kGoYjU1AAAAW5WABQAAAAAAAAAAbAG5fG42ELGQmZ0qcvncqmoAAAC2qp3rvQAAAAAAAAAAAGD19hf2RzKcLNpeTsoREZFvza+qBoCN6d1T7673EuLlwZfXewkAsCp2sAAAAAAAAAAAgC3g4NmDERExNTa1YPvkzcl5QYmV1AAAAGxVAhYAAAAAAAAAALAFNBQaIt+aj19f+fWC7eMD43Gs+9iqawAAALYqAQsAAAAAAAAAANjgykk5IiKqlepj+xX7i/HJwCfzdqQY7ByMo11HF9yNYiU1AAAAW9HO9V4AAAAAAAAAAAAw3/jAeIz2jkZExOTIZEREDJ4bnD3WXGyOlo6WOTWZbCY6RjtiqHsoMtlM7Nm3J0oTpWhqa4rm9uYF51lJDQAAwFYkYAEAAAAAAAAAABtQc3vzigIOmWwmTvWeeuo1AAAAW42ABQAAAGxB7556d72XEC8PvrzeSwAAAAAAAAAAWLId670AAAAAAAAAAAAAAACA9SZgAQAAAAAAAAAAAAAAbHs713sBAAAAAAAAAAAALO7dU++u9xIAAGBbsIMFAAAAAAAAAAAAAACw7QlYAAAAAAAAAAAAAAAA256ABQAAAAAAAAAAAAAAsO3tXO8FALB9/dd3/2vc+Ys7saO2vnm/lwdfXtf5AQAAAAAAAAAAAFh/drAAAAAAAAAAAAAAAAC2PQELAAAAAAAAAAAAAABg2xOwAAAAAAAAAAAAAAAAtj0BCwAAAAAAAAAAAAAAYNvbud4LAAAAAAAAAAAAAGDze/fUu+u9hHh58OX1XgIAm5gdLAAAAAAAAAAAAAAAgG1PwAIAAAAAAAAAAAAAANj2BCwAAAAAAAAAAAAAAIBtb+d6LwAAAADYmt499e56LyEiIl4efHm9lwAAAAAAAAAAbAICFgBsexvhxj83/QEAAAAAAAAAAACsrx3rvQAAAAAAAAAAAAAAAID1JmABAAAAAAAAAAAAAABse///9u7nt7EsPwz9V4WOxza8uKraeDCAgaa8iREgGKrrPS+8axLIIrMxyCoMkCz84CJ3XnghooD31gVqYSNLqv6AQRW5mgGSwOQgD5gEeIAkbsZJVrrjIOjJDJKW7uLZ3eOZKb5FvcvRD0qk+PNS+nwAobv46x7xfO/ROefe7zkSLAAAAAAAAAAAAAAAgEdPggUAAAAAAAAAAAAAAPDofbLpAgAAAAAAAAAAAADAMnzvO9/bdBHiuz/47qaLAMCcJFgAAAAAD9qmJ9E/7HyIb/3ltzZaBgAAAAAAAABguiebLgAAAAAAAAAAAAAAAMCmSbAAAAAAAAAAAAAAAAAePQkWAAAAAAAAAAAAAADAoyfBAgAAAAAAAAAAAAAAePQ+2XQBAAAAAAAAAAAAAABYre9953srP8aHnQ9x/s3z+OKvvogno5t7AXz3B99deRlgEXawAAAAAAAAAAAAAAAAHj07WABAAawjM3hbyFAGAAAAAAAAAAAANkGCBQAAAAAAAAAAAAA8MLMu+vph50Ocf/M8vvirL+LJ6MlSy2CxVWDbSLAAAAAAWLEff+/HK5mQvg+T1wAAAAAAAABwNwkWAAAAAAAAAAAAAMCDNOtOHqtmQTTYDptbNhEAAAAAAAAAAAAAAKAg7GABAAAAAAAAAAAAAMDK2VGEopNgAQAAAPAIFGGi0iQlAAAAAAAAAEX2ZNMFAAAAAAAAAAAAAAAA2DQJFgAAAAAAAAAAAAAAwKP3yaYLAABw2fe+872NHv/Dzof41l9+a6NlAAAAAAAAAAAAANZPggUAAAAAa7HpZNrcd3/w3U0XAQAAAAAAgEemKNfKgLs92XQBAAAAAAAAAAAAAAAANs0OFgAA1/z4ez+OL/7qi3gy2lwuqlWVAQBWZ9OrA33Y+RDf+stvbbQMAAAAAADA6mz6WgQA85NgAQBQQEUZaEv0AAAAAAAAAABgXkW5BwZgVhIsAAAAAGDN7JoGAAAAAAAAUDwSLAAAuFURVhFw4x8AwGoUoa8Xob8HAAAAAAAAFIcECwAACq0IN/656Q8AAAAAAAAAAODhe7LpAgAAAAAAAAAAAAAAAGza1u9gkWVZvHnzJiIinj17FmdnZ1GtVqNWqxXqMwEAYFW+zr6OH735UURE/O6z343zs/PYq+7FH9X+aMMlAwCYzo5lMB/jAAAAeFyMAQAA4HExBticrU6wyLIs9vf3o9vtRrlcHj/ebDbj+Pg42u12IT4TAABW5evs6zjaP4p6tx7fLH9z/PgPmj+IL46/iGq7usHSAQBsh00neXzY+RDf+stvbbQMbBfjAAAAeFyMAQAA4HExBtisrU6wqNfrUavVriRCRER0Op3Y3d2NarUalUpl458JAMB22/QNdxER/+vr/zXx8W69G/+09k+vDKYiIr7T+U60d9uxV92LUqW0jiICALCAH3/vx/HFX30RT0ZPNloOu3lsB+MAAAB4XIwBAADgcTEG2KytTbBI0zQGg0F0Op2Jz7948SLa7fa9kiEW/cx//Md/jIiIX3745czHhHX45a9/Gf/25N/Gy99/Gd948o1NFwciQlxSXGKTosr7mHmfMyLiIr2IdJDGv+z8y4nv+aMXfxT/qf2fDKhWyBiASfwt4ToxwXViguuKFBNFSC4ugiIkmuR9zctjgAjjAJhXkdpa7k/9bS91t73U3fZSdw+PMcDm3TY+g3lop1km8cQyiSeWSTwtxhhg87Y2wSJPgiiVJgfH3t5eHB0dRZZlkSTJWj7zF7/4RURE/OrDr2Y6HqzLLz/8Mv798N/Hn/6LP/XHisIQlxSV2KSo8j5m3ueMiDjpnERExG5pd+J7nu49jeHRML7Ovo7fTn579YV8hIwBmMTfEq4TE1wnJrhOTBRPERJN/vv/+98j4uoYIMI4AOalrd1u6m97qbvtpe62l7p7eIwBNi8fl10fn8E8tNMsk3himcQTyySeFmMMsHmb3W9+AcPh8M7EiTxJ4uTkZKOfCQAAq/Kz4c/uHCjlA62fnvx0XUUCAABWzDgAAAAeF2MAAAB4XIwBNm9rd7BI0zSePn166/N5okSaphv9TAAAWJWL9CJ+5+nv3Pp8Pti6SC/WVSQAAGDFjAMAAOBxMQYojn/3F/8u/vb3/nbTxQAA4IEzBti8rU2wOD8/H+8oMUmeKJFl2do+88OHDxER8bO//9mVxz958kn8kyf/ZOZywLJ99euv4smTJ3Hxi4v4+ldfb7o4EBHikuISmxTFh19/iBj95t8Xf/9xUJT3OSMivjr/6tbtACNiPNj6OhPLq2IMwCT+lnCdmOA6McF1YoKI2cYAEcYBm5bXx0///qfxD7/+h/HjxgDFp63dbupve6m77aXutpe62x7XxwDZ19nHx40BCse1AJZJO80yiSeWSTyxTNsST3/3d3+31uN9+OWH+PUvfj3+989+/rF/aQxQPFubYDFr4sSXX365ts+8uPh4weuvj/965mPCOrX+Q2vTRYAbxCVFJTYpqrzPGTH7QOkfvvyH6S9iLsYA3MXfEq4TE1wnJrhOTDDJ5TFAhHHApv385z+PiIg3/8+bDZeEeWlrt5v6217qbnupu+2l7rbXz3/+8/iDP/iD8b+NATbPtQBWQTvNMoknlkk8sUxFj6e/+PQvNl2EiDAGKKKtTbAooj/+4z+OH/3oR7G7uxtPnjwZP/6Nb3wjfuu3fmuDJQMAYNv86h9/FR9+8ZsM9Q8fPsT/zP5nPP/fn2+wVFxnDAAAwLIYA2yHb3/728YAAAAsxW1jgG9/+9sbLBWTuBYAAMAyGANsj61NsEiSZKYdJ549e7a2z/zkk0/iT/7kT2Y+HgAA3Mcfxh9e+fdvJ789U9b67z773VUV6dEzBgAAYJWujwEijAM2zRgAAIBVMgYoJuMAAABWxRigmJ5Mf0kxPX369M7nz8/PI+Jj0sQmPxMAAFbld57+zp3Pf3X+VUR8HHgBAAAPg3EAAAA8LsYAAADwuBgDbN7WJliUSqVxwsMk+U4UpVJpo58JAACrslvaHQ+aJsmz2XdLu+sqEgAAsGLGAQAA8LgYAwAAwONiDLB5W5tgUS6XxwkPk6RpGhERlUplo58JAACr8vvl379zS8CL9CIiIkoVCcIAAPBQGAcAAMDjYgwAAACPizHA5m1tgsXLly8jImI4HE58/vj4+N6JEKv4TAAAWJV/9vKfRUTE/xj+j4nP//T4pwZTAADwwBgHAADA42IMAAAAj4sxwOZ9sukCzKtcLkelUol3795FuVy+8Xyv14t+v3/j8SzL4s2bN1GtVm8kS8zzmfnnRUQ8e/Yszs7OolqtRq1WW+TXg7Gjo6PodrvRbDajUqlEkiSRpmkMh8N49+5dvH79emK8zhOb4pm7NJvNqNfrUxPN1hV74pXcLLGpLWVdhsNhdDqdOD8/j+FwGEmSRLPZjEajcet7Fo2z//aH/y3+/P/48/iz//PPbrznv/T+S/zr/r+e+zhM5rvcTg+hLyP2lmMTbXXR3sNNaZpGu92OiIjz8/PIsiyq1WocHBzc+p4i17G4WJ1msxmtVitKpcmT1kWuY3Exv6KNKb9Z/maUKqX423d/G98sf/PGe9733sef/V9/dufvJB7YdvP06e4y73nOfObpe02jXVuPZdedc2+zpvVtp3Hebc4idee8207XxwDXXb4WwGKKPHfI9lLf3EW7wzoUZV6b7ZSPIZIkiYiIUqk0nhu4TiwtjzFAAYy22MXFxahUKo1OT0+vPN5oNEYHBwcT39Nut0cRMUqSZOHPnOf4cF95zF7/SZJk1O/3J75nntgUz0xydnY26nQ6o3K5PIqIW2Mut67YE6/cNza1paxDp9MZdTqdK4/1+/1RkiSjUqk0uri4uPGeZcTZVxdfjf5N6d+M/tWf/qsr7/l+4/ujvzn4m7mPw2S+y+3ykPoyYm85NtVWF+k93NTtdid+X+VyeVQqlSa+p8h1LC5W5/T0dBQRN77bXJHrWFwspohjynwc8F//7/965T35OEA88JDN06ebZp7znPnM0/eaRru2HquoO+fe5kzr207jvNucRevOebe98jHAT09/euXxy9cCWEyR5w7ZXuqbu2h3WIeizGuzfS4uLkblcvlGnZ6dnU2sZ7G0fMYAm7XVCRaj0ccTLD+Z2u32qNFojLrd7q2vPz09HSVJMmo0Ggt/ZqVSufUkNgHBsrTb7VGn0xkdHByMarXaqNFo3OhcXzdPbIpnrut0OqNarTbqdDqjfr8/002J64o98fq4zROb2lJW7ezsbNRutyc+l09YVCqVG88tK86+uvhq9P3G90e/943fG/31n//16PuN74/+c/c/L3QcJvNdbo+H1pcRe4vbdFtdlPdw1cXFxahWq018Lo+LSXNIRa5jcbE6lUrlzgtRRa5jcbGYoo4pv7r4avTPv/XPRy/+txej/9j+jzfGAeKBh2jePt0085zn3N+8fa9ptGurt6q6c+5tzrS+7Szvd95txqJ157zbbvm1gL85+JuJYwDmV/S5Q7aX+uY22h3WpSjz2myfSckVo9HH+p+0wL1YWg1jgM3Z+gSLTTk7OxtFxOjs7Gzi841GY65JfLiu3W7fa8WteWJTPDNNPni7q9OyrtgTr1w2S2yORtpSVu/g4ODOGMsnLS7Hh3Zz+/gut9e292XE3nI8tLZaXCxHnoB12+RtRNxYjbfIdSwuVidfTe62C1FFrmNxsbiijinFA4/RPH26Wdz3PGc+8/S9ptGurccq6m40cu5tyrS+7TTOu81ZtO5GI+cd3KbIc4dsL/XNXbQ7rENR5rXZPu12e2ISxWg0GtVqNXPVPApPgrl0Op2IiCiVShOf39vbi8FgEFmWrbFUMF9simeWYV2xJ15ZB7HJfQ0Gg/j0009vrd9yuRwREcPhcPyYdnP7+C4ftiKfk2JvOR5aWy0uluPp06eRJEk8e/bs1tckSXLl30WuY3GxGmmaRsTt32tEsetYXKxfketWPLDt5unTURzz9L2m0a6txyrqjs2YpW87jfNuM5ZRd8Dtijx3yPZS39xFu8OqFWlem+3z5s2baDQaE5/rdrvR7/evPCaWeIgkWMxpOBzeOVGYn/QnJydrKhF8NE9simeWYV2xJ15ZB7HJfT19+jSyLBtPUsxCu7l9fJcPW5HPSbG3HA+trRYXy1Eul+Pi4iIODg5uPJdfuKpUKjceL2odi4vV6HQ6t15IyBW5jsXF+hW5bsUD226ePh3FMU/faxrt2nqsou7YjFn6ttM47zZjGXUH3K7Ic4dsL/XNXbQ7rFqR5rXZLr1eL7Isi5cvX878HrHEQ/TJpguwrdI0jadPn976fH7im+RnmYbDYZycnMRnn302zlS+bp7YFM8sw7piT7yyKG0pq9Dv9yNN01sz6/N6vxxz2s3t47t82Ip8Toq95XhobbW4WL1WqxWlUina7faVx4tcx+Ji+Xq9XjSbzamvK3Idi4vlKtKYUjzwGM3Tp7uvWc5zlu+2vtc02rXNm7furnPurd6sfdtpnHfrt6y6u855B79R5LlDtpf65i7aHVapaPPabJd3795FxNWddIoyJw7rZAeLOZ2fn9+ZPZWf+LanYRkGg0EcHh5GRIwzS6vVagwGgxuvnSc2xTPLsK7YE6/MS1vKqt21tWav14tyuXzlNdrN7eO7fNiKfE6KveV5SG21uFidNE2j2WxGqVSKs7OzG88XuY7FxXLlK8jd1XbkilzH4mI5ijimFA88Vvft083qPuc5yzOt7zWNdm1zFq27nHNvPe7Tt53Gebdey6y7nPMOJivq3CHbS30zjXaHVSjivDbbJd+pMiLi8PAwzs/PCzMnDutkB4s5zXrSfvnll6stCA9e3tm5vO1yuVyObrcbu7u7cXp6eiUzcJ7YFM8sw7piT7wyD20pm5RfqHr79u2Vx7Wb28d3+bAV+ZwUe6u3jW21uFi+Xq8Xx8fH4wsP1Wp14uuKXMfiYrnevHkz80rMRa5jcbG4oo4pxQNcdVufbhb3Pc9Z3Kx9r2m0a+u3rLqLcO6t0336ttM479ZrmXUX4byDeWx67pDtpb6Zl3aHRRRxXpvtkic+HB0dTRw3fPrpp9HtdqNSqYyfE0s8RBIsoOBqtdrEx5MkiVqtFvV6faGVgQAeA20pmzIcDqPVakW323VRCqCgtNXkarXalX5jtVqNTqcTb9++vXMFHR6mwWCw0M2CPCzGlFB8i/bpnOfrp++1vZZZd8699dC33V6rqDvnHdyPuUNg3bQ7LELfn2XIEx/yHSQuS5IkKpVKNJtN4wYevCebLsC2SpJkpgyqZ8+erb4wPFrPnz+PNE0jTdPxY/PEpnhmGdYVe+KVZdOWskr1ej06nc7Ei1baze3ju3zYinxOir3V2ta2WlysXrfbjV6vF/V6/crjRa5jcbE8/X7/yupL0xS5jsXFam1yTCke4Dfu6tMtatJ5zvLd1veaRru2efPW3TTOveW5b992Gufd+iy77qZx3rFNsiyb++c+ijB3yPZS38xDu8MiijqvzXbJF0+4LZaq1WqkaRrD4fDKe8QSD40EizlNys667Pz8PCJ+09jAKuTxdfmP1TyxKZ5ZhnXFnnhl2bSlrEq9Xo9msxmNRmPi89rN7eO7fNiKfE6KvdXZ5rZaXKxe8v+v3jkYDGIwGIwfL3Idi4vlODw8jNevX9/rPUWuY3GxWpscU4oH+Ghan25Rk85zlu+2vtc02rXNm7fuZvncCOfeoubp207jvFuPVdTdNM47tkWr1Yrd3d25f3Z2dmY6TlHmDtle6pv70u6wiCLPa7Nd8jq+rQ7z509OTm48dhuxxDaSYDGnUqk0PoEnyTOrSqXSmkrEQ9RsNmNvb+9e75knNsUzy7Cu2BOv3Je2lE1otVrx/PnzODg4uPU12s3t47t82Ip8Toq91dj2tlpcLEeWZXeuzJl/f/1+/8pjRa1jcbG4NE0jSZJ7T9gXuY7FxWKKPKYUDzBbn26aec5z5jNP32sa7dp6rKLunHurN2/fdhrn3eqtqu6cdzwU7XY7RqPRQj/TFGnukO2lvrkP7Q6LKPq8NtulXC7P9LrLu0+IJR4iCRZzKpfLd25Pk08yrnPLTh6ek5OTmf6IXP6jNk9simeWYV2xJ165L20p63Z0dBR7e3sTJ78ux4h2c/v4Lh+2Ip+TYm/5HkJbLS6WY3d3N/b29m79LvNth8XF4zEcDqPb7Ua1Wr3x02w2IyLi1atX48dyRa5jcbGYIo8pxQOP3ax9umnmOc+Zzzx9r2m0a+uxirpz7q3evH3baZx3q7equnPewWyKNnfI9lLfzEq7w6KKPq/Ndnn+/HlE3D7Gz8cU7rPioZNgMaeXL19GxO3bYx4fHzuxWVilUomLi4tbnz8+Po4kSa5k6c0Tm+KZZVhX7IlX7ktbyjr1er2IiInbtqZpGoPBYPxv7eb28V0+bEU+J8Xecj2UtlpcLEfeD7xtVaezs7OIiNjf3x8/VuQ6FheLq9Vq0e/3J/602+2IiHj79u34sVyR61hcLKbIY0rxwGN2nz7dNPOc58xnnr7XNNq19VhF3Tn3Vm/evu00zrvVW1XdOe9guiLOHbK91Dez0O6wDEWf12a71Gq1iIhb59fyOYDPPvts/JhY4kEaMbdKpTI6ODiY+FxEjPr9/ppLxENzeno66nQ6E587OzsbRcSo2+3eeG6e2BTP3OX09HSmOFhX7IlXcrPEpraUdbkr1kaj0ajT6YzOzs6uPKbd3D6+y+30EPoyYm85HlpbLS4Wd3BwcKPOL0uSZJQkyeji4uLK40WuY3GxOt1udxQRo9PT04nPF7mOxcX8ij6mFA88RvP06S4uLkYHBwcT43ve85z7m7fvdVf9jUbatXVYRd059zZrWt/WeVdci9Sd8w7uVuS5Q7aX+uYu2h3WoSjz2myXWq02KpfLE58rlUoT618s8dBIsFjAxcXFqFQq3fjj02g0bj3p4b7a7fao3W5feezs7GyUJMmtcTZPbIpn7pJ3tqdNqq4r9sQruVljU1vKqp2dnY1KpdKo0WhM/KnVaqMkSW68T7u5fXyX2+kh9GXE3uIeYlstLpaj0WhMnKDNY2LSRYci17G4WJ12u33n35Mi17G4WEyRx5Tigcdm3j5d3oZPei5//r7nOfOZp+81rf60a+uxirpz7m3OtL6t8664Fq075x1MVvS5Q7aX+uY22h3WpSjz2myXvI6vJ4HVarVRpVK58z1iiYdiZzQajRbbA+Nxy7IsWq1WJEkSz549i7Ozs6hWq+NtcmAZBoNBdLvdOD8/jyzLIkmSeP36dZTL5VvfM09simcu6/V60el0IiLi5ORkHHv59l71en3iFoXrij3x+njNG5vaUlZpb28v0jS98zWlUmm8VeJl2s3t47vcDg+xLyP2FvNQ22pxsRy9Xi/evXsXT58+HfcXy+VyvH79OpIkmfieItexuFiuZrMZaZre+HtSLpfH26vnilzH4mIxRR5Tigcek3n7dMPhMD7//PN48eLFeJxw3TznOfO5b99rlvrTrq3HKurOubdes/ZtnXfFs8y6c97BTdswd8j2Ut9Mot1h1Yo4r812ybIs3rx5M26rsiy79Rr75feIJR4KCRYAAAAAAAAAAAAAAMCj92TTBQAAAAAAAAAAAAAAANg0CRYAAAAAAAAAAAAAAMCjJ8ECAAAAAAAAAAAAAAB49CRYAAAAAAAAAAAAAAAAj54ECwAAAAAAAAAAAAAA4NGTYAEAAAAAAAAAAAAAADx6EiwAAAAAAAAAAAAAAIBHT4IFAAAAAAAAAAAAAADw6EmwAAAAAAAAAAAAAAAAHj0JFgBEr9eLnZ2dKz9Zlm26WFuv2Wwu/BmtVutKvezu7i6hZAAAPGT696uhfw8AAAAAAMvz2K5nuEYAsD0kWAAQERFJksTp6en4J0mSTRdpqw0Ggzg6Olr4c16/fj2uk3a7vYSSAQDwGOjfL5f+PQAAAAAALN9jup7hGgHA9pBgAUBERDx9+jTK5fL4J5emaezu7t7IGE/TdO5j7e3t3cjI7vV6C5W/2WzG7u7ujZ+dnZ04PDyc6TOyLBuX5/L757mRqtvtRq1Wu/f7rkuSZGK9AADAXfTv9e8BAAAAAKDobrue8RC5RgCwPSRYAHCnUqkUFxcXMRqNolarjTv4nU5nrs8bDAZRKpXGnz0ajeLi4mLhm5U6nU5cXFxEt9uNLMsiy7KoVCoxGo3i4OBgps9IkiQuLi7is88+iyzLotFoxMXFRTQajXuX5+joKF6+fHnv9wEAwCrp3+vfAwAAAAAAAHA7CRYAzOz58+fRbDYjIuZa9TUiot/vR7VajYhYSTZ2pVKJSqUy9/uTJIl6vR61Wi3a7fZcWw8OBoOIiKWscAsAAKuifz8b/XsAAAAAAIqi1+sttCs1ADCdBAsAZpYkSXz22WdRKpUiy7IYDocLfd7Tp0+XVLKr8pvEer3eXO8/PT2Ndrs99/E7nY6brwAAKDz9+9no3wMAAAAAUBTHx8ebLgIAPHgSLAC4t/wGp06nc6/39Xq9ePny5SqKdEWtVhuvTDvPSrxpmkapVJr7+L1eb/wdAQBA0enf303/HgAAAACAorB7BQCsngQLAO6t0WhERMT79+/v9b5+vx/lcnkVRbrhxYsXEXH/m8SOjo6iXq/PfdxerxdJkkSlUpn7MwAAYJ3072+nfw8AAAAAQJEMBoNNFwEAHjwJFgDcW36DUZZl0ev1ZnpPlmWxt7e34pL9Rr7C7HA4vFf2frfbHd9gNo93796Nb/4CAIBtoH9/O/17AAAAAACKYjgcRpZlmy4GADx4EiwAmEu+Cuy7d+9mev3R0dFCNzbdV7lcjlKpFBGzr3Kbpun4PfPq9XoLrZALAACboH8/mf49AADMJsuyqNfrsb+/H/v7+zEcDq88f3h4GNVqNarVauzv70e9Xr9X8jQAABDRarU2XQQAeBQkWAAwl/xmql6vN1N2/NnZWSRJstpCXZMPLI+OjmZ6fafTGa+MO49erzde/RcAALaJ/v1N+vcAADC7er0e7XY7Tk9P4+nTp7G/vx9ZlsVwOIz9/f0ol8vR7/ej3+/H6elpDIfD2Nvbs/ouAADMqNlsxmAw2HQxAOD8fGOhAAAROElEQVRRkGABsGTNZjOq1Wrs7e1Fr9cbP55lWTSbzajX61GtVh/E6ky1Wi0iIt6/f3/n69I0jf39/bmOkabp+HvLv9tZv7sXL15ExMfvfpZB5mAwiHK5PFc5Iz7ewJUfcxaHh4fjlbqazabBMADAA7YN4wT9+6v07wEAYDbD4TBKpdJ4B7n8v61WK169ehU//OEPbyQu5+OPWROoAQCgSFqt1pW54Hq9PrFv22w2Y2dnJ3Z3d8c/Ozs7E+eOj46OYmdnZ/z6/HW9Xi/29/evzN3v7+9f+czd3d3xc9Vq9cZzOzs7N+bh0zS9crz8dUVx+brK7u7uuPyDwSCazWa0Wq3xDnmXr7tcfk3+Gfv7+3fO16/zWABsBwkWAEuUD5r6/X7UarWo1+sxHA5jMBhEvV6PVqsV3W43+v1+PH/+PPb29m5sk71N8tVgO53Ona/rdDrjFXHvYzAYjG+46na70el0ot/vzzwgSZJkfJGm3W5PPdbLly/vXcZcfpPXLCvkpmkae3t7cXx8HKenp+PfrdPpRJqmtnQEAHhgtmWcoH//G/r3AAAwuzdv3lzpO+c3I71//z5++MMfTtz97tmzZxERcXx8vJYyAgDAMuQ7sT1//vzKXHC3243T09OoVqtXdmnrdDoxGo3ixYsXkWVZlEqlGI1GE3dObjQa4/n5Fy9exMXFRVQqlajVanF6ehoXFxfjOfL835d/cv1+Py4uLuLt27eRZVlkWRbdbnecCJ0rlUpxcHAQERGVSiW63W6MRqNlf2Vzq9frUa/X4/z8fPydHh4eRpZl0el0ot1uR7/fj9evX19JcLn8mvw6RJ78cD05YhPHAmA7SLAAWJIsyyJN0/EgaG9vLyI+dsLzTvTlwcrBwUEkSRL1en0j5V2GSqUSSZLEcDhc+iq7vV4vqtVqdDqdGwPLRqMRL168iGq1OvW4+UWdwWBw51bj894klnv//n0kSTJ1hdwsy2Jvby/K5XJ0u90bzzcajXj+/LmBFgDAA7FN4wT9+9/QvwcAgNmlaXql75wnT799+3ZickVExNnZWUREPH36dOXlAwCAZRgOh7G/vx/tdnuc6HBZp9OJUqk0cQfoPHFi2hz4ixcvolwuR6fTubUvPatarTY+7rt37ya+JsuyaLfb0e12JyZ9bFKlUhlfP4j4eJ2hVCrd+O5rtVqUSqVotVoxGAwmvqbRaESpVIpXr15t/FgAbAcJFgBLcnR0dOUmqPziwPn5+cQbbSI+ZoOnaXplddp8y7m9vb3Y39+ParV662P7+/vjxze1KurlwcUk+Sq19/Xq1asol8u3DuDy33fayrX5TWIRt281nt+YtcjgtNvtznQDVx4jb9++nfh8r9eLV69eTV01GACA7bCsccK66N9/pH8PAACzu9wfvjyOmXTTWS5Pwph08xkAABTRq1evxjtK3KbT6cT5+fnEe3gajcZ49+TbvH//fuo8+X00Go2o1WrR6/VuzKkPh8NIkmS8i0VR5XP97969u/W7r1Qq42SR215TLpfHi2IV4VgAFJsEC4Al6ff745uRIn5zceCugU9+48/JyUlEfMxUPzk5iXa7HWdnZ3F6ehr9fj/6/X4kSRJpmka32x0/dnp6Gqenp5EkyXg77XXLV5C97Yahfr9/7yz3fAu9ly9f3vqaUqkUpVLp1puqLstvjLqtjEdHR3cea5p8ADztMwaDQQwGgys3hV2XpmlkWRbn5+dzlwcAgOJYxjhhnfTv9e8BAOC+Ju1ecde44fKNRpfHSwAAUFRHR0cxHA5n2n26UqnE4eHhjZvrp82/R8RKdpLodrtRKpWi2WyOE6KzLIs3b94sNZlj1e76XvI5+rt2pc53z7trd+xNHAuAYpJgAbAk7Xb7yk01+aDkrk53PpjKO9S9Xi/evn07McN5OByObzq6LEmSePny5Y3H16VcLi99hd18a8K7BiMRMf6dpw1I8kHqbWW8K/N8Fu/fv49SqTS1vPkKxXet+HtwcBDdbvfW1YwBANguyxgnrJP+vf49AAAsot/vR8Td/eQ8CaNUKi208xwAAKxLnhTx2WefTX3t8+fPr7wnVy6Xo1wuR6/XmzgPPhwO59pBehZ5P71er0eWZfHq1atbd2Yuqr29vamvyb/7bToWAMX0yaYLAPBQTFqhKUmSWxMfLmeq5685OzubuPXetBWfkiSZevPPKjWbzWi1WtHpdK4MEHu93lwrx+Y3SeW7ddwm/w7Pz8/vvAhTKpWiUqnEYDC4UcbhcLhw9n+n05npBq58BeJpF4wWuRkMAIBiWcY4Yd307/XvAQBgXvm4565+cD4uWPbKvAAAsCr5PPcsCcL5ayYtENRsNqPZbMbR0dGN+4M6nc7KdpQolUrR7XajXq/Hp59+Gj/84Q+3Ltl5lmsmy/qd1nksAIpJggXACuQXB+7a2jq/yBDx8aarNE1jf3//zs+7LVP97OwsGo3GvMVdWK1Wi1arFe/fv79yc9Px8fFCNxO1Wq07By33GVg2m80YDAZxdHR0pYydTidardbcZcyyLIbD4Uwr0uYrEORbAQIA8LjMM07YBP17/XsAAJjHLEnll1+3qtV5AQCgCM7Pz2881mg0otlsxps3b24kWExbfGhRtVptvHjRycnJRhdyBYCie7LpAgA8RLNcHMhvriqVSlEqlSLLsltvtMqz2m8b3Gz6IkSpVIpyuRxZlo1/9yzL4tmzZwt97qQtEed1+UawXq83/v80TRdaGfjo6Ghch9PkA+FJg2gAAB6+ecYJm6B/r38PAADzmGVniizLxrvX2cECAIBtM8s897TFeRqNxpX594iPc9PNZnOhsl3+vEnSNI0kSaJcLkez2Zy4wwYA8JEEC4AVyAchd10cyG8CyldXLZfLt2aiDwaDO1d8KsJFiHygl68e+/79+7lXt81/z2XfqJTv8vHmzZuI+DhArdfrC33mu3fvZh7k5r/X2dnZQscEAGA7zTNO2BT9++n07wEA4KpZksrz15RKpZWuzgsAAMt0n3nuL7/88sp7rrs+/x7xMVl50Xt/8oTn27Rareh2u+MdnO8zn350dBS7u7uxv79/Jclk09cyAGBVJFgALNksFweOjo7Gr8lvCrrNLDdhFUG++0Z+Q9jZ2dncK8fmg8lZsuXzla7u+7lpmka32536/U879nA4nPlGs/z401YNyD8bAICHY9njhFXTv5/9+Pr3AADw0SzXM969ezf1NQAAUDT5fPC0JIaI3/SLb1vMp1wuR7lcjl6vF1mWxXA4jOfPn9+rPNd30pi2s0az2Yx2ux0RH69BdLvdSNN0piSLXq8X7XY7Xrx4EVmWxeeffx5ZlsXh4eG9yw0A20KCBcCS5YOp224+yrJsnMGdZ4XfZZYVn9Yly7Jbs/GTJBlfEGm1WrG3tzf3cQ4ODqJUKl3J1r/NfbLhy+XyuF5ardbcN4jler3elc+cplKpRKVSieFwOPXmMln+AAAPy7LHCcugf3+V/j0AAMwvv5Zx127cl19XhGseAAAwq3yeO1+U6DZZlsVgMIharRblcvnW1+XJF0dHR9HpdGZePOi2nTTOz89vncc/PDyMer1+pZ9eq9Xi4OAger1eHB4e3nnMfr8fZ2dn0el04uzsLN6+fRutViu+/PLLuXe+BoCik2ABsGT5xYGTk5OJz9fr9ciyLLrd7p2DqVx+I1YRVnP68ssv78x6zweAh4eH4xVv73LX1ol5tvxdA7nBYHDvizB5GXu93q2rBcyq0+nEy5cv7/2eiIhXr17d+prBYCDLHwDggVn2OGEZ9O+v0r8HAID5PX36NJIkGa+KO0mapuMxSBGueQAAwH10Op1I03S8G/UkrVYrkiSJt2/f3vlZeULFmzdvIiJu3fn6unwO/fqiP4PBID777LMbr+/1enF8fDyx/91ut6NcLker1bpzEaHriyclSTK1719kd13L2OZjAbBcEiwAliwfdLx9+/bGVnrNZjNOTk6i3+/PnMU9GAymrvi0DoPBIA4PD+8cWOW/U61Wu3Pwd3x8HBE3B3yXlcvlOD09jU6nM3G1116vF8PhcOYs/lz++lKptNCNa2maRpqm9z5+qVSK09PTyLIsqtXqjRvaBoNB9Pv9ODg4mLtsAAAUz7LHCYvSv79K/x4AABZTLpfj4uLizj51nnheLpdnvoEMAACKolKpxOnpabRarYmLCeVz/T/5yU9m6u82Go3IsuxeiwflOyu/efNmPB+dZVmcnp5emSNP0zSazeaN6xGTPi8i4vPPP5+6U3PEx+sAvV5vrckVebnuKt8sr0nT9Mp/N30sAIpNggXAEuUXB0qlUtRqtXj58mXs7+9HtVqN/f39SJIkfvKTn8y8MlPeGd/kSk5pmsbOzs44Cz5N09jf34+dnZ2Jr280GhMHf8PhMHZ3d2N3d3e8ZWKapjceu6xcLsfZ2VlEROzv70e9Xo9msxnNZjOSJJnrJqUkSaJWqy1lddt5LwLlv1e1Wo3PP/88qtXq+PfKsmxrs/wBAJhs2eOERejfT6Z/DwAAq1ekHbsBAGAeeWLxl19+eWUuOJ/vPz09nXmeudlsRrlcvvfiQf1+P168eBGff/55NJvNaLVaV+ahd3d3Y29vb7zTRr7A0XW9Xm+cKJJlWezv78fu7u7ERZIiPl7rODk5WduCQnl58mssrVbrRvnmeU2z2VzK58x7LAC2w85oNBptuhAAD0Wepd5oNG5skTePo6OjaDab0W63VzpA6fV60Wq1xjc7Md3e3l60Wq17r3C7iMFgEPV6PS4uLtZ2TAAAFrfsccI0+vf3p38PAACrt7u7G1mWRb/fl2QBAABbpNfrRZIkS+/HP+brGa4RABSbHSwAlijPQM5Xg12U1ZyKKU3TSNM0Xrx4semiAACwBZY9TmC59O8BAGD10jSNLMsiwjUPAADYJoeHh1EqlW7044+OjiJN0w2VCgBWS4IFwBLlW+rdd/u+2+Q3Yi3r81iOTqcTlUpl5m0dAQB43JY9TmC59O8BAGD1er1eRBgXAQDANjk6Oorj4+MbiRSDwSC63W6USqUNlQwAVkuCBcCS5MkQSZIsZQAxHA4jyzIXGwqo1+tFvV7fdDEAANgCyx4nsHz69wAAsHp27AYAgO0yHA7j9PQ03r59G8fHx7G7uxvNZjPq9XrU6/XodDqbLiIArMwnmy4AwEOxjIsDvV4v3r17F1mWxcnJSUR83Da7Wq1GkiRRrVaj0WgspbzMZzgcRpqm8eLFi00XBQCALeAmomLTvwcAgPUolUpRKpXi9evXmy4KAAAwg3fv3o2TKNrtdkR83NGiVCrF6empRaUAeNAkWAAsQZZl4+2tF1Gr1aJWqy2hRKzKu3fvolKpRJIkmy4KAAAFt6xxAqujfw8AAOthdVsAANgueVLF5X9ffwwAHqonmy4AwLbb3d2N3d3dOD8/j4iPu1Ds7OzE7u7uhkvGKhwdHUWz2dx0MQAAKDjjhO2gfw8AAAAAAADAZRIsABZ0cXERo9Fo/N/85+LiYtNFu5c0TWNnZ2f8k2XZpotUOMPhMLIsW+suI61Wa1wn1Wp1bccFAGAxmx4n6N9Pp38PAAAAAACb9ZiuZ7hGALA9dkaj0WjThQBgs7IsizRNrzxWLpc3VJriGg6HMRgM4uDgYG3HVDcAANyXPuRs9O8BAAAAAGBzHtuc+WP7fQG2mQQLAAAAAAAAAAAAAADg0Xuy6QIAAAAAAAAAAAAAAABsmgQLAAAAAAAAAAAAAADg0ZNgAQAAAAAAAAAAAAAAPHoSLAAAAAAAAAAAAAAAgEdPggUAAAAAAAAAAAAAAPDoSbAAAAAAAAAAAAAAAAAePQkWAAAAAAAAAAAAAADAoyfBAgAAAAAAAAAAAAAAePQkWAAAAAAAAAAAAAAAAI/e/wcySWs8NbArsQAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 3200x2400 with 32 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "trackEvaluator = evaluate_candidates_montetracko(\n",
+    "    CONFIG,\n",
+    "    min_track_length=3,\n",
+    "    whether_to_plot=True,\n",
+    "    allen_report=True,\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
@@ -2561,24 +663,24 @@
      "text": [
       "INFO:------------ Step 6: Evaluating the track reconstruction performance ------------\n",
       "INFO:--------------------------- a) Loading labelled graphs ---------------------------\n",
-      "100%|██████████| 100/100 [00:01<00:00, 53.44it/s]\n",
+      "100%|██████████| 99/99 [00:01<00:00, 52.46it/s]\n",
       "INFO:--------------------- b) Calculating the performance metrics ---------------------\n",
-      "INFO:Number of reconstructed particles: 20401\n",
-      "INFO:Number of particles: 23205\n",
-      "INFO:Number of matched tracks: 20519\n",
-      "INFO:Number of tracks: 21116\n",
-      "INFO:Number of duplicate reconstructed particles: 118\n",
-      "INFO:Efficiency: 0.879\n",
-      "INFO:Fake rate: 0.028\n",
-      "INFO:Duplication rate: 0.006\n",
+      "INFO:Number of reconstructed particles: 19447\n",
+      "INFO:Number of particles: 27380\n",
+      "INFO:Number of matched tracks: 19534\n",
+      "INFO:Number of tracks: 20330\n",
+      "INFO:Number of duplicate reconstructed particles: 87\n",
+      "INFO:Efficiency: 0.710\n",
+      "INFO:Fake rate: 0.039\n",
+      "INFO:Duplication rate: 0.004\n",
       "INFO:------------------------------ c) Plotting results ------------------------------\n"
      ]
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHJCAYAAAB0RmgdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOwklEQVR4nO3deVxUZf8//tewDfuwOcOQiLghCO4lmCWKIhrupaUSpqHeikbKx61UtBJF0yxyyVtFza07l0q9SVRATXEhSVyzhNKvjGjCIIiAcH5/+OPcjiAyLOKB1/PxmMfDueZ9zrnOxVFeXmcZmSAIAoiIiIgkxqCuO0BERERUFQwxREREJEkMMURERCRJDDFEREQkSQwxREREJEkMMURERCRJDDFEREQkSQwxREREJEkMMURERCRJDDFU52QyWaVeCQkJdd1Vkpjjx48jIiIC2dnZdd2VSmvatClGjx4tvk9ISKjS8b9y5UrExMTotUx52xo9ejQsLS31Ws+zVPRz8fX1ha+vb41uj+ovo7ruANGJEyd03n/yySeIj4/H4cOHddo9PDyeZ7eoHjh+/Djmz5+P0aNHw8bGpq67UyUdO3bEiRMn9D7+V65cCQcHB51AVFvb0ldFP5eVK1fW6rapfmGIoTrn7e2t875Ro0YwMDAo0/6k+/fvw9zcvDa7VmsEQcCDBw9gZmZW112hF5y1tfUz/y5UV1FREWQy2XPZ1rPwPyukD55OIknw9fWFp6cnjhw5gq5du8Lc3BxjxowBAOzYsQP+/v5Qq9UwMzODu7s7Zs6ciby8PJ11lE6L//HHH+jXrx8sLS3h7OyMadOmoaCgAMCjf8yVSiWCgoLK9CE7OxtmZmaYOnWq2JaTk4Pw8HC4urrCxMQEL730EsLCwspsWyaTITQ0FKtXr4a7uzvkcjk2btwIAFi1ahXatWsHS0tLWFlZoXXr1pg9e7bO8hqNBuPHj0fjxo1hYmICV1dXzJ8/Hw8fPnzm2DVt2hSBgYHYu3cvOnToII7R3r17AQAxMTFwd3eHhYUFXnnlFZw5c6bMOn788Uf4+PjA3NwcVlZW6N27d5kZtIiICMhkMpw7dw5vvfUWFAoF7OzsMHXqVDx8+BBXrlxBQEAArKys0LRpU0RFRZXZjr7juXnzZri7u8Pc3Bzt2rUT96m0P//3f/8HAHB1dS1zWlImkyEiIqLc8Xp89iImJgYymQyHDx9GSEgI7O3tYW1tjXfffRd5eXnQaDQYNmwYbGxsoFarER4ejqKiomf+XIqKijB9+nQ4OjrC3Nwc3bp1w6lTp8rUlXeK59q1a3j77bfh5OQEuVwOlUoFPz8/pKSkiPtw4cIFJCYmivvdtGlTnfVt3rwZ06ZNw0svvQS5XI4//vijwlNXFy5cgJ+fHywsLNCoUSOEhobi/v374ufp6emQyWTlnsJ6fKyf9XMp73TS3bt3MXHiRLz00kswMTFBs2bN8NFHH4l/bx/fzrOOC6pfOBNDkpGRkYFRo0Zh+vTpWLhwIQwMHmXwq1evol+/fggLC4OFhQUuX76MxYsX49SpU2VOSRUVFWHAgAEYO3Yspk2bhiNHjuCTTz6BQqHA3LlzYWxsjFGjRmH16tX4+uuvYW1tLS67bds2PHjwAO+99x6ARzNB3bt3x40bNzB79my0bdsWFy5cwNy5c5GamoqDBw9CJpOJy+/ZswdHjx7F3Llz4ejoCKVSie3bt2PixImYPHkyli5dCgMDA/zxxx+4ePGiuJxGo8Err7wCAwMDzJ07F82bN8eJEyfw6aefIj09HRs2bHjm2P3222+YNWsWPvroIygUCsyfPx9DhgzBrFmzcOjQISxcuBAymQwzZsxAYGAg0tLSxFmirVu3YuTIkfD398e2bdtQUFCAqKgo+Pr64tChQ+jWrZvOtoYNG4ZRo0Zh/PjxiIuLQ1RUFIqKinDw4EFMnDgR4eHh2Lp1K2bMmIEWLVpgyJAhVRrPffv24fTp01iwYAEsLS0RFRWFwYMH48qVK2jWrBnef/993L17F1999RV27doFtVoNoOr/03///fcxZMgQbN++HWfPnsXs2bPFcDZkyBCMGzcOBw8exOLFi+Hk5KQTdssTEhKCTZs2ITw8HL1798b58+cxZMgQ3Lt375l96devH4qLixEVFYUmTZrgzp07OH78uHiNye7du/Hmm29CoVCIp2fkcrnOOmbNmgUfHx+sXr0aBgYGUCqV0Gg05W6vqKgI/fr1w/jx4zFz5kwcP34cn376Kf766y/89NNPlRi9/9H35/LgwQP06NEDf/75J+bPn4+2bdvi6NGjiIyMREpKCvbt26dT/6zjguoZgegFExwcLFhYWOi0de/eXQAgHDp0qMJlS0pKhKKiIiExMVEAIPz222866wUgfPfddzrL9OvXT3BzcxPfnzt3TgAgfPPNNzp1r7zyitCpUyfxfWRkpGBgYCCcPn1ap+77778XAAj79+8X2wAICoVCuHv3rk5taGioYGNjU+E+jR8/XrC0tBT++usvnfalS5cKAIQLFy5UuLyLi4tgZmYm3LhxQ2xLSUkRAAhqtVrIy8sT2/fs2SMAEH788UdBEAShuLhYcHJyEry8vITi4mKx7t69e4JSqRS6du0qts2bN08AIHz++ec622/fvr0AQNi1a5fYVlRUJDRq1EgYMmSI2KbveKpUKiEnJ0ds02g0goGBgRAZGSm2LVmyRAAgpKWllRkXAMK8efPKHa/g4GDx/YYNGwQAwuTJk3XqBg0aJAAQli1bVmZ/O3bsWGa9j7t06ZIAQPjwww912rds2SIA0Nl+fHy8AECIj48XBEEQ7ty5IwAQvvjiiwq30aZNG6F79+5l2kvX9/rrrz/1s9JtCcL//t6sWLFCp/azzz4TAAjHjh0TBEEQ0tLSBADChg0byqz3ybGu6OfSvXt3nX6vXr263L+3ixcvFgAIBw4c0NlOZY4Lqj94Ookkw9bWFj179izTfu3aNYwYMQKOjo4wNDSEsbExunfvDgC4dOmSTq1MJkP//v112tq2bYu//vpLfO/l5YVOnTrpzHBcunQJp06dEk9hAcDevXvh6emJ9u3b4+HDh+KrT58+5U7J9+zZE7a2tjptr7zyCrKzs/HOO+/ghx9+wJ07d8rs3969e9GjRw84OTnpbKdv374AgMTExIqGDQDQvn17vPTSS+J7d3d3AI+m7h+/rqi0vXQ8rly5gps3byIoKEic+QIAS0tLDB06FElJSTqnFAAgMDBQ5727uztkMpnYXwAwMjJCixYtdMZd3/Hs0aMHrKysxPcqlQpKpVJnnTWpvP0CgDfeeKNM+7P6EB8fDwAYOXKkTvuwYcNgZFTxBLmdnR2aN2+OJUuWYNmyZTh79ixKSkoqtQ+PGzp0qF71T/Z1xIgRAP63L7Xl8OHDsLCwwJtvvqnTXnrK79ChQzrtz/u4oLrFEEOSUTrt/Ljc3Fy89tprOHnyJD799FMkJCTg9OnT2LVrFwAgPz9fp97c3BympqY6bXK5HA8ePNBpGzNmDE6cOIHLly8DADZs2AC5XI533nlHrLl16xbOnTsHY2NjnZeVlRUEQSgTSMrrf1BQENavX4+//voLQ4cOhVKpRJcuXRAXF6eznZ9++qnMdtq0aQMA5QafJ9nZ2em8NzExqbC9dDz++eefp/bdyckJJSUlyMrKeua2yht3ExMTnXHXdzzt7e3L9Ekul5f5mdcUfcbwyePpSaXj6ujoqNNuZGRU7n49TiaT4dChQ+jTpw+ioqLQsWNHNGrUCFOmTKnUqahS5f1Mn6a8fpX2vXRfass///wDR0dHnVOJAKBUKmFkZFRm+8/7uKC6xWtiSDKe/EcMePS/tJs3byIhIUGcfQFQ7eeCvPPOO5g6dSpiYmLw2WefYfPmzRg0aJDOTIqDgwPMzMywfv36ctfh4ODwzP4DwHvvvYf33nsPeXl5OHLkCObNm4fAwED8/vvvcHFxgYODA9q2bYvPPvus3OWdnJyquJfPVvoLISMjo8xnN2/ehIGBQZnZparSdzyrSy6Xl7kwFKj9X8rA/8ZVo9HozJA9fPiwUtt3cXHBunXrAAC///47vvvuO0RERKCwsBCrV6+uVB+edjyWp7RfjweE0utnSttKQ+qTY1rd8bS3t8fJkychCIJOnzMzM/Hw4cMaPy5IWhhiSNJK/1F78qLFNWvWVGu9tra2GDRoEDZt2gQfHx9oNBqdU0nAo9MLCxcuhL29PVxdXau1PQCwsLBA3759UVhYiEGDBuHChQtwcXFBYGAg9u/fj+bNm9dYYKgsNzc3vPTSS9i6dSvCw8PF8c7Ly8POnTvFO5ZqQk2PJ/C/46K8/4U3bdoU586d02k7fPgwcnNza2TbFSm9+2bLli3o1KmT2P7dd99V6o6zx7Vq1Qoff/wxdu7ciV9//VVsr+nZhy1btmDKlCni+61btwL4376oVCqYmpqWGdMffvihzLoq+rk8yc/PD9999x327NmDwYMHi+2bNm0SP6eGiyGGJK1r166wtbXFhAkTMG/ePBgbG2PLli347bffqr3uMWPGYMeOHQgNDUXjxo3Rq1cvnc/DwsKwc+dOvP766/jwww/Rtm1blJSU4O+//8aBAwcwbdo0dOnSpcJthISEwMzMDK+++irUajU0Gg0iIyOhUCjw8ssvAwAWLFiAuLg4dO3aFVOmTIGbmxsePHiA9PR07N+/H6tXr0bjxo2rvb/lMTAwQFRUFEaOHInAwECMHz8eBQUFWLJkCbKzs7Fo0aIa21ZNjOeTvLy8AAArVqxAcHAwjI2N4ebmBisrKwQFBWHOnDmYO3cuunfvjosXLyI6OhoKhaLG9ulp3N3dMWrUKHzxxRcwNjZGr169cP78eSxdulTnjrjynDt3DqGhoXjrrbfQsmVLmJiY4PDhwzh37hxmzpwp1nl5eWH79u3YsWMHmjVrBlNTU3E89GViYoLPP/8cubm5ePnll8W7k/r27SvenSaTyTBq1CisX78ezZs3R7t27XDq1Ckx7Dyuop/Lk9599118/fXXCA4ORnp6Ory8vHDs2DEsXLgQ/fr1K/P3khoWhhiSNHt7e+zbtw/Tpk3DqFGjYGFhgYEDB2LHjh3o2LFjtdbdq1cvODs74/r16/joo490LmwFHs2cHD16FIsWLcI333wj3pbcpEkT9OrVS3wuR0Vee+01xMTE4LvvvkNWVhYcHBzQrVs3bNq0CY0aNQLw6NqFM2fO4JNPPsGSJUtw48YNWFlZwdXVFQEBAbU+OzNixAhYWFggMjISw4cPh6GhIby9vREfH4+uXbvW2HZqYjyf5Ovri1mzZmHjxo1Yu3YtSkpKEB8fD19fX/zf//0fcnJyEBMTg6VLl+KVV17Bd999h4EDB9bYPlVk3bp1UKlUiImJwZdffon27dtj586dePvttytcztHREc2bN8fKlStx/fp1yGQyNGvWDJ9//jkmT54s1s2fPx8ZGRkICQnBvXv34OLigvT09Cr11djYGHv37sWUKVPw6aefwszMDCEhIViyZIlO3eeffw4AiIqKQm5uLnr27Im9e/eW+dlV9HN5kqmpKeLj4/HRRx9hyZIluH37Nl566SWEh4dj3rx5Vdofqj9kgiAIdd0JIiIiIn3x7iQiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpKkevucmJKSEty8eRNWVlZ6PV6biIiI6o4gCLh37x6cnJzKPJ/rSfU2xNy8eRPOzs513Q0iIiKqguvXrz/zaeT1NsSUPr76+vXrz3yMNxEREb0YcnJy4OzsXO7XUDyp3oaY0lNI1tbWDDFEREQSU5lLQXhhLxEREUkSQwwRERFJEkMMERERSVK9vSaGiIiqp7i4GEVFRXXdDapnjI2NYWhoWCPrYoghIiIdgiBAo9EgOzu7rrtC9ZSNjQ0cHR2r/Rw3hhgiItJRGmCUSiXMzc35wFCqMYIg4P79+8jMzAQAqNXqaq2PIYaIiETFxcVigLG3t6/r7lA9ZGZmBgDIzMyEUqms1qklXthLRESi0mtgzM3N67gnVJ+VHl/VveaKIYaIiMrgKSSqTTV1fDHEEBERkSQxxBARETVgo0ePxqBBg8T3vr6+CAsLq3CZpk2b4osvvqjVflUGL+wlIqJKaTpz33PbVvqiN57btuqSr68v2rdv/1wCQXp6OlxdXXH27Fm0b99ebF+xYgUEQaj17dcGhhgiIqqXCgsLYWJiUtfdqDZBEFBcXAwjo9r5la1QKGplvc8DTycREVG94Ovri9DQUEydOhUODg7o3bs3Ll68iH79+sHS0hIqlQpBQUG4c+eOuExJSQkWL16MFi1aQC6Xo0mTJvjss8/Ez1NTU9GzZ0+YmZnB3t4e48aNQ25urvh56amYpUuXQq1Ww97eHpMmTdK562blypVo2bIlTE1NoVKp8Oabb4rLJiYmYsWKFZDJZJDJZEhPT0dCQgJkMhl+/vlndO7cGXK5HEePHi1z2gcAwsLC4OvrW6n9cXV1BQB06NABMplMXK689T58+BChoaGwsbGBvb09Pv744wpna7RaLcaNGwelUglra2v07NkTv/3227N/aNXEEENERPXGxo0bYWRkhF9++QWLFi1C9+7d0b59e5w5cwaxsbG4desWhg0bJtbPmjULixcvxpw5c3Dx4kVs3boVKpUKAHD//n0EBATA1tYWp0+fxn/+8x8cPHgQoaGhOtuMj4/Hn3/+ifj4eGzcuBExMTGIiYkBAJw5cwZTpkzBggULcOXKFcTGxuL1118H8Og0jo+PD0JCQpCRkYGMjAw4OzuL650+fToiIyNx6dIltG3btlL7X9H+nDp1CgBw8OBBZGRkYNeuXc8cx5MnT+LLL7/E8uXL8e9//7vcWkEQ8MYbb0Cj0WD//v1ITk5Gx44d4efnh7t371aq31XF00kSU51z0g3lHDMRNVwtWrRAVFQUAGDu3Lno2LEjFi5cKH6+fv16ODs74/fff4darcaKFSsQHR2N4OBgAEDz5s3RrVs3AMCWLVuQn5+PTZs2wcLCAgAQHR2N/v37Y/HixWI4sLW1RXR0NAwNDdG6dWu88cYbOHToEEJCQvD333/DwsICgYGBsLKygouLCzp06ADg0WkcExMTmJubw9HRscy+LFiwAL179670vt+7d6/C/WnUqBEAwN7evtztPc7Z2RnLly+HTCaDm5sbUlNTsXz5coSEhJSpjY+PR2pqKjIzMyGXywEAS5cuxZ49e/D9999j3Lhxld4HfTHE1IHneXEcEVFD0rlzZ/HPycnJiI+Ph6WlZZm6P//8E9nZ2SgoKICfn1+567p06RLatWsnBhgAePXVV1FSUoIrV66IIaZNmzY6T51Vq9VITU0FAPTu3RsuLi5o1qwZAgICEBAQgMGDB1fqYYKP70tlXLp0qcL90Ye3t7fOs1x8fHzw+eefo7i4uMwTdpOTk5Gbm1vmCc/5+fn4888/q92XijDEEBFRvfF44CgpKRFnTZ6kVqtx7dq1CtclCMJTH8r2eLuxsXGZz0pKSgAAVlZW+PXXX5GQkIADBw5g7ty5iIiIwOnTp2FjY1PpfQEAAwODMtelPH7tTenj/J+3kpISqNVqJCQklPnsWftYXbwmhoiI6qWOHTviwoULaNq0KVq0aKHzsrCwQMuWLWFmZoZDhw6Vu7yHhwdSUlKQl5cntv3yyy8wMDBAq1atKt0PIyMj9OrVC1FRUTh37hzS09Nx+PBhAICJiQmKi4srtZ5GjRohIyNDpy0lJUX887P2p/ROrcpsLykpqcz7li1blvs9Rx07doRGo4GRkVGZcXZwcHjmtqqDIYaIiOqlSZMm4e7du3jnnXdw6tQpXLt2DQcOHMCYMWNQXFwMU1NTzJgxA9OnT8emTZvw559/IikpCevWrQMAjBw5EqampggODsb58+cRHx+PyZMnIygoSDyV9Cx79+7Fl19+iZSUFPz111/YtGkTSkpK4ObmBuDRQ+NOnjyJ9PR03LlzR5zBKU/Pnj1x5swZbNq0CVevXsW8efNw/vx58fNn7Y9SqYSZmZl4gbNWq33qtq5fv46pU6fiypUr2LZtG7766it88MEH5db26tULPj4+GDRoEH7++Wekp6fj+PHj+Pjjj3HmzJlKjVNVMcQQEVG95OTkhF9++QXFxcXo06cPPD098cEHH0ChUMDA4NGvvzlz5mDatGmYO3cu3N3dMXz4cGRmZgJ49CWFP//8M+7evYuXX34Zb775Jvz8/BAdHV3pPtjY2GDXrl3o2bMn3N3dsXr1amzbtg1t2rQBAISHh8PQ0BAeHh5o1KgR/v7776euq0+fPpgzZw6mT5+Ol19+Gffu3cO7776rU1PR/hgZGeHLL7/EmjVr4OTkhIEDBz51W++++y7y8/PxyiuvYNKkSZg8efJTL9CVyWTYv38/Xn/9dYwZMwatWrXC22+/jfT09EqHvaqSCVJ9TN8z5OTkQKFQQKvVwtrauq67o6OuLuzl3UlE9CwPHjxAWloaXF1dYWpqWtfdoXqqouNMn9/fnIkhIiIiSWKIISIiIkliiCEiIiJJYoghIiIiSWKIISIiIkliiCEiIiJJYoghIiIiSWKIISIiIkliiCEiIiJJ0ivErFq1Cm3btoW1tTWsra3h4+OD//73v+Lno0ePhkwm03l5e3vrrKOgoACTJ0+Gg4MDLCwsMGDAANy4cUOnJisrC0FBQVAoFFAoFAgKCkJ2dnbV95KIiIhqTHp6OmQymc4XUNYFI32KGzdujEWLFqFFixYAgI0bN2LgwIE4e/as+D0QAQEB2LBhg7hM6bdmlgoLC8NPP/2E7du3w97eHtOmTUNgYCCSk5PFb8ccMWIEbty4gdjYWADAuHHjEBQUhJ9++qnqe0pERNUToXiO23r6lxPWJ76+vmjfvj2++OKLWt9Weno6XF1dcfbsWbRv377Wt/c86BVi+vfvr/P+s88+w6pVq5CUlCSGGLlcDkdHx3KX12q1WLduHTZv3oxevXoBAL799ls4Ozvj4MGD6NOnDy5duoTY2FgkJSWhS5cuAIC1a9fCx8cHV65cEb/5k4iIqCKFhYVl/iMtRYIgoLi4GEZGev3KbhCqfE1McXExtm/fjry8PPj4+IjtCQkJUCqVaNWqFUJCQsRvzwSA5ORkFBUVwd/fX2xzcnKCp6cnjh8/DgA4ceIEFAqFGGAAwNvbGwqFQqwpT0FBAXJycnReRETUcPj6+iI0NBRTp06Fg4MDevfujYsXL6Jfv36wtLSESqVCUFAQ7ty5Iy5TUlKCxYsXo0WLFpDL5WjSpAk+++wz8fPU1FT07NkTZmZmsLe3x7hx45Cbmyt+Pnr0aAwaNAhLly6FWq2Gvb09Jk2ahKKiIrFm5cqVaNmyJUxNTaFSqfDmm2+KyyYmJmLFihXiJRjp6elISEiATCbDzz//jM6dO0Mul+Po0aPith4XFhYGX1/fSu2Pq6srAKBDhw6QyWQ6y23YsAHu7u4wNTVF69atsXLlSp3tnDp1Ch06dICpqSk6d+6Ms2fPVu2HVMP0jnWpqanw8fHBgwcPYGlpid27d8PDwwMA0LdvX7z11ltwcXFBWloa5syZg549eyI5ORlyuRwajQYmJiawtbXVWadKpYJGowEAaDQaKJXKMttVKpViTXkiIyMxf/58fXeHiIjqkY0bN+Jf//oXfvnlF9y9exfdu3dHSEgIli1bhvz8fMyYMQPDhg3D4cOHAQCzZs3C2rVrsXz5cnTr1g0ZGRm4fPkyAOD+/fsICAiAt7c3Tp8+jczMTLz//vsIDQ1FTEyMuM34+Hio1WrEx8fjjz/+wPDhw9G+fXuEhITgzJkzmDJlCjZv3oyuXbvi7t27OHr0KABgxYoV+P333+Hp6YkFCxYAABo1aoT09HQAwPTp07F06VI0a9YMNjY2ldr/ivbn1KlTeOWVV3Dw4EG0adNGnKVau3Yt5s2bh+joaHTo0AFnz55FSEgILCwsEBwcjLy8PAQGBqJnz5749ttvkZaWhg8++KC6P6oaoXeIcXNzQ0pKCrKzs7Fz504EBwcjMTERHh4eGD58uFjn6emJzp07w8XFBfv27cOQIUOeuk5BECCTycT3j//5aTVPmjVrFqZOnSq+z8nJgbOzs767R0REEtaiRQtERUUBAObOnYuOHTti4cKF4ufr16+Hs7Mzfv/9d6jVaqxYsQLR0dEIDg4GADRv3hzdunUDAGzZsgX5+fnYtGkTLCwsAADR0dHo378/Fi9eDJVKBQCwtbVFdHQ0DA0N0bp1a7zxxhs4dOgQQkJC8Pfff8PCwgKBgYGwsrKCi4sLOnToAABQKBQwMTGBubl5uZdhLFiwAL179670vt+7d6/C/WnUqBEAwN7eXmd7n3zyCT7//HPx97SrqysuXryINWvWIDg4GFu2bEFxcTHWr18Pc3NztGnTBjdu3MC//vWvSvettugdYkxMTMQLezt37ozTp09jxYoVWLNmTZlatVoNFxcXXL16FQDg6OiIwsJCZGVl6czGZGZmomvXrmLNrVu3yqzr9u3b4gFTHrlcDrlcru/uEBFRPdK5c2fxz8nJyYiPj4elpWWZuj///BPZ2dkoKCiAn59fueu6dOkS2rVrJwYYAHj11VdRUlKCK1euiL+T2rRpI96YAjz63ZeamgoA6N27N1xcXNCsWTMEBAQgICAAgwcPhrm5uV77UhmXLl2qcH/Kc/v2bVy/fh1jx45FSEiI2P7w4UMoFApxve3atdPp8+OXkdSlaj8nRhAEFBQUlPvZP//8g+vXr0OtVgMAOnXqBGNjY8TFxYk1GRkZOH/+vBhifHx8oNVqcerUKbHm5MmT0Gq1Yg0REVF5Hg8cJSUl6N+/P1JSUnReV69exeuvvw4zM7MK11XRGYDH242Njct8VlJSAgCwsrLCr7/+im3btkGtVmPu3Llo165dpR4b8vi+AICBgQEEQdBpe/zam2ftT3lK+7l27VqdMTp//jySkpIAoMw2XyR6hZjZs2fj6NGjSE9PR2pqKj766CMkJCRg5MiRyM3NRXh4OE6cOCFemNS/f384ODhg8ODBAB5NnY0dOxbTpk3DoUOHcPbsWYwaNQpeXl7i3Uru7u4ICAhASEgIkpKSkJSUhJCQEAQGBvLOJCIiqrSOHTviwoULaNq0KVq0aKHzsrCwQMuWLWFmZoZDhw6Vu7yHhwdSUlKQl5cntv3yyy8wMDBAq1atKt0PIyMj9OrVC1FRUTh37hzS09PFa3JMTExQXFxcqfU0atQIGRkZOm2PP6flWftTeg3M49tTqVR46aWXcO3atTJjVHohsIeHB3777Tfk5+eLy5UGnLqmV4i5desWgoKC4ObmBj8/P5w8eRKxsbHo3bs3DA0NkZqaioEDB6JVq1YIDg5Gq1atcOLECVhZWYnrWL58OQYNGoRhw4bh1Vdfhbm5OX766SedqbgtW7bAy8sL/v7+8Pf3R9u2bbF58+aa22siIqr3Jk2ahLt37+Kdd97BqVOncO3aNRw4cABjxoxBcXExTE1NMWPGDEyfPh2bNm3Cn3/+iaSkJKxbtw4AMHLkSJiamiI4OBjnz59HfHw8Jk+ejKCgoAovb3jc3r178eWXXyIlJQV//fUXNm3ahJKSEvE/5U2bNsXJkyeRnp6OO3fuiDMj5enZsyfOnDmDTZs24erVq5g3bx7Onz8vfv6s/VEqlTAzM0NsbCxu3boFrfbRs3giIiIQGRkpXmicmpqKDRs2YNmyZQAePbvNwMAAY8eOxcWLF7F//34sXbpU/x9ILdDrmpjSgSiPmZkZfv7552euw9TUFF999RW++uqrp9bY2dnh22+/1adrREREOpycnPDLL79gxowZ6NOnDwoKCuDi4oKAgAAYGDz6P/ycOXNgZGSEuXPn4ubNm1Cr1ZgwYQIAwNzcHD///DM++OADvPzyyzA3N8fQoUPFX+6VYWNjg127diEiIgIPHjxAy5YtsW3bNvHZauHh4QgODoaHhwfy8/ORlpb21HX16dMHc+bMwfTp0/HgwQOMGTMG7777rnj9zbP2x8jICF9++SUWLFiAuXPn4rXXXkNCQgLef/99mJubY8mSJZg+fTosLCzg5eWFsLAwAIClpSV++uknTJgwAR06dICHhwcWL16MoUOH6vXzqA0y4UU+2VUNOTk5UCgU0Gq1sLa2ruvu6Gg6c1+dbDd90Rt1sl0iko4HDx4gLS0Nrq6uMDU1revuUD1V0XGmz+9vfgEkERERSRJDDBEREUkSQwwRERFJEkMMERERSRJDDBERlVFP7/mgF0RNHV8MMUREJCp9+uz9+/fruCdUn5UeX08+7Vhfen93EhER1V+GhoawsbFBZmYmgEfPSqnoy3eJ9CEIAu7fv4/MzEzY2NjoPOi2KhhiiIhIR+k3HJcGGaKaZmNjU+43d+uLIYaIiHTIZDKo1WoolUqdLxgkqgnGxsbVnoEpxRBDRETlMjQ0rLFfNkS1gRf2EhERkSRxJqYBqc53NvF7l4iI6EXDmRgiIiKSJIYYIiIikiSeTpKYdNMRVV626YOtNdgTIiKiusWZGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkPiemDlTnWS9ERET0CGdiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkvQKMatWrULbtm1hbW0Na2tr+Pj44L///a/4uSAIiIiIgJOTE8zMzODr64sLFy7orKOgoACTJ0+Gg4MDLCwsMGDAANy4cUOnJisrC0FBQVAoFFAoFAgKCkJ2dnbV95KIiIjqHb1CTOPGjbFo0SKcOXMGZ86cQc+ePTFw4EAxqERFRWHZsmWIjo7G6dOn4ejoiN69e+PevXviOsLCwrB7925s374dx44dQ25uLgIDA1FcXCzWjBgxAikpKYiNjUVsbCxSUlIQFBRUQ7tMRERE9YFMEAShOiuws7PDkiVLMGbMGDg5OSEsLAwzZswA8GjWRaVSYfHixRg/fjy0Wi0aNWqEzZs3Y/jw4QCAmzdvwtnZGfv370efPn1w6dIleHh4ICkpCV26dAEAJCUlwcfHB5cvX4abm1ul+pWTkwOFQgGtVgtra+vq7GLNi1DUyWabPtha5WXTF71Rgz0hIiIqnz6/v6t8TUxxcTG2b9+OvLw8+Pj4IC0tDRqNBv7+/mKNXC5H9+7dcfz4cQBAcnIyioqKdGqcnJzg6ekp1pw4cQIKhUIMMADg7e0NhUIh1pSnoKAAOTk5Oi8iIiKqv/QOMampqbC0tIRcLseECROwe/dueHh4QKPRAABUKpVOvUqlEj/TaDQwMTGBra1thTVKpbLMdpVKpVhTnsjISPEaGoVCAWdnZ313jYiIiCRE7xDj5uaGlJQUJCUl4V//+heCg4Nx8eJF8XOZTKZTLwhCmbYnPVlTXv2z1jNr1ixotVrxdf369cruEhEREUmQ3iHGxMQELVq0QOfOnREZGYl27dphxYoVcHR0BIAysyWZmZni7IyjoyMKCwuRlZVVYc2tW7fKbPf27dtlZnkeJ5fLxbumSl9ERERUf1X7OTGCIKCgoACurq5wdHREXFyc+FlhYSESExPRtWtXAECnTp1gbGysU5ORkYHz58+LNT4+PtBqtTh16pRYc/LkSWi1WrGGiIiIyEif4tmzZ6Nv375wdnbGvXv3sH37diQkJCA2NhYymQxhYWFYuHAhWrZsiZYtW2LhwoUwNzfHiBEjAAAKhQJjx47FtGnTYG9vDzs7O4SHh8PLywu9evUCALi7uyMgIAAhISFYs2YNAGDcuHEIDAys9J1JREREVP/pFWJu3bqFoKAgZGRkQKFQoG3btoiNjUXv3r0BANOnT0d+fj4mTpyIrKwsdOnSBQcOHICVlZW4juXLl8PIyAjDhg1Dfn4+/Pz8EBMTA0NDQ7Fmy5YtmDJlingX04ABAxAdHV0T+0tERET1RLWfE/Oi4nNiyuJzYoiI6EWnz+9vvWZiSNrSTUdUY2ltjfWDiIioJvALIImIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkvQKMZGRkXj55ZdhZWUFpVKJQYMG4cqVKzo1o0ePhkwm03l5e3vr1BQUFGDy5MlwcHCAhYUFBgwYgBs3bujUZGVlISgoCAqFAgqFAkFBQcjOzq7aXhIREVG9o1eISUxMxKRJk5CUlIS4uDg8fPgQ/v7+yMvL06kLCAhARkaG+Nq/f7/O52FhYdi9eze2b9+OY8eOITc3F4GBgSguLhZrRowYgZSUFMTGxiI2NhYpKSkICgqqxq4SERFRfWKkT3FsbKzO+w0bNkCpVCI5ORmvv/662C6Xy+Ho6FjuOrRaLdatW4fNmzejV69eAIBvv/0Wzs7OOHjwIPr06YNLly4hNjYWSUlJ6NKlCwBg7dq18PHxwZUrV+Dm5qbXThIREVH9U61rYrRaLQDAzs5Opz0hIQFKpRKtWrVCSEgIMjMzxc+Sk5NRVFQEf39/sc3JyQmenp44fvw4AODEiRNQKBRigAEAb29vKBQKsYaIiIgaNr1mYh4nCAKmTp2Kbt26wdPTU2zv27cv3nrrLbi4uCAtLQ1z5sxBz549kZycDLlcDo1GAxMTE9ja2uqsT6VSQaPRAAA0Gg2USmWZbSqVSrHmSQUFBSgoKBDf5+TkVHXXiIiISAKqHGJCQ0Nx7tw5HDt2TKd9+PDh4p89PT3RuXNnuLi4YN++fRgyZMhT1ycIAmQymfj+8T8/reZxkZGRmD9/vr67QURERBJVpdNJkydPxo8//oj4+Hg0bty4wlq1Wg0XFxdcvXoVAODo6IjCwkJkZWXp1GVmZkKlUok1t27dKrOu27dvizVPmjVrFrRarfi6fv16VXaNiIiIJEKvECMIAkJDQ7Fr1y4cPnwYrq6uz1zmn3/+wfXr16FWqwEAnTp1grGxMeLi4sSajIwMnD9/Hl27dgUA+Pj4QKvV4tSpU2LNyZMnodVqxZonyeVyWFtb67yIiIio/tLrdNKkSZOwdetW/PDDD7CyshKvT1EoFDAzM0Nubi4iIiIwdOhQqNVqpKenY/bs2XBwcMDgwYPF2rFjx2LatGmwt7eHnZ0dwsPD4eXlJd6t5O7ujoCAAISEhGDNmjUAgHHjxiEwMJB3JhEREREAPUPMqlWrAAC+vr467Rs2bMDo0aNhaGiI1NRUbNq0CdnZ2VCr1ejRowd27NgBKysrsX758uUwMjLCsGHDkJ+fDz8/P8TExMDQ0FCs2bJlC6ZMmSLexTRgwABER0dXdT+JiIionpEJgiDUdSdqQ05ODhQKBbRa7Yt3ailCUdc90F+Etq57QEREDYA+v7/53UlEREQkSQwxREREJEkMMURERCRJDDFEREQkSVV+Yi81LE1n7qvysumL3qjBnhARET3CmRgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJKO67gBJQ7rpiGosra2xfhAREZXiTAwRERFJEkMMERERSRJDDBEREUkSQwwRERFJEkMMERERSRJDDBEREUkSQwwRERFJEkMMERERSRJDDBEREUmSXiEmMjISL7/8MqysrKBUKjFo0CBcuXJFp0YQBERERMDJyQlmZmbw9fXFhQsXdGoKCgowefJkODg4wMLCAgMGDMCNGzd0arKyshAUFASFQgGFQoGgoCBkZ2dXbS+JiIio3tErxCQmJmLSpElISkpCXFwcHj58CH9/f+Tl5Yk1UVFRWLZsGaKjo3H69Gk4Ojqid+/euHfvnlgTFhaG3bt3Y/v27Th27Bhyc3MRGBiI4uJisWbEiBFISUlBbGwsYmNjkZKSgqCgoBrYZSIiIqoPZIIgCFVd+Pbt21AqlUhMTMTrr78OQRDg5OSEsLAwzJgxA8CjWReVSoXFixdj/Pjx0Gq1aNSoETZv3ozhw4cDAG7evAlnZ2fs378fffr0waVLl+Dh4YGkpCR06dIFAJCUlAQfHx9cvnwZbm5uz+xbTk4OFAoFtFotrK2tq7qLtSNCUdc9eL4i+N1JRERUOfr8/q7WNTFa7aNfTnZ2dgCAtLQ0aDQa+Pv7izVyuRzdu3fH8ePHAQDJyckoKirSqXFycoKnp6dYc+LECSgUCjHAAIC3tzcUCoVY86SCggLk5OTovIiIiKj+qnKIEQQBU6dORbdu3eDp6QkA0Gg0AACVSqVTq1KpxM80Gg1MTExga2tbYY1SqSyzTaVSKdY8KTIyUrx+RqFQwNnZuaq7RkRERBJQ5RATGhqKc+fOYdu2bWU+k8lkOu8FQSjT9qQna8qrr2g9s2bNglarFV/Xr1+vzG4QERGRRFUpxEyePBk//vgj4uPj0bhxY7Hd0dERAMrMlmRmZoqzM46OjigsLERWVlaFNbdu3Sqz3du3b5eZ5Skll8thbW2t8yIiIqL6S68QIwgCQkNDsWvXLhw+fBiurq46n7u6usLR0RFxcXFiW2FhIRITE9G1a1cAQKdOnWBsbKxTk5GRgfPnz4s1Pj4+0Gq1OHXqlFhz8uRJaLVasYaIiIgaNiN9iidNmoStW7fihx9+gJWVlTjjolAoYGZmBplMhrCwMCxcuBAtW7ZEy5YtsXDhQpibm2PEiBFi7dixYzFt2jTY29vDzs4O4eHh8PLyQq9evQAA7u7uCAgIQEhICNasWQMAGDduHAIDAyt1ZxIRERHVf3qFmFWrVgEAfH19ddo3bNiA0aNHAwCmT5+O/Px8TJw4EVlZWejSpQsOHDgAKysrsX758uUwMjLCsGHDkJ+fDz8/P8TExMDQ0FCs2bJlC6ZMmSLexTRgwABER0dXZR+JiIioHqrWc2JeZHxOzAuEz4khIqJKem7PiSEiIiKqKwwxREREJEkMMURERCRJDDFEREQkSQwxREREJEkMMURERCRJDDFEREQkSQwxREREJEkMMURERCRJDDFEREQkSQwxREREJEl6fQEk/U/TmfuqvGy6aQ12hIiIqIHiTAwRERFJEkMMERERSRJPJ1Gtq9apt0Vv1GBPiIioPuFMDBEREUkSQwwRERFJEkMMERERSRJDDBEREUkSQwwRERFJEkMMERERSRJDDBEREUkSQwwRERFJEkMMERERSRJDDBEREUkSQwwRERFJEkMMERERSRJDDBEREUkSQwwRERFJEkMMERERSRJDDBEREUkSQwwRERFJklFdd4Dqv3TTEdVYWltj/SAiovqFMzFEREQkSQwxREREJEkMMURERCRJeoeYI0eOoH///nBycoJMJsOePXt0Ph89ejRkMpnOy9vbW6emoKAAkydPhoODAywsLDBgwADcuHFDpyYrKwtBQUFQKBRQKBQICgpCdna23jtIRERE9ZPeISYvLw/t2rVDdHT0U2sCAgKQkZEhvvbv36/zeVhYGHbv3o3t27fj2LFjyM3NRWBgIIqLi8WaESNGICUlBbGxsYiNjUVKSgqCgoL07S4RERHVU3rfndS3b1/07du3whq5XA5HR8dyP9NqtVi3bh02b96MXr16AQC+/fZbODs74+DBg+jTpw8uXbqE2NhYJCUloUuXLgCAtWvXwsfHB1euXIGbm5u+3SYiIqJ6plauiUlISIBSqUSrVq0QEhKCzMxM8bPk5GQUFRXB399fbHNycoKnpyeOHz8OADhx4gQUCoUYYADA29sbCoVCrCEiIqKGrcafE9O3b1+89dZbcHFxQVpaGubMmYOePXsiOTkZcrkcGo0GJiYmsLW11VlOpVJBo9EAADQaDZRKZZl1K5VKseZJBQUFKCgoEN/n5OTU4F4RERHRi6bGQ8zw4cPFP3t6eqJz585wcXHBvn37MGTIkKcuJwgCZDKZ+P7xPz+t5nGRkZGYP39+NXpOREREUlLrT+xVq9VwcXHB1atXAQCOjo4oLCxEVlaWzmxMZmYmunbtKtbcunWrzLpu374NlUpV7nZmzZqFqVOniu9zcnLg7Oxck7uio3pPoSUiIqLqqvXnxPzzzz+4fv061Go1AKBTp04wNjZGXFycWJORkYHz58+LIcbHxwdarRanTp0Sa06ePAmtVivWPEkul8Pa2lrnRURERPWX3jMxubm5+OOPP8T3aWlpSElJgZ2dHezs7BAREYGhQ4dCrVYjPT0ds2fPhoODAwYPHgwAUCgUGDt2LKZNmwZ7e3vY2dkhPDwcXl5e4t1K7u7uCAgIQEhICNasWQMAGDduHAIDA3lnEhEREQGoQog5c+YMevToIb4vPYUTHByMVatWITU1FZs2bUJ2djbUajV69OiBHTt2wMrKSlxm+fLlMDIywrBhw5Cfnw8/Pz/ExMTA0NBQrNmyZQumTJki3sU0YMCACp9NQ0RERA2LTBAEoa47URtycnKgUCig1Wpr59RShKLm10llRfBbrImIGhJ9fn/zu5OIiIhIkhhiiIiISJJq/RZroupoOnNflZdNX/RGDfaEiIheNJyJISIiIkliiCEiIiJJYoghIiIiSWKIISIiIkliiCEiIiJJYoghIiIiSWKIISIiIkliiCEiIiJJYoghIiIiSWKIISIiIkliiCEiIiJJYoghIiIiSWKIISIiIkliiCEiIiJJMqrrDhBVJN10RDWW1tZYP4iI6MXDmRgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJL1DzJEjR9C/f384OTlBJpNhz549Op8LgoCIiAg4OTnBzMwMvr6+uHDhgk5NQUEBJk+eDAcHB1hYWGDAgAG4ceOGTk1WVhaCgoKgUCigUCgQFBSE7OxsvXeQiIiI6ie9Q0xeXh7atWuH6Ojocj+PiorCsmXLEB0djdOnT8PR0RG9e/fGvXv3xJqwsDDs3r0b27dvx7Fjx5Cbm4vAwEAUFxeLNSNGjEBKSgpiY2MRGxuLlJQUBAUFVWEXiYiIqD6SCYIgVHlhmQy7d+/GoEGDADyahXFyckJYWBhmzJgB4NGsi0qlwuLFizF+/HhotVo0atQImzdvxvDhwwEAN2/ehLOzM/bv348+ffrg0qVL8PDwQFJSErp06QIASEpKgo+PDy5fvgw3N7dn9i0nJwcKhQJarRbW1tZV3cWni1DU/DqpZkVo67oHRESkJ31+f9foNTFpaWnQaDTw9/cX2+RyObp3747jx48DAJKTk1FUVKRT4+TkBE9PT7HmxIkTUCgUYoABAG9vbygUCrHmSQUFBcjJydF5ERERUf1VoyFGo9EAAFQqlU67SqUSP9NoNDAxMYGtrW2FNUqlssz6lUqlWPOkyMhI8foZhUIBZ2fnau8PERERvbhq5e4kmUym814QhDJtT3qyprz6itYza9YsaLVa8XX9+vUq9JyIiIikwqgmV+bo6Ajg0UyKWq0W2zMzM8XZGUdHRxQWFiIrK0tnNiYzMxNdu3YVa27dulVm/bdv3y4zy1NKLpdDLpfX2L6Q9DWdua/Ky6YveqMGe0JERLWhRmdiXF1d4ejoiLi4OLGtsLAQiYmJYkDp1KkTjI2NdWoyMjJw/vx5scbHxwdarRanTp0Sa06ePAmtVivWEBERUcOm90xMbm4u/vjjD/F9WloaUlJSYGdnhyZNmiAsLAwLFy5Ey5Yt0bJlSyxcuBDm5uYYMWIEAEChUGDs2LGYNm0a7O3tYWdnh/DwcHh5eaFXr14AAHd3dwQEBCAkJARr1qwBAIwbNw6BgYGVujOJiIiI6j+9Q8yZM2fQo0cP8f3UqVMBAMHBwYiJicH06dORn5+PiRMnIisrC126dMGBAwdgZWUlLrN8+XIYGRlh2LBhyM/Ph5+fH2JiYmBoaCjWbNmyBVOmTBHvYhowYMBTn01DREREDU+1nhPzIuNzYqjpg61VXpbXxBAR1Y06e04MERER0fPCEENERESSxBBDREREksQQQ0RERJLEEENERESSVKNP7CV6kaSbjqjG0vwGbCKiFx1nYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiS+LUDROVoOnNflZdNX/RGDfaEiIiehjMxREREJEkMMURERCRJDDFEREQkSQwxREREJEkMMURERCRJDDFEREQkSbzFmqgc6aYjqrG0tsb6QURET8eZGCIiIpIkhhgiIiKSJIYYIiIikiSGGCIiIpIkhhgiIiKSJN6dRFTD+OWRRETPB2diiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkmr8FuuIiAjMnz9fp02lUkGj0QAABEHA/Pnz8c033yArKwtdunTB119/jTZt2oj1BQUFCA8Px7Zt25Cfnw8/Pz+sXLkSjRs3runuEtU4fnkkEdHzUSszMW3atEFGRob4Sk1NFT+LiorCsmXLEB0djdOnT8PR0RG9e/fGvXv3xJqwsDDs3r0b27dvx7Fjx5Cbm4vAwEAUFxfXRneJiIhIgmrlYXdGRkZwdHQs0y4IAr744gt89NFHGDJkCABg48aNUKlU2Lp1K8aPHw+tVot169Zh8+bN6NWrFwDg22+/hbOzMw4ePIg+ffrURpeJiIhIYmplJubq1atwcnKCq6sr3n77bVy7dg0AkJaWBo1GA39/f7FWLpeje/fuOH78OAAgOTkZRUVFOjVOTk7w9PQUa8pTUFCAnJwcnRcRERHVXzUeYrp06YJNmzbh559/xtq1a6HRaNC1a1f8888/4nUxKpVKZ5nHr5nRaDQwMTGBra3tU2vKExkZCYVCIb6cnZ1reM+IiIjoRVLjp5P69u0r/tnLyws+Pj5o3rw5Nm7cCG9vbwCATCbTWUYQhDJtT3pWzaxZszB16lTxfU5ODoMMSQ6/d4mIqPJq/RZrCwsLeHl54erVq+J1Mk/OqGRmZoqzM46OjigsLERWVtZTa8ojl8thbW2t8yIiIqL6q9ZDTEFBAS5dugS1Wg1XV1c4OjoiLi5O/LywsBCJiYno2rUrAKBTp04wNjbWqcnIyMD58+fFGiIiIqIaP50UHh6O/v37o0mTJsjMzMSnn36KnJwcBAcHQyaTISwsDAsXLkTLli3RsmVLLFy4EObm5hgx4tGzNRQKBcaOHYtp06bB3t4ednZ2CA8Ph5eXl3i3EhEREVGNh5gbN27gnXfewZ07d9CoUSN4e3sjKSkJLi4uAIDp06cjPz8fEydOFB92d+DAAVhZWYnrWL58OYyMjDBs2DDxYXcxMTEwNDSs6e4SvVD4oDwiosqTCYIg1HUnakNOTg4UCgW0Wm3tXB8Toaj5dRJVRwRDDBFJnz6/v/ndSURERCRJtfLEXiJ6/nh7NhE1NJyJISIiIkliiCEiIiJJYoghIiIiSWKIISIiIknihb1E9QSfMUNEDQ1nYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJJ4izUR8XuXiEiSOBNDREREksSZGCLig/KISJI4E0NERESSxJkYIqoWXk9DRHWFMzFEREQkSQwxREREJEk8nURE1cKLgomornAmhoiIiCSJIYaIiIgkiaeTiKjO8M4mIqoOhhgiqjO8noaIqoOnk4iIiEiSGGKIiIhIkng6iYgkidfTEBFDDBFJUnWup2k6c2vVt8sARPTCYIghogaHFxQT1Q+8JoaIiIgkiTMxRER64LU4RC8OhhgiIj3wWhyiFwdDDBHRc8JrcYhqFkMMEZEURCiqsSwDENVPDDFERPVcda7jqQ6eAqPa9sKHmJUrV2LJkiXIyMhAmzZt8MUXX+C1116r624REUlG9U5jVV1dXQNU3dDG8CUdL3SI2bFjB8LCwrBy5Uq8+uqrWLNmDfr27YuLFy+iSZMmdd09IiKqQJ1dBF3N0FadbVcHw5P+ZIIgCHXdiafp0qULOnbsiFWrVolt7u7uGDRoECIjIytcNicnBwqFAlqtFtbW1jXfueqcnyYiIqpJ9ei6J31+f7+wMzGFhYVITk7GzJkzddr9/f1x/PjxOuoVERHRi6dazy+qzsxVHYenFzbE3LlzB8XFxVCpVDrtKpUKGo2mTH1BQQEKCgrE91rto4HNycmpnQ4WvLATWERE1MCck71T5WVzCp5d8/SFa/53bOnv7cqcKHphQ0wpmUym814QhDJtABAZGYn58+eXaXd2dq61vhERETVoi2rv0op79+5Boah4/S9siHFwcIChoWGZWZfMzMwyszMAMGvWLEydOlV8X1JSgrt378Le3r7c0FMdOTk5cHZ2xvXr12vnept6hGNVeRyryuNYVR7HSj8cr8qrrbESBAH37t2Dk5PTM2tf2BBjYmKCTp06IS4uDoMHDxbb4+LiMHDgwDL1crkccrlcp83GxqZW+2htbc2DvJI4VpXHsao8jlXlcaz0w/GqvNoYq2fNwJR6YUMMAEydOhVBQUHo3LkzfHx88M033+Dvv//GhAkT6rprREREVMde6BAzfPhw/PPPP1iwYAEyMjLg6emJ/fv3w8XFpa67RkRERHXshQ4xADBx4kRMnDixrruhQy6XY968eWVOX1FZHKvK41hVHseq8jhW+uF4Vd6LMFYv9MPuiIiIiJ7GoK47QERERFQVDDFEREQkSQwxREREJEkMMURERCRJDDFPsXLlSri6usLU1BSdOnXC0aNHK6xPTExEp06dYGpqimbNmmH16tXPqad1T5+xSkhIgEwmK/O6fPnyc+xx3Thy5Aj69+8PJycnyGQy7Nmz55nLNNTjSt+xaqjHVWRkJF5++WVYWVlBqVRi0KBBuHLlyjOXa4jHVVXGqqEeVwCwatUqtG3bVnyQnY+PD/773/9WuExdHFcMMeXYsWMHwsLC8NFHH+Hs2bN47bXX0LdvX/z999/l1qelpaFfv3547bXXcPbsWcyePRtTpkzBzp07n3PPnz99x6rUlStXkJGRIb5atmz5nHpcd/Ly8tCuXTtER0dXqr4hH1f6jlWphnZcJSYmYtKkSUhKSkJcXBwePnwIf39/5OXlPXWZhnpcVWWsSjW04woAGjdujEWLFuHMmTM4c+YMevbsiYEDB+LChQvl1tfZcSVQGa+88oowYcIEnbbWrVsLM2fOLLd++vTpQuvWrXXaxo8fL3h7e9daH18U+o5VfHy8AEDIysp6Dr17cQEQdu/eXWFNQz6uHleZseJx9UhmZqYAQEhMTHxqDY+rRyozVjyudNna2gr//ve/y/2sro4rzsQ8obCwEMnJyfD399dp9/f3x/Hjx8td5sSJE2Xq+/TpgzNnzqCoqKjW+lrXqjJWpTp06AC1Wg0/Pz/Ex8fXZjclq6EeV9XR0I8rrVYLALCzs3tqDY+rRyozVqUa+nFVXFyM7du3Iy8vDz4+PuXW1NVxxRDzhDt37qC4uLjMN2WrVKoy36hdSqPRlFv/8OFD3Llzp9b6WteqMlZqtRrffPMNdu7ciV27dsHNzQ1+fn44cuTI8+iypDTU46oqeFw9+ubfqVOnolu3bvD09HxqHY+ryo9VQz+uUlNTYWlpCblcjgkTJmD37t3w8PAot7aujqsX/msH6opMJtN5LwhCmbZn1ZfXXh/pM1Zubm5wc3MT3/v4+OD69etYunQpXn/99VrtpxQ15ONKHzyugNDQUJw7dw7Hjh17Zm1DP64qO1YN/bhyc3NDSkoKsrOzsXPnTgQHByMxMfGpQaYujivOxDzBwcEBhoaGZWYSMjMzy6TMUo6OjuXWGxkZwd7evtb6WteqMlbl8fb2xtWrV2u6e5LXUI+rmtKQjqvJkyfjxx9/RHx8PBo3blxhbUM/rvQZq/I0pOPKxMQELVq0QOfOnREZGYl27dphxYoV5dbW1XHFEPMEExMTdOrUCXFxcTrtcXFx6Nq1a7nL+Pj4lKk/cOAAOnfuDGNj41rra12ryliV5+zZs1Cr1TXdPclrqMdVTWkIx5UgCAgNDcWuXbtw+PBhuLq6PnOZhnpcVWWsytMQjqunEQQBBQUF5X5WZ8dVrV42LFHbt28XjI2NhXXr1gkXL14UwsLCBAsLCyE9PV0QBEGYOXOmEBQUJNZfu3ZNMDc3Fz788EPh4sWLwrp16wRjY2Ph+++/r6tdeG70Havly5cLu3fvFn7//Xfh/PnzwsyZMwUAws6dO+tqF56be/fuCWfPnhXOnj0rABCWLVsmnD17Vvjrr78EQeBx9Th9x6qhHlf/+te/BIVCISQkJAgZGRni6/79+2INj6tHqjJWDfW4EgRBmDVrlnDkyBEhLS1NOHfunDB79mzBwMBAOHDggCAIL85xxRDzFF9//bXg4uIimJiYCB07dtS5DS84OFjo3r27Tn1CQoLQoUMHwcTERGjatKmwatWq59zjuqPPWC1evFho3ry5YGpqKtja2grdunUT9u3bVwe9fv5Kb9d88hUcHCwIAo+rx+k7Vg31uCpvjAAIGzZsEGt4XD1SlbFqqMeVIAjCmDFjxH/XGzVqJPj5+YkBRhBenONKJgj//5U3RERERBLCa2KIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKIiIhIkhhiiIiISJIYYoiIiEiSGGKI6IXj6+sLmUwGmUyGlJSUOuvH6NGjxX7s2bOnzvpBROVjiCGiF1JISAgyMjLg6emp067RaPDBBx+gRYsWMDU1hUqlQrdu3bB69Wrcv3+/Uuvu378/evXqVe5nJ06cgEwmw6+//ooVK1YgIyOj2vtCRLXDqK47QERUHnNzczg6Ouq0Xbt2Da+++ipsbGywcOFCeHl54eHDh/j999+xfv16ODk5YcCAAc9c99ixYzFkyBD89ddfcHFx0fls/fr1aN++PTp27AgAUCgUNbdTRFSjOBNDRDXi1q1bkMlkWLFiBTp06ABTU1O0adMGx44dq7FtTJw4EUZGRjhz5gyGDRsGd3d3eHl5YejQodi3bx/69+8PABAEAVFRUWjWrBnMzMzQrl07fP/99+J6AgMDoVQqERMTo7P++/fvY8eOHRg7dmyN9ZmIag9DDBHViLNnzwIAVq5cieXLl+O3335D06ZNMXLkSJSUlFR7/f/88w8OHDiASZMmwcLCotwamUwGAPj444+xYcMGrFq1ChcuXMCHH36IUaNGITExEQBgZGSEd999FzExMRAEQVz+P//5DwoLCzFy5Mhq95eIah9DDBHViN9++w3GxsaIjY2Fr68v3NzcsGDBAvz999/47LPP0L59e3h6ekIul6N9+/Zo37491qxZU+n1//HHHxAEAW5ubjrtDg4OsLS0hKWlJWbMmIG8vDwsW7YM69evR58+fdCsWTOMHj0ao0aN0tnemDFjkJ6ejoSEBLFt/fr1GDJkCGxtbas9HkRU+3hNDBHViJSUFAwZMgSurq5im1wuB/DoLp85c+bg119/xeTJk/HLL79UeTulsy2lTp06hZKSEowcORIFBQW4ePEiHjx4gN69e+vUFRYWokOHDuL71q1bo2vXrli/fj169OiBP//8E0ePHsWBAweq3Dcier4YYoioRqSkpCA4OFin7ddff4WDgwNeeuklAMCFCxfQpk2bKq2/RYsWkMlkuHz5sk57s2bNAABmZmYAIJ662rdvn7jdUqWhqtTYsWMRGhqKr7/+Ghs2bICLiwv8/Pyq1D8iev54OomIqi0/Px9Xr15FcXGx2FZSUoIVK1YgODgYBgaP/qk5f/58lUOMvb09evfujejoaOTl5T21zsPDA3K5HH///TdatGih83J2dtapHTZsGAwNDbF161Zs3LgR7733XpmZHiJ6cXEmhoiqLTU1FTKZDN9++y169uwJGxsbzJ07F9nZ2fj444/FugsXLsDf37/K21m5ciVeffVVdO7cGREREWjbti0MDAxw+vRpXL58GZ06dYKVlRXCw8Px4YcfoqSkBN26dUNOTg6OHz8OS0tLndkiS0tLDB8+HLNnz4ZWq8Xo0aOrMwxE9JwxxBBRtaWkpKB169aYOXMm3nzzTWRnZyMwMBAnTpyAjY2NWFedmRgAaN68Oc6ePYuFCxdi1qxZuHHjBuRyOTw8PBAeHo6JEycCAD755BMolUpERkbi2rVrsLGxQceOHTF79uwy6xw7dizWrVsHf39/NGnSpMp9I6LnTyY8fn8hEVEVTJo0CVlZWdi6detTa3Jzc+Hq6orbt28/c32+vr5o3749vvjiixrsZdXJZDLs3r0bgwYNquuuENFjeE0MEVVbSkoK2rZtW2HNxYsX4eHhUel1rly5EpaWlkhNTa1u96pswoQJsLS0rLPtE1HFOBNDRNUiCAIUCgW2b9+Ofv361cg6/9//+3/Iz88HADRp0gQmJiY1sl59ZWZmIicnBwCgVquf+pA9IqobDDFEREQkSTydRERERJLEEENERESSxBBDREREksQQQ0RERJLEEENERESSxBBDREREksQQQ0RERJLEEENERESSxBBDREREksQQQ0RERJLEEENERESS9P8BmXzXUM7OXBoAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAJGCAYAAABBU63LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDVUlEQVR4nO3dP2wjV4Lv+5/s9rbh3ZZK0s4u1pjG2sVs8aJid3Yzk5FTsgVMeiEyvS8h3dlkMpXclxaVD6AmU0esBl7wMokV3ZTlxnp3gAVWZLV6dsfGeFwvEKpMikWyKBX/6Oj7ARp2k6xTh4dH1K9PnTpnJ4qiSAAAAIABPtp0BQAAAIC8EG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbpG709NT7e/vT/0pFAoqFAqZH9/f31e9Xt/02wHwSPm+r3K5rGKx+Gi+j6rVqorFYvKdDDxEhFvkbjAYKAxDlUolvX37Vt9//71Go5EGg4EGg4H6/b7CMFQYhjo7O0seH41GGo1Gevv2rWq1msIw1OXl5abfDoBHyrZtNZtN2batMAw1HA43XaWVq9frqtfrCoJAYRhuujrAnRBukbsgCFSr1dTpdOQ4jizLmnjetu3U/485jqNWq6VWq8WXK4CNsSxLpVJJZ2dnc18XBIEKhYKq1eqaanY/8+pbKpVUq9XkOM4GanY/D+1zwOoQbpG74XCoVquV6bW3g++4RqORU40AzEMYmG/e95QkdbtdBUGgbreb63lX9blkqe/BwcFKzn0XWdthVZ8DHp4nm64AzHNwcLDwl0FWaSO7APIVBMGmq/Cg1Wo1DQYDFYvFXMtd1eeyqvquStZ2eGjvC6tDuEXu8gq2EuEWWAfC7f1YliXXdXMvd1Wfy6rquypZ2+GhvS+sDtMSkLs8L2cVCgV+8QIr5Hkec9u3EJ/LDdoBd0G4Re7ynCdWKpW2au4XYJqs8+OxXnwuN2gH3AXTEpC7UqmUW1kP8Y5d4KGo1+vyPG/T1cAtfC43aAfcFeEWW61arU6stxivodtsNmVZloIg0NHRkSqVytSx3W5XFxcXkpSsUfn69euZgbler+vy8lJhGCoIAkVRJOlmU4qrq6tk3V3btnV2djYxt7her+vNmzdTZX7//fdTc5CLxaJ835dlWQrDUJVKRZ1OZ+I1nufJdd2JUWvLsqZGMe7SPkEQyHVdFQqF5LirqysdHR3J8zyVSqXUNspap6yWae9Wq5XMv47rH/9/EAQqlUqZ6hEEQfK6uP3juqS9503UMWs736e/ttvtqfL29/cnzlkqlSbmL94+32g0migzCALV63UNh0MFQSDbttXv9zfenstoNpvyfV+2batQKOjq6kr1en3u3P/T01P1er2kXrfbZbz+i37m7vK5LPsdkKW+t4VhqHa7raurq+T9HBwcqNVqpR57375yl3ZY5n2t8nvg9s8aNiQCNkBSJCkaDAZzX9fv9yPXdSNJkW3b0Wg0iiqVShRFUTQajZJybms0GlGv15sqy7KsqFarzTxXp9OZKLNWq03VsVQqRZZlRaPRaKqMWq0WSZp5jpjjOJFt21G/30+tu+M4U+et1WqRbdsTjy/bPp1OJ3k+7byS7l2nrO7S3v1+P2o0GhPPj0ajyLKsme8r1ul0Uus6Go0ix3Gmyt1EHZf97O/bX+Pns/wq6PV6SV+TlFper9dLfgYcx5l6ft3tmVWv14ts245c1516rtFoJO877Xzxe7IsK7Vd7vozl/VzWfY7YFF9b5+/3+9HrVZr6vm4jE6nM/VcHn3ldj0Wyfq+1vU9gM0i3GIjsobbWBwGb4fGSqUy9WXU6XRSv3Dj5ySl/hKLxV+mjUYj9Uuq3+9HklK/8ONfJvO+rKPo5otxVoic1y62baeWnbV9Fn3xpgXuu9Ypq6zt3Wg0Zv6jYVEdXddd+N4dx5lZ/jrqeNd2vk9/HT8+q0qlMjc8RFGUObCssj2zis817zshDmHzwvSsdrnLz1wULf+5LPMdOa++t8+fdmws/j69PZCQ9RxRlL2vZDXvnOv6Hpj1s4b14YYyPAgHBwfJ7jPjOp3O1OWrXq+n4+Pj1Lla8aW5ecvFjF9SSru8FF+26vV6qcdWKhX5vi/f92eeYzgcTl3+CoJAp6enajQaMy+DxpdNb7+3LO0Tb3k8bwvR29M77lOnrLK29+npqer1emoZL1++lKTUOoRhqHq9rlqtNvdyYavVUrvdTv3cVl3H+7Tzffrrpqy6PZdRrVZl27ZqtdrM1zSbzYXlpN34epefubta5jsyfn0Wr1+/nvlcpVKRbdszP6NNmPW+1vk9sE0/a48V4RYPSpab1YbDocIwnBkubdvOtLxYuVxeeJ408S+DWQG62+2m/jKIf4HOO++LFy8kzf7ynNc+8ZdxtVqdubTO0dHRxJd2HnXKalF7S4tvMEx7X/F7ODo6mnts3HbHx8czX7PqOt6nne/aXzdpVe2Z1enpqYIgWBgw77piy11+5u4rzxt6pcXrllcqFQVBoHa7net587bO74Ft/Fl7bAi3eFCybOpwdnamTqczc/ve8RsI7nuuNI7jJDeHpJ3n/Pw89RdQHMbjEDOvTvOC+zyu68r3fe3v76tYLKrZbE6MfDmOM1FGHnXKalHd5z0/7xdwfKNfls/Tsiz5vj+zf6yqjuv47LfRqtozq/gfCvEo8Cos+zN3X+vuB/FI8baPVq7zewCbx2oJeFCy/EKLpwZISvYZv7i4mLjzOov7rK9br9eTFRTGL3f6vj/zF2lcr5OTEx0eHs4se/wu8tsWtU+tVpNt28klbt/3dXp6KulmBOb2nb551CmrRe191zAT/4LKcvzBwUFyR3TaiOGq6phHOz/E9aBX1Z5Zxe2+yvMs+zN3X+u+Uz/+DLd9s511fg9g8wi3MFK321Wz2Ux+qYyP4nqed+9RxkVqtZqazaZardZEuHVdN3X+2/gIwevXr1f6C6pUKqnf7ysMQ3mep4uLC3mep263K8/z1O/3Zdv2Wuu0Kne9ZL3Oy4omtDPmy/ozh9V4CN8DyBfTEmCcer2uarWqer2uXq+X+xy0rGq1moIgmHsD0LzH8haGobrd7sQ5K5WKWq2W+v2+er1ectPFuuq0auPvIcsvuPiX2TqDxra2c7vd3vrRuPuKP+dVbe+67M9cFtv2uWziZ0Zarh0ewvcA8kW4hVE8z1O73VapVJo55/b2l5vv+yv5ZRH/wopvLGu323N/icVTKS4vL3Ovi3TzhT1vlYh4UfzxML7qOq1D1vcQ39lu2/baf6mZ0M6xVQXFVYhvDFpVWLzLz9xDE2++sOhGrTTr7CsP4XsA+SHcwijxTl/VanXma27/Ihvf3SdPtm2rVCqp2+0qDEP1er25d37H0xXm/TKUlOw+dBeLfomWSqWJUY511GnVsr6H+IaTTexlvw3tfPtnIAzD1LmFi+YbPqSg1mg0ZFmWzs/P577uPv/oWPZn7rasn8uqLPpufPPmjRzHSV1xIs++ct92eAjfA8gP4RYblXeojO/cnVVut9udCpjD4XBll4bjIFKtVheObNi2Ldd1k3l4s5ycnNxrXcl54Sje1nTddbqvef0o3sq12+3OHaFrtVqqVCq5rTt626I6bqqdZ41eDgaD1J+LYrGY+vpYr9db2zSbPHQ6nYXrNC8KRNL8+ZnL/MzFlv1clpVlPqllWTo5OZn5/OnpqcIwnNo+PJZHX1m2HWa9r235HsCabHoXCTw+vV4v2aEs604utm1n2o0o3pbTsqyp1/Z6vajVaiW76sS7mN3ejcZxnJlbYsbnkBRZlpWp7nF9sop30UnbZS1tW+EoytY+g8Eg2Ro4bTemfr8fOY4zd2efZeqUVR7t3Wq1Fm57HL+H2+cZjUZRqVSae+y667hMO9+3bqPRKLJtOyqVSsljs7ZcjV9vzdj6ttFoRIPBINkCtdfrpfandbVnVvGWrGntW6vVku+MuP9kfU/3+Zlb9nPJ+h05r77jSqVS5Lpusr3vba7rztxdbfw93LevLNsOi97Xpr8HsB47URRFa0nReNSq1ap83082WBhnWVZyeWkwGEw8VygUJo6JX+s4zszRgjAMdXJyIs/z9OLFi+Rf9y9fvkz+Nd5ut+W6bvKvedu2VSwWJ6YoxOdyXVelUkm+76tarabW53a9x52enurq6mqpy1xBEKjVaikIgol5X/EKEHdpnyAIktUaPM9Lnk+bhnCfOmWVR3ufnp7Kdd2JkRjLsvTq1avU0bb4PQyHw2RHJ8uy9Pr169QpI5us46J2zrO/BkGQjAjbtq1CoTBzzrr06/SIuI5xH4pXe9jf35d0c1nasqxkXuYm2jOrIAiSEVbbtpMl2eLVTvb395O62LadrOs66z31+/1kzu19fuYWfS7LfkfOq+94veLVXuJ6uK6rw8NDXV1dKQzDhX0kdte+smw7ZH1fcXnr/h7AehFuAQAAYAzm3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIzxZNMV2Aa//PKL/vjHP+rZs2fa2dnZdHUAAABwSxRF+vDhgz7//HN99NHs8VnCraQ//vGPev78+aarAQAAgAV++OEH/fa3v535POFW0rNnzyTdNNbu7u6GawMAAIDbrq+v9fz58yS3zUK4lZKpCLu7u4RbAACALbZoCik3lAEAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiD7XcBAGsRRZF+/vln/fWvf910VQCs0UcffaRPPvlk4ba5eSHcAgBWKooijUYjhWGon376adPVAbABH3/8sZ49e6a9vT199tlnKz0X4RYAsFL/8R//odFopGfPnuk3v/mNnjx5srYRHACbFUWRfvnlF/3Xf/2Xrq+vFYahfvvb3+rZs2crOyfhFgCwMu/fv9doNNI//dM/ybKsTVcHwIb87d/+rX7zm9/oj3/8o/7t3/5N//zP/7yyEVxuKAMArMz19bU+++wzgi0A7ezs6PPPP9cnn3yi9+/fr+w8hFsAwErElyL/7u/+btNVAbAldnZ2tLu7qw8fPiiKopWcg3ALAFiJn3/+WVEU6dNPP910VQBskc8++0x//etf9Ze//GUl5RNuAQAr8csvv0i6WQYIAGIff/yxpF+/I/LGNw4AYKVYGQHAuFV/J7BaggG++Oa7XMp59+3XuZQDAACwKYzcAgAAwBiEWwAAABiDaQkAgK2Q1xSrbcS0L2B9CLcbYvKXOAAAwKYwLQEAAMAAYRiqXC6rUChoZ2dHYRhmPjY+bn9/X77vr66Sa0C4BQAAeGCq1aoKhcLEY5ZlqdPpqFKpLF1er9dTvV5fKhBvK8ItAAAwVrvdVhAEm67GUrLU2fd9BUEwFUYty1K5XL7TeUul0p2O2zaEWwAAYKzBYLDpKiwtS50Hg4FGo5Esy1p9hR4Ywi0AADCW53mbrsLSstaZYJuOcAsAAIwUBMGDuznqIdZ52xBuAQCAceKVAx6Sh1jnbcQ6twAAPGBhGKparSoIAgVBoCiK5HmefN9P5m66rjtxjO/7Oj8/V6FQUBiGGgwGqtfrchxnqvwgCNRqtSYugRcKBdVqtdS6nJycJOVeXV2lvna8zsPhUP1+X5LU7XYl3cwnDYJAnU4n9dL76elp8nh8Q5XjOAqCQLVaTe12e+LYarWqg4OD5Pher7dU292u79u3byfaqlqtyvd9DYdDtVqt1LZZ1I5Z6yzdLNs1qy63xe/Hsqzks75dj6yW6TebRLgFAOABsyxLvV5PzWZTp6en8jxPYRiq0WioXq+r3W5PhNv473GglG5CXrFYVKvVmlhGqtvtqtlsqtfrybbtidefnp6q0Wgkj3mep2azqbdv304Ep3a7rXK5PBHcbtc5vhQ/Xl6z2VSxWJy6uep2WbFisaijoyNJUq1WU61Wk+d5yevH679s28VLbJ2cnOj09HSqnE6no263q2q1mvYRZWrHrHWWboLu6empms1m6vOxdrutUqk00a5BEKhYLMp13aVWR1im32wa0xIAADBAfDm71+slQaPVak2M+Pm+r3q9rk6nM3GsZVlqNps6Pj5OHguCQNVqVa1WaypktdttNZvNZLmq+HJ6Wuis1WpyHGei7FgcRl3XnQhgklSv1xUEwcTNVfFc1LRRx1arNd0oGWVpO8uykvqmmRUUl2nHZWQJppZlTY2q2ratVqularWaeU3bZfrNNiDcAgBgkPGF/S3LmghBx8fHKpVKqSOCr169UhiGydSAZrMpy7JmjshZlpVcNj8+PpbjODNHGuv1urrd7swbpdLmmcZl3w5gnuelhsE81mid13aLzLrMv0w75m1W/SuVisIwXDjyG1um32wDwi0AAAZ58eLFzOd8358ZQONwdnFxkbx2VlmNRmNijdVutzv3vPE5z8/P5z6fVp/hcJg8FgfoYrGYBObb9bqPee/hrpZpx3VyHCfzkmPL9JttwJxbAAAMMisoxaOmQRCo3W6nvsZ13SSIBUGQ6UaheBR1UUCzLGvmyO0yI5f9fl/Hx8dqt9vJ+3AcR2dnZ/e+sWkVITNrO67bwcFBpiXHlu0324BwCwCAQWYFxTi4OY6Tejd/mjy3rQ3DcGIU9q7im7ukX1cCOD8/T26SyvLewjBMDbKrmh6QRzvOqvOq3aXfbBrTEgAAeATiy8pZg1a8tFbWcrPcnHTf0b04zMbilQD6/b4ajUbmOaRv3ry5Vz3SzHr/WdtxkbzrPBwOM40oL9tvtgHhFgCAR6JSqSy8FB3PwyyVSgrDcG5oHX/tvPmb8XOzlsrKKgzDmfN2W63WwvrGZdzVvJHTWeFvmXac5T51nsX3/cw3zC3Tb7YB4RYAgEfi7Oxsanmtcd1uN7k0Hy/0P2s0tN1uJ6N6ruvO3TY2XlM1jxUNZs37lG5GGccDaNqoYxAEM2+OWiRum7TpFbPadJl2zLvOs+rUbrdlWVbm5dOW6TfbgDm3SHzxzXe5lfXu269zKwsAsFg8ujccDmeOMMabFlSr1amdreIdtsaXrHr79q2++uorlcvlicfj4BUHLtu21el0VK1WpzYq6Ha7CoJAb9++napPHBLTwuK80crbG0hIN4GtXq9PPGbbthzHUafTSYK153lTx2ZpO+nX5cF6vd5EUB9fTWB8k4NY1nZcps6L5i+XSiUdHBxMBWPf99VqteZ+Hmnve5l+s2k7URRFm67Epl1fX2tvb0/v37/X7u7uWs6ZZ5DcRoRbAD/++KO+//57ffnll/r00083XR1jxVvDXl5eKgxD2bYt27bVbDZnjpSOr3FaKBRkWZZs2059/e3XxkEpLczEW8zG68VeXV3p8PAwNUyOb3sb1zneBCLezjYIAlmWpRcvXiSjw2EYynEcdbvdZEtZ6SYUptUpPpdt2yoUCiqVSkk4y7vtdnZ2kr/fXr1hmXacV2fp1+1347YrlUoTu9DFgbNUKiX/uIhdXV3p9evXUyH+dpm2bU9sYrHovS/jrt8NWfMa4VaE21Ug3AIg3AJIs+pwm9u0hHq9rmazOXNOSBiGOjk5kSQdHh5qMBhMDc9v6hgAAACYIZdw6/t+6lyXWBiGKhaL6nQ6E8Pq9XpdFxcXqROa13UMAAAAzJFLuF20rly1WlWlUplaT811Xe3v76tcLk/N11jXMQAAADDHvZcCa7fbc9eti5eOmDWq++rVq6kR1XUdAwAAALPcK9ymLWFxW3z33qzXFAoFeZ43seTHuo4BAACAWe4VbrPs4ez7/tw14+Iwenl5ufZjAAAAYJY7z7ntdrszpwCMC4Jg7q4VcSC9vRPHOo657fr6euLvT58+1dOnT2e+HgAAANvlTiO3YRhm3gpu0W4fcSAdny6wrmNue/78ufb29pI/8ZJiAAAAeBjuNHJ7cnKS+easrHNcr66u1n7MbT/88MPEosCM2gIAADwsS4dbz/NULpdXUZeN293dXdsOZQAAAMjf0tMSer3eUmvFju/7PM/h4eHajwEAAIBZlgq3p6enev369VInmHeTl3QzV1bSxHzZdR0DAAAAs2QOt0EQyLKspcOhbdtJsEwTj7aO35y2rmMAAABglsxzbn3fV6fTUafTmXouXl7r+Pg4GUHt9XqSJMdx5HnezHLjY8enOqzrGAAAAJgl88htpVJRr9dL/ROvnHB2dpY8Fjs6OpJ0E47TXFxcTAXOdR0DAAAAs9xrh7IsHMdRqVTS+fl56vPdblfNZnMjxwAAAMAsuYTb+JL/rN2/Op2Out3u1KhqvV5Xo9FIHVFd1zEAAAAwx52335VuQmMQBLq8vJR0M+fWdV05jjOxyYNlWer3+2o2m7IsS4eHhxoMBiqXy6pUKqllr+sYAMCW+P3epmuwOr9/v+kaAI/GvcKt67qZX2tZ1lKvX+cxAAAAMMPK59wCAABg+5TLZRUKBe3v789dceqhIdwCAAA8Qr1eT81mM9MOrw8J4RYAABir3W7PvOF9W62zzq9evVrLedaJcAsAAIw1GAw2XYWlPcQ6bxPCLQAAMNZDnEv6EOu8TQi3AADASEEQzNy5dFs9xDpvG8ItAAAwThiGKpfLm67GUh5inbfRvda5BQAAmxWGoarVqoIgUBAEiqJInufJ9/1k7ubt9d9939f5+bkKhYLCMNRgMFC9XpfjOFPlB0GgVqsly7KSxwqFgmq1WmpdTk5OknKvrq5SXzte5+FwqH6/L0nqdruSbuacBkGgTqczcd7Y6elp8nh8p7/jOAqCQLVaTe12e+LYarWqg4OD5Pher7dU292u79u3byfaqlqtyvd9DYdDtVqt1LZZ1I5Z6zxumc9RkprNpg4PDyVJV1dXevnypZG7txJuAQB4wCzLSpZ0Oj09led5CsNQjUZD9Xpd7XZ7ItzGf48DpXQT8orFolqt1sSOnt1uV81mU71eT7ZtT7z+9PRUjUYjeczzPDWbTb19+3YiwLXbbZXL5YngdrvO8aX48fKazaaKxeLUzVW3y4oVi0UdHR1Jkmq1mmq1mjzPS14/Xv9l286yLHU6HZ2cnOj09HSqnE6no263q2q1mvYRZWrHrHUeb9esn6Pv+6pWq+p0OhPB1/d9NZvNmed4qJiWAACAAeLL2b1eLwk2rVZrYsTP933V63V1Op2JYy3LUrPZ1PHxcfJYEASqVqtqtVpTIavdbqvZbCbLVcWX09NCZ61Wk+M4E2XH4jDquu5EsJWker2uIAgmbq6K56Kmjea2Wq3pRskoS9tZlpXUN82sEdBl2jGrZT5HSfrqq6/UbDanRnQdxzFyGgThFgAAgxQKheT/LcuaCF3Hx8cqlUqpI4KvXr1SGIbJ1IBmsynLsiZGAMdZlpVcNj8+PpbjODNHGuv1urrd7swbpdICVlz27Q0GPM9LDYN5XF6f13aLpAVuabl2zGrZzzEMw9SpEpJmTmF4yAi3AAAY5MWLFzOf831/ZgCNw9nFxUXy2lllNRoNjUaj5Jhutzv3vPE5z8/P5z6fVp/hcJg8FgfoYrGYBObb9bqPee/hrpZpx2XKzPo5ep5nZICdhzm3AAAYZFZQikdNgyBQu91OfY3rukkQC4IgUyiKR1EXBTTLsmaO3C4zctnv93V8fKx2u528D8dxdHZ2du8Qt2zIzCJrO2a17Ofo+76RN43NQ7gFAMAgs4JiHNwcx5l5ifq2PLeADcNwYhT2ruKbuyQlKxucn5+rWCzKdd1M7y0Mw9Qgu+z0gKzyaMe4znf5HB8bpiUAAPAIxJexswateGmtrOXenhub5r6X/eMwGyuVSmo0Gur3+2o0Gpnv/H/z5s296pFm1vvP2o6LxHVe9nO0bTuXf1Q8JIRbAAAeiUqlsnD3q3h1glKppDAM54bW8dfO2zI2fm7WUllZhWE4c95uq9VaWN+4jLuaN21hVthcph1nuX3ssp/jvNfepz22FeEWAIBH4uzsbGp5rXHdbje5NB9vODBrNLTdbiejiK7rzt021nVdlUqlXOZ+zppnKt2MUo4H0LRRziAI5q4fO0/cNmkjobPadJl2zFrnu3yOt2++W1Tvh4xwCwCAAeIRuHmXoONNC+IdtcbFO2yN3/z09u1bvXnzZioYxcErDly2bavT6SS7eI3rdrvJbmO3xXVNq/O8EcW0jRTa7bbq9frEY7Zty3GciXN7njcVsrO0nfTr8mC3dwsbX71gfFOFWNZ2zFrnZT7HeI5y2nq6nufp6uoqOc4UO1EURZuuxKZdX19rb29P79+/1+7u7lrO+cU3363lPJvy7tuvN10FABv2448/6vvvv9eXX36pTz/9dNPVMVa8Nezl5aXCMJRt27JtW81mc+ZIaRiGyUhioVCQZVmybTv19bdfGwextHVb4y1m4/Vir66udHh4OLVE1+1tb+M6x5tAxKEtCAJZlqUXL14ko8NhGMpxHHW7XVmWlQRT27ZT6xSfy7ZtFQoFlUqlJPjl3XY7OzvJ32+v3rBMO86rc9a6zHpt/Lq4HeNzxMfe3mFuFe763ZA1rxFuRbhdBcItAMItgDSrDrdMSwAAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwCAlWIjTADjVv2dQLgFAKzERx/d/Ir561//uuGaANgmP//8syTp448/Xkn5hFsAwEp88skn+uSTT/SnP/1p01UBsEXev3+vp0+f6smTJyspn3ALAFiJnZ0dPXv2TO/fv9ef//znTVcHwBYYjUb68OGDLMvSzs7OSs6xmsgMAICkv//7v9ef//xn/eu//qt2d3f17Nkzffzxxyv7pQZgu0RRpF9++UU//vij/vSnP+m///u/tb+/r/39/ZWdk3ALAFiZjz/+WM+fP9d//ud/6sOHDwrDcNNVArABH330kT777DN9/vnn2tvbW+m5CLcAgJX6+OOP9Y//+I/6h3/4B/3lL3/RL7/8sukqAVijjz76SE+ePEluMl01wi0AYC12dnb0N3/zN5uuBgDDEW6xEl98811uZb379uvcygIAAGZjtQQAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMZ7c5aAgCNRqtSRJw+FQYRiqXC6r0WjMPCYMQ52cnEiSDg8PNRgMVC6XValUNn7MQ/fu09/lUs4XP/4hl3IAAAA2Zelw2+12dXFxIdd1Jx4vFotyXVeDwWDqmDAMVSwW1el05DhO8ni9XtfFxUUSlDdxDAAAAMyx1LSEMAx1fn6eGhLPzs4UBIHq9frUc9VqVZVKZSJwSpLrumq32/I8b2PHAAAAwBxLhdvLy0t1u101m82p5+JAeTtABkEgz/NSQ68kvXr1aiosr+sYAAAAmGWpcHtwcCDLsnR4eDjzNZZlTfw9nr5g23bq6wuFgjzPUxiGaz8GAAAAZlkq3DqOo9FolHrjmO/7kqRSqTT1+O3AOy4Oo5eXl2s/BgAAAGa502oJaZrNpmzbTp0ucHBwMPO4OJAGQbD2Y267vr6e+PvTp0/19OnTma8HAADAdrn3OrfxTWS2baeulDAcDueOqMaBdHy6wLqOue358+fa29tL/sRLigEAAOBhuPPIbbwkWBAEsm1b5XI59XVZ57heXV2t/ZjbfvjhB+3u7iZ/Z9QWAADgYblzuK1UKhMbI5TLZbmuq7Ozs7kjqNtsd3d3Itw+NnltBiGxIQQAANiM3Obcdjod7e/vKwxD9Xq95HHLsjKNqo6vwLCuYwAAAGCWe8+5jVmWpUqlIs/zJta6nXeTl3QzVzY+ft3HAAAAwCxL71A2b7WBeLmt8ZFb27aTYDmrzPFj13kMAAAAzLJUuN3f31ehUJh5+T++5D/+vOM4c6cLxGF5fH3cdR0DAAAAsywVbi3Lkm3bMy/tx0uBFYvF5LGjoyNJv27ycNvFxcVU4FzXMQAAADDLUuG2VqtNTDm47c2bN7IsS69evUoecxxHpVJJ5+fnqcd0u101m82Jx9Z1DAAAAMyyVLhttVpqtVoTN4zFqtWqJOnt27dTI7udTkfdbndqVLVer6vRaKSOqK7rGAAAAJhj6aXAXNdVt9tVtVrVwcGBhsOhwjCU4zj6/vvvU6csWJalfr+vZrMpy7J0eHiowWCgcrk8sVbuJo4BAACAOXaiKIo2XYlNu76+1t7ent6/f7+2TRy++Oa73MrKc/OFvOS5icO7b7/OrSwAAPAwZc1rua1zCwAAAGwa4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjPFk0xWAmd59+rscS3ufY1kAAMBkjNwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIzxZNMVABb54pvvcivr3bdf51YWAADYPozcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDGebLoCj9W7T3+36SoAAAAYh5FbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwxpNlD/B9X67rajgcyvd9WZaler2uWq0285gwDHVyciJJOjw81GAwULlcVqVS2fgxAAAAMMdS4bbdbkuSXNdNHvM8T9VqVa1WS/1+X5ZlTRwThqGKxaI6nY4cx0ker9fruri4UKvVmjrPuo4BAACAWTJPSwiCQGEYTo3QlkolvX37VkEQqFqtTh1XrVZVqVQmAqd0E5Db7bY8z9vYMQAAADBL5nDruu7MqQeO46hUKsnzPAVBkDweBIE8z1O9Xk897tWrV1Mjqus6BgAAAObJHG49z9OXX36pMAxTn49HTH3fTx6Lpy/Ytp16TKFQkOd5E2Wu6xgAAACYJ3O4PTg4UBiGEyOzi8Q3nM0Sh9HLy8u1HwMAAADzZL6hrNfrKQiCmaOjcegdn/MaBIEODg5mlhkH0ttTGdZxTJrr6+uJvz99+lRPnz6dewwAAAC2x1Lr3M4KtpLU7XblOM7Ea4bD4dwR1TiQjk8XWNcxaZ4/f669vb3kT7ysGAAAAB6Gpde5TXN6eipJOjs7m3g86xzXq6urtR+T5ocfftDu7m7yd0ZtAQAAHpZ7h1vf99VsNqfWl32Idnd3J8ItAAAAHpZ7b79brVblum7qLmCWZWUaVT08PFz7MQAAADDPvcJttVqdu/XuvJu8pJu5spIm5suu6xgAAACY587httls6uXLl2o0GjNfY9t2EizTxKOt4zehresYAAAAmOdOc27b7bYKhULqiG0YhskIqeM4c7e9jZfmKpVKyWPrOgYPx7tPf5djae9zLAsAAGybpUduu92uJKUG23gb3NjR0ZGkyV3Lxl1cXEwFznUdAwAAAPMsFW5939dwOJw5x9bzvIkVExzHUalU0vn5eerru92ums3mxGPrOgYAAADm2YmiKMrywiAIVC6XZ46ADodDeZ6n0Wg08XgYhioWi1NLhdXrdVmWpVarNVXWuo6JXV9fa29vT+/fv1/fUmC/31vPeTDp90xLAADgIcqa1zKH20KhsHD7Wtu2NRgMph4Pw1DNZlOWZenw8FCDwUDlcjl1+bB1HyMRbh8Vwi0AAA9S7uHWZITbR4RwCwDAg5Q1r917EwcAAABgWxBuAQAAYAzCLQAAAIxxp00cgIfqi2++y62sd99+nVtZAAAgH4zcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMZ5sugLAQ/XFN9/lUs67b7/OpRwAAMDILQAAAAxCuAUAAIAxmJaAR+Xdp7/LrawvfvxDbmUBAIB8MHILAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjPNl0BYCH6t2nv8uppPc5lQMAABi5BQAAgDEItwAAADAG4RYAAADGuPOc23q9rmq1qlKpNPd1YRjq5OREknR4eKjBYKByuaxKpbLxYwAAAGCWpcJtEATyPE+u68r3fVWr1bmvD8NQxWJRnU5HjuMkj9frdV1cXKjVam3sGAAAAJgn87SEdrutZrMpSZnDYrVaVaVSmQickuS6rtrttjzP29gxAAAAMM9OFEXRsgf5vq9isaherzdzWkIQBCoUChoMBrJte+r5er2uIAjU6/XWfsxt19fX2tvb0/v377W7uzv3vefm93vrOQ+23hc//iG3st59+3VuZQEAsE2y5rWV3VDmuq4kpQZOSSoUCvI8T2EYrv0YAAAAmGll4db3fVmWNfP5OIxeXl6u/RgAAACYaWU7lAVBoIODg5nPx4E0CIK1HzPL9fX1xN+fPn2qp0+fLjwOAAAA22FlI7fD4XDuiGocSMenC6zrmFmeP3+uvb295E+8tBgAAAAehpWN3Gad43p1dbX2Y2b54YcfJiYoM2oLAADwsKws3D5Eu7u761stAQAAALlb2bQEy7IyjaoeHh6u/RgAAACYaWXhdt5NXtLNXFlJE/Nl13UMAAAAzLSycGvbdhIs08SjrePr067rGAAAAJhpZeHWcZy50wXipbnGdzhb1zEAAAAw08rC7dHRkaSbTRbSXFxcTAXOdR0DAAAAM6105LZUKun8/Dz1+W63q2azuZFjAAAAYKY7hdv4Uv+iVQo6nY663e7UqGq9Xlej0UgdUV3XMQAAADBP5nVuu92uXNeVJF1eXkqSjo+Pk8eq1apqtdrEMZZlqd/vq9lsyrIsHR4eajAYqFwuq1KppJ5nXccAAADAPDtRFEWbrsSmXV9fa29vT+/fv1/fJg6/31vPebD1vvjxD7mV9e7br3MrCwCAbZI1r61szi0AAACwboRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMbIvEMZgO33xTff5VYWG0IAAB4iRm4BAABgDMItAAAAjMG0BGDD3n36u9zK+uLHP+RWFgAADxEjtwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYIwnm64AgO30xTff5VbWu2+/zq0sAADmIdwCBnn36e9yK+uLH/+QW1kAAKwL0xIAAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMwfa7AFbui2++y6Wcd99+nUs5AABzEW4BpHr36e9yK+uLH/+QW1kAAMzDtAQAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBkuBAXgw8lovV2LNXAAwFSO3AAAAMAbhFgAAAMYg3AIAAMAYzLkFsHJ5beXLNr4AgEUYuQUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDNa5BfBg5LVe7o33OZYFANgWhFsAj9IX33yXW1nvvv06t7IAAPfDtAQAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxWC0BAO6JlRcAYHsQbgE8SnmumfvFj3/IrSwAwP0wLQEAAADGINwCAADAGIRbAAAAGIM5twCwRbg5DQDuh3ALAPfEzWkAsD2YlgAAAABjEG4BAABgDKYlAICh8pq/y9xdAA8JI7cAAAAwBiO3ALBFtvHmNFZwAPCQMHILAAAAYxBuAQAAYAymJQCAofKc4pCf95uuAADDEW4BAGvD/F0Aq0a4BQA8SARlAGkItwCAtdnG1SAAmMWYcBuGoU5OTiRJh4eHGgwGKpfLqlQqG64ZAGDbMQoMmMOIcBuGoYrFojqdjhzHSR6v1+u6uLhQq9XaYO0AAKuwraPAeQblvBC48ZgYEW6r1aoqlcpEsJUk13W1v7+vcrmsUqm0odpN++mnn3Ty//6o1//jqZ4+2dl0dR6Nn36OdPL//US7rxntvhm0+3LyCsp5tjvTLrL76aefdHJyotevX+vp06ebrs6jsM1tvhNFUbTpStxHEAQqFAoaDAaybXvq+Xq9riAI1Ov1ZpZxfX2tvb09vX//Xru7u6us7uT5vnmm3af80lmX658i7X37gXZfM9p9M2j3zdjWdjc9KP/y03/rh//nlZ7/rzf66Oln9yqLUe5s1p2dljnngx+5dV1XklKDrSQVCgW1222FYSjLstZYMwAAtsO2TuHIq17XO5H2JP2fT//nvf9R8cU3Ob4/gvJGPPhw6/v+3NAah97Ly8utmpoAAMBDtJ2bg+Qn1/f3+/yK0u/z2wAlj3nhv/z03znUZDUefLgNgkAHBwczn4+DbxAEM18Tz8z493//d11fXyePP336dCXzSOJzXP/0oGeEPDhxe9Pu60W7bwbtvhm0+2Y8hnb/v/7vTm5l/Z9P/+e9y7jeifRcmshNqxafa9GM2gcfbofD4cwpCZKS4BuG4czXfPjwQZL0L//yL7nWbZHn//tPaz0fbtDum0G7bwbtvhm0+2aY3e6vcitpL7eSpOfPn+dYWjYfPnzQ3t7sd/Hgw+280Dru6upq5nOff/65BoOBPvnkE+3s/DpXZ1UjtwAAAFhOFEX68OGDPv/887mve/DhNg8fffTR3NFfAAAAbN68EdvYR2uox0pZlpVp9Pbw8HD1lQEAAMBGPfhwO+9mMulmTq4klgEDAAB4BB58uLVtOwmwaeJRXaYdAAAAmO/Bh1vHceZOS4iXAGONWwAAAPM9+O13fd9XsVhUv9+X4zhTz1erVYVhOHf73bsKw1AnJyeSbub0DgYDlctlVSqVrSrTNHm3UbvdVqfTUb1eV6lUkmVZCoJAvu/r/Pxcr1+/Tu1bj1W9Xle1Wr33Pxjp68vJo93p69n5vi/XdTUcDpPNgur1umq12p3LpM8vlne70+ezC4JArVZL0s2UzjAMVS6X1Wg07lzmxvp8ZIBSqRQ1Go3U5yRFvV4v93OORqPItu2o3+9PPF6r1WbWZRNlmmYVbdRqtSJJU38sy1pJ33mIBoNB5Lpu5DhOLj9T9PVs8m53+no2rutGrutOPNbr9SLLsiLbtqPRaLR0mfT5xVbR7vT5bDqdTmo/dBwnsm37TmVuss8bEW430YDzAvVdf2hWUaZpVtFGrVYrcl03ajQaUaVSiWq12tQX7GPmum5UqVQi13WjXq+XS8iiry+2inanry82GAyiVquV+ly/348kRaVSaely6fPzrard6fOLjUajqFKppD4Xt32tVlu63E32eSPCbRTdfDhxmG21WlGtVos6nc5KzjUYDCJJ0WAwSH2+Vqst/UO4ijJNs6o2arVadxoReIziL7r7fCnR15eXR7tHEX09i0ajMbeNSqXS3P6bhj6/2CraPYro81nE/3iedwV82dHbTff5B39DWcyyLLmuq1arpUajIdd1Vzanw3VdSbNXYCgUCvI8L/Puaasq0zS0kRn4HLHNPM/Tl19+ObP/xfMzfd/PXCZ9frFVtDuyOTg4kGVZc/cDWHY51U33eWPC7TrFk9xniT/My8vLjZZpGtrIDHyO2GYHBwcKwzBZaScP9PnFVtHuyMZxHI1Go9Qbx+J/TCx7I+um+zzb795BEARzN4+IP9BlfkhXUaZp1tFGvu/r8vJSL1684A7aFaGvbwf6erper6cgCGaOOMX9cpk2o88vtop2v40+v7xmsynbtpNVFLLadJ9n5PYOhsPh3H+RxB/oMsPtqyjTNKtsI8/zdHp6KknJkjPlclme5y1dFuajr28WfX2xeZv+dLtdOY6z1MZA9Pls8m73GH1+eUEQqF6vy7ZtDQaDpY/fdJ9n5PYOsn4YV1dXGy3TNKtqo/jLcvySjOM46nQ62t/fn7mGMu6Gvr459PX7iQPS2dnZUsfR5+/nru0u0eeX1e12dXFxkYyil8vlO5Wz6T5PuMWjN+vGQ8uyVKlUVK1W7/QvV2Db0Nfvzvd9NZtNdTodwtAa3bfd6fPLqVQqE21WLpfluq7Ozs6Wvqlsk5iWcAeWZWX6V8m8Ow/XUaZpNtFGL1++VBAEj3ouXN7o69uJvj5ftVq98yo89Pm7u0+7L0KfX6zT6ajb7aparS513Kb7POH2DuZNkpZu5ppIyy2dsYoyTbOJNorLYvmZ/NDXtxN9fbZqtXqvLWDp83dz33ZfhD6/WDzC7XneUnOUN93nCbd3YNt28sGkif+1sszE91WUaZpVtFG9XlehULhv1bAE+vpm0Nfvptls6uXLl6nLJGVFn19eHu1On89m0RJscb/s9XqZy9x0nyfc3oHjOHOH2+NOssy6cKso0zSraKPLy8tMP4DMscsPfX0z6OvLa7fbKhQKqQFrmbu86fPLyavd6fPZ7O/vq1AozGzbeOrAQ+rzhNs7ODo6kjT7UsbFxcXSH9gqyjTNKtqoVCppNBrNfP7i4kKWZTGikiP6+mbQ15fT7XYlKfWSeBAES12ipc9nl2e70+ezidtg1hSB+Ia7YrGYucyN9/mVbexruFKpNHcf5rQ94EejUdRoNGbuD3+XMh+bvNu93+9Hruumlhfvjd3pdO5XaYP0+/1MfZG+nq882p2+nt28toqiKHJdNxoMBhOP0efvL+92p89n02g0ptp1nGVZkWVZ0Wg0mnh8m/s84faORqNRZNt21O/3Jx6v1WozP8xWqxVJiizLyq3Mx2YV7d5qtaJWqzXx2GAwiCzLot1v6XQ6mX4h0NfzlVe709cXGwwGkW3bUa1WS/1TqVRS25c+fz+ranf6fDa1Wi01bMbtfrvfRtF29/mdKIqi1Y0Lmy0MQzWbTVmWpcPDQw0GA5XL5ZlLlvi+r6+++kqvXr2S67q5lPkYraLdPc9Tp9PRcDhUGIayLEuvX79+9HOxpJvLhHG7XV5eJu3z4sULSTd3NN++hEhfv79VtTt9fb5CobBwaai0XZvo8/ezynanz2fT7XZ1fn6ug4ODpK0cx9Hr169Tpyxsc58n3AIAAMAY3FAGAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItADwA3W5XOzs7E3/CMNx0tTaq2WxOtMf+/v6mqwRgCzzZdAUAANlYlqW3b99O/P0xe/36tY6OjiRJnufp5ORkwzUCsA0YuQWAB+Lg4ECO4yR/sgjDUO12W+VyWYVCQfv7+yoUCioWizo9PZ0a/fU8T91uN5f61ut17e/vT/3Z2dnR6elp5vrHo7Ljx7fbbVmWtXR7ADAf4RYADNVsNrW/v69Wq6Vqtap+v6/RaKTBYKB+vy/btvXVV19NhNl6vZ7b+V3X1Wg0UqfTURiGCsNQpVJJURSp0WhkKsOyLI1GI7148UJhGKpWq2k0GqlWq+VWTwBmYVoCABgmCAKVy2UFQaBOp6NKpZL6ukqlokqlonq9riAIZFmWgiDIvT6lUkmlUkme593peMuyVK1WZVmWWq1WzrUDYBpGbgHAIL7vq1AoaDgcajAYzAy241zX1WAwyHXU9ra47LtOeej3+wRbAJkQbgHAEGEY6quvvpIkdTod2bad+VjXdVd6g1qlUknKb7fbSx8fBMFS7wfA40W4BQBDHB8fKwxDVSoVlUqlpY8/OztbQa1+9erVK0k3QXoZ7XZb1Wp1FVUCYCDCLQAYwPf95JL/XS/fZ5nCcB/x1ATf95ea29vpdLiBDEBmhFsAMEC8xqtt2/e6fH+XEd+sHMdJ6pZ19JbpCACWRbgFAAPEKxHcd/R11Zf/m82mpOzzbl3XXemNbgDMQ7gF8OjU6/VkU4Pxu/fDMFS9Xle1WlW5XFa1Wl3J0lh5830/2Yzh5cuX9yqrVqstDMhBECTtFLdl1raK592GYZhpaTDP89igAcBSCLcAHpU4lPV6PVUqFVWrVfm+L8/zVK1W1Ww21el01Ov19PLlSxUKBfm+v+lqzzUcDpP/X/WWvJ7nJWG20+nIdV31ej2Vy2UVi8WFgdWyrCQ8L5ob7Hlesr0uAGRFuAXwaIRhqCAIknmlhUJB0s2l+Dikjc/vbDQayQYC22x8xPTg4GBl5+l2uyqXy3Jdd2pubq1W06tXr5LNI+aJpxl4nje1/e8413W5kQzA0gi3AB6N20tKDQYDSTcjn51OJ/UY27YVBMHE6G08paFQKKhYLKpcLs98rFgsJo/H803zNh5ox0dx83Z8fCzHcWbedBa/v0UjsqVSaeGat3HoXfVINADzEG4BPBq9Xi+Z8yn9ehPWvDAWh6zLy0tJN6Okl5eXarVaGgwG6vf76vV66vV6yfa18bSGXq+nfr+vfr8vy7J0eHi4kvc1HgDnjYTex+npqcIwnDtNIF6pIcvNYvGI7KxVE9rtNlMSANwJ4RbAo9FqtSaCYDwaO2/5q/gSexwau92uzs7OUm+68n0/dSkuy7J0dHS0siWtXrx4kfz/MiO38YjyrD/jI83n5+eStPDmrvg9LgrZ8dSE26Pi4+db9bq7AMz0ZNMVAIB1GQ9m8aitZVkzQ+f43NH4NYPBQI1GY+q1cXmzgrJlWSu76z9+D0EQqNfrZZ6nGk/LiFcuiKds1Gq1mf8QiEelZ4nbbDgczp1SYNu2SqWSPM+T67oTI7i+7690vV0AZiPcAniU4oA2Pk3htvE7/x3HURAEKhaLc8srl8upzw8Gg5XeHFWpVHR6epppea3b4hUMLMtSGIYql8szg2mz2Zw7Ar3M7mj1el2e56ndbk+EW9d1VzY/GYD5mJYA4FGKQ+CsMCr9GljjqQZhGM4Mw/HI5qzR2XnnycPr168lZV8/9q7ynNM7Pu1gfL1hdiUDcB+EWwCPUpb5tnHgikcRHceZOaLped7cKQ6rvsxuWVYyXWIVo57x+8p7NYZ4NDvePvj2ihYAsCzCLYBHJx7ZtG17ZliN7/i3bXvhdIIsQXkdWq2WHMeR7/s6PT1d+vh5o7LxDWBZNrRYZle38XLjlSZY2xbAfRBuATw649MN0oRhmIx+zlr/dlyWKQ7r8vbtW9m2rWazOXGpf5FFUxkajYZs2565dNe4ZUaOHcdJPodF83kBIAvCLYBHJw5y8dq1t1WrVYVhqE6nk2mFgzgsb3rkVrqZntDv9+U4TrKd8CJBEKjZbC4Mrp1OR0EQzB0VjrfnXUY8etvtdpP/B4C7ItwCeHTiS+tnZ2dT8zvr9bouLy/V6/Uyr7O6aL7tusUBt9Vq6fT0VPv7+zo9PZ2aLhAH1Wq1qrOzM9VqtbkB3XEc9fv9masZdLtd+b6/9LSC+PW2ba9suTQAjwdLgQF4VMbn28bhtVgs6uDgQMPhUKVSSd9//33mbV+3Zb5tmkajoVqtpjdv3qjT6ch1XQ2HQx0cHCRh/OjoSP1+Pzmm1+vNnXvrOI4Gg4GazaaKxaJs2062/61Wq6lrAC8SL0X28uXLpY8FgNsItwAeldtTCCqVyr12woqnNmxrMLMsS7VabanR1CzBfpn1bLPIMrcZALJgWgKARyXvm7+2ab4tAIBwC+CRWbTZwrLisMxcUQDYDoRbAI9GHETzuvnL932FYUiwBYAtwpxbAI9GHlMIut2uzs/PFYZhMt82CAKVy2VZlqVyucwmBACwQYRbAI9CGIZLbWowy31vQAMArBbTEgAYb39/X/v7+xoOh5JuRl93dna0v7+/4ZoBAPJGuAVgvNFopCiKkv/Gf0aj0aartpQgCLSzs5P8mbce7WPQbDaTttiGrY8BbIedKIqiTVcCADBfGIZTO4w99hvZaBMAaQi3AAAAMAbTEgAAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAY/z/es2GaQD3vksAAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
+       "<Figure size 800x600 with 1 Axes>"
       ]
      },
      "metadata": {},
@@ -2586,9 +688,9 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHJCAYAAABtzYa7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEgElEQVR4nO3de1xVVcL/8e8B5eINLyRoGnhLIfMGXoBsMhsY747PJPUUilmNpRXaNEGWTXYhmyfTSi0nkbSL9y6TZtLN8qepGFrJZDlpmIGkk2CRILh+fzicPJ0jwhE4wP68X6/9CtZZe5+119l2vqy99t42Y4wRAACAhXh5ugEAAAC1jQAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwAEAAAshwCEOi89PV02m+2cy4cffmiv+5///EfXXXed2rZtK5vNprFjx0qSDh48qBEjRqh169ay2WxKSkrSwYMHZbPZlJ6eXqX2fPjhh07vC2evvPKK5s2b5+lmwEKKior0t7/9jX+bqJRGnm4AUFlLly5Vjx49nMrDw8PtPz/88MN67bXXlJaWpi5duqh169aSpOnTp2v79u1KS0tTcHCw2rVrp+DgYG3btk1dunSpUjv69eunbdu2ObwvnL3yyiv64osvlJSU5OmmwCKKior00EMPSZKuuuoqzzYGdR4BCPVGz549FRkZWWGdL774Ql26dNENN9zgVD5gwAD7iFC5QYMGVbkdLVq0cGs9nFtZWZlKS0vl6+vr6abUmKKiIjVp0sTTzQDwX5wCQ4NQfjrr3Xff1b/+9S+H02M2m0379+/X22+/bS8/ePDgOU+Bffnll7r++usVFBQkX19fXXLJJZowYYKKi4slnfsUWGZmpkaPHq3WrVvLz89Pffv21apVqxzqlJ/O++CDD3TbbbcpMDBQbdq00bhx4/T999877dcrr7yiqKgoNWvWTM2aNVOfPn20ZMkSSWdGuxo1aqRDhw45rXfTTTepTZs2OnnypMv+mjdvnr1ffuvee++Vj4+Pjh49KknKysrSyJEj1bZtW/n6+qp9+/YaMWKEvvvuO9cfhs789b1+/Xp9++23DqcrpV8/qyeeeEKPPPKIOnXqJF9fX33wwQc6efKk7r77bvXp00cBAQFq3bq1oqKi9MYbbzi9h81m07Rp07R8+XKFhYWpSZMm6t27t9566y2Hej/88INuvfVWdezYUb6+vrrooosUExOjd999V5KUlJSkpk2bqrCw0Ok94uPjFRQUpFOnTtnLVq5cqaioKDVt2lTNmjVTXFycsrKyHNZLTExUs2bN9Pnnnys2NlbNmzfX0KFDK92fxhgtXLhQffr0kb+/v1q1aqU//elP+uabb87Z5+X+9re/yWaz6bPPPtO1115r78cZM2aotLRU+/bt0x/+8Ac1b95coaGheuKJJ5y2kZOToxtvvNHexrCwMD355JM6ffq0vU755/j3v/9dc+bMUWhoqPz9/XXVVVfpq6++0qlTp5ScnKz27dsrICBAf/zjH5Wfn+/0XlXpz/3792v48OFq1qyZOnbsqLvvvtv+7/LgwYO66KKLJEkPPfSQ/ZhLTEy0byM0NPSc/XW28mNr6dKl6t69u/z9/RUZGalPPvlExhj9/e9/V6dOndSsWTNdffXVLv8doR4wQB23dOlSI8l88skn5tSpUw5LaWmpMcaYkydPmm3btpm+ffuazp07m23btplt27aZgoICs23bNhMcHGxiYmLs5SdPnjQHDhwwkszSpUvt77V7927TrFkzExoaap577jnz3nvvmZdeesmMHz/eFBYWGmOM+eCDD4wk88EHH9jXe//9942Pj48ZPHiwWblypdm4caNJTEx02n75vnTu3Nnccccd5p133jEvvPCCadWqlRkyZIjDfj/wwANGkhk3bpxZvXq12bRpk5k7d6554IEHjDHGHDlyxPj6+pqZM2c6rHfs2DHj7+9v7rnnnnP26Q8//GB8fHyc1i0tLTXt27c348aNM8YY89NPP5k2bdqYyMhIs2rVKrN582azcuVKM2XKFJOdnX3O7e/du9fExMSY4OBge59v27bNGGPs/X7xxRebIUOGmDVr1phNmzaZAwcOmOPHj5vExESzfPly8/7775uNGzeav/zlL8bLy8u8+OKLDu8hyYSGhpoBAwaYVatWmQ0bNpirrrrKNGrUyPz73/+214uLizMXXXSRWbx4sfnwww/N66+/bmbNmmVWrFhhjDFmz549RpL5xz/+4bD9H3/80fj6+poZM2bYyx599FFjs9nMTTfdZN566y2zbt06ExUVZZo2bWr27t1rrzdx4kTTuHFjExoaalJTU817771n3nnnnUr35y233GIaN25s7r77brNx40bzyiuvmB49epigoCCTl5d3zn43xpgHH3zQSDLdu3c3Dz/8sMnIyDB//etfjSQzbdo006NHD/P000+bjIwMM2nSJCPJrF271r5+fn6+ufjii81FF11knnvuObNx40Yzbdo0I8ncdttt9nrln2NISIgZNWqUeeutt8xLL71kgoKCzKWXXmoSEhLMTTfdZN5++23z3HPPmWbNmplRo0Y5tLUq/enj42PCwsLM//3f/5l3333XzJo1y9hsNvPQQw8ZY878P2Djxo1Gkpk8ebL9mNu/f799GyEhIefsr7OV71d0dLRZt26dee2118yll15qWrdubaZPn27GjBlj3nrrLfPyyy+boKAg06tXL3P69OkKPxfUPQQg1HnlocHV4u3t7VD3d7/7nbnsssucthESEmJGjBjhUOYqAF199dWmZcuWJj8//5ztcRWAevToYfr27WtOnTrlUHfkyJGmXbt2pqyszGFfbr/9dod6TzzxhJFkcnNzjTHGfPPNN8bb29vccMMN5+4Yc+Z/6m3btjXFxcX2sjlz5hgvLy9z4MCBCtcdN26c6dChg71txhizYcMGI8n885//NMYYk5mZaSSZ119/vcJtuTJixAiXXzjl/d6lSxdTUlJS4TZKS0vNqVOnzOTJk03fvn0dXpNkgoKC7MHUGGPy8vKMl5eXSU1NtZc1a9bMJCUlVfg+/fr1M9HR0Q5lCxcuNJLM559/bowxJicnxzRq1MjccccdDvVOnDhhgoODzfjx4+1lEydONJJMWlqaQ93K9Oe2bduMJPPkk086lB86dMj4+/ubv/71rxXuS/kX+m/X79Onj5Fk1q1bZy87deqUueiii+yB1xhjkpOTjSSzfft2h/Vvu+02Y7PZzL59+4wxv36OvXv3djiG5s2bZySZ0aNHO6yflJRkJJmCggJjjHv9uWrVKoe6w4cPN927d7f//sMPPxhJ5sEHH3Tql6oGoODgYPPTTz/Zy15//XUjyfTp08ch7JTv72effea0bdRtnAJDvbFs2TLt3LnTYdm+fXu1bb+oqEibN2/W+PHj7UPplbF//359+eWX9nlHpaWl9mX48OHKzc3Vvn37HNYZPXq0w++9evWSJH377beSpIyMDJWVlWnq1KkVvvddd92l/Px8rV69WpJ0+vRpLVq0SCNGjHA53H+2SZMm6bvvvrOfCpLOTDQPDg7WsGHDJEldu3ZVq1atdO+99+q5555Tdnb2eXqj8kaPHq3GjRs7la9evVoxMTFq1qyZGjVqpMaNG2vJkiX617/+5VR3yJAhat68uf33oKAgtW3b1t6PkjRgwAClp6frkUce0SeffOJwOqvcpEmTtHXrVofPaenSperfv7969uwpSXrnnXdUWlqqCRMmOHzGfn5++t3vfufyyqP/+Z//cfi9Mv351ltvyWaz6cYbb3R4n+DgYPXu3bvSVziNHDnS4fewsDDZbDb7ZytJjRo1UteuXR366/3331d4eLgGDBjgsH5iYqKMMXr//fcdyocPHy4vr1+/SsLCwiRJI0aMcHp/6czpNanq/Wmz2TRq1CiHsl69ejm0vToNGTJETZs2dWr/sGHDHE6ZlZfXVDtQcwhAqDfCwsIUGRnpsERERFTb9n/88UeVlZWpQ4cOVVrvyJEjkqS//OUvaty4scNy++23S5J9Pk25Nm3aOPxePvn3l19+kXRm3oqk87alb9++Gjx4sBYsWCDpzJfnwYMHNW3atPO2e9iwYWrXrp2WLl0q6cz+v/nmm5owYYK8vb0lSQEBAdq8ebP69Omj++67T5dddpnat2+vBx980GWQqIp27do5la1bt07jx4/XxRdfrJdeeknbtm3Tzp07ddNNN7mcz/TbfpTO9GV5P0pn5phMnDhRL7zwgqKiotS6dWtNmDBBeXl59jo33HCDfH197fPBsrOztXPnTk2aNMlep/xz7t+/v9PnvHLlSqfPuEmTJmrRooVDWWX688iRIzLGKCgoyOl9PvnkE6f3OZfyKyDL+fj4qEmTJvLz83MqP7tvjx075vKzad++vf31871PReXl7+VOf/627b6+vuec53ah3N0v1B9cBQb8V+vWreXt7V3h5F5XAgMDJUkpKSkaN26cyzrdu3ev0jbLR6C+++47dezYscK6d955p6699lp9+umnevbZZ3XppZfq97///Xnfw9vbWwkJCXr66ad1/PhxvfLKKyouLnb40pekyy+/XCtWrJAxRp999pnS09M1e/Zs+fv7Kzk5uUr7dbbfTjyVpJdeekmdOnXSypUrHV4vn+jqjsDAQM2bN0/z5s1TTk6O3nzzTSUnJys/P18bN26UJLVq1UpjxozRsmXL9Mgjj2jp0qXy8/PT9ddf77AdSVqzZo1CQkLc2j/p/P0ZGBgom82mjz/+2OVVcTV9pVybNm2Um5vrVF4+Sb+8Hy5UVfvzQvn5+bk8jiobKNHwEICA//L399fvfvc7rV69Wo8++mil/0ffvXt3devWTXv27NFjjz1WLW2JjY2Vt7e3Fi1apKioqArr/vGPf9Qll1yiu+++W5s3b9ZTTz11zi/f35o0aZKeeOIJvfrqq0pPT1dUVJTLey1JZ77Qe/furaeeekrp6en69NNPK9z2b0diKsNms8nHx8eh/Xl5eS6vAnPHJZdcomnTpum9997T//t//8/htUmTJmnVqlXasGGDXnrpJf3xj39Uy5Yt7a/HxcWpUaNG+ve//+10assd5+rPkSNH6vHHH9fhw4c1fvz4C36fqho6dKhSU1P16aefql+/fvbyZcuWyWazaciQIdXyPtXdn5LzSOrZQkNDlZ+fryNHjigoKEiSVFJSonfeeada3hv1DwEI9cYXX3yh0tJSp/IuXbpUac5ORebOnasrrrhCAwcOVHJysrp27aojR47ozTff1PPPP+8w3+Rszz//vIYNG6a4uDglJibq4osv1n/+8x/961//0qeffmqfo1NZoaGhuu+++/Twww/rl19+0fXXX6+AgABlZ2fr6NGj9pu9SWdGcqZOnap7771XTZs2tV/2Wxk9evRQVFSUUlNTdejQIS1evNjh9bfeeksLFy7U2LFj1blzZxljtG7dOh0/fvy8o0yXX3651q1bp0WLFikiIkJeXl7nvY/TyJEjtW7dOt1+++3605/+pEOHDunhhx9Wu3bt9PXXX1d6v8oVFBRoyJAh+t///V/16NFDzZs3186dO7Vx40an0brY2Fh16NBBt99+u/Ly8pxGwkJDQzV79mzNnDlT33zzjf7whz+oVatWOnLkiHbs2KGmTZs6fC6uVKY/Y2JidOutt2rSpEnKzMzUlVdeqaZNmyo3N1dbtmzR5Zdfrttuu63KfVFZ06dP17JlyzRixAjNnj1bISEhWr9+vRYuXKjbbrtNl156abW8T3X05281b95cISEheuONNzR06FC1bt1agYGBCg0NVXx8vGbNmqXrrrtO99xzj06ePKmnn35aZWVl1bI/qH8IQKg3fvuFVO4f//iHbr755mp5j969e2vHjh168MEHlZKSohMnTig4OFhXX321/Vy/K0OGDNGOHTv06KOPKikpST/++KPatGmj8PBwt/+Knz17trp166ZnnnlGN9xwgxo1aqRu3brpzjvvdKobHx+ve++9VwkJCQoICKjS+0yaNEm33nqr/P39FR8f7/Bat27d1LJlSz3xxBP6/vvv5ePjo+7duys9PV0TJ06scLt33XWX9u7dq/vuu08FBQUyZ646PW9b8vPz9dxzzyktLU2dO3dWcnKyvvvuuyp/GUpnTnsMHDhQy5cv18GDB3Xq1Cldcskluvfee/XXv/7Voa6Xl5cmTJigxx57TB07drTft+dsKSkpCg8P1/z58/Xqq6+quLhYwcHB6t+/v6ZMmXLe9lS2P59//nkNGjRIzz//vBYuXKjTp0+rffv2iomJcZqcXN0uuugibd26VSkpKUpJSVFhYaE6d+6sJ554QjNmzKjW97rQ/nRlyZIluueeezR69GgVFxdr4sSJSk9PV6dOnfTGG2/ovvvu05/+9Ce1a9dOM2bM0A8//ODWsYX6z2bO938kAHXeM888ozvvvFNffPGFLrvsMk83BwDqPAIQUI9lZWXpwIED+vOf/6yYmBi9/vrrnm4SANQLBCCgHgsNDVVeXp4GDx6s5cuXKzg42NNNAoB6gQAEAAAshxshAgAAyyEAAQAAyyEAAQAAy+E+QC6cPn1a33//vZo3b17pO+oCAADPMsboxIkTat++vcNDel0hALnw/fffn/f5SwAAoG46dOjQeR8mTQByofxxB4cOHXJ6mjMAAKibCgsL1bFjx3M+tuhsBCAXyk97tWjRggAEAEA9U5npK0yCBgAAluPxALRw4UJ16tRJfn5+ioiI0Mcff1xh/QULFigsLEz+/v7q3r27li1b5vB6enq6bDab03Ly5Mma3A0AAFCPePQU2MqVK5WUlKSFCxcqJiZGzz//vIYNG6bs7GxdcsklTvUXLVqklJQU/eMf/1D//v21Y8cO3XLLLWrVqpVGjRplr9eiRQvt27fPYV0/P78a3x8AAFA/ePRRGAMHDlS/fv20aNEie1lYWJjGjh2r1NRUp/rR0dGKiYnR3//+d3tZUlKSMjMztWXLFklnRoCSkpJ0/Phxt9tVWFiogIAAFRQUMAcIAIB6oirf3x47BVZSUqJdu3YpNjbWoTw2NlZbt251uU5xcbHTSI6/v7927NihU6dO2ct++uknhYSEqEOHDho5cqSysrIqbEtxcbEKCwsdFgAA0HB5LAAdPXpUZWVlCgoKcigPCgpSXl6ey3Xi4uL0wgsvaNeuXTLGKDMzU2lpaTp16pSOHj0qSerRo4fS09P15ptv6tVXX5Wfn59iYmL09ddfn7MtqampCggIsC/cAwgAgIbN45Ogf3upmjHmnJevPfDAAxo2bJgGDRqkxo0ba8yYMUpMTJQkeXt7S5IGDRqkG2+8Ub1799bgwYO1atUqXXrppXrmmWfO2YaUlBQVFBTYl0OHDlXPzgEAgDrJYwEoMDBQ3t7eTqM9+fn5TqNC5fz9/ZWWlqaioiIdPHhQOTk5Cg0NVfPmzRUYGOhyHS8vL/Xv37/CESBfX1/7PX+49w8AAA2fxwKQj4+PIiIilJGR4VCekZGh6OjoCtdt3LixOnToIG9vb61YsUIjR4485zM/jDHavXu32rVrV21tBwAA9ZtHL4OfMWOGEhISFBkZqaioKC1evFg5OTmaMmWKpDOnpg4fPmy/189XX32lHTt2aODAgfrxxx81d+5cffHFF3rxxRft23zooYc0aNAgdevWTYWFhXr66ae1e/duLViwwCP7CAAA6h6PBqD4+HgdO3ZMs2fPVm5urnr27KkNGzYoJCREkpSbm6ucnBx7/bKyMj355JPat2+fGjdurCFDhmjr1q0KDQ211zl+/LhuvfVW5eXlKSAgQH379tVHH32kAQMG1PbuAUC9UFRSqvBZ70iSsmfHqYkPT0mq6/jMLpxH7wNUV3EfIABWwpdp/cNn5lpVvr/pMQCwqKKS0v/+t+yssl9/5ku17uEzqz6MALnACBAAKwhNXl/h6wcfH1FLLUFl8ZlVrF7cCRoAAMBTGAFygREgAFZw9umUyEfelSRl3n+NmvicubEsp1PqHj6zijEHCABwXq6+LJv4eFv+S7Qu4zOrPpwCAwAAlsMpMBc4BQYAQP3DJGgAAIAKEIAAoJoUlZQqNHm9QpPX2yerAqibCEAAAMBymDYOABeIu/MC9Q//KgHgApU/k+ls5fdokbg7L1AXcQoMAABYDiNAAHCBsmfHSTr33XkB1D0EIAC4QNydF6h/OAUGAAAshz9PAKCaNPFpxIRnoJ5gBAgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAIspKilVaPJ6hSavtz/LzmoIQAAAwHK4DxAAABZRPtpTVFJ2VtmvP1vp7uXW2VMAqMOKSkrtT5XPnh1nqS8i1J7yY+xs5c+vk2SpG3lyCgwAAFgOf2IAgAdxSgK1KXt2nKQzx1j5yE/m/deoiY+3J5vlEfzLAgAP4pQEapOrQN3Ex9uSQZtTYAAAwHJsxhjj6UbUNYWFhQoICFBBQYFatGjh6eYAaMDOPgXm6pREQ//LnMnfqE5V+f7mSAMAD+KUBOAZ/AsDANQ6Jn/D0zgF5gKnwACgZoUmr6/wdSZ/wx1V+f5mEjQAALAcxhgBALWO+9HA0whAQANk5StrrLzv9QmTv+FpnAIDAACWQ9QGGhArX1lj5X2vz5r4NGLCMzyCq8Bc4Cow1FdWvrLGyvsO4AyuAgPgMUUlpQpNXq/Q5PX2URkAqGsYEwYaECtfWWPlfQdQdQQgoAHx5JU1np6Dw1VFAKqC/zMAqBbll56frXwkRmIODoC6hQAENEBWvrLGyvsOoPIIQACqBXNwANQnBCAA1YI5OADqEy6DB2oIl4MDQN3Fn2YAqhVzcADUBwQgoJp5+nJwAMD5efwU2MKFC9WpUyf5+fkpIiJCH3/8cYX1FyxYoLCwMPn7+6t79+5atmyZU521a9cqPDxcvr6+Cg8P12uvvVZTzQechM96R+Gz3nG4BDzykXft5QAAz/NoAFq5cqWSkpI0c+ZMZWVlafDgwRo2bJhycnJc1l+0aJFSUlL0t7/9TXv37tVDDz2kqVOn6p///Ke9zrZt2xQfH6+EhATt2bNHCQkJGj9+vLZv315buwUAAOo4jz4MdeDAgerXr58WLVpkLwsLC9PYsWOVmprqVD86OloxMTH6+9//bi9LSkpSZmamtmzZIkmKj49XYWGh3n77bXudP/zhD2rVqpVeffXVSrWLh6FWr6KSUvvIR/bsuAZ/CujsU2CuLgdv6PsPAJ5SLx6GWlJSol27dik2NtahPDY2Vlu3bnW5TnFxsfz8/BzK/P39tWPHDp06dUrSmRGg324zLi7unNss325hYaHDAririU+j/y7eZ5V528sBAJ7nsQB09OhRlZWVKSgoyKE8KChIeXl5LteJi4vTCy+8oF27dskYo8zMTKWlpenUqVM6evSoJCkvL69K25Sk1NRUBQQE2JeOHTte4N5BOjMScmZxnAxcXg4AgKd4/M9Rm83m8Lsxxqms3AMPPKC8vDwNGjRIxhgFBQUpMTFRTzzxhLy9f/1ruyrblKSUlBTNmDHD/nthYSEhqBpY/dlQXA4OAHWXx0aAAgMD5e3t7TQyk5+f7zSCU87f319paWkqKirSwYMHlZOTo9DQUDVv3lyBgYGSpODg4CptU5J8fX3VokULhwV1BzcUBABUN4+NAPn4+CgiIkIZGRn64x//aC/PyMjQmDFjKly3cePG6tChgyRpxYoVGjlypLy8zmS5qKgoZWRkaPr06fb6mzZtUnR0dA3sBSrCs6EAAHWVR0+BzZgxQwkJCYqMjFRUVJQWL16snJwcTZkyRdKZU1OHDx+23+vnq6++0o4dOzRw4ED9+OOPmjt3rr744gu9+OKL9m3edddduvLKKzVnzhyNGTNGb7zxht599137VWKoPRf6bKi6cENBq13BZnV83oB1ePRfd3x8vI4dO6bZs2crNzdXPXv21IYNGxQSEiJJys3NdbgnUFlZmZ588knt27dPjRs31pAhQ7R161aFhoba60RHR2vFihW6//779cADD6hLly5auXKlBg4cWNu7hwtk9TlEAICa49H7ANVV3AeobghNXl/h6zUZgLiXj7XweQMNQ1W+vwlALhCA6gZPfil5Mnyh9vF5wx2cMq17qvL9zaeFOutC5xABAHAufJPgvKz4Vw5XsFkLnzeqoi5coIELx6eEOs8TNxRk9Mla+LxRFVyg0TDwrxvn1BD+yrHi6BUA4PyYBO0Ck6DPaAgTQwlAAKobVw3WXUyChuU1hNErAHUTp0wbBj4tnFN9nhjKOXoAQEUIQDgn/soBgHPzxAUaqD58k6FBqs+jV0B9w1w71EccpTiv+vhXDqNXAICK8G0AAHALFxugPuMyeBe4DB4Azq8h3CoDDUtVvr+9aqlNAKqoqKRUocnrFZq83v6XNgCgejA+CQBwCxcboD4jAFkEV2nUH8yrQH3BxQaozzhKgTqGmzgCQM0jADVwjCYAqGn18VYZAFeBudCQrgLjKo36hwctAoB7eBgqUI8xrwIAah7/R23guEoDAABnBKAGjtGE+ot5FQBQc7gRIgAAsByGASyC0QQAAH7FCBAAALAcAhAAJ558DhnPQANQGwhAAADAcpgDBMDOk3cO567lAGoTd4J2oSHdCRqoCk/eOZy7lgO4UFX5/uYUGAAAsBxGgFxgBAhW5cnnkPEMNAAXimeBAXCLJ+8czl3LAdQmToEBAADL4RSYC5wCAwCg/mESNAAAQAUIQPUEd8cFAKD6EIAAAIDlcHlFHcfdcQEAqH58e9Zx4bPecSorv0eKxN1xAQBwB6fAAACA5TACVMdlz46TdO674wIAgKojANVx3B0XAIDqxykwAABgOQwj1BNNfBox4RkAgGrCCBAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcjweghQsXqlOnTvLz81NERIQ+/vjjCuu//PLL6t27t5o0aaJ27dpp0qRJOnbsmP319PR02Ww2p+XkyZM1vSsAAOA8ikpKFZq8XqHJ6+0P/PYEjwaglStXKikpSTNnzlRWVpYGDx6sYcOGKScnx2X9LVu2aMKECZo8ebL27t2r1atXa+fOnbr55psd6rVo0UK5ubkOi5+fX23sEgAAqAc8GoDmzp2ryZMn6+abb1ZYWJjmzZunjh07atGiRS7rf/LJJwoNDdWdd96pTp066YorrtCf//xnZWZmOtSz2WwKDg52WAAAgOcUlZT+dyk7q6zMXl7bPBaASkpKtGvXLsXGxjqUx8bGauvWrS7XiY6O1nfffacNGzbIGKMjR45ozZo1GjHC8Q7JP/30k0JCQtShQweNHDlSWVlZFbaluLhYhYWFDgsAAKg+4bPeUfisd+wP9pakyEfetZfXNo8FoKNHj6qsrExBQUEO5UFBQcrLy3O5TnR0tF5++WXFx8fLx8dHwcHBatmypZ555hl7nR49eig9PV1vvvmmXn31Vfn5+SkmJkZff/31OduSmpqqgIAA+9KxY8fq2UkAAFAn2YwxxhNv/P333+viiy/W1q1bFRUVZS9/9NFHtXz5cn355ZdO62RnZ+uaa67R9OnTFRcXp9zcXN1zzz3q37+/lixZ4vJ9Tp8+rX79+unKK6/U008/7bJOcXGxiouL7b8XFhaqY8eOKigoUIsWLS5wTwEAQPlprqKSMvsoUOb916iJj7ekM8+8vFCFhYUKCAio1Pe3xx6GGhgYKG9vb6fRnvz8fKdRoXKpqamKiYnRPffcI0nq1auXmjZtqsGDB+uRRx5Ru3btnNbx8vJS//79KxwB8vX1la+v7wXsDQAAqIirgNPEx7tago87PHYKzMfHRxEREcrIyHAoz8jIUHR0tMt1ioqK5OXl2GRv7zPJ8VwDWcYY7d6922U4AgAA1uSxESBJmjFjhhISEhQZGamoqCgtXrxYOTk5mjJliiQpJSVFhw8f1rJlyyRJo0aN0i233KJFixbZT4ElJSVpwIABat++vSTpoYce0qBBg9StWzcVFhbq6aef1u7du7VgwQKP7ScAADijiU8jHXx8xPkr1jCPBqD4+HgdO3ZMs2fPVm5urnr27KkNGzYoJCREkpSbm+twT6DExESdOHFCzz77rO6++261bNlSV199tebMmWOvc/z4cd16663Ky8tTQECA+vbtq48++kgDBgyo9f0DAAB1k8cmQddlVZlEBQAA6oaqfH97/FEYAAAAtY0ABAAALIcABAAALIcABAAALIcABAAALIcABAANQFFJqUKT1ys0eb1HnqwN1DcEIAAAYDkevREiAODCnP2AyV/Lfv3ZU89ZAuo6/mUAQD0WPusdp7LyJ21LqhOPHADqIk6BAQAAy2EECADqsezZcZLOnPYqH/nJvP8aNfHx9mSzgDqPAAQA9ZirOT5NfLyZ+wOcB6fAAACA5fAnAgA0AE18GjHhGagCRoAAAIDlEIAAAIDlEIAAAIDlEIAAAIDluBWAEhMT9dFHH1V3WwAAAGqFWwHoxIkTio2NVbdu3fTYY4/p8OHD1d0uAACAGuNWAFq7dq0OHz6sadOmafXq1QoNDdWwYcO0Zs0anTp1qrrbCAAAUK3cngPUpk0b3XXXXcrKytKOHTvUtWtXJSQkqH379po+fbq+/vrr6mwnAABAtbngSdC5ubnatGmTNm3aJG9vbw0fPlx79+5VeHi4nnrqqepoIwAAQLVyKwCdOnVKa9eu1ciRIxUSEqLVq1dr+vTpys3N1YsvvqhNmzZp+fLlmj17dnW3FwAA4IK59SiMdu3a6fTp07r++uu1Y8cO9enTx6lOXFycWrZseYHNAwAAqH5uBaCnnnpK1157rfz8/M5Zp1WrVjpw4IDbDQMAAKgpbp0CGz16tIqKipzK//Of/6iwsPCCGwUAAFCT3ApA1113nVasWOFUvmrVKl133XUX3CgAAICa5FYA2r59u4YMGeJUftVVV2n79u0X3KiGqqikVKHJ6xWavF5FJaWebg4AAJblVgAqLi5WaanzF/ipU6f0yy+/XHCjAAAAapJbAah///5avHixU/lzzz2niIiIC25UQ1NUUvrfpeyssjJ7OQAAqF1uXQX26KOP6pprrtGePXs0dOhQSdJ7772nnTt3atOmTdXawIYgfNY7TmWRj7xr//ng4yNqszkAAFieWyNAMTEx2rZtmzp27KhVq1bpn//8p7p27arPPvtMgwcPru42AgAAVCubMcZ4uhF1TWFhoQICAlRQUKAWLVpc8PbKT3MVlZTZR34y779GTXy8JUlNfNwaiAMAAGepyve329+8p0+f1v79+5Wfn6/Tp087vHbllVe6u9kGyVXAaeLjTfABAMBD3PoG/uSTT/S///u/+vbbb/XbASSbzaaysrJzrAkAAOB5bgWgKVOmKDIyUuvXr1e7du1ks9mqu10NUhOfRkx4BgCgDnArAH399ddas2aNunbtWt3tAQAAqHFuXQU2cOBA7d+/v7rbAgAAUCvcGgG64447dPfddysvL0+XX365Gjdu7PB6r169qqVxAAAANcGty+C9vJwHjmw2m4wxDWISdHVfBg8AAGpejV8Gf+DAAbcaBgAAUBe4FYBCQkKqux0AAAC1xq1J0JK0fPlyxcTEqH379vr2228lSfPmzdMbb7xRbY0DAACoCW4FoEWLFmnGjBkaPny4jh8/bp/z07JlS82bN6862wcAQI0oKilVaPJ6hSavtz+yyErvb3VuBaBnnnlG//jHPzRz5kx5e3vbyyMjI/X5559XW+MAAABqgtuToPv27etU7uvrq59//vmCGwUAQE05+wHVv5b9+nNNP6fR0++PM9zq5U6dOmn37t1Ok6HffvtthYeHV0vDAACoCeGz3nEqi3zkXfvPNf3IIk+/P85wKwDdc889mjp1qk6ePCljjHbs2KFXX31VqampeuGFF6q7jQAAANXLuGnx4sXmkksuMTabzdhsNtOhQwfzwgsvVHk7CxYsMKGhocbX19f069fPfPTRRxXWf+mll0yvXr2Mv7+/CQ4ONomJiebo0aMOddasWWPCwsKMj4+PCQsLM+vWratSmwoKCowkU1BQUOX9AQDUbT8XnzI/F58yP5w4aULufcuE3PuW+eHESXt5Q3//hqwq399uXwZ/yy236Ntvv1V+fr7y8vJ06NAhTZ48uUrbWLlypZKSkjRz5kxlZWVp8ODBGjZsmHJyclzW37JliyZMmKDJkydr7969Wr16tXbu3Kmbb77ZXmfbtm2Kj49XQkKC9uzZo4SEBI0fP17bt293d1cBAA1IE59G/128zyrztpc39PfHGW4HoHKBgYFq27atW+vOnTtXkydP1s0336ywsDDNmzdPHTt21KJFi1zW/+STTxQaGqo777xTnTp10hVXXKE///nPyszMtNeZN2+efv/73yslJUU9evRQSkqKhg4dyuX5AADArtJRs1+/fnrvvffUqlUr9e3bVzab7Zx1P/300/Nur6SkRLt27VJycrJDeWxsrLZu3epynejoaM2cOVMbNmzQsGHDlJ+frzVr1mjEiF8njG3btk3Tp093WC8uLo4ABABw0MSnkUcnHHv6/a2u0gFozJgx8vX1lSSNHTv2gt/46NGjKisrU1BQkEN5UFCQ8vLyXK4THR2tl19+WfHx8Tp58qRKS0s1evRoPfPMM/Y6eXl5VdqmJBUXF6u4uNj+e2FhoTu7BAAA6olKB6AHH3zQ5c8X6rcjSea/T5R3JTs7W3feeadmzZqluLg45ebm6p577tGUKVO0ZMkSt7YpSampqXrooYcuYC8AAEB94tYcoJ07d7qcVLx9+3aH+TgVCQwMlLe3t9PITH5+vtMITrnU1FTFxMTonnvuUa9evRQXF6eFCxcqLS1Nubm5kqTg4OAqbVOSUlJSVFBQYF8OHTpUqX0AAAD1k1sBaOrUqS5DwuHDhzV16tRKbcPHx0cRERHKyMhwKM/IyFB0dLTLdYqKiuTl5djk8kdxGGMkSVFRUU7b3LRp0zm3KZ25g3WLFi0cFgAA0HC5db1ddna2+vXr51Tet29fZWdnV3o7M2bMUEJCgiIjIxUVFaXFixcrJydHU6ZMkXRmZObw4cNatmyZJGnUqFG65ZZbtGjRIvspsKSkJA0YMEDt27eXJN1111268sorNWfOHI0ZM0ZvvPGG3n33XW3ZssWdXQUAAA2QWwHI19dXR44cUefOnR3Kc3Nz1ahR5TcZHx+vY8eOafbs2crNzVXPnj21YcMG+yM2cnNzHe4JlJiYqBMnTujZZ5/V3XffrZYtW+rqq6/WnDlz7HWio6O1YsUK3X///XrggQfUpUsXrVy5UgMHDnRnVwEAQANkM+XnjqrguuuuU15ent544w0FBARIko4fP66xY8eqbdu2WrVqVbU3tDYVFhYqICBABQUFnA4DAKCeqMr3t1sjQE8++aSuvPJKhYSE2J8Kv3v3bgUFBWn58uXubBIAAKDWuBWALr74Yn322Wd6+eWXtWfPHvn7+2vSpEm6/vrr1bhx4+puIwAAQLVy+6EjTZs21a233lqdbQEAAKgVlQ5Ab775poYNG6bGjRvrzTffrLDu6NGjL7hhAAAANaXSk6C9vLyUl5entm3bOt2Lx2GDNpvKysqqrYGewCRoAADqnxqZBH369GmXPwMAANQ3lb4TdOvWrXX06FFJ0k033aQTJ07UWKMAAABqUqUDUElJif0p6S+++KJOnjxZY40CAACoSZU+BRYVFaWxY8cqIiJCxhjdeeed8vf3d1k3LS2t2hoIAABQ3SodgF566SU99dRT+ve//y1JKigoYBQIAADUS249CqNTp07KzMxUmzZtaqJNHsdVYAAA1D9V+f52axL0kCFD5OPjc2GtBADgAhWVlCo0eb1Ck9erqKTU081BPcIkaAAAYDlMggYA1Dvloz1FJWVnlf36cxMft5/0BItwaxK0zWZjEjQAwGPCZ73jVBb5yLv2nw8+PqI2m4N6qNIBKCgoSI8//rikM5Ogly9f3mAnQQMAgIatSmOEw4cP16uvvqoDBw5Ikh599FFNnTpVLVu2lCQdO3ZMgwcPVnZ2drU3FACActmz4ySdOe1VPvKTef81auLj7clmoR6p9CRoSdq4caOKi4vtv8+ZM0f/+c9/7L+XlpZq37591dc6AABcaOLT6L+L91ll3vZy4HyqFIB+y41bCAEAAHgcMRkAUG818WnEhGe4pUojQDabTTabzakMAACgPqnSCJAxRomJifL19ZUknTx5UlOmTFHTpk0lyWF+EAAAQF1VpQA0ceJEh99vvPFGpzoTJky4sBYBAADUsCoFoKVLl9ZUOwAAAGrNBV0FBgAAUB8RgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOV4PAAtXLhQnTp1kp+fnyIiIvTxxx+fs25iYqJsNpvTctlll9nrpKenu6xz8uTJ2tgdAABQD3g0AK1cuVJJSUmaOXOmsrKyNHjwYA0bNkw5OTku68+fP1+5ubn25dChQ2rdurWuvfZah3otWrRwqJebmys/P7/a2CUAAFAPeDQAzZ07V5MnT9bNN9+ssLAwzZs3Tx07dtSiRYtc1g8ICFBwcLB9yczM1I8//qhJkyY51LPZbA71goODa2N3AABAPeGxAFRSUqJdu3YpNjbWoTw2NlZbt26t1DaWLFmia665RiEhIQ7lP/30k0JCQtShQweNHDlSWVlZ1dZuAABQ/zXy1BsfPXpUZWVlCgoKcigPCgpSXl7eedfPzc3V22+/rVdeecWhvEePHkpPT9fll1+uwsJCzZ8/XzExMdqzZ4+6devmclvFxcUqLi62/15YWOjGHgEAgPrC45OgbTabw+/GGKcyV9LT09WyZUuNHTvWoXzQoEG68cYb1bt3bw0ePFirVq3SpZdeqmeeeeac20pNTVVAQIB96dixo1v7AgAA6gePBaDAwEB5e3s7jfbk5+c7jQr9ljFGaWlpSkhIkI+PT4V1vby81L9/f3399dfnrJOSkqKCggL7cujQocrvCAAAqHc8FoB8fHwUERGhjIwMh/KMjAxFR0dXuO7mzZu1f/9+TZ48+bzvY4zR7t271a5du3PW8fX1VYsWLRwWAADQcHlsDpAkzZgxQwkJCYqMjFRUVJQWL16snJwcTZkyRdKZkZnDhw9r2bJlDustWbJEAwcOVM+ePZ22+dBDD2nQoEHq1q2bCgsL9fTTT2v37t1asGBBrewTAACo+zwagOLj43Xs2DHNnj1bubm56tmzpzZs2GC/qis3N9fpnkAFBQVau3at5s+f73Kbx48f16233qq8vDwFBASob9+++uijjzRgwIAa3x8AAFA/2IwxxtONqGsKCwsVEBCggoICTocBAFBPVOX72+NXgQEAANQ2AhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcAhAAALAcjweghQsXqlOnTvLz81NERIQ+/vjjc9ZNTEyUzWZzWi677DKHemvXrlV4eLh8fX0VHh6u1157raZ3AwAA1CMeDUArV65UUlKSZs6cqaysLA0ePFjDhg1TTk6Oy/rz589Xbm6ufTl06JBat26ta6+91l5n27Ztio+PV0JCgvbs2aOEhASNHz9e27dvr63dAgAAdZzNGGM89eYDBw5Uv379tGjRIntZWFiYxo4dq9TU1POu//rrr2vcuHE6cOCAQkJCJEnx8fEqLCzU22+/ba/3hz/8Qa1atdKrr75aqXYVFhYqICBABQUFatGiRRX3CgAAeEJVvr89NgJUUlKiXbt2KTY21qE8NjZWW7durdQ2lixZomuuucYefqQzI0C/3WZcXFyF2ywuLlZhYaHDAgAAGi6PBaCjR4+qrKxMQUFBDuVBQUHKy8s77/q5ubl6++23dfPNNzuU5+XlVXmbqampCggIsC8dO3aswp4AAID6xuOToG02m8PvxhinMlfS09PVsmVLjR079oK3mZKSooKCAvty6NChyjUeAADUS4089caBgYHy9vZ2GpnJz893GsH5LWOM0tLSlJCQIB8fH4fXgoODq7xNX19f+fr6VnEPAABAfeWxESAfHx9FREQoIyPDoTwjI0PR0dEVrrt582bt379fkydPdnotKirKaZubNm067zYBAIB1eGwESJJmzJihhIQERUZGKioqSosXL1ZOTo6mTJki6cypqcOHD2vZsmUO6y1ZskQDBw5Uz549nbZ511136corr9ScOXM0ZswYvfHGG3r33Xe1ZcuWWtknAABQ93k0AMXHx+vYsWOaPXu2cnNz1bNnT23YsMF+VVdubq7TPYEKCgq0du1azZ8/3+U2o6OjtWLFCt1///164IEH1KVLF61cuVIDBw6s8f0BAAD1g0fvA1RXcR8gAADqn3pxHyAAAABPIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAADLIQABAIBKKyopVWjyeoUmr1dRSamnm+M2AhAAALCcRp5uAAAAqPvKR3uKSsrOKvv15yY+9StS1K/WAgAAjwif9Y5TWeQj79p/Pvj4iNpszgXjFBgAALAcRoAAAMB5Zc+Ok3TmtFf5yE/m/deoiY+3J5vlNgIQAAA4L1dzfJr4eNe7uT/lOAUGAAAsp37GNgAA4BFNfBrVuwnPrjACBAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIcABAAALIdngblgjJEkFRYWerglAACgssq/t8u/xytCAHLhxIkTkqSOHTt6uCUAAKCqTpw4oYCAgArr2ExlYpLFnD59Wt9//72aN28um81WpXULCwvVsWNHHTp0SC1atKihFjY89Jt76Leqo8/cQ7+5h35zj7v9ZozRiRMn1L59e3l5VTzLhxEgF7y8vNShQ4cL2kaLFi042N1Av7mHfqs6+sw99Jt76Df3uNNv5xv5KcckaAAAYDkEIAAAYDkEoGrm6+urBx98UL6+vp5uSr1Cv7mHfqs6+sw99Jt76Df31Ea/MQkaAABYDiNAAADAcghAAADAcghAAADAcghAAADAcghAbli4cKE6deokPz8/RURE6OOPP66w/ubNmxURESE/Pz917txZzz33XC21tG6pSr99+OGHstlsTsuXX35Ziy32rI8++kijRo1S+/btZbPZ9Prrr593HY61qvcbx5qUmpqq/v37q3nz5mrbtq3Gjh2rffv2nXc9qx9v7vQbx5u0aNEi9erVy36Tw6ioKL399tsVrlMTxxoBqIpWrlyppKQkzZw5U1lZWRo8eLCGDRumnJwcl/UPHDig4cOHa/DgwcrKytJ9992nO++8U2vXrq3llntWVfut3L59+5Sbm2tfunXrVkst9ryff/5ZvXv31rPPPlup+hxrZ1S138pZ+VjbvHmzpk6dqk8++UQZGRkqLS1VbGysfv7553Ouw/HmXr+Vs/Lx1qFDBz3++OPKzMxUZmamrr76ao0ZM0Z79+51Wb/GjjWDKhkwYICZMmWKQ1mPHj1McnKyy/p//etfTY8ePRzK/vznP5tBgwbVWBvroqr22wcffGAkmR9//LEWWlf3STKvvfZahXU41pxVpt841pzl5+cbSWbz5s3nrMPx5qwy/cbx5lqrVq3MCy+84PK1mjrWGAGqgpKSEu3atUuxsbEO5bGxsdq6davLdbZt2+ZUPy4uTpmZmTp16lSNtbUucaffyvXt21ft2rXT0KFD9cEHH9RkM+s9jrULw7H2q4KCAklS69atz1mH481ZZfqtHMfbGWVlZVqxYoV+/vlnRUVFuaxTU8caAagKjh49qrKyMgUFBTmUBwUFKS8vz+U6eXl5LuuXlpbq6NGjNdbWusSdfmvXrp0WL16stWvXat26derevbuGDh2qjz76qDaaXC9xrLmHY82RMUYzZszQFVdcoZ49e56zHsebo8r2G8fbGZ9//rmaNWsmX19fTZkyRa+99prCw8Nd1q2pY42nwbvBZrM5/G6McSo7X31X5Q1dVfqte/fu6t69u/33qKgoHTp0SP/3f/+nK6+8skbbWZ9xrFUdx5qjadOm6bPPPtOWLVvOW5fj7VeV7TeOtzO6d++u3bt36/jx41q7dq0mTpyozZs3nzME1cSxxghQFQQGBsrb29tp1CI/P98pnZYLDg52Wb9Ro0Zq06ZNjbW1LnGn31wZNGiQvv766+puXoPBsVZ9rHqs3XHHHXrzzTf1wQcfqEOHDhXW5Xj7VVX6zRUrHm8+Pj7q2rWrIiMjlZqaqt69e2v+/Pku69bUsUYAqgIfHx9FREQoIyPDoTwjI0PR0dEu14mKinKqv2nTJkVGRqpx48Y11ta6xJ1+cyUrK0vt2rWr7uY1GBxr1cdqx5oxRtOmTdO6dev0/vvvq1OnTuddh+PNvX5zxWrHmyvGGBUXF7t8rcaOtQuaQm1BK1asMI0bNzZLliwx2dnZJikpyTRt2tQcPHjQGGNMcnKySUhIsNf/5ptvTJMmTcz06dNNdna2WbJkiWncuLFZs2aNp3bBI6rab0899ZR57bXXzFdffWW++OILk5ycbCSZtWvXemoXat2JEydMVlaWycrKMpLM3LlzTVZWlvn222+NMRxr51LVfuNYM+a2224zAQEB5sMPPzS5ubn2paioyF6H482ZO/3G8WZMSkqK+eijj8yBAwfMZ599Zu677z7j5eVlNm3aZIypvWONAOSGBQsWmJCQEOPj42P69evncMnjxIkTze9+9zuH+h9++KHp27ev8fHxMaGhoWbRokW13OK6oSr9NmfOHNOlSxfj5+dnWrVqZa644gqzfv16D7Tac8ovl/3tMnHiRGMMx9q5VLXfONaMy/6SZJYuXWqvw/HmzJ1+43gz5qabbrJ/F1x00UVm6NCh9vBjTO0dazZj/juTCAAAwCKYAwQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAAQAACyHAASgQbnqqqtks9lks9m0e/duj7UjMTHR3o7XX3/dY+0A4BoBCECDc8sttyg3N1c9e/Z0KM/Ly9Ndd92lrl27ys/PT0FBQbriiiv03HPPqaioqFLbHjVqlK655hqXr23btk02m02ffvqp5s+fr9zc3AveFwA1o5GnGwAA1a1JkyYKDg52KPvmm28UExOjli1b6rHHHtPll1+u0tJSffXVV0pLS1P79u01evTo82578uTJGjdunL799luFhIQ4vJaWlqY+ffqoX79+kqSAgIDq2ykA1YoRIAAed+TIEdlsNs2fP199+/aVn5+fLrvsMm3ZsqXa3uP2229Xo0aNlJmZqfHjxyssLEyXX365/ud//kfr16/XqFGjJEnGGD3xxBPq3Lmz/P391bt3b61Zs8a+nZEjR6pt27ZKT0932H5RUZFWrlypyZMnV1ubAdQcAhAAj8vKypIkLVy4UE899ZT27Nmj0NBQ3XDDDTp9+vQFb//YsWPatGmTpk6dqqZNm7qsY7PZJEn333+/li5dqkWLFmnv3r2aPn26brzxRm3evFmS1KhRI02YMEHp6ekyxtjXX716tUpKSnTDDTdccHsB1DwCEACP27Nnjxo3bqyNGzfqqquuUvfu3TV79mzl5OTo0UcfVZ8+fdSzZ0/5+vqqT58+6tOnj55//vlKb3///v0yxqh79+4O5YGBgWrWrJmaNWume++9Vz///LPmzp2rtLQ0xcXFqXPnzkpMTNSNN97o8H433XSTDh48qA8//NBelpaWpnHjxqlVq1YX3B8Aah5zgAB43O7duzVu3Dh16tTJXubr6yvpzNVUDzzwgD799FPdcccd+n//7/+5/T7lozzlduzYodOnT+uGG25QcXGxsrOzdfLkSf3+9793qFdSUqK+ffvaf+/Ro4eio6OVlpamIUOG6N///rc+/vhjbdq0ye22AahdBCAAHrd7925NnDjRoezTTz9VYGCgLr74YknS3r17ddlll7m1/a5du8pms+nLL790KO/cubMkyd/fX5Lsp9vWr19vf99y5YGs3OTJkzVt2jQtWLBAS5cuVUhIiIYOHepW+wDUPk6BAfCoX375RV9//bXKysrsZadPn9b8+fM1ceJEeXmd+d/UF1984XYAatOmjX7/+9/r2Wef1c8//3zOeuHh4fL19VVOTo66du3qsHTs2NGh7vjx4+Xt7a1XXnlFL774oiZNmuQ0wgSg7mIECIBHff7557LZbHrppZd09dVXq2XLlpo1a5aOHz+u+++/315v7969io2Ndft9Fi5cqJiYGEVGRupvf/ubevXqJS8vL+3cuVNffvmlIiIi1Lx5c/3lL3/R9OnTdfr0aV1xxRUqLCzU1q1b1axZM4dRqmbNmik+Pl733XefCgoKlJiYeCHdAKCWEYAAeNTu3bvVo0cPJScn609/+pOOHz+ukSNHatu2bWrZsqW93oWMAElSly5dlJWVpccee0wpKSn67rvv5Ovrq/DwcP3lL3/R7bffLkl6+OGH1bZtW6Wmpuqbb75Ry5Yt1a9fP913331O25w8ebKWLFmi2NhYXXLJJW63DUDts5mzr+MEgFo2depU/fjjj3rllVfOWeenn35Sp06d9MMPP5x3e1dddZX69OmjefPmVWMr3Wez2fTaa69p7Nixnm4KgLMwBwiAR+3evVu9evWqsE52drbCw8Mrvc2FCxeqWbNm+vzzzy+0eW6bMmWKmjVr5rH3B1AxRoAAeIwxRgEBAVqxYoWGDx9eLds8fPiwfvnlF0nSJZdcIh8fn2rZblXl5+ersLBQktSuXbtz3oARgGcQgAAAgOVwCgwAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFjO/wfv/le7FFRs3gAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJGCAYAAABC5KPjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFQUlEQVR4nO3dz28b953/8ZfqwAEMxBpJt6IBrFF66WVjSup9q+HmkFtNSv0DYjLZ46IhrS+KYhEUUKj2sKdthsr+AfawuQXYhrT3viKZnHLYhmMXKXozOVIBAzHszvfgDqMfH1Iccij+0PMBCHGGnOGHMxzyxQ/f8/kshGEYCgAAAMApP5h0AwAAAIBpRFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGDw2qQbgKurVqspm80ab1teXj63rN1un1uWy+VUKpUufBzXdWXbtiQpCAJZltVdr1aryfO87v0ty1IQBCoWi911AADA1UNQxsQ4jqNOp6MgCLS+vi7f95XJZE6F1rOCIFCtVlOxWJTv+/J9v+9919fX5TjOuW1WKhWtr6/Ltm35vi/P806F4iAItLW1pYcPH8qyrJGfKwAAmD2UXmDiLMtSKpWSpAt7cC3LUiaTUavVUiqVUhAEPe+7vr6uVCol13VPLQ+CQNlsVs1mU7VaTQ8fPjz3uFtbW2o2m3rw4MFwT8rA932tra317EUHAADThaCMmVUqlXr2KO/v78v3fe3u7p67zbKsbjDO5XLGHmPHcWRZljY2NhJrb6VSke/7qlQqiW0Tk8cXH2B2cf7iIgRlzCzHcXrednh4KEndnuqzisWiJGlzc9N4e6lUUqfT6bn+MHK5nHK53Lkebsy2fuU/AKYb5y8uQo0yZlqvIBtdsHeRy7xYz7IsQvIc4oMWmF2cv7gIPcqYaZubm7zRYWJqtVrfOnkA04vzF4MgKGNmmGrJLrqgDxini4YmBDC9OH8xCEovMNP61SkPKwgCtdvtbvkGYynDJJ/Pq1arTboZAIbA+YtBEZQxEwZ5Q6tUKt2L9KJyjLW1NeN9o8lLtra2zk1uEoVkSSoUCn17HXzf746+cTJQn52sZH9/X9VqtTv2c6fT6VlDHU2QcrJdJydIieTzedXrdQVBIN/3FYZh97GePn2qIAhUr9dl27YODg4urNke5Lnk83njkHmPHz8+t/319XU1m83uBC4XjZF9VlKP5fu+XNfV2tpa97g+ffpUOzs7qtVqchwn1kWb5XL53LFYWlo6dbwcxzlVj57NZuX7fvfxW61Wd1Iby7Lk+752dnaUyWTOPV6lUulenBp9idvd3e3Z5qReF4PutyRfE4O+9ofZn8O+DgZtUxxxjlGpVOqef9FziP7t+74cxxmoLdH5HbU/2gf5fN74vCfRxst47xvm/D37eGffv33fVz6fV7vd7r5/NhqNie9PJCQEpkAmkwklhYVC4dTyTqcTVqvV0LbtMJPJDLw9x3HCfi9v13VDSWG1WjXe7nmesT1nt2FZVuh53rnbSqXSqeWNRiP0PC+0LCuUFHY6HeM2C4VCmEqlwlardWp5LpcLbds+tTzapqTuc83lcufWdRwntCyr52PGfS7R40i68JikUqnQtu2w0Wj0vV8/0WPlcrnYj+V5Xs82FgqFUNJIbbvodRZpNBrd15xt22Gn0+m2q9PpnDqGZ9t49jXaaDRCy7J67o8kXhfD7LdRjlO03Tiv/Tj7c9jXQZw2xTHMMWo0Gsb3R8uyLjwPPc8ztrfT6YSpVMr4PnfZbZzEe9+g52+1Wu2+3nq9f1er1e45kEqlzt1+2fsTySEoYypEQTn64LNtuxsqo7/LDMqtVqtvUI7e8EzBMgxfvZk5jnPuDTV6nqY32ugDu9eHr23bxjfg6LkWCgXjdhuNRigpLJVKiT2XKIw4jmNcJ5LL5UYKoicfy/TcL3qsi74gjBriB/2gjUQh8WyYzGQy515rnuf1PCbRMXNd98K2DfO6GGa/jXKchn3tD7o/h3k+w7YpjkGPUaFQ6PkF5KJ2Rl+C+z3/VCrVc/uX0cZJvffFPX/7vX9HLjoHLmN/IllczIepUigU1Gq11Gq11Ol0FIZhdxa+aREEge7evatUKmX8qVySVldXVavVzpWMnC3ziPi+r/39fRUKhZ410cVisTub4EknfwI0/Ywe7btqtZrYc4lmSKzVaheOOjLqsYseq9lsqtls9rxfu90+9VhBEHRLFXrp9ZzHZXl5uTtD40me5537KbVareru3bvGsqOo3f2GGxz2dTHsfhv2OI3y2h9kfw7zfEZpUxyDHqP9/X3l83njNqKx4E3tCIJA+Xy+58RKkVKppHK5bDxu427jpN77JmXc+xPJIyhj6kV1ZtOiXC4rCALt7Oz0vM/29vapqbkvEtVWp9PpnveJZgns9abfb11JxqAwynOJ3sR7hbVKpZLYrFfRDIv9Huvsh0r0IZTNZnuOjLKzszPQeNtJG+Qi1KhWvlfotG17oKER474uRtlvwxynJF77/fbnMM8niTbFcdExki7+wml6btHz6Hd+S9/vv7t37/a8z7jbeNnvfZM2rv2J5BGUMRP6vWFc9pvF/fv3JfWfrMR1XXU6nYFHzIjCUL8ps6Nt9QtOcY3yXBzHkW3bKpfLPbed1KgkqVRKqVSqG+wHfSzXddVsNrW0tKT19XUVi8VTvTCpVGoio5oM8pgHBwfyPE+FQsF4+8kLskZ9rLOG3W/DHKfLeO3HfT5JtCmOi9rf7/Z+X/SiiywHeQ1YlqVms9nzNTWuNk7qvW/SxrU/kTxGvcDM6PUNvFgsXuqMd9EHSZJvzlHP4N7enlZWVnre7+TV0Gf1KuvoZ9Tnks/nVSwWValUzo0w0Gt68GHl8/nuCAu5XK67vNls9nysXC4n27a7P902m03t7+9LevVz+yCjgYzDII8ZlTJIr/ZnNPrFyavhBzHM62KU/Rb3OCXx2r9of8Z9Pkm0KY6LjtGwr9Ho/B5k/eXl5e6IDKaOiXG1cVLvfZM2rv2J5BGUMTNOfuieNKmf1ZJ63JM9OLu7uxN5gxz2ueRyORWLRe3t7Z0Kyq7rdn+GT0r0WKVS6dRrwXXdvkMlOY6jRqOhIAhUq9V0eHioWq2mSqWiWq2mRqMxtT1S0ZCHUcg72btcq9US6c3sZdj9Fuc4XeZrf9DnMw3nYxKG/aXtMt9P52VfY75ReoGZd9mlF1E4SOpxJ/nhMOpz6XUBV/CPyVqSlsvl5Pt+34t6TrahUqmca2upVFKj0VC1Wu1e7JS0crk88tTq+Xxe2WxW+Xxe1Wp1LJPrmCSx3wY9Tpfx2o/7fOYlrJ18HoOc31FAvswvjdO6r5M4fzE/CMqYabVa7dJ7A6MSkGgSiCREvbH1ej2xbQ4iiedy9gKuJC/iO+vsBYTlcrlnYGu3231LcqJB+6fxyvFaraZyuSzHcXrWKJ8NP81mM5EP9yT2W5zjNO7X/jDPZ1LnY9IGfR7RyCC2bV/6++m87GuJi+vmFUEZM61UKvWcfW9cCoWCLMvqeRFbJE5vZfST9EW11tHsY0lJ4rlEF0JF20jyIr6zbNuW4ziqVCoKgkDVarXvhZ4XhWDHcRLp1Tr7ARkEwUh1k9Fsdf2+cJwNxSdnqhvVqPstznG6jNd+3OczqfMxaYM+j+iiv0nM9jYN+3rQ8/eic3oav3RjdARlzKyotnAS9aWe5134xr23t3fu9l71f7Zty3Xd7nPqt82kSwWGfS4nRbfl8/nEL+Lr9VjZbPbCYa9O3t8kmg52WFGP/NnQ2mq1Rgrg0Ze/XsG3UqmcC57tdjvRn7JH3W+DHqfLeu3HeT6TPB/j6vflKJoOuVKp9P21oVQqKZPJjG1c8YvaOKl9Hff8XV9fN94/Uq1WL62cCJdo0jOeAGH4auYlDTD9bRi+mrkomipUPWYnirbXawalaP1eM5tVq9ULZwOMpqQ2zd5nmvY5DF/NgKU+0yb3m0raNJ3xINuMZkyzLCvR53JWdDz6zVqVFMuy+j6fMPx+dsVcLmc8zo1GI0ylUiO1t9PphLZtn5qhsNFo9JwJLHpdXjSjVjRNrWVZ5+5brVa7x0QnZlQ8e+4M+7pIcr8Ncpwiw7z2B9mfozyfYdoURxLnbqlUuvC9M3oeptkUHcfpu+5lt/Ey3/vinr/9po8uFAphq9XqzihbrVaNr6nL2p9IzkIYhuEl5HHgnFqtpnw+f+7buWVZxp+4ogkYzjr5El5bWzt1v2hbnucplUp1h606uR3btpXP51UoFLqjDJxsk2VZ2tjY6DmzXbFYVL1el23b3XZHIxVE1tfXT/00HrWr0Wic64HwfV+lUkm+75/axqDbdF1XjuOo2Wwqm80a90er1Rr6ufSSz+fVbre7ZQPjtL+/r6dPn/b9qdj3/e5IC7Vardsu00/so/B9v9vTZdu21tbWztUV93pdplKpnvsrCALt7e2pVqtpY2Oj2+7Nzc1uz1+5XJbrut2eQ9u2R35dJLnfBjlOJw362o+zP0d9PoO2KY4kzt39/X25rnvuvWp7e9tYxhA9j3a73Z3R0LIs7e7uGstiJtnGy3zvG+T8PSl6n4zaGL2OolE7lpaWJL0q07AsS41GY2L7E8kgKANIRLlc1sbGxlRNNw4AwCioUQaQiEajQUgGAMwVgjKAkfm+373QBQCAeUFQBhCL6cr0Uqmk7e3tCbQGAIDxISgDGFixWFQ6ndb+/n53WdSbPK2zbAEAMKzXJt0AALNjc3NTtm13R12IrgC/jJEuAAC4bIx6kaC///3v+utf/6o33nhDCwsLk24OMBb/8R//cWrilH/7t3+jNxkAMDPCMNTf/vY3/fCHP9QPftC/uIKgnKC//OUvevPNNyfdDAAAAFzg22+/1Y9+9KO+96H0IkFvvPGGpFc7/ubNmxNuDQAAAM46Pj7Wm2++2c1t/RCUExSVW9y8eZOgDAAAMMUGKZNl1AsAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAGCOPXv+Qrfufa5b9z7Xs+cvJt2cmUJQBgAAAAxem3QDAAAAkLyo9/jZ85cnln3/7xvXiYEXYQ8BAADMoZ/8+o/nlm38ptb995OP373M5swkSi8AAAAAA3qUAQAA5tDXH70j6VW5RdSTXP+VoxvXr02yWTOFoAwAADCHTDXIN65fozY5BkovAAAAAAO+UgAAAMyxG9df48K9IdGjDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQCYcc+ev9Cte5/r1r3P9ez5i0k3B5gbBGUAAADA4LVJNwAAAAwn6j1+9vzliWXf//vGdT7mgVFwBgEAMKN+8us/nlu28Zta999PPn73MpsDzB1KLwAAAAADepQBAJhRX3/0jqRX5RZRT3L9V45uXL82yWYBc4OgDADAjDLVIN+4fo3aZCAhlF4AAAAABnzlBABgxt24/hoX7gFjQI8yAGBqMHEGgGlCUAYAAAAMKL0AAEwcE2cAmEa88wAAJo6JMwBMo5kPykEQaG9vT5K0srKiVquldDqtTCYz0jaLxaIkqd1uS5I2NzdVKBRGbzAAAABmwkwH5SAItL6+Ls/zlEqlusvz+bwODw9VKpVib7PZbMp1XZVKJVmW1V1eqVS0vr6uRqORRNMBACcwcQaAaTTTQTmbzSqTyZwKyZLkuq6WlpaUTqflOE6sbRaLRVWr1XPLM5mM2u228vm8XNcdqd0AgNOYOAPANJrZUS9831etVlM+nzfevr29HbtHudlsyrbtnrdvb2+rVqv1vB0AAADzY2a/qke9ur2C7dramsrlsoIgOFVC0U8Uvntpt9sDbwsAEB8TZwCYJjPbo9xsNvuG1ihA1+v1gbeZSqXk+76y2azxdtd1tbOzE6udAAAAmE0zG5R939fy8nLP26MQ7fv+wNu0bVu5XE6VSkVra2unepdrtZqCIGDkCwAAgCtiZksv2u1233riKEQHQRBru67ram1tTcViUel0WrlcTmtra0qlUgNfxHd8fHzq/19//XW9/vrrsdoBAACAyZrZHuVBA/DTp09jb7tQKHRDcblc7o7TPKg333xTi4uL3b+46wMAAGDyZjYoj1M02UgYhioUCgqCQOl0uucIG2d9++23Ojo66v7t7u6Os7kAgB6ePX+hW/c+1617n3enyQaAQc1sULYsa6Be5ZWVlVjbTafT3ZILSSqVSmo0GrJtW+VyueeFfifdvHnz1B9lFwAAALNnZoNyvwv5pO+nno4znNv+/r5SqdS5SUpSqZRarVb3Qj/GUgaA6fbs+Yt//L08sexldzkADGJmL+azbbvv0G9Rb3O/C/7Ocl237xTVruuqXq+rWq3GnvEPAHB5fvLrP55bFk2NLYmxmgEMZGZ7lFOpVN/Si2hYuDiB1vf9C3ug8/l87JE0AAAAMHtmtkd5Z2dH+/v7ajabSqVS524/PDyM3etr27Z83+/bC91qtbS+vh67vQCAy/P1R+9IelVuEfUk13/l6Mb1a5NsFoAZM9M9yo7j6P79+8bbK5VKd/SKk4IgULFYNNYZZzIZ4zon1202m9re3h6+4cAVxygEuAw3rr/2j79rJ5Zd6y4HgEHMbFCWJM/zVKlU1Gw2Ty3P5/MqFArGHuVyuaz9/X3j6BWlUqm7/tnyimazqWw2q1KpFOsCQQBXE18IAGD2zfTXasuy1Gg0VCwWZVmWVlZW1Gq1lE6nlclkjOs4jiPLsnr2Cnuep1qtprt3755abtu2qtVq4s8BuCqisHh2FIIIvXwYhxvXX+PCPQBDWwjDMJx0I+bF8fGxFhcXdXR0pJs3b066OcBUuXXv8763z0uYOfmFwFQbyxcCAJisOHmNd2wASBDDkgHA/CAoA7gUjEIAAJg1BGUAl8JUchCNQjBP+EIAAPNjvj6hAGDCrsoXAgC4CnjnBnCpGIUAADArCMoAMAZ8IQCA2TfTE44Ak8SEEgAAzDeCMgAAAGBA6QUQEzPMAQBwNfCJDsTEhBIAAFwNlF4AAAAABvQoAzExoQQAAFcDQRmIiQklAAC4Gii9AAAAAAzoAgOGxIQSAADMN3qUAcw0Jn4BAIwLQRlXCqEKAAAMitILADOJiV8AAOPGJwmuBELV/GHiFwDAuJEOcCUQqgAAQFwEZQAXevb8RffLxtcfvTMVPfBM/AIAGLfJf9oBl4BQNX+Y+AUAMG58ouBKIFQNh9puAMBVxqccgJ5mobabiV8AAONCUMaVQqgCAACDIigD6InabgDAVUZQBtATtd0AgKuMKawBAAAAA7qFAFyI2m4AwFVEjzIAAABgQFDG1Hv2/IVu3ftct+593h3XFwAAYNwIysCU4AsBAADThRplTC1mhQMAAJNE0sDUmoVZ4ZLAFwIAAKYTn8DAhF2VLwQAAMwagjKmFrPCAQAw3549f9HtMPr6o3em7lfU6WoNcMJVmRWOLwQAAEyn+UocwAy6Kl8IMJpp73UBgDhm5fqc6WgF0AezwgEAMF9m5focgjIwJfhCAJNZ6XUBgHm0EIZhOOlGzIvj42MtLi7q6OhIN2/enHRzcIXxM/38uHXv87638+UKwCw62Qlguj5nnJ9bcfIan54AAAC4VLNyfc50tQbASPiZfv4wKgoATA6fmsAcmZWLI6bVNJaszEqvC4BkTeP70ThM+/U5P5h0AwAAAIBpNJ9fT4Arip/phzMLJSvT3OtyVXq+gMswC+9HVwl7G5gj/Ew/HEpWAEwL3o+mC5+eAICh0PMFYN4xjnKCGEcZmE2THM9zljHGM5A83o/Gj3GUASAGSlYATAvej6YLex0AMBQuHgUw7wjKAPAP0zyyxDSi5wsYH96PpgPjKAMAAAAGfO0HAIyEni8A84oeZQAAAMCAoAwAAAAYEJQBAAAAA4IyEvfs+Qvduve5bt37vDtwOgAAwKwhKAMAAAAGjHqBxJycdvP7Zd//m7FVAQDALCG5IDE/+fUfzy2LZuuSxPBRAHDCs+cvuu+bX3/0Dp0JwBSi9AIAAAAw4OsrEvP1R+9IelVuEfUk13/l6Mb1a5NsFgBMFcrUgNnB2YjEmN7cb1y/xps+AJxAmRowOyi9AAAAAAwWwjAMJ92IeXF8fKzFxUUdHR3p5s2bk24OAGAKnSy9MJWp8SscMF5x8hpnIwAAl4gyNWB2UHoBAAAAGPD1FQCACbhx/TUu3AOmHD3KAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAFfMs+cvdOve57p17/PumL64GPsNuHoIypDEBwAAAMBZiQblR48eJbk5AECCnj1/8Y+/lyeWvewuhxn7Dbi6Eh1HOZ1O6+XLlxffEVPj5FSq3y/7/t/MFAXMj5/8+o/nlkVTKEtiTN8e2G/A1ZVoClpcXNS//uu/6j//8z+T3CzGiA8AAAAAs0SDchAEcl1XrVZLpVJJb7/9dpKbBwCM4OuP3pH06lej6Atx/VeObly/NslmTT32G3B1Jf67uuu62traUq1W097entLptLa3t3Xz5s2kHwoJ4AMAuDpMpVQ3rl+jxOoC7Dfg6kr0LHddV++9954k6e7du7p7966+/PJLFQoFLSwsKJ/P08s8ZfgAAAAAMFsIwzC8jAc6OjrSgwcPVKvVlE6nu4F62lQqFWUymaHWPT4+1uLioo6OjmauB/3Z8xfdeuWvP3qHoAwAAOZSnLx2aUH5pC+//FKu62phYUHvv/++/umf/umym2AUBIGWlpbkuq62t7dlWVas9Wc5KAMAgOHR4TQ74uS1iUw4sra2prW1Nd2/f1+pVEo//vGP9emnnw61rSAIVCwWVSwWtb+/r3w+r0qlMtS2fN+XJOXzeS0tLWlhYaHn37CPAQAAgNlwqV93Hj16pFKppFrt1UVjYRgql8spn89Lkt5//30tLCyoWCzq1q1bF24vCAKtr6/L8zylUqnu8nw+r8PDQ5VKpVjt831ftm0rlUppeXnZeJ92uy3f94cuzwAAAPOD+QjmW6KlF48ePdLPfvazU8uOj49VLpfluq5831cYhrJtW8ViUXfv3j23jaOjI5XLZbXbbe3u7vbtEk+n00qlUsZAvLS0JM/z5DjOwO0vFovK5/OybXuo+1B6AQDA1XLr3ud9b2c+gukTJ6+NbWa+R48eyXVdVSoVRVk86j2+fft2z20sLi7qww8/1NHRkd577z3t7+8be5d931etVpPrusbtbG9vq1QqxQrKkvqG5GazqbW1tb73AQAAwHxIfGa+H//4x5J0rvd4e3tbi4uLsbb14MEDffDBB/r9739/7vYoIPcKrWtrayqXywqCYOCL8qISkF5c1+0ZzAEAwNXDfATzLfHCmVarJUnKZDLa3d3t23s8iF7hutls9g3AUYCu1+sD9ypfVHIRt+YZAIBZw+gN8TAfwXxLfNSLfD6vTqejBw8eDB2Sj46OtLu7qydPnujo6Mh4H9/3e15wJ6kboqORLEYRlVwM2jN9fHx86u+7774buQ0AAAC4XIkH5d///vexSixMHjx4oFKppHQ6rfX1deN92u123+AaheggCEZqiyTt7e0pl8sNfP8333xTi4uL3b+9vb2R2wAAwDg9e/7iH3+nR2+IlqO/G9df05OP39WTj9+lN3mOJHokt7e3E9tOq9XS5uam7ty5Y7zPoAH46dOnI7WlUqnEvnjv22+/PXUV5euvvz5SGwAAGLeo3OKkqOZWYvQGXE2JBuVPPvkkke0sLi7q448/TmRbo9rb29PBwUGsdW7evMnwcAAAADNuLL8N/OEPf1C5XO7WKp8d3u3x48cqFov66U9/ql/+8pdDPYZlWQP1Kq+srAy1felVfXOz2Tw1mQkAAPOI0RuA8xKvUd7d3ZUkHR4eqtFoqNlsnrvP6upq92K/6P5x9buQT3pVwyxp4AvwTFzXZcxkAMCVcOP6a//4u3Zi2bXucuAqSvSV/+jRI9m2rTt37igMQz1+/Fg///nPe95/a2tLkvTZZ5/1vZ+Jbduq1+s9b496m0cJurVajaAMAABwRSXao+x5Xnda6kwmow8//PDCdba2tlStVmM/ViqV6lt6EQ0LF3dmvpMuGqsZAIB5w+gNwPcSDcrRVNWXYWdnR5KMpR3Sq9KPUUOydHGJBwAAAOZTokG50+kMtd4wk4KkUik5jqP79+8bb69UKioWi+eWB0GgYrGoWq1mWOt7UY0zAAAArqZEg3I0fXUcR0dHQ4917HmeKpXKuV7lfD6vQqFg7FEul8va399XNpvtu+0ovFN6AQAAcDUlPuHIzs5Oz17eXuv84he/GOrxLMtSo9FQsViUZVlaWVlRq9VSOp1WJpMxruM4jizLunBylI2NDVmWpc3NzaHaBgAAgNm2ECZcWPzWW29pY2NDBwcHeuONN3re76uvvtLdu3cVBIH+9Kc/JdmEiTk+Ptbi4qKOjo6YcAQAAGAKxclriV/O+sUXX+itt96S53lKp9PdHtzl5WW12221Wi3VajU1m02FYdjzYjwAAABgkhIPyrZtq91uK5vN6osvvjAO/RaGoRzHkeu6Wl1dTboJAAAAwMjGMkCiZVmqVqt6+PChPM9TvV5XEASyLEu2bSufz3cnGwEAAACmUeI1ylcZNcoAAADTLU5eS3R4OAAAgFnx7PkL3br3uW7d+1zPnr+YdHMwhaYiKO/u7k66CQAAAMApUxGUy+XypJsAAACuiGfPX/zj7+WJZS+7y4HIWC7mk6QnT54MNDV1s9lUEATjagYAAMApP/n1H88t2/hNrfvvJx+/e5nNwRRLPCh/+umnKhaLhF8AAADMtESD8sOHD5XL5WTbtrLZrCzLunCdRqOhR48eJdkMAACAnr7+6B1Jr8otop7k+q8c3bh+bZLNwhRKNCjfu3dPnufpzp07sdZbWVlJshkAAAA93bh+Pv7cuH7NuBxXW6IX8y0tLcUOyZKYnQ8AAABTJ9GvTqlUaqj16vV6ks0AAAC40I3rr3HhHvpKtEeZC/gAAAAwLxINytlsVp999lns9ZhwBAAAANMm0aC8tbWlVqsVOywz4QgAAACmTaI1yk+ePFE2m5Xnedrc3JTjOFpbW5Nt2z3XYcIRAAAATKPEL+Y7OjqSJIVhqEajoYWFhSQfAgAAALgUiQbl5eVlSdL29vZAk41ITDgCAACA6ZRoULZtW/fu3dN7770Xaz0mHAEAAMC0SfRiPtu2+9Yj98KEIwAAAJg2C2EYhpNuxLw4Pj7W4uKijo6OdPPmzUk3BwAAAGfEyWuJ9ij3asyTJ0/G/TAAAABAosYSlJ88eaIPPvhA165d09LSkt56661Ttz9+/Fjb29v69NNPx/HwAAAAwMgSD8qPHj2SbdtyXVerq6va2to6V4O8urqqBw8eaHV1Vb/73e+SbgIAAAAwskSD8uPHj5XJZJTL5dRqtfTNN9/oiy++0J07d4z3j0I0w8MBAABg2iQalO/du6dSqaRPPvnkVC9yv0lH7ty5I8/zkmwGAAAAMLJEg3Kn09Hdu3djr8fAGwAAAJg2iY+jPIxOp5NkMwAAAICRJd6jPAzf95NsBgAAADCyRIPy0tKS/ud//ifWOru7u9ra2kqyGQAAAMDIXktyY4VCQf/yL/+ig4MD/fM///OF9//d736nSqWiP/3pT0k2AwAAABhZokHZtm198skn2tra0sbGhnZ2dnT79m0FQaAnT54oCAK12201m025rivf99VoNJJsAgAAAJCIhXAMQ05UKhXlcjkdHR0Zbw/DULZty/M83b59O+mHn5g4c4cDAADg8sXJa2OZwjqTyajdbmtvb09vv/22wjDs/q2urqpUKumbb76Zq5AMAACA+TKWHuWrih5lAACA6TbxHmUAAABg1k1FUP7ss88m3QQAAADglKkIysNMew0AAACMU+zh4b766iu9/fbbPW+Lo91uy/d9BUEQtxkAAGAGPHv+Qj/59R8lSV9/9I5uXE90ZFpgrGK9Wu/du6ff/va3Wl9f1//+7/+eu/1nP/tZzyHhAAAAgFkSKyj7vq8wDNXpdIy3Ly8vS5JyuZwkaWVlpe/2nj59qlarRY0yAABz5tnzF//478sTy77/Nz3LmAWxXqUHBwdKp9NyHMd4u23bunfvnt57771YjbgoUAMAgNkSlVuctPGbWvffTz5+9zKbAwwlVlBeXFzse+FdOp3WxsZG7Easrq7GXgcAAFwt1DvjsiX6Cvvwww+HWq9eryfZDAAAMGFff/SOpFflFlFPcv1Xjm5cvzbJZgGx8FUMAAAkztTbe+P6taF6gal3xqSM5ZX1hz/8QeVyWZ1ORw8ePNCtW7dO3f748WMVi0X99Kc/1S9/+ctxNAEAAMwJ6p0xKYlPOLK7uytJOjw8VKPRULPZPHef1dVVPXjwQLdv3+7eHwAAzJ8b11/Tk4/f1ZOP36XnFzMn0Vfso0ePZNu27ty5ozAM9fjxY/385z/vef+trS1Jr6aw7nc/AABwdVHvjElJNCh7nqff//73kqRMJjPQOltbW/rggw8IygAAwCjJemcgjkRLL8IwTHJzAAAAwMQk+lWs14x9F/F9P8lmAACAORTVOwOXJdEe5VarFXudo6MjPX36NMlmAAAAACNLNChvb29rZ2cn9jq/+MUvkmwGAAAAMLJEg3KhUFCj0dAvfvEL/e1vf+t736+++kqbm5vyfZ+xlAEAADB1Er9c9IsvvtBbb70lz/OUTqflOI4sy9Ly8rLa7bZarZZqtZqazabCMDSOswwAAABMWuJB2bZttdttZbNZffHFF6pWq+fuE4ahHMeR67paXV1NugkAAADAyMYyAKFlWapWq3r48KE8z1O9XlcQBLIsS7ZtK5/PdycbAQAAAKbRQsjgx4k5Pj7W4uKijo6OdPPmzUk3BwAAAGfEyWuJXswHAAAAzIupCMoffPDBpJsAAAAAnDIVQfnBgweTbgIAAABwSuyL+b766iu9/fbb55YfHR3p4cOHsRtweHioIAhirwcAAACM08BB+eHDh8rn83r8+LHW1tb0f//3f6dur9frymQyWlhYiNWAMAxjrwMAAACM20BB+ejoSK7rynVdpdNpLS4unrvP8vKyJOnOnTva3NyUZVkXbjcIAn3zzTf69NNP47UaAAAAGLOBhof77LPPtLq6qtu3b+vo6MgYlI+OjrS8vKyXL1/GbkQ0a9+sY3g4AACA6Zb48HCHh4e6ffu2JBlDcrS8120XcRxnqPUAAACAcRkoKC8vL+vJkycX3m/YWmNGvQAAAMC0GSgoO44j13XH1ojj4+OxbRsAAAAYxkBB+fbt2/I8T3/+85/H0ojV1dWxbBcAAAAY1sATjnzyySeybVv/9V//lXgjBrieEAAAALhUA4+j7DiO7ty5o1wup1wup1QqJdu2T90nCAK98847Az94u92W7/s6OjoavMUAAADAJRg4KL///vvyfb/b+9toNNRoNM7dr1qtxm4EE44AAABg2gxUevHll1/Ksiw9fPhQjuOoVCrp73//+7k/y7KMy/v91ev1cT9HAAAAILaBepQfPnyo999/X4uLi/riiy963m+YnuFUKjX0+MsAAADAuAzUoxyGYXeK6nHwPG9s2wYAAACGMVBQtm17rCUSW1tbY9s2AAAAMIyBJxwplUpja8Tvfve7sW0bAAAAGMZAQXlxcVGrq6v6f//v/42lEXt7e2PZLgAAADCsgYeHK5VKWl1dVa1WUz6f19bW1qm65WjYuD//+c+xJhBpNBoKgmDwFgMAAACXYCGMkWqDIND6+roeP36c+NjHL1++THR7k3B8fKzFxUUdHR3p5s2bk24OAAAAzoiT1wbuUZYky7LUarVUqVRUr9dP9QSHYaiDgwPlcrlYjT08PNRXX30Vax0AAABg3GL1KF9kZWVFT58+vbT1pg09ygAAANNtbD3KFxk2cy8tLQ39mEEQdC8GXFlZUavVUjqdViaTGXqbkXK5LM/zZFmWpFfD5I1z9A8AAABMj0SD8sHBwVDrffPNN0OtF9VMe56nVCrVXZ7P53V4eDh0qA2CQFtbW3IcR9Vqtbvc930Vi0XCMgAAwBWQaOnFZUun00qlUsbgurS0JM/z5DhO7O2ur68bx45Op9Oq1+vqdDrG9Si9AAAAmG4TK73o5d69e3r8+LFs29ba2pps29bGxsZIYdL3fdVqNbmua7x9e3tbpVIpdlDe39+X7/vG8G1ZljY2NoZqLwAAAGbLwEH5q6++Urvdlu/7arVa8n1fQRDIsizZtt130pCPP/5YkvT48WM1m019/PHHqtVqWlhY6Ibn//7v/47V8Cgg27ZtvH1tbU3lcrnbxkHt7e31HLnD87xYbQQAAMDsGjgo/+xnP9PR0ZHCMFQ2m9W9e/d0+/btWA+2urqq1dVV3blzR77vK5vN6ssvv5Tv+7Eb3mw2+wbgKEDX6/WBe5UrlYqCINDOzk7s9gAAAGC+xC69aDQasQOyiW3bajQaWlpa0vHxcez1fd8/NTPgWVGIjhPC79+/L0ndCwObzabq9bo2NjZOXSx4kbPP5/XXX9frr78+8PoAAACYvB/EuXMul0skJJ807AgS7Xa7b49yFKLjTI/dbDa7/97f31e73e6WYaTTadVqtYG28+abb2pxcbH7168sBQAAANMpVo9yNptNvAHpdHqo9QYNwHEmMonCd7lcVqFQ6C5PpVLyPE+rq6sDjaTx7bffnrpQkd5kAACA2RMrKPca8eHJkycXrnvr1i3j8tXV1aEnKklaFL5NJR2WZclxHOXzebVarb7buXnzJsPDAQAAzLiBg/LCwkLP8Od5np4+faparaYvv/yyu9y2bWUyGa2srCiXy/VcP86oFCfXGaRXeWVlJfY2e/UYp9NpVSoVNZvNWDXLAAAAmD2JjKP84Ycfdv9dLBb129/+Vtlstntx3EUWFhZiP2a/C/mkV2UUUrwQvry83Hc4uegx6/U6QRkAAGDOxbqYbxDRxXnjnubZtu1uGDaJept7jbNsMmj4jXOBIAAAAGZT4kFZetWL26smOSmpVKpvYI2GhYszM9/m5qak3kE4Cub0JgMAAMy/sQTlYUop4oomBTk5pNtJh4eHsaevzmQyktRzGLjoIj6msQYAAJh/YwnKlyGVSslxnJ510JVKRcVi8dzyIAhULBaNYTi6+LDXuMeVSkWFQmGoiw8BAAAwW6YiKA9b8+t5XncUipPy+bwKhYKxR7lcLmt/f7/nmNAHBwcKgkDlcvnU8mw2K9u2x157DQAAgOkw8KgXYRjqxz/+8UC9qUEQdOt9B7nvsCzLUqPRULFYlGVZWllZUavVUjqd7pZRnOU4jizL0vb2dt9t7u3tdcN0EATKZrPdWfoAAAAw/xbCAWf7iIZOG0sjFhb08uXLsWz7Mh0fH2txcVFHR0dMOAIAADCF4uS1WOMoR3XBcSbx6Ofp06dqNBp69OhRItsDAAAAkhJrZr5Hjx6Npaf02rVriW8TAAAAGMXAF/OFYTi2coLFxcWxbBcAAAAY1sBB+eHDh2NrxDi3DQAAAAxj4KB8+/btsTVinNsGAAAAhjEV4ygDAAAA04agDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoz6tnzF7p173Pduve5nj1/MenmAAAAzB2CMgAAAGDw2qQbgHii3uNnz1+eWPb9v29c55ACAAAkgVQ1Y37y6z+eW7bxm1r3308+fvcymwMAADC3KL0AAAAADOhRnjFff/SOpFflFlFPcv1Xjm5cvzbJZgEAAMwdgvKMMdUg37h+jdpkAACAhFF6AQAAABjQDTmjblx/jQv3AAAAxogeZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwmPlxlIMg0N7eniRpZWVFrVZL6XRamUxmqO2Vy2V5nqd8Pi/HcWRZlnzfV7PZ1P3797W7u6tUKpXkUwAAAMAUmumgHASB1tfX5XneqfCaz+d1eHioUqk01DZrtZpqtdqp5ZZlnXscAAAAzK+ZDsrZbFaZTOZceHVdV0tLS0qn03IcJ/Z2XddVq9WS7/taXl7W+vq6crlcUs0GAADADJjZoOz7vmq1mlzXNd6+vb2tUqk0VFDe3t6WZVkjthAAAACzbGYv5osCsm3bxtvX1tZUq9UUBMEltgoAAADzYmaDcrPZ7NvrGwXoer1+SS0CAADAPJnZoBzVD/cShWjf94d+jGazqXK5rGazOfQ2AAAAMJtmNii32+2+PcpRiB6m9KJWq2l/f1+SuhfxpdPpcyNh9HJ8fHzq77vvvovdBgAAAEzWzAblQQPw06dPY203KtkoFArd0TRSqZQ8z1M6nR6od/nNN9/U4uJi9y8a5xkAAACzY2ZHvRiXXhOVWJalTCajbDarVqvVdxvffvutbt682f3/119/PdE2AgAAYPxmtkfZsqyBepVXVlYSe8zNzU35vn9h3fPNmzdP/RGUAQAAZs/MBuV+F/JJr2qYJSU6HnK0LS7uAwAAmH8zG5Rt2+6GYZOot7nXOMsm+Xxea2trozYNAAAAc2Bmg3IqlepbehGVR8SZma9erw8Uvs9OmQ0AAID5M7NBeWdnR1LvMojDw8PY01c7jqNOp9Pz9sPDQ1mWFauXGgAAALNpZoNyKpWS4zi6f/++8fZKpaJisXhueRAEKhaLxjGRd3Z2VC6XjdvzfV+VSkUHBwejNRwAAAAzYWaDsiR5nqdKpXKuVzmfz6tQKBh7lMvlsvb395XNZs/dFpVzRJONRHzf1/r6ugqFQs/h4wAAADBfZnocZcuy1Gg0VCwWZVmWVlZW1Gq1lE6newZax3FkWZa2t7eNtxcKBdVqNeXzebXbbQVBIMuy9PDhQ2qTAQAArpCFMAzDSTdiXhwfH2txcVFHR0enJhwBAADAdIiT12a69AIAAAAYF4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAAby7PkL3br3uW7d+1zPnr+YdHPGjqAMAAAAGLw26QYAAABgukW9x8+evzyx7Pt/37g+n5FyPp8VAAAAEvOTX//x3LKN39S6/37y8buX2ZxLQ+kFAAAAYECPMgAAAPr6+qN3JL0qt4h6kuu/cnTj+rVJNmvsCMoAAADoy1SDfOP6tbmtTY5QegEAAAAYzPfXAAAAACTmxvXX5vbCPRN6lAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMpT6rvvvtO///u/67vvvpt0U64sjsHkcQwmj2MweRyDyeMYTIdJHIeFMAzDS3u0OXd8fKzFxUUdHR3p5s2bU7MtDIdjMHkcg8njGEwex2DyOAbTIanjEGc79CgDAAAABgRlAAAAwOC1STdgnkRVLMfHxyNvK9pGEtvCcDgGk8cxmDyOweRxDCaPYzAdkjoO0fqDVB9To5ygv/zlL3rzzTcn3QwAAABc4Ntvv9WPfvSjvvchKCfo73//u/7617/qjTfe0MLCwqSbAwAAgDPCMNTf/vY3/fCHP9QPftC/CpmgDAAAABhwMR8AAABgQFAGAAAADAjKAAAAgAFBGQAAADBgHOUxC4JAe3t7kqSVlRW1Wi2l02llMpmp2uY8S3p/lctleZ6nfD4vx3FkWZZ831ez2dT9+/e1u7urVCqV5FOYG/l8XtlsVo7jjLQdzoHRJHEcOA+G02w25bqu2u22ms2mLMtSPp9XLpcbepucD/EkfQw4F4bj+75KpZIkqd1uKwgCpdNpFQqFobc5lnMhxNh0Op3Qtu2w0WicWp7L5cJCoTA125xn49hfpVIplHTuz7KssFqtJtHsudJqtULXdcNUKhVKGnkfcQ4MJ+njwHkQn+u6oeu6p5ZVq9XQsqzQtu2w0+nE3ibnQzzjOAacC/F5nmd8faZSqdC27aG2Oa5zgeHhxiidTiuVSnW/MZ20tLQkz/Ni9+iMY5vzbBz7a39/X5ZlqdVqyfd9LS8va319faQeoXlVLpdVrVaVTqdl27bS6bSq1epIr1HOgfjGcRw4D+LxfV+VSsXYW9ZsNrW+vi7HcVStVmNtl/NhcOM6BpwL8QRBoLt378rzvHO3Rcchl8vJdd1Y2x3buTB0xEZfrVYrlBS2Wi3j7blcLnQcZ+LbnGfj2l+lUmmoXoerrtFojNyTyTkwuiSOQxhyHsRVKBT67i/Hcfq+tk04H+IZxzEIQ86FuKrVaiipZy+vpNi9yuM8F7iYb0yib0K2bRtvX1tbU61WUxAEE93mPGN/zR+OKWZVrVbT6upqz9dmVMPabDYH3ibnQzzjOAaIb3l5WZZlaWVlped9LMuKtc1xngsE5TGJLhDoJTqY9Xp9otucZ+yv+cMxxaxaXl5WEATyfT+xbXI+xDOOY4D4UqmUOp1OzxIYSbFLJMZ5LjDqxZhEdUq9RAc0zgk7jm3Os8vYX81mU/V6XRsbG1zVfAk4B6YT58HFqtWqfN/v2eMVvWbj7D/Oh3jGcQzO4lwYTbFYlG3bxjrjfsZ5LtCjPCbtdrvvt5vogMb5GWAc25xn49xftVpN+/v7ktS9YCOdTqtWq8XeFgbHOTBdOA/i6RXQJKlSqSiVSvW9z1mcD/ElfQwinAuj8X1f+Xxetm2r1WrFXn+c5wI9ymMy6MF4+vTpRLc5z8a1v6I30ZM/G6VSKXmep6WlJTUaDXoSxoRzYHpwHiQnClgHBwex1uN8SM6wx0DiXBhFpVLR4eFht6c/nU4PtZ1xngsEZSCmXgOXW5alTCajbDY71DdiYJZwHiSj2WyqWCzK8zzC1ISMegw4F4aXyWRO7b90Oi3XdXVwcBD7gr5xofRiTCzLGugbTr+rPi9jm/NsEvtrc3NTvu9TEzgmnAOzgfNgcNlsVq7rDjVzGOdDMkY5BhfhXIjH8zxVKhVls9lY643zXCAoj0m/onLpVT2NFG8IlHFsc55NYn9F22J4ofHgHJgNnAeDyWazI02dzPkwulGPwUU4F+KJeuFrtVqs+u5xngsE5TGxbbt7YEyibz5xLhoYxzbn2Tj2Vz6f19ra2qhNw5A4B6YD58HoisWiNjc3jUNkDYrzYTRJHAPOhfguGqIver3GmSFxnOcCQXlMUqlU358BohdJnLECx7HNeTaO/VWv1wc6Gak1HA/OgenAeTCacrmstbU1Y0CLc1U+58PwkjoGnAvxLS0taW1tred+jsojpuVcICiPyc7OjqTeP7ccHh7GPmDj2OY8G8f+chxHnU6n5+2Hh4eyLIsenDHhHJgOnAfDq1QqkmT8qd/3/Vg/N3M+DCfJY8C5EF+0P3qVQUQXPq6vrw+8zbGeC0NNfI2BOI7Tdy7zarV6bnmn0wkLhYLxtmG3eZUlfQwajUbouq5xe9Fc857njdboOdVoNAZ6jXIOjFcSx4HzYDj99lsYhqHrumGr1Tq1jPMhWUkfA86F+AqFwrl9fJJlWaFlWWGn0zm1fFLnAkF5jDqdTmjbdthoNE4tz+VyPQ9mqVQKJYWWZSW2zatsHMegVCqFpVLp1LJWqxValsUx6MPzvIE+NDgHxiup48B5EE+r1Qpt2w5zuZzxL5PJGPc150NyxnUMOBfiy+VyxuAaHYOzr+cwnNy5sBCGYThcXzQGEQSBisWiLMvSysqKWq2W0ul0z2Foms2mtra2tL29Ldd1E9nmVTeOY1Cr1eR5ntrttoIgkGVZ2t3dpQ7tjEql0t2H9Xq9u682NjYkvbri/OzPn5wDyRvXceA8GNza2tqFQ4SZZiXjfEjOOI8B50J8lUpF9+/f1/Lycne/pVIp7e7uGssyJnUuEJQBAAAAAy7mAwAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQCukEqlooWFhVN/QRBMulkTVSwWT+2PpaWlSTcJwJR4bdINAABcLsuy9PDhw1P/f5Xt7u5qZ2dHklSr1bS3tzfhFgGYFvQoA8AVs7y8rFQq1f0bRBAEKpfLSqfTWltb09LSktbW1rS+vq79/f1zvdK1Wk2VSiWR9ubzeS0tLZ37W1hY0P7+/sDtj3qLT65fLpdlWVbs/QHgaiAoAwD6KhaLWlpaUqlUUjabVaPRUKfTUavVUqPRkG3b2traOhWM8/l8Yo/vuq46nY48z1MQBAqCQI7jKAxDFQqFgbZhWZY6nY42NjYUBIFyuZw6nY5yuVxi7QQwfyi9AAAY+b6vdDot3/fleZ4ymYzxfplMRplMRvl8Xr7vy7Is+b6feHscx5HjOKrVakOtb1mWstmsLMtSqVRKuHUA5hE9ygCAc5rNptbW1tRut9VqtXqG5JNc11Wr1Uq0N/msaNvDlnU0Gg1CMoCBEZQBAKcEQaCtrS1Jkud5sm174HVd1x3rxYGZTKa7/XK5HHt93/djPR8AVxtBGQBwyt27dxUEgTKZjBzHib3+wcHBGFr1ve3tbUmvQnkc5XJZ2Wx2HE0CMKcIygCArmaz2S1rGLZEYZAyjVFE5RfNZjNWLbTneVy8ByAWgjIAoCsaQ9i27ZFKFIbpiR5UKpXqtm3QXmVKLgAMg6AMAOiKRpQYtVd43CUOxWJR0uB1yq7rjvUiQwDziaAMAEPK5/PdCThOjsIQBIHy+byy2azS6bSy2exYhktLWrPZ7E4csrm5OdK2crnchWHb9/3ufor25aD7KqpTDoJgoOHiarUak4kAiI2gDABDiAJetVpVJpNRNptVs9lUrVZTNptVsViU53mqVqva3NzU2tqams3mpJvdV7vd7v573NNa12q1bjD2PE+u66parSqdTmt9ff3C8GtZVjeIX1RLXavVulNUA0AcBGUAiCkIAvm+363DXVtbk/Sq3CAKfCfrYQuFQneyi2l2sid3eXl5bI9TqVSUTqfluu65WuZcLqft7e3uRCf9RKUUtVrt3BTaJ7muy0V8AIZCUAaAmM4OM9ZqtSS96pH1PM+4jm3b8n3/VK9yVLaxtram9fV1pdPpnsvW19e7y6P63KSdDMcne5eTdvfuXaVSqZ4X/EXP76KeYsdxLhxTOQrQ4+4hBzCfCMoAEFO1Wu3WyErfXwDXL9hFga1er0t61Xtbr9dVKpXUarXUaDRUrVZVrVa7U0BHpRvValWNRkONRkOWZWllZWUsz+tkmOzXQzuK/f19BUHQtxQiGnFjkAv1op7iXqNflMtlyi4ADI2gDAAxlUqlU6Ey6iXuNyRaVEYQBdBKpaKDgwPjBW/NZtM4PJtlWdrZ2RnbMGcbGxvdf8fpUY56unv9newBv3//viRdeGFd9BwvCuxR+cXZ3vqTjzfucZ0BzK/XJt0AAJg1J0Ne1JtsWVbPAHuy1ja6T6vVUqFQOHffaHu9QrdlWWMbvSF6Dr7vq1qtDlzXG5WeRCNQRGUpuVyu55eKqLe8l2iftdvtvmUTtm3LcRzVajW5rnuqZ7nZbI51PGcA84+gDAAjiMLeyVKMs06O4JBKpeT7vtbX1/tuL51OG29vtVpjvTAtk8lof39/oCHXzopGorAsS0EQKJ1O9wy5xWKxb894nFkB8/m8arWayuXyqaDsuu7Y6rkBXA2UXgDACKJA2SvYSt+H36icIgiCnsE66nHt1Wvc73GSsLu7K2nw8YmHlWQN9MnSipPjWTMbH4BREZQBYASD1CdH4S3q3UylUj17Wmu1Wt8yjnGXEliW1S0JGUdvbPS8kh5VI+plj6bgPjsyCQAMg6AMAEOKelxt2+4ZfKORG2zbvrBkYpDQfRlKpZJSqZSazab29/djr9+vtzi6+G6QyVfizGZ4crvRiCGMnQxgVARlABjSyZIKkyAIur2yvcZXPmmQMo7L8vDhQ9m2rWKxeKqc4SIXlWsUCgXZtt1zOLeT4vRop1Kp7nG4qP4ZAAZFUAaAIUWhMBob+axsNqsgCOR53kAjVUTBe9I9ytKrEoxGo6FUKtWdkvsivu+rWCxeGII9z5Pv+317q6MpruOIepUrlUr33wAwCoIyAAwpKh84ODg4Vw+bz+dVr9dVrVYHHsf3ovrkyxaF5VKppP39fS0tLWl/f/9cSUQUerPZrA4ODpTL5fqG/VQqpUaj0XNUikqlomazGbt0Irq/bdtjG0IPwNXC8HAAMIST9clREF5fX9fy8rLa7bYcx9Hjx48Hnjp5WuqTTQqFgnK5nB48eCDP8+S6rtrttpaXl7vBfmdnR41Go7tOtVrtW6ucSqXUarVULBa1vr4u27a7U2hns1njGNMXiYan29zcjL0uAJgQlAFgCGfLJDKZzEgzwEXlG9Ma8izLUi6Xi9XLO8iXhDjjJQ9ikFpwABgUpRcAMISkL7ybpvpkAMArBGUAGMJFE4PEFQVvamsBYHoQlAEgpijUJnXhXbPZVBAEhGQAmDLUKANATEmUSVQqFd2/f19BEHTrk33fVzqdlmVZSqfTTJgBABNGUAaAGIIgiDUBRy+jXvwHABg/Si8AYEBLS0taWlpSu92W9KpXeGFhQUtLSxNuGQBgHAjKADCgTqejMAy7/43+Op3OpJsWi+/7WlhY6P71G+/4KigWi919MQ3ThwOYHgthGIaTbgQA4HIEQXBuZr2rfhEh+wRALwRlAAAAwIDSCwAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABv8f95lin16YV7sAAAAASUVORK5CYII=",
       "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
+       "<Figure size 800x600 with 1 Axes>"
       ]
      },
      "metadata": {},
-- 
GitLab


From 61a7835e18033b0afdeee769ffd5fabc2fb4905f Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 16:27:59 +0100
Subject: [PATCH 23/30] new training

---
 LHCb_Pipeline/full_pipeline.ipynb | 628 +++++++++++++++---------------
 1 file changed, 312 insertions(+), 316 deletions(-)

diff --git a/LHCb_Pipeline/full_pipeline.ipynb b/LHCb_Pipeline/full_pipeline.ipynb
index bc08ec5c..de143439 100644
--- a/LHCb_Pipeline/full_pipeline.ipynb
+++ b/LHCb_Pipeline/full_pipeline.ipynb
@@ -196,113 +196,115 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Saving event 004206889, 1/100, contains 690 true hits.\n",
-      "Saving event 004206890, 2/100, contains 693 true hits.\n",
-      "Saving event 004206891, 3/100, contains 1132 true hits.\n",
-      "Saving event 004206892, 4/100, contains 564 true hits.\n",
-      "Saving event 004206893, 5/100, contains 1210 true hits.\n",
-      "Saving event 004206894, 6/100, contains 1246 true hits.\n",
-      "Saving event 004206895, 7/100, contains 696 true hits.\n",
-      "Saving event 004206896, 8/100, contains 817 true hits.\n",
-      "Saving event 004206897, 9/100, contains 1090 true hits.\n",
-      "Saving event 004206898, 10/100, contains 854 true hits.\n",
-      "Saving event 004206899, 11/100, contains 646 true hits.\n",
-      "Saving event 004206900, 12/100, contains 743 true hits.\n",
-      "Saving event 004206901, 13/100, contains 1874 true hits.\n",
-      "Saving event 004206902, 14/100, contains 1985 true hits.\n",
-      "Saving event 004206903, 15/100, contains 1526 true hits.\n",
-      "Saving event 004206904, 16/100, contains 2655 true hits.\n",
-      "Saving event 004206905, 17/100, contains 2895 true hits.\n",
-      "Saving event 004206907, 18/100, contains 835 true hits.\n",
-      "Saving event 004206908, 19/100, contains 631 true hits.\n",
-      "Saving event 004206909, 20/100, contains 709 true hits.\n",
-      "Saving event 004206910, 21/100, contains 220 true hits.\n",
-      "Saving event 004206911, 22/100, contains 881 true hits.\n",
-      "Saving event 004206912, 23/100, contains 1191 true hits.\n",
-      "Saving event 004206913, 24/100, contains 2875 true hits.\n",
-      "Saving event 004206914, 25/100, contains 514 true hits.\n",
-      "Saving event 004206915, 26/100, contains 629 true hits.\n",
-      "Saving event 004206916, 27/100, contains 790 true hits.\n",
-      "Saving event 004206917, 28/100, contains 1546 true hits.\n",
-      "Saving event 004206918, 29/100, contains 1309 true hits.\n",
-      "Saving event 004206919, 30/100, contains 1387 true hits.\n",
-      "Saving event 004206920, 31/100, contains 920 true hits.\n",
-      "Saving event 004206921, 32/100, contains 2010 true hits.\n",
-      "Saving event 004206922, 33/100, contains 438 true hits.\n",
-      "Saving event 004206923, 34/100, contains 872 true hits.\n",
-      "Saving event 004206924, 35/100, contains 1260 true hits.\n",
-      "Saving event 004206925, 36/100, contains 1941 true hits.\n",
-      "Saving event 004206926, 37/100, contains 1123 true hits.\n",
-      "Saving event 004206927, 38/100, contains 1989 true hits.\n",
-      "Saving event 004206928, 39/100, contains 2414 true hits.\n",
-      "Saving event 004206929, 40/100, contains 1645 true hits.\n",
-      "Saving event 004206930, 41/100, contains 2557 true hits.\n",
-      "Saving event 004206931, 42/100, contains 1590 true hits.\n",
-      "Saving event 004206933, 43/100, contains 821 true hits.\n",
-      "Saving event 004206934, 44/100, contains 286 true hits.\n",
-      "Saving event 004206935, 45/100, contains 601 true hits.\n",
-      "Saving event 004206936, 46/100, contains 556 true hits.\n",
-      "Saving event 004206937, 47/100, contains 669 true hits.\n",
-      "Saving event 004206938, 48/100, contains 897 true hits.\n",
-      "Saving event 004206939, 49/100, contains 336 true hits.\n",
-      "Saving event 004206940, 50/100, contains 1270 true hits.\n",
-      "Saving event 004206941, 51/100, contains 2678 true hits.\n",
-      "Saving event 004206942, 52/100, contains 1501 true hits.\n",
-      "Saving event 004206943, 53/100, contains 279 true hits.\n",
-      "Saving event 004206944, 54/100, contains 1052 true hits.\n",
-      "Saving event 004206945, 55/100, contains 1538 true hits.\n",
-      "Saving event 004206946, 56/100, contains 2534 true hits.\n",
-      "Saving event 004206947, 57/100, contains 3339 true hits.\n",
-      "Saving event 004206948, 58/100, contains 891 true hits.\n",
-      "Saving event 004206949, 59/100, contains 775 true hits.\n",
-      "Saving event 004206950, 60/100, contains 1159 true hits.\n",
-      "Saving event 004206951, 61/100, contains 302 true hits.\n",
-      "Saving event 004206952, 62/100, contains 970 true hits.\n",
-      "Saving event 004206953, 63/100, contains 1149 true hits.\n",
-      "Saving event 004206954, 64/100, contains 2092 true hits.\n",
-      "Saving event 004206955, 65/100, contains 227 true hits.\n",
-      "Saving event 004206956, 66/100, contains 1018 true hits.\n",
-      "Saving event 004206957, 67/100, contains 723 true hits.\n",
-      "Saving event 004206958, 68/100, contains 1374 true hits.\n",
-      "Saving event 004206959, 69/100, contains 2123 true hits.\n",
-      "Saving event 004206960, 70/100, contains 703 true hits.\n",
-      "Saving event 004206961, 71/100, contains 191 true hits.\n",
-      "Saving event 004206962, 72/100, contains 1292 true hits.\n",
-      "Saving event 004206963, 73/100, contains 795 true hits.\n",
-      "Saving event 004206964, 74/100, contains 2119 true hits.\n",
-      "Saving event 004206965, 75/100, contains 1925 true hits.\n",
-      "Saving event 004206966, 76/100, contains 2772 true hits.\n",
-      "Saving event 007212913, 77/100, contains 1519 true hits.\n",
-      "Saving event 007212914, 78/100, contains 708 true hits.\n",
-      "Saving event 007212915, 79/100, contains 1026 true hits.\n",
-      "Saving event 007212916, 80/100, contains 1684 true hits.\n",
-      "Saving event 007212917, 81/100, contains 1917 true hits.\n",
-      "Saving event 007212918, 82/100, contains 1303 true hits.\n",
-      "Saving event 007212919, 83/100, contains 1714 true hits.\n",
-      "Saving event 007212920, 84/100, contains 645 true hits.\n",
-      "Saving event 007212921, 85/100, contains 1610 true hits.\n",
-      "Saving event 007212922, 86/100, contains 2287 true hits.\n",
-      "Saving event 007212923, 87/100, contains 1438 true hits.\n",
-      "Saving event 007212924, 88/100, contains 666 true hits.\n",
-      "Saving event 007212925, 89/100, contains 2108 true hits.\n",
-      "Saving event 007212926, 90/100, contains 1163 true hits.\n",
-      "Saving event 007212927, 91/100, contains 1389 true hits.\n",
-      "Saving event 007212928, 92/100, contains 2102 true hits.\n",
-      "Saving event 007212929, 93/100, contains 771 true hits.\n",
-      "Saving event 007212930, 94/100, contains 934 true hits.\n",
-      "Saving event 007212931, 95/100, contains 2019 true hits.\n",
-      "Saving event 007212932, 96/100, contains 2317 true hits.\n",
-      "Saving event 007212933, 97/100, contains 666 true hits.\n",
-      "Saving event 007212934, 98/100, contains 970 true hits.\n",
-      "Saving event 007212935, 99/100, contains 275 true hits.\n",
-      "Saving event 007212936, 100/100, contains 2436 true hits.\n",
+      "Saving event 004206889, 1/100, contains 814 true hits.\n",
+      "Saving event 004206890, 2/100, contains 935 true hits.\n",
+      "Saving event 004206891, 3/100, contains 1508 true hits.\n",
+      "Saving event 004206892, 4/100, contains 691 true hits.\n",
+      "Saving event 004206893, 5/100, contains 1584 true hits.\n",
+      "Saving event 004206894, 6/100, contains 1527 true hits.\n",
+      "Saving event 004206895, 7/100, contains 834 true hits.\n",
+      "Saving event 004206896, 8/100, contains 1012 true hits.\n",
+      "Saving event 004206897, 9/100, contains 1343 true hits.\n",
+      "Saving event 004206898, 10/100, contains 1185 true hits.\n",
+      "Saving event 004206899, 11/100, contains 841 true hits.\n",
+      "Saving event 004206900, 12/100, contains 1000 true hits.\n",
+      "Saving event 004206901, 13/100, contains 2350 true hits.\n",
+      "Saving event 004206902, 14/100, contains 2537 true hits.\n",
+      "Saving event 004206903, 15/100, contains 1938 true hits.\n",
+      "Saving event 004206904, 16/100, contains 3223 true hits.\n",
+      "Saving event 004206905, 17/100, contains 3772 true hits.\n",
+      "Discarding event 004206906, contains only fake hits.\n",
+      "Saving event 004206907, 18/100, contains 1071 true hits.\n",
+      "Saving event 004206908, 19/100, contains 911 true hits.\n",
+      "Saving event 004206909, 20/100, contains 891 true hits.\n",
+      "Saving event 004206910, 21/100, contains 287 true hits.\n",
+      "Saving event 004206911, 22/100, contains 1154 true hits.\n",
+      "Saving event 004206912, 23/100, contains 1430 true hits.\n",
+      "Saving event 004206913, 24/100, contains 3562 true hits.\n",
+      "Saving event 004206914, 25/100, contains 616 true hits.\n",
+      "Saving event 004206915, 26/100, contains 739 true hits.\n",
+      "Saving event 004206916, 27/100, contains 1019 true hits.\n",
+      "Saving event 004206917, 28/100, contains 2024 true hits.\n",
+      "Saving event 004206918, 29/100, contains 1679 true hits.\n",
+      "Saving event 004206919, 30/100, contains 1747 true hits.\n",
+      "Saving event 004206920, 31/100, contains 1254 true hits.\n",
+      "Saving event 004206921, 32/100, contains 2582 true hits.\n",
+      "Saving event 004206922, 33/100, contains 627 true hits.\n",
+      "Saving event 004206923, 34/100, contains 1168 true hits.\n",
+      "Saving event 004206924, 35/100, contains 1606 true hits.\n",
+      "Saving event 004206925, 36/100, contains 2457 true hits.\n",
+      "Saving event 004206926, 37/100, contains 1325 true hits.\n",
+      "Saving event 004206927, 38/100, contains 2473 true hits.\n",
+      "Saving event 004206928, 39/100, contains 3194 true hits.\n",
+      "Saving event 004206929, 40/100, contains 2108 true hits.\n",
+      "Saving event 004206930, 41/100, contains 3139 true hits.\n",
+      "Saving event 004206931, 42/100, contains 2060 true hits.\n",
+      "Discarding event 004206932, contains only fake hits.\n",
+      "Saving event 004206933, 43/100, contains 1013 true hits.\n",
+      "Saving event 004206934, 44/100, contains 397 true hits.\n",
+      "Saving event 004206935, 45/100, contains 709 true hits.\n",
+      "Saving event 004206936, 46/100, contains 772 true hits.\n",
+      "Saving event 004206937, 47/100, contains 872 true hits.\n",
+      "Saving event 004206938, 48/100, contains 1117 true hits.\n",
+      "Saving event 004206939, 49/100, contains 397 true hits.\n",
+      "Saving event 004206940, 50/100, contains 1636 true hits.\n",
+      "Saving event 004206941, 51/100, contains 3559 true hits.\n",
+      "Saving event 004206942, 52/100, contains 1822 true hits.\n",
+      "Saving event 004206943, 53/100, contains 344 true hits.\n",
+      "Saving event 004206944, 54/100, contains 1340 true hits.\n",
+      "Saving event 004206945, 55/100, contains 2038 true hits.\n",
+      "Saving event 004206946, 56/100, contains 3145 true hits.\n",
+      "Saving event 004206947, 57/100, contains 4457 true hits.\n",
+      "Saving event 004206948, 58/100, contains 1102 true hits.\n",
+      "Saving event 004206949, 59/100, contains 955 true hits.\n",
+      "Saving event 004206950, 60/100, contains 1426 true hits.\n",
+      "Saving event 004206951, 61/100, contains 428 true hits.\n",
+      "Saving event 004206952, 62/100, contains 1250 true hits.\n",
+      "Saving event 004206953, 63/100, contains 1591 true hits.\n",
+      "Saving event 004206954, 64/100, contains 2626 true hits.\n",
+      "Saving event 004206955, 65/100, contains 293 true hits.\n",
+      "Saving event 004206956, 66/100, contains 1312 true hits.\n",
+      "Saving event 004206957, 67/100, contains 983 true hits.\n",
+      "Saving event 004206958, 68/100, contains 1659 true hits.\n",
+      "Saving event 004206959, 69/100, contains 2843 true hits.\n",
+      "Saving event 004206960, 70/100, contains 816 true hits.\n",
+      "Saving event 004206961, 71/100, contains 211 true hits.\n",
+      "Saving event 004206962, 72/100, contains 1821 true hits.\n",
+      "Saving event 004206963, 73/100, contains 1017 true hits.\n",
+      "Saving event 004206964, 74/100, contains 2710 true hits.\n",
+      "Saving event 004206965, 75/100, contains 2393 true hits.\n",
+      "Saving event 004206966, 76/100, contains 3461 true hits.\n",
+      "Saving event 007212913, 77/100, contains 1855 true hits.\n",
+      "Saving event 007212914, 78/100, contains 923 true hits.\n",
+      "Saving event 007212915, 79/100, contains 1247 true hits.\n",
+      "Saving event 007212916, 80/100, contains 2129 true hits.\n",
+      "Saving event 007212917, 81/100, contains 2372 true hits.\n",
+      "Saving event 007212918, 82/100, contains 1742 true hits.\n",
+      "Saving event 007212919, 83/100, contains 2170 true hits.\n",
+      "Saving event 007212920, 84/100, contains 768 true hits.\n",
+      "Saving event 007212921, 85/100, contains 2265 true hits.\n",
+      "Saving event 007212922, 86/100, contains 3096 true hits.\n",
+      "Saving event 007212923, 87/100, contains 1829 true hits.\n",
+      "Saving event 007212924, 88/100, contains 833 true hits.\n",
+      "Saving event 007212925, 89/100, contains 2592 true hits.\n",
+      "Saving event 007212926, 90/100, contains 1433 true hits.\n",
+      "Saving event 007212927, 91/100, contains 1745 true hits.\n",
+      "Saving event 007212928, 92/100, contains 2669 true hits.\n",
+      "Saving event 007212929, 93/100, contains 982 true hits.\n",
+      "Saving event 007212930, 94/100, contains 1134 true hits.\n",
+      "Saving event 007212931, 95/100, contains 2717 true hits.\n",
+      "Saving event 007212932, 96/100, contains 2973 true hits.\n",
+      "Saving event 007212933, 97/100, contains 970 true hits.\n",
+      "Saving event 007212934, 98/100, contains 1286 true hits.\n",
+      "Saving event 007212935, 99/100, contains 420 true hits.\n",
+      "Saving event 007212936, 100/100, contains 3010 true hits.\n",
       "Writing outputs to data/processed\n"
      ]
     },
@@ -310,16 +312,41 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "INFO:Preparing event 004206889\n",
       "INFO:Preparing event 004206894\n",
       "INFO:Preparing event 004206890\n",
-      "INFO:Preparing event 004206896\n"
+      "INFO:Preparing event 004206901\n",
+      "INFO:Preparing event 004206900\n",
+      "INFO:Preparing event 004206899\n",
+      "INFO:Preparing event 004206889\n",
+      "INFO:Preparing event 004206902\n",
+      "INFO:Preparing event 004206905\n",
+      "INFO:Preparing event 004206895\n",
+      "INFO:Preparing event 004206903\n",
+      "INFO:Preparing event 004206893\n",
+      "INFO:Preparing event 004206896\n",
+      "INFO:Preparing event 004206891\n",
+      "INFO:Preparing event 004206892\n",
+      "INFO:Preparing event 004206904\n",
+      "INFO:Preparing event 004206907\n",
+      "INFO:Preparing event 004206911\n",
+      "INFO:Preparing event 004206913\n",
+      "INFO:Preparing event 004206915\n",
+      "INFO:Preparing event 004206917\n",
+      "INFO:Preparing event 004206918\n",
+      "INFO:Preparing event 004206909\n",
+      "INFO:Preparing event 004206916\n",
+      "INFO:Preparing event 004206912\n",
+      "INFO:Preparing event 004206897\n",
+      "INFO:Preparing event 004206908\n",
+      "INFO:Preparing event 004206914\n",
+      "INFO:Preparing event 004206910\n",
+      "INFO:Preparing event 004206919\n"
      ]
     },
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "7aa224c9d25347abbc55b2b3b570554f",
+       "model_id": "89d0e44bd4534b309c6f3b966ac04da2",
        "version_major": 2,
        "version_minor": 0
       },
@@ -334,208 +361,177 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "INFO:Preparing event 004206891\n",
-      "INFO:Preparing event 004206898\n",
-      "INFO:Preparing event 004206893\n",
-      "INFO:Preparing event 004206897\n",
-      "INFO:Preparing event 004206895\n",
-      "INFO:Preparing event 004206901\n",
-      "INFO:Preparing event 004206900\n",
-      "INFO:Preparing event 004206904\n",
-      "INFO:Preparing event 004206892\n",
-      "INFO:Preparing event 004206902\n",
-      "INFO:Preparing event 004206908\n",
-      "INFO:Preparing event 004206907\n",
-      "INFO:Preparing event 004206899\n",
-      "INFO:Preparing event 004206909\n",
-      "INFO:Preparing event 004206912\n",
-      "INFO:Preparing event 004206910\n",
-      "INFO:Preparing event 004206903\n",
-      "INFO:Preparing event 004206918\n",
-      "INFO:Preparing event 004206921\n",
-      "INFO:Preparing event 004206913\n",
-      "INFO:Preparing event 004206915\n",
-      "INFO:Preparing event 004206914\n",
-      "INFO:Preparing event 004206919\n",
-      "INFO:Preparing event 004206916\n",
       "INFO:Preparing event 004206920\n",
-      "INFO:Preparing event 004206917\n",
-      "INFO:Preparing event 004206905\n",
-      "INFO:Preparing event 004206911\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206890 with size (2, 590)\n",
-      "INFO:Preparing event 004206922\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206892 with size (2, 484)\n",
+      "INFO:Preparing event 004206921\n",
+      "INFO:Preparing event 004206898\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206899 with size (2, 650)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206894 with size (2, 1145)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206911 with size (2, 875)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206903 with size (2, 1492)\n",
       "INFO:Preparing event 004206923\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206922 with size (2, 372)\n",
       "INFO:Preparing event 004206924\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206923 with size (2, 711)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206918 with size (2, 1119)\n",
       "INFO:Preparing event 004206925\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206924 with size (2, 1047)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206914 with size (2, 435)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206910 with size (2, 180)\n",
-      "INFO:Preparing event 004206927\n",
+      "INFO:Preparing event 004206922\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206896 with size (2, 782)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206905 with size (2, 2741)\n",
       "INFO:Preparing event 004206926\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206901 with size (2, 1536)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206902 with size (2, 1632)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206893 with size (2, 984)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206895 with size (2, 578)\n",
-      "INFO:Preparing event 004206930\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206908 with size (2, 517)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206918 with size (2, 1355)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206892 with size (2, 545)\n",
+      "INFO:Preparing event 004206927\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206902 with size (2, 1860)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206901 with size (2, 1779)\n",
       "INFO:Preparing event 004206929\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206904 with size (2, 2437)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206895 with size (2, 625)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206920 with size (2, 954)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206922 with size (2, 505)\n",
       "INFO:Preparing event 004206928\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206889 with size (2, 571)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206925 with size (2, 1626)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206912 with size (2, 969)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206909 with size (2, 601)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206915 with size (2, 597)\n",
+      "INFO:Preparing event 004206930\n",
+      "INFO:Preparing event 004206931\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206917 with size (2, 1507)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206898 with size (2, 935)\n",
+      "INFO:Preparing event 004206933\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206908 with size (2, 691)\n",
+      "INFO:Preparing event 004206936\n",
       "INFO:Preparing event 004206934\n",
       "INFO:Preparing event 004206935\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206897 with size (2, 883)\n",
-      "INFO:Preparing event 004206933\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206921 with size (2, 2020)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206914 with size (2, 488)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206925 with size (2, 1898)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206923 with size (2, 848)\n",
+      "INFO:Preparing event 004206939\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206907 with size (2, 803)\n",
       "INFO:Preparing event 004206938\n",
-      "INFO:Preparing event 004206931\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206898 with size (2, 708)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206919 with size (2, 1153)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206890 with size (2, 742)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206926 with size (2, 1027)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206891 with size (2, 1109)\n",
       "INFO:Preparing event 004206937\n",
-      "INFO:Preparing event 004206936\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206921 with size (2, 1674)\n",
-      "INFO:Preparing event 004206939\n",
-      "INFO:Preparing event 004206940\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206920 with size (2, 767)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206899 with size (2, 541)\n",
       "INFO:Preparing event 004206941\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206926 with size (2, 923)\n",
-      "INFO:Preparing event 004206942\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206916 with size (2, 652)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206928 with size (2, 1990)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206927 with size (2, 1661)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206907 with size (2, 678)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206896 with size (2, 682)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206930 with size (2, 2147)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206924 with size (2, 1197)\n",
       "INFO:Preparing event 004206945\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206900 with size (2, 609)\n",
-      "INFO:Preparing event 004206947\n",
       "INFO:Preparing event 004206943\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206889 with size (2, 626)\n",
       "INFO:Preparing event 004206944\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206933 with size (2, 677)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206900 with size (2, 729)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206912 with size (2, 1089)\n",
+      "INFO:Preparing event 004206947\n",
+      "INFO:Preparing event 004206940\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206897 with size (2, 983)\n",
+      "INFO:Preparing event 004206948\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206893 with size (2, 1163)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206909 with size (2, 708)\n",
+      "INFO:Preparing event 004206951\n",
+      "INFO:Preparing event 004206952\n",
       "INFO:Preparing event 004206946\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206891 with size (2, 936)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206935 with size (2, 496)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206911 with size (2, 728)\n",
+      "INFO:Preparing event 004206953\n",
       "INFO:Preparing event 004206949\n",
-      "INFO:Preparing event 004206948\n",
       "INFO:Preparing event 004206950\n",
-      "INFO:Preparing event 004206952\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206929 with size (2, 1346)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206936 with size (2, 462)\n",
-      "INFO:Preparing event 004206951\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206917 with size (2, 1290)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206940 with size (2, 1040)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206905 with size (2, 2412)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206939 with size (2, 276)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206934 with size (2, 236)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206929 with size (2, 1550)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206939 with size (2, 288)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206919 with size (2, 1329)\n",
+      "INFO:Preparing event 004206942\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206916 with size (2, 736)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206910 with size (2, 228)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206913 with size (2, 2754)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206927 with size (2, 1847)\n",
       "INFO:Preparing event 004206954\n",
-      "INFO:Preparing event 004206953\n",
-      "INFO:Preparing event 004206955\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206915 with size (2, 537)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206937 with size (2, 554)\n",
-      "INFO:Preparing event 004206958\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206941 with size (2, 2234)\n",
       "INFO:Preparing event 004206957\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206931 with size (2, 1301)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206943 with size (2, 228)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206942 with size (2, 1248)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206938 with size (2, 741)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206903 with size (2, 1267)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206936 with size (2, 584)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206938 with size (2, 836)\n",
+      "INFO:Preparing event 004206958\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206928 with size (2, 2391)\n",
+      "INFO:Preparing event 004206959\n",
+      "INFO:Preparing event 004206955\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206930 with size (2, 2426)\n",
       "INFO:Preparing event 004206960\n",
       "INFO:Preparing event 004206956\n",
+      "INFO:Preparing event 004206966\n",
       "INFO:Preparing event 004206961\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206894 with size (2, 1033)\n",
-      "INFO:Preparing event 004206963\n",
-      "INFO:Preparing event 004206959\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206949 with size (2, 665)\n",
+      "INFO:Preparing event 004206964\n",
       "INFO:Preparing event 004206962\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206944 with size (2, 870)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206950 with size (2, 949)\n",
-      "INFO:Preparing event 007212913\n",
+      "INFO:Preparing event 004206963\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206952 with size (2, 976)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206944 with size (2, 1020)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206953 with size (2, 1235)\n",
+      "INFO:Preparing event 004206965\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206934 with size (2, 310)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206937 with size (2, 690)\n",
       "INFO:Preparing event 007212914\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206945 with size (2, 1260)\n",
+      "INFO:Preparing event 007212913\n",
       "INFO:Preparing event 007212915\n",
-      "INFO:Preparing event 004206964\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206948 with size (2, 743)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206904 with size (2, 2192)\n",
-      "INFO:Preparing event 004206966\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206941 with size (2, 2737)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206945 with size (2, 1431)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206951 with size (2, 322)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206942 with size (2, 1367)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206931 with size (2, 1546)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206935 with size (2, 542)\n",
+      "INFO:Preparing event 007212918\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206940 with size (2, 1241)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206933 with size (2, 757)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206957 with size (2, 728)\n",
       "INFO:Preparing event 007212916\n",
-      "INFO:Preparing event 007212919\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206955 with size (2, 212)\n",
       "INFO:Preparing event 007212917\n",
-      "INFO:Preparing event 004206965\n",
-      "INFO:Preparing event 007212920\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206913 with size (2, 2373)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206952 with size (2, 818)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206955 with size (2, 182)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206947 with size (2, 2819)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206950 with size (2, 1073)\n",
       "INFO:Preparing event 007212924\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206954 with size (2, 1747)\n",
-      "INFO:Preparing event 007212921\n",
-      "INFO:Preparing event 007212922\n",
-      "INFO:Preparing event 007212923\n",
-      "INFO:Preparing event 007212926\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
       "INFO:Preparing event 007212925\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206960 with size (2, 577)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206961 with size (2, 161)\n",
-      "INFO:Preparing event 007212927\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206951 with size (2, 252)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206946 with size (2, 2117)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206954 with size (2, 1990)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206956 with size (2, 1019)\n",
+      "INFO:Preparing event 007212920\n",
+      "INFO:Preparing event 007212926\n",
+      "INFO:Preparing event 007212922\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206959 with size (2, 2069)\n",
       "INFO:Preparing event 007212928\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206962 with size (2, 1070)\n",
-      "INFO:Preparing event 007212918\n",
-      "INFO:Preparing event 007212931\n",
+      "INFO:Preparing event 007212923\n",
       "INFO:Preparing event 007212930\n",
-      "INFO:Preparing event 007212932\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212913 with size (2, 1252)\n",
-      "INFO:Preparing event 007212934\n",
+      "INFO:Preparing event 007212931\n",
+      "INFO:Preparing event 007212919\n",
+      "INFO:Preparing event 007212921\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206949 with size (2, 734)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206960 with size (2, 627)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206947 with size (2, 3438)\n",
+      "INFO:Preparing event 007212927\n",
       "INFO:Preparing event 007212929\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206956 with size (2, 830)\n",
-      "INFO:Preparing event 007212935\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206943 with size (2, 258)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206948 with size (2, 849)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206962 with size (2, 1329)\n",
+      "INFO:Preparing event 007212934\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206958 with size (2, 1260)\n",
+      "INFO:Preparing event 007212932\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206966 with size (2, 2581)\n",
       "INFO:Preparing event 007212933\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206953 with size (2, 971)\n",
       "INFO:Preparing event 007212936\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212915 with size (2, 854)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212923 with size (2, 1174)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206963 with size (2, 649)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212927 with size (2, 1164)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212917 with size (2, 1575)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212924 with size (2, 548)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206958 with size (2, 1113)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206965 with size (2, 1612)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212920 with size (2, 549)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206957 with size (2, 597)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212916 with size (2, 1384)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206959 with size (2, 1729)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206964 with size (2, 1738)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212929 with size (2, 623)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212926 with size (2, 973)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212930 with size (2, 775)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event004206966 with size (2, 2266)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212922 with size (2, 1879)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212921 with size (2, 1303)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212914 with size (2, 578)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212931 with size (2, 1660)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212928 with size (2, 1727)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212919 with size (2, 1422)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212925 with size (2, 1766)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212934 with size (2, 812)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212918 with size (2, 1085)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212933 with size (2, 548)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212935 with size (2, 215)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212936 with size (2, 2010)\n",
-      "INFO:Modulewise truth graph built for data/preprocessed/event007212932 with size (2, 1901)\n"
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212924 with size (2, 626)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212914 with size (2, 681)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206946 with size (2, 2389)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206961 with size (2, 169)\n",
+      "INFO:Preparing event 007212935\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206963 with size (2, 776)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212918 with size (2, 1298)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212917 with size (2, 1753)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212915 with size (2, 982)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212928 with size (2, 2023)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212922 with size (2, 2242)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212926 with size (2, 1111)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206964 with size (2, 2053)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212930 with size (2, 856)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212923 with size (2, 1412)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event004206965 with size (2, 1832)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212921 with size (2, 1661)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212916 with size (2, 1597)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212929 with size (2, 706)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212934 with size (2, 1002)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212919 with size (2, 1630)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212933 with size (2, 722)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212913 with size (2, 1389)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212927 with size (2, 1295)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212932 with size (2, 2200)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212920 with size (2, 605)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212931 with size (2, 2041)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212935 with size (2, 282)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212936 with size (2, 2279)\n",
+      "INFO:Modulewise truth graph built for data/preprocessed/event007212925 with size (2, 1990)\n"
      ]
     }
    ],
@@ -571,7 +567,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
@@ -603,32 +599,32 @@
        "  <tbody>\n",
        "    <tr>\n",
        "      <th>0</th>\n",
-       "      <td>0.465221</td>\n",
-       "      <td>-0.462661</td>\n",
+       "      <td>0.215308</td>\n",
+       "      <td>-0.707593</td>\n",
        "      <td>-1.440705</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>1</th>\n",
-       "      <td>0.513063</td>\n",
-       "      <td>-0.629230</td>\n",
-       "      <td>-1.434295</td>\n",
+       "      <td>0.701576</td>\n",
+       "      <td>-0.335364</td>\n",
+       "      <td>-1.440705</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>2</th>\n",
-       "      <td>0.498745</td>\n",
-       "      <td>-0.508192</td>\n",
-       "      <td>-1.440705</td>\n",
+       "      <td>0.848610</td>\n",
+       "      <td>-0.509776</td>\n",
+       "      <td>-1.434295</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>3</th>\n",
-       "      <td>0.249448</td>\n",
-       "      <td>-0.532812</td>\n",
+       "      <td>0.162432</td>\n",
+       "      <td>-0.924610</td>\n",
        "      <td>-1.440705</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <th>4</th>\n",
-       "      <td>0.730112</td>\n",
-       "      <td>-0.392865</td>\n",
+       "      <td>0.148984</td>\n",
+       "      <td>-0.659478</td>\n",
        "      <td>-1.440705</td>\n",
        "    </tr>\n",
        "    <tr>\n",
@@ -638,58 +634,58 @@
        "      <td>...</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>516</th>\n",
-       "      <td>0.726360</td>\n",
-       "      <td>0.467563</td>\n",
+       "      <th>1849</th>\n",
+       "      <td>0.366591</td>\n",
+       "      <td>-0.193348</td>\n",
        "      <td>3.753205</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>517</th>\n",
-       "      <td>0.244590</td>\n",
-       "      <td>0.593452</td>\n",
+       "      <th>1850</th>\n",
+       "      <td>0.403005</td>\n",
+       "      <td>-0.157476</td>\n",
        "      <td>3.746795</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>518</th>\n",
-       "      <td>0.722281</td>\n",
-       "      <td>0.704765</td>\n",
-       "      <td>3.746795</td>\n",
+       "      <th>1851</th>\n",
+       "      <td>0.165458</td>\n",
+       "      <td>-0.130846</td>\n",
+       "      <td>3.753205</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>519</th>\n",
-       "      <td>0.128899</td>\n",
-       "      <td>-0.142000</td>\n",
+       "      <th>1852</th>\n",
+       "      <td>0.179799</td>\n",
+       "      <td>-0.073637</td>\n",
        "      <td>3.753205</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>520</th>\n",
-       "      <td>0.340476</td>\n",
-       "      <td>-0.061835</td>\n",
-       "      <td>3.753205</td>\n",
+       "      <th>1853</th>\n",
+       "      <td>0.732901</td>\n",
+       "      <td>-0.067736</td>\n",
+       "      <td>3.746795</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
-       "<p>521 rows × 3 columns</p>\n",
+       "<p>1854 rows × 3 columns</p>\n",
        "</div>"
       ],
       "text/plain": [
-       "            0         1         2\n",
-       "0    0.465221 -0.462661 -1.440705\n",
-       "1    0.513063 -0.629230 -1.434295\n",
-       "2    0.498745 -0.508192 -1.440705\n",
-       "3    0.249448 -0.532812 -1.440705\n",
-       "4    0.730112 -0.392865 -1.440705\n",
-       "..        ...       ...       ...\n",
-       "516  0.726360  0.467563  3.753205\n",
-       "517  0.244590  0.593452  3.746795\n",
-       "518  0.722281  0.704765  3.746795\n",
-       "519  0.128899 -0.142000  3.753205\n",
-       "520  0.340476 -0.061835  3.753205\n",
+       "             0         1         2\n",
+       "0     0.215308 -0.707593 -1.440705\n",
+       "1     0.701576 -0.335364 -1.440705\n",
+       "2     0.848610 -0.509776 -1.434295\n",
+       "3     0.162432 -0.924610 -1.440705\n",
+       "4     0.148984 -0.659478 -1.440705\n",
+       "...        ...       ...       ...\n",
+       "1849  0.366591 -0.193348  3.753205\n",
+       "1850  0.403005 -0.157476  3.746795\n",
+       "1851  0.165458 -0.130846  3.753205\n",
+       "1852  0.179799 -0.073637  3.753205\n",
+       "1853  0.732901 -0.067736  3.746795\n",
        "\n",
-       "[521 rows x 3 columns]"
+       "[1854 rows x 3 columns]"
       ]
      },
-     "execution_count": 8,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
-- 
GitLab


From 74c78448c360c2b67841b32b1f18dc793b8da11f Mon Sep 17 00:00:00 2001
From: Fotis Giasemis <Fotis.Giasemis@cern.ch>
Date: Fri, 24 Mar 2023 17:43:10 +0100
Subject: [PATCH 24/30] Prepare to merge with main

---
 .../utils/plotting_utils_validation.py        |   6 +-
 LHCb_Pipeline/evaluation_pipeline.ipynb       | 431 ++++++++++++++++--
 LHCb_Pipeline/testing.py                      |   4 +
 gpu_environment.yaml                          |   4 +-
 installation.txt                              |   8 +-
 montetracko-setup.sh                          |  32 --
 6 files changed, 410 insertions(+), 75 deletions(-)
 delete mode 100755 montetracko-setup.sh

diff --git a/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py b/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py
index b4468337..7f8de8f9 100644
--- a/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py
+++ b/LHCb_Pipeline/Scripts/utils/plotting_utils_validation.py
@@ -5,7 +5,7 @@ column_labels = {
     "pt": "$p_T$ [MeV/c]",
     "p": "$p$ [MeV/c]",
     "eta": "$\eta$",
-    "vz": r"$\text{ovtx}_{z}$ [mm]",
+    "vz": r"$ovtxz$ [mm]",
 }
 
 #: Associates a column name with its range for the plots
@@ -24,10 +24,10 @@ def configure_matplotlib():
         **{
             # Font
             "font.family": "serif",
-            "font.serif": "Computer Modern Roman",
+            # "font.serif": "Computer Modern Roman",
             # Latex
             "text.latex.preamble": r"\usepackage{amsmath}",
-            "text.usetex": True,  # Put to False to disable Latex
+            "text.usetex": False,  # Put to False to disable Latex
             # Fontsizes
             "legend.fontsize": 20,
             "axes.titlesize": 24,
diff --git a/LHCb_Pipeline/evaluation_pipeline.ipynb b/LHCb_Pipeline/evaluation_pipeline.ipynb
index 40c31c99..9b7f168d 100644
--- a/LHCb_Pipeline/evaluation_pipeline.ipynb
+++ b/LHCb_Pipeline/evaluation_pipeline.ipynb
@@ -9,15 +9,334 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 1,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:Loading faiss with AVX2 support.\n",
+      "INFO:Successfully loaded faiss with AVX2 support.\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<style>\n",
+       "        .bk-notebook-logo {\n",
+       "            display: block;\n",
+       "            width: 20px;\n",
+       "            height: 20px;\n",
+       "            background-image: url();\n",
+       "        }\n",
+       "    </style>\n",
+       "    <div>\n",
+       "        <a href=\"https://bokeh.org\" target=\"_blank\" class=\"bk-notebook-logo\"></a>\n",
+       "        <span id=\"p1001\">Loading BokehJS ...</span>\n",
+       "    </div>\n"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "application/javascript": [
+       "(function(root) {\n",
+       "  function now() {\n",
+       "    return new Date();\n",
+       "  }\n",
+       "\n",
+       "  const force = true;\n",
+       "\n",
+       "  if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n",
+       "    root._bokeh_onload_callbacks = [];\n",
+       "    root._bokeh_is_loading = undefined;\n",
+       "  }\n",
+       "\n",
+       "const JS_MIME_TYPE = 'application/javascript';\n",
+       "  const HTML_MIME_TYPE = 'text/html';\n",
+       "  const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n",
+       "  const CLASS_NAME = 'output_bokeh rendered_html';\n",
+       "\n",
+       "  /**\n",
+       "   * Render data to the DOM node\n",
+       "   */\n",
+       "  function render(props, node) {\n",
+       "    const script = document.createElement(\"script\");\n",
+       "    node.appendChild(script);\n",
+       "  }\n",
+       "\n",
+       "  /**\n",
+       "   * Handle when an output is cleared or removed\n",
+       "   */\n",
+       "  function handleClearOutput(event, handle) {\n",
+       "    const cell = handle.cell;\n",
+       "\n",
+       "    const id = cell.output_area._bokeh_element_id;\n",
+       "    const server_id = cell.output_area._bokeh_server_id;\n",
+       "    // Clean up Bokeh references\n",
+       "    if (id != null && id in Bokeh.index) {\n",
+       "      Bokeh.index[id].model.document.clear();\n",
+       "      delete Bokeh.index[id];\n",
+       "    }\n",
+       "\n",
+       "    if (server_id !== undefined) {\n",
+       "      // Clean up Bokeh references\n",
+       "      const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n",
+       "      cell.notebook.kernel.execute(cmd_clean, {\n",
+       "        iopub: {\n",
+       "          output: function(msg) {\n",
+       "            const id = msg.content.text.trim();\n",
+       "            if (id in Bokeh.index) {\n",
+       "              Bokeh.index[id].model.document.clear();\n",
+       "              delete Bokeh.index[id];\n",
+       "            }\n",
+       "          }\n",
+       "        }\n",
+       "      });\n",
+       "      // Destroy server and session\n",
+       "      const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n",
+       "      cell.notebook.kernel.execute(cmd_destroy);\n",
+       "    }\n",
+       "  }\n",
+       "\n",
+       "  /**\n",
+       "   * Handle when a new output is added\n",
+       "   */\n",
+       "  function handleAddOutput(event, handle) {\n",
+       "    const output_area = handle.output_area;\n",
+       "    const output = handle.output;\n",
+       "\n",
+       "    // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n",
+       "    if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n",
+       "      return\n",
+       "    }\n",
+       "\n",
+       "    const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
+       "\n",
+       "    if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n",
+       "      toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n",
+       "      // store reference to embed id on output_area\n",
+       "      output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
+       "    }\n",
+       "    if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
+       "      const bk_div = document.createElement(\"div\");\n",
+       "      bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
+       "      const script_attrs = bk_div.children[0].attributes;\n",
+       "      for (let i = 0; i < script_attrs.length; i++) {\n",
+       "        toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
+       "        toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n",
+       "      }\n",
+       "      // store reference to server id on output_area\n",
+       "      output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
+       "    }\n",
+       "  }\n",
+       "\n",
+       "  function register_renderer(events, OutputArea) {\n",
+       "\n",
+       "    function append_mime(data, metadata, element) {\n",
+       "      // create a DOM node to render to\n",
+       "      const toinsert = this.create_output_subarea(\n",
+       "        metadata,\n",
+       "        CLASS_NAME,\n",
+       "        EXEC_MIME_TYPE\n",
+       "      );\n",
+       "      this.keyboard_manager.register_events(toinsert);\n",
+       "      // Render to node\n",
+       "      const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
+       "      render(props, toinsert[toinsert.length - 1]);\n",
+       "      element.append(toinsert);\n",
+       "      return toinsert\n",
+       "    }\n",
+       "\n",
+       "    /* Handle when an output is cleared or removed */\n",
+       "    events.on('clear_output.CodeCell', handleClearOutput);\n",
+       "    events.on('delete.Cell', handleClearOutput);\n",
+       "\n",
+       "    /* Handle when a new output is added */\n",
+       "    events.on('output_added.OutputArea', handleAddOutput);\n",
+       "\n",
+       "    /**\n",
+       "     * Register the mime type and append_mime function with output_area\n",
+       "     */\n",
+       "    OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
+       "      /* Is output safe? */\n",
+       "      safe: true,\n",
+       "      /* Index of renderer in `output_area.display_order` */\n",
+       "      index: 0\n",
+       "    });\n",
+       "  }\n",
+       "\n",
+       "  // register the mime type if in Jupyter Notebook environment and previously unregistered\n",
+       "  if (root.Jupyter !== undefined) {\n",
+       "    const events = require('base/js/events');\n",
+       "    const OutputArea = require('notebook/js/outputarea').OutputArea;\n",
+       "\n",
+       "    if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
+       "      register_renderer(events, OutputArea);\n",
+       "    }\n",
+       "  }\n",
+       "  if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n",
+       "    root._bokeh_timeout = Date.now() + 5000;\n",
+       "    root._bokeh_failed_load = false;\n",
+       "  }\n",
+       "\n",
+       "  const NB_LOAD_WARNING = {'data': {'text/html':\n",
+       "     \"<div style='background-color: #fdd'>\\n\"+\n",
+       "     \"<p>\\n\"+\n",
+       "     \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
+       "     \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
+       "     \"</p>\\n\"+\n",
+       "     \"<ul>\\n\"+\n",
+       "     \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n",
+       "     \"<li>use INLINE resources instead, as so:</li>\\n\"+\n",
+       "     \"</ul>\\n\"+\n",
+       "     \"<code>\\n\"+\n",
+       "     \"from bokeh.resources import INLINE\\n\"+\n",
+       "     \"output_notebook(resources=INLINE)\\n\"+\n",
+       "     \"</code>\\n\"+\n",
+       "     \"</div>\"}};\n",
+       "\n",
+       "  function display_loaded() {\n",
+       "    const el = document.getElementById(\"p1001\");\n",
+       "    if (el != null) {\n",
+       "      el.textContent = \"BokehJS is loading...\";\n",
+       "    }\n",
+       "    if (root.Bokeh !== undefined) {\n",
+       "      if (el != null) {\n",
+       "        el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n",
+       "      }\n",
+       "    } else if (Date.now() < root._bokeh_timeout) {\n",
+       "      setTimeout(display_loaded, 100)\n",
+       "    }\n",
+       "  }\n",
+       "\n",
+       "  function run_callbacks() {\n",
+       "    try {\n",
+       "      root._bokeh_onload_callbacks.forEach(function(callback) {\n",
+       "        if (callback != null)\n",
+       "          callback();\n",
+       "      });\n",
+       "    } finally {\n",
+       "      delete root._bokeh_onload_callbacks\n",
+       "    }\n",
+       "    console.debug(\"Bokeh: all callbacks have finished\");\n",
+       "  }\n",
+       "\n",
+       "  function load_libs(css_urls, js_urls, callback) {\n",
+       "    if (css_urls == null) css_urls = [];\n",
+       "    if (js_urls == null) js_urls = [];\n",
+       "\n",
+       "    root._bokeh_onload_callbacks.push(callback);\n",
+       "    if (root._bokeh_is_loading > 0) {\n",
+       "      console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
+       "      return null;\n",
+       "    }\n",
+       "    if (js_urls == null || js_urls.length === 0) {\n",
+       "      run_callbacks();\n",
+       "      return null;\n",
+       "    }\n",
+       "    console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
+       "    root._bokeh_is_loading = css_urls.length + js_urls.length;\n",
+       "\n",
+       "    function on_load() {\n",
+       "      root._bokeh_is_loading--;\n",
+       "      if (root._bokeh_is_loading === 0) {\n",
+       "        console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n",
+       "        run_callbacks()\n",
+       "      }\n",
+       "    }\n",
+       "\n",
+       "    function on_error(url) {\n",
+       "      console.error(\"failed to load \" + url);\n",
+       "    }\n",
+       "\n",
+       "    for (let i = 0; i < css_urls.length; i++) {\n",
+       "      const url = css_urls[i];\n",
+       "      const element = document.createElement(\"link\");\n",
+       "      element.onload = on_load;\n",
+       "      element.onerror = on_error.bind(null, url);\n",
+       "      element.rel = \"stylesheet\";\n",
+       "      element.type = \"text/css\";\n",
+       "      element.href = url;\n",
+       "      console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n",
+       "      document.body.appendChild(element);\n",
+       "    }\n",
+       "\n",
+       "    for (let i = 0; i < js_urls.length; i++) {\n",
+       "      const url = js_urls[i];\n",
+       "      const element = document.createElement('script');\n",
+       "      element.onload = on_load;\n",
+       "      element.onerror = on_error.bind(null, url);\n",
+       "      element.async = false;\n",
+       "      element.src = url;\n",
+       "      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
+       "      document.head.appendChild(element);\n",
+       "    }\n",
+       "  };\n",
+       "\n",
+       "  function inject_raw_css(css) {\n",
+       "    const element = document.createElement(\"style\");\n",
+       "    element.appendChild(document.createTextNode(css));\n",
+       "    document.body.appendChild(element);\n",
+       "  }\n",
+       "\n",
+       "  const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.0.3.min.js\"];\n",
+       "  const css_urls = [];\n",
+       "\n",
+       "  const inline_js = [    function(Bokeh) {\n",
+       "      Bokeh.set_log_level(\"info\");\n",
+       "    },\n",
+       "function(Bokeh) {\n",
+       "    }\n",
+       "  ];\n",
+       "\n",
+       "  function run_inline_js() {\n",
+       "    if (root.Bokeh !== undefined || force === true) {\n",
+       "          for (let i = 0; i < inline_js.length; i++) {\n",
+       "      inline_js[i].call(root, root.Bokeh);\n",
+       "    }\n",
+       "if (force === true) {\n",
+       "        display_loaded();\n",
+       "      }} else if (Date.now() < root._bokeh_timeout) {\n",
+       "      setTimeout(run_inline_js, 100);\n",
+       "    } else if (!root._bokeh_failed_load) {\n",
+       "      console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
+       "      root._bokeh_failed_load = true;\n",
+       "    } else if (force !== true) {\n",
+       "      const cell = $(document.getElementById(\"p1001\")).parents('.cell').data().cell;\n",
+       "      cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
+       "    }\n",
+       "  }\n",
+       "\n",
+       "  if (root._bokeh_is_loading === 0) {\n",
+       "    console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
+       "    run_inline_js();\n",
+       "  } else {\n",
+       "    load_libs(css_urls, js_urls, function() {\n",
+       "      console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n",
+       "      run_inline_js();\n",
+       "    });\n",
+       "  }\n",
+       "}(window));"
+      ],
+      "application/vnd.bokehjs_load.v0+json": "(function(root) {\n  function now() {\n    return new Date();\n  }\n\n  const force = true;\n\n  if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n    root._bokeh_onload_callbacks = [];\n    root._bokeh_is_loading = undefined;\n  }\n\n\n  if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n    root._bokeh_timeout = Date.now() + 5000;\n    root._bokeh_failed_load = false;\n  }\n\n  const NB_LOAD_WARNING = {'data': {'text/html':\n     \"<div style='background-color: #fdd'>\\n\"+\n     \"<p>\\n\"+\n     \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n     \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n     \"</p>\\n\"+\n     \"<ul>\\n\"+\n     \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n     \"<li>use INLINE resources instead, as so:</li>\\n\"+\n     \"</ul>\\n\"+\n     \"<code>\\n\"+\n     \"from bokeh.resources import INLINE\\n\"+\n     \"output_notebook(resources=INLINE)\\n\"+\n     \"</code>\\n\"+\n     \"</div>\"}};\n\n  function display_loaded() {\n    const el = document.getElementById(\"p1001\");\n    if (el != null) {\n      el.textContent = \"BokehJS is loading...\";\n    }\n    if (root.Bokeh !== undefined) {\n      if (el != null) {\n        el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n      }\n    } else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(display_loaded, 100)\n    }\n  }\n\n  function run_callbacks() {\n    try {\n      root._bokeh_onload_callbacks.forEach(function(callback) {\n        if (callback != null)\n          callback();\n      });\n    } finally {\n      delete root._bokeh_onload_callbacks\n    }\n    console.debug(\"Bokeh: all callbacks have finished\");\n  }\n\n  function load_libs(css_urls, js_urls, callback) {\n    if (css_urls == null) css_urls = [];\n    if (js_urls == null) js_urls = [];\n\n    root._bokeh_onload_callbacks.push(callback);\n    if (root._bokeh_is_loading > 0) {\n      console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n      return null;\n    }\n    if (js_urls == null || js_urls.length === 0) {\n      run_callbacks();\n      return null;\n    }\n    console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n    root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n    function on_load() {\n      root._bokeh_is_loading--;\n      if (root._bokeh_is_loading === 0) {\n        console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n        run_callbacks()\n      }\n    }\n\n    function on_error(url) {\n      console.error(\"failed to load \" + url);\n    }\n\n    for (let i = 0; i < css_urls.length; i++) {\n      const url = css_urls[i];\n      const element = document.createElement(\"link\");\n      element.onload = on_load;\n      element.onerror = on_error.bind(null, url);\n      element.rel = \"stylesheet\";\n      element.type = \"text/css\";\n      element.href = url;\n      console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n      document.body.appendChild(element);\n    }\n\n    for (let i = 0; i < js_urls.length; i++) {\n      const url = js_urls[i];\n      const element = document.createElement('script');\n      element.onload = on_load;\n      element.onerror = on_error.bind(null, url);\n      element.async = false;\n      element.src = url;\n      console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n      document.head.appendChild(element);\n    }\n  };\n\n  function inject_raw_css(css) {\n    const element = document.createElement(\"style\");\n    element.appendChild(document.createTextNode(css));\n    document.body.appendChild(element);\n  }\n\n  const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.0.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.0.3.min.js\"];\n  const css_urls = [];\n\n  const inline_js = [    function(Bokeh) {\n      Bokeh.set_log_level(\"info\");\n    },\nfunction(Bokeh) {\n    }\n  ];\n\n  function run_inline_js() {\n    if (root.Bokeh !== undefined || force === true) {\n          for (let i = 0; i < inline_js.length; i++) {\n      inline_js[i].call(root, root.Bokeh);\n    }\nif (force === true) {\n        display_loaded();\n      }} else if (Date.now() < root._bokeh_timeout) {\n      setTimeout(run_inline_js, 100);\n    } else if (!root._bokeh_failed_load) {\n      console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n      root._bokeh_failed_load = true;\n    } else if (force !== true) {\n      const cell = $(document.getElementById(\"p1001\")).parents('.cell').data().cell;\n      cell.output_area.append_execute_result(NB_LOAD_WARNING)\n    }\n  }\n\n  if (root._bokeh_is_loading === 0) {\n    console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n    run_inline_js();\n  } else {\n    load_libs(css_urls, js_urls, function() {\n      console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n      run_inline_js();\n    });\n  }\n}(window));"
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "import os\n",
+    "import sys\n",
     "import os.path as op\n",
     "import yaml\n",
     "import torch\n",
     "\n",
+    "sys.path.append('../montetracko')\n",
+    "\n",
     "from Scripts.Step_2_Run_Metric_Learning import train as run_metric_learning_inference\n",
     "from Scripts.Step_4_Run_GNN import train as run_gnn_inference\n",
     "from Scripts.Step_5_Build_Track_Candidates import train as build_track_candidates\n",
@@ -26,6 +345,8 @@
     "    evaluate as evaluate_candidates_montetracko\n",
     ")\n",
     "\n",
+    "\n",
+    "\n",
     "import warnings\n",
     "\n",
     "warnings.filterwarnings(\"ignore\")\n",
@@ -35,7 +356,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -572,7 +893,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
@@ -586,12 +907,12 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "63f9c2b1151745fbae4906d00678460c",
+       "model_id": "fcae7933d1a24005a6b24a1ddaf14fd9",
        "version_major": 2,
        "version_minor": 0
       },
       "text/plain": [
-       "  0%|          | 0/99 [00:00<?, ?it/s]"
+       "  0%|          | 0/100 [00:00<?, ?it/s]"
       ]
      },
      "metadata": {},
@@ -610,31 +931,49 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "TrackChecker output                               :      1031/    21885   4.71% ghosts\n",
-      "01_velo                                           :      9391/    10690  87.85% ( 89.86%),       115 (  1.21%) clones, pur  98.95%, hit eff  93.89% \n",
-      "02_long                                           :      5512/     6094  90.45% ( 92.19%),        66 (  1.18%) clones, pur  99.07%, hit eff  94.80% \n",
-      "03_long_P>5GeV                                    :      3589/     3903  91.95% ( 93.65%),        49 (  1.35%) clones, pur  99.13%, hit eff  95.35% \n",
-      "04_long_strange                                   :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "05_long_strange_P>5GeV                            :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "06_long_fromB                                     :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "07_long_fromB_P>5GeV                              :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "08_long_electrons                                 :       336/      493  68.15% ( 70.98%),         9 (  2.61%) clones, pur  97.86%, hit eff  74.20% \n",
-      "09_long_fromB_electrons                           :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "10_long_fromB_electrons_P>5GeV                    :         0/        0    nan% (   nan%),         0 (   nan%) clones, pur    nan%, hit eff    nan% \n",
-      "\n",
       "| Categories           | Efficiency   | Average efficiency   | % clones   | Average hit purity   | Average hit efficiency   |\n",
       "|:---------------------|:-------------|:---------------------|:-----------|:---------------------|:-------------------------|\n",
-      "| Velo, no electrons   | 87.85%       | 89.86%               | 1.21%      | 98.95%               | 93.89%                   |\n",
-      "| Long, only electrons | 68.15%       | 70.98%               | 2.61%      | 97.86%               | 74.20%                   |\n",
-      "| Velo, only electrons | 59.01%       | 60.84%               | 3.88%      | 98.14%               | 70.97%                   |\n",
-      "| Categories   | # ghosts   | # tracks   | % ghosts   |\n",
-      "|:-------------|:-----------|:-----------|:-----------|\n",
-      "| Everything   | 1,031      | 21,885     | 4.71%      |\n"
+      "| Velo                 | 75.54%       | 76.82%               | 1.13%      | 99.33%               | 95.63%                   |\n",
+      "| Long                 | 86.08%       | 87.43%               | 1.26%      | 99.40%               | 96.01%                   |\n",
+      "| Velo, no electrons   | 87.86%       | 89.77%               | 0.59%      | 99.36%               | 96.51%                   |\n",
+      "| Velo, only electrons | 0.00%        | 0.00%                | nan%       | nan%                 | nan%                     |\n",
+      "| Long, only electrons | 0.00%        | 0.00%                | nan%       | nan%                 | nan%                     |\n",
+      "| Categories   |   # ghosts | # tracks   | % ghosts   |\n",
+      "|:-------------|-----------:|:-----------|:-----------|\n",
+      "| Everything   |        585 | 21,116     | 2.77%      |\n"
      ]
     },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "INFO:4) Plotting\n",
+      "INFO:4) Plotting\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAADFgAAAk4CAYAAADm4+h6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1zUZf7//+fAcEZQQQYTFSTNPIESqWRlbqxu6bZWVlaWlbWUu9vWdthP2+fT1h7att1O2+76zUrNVtvVzW1NbaNADc1D4CFFExVFWEERATkzzPz+8OfIBAwwjA7DPO63G7fbe7iu63Vdb+Y9zPs9835dl8FqtVoFAAAAAAAAAAAAAAAAAAAAAADgxXzcPQAAAAAAAAAAAAAAAAAAAAAAAAB3I8ECAAAAAAAAAAAAAAAAAAAAAAB4PRIsAAAAAAAAAAAAAAAAAAAAAACA1yPBAgAAAAAAAAAAAAAAAAAAAAAAeD0SLAAAAAAAAAAAAAAAAAAAAAAAgNcjwQIAAAAAAAAAAAAAAAAAAAAAAHg9EiwAAAAAAAAAAAAAAAAAAAAAAIDXI8ECAAAAAAAAAAAAAAAAAAAAAAB4PaO7B+BNzGazduzYIZPJJB8fclsAAAC8icViUUlJicaOHSujkdNwb8E1AAAAgPfiGsA7cQ0AAADgvbgG8E5cAwAAAHgvrgF6Lp7Ni2jHjh268sor3T0MAAAAuNG2bduUnJzs7mHgIuEaAAAAAFwDeBeuAQAAAMA1gHfhGgAAAABcA/Q8JFhcRCaTSZL05ZdfKiYmxs2jgbcxm83KycnRuHHjyJSDW3AMwt04BuFuhYWFmjhxou2cEN6BawDvxnsPOAbAMeDdeP7BNYB3Ovd8b9u2Tf3793fzaOAI/6c9B8+V5+C58iw8X56D58pzHD9+XFdeeSXXAF6G7wHgLP6/w1kcO3AWxw6cxbHTNq4Bei6O9Ivo3FKA0dHRXFThojObzTpy5IhiYmJ4k4NbcAzC3TgG4W5ms1mSWB7ay3AN4N147wHHADgGvBvPP7gG8E7nnu/+/ftzDdDN8X/ac/BceQ6eK8/C8+U5eK48D9cA3oXvAeAs/r/DWRw7cBbHDpzFsdM+rgF6Hp5RAAAAAAAAAAAAAAAAAAAAAADg9UiwAAAAAAAAAAAAAAAAAAAAAAAAXo8ECwAAAAAAAAAAAAAAAAAAAAAA4PVIsAAAAAAAAAAAAAAAAAAAAAAAAF6PBAsAAAAAAAAAAAAAAAAAAAAAAOD1SLAAAAAAAAAAAAAAAAAAAAAAAABejwQLAAAAAAAAAAAAAAAAAAAAAADg9UiwAAAAAAAAAAAAAAAAAAAAAAAAXo8ECwAAAAAAAAAAAAAAAAAAAAAA4PVIsAAAAAAAAAAAAAAAAAAAAAAAAF6vRyRYWK1WvfnmmwoNDZXBYND69etd3sfatWv1/e9/XwMGDFBgYKDi4uJ03333KScnx+V9AQAAAAAAAAAAAAAAAAAAAACAi8vjEywOHTqkyZMn68c//rGqq6tdHt9iseihhx7SjTfeqE2bNumee+7RG2+8odTUVC1btkzjx4/XG2+84fJ+AQAAAAAAAAAAAAAAAAAAAADAxWN09wCcZbVa9ec//1k///nP5evrqwkTJmjLli0u7+eZZ57RwoULFRkZqS+//FKXXnqpJOmhhx7SzTffrBtvvFE//elP1b9/f82aNcvl/QMAAAAAAAAAAAAAAAAAAAAAgAvPY1eweP755/XjH/9YkyZN0p49ezR16lSX97F37169/PLLkqRf/epXtuSKc6ZNm6Y5c+bIarVesBU0AAAAAAAAAAAAAAAAAAAAAADAheexCRZWq1Vvv/22PvnkEw0cOPCC9PHiiy/KYrEoKChId911V6t1HnzwQUlSSUmJ3n777QsyDgAAAAAAAAAAAAAAAAAAAAAAcGF5bILFL3/5Sz3wwAMXLH59fb1Wr14tSRo/frx69erVar2JEycqNDRUkrRixYoLNh4AAAAAAAAAAAAAAAAAAAAAAHDheGyChcFguKDxv/rqK1VWVkqSEhMT26zn4+OjMWPGSJK+/PJL1dbWXtBxAQAAAAAAAAAAAAAAAAAAAAAA1/PYBIsLbc+ePbbtgQMHOqx7rtxisWj//v0XdFwAAAAAAAAAAAAAAAAAAAAAAMD1jO4eQHd15MgR27bJZHJYt3n5kSNHNHbs2As1LAAAAAAAAAAAAAAAAAAAAABAN1dXXqcDaw4o//N8Fe8o1un802qoapB/qL8ihkYo7vo4JT+crPBB4e3GOrb5mLa9uU0FWQWqPlGtkH4hipkYo+RHkhU7ObZD47GYLcpemK2v3/9apftLZa43K3xQuC676TJNeHSCQqNDOxSn/Gi5try2RQfXHlTFsQr5h/oramSUEu5NUMI9CTL4GDoUp7siwaINZ86csW0HBgY6rBsUFNRqu7ZYLBY1NTU5PzjACU1NTbZjz2Dw7H9c8Ewcg3A3jkG4m8VicfcQ4EZcA3gn3nvAMQCOAe/G8w+uAbxbU1MT1wDdHP+nPQfPlefgufIsPF+eg+fKc3D+5934HgCdxf93OItjB87i2IGzOHba1t7537HNx7RkyhI11TdJBunymZdr1OxRCggLUNnBMu16b5c2/W6Ttr2xTTctukkjbxvZZqwNL2zQhuc3yBho1Nh5YxU1Kkql+0qVszBHuStylfJkilJ/n+pwPDWlNVo2fZmKthYpcnikrnr6KvmH+itvTZ42/W6TdryzQ7etvE2DrxnsMM6BNQf04Z0fqv5MvUbcOkITHpugmlM1ylmYo4/u+0i739+t21fdroBeAQ7jdGckWLShtrbWtu3v7++wbvPympqadmN/+eWX+uabb2yPfX19ZTTyVODCslgsOnbsmCwWi3x8fNw9HHghjkG4G8cg3O3UqVPuHgLciGsA78R7DzgGwDHg3Xj+wTWAd9u0aZP69Olje8w1QPfD/2nPwXPlOXiuPAvPl+fgufIcp0+fdvcQ4EZ8D4DO4v87nMWxA2dx7MBZHDtta+8aoL6yXk31TTL4GnTXursUnxpvV37Ns9do0TWLdOLrE1o1Z5WiRkep3+X9WsT5asFXWv/cehkDjbon4x7FjI+xlY2ZM0aLrl6kzS9vVkhUiFKeSGl1LBazRX+f+XcVbS3SwJSBmvPZHPkF+UmSkh9J1ufPfK6sF7P0wU0faN62eYoYGtFqnOM5x7Vi1gqZa82a+tpUTXh0gq0s+ZFkLbp6kfI/z9eHd36o2atnO/z7dGecybeh+aoUDQ0NDus2Lw8ODm439oIFC+wuohISEpSYmNj5QQKdYLVaVVFRIUlkEcItOAbhbhyDcLfKykp3DwFuxDWAd+K9BxwD4Bjwbjz/4BrAu/31r3/lGqCb4/+05+C58hw8V56F58tz8Fx5jjNnzrh7CHAjvgdAZ/H/Hc7i2IGzOHbgLI6dtnX0GiBxbmKL5ApJCuwdqNSXU/W3aX9TU0OTct7O0dQ/TrWrU32yWulPpkuSxj863i65QpL6j+2vlCdStOH5Dcr830yNumOUwmLCWvSVvTBbBVkFkkGasXCGLbninMnPT1builyVHSzTp49/2mZyxJpH1shca9aA8QPskiskKahPkG548wYtuW6JDnx8QLn/zNWIW0a0+/fpjkiwaEOvXr1s23V1dQ7rNl/tonm7tkz3m64+gednrvI76Cdj/sV5Kmb9Y9ZF6Qfdj9ls1pdffqmJEycySwLcgmMQ7sYxCHcrKCjQo48+6u5hwE24BvBOvPeAYwAcA96N5x9cA3i3P/3pTxowYIDtcUBAgAICPHc59J6I/9Oeo7PP1YrbVlyEUbXNm6/DeV15Fp4vz8Fz5TmKior0k5/8xN3DgJu88cYbiok5f7Mb1wDew9nzT6vBKoPJIGOJUQZr125W9eZzUG/EuQGcxbEDZ3HstK29a4DA3oEaMH6ARtzadpLBJUmX2LZL95W2KN/6+lY1VJ1dCGDcvHGtxhg3b5w2vLBB5jqzNv9xs6a9Os2u3Gq1KuvFLEnSoKsGqd+Ilqtk+Pr5KmFugjKfzdSBjw+oeFexohOi7eoc/uywirYWne3zwdbHEjs5Vn2H9lVZXpm++PUXJFj0NLGxsbbtkpISh3Wblzdv15Zg32D18v1WIoalM6NzHhdv3uvc8pMBAQG8ycEtOAbhbhyDcDc/P7/2K6HH4hrAO/HeA44BcAx4N55/cA3g3SIjI9WvX8svqdB98H/ac3T2ufK1+F6EUbXNm6/DeV15Fp4vz8Fz5Tn8/f3dPQS4UZ8+fbgG8FLOnn9aDBb5yEc+Fh/5WH26NAZvPgf1RpwbwFkcO3AWx07b2rsGiJkQo3lb5jms4xd8/rsEY0DLv2/uylxJUu/Y3up7ad9WY4TFhClyeKRK95Vq38p9mvrKVLvVRgq3FKry2NlVt+Ouj2tzLPGp8cp8NvNsvytyWyRY7F2x17Y95PohbcYZcv0QleWVqXhnscoOlrU57u6sa2dnPdioUaNs28eOHXNYt7CwUJLk4+Oj4cOHX9BxAQAAAAAAAAAAAAAAAAAAAAA8W9H2Itt27JRYu7LKokqd+uaUJCk60T7Z4dv6j+1/tk1hpcryyuzK8jPybduO4pgSTDL4GFq0OedIxhFJZ1fm6D24d5txosee76O1OJ6ABIs2XHHFFerV6+wMszt37myznsVi0a5duyRJEydOVFBQ0MUYHgAAAAAAAAAAAAAAAAAAAADAA5nrzMp4JkOSFDU6SuPmjbMrP7HnhG07bGCYw1jNy0/sPWFXdnLPSdt2+MDwNmMYA4wK7hd8ts3ek3ZljbWNOn34dIfG0ryPb4/FU5Bg0YaAgAB9//vflyRt3bpVVVVVrdbbsmWLrWzWrFkXbXwAAAAAAAAAAAAAAAAAAAAAgO7PXG9WVUmVTuaeVM7bOXor6S0d23xMI28bqfu+uE9+QX529cuPlNu2Q0whDmM3L2/errNxQk2hkqT6ynrVnq61/b6ioEJWi9WuTkfGUnGkwmHd7sprEyz27NmjYcOGKSYmRhs3bmy1zs9//nP5+PiotrZWy5Yta7XO22+/LUkymUyaN2/eBRsvAAAAAAAAAAAAAAAAAAAAAODiM9ebVV9Zb/tpONPQqfZ7lu/RH6P/qL+M/ItWP7haDVUNuvlvN+uWD25RYHhgi/rN4xsDjQ5jN0/O+Pa46s/UdziOMeh8efM4zo6led+exPEe9mC/+c1vlJeXJ+lsIsXmzZtb1Bk1apSefPJJvfTSS3r22Wd1/fXXa8iQIbbyTz/9VEuWLJEk/elPf1JIiOOsHgAAAAAAAAAAAAAAAAAAAACAZ8l6MUsbnt9ge1yhzq3OED81XnPS56ihukFleWX6etnX+vCuD7X+ufWa9vo0Db1hqF39xtpG27avv6/D2M3LG2sa7crMteYux3HVWDyFRydYvP/++7bt3bt327bT09NVWFgo6ezKEqmpqS3aWiwW27bVam2zj9/+9rc6deqU3n77bV155ZX64Q9/qNjYWGVnZ2vRokXy8fHRK6+8olmzZrlilwAAAAAAAAAAAAAAAAAAAAAA3cik/5mkiY9PtD0uKirSqyNe7XD7Xv17qVf/XrbHE382UZ89/Zk2v7xZy6Yv002LblLivYm28uYrQTQ1NDmM3bzcL9jPrqz5qhTOxnHVWDyFRydYzJkzp9Xf//a3v7VtX3vtta0mWPziF79QTk6Oamtr9dJLL7XZh4+PjxYuXKiZM2fqr3/9q959912dPn1a0dHRuuOOO/Too49q3LhxXd8ZAAAAAAAAAAAAAAAAAAAAAEC3Ywwwyhhw/tZ7/0r/LsUzGAy6/qXrlf95vo7nHNeah9fo0qmXKjQ69Gz8Xufjm+vMbYWRZL/CRPN2khTQK6DDcZqvdtE8jrNjad63J/HoBAtHK0+0Z8yYMcrLy+tw/RtuuEE33HCD0/0BAAAAAAAAAAAAAAAAAAAAACCdTbIYfddoHc85LnOtWV8v/1oTHzu7Skbv2N62etUl1Q7jNC9v3u7c48IthbZ6YQPC2oxTVVIlSQoIC1BQnyDb78MHhcvgY5DVYrXV6chYwmPDHdbtrnzcPQAAAAAAAAAAAAAAAAAAAAAAALxNxGURtu0TX5+wbUeNirJtVx6rdBijsvB8edTIKLuyfqP62bYrjlW0GcNcb1bNyZqzbUb2syvzC/JTnyF9ujwWT+HRK1gAAAAAAAAAAAAA5yyfsbxD9SwGi8r6l6nolSL5WF03H9ns1bNdFgsAAAAAAACA58pblye/YD/FXhvrsJ6P7/nPJy1mi207bECYIoZF6NSBUyreWewwxvGc42fbxISp79C+dmVxU+KUqUxJUvHOYg2/aXirMUp2lchqsdrafFvslFiVHSxTXXmdyo+Wq/fg3g7H0lYcT8AKFgAAAAAAAAB6pOrqaqd+Dh8+rO9+97uKiIjQd7/7XR0+fNipOAAAAAAAAAAAAPBOax5eo7Xz17Zbr+xgmW07fFC4XdmIWSMkSeVHynX68OlW21cWVap0f6kk6fJbL5fBYLArj5kQo7CYMElS/uf5bY7j8GeHW/Tb3MhZI23bjuKcK4tOjFbfS/u2Wa87YwULAAAAeA1nb3IrKSlRWlqasrOzlZSUpAULFshkMnUqRk1NjVN9AwAAwHmhoaFdjpGenq74+Hin2mZmZna5fwAAAAAAAAAAAHim0n2lKj9Srt6xvVstt1qt2vXeLtvjYTOG2ZWP/8l4bX19qxqqGpTzdo6+89vvtIix450dklUyBhqV8rOUFuUGg0GTnpmktY+sVUFWgUr3lypyeKRdHYvZop2Ld0qSht44VNEJ0S3iDLl+iAaMH6CirUXKeTtHY+8f26LO0Y1HderAKUnS1b+4utV99gQkWAAAAMBruPsGOwAAAAAAerrlM5a7ewgAAAAAAAAA0C1YLVatmrNKs1bMUmh0aIuy/zz+H/13+38lSaNmj1LM+Bi7OiFRIUp9OVVrHl6jLa9u0fCZwzUgeYCtvHhXsTb9fpMk6bpfXWdbqeLbkh5M0p5le1SQVaDVD67W3Z/eLb8gP1v5+l+uV1lemQJ7B2rqq1Pb3J8b/3Kj3p30rgq/LNS2N7fpyh9daSurK6+zrdgxbPowjbi15SoYnoIECwAAAAAAAAA9UlVVlVPtZs6cqYyMDDU1NcnX11dTpkzRqlWrOhXDbDZrx44dTvUPAAAAAAAAAAAAzxadEK2KoxUqyCrQG/FvaOQdIxU5PFLBEcGqKKjQ3n/sVem+UklSwj0Jmv7W9FbjXJF2hapKqrTxhY1act0SjZs3Tv1G9lPp/lLlLMxRY3WjJj4xUSlPtFy94hwfo49uX3W7lk1fpoKsAr2V9JYS70uUf4i/8tbmKW9NnoIjgzVr5SxFDI1oM07/cf016x+z9OFdH2rdT9ap4IsCxU6JVe2pWuUszFH5kXLFTYnTzctu7tofz81IsAAAAIDXcOcNdkePHtXIkSOd6h8AAADOCQkJcard0qVLNXfuXG3fvl3JyclavHhxp2OZzWan+gYAAAAAAAAAAIDnu+OjO3RizwntW7VPBV8U6HD6Ye1ZvkeWRov8e/mrT1wfJf8oWQn3JNitStGayc9NVnxqvLa+sVW5K3NV89caBUcGK/678Uqen6y46+LaHU9wZLDuz7pf2QuztXvpbmW9mKWm+iaFDwpXylMpmvDTCerVv1e7cYZNH6a0XWna8toW5a3J0zf//kZ+IX6KGhWla/7vGiXemyiDj6HDf6fuiAQLAAAAeA133mAXHBzsVN8AAAC4+Ewmk9atW+fuYQAAAAAAAAAAAMCDRY2KUtSoKJfEGpgyUANTBnYpho/RR8kPJyv54eQuxekd21vTXpumaa9N61Kc7ooECwAAAKAd3GAHAAAAOKe6utqpdiUlJUpLS1N2draSkpK0YMECmUymTsdxNskaAAAAAAAAAAAA3okECwAAAAAAAADABREaGtrlGOnp6YqPj3eqrdVq7XL/AAAAAAAAAAAA8B4kWAAAAAAAAAAAAABwieUzlrs0nsVgUVn/MhW9UiQfq49LYwMAAAAAAADAt5FgAQAAAAAAAAC4IKqqqpxqN3PmTGVkZKipqUm+vr6aMmWKVq1a5eLRAQAAAAAAAAAAAPZIsAAAAAAAAAAAXBAhISFOtVu6dKnmzp2r7du3Kzk5WYsXL3Y6FgAAAAAAAAAAANBRJFgAAAAAAAAAuCCqq6udaldSUqK0tDRlZ2crKSlJCxYskMlk6nQcbsj3XCaTSevWrXP3MAAAAADAZf4191/atWRXp9pcdtNluuNfd7RadmzzMW17c5sKsgpUfaJaIf1CFDMxRsmPJCt2cmyH4lvMFmUvzNbX73+t0v2lMtebFT4oXJfddJkmPDpBodGhnRovAAAAAPQEJFgAAAAAAAAAuCBCQ7t+I0Z6erri4+Odamu1WrvcPwAAAAAA7hJian3igA0vbNCG5zfIGGjU2HljFTUqSqX7SpWzMEe5K3KV8mSKUn+f6jB2TWmNlk1fpqKtRYocHqmrnr5K/qH+yluTp02/26Qd7+zQbStv0+BrBl+IXQMAAACAbosECwAAAAAAAAAAAAAAAOAimL9vfrt13p/2viqOVihxbmKLsq8WfKX1z62XMdCoezLuUcz4GFvZmDljtOjqRdr88maFRIUo5YmUVuNbzBb9febfVbS1SANTBmrOZ3PkF+QnSUp+JFmfP/O5sl7M0gc3faB52+YpYmiEczsLAAAAAB6IBAsAAAAAAAAAF0RVVZVT7WbOnKmMjAw1NTXJ19dXU6ZM0apVq1w8OgAAAAAALr7I4ZEOy49tPqaKoxWKGh2lgRMH2pVVn6xW+pPpkqTxj463S66QpP5j+yvliRRteH6DMv83U6PuGKWwmLAWfWQvzFZBVoFkkGYsnGFLrjhn8vOTlbsiV2UHy/Tp459q9urZTuwpAAAAAHgmEiwAAAAAAAAAXBAhISFOtVu6dKnmzp2r7du3Kzk5WYsXL3Y6FgAAAAAA3UHk8EgNvnZwu/Wy38qWJCU9lNSibOvrW9VQ1SBJGjdvXKvtx80bpw0vbJC5zqzNf9ysaa9Osyu3Wq3KejFLkjToqkHqN6Jfixi+fr5KmJugzGczdeDjAyreVazohOh2xw64Q3V1tVPtSkpKlJaWpuzsbCUlJWnBggUymUwuHh0AAAA8EQkWAAAAAAAAALoVk8mkdevWuXsYAAAAAAC4zKSfT9Kkn09yWKeuok65K3LlF+ynMXPGtCjPXZkrSeod21t9L+3baoywmDBFDo9U6b5S7Vu5T1NfmSqDwWArL9xSqMpjlZKkuOvj2hxLfGq8Mp/NPNvvilwSLNBthYaGdjlGenq64uPjnWq7bPqyLvcPAACA7sXH3QMAAAAAAAAAAAAAAAAAvN3upbvVWNOokbePVGB4oF1ZZVGlTn1zSpIUneg42aH/2P5n2xRWqiyvzK4sPyPftu0ojinBJIOPoUUbAAAAAOjpWMECAAAAAAAAAACgh1g+Y7m7hwAAAAAn5SzMkSQlPZTUouzEnhO27bCBYQ7jNC8/sfeEIoZF2B6f3HPSth0+MLzNGMYAo4L7Bau6pFon955ssx7gblVVVU61mzlzpjIyMtTU1CRfX19NmTJFq1at6nScf9/xb6f6BwAAQPdFggUAAAAAAAAAAAAAoEdwd6LZ7NWz3do/AM9VuKVQJbtLZBpjUsyEmBbl5UfKbdshphCHsZqXN2/X2TihplBVl1SrvrJetadrFdQnyGF9wB1CQhwfx21ZunSp5s6dq+3btys5OVmLFy92OhYAAAB6FhIsAAAAAAAAAAAAAAAAADfKfitbkjTuoXGtljecabBtGwMd3+7jF+TXajtJqj9T3+E4xqDz5Q1nGkiwQI9iMpm0bt26LsepM9c51c5isKi0slRvffmW8ivyFRcepwdGP6DwgLZXlgEAAMDFQYIFAOCiqa2tVXV1tYzGzr39lJSUKC0tTdnZ2UpKStKCBQtkMpk63T+zTQAAAMDbVFdXO9WOc3AAAAAAAADHzPVmNdU32R5/O5GhM+or67X373vlF+ynMXePabVOY22jbdvX39dhvObljTWNdmXmWrNL4gA46/5P7ndJnD2le/RY5mNOtb1P97lkDAAAADiLBAsAwEVzww03dDlGenq64uPjnWprtVq73D8AAADgSUJDQ7scg3NwAAAAAACAlrJezNKG5zfYHleowulYu9/frcaaRiXel6jA8MBW6zRflaKpoanVOq2V+wX72ZU1X5WiK3EAAAAAoKciwQIAAMBLMIM1AMAbufP9z2w2t18JAAAAAAAAHmnS/0zSxMcn2h4XFRXp1RGvOhUr+61sSVLSD5ParOPfy9+2ba5z/LlT89UumreTpIBeAR2O03y1i2/HAc7x9u8g3532rlPtLAaLXt79svL+myeL1SIfg49GRIzQ41c87uIRAgAAoLNIsAAAXDRr165VSkqKjMbOvf3MnDlTGRkZampqkq+vr6ZMmaJVq1ZdoFFeWN7+4RLcixmsAQDeyN3vf5mZmV3uvyuqqqqcateTzsEBAAAAAAAuBGOAUcaA8997+lc6l4BQuLVQJbtKZEowKWZ8TJv1esf2tm1Xlzj+zrF5efN25x4Xbim01QsbENZmnKqSs58tBYQFKKhPkMM+4b3c/Rmsu7+DDDS2vupMeywGi+ZcN0f/+M8/dLj8sOJ7xystMc3peAAAAHAdEiwA4CLy9pvrg4KCFBIS0ukEi6VLl2ru3Lnavn27kpOTtXjxYrfvi7O8/cMlAAAAXFzOnjf3pHNwAAAAAACA7sy2esVDba9eIUlRo6Js25XHKh3WrSw8Xx41MsqurN+ofrbtimMV6j+uf6sxzPVm1ZysOdtmZL9W6wDomrDgMD014Sn5WH3cPRQAAAA0Q4IFAFxE3FzvHJPJpHXr1rl7GIDHYwZrAIA3cuf7n9ls1o4dO5zq3904BwcAAPBcy2csd/cQ4EbufP4tBosGPD7Abf0DgCeqr6zX3r/vlV+wn8bcPcZh3bABYYoYFqFTB06peGexw7rHc46fbRMTpr5D+9qVxU2JU6bOrrpavLNYw28a3mqMkl0lslqstjZAW/gOEgAAAD0NCRYAAFxE3v7hkjtXcTGbzU713ZMwgzUAwBu58/2P8w8AAAAAAAA4svtvu9VY3ajE+xMVEBbQbv0Rs0boi998ofIj5Tp9+LT6DOnTok5lUaVK95dKki6/9XIZDAa78pgJMQqLCVNlYaXyP8/X5Ocmt9rX4c8O2/WL7sud38FKfAcJAACAnocECwC4iLz95nrw4ZK7V3HJzMzscv/eiBmsAQDeiPc/AAAAAAAAXGg5C3MkSVf88IoO1R//k/Ha+vpWNVQ1KOftHH3nt99pUWfHOzskq2QMNCrlZyktyg0GgyY9M0lrH1mrgqwCle4vVeTwSLs6FrNFOxfvlCQNvXGoohOiO7lnuJjc/R2s1Wp1qh2fwQIAAKC7IsECAC4ib7+5Hs7jwyXXqK2tVXV1tYzGzp0CuXv2FgAAAACAc9w5i2dNTY1TfQMAAADwDkXbi1S8o1imBJMGXDmgQ21CokKU+nKq1jy8Rlte3aLhM4drQPL5tsW7irXp95skSdf96jqFxYS1GifpwSTtWbZHBVkFWv3gat396d3yC/Kzla//5XqV5ZUpsHegpr46tQt7CQAAAACehwQLL7N8xnK39j979Wy39g94Km6uR0/hzlVczGazevfu7VT/zXVl9hZn958EDwDwXCT3AQDgXu6exROA93H39zAAAMBzZL+VLUlK+mFSp9pdkXaFqkqqtPGFjVpy3RKNmzdO/Ub2U+n+UuUszFFjdaMmPjFRKU+0XL3iHB+jj25fdbuWTV+mgqwCvZX0lhLvS5R/iL/y1uYpb02egiODNWvlLEUMjejSfuLCc+d3sAAAAEBPRIIFAAC4aNy5iovZbHaqb1dy9409zi7PCwBw3g033NDlGPzvBwAAAAAAAHqW+jP12vvBXvmF+GnMXWM63X7yc5MVnxqvrW9sVe7KXNX8tUbBkcGK/268kucnK+66uHZjBEcG6/6s+5W9MFu7l+5W1otZaqpvUvigcKU8laIJP52gXv17ObN7uMjc+R0sAAAA0BORYAEAALo9V63isnbtWqWkpHR6FnFXzd7iigQLAAAAAEDHuXMWz6NHj2rkyJFO9Q8A8FysYgIA6IiAXgH6nzP/06UYA1MGamDKwC7F8DH6KPnhZCU/nNylOPBMrvoOFgAAAOhpSLAAAABeIygoSCEhIZ1OsHDV7C0szwsA3sfdyX0AAHg7d87iGRwc7FTfAAAAAAAAAAAAcB8SLAB4lerqaqfalZSUKC0tTdnZ2UpKStKCBQtkMpk6Hcfdy2m6c//NZrNTfQPdgatmb2F5XgDwPu5O7gMAAM5hFk8AAAAAAAAAAADvRIIFAK8SGhra5Rjp6emKj493qq3Vau1y/13h7v3PzMzscv+AN+LGHgDwPvzvBwC4grMTLUg9Z7IJAABwcX29/GsVvVIkH6uPu4cCAAAAAAAAOIUECwAAAAAAAADogVwx0YLk2ZNNAAAAAAAAAAAAAJ1BggXgRWpra1VdXS2jsXMvfVfNWCi5f9bCqqoqp9rNnDlTGRkZampqkq+vr6ZMmaJVq1a5eHQXnjv332w2a8eOHU71DwAAAAAA4G0+ffJTffmHLyVJ1z53rSb/cnK7bY5tPqZtb25TQVaBqk9UK6RfiGImxij5kWTFTo7tUL8Ws0XZC7P19ftfq3R/qcz1ZoUPCtdlN12mCY9OUGh0xxJ3yo+Wa8trW3Rw7UFVHKuQf6i/okZGKeHeBCXckyCDj6FDcQAAAAAAAAAAAC4mEiyAi6i6utqpdq5IcDCbzbrhhhuc6r+5rsxYKLl/1kJnEzyWLl2quXPnavv27UpOTtbixYvdniziDHfuv9lsdqpvV3Lna/AcTzxuAAAAusLd52Ccf8Hb8Rr0bs5OtCD1nMkmPNXxnOPa8uqWTrXZ8MIGbXh+g4yBRo2dN1ZRo6JUuq9UOQtzlLsiVylPpij196kOY9SU1mjZ9GUq2lqkyOGRuurpq+Qf6q+8NXna9LtN2vHODt228jYNvmawwzgH1hzQh3d+qPoz9Rpx6whNeGyCak7VKGdhjj667yPtfn+3bl91uwJ6BXRqHz3Jv+b+SxFBEe4eBgAAAAAAAAAA6CQSLICLKDS0Y7O7OdLVBAc4x2Qyad26de4ehtv0lP3vDq9BdycZAQAAXGzuPgdz9/mXu1cS5OZ2ePtr0Nt15X9AT5lswhNZzBb9e96/ZW3q+OvnqwVfaf1z62UMNOqejHsUMz7GVjZmzhgtunqRNr+8WSFRIUp5IqXNfv8+8+8q2lqkgSkDNeezOfIL8pMkJT+SrM+f+VxZL2bpg5s+0Lxt8xQxtPXkgeM5x7Vi1gqZa82a+tpUTXh0gq0s+ZFkLbp6kfI/z9eHd36o2atnd3gfAQAAAAAAAAAALgYSLAAvsnbtWqWkpHT6xh5mLAQAAAAA57h7JUFubgfgrJ4y2YIn2vzHzSreUazLbrpM33z0Tbv1q09WK/3JdEnS+EfH2yVXSFL/sf2V8kSKNjy/QZn/m6lRd4xSWExYizjZC7NVkFUgGaQZC2fYkivOmfz8ZOWuyFXZwTJ9+vinbSZHrHlkjcy1Zg0YP8AuuUKSgvoE6YY3b9CS65bowMcHlPvPXI24ZUS7+wgAAAAAAAAAAHCxkGABXERVVVVOtXNFgoPZbNaOHTsUEhLS6QQLZixET+HO1yAAAIA7VFdXO93WVSsocA4GuBevQcCzlB0q04bnN+iS5Et05Y+v7FCCxdbXt6qhqkGSNG7euFbrjJs3Thte2CBznVmb/7hZ016dZldutVqV9WKWJGnQVYPUb0S/FjF8/XyVMDdBmc9m6sDHB1S8q1jRCdF2dQ5/dlhFW4vO9vlg62OJnRyrvkP7qiyvTF/8+gsSLAAAAAAAAAAAQLdCggVwETmblOCKBAez2exU3xIzFqLncOdrEAA6qqa0RntX7NWh/xxS8Y5iVZVUyeBjUKgpVAOuHKDRd4/WsOnDZDAY2o11bPMxbXtzmwqyClR9oloh/UIUMzFGyY8kK3ZybIfGYzFblL0wW1+//7VK95fKXG9W+KBwXXbTZZrw6ASFRod2KE750XJteW2LDq49qIpjFfIP9VfUyCgl3JughHsSZPBpf38AdF5oaMdeo+1xxwoKPeUczNtXEnQ2ycdVCT6eeMy4GtdBgGf5+KGPZWm0aMbCGao7XdehNrkrcyVJvWN7q++lfVutExYTpsjhkSrdV6p9K/dp6itT7a4pCrcUqvJYpSQp7vq4NvuKT41X5rOZZ/tdkdsiwWLvir227SHXD2kzzpDrh6gsr0zFO4tVdrCszXEDAAAAAAAAAABcbCRYAB6ABAfAvXgNArhYPn3iU23/83aZ68wK7hes0XeNVsTQCFmtVh3JPKLclbna+4+9ipsSp1krZimob1CbsTa8sEEbnt8gY6BRY+eNVdSoKJXuK1XOwhzlrshVypMpSv19qsPx1JTWaNn0ZSraWqTI4ZG66umr5B/qr7w1edr0u03a8c4O3bbyNg2+ZrDDOAfWHNCHd36o+jP1GnHrCE14bIJqTtUoZ2GOPrrvI+1+f7duX3W7AnoFOPV3A9Az9ZRzsKCgIK9eSdAVST7uSPBBz3kNAp4k550c5Wfk66qnr1J0QrSOrD/SbpvKokqd+uaUJCk6Mdph3f5j+6t0X6kqCytVllemiGERtrL8jHzbtqM4pgSTDD4GWS1WuzbnHMk4O+bA3oHqPbh3m3Gix57vIz8jnwQLAAAAAAAAAADQbZBgAQAAAHQTu9/fLXOdWYOvHaw7PrpDgeGBtrIr51+pAx8f0Ac/+ED5GflaPmO57vvivlZXfvhqwVda/9x6GQONuifjHsWMj7GVjZkzRouuXqTNL29WSFSIUp5IaXUsFrNFf5/5dxVtLdLAlIGa89kc+QX5SZKSH0nW5898rqwXs/TBTR9o3rZ5ihga0Wqc4znHtWLWCplrzZr62lRNeHSCrSz5kWQtunqR8j/P14d3fqjZq2c79XcD0Laqqiqn2/aUFRQ8FTe3A4B3qSquUvqT6eoT30fXPndth9ud2HPCth02MMxh3eblJ/aesEuwOLnnpG07fGB4mzGMAUYF9wtWdUm1Tu49aVfWWNuo04dPd2gszfs4sfeEg5oAAAAAAAAAAAAXFwkWAC6q6upqp9qVlJQoLS1N2dnZSkpK0oIFC2QymTodxxNnfAVcidcg0P35GH00872ZdskV5wybPkzj5o1T9v/L1rHNx7T3H3s16o5RdnWqT1Yr/cl0SdL4R8fbJVdIZ2etTXkiRRue36DM/83UqDtGKSym5c1P2QuzVZBVIBmkGQtn2JIrzpn8/GTlrshV2cEyffr4p20mR6x5ZI3MtWYNGD/ALrlCkoL6BOmGN2/QkuuW6MDHB5T7z1yNuGVEu38jAB3XlffenrKCAtzL2SQfEnwAeJu1P1qrutN1mrViVotzb0fKj5TbtkNMjt+nm5c3b9fZOKGmUFWXVKu+sl61p2sV1OfsynoVBRWyWqy2Oh0dS8WRCod1AQAAAAAAAAAALiYSLOBVuLHY/UJDHX+52hHp6emKj493qq3Vau1y/4An4zUIdH/RidEKH9T2jLGX33K5sv9ftiTpwOoDLRIstr6+VQ1VDZKkcfPGtRpj3Lxx2vDCBpnrzNr8x82a9uo0u3Kr1aqsF7MkSYOuGqR+I/q1iOHr56uEuQnKfDZTBz4+oOJdxYpOiLarc/izwyraWnS2zwdbH0vs5Fj1HdpXZXll+uLXX5BgAXQjrKAAV3D2OpgEHwDeZP9H+7Xvn/uUODdRQ74zpFNtG8402LaNgY4/7m+euNG8nSTVn6nvcBxj0PnyhjMNtgQLZ8fSvG8AAAAAAAAAAAB3I8ECXoUbiwEAQHd2y/JbFBwR7LBO78G9bdsVBS1nes1dmXu2Xmxv9b20b6sxwmLCFDk8UqX7SrVv5T5NfWWqDAaDrbxwS6Eqj1VKkuKuj2tzLPGp8cp8NvNsvytyWyRY7F2x17Y95Pq2bxQbcv0QleWVqXhnscoOlrU5bgCA9yDBB4AnMteb1VTfZHvcWNXYbpv6ynqtnb9Wwf2C9d0/frfTfTbWnu/D19/XYd3m5Y019mMz15q7HMdVYwEAAAAAAAAAAHAnEiwAXFRVVVVOtZs5c6YyMjLU1NQkX19fTZkyRatWrXLx6ICej9cg0L3FXdd2MsM5deV1tm2/ED+7ssqiSp365pSksythONJ/bH+V7itVZWGlyvLKFDEswlaWn5Fv23YUx5RgksHHIKvFatfmnCMZRyRJgb0D7RJDvi167Pk+8jPySbAAAACAR8p6MUsbnt9ge1zh0zIh+tvSn0rXmaIzunnZzQrqG9TpPpuvBNHU0OSgpn25X7D9tUTzVSmcjeOqsQAA4OmWz1ju1v5nr57t1v4BAAAAAAA8HQkW8CrcWOx+ISEhTrVbunSp5s6dq+3btys5OVmLFy92OhbgzXgNAp7vdP5p2/bgawbblZ3Yc8K2HTYwzGGc5uUn9p6wS7A4ueekbTt8YHibMYwBRgX3C1Z1SbVO7j1pV9ZY26jTh093aCzN+zix94SDmgAAeJ7a2lpVV1fLaOzcx3AlJSVKS0tTdna2kpKStGDBAplMpk73z3k7cPFM+p9Jmvj4RNvjgoICvTr61TbrH/3iqLLfytal0y7V6NmjnerTv5e/bdtcZ3ZQ036FiebtJCmgV0CH4zRf7aJ5HGfH0rxvAAAAAAAAAAAAdyPBAl6FG4s9l8lk0rp169w9DMBr8RoEuo/9q/ZLkoyBRiXOTbQrKz9SbtsOMTk+V2le3rxdZ+OEmkJVXVKt+sp61Z6uVVCfs7PuVhRUyGqx2up0dCwVR9qf5RcAAE9yww03dDlGenq64uPjnWprtVq73D+AjjEGGGUMOP+Ru19o2yszNDU0afWDq+Xr76vrfnWdakprWtSpqzi/el1jTaNdnYDwAPn6+ap3bG/b76pLqh2Or3l583bnHhduKbTVCxvQdpJ0VcnZSWwCwgJs5/+SFD4o3LbC3bk6HRlLeGzbSd0AAAAAAAAAAAAXGwkWQAdwYzEAAOgsc71ZTfVNtseNVY0OandM9YlqffPRN5KkiU9MVK9LetmVN5xpsG0bAx2f6vsFnb/Zq3k7Sao/U9/hOMag8+UNZxpsN1g5O5bmfQMAAAA91Zn/ntGpb05JkhYmL2y3/uaXN2vzy5ttj+/NvFexk2MVNSrK9rvKY5UOY1QWni+PGhllV9ZvVD/bdsWxCvUf17/VGOZ6s2pOnk306Deyn12ZX5Cf+gzpo7KDZV0aCwAAAAAAAAAAgDuRYAEAAABcAFkvZmnD8xtsjyt8ur4yQ/qT6TLXmdV/XH9d8+w1Lcoba88ncfj6+zqM1by8scY++cNca+5yHFeNBQCArqiudjybuyMlJSVKS0tTdna2kpKStGDBAplMpk7FMJvNWrt2rVJSUmQ0du5juJkzZyojI0NNTU3y9fXVlClTtGrVqk7FANB9hUaHak76HId1incVK/2JdEnSmDljlHBPgq3MlHD2/1HYgDBFDIvQqQOnVLyz2GG84znHz7aJCVPfoX3tyuKmxClTmWf73Vms4TcNbzVGya4S20p1cVPiWpTHTolV2cEy1ZXXqfxouXoP7u1wLG3FAQAAAAAAHefs56Cu+AxUkkJCQtqvBAAA4EFIsAAAAAAugEn/M0kTH59oe1xQUKBXR7/qdLzd7+/Wrvd2KSQqRLf98zYZA1qeyjdfCaKpoalFeXPNy/2C/ezKmq9K4WwcV40FAICuCA0NdUmc9PR0xcfHO9U2MzNTISEhnU6wWLp0qebOnavt27crOTlZixcv5otKoAcxBho15PohDuv4GH1s232G9Gmz/ohZI/TFb75Q+ZFynT58Wn2G9GlRp7KoUqX7SyVJl996uQwGg115zIQYhcWEqbKwUvmf52vyc5Nb7evwZ4ft+v22kbNGKuetHElS/uf5Gnv/2Fbj5H+eL0mKToxW30v7tloHAAAAAAB0jCs+B+3KZ6BWq7XL/QMAAHQnPu1XAQAAANBZxgCjAsICbD9+oc4nDhzdeFSrH1ytgLAA3bn2TvWO7d1qPf9e/rZtc5251TrnNF9honk7SQroFdDhOM1Xu2gex9mxNO8bAABvZjKZtG7dOpWWlmrdunVOzRwHwDuM/8l4+YeePf/OeTun1To73tkhWc8mdqT8LKVFucFg0KRnJkmSCrIKbMkYzVnMFu1cvFOSNPTGoYpOiG5RZ8j1QzRg/ACHYzm68ahOHTglSbr6F1e3s3cAAAAAAAAAAAAXFwkWAAAAQDdWtK1Iy2csl6+/r+7+z926JOmSNus2T7yoLnG8FHDz8m8nbHQmTlVJlSQpICxAQX2CbL8PHxQug4/Brk5HxhIeG+6wLgAAnVFVVeX0T2pqqnx9fSVJvr6+Sk1N7XSM8vJy9/4BAHiFkKgQpb6cKkna8uoWFW0vsisv3lWsTb/fJEm67lfXKSwmrNU4SQ8madCkQZJVWv3gartEaEla/8v1KssrU2DvQE19dWqb47nxLzfKGGRU4ZeF2vbmNruyuvI6rZ2/VpI0bPowjbi15SoYAAAAAACgc9z5GWhVlePvAQEAADyR0d0DAAAAANC6/2b/V+9PfV9Wq1VzPp2jmAkxDutHjYqybVceq3RYt7LwfHnUyCi7sn6j+tm2K45VqP+4/q3GMNebVXOy5mybkf3syvyC/NRnSB+VHSzr0ljg+aqrHSfptKWkpERpaWnKzs5WUlKSFixY4NTs7SEhIU71D6Bn6Mr/gKVLl2ru3Lnavn27kpOTtXjx4k7HM5sdr+IEAN9WsrtEJbtLJEkn9520+/3u93dLkkJMIYpPjbdrd0XaFaoqqdLGFzZqyXVLNG7eOPUb2U+l+0uVszBHjdWNmvjERKU80XL1inN8jD66fdXtWjZ9mQqyCvRW0ltKvC9R/iH+ylubp7w1eQqODNaslbMUMTSizTj9x/XXrH/M0od3fah1P1mngi8KFDslVrWnapWzMEflR8oVNyVONy+7uSt/KgAAAAAA8P9z9nNQV3wGCgAA0BORYAEAAAB0Q8d3HNfS1KWymC26+z93t5tcIUlhA8IUMSxCpw6cUvHOYsfxc46fbRMTpr5D+9qVxU2JU6YyJUnFO4s1/KbhrcYo2VUiq8Vqa/NtsVNiVXawTHXldSo/Wq7eg3s7HEtbceDZQkNDuxwjPT1d8fHx7VdshdVq7XL/ALyTyWTSunXr3D0MAF5m34f7tOH5DS1+v3/Vfu1ftV+SNPjawS0SLCRp8nOTFZ8ar61vbFXuylzV/LVGwZHBiv9uvJLnJyvuuvbPtYMjg3V/1v3KXpit3Ut3K+vFLDXVNyl8ULhSnkrRhJ9OUK/+vdqNM2z6MKXtStOW17Yob02evvn3N/IL8VPUqChd83/XKPHeRNuKdwAAAAAAwD34DBQAAKB1JFgAAAAA3UzJ7hItTV2qpoYm3f3J3RqYMrBFnfXPr9eB1Qf00FcP2f1+xKwR+uI3X6j8SLlOHz6tPkP6tGhbWVSp0v2lkqTLb71cBoP9jU0xE2IUFhOmysJK5X+er8nPTW51nIc/O2zX77eNnDVSOW/lSJLyP8/X2PvHthon//N8SVJ0YrT6Xtq31TqAs9y5ggYz1wMAamtrVV1dLaOxcx/DspKT95r8y8ma/MvJTrcfmDKw1euHzvAx+ij54WQlP5zcpTi9Y3tr2mvTNO21aV2KAwAAAAAAAAAAcDGRYAEAAAB0Iyf2nNB733lP5lqz7lp3lwZNGtRqvfL8ch3PPt7i9+N/Ml5bX9+qhqoG5bydo+/89jst6ux4Z4dklYyBRqX8LKVFucFg0KRnJmntI2tVkFWg0v2lihweaVfHYrZo5+KdkqShNw5VdEJ0izhDrh+iAeMHqGhrkXLezmk1weLoxqM6deCUJOnqX1zd6r7Cs1VVVTnVbubMmcrIyFBTU5N8fX01ZcoUrVq1qtNx3L2CRmZmZpf7BwB4rhtuuKHLMVjJCQAAAAAAAAAAALh4fNw9AAAAAABnncw9qfe+855qSms08YmJslqsOrL+SKs/VcWt37QeEhWi1JdTJUlbXt2iou1FduXFu4q16febJEnX/eo6hcWEtRon6cGks8kdVmn1g6vVWNtoV77+l+tVllemwN6Bmvrq1Db36ca/3ChjkFGFXxZq25vb7Mrqyuu0dv5aSdKw6cM04taWq2DA84WEhDj1s3TpUqWmpioiIkKpqalaunSpU3EAAAAAAAAAAAAAAACAjmIFCwAAAKAbMNeZ9d533lP1iWpJ0sYXNmrjCxudinVF2hWqKqnSxhc2asl1SzRu3jj1G9lPpftLlbMwR43VjZr4xESlPNFy9YpzfIw+un3V7Vo2fZkKsgr0VtJbSrwvUf4h/spbm6e8NXkKjgzWrJWzFDE0os04/cf116x/zNKHd32odT9Zp4IvChQ7JVa1p2qVszBH5UfKFTclTjcvu9mpfUXPZTKZtG7dui7HcecKGmazWTt27HCqfwBAz7B27VqlpKTIaOzcx7CuWskJAAAAAAAAAAAAQOeQYAEAAAB0A+Y6c5urUjhj8nOTFZ8ar61vbFXuylzV/LVGwZHBiv9uvJLnJyvuurh2YwRHBuv+rPuVvTBbu5fuVtaLWWqqb1L4oHClPJWiCT+doF79e7UbZ9j0YUrblaYtr21R3po8ffPvb+QX4qeoUVG65v+uUeK9iTL4GFyx20ALzq5isXTpUs2dO1fbt29XcnKyFi9e3OlYZrPZqb4BAD1HUFCQQkJCOp1g4Yr3IQAAAAAAAAAAAACdR4IFAAAA0A0E9g7Uc9bnXBpzYMpADUwZ2KUYPkYfJT+crOSHk7sUp3dsb017bZqmvTatS3GAi8VVK2gAAOAM3ocAAAAAAAAAAAAA9/Bx9wAAAAAAAAAAAAAAAAAAAAAAAADcjQQLAAAAAAAAAAAAAAAAAAAAAADg9YzuHgAAAAAAAAAAAAAAAAAAAAAAAD1NTWmN9q7Yq0P/OaTiHcWqKqmSwcegUFOoBlw5QKPvHq1h04fJYDC02r78SLlej3u9Q30lz0/WDW/e4LCOxWxR9sJsff3+1yrdXypzvVnhg8J12U2XacKjExQaHdqhvsqPlmvLa1t0cO1BVRyrkH+ov6JGRinh3gQl3JMgg0/r++MJSLDARVVdXe1Uu5KSEqWlpSk7O1tJSUlasGCBTCZTp+OEhIQ41T8AAOg6Z88DJM4FAAAAAAAAAAAAAAAAAHiWT5/4VNv/vF3mOrOC+wVr9F2jFTE0QlarVUcyjyh3Za72/mOv4qbEadaKWQrqG3RBx1NTWqNl05epaGuRIodH6qqnr5J/qL/y1uRp0+82acc7O3Tbyts0+JrBDuMcWHNAH975oerP1GvErSM04bEJqjlVo5yFOfrovo+0+/3dun3V7QroFXBB9+dCIcECF1VoaMeymhxJT09XfHy8U22tVmuX+wcAAM5xxXmAxLkAAAAAAAAAAAAAAAAAgO5v9/u7Za4za/C1g3XHR3coMDzQVnbl/Ct14OMD+uAHHyg/I1/LZyzXfV/c1+bKD1N+O0WXz7zcYX+BfQLbLLOYLfr7zL+raGuRBqYM1JzP5sgvyE+SlPxIsj5/5nNlvZilD276QPO2zVPE0IhW4xzPOa4Vs1bIXGvW1NemasKjE2xlyY8ka9HVi5T/eb4+vPNDzV492+F4uysfdw8AAAAAAAAAAAAAAAAAAAAAAICexsfoo5nvzbRLrjhn2PRhGjdvnCTp2OZj2vuPvW3G6dW/lyKHRzr8CTW1PQFu9sJsFWQVSAZpxsIZtuSKcyY/P1l9L+2ruvI6ffr4p23GWfPIGplrzRowfoBdcoUkBfUJ0g1v3iBJOvDxAeX+M7fNON0ZK1jgoqqqqnKq3cyZM5WRkaGmpib5+vpqypQpWrVqlYtHBwAALiRnzwMkzgUAAAAAAAAAAADQfdXU1Ki6urpTbUpKSpSWlqbs7GwlJSVpwYIFMplMne47JCSk020AAABw8UQnRit8UHib5Zffcrmy/1+2JOnA6gMadccol4/BarUq68UsSdKgqwap34h+Ler4+vkqYW6CMp/N1IGPD6h4V7GiE6Lt6hz+7LCKthZJksY9OK7VvmInx6rv0L4qyyvTF7/+QiNuGeHivbnwSLDAReXsRd3SpUs1d+5cbd++XcnJyVq8eDEXiAAAeJiuvHdzLgAAAAAAAAAAAIDuauTIkV1qn56ervj4eKfaWq3WLvUNAACAC+eW5bcoOCLYYZ3eg3vbtisKKi7IOAq3FKryWKUkKe76uDbrxafGK/PZTElS7orcFgkWe1ecX2FjyPVD2owz5PohKssrU/HOYpUdLFPfS/t2ZfgXnccnWJSWlur111/XqlWrdOTIEfn7++uyyy7T7NmzlZaWJn9//y73sX//fv3lL3/R+vXrlZ+fr7q6OvXp00ejR4/WzTffrPvvv19BQUEu2Bu0xWQyad26de4eBgAAcBPOBQAAAAAAAAAAAAAAAAB4krjr2k5mOKeuvM627Rfi16G4FrNF5nqz/EM6dp98fka+bTs6MbrNeqYEkww+BlktVrs25xzJOCJJCuwdaJcY8m3RY8/3kZ+RT4LFxbRt2zb94Ac/0PHjx5WamqqHH35YtbW1WrJkiR599FEtXrxYH3/8sS655BKn+/jzn/+sxx57TI2NjUpMTNQTTzwhk8mkffv2adGiRcrIyNAbb7yhdevWaciQtjNxAAAAAAAAAAAAAAAAAPQ8e/fu1eDBgzvVZubMmcrIyFBTU5N8fX01ZcoUrVq16gKNEAAAAN3V6fzTtu3B17R9Tnli7wn9885/qiCrQGf+e0bWJqv8gv0UMyFGo+8erYQ5CfIx+rTa9uSek7bt8IHhbfZhDDAquF+wqkuqdXLvSbuyxtpGnT58dqxhA8Mc7lPzPk7sPeGwbnfksQkWBQUFmj59uk6ePKmf/vSnevXVV21lP/7xj/W9731PmZmZ+v73v69NmzYpICCg03385z//0Y9+9CNJ0p133qklS5bIaDz/J3v88ceVnJysAwcOaPr06dq1a5f8/DqWOQQAAAAAF0N1dbVT7UpKSpSWlqbs7GwlJSVpwYIFMplMnY4TEhLiVP8AAAAAAAAA0Fnu/Dy0pqbGqb7RMwQHB3f68/ClS5dq7ty52r59u5KTk7V48WI+UwcAAPBC+1ftlyQZA41KnJvYZr0v//ClIoZF6MofXanIyyPVVN+koxuPKmdhjvIz8pXzVo5u+/A29erfq0Xb8iPltu0Qk+NzzlBTqKpLqlVfWa/a07UK6hMkSaooqJDVYrXVcaR5HxVHKhzW7Y48NsHiySef1MmTJzVo0CD97ne/sysLCAjQwoULddlllyk7O1tvvvmmfvazn3W6j9///veSJD8/P73++ut2yRWSNHjwYD377LN69NFHtW/fPv3rX//SrFmznN8pAAAAAHCx0FDHF7UdkZ6ervj4eKfaWq3WLvcPAAAAAAAAAB3h7s9Dgc4wmUxat26du4cBAAAAN6o+Ua1vPvpGkjTxiYnqdUnL5IhzLr/lct38t5tlDDh/P/uIW0co8b5ELZm8RIVbCrV8xnLdv+l+uzqSVH+m3rZtDHScPmAMOl/ecKbBlmDRcKahwzH8gs4vWNC8b0/hkQkWeXl5WrFihSTpnnvuaXV1ivj4eF133XX67LPP9NJLL+nRRx9tkSDRnu3bt9tiRUZGtlrnyiuvtG1/+eWXJFi0Y/mM5W7tf/bq2W7tHwAAAAAAAAAAAAAAAAAAAIBnMdeb1VTfZHvcPOHAWelPpstcZ1b/cf11zbPXtFonLCZMj+Y/ql4DesnXz7dFef+x/XXN/12j9CfSdTz7uL5a8JUmPDrBfuy1Ztu2r3/LGM01L2+saTy/XdvYap3OxPAUHplgsXLlStssqNdff32b9VJTU/XZZ5/p5MmTWr9+vcO6rWloOHvgBwUFtVknODjYtu3sUpMAAAAAcKFUVVU51W7mzJnKyMhQU1OTfH19NWXKFK1atcrFowMAAAAAAAAA13Hn56FFRUW67LLLnOofAAAAQPeX9WKWNjy/wfa4QhVdirf7/d3a9d4uhUSF6LZ/3tZi1YlzfIw+6h3b22GssfeNVfqT6ZJV2vnuzhYJFs1XpWhqaPp2czvNy/2Cz69E0XxVCmdjeAqPTLDIyMiwbScmJrZZb+zYsXZtOptgkZCQoG3btungwYMym82troCxb98+2/bQoUM7FR8AAAAALrSQkBCn2i1dulRz587V9u3blZycrMWLFzsdCwAAAAAAAIB3cHZiypKSEqWlpSk7O1tJSUlasGCBTCZTp+O48/PQ5hN0dtSpA6e0490dOvjJQVUWVqqxulEhphCFDwrXwKsGasj1QzTkO0PabH9s8zFte3ObCrIKVH2iWiH9QhQzMUbJjyQrdnJsh8ZgMVuUvTBbX7//tUr3l8pcb1b4oHBddtNlmvDoBIVGh3Z6vwAAAICeaNL/TNLExyfaHhcVFenVEa86FevoxqNa/eBqBYQF6M61d7abQNGeoL5B6jOkj04fOq2Sr0vUUNUg/1B/W3lArwDbtrnO3FqI8+XNVrvw7+Xf6nZ7MZqvdtG8b0/hkQkWe/bskST16tVL4eHhbdYbOHCgbXvv3r2d7uepp57SrbfeqjNnzuhPf/qTHnvsMbvypqYmvfTSS5Kk0NBQ3XXXXZ3uAwAAAAC6I5PJpHXr1rl7GAAAAAAAAAA8SGho12/GT09PV3x8vFNtrVarU+3c8Xnoxl9v1MZfbVRIVIhG3j5SEcMiZK4zq2hrkfb+Y68KvihQzsIcPVX6VKvtN7ywQRue3yBjoFFj541V1Kgole4rVc7CHOWuyFXKkylK/X2qwzHUlNZo2fRlKtpapMjhkbrq6avkH+qvvDV52vS7Tdrxzg7dtvI2Db5m8IX4EwAAAAAexRhgtFtlwr/S30HtthVtK9LyGcvl6++ru/9zty5JusQl4wuJCtHpQ6clq1RVUqW+oX1tZb1je6twS6EkqbqkWmEDwtqMU1VydmXAgLAABfUJsv0+fFC4DD4GWS1WW522VJecT74Pj237Xv/uyuMSLOrr61VcXCxJ7c5W0Lz8yJEjne7rlltu0ZIlSzR//nw9+eSTKioq0m233aaoqCjt379fL7zwgnbs2KHIyEgtW7ZM/fv373QfAAAAAAAAAAAAAAAA8B7pT6dr8+83a9Qdo/T9d74vv2A/u/Ix94zRshuWtdn+qwVfaf1z62UMNOqejHsUMz7mfNs5Y7To6kXa/PJmhUSFKOWJlFZjWMwW/X3m31W0tUgDUwZqzmdz5Bd0dhzJjyTr82c+V9aLWfrgpg80b9s8RQyNcMGeAwAAAN7tv9n/1ftT35fVatWcT+coZkJM+406yGo5n3Du4+tjV9ZvVD/bdsWxCvUf1/o97+Z6s2pO1pxtM7KfXZlfkJ/6DOmjsoNlqjxW6XAslYXny6NGRnVsB7oRn/ardC9nzpyxbQcGBjqsGxR0PmumebvOuOeee3Tw4EHdc889eu211zR+/HjFxcXpe9/7ng4fPqxf//rX2r17t1JTHWf9AwAAAAAAAAAAAAAA9GRVVVVO/aSmpsrX11eS5Ovrq9TUVKfieIKDnxzU5t9vVr+R/fSD937QIrlCki6deqmGpA5RcERwi7Lqk9VKfzJdkjT+0fF2yRWS1H9sf1tSReb/Ztrd2NRc9sJsFWQVSAZpxsIZtuSKcyY/P1l9L+2ruvI6ffr4p87sKgAAAIBmju84rqWpS2UxW3T3J3d3OLli4683av9H+9utV1V89prI4GNQSFSIXVnclDjbdvHO4jZjlOwqsSVqNG9zTuyUWElSXXmdyo+WtxnneM7xVvv2FB63gkVtba1t29/f8dIqzctramqc6u+9997TU089pZKSEt1yyy36wQ9+oL59++ro0aN699139dprr6m8vFzPPvuswsM7toRJrblWVebzF/Z+Pn7y8215wQzXM5vN7h6C25jNZlksFq/+G8C9OAbhbhyDcDeLxeLuIcCN3HkNwP899+G9BxwD4Bjwbjz/4BrAu9U01SjAHGB7zPcAF0+dua5D9awGq+oa61TbVCuD1aCK+got2r1I+RX5iguP031j7lN4QOeXrg80Op4cDJ1nNVhllVVWg1UW8b+1O+O56h46ev7J+arn8LTnKiAgoP1KrVi0aJEeeOABffXVV7riiiv0zjvvOBXLnX+njvRttVr1yU8/kSRN+vkk+fr5tln37k/ubvX3W1/fqoaqBknSuHnjWq0zbt44bXhhg8x1Zm3+42ZNe3Vai3FkvZglSRp01SD1G9GvRQxfP18lzE1Q5rOZOvDxARXvKlZ0QnS7++itKioqVFZWZnscEBDg9OsBnsVicO68x5XnTp7yHgHX8LRzA3QfHDtwFsdO2zrzNynZXaKlqUvV1NCkuz+5WwNTBraos/759Tqw+oAe+uohu99n/m+m4qfGa/hNw9uMf+b4GVUcrZAk9R/Xv0Uid8yEGIXFhKmysFL5n+dr8nOTW41z+LPDtu0Rs0a0KB85a6Ry3sqRJOV/nq+x949tNU7+5/mSpOjEaPW9tG+b4+6uPC7BovmqFA0NDQ7rNi8PDm6Z1d+e1157TY899pgk6S9/+Ysefvhhu/KHHnpId955p/7whz/oo48+0vr163XJJZe0G/fp9U/bPZ42bppuuOKGTo8PnZeVleXuIbiNxWJRQUGBJMnHx+MWr0EPwDEId+MYhLudOnXK3UOAG7nzGsCbz4HdjfcecAyAY8C78fyDawDvxvcA7vOTt37S5Rh7SvfoZxk/c6rtGw+90eX+Yc8qq2p71apMZTLI4O7hwAGeq+6ho58Fcb7qObzpufr5z39u287Ly1NeXp4bR9N5zW+ub8vRjUd16ptTMvgYNGzGMKf6yV2ZK0nqHdu7zRuVwmLCFDk8UqX7SrVv5T5NfWWqDIbz/5sLtxSq8tjZlS3irm97Ntn41HhlPpt5tt8VuSRYOJCYmGj3+N5779XcuXPdMhZcXGX923/tt8aV5058F+RdvOncAK7FsQNncey0rSPXAJJ0Ys8Jvfed92SuNeuudXdp0KRBrdYrzy/X8ezjrZYd23xM9ZX1CghrPYn3qwVf2bbHPdQyEdtgMGjSM5O09pG1KsgqUOn+UkUOj7SrYzFbtHPxTknS0BuHtnr+P+T6IRowfoCKthYp5+2cVhMsjm48qlMHzn5HcvUvrm51vN2dxyVY9OrVy7ZdV+d4FqLmq100b9cRhYWFeuqppyRJkyZNapFcIZ1dlnLBggVas2aN8vLy9MADD2jdunXtxn5p8kvqE9jH9tjPx09+x5m56mKYNGmSu4fgNucy5VJSUmQ0etxLHz0AxyDcjWMQ7nbuYhPeyZ3XAN58DuxuvPeAYwAcA96N5x9cA3g3vgfwXn2Pe95sbN2d1WBVmcrUt7ivDFZu2u/OeK66h45+FsT5qufgufIchYWF7dY5lxwRPjhcgeHnV76yWq1qqGqQf6i/XSLEt1UWVerUN2dvVIpOdJzs0H9sf5XuK1VlYaXK8soUMSzCVpafkW/bdhTHlGCSwccgq8Vq1wYt7dy5UwMHnp+FmBUsvEfRK0VOtXPluRPfBXkXzg3gLI4dOItjp20duQY4mXtS733nPdWU1uia/7tGVotVR9YfabVuVXFVm3EazjRo9UOrNfO9mfL1t18J79Cnh7TppU2SpMHXDNbY+1pfVSLpwSTtWbZHBVkFWv3gat396d3yCzr/ufX6X65XWV6ZAnsHauqrU9scy41/uVHvTnpXhV8Watub23Tlj660ldWV12nt/LWSpGHTh2nErS1XwfAEHnekBwQEKDo6WsXFxSopKXFYt3l5bGxsp/pZsWKFGhsbJUkzZ85ss16fPn00efJkrVmzRp988okOHTqk+Ph4h7GDjEEKNYba/9LaqeHBSd7+z93Hx0dGo9Hr/w5wH45BuBvHINyJLH7v5s5rAP7nuRfvPeAYAMeAd+P5925cA3i3YN9gvgdwk3envduhehaDRaejT6tPcR/5WH30ylevKPdUrixWi3wMPhoRMUKPX/F4p/v3sfLadzWLLDLIIIPVwN+3m+O56h46c+7J+arn4LnyDB15fo5/dXY22vBB4bJarNqxaId2vL1D//3qv7KYLfIx+qh/Un8l3JOgcQ+Ok6+f/Y1TJ/acsG2HDQxz2Ffz8hN7T9glWJzcc9K2HT4wvO19CjAquF+wqkuqdXLvyTbrQQoPD1ffviTbeiNnz3tcee7E+4P34dwAzuLYgbM4dlrX3t/DXGfWe995T9UnqiVJG1/YqI0vbOx0P6YEk0p2lWjv3/fqePZxjbxjpPoM6aPG6kYdWX9E+z7cJ1mlS793qW7+283yMbZ+buFj9NHtq27XsunLVJBVoLeS3lLifYnyD/FX3to85a3JU3BksGatnKWIoRGtxpCk/uP6a9Y/ZunDuz7Uup+sU8EXBYqdEqvaU7XKWZij8iPlipsSp5uX3dzpfe0uPPJIHzVqlIqLi3XmzBlVVFQoPLz1i73mmUEjR47sVB8HDhywbQ8ePNhh3ebJGzt37mw3wQIAAAAAAAAAAACuF2gMbL+SziZYBPgFKNAYKB+rj+aPna8FOxfoUPkhxfeOV1piWodjAQAAdFTJ12cnCrVarFr63aU6knlECXMTNPFnE+Xr76uCTQXa9qdtWjt/rXYv3a3Zq2crODLY1r78SLltO8QU4rCv5uXN23U2TqgpVNUl1aqvrFft6VoF9QlqZy8BAAAASGcTLBytStFRaTvTVLi1UPv/tV/HNh1Tzls5qj1dK18/X4VGh2r0naM1Zs4YXTr10nZjBUcG6/6s+5W9MFu7l+5W1otZaqpvUvigcKU8laIJP52gXv17tRtn2PRhStuVpi2vbVHemjx98+9v5Bfip6hRUbrm/65R4r2JMvh47gqnHplgMWXKFH322WeSziY0XHvtta3Wy8nJsWvTGc1nF7NaHU8rZbFYbNtNTU2d6gcAAAAAAAAAAADuFR4QrqfHP+3uYQBdVmeuc6pdRX2F3vn6HeVX5CsuPE4PjH5A4QFtz2jeGovB0n4lAOhBzPVmNdWfv0ek4UyDw/qNNY1qrG6UJBV8USBJuvUft2rkrPMThl72/cs04tYRWnzNYhVuKdTKO1ZqTvocGQyGFn0YAx3f8uMX5Nfm2OrP1Hc4jjHofHnDmQYSLAAAAIAOCuwdqOesz7kkVsz4GMWMj3FJLB+jj5IfTlbyw8lditM7tremvTZN016b5pJxdScemWBx66236he/+IWsVqs+//zzNhMsziVhREZGavLkyZ3qY8iQIbbtQ4cOOazbvHzQoEGd6gcAAAAAAAAAAAAAXOH+T+7vcow9pXv0WOZjTrV946E3utw/umb5jOUdqmcxWFTWv0xFrxTJx+rTfoMOmr16tstiAd1d1otZ2vD8BtvjClU4rF9fWW/3+NLvXWqXXHHOgOQBuuKRK7TllS3K/zxfB1Yf0GXfv0yS1FjbaKvn6+/rsL/m5Y01jXZl5lqzS+IAAAAAQE/kuk9KLqKhQ4dq1qxZkqSlS5eqoaHlLACHDx9WRkaGJOnpp5+W0WifS7Jnzx4NGzZMMTEx2rhxY4v2N954o20GgBUrVrQ5lpKSEm3YcPaCOSoqSsnJXcvmAQAAAAAAAAAAnq3eXK86c12nfkqqS/TbLb/Vg/95UL/d8luVVJd0OoazM9cDAACg8yb9zyT9vOLntp8f5f7IYX1Lk/1KPyNmjWiz7qg7Rtm2d7+/27bdfFWKpoYmOdK83C/Yz66s+aoUXYkDAAAAAD2RR65gIUkvv/yyMjMzdeTIET3zzDP6wx/+YCurr6/XQw89pKamJiUlJelHP2p5Efub3/xGeXl5kqSf//zn2rx5s1358OHD9cADD+jtt99Wdna2fvOb3+gXv/iFXZ36+nrNnTtX9fX1tpi+vo4z+wEAAAAAAAAAQM/2xIYnutS+K7PHL5u+rEt9A/Bs705716l2r3z1inJP5cpitcjH4KMRESP0+BWPdyqGxWBRjWqc6h8APJExwChjwPnbbvwr/R3WD+gVYPfYNNrUZl3TGJNkkGSVirYVne+j1/k+zHXmVlqe13y1i+btvj2W9uI0X+3i23EAAAAAoCfy2ASLQYMGafXq1Zo5c6b++Mc/as+ePfr+97+v2tpaLVmyRF9//bUSExP173//W4GBgS3aWyznZwawWq2t9vHnP/9ZtbW1+tvf/qZnn31W//nPf3TTTTepb9++Onr0qJYuXarDhw/LaDTqV7/6lebNm3fB9hcAAAAAAAAAAKA9zq5iUVFfoXe+fkf5FfmKC4/TA6MfUHhAeKfjBBpbficD4OJx9jU4f+x8Ldi5QIfKDym+d7zSEtM6HYsEC6B7qK6udqpdSUmJ0tLSlJ2draSkJC1YsEAmU9sJAG0JCQlxqn9v4B/qL19/X9uKEIF92v4/awwwyj/UXw1nGlR94vxz2ju2t227usTxc928vHm7c48LtxTa6oUNCGszTlVJlSQpICxAQX2CHPYJAAAAAD2BxyZYSNL48eO1e/duvfbaa1q1apWeeuop+fn5adiwYXrttdf08MMPy9+/9ez5X/ziF8rJyVFtba1eeumlVuv4+/vr/fff1w9/+EMtXrxYX375pX75y1+qtrZWvXr1Unx8vH72s5/pwQcf1GWXXXYhdxUAAAAAAAAAAHiIP1z7B/UN6tupNq6YPV6S7v/k/k63+TZW0AC8T3hAuJ4e/7S7hwF02fIZy93a/+zVs93avySFhoZ2OUZ6erri4+OdatvWBJeQDD4GRV4eqZJdJZIkS6PFcQPr+XbnRI2Ksm1XHqt02Lyy8Hx51Mgou7J+o/rZtiuOVaj/uP6txjDXm1Vz8mzyXL+R/VqtAwAAAAA9jUcnWEhSZGSkfv3rX+vXv/51p9qNGTNGeXl5Hap79dVX6+qrr3ZmeAAAAAAAAAAAwMsEGAM6PfO7K2aPBwAAQPc24MoBtgSLquIqRQ6PbLVeY02jGqobJEm9Lull+33YgDBFDIvQqQOnVLyz2GFfx3OOn20TE6a+Q+2Tf+OmxClTmZKk4p3FGn7T8FZjlOwqkdVitbUBAAAAAG/g8QkWAAAAAAAAAAAAns5Vs8e/O+1dp9q5agUNAADgXlVVVU61mzlzpjIyMtTU1CRfX19NmTJFq1atcvHoMOLWEcpZmCNJKtpepNjJsa3WO77juG0Fi8HXDraPMWuEvvjNFyo/Uq7Th0+rz5A+LdpXFlWqdH+pJOnyWy+XwWCwK4+ZEKOwmDBVFlYq//N8TX5ucqvjOPzZYbt+AQAAAMAbkGABAAAAAAAAAADQQzi76oWrVtCoM9c51X9FfYXe+fod5VfkKy48Tg+MfkDhAeGdjsOqHwAAd1o+Y7nLY1oMFpX1L1PRK0Xysfq0W3/26tlO9bN06VLNnTtX27dvV3JyshYvXqyQkBCnYqFtQ64fIlOCSSW7SvT1+18r5YmUFskPkrR76W7bdvLDyXZl438yXltf36qGqgblvJ2j7/z2Oy3a73hnh2SVjIFGpfwspUW5wWDQpGcmae0ja1WQVaDS/aUtVtOwmC3auXinJGnojUMVnRDtzC4DAAAAgMchwQIAAAAAAAAAAMDLuWoFjfs/ub/LMfaU7tFjmY851XbZ9GVd7h8AAGddiERDi8Gi+sZ61ZnrOpRg4SyTyaR169ZdsPg4y+Bj0I1/uVFLrluikt0l2virjbr2/661q3Po00NnEyQkTXhsgvqP629XHhIVotSXU7Xm4TXa8uoWDZ85XAOSB9jKi3cVa9PvN0mSrvvVdQqLCWt1LEkPJmnPsj0qyCrQ6gdX6+5P75ZfkJ+tfP0v16ssr0yBvQM19dWpLtl/AAAAAPAEJFgAAAAAAAAAAAAAAAB0kbsTDSXpPt3X5THgwhqYMlC3/v1WrbpnldY/t14FXxRo2PeHyRho1LFNx7T7/d2yNlk1/tHxSn05tdUYV6RdoaqSKm18YaOWXLdE4+aNU7+R/VS6v1Q5C3PUWN2oiU9MVMoTLVevOMfH6KPbV92uZdOXqSCrQG8lvaXE+xLlH+KvvLV5yluTp+DIYM1aOUsRQyMu1J8DQA9QXV3tVLuSkhKlpaUpOztbSUlJWrBggUwmU6fjsOISAABwNRIsAAAAAAAAAAAA4BLvTnvXqXavfPWKck/lymK1yMfgoxERI/T4FY+7eHQX3oWYubyzAo2BTrUDAAAXz/AfDNf83Pna8voWHVx7UBnPZMjSZFGv/r2UMCdBVzxyhd2qFK2Z/NxkxafGa+sbW5W7Mlc1f61RcGSw4r8br+T5yYq7Lq7dcQRHBuv+rPuVvTBbu5fuVtaLWWqqb1L4oHClPJWiCT+doF79e7lqtwH0UKGhoV2OkZ6ervj4eKfaWq3WLvcPAADQHAkWAAAAAAAAAAAAcAlnb+6fP3a+FuxcoEPlhxTfO15piWkemSjQHWYuXzZ9WZfHAABwzoVINLQYLDodfVp9ivvIx+rjyuHCzcJiwvTdl7+r7778XadjDEwZqIEpA7s0Dh+jj5IfTlbyw8ldigMAAAAA7lCyu0Sh0aEKiXLdqlYkWAAAAAAAAAAAAMCtwgPC9fT4p909DAAAuuRCJBpaDBYF+AUo0BhIggUAoFuqqqpyqt3MmTOVkZGhpqYm+fr6asqUKVq1apWLRwcAADzRR/d/pKQfJilmfEy7df9xyz90+vBpDf/BcM18f6b8gvy63D8JFgAAAAAAAAAAAIALXIiZywEAPR+JhgAATxYS4txs0UuXLtXcuXO1fft2JScna/HixU7HAgAAPcvOxTs15PohHUqwuPR7l+pw+mHt/9d+Zb2YpeteuK7L/ZNgAQAAAAAAAAAAALjAhZi5HAAAAAB6IpPJpHXr1rl7GAAAwMN9743vSZL+Ofufyl2RS4IFAAAAAAAAAAAA4OmYuRwAAAAAAAAAnBc7JVbf/Psbl8TycUkUAAAAAAAAAAAAAAAAAAAAAACArjJ0vKq53qyD6w7K19/XJV2zggUAAAAAAAAAAADQQ9SZ65xqV1FfoXe+fkf5FfmKC4/TA6MfUHhAeKfjBBoDneofAAAAAAAAgPfZ8voWbX19a4vf/+en/1HGLzLabW9ptKj6RLUsZovivhPnkjGRYAEAAAAAAAAAAAD0EPd/cn+XY+wp3aPHMh9zqu2y6cu63D8AAAAAAAAA71BXXqfyI+Utfl99slo62fE4/iH+mvz8ZJeMiQQLAAAAAAAAAAAAAECP4O2ruHR0/y0Gi+ob61VnrpOP1cdl+w8AAAAAANAZ0YnRSrw30e53O5fs1OCrB6vPkD6OGxskv2A/RQyL0IhbR6jXJb1cMiYSLAAAAAAAAAAAAIAe4t1p7zrV7pWvXlHuqVxZrBb5GHw0ImKEHr/icRePDrjwvH0VF3fv/326r8v9AwDQGctnLHf3EAAAANAFw28aruE3Dbf73c4lO5X0wySNvnO0W8ZEggUAAAAAAAAAAADQQzg7e/78sfO1YOcCHSo/pPje8UpLTHP7TPwAAAAAAAAAvE/stbEKMYW4rX8SLAAAAAAAAAAAAAAvFx4QrqfHP+3uYQBd5u2ruHR0/y0Gi05Hn1af4j7ysfr0mP0HAAAAAACe797Me93aPwkWAAAAAAAAAAAAAIAewdtXcenomC0GiwL8AhRoDJSP1cdl+798xvJOtwEAAAAAAOiqw58d1he//UL3ZnQ9OYMECwAAAAAAAAAAAABwgTpznVPtKuor9M7X7yi/Il9x4XF6YPQDCg8I73QcT0wI6C68fRUXV+0/rwEAAAAAAOAOVSVVOrrhqEtikWDhZfhACwAAAAAAAAAAAD2Vu78Lu/+T+53qv7k9pXv0WOZjTrVdNn1Zl/sHuoLXAAAAAAAAcJWmhiYVZBXo5L6Tqq+ol8VsabNuya4Sl/VLgoWX4QMtAAAAAAAAAAAA9FTu/i4MAAAAAAAAQNflvJOjz576THXlzk2o0hUkWAAAAAAAAAAAAACAC7w77V2n2r3y1SvKPZUri9UiH4OPRkSM0ONXPO7i0QEXHq8BAAAAAADQVftW7dPqB1d3up3BYHBJ/yRYeBk+0AIAAAAAAAAAAEBP5e7vwgKNgU71P3/sfC3YuUCHyg8pvne80hLTnI4FuJO7XwN1Zudmtayor9A7X7+j/Ip8xYXH6YHRDyg8ILzTcXjdAgAAAADQdVte2SJJGn3naI19YKz6jeinoD5B8vX3bbPN7vd361/3/ssl/ZNg4WXc/YEWAAAAAAAAAAAAcKF46ndh4QHhenr80xetP6C7cdVr4P5P7u9yjD2le/RY5mNOtV02fVmX+wcAAAAAwNuV7C7R5TMv183v39zxRgbJarW6pH8SLNAhfKgLAAAAAAAAAACA9rh69niLwaL6xnrVmevkY/VpN46zSRF8FwYAAAAAAAB0D1aLVZd+79JOtbl85uUalD/IJf2TYAEAAAAAAAAAAADAJZg9HoA7vTvtXafavfLVK8o9lSuL1SIfg49GRIzQ41c87uLRXRzLZyx3a/+zV892a/8AAAAAAM8XMSxC5npzp9r4Bfup9+DeLum//WleAAAAAAAAAAAAAAAAurlAY6BTP/PHztfoyNEK9QvV6MjRmj92vlNxAAAAAABA1yXel6j9H+7vVJvCLYX66P6PXNI/K1gAAAAAAAAAAAAAcAlXzx5vMVh0Ovq0+hT3kY+VueMAXBjhAeF6evzT7h4GAAAAAACQlDw/Wfmf52vN/DVKfSlV/qH+7bYpO1SmXUt26aZ3b+py/yRYAAAAAAAAAAAAAHAJZ2dwnz92vhbsXKBD5YcU3zteaYlpCjQGymKwKMAvQIHGQBIsPEB9Y73qzHWdfq4q6iv0ztfvKL8iX3HhcXpg9AMKDwh3agysIgAAAAAAAODZNv5qo0wJJu14Z4d2v7dbg68drIjLIhTQK0AGH0OrbUp2lbisfxIsAAAAAAAAAAAAALgVs8f3DE8uerLLMfaU7tFjmY853X7Z9GVdHgMAAAAAAADcZ/0v18tgOJtIYbVadXDdQR1cd/Ci9U+CBQAAAAAAAAAAAAAAAAAAAAAA6BasVmur246cS8roKhIsAAAAAAAAAAAAAABd9vJ9L6tPcR/5WH061e6Vr15R7qlcWawW+Rh8NCJihB6/4vELNEoAAAAAAAB0dze/f7NG3zm6w/V3v79b/7r3Xy7pmwQLAAAAAAAAAAAAAECXBfgFKNAY2OkEi/lj52vBzgU6VH5I8b3jlZaYpkBj4AUaJQAAAAAAAHocQ8dXumgPCRYAAAAAAAAAAAAAALcJDwjX0+OfdvcwAAAAAAAA0A3MWDhDMRNjOtUmPjVe92be65L+SbAAAAAAAAAAAAAAAAAAAAAAAABuN+6BcZ1uExIVopCoEJf037m1WQEAAAAAAAAAAAAAAAAAAAAAALqJwq2FWv3QapfEIsECAAAAAAAAAAAAAAAAAAAAAAB4pLKDZdrxzg6XxDK6JAoAAAAAAAAAAAAAAAAAAAAAAEAXHN14tNNtSveVuqx/EiwAAAAAAAAAAAAAAHCBOnOdU+0q6iv0ztfvKL8iX3HhcXpg9AMKDwjvdJxAY6BT/QMAAAAAAHQXiycvlsFgcFv/JFgAAAAAAAAAAAAAAOAC939yf5dj7Cndo8cyH3Oq7bLpy7rcPwAAAAAAgLtZrdZOt3FVUgYJFgAAAAAAAAAAAAAAAAAAAAAAoFu4+hdXa8j1Q1otszZZVV9Zr9JvSnXg3wdUUVChqa9OVXC/YJf0TYIFAAAAAAAAAAAAAAAu8O60d51q98pXryj3VK4sVot8DD4aETFCj1/xuItHBwAAAAAA4Bn6Xd5PsdfGtltv0tOTtPv93cr8v0zN2zLPJX2TYAEAAAAAAAAAAAAAgAsEGgOdajd/7Hwt2LlAh8oPKb53vNIS05yOBQAAAAAA4Mm+96fvacCVAzpcf8zdY3T4s8Pa+JuNSn0ptcv9k2ABAAAAAAAAAAAAAIAbhQeE6+nxT7t7GAAAAAAAAG535fwrO91m0NWDtOl3m1ySYOHT5QgAAAAAAAAAAAAAAAAAAAAAAABu0FjdqMrCSpfEYgULeJXlM5a7tf/Zq2e7tX8AAAAAAAAAAAAAAAAAAAAA6CmaGpu0e+lu+ffyd0k8EiwAAAAAAAAAAAAAAAAAAAAAAIDbHd14tN06TY1NqiuvU+m+Uu1Zvkel+0s1/AfDXdI/CRYAAAAAAAAAAAAAAAAAAAAAAMDtFk9eLIPB0OH6VqtVfkF+uva5a13SPwkWAAAAAAAAAAAAAAAAAAAAAACgW7BarR2q5+ProyHfGaLvvPgdmcaYXNI3CRYAAAAAAAAAAAAAAAAAAAAAAKBbuPoXV2vI9UPaLPcx+igwPFB9L+0rY6BrUyJIsAAAAAAAAAAAAAAAAAAAAAAAAN1Cv8v7KfbaWLf0TYIFAAAAAAAAAAAAAAAAcIEtnrxYRzccbbeeX4ifnql6xmGdY5uPadub21SQVaDqE9UK6ReimIkxSn4kWbGTYzs0HovZouyF2fr6/a9Vur9U5nqzwgeF67KbLtOERycoNDq0Q3EAAAAAwJWufe5amcaY3NY/CRYAAAAAAAAAAAAAAACAh9jwwgZteH6DjIFGjZ03VlGjolS6r1Q5C3OUuyJXKU+mKPX3qQ5j1JTWaNn0ZSraWqTI4ZG66umr5B/qr7w1edr0u03a8c4O3bbyNg2+ZvBF2isAAAAAOGvyc5Pd2j8JFgAAAAAAAAAAAAAAAMBFcEnyJZr53kyHdQw+hjbLvlrwldY/t17GQKPuybhHMeNjbGVj5ozRoqsXafPLmxUSFaKUJ1JajWExW/T3mX9X0dYiDUwZqDmfzZFfkJ8kKfmRZH3+zOfKejFLH9z0geZtm6eIoRFO7CkAAAAAuE7NqRqdPnRadRV1CgwPVJ/4PgqOCL4gfZFgAQAAAAAAAACAG9SV1+nAmgPK/zxfxTuKdTr/tBqqGuQf6q+IoRGKuz5OyQ8nK3xQeLuxjm0+pm1vblNBVoGqT1QrpF+IYibGKPmRZMVOju3QeCxmi7IXZuvr979W6f5SmevNCh8UrstuukwTHp2g0OjQDsUpP1quLa9t0cG1B1VxrEL+of6KGhmlhHsTlHBPgsObxQAAAICezi/YT5HDI51qW32yWulPpkuSxj863i65QpL6j+2vlCdStOH5Dcr830yNumOUwmLCWsTJXpitgqwCySDNWDjDllxxzuTnJyt3Ra7KDpbp08c/1ezVs50aLwAAAAB01c4lO7X19a0q2VXSosyUYNKEn05Qwj0JLu2TBAsAAAAAAAAAAC6yY5uPacmUJWqqb5IM0uUzL9eo2aMUEBagsoNl2vXeLm363SZte2Obblp0k0beNrLNWBte2KANz2+QMdCosfPGKmpUlEr3lSpnYY5yV+Qq5ckUpf4+1eF4akprtGz6MhVtLVLk8Ehd9fRV8g/1V96aPG363SbteGeHblt5mwZfM9hhnANrDujDOz9U/Zl6jbh1hCY8NkE1p2qUszBHH933kXa/v1u3r7pdAb0CnPq7AQAAAN5s6+tb1VDVIEkaN29cq3XGzRunDS9skLnOrM1/3Kxpr06zK7darcp6MUuSNOiqQeo3ol+LGL5+vkqYm6DMZzN14OMDKt5VrOiEaBfvDQAAAOAdakprtHfFXh36zyEV7yhWVUmVDD4GhZpCNeDKARp992gNmz5MBkP7kxN502RLDdUNWjFrhQ7955Cks9cy31ayq0Qf3feR9nywR7etvE1+wX4t6jiDBAsAAAAAAAAAAC6y+sp6NdU3yeBr0F3r7lJ8arxd+TXPXqNF1yzSia9PaNWcVYoaHaV+l7e88emrBV9p/XPrZQw06p6Me+xmsB0zZ4wWXb1Im1/erJCoEKU8kdLqWCxmi/4+8+8q2lqkgSkDNeezObYZbJMfSdbnz3yurBez9MFNH2jetnmKGBrRapzjOce1YtYKmWvNmvraVE14dIKtLPmRZC26epHyP8/Xh3d+yAy4AAAAgBNyV+ZKknrH9lbfS/u2WicsJkyRwyNVuq9U+1bu09RXptrdqFW4pVCVxyolSXHXx7XZV3xqvDKfzTzb74pcEiwAAAAAJ3z6xKfa/uftMteZFdwvWKPvGq2IoRGyWq06knlEuStztfcfexU3JU6zVsxSUN+gNmN522RL/5z9Tx385KCksysBmkabFBYTJmOQUeZasyoLK3Vizwk1VDfo0H8O6Z+z/6k7PrrD6f6aI8ECAAAA6IasVqu2/3m7Pvv5Z2qsbtS9mfe2m2lefqRcr8e93qH4yfOTdcObNzis4ykZ6wAAAIAnS5yb2CK5QpICewcq9eVU/W3a39TU0KSct3M09Y9T7epUn6xW+pPpkqTxj463S66QpP5j+yvliRRteH6DMv83U6PuGKWwmLAWfWUvzFZBVoFkkGYsnGFLrjhn8vOTlbsiV2UHy/Tp45+2mRyx5pE1MteaNWD8ALvkCkkK6hOkG968QUuuW6IDHx9Q7j9zNeKWEe3+fQAAAICerv5MvfxD/Nv9rLyyqFKnvjklSYpOdJzs0H9sf5XuK1VlYaXK8soUMex8knR+Rr5t21EcU4JJBh+DrBarXRsAAAAAHbf7/d0y15k1+NrBuuOjOxQYHmgru3L+lTrw8QF98IMPlJ+Rr+Uzluu+L+5r9drA2yZb+mb1Nzrw8QH16t9L1//+eo24dYSMAS3THsz1ZuWuzNVnT32mAx8f0IGPD2jY9GFO9dmcT5cjAAAAAHCpskNlWjJ5idb9eJ0aqxvdMoaa0hq9O+ldrX1krWrLanXV01cp9fep6hPXR5t+t0l/HfNXHd14tN04B9Yc0IIxC7T19a0yJZg09ZWpGv/oeJ3OP62P7vtIS7+7VPVn6i/CHgEAAADdS2DvQA0YP0Ajbm07yeCSpEts26X7SluUb319qxqqGiRJ4+aNazXGuHnjJINkrjNr8x83tyi3Wq3KejFLkjToqkHqN6LlKhm+fr5KmJsgSTrw8QEV7ypuUefwZ4dVtLXobJ8Ptj6W2Mmx6jv07Cy7X/z6i1brAAAAAD1dY02jNrywQX8d81f9NuS3+l3Y7/Qrv1/pzyP+rE+f/FRn/num1XYn9pywbYcNbJk43Vzz8hN7T9iVndxz0rYdPjC8zRjGAKOC+wWfbbP3ZJv1AAAAADjmY/TRzPdm2iVXnDNs+jDb5/vHNh/T3n/sbVGno5MtSVLm/2aqsrCy1XF0ZLKlvpf2VV15nT59/NM296cjky1Jsk225IxdS3YpqE+QHvjyAY25a0yryRXS2euWMXeN0QNfPqDA3oHauWinU/19GwkWAAAAQDdhtVq17c1tWpCwQMU7ixUzIab9Rq2Y8tspmr9vvsOfa/73mjbbfztj/aGch3TVU1cp+ZFk3bnmTk36n0mqOVmjD276QKfyTrUZ51zGen1lvaa+OlWz/jFLV6RdoWt+cY1+uOOH6jeyny1jHQAAAPA2MRNiNG/LPF067dI26/gFn/9yo7UvD3JXnv1iondsb/W9tG+rMcJiwhQ5PFKStG/lPlmtVrvywi2Fqjx29suWuOvj2hxL81U2cle0/EJk74rzX/oMuX5Im3HOlRXvLFbZwbI26wEAAAA91X+3/1dZL2Zp0NWDdNOimzT749m6/vfXy9pk1Zd/+FJvDn9T3/z7mxbtyo+U27ZDTCEO+2he3rxdZ+OEms6uZF1fWa/a07UO6wIAAABoXXRitMIHtZ3cfPktl9u2D6w+0KLcGydbKtxSqMT7Ex3+3ZoLHxSuxPsTVbi10Kn+vo0ECwAAAKCb2PD8Bq378ToNmjRID+95WPFT49tv1Ipe/Xspcnikw59zX4q0xpMy1gEAAICerGh7kW07dkqsXVllUaVOfXM24Tk6MdphnP5j+59tU1ipsjz7pIb8jHzbtqM4pgSTbVny5m3OOZJxRNLZlTl6D+7dZpzosef7aC0OAAAA4CnM9WbVV9bbfhrONHSoXUhUiB7Kfkg3/vlGjbxtpIbdOEwpP0tR2u40DUkdooYzDVoxa4WObT5m1655fGNg67O3ntP8c/1vj6v5qtLtxTEGnS/v6P4BAAAAOO+W5bfo++9832Gd5p+pVxRUtCj3xsmWakprWk0CcaTf5f1UU1rT6b5aQ4IFAAAA0E1YrVbNeHuG7v7kbofLcl/oMXhSxjoAAADQU5nrzMp4JkOSFDU6qsWsVCf2nLBthw0McxirefmJvSfsyk7uOWnbdnQdYgwwKrhf8Nk2e0/alTXWNur04dMdGkvzPr49FgAAAMCTZL2Ypd+F/8728+aIN9ttc+sHt2r+/vmtfvZuDDDqB4t/IN8AXzU1NGntj9balTfWNtq2ff19HfbTvLyxptGuzFxrdkkcAAAAAO2Luy5OpjEmh3Xqyuts234h9pOgeutkS/6h/p1Olqg5VSP/UP9O99UaEiwAAACAbmLyLydr3AOtJyNcLJ6WsQ4AAAD0FOZ6s6pKqnQy96Ry3s7RW0lv6djmYxp520jd98V9LVaWKz9SbtsOMYU4jN28vHm7zsY5txJefWW9ak/X2n5fUVAhq8VqV6cjY6k40nImLgAAAMBTTPqfSfp5xc9tPz/K/VG7bUKjQxXUJ6jN8l6X9NKl0y6VJBXvKNbxHcdtZc2vCZoamhz207zcL9j+WqL5qhRdiQMAAADANU7nn7ZtD75msF2Zt062FDk8UnuW77F999Aeq8WqPcv22Fbx6CoSLAAAAIBuwmAwuDymxWxRQ3XHl+32tIx1AAAAoLsw15tVX1lv+2ms6tzsrnuW79Efo/+ov4z8i1Y/uFoNVQ26+W8365YPblFgeGCL+g1nzp/nGwONLcqba34jVvN2klR/pr7DcZrfiNU8jrNjad43AAAA4GmMAUYFhAXYfvx7uWam1EuuuMS2fWzzMdt28/jmOrMcab7axbfHFdAroMNxmq924ar9AwAAAGBv/6r9ks5+vp44N9GuzFsnWxr+g+Eq3lmsD+/+0G6Fj9bUVdTpw7s+VMnuEg2fObzTfbXG8TcdAAAAADzOib0n9M87/6mCrAKd+e8ZWZus8gv2U8yEGI2+e7QS5iTIx9h6rnVnM9arS6rdmrEOAAAAdBdZL2Zpw/MbbI8rfDr3hUH81HjNSZ+jhuoGleWV6etlX+vDuz7U+ufWa9rr0zT0hqF29ZvfMOXr7+swdvPyxhr7xI/mN0w5G8dVYwEAAAAghUSdvxGpqrjKtt07trdtu7qk2mGM5uXN2517XLil0FYvbEDbn+NXlZztPyAswOHKGwAAAIA3MNeb1VR/fpW3b09o5IzqE9X65qNvJEkTn5ioXpf0sivvDpMtnbsWuJiTLSU/kqytr2/V3r/vVd7aPA27cZguSb5EvQb8f+zdeVjU5f7/8dew7/tm4oK4L4kaiWSGpkcrra+mlVumaWmb7Z3qnLbTvpys0zl19NhippWmlamVK4qmGbgviYoiJigiIDvDzO8Pf44QwzIwisjzcV1c1z2f+77f73uYERlm3vftLWd3ZxmLjMpNy9Ufv/2h5KXJKs4tlndzb0XfF21zLmvsUmAxYMAAPfvss7r++uvtEQ4AAABAPfzy9i8KbB+oqx+4WkGdglRWXKYj644oaVaSUlanKGlmkm5bdJu8m3lXmmtrxXp+Rr6lYv3cC6qLWbEOAAAAXCr6Pt1XfR7tY7mdmpqqd7u9W+v53s28K/yO3uexPlr51EptfGuj5g2dp1s+uUVRE6Is/eXfnCgrKVN1yvc7ezhX6Cv/Rkld49hrLQAAAABk+fu6JDk4nt8sKaRriKWdezS32hi5aef7Q7qEVOgL7hpsaecczVGzns2sxjAWG1VwsuDsnC7BVscAAAAATUmljZZU/8+5rHhihYxFRjXr2Uz9/tavUn9T3WzJ2cNZd3x/h+ZcP0dF2UXa9eUu7fpyl9WxZrNZ7v7uGr1kdIX3K+rD+ra1Nlq7dq3S0tLsEQoAAABAPXW6tZOm7piqa568Rh2GdVDnkZ11w/s3aNLGSXL1cVXapjTNHzZfxuLKR3/Xp2LdWvtCV6wDAAAAlwonVye5+rhavpy96vdHfIPBoIFvDDz7YSeztHTa0gq717p4u1jaxqLKv9uXV/5Nj/LzJMnV27XWccq/AVM+Tl3XUj43AAAAcLn7fcnvWvfyOpnN5mrHlf+936vZ+U2MfJr7KLB9oCQpfVt6tTGOJx0/OyfcRwHtAir0RQyIsLSri5OxPcNS7FF+DgAAANBU9X26r/6a81fL1wN7HqhXvB1zd2j7nO3yDPHUbd/cJifXyp+xacqbLTXr0Uz3br1XbYe0ldlsrvKr3Q3tdE/SPQrrHlanPNbYpcBCku655x7deuut+vHHH2t8MQgAAABc7ozFRhXnFlu+SvNsr8a2lU+4j6anTNet82+1+qKrWY9m6vfc2Wr344nH9dtHv1VedyOrWAcAAAAuZwaDQd3GdpN09nf1nfN3Wvr8WvtZ2vkZ+dXGKd9ffp6tcfIyzn7Qy9XH1XKCnST5tvSVwcFQYUxt1uLb2rfasQAAAMDlZO83e7Xm72tq/L07bdP5DU5b9m1Zoa/zqM6Szp5GffrQaavzc4/lKnNfpiSp08hOMhgMFfrDY8LlE+4jSUpZlVLlOg6tPFQpLwAAANCU/XmjpT9vaGSLI+uOaMmUJXL1cdWYZWMq/e3+nKa+2ZJfKz+NXTZWD+5/UDf95ybFPBKjnpN7KuaRGN347xv1wO8PaMzSMfJr5VfnHNbYrcAiNjZWGzZs0E033aTWrVvrpZde0tGjR+0VHgAAAGhUEl5L0Ou+r1u+Puz+4QXP6eDkIL/WfnJ0rrqoocfEHtL/fy9l28fbKvU3xop1AAAA4HIW2CHQ0j6x84SlHdI1xNLOPZpbbYzctPP9IV1CKvQFdw22tHOOVn2cubHYqIKTBWfndAmu0Ofs7iz/Nv71XgsAAADQFCQvT66y71TyKUthQ4vYFpV+Z+79UG+5eJ39UFPS/5Ksxtg6e6tkPnvCdOxjsZX6DQaD+j7TV5KUmpBqKcYoz2Q0adun2yRJ7W5qZ9edYAEAAICm7tivxzR/2Hw5ujhq3E/jdEWvK6ocy2ZLZwW0DdBVU6/S4HcGa9jMYRr8zmBFT4tWYLvAmifXgd0KLKZMmaK0tDR99dVX6tSpk1566SW1adNGQ4cO1Xfffaeysuo/WAUAAABcTv58LOC07dMaekmSJPcAd8sHnzJ2Zqgkr6RCf2OtWAcAAAAam+TlyTocf7jGcQ6O5/+MbzKaLG2f5j4KbH/2jYP0benVxjiedPzsnHAfBbQLqNAXMSDC0q4uTsb2DJlN5kpzzmk9oLUkqSi7SNlHsmtcS1VxAAAAgMvdqqdX6dT+U5WuF2YV6pvR38hcZpazh7Nu+OCGSmM8Qzw16K1BkqRN727SsS3HKvSnb0/Xhjc3SJL6/6O/5aSKP+s1pdfZ0zHM0pIpSyr8rV6S1r6wVlnJWXLzc9PgdwfX6X4CAAAAqOyPxD80d/Bcmc1mjftpnMJjwqsdz2ZLDcMuBRYTJkxQZGSknJycNHLkSP344486dOiQnn76ae3YsUPDhw9XixYt9Oyzz+rQoUM1BwQAAAAauT8fC+jsdemczuAZ4nm2Ya5cUd7YK9YBAACAxmLptKVadv+yGsdlHciytH1bVvydufOozpKk7MPZOn3otNX5ucdyLTvSdhrZSQaDoUJ/eEy45UNXKatSqlzHuV10y+ctr8uoLpZ2dXHO9YVFhSmgbUCV4wAAAIDLTXDnYDk4Oyg/I18fRX2k7yZ9py0fblHS7CT9/PjP+qDjBzqeeFyeoZ4as2yMmvVoZjXOVVOv0nUvXKeykjJ91v8z/fjwj0qclaifHvtJn1z7iUrzS9Xn8T6Kfbzy6RXnODg56PbFt6t57+ZKTUjVzF4zteGtDdryny2aN3Se1r+yXh5BHrr929sv2I6wAAAAQFNzfOtxfT7oc5mMJo37sebiCqlpb7Z0OuW0MnZkKGNHhk7sPmF1zI4vdujgioN1il8dJ3sE+eSTTypda9mypV566SW98MILWr58uWbNmqW33npLb7zxhuLi4nTPPfdo+PDhcna+dD5oBgAAADQF514ISRV3w5UqV6w362n9DZzaVKxnHci67CvWAQAAgPrI3Jup7MPZlY7qPsdsNmv7nO2W2+2Hta/Q3/uh3tr83maV5JUo6X9Juv7V6yvF2Dp7q2SWnNycFPtY5Q9YGQwG9X2mr5bdt0ypCanK3JepoI5BFcaYjCZt+3SbJKndTe0U1j2sUpw2A9uoee/mOrb5mJL+l6Qek3pUGnNk3RHLTr3XPnut1fsMAACAxm3+sPkNmn/0ktENmr861zx5jbrf2V17F+3VoRWHdGTdEe3+arfKSsvk7u+u0CtD1X5oe/W4u0eNJz7HPR+nyEGR2vz+Zu1ZuEcFHxbII8hDkX+JVPT90YroX/MHmDyCPDQpYZISZyVqx+c7lPBagsqKy+Tb0lexT8Yq5uEYeTfzttfdBwAAAJq0jB0Z+nzQ5yorKdO4H8epRWyLSmPWvrhW+5fs1z2/3VPheudRnbX+lfWWzZbOnSJRXm03W8pNy1XKqhTFPR9ndZ212WwpaWaSpLMbKll7L+Bcn1T3zZZKC0o1s+dMFecWS5JcfV31VNZTlcYl/5Cs3V/vVsu+LXXrl7fa7TWMXQosquPg4KCbbrpJN910k3bv3q0RI0ZozZo1WrNmjQICAjRhwgTdfffd6tSp04VeCgAAAHBZW/fyOoV0C1HHWzpWOy4v/eypEgYHw/nTLP6/iAERWqM1ks5WrFcVqzYV61kHsiwV636t/KzGsUfFOgAAANBYmU1mLR6/WKMWjJJXmFelvp8e/Ul/bPlDktR1dFeF9664m5VniKcGvTVIS6ct1aZ3N6nj8I5qHt3c0p++PV0b3twgSer/j/6Wkyr+rNeUXto1b5dSE1K1ZMoSjft5nJzdz2+OtPaFtcpKzpKbn5sGvzu4yvtz039u0sd9P1baL2n69YNfdfUDV1v6irKLLCd2tB/aXp1HVn5jBgAAALjceYV5Kfq+aEXfF13vWC1iW1j9UJYtHJwcFD0tWtHT6r8eAAAAANad2HVCc66fI2OhUWOXj1XLvi2tjstOydbxxOOVrjfFzZb2LtqropwiSVKHmzuo0wjrdQbdxnZTblqujqw/ormD52rKlilycq1/eYRDzUPqb+3atRo7dqyio6N14MABmc1mmc1m5eXl6T//+Y+6du2qvn376quvvroYywEAAAAuS2v+vka/ffhbtWPOHD+jnCM5kqRmPZvJ2aPiiXLnKtal89Xk1tSmYv2c6uLUt2IdAAAAaKzOvTGRmpCq9yPf13d3f6cNb23Q1o+3au0La/Wfrv/R5vc2S5K639ldt3xyi9U4V029Ste9cJ3KSsr0Wf/P9OPDPypxVqJ+euwnfXLtJyrNL1Wfx/so9vHKb6ic4+DkoNsX367mvZsrNSFVM3vN1Ia3NmjLf7Zo3tB5Wv/KenkEeej2b29XYLvAKuM069lMo74eJVcfVy1/aLkW3r5Qv/33N61/db3+2+O/OrHrhCIGRGjEvBH1+M4BAAAAAAAAANA4nNxzUnOun6OCzAL1ebyPzCazDq89bPXr3Iapf3ZusyVJ2vTuJh3bcqxCvy2bLbXs21IyS0umLFFpYWmFfls2W3Jyd7JstlSevTZbOvDjARkMBo38aqTu+PYOdb+zu9Vx7Ye218T1E/WXd/6iE7tOaMt/ttQp35/Z5QSLAQMG6Nlnn9X115+viMnIyNCnn36q2bNn6+DBg5LOHmcuSZ06ddKUKVN05513ytHRUXPnztXs2bM1evRovfvuu/r+++8VEhJSq9yZmZl67733tHjxYh0+fFguLi7q0KGDRo8eralTp8rFxcUed1FlZWWaP3++FixYoO3btys9PV1eXl5q1qyZunbtqri4ON1yyy0KC6tcrQMAAABcLEc3HlVxbrFcfawfH/7bR+cLMHre07NSf2OrWAcAAAAaqzu+u0Mndp3Q3sV7lbo+VYdWHNKu+btkKjXJxdtF/hH+in4gWt3v7F7hVApr4p6PU+SgSG1+f7P2LNyjgg8L5BHkoci/RCr6/mhF9K/5tDiPIA9NSpikxFmJ2vH5DiW8lqCy4jL5tvRV7JOxink4plZHa7cf2l5Tt0/VphmblLw0Wb9//7ucPZ0V0jVE/Z7rp6gJUTI4GGqMAwAAAAAAAABAY2YsMmrO9XOUfyJfkrTupXVa99K6OsW6aupVysvI07qX1umz/p+p5+SeCu4SrMx9mUqalWTTZkvzhs6zbLYUNTFKLp4uSl6WrOSlyfII8tCohaNqtdnSorGLtPyh5Updn6rWA1qr8FShkmYlKftwdr03WzqeeFwdbu5QYYPX6vR5pI8OLDug3V/tVp9H+tQ57zl2KbBYu3atJk+eLLPZrB9//FH/+9//9MMPP8hoNFqKKjw8PDRq1ChNmTJFsbEVH7z7779f999/v5YvX6677rpLTzzxhD777LMa8/7666/6v//7Px0/flyDBg3StGnTVFhYqM8++0zTp0/Xp59+qh9++EFXXHFFve7fvn37NGbMGG3btk033nijHnzwQfn5+eno0aP64osv9OWXX+rLL79UaWmpHnjggXrlAgAAAOqj5EyJltyzRMPnDJeji2OFvoM/H9SGN85WrLfq10o9JlYuepDOVqzvmrdLqQmpWjJlicb9PE7O7udPurClYv3jvh9bKtavfuBqS5+9KtYBAACAxiyka4hCutZus6GatIhtoRaxLeoVw8HJQdHTohU9Lbpecfxa+2nIjCEaMmNIveIAAAAAAAAAANBYGYuMVZ5KURdNabOl3GO56nG39c81VaXNoDZa/8r6Oucszy4FFpI0Z84cPf3000pLS5N0/rSKqKgoTZkyRWPHjpWPj/UjR8654YYb9OSTT+qtt96qMV9qaqqGDh2qkydP6uGHH9a7775r6XvwwQd1ww03aM2aNbr55pu1YcMGubpa38G3JgcPHtSAAQOUl5enNWvW6LrrrqvQ/+yzz+ovf/mL1q5dW6f4AAAAQHk75u6wtDN2ZFjaB1ccVG5ariTJM9RTkYMiK80N7R6qjO0Z2v3Vbh1PPK4ud3SRfxt/leaX6vDaw9q7aK9kltre0FYjvhghBycHq2toTBXrAAAAAAAAAAAAAAAAwKXGzc9Nz5uft2vMprLZUllJmdwD3G2a4xHkobKSMrvkt1uBxYoVKyxFFd7e3rrjjjs0ZcoUXXXVVTbFMZlMys7OrnHcE088oZMnT6ply5Z6/fXXK/S5urpq1qxZ6tChgxITE/XBBx/oscces2kd0tkikfHjx+v48eOaN29epeIKSXJ2dtbf//537dy5U+7utj2QAAAAwJ8tHr/Y6vWEVxMs7VbXtbJaYDF121SlbU7Tvm/36eiGo0qamaTC04VydHaUV5iXuo3ppivHX6m2g9vWuI7GUrEOAAAAAAAAAAAAAAAA4PLhGeKpE7tO2DQnY2eGPII97JLfbgUWZrNZV199taZMmaI77rhDnp6eNs3Py8vTW2+9pX/9618KDg6udmxycrIWLFggSbrzzjutnk4RGRmp/v37a+XKlXrjjTc0ffp0OTnZdnfnz5+vX375Re3atdMdd9xR5bgBAwYoMzPTptgAAACANfWtXA/vHa7w3uF2WUtjqFgHAAAAAAAAAAAAAAAAcPlo0aeFtn68VVc/cLX82/jXOP70odPa9sm2Wm06WxsOdoki6V//+pc2bdqku+++2+biCkk6deqUZs6cKVdXV/Xv37/asQsXLrScljFw4MAqxw0aNEiSdPLkSa1du9bmNc2aNUuSNGzYMBkM7KoLAAAAAAAAAAAAAAAAAAAAAMCFEjUpSsW5xZrdZ7a2frxVJfklVseVFpRq6ydb9fE1H6vkTIl63N3DLvntcoJFq1at1KJFi3rHOH78eK3Grl692tKOioqqclyPHue/SatXr662GOPPTp48qXXr1kmSunfvXqGvsLBQDg4OVk/OAAAAAAAAAAAAAAAAAADgYpg/bH6D5h+9ZHSD5gcAAJeftoPbqvPIztqzcI+WTFmiZfcvU2CHQPmE+8jJzUnGIqNy03J16vdTKispk9lsVpdRXRT5l0i75LdLgUVKSoo9wtTarl27JEne3t7y9fWtclz5oo/du3fblCMpKUkmk0mS1LJlSx06dEivvvqqlixZohMnTkiSQkNDNXjwYD311FPq3LmzrXcDAAAAAAAAAAAAAAAAAAAAAACUM3zOcJmMJu37dp+MxUad2HlCJ3aeqDDGbDZLkjoN76T/m/N/dsttlwILSfr666+Vnp4uSXJ1ddW9995bacyzzz4rg8Gg6dOnKzg4uE55iouLLXlCQ0OrHVu+//Dhwzbl2blzp6X9008/acaMGWrZsqWeffZZRUZGKj09XbNnz9acOXM0f/58/fe//9XEiRNtygEAAAAAAAAAAAAAAAAAAAAAAM5zcnPS7Ytu166vdunXf/2qY5uPyVRmsvQ7ODoovHe4ek/vrS6jutg3tz2C/PHHHxo3bpzKys4eseHn52e1wOLQoUP66quvNHPmTC1atEh9+/a1OdeZM2csbTc3t2rHuru7W51XG+dOqZCk119/XdHR0Vq7dq08PDws1ydOnKg77rhDCxYs0OTJkxUREaG4uDib8gAAAAAAAAAAAAAAAAAAAAAAgIq63t5VXW/vqpK8Ep1OOa2SMyVy8XaRf4S/XLxcLkhOuxRYLFy4UEajUb6+vnr++ed18803Wx33yiuvKDIyUu+8845uvvlm7d69W82aNbMpV2FhoaXt4lL9N6V8f0FBgU15cnNzK9z+4IMPKhRXSJKDg4M++OADLVmyREVFRXrssceUmJhYY+xCY6HyjHmW284OznJ2dLZpfWicjEZjg+Y2mUwNugY0bTwH0dB4DqKhmUymmgfhstWQrwH4uddw+L8HPAfAc6Bp4/EHrwGatoKyArkaXS23eR/g0mM2mGWWWWaDWSbx7/VSxmPVePBYNS48Xo0Hj5VtGvo9eTRdOTk5ysrKstx2dXWVq6trNTNgLyZD4/zZeDn9fOfn38XF3x1RVzx3UFc8d6rG9+TicvFyUWi30IuSyy4FFitXrpS7u7u2bNmitm3bVjmuTZs2evnll3XTTTfpuuuu0zvvvKO3337bplzlT6UoKSmpdmz5/j8XR9SkrKzM0m7VqpWuvvpqq+NCQkI0YMAALVu2TElJSdqzZ486d+5cbeyn1j5V4faQnkN041U32rQ+NE4JCQkNlttkMik1NVXS2eIg4GLjOYiGxnMQDe3UqVMNvQQ0oIZ8DdCQv4M2dfzfA54D4DnQtPH4g9cATRvvA1z6zDKr0LtQWcqSQYaGXg6qwWPVePBYNS48Xo0Hj5VtGvLvoeU/XI+mJyoqqsLtCRMm6K677mqQtTQ1Wc0a57+9y+nnO+9FXVz83RF1xXMHdcVzp2q8Brh82aXAYseOHRo/fny1xRXl9enTR6NHj9ayZctsLrDw9va2tIuKiqodW/60i/LzbM3TtWvXasd2795dy5YtkyT9+uuvNRZYvBH3hvzd/C23nR2c5Xycnauagr59+zZY7nOVcrGxsXJysss/fcAmPAfR0HgOoqGde7GJpqkhXwM05O+gTR3/94DnAHgONG08/uA1QNPG+wCXPrPBrCxlKSA9QAZz4/4w0+WOx6rx4LFqXHi8Gg8eK9s05N9D09LSGiw3Gt62bdvUokULy21OsLh4jv3zWEMvoU4up5/vvBd1cfF3R9QVzx3UFc+dqvEa4PJll2f6iRMn1K1bN5vmXHXVVVqwYIHNuVxdXRUWFqb09HRlZGRUO7Z8f+vWrW3KExgYaGn7+/tXM1IKCgqytE+cOFFjbHcnd3k5eVW8aLZpeWikGvo/FwcHBzk5OTX4OtB08RxEQ+M5iIZEFX/T1pCvAfiZ17D4vwc8B8BzoGnj8W/aeA3QtHk4evA+wCXOJJMMMshgNsjBzL/XSxmPVePBY9W48Hg1HjxWtmnI11+89mvafH19FRAQ0NDLaJIa68/Gy+nnOz//Lj7+7oi64rmDuuK5Yx3fj8uXXX47O/cPxxYuLi51foPp3IkSZ86cUU5OTpXjylcGdenSxaYc5ceXlpZWO9ZsPv+uCG+aAQAAAAAAAAAAAAAAAAAAAADQ+NilGiA8PFzx8fE2zYmPj1d4eHid8g0YMMDS3rZtW5XjkpKSrM6pjejoaBkMZ49fS09Pr3bsyZMnLe0rrrjCpjwAAAAAAAAAAAAAAAAAAAAAAKDh2aXAYsCAAfr666/13Xff1Wr8999/rwULFuj666+vU76RI0daih9WrVpV5biVK1dKkoKCghQXF2dTjubNmysmJkbS2SIOo9FY5djExERLu1+/fjblAQAAAAAAAAAAAAAAAAAAAAAADc8uBRYPPfSQDAaDRo4cqTvvvFMrVqxQdnZ2hTHZ2dlauXKlJkyYoFtvvVUGg0EPPfRQnfK1a9dOo0aNkiR9/vnnKikpqTTm0KFDWr16tSTpqaeekpOTU4X+Xbt2qX379goPD9e6deus5nnsscckSTk5OVUWjxw9etRyesfNN99c51M5AAAAAAAAAAAAAAAAAAAAAABAw7FLgUXHjh31yiuvqKysTF988YWGDBmiwMBAeXl5KSgoSF5eXgoMDNTgwYM1d+5clZWV6ZVXXlGHDh3qnPOtt95ScHCwDh8+rGeeeaZCX3Fxse655x6VlZWpV69eeuCBByrNf+WVV5ScnKxjx47pr3/9q9Uct956q4YOHSpJeuSRR5SWllYpz913363S0lIFBARoxowZdb4/AAAAAAAAAAAAAAAAAAAAAACg4TjVPKR2nnzySbm6uuqpp56ynChRUFCggoKCCuNcXFz05ptv1vn0inNatmypJUuWaPjw4XrnnXe0a9cu3XzzzSosLNRnn32mnTt3KioqSt9//73c3NwqzTeZTJa22WyuMs9XX32lESNG6KefflJUVJTuvvtudejQQenp6ZozZ45+//13tWjRQt99950iIiLqdZ8AAAAAAAAAAAAAAAAAAAAAAEDDsFuBhSRNnz5dt956qz766COtWLFCBw4c0JkzZ+Tt7a22bdtq0KBBmjp1qsLDw+2Sr3fv3tqxY4dmzJihxYsX68knn5Szs7Pat2+vGTNmaNq0aXJxcbE699lnn1VSUpIKCwv1xhtvVJnDw8NDP/74o77++mt99tlnmjNnjk6dOiVvb2916dJF9957r+655x55enra5T4BAAAAAAAAAAAAAAAAAAAAAIDaObTykNa/ul4TVk+odyy7FlhIUnh4uF5++WW9/PLL9g5tVVBQUJ3yXXnllUpOTq71+Ntuu0233XabrcsDAAAAAAAAAAAAAAAAAAAAAAAXSF5Gno7EH7FLLLsXWAAAAAAAAAAAAAAAAAAAAAAAANRVWUmZUhNSdXLvSRXnFMtkNFU5NmN7ht3yNliBxXfffadHHnlEhw4daqglAAAAAAAAAAAAAAAAAACARio/P79O8zIyMjR16lQlJiaqV69e+uijjxQaGmpzHE9PzzrlBwAA1UuanaSVT65UUXbRRc/dYAUWeXl5OnLEPsdwAAAAAAAAAAAAAAAAAACApsXLy6veMVasWKHIyMg6zTWbzfXODwAAKtq7eK+WTFli8zyDwWCX/HYtsDh+/LiWL1+uvXv3KicnR0ajscqxnFwBAAAAoKkoNharyGhbRX1OcY5m75ytlJwURfhG6O5ud8vX1fcCrRAAAAAAAAAAAAAAAABoeJv+uUmS1G1MN/W4u4eCOwfL3d9dji6OVc7ZMXeHvp3wrV3y263A4u9//7veeOMNlZWV1Wq82Wy2W5UIAAAAAFzKnlj7RL3m78rcpUfWPFKnuRM1sV65AQAAAAAAAAAAgEtVXl5eneYNHz5cq1evVllZmRwdHTVgwAAtXrzYzqsDAAB1kbEjQ52Gd9KIuSNqP8lgv5Ol7FJgMWvWLL3yyiuW225ubvLz85Orq2uVc/Lz83Xq1Cl7pAcAAAAAAAAAAAAAAAAAAE2Mp6dnneZ9/vnnuuuuu7RlyxZFR0fr008/rXMsAABgX2aTWW1vaGvTnE7DO6llSku75LdLgcXMmTNlMBj09NNP6+6771ZERESNc+bOnasJEybYIz0AAAAAXNLeintLgW6BNs3552//1J5Te2Qym+RgcFDnwM569KpHL9AKAQAAAAAAAAAAgKYjNDRUy5cvb+hlAAAAKwLbB8pYbLRpjrOHs/xa+dklv4M9guzdu1cTJkzQyy+/XKviCkkyGAx2O4YDAAAAAC5lrk6ucnNys+nr/h73q1tQN3k5e6lbUDfd3+N+m2O4Obk19F0HAAAAAAAAAAAAAAAAai1qYpT2Ldpn05y0TWn6btJ3dslvlwILJycn9e3b16Y5Y8eOlclkskd6AAAAALjs+Lr66qneT2nm4Jl6qvdT8nX1beglAQAAAAAAAAAAAAAAABdU9P3RcvVx1dL7l6okr6RWc7IOZmn7Z9vtkt/JHkG6du2q3Nxce4QCAAAAAAAAAAAAAAAAAAAAAABN0Lp/rFNo91Btnb1VO+bsUKvrWimwQ6BcvV1lcDBYnZOxPcNu+e1SYHHffffp3Xff1fTp02UwWF/0n61cuVKvvvqqVq9ebY8lAAAAAAAAAAAAAAAAAAAAAACARmztC2stNQlms1kHlh/QgeUHLlp+uxRYjBkzRps2bdLNN9+s999/XxERETXOycjIUHx8vD3SAwAAAACqMH/Y/AbNP3rJ6AbNDwAAAAAAAAAAAAAAgMbFbDZbbVentgdF1MQuBRaTJk2SJG3btk1t27ZVp06d1KFDB3l7e8vBwcHqnIMHD9ojNQAAAAAAAAAAAAAAAAAAAAAAuEyMmDtC3cZ0q/X4HXN36NsJ39olt10KLD799NMKx3Ds2bNHe/furXaO2Wy2W5UIAAAAAAAAAAAAAAAAAAAAAABoggy1P+miJnYpsJCkwMBAeXp61np8fn6+Tp06Za/0AAAAAAAAAAAAAAAAAAAAAACgERs2a5jC+4TbNCdyUKQmrJlgl/x2K7CYMWOGxowZU+vxc+fO1YQJ9rkTAAAAAAAAAAAAAAAAAAAAAACgcet5d0+b53iGeMozpPaHRVTHbgUWtjIYDHY7hgMAAAAAAAAAAAAAAAAAAAAAAFye8k/kqyinSG6+bvII9pDBYLggeexSYLFixQp17drVpjnDhw9XSkqKPdIDAAAAAAAAAAAAAAAAAAAAAIDLyOH4w9r83mYdXnNYxbnFluuuPq6KGBCh3tN7q1W/VnbNaZcCi+uvv97mOR4eHmrVyr53BgAAAAAAAAAAAAAAAAAAAAAANF5mk1lL71uqpFlJZ2+bzRX6i3KKtO/bfdr37T71vKenbvzgRjk4Otglt10KLP6suLhYW7duVXp6umJjYxUSEiJJKigokIeHx4VICQAAAAAAAAAAAAAAAAAAAAAAGrkfpv6grbO3WgorvEK95BPuIyd3JxkLjcpNy1VeRp4kKWlmkswms4b9d5hdctu1wOLgwYN67rnn9M0336i0tFSStGLFCg0YMECSFBYWpptvvlkvvfSS2rRpY8/UAAAAAAAAAAAAAAAAAAAAAACgETuy/oiS/pckFy8XXfPUNYqaECWfcJ9K43LTcrXts23a+OZGbf3fVnUf310t+7asd377nIMhae3aterZs6e+/PJLlZSUVDqGQ5IcHR01b9489ejRQ6tWrbJXagAAAAAAAAAAAAAAAAAAAAAA0MglzUySs7uzJq6bqH7P9rNaXCFJPuE+6vdsP90Vf5ec3JyU+N9Eu+S3ywkWWVlZuvXWW3XmzBn5+/srLi5OgYGBmj17doVxf/zxh+bOnatHH31Uo0aN0p49exQWFmaPJQAAAAAAAAAAAAAAAACN0s9P/Kxf3v5FknTd89cp7oW4Gucc3XhUv37wq1ITUpV/Il+ewZ4K7xOu6Pui1Tquda3ymowmJc5K1M65O5W5L1PGYqN8W/qqwy0dFDM9Rl5hXvW4VwAAAABguyPrjyhqYpTCompXZxAWFabud3VX8tJku+S3ywkW//rXv3T69GlNmzZNx44d0zfffKNXX3210ikW7u7umjJliuLj45WXl6d//etf9kgPAAAAAAAAAAAAAAAANErHk45r07ubbJoT/1K8Prn2E/3+3e/qOLyjbvjXDeo8qrMOLD+gz/p/phVPrqgxRkFmgT7u+7GW3bdMhVmFuuapazTozUHyj/DXhtc36MMrP9SRdUfqercAAAAAoE7yM/IV1sO2Qxya9Wym/Ix8u+S3ywkWy5cvV+/evfXvf//bcs1gMFQ5vmfPnho9erSWLVumV155xR5LAAAAAAAAAAAAAAAAABoVk9Gk7yd/L3OZuebB/99vH/2mtc+vlZObk+5cfafCe4db+q4cf6U+ufYTbXxrozxDPBX7eGyVeb8a/pWObT6mFrEtNH7leDm7O0uSou+L1qpnVinhtQR9ecuXmvzrZAW2C6zfHQUAAACAWnJyc1JJXolNc0rySuTkZpfSCPucYJGcnKyRI0faNOeqq67SoUOH7JEeAAAAAAAAAAAAAAAAaHQ2vrNR6VvT1eGWDrUan38yXyueOHs6Re/pvSsUV0hSsx7NLEUVa/6+RrlpuVbjJM5KVGpCqmSQhs0aZimuOCfuxTgFtA1QUXaRfn70ZxvvFQAAAADUnX+kv/Yt2mfTnH2L9sk/0t8u+e1SYJGXl6fAQNsq1V1cXFRSYltlCQAAAAAAAAAAAAAAAHA5yDqYpfgX43VF9BW6+sGrazVn83ubLTu59pzc0+qYnpN7SgbJWGTUxnc2Vuo3m81KeC1BktTympYK7hxcaYyjs6O639VdkrT/h/1K355eq/UBAAAAQH21u6mdUhNSteLJFTKVmaodazaZteLJFUpNSFX7oe3tkt8u52AEBQXpwIEDNs355ZdfFBxc+QUaAAAAAAAAAAAAAAAAcLn74Z4fZCo1adisYSo6XVSrOXsW7pEk+bX2U0DbAKtjfMJ9FNQxSJl7M7V34V4N/udgGQwGS3/apjTlHj17skXEwIgqc0UOitSav605m3fBHoV1D6vVGgEAAACgPmKmx+jX93/VL+/8or3f7FWXO7qoeXRzeTf3lrO7s4xFRuWm5eqP3/7Qri93KTslW66+rur9UG+75LdLgUXv3r01e/ZsPfLII7U6yWLz5s2aP3++RowYYY/0AAAAAAAAAAAAAAAAaOLmD5vfYLlPFZ6yaXzS7CSlrE7RNU9do7DuYTq89nCNc3KP5erU72fzhEVVX+zQrEczZe7NVG5arrKSsxTY/vzneVJWp1ja1cUJ7R4qg4NBZpO5whwAAAAAuJDcA9w18uuRmj9svrIPZ2vD6xuqHGs2m+Xo4qhRX4+Se4C7XfI72CPIpEmTlJGRoWuvvVYrVqyo0Fe+Aj4rK0tvv/22Bg0aJKPRqMmTJ9sjPQAAAAAAAAAAAAAAANAo5KXnacUTK+Qf6a/rnr+u1vNO7Dphafu08Kl2bPn+E7tPVOg7ueukpe3bwrfKGE6uTvII9jg7Z/fJKscBAAAAgL1FDorUxPUTFdQpSGazucqv4M7Bmrh+otoMbGO33HY5wWLo0KEaPny4Fi9erCFDhigwMFCdO3eWJD3//PN68803deTIESUnJ8tkMslsNuuOO+7Q9ddfb4/0AAAAAAAAAAAAAAAAQKOw7IFlKjpdpFELRsnZ3bnW87IPZ1vanqGe1Y4t319+nq1xvEK9lJ+Rr+LcYhWeLpS7v312hAUAAACAmjSPbq77dt2nQysP6dDKQ8pKzlLxmWK5ervKv62/IgdF2rWw4hy7FFhI0hdffKExY8bo22+/VWZmptavXy+DwaANG84fyWE2myVJI0eO1Keffmqv1AAAAAAAAAAAAAAAAMBFYyozyWwyn79tNNVq3r7v9mnvN3sVdVeU2lxv2weBSs6UWNpObtV/5Kd84Ub5eZJUfKa41nGc3M/3l5wpocACAAAAwEXXZmCbC1JIURW7FVi4ublp0aJFWrBggd5//31t2rRJZWVlln5HR0fFxMRo+vTpGjlypL3SAgAAAAAAAAAAAAAAABdV1oEsZSVnWW7nKKfGOcW5xVp2/zJ5BHvoL+/8xeacpYWllraji2O1Y8v3lxaUVugzFhrtEgcAAAAALhX5J/OVuTdTrfq1qncsuxVYnDNq1CiNGjVK+fn5SklJUW5urry9vRURESEvLy97pwMAAAAAAAAAAAAAAAAuqoC2AfJv42+5nVWUJcVXP2fFkyt05tgZjZg3Qu4Btp8EUf5UirKSsmpGVux39nCu0Ff+VIr6xAEAAACAS8XBnw/q2zu/1XNlz9U7lt0LLM7x9PRU165dL1R4AAAAAAAAAAAAAAAAoEE4ODpI5Q5/cDA6VDv+yPojSpyZqLZD2qrb6G51yuni7WJpG4uM1YyseNpF+XmS5OrtWus45U+7+HMcAAAAALgcXbACi5qsXLlSr776qlavXt1QSwAAAAAAAAAAAAAAAAAuqLKSMi2ZskSOLo7q/4/+KsgsqDSmKKfI0i4tKK0wxtXXVY7OjvJr7We5lp+RX23O8v3l5527nbYpzTLOp7lPlXHyMvLOrsHHVe7+tp+6AQAAAABVOfDTAf324W/qOaWn2t/U3nL9vTbv2RyrNL+05kG11GAFFhkZGYqPr+FsRAAAAAAAAAAAAAAAAKARO/PHGZ36/ZQkaVb0rBrHb3xroza+tdFye8KaCWod11ohXUMs13KP5lYbIzftfH9Il5AKfcFdgy3tnKM5atazmdUYxmKjCk6eLfQI7hJsdQwAAAAA1NXicYtVmFWooxuO6omTT1iuZx/OrlM8g8Fgl3XZVGBRVlamnTt3qmvXrnJyOj91zpw5NifeuHFjzYOAy8z8YfMbLLfJYFLzR5s3WH4AAAAAAAAAAAAAAJoirzAvjV8xvtox6dvTteLxFZKkK8dfqe53drf0hXYPlST5NPdRYPtAndp/Sunb0quNdzzp+Nk54T4KaBdQoS9iQITWaM3ZvNvS1fGWjlZjZGzPkNlktswBAAAAAHvyj/RXwakC+Uf6V+prdW0r+bepfL0qpw+dVmpCql3WZVOBxYgRI/TDDz9oyJAhWrp0qeX6XXfdZbeKDwAAAAAAAAAAAAAAAOBy4eTmpDYD21Q7xsHJwdL2b+Nf5fjOozpr/SvrlX04W6cPnbb6gaPcY7nK3JcpSeo0slOlz/SEx4TLJ9xHuWm5SlmVorjn46zmOrTyUIW8AAAAAGBP434ap5RVKVYLunvd20vdxnSrdawdX+ywW4GFQ81DzouPj5fZbNaGDRsq9ZnNZpu/AAAAAAAAAAAAAAAAANRO74d6y8XLRZKU9L8kq2O2zt4qmc8WdsQ+Flup32AwqO8zfSVJqQmplmKM8kxGk7Z9uk2S1O6mdgrrHmanewAAAAAAZ7n5uqnTiE5y83OzSzx71SfYdILF22+/rffff18PPPBApb4ZM2bolltuqXWsxYsX67HHHrMlPQAAAAAAAAAAAAAAANBkeYZ4atBbg7R02lJteneTOg7vqObRzS396dvTteHNsxun9v9Hf/mE+1iN02tKL+2at0upCalaMmWJxv08Ts7uzpb+tS+sVVZyltz83DT43cEX9k4BaNTmD5vfoPlHLxndoPkBAID9PW963uY5V469UleOvdIu+W0qsJg8ebImT55stS8oKEitWrWqdazg4GBbUgMAAAAAAAAAAAAAAACXjYwdGcrYkSFJOrn3ZIXrO+bukCR5hnoqclBkhXlXTb1KeRl5WvfSOn3W/zP1nNxTwV2ClbkvU0mzklSaX6o+j/dR7OOVT684x8HJQbcvvl3zhs5TakKqZvaaqaiJUXLxdFHysmQlL02WR5CHRi0cpcB2gRfg3gMAAACAdTmpOfII9qhQBF6V7yd/Lyc3J/W4u4ea9Whml/w2FVhU5fnnn9eVV9pW8XHllVfqueees0d6AAAAAAAAAAAAAAAAoFHZu2iv4l+Mr3R93+J92rd4nySp1XWtKhVYSFLc83GKHBSpze9v1p6Fe1TwYYE8gjwU+ZdIRd8frYj+ETXm9wjy0KSESUqclagdn+9QwmsJKisuk29LX8U+GauYh2Pk3cy7/ncUAAAAgMxms7b8e4tW/nWlSvNLNWHNBLWOa13tnOzD2Xov4r1axY++P1o3fnBjtWNMRpMSZyVq59ydytyXKWOxUb4tfdXhlg6KmR4jrzCvWuXKPpKtTTM26cCyA8o5miMXLxeFdAlR9wnd1f3O7jI4GGoVpyrvRbyn4Z8PV7cx3WoceyT+iLIOZilxZqLuir9LLfq0qFduyY4FFrbq1q2bunWr+U4DAAAAAAAAAAAAAAAAl5u4F+IU90Jcnee3iG2hFrH1+/CQg5ODoqdFK3padL3iAAAAAKha1sEsfT/pex1Zd6TB1lCQWaB5Q+fp2OZjCuoYpGueukYuXi5KXpqsDa9v0NbZW3XbwtvUql+rauPsX7pfi8YsUvGZYnUe2Vkxj8So4FSBkmYl6buJ32nH3B26ffHtcvV2rfNazWZzrceO/XGs/tjyh3569CfFvxCvcT+Nq3Pec+xSYFFbRUVFcnNzu5gpAQAAAAAAAAAAAAAAAAAAAAC4qMqfWuHg6KDwmHClbUqzOc6AVweo0/BO1Y5x86/6M/omo0lfDf9KxzYfU4vYFhq/cryc3Z0lSdH3RWvVM6uU8FqCvrzlS03+dbIC2wVajXM86bgWjFogY6FRg2cMVsz0GEtf9H3R+uTaT5SyKkWLxizS6CWjbb6fdREQGaCAyADlHsvVxrc22iWmg12iSHrooYc0YsQIjRgxQnfeeafVMZMmTVLfvn21atUqe6UFAAAAAAAAAAAAAAAAAAAAAOCSEv9ivJY/uFwt+7bUtF3TFDk4sk5xvJt5K6hjULVfXqFeVc5PnJWo1IRUySANmzXMUlxxTtyLcQpoG6Ci7CL9/OjPVcZZet9SGQuNat67eYXiCkly93fXjR/cKEna/8N+7flmT53ua30UZRfZJY5dTrDYvn27PvjgAxkMBpnNZnXqZL1CxtXVVRs3btRf/vIXvfPOO3r44YftkR4AAAAAAAAAAAAAAAAAAAAAgEuG2WzWsP8NU8+7ezboGhJeS5AktbympYI7B1ca4+jsqO53ddeav63R/h/2K317usK6h1UYc2jlIR3bfEyS1HOK9fvTOq61AtoFKCs5S+tfXq/Ot3aucX0ZOzKUvi290vUj64/IZDTVOL+stEw5R3K05T9b5BPuU+P42rBLgcWiRYskSb169dLMmTMVFRVlddzHH3+ssWPHaurUqXriiSfUt29fXXXVVfZYAgAAAAAAAAAAAAAAAAAAAAAAl4S4F+JkMBgadA1pm9KUezRXkhQxMKLKcZGDIrXmb2skSXsW7KlUYLF7wW5Lu83ANlXGaTOwjbKSs5S+LV1ZB7IU0Dag2vXtXbxX615aV+l60swkJc1MqnZueWazWb3u7VXr8dVxsEeQdevWqVmzZoqPj6+yuEKSDAaDBg4cqF9++UU+Pj5677337JEeAAAAAAAAAAAAAAAAAAAAAIBLxoUorjAZTSrJL6n1+JTVKZZ2WFRYleNCu4fK4GCoNOecw6sPS5Lc/Nzk18qvyjhhPc7nsBbHGrPZXOHL2rXqvtz83NR7em/FvRBXq3w1scsJFnv37tXEiRPl7u5eq/HBwcG66667tHDhQnukBwAAAAAAAAAAAAAAAAAAAADgsnNi9wl9M+YbpSak6swfZ2QuM8vZw1nhMeHqNq6buo/vLgcn6+cunNx10tL2beFbZQ4nVyd5BHsoPyNfJ3efrNBXWliq04dOS5J8WvhUu9byOU7sPlHjfYt5OEZRd0Wdv2CW3mvznobMGKIOt3Sodq7BYJCzh7M8gjxqzGMLuxRYnD59Wm3aVH3UhzUdO3ZURkaGPdIDAAAAAAAAAAAAAAAAAAAAAHDZ+eXtXxTYPlBXP3C1gjoFqay4TEfWHVHSrCSlrE5R0swk3bboNnk38640N/twtqXtGepZbR6vUC/lZ+SrOLdYhacL5e5/9vCFnNQcmU1my5jqlM+Rczinxvvm5usmN1+3Stc9gjyqPSnjQrJLgYWnp6fy8/NtmpOfn1/rEy8AAAAAAAAAAAAAAAAAAAAAAGgIxmKjyorLLLdLzpRctNydbu2kEV+MkJPr+Y/+dx7ZWVETo/RZ3GdK25Sm+cPma9KGSRXGSFLxmWJL28mt+tIBJ/fz/SVnSiwFFuXva00xnN2drea2xYQ1ExTcKbhOc+3BLgUWbdu21cKFC/Xwww/Xes4333yjtm3b2iM9AAAAAAAAAAAAAAAAAAAAAAAXRMJrCYp/Md5yO0c1n85QXz7hPpqeMl3ezb3l6OxYqb9Zj2bq91w/rXh8hY4nHtdvH/2mmOkxFcYYC42WtqNL5Rjlle8vLSg93y4stTrGlhi2aH1d6zrNsxcHewS58cYb9csvv+jxxx9XWVlZtWNNJpOefPJJbdy4UUOHDrVHegAAAAAAAAAAAAAAAAAAAAAALoi+T/fVX3P+avl6YM8DFzyng5OD/Fr7WS2uOKfHxB6S4Wx728fbKvWXP5WirKT6z/mX73f2OH8SRflTKeoa40LbOX+n/uHyD7vEsssJFtOnT9f777+vd999V4sWLdLo0aMVHR2t8PBwubm5qaioSGlpafrtt9/05ZdfKiUlRX5+fnrooYfskR4AAAAAAAAAAAAAAAAAAAAAgAvCydVJTq7nP3rvkuvSgKs5zz3AXf5t/HX64Gll7MxQSV6JXLzOr83V29XSNhYZrYU431/utAsXbxer7ZpilD/tonzuC81sMstcZrZLLLsUWPj7++vrr7/W0KFDdeTIEb3++utVjjWbzXJxcdHXX38tf39/e6QHAAAAAAAAAAAAAAAAAAAAAKDJ8Qzx1OmDpyWzlJeRpwCvAEufX2s/pW1KkyTlZ+TLp7lPlXHyMvIkSa4+rnL3d7dc923pK4ODQWaT2TKmKvkZ+efntfat0/35btJ3Ns85feh0nXJZY5cCC0kaOHCg1q1bp4kTJ2rv3r1VjuvcubM++eQTRUdH2ys1AAAAAAAAAAAAAAAAAAAAAABNjtl0/uQGB0eHCn3BXYMt7ZyjOWrWs5nVGMZiowpOFpyd0yW4Qp+zu7P82/gr60CWco/mVruW3LTz/SFdQmp3B/5k26fbZDAYbJpjNpttnlMVuxVYSNLVV1+t3bt3a+XKlVqxYoUOHDigM2fOyNvbW23bttWgQYM0cOBAe6YEAAAAAAAAAAAAAAAAAAAAAOCysu7ldQrpFqKOt3Ssdlxe+tlTJQwOBnmGeFboixgQoTVaI0lK35ZeZayM7RmWQo2IARGV+lsPaK2sA1kqyi5S9pFs+bXysxrneNLxCrnryj3QXS6eLlb7TGUmFecWqzi3WJLk5usmNz+3Ouf6M7sWWJwzcOBACikAAAAAAAAAAAAAAAAAAAAAAKiDNX9fo8jBkdUWWJw5fkY5R3IkSc16NpOzh3OF/vCYcPmE+yg3LVcpq1IU93yc1TiHVh6ytDuP6lypv8uoLkqamSRJSlmVoh6TeliNk7IqRZIUFhWmgLYBVd+5GgyZMUTdxnSrdkxeRp72fbtPm9/brP4v9VfnkZXXXRcONQ+5ME6ePKl169Y1VHoAAAAAAAAAAAAAAAAAAAAAAC5ZRzcetZzUYM1vH/1mafe8p2elfoPBoL7P9JUkpSakKnNfZqUxJqNJ2z7dJklqd1M7hXUPqzSmzcA2at67uSQp6X9JVtdyZN0Rndp/SpJ07bPXVrlme/EK9dJV916lCasnaMUTK3RsyzG7xG2wAouff/5Z/fv3b6j0AAAAAAAAAAAAAAAAAAAAAABcskrOlGjJPUtUVlJWqe/gzwe14Y0NkqRW/Vqpx0Trp0r0mtJLLfu2lMzSkilLVFpYWqF/7QtrlZWcJTc/Nw1+d3CVa7npPzfJyd1Jab+k6dcPfq3QV5RdpGX3L5MktR/avl6nSTx95ml1ub1Lrcd7hXmp+13dlfBqQp1zludklygAAAAAAAAAAAAAAAAAAAAAAMBix9wdlnbGjgxL++CKg8pNy5UkeYZ6KnJQZKW5od1DlbE9Q7u/2q3jicfV5Y4u8m/jr9L8Uh1ee1h7F+2VzFLbG9pqxBcj5OBk/ewFBycH3b74ds0bOk+pCama2WumoiZGycXTRcnLkpW8NFkeQR4atXCUAtsFVnlfmvVsplFfj9KisYu0/KHlSl2fqtYDWqvwVKGSZiUp+3C2IgZEaMS8EXX9dkmSXDxdbJ7j18pPv/3nt5oH1oJNBRY//fSTPvzwQ02ZMkU33XST5XqbNm1sTpyfn2/zHAAAAAAAAAAAAAAAAAAAAAAAGoPF4xdbvV7+tIVW17WyWmAxddtUpW1O075v9+nohqNKmpmkwtOFcnR2lFeYl7qN6aYrx1+ptoPb1rgOjyAPTUqYpMRZidrx+Q4lvJagsuIy+bb0VeyTsYp5OEbezbxrjNN+aHtN3T5Vm2ZsUvLSZP3+/e9y9nRWSNcQ9Xuun6ImRMngYKgxjr1lHchScW6xXWLZVGAxbtw4ZWVlacOGDTp58qTl+uHDh+uU3GC4+N88AAAAAAAAAAAAAAAAAAAAAAAutOfNz9drfnjvcIX3DrfLWhycHBQ9LVrR06LrFcevtZ+GzBiiITOG2GVd9XVk/RFt+fcW+bb0tUs8mwosIiMjderUKasnVlx77bU2nWRx6NAhJSQk1DwQAAAAAAAAAAAAAAAAAAAAAABc9r6b9F2NY0ylJhVlF+nk3pPKTsmWJF017Sq75LepwOKnn37SqlWrdP3111fqu/feezVmzJhax/riiy8osAAAAAAAAAAAAAAAAAAAAAAAAJKkbZ9uk8FgqNVYs9ksSWoR20LXPnutXfLbVGCxbds2/fDDD1q6dKlefvllNWvWrF7Jz90hAAAAAAAAAAAAAAAAAAAAAAAA90B3uXi6VNnv4OQgV19XBXUIUvth7dXlti4yONSuKKMmNhVYfPzxx/r8888VHh6u5557znLdZDLZnHjs2LEaO3aszfMAAAAAAAAAAAAAAAAAAAAAAMDlaciMIeo2pluD5HawZfCmTZsUFxenQ4cOqVWrVpbrL730knbt2mX3xQEAAAAAAAAAAAAAAAAAAAAAAFwMNp1gcfz4cT3yyCNycqo47YUXXlDbtm3VtWvXWsdauXKlXn31Va1evdqWJQAAAAAAAAAAcNkoyCzQ7gW7dfCng0rfmq68jDwZHAzyCvVS86ubq9u4bmo/tL0MhpqPtT668ah+/eBXpSakKv9EvjyDPRXeJ1zR90WrdVzrWq3HZDQpcVaids7dqcx9mTIWG+Xb0lcdbumgmOkx8grzqlWc7CPZ2jRjkw4sO6Ccozly8XJRSJcQdZ/QXd3v7G63Y7oBAAAAAAAAAMDlZXrKdHkGezZYfpsKLEpLS1VSUmKXxBkZGYqPj7dLLAAAAAAAAAAAGpufH/9ZW/69RcYiozyCPdRtbDcFtguU2WzW4TWHtWfhHu3+erciBkRo1IJRcg9wrzJW/Evxin8xXk5uTuoxuYdCuoYoc2+mkmYlac+CPYp9IlaD3hxU7XoKMgs0b+g8Hdt8TEEdg3TNU9fIxctFyUuTteH1Ddo6e6tuW3ibWvVrVW2c/Uv3a9GYRSo+U6zOIzsr5pEYFZwqUNKsJH038TvtmLtDty++Xa7ernX6vgEAAAAAAAAAgMuXXyu/Bs1vU4FFixYt9O233+qhhx66UOsBAAAAIMlsNmvLv7do5V9XqjS/VBPWTKj1jrMSO9cCAAAAjcGOuTtkLDKq1XWtdMd3d8jN183Sd/X9V2v/D/v15f99qZTVKZo/bL4mrp9o9ffn3z76TWufXysnNyfdufpOhfcOt/RdOf5KfXLtJ9r41kZ5hngq9vFYq2sxGU36avhXOrb5mFrEttD4lePl7O4sSYq+L1qrnlmlhNcS9OUtX2ryr5MV2C7QapzjSce1YNQCGQuNGjxjsGKmx1j6ou+L1ifXfqKUVSlaNGaRRi8ZXafvGwAAAAAAAAAAaDqO/nJUR9YdUXZKtkrOlMjF20V+EX5q1a+VWvRpYfd8NhVYDBo0SB999JF69uyp/v37y9fX19K3aNEiHThwoNaxtm/fbktqAAAAoMnIOpil7yd9ryPrjtRpPjvXAgAAAI2Hg5ODhs8ZXqG44pz2Q9ur5+SeSvxvoo5uPKrdX+9W1zu6VhiTfzJfK55YIUnqPb13heIKSWrWo5liH49V/IvxWvP3Nep6R1f5hPtUypU4K1GpCamSQRo2a5iluOKcuBfjtGfBHmUdyNLPj/5cZXHE0vuWylhoVPPezSsUV0iSu7+7bvzgRn3W/zPt/2G/9nyzR51v7Vzj9wgAAAAAAAAAADQ9KWtStPzB5crcm1nlmKBOQbrxgxtt2ri2JjYVWDz99NP66quvtG3btkoFEosXL9bixYvttjAAAACgqSl/aoWDo4PCY8KVtinNphjsXAsAAAA0LmFRYfJt6Vtlf6dbOynxv4mSpP1L9lcqsNj83maV5JVIknpO7mk1Rs/JPRX/UryMRUZtfGejhrw7pEK/2WxWwmsJkqSW17RUcOfgSjEcnR3V/a7uWvO3Ndr/w36lb09XWPewCmMOrTykY5uPnc05xfpaWse1VkC7AGUlZ2n9y+spsAAAAAAAAAAAAJX89tFvWvbAMsl89n2Mqpzcc1JzBs7Rjf++UVfde5VdcjvYMjg8PFybN2/WbbfdpsDAsx+iMpvNMhgMMpvNNn/ZQ2Zmpv7+97+ra9eu8vLyUkBAgPr06aP3339fJSUldsnxZ8ePH5efn58MBoMMhsrHsQMAAAB1Ef9ivJY/uFwt+7bUtF3TFDk40qb5td25VpLW/H2NctNyrcapzc61AW0DVJRdpJ8f/bnK9dRm51pJlp1rAQAAgKbm1vm36ubZN1c7xq+Vn6Wdk5pTqX/PwrO/S/u19lNA2wCrMXzCfRTUMUiStHfh3kp/n0/blKbco2dfH0QMjKhyLZGDzr9G2bOg8u/wuxfstrTbDGxTZZxzfenb0pV1IKvKcQAAAAAAAAAAoOk5tuWYlj2wTGaTWZ4hnup1by8N/e9QjflhjO5ceafG/DBGQ/87VL3u7SXPEE+ZTWYtf2C5/vjtD7vkt6nAQpIiIyP15Zdf6sSJEyorK5PJZJLZbNbcuXNlMplq/TVnzpx6L/7XX3/VlVdeqZdffllXXHGF3njjDT3zzDPKy8vT9OnTFRMToz/+sM83qrz7779fOTmV38gCAAAA6sNsNmvY/4Zp3I/j5Nui6h1sq1LbnWtlkGXnWmtrqO3OtZIsO9f+mS0710rS+pfX13T3AAAAgMtORP8IhV4ZWu2YouwiS9vZs2Lxc+6xXJ36/ZSksydhVKdZj2Zn56TlKiu5YlFDyuoUS7u6OKHdQ2VwMFSac87h1YclSW5+bhUKQ/4srMf5HNbiAAAAAAAAAACApmvjWxtlNpl19YNXa3rKdA39cKh6Temldje2U8SACLW7sZ16TemloR8O1cOHH9bVD1wtU5lJG97cYJf8NhVYnDx5UuvWrdO6detUWFhYr8TnTr2oq9TUVA0dOlTHjx/Xww8/rJ9//ln333+/Hn/8cf3222/q37+/tm7dqptvvlnFxcX1Wmt533zzjRYvXmy3eAAAAMA5cS/Eqefd1osRaoOdawEAAIDLz+mU05Z2q36tKvSd2HXC0vZp4VNtnPL9J3afqNB3ctdJS7u6Ym8nVyd5BHucnbP7ZIW+0sJSnT50ulZrKZ/jz2sBAAAAAAAAAABNW+r6VLW+rrVueO8GObk5VTvWyc1JN7x/g1pd20pH1h2xS36bCiz++c9/qn///urfv79SUs7vKvXJJ58oNjbWpsSxsbH65JNPbJpT3hNPPKGTJ0+qZcuWev311yv0ubq6atasWXJ0dFRiYqI++OCDOucpLzs7Ww8++KDCw8PVs2fdP/gGAAAAWGMwGOo8l51rAQAAgMvTvsX7JJ19gyDqrqgKfdmHsy1tz1DPauOU7y8/z9Y4XqFekqTi3GIVnj6/EVNOao7MJnOFMbVZS85hTosGAAAAAAAAAADnFWUXqeOIjjbN6TSyU4VTwevDpgKL1atXKzg4WD/88IPatWtnud6/f3+FhlZ/jPmfRUREaMKECTbNOSc5OVkLFiyQJN15551ydXWtNCYyMlL9+/eXJL3xxhsyGo11ylXeE088oePHj+vf//63vL296x0PAAAAsBd2rgUAAAAalrHYqOLcYstXaV5pvWPmn8jX79/9Lknq83gfeV9R8e/SJWdKLO2adnBydne2Ok+Sis+cPwW6xp2g3M/3l49T17WUzw0AAAAAAAAAAOAZ6lnhvYTacHZ3lkeQh13y21RgcfjwYT344IO64YYb5Ox8ftERERFavHixTYlTUlI0Z84cm+acs3DhQpnNZ3fCGjhwYJXjBg0aJEk6efKk1q5dW6dc58THx2v27NkaOXKkbr755nrFAgAAAOyNnWsBAACAhpXwWoJe933d8vVh9w/rHXPFEytkLDKqWc9m6ve3fpX6SwvPF3E4ujhWG6t8f2lBxeIPY6HR6jhb4thrLQAAAAAAAAAAoGmLGBChtE1pNs1J25ymFrEt7JLfpgKL06dPWz2p4lyxgy02btyoiRMn2jxPOnuSxjlRUVFVjuvRo4fVObYqKirSlClT5Ovrq3/96191jgMAAICm40LsXlsddq4FAAAAGlbfp/vqrzl/tXxN2z6tXvF2zN2h7XO2yzPEU7d9c5ucXCv/bl3+9+mykrJq45Xvd/aouOtT+d/t6xrHXmsBAAAAAAAAAABNW+wTsdr7zV4djj9cq/GpCanaOXenYh6OsUv+6j/t9Cf+/v7auXOnXRLXx65duyRJ3t7e8vX1rXJcixbnq1B2795d53wvvviikpOTNXPmTIWFhdU5DgAAAJqOhNcSFP9ivOV2jsOFPZ2BnWsBAACAhuXk6lShCMLZq+6FA0fWHdGSKUvk6uOqMcvGyK+1n9VxLt4ulraxyGh1zDnlf08vP0+SXL1dax2n/GuG8nHqupbyuQEAAAAAAAAAAII7Beu2b27T4vGL1X5Ye3W5rYtCu4XKzd9NBoNBZrNZRdlFOrHrhPYs2KNtn2zTDf+6wW4nWNhUYHHVVVfpv//9r9q0aaMBAwbI19fXcnrFqVOnlJqaWutYmZmZtq30/ysuLlZ6erokWT1No7zy/YcPH65Tvu3bt+vtt99Wv379NHny5DrFAAAAQNPT9+m+6vNoH8vt1NRUvdvt3QuWj51rAQAAgMvDsV+Paf6w+XJ0cdS4n8bpil5XVDm2fOFFfkZ+tXHL9/+5YMOvtZ/lqO38jHz5NPepMk5eRp4kydXHVe7+7pbrvi19ZXAwyGwyW8bUZi2+raveRAkAAAAAAAAAAFy+XnJ8qcYxiR8lKvGjxBrH/XDvD/ph6g96zvhcvddlU4HFAw88oOXLl+vRRx+t1Pfwww/r4YcfrveCanLmzBlL283Nrdqx7u7n39wpP6+2ysrKdPfdd8vR0VEzZ86UwWCwOYY1hcZC5RnPv8Hk7OAsZ0c+TIYLy2wwy2QyyWisfvc44EIxGo08B9GgeA7ionOUHD3On85Qvn0hsHPtpa0pvwZoyj93+b8HPAfAc6Bp4/GHyWSyec4fiX9o7uC5MpvNGv/zeIXHhFc7PqRriKWdezS32rG5aef7Q7qEVOgL7hpsaecczVGzns2sxjAWG1VwsuDsnC7BFfqc3Z3l38ZfWQey6rWWy0VBWYFcjedf4zSl1wCNhdlgllnms387l+3/XnHx8Fg1HjxWjQuPV+PBY9V4mA3mhl4CGlBOTo6ysrIst11dXeXqevm+73EpMRka589Gfr7bT1P7+xt/d0Rd8dxBXfHcqRrfk/o7d9CDvRhkn8/621RgccMNN+idd97R3/72NxUWFlboq8sdrEvBQvm8Li4u1Yys2F9QUGBzrnfffVeJiYn6xz/+oQ4dOtg8vypPrX2qwu0hPYfoxqtutFt8wBqzzDKmnv1h7uDg0MCrQVNkMpksJx3xHERD4DmIhnbq1KkLGp+day9tTfk1QEJCQkMvocHwfw94DoDnQNPG4w9bXwMc33pcnw/6XCajSeN+GldjcYUk+TT3UWD7QJ3af0rp29Krj590/OyccB8FtAuo0BcxIEJrtEaSlL4tXR1v6Wg1Rsb2DJlNZsucP2s9oLWyDmSpKLtI2Uey5dfKr9q1VBXnctCUXwM0FmaZVehdqCxl2e1NN1wYPFaNB49V48Lj1XjwWDUeZwpt3/gTl4+oqKgKtydMmKC77rqrQdbS1GQ1y6p50CWIn+/209Tei+LvjqgrnjuoK547VStfYIu66zSik0K61X8zphM7Tmjft/vssCIbCywk6ZFHHtHEiRO1ceNGnTp1SmVlZZo0aZLuvfdexcTE1DrOL7/8olmzZtmavsKpFCUlJdWOLd/v4eFhU56UlBQ9//zz6tKli5566qmaJ9jgjbg35O/mb7nt7OAs5+PsXIULy2ww64qWVyg2NlZOTjb/0wfq7Vy1Js9BNBSeg2ho515sXijsXHtpa8qvAfr27dvQS2gw/N8DngPgOdC08fjDltcAGTsy9Pmgz1VWUqZxP45Ti9gWlcasfXGt9i/Zr3t+u6fC9c6jOmv9K+uVfThbpw+dln8b/0pzc4/lKnNfpiSp08hOlTY/Co8Jl0+4j3LTcpWyKkVxz8dZXeehlYcq5P2zLqO6KGlmkiQpZVWKekzqYTVOyqoUSVJYVJgC2gZYHdPYNeXXAI2F2WBWlrIUkB4gg5kPM13KeKwaDx6rxoXHq/HgsWpECmsegsvXtm3b1KLF+ddynGBx8Rz757GGXkKd8PPdfprae1H83RF1xXMHdcVzp2ppaWkNvYTLQqcRndRtTLd6x9nxxY6GK7CQJD8/P9144/mdliZNmqRrr71WY8aMqX1iJ6c6FVh4e3tb2kVFRdWOLX/aRfl5tXHPPfeoqKhIs2bNkrOzfd/0cHdyl5eTV8WLnBSJC8wkkxwcHOTk5MR/cmgwPAfR0HgOoiFd6Cp+dq69tDXl1wBN/Wcu//eA5wB4DjRtPP5NW21fA5zYdUJzrp8jY6FRY5ePVcu+La2Oy07J1vHE45Wu936otza/t1kleSVK+l+Srn/1+kpjts7eKpklJzcnxT4WW6nfYDCo7zN9tey+ZUpNSFXmvkwFdQyqMMZkNGnbp9skSe1uaqew7mGV4rQZ2EbNezfXsc3HlPS/JKsFFkfWHdGp/WdP97j22Wut3tfLgYejR5N9DdBYmGSSQQYZzAY5mNl571LGY9V48Fg1LjxejQePVePBB6SbNl9fXwUEXJ4F5Je6xvqzkZ/v9tMU//bG3x1RVzx3UFc8d6zj+1F/fq385OLlYpdYLl4u8m3pa5dYdvnt7LrrrlNoaKhNc0JDQ9WvXz+bc7m6uios7OwbNxkZGdWOLd/funXrWueYM2eOVq5cqbFjx6pdu3bKzMys9FVaWmoZX/56Tk6ObXcIAAAAsJNzO8ie27nWmtruXCud31XWmtrsXHtOdXGaws61AAAAQFVO7jmpOdfPUUFmgfo83kdmk1mH1x62+pWXnmc1hmeIpwa9NUiStOndTTq2peLOnenb07XhzQ2SpP7/6G/5ff/Pek3pdba4wywtmbJEpYWlFfrXvrBWWclZcvNz0+B3B1d5n276z01ycndS2i9p+vWDXyv0FWUXadn9yyRJ7Ye2V+eRlV9LAAAAAAAAAACApmF6ynR1uLmDXWJ1vKWjpqdMt0ssu5TOrFmzxuY5AwcO1MCBA+uUr2vXrkpPT9eZM2eUk5MjX1/r1Sblj17p0qWL1THWrF69WpL0+eef6/PPP69xfHBwsKV93XXXae3atbXOBQAAANgLO9cCAAAAjYexyKg5189R/ol8SdK6l9Zp3Uvr6hTrqqlXKS8jT+teWqfP+n+mnpN7KrhLsDL3ZSppVpJK80vV5/E+in288muAcxycHHT74ts1b+g8pSakamavmYqaGCUXTxclL0tW8tJkeQR5aNTCUQpsF1hlnGY9m2nU16O0aOwiLX9ouVLXp6r1gNYqPFWopFlJyj6crYgBERoxb0Sd7isAAAAAAAAAAMCfHVp5SOtfXa8JqyfUO1ajPJtkwIABWrlypSRp27Ztuu6666yOS0pKqjCntp588kmNGzeu2jGPPfaYduzYIUlasWKF5bq/v3+t8wAAAAD2dG7n2qXTlmrTu5vUcXhHNY9ubum3ZefaXfN2KTUhVUumLNG4n8fJ2d3Z0m/LzrUf9/3YsnPt1Q9cbelj51oAAAA0dcYiY5WnUtRF3PNxihwUqc3vb9aehXtU8GGBPII8FPmXSEXfH62I/hE1xvAI8tCkhElKnJWoHZ/vUMJrCSorLpNvS1/FPhmrmIdj5N3Mu8Y47Ye219TtU7VpxiYlL03W79//LmdPZ4V0DVG/5/opakKUDA6GGuMAAAAAl5ui7CLtX7pfKatSlL41XadTTqskr0QuXi4KbBeoiIERip4WLd+W1jcaLe/oxqP69YNflZqQqvwT+fIM9lR4n3BF3xet1nGta7Uek9GkxFmJ2jl3pzL3ZcpYbJRvS191uKWDYqbHyCvMq573GAAAAAAujryMPB2JP2KXWDYVWLRp06bC7WnTpumJJ56o9fxhw4Zp2bJlltsGg0FGo9GWJUiSRo4cqWeffVZms1mrVq2qssDiXBFGUFCQ4uLiah2/c+fO6ty5+g94lS+kqOtJHAAAAMCf7Zi7w9LO2JFhaR9ccVC5abmSJM9QT0UOirQ6n51rAQAAgMbBzc9Nz5uft2vMFrEt1CK2Rb1iODg5KHpatKKnRdcrjl9rPw2ZMURDZgypVxwAAADgcnF041F9NuAzlRWXSQap0/BO6jq6q1x9XJV1IEvb52zXhtc36Nf3f9Utn9yiLrd1qTJW/Evxin8xXk5uTuoxuYdCuoYoc+/Z9wH2LNij2CdiNejNQdWupyCzQPOGztOxzccU1DFI1zx1jVy8XJS8NFkbXt+grbO36raFt6lVv1b2/lYAAAAAgCTJVGbSiZ0nFNI1RA5ODpbr2+dstznW0Y1H7bYumwosDh8+rI4dOyo0NFSS7ac1DBw4UEFBQZKk3bt3KzEx0ab557Rr106jRo3S119/rc8//1x/+9vf5OLiUmHMoUOHtHr1aknSU089JSenind1165dGjFihAoKCjRv3jz169evTmsBAAAA7Gnx+MVWrye8mmBpt7quVZUFFhI71wIAAAAAAAAAcKkpzi1WWXGZDI4GjV0+ttLf+fv9rZ8+6feJTuw8ocXjFyukW4iCOwVXivPbR79p7fNr5eTmpDtX36nw3uGWvivHX6lPrv1EG9/aKM8Qzyo3WzIZTfpq+Fc6tvmYWsS20PiV4y0nWUffF61Vz6xSwmsJ+vKWLzX518nVbrYEAAAAAHX19Yivtf+H/Wo7pK3GLB1juf7tXd/KYGi4zxPZVGAhSX/72980ZsyYCtdSU1OrHN+yZUtLe/r06Zb2O++8U+cCC0l66623tGbNGh0+fFjPPPOM3n77bUtfcXGx7rnnHpWVlalXr1564IEHKs1/5ZVXlJycLEn661//qo0bN9Z5LQAAAIC92GsHW3auBQAAAAAAAADg0hN1V5TVTZTc/Nw06K1B+mLIFyorKVPS/5I0+J3BFcbkn8zXiidWSJJ6T+9dobhCkpr1aKbYx2MV/2K81vx9jbre0VU+4T6VciXOSlRqQqpkkIbNGmYprjgn7sU47VmwR1kHsvTzoz9r9JLR9bzXAAAAAFDZ4fjDMpvNSt1QuRbBbDbbHM9eRRk2F1hY07p16yoXVFZWZo8UlbRs2VJLlizR8OHD9c4772jXrl26+eabVVhYqM8++0w7d+5UVFSUvv/+e7m5uVWabzKZLO3aPgBz5861tDMyMqxeHzRokOWEDwAAAAAAAAAAAAAAAMDNz03NezdX55GdqxxzRa8rLO3MvZmV+je/t1kleSWSpJ6Te1qN0XNyT8W/FC9jkVEb39moIe9W3PzIbDYr4bWzp2a3vKalgjtXPiXD0dlR3e/qrjV/W6P9P+xX+vZ0hXUPq/lOAgAAAIAN/vL2X7T5/c26+oGrK/UNmTFEHW7pUOtY+xbv08+P/WyXddmlwOK5556TwWBQfn6+3n77bY0fP15t2rSxR+hq9e7dWzt27NCMGTO0ePFiPfnkk3J2dlb79u01Y8YMTZs2TS4uLlbnPvvss0pKSlJhYaHeeOONWuUbP358jdfXrFlDgQUAAAAAAAAAAAAAAAAswmPCNXnT5GrHOHucP0nCybXyR3r2LNwj6ezJ0QFtA6zG8An3UVDHIGXuzdTehXs1+J+DK2yamrYpTblHcyVJEQMjqlxL5KBIrfnbmrN5F+yhwAIAAACA3fWc3LPK4nGPIA/5tfKrdSyPYA87rcpOBRYvvPCCJOnUqVN6++23NWHCBA0YMMAeoWsUFBSkl19+WS+//LJN86688kolJyfbNKcuR40AAAAAAAAAAAAAAAAANTm25Zil3XpA6wp9ucdyder3U5KksKjqix2a9WimzL2Zyk3LVVZylgLbB1r6UlanWNrVxQntHiqDg0Fmk7nCHAAAAAC40K57/jqFXmnbgQehV4aq33P97JLfLgUWAAAAAAAAAAAAAAAAAOrGWGTU6mdWS5JCuoVU2sX1xK4TlrZPC59qY5XvP7H7RIUCi5O7Tlravi18q4zh5Ookj2AP5Wfk6+Tuk1WOAwAAAAB7MxgM2rtor/Yu2quwqDB1uLlDjXNCu4UqtJttRRlVocACAAAAAAAAAAAAAAAAuIiMxUYVZRep8FShjm48qk3vbtLJPSfV5bYuGjpzqJzdnSuMzz6cbWl7hnpWG7t8f/l5tsbxCvVSfka+inOLVXi6UO7+7tXfKQAAAACwg7UvrJXBYJDZbFbUXVG1KrCwJwosAAAAAAAAAAAAAAAAABuYykwym8znbxtNNs3fNX+Xvpv4neW2b0tfjfhihLqO7iqDwVBpfMmZEkvbya36j/uUL84oP0+Sis8U1zqOk/v5/pIzJRRYAAAAALhovJt7a+SXI3VF9BUXPTcFFgAAAAAAAAAAAAAAAIANsg5kKSs5y3I7Rzk2zY8cHKnxK8arJL9EWclZ2jlvpxaNXaS1z6/VkPeGqN2N7SqMLy0stbQdXRyrjV2+v7SgtEKfsdBolzgAAAAAcKE4uTmp9/TeahHbomHy2zrBWpV8XcYAAAAAAAAAAAAAAAAAjVFA2wD5t/G33M4qypLiaz/fu5m3vJt5W273eayPVj61Uhvf2qh5Q+fplk9uUdSEKEt/+VMpykrKqo1dvt/Zw7lCX/lTKeoTBwAAAAAuFN8WvnL1cW2w/DYXWDz88MN69tlnrfaZTGePOxw7dqzc3NyqjZObm2tragAAAAAAAAAAAAAAAKDBOTg6SOUOgHAwOtQrnsFg0MA3BiplVYqOJx3X0mlL1XZwW3mFeUmSXLxdLGONRcaqwkiqeNpF+XmS5Op9/kNKNcUpf9rFn+MAAAAAwIXSbmg7HYk/ol5TetV6zo4vdujbO7/Vc2XP1Tu/zQUWmZmZOnnyZJX9BoNB6enptYrFSRcAAAAAAAAAAAAAAADA2c/RdBvbTceTjstYaNTO+TvV55E+kiS/1n6WcfkZ+dXGKd9fft6522mb0izjfJr7VBknLyNPkuTq4yp3f3db7goAAAAA1Fnfp/pqZq+Z2rt4rzoN73TR89tcYBEYGChPT896J87NzVV2dna94wAAAAAAAAAAAAAAAACXg8AOgZb2iZ0nLO2QriGWdu7R3Gpj5Kad7w/pElKhL7hrsKWdczRHzXo2sxrDWGxUwcmCs3O6BFsdAwAAAAAXgrHIqJs/vllLJi/Rjs93qPOozgrpEiJXH1cZHKwf8FCQWWC3/DYXWMyYMUNjxoypd+K3335bTz31VL3jAAAAAAAAAAAAAAAAAJey5OXJcvZwVuvrWlc7zsHRwdI2GU2Wtk9zHwW2D9Sp/aeUvi292hjHk46fnRPuo4B2ARX6IgZEaI3WSJLSt6Wr4y0drcbI2J4hs8lsmQMAAAAAF8uM1jNkMJwtpMhNy9Xv3/1+UfM71Dzkwjh3pwEAAAAAAAAAAAAAAIDL2dJpS7Xs/mU1jss6kGVp+7b0rdDXeVRnSVL24WydPnTa6vzcY7nK3JcpSeo0slOlz+eEx4TLJ9xHkpSyKqXKdRxaeahSXgAAAAC4WMxms81f9mLTCRZvvfWWevXqZZfEcXFxevPNN+0SCwAAAAAAAAAAAAAAALiUZe7NVPbhbPm19rPabzabtX3Odsvt9sPaV+jv/VBvbX5vs0rySpT0vyRd/+r1lWJsnb1VMktObk6KfSy2Ur/BYFDfZ/pq2X3LlJqQqsx9mQrqGFRhjMlo0rZPt0mS2t3UTmHdw2y8pwAAAABQP73u7aXwmPBaj0/7JU1Js5LsktumAovHHnvMLkklqVevXnYr1gAAAAAAAAAAAAAAAAAuZWaTWYvHL9aoBaPkFeZVqe+nR3/SH1v+kCR1Hd1V4b0rfpjIM8RTg94apKXTlmrTu5vUcXhHNY9ubulP356uDW9ukCT1/0d/y0kVf9ZrSi/tmrdLqQmpWjJlicb9PE7O7s6W/rUvrFVWcpbc/Nw0+N3BdrnvAABcrvLz8+s0LyMjQ1OnTlViYqJ69eqljz76SKGhoTbH8fT0rFN+ALjUtbq2lbqN6Vbr8Q5ODg1TYAEAAAAAAAAAAAAAAADANmHdw5RzJEepCal6P/J9dbmji4I6Bskj0EM5qTna/fVuZe7NlCR1v7O7hs4cajXOVVOvUl5Gnta9tE6f9f9MPSf3VHCXYGXuy1TSrCSV5peqz+N9FPt45dMrznFwctDti2/XvKHzlJqQqpm9ZipqYpRcPF2UvCxZyUuT5RHkoVELRymwXeAF+X4AAHC58PLyqnlQDVasWKHIyMg6zTWbzfXODwCXmpbXtJRniG0FZAGRAep+Z3e75KfAAgAAAAAAAAAAAAAAALiA7vjuDp3YdUJ7F+9V6vpUHVpxSLvm75Kp1CQXbxf5R/gr+oFodb+ze4VTKayJez5OkYMitfn9zdqzcI8KPiyQR5CHIv8Sqej7oxXRP6LG9XgEeWhSwiQlzkrUjs93KOG1BJUVl8m3pa9in4xVzMMx8m7mba+7DwAAAAC1NnH9RJvnhMeEKzwmvOaBtUCBBQAAAAAAAAAAAAAAAHCBhXQNUUjXELvEahHbQi1iW9QrhoOTg6KnRSt6WrRd1gQAQFOUl5dXp3nDhw/X6tWrVVZWJkdHRw0YMECLFy+28+oAoHHaPme7WvVrJb/WfjWO/bDbhzKbzep1by/1frC3XfJTYAEAAAAAAAAAAAAAAAAAAADYyNPTs07zPv/8c911113asmWLoqOj9emnn9Y5FgBcbr6b+J2Gfz68VgUWzh7O+uO3P/TTwz/JzddN3e/sXu/8FFgAAAAAAAAAAAAAAAAAAAAAF0loaKiWL1/e0MsAgEuS2Wyu9djJmyfrzB9n9NXwr/Trv361S4GFQ70jAAAAAAAAAAAAAAAAAAAAAAAAXGTeV3gramKUsg5k2SUeJ1gATcjO+Tt17J/H5GBuuNqq0UtGN1huAAAAAAAAAAAAAAAAAAAAAJeXrINZKisps0ssCiwAAAAAAAAAAAAAAAAAAAAAAMBFte+7ffr9u98rXU+cmahDKw/VON9UalL2kWyl/ZKm0CtD7bImCiwAAAAAAAAAAAAAAAAAAAAAAMBFlb4tXds+3SaDwVDheur6VKWuT61VDLPZLEm6+qGr7bImCiwaQLGxWEXGIpvm5BTnaPbO2UrJSVGEb4Tu7na3fF19bc7t5uRm8xwAAAAAAAAAAAAAAAAAAAAAAOzJzc9Nfq38KlzLPpIt90B3uXi6VD/ZIDl7OCuwfaC6T+iujrd0tMuaKLBoAE+sfaJe83dl7tIjax6p09x5Q+fVKzcAAAAAAAAAAAAAAAAAAAAAAPUVMz1GMdNjKlx70eFFDZkxRN3GdGuQNTk0SFYAAAAAAAAAAAAAAAAAAAAAAIBLCCdYNIC34t5SoFugTXP++ds/tefUHpnMJjkYHNQ5sLMeverRC7RCAAAAAAAAAAAAAAAAAAAAAAAurudNzzdofgosGoCrk6vcnNxsmnN/j/v10baPdDD7oCL9IjU1aqrNMQAAAAAAAAAAAAAAAAAAAAAAgHUUWDQSvq6+eqr3Uw29DAAAAAAAAAAAAAAAAAAAAAAALpi89DyVlZRJkjxDPeXker7sIetgluJfiFf69nS5+riq6+iuir4vWgaDwS65KbAAAAAAAAAAAAAAAAAAAAAAAAANrjCrUO9FvGcpsBi7fKwi/xIpSTq596Rmx8xWSV6JzGazJCntlzSl/ZKmEXNH2CU/BRYAAAAAAAAAAAAAAAAAAAAAAFwgZrNZW/69RSv/ulKl+aWasGaCWse1rvX8oxuP6tcPflVqQqryT+TLM9hT4X3CFX1fdK3jmIwmJc5K1M65O5W5L1PGYqN8W/qqwy0dFDM9Rl5hXrWKk30kW5tmbNKBZQeUczRHLl4uCukSou4Tuqv7nd1lcKjfSRJ7Fu6RsdgojyAP9ZzSUyFdQyx9P07/UcVniiVJV/S6Qt5XeOvIuiPaNX+Xuo3ppnY3tqtXbokCCwAAAAAAAAAAAAAAAAAAAAAALoisg1n6ftL3OrLuSJ3mx78Ur/gX4+Xk5qQek3sopGuIMvdmKmlWkvYs2KPYJ2I16M1B1cYoyCzQvKHzdGzzMQV1DNI1T10jFy8XJS9N1obXN2jr7K26beFtatWvVbVx9i/dr0VjFqn4TLE6j+ysmEdiVHCqQEmzkvTdxO+0Y+4O3b74drl6u9bpvkrSwZ8PytXHVfcm3SufcB/L9awDWTq08pAMBoOi74/WDe/fcPb6wSzNip6lbZ9so8ACAAAAAAAAAAAAAAAAAAAAAIBLTflTKxwcHRQeE660TWk2xfjto9+09vm1cnJz0p2r71R473BL35Xjr9Qn136ijW9tlGeIp2Ifj7Uaw2Q06avhX+nY5mNqEdtC41eOl7O7syQp+r5orXpmlRJeS9CXt3ypyb9OVmC7QKtxjicd14JRC2QsNGrwjMGKmR5j6Yu+L1qfXPuJUlalaNGYRRq9ZLRN9/PPeaLuiqpQXCGdPdlCkpw9nDXg5QGW6wGRAeo2tpv2f7+/zjnLc7BLFAAAAAAAAAAAAAAAAAAAAAAAIEmKfzFeyx9crpZ9W2rarmmKHBxp0/z8k/la8cQKSVLv6b0rFFdIUrMezSxFFWv+vka5ablW4yTOSlRqQqpkkIbNGmYprjgn7sU4BbQNUFF2kX5+9Ocq17P0vqUyFhrVvHfzCsUVkuTu764bP7hRkrT/h/3a880em+5reXnH8xTcObjS9d+/+10Gg0Ed/6+jXH0qnpAR3ClY+Sfy65yzPAosAAAAAAAAAAAAAAAAAAAAAACwI7PZrGH/G6ZxP46Tbwtfm+dvfm+zSvJKJEk9J/e0Oqbn5J6SQTIWGbXxnY1W15DwWoIkqeU1La0WLjg6O6r7Xd0lnS2OSN+eXmnMoZWHdGzzsbM5p1hfS+u41gpoFyBJWv/y+pruXpUMDgaVlZZVuJZ7LFfHfj2bv/OozpXnOBrqnO/PKLAAAAAAAAAAAAAAAAAAAAAAAMCO4l6IU8+7rRcj1MaehWdPgfBr7aeAtgFWx/iE+yioY5Akae/CvTKbzRX60zalKffo2ZMtIgZGVJkrctD50zX2LKh8+sTuBbst7TYD21QZ51xf+rZ0ZR3IqnJcdXzCfXQ88XiFa1tnb5XZbJazh7PVk0BOHzot90D3OuX7MwosAAAAAAAAAAAAAAAAAAAAAACwI4Oh7qcq5B7L1anfT0mSwqLCqh3brEezs3PScpWVXLGoIWV1iqVdXZzQ7qEyOBgqzTnn8OrDkiQ3Pzf5tfKrMk5Yj/M5rMWpjVbXtdKuL3dp76K9Ki0o1YEfD2jj2xtlMBjUcXhHObk6VRhvLDJq59ydVk/nqAunmocAAAAAAAAAAAAAAAAAAAAAAICL4cSuE5a2TwufaseW7z+x+4QC2wdabp/cddLS9m3hW2UMJ1cneQR7KD8jXyd3n6zQV1pYqtOHTtdqLeVznNh9opqRVYt5JEbbP9uuBaMWWK6ZzWY5ODko9olYy7WCzAKlbU7TupfWKS89T9H3R9cp359xggUAAAAAAAAAAAAAAAAAAAAAAJeI7MPZlrZnqGe1Y8v3l59naxyvUC9JUnFusQpPF1qu56TmyGwyVxhTm7XkHM6pdmxVgjsFa8QXI+Ts6Syz2Syz2SwnNyfd+MGNCu0Wahm36b1Nmj9svo5tOSZJ6nJblzrl+zNOsAAAAAAAAAAAAAAAAAAAAAAA4BJRcqbE0nZyq/4j/87uzlbnSVLxmeJax3FyP99fcqZE7v7u9VpL+dy26jyys9oMaqMj647IbDKr+dXN5d3Mu+KYWzsroG2AJMnV29XSri8KLAAAAAAAAAAAAAAAAAAAAAAAqIKx2Kiy4jLL7T8XMthbaWGppe3o4ljt2PL9pQWlFfqMhcZ6x7HXWmzl5uumDsM6VNkfFhWmsKiweuWwhgILAAAAAAAAAAAAAAAAAAAAAACqkPBaguJfjLfczlHOBc1X/iSIspKyakZW7Hf2cK7QV/5UirrGsddaLqSMnRnat3ifrnvuunrHosACAAAAAAAAAAAAAAAAAAAAAIAq9H26r/o82sdy+9ixY3q387sXLJ+Lt4ulbSwyVjOy4gkT5edJkqu3a63jlD/tonycuq6lfO4LLWNHhuJfjKfAAgAAAAAAAAAAAAAAAAAAAACAC8nJ1UlOruc/eu+S61LN6Prza+1naedn5Fc7tnx/+XnnbqdtSrOM82nuU2WcvIw8SZKrj6vc/d0t131b+srgYJDZZLaMqc1afFv7Vju2Kjmptp8OUpBZUKdc1lBgAQAAAAAAAAAAAAAAAAAAAMAm+fnVf+i7KhkZGZo6daoSExPVq1cvffTRRwoNDbU5jqenZ53yA41BSNcQSzv3aG61Y3PTzveHdAmp0BfcNdjSzjmao2Y9m1mNYSw2quDk2SKF4C7BFfqc3Z3l38ZfWQey6rWWP4v/R7x+eecXxTwco7gX4izXZ7SeIYPBUO3cC4kCCwAAAAAAAAAAAAAAAAAAAAA28fLyqneMFStWKDIysk5zzWZzvfMDlyqf5j4KbB+oU/tPKX1berVjjycdPzsn3EcB7QIq9EUMiNAarZEkpW9LV8dbOlqNkbE9Q2aT2TLnz1oPaK2sA1kqyi5S9pFs+bXyq3YtVcUpb+NbG1WSV6Jf/vlLhQILqW7/vu1VlEGBBQAAAAAAAAAAAAAAAAAAAAAAl5DOozpr/SvrlX04W6cPnZZ/G/9KY3KP5SpzX6YkqdPITpWKDMJjwuUT7qPctFylrEpR3PNxVnMdWnmoQt4/6zKqi5JmJkmSUlalqMekHlbjpKxKkSSFRYUpoG2A1TGWmLd10daPt1rN1+veXgqPCa92fnlpv6QpaVZSrcdXhwILAAAAAAAAAAAAAAAAAAAAADbJy8ur07zhw4dr9erVKisrk6OjowYMGKDFixfbeXVA49f7od7a/N5mleSVKOl/Sbr+1esrjdk6e6tklpzcnBT7WGylfoPBoL7P9NWy+5YpNSFVmfsyFdQxqMIYk9GkbZ9ukyS1u6mdwrqHVYrTZmAbNe/dXMc2H1PS/5KsFlgcWXdEp/afkiRd++y1Nd6/m/93swa9OUjuAe6V+lpd20rdxnSrMcY5Dk4OFFgAAAAAAAAAAAAAAAAAABrO/GHzG3oJAIAG5OnpWad5n3/+ue666y5t2bJF0dHR+vTTT+scC7iceYZ4atBbg7R02lJteneTOg7vqObRzS396dvTteHNDZKk/v/oL59wH6txek3ppV3zdik1IVVLpizRuJ/Hydnd2dK/9oW1ykrOkpufmwa/O7jK9dz0n5v0cd+PlfZLmn794Fdd/cDVlr6i7CItu3+ZJKn90PbqPLLyqRTWWCuuaH1da3mG2vYzwSvUS636tbJpTlUosAAAAAAAAAAAAAAAAAAAAABwUYSGhmr58uUNvQzgotgxd4elnbEjw9I+uOKgctNyJUmeoZ6KHBRpdf5VU69SXkae1r20Tp/1/0w9J/dUcJdgZe7LVNKsJJXml6rP430U+3jl0yvOcXBy0O2Lb9e8ofOUmpCqmb1mKmpilFw8XZS8LFnJS5PlEeShUQtHKbBdYJVxmvVsplFfj9KisYu0/KHlSl2fqtYDWqvwVKGSZiUp+3C2IgZEaMS8EbZ+myqYsGaCzXPaDGyjNgPb1CvvORRYAAAAAAAumIbeuWr0ktENmh8AAAAAAAAAAAAAADRdi8cvtno94dUES7vVda2qLLCQpLjn4xQ5KFKb39+sPQv3qODDAnkEeSjyL5GKvj9aEf0jalyHR5CHJiVMUuKsRO34fIcSXktQWXGZfFv6KvbJWMU8HCPvZt41xmk/tL2mbp+qTTM2KXlpsn7//nc5ezorpGuI+j3XT1ETomRwMNQY51JGgQUAAAAAAAAAAAAAAAAAAAAAAHb2vPl5u8RpEdtCLWJb1CuGg5ODoqdFK3padL3i+LX205AZQzRkxpB6xamKsdio1IRUHU86roKTBSrOLZarr6s8gz11xVVXqEVsCzm6OF6Q3BIFFgAAAAAAAAAAAAAAAAAAAAAAoAGd+eOM1r2yTts/3S5jkbHKcU7uTuoxqYf6Pt23Vqdu2IoCCwAAAAAAAAAAAAAAAAAAAAAA0CB+//53LRq3SKX5pTKbzdWOLS0o1ZZ/b9G2T7fp1nm3qv3Q9nZdCwUWAAAAAAAAAAAAAAAAAAAAAADgotvxxQ59O+FbySyZzWYZHAwK7hyssKgwuQe6y8XLRSVnSlSQWaD0renK/D1TZpNZJXkl+vL/vtTwz4er2+hudlsPBRYAAAAAAAAAAAAAAAAAAAAAAOCiOrnnpH649weZTWa5+7sr9olY9ZzcUx5BHlXOycvIU9KsJP3yz19UlF2kH+75QWHdwxTcOdgua3KwSxQAAAAAAAAAAAAAAAAAAAAAAIBaWvHECpUWlKpFbAtN2zlNff/at9riCknyCvVSv7/109TtU9X86uYqyS/RiidW2G1NFFgAAAAAAAAAAAAAAAAAAAAAAICL5sTuE0penqygjkEas3SMvK/wtmm+bwtfjV0+VoHtAnXgxwM6ueekXdZFgQUAAAAAAAAAAAAAAAAAAAAAALho9i/ZL4PBoMHvDpabr1udYrj7u2vwu4NlNpv1+/e/22VdFFgAAAAAAAAAAAAAAAAAAAAAAICLJnV9qgLbB6rt4Lb1itPuxnYKbBeoI+uO2GVdFFgAAAAAAAAAAAAAAAAAAAAAAICL5tT+U4oYGGGXWG0GtdGp/afsEsvJLlEAAAAAAAAAAAAAAAAAAAAAoInIz8+v89yMjAxNnTpViYmJ6tWrlz766COFhobaHMfT07POawAaWsGpAvm38bdLLP9IfxVmFdolFgUWAAAAAAAAAAAAAAAAwEVQkFmg3Qt26+BPB5W+NV15GXkyOBjkFeql5lc3V7dx3dR+aHsZDIYaYx3deFS/fvCrUhNSlX8iX57BngrvE67o+6LVOq51rdZjMpqUOCtRO+fuVOa+TBmLjfJt6asOt3RQzPQYeYV51fMeAwAAXL68vOzzu9KKFSsUGRlZp7lms9kuawAaQnFOsTwCPewSyyPQQ8W5xXaJRYEFAAAAAAAAAAAAAAAAcIH9/PjP2vLvLTIWGeUR7KFuY7spsF2gzGazDq85rD0L92j317sVMSBCoxaMknuAe5Wx4l+KV/yL8XJyc1KPyT0U0jVEmXszlTQrSXsW7FHsE7Ea9OagatdTkFmgeUPn6djmYwrqGKRrnrpGLl4uSl6arA2vb9DW2Vt128Lb1KpfK3t/KwAAAABAZrNZDk4OdollcDRIdqo3osACAAAAAAAAAAAAAAAAuMB2zN0h4/9j797DrK7ue/G/Z5hhgOEmdxQQxFuUCqIjF41Fj0SbaFJTSUJSjUlNYkxT0zS3WntS07TG2kRjPSc2mKrRSFJtbGrUHlEQg8RLwDteSJUgRJCLgNwGhpnfH/zczsjMAMNlz7Bfr+eZ51l71lqftTbfxZ69Zr6fvTbX5dA/PDQf+8XH0qVXl0LdSV84KS//8uX89I9/mldnvprp50zPp371qZSV73iSxW9u+E0e+uZDqehSkQtmXpAh44YU6o47/7jc9N6bMvfquakeUJ2JX5nY7Fzq6+rzs3N/lqWPLc3QiUNz/gPnp7JrZZKk5pKaPHjZg5lz5Zz89EM/zUWPX5S+R/Tdy/8aAAAd3/r169vc99xzz83MmTOzbdu2dOrUKaeffnruuuuuvTg76CB2fnjffifBAgAAAAAAAAAA9oPyivKc++NzmyRXvO3Is4/M2IvGZt6/zstrc1/L8//+fEZ9bFSTNhtWbMiMr85Ikoy7dFyT5IokGXz84Ez8ysTMvmJ2Zv3trIz62Kj0HNJzh7HmTZuXxXMWJ2XJOdPOKSRXvG3SFZOy4I4FWf3b1bn/y/dn6t1T9/CZAwAceKqrq9vc99Zbb82FF16YJ554IjU1Nbn55pv3KB50VP/vS/8vM/9m5h7H2bph616YzXYSLAAAAAAAAAAAYD8YNGZQeg3r1WL9e/7kPZn3r/OSJC/f/fIOCRaPff+xbFm/JUky9qKxzcYYe9HYzP7W7NRtrsvc787NWdec1aS+oaEhc66ckyQZdvKw9D+m/w4xOlV2yugLR2fW5bPy8i9fzrKnl2XQ6EG7/kQBAGjVwIEDc9999xV7GlB0G1duTMOKhr0Sq6xs7xyHIcECAAAAAAAAAAD2sT+Z/ifp1rdbq216H9q7UF67eO0O9QvuXLC93fDe6XN4n2Zj9BzSM/2O7peVL6zMC3e+kDO/d2aTG42WPLok615blyQZccaIFucycvLIzLp81vZx71ggwQIAANjruvbtms7Vnfc4zpYNW7Jp1aa9MCMJFgAAAAAAAAAAsM+NOK3lZIa3bV6zuVCurK5sUrdu6bqsemlVku0nYbRm8PGDs/KFlVm3ZF1WL1ydvkf2LdS9OvPVQrm1OANHD0xZeVka6hua9AEAANhbzrr2rPzBx/9gj+M8c9sz+c9P/ueeTyhJ+V6JAgAAAAAAAAAA7JE3X32zUD701EOb1L3x3BuFcs+hPVuN07j+jeffaFK34rkVhXKvob1ajFFRVZFu/befuLHi+RUttgMAACi6sp032VVOsAAAAAAAAAAAgHbgxbteTJJUdKnImAvHNKlbs2hNoVw9sLrVOI3rG/fb3TjdB3bPhuUbUruuNpve3JSuB3VttT0A7G8bNmxoU7/ly5fn4osvzrx583LCCSfkhhtuyMCBA3c7TnV16z9LAWjZmdecmYNPPHivxDr4xIPzvu+9b6/EkmABAAAAAAAAAAC7oX5bfRrqG955XFe/xzE3vLEhL/3ipSTJhK9MSI+DezSp3/LWlkK5okvrt/xUdq1stl+S1L5Vu8txKrq+U7/lrS0SLABod7p3777HMWbMmJGRI0e2qW9DQ8POGwHQrPGXjt9rsfod1S/9juq3V2JJsAD2q+nnTC/q+FPvnlrU8QEAAAAAAADo+Fb/dnVWL1xdeLw2a/c45oyvzkjd5roMHjs4p15+6g71WzdtLZQ7de7UaqzG9Vs3bm1SV7epbq/EAQAAOBBJsAAAAAAAAAAAgN3Q5/A+OeiwgwqPV29encxue7xnbnsmT//46VQPqM5H/uMjqaja8ZaexqdSbNuyrdV4jesru1U2qWt8KsWexAGA9mD9+vVt6nfuuedm5syZ2bZtWzp16pTTTz89d911116eHQAdkQQLAAAAAAAAAADYDeWdypNGhz+U15W3OdbvHv5d7v7M3anqWZWP3/vx9B7eu9l2nXt0LpTrNtc12+ZtjU+7aNwvSap6VO1ynManXbw7DgC0B9XV1W3qd+utt+bCCy/ME088kZqamtx8881tjgXAgUWCBQAAAAAAAAAAFMHSx5dm+jnT06lzp/zp//vTHHzCwS22bZx4sWH5hlbjNq5/d8JG7+G9s+TRJYV2PQ/p2WKc9cu3fyp4Vc+qdD2oa6tjAkBHMnDgwNx3333FngYA7VDb0+fbiZUrV+Zv//ZvM2rUqHTv3j19+vTJhAkTct1112XLli17FLuhoSG/+tWvcumll6ampiYHHXRQKisr07dv30yYMCHf/OY38/vf/34vPRMAAAAAAAAAAErF7+f9PredeVsaGhryp//vTzNk/JBW2w8YNaBQXvfaulbbrlvyTv2AYwc0qes/qn+hvPa1tS3GqKuty8YVG7f3ObZ/i+0AAAAOJB06weLxxx/Pcccdl29/+9s5+OCDc9VVV+Wyyy7L+vXrc+mll2b8+PFtToCYP39+xowZk1NPPTXXXXdd+vXrl7/6q7/KDTfckC984Qt5/fXX861vfStHHXVUfvKTn+zlZwYAAAAAAAAAwIHq9Sdfz62Tb019XX3+9L93nlyRJD0P6Zm+R/ZNkix7alnr8ee/vr3PkJ7pc0SfJnUjTh9RKLcWZ/nTy9NQ37BDHwAAgANZh02wWLx4cc4+++y8/vrr+dKXvpT7778/X/jCF/KVr3wlv/nNb3LaaaflySefzAc/+MHU1tbudvzHH388zzzzTMrKyvLzn/889913Xy6//PL82Z/9Wb71rW9lwYIFOe2007J+/fpccMEFjooCAAAAAAAAAGCnlj+zPLdOvjXbtmzLJ+77RIZOHLpDm4eueCg/PPGHO3z/mCnHJEnWLFqTN195s9n465auy8oXVyZJ3nPee1JWVtakfsj4Iek5pGeS5NUHX21xnq888MoO4wIAABzoOmyCxVe/+tWsWLEiw4YNy3e+850mdVVVVZk2bVo6deqUefPm5frrr2/zOBdddFHOPffcHb7frVu33HLLLamsrEx9fX3+8i//ss1jAAAAAAAAAABw4HvjuTfy4//149Rtqssn7v1Ehp0yrNl2a15dk9fnvb7D98f9xbh07t45STL/xvnN9n3yR08mDUlFl4pM/KuJO9SXlZXllMtOSZIsnrO4kIzRWH1dfZ66+akkyREfOCKDRg/apecHAOxfGzZs2OWvTZs2FcqvvPJK3ve+96Vv37553/vel1deeWW3Yr39BXAgqij2BNpi4cKFueOOO5IkF1xwQaqqqnZoM3LkyJx22ml54IEHctVVV+XSSy9NRcXuP90PfehDLdYNHTo0NTU1mTt3bl566aUsXLgwRxxxxG6PAQAAAAAAAADAgW3FghX58f/6cTau3JhT//epaahvyKKHFjXbdv2y9c1+v3pAdSZfPTn3fP6ePHrNozn63KNzSM0hhfplTy/LI//0SJLktL8/rXBSxbud8JkT8tztz2XxnMW5+zN350/v/9NUdq0s1D/0dw9l9cLV6dK7S8685sw2PmMAYF/r3r37HseYMWNGRo4c2aa+DQ0Nezw+QHvTIRMs7rzzzsKL8hlnnNFiu8mTJ+eBBx7IihUr8tBDD7Xa9t0+8IEP5L777supp57aartDDz00c+fOTZIsXrxYggUAAAAAAAAAAE3Uba7Lj//Xj7Phje2f9Pzwtx7Ow996uE2xTrz4xKxfvj4Pf+vh3HLaLRl70dj0P7Z/Vr64MvOnzc/WDVsz4SsTMvErO55e8bbyivJ89K6P5vazb8/iOYvzwxN+mDGfGpPO1Z2z8N6FWXjPwnTr1y1T7pySvkf0bdM8AQAAOqIOmWAxc+bMQnnMmDEttjv++OOb9NmdBIuhQ4dm6NChO223Zs2aQrm6unqX4wMAAAAAAAAAUBrqNte1eCpFW0z65qSMnDwyj133WBbcuSAbf7Ax3fp1y8j3jUzNF2oy4rQRO43RrV+3fHrOpzNv2rw8c+szmXPlnGyr3ZZew3pl4tcmZvyXxqfH4B57bc4AwN63fv2uvb+oq6vL3LlzM3HixFRUVOTcc8/NzJkzs23btnTq1Cmnn3567rrrrn08W4COoUMmWDz33HNJkh49eqRXr14ttmucIPH888/vk7m8+uqrhbm0luwBAAAAAAAAAEBp6tK7S77Z8M29GnPoxKEZOnHnHx7amvKK8tR8viY1n6/ZS7MCAPanXf1g8Lq6unTt2jXV1dWpqKjIrbfemgsvvDBPPPFEampqcvPNN/uQcYD/X4dLsKitrc2yZcuSJAMHDmy1beP6RYsW7fW5vPTSS3nxxReTJJ/61KfSpUuXvT4GAAAAAAAAAAAAAOwtAwcOzH333VfsaQC0Sx0uweKtt94qlHeW0NC1a9dm++0t//qv/5ok6dOnTy6//PJd7repblPW171zLFNleWUqO1Xu9flBYw1lDWlIQxrKGlKf+mJPp2jq6uqKPYWSVVdXl/r6eteAorEGKbb6+tL9+Ys9QDEV83Xfzx6sAayB0ub6s7t7gIaGhjzxf57IA994IFs3bM0nZ30ywycN3+X+r819LY9f/3gWz1mcDW9sSHX/6gyZMCQ1l9Tscpz6uvrMmzYvz972bFa+uDJ1tXXpNaxXjvrQURl/6fh0H9R9l+Ks+d2aPHrto/ntvb/N2tfWpnP3zhlw7ICM/uTojL5gdMrKy3b5eXVUG7dtTFVdVeGxPUD743fmHYdr1XG4Vh2L69VxuFYdR0NZQ7GnQBGtXbs2q1evLjyuqqpKVVVVKz0OHPVlXpvawuv73lNqv3/ze0faytqhraydlvk3OXB1uASLTZs2FcqdO3dutW3j+o0bN+7Vebzwwgv5v//3/yZJbrjhhvTv33+X+379oa83eXzW2LPy/hPfv1fnB+/WkIZs6rEpq7M6ZTnw/4DZkjlz5hR7CiWrvr4+ixcvTpKUl5cXeTaUImuQYlu1atVO29w86eb8bvbvdtqusroyl62/rNU27enmKuwBiqmY7//87MEawBooba4/u7IHeNvq/1md//r0f+V3D+98P9Cc2d+andlXzE5Fl4ocf9HxGTBqQFa+sDLzp83PgjsWZOJXJ2byP01uNcbGlRtz+9m3Z+ljS9Pv6H45+esnp3P3zll4z8I88p1H8uSPnsxH7vxIDj310FbjvHzPy/n5x3+e2rdqc8x5x2T8X47PxlUbM3/a/PziU7/IM7c9k4/e9dFU9TiwbzSyB2j//M6843CtOg7XqmNxvToO16rjeGvT3v/gTzqOMWPGNHn8yU9+MhdeeGFR5rK/rR68eueN2IHX972n1O4F8ntH2sraoa2snZY1TrDlwNLhEiwan0qxZcuWVts2ru/Wrdteaz4fTAABAABJREFUm8PGjRszderU1NbW5mtf+1qmTJmyW/2vmnRVDupyUOFxZXllKl/3yVXsWw1lDVmd1emzrE/KGkp3Y3bKKacUewol6+1szYkTJ6aiosP9+OEAYA1SbG9vNveH9nRzFdvZAxRPMd//+dmDNYA1UNpcf3ZlD9D41IryTuUZMn5Iljy6ZLfG+c0Nv8lD33woFV0qcsHMCzJk3JBC3XHnH5eb3ntT5l49N9UDqjPxKxObjVFfV5+fnfuzLH1saYZOHJrzHzg/lV23v1+tuaQmD172YOZcOSc//dBPc9HjF6XvEX2bjfP6/Ndzx5Q7UrepLmdee2bGXzq+UFdzSU1ueu9NefXBV/Pzj/88U++eulvPs6OxB2j//M6843CtOg7XqmNxvToO16oD2bTzJhy4nnrqqQwdOrTwuJROsFj6vaXFnkKH5PV97ym1e4H83pG2snZoK2unZUuW7N7v8+k4OtxK79GjR6G8efPmVts2Pu2icb89UVdXl6lTp+bpp5/O+eefn+985zu7HaNrRdd0r3jXp/06KZJ9rD71KUtZyhrKUt5QulmEfsAXV3l5eSoqKlwHisYapJh2NYv/4JqDc+6Pz221TVl5y79kbU83V/EOe4DiKfZrvp89WANYA6XN9S9tu7IHmH3F9uTokWeOzDnTzsmTP3pytxIsNqzYkBlfnZEkGXfpuCbv/5Nk8PGDM/ErEzP7itmZ9bezMupjo9JzSM8d4sybNi+L5yxOypJzpp1TeP//tklXTMqCOxZk9W9X5/4v399icsQ9l9yTuk11OWTcIU2SK5Kk60Fd8/7r359bTrslL//y5Sz4jwU55k+O2eXn2tF069TNHqCd8zvzjsO16jhcq47F9eo4XKuOww3Spa1Xr17p06dPsadRFF6b2sbr+95T7N+9bdiwoU39li9fnosvvjjz5s3LCSeckBtuuCEDBw7cab+6urrU1tamtrY227ZtS3V1dZvGpzT5nTVtZe00z7/HgavDXdmqqqoMGjQoy5Yty/Lly1tt27h++PDhezx2fX19LrzwwvzXf/1XPv7xj+emm25KWZkNMgAAe09lt8r0O7pfm/q2t5urAACA1jU0NOScG8/J2D8b26b+j33/sWxZv/0k57EXNR9j7EVjM/tbs1O3uS5zvzs3Z11z1g5zmHPlnCTJsJOHpf8x/XeI0amyU0ZfODqzLp+Vl3/5cpY9vSyDRg9q0uaVB17J0se2f2rp2M80P5fhk4anzxF9snrh6vzq2786oBMsAAAAgNLQvXv3nTfaiRkzZmTkyJFt6rt+/fo29Wtrgse7SfAA4EDUIdNfR40alSR56623snbt2hbbNT565dhjj92jMevr6/OpT30qP/nJT/Kxj30sP/7xj9OpU6c9igkAAHvTrt5clbIUbq56t925uSpJ4eYqAABg9036u0ltTq5IkgV3LkiS9B7eO30Ob/6TUnsO6VlI4n7hzhfS0ND0GIUljy7JutfWJUlGnDGixbFGTn7nj/wL7liwQ/3zdzxfKB92xmEtxnm7btlTy7L6t6tbbAcAAADAznXv3r1NXyNHjsyMGTOyevXqQoJHW+IAwIGoQyZYnH766YXyU0891WK7+fPnN9tndzU0NOQzn/lMfvzjH2fKlCm57bbbJFcAANDutKebqwAAgJ3bkxOS1y1dl1UvrUqSDBozqNW2g48fvL3PknVZvbBpUsOrM18tlFuLM3D0wJSVl+3Q522LZi5KknTp3SW9D+3dYpxBx78zRnNxAAAAADqS9evXt+lr8uTJhXsQO3XqlMmTJ+9SvzVr1uTee+/NmjVr2nx6BQDQug6ZYHHeeecV/vD04IMPttjugQceSJL069cvkyZNatNYDQ0N+dznPpd/+7d/y5/8yZ/k9ttv3yG54vXXX8+JJ56YH/7wh20aAwAAWlL7Vm0a6ht22q693VwFAADsW28890ah3HNoz1bbNq5/4/k3mtSteG5FodxraK8WY1RUVaRb/27b+zy/oknd1k1b8+Yrb+7SXBqP8e65AAAAAHQ01dXVbfq69dZbM3ny5PTt2zeTJ0/Orbfeust9u3btWijv7wSPd38BwIGootgTaIsjjjgiU6ZMyb//+7/n1ltvzeWXX57OnTs3afPKK69k5syZSZKvf/3rqaho+lSfe+65fPjDH87GjRtz++2359RTT212rC984QuZNm1a/viP/zjTp0/fIU6S1NbWZt68efn973+/l54hAAClauvGrZn9rdlZcOeCvPk/b2brxq0pKy9L36P65ogPHJEJfzkhPQ7usUO/Pbm5qu+RfQuPd/fmqg3LN+xwcxUAALDvrVm0plCuHljdatvG9Y377W6c7gO7Z8PyDaldV5tNb25K14O6JknWLl5bSAzvPrD7Ls9l7aK1rbYFAAAAOFANHDgw99133x7Hqa5u/fc5Lbn11ltz4YUX5oknnkhNTU1uvvnmNscCgANNh0ywSJKrr746s2bNyqJFi3LZZZfln//5nwt1tbW1+exnP5tt27blhBNOyJ//+Z/v0P8f/uEfsnDhwiTJN77xjcydO3eHNl/84hfzgx/8IIcffnguueSSPPLII83OZdmyZXvpWQEAUOp+/8Tv88azb2TMp8fk1MtPTWV1ZVa+uDLzfzg/v/7nX2fev87Lh2/7cI764FFN+rWnm6sAAIB9b8tbWwrlii6t/6q/smtls/2S7afm7Wqciq7v1G95a0thD9DWuTQeGwAAAID9Z28leADAgajDJlgMGzYsd999d84999x897vfzXPPPZcPfvCD2bRpU2655ZY8++yzGTNmTP7rv/4rXbp02aF/fX19odzQ0LBD/bXXXpvrr78+SfLb3/4273vf+/bdkwEAgP9f9YDqfHLWJ9P/mP6F7x35gSNz0p+flOnnTM8rM17JHVPuyCdnfTJDJw4ttGlPN1cBAEApqquty7babYXHW9dv3afjbd30TvxOnTu12rZx/daNTedVt6luj+PsrbkAAAAAAAAUW4dNsEiScePG5Zlnnsm1116bu+66K1/72tdSWVmZI488Mtdee20+//nPp3Pnzs32/Zu/+ZvMnz8/mzZtylVXXbVD/aJFi/bx7AEAOJC15eaq8356XjpVdWo2UaGiqiJ/fPMf5/uHfT/barfl3j+/N5+b/7l34rejm6sAAKAUzblyTmZfMbvweG352n06XuPE6W1btrXSsml9ZbfKJnWNE6fbGmdvzQUAAABgd00/Z3pRx59699Sijg8A7H0dOsEiSfr165dvf/vb+fa3v71b/Y477rgsXLiwxfprr70211577R7ODgCAUtWWm6u6D+rean2Pg3vk8LMOz0u/eCnLnlyW1598PYOPH5ykfd1cBQAApeiUvz4lE748ofB48eLFueYPrtln43Xu8c6HC9VtrmulZdOE7Mb9kqSqR9Uux2mckN04Tlvn0nhsAAAAAACA9qDDJ1gAAEB7tK9urjr4xIPz0i9eSpK8Nve1QoJFe7q5CgAASlFFVUUqqt75lXtl932bhNx7eO9CecPyDa22bVzfuN/bj5c8uqTQruchPVuMs375+iRJVc+qJifv9RrWK2XlZWmobyi02ZW59Breq9W2AAAAAAAA+1t5sScAAAAHooqqilT1rCp87a2bq6oHVBfK65e9c+PS3ry5alfjtHRzFQAAsO8NGDWgUF732rpW265b8k79gGMHNKnrP6p/obz2tZZP3qurrcvGFRu39zm2f5O6yq6VOeiwg/Z4LgAAAAAAAMXmBAugpEw/Z3pRx59699Sijg9Ax9dQ31Aol3d6J196X91cNXjs4GZjtHZzFQAAsO/1PKRn+h7ZN6teXpVlTy1rte3r81/f3mdIz/Q5ok+TuhGnj8iszEqSLHtqWY7+0NHNxlj+9PLCfmTE6SN2qB9++vCs/u3qbF6zOWt+tya9D+3d6lxaigMAAAAAAFBMTrAAAIB24KW7X8rD3344DQ0NrbZrfGpF98HdC+W3b65Kssc3V72ttTg7u7kKAADY946ZckySZM2iNXnzlTebbbNu6bqsfHFlkuQ9570nZWVlTeqHjB+SnkN6JkleffDVFsd65YFXdhi3sWOnHFsotxbn7bpBYwalz+F9WmwHAAAAAABQDBIsAACgHXjhP17IrL+dlQ3LN7TabsmjSwrlYacMa1LXnm6uAgAA9r1xfzEunbt3TpLMv3F+s22e/NGTSUNS0aUiE/9q4g71ZWVlOeWyU5Iki+csLuwXGquvq89TNz+VJDniA0dk0OhBO7Q57IzDcsi4Q1qdy+8e/l1WvbwqSfLev3nvTp4dAAAAAADA/ldR7AkAAADvWHjfwhz/qeObrVu1cFUhsWHoxKEZcOyAJvXj/mJcHvv+Y9myfkvm3zg//+sf/9cOMXb15qp7L7m3cHNVv6P7NWmzKzdXQXsx/ZzpRRu7vqw+h3z5kKKNDwAc+KoHVGfy1ZNzz+fvyaPXPJqjzz06h9S88/5j2dPL8sg/PZIkOe3vTyskU7/bCZ85Ic/d/lwWz1mcuz9zd/70/j9NZdfKQv1Df/dQVi9cnS69u+TMa85scT4f+L8fyL+d8m9Z8uslefz6x3PSn59UqNu8ZnPu/cK9SZIjzz4yx5wnURsAAAAAAGh/JFgAAEA78uBfP5hhJw9L3yP7Nvn+ptWb8h9T/yMN2xpS2a0yf3T9H+3Qt73dXAUAAOzcM7c9Uygvf2Z5ofw/M/4n65asS5JUD6zOyMkjm+1/4sUnZv3y9Xn4Ww/nltNuydiLxqb/sf2z8sWVmT9tfrZu2JoJX5mQiV/ZMcH6beUV5fnoXR/N7WffnsVzFueHJ/wwYz41Jp2rO2fhvQuz8J6F6davW6bcOSV9j+jbYpzBYwdnyr9Pyc8/8fPc9xf3ZfGvFmf46cOzadWmzJ82P2sWrcmI00fkw7d/eHf/mQAAAAAAAPYLCRYAANAO9D+mf8ory7Nh+YbcMOaGjPrYqBxcc3A6de6UlS+szNM/fjobV2xM9cDqnPez8zL4+MHNxmlPN1cBAAA7d9f5dzX7/Tn/OKdQPvQPD20xwSJJJn1zUkZOHpnHrnssC+5ckI0/2Jhu/bpl5PtGpuYLNRlx2oidzqNbv2759JxPZ960eXnm1mcy58o52Va7Lb2G9crEr03M+C+NT4/BPXYa58izj8zFT1+cR699NAvvWZiX/uulVFZXZsCoATn1f5+aMZ8ck7Lysp3GAQAAAAAAKAYJFgAA0A6c/LWTM/qC0Xnh5y/klRmv5HcP/y7P/+z5bNu6LV0P6pqBxw3MkWcfmeP/7PhU9ahqNVZ7urkKAABo3TcbvrlX4gydODRDJw7doxjlFeWp+XxNaj5fs0dxeg/vnbOuPStnXXvWHsUBAAAAAADY3yRYAABAO9F9UPfUXFKTmkv27GampH3dXAUAAAAAAAAAANARlBd7AgAAAAAAAAAAAAAAAMUmwQIAAAAAAAAAAAAAACh5EiwAAAAAAAAAAAAAAICSJ8ECAAAAAAAAAAAAAAAoeRIsAAAAAAAAAAAAAACAkldR7AkAAAAAAAAAAAAAAMCB5OZJN+d3s3+303aV1ZW5bP1lrbZ5be5refz6x7N4zuJseGNDqvtXZ8iEIam5pCbDJw3fpfnU19Vn3rR5efa2Z7PyxZWpq61Lr2G9ctSHjsr4S8en+6DuuxTnQCfBAgAAAAAAAAAAAAAA2qHZ35qd2VfMTkWXihx/0fEZMGpAVr6wMvOnzc+COxZk4lcnZvI/TW41xsaVG3P72bdn6WNL0+/ofjn56yenc/fOWXjPwjzynUfy5I+ezEfu/EgOPfXQ/fSs2i8JFgAAAAAAAAAAAAAAsJcdXHNwzv3xua22KSsva7HuNzf8Jg9986FUdKnIBTMvyJBxQwp1x51/XG56702Ze/XcVA+ozsSvTGw2Rn1dfX527s+y9LGlGTpxaM5/4PxUdq1MktRcUpMHL3swc66ck59+6Ke56PGL0veIvm14pgeO8mJPAAAAAAAAAAAAAAAADjSV3SrT7+h+rX71PbL5hIYNKzZkxldnJEnGXTquSXJFkgw+fnAhqWLW387KuiXrmo0zb9q8LJ6zOClLzpl2TiG54m2TrpiUPof3yeY1m3P/l+/fw2fc8UmwAAAAAAAAAAAAAACAduSx7z+WLeu3JEnGXjS22TZjLxqblCV1m+sy97tzd6hvaGjInCvnJEmGnTws/Y/pv0ObTpWdMvrC0UmSl3/5cpY9vWxvPYUOSYIFAAAAAAAAAAAAAAC0IwvuXJAk6T28d/oc3qfZNj2H9Ey/o/slSV6484U0NDQ0qV/y6JKse237yRYjzhjR4lgjJ498Z9w7FuzRvDs6CRYAAAAAAAAAAAAAALCP1b5Vm4b6hp22W7d0XVa9tCpJMmjMoFbbDj5+8PY+S9Zl9cLVTepenflqodxanIGjB6asvGyHPqWootgTAAAAAAAAAAAAAKBj2bBhQ5v7Ll++PBdffHHmzZuXE044ITfccEMGDhy423Gqq6vbPAeA/WHrxq2Z/a3ZWXDngrz5P29m68atKSsvS9+j+uaIDxyRCX85IT0O7rFDvzeee6NQ7jm0Z6tjNK5/4/k30vfIvoXHK55bUSj3GtqrxRgVVRXp1r9bNizfkBXPr2ixXSmQYAEAAAAAAAAAAADAbunevfteiTNjxoyMHDmyTX0bGnb+KfAAxfT7J36fN559I2M+PSanXn5qKqsrs/LFlZn/w/n59T//OvP+dV4+fNuHc9QHj2rSb82iNYVy9cDWk8ka1zfut7txug/sng3LN6R2XW02vbkpXQ/q2vqTO0BJsAAAAAAAAAAAAAAAgBbU1dZlW+22wuMtb23ZpX7VA6rzyVmfTP9j+he+d+QHjsxJf35Spp8zPa/MeCV3TLkjn5z1yQydOLTZ+BVdWr/lv7JrZYvzqn2rdpfjVHR9p37LW1skWAAAAAAAAAAAAADArli/fn2b+5577rmZOXNmtm3blk6dOuX000/PXXfdtRdnB7B3zblyTmZfMbvweG3W7rTPeT89L52qOjWbqFBRVZE/vvmP8/3Dvp9ttdty75/fm8/N/1yhfuumrYVyp86dWh2ncf3WjVub1NVtqtsrcUqJBAsAAAAAAAAAAAAAdkt1dXWb+95666258MIL88QTT6SmpiY333zzHsUD2NdO+etTMuHLEwqPly5dmmuOuabVPt0HdW+1vsfBPXL4WYfnpV+8lGVPLsvrT76ewccPTtL0VIptW7a1FGKH+spulU3qGp9KsSdxSokEC4D9aPo504s6/tS7pxZ1fAAAAAAAAAAAgIEDB+a+++4r9jQAdllFVUUqqt659b7zus57Je7BJx6cl37xUpLktbmvFRIsOvd4J37d5rpm+76t8WkXjfslSVWPql2O0/i0i3fHKSXlxZ4AAAAAAAAAAAAAAACUmuoB75zes37Z+kK59/DehfKG5RtajdG4vnG/3Y2zfvn28at6VqXrQV1bbXsgc4IFAAAA7CPPTn82S7+3NOUNxfl8AyeYAQAAAAAAAED71VDfUCiXd3rn3oIBowYUyuteW9dqjHVL3qkfcOyAJnX9R/UvlNe+tjaDxw5uNkZdbV02rti4vc+x/ZttUyqcYAEAAAAAAAAAAAAAAHvJS3e/lIe//XAaGhpabdf41Irug7sXyj0P6Zm+R/ZNkix7almrMV6f//r2PkN6ps8RfZrUjTh9RKHcWpzlTy8vJHs07lOKnGABAAAAAAAAAAD7UUNDQ574P0/kgW88kK0btuaTsz6Z4ZOG73L/1+a+lsevfzyL5yzOhjc2pLp/dYZMGJKaS2p2OU59XX3mTZuXZ297NitfXJm62rr0GtYrR33oqIy/dHy6D+q+8yAAAECzXviPF/L0LU9n7EVjW31vveTRJYXysFOGNak7Zsox+dU//CprFq3Jm6+8mYMOO2iH/uuWrsvKF1cmSd5z3ntSVlbWpH7I+CHpOaRn1i1Zl1cffDWTvjmp2Xm88sArTcYtZU6wAAAAAAAAAACA/WT1/6zOLZNuyX1fvC9bN2zd7f6zvzU7N733prz0i5dy9LlH54/+5Y9yzJRj8tv7fptbTrslM742Y6cxNq7cmH875d9y7yX3ZtPqTTn56ydn8j9NzkEjDsoj33kkPzjuB/ndw79ry9MDAAAaWXjfwhbrVi1cVUhsGDpxaAYcO6BJ/bi/GJfO3TsnSebfOL/ZGE/+6MmkIanoUpGJfzVxh/qysrKcctkpSZLFcxYXkjEaq6+rz1M3P5UkOeIDR2TQ6EE7f2IHMAkWAAAAAAAAAACwjzU0NOTx6x/PDaNvyLKnlmXI+CG7HeM3N/wmD33zoXTq3CkXzLwgf/T9P8oJnzkhZ37vzFz48IWprK7M3KvnZu4/z20xRn1dfX527s+y9LGlGTpxaD47/7M5+Wsnp+aSmnz8no/nlL8+JRtXbMxPP/TTrFq4ak+eMgAAlLwH//rBrHp5x/fVm1Zvyn9M/Y80bGtIZbfK/NH1f7RDm+oB1Zl89eQkyaPXPJqlTyxtUr/s6WV55J8eSZKc9venpeeQns3O4YTPnLD9dIyG5O7P3J2tm5omej/0dw9l9cLV6dK7S8685sw2Pc8DSUWxJwAAAAAAAAAAAAe62VfMzuwrZmfkmSNzzrRz8uSPnsySR5fscv8NKzZkxle3n04x7tJxGTKuaYLG4OMHZ+JXJmb2FbMz629nZdTHRjV7g9W8afOyeM7ipCw5Z9o5qexa2aR+0hWTsuCOBVn929W5/8v3Z+rdU3f/yQIAQInrf0z/lFeWZ8PyDblhzA0Z9bFRObjm4HTq3CkrX1iZp3/8dDau2JjqgdU572fnZfDxg5uNc+LFJ2b98vV5+FsP55bTbsnYi8am/7H9s/LFlZk/bX62btiaCV+ZkIlf2fH0ireVV5Tno3d9NLeffXsWz1mcH57ww4z51Jh0ru6chfcuzMJ7FqZbv26ZcueU9D2i7776J+kwJFgAAAAAAAAAAMA+1tDQkHNuPCdj/2xsm/o/9v3HsmX9liTJ2IuajzH2orGZ/a3Zqdtcl7nfnZuzrjlrhznMuXJOkmTYycPS/5j+O8ToVNkpoy8cnVmXz8rLv3w5y55elkGjB7VpzgAAUKpO/trJGX3B6Lzw8xfyyoxX8ruHf5fnf/Z8tm3dlq4Hdc3A4wbmyLOPzPF/dnyqelS1GmvSNydl5OSReey6x7LgzgXZ+ION6davW0a+b2RqvlCTEaeN2Ol8uvXrlk/P+XTmTZuXZ259JnOunJNttdvSa1ivTPzaxIz/0vj0GNxjbz39Dk2CBQAAAAAAAAAA7GOT/m5SysrK2tx/wZ0LkiS9h/dOn8P7NNum55Ce6Xd0v6x8YWVeuPOFnPm9M5uMueTRJVn32rokyYgzWr4Ja+TkkZl1+azt496xQIIFAAC0QfdB3VNzSU1qLqnZ41hDJw7N0IlD9yhGeUV5aj5fk5rP7/l8DmQSLAAAAAAAAAAAYB/bk+SKdUvXZdVLq5Ikg8a0nuww+PjBWfnCyqxbsi6rF65O3yP7FupenflqodxanIGjB6asvCwN9Q1N+gDQ1PRzpu/X8erL6rN68Oos/d7SlDeUZ+rdU/fr+ABQCiRYAAAAAAAAAABAO/bGc28Uyj2H9my1beP6N55/o0mCxYrnVhTKvYb2ajFGRVVFuvXvlg3LN2TF8ytabAcAUEwbNmxoU7/ly5fn4osvzrx583LCCSfkhhtuyMCBA3c7TnV1dZvGB9o3CRYAAAAAAAAAANCOrVm0plCuHtj6jXyN6xv329043Qd2z4blG1K7rjab3tyUrgd13eX5AgDsD927d9/jGDNmzMjIkSPb1LehoWGPxwfan/JiTwAAAAAAAAAAADqS+m312bZ1W+Grvq5+n4635a0thXJFl9Y/T7Wya2Wz/ZKk9q3aXY5T0fWd+nfHAQAAOFA5wQIAAAAAAAAAAHbD6t+uzuqFqwuP12btPh1v66athXKnzp1abdu4fuvGrU3q6jbV7ZU4AADtwfr169vU79xzz83MmTOzbdu2dOrUKaeffnruuuuuvTw7oKOSYAEAAAAAAAAAALuhz+F9ctBhBxUer968Opm978ZrfCrFti3bWm3buL6yW2WTusanUuxJHACA9qC6urpN/W699dZceOGFeeKJJ1JTU5Obb765zbGAA48EC4ASMv2c6UUbu76sPod8+ZCijQ8AAAAAAACwt5R3Kk8aHQBRXle+T8fr3KNzoVy3ua6Vlk1Pu2jcL0mqelTtcpzGp128Ow4AQEc2cODA3HfffcWeBtBO7dvdHQAAAAAAAAAAsEd6D+9dKG9YvqHVto3rG/fb3Tjrl69PklT1rErXg7ru2kQBAAA6OCdYAAAAAAAAAABAOzZg1IBCed1r61ptu27JO/UDjh3QpK7/qP6F8trX1mbw2MHNxqirrcvGFRu39zm2f7NtAAAovg0bWk+abcny5ctz8cUXZ968eTnhhBNyww03ZODAgTu0q6ury6ZNm7Jhw4ZUVOx423l1dXWbxof2TIIFAAAAAAAAAAC0Yz0P6Zm+R/bNqpdXZdlTy1pt+/r817f3GdIzfY7o06RuxOkjMiuzkiTLnlqWoz90dLMxlj+9PA31DYU+AAC0T927d9/jGDNmzMjIkSPb1LehoWGPx4f2RoIFAAAAAAAAAAC0c8dMOSa/+odfZc2iNXnzlTdz0GEH7dBm3dJ1WfniyiTJe857T8rKyprUDxk/JD2H9My6Jevy6oOvZtI3JzU71isPvNJkXADap+nnTC/q+FPvnlrU8QFgXygv9gQAAAAAAAAAAIDWjfuLcencvXOSZP6N85tt8+SPnkwakoouFZn4VxN3qC8rK8spl52SJFk8Z3EhGaOx+rr6PHXzU0mSIz5wRAaNHrSXngEAAHvb+vXr2/Q1efLkdOrUKUnSqVOnTJ48udl2a9asyb333ps1a9Y0Ww8HIgkWAAAAAAAAAADQzlUPqM7kqycnSR695tEsfWJpk/plTy/LI//0SJLktL8/LT2H9Gw2zgmfOSHDThmWNCR3f+bubN20tUn9Q3/3UFYvXJ0uvbvkzGvO3AfPBACAvaW6urpNX7feemsmT56cvn37ZvLkybn11ltbbNu1a9cW6+BAVFHsCQAAAAAAAAAAQCl45rZnCuXlzywvlP9nxv9k3ZJ1SZLqgdUZOXlks/1PvPjErF++Pg9/6+HcctotGXvR2PQ/tn9Wvrgy86fNz9YNWzPhKxMy8Ss7nl7xtvKK8nz0ro/m9rNvz+I5i/PDE36YMZ8ak87VnbPw3oVZeM/CdOvXLVPunJK+R/TdS88cAID2ZODAgbnvvvuKPQ1olyRYAAAAwAFq+jnTiz2FTL17arGnAAAAAADtxl3n39Xs9+f845xC+dA/PLTFBIskmfTNSRk5eWQeu+6xLLhzQTb+YGO69euWke8bmZov1GTEaSN2Oo9u/brl03M+nXnT5uWZW5/JnCvnZFvttvQa1isTvzYx4780Pj0G99j9JwgAANDBSbAAAAAAAAAAAID94JsN39wrcYZOHJqhE4fuUYzyivLUfL4mNZ+v2StzAgAAOBCUF3sCAAAAAAAAAAAAAAAAxSbBAgAAAAAAAAAAAAAAKHkSLAAAAAAAAAAAAAAAgJJXUewJAAAAAAAAAAAAsPumnzO92FMAAIADihMsAAAAAAAAAAAAAACAkifBAgAAAAAAAAAAAAAAKHkVxZ4AAKXj2enPZun3lqa8oTj5fVPvnlqUcQEAAAAAAAAAAABo/5xgAQAAAAAAAAAAAAAAlDwJFgAAAAAAAAAAAAAAQMmTYAEAAAAAAAAAAAAAAJQ8CRYAAAAAAAAAAAAAAEDJqyj2BAAAAAAAAAAAAADoWKafM73YU8jUu6cWewoAHGCcYAEAAAAAAAAAAAAAAJQ8CRYAAAAAAAAAAAAAAEDJqyj2BAAAAIADV7GPhnYsNAAAAAAAAMC+sWHDhjb1W758eS6++OLMmzcvJ5xwQm644YYMHDhwt+NUV1e3aXxojQQLAAAAAAAAAAAAAAB2S/fu3fc4xowZMzJy5Mg29W1oaNjj8eHdJFgAUDKK/enJiU9QBgAAAAAAAAAAAGivJFgAAAAAAAAAAAAAALBb1q9f36Z+5557bmbOnJlt27alU6dOOf3003PXXXft5dlB20iwAAAAAAAAAAAAAABgt1RXV7ep36233poLL7wwTzzxRGpqanLzzTe3ORbsbRIsAAAAAAAAAAAAAADYLwYOHJj77ruv2NOAZkmwAAAAAAAAAAAAAKDDmX7O9KKOP/XuqUUdH4C9r8MnWKxcuTLf//73c9ddd2XRokXp3LlzjjrqqEydOjUXX3xxOnfuvFfGuffee3PDDTdk3rx5WbVqVQYPHpxJkybli1/8YsaOHbtXxgAAAAD2rmL+Ur2+rD6HfPmQoo0PAAAAAAAAAOye8mJPYE88/vjjOe644/Ltb387Bx98cK666qpcdtllWb9+fS699NKMHz8+v//97/dojPr6+nz2s5/NBz7wgTzyyCO54IILct1112Xy5Mm5/fbbM27cuFx33XV76RkBAAAAAAAAAAAAAADF0GFPsFi8eHHOPvvsrFixIl/60pdyzTXXFOq++MUv5o/+6I8ya9asfPCDH8wjjzySqqqqNo1z2WWXZdq0aenXr19+/etf5/DDD0+SfPazn82HP/zhfOADH8iXvvSlDB48OFOmTNkrzw0AAAAAAAAAAAAAANi/OuwJFl/96lezYsWKDBs2LN/5znea1FVVVWXatGnp1KlT5s2bl+uvv75NYzz//PO5+uqrkyR///d/X0iueNtZZ52V888/Pw0NDfniF7+YDRs2tO3JAAAAAAAAAAAAAAAARdUhEywWLlyYO+64I0lywQUXNHs6xciRI3PaaaclSa666qrU1dXt9jhXXnll6uvr07Vr13ziE59ots1nPvOZJMny5ctz44037vYYAAAAAAAAAAAAAABA8XXIBIs777wzDQ0NSZIzzjijxXaTJ09OkqxYsSIPPfTQbo1RW1ubu+++O0kybty49OjRo9l2EyZMSPfu3ZOkkPQBAAAAAAAAAAAAAAB0LBXFnkBbzJw5s1AeM2ZMi+2OP/74Jn1aS8Z4t9/85jdZt27dTscoLy/Pcccdl7lz5+bXv/51Nm3alK5du+7yOAAAAAAAAAAAAAAAu2v6OdP3afz6svqsHrw6S7+3NOUNO36u/9S7p+7T8aEYOmSCxXPPPZck6dGjR3r16tViu6FDhxbKzz//fJvGeHec1sapr6/Piy++2CSxAwAa29dvaHfGG1oAAAAAAAAAAACA5nW4BIva2tosW7YsSTJw4MBW2zauX7Ro0W6N07j97o4jwQKA9kqCBwAAAAAAAAAAAAeCDRs2tKnf8uXLc/HFF2fevHk54YQTcsMNN+z0fvF327hxY5vGpv3rcAkWb731VqHcpUuXVtt27dq12X7FHmdT3aasr1tfeFxZXpnKTpW7NT/YXQ1lDWlIQxrKGlKf+mJPhxJkDZIkdXV1RR27vr6+qHOgtNXXe+0rZfYApcn7HxrKGvLM9Gey5JolKWsoK8ocPvrzjxZlXLbzHrS0uf7YA5S2jds2pqquqvDYHqD98X6943CtOg7XqmNxvToO16rjaChrKPYUKKK1a9dm9erVhcdVVVWpqqpqpcfeU1/mtaEj8vpOW1k77U+xfwf8sw//bJfaNZQ1ZPWg1Xv971b+FlV8+/q9wM5ed4r9f6B79+57HGPGjBkZOXLkXpgNB4oOl2CxadOmQrlz586ttm1cv7tZQvtynK8/9PUmj88ae1bef+L7d2t+sLsa0pBNPTZldVanLMW5sYfSZg2SJHPmzCna2PX19Vm8eHGSpLy8vGjzoHStWrWq2FOgiOwBSpP3P7SHNVDM9194D1rqXH/sAUqbPUD71x7eq7FrXKuOw7XqWFyvjsO16jje2rR7H/zJgWXMmDFNHn/yk5/MhRdeuF/GXj149c4b0e54faetrJ32p9h/i9nVnwP7au0U+/mz798L7GztWAMciDpcgkXj0yK2bNnSatvG9d26dWs341w16aoc1OWgwuPK8spUvu6Tq9i3Gsoasjqr02dZn6J9ciqlzRokSU455ZSijf12tvTEiRNTUdHh3gJxAHj75jpKkz1AafL+h/awBor5/gvvQUud6489QGmzB2j/2sN7NXaNa9VxuFYdi+vVcbhWHcimnTfhwPXUU09l6NChhcf78wSLpd9bul/GYe/y+k5bWTvtT7H/FrOrPwf21dop9vPf1RM89pX2cILHvn4vsLO1U+w1sGbNmjb1O++88zJr1qxs27YtnTp1ymmnnZY777xzt2IsXbo0xx57bJvGp33rcH/Z69GjR6G8efPmVts2PoWicb9ij9O1omu6V7zrSBonRbKP1ac+ZSlLWUNZyht8aiL7nzVIkqLfVFReXp6Kioqiz4PS5FOLS5s9QGny/of2sAa87yk+70FLm+tf2uwBSlu3Tt3sAdq59vBejV3jWnUcrlXH4np1HK5Vx+Em19LWq1ev9OnTpyhje23omLy+01bWTvtT7N//7uo62Fdrp6M8/32l2M8/2ff/BjtbO8X+N+jVq1eb+t1222258MIL88QTT6SmpiY333zzbsd66y2n2B2oiv8/ezdVVVVl0KBBWbZsWZYvX95q28b1w4cP361xGrffl+MAAAAAAAAAAAAAAHQ008+ZXtTxp949tU39Bg4cmPvuu28vz4YDRYdLsEiSUaNGZdmyZXnrrbeydu3aFjOGlixZUijv7hEso0aNKpRfe+21Vtu+PU55eXmOPvro3RoHAAAAYF/pqL/QBAAAAAAAAIBi6JBnRJ1++umF8lNPPdViu/nz5zfbZ1eceOKJ6dGjx07HqK+vz9NPP50kmTBhQrp27bpb4wAAAAAAAAAAAAAAAMXXIRMszjvvvJSVlSVJHnzwwRbbPfDAA0mSfv36ZdKkSbs1RlVVVT74wQ8mSR577LGsX7++2XaPPvpooW7KlCm7NQYAAAAAAAAAAAAAANA+VBR7Am1xxBFHZMqUKfn3f//33Hrrrbn88svTuXPnJm1eeeWVzJw5M0ny9a9/PRUVTZ/qc889lw9/+MPZuHFjbr/99px66qk7jPONb3wj06dPz6ZNm3L77bfns5/97A5tbrzxxiTJwIEDc9FFF+2tpwgAB6Tp50wv2tj1ZfU55MuHFG18AIBSVMz3f0ky9e6pRR0fAAAAAACAA1ex/xYG7Bsd8gSLJLn66qvTv3//LFq0KJdddlmTutra2nz2s5/Ntm3bcsIJJ+TP//zPd+j/D//wD1m4cGGWLl2ab3zjG82OMWrUqHz1q19Nklx++eV55ZVXmtTff//9ueWWW5Ik//Iv/5Lq6uq98dQAAAAAAAAAAAAAAID9rEOeYJEkw4YNy913351zzz033/3ud/Pcc8/lgx/8YDZt2pRbbrklzz77bMaMGZP/+q//SpcuXXboX19fXyg3NDS0OM4//uM/ZtWqVbnxxhtz0kkn5XOf+1yGDx+eefPm5aabbkp5eXm+973vZcqUKfvkeQIAAADQNsX+1CCnqAEAAAAAAAB0LB02wSJJxo0bl2eeeSbXXntt7rrrrnzta19LZWVljjzyyFx77bX5/Oc/n86dOzfb92/+5m8yf/78bNq0KVdddVWLY5SXl2fatGk599xz84Mf/CD/9m//ljfffDODBg3Kxz72sVx66aUZO3bsvnqKAMBe9Oz0Z7P0e0tT3tBhD/HaI1PvnlrsKQAAAAAAAAAAHDCK/WFPAOx9HTrBIkn69euXb3/72/n2t7+9W/2OO+64LFy4cJfbv//978/73//+3Z0eAAAAAAAAAAAAABxwJJgAB6IOn2ABAAAAAO1VsU9Rc4oZAAAAAAAAwK6TYAEAUCKK/akBbu4DANj/vAcEAAAAAAAA2HUSLAAA2C+KfXNf0rFu8Nu4cmMe/f6jefGuF7Nm0Zp06twp/Y7ql1FTR+XEi09Mp86dij1FAABgL7IHAACA0mIPAAAApcUeoOOQYAEAAO3M0seX5qd//NOsf319Dpt8WE78/Imp21SXp295Ov996X/nqZufysd/+fH0OLhHsacKAADsBfYAAABQWuwBAACgtNgDdCwSLAAAoB1Zu3htbj/79mxcsTHjvjQuZ11zVqHupC+elJ/80U+yaNaiTP/g9Hz6kU+nospbegCg/Sr2KWYd6QQzSpc9AAAAlBZ7AAAAKC32AB2PKwAAQMko5g1+Kzev3KV2M746IxtXbEyvYb1yxnfOaFJXUVWRc6adk+uPuj6vz3s9j1//eCb+1cR9MV0AgANCMd//1ZfVZ/Xg1Vn6vaUpbygvyhwkmHQM9gAAAFBa7AEAAKC02AN0PMX5yx4AALCDVQtX5fk7nk+SHHfBcc1mpPcZ2ScjThuRJHnkqkdSX1e/X+cIAADsPfYAAABQWuwBAACgtNgDdExOsNiPtmzZkiTZWr+1yDOhFG3dtjX3/ubefHTQR1NVXlXs6VCCrEGKzRqk2N5+D/j2e8LmLLhzQdKwvXzYGYe12O6wyYfllQdeycYVG7PooUWttqW47AFKm589WANYA6WtPVz/Yp7gQfL6xteT2ANAe9UeXqfZNa5Vx+FadSyuV8fhWh1Y7AEOPG/v+Vrb+0FzvL7TVtYObWXt0FbWzp6xB+iYnGCxH9XW1iZJ6urrijwTStHW+q357/n/7eY+isYapNisQYrt7feAb78nbM6imYsK5UFjBrXYbtDx79S9OvPVPZ8c+4w9QGnzswdrAGugtLn+2ANA++Z1uuNwrToO16pjcb06DtfqwGIPcOB5e8/X2t4PmuP1nbaydmgra4e2snb2jD1Ax+QECwAAaCfeeO6NJEnnHp3TpVeXFtv1GtqrUF7x/Ip9Pi8AAGDfsAcAAIDSYg9w4LrvL+7Lc92fK/Y0AABoZ+wBOiYnWAAAQDtQV1uX9cvWJ0m6D+zeatvqgdWF8ppFa/bltAAAgH3EHgAAAEqLPQAAAJQWe4COywkW+1F9fX2SZM3mNenWqVuRZ0Op2bhtY5Lkzc1vpraToynZ/6xBis0aZH+r31afNLzz+M0Nb27//v//nvDdtry1pVCu6NL62/TKrpWFcu1b1nN7Zg9Q2vzswRrAGihtrn/psQcgeed6v7n5zSLPhJ3xOt1xuFYdh2vVsbheHYdr1X69ew+wZvOa7d+3Bygp/g5AW3l9p62sHdrK2qGt2vvaWbJkyX4bq25LXepr33m///qy15PYAxyIJFjsR2++uf0PKlc+emWRZ0Ip+/pDXy/2FChx1iDFZg1SbG+/J3y3rZu2FsqdOndqNUbj+q0bt7bSkmKzByDxswdrAGug1Ln+2AOUluXLlydJ/vcj/7vIM2FXeZ3uOFyrjsO16lhcr47Dteo4li9fnmHDhu3wfXuAA5O/A7CnvL7TVtYObWXt0Fbtde18cegXiz0Fe4ADkASL/Wj8+PF5/PHHM3DgwJSXlxd7OgAA7EPvzlqvr6/PijUrUjOuptn2jTPRt23Z1mrsxvWV3SpbaUmx2QMAAJQOewCS5Pjjj7cHAAAoES3tAY4//vhm29sDHJj8HQAAoHTYA5QOCRb7UUVFRWpqmv9jGgAAB77Dc3iLdZ17dC6U6zbXtRqncYZ7VY+qPZ8Y+4w9AABAabMHKD32AAAApc0eoPTYAwAAlDZ7gAOT1GkAAGgHKqoq0n1Q9yTJ+uXrW227YfmGQrn38N77cloAAMA+Yg8AAAClxR4AAABKiz1AxyXBAgAA2okBowYkSba8tSWb125usd26JesK5f7H9t/n8wIAAPYNewAAACgt9gAAAFBa7AE6JgkWAADQTgw/fXihvOypZS22e33+64XyiNNH7MspAQAA+5A9AAAAlBZ7AAAAKC32AB2TBAsAAGgnjjnvmKRse/nVB19tsd0rD7ySJOnWr1uGTxq+H2YGAADsC/YAAABQWuwBAACgtNgDdEwSLAAAoJ3oe0TfHDvl2CTJM7c+k21btu3Q5s1X3syrM7dvuE7++skpr/CWHgAAOip7AAAAKC32AAAAUFrsATomVwAAANqRyVdPTrf+3bJm0Zo8eNmDTerqauty92fvTsO2hgw+YXBO+vOTijRLAABgb7EHAACA0mIPAAAApcUeoOMpa2hoaCj2JAAAgHcseWxJfnbuz7L+9fUZeebIHPXBo7J109Y8fcvTeePZNzJozKB8/J6Pp8fBPYo9VQAAYC+wBwAAgNJiDwAAAKXFHqBjkWABAADt0MaVG/PotY/mxbtezJrfrUmnyk7pe2TfjPr4qNR8viadOncq9hQBAIC9yB4AAABKiz0AAACUFnuAjkOCBQAAAAAAAAAAAAAAUPLKiz0BAAAAAAAAAAAAAACAYpNgAQAAAAAAAAAAAAAAlDwJFgAAAAAAAAAAAAAAQMmTYAEAAAAAAAAAAAAAAJQ8CRYAAAAAAAAAAAAAAEDJk2ABAAAAAAAAAAAAAACUPAkWAAAAAAAAAAAAAABAyZNgAQAAAAAAAAAAAAAAlDwJFgAAAAAAAAAAAAAAQMmTYAEAAAAAAAAAAAAAAJQ8CRYAAAAAAAAAAAAAAEDJk2ABAAAAAAAAAAAAAACUPAkWAAAAAAAAAAAAAABAyZNgAQAAAAAAAAAAAAAAlDwJFgAAAAAAAAAAAAAAQMmTYAEAAAAAAAAAAAAAAJQ8CRYAAAAAAAAAAAAAAEDJk2ABAAAAAAAAAAAAAACUPAkWAAAAAAAAAAAAAABAyZNgAQAAAAAAAAAAAAAAlDwJFgAAAAAAAAAAAAAAQMmTYAEAAAAAAAAAAAAAAJQ8CRYAAAAAAAAAAAAAAEDJk2ABAAAAAAAAAAAAAACUPAkWAAAAAAAAAAAAAABAyZNgAQAAAAAAAAAAAAAAlDwJFgAAAAAAAAAAAAAAQMmTYAEAAAAAAAAAAAAAAJQ8CRYAAAAAAAAAAAAAAEDJk2ABAAAAAAAAAAAAAACUPAkWAAAAAAAAAAAAAABAyZNgAQAAAAAAAAAAAAAAlDwJFgAAAAAAAAAAAAAAQMmTYAEAAAAAAAAAAAAAAJQ8CRYAAAAAAAAAAAAAAEDJk2ABAAAAAAAAAAAAAACUPAkWAAAAAAAAAAAAAABAyZNgAQAAAAAAAAAAAAAAlDwJFgAAAAAAAAAAAAAAQMmTYAEAAAAAAAAAAAAAAJQ8CRYAAAAAAAAAAAAAAEDJk2ABAAAAAAAAAAAAAACUvIpiT6CU1NXV5cknn8zAgQNTXi63BQCglNTX12f58uU5/vjjU1HhbXipsAcAAChd9gClyR4AAKB02QOUJnsAAIDSZQ9w4HI196Mnn3wyJ510UrGnAQBAET3++OOpqakp9jTYT+wBAACwBygt9gAAANgDlBZ7AAAA7AEOPBIs9qOBAwcmSX79619nyJAhRZ4Npaauri7z58/P2LFjZcpRFNYgxWYNUmxLlizJhAkTCu8JKQ32AKXNzx6sAayB0ub6Yw9Qmt6+3o8//ngGDx5c5NnQGq/THYdr1XG4Vh2L69VxuFYdx+uvv56TTjrJHqDE+DsAbeX1nbaydmgra4e2snZaZg9w4LLS96O3jwIcNGiQTRX7XV1dXRYtWpQhQ4b4IUdRWIMUmzVIsdXV1SWJ46FLjD1AafOzB2sAa6C0uf7YA5Smt6/34MGD7QHaOa/THYdr1XG4Vh2L69VxuFYdjz1AafF3ANrK6zttZe3QVtYObWXt7Jw9wIHHFQUAAAAAAAAAAAAAAEqeBAsAAAAAAAAAAAAAAKDkSbAAAAAAAAAAAAAAAABKngQLAAAAAAAAAAAAAACg5EmwAAAAAAAAAAAAAAAASp4ECwAAAAAAAAAAAAAAoORJsAAAAAAAAAAAAAAAAEqeBAsAAAAAAAAAAAAAAKDkSbAAAAAAAAAAAAAAAABKngQLAAAAAAAAAAAAAACg5B0QCRYNDQ25/vrr071795SVleWhhx7a62Pce++9+eAHP5hDDjkkXbp0yYgRI/KpT30q8+fP3+tjAQAAAAAAAAAAAAAA+1eHT7D4n//5n0yaNClf/OIXs2HDhr0ev76+Pp/97GfzgQ98II888kguuOCCXHfddZk8eXJuv/32jBs3Ltddd91eHxcAAAAAAAAAAAAAANh/Koo9gbZqaGjI//k//yff+MY30qlTp4wfPz6PPvroXh/nsssuy7Rp09KvX7/8+te/zuGHH54k+exnP5sPf/jD+cAHPpAvfelLGTx4cKZMmbLXxwcAAAAAAAAAAAAAAPa9DnuCxRVXXJEvfvGLOeWUU/Lcc8/lzDPP3OtjPP/887n66quTJH//939fSK5421lnnZXzzz8/DQ0N++wEDQAAAAAAAAAAAAAAYN/rsAkWDQ0NufHGG/Pf//3fGTp06D4Z48orr0x9fX26du2aT3ziE822+cxnPpMkWb58eW688cZ9Mg8AAAAAAAAAAAAAAGDf6rAJFn/3d3+XP/uzP9tn8Wtra3P33XcnScaNG5cePXo0227ChAnp3r17kuSOO+7YZ/MBAAAAAAAAAAAAAAD2nQ6bYFFWVrZP4//mN7/JunXrkiRjxoxpsV15eXmOO+64JMmvf/3rbNq0aZ/OCwAAAAAAAAAAAAAA2Psqij2B9uq5554rlIcOHdpq27fr6+vr8+KLL+b444/fp3MDAAAAAAAAAAAAAKD92rxmc16+5+W8+uCrWfbksrz56pvZsn5LOnfvnL5H9M2IM0ak5vM16TWs105jvTb3tTx+/eNZPGdxNryxIdX9qzNkwpDUXFKT4ZOG79J86uvqM2/avDx727NZ+eLK1NXWpdewXjnqQ0dl/KXj031Q912Ks+Z3a/LotY/mt/f+NmtfW5vO3TtnwLEDMvqTozP6gtEpK9+3BynsaxIsWrBo0aJCeeDAga22bVy/aNGinSZY1NfXZ9u2bXs0P9hd27ZtK6y9fX0CDDTHGqTYrEGKrb6+vthToIjsAUqTnz1YA1gDpc31xx6gtG3bts0eoJ3zOt1xuFYdh2vVsbheHYdr1XF4/1fa/B2A3eX1nbaydmgra4e2snZatrP3f6/NfS23nH5LttVuS8qS95z7noyaOipVPauy+rer8/SPn84j33kkj1/3eD5004dy7EeObTHW7G/NzuwrZqeiS0WOv+j4DBg1ICtfWJn50+ZnwR0LMvGrEzP5nya3Op+NKzfm9rNvz9LHlqbf0f1y8tdPTufunbPwnoV55DuP5MkfPZmP3PmRHHrqoa3Gefmel/Pzj/88tW/V5pjzjsn4vxyfjas2Zv60+fnFp36RZ257Jh+966Op6lHVapz2TIJFC956661CuUuXLq227dq1a7P9WvLrX/86L730UuFxp06dUlHhUrBv1dfX57XXXkt9fX3Ky8uLPR1KkDVIsVmDFNuqVauKPQWKyB6gNPnZgzWANVDaXH/sAUrbI488koMOOqjw2B6g/fE63XG4Vh2Ha9WxuF4dh2vVcbz55pvFngJF5O8A7C6v77SVtUNbWTu0lbXTsp3tAWrX1WZb7baUdSrLJ+77REZOHtmk/tTLT81Np96UN559I3edf1cG/MGA9H9P/x3i/OaG3+Shbz6Uii4VuWDmBRkybkih7rjzj8tN770pc6+em+oB1Zn4lYnNzqW+rj4/O/dnWfrY0gydODTnP3B+KrtWJklqLqnJg5c9mDlXzslPP/TTXPT4Rel7RN9m47w+//XcMeWO1G2qy5nXnpnxl44v1NVcUpOb3ntTXn3w1fz84z/P1Luntvrv0555J9+CTZs2FcqdO3dutW3j+o0bN+409g033NBkEzV69OiMGTNm9ycJu6GhoSFr165NElmEFIU1SLFZgxTbunXrij0FisgeoDT52YM1gDVQ2lx/7AFK2w9+8AN7gHbO63TH4Vp1HK5Vx+J6dRyuVcexKx/IyYHL3wHYXV7faStrh7aydmgra6dlu7oHGHPhmB2SK5KkS+8umXz15PzkrJ9k25ZtmX/j/Jz53TObtNmwYkNmfHVGkmTcpeOaJFckyeDjB2fiVyZm9hWzM+tvZ2XUx0al55CeO4w1b9q8LJ6zOClLzpl2TiG54m2TrpiUBXcsyOrfrs79X76/xeSIey65J3Wb6nLIuEOaJFckSdeDuub9178/t5x2S17+5ctZ8B8LcsyfHLPTf5/2SIJFCxqfSrFly5ZW2zau79at205jX3fddRky5J0FXlVVlaqqjnsMCh1DXV1dfv3rX2fChAk+JYGisAYpNmuQYlu8eHEuvfTSYk+DIrEHKE1+9mANYA2UNtcfe4DS9i//8i855JBDCo/tAdofr9Mdh2vVcbhWHYvr1XG4Vh3H0qVL8xd/8RfFngZF4u8A7C6v77SVtUNbWTu0lbXTsp3tAbr07pJDxh2SY85rOcng4BMOLpRXvrByh/rHvv9Ytqzffp/62IvGNhtj7EVjM/tbs1O3uS5zvzs3Z11zVpP6hoaGzLlyTpJk2MnD0v+YHU/J6FTZKaMvHJ1Zl8/Ky798OcueXpZBowc1afPKA69k6WNLt4/5mebnMnzS8PQ5ok9WL1ydX337VxIsDjQ9evQolDdv3txq28anXTTu15I5X5uTfl36tX1ye6AjH7fCnnn7+Mmqqio/5CgKa5BiswYptsrKyp034oBlD1Ca/OzBGsAaKG2uP/YApa1fv37p33/HP1LRfnid7jh291pNP2f6fphVy0p5H+7/VcfienUcrlXH0blz52JPgSI66KCD7AFKVFvff9aX1Wf14NVZft3ylDeU79EcSvk9aCny3oC2snZoK2unZTvbAwwZPyQXPXpRq20qu73zt4SKqh3/fRfcuSBJ0nt47/Q5vE+zMXoO6Zl+R/fLyhdW5oU7X8iZ3zuzyWkjSx5dknWvbT91e8QZI1qcy8jJIzPr8lnbx71jwQ4JFs/f8XyhfNgZh7UY57AzDsvqhauz7KllWf3b1S3Ouz3bs3dnB7Dhw4cXysuXL2+1beP6xv0AAAAAAAAAAAAAAODdlj6xtFAefvrwJnXrlq7LqpdWJUkGjWma7PBug48fvL3PknVZvXB1k7pXZ75aKLcWZ+DogSkrL9uhz9sWzVyUZPvJHL0P7d1inEHHvzNGc3E6AgkWLRg1alSh/Nprr7XadsmSJUmS8vLyHH300ft0XgAAAAAAAAAAAAAAdFx1m+sy87KZSZIBfzAgYy8a26T+jefeKJR7Du3ZaqzG9W88/0aTuhXPrSiUew3t1WKMiqqKdOvfbXuf51c0qdu6aWvefOXNXZpL4zHePZeOwlktLTjxxBPTo0ePvPXWW3nqqadabFdfX5+nn346STJhwoR07dp1P80QAAAAAAAAAAAAAID2rq62LpvXbM6mVZvy2tzX8ug1j2bFghU59iPH5uwfnp3KrpVN2q9ZtKZQrh5Y3WrsxvWN++1unO4Du2fD8g2pXVebTW9uSteDtt8Xv3bx2jTUNxTa7Opc1i5a22rb9kqCRQuqqqrywQ9+MD/5yU/y2GOPZf369enefccF8eijj2b9+vVJkilTpuzvaQIAAAAAAAAAAAAA0I49N/25/OJTvyg87jWsVz78kw9n1NRRKSsr26H9lre2FMoVXVq/5b9xckbjfklS+1btLsep6PpO/Za3thQSLNo6l8ZjdyTlxZ5AsTz33HM58sgjM2TIkDz88MPNtvnGN76R8vLybNq0KbfffnuzbW688cYkycCBA3PRRRfts/kCAAAAAAAAAAAAALD/1dXWpXZdbeHr3YkMOzPyzJE5f8b5+eh/fjSTr56crn275uef+HmuP/L6LLx34Q7tt27aWih36typ1diN67du3Nqkrm5T3R7H2Vtz6ShK9gSLf/iHf8jChdsX4ze+8Y3MnTt3hzajRo3KV7/61Vx11VW5/PLLc8YZZ+Swww4r1N9///255ZZbkiT/8i//kurq1o9NAQAAAAAAAAAAAACgY5lz5ZzMvmJ24fHarN2t/j0G90iPwT0Kjyf81YQ88PUHMvfqubn97NvzoZs+lDGfHFOob3wSxLYt21qN3bi+sltlk7rGp1K0Nc7emktH0aETLG677bZC+ZlnnimUZ8yYkSVLliTZfrLE5MmTd+hbX19fKDc0NLQ4xj/+4z9m1apVufHGG3PSSSflc5/7XIYPH5558+blpptuSnl5eb73ve9lypQpe+MpAQAAAAAAAAAAAADQjpzy16dkwpcnFB4vXbo01xxzTZvjlZWV5YyrzsirD76a1+e/nns+f08OP/PwdB/UPUnSuUfnQtu6zXUthUnS9ISJxv2SpKpH1S7HaXzaReM4bZ1L47E7kg6dYHH++ec3+/1//Md/LJT/8A//sNkEi7/5m7/J/Pnzs2nTplx11VUtjlFeXp5p06bl3HPPzQ9+8IP827/9W958880MGjQoH/vYx3LppZdm7Nixe/5kAAAAAAAAAAAAAABodyqqKlJR9c6t953XdW6l9a4pKyvLH3ziD/L6/NdTt6kuz05/NhP+cnsSR+/hvQvtNizf0GqcxvWN+739eMmjSwrteh7Ss8U465evT5JU9axK14O6Fr7fa1ivlJWXpaG+odBmV+bSa3ivVtu2Vx06waK1kyd25rjjjsvChQt3uf373//+vP/972/zeAAAAAAAAAAAAAAA8La+R/UtlN949o1CecCoAYXyutfWtRpj3ZJ36gccO6BJXf9R/Qvlta+tzeCxg5uNUVdbl40rNm7vc2z/JnWVXStz0GEHZfVvV+/RXDqKDp1gAQAAAAAAAG+bfs70XWpXX1af1YNXZ+n3lqa8oXyvjT/17ql7LRYAAAAA0HEtvG9hKrtVZvgfDm+1XXmnd34/WV9XXyj3PKRn+h7ZN6teXpVlTy1rNcbr81/f3mdIz/Q5ok+TuhGnj8iszEqSLHtqWY7+0NHNxlj+9PI01DcU+rzb8NOHZ/VvV2fzms1Z87s16X1o71bn0lKcjmDv/cYYAAAAAAAAAAAAAABK3D2fvyf3fuHenbZb/dvVhXKvYb2a1B0z5ZgkyZpFa/LmK28223/d0nVZ+eLKJMl7zntPysrKmtQPGT8kPYf0TJK8+uCrLc7jlQde2WHcxo6dcmyh3Fqct+sGjRmUPof3abFdeybBAgAAAAAAAAAAAAAA9qKVL6zMmkVrWqxvaGjI0z9+uvD4yHOObFI/7i/GpXP3zkmS+TfObzbGkz96MmlIKrpUZOJfTdyhvqysLKdcdkqSZPGcxYVkjMbq6+rz1M1PJUmO+MARGTR60A5tDjvjsBwy7pBW5/K7h3+XVS+vSpK892/e22ybjkCCBQAAAAAAAAAAAAAA7EUN9Q256/y7sn7Z+mbr/t9f/r/8/onfJ0lGTR2VIeOGNGlTPaA6k6+enCR59JpHs/SJpU3qlz29LI/80yNJktP+/rTCSRXvdsJnTsiwU4YlDcndn7k7WzdtbVL/0N89lNULV6dL7y4585ozW3w+H/i/H0hF14os+fWSPH79403qNq/ZXDix48izj8wx5+14CkZHUVHsCQAAAAAAAHBgmH7O9GJPAQAAAACg6AaNHpS1v1ubxXMW57qR1+XYjx2bfkf3S7e+3bJ28do8/+/PZ+UL20+TGH3B6Jz9w7ObjXPixSdm/fL1efhbD+eW027J2IvGpv+x/bPyxZWZP21+tm7YmglfmZCJX9nx9Iq3lVeU56N3fTS3n317Fs9ZnB+e8MOM+dSYdK7unIX3LszCexamW79umXLnlPQ9om+LcQaPHZwp/z4lP//Ez3PfX9yXxb9anOGnD8+mVZsyf9r8rFm0JiNOH5EP3/7hPfvHKzIJFgAAAAAAAAAAAAAAsJd87BcfyxvPvZEX7nohi3+1OK/MeCXPTX8u9Vvr07lH5xw04qDU/HlNRl8wOofUHNJqrEnfnJSRk0fmsesey4I7F2TjDzamW79uGfm+kan5Qk1GnDZip/Pp1q9bPj3n05k3bV6eufWZzLlyTrbVbkuvYb0y8WsTM/5L49NjcI+dxjny7CNz8dMX59FrH83Cexbmpf96KZXVlRkwakBO/d+nZswnx6SsvGyX/53aIwkWAAAAAAAAAAAAAACwFw0YNSADRg3YK7GGThyaoROH7lGM8ory1Hy+JjWfr9mjOL2H985Z156Vs649a4/itFflxZ4AAAAAAAAAAAAAAABAsUmwAAAAAAAAAAAAAAAASl5FsScAAAAAAAAAHBimnzN9r8arL6vP6sGrs/R7S1Pe4LPjAAAAAIB9y28hAQAAAAAAAAAAAACAkifBAgAAAAAAAAAAAAAAKHkSLAAAAAAAAAAAAAAAgJJXUewJAAAAAAAAAADAgew/L/zPPH3L07vV56gPHZWP/efHmq17be5refz6x7N4zuJseGNDqvtXZ8iEIam5pCbDJw3fpfj1dfWZN21enr3t2ax8cWXqauvSa1ivHPWhozL+0vHpPqj7bs0XAADgQCDBAgAAAAAAAAAA2pnqgdXNfn/2t2Zn9hWzU9GlIsdfdHwGjBqQlS+szPxp87PgjgWZ+NWJmfxPk1uNvXHlxtx+9u1Z+tjS9Du6X07++snp3L1zFt6zMI9855E8+aMn85E7P5JDTz10Xzw1AACAdkuCBQAAAAAAAAAA7AdfeOELO21z21m3Ze3v1mbMhWN2qPvNDb/JQ998KBVdKnLBzAsyZNyQQt1x5x+Xm957U+ZePTfVA6oz8SsTm41fX1efn537syx9bGmGThya8x84P5VdK5MkNZfU5MHLHsycK+fkpx/6aS56/KL0PaJv254sAABAB1Re7AkAAAAAAAAAAEAp6Hd0v1a/Nq3elLW/W5sBfzAgQycMbdJ3w4oNmfHVGUmScZeOa5JckSSDjx9cSKqY9bezsm7JumbnMG/avCyeszgpS86Zdk4hueJtk66YlD6H98nmNZtz/5fv30vPHAAAoGOQYAEAAAAAAAAAAPtQv6P75dA/PHSn7eb9cF6S5ITPnrBD3WPffyxb1m9Jkoy9aGyz/cdeNDYpS+o212Xud+fuUN/Q0JA5V85Jkgw7eVj6H9N/hzadKjtl9IWjkyQv//LlLHt62U7nDQAAcKCQYAEAAAAAAAAAAPvQKd84JRc+dGGrbTav3ZwFdyxIZbfKHHf+cTvUL7hzQZKk9/De6XN4n2Zj9BzSM/2O7pckeeHOF9LQ0NCkfsmjS7Lute0nW4w4Y0SLcxk5eeQ7496xoNV5AwAAHEgqij0BAAAAAAAA9o7p50wv9hQAAGijZ259Jls3bs2YT41Jl15dmtStW7ouq15alSQZNGZQq3EGHz84K19YmXVL1mX1wtXpe2TfQt2rM18tlFuLM3D0wJSVl6WhvqFJHwAAgAOdBAsAAAAAAAAADgjFTjSbevfUoo4PdGzzp81Pkpzw2RN2qHvjuTcK5Z5De7Yap3H9G8+/0STBYsVzKwrlXkN7tRijoqoi3fp3y4blG7Li+RUttgMAADjQlBd7AgAAAAAAAAAAUMqWPLoky59ZnoHHDcyQ8UN2qF+zaE2hXD2wutVYjesb99vdON0Hdk+S1K6rzaY3N7XaFgAA4EDhBAsAAAAAAAAAANgNdbV12Va7rfB4y1tb9ijevB/OS5KM/ezYZusbx6/o0vrtPpVdK1ucV+1btbscp6LrO/Vb3tqSrgd1bbU9AADAgUCCBQAAAAAAAAAA7IY5V87J7CtmFx6vzdo2x6pdV5vnf/Z8KrtV5rg/Pa7ZNls3bS2UO3Xu1Gq8xvVbN25tUle3qW6vxAEAADhQSbAAAAAAAAAAAIDdcMpfn5IJX55QeLx06dJcc8w1bYr1zG3PZOvGrRnzqTHp0qtLs20an0qxbcu2Zts0V1/ZrbJJXeNTKfYkDgAAwIFKggUAAAAAAAAAAOyGiqqKVFS9c9tN53Wd2xxr3g/nJUlO+NwJLbbp3OOd+HWb61pslzQ97aJxvySp6lG1y3Ean3bx7jgAAAAHqvJiTwAAAAAAAAAAAErRkseWZPnTyzNw9MAMGTekxXa9h/culDcs39BqzMb1jfvtbpz1y9cnSap6VqXrQV1bbQsAAHCgcIIFAAAAAAAAHCCmnzO92FMAAHZD4fSKz7Z8ekWSDBg1oFBe99q6VtuuW/JO/YBjBzSp6z+qf6G89rW1GTx2cLMx6mrrsnHFxu19ju3fbBsAAIADkQQLAAAAAAAAgANAMRNs6svqc8iXDyna+AAdUe262jz/s+dT2a0yx/3pca227XlIz/Q9sm9Wvbwqy55a1mrb1+e/vr3PkJ7pc0SfJnUjTh+RWZmVJFn21LIc/aGjm42x/OnlaahvKPQBAAAoFeXFngAAAAAAAAAAAJSaZ37yTLZu2JpjP3ZsqnpW7bT9MVOOSZKsWbQmb77yZrNt1i1dl5UvrkySvOe896SsrKxJ/ZDxQ9JzSM8kyasPvtriWK888MoO4wIAAJQCCRYAAAAAAAAAALCfzZ82P0ly4udO3KX24/5iXDp377y9743zm23z5I+eTBqSii4VmfhXE3eoLysryymXnZIkWTxncSEZo7H6uvo8dfNTSZIjPnBEBo0etEvzAwAAOBBUFHsC7F/FPBY4SabePbWo4wMAAAAAAOwrxf47DADQcSx9YmmWPbksA0cPzCEnHbJLfaoHVGfy1ZNzz+fvyaPXPJqjzz06h9S803fZ08vyyD89kiQ57e9PK5xU8W4nfOaEPHf7c1k8Z3Hu/szd+dP7/zSVXSsL9Q/93UNZvXB1uvTukjOvOXMPniUAAEDHI8ECAAAAAAAAAAD2o3k/nJckOeFzJ+xWvxMvPjHrl6/Pw996OLecdkvGXjQ2/Y/tn5Uvrsz8afOzdcPWTPjKhEz8yo6nV7ytvKI8H73ro7n97NuzeM7i/PCEH2bMp8akc3XnLLx3YRbeszDd+nXLlDunpO8RfffoeQIAAHQ0EiwAAAAAAAAAAGA/qX2rNs//9PlUVlfmuE8ct9v9J31zUkZOHpnHrnssC+5ckI0/2Jhu/bpl5PtGpuYLNRlx2oidxujWr1s+PefTmTdtXp659ZnMuXJOttVuS69hvTLxaxMz/kvj02Nwj7Y8PQAAgA5NggUAAAAAAADAXjD9nOnFngIAHUBVj6r89Vt/vUcxhk4cmqETh+5RjPKK8tR8viY1n6/ZozgAAAAHkvJiTwAAAAAAAAAAAAAAAKDYnGABAAAAAAAAwB57dvqzWfq9pSlv8Dl/AAAAAHRMfrMFAAAAAAAAAAAAAACUPAkWAAAAAAAAAAAAAABAyaso9gQAAAAAAICm7v/q/fn1P/86SfKH3/zDTPq7STvt89rc1/L49Y9n8ZzF2fDGhlT3r86QCUNSc0lNhk8avkvj1tfVZ960eXn2tmez8sWVqautS69hvXLUh47K+EvHp/ug7rsUZ83v1uTRax/Nb+/9bda+tjadu3fOgGMHZPQnR2f0BaNTVl62S3EAAAAAAAD2JwkWAAAAAADQjrw+//U8es2ju9Vn9rdmZ/YVs1PRpSLHX3R8BowakJUvrMz8afOz4I4FmfjViZn8T5NbjbFx5cbcfvbtWfrY0vQ7ul9O/vrJ6dy9cxbeszCPfOeRPPmjJ/OROz+SQ089tNU4L9/zcn7+8Z+n9q3aHHPeMRn/l+OzcdXGzJ82P7/41C/yzG3P5KN3fTRVPap26zl2JP954X+mb9e+xZ4GAAAAAACwmyRYAAAAAABAO1FfV5//uui/0rCtYZf7/OaG3+Shbz6Uii4VuWDmBRkybkih7rjzj8tN770pc6+em+oB1Zn4lYktjvuzc3+WpY8tzdCJQ3P+A+ensmtlkqTmkpo8eNmDmXPlnPz0Qz/NRY9flL5HNJ888Pr813PHlDtSt6kuZ157ZsZfOr5QV3NJTW5670159cFX8/OP/zxT7566y88RAAAAAABgfygv9gQAAAAAAIDt5n53bpY9uSxHfeioXWq/YcWGzPjqjCTJuEvHNUmuSJLBxw8uJFXM+ttZWbdkXbNx5k2bl8VzFidlyTnTzikkV7xt0hWT0ufwPtm8ZnPu//L9Lc7nnkvuSd2muhwy7pAmyRVJ0vWgrnn/9e9Pkrz8y5ez4D8W7NJzBAAAAAAA2F+cYAEAAO3IxpUb8/wdz+d//t//ZNmTy7J++fqUlZel+8DuOeSkQ/IHf/oHOfLsI1NWVrbTWK/NfS2PX/94Fs9ZnA1vbEh1/+oMmTAkNZfUZPik4bs0n/q6+sybNi/P3vZsVr64MnW1dek1rFeO+tBRGX/p+HQf1H2X4qz53Zo8eu2j+e29v83a19amc/fOGXDsgIz+5OiMvmB0ysp3/nwAAOBAt/p/Vmf2FbNzcM3BOemLJ+WlX7y00z6Pff+xbFm/JUky9qKxzbYZe9HYzP7W7NRtrsvc787NWdec1aS+oaEhc66ckyQZdvKw9D+m/w4xOlV2yugLR2fW5bPy8i9fzrKnl2XQ6EFN2rzywCtZ+tjS7WN+pvm5DJ80PH2O6JPVC1fnV9/+VY75k2N2+hwBAAAAAAD2FwkWAADQTtz/lfvzxP95InWb69Ktf7f8wSf+IH2P6JuGhoYsmrUoC+5ckOf//fmMOH1EptwxJV37dG0x1uxvzc7sK2anoktFjr/o+AwYNSArX1iZ+dPmZ8EdCzLxqxMz+Z8mtzqfjSs35vazb8/Sx5am39H9cvLXT07n7p2z8J6FeeQ7j+TJHz2Zj9z5kRx66qGtxnn5npfz84//PLVv1eaY847J+L8cn42rNmb+tPn5xad+kWdueyYfveujqepR1aZ/NwAAOFD88rO/TP3W+pwz7ZxsfnPzLvVZcOf2UyB6D++dPof3abZNzyE90+/ofln5wsq8cOcLOfN7ZzZJ2l7y6JKse237yRYjzhjR4lgjJ4/MrMtnbR/3jgU7JFg8f8fzhfJhZxzWYpzDzjgsqxeuzrKnlmX1b1e3OG8AAAAAAID9TYIFAAC0E8/c9kzqNtfl0D88NB/7xcfSpVeXQt1JXzgpL//y5fz0j3+aV2e+munnTM+nfvWpZk9++M0Nv8lD33woFV0qcsHMCzJk3JBC3XHnH5eb3ntT5l49N9UDqjPxKxObnUt9XX1+du7PsvSxpRk6cWjOf+D8VHatTJLUXFKTBy97MHOunJOffuinuejxi9L3iL7Nxnl9/uu5Y8odqdtUlzOvPTPjLx1fqKu5pCY3vfemvPrgq/n5x3+eqXdPbdO/GwAAHAjm/2h+Xp35ak7++skZNHpQFj20aKd91i1dl1UvrUqSDBozqNW2g48fnJUvrMy6JeuyeuHq9D3ynffwr858tVBuLc7A0QNTVl6WhvqGJn3etmjm9jl36d0lvQ/t3WKcQce/M8arM1+VYAEAAAAAALQb5cWeAAAA8I7yivKc++NzmyRXvO3Is4/M2IvGJklem/tanv/353dos2HFhsz46owkybhLxzVJrki231T1dlLFrL+dlXVL1jU7j3nT5mXxnMVJWXLOtHMKyRVvm3TFpPQ5vE82r9mc+798f4vP555L7kndprocMu6QJskVSdL1oK55//XvT5K8/MuXs+A/FrQYBwAADmTrl63PjK/OyEEjD8offvMPd7nfG8+9USj3HNqz1baN6994/o0mdSueW1Eo9xraq8UYFVUV6da/2/Y+z69oUrd109a8+cqbuzSXxmO8ey4AAAAAAADFJMECAADakUFjBqXXsJZvaHrPn7ynUH757pd3qH/s+49ly/otSVJIxni3sReNTcqSus11mfvduTvUNzQ0ZM6Vc5Ikw04elv7H9N+hTafKThl94ejt8/jly1n29LId2rzywCtZ+tjS7WN+pvm5DJ80PH2O2P5ptb/69q+abQMAAAe6e//83mx+c3PO/tezd0hubs2aRWsK5eqB1a22bVzfuN/uxuk+sHuSpHZdbTa9uanw/bWL16ahvqFJm12Zy9pFa1ttCwAAAAAAsD9JsAAAgHbiT6b/ST74ow+22qb3ob0L5bWLd7wRacGd20+B6D28d/oc3qfZGD2H9Ey/o/slSV6484U0NDQ0qV/y6JKse237yRYjzhjR4lxGTh75zrh37Hj6xPN3vHPCxmFnHNZinLfrlj21LKt/u7rFdgAAcCB68Rcv5oX/eCFjLhyTw/5Xy++bm7PlrS2FckWXilbbNk7caNwvSWrfqt3lOBVd36lvHKetc2k8NgAAAAAAQLFJsAAAgHZixGkjMvC4ga222bxmc6FcWd30k23XLV2XVS+tSrL9JIzWDD5+8PY+S9Zl9cKmSQ2vzny1UG4tzsDRA1NWXrZDn7ctmrkoSdKld5cmiSHvNuj4d8ZoLg4AAHQEdbV1qV1XW/jaun7rTvvUrqvNvV+4N936d8v7vvu+3R5z66Z3xujUuVOrbRvXb93YdG51m+r2OM7emgsAAAAAAEAxtf4xUgAAQLvy5qtvFsqHnnpok7o3nnujUO45tGercRrXv/H8G+l7ZN/C4xXP/X/s3Xl4k2Xa9/Ff2nTfdyqlLGXfWmAqUBHLJi6gooCiIILoCDqDzig66jzu4/Y4ouMsj4yjIAMqiCKCC8hmQUApUNmkQKG00kIpbeneNHn/6EtobBraJlJKv5/jyHHcyXVe53mlCSVpct7XSetxULugenMYvYzyjfBVSW6JTu45aTNWVVal04dPN2gttWuc2HPCQSQAAABw8Up5MUUbntlgvV7oVnfHuV9aPWe1zmSf0c2LbpZPqE+ja9beCaK6stphbO1xD1/bZu3au1I0NY+r1gIAQEu3eOziZq0/acWkZq0PAAAAAADQ0tFgAQAAALQg+z/ZL0kyehuVcFeCzVjBkQLrsV+Un8M8tcdrz2tsHv8of5XklqiiqEJlp8vkE1LzpbDCzEJZzBZrTEPXUnjk/F9CAwAAAC5GQ/40RIP/MNh6PTMzU6/3eb3e+KPfHtX2t7er8zWd1WdSnybV9AzwtB6byk0OIm13mKg9T5K8ArwanKf2bhe18zR1LbVrAwAAAAAAAAAANDcaLAAAAIAWouREiX5a/pMkafDDgxVwWYDNeOWZSuux0dvxS/3aZ5etPU+SKs5UNDhP7TPdVp6ptDZYNHUttWsDAAAALYnRyyij17nXvh7+9e/MUF1ZrRX3rJC7p7uGPTdMpXmldWLKC8utx1WlVTYxXkFecvdwV3CHYOttJbklDtdXe7z2vLPXs7ZkWeMC29a/C11xbnHNGgK9rK//JSkoNkgGN4MsZos1piFrCepQ/655AAAAAAAAAAAAFxoNFgAAAMCvwFRhUnVFtfV6VXGVg+iGWf3IapnKTYruH62hTw6tM177LLDunu4Oc9Ueryq1XVvtM9I2NY+r1gIAAABcis78fEanfjolSZqXOO+88Ztf3azNr262Xp+6bqo6JHdQZO9I621Fx4oc5ijKOjce2SvSZiyid4T1uPBYoaL7R9vNYaowqfRkTaNHRK8ImzEPHw+FdApR/sF8p9YCAAAAAAAAAADQnGiwAAAAAH4FKS+maMMzG6zXC90KncqXtjBNuxbskl+knyZ+PNHmzLhn1d4Jorqyus54bbXHPXxtz6xbe1eKpuZx1VoAAACAS5F/G39NWT3FYUzOrhytfni1JKnvlL6KvzPeOhYVHyVJCmwbqLCuYTp14JRyduY4zHc89XjNnJhAhXYJtRnrOLyj1mldTd2dOep+Y3e7OXJ35cpitljn/FKH4R2UfzBf5QXlKjhaoOD2wQ7XUl8eAAAAAAAAAACA5kKDBQAAAPArGPKnIRr8h8HW65mZmXq9z+tNynV041GtuGeFvAK9dPuq2xXcIdhunGeAp/XYVG6yG3NW7R0mas+TJK8Arwbnqb3bRe08TV1L7doAAADApcrobVSnkZ0cxrgZ3azHIZ1C6o3vOaGnvn3hWxUcKdDpw6cV0imkTkxRdpHy9udJknqM7yGDwWAzHjMoRoExgSrKKlLGNxlKfirZbq3Daw7b1P2lXhN6KfXtVElSxjcZ6je9n908Gd9kSJLaJLRRaOdQuzEAAAAAAAAAAADNwe38IQAAAAAay+hllFegl/Xi4d+0nRmyt2Vr8djFcvd01+SvJuuyAZfVG1u78aIkt8Rh3trjv2zYaEye4txiSZJXoJd8QnystwfFBsngZrCJachagjoEOYwFAAAAYGvg7wfK07+mwTn136l2Y3a8s0Oy1DR2JP0xqc64wWDQkMeHSJIyUzKtzRi1mU1m7XxvpySpy/Vd1Ca+TZ2YTiM7qe3Atg7XcnTjUZ06cEqSdOUTV57n3gEAAAAAAAAAAFxYNFgAAAAAF6mft/+shaMXymKxaPJXkxUzKMZhfGTvSOtx0bEih7FFWefGI3tF2oxF9I6wHhceK6w3h6nCpNKTpTVzekXYjHn4eFjPnOvMWgAAAAA45hfpp1GvjpIkbXl9i7K/z7YZz9mVo02vbJIkDXtumAJjAu3mGXDPAMUOiZUs0op7VtjsNCdJ659er/z0fHkHe2v066PrXc/1/7heRh+jsr7L0ra3ttmMlReUa9X9qyRJXcd0Vc/xdXfBAAAAAAAAAAAAaE7G5l4AAAAAgLqO7ziu90e9L7PJ3KDmCkkKbBuosK5hOnXglHJ25jjOn3q8Zk5MoEK7hNqMdRzeUeu0TpKUszNH3W/sbjdH7q5cWcwW65xf6jC8g/IP5qu8oFwFRwsU3D7Y4VrqywMAAAC0FrlpucpNy5Ukndx30ub2tIVpkiS/KD/FjYqzmfeb+36j4txibXx2o+YPm6/+M/oroleE8vbnKXVeqqpKqjT44cFKerju7hVnuRnddOsnt2rRmEXKTMnU2wPeVsK0BHn6eSp9VbrSV6bLN9xXE5ZOUFiXsHrzRPeP1oSPJmjZHcv0xe+/UOa3meowvIPKTpUpdV6qCo4UqOPwjrp50c3O/KgAAAAAAAAAAAB+FTRYAAAAABeZ3LRcvT/qfVVXVmvyl5PVLqldnZj1z6zXgRUHdO8P99rc3nNCT337wrcqOFKg04dPW3eRqK0ou0h5+/MkST3G95DBYLAZjxkUo8CYQBVlFSnjmwwlP5Vsd52H1xy2qftLvSb0UurbqZKkjG8y1G96P7t5Mr7JkCS1SWij0M6hdmMAAACA1mDfsn3a8MyGOrfv/2S/9n+yX5LU/qr2dRosJCn5qWTFjYrT1je3au/SvSr9Z6l8w30Vd3WcEu9PVMdh529m9g331fSU6do+b7vS3k9Tyospqq6oVlBskJLmJGnQg4MUEB1w3jxdx3TVfbvu05a5W5S+Ml0/ffaTPPw8FNk7UkP/Z6gSpibI4GY4bx4AAAAAAAAAAIALjQYLAAAA4CJyYvcJLRixQKYyk+744g7FDom1G1eQUaDj24/XuX3g7wdq6xtbVVlcqdR/p2rEX0bUidnxzg7JIhm9jUr6Y90z2BoMBg15fIhWzVqlzJRM5e3PU3j3cJsYs8msne/tlCR1ub6L2sS3qZOn08hOajuwrbK3Ziv136l2GyyObjyqUwdOSZKufOJKu/cVAAAAaC2Sn05W8tPJTZ7fLqmd3QbtxnAzuilxZqISZyY6lSe4Q7CumXuNrpl7jVN5AAAAAAAAAAAALiS35l4AAAAAgBon957UghELVJpXqsEPD5bFbNGR9UfsXopziu3m8Iv006hXR0mStry+RdnfZ9uM5+zK0aZXNkmShj03TIExgXbzDLhnQE1zh0Vacc8KVZVV2Yyvf3q98tPz5R3srdGvj673Pl3/j+tl9DEq67ssbXtrm81YeUG5Vt2/SlLNGW57jq+7CwYAAAAAAAAAAAAAAAAAXCjsYAEAAABcBEzlJi0YsUAlJ0okSRuf3aiNz25sUq7f3PcbFecWa+OzGzV/2Hz1n9FfEb0ilLc/T6nzUlVVUqXBDw9W0sN1d684y83opls/uVWLxixSZkqm3h7wthKmJcjTz1Ppq9KVvjJdvuG+mrB0gsK6hNWbJ7p/tCZ8NEHL7limL37/hTK/zVSH4R1UdqpMqfNSVXCkQB2Hd9TNi25u0n0FAAAAAAAAAAAAAAAAAFehwQIAAAC4CJjKTfXuStEUyU8lK25UnLa+uVV7l+5V6T9L5Rvuq7ir45R4f6I6Dut43hy+4b6anjJd2+dtV9r7aUp5MUXVFdUKig1S0pwkDXpwkAKiA86bp+uYrrpv133aMneL0lem66fPfpKHn4cie0dq6P8MVcLUBBncDK642wAAAAAAAAAAAAAAAADQZDRYAAAAABcB72BvPWV5yqU52yW1U7ukdk7lcDO6KXFmohJnJjqVJ7hDsK6Ze42umXuNU3kAAAAAAAAAAAAAAAAA4Nfi1twLAAAAAAAAAAAAAAAAAAAAAAAAaG40WAAAAAAAAAAAAAAAAAAAAAAAgFaPBgsAAAAAAAAAAAAAAAAAAAAAANDqGZt7AQAAAAAAAAAAAAAAAAAAAAAAXGpK80q1Z8keHfrqkHJ25Kg4t1gGN4P8o/zV9vK26jO5j7qO6SqDwWB3fsGRAr3R8Y0G1Uq8P1HXvXWdwxizyazt87brx4U/Km9/nkwVJgXFBqnbjd00aPYg+bfxb1CtgqMF2jJ3iw6uOqjCY4Xy9PdUZK9IxU+NV/yd8TK42b8/LQENFgAAAAAAAAAAAAAAAAAAAAAAuNDXD3+t7//+vUzlJvlG+KrPHX0U1iVMFotFR9Yd0d6le7Xnoz3qOLyjJiyZIJ9Qn191PaV5pVo0ZpGyt2YrvHu4rnj0Cnn6eyp9Zbo2vbRJO97ZoYlLJ6r90PYO8xxYeUDLbl+mijMV6jm+pwY9NEilp0qVOi9Vy6ctV9rCNN36ya3yCvD6Ve/Pr4UGCwAAAAAAAAAAAAAAAAAAAAAAXChtYZpM5Sa1v6q9blt+m7yDvK1jl99/uQ58fkAf3PSBMtZmaPHYxZr27bR6d34Y/pfh6jGuh8N63iHe9Y6ZTWZ9OO5DZW/NVrukdpqyZoo8fDwkSYmzEvXN498o5cUUfXDjB5qxbYbCuoTZzXM89biWTFgiU5lJo+eO1qDZg6xjibMS9e6V7yrjmwwtu32ZJq2Y5HC9Fyu35l4AAAAAAAAAAAAAAAAAAAAAAACXGjejm8YtGGfTXHFW1zFd1X9Gf0nSsc3HtOejPfXmCYgOUHj3cIcX/yj/eudvn7ddmSmZkkEaO2+stbnirORnkhXaOVTlBeX6+g9f15tn5ayVMpWZ1HZgW5vmCknyCfHRdW9dJ0k68PkB7f14b715LmY0WAAAAAAAAAAAAAAAAAAAAAAA4GJtEtooKDao3vEet5zbleLAigO/yhosFotSXkyRJMVeEauInhF1Ytw93BV/V3zNOj4/oJxdOXViDq85rOyt2ZKk/vf0t1urQ3IHhXYJlSR9+/y3Lln/hUaDBQAAAAAAAAAAAAAAAAAAAAAALnTL4lt0wzs3OIwJbh9sPS7MLPxV1pG1JUtFx4okSR1Hdqw3Lm5UnPV475K6u0/sWXJuh41OIzvVm+fsWM7OHOUfzG/0eptbi2+wyMvL05///Gf17t1b/v7+Cg0N1eDBg/Xmm2+qsrLSJTX279+v3//+9+rbt68CAgLk4eGhyMhIjRgxQn//+99VVlbmkjoAAAAAAAAAAAAAAAAAAAAAgJav47COiuob5TCmvKDceuzh59GgvGaTWZUlDf+efMbaDOtxm4Q29cZFxUfJ4GaoM+esI2uPSJK8g71tGkN+qU2/czXs5bnYGZt7Ac7Ytm2bbrrpJh0/flyjRo3SzJkzVVZWpvnz52v27Nl677339Pnnn+uyyy5rco2///3veuihh1RVVaWEhAQ9/PDDioqK0r59+/Tuu+9q7dq1evPNN/XFF1+oU6f6O3EAAAAAAAAAAAAAAAAAAAAAADjrdMZp63H7oe3rjTux54Q+vv1jZaZk6szPZ2SptsjD10Mxg2LUZ3IfxU+Jl5vR/t4LJ3eftB4HtQuqt4bRyyjfCF+V5Jbo5J6TNmNVZVU6fbhmrYHtAh3ep9o1Tuw54TD2YtRiGywyMzM1ZswYnTx5Ug8++KBef/1169jvfvc7XXvttVq3bp1uuOEGbdq0SV5eXo2u8dVXX+mBBx6QJN1+++2aP3++jMZzP7I//OEPSkxM1IEDBzRmzBjt2rVLHh4N6xwCAAAAAAAAAAAAAAAAAAAAALRe+z/ZL0kyehuVcFdCvXHf/e93CusapssfuFzhPcJVXVGtoxuPKnVeqjLWZij17VRNXDZRAdEBdeYWHCmwHvtF+Tlcj3+Uv0pyS1RRVKGy02XyCfGRJBVmFspitlhjHKldo/BIocPYi5H9NpUW4JFHHtHJkycVGxurl156yWbMy8tL8+bNk7u7u7Zv36633nqrSTVeeeUVSZKHh4feeOMNm+YKSWrfvr2efPJJSdK+ffv06aefNqkOAAAAAAAAAAAAAAAAAAAAAODiZKowqaKownqpPFPpdM6SEyX6aflPkqTBDw9WwGV1myPO6nFLD92Xdp+umHOFuo3tpp7je+raN6/V9M3T5RXopawtWVo8drFMFaY6cyvOVFiPjd6O92cw+pwbr30fax+fL4eHz7kNC2rXbila5A4W6enpWrJkiSTpzjvvtLs7RVxcnIYNG6Y1a9bo5Zdf1uzZs+s0SJzP999/b80VHh5uN+byyy+3Hn/33XeaMGFCo2q0NovHLm7W+pNWTGrW+gAAAAAAAAAAAAAAAAAAAABalpQXU7ThmQ3W64VyfmeG1Y+slqncpOj+0Rr65FC7MYExgZqdMVsBbQPk7uFeZzy6X7SG/s9QrX54tY5vP64f/vWDBs0eZBNjKjvXdOHuWTdHbbXHq0qrzh2XVdmNaUyOlqJF7mCxdOlSWSw1W4yMHDmy3rhRo0ZJkk6ePKn169c3uk5lZU2njY+PT70xvr6+1uOSkpJG1wAAAAAAAAAAAAAAAAAAAAAAXLyG/GmIHit8zHp5YO8DTuVLW5imXQt2yS/STxM/niijl/2NBNyMbgruEGy3ueKsftP6SYaa453/2VlnvPauFNWV1Q7XVXvcw/fcThS1d6Voao6WokXuYLF27VrrcUJCQr1x/fr1s5njqBnDnvj4eG3btk0HDx6UyWSyuwPGvn37rMddunRpVH4AAAAAAAAAAAAAAAC0TqcOnNKO/+zQwS8PqiirSFUlVfKL8lNQbJDaXdFOnUZ2UqcRneqdf2zzMW17a5syUzJVcqJEfhF+ihkco8RZieqQ3KFBazCbzNo+b7t+XPij8vbnyVRhUlBskLrd2E2DZg+Sfxt/F91bAAAAoGUzehltmiA8izybnOvoxqNacc8KeQV66fZVtyu4Q7BTa/MJ9VFIpxCdPnRauT/mqrK4Up7+59bnFeBlPTaVm+ylODdea7cLzwBPu8fny1F7t4vatVuKFrmDxe7duyVJAQEBCgoKqjeuXbt21uM9e/Y0us6cOXMkSWfOnNHf/va3OuPV1dV6+eWXJUn+/v664447Gl0DAAAAAAAAAAAAAAAArcvG5zfqn33+qR//+6M6jeykEX8ZoZEvj1TsFbHK+i5Lm17apKW3Lq13/oZnN+jdK9/VT8t/Uvdx3XXt365Vzwk9dfCLg5o/bL5Wz1l93jWU5pXqP0P+o1WzVqksv0xXPHqFRr0ySiEdQ7TppU36Z99/6ujGo6682wAAAECrl70tW4vHLpa7p7smfzVZlw24zCV5/SL9ag4sUnFusc1Y7QaOktwSh3nOzvUK9JJPiI/19qDYIBncDDYx9aldI6hD/d/1v1i1uB0sKioqlJOTI0mKiopyGFt7/MiRI42udcstt2j+/Pm6//779cgjjyg7O1sTJ05UZGSk9u/fr2effVY7duxQeHi4Fi1apOjo6EbXAAAAAAAAAAAAAAAAQOux+tHV2vzKZvW+rbdueOcGefh62Iz3vbOvFl23qN75P/zrB61/ar2M3kbdufZOxQyMOTd3Sl+9e+W72vzqZvlF+inp4SS7Ocwmsz4c96Gyt2arXVI7TVkzRR4+NetInJWobx7/RikvpuiDGz/QjG0zFNYlzAX3HAAAAGjdft7+sxaOXiiLxaIpX09RzKCY809qIIvZYj12c7fdgyGid4T1uPBYoaL72//Ou6nCpNKTpTVzekXYjHn4eCikU4jyD+ar6FiRw7UUZZ0bj+wV2bA7cBFpcQ0WZ86csR57e3s7jPXxOdc1U3teY9x5550aPXq0/vSnP2nu3Ll67bXXrGNRUVF6/vnnNX369EY1V5SZylRsOte54+HmIQ93Dwcz4Comk+MtaS5lJpNJZrO5Vf8M0Lx4DqK58RxEczObzc29BDSj5nwPwO+95sP/PeA5AJ4DrRuPP3gP0LqVVpfKy3Ru23M+B7j4WAwWWWSRxWCRWfx7vZjxWLUcPFYXh4a+/uT1asvBY9VyNPQxOvjlQW1+ZbMiekXopgU3yd3DvU5M59Gd1WlUJxVkFNQZKzlZotWP1OxOMXD2QJvmCkmK7hetpIeTtOGZDVr353XqfVtvBcYE1smzfd52ZaZkSgZp7Lyx1uaKs5KfSdbeJXuVfzBfX//ha01aMalB96+1KiwsVH5+vvW6l5eXvLy8HMzApcJsaNrrHle+duL/iNaF1wZoKp47aCqeO/Vr7M/k+I7jen/U+zKbzJr81eQGN1dsfH6jIvtEqvuN3R3GFefUfC/F4GY4t5vF/9dxeEet0zpJUs7OnHpz5e7KtTZqdBzesc54h+EdlH8wX+UF5So4WqDg9sF28xxPPW5Tu6VpcQ0WZWVl1mNPT0+HsbXHS0tLm1RvwYIFmjNnjnJzc3XLLbfopptuUmhoqI4ePar//Oc/mjt3rgoKCvTkk08qKKhhW5g8uv5Rm+vX9L9G1/3muiatD42TkpLS3EtoNmazWZmZmZIkNze380QDrsdzEM2N5yCa26lTp5p7CWhGzfkeoDW/Bm5u/N8DngPgOdC68fiD9wCtG58DXPwssqgsoEz5ypdBhuZeDhzgsWo5eKwuDg39WxCvV1sOHquWo/aX6+tjsVj05YNfSpKGPDbEbnPFWZO/nGz39q1vbFVlcaUkqf+M/nZj+s/orw3PbpCp3KTNr23WNa9fU2cdKS/W/L6IvSJWET0j6uRw93BX/F3xWvfkOh34/IByduWoTXyb897H1iohIcHm+tSpU3XXXXc1y1pwYeVHn//fvj2ufO3EZ0GtC68N0FQ8d9BUPHfq15D3AGflpuXq/VHvq7qyWpO/nKx2Se3qxKx/Zr0OrDige3+41+b2dX9ep7jRcQ4bLM4cP6PCo4WSpOj+0XV2yYsZFKPAmEAVZRUp45sMJT+VbDfP4TWHrcc9J/SsM95rQi+lvp0qScr4JkP9pvezmyfjmwxJUpuENgrtHFrvui9WLa7BovauFJWVlQ5ja4/7+vo2utbcuXP10EMPSZL+8Y9/aObMmTbj9957r26//Xb97//+r5YvX67169frsssuO2/el5NfVoh3iPW6h5uHPI5z5qoLYciQIc29hGZztlMuKSlJRmOL+6ePSwDPQTQ3noNobmffbKJ1as73AK35NXBz4/8e8BwAz4HWjccfvAdo3fgc4OJnMViUr3yF5oTKYOGL4BczHquWg8fq4tDQvwXxerXl4LFqObKyss4bc3TjUZ366ZQMbgZ1Hdu1SXX2Lt0rSQruEFzvF5UCYwIV3j1cefvytG/pPo3+62gZDOd+N2dtyVLRsSJJUseR9Z9NNm5UnNY9WXOW271L9tJg4cDOnTvVrt25L8mxg0Xrkf3X7CbNc+VrJz4Lal14bYCm4rmDpuK5U7+GvAeQpBO7T2jBiAUylZl0xxd3KHZIrN24gowCHd9+3O7Ysc3HVFFUIa9A+68xf/jXD9bj/vfWbcQ2GAwa8vgQrZq1Spkpmcrbn6fw7uE2MWaTWTvf2ylJ6nJ9F7uv/zuN7KS2A9sqe2u2Uv+darfB4ujGozp1oOYkVFc+caXd9V7sWtwzPSAgwHpcXl7uMLb2bhe15zVEVlaW5syZI6nmRegvmyskyd3dXf/617+0cuVKpaen6+6779YXX3xx3tw+Rh/5G/1tb7Q0anlootb+y93NzU1Go7HV/xzQfHgOornxHERzoou/dWvO9wD8zmte/N8DngPgOdC68fi3brwHaN183X35HOAiZ5ZZBhlksBjkZuHf68WMx6rl4LG6ODTmtSevV1sOHquWoSGPz9nmiKD2QfIO8rbebrFYVFlcKU9/T5tGiF8qyi7SqZ9qvqjUJsFxs0N0v2jl7ctTUVaR8tPzFdY1zDqWsTbDeuwoT1R8lAxuBlnMFps5qCsoKEihoS3vzLxwXlNf97jytRP/P7Q+vDZAU/HcQVPx3LGvIT+Pk3tPasGIBSrNK9XQ/xkqi9miI+uP2I0tzimuN0/lmUqtuHeFxi0YJ3dP253wDn19SJte3iRJaj+0vfpNs7+rxIB7Bmj3ot3KTMnUintWaPLXk+Xhc+7EQOufXq/89Hx5B3tr9Ouj613L9f+4Xv8Z8h9lfZelbW9t0+UPXG4dKy8o16r7V0mSuo7pqp7j6+6C0RK0uGe6l5eX2rRpo5ycHOXm5jqMrT3eoUOHRtVZsmSJqqqqJEnjxo2rNy4kJETJyclauXKlvvzySx06dEhxcXGNqgUAAAAAAAAAAAAAAIBL2/Efas5GGxQbJIvZoh3v7tCOf+/Qzz/8LLPJLDejm6IHRCv+znj1v6e/3D1svzh1YvcJ63Fgu0CHtWqPn9hzwqbB4uTuk9bjoHZB9eYwehnlG+GrktwSndxzst44AAAAAHWZyk1aMGKBSk6USJI2PrtRG5/d2Og8UfFRyt2Vqz0f7tHx7cfV67ZeCukUoqqSKh1Zf0T7lu2TLFLnazvr5v/eLDej/eZNN6Obbv3kVi0as0iZKZl6e8DbSpiWIE8/T6WvSlf6ynT5hvtqwtIJCusSZjeHJEX3j9aEjyZo2R3L9MXvv1Dmt5nqMLyDyk6VKXVeqgqOFKjj8I66edHNjb6vF4sW12AhSb1791ZOTo7OnDmjwsJCBQXZf7NXe+uVXr16NarGgQMHrMft27d3GFu7eWPnzp00WAAAAAAAAAAAAAAAAMBG7o81Jwq1mC16/+r3dWTdEcXfFa/Bfxwsd093ZW7K1La/bdOq+1cp7f00TVoxSb7hvtb5BUcKrMd+UX4Oa9Uerz2vsXn8o/xVkluiiqIKlZ0uk0+Iz3nuJQAAAACppsHC0a4UDXXfzvuUtTVL+z/dr2Objin17VSVnS6Tu4e7/Nv4q8/tfdR3Sl91Ht35vLl8w301PWW6ts/brrT305TyYoqqK6oVFBukpDlJGvTgIAVEB5w3T9cxXXXfrvu0Ze4Wpa9M10+f/SQPPw9F9o7U0P8ZqoSpCTK41b8738WuRTZYDB8+XGvWrJFU09Bw1VVX2Y1LTU21mdMYtbdvt1gc79ttNputx9XV1Y2qAwAAAAAAAAAAAACAKyweu7hBcWaDWfnR+cr+a7bcLPbPbNkUk1ZMclku4GJnqjCpuuLcd0Qqz1Q6jK8qrVJVSZUkKfPbTEnS+I/Gq9eEcycM7XZDN/Uc31PvDX1PWVuytPS2pZqyeooMBkOdGkZvx1/58fDxqHdtFWcqGpzH6HNuvPJMJQ0WAAAAQAN5B3vrKctTLskVMzBGMQNjXJLLzeimxJmJSpyZ6FSe4A7BumbuNbpm7jUuWdfFxHV/KbmAxo8fb33z+M0339Qbd7YJIzw8XMnJyY2q0alTJ+vxoUOHHMbWHo+NjW1UHQAAAAAAAAAAAAAAALQsKS+m6KWgl6yXt3q+5TC+oqjC5nrnazvbNFec1TaxrX4z6zeSpIxvMnRgxQHrWFVZlfXY3dPdYb3a41WlVTZjpjKTS/IAAAAAwKWoRTZYdOnSRRMmTJAkvf/++6qsrHsWgMOHD2vt2rWSpEcffVRGo23H/e7du9W1a1fFxMRo48aNdeZff/311iaOJUuW1LuW3NxcbdiwQZIUGRmpxETnunkAAAAAAAAAAAAAAABwcRvypyF6rPAx6+WBvQ84jDdXm22u95zQs97Y3rf1th6nLUyzHtfelaK6slqO1B738PWwGau9K4UzeQAAAADgUtQiGywk6dVXX1VERISOHDmixx9/3GasoqJC9957r6qrqzVgwAA98EDdN7EvvPCC0tPTlZ2drccee6zOePfu3XX33XdLkrZv364XXnihTkxFRYXuuusuVVRUWHO6uzvu7AcAAAAAAAAAAAAAAEDLZvQyyivQy3rxDPB0GO8V4GVzPapPVL2xUX2jpJpzgip7W7b19to1TOWmX06zUXu3i1+urfZazpen9m4X57uPAAAAAHApMJ4/5OIUGxurFStWaNy4cXrttde0e/du3XDDDSorK9P8+fP1448/KiEhQZ999pm8vb3rzDebz50ZwGKx2K3x97//XWVlZfrvf/+rJ598Ul999ZVuvPFGhYaG6ujRo3r//fd1+PBhGY1GPffcc5oxY8avdn8BAAAAAAAAAAAAAADQMnn6e8rd0926I4R3SN3vspxl9DLK099TlWcqVXKixHp7cIdg63FJbomdmbI7Xnve2etZW7KscYFtA+vNU5xbLEnyCvSST4iPw5oAAAAAcClosQ0WkjRw4EClpaVp7ty5+uSTTzRnzhx5eHioa9eumjt3rmbOnClPT/vd80888YRSU1NVVlaml19+2W6Mp6enFi5cqN/+9rd677339N133+npp59WWVmZAgICFBcXpz/+8Y+655571K1bt1/zrgIAAAAAAAAAAAAAAAcWj13crPUnrZjUrPVxcTO4GRTeI1y5u3IlSeYqs+MJlnPzzorsHWk9LjpW5HB6Uda58chekTZjEb0jrMeFxwoV3T/abg5ThUmlJ0tr5vSKsBsDAAAAAJeaFt1gIUnh4eF6/vnn9fzzzzdqXt++fZWent6g2CuvvFJXXnllU5YHAAAAAAAAAAAAAAAAqO3lba0NFsU5xQrvHm43rqq0SpUllZKkgMsCrLcHtg1UWNcwnTpwSjk7cxzWOp56vGZOTKBCu4TajHUc3lHrtE6SlLMzR91v7G43R+6uXFnMFuscAAAAAGgN3Jp7AQAAAAAAAAAAAAAAAMClruf4ntbj7O+z6407vuO4dQeL9le1t80xoSZHwZECnT582u78ouwi5e3PkyT1GN9DBoPBZjxmUIwCYwIlSRnfZNS7jsNrDtepCwAAAACXuha/gwUAAAAAAAAAAAAAAEBzWzx2sctzmg1m5UfnK/uv2XKznP8cmpNWTHL5GuA6nUZ2UlR8lHJ35erHhT8q6eGkOs0PkpT2fpr1OHFmos3YwN8P1NY3tqqyuFKp/07ViL+MqDN/xzs7JItk9DYq6Y9JdcYNBoOGPD5Eq2atUmZKpvL259XZTcNsMmvnezslSV2u76I28W2acpcBAAAAoMVhBwsAAAAAAAAAAAAAAADgV2ZwM+j6f1wvd0935ablauNzG+vEHPr6UE2DhKRBDw1SdP9om3G/SD+NenWUJGnL61vq7ISRsytHm17ZJEka9tww604VvzTgngGKHRIrWaQV96xQVVmVzfj6p9crPz1f3sHeGv366KbdYQAAAABogdjBAgAAAAAAAAAAAAAAALgA2iW10/gPx+uTOz/R+qfWK/PbTHW9oauM3kYd23RMaQvTZKm2aODsgdZGil/6zX2/UXFusTY+u1Hzh81X/xn9FdErQnn785Q6L1VVJVUa/PBgJT1cd/eKs9yMbrr1k1u1aMwiZaZk6u0BbythWoI8/TyVvipd6SvT5RvuqwlLJyisS9iv9eMAAAAAgIsODRYAAAAAAAAAAAAAAADABdL9pu66f+/92vLGFh1cdVBrH18rc7VZAdEBip8Sr9/M+o3aJrZ1mCP5qWTFjYrT1je3au/SvSr9Z6l8w30Vd3WcEu9PVMdhHc+7Dt9wX01Pma7t87Yr7f00pbyYouqKagXFBilpTpIGPThIAdEBrrrbAAAAAOByuWm58m/jL79IP5flpMECAAAAAAAAAAAAAAAAuIACYwJ19atX6+pXr25yjnZJ7dQuqZ1T63AzuilxZqISZyY6lQcAAAAAXGX59OUa8NsBihkYc97Yj275SKcPn1b3m7pr3MJx8vDxcLq+m9MZAAAAAAAAAAAAAAAAAAAAAAAAnLTzvZ06feh0g2I7X9tZYV3DtP/T/Up5McUl9WmwAAAAAAAAAAAAAAAAAAAAAAAALcq1b16r+/fdr14Te2nvkr0uyUmDBQAAAAAAAAAAAAAAAAAAAAAAaJE6DO+gwsxCl+SiwQIAAAAAAAAAAAAAAAAAAAAAAFwcDA0PNVWYdPCLg3L3dHdJaaNLsgAAAAAAAAAAAAAAAAAAAAAAADTQlje2aOsbW+vc/tWDX2ntE2vPO99cZVbJiRKZTWZ1HNHRJWuiwQIAAAAAAAAAAAAAAAAAAAAAAFxQ5QXlKjhSUOf2kpMl0smG5/H081TyM8kuWRMNFgAAAAAAAAAAAAAAAAAAAAAA4IJqk9BGCVMTbG7bOX+n2l/ZXiGdQhxPNkgevh4K6xqmnuN7KuCyAJesiQYLAAAAAAAAAAAAAAAAAAAAAABwQXW/sbu639jd5rad83dqwG8HqM/tfZplTTRYAAAAAAAAAAAAAAAAAABanMVjFzf3EgAAAOBiHa7qIL8ov2arT4MFAAAAAAAAAAAAAAAAAAAAAABodlPXTW3W+m7NWh0AAAAAAAAAAAAAAAAAAAAAAKCJDq85rPnD57skFztYAAAAAAAAAAAAAAAApy0eu7i5lwAAAAAAAFqh4txiHd1w1CW5aLAAAAAAAAAAAAAAAAAAAAAAAAAXjerKamWmZOrkvpOqKKyQ2WSuNzZ3V67L6tJgAQAAAAAAAAAAAAAAAAAAAAAALgqp76RqzZw1Ki8ov+C1abAAAAAAAAAAAAAAAAAAAAAAAADNbt8n+7TinhWNnmcwGFxSnwYLAAAAAAAAAAAAAAAAAAAAAADQ7Lb8dYskqc/tfdTv7n6K6BkhnxAfuXu61zsnbWGaPp36qUvq02ABAAAAAAAAAAAAAAAAAAAAAACaXW5arnqM66GbF97c8EkGyWKxuKQ+DRYAAAAAAAAAAAAAAAAAAAAAAKDZWcwWdb62c6Pm9BjXQ7EZsS6p7+aSLAAAAAAAAAAAAAAAAAAAAAAAAE4I6xomU4WpUXM8fD0U3D7YJfXZwQIAAAAAAAAAAAAAAOASsHjs4matP2nFpGatDwAAAABo+RKmJWj/sv26/P7LGzwna0uWtr+9XTf+50an67ODBQAAAAAAAAAAAAAAAAAAAAAAaHaJ9yfKK9BLK+9fqcriygbNyT+Ur13zd7mkPjtYAAAAAAAAAAAAAAAAAAAAAACAZrfxuY2Kio/Sjnd2KG1Bmtpf1V5h3cLkFeAlg5vB7pzcXbkuq0+DBQAAAAAAAAAAAAAAAAAAAAAAaHbrn14vg6GmkcJisejgFwd18IuDF6w+DRYAAAAAAAAAAAAAAAAAAAAAAOCiYLFY7B47crYpw1k0WAAAAAAAAAAAAAAAAAAAAAAAgIvCzQtvVp/b+zQ4Pm1hmj6d+qlLaru5JAsAAAAAAAAAAAAAAAAAAAAAAMCFZmj4ThfnQ4MFAAAAAAAAAAAAAAAAAAAAAABodmPnjVXM4JhGzYkbFaep66a6pL7RJVkAAAAAAAAAAAAAAAAAAAAAAACc0P/u/o2e4xfpJ79IP5fUZwcLAAAAAAAAAAAAAAAAAAAAAADQImVtzdKKe1e4JBcNFgAAAAAAAAAAAAAAAAAAAAAAoEXKP5ivHe/scEkuo0uyAAAAAAAAAAAAAAAAAAAAAAAAOOHoxqONnpO3L89l9WmwAAAAAAAAAAAAAAAAAAAAAAAAze695PdkMBiarT4NFgAAAAAAAAAAAAAAAAAAAAAA4KJgsVgaPcdVTRk0WAAAAAAAAAAAAAAAAAAAAAAAgIvClU9cqU4jO9kds1RbVFFUobyf8nTgswMqzCzU6NdHyzfC1yW1abAAAAAAAAAAAAAAAAAAAAAAAAAXhYgeEepwVYfzxg15dIjSFqZp3f+s04wtM1xS280lWQAAAAAAAAAAAAAAAAAAAAAAAJxw7d+uVdvL2zY4vu/kvmp7eVttfGGjS+rTYAEAAAAAAAAAAAAAAAAAAAAAAJrd5fdfrtDOoY2aE3tlrPYv2++S+jRYAAAAAAAAAAAAAAAAAAAAAACAFqmqpEpFWUUuyWV0SRaghVg8dnGz1p+0YlKz1gcAAAAAAAAAAAAAAAAAAACAS0V1VbXS3k+TZ4CnS/LRYAEAAAAAAAAAAAAAAAAAAAAAAJrd0Y1HzxtTXVWt8oJy5e3L0+7Fu5W3P0/db+rukvo0WAAAAAAAAAAAAAAAAAAAAAAAgGb3XvJ7MhgMDY63WCzy8PHQVU9d5ZL6NFgAAAAAAAAAAAAAAAAAAAAAAICLgsViaVCcm7ubOo3opBEvjlBU3yiX1KbBAgAAAAAAAAAAAAAAAAAAAAAAXBSufOJKdRrZqd5xN6ObvIO8Fdo5VEZv17ZE0GABAAAAAAAAAAAAAAAAAAAAAAAuChE9ItThqg7NUpsGCwAAAAAAAAAAAAAAAOBX9l7yezq64eh54zz8PPR48eMOY45tPqZtb21TZkqmSk6UyC/CTzGDY5Q4K1Edkjs0aD1mk1nb523Xjwt/VN7+PJkqTAqKDVK3G7tp0OxB8m/j36A8AAAAAOBKVz11laL6RjVbfRosAAAAAAAAAAAAAAAAgBZiw7MbtOGZDTJ6G9VvRj9F9o5U3r48pc5L1d4le5X0SJJGvTLKYY7SvFItGrNI2VuzFd49XFc8eoU8/T2VvjJdm17apB3v7NDEpRPVfmj7C3SvAAAAAKBG8lPJzVqfBgsAAAAAAAAAAAAAAADgArgs8TKNWzDOYYzBzVDv2A//+kHrn1ovo7dRd669UzEDY6xjfaf01btXvqvNr26WX6Sfkh5OspvDbDLrw3EfKntrttoltdOUNVPk4eMhSUqclahvHv9GKS+m6IMbP9CMbTMU1iWsCfcUAAAAAFyn9FSpTh86rfLCcnkHeSskLkS+Yb6/Si0aLAAAAAAAAAAAAAAAAIALwMPXQ+Hdw5s0t+RkiVY/slqSNHD2QJvmCkmK7hetpIeTtOGZDVr353XqfVtvBcYE1smzfd52ZaZkSgZp7Lyx1uaKs5KfSdbeJXuVfzBfX//ha01aMalJ6wUAAAAAZ+2cv1Nb39iq3F25dcai4qM06MFBir8z3qU1abAAAAAAAAAAAKAZlBeU68DKA8r4JkM5O3J0OuO0Kosr5envqbAuYeo4sqMSZyYqKDbovLmObT6mbW9tU2ZKpkpOlMgvwk8xg2OUOCtRHZI7NGg9ZpNZ2+dt148Lf1Te/jyZKkwKig1Stxu7adDsQfJv49+gPAVHC7Rl7hYdXHVQhccK5envqchekYqfGq/4O+Mdno0XAAAAQP22vrFVlcWVkqT+M/rbjek/o782PLtBpnKTNr+2Wde8fo3NuMViUcqLKZKk2CtiFdEzok4Odw93xd8Vr3VPrtOBzw8oZ1eO2sS3cfG9AQAAAFqH0rxS7VmyR4e+OqScHTkqzi2Wwc0g/yh/tb28rfpM7qOuY7rKYDj/385b02cBlSWVWjJhiQ59dUhSzXuZX8rdlavl05Zr9we7NXHpRHn4etSJaQoaLAAAAAAAAAAAuMCObT6m+cPnq7qiWjJIPcb1UO9JveUV6KX8g/natWCXNr20Sdve3KYb371RvSb2qjfXhmc3aMMzG2T0NqrfjH6K7B2pvH15Sp2Xqr1L9irpkSSNemWUw/WU5pVq0ZhFyt6arfDu4bri0Svk6e+p9JXp2vTSJu14Z4cmLp2o9kPbO8xzYOUBLbt9mSrOVKjn+J4a9NAglZ4qVeq8VC2ftlxpC9N06ye3yivAq0k/NwAAAKA127t0ryQpuEOwQjuH2o0JjAlUePdw5e3L076l+zT6r6NtvqiVtSVLRceKJEkdR3ast1bcqDite3JdTd0le2mwAAAAAJrg64e/1vd//16mcpN8I3zV544+CusSJovFoiPrjmjv0r3a89EedRzeUROWTJBPqE+9uVrbZwEfT/pYB788KKlmJ8CoPlEKjAmU0ccoU5lJRVlFOrH7hCpLKnXoq0P6eNLHum35bU2uVxsNFgAAAAAAAAAAXGAVRRWqrqiWwd2gO764Q3Gj4mzGhz45VO8OfVcnfjyhT6Z8osg+kYroUffMsj/86wetf2q9jN5G3bn2TsUMjLGO9Z3SV+9e+a42v7pZfpF+Sno4ye5azCazPhz3obK3ZqtdUjtNWTNFHj41Z3lKnJWobx7/RikvpuiDGz/QjG0zFNYlzG6e46nHtWTCEpnKTBo9d7QGzR5kHUuclah3r3xXGd9kaNntyzRpxaRG/8wAAACAS1HFmQp5+nme9+yuRdlFOvXTKUlSmwTHzQ7R/aKVty9PRVlFyk/PV1jXc6/hM9ZmWI8d5YmKj5LBzSCL2WIzBwAAAEDDpS1Mk6ncpPZXtddty2+Td5C3dezy+y/Xgc8P6IObPlDG2gwtHrtY076dZve9QWv7LOCnFT/pwOcHFBAdoJGvjFTP8T1l9Krb9mCqMGnv0r1aM2eNDnx+QAc+P6CuY7o2qWZtNFgAAAAAFyGLxaLv//691jy2RlUlVZq6bup5t/IrOFKgNzq+0aD8ifcn6rq3rnMY01K2BAQAAABasoS7Euo0V0iSd7C3Rr06Sv+95r+qrqxW6r9TNfq10TYxJSdLtPqR1ZKkgbMH2nygItV8qSrp4SRteGaD1v15nXrf1luBMYF1am2ft12ZKZmSQRo7b6z1A5Wzkp9J1t4le5V/MF9f/+Hrej8QWTlrpUxlJrUd2NbmAxVJ8gnx0XVvXaf5w+brwOcHtPfjvep5S8/z/nwAAACAS01VaZU2PLtBe5fu1elDp1VVWiWDm0Fh3cLU5fouGvzQYAVcFlBn3ondJ6zHge3qvq6vrfb4iT0nbBosTu4+aT0OahdUbw6jl1G+Eb4qyS3RyT0n640DAAAA4Jib0U3jFoyzaa44q+uYruo/o7+2/992Hdt8THs+2qPet/W2iWmNnwXsmr9LPiE+uvu7uxUU6/h9S987+qr9le31f/3+Tzvf3emSBgs3pzMAAAAAcKn8Q/manzxfX/zuC1WVVDXLGkrzSvWfIf/RqlmrVJZfpisevUKjXhmlkI4h2vTSJv2z7z91dOPR8+Y5sPKA/tX3X9r6xlZFxUdp9F9Ha+DsgTqdcVrLpy3X+1e/r4ozFRfgHgEAAAAXF+9gb7Ud2FY9x9f/wcJlAy6zHufty6szvvWNraosrpQk9Z/R326O/jP6SwbJVG7S5tc21xm3WCxKeTFFkhR7RawietbdJcPdw13xd8VLkg58fkA5u3LqxBxec1jZW7Nrat5jfy0dkjsotEuoJOnb57+1GwMAAABc6n7+/melvJii2CtjdeO7N2rS55M08pWRslRb9N3/fqe3ur+lnz77qc68giMF1mO/KD+HNWqP157X2Dz+UTUnWqooqlDZ6TKHsQAAAADsa5PQxmGTQI9beliPD6w4UGe8NX4WkLUlSwnTExz+3GoLig1SwvQEZW3NalK9X2IHCwAAAOAiUXvXCjd3N8UMilHWlsa/8B/+l+HqMa6HwxjvkLpd8We1pC0BAQAAgJYqZlCMZmyZ4TDGw/fc2aPsbX29d+leSVJwh2CFdg61myMwJlDh3cOVty9P+5bu0+i/jpbBcG4XuawtWSo6ViRJ6jiyY71riRsVp3VPrqupu2Sv2sS3sRnfs2SP9bjTyE715uk0spPy0/OVszNH+Qfz6103AAAAcKnyi/TT1HVTbb7Q1PX6rrr8gcu1eOxiHV59WEsmLNHUdVPVLqmdNabyTKX12Ojt+Os+tc9EW3ueJJuTHp0vj9Hn3HjlmUr5hPg4jAcAAABg65bFt8g3zNdhTHD7YOtxYWZhnfHW+FlAaV6p3SYQRyJ6RKg0r7RRc+rDDhYAAADARWLDMxv0xe++UOyQWM3cPVNxo+OalCcgOkDh3cMdXs6edcqehmwJGNo5VOUF5fr6D1/Xm6chWwJKsm4JCAAAAMBW9vfZ1uMOwzvYjBVlF+nUT6ck1Zz9ypHoftE1c7KKlJ+ebzOWsTbDeuwoT1R8lAxuhjpzzjqy9oikmp05an8Y9Ett+p2rYS8PAAAA0FKYKkyqKKqwXn7ZyGDP+A/G6/7999v9opDRy6ib3rtJ7l7uqq6s1qoHVtmMV5Wd2/Ha3dPdYZ3a41Wltjtlm8pMLskDAAAA4Pw6DuuoqL5RDmPKC8qtxx5+tt/Raa2fBXj6eza6WaL0VKk8/T0bXcseGiwAAACAi4TFYtHYf4/V5C8nK6hdw7a4+zXW0JK2BAQAAAAuVaZyk9Y+vlaSFNknss623yd2n7AeB7YLdJir9viJPSdsxk7uPmk9dvQ+xOhllG9EzVm2Tu45aTNWVVal04dPN2gttWv8ci0AAABAS5LyYopeCnrJenmr51vnnePfxt/hLhABlwWo8zWdJUk5O3J0fMdx61jtkyFVV1Y7rFN7vPbOeJLtrhTO5AEAAADgGqczTluP2w9tbzPWWj8LCO8ert2Ld8titjQo3mK2aPei3QrvHt7oWvbQYAEAAABcJJKfTlb/u+03I1wojdkS8Ky9S+ruPtGYLQElWbcEBAAAAForU4VJxbnFOrn3pFL/naq3B7ytY5uPqdfEXpr27bQ6O8sVHCmwHvtF+TnMXXu89rzG5jm7E15FUYXKTpdZby/MLLR+yOFot7xf1ig8UnercwAAAKClGPKnIXqs8DHr5YG9D7gk72W/ucx6fGzzMeuxZ8C5M7Gayk1ypPZuF7XnSZJXgFeD89Te7eKXeQAAAAC4xv5P9kuSjN5GJdyVYDPWWj8L6H5Td+XszNGyyctsdviwp7ywXMvuWKbctFx1H9e90bXsMZ4/BAAAAMCFYDAYXJ7TbDLLVGGSp1/DPvho7JaAFrPFpVsChnYObdA6AQAAgIuNqcKk6opzZ3etKq5yEF3X7sW7tXzacuv1oNgg3fzfm9V7Um+77xUqz1Raj43ejv/UX7s5o/Y8Sao4U9HgPLXPdFt5ptJ65t2mrqV2bQAAAKClMXoZZfQ69/rXs8g1DQh+kee+iFScU2w9Du4QbD0uyS1xmKP2eO15Z69nbcmyxgW2rf/Ms8W5NfW9Ar0c7rwBAAAAoGlKTpTop+U/SZIGPzxYAZcF2Iy31s8CEmclausbW7Xnwz1KX5Wurtd31WWJlymgbYA8fDxkKjepKKtIP//ws9JXpquiqEIBbQOUOCux0bXsocECAAAAuMSc2HNCH9/+sTJTMnXm5zOyVFvk4euhmEEx6jO5j+KnxMvNaH8zu8ZuCViSW9KsWwICAAAAF4uUF1O04ZkN1uuFbo07I1Pc6DhNWT1FlSWVyk/P14+LftSyO5Zp/VPrdc0b16jLdV1s4mufkdbd091h7trjVaW2jR+1z0jb1DyuWgsAAAAAWc8IK0lu7uf+lh/ZO9J6fHYn6voUZZ0bj+wVaTMW0TvCelx4rFDR/aPt5jBVmFR6srRmTq8IuzEAAABAa/LLEy39somhKVY/slqmcpOi+0dr6JND64y31s8CPHw9dNtnt2nBiAUqLyjX7g92a/cHu+3GWiwW+YT4aNKKSXV2A28qGiwAAACAS8x3//udwrqG6fIHLld4j3BVV1Tr6MajSp2Xqoy1GUp9O1UTl01UQHRAnbmN3RKwJLfEuiXg2Y71C7klIAAAAHCxGPKnIRr8h8HW65mZmXq9z+sNnh8QHWDzGn3wHwdrzaNrtPnVzVo0ZpFufPdGJUxNsI7X/pCgurJajtQe9/C1/XCh9pmomprHVWsBAAAALmU/rfhJubtydeUTVzrc0br2rhX+0ef+xh7YNlBhXcN06sAp5ezMcVjreOrxmjkxgQrtYrtzdMfhHbVO6yRJOTtz1P3G7nZz5O7Ktf6tv+Pwjg7rAQAAAK1BnRMtybnvuaQtTNOuBbvkF+mniR9PtNkh76zW/FlAdL9o/XbHb7Vy5kod/PJgvXFdru2i6/5xnYLbBzepjj00WAAAAAC/gl92rVcVX7gzs/a4pYdu/u/NNm+8eo7vqYRpCZqfPF9ZW7K0eOxiTd80vc6bs5a2JSAAAABwsTB6GW1eX3v4O9c8YDAYNPLlkcr4JkPHU49r5cyV6jy6s/zb1HzByjPA0xprKjfVl0aS7Vmlas+TJK8ArwbnqX2Gq9p5mrqW2rUBAACAS92+j/dp1/xd6j+jv/V1vT1ZW7Ksx7FDYm3Gek7oqW9f+FYFRwp0+vBphXQKqTO/KLtIefvzJEk9xveo08wRMyhGgTGBKsoqUsY3GUp+KtnuOg6vOWxTFwAAAGjtfnmipezsbL3es+EnWqrt6MajWnHPCnkFeun2VbcruEOw3bjW/llAcPtg3bHqDuUfzNfhNYd1Kv2UKs9UyjPAU6GdQ9VpZCeFdQlrcv76/KoNFgUFBXrttde0a9cuBQYGatKkSbr++ut/zZIAAADARaFO17rbr787Q2BMoGZnzFZA2wC5e9Tdii+6X7SG/s9QrX54tY5vP64f/vWDBs0eZBPT0rYEBAAAAC5lBoNBfe7oo+Opx2UqM+nHxT9q8EM1H97U/rClJLfEYZ7a47/8kCa4Q7D1C1wluSUKbBtYb57i3Joz6XoFelkbrCUpKDZIBjeDLGaLNaYhawnqEOQwFgAAALgUpX+Rrn7T+tkdO5V+ytrY0C6pnSJ7RdqMD/z9QG19Y6sqiyuV+u9UjfjLiDo5dryzQ7LUnAAp6Y9JdcYNBoOGPD5Eq2atUmZKpvL25ym8e7hNjNlk1s73dkqSulzfRW3i2zTlrgIAAACXlF+eaMmzyNNBdP2yt2Vr8djFcvd01+SvJuuyAZfVG8tnATVCO4cqtHPo+QNdxM2ZySUlJQoKCpK7u7vc3d319ddfW8eysrLUu3dv/eUvf9HKlSu1ePFi3XDDDXrsscecXjQAAABwsRvypyF6rPAx62Xmrpm/ek03o5uCOwTbba44q9+0ftL/P1nVzv/srDPeErcEBAAAAC5lYd3OnXnpxI8nrMeRvc990aroWJHDHEVZ58Z/+QWtiN4R1uPCY/U3hpsqTCo9WVozp1eEzZiHj4f1zLnOrAUAAABoDb750zc6deBUndvL8sv08aSPZam2yMPXQ9e+dW2dGL9IP416dZQkacvrW5T9fbbNeM6uHG16ZZMkadhzwxQYY/9LUwPuGVCzO4ZFWnHPCpsTJ0nS+qfXKz89X97B3hr9+ugm3U8AAAAAdf28/WctHL1QFotFk7+arJhBMQ7j+SygeTi1g8Unn3yiM2fOyNvbW+PGjVNcXJx17A9/+IN+/vlnSVKbNm0UERGhvXv36tVXX9XYsWN1xRVXOLdyAAAA4CL2y651D/+Lo3nAJ9RHIZ1CdPrQaeX+mKvK4kp5+p/rqG+pWwICAAAALU36F+ny8PVQh6s6OIxzcz93niSzyWw9DmwbqLCuYTp14JRyduY4zHE89XjNnJhAhXaxPcNTx+EdtU7rJEk5O3PU/cbudnPk7sqVxWyxzvmlDsM7KP9gvsoLylVwtEDB7YMdrqW+PAAAAMClKqJnhNw83FSSW6J/JfxLvW/rrcsSL5O7p7vy9uVp14JdKj1ZKr8oP43/cLyi+0XbzfOb+36j4txibXx2o+YPm6/+M/oroleE8vbnKXVeqqpKqjT44cFKerju7hVnuRnddOsnt2rRmEXKTMnU2wPeVsK0BHn6eSp9VbrSV6bLN9xXE5ZOUFiXsHrzAAAAAGi44zuO6/1R78tsMjeouUJq3Z8FnM44rcozlZIkg7vBbqNG2n/T5Bfpp7hRcXXGnOFUg8WXX34pLy8vbd68WQkJCdbbs7OztWzZMhkMBo0fP14LFy6Uh4eHtm7dqhEjRujtt9+mwQIAAABoJn6Rfjp96LRkqdnWL9T/3Juqlr4lIAAAANBSrJy5Up7+npq1e5bDuPyD+dbjoFjb18w9J/TUty98q4IjBTp9+LT1zFG1FWUXKW9/niSpx/geMhgMNuMxg2IUGBOooqwiZXyToeSnku2u4/CawzZ1f6nXhF5KfTtVkpTxTYb6Te9nN0/GNxmSpDYJbS7odt4AAAC4MBaPXdys9SetmNSs9R25Ys4Vir8zXvuW7dPh1Yd1dONR7flwj6qrquUT4qOovlHqOqar+t3d77wnJEp+Kllxo+K09c2t2rt0r0r/WSrfcF/FXR2nxPsT1XHY+b/A5Bvuq+kp07V93nalvZ+mlBdTVF1RraDYICXNSdKgBwcpIDrAVXcfAAAAaNVy03L1/qj3VV1ZrclfTla7pHZ1YtY/s14HVhzQvT/ca3N7a/wsoKq0Sm/3f1sVRRWSJK8gLz2a/2iduPTP07Xnoz2KHRKrWz64xWXvYZxqsPj+++81ZcoUm+YKSfr4449lNpvl6empN998Ux4eNWfrHThwoG677TZt2LDBmbIAAAAAnHC201yyPRuuVHdLwOj+9s+Q1ZAtAfMP5l/yWwICAAAAzsjbl6eCIwUK7hBsd9xisWjXgl3W613HdrUZH/j7gdr6xlZVFlcq9d+pGvGXEXVy7Hhnh2SRjN5GJf2x7hlsDQaDhjw+RKtmrVJmSqby9ucpvHu4TYzZZNbO93ZKkrpc30Vt4tvUydNpZCe1HdhW2VuzlfrvVLsfqhzdeFSnDpySJF35xJV27zMAAABwKfNv46/EWYlKnJXodK52Se3sfimrMdyMbkqcmajEmc6vBwAAAIB9J3af0IIRC2QqM+mOL+5Q7JBYu3EFGQU6vv14ndtb42cB+5btU3lhuSSp2w3d1OPmHnbj+tzRR0VZRTr67VEtHL1Q93x/j4xeTrVHSJLczh9Sv6ysLPXrV/cHs3z5chkMBl133XWKioqyGYuPj1d2drYzZQEAAADYsfH5jdq/fP9544pzanaVMLgZ5BfpZzNWe1s+R1sLNmRLQEnWLQHr44otAQEAAICWymK26JMpn1hfo/9y7KuHvtLP3/8sSeo9qbdiBtpuF+4X6adRr46SJG15fYuyv7f923vOrhxtemWTJGnYc8MUGGN/h7oB9wyo+UDHIq24Z4Wqyqpsxtc/vV756fnyDvbW6NdH13t/rv/H9TL6GJX1XZa2vbXNZqy8oFyr7l8lSeo6pqt6jq975isAAAAAAAAAAC4lJ/ee1IIRC1SaV6rBDw+WxWzRkfVH7F7sfVYgtc7PAg5+eVAGg0HjPxyv2z69TfF3xtuN6zqmq6Z9O01Xv3a1Tuw+oe//8X2T6v2SUy0aZrO5zhYi+fn5+vbbbyVJEydOrDPH29tbZrPZmbIAAAAA7Fj353WKGx2n7jd2rzfmzPEzKjxaKEmK7h8tD18Pm/GWtiUgAAAA0FK1iW+jwqOFykzJ1Jtxb6rXbb0U3j1cvmG+Ksws1J6P9ihvX8123vF3xmvM22Ps5vnNfb9RcW6xNj67UfOHzVf/Gf0V0StCefvzlDovVVUlVRr88GAlPVz3jFVnuRnddOsnt2rRmEXKTMnU2wPeVsK0BHn6eSp9VbrSV6bLN9xXE5ZOUFiXsHrzRPeP1oSPJmjZHcv0xe+/UOa3meowvIPKTpUpdV6qCo4UqOPwjrp50c3O/fAAAAAAAAAAALjImcpNWjBigUpOlEiSNj67URuf3dikXK3ts4Dj24+r2w3d1GtCrwbFD35osA6uOqg9H+7R4IcGN7nuWU41WERHR2vPnj02ty1YsEAmk0leXl66/vrr68zJzMxUSEiIM2Vt5OXl6Y033tAnn3yiI0eOyNPTU926ddOkSZN03333ydPT0yV1qqurtXjxYi1ZskS7du1STk6O/P39FR0drd69eys5OVk33nij2rSpux0KAAAAcKEc23xMFUUV8gr0sjv+w79+sB73v7d/nfGWtiUgAAAA0FLdtvw2ndh9Qvs+2afMbzN1ePVh7V68W+YqszwDPBXSMUSJDyQq/s54tU1s6zBX8lPJihsVp61vbtXepXtV+s9S+Yb7Ku7qOCXen6iOw86/W5xvuK+mp0zX9nnblfZ+mlJeTFF1RbWCYoOUNCdJgx4cpIDogPPm6Tqmq+7bdZ+2zN2i9JXp+umzn+Th56HI3pEa+j9DlTA1QQY3w3nzAAAAAAAAAADQkpnKTfXuStEUremzgKLsIvW72/7JXOvTaVQnffvCt02uWZtTDRZJSUlauHChpk2bpv79+2vfvn168cUXZTAYdM011yggwPYHbDab9eGHH6pbt25OLfqsbdu26aabbtLx48c1atQozZw5U2VlZZo/f75mz56t9957T59//rkuu+wyp+rs379ft99+u3bu3KnrrrtOv/vd7xQcHKxjx47pv//9rz744AN98MEHqqqq0gMPPOCS+wYAAAA0ReWZSq24d4XGLRgnd093m7FDXx/SppdrtgRsP7S9+k2z/0ZkwD0DtHvRbmWmZGrFPSs0+evJ8vA5t9NFY7YE/M+Q/1i3BLz8gcutY67aEhAAAABoySJ7Ryqyd6RLcrVLaqd2Se2cyuFmdFPizEQlzkx0Kk9wh2BdM/caXTP3GqfyAAAAAAAAAADQUnkHe+spy1MuzdlaPguorqyWT6hPo+b4hvuqurLaJfWdarD43e9+p8WLFysxMVFhYWHKz8+X2WyWwWDQH//4R2tcdXW19u/frz//+c86dOiQbr31VqcXnpmZqTFjxujkyZN68MEH9frrr9us69prr9W6det0ww03aNOmTfLysn8G3/M5dOiQhg8fruLiYq1bt05XXXWVzfgTTzyhq6++WuvXr3fm7gAAAACSpLSFadbj3LRc6/Gh1YdUlFUkSfKL8lPcqLg6c6Pio5S7K1d7Ptyj49uPq9dtvRTSKURVJVU6sv6I9i3bJ1mkztd21s3/vVluRje7a2hJWwICAAAAAAAAAAAAAAAAuHT4RfrpxO4TjZqT+2OufCN8XVLfqQaLgQMH6rXXXtMjjzyivLw8SZLBYNDjjz+uIUOGWOOefvpp/eUvf5HFYpHBYNAtt9zi3KolPfLIIzp58qRiY2P10ksv2Yx5eXlp3rx56tatm7Zv36633nrLpuGjoSwWi6ZMmaLjx49r0aJFdZorJMnDw0N//vOf9eOPP8rHp3GdMgAAAMAvfTLlE7u3p/wlxXrc/qr2dhss7tt5n7K2Zmn/p/t1bNMxpb6dqrLTZXL3cJd/G3/1ub2P+k7pq86jO593HS1lS0AAAAAAAAAAAAAAAAAAl452g9tpx3926PIHLldIp5Dzxp8+fFo7393ZoO9ENYRTDRaS9OCDD+r666/Xl19+KbPZrCuvvFL9+/e3iRk+fLiMxppSAQEBSkhIcKpmenq6lixZIkm688477e5OERcXp2HDhmnNmjV6+eWXNXv2bOsaGmrx4sX67rvv1KVLF9122231xg0fPtzaYAIAAAA4w9mtAWMGxihmYIxL1tIStgQEAAAAAAAAAAAAAAAAcOlImJ6gPUv26J3B72jEiyPU69Ze8vTzrBNXVVql3R/u1trH16ryTKX63d3PJfWdbrCQpC5duqhLly71jg8bNkzDhg1zRSlJ0tKlS2WxWCRJI0eOrDdu1KhRWrNmjU6ePKn169c7jLVn3rx5kqSxY8fKYOCsugAAAAAAAAAAAAAAAACAi8fisYubtf6kFZOatT4AALj0dB7dWT3H99TepXu14p4VWnX/KoV1C1NgTKCM3kaZyk0qyirSqZ9OqbqyWhaLRb0m9FLc1XEuqe+SBosLbe3atdZjR7th9Ot3rgtl7dq1jWqwOHnypDZu3ChJio+PtxkrKyuTm5ub3Z0zAAAAAAAAAAAAAAAAAAAAAABA04xbME5mk1n7P90vU4VJJ348oRM/nrCJObthQ49xPXTTgptcVtvNVYnMZrPWrVunl156SQ8++KB++ukn69i6detkNptdVUq7d++WJAUEBCgoKKjeuHbt2lmP9+zZ06gaqamp1jXHxsbq8OHDmjFjhqKiouTr6ytvb2+1adNGU6dO1d69e5twLwAAAAAAAAAAAAAAAAAAAAAAQG1Gb6NuXXarbll8i9oltZPBzSCLxWK9GNwMapfUTuM/HK+JH0+U0ct1+064JNNHH32kRx55RFlZWdbbbrjhBnXr1k2SdPXVVysmJkYvv/yyJk6c6FStiooK5eTkSJKioqIcxtYeP3LkSKPq/Pjjj9bjr776SnPnzlVsbKyeeOIJxcXFKScnR++8844WLFigxYsX6//+7/80bdq0RtUAAAAAAAAAAAAAAAAAAAAAAAB19b61t3rf2luVxZU6nXFalWcq5RngqZCOIfL09/xVajrdYPHXv/5VjzzyiHWLDUkyGAw2McnJyVq7dq0mTZqkI0eOaM6cOU2ud+bMGeuxt7e3w1gfHx+78xrixIlzW4i89NJLSkxM1Pr16+Xr62u9fdq0abrtttu0ZMkSzZgxQx07dlRycvJ5c5eZylRsKrZe93DzkIe7R6PWh5bJZDI1a22z2dysa0DrxnMQzY3nIJqbK3d0Q8vTnO8B+L3XfPi/BzwHwHOgdePxB+8BWrfS6lJ5mbys1/kc4OJjMVhkkUUWg0Vm8e/1YsZj1XLwWLUsPF4tB49V4zT3Z/JovQoLC5Wfn2+97uXlJS8vLwcz4CpmQ8v83Xgp/X7n99+Fxd8d0VQ8d9BUPHfqx8/kwvL091RUH8ebM7iKUw0W+/fv15w5c2SxWDR69Ghdd911CggI0N13320Tt3r1av3000+aMGGCnnjiCV199dVKSEhoUs2ysjLrsaen466T2uOlpaWNqlNUVGRz/a233rJprpAkNzc3vfXWW1qxYoXKy8v1xz/+Udu3bz9v7kfXP2pz/Zr+1+i631zXqPWhZUpJSWm22mazWZmZmZJqnrvAhcZzEM2N5yCa26lTp5p7CWhGzfkeoDlfg7Z2/N8DngPgOdC68fiD9wCtG58DXPwssqgsoEz5ypdBhvNPQLPhsWo5eKxaFh6vloPHqnGa8++htb9cj9bnl9+Dmjp1qu66665mWUtrkx/dMv/tXUq/3/ks6sLi745oKp47aCqeO/XjPcCly6kGi7/97W+yWCxavHixbr31Vkk1HxrV3s3irG7dumndunXq2rWr3nrrLf373/9uUs3au1JUVlY6jK09/svmiPOprq62Hrdv316XX3653bjIyEgNHz5cq1atUmpqqvbu3auePXs6zP1y8ssK8Q6xXvdw85DHcc5c1RoMGTKk2Wqf7ZRLSkqS0ej05jVAo/EcRHPjOYjmdvbNJlqn5nwP0JyvQVs7/u8BzwHwHGjdePzBe4DWjc8BLn4Wg0X5yldoTqgMlpb9ZaZLHY9Vy8Fj1bLweLUcPFaN05x/D83Kymq22mh+O3fuVLt27azX2cHiwsn+a3ZzL6FJLqXf73wWdWHxd0c0Fc8dNBXPnfrxHuDS5dQzff369br55putzRXnExYWprvuukufffZZk2sGBARYj8vLyx3G1t7tova8xtbp3bu3w9j4+HitWrVKkrRt27bzNlj4GH3kb/S3vbFuTwouQc39n4ubm5uMRmOzrwOtF89BNDeeg2hOdPG3bs35HoDfec2L/3vAcwA8B1o3Hv/WjfcArZuvuy+fA1zkzDLLIIMMFoPcLPx7vZjxWLUcPFYtC49Xy8Fj1TjN+f6L936tW1BQkEJDQ5t7Ga1SS/3deCn9fuf334XH3x3RVDx30FQ8d+zj53HpcurVWVZWloYPH96oOd26dVN2dtM7h728vNSmTRtJUm5ursPY2uMdOnRoVJ2wsDDrcUhIiINIKTw83Hp84sSJRtUBAAAAAAAAAAAAAAAAAAAAAADNz6kGi6qqKnl6ejZqTllZmdzd3Z0pa91R4syZMyosLKw3rvbWK7169WpUjdrxVVVVDmMtlnOnneKsZAAAAAAAAAAAAAAAAAAAAAAAtDxOdQNcdtll+v777xs15/PPP1dMTIwzZW12zdi5c2e9campqXbnNERiYqIMBoMkKScnx2HsyZMnrceXXXZZo+oAAAAAAAAAAAAAAAAAAAAAAIDm51SDxbBhwzR//vwGN1m89dZbWrt2rUaMGOFMWY0fP97a/PDNN9/UG7dmzRpJUnh4uJKTkxtVo23btho0aJCkmiYOk8lUb+z27dutx0OHDm1UHQAAAAAAAAAAAAAAAAAAAAAA0PycarCYPXu2qqqqlJycrCeeeEJ79uyR2WyWJGsDxIkTJ/Tpp59qzJgxmj17ttzd3fX73//eqUV36dJFEyZMkCS9//77qqysrBNz+PBhrV27VpL06KOPymg02ozv3r1bXbt2VUxMjDZu3Gi3zh//+EdJUmFhoZYvX2435tixY9qwYYMk6YYbbnB6dw4AAAAAAAAAAAAAAAAAAAAAAHDhOdVg0bt3bz333HMqKyvTSy+9pL59+6pdu3YyGAy66aab5OPjo+joaN1yyy364osvZLFY9NJLL6lr165OL/zVV19VRESEjhw5oscff9xmrKKiQvfee6+qq6s1YMAAPfDAA3Xmv/DCC0pPT1d2drYee+wxuzVuueUWjRkzRpL00EMPKSsrq06du+++W1VVVQoNDdXcuXOdvl8AAAAAAAAAAAAAAAAAAAAAAODCM54/xLE//elP8vX11aOPPqrKykpVVlbKYDCouLhYFovFGufp6anXXntN999/v7MlJUmxsbFasWKFxo0bp9dee027d+/WDTfcoLKyMs2fP18//vijEhIS9Nlnn8nb27vO/LM7bUiyWecvffjhh7r55pv11VdfKSEhQXfffbe6deumnJwcLViwQD/99JPatWun5cuXq2PHji65bwAAAAAAAAAAAAAAAAAAAAAA4PwOrzmsb//yraaunep0LqcbLCRp9uzZGj9+vP71r39p9erVOnjwoIqKihQQEKAuXbpo1KhRuu+++9S2bVtXlLMaOHCg0tLSNHfuXH3yySeaM2eOPDw81LVrV82dO1czZ86Up6en3blPPPGEUlNTVVZWppdffrneGr6+vvryyy/10Ucfaf78+VqwYIFOnTqlgIAA9erVS7/97W917733ys/Pz6X3DQAAAAAAAAAAAAAAAAAAAAAAOFacW6yjG466JJdLGiwkqW3btnruuef03HPPuSplg4SHh+v555/X888/36h5ffv2VXp6eoPjJ06cqIkTJzZ2eQAAAAAAAAAAAAAAAAAAAAAAoBGqK6uVmZKpk/tOqqKwQmaTud7Y3F25LqvrsgYLAAAAAAAAAAAAAAAAAAAAAAAAZ6S+k6o1c9aovKD8gtd2u9AFly9frk6dOl3osgAAAAAAAAAAAAAAAAAAAAAA4CK275N9WnHPCpWdLpPFYmnwxVUu+A4WxcXFOnr06IUuCwAAAAAAAAAAAAAAAAAAAAAALmJb/rpFktTn9j7qd3c/RfSMkE+Ij9w93eudk7YwTZ9O/dQl9V3SYHH8+HF98cUX2rdvnwoLC2UymeqNPXz4sCtKAgAAAAAAAAAAAAAAAAAAAACAS0huWq56jOuhmxfe3PBJBrlsFwunGyz+/Oc/6+WXX1Z1dXWD4i0WiwwGg7NlAQAAAAAAAAAAAAAAAAAAAADAJcRitqjztZ0bNafHuB6KzYh1SX2nGizmzZunF154wXrd29tbwcHB8vLyqndOSUmJTp065UxZAAAAAAAAAAAAAAAAAAAAAABwiQnrGiZThalRczx8PRTcPtgl9d2cmfz222/LYDDo8ccf16FDh1RaWqqff/5ZGRkZ9V7++te/umThAAAAAAAAAAAAAAAAAAAAAADg0pEwLUH7l+1v1JysLVlaPn25S+o71WCxb98+TZ06Vc8//7w6duzYoDkGg0EWi8WZsgAAAAAAAAAAAAAAAAAAAAAA4BKTeH+ivAK9tPL+laosrmzQnPxD+do1f5dL6hudmmw0asiQIY2ac8cdd+iOO+5wpiwAAAAAAAAAAAAAAAAAAAAAALjEbHxuo6Lio7TjnR1KW5Cm9le1V1i3MHkFeMngZrA7J3dXrsvqO9Vg0bt3bxUVFblqLQAAAAAAAAAAAAAAAAAAAAAAoJVa//R6GQw1jRQWi0UHvziog18cvGD1nWqwmDVrll5//XXNnj3beifOZ82aNfrLX/6itWvXOlMaAAAAANAAi8cubtb6k1ZMatb6AAAAAAAAAAAAAAAAaFksFovdY0ca2s9wPk41WNx+++3asmWLbrjhBr355pvq2LHjeefk5uZqw4YNzpQFAAAAAAAAAAAAAAAAAAAAAACXoJsX3qw+t/dpcHzawjR9OvVTl9R2qsFi+vTpkqSdO3eqc+fO6tGjh7p166aAgAC5ubnZnXPo0CFnSgIAAAAAAAAAAAAAAAAAAAAAANQwNHyni/NxqsHivffes26lYbFYtHfvXu3bt8/hHIvF4rLtNwAAAAAAAAAAAAAAAAAAAAAAwKVh7Lyxihkc06g5caPiNHXdVJfUd6rBQpLCwsLk5+fX4PiSkhKdOnXK2bIAAAAAAAAAAAAAAAAAAAAAAOAS0v/u/o2e4xfpJ7/Ihvc0OOJ0g8XcuXN1++23Nzh+4cKFmjrVNd0hAAAAAAAAAAAAAAAAAAAAAADg0lZyokTlheXyDvKWb4SvDAbDr1LH6QaLxjIYDLJYLBe6LAAAAAAAAAAAAAAAAAAAAAAAaCGObDiirW9s1ZF1R1RRVGG93SvQSx2Hd9TA2QPVfmh7l9Z0qsFi9erV6t27d6PmjBs3ThkZGc6UBQAAAAAAAAAAAAAAAAAAAAAAlyCL2aKVs1YqdV5qzfVfbPBQXliu/Z/u1/5P96v/vf113VvXyc3dzSW1nWqwGDFiRKPn+Pr6qn1713aJAAAAAAAAAAAAAAAAAAAAAACAlu/z+z7Xjnd2WBsr/KP8FRgTKKOPUaYyk4qyilScWyxJSn07VRazRWP/b6xLajvVYGHPqVOndOjQIRUWFiooKEhxcXEKCwtzdRkAAAAAAAAAAAAAAAAAAAAAAHAJOfrtUaX+O1We/p664tErlDA1QYExgXXiirKKtHP+Tm1+ZbN2/HuH4qfEK3ZIrNP1XbMPhqT58+erf//+ioyM1ODBg3XNNddo8ODBioyMVP/+/bVgwQJXlQIAAAAAAAAAAAAAAAAAAAAAAJeY1LdT5eHjoWkbp2noE0PtNldIUmBMoIY+MVR3bbhLRm+jtv/fdpfUd3oHi5KSEk2YMEFfffWVJFm34aht165dmjZtmj744AMtXbpUvr6+zpYFAAAAAAAAAAAAAAAALglfP/K1vvvf7yRJVz11lZKfTj7vnGObj2nbW9uUmZKpkhMl8ovwU8zgGCXOSlSH5A4Nqms2mbV93nb9uPBH5e3Pk6nCpKDYIHW7sZsGzR4k/zb+TtwrAAAAAGi8o98eVcK0BLVJaNOg+DYJbRR/V7zSV6a7pL7TDRaTJk3Sl19+KUny9fVVnz59FBMTIx8fH5WVlSkrK0u7d+9WSUmJvvrqK02aNEnLly93euEAAAAAAAAAAAAAAABAS3c89bi2vL6lUXM2PLtBG57ZIKO3Uf1m9FNk70jl7ctT6rxU7V2yV0mPJGnUK6Mc5ijNK9WiMYuUvTVb4d3DdcWjV8jT31PpK9O16aVN2vHODk1cOlHth7Z35u4BAAAAQKOU5JaoTb+GNVecFd0/Wjv/s9Ml9Z1qsFixYoU+//xzRUdH65VXXtH48ePl5eVVJ66iokJLly7VnDlz9Pnnn+vzzz/XmDFjnCkNAAAAAAAAAAAAAAAAtGhmk1mfzfhMlmpLg+f88K8ftP6p9TJ6G3Xn2jsVMzDGOtZ3Sl+9e+W72vzqZvlF+inp4aR663447kNlb81Wu6R2mrJmijx8PCRJibMS9c3j3yjlxRR9cOMHmrFthsK6hDl3RwEAAACggYzeRlUWVzZqTmVxpYzeTu89IUlyc2by/PnzFRISou+++0533HGH3eYKSfLy8tIdd9yh7777TsHBwXr33XedKQsAAAAAAAAAAAAAAAC0eJtf26ycHTnqdmO3BsWXnCzR6kdWS5IGzh5o01whSdH9oq1NFev+vE5FWUV282yft12ZKZmSQRo7b6y1ueKs5GeSFdo5VOUF5fr6D1838l4BAAAAQNOFxIVo/7L9jZqzf9l+hcSFuKS+Uw0WW7Zs0fTp0xUbG9ug+NjYWE2fPl1bt251piwAAAAAAAAAAAAAAADQouUfyteGZzbossTLdPnvLm/QnK1vbLWeybX/jP52Y/rP6C8ZJFO5SZtf21xn3GKxKOXFFElS7BWxiugZUSfG3cNd8XfFS5IOfH5AObtyGrQ+AAAAAHBWl+u7KDMlU6vnrJa52uww1mK2aPWc1cpMyVTXMV1dUt+pfTDy8vLUs2fPRs3p0aOH8vLynCkLAAAAAAAAAAAAAAAAtGif3/u5zFVmjZ03VuWnyxs0Z+/SvZKk4A7BCu0cajcmMCZQ4d3DlbcvT/uW7tPov46WwWCwjmdtyVLRsZqdLTqO7FhvrbhRcVr35Lqaukv2qk18mwatEQAAAACcMWj2IG17c5u+e+077ft4n3rd1kttE9sqoG2APHw8ZCo3qSirSD//8LN2f7BbBRkF8gry0sDfD3RJfacaLPz9/RvdLHHq1Cn5+/s7UxYAAAAAAAAAAAAAAACwsXjs4marfarsVKPiU99JVcbaDF3x6BVqE99GR9YfOe+couwinfqppk6bBMfNDtH9opW3L09FWUXKT89XWNcw61jG2gzrsaM8UfFRMrgZZDFbbOYAAAAAwK/JJ9RH4z8ar8VjF6vgSIE2vbSp3liLxSJ3T3dN+GiCfEJ9XFLfzZnJ3bt31+LFi2U2O9564yyz2axFixape/fuzpQFAAAAAAAAAAAAAAAAWqTinGKtfmS1QuJCdNVTVzV43ondJ6zHge0CHcbWHj+x54TN2MndJ63HQe2C6s1h9DLKN8K3Zs6ek/XGAQAAAICrxY2K07Rvpym8R7gsFku9l4ieEZr27TR1GtnJZbWd2sHipptu0pw5czR58mT94x//UHBwcL2xhYWFuu+++5SWlqZXXnnFmbIAAAAAAAAAAAAAAABAi7TqgVUqP12uCUsmyMPHo8HzCo4UWI/9ovwcxtYerz2vsXn8o/xVkluiiqIKlZ0uk0+Ia84ICwAAAADn0zaxrWbtnqXDaw7r8JrDyk/PV8WZCnkFeCmkc4jiRsW5tLHiLKcaLGbNmqU33nhDH374oVatWqXrr79eiYmJatu2rXx8fFReXq6srCz98MMPWrlypYqKitS2bVvNmjXLVesHAAAAAAAAAAAAAAAAWoT9y/dr38f7lHBXgjqNaNwXgSrPVFqPjd6Ov/JTu3Gj9jxJqjhT0eA8Rp9z45VnKmmwAAAAAHDBdRrZ6VdppKiPUw0Wvr6++uyzzzRixAgVFBTogw8+0AcffGA31mKxKCQkRCtWrJCPD2+2AAAAAAAAAAAAAAAA0DKZq82ymC3nrpvM551TUVShVfevkm+Er65+7epG16wqq7Ieu3u6O4ytPV5VWmUzZiozuSQPAAAAAFwsSk6WKG9fntoPbe90LjdnE/Tr1087duzQNddcI4vFUu/l2muvVWpqquLj451eNAAAAAAAAAAAAAAAANBc8g/m69BXh6yXIxuOnHfO6jmrdSb7jK554xr5hDb+5KS1d6Worqx2GFt73MPXw2as9q4UzuQBAAAAgIvFoa8Paf6w+S7J5dQOFme1b99eq1at0sGDB7VmzRqlp6frzJkzCggIUOfOnTVy5Eh16dLFFaUAAAAAAAAAAAAAAACAZhXaOVQhnUKs1/PL86UN9ccf/faotr+9XZ2v6aw+k/o0qaZngKf12FRuchBpu9tF7XmS5BXg1eA8tXe7+GUeAAAAALgUuaTB4qzOnTurc+fOrkwJAAAAAAAAAAAAAAAAXFTc3N0k91rXTW71xlZXVmvFPSvk7umuYc8NU2leaZ2Y8sJy63FVaZVNjFeQl9w93BXcIdh6W0luicP11R6vPe/s9awtWda4wLaB9eYpzi2uWUOgl3xCGr/rBgAAAADU5+BXB/XDP39Q/3v6q+v1Xa23v9HpjUbnqiqpOn9QA7m0waIhysrKdPLkScXGxl7o0gAAAAAAAAAAAAAAAMAFdebnMzr10ylJ0rzEeeeN3/zqZm1+dbP1+tR1U9UhuYMie0dabys6VuQwR1HWufHIXpE2YxG9I6zHhccKFd0/2m4OU4VJpSdrGj0iekXYjQEAAACApvpk8icqyy/TsU3H9MjJR6y3FxwpaFI+g8HgknVd8AaLZcuW6c4771R1dfWFLg00u8VjFzdbbbPBrLZ/aNts9QEAAAAAAAAAAAAAaI382/hryuopDmNyduVo9cOrJUl9p/RV/J3x1rGo+ChJUmDbQIV1DdOpA6eUszPHYb7jqcdr5sQEKrRLqM1Yx+EdtU7rauruzFH3G7vbzZG7K1cWs8U6BwAAAABcKSQuRKWnShUSF1JnrP2V7RXSqe7t9Tl9+LQyUzJdsq4L3mABAAAAAAAAAAAAAAAAtBZGb6M6jezkMMbN6GY9DukUUm98zwk99e0L36rgSIFOHz5t9wtHRdlFytufJ0nqMb5HnbO4xgyKUWBMoIqyipTxTYaSn0q2W+vwmsM2dQEAAADAlSZ/NVkZ32TYbege8NsB6nN7nwbnSvtv2oVtsBg+fLhLiklSbm6uy3IBAAAAAAAAAAAAAAAArcXA3w/U1je2qrK4Uqn/TtWIv4yoE7PjnR2SpaaxI+mPSXXGDQaDhjw+RKtmrVJmSqby9ucpvHu4TYzZZNbO93ZKkrpc30Vt4tv8KvcHAAAAQOvlHeStHjf3cFk+i8XikjwNarBYv369DAaD00XP5vhlZzwAAAAAAAAAAAAAAAAAx/wi/TTq1VFaOXOltry+Rd3HdVfbxLbW8ZxdOdr0yiZJ0rDnhikwJtBungH3DNDuRbuVmZKpFfes0OSvJ8vDx8M6vv7p9cpPz5d3sLdGvz76171TAAAAAFDLU+anGj2n7x191feOvi6p36AGC0nq1q2boqKinC6Ym5urn376yek8AAAAAAAAAAAAAAAAQEuVm5ar3LRcSdLJfSdtbk9bmCZJ8ovyU9yoOJt5v7nvNyrOLdbGZzdq/rD56j+jvyJ6RShvf55S56WqqqRKgx8erKSH6+5ecZab0U23fnKrFo1ZpMyUTL094G0lTEuQp5+n0lelK31lunzDfTVh6QSFdQn7Fe49gEvF4rGLm7X+pBWTmrU+AABwvcLMQvlG+No0gdfnsxmfyehtVL+7+ym6X7RL6je4weLJJ5/U7bff7nTBhQsXaurUqU7nAQAAAAAAAAAAAAAAAFqqfcv2acMzG+rcvv+T/dr/yX5JUvur2tdpsJCk5KeSFTcqTlvf3Kq9S/eq9J+l8g33VdzVcUq8P1Edh3U8b33fcF9NT5mu7fO2K+39NKW8mKLqimoFxQYpaU6SBj04SAHRAc7fUQAAAACyWCz6/u/fa81ja1RVUqWp66aqQ3IHh3MKjhTojY5vNCh/4v2Juu6t6xzGmE1mbZ+3XT8u/FF5+/NkqjApKDZI3W7spkGzB8m/jX+DahUcLdCWuVt0cNVBFR4rlKe/pyJ7RSp+arzi74yXwc3QoDz1eaPjGxr3/jj1ub3PeWOPbjiq/EP52v72dt214S61G9zOqdpSIxosXMVgMMhisVzosgAAAAAAAAAAAAAAAMBFI/npZCU/ndzk+e2S2qldknNfHnIzuilxZqISZyY6lQcAAABA/fIP5euz6Z/p6MajzbaG0rxSLRqzSNlbsxXePVxXPHqFPP09lb4yXZte2qQd7+zQxKUT1X5oe4d5Dqw8oGW3L1PFmQr1HN9Tgx4apNJTpUqdl6rl05YrbWGabv3kVnkFeDV5rY3pNbjjyzv08/c/66s/fKUNT2/Q5K8mN7nuWQ1qsMjIyFBERITTxSRp3LhxysjIcEkuAAAAAAAAAAAAAAAAAAAAAAAuNrV3rXBzd1PMoBhlbclqdJ7hfxmuHuN6OIzxDvGud8xsMuvDcR8qe2u22iW105Q1U+Th4yFJSpyVqG8e/0YpL6bogxs/0IxtMxTWJcxunuOpx7VkwhKZykwaPXe0Bs0eZB1LnJWod698VxnfZGjZ7cs0acWkRt/PpgiNC1VoXKiKsou0+dXNLsnp1pCg9u3by9fX1yUFfX191b69484WAAAAAAAAAAAAAAAAAAAAAABaqg3PbNAXv/tCsUNiNXP3TMWNjmtSnoDoAIV3D3d48Y/yr3f+9nnblZmSKRmksfPGWpsrzkp+JlmhnUNVXlCur//wdb15Vs5aKVOZSW0HtrVprpAknxAfXffWdZKkA58f0N6P9zbpvjqjvKDcJXkatIOFI5s2bdKpU6ckSR4eHrr22mvrxMydO1d+fn6aOnWqPD09nS0JAAAAAAAAAAAAAAAAAAAAAMBFy2KxaOy/x6r/3f2bdQ0pL6ZIkmKviFVEz4g6Me4e7oq/K17rnlynA58fUM6uHLWJb2MTc3jNYWVvzZYk9b/H/v3pkNxBoV1ClZ+er2+f/1Y9b+l53vXlpuUqZ2dOnduPfntUZpP5vPOrq6pVeLRQ3//jewXGBJ43viGcarA4ffq0Ro0apYqKCklSUFCQ8vPz68Rt3bpVH330kf73f/9Xy5cvV/fu3Z0pCwAAAAAAAAAAAAAAAAAAAADARSv56WQZDIZmXUPWliwVHSuSJHUc2bHeuLhRcVr35DpJ0t4le+s0WOxZssd63Glkp3rzdBrZSfnp+crZmaP8g/kK7RzqcH37Ptmnjc9urHN76tupSn071eHc2iwWiwb8dkCD4x1xc2by0qVLVV5eLqPRqN/97ndatmyZ3bgHH3xQkyZN0sGDB3X11VersLDQmbIAAAAAAAAAAAAAAAAAAAAAAFy0fo3mCrPJrMqSygbHZ6zNsB63SWhTb1xUfJQMboY6c846svaIJMk72FvB7YPrzdOm37ka9vLYY7FYbC72bnN08Q721sDZA5X8dHKD6p2PUztYfP311zIajVq3bp2SkpLqjRs4cKAGDhyom2++WePHj9fcuXP11FNPOVMaAAAAAAAAAAAAAAAAAAAAAIBL2ok9J/Tx7R8rMyVTZ34+I0u1RR6+HooZFKM+k/sofkq83Iz29104ufuk9TioXVC9NYxeRvlG+Kokt0Qn95y0Gasqq9Lpw6clSYHtAh2utXaNE3tOnPe+DXpwkBLuSjh3g0V6o9MbumbuNep2YzeHcw0Ggzx8PeQb7nveOo3hVIPFjh07dOuttzpsrqjt5ptv1rhx4/Tpp5/SYAEAAAAAAAAAAAAAAAAAAAAAgAPf/e93CusapssfuFzhPcJVXVGtoxuPKnVeqjLWZij17VRNXDZRAdEBdeYWHCmwHvtF+Tms4x/lr5LcElUUVajsdJl8QnwkSYWZhbKYLdYYR2rXKDxSeN775h3kLe8g7zq3+4b7Otwp49fkVINFTk6OBgwY0Kg5Q4YM0ddff+1MWQAAAAAAAAAAAAAAAAAAAAAALnk9bumhm/97s4xe577633N8TyVMS9D85PnK2pKlxWMXa/qm6TYxklRxpsJ6bPR23Dpg9Dk3Xnmm0tpgUXmmssE5PHw87NZujKnrpiqiR0ST5rqC/b1AGshsNsvf33EXyi8FBASourrambIAAAAAAAAAAAAAAAAAAAAAAFwQpgqTKooqrJfaTQe/lsCYQM3OmK1bFt9Sp3FCkqL7RWvo/wyVJB3fflw//OuHuusuM1mP3T3dHdarPV5VWnXuuKzKbkxjcjRGh6s6yC/S8W4bvyanGiyio6P1/fffN2rO999/r+joaGfKAgAAAAAAAAAAAAAAAAAAAABwQaS8mKKXgl6yXt7q+davXtPN6KbgDsFy96i/qaHftH6SoeZ453921hmvvStFdaXjTRJqj3v4ntuJovauFE3N8Wv7cfGPes7zOZfkcqrB4sorr9SCBQu0devWBsVv27ZN8+fP19ChQ50pCwAAAAAAAAAAAAAAAAAAAADABTHkT0P0WOFj1ssDex9o7iVJknxCfRTSKUSSlPtjriqLbXfW8Arwsh6byk1ypPZuF54BnnaPz5ej9m4XtWv/2ixmiyzVFpfkqrtXSCPMmjVLCxYs0IgRI/SHP/xBU6ZMUZcuXerEHTx4UO+//77++te/qqqqSjNnznSmLAAAAAAAAAAAAAAAAAAAAAAAF4TRyyij17mv3nsWeTqIvrD8Iv10+tBpySIV5xYr1D/UOhbcIVhZW7IkSSW5JQpsG1hvnuLcYkmSV6CXfEJ8rLcHxQbJ4GaQxWyxxtSnJLfk3LwOQU26P8unL2/0nNOHTzeplj1ONVhcfvnl+t3vfqe//e1veuGFF/TCCy8oMDBQbdu2lbe3t8rLy5Wdna2ioiJJksVi0e9//3tdfvnlLlk8AAAAAAAAAAAAAAAAAAAAAACtlcV8bucGN3c3m7GI3hHW48JjhYruH203h6nCpNKTpTVzekXYjHn4eCikU4jyD+ar6FiRw7UUZZ0bj+wV2bA78As739spg8HQqDkWi6XRc+rjVIOFJL3++utyc3PTG2+8IUkqLCy0NlRINYs966GHHtKrr77qbEkAAAAAAAAAAAAAAAAAAAAAAC5ZG5/fqMg+kep+Y3eHccU5NbtKGNwM8ov0sxnrOLyj1mmdJOn/sXfn4VFX59/HP5NM9pXsgQQSI4ssEsBIiIiAUFBBxIqKyqJFK1qLVdTWaqnUutRW0dpfLdQqQkGFiopAK2swIKAJe1iCBEIiCYSQhOyZzDx/8DAkJBmyTJgs79d1cV1n5j7nPmcyw6zf+3uyd2XXmytnd461UCN6ZHSteNTIKOUdyVNZfpnyj+fLv5t/nXlOppysMXdTeQR6yNWr7l1CzFVmlReWq7ywXJLk7ucud3/3Js91qWYXWDg5Oemtt97S5MmT9c4772jdunU6deqUNR4SEqJRo0axcwUAAAAAAAAAAAAAAAAAAAAAAA2w8cWNihkTY7PA4tzJcyo4XiBJCh8YLhdPlxrxiPgI+Ub4qjCzUOnr0zV8zvA68xxdd9Ta7j2pd614n0l9lDI/RZKUvj5dAx4aUGee9PXpkqSw2DAFXB1Q/427jLHzxqrfff1s9inKKdLBzw9q+9vbNWLuCPW+q/a6m8Lp8l0a5vrrr9fixYuVnZ2tgoICZWZmqqCgQNnZ2Vq8eDHFFQAAAAAAAAAAAAAAAAAAAAAANNCJrSesOzXU5fv3vre2Bz4ysFbcYDBo6PNDJUkZSRnKPZhbq4/ZZNauD3dJkrrf1l1h/cNq9blq1FXqMriLJCnlnyl1ruX45uM6c/iMJOnG395Y75rtxTvUW9f9/DpN2zBNa59Zq6zvsuyS124FFtX5+Pioc+fO8vHxaYn0AAAAAAAAAAAAAAAAAAAAAAC0axXnKrTykZWqqqiqFfvh6x+05fUtkqRuw7ppwIN17yox6OFB6jq0q2SRVj68UpWllTXim36/SXlpeXL3d9eYt8bUu5bb/u82GT2Myvw2Uzve3VEjVpZfptWPr5Yk9RjXo1m7Sfzm3G/U554+De7vHeat/tP7K+mVpCbPWZ3RLlkAAAAAAAAAAAAAAAAAAAAAAIDVnsV7rO2cPTnW9g9rf1BhZqEkySvUSzGjY2qNDe0fqpzdOdr/yX6dTD6pPvf2UaerOqmyuFLHNh3Tgc8OSBbp6luu1p3/vlNOxrr3XnAyOumeFfdoybglykjK0PxB8xX7YKxcvVyVtjpNaavS5BnkqUnLJymwe2C9tyV8YLgmfTpJn93/mdb8co0yvslQ1MgolZ4pVcqCFOUfy1f0yGjdueTOpv65JEmuXq6NHuPfzV/f/9/3l+/YABRYAAAAAAAAAAAAAAAAAAAAAABgZyumrKjz+uq7LXS7qVudBRaP7npUmdszdfDzgzqx5YRS5qeo9GypnF2c5R3mrX739dO1U67V1WOuvuw6PIM89VDSQ0pekKw9i/Yo6dUkVZVXya+rnxKeTVD8k/HyCfe5bJ4e43ro0d2Patu8bUpblaZDXx6Si5eLQvqGaNjvhil2WqwMTobL5rG3vCN5Ki8st0suCiwAAAAAAAAAAAAAAAAAAAAAALCzOZY5zRofMThCEYMj7LIWJ6OT4mbGKW5mXLPy+Ef5a+y8sRo7b6xd1tVcx785ru/+9p38uvrZJR8FFgAAAAAAAAAAAAAAAAAAAAAAwOG+eOiLy/YxV5pVll+m0wdOKz89X5J03czr7DI/BRYAAAAAAAAAAAAAAAAAAAAAAMDhdn24SwaDoUF9LRaLJCkyIVI3/vZGu8xPgQUAAAAAAAAAAAAAAAAAAAAAAGgVPAI95OrlWm/cyegkNz83BfUMUo/xPdTn7j4yODWsKONyKLAAAAAAAAAAAAAAAAAAAAAAAACtwth5Y9Xvvn4OmdvJIbMCAAAAAAAAAAAAAAAAAAAAAAC0IuxgAQAAAAAAAACAg5Tklmj/sv364X8/KHtntopyimRwMsg71Ftdru+ifg/0U49xPWQwXH5b6xNbT2jHuzuUkZSh4lPF8gr2UsSQCMU9Fqeo4VENWo/ZZFbygmTtXbxXuQdzZSo3ya+rn3pO6Kn4WfHyDvNuUJ784/naNm+bjqw+ooITBXL1dlVInxD1n9Zf/af2t9s23QAAAAAAAAAAoH2ZlT5LXsFeDpu/RQsszp07p6KiIvn5+cnT07MlpwIAAAAAAAAAoE35evbX+u5v38lUZpJnsKf63d9Pgd0DZbFYdGzjMaUuT9X+T/cremS0Ji2bJI8Aj3pzJc5NVOJLiTK6GzVgxgCF9A1R7oFcpSxIUeqyVCU8k6DRfxptcz0luSVaMm6JsrZnKahXkG547ga5ersqbVWatry2RTvf36m7l9+tbsO62cxzeNVhfXbfZyo/V67ed/VW/K/iVXKmRCkLUvTFg19oz+I9umfFPXLzcWvS3w0AAAAAAAAAALRf/t38HTq/3Qsszp07p1deeUVLly7ViRMnrNfHxMRo+vTpevrpp+Xmxo8mAAAAgC0Wi0Xf/e07rfv1OlUWV2raxmkNPuOsxJlrAQAAgLZgz+I9MpWZ1O2mbrr3i3vl7udujV3/+PU6/NVhfXzHx0rfkK6l45fqwW8erPP98/fvfa9NczbJ6G7U1A1TFTE4whq7dsq1+uDGD7T1ja3yCvFSwuyEOtdiNpn1ycRPlLU9S5EJkZqybopcPFwkSXGPxWn98+uV9GqSPp7wsWbsmKHA7oF15jmZclLLJi2TqdSkMfPGKH5WvDUW91icPrjxA6WvT9dn932mySsnN+nvBgAAAAAAAAAAOo4T357Q8c3HlZ+er4pzFXL1cZV/tL+6DeumyCGRdp/PrgUW2dnZGjZsmH744QdZLJYasSNHjujFF1/UihUrtGHDBvn4+NhzagAAAKDdyPshT18+9KWObz7epPGcuRYAAABoO5yMTpr40cQaxRUX9BjXQwNnDFTyP5J1YusJ7f90v/re27dGn+LTxVr7zFpJ0uBZg2sUV0hS+IBwJcxOUOJLidr44kb1vbevfCN8a82VvCBZGUkZkkEav2C8tbjiguEvDVfqslTlHcnT1099XW9xxKrHVslUalKXwV1qFFdIkkcnD9367q1aOGKhDn91WKn/SVXvn/a+7N8IAAAAAAAAAAB0POkb07XmiTXKPZBbb5+ga4J067u3NurEtZfjZLdMkp566ikdOXJEP/3pT7V27VqdPHlS5eXl+vHHH/Xf//5X48aNU3JysubOnWvPaQEAAIB2wWKxaMe7O/Re//eUvStbEfERlx90iQtnrnV2ddbUDVN1y9u3aNDDgzTmzTGavnm6XLxctPWNrdr656315rj0zLWPpDyiG569QXGPxem+Vfdp6G+GquR0iT6e8LHOpJ2pN8+FM9eWF5ZrzFtjNOnTSbru0es07LfD9POdP1dwn2DrmWsBAACAjiosNkx+Xf3qjV/z02us7cMrD9eKb397uyqKKiRJA2cMrDPHwBkDJYNkKjNp619qfxawWCxKejVJktT1hq4K7h1cq4+zi7P6T+9/fh1fHVb27uxafY6uO6qs7Vnn53y47rVEDY9SQPcASdI3L39TZx8AAAAAAAAAANCxff/e91o0epFyD+TKYrHU++906ml9NOojff+P7+02t90KLEwmk1asWKGf//zn+vTTT3XzzTcrNDRULi4uCgsL009+8hN98cUXuueee7Rs2TJ7Tavc3Fy9+OKL6tu3r7y9vRUQEKAhQ4bonXfeUUVFhd3mqe7kyZPy9/eXwWCQwVB7O3YAAACgKRJfStSaJ9ao69CumrlvpmLGxDRqfEPPXCtJG1/cqMLMwjrzNOTMtQFXB6gsv0xfP/V1vetpyJlrJVnPXAsAAAB0ND9d+lPd/v7tNvv4d/O3tgsyCmrFU5effy/tH+WvgKsD6szhG+GroF5BkqQDyw/U2oE6c1umCk+c/3wQPSq63rXEjL74GSV1We338PuX7be2rxp1Vb15LsSyd2Ur70hevf0AAAAAAAAAAEDHk/Vdllb/YrUsZou8Qrw06OeDNO4f43TfV/dp6rqpuu+r+zTuH+M06OeD5BXiJYvZojW/WKMfv//RLvM3qMDiySefVGFh3QdfXZCfn6/y8nKNHj3aZr/Ro0crO7v2ma2aYseOHbr22mv18ssvq3Pnznr99df1/PPPq6ioSLNmzVJ8fLx+/NE+f6jqHn/8cRUU1P4hCwAAAGgOi8Wi8f8crwf++4D8Ius/g219OHMtAAAA0LZEj4hW6LWhNvuU5ZdZ2y5eNYufC7MKdebQ+V3lwmLDbOYJHxB+fkxmofLSahY1pG9It7Zt5QntHyqDk6HWmAuObTgmSXL3d69RGHKpsAEX56grDwAAAAAAAAAA6Li2vrFVFrNF1z9xvWalz9K4v4/ToIcHqfut3RU9Mlrdb+2uQQ8P0ri/j9OTx57U9b+4XuYqs7b8aYtd5m9QgcU777yjXr16afHixfX26dSpk9zd3bV27Vqbub7++muFhdn+oachMjIyNG7cOJ08eVJPPvmkvv76az3++OOaPXu2vv/+e40YMUI7d+7U7bffrvLy8mbPd8F//vMfrVixwm75AAAAgAuG/364Bv6s7mKEhuDMtQAAAED7czb9rLXdbVi3GrFT+05Z276RvjbzVI+f2n+qRuz0vtPWtq1ib6ObUZ7BnufH7D9dI1ZZWqmzR882aC3V57h0LQAAAAAAAAAAoGPL+CZDUTdF6Za3b5HR3Wizr9HdqFveuUXdbuym45uP22X+BhVYvPzyyyosLNS0adM0bNgw7d27t1YfZ2dn3XHHHZo/f74mT56sjRs36vTp06qqqtKpU6e0du1aTZw4UcuWLdOkSZOavfBnnnlGp0+fVteuXfXaa6/ViLm5uWnBggVydnZWcnKy3n333WbPJ53fpeOJJ55QRESEBg5s+oFvAAAAQF0MBkOTx3LmWgAAAKB9OrjioKTzPxDETo+tEcs/lm9te4V62cxTPV59XGPzeId6S5LKC8tVerbUen1BRoEsZkuNPg1ZS8ExdosGAAAAAAAAAAAXleWXqdedvRo15pq7rqmxK3hzNKjA4vnnn9eBAwc0YcIEJSUladCgQXryySdVWFhYo9+bb76p6OhoffLJJxo1apTCwsLk6uqq8PBwjR07Vl988YViY2P1u9/9rlmLTktL07JlyyRJU6dOlZubW60+MTExGjFihCTp9ddfl8lkatac0vmijpMnT+pvf/ubfHx8mp0PAAAAsBfOXAsAAAC0P8WninXoi0OSpCGzh8inc83vpSvOVVjblzuDk4uHS53jJKn83MVdoC97JiiPi/HqeZq6lupzAwAAAAAAAAAAeIV61fgtoSFcPFzkGeRpl/kbVGAhSZGRkfrss8+0Zs0aRUVF6Z133lGvXr20aNEia5+wsDClpKRo9uzZ6tKliywWi/XfVVddpZdeeklbtmxpdnHC8uXLZbGcPxPWqFGj6u03evRoSdLp06e1adOmZs2ZmJio999/X3fddZduv/32ZuUCAAAA7I0z1wIAAACOZSo3qbyw3Pqvsqiy2TnXPrNWpjKTwgeGa9gLw2rFK0svzuHs6mwzV/V4ZUnNtZlKTXX2a0wee60FAAAAAAAAAAB0bNEjo5W5LbNRYzK3ZyoyIdIu8ze4wOKCMWPGaN++fZo7d64KCgo0ffp0DRs2THv37pUk+fr66k9/+pMyMjKUn5+vzMxMFRYWKi0tTS+++KLc3d2bvegNGzZY27GxsfX2GzBgQJ1jGqusrEwPP/yw/Pz89Ne//rXJeQAAAICWwplrAQAAAMdKejVJr/m9Zv339/5/b1a+PYv3aPdHu+UV4qW7/3O3jG6131tXfz9dVVFlM1/1uItnzbM+VX9v39Q89loLAAAAAAAAAADo2BKeSdCB/xzQscRjDeqfkZShvYv3Kv7JeLvMb/top3q4urrqhRde0NSpU/XLX/5SX375pQYNGqTHHntMc+fOla+vr6TzxRYX2va0b98+SZKPj4/8/Pzq7RcZebEKZf/+/U2e76WXXlJaWprmz5+vsLCwJucBAABAx2EqN6mq/OJBQ/Y4e60tnLkWAAAAcKyhvxmqIU8NsV7OyMjQW/3ealKu45uPa+XDK+Xm66b7Vt8n/yj/Ovu5+rha26YyU519Lqj+Pr36OEly83FrcJ7qnxmq52nqWqrPDQAAAAAAAAAAEHxNsO7+z91aMWWFeozvoT5391Fov1C5d3KXwWCQxWJRWX6ZTu07pdRlqdr1wS7d8tdb7LaDRZMKLC7o2rWrPv/8c61Zs0ZPPPGE3nnnHX366ad6/fXXNWXKFLss8FLl5eXKzs6WJIWGhtrsWz1+7NixJs23e/du/fnPf9awYcM0Y8aMJuUAAABAx5P0apISX0q0Xi5wKmjR+ThzLQAAAOBYRjdjjV0mXLyb9v42a0eWlo5fKmdXZz3wvwfUeVDnevtWL7wozim2mbd6/NKCDf8of+tW28U5xfLtUv+Jk4pyiiRJbr5u8ujkYb3er6ufDE4GWcwWa5+GrMUvqv6TKAEAAAAAAAAAgPZrrvPcy/ZJfi9Zye8lX7bfVz//Sl89+pV+Z/pds9fl1OwMkm655Ralpqbq97//vfLz8zV9+nQNGzZMe/futUf6Gs6dO2dtu7u72+zr4XHxx53q4xqqqqpKP/vZz+Ts7Kz58+fLYDA0OgcAAAA6pqG/GapfF/za+m/m7pktOh9nrgUAAADavh+Tf9TiMYtlsVj0wP8eUER8hM3+IX1DrO3CE4U2+xZmXoyH9AmpEQvuG2xtF5yovzjcVG5SyemS82P6BNeIuXi4qNNVnZq9FgAAAAAAAAAA0DFYLBa7/pPFPutq9A4WFotFaWlpOnPmjDw9PdW9e3d5enrK1dVVv/vd7zR16lQ98cQTWrVqlQYNGqSZM2fqD3/4g3x96z/jVWOUlpZa266urjZ61oyXlJQ0eq633npLycnJ+sMf/qCePXs2enx9Sk2lKjJdPIOXi5OLXJw5Wy9alsVgkdlslslk+yBHoKWYTCYeg3AoHoO44pwlZ0/nixertVsCZ65t3TryZ4CO/LzLaw94DIDHQMfG/Q+z2dyo/id3ntSi0YtkNpkbVFwhSb5dfBXYI1BnDp9R9q5s2/lTTp4fE+GrgO4BNWLRI6O1URslSdm7stVrQq86c+TszpHFbLGOuVTUyCjlHclTWX6Z8o/ny7+bv8211JenPSipKpGb6WIReUf6DNBWWAwWWWQ5/925Gvf/FVcW91XbwX3VtnB/tR3cV22HxWCnI3nQJhUUFCgvL8962c3NTW5unFjqSjAb2uZzI8/v9tPRvn/je0c0FY8dNBWPnfrxN7GPa+68RiH9mn8yplN7Tung5wftsKJGFFgUFhbqxRdf1MKFC2vsBuHk5KRRo0bplVde0YABAxQVFaWVK1fqq6++0qxZs/TXv/5Vn376qV5//XVNnTq12QuuvitFRUWFzb7V456eno2aJz09XXPmzFGfPn303HPPNW6Rl/Hcppr5xg4cq1uvu9WucwCXssgiU8b5J3MnJ7tsXgM0itlsVkZGhiQeg3AMHoNwtDNnzrRo/pY6c234wPA6czTkzLV5R/I4c+3/15E/AyQlJTl6CQ7Daw94DIDHQMfG/Y/GfAbI2ZOjRaMXqaqiSg/89wFFJkTW6rPppU06vPKwHvn+kRrX957UW9/88RvlH8vX2aNnrbtIVFeYVajcg7mSpGvuuqbWbs0R8RHyjfBVYWah0tena/ic4XWu8+i6ozXmvVSfSX2UMj9FkpS+Pl0DHhpQZ5709emSpLDYMAVcHVBnn7auI38GaCsssqjUp1R5ypNB7GDemnFftR3cV20L91fbwX3VdpwrPXf5Tmi3YmNja1yeNm2apk+f7pC1dDR54XmX79QK8fxuPx3ttyi+d0RT8dhBU/HYqV/1Als03TV3XqN+9/Vrdp49/95zZQsszp49q6FDh+rgwYOyWCxycXFRUFCQCgoKVFJSov/973/atGmTVq9erREjRkiSxo0bp9GjR+uVV17RG2+8oQcffFALFizQ3/72N1177bVNXrCPj4+1XVZWZrNv9d0uqo9riEceeURlZWVasGCBXFzse1ap14e/rk7uF3/kcnFykctJzlyFlmUxWNS5a2clJCTIaGz05jVAs12o1uQxCEfhMQhHu/Bhs6Vw5trWrSN/Bhg6dKijl+AwvPaAxwB4DHRs3P9o6GeAU/tO6aObP5Kp1KT719yvrkO71tkvPz1fJ5NP1rp+8C8Ha/vb21VRVKGUf6bo5ldurtVn5/s7JYtkdDcq4emEWnGDwaChzw/V6sdWKyMpQ7kHcxXUK6hGH7PJrF0f7pIkdb+tu8L6h9XKc9Woq9RlcBdlbc9Syj9T6iywOL75uM4cPl98cuNvb6zztrYHHfkzQFthMViUpzwFZAfIYOFgptaM+6rt4L5qW7i/2g7uqzak9PJd0H7t2rVLkZEXi+XZweLKyXozy9FLaBKe3+2no/0WxfeOaCoeO2gqHjv1y8zMdPQS2jz/bv5y9Xa1Sy5Xb1f5dfWzS64GPdLnzJmjAwcOaMaMGXriiSfUr9/FKpEff/xRCxcu1CuvvKKHH35YR44cscbc3Nz00ksvafr06XriiSe0evVqXXfddZo5c6befvvtJi3Yzc1NYWFhys7OVk5Ojs2+1eNRUVENnuOjjz7SunXrNGXKFHXv3l25ubm1+lRWVlrb1eMuLi7y87N953gYPeRt9K55JTtFooWZZZaTk5OMRiMvcnAYHoNwNB6DcKQrUcXPmWtbr478GaCjP+fy2gMeA+Ax0LFx/3dsDfkMcDr1tD66+SOV5JZo2O+GyWK26NimY3X2LcouqvN6rxAvjX5jtFbNXKVtb21Tr4m91CWuizWevTtbW/60RZI04g8j5BvhW2eeQQ8P0r4l+5SRlKGVD6/UA18/IBePiwUBm36/SXlpeXL3d9eYt8bUe5tu+7/b9K+h/1Lmt5na8e4OXf+L662xsvwyrX58tSSpx7ge6n1X7c8S7YWns2eH/QzQVphllkEGGSwGOVk4815rxn3VdnBftS3cX20H91XbwQHSHZufn58CAtrv7xytWVt9buT53X464ndvfO+IpuKxg6bisVM3/h7NNyt9lt1y9ZrQq94TyTZWg+7Zzz//XA899JDmz59fK9a5c2f95je/UWRkpKZNm6Y9e/bU2qEiOjpaX331lb744gs9+eSTevfdd5tcYCFJffv2VXZ2ts6dO6eCgoJ6CxqqVwb16dOnwfk3bNggSVq0aJEWLVp02f7BwcHW9k033aRNmzY1eC4AAADAXjhzLQAAANB2mMpM+ujmj1R8qliStHnuZm2eu7lJua579DoV5RRp89zNWjhioQbOGKjgPsHKPZirlAUpqiyu1JDZQ5Qwu/ZngAucjE66Z8U9WjJuiTKSMjR/0HzFPhgrVy9Xpa1OU9qqNHkGeWrS8kkK7B5Yb57wgeGa9OkkfXb/Z1rzyzXK+CZDUSOjVHqmVCkLUpR/LF/RI6N155I7m3RbAQAAAAAAAAAALnV03VF988o3mrZhWrNzNajA4tSpU0pIqP+HF0kaMmSILBaLTp06VW+fCRMmaMyYMXrllVcat8pLjBw5UuvWrZN0fou9m266qc5+KSkpNcY01LPPPqsHHnjAZp+nn35ae/bskSStXbvWen2nTrXPEgwAAABcCZy5FgAAAGg7TGWmenelaIrhc4YrZnSMtr+zXanLU1Xy9xJ5Bnkq5icxins8TtEjoi+bwzPIUw8lPaTkBcnas2iPkl5NUlV5lfy6+inh2QTFPxkvn3Cfy+bpMa6HHt39qLbN26a0VWk69OUhuXi5KKRviIb9bphip8XK4MTZfQEAANDxlOWX6fCqw0pfn67sndk6m35WFUUVcvV2VWD3QEWPilbczDj5da37RKPVndh6Qjve3aGMpAwVnyqWV7CXIoZEKO6xOEUNj2rQeswms5IXJGvv4r3KPZgrU7lJfl391HNCT8XPipd3mPflkwAAAABAK1CUU6TjicftkqtBBRZdunTRqlWr9NBDD9XbZ+XKlTIYDOrcubPNXO7u7po7d27jVnmJu+66S7/97W9lsVi0fv36egssLhRhBAUFafjw4Q3O37t3b/XubfsAr+qFFKNGjWpwbgAAAMCWPYv3WNs5e3Ks7R/W/qDCzEJJkleol2JGx9Q5njPXAgAAAG2Du7+75ljm2DVnZEKkIhMim5XDyeikuJlxipsZ16w8/lH+GjtvrMbOG9usPAAAAEB7cWLrCS0cuVBV5VWSQbpm4jXqO7mv3HzdlHckT7s/2q0tr23Rjnd2aMIHE9Tn7j715kqcm6jElxJldDdqwIwBCukbotwD538HSF2WqoRnEjT6T6Ntrqckt0RLxi1R1vYsBfUK0g3P3SBXb1elrUrTlte2aOf7O3X38rvVbVg3e/8pAAAAAECSZK4y69TeUwrpGyIno5P1+t0f7W50rhNbT9htXQ0qsLj33nv16quv6tZbb9Xjjz+ugQMHKjg4WAUFBUpLS9NHH32kBQsWqE+fPpctTLCH7t27a9KkSfr000+1aNEivfDCC3J1da3R5+jRo9qwYYMk6bnnnpPRWPOm7tu3T3feeadKSkq0ZMkSDRs2rMXXDQAAAFzOiikr6rw+6ZUka7vbTd3qLbCQOHMtAAAAAAAAAACtTXlhuarKq2RwNuj+NffX+p5/2AvD9MGwD3Rq7ymtmLJCIf1CFHxNcK0837/3vTbN2SSju1FTN0xVxOAIa+zaKdfqgxs/0NY3tsorxKveky2ZTWZ9MvETZW3PUmRCpKasm2LdyTrusTitf369kl5N0scTPtaMHTNsnmwJAAAAAJrq0zs/1eGvDuvqsVfrvlX3Wa//fPrnMhgcdzxRgwosXnjhBSUmJuq///2v/ve//9WKWywW+fv766OPPrL7AuvzxhtvaOPGjTp27Jief/55/fnPf7bGysvL9cgjj6iqqkqDBg3SL37xi1rj//jHPyotLU2S9Otf/1pbt269YmsHAAAA6mOvM9hy5loAAAAAAAAAAFqf2OmxdZ5Eyd3fXaPfGK1/j/23qiqqlPLPFI35y5gafYpPF2vtM2slSYNnDa5RXCFJ4QPClTA7QYkvJWrjixvV996+8o3wrTVX8oJkZSRlSAZp/ILx1uKKC4a/NFypy1KVdyRPXz/1tSavnNzMWw0AAAAAtR1LPCaLxaKMLRm1YhaLpdH57FWU0aACCw8PD23atEnz5s3Tv/71Lx06dMi66ODgYE2YMEG/+93vFBERcZlM9tO1a1etXLlSEydO1F/+8hft27dPt99+u0pLS7Vw4ULt3btXsbGx+vLLL+Xu7l5rvNlstrYbegcsXrzY2s7Jyanz+tGjRys0NLQpNwkAAAAAAAAAAAAAAADtkLu/u7oM7qLed/Wut0/nQZ2t7dwDubXi29/eroqiCknSwBkD68wxcMZAJc5NlKnMpK1/2aqxb9U8+ZHFYlHSq+d3ze56Q1cF9669S4azi7P6T++vjS9s1OGvDit7d7bC+odd/kYCAAAAQCP85M8/0fZ3tuv6X1xfKzZ23lj1nNCzwbkOrjior5/+2i7ralCBhSQZjUbNnj1bs2fPVklJifLz8+Xh4aFOnTrZZSFNMXjwYO3Zs0fz5s3TihUr9Oyzz8rFxUU9evTQvHnzNHPmTLm6utY59re//a1SUlJUWlqq119/vUHzTZky5bLXb9y4kQILAAAAAAAAAAAAAAAAWEXER2jGthk2+7h4XtxJwuhW+5Ce1OWpks7vHB1wdUCdOXwjfBXUK0i5B3J1YPkBjXlzTI2zuGZuy1ThiUJJUvSo6HrXEjM6Rhtf2Hh+3mWpFFgAAAAAsLuBMwbWWzzuGeQp/27+Dc7lGexpp1U1osCixgI8PeXp2fxF7Ny5UwMGDGhWjqCgIL388st6+eWXGzXu2muvVVpaWqPGNGWrEQAAAAAAAAAAAAAAAOBysr7LsrajRkbViBVmFerMoTOSpLBY28UO4QPClXsgV4WZhcpLy1Ngj0BrLH1DurVtK09o/1AZnAyymC01xgAAAABAS7tpzk0KvbZxGx6EXhuqYb8bZpf5m1Rg0VRms1mJiYn6/PPP9cUXXygzM1Mmk+lKLgEAAAAAAAAAAAAAAABoVUxlJm14foMkKaRfSK2zuJ7ad8ra9o30tZmrevzU/lM1CixO7zttbftF+tWbw+hmlGewp4pzinV6/+l6+wEAAACAvRkMBh347IAOfHZAYbFh6nl7z8uOCe0XqtB+jSvKqE+LF1iUlpbqv//9rz7//HOtWrVKZ8+elXR+NwhfX9sf+AAAAAAAAAAAAAAAAID2xlRuUll+mUrPlOrE1hPa9tY2nU49rT5399G4+ePk4uFSo3/+sXxr2yvUy2bu6vHq4xqbxzvUW8U5xSovLFfp2VJ5dPKwfaMAAAAAwA42/X6TDAaDLBaLYqfHNqjAwp5apMAiNzdXK1eu1Oeff65169aprKxMFotFkhQeHq7x48frjjvu0M0339wS0wMAAAAAAAAAAAAAAACt1r6l+/TFg19YL/t19dOd/75TfSf3lcFgqNW/4lyFtW10t324T/XijOrjJKn8XHmD8xg9LsYrzlVQYAEAAADgivHp4qO7Pr5LneM6X/G57VZgkZ6ers8//1yff/65tm7dKrPZbC2q6NmzpyZMmKA77rhD8fHx9poSAAAAAAAAAAAAAAAAuOLMVWZZzJaLl03mRo2PGROjKWunqKK4Qnlpedq7ZK8+u/8zbZqzSWPfHqvut3av0b+ytNLadnZ1tpm7eryypLJGzFRqskseAAAAAGgpRnejBs8arMiESMfM35zBO3futBZV7Nu3T5JksVhkMBgUFxenO+64QxMnTlTPnld2Ww4AAAAAAAAAAAAAAACgpeQdyVNeWp71coEKGjXeJ9xHPuE+1stDnh6idc+t09Y3tmrJuCWa8MEExU6Ltcar70pRVVFlM3f1uIunS41Y9V0pmpMHAAAAAFqKX6Sf3HzdHDZ/owoszGazEhMT9fnnn+uLL77QiRMnJJ0vqnB1ddXw4cN1xx13aMKECQoPD2+RBQMAAAAAAAAAAAAAAACOFHB1gDpd1cl6Oa8sT0psej6DwaBRr49S+vp0nUw5qVUzV+nqMVfLO8xbkuTq42rtayoz1ZdGUs3dLqqPkyQ3n4sHKV0uT/XdLi7NAwAAAAAtpfu47jqeeFyDHh7U4DF7/r1Hn0/9XL+r+l2z529QgcWKFSv0+eefa9WqVTp79qyk80UVvr6+Gjt2rO644w7ddttt8vHxuUwmAAAAAAAAAAAAAAAAoG1zcnaSnKtdNjk1O6fBYFC/+/vpZMpJmUpN2rt0r4b8aogkyT/K39qvOKfYZp7q8erjLlzO3JZp7efbxbfePEU5RZIkN183eXTyaMxNAQAAAIAmG/rcUM0fNF8HVhzQNROvueLzN6jA4qc//akMBoMsFovCw8M1fvx43XHHHbr55pvl4sIWgAAAAAAAAAAAAAAAAEBzBfYMtLZP7T1lbYf0DbG2C08U2sxRmHkxHtInpEYsuG+wtV1wokDhA8PrzGEqN6nkdMn5MX2C6+wDAAAAAC3BVGbS7f+6XStnrNSeRXvUe1JvhfQJkZuvmwxOhjrHlOSW2G3+BhVY9OjRQ3fccYfuuOMOxcfH221yAAAAAAAAAAAAAAAAoL1LW5MmF08XRd0UZbOfk/PFnTDMJrO17dvFV4E9AnXm8Bll78q2meNkysnzYyJ8FdA9oEYsemS0NmqjJCl7V7Z6TehVZ46c3TmymC3WMQAAAABwpcyLmieD4XwhRWFmoQ59ceiKzt+g/QkPHjyo1157jeIKAAAAAAAAAAAAAAAAoJFWzVyl1Y+vvmy/vCN51rZfV78asd6TekuS8o/l6+zRs3WOL8wqVO7BXEnSNXddYz0o6YKI+Aj5RvhKktLXp9e7jqPrjtaaFwAAAACuFIvF0uh/9tKgHSwAAAAAAAAAAAAAAAAANF3ugVzlH8uXf5R/nXGLxaLdH+22Xu4xvkeN+OBfDtb2t7eroqhCKf9M0c2v3Fwrx873d0oWyehuVMLTCbXiBoNBQ58fqtWPrVZGUoZyD+YqqFdQjT5mk1m7PtwlSep+W3eF9Q9r5C0FAAAAgOYZ9PNBioiPaHD/zG8zlbIgxS5zU2ABAAAAAAAAAAAAAAAAtDCL2aIVU1Zo0rJJ8g7zrhX731P/04/f/ShJ6ju5ryIG1zyYyCvES6PfGK1VM1dp21vb1GtiL3WJ62KNZ+/O1pY/bZEkjfjDCOtOFZca9PAg7VuyTxlJGVr58Eo98PUDcvFwscY3/X6T8tLy5O7vrjFvjbHLbQcAAACAxuh2Yzf1u69fg/s7GZ0osAAAAAAAAAAAAAAAAADagrD+YSo4XqCMpAy9E/OO+tzbR0G9guQZ6KmCjALt/3S/cg/kSpL6T+2vcfPH1ZnnukevU1FOkTbP3ayFIxZq4IyBCu4TrNyDuUpZkKLK4koNmT1ECbNr715xgZPRSfesuEdLxi1RRlKG5g+ar9gHY+Xq5aq01WlKW5UmzyBPTVo+SYHdA1vk7wEAAAAA9el6Q1d5hXg1akxATID6T+1vl/kpsAAAAAAAAAAAAAAAAABa0L1f3KtT+07pwIoDyvgmQ0fXHtW+pftkrjTL1cdVnaI7Ke4Xceo/tX+NXSnqMnzOcMWMjtH2d7YrdXmqSv5eIs8gT8X8JEZxj8cpekT0ZdfjGeSph5IeUvKCZO1ZtEdJryapqrxKfl39lPBsguKfjJdPuI+9bj4AAAAANNiD3zzY6DER8RGKiI+4fMcGoMACAAAAAAAAAAAAAAAAaGEhfUMU0jfELrkiEyIVmRDZrBxORifFzYxT3Mw4u6wJAAAAAOxh90e71W1YN/lH+V+279/7/V0Wi0WDfj5Ig58YbJf5neySBQAAAA+sQfcAAQAASURBVAAAAAAAAAAAAAAAAAAAoBm+ePALndh6okF9XTxdlHsgV/978n/a/dFuu8xPgQUAAAAAAAAAAAAAAAAAAAAAAHA4i8XS4L4zts/Qr078Sp2v66wdf91hl/kpsAAAAAAAAAAAAAAAAAAAAAAAAG2OT2cfxT4Yq7wjeXbJR4EFAAAAAAAAAAAAAAAAAAAAAABok/J+yFNVRZVdchntkgVAm7B36V5lvZklJ4vjaqsmr5zssLkBAAAAAAAAAAAAAAAAAAAAtA4HvzioQ18cqnV98vxkHV139LLjzZVm5R/PV+a3mQq9NtQua6LAAgAAAAAAAAAAAAAAAAAAAAAAXFHZu7K168NdMhgMNa7P+CZDGd9kNCiHxWKRJF3/y+vtsiYKLAAAAAAAAAAAAAAAAAAAAAAAwBXl7u8u/27+Na7LP54vj0APuXq52h5skFw8XRTYI1D9p/VXrwm97LImCiwAAAAAAAAAAAAAAAAAAAAAAMAVFT8rXvGz4mtc95LTSxo7b6z63dfPIWtycsisAAAAAAAAAAAAAAAAAAAAAAAArQg7WAAAAAAAAAAAAAAAAAAAAAAAAIebY57j0PnZwQIAAAAAAAAAAAAAAAAAAAAAAHR47GABAAAAAAAAAAAAAAAAAAAAAABahaLsIlVVVEmSvEK9ZHS7WPaQ90OeEn+fqOzd2XLzdVPfyX0V91icDAaDXeamwAIAAAAAAAAAAAAAAAAAAAAAADhcaV6p3o5+21pgcf+a+xXzkxhJ0ukDp/V+/PuqKKqQxWKRJGV+m6nMbzN15+I77TK/k12yAAAAAAAAAAAAAAAAAAAAAAAANEPq8lSZyk3yCPTQDb++QSF9Q6yx/876r8rPlctisajzoM7qOb6n3HzdtG/pPqWtTrPL/OxgAQAAAAAAAAAAAAAAAAAAAABAC7FYLPrub99p3a/XqbK4UtM2TlPU8KgGjz+x9YR2vLtDGUkZKj5VLK9gL0UMiVDcY3ENzmM2mZW8IFl7F+9V7sFcmcpN8uvqp54Teip+Vry8w7wblCf/eL62zdumI6uPqOBEgVy9XRXSJ0T9p/VX/6n9ZXAyNPh21eWHr3+Qm6+bfp7yc/lG+FqvzzuSp6PrjspgMCju8Tjd8s4t56//IU8L4hZo1we71P3W7s2aW6LAAgAAAAAAAAAAAAAAAAAAAACAFpH3Q56+fOhLHd98vEnjE+cmKvGlRBndjRowY4BC+oYo90CuUhakKHVZqhKeSdDoP422maMkt0RLxi1R1vYsBfUK0g3P3SBXb1elrUrTlte2aOf7O3X38rvVbVg3m3kOrzqsz+77TOXnytX7rt6K/1W8Ss6UKGVBir548AvtWbxH96y4R24+bk26rZJ0MuWkYqfH1iiukM7vbCFJLp4uGvnySOv1ATEB6nd/Px3+8nCT56yOAgsAAAAAAAAAAAAAAAAAAAAAAOyo+q4VTs5OioiPUOa2zEbl+P6977VpziYZ3Y2aumGqIgZHWGPXTrlWH9z4gba+sVVeIV5KmJ1QZw6zyaxPJn6irO1ZikyI1JR1U+Ti4SJJinssTuufX6+kV5P08YSPNWPHDAV2D6wzz8mUk1o2aZlMpSaNmTdG8bPirbG4x+L0wY0fKH19uj677zNNXjm5UbezuqKTRQruHVzr+kNfHJLBYFCvO3rJzbdmAUfwNcHa+c+dTZ6zOie7ZAEAAAAAAAAAAAAAAAAAAAAAAJKkxJcSteaJNeo6tKtm7pupmDExjRpffLpYa59ZK0kaPGtwjeIKSQofEG4tqtj44kYVZhbWmSd5QbIykjIkgzR+wXhrccUFw18aroCrA1SWX6avn/q63vWsemyVTKUmdRncpUZxhSR5dPLQre/eKkk6/NVhpf4ntVG3tTqDk0FVlVU1rivMKlTWjixJUu9JvWuPcTY0eb5LUWABAAAAAAAAAAAAAAAAAAAAAIAdWSwWjf/neD3w3wfkF+nX6PHb396uiqIKSdLAGQPr7DNwxkDJIJnKTNr6l611riHp1SRJUtcbuta5M4Szi7P6T+8v6XxxRPbu7Fp9jq47qqzt5wscBj5c91qihkcpoHuAJOmbl7+53M2rl2+Er04mn6xx3c73d8piscjF06XOQpWzR8/KI9CjyXNWR4EFAAAAAAAAAAAAAAAAAAAAAAB2NPz3wzXwZ3UXIzRE6vLzu0D4R/kr4OqAOvv4RvgqqFeQJOnA8gOyWCw14pnbMlV44vzOFtGjouudK2b0xaKF1GW1d5/Yv2y/tX3VqKvqzXMhlr0rW3lH8urtZ0u3m7pp38f7dOCzA6osqdSR/x7R1j9vlcFgUK+JvWR0M9bobyozae/ivXUWjzSF8fJdAAAAAAAAAAAAAAAAAAAAAABAQxkMhiaPLcwq1JlDZyRJYbFhNvuGDwhX7oFcFWYWKi8tT4E9Aq2x9A3p1ratPKH9Q2VwMshittQYc8GxDcckSe7+7vLv5l9vnrABF+dI35Beb2GILfG/itfuhbu1bNIy63UWi0VORiclPJNgva4kt0SZ2zO1ee5mFWUXKe7xuEbPVRd2sAAAAAAAAAAAAAAAAAAAAAAAoJU4te+Ute0b6Wuzb/X4qf2nasRO7zttbftF+tWbw+hmlGew5/kx+0/XiFWWVurs0bMNWkv1OS5dS0MFXxOsO/99p1y8XGSxWGSxWGR0N+rWd29VaL9Qa79tb2/T0vFLlfVdliSpz919mjTfpdjBAgAAAAAAAAAAAAAAAAAAAACAViL/WL617RXqZbNv9Xj1cY3N4x3qreKcYpUXlqv0bKk8OnlIkgoyCmQxW6x9GrqWgmMFNvva0vuu3rpq9FU6vvm4LGaLulzfRT7hPjX7/LS3dYcMNx+3Ju2WURcKLAAAAAAAAAAAAAAAAAAAAAAAqIep3KSq8irr5YpzFS06X/X8Rnfbh/y7eLjUOU6Sys+VNziP0eNivOJchbXAoqlrqT53U7j7uavn+J71xsNiwxQWG9asOepCgQUAAAAAAAAAAAAAAAAAAAAAAPVIejVJiS8lWi8XqOm7MzREZWmlte3s6myzb/V4ZUlljZip1NTsPPZaS0vK2ZujgysO6qbf3dTsXBRYAAAAAAAAAAAAAAAAAAAAAABQj6G/GaohTw2xXs7KytJbvd9qsfmq7wRRVVFlo2fNuIunS41Y9V0pmprHXmtpSTl7cpT4UiIFFgAAAAAAAAAAAAAAAAAAAAAAtCSjm1FGt4uH3rsWurbofK4+F/Obykw2etbcYaL6OEly83FrcJ7qu11Uz9PUtVSfuzEKMhq/O0hJbkmT5qoLBRYAAAAAAAAAAAAAAAAAAAAAALQS/lH+1nZxTrHNvtXj1cdduJy5LdPaz7eLb715inKKJEluvm7y6ORhvd6vq58MTgZZzBZrn4asxS/Kz2bfxD8k6tu/fKv4J+M1/PfDrdfPi5ong8Fgc2xLcnLYzAAAAAAAAAAAAAAAAAAAAAAAoIaQviHWduGJQpt9CzMvxkP6hNSIBfcNtrYLTtS/M4Sp3KSS0+d3gQjuE1wj5uLhok5XdWr2Wi619Y2tKi8s17dvflsrZrFYGv3PXtjBAgAAAAAAAAAAAAAAAAAAAACAVsK3i68CewTqzOEzyt6VbbPvyZST58dE+Cqge0CNWPTIaG3URklS9q5s9ZrQq84cObtzZDFbrGMuFTUySnlH8lSWX6b84/ny7+Zvcy315amuz919tPNfO9V7Uu9asUE/H6SI+Aib46vL/DZTKQtSGtzfFgosAAAAAAAAAAAAAAAAAAAAAABoRXpP6q1v/viN8o/l6+zRs9ZdJKorzCpU7sFcSdI1d10jg8FQIx4RHyHfCF8VZhYqfX26hs8ZXudcR9cdrTHvpfpM6qOU+ecLGNLXp2vAQwPqzJO+Pl2SFBYbpoCrA+rsc8Ht/7xdo/80Wh4BHrVi3W7spn739bM5vjono5PdCiyc7JIFAAAAAAAAAAAAAAAAAAAAAADYxeBfDpart6skKeWfdRcP7Hx/p2SRjO5GJTydUCtuMBg09PmhkqSMpAxrMUZ1ZpNZuz7cJUnqflt3hfUPq9XnqlFXqcvgLjbXcnzzcZ05fEaSdONvb7zMrTuvruKKqJui5BXq1aDxF3iHeqvbsG6NGlMfdrAAAAAAAAAAAAAAAAAAADTa0vFLHb0EAACAdssrxEuj3xitVTNXadtb29RrYi91ietijWfvztaWP22RJI34wwj5RvjWmWfQw4O0b8k+ZSRlaOXDK/XA1w/IxcPFGt/0+03KS8uTu7+7xrw1pt713PZ/t+lfQ/+lzG8ztePdHbr+F9dbY2X5ZVr9+GpJUo9xPdT7rtq7YDTUtI3TGj3mqlFX6apRVzV5zuoosAAAAAAAAAAAAAAAAAAAAAAAwM72LN5jbefsybG2f1j7gwozCyVJXqFeihkdU+f46x69TkU5Rdo8d7MWjliogTMGKrhPsHIP5iplQYoqiys1ZPYQJcyuvXvFBU5GJ92z4h4tGbdEGUkZmj9ovmIfjJWrl6vSVqcpbVWaPIM8NWn5JAV2D6w3T/jAcE36dJI+u/8zrfnlGmV8k6GokVEqPVOqlAUpyj+Wr+iR0bpzyZ2N/TO1KhRYAAAAAABajKPPXDV55WSHzg8AAAAAAAAAAAAAADquFVNW1Hl90itJ1na3m7rVW2AhScPnDFfM6Bhtf2e7UpenquTvJfIM8lTMT2IU93icokdEX3YdnkGeeijpISUvSNaeRXuU9GqSqsqr5NfVTwnPJij+yXj5hPtcNk+PcT306O5HtW3eNqWtStOhLw/JxctFIX1DNOx3wxQ7LVYGJ8Nl89hiKjcpIylDJ1NOquR0icoLy+Xm5yavYC91vq6zIhMi5ezq3Kw5bKHAAgAAAAAAAAAAAAAAAAAAAAAAO5tjmWOXPJEJkYpMiGxWDiejk+JmxiluZlyz8vhH+WvsvLEaO29ss/Jc6tyP57T5j5u1+8PdMpWZ6u1n9DBqwEMDNPQ3QxtUFNJYFFgAAAAAAAAAAAAAAAAAAAAAAACHOPTlIX32wGeqLK6UxWKx2beypFLf/e077fpwl3665KfqMa6HXddCgQUAAAAAAAAAAAAAAAAAAAAAALji9vx7jz6f9rlkkSwWiwxOBgX3DlZYbJg8Aj3k6u2qinMVKsktUfbObOUeypXFbFFFUYU+vuNjTVw0Uf0m97PbeiiwAAAAAAAAAAAAAAAAAAAAAAAAV9Tp1NP66udfyWK2yKOThxKeSdDAGQPlGeRZ75iinCKlLEjRt29+q7L8Mn31yFcK6x+m4N7BdlmTk12yAAAAAAAAAAAAAAAAAAAAAAAANNDaZ9aqsqRSkQmRmrl3pob+eqjN4gpJ8g711rAXhunR3Y+qy/VdVFFcobXPrLXbmiiwAAAAAAAAAAAAAAAAAAAAAAAAV8yp/aeUtiZNQb2CdN+q++TT2adR4/0i/XT/mvsV2D1QR/57RKdTT9tlXRRYAAAAAAAAAAAAAAAAAAAAAACAK+bwysMyGAwa89YYufu5NymHRycPjXlrjCwWiw59ecgu66LAAgAAAAAAAAAAAAAAAAAAAAAAXDEZ32QosEegrh5zdbPydL+1uwK7B+r45uN2WRcFFgAAAAAAAAAAAAAAAAAAAAAA4Io5c/iMokdF2yXXVaOv0pnDZ+ySiwILAAAAAAAAAAAAAAAAAAAAAABwxZScKVGnqzrZJVenmE4qzSu1Sy6jXbIAAAAAAAAAAAAAAAAAsKkkt0T7l+3XD//7Qdk7s1WUUySDk0Heod7qcn0X9Xugn3qM6yGDwXDZXCe2ntCOd3coIylDxaeK5RXspYghEYp7LE5Rw6MatB6zyazkBcnau3ivcg/mylRukl9XP/Wc0FPxs+LlHebdzFsMAAAAAHUrLyiXZ6CnXXJ5BnqqvLDcLrkosAAAAAAAAAAAAAAAAABa2Nezv9Z3f/tOpjKTPIM91e/+fgrsHiiLxaJjG48pdXmq9n+6X9EjozVp2SR5BHjUmytxbqISX0qU0d2oATMGKKRviHIP5CplQYpSl6Uq4ZkEjf7TaJvrKckt0ZJxS5S1PUtBvYJ0w3M3yNXbVWmr0rTltS3a+f5O3b38bnUb1s3efwoAAAAAkMVikZPRyS65DM4GyWKXVBRYAAAAAAAAAAAAAAAAAC1tz+I9MpWZ1O2mbrr3i3vl7udujV3/+PU6/NVhfXzHx0rfkK6l45fqwW8elMGp9k4W37/3vTbN2SSju1FTN0xVxOAIa+zaKdfqgxs/0NY3tsorxEsJsxPqXIvZZNYnEz9R1vYsRSZEasq6KXLxcJEkxT0Wp/XPr1fSq0n6eMLHmrFjhgK7B9r5rwEAAAAAki6/ed8VR4EFAAAAAAAAAAAAAAAAcAU4GZ008aOJNYorLugxrocGzhio5H8k68TWE9r/6X71vbdvjT7Fp4u19pm1kqTBswbXKK6QpPAB4UqYnaDElxK18cWN6ntvX/lG+NaaK3lBsjKSMiSDNH7BeGtxxQXDXxqu1GWpyjuSp6+f+lqTV05u5i0HAAAAgNr+9+T/tOG3G5qdp7K40g6rOc8+e2oAAAAAAAAAAAAAAAAAsCksNkx+Xf3qjV/z02us7cMrD9eKb397uyqKKiRJA2cMrDPHwBkDJYNkKjNp61+21opbLBYlvZokSep6Q1cF9w6u1cfZxVn9p/c/v46vDit7d7aNWwUAAAAATVOSW6L8Y/nN/ld8uthua2IHCwAAAAAAAAAAAAAAAKCF/XTpT+UZ6Gmzj383f2u7IKOgVjx1eer5flH+Crg6oM4cvhG+CuoVpNwDuTqw/IDGvDlGBoPBGs/clqnCE4WSpOhR0fWuJWZ0jDa+sPH8vMtSFdY/zObaAQAAAKCxPAI95Orl2uw8FcUVKj1TaocVUWABAAAAAAAAAAAAAAAAtLjoEfUXM1xQll9mbbt4udSIFWYV6syhM5LO74RhS/iAcOUeyFVhZqHy0vIU2CPQGkvfkG5t28oT2j9UBieDLGZLjTEAAAAAYC9j541Vv/v6NTvPnsV79Pm0z5u/IElOdskCAAAAAAAAAAAAAAAAoFnOpp+1trsN61YjdmrfKWvbN9LXZp7q8VP7T9WInd532tr2i/SrN4fRzSjP4PM7bpzef7refgAAAADgcIbLd2koCiwAAAAAAAAAAAAAAACAVuDgioOSJKO7UbHTY2vE8o/lW9teoV4281SPVx/X2Dzeod6SpPLCcpWeLbXZFwAAAAAaY8xbY9T5us52ydX5us76yZs/sUsuo12yAAAAAAAAAAAAAAAAAGiy4lPFOvTFIUnSkNlD5NPZp0a84lyFtW10t33Ij4uHS53jJKn8XHmD8xg9LsYrzlXIo5OHzf4AAAAA0FDxs+LtliuoZ5CCegbZJRcFFgAAAAAAAAAAAAAAAEAjmKvMspgtFy+bzM3OufaZtTKVmRQ+MFzDXhhWK15ZWmltO7s628xVPV5ZUlkjZio12SUPAAAAALRHFFgAuKKWjl/q0Pknr5zs0PkBAAAAAAAAAAAAAG1f3pE85aXlWS8XqKBZ+fYs3qPdH+2WV4iX7v7P3TK61T6kp/quFFUVVTbzVY+7eLrUiFXflaI5eQAAAACgPaLAAgAAAAAAAAAAAAAAAGiEgKsD1OmqTtbLeWV5UmLTch3ffFwrH14pN1833bf6PvlH+dfZz9XH1do2lZnq7HNB9d0uqo+TJDcftwbnqb7bxaV5AAAAAKA9cnL0AgAAAAAAAAAAAAAAAIC2xMnZSc4uztZ/TsamHYKTtSNLS8cvlbOrsx743wPqPKhzvX2rF14U5xTbzFs9fmnBRmPyFOUUSZLcfN3k0cnDZl8AAAAAaA/afIFFbm6uXnzxRfXt21fe3t4KCAjQkCFD9M4776iioqJZuS0Wi7755hvNmjVLcXFx6tSpk1xcXBQYGKghQ4Zozpw5+vHHH+10SwAAAAAAAAAAAAAAANBR/Jj8oxaPWSyLxaIH/veAIuIjbPYP6RtibReeKLTZtzDzYjykT0iNWHDfYGu74ERBvTlM5SaVnC45P6ZPcL39AAAAAKA9adMFFjt27NC1116rl19+WZ07d9brr7+u559/XkVFRZo1a5bi4+ObXACRkpKi2NhYDRs2TO+8846CgoL09NNP67333tPjjz+ukydPau7cuerZs6f+/e9/2/mWAQAAAAAAAAAAAAAAoL06ufOkFo1eJLPJrAf+e/niCkny7eKrwB6BkqTsXdm286ecPD8mwlcB3QNqxKJHRlvbtvLk7M6RxWypNQYAAAAA2rM2W2CRkZGhcePG6eTJk3ryySf19ddf6/HHH9fs2bP1/fffa8SIEdq5c6duv/12lZeXNzr/jh07tGfPHhkMBn322Wdas2aNXnjhBf3sZz/T3LlzlZqaqhEjRqioqEhTp07VmjVrWuBWAgAAAAAAAAAAAAAAoD3J2ZOjRaMXqaqiSvevuV+RCZG1+mx6aZPmXze/1vW9J/WWJOUfy9fZo2frzF+YVajcg7mSpGvuukYGg6FGPCI+Qr4RvpKk9PXp9a7z6LqjteYFAAAAgPauzRZYPPPMMzp9+rS6du2q1157rUbMzc1NCxYskLOzs5KTk/Xuu+82eZ4ZM2Zo4sSJta739PTUwoUL5eLiIrPZrF/96ldNngMAAAAAAAAAAAAAAADt36l9p/TRzR/JVGrS/avvV9ehXevsl5+er5PJJ2tdP/iXg+Xq7SpJSvlnSp1jd76/U7JIRnejEp5OqBU3GAwa+vxQSVJGUoa1GKM6s8msXR/ukiR1v627wvqHNej2AQAAAEBb1yYLLNLS0rRs2TJJ0tSpU+Xm5larT0xMjEaMGCFJev3112UymZo014QJE+qNRUZGKi4uTpJ06NAhpaWlNWkOAAAAAAAAAAAAAAAAtG+nU0/ro5s/UkluiYbMHiKL2aJjm47V+a8ou6jOHF4hXhr9xmhJ0ra3tinru6wa8ezd2drypy2SpBF/GGHdqeJSgx4edL64wyKtfHilKksra8Q3/X6T8tLy5O7vrjFvjWnuTQcAAACANsPo6AU0xfLly2WxWCRJo0aNqrff6NGjtW7dOp0+fVqbNm2y2fdSt912m9asWaNhw4bZ7NetWzdt3bpVkpSRkaHu3bs3eA4AAAAAAAAAAAAAAAC0f6Yykz66+SMVnyqWJG2eu1mb525uUq7rHr1ORTlF2jx3sxaOWKiBMwYquE+wcg/mKmVBiiqLKzVk9hAlzK69e8UFTkYn3bPiHi0Zt0QZSRmaP2i+Yh+MlauXq9JWpyltVZo8gzw1afkkBXYPbNI6AQAAAKAtapMFFhs2bLC2Y2Nj6+03YMCAGmMaU2ARGRmpyMjIy/bLz8+3tr28vBqcHwAAAAAAAAAAAAAAAB2DqcxU764UTTF8znDFjI7R9ne2K3V5qkr+XiLPIE/F/CRGcY/HKXpE9GVzeAZ56qGkh5S8IFl7Fu1R0qtJqiqvkl9XPyU8m6D4J+PlE+5jtzUDAAAAQFvQJgss9u3bJ0ny8fGRn59fvf2qF0js37+/RdaSnp5uXYutYg8AAAAAAAAAAAAAAAB0TO7+7ppjmWPXnJEJkYpMuPzJQ21xMjopbmac4mbG2WlVAAAAANC2OTl6AY1VXl6u7OxsSVJoaKjNvtXjx44ds/taDh06pIMHD0qSHnzwQbm7u9t9DgAAAAAAAAAAAAAAAAAAAAAA0PLaXIHFuXPnrO3LFTR4eHjUOc5e/vGPf0iSAgIC9MILL9g9PwAAAAAAAAAAAAAAAAAAAAAAuDKMjl5AY5WWllrbrq6uNvtWj5eUlNh1HQcOHND//d//SZLee+89BQcHN3hsqalURaYi62UXJxe5OLvYdX3ApSwGiyyyyGKwyCyzo5fjMCaTydFL6LBMJpPMZjP3ARyGxyAczWzuuK+/4DOAIznyeZ/XHvAYAI+Bjo37H439DGCxWPTd377Tul+vU2VxpaZtnKao4VENHn9i6wnteHeHMpIyVHyqWF7BXooYEqG4x+IanMdsMit5QbL2Lt6r3IO5MpWb5NfVTz0n9FT8rHh5h3k3KE/+8Xxtm7dNR1YfUcGJArl6uyqkT4j6T+uv/lP7y+BkaPDtaqtKqkrkZnKzXuYzQOvDd+ZtB/dV28F91bZwf7Ud3Fdth8VgcfQS4EAFBQXKy8uzXnZzc5Obm5uNEe2H2cBzU1Pw/G4/He37N753RFPx2EFT8dipH3+T9qvNFVhU35WioqLCZt/qcU9PT7utoaSkRJMnT1Z5ebmeffZZTZo0qVHjn9v0XI3LYweO1a3X3Wq39QF1sciiUp9S5SlPBrX/HzDrk5SU5OgldFhms1kZGRmSJCenNreBEtoBHoNwtDNnzly2z4fDP9TxxOOX7efi5aLni5632ac1HVwFPgM4kiPf//HaAx4D4DHQsXH/oyGfAS7I+yFPXz70pY5vvvzngbokzk1U4kuJMrobNWDGAIX0DVHugVylLEhR6rJUJTyToNF/Gm0zR0luiZaMW6Ks7VkK6hWkG567Qa7erkpblaYtr23Rzvd36u7ld6vbsG428xxedVif3feZys+Vq/ddvRX/q3iVnClRyoIUffHgF9qzeI/uWXGP3Hza94FGfAZo/fjOvO3gvmo7uK/aFu6vtoP7qu04V3rO0UuAA8XGxta4PG3aNE2fPt0ha7nS8sLzLt8JtfD8bj8d7VggvndEU/HYQVPx2Klf9QJbtC9trsDCx8fH2i4rK7PZt/puF9XHNYfJZNLkyZO1e/duTZkyRa+99lqjc7w+/HV1cu9kvezi5CKXk5y5Ci3LYrAoT3kKyA6QwdJxP5gNHTrU0UvosC5UayYkJMhobHMvP2gHeAzC0S582LwSWtPBVTiPzwCO48j3f7z2gMcAeAx0bNz/aMhngOq7Vjg5OykiPkKZ2zIbNc/3732vTXM2yehu1NQNUxUxOMIau3bKtfrgxg+09Y2t8grxUsLshDpzmE1mfTLxE2Vtz1JkQqSmrJsiF4/z71fjHovT+ufXK+nVJH084WPN2DFDgd0D68xzMuWklk1aJlOpSWPmjVH8rHhrLO6xOH1w4wdKX5+uz+77TJNXTm7U7Wxr+AzQ+vGdedvBfdV2cF+1LdxfbQf3VRtSevkuaL927dqlyMhI6+WOtINF1ptZjl5Cm8Tzu/10tGOB+N4RTcVjB03FY6d+mZmN+z4fbUebe6S7ubkpLCxM2dnZysnJsdm3ejwqKqrZc5vNZk2fPl1ffvml7rvvPn3wwQcyGBr/BtfD6CFv4yVn+2WnSLQws8wyyCCDxSAnS8etIuQF3rGcnJxkNBq5H+AwPAbhSA2t4u8c11kTP5pos4/Bqf73oK3p4CpcxGcAx3H0cz6vPeAxAB4DHRv3f8fWkM8AiS+dL46OGROj8QvGa+f7OxtVYFF8ulhrn1krSRo8a3CN9/+SFD4gXAmzE5T4UqI2vrhRfe/tK98I31p5khckKyMpQzJI4xeMt77/v2D4S8OVuixVeUfy9PVTX9dbHLHqsVUylZrUZXCXGsUVkuTRyUO3vnurFo5YqMNfHVbqf1LV+6e9G3xb2xpPZ08+A7RyfGfednBftR3cV20L91fbwX3VdnCAdMfm5+engIAARy/DIXhuahqe3+2nI373xveOaCoeO2gqHjt14+/RfrXJd2d9+/aVJJ07d04FBQX19qteGdSnT59mzWk2m/Xggw/q3//+t+6991599NFHcnZ2blZOAAAA4FIuni4K6hVk819gj7oLGhp6cJUkbXxxowozC+vM05CDqwKuDlBZfpm+furrZt5iAAAAoOOyWCwa/8/xeuC/D8gv0q/R47e/vV0VRRWSpIEzBtbZZ+CMgZJBMpWZtPUvW+tcQ9KrSZKkrjd0VXDv4Fp9nF2c1X96f0nS4a8OK3t3dq0+R9cdVdb282ctHfhw3WuJGh6lgO7nDzj65uVvLnfzAAAAAAAAAAAArrg2WWAxcuRIa3vXrl319ktJSalzTGNZLBY9/PDD+uijjzRp0iQtXryY4goAAAC0Oq3p4CoAAAAAlzf898M18Gd1v3dviNTlqZIk/yh/BVxd95lSfSN8FdQrSJJ0YPkBWSw1t1HI3JapwhPni6+jR0XXO1fM6JiL8y5LrRXfv2y/tX3VqKvqzXMhlr0rW3lH8urtBwAAAAAAAAAA4AhtssDirrvuksFwfmvF9evX19tv3bp1kqSgoCANHz68SXNZLBb9/Oc/17/+9S/99Kc/1ZIlS2oVV5w8eVLXXXed5s+f36Q5AAAAAHtoTQdXAQAAALi8C99zN0VhVqHOHDojSQqLDbPZN3xA+PkxmYXKS6tZ1JC+Id3atpUntH+oDE6GWmMuOLbhmCTJ3d9d/t38680TNuDiHHXlAQAAAAAAAAAAcKQ2WWDRvXt3TZo0SZK0aNEiVVRU1Opz9OhRbdiwQZL03HPPyWg01ojv27dPPXr0UEREhDZv3lzvXI8//rgWLFigO+64Q0uXLq2VR5LKy8uVnJysH3/8sTk3CwAAAKil/Fy5LGbLZfu1toOrAAAAALSsU/tOWdu+kb42+1aPn9p/qkbs9L7T1rZfpF+9OYxuRnkGe54fs/90jVhlaaXOHj3boLVUn+PStQAAAAAAAAAAADha7WqBNuKNN97Qxo0bdezYMT3//PP685//bI2Vl5frkUceUVVVlQYNGqRf/OIXtcb/8Y9/VFpamiTp17/+tbZu3VqrzxNPPKG///3vuvrqq/XYY49py5Ytda4lOzvbTrcKAAAAHV1lSaUS5yYqdXmqzv5wVpUllTI4GRTYM1Ddb+uuIb8aIp/OPrXGNefgqsAegdbLjT24qjinuNbBVQAAAABaXv6xfGvbK9TLZt/q8erjGpvHO9RbxTnFKi8sV+nZUnl08pAkFWQUWAvDvUO9G7yWgmMFNvsCAAAAAAAAAABcaW22wKJr165auXKlJk6cqL/85S/at2+fbr/9dpWWlmrhwoXau3evYmNj9eWXX8rd3b3WeLPZbG1bLLXPCDxv3jy9++67kqQjR47oJz/5ScvdGAAAAOD/+/G7H3Vq7ynFPhSrYS8Mk4uXi3IP5iplfoq+/fO3Sv5Hsu5cfKd63t6zxrjWdHAVAAAA0BGZyk2qKq+yXq4sqmzR+SrOXdzZ2ehu+6t+Fw+XOsdJ53fNa2geo8fFeMW5CutngKaupfrcAAAAAAAAAAAArUGbLbCQpMGDB2vPnj2aN2+eVqxYoWeffVYuLi7q0aOH5s2bp5kzZ8rV1bXOsb/97W+VkpKi0tJSvf7667Xix44da+HVAwAAoD1r6sFVXiFemrZxmoJ7B1uv63FbD13/i+u1dPxSHV17VMsmLdO0jdMUmRBp7dOaDq4CAAAAOqKkV5OU+FKi9XKBU8vuzlBZevEzhrOrs82+1eOVJTU/m5hKTc3OY6+1AAAAAAAAAAAAOFqbLrCQpKCgIL388st6+eWXGzXu2muvVVpaWr3xefPmad68ec1cHQAAADqqphxcddfHd8nZzbnOQgWjm1F3fHiH3r7qbVWVV2n1L1br5yk/t8Zb08FVAAAAQEc09DdDNeSpIdbLGRkZeqvfWy02X/XC6aqKKhs9a8ZdPF1qxKoXTjc1j73WAgAAAAAA0FhLxy916PyTV0526PwAAMD+2nyBBQAAANAaNeXgKu8wb5txn84+unrs1Tr0xSFl78zWyZ0nFT4gXFLrOrgKAAAA6IiMbkYZ3S6+n3bxbtn3yK4+F3dvNpWZbPSsWZBdfZwkufm4NThP9YLs6nmaupbqcwMAAAAAAAAAALQGTo5eAAAAANAeGd2McvN1s/6z18FVna/rbG2f2HrC2m5NB1cBAAAAaHn+Uf7WdnFOsc2+1ePVxzU2T1FOkSTJzdetxs57fl39ZHAy1OjTkLX4RfnZ7AsAAAAAAAAAAHClUWABAAAAtCFeIV7WdlH2xQOXWtPBVQAAAABaXkjfEGu78EShzb6FmRfjIX1CasSC+wZb2wUnCurNYSo3qeR0yfkxfYJrxFw8XNTpqk7NXgsAAAAAAAAAAICjGS/fBQDaj6Xjlzp0/skrJzt0fgBA22cxW6xtJ+eL9dItdXBV+MDwOnPYOrgKAAAAQMvz7eKrwB6BOnP4jLJ3ZdvsezLl5PkxEb4K6B5QIxY9MlobtVGSlL0rW70m9KozR87uHOvnkeiR0bXiUSOjlHckT2X5Zco/ni//bv4211JfHgAAAAAAAAAAAEdiBwsAAACgFTi08pA2v7xZFovFZr/qu1Z4h3tb2xcOrpLU7IOrLrCV53IHVwEAAABoeb0n9ZYk5R/L19mjZ+vsU5hVqNyDuZKka+66RgaDoUY8Ij5CvhG+kqT09en1znV03dFa81bXZ1Ifa9tWnguxsNgwBVwdUG8/AAAAAAAAAAAAR2AHCwAAAKAVOPCfA9q9cLcGzhgo7zDvevtlbsu0trsO7Voj1ntSb33zx2+sB1d1uqpTrfENPbiqMLNQ6evTNXzO8DrXcbmDq4DWwpE7mJkNZnV5qovD5gcAAO3f4F8O1va3t6uiqEIp/0zRza/cXKvPzvd3ShbJ6G5UwtMJteIGg0FDnx+q1Y+tVkZShnIP5iqoV1CNPmaTWbs+3CVJ6n5bd4X1D6uV56pRV6nL4C7K2p6llH+maMBDA2r1Ob75uM4cPiNJuvG3NzblJgMAAAAAAAAAALQodrAAAAAAWpG0NWn1xs6knbEWNkQmRCqkT0iN+OBfDpart6skKeWfKXXmaOjBVZKsB1ddqiEHVwEAAABoeV4hXhr9xmhJ0ra3tinru6wa8ezd2drypy2SpBF/GGHdqeJSgx4edL6A2yKtfHilKksra8Q3/X6T8tLy5O7vrjFvjal3Pbf9320yehiV+W2mdry7o0asLL9Mqx9fLUnqMa6Het9FoTYAAAAAAAAAAGh92MECAAAAaEXW/2a9ut7QVYE9AmtcX5pXqv9M/o8sVRa5eLrolndvqTX2wsFVq2au0ra3tqnXxF7qEnfx7PmNObhq35J9ykjK0MqHV+qBrx+Qi4eLNd7Qg6sAAAAAXN6exXus7Zw9Odb2D2t/UGFmoSTJK9RLMaNj6hx/3aPXqSinSJvnbtbCEQs1cMZABfcJVu7BXKUsSFFlcaWGzB6ihNm1C6wvcDI66Z4V92jJuCXKSMrQ/EHzFftgrFy9XJW2Ok1pq9LkGeSpScsnKbB7YL15wgeGa9Knk/TZ/Z9pzS/XKOObDEWNjFLpmVKlLEhR/rF8RY+M1p1L7mzsnwkAAAAAAAAAAOCKoMACAAAAaAWCewfLycVJxTnFei/2PfW9t686x3WWs6uzcg/kavdHu1VyukReoV6665O7FD4gvM48rengKgAAAACXt2LKijqvT3olydrudlO3egssJGn4nOGKGR2j7e9sV+ryVJX8vUSeQZ6K+UmM4h6PU/SI6MuuwzPIUw8lPaTkBcnas2iPkl5NUlV5lfy6+inh2QTFPxkvn3Cfy+bpMa6HHt39qLbN26a0VWk69OUhuXi5KKRviIb9bphip8XK4GS4bB4AAAAAAAAAAABHoMACAAAAaAVuePYG9Z/aXwc+O6Cja4/q+Obj2v/JflVVVsmjk4dCrw1Vj3E9NOBnA+Tm42YzV2s6uAoAAACAbXMsc+ySJzIhUpEJkc3K4WR0UtzMOMXNjGtWHv8of42dN1Zj541tVh4AAAAAAAAAAIArjQILAAAAoJXwDvNW3GNxinuseQczSa3r4CoAAAAAAAAAAAAAAAAAaAucHL0AAAAAAAAAAAAAAAAAAAAAAAAAR6PAAgAAAAAAAAAAAAAAAAAAAAAAdHgUWAAAAAAAAAAAAAAAAAAAAAAAgA6PAgsAAAAAAAAAAAAAAAAAAAAAANDhGR29AAAAAAAAAAAAAAAAAAAAAAAA2pMPh3+o44nHL9vPxctFzxc9b7PPia0ntOPdHcpIylDxqWJ5BXspYkiE4h6LU9TwqAatx2wyK3lBsvYu3qvcg7kylZvk19VPPSf0VPyseHmHeTcoT3tHgQUAAAAAAAAAAAAAAAAAAAAAAK1Q4txEJb6UKKO7UQNmDFBI3xDlHshVyoIUpS5LVcIzCRr9p9E2c5TklmjJuCXK2p6loF5BuuG5G+Tq7aq0VWna8toW7Xx/p+5efre6Det2hW5V60WBBQAAAAAAAAAAAAAAAAAAAAAAdtY5rrMmfjTRZh+Dk6He2Pfvfa9NczbJ6G7U1A1TFTE4whq7dsq1+uDGD7T1ja3yCvFSwuyEOnOYTWZ9MvETZW3PUmRCpKasmyIXDxdJUtxjcVr//HolvZqkjyd8rBk7Ziiwe2ATbmn74eToBQAAAAAAAAAAAAAAAAAAAAAA0N64eLooqFeQzX+BPeouaCg+Xay1z6yVJA2eNbhGcYUkhQ8ItxZVbHxxowozC+vMk7wgWRlJGZJBGr9gvLW44oLhLw1XwNUBKssv09dPfd3MW9z2UWABAAAAAAAAAAAAAAAAAAAAAEArsv3t7aooqpAkDZwxsM4+A2cMlAySqcykrX/ZWitusViU9GqSJKnrDV0V3Du4Vh9nF2f1n95fknT4q8PK3p1tr5vQJlFgAQAAAAAAAAAAAAAAAAAAAABAK5K6PFWS5B/lr4CrA+rs4xvhq6BeQZKkA8sPyGKx1IhnbstU4YnzO1tEj4qud66Y0TEX512W2qx1t3UUWAAAAAAAAAAAAAAAAAAAAAAA0MLKz5XLYrZctl9hVqHOHDojSQqLDbPZN3xA+PkxmYXKS8urEUvfkG5t28oT2j9UBidDrTEdkdHRCwAAAAAAAAAAAAAAAAAAAAAAoL2pLKlU4txEpS5P1dkfzqqypFIGJ4MCewaq+23dNeRXQ+TT2afWuFP7TlnbvpG+NueoHj+1/5QCewRaL5/ed9ra9ov0qzeH0c0oz2BPFecU6/T+0/X26wgosAAAAAAAAAAAAAAAAAAAAAAAwM5+/O5Hndp7SrEPxWrYC8Pk4uWi3IO5Spmfom///K2S/5GsOxffqZ6396wxLv9YvrXtFeplc47q8erjGpvHO9RbxTnFKi8sV+nZUnl08rB949opCiwAAAAAAAAAAAAAAAAAAAAAALAzrxAvTds4TcG9g63X9bith67/xfVaOn6pjq49qmWTlmnaxmmKTIi09qk4V2FtG91tH/Lv4uFS5zhJKj9X3uA8Ro+L8YpzFR22wMLJ0QsAAAAAAAAAAAAAAAAAAAAAAKC1MpWbVF5Ybv13aSFDXe76+C49fvDxGsUVFxjdjLrjwzvk7Oasqooqrf7F6hrxytJKa9vZ1dnmPNXjlSWVNWKmUpNd8nQk7GABAAAAAAAAAAAAAAAAAAAAAEA9kl5NUuJLidbLBSq47BjvMG+bcZ/OPrp67NU69MUhZe/M1smdJxU+IFxSzV0pqiqqbOapHnfxdKkRq74rRXPydCQUWAAAAAAAAAAAAAAAAAAAAAAAUI+hvxmqIU8NsV7OysrSW73fanbeztd11qEvDkmSTmw9YS2wcPVxtfYxlZnqHHtB9d0uqo+TJDcftwbnqb7bxaV5OhIKLADgClo6fqlD55+8crJD5wcAAAAAAAAAAAAAAAAAAGhrjG5GGd0uHnrvWmifAgSvEC9ruyi7yNr2j/K3totzim3mqB6vPu7C5cxtmdZ+vl18681TlHN+fjdfN3l08rjs2tsrJ0cvAAAAAAAAAAAAAAAAAAAAAACAjsZitljbTs4XD+0P6RtibReeKLSZozDzYjykT0iNWHDfYGu74ERBvTlM5SaVnC45P6ZPcL39OgJ2sAAAAAAAoIXsXbpXWW9mycnimPMbsIMZAAAAAAAAAAAAAABX3qGVh5SzO0c3/vZGGQyGevtV37XCO9zb2vbt4qvAHoE6c/iMsndl25zrZMrJ82MifBXQPaBGLHpktDZqoyQpe1e2ek3oVWeOnN051mKP6JHRNudr7yiwAAAAAAAAAAAAAAAAAK4gi8Wi7/72ndb9ep0qiys1beM0RQ2PavD4E1tPaMe7O5SRlKHiU8XyCvZSxJAIxT0W1+A8ZpNZyQuStXfxXuUezJWp3CS/rn7qOaGn4mfFyzvM+/JJAAAAANTpwH8OaPfC3Ro4Y6DN99aZ2zKt7a5Du9aI9Z7UW9/88RvlH8vX2aNn1emqTrXGF2YVKvdgriTpmruuqVXMEREfId8IXxVmFip9fbqGzxle5zqOrjtaY96OzDGn0AQAAAAAAAAAAAAAAAA6oLwf8rRw+EKteWKNKosrGz0+cW6iPrjxAx364pB6TeylW/56i3pP6q0ja45o4YiFWvvs2svmKMkt0b+G/kurH1ut0rxS3fDcDRr9p9HqFN1JW17bor9f+3cd33y8KTcPAAAAQDVpa9LqjZ1JO2MtbIhMiFRIn5Aa8cG/HCxXb1dJUso/U+rMsfP9nZJFMroblfB0Qq24wWDQ0OeHSpIykjKsxRjVmU1m7fpwlySp+23dFdY/7PI3rB2jwAIAAAAAAAAAAAAAAABoYRaLRTve3aH3+r+n7F3ZioiPaHSO79/7XpvmbJKzq7OmbpiqW96+RYMeHqQxb47R9M3T5eLloq1vbNXWP2+tN4fZZNYnEz9R1vYsRSZE6pGUR3TDszco7rE43bfqPg39zVCVnC7RxxM+1pm0M825yQAAAECHt/4363XmcO331aV5pfrP5P/IUmWRi6eLbnn3llp9vEK8NPqN0ZKkbW9tU9Z3WTXi2buzteVPWyRJI/4wQr4RvnWuYdDDg87vjmGRVj68UpWlNQu9N/1+k/LS8uTu764xb41p0u1sT4yOXgAAAAAAAAAAAAAAAADQ3iW+lKjElxIVMyZG4xeM1873dypzW2aDxxefLtbaZ87vTjF41mBFDK5ZoBE+IFwJsxOU+FKiNr64UX3v7VvnAVbJC5KVkZQhGaTxC8bLxcOlRnz4S8OVuixVeUfy9PVTX2vyysmNv7EAAABABxfcO1hOLk4qzinWe7Hvqe+9fdU5rrOcXZ2VeyBXuz/arZLTJfIK9dJdn9yl8AHhdea57tHrVJRTpM1zN2vhiIUaOGOggvsEK/dgrlIWpKiyuFJDZg9Rwuzau1dc4GR00j0r7tGScUuUkZSh+YPmK/bBWLl6uSptdZrSVqXJM8hTk5ZPUmD3wJb6k7QZFFgAAAAAAAAAAAAAAAAALcxisWj8P8dr4M8GNmn89re3q6KoQpI0cEbdOQbOGKjEuYkylZm09S9bNfatsbXWkPRqkiSp6w1dFdw7uFYOZxdn9Z/eXxtf2KjDXx1W9u5shfUPa9KaAQAAgI7qhmdvUP+p/XXgswM6uvaojm8+rv2f7FdVZZU8Onko9NpQ9RjXQwN+NkBuPm42cw2fM1wxo2O0/Z3tSl2eqpK/l8gzyFMxP4lR3ONxih4Rfdn1eAZ56qGkh5S8IFl7Fu1R0qtJqiqvkl9XPyU8m6D4J+PlE+5jr5vfplFgAQAAAAAAAAAAAAAAALSw4b8fLoPB0OTxqctTJUn+Uf4KuDqgzj6+Eb4K6hWk3AO5OrD8gMa8OabGnJnbMlV4olCSFD2q/oOwYkbHaOMLG8/PuyyVAgsAAACgCbzDvBX3WJziHotrdq7IhEhFJkQ2K4eT0UlxM+MUN7P562nPKLAAAAAAAAAAAAAAAAAAWlhziisKswp15tAZSVJYrO1ih/AB4co9kKvCzELlpeUpsEegNZa+Id3atpUntH+oDE4GWcyWGmMAADUtHb/0is5nNpiVF56nrDez5GRx0uSVk6/o/AAAdAROjl4AAAAAAAAAAAAAAAAAgPqd2nfK2vaN9LXZt3r81P5TNWKn9522tv0i/erNYXQzyjPY8/yY/afr7QcAAAAA7Q0FFgAAAAAAAAAAAAAAAEArln8s39r2CvWy2bd6vPq4xubxDvWWJJUXlqv0bGnDFgoAAAAAbRwFFgAAAAAAAAAAAAAAAEArVnGuwto2uhtt9nXxcKlznCSVnytvcB6jx8X4pXkAAAAAoL2y/UkJAAAAAAAAAAAAAAAAQA3mKrMsZsvFyyZzi85XWVppbTu7OtvsWz1eWVJZI2YqNdklDwAAAAC0VxRYAAAAAAAAAAAAAAAAAI2QdyRPeWl51ssFKmjR+arvSlFVUWWzb/W4i6dLjVj1XSmakwcAAAAA2isKLAAAAAAAAAAAAAAAAIBGCLg6QJ2u6mS9nFeWJyW23HyuPq7WtqnMZKNnzd0uqo+TJDcftwbnqb7bxaV5AAAAAKC9osACADqQpeOXOmxus8GsLk91cdj8AAAAAAAAAAAAAGAvTs5OknO1yyanFp3PP8rf2i7OKbbZt3q8+rgLlzO3ZVr7+XbxrTdPUU6RJMnN100enTwauWIAAAAAaJta9tMdAAAAAAAAAAAAAAAAgGYJ6RtibReeKLTZtzDzYjykT0iNWHDfYGu74ERBvTlM5SaVnC45P6ZPcL39AAAAAKC9ocACAAAAAAAAAAAAAAAAaMV8u/gqsEegJCl7V7bNvidTTp4fE+GrgO4BNWLRI6OtbVt5cnbnyGK21BoDAAAAAO2d0dELAAAAAAAAAAAAAAAAAGBb70m99c0fv1H+sXydPXpWna7qVKtPYVahcg/mSpKuuesaGQyGGvGI+Aj5RviqMLNQ6evTNXzO8DrnOrruaI15AQCt09LxSx06/+SVkx06PwAALYEdLAAAAAAAAAAAAAAAAIBWbvAvB8vV21WSlPLPlDr77Hx/p2SRjO5GJTydUCtuMBg09PmhkqSMpAxrMUZ1ZpNZuz7cJUnqflt3hfUPs9MtAAAAAIDWjwILAAAAAAAAAAAAAAAAoJXzCvHS6DdGS5K2vbVNWd9l1Yhn787Wlj9tkSSN+MMI+Ub41pln0MOD1HVoV8kirXx4pSpLK2vEN/1+k/LS8uTu764xb41pgVsCAAAAAK2X0dELAAAAAAAAAAAAAAAAADqCPYv3WNs5e3Ks7R/W/qDCzEJJkleol2JGx9Q5/rpHr1NRTpE2z92shSMWauCMgQruE6zcg7lKWZCiyuJKDZk9RAmza+9ecYGT0Un3rLhHS8YtUUZShuYPmq/YB2Pl6uWqtNVpSluVJs8gT01aPkmB3QPtdMsBAAAAoG2gwAIAAAAAAAAAAAAAAAC4AlZMWVHn9UmvJFnb3W7qVm+BhSQNnzNcMaNjtP2d7UpdnqqSv5fIM8hTMT+JUdzjcYoeEX3ZdXgGeeqhpIeUvCBZexbtUdKrSaoqr5JfVz8lPJug+Cfj5RPu0/gbCAAAAABtHAUWAAAAAAC0U0vHL3X0EjR55WRHLwEAAAAAAABoNeZY5tglT2RCpCITIpuVw8nopLiZcYqbGWeXNQEAAABAe+Dk6AUAAAAAAAAAAAAAAAAAAAAAAAA4GjtYAAAAAAAAAGiXiouLmzQuJydHjz76qJKTkzVo0CC99957Cg0NbVQOk8nUpLkBAAAAAAAAAAAAOA4FFgAAAAAAAADaJW9v72bnWLt2rWJiYpo0duPGjc2eHwAAAAAAAAAAAMCVQ4EFAAAAAAAAAAAAAAAAALRBS8cvdfQSAAAAgHaFAgsAAAAAAAAA7VJRUVGTxk2cOFEbNmxQVVWVnJ2dNXLkSK1YsaJROUwmk3bu3Nmk+QEAAAAAAAAAAAA4BgUWAAAAAAAAANolLy+vJo1btGiRpk+fru+++05xcXH68MMPG53LZDI1aW4AAAAAAAAAAAAAjkOBBQDgitm7dK+y3sySk8XJIfNPXjnZIfMCAAAAANqW0NBQrVmzxtHLAAAAAAAAAAAAAHCFOeYIVwAAAAAAAAAAAAAAAAAAAAAAgFaEAgsAAAAAAAAAAAAAAAAAAAAAANDhUWABAAAAAAAAAAAAAAAAAAAAAAA6PAosAAAAAAAAAAAAAAAAAAAAAABAh0eBBQAAAAAAAAAAAAAAAAAAAAAA6PCMjl4AAAAAAAAAAAAAAAAAAKDxykxlTRpXUF6g9/e+r/SCdEX7Retn/X4mPze/RudxN7o3aX4A7cPS8UsdvQRNXjnZ0UsAALQzFFgAAAAAAAAAAAAAAAAAQBv00H8fanaOfbn79KuNv2rS2CXjljR7fqAtu9JFTmaDWeWV5SozlcnJ4kSREwAALYACCwAAAAAAAAAAAAAAAAAAgEaiyAkAgPaHAgsAAAAAANBiHL01NNtCAwAAAAAAAGjP/jX2X00a9+b3byr1TKrMFrOcDE7qHdhbT133lJ1XBwAAALQ9FFgAADoMRx/cJzn+AL/i4uImjcvJydGjjz6q5ORkDRo0SO+9955CQ0MbncfLy6tJ8wMAAAAAAAAAgNavzFTWpHEF5QV6f+/7Si9IV7RftH7W72fyc/NrdB53o3uT5geAtqypz32PD3hc7+16Tz/k/6AY/xg9Gvsoz6NAE1zpIiezwayzYWfVKbuTnCxOTZobAADYRoEFAAAdiLe3d7NzrF27VjExMU0aa7FYmj0/AAAAAAAAAACtVUcvMHjovw81O8e+3H361cZfNWnsknFLmj0/AHQUfm5+em7wc45eBtDmXekiJ7PBLDcXN7kb3SmwAACghVBg4QDlpvJGf7HWXr5QAwAAAAAAAAAAAID2igIDAAAANARFTgAAtF4UWDjAM5ueadZ4vlADADRVUVFRk8ZNnDhRGzZsUFVVlZydnTVy5EitWLHCzqsDAAAAALQ3xcXFTRqXk5OjRx99VMnJyRo0aJDee+89hYaGNjqPl5dXk+YHAABA0/xr7L+aNO7N799U6plUmS1mORmc1Duwt5667ik7rw4AAAAAAODyKLDoYDr6lrQA0NE19cCSRYsWafr06fruu+8UFxenDz/8kINUAAAAAACX5e3t3ewca9euVUxMTJPGWiyWZs8PAEBb4sjfAs0Gc5Pmbm86eoFBU38PfnzA43pv13v6If8HxfjH6NHYR9vkb8st8X/QbDCrvLJcZaYyOVmcLpurLf7dALRtHIsEwNE4yQsAwN7afIFFbm6u3n77ba1YsULHjh2Tq6urevbsqcmTJ+vRRx+Vq6urXeZZvXq13nvvPSUnJ+vMmTMKDw/X8OHD9cQTT2jgwIGNyvXG8DcU6B7YqDH2+kKNLWkBAE0RGhqqNWvWOHoZAAAAjebIL9VNJlOT5gYAAACagwPcOjZH/xb4ziPvNHv+ts7RBQYNfQ649KB9Rz8H+Ln56bnBzzVpbGvi6P+DEr/JA7jyHP3c19TiRke/9gGwH07yAgCwtzZdYLFjxw7dcccdOnnypEaPHq2ZM2eqtLRUCxcu1KxZs/Thhx/qq6++UufOnZs8h9ls1qOPPqoFCxYoICBAjzzyiKKjo/X9999r4cKFWrx4sf7yl7/ol7/8ZYNzuhndGv3mur2csQOAY3HmKgAAAHQ0jv5SfePGjc2eHwDasqKioiaNmzhxojZs2KCqqio5Oztr5MiRWrFihZ1XBwDtU3s7wI0zt7ctjbmvqrPXAY5S230M2KvAwNHPARzcDwC40njtAwAAgL212QKLjIwMjRs3TqdPn9aTTz6pt956yxp74okndMstt2jjxo26/fbbtWXLFrm5uTVpnueff14LFixQUFCQvv32W1199dWSpEceeUR33nmnbrvtNj355JMKDw/XpEmT7HLb6mKvL9Q6+pa0QEfn6C8WOHMVOIM0AHQ8nDkVAICOzcvLq0njFi1apOnTp+u7775TXFycPvzwwybnAgBcWY7+HrqjH+DmyN8CzQazZnwwo0nzV9fcs/dzFms4Ukv8HzQbzDobdladsjs1ungJAK4ERx+LZI/3n0Bbxm9xjn8eAgC0P222wOKZZ57R6dOn1bVrV7322ms1Ym5ublqwYIF69uyp5ORkvfvuu3r66acbPcf+/fv1xhtvSJL+8Ic/WIsrLhg7dqymTJmihQsX6oknntCtt97a6n/kaytb0l7KnmetceT8reENJdCRtdXnoPaEM0gD6KjKTeWNfh1y9OuPveZ39IE1jjyoorFnWbX3/M3VXj4HOfrgIkdzZIGr1PQDqwEgNDRUa9ascfQyAKBNcvSBJR39ADdHfw/tyN8CW8NnIMnx30U4usinoc8Blx60z8Fl9tES/wfNBrPcXNzkbnRv0HdMbfV5CEDb5ehjkRz9/hdwtI7+/ldy/PMQAKD9MVgsFoujF9FYaWlp6tmzpywWi1544QX94Q9/qLPf6NGjtW7dOgUHB+vHH3+U0di4epIHHnhA//73v+Xh4aGcnBz5+PjU6rNlyxYNHTpUkjRv3jzNmjWr3nyZmZmKjIzUO6PeUZB7UKPW0l7c99V9jl6CQznyDaXZYFZeeJ4CTgZ06DObdPQvFJt6++11cFlJZIlDH4Ot4TmoDb7s2pXBYHDo/Bs3btTQoUMb/Z4AsIdjx44pOjpaJ06cUEREhKOXgyvkwmcAoCNrDV+sN0VBeUGtL9WbUmQTMDNACQkJjX7/Ya8CB3sUuDZHR3//azKZlJSUxHvQDor7H3wG6JgufAb4681/VaBHoKOXAxv4zrw2e7wHluz/PfSVOnN7azrRQHM4+reok0Enm3Rf2fMAx458HzTGpc+D9noOcLT2+FtgY1+zHP17WFv5P9ASzpSe0RPrn+AzQAdz4TNAenq6oqKiHLKGpeOXOmTets7Rr318JrGf9vj6b8uljx1e+x1v8srJjl5Cg/CdNZqKx079LrwX5DNA+9MmH+nLly+3/kA/atSoevtdKLA4ffq0Nm3aZLPvpcrLy7Vy5UpJ0uDBg+ssrpCkIUOGyNvbW0VFRVq2bJnNAgvA0VrD2XMdXWDQ0au2HX3mqhKVNGl+tB9FRUVNGjdx4kRt2LBBVVVVcnZ21siRI7VixYpG5TCZTNq5c2eT5gcANJ2jzxzl6IMq0Hb5ufnpucHPNTvPrbfe2uwczdnBCwAAAFeWow/skZr+PbC93gPb+3voxp653R4HFzXnd4COrjH3VXX2PHOso7+LaKvs9RzgaB39t0AAQMPZ67WvqZ8BzAazcgtzNf/b+W3uAP/WpqO//vP+FwAA+2uTBRYbNmywtmNjY+vtN2DAgBpjGlNg8f3336uwsPCyczg5Oenaa6/V1q1b9e2336q0tFQeHh4Nnqejaatv6Ow1vyN/WDEbzHrmg2eaNH91zf1RoamPAXv+uITGs9cXC44u8mmrz0HtiZeXV5PGLVq0SNOnT9d3332nuLg4ffjhh43OZTKZmjQ3ANjDG8PfUKB7485e6+jXH3vN7+gteR35+t+cs6w6+v5vLWtA8zmywBUA/h979x4XZZn/f/w9MJwRUBEwUfGYqXmMVNIy082trLWysrKDa22nzd3Op+923C3Xb2Vtu/VNNzNd3dLNLVPbzGNoaoGKx8QEEVZQRECOMsz8/uDnyAiDMIzcM8zr+XjweNwz1/Ge+2Lmvmbuz30BgC8y+sIeyfiLe1zVWi7u5nto17jz+Bv9XQRgNKPfh4wONuT/FkBLc9eNnrz5An8Yi/NfAOd7NavTK+fkvJVT7+/e3rKKC9AUXhlgsWvXLklSmzZtFBnpfELduXNn+/bu3btdauPsehpqx2q1at++fQ6BHXDkrSd07mqfuyYZ/+MSXygaOxEyOsjH1S8VjH4PghQbG6uVK1ca3Q0AcFmQOajJnx1Gf/4Y3b6n3jm1KZp6l1V3t99c7uqDr58Dr1ixQklJSU1eLtddAQ5GBrgCAAAARjD6dwBv/S0MrSfIx9cZ/R7gCYx+HzL6N3Ejb/hXaal0qW0AaC6jv4d3FTfbNBbnvwAAOOd1ARaVlZXKzc2VVHOxZUNqp2dmZjapndr5m9oOARbuZ/QJndHtu8vMe2cafvdcd0Xuu8rXv1DkrgWuced7wPmOGPZ0RCwDQOMZfQ5qdPtGM3r/jW7fnX0wOsja6HPgkJAQhYWFNTnAwugABwJcAQCAt2rshUVWk9VhxV0u7Gk9jP4dwFWeMA8EWgNvfQ/wBK3lfcjo76IA+B5X5wBWk1Uz02Yq/b/pzZ4HtIb3Pm62CQAAPInXBVicPHnSvh0c3PAJTUhISL3lPKkd+BYjf1ixmqwqCygz/O653vrjUmv5QtFonhDkYzSj7xzh618GlJeXq7S0tMkXOObl5emBBx5QSkqKhg4dqg8++OCcAZju5Ovte0If3NF+WVnZeeodAKA1ai0BDqWlpS6VM/qz3119sFgsnIMa3L7RK6946/F3Zx+MPgZGvg8xB/BtlZbKJn8P1FruHGp0+0ZfWMSFPd6L3wEA38Z7gPsY/Xuw0Tf8g+8qKytr8hzUE+b/aD5Xz9utJqumXDlFn/3nMx0sPMg8wAB8/ruHq9fBSK3nWhhv+S3k7N8sjP4c8vX23dmH83092tk3Kjmb0f8DRv8OgdbJZLPZbEZ3oikOHz6sLl26SJKGDBmilJQUp3mtVqv8/f0l1VyYcHrli8b49a9/rY8+qpn4f/nll5owYYLTvH/4wx/06quvSpLef/99PfDAA/Xmy87OVufOnTVj9Ay1DW5rfz7AL0AB/gGN7ht8T1Flkf5v2//pYOFBdY/qrt8M/k2TTyZtJpsK4grULredTDbTeerp+eOO18ATuHoyM+uHWXW+UPxd4u+aXI+RE4rmjMHWcvwl6c5ldxra/oIJCwxt/9bPbzWsbYvF4hAUCRjl8OHDio+PN7obaCHMAXybt5+DuwvnwMaOASPPvyQpIID3OhirqqrKsLaZg9Qw8hhInvE+xBzAt5yeA8B3Gf39W2vkCefVaByOlXfheHkPXzlW7vo90Mjvok6Un9CT655kDuBjPGEOwDmod3Ln+7vR38O7qjX8DmAETzs3MPo6GMn490FPeA0AX2bk7xDZ2dnq1q0bc4BWyOtWsKj9o+SpU6cazFs7PTQ01GPaeXqdY+Tr+CHjdc0l1zSpf/A90xKm2berVa0CFTSpvE02lbcpV4EKZJLxJ9euaO5r4M1ua3+b/rH+H8o6mqUuMV102xW3qSy06XdBLJNxd05s7hj05ePvTgUdjX3dkpOTDWvbarUa1jYAMAfwTa3hHNxInAO7h5HnX4AnYA5iPN6HALS0mffObFQ+m2yqaFOh4JPBMsmkOd/MUfp/0+0X9vS6oJem/WLauSs6S0EA31u6myecV6NxOFbehePlPXzpWBn5e6A7vos6Vd7wtSXA+WL0b8BwjSe8v7vre3ij2zfydwAjeMLY8TS8DwK+zcjfIQoKeP9prbwuwKJNmzb27YqKhqNvy8vL6y1ndDv13r32iPF3UkPrZjPZVCDPiV5G07RTOz0/6PkzTxT9/z8vwhisMeeXc1wq57Y7Nxwx9s4NI0eONKxti8Wir776SsOHD5fZ3LRToJtvvllr165VdXW1/P39deWVV2rJkiXnqae074l9cEf7WVlZGjBgwHnqITwdcwDfxPlP83AO7B5Gnn9JUmFhoUvljP7sd1cfLBaLNm/ezDmoge0buSy0N89B3NkHo5fmNvJ9iDmAb3t11KuKCoqyPw7wC5DZv+H3gtZy51Cj2w/Ob9z3XzaTTQUBBWp3vOZc7dF+j+r/TtW6a3a/3ygy3ztX0W1tPOG8Go3DsfIuHC/vwbFqGW75Lqr83FnQen3//ffq1KmT/XFQUJCCgoIaLOOuufdXU75qchkYzxPe343+Ht7o9r2VJ4yd2ly9DkZqPdfCGP1byJLJjStjM9l0IvaE2ua1lclmctvrf/Oim5tcRmr5/T+b0fsvec9rcPbYOZvRY8DI3yGys7MNaxvnl9cFWAQFBSkuLk65ubnKy8trMG/t9ISEhCa1Uzu/u9sJMYco3Bzu+KStKb0Dms4qq0wyyWQzyc/mZ3R34IMYgzVC/Zu2otJpDw9+WB9s/0A/F/6sHlE99MCgB1yry+DPm6ZeVORuYWFhioyMbHI/FixYoHvuuUc//PCDEhMT9fHHHysysuV+YPf19j2hD+5ov6kBv2hdmAP4Js5/4AljwOjzL1c/r43+7HdXHywWC+egXtq+u3jr8feUPriDke9DzAF8W1RglNoHt29SGbd9/+OiVtN+I+daZ5+rtQ1sq2eGPeNSXTi/POG8Go3DsfIuHC/vwbHyHp5wkSuMExcXp86dOzepjLvm3rw3eCfe3+EqTxs7zfnuoLVcC2P0byGNfc2sJqvKA8oV4h8iP5uf215/b9n/sxm9/5L3vAZnj52zGT0GjGT0b7E4f7zyyPbv31+5ubk6efKkioqKnP5D1Y4M6tevX5PbOO3w4cMN5j3djp+fn/r06dOkdgAAaIzIoEg9Pexpo7vhs2JjY7Vy5UraN5DRfTC6fQAAXLVowiJD25+8bLJL5Tzhs9foPtC+8WPASJ6w/57QByP5+v7DGEZ//+Pr7QMAAAAtjbknAF/n698FGP05YPTr7+v7L7We16A5v0feZb5Ld424S5K0Ztoal+pw9fdIoCHGhzC6YMyYMfbt7du3O82Xmppab5nGuOSSS+x3GGuoDavVqh07dkiSRowYoZCQkCa1AwAAAAAAAAAAAAAAAAAAAAAAjOeVARY333yzTKaapRVXr17tNN+3334rSYqOjtbo0aOb1EZQUJCuv/56SdKWLVtUUlJSb77Nmzfb0yZNmtSkNgAAAAAAAAAAAAAAAAAAAAAAgGcwG90BV/Tq1UuTJk3SZ599pvnz5+uFF15QYGCgQ56DBw9qzZqa5WKefvppmc2Ou7pr1y7deOONKisr08KFC3X55ZfXaeeZZ57RokWLVF5eroULF+r++++vk2fOnDmSapbqmTZtmrt2EQCAVqk5S8I1l9VkVafHOhnWPgAAAAAAAAAAAAAAAAAA8GxeGWAhSTNnztTatWuVmZmp5557Tv/7v/9rT6usrNT999+v6upqDR06VI888kid8n/84x+Vnp4uqSaQYtOmTXXy9O/fX08++aRmzJihF154QWPHjlX37t3t6d98843mzZsnSfrLX/6isLAwd+8mAAAAAACA1zIywFaSJi+bbGj7AAAAAAAAAAAAaL2M/i0MwPnhtQEWXbp00bJlyzRx4kS9+eab2rVrl66//nqVl5dr3rx52rlzpwYNGqQvv/xSwcHBdcpbrVb7ts1mc9rOn/70Jx0/flxz5szRpZdeqt/85jdKSEhQSkqK5s6dKz8/P7311luaNGnSedlPAAAAAAAAAAAAAAAAAAAAAABw/nltgIUkDRs2TGlpaZo1a5aWLl2qp556SgEBAerdu7dmzZqlBx98UIGBgfWWff7555Wamqry8nLNmDHDaRt+fn6aPXu2Jk6cqPfff18fffSRTpw4obi4ON12222aPn26hgwZcr52EQAAuNHORTuV81aO/Gx+hrTPHZQBAABaltF3DbKarOr0WCdD+wAAAAAAAAAAAAAAaDyvDrCQpOjoaL322mt67bXXmlRuwIABSk9Pb3T+a665Rtdcc01TuwcAAGBn9AV+BHgAAAAAAAAAAAAAAAC4j9HXghjN1/cfQOvk9QEWAAAAAAAAgKdiFTUAAAAAAAAAAAAA8B4EWAAAAPgIo+8awMV9AAAAAAAAAAAAAAAAAABPRoAFAAAAWoTRAR6SdwV5lOWXafM7m7Vv6T4VZhbKP9Bf0RdGq//k/rrkgUvkH+hvdBcBAIAXMPoczJvOvwCjMQcAAAAAfAtzAAAAAMC3MAfwHgRYAAAAAB4mZ2uO/vmrf6rkSIm6j+uuSx68RJZyi3bM26Gvp3+t7R9v1+1f3a42F7QxuqsAAAAA3IA5AAAAAOBbmAMAAAAAvoU5gHchwAIAAADwIEVZRVp43UKVHSvTsN8N0/i3x9vTLv3tpfrHL/+hzLWZWnT9Ik3dOFXmIE7pAQCA52IFDeDcmAMAAAAAvoU5AAAAAOBbmAN4H44AAAAA4EFWPblKZcfKFNklUmPfGOuQZg4ya8LsCXrvwvd0JOWItr63VUmPJxnUUwAAAM9nZICH1WRVp8c6GdY+vAdzAAAAAMC3MAcAAAAAfAtzAO9DgAUAAAB8hpEX2OVX5J8zz/H049q9eLckacBdA+qNSG/Xo526XdlNB789qI0zNmr49OHyM/u5vb8AAABovp2LdirnrRz52Yw5X2MFD8/HHAAAAADwLcwBAAAAAN/CHMA7EWABAAAAeIg9S/ZItprt7mO7O83XfVx3Hfz2oMqOlSlzXWaDeQEAAOC7jAww9hSeHmTCHAAAAADwLcwBAAAAAN/CHMA7EWDRgk6dOiVJqrJWGdwT+KKq6iqt+HGFbo27VUF+QUZ3Bz6IMQijMQZhtNPngKfPCeuTuSbTvh03KM5pvrjBZ9Iy1mQwqfJgzAF8G589YAyAMeDbOP6ewcggkyNlRyQxBwA8Fe/T3oNj5T04Vt6F4+U9OFatC3OA1uf0nK+huR9QH97f4SrGDlzF2IGrGDvNwxzAO7F+SAuqrKyUJFmsFoN7Al9UZa3S16lfc3EfDMMYhNEYgzDa6XPA0+eE9Tm666gkKbBNoIIjg53mi+wcad8+tvuYm3qI84E5gG/jsweMATAGfBvHH8wBAM/G+7T34Fh5D46Vd+F4eQ+OVevCHKD1OT3na2juB9SH93e4irEDVzF24CrGTvMwB/BOrGABAAAAeABLpUUluSWSpPDY8AbzhsWG2bcLMwvPZ7cAAAAAnCfMAQAAAADfwhygdVv56ErtCt9ldDcAAADgQZgDeC9WsAAAAAA8wKmTZ5aONgc3HAcdEBJg3648yR2RAAAAAG/EHAAAAADwLcwBAAAAAN/CHMB7sYJFC7JarZKkwopChfqHGtwb+Jqy6jJJ0omKE6r0580XLY8xCKMxBtHSrNVWyXbm8YnSEzXP//9zwrNVlZ9ZStE/0L/BumunV5WxBKMnYw7g2/jsAWMAjAHfxvH3PcwBIJ053icqThjcE5wL79Peg2PlPThW3oXj5T04Vp7r7DlAYUVhzfPMAXwKvwPAVby/w1WMHbiKsQNXefrYeW/sey3WFnMA30GARQs6caLmB5XXN79ucE/gy55e97TRXYCPYwzCaIxBGO30OeHZakeiV5+qbrCO2ukBoQEN5ITRmANA4rMHjAEwBnwdxx/MAXxLXl6eJOkPG/9gcE/QWLxPew+OlffgWHkXjpf34Fh5j7y8PHXp0qXO88wBWid+B0Bz8f4OVzF24CrGDlzF2HGOOUDrQ4BFCxo+fLi2bt2q2NhY+fn5Gd0dAAAAnEeWUxZZK89EqFutVh0rPKbEYYn15g9sE3imbIWlwbprR7gHtQlqZk9xPjEHAAAA8B3MASBJgwcPZg4AAADgI5zNAQYPHlxvfuYArRO/AwAAAPgO5gC+gwCLFmQ2m5WYWP+PaQAAAGj9eqqn0zRzkFnhceEqyS1RSV5Jg/WU5pXat6MSotzVPZwHzAEAAAB8G3MA38McAAAAwLcxB/A9zAEAAAB8G3OA1onQaQAAAMBDxPSPkSSdOnlKFUUVTvMVZxfbtzv063De+wUAAADg/GAOAAAAAPgW5gAAAACAb2EO4J0IsAAAAAA8RMKYBPt27vZcp/mOpB6xb3cb0+18dgkAAADAecQcAAAAAPAtzAEAAAAA38IcwDsRYAEAAAB4iL4395VMNdsZqzOc5jv47UFJUmh0qBJGJ7RAzwAAAACcD8wBAAAAAN/CHAAAAADwLcwBvBMBFgAAAICHaN+rvfpN6idJSpufpupT1XXynDh4QhlraiZclz19mfzMnNIDAAAA3oo5AAAAAOBbmAMAAAAAvoU5gHfiCAAAAAAeZNzMcQrtEKrCzEKtfm61Q5ql0qJl9y+TrdqmjkM76tJHLjWolwAAAADchTkAAAAA4FuYAwAAAAC+hTmA9zHZbDab0Z0AAAAAcEb2lmx9OvFTlRwpUY+re+jC6y9UVXmVdszboaM7jypuUJxuX3672lzQxuiuAgAAAHAD5gAAAACAb2EOAAAAAPgW5gDehQALAAAAwAOV5Zdp86zN2rd0nwoPFco/wF/te7dX/9v7K/HBRPkH+hvdRQAAAABuxBwAAAAA8C3MAQAAAADfwhzAexBgAQAAAAAAAAAAAAAAAAAAAAAAfJ6f0R0AAAAAAAAAAAAAAAAAAAAAAAAwGgEWAAAAAAAAAAAAAAAAAAAAAADA5xFgAQAAAAAAAAAAAAAAAAAAAAAAfB4BFgAAAAAAAAAAAAAAAAAAAAAAwOcRYAEAAAAAAAAAAAAAAAAAAAAAAHweARYAAAAAAAAAAAAAAAAAAAAAAMDnEWABAAAAAAAAAAAAAAAAAAAAAAB8HgEWAAAAAAAAAAAAAAAAAAAAAADA5xFgAQAAAAAAAAAAAAAAAAAAAAAAfB4BFgAAAAAAAAAAAAAAAAAAAAAAwOcRYAEAAAAAAAAAAAAAAAAAAAAAAHweARYAAAAAAAAAAAAAAAAAAAAAAMDnEWABAAAAAAAAAAAAAAAAAAAAAAB8HgEWAAAAAAAAAAAAAAAAAAAAAADA5xFgAQAAAAAAAAAAAAAAAAAAAAAAfB4BFgAAAAAAAAAAAAAAAAAAAAAAwOcRYAEAAAAAAAAAAAAAAAAAAAAAAHweARYAAAAAAAAAAAAAAAAAAAAAAMDnEWABAAAAAAAAAAAAAAAAAAAAAAB8HgEWAAAAAAAAAAAAAAAAAAAAAADA5xFgAQAAAAAAAAAAAAAAAAAAAAAAfB4BFgAAAAAAAAAAAAAAAAAAAAAAwOcRYAEAAAAAAAAAAAAAAAAAAAAAAHweARYAAAAAAAAAAAAAAAAAAAAAAMDnEWABAAAAAAAAAAAAAAAAAAAAAAB8HgEWAAAAAAAAAAAAAAAAAAAAAADA5xFgAQAAAAAAAAAAAAAAAAAAAAAAfB4BFgAAAAAAAAAAAAAAAAAAAAAAwOcRYAEAAAAAAAAAAAAAAAAAAAAAAHweARYAAAAAAAAAAAAAAAAAAAAAAMDnEWABAAAAAAAAAAAAAAAAAAAAAAB8HgEWAAAAAAAAAAAAAAAAAAAAAADA5xFgAQAAAAAAAAAAAAAAAAAAAAAAfB4BFgAAAAAAAAAAAAAAAAAAAAAAwOcRYAEAAAAAAAAAAAAAAAAAAAAAAHweARYAAAAAAAAAAAAAAAAAAAAAAMDntYoAC5vNpvfee0/h4eEymUxat26d29tYsWKFrr/+enXq1EnBwcHq1q2b7r33XqWmprq9LQAAAAAAAAAAAAAAAAAAAAAA0LK8PsDi559/1ujRo/Xb3/5WpaWlbq/farXq/vvv17XXXquNGzfqrrvu0rvvvqtx48Zp4cKFGjZsmN599123twsAAAAAAAAAAAAAAAAAAAAAAFqOyWaz2YzuhCtsNpv++te/6plnnpG/v7/69u2rzZs3S5LWrl2r0aNHu6WdZ555RjNmzFB0dLS+//579ezZ05729ddf69prr5XNZtOnn36qSZMmuaVNAAAAAAAAAAAAAAAAAAAAAADQsrx2BYuXX35Zv/3tbzVy5Ejt2rVLV199tdvb2L17t2bOnClJevXVVx2CKyRp/PjxmjJlimw223lbQQMAAAAAAAAAAAAAAAAAAAAAAJx/XhtgYbPZNGfOHH399dfq3LnzeWnj9ddfl9VqVUhIiO64445689x3332SpLy8PM2ZM+e89AMAAAAAAAAAAAAAAAAAAAAAAJxfXhtg8dJLL+nXv/71eau/srJSy5YtkyQNGzZMbdq0qTffiBEjFB4eLklavHjxeesPAAAAAAAAAAAAAAAAAAAAAAA4f8xGd8BVJpPpvNb/448/qri4WJI0aNAgp/n8/Pw0YMAAbdq0Sd9//73Ky8sVEhJSb16LxaJt27YpNjZWfn5eG9sCAAAAF1itVuXl5Wnw4MEym732NBxNxBwAAADAdzEH8E3MAQAAAHwXcwDfxBwAAADAdzEHaL04mk7s2rXLvt25c+cG855Ot1qt2rdvnwYPHlxvvm3btunSSy91XycBAADgdbZu3arExESju4EWwhwAAAAAzAF8C3MAAAAAMAfwLcwBAAAAwByg9SHAwonMzEz7dmxsbIN5a6dnZmY6DbA4nS85OVnx8fHN7yTQBNXV1dq2bZsGDx4sf39/o7sDH8QYhNEYg8YrKytzuWx+fr6ee+457dy5UxdffLH+9Kc/KTo6usn1hIaGutyH5srOztbIkSPPeW6J1oU5gG/jsweMATAGfBvH3zO4Og9xxxzkv//9r8aOHcscwMecPt7ff/+9OnbsaHBv0BDep70Hx8p7cKy8C8fLe3CsvMeRI0c0YsQI5gA+5vTx/vbbb3XBBRc0qWxr+P0LruP9Ha5i7MBVjB24irHjHHOA1osACydOnjxp3w4ODm4wb0hISL3lznZ6KcDMzEwVFxfbn/f392dpGJx3VqtVxcXFOnjwIMtSwhCMQc9w6tQpl8qdOHFCb775pvbv36/evXvr8ccfV9u2bZtcT2BgoEvtuwNj0Hivvvqqy2XT0tJUUFAgqeZC9V/96lcaMGBAk+v5n//5H5f70FzHjx+XJMafj2EO4Nv47AFjAIwB38bx9wyuzkPcMQexWCySmAP4mtPH++DBgzpx4oT9eeYAnof3ae/BsfIeHCvvwvHyHhwr73H6/I/j5FtOH++XXnqpyef8reH3L7iO93e4irEDVzF24CrGjnPMAVovvs13ory83L59rotBa6c35o5oH3zwgcOkauDAgRo0aFDTOwk0gc1mU1FRkSTJZDIZ1o+qqiqXyhUXF2vu3LnKzMxUQkKC7r33XkVERDS5noCAAJfaR/N5whg0evxJxo/BefPmuVSu9pd7KSkpeuSRR1z6cu/uu+92qX138IQxCNfVvjC9vseNlZWV5Y7uuMTVPqN1YA7gmzzhs8fV8x+Jc3B38IQxYDSjz8GNHn+MAeMZOQZtNpv9u0Jf/hzw5vYbegycy/vvv88cwMPxOe09OFbeg2PlXThe3oNj5T0auiEnUJ/W8PsXXMf7O1zF2IGrGDtwFWPHOeYArZfJZrPZjO6EO7z00kt6+eWXJUlr167V6NGjm1XfI488or/+9a+SpCVLluimm25ymveZZ57RjBkzJNVcuHrXXXfVmy87O1udO3dWamqq4uPj7c8HBQUpKCioWf1trNLSUpfKHT16VI888ohSU1M1ZMgQvffee4qJiXFz785/+2FhYeehd97BYrHo+++/14gRIwy9U5qrx6C6urrOc64sN+Xq/0BrYeR7gMViUVpamqFj0OjxJxk/Bo1+DYzcf094HzT6c9joz8HmHP9bbrlF69atU3V1tfz9/TV69Gh99tlnbuxdw9xxDLKysjR48GAdPnzY4VwQrZsnzAGM5svvfZ7w2dOc/W8Nn//Nad9d58BbtmzRsGHDmjwGWsP/QHPad9f4O3r0qEvtny7LGPB+Ro/BpUuXGnr8m/P9nTvnwka27+r7gDvmIMwBfNPpOcC2bdvUqVMn+/O+NAfwFufrfN3oOZDU+j7/PWFu1RRGjwGj58Fr1qwx9PynOYzuQ0u3f/Z8xdf235vab87c0l19aAmtof2cnBwNGDCAOYCPOT0H2Lhxoy644AL7842ZA7jr96/Wdv7nbVw9/7NYLPr66681b948bdu2zWvf+zyhfV/7H/C2ORI8B2MHrmLsOJeTk6MePXowB2iFCLBw4tlnn9Ubb7whSVqwYIHuuOMOp3mnT5+ud999V5L0+eefa+LEifXmOz2pysjIUEJCQrP65ypfjx4zeri7OqnKy8vTAw88oJSUFA0dOlQffPCBYmNjm1SHxWLRpk2blJSU1OQPOXe0f1p4eLhL5dylpKTEpXLufA2MbN/o13/FihWGjkGj91/y3jE4ceJErVmzxv7l3pgxY7R06dIm12P0j3vJyckaOXKkYSf7Rn8OGz3+mnP88/LydM899+iHH35QYmKiPv74Y5f6YPQxkMSkysd4whzAyHNQyfjPXyPf+zzhHNzo118yfh7mCe/9RjL6898TxqCvM/p/0Nc/h2A8V/8H3DEHyczMVLdu3ZgD+JjTcwBfPu5Gv/c39vuH8/VdkSecf7a2z/+mzq2MvrjK6DFg9Dw4KirKpfYBoDXx5XNBX9Sc3wHc9fuXt5yDny9G7z/fPxnP6DlQS/OEax/gnRg7cBVjxzm+D269GOlO1J705OXlNZi3dnpjJktlZWVNPrk3+sLa1qI1TKpWrVqlHj16NLseo9p39Yt9d13czTEw1jXXXNPsOpqz/0aPP8n4MejqFwvz58+v8+We0V+Uoem8dfxJUmxsrFauXOlyecBoRs4BjP7fN1pr2H8jzn8k950DGT0P83VG/w8YfQ7Oj5vG/w/68hj0hAsMPeFzwFvbZw6C5jJyDmD0dzbe8t5vsVhUXl6u0tJSmc3mVnX+yee/d97kxl2Mfv0BAEDjuWvuafTnv9EXtxu9/zCe0XMgo+fhgNH4HwTQGhFg4UT//v3t24cPH24wb3Z2tiTJz89Pffr0OWfd/fr1a1bfvPVH5ebwpAsrmFQ1j6snNFzc7R6+fmEJ4891XFjiHkZ/DnOBobHH4NChQ80+D4T3MnIOYDTe+4zVnHMWd50DuePurd46D27OKiat5X/A6HNwoy8uby1jwJs/h4wcgxaLxeWVHD1hFUGj58JGtw8014UXXtis8lxc7jqjP/uMngNJxr8GRjN6/40eA0bPAYw+/2kOo/vQ0u2fPV/xtf33pvabM7d0Vx9aQmtoPycnp9nngYA3MvrCWqO5ev5nsVh01VVXafv27V793ucJ7Rs9BzA6yAgwGv+DAFojk62VvLu89NJLevnllyVJa9eu1ejRo5tVX2VlpTp06KCTJ09q9OjRWrt2bb35rFarIiMjVVJSossuu0zJyclO6zy9FIyRXD3c7lqW0FXuat9bl2VuLRd1SMZHjLo6sW8tk0pXX393/A9aLBatWrXKay8scRejx6AnvAZGac4YNDpq3ujlgRl/7jkGmZmZ6tatG8sC+hhPmAMYfWGHL7/3ecI5uCe89xo9DzNyHtyc5XJbw/+A5Blj0FWtZQwY/T/orZ9D7uAJxx/GYg7gmzxhDmA0o9/7jb643BN+h2ltn/9NnVv5+hgweh68bds2rz3/MboPLd3+2eervrb/3tR+c+YW7upDS2gN7Z8+F2QO4FtOH/eMjAwlJCQY0gejvwM0+vzL6DmIq98/WSwWffnll/rwww/1448/eu17nye0b/QcqKUvv2ypc4PGcvU9SDL+Wgxfc77Gjq/9D/oiT3vf8STMAVovAiwacOedd+of//iHQkJCdPTo0XonBJs2bdJll10mSZo1a5amT5/utL7T/0i7d+9W165dm9QXo0/qWwujJ5VGX9zOj/quM/o1MLp9d2AMNg+vQfNZLBYFBAQY2gdvPe1i/LkHF1f5Jm+eA/j6/z7n4O7jrfMwd/DmLxtb0xg0kieMAW/9H2wNY9ATjj+MxRzAN52eA/z000/q1KlTk8q2loubvOXi8vN153ZP+B2mtX3+N/Uz1Vv332hGz4PR8jhe3oNj5T24uMo3eUKAhat8/eJ2o79/4v3dfXxtDuBpY8fo9wDJe1fzbOkAk/M1dnztf/BsnhBkdL7bP9fNL4w+BkZiDtB6Gf8Ja5Bdu3bpxhtvVFlZmRYuXKjLL7+8Tp5nnnlGixYtUnl5uRYuXKj777+/Tp45c+ZIkmJjYzVt2rRGtR0aGtrkN5T58+fXOan35TclV7n6mhn9+sfGxmrlypUt1p6nte8JjH4NjG7faL6+/xKvAYzF+AOazxvnAL7+v2/0/hvdvjt56zzM17WmMejrvPV/kDEIwNsZOQcw+u6trnLXe39TLioICQlRWFiYzGaz4Z997uTrn//euv9G4/wLAADf467Pf1+fg8B4zAHgjptNrFq1Sj169HBDb1q+/ca+D1ssFpWXl6u0tNS+ip2RK4i0lv9Bd93sxJvHoLfecBZoiM8GWPzxj39Uenq6pJpAik2bNtXJ079/fz355JOaMWOGXnjhBY0dO1bdu3e3p3/zzTeaN2+eJOkvf/nLeX1z56TeWLz+AOAerkZtu2NSZ7FYtGLFCqfR1A0x+ss9AL6Jc1D4Ov4HAGPxPwgALY+Ly43FZx+vga/vPwAAgKuYg8BbMQdwD1eDrKTWs5qn0YwOMHH14nr+BwF4Mq8OsFiwYIF9Oy0tzb69atUqZWdnS6p5Ex43blydslar1b7d0Bv8n/70Jx0/flxz5szRpZdeqt/85jdKSEhQSkqK5s6dKz8/P7311luaNGmSO3YJAIBWzehJ3dq1a+13JWwKvtwDAAAAAACtHT9qAwAAAGhJzEHQWrT0jSbPXoXA6GsXmtO+r6/mSYBJ6+AJQUbnu32LxaJNmza5dFNbwFt59UifMmVKvc//6U9/sm9fccUV9QZYPP/880pNTVV5eblmzJjhtA0/Pz/Nnj1bEydO1Pvvv6+PPvpIJ06cUFxcnG677TZNnz5dQ4YMaf7OAAAAj8WXewAAAAAAAAAAAAAA4GxG32jS1dUDPIGvr+bZ0gEmZ18kb/TF/a2FJwQZne/2LRaLQkJCXLqpLeCtvHqkN+fkYMCAAUpPT290/muuuUbXXHONy+0BAABj7xpgsVi0bds2l9oHAAAAAAAAAAAAAABA62H0zTZbOsDk7Ivkjb64H61nDAKtkVcHWAAAAO9i5F0DLBaLS20DAAAAAAAAAAAAAADUp6VvNHn2KgSAq7i4HgCc4xMWAAB4PCZ1AAAAAAAAAAAAAADA07T0jSbPXoUAAAC4H5+wAAAAAAAAAAAAAAAAAAAALYQbTQLuUVpa6lK5vLw8PfDAA0pJSdHQoUP1wQcfKDY2tsn1uBpkBcCzEWABAAAAAAAAAAAAAAAAAADgZbi4HL4uPDy82XWsWrVKPXr0cKmszWZrdvsAPA8BFgAAAAAAAAAAAAAAAAAAAF6Gi8sBAHA/AiwAAAAAAAAAAAAAAAAAAAAAeJWSkhKXyk2cOFFr1qxRdXW1/P39NWbMGC1dutTNvQPgrQiwAAAAAAAAAAAAAAAAAAAA8DJcXA5fFxYW5lK5+fPn65577tEPP/ygxMREffzxxy7XBTSkorBC+5fvV8bqDOVuy9WJjBM6VXJKgeGBat+rvbqN7abEBxMV2SXynHUd3nRYW9/bqqzkLJUeLVVYhzDFj4hX4kOJShid0Kj+WC1WpcxO0c4FO5W/L1+WSosiu0Tqwhsu1PDpwxUe17iVkQoPFWrzrM06sOKAig4XKTA8UDH9YjTw7oEaeNdAmfxMjarHUxFgAQAAAAAAAAAAAAAAAAAA4GW4uBxwTWxsrFauXGl0N9DKHd50WPPGzFN1ZbVkki6aeJH6T+6voIggFRwo0I5PdmjjGxu19d2tumHuDep3Sz+nda1/Zb3Wv7xe5mCzBk8brJj+Mcrfm6/U2anas3iPkp5M0rg/j2uwP2X5ZVp43ULlbMlRdJ9oXfb0ZQoMD1T68nRtfGOjtv19m25Zcou6Xt61wXr2L9+vz2//XJUnK9X35r4a/vvhKjteptTZqfri3i+UtiBNty69VUFtglx63TwBARYAAAAAAAAAAAAAAAAAAAA+govLAeD8qyyuVHVltUz+Jt2x8g71GNfDIf3yFy7X3Mvn6ujOo1o6ZaliLo5Rh4s61Knnxw9+1LoX18kcbNZda+5S/LB4e9qAKQM0d9RcbZq5SWExYUp6IqnevlgtVn068VPlbMlR56TOmvLtFAWEBEiSEh9K1OrnViv59WT984Z/atrWaWrfq3299RxJPaLFkxbLUm7R1bOu1vDpw+1piQ8lau6oucpYnaHPb/9ck5dNbvJr5in8jO4AAAAAAAAAAAAAAAAAAAAAAACtzaB7BtUJrpCk4KhgjZtZs+pE9alqpc5JrZOn9FipVj25SpI0bPowh+AKSeo4uKM9qGLt/6xVcXZxvX1ImZ2irOQsySRNmD3BHlxx2uiXR6tdz3aqKKzQN49943Rflj+0XJZyizoN6+QQXCFJIW1DdM1710iS9n+1X3v+tcdpPZ6OFSwMsOy+ZYoOjjakbW+OBgIAAAC8FXMAAAAAAABaxqIJiwxtn3k4AACAb3H1/NNqsqqgY4Fy3sqRn61590jmHBQAAM8UHBWsTsM6qe/NfZ3muWDoBfbt/L35ddK3vLNFp0pOSZKGTBtSbx1Dpg3R+lfWy1Jh0aY3N2n82+Md0m02m5JfT5Ykdbmsizr0rbtKhn+AvwbeM1BrX1ir/V/tV+6OXMUNjHPIc/Dbg8rZklPT5n319yVhdILa9WqngvQCfffad+p7k/N992SsYAEAAAAAAAAAAAAAAAAAAAAAgJvED4/XtM3T1HN8T6d5AkLPrCRhDqq7bsKeJTWrQEQlRKldz3b11hERH6HoPjU3/dy7ZK9sNptDevbmbBUfrlnZotvYbk77UnuVjT2L664+sXvxbvt297HdndZzOi13e64KDhQ4zefJCLAAAAAAAAAAAAAAAAAAAAAAAKAF5fyQY99OGJPgkFacU6zjPx2XJMUNclxN4mwdB3esKZNdrIJ0x6CGjDUZ9u2G6okdGCuTn6lOmdMy12RKqlmZI6prlNN64gafaaO+erwBARYAAAAAAAAAAAAAAAAAAAAAALQQS4VFa55bI0mKuThGQ6YNcUg/uuuofTuic0SDddVOP7r7qEPasV3H7NuRnSOd1mEOMiu0Q2hNmd3HHNKqyqt04uCJRvWldhtn98Vb1F1LBAAAAAAAAAAAAAAAAAAAAAAAuIWl0qKKwgqVHy/X4U2HtfntzTq255j63dJP1314nQJCAhzyF2YW2rfDYsMarLt2eu1yTa0nPDZcpXmlqiyuVPmJcoW0DZEkFWUVyWa12fM0ti9FmUUN5vVUBFgAAAAAAAAAAAAAAAAAAAAAAOCEpdKi6spq++NTJ081qfyuRbv0xb1f2B9HdonUjf+4Uf0n95fJZKqTv3b95uCGL/mvHZxxdr8qT1Y2uh5zyJn0UydP2QMsXO1L7ba9CQEWAAAAAAAAAAAAAAAAAAAAAAA4kfx6sta/vN7+uEhNW52hx9U9NGXVFJ0qPaWC9ALtXLhTn9/xuda9uE7j3xmvXtf0cshfVV5l3/YP9G+w7trpVWVVDmmWckuz63FXX7wFARYAAAAAAAAAAAAAAAAAAAAAADgx8tmRGvHYCPvjnJwcvd337UaXb9Oxjdp0bGN/POLxEfr26W+1aeYmLbxuoW6Ye4MG3T3Inl57JYjqU9VqSO30gNAAh7Taq1K4Wo+7+uIt/IzuAAAAAAAAAAAAAAAAAAAAAAAAnsocZFZQRJD9L7BNYLPqM5lMGjtjrDoO6SjZpOUPLldJbok9vXb9lgpLfVXY1V5h4ux+BbUJanQ9tVe7qF2Pq32p3bY3IcACAAAAAAAAAAAAAAAAAAAAAIAWZDKZdPEdF0uqCW7YuWinPS0qIcq+XZpX2mA9tdNrl2tqPSV5NQEeQRFBCmkbYn8+skukTH4mhzyN6UtkQmSDeT0VARYAAAAAAAAAAAAAAAAAAAAAALSw9he2t28f3XnUvh3TP8a+XXy4uME6irPPpMf0i3FI69C/g3276HCR0zoslRaVHSurKdOvg0NaQEiA2nZv2+y+eAuz0R0AAAAAAAAAAAAA3GHRhEWNymc1WVXQsUA5b+XIz+a++5FNXjbZbXUBAAAAAAAA8F7pK9MVEBqghCsSGszn53/m+0mrxWrfjugUofa92+v4/uPK3Z7bYB1HUo/UlImPULte7RzSuo3pprVaK0nK3Z6rPjf0qbeOvB15sllt9jJnSxiToIIDBaoorFDhoUJFdY1qsC/O6vEGrGABAAAAAAAAAAAAAAAAAAAAAICbLH9wuVY8vOKc+QoOFNi3I7tEOqT1ndRXklSYWagTB0/UW744p1j5+/IlSRfdfJFMJpNDevzweEXER0iSMlZnOO3HwW8P1mm3tn6T+tm3G6rndFrcoDi169nOaT5PRoAFAAAAAAAAAAAAAAAAAAAAAABulL83X4WZhU7TbTabdnyyw/6494TeDunDHh2mwPBASVLqnNR669j2922STTIHm5X0eFKddJPJpJHPjZQkZSVn2YMxarNarNr+8XZJUq9reyluYFydPN3HdlenYZ0a7MuhDYd0fP9xSdKo50fVm8cbmI3uAAAAAAAAAAAAAFqHRRMWGd0FAAAAAAAAAPAINqtNS6cs1aTFkxQeF14n7T+P/Uf//eG/kqT+k/srfli8Q56wmDCNmzlOyx9crs1vb1afiX3UKbGTPT13R642/nmjJOnKV6+0r1RxtqH3DdWuhbuUlZylZfct053f3KmAkAB7+rqX1qkgvUDBUcG6+u2rne7PtX+7Vh+N/EjZ32dr63tbdekjl9rTKgor7Ct29L6ut/reXHcVDG9BgAUAAAAAAAAAAAAAAAAAAAAAAG4SNzBORYeKlJWcpXd7vKt+t/VTdJ9ohbYPVVFWkXZ/tlv5e2tWkxh410Bd9+F19dZzyQOXqCSvRBte2aB5V87TkGlD1KFfB+Xvy1fq7FRVlVZpxBMjlPRE3dUrTvMz++nWpbdq4XULlZWcpQ+HfqhB9w5SYFig0lekK315ukKjQzVpySS179XeaT0dh3TUpM8m6fM7PtfKR1cq67ssJYxJUPnxcqXOTlVhZqG6jemmGxfe2LwXz2AEWAAAAAAAAAAAAAAAAAAAAAAA4Ca3fXGbju46qr1L9yrruywdXHVQuxbtkrXKqsA2gWrbra0SH0nUwLsGOqxKUZ/RL45Wj3E9tOXdLdqzZI/K3i9TaHSoevyihxIfTlS3K7udsz+h0aGamjxVKbNTlDY/TcmvJ6u6slqRXSKV9FSShv9uuNp0bHPOenpf11sP7HhAm2dtVvrydP305U8KCAtQTP8YXf6HyzXo7kEy+Zka/Tp5IgIsAAAAAAAAAAAAAAAAAAAAAABwo5j+MYrpH+OWujondVbnpM7NqsPP7KfEBxOV+GBis+qJSojS+FnjNX7W+GbV46n8jO4AAAAAAAAAAAAAAAAAAAAAAACA0QiwAAAAAAAAAAAAAAAAAAAAAAAAPs9sdAcAAAAAAAAAAAAAtA6LJixya31Wk1UFHQuU81aO/GzcOw4AAAAAAADA+cW3kAAAAAAAAAAAAAAAAAAAAAAAwOcRYAEAAAAAAAAAAAAAAAAAAAAAAHye2egOAAAAAAAAAAAAAAAAAK3Zv+/5t3bM29GkMhfecKFu+/dt9aYd3nRYW9/bqqzkLJUeLVVYhzDFj4hX4kOJShid0Kj6rRarUmanaOeCncrfly9LpUWRXSJ14Q0Xavj04QqPC29SfwEAAACgNSDAAgAAAAAAAAAAAAAAAPAwYbFh9T6//pX1Wv/yepmDzRo8bbBi+scof2++Umenas/iPUp6Mknj/jyuwbrL8su08LqFytmSo+g+0brs6csUGB6o9OXp2vjGRm37+zbdsuQWdb286/nYNQAAAADwWARYAAAAAAAAAAAAAAAAAC3g4b0PnzPPgvELVHSoSIPuGVQn7ccPftS6F9fJHGzWXWvuUvyweHvagCkDNHfUXG2auUlhMWFKeiKp3vqtFqs+nfipcrbkqHNSZ035dooCQgIkSYkPJWr1c6uV/Hqy/nnDPzVt6zS179XetZ0FAAAAAC/kZ3QHAAAAAAAAAAAAAAAAAF8Q3Se6wb/ygnIVHSpSzMUx6jyis0PZ0mOlWvXkKknSsOnDHIIrJKnj4I72oIq1/7NWxdnF9fYhZXaKspKzJJM0YfYEe3DFaaNfHq12PduporBC3zz2jZv2HAAAAAC8AwEWAAAAAAAAAAAAAAAAwHkU3SdaXa/oes58KR+mSJKG3j+0TtqWd7boVMkpSdKQaUPqLT9k2hDJJFkqLNr05qY66TabTcmvJ0uSulzWRR36dqiTxz/AXwPvGShJ2v/VfuXuyD1nvwEAAACgtSDAAgAAAAAAAAAAAAAAADiPRj4zUvesu6fBPBVFFdqzeI8CQgM0YMqAOul7luyRJEUlRKldz3b11hERH6HoPtGSpL1L9spmszmkZ2/OVvHhmpUtuo3t5rQvPcb1ONPu4j0N9hsAAAAAWhMCLAAAAAAAAAAAAAAAAACDpc1PU1VZlfrd2k/BkcEOacU5xTr+03FJUtyguAbr6Ti4Y02Z7GIVpBc4pGWsybBvN1RP7MBYmfxMdcoAAAAAQGtnNroDAAAAAAAAAAAAcI9FExYZ3QUAAAC4KHV2qiRp6P1D66Qd3XXUvh3ROaLBemqnH919VO17t7c/PrbrmH07snOk0zrMQWaFdghVaV6pju0+5jQfAAAAALQ2BFgAAAAAAAAAAAAAAFoFowPNJi+bbGj7ALxX9uZs5aXlKXZArOKHx9dJL8wstG+HxYY1WFft9NrlmlpPeGy4SvNKVVlcqfIT5QppG9JgfgAAAABoDfyM7gAAAAAAAAAAAAAAAADgy1I+TJEkDbl/SL3pp06esm+bgxu+n2pASEC95SSp8mRlo+sxh5xJP7seAAAAAGitWMECAAAAAAAAAAAAAAAAaAJLpUXVldX2x80JQKgsrtTuT3crIDRAA+4cUG+eqvIq+7Z/oH+D9dVOryqrckizlFvcUg8AAAAAtFYEWAAAAAAAAAAAAAAAAABNkPx6sta/vN7+uEhFLteVtiBNVWVVGnTvIAVHBtebp/aqFNWnquvNU196QGiAQ1rtVSmaUw8AAAAAtFYEWAAAAAAAAAAAAAAAAABNMPLZkRrx2Aj745ycHL3d922X6kr5MEWSNPQ3Q53mCWwTaN+2VFic5pMcV7uoXU6SgtoENbqe2qtdnF0PAAAAALRWfkZ3AAAAAAAAAAAAAAAAAPAm5iCzgiKC7H+uBiBkb8lW3o48xQ6MVfyweKf5ohKi7NuleaUN1lk7vXa5ptZTklciSQqKCFJI25AG8wIAAABAa0GABQAAAAAAAAAAAAAAAGAA++oV9ztfvUKSYvrH2LeLDxc3mLc4+0x6TL8Yh7QO/TvYt4sOFzmtw1JpUdmxspoy/To4zQcAAAAArY3Z6A4AAAAAAAAAAAAAcI9FExYZ3QUYyMjjbzVZ1emxToa1DwDeqLK4Urs/3a2A0AANuHNAg3kjOkWofe/2Or7/uHK35zaY90jqkZoy8RFq16udQ1q3Md20VmslSbnbc9Xnhj711pG3I082q81eBgAAAAB8BStYAAAAAAAAAAAAAAAAAC0s7R9pqiqtUr/b+ikoIuic+ftO6itJKsws1ImDJ+rNU5xTrPx9+ZKki26+SCaTySE9fni8IuIjJEkZqzOctnXw24N12gUAAAAAX0CABQAAAAAAAAAAAAAAANDCUmenSpIu+c0ljco/7NFhCgwPrCk7J7XePNv+vk2ySeZgs5IeT6qTbjKZNPK5kZKkrOQsezBGbVaLVds/3i5J6nVtL8UNjGtU/wAAAACgNSDAAgAAAAAAAAAAAAAAAGhBOT/kKHdbrmIHxqrTpZ0aVSYsJkzjZo6TJG1+e7NyfshxSM/dkauNf94oSbry1SvtK1Wcbeh9Q9VlZBfJJi27b5mqyqsc0te9tE4F6QUKjgrW1W9f3dRdAwAAAACvZja6A2hZiyYsMrT9ycsmG9o+AAAAAAAAAADA+WL07zAAAMB7pHyYIkka+puhTSp3yQOXqCSvRBte2aB5V87TkGlD1KFfB+Xvy1fq7FRVlVZpxBMjlPRE3dUrTvMz++nWpbdq4XULlZWcpQ+HfqhB9w5SYFig0lekK315ukKjQzVpySS179W+WfsJAACA1q20tNSlcnl5eXrggQeUkpKioUOH6oMPPlBsbGyT6wkLC3OpfaAhBFgAAAAAAAAAAAAAAAAALaTyZKV2/3O3AsICNOCOAU0uP/rF0eoxroe2vLtFe5bsUdn7ZQqNDlWPX/RQ4sOJ6nZlt3PWERodqqnJU5UyO0Vp89OU/HqyqiurFdklUklPJWn474arTcc2ruweAAAAfEh4eHiz61i1apV69OjhUlmbzdbs9oGzEWABAAAAAAAAAAAAAG7AKiYAgMYIahOkZ08+26w6Oid1Vuekzs2qw8/sp8QHE5X4YGKz6gEAAACA1oQACwAAAAAAAAAAAAAAAAAAAABAk5SUlLhUbuLEiVqzZo2qq6vl7++vMWPGaOnSpW7uHeAaAiwAAAAAAAAAAAAAAAAAAAAAAE0SFhbmUrn58+frnnvu0Q8//KDExER9/PHHLtcFuBsBFgAAAAAAAAAAAACAZtu5aKdy3sqRn83P6K4AAAAAAAAPFhsbq5UrVxrdDaBefLMFAAAAAAAAAAAAAAAAAAAAAAB8HgEWAAAAAAAAAAAAAAAAAAAAAADA55mN7gAAAAAAAAAAAHD0zZPf6Pv//V6SdMWLV2j0S6PPWebwpsPa+t5WZSVnqfRoqcI6hCl+RLwSH0pUwuiERrVrtViVMjtFOxfsVP6+fFkqLYrsEqkLb7hQw6cPV3hceKPqKTxUqM2zNuvAigMqOlykwPBAxfSL0cC7B2rgXQNl8jM1qh5v9e97/q32Ie2N7gYAAAAAAAAAAGgiAiwAAAAAAAAAAPAgR1KPaPPbm5tUZv0r67X+5fUyB5s1eNpgxfSPUf7efKXOTtWexXuU9GSSxv15XIN1lOWXaeF1C5WzJUfRfaJ12dOXKTA8UOnL07XxjY3a9vdtumXJLep6edcG69m/fL8+v/1zVZ6sVN+b+2r474er7HiZUmen6ot7v1DagjTduvRWBbUJatI+AgAAAAAAAAAAnG8EWAAAAAAAAAAA4CGsFqu+nPalbNW2Rpf58YMfte7FdTIHm3XXmrsUPyzenjZgygDNHTVXm2ZuUlhMmJKeSHLa7qcTP1XOlhx1TuqsKd9OUUBIgCQp8aFErX5utZJfT9Y/b/inpm2dpva96l+d4UjqES2etFiWcouunnW1hk8fbk9LfChRc0fNVcbqDH1+++eavGxyo/cRAAAAAAAAAACgJfgZ3QEAAAAAAAAAAFBj05ublLstVxfecGGj8pceK9WqJ1dJkoZNH+YQXCFJHQd3tAdVrP2ftSrOLq63npTZKcpKzpJM0oTZE+zBFaeNfnm02vVsp4rCCn3z2DdO+7P8oeWylFvUaVgnh+AKSQppG6Jr3rtGkrT/q/3a8689jdpHAAAAAAAAAACAlsIKFgAAAIAHKcsv0+7Fu/Xzf35W7rZcleSVyORnUnhsuDpd2kkX33mxel/XWyaT6Zx1Hd50WFvf26qs5CyVHi1VWIcwxY+IV+JDiUoYndCo/lgtVqXMTtHOBTuVvy9flkqLIrtE6sIbLtTw6cMVHhfeqHoKDxVq86zNOrDigIoOFykwPFAx/WI08O6BGnjXQJn8zr0/AAAAQGtX8HOB1r+8XhckXqBLf3upfvrip3OW2fLOFp0qOSVJGjJtSL15hkwbovWvrJelwqJNb27S+LfHO6TbbDYlv54sSepyWRd16NuhTh3+Af4aeM9ArX1hrfZ/tV+5O3IVNzDOIc/Bbw8qZ0tOTZv31d+XhNEJaternQrSC/Tda9+p7019z7mPAAAAAAAAAAAALYUACwAAAMBDfPPEN/rhrz/IUmFRaIdQXXzHxWrfq71sNpsy12Zqz5I92v3ZbnUb002TFk9SSLsQp3Wtf2W91r+8XuZgswZPG6yY/jHK35uv1Nmp2rN4j5KeTNK4P49rsD9l+WVaeN1C5WzJUXSfaF329GUKDA9U+vJ0bXxjo7b9fZtuWXKLul7etcF69i/fr89v/1yVJyvV9+a+Gv774So7XqbU2an64t4vlLYgTbcuvVVBbYJcet0AAACA1uKr+7+StcqqCbMnqOJERaPK7FlSswpEVEKU2vVsV2+eiPgIRfeJVv7efO1dsldXv3W1Q9B29uZsFR+uWdmi29huTtvqMa6H1r6wtqbdxXvqBFjsXrzbvt19bHen9XQf210F6QXK3Z6rggMFTvsNAAAAAAAAAADQ0giwAAAAADxE2oI0WSos6npFV932xW0Kjgy2p1368KXa/9V+/fNX/1TGmgwtmrBI9353b70rP/z4wY9a9+I6mYPNumvNXYofFm9PGzBlgOaOmqtNMzcpLCZMSU8k1dsXq8WqTyd+qpwtOeqc1FlTvp2igJAASVLiQ4la/dxqJb+erH/e8E9N2zpN7Xu1r7eeI6lHtHjSYlnKLbp61tUaPn24PS3xoUTNHTVXGasz9Pntn2vysskuvW4AAABAa5D691RlrMnQZU9fpriBccpcl3nOMsU5xTr+03FJUtyguAbzdhzcUfl781WcXayC9AK1733mHD5jTYZ9u6F6YgfGyuRnks1qcyhzWuaamj4HRwUrqmuU03riBp9pI2NNBgEWAAAAAAAAAADAY/gZ3QEAAAAAZ/iZ/TTxk4kOwRWn9b6ut4ZMGyJJOrzpsHZ/trtOntJjpVr15CpJ0rDpwxyCK6Sai6pOB1Ws/Z+1Ks4urrcfKbNTlJWcJZmkCbMn2IMrThv98mi169lOFYUV+uaxb5zuz/KHlstSblGnYZ0cgiskKaRtiK557xpJ0v6v9mvPv/Y4rQcAAABozUpyS7TqyVVq26OtrnjxikaXO7rrqH07onNEg3lrpx/dfdQh7diuY/btyM6RTuswB5kV2iG0pszuYw5pVeVVOnHwRKP6UruNs/sCAAAAAAAAAABgJAIsAAAAAA8SNyhOkV2cX9B00U0X2bf3L9tfJ33LO1t0quSUJNmDMc42ZNoQySRZKiza9OamOuk2m03JrydLkrpc1kUd+naok8c/wF8D7xlY04+v9it3R26dPAe/PaicLTk1bd5Xf18SRieoXa+au9V+99p39eYBAAAAWrsVj6xQxYkKXfd/19UJbm5IYWahfTssNqzBvLXTa5draj3hseGSpMriSpWfKLc/X5RVJJvV5pCnMX0pyixqMC8AAAAAAAAAAEBLIsACAAAA8BA3LbpJ1//9+gbzRHWNsm8XZdW9EGnPkppVIKISotSuZ7t664iIj1B0n2hJ0t4le2Wz2RzSszdnq/hwzcoW3cZ2c9qXHuN6nGl3cd3VJ3YvPrPCRvex3Z3Wczotd3uuCg4UOM0HAAAAeDJLpUWVxZX2v6qSqkaV2/fFPu39114NumeQul/l/Ly5PqdOnrJvm4PNDeatHbhRu5wkVZ6sbHQ95pAz6bXrcbUvtdsGAAAAAAAAAAAwWsO/cgAAAABoMd2udB7McFpFYYV9OyDM8c62xTnFOv7TcUk1K2E0pOPgjsrfm6/i7GIVpBeofe/29rSMNRn27YbqiR0YK5OfSTarzaHMaZlrMiVJwVHBDoEhZ4sbfKaNjDUZTgNDAAAAAE+W/Hqy1r+83v64yO/cKzNUFldqxcMrFNohVL948xdNbrOq/EwQh3+gf4N5a6dXlTkGf1jKLc2ux119AQDA2y2asMjQ9icvm2xo+wAAAAAAAN6OAAsAAADAi5zIOGHf7np5V4e0o7uO2rcjOkc0WE/t9KO7jzoEWBzbdcy+Hdk50mkd5iCzQjuEqjSvVMd2H3NIqyqv0omDJxrVl9ptHN19tIGcAAAAgOca+exIjXhshP1xVlaW3r747QbLrHpqlU7mnNSNC29USLuQJrdZeyWI6lPVDeatnR4Q6hisXXtVClfrcVdfAAAAAAAAAAAAjORndAcAAAAANN6+pfskSeZgswbdM8ghrTCz0L4dFhvWYD2102uXa2o94bHhkmruvFt+otz+fFFWkWxWm0OexvSlKPPcd/kFAAAAPJE5yKygiCD7X0B4w4EDh747pJQPU9RzfE9dPPlil9oMbBNo37ZUWBrI6bjCRO1ykhTUJqjR9dRe7aJ2Pa72pXbbAAAAAAAAAAAARmMFCwAAAOA8sFRaVF155q6sVSVVDeRunNKjpfrpi58kSSOeGKE2F7RxSD918pR92xzc8Kl+7bvL1i4nSZUnKxtdT+073Z46eUohbUOa1ZfabQMAAACtVfWpai27b5n8A/115atXqiy/rE6eiqIK+3ZVWZVDnqDIIPkH+CsqIcr+XGleaYNt1k6vXe704+zN2fZ8EZ2cr0JXkldS04eIIPv5vyRFdomUyc8km9Vmz9OYvkQmOF81DwAAAAAAAAAAoKURYAEAAACcB8mvJ2v9y+vtj4v8mr8yw6onV8lSYVHHIR11+QuX10mvfRdY/0D/BuuqnV5V5hj8UfuOtK7W466+AAAAAK3Ryf+e1PGfjkuSZifOPmf+TTM3adPMTfbHd6+9WwmjExTTP8b+XPHh4gbrKM4+kx7TL8YhrUP/DvbtosNF6jikY711WCotKjtWE+jRoV8Hh7SAkAC17d5WBQcKmtUXAAAAAAAAAAAAIxFgAQAAAJwHI58dqRGPjbA/zsrK0tsXv+1yfWkL0rTjkx0KiwnTLf+6ReaguqfytVeCqD5VXSe9ttrpAaEBDmm1V6VwtR539QUAAABojcLjwjVl1ZQG8+TuyNWqJ1ZJkgZMGaCBdw20p8UOjJUkRXSKUPve7XV8/3Hlbs9tsL4jqUdqysRHqF2vdg5p3cZ001qtrWl3e6763NCn3jryduTJZrXZy5wtYUyCCg4UqKKwQoWHChXVNarBvjirBwAAAAAAAAAAwCgEWAAAAADngTnI7BAEERDueuDAoQ2HtOy+ZQqKCNLtK25XVEJUvfkC2wTaty0VlnrznFZ7hYna5SQpqE1Qo+upvdpF7Xpc7UvttgEAAIDWyhxsVvex3RvM42f2s2+37d7Waf6+k/rquz9+p8LMQp04eEJtu7etk6c4p1j5+/IlSRfdfJFMJpNDevzweEXER6g4u1gZqzM0+sXR9bZ18NuDDu2erd+kfkr9MFWSlLE6Q4OnDq63nozVGZKkuEFxatezXb15AAAAAAAAAAAAjOB37iwAAAAAjJKzNUeLJiySf6C/7vzPnbpg6AVO89YOvCjNK22w3trpZwdsNKWekrwSSVJQRJBC2obYn4/sEimTn8khT2P6EpkQ2WBeAAAAAI6GPTpMgeE1Ac6pc1LrzbPt79skW01gR9LjSXXSTSaTRj43UpKUlZxlD8aozWqxavvH2yVJva7tpbiBcXXydB/bXZ2GdWqwL4c2HNLx/cclSaOeH3WOvQMAAAAAAAAAAGhZBFgAAAAAHuq/Kf/VgqsXyGaz6c7/3Kn44fEN5o/pH2PfLj5c3GDe4uwz6TH9YhzSOvTvYN8uOlzktA5LpUVlx8pqyvTr4JAWEBJgv3Nuc/oCAAAAoGFhMWEaN3OcJGnz25uV80OOQ3rujlxt/PNGSdKVr16piPiIeusZet9QdRnZRbJJy+5b5rDSnCSte2mdCtILFBwVrKvfvtppf67927Uyh5iV/X22tr631SGtorBCKx5eIUnqfV1v9b257ioYAAAAAAAAAAAARjIb3QEAAAAAdR3ZdkTzx82X1WJtVHCFJEV0ilD73u11fP9x5W7Pbbj+1CM1ZeIj1K5XO4e0bmO6aa3WSpJyt+eqzw196q0jb0eebFabvczZEsYkqOBAgSoKK1R4qFBRXaMa7IuzegAAAABfkZeWp7y0PEnSsb3HHJ5PW5AmSQqLDVOPcT0cyl3ywCUqySvRhlc2aN6V8zRk2hB16NdB+fvylTo7VVWlVRrxxAglPVF39YrT/Mx+unXprVp43UJlJWfpw6EfatC9gxQYFqj0FelKX56u0OhQTVoySe17tXdaT8chHTXps0n6/I7PtfLRlcr6LksJYxJUfrxcqbNTVZhZqG5juunGhTc256UCAAAAAAAAAAA4LwiwAAAAADxMXlqe5o+br+pT1brz6zvVOalznTzrXl6n/cv26/4f73d4vu+kvvruj9+pMLNQJw6esK8iUVtxTrHy9+VLki66+SKZTCaH9Pjh8YqIj1BxdrEyVmdo9Iuj6+3nwW8POrR7tn6T+in1w1RJUsbqDA2eOrjeejJWZ0iS4gbFqV3PdvXmAQAAAHzB3s/3av3L6+s8v2/pPu1buk+S1PWKrnUCLCRp9Iuj1WNcD215d4v2LNmjsvfLFBodqh6/6KHEhxPV7cpzBzOHRodqavJUpcxOUdr8NCW/nqzqympFdolU0lNJGv674WrTsc056+l9XW89sOMBbZ61WenL0/XTlz8pICxAMf1jdPkfLteguwfJ5Gc6Zz0AAAAAAAAAAAAtjQALAAAAwIMc3XVUn1z1iSzlFt2x8g51Gdml3nyFGYU6knKkzvPDHh2mLe9s0amSU0qdk6qr/nRVnTzb/r5NsknmYLOSHq97B1uTyaSRz43UiodWKCs5S/n78hXdJ9ohj9Vi1faPt0uSel3bS3ED4+rU031sd3Ua1kk5W3KUOie13gCLQxsO6fj+45KkUc+PqndfAQAAAF8x+qXRGv3SaJfLd07qXG+AdlP4mf2U+GCiEh9MbFY9UQlRGj9rvMbPGt+segAAAAAAAAAAAFqSn9EdAAAAAFDj2J5j+uSqT1SWX6YRT4yQzWpT5rrMev9KckvqrSMsJkzjZo6TJG1+e7NyfshxSM/dkauNf94oSbry1SsVER9Rbz1D7xtaE9xhk5bdt0xV5VUO6eteWqeC9AIFRwXr6revdrpP1/7tWplDzMr+Pltb39vqkFZRWKEVD6+QVHOH2743110FAwAAAAAAAAAAAAAAAABaitevYJGfn6933nlHS5cuVWZmpgIDA3XhhRdq8uTJeuCBBxQYGNjsNvbt26e//e1vWrdunTIyMlRRUaG2bdvq4osv1o033qipU6cqJCTEDXsDAAAAX2WpsOiTqz5R6dFSSdKGVzZowysbXKrrkgcuUUleiTa8skHzrpynIdOGqEO/Dsrfl6/U2amqKq3SiCdGKOmJuqtXnOZn9tOtS2/VwusWKis5Sx8O/VCD7h2kwLBApa9IV/rydIVGh2rSkklq36u903o6DumoSZ9N0ud3fK6Vj65U1ndZShiToPLj5UqdnarCzEJ1G9NNNy680aV9BQAAAAAAAAAAAAAAAAB38eoAi61bt+pXv/qVjhw5onHjxunBBx9UeXm55s2bp+nTp+vjjz/WV199pQsuuMDlNv7617/q97//vaqqqjRo0CA98cQTio2N1d69ezV37lytWbNG7777rlauXKnu3bu7ce8AAADgSywVFqerUrhi9Iuj1WNcD215d4v2LNmjsvfLFBodqh6/6KHEhxPV7cpu56wjNDpUU5OnKmV2itLmpyn59WRVV1Yrskukkp5K0vDfDVebjm3OWU/v63rrgR0PaPOszUpfnq6fvvxJAWEBiukfo8v/cLkG3T1IJj+TO3YbAAAAAAAAAAAAAAAAAFzmtQEWWVlZuu6663Ts2DH97ne/09tvv21P++1vf6tf/vKXWrt2ra6//npt3LhRQUFBTW7jP//5jx555BFJ0u2336558+bJbD7zkj322GNKTEzU/v37dd1112nHjh0KCAho/s4BAADA5wRHBetF24turbNzUmd1TurcrDr8zH5KfDBRiQ8mNqueqIQojZ81XuNnjW9WPQAAAAAAAAAAAAAAAABwvvgZ3QFXPfnkkzp27Ji6dOmiN954wyEtKChIs2fPlr+/v1JSUvTee++51Maf//xnSVJAQIDeeecdh+AKSeratateeOEFSdLevXv173//26V2AAAAAAAAAAAAAAAAAAAAAACAsbwywCI9PV2LFy+WJN111131rk7Ro0cPXXnllZKkGTNmyGKxNLmdH374wV5XdHR0vXkuvfRS+/b333/f5DYAAAAAAAAAAAAAAAAAAAAAAIDxzOfO4nmWLFkim80mSRo7dqzTfOPGjdO3336rY8eOad26dQ3mrc+pU6ckSSEhIU7zhIaG2rdLS0ubVD8AAAAAAAAAAAAAAAAAAAAAoHUqyy/T7sW79fN/flbutlyV5JXI5GdSeGy4Ol3aSRffebF6X9dbJpOp3vKFmYV6p9s7jWor8eFEXfPeNQ3msVqsSpmdop0Ldip/X74slRZFdonUhTdcqOHThys8LrxRbRUeKtTmWZt1YMUBFR0uUmB4oGL6xWjg3QM18K6BMvnVvz/ewCsDLNasWWPfHjRokNN8gwcPdijT1ACLgQMHauvWrTpw4IAsFovM5rov1969e+3bvXr1alL9AAAAAAAAAAAAAAAAAAAAAIDW55snvtEPf/1BlgqLQjuE6uI7Llb7Xu1ls9mUuTZTe5bs0e7PdqvbmG6atHiSQto5XxTAHcryy7TwuoXK2ZKj6D7RuuzpyxQYHqj05ena+MZGbfv7Nt2y5BZ1vbxrg/XsX75fn9/+uSpPVqrvzX01/PfDVXa8TKmzU/XFvV8obUGabl16q4LaBJ3X/TlfvDLAYteuXZKkNm3aKDIy0mm+zp0727d3797d5Haeeuop3XzzzTp58qT+8pe/6Pe//71DenV1tWbMmCFJCg8P1x133NHkNgAAAAAAAAAAAAAAAAAAAAAArUvagjRZKizqekVX3fbFbQqODLanXfrwpdr/1X7981f/VMaaDC2asEj3fnev05UfxvxpjC6aeFGD7QW3DXaaZrVY9enET5WzJUedkzpryrdTFBASIElKfChRq59breTXk/XPG/6paVunqX2v9vXWcyT1iBZPWixLuUVXz7paw6cPt6clPpSouaPmKmN1hj6//XNNXja5wf56Kj+jO9BUlZWVys3NlSTFxsY2mLd2emZmZpPbuummmzRv3jyFh4frySef1BNPPKGtW7cqMzNTX3/9tUaNGqVt27YpOjpan3/+uTp27NjkNgAAAAAAAAAAAAAAAAAAAAAArY+f2U8TP5noEFxxWu/remvItCGSpMObDmv3Z84XFGjTsY2i+0Q3+BceG+60fMrsFGUlZ0kmacLsCfbgitNGvzxa7Xq2U0Vhhb557Bun9Sx/aLks5RZ1GtbJIbhCkkLahuia966RJO3/ar/2/GuP03o8mdetYHHy5En7dnCw8ygbSQoJObNMSu1yTXHXXXfp6quv1rPPPqtZs2bpzTfftKfFxsbqtdde09SpU5sUXFFuKVeJpcT+OMAvQAH+AQ2UaD0sFovRXfBZFotFVquVYwDDMAZhNMYgjGa1Wo3uAgxk5ByA9z3j8NkDxgAYA76N4w/mAL6trLpMQZYzS5/70u8A3sJmsskmm2wmm6zi/9WTcay8B8fKMzT2/JPzVe/BsfIeHCPfVlRUpIKCAvvjoKAgBQUFNVACrYXV5Np5jzvPnXj/8S2cG8BVjB24irHjXGNfk7hBcYrsEuk0/aKbLlLK/6VIkvYv26/+t/V3S/9qs9lsSn49WZLU5bIu6tC3Q508/gH+GnjPQK19Ya32f7VfuTtyFTcwziHPwW8PKmdLjiRpyH1D6m0rYXSC2vVqp4L0An332nfqe1NfN+/N+ed1ARbl5eX27cDAwAbz1k4vKytzqb1PPvlETz31lPLy8nTTTTfpV7/6ldq1a6dDhw7po48+0qxZs1RYWKgXXnhBkZHOB39tT6972uHx+CHjdc0l17jUP2+TnJxsdBd8ltVqVVZWliTJz8/rFq9BK8AYhNEYgzDa8ePHje4CDGTkHIBzcOPw2QPGABgDvo3jD+YAvs2XfwfwFjbZVN6mXAUqkEkmo7uDBnCsvAfHyjM09rsgzle9B8fKe9S+uB6+Z9CgQQ6P7777bt1zzz2G9AUtq6Cja//77jx34rcg38K5AVzF2IGrGDvONWYOcNOimxTaPrTBPFFdo+zbRVlFze1WvbI3Z6v4cLEkqdvYbk7z9RjXQ2tfWCtJ2rN4T50Ai92Lz6yw0X1sd6f1dB/bXQXpBcrdnquCAwVq17Ndc7rf4rwuwKL2qhSnTp1qMG/t9NDQhgdnfWbNmqXf//73kqS//e1vevDBBx3S77//ft1+++363//9X33xxRdat26dLrjggnPWO2P0DLUNbmt/HOAXoIAjvnHnqpEjRxrdBZ91OlIuKSlJZrPX/eujFWAMwmiMQRjt9GQTvsnIOQDn4MbhsweMATAGfBvHH8wBfJsv/w7gLWwmmwpUoHa57WSycSG4J+NYeQ+OlWdo7HdBnK96D46V98jOzja6CzDQ9u3b1blzZ/tjVrDwHTlv5bhUzp3nTvwW5Fs4N4CrGDtwFWPHucbMAbpd6TyY4bSKwgr7dkBY475HtlqsslRaFBjW8GIFp2WsybBvxw2Kc5ovdmCsTH4m2aw2hzKnZa7JlCQFRwU7BIacLW7wmTYy1mQQYHG+tWnTxr5dUVHRQE7H1S5ql2uM7OxsPfXUU5JqTkLPDq6QJH9/f33wwQdavny50tPT9etf/1orV648Z90h5hCFm8Mdn7Q1qXteizdXY/n5+clsNnMcYBjGIIzGGISRiOL3bUbOAXjPMxafPWAMgDHg2zj+vo05gG8L9Q/12d8BvIVVVplkkslmkp+N/1dPxrHyHhwrz9CUc0/OV70Hx8o7cHx8W2RkpNq1866LxuAerp73uPPcifcf38O5AVzF2IGrGDv1c9frcSLjhH276+VdneY7uvuo/nX7v5SVnKWT/z0pW7VNAaEBih8er4vvvFgDpwyUn7n+84pju47ZtyM7RzptwxxkVmiHUJXmlerY7mMOaVXlVTpxsKavEZ0jGtyn2m0c3X20wbyeyOu+2QoKClJcXE1US15eXoN5a6cnJCQ0qZ3FixerqqpKkjRx4kSn+dq2bavRo0dLkr7++mv9/PPPTWoHAAAAAAAAAAAAAAAAAAAAAOB79i3dJ0kyB5s16J5BTvN9/7/f60jKEV36yKW6demtmrR4kgb/erAObzqsL6d+qbmj5urkkZP1li3MLLRvh8WGNdif8NiamwdVFleq/MSZxQ6Ksopks9oc8jhTu42izKIG83oirwuwkKT+/ftLkk6ePKmiIucveu2lV/r169ekNvbv32/f7trVeTSQ5Bi8sX379ia1AwAAAAAAAAAAAAAAAAAAAADwLaVHS/XTFz9JkkY8MUJtLmjjNO9FN12kB9Ie0GVPXaYLJ1yovjf31S/f/aWmbpqqoIggZW/O1qIJi2SptNQpW3my0r5tDm545Q1zyJn0UydP1bt9rjoCQgLqbdtbeOVaLWPGjNG3334rqSag4Yorrqg3X2pqqkOZpqi9fLvN1vC63Var1b5dXV3dpHZ8zaIJiwxtf/KyyYa2DwAAAAAAAAAAAAAAAAAAAMC7WCotqq48c5147YADV616cpUsFRZ1HNJRl79web15IuIjND1jutp0aiP/AP866R0Hd9Tlf7hcq55YpSMpR/TjBz9q+PThjn0vPxN04R9Yt47aaqdXlVWd2S6vqjdPU+rwFl65gsXNN98sk8kkSVq9erXTfKeDMKKjozV69OgmtdG9e3f79s8//9xg3trpXbp0aVI7AAAAAAAAAAAAAAAAAAAAAADPlfx6st6IfMP+917f95pVX9qCNO34ZIfCYsJ0y79ukTmo/nUT/Mx+ikqIqje44rTB9w6Wai6t1/aPttdJr70qRfWphhcTqJ0eEHpmJYraq1K4Woe38MoVLHr16qVJkybps88+0/z58/XCCy8oMDDQIc/Bgwe1Zs0aSdLTTz8ts9lxV3ft2qUbb7xRZWVlWrhwoS6/3DHq59prr9WTTz4pm82mxYsX6+mnn663L3l5eVq/fr0kKSYmRomJie7aTQAAAAAAAAAAAAAAALRSx/cf17aPtunA1wdUnF2sqtIqhcWGKbJLpDpf1lndx3ZX96u6Oy1/eNNhbX1vq7KSs1R6tFRhHcIUPyJeiQ8lKmF0QqP6YLVYlTI7RTsX7FT+vnxZKi2K7BKpC2+4UMOnD1d4XLib9hYAAADwbiOfHakRj42wP87JydHbfd92qa5DGw5p2X3LFBQRpNtX3K6ohKhm9S2kXYjadm+rEz+fUN7OPJ0qOaXA8DPX1ge1CbJvWyos9VVxJr3WaheBbQLr3T5XHbVXu6jdtrfwyhUsJGnmzJnq0KGDMjMz9dxzzzmkVVZW6v7771d1dbWGDh2qRx55pE75P/7xj0pPT1dOTo6eeeaZOul9+vTRr3/9a0lSSkqK/vjHP9bJU1lZqXvuuUeVlZX2Ov39G17yBAAAAAAAAAAAAAAAAL5tw2sb9P7F72vnP3aq+9juuupPV2nsjLHqclkXZX+frY1vbNSSW5c4Lb/+lfWaO2qufvriJ/WZ2Ee//Msv1XdSXx1YeUDzrpynVU+tOmcfyvLL9NHIj7TioRUqLyjXZU9fpnF/Hqe23dpq4xsb9f6A93VowyF37jYAAADgtcxBZgVFBNn/agccNEXO1hwtmrBI/oH+uvM/d+qCoRe4pX9hMWE1GzapJK/EIa12AEdpXmmD9ZwuGxQRpJC2IfbnI7tEyuRncsjjTO02IhMiz9l3T+OVK1hIUpcuXbRs2TJNnDhRb775pnbt2qXrr79e5eXlmjdvnnbu3KlBgwbpyy+/VHBwcJ3yVqvVvm2z2ept469//avKy8v1j3/8Qy+88IL+85//6IYbblC7du106NAhzZ8/XwcPHpTZbNarr76qadOmnbf9BQAAAAAAAAAAAAAAgPdb9fQqbfrzJvW/rb+u//v1CggNcEgfcNcALbxmodPyP37wo9a9uE7mYLPuWnOX4ofFnyk7ZYDmjpqrTTM3KSwmTElPJNVbh9Vi1acTP1XOlhx1TuqsKd9OUUBITT8SH0rU6udWK/n1ZP3zhn9q2tZpat+rvRv2HAAAAPBt/035rxZcvUA2m01Tvpmi+OHx5y7USDbrmevh/fwd12Do0L+DfbvocJE6DulYbx2WSovKjpXVlOnXwSEtICRAbbu3VcGBAhUfLm6wL8XZZ9Jj+sU0bgc8iNeuYCFJw4YNU1pamp5//nkdPnxYTz31lF577TWFhIRo1qxZ2rJliy64oP6onueff149e/ZUp06dNGPGjHrzBAYGasGCBdqwYYOmTp2q/Px8vfTSS7rvvvv0zjvvqG3btnr88ce1a9euelfBAAAAAAAAAAAAAAAAAE478PUBbfrzJnXo10G/+uRXdYIrJKnn1T3VfVx3hbYPrZNWeqxUq56sWZ1i2PRhDsEVktRxcEd7UMXa/1nrcGFTbSmzU5SVnCWZpAmzJ9iDK04b/fJotevZThWFFfrmsW9c2VUAAAAAtRzZdkTzx82X1WLVnV/f2ejgig2vbdC+L/adM19Jbs2qEiY/05nVLP6/bmO62bdzt+c6rSNvR549UKN2mdMSxiRIkioKK1R4qNBpPUdSj9Tbtrfw2hUsTouOjtZrr72m1157rUnlBgwYoPT09EblHTVqlEaNGuVK9wAAAAAAAAAAAAAAAADZbDZ9/buvJUkjnxkp/wB/p3nv/PrOep/f8s4WnSo5JUkaMm1IvXmGTBui9a+sl6XCok1vbtL4t8fX6Ufy68mSpC6XdVGHvh3q1OEf4K+B9wzU2hfWav9X+5W7I1dxA+POvZMAAAAA6shLy9P8cfNVfapad359pzonda6TZ93L67R/2X7d/+P9Ds+v/Z+16nF1D/W5oY/T+k8eOamiQ0WSpI5DOtYJ5I4fHq+I+AgVZxcrY3WGRr84ut56Dn570L7dd1LfOun9JvVT6oepkqSM1RkaPHVwvfVkrM6QJMUNilO7nu2c9ttTefUKFgAAAAAAAAAAAAAAAIA3OLThkI7/dFwmP5N6T+jtUh17luyRJEUlRDm9UCkiPkLRfaIlSXuX7JXNZnNIz96creLDNStbdBvr/G6yPcb1ONPu4j0u9RcAAADwdUd3HdUnV30iS7lFd6y4Q11Gdqk3X2FGoY6kHKk37fCmw6osrnTaxo8f/GjfHnJ/3UBsk8mkkc+NlCRlJWcpf19+nTxWi1XbP94uSep1ba96A6y7j+2uTsM6SZJS56TW25dDGw7p+P7jkqRRz3vnAgcEWAAAAAAAAAAAAAAAAADn2engiMiukQqODLY/b7PZVHmysk4gxNmKc4p1/KeaC5XiBjW8mkTHwR1rymQXqyC9wCEtY02GfbuhemIHxsrkZ6pTBgAAAEDjHNtzTJ9c9YnK8ss04okRslltylyXWe9fSW6J03pOnTylZfcvU/Wp6jppP3/zszbO2ChJ6np5Vw2+t/5VJYbeN7QmuMMmLbtvmarKqxzS1720TgXpBQqOCtbVb1/ttC/X/u1amUPMyv4+W1vf2+qQVlFYoRUPr5Ak9b6ut/reXHcVDG9gNroDAAAAAAAAAAAAAAAAQGt35Meau9FGdomUzWrTtrnbtG3ONv33x//KarHKz+ynjkM7auBdAzXkviHyD/B3KH9011H7dkTniAbbqp1+dPdRte/d3v742K5j9u3IzpFO6zAHmRXaIVSleaU6tvuY03wAAAAA6rJUWPTJVZ+o9GipJGnDKxu04ZUNTa4ndmCs8nbkafenu3Uk5Yj63dZPbbu3VVVplTLXZWrv53slm9Tzlz114z9ulJ+5/vUX/Mx+unXprVp43UJlJWfpw6EfatC9gxQYFqj0FelKX56u0OhQTVoySe17ta+3DknqOKSjJn02SZ/f8blWPrpSWd9lKWFMgsqPlyt1dqoKMwvVbUw33bjwxibvq6cgwAIAAAAAAAAAAAAAAAA4z/J25kmSbFab5v9ivjLXZmrgPQM14vER8g/0V9bGLG39y1ateHiF0uanafKyyQqNDrWXL8wstG+HxYY12Fbt9NrlmlpPeGy4SvNKVVlcqfIT5QppG3KOvQQAAAAg1QRYNLQqRWM9sP0BZW/J1r5/79PhjYeV+mGqyk+Uyz/AX+Fx4br49os1YMoA9by65znrCo0O1dTkqUqZnaK0+WlKfj1Z1ZXViuwSqaSnkjT8d8PVpmObc9bT+7reemDHA9o8a7PSl6frpy9/UkBYgGL6x+jyP1yuQXcPsq+G540IsAAAAAAAAAAAAAAAAADOo6qyKlWVVkmSsr7LkiTd/NnN6jepnz3PhddfqL4399XHl3+s7M3ZWnLbEk1ZNUUmU82FSadOnrLnNQc3fMlPQEiAfbt2OUmqPFnZ6HrMIWfST508RYAFAAAA0EjBUcF60faiW+qKHxav+GHxbqnLz+ynxAcTlfhgYrPqiUqI0vhZ4zV+1ni39MuTEGABAAAAAAAAAAAAAEArsGjCokbls5qsKuhYoJy3cuRn83Nb+5OXTXZbXYCns1RaVF1ZbX98dhDD2SqLKx0e9/xlT4fgitM6JXbSJQ9dos1vbVbG6gztX7ZfF15/oSSpqrzKns8/0L/B9mqnV5VVOaRZyi1uqQcAAAAAWiMCLAAAAAAAAAAAAAAAAIAmSH49WetfXm9/XKSiBvNbq60Oj/tO6us0b//b+mvzW5slSWkL0uwBFrVXpag+VV1v2frSA0IDHNJqr0rRnHoAAAAAoDUiwAIAAAAAAAAAAAAAAABogpHPjtSIx0bYH+fk5Ojtvm87zR/UJsjhcezFsU7zxg6IlUySbFLO1hz784FtAu3blgpLPSXPqL3aRe1yZ/flXPXUXu3i7HoAAAAAoDVy31qfAAAAAAAAAAAAAAAAgA8wB5kVFBFk/ztX8EFgeKD8A/3tj4PbBjdYd2B4TX2lR0vtz0clRNm3S/NKzy7moHZ67XJNrackr0SSFBQRpJC2IQ3mBQAAAIDWgAALAAAAAAAAAAAAAAAA4Dwy+ZkUfVG0/bG1ytpwAduZcqfF9I+xbxcfLm6weHH2mfSYfjEOaR36d7BvFx0uclqHpdKismNlNWX6dXCaDwAAAABaE7PRHQAAAAAAAAAAAAAAAGiuRRMWGdr+5GWTDW0fnq/TpZ2UtyNPklSSW6LoPtH15qsqq9Kp0lOSpDYXtLE/H9EpQu17t9fx/ceVuz23wbaOpB6pKRMfoXa92jmkdRvTTWu1VpKUuz1XfW7oU28deTvyZLPa7GUAAAAAwBewggUAAAAAAAAAAAAAAABwnvW9ua99O+eHHKf5jmw7Yl/BousVXR3rmFRTR2FmoU4cPFFv+eKcYuXvy5ckXXTzRTKZTA7p8cPjFREfIUnKWJ3htB8Hvz1Yp10AAAAAaO1YwQIAAAAAAAAAAAAAAKCZzscKGlaTVQUdC5TzVo78bOe+hyaraHi27mO7K3ZgrPJ25Gnngp1KeiKpTvCDJKXNT7NvJz6Y6JA27NFh2vLOFp0qOaXUOam66k9X1Sm/7e/bJJtkDjYr6fGkOukmk0kjnxupFQ+tUFZylvL35ddZTcNqsWr7x9slSb2u7aW4gXGu7DIAAAAAeB1WsAAAAAAAAAAAAAAAAADOM5OfSdf+7Vr5B/orLy1PG17dUCfPz9/8XBMgIWn474er45CODulhMWEaN3OcJGnz25vrrISRuyNXG/+8UZJ05atX2leqONvQ+4aqy8gukk1adt8yVZVXOaSve2mdCtILFBwVrKvfvtq1HQYAAAAAL8QKFgAAAAAAAAAAAAAAAEAL6JzUWTd/erOW3rVU615cp6zvstT7+t4yB5t1eONhpS1Ik63apmHTh9kDKc52yQOXqCSvRBte2aB5V87TkGlD1KFfB+Xvy1fq7FRVlVZpxBMjlPRE3dUrTvMz++nWpbdq4XULlZWcpQ+HfqhB9w5SYFig0lekK315ukKjQzVpySS179X+fL0cAAAAAOBxCLAAAAAAAAAAAAAAAAAAWkifX/XRw3se1uZ3NuvAigNa89waWautatOxjQZOGahLHrpEnRI7NVjH6BdHq8e4Htry7hbtWbJHZe+XKTQ6VD1+0UOJDyeq25XdztmP0OhQTU2eqpTZKUqbn6bk15NVXVmtyC6RSnoqScN/N1xtOrZx124DAAAAgFcgwAIAAAAAAAAAAAAAAABoQRHxEfrFzF/oFzN/4XIdnZM6q3NS52b1w8/sp8QHE5X4YGKz6gEAAAAAI+Sl5Sk8LlxhMWFuq9OvOYWnTp2qLVu2uKsvAAAAAAAAAAAAAAAAAAAAAADAR30x9Qtlb8luVN7PbvpMb3Z8U5/d9Jmqyqvc0n6zAiw+/vhjHTx40C0dAQAAAAAAAAAAAAAAAAAAAAAAvmv7x9t14ucTjcrb85c91b53e+379z4lv57slvabFWAhSY8++qgef/xx7dmzxx39AQAAAAAAAAAAAAAAAAAAAAAAaNAv3/2lHt77sPrd0k97FrsnnqHZARZxcXH661//qosvvlgjR47UJ598ovLycnf0DQAAAAAAAAAAAAAAAAAAAAAAwKmEMQkqyipyS13NDrB49tlnlZ2drRkzZqigoED33HOPLrjgAj3yyCPasWOHO/oIAAAAAAAAAAAAAAAAAAAAAAB8ganxWS2VFh1YeUD+gf5uadrcnMJXXHGFYmNjFR0drSeeeEJPPPGEvvvuO82ePVtz587V+++/ryFDhuj+++/X5MmTFR4e7pZOAwAAAAAAAAAAAAAAAAAAAAAA77X5nc3a8s6WOs//53f/0Zrn15yzvLXKqtKjpbJarOp2VTe39KlZARZr166t89yoUaM0atQovffee5o/f77mzJmj3/zmN3rsscd02223adq0aRo2bFhzmgUAAAAAAAAAAAAAAAAAAAAAAF6sorBChZmFdZ4vPVYqHWt8PYFhgRr98mi39KlZARYNiYiI0MMPP6yHH35Ymzdv1t13362PPvpIH330kfr376/77rtPd955p6Kios5XFwAAAAAAAAAAAAAAAAAAAAAAgAeKGxSnQXcPcnhu+7zt6jqqq9p2b9twYZMUEBqg9r3bq+/NfdXmgjZu6dN5C7CQpIyMDM2ZM0cff/yxcnNzJUk2m007d+7Uo48+qqeeeko33XSTHnnkEVa1AAAAAAAAAAAAAAAAAAA02qIJi4zuAgAAAJqhzw191OeGPg7PbZ+3XUN/M1QX336xIX3ya07hqVOnasuWLQ7PVVVV6dNPP9W4cePUq1cvvfHGGzpy5IhsNpuioqL06KOPaufOndq7d68efvhhrVq1SklJSZo0aZJKS0ubtTMAAAAAAAAAAAAAAAAAAAAAAMA7JVyRoLDYMMPab1aAxccff6yff/5ZkrR37149/vjj6tSpk26//XatWbNGVqtVNptNV1xxhRYsWKD//ve/mjVrlvr166cLL7xQM2fOVFZWlt577z19/fXXevbZZ92yUwAAAAAAAAAAAAAAAAAAAAAAwLvcvfZudb+qu2Htm5tbwYoVK/S3v/1N33//vSTJZrNJkmJiYnT33Xdr2rRp6tWrl9PygYGBevDBB5Wfn68PP/xQ7777bnO7BAAAAAAAAAAAAAAAWtiiCYuM7gIAAAAAAPBBB789qO/+9J3uXnN3s+tqdoDFokU1X5DYbDaZTCaNGzdO9913n371q1/JbG589VFRUTp27FhzuwMAAAAAAAAAAAAAAAAAAAAAAHxESV6JDq0/5Ja6mh1gYbPZdMEFF+jee+/VtGnT1LVr1yaVr6io0KJFizRz5ky1bdu2ud0BAAAAAAAAAAAAAAAAAAAAAABerPpUtbKSs3Rs7zFVFlXKarE6zZu3I89t7TY7wOIPf/iD/vCHP8jPz8+l8jk5Ofr1r38tSfrFL37R3O4AAAAAAAAAAAAAAAAAAAAAAAAvlfr3VH371LeqKKxo8babHWDRu3dvl4MrJKlHjx4qLy+v6Yy52d0BAAAAAAAAAAAAAAAAAAAAAABeaO/SvVp237ImlzOZTG5pv1kRDWvXrlXfvn0blXf8+PEym826//77df311zukBQUFNacbAAAAAAAAAAAAAAAAAAAAAADAy21+a7Mk6eLbL9bgXw9Wh74dFNI2RP6B/k7LpC1I07/v/rdb2nd96QlJY8aM0apVqxqV98CBA1qxYoUmTpyo5cuXN6dZAAAAAAAAAAAAAAAAAAAAAADQyuSl5emiiRfpxgU3qtuV3RQeG95gcIUkySTZbDa3tN+sAIumdGLXrl3atGmTevXqpddff705zQIAAAAAAAAAAAAAAAAAAAAAgFbGZrWp5y97NqnMRRMv0vSM6W5p3+yWWhohODhYw4cP129/+1u9+OKLLdUsAAAAAAAAAAAAAACAT1g0YZGh7U9eNtnQ9gEAAAAA3q997/ayVFqaVCYgNEBRXaPc0n6zVrBwxfHjx1VaWtrSzQIAAAAAAAAAAAAAAAAAAAAAAA826N5B2vf5viaVyd6crS+mfuGW9hu9gsX69eu1fv36Os9//vnnOnDgwDnLV1VV6dChQ/rXv/6l7t27N62XAAAAAAAAAAAAAAAAAAAAAACgVUt8OFEZqzO0/OHlGjdjnALDA89ZpuDnAu2Yt0M3fHRDs9tvdIDFunXr9Morr9R5funSpVq6dGmjG7TZbJo6dWqj8wMAAAAAAAAAAAAAAAAAAAAAgNZvw6sbFDswVtv+vk1pn6Sp6xVd1f7C9gpqEySTn6neMnk78tzWfqMDLKSa4IjGPFef0NBQ9e7dW3fffbceffTRpjQLAAAAAAAAAAAAAAAAAAAAAABauXUvrZPJVBNIYbPZdGDlAR1YeaDF2vdrbMYXX3xRVqvV4U+SFixYUOf5+v5KSkqUmpqq6dOn23cYAAAAAAAAAAAAAAAAAAAAAADgNJvNZl8I4vT2uf7cpUkrWAAAAAAAAAAAAAAAAAAAAAAAAJwvNy64URfffnGj86ctSNO/7/63W9puVoBFRkaGOnTo4JaOAAAAAAAAAAAAAAAAAAAAAAAANIlJblvFwq85hbt27arQ0NAmldm5c6deeeWV5jQLAAAAAAAAAAAAAAAAAAAAAABamQmzJyh+RHyTyvQY10N3r73bLe03K8DCFWlpaXr55ZdbulkAAAAAAAAAAAAAAAAAAAAAAODBhvx6iNp2a9ukMmExYUq4IsEt7ZubUzgrK6vJZfLz85vTJAAAAAAAAAAAAAAAAAAAAAAAgCQpe0u2tv19myZ8OKHZdTUqwOLVV1/Vm2++qd/97nd66aWX7M8nJCTIZDI1uxMAAAAAAAAAAAAAAAAAAAAAAABNVXCgoGUDLGbOnKmSkhK99dZbDgEWkmSz2ZrcKEEZAAAAAAAAAAAAAAAAAAAAAACgtkMbDjW5TP7efLe136gAi1tuuUUfffSRJk2aVCftN7/5jYYPH97oBr///nvNnj278T0EAAAAAAAAAAAAAAAAAAAAAACt3sejPzZ0QYdGBVjMmTNHf/7zn9WuXbs6aaNGjdLtt9/e+AbNZgIsAAAAAAAAAAAAAAAAAAAAAABAHTabrcll3BWU0agAC0n1BldcccUVio2NbVKDsbGxuvzyy5tUBgAAAAAAAAAAAAAAAAAAAAAAtH6jnh+l7mO715tmq7apsrhS+T/la/+X+1WUVaSr375aoR1C3dJ2owMs6vPyyy9LkjZs2KC4uDj17t37nGXGjh2rsWPHNqdZAAAAAAAAAAAAAAAAAPh/7N15XJVl/v/x92HfQXYUAcV9RY1U3NAyrTTT0tLcs0VrMqdtvjUztsy0TDOlTTPTaGWWaaVpZtqUK4qmlriLiQoiJCgioOwHzu8Pfx4hds5JRF7Px4NH97mv6/p8rptzQm7O+VwXAAAAgBuQX0c/hQ0Kq7Ff/+f668CSA9r8582asXOGVXLbWDI4OjpagwcP1uDBg/X6669bZUIAAAAAAAAAAAAAAAAAAAAAAKDpuf2ft6vFzS1q3b/bxG5qcXMLbf3rVqvkt6jAQpKcnJz0yiuvaM6cOdaYDwAAAAAAAAAAAAAAAAAAAAAAaIJufuxmebfxrtOYkAEhOrryqFXy21k02M5OTzzxhJ5//nmrTAYAAAAAAAAAAAAAAAAAAAAAAKC2inOLlZOSY5VYFhVYBAQEqG3btlaZCHAtLBu5rEHzj18zvkHzAwAAAAAAAAAAAAAAAAAAAMCNoqS4RAc+OSAHdwerxLOowGLgwIGKj4+v05gNGzbo1Vdf1aZNmyxJDQAAAAAAAAAAAAAAAAAAAAAAbiCntp6qsU9JcYkKsgqUEZ+hQ8sOKeNohjrc3cEq+S0qsHjqqac0fPhwPfroowoPD6/VmPT0dMXExFiSFgAAAAAAAAAAAAAAAAAAAAAA3GA+iv5IBoOh1v1NJpPsne01aO4gq+S3sWRwz5499d577+m2227TO++8ozNnzlhlUgAAAAAAAAAAAAAAAAAAAAAAoOkxmUy1+jLYGBR+W7imxU5TQLcAq+S2aAeL1q1bS5IyMzM1Z84czZkzR56envLw8JCNTeW1G7m5uZakBAAAAAAAAAAAAAAAAAAAAAAAN6gBLwxQ61tbV9luY2cjJ08nebfxlp2TRSURFVgULSkpqcK5rKwsZWVlVTuuLlt2AAAAAAAAAAAAAAAAAAAAAACApsGvo5/CBoU1SG6LyzUGDBhg3smiNk6ePKnY2FhL0wIAAAAAAAAAAAAAAACNxkfRH+lUzKka+9m72uv5S89X2+f0jtPa/e5uJccmK/dsrlz9XBXcN1iRsyIVFh1Wq/mUGku1Z+EeHVxyUBlHM2QsNMozxFPtR7VXn9l95BboVqs4AAAAAGBNg+YOUkC3gAbLb3GBxSOPPKIJEybUuv+nn35KgQUAAAAAAAAAAAAAAABQDzEvxyjmpRjZOdmpx4we8u/ir4z4DMUtjNOR5UcU9UyUhv5taLUx8jLytHTEUqXuSpVvB1/1e66fHNwclLA2Qdtf3669H+zVuBXjFDow9BpdFQAAAABcFj03ukHzW1xgUVdubm4KCQm51mkBAAAAAAAAAAAAAACABtU8srlGfzy62j4GG0OVbT+995O2zN0iOyc7Td40WcG9g81t3SZ106IBi7TjzR1y9XdV1NNRlcYoNZbq89GfK3VXqlpGtdSkDZNk72wvSYqcFamNz29U7Gux+mzUZ5qxe4Z82vrU40oBAAAAwHryzufpwokLKsgukJOnk5qFN5OLj8tvksuiAovi4mLZ2trWacyoUaM0atQoS9ICAAAAAAAAANDoFWQV6NjaY0rcmKi0vWm6kHhBRZeK5ODmIJ+2Pmp1aytFzoyUZ4hnjbFO7zit3e/uVnJssnLP5srVz1XBfYMVOStSYdFhtZpPqbFUexbu0cElB5VxNEPGQqM8QzzVflR79ZndR26BbrWKk3UqSzvn7dTxdceVfTpbDm4O8u/sr+5Tuqv75O7VflgMAAAAuNHZu9jLt4NvvcbmnsvV+mfWS5J6z+5drrhCkoJ6BCnq6SjFvBSjzX/arC73d5FHsEeFOHsW7lFybLJkkEYuHGkurrgi+qVoHVl+RJnHM/X977/X+DXj6zVfAAAAALDUvsX7tGv+LqXvT6/QFtA9QH2e7KPuk7tbNadFBRZ1La4AAAAAAAAAAACXCyIWD1msksISySB1HN1RXcZ3kaOHozKPZ2r/x/u1/fXt2v3Obo1aNEqdx3WuMlbMyzGKeSlGdk526jGjh/y7+CsjPkNxC+N0ZPkRRT0TpaF/G1rtfPIy8rR0xFKl7kqVbwdf9XuunxzcHJSwNkHbX9+uvR/s1bgV4xQ6MLTaOMfWHtPKCStVeLFQne7tpD5z+ijvfJ7iFsZp9bTVOrDkgO5bdZ8c3R3r9X0DAAAAmrJd83ep6FKRJKnnjJ6V9uk5o6diXo6RscCoHf/YoeFvDy/XbjKZFPtarCQppF+I/Dr5VYhha2+r7lO7a/MfN+vYN8eUtj9Ngd0DrXw1AAAAQNOQl5Gnw8sP68R3J5S2N02X0i/JYGOQW4CbWtzcQl0ndlW7Ee1kMNS8OFFTWmypKLdIy8cu14nvTki6fC/za+n707V62mod+uyQxq0YJ3sX+wp96sOiAov6WLZsmaZMmaKioqJrnRoAAAAAAAAAgOtCYU6hSgpLZLA16IFvH1D40PBy7QP/OFCLBi7S2YNntWrSKvl39Zdfx4offPrpvZ+0Ze4W2TnZafKmyeVWsO02qZsWDVikHW/ukKu/q6Kejqp0LqXGUn0++nOl7kpVy6iWmrRhknkF28hZkdr4/EbFvharz0Z9phm7Z8inrU+lcc7EndHysctlzDdq2Lxh6jO7j7ktclakFg1YpMSNiVo5YSUr4AIAAAD1cGTFEUmSV5iXvNt4V9rHI9hDvh18lRGfofgV8Rr21rByH9RK2ZminNM5kqRWt7aqMlf40HBt/uPmy3mXH6HAAgAAAKiH75/+Xj/+60cZC4xy8XNR1we6yqetj0wmk5I2J+nIiiM6/MVhtRrSSmOXj5Wzt3OVsZraYktfjv9Sx/93XNLlnQADugbII9hDds52MuYblZOSo7OHzqoot0gnvjuhL8d/qftX31/vfGVd8wKL0tJSlZSUXOu0AAAAQKNiMpn0479+1IY/bFBxbrGmbJ5SY6V5VlKW5reaX6v4kY9F6o5376i2T2OpWAcAAAAas4ipERWKKyTJyctJQ98cqk+Hf6qSohLFvR+nYf8YVq5P7rlcrX9mvSSp9+ze5YorJCmoR5Cino5SzEsx2vynzepyfxd5BHtUyLVn4R4lxyZLBmnkwpHm4oorol+K1pHlR5R5PFPf//77Kosj1s5aK2O+US16tyhXXCFJzs2cdce7d2jx4MU69s0xHfnyiDrd06nG7w8AAABwoyu8WCgHV4ca/1aek5qj8z+flyQFRlRf7BDUI0gZ8RnKSclRZkKmfNpdLZJO3JRoPq4uTkD3ABlsDDKVmsqNAQAAAFB7B5YckLHAqNBBobp/9f1y8nQyt9382M069s0xfXb3Z0rclKhlI5dp2rZpld4bNLXFln5e87OOfXNM7kHuuvVvt6rTvZ1k51ix7MFYaNSRFUe04dkNOvbNMR375pjajWhXr5xlWVRgMX369DqPOXnypCUpAQAAgBte5olMfT39a53aeqrB5tCYKtYBAACAxsjJy0kterdQp3urLjJo3qu5+TgjPqNC+675u1R06fJu0T1n9Kw0Rs8ZPRXzcoyMBUbt+McODX97eLl2k8mk2NdiJUkh/ULk16niLhm29rbqPrW7Nv9xs459c0xp+9MqrF57csNJpe5KvZzzocrnEhYdJu+23spMyNS2v2yjwAIAAABNUnFesWJejtGRFUd04cQFFecVy2BjkE97H7W9s636zukr9+buFcadPXTWfOzRsmLhdFll288ePluuwOLcoXPmY8+WnlXGsHO0k4ufi3LTc3Xu8Lkq+wEAAACono2djUZ/PLpcccUV7Ua0U88ZPbXnv3t0esdpHf7isLrc36Vcn6a42NL+xfvl3MxZD/7woDxDqr9v6fZAN4UOCNV/e/xX+xbta/gCi48++qjcNoK1YTKZ6jwGAAAAaArK7lphY2uj4D7BStmZUuc4Q14doo6jO1bbx6lZxZu2KxpTxToAAADQWAX3CdaMnTOq7WPvcvXNjcpWZjqy4ogkySvMS95tvCuN4RHsId8OvsqIz1D8ingNe2tYub/Rp+xMUc7pHElSq1tbVTmX8KHh2vzHzZfzLj9SocDi8PLD5uPWt7auMk7rW1srMyFTafvSlHk8s8p5AwAAADeqX378RWcPnlXE9AgN/ONA2bvaK+NohuIWxOmHv/+gPf/dozFLxqj9Xe3LjctKyjIfuwa4VpujbHvZcXWN4xbgptz0XBXmFCr/Qr6cmzlXf3EAAAAAKgiMCKy2SKDjPR215797JEnH1hyrUGDRFBdbStmZoojpEdV+38ryDPFUxPQIHVp2qM65KmNjaQAfHx+FhIRU+tWiRQu5u7vLZDLJZDLJw8NDoaGhCgkJscbcAQAAgBtKzEsx+vZ33yqkf4hmHpqp8GHh9YrjHuQu3w6+1X65BbhVOb42FevebbxVkFWg73//fZVxalOxLslcsQ4AAACgvNQfU83HYUPCyrXlpObo/M/nJV1+c6Y6QT2CLo9JyVFmQma5tsRNiebj6uIEdA8wb0tedswVSZuSJF3emcMr1KvKOIE9ruaoLA4AAADQWBgLjSrMKTR/FV0sqtU4V39XPbznYd35rzvVeVxntbuznaKeitKjBx5V66GtVXSxSMvHLtfpHafLjSsb386p+vVUy/5d/9fzKrxYWOs4ds5X22t7fQAAAACuumfZPbrrg7uq7VP2b+rZydkV2uuy2JIkxa+Il8lkKtdel8WWzHmXV/wsT10WW5JkXmyprvIy8iotAqmOX0c/5WXk1TlXZSwusJg3b54SExMr/UpOTlZWVpbOnDmj//znPwoKCtKbb76pxETeNAEAAAB+zWQyaeT7IzXxfxOr3Zb7t55DbSvWJZkr1n+tLhXrkrTtL9usMn8AAADgRmEsMGrT85skSf5d/SusSnX20FnzsUfLilt9l1W2/ezhs+Xazh06Zz6u7j7EztFOLn4ul8ccPleurTi/WBdOXqjVXMrm+PVcAAAAgMYk9rVYve75uvnr3U7v1jjm3s/u1WNHH6v0b+92jna6+6O7Zetoq5KiEq17fF259uL8YvOxrYNttXnKthfnFZdrM+YbrRIHAAAAQM1aDW6lgG4B1fYpyCowH9u7ll8EtakutuTg5lDnYom883lycHOoc67KWFxgURsBAQF65JFHtGnTJj3zzDP68ccfr0VaAAAAoFGJfjFaPR+svBjhWmlsFesAAADAjcJYaNSl9Es6d+Sc4t6P04JeC3R6x2l1HtdZ07ZNq7CzXFZSlvnYNcC12thl28uOq2ucKzvhFeYUKv9Cvvl8dnK2TKWmcn1qM5fspIorcQEAAACNRf//668/ZP/B/PX4kcdrHOMW6CbnZs5Vtrs3d1eb4W0kSWl703Rm7xlzW9l7gpKikmrzlG23dyl/L1F2VwpL4gAAAACwjguJF8zHoQNDy7U11cWWfDv46tCyQ+b3HmpiKjXp0NJD5l08LGVRgcXFixd133331bp/YGCgpk6dqldffdWStAAAAMANyWAwWD1mqbFURbm137a7sVWsAwAAADeKQ8sO6R+B/9C/O/9bax5ao6JLRRrz6Rjd89k9cvJ0qtC/6OLV3/PtnOwqtJdV9oNYZcdJUuHFwlrHKftBrLJx6juXsrkBAACAxsbO0U6OHo7mLwd366yU2vym5ubj0ztOm4/LxjcWGFWdsrtd/Hpeju6OtY5TdrcLa10fAAAAgPKOrjoq6fLf1yOmRpRra6qLLXW4u4PS9qVp5cSV5Xb4qExBdoFWPrBS6QfS1WF0hzrnqkz173TUwNW1+m9wZUJDQ/Xvf//bkrQAAAAAqnH28Fl9OeFLJccm6+IvF2UqMcnexV7BfYLVdWJXdZ/UXTZ2ldda17ViPTc9t0Er1gEAAIDrhbHQqJLCq6u7Fl8qrqZ3ReHDwjVp/SQV5RYpMyFTB5ce1MoHVmrL3C0aPn+42t7Rtlz/sh+YsnWwrTZ22fbivPLzKvuBqfrGsdZcAAAAAEiu/lc/i3Mp7ZL52CvMy3ycm55bbYyy7WXHXXmcsjPF3M+jRdV/x7+Ufjm/o4djtTtvAAAAAE3Br98H+PWCRvWRezZXP6/+WZLU9+m+cm/uXq79elhs6cq9wLVcbClyVqR2zd+lw58fVsK6BLW7s52aRzaXewt32Tvby1hgVE5Kjn756RclrE1QYU6h3Fu4K3JWZJ1zVcaiAov6OH78uHJycq51WgAAAKDJ+OHvP8innY9ufvxm+Xb0VUlhiU5tPaW4hXFK3JSouAVxGrdynNyD3CuMrWvFem56rrli/coN1bWsWAcAAACuF7GvxSrmpRjz42ybuv1+6x7kXu539L5P9dWG5zZox5s7tHTEUo1aNEoRUyLM7WXfnCgpKlF1yrbbu9iXayv7Rkl941hrLgAAAABk/vu6JNnYXl0syb+Lv/k453T1n7vJSbna7t/Zv1ybXxc/83H26WwF9QyqNIax0Ki8c3mXx3T2q7QPAAAA0JRUeB9Aln/OZf0z62UsMCqoZ5AG/nFghfamutiSvYu97v/6fn18y8cqyCrQoc8O6dBnhyrtazKZ5NzMWePXjC/3foUlrmmBxbZt2/Svf/1LISEh1zItAAAA0KR0vKejxnw6RnaOV3/d73RvJ0VMi9Di6MVK2ZmiZSOXafr26eX6SI2vYh0AAAC4XvT/v/7q+/u+5sfJycl6u+vb9Y5nMBh06xu3KnFjos7EndHamWvVZlgbuQVeLmJ2cHcw9zUWGKsKI6n8mx5lx0mSo7tjreOUfQOmbJz6zqVsbgAAAOBG9/Oan5W+P10DXhggg8FQZb+yu1a4BV1dxMijhYd82vno/LHzStuXVm2uM3FnLo8J9pB3W+9yba2GtNJmbZYkpe1LU4dRHSqNkb4/3Vzs0WpIq2rzAQAAAE3Br98HSE1N1dud6v8+wIElB7T/4/1y9XfVuC/HVfgMj9S0F1sK6hGkR/Y+orUz1+r4/45X2a/t7W11x7/vkFeoV73yVMaiAovp06fX2Ke4uFhZWVmKj49XYmKiJGnmzJmWpAUAAACue7/eFrD4Ut2rsevKI9hDsxNny72Fu2ztK1aKB/UI0sA/D9T6p9frzJ4z+um9n9Rndp/y825kFesAAADA9cLO0a7cmx/2bpavkmQwGNT1ga46E3dGxnyjDi47qL5zLr954xXmZe6Xm55bbZyy7WXHXXmcsjPF3M+jhUeVcS6lX/6gl6OHo7nAWpI8QzxlsDHIVGoy96nNXDzDPKvtCwAAANxI4r+M1/7F+9VzRk9z4XRlrvx+Lkkh/csvYNppbCdt++s2ZSVl6cLJC2rWulmF8TmpOco4miFJ6nhvxwrFHMF9guUR7KGclBwlbkxU9NzoSudxcsPJcnkBAACApu7X7wM45DhU07t6p7ae0pqH1sjRw1ET1k2o8Ld7c44mvtiSV6iXHlj3gDKPZ+rkhpM6n3BeRReL5ODuIO823mp9a2v5tPWpd/yqWFRg8dFHH1VbVV+WyXS5qj0qKkovvPCCJWkBAACA616FbQFtLN8WsCY2djZV3nBd0WNaD61/Zr1kkvZ9uK9CgUVjrFgHAAAAbmQ+7a++MXD24FnzsX8Xf/NxzumcamPkpFxt9+/sX67Nr4uf+Tj7dLaCegZVGsNYaFTeubzLYzr7lWuzd7ZXs9bNlHk806K5AAAAAE1BwrcJ6jGtR6Vt5xPOmwsbWka1rPA7c+8nemvX/F0qulSkuPfjdMurt1SIsfeDvZLp8g7TUU9FVWg3GAzq/3x/rZu1Tsmxyco4miHfDr7l+pQaS7Xvo32SpLZ3tlVg98D6XCoAAACASqTuTtWykctk62Crid9NVPNezavsy2JLl3m38ZZ3G++aO1qJjaUBfHx8FBISUuVX69at1aNHD40fP15Lly7V1q1b5erqao25AwAAANet/v/XX3/I/oP5a+b+62MXN2dvZ/OKVukH01V0qahce2OtWAcAAAAam4RvE5QUk1RjPxvbq3/GLzWWmo89WnjIp93l4ou0fWnVxjgTd+bymGAPebct/wZEqyGtzMfVxUnfny5TqanCmCvChoRJkgqyCpR1KqvGuVQVBwAAALjRbfy/jTp/7HyF8/mZ+fpy/JcylZhk72Kv29+9vUIfV39XDX1zqCRp59s7lfpjarn2tP1p2v637ZKkwa8Mlkdw5R+a6vVQr8u7Y5ikNQ+tKfe3ekna8uIWZSZkysnLScPeHlav6wQAAABQ0S97ftGSYUtkMpk08buJCu4TXG3/32qxparUZrElS+fSGFi0g4UkzZs3TxMmTLDGXAAAAIAbxq+3BbR3u352Z3D1d9WFExck0+Wqc2+3qx+wauwV6wAAAEBjsXbmWjm4OWjWoVnV9ss8nmk+9gwp/ztzp7GdtO2v25SVlKULJy+Y39goKyc1RxlHMyRJHe/tWGFX6uA+wfII9lBOSo4SNyYqem50pfO4sorulby/1nlsZ8UtiJMkJW5MVI/pla/Im7gxUZIUGBF4TVebAgAAABqaXyc/2djbKDc9V+9FvKcu93dR88jmsnWwVUZ8hvZ/vF955/LkGuCqez+/V0E9Kt9d7qZHb9Kl9Eva+vJWLR68WD1n9JRfZz9lHM1Q3MI4FecWq+/TfRX1dMXdK66wsbPRfavu09IRS5Ucm6wFvRYoYlqEHFwdlLAuQQlrE+Ti66KxK8bKp61PlXEAAAAA1N6ZvWf0ydBPVGosrVVxhXR1saXzx85bvNjSZm2WdHmxpQ6jOlQaozaLLWUezzQvtuQV6lXtXKqKUxsXEi+o6OLlhWMNtoZKCzUOfHpArv6uCh8aXq8cVbG4wKKhZWRkaP78+Vq1apWSkpLk4OCg9u3ba/z48Xr00Ufl4OBQc5BaKCkp0bJly7R8+XLt379faWlpcnNzU1BQkLp06aLo6GiNGjVKgYFsiwgAAIDr25UbIan8arhSxYr1oJ6Vv4FTm4r1zOOZN3zFOgAAAGCJjPgMZSVlVdiq+wqTyaT9H+83P243sl259t5P9Nau+btUdKlIce/H6ZZXb6kQY+8HeyWTZOdkp6inKn7AymAwqP/z/bVu1jolxyYr42iGfDv4lutTaizVvo/2SZLa3tlWgd0r/h289a2t1aJ3C6XuSlXc+3GVFlic2nrKvFLvgBcGVHrNAAAAaNyWjVzWoPnHrxnfoPmr0+/Zfuo+ubviV8br5PqTOrX1lA5/flglxSVybuasgG4BajeinXo82KPGHZ+j50YrfGi4dr2zS0dWHFHef/Lk4uui8NvCFflYpFoNrvkDTC6+LpoeO117Fu7RgU8OKPa1WJUUlsgzxFNRz0apz5N95B7kbq3LBwAAAJq09APp+mToJyopKtHE/01Uy6iWFfpseWmLjq05pod/erjc+aa42FJxXrEW9FygwpxCSZKjp6Oey3yuQr+EbxJ0+IvDCukfons+u8dq9zAWFVgkJibKz8+v5o6/kd27d+vuu+/WmTNnNHToUM2cOVP5+flavHixZs+erY8++kjffPONmjdvblGeo0ePasKECdq3b5/uuOMO/e53v5OXl5dOnz6tTz/9VJ999pk+++wzFRcX6/HHH7fS1QEAAAB1s/UvW+Xf1b/KKvMrLqVd3lXCYGOQq79rubbGWLEOAAAANFamUpNWTVqlscvHyi3QrULbd7//Tr/8+Iskqcv4LgruXX41K1d/Vw19c6jWzlyrnW/vVIfRHdQisoW5PW1/mrb/bbskafArg+URXPkOdb0e6qVDSw8pOTZZax5ao4nfT5S989Vd+La8uEWZCZly8nLSsLeHVXk9d/77Tn3Y/0Ol/JCi3e/u1s2P32xuK8gq0LrH1kmS2o1op073VnxjBgAAALjRuQW6KXJWpCJnRVocq2VUy0o/lFUXNnY2ipwZqciZls8HAAAAQOXOHjqrj2/5WMZ8ox749gGF9A+ptF9WYpbO7DlT4XxTXGwpfmW8CrILJEnt72qvjmM6Vtqv6wNdlZOSo1PbTmnJsCV66MeHZOdo+f4TFkUIDQ21eAL1lZycrBEjRujcuXN68skn9fbbb5vbfve73+n222/X5s2bddddd2n79u1ydKy+ur8qJ06c0JAhQ3Tp0iVt3rxZgwYNKtf+wgsv6LbbbtOWLVssuRwAAADAYpv/tFnhw8KrLbC4eOaisk9lS5KCegbJ3sW+XHtjq1gHAAAAGqvA7oHKPpWt5NhkvRP+jjrf31m+HXzl4uOi7ORsHf7isDLiL6821X1yd41YMKLSODc9epMupV/S1pe3avHgxeo5o6f8Ovsp42iG4hbGqTi3WH2f7quopyu+oXKFjZ2N7lt1n5aOWKrk2GQt6LVAEdMi5ODqoIR1CUpYmyAXXxeNXTFWPm19qowT1DNIY78Yq5UPrNS3T3yr5G3JChsSpvzz+YpbGKespCy1GtJKY5aOseybBwAAAAAAAABAI3DuyDl9fMvHysvI08A/D5Sp1KSkLUmV9r2yYOqvNcXFlo7/77gMBoPu+ewedR7bucp+7Ua0U7sR7fTD2z/o+6e+14///lF95/StV86yLC/R+P9KSkq0bt06bd26VYmJibp48aLc3d3VqlUrDRw4UHfccYdsbW2tlU7PPPOMzp07p5CQEL3++uvl2hwdHbVw4UK1b99ee/bs0bvvvqunnnqqzjlMJpMmTZqkM2fOaOnSpRWKKyTJ3t5ef/rTn3Tw4EE5OzvX+3oAAAAAazi947QKcwrl6FF5gfFP7/1kPu75cM8K7Y2tYh0AAABorO5ffb/OHjqr+FXxSt6WrJPrT+rQskMqLS6Vg7uDmrVqpsjHI9V9cvdyb5RUJnputMKHhmvXO7t0ZMUR5f0nTy6+Lgq/LVyRj0Wq1eCad4tz8XXR9Njp2rNwjw58ckCxr8WqpLBEniGeino2Sn2e7FOrrbXbjWinR/c/qp3zdiphbYJ+/vpn2bvay7+Lvwb+eaAipkTIYGOoMQ4AAAAAAAAAAI2ZscCoj2/5WLlncyVJW1/eqq0vb61XrKa22NKZPWfU/q721RZXlNV3Tl8dX3dchz8/fP0UWKxYsUJPPvmkzpypuC2JJL311lsKCgrS/Pnzdc8991icLyEhQcuXL5ckTZ48udLdKcLDwzV48GBt2LBBb7zxhmbPni07u7pd7rJly/TDDz+obdu2uv/++6vsN2TIEGVkZNTtIgAAAIDfQNHFIq15eI1Gfzxatg7lC5xPfH9C29+4XLEeOjBUPaZVvqtEY6pYBwAAABoz/y7+8u/ib5VYLaNaqmVUS4ti2NjZKHJmpCJnRloUxyvMS8PnDdfwecMtigMAAAAAAAAAQGNlLDBWuStFfTSlxZZyUnPU48HKP9dUldZDW2vbX7fVO2dZFhdYvPbaa/rjH/8ok8lUbb9ffvlF48aN01//+lf94Q9/sCjnihUrzPluvfXWKvsNHTpUGzZs0Llz57Rly5Zq+1Zm4cKFkqSRI0fKYGBFLQAAAPz2Diw5YD5OP5BuPj6x/oRyUnIkSa4BrgofGl5hbED3AKXvT9fhzw/rzJ4z6nx/ZzVr3UzFucVK2pKk+JXxkklqc3sbjfl0jGzsbCqdQ2OqWAcAAAAAAAAAAAAAAACuN05eTpprmmvVmE1lsaWSohI5ezvXaYyLr4tKikqskt+iAott27aZiyvatm2rcePGqWfPnmrRooWcnJxUUFCg1NRUxcXF6fPPP9fx48f1wgsvaMCAAerXr1+9827atMl8HBERUWW/Hj2uVq5s2rSpTgUW586d09atl7dh6d69e7m2/Px82djYVLpzBgAAAGCJVZNWVXo+9tVY83HooNBKCywe3feoUnal6OhXR3V6+2nFLYhT/oV82drbyi3QTV0ndFW3Sd3UZlibGufRWCrWAQAAAAAAAAAAAAAAANw4XP1ddfbQ2TqNST+YLhc/F6vkt6jA4q233pLJZNLcuXP1pz/9STY2la+AO3r0aL300kt6+eWX9fLLL+sf//iHRQUWhw4dkiS5u7vL09Ozyn4tW16t0Dl8+HCdcsTFxam0tFSSFBISopMnT+rVV1/VmjVrdPbs5ScsICBAw4YN03PPPadOnTrV9TIAAACACiytXA/uHazg3sFWmUtjqFgHAAAAAAAAAAAAAAAAcONo2bel9n64Vzc/frOatW5WY/8LJy9o36J9tVp0tjYqr4iopR07dui2227T3LlzqyyuMCeysdGLL76ooUOHavv27fXOWVhYqLS0NEmXCxyqU7Y9KSmpTnkOHjxoPv7uu+/UuXNnbdu2TS+88IK++eYbvf/++2rdurU+/vhjRUREaNGiRXWKDwAAAAAAAAAAAAAAAAAAAAAAroqYHqHCnEJ90PcD7f1wr4pyiyrtV5xXrL2L9urDfh+q6GKRejzYwyr5LdrBIjs7WyNHjqzTmLvuuktbt26td86LFy+aj52cnKrt6+zsXOm42riyS4Ukvf7664qMjNSWLVvk4nJ165Bp06bp/vvv1/LlyzVjxgy1atVK0dHRdcoDAAAAAAAAAAAAAAAAAEB9LBu5rEHzj18zvkHzAwCAG0+bYW3U6d5OOrLiiNY8tEbrHlsnn/Y+8gj2kJ2TnYwFRuWk5Oj8z+dVUlQik8mkzmM7K/y2cKvkt6jAws/PTw4ODnUa4+DgUOPOE9XJz88vF6umXFfk5eXVKU9OTk65x++++2654grp8q4c7777rtasWaOCggI99dRT2rNnT42x8435umS8ZH5sb2Mve1v7Os0PjZPRaGzQ3KWlpQ06BzRtvAbR0HgNoqGVlpY29BTQgBryHoCfew2Hf3vAawC8Bpo2nn9wD9C05ZXkydHoaH7M+wDXH5PBJJNMMhlMKhX/v17PeK4aD56rxoXnq/Hguaqbhn5PHk1Xdna2MjMzzY8dHR3l6OhYzQhYS6mhcf5svJF+vvPz79ri746oL147qC9eO1Xje/LbGv3xaJUaS3X0q6MyFhp19uBZnT14tlwfk8kkSeo4uqPu/vhuq+W2qMAiKipK27dv10MPPVTrMT/88IOGDBlS4XxiYqK2bdumyZMnVzu+7K4URUWVb/dRWfuviyNqUlJSYj4ODQ3VzTffXGk/f39/DRkyROvWrVNcXJyOHDmiTp06VRv7uS3PlXs8vOdw3XHTHXWaHxqn2NjYBstdWlqq5ORkSZeLg4BrjdcgGhqvQTS08+fPN/QU0IAa8h6gIX8Hber4twe8BsBroGnj+Qf3AE0b7wNc/0wyKd89X5nKlEGGhp4OqsFz1XjwXDUuPF+NB89V3TTk30PLfrgeTU9ERES5x1OmTNHUqVMbZC5NTWZQ4/x/70b6+c57UdcWf3dEffHaQX3x2qka9wC/LTsnO9238j4d+vyQdv9zt1J3paq05Gphqo2tjYJ7B6v37N7qPLazdXNbMnj27NkaPHiwJk2apFtuuaXG/lu2bNHKlSu1c+fOCm07duzQtGnTaiywcHd3Nx8XFBRU27fsbhdlx9VG2f5dunSptm/37t21bt06SdLu3btrLLB4I/oNNXNqZn5sb2Mv+zOsXNUU9O/fv8FyX6mUi4qKkp2dRf/rA/XCaxANjdcgGtqVm000TQ15D9CQv4M2dfzbA14D4DXQtPH8g3uApo33Aa5/JoNJmcqUd5q3DKbG/WGmGx3PVePBc9W48Hw1HjxXddOQfw9NSUlpsNxoePv27VPLli3Nj9nB4tpJfSu1oadQLzfSz3fei7q2+Lsj6ovXDuqL107VuAe4Nrrc10Vd7uuioktFupB4QUUXi+Tg7qBmrZrJwc3hN8lp8Q4W//znPzVy5EhNnjxZ999/v7p27Spvb28ZDAaZTCZduHBBBw8e1BdffKE1a9Zo1apV6tChQ71zOjo6KjAwUGlpaUpPT6+2b9n2sLCwOuXx8fExHzdr1qyanpKvr6/5+OzZs9X0vMzZzlludm7lT5rqND00Ug39j4uNjY3s7OwafB5oungNoqHxGkRDooq/aWvIewB+5jUs/u0BrwHwGmjaeP6bNu4BmjYXWxfeB7jOlapUBhlkMBlkY+L/1+sZz1XjwXPVuPB8NR48V3XTkPdf3Ps1bZ6envL29m7oaTRJjfVn4430852ff9cef3dEffHaQX3x2qkc349ry8HNQQFdA65JLoueWVtbW0mSyWTSwoULtXDhwhrH3HrrrZaklHR5R4m0tDRdvHhR2dnZ8vT0rLRf2cqgzp3rtvVH2f7FxcXV9jWZrr4rwptmAAAAAAAAAAAAAAAAAAAAAAA0PhZVA5hMJnNxwZVjS75qa8iQIebjffv2VdkvLi6u0jG1ERkZKYPh8vZraWlp1fY9d+6c+bh58+Z1ygMAAAAAAAAAAAAAAAAAAAAAABqexXuTjBkzRl27drV4IgcOHNBXX31Vq7733nuvXnjhBZlMJm3cuFGDBg2qtN+GDRskSb6+voqOjq7TfFq0aKE+ffrohx9+0L59+2Q0GqvcymXPnj3m44EDB9YpDwAAAAAAAAAAAAAAAAAAAAAAaHhWKbCYMGGCxRP59NNPa11g0bZtW40dO1ZffPGFPvnkE/3xj3+Ug4NDuT4nT57Upk2bJEnPPfdcheKIQ4cOacyYMcrLy9PSpUsrLYx46qmndO+99yo7O1urV6/WPffcU6HP6dOnFRMTI0m66667FBwcXKtrAAAAAAAAAAAAAAAAAAAAAAAA1w8bSwaHhobKzc3NKhNxc3NTSEhIrfu/+eab8vPzU1JSkp5//vlybYWFhXr44YdVUlKiXr166fHHH68w/q9//asSEhKUmpqqP/zhD5XmuOeeezRixAhJ0pw5c5SSklIhz4MPPqji4mJ5e3tr3rx5tZ4/AAAAAAAAAAAAAAAAAAAAAAC4fli0g0ViYqK15qFRo0Zp1KhRte4fEhKiNWvWaPTo0frHP/6hQ4cO6a677lJ+fr4WL16sgwcPKiIiQl9//bWcnJwqjC8tLTUfm0ymKvN8/vnnGjNmjL777jtFRETowQcfVPv27ZWWlqaPP/5YP//8s1q2bKnVq1erVatWdbtoAAAAAAAAAAAAAAAAAAAAAABwXbCowKKh9e7dWwcOHNC8efO0atUqPfvss7K3t1e7du00b948zZw5Uw4ODpWOfeGFFxQXF6f8/Hy98cYbVeZwcXHR//73P33xxRdavHixPv74Y50/f17u7u7q3LmzHnnkET388MNydXX9rS4TAAAAAAAAAAAAAAAAAAAAAAD8xhp1gYUk+fr66i9/+Yv+8pe/1Glct27dlJCQUOv+48aN07hx4+o6PQAAAAAAAAAAAAAAAAAAAAAA0AjYNPQEAAAAAAAAAAAAAAAAAAAAAAAAGhoFFgAAAAAAAAAAAAAAAAAAAAAAoFE6ueGkFg9ZbJVYFFgAAAAAAAAAAAAAAAAAAAAAAIBG6VL6JZ2KOWWVWHZWiQIAAAAAAAAAAAAAAAAAAAAAAGAFJUUlSo5N1rn4cyrMLlSpsbTKvun7062WlwILAAAAAAAAAAAAAAAAAAAAAABwXYj7IE4bnt2ggqyCa56bAgsAAAAAAAAAAAAAAAAAAAAAANDg4lfFa81Da+o8zmAwWCX/NSuwOHDggAIDA+Xv73+tUgIAAAAAAAAAAAAAAAAAAAAAgEZi51s7JUldJ3RVjwd7yK+Tn5ybOcvWwbbKMQeWHNBXU76ySn4bSwZPnz5du3btqlXfe+65R0FBQbrnnnuUn59vSVoAAAAAAAAAAAAAAAAAAAAAAHCDST+Qro6jO2rMkjFqNbiV3ALcqi2ukCQZJJPJZJX8FhVYfPTRRzpx4kSt+t5+++1q166dvvrqK7322muWpAUAAAAAAAAAAAAAAAAAAAAAADcYU6lJbW5vU6cxHUd31OzE2VbJb1GBRV288847io+P17hx47R8+fJrlRYAAAAAAAAAAAAAAAAAAAAAADQCPu18ZCw01mmMvYu9vEK9rJL/mhVYXDFkyBAlJydf67QAAAAAAAAAAAAAAAAAAAAAAOA6FjEtQkdXHq3TmJSdKVo9fbVV8ltcYGEwGGrdt7CwUN9++60cHBwsTQsAAAAAAAAAAAAAAAAAAAAAAG4gkY9FytHDUWsfW6uiS0W1GpN5IlP7F++3Sn672nacP3++5s+fX+H8k08+qRdeeKHG8cXFxTp79qyMRqNuueWWus0SAAAAAAAAAAAAAAAAAAAAAADc0La+slUB3QO094O9OvDxAYUOCpVPex85ujvKYFP55hDp+9Otlr/WBRZZWVlKSkqqcP7cuXM6d+5crRO6urrqpZdeqnV/AAAAAAAAAAAAAAAAAAAAAABw49vy4hYZDJcLKUwmk45/e1zHvz1+zfLXusAiIiJCU6ZMKXdu8eLFGjBggFq3bl3tWIPBIBcXF7Vr10733nuvmjdvXr/ZAgAAAADqZNnIZQ2af/ya8Q2aHwAAAAAAAAAAAAAAAI2LyWSq9Lg6V4oyLFXrAotRo0Zp1KhR5c4tXrxYjzzyiCZMmGCVyQAAAAAAAAAAAAAAAAAAAAAAgKZrzJIx6jqha637H1hyQF9N+coquW0sGTxo0CAFBARYZSIAAAAAAAAAAAAAAAAAAAAAAAB1Yqj9Thc1qfUOFpXZvHmzVSYBAAAAAAAAAAAAAAAAAAAAAACatpELRyq4b3CdxoQPDdeUzVOskt+iHSzqY/Xq1WrduvW1TgsAAAAAAAAAAAAAAAAAAAAAAK5jPR/sqWatmtVpjKu/q8IGhVklv0U7WNTHpUuXdOrUqWudFgAAAAAAAAAAAAAAAAAAAAAANEK5Z3NVkF0gJ08nufi5yGAw/CZ5alVgcfHiRW3cuFGDBw+Wp6en+fzLL79c54T79++v8xgAAAAAAAAAAAAAAAAAAAAAANB0JMUkadf8XUranKTCnELzeUcPR7Ua0kq9Z/dW6MBQq+asVYHFsGHDtGvXLkVGRmrnzp3m8y+++OJvVvkBAAAAAAAAAAAAAAAAAAAAAACaFlOpSWtnrVXcwrjLj02mcu0F2QU6+tVRHf3qqHo+3FN3vHuHbGxtrJK7VgUWCQkJMplMOnnyZIW2X0+2NijKAAAAAAAAAAAAAAAAAAAAAAAAv/bNo99o7wd7zbUKbgFu8gj2kJ2znYz5RuWk5OhS+iVJUtyCOJlKTRr535FWyV2rAouPPvpI//3vf/XQQw9VaFuyZIkmTJhQ64RLlizRlClTaj9DAAAAAAAAAAAAAAAAAAAAAABwwzu17ZTi3o+Tg5uD+j3XTxFTIuQR7FGhX05KjvYt3qcdf9uhve/vVfdJ3RXSP8Ti/LUqsLjzzjt15513WpxMurx7RX12vQAAAAAAAAAAAAAAAAAAAAAAADeuuAVxsne217St0xQYEVhlP49gDw18YaDa3dlOH/b7UHv+u+faFVhUZdGiRYqKiqrTmKioKC1atMiStAAAAAAAAAAAAAAAAMAN4/tnvtcPf/9BkjRo7iBFvxhd45jTO05r97u7lRybrNyzuXL1c1Vw32BFzopUWHRYrfKWGku1Z+EeHVxyUBlHM2QsNMozxFPtR7VXn9l95BboZsFVAQAAAEDdndp2ShHTIqotrigrMCJQ3ad2V8LaBKvkt6jAYsqUKXUe06pVK7Vq1cqStAAAAAAAAAAAAAAAAMAN4UzcGe18e2edxsS8HKOYl2Jk52SnHjN6yL+LvzLiMxS3ME5Hlh9R1DNRGvq3odXGyMvI09IRS5W6K1W+HXzV77l+cnBzUMLaBG1/fbv2frBX41aMU+jAUEsuDwAAAADqJDc9V4E9aldccUVQzyDt+3CfVfJbVGBRH6tXr9acOXN08uTJa50aAAAAAAAAAAAAAAAAuG6UGkv19YyvZSox1XrMT+/9pC1zt8jOyU6TN01WcO9gc1u3Sd20aMAi7Xhzh1z9XRX1dFSVeT8f/blSd6WqZVRLTdowSfbO9pKkyFmR2vj8RsW+FqvPRn2mGbtnyKetj2UXCgAAAAC1ZOdkp6JLRXUaU3SpSHZO1imNsLFKlDq4dOmSTp06da3TAgAAAAAAAAAAAAAAANeVHf/YobS9aWo/qn2t+ueey9X6Z9ZLknrP7l2uuEKSgnoEmYsqNv9ps3JSciqNs2fhHiXHJksGaeTCkebiiiuiX4qWdxtvFWQV6Pvff1/HqwIAAACA+msW3kxHVx6t05ijK4+qWXgzq+S3SpnGmTNn9O233yo+Pl7Z2dkyGo1V9mXnCgAAAAAAAAAAAAAAADR1mScyFfNSjJpHNtfNv7tZP6/+ucYxu+bvMq/k2nNGz0r79JzRUzEvx8hYYNSOf+zQ8LeHl2s3mUyKfS1WkhTSL0R+nfwqxLC1t1X3qd21+Y+bdeybY0rbn6bA7oF1vUQAAAAAqLO2d7bVtr9s0/pn1+uW126RjW3Ve0qYSk3a8IcNSo5N1sA/DbRKfosLLP70pz/pjTfeUElJSa36m0wmGQwGS9MCAAAAAAAAAAAAAAAAjdY3D3+j0uJSjVw4UgUXCmo15siKI5IkrzAvebfxrrSPR7CHfDv4KiM+Q/Er4jXsrWHlPquTsjNFOacv72zR6tZWVeYKHxquzX/cfDnv8iMUWAAAAAC4JvrM7qPd7+zWD//4QfFfxqvz/Z3VIrKF3Fu4y97ZXsYCo3JScvTLT7/o0GeHlJWYJUdPR/V+ordV8ltUYLFw4UL99a9/NT92cnKSl5eXHB0dqxyTm5ur8+fPW5IWAAAAAAAAAAAAAAAAKGfZyGUNlvt8ft0+CxP3QZwSNyWq33P9FNg9UElbkmock5Oao/M/X84TGFF9sUNQjyBlxGcoJyVHmQmZ8mnnY25L3JRoPq4uTkD3ABlsDDKVmsqNAQAAAIDfkrO3s+794l4tG7lMWUlZ2v769ir7mkwm2TrYauwXY+Xs7WyV/FXvl1ELCxYskI2NjebOnaukpCTl5eXpl19+UWJiYpVfb731llUmDgAAAAAAAAAAAAAAADQ2l9Iuaf0z69UsvJkGzR1U63FnD501H3u09Ki2b9n2s4fPlms7d+ic+dizpWeVMewc7eTi53J5zOFzVfYDAAAAAGsLHxquadumybejr0wmU5Vffp38NG3bNLW+tbXVclu0g0V8fLymTp2quXPn1nqMwWCQyWSyJC0AAAAAAAAAAAAAAADQKK17fJ0KLhRo7PKxsne2r/W4rKQs87FrgGu1fcu2lx1X1zhuAW7KTc9VYU6h8i/ky7mZdVaEBQAAAICatIhsoVmHZunkhpM6ueGkMhMyVXixUI7ujmrWppnCh4ZbtbDiCosKLOzs7BQVFVWnMQ888IAeeOABS9ICAAAAAAAAAAAAAAAADaa0pFSm0qsLjJYaS2s17ujqo4r/Ml4RUyPU+pa6fRCo6GKR+djOqfqP/JQt3Cg7TpIKLxbWOo6d89X2ootFFFgAAAAAuOZa39r6NymkqIpFBRZdunRRTk6OteYCAAAAAAAAAAAAAAAAXPcyj2cqMyHT/Dhb2TWOKcwp1LrH1snFz0W3/eO2Oucszi82H9s62Fbbt2x7cV5xuTZjvtEqcQAAAADgepF7LlcZ8RkKHRhqcSwbSwbPmjVLn376qUwmU82d/78NGzZoyJAhlqQFAAAAAAAAAAAAAAAAGox3G2+FDws3f4UNCqtxzPpn1+ti6kUNnz9czt513wmi7K4UJUUl1fYt227vYl+ureyuFJbEAQAAAIDrxYnvT2jx4MVWiWVRgcWECRPUt29f3XXXXUpMTKzVmPT0dMXExFiSFgAAAAAAAAAAAAAAAGgwNrY2srW3NX/Z2FX/EZxT205pz4I9ajO8jbqO71qvnA7uDuZjY4Gxmp7ld7soO06SHN0dax2n7G4Xv44DAAAAADciu5q7SNOnT6+2fd++fWrTpo06duyo9u3by93dXTY2ld84njhxou6zBAAAAAAAAAAAAAAAABqhkqISrXlojWwdbDX4lcHKy8ir0Kcgu8B8XJxXXK6Po6ejbO1t5RXmZT6Xm55bbc6y7WXHXXmcsjPF3M+jhUeVcS6lX7o8Bw9HOTer+64bAAAAAFCV498d10//+Uk9H+qpdne2M5+f33p+nWMV5xbX3KmWalVg8dFHH8lgMFTbx2Qy6ciRI4qPj6+xX02xAAAAAAAAAAAAAAAAgBvBxV8u6vzP5yVJCyMX1th/x5s7tOPNHebHUzZPUVh0mPy7+JvP5ZzOqTZGTsrVdv/O/uXa/Lr4mY+zT2crqGdQpTGMhUblnbtc6OHX2a/SPgAAAABQX6smrlJ+Zr5Obz+tZ849Yz6flZRVr3jWqlGoVYGFJPn4+MjV1dXihLm5uTp//rzFcYDGaNnIZQ2Wu9RQqha/b9Fg+QEAAAAAAAAAAAAAaIrcAt00af2kavuk7U/T+qfXS5K6Teqm7pO7m9sCugdIkjxaeMinnY/OHzuvtH1p1cY7E3fm8phgD3m39S7X1mpIK23W5st596Wpw6gOlcZI358uU6nJPAYAAAAArKlZeDPlnc9Ts/BmFdpCB4SqWeuK56ty4eQFJccmW2VetS6wmDdvniZMmGBxwiVLlmjKlCkWxwEAAAAAAAAAAAAAAACud3ZOdmp9a+tq+9jY2ZiPm7VuVmX/TmM7adtftykrKUsXTl6o9ANHOak5yjiaIUnqeG/HCqu4BvcJlkewh3JScpS4MVHRc6MrzXVyw8lyeQEAAADAmiZ+N1GJGxMrLeju9UgvdZ3QtdaxDnx6wGoFFjY1d7Eug8Egk8l0rdMCAAAAAAAAAAAAAAAAjVrvJ3rLwc1BkhT3flylffZ+sFcyXS7siHoqqkK7wWBQ/+f7S5KSY5PNxRhllRpLte+jfZKktne2VWD3QCtdAQAAAABc5uTppI5jOsrJy8kq8axVo1CrHSzWr1+vLl26WCXh6NGjlZiYaJVYAAAAAAAAAAAAAAAAQFPh6u+qoW8O1dqZa7Xz7Z3qMLqDWkS2MLen7U/T9r9tlyQNfmWwPII9Ko3T66FeOrT0kJJjk7XmoTWa+P1E2Tvbm9u3vLhFmQmZcvJy0rC3h/22FwWgUVs2clmD5h+/ZnyD5gcAANY3t3Runcd0e6Cbuj3QzSr5a1Vgccstt1glmSS5uLgoNDTUavEAAAAAAAAAAAAAAACAxib9QLrSD6RLks7Fnyt3/sCSA5Ik1wBXhQ8NLzfupkdv0qX0S9r68lYtHrxYPWf0lF9nP2UczVDcwjgV5xar79N9FfV0xd0rrrCxs9F9q+7T0hFLlRybrAW9FihiWoQcXB2UsC5BCWsT5OLrorErxsqnrc9vcPUAAAAAULns5Gy5+LmUKwKvytczvpadk516PNhDQT2CrJK/VgUWAAAAAAAAAAAAAAAAAKwnfmW8Yl6KqXD+6KqjOrrqqCQpdFBohQILSYqeG63woeHa9c4uHVlxRHn/yZOLr4vCbwtX5GORajW4VY2A06/XAAEAAElEQVT5XXxdND12uvYs3KMDnxxQ7GuxKikskWeIp6KejVKfJ/vIPcjd8gsFAAAAIJPJpB//9aM2/GGDinOLNWXzFIVFh1U7JispS/Nbza9V/MjHInXHu3dU26fUWKo9C/fo4JKDyjiaIWOhUZ4hnmo/qr36zO4jt0C3WuXKOpWlnfN26vi648o+nS0HNwf5d/ZX9ynd1X1ydxlsDLWKU5X5reZr9Cej1XVC1xr7noo5pcwTmdqzYI+mxkxVy74tLcotUWABAAAAAAAAAAAAAAAAXHPRL0Yr+sXoeo9vGdVSLaMs+/CQjZ2NImdGKnJmpEVxAAAAAFQt80Smvp7+tU5tPdVgc8jLyNPSEUuVuitVvh181e+5fnJwc1DC2gRtf3279n6wV+NWjFPowNBq4xxbe0wrJ6xU4cVCdbq3k/rM6aO883mKWxin1dNW68CSA7pv1X1ydHes91xNJlOt+z7wvwf0y4+/6Lvff6eYF2M08buJ9c57BQUWAAAAAAAAAAAAAAAAAAAAAABYUdldK2xsbRTcJ1gpO1PqHGfIq0PUcXTHavs4NXOqsq3UWKrPR3+u1F2pahnVUpM2TJK9s70kKXJWpDY+v1Gxr8Xqs1GfacbuGfJp61NpnDNxZ7R87HIZ840aNm+Y+szuY26LnBWpRQMWKXFjolZOWKnxa8bX+TrrwzvcW97h3spJzdGON3dYJaaNVaIAAAAAAAAAAAAAAAAAAAAAAABJUsxLMfr2d98qpH+IZh6aqfBh4fWK4x7kLt8OvtV+uQW4VTl+z8I9So5NlgzSyIUjzcUVV0S/FC3vNt4qyCrQ97//vso4a2etlTHfqBa9W5QrrpAk52bOuuPdOyRJx745piNfHqnXtVqiIKvAKnHYwQIAAAAAAAAAAAAAAAAAAAAAACsymUwa+f5I9XywZ4POIfa1WElSSL8Q+XXyq9DH1t5W3ad21+Y/btaxb44pbX+aArsHlutzcsNJpe5KlST1fKjy6wmLDpN3W29lJmRq21+2qdM9nWqcX/qBdKXtS6tw/tS2Uyo1ltY4vqS4RNmnsvXjv3+UR7BHjf1rgwILAAAAAAAAAAAAAAAAAAAAAACsKPrFaBkMhgadQ8rOFOWczpEktbq1VZX9woeGa/MfN0uSjiw/UqHA4vDyw+bj1re2rjJO61tbKzMhU2n70pR5PFPebbyrnV/8qnhtfXlrhfNxC+IUtyCu2rFlmUwm9XqkV637V8fGKlEAAAAAAAAAAAAAAAAAAAAAAIAk/SbFFaXGUhXlFtW6f+KmRPNxYERglf0CugfIYGOoMOaKpE1JkiQnLyd5hXpVGSewx9UclcWpjMlkKvdV2bnqvpy8nNR7dm9Fvxhdq3w1YQcLAAAAAAAAAAAAAAAAAAAAAACuQ2cPn9WXE75UcmyyLv5yUaYSk+xd7BXcJ1hdJ3ZV90ndZWNX+b4L5w6dMx97tvSsMoedo51c/FyUm56rc4fPlWsrzi/WhZMXJEkeLT2qnWvZHGcPn63x2vo82UcRUyOunjBJ81vP1/B5w9V+VPtqxxoMBtm72MvF16XGPHVBgQUAAAAAAAAAAAAAAAAAAAAAANehH/7+g3za+ejmx2+Wb0dflRSW6NTWU4pbGKfETYmKWxCncSvHyT3IvcLYrKQs87FrgGu1edwC3JSbnqvCnELlX8iXczNnSVJ2crZMpSZzn+qUzZGdlF3jtTl5OsnJ06nCeRdfl2p3yvgtWbXAIjExUbt27VJaWppGjx6t0NBQSdLJkyfVunVra6YCAAAAAAAAAAAAAAAAAAAAAOA3Zyw0qqSwxPy46GLRNcvd8Z6OGvPpGNk5Xv3of6d7OyliWoQWRy9Wys4ULRu5TNO3Ty/XR5IKLxaaj+2cqi8dsHO+2l50schcYFH2WmuKYe9sX2nuupiyeYr8OvrVa6w1WKXAYseOHXrmmWe0c+dO87lu3bqZCyw6dOigm2++WW+++ab69u1rjZQAAAAAAAAAAAAAAAAAAAAAAPzmYl+LVcxLMebH2ap5dwZLeQR7aHbibLm3cJetvW2F9qAeQRr454Fa//R6ndlzRj+995P6zO5Tro8x32g+tnWoGKOssu3FecVXj/OLK+1Tlxh1ETYorF7jrMXG0gCff/65oqOjtXPnTplMJplMpgp9wsLCtGPHDg0aNEiffvqppSkBAAAAAAAAAAAAAAAAAAAAALgm+v9ff/0h+w/mr8ePPP6b57Sxs5FXmFelxRVX9JjWQzJcPt734b4K7WV3pSgpKqnQXlbZdnuXqztRlN2Vor4xfmsHlx3UKw6vWCWWRQUWKSkpmjZtmoxGozp06KA5c+bopZdeqtDv2LFj+u677+Tv76+HHnpIJ06csCQtAAAAAAAAAAAAAAAAAAAAAADXhJ2jnRw9HM1fDu4ODT0lSZKzt7OatW4mSUo/mK6iS0Xl2h3dHc3HxgKjqlN2t4uy11f2uKYYZXe7KJv7t2YqNclUUnGjiPqwq7lL1d555x0VFBTo9ddf17PPPitJOn/+vObOnVuh79ChQxUbG6vOnTvrnXfe0fz58y1JDQAAAAAAAAAAAAAAAAAAAABAk+bq76oLJy5IJulS+iV5u3mb27zCvJSyM0WSlJueK48WHlXGuZR+SZLk6OEo52bO5vOeIZ4y2BhkKjWZ+1QlNz336rgwz3pdz+rpq+s85sLJC/XKVRmLCizWr1+voUOHmosrahIWFqYpU6Zow4YNlqQFAAAAAAAAAAAAAAAAAAAAAKDJM5Ve3bnBxtamXJtfFz/zcfbpbAX1DKo0hrHQqLxzeZfHdPYr12bvbK9mrZsp83imck7nVDuXnJSr7f6d/Wt3Ab+y76N9MhgMdRpjMpnqPKYqNjV3qVpSUpLuvPPOOo3p2rWrTp06ZUlaAAAAAAAAAAAAAAAAAAAAAABuWFv/slVHVx+tsd+ltMu7ShhsDHL1dy3X1mpIK/Nx2r60KmOk7083F2qUHXNF2JAwSVJBVoGyTmVVGedM3JlKc9eVs4+zPEM8K/1yb+EuB3cHmUwmmUwmOXo4yivUS54h9dsx49cs2sEiPz9f7u7udRpTWlqq0tJSS9ICAAAAAAAAAAAAAAAAAAAAAHDD2vynzQofFq4OozpU2efimYvKPpUtSQrqGSR7F/ty7cF9guUR7KGclBwlbkxU9NzoSuOc3HDSfNxpbKcK7Z3HdlbcgjhJUuLGRPWY3qPSOIkbEyVJgRGB8m7jXfXF1WD4vOHqOqFrtX0upV/S0a+Oatf8XRr88mB1urfivOvDoh0sAgICdOjQoTqN2bRpk4KCKt9aBAAAAAAAAAAAAAAAAAAAAAAASKd3nFZhTmGV7T+995P5uOfDPSu0GwwG9X++vyQpOTZZGUczKvQpNZZq30f7JElt72yrwO6BFfq0vrW1WvRuIUmKez+u0rmc2npK54+dlyQNeGFAlXO2FrcAN930yE2asmmK1j+zXqk/plolrkUFFv3799cHH3ygxMTEWvVfvXq1vvrqK0VHR1uSFgAAAAAAAAAAAAAAAAAAAACAG1rRxSKteXiNSopKKrSd+P6Etr+xXZIUOjBUPaZVvqtEr4d6KaR/iGSS1jy0RsX5xeXat7y4RZkJmXLyctKwt4dVOZc7/32n7JztlPJDina/u7tcW0FWgdY9tk6S1G5EO4t2k/i/i/+nzvd1rnV/t0A3dZ/aXbGvxtY7Z1l2lgyeNWuWli1bpj59+ugvf/mLxo0bZ24zGAzm43379un999/XggULJEkzZ860JC0AAAAAAAAAAAAAAAAAAAAAANe1A0sOmI/TD6Sbj0+sP6GclBxJkmuAq8KHhlcYG9A9QOn703X488M6s+eMOt/fWc1aN1NxbrGStiQpfmW8ZJLa3N5GYz4dIxu7yvdesLGz0X2r7tPSEUuVHJusBb0WKGJahBxcHZSwLkEJaxPk4uuisSvGyqetT5XXEtQzSGO/GKuVD6zUt098q+RtyQobEqb88/mKWxinrKQstRrSSmOWjqnvt0uS5ODqUOcxXqFe+unfP9XcsRYsKrDo16+fZs2apX//+9969NFHNWvWLIWEhEiSHnnkEdna2ur06dPKz8+XJJlMJs2ZM0c33XST5TMHAAAAAAAAAAAAAAAAAAAAAOA6tWrSqkrPl91tIXRQaKUFFo/ue1Qpu1J09KujOr39tOIWxCn/Qr5s7W3lFuimrhO6qtukbmozrE2N83DxddH02Onas3CPDnxyQLGvxaqksESeIZ6KejZKfZ7sI/cg9xrjtBvRTo/uf1Q75+1UwtoE/fz1z7J3tZd/F38N/PNARUyJkMHGUGMca8s8nqnCnEKrxLKowEKS3nnnHdnb22v+/PkqKSlRUlKSDAaDTpw4IelyUcUVTz/9tN544w1LUwIAAAAAAAAAAAAAAAAAAAAAcF2ba5pr0fjg3sEK7h1slbnY2NkocmakImdGWhTHK8xLw+cN1/B5w60yL0ud2nZKP/7rR3mGeFolnsUFFjY2Nnr77bc1YcIEvfPOO9qwYYPS069uX+Lv76+hQ4dq9uzZ7FwBAAAAAAAAAAAAAAAAAAAAAAAqtXr66hr7lBaXqiCrQOfizykrMUuSdNNM69QqWFxgcUVkZKQ++eQTSdKlS5eUk5Mjd3d3ubvXvFUIAAAAAAAAAAAAAAAAAAAAAABo2vZ9tE8Gg6FWfU0mkySpZVRLDXhhgFXyW63Aoiw3Nze5ubn9FqEBAAAAAAAAAAAAAAAAAAAAAMANytnHWQ6uDlW229jZyNHTUb7tfdVuZDt1HtdZBpvaFWXUxKICizFjxmjOnDkaMMA61R4AAAAAAAAAAAAAAAAAAAAAAKDpGj5vuLpO6NoguW0sGfzVV1/p9OnT1poLAAAAAAAAAAAAAAAAAAAAAABAg7BoBwtJ2rZtm4xGY53G2Nvby9vbW926dVNQUJClUwAAAAAAAAAAoFHKy8jT4eWHdeK7E0rbm6ZL6ZdksDHILcBNLW5uoa4Tu6rdiHYyGGre1vr0jtPa/e5uJccmK/dsrlz9XBXcN1iRsyIVFh1Wq/mUGku1Z+EeHVxyUBlHM2QsNMozxFPtR7VXn9l95BboVqs4WaeytHPeTh1fd1zZp7Pl4OYg/87+6j6lu7pP7m61bboBAAAAAAAAAMCNZXbibLn6uTZYfosLLBYsWKAFCxbUe3yfPn30+uuva8CAAZZOBQAAAAAAAACARuP7p7/Xj//6UcYCo1z8XNT1ga7yaesjk8mkpM1JOrLiiA5/cVithrTS2OVj5eztXGWsmJdjFPNSjOyc7NRjRg/5d/FXRnyG4hbG6cjyI4p6JkpD/za02vnkZeRp6YilSt2VKt8Ovur3XD85uDkoYW2Ctr++XXs/2KtxK8YpdGBotXGOrT2mlRNWqvBioTrd20l95vRR3vk8xS2M0+ppq3VgyQHdt+o+Obo71uv7BgAAAAAAAAAAblxeoV4Nmt/iAguTyWTR+B9++EG33HKLPvzwQ02cONHS6QAAAAA3BJPJpB//9aM2/GGDinOLNWXzlFqvOCuxci0AAADQGBxYckDGAqNCB4Xq/tX3y8nTydx282M369g3x/TZ3Z8pcVOilo1cpmnbplX6+/NP7/2kLXO3yM7JTpM3TVZw72BzW7dJ3bRowCLteHOHXP1dFfV0VKVzKTWW6vPRnyt1V6paRrXUpA2TZO9sL0mKnBWpjc9vVOxrsfps1GeasXuGfNr6VBrnTNwZLR+7XMZ8o4bNG6Y+s/uY2yJnRWrRgEVK3JiolRNWavya8fX6vgEAAAAAAAAAgKbj9A+ndWrrKWUlZqnoYpEc3B3k1cpLoQND1bJvS6vns6jAIjExUWvXrtXs2bMVHR2t8ePHq1u3bmrWrJns7OxUUlKiCxcu6ODBg/rss8+0b98+ffjhh+rYsaMuXryon3/+WatWrdLnn3+uhx9+WP369VOrVq2sdW0AAABAo5R5IlNfT/9ap7aeqtd4Vq4FAAAAGg8bOxuN/nh0ueKKK9qNaKeeM3pqz3/36PSO0zr8xWF1ub9LuT6553K1/pn1kqTes3uXK66QpKAeQYp6OkoxL8Vo8582q8v9XeQR7FEh156Fe5QcmywZpJELR5qLK66IfilaR5YfUebxTH3/+++rLI5YO2utjPlGtejdolxxhSQ5N3PWHe/eocWDF+vYN8d05Msj6nRPpxq/RwAAAAAAAAAAoOlJ3Jyob3/3rTLiM6rs49vRV3e8e0edFq6tiY0lg/Py8vT0009r4cKFWr9+vaZPn66bbrpJ4eHhCg0NVevWrdWrVy9NnTpV//vf//T3v/9d06ZNk5OTk7p166axY8dq6dKl+vLLL1VYWKh3333XWtcFAAAANDomk0m7392t97q/p7R9aQruE1zzoF+5snKtrYOtJm+arNvn365eD/XSsLeGaerWqbJ3tdeON3dox993VBnj1yvXPhz3sPo920+RsyI1Ye0E9f+//so7l6fPRn2m8wnnq4xzZeXawpxCDXt7mMZ+MVY3PXqTBr4wUI/sfUR+nf3MK9cCAAAATVVgRKA8QzyrbO94T0fz8bE1xyq075q/S0WXiiRJPWf0rDRGzxk9JYNkLDBqxz8q3guYTCbFvhYrSQrpFyK/Tn4V+tja26r71O6X5/HNMaXtT6vQ5+SGk0rdlXo550OVzyUsOkzebb0lSdv+sq3SPgAAAAAAAAAAoGn76b2f9MnQT5QRnyGTyVTl17kj5/TxrR/rp//+ZLXcFhVYvPnmm7r99ts1derUWvWfOHGiBg4cqFdffbXc+bvvvlsjRozQ+vXrLZkOAAAA0KjFvBSjb3/3rUL6h2jmoZkKHxZep/G1XblWkjb/abNyUnIqjVOblWu923irIKtA3//++yrnU5uVayWZV64FAAAAmpp7lt2juz64q9o+XqFe5uPs5OwK7UdWXP5d2ivMS95tvCuN4RHsId8OvpKk+BXxMplM5dpTdqYo5/Tl+4NWt1a9y3T40Kv3KEeWV/wd/vDyw+bj1re2rjLOlba0fWnKPJ5ZZT8AAAAAAAAAAND0pP6YqnWPr5Op1CRXf1f1eqSXRvx3hCZ8M0GTN0zWhG8maMR/R6jXI73k6u8qU6lJ3z7+rX756Rer5LeowGLz5s0aOnRoncbccsst+t///lfh/JAhQ3Tq1ClLpgMAAAA0aiaTSSPfH6mJ/5soz5ZVr2BbFVauBQAAABqXVoNbKaBbQLV9CrIKzMf2ruWLn3NSc3T+58u7ygVGBFYbJ6hH0OUxKTnKTChf1JC4KdF8XF2cgO4BMtgYKoy5ImlTkiTJycupXGHIrwX2uJqjsjgAAAAAAAAAAKDp2vHmDplKTbr5dzdrduJsjfjPCPV6qJfa3tFWrYa0Uts72qrXQ7004j8j9GTSk7r58ZtVWlKq7X/bbpX8FhVYpKWlycambiEMBoN++aVidYiHh4eKioosmQ4AAADQqEW/GK2eD1ZejFAbrFwLAAAA3HguJF4wH4cODC3XdvbQWfOxR0uPauOUbT97+Gy5tnOHzpmPqyv2tnO0k4ufy+Uxh8+VayvOL9aFkxdqNZeyOX49FwAAAAAAAAAA0LQlb0tW2KAw3T7/dtk52VXb187JTre/c7tCB4Tq1FbrbPZgUYGFq6urNm3aVKcxmzZtkpOTU4XzZ86ckb+/vyXTAQAAABo1g8FQ77GsXAsAAADcmI6uOirp8hsEEVMjyrVlJWWZj10DXKuNU7a97Li6xnELcJMkFeYUKv9Cvvl8dnK2TKWmcn1qM5fspOxq+wIAAAAAAAAAgKalIKtAHcZ0qNOYjvd2LLcruCUsKrDo2bOnli9frk8++aRW/RcvXqzly5frpptuqtD21VdfKTCw+g+CAQAAAKgcK9cCAAAADctYaFRhTqH5q/hSscUxc8/m6ufVP0uS+j7dV+7N3cu1F128uit0TSs42TvbVzpOkgovFtY6jp3z1fayceo7l7K5AQAAAAAAAAAAXANcy72XUBv2zvZy8XWxSv7q3+WowWOPPaYNGzZo6tSp+uSTTzR+/Hj16tVLzZs3l5OTkwoKCpSamqo9e/Zo2bJl2rRpkwwGgx5//HFzjKysLL3wwgvas2ePpk+fbvEFAQAAAE1RQ61cm5uea1651rmZsyRWrgUAAEDTFPtarGJeijE/zrax/Pfb9c+sl7HAqKCeQRr4x4EV2ovzrxZx2DrYVhurbHtxXvniD2O+0eI41poLAAAAAAAAAABo2loNaaWUnSnqOaNnrcek7EpRy6iWVslvUYHFqFGj9Mgjj+i///2vNm7cqI0bN1bb32Qy6dFHH9XIkSMlSYcPH1aPHj1kNBplMBg0YsSIOs8hIyND8+fP16pVq5SUlCQHBwe1b99e48eP16OPPioHB4d6XVt1zpw5o44dOyo7+/IbZCaTyeo5AAAA0LgZC40qKSwxP7bG6rXVuR5Wrr1SYMHKtQAAAGiK+v9ff/X9fV/z4+TkZL3d9e16xzuw5ID2f7xfrv6uGvflONk5Vvzduuzv0yVFJRXayyrbbu9SftWnsr/b1zeOteYCAAAAAAAAAACatqhnovRh1IfqNqmbwgaF1dg/OTZZB5cc1OSNk62S36ICC0n6z3/+o7CwML300ksqKCiosp+Tk5NefPFFPfvss+Zzvr6+euWVVySpXgUWu3fv1t13360zZ85o6NChmjlzpvLz87V48WLNnj1bH330kb755hs1b968fhdXhccee8xcXAEAAABU5rdYvbY6rFwLAAAANCw7R7tyRRD2bvUvHDi19ZTWPLRGjh6OmrBugrzCvCrt5+B+dYEhY4Gx0j5XlP09vew4SXJ0d6x1nLL3DGXj1HcuZXMDAAAAAAAAAAD4dfTTuC/HadWkVWo3sp06j+usgK4BcmrmJIPBIJPJpIKsAp09dFZHlh/RvkX7dPs/b78+drC44rnnntOMGTO0ZMkSbdu2TSdPntTFixfl7u6u1q1ba8CAAZo4caJ8fHzKjQsICNBzzz1Xr5zJyckaMWKEzp07pyeffFJvv311JbDf/e53uv3227V582bddddd2r59uxwdrfMmzZdffqlVq1ZZJRYAAABuXNZevbYmrFwLAAAA3BhSd6dq2chlsnWw1cTvJqp5r6oXECpbeJGbnltt3LLtvy7Y8ArzUsrOFHM/jxYeVca5lH5JkuTo4WjexU6SPEM8ZbAxyFRqMvepzVw8wzyr7QsAAAAAAAAAAG5ML9u+XGOfPe/t0Z739tTY75tHvtE3j36jPxv/bPG8rFJgIUk+Pj6aPXu2Zs+eba2Q1XrmmWd07tw5hYSE6PXXXy/X5ujoqIULF6p9+/bas2eP3n33XT311FMW58zKytLvfvc7BQcHy9/fX3FxcRbHBAAAwI3JmqvX1gYr1wIAAACN3y97ftGSYUtkMpk06ftJCu4TXG1//y7+5uOc0znV9s1Judru39m/XJtfFz/zcfbpbAX1DKo0hrHQqLxzeZfHdPYr12bvbK9mrZsp83imRXMBAAAAAAAAAABNg8lksmo8gwxWiWO1AotrKSEhQcuXL5ckTZ48udLdKcLDwzV48GBt2LBBb7zxhmbPni07O8su95lnntGZM2e0evVqvfXWWxbFAgAAAKyJlWsBAACAxu3M3jP6ZOgnKjWWauJ3E2ssrpAkjxYe8mnno/PHzittX1r18ePOXB4T7CHvtt7l2loNaaXN2ixJStuXpg6jOlQaI31/ukylJvOYXwsbEqbM45kqyCpQ1qkseYV6VTuXquIAAAAAAAAAAICmoeOYjvLvavliTGcPnNXRr45aYUYNUGDx6aefavLkySopKal3jBUrVpgrVm699dYq+w0dOlQbNmzQuXPntGXLlmr71iQmJkYffPCB7r33Xt11110UWAAAAOC6wsq1AAAAQOOVfiBdnwz9RCVFJZr4v4lqGdWyQp8tL23RsTXH9PBPD5c732lsJ2376zZlJWXpwskLata6WYWxOak5yjiaIUnqeG9HGQzlV3AK7hMsj2AP5aTkKHFjoqLnRlc6z5MbTpbL+2udx3ZW3ILLOz8nbkxUj+k9Ko2TuDFRkhQYESjvNt6V9gEAAAAAAAAAADe+jmM6quuErhbHOfDpAasVWNhYJco1tmnTJvNxRERElf169Lj65k3ZMXVVUFCghx56SJ6envrnP/9Z7zgAAADAb+XKyrWSLF659orq4tRm5VpJ5pVra5pLVXEAAACAG93ZQ2f18S0fy5hv1APrHlBI/5BK+2UlZunMnjMVzvd+orcc3BwkSXHvx1U6du8HeyWTZOdkp6inoiq0GwwG9X++vyQpOTbZXIxRVqmxVPs+2idJantnWwV2D6zQp/WtrdWid4tq53Jq6ymdP3ZekjTghQGV9gEAAAAAAAAAADc+r1Av83sclnJwc5BniKdVYlllB4uioiJ9/vnniomJ0S+//KKCgoIq+6anp1uc79ChQ5Ikd3d3eXpW/Y1o2fLqKl+HDx+ud76XXnpJCQkJWrBggQIDK75pBAAAAFwPWLkWAAAAaFzOHTmnj2/5WHkZeRr454EylZqUtCWp0r6X0i5Vet7V31VD3xyqtTPXaufbO9VhdAe1iGxhbk/bn6btf9suSRr8ymB5BHtUGqfXQ710aOkhJccma81DazTx+4myd7Y3t295cYsyEzLl5OWkYW8Pq/Ka7vz3nfqw/4dK+SFFu9/drZsfv9ncVpBVoHWPrZMktRvRTp3urXgvAQAAAAAAAAAAmobZibOtFqvDqA7qMKqDVWJZXGCxb98+3X333Tp9+nS58yaTyXxc9kNbJpOpwoe46qKwsFBpaZdX0g0ICKi2b9n2pKSkeuXbv3+//v73v2vgwIGaMWNGvWIAAAAA10LvJ3pr1/xdKrpUpLj343TLq7dU6FPblWvXzVpnXrnWt4NvuT51Wbk2dVeq4t6Pq7TAgpVrAQAA0JQZC4z6+JaPlXs2V5K09eWt2vry1nrFuunRm3Qp/ZK2vrxViwcvVs8ZPeXX2U8ZRzMUtzBOxbnF6vt0X0U9XfEe4AobOxvdt+o+LR2xVMmxyVrQa4EipkXIwdVBCesSlLA2QS6+Lhq7Yqx82vpUGSeoZ5DGfjFWKx9YqW+f+FbJ25IVNiRM+efzFbcwTllJWWo1pJXGLB1Tr2sFAAAAAAAAAAD4tZMbTmrbq9s0ZdMUi2NZVGBx/vx53X777UpPT5ejo6Pat28vNzc37dixQ926dVOzZpdXzL148aKOHj2qvLw8BQYGqn379vXOefHiRfOxk5NTtX2dnZ0rHVdbJSUlevDBB2Vra6sFCxZYVBgCAAAA/NZYuRYAAABoPIwFxip3paiP6LnRCh8arl3v7NKRFUeU9588ufi6KPy2cEU+FqlWg1vVGMPF10XTY6drz8I9OvDJAcW+FquSwhJ5hngq6tko9Xmyj9yD3GuM025EOz26/1HtnLdTCWsT9PPXP8ve1V7+Xfw18M8DFTElQgYb/t4OAACApqcgq0DH1h5T4sZEpe1N04XECyq6VCQHNwf5tPVRq1tbKXJmpDxDPGuMdXrHae1+d7eSY5OVezZXrn6uCu4brMhZkQqLDqvVfEqNpdqzcI8OLjmojKMZMhYa5Rniqfaj2qvP7D5yC3Sz8IoBAAAA4Nq4lH5Jp2JOWSWWRQUW//znP5Wenq5Jkybp3Xfflbu7uzIyMuTv76+33npLQ4YMMffNy8vTnDlztHz5ci1ZsqTeOfPz883HDg4O1fYt256Xl1fnXG+//bb27NmjV155xaKikF/LN+brkvHqG2f2Nvayt7WvZgRgOZPBpNLSUhmNxoaeCpooo9HIaxANitcgGlppaWmt+h1YcsB8nH4g3Xx8Yv0J5aTkSJJcA1wVPjS80vGsXHt9asr3AE355y7/9oDXAHgNNG08/6jpHsDJy0lzTXOtmrNlVEu1jGppUQwbOxtFzoxU5MxIi+J4hXlp+LzhGj5vuEVxGqu8kjw5Gh3Nj5vSPUBjYTKYZJLp8t/OVbt7djQMnqvGg+eqceH5ajx4rhoPk8FUbfvpHae1eMhilRSWSAap4+iO6jK+ixw9HJV5PFP7P96v7a9v1+53dmvUolHqPK5zlbFiXo5RzEsxsnOyU48ZPeTfxV8Z8ZffBziy/IiinonS0L8NrXY+eRl5WjpiqVJ3pcq3g6/6PddPDm4OSliboO2vb9feD/Zq3IpxCh0YWq/vR1OTnZ2tzMxM82NHR0c5OjpWMwLWUmponD8b+fluPU3t72/83RH1xWsH9cVrp2p8TyxXWlKqswfPyr+Lv2zsbMzn93+8v86xTu84bbV5WVRgsW7dOnXu3FmLFi2Sjc3li6pqlwcXFxe999572rdvn+bNm6c333yzXjnL7kpRVFRUbd+y7S4uLnXKk5iYqLlz56pz58567rnn6jbJGjy3pXy84T2H646b7rBqDuDXTDLJmHz5h/mV/1+Ba6m0tFTJycmSeA2iYfAaREM7f/58rfqtmrSq0vOxr8aaj0MHhVZZYCGxcu31qCnfA8TGxtbc6QbFvz3gNQBeA00bzz9qew+AG1NTvgdoLEwyKd89X5nKlEE3/n1pY8Zz1XjwXDUuPF+NB89V43Ex/2K17YU5hSopLJHB1qAHvn2gwt/5B/5xoBYNXKSzB89q1aRV8u/qL7+OfhXi/PTeT9oyd4vsnOw0edNkBfcONrd1m9RNiwYs0o43d8jV37XKxZZKjaX6fPTnSt2VqpZRLTVpwyTzTtaRsyK18fmNin0tVp+N+kwzds+odrElXBYREVHu8ZQpUzR16tQGmUtTkxmUWXOn6xA/362nqb0Xxd8dUV+8dlBfvHaqVrbAFvXzxZgvdOybY2ozvI0mrJ1gPv/V1K+qrEm4FiwqsEhISNATTzxR6/9hDAaD7r77bi1durTeBRbu7lc/xFVQUFBt37K7XZQdVxsPP/ywCgoKtHDhQtnbW3dVqTei31Azp2bmx/Y29rI/w8pV+G2ZDCY1D2muqKgo2dlZ9L8+UC9XqjV5DaKh8BpEQ7tys1kTa61gy8q115emfA/Qv3//hp5Cg+HfHvAaAK+Bpo3nH7W9B8CNqSnfAzQWJoNJmcqUd5q3DCY+zHQ947lqPHiuGheer8aD56oRya+5iyRFTI2odBElJy8nDX1zqD4d/qlKikoU936chv1jWLk+uedytf6Z9ZKk3rN7lyuukKSgHkGKejpKMS/FaPOfNqvL/V3kEexRIdeehXuUHJssGaSRC0eaiyuuiH4pWkeWH1Hm8Ux9//vvNX7N+NpdXBO2b98+tWx59X0ZdrC4dlLfSm3oKdQLP9+tp6m9F8XfHVFfvHZQX7x2qpaSktLQU2j0kmKSZDKZlLy94nsqJlP1uwRWxlpFGRa90nNzcxUSElLu3JVihAsXLlQ6xtvbW0lJSfXO6ejoqMDAQKWlpSk9Pb3avmXbw8LCap3j448/1oYNGzRp0iS1bdtWGRkZFfoUFxebj8u229vby9PTs9r4znbOcrNzK3+y7q8BoE5KVSobGxvZ2dnxjxwaDK9BNDReg2hIVPE3bU35HqCp/8zl3x7wGgCvgaaN579p4x6gaXOxdWmy9wCNRalKZZBBBpNBNib+f72e8Vw1HjxXjQvPV+PBc9V41PQBaScvJ7Xo3UKd7u1UZZ/mvZqbjzPiK35WZdf8XSq6VCRJ6jmjZ6Uxes7oqZiXY2QsMGrHP3Zo+NvlFz8ymUyKfe3yau8h/ULk16niLhm29rbqPrW7Nv9xs459c0xp+9MU2D2w2utr6jw9PeXt7d3Q02iSGuvPRn6+W09T/Nsbf3dEffHaQX3x2qkc3w/L3fb327TrnV26+fGbK7QNnzdc7Ue1r3Wso6uO6vunvrfKvCx6Zr28vJSWllbunJubm2xtbfXzzz9XOubAgQPlihPqo0uXLkpLS9PFixeVnZ1dZUFD2cqgzp071zr+pk2bJEmffPKJPvnkkxr7+/ldvdkcNGiQtmzZUutcAAAAAAAAAAAAAAAAuLEF9wnWjJ0zqu1j73J1Jwk7x4of6Tmy4oikyztHe7ep/MP8HsEe8u3gq4z4DMWviNewt4aVW8U1ZWeKck7nSJJa3dqqyrmEDw3X5j9uvpx3+REKLAAAAABYXc8ZPassHnfxdZFXqFetY7n4uVhpVhYWWHTs2FFLly7V888/b74Zs7GxUbt27fTvf/9bjz32WLnihyNHjmjRokVq3rx5VSFrZciQIdqwYYOky1vsDRo0qNJ+cXFx5cbU1rPPPquJEydW2+epp57SgQMHJEnr1683n2/WrFlVQwAAAAAAAAAAAAAAAIBKpf6Yaj4OGxJWri0nNUfnfz4vSQqMqL7YIahHkDLiM5STkqPMhEz5tPMxtyVuSjQfVxcnoHuADDYGmUpN5cYAAAAAwG9t0NxBCugWUKcxAd0CNPDPA62S36ICi8GDB+vll1/WnXfeqVdffVURERGSpDvvvFN///vf1blzZ02dOlXBwcE6evSoPvjgAxUWFmro0KEWTfree+/VCy+8IJPJpI0bN1ZZYHGlCMPX11fR0dG1jt+pUyd16lT1loxS+UKKW2+9tdaxAQAAAAAAAAAAAAAAgLKMBUZten6TJMm/q3+FVVzPHjprPvZo6VFtrLLtZw+fLVdgce7QOfOxZ0tPVcXO0U4ufi7KTc/VucPnquwHAAAAANZmMBgUvzJe8SvjFRgRqPZ3ta9xTEDXAAV0rVtRRlVsLBk8btw4SdL//vc/9erVS8nJyZKk3//+9/L09NSZM2f02muv6bHHHtM///lP5ebmysXFRc8++6xFk27btq3Gjh0rSfrkk09UVFRUoc/Jkye1adPlG8/nnntOdnbla0kOHTqkdu3aKTg4WFu3brVoPgAAAAAAAAAAAAAAAEBtGQuNupR+SeeOnFPc+3Fa0GuBTu84rc7jOmvatmmyd7Yv1z8rKct87BrgWm3ssu1lx9U1jluAmySpMKdQ+Rfyq+0LAAAAANay5cUtinkpRlte3KKjXx295vkt2sGiU6dOiomJMRc4BAYGmv/7zTff6P7771dq6tXtC1u0aKFPPvlE4eHhlqSVJL355pvavHmzkpKS9Pzzz+vvf/+7ua2wsFAPP/ywSkpK1KtXLz3++OMVxv/1r39VQkKCJOkPf/iDduzYYfGcAAAAAAAAAAAAAAAAcOMrLSmVqdR09bGxtE7jDy07pNXTVpsfe4Z4asynY9RlfBcZDIYK/YsuXl181M6p+o/7lC3OKDtOkgovFtY6jp3z1faii0VybuZcbX8AAAAAsBb3Fu6697N71Tyy+TXPbVGBhSQNGDCg0vP9+vXTyZMnFRsbq7S0NAUFBalfv36yt7evtH9dhYSEaM2aNRo9erT+8Y9/6NChQ7rrrruUn5+vxYsX6+DBg4qIiNDXX38tJyenCuNLS6/e2JpMpgrtlVmyZIn5OD09vdLzQ4cOVUCAdbYXAQAAAAAAAAAAAAAAwPUn83imMhMyzY+zlV2n8eHDwjVp/SQV5RYpMyFTB5ce1MoHVmrL3C0aPn+42t7Rtlz/4vxi87Gtg221scu2F+cVl2sz5hutEgcAAAAAfit2TnbqPbu3Wka1bJj8lgzeunWr+TgwMFDt2rUr125vb6/BgwdbkqJavXv31oEDBzRv3jytWrVKzz77rOzt7dWuXTvNmzdPM2fOlIODQ6VjX3jhBcXFxSk/P19vvPFGrfJNmjSpxvObN2+mwAIAAAAAAAAAAAAAAOAG5t3GW81aNzM/zizIlGJqP949yF3uQe7mx32f6qsNz23Qjjd3aOmIpRq1aJQipkSY28vuSlFSVFJt7LLt9i7lF0ItuyuFJXEAAAAA4Lfi2dJTjh6ODZbfogKL6Oho87aEU6ZM0YcffmiVSdWFr6+v/vKXv+gvf/lLncZ169ZNCQkJdRpT250uAAAAAAAAAAAAAAAAcOOysbWRymwAYWO0sSiewWDQrW/cqsSNiToTd0ZrZ65Vm2Ft5BboJklycL+6wKixwFhVGEnld7soO06SHN2vfkippjhld7v4dRwAAAAA+K20HdFWp2JOqddDvWo95sCnB/TV5K/055I/W5zfsrs7SU5OTnrllVc0Z84ciycDAAAAAAAAAAAAAAAANEUGg0FdH+gq6XJxw8FlB81tXmFe5uPc9Nxq45RtLzuurnEupV+SJDl6OMq5mXO1fQEAAADAWvo/11+nYk4pflV8g+S3aAcLOzs7PfHEE3r++eetNR8AAAAAAAAAAAAAAACgSfJp72M+PnvwrPnYv4u/+TjndE61MXJSrrb7d/Yv1+bXxc98nH06W0E9gyqNYSw0Ku9c3uUxnf0q7QMAAAAAvwVjgVF3fXiX1sxYowOfHFCnsZ3k39lfjh6OMtgYKh2Tl5FntfwWFVgEBASobdu21poLAAAAAAAAAAAAAAAAcMNJ+DZB9i72ChsUVm0/G1sb83GpsdR87NHCQz7tfHT+2Hml7UurNsaZuDOXxwR7yLutd7m2VkNaabM2S5LS9qWpw6gOlcZI358uU6nJPAYAAAAArpV5YfNkMFwupMhJydHPq3++pvltau5StYEDByo+vm5bb2zYsEFDhgyxJC0AAAAAAAAAAAAAAADQaKyduVbrHltXY7/M45nmY88Qz3JtncZ2kiRlJWXpwskLlY7PSc1RxtEMSVLHezuaP5R0RXCfYHkEe0iSEjcmVjmPkxtOVsgLAAAAANeKyWSq85e1WLSDxVNPPaXhw4fr0UcfVXh4eK3GpKenKyYmxpK0AAAAAAAAAAAAAAAAQKOSEZ+hrKQseYV5VdpuMpm0/+P95sftRrYr1977id7aNX+Xii4VKe79ON3y6i0VYuz9YK9kkuyc7BT1VFSFdoPBoP7P99e6WeuUHJusjKMZ8u3gW65PqbFU+z7aJ0lqe2dbBXYPrOOVAgAAAIBlej3SS8F9gmvdP+WHFMUtjLNKbosKLHr27Kn33ntPt912m2bPnq2xY8cqKCjIKhMDAAAAAAAAAAAAAAAAbhSmUpNWTVqlscvHyi3QrULbd7//Tr/8+Iskqcv4LgruXf7DRK7+rhr65lCtnblWO9/eqQ6jO6hFZAtze9r+NG3/23ZJ0uBXBpt3qvi1Xg/10qGlh5Qcm6w1D63RxO8nyt7Z3ty+5cUtykzIlJOXk4a9Pcwq1w4AAAAAdRE6IFRdJ3StdX8bO5vro8CidevWkqTMzEzNmTNHc+bMkaenpzw8PGRjY1PpmNzcXEtSAgAAAAAAAAAAAAAAAI1KYPdAZZ/KVnJsst4Jf0ed7+8s3w6+cvFxUXZytg5/cVgZ8RmSpO6Tu2vEghGVxrnp0Zt0Kf2Str68VYsHL1bPGT3l19lPGUczFLcwTsW5xer7dF9FPV1x94orbOxsdN+q+7R0xFIlxyZrQa8FipgWIQdXByWsS1DC2gS5+Lpo7Iqx8mnr85t8PwAAAACgKiH9QuTq71qnMd7h3uo+ubtV8ltUYJGUlFThXFZWlrKysqodZzAYLEkLAAAAAAAAAAAAAAAANBr3r75fZw+dVfyqeCVvS9bJ9Sd1aNkhlRaXysHdQc1aNVPk45HqPrl7uV0pKhM9N1rhQ8O1651dOrLiiPL+kycXXxeF3xauyMci1Wpwqxrn4+Lroumx07Vn4R4d+OSAYl+LVUlhiTxDPBX1bJT6PNlH7kHu1rp8AAAAAKi1adum1XlMcJ9gBfcJrrljLVhUYCFJAwYMMO9kURsnT55UbGyspWkBAAAAAAAAAAAAAACARsO/i7/8u/hbJVbLqJZqGdXSohg2djaKnBmpyJmRVpkTAAAAAFjD/o/3K3RgqLzCvGrs+5+u/5HJZFKvR3qp9+96WyW/xQUWjzzyiCZMmFDr/p9++ikFFgAAAAAAAAAAAAAAAAAAAAAAoJzV01Zr9Ceja1VgYe9ir19++kXfPfmdnDyd1H1yd4vz21gcoY7c3NwUEhJyrdMCAAAAAAAAAAAAAAAAAAAAAIDrmMlkqnXfGbtmaM7pOWp+U3Pt/uduq+S3qMCiuLi4TrtXSNKoUaOUmJhoSVoAAAAAAAAAAAAAAAAAAAAAANDEuTd3V8S0CGUez7RKPDtLBtva2lplEgCujYPLDir1rVTZmK755jVm49eMb7DcAAAAAAAAAAAAAAAAAAAAAG4smScyVVJUYpVYFhVYlFVaWqqYmBjt2rVLaWlpmjlzptq3by9J2rx5swYNGiQbm4b7UDcAAAAAAAAAAAAAAAAAAAAAALg+HF19VD+v/rnC+T0L9ujkhpM1ji8tLlXWqSyl/JCigG4BVpmTVQosvvjiCz3zzDNKSUkxn7vrrrvMBRa33XabgoOD9cYbb2jcuHHWSAkAAAAAAAAAAAAAAAAAAAAAABqptH1p2vfRPhkMhnLnk7clK3lbcq1imEwmSdLNT9xslTlZXGDx1ltv6ZlnnjFPTFKFC4yOjtamTZs0fvx4JSUl6dlnn7U0LQAAAAAAAAAAAAAAAAAAAAAAaKScvJzkFepV7lzWqSw5+zjLwdWh+sEGyd7FXj7tfNR9Snd1GNXBKnOyqMDi6NGjevbZZ2UymTRs2DDdcccdcnd314MPPliu3/r16/Xzzz9r7NixeuGFF3TbbbcpIiLCktQAAAAAAAAAAAAAAAAAAAAAAKCR6jO7j/rM7lPu3Es2L2n4vOHqOqFrg8zJogKLf/7znzKZTFq2bJnuu+8+SdL58+fL7WZxRfv27bV582a1a9dO7777rt5//31LUgMAAAAAAAAAAAAAAAAAAAAAAFiNRQUWW7Zs0ZgxY8zFFTXx8fHR1KlT9fXXX1uSFgAAAAAAAAAAAAAAAAAAAAAA3GDmls5t0Pw2lgxOSUnRkCFD6jSmffv2Sk1NtSQtAAAAAAAAAAAAAAAAAAAAAACAVVm0g0VxcbEcHBzqNCY/P1+2traWpAUAAAAAAAAAAAAAAAAAAAAAADegS2mXVFJUIklyDXCVnePVsofME5mKeTFGafvT5OjhqC7juyhyVqQMBoNVcltUYNG8eXP9+OOPevDBB2s95ptvvlFwcLAlaQEAAAAAAAAAAAAAAAAAAAAAwA0mPzNf81vNNxdYPPDtAwq/LVySdC7+nD7o84GKLhXJZDJJklJ+SFHKDykas2SMVfJbVGAxePBgLV68WA8++KAiIyNr7P/uu+9q06ZNmjlzpiVpAQAAAAAAAAAAAAAAAAAAAABoFEwmk37814/a8IcNKs4t1pTNUxQWHVbr8ad3nNbud3crOTZZuWdz5ernquC+wYqcFVnrOKXGUu1ZuEcHlxxUxtEMGQuN8gzxVPtR7dVndh+5BbrVKk7WqSztnLdTx9cdV/bpbDm4Oci/s7+6T+mu7pO7y2Bj2U4SR1YckbHQKBdfF/V8qKf8u/ib2/43+38qvFgoSWreq7ncm7vr1NZTOrTskLpO6Kq2d7S1KLdkYYHF7NmztWjRIkVHR+vJJ5/UhAkT5O9/+QKubLFx9uxZ7dixQ++//76+/fZb2dra6oknnrB44gAAAAAAAAAAAAAAAAAAAAAAXM8yT2Tq6+lf69TWU/UaH/NyjGJeipGdk516zOgh/y7+yojPUNzCOB1ZfkRRz0Rp6N+GVhsjLyNPS0csVequVPl28FW/5/rJwc1BCWsTtP317dr7wV6NWzFOoQNDq41zbO0xrZywUoUXC9Xp3k7qM6eP8s7nKW5hnFZPW60DSw7ovlX3ydHdsV7XKkknvj8hRw9HPRL3iDyCPcznM49n6uSGkzIYDIp8LFK3v3P75fMnMrUwcqH2LdrX8AUWXbp00SuvvKIXXnhBr7/+ul5//XXZ29vLYDDo7rvvVlFRkYqKisz9TSaTXn/9dbVr187iiQMAAAAAAAAAAAAAAAAAAAAAcD0qu2uFja2NgvsEK2VnSp1i/PTeT9oyd4vsnOw0edNkBfcONrd1m9RNiwYs0o43d8jV31VRT0dVGqPUWKrPR3+u1F2p+n/s3Xuc1mWdP/7XDDMM5/NRAUEETUgBRRDN0JW01FpbqdAyLbO0be1ca7vfymrtrLZ+t75hB7SkVsstV9v1jCKhBSoqHihAhAA5CCOngWHu3x/8vJ2RmeE0OAzzfD4ePB7XPe/rel/XzefzGO5r+LznGjhhYD5wzwdS3r48STL28rG598p7M/PqmfnVu36VSx69JD2H9aw3z/K5y3PL5FtSvbk6Z1x7RsZfMb4YG3v52PzsLT/LonsX5bfn/zZTbp+yR+/z9fOMumhUneKKZMfJFklS3qE8p339tOLXewztkTdf8OY8//vn93rO2kr3NcE///M/55prrkl5eXkKhUKxoGLDhg2pqqpKoVBIoVBIeXl5/v3f/z2f/vSn93nRAAAAAAAAAAAAAABwoJrx1Rn5wyf+kEEnD8plT12WoWcM3aPxG1dtzN2fuztJMu6KcXWKK5Kk/+j+xaKK+//1/lQuraw3z5ypc7Jk5pKkJDln6jnF4opXTfzqxPQ4oke2rNuSuz59V4PruePyO1K9uTqHjju0TnFFkrTv3j7vuP4dSZLn//v5zP/N/D16r7VtWL4hvY/uvdPXn/vdcykpKclRf39UKrrUPSGj95t6Z+NLG/d6ztr2ucAiSa644or89a9/zZe+9KWccMIJ6d69e9q0aZPu3bvnhBNOyJe+9KX89a9/zcc//vGmmA4AAAAAAAAAAAAAAA5YhUIh59xwTt7/P+9P14Fd93j8I9c9kq0bdhx+MOaSMfX2GXPJmKQkqd5SnVnfm1XvGmZePTNJMuikQfUWLrQpb5NjLzo2yY7iiBVPrNipz8J7FmbZI8t2zPmR+tcyeOLg9BjWI0ny0Ncf2tXba1BJaUm2b9te52uVyyqz7NEd8x89+eidx7Qp2ev5Xq9JCiyS5NBDD83Xvva1zJ49O6tXr87WrVuzZs2azJ49O1/72tdy6KGHNtVUAAAAAAAAAAAAAABwwJr4lYkZ8+H6ixF2x/xbd5wC0W1wt/Q4oke9fboM6JJeR/VKkjxz6zMpFAp14ktnL03liztOthhy+pAG5xo66bXTNebfsvPpE0/f8nSxffjphzeY59XYisdXZO1f1jbYrzFdBnTJ8jnL63ztsZ88lkKhkPIO5fWeBPLywpfTvmf7vZrv9fapwOKqq67KU0891SQLAQAAAAAAAAAAAACAg0FJyd6fqlC5rDJrnluTJOk3ql+jffuP7r9jzNLKrF1Qt6hh0X2Liu3G8vQ9tm9KSkt2GvOqxfctTpK069Yu3Q7r1mCefqNfm6O+PLvjsLcelqd+9VSe+e0z2bZpW/7yP3/JrO/OSklJSY4696iUVZTV6V+9pTpP/uLJek/n2Btlu+7SsK985SsZNmxYRo4c2SSLAQAAAAAAAAAAAACA1uylp14qtrsM7NJo39rxl55+KT2H9yy+XvXUqmK768CuDeYoqyhLh94dsnHlxqx6elWd2LbN2/Lywpd3ay2153jp6Zca6dmw8Z8anyemPZFbJt9S/FqhUEhpWWkmfG5C8WubVm/K0keW5sGrHsyGFRsy9uNj92q+19unEyySHadYXHfddVmzZk1TrAcAAAAAAAAAAAAAAFqtdYvXFdsd+3ZstG/teO1xe5qnU99OSZKqyqpsfnlz8evrl6xPoaZQp8/urGX94vWN9m1I7zf1zrt/+e6UdyxPoVBIoVBIWbuyvOP6d6Tvm/sW+82+bnamnzM9y/60LEky4j0j9mq+19unEyySZN26dfnUpz6VL3zhC3nnO9+ZD3/4w3nb2962T0eaAAAAAAAAAAAAAABAa7T1la3Fdlm7xh/5L29fXu+4JKl6pWq385S1fy2+9ZWtad+9/T6tpfbce+ro847O4ZMOzwsPvpBCTSGHnnBoOvfvXLfPPxydHkf0SJJUdK4otvfVPhdYfO9738sxxxyTG264Ib/85S/zm9/8JoceemguvvjiXHTRRRkyZEhTrBMAAAAAAAAAAAAAAN5w1VXV2V61vfj69YUMTW3b5m3Fdpu2bRrtWzu+bdO2OrHqzdX7nKep1rKn2nVtlyPPObLBeL9R/dJvVL99mqM+pfsy+LDDDkunTp0ycuTIXHvttfnb3/6WX/3qVzn66KPzjW98I8OGDcvpp5+e6dOnp6pq7ytQAAAAAAAAAAAAAACgOcy8ema+2fWbxT/XH339fp2v9kkQ27dub6Rn3Xh5h/I6sdqnUuxtnqZay/608smVmXHVjCbJtU8nWCxatKjO6/Ly8kyePDmTJ0/O0qVL89Of/jQ///nPc8EFF6Rbt2654IIL8qEPfSijR4/ep0UDAAAAAAAAAAAAAMAb4eR/PjknfvrE4utly5blmqOv2W/zte3cttiu3lLdSM+6J0zUHpckFZ0rdjtP7dMuaufZ27XUnnt/WzlvZWZ8dUbe+n/eus+59ukEi8YMGDAg/+f//J8sXLgwd999d0aOHJn/+I//yPHHH58xY8bsr2kBAAAAAAAAAAAAAKDJlFWUpaJLRfHP6wsZmlq3wd2K7Y0rNzbat3a89rg9zbNh5YYkSUWXirTv3r749a6DuqaktKROn91ZS9fBXRvt25D1S9bv8Z9Nqzft1Vz12acTLHZl27Ztue222/KTn/wks2bNSpIUCoU88cQT+3NaAAAAAAAAAAAAAABokfqM7FNsV75Y2WjfyqWvxfuM6FMn1ntk72J7/Yvr039M/3pzVFdVZ9OqHUUKvUf0rhMrb1+e7od3z9q/rN2ntbzejK/NyB+/98eM/+T4TPzKxOLXrx18bUpKShoduz/t0wkWV111VZ566qmdvv7kk0/mk5/8ZA455JBMmTIl99xzT2pqalIoFDJhwoTccMMN+zItAAAAAAAAAAAAAAAclLoc2iU9h/dMkqx4fEWjfZfPXb5jzIAu6TGsR53YkNOGFNuN5Vn5xMoUago7jXnV4NMGJ0m2rNuSdS+s2+VaGspT26zvzEpVZVX++P0/7hQrFAp7/Kep7NMJFl/5yldyxBFHZOTIkamsrMzNN9+cn/70p5kzZ06SFBfau3fvXHjhhfnwhz+co446at9XDQAAAAAAAAAAAAAAB6mjJx+dh77xUNYtXpeXF76c7od336lP5bLKrH52dZLkTee9aaeTHwaMH5AuA7qkcmllFt27KBO/PLHeuRbes7DOvK83YvKIzP3x3CTJonsXZfSHRtebZ9G9i5Ik/Ub1S48jetTbp5jzPSPy2E8fq3e+4z56XAaMH9Do+NqW/nFp5k6du9v9G7NPBRZJ8qc//Sn/8z//k9/85jfZsmVLkh2FFaWlpTnzzDPz4Q9/OO985ztTVrbPUwEAAAAAAAAAAAAAwEFv3D+NyyPXPZKtG7Zm7g1z83f/9nc79XnsJ48lhaSsXVkmfGbCTvGSkpKcfOXJufPyO7Nk5pKsfnZ1eh3Vq06fmuqaPP7zx5Mkw84aln7H9tspz+GnH55Dxx2aZY8sy9wb5tZbYPHCgy9kzfNrkiRv+dJbdvn+3nnDOzPp25PSvkf7nWKHveWwvPn8N+8yx6tKy0oPnAKLH/zgB0leO61iyJAhufjii3PxxRfn0EMP3df0AAAAAAAAAAAAHICmnzO9uZcAAHDQ6tinYyZ9Z1LuuOyOzL5mdo4696gcOva15/NXPLEiD3/74STJqV87NV0GdKk3z3EfOS5P3fxUlsxckts/cnvef9f7U96+vBh/4CsPZO2CtWnXrV3OuOaMBtdz1n+clZ+e/NMs/ePSPHr9oznhH08oxras25I7P35nkmT42cNz9Hk7n0pRn/qKKwa/dXA69u24W+Nf1alvpxx2ymF7NKYh+1xgUSgUUlFRkXPPPTcf/vCH83d/t3NlTG2LFi3KQw89lAsvvHBfpwYAAAAAAAAAAAAAgAPSvF/MK7ZXzltZbP/17r+mcmllkqRj344ZOmloveOP/9jx2bByQx686sFMO3VaxlwyJr1H9M7qZ1dn7tS52bZxW0787ImZ8NmdT694VWlZad5723tz89k3Z8nMJfnxcT/OqItHpW3Htllw54IsuGNBOvTqkMm3Tk7PYT0bzNN/TP9M/s/J+e0Fv80f/ukPWfLQkgw+bXA2r9mcuVPnZt3idRly2pC8++Z37+lfUx0fvP+Dezzm8NMPz+GnH75P875qnwssLrvssnz9619P9+7dd6v/rFmzcvHFFyuwAAAAaAWa+zdXTbl9SrPODwAAAAAAAAC0Xrd94LZ6vz7z32YW24e99bAGCyySZOKXJ2bopKF55AePZP6t87Pph5vSoVeHDH3b0Iz9+NgMOXXILtfRoVeHfGjmhzJn6pzMu2leZl49M9urtqfroK6Z8PkJGf/J8encv/Mu8ww/e3g+9sTHMvva2Vlwx4I89/vnUt6xPH1G9skp/+eUjPrgqJSUluwyz4FsnwssTjrppN0urqiurs4zzzyzr1MCAAAAAAAAAAAAAMAB7cuFLzdJnoETBmbghIH7lKO0rDRjLxubsZeN3ac83QZ3y5nXnpkzrz1zn/I0pLqqOktmLsnyucuzadWmVFVWpaJrRTr27phDjj8kAycMTJu2bfbL3Mk+FlgsWrQovXv33mW/Rx99NDfeeGN+/etfZ+3atfsyJQAAAAAAAAAAAAAAcBB55W+v5MFvPJgnfv5EqrdUN9ivrH1ZRn9odE7+55N369SNPbVPBRaHHXZYg7EXX3wxN910U2666aY8//zzxa8XCoWUlLTsYz8AAAAAAAAAAAAAAIB999zvn8tv3//bbNu4LYVCodG+2zZty5/+75/y+M8fzz/c/A8ZfvbwJl3LPhVYvN7GjRtz6623Ztq0aXnwwQeLb672m+zVq1fWrFnTlNMCAAAAAAAAAAAAAAAtzLxfzst/ffC/ksL/f5hDaUl6H907/Ub1S/ue7dO2U9tsfWVrNq3elBWPrcjq51anUFPI1g1b86u//1XOvencvHnKm5tsPftcYFEoFHLPPffkxhtvzH/9139l06ZNxa+/qnv37jn//PPz4Q9/OE899VQ++MEP7uu0AAAAAAAAAAAAAABAC7Vq/qr890f/O4WaQtp3b58Jn5uQMZeMSYdeHRocs2HlhsydOjd//P4fs2Xdlvz3pf+dfsf2S++jezfJmva6wOLpp5/OjTfemF/+8pdZvnx5kux0HEdJSUm+/vWv59Of/nQqKiqK43Z1bAcAAAAAAAAAAAAAAHDwuvtzd2fbpm0ZOGFgJv/n5HQ+pPMux3Tq2ymn/MspOfaDx+aWybdk2aPLcvfn7s75d5zfJGsq3ZPOq1atynXXXZfjjjsuxxxzTL773e9m+fLlKRQKxaKJESNG5N/+7d/ypz/9KYVCIePGjSsWVyTJBRdckJqamiZZPAAAAAAAAAAAAAAA0LK89PRLWfCHBel1VK+cf8f5u1VcUVvXgV1zwR8uSM9hPfOX//lLVs1f1STr2q0TLG699dZMmzYtd911V6qrq5PUPa1iwIABmTJlSi644IIcc8wxSZI1a9Y0yQIBAAAAAAAAAAAAAICDx/O3P5+SkpKccc0Zade13V7laN+9fc645ozcfPbNee73z6X30b33eV27VWDxnve8JyUlJXWKKrp3757zzjsv559/ft761rfu80IAAAAAAAAAAAAAAICD35KHlqTn8J454owj9inPsHcMS89hPfPCgy/k5C+evM/r2q0Ci2THiRUlJSXp2bNnrrvuupx33nkpLy/f5wUAAAAAAAAAAAAAAACtx5rn12TomUObJNfhkw7PX/7nL02Sq3R3Ot1+++2ZPHlyKioqsnr16nz0ox/NJZdckrvuuis1NTVNshAAAAAAAAAAAAAAAODgt2nNpnQ/vHuT5Oo+tHs2r93cJLl26wSLs846K2eddVYqKyvzq1/9KjfeeGNuuumm/OIXv0jv3r3z3ve+N+eff37GjRvXJIsCAAAAAAAAAICDzabVm/L0LU/nr//716x4bEU2rNyQktKSdOrbKYeecGje/P43Z/jZw1NSUrLLXC/OejGPXv9olsxcko0vbUzH3h0z4MQBGXv52AyeOHi31lNTXZM5U+fkyV88mdXPrk51VXW6DuqaI991ZMZfMT6d+nXax3cMAABQv6r1VenQs0OT5OrQs0OqKquaJNduFVi8qkuXLrn00ktz6aWXZtGiRZk2bVp++ctf5t///d9z/fXX5/DDD88FF1yQ888/Pz179mySBQIAAAAAAAAAQEt312fvyp/+759SvaU6HXp3yJsveHN6DuuZQqGQxfcvzvxb5+fp/3w6Q04bksm3TE77Hu0bzDXjqhmZ8dUZKWtXltGXjE6fkX2y+pnVmTt1bubfMj8TPjchk749qdH1bFq9KTeffXOWPbIsvY7qlZO+cFLadmqbBXcsyMPffDiP/eSxvOfW9+SwUw5r6r8KAACAFAqFlJaVNkmukjYlSaFJUmWvVzRkyJB85StfyYIFC/Lggw/mwx/+cNasWZOrrroqb3rTmzJx4sSUlJSkUKi70tmzZ+dDH/rQPi8cAAAAAAAAAABainm/mJfqLdU57K2H5RMLPpEzrzkzYy8fmxM+fkLec+t78r7fvS8lbUqy6L5FmX7O9BRq6n866M8/+nMe+PIDadO2TS6878K8/bq357iPHJczvn9GLnrwopR3LM+s78zKrO/OanAtNdU1+fW5v86yR5Zl4ISBuXTupTnp8ydl7OVjc/4d5+fkfz45m1Ztyq/e9ausWbBmf/2VAAAArd2uD+97w+3RCRYNOfnkk3PyySfn3//93/O73/0u06ZNy913351CoZB3v/vdmTJlSj7ykY/kuOOOy1//+tdMmzYtP/3pT5tiagAAAAAAAAAAaBFKy0pz7o3npl3XdjvFhp89PGMuGZM5/29OXpz1Yp7+z6cz8n0j6/TZuGpj7v7c3UmScVeMy4BxA+rE+4/unwmfnZAZX52R+//1/ox838h0GdBlp7nmTJ2TJTOXJCXJOVPPSXn78jrxiV+dmPm3zM/av6zNXZ++K1Nun7KP7xwAAGBn//vJ/819X7pvn/Ns27itCVazQ9OcqfH/q6ioyHve857ccccdWbZsWb73ve9l6NCh+fGPf5wTTjgho0aNym233daUUwIAAAAAAAAAQIvQb1S/dB3UtcH4m/7hTcX287c/v1P8keseydYNW5MkYy4ZU2+OMZeMSUqS6i3VmfW9nU+xKBQKmXn1zCTJoJMGpffRvXfq06a8TY696Ngd6/jv57PiiRWNvCsAAIC9s2n1pqxbvG6f/2xctbHJ1tQkJ1jUp3fv3vnUpz6VT33qU3n66afz85//PNOnT8+8efNSUnIAnuUBAAAAAAAAAAD7yT9M/4d06Nmh0T7dDutWbK9fsn6n+Pxb5+/oN7hbehzRo94cXQZ0Sa+jemX1M6vzzK3P5Izvn1HnWZ2ls5em8sXKJMmQ04c0uJahk4bm/n+5f8e8t8xPv2P7Nbp2AACAPdW+Z/u07dh2n/Ns3bg1m9dsboIV7ccCi9pGjBiR73znO/nWt76Vr3/96/nqV7/6RkwLAAAAAAAAAAAHhCGnNlzM8Kot67YU2+Udy+vEKpdVZs1za5LsOAmjMf1H98/qZ1ancmll1i5Ym57DexZji+5bVGw3lqfvsX1TUlqSQk2hzhgAAICmcua1Z+bN5795n/PM+8W8/NcH/2vfF5SktEmy7O5kpaUZOnRoCoXCGzktAAAAAAAAAAAc8F5e9HKxfdgph9WJvfTUS8V2l4FdGs1TO/7S0y/Via16alWx3XVg1wZzlFWUpUPvHSdurHp6VYP9AAAAml3Jrrvsrje0wCJJzj333CxapKodAAAAAAAAAABqe/a2Z5MkZe3KMuqiUXVi6xavK7Y79u3YaJ7a8drj9jRPp76dkiRVlVXZ/PLmRvsCAADsiTOuOSOHHH9Ik+Q65PhD8rbvv61JcpU1SZY90KFDhxx22GG77ggAAAAAAAAAAAegmu01KdQUXntdXbPPOTe+tDHP/e65JMmJnz0xnQ/pXCe+9ZWtxXZZu8Yf+SlvX17vuCSpeqVqt/OUtX8tvvWVrWnfvX2j/QEAAHbX+CvGN1muXkf2Sq8jezVJrje8wAJo3aafM71Z559y+5RmnR8AAAAAAACAlm/tX9Zm7YK1xdfrs36fc979ubtTvaU6/cf0zyn/cspO8W2btxXbbdq2aTRX7fi2TdvqxKo3VzdJHgAAgIORAgsAAAAAAAAAANgDPY7oke6Hdy++XrtlbTJj7/PN+8W8PHHjE+nYp2Pe85v3pKxi50d6ap9KsX3r9kbz1Y6XdyivE6t9KsW+5AEAADgYKbAAAAAAAAAAAIA9UNqmNKl1+ENpdele53rhwRdy+0duT0WXipx/5/npNrhbvf3adm5bbFdvqa63z6tqn3ZRe1ySVHSu2O08tU+7eH0eAACAg9He7+4AAAAAAAAAAIC9tuzRZZl+zvS0adsm7//f9+eQ4w5psG/twouNKzc2mrd2/PUFG3uSZ8PKDUmSii4Vad+9faN9AQAADgYKLAAAAAAAAAAA4A32tzl/yy/O+EUKhULe/7/vz4DxAxrt32dkn2K78sXKRvtWLn0t3mdEnzqx3iN7F9vrX1zfYI7qqupsWrVpx5gRvRvsBwAAcDBRYAEAAAAAAAAAAG+g5Y8tz02TbkpNdU3e/z+7Lq5Iki6HdknP4T2TJCseX9F4/rnLd4wZ0CU9hvWoExty2pBiu7E8K59YmUJNYacxAAAABzMFFgAAAAAAAAAA8AZZOW9lbpp0U7Zv3Z4L/nBBBk4YuFOfB776QH58/I93+vrRk49OkqxbvC4vL3y53vyVyyqz+tnVSZI3nfemlJSU1IkPGD8gXQZ0SZIsundRg+tceM/CneYFAAA42CmwAAAAAAAAAACAN8BLT72UG//uxlRvrs4Fd16QQScPqrffukXrsnzO8p2+Pu6fxqVtp7ZJkrk3zK137GM/eSwpJGXtyjLhMxN2ipeUlOTkK09OkiyZuaRYjFFbTXVNHv/540mSYWcNS79j++3W+wMAAGjpFFgAAAAAAAAAAMB+tmr+qtz4dzdm0+pNOfGzJ6ZQU8jiBxbX+2fDig315ujYp2MmfWdSkmT2NbOz7E/L6sRXPLEiD3/74STJqV87tXhSxesd95HjdhR3FJLbP3J7tm3eVif+wFceyNoFa9OuW7uccc0Z+/rWAQAAWoyy5l4AAAAAAAAAAAAczKq3VOfGv7sxG1/amCR58KoH8+BVD+5VruM/dnw2rNyQB696MNNOnZYxl4xJ7xG9s/rZ1Zk7dW62bdyWEz97YiZ8dufTK15VWlaa99723tx89s1ZMnNJfnzcjzPq4lFp27FtFty5IAvuWJAOvTpk8q2T03NYz71aJwAAQEukwAIAAAAAAAAAAPaj6i3VDZ5KsTcmfnlihk4amkd+8Ejm3zo/m364KR16dcjQtw3N2I+PzZBTh+wyR4deHfKhmR/KnKlzMu+meZl59cxsr9qeroO6ZsLnJ2T8J8enc//OTbZmAACAlkCBBQAAAAAAAAAA7EfturXLlwtfbtKcAycMzMAJA/cpR2lZacZeNjZjLxvbRKsCAABo2UqbewEAAAAAAAAAAAAAAADNzQkWAAAAAADQzAqFQv70f/+Ue754T7Zt3JYP3v/BDJ44eLfHvzjrxTx6/aNZMnNJNr60MR17d8yAEwdk7OVjdztPTXVN5kydkyd/8WRWP7s61VXV6Tqoa45815EZf8X4dOrXabfyrHthXWZfOzt/ufMvWf/i+rTt1DZ9RvTJsR88NsdeeGxKSkt2+30BAAAAAAC8kRRYAADAAeLnE3+eF2a8sMt+5R3Lc+WGKxvtcyA9XAUAADRu7V/X5vcf+n1eeHDX+4H6zLhqRmZ8dUbK2pVl9CWj02dkn6x+ZnXmTp2b+bfMz4TPTcikb09qNMem1Zty89k3Z9kjy9LrqF456QsnpW2ntllwx4I8/M2H89hPHst7bn1PDjvlsEbzPH/H8/nt+b9N1StVOfq8ozP+U+Ozac2mzJ06N7+7+HeZ94t5ee9t701F54q9eq8AAAAAAAD7kwILAAA4yBxID1cBAAANq31qRWmb0gwYPyBLZy/doxx//tGf88CXH0hZu7JceN+FGTBuQDF2zAeOyc/e8rPM+s6sdOzTMRM+O6HeHDXVNfn1ub/OskeWZeCEgfnAPR9IefvyJMnYy8fm3ivvzcyrZ+ZX7/pVLnn0kvQc1rPePMvnLs8tk29J9ebqnHHtGRl/xfhibOzlY/Ozt/wsi+5dlN+e/9tMuX3KHr1PAAAAAACAN4ICCwAAOIAcMvaQnHvjuY32KSktaTB2ID1cBQAANG7GV3cURw89Y2jOmXpOHvvJY3tUYLFx1cbc/bm7kyTjrhhX5/N/kvQf3T8TPjshM746I/f/6/0Z+b6R6TKgy0555kydkyUzlyQlyTlTzyl+/n/VxK9OzPxb5mftX9bmrk/f1WBxxB2X35HqzdU5dNyhdYorkqR99/Z5x/XvyLRTp+X5/34+838zP0f/w9G7/V4BAAAAAADeCKXNvQAAAOA15R3K0+uoXo3+6Tm8/oKG3X24Kknu/9f7U7m0st48u/NwVY8jemTLui2569N37eM7BgCA1qtQKOScG87J+//n/ek6sOsej3/kukeydcPWJMmYS8bU22fMJWOSkqR6S3VmfW9WvWuYefXMJMmgkwal99G9d+rTprxNjr3o2CTJ8//9fFY8sWKnPgvvWZhljyzbMedH6l/L4ImD02NYjyTJQ19/aFdvDwAAAAAA4A2nwAIAAA4SB9LDVQAAwK5N/MrEjPlw/Z/dd8f8W+cnSboN7pYeR/Sot0+XAV3S66heSZJnbn0mhUKhTnzp7KWpfHFH8fWQ04c0ONfQSUNfm/eW+TvFn77l6WL78NMPbzDPq7EVj6/I2r+sbbAfAAAAAABAc2jxBRarV6/Ov/7rv2bkyJHp1KlTevTokRNPPDE/+MEPsnXr1n3KXSgU8tBDD+WKK67I2LFj071795SXl6dnz5458cQT8+Uvfzl/+9vfmuidAADAvjmQHq4CAAB2raSkZK/HVi6rzJrn1iRJ+o3q12jf/qP77xiztDJrF9Qtalh036Jiu7E8fY/tm5LSkp3GvGrxfYuTJO26tUu3w7o1mKff6NfmqC8PAAAAAABAc2rRBRaPPvpojjnmmHz961/PIYcckm9961u58sors2HDhlxxxRUZP378XhdAzJ07N6NGjcopp5ySH/zgB+nVq1c+85nP5Ec/+lE+/vGPZ/ny5bnqqqty5JFH5pe//GUTvzMAANih6pWqFGoKu+x3oD1cBQAA7F8vPfVSsd1lYJdG+9aOv/T0S3Viq55aVWx3Hdi1wRxlFWXp0LvDjjFPr6oT27Z5W15e+PJuraX2HK9fCwAAAAAAQHMra+4F7K0lS5bk7LPPzqpVq/LJT34y11xzTTH2iU98Im9/+9tz//33553vfGcefvjhVFRU7FH+Rx99NPPmzUtJSUl+85vf5Nxzz60T/+IXv5izzz47999/fy688ML06NEjb3/725vkvQEA0Hpt27QtM66akfm3zs/Lf3052zZtS0lpSXoe2TPDzhqWEz91Yjof0nmncfvycFXP4T2Lr/f04aqNKzfu9HAVAACw/61bvK7Y7ti3Y6N9a8drj9vTPJ36dsrGlRtTVVmVzS9vTvvu7ZMk65esLxaGd+rbabfXsn7x+kb7AgAAAAAAvNFa7AkWn/vc57Jq1aoMGjQo3/zmN+vEKioqMnXq1LRp0yZz5szJ9ddfv9fzXHLJJTsVVyRJhw4dMm3atJSXl6empiaf+tSn9noOAAB41d/+9LfMvHpmBr1lUN71s3dlyn9PyenfPj2F7YX88bt/zPVHXZ/nfv/cTuOa6+GqJMWHqwAAgDfO1le2Fttl7Rr/XUrl7cvrHZfsODVvd/OUtX8tXjvP3q6l9twAAAAAAAAHghZZYLFgwYLccsstSZILL7yw3tMphg4dmlNPPTVJ8q1vfSvV1dV7Nde73vWuBmMDBw7M2LFjkyTPPfdcFixYsFdzAADAqzr26ZhL51yas/7vWRnxnhEZftbwTPjMhHxs3sdy+KTDs/WVrbll8i15cdaLdcYdSA9XAQBAa1RdVZ2qyqrin20btu3X+bZtfi1/m7ZtGu1bO75tU911VW+urrffnuRpqrUAAAAAAAA0t8afmDpA3XrrrSkUdhw3fvrppzfYb9KkSbnnnnuyatWqPPDAA432fb2zzjorf/jDH3LKKac02u+www7LrFmzkiRLlizJsGHDdnsOAAAOXtVV1dletb34encerjrvV+elTUWbtO/efqdYWUVZ/v7nf5/rDr8u26u2585/vDMfnfvR1/IfQA9XAQBAazTz6pmZ8dUZxdfrS9fv1/lqF05v37q9kZ514+UdyuvEahdO722eploLAAAAwJ6afs70Zp1/yu1TmnV+AKDptcgCi/vuu6/YHjVqVIP9Ro8eXWfMnhRYDBw4MAMHDtxlv3Xr1hXbHTt23O38AAAc3Pbm4apO/To1Gu98SOccceYRee53z2XFYyuy/LHl6T+6f5ID6+EqAABojU7+55Nz4qdPLL5esmRJrnnzNfttvrad2xbb1VsaP8G5dkF27XFJUtH5tROid5WndkF27Tx7u5bacwMAAAAAABwIWmSBxVNPPZUk6dy5c7p27dpgv9oFEk8//fR+WcuiRYuKa2ms2AMAgNZlfz1cdcjxh+S53z2XJHlx1ovFAosD6eEqAABojcoqylJW8dqP3Ms77d8i5G6DuxXbG1dubLRv7Xjtca++Xjp7abFfl0O7NJhnw8oNSZKKLhV1Tt7rOqhrSkpLUqgpFPvszlq6Dm745/sAAAAAAADNobS5F7CnqqqqsmLFiiRJ3759G+1bO7548eImX8tzzz2XZ599Nkly8cUXp127dk0+BwAALVNZRVkqulQU/zTVw1Ud+7x2atqGFa89uNSUD1ftbp6GHq4CAAD2vz4j+xTblS9WNtq3culr8T4j+tSJ9R7Zu9he/2LDJ+9VV1Vn06pNO8aM6F0nVt6+PN0P777PawEAAAAAAGhuLe4Ei1deeaXY3lVBQ/v2rz3kVXtcU/l//+//JUl69OiRf/mXf9ntcZurN2dD9WsPw5WXlqe8zf79bWZQKCmkkEIKJYXUpKa5l9NsfvnOXzbr/O/97Xubdf7mVF1dnZqamlRXN/7b0GF/cQ/S3Gpqmubf30JNodgubfNavfT+eriq/5j+9eZo7OEqdmYP0Hya8/u+f3twD+AeaN1cf5pqD9CQLod2Sc/hPbPm+TVZ8fiKRvsun7t8x5gBXdJjWI86sSGnDcn9uT9JsuLxFTnqXUfVm2PlEyuL+5Ehpw3ZKT74tMFZ+5e12bJuS9a9sC7dDuvW6FoaynOw2LR9UyqqXzsh0B7gwONn5i2Ha9VyuFYti+vVcrhWLUehpLDrThy01q9fn7Vr1xZfV1RUpKKiopERB4+aEt+b9obv7wePN/rnf37uyN5y77C33DsN83dy8GpxBRabN28uttu2bdto39rxTZs2Nek6nnnmmfzHf/xHkuRHP/pRevfe/YfKvvDAF+q8PnPMmXnH8e9o0vXB6xVSyObOm7M2a1OSkuZeTqs1c+bM5l5Cs6mpqcmSJUuSJKWlLe4AJQ4C7kGa25o1axqNP3f7c1n5xMq85UtvSUlJw/9W1z61olP/TsX2gfZwFXXZAzSf5vz85d8e3AO4B1o3159d7QGawtGTj85D33go6xavy8sLXy6eIlFb5bLKrH52dZLkTee9aaf9xoDxA9JlQJdULq3MonsXZeKXJ9Y718J7FtaZ9/VGTB6RuT+emyRZdO+ijP7Q6HrzLLp3UZKk36h+6XFEj3r7HAzsAQ58fmbecrhWLYdr1bK4Xi2Ha9VyvLK56X/xJy3HqFGj6rz+4Ac/mIsuuqhZ1vJGW9t/7a47sRPf3w8eb/T/Rfm5I3vLvcPecu80rHaBLQeXFldgUftUiq1btzbat3a8Q4cOTbaGTZs2ZcqUKamqqsrnP//5TJ48eY/Gf2vit9K93Wv/0VVeWp7y5X5zFftXoaSQtVmbHit6pKRgY9ZcTj755OZeQrN5tVpzwoQJKStrcf/8cBBwD9LcXt1sNuSZ3zyTJ6Y9kTGXjEmnfp0a7Ld09tJie9DJg+rEDqSHq6jLHqD5NOfnL//24B7APdC6uf7sag/QFMb907g8ct0j2bpha+beMDd/929/t1Ofx37yWFJIytqVZcJnJuwULykpyclXnpw7L78zS2YuyepnV6fXUb3q9KmprsnjP388STLsrGHpd2y/nfIcfvrhOXTcoVn2yLLMvWFuvQUWLzz4QtY8v6Pw5C1fesvevOUWwx7gwOdn5i2Ha9VyuFYti+vVcrhWLcjmXXfh4PX4449n4MCBxdet6QSLZd9f1txLaJF8fz94vNH/F+Xnjuwt9w57y73TsKVLl+66Ey1Si7vTO3fuXGxv2bKl0b61T7uoPW5fVFdXZ8qUKXniiSfygQ98IN/85jf3OEf7svbpVPa6h+acFMl+VpOalKQkJYWSlBZUETaX1v4Bo7S0NGVlZa3+74Hm4x6kOe1uFf+CPyzI6Ivr/02vaxasKRY2DJwwMH1G9KkTP5AerqIue4Dmc8u5tzTb3DUlNTn004f6t6eV8/kD90Dr5vq3bm/Eb/Lq2KdjJn1nUu647I7MvmZ2jjr3qBw69tBifMUTK/Lwtx9Okpz6tVPTZUCXevMc95Hj8tTNT2XJzCW5/SO35/13vT/l7V8rBnjgKw9k7YK1adetXc645owG13PWf5yVn5780yz949I8ev2jOeEfTyjGtqzbkjs/fmeSZPjZw3P0eQd3oXaHNh3sAQ5wfmbecrhWLYdr1bK4Xi2Ha9VyeEC6devatWt69Dh4T+lrjO9Ne8f394NHc/zsz88d2VvuHfaWe6d+/j4OXi3uylZUVKRfv35ZsWJFVq5c2Wjf2vHBgwfv89w1NTW56KKL8vvf/z7nn39+fvazn+30G38BAGBf3PvP92bQSYPSc3jPOl/fvHZzfjPlNylsL6S8Q3nefv3bdxp7oD1cBQAA7Nq8X8wrtlfOe+1n2n+9+6+pXFqZJOnYt2OGThpa7/jjP3Z8NqzckAevejDTTp2WMZeMSe8RvbP62dWZO3Vutm3clhM/e2ImfHbnAutXlZaV5r23vTc3n31zlsxckh8f9+OMunhU2nZsmwV3LsiCOxakQ68OmXzr5PQc1rPBPP3H9M/k/5yc317w2/zhn/6QJQ8tyeDTBmfzms2ZO3Vu1i1elyGnDcm7b373nv41AQAAAAAAvCFaXIFFkowcOTIrVqzIK6+8kvXr16dr16719qt99MqIESP2ac6amppcfPHF+eUvf5n3ve99ufHGG9OmTZt9ygkAAK/qfXTvlJaXZuPKjfnRqB9l5PtG5pCxh6RN2zZZ/czqPHHjE9m0alM69u2Y8359XvqP7l9vngPp4SoAAGDXbvvAbfV+fea/zSy2D3vrYQ0WWCTJxC9PzNBJQ/PIDx7J/FvnZ9MPN6VDrw4Z+rahGfvxsRly6pBdrqNDrw750MwPZc7UOZl307zMvHpmtldtT9dBXTPh8xMy/pPj07n/rk+KHn728HzsiY9l9rWzs+COBXnu98+lvGN5+ozsk1P+zykZ9cFRKSn1i4sAAAAAAIADU4sssDjttNNyzz33JEkef/zxvPWtb62339y5c+uM2VuFQiEf+chHcuONN2by5Mn5xS9+obgCAIAmddLnT8qxFx6bZ377TBbevTAvPPhCnv7109m+bXvad2+fvsf0zfCzh2f0h0enonNFo7kOpIerAACAxn258OUmyTNwwsAMnDBwn3KUlpVm7GVjM/aysfuUp9vgbjnz2jNz5rVn7lMeAAAAAACAN1qLLLA477zz8qUvfSmFQiH33ntvgwUWrxZh9OrVKxMnTtyruQqFQj760Y/mpz/9af7hH/4hN998807FFcuXL88555yTSy+9NJdeeulezQMAAJ36dcrYy8dm7OX79jBTcmA9XAUAAAAAAAAAANASlDb3AvbGsGHDMnny5CTJTTfdlK1bt+7UZ+HChbnvvvuSJF/4whdSVla3luSpp57K8OHDM2DAgDz44IMNzvXxj388U6dOzd///d9n+vTpO+VJkqqqqsyZMyd/+9vf9uVtAQAAAAAAAAAAAAAAzaRFnmCRJN/5zndy//33Z/Hixbnyyivz3e9+txirqqrKpZdemu3bt+e4447LP/7jP+40/hvf+EYWLFiQJPniF7+YWbNm7dTnE5/4RH74wx/miCOOyOWXX56HH3643rWsWLGiid4VAAAAAAAAAAAAAADQHFpsgcWgQYNy++2359xzz833vve9PPXUU3nnO9+ZzZs3Z9q0aXnyySczatSo/P73v0+7du12Gl9TU1NsFwqFneLXXnttrr/++iTJX/7yl7ztbW/bf28GAAAAAAAAAAAAAABoVi22wCJJxo0bl3nz5uXaa6/Nbbfdls9//vMpLy/P8OHDc+211+ayyy5L27Zt6x37pS99KXPnzs3mzZvzrW99a6f44sWL9/PqAQAAAAAAAAAAAACAA0WLLrBIkl69euXrX/96vv71r+/RuGOOOSYLFixoMH7ttdfm2muv3cfVAQAAAAAAAAAAAAAALUGLL7AAAAAAAAAAAAAAAIADyc8n/jwvzHhhl/3KO5bnyg1XNtrnxVkv5tHrH82SmUuy8aWN6di7YwacOCBjLx+bwRMH79Z6aqprMmfqnDz5iyez+tnVqa6qTtdBXXPku47M+CvGp1O/TruV52CnwAIAAAAAAAAAAAAAAA5AM66akRlfnZGydmUZfcno9BnZJ6ufWZ25U+dm/i3zM+FzEzLp25MazbFp9abcfPbNWfbIsvQ6qldO+sJJadupbRbcsSAPf/PhPPaTx/KeW9+Tw0457A16VwcuBRYAAAAAAAAAAAAAANDEDhl7SM698dxG+5SUljQY+/OP/pwHvvxAytqV5cL7LsyAcQOKsWM+cEx+9pafZdZ3ZqVjn46Z8NkJ9eaoqa7Jr8/9dZY9siwDJwzMB+75QMrblydJxl4+NvdeeW9mXj0zv3rXr3LJo5ek57Cee/FODx6lzb0AAAAAAAAAAAAAAAA42JR3KE+vo3o1+qfn8PoLGjau2pi7P3d3kmTcFePqFFckSf/R/YtFFff/6/2pXFpZb545U+dkycwlSUlyztRzisUVr5r41YnpcUSPbFm3JXd9+q59fMctnwILAAAAAAAAAAAAAAA4gDxy3SPZumFrkmTMJWPq7TPmkjFJSVK9pTqzvjdrp3ihUMjMq2cmSQadNCi9j+69U5825W1y7EXHJkme/+/ns+KJFU31FlokBRYAAAAAAAAAAAAAAHAAmX/r/CRJt8Hd0uOIHvX26TKgS3od1StJ8sytz6RQKNSJL529NJUv7jjZYsjpQxqca+ikoa/Ne8v8fVp3S6fAAgAAAAAAAAAAAAAA9rOqV6pSqCnssl/lssqseW5NkqTfqH6N9u0/uv+OMUsrs3bB2jqxRfctKrYby9P32L4pKS3ZaUxrVNbcCwAAAAAAAAAAAAAAgIPNtk3bMuOqGZl/6/y8/NeXs23TtpSUlqTnkT0z7KxhOfFTJ6bzIZ13GvfSUy8V210Gdml0jtrxl55+KT2H9yy+XvXUqmK768CuDeYoqyhLh94dsnHlxqx6elWD/VoDBRYAAAAAAAAAAAAAANDE/vanv+WlJ1/KqA+Nyin/ckrKO5Zn9bOrM/fHc/PH7/4xc/7fnLz7F+/Oke88ss64dYvXFdsd+3ZsdI7a8drj9jRPp76dsnHlxlRVVmXzy5vTvnv7xt/cQUqBBQAAAAAAAAAAAAAANKC6qjrbq7YXX299ZetujevYp2M+eP8H0/vo3sWvDT9reE74xxMy/ZzpWXj3wtwy+ZZ88P4PZuCEgfXmL2vX+CP/5e3LG1xX1StVu52nrP1r8a2vbFVgAQAAAAAAAAAAAAAA1DXz6pmZ8dUZxdfrs36XY8771XlpU9Gm3kKFsoqy/P3P/z7XHX5dtldtz53/eGc+Ovejxfi2zduK7TZt2zQ6T+34tk3b6sSqN1c3SZ7WRIEFAAAAAAAAAAAAAAA04OR/PjknfvrE4utly5blmqOvaXRMp36dGo13PqRzjjjziDz3u+ey4rEVWf7Y8vQf3T9J3VMptm/d3lCKneLlHcrrxGqfSrEveVoTBRYAb6Dp50xv1vmn3D6lWecHAAAAAAAAAAAAaGnKKspSVvHao/dtK9s2Sd5Djj8kz/3uuSTJi7NeLBZYtO38Wv7qLdX1jn1V7dMuao9LkorOFbudp/ZpF6/P05qUNvcCAAAAAAAAAAAAAACgtenYp2OxvWHFhmK72+BuxfbGlRsbzVE7XnvcnubZsHLH/BVdKtK+e/tG+x7MnGABAAAA+8mT05/Msu8vS2mheX6/gRPMAAAAAAAAAODAVagpFNulbV57tqDPyD7FduWLlY3mqFz6WrzPiD51Yr1H9i6217+4Pv3H9K83R3VVdTat2rRjzIje9fZpLZxgAQAAAAAAAAAAAAAATeS525/Lg19/MIVCodF+tU+t6NS/U7Hd5dAu6Tm8Z5JkxeMrGs2xfO7yHWMGdEmPYT3qxIacNqTYbizPyidWFos9ao9pjZxgAQAAAAAAAAAAb6BCoZA//d8/5Z4v3pNtG7flg/d/MIMnDt7t8S/OejGPXv9olsxcko0vbUzH3h0z4MQBGXv52N3OU1NdkzlT5+TJXzyZ1c+uTnVVdboO6poj33Vkxl8xPp36ddp1EgAAoF7P/OaZPDHtiYy5ZEyjn62Xzl5abA86eVCd2NGTj85D33go6xavy8sLX073w7vvNL5yWWVWP7s6SfKm896UkpKSOvEB4weky4AuqVxamUX3LsrEL0+sdx0L71lYZ97WzAkWAAAAAAAAAADwBln717WZNnFa/vCJP2Tbxm17PH7GVTPys7f8LM/97rkcde5Refu/vz1HTz46f/nDXzLt1Gm5+/N37zLHptWb8tOTf5o7L78zm9duzklfOCmTvj0p3Yd0z8PffDg/POaHeeHBF/bm7QEAALUs+MOCBmNrFqwpFjYMnDAwfUb0qRMf90/j0rZT2yTJ3Bvm1pvjsZ88lhSSsnZlmfCZCTvFS0pKcvKVJydJlsxcUizGqK2muiaP//zxJMmws4al37H9dv3GDmIKLAAAAAAAAAAAYD8rFAp59PpH86Njf5QVj6/IgPED9jjHn3/05zzw5QfSpm2bXHjfhXn7dW/PcR85Lmd8/4xc9OBFKe9YnlnfmZVZ353VYI6a6pr8+txfZ9kjyzJwwsBcOvfSnPT5kzL28rE5/47zc/I/n5xNqzblV+/6VdYsWLMvbxkAAFq9e//53qx5fufP1ZvXbs5vpvwmhe2FlHcoz9uvf/tOfTr26ZhJ35mUJJl9zews+9OyOvEVT6zIw99+OEly6tdOTZcBXepdw3EfOW7H6RiF5PaP3J5tm+sWej/wlQeydsHatOvWLmdcc8Zevc+DSVlzLwAAAAAAAAAAAA52M746IzO+OiNDzxiac6aek8d+8liWzl662+M3rtqYuz+343SKcVeMy4BxdQs0+o/unwmfnZAZX52R+//1/ox838h6H7CaM3VOlsxckpQk50w9J+Xty+vEJ351YubfMj9r/7I2d336rky5fcqev1kAAGjleh/dO6Xlpdm4cmN+NOpHGfm+kTlk7CFp07ZNVj+zOk/c+EQ2rdqUjn075rxfn5f+o/vXm+f4jx2fDSs35MGrHsy0U6dlzCVj0ntE76x+dnXmTp2bbRu35cTPnpgJn9359IpXlZaV5r23vTc3n31zlsxckh8f9+OMunhU2nZsmwV3LsiCOxakQ68OmXzr5PQc1nN//ZW0GAosAAAAAAAAAABgPysUCjnnhnMy5sNj9mr8I9c9kq0btiZJxlxSf44xl4zJjKtmpHpLdWZ9b1bOvObMndYw8+qZSZJBJw1K76N775SjTXmbHHvRsbn/X+7P8//9fFY8sSL9ju23V2sGAIDW6qTPn5RjLzw2z/z2mSy8e2FeePCFPP3rp7N92/a0794+fY/pm+FnD8/oD49OReeKRnNN/PLEDJ00NI/84JHMv3V+Nv1wUzr06pChbxuasR8fmyGnDtnlejr06pAPzfxQ5kydk3k3zcvMq2dme9X2dB3UNRM+PyHjPzk+nft3bqq336IpsAAAAAAAAAAAgP1s4lcmpqSkZK/Hz791fpKk2+Bu6XFEj3r7dBnQJb2O6pXVz6zOM7c+kzO+f0adOZfOXprKFyuTJENOb/ghrKGThub+f7l/x7y3zFdgAQAAe6FTv04Ze/nYjL187D7nGjhhYAZOGLhPOUrLSjP2srEZe9m+r+dgpsACAAAAAAAAAAD2s30prqhcVpk1z61JkvQb1XixQ//R/bP6mdWpXFqZtQvWpufwnsXYovsWFduN5el7bN+UlJakUFOoMwaAuqafM/0Nna+mpCZr+6/Nsu8vS2mhNFNun/KGzg8ArUFpcy8AAAAAAAAAAABo2EtPvVRsdxnYpdG+teMvPf1Sndiqp1YV210Hdm0wR1lFWTr07rBjzNOrGuwHAABwsFFgAQAAAAAAAAAAB7B1i9cV2x37dmy0b+147XF7mqdT305JkqrKqmx+efPuLRQAAKCFU2ABAAAAAAAAAAB7oGZ7TbZv2178U1Nds1/n2/rK1mK7rF1Zo33L25fXOy5Jql6p2u08Ze1fi78+DwAAwMGq8Z0SAAAAAAAAAABQx9q/rM3aBWuLr9dn/X6db9vmbcV2m7ZtGu1bO75t07Y6serN1U2SBwAA4GClwAIAAAAAAAAAAPZAjyN6pPvh3Yuv125Zm8zYf/PVPpVi+9btjfatHS/vUF4nVvtUin3JAwAAcLBSYAHQikw/Z3qzzV1TUpNDP31os80PAAAAAAAA0FRK25QmtQ6AKK0u3a/zte3cttiu3lLdSM+6p13UHpckFZ0rdjtP7dMuXp8HAADgYLV/d3cAAAAAAAAAAMA+6Ta4W7G9ceXGRvvWjtcet6d5NqzckCSp6FKR9t3b795CAQAAWjgFFgAAAAAAAAAAcADrM7JPsV35YmWjfSuXvhbvM6JPnVjvkb2L7fUvrm8wR3VVdTat2rRjzIjeDfYDAAA42CiwAAAAAAAAAACAA1iXQ7uk5/CeSZIVj69otO/yuct3jBnQJT2G9agTG3LakGK7sTwrn1iZQk1hpzEAAAAHu7LmXgAAAAAAAAAAANC4oycfnYe+8VDWLV6Xlxe+nO6Hd9+pT+Wyyqx+dnWS5E3nvSklJSV14gPGD0iXAV1SubQyi+5dlIlfnljvXAvvWVhnXgAOTNPPmd6s80+5fUqzzg8A+4MTLAAAAAAAAAAA4AA37p/GpW2ntkmSuTfMrbfPYz95LCkkZe3KMuEzE3aKl5SU5OQrT06SLJm5pFiMUVtNdU0e//njSZJhZw1Lv2P7NdE7AAAAOPApsAAAAAAAAAAAgANcxz4dM+k7k5Iks6+ZnWV/WlYnvuKJFXn42w8nSU792qnpMqBLvXmO+8hxGXTyoKSQ3P6R27Nt87Y68Qe+8kDWLlibdt3a5YxrztgP7wQAAODAVdbcCwAAAAAAAAAAgNZg3i/mFdsr560stv96919TubQySdKxb8cMnTS03vHHf+z4bFi5IQ9e9WCmnTotYy4Zk94jemf1s6szd+rcbNu4LSd+9sRM+OzOp1e8qrSsNO+97b25+eybs2Tmkvz4uB9n1MWj0rZj2yy4c0EW3LEgHXp1yORbJ6fnsJ5N9M4BAABaBgUWAAAAcJCafs705l5Cptw+pbmXAAAAAAAHjNs+cFu9X5/5bzOL7cPeeliDBRZJMvHLEzN00tA88oNHMv/W+dn0w03p0KtDhr5taMZ+fGyGnDpkl+vo0KtDPjTzQ5kzdU7m3TQvM6+eme1V29N1UNdM+PyEjP/k+HTu33nP3yAAAEALp8ACAAAAAAAAAADeAF8ufLlJ8gycMDADJwzcpxylZaUZe9nYjL1sbJOsCQAA4GBQ2twLAAAAAAAAAAAAAAAAaG4KLAAAAAAAAAAAAAAAgFZPgQUAAAAAAAAAAAAAANDqlTX3AgAAAAAAAAAAANhz08+Z3txLAACAg4oTLAAAAAAAAAAAAAAAgFZPgQUAAAAAAAAAAAAAANDqlTX3AgBoPZ6c/mSWfX9ZSgvNU9835fYpzTIvAAAAAAAAAAAAAAc+J1gAAAAAAAAAAAAAAACtngILAAAAAAAAAAAAAACg1VNgAQAAAAAAAAAAAAAAtHoKLAAAAAAAAAAAAAAAgFavrLkXAAAAAAAAAAAAAEDLMv2c6c29hEy5fUpzLwGAg4wTLAAAAAAAAAAAAAAAgFZPgQUAAAAAAAAAAAAAANDqlTX3AgAAAICDV3MfDe1YaAAAAAAAAABgdznBAgAAAAAAAAAAAAAAaPWcYAFAq9Hcvz058RuUAQAAAAAAAAAAAA5UTrAAAAAAAAAAAAAAAABaPQUWAAAAAAAAAAAAAABAq6fAAgAAAAAAAAAAAAAAaPUUWAAAAAAAAAAAAAAAAK1eWXMvAAAAAGB/mX7O9Gabu6akJod++tBmmx8AAAAAAOBg15z/F5QkU26f0qzzA9D0nGABAAAAAAAAAAAAAAC0egosAAAAAAAAAAAAAACAVk+BBQAAAAAAAAAAAAAA0OopsAAAAAAAAAAAAAAAAFo9BRYAAAAAAAAAAAAAAECrV9bcCwAAAAAAAAAAAAAAYM9MP2f6fs1fU1KTtf3XZtn3l6W0sPPv9Z9y+5T9Oj80BwUWAPAG2t8faHfFB1oAAAAAAAAAAACA+imwAIBWRIEHAAAAAAAAAAAAQP0UWAAAAAAAAAAAAABAC7O7v2y1pqQma/uvzbLvL0tpobTJ5vfLVoGDkQILAAAAgP3kyelPNvkPqveEH2oDAAAAAAAAwO5TYAEAAAAAAAAAAAAAtCi7e4LH/uKXncHBqXl+fSIAAAAAAAAAAAAAAMABxAkWAAAAAAAAAAAAAADsEaeIcDBSYAEAAABwkPIDTQAAAAAAAADYfaXNvQAAAAAAAAAAAAAAAIDmpsACAAAAAAAAAAAAAABo9cqaewEAQOsx/ZzpzTZ3TUlNDv30oc02PwBAa9Scn/+SZMrtU5p1fgAAAAAAAA5ezf1/YcD+4QQLAAAAAAAAAAAAAACg1XOCBQAAAAAHpeb+rUFOUQMAAAAAAABoWRRYAACtxpPTn8yy7y9LaaF1HuI15fYpzb0EAAAAAAAAAICDRnP/sicAmp4CCwAAAAAAAAAAAABgjygwAQ5GCiwAAAAAYD9p7lPUnGIGAAAAAAAAsPsUWAAAtBLN/VsDPNwHAPDG8xkQAAAAAAAAYPe1+AKL1atX57rrrsttt92WxYsXp23btjnyyCMzZcqUfOxjH0vbtm2bZJ4777wzP/rRjzJnzpysWbMm/fv3z8SJE/OJT3wiY8aMaZI5AAAOZs39cF/Ssh7w27R6U2ZfNzvP3vZs1i1elzZt26TXkb0ycsrIHP+x49OmbZvmXiIAANCE7AEAAKB1sQcAAIDWxR6g5Sht7gXsi0cffTTHHHNMvv71r+eQQw7Jt771rVx55ZXZsGFDrrjiiowfPz5/+9vf9mmOmpqaXHrppTnrrLPy8MMP58ILL8wPfvCDTJo0KTfffHPGjRuXH/zgB030jgAAIFn26LL88Jgf5qGvP5TOh3TO6d86PW+58i3ZumFr/ueK/8kN42/IK397pbmXCQAANBF7AAAAaF3sAQAAoHWxB2hZWuwJFkuWLMnZZ5+dVatW5ZOf/GSuueaaYuwTn/hE3v72t+f+++/PO9/5zjz88MOpqKjYq3muvPLKTJ06Nb169cof//jHHHHEEUmSSy+9NO9+97tz1lln5ZOf/GT69++fyZMnN8l7AwCg9Vq/ZH1uPvvmbFq1KeM+OS5nXnNmMXbCJ07IL9/+yyy+f3Gmv3N6PvTwh1JW0WI/0gMArUBzn2LWkk4wo/WyBwAAgNbFHgAAAFoXe4CWp8Vegc997nNZtWpVBg0alG9+85t1YhUVFZk6dWqOPPLIzJkzJ9dff30+85nP7PEcTz/9dL7zne8kSb72ta8ViytedeaZZ+YDH/hApk2blk984hN5xzvekY4dO+79mwIAYL9qzgf8Vm9ZvVv97v7c3dm0alO6Duqa0795ep1YWUVZzpl6Tq4/8vosn7M8j17/aCZ8ZsL+WC4AwEGhOT//1ZTU5NBPH9ps89Ny2AMAAEDrYg8AAACtiz1Ay9MiCywWLFiQW265JUly4YUX1ns6xdChQ3Pqqafmnnvuybe+9a1cccUVKSvbs7d79dVXp6amJu3bt88FF1xQb5+PfOQjmTZtWlauXJkbbrghV1xxxZ6/IQAASLJmwZo8fcvTSZJjLjym3or0HkN7ZMipQ7LwnoV5+FsPZ/wV41NaVvpGLxUAgN3w5PQns+z7y1JaaJ7Pa07wOPDZAwAAQOtiDwAAAK2LPUDL1CILLG699dYUCoUkyemnn95gv0mTJuWee+7JqlWr8sADDzTa9/Wqqqpy++23J0nGjRuXzp0719vvxBNPTKdOnbJhw4bccsstjRZYbN26NUmyrWbbbq8Dmsq27dty55/vzHv7vTcVpTsXJcH+5h6kubkHaW6vfgZ89TNhfebfOj/Z8TE3h59+eIP9Dp90eBbeszCbVm3K4gcWN9qX5mUP0Lr5twf3AO6B1u1AuP7NeYIHyfJNy5PYA8CB6kD4Ps3uca1aDteqZXG9Wg7X6uBiD3DweXXP19jeD+rj+zt7y73D3nLvsLfcO/vGHqBlapHlLffdd1+xPWrUqAb7jR49ut4xu+PPf/5zKisrdzlHaWlpjjnmmCTJH//4x2zevLnBvlVVVUmS6prqPVoLNIVtNdvyP3P/x8N9NBv3IM3NPUhze/Uz4KufCeuz+L7FxXa/Uf0a7Ndv9GuxRfct2vfFsd/YA7Ru/u3BPYB7oHVz/bEHgAOb79Mth2vVcrhWLYvr1XK4VgcXe4CDz6t7vsb2flAf39/ZW+4d9pZ7h73l3tk39gAtU4s8weKpp55KknTu3Dldu3ZtsN/AgQOL7aeffnqv5nh9nsbmqampybPPPlunsAMAAHbXS0+9lCRp27lt2nVt12C/rgNf+wy86ulV+31dAADA/mEPAAAArYs9wMHrD//0hzzV6alddwQAoFWxB2iZWtwJFlVVVVmxYkWSpG/fvo32rR1fvHjxHs1Tu//+nAcAAJKkuqo6G1ZsSJJ06tup0b4d+3YsttctXrc/lwUAAOwn9gAAANC62AMAAEDrYg/QcrW4EyxeeeWVYrtdu4YreZKkffv29Y5rrnlqamqSJCs2rqjz9bLSspSXlu/R+mBPbd6+OaWlpXm56uVsqd7S3MuhFXIP0tzcg7zRarbXJIXXXr+88eUdX///PxO+3tZXthbbZe0a/5he3v61z45Vrzhy+kBmD9C6+bcH9wDugdbN9W997AFIXrvef9v4t2zavqn4dXuAA4/v0y2Ha9VyuFYti+vVcrhWB67X7wHWbVm34+v2AK2K/wdgb/n+zt5y77C33DvsrQP93nkjfzF+zbaabK/aXny9YuWOz4D2AAefFldgsXnz5mK7bdu2jfatHd+0aVMjPd+YeV5+ecd/qF3zp2v2aC3QlL5w/xeaewm0cu5Bmpt7kOb26mfC19u2eVux3aZtm0Zz1I5v27StkZ40N3sAEv/24B7APdDauf7YA7QuK1euTJJcPfvqZl4Ju8v36ZbDtWo5XKuWxfVqOVyrlmPlypUZNGjQTl+3Bzg4+X8A9pXv7+wt9w57y73D3jpQ751/GvJPzb0Ee4CDUIsrsKh9WsTWrVsb6Vk33qFDh2afZ/z48XnooYfSvXv3lJaWFr9eUVGxyyIOAABaluqt1ampeq1CvaamJqvWrcrYcWPr7V+7En371u319qkvXt7Bbz86kNkDAAC0HvYAJMno0aPtAQAAWomG9gCjR4+ut789wMHJ/wMAALQe9gCtR4srsOjcuXOxvWVL40fN1D6Fova45pqnrKwsJ5988h6tAwCAg8cROaLBWNvOr/2QvXpLdaN5ale4V3Su2PeFsd/YAwAAtG72AK2PPQAAQOtmD9D62AMAALRu9gAHp9JddzmwVFRUpF+/fkleO2q7IbXjgwcP3qN5avffn/MAAECSlFWUpVO/TkmSDSs3NNp348qNxXa3wd3257IAAID9xB4AAABaF3sAAABoXewBWq4WV2CRJCNHjkySvPLKK1m/fn2D/ZYuXVpsjxgxYq/mSJIXX3yx0b6vzlNaWpqjjjpqj+YBAIBX9RnZJ0my9ZWt2bK+4VPUKpdWFtu9R/Te7+sCAAD2D3sAAABoXewBAACgdbEHaJlaZIHFaaedVmw//vjjDfabO3duvWN2x/HHH5/OnTvvco6ampo88cQTSZITTzwx7du336N5AADgVYNPG1xsr3h8RYP9ls9dXmwPOW3I/lwSAACwH9kDAABA62IPAAAArYs9QMvUIgsszjvvvJSUlCRJ7r333gb73XPPPUmSXr16ZeLEiXs0R0VFRd75zncmSR555JFs2FD/0SyzZ88uxiZPnrxHcwAAQG1Hn3d0suNjbhbdu6jBfgvvWZgk6dCrQwZPHPwGrAwAANgf7AEAAKB1sQcAAIDWxR6gZWqRBRbDhg0rFjPcdNNN2bp16059Fi5cmPvuuy9J8oUvfCFlZWV14k899VSGDx+eAQMG5MEHH6x3ni9+8YspLS3N5s2bc/PNN9fb54YbbkiS9O3bN5dccslevycAAOg5rGdGTB6RJJl307xs37p9pz4vL3w5i+7bseE66QsnpbSsRX6kBwAAYg8AAACtjT0AAAC0LvYALVOLvQLf+c530rt37yxevDhXXnllnVhVVVUuvfTSbN++Pccdd1z+8R//cafx3/jGN7JgwYIsW7YsX/ziF+udY+TIkfnc5z6XJPmXf/mXLFy4sE78rrvuyrRp05Ik//7v/56OHTs2xVsDAKAVm/SdSenQu0PWLV6Xe6+se1pbdVV1br/09hS2F9L/uP454R9PaKZVAgAATcUeAAAAWhd7AAAAaF3sAVqekkKhUGjuReytRx55JOeee26WL1+eM844I+985zuzefPmTJs2LU8++WRGjRqVO+64I4cccshOY9/73vfmP//zP5Mk48ePzx//+Md656ipqclHP/rR3HDDDenZs2c++tGPZvDgwZkzZ05+9rOfpaamJt/97ndzxRVX7Nf3CgBA67H0kaX59bm/zoblGzL0jKE58p1HZtvmbXli2hN56cmX0m9Uv5x/x/npfEjn5l4qAADQBOwBAACgdbEHAACA1sUeoGVp0QUWSbJ69epce+21ue222/LCCy+kvLw8w4cPz/nnn5/LLrssbdu2rXfcvHnz8g//8A/ZvHlzbr755pxyyimNznPnnXfmhz/8Yf785z/n5ZdfTr9+/fLWt741V1xxRcaMGbM/3hoAAK3YptWbMvva2Xn2tmez7oV1aVPeJj2H98zI80dm7GVj06Ztm+ZeIgAA0ITsAQAAoHWxBwAAgNbFHqDlaPEFFgAAAAAAAAAAAAAAAPuqtLkXAAAAAAAAAAAAAAAA0NwUWAAAAAAAAAAAAAAAAK2eAgsAAAAAAAAAAAAAAKDVU2ABAAAAAAAAAAAAAAC0egosAAAAAAAAAAAAAACAVk+BBQAAAAAAAAAAAAAA0OopsAAAAAAAAAAAAAAAAFo9BRYAAAAAAAAAAAAAAECrp8ACAAAAAAAAAAAAAABo9RRYAAAAAAAAAAAAAAAArZ4CCwAAAAAAAAAAAAAAoNVTYAEAAAAAAAAAAAAAALR6CiwAAAAAAAAAAAAAAIBWT4EFAAAAAAAAAAAAAADQ6imwAAAAAAAAAAAAAAAAWj0FFgAAAAAAAAAAAAAAQKunwAIAAAAAAAAAAAAAAGj1FFgAAAAAAAAAAAAAAACtngILAAAAAAAAAAAAAACg1VNgAQAAAAAAAAAAAAAAtHoKLAAAAAAAAAAAAAAAgFZPgQUAAAAAAAAAAAAAANDqKbAAAAAAAAAAAAAAAABaPQUWAAAAAAAAAAAAAABAq6fAAgAAAAAAAAAAAAAAaPUUWAAAAAAAAAAAAAAAAK2eAgsAAAAAAAAAAAAAAKDVU2ABAAAAAAAAAAAAAAC0egosAAAAAAAAAAAAAACAVk+BBQAAAAAAAAAAAAAA0OopsAAAAAAAAAAAAAAAAFo9BRYAAAAAAAAAAAAAAECrp8ACAAAAAAAAAAAAAABo9RRYAAAAAAAAAAAAAAAArZ4CCwAAAAAAAAAAAAAAoNVTYAEAAAAAAAAAAAAAALR6CiwAAAAAAAAAAAAAAIBWT4EFAAAAAAAAAAAAAADQ6imwAAAAAAAAAAAAAAAAWj0FFgAAAAAAAAAAAAAAQKunwAIAAAAAAAAAAAAAAGj1FFgAAAAAAAAAAAAAAACtXllzL6A1qa6uzmOPPZa+ffumtFRtCwBAa1JTU5OVK1dm9OjRKSvzMby1sAcAAGi97AFaJ3sAAIDWyx6gdbIHAABovewBDl6u5hvoscceywknnNDcywAAoBk9+uijGTt2bHMvgzeIPQAAAPYArYs9AAAA9gCtiz0AAAD2AAcfBRZvoL59+yZJ/vjHP2bAgAHNvBpam+rq6sydOzdjxoxRKUezcA/S3NyDNLelS5fmxBNPLH4mpHWwB2jd/NuDewD3QOvm+mMP0Dq9er0fffTR9O/fv5lXQ2N8n245XKuWw7VqWVyvlsO1ajmWL1+eE044wR6glfH/AOwt39/ZW+4d9pZ7h73l3mmYPcDBy53+Bnr1KMB+/frZVPGGq66uzuLFizNgwAD/yNEs3IM0N/cgza26ujpJHA/dytgDtG7+7cE9gHugdXP9sQdonV693v3797cHOMD5Pt1yuFYth2vVsrheLYdr1fLYA7Qu/h+AveX7O3vLvcPecu+wt9w7u2YPcPBxRQEAAAAAAAAAAAAAgFZPgQUAAAAAAAAAAAAAANDqKbAAAAAAAAAAAAAAAABaPQUWAAAAAAAAAAAAAABAq1fW3AsAAAAAAAAAAAAAAKBl2bhx416NW7lyZT72sY9lzpw5Oe644/KjH/0offv23eM8HTt23Kv5oTEKLAAAAAAAAAAAAAAA2COdOnXa5xx33313hg4duldjC4XCPs8Pr1fa3AsAAAAAAAAAAAAAAABobk6wAAAAAAAAAAAAAABgj2zYsGGvxp177rm57777sn379rRp0yannXZabrvttiZeHewdBRYAAAAAAAAAAAAAAOyRjh077tW4m266KRdddFH+9Kc/ZezYsfn5z3++17mgqSmwAAAAAAAAAAAAAADgDdG3b9/84Q9/aO5lQL1Km3sBAAAAAAAAAAAAAAAAzU2BBQAAAAAAAAAAAAAA0OopsAAAAAAAAAAAAAAAAFo9BRYAAAAAAAAAAAAAAECrp8ACAAAAAAAAAAAAAABo9RRYAAAAAAAAAAAAAAAArZ4CCwAAAAAAAAAAAAAAoNUra+4FAAAAAAAAAAAAAADAwWTLui15/o7ns+jeRVnx2Iq8vOjlbN2wNW07tU3PYT0z5PQhGXvZ2HQd1HWXuV6c9WIevf7RLJm5JBtf2piOvTtmwIkDMvbysRk8cfBuraemuiZzps7Jk794MqufXZ3qqup0HdQ1R77ryIy/Ynw69eu0W3nWvbAus6+dnb/c+Zesf3F92nZqmz4j+uTYDx6bYy88NiWlJbuV50ClwAIAAAAAAAAAAAAAAJrIi7NezLTTpmV71fakJHnTuW/KyCkjU9GlImv/sjZP3PhEHv7mw3n0B4/mXT97V0a8Z0SDuWZcNSMzvjojZe3KMvqS0ekzsk9WP7M6c6fOzfxb5mfC5yZk0rcnNbqeTas35eazb86yR5al11G9ctIXTkrbTm2z4I4FefibD+exnzyW99z6nhx2ymGN5nn+jufz2/N/m6pXqnL0eUdn/KfGZ9OaTZk7dW5+d/HvMu8X8/Le296bis4Ve/X3diBQYAEAAAAAAAAAAAAAAE2kqrIq26u2p6RNSS74wwUZOmlonfgp/3JKfnbKz/LSky/ltg/clj5v7pPeb+q9U54//+jPeeDLD6SsXVkuvO/CDBg3oBg75gPH5Gdv+VlmfWdWOvbpmAmfnVDvWmqqa/Lrc3+dZY8sy8AJA/OBez6Q8vblSZKxl4/NvVfem5lXz8yv3vWrXPLoJek5rGe9eZbPXZ5bJt+S6s3VOePaMzL+ivHF2NjLx+Znb/lZFt27KL89/7eZcvuUPf47O1CUNvcCAAAAAAAAAAAAAADgYDPqolE7FVckSbtu7TLpOztOndi+dXvm3jB3pz4bV23M3Z+7O0ky7opxdYorkqT/6P7Foor7//X+VC6trHcNc6bOyZKZS5KS5Jyp5xSLK1418asT0+OIHtmybkvu+vRdDb6XOy6/I9Wbq3PouEPrFFckSfvu7fOO69+RJHn+v5/P/N/MbzDPgU6BBQAAAAAAAAAAAAAANJF23drl0HGH5ujzjm6wzyHHHVJsr35m9U7xR657JFs3bE2SjLlkTL05xlwyJilJqrdUZ9b3Zu0ULxQKmXn1zCTJoJMGpffRO5+S0aa8TY696NgkO4ojVjyxYqc+C+9ZmGWPLNsx50fqX8vgiYPTY1iPJMlDX3+o3j4tQVlzL6A1uv0jt6dXu17NMndLPm4FAABaKnsAAAAAeGNMP2d6s85vHw4A0Lrs7efPmpKarO2/Nsu+vyylhX37Hck+gwLAgWnA+AG5ZPYljfYp7/DaSRJlFTs/1j//1h2nQHQb3C09juhRb44uA7qk11G9svqZ1Xnm1mdyxvfPSElJSTG+dPbSVL6442SLIacPaXAtQycNzf3/cv+OeW+Zn37H9qsTf/qWp4vtw08/vME8h59+eNYuWJsVj6/I2r+sbXDdBzInWAAAAAAAAAAAAAAAwBto2Z+WFduDTxtcJ1a5rDJrnluTJOk3qm6xw+v1H91/x5illVm7YG2d2KL7FhXbjeXpe2zflJSW7DTmVYvvW5xkx8kc3Q7r1mCefqNfm6O+PC2BAgsAAAAAAAAAAAAAAHiDVG+pzn1X3pck6fPmPhlzyZg68ZeeeqnY7jKwS6O5asdfevqlOrFVT60qtrsO7NpgjrKKsnTo3WHHmKdX1Ylt27wtLy98ebfWUnuO16+lpdj5LBEAAAAAAAAAAAAAAKBJVFdVZ8u6Ldm8ZnNenPViZl8zO6vmr8qI94zI2T8+O+Xty+v0X7d4XbHdsW/HRnPXjtcet6d5OvXtlI0rN6aqsiqbX96c9t3bJ0nWL1mfQk2h2Gd317J+8fpG+x6oFFgAAAAAAAAAAAAAAMB+8tT0p/K7i39XfN11UNe8+5fvzsgpI1NSUrJT/62vbC22y9o1/sh/7eKM2uOSpOqVqt3OU9b+tfjWV7YWCyz2di21525JFFgAAAAAAAAAAAAAAEADqquqs71qe/H16wsZdmXoGUPzgbs/kK0bt2btgrV58uYn89sLfpsHvvxAzrzuzAx7x7A6/bdt3lZst2nbptHctePbNm2rE6veXL3PeZpqLS2FAgsAAAAAAAAAAAAAAGjAzKtnZsZXZxRfr8/6PRrfuX/ndO7fufj6xM+cmHu+cE9mfWdWbj775rzrZ+/KqA+OKsZrnwSxfev2NKZ2vLxDeZ1Y7VMp9jZPU62lpVBgAQAAAAAAAAAAAAAADTj5n0/OiZ8+sfh62bJlueboa/Y6X0lJSU7/1ulZdO+iLJ+7PHdcdkeOOOOIdOrXKUnStnPbYt/qLdUNpUlS94SJ2uOSpKJzxW7nqX3aRe08e7uW2nO3JKXNvQAAAAAAAAAAAAAAADhQlVWUpaJLRfHP6wsZ9kZJSUnefMGbk+wobnhy+pPFWLfB3YrtjSs3Npqndrz2uD3Ns2HlhiRJRZeKtO/evvj1roO6pqS0pE6f3VlL18FdG+17oFJgAQAAAAAAAAAAAAAAb7CeR/Ystl968qViu8/IPsV25YuVjeaoXPpavM+IPnVivUf2LrbXv7i+wRzVVdXZtGrTjjEjeteJlbcvT/fDu+/zWlqKsuZeAAAAAAAAADSF6edM361+NSU1Wdt/bZZ9f1lKC033+8im3D6lyXIBAAAAAC3Xgj8sSHmH8gx+6+BG+5W2ee3nkzXVNcV2l0O7pOfwnlnz/JqseHxFozmWz12+Y8yALukxrEed2JDThuT+3J8kWfH4ihz1rqPqzbHyiZUp1BSKY15v8GmDs/Yva7Nl3Zase2Fduh3WrdG1NJSnJXCCBQAAAAAAAAAAAAAANJE7Lrsjd378zl32W/uXtcV210Fd68SOnnx0kmTd4nV5eeHL9Y6vXFaZ1c+uTpK86bw3paSkpE58wPgB6TKgS5Jk0b2LGlzHwnsW7jRvbSMmjyi2G8vzaqzfqH7pcUSPBvsdyBRYAAAAAAAAAAAAAABAE1r9zOqsW7yuwXihUMgTNz5RfD38nOF14uP+aVzadmqbJJl7w9x6czz2k8eSQlLWriwTPjNhp3hJSUlOvvLkJMmSmUuKxRi11VTX5PGfP54kGXbWsPQ7tt9OfQ4//fAcOu7QRtfywoMvZM3za5Ikb/nSW+rt0xIosAAAAAAAAAAAAAAAgCZUqCnktg/clg0rNtQb+99P/W/+9qe/JUlGThmZAeMG1OnTsU/HTPrOpCTJ7GtmZ9mfltWJr3hiRR7+9sNJklO/dmrxpIrXO+4jx2XQyYOSQnL7R27Pts3b6sQf+MoDWbtgbdp1a5czrjmjwfdz1n+clbL2ZVn6x6V59PpH68S2rNtSPLFj+NnDc/R5O5+C0VKUNfcCAAAAAAAAODhMP2d6cy8BAAAAAKDZ9Tu2X9a/sD5LZi7JD4b+ICPeNyK9juqVDj07ZP2S9Xn6P5/O6md2nCZx7IXH5uwfn11vnuM/dnw2rNyQB696MNNOnZYxl4xJ7xG9s/rZ1Zk7dW62bdyWEz97YiZ8dufTK15VWlaa99723tx89s1ZMnNJfnzcjzPq4lFp27FtFty5IAvuWJAOvTpk8q2T03NYzwbz9B/TP5P/c3J+e8Fv84d/+kOWPLQkg08bnM1rNmfu1LlZt3hdhpw2JO+++d379pfXzBRYAAAAAAAAAAAAAABAE3nf796Xl556Kc/c9kyWPLQkC+9emKemP5WabTVp27ltug/pnrH/ODbHXnhsDh17aKO5Jn55YoZOGppHfvBI5t86P5t+uCkdenXI0LcNzdiPj82QU4fscj0denXIh2Z+KHOmzsm8m+Zl5tUzs71qe7oO6poJn5+Q8Z8cn879O+8yz/Czh+djT3wss6+dnQV3LMhzv38u5R3L02dkn5zyf07JqA+OSklpyW7/PR2IFFgAAAAAAAAAAAAAAEAT6jOyT/qM7NMkuQZOGJiBEwbuU47SstKMvWxsxl42dp/ydBvcLWdee2bOvPbMfcpzoCpt7gUAAAAAAAAAAAAAAAA0NwUWAAAAAAAAAAAAAABAq1fW3AsAAAAAAAAADg7Tz5nepPlqSmqytv/aLPv+spQW/O44AAAAAGD/8lNIAAAAAAAAAAAAAACg1VNgAQAAAAAAAAAAAAAAtHoKLAAAAAAAAAAAAAAAgFavrLkXAAAAAAAAAAAAB7P/uui/8sS0J/ZozJHvOjLv+6/31Rt7cdaLefT6R7Nk5pJsfGljOvbumAEnDsjYy8dm8MTBu5W/promc6bOyZO/eDKrn12d6qrqdB3UNUe+68iMv2J8OvXrtEfrBQAAOBgosAAAAAAAAAAAgANMx74d6/36jKtmZMZXZ6SsXVlGXzI6fUb2yepnVmfu1LmZf8v8TPjchEz69qRGc29avSk3n31zlj2yLL2O6pWTvnBS2nZqmwV3LMjD33w4j/3ksbzn1vfksFMO2x9vDQAA4IClwAIAAAAAAAAAAN4AH3/m47vs84szf5H1L6zPqItG7RT784/+nAe+/EDK2pXlwvsuzIBxA4qxYz5wTH72lp9l1ndmpWOfjpnw2Qn15q+prsmvz/11lj2yLAMnDMwH7vlAytuXJ0nGXj429155b2ZePTO/etevcsmjl6TnsJ5792YBAABaoNLmXgAAAAAAAAAAALQGvY7q1eifzWs3Z/0L69PnzX0y8MSBdcZuXLUxd3/u7iTJuCvG1SmuSJL+o/sXiyru/9f7U7m0st41zJk6J0tmLklKknOmnlMsrnjVxK9OTI8jemTLui2569N3NdE7BwAAaBkUWAAAAAAAAAAAwH7U66heOeyth+2y35wfz0mSHHfpcTvFHrnukWzdsDVJMuaSMfWOH3PJmKQkqd5SnVnfm7VTvFAoZObVM5Mkg04alN5H996pT5vyNjn2omOTJM//9/NZ8cSKXa4bAADgYKHAAgAAAAAAAAAA9qOTv3hyLnrgokb7bFm/JfNvmZ/yDuU55gPH7BSff+v8JEm3wd3S44ge9eboMqBLeh3VK0nyzK3PpFAo1Ikvnb00lS/uONliyOlDGlzL0ElDX5v3lvmNrhsAAOBgUtbcCwAAAAAAAKBpTD9nenMvAQCAvTTvpnnZtmlbRl08Ku26tqsTq1xWmTXPrUmS9BvVr9E8/Uf3z+pnVqdyaWXWLlibnsN7FmOL7ltUbDeWp++xfVNSWpJCTaHOGAAAgIOdAgsAAAAAAAAADgrNXWg25fYpzTo/0LLNnTo3SXLcpcftFHvpqZeK7S4DuzSap3b8padfqlNgseqpVcV214FdG8xRVlGWDr07ZOPKjVn19KoG+wEAABxsSpt7AQAAAAAAAAAA0Jotnb00K+etTN9j+mbA+AE7xdctXldsd+zbsdFcteO1x+1pnk59OyVJqiqrsvnlzY32BQAAOFg4wQIAAAAAAAAAAPZAdVV1tldtL77e+srWfco358dzkiRjLh1Tb7x2/rJ2jT/uU96+vMF1Vb1Stdt5ytq/Ft/6yta0796+0f4AAAAHAwUWAAAAAAAAAACwB2ZePTMzvjqj+Hp91u91rqrKqjz966dT3qE8x7z/mHr7bNu8rdhu07ZNo/lqx7dt2lYnVr25uknyAAAAHKwUWAAAAAAAAAAAwB44+Z9PzomfPrH4etmyZbnm6Gv2Kte8X8zLtk3bMuriUWnXtV29fWqfSrF96/Z6+9QXL+9QXidW+1SKfckDAABwsFJgAQAAAAAAAAAAe6CsoixlFa89dtO2su1e55rz4zlJkuM+elyDfdp2fi1/9ZbqBvsldU+7qD0uSSo6V+x2ntqnXbw+DwAAwMGqtLkXAAAAAAAAAAAArdHSR5Zm5RMr0/fYvhkwbkCD/boN7lZsb1y5sdGcteO1x+1png0rNyRJKrpUpH339o32BQAAOFg4wQIAAAAAAAAOEtPPmd7cSwAA9kDx9IpLGz69Ikn6jOxTbFe+WNlo38qlr8X7jOhTJ9Z7ZO9ie/2L69N/TP96c1RXVWfTqk07xozoXW8fAACAg5ECCwAAAAAAAICDQHMW2NSU1OTQTx/abPMDtERVlVV5+tdPp7xDeY55/zGN9u1yaJf0HN4za55fkxWPr2i07/K5y3eMGdAlPYb1qBMbctqQ3J/7kyQrHl+Ro951VL05Vj6xMoWaQnEMAABAa1Ha3AsAAAAAAAAAAIDWZt4v52Xbxm0Z8b4RqehSscv+R08+OkmybvG6vLzw5Xr7VC6rzOpnVydJ3nTem1JSUlInPmD8gHQZ0CVJsujeRQ3OtfCehTvNCwAA0BoosAAAAAAAAAAAgDfY3KlzkyTHf/T43eo/7p/GpW2ntjvG3jC33j6P/eSxpJCUtSvLhM9M2CleUlKSk688OUmyZOaSYjFGbTXVNXn8548nSYadNSz9ju23W+sDAAA4GJQ19wJ4YzXnscBJMuX2Kc06PwAAAAAAwP7S3P8Pw//H3n2HR1Wm/x//zKT3QEJCJNQA0kMxAhERkGIBXVBUiggICOJ+LWvZdf2uZXVta99d+YqFJqig6CKg9BIQxIReAwRCIgmEEEJ6JjO/P/JjSEghmRkYJnm/rivXdSbP89z3M5lJcs6cc58HAADXkbotVWnb0xQeHa4mNzap0Ri/MD8NenuQlk5bqi3vbVG74e3UJObi2LSdadr01iZJUv+/97euVHGpHpN7aM/8PUqOS9aSyUs0dsVYefh4WNvXvbROmYmZ8g721pD3htjxLAEAAADA9VBgAQAAAAAAAAAAAAAAAFxF8Z/ES5J6PNKjVuNumHqDctJztOGVDZrdf7a6T+quRh0bKeNAhhJmJqg4t1i9n+6t2Kcrrl5xgdHdqPsX36/5Q+crOS5Zn/T4RF0ndJWnn6cSlyUqcWmifEN9NXLRSIW0CbHreQIAAACAq6HAAgAAAAAAAAAAAAAAALhKCs8Xau9Xe+Xh56EuY7rUeny/F/spalCUtn64VfsW7VPex3nyDfVV1OAoxUyPUcv+LS8bwzfUVxPjJip+Zrx2zd2luNfjVFJYoqBmQYp9Nla9nuilgIgAW54eAAAAALg0CiwAAAAAAAAAAAAAwAEWDFvg7CkAAFyAV4CX/nL+L3bFaBrbVE1jm9oVw+huVMy0GMVMi7ErDgAAAADUJUZnTwAAAAAAAAAAAAAAAAAAAAAAAMDZKLAAAAAAAAAAAAAAAAAAAAAAAAD1nruzJ+AIFotF//73v/XnP/9Zubm5Wrt2rfr16+fQHMuWLdOMGTMUHx+vM2fOKCIiQv369dMf//hHde/e3aG5AAAAAAAAAAAAAMDV7F6wW6nvpspo4T5/AAAAAAAAcE0u/8nWkSNHrIUOubm5Do9vNps1ZcoU3Xnnndq0aZPGjRunDz/8UIMGDdL8+fPVs2dPffjhhw7PCwAAAAAAAAAAAAAAAAAAAAAArh6XXcGi7KoVbm5u6tWrl7Zs2eLwPM8//7xmzpyp0NBQ/fLLL2rdurUkacqUKRoxYoTuvPNOPfHEE4qIiNDIkSMdnh8AAAAAAAAAUP+seGaFfvnnL5KkW168Rf1e6nfZMSc2n9Cv//pVyXHJyj2VK79GforsHamYR2PUol+LGuU1m8yKnxmv3fN2K+NAhkyFJgU1C9L1d1+vXo/3kn9j/xrFyTqepS3vb9HhZYd17sQ5efp7KqxjmKIfilb0uGgZjIYaxQEAAAAAAAAAALiaXLbA4uWXX9bLL7+sIUOGaObMmfrss88cXmCxd+9evf3225Kkv//979biigtuu+02Pfjgg5o9e7b++Mc/6o477pCfn59D5wAAAAAAAAAAqF9OJpzUlvdq93n3+lfWa/3L6+Xu7a5uk7oprFOYMvZnKGFmgvYt3KfYZ2I16K1B1cbIy8jT/KHzlbo1VaHtQnXTczfJ099TiUsTtemNTdr+2Xbdt+g+Ne/bvNo4h5Ye0nejv1Ph+UJ1uLeDej3ZS3ln8pQwM0E/TPhBu+bt0v2L75dXgFetnqMr+X789wrxCXH2NAAAAAAAAAAAQC0ZnT0BW1ksFn366af66aef1LRp0yuS4/XXX5fZbJaPj4/GjBlTaZ/JkydLktLT0/Xpp59ekXkAAAAAAAAAAOoHs8ms/076rywllhqP+W3Gb1r34jq5ebpp3Jpxuv2D29Vjcg8NeXeIxm8YLw8/D21+e7M2/3NztXm/Hv61UremqmlsU01JmKKbnr1JMY/GaPTS0erzlz7KO52nr+7+SmcSz1QZ52TCSS0cuVCF2YUa8t4QjfxmpG6YeoP6/rWvHtn+iBp1bKSk1Un6bvR3tfq5AAAAAAAAAAAAXA0uW2Dx0ksv6eGHH75i8QsLC7VkyRJJUs+ePRUQEFBpv969e8vfv3RJ9IULF16x+QAAAAAAAAAA6r7N72xW2vY0XX/39TXqn3s6VyufWSlJ6vl4T0X2jCzXHtEtQrFPx0qS1v7vWmWnZFcaJ35mvJLjkiWDNGzmMHn4eJRr7/dyPzVs3VAFWQVa8dSKKuez9NGlMuWb1KRnE/V6vFe5Np8GPrrjX3dIkg79eEj7vt1Xo+cIAAAAAAAAAABwtbg7ewK2MhgMVzT+b7/9puzs0hNNXbt2rbKf0WhUly5dtHnzZv3yyy/Kz8+Xj4/PFZ0bAAAA6q68jDztXbhXR34+orTtacpJz5HBaJB/uL+a3NhEncd2VtuhbWu0P3xi8wn9+q9flRyXrNxTufJr5KfI3pGKeTRGLfq1qNF8zCaz4mfGa/e83co4kCFToUlBzYJ0/d3Xq9fjveTf2L9GcbKOZ2nL+1t0eNlhnTtxTp7+ngrrGKboh6IVPS5aBuOV3b8HAAAAXEHmkUytf3m9rou5Tjf+8UYd/OHgZcds/WCrinKKJEndJ3WvtE/3Sd21/pX1MhWYtPmdzbrtvdvKtVssFsW9HidJanZTMzXq0KhCDDcPN0WPj9baF9bq0I+HlLYzTY2jG5frc3TVUaVuTS3NObnyubTo10IN2zRUZmKmNr66UR3u6XDZ5wgAAAAAAAAAAHC1uOwKFlfanj17rNtNmzattu+FdrPZrAMHDlzReQEAAKDuWvH0Cr3X9D0te3SZTmw+oXYj2mnIu0M06O1BiugRoX2L9umru77S3IFzlZ+ZX22s9a+s1xc3f6GDPxxUu+HtdPtHt6vDyA46vPywZvefrZXPrrzsfPIy8vR5n8+17NFlys/M103P3aRBbw1Sg5YNtOmNTfq4y8c6vuH4ZeMcWnpIM7rM0NYPtio8OlxD3h2ino/31Nmks/phwg+aO3iuCs8X1vjnBAAAANRVP075UeZis4bNHCajW80+vt+3qHQViOAWwWrYumGlfQIjAxXaLlSStH/RflkslnLtKVtSlH2i9IZDLQe2rDJX1KCoi3kXVlx9Yu/CvdbtVgNbVRnnQlvajjRlHs6ssh8AAAAAAAAAAMDV5rIrWFxpx44ds26Hh4dX27ds+7Fjx9StW7crNS0AAADUYbvm7ZKpwKTmtzTXAz88IO8gb2vbjdNv1KEfD+mrP3ylpDVJWjBsgSZsnFDpyg+/zfhN615cJ3dvd41bM06RPSOtbV0e7KIvbv5Cm9/eLL8wP8U+HVvpXMwms74e/rVSt6aqaWxTPbjqQXn4eEiSYh6N0ernVyvu9Th9dfdXmvTrJIW0Cak0zsmEk1o4cqFM+SYNeX+Iej3ey9oW82iMvrj5CyWtTtJ3o7/TqCWjbPq5AQAAAHVBwmcJSlqTpJueu0mNoxvr2Lpjlx2TnZqtMwfPSJIad21cbd+IbhHK2J+h7JRsZSZmKqTtxX34pDVJ1u3q4oRHh8tgNMhitpQbc8GxNaVz9g72VnDz4CrjNO52MUfSmqQqC0MAAAAAAAAAAACuNgosqnD+/Hnrtre3dzU9JR8fn0rHVcUiiywGy2X71UUlJSXOnkK9VVJSIrPZrJKSEhkMFS/EBK403oNwNt6DcDaz2VyjfkZ3o4bPGV6uuOKCtkPbqvuk7or/v3id2HxCe7/Zq04PdCrXJ/d0rlY+U7o6Rc/He5YrrpBKL6qKfTpW619er7X/u1adHuikwMjACrniZ8YrOS5ZMkjDZg6zFldc0O/lftq3cJ8yD2dqxVMrqiyOWProUpnyTWrSs0m54gpJ8mngozv+dYdm95+tQz8e0r5v96nDPR0u+zNyRc48BmAf3Hn43wPeA+A9UL/x+l8bcnNzbRp36tQpTZs2TfHx8erRo4c+/vhjhYWF1SpGTT4rviAnLUcrn1mpBlENdMuLt9R8nntOWbcDm1bcry+rbPupvafKFVic3nPauh3UNKjKGO5e7vJt5Kvc9Fyd3nu6XFtxfrHOHj1bo7mUzXFq76lqeroui6H+ngdwFRaDxXqsZhGv1bWM18p18FqVcpXPYthfdR28Vq7DVX7/cWVc+D1F/WPrsZ8j951479Uv7BvAVrx3YCveO1Xjf3DdRYFFFfLz863bnp6e1fYt256Xl3fZ2Gcbn1Wxd7H1sZvBTUZDzZZ7d3Xr16939hTqLbPZrBMnTshsNstorB/vN1xbeA/C2XgPwtnOnDlTo36NuzZWULOqL2hqf097xf9fvCTp0JJDFQostn6wVUU5RZKk7pO6Vxqj+6TuWv/KepkKTNr8zmbd9t5t5dotFoviXo+TJDW7qZkadWhUIYabh5uix0dr7QtrdejHQ0rbmabG0eXvdHt01VGlbk0tzTm58rm06NdCDds0VGZipja+urHOFlg48xiAfXDn4X8PeA+A90D9xut/bfj73/9u07hdu3YpMzNTkrRq1Sr17NlTXbp0qVUMk8lU477LHlumgrMFGrlwZIXi5upkHcuybvuF+1Xbt2x72XG1jeMf7q/c9FwVZhcq/2y+fBqU3oDoXPI5WcwWa5+azuXcsXPV9nVVmY0zVeRdZH1cn84DuAyDlO+fr0xDpurxdeCugdfKdfBaSXKdz2LYX3UdvFau4+zZs86eApzol19+0cGDB62P3dzc5O7OZVn1QUZEhm0DHbjv5Cr7H3AM9g1gK947sBXvnapxDFB3sSdfhbKrUhQVFVXTs3y7r6/vZWOvOraq3EFU64jWan1daxtm6XqSk5OdPYV6y2Kx6Ny50pOVVBHCGXgPwtl4D8LZsrOzL9vnngX3yDek+v3J4ObB1u1zyRUvRNq3aF9pvxbBati6YaUxAiMDFdouVBn7M7R/0X4NeXdIud+LlC0pyj5ROt+WA1tWOZeoQVFa+8La0rwL91UosNi7cK91u9XAVlXGaTWwlTITM5W2I02ZhzOrnLcrc+YxAPvgzsP/HvAeAO+B+o3X37Vduv9ek/15Wx344YD2f7tfXcd3Vatbq95vrkzR+YufTbt7V/9xf9nCjbLjJKnwfGGN47j7XGwvOl9kLbCwdS5lc9cl9fk8gCsp9iyWqq8HwjWC18p18Fq5zmcx7K+6Dl4r11GbVexQ98yYMaPcMUB0dLS6du3qvAnhqskPyL98pyo4at/JVfY/4BjsG8BWvHdgK947VeMYoO6iwKIKAQEB1u2CgoJq+5Zd7aLsuKoM9RiqBt4NrI89sj3kkVvzu5K5spGvjXT2FOotk8mkX375Rb179+YuCXAK3oNwNt6DcLbk5GQ9/vjj1fZp2b/qYoYLCrIu7pt6+JXfh8xOzdaZg6UrZTTuWr7Y4VIR3SKUsT9D2SnZykzMVEjbEGtb0pok63Z1ccKjw2UwGmQxW8qNueDYmmOSJO9g73KFIZdq3O1ijqQ1SXWywMKZxwDsgzsP/3vAewC8B+o3Xv9rw1133WXTuPvuu0/r1q1TSUmJ3NzcdMstt+ibb76pdoyp0KSSwovLgaf+nqqYm2KqHVOYXahl05fJt5GvBr8zuNbzLM4vs0qap1u1fcu2F+cVl2sz5Zsq7VebOI6aS10xzGOYgr2DrY/r03kAV2ExWJQZnqmG6Q1lsHBi+FrGa+U6eK1KucpnMeyvug5eK9eRmpqq//mf/3H2NOAkH374oSIjI62Pvby85OXl5cQZ4WpZeN9Cm8Y5ct/JVfY/4BjsG8BWvHdgK947VeMYoO7inV6FFi1aWLfT09Or7Vu2vey4qvi6+SrA7ZJCDHNtZue6OHh0ngvLT3p5efFPDk7BexDOxnsQzubh4ZgLac4mXVxesHnf5uXaTu05Zd0ObBpYbZyy7af2nipXYHF6z2nrdlDToCpjuHu5y7eRr3LTc3V67+lybcX5xTp79GyN5lI2x6m9p6rp6bqceQzAPrjz8L8HvAfAe6B+4/W/Nti6L/Tll19q/Pjx2rZtm2JiYjRr1iw1bFh9IfC6l9Zp/cvrrY/PGSuuOHeplc+u1PnU8xoxf4R8Gvpctv+lyq4EUVJUUk3P8u0evuWPT8quSmFrHEfNpa7wNdbf8wCuwmwwyyijjGajjBajs6eDavBauQ5eq1Lf3fudU/OPWjKqRv3YX3UdvFauw9PT09lTgBM1aNBAjRo1cvY04ARu5upvMlAVR+47cS6ofmHfALbivQNb8d6pGscAdRfv9Cp06tTJun3ixIlq+6akpEiSjEaj2rVrd0XnBQAAgPrtwOIDkiR3b3d1Hd+1XFvWsSzrtl+4X7VxyraXHVfbOP7h/spNz1VhdqHyz+bLp0HpRWHnks/JYrZY+9R0LueOXf4iNAAAAOBKCw8P1/Lly2s1ps9f+qj3U72tj5OTk/Ve5/eq7H9843HFfxKv1re1VudRnW2ap2fAxZM3pgJTNT3LrzBRdpwkeQVcvBDjcnHKrnZRNo6tcymbGwAAAAAAAAAAwNkosKjCDTfcoICAAJ0/f147duyosp/ZbNbOnTslSb1795aPT+3vMgYAqD9yc3NtGpeenq6pU6cqPj5ePXr00IwZMxQeHl7rOH5+1V8oDeDalnsqVwd/OChJ6v10bwVcV/5uqEXni6zb7t7V7+qXvbts2XGSVHi+sMZxyt7ptuh8kbXAwta5lM0NAAAAuBJ3L3e5e13c9/Xwr3plhpKiEi2ZvERunm7q//f+ysvIq9Cn4FyBdbs4r7hcH68gL7l5uCm4RbD1e7np1X/mULa97LgLj1O2pFj7BTapehW6nPSc0jkEeln3/yUpqFmQDEaDLGaLtU9N5hLUoupV8wAAAAAAAAAAAK42Ciyq4OXlpbvuuktffvmltm7dqpycHPn7V7zz7pYtW5STU3qyaOTIkVd7mgAAF1PZ/5LaWrlypaKiomwaa7FY7M4PoGZMhSaVFJZYHxfnFFfTu2ZWPrNSpgKTIrpHqO8LfSu0l70LrJtn9csRl20vzis/t7J3pLU1jqPmAgCAq8vPz1dubm6tl0yuK0XWFJkDlTv/+3mdOXhGkjQzZuZl+29+e7M2v73Z+vihtQ+pRb8WCusUZv1e9onsamNkp1xsD+sYVq6tUadG1u1zJ84pontEpTFMhSblnS4t9GjUsVG5Ng8fDzVo1UCZhzPtmgsAAAAAAAAAAIAz1dsCiz179mjEiBHKy8vT/Pnz1bdvxQvU/vznP2vBggXKz8/X/PnzNWXKlAp9Pv30U0mlS8ZPmjTpis8bAAAAriHu9Titf3m99fE54zm74u2at0s75+yUX5if7vv2vnJ3xr2g7EoQJUUlFdrLKtvu4Vv+zrplV6WwNY6j5gIAcG1cXC/dcccddsdw5SJrisyByvk39teDKx+stk/azjStfHqlJKnLg10UPS7a2hYeXfo3MbBJoELahujMoTNK25FWbbyTCSdLx0QGqmGbhuXaWg5oqbVaW5p3R5ra3d2u0hjpO9NlMVusYy7VYkALZR7OVEFWgbKOZym4eXC1c6kqDgAAAFwXnwUAAAAAV9eV3gc3mUzV3lCMfXDURfW2wOK1115TYmKipNJCis2bN1fo06lTJz3zzDN688039cILL2jgwIFq1aqVtX3FihWaPXu2JOmjjz7ijwQA4LIurHpUW8OHD9eaNWtUUlIiNzc3DRgwQIsXL3bw7AA4Up+/9FHvp3pbHycnJ+u9zu/ZFOv4huNaMnmJvAK9NHrZaAW3CK60n2eAp3XbVGCqtM8FZVeYKDtOkrwCvGocp+xqF2Xj2DqXsrkB1A2cVK/fuLgeACrn7u2uVgNbVdvH6G60bjdo1aDK/h1GdtDG1zYq61iWzh49qwatGlTok52arYwDGZKk9ve2l8FgKNce2StSgZGByk7JVtLqJPV7sV+luY6uOlou76U6juyohE8SJElJq5PUbWK3SuMkrU6SJDXu2lgNWzestA8AAABcE58FAAAAAFcX++CA47l0gcW8efOs27t27bJur1y5UikpKZJKV5YYNGhQhbFms9m6Xd0v9z/+8Q+dOXNGn376qW688UY98sgjatGiheLj4/XFF1/IaDTq3Xff1ciRIx3xlAAAdZytF/jNnTtX48eP17Zt2xQTE6NZs2ZxsSBqjQtcry53L/dyq0x4+Nu2MkPqr6laMGyB3DzdNPbnsbqux3VV9i1beJGbXv3rXbb90oKN4BbBStmSYu0X2CSwyjg56aWFY16BXvJp4GP9flCzIBmMBlnMFmufmswlqEVQtX0BuB4+0EN9t2zZMsXGxlZ6R5/q1JUia4rMgSuv5//01NYPtqoop0gJnybo1n/cWqHP9s+2S5bSwo7YP8VWaDcYDOrzfB8te3SZkuOSlXEgQ6HtQsv1MZvM2jFrhySpzZ1t1Di6cYU4rQa2UpOeTZS6NVUJnyZUWmBxfMNxnTl0RpJ0819vtuUpAwAAAACAMjgPDAAA4FguXWDx4IOVL6H+j3/8w7p9yy23VFpg8de//lUJCQnKz8/Xm2++WWUOo9GomTNnavjw4fr444/1+eef6+zZs2rcuLEeeOABPf744+revbv9TwaoJ+r7QV19f/6wXXh4uJYvX+7sacDFcYGr6/k9/nfNGzJPFotFD654UJG9IqvtH9YpzLqdfSK72r7ZKRfbwzqGlWtr1KmRdfvciXOK6B5RaQxToUl5p/NKx3RsVK7Nw8dDDVo1UObhTLvmAgBwbVxcL/n4+MjPz6/WBRaOKrJ21ePQulJkXt2S2dVx9s8frsUvzE+D3h6kpdOWast7W9RueDs1iWlibU/bmaZNb22SJPX/e38FRlZeQN1jcg/tmb9HyXHJWjJ5icauGCsPn4uF4uteWqfMxEx5B3tryHtDqpzPnf+5U5/3+Vwpv6To13/9qhsfu9HaVpBVoGXTl0mS2g5tqw73VlwFAwAAAPZx9nEgnwUAwNXHeWAAqN+u9D64yWTS5s2bbbqhGOCqXPqdbs/OWZcuXZSYmFjj/nfccYfuuOMOm/MBknM/zDKZTDbldrT6flBX358/F5YAQM2d3H5ScwfNldlk1tifx162uEKSApsEKqRtiM4cOqO0HWnVx084WTomMlAN2zQs19ZyQEut1VpJUtqONLW7u12lMdJ3pstitljHXKrFgBbKPJypgqwCZR3PUnDz4GrnUlUcwJWx/8NJdWe/B2zl7Pegs4sLJOcfizuqyNpVj0PrSpG5Iz5PdOXPAVB76bvSlb4rXZJ0ev/pct/fNa90FWe/cD9FDSr/nrhh6g3KSc/Rhlc2aHb/2eo+qbsadWykjAMZSpiZoOLcYvV+urdin664esUFRnej7l98v+YPna/kuGR90uMTdZ3QVZ5+nkpclqjEpYnyDfXVyEUjFdImpMo4Ed0jNPKbkfpuzHda/j/LlbwxWS0GtFD+mXwlzExQ1rEstRzQUiPmj7DnRwUAAIAquOpxoLM/C3DE5wB5eXk25Qbg2gpMBTaNMxvMysjO0Ce/fKKkc0lqGdRSD3d+WEFerPYOAKidK30+zmQy2XxDMcBV8U4HriJnf5i1bNkyl7ywB3UHF5YAzlXfL3B1Jem70jV30FyVFJVo7E9j1TS2aYU+615ep0NLDmnKb1PKfb/DyA7a+NpGZR3L0tmjZ9WgVYMKY7NTs5VxIEOS1P7e9jIYDOXaI3tFKjAyUNkp2UpanaR+L/ardJ5HVx0tl/dSHUd2VMInCZKkpNVJ6jaxW6VxklYnSZIad22shq0bVtoHcFXs/zj/Antnc/Z7wBFc+eJ6RxyHS/b9DNauXeuQOQCoH/Z/t1/rX15f4fsHFh/QgcUHJEnNb2leocBCkvq92E9Rg6K09cOt2rdon/I+zpNvqK+iBkcpZnqMWva/fDGzb6ivJsZNVPzMeO2au0txr8eppLBEQc2CFPtsrHo90UsBEQGXjdN2aFtN3TlVW97fosSliTr434Py8PNQWKcw9f1bX3V9qKsMRsNl4wAAAKD+uJY+C3D2ZzEAXMvEnyY6JM6ejD16cu2TNo3lPDAAwBZ15WZXwJVAgQVQj1wLF/bU94O6+v78gfrO2cty1/cLXF3FqT2nNOfWOTLlmzRm+Rg169Os0n5ZSVk6GX+ywvd7/k9Pbf1gq4pyipTwaYJu/cetFfps/2y7ZJHcvd0V+6eKd7A1GAzq83wfLXt0mZLjkpVxIEOh7ULL9TGbzNoxa4ckqc2dbdQ4unGFOK0GtlKTnk2UujVVCZ8mVFpgcXzDcZ05dEaSdPNfb670uQKwnbPv3i/Z/v+HD/QAx+A41LmWLVtm05LZjvr5u/L/gfqq30v91O+lfjaPbxrbtNIC7dowuhsVMy1GMdNi7IoT3CJYt71/m257/za74gAAAKB2OA4EgPrH2eeBXfU8OAAAQFUosACuImd+mGUymRQcHGxTfkfioK5+X9zs7AtLAGdz9l2TnH0HaVze6X2nNefWOcrLyFPfv/WVxWzRsXXHKu2bk1b5foVfmJ8GvT1IS6ct1Zb3tqjd8HZqEtPE2p62M02b3tokSer/9/4KjAysNE6PyT20Z/4eJccla8nkJRq7Yqw8fDys7eteWqfMxEx5B3tryHtDqnxOd/7nTn3e53Ol/JKiX//1q2587EZrW0FWgZZNXyap9A63He6tuAoGYC9n7v+ZTCan7/9cC3fvvxZW0XAmZ78HbOXs/I5i63G45Lhj8e3bt9s8B0eo78ehzmbrktmO+vlfulKZrfg/AAA1V2AqsGncucJz+mz3Z0o6l6SWQS31cOeHFeQVZFMsb3dvm8YBAOqG+n4c6Mxz8qmpqbr++uttyg/AdX1+2+c2jTMbzHp719tK/D1RZotZRoNRHUI66KkbnnLwDKtWV1YP4vMnAADgaBRYAFeRMz/MuhYu7rJHfT+oqysXNzv7whIgPz9fubm5tX4POqrICqiOqcCkObfOUe6p0ovBN7yyQRte2WBTrBum3qCc9BxteGWDZvefre6TuqtRx0bKOJChhJkJKs4tVu+neyv26YqrV1xgdDfq/sX3a/7Q+UqOS9YnPT5R1wld5ennqcRliUpcmijfUF+NXDRSIW1CqowT0T1CI78Zqe/GfKfl/7NcyRuT1WJAC+WfyVfCzARlHctSywEtNWL+CJueK3A5zt7/W7t2Lfs/9Zyr7gM7O7+j2DNnRx2Lu6q6chzqqvj5A4DrmvjTRLtj7MnYoyfXPmnz+PlD59s9BwBwVa56s7VrQV05DnHmOXlfX1+bcgNwbbYWOJsNZj3Y/0F98/M3Opp1VFHBUZradSoF0wAAANcACixQr7jqB2qO+jDLVS/sgeM4+w7OtnLU74Cz/wZIrv3Bel1wxx132B3Dnots6/uy3Lb+DkrOL3JxRP68vLxq200FpipXpbBFvxf7KWpQlLZ+uFX7Fu1T3sd58g31VdTgKMVMj1HL/i0vG8M31FcT4yYqfma8ds3dpbjX41RSWKKgZkGKfTZWvZ7opYCIgMvGaTu0rabunKot729R4tJEHfzvQXn4eSisU5j6/q2vuj7UVQajY+6ujGvPtfD/1xU5av/H2XfvvxbU931gV81/LeBngLrgWvg/4Ox9AY7DAQBAfVPT/S+TyVTupkR1Zf/L2Tfb4A7arovPAQA4Q6BvoJ7t9ayMFqOzp2KX+n4eHED9di1cC+Ps4zCgLqLAAleVs0+o8oGaberSh0n1/aDO2b8Da9eutTu/PZz9/CXX/TsAx6jvy3I74ndQsv/38FrN7x3srRctLzo0ZtPYpmoa29SuGEZ3o2KmxShmWoxdcYJbBOu292/Tbe/fZlccuB5n//915v6fyWTS9u3bbcrvKM6+e/+1wNnvQWfvAwOo366F/wMGg/2FtPXx8zgAruvz2z63ady7v72rfWf2yWwxy2gwqkNIBz11w1MOnh1QPxSYCmwad67wnD7b/ZmSziWpZVBLPdz5YQV5BdU6jrPvOu3s4+D6vv91Jc6HX1oMczmu+PkNANjD2dcigfPgAOq3a+FamPp+HAZcCRRY4Kpy9gd6AAd1QP22bNkyxcbG1nolH2cXWdWlQjcAV199P7HgzP0/e1YvuBbw/wcA6jf+DwCwlbMvbK4ps8GswuJCFZgKZLQYnX5h9fRu0zVjxwwdyTqiqOAoTe061ekXaQO2KPt7VRuO/Bsw8aeJNo0ra0/GHj259kmbxs4fOt/u/LCds2+2di2cD+fiKgD1jbP/9vK/33Z8/gQAAK5VFFigXnH2B2pwXXXloK6+38GZvwHw8fGRn59frQssKLJyDFt/ByXn/x46Iv/x48fVsWPHKzRDoGrOPrHgqv9/68r+H9gHBgBnc9V9AQC2c/aFzY7gjAurg7yC9FzP52wai2uLs4uMnF2Y88wXz9gdw9l/A1xdTfe/TCaTNm/ebL0pUV3Z/+JmawAAAACuJle+FgZA1SiwwFXl7BOqfKCG+q6+38GZvwGwFRfZOoY9vzfO/j10RH5fX98rNDvg2sb/Xzhbfd8HBgBnY18A9VWhqbDWF1nXlYurgfrO2UVG3EFZ+vy2z20a9+5v72rfmX0yW8wyGozqENJBT93wlINnd+XVdJ/JZDKVuylRfd//ctR5gCtxPvzSYhgAQHnOvhbpvw/816b8AIC6wZWvhQFQNY6+cVW56glVLqxFfVfffwfq+/MHrgXO/j10dn7AHs4+sWArfu/gbLwHAcC5+DsMV/f0+qftGu/KF1e7yoXNZoNZZxufVYO0BjJajHXmwmqJFRSc/fzru7cnvG39vaoNR/4O2voenN5tumbsmKEjWUcUFRylqV2n2hTLVd+D7H85xpU4H35pMQwAoDxXvRYJAACOw+qPvIw87V24V0d+PqK07WnKSc+RwWiQf7i/mtzYRJ3HdlbboW1lMBgqHZ91LEsftPygRrlipsfojn/dUW0fs8ms+Jnx2j1vtzIOZMhUaFJQsyBdf/f16vV4L/k39q9RrqzjWdry/hYdXnZY506ck6e/p8I6hin6oWhFj4uWwVj583EFHH3DJfCPBAAAALANJxYAAAAAXE3OvrC5pswGs7w8vOTt7i2jxXjV819Jzl5BwdYim6ouLjcbzCosLl0VpiYX7bvq868rRT5lf69q41r4HQzyCtJzPZ+zO46z34MTNMHu/PbIzc21aVx6erqmTp2q+Ph49ejRQzNmzFB4eHit47jq51ecDweAq4+/vQAA4GpY8fQKbfv3NpkKTPJt5KvOYzorpE2ILBaLjq09pn2L9mnvN3vVckBLjVw4Uj4Nfa7ofPIy8jR/6Hylbk1VaLtQ3fTcTfL091Ti0kRtemOTtn+2Xfctuk/N+zavNs6hpYf03ejvVHi+UB3u7aBeT/ZS3pk8JcxM0A8TftCuebt0/+L75RXgdUWfz5VCgQUAAPUIJzYAADXFiQUAAADAdv+85Z9q6NOwVmPqysXVtnLUhc2umr8ucfbF5c7m7CIjZ66eYDaYbcot8TtYl/j71+wul9VZuXKloqKibBprsVjszg8AAAAAgKPsmrdLpgKTmt/SXA/88IC8gy5+3nPj9Bt16MdD+uoPXylpTZIWDFugCRsnVLnyw4B/DFD74e2rzefdoOrPk8wms74e/rVSt6aqaWxTPbjqQXn4eEiSYh6N0ernVyvu9Th9dfdXmvTrJIW0Cak0zsmEk1o4cqFM+SYNeX+Iej3ey9oW82iMvrj5CyWtTtJ3o7/TqCWjqp3vtYoCCwAA6hFObAAAAAAAAFx5Xu5etb4w+lq4ezvqBmevoOCIAgt7OPv526qurJ7w4ZQP7c7v6lz1PQgAAAAAAK4Mo7tRw+cML1dccUHboW3VfVJ3xf9fvE5sPqG93+xVpwc6VRonICJAoe1CbZ5H/Mx4JcclSwZp2Mxh1uKKC/q93E/7Fu5T5uFMrXhqRZXFEUsfXSpTvklNejYpV1whST4NfHTHv+7Q7P6zdejHQ9r37T51uKeDzXN2FgosAAAAAAAAAAAAnMxRF1c78+71ku1374fjOHsFBUdfXG42mHW28Vk1SGsgo8V42TjOfv5AfX8P5uTk2DRu+PDhWrNmjUpKSuTm5qYBAwZo8eLFDp4dAAAAAABXX+OujRXUrOrPWtvf017x/xcvSTq05FCVBRb2sFgsins9TpLU7KZmatShUYU+bh5uih4frbUvrNWhHw8pbWeaGkc3Ltfn6KqjSt2aKknqPrl7pbla9Guhhm0aKjMxUxtf3UiBBa59zj6xAgBwLk5sAAAAAAAA1G3Ovnv9/KHz7c4P53BUkY+jLy43G8zy8ihdFaYmBRa2ctTzdzZnrp5gNpiVpzyb8qPuvAf9/PxsGjd37lyNHz9e27ZtU0xMjGbNmmVzLAAAAAAArhX3LLhHviG+1fYJbh5s3T6XfO6KzCNlS4qyT2RLkloObFllv6hBUVr7wlpJ0r6F+yoUWOxduNe63WpgqyrjtBrYSpmJmUrbkabMw5lq2LqhPdO/6iiwqGecfWJlgibYnR8AYDtnn9jIzc21KX96erqmTp2q+Ph49ejRQzNmzFB4eHitYphMJptyAwAAAAAAALjy6srF5c7mzNUTKLCAPcLDw7V8+XJnTwMAAAAAAIdq2b/qYoYLCrIu3jzfw8+jRnHNJrNMhSZ5+nnWqH/SmiTrduOujavsFx4dLoPRIIvZUm7MBcfWHJMkeQd7lysMuVTjbhdzJK1Jql8FFhs2bFD79u3VqFHFZUIAAEDd4agTG/7+/nbHWLlypaKiomwau3btWrvzA4AtCk2FtV5NjlXkAAAAANjCmXevB+C6KHABAAAAAABwjrNJZ63bzfs2r7Lfqb2n9O3ob5Ucl6zzv5+XpcQiD18PRfaKVOexnRX9YLSM7pWvAHt6z2nrdlDTqq89cfdyl28jX+Wm5+r03tPl2orzi3X2aOlcA5sGVvucyuY4tfdUtX2vRXYVWPTv31/z5s3TqFGjHDUfXGGcWAEAAACuvmfWPWPXeFaRAwAAAFBTzrx7PQAAAAAAV1tubq5N49LT0zV16lTFx8erR48emjFjhsLDw2sdx8/Pz6b8AABccGDxAUmSu7e7uo7vWmW/X/75i0LahujGx25UaPtQlRSW6PiG40qYmaCkNUlK+CRB9313nwIiAiqMzTqWZd32C6/+f5d/uL9y03NVmF2o/LP58mngI0k6l3xOFrPF2qc6ZXOcO3au2r7XIrsKLCwWixYtWqROnTqpc+fOjpoTriBOrAAAnCknJ8emccOHD9eaNWtUUlIiNzc3DRgwQIsXL65VDJPJpO3bt9uUHwAAAAAAoK7j7vUAAACA7fLy8mp9kTcXdwOO4e9f/QWeNbFy5UpFRUXZNNZisdidHwDgGkyFJpUUllgfF50vsjtm7qlcHfzhoCSp99O9FXBdxeKIC9rf014jvhwhd6+Ll/93uLeDuk7oqtn9ZitlS4oWDFugiZsmlusjSYXnC63b7t7Vlw+4+1xsLzpfZC2wKPt8LxfDw8ej0tyuwq4CC0lavHixvv/+e91www2aMmWKHnjgAXbc6yBHnVhZMGyBA2Zju1FLWG0FAJzJ1n2EuXPnavz48dq2bZtiYmI0a9asWscymUw25QYAR3i739sK8Q6p1RhWkQMAAAAAAAAAwDV07NjRrvGufHE3qwcAAID6Iu71OK1/eb318TnZvzLDymdWylRgUkT3CPV9oW+lfQIjA/V40uMKaBIgNw+3Cu0R3SLU9299tfLplToZf1K/zfhNvR7vVa6PKf/itXNunhVjlFW2vTiv+OJ2fnGlfWoTw1XYXWDx4YcfqqSkRJ999pkmT56sJ598UqNGjdLkyZN1ww03OGKOAACgngsPD9fy5cudPQ0AsJmXu1etV4BjFTkAAAAAAAAAAHCtY/UAOFtOTo5N44YPH641a9aopKREbm5uGjBggBYvXuzg2QEA6pI+f+mj3k/1tj5OTU3Vex3esznernm7tHPOTvmF+em+b++rsOrEBUZ3o4JbBFcbq9uEblr5zErJIu34fEeFAouyq1KUFJVcOrycsu0evhdXoii7KoWtMVyF3QUWDRs21OjRo/X4449ry5YtmjlzpubPn69PP/1UnTt31pQpUzRmzBgFBQU5Yr4AAAAAUC84ahU5AAAAAAAAAMC16cyhM9r++XYd/umwslOyVZxbLL9wPwU1C1LTm5qq1cBWanVrqyrHn9h8Qr/+61clxyUr91Su/Br5KbJ3pGIejVGLfi1qNAezyaz4mfHaPW+3Mg5kyFRoUlCzIF1/9/Xq9Xgv+Te2/+L5+mDv3r1q3rx5rcZwcTfgGLauYjJ37lyNHz9e27ZtU0xMjGbNmsWKKACAarl7uZcrgvDM9rQ51vENx7Vk8hJ5BXpp9LLRly2guByfhj5q0KqBzh45q/Td6SrKKZKn/8X5eQV4WbdNBabKQlxsL7PahWeAZ6Xbl4tRdrWLsrldhV0FFklJSWrUqJH1ca9evdSrVy998MEH1iKLxx57TM8884zuvfdeTZ48WX369LF70gAAAAAAAAAAAAAAAICr2vDqBm34+wb5hfmp4/0dFdI2RKYCk1K3pmrvN3uVvDFZCTMT9GzGs5WOX//Keq1/eb3cvd3VbVI3hXUKU8b+DCXMTNC+hfsU+0ysBr01qNo55GXkaf7Q+UrdmqrQdqG66bmb5OnvqcSlidr0xiZt/2y77lt0n5r3rV3hQH3k6+tb6wuz68rF3aweAFcVHh6u5cuXO3saAIB6KPXXVC0YtkBunm4a+/NYXdfjOofE9Qvz09kjZyWLlJOeo4b+Da1twS2ClbIlRZKUm56rwCaBVcbJSS/dv/MK9JJPAx/r94OaBclgNMhitlj7VCU3PffiuBaut0iDXQUWVVVe+/v7a8qUKZoyZYp27typTz/9VF9++aXmzZuntm3basqUKRo3bpxCQkLsSQ8AAAAAAAAAVcrNzb18p0qkp6dr6tSpio+PV48ePTRjxgyFh4fXKobJVP2dewAAAAAA9dfK51Zq81ub1emBTrrrs7vk4etRrr3LuC6af8f8Ksf/NuM3rXtxndy93TVuzThF9oy8OPbBLvri5i+0+e3N8gvzU+zTsZXGMJvM+nr410rdmqqmsU314KoH5eFTOo+YR2O0+vnVins9Tl/d/ZUm/TpJIW24xsfR6srF3aweAAAAUHO/x/+ueUPmyWKx6MEVDyqyV+TlB9WQxWyxbhvdjOXaGnW6uKDCuRPnFNE9otIYpkKT8k7nlY7p2Khcm4ePhxq0aqDMw5nKPpFd7VyyUy62h3UMq9kTuIYYL9/FPr6+vvLx8ZGHh4csFosOHTqkp59+Wk2aNNGoUaO0evXqKz0FAAAAAAAAAPWQv7+/TV9RUVFauXKlMjMztXLlSkVFRdU6RnBwsLOfPgAAAADgGnT4p8Pa/NZmNerYSH+Y84cKxRWS1HpIa7Ua1Eq+Ib4V2nJP52rlMyslST0f71muuEKSIrpFWIsq1v7v2nIXNpUVPzNeyXHJkkEaNnOYtbjign4v91PD1g1VkFWgFU+tsOWpAtW6UGCSkZGh5cuX1/rmFgAAAK7m5PaTmjtorswms8b+NLbGxRUbXt2gAz8cuGy/nLTSVSUMRoP8wsoXrrYc0NK6nbYjrcoY6TvTrYUaZcdc0GJAC0lSQVaBso5nVRnnZMLJSnO7CrsKLDZs2KDTp09X+H5hYaG+/PJL9evXT+3atdM777xj7RcSEqKnnnpKTzzxhDZs2KDBgwerQ4cOWrp0qT1TcSmFpkIVmApq9ZWem65/bPmHJv88Wf/Y8g+l56bXOkaBqcDZTx0AAAAAAAAAAAAAAKBeslgs+umJnyRJff7cR24eblX2HfvTWD128LEK39/6wVYV5RRJkrpP6l7p2O6TuksGyVRg0uZ3Nlc6j7jX4yRJzW5qpkYdGlXo4+bhpujx0ZKkQz8eUtrOqi/CgnPl5uba9HX06FENHjxYISEhGjx4sI4ePWpTHAAAAFxe+q50zR00VyVFJRqzfIyaxjat0Gfdy+v0yQ2fVPj+2v9dq98+/q3a+OdPnte54+ckSRHdIyoUckf2ilRgZKAkKWl1UpVxjq46at3uMLJDhfaOIztat6uLc6GtcdfGati6YbVzvxa52zO4f//+mjt3rkaPHi1J2r17t2bOnKkvv/xSWVlZkkoPygwGgwYOHKjJkyfrD3/4gzw8Sl+01157TUuWLNGbb76pu+66S19++aUeeOAB+56RC3hm3TN2jd+TsUdPrn3SprHzh1a9hCQAAAAAAABQl+Tk5Ng0bvjw4VqzZo1KSkrk5uamAQMGaPHixbWKYTKZtH37dpvyAwAAAADqpuMbjuvMwTMyGA1qO6ytTTH2LdonSQpuEVzlhUqBkYEKbReqjP0Z2r9ov4a8O0QGg8HanrIlRdknSle2aDmw6rvJRg2K0toX1pbmXbhPjaMb2zRnXFn+/v52x7iwgqctLBaL3fkBAADqslN7TmnOrXNkyjdpzPIxatanWaX9spKydDL+ZKVtJzafUGF2obwCvSpt/23GxQKM7lMqFmIbDAb1eb6Plj26TMlxyco4kKHQdqHl+phNZu2YtUOS1ObONpXu/7ca2EpNejZR6tZUJXyaoG4Tu1Xoc3zDcZ05dEaSdPNfb650vtc6uwosLBaLzp8/r08//VQzZ87Ub7/9Zv2+JEVERGjChAl6+OGH1bJlxQMyNzc3/eEPf9Ddd9+t++67T2+88Ua9KLAAAAAAAAAAcOX5+fldvlMl5s6dq/Hjx2vbtm2KiYnRrFmzah3LZDLZlBsAAAAAUHddKI4Iah4k7yBv6/ctFouKcork6e9ZrhDiUtmp2TpzsPRCpcZdqy92iOgWoYz9GcpOyVZmYqZC2oZY25LWXLzTbHVxwqPDZTAaZDFbyo0BAAAAUDOn953WnFvnKC8jT33/1lcWs0XH1h2rtG9OWtU3Dis6X6QlU5Zo+JzhcvMsvxLekRVHtOnNTZKk5n2bq9uEikUPktRjcg/tmb9HyXHJWjJ5icauGCsPn4srXax7aZ0yEzPlHeytIe8NqXIud/7nTn3e53Ol/JKiX//1q2587EZrW0FWgZZNXyZJaju0rTrcW3EVDFdgV4GFJD366KPWbYvFIqPRqNtvv12TJ0/W0KFD5eZW9XKGFxgMBg0ZMkTLli2zdzou4e1+byvEO+TyHct497d3te/MPpktZhkNRnUI6aCnbnjqCs0QAAAAAAAAqL/Cw8O1fPlyZ08DAAAAAFDHnPyt9G60Qc2CZDFbtP2L7dr+6Xb9/tvvMpvMMrobFdEjQtHjotV9cne5eZS/5ubUnlPW7cCmgdXmKtt+au+pcgUWp/ectm4HNQ2qMoa7l7t8G/kqNz1Xp/eerrIfnMuZK3gCAACgaqYCk+bcOke5p3IlSRte2aANr2yodZzw6HCl70zX3q/36mT8SXV8oKMatGqg4txiHVt3TPu/2y9ZpNa3t9aIL0fI6G6sNI7R3aj7F9+v+UPnKzkuWZ/0+ERdJ3SVp5+nEpclKnFponxDfTVy0UiFtKn6OveI7hEa+c1IfTfmOy3/n+VK3pisFgNaKP9MvhJmJijrWJZaDmipEfNH1Pq5XivsLrC4sFpFs2bNNHHiRE2cOFGRkZG1ilFQUKAffvhB7u52T8cleLl7ydvd+/Idy5jebbpm7JihI1lHFBUcpaldp9Y6BgAAAAAAAAAAAAAAAJwjfXe6JMlitmju4Lk6tvaYosdHq/efesvN003Jm5L160e/atn0Zdo1d5dGLRkl31Bf6/isY1nWbb/w6ldaLNtedlxt4/iH+ys3PVeF2YXKP5svnwY+l3mWuNqcuYInAAAAqmYqMFW7KkVNTd0xVSlbU3Tg+wM6semEEj5JUP7ZfLl5uMm/sb86j+6sLg92UeshrS8byzfUVxPjJip+Zrx2zd2luNfjVFJYoqBmQYp9Nla9nuilgIiAy8ZpO7Stpu6cqi3vb1Hi0kQd/O9Befh5KKxTmPr+ra+6PtRVBmPVq/Nd6+yuaOjfv7+eeeYZDRkypNplCquSnJystm3bqqioSN26Vb4kCaQgryA91/M5Z08DAAAAAAAAAAAAAHCNWjBsQY36mQ1mZUZkKvXdVBktld/Z0hajloxyWCzgWmcqNKmksMT6uOh8UbX9i/OKVZxbLElK3pgsSbr3m3vVcWRHa5/r77peHe7toFl9ZyllS4oWPbBID6580Ho9Ttkc7t7VX/Lj4eNR5dwKzxfWOI67z8X2ovNFFFjUIazgCQAAcGV5B3vrRcuLDokV2TNSkT1rtwBCVYzuRsVMi1HMtBi74gS3CNZt79+m296/zSHzupbYXWDx8MMP67bbbP/BNGjQQB988IEkqXXry1fOAAAAAAAAAAAAAAAAAM4U93qc1r+83vr4nM5V278wu7Dc49a3ty5XXHFBk5gmuuHRG7Tl3S1KWp2kQ0sO6fq7rpckFecXW/u5ebpVm69se3Fecbk2U77JIXEAAAAAoC6yq8Diiy++UGxsrF0TCAgI0COPPGJXDAAAAAAAAAAAAAAAAOBq6fOXPur9VG/r49TUVL3X4b0q+5tLzOUedxjZocq+nR7opC3vbpEk7Zq3y1pgUXZVipKikkrHVtbu4etRrq3sqhT2xAEAAACAusiuAouHHnqoRv22b9+uVq1aKSgoyJ50AAAAAAAAAAAAAAAAgNO5e7nL3eviZTee2Z7V9vcK8Cr3OLxzeJV9w7uESwZJFin119SLOQIu5jAVmCoZeVHZ1S7Kjrt0LpeLU3a1i0vjAAAAAEBdZLRnsMViUZcuXdSwYUM1bNhQrVq1qrTfW2+9pSZNmujFF19USUn1le8AAAAAAAAAAAAAAABAXeLp7yk3TzfrY+8G3lX2dfdyl6d/aTFD7qlc6/eDWwRbt3PTcy8dVk7Z9rLjahsnJz1HkuQV6CWfBj7V9gUAAACAusCuFSxWrlypPXv2SJIaNWqkgQMHVtqva9euWrJkiV599VUdPHhQX331lT1pAQAAAAAAAAAAAAAAylkwbIFT849aMsqp+XFtMxgNCm0fqvSd6ZIkc7G5+gGWi+MuCOsUZt3OPpFd7fDslIvtYR3DyrU16tTIun3uxDlFdI+oNIap0KS803mlYzo2qrQPAAAAANQ1dq1g8d///leSNH36dJ04cUKffPJJpf2ee+45nTx5UsOHD9fChQv17bff2pMWAAAAAAAAAAAAAAAAcClNbmxi3c5Jy6myX3FesYpyiyRJAdcFWL8f2CRQIW1DJElpO9KqzXUy4WTpmMhANWzTsFxbywEtrdvVxUnfmS6L2VJhDAAAAADUZXYVWGzdulXdu3fXRx99JE9Pz2r7BgQE6Ouvv1abNm306aef2pMWAAAAAAAAAAAAAAAAcCkd7u1g3U7dllplv5PbT1pXsGh+S/PyMUaWxsg6lqWzR89WOj47NVsZBzIkSe3vbS+DwVCuPbJXpAIjAyVJSauTqpzH0VVHK+QFAAAAgLrO3Z7Bhw8f1lNPPVXj/m5ubnrggQf0n//8x560AAAAAAAAAAAAAAAA15QFwxY4PKbZYFZmRKZS302V0XL5e2iOWjLK4XOA47Qa2Erh0eFK35mu3fN2K/bp2ArFD5K0a+4u63bMtJhybT3/p6e2frBVRTlFSvg0Qbf+49YK47d/tl2ySO7e7or9U2yFdoPBoD7P99GyR5cpOS5ZGQcyFNoutFwfs8msHbN2SJLa3NlGjaMb2/KUAQAArqjc3FybxqWnp2vq1KmKj49Xjx49NGPGDIWHh9c6jp+fn035AVzb7FrBIjc3V02aNLl8xzKaNWumc+fO2ZMWAAAAAAAAAAAAAAAAcCkGo0F3/udOuXm6KX1Xujb8fUOFPkdWHCktkJDU68leiugeUa7dL8xPg94eJEna8t6WCithpO1M06a3NkmS+v+9v3Wlikv1mNxDzfo0kyzSkslLVJxfXK593UvrlJmYKe9gbw15b4htTxgAAOAK8/f3t+krKipKK1euVGZmplauXKmoqCib4gCom+xawaJBgwZKSUmp1ZjU1FQFBwfbkxYAAAAAAAAAAAAAAABwOU1jm+rer+/V4nGLte7FdUremKy2d7WVu7e7Tmw6oV3zdslSYlHPx3taCykudcPUG5STnqMNr2zQ7P6z1X1SdzXq2EgZBzKUMDNBxbnF6v10b8U+XXH1iguM7kbdv/h+zR86X8lxyfqkxyfqOqGrPP08lbgsUYlLE+Ub6quRi0YqpE3IlfpxAAAAAMA1x64Ci+joaM2ePVvPPPOMfHx8Lts/Pz9fs2fPVnR0tD1pAQAAAAAAAAAAAAAAAJfU7g/tNH3fdG35YIsOLzusNc+vkbnErICIAEU/GK0bHr1BTWKaVBuj34v9FDUoSls/3Kp9i/Yp7+M8+Yb6KmpwlGKmx6hl/5aXnYdvqK8mxk1U/Mx47Zq7S3Gvx6mksERBzYIU+2ysej3RSwERAY562gAAAA6Xk5Nj07jhw4drzZo1KikpkZubmwYMGKDFixc7eHYArob0Xenyb+wvvzA/h8W0q8Bi5MiReuSRRzRkyBB9/vnnat26dZV9jxw5oocfflhJSUn685//bE9aAAAAAAAAAAAAAAAAwGUFRgZq8NuDNfjtwTbHaBrbVE1jm9o1D6O7UTHTYhQzLcauOAAAAM7g52fbBdVz587V+PHjtW3bNsXExGjWrFk2xwLgeD9M/EE9HumhyJ6Rl+37zT3f6OzRs2r3h3YaPm+4PHw87M5vV4HFhAkT9OGHH2rTpk1q3769brzxRsXExCgyMlLe3t4qKChQSkqKfvvtN23dulVms1kdO3bUhAkT7J44AAAAAAAAAAAAAAAAAAAAANRGeHi4li9f7uxpAKjCjlk71GpgqxoVWLS+vbWOrjyqA98fUNzrcer/Sn+789tVYOHu7q4lS5ZowIABOnbsmLZs2aItW7ZU2tdisahly5b68ccf5ebmZk9aAAAAAAAAAAAAAAAAAAAAAABQj93+4e2SpG9Hfat9C/c5pMDCaG+AFi1aaPv27XrkkUfk5eUli8VS4cvLy0vTpk1TQkKCmjVrZvekAQAAAAAAAAAAAAAAAAAAAAAAWgxooXPJ5xwSy64VLC4ICgrSxx9/rLfeektxcXE6fPiwzp8/r4CAALVu3Vp9+vRRQECAI1IBAAAAAAAAAAAAAAAAAAAAAIC6ylDzrqZCkw4vPyw3TzeHpHZIgcUFAQEBuv322x0ZEgAAAAAAAAAAAAAAAAAAAAAA1DFbPtiirR9srfD9n5/4WWv+uuay483FZuWeypXZZFbLW1s6ZE4OLbCoiaSkJG3cuFHjxo272qkBAAAAAAAAAAAAAAAAAAAAAMA1oCCrQFnHsip8P/d0rnS65nE8/TzV7+V+DpnTVS+w2Lx5syZMmECBBQAAAAAAAAAAAAAAAAAAAAAA9VTjro3V9aGu5b63Y/YONb+5uRq0alD9YIPk4euhkLYh6nBvBwVcF+CQOTm0wCI3N1fnzp2TyWSqsk9GRoYjUwIAAAAAAAAAAAAAAAAAAAAAABfT7u52and3u3Lf2zF7h3o80kOdR3d2ypzsLrA4efKkXn31VS1ZskSpqamOmBMAAAAAAAAAAAAAAAAAANVaMGyBs6cAAAAAB2txSwv5hfs5Lb9dBRbHjh1T7969derUKVkslhqPMxgM9qQFAAAAAAAAAAAAAAAAAAAAAAB1zENrH3JqfrsKLF588UWlp6crKChId911lzp06KAGDRrIy8uryjG//PKLZs6caU9aAAAAAAAAAAAAAAAAAAAAAAAAHV11VBv/sVEPrbG/OMOuAotVq1apdevW2rx5s0JDQ2uW0N2dAgsAAAAAAAAAAAAAAOqYBcMWOHsKAAAAAACgHspJz9Hx9ccdEsuuAoszZ87oiSeeqHFxhSR16dJFf/vb3+xJCwAAAAAAAAAAAAAAAAAAAAAA6qiSohIlxyXr9P7TKjxXKLPJXGXf9J3pDstrV4FF48aNa1VcIUmdO3dW586d7UkLAAAAAAAAAAAAAAAAAAAAAADqoITPErTq2VUqyCq46rmN9gy+4447tH379lqNOX36tDZs2GBPWgAAAAAAAAAAAAAAAAAAAAAAUMfsX7xfSyYvUf7ZfFkslhp/OYpdK1g8//zz6tOnjx544AHFxsbWaMyKFSs0btw4lZSU2JMaAAAAAAAAAAAAAAAAAAAAAADUIVve3SJJ6jy6s7o93E2NOjSSTwMfuXm6VTlm17xd+v6h7x2S364CC7PZrBkzZmjs2LHq27evhg4dquuvv14BAQEyGitfHCMjI8OelAAAAAAAAAAAAAAAAAAAAHCy3Nxcm8emp6dr6tSpio+PV48ePTRjxgyFh4fXOo6fn5/Nc4D9bH0P8PoDqE76rnS1H95eI+aNqPkggxy2ioVdBRYtWrSQwWCQJM2dO1dz5851yKQAAAAAAAAAAAAAAAAAAABw7fL393dInJUrVyoqKsqmsY66mBa2ccR7gNcfwKUsZota3966VmPaD2+vZknNHJLfrgILybY/TheKMgAAAAAAAAAAAAAAAAAAAAAAACQppG2ITIWmWo3x8PVQcPNgh+S3u8DikUceUa9evWrc/5dfftHMmTPtTQsAAAAAAAAAAAAAAIAyFgxb4NT8o5aMcmp+AABwdeXk5Ng8dvjw4VqzZo1KSkrk5uamAQMGaPHixQ6cHa4GW98DvP4AqtN1Qlcd+O6Abpx+Y43HpGxJUfwn8br787vtzm93gcXNN9+s0aNH1zyhuzsFFgAAAAAAAAAAAAAAAAAAAC7Mz8/P5rFz587V+PHjtW3bNsXExGjWrFl2xYNz2Pqa8foDqE7M9BglrU7S0ulLNejNQfL097zsmMwjmdo5e6fzCyxuuukmhYWF1WpMVFSUxo0bZ09aAAAAAAAAAAAAAAAAAAAAuKjw8HAtX77c2dOAk/D6A6jOhr9vUHh0uLZ/tl275uxS81uaK+T6EHkFeMlgNFQ6Jn1nusPy21VgsXHjxlqP6dWrl3r16mVPWgAAAAAAAAAAAAAAAAAAAAAAUMese2mdDIbSQgqLxaLDyw/r8PLDVy2/XQUWAAAAAAAAAAAAAAAAAAAAAAAAjmKxWCrdrs6Fogx7OazA4uDBg5o/f762bt2qtLQ0zZgxw7pSxUsvvaTRo0erbdu2jkpnlZGRoQ8++ECLFy/WsWPH5Onpqeuvv16jRo3S1KlT5enpaXeOAwcO6D//+Y/WrVunpKQkFRQUqEGDBurcubNGjBihiRMnysfHxwHPBgAAAAAAAAAAAAAAAAAAAACA+mvEvBHqPLpzjfvvmrdL3z/0vUNyG+0NUFxcrEcffVQdO3bUq6++qpUrV2r37t3Ky8uz9nnttdfUoUMHTZ8+XUVFRfamtPr111/VpUsXvfrqq7ruuuv05ptv6vnnn1dOTo4ef/xx9erVS7///rtdOf7973+rS5cu+uijj+Tm5qann35aH330kUaNGqVt27bpscceU9euXXX06FEHPSsAAAAAAAAAAAAAAAAAAAAAAFAjhpqvdHE5dq9gMW7cOH3zzTflJnTp8hovvviivvjiC82YMUPp6elatGiRvWmVnJysoUOH6vTp03riiSf03nvvWdv++Mc/6vbbb9fatWt11113adOmTfLy8qp1jp9//lmPPfaYJGn06NGaPXu23N0v/sieeuopxcTE6NChQxo6dKh27twpDw8Pu58bAAAAAAAAAAAAAAAAAAAAAAD1zbCZwxTZO7JWY6IGRemhtQ85JL9dK1isWLFCX3/9tYKCgvT6669r586dOnjwYIXqjxdeeEH79+/Xgw8+qMWLF+u///2vXZOWpGeeeUanT59Ws2bN9MYbb5Rr8/Ly0syZM+Xm5qb4+Hj961//sinHW2+9JUny8PDQBx98UK64QpKaN2+uF154QZK0f/9+ff/99zblAQAAAAAAAAAAAAAAAAAAAACgvuv+cHc1aNmgVmP8wvzU4pYWDslvV4HF559/Ln9/f/3yyy967rnn1LlzZzVs2LDSvp6envr000/Vtm1bff755/akVWJiohYuXCipdAWNylaniIqKUv/+/SVJb775pkwmU63zbNu2zRorNDS00j433nijdfuXX36pdQ4AAAAAAAAAAAAAAAAAAAC4ntzcXJu+jh49qsGDByskJESDBw/W0aNHbYoDACiVsjVFS6YscUgs98t3qdqWLVs0fvx4XX/99TVL5u6u+++/XzNnzrQnrRYtWmRdJWPgwIFV9hs0aJBWrVql06dPa926ddX2rUxRUZEkycfHp8o+vr6+1m3+WQEAAAAAAAAAAAAAAAAAANQP/v7+dsdYuXKloqKibBp74VpaAKjvMg9navtn2zXsk2F2x7KrwOLUqVPq2rVrrcY0a9ZMZ86csSet1qxZY92uLn+3bt3KjaltgUV0dLR+/fVXHT58WCaTSe7uFX9c+/fvt263adOmVvEBAAAAAAAAAAAAAAAAAAAAW9T0xuAmk0n5+fnKzc2Vu7u70tPTNXXqVMXHx6tHjx6aMWOGwsPDa53fz8+v1mMA4HKObzhe6zEZ+zMclt+uAgsPDw8VFBTUaszJkyfLrfpgiz179kiSAgICFBQUVGW/pk2bWrf37t1b6zzPPvus7r33Xp0/f14fffSRnnzyyXLtJSUlevPNNyWVViGOGTOm1jkAAAAAAAAAAAAAAAAAAIDrqenF7Zey9eL2Sy+S5+J258vJybFp3PDhw7VmzRqVlJTIzc1NAwYM0OLFi2sdhxU0ANRFs/rNksFgcFp+uwosWrZsqWXLlunRRx+tUX+TyaQvv/xSrVu3tjlnYWGh0tLSJOmyOxRl248dO1brXPfcc49mz56t6dOn65lnnlFqaqruu+8+hYWF6cCBA3rllVe0fft2hYaGav78+YqIiKh1DgAAAAAAAAAAAAAAAAAA4HqcfXG7rRf3s3qB49j6M5g7d67Gjx+vbdu2KSYmRrNmzeLnCQBl2FLA5aiiDLsKLO6880698cYb+uijj/THP/6x2r55eXmaNGmSDh48qJdeesnmnOfPn7due3t7V9vXx8en0nG1MW7cOA0ZMkR/+ctf9P777+udd96xtoWHh+vVV1/VxIkTa1VckW/KV47p4o6Nh9FDHm4eNs0PtWMymZw9BacxmUwym831+mcA5+I9CGfjPQhnM5vNzp4CnMiZxwD83XMe/veA9wB4D9RvvP7gGKB+yyvJk5fJy/qY8wDXHovBIossshgsMovf12sZr5Xr4LVyLbxersPVXqv6fAxUn587pHPnzikzM9P62MvLS15eXtWMgKOYDdf+38bKOPLvO39/6jdnF3gUFxfbnb++CgkJ0ZIlS8p9z5bf56ysrBr1M5lM2rJli3r16iV3d3fde++9Wrt2rXUFjf79+2vRokW1zs/foLqP8x1V42dyZd3815vVamCrStssJRYVZhcq42CGDv33kM4ln9OQ94bIt5GvQ3LbVWDx5JNP6t///reeeOIJLViwQGPGjFHLli0lSUlJSdq6dauOHz+uzZs36+uvv9apU6fUoEGDyxZjVCc/P9+67enpWW3fsu15eXk25ZszZ46effZZpaen65577tEf/vAHNWzYUMePH9fnn3+u999/X1lZWXrhhRcUFBRUo5jPrXuu3OPbut+mO264w6b5oXbi4uKcPQWnMZvNSk5OliQZjUYnzwb1Ee9BOBvvQTjbmTNnnD0FOJEzjwHq8z6ws/G/B7wHwHugfuP1B8cA9RvnAa59FlmUH5CvTGXKIOctNY/L47VyHbxWroXXy3W42mtVnz+PLHtxPeqfrl27lnv80EMPafz48U6ZS32TGeGav3uO/Pten//2XguWLVtm07j//d//1fbt22U2m2U0GtWtWzf9/e9/v+w4s9mslJQURUZGymg06o47nPt5A+8/12E2m3X69Gnt3LlTRqNR06ZNU3Z2tg4cOKB27dpp2rRp2r59u7OniWsQ5zuqxjHAldWofSO1uKXFZfv1ea6Pds3bpbV/W6tJWyY5JLddBRahoaH65ptvdNddd2nr1q3aunWrpNLlNaZMmVKur8VikZeXlxYuXKjg4GCbc5ZdlaKoqKjavmXbfX1rX5Hy/vvv68knn5Qk/ec//9G0adPKtU+ZMkWjR4/WP//5T/3www9at26drrvuusvGfbPfm2rg3cD62MPoIY+T3LnqaujTp4+zp+A0FyrlYmNj5e5u168+YBPeg3A23oNwtgsHm6ifnHkMUJ/3gZ2N/z3gPQDeA/Ubrz84BqjfOA9w7bMYLMpUphqmNZTBcu1frFqf8Vq5Dl4r18Lr5Tpc7bWqz59HpqSkOHsKcKIdO3aoadOm1sesYHH1pL6b6uwp2MSRf9/r899eV9alSxc9/PDD+u2333TDDTfos88+U3h4+GXHmUwmbd682fq5Y01XL7iUo1Yv8PPzsyk/rr7KPrO+6667nDkluAjOd1SNY4Ar5/aPbleTG5vUuH+XsV10dNVRbXhtgwa9Ocju/Ha/0wcPHqyNGzdq4sSJ2rt3b5X9OnXqpC+++EI9evSwK19AQIB1u6CgoNq+ZVe7KDuuJlJSUvTss89KKt0JvbS4QpLc3Nw0Y8YMLV26VImJiXr44Ye1fPnyy8b2cfeRv/slS3NZajU92Ki+/3E3Go1yd3ev9z8HOA/vQTgb70E4E1X89ZszjwH4m+dc/O8B7wHwHqjfeP3rN44B6jdfN1/OA1zjzDLLIIMMFoOMFn5fr2W8Vq6D18q18Hq5Dld7rerz8U99fu6QgoKC1LBhQ2dPo15yhb+NlXHk33f+/rimJk2a6KeffrJpbNnPHYOCgmyKMW/ePI0fP17btm1TTEyMZs2aZXMsuA4+s4ateO9Ujp/HlXPj9BtrPabZzc206Y1N10aBhSTFxMRo9+7dWr16tVauXKnDhw8rOztbAQEBatOmjQYNGqRbb73VEank5eWlxo0bKy0tTenp6dX2LdveokWLWuVZuHChiouLJUnDhw+vsl+DBg3Ur18/LV26VD/99JOOHDmiqKioWuUCAAAAAAAAAAAAAAAAAAC4GsLDw2t0M2kAAFxFcW6xslOyHRLLoaUzt956q8MKKarTqVMnpaWl6fz58zp37lyVlZNll17p2LFjrXIcOnTIut28efNq+5Yt3tixYwcFFtewBcMWODX/qCWjnJofAAAAAAAAAAAAAAAAAAAAAOqKkuIS7Zq7S54Bng6Jd9XXJjl9+rT279+vvn372hxjwIABWrVqlaTSgoZbbrml0n4JCQnlxtRG2eXbLZbq1+02m83W7ZKSklrlAQAAAAAAAAAAAAAAAAAAAAAA0vENxy/bp6S4RAVZBcrYn6E9C/Yo40CG2v2hnUPyX/UCixUrVmjcuHF2FSLce++9+utf/yqLxaLVq1dXWWBxoQgjNDRU/fr1q1WOVq1aWbePHDlSbd+y7c2aNatVHgAAAAAAAAAAAAAAAAAAAAAAIM3qN0sGg6HG/S0Wizx8PHTLi5XXFNSW8fJdrj1t2rTRyJEjJUlz585VUVFRhT5Hjx7VmjVrJEnPPfec3N3L15Ls2bNHbdu2VWRkpDZs2FBh/J133ml9YRYuXFjlXNLT07V+/XpJUlhYmGJiYmx7UgAAAAAAAAAAAAAAAAAAAAAA1HMWi6VGXwajQVGDozQhboLCu4Q7JHeNVrD4+eef9fHHH2vy5Mm68847rd8vu8pDTeXm5tZ6TGXefvttrV27VseOHdPzzz+vf/7zn9a2wsJCTZkyRSUlJerRo4cee+yxCuNfe+01JSYmSpL+/Oc/a/PmzeXa27Vrp4cffliffvqp4uPj9dprr+mvf/1ruT6FhYUaP368CgsLrTHd3Nwc8vwAAAAAAAAAAAAAAAAAAAAAAKhvbv7rzWo1sOpaBaO7Ud5B3mrYuqHcvWtUElFjNYo2duxYZWZmatOmTTp9+rT1+8eOHbMpaW2W7KhKs2bNtGTJEg0fPlzvvPOO9uzZo7vuukv5+fmaPXu2du/era5du+q///2vvL29K4w3m83WbYvFUmmOf//738rPz9eXX36pF154QT///LPuvvtuNWzYUMePH9fcuXN19OhRubu76+9//7smTZpk9/MCAAAAAAAAAAAAAAAAAAAAAKC+atS+kVrc0sIpuWtUYBEVFaUzZ84oKiqqQtvNN99cq5Usjh49qri4uJrPsBo9e/bUrl279P7772vx4sV69tln5eHhobZt2+r999/XtGnT5OnpWenYv/71r0pISFB+fr7efPPNSvt4enpq3rx5euSRRzRr1iz98ssveumll5Sfn6+AgABFRUXpT3/6kyZPnqzrr7/eIc8JAAAAAAAAAAAAAAAAdc+sfrN0fP3xy/bz8PPQ8znPV9vnxOYT+vVfvyo5Llm5p3Ll18hPkb0jFfNojFr0a1Gj+ZhNZsXPjNfuebuVcSBDpkKTgpoF6fq7r1evx3vJv7F/jeIAAAAAgCPd8uItCu8S7rT8NSqw+Pnnn7V69WoNGDCgQtsjjzyi0aNH1zjhl19+6bACC0kKDQ3Vq6++qldffbVW47p06aLExMQa9b355pt188032zI9AAAAAAAAAAAAAAAAwGHWv7Je619eL3dvd3Wb1E1hncKUsT9DCTMTtG/hPsU+E6tBbw2qNkZeRp7mD52v1K2pCm0Xqpueu0me/p5KXJqoTW9s0vbPtuu+Rfeped/mV+lZAQAAAECpfi/2c2r+GhVYBAUFacSIEQ5LarFYHBYLAAAAAAAAAAAAAAAAcAXXxVyn4XOGV9vHYDRU2fbbjN+07sV1cvd217g14xTZM9La1uXBLvri5i+0+e3N8gvzU+zTsZXGMJvM+nr410rdmqqmsU314KoH5eHjIUmKeTRGq59frbjX4/TV3V9p0q+TFNImxIZnCgAAAACOk3cmT2ePnFXBuQJ5B3mrQVQD+Yb4XpFcNSqwqIrZbK71mDFjxmjMmDH2pAUAAAAAAAAAAAAAAABcjoevh0Lbhdo0Nvd0rlY+s1KS1PPxnuWKKyQpoluEYp+O1fqX12vt/65Vpwc6KTAysEKc+JnxSo5LlgzSsJnDrMUVF/R7uZ/2LdynzMOZWvHUCo1aMsqm+QIAAACAvXbM3qGtH2xV+s70Cm3h0eHq9UQvRY+LdmhOuwosAAAAAAAAAACAbQqyCnRo6SElrU5S2vY0nU06q6KcInn6eyqkTYhaDmypmGkxCmoWdNlYJzaf0K//+lXJccnKPZUrv0Z+iuwdqZhHY9SiX4sazcdsMit+Zrx2z9utjAMZMhWaFNQsSNfffb16Pd5L/o39axQn63iWtry/RYeXHda5E+fk6e+psI5hin4oWtHjoqu9Gy8AAACAqm39YKuKcookSd0nda+0T/dJ3bX+lfUyFZi0+Z3Nuu2928q1WywWxb0eJ0lqdlMzNerQqEIMNw83RY+P1toX1urQj4eUtjNNjaMbO/jZAAAAAPVDXkae9i7cqyM/H1Ha9jTlpOfIYDTIP9xfTW5sos5jO6vt0LYyGC7/2Xl9OhdQlFukhSMX6sjPRySVHstcKn1nun6Y8IP2fLVH9y26Tx6+HhX62MLuAoukpCSdP39ekuTm5qaOHTtW6PPll18qLCxMgwYNsjcdAAAAAAAAAAAu78TmE5o9YLZKCkskg9R+eHt1GtVJXoFeyjycqZ1zdmrTG5v064e/6u4v7lbH+yp+9n7B+lfWa/3L6+Xu7a5uk7oprFOYMvZnKGFmgvYt3KfYZ2I16K3qP5/Py8jT/KHze1ZBeAABAABJREFUlbo1VaHtQnXTczfJ099TiUsTtemNTdr+2Xbdt+g+Ne/bvNo4h5Ye0nejv1Ph+UJ1uLeDej3ZS3ln8pQwM0E/TPhBu+bt0v2L75dXgJdNPzcAAACgPtu3aJ8kKbhFsBq2blhpn8DIQIW2C1XG/gztX7RfQ94dUu5CrZQtKco+kS1JajmwZZW5ogZFae0La0vzLtxHgQUAAABggxVPr9C2f2+TqcAk30a+6jyms0LahMhisejY2mPat2if9n6zVy0HtNTIhSPl09Cnylj17VzAt6O+1eGfDksqXQkwvHO4AiMD5e7jLlO+Sdkp2Tq155SKcot05Ocj+nbUt3rghwdszleWXQUWeXl56t69u7KzSw+8goKClJmZWaHfjz/+qG+++UZ9+vTRV199pYiICHvSAgAAAAAAAADg0gqzC1VSWCKDm0Fjlo9R1KCocu19X+irL/p+oVO7T2nxg4sV1jlMjdpXvLPsbzN+07oX18nd213j1oxTZM9Ia1uXB7voi5u/0Oa3N8svzE+xT8dWOhezyayvh3+t1K2pahrbVA+uelAePqV3eYp5NEarn1+tuNfj9NXdX2nSr5MU0iak0jgnE05q4ciFMuWbNOT9Ier1eC9rW8yjMfri5i+UtDpJ343+TqOWjKr1zwwAAACoiwrPF8rTz/Oyd3fNTs3WmYNnJEmNu1Zf7BDRLUIZ+zOUnZKtzMRMhbS9uA+ftCbJul1dnPDocBmMBlnMlnJjAAAAANTcrnm7ZCowqfktzfXADw/IO8jb2nbj9Bt16MdD+uoPXylpTZIWDFugCRsnVHpsUN/OBRxcclCHfjykgIgADXxroDrc20HuXhXLHkyFJu1btE+rnl2lQz8e0qEfD6nt0LY25SzLrgKL7777TufOnZMk3XXXXRoxYkSl/caMGaOUlBRt3LhRQ4YM0bZt2+Tlxd2pAAAAgKpYLBZt+/c2rfrzKhXnFuuhtQ9ddim/rGNZ+qDlBzWKHzM9Rnf8645q+7jKkoAAAACAK+s6vmuF4gpJ8g721qC3B+nL275USVGJEj5N0JB3hpTrk3s6VyufWSlJ6vl4z3InVKTSi6pin47V+pfXa+3/rlWnBzopMDKwQq74mfFKjkuWDNKwmcOsJ1Qu6PdyP+1buE+ZhzO14qkVVZ4QWfroUpnyTWrSs0m5EyqS5NPAR3f86w7N7j9bh348pH3f7lOHezpc9ucDAAAA1DXFecVa/8p67Vu0T2ePnFVxXrEMRoNCrg9RmzvbqPeTvRVwXUCFcaf2nLJuBzatuF9fVtn2U3tPlSuwOL3ntHU7qGlQlTHcvdzl28hXuem5Or33dJX9AAAAAFTP6G7U8DnDyxVXXNB2aFt1n9Rd8f8XrxObT2jvN3vV6YFO5frUx3MBO2fvlE8DHz38y8MKalb9cUuXMV3U/Obm+r9u/6cdX+xwSIGF0Z7BP/30kwwGg77++mt9//33GjduXKX9hg4dqo0bN+qdd97Rnj179J///MeetAAAAECdlnkkU7P7zdbyPy5XcW6xU+aQl5Gnz/t8rmWPLlN+Zr5ueu4mDXprkBq0bKBNb2zSx10+1vENxy8b59DSQ5rRZYa2frBV4dHhGvLuEPV8vKfOJp3VDxN+0NzBc1V4vvAqPCMAAADg2uId7K0mPZuow71Vn1i4rsd11u2M/RkV2rd+sFVFOUWSpO6Tulcao/uk7pJBMhWYtPmdzRXaLRaL4l6PkyQ1u6mZGnWouEqGm4ebosdHS5IO/XhIaTvTKvQ5uuqoUremluacXPlcWvRroYZtGkqSNr66sdI+AAAAQF33+7bfFfd6nJrd3Ex3f3G3Rv04SgPfGihLiUW//PMX/avdv3TwvwcrjMs6lmXd9gv3qzZH2fay42obxz+89EZLhdmFyj+bX21fAACcJTc316avo0ePavDgwQoJCdHgwYN19OhRm+IAwOU07tq42iKB9ve0t24fWnKoQnt9PBeQsiVFXSd2rfbnVlZQsyB1ndhVKVtTbMp3KbtWsIiPj9ddd92lkSNH1qj/k08+qWXLlunrr7/Wk08+aU9qAAAAoM4pu2qF0c2oyF6RStlS+x3/Af8YoPbD21fbx7tBxar4C1xpSUAAAADAVUX2itSkLZOq7ePhe/HuUZUtfb1v0T5JUnCLYDVs3bDSGIGRgQptF6qM/Rnav2i/hrw7RAbDxVXkUrakKPtEtiSp5cCWVc4lalCU1r6wtjTvwn1qHN24XPvehXut260GtqoyTquBrZSZmKm0HWnKPJxZ5bwBAACAusovzE8PrX2o3AVNbe9sqxsfu1ELhi3Q0ZVHtXDkQj209iE1jW1q7VN0vsi67e5d/eU+Ze9EW3acpHI3PbpcHHefi+1F54vk08Cn2v4AADiDv7+/3TFWrlypqKiKq8zWhMVisTs/gLrrngX3yDfEt9o+wc2Drdvnks9VaK+P5wLyMvIqLQKpTqP2jZSXkVerMVWxawWL1NRU3XTTTbUaM2jQIO3fv9+etAAAAECdtP7l9Vr+x+Vq1qeZpu2Zpqghtn2AExARoNB2odV+XbjrVGVqsiRgw9YNVZBVoBVPragyTk2WBJRkXRIQAAAAQHmp21Kt2y0GtCjXlp2arTMHz0gqvftVdSK6RZSOSclWZmJmubakNUnW7erihEeHy2A0VBhzwbE1xySVrsxR9mTQpRp3u5ijsjgAAACAqzAVmlSYXWj9urSQoTL3fnWvph+YXumFQu5e7vrDrD/IzctNJUUlWvbYsnLtxfkXV7x283SrNk/Z9uK88itlm/JNDokDAAAA4PJa9m+p8C7h1fYpyCqwbnv4lb9Gp76eC/D096x1sUTemTx5+nvWOldl7FrBoqioSA0b1q6iJDQ0VEVFlz+oBAAAAOobi8WiYZ8OU/eHK19C72rNoaZLAq59Ya11ScBLK9ZrsyRgZmKmNr66UR3u6eDgZwMAAAC4LlOBSWueXyNJCuscVmHZ71N7Tlm3A5sGVhurbPupvacU0vbiKnSn95y2bgc1rXqpbXcvd/k28lVueq5O7z1drq04v1hnj56t0VzK5ji191Q1PQEAAIBrW9zrcVr/8nrr43OqeKfZS/k3rv4O2wHXBaj1ba118IeDStueppPbT1ovkip7M6SSopJq45RtL7synlR+VQp74gAAcK3Iycmxadzw4cO1Zs0alZSUyM3NTQMGDNDixYsdPDsAuLyzSWet2837Ni/XVl/PBYS2C9WeBXsU+6dYa8FHdSxmi/bM36PQdqG1zlUZuwoswsLCtGfPnlqN2b17txo1qt2SHQAAAEB90O+lfuWW53MGV1sSEAAAAKgrTIUmFWQVKP9Mvk5sPqEt723R6X2n1fG+jhr6ydAKK8tlHcuybvuF+1Ubu2x72XG1jeMf7q/c9FwVZhcq/2y+fBr4SCpdstxitlj71HQu545d/gI0AAAA4FrV5y991Pup3tbHqampeq/De3bHve6G63Twh4OSpBObT1gLLDwDLt6J1VRgqnTsBWVXuyg7TpK8ArxqHKfsaheXxgEA4Frh51f9Z1pVmTt3rsaPH69t27YpJiZGs2bNsjkWANjjwOIDkiR3b3d1Hd+1XFt9PRfQ7g/ttPLZlfpu7He68z93yjvYu8q+BecKtHTqUqXvStfAtwbWOldl7Cqw6N27tz7//HM99thjatWq6oumLjh69Ki++OILDRkyxJ60AAAAQJ10JYorzCazTIUmefrV7MRHbZcEtJgtDl0SkAILAAAAuCpToUklhRfv7lqcU1xN74r2LNijHyb8YH0c1CxII74coU6jOlV6rFB0/uJK0e7e1X/UX7Y4o+w4SSo8X1jjOGXvdFt0vsh6UsXWuZTNDQAAALgady93uXtd3P/1zHZMAYJf2MULkXLSLt6RO7hFsHU7Nz232hhl28uOu/A4ZUuKtV9gk6rvPJuTXprfK9DLuv8PAEBdER4eruXLlzt7GgDqudxTudYC695P91bAdQHl2uvruYCYR2O09YOt2vv1XiUuS1TbO9vqupjrFNAkQB4+HjIVmJSdkq3ff/tdiUsTVZhdqIAmAYp5NKbWuSpjV4HFxIkTtXDhQvXu3Vuvv/667r///kor+PLy8vT111/r+eef1/nz5/Xwww/bkxYAAABANU7tPaVvR3+r5Lhknf/9vCwlFnn4eiiyV6Q6j+2s6AejZXQ3VjrW1ZYEBAAAAK4Vca/Haf3L662Pzxlrd0emqCFRenDlgyrKLVJmYqZ2z9+t78Z8p3UvrtNtH9ymNne0Kde/7B1p3Tzdqo1dtr04r3zhR9k70toax1FzAQAAACDrHWElyeh28bP8sE5h1u0LK1FXJTvlYntYx7BybY06NbJunztxThHdIyqNYSo0Ke90XumYjo0q7QMAAADUJ5feaOnSIgZbrHxmpUwFJkV0j1DfF/pWaK+v5wI8fD30wH8f0Jxb56ggq0B7vtqjPV/tqbSvxWKRTwMfjVoyqsJq4Layq8BiyJAhuvfee7Vo0SJNnjxZ06dP1/XXX6/IyEh5e3uroKBAKSkpOnjwoIqKimSxWDRy5EgNHjzYIZMHAAAAUNEv//xFIW1DdONjNyq0fahKCkt0fMNxJcxMUNKaJCV8kqD7vrtPAREBFca62pKAAAAAwLWiz1/6qPdTva2Pk5OT9V7n92o8PiAioNw+eu8/9daq51Zp89ubNX/ofN39xd3q+lBXa3vZkwQlRSWqTtl2D9/yJxfK3onK1jiOmgsAAABQlx1cclDpO9N1819vrnZF67KrVvhHXPyMPbBJoELahujMoTNK25FWba6TCSdLx0QGqmGb8itHtxzQUmu1VpKUtiNN7e5uV2mM9J3p1s/6Ww5oWW0+AAAAoD6ocKMl2Xedy655u7Rzzk75hfnpvm/vK7dC3gX1+VxARLcIPbL9ES2dtlSHfzpcZb82t7fRHf+5Q8HNg23KUxm7Ciwkac6cOTKZTPr+++9VWFio3bt3a/fu3eX6WCylB1zDhw/XnDlz7E0JAAAAXPMurVovzrl6d2Ztf097jfhyRLkDrw73dlDXCV01u99spWxJ0YJhCzRx08QKB2eutiQgAAAAcK1w93Ivt3/t4W9f8YDBYNDANwcqaXWSTiac1NJpS9V6SGv5Ny69wMozwNPa11RgqiqMpPJ3lSo7TpK8ArxqHKfsHa7KxrF1LmVzAwAAAHXd/m/3a+fsneo+qbt1v74yKVtSrNvN+jQr19ZhZAdtfG2jso5l6ezRs2rQqkGF8dmp2co4kCFJan9v+wrFHJG9IhUYGajslGwlrU5Svxf7VTqPo6uOlssLAAAA1HeX3mgpNTVV73Wo+Y2Wyjq+4biWTF4ir0AvjV42WsEtgivtV9/PBQQ3D9aYZWOUeThTR1cd1ZnEMyo6XyTPAE81bN1QrQa2UkibEJvjV8V4+S7V8/b21nfffacFCxYoNjZWRqNRFovF+mU0GhUbG6uvv/5a3377rby8OGECAACAui/u9Ti9EfSG9evj6I+veM7AyEA9nvS47llwT6VV7RHdItT3b6XLCZ6MP6nfZvxWoY+rLQkIAAAA1GUGg0Gdx3SWVLqvvnvBxZsblT3ZkpueW22csu2XnqSpTZyc9NI76XoFelkLrCUpqFmQDEZDuT41mUtQi6Bq+wIAAAB1UeLyxCrbziSesRY2NI1tqrCOYeXae/5PT3n6l17UlPBpQqUxtn+2XbKU3gAp9k+xFdoNBoP6PN9HkpQcl2wtxijLbDJrx6wdkqQ2d7ZR4+jGl39iAAAAQB3n7uUur0Av69elRQw1lfprqhYMWyA3TzeN/XmsrutxXZV9ORdQqmHrhrph6g0a8s4QDftkmIa8M0Qx02KuSHGF5IACiwvuv/9+xcXF6ezZs9q5c6fi4uK0c+dOnT17VnFxcRo5cqSjUgEAAADXvD5/6aM/n/uz9WvazmlXPKfR3ajgFsFy86i6qKHbhG7S/79Z1Y7Pd1Rod8UlAQEAAIC6LOT6iycHTu0+Zd0O63TxQqvsE9nVxshOudh+6QVajTo1sm6fO1H1cuamQpPyTueVjunYqFybh4+H9c659swFAAAAqA9W/2W1zhw6U+H7+Zn5+nbUt7KUWOTh66Hb/3V7hT5+YX4a9PYgSdKW97YodVtqufa0nWna9NYmSVL/v/dXYGRgpXPoMblH6eoYFmnJ5CXlbpwkSeteWqfMxEx5B3tryHtDbHqeAAAAACr6Pf53zRsyTxaLRWN/HqvIXpHV9udcgHNUvK2tnfz9/dW5c2dHhwUAAABciruXe7lVJDz8r43iAZ+GPmrQqoHOHjmr9N3pKsopst7tSnLdJQEBAAAAV5O4PFEevh5qcUuLavsZ3S7eJ8lsMlu3A5sEKqRtiM4cOqO0HWnVxjiZcLJ0TGSgGrZpWK6t5YCWWqu1kqS0HWlqd3e7SmOk70yXxWyxjrlUiwEtlHk4UwVZBco6nqXg5sHVzqWqOAAAAEBd1ahDIxk9jMpNz9WMrjPU6YFOui7mOrl5uiljf4Z2ztmpvNN58gv3071f36uIbhGVxrlh6g3KSc/Rhlc2aHb/2eo+qbsadWykjAMZSpiZoOLcYvV+urdin664esUFRnej7l98v+YPna/kuGR90uMTdZ3QVZ5+nkpclqjEpYnyDfXVyEUjr9gdYQEAAID65uT2k5o7aK7MJnONiiuk+n0u4GzSWRWdL5IkGdwMlRZq7Ppyl/zC/BQ1KMqmHFVxeIHF5axatUr/+Mc/tGbNmqudGgAAAIBK73B19shZyVK6ZF9D/4sHVcEtgpWyJUVS6XJ9gU0qv7uVdPklAS1my1VfEhAAAABwFUunLZWnv6ce3fNotf0yD2dat4Oald9n7jCygza+tlFZx7J09uhZ652jyspOzVbGgQxJUvt728tgMJRrj+wVqcDIQGWnZCtpdZL6vdiv0nkcXXW0XN5LdRzZUQmfJEiSklYnqdvEbpXGSVqdJElq3LWxGrZuWGkfAAAAuK4FwxY4Nf+oJaOcmr86Nz17k6LHRWv/d/t1dOVRHd9wXHu/3quS4hL5NPBReJdwtR3aVt0e7nbZGxL1e7GfogZFaeuHW7Vv0T7lfZwn31BfRQ2OUsz0GLXsf/kLmHxDfTUxbqLiZ8Zr19xdins9TiWFJQpqFqTYZ2PV64leCogIcNTTBwAAAOq19F3pmjtorkqKSjT2p7FqGtu0Qp91L6/ToSWHNOW3KeW+Xx/PBRTnFeuT7p+oMLtQkuQV5KXnMp+r0C/xx0Tt/WavmvVppnu+usdhxzBXvcAiPT1d69evv9ppAQAAAPx/FyrNpfJ3w5UqLgkY0b3yO2TVZEnAzMOZdX5JQAAAAMAeGfszlHUsS8Etgittt1gs2jlnp/Vx22Fty7X3/J+e2vrBVhXlFCnh0wTd+o9bK8TY/tl2ySK5e7sr9k8V72BrMBjU5/k+WvboMiXHJSvjQIZC24WW62M2mbVj1g5JUps726hxdOMKcVoNbKUmPZsodWuqEj5NqPSkyvENx3Xm0BlJ0s1/vbnS5wwAAADUZf6N/RXzaIxiHo2xO1bT2KaVXpRVG0Z3o2KmxShmmv3zAQAAAFC5U3tOac6tc2TKN2nM8jFq1qdZpf2ykrJ0Mv5khe/Xx3MB+7/br4JzBZKk6++6Xu1HtK+0X+cxnZWdkq3jG49r3pB5mrxtsty97C+PqFGEkpIS7d69W506dZK7+8Uhc+bMqXXCzZs313oMAAAAgMvb8OoGhXUOq3IZvwty0kpXlTAYDfIL8yvX5opLAgIAAACuymK2aPGDizVy4Uj5N/av0PbzUz/r922/S5I6jeqkyJ7llwv3C/PToLcHaem0pdry3ha1G95OTWKaWNvTdqZp01ubJEn9/95fgZGVr1DXY3IP7Zm/R8lxyVoyeYnGrhgrDx8Pa/u6l9YpMzFT3sHeGvLekCqfz53/uVOf9/lcKb+k6Nd//aobH7vR2laQVaBl05dJktoObasO91a88xUAAAAAAAAAAHXJ6X2nNefWOcrLyFPfv/WVxWzRsXXHKu174XqeS9XHcwGHfzosg8Gge766Rx1HdqyyX9uhbdV2aFv98t4vWvGnFdr2n23q/WRvm3KWVaMCixEjRujHH3/UbbfdpqVLl1q/P378+ApLiAAAAABwjrX/u1ZRQ6KqLbA4f/K8zh0/J0mK6B4hD1+Pcu2utiQgAAAA4KoaRzfWuePnlByXrA+jPlTHBzoqtF2ofEN8dS75nPZ+s1cZ+0uX844eF62hnwytNM4NU29QTnqONryyQbP7z1b3Sd3VqGMjZRzIUMLMBBXnFqv3070V+3TFO1ZdYHQ36v7F92v+0PlKjkvWJz0+UdcJXeXp56nEZYlKXJoo31BfjVw0UiFtQqqME9E9QiO/Ganvxnyn5f+zXMkbk9ViQAvln8lXwswEZR3LUssBLTVi/gj7fngAAAAAAAAAAFzjTAUmzbl1jnJP5UqSNryyQRte2WBTrPp2LuBk/Eldf9f11RZXlNX7yd46vOyw9n699+oVWKxfv14Wi0WbNm2q0GaxWGqdlKIMAAAA4Mo4sfmECrML5RXoVWn7bzN+s253n9K9QrurLQkIAAAAuKoHfnhAp/ac0v7F+5W8MVlHVx7VngV7ZC42yzPAUw1aNlDMYzGKHhdd7k5Ulen3Yj9FDYrS1g+3at+ifcr7OE++ob6KGhylmOkxatn/8qvF+Yb6amLcRMXPjNeuubsU93qcSgpLFNQsSLHPxqrXE70UEBFw2Thth7bV1J1TteX9LUpcmqiD/z0oDz8PhXUKU9+/9VXXh7rKYOQcAQAAAAAAAACgbjMVmKpclcIW9elcQHZqtro9XPnNXKvSalArbXxto805y6pRgcU///lPffjhh3rssccqtL3//vu6++67a5xw8eLF+tOf/lTzGQIAAACosaLzRVoyZYmGzxkuN0+3cm1HVhzRpjdLi6ab922ubhMqPxBxpSUBAQAAAFcW1ilMYZ3CHBKraWxTNY1talcMo7tRMdNiFDMtxq44wS2Cddv7t+m292+zKw4AAAAAAAAAAK7KO9hbL1pedGjM+nIuoKSoRD4NfWo1xjfUVyVFJQ7JX6MCizFjxmjw4MGSpJKSErm5XbxQKzQ0VM2bN69xwkaNGtVyigAAAED9sWveLut2+q506/aRlUeUnZItSfIL91PUoKgKY8Ojw5W+M117v96rk/En1fGBjmrQqoGKc4t1bN0x7f9uv2SRWt/eWiO+HCGju7HSObjSkoAAAAAAAAAAAAAAAAAA6g6/MD+d2nOqVmPSd6fLt5GvQ/LXqMDi7bff1ssvvyxJ2r17tzp0KL277IsvvqguXbrUKmGXLl30t7/9rZbTBAAAAOqHxQ8urvT7cf+Is243v6V5pQUWU3dMVcrWFB34/oBObDqhhE8SlH82X24ebvJv7K/Oozury4Nd1HpI68vOw1WWBAQAAAAAAAAAAAAAAABQdzTt3VTbP9+uGx+7UQ1aNbhs/7NHz2rHFztqdE1UTdSowGLVqlXy9/fXG2+8oZYtW1q//+KLtV+2pHPnzurcuXOtxwEAAAD1gb1LA0b2jFRkz0iHzMUVlgQEAAAAAAAAAAAAAAAAUHd0ndhVexfu1We9P9Otr9+qjvd3lKefZ4V+xXnF2vP1Hq15fo2Kzhep28PdHJK/RgUWhw8f1h//+EdNmzat3Pfd3Nw0d+5cjR49usYJT58+rf3796tv3761mykAAAAAAAAAAAAAAAAAALBaMGyBU/OPWjLKqfkBAEDd03pIa3W4t4P2LdqnJZOXaNn0ZQq5PkSBkYFy93aXqcCk7JRsnTl4RiVFJbJYLOo4sqOiBkc5JH+NCizOnDmjVq1aVfi+xWKpdcIVK1Zo3LhxKikpqfVYAAAAAAAAAAAAAAAAAAAAAABQdw2fM1xmk1kHvj8gU6FJp3af0qndp8r1uVDL0H54e/1hzh8clrtGBRb+/v46fPiww5ICAAAAAAAAAAAAAAAAAAAAAABcyt3bXfd/d7/2fL1Hv370q1K3pspcYra2G92MiuwZqZ6P91THkR0dm7smnaKjo/Xvf/9bPXv21IABAxQQEGBtMxgMDp0QAAAAAAAAAAAAAAAAAAAAAACo3zrd30md7u+kopwinU06q6LzRfIM8FSDlg3k6e95RXLWqMBi0qRJWrdunUaMGFGhbezYsRo7dqzDJwYAAAAAAAAAAAAAAAAAAAAAAOo3T39PhXcOvyq5jDXpNHr0aP3xj3+UJFksFuvXpY9r+gUAAAAAAAAAAAAAAAAAAAAAAHAtqdEKFpL0wQcfaNq0aVqzZo3OnDkjs9msl19+WcOHD1eXLl1qnHDXrl36/vvvbZkrAAAAAAAAAAAAAAAAAAAAAADAFVHjAgtJateundq1a2d9/PLLL+uee+7R6NGjaxzjyy+/pMACAAAAAAAAAAAAAAAAAAAAAABcU4w16bR48WINGDBAt956q44fP279fvPmzeXv71+rhP7+/mrWrFntZgkAAAAAAAAAAAAAAAAAAAAAAHAF1ajAYsGCBVq3bp1yc3Pl4eFh/X5SUpLuuuuuWiW8++67lZSUVLtZAgAAAAAAAAAAAAAAAAAAAAAAXEE1KrBISEjQ8OHDtWXLFl133XXW70+cOFFbt269YpMDAAAAAAAAAAAAAAAAAAAAAAC4GmpUYHHy5EnddtttFb4/a9YsHTlypFYJf/jhB7Vq1apWYwAAAAAAAAAAAAAAAAAAAAAAAK6kGhVYSFJ2drZDEubk5Oj48eMOiQUAAAAAAAAAAAAAAAAAAAAAAOAINSqwaNmypb788ksVFRVd6fkAAAAAAAAAAAAAAAAAAAAAAABcde416XTnnXfq7bffVvPmzRUbG6ugoCBr2yeffKJVq1bVOOHRo0drP0sAAAAAAAAAAAAAAAAAAAAAAIBLHF11VBv/sVEPrXnI7lg1KrD4y1/+okWLFikpKUnff/99ubaNGzdq48aNNU5osVhkMBhqNUkAAAAAAAAAAAAAAAAAAAAAAIBL5aTn6Pj64w6JVaMCi+DgYP366696++23tWbNGp05c0Zms1nHjx9XSEiI/Pz8apwwNzdXZ86csXnCAAAAAAAAAAAAAAAAAAAAAACg7iopKlFyXLJO7z+twnOFMpvMVfZN35nusLw1KrCQpJCQEL3xxhvlvmc0GvX+++9r9OjRNU44b948PfSQ/UtvAAAAAAAAAAAAAAAAAAAAAACAuiXhswStenaVCrIKrnruGhdYOIrBYJDFYrnaaQEAAAAAAAAAAAAAAAAAAAAAwDVs/+L9WjJ5Sa3HGQwGh+S3q8Bi7dq1at++fa3GDBo0SGvXrrUnLQAAAAAAAAAAAAAAAAAAAAAAqGO2vLtFktR5dGd1e7ibGnVoJJ8GPnLzdKtyzK55u/T9Q987JL9dBRa33HJLrceEhYUpLCzMnrQAAAAAAAAAAAAAAAAAAAAAAKCOSd+VrvbD22vEvBE1H2SQLBaLQ/LbVWBxqcLCQm3fvl1paWmKjY21FlLk5eXJ19fXkakAAAAAAAAAAAAAAAAAAAAAAEAdYjFb1Pr21rUa0354ezVLauaQ/EZHBDly5IjGjBmjoKAg3XTTTbrnnnu0Z88ea3vjxo01duxYHT161BHpAAAAAAAAAAAAAAAAAAAAAABAHRPSNkSmQlOtxnj4eii4ebBD8ttdYLFu3Tp1795dX331lYqKiipdWsPNzU3z589Xt27dtHr1antTAgAAAAAAAAAAAAAAAAAAAACAOqbrhK468N2BWo1J2ZKiHyb+4JD8dhVYZGZm6p577tH58+cVHBys4cOHa9KkSRX6/f777/q///s/mc1mjRw5UmlpafakBQAAAAAAAAAAAAAAAAAAAAAAdUzM9Bh5BXpp6fSlKsopqtGYzCOZ2jl7p0Pyu9sz+KOPPtLZs2c1bdo0vfPOO/L29lZGRoY+/fTTcv18fHw0efJk9ejRQ7169dJHH32k1157za6JAwAAAAAAAAAAAP+PvTuPq7JO/z/+Puw7KIuoqCC5b6iRhKZoklbaYmq55ZLtzTjt36mZsW2mmqZJy9l0WjTTSiczlxZXlEwtcMeFFEVJEERAdg7cvz/8eYTYOUcReT0fDx7d5/5cn+v6HM8JOXhf9wcAAAAAAAAAcO3Y8uoWterTSrve36W9i/aqw5AO8u3iK2dPZ5nsTFXOSduTZrP6VjVYfP311xowYID+8Y9/WM6ZTFUvWpL69eunCRMmaO3atTRYAAAAAAAAAAAAAAAAAAAAAAAAi80vbbb0JBiGoZ+//lk/f/3zFatvVYNFYmKiXnjhhXrNuf766/Xll19aUxYAAAAAUEdLRy9t1PoTVk1o1PoAAAAAAAAAAAAAAABoWgzDqPK4JjVtFFEfVjVY5ObmytfXt15znJycVFxcbE1ZAAAAAAAAAAAAAAAAAAAAAABwDRqzeIx6TexV5/i9i/fqy6lf2qS2nTWT/fz89PPP9dtu44cffpC/v781ZQEAAAAAAAAAAAAAAAAAAAAAACRT3Xe6qI1VDRYDBgzQ+++/r7Nnz9YpfseOHVq6dKkGDhxoTVkAAAAAAAAAAAAAAAAAAAAAAHCNGb1gtIJuDKrXnNDoUE3dNNUm9a1qsJgxY4bS0tJ00003ad26dRXGTCaT5TgzM1N/+9vfFB0dLbPZrJkzZ1pTFgAAAAAAAAAAAAAAAAAAAAAAXGP6PdBPLUJa1GuOe4C7gocE26S+gzWTR40apbvvvlsrVqzQyJEj5evrq+7du0uSZs+erb/+9a86ceKEEhMTVVZWJsMwdN999+nmm2+2yeIBAAAAAAAAAAAAAAAAAAAAAMC1Le9MngqzC+Xi7SI3f7cKG0LYklUNFpL0ySefaOLEifryyy+VkZGhrVu3ymQy6fvvv7fEGIYhSRo7dqw++ugja0sCAAAAAAAAAAAAAAAAAAAAAIBr2PGY49oxd4eObzquopwiy3lnL2eFDAvRgFkD1GFwB5vWtLM2gYuLi7744gt99tlnGjhwoOzs7GQYhuXLzs5OAwcO1Oeff67PP/9cTk5Otlg3AAAAAAAAAAAAAAAAAAAAAAC4xhhlhlY/slqLhi3S4ZWHVZhdWKFHoTC7UIe+PKSFQxdq9aOrVVZaZrPaVu9gcdG4ceM0btw45eXlKSkpSTk5OfL09FRISIg8PDxsVQYAAAAAAAAAAAAAAAAAAAAAAFyjVj+yWrve3yXDMCRJHq085BXkJQdXB5kLzMo5laPctFxJUvz8eBllhkb/Z7RNatusweIid3d39ezZ09ZpAQAAAAAAAAAAAAAAAAAAAADANezE1hOK/2+8nDycNPD5gQqbGiavIK9KcTmncrR74W5t++s27frvLvWZ0kftB7W3ur6d1RkAAAAAAAAAAAAAAAAAAAAAAACsFD8/Xo6ujpq+ZboGvzi4yuYKSfIK8tLgFwdrWsw0Obg4KO4/cTapb/MdLAAAAAAAAAAAAAAAAADU3XfPfqcf/vaDJGnI7CGKeimq1jknt53Uznk7lRybrLwzeXL3d1fQjUEKfyxcwVHBdapbZi5T3II47Vu8TxmHMmQuMsu7vbe63NlFEbMi5BHoYcWzAgAAAID6O7H1hMKmhykwLLBO8YFhgeozrY8S1yTapD4NFgAAAAAAAAAAAAAAAEAjOR1/Wtvf2V6vOTGvxCjm5Rg5uDio78y+CugZoIyDGYpfEK+EZQmKfDZS0X+NrjFHfka+loxaopQdKfLr6qeBzw+Uk4eTEtck6vs3vteu93dp/PLx6jC4gzVPDwAAAADqJS8tT4F969ZccVHrfq21+4PdNqnf5BssMjIyNHfuXK1YsULHjx+Xk5OTunTpogkTJuiRRx6Rk5OTTeqUlpZq6dKlWrZsmfbs2aPU1FR5eHiodevW6tmzp6KionTnnXcqMLB+LyYAAAAAAAAAAAAAAACapzJzmb6a+ZWMUqPOc37690/aPHuzHFwcdP/G+xU0IMgy1ntKb31404fa9tY2uQe4K/KZyGrrfnb3Z0rZkaJ2ke00Zf0UObo6SpLCHwvXhhc2KPb1WH1656eauXOmfDv5WvdEAQAAAKCOHFwcVJxbXK85xbnFcnCxTWuEnU2yNJKdO3eqd+/eeu2119SmTRu9+eabeuGFF5Sbm6tZs2YpIiJCv/zyi9V1Dh06pPDwcN1///0qLS3Vb37zG/3jH//QE088ocLCQn366ad65JFHtHz5chs8KwAAAAAAAAAAAAAAADQH297eptRdqepyZ5c6xeel52nds+skSQNmDajQXCFJrfu2tjRVbPrjJuWcyqkyT9yCOCXHJksmafSC0ZbmiouiXo5Sy+taqjCrUN899V09nxUAAAAANFyL0BY69MWhes059MUhtQhtYZP6TbbBIjk5WaNGjdLp06f1u9/9Tt99950ef/xxPfPMM/rpp580dOhQ7dq1S3fccYeKiooaXOfo0aMaNmyYfv75Z23atEmrV6/W008/rQceeEAvvfSSEhISFBUVZbsnBgAAAAAAAAAAAAAAgGte5tFMxbwcozbhbXTDb26o05wdc3dY7uTab2a/KmP6zewnmSRzoVnb3t5WadwwDMW+HitJaj+wvfy7+1eKsXe0V59pfSRJR1YfUeqe1DqtDwAAAACs1en2TkqOTda659aprLSsxlijzNC659YpOTZZnUd1tkn9Jttg8eyzzyo9PV3t27fXG2+8UWHM2dlZCxYskL29veLi4jRv3rwG1TAMQ1OmTNHp06f1n//8R0OGDKkU4+joqD/+8Y/y9fWVq6trg+oAAAAAAAAAAAAAAACgeVn90GqVlZRp9ILRsrOv2yU8CcsTJEk+wT5qeV3LKmO8grzk19VPknRw+UEZhlFh/NT2U8o5eWFni5DhIdXWCo0OvVR3WUKd1gcAAAAA1oqYFSFnL2f98PYPmtd5nja8uEGHvjyklB9TdGb/Gf3y0y869OUhbfzDRr3X+T398PYPcvZ21oDfDrBJfQebZLnCEhMTtWzZMknS/fffL2dn50oxoaGhGjp0qNavX68333xTs2bNkoND/Z7u0qVL9cMPP6hTp0667777qo0bNmyYMjIy6vckAAAAAAAAAAAAAAAAYDNLRy9ttNpnC87WKz7+/XglbUzSwOcHKrBPoI5vPl7rnJyUHJ09fKFOYFhgjbGt+7ZWxsEM5ZzKUWZipnw7+1rGkjYmWY5rytOqTyuZ7EwyyowKcwAAAADgcnJt6aqxn4/V0tFLlXU8S9+/8X21sYZhyN7JXuM+HyfXlrbZLOGK7WCxd+9enTlzxia5li9fbumuHz58eLVx0dHRkqT09HRt3ry53nUWLFggSRo9erRMJlP9FwoAAAAAAAAAAAAAAACUk5uaq3XPrlOL0BYaMntIneed2X/puhuvdl41xpYfP3Og4vU66fvTLcfe7byrzeHg7CA3f7cLcw6kVxsHAAAAALYWGh2q6Vuny6+bnwzDqPbLv7u/pm+dro7DO9qstlU7WMyYMUMPP/ywBgyofTuNe+65R8eOHdNdd92lxYsXy9W14R0iGzdutByHhYVVG9e3b98Kc2pqxvi19PR0bdmyRZLUp0+fCmMFBQWys7OrcucMAAAAAAAAAAAAAAAAoDprn1irwnOFGrdsnBxdHes8L+t4luXYvZV7jbHlx8vPq28ej1YeykvLU1FOkQrOFci1hW3uCAsAAAAAtWkb3laP7X9Mx9Yf07H1x5SZmKmi80Vy9nRWi+taKDQ61KaNFRdZtYPFRx99pKNHj9Yp9tZbb1Xnzp315Zdf6vXXX7emrPbv3y9J8vT0lLd39Z307dq1sxwfOHCgXjXi4+NVVlYmSWrfvr2OHTummTNnqlWrVnJzc5OLi4sCAwM1depUJSQkNOBZAAAAAAAAAAAAAAAAoDk5tPKQDv7voMKmhanjzfW7EKj4fLHl2MGl5nuqlm/cKD9PkorOF9U5j4PrpfFf5wEAAACAK6Hj8I4a/sZwjf/feE35borG/2+8ot+MvizNFZKVDRb18e677+rgwYMaP368li1b1uA8RUVFSk1NlSS1atWqxtjy48ePH69XnX379lmOv/32W/Xo0UNbt27Viy++qNWrV+u///2vOnbsqEWLFiksLEwffvhhvfIDAAAAAAAAAAAAAACgaSorLVNpSanlq8xcVuucopwirX18rdz83XTL27fUu2ZJQYnl2N7JvsbY8uMl+SUVxswFZpvkAQAAAICrRV56nk5sOWGTXDW3oV8Gw4YN01dffdXg+efPn7ccu7i41Bjr6nppW8Ly8+rizJkzluM33nhD4eHh2rx5s9zc3Cznp0+frvvuu0/Lli3TzJkzFRISoqioqFpzF5gLlGvOtTx2tHOUo33dt3xE02U2m2sPuoy1y8rKGnUNaN54D6Kx8R5EY7u4Oxqap+b8GaA5f9/l7x7wHgDvgeaN1x98Bmje8kvz5Wx2tjxuTp8BmgrDZMiQIcNkqEz8/3o147VqOnitmhZer6aD1+rqdfbYWZ37+ZzlcbaRXeucdc+t0/mU8xqzZIxcW7rWGv9r5XelKC0urTG2/LijW8WfRcvvSmFNHlySnZ2tzMxMy2NnZ2c5OzvXMAO2UmZqmt8br6Xv7/z+68ri945oKN47aCjeO9Xjz+TqcvS7o/ry/i/1p9I/WZ3L6gYLk8lU59iioiJ9/fXXcnJyanC9goICy3FtecqP5+fn16tOTk5Ohcfz5s2r0FwhSXZ2dpo3b55WrVqlwsJCPf3004qLi6s19/Obn6/weGS/kbrt+tvqtT40TbGxsY1Wu6ysTMnJyZIuvHeBK433IBob70E0trNnzzb2EtCImvNngMb8Gbix8XcPeA+A90DzxusPPgM0b835M0BTYchQgWeBMpUpk+r+b1248nitmg5eq6aF16vp4LW6irWSWgxqYXnoUOggfVJ9+ImtJxQ3P07XjbxOvSb0alBJJ89L18GYC2u+mKv8bhfl50mSs+elC/9ry1N+t4tf58ElYWFhFR5PnTpV06ZNa5S1NDeZrTNrD7oKXUvf35vzvwU1Bn7viIbivYOG4r1TvfINtri21LnBYu7cuZo7d26l87/73e/04osv1jq/pKREZ86ckdls1s0331y/VZZTfleK4uLiGmPLj/+6OaI2paWXOvA7dOigG264ocq4gIAADRs2TGvXrlV8fLwSEhLUvXv3GnO/GfWmWrhc+pDtaOcox9N0+TcHgwYNarTaFzvlIiMj5eBwxTevAXgPotHxHkRju/hhE81Tc/4M0Jg/Azc2/u4B7wHwHmjeeP3BZ4DmrTl/BmgqDJOhTGWqZWpLmYymfTHTtY7XqungtWpaeL2aDl6rpsNUUP3rU1pcqlUPrpK9k72GvjpU+RmVbxJamF1oOS7JL6kQ4+ztLHtHe/kE+1jO5aXl1bie8uPl5118fGr7KUucV1uvavPkpl3YndnZy1muLeq/60ZzsXv3brVr187ymB0srpyUv6c09hIa5Fr6/t6c/y2oMfB7RzQU7x00FO+d6p06daqxl9Dk/fztz/rpXz+p34P91Pn2zpbzcztW7lmoTUleSe1BdVTnd3pWVpaOHz9e6Xx6errS09PrXNDd3V0vv/xyneN/zdPT03JcWFhYQ2TF3S7Kz6tvnZ49e9YY26dPH61du1aStHPnzlobLFwdXOXh4FHxpFGv5aGJauy/XOzs7OTg4NDo60DzxXsQjY33IBoTXfzNW3P+DNDcv+fydw94D4D3QPPG69+88RmgeXOzd2u2nwGaijKVySSTTIZJdgb/v17NeK2aDl6rpoXXq+ngtWo6arpA+vwv53X28IVd7haEL6g117a3tmnbW9ssj6dumqrgqGAF9AywnMs5mVNjjpxTl8YDegRUGPPv6W85zj6Zrdb9WleZw1xkVn76hUYP/x7+VcbgAm9vb7Vs2bKxl9EsNdXvjdfS93d+93Xl8XtHNBTvHTQU752q8edhvRWTV6ggs0Anvz+pZ9OftZzPOp7VoHwmk20aV+v8yoaFhWnq1KkVzi1cuFA33XSTOnbsWONck8kkNzc3de7cWWPHjlWbNm0atlpd6PAODAxUamqq0tLSaowtPx4cHFyvOr6+vpbjFi1a1BAp+fn5WY7PnDlTrzpoXpaOXtpotctMZWr7VNtGqw8AAAAAAAAAAAAAQHPkEeihKeum1BiTuidV655ZJ0nqPaW3+tzfxzLWqk8rSZJXWy/5dvbV2SNnlbo7tcZ8p+NPX5gT5KWWnSpe+B8yLESbtOlC3d2p6npn1ypzpO1Jk1FmWOYAAAAAgC21CG2h/LP5ahFa+Vr9Djd1UIuONV/DX965Y+eUHGub3cXr3GBx55136s4776xwbuHChXr44Yc1ceJEmyymrnr27KnU1FSdP39e2dnZ8vb2rjKu/NYrPXr0qFeN8vElJTVvGWIYl247xV3JAAAAAAAAAAAAAAAAcJGDi4M6Dq/55qV2DpeuN2nRsUW18d3HddfWP29V1vEsnTt2rsoLjnJScpRxKEOS1G1st0p3cQ2KCJJXkJdyTuUoaUOSomZHVVnr2PpjFeoCAAAAgC1N/naykjYkVdnQ3f/h/uo1sVedc+39ZK/NGiys6gYYMmSIWrVqZZOF1MewYcMsx7t37642Lj4+vso5dREeHm75gJmaWnPXf3p6uuXYmt05AAAAAAAAAAAAAAAAgOoM+O0AOXk4SZLi/xtfZcyu93dJxoXGjsinIyuNm0wmDXphkCQpOTbZ0oxRXpm5TLs/2i1J6nR7JwX2CbTRMwAAAACAC1y8XdRtTDe5+LjYJF/5TROsYVWDxaZNm3TzzTfbZCH1MXbsWEvzw4YNG6qNW79+vSTJz89PUVFR9arRtm1bRURESLrQxGE2m6uNjYuLsxwPHjy4XnUAAAAAAAAAAAAAAACAunAPcFf0W9GSpO3vbFfKjykVxlP3pOr7v34vSRr66lB5BXlVmaf/g/3VflB7yZBWPbhKJQUlFcY3v7RZmYmZcvFx0Yh3RlyGZwIAAAAAVZtdNrteu1dIUu9JvTW7bLZN6jvYJEs9rFy5Uk8++aSOHTtWe3A1OnXqpHHjxunzzz/Xxx9/rD/84Q9ycnKqEHPs2DFt3LhRkvT888/LwaHiU92/f7/GjBmj/Px8LVmypMrGiKefflpjx45Vdna2Vq5cqXvuuadSzMmTJxUTEyNJuuOOOxQUFNTg5wUAAAAAAAAAAAAAAIDmIW1vmtL2pkmS0g+mVzi/d/FeSZJ7K3eFRodWmHf9I9crNy1XW17ZooVDF6rfzH7y7+GvjEMZil8Qr5K8Et34zI2KfKby7hUX2TnY6d4V92rJqCVKjk3W/P7zFTY9TE7uTkpcm6jENYly83PTuOXj5NvJ9zI8ewDXiqWjlzZq/QmrJjRqfQAAYHvZydly83eTo6tjrbFfzfxKDi4O6vtAX7Xu29om9a94g0Vubq5OnDhhdZ633npLmzZt0vHjx/XCCy/ob3/7m2WsqKhIDz30kEpLS9W/f3898cQTleb/+c9/VmJioiTp//7v/7Rt27ZKMffcc49GjRql1atX68knn9SAAQMqNFAUFRXpgQceUElJiVq2bKk5c+ZY/bwAAAAAAAAAAAAAAABw7Tv4xUHFvBxT6fyhFYd0aMUhSVKHIR0qNVhIUtTsKIVGh2rHuzuUsDxB+f/Kl5ufm0JvCVX44+EKGRpSa303PzfNiJ2huAVx2vvxXsW+HqvSolJ5t/dW5HORivhdhDxbe1r/RAEAAADIMAz9+I8ftf7/1qskr0RTN01VcFRwjXOyjmdpbsjcOuUPfzxct827rcaYMnOZ4hbEad/ifco4lCFzkVne7b3V5c4uipgVIY9AjzrVyjqRpe1ztuvntT8r+2S2nDycFNAjQH2m9lGf+/vIZGeqU57qzA2Zq7s/vrtOu1iciDmhzKOZipsfp2kx09TuxnZW1Zbq2GBx/vx5bdiwQUOHDpW3t7fl/CuvvFLvgnv27Kn3nKq0b99eq1at0t133623335b+/fv1x133KGCggItXLhQ+/btU1hYmL766iu5uLhUml9WVmY5Ngyj2jqfffaZxowZo2+//VZhYWF64IEH1KVLF6WmpmrRokU6fPiw2rVrp5UrVyokpPYPpwAAAAAAAAAAAAAAAEDUS1GKeimqwfPbRbZTu0jrLh6yc7BT+KPhCn803Ko8AAAAAKqXeTRTX834Sie2WL9JQUPlZ+RryaglStmRIr+ufhr4/EA5eTgpcU2ivn/je+16f5fGLx+vDoM71JjnyJoj+mLiFyo6X6TuY7sr4skI5Z/NV/yCeK2cvlJ7F+/VvSvulbOnc4PXWtO1/b826ZtJ+uXHX/TtU98q5qUYTf52coPrXlSnBosRI0Zox44dCg8P1/bt2y3nX3rpJZlM1nWYWGPAgAHau3ev5syZoxUrVui5556To6OjOnfurDlz5ujRRx+Vk5NTlXNffPFFxcfHq6CgQG+++Wa1Ndzc3PTNN9/o888/18KFC7Vo0SKdPXtWnp6e6tGjhx5++GE99NBDcnd3v1xPEwAAAAAAAAAAAAAAAAAAAADQhJTftcLO3k5BEUE6tf1UvfMM+8swdbu7W40xLi0qb0hwUZm5TJ/d/ZlSdqSoXWQ7TVk/RY6ujpKk8MfCteGFDYp9PVaf3vmpZu6cKd9OvlXmOR1/WsvGLZO5wKwRc0YoYlaEZSz8sXB9eNOHStqQpC8mfqEJqybU+3k2RMvQlmoZ2lI5KTna9tY2m+SsU4NFYmKiDMPQsWPHKo3Vp0PkIls2Zfj5+em1117Ta6+9Vq95vXv3VmJiYp3jx48fr/Hjx9d3eQAAAAAAAAAAAAAAAAAAAACAZibm5RjFvByj0BGhGr1gtHa9v6tBDRaerT3l19WvweuIWxCn5NhkySSNXjDa0lxxUdTLUUpYlqDMnzP13VPfVdscseaxNTIXmNV2QNsKzRWS5NrCVbfNu00Lhy7UkdVHlPC/BHW/p3uD19wQhVmFNslTpwaLjz76SP/5z3/04IMPVhpbvHixJk6cWOeCixcv1tSpU+u+QgAAAAAAAAAAAAAAAAAAAAAAmhDDMDT6v6PV74F+jbqG2NdjJUntB7aXf3f/SjH2jvbqM62PNv1hk46sPqLUPakK7BNYIebY+mNK2ZEiSer3YNXPJzgqWC07tVRmYqa2vra1Tg0WaXvTlLo7tdL5E1tPqMxcVuv80pJSZZ/I1o///FFeQV61xtdFnRosbr/9dt1+++02KWgymRq06wUAAAAAAAAAAAAAAAAAAAAAAE1B1EtRMplMjbqGU9tPKedkjiQpZHhItXGh0aHa9IdNkqSEZQmVGiwOLDtgOe44vGO1eToO76jMxEyl7k5V5s+ZanldyxrXd3DFQW15ZUul8/Hz4xU/P77GueUZhqH+D/evc3xN7KyZ/OGHHyoyMrJecyIjI/Xhhx9aUxYAAAAAAAAAAAAAAAAAAAAAgKvW5WiuKDOXqTivuM7xSRuTLMeBYYHVxrXq00omO1OlORcd33hckuTi4yKfDj7V5gnse6lGVXmqYhhGha+qztX05eLjogGzBijqpag61atNnXawqM7UqVPrPSckJEQhIdV3vwAAAAAAAAAAAAAAAAAAAAAAAOnMgTP638T/KTk2Wed/OS+j1JCjm6OCIoLUa3Iv9ZnSR3YOVe+7kL4/3XLs3c672hoOzg5y83dTXlqe0g+kVxgrKSjRuWPnJEle7bxqXGv5GmcOnKn1uUX8LkJh08IunTCkuR3nauSckepyZ5ca55pMJjm6OcrNz63WOvVhVYNFQ6xcuVJPPvmkjh07dqVLAwAAAAAAAAAAAAAAAAAAAADQZPzwtx/k29lXNzxxg/y6+am0qFQntpxQ/IJ4JW1MUvz8eI3/Yrw8W3tWmpt1PMty7N7KvcY6Hq08lJeWp6KcIhWcK5BrC1dJUnZytowywxJTk/I1so9n1/rcXLxd5OLtUum8m59bjTtlXE5XvMEiNzdXJ06cuNJlAQAAAAAAAAAAAAAAAAAAAABoUrrd001jPhkjB+dLl/53H9tdYdPDtDBqoU5tP6Wlo5dqxvczKsRIUtH5Isuxg0vNrQMOrpfGi88XWxosis8X1zmHo6tjlbXrY+qmqfLv5t+gubZgkwaL06dP6+uvv9bBgweVnZ0ts9lcbSw7VwAAAAAAAAAAAAAAAAAAAAAAmgpzkVmlRaWWx+WbDi4XryAvzUqaJc+2nrJ3tK803rpvaw3+02Cte2adTsed1k///kkRsyIqrrvg0nX99k6Vc5RXfrwkv+TScUFJlTH1yVEfwUOCGzTPVqxusPjjH/+oN998U6WlpbUHSzIMQyaTydqyAAAAAAAAAAAAAAAAAAAAAABcdrGvxyrm5RjL42xlX/aadg528gn2qTGm7/S+WvfsOsmQdn+wu1KDRfldKUqLa77ev/y4o9ulnSjK70rR0ByX276l+/Tl1C/1x+I/Wp3LqgaLBQsW6M9//rPlsYuLi3x8fOTs7FztnLy8PJ09e9aasgAAAAAAAAAAAAAAAAAAAAAAXBGDfj9INz51o+VxSkqK3un+TiOu6ALXlq5q0bGFzh09p7R9aSrOLZaTh5Nl3Nnz0nX95kJzVSkujZfb7cLJ06nK49pylN/tonzty80oM2SUGjbJZVWDxfz582VnZ6c//vGPmj59utq3b1/rnMWLF2vq1KnWlAUAAAAAAAAAAAAAAAAAAAAA4IpwcHaQg/OlS++dcpxqiL6y3APcde7oOcmQctNy1dKjpWXMJ9hHp7afkiTlpeXJq61XtXly03IlSc5eznJt4Wo5793eWyY7k4wywxJTnby0vEvzgr0b9HxWzlhZ7znnjp1rUK2qWNVgcfDgQU2bNk2zZ8+u8xyTySTDsE13CAAAAAAAAAAAAAAAAAAAAAAAzZVRdunafDt7uwpj/j39LcfZJ7PVul/rKnOYi8zKT8+/MKeHf4UxR1dHtejYQpk/ZyrnZE6Na8k5dWk8oEdA3Z7Ar+z+aLdMJlO95hiGUe851bGrPaR6Dg4OioyMrNecSZMmqayszJqyAAAAAAAAAAAAAAAAAAAAAABcs7a8tkWHVh6qNS439cKuEiY7k9wD3CuMhQwLsRyn7k6tNkfanjRLo0b5ORcFDwuWJBVmFSrrRFa1eU7Hn66ydn25+rrKu713lV+ebT3l5OkkwzBkGIacvZzl08FH3u0btmPGr1m1g0XPnj2Vk1NzFwoAAAAAAAAAAAAAAAAAAAAAAKi7TX/cpNARoep6Z9dqY86fPq/sE9mSpNb9WsvRzbHCeFBEkLyCvJRzKkdJG5IUNTuqyjzH1h+zHHcf173SeI9xPRQ/P16SlLQhSX1n9K0yT9KGJElSYFigWl7XsvonV4uRc0aq18ReNcbkpuXq0JeHtGPuDg19Zai6j6287oawageLxx57TJ988okMw6g9+P9bv369hg0bZk1ZAAAAAAAAAAAAAAAAAAAAAACuaSe3nVRRTlG14z/9+yfLcb+H+lUaN5lMGvTCIElScmyyMg5lVIopM5dp90e7JUmdbu+kwD6BlWI6Du+otgPaSpLi/xtf5VpObDmhs0fOSpJuevGmatdsKx6tPHT9w9dr6sapWvfsOqX8mGKTvFY1WEycOFE33nij7rjjDiUlJdVpTlpammJiYqwpCwAAAAAAAAAAAAAAAAAAAADANa34fLFWPbRKpcWllcaOfndU37/5vSSpw+AO6ju96l0l+j/YX+0HtZcMadWDq1RSUFJhfPNLm5WZmCkXHxeNeGdEtWu5/Z+3y8HVQad+OKWd83ZWGCvMKtTax9dKkjqP6mzVbhK/P/979bi3R53jPQI91GdaH8X+JbbBNctzqEvQjBkzahzfvXu3rrvuOnXr1k1dunSRp6en7Oyq7t04evRo/VcJAAAAAAAAAAAAAAAAAAAAAEATsnfxXstx2t40y/HRdUeVcypHkuTeyl2h0aGV5rbq00ppe9J04LMDOh13Wj3u66EWHVuoJK9Exzcf18EvDkqGdN2t12nMJ2Nk51D19ft2Dna6d8W9WjJqiZJjkzW//3yFTQ+Tk7uTEtcmKnFNotz83DRu+Tj5dvKt9rm07tda4z4fpy8mfaGvf/u1krcmK3hYsArOFih+QbyyjmcpZFiIxiwZ09A/LkmSk7tTvef4dPDRT//8qfbAOqhTg8VHH30kk8lUY4xhGEpISNDBgwdrjastFwAAAAAAAAAAAAAAAAAAAAAATdmKKSuqPF9+t4UOQzpU2WDxyO5HdGrHKR368pBOfn9S8fPjVXCuQPaO9vII9FCvib3Ue0pvXTfiulrX4ebnphmxMxS3IE57P96r2NdjVVpUKu/23op8LlIRv4uQZ2vPWvN0HtVZj+x5RNvnbFfimkQd/uqwHN0dFdAzQIP/NFhhU8NksrvyvQKZP2eqKKfIJrnq1GAhSb6+vnJ3d7e6YF5ens6ePWt1HgAAAAAAAAAAAAAAAAAAAAAArlazjdlWzQ8aEKSgAUE2WYudg53CHw1X+KPhVuXxCfbRyDkjNXLOSJusy1ontp7Qj//4Ud7tvW2Sr84NFnPmzNHEiROtLrh48WJNnTrV6jwAAAAAAAAAAAAAAAAAAAAAAODasXLGylpjykrKVJhVqPSD6cpKypIkXf/o9TapX+cGC1sxmUwyDONKlwUAAAAAAAAAAAAAAAAAAAAAAFex3R/tlslkqlPsxb6EdpHtdNOLN9mkfp0aLNatW6eePXvapODdd9+tpKQkm+QCAAAAAAAAAAAAAAAAAAAAAADXDldfVzm5O1U7budgJ2dvZ/l18VPn0Z3VY3wPmezq1pRRmzo1WNx88802KSZJbm5u6tChg83yAQAAAAAAAAAAAAAAAAAAAACAa8PIOSPVa2KvRqlt1yhVAQAAAAAAAAAAAAAAAAAAAAAAriJ12sECAAAAAAAAAADYXn5Gvg4sO6Cj3x5V6q5U5ablymRnkkcrD7W9oa16Te6lzqM6y2SqfVvrk9tOaue8nUqOTVbemTy5+7sr6MYghT8WruCo4Dqtp8xcprgFcdq3eJ8yDmXIXGSWd3tvdbmziyJmRcgj0KNOebJOZGn7nO36ee3Pyj6ZLScPJwX0CFCfqX3U5/4+NtumGwAAAAAAAAAAXFtmJc2Su797o9WnwQIAAAAAAAAAgEbw3TPf6cd//ChzoVlu/m7qNamXfDv5yjAMHd90XAnLE3Tg8wMKGRaiccvGybWla7W5Yl6JUczLMXJwcVDfmX0V0DNAGQczFL8gXgnLEhT5bKSi/xpd43ryM/K1ZNQSpexIkV9XPw18fqCcPJyUuCZR37/xvXa9v0vjl49Xh8EdasxzZM0RfTHxCxWdL1L3sd0V8WSE8s/mK35BvFZOX6m9i/fq3hX3ytnTuUF/bgAAAAAAAAAA4Nrl08GnUevTYAEAAABchQzD0I//+FHr/2+9SvJKNHXT1DrfcVbizrUAAABAU7B38V6ZC83qMKSD7lt5n1y8XSxjNzx+g46sPqJP7/pUSRuTtHT0Uk3fOr3Kn59/+vdP2jx7sxxcHHT/xvsVNCDIMtZ7Sm99eNOH2vbWNrkHuCvymcgq11JmLtNnd3+mlB0pahfZTlPWT5Gjq6MkKfyxcG14YYNiX4/Vp3d+qpk7Z8q3k2+VeU7Hn9aycctkLjBrxJwRipgVYRkLfyxcH970oZI2JOmLiV9owqoJDfpzAwAAAAAAAAAAzcfJH07qxJYTykrKUvH5Yjl5OsknxEcdBndQuxvb2bweDRYAAADAVSbzaKa+mvGVTmw50aD53LkWAAAAaDrsHOx096K7KzRXXNR5VGf1m9lPcf+J08ltJ3Xg8wPqeV/PCjF56Xla9+w6SdKAWQMqNFdIUuu+rRX5TKRiXo7Rpj9uUs/7esoryKtSrbgFcUqOTZZM0ugFoy3NFRdFvRylhGUJyvw5U9899V21zRFrHlsjc4FZbQe0rdBcIUmuLVx127zbtHDoQh1ZfUQJ/0tQ93u61/pnBAAAAAAAAAAAmp+kTUn6+jdfK+NgRrUxft38dNu82+p149ra2NksEwAAAACrGIahnfN26t99/q3U3akKigiqfdKvXLxzrb2Tve7feL9unXur+j/YXyP+PkLTtkyTo7ujtr21Tdv+tq3aHL++c+1D8Q9p4HMDFf5YuCaumahBvx+k/PR8fXrnpzqbeLbaPBfvXFuUU6QR74zQuM/H6fpHrtfgFwfr4V0Py7+Hv+XOtQAAAEBzFRgWKO/23tWOd7unm+X4yKojlcZ3zN2h4txiSVK/mf2qzNFvZj/JJJkLzdr2duXPAoZhKPb1WElS+4Ht5d/dv1KMvaO9+kzrc2Edq48odU9qpZhj648pZUfKhZoPVr2W4KhgtezUUpK09bWtVcYAAAAAAAAAAIDm7ad//6SPoz9WxsEMGYZR7Vd6QroWDV+kn/7zk81q02ABAAAAXCViXo7R17/5Wu0Htdej+x9V6IjQes2v651rJWnTHzcp51ROlXnqcufalte1VGFWob576rtq11OXO9dKsty5FgAAAGhu7ll6j+54/44aY3w6+FiOs5OzK40nLL/ws7RPsI9aXteyyhxeQV7y6+onSTq4/KAMw6gwfmr7KeWcvPD5IGR4SLVrCY2+9BklYVnln+EPLDtgOe44vGO1eS6Ope5OVebPmdXGAQAAAAAAAACA5iflxxStfWKtjDJD7gHu6v9wf436zyhNXD1R96+/XxNXT9So/4xS/4f7yz3AXUaZoa+f+Fq//PSLTerTYAEAAABcJQzD0Oj/jtbkbybLu131d7CtDneuBQAAAJqWkKEhatW7VY0xhVmFlmNH94rNzzkpOTp7+MKucoFhgTXmad239YU5p3KUmVixqSFpY5LluKY8rfq0ksnOVGnORcc3Hpckufi4VGgM+bXAvpdqVJUHAAAAAAAAAAA0X9ve2iajzNANv7lBs5JmadS/Rqn/g/3V6bZOChkWok63dVL/B/tr1L9G6XfHf6cbnrhBZaVl+v6v39ukPg0WAAAAwFUi6qUo9Xug6maEuuDOtQAAAMC151zSOctxh8EdKoyd2X/GcuzVzqvGPOXHzxw4U2EsfX+65bimZm8HZwe5+btdmHMgvcJYSUGJzh07V6e1lK/x67UAAAAAAAAAAIDmLXlrsoKHBOvWubfKwcWhxlgHFwfd+u6t6nBTB53YcsIm9W3aYJGUlKRPP/1Uc+bM0YkTlxZ47NgxW5YBAAAArkkmk6nBc7lzLQAAAHBtOrTikKQL/0AQNi2swljW8SzLsXsr9xrzlB8vP6++eTxaeUiSinKKVHCuwHI+OzlbRplRIaYua8k+nl1jLAAAAAAAAAAAaF4KswrVdUzXes3pNrZbhV3BrWGTBott27Zp4MCBuu666zRp0iQ9/fTTOnr0qGW8a9euGjRokH744QdblAMAAADwK9y5FgAAALj25J3J0+GVhyVJNz5zozzbeFYYLz5fbDmu7Q5Ojq6OVc6TpKLzRXXO4+B6abx8noaupXxtAAAAAAAAAAAA91buFf4toS4cXR3l5udmk/pWN1h89tlnioqK0vbt22UYhgzDqBQTHBysbdu2aciQIfrkk0+sLQkAAADgV7hzLQAAANC4zEVmFeUUWb5Kckuszrnu2XUyF5rVul9rDf7D4ErjJQWXatg72deYq/x4SX7FtZkLzFbnsdVaAAAAAAAAAABA8xYyLESntp+q15xTO06pXWQ7m9Sv+TZStS3k1ClNnz5dZrNZ3bp108iRI+Xj46OXXnqpQtyRI0e0bt06TZ8+XQ8++KAiIiIUGhpqTWkAAAAA5VwNd651beFq1Vq4cy0AAACastjXYxXzcozlcbaddQ3Eexfv1Z5Fe+Qe4K7x/xsvB+fKP1uX/3m6tLi0xnzlxx3dKt71qfzP9g3NY6u1AAAAAAAAAACA5i3y2Uh9EPmBek/preAhwbXGJ8cma9/ifbp/w/02qW9Vg8W7776rwsJCvfHGG3ruueckSWfPntXs2bMrxUZHRys2NlY9evTQu+++q7lz51pTGgAAALiqmYvMKi26dNGQLe5eWxPuXAsAAAA0rkG/H6Qbn7rR8jg5OVnv9HqnQblObDmhVQ+ukrOXsyaunSifYJ8q45w8nSzH5kJzlTEXlf85vfw8SXL2dK5znvKfGcrnaehaytcGAAAAAAAAAADw7+av8f8brxVTVqjz6M7qMb6HWvVqJZcWLjKZTDIMQ4VZhTqz/4wSliVo94e7det7t14dO1isW7dO0dHRluaK2gQHB2vq1Klav369NWUBAACAq56t715bG+5cCwAAADQuB2eHCrtMOHo07OfblJ0pWjp6qeyd7DX528lq079NtbHlGy/y0vJqzFt+/NcNGz7BPpattvPS8uTV1qvaPLlpuZIkZy9nyy52kuTd3lsmO5OMMsMSU5e1eAd71xgLAAAAAAAAAACuTa/Yv1JrTNy/4xT377ha41Y/vFqrH1mtP5n/ZPW6rGqwOH78uKZPn16vOb169dKiRYusKQsAAABc9Wx599q64M61AAAAQNP3S9wvWjxisQzD0JTvpigoIqjG+ICeAZbjnJM5NcbmnLo0HtAjoMKYf09/y3H2yWy17te6yhzmIrPy0/MvzOnhX2HM0dVRLTq2UObPmVatBQAAAAAAAAAANA+GYdg0n0kmm+SxqsGioKBAnp6e9ZpTVlamsrIya8oCAAAAVz1b3b22rrhzLQAAANC0nd51Wh9Hf6wyc5kmfzu51uYKSfJq6yXfzr46e+SsUnen1pw//vSFOUFeatmpZYWxkGEh2qRNkqTU3anqemfXKnOk7UmTUWZY5vxa8LBgZf6cqcKsQmWdyJJPB58a11JdHgAAAAAAAAAA0Dx0G9NNAb2svxnTmb1ndOjLQzZYkZUNFq1atdL+/fvrNWfjxo1q3brqu18BAAAAaBjuXAsAAAA0XWl70/Rx9McqLS7V5G8mq11ku0oxm1/erCOrjuihnx6qcL77uO7a+uetyjqepXPHzqlFxxaV5uak5CjjUIYkqdvYbjKZKt7BKSgiSF5BXso5laOkDUmKmh1V5TqPrT9Woe6v9RjXQ/Hz4yVJSRuS1HdG3yrzJG1IkiQFhgWq5XUtq4wBAAAAAAAAAADXvm5juqnXxF5W59n7yV6bNVjYWTN50KBBev/995WUlFSn+JUrV+rLL79UVFSUNWUBAAAA/MrFO9dKsvrOtRfVlKcud66VZLlzbW1rqS4PAAAAcK07s/+MFt28SOYCsyatnaT2g9pXGZeVlKXTcacrnR/w2wFy8nCSJMX/N77Kubve3yUZkoOLgyKfjqw0bjKZNOiFQZKk5NhkSzNGeWXmMu3+aLckqdPtnRTYJ7BSTMfhHdV2QNsa13JiywmdPXJWknTTizdVGQMAAAAAAAAAAK59Ph18LP/GYS0nDyd5t/e2SS6rGiwee+wx5eTkKCIiQgsWLFB2drZlrPwdsHbv3q0nnnhC48aNkyQ9+uij1pQFAAAAUIWLd5C9eOfaqtT1zrXSpbvKVqUud669qKY83LkWAAAAzVl6QroW3bxI+Rn5uvGZG2WUGTq++XiVX7mpuVXmcA9wV/Rb0ZKk7e9sV8qPKRXGU/ek6vu/fi9JGvrqUMvP+7/W/8H+F5o7DGnVg6tUUlBSYXzzS5uVmZgpFx8XjXhnRLXP6fZ/3i4HVwed+uGUds7bWWGsMKtQax9fK0nqPKqzuo+t/FkCAAAAAAAAAAA0D7OSZqnLHV1skqvrnV01K2mWTXI5WDN54MCBeuyxx/TPf/5TjzzyiB577DG1b3/h7loPP/yw7O3tdfLkSRUUFEiSDMPQk08+qeuvv976lQMAAACoYMBvB2jH3B0qzi1W/H/jdfNfbq4UU9c71659bK3lzrV+Xf0qxNTnzrUpO1IU/9949Z3Rt1IMd64FAABAc2YuNGvRzYuUdyZPkrTllS3a8sqWBuW6/pHrlZuWqy2vbNHCoQvVb2Y/+ffwV8ahDMUviFdJXolufOZGRT5T+TPARXYOdrp3xb1aMmqJkmOTNb//fIVND5OTu5MS1yYqcU2i3PzcNG75OPl28q02T+t+rTXu83H6YtIX+vq3Xyt5a7KChwWr4GyB4hfEK+t4lkKGhWjMkjENeq4AAAAAAAAAAAC/dmz9MW39y1ZN3TjV6lxWNVhI0rvvvitHR0fNnTtXpaWlOn78uEwmk44ePSrpQlPFRc8884zefPNNa0sCAAAAqMLFO9eueXSNtr+zXV3v7qq24W0t4/W5c+3+JfuVHJusVQ+u0uTvJsvR1dEyXp87134w6APLnWtveOIGyxh3rgUAAEBzZy40V7srRUNEzY5SaHSodry7QwnLE5T/r3y5+bkp9JZQhT8erpChIbXmcPNz04zYGYpbEKe9H+9V7OuxKi0qlXd7b0U+F6mI30XIs7VnrXk6j+qsR/Y8ou1ztitxTaIOf3VYju6OCugZoMF/GqywqWEy2ZlqzQMAAABcawqzCnVkzRElbUhS6q5UnUs6p+LcYjl5OMm3k69Choco/NFwebf3rjXXyW0ntXPeTiXHJivvTJ7c/d0VdGOQwh8LV3BUcJ3WU2YuU9yCOO1bvE8ZhzJkLjLLu723utzZRRGzIuQR6GHlMwYAAACAKyM3LVcnYk7YJJfVDRZ2dnZ65513NHHiRL377rtav3690tLSLOMBAQGKjo7WrFmz2LkCAAAAqMXexXstx2l7L/1cfXTdUeWcypEkubdyV2h0aJXzuXMtAAAA0DS4+LhotjHbpjnbRbZTu8h2VuWwc7BT+KPhCn803Ko8PsE+GjlnpEbOGWlVHgAAAOBacXLbSS0ctlClRaWSSep2dzf1nNBTzl7Oyvw5U3sW7dH3b3yvne/u1J0f3qke43tUmyvmlRjFvBwjBxcH9Z3ZVwE9A5Rx8MK/AyQsS1Dks5GK/mt0jevJz8jXklFLlLIjRX5d/TTw+YFy8nBS4ppEff/G99r1/i6NXz5eHQZ3sPUfBQAAAABIkspKy3Rm3xkF9AyQnYOd5fyeRXvqnevktpM2W5fVDRYXhYeH6+OPP5Yk5ebmKicnR56envL0rP1uVgAAAAAuWDFlRZXnY/8SaznuMKRDtQ0WEneuBQAAAAAAAADgalOUU6TSolKZ7E2a9PWkSr/nH/yHwfpw8Ic6s++MVkxZoYBeAfLv5l8pz0///kmbZ2+Wg4uD7t94v4IGBFnGek/prQ9v+lDb3tom9wD3am+2VGYu02d3f6aUHSlqF9lOU9ZPsexkHf5YuDa8sEGxr8fq0zs/1cydM2u82RIAAAAANNTnYz7XkdVHdN3I6zRxzUTL+S+nfSmTqfGuJ7JZg0V5Hh4e8vBgm0AAAACgvmx1B1vuXAsAAAAAAAAAwNUnbFpYlTdRcvFxUfRb0fpk5CcqLS5V/H/jNeLtERVi8tLztO7ZdZKkAbMGVGiukKTWfVsr8plIxbwco01/3KSe9/WUV5BXpVpxC+KUHJssmaTRC0Zbmisuino5SgnLEpT5c6a+e+o7TVg1wcpnDQAAAACVHY85LsMwlPx9cqUxwzDqnc9WTRlWNViMGTNGTz75pG666SabLAYAAAAAAAAAAAAAAAC41rj4uKjtgLbqPrZ7tTFt+rexHGcczKg0vmPuDhXnFkuS+s3sV2WOfjP7KeaVGJkLzdr29jaNfKfizY8Mw1Ds6xd2zW4/sL38u1feJcPe0V59pvXRpj9s0pHVR5S6J1WBfQJrf5IAAAAAUA+3/O0W7Xh3h2544oZKYyPnjFSXO7vUOdehFYf03dPf2WRdVjVYfPnllxo7dqxNFgIAAAAAAAAAAAAAAABci4IigjRz+8waYxzdLu0k4eBc+ZKehOUJki7sHN3yupZV5vAK8pJfVz9lHMzQweUHNeLvIyrcxfXU9lPKOZkjSQoZHlLtWkKjQ7XpD5su1F2WQIMFAAAAAJvrN7Nftc3jbn5u8ungU+dcbv5uNlqVlQ0WkrR161aZzeZ6zXF0dFTLli3Vu3dvtW7d2tolAAAAAAAAAAAAAAAAAE1ayo8pluPgYcEVxnJScnT28FlJUmBYzc0Orfu2VsbBDOWcylFmYqZ8O/taxpI2JlmOa8rTqk8rmexMMsqMCnMAAAAA4HIbMnuIWvVuVa85rXq30uA/DbZJfasbLObPn6/58+c3eH5ERITeeOMN3XTTTdYuBQAAAAAAAAAAAAAAAGhyzIVmbXxhoyQpoFdApbu4ntl/xnLs1c6rxlzlx88cOFOhwSJ9f7rl2Ludd7U5HJwd5Obvpry0PKUfSK82DgAAAABszWQy6eAXB3Xwi4MKDAtUlzu61DqnVa9WatWrfk0Z1bG6wcIwDKvm//DDD7r55pv1wQcfaPLkydYuBwAAAAAAAAAAAAAAALiqmYvMKswqVMHZAp3cdlLb39mu9IR09RjfQ6Pmj5Kjq2OF+KzjWZZj91buNeYuP15+Xn3zeLTyUF5anopyilRwrkCuLVxrflIAAAAAYAObX9osk8kkwzAUNi2sTg0WtmRVg0VSUpLWrFmjWbNmKSoqShMmTFDv3r3VokULOTg4qLS0VOfOndO+ffv06aefavfu3frggw/UrVs3nT9/XocPH9aKFSv02Wef6aGHHtLAgQMVEhJiq+cGAAAAAAAAAAAAAAAAXHX2L92vldNXWh57t/fWmE/GqOeEnjKZTJXii88XW44dXGq+3Kd8c0b5eZJUdL6oznkcXC+NF58vpsECAAAAwBXj2dZTYz8dqzbhba54basaLPLz8/XMM89owYIFmjZtWrVx/fv317Rp07R48WJNnz5du3fvVkhIiHr37q1x48Zp/PjxuueeezRv3jy9/fbb1iwJAAAAAAAAAAAAAAAAuKzKSstklBmXHpvL6jU/dESopqybouK8YmUmZmrfkn36YtIX2jx7s0bOHalOt3WqEF9SUGI5tneyrzF3+fGS/JIKY+YCs03yAAAAAMDl4uDioAGzBqhdZLvGqW/N5Lfeeku33nprjc0V5U2ePFkrV67UX/7yF7333nuW83fddZdGjRqldevWWbMcAAAAAAAAAAAAAAAA4LLL/DlTmYmZlsfZyq7XfM/WnvJs7Wl5fOPTN2r98+u17a1tWjJqie788E6FTQ2zjJfflaK0uLTG3OXHHd0cK4yV35XCmjwAAAAAcLl4t/OWs5dzo9W3s2bypk2bFB0dXa85N998s7755ptK54cNG6YTJ05YsxwAAAAAAAAAAAAAAADgsmt5XUuFjgi1fAUPCbYqn8lk0vA3h6t1v9aSIa15dI1yU3Mt406eTpZjc6G5qhQW5Xe7KD9Pkpw9L12kVFue8rtd/DoPAAAAAFwunUZ10omY+vUV7P1kr16xf8Um9a1qsEhNTZWdXf1SmEwm/fLLL5XOe3l5qbi42JrlAAAAAAAAAAAAAAAAAJednb2d7B3tLV92DlZdgiPpwjU1vSb1knShuWHf0n2WMZ9gH8txXlpejXnKj5efV988uWkXGjycvZzl2sK1xlgAAAAAsJVBzw/SiZgTOrjiYKPUd6g9pHru7u7auHGjHnrooTrP2bhxo1xcXCqdP336tAICAqxZDgAAAAAAAAAAAAAAANBk+XbxtRyf2XfGchzQ89I1NTknc2rMkXPq0nhAj4rX4vj39LccZ5/MvrBjRhXMRWblp+dfmNPDv8oYAAAAALgczIVm3fHBHVo1c5X2frxX3cd1V0CPADl7OctkZ6pyTn5Gvs3qW9Vg0a9fPy1btky33367pkyZUmv8woULtWzZMkVHR1ca+/LLLxUYGGjNcgAAAAAAAAAAAAAAAICrTuLXiXJ0c1TwkOAa4+zsL+2EUWYusxx7tfWSb2dfnT1yVqm7U2vMcTr+9IU5QV5q2allhbGQYSHapE2SpNTdqep6Z9cqc6TtSZNRZljmAAAAAMCVMid4jkymC40UOadydHjl4Sta36r9CR9//HEZhqFp06bplltu0Ycffqi9e/cqIyNDubm5ysjI0J49e/TBBx8oOjpaM2bMkMlk0hNPPGHJkZWVpccff1xxcXHq3bu31U8IAAAAAAAAAAAAAAAAuJqseXSN1j6+tta4zJ8zLcfe7b0rjHUf112SlHU8S+eOnatyfk5KjjIOZUiSuo3tZrko6aKgiCB5BXlJkpI2JFW7jmPrj1WqCwAAAABXimEY9f6yFat2sLjzzjv18MMP6z//+Y82bNigDRs21BhvGIYeeeQRjR49WpJ04MAB9e3bV2azWSaTSaNGjbJmOQAAAAAAAAAAAAAAAMBVKeNghrKOZ8kn2KfKccMwtGfRHsvjzqM7Vxgf8NsB2jF3h4pzixX/33jd/JebK+XY9f4uyZAcXBwU+XRkpXGTyaRBLwzS2sfWKjk2WRmHMuTX1a9CTJm5TLs/2i1J6nR7JwX2CaznMwUAAAAA6/R/uL+CIoLqHH/qh1OKXxBvk9pWNVhI0r/+9S8FBwfr5ZdfVmFhYbVxLi4ueumll/Tcc89Zzvn5+enVV1+VJBosAAAAAAAAAAAAAAAAcM0yygytmLJC45aNk0egR6Wxb5/6Vr/8+IskqeeEngoaUPFiIvcAd0W/Fa01j67R9ne2q+vdXdU2vK1lPHVPqr7/6/eSpKGvDrXsVPFr/R/sr/1L9is5NlmrHlylyd9NlqOro2V880ublZmYKRcfF414Z4RNnjsAAAAA1EeHmzqo18RedY63c7C7ehosJOn555/XzJkztXjxYm3dulXHjh3T+fPn5enpqY4dO+qmm27S5MmT5evrW2Feq1at9Pzzz9tiCQAAAAAAAAAAAAAAAMBVKbBPoLJPZCs5Nlnvhr6rHvf1kF9XP7n5uik7OVsHPj+gjIMZkqQ+9/fRqPlV36T0+keuV25arra8skULhy5Uv5n95N/DXxmHMhS/IF4leSW68ZkbFflM5d0rLrJzsNO9K+7VklFLlBybrPn95ytsepic3J2UuDZRiWsS5ebnpnHLx8m3k2+1eQAAAADgcmg/sL3cA9zrNadlaEv1ub+PTerbpMFCknx9fTVr1izNmjXLVikBAAAAAAAAAAAAAACAJu++lffpzP4zOrjioJK3JuvYumPav3S/ykrK5OTppBYhLRT+RLj63N+nwq4UVYmaHaXQ6FDteHeHEpYnKP9f+XLzc1PoLaEKfzxcIUNDal2Pm5+bZsTOUNyCOO39eK9iX49VaVGpvNt7K/K5SEX8LkKerT1t9fQBAAAAoM6mb51e7zlBEUEKigiqPbAObNZgAQAAAAAAAAAAAAAAAKBqAT0DFNAzwCa52kW2U7vIdlblsHOwU/ij4Qp/NNwmawIAAAAAW9izaI86DO4gn2CfWmP/1etfMgxD/R/urwG/GWCT+nY2yVIPn3zyiezt7a90WQAAAAAAAAAAAAAAAAAAAAAAcBVbOX2lTm47WadYRzdHZRzM0Le/+1Z7Fu2xSf0r3mABAAAAAAAAAAAAAAAAAAAAAADwa4Zh1Dl25o6ZevLkk2pzfRvtfG+nTeo72CJJcXGxPvvsM8XExOiXX35RYWFhtbFpaWm2KGmRkZGhuXPnasWKFTp+/LicnJzUpUsXTZgwQY888oicnJxsWk+STp8+rW7duik7O1tS/V5EAAAAAAAAAAAAAAAAAAAAAABgPc82ngqbHqYNv99gk3xWN1js3r1bd911l06erLgNR/mmA5PJVOF8+cfW2Llzp+666y6dPn1a0dHRevTRR1VQUKCFCxdq1qxZ+uijj7R69Wq1adPGJvUuevzxxy3NFQAAAAAAAAAAAAAAAAAAAAAAoHFkHs1UaXGpTXJZ1WBx9uxZ3XrrrUpLS5Ozs7O6dOkiDw8Pbdu2Tb1791aLFi0kSefPn9ehQ4eUn5+vwMBAdenSxeqFJycna9SoUUpPT9fvfvc7vfPOO5ax3/zmN7r11lu1adMm3XHHHfr+++/l7OxsdU1J+t///qcVK1bYJBdwpe1buk8pf0+RnWHXaGuYsGpCo9UGAAAAAAAAAAAAAAAAAAAAcHU4tPKQDq88XOl83Pw4HVt/rNb5ZSVlyjqRpVM/nFKr3q1ssiarGizee+89paWlacqUKZo3b548PT2VkZGhgIAA/f3vf9ewYcMssfn5+XryySe1bNkyLV682OqFP/vss0pPT1f79u31xhtvVBhzdnbWggUL1KVLF8XFxWnevHl6+umnra6ZlZWl3/zmNwoKClJAQIDi4+OtzgkAAAAAAAAAAAAAAAAAAAAAQHOTujtVuz/aLZPJVOF88tZkJW9NrlMOwzAkSTf89gabrMmq29ivXbtWPXr00IcffihPT09JqvTkLnJzc9O///1vderUSXPmzLGmrBITE7Vs2TJJ0v3331/l7hShoaEaOnSoJOnNN9+U2Wy2qqZ0oanj9OnT+sc//mF5vgAAAAAAAAAAAAAAAAAAAAAAoH5cfFzk08FH3u29LV+S5OrrWuFclV8dvOXXzU9d7+qqe1fcq7CpYTZZk1U7WCQmJuq3v/2t7Ozq1qdhMpl01113acmSJXrrrbcaXHf58uWWTpPhw4dXGxcdHa3169crPT1dmzdvrjG2NjExMXr//fc1duxY3XHHHfr73//e4FwAAAAAAAAAAAAAAAAAAAAAADRnEbMiFDErosK5l+1e1sg5I9VrYq9GWZNVO1jk5eWpffv2Fc45OjpKks6dO1flnJYtW+r48ePWlNXGjRstx2FhYdXG9e3bt8o59VVYWKgHH3xQ3t7eeu+99xqcBwAAAAAAAAAAAAAAAAAAAAAAXJ2s2sHCx8dHqampFc55eHjI3t5ehw8frnLO3r17VVJSYk1Z7d+/X5Lk6ekpb2/vauPatWtnOT5w4ECD67388stKTEzU/PnzFRgY2OA8AAAAAAAAAAAAAAAAAAAAAACgarPLZjdqfat2sOjWrZuWLFkiwzAuJbSzU+fOnfXPf/5T2dnZFeITEhL04Ycfqk2bNg2uWVRUZGnqaNWqVY2x5ccbumvGnj179Le//U2DBw/WzJkzG5QDAAAAAAAAAAAAAAAAAAAAAABc3azawWLo0KF65ZVXdPvtt+svf/mLwsLCJEm33367/va3v6lHjx6aNm2agoKCdOjQIb3//vsqKipSdHR0g2ueP3/ecuzi4lJjrKura5Xz6qq0tFQPPPCA7O3tNX/+fJlMpnrnqEqBuUC55lzLY0c7RznaO9okN1Adw2TIkCHDZKhMZY22DrPZ3Gi10bjMZrPKysp4D6DR8B5EYysra7y/f9H4mvNngOb8fZe/e8B7ALwHmjdef/AZoHnLL82Xs9nZ8rg5fQZoKq6W35mjdrxWTQevVdPC69V08Fo1HYbJqD0I16zs7GxlZmZaHjs7O8vZ2bmGGbCVMlPT/N7I93fbaW6/f+P3jmgo3jtoKN471ePP5PLKTc1VaXGpJMm9lbscnC+1PWQezVTMSzFK3ZMqZy9n9ZzQU+GPhdvsWn+rGizGjx+vV155Rd98842+/fZbJSUlqX379nrqqae0YMECnT59Wq+//rol3jAMubu767nnnmtwzYKCAsuxk5NTjbHlx/Pz8+td65133lFcXJxeffVVdenSpd7zq/P85ucrPB7Zb6Ruu/42m+UHqmLIUIFngTKVKZNs8w2kIWJjYxutNhpXWVmZkpOTJV3Y7Qi40ngPorGdPXu2sZeARtScPwM055//+LsHvAfAe6B54/UHnwGat+b8GaCpuFp+Z47a8Vo1HbxWTQuvV9PBa9V0nC+o/40/ce24eFPai6ZOnapp06Y1ylqam8zWmbUHXYX4/m47ze3fovi9IxqK9w4aivdO9co32MK2CjILNDdkrqXBYtLXkxR6S6gkKf1gut6PeF/FucUyjAuN7qd+OKVTP5zSmMVjbFLfqgaL7t27KyYmRsXFxZKkwMBAy39Xr16t++67TykpKZb4tm3b6uOPP1ZoaGiDa5bfleJi3eqUH3dzc6tXnaSkJM2ePVs9evTQ888/X/uEengz6k21cGlheexo5yjH09y5CpeXYTKUqUy1TG0pk9F4H8wGDRrUaLXRuC52a0ZGRsrBwaq/foAG4T2Ixnbxwyaap+b8GaA5//zH3z3gPQDeA80brz/4DNC8NefPAE3F1fI7c9SO16rp4LVqWni9mg5eqyakoPYQXLt2796tdu3aWR6zg8WVk/L3lNqDrkJ8f7ed5vZvUfzeEQ3FewcNxXuneqdOnWrsJVyzEpYnyFxklpufm/o92E8BPQMsY9/M+kZF54skSW36t5FnG0+d2HJC+5fuV6+JvdTptk5W17f6nX7TTTdVeX7gwIE6duyYYmNjlZqaqtatW2vgwIFydLTuHxA8PT0tx4WFhTXGlt/tovy8unjooYdUWFioBQsWWL3mX3N1cJWHg0fFk+wUicusTGUyySSTYZKd0XhdhPwF27zZ2dnJwcGB9wEaDe9BNCa6+Ju35vwZoLl/z+XvHvAeAO+B5o3Xv3njM0Dz5mbv1mw/AzQVV8vvzFE7Xqumg9eqaeH1ajp4rZoOLpBu3ry9vdWyZcvGXkaz1FS/N/L93Xaa4+/e+L0jGor3DhqK907V6vvnYRiGfvzHj1r/f+tVkleiqZumKjgquM7zT247qZ3zdio5Nll5Z/Lk7u+uoBuDFP5YeJ3zlJnLFLcgTvsW71PGoQyZi8zybu+tLnd2UcSsCHkEetSeRFLWiSxtn7NdP6/9Wdkns+Xk4aSAHgHqM7WP+tzfRyY76z4fHf3uqJy9nPVw/MPyCvKynM/8OVPH1h+TyWRS+OPhuvXdWy+cP5qpBeELtPvD3Y3fYLFlyxbLcWBgoDp37lxh3NHRUUOHDrWmRCXOzs4KDAxUamqq0tLSaowtPx4cHFznGosWLdL69es1ZcoUderUSRkZGZViSkpKLMflxx0dHeXt7V3nWgAAAAAAAAAAAAAAAAAAAACAa1Pm0Ux9NeMrndhyokHzY16JUczLMXJwcVDfmX0V0DNAGQczFL8gXgnLEhT5bKSi/xpdY478jHwtGbVEKTtS5NfVTwOfHygnDyclrknU9298r13v79L45ePVYXCHGvMcWXNEX0z8QkXni9R9bHdFPBmh/LP5il8Qr5XTV2rv4r26d8W9cvZs+I5up+NPK2xaWIXmCunCzhaS5OjmqGGvDbOcbxnaUr0m9dKRr440uGZ5VjVYREVFyWS60GEydepUffDBBzZZVG169uyp1NRUnT9/XtnZ2dU2NJTfeqVHjx51zr9x40ZJ0scff6yPP/641nh/f3/L8ZAhQ7R58+Y61wIAAAAAAAAAAAAAAAAAAAAAXFvK71phZ2+noIggndp+qvaJ5fz075+0efZmObg46P6N9ytoQJBlrPeU3vrwpg+17a1tcg9wV+QzkVXmKDOX6bO7P1PKjhS1i2ynKeunyNHVUZIU/li4NrywQbGvx+rTOz/VzJ0z5dvJt8o8p+NPa9m4ZTIXmDVizghFzIqwjIU/Fq4Pb/pQSRuS9MXELzRh1YR6Pc/yck/nyr+7f6Xzh1celslkUte7usrZq2IDh383f+36764G1yzP6r1aXFxc9OKLL2r06NG2WE+dDBs2TOvXr5ck7d69W0OGDKkyLj4+vsKcunruuec0efLkGmOefvpp7d27V5K0bt06y/kWLVrUuQ4AAAAAAAAAAAAAAAAAAAAA4NoT8/KFnSdCR4Rq9ILR2vX+rno1WOSl52ndsxeuUx8wa0CF5gpJat23tSKfiVTMyzHa9MdN6nlfz0q7PkhS3II4JccmSyZp9ILRluaKi6JejlLCsgRl/pyp7576rtrmiDWPrZG5wKy2A9pWaK6QJNcWrrpt3m1aOHShjqw+ooT/Jaj7Pd3r/FzLM9mZVFpSWuFcTkqOUnamSJK6j6uc12RvalCtqljVYOHg4KDf/va3euGFF2y1njoZO3asXnzxRRmGoQ0bNlTbYHGxCcPPz09RUVF1zt+9e3d1717zC1q+kWL48OF1zg0AAAAAAAAAAAAAAAAAAAAAuLYZhqHR/x2tfg/0a9D8HXN3qDi3WJLUb2bVOfrN7KeYV2JkLjRr29vbNPKdkZXWEPt6rCSp/cD2Ve4MYe9orz7T+mjTHzbpyOojSt2TqsA+gRVijq0/ppQdFxoc+j1Y9VqCo4LVslNLZSZmautrWxvcYOEV5KXTcacrnNv1/i4ZhiEndyeFjgitNOfcsXNy9XVtUL1fs7NmcqtWrdSpUyebLKQ+OnXqpHHjxkmSPv74YxUXF1eKOXbsmDZu3ChJev755+XgULGXZP/+/ercubOCgoK0ZcuWy79oAAAAAAAAAAAAAAAAAAAAAECzEPVSVIObKyQpYXmCJMkn2Ectr2tZZYxXkJf8uvpJkg4uPyjDMCqMn9p+SjkncyRJIcNDqq0VGn2paSFhWUKl8QPLDliOOw7vWG2ei2Opu1OV+XNmtXE16TCkg/Z/ul8HvziokvwS/fzNz9r2t20ymUzqendXOThX7AswF5q1b/G+KptHGsKqBovBgwfr4MGD9Zqzfv16DRs2zJqykqS33npL/v7+On78eKUdNIqKivTQQw+ptLRU/fv31xNPPFFp/p///GclJiYqJSVF//d//2f1egAAAAAAAAAAAAAAAAAAAAAAkCSTydTguTkpOTp7+KwkKTAssMbY1n1bX5hzKkeZiRWbGpI2JlmOa8rTqk8rmexMleZcdHzjcUmSi4+LfDr4VJsnsO+lGlXlqYuIJyNklBpaNm6ZXvd8XUtuX6Li3GKZ7E2KfDbSEpefka8ja47ooyEfKTc1V8FRwQ2q92sOtYdU7+mnn9bIkSP1yCOPKDS08lYbVUlLS1NMTIw1ZSVJ7du316pVq3T33Xfr7bff1v79+3XHHXeooKBACxcu1L59+xQWFqavvvpKLi4uleaXlZVZjn/dqVOdxYsXV3geVZ2Pjo5Wq1atGvKUAAAAAAAAAAAAAAAAAAAAAADN3Jn9ZyzHXu28aowtP37mwBn5dva1PE7fn2459m7nXW0OB2cHufm7KS8tT+kH0iuMlRSU6Nyxc3VaS/kaZw6cqSGyev7d/DXmkzFaOWOlinOLL6zPxUEj54xUq16XrtPfPne7tv55q6QLzSw9xvdoUL1fs6rBol+/fvr3v/+tW265RbNmzdK4cePUunVrmyysLgYMGKC9e/dqzpw5WrFihZ577jk5Ojqqc+fOmjNnjh599FE5OTlVOffFF19UfHy8CgoK9Oabb9ap3pQpU2o9v2nTJhosAAAAAAAAAAAAAAAAAAAAAAANknU8y3Ls3sq9xtjy4+Xn1TePRysP5aXlqSinSAXnCuTawlWSlJ2cLaPMsMTUdS3Zx7NrjK1J97Hd1TG6o05sOSGjzFDbG9rKs7VnxZh7uqvldS0lSc6ezpZja1nVYNGxY0dJUmZmpp588kk9+eST8vb2lpeXl+zs7Kqck5eXZ03JSvz8/PTaa6/ptddeq9e83r17KzExsV5z6rrTBQAAAAAAAAAAAAAAAAAAAADg2mAuMqu0qNTyuPh88WWtVz6/g0vNl/w7ujpWOU+Sis4X1TmPg+ul8eLzxZYGi4aupXzthnDxdlGX0V2qHQ8MC1RgWKBVNapiVYPF8ePHK53LyspSVlZWjfNMJpM1ZQEAAAAAAAAAAAAAAAAAAAAAuCJiX49VzMsxlsfZavjuDHVRUlBiObZ3sq8xtvx4SX5JhTFzgdnqPLZay+WUti9Nh1Yc0pA/DbE6l1UNFpJ00003WXayqItjx44pNjbW2rIAAAAAAAAAAAAAAAAAAAAAAFx2g34/SDc+daPlcUpKit7p/s5lq1d+J4jS4tIaIiuOO7o5VhgrvytFQ/PYai2XU9reNMW8HHN1NFg8/PDDmjhxYp3jP/nkExosAAAAAAAAAAAAAAAAAAAAAABNgoOzgxycL11675TjdFnrOXleym8uNNcQWXGHifLzJMnZ07nOecrvdlE+T0PXUr52fWQn1393kPyM/AbVqorVDRb15eHhofbt21/psgAAAAAAAAAAAAAAAAAAAAAAXPV8gn0sx3lpeTXGlh8vP+/i41PbT1nivNp6VZsnNy1XkuTs5SzXFq6W897tvWWyM8koMywxdVmLd7B3jbExr8boh7d/UMTvIhT1UpTl/JzgOTKZTDXOvZzsrJlcUlJSr90rJOnOO+9UUlKSNWUBAAAAAAAAAAAAAAAAAAAAALgmBfQMsBznnMypMTbn1KXxgB4BFcb8e/pbjrNPVr8zhLnIrPz0C7tA+PfwrzDm6OqoFh1bWL2WX9v21jYV5RTph7//UGnMMIx6f9mKVTtY2Nvb22odAAAAAAAAAAAAAAAAAAAAAAA0e15tveTb2Vdnj5xV6u7UGmNPx5++MCfISy07tawwFjIsRJu0SZKUujtVXe/sWmWOtD1pMsoMy5xfCx4WrMyfM1WYVaisE1ny6eBT41qqy1Nej/E9tOuDXeo+rnulsf4P91dQRFCN88s79cMpxS+Ir3N8TaxqsCivrKxMMTEx2rFjh1JTU/Xoo4+qS5cukqRNmzZpyJAhsrOzasMMAAAAAAAAAAAAAAAAAAAAAACued3HddfWP29V1vEsnTt2zrKLRHk5KTnKOJQhSeo2tptMJlOF8aCIIHkFeSnnVI6SNiQpanZUlbWOrT9Woe6v9RjXQ/HzLzQwJG1IUt8ZfavMk7QhSZIUGBaolte1rDLmojv+e4ei/xot15aulcY63NRBvSb2qnF+eXYOdjZrsLBJx8Pnn3+ukJAQDR8+XC+++KLee+89paSkWMZvueUWhYaG6vPPP7dFOQAAAAAAAAAAAAAAAAAAAAAArlkDfjtATh5OkqT4/1bdPLDr/V2SITm4OCjy6chK4yaTSYNeGCRJSo5NtjRjlFdmLtPuj3ZLkjrd3kmBfQIrxXQc3lFtB7StcS0ntpzQ2SNnJUk3vXhTLc/ugqqaK4KHBMu9lXud5l/k0cpDHQZ3qNec6li9g8Xf//53PfvsszIMw3Lu150vUVFR2rhxoyZMmKDjx4/rueees7YsAAAAAAAAAAAAAAAAAKARLR29tLGXAAAAcM1yD3BX9FvRWvPoGm1/Z7u63t1VbcPbWsZT96Tq+79+L0ka+upQeQV5VZmn/4P9tX/JfiXHJmvVg6s0+bvJcnR1tIxvfmmzMhMz5eLjohHvjKh2Pbf/83Z9MOgDnfrhlHbO26kbnrjBMlaYVai1j6+VJHUe1Vndx1beBaOupm6aWu85HYd3VMfhHRtcszyrGiwOHTqk5557ToZhaMSIEbrtttvk6empBx54oELcunXrdPjwYY0bN04vvviibrnlFoWFhVlTGgAAAAAAAAAAAAAAAAAAAACAq9bexXstx2l70yzHR9cdVc6pHEmSeyt3hUaHVjn/+keuV25arra8skULhy5Uv5n95N/DXxmHMhS/IF4leSW68ZkbFflM5d0rLrJzsNO9K+7VklFLlBybrPn95ytsepic3J2UuDZRiWsS5ebnpnHLx8m3k2+1eVr3a61xn4/TF5O+0Ne//VrJW5MVPCxYBWcLFL8gXlnHsxQyLERjloyp7x/TVcWqBov33ntPhmFo6dKluvfeeyVJZ8+erbCbxUVdunTRpk2b1LlzZ82bN0///e9/rSkNAAAAAGgCGvvOVRNWTWjU+gAAAAAAAAAAAAAAoPlaMWVFledj/xJrOe4wpEO1DRaSFDU7SqHRodrx7g4lLE9Q/r/y5ebnptBbQhX+eLhChobUug43PzfNiJ2huAVx2vvxXsW+HqvSolJ5t/dW5HORivhdhDxbe9aap/OoznpkzyPaPme7Etck6vBXh+Xo7qiAngEa/KfBCpsaJpOdqdY8NTEXmZUcm6zT8aeVn56vopwiOXs7y93fXW2ub6N2ke1k72RvVY2aWNVgsXnzZo0ZM8bSXFEbX19fTZs2TV999ZU1ZQEAAAAAAAAAAAAAAAAAAAAAuKrNNmbbJE+7yHZqF9nOqhx2DnYKfzRc4Y+GW5XHJ9hHI+eM1Mg5I63K82vnfzmvLX/eoj0f7ZG50FxtnIOrg/rO6KtBvx9Up6aQ+rKzZvKpU6c0bNiwes3p0qWLUlJSrCkLAAAAAAAAAAAAAAAAAAAAAACuAYe/Oqx5Xecp7t9xKikokWEY1X6V5Jfox3/8qHld5unI6iM2X4tVO1iUlJTIycmpXnMKCgpkb3/5tuQAAAAAAAAAAAAAAAAAAAAAAABXv72f7NWXU7+UDMkwDJnsTPLv7q/AsEC5+rrKycNJxeeLlZ+Rr9Rdqco4nCGjzFBxbrE+vetT3f3x3eo1oZfN1mNVg0WbNm30448/6oEHHqjznNWrVysoKMiasgAAAAAAAAAAAAAAAAAAAAAAoAlLT0jX6odXyygz5NrCVZHPRqrfzH5y83Ordk5uWq7iF8Trh7//oMKsQq1+aLUC+wTKv7u/TdZkZ83koUOHauHChfrxxx/rFD9v3jxt3LhRN998szVlAQAAAAAAAAAAAAAAAAAAAABAE7bu2XUqyS9Ru8h2enTfoxr0f4NqbK6QJI9WHhr8h8F6ZM8jantDWxXnFWvds+tstiarGixmzZqlkpISRUVF6cUXX9SBAwdUVlYmSTKZTJKkM2fO6Msvv9SoUaM0a9Ys2dvb67e//a31KwcAAAAAAAAAAAAAAAAAAAAAAE3OmQNnlPh1ovy6+mnimonybONZr/ne7bw16etJ8u3kq5+/+VnpCek2WZdVDRY9e/bUq6++qoKCAr3xxhvq3bu32rVrJ5PJpLvuukuurq5q3bq17rnnHn399dcyDENvvPGGOnfubJPFAwAAAAAAAAAAAAAAAAAAAACApuXIqiMymUwa8c4IuXi7NCiHawtXjXhnhAzD0OGvDttkXVY1WEjS73//e73zzjtydHSUYRgqLi6WJOXm5qqoqEiGYcgwDDk6Ouq9997TU089ZfWiAQAAAAAAAAAAAAAAAAAAAABA05S8NVm+nX113YjrrMrT6bZO8u3kqxNbTthkXVY3WEjSrFmzdPToUb344ou64YYb1KJFC9nb26tFixa64YYb9OKLL+ro0aN6/PHHbVEOAAAAAAAAAAAAAAAAAAAAAAA0UWePnFXI8BCb5OoY3VFnj5y1SS4Hm2SR1LZtW7366qt69dVXbZUSAAAAAAAAAAAAAAAAAAAAAABcY/LP5qtFxxY2ydUitIUKMgtsksuqBotXXnlFY8aMUc+ePW2yGAAAAAAAAAAAAAAAAOBalZ+RrwPLDujot0eVuitVuWm5MtmZ5NHKQ21vaKtek3up86jOMplMteY6ue2kds7bqeTYZOWdyZO7v7uCbgxS+GPhCo4KrtN6ysxlilsQp32L9ynjUIbMRWZ5t/dWlzu7KGJWhDwCPax8xgAAAABQtaLsIrn5utkkl5uvm4pyimySy6oGi5deekmdOnWiwQIAAAAAAAAAAAAAAACowXfPfKcf//GjzIVmufm7qdekXvLt5CvDMHR803ElLE/Qgc8PKGRYiMYtGyfXlq7V5op5JUYxL8fIwcVBfWf2VUDPAGUczFD8gnglLEtQ5LORiv5rdI3ryc/I15JRS5SyI0V+Xf008PmBcvJwUuKaRH3/xvfa9f4ujV8+Xh0Gd7D1HwUAAAAAyDAM2TnY2SSXyd4kGTZJZV2DhXRhF4szZ85o8uTJ8vX1tcWaAAAAAAAAAAAAAAAAgGvK3sV7ZS40q8OQDrpv5X1y8XaxjN3w+A06svqIPr3rUyVtTNLS0Us1fet0mewq72Tx079/0ubZm+Xg4qD7N96voAFBlrHeU3rrw5s+1La3tsk9wF2Rz0RWuZYyc5k+u/szpexIUbvIdpqyfoocXR0lSeGPhWvDCxsU+3qsPr3zU83cOVO+nbgmCAAAAMBlUPvmfVec1Q0WWVlZevLJJ/X888/rjjvu0AMPPKBbbrmlTlsVAgAAAAAAAAAAAAAAAM2FnYOd7l50d4Xmios6j+qsfjP7Ke4/cTq57aQOfH5APe/rWSEmLz1P655dJ0kaMGtAheYKSWrdt7Uin4lUzMsx2vTHTep5X095BXlVqhW3IE7JscmSSRq9YLSlueKiqJejlLAsQZk/Z+q7p77ThFUTrHzmAAAAAFDZt7/7Vhtf3Gh1npK8Ehus5gKr99R4++23tXfvXj3yyCPatGmTbrvtNnXo0EGzZ89WUlKSLdYIAAAAAAAAAAAAAAAANHmBYYHybu9d7Xi3e7pZjo+sOlJpfMfcHSrOLZYk9ZvZr8oc/Wb2k0ySudCsbW9vqzRuGIZiX4+VJLUf2F7+3f0rxdg72qvPtD4X1rH6iFL3pNbwrAAAAACgYfIz8pV1PMvqr7z0PJutyaoGiw4dOsjDw0M9e/bUnDlz9Msvv+jTTz9V9+7d9ec//1mdOnXS8OHDtXTpUhUVFdlqzQAAAAAAAAAAAAAAAECTcs/Se3TH+3fUGOPTwcdynJ2cXWk8YXnChbhgH7W8rmWVObyCvOTX1U+SdHD5QRmGUWH81PZTyjmZI0kKGR5S7VpCo0Mv1V2WUOO6AQAAAKAhXH1d5dPBx+ovNz83m63JwZrJv96hwtHRUePGjdO4ceN06tQpffDBB/roo480adIk+fj4aNKkSZoxY4b69u1r1aIBAAAAAAAAAAAAAACApiRkaPXNDBcVZhVajh3dHSuM5aTk6Ozhs5Iu7IRRk9Z9WyvjYIZyTuUoMzFTvp19LWNJGy9d71NTnlZ9WslkZ5JRZlSYAwAAAAC2MnLOSPWa2MvqPHsX79WXU7+0fkGycgeLmgQFBelPf/qTjh07pnXr1qlnz5765z//qeuvv179+lW9RSEAAAAAAAAAAAAAAADQXJ1LOmc57jC4Q4WxM/vPWI692nnVmKf8+JkDZyqMpe9Ptxx7t/OuNoeDs4Pc/C/cBTb9QHq1cQAAAADQ6Ey2S3XZGiwkqaSkRJ9//rn++te/atu2bZIkwzC0Z8+ey1kWAAAAAAAAAAAAAAAAaHIOrTgkSXJwcVDYtLAKY1nHsyzH7q3ca8xTfrz8vPrm8WjlIUkqyilSwbmCGmMBAAAAoD5GvDNCba5vY5Ncba5vo1v+fotNcjlYM/mVV17RmDFj1LNnzwrn9+3bp/fff1+ffPKJMjMzJV1orJCkyMhIPfDAA9aUBQAAAAAAAAAAAAAAAK4peWfydHjlYUnSjc/cKM82nhXGi88XW44dXGq+5MfR1bHKeZJUdL6oznkcXC+NF58vlmsL1xrjAQAAAKCuImZF2CyXXxc/+XXxs0kuqxosXnrpJV133XXq2bOncnJytGTJEn3wwQeKi4uTdKmpwt/fX/fff78eeOABde3a1fpVAwAAAAAAAAAAAAAAAI2krLRMRplx6bG5zOqc655dJ3OhWa37tdbgPwyuNF5SUGI5tneyrzFX+fGS/JIKY+YCs03yAAAAAMC1yKoGC0n68ccf9c033+h///ufCgsLJV1orLCzs9PIkSP1wAMP6I477pCDg9WlAFwDlo5e2qj1J6ya0Kj1AQAAAAAAAAAAAABNX+bPmcpMzLQ8zla2Vfn2Lt6rPYv2yD3AXeP/N14OzpWvsym/K0VpcWmN+cqPO7o5VhgrvyuFNXkAAAAA4FpkddfDu+++K+nSbhUhISGaPn26pk+frrZt21qbHgAAAAAAAAAAAAAAALiqtLyupVp0bGF5nFmYKcU0LNeJLSe06sFVcvZy1sS1E+UT7FNlnJOnk+XYXGiuMuai8rtdlJ8nSc6eznXOU363i1/nAQAAAIBrkZ21CQzDkJOTk+677z6tW7dOR48e1R/+8IdqmyuSkpK0aNEia8sCAAAAAAAAAAAAAAAAjcLO3k72jvaWLzuHhl2Ck7IzRUtHL5W9k70mfztZbfq3qTa2fONFXlpejXnLj/+6YaM+eXLTciVJzl7Ocm3hWmMsAAAAAFwLrG6wePTRR/XLL79oyZIluvnmm2uN37Ztm6ZPn25tWQAAAAAAAAAAAAAAAKDJ+iXuFy0esViGYWjyt5MVFBFUY3xAzwDLcc7JnBpjc05dGg/oEVBhzL+nv+U4+2R2tTnMRWblp+dfmNPDv9o4AAAAALiWWN1gMXDgQLVo0aL2QElms1kHDx60tiQAAAAAAAAAAAAAAADQZJ3edVofR3+sMnOZJn9Te3OFJHm19ZJvZ19JUuru1Jrzx5++MCfISy07tawwFjIsxHJcU560PWkyyoxKcwAAAADgWmZVg0VSUpLuuuuuWuN27typJ554Qq1bt9brr79uTUkAAAAAAAAAAAAAAACgyUrbm6aPoz9WaXGpJn09Se0i21WK2fzyZs2/fn6l893HdZckZR3P0rlj56rMn5OSo4xDGZKkbmO7yWQyVRgPigiSV5CXJClpQ1K16zy2/lilugAAAABwrbOqwaJDhw5yc3OrcuzkyZP6y1/+om7duunGG2/Uv/71L2VmZsowDGtKAgAAAAAAAAAAAAAAAE3Smf1ntOjmRTIXmDVp7SS1H9S+yrispCydjjtd6fyA3w6Qk4eTJCn+v/FVzt31/i7JkBxcHBT5dGSlcZPJpEEvDJIkJccmW5oxyiszl2n3R7slSZ1u76TAPoF1en4AAAAA0NQ52DJZXl6eli9froULF2rLli2WZoryTRV+fn46e/asLcsCAAAAAAAAAAAAAAAAV7X0hHQtunmR8jPyNfhPg2WUGTq++XiVsbmpuVWedw9wV/Rb0Vrz6Bptf2e7ut7dVW3D21rGU/ek6vu/fi9JGvrqUMtOFb/W/8H+2r9kv5Jjk7XqwVWa/N1kObo6WsY3v7RZmYmZcvFx0Yh3RjTwGQMAAABA02N1g4VhGFq/fr0WLVqkL7/8Uvn5+ZbzF7Vo0UITJ07UAw88oP3792vq1KnWlgUAAAAAAAAAAAAAAACaBHOhWYtuXqS8M3mSpC2vbNGWV7Y0KNf1j1yv3LRcbXllixYOXah+M/vJv4e/Mg5lKH5BvErySnTjMzcq8pnKu1dcZOdgp3tX3Kslo5YoOTZZ8/vPV9j0MDm5OylxbaIS1yTKzc9N45aPk28n3watEwAAAACaogY3WBw4cECLFi3SJ598otOnL2xJWL6pQrqwpeBrr72mp556Ss7OzpZ5v44DAAAAAAAAAAAAAAAArlXmQnO1u1I0RNTsKIVGh2rHuzuUsDxB+f/Kl5ufm0JvCVX44+EKGRpSaw43PzfNiJ2huAVx2vvxXsW+HqvSolJ5t/dW5HORivhdhDxbe9pszQAAAADQFNSrwSI9PV1LlizRokWLtHv3bsv58g0TPXr00KRJkxQdHa3w8HANGDDA0lwhSZMmTdKkSZOsXzkAAAAAAAAAAAAAAADQBLj4uGi2MdumOdtFtlO7yHZW5bBzsFP4o+EKfzTcRqsCAAAAgKatTg0Wy5cv18KFC/Xdd9/JbDZLqthUERQUpAkTJmjSpEnq3bu3JOns2bOXYbkAAAAAAAAAAAAAAAAAAAAAAAC2V6cGi/Hjx8tkMlVoqmjRooXGjh2riRMnasiQIZdtgQAAAAAAAAAAAAAAAAAAAAAAAJdbnRospAs7VphMJvn6+mru3LkaO3asHB0dL+faAAAAAAAAAABoFgzD0I//+FHr/2+9SvJKNHXTVAVHBdd5/sltJ7Vz3k4lxyYr70ye3P3dFXRjkMIfC69znjJzmeIWxGnf4n3KOJQhc5FZ3u291eXOLoqYFSGPQI865ck6kaXtc7br57U/K/tktpw8nBTQI0B9pvZRn/v7yGRnqvPzAgAAAAAAAAAAuJLq1GCxatUqLVq0SKtWrVJGRoYefvhhffPNN5o0aZKGDx8uOzu7y71OAAAA4Jr3UdRHOhFzotY4R3dHvZD7Qo0xV9PFVQAAAABqlnk0U1/N+EonttT+eaAqMa/EKOblGDm4OKjvzL4K6BmgjIMZil8Qr4RlCYp8NlLRf42uMUd+Rr6WjFqilB0p8uvqp4HPD5STh5MS1yTq+ze+1673d2n88vHqMLhDjXmOrDmiLyZ+oaLzReo+trsinoxQ/tl8xS+I18rpK7V38V7du+JeOXs6N+i5AgAAAAAAAAAAXE51arC4/fbbdfvttysnJ0effvqpFi1apI8//liLFy+Wv7+/7r33Xk2cOFEDBgy43OsFAAAAUIur6eIqAAAAANUrv2uFnb2dgiKCdGr7qXrl+OnfP2nz7M1ycHHQ/RvvV9CAIMtY7ym99eFNH2rbW9vkHuCuyGciq8xRZi7TZ3d/ppQdKWoX2U5T1k+Ro+uFHazDHwvXhhc2KPb1WH1656eauXOmfDv5VpnndPxpLRu3TOYCs0bMGaGIWRGWsfDHwvXhTR8qaUOSvpj4hSasmlCv5wkAAAAAAAAAAHAl1KnB4iIvLy899NBDeuihh5SUlKSFCxfqk08+0Xvvvad58+apY8eOmjRpkiZOnChf36r/gQUAAABA9dqEt9Hdi+6uMcZkZ6p27Gq6uAoAAABAzWJevtAcHToiVKMXjNau93fVq8EiLz1P655dJ0kaMGtAhZ//Jal139aKfCZSMS/HaNMfN6nnfT3lFeRVKU/cgjglxyZLJmn0gtGWn/8vino5SgnLEpT5c6a+e+q7apsj1jy2RuYCs9oOaFuhuUKSXFu46rZ5t2nh0IU6svqIEv6XoO73dK/zcwUAAAAAAAAAALgS7Bo6MSQkRC+99JISExO1ZcsWPfDAAzp79qxeeeUVdevWTVFRUTKZTDIMo8K87du3a8aMGVYvHAAAALgWObo5yq+rX41fvp2rbmio68VVkrTpj5uUcyqnyjx1ubiq5XUtVZhVqO+e+s7KZwwAAAA0X4ZhaPR/R2vyN5Pl3c673vN3zN2h4txiSVK/mf2qjOk3s59kksyFZm17e1uVa4h9PVaS1H5ge/l3968UY+9orz7T+kiSjqw+otQ9qZVijq0/ppQdKRdqPlj1WoKjgtWyU0tJ0tbXttb29AAAAAAAAAAAAK64BjdYlDdo0CDNnz9fp0+f1qeffqqRI0fq8OHDMgxDY8aM0SOPPKK4uDhJ0tGjR7Vw4UJblAUAAABQztV0cRUAAACA2kW9FKV+D1T9s3tdJCxPkCT5BPuo5XUtq4zxCvKSX1c/SdLB5Qcr3RTp1PZTyjl5ofk6ZHhItbVCo0Mv1V2WUGn8wLIDluOOwztWm+fiWOruVGX+nFltHAAAAAAAAAAAQGOwSYPFRc7Ozho/frzWrFmjlJQUvf322woNDdX8+fN1ww03KCwsTCtWrLBlSQAAAAD/39V0cRUAAACA2plMpgbPzUnJ0dnDZyVJgWGBNca27tv6wpxTOcpMrNjUkLQxyXJcU55WfVrJZGeqNOei4xuPS5JcfFzk08Gn2jyBfS/VqCoPAAAAAAAAAABAY7Jpg0V5/v7+evLJJxUfH699+/bpqaeeUkZGhr744ovLVRIAAAC45hSdL5JRZtQad7VdXAUAAADg8jqz/4zl2KudV42x5cfPHDhTYSx9f7rl2Ludd7U5HJwd5ObvdmHOgfQKYyUFJTp37Fyd1lK+xq/XAgAAAAAAAAAA0NguW4NFeT169NBbb72l5ORkvfTSS1eiJAAAANAkleSXKOaVGP2r97/0F/e/6A2vN/Sq46v6R/d/6Ltnv9P5X85XOe9qurgKAAAAwOWXdTzLcuzeyr3G2PLj5efVN49HKw9JUlFOkQrOFVjOZydnWxrDL8bUZS3Zx7NrjAUAAAAAAAAAALjSHK5kMTs7O4WGhsowar8DLwAAANAc/fLjLzqz74zCZoRp8B8Gy9HdURmHMhQ/P14//O0Hxf0nTmMWj1GXO7pUmNdYF1flpeVZLq5ybeFa85MDAAAArmHmIrNKi0otj0tySy5rveLzxZZjB5eaf9Xv6OpY5Tzpwq55dc3j4HppvPh8seUzQEPXUr42AAAAAAAAAADA1eCKNlhI0t13362kpKQrXRYAAAC4ohp6cZV7gLumbpoq/+7+lnOdb++sG564QUtHL9Wxdce0bNwyTd00Ve0i21lirqaLqwAAAIDmKPb1WMW8HGN5nG13eXdnKCm49BnD3sm+xtjy4yX5FT+bmAvMVuex1VoAAAAAAAAAAAAa2xVvsHBzc1OHDh2udFkAAADgimrIxVVjPx0re2f7KhsVHJwddNdHd2lux7kqLSrV2ifW6uH4hy3jV9PFVQAAAEBzNOj3g3TjUzdaHicnJ+udXu9ctnrlG6dLi0triKw47ujmWGGsfON0Q/PYai0AAAAAAAD1tXT00katP2HVhEatDwAAbO+KN1gAAAAAzUFDLq7yCPSocdyzjaeuG3mdDq88rNRdqTq967Ra920t6eq6uAoAAABojhycHeTgfOnnaUePy/szspOnk+XYXGiuIbJiQ3b5eZLk7Olc5zzlG7LL52noWsrXBgAAAAAAAAAAuBrYNfYCAAAAgGuRg7ODnL2cLV+2uriqzfVtLMcnt520HF9NF1cBAAAAuPx8gn0sx3lpeTXGlh8vP6++eXLTciVJzl7OFXbe827vLZOdqUJMXdbiHexdYywAAAAAAAAAAMCVRoMFAAAA0IS4B7hbjnNTL124dDVdXAUAAADg8gvoGWA5zjmZU2NszqlL4wE9AiqM+ff0txxnn8yuNoe5yKz89PwLc3r4VxhzdHVUi44trF4LAAAAAAAAAABAY3OoPQQArh1LRy9t1PoTVk1o1PoAgKbPKDMsx3b2l/qlL9fFVa37ta4yR00XVwH/r737jq+iyv8//r7pnRp6byIgVZYiKiAsKH0VBfmC6IIi6mJDBVFAcUVBxbUgoCKiIpZVFxUVEVC69CpFQGqQ0EISSCHn9we/jAm59+Ymucltr+fjkcdjcs+ZM+fmnJmcMzOfGQAAABS/uKpxKtegnE7uPqmETQlO8x7bcOzSOtXiVLZ+2VxptTvX1hItkSQlbEpQwz4N7ZZxfPNxaz5Su3PtPOm1OtfSqb2ndOHMBZ3544xK1yzttC6OygEAAAAAAAAAAPAk3mABAAAAeIFdC3bp50k/yxjjNF/Ot1bEVI6xlrNvrpJU5JursjkrJ7+bqwAAAAAUv0b9G0mSzhw4o9P7TtvNk3QkSYm/JUqSrrzlStlstlzp1dpWU1y1OEnS/sX7HW5r34/78mw3p8b9G1vLzsrJTqvUvJLK1ivrMB8AAAAAAAAAAIAn8AYLAAAAwAvs/HynNs/ZrJbDWiqmUozDfIdXH7aWa3SokSutUf9G+uW5X6ybq8rUKZNnfVdvrko6nKT9i/er4/iOduuR381VgLfw5BvMsmxZqvpwVY9tHwAA+L82/2qjNa+uUXpyuja8vUE3/PuGPHk2vrNRMlJIRIjaP9I+T7rNZlOHsR307chvdXD5QSX+lqjyDcvnypOVmaVN722SJNXvUV+VmlXKU06dLnVUtU1VHVlzRBve3qAWd7XIk+ePn//Qyd0nJUnXPnltYb4yAAAAAAAAAABAseINFgAAAIAX2bNwj8O0k3tOWoEN1dtXV4XGFXKlt/lXG4XFhEmSNry9wW4Zrt5cJcm6uepyrtxcBQAAAKD4RVeIVtcpXSVJq19ZrSO/HsmVnrA5QSteXCFJ6vRsJ+tNFZdrNbzVpQBuIy0YvkAZ5zNypS+dsFSn9pxSROkIdXulm8P69Hizh0IiQ3R41WGtfX1trrQLZy7o2/u+lSQ16NlAjW4hUBsAAAAAAAAAAHgf3mABAAAAeJHFYxarxjU1VK5BuVyfnz91Xp8P/FzmolFoVKhufP3GPOtm31z1zb3faPUrq9WwX0NVbf3X0/MLcnPVto+26eDyg1owfIH+74f/U2hkqJXu6s1VAAAAAPK35YMt1vLxLcet5d8X/a6kw0mSpOiK0arbta7d9a8ecbWSjyfr52d+1pxOc9RyWEvFN45X4m+J2jBrgzJSMtTu0XZq/2jeAOtsQSFBuu2L2/RRz490cPlBzWw1U83vbK6w6DDt+XaP9nyzR1Hlo9T/s/4qV7+cw3Iqt6ys/p/0138H/VcL/7VQB385qFqda+n8yfPaMGuDzhw4o9qda+sfH/2joH8mAAAAAAAAAACAEkGABQAAAOAF4hvFKyg0SCnHU/RW87fUZEATVWldRcFhwUrcmajN729W6olURVeM1i3zb1HlFpXtluNNN1cBAAAAyN8Xg7+w+/nyfy+3lmteX9NhgIUkdRzfUXW71tWa/6zRjs92KHV6qqLKR6nu3+uq9X2tVbtT7XzrEVU+Snctv0vrZ63XlrlbtPz55bqYdlGlapRS+8faq+2DbRVbOTbfchr0bKARm0do9bTV2vPNHu363y6FRoeqQpMKuu7p69T8juayBdnyLQcAAAAAAAAAAMATfD7AIjExUa+++qq++OILHThwQGFhYbriiis0cOBAjRgxQmFhYYUu2xij5cuX67PPPtPKlSu1d+9eJScnKy4uTg0aNNDf//533XPPPapSpYobvxEAAAAC0TWPXaNmQ5pp5393at+iffrj5z+0ff52Xcy4qMgykarYtKIa9GygFv9sofDYcKdledPNVQAAAACcG2/Gu6Wc6u2rq3r76kUqIygkSK3vba3W97YuUjmla5VW92nd1X1a9yKVAwAAAAAAAAAAUNJ8OsBi7dq16tu3r44dO6auXbvq3nvv1fnz5zVnzhyNGjVK7733nr7++utCBUBs2LBBd955p7ZsufR69u7du6tPnz6qXLmy/vjjD73//vt65pln9PLLL+utt97SoEGD3P31AAAAEGBiKsWo9cjWaj2yaDczSd51cxUAAAAAAAAAAAAAAAAA+AKfDbA4ePCgevbsqRMnTujBBx/UK6+8YqU98MADuvHGG7VkyRL17t1bK1asUHi486f8Xm7t2rXasmWLbDabPv/8c/Xr1y9X+hNPPKGePXtqyZIlGjJkiMqWLasbb7zRLd8NAAAAAAAAAAAAAAAAAAAAAACUrCBPV6CwRo8erRMnTqhGjRqaPHlyrrTw8HDNmjVLwcHBWr9+vV5//fVCb2fYsGF5giskKSoqSnPmzFFoaKiysrL00EMPFXobAAAAAAAAAAAAAAAAAAAAAADAs3wywGLPnj369NNPJUlDhgyx+3aKunXrqlOnTpKkF154QZmZmYXaVp8+fRymVa9eXa1bt5Yk7dq1S3v27CnUNgAAAAAAAAAAAAAAAAAAAAAAgGf5ZIDFZ599JmOMJKlLly4O83Xt2lWSdOLECS1durRA2+jRo4cWLlxoBWk4UrNmTWv54MGDBdoGAAAAAAAAAAAAAAAAAAAAAADwDiGerkBh/PTTT9Zy8+bNHeZr0aJFrnWcBWNcrnr16qpevXq++c6cOWMtR0dHu1w+AAAAAAAAAAAAAAAAAAAAAMA/vdfxPf2x7I9884VGh2ps8lineQ6tPKS1r6/VweUHlfJniqLjo1WtXTW1HtlatTrWcqk+WZlZWj9rvbZ+sFWJvyUqMy1TpWqU0hV9rlDbUW0VUynGpXL8nU8GWGzbtk2SFBsbq1KlSjnMlzNAYvv27cVSl/3791t1cRbsAQAAAAAAAAAAAAAAAAAAAABAQSx7ZpmWTVymkIgQtRjWQhWaVFDizkRtmLVBOz7dofaj26vri12dlpGamKqPen6kI2uOqHzD8rrm8WsUFhOmPd/s0YrJK7TxnY269bNbVfO6miX0rbyXzwVYpKWlKSEhQZJUsWJFp3lzph84cMDtddm1a5d+++03SdKdd96piIgIt28DAAAAAAAAAAAAAAAAAAAAAOB7qrSuon7v93OaxxZkc5i27q11Wjp+qUIiQjTkpyGq1qaaldZ0cFPNvna2Vk5ZqegK0Wr/aHu7ZWRlZml+v/k6suaIqrevrsE/DlZoZKgkqfXI1lo8drGWP79cH/f5WMPWDlO5+uUK8U39R5CnK1BQ586ds5bzC2iIjIy0u567zJgxQ5JUtmxZjRs3zu3lAwAAAAAAAAAAAAAAAAAAAAB8U2hUqMo3LO/0p1wD+wENKSdStGj0IklSm1FtcgVXSFLlFpWtoIolTy1R0uEku+Wsn7VeB5cflGxSr1m9rOCKbB0ndlTZemV14cwF/fDwD0X8xr7P595gcf78eWs5LCzMad6c6ampqW6tx86dO/Xmm29Kkt566y3Fx8e7vO75zPNKzky2fg8NClVocKiTNYCiMzYjIyNjM8pSlqerE7AyMzM9XQWPyczMVFZWVkD/DeBZ9EF4WlYW/38DGXOAwGRshv89AY7xB+gDgY32B3OAwJZ6MVXhmeHW78wBvA/nzH0HbeU7aCvfQnv5DtrKdxib8XQV4EFnz57VqVOnrN/Dw8MVHh7uZA3/kWXj2FQYHN/9R0mf/+O8IwqLvoPCou84VhJ/kzWvrlF6crokqeWwlnbztBzWUsueWabMC5la+dJKdX+le650Y4yWP79cklTjmhqKb5T3nvfg0GA1G9pMS8Yt0e6vdythc4IqNavk5m/jO3wuwCLnWynS09Od5s2ZHhUV5bY6pKamauDAgUpLS9Njjz2m/v37F2j9x5c+nuv37i2766arb3Jb/QB7jIzOx57XKZ2STY5fJYTitXz5ck9XwWOysrJ08OBBSVJQkM+9QAl+gD4ITzt58qSnqwAPYg4QmIyMMg9eOqHC/57AxPgD9IHARvuDOUBgYw7g/Thn7jtoK99BW/kW2st30Fa+49z5c56uAjyoefPmuX6/4447NHToUI/UpaSdqnwq/0zIg+O7/yjpe4E474jCou+gsOg7juUMsC0uOz7bIUkqXau0ytYrazdPXLU4lW9YXok7E7Xzs53q9nI32Wx/jS8Orz6spEOX3mxRu0tth9uq27Wuloxbcmm7n+4gwMKXxMbGWssXLlxwmjfn2y5yrlcUmZmZGjhwoDZv3qzBgwdr8uTJBS7jhY4vqExEGev30KBQhR7jyVUoXsZmdEqnVDahrGyGiZmndOjQwdNV8JjsaM327dsrJMTn/v3AD9AH4WnZk00EJuYAgcnYjKrUqML/ngDG+AP0gcBG+4M5QGBjDuD9OGfuO2gr30Fb+Rbay3fQVj7kfP5Z4L82bdqk6tWrW78H0hssjrx8xNNV8Ekc3/1HSd8LxHlHFBZ9B4VF33Hs8OHDhVov7VyawqLDZAtyPgZIOpKkk7suPcypUnPnwQ6VW1RW4s5EJR1O0qk9p1SuQTkrbf9P+61lZ+VUbFZRtiCbTJbJtU4g8rmeHh4erkqVKikhIUHHjx93mjdneq1atYq87aysLA0dOlT/+9//dPvtt2v27Nm5InxcFRkSqZiQmNwf8qZIFLMsZckmm2zGpiBDFKGnBPoAIygoSCEhIQH/d4Dn0AfhSUTxBzbmAIEpS1n87wF9APSBAEf7BzbmAIEtKjiKOYCX45y576CtfAdt5VtoL99BW/kObpAObKVKlVLZsvafKOzvODYVDsd3/+GJc3+cd0Rh0XdQWPQd+1z9e2SkZmjZM8u047MdOv37aWWkZsgWZFO5K8qpfo/6avdQO8VWyfsigT+3/Wktx1WPc7qNnOl/bv8zV4DFiW0nrOVS1Us5/j7hIYqKj1LK8RSd2H7CYb5A4JOjsyZNmkiSzp07p7NnzzrMlzMyqHHjxkXaZlZWlu688059+OGHGjBggN5//30FBwcXqUwAAAAAAAAAAAAAAAAAAAAAgH86+utRLX9+uWpcW0N9ZvfRwK8HqsuLXWQuGq2aukqvN3xdu/63K896Zw6csZajK0Y73UbO9JzrFbScmIqXHhyUlpSm86cD9zV9Phlg0blzZ2t506ZNDvNt2LDB7joFZYzR8OHD9f7776t///764IMPCK4AAAAAAAAAAAAAAAAAAAAAADgUXSFad6+/Wz3e6KHGtzZWgx4N1P6R9hqxZYTqdK2j9HPp+rT/pzq08lCu9dLPpVvLIRHO35YRGhlqdz1JSjuX5nI5IZF/pV9eTiDxyQCLW265RTbbpVcrLl682GG+H3/8UZJUvnx5dezYsVDbMsbonnvu0bvvvqubb75ZH330UZ7gimPHjunqq6/WzJkzC7UNAAAAAAAAAAAAAAAAAAAAAIB3ykzLVFpSmvXjSgDCLR/fovt+u0/xjeLzpIWEh6jve30VHB6si+kX9e393+ZKzzifYS0Hhzl/MUDO9IzUjFxpmecz3VJOIPHJAIv69eurf//+kqS5c+cqPT1vB923b59++uknSdLjjz+ukJDcETfbtm1TgwYNVK1aNf38888Ot3Xfffdp1qxZ6tu3r+bNm5enHElKS0vT+vXrdfTo0aJ8LQAAAAAAAAAAAAAAAAAAAACAl1n+/HJNLjXZ+nm90ev5rhNTKUaRZSIdpsdWiVW97vUkSQkbE3Rs4zErLedbKS6mX3S6nZzpoVGhudJyvpWiKOUEEufv+fBiU6ZM0ZIlS3TgwAGNHTtWU6dOtdLS0tJ099136+LFi2rVqpXuv//+POs/99xz2rNnjyTpiSee0MqVK/PkeeCBBzR9+nTVq1dPI0eO1IoVK+zWJSEhwU3fCgAAAAAAAAAAAAAAAAAAAADgTTqM6aB2D7ezfj9y5IheafRKkcutcnUV7fpqlyTp0MpDqtyisiQpLDbMypN5IdPuutlyvu0i53qSFB4b7nI5Od92cXk5gcRnAyxq1KihBQsWqF+/fnrppZe0bds29e7dW+fPn9ecOXO0detWNW/eXP/73/8UERGRZ/2srCxr2RiTJ33atGl6/fVLkUV79+7V3//+9+L7MgACxrxe8zy6/YELBnp0+wAAAAAAAAAAAAAAAAAAAL4mJDxEIeF/3XofluSeAIToCtHWcnJCsrVculZpaznleIrTMnKm51wv+/fDqw9b+eKqxjksJ/n4pe2Hx4U7ffOGvwvydAWKok2bNtqyZYuefPJJHTp0SI899pgmTZqkyMhITZs2TWvWrFGVKlXsrvvkk0+qXr16qlq1ql544YU86QcOHCjm2gMAAAAAAAAAAAAAAAAAAAAAApXJ+utFAUHBf93aX6FJBWs56VCS0zKSDv+VXqFxhVxp8U3ireWzh846LCMzLVOpJ1IvrdM43mG+QOCzb7DIVr58eU2aNEmTJk0q0HpNmzbVnj17HKZPmzZN06ZNK2LtAAAAAACBbOu8rTry8hEFGc8834A3mAEAAAAAAAAAAAAAUPJ2Ldil45uP69onr5XNZnOYL+dbK2Iqx1jLcVXjVK5BOZ3cfVIJmxKcbuvYhmOX1qkWp7L1y+ZKq925tpZoiSQpYVOCGvZpaLeM45uPW8EetTvXdro9f+fzARYAAAAAAAAAAAAAAACALzHG6Nc3ftWPT/yojJQM3bHkDtXqWMvl9Q+tPKS1r6/VweUHlfJniqLjo1WtXTW1Htna5XKyMrO0ftZ6bf1gqxJ/S1RmWqZK1SilK/pcobaj2iqmUkz+hQAAAACwa+fnO7V5zma1HNbS6dj68OrD1nKNDjVypTXq30i/PPeLzhw4o9P7TqtMnTJ51k86kqTE3xIlSVfecmWeYI5qbasprlqckg4naf/i/eo4vqPdeuz7cV+u7QYyzzxCEwAAAAAAAAAAAAAAAAhAp34/pTkd52jhAwuVkZJR4PWXPbNMs6+drV1f7VLDfg1142s3qlH/Rtq7cK/mdJqjRY8tyreM1MRUvdvhXX078ludP3Ve1zx+jbq+2FVlapfRiskrNL3pdP3x8x+F+XoAAAAActizcI/DtJN7TlqBDdXbV1eFxhVypbf5VxuFxYRJkja8vcFuGRvf2SgZKSQiRO0faZ8n3WazqcPYDpKkg8sPWsEYOWVlZmnTe5skSfV71FelZpXy/2J+jAALAAAAAAAAAAAAAAAAoJgZY7T29bV6q9lbStiUoGptqxW4jHVvrdPS8UsVHBasIT8N0Y2v3qhWw1up28vdNPTnoQqNDtXKKSu1cupKh2VkZWZpfr/5OrLmiKq3r667N9ytax67Rq1Httbt39yuDmM6KPVEqj7u87FO7jlZlK8MAAAABLzFYxbr5O684+rzp87r84Gfy1w0Co0K1Y2v35gnT3SFaHWd0lWStPqV1Try65Fc6QmbE7TixRWSpE7PdlJctTi7dWg1vNWlt2MYacHwBco4nzvQe+mEpTq155QiSkeo2yvdCvU9/UmIpysAAAAAAAAAAAAAAAAA+LtlE5dp2cRlqtutrnrN6qWN72zU4dWHXV4/5USKFo2+9HaKNqPaqFqb3AEalVtUVvtH22vZxGVa8tQSNRnQxO4NVutnrdfB5Qclm9RrVi+FRobmSu84saN2fLpDp/ae0g8P/6CBCwYW/MsCAAAAAS6+UbyCQoOUcjxFbzV/S00GNFGV1lUUHBasxJ2J2vz+ZqWeSFV0xWjdMv8WVW5R2W45V4+4WsnHk/XzMz9rTqc5ajmspeIbxyvxt0RtmLVBGSkZavdoO7V/NO/bK7IFhQTpti9u00c9P9LB5Qc1s9VMNb+zucKiw7Tn2z3a880eRZWPUv/P+qtc/XLF9SfxGQRYAAAAAAAAAAAAAAAAAMXMGKNeb/dSy3+2LNT6a15do/TkdElSy2H2y2g5rKWWPbNMmRcytfKller+Svc8dVj+/HJJUo1raii+UXyeMoJDg9VsaDMtGbdEu7/erYTNCarUrFKh6gwAAAAEqmseu0bNhjTTzv/u1L5F+/THz39o+/ztuphxUZFlIlWxaUU16NlALf7ZQuGx4U7L6ji+o+p2ras1/1mjHZ/tUOr0VEWVj1Ldv9dV6/taq3an2vnWJ6p8lO5afpfWz1qvLXO3aPnzy3Ux7aJK1Sil9o+1V9sH2yq2cqy7vr5PI8ACAAAAAAAAAAAAAAAAKGYdJ3SUzWYr9Po7PtshSSpdq7TK1itrN09ctTiVb1heiTsTtfOzner2crdc2zy8+rCSDiVJkmp3cXwTVt2udbVk3JJL2/10BwEWAAAAQCHEVIpR65Gt1Xpk6yKXVb19dVVvX71IZQSFBKn1va3V+t6i18efEWABAAAAAAAAAAAAAAAAFLOiBFckHUnSyV0nJUmVmjsPdqjcorISdyYq6XCSTu05pXINyllp+3/aby07K6dis4qyBdlkskyudQAAuc3rNa9Et5dly9Kpyqd05OUjCjJBGrhgYIluHwCAQBDk6QoAAAAAAAAAAAAAAAAAcOzPbX9ay3HV45zmzZn+5/Y/c6Wd2HbCWi5VvZTDMkLCQxQVH3Vpne0nHOYDAAAAAH9DgAUAAAAAAAAAAAAAAADgxc4cOGMtR1eMdpo3Z3rO9QpaTkzFGElSWlKazp8+71pFAQAAAMDHEWABAAAAAAAAAAAAAAAAeLH0c+nWckhEiNO8oZGhdteTpLRzaS6XExL5V/rl5QAAAACAv3I+UwIAAAAAAAAAAAAAAACQS9bFLJks89fvmVnFur2M8xnWcnBYsNO8OdMzUjNypWWez3RLOQAAAADgrwiwAAAAAAAAAAAAAAAAAArg1N5TOrXnlPX7WZ0t1u3lfCvFxfSLTvPmTA+NCs2VlvOtFEUpBwAAAAD8FQEWAAAAAAAAAAAAAAAAQAGUrVdWZeqUsX4/deGUtKz4thcWG2YtZ17IdJIz99sucq4nSeGx4S6Xk/NtF5eXAwAAAAD+igALAAgg83rN89i2s2xZqvpwVY9tHwAAAAAAAAAAAADcJSg4SArO8XtmULFur3St0tZyyvEUp3lzpudcL/v3w6sPW/niqsY5LCf5eLIkKTwuXJFlIgtYYwAAAADwTcU7uwMAAAAAAAAAAAAAAABQJBWaVLCWkw4lOc2bdPiv9AqNK+RKi28Sby2fPXTWYRmZaZlKPZF6aZ3G8Q7zAQAAAIC/IcACAAAAAAAAAAAAAAAA8GJxVeNUrkE5SVLCpgSneY9tOHZpnWpxKlu/bK602p1rW8vOyjm++bhMlsmzDgAAAAD4uxBPVwAAAAAAAAAAAAAAAACAc436N9Ivz/2iMwfO6PS+0ypTp0yePElHkpT4W6Ik6cpbrpTNZsuVXq1tNcVVi1PS4STtX7xfHcd3tLutfT/uy7VdAIB3mtdrnke3P3DBQI9uHwCA4sAbLAAAAAAAAAAAAAAAAAAv1+ZfbRQWEyZJ2vD2Brt5Nr6zUTJSSESI2j/SPk+6zWZTh7EdJEkHlx+0gjFyysrM0qb3NkmS6veor0rNKrnpGwAAAACA9yPAAgAAAAAAAAAAAAAAAPBy0RWi1XVKV0nS6ldW68ivR3KlJ2xO0IoXV0iSOj3bSXHV4uyW02p4K9XoUEMy0oLhC5RxPiNX+tIJS3VqzylFlI5Qt1e6FcM3AQAAAADvFeLpCgAAAAAAAAAAAAAAAACBYMsHW6zl41uOW8u/L/pdSYeTJEnRFaNVt2tdu+tfPeJqJR9P1s/P/Kw5neao5bCWim8cr8TfErVh1gZlpGSo3aPt1P7RvG+vyBYUEqTbvrhNH/X8SAeXH9TMVjPV/M7mCosO055v92jPN3sUVT5K/T/rr3L1y7npmwMAAACAbyDAAgAAAAAAAAAAAAAAACgBXwz+wu7ny/+93FqueX1NhwEWktRxfEfV7VpXa/6zRjs+26HU6amKKh+lun+vq9b3tVbtTrXzrUdU+SjdtfwurZ+1XlvmbtHy55frYtpFlapRSu0fa6+2D7ZVbOXYgn9BAAAAAPBxBFgAAAAAAOCn5vWa5+kqaOCCgZ6uAgAAAAAAAOA1xpvxbimnevvqqt6+epHKCAoJUut7W6v1va3dUicAAAAA8AdBnq4AAAAAAAAAAAAAAAAAAAAAAACApxFgAQAAAAAAAAAAAAAAAAAAAAAAAh4BFgAAAAAAAAAAAAAAAAAAAAAAIOCFeLoCAAAAAAAAAAAAAAAAAICCm9drnqerAAAAAPgV3mABAAAAAAAAAAAAAAAAAAAAAAACHgEWAAAAAAAAAAAAAAAAAAAAAAAg4IV4ugIAgMCxdd5WHXn5iIKMZ+L7Bi4Y6JHtAgAAAAAAAAAAAAAAAAAAwPvxBgsAAAAAAAAAAAAAAAAAAAAAABDwCLAAAAAAAAAAAAAAAAAAAAAAAAABjwALAAAAAAAAAAAAAAAAAAAAAAAQ8AiwAAAAAAAAAAAAAAAAAAAAAAAAAY8ACwAAAAAAAAAAAAAAAAAAAAAAEPBCPF0BAAAAAAAAAAAAAAAAAAAA+JZ5veZ5ugoauGCgp6sAAPAzvMECAAAAAAAAAAAAAAAAAAAAAAAEPAIsAAAAAAAAAAAAAAAAAAAAAABAwAvxdAUAAAAAAID/8vSroXktNAAAAAAAAAAAAAAAcBUBFgCAgOHpm/skbvADAAAAAAAAAAAAAAAAAADwVkGergAAAAAAAAAAAAAAAAAAAAAAAICnEWABAAAAAAAAAAAAAAAAAAAAAAACHgEWAAAAAAAAAAAAAAAAAAAAAAAg4BFgAQAAAAAAAAAAAAAAAAAAAAAAAl6IpysAAAAAAAAAAAAAAAAAAAAAFNS8XvM8uv2BCwZ6dPsAAPcjwAIAAAAAAPgtT55Uz7JlqerDVT22fQAAAAAAAAAAAAAAUDBBnq4AAAAAAAAAAAAAAAAAAAAAAACApxFgAQAAAAAAAAAAAAAAAAAAAAAAAh4BFgAAAAAAAAAAAAAAAAAAAAAAIOARYAEAAAAAAAAAAAAAAAAAAAAAAAJeiKcrAAAAAAAAAAAAAAAAAAAAAAAomHm95hVr+Vm2LJ2qfEpHXj6iIJP3uf4DFwws1u0DnsAbLAAAAAAAAAAAAAAAAAAAAAAAQMDjDRYAAJSg4o4Y9nZELAMAAAAAAAAAAAAAAAAAAG/FGywAAAAAAAAAAAAAAAAAAAAAAEDA4w0WAAAAAAAAxWTrvK068vIRBRnPPOOCN4gBAAAAAAAAAAD4r3m95rmUL8uWpVOVT7n9uhXXogD4IwIsAAAAAAAAAAAAAAAAAAAAAPgUVwNMigsBJoB/8szjEwEAAAAAAAAAAAAAAAAAAAAAALwIARYAAAAAAAAAAAAAAAAAAAAAACDghXi6AgAAAAAAACgevBYZAAAAAAAAAAAAQHHheiT8EW+wAAAAAAAAAAAAAAAAAAAAAAAAAY8ACwAAAAAAAAAAAAAAAAAAAAAAEPBCPF0BAAAQODz5SrgsW5aqPlzVY9sHAAAAAAAAAAAAAAAAAADejQALAAAAAAAAFAtPBthK0sAFAz26fQAAAAAAAAAAAPgvT18LA1A8gjxdAQAAAAAAAAAAAAAAAAAAAAAAAE/jDRYAACBgbJ23VUdePqIg45kYU56gDAAAULI8/dSgLFuWqj5c1aN1AAAAAAAAAAAAAAC4jgALAACAEuLpG/wI8AAAAAAAAAAAAAAAAHAfT98L4mmB/v0B+CcCLAAAAAAAAIBiwlvUAAAAAAAAAAAAAMB3EGABAAAQIDz91ABu7gMAAAAAAAAAAAAAAAAAeDOfD7BITEzUq6++qi+++EIHDhxQWFiYrrjiCg0cOFAjRoxQWFiYW7bz7bff6q233tL69et18uRJVa5cWR07dtQDDzygli1bumUbAAAA/szTAR6SbwV5pCamavWrq/XbF7/pzIEzCg4LVvkryqvJwCa6esTVCg4L9nQVAQCAD/D0GMyXxl+ApzEHAAAAAAILcwAAAAAgsDAH8B1Bnq5AUaxdu1ZNmzbVpEmTVKVKFb3wwgsaO3askpOTNWrUKLVt21ZHjx4t0jaysrJ09913q0ePHlqxYoWGDBmi//znP+ratas++ugjtWnTRv/5z3/c9I0AAAAA6cjaI5redLp+mfSLYqvEqssLXXTt2GuVnpyu70Z9p7fbvq1zR895upoAAAAA3IQ5AAAAABBYmAMAAAAAgYU5gG/x2TdYHDx4UD179tSJEyf04IMP6pVXXrHSHnjgAd14441asmSJevfurRUrVig8PLxQ2xk7dqxmzZql8uXLa9WqVapXr54k6e6779Y//vEP9ejRQw8++KAqV66s/v37u+W7AQAAIHCdPXhWH/X8SKknUtXmwTbq/kp3K+1vD/xNH974oQ4sOaB5vefprhV3KSTcZ4f0AAAgAPAGDSB/zAEAAACAwMIcAAAAAAgszAF8j8++wWL06NE6ceKEatSoocmTJ+dKCw8P16xZsxQcHKz169fr9ddfL9Q2tm/frilTpkiSnn32WSu4Ilv37t01ePBgGWP0wAMPKCUlpXBfBgAAAPj/Fo1epNQTqSpVo5S6TO6SKy0kPES9ZvWSLdimY+uPae3raz1USwAAAADuwhwAAAAACCzMAQAAAIDAwhzA9/hkiMuePXv06aefSpKGDBli9+0UdevWVadOnfTjjz/qhRde0KhRoxQSUrCv+/zzzysrK0uRkZEaNGiQ3TzDhw/XnDlzdPz4cb399tsaNWpUwb8QAAAASoQnn6CceCEx3zwn95zU9k+3S5KaDmlqNyK9bN2yqt2ptvb9uE8rXlihtqPaKijEZ+OmAQAAipUnx39ZtiydqnxKR14+oiDjmfEab/DwfswBAAAAgMDCHAAAAAAILMwBfJNPBlh89tlnMsZIkrp06eIwX9euXfXjjz/qxIkTWrp0qdO8l0tLS9OCBQskSW3atFFsbKzdfO3atVNMTIySk5P16aefEmABAACAQtvx2Q7p0jBXdbrUcZivTtc62vfjPqWeSNWBpQec5gUAAEDg8mSASTaCPJxjDgAAAAAEFuYAAAAAQGBhDuCbfDLA4qeffrKWmzdv7jBfixYtcq1TkACLdevWKSkpKd9tBAUFqWnTplq5cqVWrVql8+fPKzIy0m7e9PR0SVJGVobL9QDcJeNihr5d961uq3SbwoPyvvUFKG70QXgafRCelj0GzB4T2nPgpwPWcqXmlRzmq9Tir7T9P+1nUuXFmAMENv73gD4A+kBgo/0v8YYgD085lnpMEnMAwFtxnPYdtJXvoK18C+3lO2gr/8IcwP9kz/mczf0Aezi+o7DoOygs+g4Ki75TNMwBfJNPvj9k27ZtkqTY2FiVKlXKYb7q1atby9u3by/UNi4vx9l2srKy9NtvvznMl5aWJknKzMosUF0Ad8jIytB3G77j5j54DH0QnkYfhKdljwGzx4T2/LntT0lSWGyYIkpFOMxXqvpfY+AT20+4qYYoDswBAhv/e0AfAH0gsNH+YA4AeDeO076DtvIdtJVvob18B23lX5gD+J/sOZ+zuR9gD8d3FBZ9B4VF30Fh0XeKhjmAb/K5N1ikpaUpISFBklSxYkWneXOmHzhwoEDbyZm/oNvJ+eYMAAAAwBWZaZlKTkiWJMVUjHGaN7pitLV85sCZ4qwWAAAAgGLCHAAAAAAILMwB/NvCfy3Utpht+WcEAABAwGAO4Lt87g0W586ds5YjIhxH8khSZGSk3fW8aTsAAACAJKWf++vV0SERzuOgQyNDreW0czwRCQAAAPBFzAEAAACAwMIcAAAAAAgszAF8l8+9weL8+fPWclhYmNO8OdNTU1M9vp2srCxJUkJKQq7PQ4JCFBoUam8VwG3OXzyvoKAgnU47rQuZFzxdHQQg+iA8jT6IkpZ1MUsyf/1+OuX0pc///5jwchnn/3qVYnBYsNOyc6ZnpPIKRm/GHCCw8b8H9AHQBwIb7R94mANA+qu9j6YcVerFv64XMAfwPhynfQdt5TtoK99Ce/kO2sp7XT4HOHPhzKXPmQMEFK4DoLA4vqOw6DsoLPoOCsvb+85rXV8rsW0xBwgcPhdgkfNtEenp6U5y5k6Piory+HZOn750Qe2VX18pUF0Ad3p8yeOergICHH0QnkYfhKdljwkvlzMS/WL6Radl5EwPjeLkvDdjDgCJ/z2gD4A+EOhofzAHCCzHjx+XJD2/+nkP1wSu4jjtO2gr30Fb+Rbay3fQVr7j+PHjqlGjRp7PmQP4J64DoKg4vqOw6DsoLPoOCou+4xhzAP/jcwEWsbGx1vKFC84joXK+hSLnep7aTtu2bfXLL7+oTJkyCgoKsj4PDw/P9y0ZAAAA8C2Z6ZnKSvsrQj0rK0snzpxQ6zat7eYPi/1rPJh5IdNp2Tkj3MNjw4tYUxQn5gAAAACBgzkAJKlFixbMAQAAAAKEozlAixYt7OZnDuCfuA4AAAAQOJgDBA6fC7AIDw9XpUqVlJCQYD0JypGc6bVq1SrQdnLmd9d2QkJC1KFDhwLVAwAAAP6jnuo5TAsJD1FMpRglJyQr+Xiy03JSjqdYy6VrlXZX9VAMmAMAAAAENuYAgYc5AAAAQGBjDhB4mAMAAAAENuYA/iko/yzep0mTJpKkc+fO6ezZsw7zHT582Fpu3LhxobYhSYcOHXKaN3s7QUFBatiwYYG2AwAAAGSr0KSCJCn9XLounHX8FrWkw0nWcnzj+GKvFwAAAIDiwRwAAAAACCzMAQAAAIDAwhzAN/lkgEXnzp2t5U2bNjnMt2HDBrvruOLqq69WbGxsvtvIysrS5s2bJUnt2rVTZGRknjyJiYl66qmn1KRJE8XExKhs2bJq166d/vOf/yg9Pb1A9YL/69ixo2w2W74/MTEx+Za1cuVK3X777apRo4YiIiJUvXp13XrrrVq6dKnL9cnMzNT06dN1zTXXqFy5coqJiVGjRo00ZswYJSQkFOGbwtOMMXr99dcVExMjm81WoH4heVf/+uOPP/TQQw/piiuuUFRUlCpUqKBOnTrpvffeU1ZWVv4FwCMK0wcPHDjg0jHSZrPp/vvvz7c8+mBgSkxM1PTp09W3b1/VrFlTERERioqKUu3atXXbbbdpwYIFMsa4VJa7j4X3r7hfz+k5va7X9fDIhx32w2MbjlnLtTvXlkQ/9DbMATyD8U1e3377rXr37q2qVasqIiJCtWvX1p133plrvuzrvPm4Th8ofmfOnNGHH36ou+66Sy1atFDp0qUVEhKi0qVLq3Xr1hozZowOHjzoUlm0v38ZPXq0NTeYMGGCS+vQB3yPP5xHq9W5lrWcsOlSHnvtf8s9t2ijNipLWdYcID/+3v4IbO4cAzqydOlSl89DTZ061U3fzL+4c6zmCo57hVcSbcU+VfwKMwZ2BftW8XBne7F/+RZ7cwB77F0HQMm5cOGCPv/8cw0ZMkRXXnmlYmNjFR4ersqVK6tbt2566623lJqa6nJ5zPORE9eQAoe/Xr+A5/j6eW+UrN27d+uJJ55Q8+bNVb58eUVGRqpWrVq67rrrNGbMGC1evNjp+vQd92EO4KOMD9q9e7ex2WxGknnqqacc5uvatauRZMqXL28yMjIKvJ1BgwYZSSYyMtKcO3fObp4VK1YYSUaSmTZtWp70NWvWmMqVKxtJpmvXrub11183U6ZMMU2aNDGSTIsWLcyRI0cKXDf4r+uvv97qU85+oqOjnZYzceJEExQUZKKiosy//vUvM3PmTPPQQw+ZmJgYI8mMHj0637qcOHHCtGnTxkgyDRs2NC+88IJ54403zE033WQkmfj4eLNs2TJ3fXWUoL1795rrrrsuV59asmSJy+t7U//6+uuvTVxcnLHZbKZ///5m+vTpZtKkSaZmzZpGkrnhhhtMUlKSy98NJaOwfXD//v0uHSMlmfvuu89pWfTBwPTII4+YiIgIq40ffPBB88Ybb5jXX3/d3HzzzSYoKMhIMp07dzYnT550WlZxHAufHv20uUk3mfqq77Qfvt/1fTNBE8yL5V80FzMu0g+9DHMAz2B8k9vFixfN8OHDjSRTtmxZ88QTT5gZM2aY4cOHm7CwMBMSEmJeffVVl/8+3srbj+v0geK1YsUKEx4ebiQZm81m/vGPf5gXXnjBTJ8+3TzyyCMmPj7eSDJRUVFm/vz5Tsui/f3L+vXrTXBwsPX/YPz48fmuQx/wTf5wHi1xd6KZYJtgJmiC+empnxy2f/mI8kaSqRdaz5w5dcZpXQKl/RG43DkGdGbJkiUun4eaMmWKG7+hf3DnWC0/HPeKpqTain2qeBVmDJwf9q3i4+72Yv/yLZfPARy5/DoASs4HH3xgKlasaCSZsLAwM3ToUDN16lQza9Ysc99991lzxTp16pgNGzbkWx7zfOTENaTA4a/XL+A5vn7eGyXr2WefNWFhYaZatWrmkUceMTNmzDCvvvqquf32201ISIiRZMqVK+dwffqOezEH8E0+GWBhjDG33nqrkWRq1apl0tLS8qT//vvv1j8UeycJtm7daurXr2+qVq3qcCfdunWrNZiZMWOG3Tx33nmnkWQqVqxokpOTc6X98ccf1knHBx98MFfahQsXTKdOnYwk06pVK3PhwgVXvzr83PXXX29at25tdu7c6fRn165dDsuYPn26kWQiIiLM6tWrc6Vt2LDBREdH53sCLSMjw3To0MFIMu3btzepqam50seMGWMkmdKlS5vdu3cX7UujxGRlZZnXXnvNREdHm7i4ONO2bdsC34DoTf1r/fr1JjIy0kh5g9xOnTplGjdubCSZnj17uvTdUPyK2gezAyz+/e9/53ucTEhIcFgOfTBwZZ8Qv/76682ZM3lvSlqwYIE1hmzfvr25eNH+hKU4j4Wf3vqpmaAJpkupLnb74anfT5mJwRPNBE0wK6asoB96GeYAJY/xjX2PP/64kS49cGDPnj250hYuXGiCgoKMzWYzn3zyidNyvJ0vHNez0Qfcb+HChUaSCQ4ONj/88EOe9NOnT5urrrrKuhi+Y8cOu+XQ/v4lIyPDtGjRItcNRPldaKIP+C5/OY+WPQd4pPIjdtv/1O+nzBNBT5h4xdP+gHHfGDA/2TerzpkzJ9/jTFECOfyVu8ZqruC4VzQl1VbsU8WnMGNgV7BvFY/iaC/2L9+TPQeYVmuayUzLzJN++XUAlKzbbrvNuunP3hxu7969pkqVKtaNiYcPH3ZYFvN85MQ1pMDij9cv4Dm+ft4bJeuxxx4zksyAAQNMSkpKnvTvvvvOBAUFOQywoO8UD+YAvsdnAyxyDjofeeSRXGkXLlwwN9xwgzXoPH/+fJ71BwwYYP2zadeuncPtZE9S4uPjze+//54r7fvvv7cCMOxNUrKDQGrUqGF34Lt3715roDR16lRXvzr83PXXX2+uv/76Qq//559/WpGCjz/+uN0848ePt/4JHjp0yG6eN99800iXnla0ffv2POnp6emmXr163LDpY7Lbvlu3bubgwYPW767egOht/Ss7yrVNmzZ203M+seezzz7L9/uh+BW1D2YHWMyePbtI9aAPBq6KFSuakJAQ88cffzjMc88991jtNm/evDzpxX0sPPPHGfNi/IvmKT1lqpSukqsfZlzIMHNumGMmaIKZ0WqGyTifQT/0MswBSh7jm7y2bdtmzVWnT59uN88dd9xhJPsPC/AlvnBcz0YfcL/sG8H++c9/Oszz3XffWX+vhx9+OE867e+77e/I5MmTjSTTp08fly400Qd8uw/4y3m07DlAVVXN0/455wAPN3iY9geMe8aArsg+5hbkzXj4izvGaq7guFd0JdVW7FPFp6BjYFewbxWf4mgv9i/fkz0HmKAJ5vtHvs+VZu86AEpWdoDFhx9+6DDPvHnzrH34nnvucZiPeT5y4hpSYPHH6xfwHF8/742Skz3Hb9y4sUlPT3eYr1u3bqZBgwZ5PqfvFB/mAL7HZwMsjDFm9erV1mvTunXrZt544w0zdepU6ykqzZs3d/jatOxBqyTTtm1bh9u4ePGiGTZsmJEuRZ6PHTvWzJw509xzzz3Wa/YujzI3xpjdu3cbm81mJJlx48Y5LL9Ll0tPJo6PjzcZGewUKPqF4SeffNLq25c/uSDboUOHrP55eVS8MZeeAly9enUjyXTo0MHhtiZNmmRta9OmTYWuM0rO008/bd5++23r94LegOhN/WvRokVWes7vdLn69etb/xPgeUXtg+4IsKAPBraKFSuaq6++2mmeH374wWrb22+/PU96SRwLD60+ZKZWnmo6q7O1rfcefs+8edWbZoImmLeav2WSjiTRD70McwDPYHyT16BBg4wkExkZ6fDV8suXL7e2ZW9O6yt85biejT7gXqtWrTJt2rQxCxcudJjnxIkT1ve88cYb86TT/r7b/vbs3bvXREZGmtatW5sff/zRpQtN9AHf7gP+dB7to/98ZKX/s/E/zdo31poVU1fkmQPQ/oB7xoCu4GbVonHHWM0VHPeKrqTain2qeBRmDOwK9q3iUVztxf7lm7KvA0zQBDO321yHcwCUvNtuu80EBQWZs2fPOsyTmppqQkJCjCRTpUoVu3mY5yMnriEFHn+7fgHP8fXz3ig5WVlZ5oorrjCSzNy5cwtVBn2neDEH8C1B8mFt2rTRli1b9OSTT+rQoUN67LHHNGnSJEVGRmratGlas2aNqlSpYnfdJ598UvXq1VPVqlX1wgsvONxGUFCQZs2apW+++Ubt2rXTu+++qwceeEDfffedBgwYoDVr1mjUqFF51vvss89kjJEkdenSxWH5Xbt2lSSdOHFCS5cuLcC3B+z77LPPJEm1atVSvXr17OapVq2aGjZsaOXP7qvZVq9erUOHDklyrf9K0qefflqkeqNkTJgwQf/85z8Lvb439a+cnzkrJztt06ZN2rt3r8N8KBlF7YPuQB8MbPPmzdM777zjNE/NmjWt5YMHD+ZJL4ljYbU21XTvlnt189Cbrc/mvDFHoZGh6jatm4atGabYKrH0Qy/DHMAzGN/k3qfT0tK0YMECSZfmzLGxsXbLaNeunWJiYhzWxVf4ynE9G33Avdq2bavVq1ere/fuDvNERUVZy+Hh4XnSaX/fbX977r77bmVkZGjWrFkKDg52aR36gH/1gYLypvZfum2ptVwzraYWPbZIv0z6Jc8cgPYH3DMGRPFzx1gtPxz33KMk2grFpzBj4PywbxWf4mgv+K7s6wDXPnmtkg4lOZwDoOSNGTNGixcvVlxcnMM8kZGRio+PlyQdO3ZMmZmZefIwz0dOXEMKPP52/QKe4+vnvVFyfv75Z+3atUtBQUHq1atXocqg7xQv5gC+xacDLCSpfPnymjRpkrZv367k5GSdPn3aCnoICwtzuF7Tpk21Z88eHT58WNddd12+27npppu0YMECHTt2TBcuXNCBAwc0Z84ctWzZ0m7+n376yVpu3ry5w3JbtGhhdx0gp3PnzikrKyvffEeOHNGuXbskOe930l997/Dhw9qzZ0+uNFf7b7NmzRQUFJRnHXgvm81W6HW9rX9lf1a6dOlck05HdXFUDkpWUfqgI5mZmUpJSXE5P30wsHXq1ElNmzZ1mufMmTPWcnR0dK60kjwWRpWP0j/f+qfVDy+0vKBha4ap7ai2Cg4LzlUO/dA7MAfwDMY3uctZt26dkpKS8q1LUFCQdTxctWqVzp8/7zCvN/Ol47pEH/CEX3/91Vru3LlzrjTa37/a/5133tFPP/2kRx55RM2aNXNpHfqAf/WBbL56Hi1n+z+15ymNTR6rx08/nmcOQPsDRR8DFkV6ejr7jBs5G6u5guNeySlqWznCPlU0hRkDu4J9q3gUV3s5wv7lG6LKR6nzpM4auX2kwzkASl6zZs3UsWPHfPOdPXtW0qXgQ3s3vDLPR05cQwo8/nb9Ap7hD+e9UXKygyNq1qypUqVKWZ8bY3Tu3Lk8gRCXo++UDOYAvsPnAyy81bZt2yRJsbGxuQ5Wl6tevbq1vH379mKvF3xDamqqnnnmGTVt2lTR0dGKi4tTaGioGjVqpNGjR+vo0aN218vud1LuvmWPs77najnh4eHWUxnov/7Pm/rX+fPntW/fviLXBb5r+/btuv3221WjRg1FREQoJiZG0dHRuuGGGzR79my7T4nJRh9Efvbv328tXx6Iy7EQzjAH8D3+uE8X5jtlZWXpt99+c5rXlwXacZ0+8JcLFy5o7NixkqSrrrpKw4YNy5VO+/tP+yckJGj06NGqW7euxo8f7/J69AH/6AP+cB6N9gfcz9kYsKBWrlypPn36qEqVKoqIiFBUVJRKly6tHj166Isvvsj34jTsy2+s5gqOeyXDHW2VE/uUexR2DOwK9i33K872yon9Cyg5x48fV2pqqiTp2muvzfMgIOZ5uBzXkGCPr1y/gGf4w3lvlKx169ZJkmrUqKGsrCy98847ateuncLCwhQXF6ewsDC1bdtWb775pjIyMvKsT98BciPAohikpaUpISFBklSxYkWneXOmHzhwoDirBR/y66+/6vnnn9e1116r2bNn6+uvv9aLL76oixcvaurUqWrYsKH+97//5VkvZx8qSt8rTDlJSUk6ffq007zwbd7Uvw4ePGg9jZLjbGCaOnWq1q9fr/vvv19ffPGFPv30U/3zn//UypUrddddd+naa6/VsWPH7K5LH0R+vvjiC0lSRESEhg4dmiuNYyEcYQ7gm/xxn3bXd/IngXZcD+Q+kJaWpuPHj2vHjh16++231apVK61cuVK33nqrfvnlF0VGRubKT/v7T/vff//9On36tGbMmJGnnZ2hD/hHH/CH82i0P+B+zsaABfXkk0/qyJEjeuKJJ7RgwQLNmzdP/fr10/fff69//OMf6t27t86dO+eGWvu3go7VXMFxr3gUR1vlxD7lHoUdA7uCfcv9irO9cmL/AkpO9nhTku6999486czzkBPXkOCIr1y/gGf4w3lvlKytW7dKuhRs+fe//1133323GjVqpHnz5umrr77Sww8/rC1btui+++7Tddddp8TExFzr03eA3EI8XQF/lPOkREREhNO8Of/5cTID2SpUqKAlS5aoUaNG1mc9evTQ/fffr169emnRokXq37+/lixZovbt21t53NX3ilJOmTJlnOaH7/Km/sVxFjfffLM+/PBDhYeHW5/dcsstuvPOO9WxY0etXr1avXr10ooVK3LlkeiDcO7PP//UV199JUl69NFHVaVKlVzpHAvhCO3hm/xxn6Yv5haIx/VA7gPz5s3TnXfeaf1eo0YNffjhhxo4cGCepwhK3vE3p/2L7quvvtLnn3+uoUOH6oYbbijQut7wd6cPFJ0/nEfzhroA/iS/MWBB/etf/9Irr7yioKC/nlk2YMAADRgwQD179tTXX3+t22+/XQsWLCjSdvxdQcdqruC4VzyKo61yYp8quqKMgV3BvuVexd1eObF/ASXDGKO3335b0qW3V/Tt2zdPHuZ5yIl2hD2+dP0CJc9fznuj5KSmpiolJUWS9Msvv0iSPvnkE/Xv39/K07t3b91yyy267rrrtHr1ag0YMECLFi2y5vr0HSA33mBRDM6fP28th4WFOc2bMz379YEIbB9//LF+++23XBeFs4WHh+u9995TeHi40tPTdf/99+dKd1ffow/DHm/qX/TRwFWtWjXt379f8+bNyxM4IUktWrTQ008/LUlav3693nrrrTx56INwZvTo0bpw4YJatmypcePG5UnnWAhHaA/f5I/7NH0xt0A8rgdyH+jWrZsWLVqkL7/8UlOmTFG5cuU0aNAgNWjQQN9++22e/N70N/emuviSpKQk3XfffYqPj9dLL71U4PW96e/uTXXxJf5yHs2b6gL4g/zGgK5q27atDhw4oGnTpuW6UTVbt27dNGLECEnS119/bd0YA/sKOlZzBce94lEcbSWxT7lLUcfArmDfcp+SaC+J/Qsoae+9957Wr1+vuLg4zZ49224AIvM85EQ7wh5fun6BkuVP571RcpKSknL9fuONN+YKrsjWunVrjRw5UpK0ePHiXMHX9B0gNwIsikHOqKr09HSneXOmR0VFFVud4DsqVarkNBKvSpUq6t69uyRp48aN2rhxo5Xmrr5HH4Y93tS/6KOBKyQkRLVq1VJoaKjDPHfeead1IvPdd9/Nk04fhCMffPCB3n//fVWoUEGff/653SAejoVwhPbwTf64T9MX/xKox/VA7gOVK1dWly5d1KdPHz366KNav369Ro8erb1796pnz56aM2dOrvze9Df3prr4kscee0xHjhzRq6++qrJlyxZ4fW/6u3tTXXyJv5xH86a6AL7OlTGgqyIiIlSzZk2nT+z/5z//aS3bOw+FvxR0rOYKjnvFozjaSmKfcpeijoFdwb7lPiXRXhL7FwJXZmambDZbkX/ee+89l7e5c+dOjRo1SkFBQfrwww9Vt25du/mY5yEn2hGX87XrFyhZ/nTeGyXn4sWLuX63F1yRbcCAAdbyBx98YC3Td4DcCLAoBrGxsdbyhQsXnObNGa2Vcz3AmauvvtpaXrlypbXsrr5HH4Y93tS/6KNwpmzZsqpTp44kaevWrUpOTs6VTh+EPT///LOGDx+uuLg4ffvtt6pVq5bdfBwL4Qjt4Zv8cZ+mL14SyMd1+sBfbDabXnjhBbVs2VLGGN17771KSEiw0r3pb+5NdfEVv/zyi2bOnKnu3btr4MCBhSrDm/7u3lQXf+ML59G8qS6AL3N1DOhOV111lXUjTM5jDPKX31jNFRz3SoY72spV7FPOuWMM7Ar2LfcoqfZyFfsXUHQJCQnq1auXzp07pxkzZqhnz54O8zLPQ060I3LyxesXKDn+dt4bJefyv/tVV13lMG/Tpk2t4Oy1a9faLYO+AxBgUSzCw8NVqVIlSdLx48ed5s2ZXhIn++EfKlSoYC3nPImdsw8Vpe8Vppy4uDinTwyE7/Om/lWjRg3rFcccZ2FP9nHSGJOnj9AHcbm1a9eqV69eCgsL0/fff69WrVo5zMuxEI4wB/BN/rhPu+s7+bJAP67TB3Kz2WwaNGiQpEsnaefNm2el0f6+2/7p6ekaPny4wsLC9OyzzyoxMTHPz9mzZ638qampudIyMjIk0Qd8uQ8UhC+cR6P9gaIryBjQnYKDg62nSZ48eVKZmZklsl1/4Wys5gqOeyWnqG3lKvYpx9w1BnYF+1bRlWR7uYr9C/4oJCREO3fuLPJPv3798t1WYmKiunbtqt9//11vvPGGhg0b5jQ/8zzkxDUkZPPV6xcoGf543hslJyYmRmFhYdbvztohPDxcMTExkqQ///zT+py+A+RGgEUxadKkiSTp3Llzuf6xXe7w4cPWcuPGjYu9XvAPWVlZ1nJwcLC1nN3vJOnQoUNOy3DW91wtJy0tTSdOnLBbBvyPN/WvyMhI6w0FRakL/Jej46REH0Ru69evV7du3WSM0ffff6+2bds6zc+xEM4wB/A9/rhPF+Y7BQUFqWHDhk7z+gqO6/QBe6644gpreevWrdYy7e+77X/06FHt2rVLaWlpat26teLj4/P89O3b18o/ZcqUXGkrVqyQRB/w5T5QEL5wHo32B4qmoGNAd8s+zthsNusmOrjO0VjNFRz3SlZR2qog2Kfsc9cY2BXsW0VXku1VEOxf8EcNGzYs8k+pUqWcbuPUqVPq0qWLtm3bptdff10jR47Mt17M83A5riHBl69foGT443lvlJygoCBdeeWV1u/5BW0bY6z1stF3gNyYNReTzp07W8ubNm1ymG/Dhg1210FgWrBggSZNmmT9A3Mk59P2KleubC1XrVpVDRo0kOS830l/9b1q1aqpfv36udJc7b+bN2+2TsTRf/2ft/Wv7M/OnDmjP/74I9+6OCoHvmXSpEn66quv8s2XfZwMCgrK9bRSiT6Iv2zcuFFdu3ZVZmamvvvuO5duwOBYCGeYA/gef9ynr776auv1qc7qkpWVpc2bN0uS2rVrp8jISId5fQXH9UsCqQ8sXLhQy5Ytyzdfzhuqcz6hk/b33favVKmSFi1a5PRn6tSpVv7BgwfnSmvWrJkk+oAv9wHJ/86j0f5A4RRmDOiKs2fPatKkSfmONTIyMnTq1ClJl96Yw82qfynqWM0VHPfcoyTain2q6Nw1BnYF+1bRlWR7sX8Bxev06dPq0qWLNm/erFdffVX33Xefy+syz0NOXEMKbP5w/QLFz1/Pe6Pk/O1vf7OWc54Xv1xqaqpSUlIkSVWqVLE+p+8AlzEoFrt37zY2m81IMk899ZTDfF27djWSTPny5U1GRkYJ1hDe6I477jCSzLFjx5zm69atm5FkJJlt27blSnvyySettN9//93u+ocPH7b654MPPpgnPSsry1SrVs1IMtdee63Dejz33HPWtjZt2uTCN4S3GT9+vNWGS5YsyTe/N/WvRYsWWenvvPOOw3IaNGhgJJnmzZvn+/1Q8graByWZbt26Oc1z9OhRq8yrr746Tzp9EMYYs3nzZlOuXDkTHR1tfvnlF7t5JkyYYFq1apXnc46FcIQ5gHdgfGPMoEGDjCQTGRlpzp07ZzfPihUrrG1NmzbN4bZ8Bcf13AKlD9SsWdM0btw433yvvfaa9V2ffPLJXGm0v++2f36WLFlifcfx48c7zEcf8N0+4G/n0Wh/oOCKMgbMz/79+40kc8899zjNt2rVKmt/uuWWWwq8HX/mjrGaKzjuFV1JtBX7VMlwdQzsCvat4ueu9mL/AorPmTNnzNVXX20kmZdfftlungULFphWrVqZdevW5UljnoecuIYUuPzl+gW8gy+e90bJ+f777622ePHFFx3mW758uZVv2LBhudLoO8BfCLAoRrfeequRZGrVqmXS0tLypP/+++8mODjYSDJTpkzxQA3hbbIvDL/77rsO8+zevdvqN+3bt8+Tfvz4cRMTE2MkmTFjxtgtY+LEiUaSiYiIMIcOHbKb58033zSSjM1mMzt37syTnpGRYerXr28kmR49erj4DeFtCnoDorf1rzZt2hhJpl27dnbTly1bZn2/Tz/9NN/vh5JXmACL2NhYc/bsWYd5nn76aavMmTNn2s1DHwxsW7duNeXLlzdRUVFm2bJlDvNl/1++HMdCOMMcwPMY31w6zgUFBRlJZsaMGXbz3HnnnUaSqVixoklOTnZYH1/AcT2vQOkDNWvWNEFBQWb//v0O82RlZZnWrVtbf7PVq1fnSqf9fbf98+PqhSb6gO/2AX88j0b7A64r6hhw69atpn79+qZq1ap218++WbV27domMzPTYflDhgyx9ssffvihcF/GT7ljrJZfO2Xn4bhXNCXRVuxTJcPVMTD7lndwV3uxfwHF4+zZs+Zvf/tbvufyZ8+e7fRcNPM85MQ1pMDjb9cv4Hm+et4bJePixYumWbNmRpJp2rSpycrKspvvnnvusfrR+vXrc6XRd4C/EGBRjP744w8THx9vJJlHHnkkV9qFCxfMDTfcYCSZVq1amfPnz3uolvAm2QPmihUrml27duVJP3nypGnVqpWRZKKiosyGDRvsljN9+nTrn9jatWtzpW3atMlER0fnOyHLyMgwHTp0MJJMhw4dTGpqaq707GjF0qVLm927dxfi28IbFPQGRGO8q3+tX7/eREZGGknmtddey5V2+vRp06RJEyPJ9OzZ06XvhpJXmAALSea2226ze9Lp+++/N+Hh4UaSue666xw+1YM+GLi2b99uKlSoYCSZp59+2ixZssThT/aTbu3hWAhHmAN4HuObSx5//HEjycTHx+d5usj3339vXZD75JNPnJbj7TiuOxYIfaBmzZrW39veE+wvXrxoRo0aZR0TBg4caLcc2t8/FeRpsPQB3+SP59Fof8A17hgDDhgwwPo/Ye9mt+ybVSWZhx9+2O4F6ffee896Wp+jcUYgc8dYLb92ysZxr2hKoq3Yp0qGq2Ng9i3v4K72Yv8C3C8pKcm0a9fOSDJ9+vRxOt7MPlY6OhfNPA85cQ0psPjj9Qt4nq+e90bJWbFihQkLCzOSzMSJE/Okf//99yYkJMRIMg899JDdMug7wCUEWBSz1atXm8qVKxtJplu3buaNN94wU6dONVdddZWRLr3i78iRI56uJrzECy+8YEJDQ4106fWOd955p3nzzTfN22+/bR555BFrolWxYkWzdOlSp2VNmDDBBAUFmejoaDNq1Cgzc+ZM8/DDD5vY2FgjyTz66KP51ufEiRPWExWuvPJK8+KLL5o33njD9OjRw0iXXkmYXz3gfebOnWv99OvXzxp4jx071vo8vyfXeFP/WrBggYmLizM2m83ceuut5q233jLPPfecqVWrlpFkOnfubJKSklz++6D4FaUPZkdaSzL16tUz48aNM++++6557bXXzM0332xdILjxxhvNqVOnnNaDPhh4zp8/bypVqmT1IVd/HOFYCEeYA5Q8xjd5Xbx40QwbNsxIMuXKlTNjx441M2fONPfcc48JCwszISEhPv+qeI7r9IHevXtb7RoVFWXuuusu8+KLL5p33nnHjB8/3lx55ZVW+pAhQ8yFCxcclkX7+4fNmzdbx/2xY8da7d+vX798/x/QB3yPv55Ho/0B59w1Bsx+cqwk07Zt2zzpJ06cMHXr1rXyNG/e3Dz77LNm9uzZ5uWXXzZdu3a10oYOHcrNT3a4Y6yWXztl47hXNCXRVuxTxacwY2D2Lc8pjvZi/wLcr0+fPgUebzp72A/zPOTENaTA4M/XL1Dy/OW8N0rOF198YbVxly5dzH/+8x8zc+ZMc8cdd1hvSho1apTTN+DRdwACLErEiRMnzJNPPmkaNWpkoqOjTenSpc3f/vY3M23aNLtP30ZgO3bsmHnjjTdM3759Td26dU1UVJQJDQ01FSpUMDfccIN55ZVXXL5BcsWKFea2224zVatWNWFhYaZKlSrm5ptvNj/99JPL9cnIyDBvvvmmadeunSlTpoyJiooyDRs2NI899pg5evRoYb8mPMiVSdv111+fbzne1L/2799vRo0aZerVq2ciIiJMuXLlzPXXX2/effddc/HiRZfLQckoah9cvXq1eeKJJ8y1115rKlSoYEJDQ01UVJSpU6eOGTRokPnuu+9crgt9MLCcPn26wCexnJ3IMoZjIRxjDlCyGN849s0335iePXuaSpUqmfDwcFOzZk0zZMiQPK979UUc113jz33AmEuvWH/mmWdM165dTfXq1U1kZKQJCQkxZcqUMS1btjT3339/nqfrOEL7+76cbzEqzP8D+oDv8dfzaLQ/4Ji7xoCbN2829erVM1WrVjXLli2zu62srCyzePFi8+CDD5q2bduacuXKmZCQEBMTE2OuuOIKM2zYMLNq1ari/so+rahjNVfaKSeOe4VXEm3FPlU8CjMGZt/ynOJqL/YvwL1yPvDN1Z/83qbMPA85cQ3J//n79QuULH86742Sc+jQIfPoo4+aRo0amZiYGBMZGWnq1Kljhg4d6pPXzQBPsBljjAAAAAAAAAAAAAAAAAAAAAAAAAJYkKcrAAAAAAAAAAAAAAAAAAAAAAAA4GkEWAAAAAAAAAAAAAAAAAAAAAAAgIBHgAUAAAAAAAAAAAAAAAAAAAAAAAh4BFgAAAAAAAAAAAAAAAAAAAAAAICAR4AFAAAAAAAAAAAAAAAAAAAAAAAIeARYAAAAAAAAAAAAAAAAAAAAAACAgEeABQAAAAAAAAAAAAAAAAAAAAAACHgEWAAAAAAAAAAAAAAAAAAAAAAAgIBHgAUAAAAAAAAAAAAAAAAAAAAAAAh4BFgAAAAAAAAAAAAAAAAAAAAAAICAR4AFAAAAAAAAAAAAAAAAAAAAAAAIeARYAAAAAAAAAAAAAAAAAAAAAACAgEeABQAAAAAAAAAAAAAAAAAAAAAACHgEWABAgBg6dKhsNluen+7du7uUb9y4cYXabp8+feyWV1RLly61W272z4EDBxyuO2HCBLvrTJgwwW7+9PR0lSpVSjabTevXry9y3SWpYcOGBaoDAAAAYI+/jfMlxvoAAAAAAAAAAPgLV69j+COuFwCA7wrxdAUAACVv7ty51nKVKlVypd1zzz3q0qWLJOmhhx5SYmKiJOmNN97QY489pri4OJe3s23bNi1YsMD6/e6779a1115blKpbrrzySs2dO1cnT57Ugw8+KEkKDQ3VzJkzFRISovj4eIfr/uMf/1C9evW0bt06vfrqq7rrrrvUqVMnNW3a1G7+xYsXKykpSdWrV1erVq3cUv8pU6bo7NmzkqTExEQ99NBDbikXAAAAgcsfxvkSY30AAADAlzz44IN69dVXFR0drXPnziklJUXTp0/XJ598oj179igjI0MNGzbU8OHDdc8997gtMBsAAAAIBBcuXFBcXJwyMjL0/PPP64knnvB0lYrE2XUMf8T1AgDwXQRYAEAA+r//+z+Hae3atVO7du0kSePGjbNuvDpz5oymT5+uxx9/3OXtPP/88zLG5Crb2bYLomLFilZZ7777rrZs2aKMjAzFx8erR48eTtdt2rSpmjZtqh9//FFBQUF69tlnnU7cvvzyS0mXntLrLr169bKWDxw4wCQKAAAAReYP43yJsT4AAADgSzZv3ixJatSokdauXasBAwbkeevchg0bdO+99+rIkSN69tlnPVBLAAAAwDdt2LBBGRkZkqTWrVt7uDZF585rCb6A6wUA4LuCPF0BAIB3q1evnkJDQyVJr7zyii5cuODSevv27dP8+fPVuHHj4qyeJGnw4MHWcs5od2dSU1P1+eefq0uXLk5vuDLGWE/n7du3b5HqCQAAAHgLXxjnS4z1AQAAAG+3ZcsWSVJaWpq6du2qqKgovfHGG1q1apVWr16tJ598UkFBly5Jv/TSSzp37pwnqwsAAAD4lLVr10qSbDab297CDAAA8keABQDAqapVq2rQoEGSpOPHj+vdd991ab0XXnhBMTExuvvuu4uzepKkQYMGKTg4WJL01VdfWa/Xc+a///2vkpOTdccddzjNt3r1ah07dkxlypTR9ddf75b6AgAAAJ7mC+N8ibE+AAAA4M0OHjyoU6dOSboUaNG7d29t2rRJI0eOVNu2bdWmTRtNmjRJI0aMkCSdP3/eCsgAAAAAkL9ff/1V0qWHJpUuXdqzlQEAIIAQYAEAbnb8+HHZbDbZbDbNmDFDSUlJeu6553TNNdcoPj5eYWFhqlGjhu69914lJCR4urouefzxx60nTE2ZMkWZmZlO8x87dkxz5szRfffdp7i4uGKvX+XKldWlSxdJ0oULF/Tpp5/mu87777+v2NjYfJ9U++WXX0qSevTooZCQkKJWFQAAAAHE2+cG3j7OlxjrAwAAAN5s8+bN1vJVV12lt99+23pTXk7ZY3pJvMECAAAAPmflypUaPny4GjVqpNjYWMXGxqpVq1aaPHmyUlJS8uSvUKGCbDabunfvnm/Ze/bsUWhoqGw2m55++mnr8/j4eNlsNn300UdWvuzrDdk/AwYMkCSlpKSoYsWKstlsqlOnjjIyMuxu68KFC+rQoYNsNpvCw8O1dOlSK61evXp5ynf0ExERke/1BAAAfB0BFgDgZps2bbKWbTab6tevr3HjxmnlypVKTExURkaGDh06pLfeektt2rTR0aNHPVdZFzVs2FB9+vSRJB04cMCawDkydepU2Ww2jRo1qkDbSU5O1uTJk9WmTRuVKVNG4eHhqlq1qvr06aP58+crKyvL4bqDBw+2lt9//32n2zl69KgWL16s/v37Kyoqymner776SpKc3pyVmpqql156SR06dFC5cuUUGhqqcuXKqX379nr00Ue1fPlyp9sAAACAf/L2uYEvjPMlz431GecDAAAAzuUMsJg8ebIiIiLs5ssZ0MxTdwEAAOArkpKSNGTIEF1zzTV6++23tXPnTiUnJys5OVkbNmzQmDFj9Le//U1HjhzJtV6TJk0kSTt27Mh3G08++aQyMzMVHx+v0aNHS7p0njsxMTHfdZs2bSpJio6O1tixYyVJ+/fv13vvvZcnrzFGgwcP1ooVK2Sz2TRnzhx17NhR0qUg6H379uW7vWyNGzd2+0OLMjMz8wRy1KpVS5K0atUq9ezZU+XLl1fp0qXVrl07ffzxx7nWX7hwoa6//nqVKlVKcXFxuuGGG7Rs2TKPbQcA4PsIsAAAN8t5E9Wjjz6qP//8U/3799dXX32l9evXa/78+dYk5+DBg3rooYc8VNOCGTNmjLX8wgsvyBhjN9+pU6c0c+ZM3XXXXapQoYLL5W/YsEFXXHGFxowZo9DQUD399NN68803NWjQIK1YsUIDBgxQly5ddPr0abvr9+vXT7GxsZKk5cuXa//+/Q639cEHHygrK0tDhgxxWqfffvtNu3btUkREhMMnC2zcuFFXXHGFHn30UZ09e1ajR4/W9OnTNXLkSJ04cUIvvfSSrr32WvXs2dPFvwQAAAD8hS/MDbx9nC95ZqzPOB8AAADIX3aARenSpXO9peJyf/zxh7Vct27dYq8XAAAAUFTJycm64YYbNHfuXElSnz599Mknn+jXX3/VokWLdOedd0q6FERxyy235Dq3ftVVV0mSDh065PQNbuvWrdNnn30mSRo3bpx1HrxMmTLaunWrlSZJr776qrZu3ZrrZ+TIkVb6iBEjVKNGDUnSc889p/T09FzbeuSRR6zypkyZYr39QpLCw8O1ZcuWPOXn/OnXr5+V/9Zbb3X1z+iy4OBgzZ07V3PnztW1115rfT5//nwNHjxY7dq107PPPqvevXtr9erVGjhwoCZOnChJeu211zRp0iTdfPPNGj9+vJo1a6affvpJXbp00Y8//uiR7QAA/IABALjVwIEDjSQjyYSEhJhPPvkkT56kpCRTsWJFK8/p06eLvV533HGHVS9X1axZ01x//fXW7507d7bK+O9//2t3nfHjx5uQkBCzb98+Y4wxs2fPttaZPXu23XX2799vypQpYySZBx98ME/60aNHTa1atYwk0717d5OVlWW3nKFDh1rbmjhxosPv1bhxY1OrVi2H5WT797//bSSZnj175lvvW265xWRkZORKT09PN7179zaSTLNmzRxuZ//+/Va9x48f77ROAAAA8B0lMTcIhHG+MSU71nfXOD+7LMb6AAAA8Ff16tUzkky/fv2c5hs2bJiRZCpVqlRCNQMAAACK5qabbjKSTHBwsPnwww/t5hkxYoR1/vebb76xPp85c6b1+Zo1axxu44YbbjCSTJ06dUxaWlqe9Llz51rl7NmzJ986v/3221b+6dOnW59PmzbN+tzeufr8PPHEE9b6TzzxRIHXL+h1jOz8cXFxplmzZubkyZO50idNmmS1zTfffGP69+9vLl68aKVnZGRY1z2aNGni8e1k43oBAPgW3mABAG6W8ym1L774ovr3758nT2xsrO6//35Jl14/t3HjxpKqXpE88cQT1vLzzz+fJz05OVmvvfaabrvtNtWuXdvlcu+77z6dPn1a1apV04svvpgnvXLlytb2vvvuO/3www92yxk8eLC1nP0UgcutX79e27dv1+DBg2Wz2ZzW68svv5Qk9e3b1276vffeq9OnTys2NlYzZszI8wrE0NBQvf32225/NSIAAAB8g6/MDbx9nC+V7FifcT4AAACQv5SUFP3++++SpObNmzvNmz03yi8fAAAA4A0++ugjffvtt5KkyZMn6/bbb7ebb9y4cdbyd999Zy1nv8FCknbu3Gl33UWLFmnx4sWSpEmTJiksLCxPnuxxdGxsrEtvghs6dKgaNGggSfr3v/+t9PR0/fe//9XDDz8sSerfv79eeumlfMvJacyYMZo8ebKkS9cS7F1DKC5JSUl66KGHVLZs2VyfDx8+XJJ08eJF3XzzzXrxxRcVFPTXbbAhISEaNmyYJGnbtm3WvMXT2wEA+BYCLADAjS5cuKDdu3dLkho1aqR//etfDvM2adLEWk5MTCz2urlD165d1apVK0nSr7/+mucVd2+99ZZOnz6txx9/3OUy9+zZY01M+/fvr9DQULv5brzxRmv5gw8+sJunU6dO1isP9+7dq5UrV+bJ8/7770uShgwZ4rRex44d06+//qqgoCD16tUrT/ru3butCXKPHj3yTLSyxcfHq3PnztarHAEAABAYfGlu4O3jfKnkxvqM8wEAAADXbNmyRcYYSVKLFi0c5rt48aK2bduWbz4AAADAW2Q/MKhx48ZWcII9VatWVVxcnCTp4MGD1udNmjSxHgK0Y8eOPOsZYzRmzBhJUsuWLTVgwAC75WcHWDRt2jTfhwpJUnBwsJ555hlJ0qFDhzRy5EgNGjRIWVlZuu666zR37txcAQL58WRwRbYePXrk+axChQoqXbq0JKlu3bqqVatWnjxXXnmltewoyMUT2wEA+A4CLADAjbZu3aqLFy9KkkaMGKHg4GCHecuUKWMtR0VFyRijUqVKyWazufQTHBys5OTkYv9Ol8v5dNt///vf1nJaWppefvll9ejRI1c0fn5y3rxVv359JSYm2v3JyMhQdHS0JGnNmjV2y7LZbBo0aJD1++VPts3MzNS8efPUvn171atXz2m9vvzySxlj1L59e1WoUMFpvVu3bu20rO+//16//PKL0zwAAADwL0WZG3iCN4/zpZIb6zPOBwAAAFyzefNma9nZmyl+++03XbhwId98AAAAgDfYunWrNda977778g1IKFWqlCTleshQTEyMatasKcl+gMUnn3yi9evXS7r0hgxHwRPZ9SjIOPrWW2+18r/zzju6cOGCGjdurK+++krh4eEul+MNwRWlS5dW+fLl7aZlP/yofv36dtOzA18k6ezZs16xHQCAbwnxdAUAwJ/kvKDQu3dvp3kTEhKs5YoVKyo5OVkPPfRQrjxHjx7VrFmzVKdOHQ0ePDhXWlxcnGJiYtxQ64L5xz/+oQYNGmj37t1asmSJ1qxZozZt2mj27Nk6duxYrhuzXLF3715reeTIkRo5cmS+6+T8211u8ODB1sRu/vz5mjZtmjVJXLhwoU6cOKFJkyblu40vv/xSktS3b998612tWrV8ywMAAEBgKcrcwBO8fZwvlcxYn3E+AAAA4Jrsp+mWLVtW1atXzzefRIAFAAAAvN+SJUus5Ztuuinf/KdOnZJ06a3HOTVp0kQHDhzIE2CRmZmpcePGSbr0dumuXbvaLffIkSPWG68LMo622WwaPny47rvvPkmX3sKwcOFC600MrvCG4ApJTt8gnR344ihPzsCYjIwMr9gOAMC3EGABAG6UfaGgfPnyVjS6I6tXr5YkhYeH68orr1R0dLQmTJiQK89HH32kWbNmqVu3bnnSPCUoKEijR4/W8OHDJV16uu1///tfTZkyRR06dNA111xToPKSkpKs5YkTJ6p9+/b5ruPs1YdXXnmlrr76aq1bt06nT5/W119/rZtvvlmS9P777ys8PFy33nprvnVaunSpJMcBFufOnbOWIyIi8q0zAAAAAktR5gae4O3jfKlkxvqM8wEAAADXZAeVt2jRwmm+7LlRdHR0vm+bAwAAADxty5Ytki7dUJ/fuf39+/crJSVFUt4giKuuukpff/21Dhw4oPPnzysyMlKSNHPmTO3du1c2m80KYrAnZ6Bys2bNXK7/nj17NH78eOv3lJQUn3tzRbb83h7iah5v2Q4AwLcQYAEAbpR9QSG/p84aY/T1119Lkq677jpFR0fbzbdhwwZJUsuWLd1Yy6IbMmSIJkyYoCNHjmjBggUaN26c9u3bp9dee63AZeWM8q5fv766dOnilvqtW7dO0qUbrW6++WadOXNGCxYsUJ8+ffKNzP/mm2+Unp6uJk2aqG7duvnWO/v15gAAAEA2d88NSoK3j/Oz61icY33G+QAAAED+jDHaunWrpPyfppt9Y1izZs24KQkAAABeL/utEWXLls037w8//GAtX3fddbnSmjRpIknKysrSrl271Lx5c6WkpOjZZ5+VJA0YMMDpvUDZ4+jg4GBdddVVLtX9zz//VPfu3ZWYmKhy5crp5MmTSklJ0XPPPadXX3013/W9KbgCAABP4ywWALiJMcaKZE9NTXWad9GiRdq7d68k6Y477nCYb+PGjZK8L8AiLCxMDz30kKRL33vy5Mlq2rSpS69HvFz9+vWt5T/++MMt9Rs4cKBCQ0MlSQsXLlRiYqLmz5+vtLQ0DRkyJN/1v/zyS0mO314hKdeTtg4fPlyk+gIAAMC/FMfcoCR4+zhfKv6xPuN8AAAAIH979+51+KTey2UHn+eXDwAAAPAGwcHBkqS0tDSn+bKysjR9+nRJl+7padiwYa70nEERO3bskCS98sorSkhIUFhYmCZNmuS0/Oxx9BVXXOHS25ZTUlLUo0cP7du3TzExMfrhhx+s8+AzZszQwYMHna5PcAUAALkRYAEAbrJ//34lJSVJkg4dOqTk5GS7+dLT0zV69GhJlyZCAwcOdFjmxo0bFRYWZkW2e5N77rlHZcqUsX5//PHHC1VOzifZrly50mneuXPnKiQkJN8bz8qXL6/u3btLkjIyMjRv3jy9//77qlixorp16+Z03fT0dH333XeSnAdY5Kx39hN0HXn00Uc1YMCAfCesAAAA8A/FMTcoKd48zpeKf6zPOB8AAADIX/bNXpLzwInDhw/rxIkT+eYDAAAAvEXt2rUlSQkJCfrzzz8d5nvttdescfGjjz6aJ71hw4bWw4J27NihkydPasqUKZKkESNGqE6dOk7rsWvXLklS48aN861zZmam+vfvr3Xr1ikkJESffPKJWrZsqYkTJ8pmsyktLU0TJ050uD7BFQAA5EWABQC4Sc4LCpmZmXrppZfy5ElLS9PQoUO1ZcsWBQcHa/r06Q5fiX3gwAGdPn1ajRs3VlhYWLHVu7BiYmJ0//33S7o0wbztttsKVU79+vWtJ+L+8MMPOnTokN18xhjNnDlTFy9e1O23355vuTmfXvvyyy9r5cqVuv322xUSEuJ0vcWLFyspKUnVq1dXq1atHOZr0KCBbrzxRknSN998o9OnT9vNt3fvXr300ktavny5qlatmm+9AQAA4PvcPTcoSd4+zpeKdwik0EMAAAjPSURBVKzPOB8AAADI3y233CJjjIwxTh8QtWnTJmuZAAsAAAD4guwH/EjStGnT7Ob5+OOPraCKv//973YfnhQaGqoGDRpIuhRg8dxzzykpKUmxsbEaN25cvvXIfohTZmZmvnlHjBihhQsXSpKmT59uneNu2rSpbr75ZknSnDlztHv37jzrElwBAIB9nr9yDwB+IvtCQdmyZVWnTh1NmDBBI0aM0Hfffac1a9ZoxowZatWqlebNmydJmjRpkjp16uSwvA0bNki69CpBbzVx4kRlZGRo79691msSC+PNN99U2bJllZaWpsGDB+d5wq8xRk899ZSWL1+ubt265ftkWknq1auXSpcuLelSsIokl56I++WXX0qS+vTp41K9y5Qpo6SkJN177715JrapqanWzV8TJkwo0t8IAAAAvsPdc4OS5s3jfKn4x/qM8wEAAAD3yJ4bBQcH66qrrvJsZQAAAAAXdOnSRe3atZMkPf/887r77ru1ePFibdiwQZ9//rn69eungQMHKjMzU82aNdOnn37qsKzsYORVq1bpzTfflCSNHj1a8fHx+dYj+w0XX3/9tV5//XWtW7dO27Zt07Zt23Tu3Dkr34QJE/TOO+9Ikp566ikNGzYsVzkTJkxQUFCQLl68qKeeeipX2uTJk63gir59+2rQoEHWNuz9HDlyJN96AwDgL5w/2g8A4LLsp9Q2bdpUY8eOVa9evTRjxgzNmDEjV76QkBD9+9//1ujRo52W56kAiy1btmjLli2SpJSUFB0/flwffPCBJKl9+/a5XlNos9kcPiU2e51Vq1ZZn61atUohISGKiYlR3759rc9r1qypn376Sb1799ayZcvUqFEjDRkyRLVr19axY8f01Vdfad26dWrfvr11E1p+wsPDdeutt2rmzJmSLrVLs2bNnK5jjNGCBQskKVf9HKlVq5YWL16s3r17a/78+dq5c6duv/12lStXTvv27dOcOXN09OhRjRo1Ks8kFgAAAP7L3XMDd/CXcb5U/GN9xvkAAACAe2QHWDRs2FARERGerQwAAADgovnz56tLly7avXu3Zs2apVmzZuXJ079/f82YMUNxcXEOy7nqqqs0f/58JSQkSJIqVaqkhx9+2KU6PPTQQ1qyZIkyMjL0wAMP5Epbv369WrZsqXfeeUcTJ06UdOkhRM8880yecho3bqxbb71VH3/8sT799FONGTPGervcJ598YuX78ssvrYcUOTJ27Fg999xzLtW/ML788kslJydr3759ki5dy8i+JvF///d/SklJ0RdffGGlSdK+ffv0wQcfqGLFiuratav27dunlStXKjEx0So3+xpG06ZN1bRp0xLbDgDAxxkAgFvUrFnTSDL/+te/jDHGrF271vTr189UrFjRhIeHm9q1a5t77rnH7Ny506XybrrpJiPJrFq1yi31u+OOO4wkk9+hf/z48Va+y39mz57t8vYclSHJ1KxZ0+46KSkp5qWXXjLXXHONKVOmjAkJCTHly5c3Xbp0MbNnzzaZmZkF+MbGLF++3Nrm1KlT882/cuVKI8mUKVPGZGRkuLyd5ORkM2XKFNO+fXur3hUrVjR9+vQxP/zwQ77r79+/36rn+PHjXd4uAAAAvJO75wbOBOI435iSGesXdZxvDGN9AAAABLa6desaSWbQoEGergoAAABQIGfPnjXPPPOMadq0qYmKijIxMTHmiiuuMEOHDjU//fSTS2V89dVXuc6hv/nmmwWqw3fffWe6du1qypQpY2w2m5FkQkNDTVpamvnmm29MSEiIkWS6dOli0tPTHZazc+dOExwcbCSZm266yRhjTEZGhgkPD3d6zv/yn48//rhA9c/m6nWM7Gsr9n6MyX2+/fKf66+/3hhjzOzZsx3myT5HX1LbuRzXCwDAt9iMMcZpBAYAIF9nz55V6dKlJUmzZs1yy1NMK1eurBMnTujcuXOKjIwscnlDhw7VnDlzJF16eivyevzxx/Xiiy/q//7v/zR37twS2+6BAwdUu3ZtSdL48eM1YcKEEts2AAAA3Ks45gbOMM53DWN9AAAAoGSdO3dOpUqVkjFGU6ZM0aOPPurpKgEAAADwAK5jXML1AgDwLUGergAA+IPs11xLl17xV1QJCQlKSEhQw4YN3RJcAdd89dVXkqS+fft6tiIAAADwWe6eG8A9GOsDAAAAJWvz5s3WzVPNmzf3bGUAAAAAAACAAgjxdAUAwB9s3rxZkmSz2dS4ceMil7dhwwZJUsuWLYtclj2JiYnWclhYmOLi4oplO77mt99+K7FtnTlzRpmZmZKk06dPl9h2AQAAULzcPTcoCMb5jjHWBwAAAEpWhw4dAvrptAAAAADyCrTrGFwvAADfRYAFALhB9lNq69Spo5iYmCKXt3HjRknFF2ARHx9vLXfr1k3fffddsWwHjrVt21a7du3ydDUAAADgZu6eGxQE43zvwFgfAAAAAAAAAIC8Au06BtcLAMB32QyPDgGAImvVqpU2bNigvn376osvvvB0dezasWOHjh49mufz8uXL83puD1i1apVSUlLyfF6nTh3VqVPHAzUCAACAO5T03IBxvvdhrA8AAAAAAAAAwCWBfB2D6wUA4LsIsACAIsrMzFRMTIzS0tL01FNP6ZlnnvF0lQAAAAB4AHMDAAAAAAAAAAAAAAB8GwEWAAAAAAAAAAAAAAAAAAAAAAAg4AV5ugIAAAAAAAAAAAAAAAAAAAAAAACeRoAFAAAAAAAAAAAAAAAAAAAAAAAIeARYAAAAAAAAAAAAAAAAAAAAAACAgEeABQAAAAAAAAAAAAAAAAAAAAAACHgEWAAAAAAAAAAAAAAAAAAAAAAAgIBHgAUAAAAAAAAAAAAAAAAAAAAAAAh4BFgAAAAAAAAAAAAAAAAAAAAAAICAR4AFAAAAAAAAAAAAAAAAAAAAAAAIeARYAAAAAAAAAAAAAAAAAAAAAACAgEeABQAAAAAAAAAAAAAAAAAAAAAACHgEWAAAAAAAAAAAAAAAAAAAAAAAgID3/wDpXrdnx595dAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 3200x2400 with 32 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAADFgAAAk1CAYAAABaffukAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1f3/8fdMJvseQoZIgITIIlsCMRIQNKYiVKEWK1pXEJeitLXydWtrq3SzrVWxX9vyExf4YsGKhSoFrAECGJEtYQuLBAiEpBAIIQnZM5n5/cHDITHJJJlMmCyv5+PB43Fmzjmfc27uZWbuzP3cY7DZbDYBAAAAAAAAAAAAAAAAAAAAAAD0YEZ3TwAAAAAAAAAAAAAAAAAAAAAAAMDdSLAAAAAAAAAAAAAAAAAAAAAAAAA9HgkWAAAAAAAAAAAAAAAAAAAAAACgxyPBAgAAAAAAAAAAAAAAAAAAAAAA9HgkWAAAAAAAAAAAAAAAAAAAAAAAgB6PBAsAAAAAAAAAAAAAAAAAAAAAANDjkWABAAAAAAAAAAAAAAAAAAAAAAB6PBIsAAAAAAAAAAAAAAAAAAAAAABAj2dy9wR6EovFot27d8tsNstoJLcFAACgJ7FarSooKNDo0aNlMvExvKfgHAAAAKDn4hygZ+IcAAAAoOfiHKBn4hwAAACg5+IcoPvqFnvTZrPpL3/5i55//nmVl5crLS1NycnJLh1j7dq1WrhwoTIyMnT+/HlFRkYqOTlZP/rRjzRmzJhWxdi9e7euu+46l84LAAAAXcuOHTuUmJjo7mngCuEcAAAAAJwD9CycAwAAAIBzgJ6FcwAAAABwDtD9dPkEi2PHjmn27NnasmVLh8S3Wq2aM2eOFi1apLCwMD322GOKiYnRrl27tGTJEr3//vt69dVX9eMf/7jFWGazWZL05ZdfKioqqkPmCzTHYrEoMzNTY8aMIVMObsExCHfjGIS75eXlady4cfbPhOgZOAfo2XjvAccAOAZ6NvY/OAfomb7e3zt27FBkZKSbZwNHeJ3uOthXXQf7qmthf3Ud7Kuu4/Tp07ruuus4B+hh+B0AzuL1Hc7i2IGzOHbgLI6d5nEO0H112SO9/qoVHh4eSkpK0rZt21w+zs9+9jMtWrRI4eHh+vLLL3X11VdLkh577DHdcccduu222/STn/xEkZGRmjFjhsNYXy8F2KdPH06qcMVZLBadOHFCUVFRvMnBLTgG4W4cg3A3i8UiSSwP3cNwDtCz8d4DjgFwDPRs7H9wDtAzfb2/IyMjOQfo5Hid7jrYV10H+6prYX91HeyrrodzgJ6F3wHgLF7f4SyOHTiLYwfO4thpGecA3U+X3aPz58/Xj370I02YMEFZWVmaPHmyy8c4cOCAXnnlFUnSr3/9a3tyxdemTJmiBx54QDabTT/60Y9UXl7u8jkAAAAAAAAAAAAAAAAAAAAAAICO12UTLGw2m95++219+umn6tevX4eM8fLLL8tqtcrX11f33Xdfk20effRRSVJBQYHefvvtDpkHAAAAAAAAAAAAAAAAAAAAAADoWF02weKll17Sww8/3GHxq6urtXr1aknS2LFjFRgY2GS7cePGKSAgQJK0YsWKDpsPAAAAAAAAAAAAAAAAAAAAAADoOF02wcJgMHRo/F27dqm0tFSSFB8f32w7o9GoUaNGSZK+/PJLVVZWdui8AAAAAAAAAAAAAAAAAAAAAACA63XZBIuOlpWVZS/369fPYduv661Wqw4fPtyh8wIAAAAAAAAAAAAAAAAAAAAAAK5ncvcEOqsTJ07Yy2az2WHb+vUnTpzQ6NGjHba3Wq2qq6tr1/yAtqqrq7Mfex29AgzQFI5BuBvHINzNarW6ewpwI84Beibee8AxAI4Bqby83Kl+Z8+e1eOPP66MjAwlJCTob3/7myIiItocx9/f36nxXYH9D84Bera6ujrOATo5Xqe7DvZV18G+6lrYX10H+6rr4PNfz8bvAGgrXt/hLI4dOItjB87i2GleWz//2Ww27fzLTq1/fr1qy2s1M22mopOjHfaZb5jf5nndvepuDf3u0AbPbXppkzbP39yq/o/ufFRXXXuVwzbFJ4u1bcE2HV17VCWnSuQV4KWI4RGKmxmnuAfjZDB27WOFBItmXLx40V728fFx2NbX17fJfs358ssv9dVXX9kfe3h4yGRiV6BjWa1WnTp1SlarVUYji9fgyuMYhLtxDMLdzp8/7+4pwI04B+iZeO8BxwA4BqRf//rXTvXbt2+fioqKJEnr16/X2LFjNWrUqDbH+cUvfuHU+K7A/gfnAD3bF198odDQUPtjzgE6H16nuw72VdfBvupa2F9dB/uq67hw4YK7pwA34ncAtBWv73AWxw6cxbEDZ3HsNK8t5wBFx4r0yexPdHLLyQ6c0SX+5o69AdmRNUe08t6Vqr5YrWF3DlPSU0mqOF+hzEWZ+vihj7Xv/X26e9Xd8g707tB5dCQ+yTejsrLSXvby8nLYtn59RUVFi7EXLlzY4CQqLi5O8fHxbZ8k0AY2m00lJSWSRBYh3IJjEO7GMQh3Ky0tdfcU4EacA/RMvPeAYwAcA8775mcnZz9L5ebmumI6TmH/g3OAnu1vf/sb5wCdHK/TXQf7qutgX3Ut7K+ug33VdbTmhpzovvgdAG3F6zucxbEDZ3HswFkcO81rzTlA/VUrjB5GRSVFKW9bXpvGGfrdofrWy99y2OZ05mmtvG+leg3ppX7j+jXbbu6huS2OFxId4nCcFTNWyFJp0eQFk5X0ZJK9LvGJRL038T3lbMjRyntX6p7V97Q4VmdFgkUz6q9KUVNT47Bt/Xo/P78WY//5z39WVFSU/bG3t7e8vbtulg66BovFoi+//FLjxo3jLglwC45BuBvHINwtNzdXTz75pLunATfhHKBn4r0HHAPgGJC+853vONXvrrvu0qZNm1RXVycPDw/deOON+vDDD9scx9+/Y+/Q4wj7H5wD9Gz/+7//q759+9ofcw7Q+fA63XWwr7oO9lXXwv7qOthXXUd+fr5+/OMfu3sacBN+B0Bb8foOZ3HswFkcO3AWx07zWnMOsHn+Zm2ev1mxk2M1bdE07X5nd5sTLLyDvRU+NNxhmy9f+1KSlPBYgsN2LcVpyZon1shSaVHfsX0bJFdIkm+or25981YtuWmJjvz7iA7+86CGfW9Yu8ZzF470ZgQGBtrLVVVVDtvWX+2ifr/mhIaGqnfv3s5PDnDC18tPent78yYHt+AYhLtxDMLdPD093T0FuBHnAD0T7z3gGADHgJy+kODvf/+7Zs2apZ07dyoxMVGLFy9WWFiYi2fXsdj/4BygZwsPD+ccoJPjdbrrYF91HeyrroX91XWwr7oOLy8vd08BbsTvAGgrXt/hLI4dOItjB87i2Glea84BbDabpr09TWMeHuPUGANuHNBiUkRNWY2ylmfJw9tDcTPjnBqnNY6vP6787fmSpDGPNr090cnRChsUpqLsIn3+m89JsOhuoqOj7eWCggKHbevX1+8HAAAAAAAAoO3MZrPWrVvn7mkAAAAAAAAAAAAATkt+KVkGg8Hp/rM2zWqxzf5l+1VTVqOR946UXy8/p8dqyYEVB+zlgTcPbLbdwJsHqii7SGf2nFHR0SKFXd21bqImSUZ3T6CzGjFihL186tQph23z8i4t1WI0GjV06NAOnRcAAAAAAAAAAAAAAAAAAAAAoHNrT3JFa2W8lSFJSvhBQpv61ZTXqK62rtXtT2w8IUnyCfFRyICQZtv1Gd3HXs7ZmNOmOXUWrGDRjGuvvVaBgYG6ePGi9uzZ02w7q9WqvXv3SpLGjRsnX1/fKzRDAAAAAAAAAAAAAAAAAAAAAEBPdHr3aZ3OOK3woeEacMOAFtvvWbJHu9/erXMHz6myqFKSFNg3UDEpMUr6SZIix0Q22a+2slYXjl+QJAX1C3I4RnC/YHv57IGzrd2UToUVLJrh7e2t73znO5Kk7du3q6ysrMl227Zts9fNmDHjis0PAAAAAAAAAAAAAAAAAAAAANAzZfy/S6tXjHlsTKvafzzrY/mF++mWV2/RvWvu1bRF0xQ+JFz7lu7TW9e+pbQX05rsV5JbIpvVJkkKMAc4HMPf7H+534mSVs2rs+mxCRZZWVkaPHiwoqKitGXLlibbPP/88zIajaqsrNSyZcuabPP2229Lksxmsx555JEOmy8AAAAAAAAAAAAAAAAAAAAA4MqzVFtUXVpt/1dzscat86kpr9H+Zfvl4e2huAfjWmxv8DDoex98T3evulvxs+I16NZBGvPIGD244UHd8IsbJJu05VdbtPVPWxuPVW9bTT4mh+N4+nray9UXq9uwRZ1Hj02w+O1vf6vs7Gzl5+fr+eefb7LNiBEj9Mwzz0iSXnjhBR0/frxB/WeffaYlS5ZIkv73f/9X/v7+jWIAAAAAAAAAAAAAAAAAAAAAALqu9JfT9fvg39v/vTnsTbfOJ2t5lmou1mjYncPk18vPYduknyTpqVNPacTdI5qsT34pWeY4syQp7ZdpKjtT1qC+trLWXvbw8nA4Vv362opaBy07L8cpJJ3c+++/by/v27fPXk5NTVVeXp6kSytLTJo0qVFfq9VqL9tstmbH+N3vfqfz58/r7bff1nXXXacf/OAHio6OVkZGht577z0ZjUa99tprmjFjhis2CQAAAAAAAICLlJeXO9WvoKBAc+bMUUZGhhISErRw4UKZzeY2xbBYLE6NDQAAAAAAAAAAgM5nwk8naNy8cfbH+fn5en3Y626bT8ZbGZKkhMcSWmzrE+IjnxCfZusNRoPiZ8XrP0/9R5ZKi/Yv369xT13e1vqrUtTV1Dkcq369p5+ng5adV5dOsHjggQeafP53v/udvXzjjTc2mWDx85//XJmZmaqsrNQf/vCHZscwGo1atGiRpk+frr/97W969913deHCBfXp00ff//739eSTT2rMmDHt3xgAAAAAAAAALhUQENDuGKmpqYqNjXWqb1paWrvHBwAAAAAAAAAAgPuZvE0yeV++9N6r1Mttczmz54z+u/O/Ch8argE3DHBJzKuuvcpeztuaJz11uc4r8PK2Wqoc32Ss/moX3oHeLpnbldalEywcrTzRklGjRik7O7vV7W+99VbdeuutTo8HAAAAAAAAAAAAAAAAAAAAAEB77Pp/uyRJCT9oefWK1vKP8LeXy86UNagL7h8sg9Egm9WmsoKyb3ZtoLzg8grzwdHBLpvfldSlEywAAAAAAAAAoDllZY6/4G3O9OnTtXHjRtXV1cnDw0MpKSlatWpVm2JYLBbt3r3bqfEBAAAAAAAAAACAptSU1yhrWZZMPibFPRjnsrg26+WFDwwehgZ1nr6eCh0YqqKjRSo9VeowTmne5fqI4REum9+VRIIFAAAAAAAAgG7J39+/5UZNWLp0qWbNmqWdO3cqMTFRixcvbnMsi8Xx8sgAAAAAAAAAAABAW2V9kKXq0mqNun+UfMN8W2xfsK9AX33ylUbdP0oh0SHNtqu/akVgZGCj+uiUaBUdLVJVcZWKTxYrZEDTsU5nnraXY1JiWpxfZ0SCBQAAAAAAAADUYzabtW7dOndPo1soLy9vuVETCgoKNGfOHGVkZCghIUELFy6U2Wxucxxnk2wAAAAAAAAAAAA6o8y3MiVJYx4b06r2pzNPK+0XaQq7OsxhgkXetjx7ud+Efo3qh88Ybh87Z0OORs8e3WScnA05kqQ+8X0UdnVYq+bY2ZBggStq+bTlbh3/ntX3uHV8AAAA4ErjMzgAAHCngICAdsdITU1VbGysU31tNlvLjQAAQLfCdyEAAPQs7r65wyff/8Sp8a0Gq4oii5T/Wr6MNqNTMb7G5w8AAHqOgn0Fyt+Rr/BrwjVg4oA29T267qhGfH9Ek3V1NXXa/c5uSZJXoFeT7QbePFB9x/ZV/vZ8Zb6d2WSCxcktJ3X+yHlJ0sSfT2zT/DoTEiwAAAAAAAAAAAAAAAAAAF2Ou2/usGzqsnaPDwAA0Fq7/t8uSVLCYwlt7rvv7/s05PYhuuaOaxo8b62zas3cNSo6WiRJuuVPt8ivl1+TMW776216d8K7yvsyTzve3KHrfnidva6quEpr566VJA2eOljD7hzW5jl2FiRYAAAAAAAAAAA6RFlZmVP9pk+fro0bN6qurk4eHh5KSUnRqlWrXDw7AAAAAAAAAACAjrXv/X32csG+Anv5WOoxleaVSpL8zf6KneQ44bO2olb7/75fJh+T4h6Ma/X4wf2D5RPqo6oLVfrwzg816NuDFHNzjHxDfVWaV6qsD7J07sA5GT2NuuXVWxwmb0SOidSMD2do5X0rte7H65T7ea6iU6JVeb5SmYsyVXyiWDEpMbpj2R2tnl9nRIIFAAAAAAAAAKBD+Pv7O9Vv6dKlmjVrlnbu3KnExEQtXrzY6VgAAAAAAKD7cvfNHT75/idOjQ8AAHqOVQ80/Rkj/Xfp9vKAGwe0mGCR9Y8sVZdUa9T9o+Qb5tvq8WNSYjQvf56OrD6i7LXZOp15Wptf2qzailp5BXopLDZM1z93va59/FqFDAhpMd7gqYM1Z+8cbVuwTdlrsvXVJ1/J099TESMidMMvb1D8zHgZjIZWz68zIsECAAAAPUZ5eblT/QoKCjRnzhxlZGQoISFBCxculNlsblOMiooKp8YGAAAAeiKz2ax169a5exoAAAAAAKCT4+YOAACgs3vR9qJL4ox+aLRGPzTaqb6evp4aftdwDb9ruEvmEhIdoikLpmjKgikuidfZkGABAACAHiMgIKDdMVJTUxUb6zhjHAAAAAAAAAAAAEDnxc0dAAAA0ByjuycAAAAAAAAAAAAAAAAAAAAAAADgbqxgAQAArpjy8nKn+hUUFGjOnDnKyMhQQkKCFi5cKLPZ3KYYFovFqbHRvZSVlTnVb/r06dq4caPq6urk4eGhlJQUrVq1qk0xTp48qeHDXbPMHgAAAAAAAAAAAAAAAADA9UiwAAAAV0xAQEC7Y6Smpio2Ntapvmlpae0eH12bv7+/U/2WLl2qWbNmaefOnUpMTNTixYvbHMvPz8+psQEAAAAAAAAAAAAAAAAAVwYJFgAAAEALzGaz1q1b5+5pAAAAAAAAAAAAAOhEqixVTvWzGqwqLC3UW1++pZySHMUEx+jhkQ8r2DvYxTMEAABAW5FgAQAArpiysjKn+k2fPl0bN25UXV2dPDw8lJKSolWrVrUphsVi0e7du50aHwAAAAAAAAAAAACAb5r96WyXxMkqzNJTaU851fchPeSSOQAAAOASEiwAAMAV4+/v71S/pUuXatasWdq5c6cSExO1ePHiNseyWCxOjQ0AAAAAAAAAAAAAAAAAAHoGEiwAAFdMZWWlysvLZTK17e2noKBAc+bMUUZGhhISErRw4UKZzeY2j+/sxf1wP7PZrHXr1rl7GgAAAAAAAADQqS2fttxtY1sNVvWd19dt4wMAALjDu1Pedaqf1WDVK/teUfZ/s2W1WWU0GDWs1zDNu3aei2cIAACAtiLBAgBwxdx6663tjpGamqrY2Fin+tpstnaPDwAAAAAAAAAAAAAAIEk+Jh+n+lkNVj1w0wP68D8f6njxccWGxGpO/Byn4wEAAMB1SLAAAAAAAAAAAAAAAAAAAOAKCvIL0rNJz8poM7YrTnl5uVP9CgoKNGfOHGVkZCghIUELFy6U2Wxucxx/f3+nxgcAAOisSLAAAFwxa9eu1fjx42Uyte3tZ/r06dq4caPq6urk4eGhlJQUrVq1qoNmCQAAAAAAAAAAAAAAWoOL+90vICCg3TFSU1MVGxvrVF+bzdbu8QEAADoTEiwAAFeMr6+v/P3925xgsXTpUs2aNUs7d+5UYmKiFi9ezJckALo9m82mnX/ZqfXPr1dtea1mps1UdHJ0q/uf2npKO97codz0XJWfLZd/b39FjYtS4hOJrY5jtViVsShD+9/fr8LDhbJUWxTcP1hDbh+ipCeTFNCndV/WFp8s1rYF23R07VGVnCqRV4CXIoZHKG5mnOIejJPBaGj1dgEAAAAAAAAAAKDz4OJ+AAAAdDckWAAAOj2z2ax169a5exoAcMUUHSvSJ7M/0cktJ53qv/lXm7V5/maZfEwa/choRYyIUOGhQmUuytTBFQc1/pnxmvTHSQ5jVBRWaNnUZcrfnq/woeG6/rnr5RXgpew12fri919o9zu7dddHd2nADQMcxjmy5ohW3rtS1RerNezOYUp6KkkV5yuUuShTHz/0sfa9v093r7pb3oHeTm0rAAAAAAAAAAAA0JOVlZU51W/69OnauHGj6urq5OHhoZSUFK1atcrFswMAAOh6SLAAgCuIpTEBAI7UX7XC6GFUVFKU8rbltSnGroW7tOnFTTL5mPTgxgcVNTbKXjfqgVF6b+J72vrKVvlH+Gv80+ObjGG1WPWP6f9Q/vZ89RvfTw+sf0Cevp6SpMQnErXhZxuU/nK6Prj9Az2y4xH1GtSryTinM09rxYwVslRaNHnBZCU9mWSvS3wiUe9NfE85G3K08t6Vumf1PW3aTgAAAAAAAAAAALj/OgQu7nc/Z68FWbp0qWbNmqWdO3cqMTFRixcv5roSAAAAkWABAFcUS2MCABzZPP/SyhOxk2M1bdE07X5nd5sSLMrPlSv1mVRJ0tgnxzZIrpCkyNGRGv/0eG2ev1lpv0jTiO+PUFBUUKM4GYsylJueKxmkaYum2ZMrvpY8P1kHVxxU0dEifTbvs2aTI9Y8sUaWSov6ju3bILlCknxDfXXrm7dqyU1LdOTfR3Twnwc17HvDWr2tAAAAAAAAAAAA6LrXIXBxv/uZzWatW7fO3dMAAADodEiwAAAAADoJm82maW9P05iHxzjVf/sb21VTViNJGvNI0zHGPDJGm3+1WZYqi7a+ulVTXp/SaA7pL6dLkvpf31+9h/VuFMPD00Nxs+KU9kKajvz7iM7sPaM+cX0atDm+/rjyt+dfGvPRpucSnRytsEFhKsou0ue/+ZwECwAAAAAAgC5u//L9yn8tX0ab0d1TAQAAnRwX9wMAAKCzIsECAK4glsYEADiS/FKyDAaD0/0PfnRQkhQSHaKwq8OabBMUFaTwoeEqPFSoQx8d0uTXJjcYM29bnkpPlUqSYm6OaXas2EmxSnsh7dK4Kw42SrA4sOKAvTzw5oHNxhl480AVZRfpzJ4zKjpa1Oy8AQAAAAAAAAAA0BjXIQAAAACuRYIFAFxBzi5nydKYANAztCe5ojS/VOe/Oi9J6hPfx2HbyNGRKjxUqNK8UhVlF6nX4F72upyNOfayozjmOLMMRoNsVluDPl87sfGEJMknxEchA0KajdNn9OUxcjbmkGABAAAAAAAAAADQBlyHAAAAALgWCRYA0AWwNCYAoCVns87ay0H9ghy2rV9/9sDZBgkW57LO2cvB/YKbjWHyNsmvt5/KC8p17sC5BnW1lbW6cPxCq+ZSf4yzB846aAkAzikvL3eqX0FBgebMmaOMjAwlJCRo4cKFMpvNbYphsVicGhsAAACA85ZPW+7W8e9ZfY9bxwcAAGgtrkMAAAAAmkaCBQAAwBXizgs8JefvXoOuofhEsb3sb3a8r+vX1+/X1jgB5gCVF5SrurRalRcq5RvqK0kqyS2RzWqzt2ntXEpOlDhsCwDOCAhw/DrUGqmpqYqNjXWqb1paWrvHBwAAAAAAAAAAAAAAVwYJFgAAAFeIuy/wtNls7R4frWeptqiuus7+uLastkPHq7lYYy+bfBx/zPf09WyynyRVX6xudRyT7+X6mos19gQLZ+dSf2wAAAAAAAAAAAAAAAAAuNJIsAAAAD1GZWWlysvLZTK17SOQq1aQQM+S/nK6Ns/fbH9cYuzY1RlqKy8ncHh4eThsW7++tqJh4oel0tLuOK6aCwC4QllZmVP9pk+fro0bN6qurk4eHh5KSUnRqlWr2hTDYrFo9+7dTo0PAOh5bDabdv5lp9Y/v1615bWamTZT0cnRDvvMN8xv8zh3r7pbQ787tMFzm17a1OD8xZFHdz6qq669ymGb4pPF2rZgm46uPaqSUyXyCvBSxPAIxc2MU9yDcTIYDW2eNwAAAAAAAAAAwJVAggWAHqW8vNypfq66uNrf39+p8QG4xq233truGO1ZQcKdF3jiypvw0wkaN2+c/XFubq5eH/l6h41XfyWIupo6By0b1nv6eTaoq78qhbNxXDUXAHAFZz+DL126VLNmzdLOnTuVmJioxYsXtzmWxWJpuREAAJKKjhXpk9mf6OSWkx0+lr+5Y7+fOrLmiFbeu1LVF6s17M5hSnoqSRXnK5S5KFMfP/Sx9r2/T3evulvegd4dOg8AAAAAAAAAAABnkGABoEcJCAhod4z2XFxts9naPT6ArsudF3jiyjN5m2Tyvvxx2zOgY5MHvAK97GVLleMLeuuvMFG/n6QGFzm1FKf+ahf14zg7Fy6wQnfk7tWTeL9wntls1rp169w9DQBAN1d/1Qqjh1FRSVHK25bXphhDvztU33r5Ww7bnM48rZX3rVSvIb3Ub1y/ZtvNPTS3xfFCokMcjrNixgpZKi2avGCykp5MstclPpGo9ya+p5wNOVp570rds/qeFscCuiJ33+RH4jwAAAAAAAAAANqDBAsAANBjrF27VuPHj2/zRa7uXkHCVRd4uvsHfn7c71j1L3IqL3C8r+vXf/PiqJDoEPsFXeUF5QrqG9RsnLKCS6uyeAd5yzfU1/58cP9gGYwG2aw2e5vWzCU4OthhW6ArcvfqSST4AoB7kWiHlmyev1mb529W7ORYTVs0Tbvf2d3mBAvvYG+FDw132ObL176UJCU8luCwXUtxWrLmiTWyVFrUd2zfBskVkuQb6qtb37xVS25aoiP/PqKD/zyoYd8b1q7xgM7I3Tf5kTgPAAAAAAAAAID2IMECQI9SVub4Is/muPviagCu4evrK39//zZf3NRdVpBw9w/8/LjfsSJGRNjLpadKHbYtzbtcHzE8okFd7xG97eWSUyWKHBPZZAxLtUUV5you9Rneu0Gdp6+nQgeGquhoUbvmAgAA0NWRaOd+7kw0r6ioaLGNzWbTtLenaczDY5ya54AbB7SYFFFTVqOs5Vny8PZQ3Mw4p8ZpjePrjyt/e74kacyjTW9PdHK0wgaFqSi7SJ//5nMSLAAAAAAAAAAAQKdDggWAHsXZC6K7y8XVAJzjqhUkgI4U1DdIvQb30vkj53VmzxmHbU9nnr7UJypIYYPCGtTFpMQoTWmSpDN7zmjo7UObjFGwt0A2q83e55uiU6JVdLRIVcVVKj5ZrJABIQ7n0lwcoKvrqqsnAQDQXbg70bwlyS8ly2AwON1/1qZZLbbZv2y/aspqNPLekfLr5ef0WC05sOKAvTzw5oHNtht480AVZRfpzJ4zKjpapLCrw5ptC3RF3OQHAAA467NnPtOXf7q0+tyNL96o5JeSW+xzausp7Xhzh3LTc1V+tlz+vf0VNS5KiU8kKjo5ulXjWi1WZSzK0P7396vwcKEs1RYF9w/WkNuHKOnJJAX0af95FQAAAAB0JSRYAEArcHE1gO6AH/i7v2Ezhunz336u4hPFunD8gkIHhjZqU5pfqsLDhZKka+68ptHFXFFJUQqKClJpXqlyNuQo+cXkJsc6vv54g3G/afiM4cp8K1OSlLMhR6Nnj24yTs6GHElSn/g+XFiFbqmnr54EAD0diXZoSXuSK1or460MSVLCDxLa1K+mvEYeXh7y8PRoVfsTG09IknxCfJpNsJakPqP72Ms5G3M4D0C3w01+AACAM05nnta217e1qc/mX23W5vmbZfIxafQjoxUxIkKFhwqVuShTB1cc1PhnxmvSHyc5jFFRWKFlU5cpf3u+woeG6/rnrpdXgJey12Tri99/od3v7NZdH92lATcMaM/mAQAAAECXQoIFAABXUHl5uVP9CgoKNGfOHGVkZCghIUELFy6U2Wxucxx+lO3Z+IG/+xv747Ha/sZ21ZTVKPPtTH3rd99q1Gb3O7slm2TyMWn8/4xvVG8wGDThZxO09om1yk3PVeHhQoUPDW/Qxmqxas/iPZKkQbcNUp+4Po3iDLx5oPqO7av87fnKfDuzyQSLk1tO6vyR85KkiT+f6MwmA90WCb4A0D2QaOd+7kw0P3nypIYPH+7U+K5yevdpnc44rfCh4a26IGrPkj3a/fZunTt4TpVFlZKkwL6BikmJUdJPkhQ5JrLJfrWVtbpw/IIkKahfkMMxgvsF28tnD5xt7aYA3R7nAAAA9FxWi1WfPPKJbHW2VvfZtXCXNr24SSYfkx7c+KCixkbZ60Y9MErvTXxPW1/ZKv8If41/uvFvAV+P+4/p/1D+9nz1G99PD6x/QJ6+npKkxCcSteFnG5T+cro+uP0DPbLjEfUa1Kt9GwoAAAAAXQQJFgAAXEEBAe1fQjc1NVWxsbFO9bXZWv/FLPA1fuDvOvwj/DXplUla8/gabXt9m4ZOH6q+iX3t9Wf2ntEXf/xCknTTr29SUFTTFz4lPJqgrGVZyk3P1epHV+v+z+63/6giSZte2qSi7CL5hPho8uuTm53PbX+9Te9OeFd5X+Zpx5s7dN0Pr7PXVRVXae3ctZKkwVMHa9idjVfBAAC0Hwm+QNfEZ3DXcWeiuZ+fn1Nju1LG/7u0esWYx8a0qv3Hsz7W0O8O1S2v3iL/CH9d/O9FZS3P0r6l+7Tv/X264Rc36Kb5NzXqV5JbIpv10ncOAWbH3334my//HUtOlLR2UwAAAIBua+urW3Vm9xkNuX2Ivvr4qxbbl58rV+ozqZKksU+ObZBcIUmRoyM1/unx2jx/s9J+kaYR3x/R5O8BGYsylJueKxmkaYumNfgdQJKS5yfr4IqDKjpapM/mfaZ7Vt/j/EYCAAAAQBdCggUA9CDuvLjKYrE4NTYA9DT73t9nLxfsK7CXj6UeU2leqaRLFyTFTmo60eraOdeqrKBMW361RUtuWqIxj4xR7+G9VXj40rLgteW1Gvf0uGbvWCVJRpNRd6+6W8umLlNueq7eSnhL8Q/Fy8vfS9lrs5W9Jlt+4X6a8dEMh3esihwTqRkfztDK+1Zq3Y/XKffzXEWnRKvyfKUyF2Wq+ESxYlJidMeyO9r6ZwIAtBIJvkDP5uz3ABKJVs4kuViqLaqrrrM/ri2rdfW02qSmvEb7l+2Xh7eH4h6Ma7G9wcOgO/5+h0bcPaLB82MeGaO0X6Zpy6+3aMuvtsg70LvR+UTNxRp72eTj+GeH+hdtVV+sbs2moItxd4Jna1ksFlVWVqq8vFwmk6nHv+4BcJ3l05a7dXwugAa6lqJjRdo8f7OuSrxK1/3oulYlWHy9krV06fN6U8Y8Mkabf7VZliqLtr66VVNen9Kg3mazKf3ldElS/+v7q/ew3o1ieHh6KG5WnNJeSNORfx/Rmb1nmlzRGgAAAAC6GxIsAKAHcffFVWlpae0ev6srKytzqt/06dO1ceNG1dXVycPDQykpKVq1apWLZwegM1j1QNP/t9N/l24vD7hxQLMJFpKU/GKyYifFavuft+vgRwdV8bcK+YX7KfaWWCXOTVTMTTEtzsMv3E+z02crY1GG9i3dp/SX01VXXafg/sEa/+x4Jf0kSYGRgS3GGTx1sObsnaNtC7Ype022vvrkK3n6eypiRIRu+OUNip8ZL4PR0GIcAF2Xuy+w4wI3AD2ZK74HkEi0aq30l9O1ef5m++MSo3tXZ8hanqWaizUaed9I+fVyvJpG0k+SlPCDhGY/4ye/lKyvPvlKBXsLlPbLNI26f5QC+lw+vmorLyeTeHh5OByrfn1thXuTUNAx3P0dpCvwugcAAK6Ufz/2b1lrrZq2aJqqLlS1qs/Bjw5KkkKiQxR2dViTbYKighQ+NFyFhwp16KNDmvzaZBkMl7+Lz9uWp9JTl27qFHNz878ZxE6KVdoLl37jPbjiIAkWAAAAAHoEEiwAALiCnL3Ab+nSpZo1a5Z27typxMRELV68mIsFgW7qRduLLonTb3w/9Rvfr10xjCajEh9PVOLjie2KExIdoikLpmjKgiktNwbQ7bj7AruefoEbCb4AcOVM+OkEjZs3zv44NzdXr4983W3zyXgrQ5KU8FhCi219QnzkE+LTbL3BaFD8rHj956n/yFJp0f7l+zXuqcvbWn9VirqauqZCNFnv6efpoCUAZ5HkDABA15D5TqZyNubo+ueuV5+4Pjqx6USLfUrzS3X+q/OSpD7xjpMdIkdHqvBQoUrzSlWUXaRegy+vSJ2zMcdedhTHHGeWwWiQzWpr0AcAAAAAujMSLACgB3HnxVUWi0W7d+92anxIZrNZ69atc/c0AAAA0MWQ4Av0bM5+DyCRaOUMk7dJJu/LX7l7BrgveeDMnjP6787/KnxouAbcMMAlMa+69ip7OW9rnvTU5TqvQC972VJlcRin/moX3oHeLpkbOpeukuBpsVi0detWjR8/XiaTqVu97pHk3LNVWVp39/NvKqku0Tv731FOSY5igmP08MiHFewd3KYYVoPVqbEBoCcqO1Om1GdSFRobqhtfvLHV/c5mnbWXg/oFOWxbv/7sgbMNEizOZZ2zl4P7Nf96b/I2ya+3n8oLynXuwLlm2wEAAABAd0KCBXAFufOuURaL4x820TO48+IqjkEAAICeqatcYIeGSPB1ncrKSpWXl8tkatvXcNxBGq7Qnv1PolXXtuv/7ZIkJfyg5dUrWss/4vL+LzvT8P09uH+w/a62ZQWO3/vLCy5/Rxoc3bYLd9E1dJUET4vFIl9fX/n7+8tkMvG6h25j9qez2x0jqzBLT6U91XLDJvz5sT+3e3wA6AnW/nCtqi5UacaKGQ1WhGtJ8Ylie9nf7PizSv36+v3aGifAHKDygnJVl1ar8kKlfEN9Wz1fAAAAAOiKSLAAriB33zUqLS2t3eOjZ+Liqu7DnYleEhd3AQDQE3WVC+yAjnLrrbe2OwZ3kIY78F1A11VTXqOsZVky+ZgU92Ccy+LarJdfTwwehgZ1nr6eCh0YqqKjRSo9VeowTmne5fqI4REumx+6Pne/7rh7fFciyRkAgCvDUm1RXXWd/XHNxZpW9Tv88WEd+uchxc+K18BvDWzTmPXHMPk4vuSnfuLGN+dWfbG61XFMvpfray7WkGABAAAAoNsjwQIAgB7E3YleXNwFAABaqztd4AYAwJWU9UGWqkurNer+UfINa/nCp4J9Bfrqk6806v5RCokOabZd/VUrAiMDG9VHp0Sr6GiRqoqrVHyyWCEDmo51OvO0vRyTEtPi/AC0HUnOPdu7U951qt9ru17TwfMHZbVZZTQYNazXMM27dl6bYlgNVlWowqnxAaArSn85XZvnb7Y/LlFJi32qS6u1du5a+fX20y2v3tLmMWsra+1lDy8Ph23r19dW1Daos1RaXBIHAAAAALojEizQoyyfttyt47vzrlEWi0Vbt25VeXm5TKa2/dd31Z3rJe5eDwA9mbMrqEisogIAzuK1F3C/tWvXavz48W0+F+cO0gCclflWpiRpzGNjWtX+dOZppf0iTWFXhzlMsMjblmcv95vQr1H98BnD7WPnbMjR6Nmjm4yTsyFHktQnvo/Crg5r1RwBXBkkOXcPPiYfp/rNHT1XC/cs1LHiY4oNidWc+DltjkWCBYCeZsJPJ2jcvHH2x/n5+Xp92OsO+6Q+m6qL+Rd1x7I7WpUQ/U31V6Woq6lz0LJhvaefZ4O6+qtStCcOAAAAAHRHJFgAV5A77xplsVh06623OjV+fe25c73E3esBd3NnohfgihVUJFZRAYC24LUXcD9fX1/5+/u3OcGCO0gDcEbBvgLl78hX+DXhGjBxQJv6Hl13VCO+P6LJurqaOu1+Z7ckySvQq8l2A28eqL5j+yp/e74y385sMsHi5JaTOn/kvCRp4s8ntml+AICOFewdrOfGPufuaQBAl2LyNsnkffl836vUy2H7k5+fVMZbGbp6ytUaec9Ip8b0Crw8hqXK4qBlw9Uu6veTJO9A71bHqb/axTfjAAAAAEB3RIIF0AV0p7tGOXsHXe6eC1dw9/Enuf8YdGeiFwAAAHCluXsVF4vF8QUKjnSn7wIAXDm7/t8uSVLCYwlt7rvv7/s05PYhuuaOaxo8b62zas3cNSo6WiRJuuVPt8ivl1+TMW776216d8K7yvsyTzve3KHrfnidva6quEpr566VJA2eOljD7hzW5jl2JRUVFW1+H3Lld1DO4DtYAACAjlNXU6fVj66Wh5eHbvr1TaoobLziT1VJlb1cW1HboI13sLc8PD0arDpXXuD482b9+m+uVhcSHWJfpa68oFxBfYOajVNWcOkGbt5B3vINbfuqGwAAAADQ1ZBggR6lylLVcqMmlFSX6J397yinJEcxwTF6eOTDCvYOdvHsOt7atWs1fvz4Nt8105V3rnfFHXS5ey6c5e7jT+q6xyAXd8EVnF1BRWIVFQBwFq+96Ok6wyouaWlpLpkDgO5r3/v77OWCfQX28rHUYyrNK5Uk+Zv9FTvJ8etQbUWt9v99v0w+JsU9GNfq8YP7B8sn1EdVF6r04Z0fatC3Bynm5hj5hvqqNK9UWR9k6dyBczJ6GnXLq7c4TN6IHBOpGR/O0Mr7Vmrdj9cp9/NcRadEq/J8pTIXZar4RLFiUmJ0x7I7Wj2/rmrIkCHt6t/e76Dai+9gAQAAXOvify/q/FeXVnNblLioxfZbX9mqra9stT+emTZT0cnRihgRYX+u9FSpwxhfn09IUsTwiAZ1vUf0tpdLTpUockxkkzEs1RZVnLuU6NF7eO8m2wAAAABAd0OCBXqU2Z/ObneMrMIsPZX2lFN9H9JD7R6/PXx9feXv79/mBAvuXA8AcIX2vHfwXgQAzuG1FwCAzm/VA00nMKb/Lt1eHnDjgBYTLLL+kaXqkmqNun+UfMNaf1fZmJQYzcufpyOrjyh7bbZOZ57W5pc2q7aiVl6BXgqLDdP1z12vax+/ViEDQlqMN3jqYM3ZO0fbFmxT9ppsffXJV/L091TEiAjd8MsbFD8zXgajodXzA4Cu5r1vv+dUP1fd7MvH5OPU+ACAjhXQJ0APpD7gsM2ZvWeU+nSqJGnUA6MaJE6b4y6tLBbUN0i9BvfS+SPndWbPGYfxTmeevtQnKkhhg8Ia1MWkxChNl24KcWbPGQ29fWiTMQr2Fshmtdn7AAAAAEBPQIIFgBa58s71zt5Bl7vnwhU4/oCui1VUAODK47UX3YG7V3GxWCzavXu303MA0DO8aHvRJXFGPzRaox8a7VRfT19PDb9ruIbfNdwlcwmJDtGUBVM0ZcEUl8Trir766iv17du3TX3c/R2Uu8cHugt33+xr2dRl7R4fAOB6Jh+TBt480GEbo8loL4cODG22/bAZw/T5bz9X8YliXTh+QaEDQxu1Kc0vVeHhQknSNXdeI4OhYZJzVFKUgqKCVJpXqpwNOUp+MbnJsY6vP95gXAAAAADoCUiwQI/y7pR3ner32q7XdPD8QVltVhkNRg3rNUzzrp3n4tn1DM7e8Za758IVOP4AAACAnsXdq7hYLBanx3eV8vJyp/oVFBRozpw5ysjIUEJCghYuXCiz2dzmOJw7Aeip/Pz82vwa6O7voNw9PgAAAFpn7I/Havsb21VTVqPMtzP1rd99q1Gb3e/slmyXEjvG/8/4RvUGg0ETfjZBa59Yq9z0XBUeLlT40PAGbawWq/Ys3iNJGnTbIPWJ69Mh2wMAAAAAnQ0JFuhRnF0Wee7ouVq4Z6GOFR9TbEis5sTPYYnlK4y758KdOP4AAAAA53Tli/u7y3lAQEBAu2OkpqYqNjbWqb42m63d4wNAT+Hu9x53jw90F9zsy/2qLFVO9SupLtE7+99RTkmOYoJj9PDIhxXsHdzmOPyGCKCj+Uf4a9Irk7Tm8TXa9vo2DZ0+VH0TL6+edmbvGX3xxy8kSTf9+iYFRQU1GSfh0QRlLctSbnquVj+6Wvd/dr88fT3t9Zte2qSi7CL5hPho8uuTO3ajAAAAAKATIcECaIVg72A9N/Y5d08DAAAAANDFVFZWqry8XCZT276C6QwJBq7Axf0AAADoabjZl/vN/nR2u2NkFWbpqbSnnOq7bOqydo8PoOco2Feggn0FkqRzh841eH7f+/skSf5mf8VOavjdyLVzrlVZQZm2/GqLlty0RGMeGaPew3ur8HChMhdlqra8VuOeHqfxTzdeveJrRpNRd6+6W8umLlNueq7eSnhL8Q/Fy8vfS9lrs5W9Jlt+4X6a8dEM9RrUqwO2HkB30ZVvtAMAANAUEiwAAAAAAB2GL9XR0916663tjkGCAdqjrKzMqX7Tp0/Xxo0bVVdXJw8PD6WkpGjVqlUunh0AAAC+xs2+AKBnOrTykDbP39zo+cOrDuvwqsOSpAE3DmiUYCFJyS8mK3ZSrLb/ebsOfnRQFX+rkF+4n2JviVXi3ETF3BTT4vh+4X6anT5bGYsytG/pPqW/nK666joF9w/W+GfHK+knSQqMDGz/hgLo1rjRDgAA6G5IsAAAAAAAdBi+VAd6Ni7udz9nE82WLl2qWbNmaefOnUpMTNTixYtJWgMAAECX8O6Ud53q99qu13Tw/EFZbVYZDUYN6zVM866d5+LZAUBDyS8lK/mlZKf79xvfT/3G92vXHIwmoxIfT1Ti44ntigMAAAAA3QUJFgAAAAAAAB1k7dq1Gj9+vEymtn0F010SDLi4v+sym81at26du6cBAAAAtJmPycepfnNHz9XCPQt1rPiYYkNiNSd+jtOxAAAAehJutAMAALobEiwAAAAAAB2GL9XR0/n6+srf37/NCRY9PcGAi/sBAAAAXGnB3sF6buxz7p4GAABAl8ONdgAAQHdDggUAAAAAoMPwpTrgHBIMAAAAAADOWD5teavaWQ1WFUUWKf+1fBltRpeNf8/qe1wWCwAAdG98Dw4AADorEiwAAAAAAJ0OX6oDAAAAAAAAAAAAAIDuwmazaedfdmr98+tVW16rmWkzFZ0c7bBP8YlivRHzRqviJ85N1K1v3uqwjdViVcaiDO1/f78KDxfKUm1RcP9gDbl9iJKeTFJAn4BWjVV8sljbFmzT0bVHVXKqRF4BXooYHqG4mXGKezBOBqOhVXE6KxIsAAAAAAAAAAAAAAAAAAAAAADoAEXHivTJ7E90cstJt82horBCy6YuU/72fIUPDdf1z10vrwAvZa/J1he//0K739mtuz66SwNuGOAwzpE1R7Ty3pWqvlitYXcOU9JTSao4X6HMRZn6+KGPte/9fbp71d3yDvS+QlvmeiRYAAAAAAAAAAAAAAAAAAAAAADgQvVXrTB6GBWVFKW8bXltjpPyuxRdM/0ah218Qn2arbNarPrH9H8of3u++o3vpwfWPyBPX09JUuITidrwsw1KfzldH9z+gR7Z8Yh6DerVZJzTmae1YsYKWSotmrxgspKeTLLXJT6RqPcmvqecDTlaee9K3bP6njZvZ2dBggUAAAAAoNsqLy93ql9BQYHmzJmjjIwMJSQkaOHChTKbzW2KYbFYnBobAAAAAOC8KkuVU/1Kqkv0zv53lFOSo5jgGD088mEFewe3OY6PqfkfsgGgJ3Dn93GS5O/v79T4AAAAANARNs/frM3zNyt2cqymLZqm3e/sdirBIjAyUOFDw52eR8aiDOWm50oGadqiafbkiq8lz0/WwRUHVXS0SJ/N+6zZ5Ig1T6yRpdKivmP7NkiukCTfUF/d+uatWnLTEh359xEd/OdBDfveMKfn7E4kWAAAAAAAuq2AgIB2x0hNTVVsbKxTfdPS0to9PgAAAAB0Ja6+sNZisaiyslLl5eUymVr+aXP2p7OdGr++rMIsPZX2lFN9l01d1u7xATiPi/vdz93fx9lstnaPDwAAAACuYrPZNO3taRrz8Bi3ziH95XRJUv/r+6v3sN6N2nh4eihuVpzSXkjTkX8f0Zm9Z9Qnrk+DNsfXH1f+9nxJ0phHm96e6ORohQ0KU1F2kT7/zeckWAAAAAAAAAAAAADo2dx9YS2Ans3dr0Fc3A8AAAAAqC/5pWQZDAa3ziFvW55KT5VKkmJujmm2XeykWKW9cOkmkgdXHGyUYHFgxQF7eeDNA5uNM/DmgSrKLtKZPWdUdLRIYVeHtWf6bkGCBQAAAACg2yorK3Oq3/Tp07Vx40bV1dXJw8NDKSkpWrVqVZtiWCwW7d6926nxAQAAAADOeXfKu071e23Xazp4/qCsNquMBqOG9RqmedfOc/HsAKD7c+f3cQAAAADQ2XREcoXVYpWl2iIvf69Wtc/ZmGMv94nv02w7c5xZBqNBNqutQZ+vndh4QpLkE+KjkAEhzcbpM/ryGDkbc0iwAAAAAACgM/H393eq39KlSzVr1izt3LlTiYmJWrx4cZtjWSwWp8YGAAAAgK7M1QkOVoNVF/pcUOiZUBltxhbj+Jh8nBp/7ui5WrhnoY4VH1NsSKzmxM9xOhbgTlWWqla1sxqsqq6tVpWlSkabUSXVJXpn/zvKKclRTHCMHh75sIK9gzt4tq7Hxf3u587v4wAAAACguzp74Kz+ee8/lZueq4v/vShbnU2efp6KSorSyPtHKu6BOBlNTX93di7rnL0c3K/5c32Tt0l+vf1UXlCucwfONairrazVheMXJElB/YIczrX+GGcPnG1x2zojEiwAAAAAAPgGs9msdevWuXsaAAAAANDluDrBwWqwytvTWz4mn1YlWDgr2DtYz419rsPiA1fK7E9ntztGVmGWnkp7yqm+D+mhdo/fHu6+uL+8vNyp8QsKCjRnzhxlZGQoISFBCxculNlslnTpJh6VlZUqLy+XydTyJR5dNSmB7+MAAAAAoHlf/ulL9RrcS9f98DqFXxOuuuo6ndxyUpmLMpWzMUeZb2XqrpV3KTAysFHf4hPF9rK/2fE5Y4A5QOUF5aourVblhUr5hvpKkkpyS2Sz2uxtHKk/RsmJktZuYqdCggUAAAAAAAAAAAAAtyLBAYA7ueri/oAAxxeZtEZqaqpiY2Od7m+z2do9BwAAAABAY5Zqi+qq6+yPay7WXLGxr/neNbrj73fI5H350v9hdw5T/EPxWpK8RHnb8rR82nLN/mJ2gzaSVH2x2l42+ThOHTD5Xq6vuVhjT7Cov60txfD09Wxy7K6EBAtcUa1dkvabXLUkLUs5AwAAAAAAAAAAAOiu3p3ybqvaWQ1WXehzQaFnQmW0GfXartd08PxBWW1WGQ1GDes1TPOundfBswVcryNWEWmtiooKp8YGAAAA0DWkv5yuzfM32x+XqONXZwiKCtKTOU8qsG+gPDw9GtVHjo7UDb+8QalPp+p0xmntWrhLSU8mNWhjqbTYyx5ejWPUV7++tqL2crmytsk2bYnRlZBggSvK3UvSLpu6rN3jAwAAAAAAAAAAAEBn1NobzlkNVnl7esvH5COjzai5o+dq4Z6FOlZ8TLEhsZoTP4eb1zmhrKzMqX7Tp0/Xxo0bVVdXJw8PD6WkpGjVqlWSJIvFoq1bt2r8+PEymbjEoyWdYRURAAAAAN3ThJ9O0Lh54+yP8/Pz9fqw1zt0TKPJqJDoEIdtRj80WqnPpEo2ac+7exolWNRflaKupu6b3RuoX+/pd3klivqrUjgboyvh7BsAAAAAAAAAAAAA0G7VtdWqslTJaDO2qZ+rVrOXWNHeWcHewXpu7HPunkaX5+/v71S/pUuXatasWdq5c6cSExO1ePFieyyLxSJfX1/5+/uTYAEAAAAAbmTyNsnkffm8zKvUy42zucw3zFehA0N14dgFFewvUE1ZjbwCLs/NO9DbXrZUWZoKcbm+3moXXoFeTZZbilF/tYv6Y3clnH3jimrtkrTfxJK0AAAAAAAAAAAAQOf2zHvPtDtGe1azl1jRHl2T2WzWunXr3D2NbqEjVhFprfz8fA0ZMsSp8dH1VVRUqLy8vE19CgoKNGfOHGVkZCghIUELFy6U2Wxu89jOJncBAACg+/CP8NeFYxckm1RWUKawgDB7XUh0iPK25UmSygvKFdQ3qNk4ZQWXzqm8g7zlG+prfz64f7AMRoNsVpu9TXPKCy5/Lg6Odu4GGu5GggWuKGfvGMOStAAAAAAAAAAAAAAAwJGOWEWktfz8/JwaG93D8OHD29U/NTVVsbGxTvW12WztGhsAAABdn816+TOh0aPhyqK9R/S2l0tOlShyTGSTMSzVFlWcq7jUZ3jvBnWevp4KHRiqoqNFKj1V6nAupXmX6yOGR7RuAzoZEizQJbAkLQAAAAAAAAAAANC5vfLQKwo9Eyqjzdhy43q602r2VZYqp/qVVJfonf3vKKckRzHBMXp45MMK9m77XR7dfZO6tt69/WvcxR3uxioiAAAAADqjLb/ZooiRERp6+1CH7crOXFpVwmA0yD+i4blxTEqM0pQmSTqz50yzsQr2FtgTNWJSYhrVR6dEq+hokaqKq1R8slghA0KajHM683SDsbsiEiwAAAAAoBtz94/6AAAAAACg5/D29JaPyafNCRbdaTX72Z/ObneMrMIsPZX2lFN9l01d1u7x2yMgIKDdMbiLO4Cu6MCBAxowYECb+kyfPl0bN25UXV2dPDw8lJKSolWrVnXQDAEAANAVpf0iTbGTYx0mWFw8fVElJ0skSZFjIuXp59mgPiopSkFRQSrNK1XOhhwlv5jcZJzj64/by8NmDGtUP3zGcGW+lSlJytmQo9GzRzcZJ2dDjiSpT3wfhV0d1vzGdWIkWAAAAABAN+buH/Uf0kPtHh8AAAAAAHRvrGYPAOjq/Pz82ryKztKlSzVr1izt3LlTiYmJWrx4MSvxAAAAoJFTW0+purRa3kHeTdbvWrjLXh7z2JhG9QaDQRN+NkFrn1ir3PRcFR4uVPjQ8AZtrBar9izeI0kadNsg9Ynr0yjOwJsHqu/Yvsrfnq/MtzObTLA4ueWkzh85L0ma+POJrd7GzoYECwAAAAAAAAAAAAAAXODdKe861e+1Xa/p4PmDstqsMhqMGtZrmOZdO8/Fs+t4ZWVlTvXjLu4AeiKz2ax169a5exoAAADo5Gou1mj1Y6s1/f+my8PLo0Hdsc+O6Ys/fCFJGnDDAI1+qOlVJRIeTVDWsizlpudq9aOrdf9n98vT9/JKF5te2qSi7CL5hPho8uuTm53LbX+9Te9OeFd5X+Zpx5s7dN0Pr7PXVRVXae3ctZKkwVMHa9idjVfB6CpIsAAAAACAbqyn/6gPAAAAAABwJfmYfJzqN3f0XC3cs1DHio8pNiRWc+LnOB3LnZy98zp3cQcAAAAAdFf73t9nLxfsK7CXj6UeU2leqSTJ3+yv2Emxjfqa48wq2FugA/84oNMZpzX8+8MVOjBUteW1OrHphA6tPCTZpKu/fbXu+PsdMpqMTc7BaDLq7lV3a9nUZcpNz9VbCW8p/qF4efl7KXtttrLXZMsv3E8zPpqhXoN6NbstkWMiNePDGVp530qt+/E65X6eq+iUaFWer1TmokwVnyhWTEqM7lh2h7N/rk6BBAsAAAAA6MZ6+o/6AAAAAAAAXUGwd7CeG/ucu6fhNtzFHQAAAADQXa16oOkVGtN/l24vD7hxQJMJFnP2zFHe9jwd/tdhnfrilDLfylTlhUp5eHoooE+ARt47UqMeGKWrJ1/d4jz8wv00O322MhZlaN/SfUp/OV111XUK7h+s8c+OV9JPkhQYGdhinMFTB2vO3jnatmCbstdk66tPvpKnv6ciRkTohl/eoPiZ8TIYDS3G6cxIsAAAAAAANNLTf9QHAAAAAAAAAAAAAABorxdtL7arf9TYKEWNjXLJXIwmoxIfT1Ti44ntihMSHaIpC6ZoyoIpLplXZ9PlEywKCwv1xhtvaNWqVTpx4oS8vLw0ZMgQ3XPPPZozZ468vLzaPcbhw4f117/+VZs2bVJOTo6qqqoUGhqqkSNH6o477tDs2bPl6+vrgq3peMunLXf3FAAAAAAAAAAAAAAAAAAAAAAA6HS6dILFjh079N3vflenT5/WpEmT9Pjjj6uyslJLlizRk08+qcWLF+vf//63rrrqKqfH+Mtf/qKnnnpKtbW1io+P19NPPy2z2axDhw7pvffe08aNG/XnP/9Z69at08CBA124dQAAAAAAAAAAAAAAAK1XXl7uVL+CggLNmTNHGRkZSkhI0MKFC2U2m9scx9/f36nxAQAAAADoLLpsgkVubq6mTp2qc+fO6Sc/+Ylef/11e92PfvQjffvb31ZaWpq+853v6IsvvpC3t3ebx/jPf/6jH/7wh5Kke++9V0uWLJHJdPlPNm/ePCUmJurIkSOaOnWq9u7dK09Pz/ZvHAAAAAAAAAAAAAAAQBsFBAS0O0ZqaqpiY2Od6muz2do9PgAAAAAA7mR09wSc9cwzz+jcuXPq37+/fv/73zeo8/b21qJFi+Th4aGMjAy9+eabTo3xxz/+UZLk6empN954o0FyhSQNGDBAL7zwgiTp0KFD+te//uXUOAAAAAAAAAAAAAAAAAAAAAAAwL26ZIJFdna2VqxYIUl68MEHm1ydIjY2VjfddJMk6Q9/+IMsFkubx9m5c6c9Vnh4eJNtrrvuOnv5yy+/bPMYAAAAAAAAAAAAAAAArlBWVubUv0mTJsnDw0OS5OHhoUmTJjkVBwAAAACArs7UcpPO56OPPrIvK3nzzTc3227SpElav369zp07p02bNjls25SamhpJkq+vb7Nt/Pz87OXy8vI2xQcAAAAAAAAAAAAAAHAVf39/p/otXbpUs2bN0s6dO5WYmKjFixc7HQsAAAAAgK6sSyZYbNy40V6Oj49vtt3o0aMb9GlrgkVcXJx27Niho0ePymKxyGRq/Oc6dOiQvTxo0KA2xQcAAAAAAAAAAAAAoLtYPm25W8e/Z/U9bh2/KzObzVq3bp27pwEAAAAAgNsZ3T0BZ2RlZUmSAgMDFRwc3Gy7fv362csHDhxo8zjPPvusJOnixYv63//930b1dXV1+sMf/iBJCggI0H333dfmMQAAAAAAAAAAAAAAAAAAAAAAgPt1uQSL6upqnTlzRtKlOyg4Ur/+xIkTbR7re9/7npYsWaKAgAA988wzevrpp7Vjxw6dOHFCn376qSZOnKjdu3crPDxcK1euVGRkZJvHAAAAAAAAAAAAAAAAAAAAAAAA7mdy9wTa6uLFi/ayj4+Pw7a+vr5N9muLBx98UJMnT9ZPf/pTLViwQK+++qq9zmw26ze/+Y1mz57dpuSKkpISFRUV2R97e3vL29vbqfm1ldVgvSLjoGkWi8WtY1utVrfOAT0bxyDcjWMQ7ma18jmsJ+vJ5wA9+XWX9x5wDIBjoGdj/4NzgJ7twoUL8vPzsz++kucAaB1epzuOq89DbQabbLLJZrDJKl5bOzP2VdfSXfdXd3xd5z2r62Af9Wzu/B0A7uXs519Xvhfz+tOz8NkAzuLYgbM4dprH36T76nIJFpWVlfayl5eXw7b16ysqKpwa7//+7//07LPPqqCgQN/73vf03e9+V2FhYTp58qTeffddLViwQMXFxXrhhRcUHBzcqpjx8fENHs+cOVOzZs1yan5tVRRZ1HIjdJj09HS3jW21WpWbmytJMhq73OI16AY4BuFuHINwt/Pnz7t7CnCjnnwO4M7PwO7Gew84BsAx0LOx/8E5QM82atSoBo+v5DkAWofX6Y7j6vNQm2yqDKxUkYpkkMGlseFa7Kuupbvur+74XRTvWV1H/Yvr0fO483cAuJezn39d+V7cHd//0Dw+G8BZHDtwFsdO8zgH6L66XIJF/VUpampqHLatX1//TlGttWDBAj311FOSpL/+9a96/PHHG9Q/9thjuvfee/WnP/1JH3/8sTZt2qSrrrqqxbh79uxRv3797I+vZNZ6/mv5V2QcNG3ChAluG/vrTLnx48fLZOpy//XRDXAMwt04BuFuX59somfqyecA7vwM7G6894BjABwDPRv7H5wD9Gz79u1T37597Y+5e23nw+t0x3H1eajNYFORihR2JkwGW/e5CLw7Yl91Ld11f3XH76J4z+o68vLy3D0FuJE7fweAezn7+deV78Xd8f0PzeOzAZzFsQNncew0j3OA7qvLHemBgYH2clVVlcO29Ve7qN+vNfLy8vTss89KuvQh9JvJFZLk4eGhhQsXas2aNcrOztbDDz+sdevWtRg7ODhYYWFhbZqPqxhtZI+5k7vfXIxGo0wmk9vngZ6LYxDuxjEIdyKLv2fryecAPf01l/cecAyAY6BnY//3bJwD9GyhoaFuOwdA6/E63TFcfR5qlVUGGWSwGdx+jgvH2FddS3fdX+5+TV8+bbnLY1oNVhVFFun0gtOt2lf3rL7H5XNA67j7+IN7ufN3ALiXs++jrnwv5vWn5+F8Fs7i2IGzOHaaxt+j++py35R4e3urT58+kqSCggKHbevXR0dHt2mcFStWqLa2VpI0ffr0ZtuFhoYqOTlZkvTpp5/q2LFjbRoHAAAAAAAAAAAAAAAAAAAAAAC4X5dMnRkxYoTOnDmjixcvqqSkRMHBwU22q7/0yvDhw9s0xpEjR+zlAQMGOGxbP3ljz549io2NbdNYAAAAAAAAAICezWazaedfdmr98+tVW16rmWkzFZ0c7bBP8YlivRHzRqviJ85N1K1v3uqwjdViVcaiDO1/f78KDxfKUm1RcP9gDbl9iJKeTFJAn4BWjVV8sljbFmzT0bVHVXKqRF4BXooYHqG4mXGKezBOBqOhVXEAAADQdh2xikZbsIIGAAAAAKCr63IrWEhSSkqKvbxnz55m22VmZjbZpzXqL99us9kctrVarfZyXV1dm8YBAAAAAAAAAPRsRceKtCR5idb9aJ1qy2vdMoeKwgq9O+FdrX1irSqLKnX9c9dr0h8nKTQmVF/8/gv9bdTfdHLLyRbjHFlzRAtHLdT2N7bLHGfW5Ncma+yTY3Uh54I+fuhjLb1lqaovVl+BLQIAAAAAAAAAAGi7LrmCxZ133qmf//znstls2rBhg2688cYm261fv16SFB4eruTk5DaNMXDgQHv52LFjDtvWr+/fv3+bxgEAAADQ/VVUVKi8vLxNfQoKCjRnzhxlZGQoISFBCxculNls7qAZAgAAwB3qr1ph9DAqKilKedvyWu74DSm/S9E1069x2MYn1KfZOqvFqn9M/4fyt+er3/h+emD9A/L09ZQkJT6RqA0/26D0l9P1we0f6JEdj6jXoF5NxjmdeVorZqyQpdKiyQsmK+nJJHtd4hOJem/ie8rZkKOV967kzsYAAAAAAAAAAKBT6pIrWAwaNEgzZsyQJC1dulQ1NTWN2hw/flwbN26UJD333HMymRrmkmRlZWnw4MGKiorSli1bGvW/7bbbZDBcWqZ8xYoVzc6loKBAmzdvliRFREQoMTHRuY0CAAAA0G0NHz5cAQEBbfoXGxur1NRUFRUVKTU1VbGxsW2OERAQ4O5NBwAAgAOb52/Wuh+tU/8J/fV41uOKnRzrVJzAyECFDw13+C/A3Pxnw4xFGcpNz5UM0rRF0+zJFV9Lnp+ssKvDVFVcpc/mfdZsnDVPrJGl0qK+Y/s2SK6QJN9QX9365q2SpCP/PqKD/zzo1LYCAAAAAAAAAAB0pC6ZYCFJr7zyinr37q0TJ07oZz/7WYO66upqPfbYY6qrq1NCQoJ++MMfNur/29/+VtnZ2crPz9fzzz/fqH7o0KF6+OGHJUkZGRn67W9/26hNdXW1Zs2aperqantMDw8PV2weAAAAAAAAAKCbs9lsmvb2NN3/6f0K7hfstjmkv5wuSep/fX/1Hta7URsPTw/FzYqTdCk54szeM43aHF9/XPnb8yVJYx4d0+RY0cnRChsUJkn6/Defu2T+AAAAAAAAAAAArmRquUnn1L9/f61evVrTp0/Xq6++qqysLH3nO99RZWWllixZov379ys+Pl6ffPKJfHwaL31utVrtZZvN1uQYf/nLX1RZWam///3veuGFF/Sf//xHt99+u8LCwnTy5EktXbpUx48fl8lk0q9//Ws98sgjHba9AAAAALquAwcOaMCAAW3qM336dG3cuFF1dXXy8PBQSkqKVq1a1eaxP/n+J23uAwAAgCsj+aVk+0rK7pK3LU+lp0olSTE3xzTbLnZSrNJeSJMkHVxxUH3i+jSoP7DigL088OaBzcYZePNAFWUX6cyeMyo6WqSwq8PaM30AAAAAAAAAAACX6rIJFpI0duxY7du3TwsWLNCqVav07LPPytPTU4MHD9aCBQv0+OOPy8vLq8m+P//5z5WZmanKykr94Q9/aLKNl5eX3n//ff3gBz/Q4sWL9eWXX+qll15SZWWlAgMDFRsbq//5n//Ro48+qiFDhnTkpgIAAADowvz8/OTv79+mPkuXLtWsWbO0c+dOJSYmavHixW2OAQAAgM6tI5IrrBarLNUWefk3/d34N+VszLGX+8T3abadOc4sg9Egm9XWoM/XTmw8IUnyCfFRyICQZuP0GX15jJyNOSRYAAAAAAAAAACATqVLJ1hIUnh4uH7zm9/oN7/5TZv6jRo1StnZ2a1qO3HiRE2cONGZ6QEAAACAU8xms9atW+fuaQAAAKALOHvgrP557z+Vm56ri/+9KFudTZ5+nopKitLI+0cq7oE4GU3GJvueyzpnLwf3C252DJO3SX69/VReUK5zB841qKutrNWF4xckSUH9ghzOtf4YZw+cbXHbAAAAAAAAAAAArqQun2CBtqmyVDnVr6S6RO/sf0c5JTmKCY7RwyMfVrB38z+2NcfH5OPU+AAAAAAAAACApn35py/Va3AvXffD6xR+Tbjqqut0cstJZS7KVM7GHGW+lam7Vt6lwMjARn2LTxTby/5mxyumBZgDVF5QrurSalVeqJRvqK8kqSS3RDarzd7GkfpjlJwoae0mAgAAAAAAAAAAXBEkWPQwsz+d3e4YWYVZeirtKaf6Lpu6rN3jAwAAAAAAAEBnY6m2qK66zv64tqz2io19zfeu0R1/v0Mm78tf+Q+7c5jiH4rXkuQlytuWp+XTlmv2F7MbtJGk6ovV9rLJx/FPBibfy/U1F2vsCRY1F2taHcPT17PJsQEAAAAAAAAAADoDEiwAAAAAAAAAAGin9JfTtXn+ZvvjEmPHr84QFBWkJ3OeVGDfQHl4ejSqjxwdqRt+eYNSn07V6YzT2rVwl5KeTGrQxlJpsZc9vBrHqK9+fW3F5QSS2sraJtu0JQYAAAAAAAAAAEBnQIJFD/PulHed6vfartd08PxBWW1WGQ1GDes1TPOunefi2QEAAAAAAABA1zThpxM0bt44++Pc3Fy9PvL1Dh3TaDIqJDrEYZvRD41W6jOpkk3a8+6eRgkW9VelqKup+2b3BurXe/pdXomi/qoUzsYAAAAAAAAAAADoDEiw6GF8TD5O9Zs7eq4W7lmoY8XHFBsSqznxc5yOBQAAAAAAAADdjcnbJJP35a/cPQM6R/KAb5ivQgeG6sKxCyrYX6Cashp5BXjZ670Dve1lS5WlqRCX6+utduEV6NVkuaUY9Ve7qD82AAAAAAAAAABAZ0CCBVol2DtYz419zt3TAAAAAAAAAAC0kX+Evy4cuyDZpLKCMoUFhNnrQqJDlLctT5JUXlCuoL5BzcYpKyiTJHkHecs31Nf+fHD/YBmMBtmsNnub5pQXlF/uFx3s1PYAAAAAAAAAAAB0FKO7JwAAAAAAAAAAADqOzWqzl40eDX8W6D2it71ccqqk2RiWaosqzlVc6jO8d4M6T19PhQ4MlSSVnip1OJfSvMv1EcMjWpg5AAAAAAAAAADAlUWCBQAAAAAAAAAAXdCW32zR4Y8Pt9iu7MylVSUMRoP8I/wb1MWkxNjLZ/acaTZGwd4Ce6JG/T5fi06JliRVFVep+GRxs3FOZ55ucmwAAAAAAAAAAIDOgAQLAAAAAAAAAAC6oLRfpGnX33Y5bHPx9EWVnLy0MkXkmEh5+nk2qI9KilJQVJAkKWdDTrNxjq8/bi8PmzGsUf3wGcPtZUdxvq7rE99HYVeHOZw7AAAAAAAAAADAlUaCBQAAAAAAAAAAXdSpradUXVrdbP2uhZcTMMY8NqZRvcFg0ISfTZAk5abnqvBwYaM2VotVexbvkSQNum2Q+sT1adRm4M0D1XdsX0lS5tuZTc7l5JaTOn/kvCRp4s8nNjtnAAAAAAAAAAAAdzG5ewIAAAAAAAAAAMA5NRdrtPqx1Zr+f9Pl4eXRoO7YZ8f0xR++kCQNuGGARj80uskYCY8mKGtZlnLTc7X60dW6/7P75el7eaWLTS9tUlF2kXxCfDT59cnNzuW2v96mdye8q7wv87TjzR267ofX2euqiqu0du5aSdLgqYM17M7Gq2AAAAAAANBWy6ctd/cUAAAA4EYF+woU0CdA/hH+LotJggUAAADQyVgtVu1dulcHPzyoM3vOqOJ8hTy8PBQUFaQBNwzQtY9fq8jRkS3GObX1lHa8uUO56bkqP1su/97+ihoXpcQnEhWdHN3quWQsytD+9/er8HChLNUWBfcP1pDbhyjpySQF9Alo59YCAAAAPdu+9/fZywX7CuzlY6nHVJpXKknyN/srdlJso77mOLMK9hbowD8O6HTGaQ3//nCFDgxVbXmtTmw6oUMrD0k26epvX607/n6HjKamF7U2moy6e9XdWjZ1mXLTc/VWwluKfyheXv5eyl6brew12fIL99OMj2ao16BezW5L5JhIzfhwhlbet1LrfrxOuZ/nKjolWpXnK5W5KFPFJ4oVkxKjO5bd4eyfCwAAAAAAAAAAdHMfz/5YCT9IUNTYqBbbfvi9D3Xh+AUN/e5QTX9/eoMbSDmLBAsAAACgEyk7U6Zlty3T6czT8vDyUNzMOJnjzKouqdax/xxT5qJM7X5nt2586Ubd+Isbm42z+VebtXn+Zpl8TBr9yGhFjIhQ4aFCZS7K1MEVBzX+mfGa9MdJDudSUVihZVOXKX97vsKHhuv6566XV4CXstdk64vff6Hd7+zWXR/dpQE3DHD1nwEAAADoMVY9sKrJ59N/l24vD7hxQJMJFnP2zFHe9jwd/tdhnfrilDLfylTlhUp5eHoooE+ARt47UqMeGKWrJ1/d4jz8wv00O322MhZlaN/SfUp/OV111XUK7h+s8c+OV9JPkhQYGdhinMFTB2vO3jnatmCbstdk66tPvpKnv6ciRkTohl/eoPiZ8TIYDS3GAQAAAAAAAAAAPdOexXs08OaBrUqwuPrbV+t46nEd/tdhpb+crpt+dVO7xyfBAgAAAOgkbDabPvzehzqdeVomH5Nmb53dYKWKiT+bqPXPr9cXf/hCm365SaExoRp1/6hGcXYt3KVNL26SycekBzc+2OBkY9QDo/TexPe09ZWt8o/w1/inxzc5F6vFqn9M/4fyt+er3/h+emD9A/YM78QnErXhZxuU/nK6Prj9Az2y4xGHd7EFAAAA0LwXbS+2q3/U2KhW/cDQGkaTUYmPJyrx8cR2xQmJDtGUBVM0ZcEUl8wLAAAAAAAAAACgKd/+87clSf+85586uOKgSxIsml4PHAAAAMAVl5ueq1NbT0mSrn382gbJFV9Lnp+sgD4BkqT0l9Mb1ZefK1fqM6mSpLFPjm10oVXk6Eh7UkXaL9JUmlfa5FwyFmUoNz1XMkjTFk1rtHxe8vxkhV0dpqriKn0277M2bScAAAAAAAAAAAAAAAAAuEp0SrRKcktcEosECwAAAKCT+O/O/9rLfcf2bbKNydskc5xZknTu4DlVl1Y3qN/+xnbVlNVIksY8MqbJGGMeGSMZJEuVRVtf3dqo3maz2ZM3+l/fX72H9W7UxsPTQ3Gz4iRJR/59RGf2nmlp8wAAAAAAAAAAAADApcrLy536d/z4cd1yyy3q1auXbrnlFh0/ftypOAAAoIMYWt/UUm3R0XVH5eHl4ZKhTS6JAgAAAKDd6mrq7OVvrhhRn6ff5bqa8hp5B3nbHx/86KAkKSQ6RGFXhzXZPygqSOFDw1V4qFCHPjqkya9NlsFw+awkb1ueSk9dWtki5uaYZucROylWaS+kXRp3xUH1ievjaPMAAAAAAAAAAAAAwKUCAgLaHSM1NVWxsbFO9bXZbO0eHwCAnmzbG9u0/Y3tjZ7/z0/+o40/39hif2utVeVny2W1WBXzreavc2oLEiwAAACATuLrlSkk6dyhcxrynSFNtis8VChJ8g7yln+Ev/350vxSnf/qvCSpT7zjZIfI0ZEqPFSo0rxSFWUXqdfgXva6nI059rKjOOY4swxGg2xWW4M+AAAAAAAAAAAAAAAAANCSquIqFZ8obvR8+bly6Vzr43j5eyl5frJL5kSCBQAAANBJxN4Sqz7xfXRmzxnt+N8dum7udfIK8GrQ5tCqQyo8fCnBYvQjo2X0MNrrzmadtZeD+gU5HKt+/dkDZxskWJzLunx2EtwvuNkYJm+T/Hr7qbygXOcOtOGMBgAAAAAAAAAAAABcoKyszKl+06dP18aNG1VXVycPDw+lpKRo1apVLp4dAABoSZ/4PoqfGd/guT1L9mjAxAEKHRjquLNB8vTzVK/BvTTszmEKvCrQJXMiwQIAAADoJIweRt336X3614P/0rHPjmnRdYuU8psU9Ynvo+rSamWvzdaWX2+RJA2/e7i+9dtvNehfP5vb3+wvR+rXfzMLvC1xAswBKi8oV3VptSovVMo31NdhewAAAAAA0LGWT1vu7ikAAAAAwBXj7+/498zmLF26VLNmzdLOnTuVmJioxYsXOx0LAAA4b+jtQzX09qENntuzZI8SfpCgkfeOdMucSLAAAAAAOoCl2qK66jr749qy2lb1CzAH6L5P79Ohfx7S+ufX68Pvfdigfsh3hmjMo2M0eOrgRn1rLtbYyyYfxx/1PX09m+wnSdUXq1sdx+R7ub7mYg0JFgAAAAAAAAAAAAA6PbPZrHXr1rl7GgAAoAnRN0a3eFPYjkSCBQAAANAB0l9O1+b5m+2PS4wlrep38fRFrZ27Vof/dViBkYFK+W2KzKPMqqup04lNJ7T73d2qvFApD28PxU6KbdC3tvJyEoeHl4fDcerX11Y0TP6wVFpcEgcAAAAAAAAAAAAAAAAA2mJm2ky3jk+CBQAAANABJvx0gsbNG2d/nJubq9dHvu6wT2VRpd6b8J4uHL+g3sN6a9aWWfLr5Wevv+aOazTqgVFafMNivX/L+5r0yiSNf3q8vb7+qhR1NXVypH69p59ng7r6q1K0Jw4AAAAAAAAAAAAAAAAAdLTj64/r8999rpkb25+cYXTBfAAAAAB8g8nbJO8gb/s/z4CWkw82vrBRF45fkCRN+fOUBskVX+ub2FdJTyVJklKfTdWpL0/Z67wCvexlS5WlUd/66q92Ub+fJHkHerc6Tv3VLr4ZBwAAAAAAAAAAAAAAAAA6WllBmU5uPumSWKxgAQAAAHQCNqtNWR9kSZK8g7wVkxLTbNtr7rhG6S+nSzZp1193qd+4fpKkkOgQe5vygnKH49Wvr9/v68d52/Ls7YL6BjUbp6ygzD5n31Bfh2MCAAAAAAAAAAAAAAAAQGvU1dQpNz1X5w6dU3VJtawWa7NtC/YWuGxcEiwAAACATqD8XLmqLlRJkoL7B8tgMDTbtn5CxJk9Z+zliBER9nLpqVKH45XmXa6PGB7RoK73iN72csmpEkWOiWwyhqXaoopzFZf6DO/dZBsAAAAAAAAAAAAAAAAAaIvMdzK1/tn1qiquuuJjG6/4iAAAAAAaMRgvJ1TYbDaHbW3Wy/XWusuZ2UF9g9RrcC9JDRMvmnI68/SlPlFBChsU1qCu/uoZjuIU7C2wz8XRihsAAAAAAAAAAAAAAAAA0BqHVh3S6kdXq/JCpWw2W6v/uQorWAAAAACdgF8vP3kHeau6tFrFJ4plrbPK6NF0PnTRsSJ7Obh/cIO6YTOG6fPffq7iE8W6cPyCQgeGNupfml+qwsOFkqRr7rym0WoZUUlRCooKUmleqXI25Cj5xeQm53F8/fEG4wIAAAAAAAAAAAAAAABAe2x7bZskaeS9IzX64dHqPay3fEN95eHl0Wyffe/v079m/ssl45NgAQAAAHQCBqNBg24bpKzlWaotr1X22mwNmTakybYH/nHAXh5026AGdWN/PFbb39iumrIaZb6dqW/97luN+u9+Z7dkk0w+Jo3/n/GN52IwaMLPJmjtE2uVm56rwsOFCh8a3qCN1WLVnsV77HPoE9enrZsMAAAAAAAAAAAAAAAA9Ag2m007/7JT659fr9ryWs1Mm6no5OgW+53OPK0DHx6wX8NTXVItrwAvhQ4MVfRN0Ur4QYJ6DerlMMamlzZp8/zNrZrnozsf1VXXXuWwTfHJYm1bsE1H1x5VyakSeQV4KWJ4hOJmxinuwTgZjAaH/VtSsK9A10y/Rne8f0frOxnkslUsmr4lLgAAAIAr7sYXb5Snv6ck6dMnP1VpXmmjNsfXH9fOv+6UJIVdHaaERxMa1PtH+GvSK5MkSdte36b8nfkN6s/sPaMv/viFJOmmX9+koKigJueS8GiC+k/oL9mk1Y+uVm1lbYP6TS9tUlF2kXxCfDT59clObC0AAAAAAAAAAAAAAADQ/RUdK9KS5CVa96N1qi2vbbmDpOITxXpv4nt6K+EtffGHS9f6XPfD63Tbwts07ulxslRb9OWrX+qvw/+qrX/a2pHTb+DImiNaOGqhtr+xXeY4sya/NlljnxyrCzkX9PFDH2vpLUtVfbG6XWPYrDZd/e2r29TnmunX6MmcJ9s17tdYwQIAAADoJMKHhOue1ffon9//p4pzivXXEX9V3Mw4mUeaVVdbp5ObT+rgRwdlq7MpYmSEvv/x92XyafyR/to516qsoExbfrVFS25aojGPjFHv4b1VeLhQmYsyVVteq3FPj9P4pxuvXvE1o8mou1fdrWVTlyk3PVdvJbyl+Ifi5eXvpey12cpeky2/cD/N+GhGi1nwAAAAAAAAAAAAAAAAQE9Tf9UKo4dRUUlRytuW16q+hYcLlZueK0mavGCykp5MalA/4fkJ+teD/9L+ZfuV+kyqvAK9dO0PrnUYc+6huS2OGxId0mzd6czTWjFjhSyVlkZzSnwiUe9NfE85G3K08t6Vumf1PS2O1Zxeg3vJUm1pUx9PP0+FDAhxesz6SLAAAAAAOpGYm2I09/Bc7Xlvj7LXZOvABwe062+7ZPQwyq+3nwZPHaxrvneNRtw9Qh5eHs3GSX4xWbGTYrX9z9t18KODqvhbhfzC/RR7S6wS5yYq5qaYFufiF+6n2emzlbEoQ/uW7lP6y+mqq65TcP9gjX92vJJ+kqTAyEBXbj4AAAAAAAAAAAAAAADQLWyev1mb529W7ORYTVs0Tbvf2d3qBIuvDZw0sFFyhSQZPYya+tZUHf3PUVWer9SG5zcofmZ8kzdr/Vr40PA2b0N9a55YI0ulRX3H9m00J99QX9365q1actMSHfn3ER3850EN+94wp8aJfyheh1ce1nVzr2t1n7xtecp4K0O3v3u7U2PWR4IFAAAA0Mn4hvpq3LxxGjdvXLvi9BvfT/3G92tXDKPJqMTHE5X4eGK74gAAAAAAAAAAAAAAAAA9ic1m07S3p2nMw2OcjjHk9iHN1nn5e+nqyVdr/7L9qiqu0snPTyp2UqzTYzlyfP1x5W/PlySNebTp7YlOjlbYoDAVZRfp89987nSCReLcROVsyNGauWs06Q+T5BXg1WKfomNF2rtkLwkWAAAAAAAAAAAAAAAAAAAAAAB0NskvJctgMDjV96prr9J96+7TVYlXOWwXPCDYXi7JLXFqrNY4sOKAvTzw5oHNtht480AVZRfpzJ4zKjpapLCrw9o81pZfb5E5zqzd7+zWvv/bpwE3DlCvIb3kHegtg7Hpv2fB3oI2j9McEiwAAAAAAAAAAAAAAAAAAAAAAHAhZ5MrJMkv3E9XT7m6xXZVxVX2spd/yys9fK2mvEYeXh7y8PRoVfsTG09IknxCfBQyIKTZdn1G97GXczbmOJVgsemlTfa/nc1m09F1R3V03dE2x3EWCRYAAAAAAAAAAAAAAAAAAAAAAHQxxTnFlwoGqd/1/Ry23bNkj3a/vVvnDp5TZVGlJCmwb6BiUmKU9JMkRY6JbLJfbWWtLhy/IEkK6hfkcIzgfpdX1Dh74Gwrt6Ixm83WZNmR9iS01EeCBQAAAAAAAAAAAAAAAAAAAAAAXUhVSZVObDohSRoybUiD5IamfDzrYw397lDd8uot8o/w18X/XlTW8iztW7pP+97fpxt+cYNumn9To34luSWyWS8lOQSYAxyO4W/2v9zvREkbt+iyO96/QyPvHdnq9vve36d/zfyX0+PVR4IFAAAAAAAAAAAAAAAAAAAAAADNsFRbVFddZ39cc7HGjbO5ZO+SvbJUWeTh5aFv/f5bDtsaPAy64+93aMTdIxo8P+aRMUr7ZZq2/HqLtvxqi7wDvTX+6fEN2tTfVpOP4/QDT19Pe7n6YnVrN6X9DK1f6aIlJFgAAAAAAAAAAAAAAAAAAAAAANCM9JfTtXn+ZvvjEjm/OoMrlJ8t15Zfb5Ekpfw2Rb2v6d1s26SfJCnhBwkKjAxssj75pWR99clXKthboLRfpmnU/aMU0OfyShW1lbX2soeXh8N51a+vrah10LJ50xZNU9S4qDb1iZ0Uq5lpM50a75tIsAAAAAAAAAAAAAAAAAAAAAAAoBkTfjpB4+aNsz/Oz8/X68Ned8tcrHVWrXpwlSoKKzTi+yM07n/GOWzvE+IjnxCfZusNRoPiZ8XrP0/9R5ZKi/Yv369xT12OWX9VirqauqZCNFnv6efpoGXzxjw8ps19/CP85R/h79R432R0SRQAAAAAAAAAAAAAAAAAAAAAALohk7dJ3kHe9n9egV5um8u6H6/Tsf8cU8y3YnT74ttlMBjaHfOqa6+yl/O25jWoq7+tliqLwzj1V7vwDvRu97xaK297nlY/ttolsUiwAAAAAAAAAAAAAAAAAAAAAACgk1v/0/Xa9dddir4pWt//+PsyeZtcErf+6g9lZ8oa1AX3D5bBeCmJo6ygYd03lReUX+4XHeySubVG0dEi7X5nt0tiueYvCgAAAAAAAAAAAAAAAAAAAAAAOsTGX2zUF7//QgNuHKB7/32vPP08XRbbZrXZywaPhitiePp6KnRgqIqOFqn0VKnDOKV5l+sjhkc4NZeTW062uU/hoUKnxmoKCRbAFbR82nK3jW01WNV3Xl+3jQ8AAAAAAAAAAAAAAAAAAACg7Ta9tEmf/+Zz9Z/YX/euaX1yRcG+An31yVcadf8ohUSHNNuu/qoVgZGBjeqjU6JVdLRIVcVVKj5ZrJABTcc6nXnaXo5JiWnVHL9pcfJiGQyGlht2EKPbRgYAAAAAAAAAAAAAAAAAAAAAAM3a8tst2jx/s/pd30/3rb1PXv5ejdq8de1b2jR/U6PnT2eeVtov0pS3Lc/hGPXr+03o16h++Izh9nLOhpxm43xd1ye+j8KuDnM4piM2m63N/1yFFSwAAAAAAAAAAAAAAAAAAAAAAOhk0v+QrrQX0hQ1Lkr3rbtPXgGNkysk6XTGaUWMiGg2ztF1RzXi+yOarKurqdPud3ZLkrwCvZpsN/Dmgeo7tq/yt+cr8+1MjZ49ulGbk1tO6vyR85KkiT+f2OK2OTLx5xM18OaBTdbZ6myqLq1W4VeFOvLJEZXklmjy65Pl19uvXWN+jQQLAAAAAAAAAAAAAAAAoINVFVfpyJojytmQozO7z+hCzgXVlNXIK8BLvQb1UszNMUp8PFHB/YNbjHVq6ynteHOHctNzVX62XP69/RU1LkqJTyQqOjm6VfOxWqzKWJSh/e/vV+HhQlmqLQruH6whtw9R0pNJCugT0M4tBgAAANAeW1/dqg3Pb5Bfbz9NeH6CTmecdjrWvr/v05Dbh+iaO65p8Ly1zqo1c9eo6GiRJOmWP90iv15NJyrc9tfb9O6Ed5X3ZZ52vLlD1/3wOntdVXGV1s5dK0kaPHWwht05zOm5SlLva3or+sboFttNeG6C9r2/T2m/TNMj2x5p15hfI8ECAAAAAAAAAAAAAAAA6ECntp7SkpQlqquukwzSNdOv0Yh7Rsg7yFtFR4u09//26ovff6Edf96h29+7XcPvGt5srM2/2qzN8zfL5GPS6EdGK2JEhAoPFSpzUaYOrjio8c+M16Q/TnI4n4rCCi2bukz52/MVPjRc1z93vbwCvJS9Jltf/P4L7X5nt+766C4NuGGAq/8UAAAAQI+y7/199nLBvgJ7+VjqMZXmlUqS/M3+ip0U26Df4X8dVurTqZKkinMV+uD2D5waP7h/sHxCfVR1oUof3vmhBn17kGJujpFvqK9K80qV9UGWzh04J6OnUbe8eosSHktoNlbkmEjN+HCGVt63Uut+vE65n+cqOiValecrlbkoU8UnihWTEqM7lt3h1Fy/9u3//bb6Xte31e1H3T9Kx9cf15bfbtGkPzg+F2oNEiwAAAAAAAAAAAAAAACADlRdWq266joZPAy6b919jS6euuGFG/TeDe/p7P6zWvXAKkWMjFDva3o3irNr4S5tenGTTD4mPbjxQUWNjbLXjXpglN6b+J62vrJV/hH+Gv/0+CbnYrVY9Y/p/1D+9nz1G99PD6x/QJ6+npKkxCcSteFnG5T+cro+uP0DPbLjEfUa1MuFfwkAAACgZ1n1wKomn0//Xbq9PODGAY3OEYpPFLtk/JiUGM3Ln6cjq48oe222Tmee1uaXNqu2olZegV4Kiw3T9c9dr2sfv1YhA0JajDd46mDN2TtH2xZsU/aabH31yVfy9PdUxIgI3fDLGxQ/M14Go6Fdc75u7nUtN/qG/hP764vff0GCBQAAAAAAAAAAAAAAANBVxM+Kb3ThlCT5hPho0iuT9Pcpf1ddTZ0y387U5FcnN2hTfq5cqc9cuoPt2CfHNkiukKTI0ZEa//R4bZ6/WWm/SNOI749QUFRQo7EyFmUoNz1XMkjTFk2zJ1d8LXl+sg6uOKiio0X6bN5numf1Pe3cagAAAKDnetH2olP9kn6SpKSfJLlkDp6+nhp+13CHK+W1RUh0iKYsmKIpC6a4JJ4r1JbX2lcEaS+jS6IAAAAAAAAAAAAAAAAAaJJPiI/6ju2rYXcOa7bNVQlX2cuFhwob1W9/Y7tqymokSWMeGdNkjDGPjJEMkqXKoq2vbm1Ub7PZlP7ypTvl9r++v3oPa7xKhoenh+JmxUmSjvz7iM7sPeNgywAAAADAvepq67Rv6T55BXq5JB4rWAAAAAAAAAAAAAAAAAAdKCopSo9se8RhG0+/yytJmLwbX9Jz8KODki7dLTbs6rAmYwRFBSl8aLgKDxXq0EeHNPm1yTIYDPb6vG15Kj116a6uMTfHNDuX2EmxSnsh7dK4Kw6qT1wfh3MHAAAAAFc5ueVki23qautUVVylwkOFylqepcLDhRr63aEuGZ8ECwAAAAAAAAAAAAAAAMDN8nfm28vRKdEN6krzS3X+q/OSpD7xjpMdIkdHqvBQoUrzSlWUXaReg3vZ63I25tjLjuKY48wyGA2yWW0N+gAAAABAR1ucvLhBonhLbDabPH09deOLN7pkfKNLogAAAAAAAAAAAAAAAABwiqXKoo0/2yhJihgZoTGPjGlQfzbrrL0c1C/IYaz69WcPnG1Qdy7rnL0c3C+42Rgmb5P8evtd6nPgXLPtAAAAAKAj2Gy2Vv0zGA2KvSVWD6U/JPMos0vGZgULAAAAAAAAAAAAAADQ5S2fttzdUwBazVJtUVVxlSrPV+rU1lPa9vo2nTt4TsPvGq6pb02Vp69ng/bFJ4rtZX+zv8PY9evr92trnABzgMoLylVdWq3KC5XyDfV1vFEAAAAA4CITfz5RA28e2Gy90WSUT7CPwq4Ok8nHtSkRJFgAAAAAAAAAAAAAAAAAbWCptqiuus7+uOZiTZv6Zy3P0scPfWx/HNw/WHf8/Q6NuGeEDAZDo/b147d08VD95Ixvzqv6YnWr45h8L9fXXKwhwQIAAADAFdP7mt6KvjHaLWOTYAEAAAAAAAAAAAAAAAC0QfrL6do8f7P9cYlK2tQ/dnKsHkh9QDXlNSrKLtL+Zfu18r6V2vTiJk15Y4oG3TqoQfvaylp72cPLw2Hs+vW1FbUN6iyVFpfEAQAAAICOcuOLN8o8yuy28UmwAAAAAAAAAAAAAAAAANpgwk8naNy8cfbH+fn5en3Y663uHxgZqMDIQPvjcf8zTuufW6+tr2zVsqnLdPt7tyt+Zry9vv6qFHU1dXKkfr2nn2eDuvqrUrQnDgAAAAB0lOQXk906vtGtowMAAAAAAAAAAAAAAABdjMnbJO8gb/s/r0CvdsUzGAy6+Q83K3JMpGST1jy+RmVnyuz19eNbqixNhbCrv9rFN+flHejd6jj1V7to7/YBAAAAQHtUnK9Q/o58HUs9pvwd+ao4X9FhY7GCBQAAAAAAAAAAbmaz2bTzLzu1/vn1qi2v1cy0mYpOjm6x3+nM0zrw4QHlpueq8HChqkuq5RXgpdCBoYq+KVoJP0hQr0G9HMbY9NImbZ6/uVXzfHTno7rq2qsctik+WaxtC7bp6NqjKjlVIq8AL0UMj1DczDjFPRgng9HQqrEAAACAnsZgMGjkfSN1OvO0LJUW7V++X+OeurRKRkh0iL1deUG5wzj16+v3+/px3rY8e7ugvkHNxikruJTg4R3kLd9Q37ZsCgAAAAC4xJ4le7T9je0q2FvQqM4cZ1bST5IU92CcS8ckwQIAAAAAAAAAADcqOlakT2Z/opNbTra6T/GJYq16YJVy03MlSf2u76frfnidgvoFqexMmbKWZ+nLV7/U9j9v17d+9y2Nf3p8R02/gSNrjmjlvStVfbFaw+4cpqSnklRxvkKZizL18UMfa9/7+3T3qrsb3DUXAAAAwGW9hlxOkD67/6y9HDEiwl4uPVXqMEZp3uX6iOERDep6j+htL5ecKrm0YkYTLNUWVZy7dEfY3sN7N9kGAAAAADpKTXmNVsxYoWP/OSbp0o2qvqlgb4E+fuhjZX2Qpbs+ukuefp4uGZsECwAAAAAAAAAA3KD+qhVGD6OikqLsd5JtSeHhQntyxeQFk5X0ZFKD+gnPT9C/HvyX9i/br9RnUuUV6KVrf3Ctw5hzD81tcdxv3v22vtOZp7VixgpZKi2N5pT4RKLem/iecjbkaOW9K3XP6ntaHAvoipZPW+7uKQAAgE4qe122PP08FX1jtMN2Rg+jvWy1WO3loL5B6jW4l84fOa8ze844jHE68/SlPlFBChsU1qAuJiVGaUqTJJ3Zc0ZDbx/aZIyCvQWyWW32PgAAAABwJf3znn/q6KdHJUmefp4yjzQrKCpIJl+TLJUWleaV6mzWWdWU1+jYf47pn/f8U9//+PsuGZsECwAAAAAAAAAA3GDz/M3aPH+zYifHatqiadr9zu5WJ1h8beCkgY2SK6RLF2VNfWuqjv7nqCrPV2rD8xsUPzNeJp/mfxYIHxre5m2ob80Ta2SptKjv2L6N5uQb6qtb37xVS25aoiP/PqKD/zyoYd8b1q7xAAAAgK5kzeNr5BXgpSeynnDYruhokb0c3D+4Qd2wGcP0+W8/V/GJYl04fkGhA0Mb9S/NL1Xh4UJJ0jV3XiODwdCgPiopSkFRQSrNK1XOhhwlv5jc5DyOrz/eYFwAAAAAuFK+Wv2Vjvz7iAIjA3XzH2/WsDuHyeTd+PcNS7VFBz86qPXPrteRfx/RkX8f0eCpg9s9vrHlJgAAAAAAAAAAwNVsNpumvT1N9396v4L7BbfcoQlDbh/SbJ2Xv5eunny1JKmquEonPz/p1BitcXz9ceVvz5ckjXl0TJNtopOj7XfP/fw3n3fYXAAAAIDOqvBQoYpPFDdbb7PZtPf/9tofD57W8MKgsT8eK68AL0lS5tuZTcbY/c5uySaZfEwa/z/jG9UbDAZN+NkESVJueq49GaM+q8WqPYv3SJIG3TZIfeL6ONwuAAAAAPj/7N17XNRl+v/x98BwPstJE1TE8xEPJJKZmqaV1lpaaZla2nmz3U5b7a7l1nZere27W7qVp7LS1crULQ+I4akCFY+FiiIkCCIgZ4aZ3x/+HCFgYGCMlNfz8eDx+Mzc131d94cZwWHm+tyOtGfRHnkEeOje7feqz519am2ukCSjm1F97uyje7ffK3d/d+3+cLdD6rODBQAAAAAAAAAAzWDY88NqXE22oa4YeIXuXHenroi+wmacX/sLjRv5afmNqtUQ+5fvtx53HNmxzriOIzsqNyVXmbszlXs4V606tbpoawIAAMCvb9m4Zc1af9LqSc1avz4Ws0WrpqzSxOUT5d3au8bY13/8Wj9//7MkqdekXgobFFYtxivES6NeH6U1D67Rjrk71G18N7WNbmsdz9yTqa2vbZUkDf/bcPmG+da6jgEzB2jfx/uUlpCm1TNX665v7pKLh4t1fPPzm5Wbkit3f3eNnjvaIecOAAAAAA2VviNdUfdE1djVry5+7fwUdU+U9i3b55D6NFgAAAAAAAAAANAMGttcIUmeQZ7qNKZTvXGleaXWY1cv1wbnLy8ql7Ors5xdnBsUf2zTMUmSu7+7/Nv71xnXut+FK9+mbkqlwQIAAAAtRuu+rZV/PF9pCWl6O/Jt9byjp4K6Bckz0FP5afna/9l+5Rw8t5tE37v7auz8sbXmGfjAQBVmFWrLnC1aNHyR+s/or+Cewco5lKOkBUmqKKrQ4CcGK/aJmrtXnOdkdNLtq27Xx2M/VlpCmuYPmK+o6VFy9XJVytoUpaxJkWeQpyaumKjAzoEX5fsBAAAAAHUpzilWcI9gu+YEdw9WcU6xQ+rTYAEAAAAAAAAAwGUqLzXv3IFBCr8q3Gbs7kW7tes/u5R9IFsluSWSJJ+2PooYEaGYx2LUpn+bWudVlFTozNEzkiTf8NqvkHueX/iFq02d2n+qgWcBAAAAXPru+OIOndp3SgdXHVTat2k6uv6o9i3bJ3OFWa4+rgqICFD0I9Hqe3ffartS1GbY7GGKHBWpnW/v1IEVB1T872J5Bnkq8rpIRT8crYjhEfWuxzPIU/ck3KPEBYlKXpKshJcTVFlWKb92fop9KlYxj8XIp42Po04fAAAAABrM1dvV7maJ4tPFcvVu+IWmbKHBAgAAAAAAAACAy1BpfqmObT4mSeo6rmu15obafDHtC3X7XTdd9+Z18grx0tmfz2rfsn1KXpKs5KXJGvqXoRr+wvAa8/LT8mUxWyRJ3qHeNmt4hXpdmHcs384zAgAAAC5tIb1CFNIrxCG5wmPDFR5ru4m6Pk5GJ0U/GK3oB6MdsiYAAAAAcISgbkHat2yfYh+PlcGp/t3ALWaL9n28T0HdghxS38khWQAAAAAAAAAAaMFMZSaVFZRZvyoKK5p7SdqzaI9MpSY5uzrr2leutRlrcDbo1k9u1e2rblfUtCh1vqGz+s/or7s33q2hfxkqWaQtc7Zo2xvbaswtP1tuPTa6276uk4uHi/W47GyZnWcEAAAAAAAAAAAud91+102ZuzO18q6VKs0rtRlbml+qlXeuVFZylrqN7+aQ+uxgAQAAAAAAAABAEyW8nKD4F+Ktt/Odmnd3hqJTRdryty2SpBEvjVBw9+A6Y2Mei9GA+wfIp41PrePDnh+mH7/8UVl7shT31zj1uauPvFtf2KmiouRCM4mzq7PNdVUdryhu/iYUAAAAAAAAAADw2xL9ULR2vrVT+z/dr5S1KepyYxddEX2FfNr6yMXDRaZSkwrSC/TzDz8rZU2KygrK5NPWR9EPOWZ3PhosAAAAAAAAAABooiHPDNHgPw623k5LS9Pc3nObZS3mSrNW3b1KxTnF6nVHLw1+fLDNeHd/d7n7u9c5bnAyKGpalL7+w9cylZi0d9leDf7DhZxVd6WoLK+0WavquIuni41IAAAAAAAAAADQErl4uuiOL+/Q4msXqzSvVPs+2ad9n+yrNdZiscgjwEOTVk+q9n5FUzg5IsmIESO0ceNGR6QCAAAAAAAAAOCSY3Qzys3Xzfrl4t18zQPrHl2nI18fUcS1Ebp54c0yGAxNznnFwCusx+nb0quNufq4Wo9NpSabearuduHm49bkdQEAAAAAAAAAgMtPm35tdP+u+9VpTCdZLJY6vzpf31n3Jd2n1n1bO6y2Q3aw2Lx5s6ZOneqIVAAAAAAAAAAAoJE2PLNBP/zrB3UY3kF3fHGHjG6O2cjaK8TLelyYWVhtzK+dnwxOBlnMFhVmFf5yajVFWUUX5nXwc8jaAAAAAAAAAADA5ce/vb/uXHuncg/n6uiGozqdclrlZ8vl6uOqVp1aqePIjgrsHOjwuo55Z0XSfffdpy+//FIzZ87U6NGjHXJFLAAAAAAAAAAA0DCb/rJJW1/ZqvbXtNfkrybLxdNxu2hYzBbrscG5+t//XTxcFNAxQLmHc1VwosBmnoL0C+MhPUMctj4AAAAAAAAAAHB5atWplVp1avWr1XNyVKLY2Fht3bpVN954ozp06KA5c+boxIkTjkoPAAAAAAAAAADqsPn5zfr2xW/V7up2mrym4c0VWclZ2vLiFuUdy7MZV3XXCp82PjXGO4zoIEkqzStV3vG6c51MOmk9jhgR0aA1AgAAAAAAAAAA/Foc1mAxc+ZMpaen69NPP1X37t01Z84cdezYUWPHjtUXX3yhyspKR5UCAAAAAAAAAAD/35aXtij+hXiFXxWuO9feKVcv1xox8wfO1+YXNte4/2TSScX9JU7pO9Jt1qg6Hj4kvMZ4z4k9rcepG1PrzHN+rHVU61/1alMAAAAAAAAAAODScSb1jLKSs5SVnKVT+0/VGpP8UbKOrD/i8NoOabCYOnWqIiMjZTQaNWHCBP3vf//T0aNH9cwzzyg5OVnjx49XeHi4nnvuOR09etQRJQEAAAAAAAAAaPESXk1Q3J/jFDY4THeuu1Ou3jWbKyTpZOJJ5aXm1Znn8LrDdY5Vlldq1/u7JEmuPq7qdUevGjEdR3ZU20FtJUlJ/0mqNc/xLcd1+qfTkqSrn7u6znoAAAAAAAAAAKDlqiiu0Pz+8/Vev/f0Xr/39OHVH9Yal/JVij4a85EWXrNQZ0+edVh9hzRYfPjhhxo0aFC1+9q1a6c5c+bo2LFjWr16ta688kq9/vrr6tKli0aOHKnPPvtMFRUVjigPAAAAAAAAAECLs+3Nbdr4p43yDPbUkD8N0cnEkzq2+VitX/VJ/ihZB1cerHG/udKsNQ+vUe7hXEnSdW9cJ89Az1pz3PivG2X0MCp9e7q+e+e7amOleaVa+/BaSVKXsV3UY0IPO88WAAAAAAAAAAC0BAdXHlRpfqksFou6jOuiMfPG1BrX+87eCo8N1/Fvj2vp6KUylZkcUt/okCw2ODk56cYbb9SNN96o/fv365ZbblFcXJzi4uLUqlUrTZ06Vffee6+6d+9+sZcCAAAAAAAAAMBvSvLSZOtxVnKW9fjI+iMqSC+QJHmFeilyVGS1eYc+P6T1T6yXJBVnF+uTmz9pVH2/dn5yD3BX6ZlSfTbhM3W+vrMiRkbII8BDBekF2vfJPmXvz5aTi5Oue/M6DbhvQJ252vRvo4mfTdTKO1dq3aPrlPZtmjqM6KCS0yVKWpCkvGN5ihgRoVs+vqVRawUAAAAAAAAAAJe/w/87LIPBoFs/uVU9J/asM67L2C7qMraLts/drm8e/0bf/+t7Df7D4CbXv+gNFpK0efNmLViwQKtWrVJZWZksFoskqbCwUP/61780d+5cDR48WL///e91++23/xpLAgAAAAAAAACg2a2asqrW+xP+nmA9bn9N+xoNFnnH8hxSP2JEhP6Y8Uf9tPonpaxN0cmkk4p/Pl4VxRVy9XFVq8hWuurpqzTwwYHyb+9fb74uY7vogT0PaMe8HUpZk6Ifv/xRLl4uCukVoqF/HaqoqVEyOBkcsnagNsvGLWtQnNlgVm6bXGX8I0NOFods+A4AAAAAAAAAcICTiSfV9aauNpsrqhr8h8E6vPaw9n+6/7fTYDFixAg999xzuvbaa633ZWVlaeHChXr//fd15MgRSbI2VnTv3l0zZ87U3XffLWdnZy1dulTvv/++Jk2apLlz5+rLL79USEiII5YGAAAAAAAAAMBv1mzL7EbNi3ksRjGPxThkDS4eLup5W0/1vK1hb1TUx7+Dv8bMG1Pnlt0AAAAAAAAAAAB1KcgoUL97+9k1p+Oojvr2pW8dUt8hl+TZvHmzsrKyZLFYtG7dOt16661q166dnn32WR0+fFgWi0UeHh6aOnWqEhIStH//fj322GNq1aqV/Pz89PDDDyspKUlr1qxRamqqnnzyyQbXzsnJ0V/+8hf16tVL3t7eatWqlQYPHqy3335b5eXljjg9SVJlZaWWLl2qm2++WR06dJC7u7uCgoLUu3dvTZo0Se+9954yMzMdVg8AAAAAAAAAAAAAAAAAAAAAgJaksrxSHq087JrjGeSpyvJKh9R3yA4WkrR48WI988wzSk9Pl3Rht4qoqCjNnDlTd955p3x9fW3muP766/XUU0/p9ddfb1DN7777Tr/73e908uRJjRo1Sg8++KBKSkq0aNEizZo1SwsXLtRXX32lK664oknndujQIU2ePFm7d+/WDTfcoN///vfy9/fXiRMn9NFHH+mTTz7RJ598ooqKCj3yyCNNqgUAAAAAAAAAAAAAAAAAAAAAQEvkFeKlU/tO2TUna2+WPIM9HVLfYQ0W69evtzZV+Pj46I477tDMmTM1cOBAu/KYzWbl5eXVG5eWlqaxY8cqOztbjz32mObOnWsd+/3vf6/rr79ecXFxuummm7R161a5ubnZtY7zjhw5ohEjRqiwsFBxcXG65pprqo0/99xzuu6667R58+ZG5QcAAAAAAAAAAAAAAAAAAAAAAFL44HDt+mCXrnzkSgV0DKg3/szRM9r94W51Gt3JIfWdHJJF53asuPLKK7VgwQL9/PPPeu+99+xqrigsLNTs2bP18ssvKzg4uN74J598UtnZ2WrXrp1eeeWVamNubm5asGCBnJ2dlZiYqHfeecfu85HOndOUKVN08uRJvffeezWaKyTJxcVFf/nLXxQYGCgPD/u2IgEAAAAAAAAAAAAAAAAAAAAAAOdE3ROlsoIyvT/4fe36YJfKi8prjasortCuD3fpg6s+UPnZcvW7t59D6jtsB4t//vOfevjhhxs9//Tp05o/f77c3Nw0fPhwm7EpKSlavny5JOnuu++udXeKyMhIDR8+XBs2bNCrr76qWbNmyWi073SXLVum7du3q3PnzrrjjjvqjBsxYoRycnLsyg0AAAAAAAAAAAAAAAAAAAAAAC7oNLqTekzooQMrDmj1zNVa+/BaBXYNlG+Yr4zuRplKTSpIL9DpH0+rsrxSFotFPSf2VOR1kQ6p75AGi/bt2ys8PLzJOU6ePNmg2BUrVshisUiSRo4cWWfcqFGjtGHDBmVnZ2vz5s02Y2uzYMECSdK4ceNkMBjsmgsAAAAAAAAAAAAAAAAAAAAAAOwzfvF4mU1mHfr8kExlJp3ae0qn9p6qFnO+n6D7+O763eLfOay2QxosUlNTHZGmwTZt2mQ9joqKqjOuX78L23xs2rTJrgaL7OxsbdmyRZLUt2/famMlJSVycnKqdecMAAAAAAAAAAAAAAAAAAAAAADQOEZ3o25febv2fbpP3/3zO2XszJC50mwdd3J2UtigMA2aNUg9J/Z0bG1HJfrss8+UmZkpSXJzc9P9999fI+a5556TwWDQrFmzFBwc3Oha+/btkyT5+PjIz8+vzriqu2rs37/frhpJSUkym889CO3atdPRo0f197//XatXr9apU+e6X0JDQzV69Gg9/fTT6tGjh72nAQAAAAAAAAAAAAAAAAAAAAAAatHr9l7qdXsvlReW60zqGZWfLZerj6sCIgLk6u16UWo6pMHi559/1l133aXKykpZLBb5+/vX2mBx9OhRffrpp5o/f75WrlypIUOG2F2rrKzM2sgRGhpqM7bq+LFjx+yqs3fvXuvx119/rXnz5qldu3Z67rnnFBkZqczMTL3//vtavHixli1bpvfee0/Tp0+3qwYAAAAAAAAAAAAAAAAAAAAAAKibq7erQnvb7h1wFIc0WKxYsUImk0l+fn6aPXu2brrpplrjXnrpJUVGRurNN9/UTTfdpP3796tNmzZ21Tp79qz12N3d3Wash4dHrfMa4vwuFZL0yiuvKDo6Wps3b5anp6f1/unTp+uOO+7Q8uXLNWPGDEVERGjYsGH15s7Pz1dubq71tpubm9zc3OxaX2OZDeb6g3BZshgsMpvNMplMzb0UtFAmk4nnIJoVz0E0t/O7o6FlasmvAVryz11+94DnAHgOtGw8/uA1QMt25syZau8n/JqvAVq6hr4Gshgssshy7m/n4t/rbxmP1aWDx+rSwuN16eCxsk9zvgbj9V/L1pzvA7R0zf0+SGM58uc7P39aFv7uiMbiuYPG4rlTN74nly+HNFhs2LBBHh4e+v7779WpU6c64zp27KgXX3xRN954o6655hq9+eabeuONN+yqVVJSYj12dbW9rUfV8eLiYrvqFBQUVLv9zjvvVHszRJKcnJz0zjvvaPXq1SotLdXjjz+uxMTEenNHRUVVuz116lRNmzbNrvU1Vm6b3PqDcFmyyCJT2rkf5k5OTs28GrREZrNZaWlpkngOonnwHERzO336dHMvAc2oJb8GSEhIaNb6zYnfPeA5AJ4DLRuPP3gN0LL16dOn2u1f8zVAS9fQ10AWWVTiU6Jc5cogw0VeFZqCx+rSwWN1aeHxunTwWNmnOf8eWfXD9Wh5mvN9gJauud8HaSxH/nxvye/FtET83RGNxXMHjcVzp268Brh8OaTBIjk5WVOmTLHZXFHV4MGDNWnSJK1du9buBouqu1KUl5fbjK06/svmiPpUVlZaj9u3b68rr7yy1riQkBCNGDFCa9euVVJSkg4cOKAePXrYzL19+3a1bdvWershXeunTp3SQw89pMTERA0YMED/+te/FBISYscZnZPxjwy75+DyYDFYdEW7KxQbGyuj0SH/9AG7nO/W5DmI5sJzEM3t/ItNtEy7d+9WeHi49faveeWq5n4NMGTIkGat35z43QOeA+A50LLx+IPXAC1bcnKy3e8DwDEa+hrIYrAoV7lqldlKBgsfVv0t47G6dPBYXVp4vC4dPFb2ac6/R6anpzdbbTS/5nwfoKVr7vdBGsuRP99b8nsxLRF/d0Rj8dxBY/HcqRuvAS5fDnmmnzp1Sr1797ZrzsCBA7V8+XK7a/n4+FiPS0tLbcZW3e2i6jx76/Tq1ctmbN++fbV27VpJ0nfffVdvg8XgwYPtWssvbdiwQV26dGnU3I/Hftyk2rh0mWWWk5OTjEYjv+TQbHgOornxHERzoou/ZfPz81OrVq2apbaTpXmfey39Zy6/e8BzADwHWjYe/5aN1wAtW0BAQLO9BmjpGvoayCyzDDLIYDE0++sm2MZjdengsbq08HhdOnis7NOcr7947deyNef7AC3dpfqz0ZE/3/n50/Lwd0c0Fs8dNBbPndrx/bh8OeR/mOf/4djD1dW1UW8wubm5qXXr1pKkrKwsm7FVxzt06GBXncDAQOtxQECAzdigoCDr8alTp+yqAwAAAAAAAAAAAAAAAAAAAAAAmp9DGizCwsIUHx9v15z4+HiFhYU1qt75HSXOnj2r/Pz8OuOqbr3Ss2dPu2pUja+oqLAZa7FYrMcNaRrZv3+/CgsL7foaNWqUnJ2dJUnOzs4aNWqU3TkKCwvt+h4AAAAAAAAAAAAAAAAAAAAAANBSOKTBYsSIEfrss8/0xRdfNCj+yy+/1PLly3Xttdc2ut55u3fvrjMuKSmp1jkNER0dLYPBIEnKzMy0GZudnW09vuKKK+rN7enpKS8vL7u+lixZolGjRikwMFCjRo3SkiVL7M7h5eVl1/cAAAAAAAAAAAAAAAAAAAAAAICWwiENFo8++qgMBoMmTJigu+++W+vXr1deXl61mLy8PG3YsEFTp07VrbfeKoPBoEcffbRR9SZMmGBtfti4cWOdcRs2bJAkBQUFadiwYXbVaNu2rWJiYiSda+IwmUx1xiYmJlqPhw4daledhgoNDdW6deuUk5OjdevWKTQ09KLUAQAAAAAAAAAAAAAAAAAAAACgJXJIg0W3bt300ksvqbKyUh999JHGjBmjwMBAeXt7KygoSN7e3goMDNTo0aO1dOlSVVZW6qWXXlLXrl0bVa9z586aOHGiJGnJkiUqLy+vEXP06FFt2rRJkvT000/LaDRWG9+3b5+6dOmisLAwbdmypdY6jz/+uCQpPz+/zt05Tpw4ofj4eEnSTTfdpLCwsEadEwAAAAAAAAAAAAAAAAAAAAAAaD4OabCQpKeeekpz586Vi4uLLBaLLBaLiouLlZubq+LiYut9Li4umjdvnp588skm1Xv99dcVHBysY8eO6dlnn602VlZWpvvuu0+VlZUaMGCAHnnkkRrzX3rpJaWkpCgjI0N/+tOfaq1x6623auzYsZKkP/zhD0pPT69R595771VFRYVatWqlefPmNemcAAAAAAAAAAAAAAAAAAAAAABAwx3dcFSLRixySC5j/SENN2vWLN1666169913tX79eh0+fFhnz56Vj4+POnXqpFGjRumBBx5wyC4P7dq10+rVqzV+/Hi9+eab2rdvn2666SaVlJRo0aJF2rt3r6KiovTll1/K3d29xnyz2Ww9tlgsddb59NNPdcstt+jrr79WVFSU7r33XnXt2lWZmZlavHixfvzxR4WHh+uLL75QREREk88LAAAAAAAAAAAAAAAAAAAAAAA0TGFWoY7HH3dILoc2WEhSWFiYXnzxRb344ouOTl3DoEGDlJycrHnz5mnVqlV66qmn5OLioi5dumjevHl68MEH5erqWuvc5557TklJSSopKdGrr75aZw1PT0/973//02effaZFixZp8eLFOn36tHx8fNSzZ0/df//9uu++++Tl5XWxThMAAAAAAAAAAAAAAAAAAAAAcImyWCz6/v++14Y/bVBFUYWmxk1Vh2EdGjz/xLYT+u6d75SWkKaiU0XyCvZS2OAwRT8U3eA8ZpNZiQsStXfpXuUcypGpzCS/dn7qenNXxcyKkXdr7wblyTuepx3zdujw2sPKP5EvV29XhfQMUd+pfdX37r4yOBkafF62VJZXKi0hTdkHs1WWXyazyVxnbNaeLIfUlC5Cg8WvLSgoqFENHX369FFKSkqD42+77Tbddttt9i4PAAAAAAAAAAAAAAAAAAAAANBC5R7J1Zf3fKnjWxq3w0L8nHjFvxAvo7tR/Wb0U0ivEOUczFHSgiQdWH5AsU/GatRro2zmKM4p1sdjP1bGzgwFdQvSVU9fJVdvV6WsSdHWV7Zq1/u7dNuK29R+aHubeX5a85NWTl6psrNl6jGhh2L+EKPi08VKWpCkL6Z/oeSlybp91e1y83Fr1Lmel/R+kjY8tUGleaVNytMYzdZg8cUXX+gPf/iDjh492lxLAAAAAAAAAAAAAAAAAAAAAADA4aruWuHk7KSwmDCl70i3K8cP7/6gzbM3y+hu1N2b7lbYoDDrWJ8pffTh1R9q2+vb5BXipdgnYmvNYTaZ9en4T5WxM0PhseGasmGKXDxcJEnRD0Vr47MblfBygj65+RPN+G6GAjsH1prnZNJJLZ+4XKYSk0bPG62YWTHWseiHovXh1R8qdWOqVk5eqUmrJ9l1nlUdXHVQq2eutnueweCYnTOarcGisLBQx483rgsHAAAAAAAAAAAAAAAAAICWbtm4Zc1avykfngQA4HIX/8K5nSciR0dq3IJx2vX+LrsaLIqyi7T+yfWSpEGzBlVrrpCkNv3aKPaJWMW/EK+4v8Sp1x295BvmWyNP4oJEpSWkSQZp3IJx1uaK84a9MEwHlh9Q7uFcffPHb+r8/b7moTUylZjUdlDbas0VkuQR4KEb3rlBi4Yv0k9f/aQD/z2gHrf2aPC5VrXjHzskSb0n91a/e/spuEewPAI85OzqXOec5KXJ+nzq542q90sObbA4efKk1q1bp4MHDyo/P18mk6nOWHauAAAAAAAAAAAAAAAAAAAAAABcjiwWi8b9Z5z639u/UfN3vrVT5YXlkqT+M2rP0X9Gf8XPiZep1KRtb27TmLljaqwh4eUESVK7q9opuEdwjRzOLs7qO62v4v4cp5+++kmZezLVum/rajFHNxxVxs6MczVn1r6WDsM6qFXnVspNydW3L37b6AaLrOQsdR/fXbcsvaXhkwznztURHNZg8Ze//EWvvvqqKisrGxRvsVgctg0HAAAAcDk6/dNp7fpglw7/77AK0gtUUVQhr1Av+bXzU/hV4eo4sqM6Xtuxzvkntp3Qd+98p7SENBWdKpJXsJfCBocp+qFodRjWoUFrMJvMSlyQqL1L9yrnUI5MZSb5tfNT15u7KmZWjLxbezvobAEAAAAAAAAAAAAAAIDLx7DnhzXp8/IHVhyQJPl38FerTq1qjfEN81VQtyDlHMzRwRUHNfofo6vVTN+RroITBZKkiJERddaKHBWpuD/Hnau7/ECNBov9y/dbjzuOrPvzSh1HdlRuSq4yd2cq93Buneu2xWK2qNP1neya0318d7VLbWd3rdo4pMFiwYIFeumll6y33d3d5e/vLzc3tzrnFBUV6fTp044oDwAAAFx2try4RVv+tkVeIV7qeXtPBXYJlKnUpIydGdr/2X6lfZumpAVJeirnqVrnx885t8Wg0d2ofjP6KaRXiHIO5ihpQZIOLD+g2CdjNeq1UTbXUJxTrI/HfqyMnRkK6hakq56+Sq7erkpZk6Ktr2zVrvd36bYVt6n90PYX41sAAAAAAAAAAAAAAAAAXLKa0lxRkFGg0z+e+6x966jWNmPb9GujnIM5KkgvUG5KrgK7BFrHUjelWo9t5QntGyqDk0EWs6XanPOObTomSXL3d5d/e/8687Tud6FG6qbURjVYBHYJlKnMZNccF08Xm+uyh0MaLObPny+DwaBnnnlG9957ryIi6u5uOW/p0qWaOnWqI8oDAAAAl5X1T6/Xtte2qdcdvXTT+zfJxdOl2nifu/vo4xs+rnP+D+/+oM2zN8vobtTdm+5W2KCwC3On9NGHV3+oba9vk1eIl2KfiK01h9lk1qfjP1XGzgyFx4ZryoYpcvE4t47oh6K18dmNSng5QZ/c/IlmfDdDgZ0Da80DLBu3rFnrT1o9qVnrAwAAAAAAAAAAAAAA2OvUvlPWY99wX5uxVcdP7T9VrcEie1+29dgv3K/OHEY3ozyDPVWUVaTs/dnVxipKKnTm6JkGraVqjVP7T9mIrFvU9CgdWnlIVz58ZYPnpO9IV+L8RN38wc2NqlmVU5MzSDp48KCmTp2qF198sUHNFdK5jhyLxeKI8gAAAMBl4/D/Dmvba9sU3DNYv1v8uxrNFZLUaXQndRzVUZ6BnjXGirKLtP7J9ZKkQbMGVWuukM51rJ9vqoj7S5wK0gtqXUfigkSlJaRJBmncgnHW5orzhr0wTK06tVJpXqm++eM3jTlVAAAAAAAAAAAAAAAAALXIO5ZnPfYK9bIZW3W86jx783iHekuSygrKVHKmxHp/flq+LGZLtZiGrCX/WL7N2LpEPxwtN183rXl4jcoLyxs0J/dIrvYs2tOoer/kkB0sjEajhgwZYtecO++8U3feeacjygMAAACXBYvFov899j9J0pA/DZGzi3OdsXf9765a79/51k7rC4v+M/rXGtN/Rn/Fz4mXqdSkbW9u05i5Y2qsI+HlBElSu6vaKbhHcI0czi7O6jutr+L+HKefvvpJmXsy1bqv7e0IAQAAAAAAAAAAAAAAgEuRqcykyrJK6+3ysw374H9jVc1vdLf9kf+qF0795brKzpY1OI/R48J4+dlyeQR4NGktVWvbY8vftii0b6h2vb9LyYuT1f6a9grsGig3HzcZnAy1zsnak9WoWrVxSINFr169VFBQ+5VvAQAAADTM8S3HdfrH0zI4GdRlXJdG5Tiw4oAkyb+Dv1p1alVrjG+Yr4K6BSnnYI4Orjio0f8YLYPhwouP9B3pKjhx7v/3ESPr3qEuclSk4v4cd67u8gM0WAAAAAAAAAAAAAAAAOCylPByguJfiLfezlfjdmdoqIqSCuuxs2vdF2n95XhFcUW1MVOJqcl5HLWWhtr8/GbrZ5ksFosOrzusw+sONypXYzg5IslDDz2kjz76SBaLpcFzNmzYoBEjRjiiPAAAAHBZON8c4dfeT+5+7tb7LRaLys6W1fv/7YKMAp3+8bQkqXWU7WaHNv3anJuTXqDclNxqY6mbUq3HtvKE9g21doVXnQMAAAAAAAAAAAAAAABcToY8M0R/yv+T9euRA49c1HpVd4KoLK+0EVl93MXTpdpY1V0pGpvHUWuxh8VisX5W6vxxfV+O4pAdLCZPnqwdO3bopptu0ttvv62IiLqvcnteVlaW4uPj640DAAAAWoqTP5yUJPm185PFbNGuD3dp13926ecffpbZZJaT0UltBrRR37v7qv/M/nJ2qd4RfmrfKeuxb7ivzVpVx0/tP6XALoHW29n7sq3HfuF+deYwuhnlGeypoqwiZe/PrjMOAAAAAAAAAAAAAAAAuJQZ3Ywyul346L1rgetFrefqcyG/qdRkI7L6DhNV50mSm49bg/NU3e2iap7GrqVqbXvdsvQW9Z7cu8HxyUuT9fnUzxtdryqHNFjcc889kqTdu3erU6dO6t69u7p27SofHx85OdW+ScaRI0ccURoAAAC4bGTtzZIkWcwWLbluiY7FHVPfaX01+PHBcnZ1VtrWNH33z++09uG1Sl6SrEmrJ8kzyNM6P+9YnvXYK9TLZq2q41Xn2ZvHO9RbRVlFKisoU8mZEnkEeNRzlgAAAAAAAAAAAAAAAABs8e/gbz0uyiqyGVt1vOq887fTd6Rb43zb1n3R1sKsQkmSm69btc8A+bXzk8HJIIvZYo1pyFr8OtR9YVeHM8hhu1g4pMFi4cKFMhgMks4t7MCBAzp48KDNORaLxToHAAAAuNyYykyqLLuw5V1FYYWNaKmiuEIVRedi0r5NkyRN+GyCek7saY3pelNX9ZjQQwuHLlT6jnStuGOFpqyfYv1/dfnZcmus0d32f/Wrbt1XdZ4klZ0ta3CeqtsIlp8tp8ECAAAAAFq4ZeOWNfcSAAAAAAAAAOCSF9IrxHpccKLAZmxB+oXxkJ4h1caCewVbj/NP5KtN/za15jCVmVScXXxuTs/gamMuHi4K6Big3MO5TVpLQ41bME5hg8PsmhM5KlJT46Y2qt4vOaTBQpICAwPl5WX76rZVFRUV6fTp044qDwAAAPymJLycoPgX4q23853ybcaXFZRVu93p+k7VmivOaxvdVgMfGqgd/9ih1I2p+mn1T+p6U1dJ1bfYc3Z1tlmv6nhFcfXmj6rb/TUlDwAAAAAAAAAAAAAAAAD7+bb1VWCXQJ3+6bQyd2fajD2ZdPLcnDBftercqtpYxIgIxSlOkpS5O1Pdbu5Wa46sPVmymC3WOb/UYUQH5R7OVWleqfKO58m/vb/NtdSVpyH639vf7jleIV7yCml4L4MtTg7JImnevHlKTU1t8Nc//vEPR5UGAAAAfnOGPDNEf8r/k/XrwT0P2ow3V5qr3e4xsUedsb3u6GU9Tl6abD2uuitFZXmlbKk67uLpUm2s6q4UTckDAAAAAAAAAAAAAAAAoHHOf34o71iezhw9U2tMQUaBcg7lSJK6T+gug8FQbTwsJky+Yb6SpNSNqXXWOrrhaI26VVW9UKytPOfHWke1VqtOreqMa4yiU0U6nXJaRaeKZLFYHJq7Koc1WNjLYDBc1BMDAAAAmpPRzSg3Xzfrl4u37eYDNx+3ardDe4fWGRvaJ1T6/6+FMr7LsN7v6uNqPTaVmn45rZqqu11UnffLtdSXp+puF7/MAwAAAAAAAAAAAAAAAKBxBj06SK7e5z6Pk/SfpFpjdr2/S7JIRnejYh+PrTFuMBg05NkhkqS0hDRrM0ZVZpNZuxfuliR1vrGzWvdtXSOm48iOajuorc21HN9yXKd/Oi1Juvq5q+s5u4Y5Fn9Mn97yqV4NeFVvtnlT/9ft//Rmmzf1WqvX9Nmtn+n4luMOqVOVQxos1q9fr2uvvdauOePHj1dqat3dKwAAAEBL4urtKmdXZ+tt9wD3OmONbkbri6eiU0XW+/07+FuPi7KKfjmtmqrjVefZm6cwq1CS5ObrJo8AD5uxAAAAAAAAAAAAAAAAABrGK8RLo14fJUnaMXeHMr7PqDaeuSdTW1/bKkka/rfh1p0qfmnAzAFqN6SdZJFWz1xd7cKskrT5+c3KTcmVu7+7Rs8dXed6bvzXjTJ6GJW+PV3fvfNdtbHSvFKtfXitJKnL2C7qMaHmLhj2sJgt+uqBr7R4xGL9+MWPKs0vlcVisX6V5pfq0OeHtGj4In314FcyV5qbVK8qoyOS2NtcIUmenp5q3769I8oDAAAAlzyDk0FB3YOUtSdLkmSuqOc//ZYL884L6RViPS44UWBzekH6hfGQniHVxoJ7BVuP80/kq03/NrXmMJWZVJxdfG5Oz+BaYwAAAAAAAAAAAAAAAICWKnlpsvU4KznLenxk/RHr53e8Qr0UOSqy1vkDHxiowqxCbZmzRYuGL1L/Gf0V3DNYOYdylLQgSRVFFRr8xGDFPlFz94rznIxOun3V7fp47MdKS0jT/AHzFTU9Sq5erkpZm6KUNSnyDPLUxBUTFdg5sM48bfq30cTPJmrlnSu17tF1Svs2TR1GdFDJ6RIlLUhS3rE8RYyI0C0f32Lvt6mGrx74Srve3yWL5dyHpLxDveUb5iujh1GmEpMK0gusF4ZNmp8ki9mice+Na3JdyUENFr9UVlamXbt2KTMzU7GxsQoJOfeBreLiYnl6el6MkgAAAMAlr+2Vba0NFoWZhQrqFlRrXEVxhcqLyiVJPlf4WO/3beurwC6BOv3TaWXuzrRZ62TSyXNzwnzVqnOramMRIyIUpzhJUubuTHW7uVutObL2ZMlitljnAAAAAAAAAAAAAAAAALhg1ZRVtd6f8PcE63H7a9rX2WAhScNmD1PkqEjtfHunDqw4oOJ/F8szyFOR10Uq+uFoRQyv/3M7nkGeuifhHiUuSFTykmQlvJygyrJK+bXzU+xTsYp5LEY+bXzqzdNlbBc9sOcB7Zi3QylrUvTjlz/KxctFIb1CNPSvQxU1NaraBWMb4/i3x5X0nyS5ervqqqevUtTUqFp35yhIL9DuRbu17bVt2vWfXeo7pe+5nTqayKENFkeOHNFf//pX/fe//1VFxbmtQ9avX68RI0ZIklq3bq2bbrpJc+bMUceOHR1ZGgAAALjk9ZjQQ0kLkiRJGd9nqMOwDrXGndx10rqDRftrqu8K12NiD3370rfKO5anM0fPKKBjQI35BRkFyjmUI0nqPqG7DIbqL2rCYsLkG+argvQCpW5M1bDZw2pdx9ENR6vVBQAAAAAAAAAAAAAAAHDBbMtsh+QJjw1XeGx4k3I4GZ0U/WC0oh+MblIe/w7+GjNvjMbMG9OkPHVJmp8kFw8XTd8yXa2jWtcZ5xvmq6HPDVWXG7vog6s+UOJ7iQ5psHBqcob/b/Pmzerfv78++eQTlZeXW7fjqMrZ2Vkff/yx+vXrp40bNzqqNAAAAHBZ6Diyo0L7hkqS9i7dW+v/qSUpecmFrQN/+YJn0KOD5OrtKklK+k9SrfN3vb9LskhGd6NiH6+5PaDBYNCQZ4dIktIS0qzNGFWZTWbtXrhbktT5xs5q3bfuFzMAAAAAAAAAAAAAAAAA0BDHvz2uqOlRNpsrqmod1Vp9p/XV8W+PO6S+QxoscnNzdeutt+rs2bPy9/fX+PHjNWPGjBpxP//8s9577z2ZzWZNnDhRmZmZjigPAAAAXBYMTgbd+K8b5ezqrKzkLG3525YaMUe+OXKuQUJSzB9i1KZ/m2rjXiFeGvX6KEnSjrk7lPF9RrXxzD2Z2vraVknS8L8Nr3X7PEkaMHPAuY5ui7R65mpVlFRUG9/8/GblpuTK3d9do+eObtwJAwAAAAAAAAAAAAAAAEAVRVlFat3Pvou9tunfRkVZRQ6pb3REkn/+8586c+aMHnzwQb355ptyd3dXTk6O/vOf/1SL8/Dw0MyZMzVgwADFxMTon//8p1566SVHLAEAAAC4LITHhmvCpxO06u5V2jx7s9K+TVOXm7rI6G7Uia0nlLw0WZZKiwbNGmRtpPilgQ8MVGFWobbM2aJFwxep/4z+Cu4ZrJxDOUpakKSKogoNfmKwYp+ouXvFeU5GJ92+6nZ9PPZjpSWkaf6A+YqaHiVXL1elrE1RypoUeQZ5auKKiQrsHHixvh0AAABAi2GxWPT9/32vDX/aoIqiCk2Nm6oOwzo0eP6JbSf03TvfKS0hTUWniuQV7KWwwWGKfii6wXnMJrMSFyRq79K9yjmUI1OZSX7t/NT15q6KmRUj79beDcqTdzxPO+bt0OG1h5V/Il+u3q4K6RmivlP7qu/dfWVwMjT4vAAAAAAAAAAAQMtidDeqvLDcrjnlheUyujukNcIxDRbr1q3ToEGD9H//93/W+wyGut8g6d+/vyZNmqS1a9fSYAEAAAD8QrffddPDBx7WjrfOfSBp07ObZK40y6eNj/pO6auBDw1U2+i2NnMMmz1MkaMitfPtnTqw4oCK/10szyBPRV4XqeiHoxUxPKLedXgGeeqehHuUuCBRyUuSlfBygirLKuXXzk+xT8Uq5rEY+bTxcdRpAwAAAC1W7pFcfXnPlzq+pXFbV8fPiVf8C/EyuhvVb0Y/hfQKUc7Bcw3WB5YfUOyTsRr1Wu0N2ucV5xTr47EfK2NnhoK6Bemqp6+Sq7erUtakaOsrW7Xr/V26bcVtaj+0vc08P635SSsnr1TZ2TL1mNBDMX+IUfHpYiUtSNIX079Q8tJk3b7qdrn5uDXqXAEAAAAAAAAAwOUtIDJAh1YeUsysmAbPObTykAIiAxxS3yENFikpKXr22WftmjNw4EB9/vnnjigPAAAAXHZ8w3x13evX6brXr2t0jvDYcIXHhjdpHU5GJ0U/GK3oB6OblAcAAABATVV3rXBydlJYTJjSd6TbleOHd3/Q5tmbZXQ36u5NdytsUJh1rM+UPvrw6g+17fVt8grxqnMXO7PJrE/Hf6qMnRkKjw3XlA1T5OLhIkmKfihaG5/dqISXE/TJzZ9oxncz6tzF7mTSSS2fuFymEpNGzxtd7Y2P6Iei9eHVHyp1Y6pWTl6pSasn2XWeAAAAAAAAAACgZeh8Y2d9++K3Wv/Uel378rVycnaqM9ZitmjDnzYoLSFNQ/8y1CH1665mh8LCQgUG1v6GSl1cXV1VXm7f1h0AAAAAAAAAAFwu4l+I17rfr1O7Ie304L4HFTk60q75RdlFWv/keknSoFmDqjVXSFKbfm2sTRVxf4lTQXpBrXkSFyQqLSFNMkjjFoyzNlecN+yFYWrVqZVK80r1zR+/qXM9ax5aI1OJSW0Hta1xVSmPAA/d8M4NkqSfvvpJB/57wK5zBQAAAAAAAAAALUPMrBi5+bpp+5vb9U6Xd7TxuY069PkhZXyfoVP7TunnH37Woc8PadOfN+mfXf6p7W9ul5ufmwY9Osgh9R2yg0VQUJAOHz5s15zt27crODjYEeUBAAAAAAAAALjkWCwWjfvPOPW/t3+j5u98a6fKC89dyKj/jNpz9J/RX/Fz4mUqNWnbm9s0Zu6YGmtIeDlBktTuqnYK7lHz7/bOLs7qO62v4v4cp5+++kmZezLVum/rajFHNxxVxs6MczVn1r6WDsM6qFXnVspNydW3L36rHrf2sO+EAQAAAAAAAADAZc+jlYcmfDZBy8YtU96xPG19ZWudsRaLRc6uzpr42UR5tPJwSH2H7GAxaNAgvf/++zp9+nSD4nfu3Klly5bpqquuckR5AAAAAAAAAAAuOcOeH9bo5gpJOrDi3C4Q/h381apTq1pjfMN8FdQtSJJ0cMVBWSyWauPpO9JVcOLczhYRIyPqrBU56sLuGgeW19x9Yv/y/dbjjiM71pnn/Fjm7kzlHs6tMw4AAAAAAAAAALRckaMiNf3b6QrqHiSLxVLnV3CPYE3/drrN9ybs5ZAdLO655x59/vnnuvrqq/XWW29p1KhR1jGDwWA9zs3N1QcffKA5c+bIZDJpxowZjigPAAAAAAAAAMAlp+rfz+1VkFGg0z+eu+hR66jWNmPb9GujnIM5KkgvUG5KrgK7BFrHUjelWo9t5QntGyqDk0EWs6XanPOObTomSXL3d5d/e/8687Tud6FG6qbUOhtDAAAAAAAAAABAy9Y2uq0e2veQjm44qqMbjio3JVdlZ8vk5uOmgE4BihwV6dDGivMc0mAxduxYjR8/XqtWrdKYMWMUGBioHj3Obe09e/Zsvfbaazp+/LhSUlJkNptlsVh0xx136Nprr3VEeQANtHfZXmX8I0NOFodsXtMok1ZParbaAAAAAAAAwOXi1L5T1mPfcF+bsVXHT+0/Va3BIntftvXYL9yvzhxGN6M8gz1VlFWk7P3Z1cYqSip05uiZBq2lao1T+0/ZiAQAAAAAAAAAADi3O/bFaKSoi8M+Zf3RRx/pd7/7nSwWi3JycvTtt9/KYDBo69at+uabb/Tjjz+qsrJSFotFEyZM0MKFCx1VGgAAAAAAAACAFiXvWJ712CvUy2Zs1fGq8+zN4x3qLUkqKyhTyZkS6/35afmymC3VYhqylvxj+TZjAQAAAAAAAAAAGqIou0jHtxx3SC6HNVi4u7tr5cqV+vTTT3XVVVfJyclJFovF+uXk5KSrrrpKn332mT777DO5uro6qjQAAAAAAAAAAM3KVGZSWUGZ9auisOKi1is/W249Nrrb3qzaxcOl1nmSVHa2rMF5jB4XxqvmaexaqtYGAAAAAAAAAABorCPfHNGi4Yscksv2Ox2NMHHiRE2cOFFFRUVKTU1VQUGBfHx8FBERIW9v21euAgAAAAAAAADgUpTwcoLiX4i33s53uri7M1SUXGjgcHZ1thlbdbyiuHrjh6nE1OQ8jloLAAAAAAAAAABAc3N4g8V5Xl5e6tWr18VKDwAAAAAAAADAb8aQZ4Zo8B8HW2+npaVpbu+5F61e1Z0gKssrbcZWHXfxdKk2VnVXisbmcdRaAAAAAAAAAABAy3H468P64d8/qP/M/upyYxfr/W91fMvuXBVFjruo00VrsKjPhg0b9Pe//12bNm1qriUAAAAAAAAAAOAQRjejjG4X/uTu4n1xmwdcfVytx6ZSk43I6jtMVJ0nSW4+bg3OU3W3i6p5GruWqrUBAAAAAAAAAEDLsuquVSrJLdGJrSf0ZPaT1vvzjuU1Kp/BYHDIupqtwSIrK0vx8fH1BwIAAAAAAAAAgGr8O/hbj4uyimzGVh2vOu/87fQd6dY437a+deYpzCqUJLn5uskjwMN6v187PxmcDLKYLdaYhqzFr4OfzVgAAAAAAAAAAHD5CogMUPHpYgVEBtQYa391ewV0rHl/Xc4cPaO0hDSHrMuuBovKykrt3btXvXr1ktF4YerixYvtLrxt2za75wAAAAAAAAAAACmkV4j1uOBEgc3YgvQL4yE9Q6qNBfcKth7nn8hXm/5tas1hKjOpOLv43JyewdXGXDxcFNAxQLmHc5u0FgAAAAAAAAAA0HLc9fVdSt2YqogRETXGBtw/QL0n925wruSPkpunweKWW27RV199pTFjxmjNmjXW+6dNm+awLTUAAAAAAAAAAIBtvm19FdglUKd/Oq3M3Zk2Y08mnTw3J8xXrTq3qjYWMSJCcYqTJGXuzlS3m7vVmiNrT5YsZot1zi91GNFBuYdzVZpXqrzjefJv729zLXXlAQAAAAAAAAAALYO7n7u639LdYfksFotD8jjZExwfHy+LxaKtW7fWuiB7vwAAAAAAAAAAQOP0mNhDkpR3LE9njp6pNaYgo0A5h3IkSd0ndK9xsaSwmDD5hvlKklI3ptZZ6+iGozXqVtVzYk/rsa0858daR7VWq06t6owDAAAAAAAALgVFRUWN+jp69Kiuu+46BQYG6rrrrtPRo0cblQcALkezzbPt2r1Ckvrc2UezzbMdUt+uHSzeeOMNvf3223rkkUdqjM2bN08333xzg3OtWrVKjz/+uD3lAQAAAAAAAADA/zfo0UHa+dZOlReWK+k/Sbr279fWiNn1/i7JIhndjYp9PLbGuMFg0JBnh2jtQ2uVlpCmnEM5CuoWVC3GbDJr98LdkqTON3ZW676ta+TpOLKj2g5qq4ydGUr6T5L63dOvRszxLcd1+qfTkqSrn7u6MacMAAAAAAAA/KZ4e3s3Ocf69esVGRnZqLlc7BzA5Sg/LV+ewZ5y8XCpN/bLGV/K6G5Uv3v7qU2/Ng6pb9cOFjNmzFBycrLuu+++GmNBQUFq3759g7+Cg4MdcgIAAAAAAAAAALREXiFeGvX6KEnSjrk7lPF9RrXxzD2Z2vrauR2ph/9tuHWnil8aMHOA2g1pJ1mk1TNXq6Kkotr45uc3KzclV+7+7ho9d3Sd67nxXzfK6GFU+vZ0fffOd9XGSvNKtfbhtZKkLmO7qMeEmrtgAAAAAAAAAAAAvBXxlg6tOtSg2OPxx/X9v77Xfwb9Rye2n3BIfbt2sKjL7Nmz1adPH7vm9OnTR3/9618dUR4AAAAAAAAAgEtS8tJk63FWcpb1+Mj6IypIL5AkeYV6KXJU7VewG/jAQBVmFWrLnC1aNHyR+s/or+Cewco5lKOkBUmqKKrQ4CcGK/aJmrtXnOdkdNLtq27Xx2M/VlpCmuYPmK+o6VFy9XJVytoUpaxJkWeQpyaumKjAzoF15mnTv40mfjZRK+9cqXWPrlPat2nqMKKDSk6XKGlBkvKO5SliRIRu+fgWe79NAAAAAAAAwG9SYWFho+aNHz9emzZtUmVlpZydnTVixAitWrXKwasDgEuTPbvz3Pm/O/Xz9z/r6z9+rfjn43XX13c1ub7DGizs1bt3b/Xu3dsR5QEAAAAAAAAAuCStmlL7m6YJf0+wHre/pn2dDRaSNGz2MEWOitTOt3fqwIoDKv53sTyDPBV5XaSiH45WxPCIetfhGeSpexLuUeKCRCUvSVbCywmqLKuUXzs/xT4Vq5jHYuTTxqfePF3GdtEDex7Qjnk7lLImRT9++aNcvFwU0itEQ/86VFFTo2RwMtSbBwAAAAAAALgUeHl5NWrekiVLNG3aNH3//feKjo7WwoULG50LAFqyVpGt1CqylQoyCrTt9W0OyemQBouGKi0tlbu7+69ZEgAAAAAAAACA36zZFvsvYFSb8NhwhceGNymHk9FJ0Q9GK/rB6Cbl8e/grzHzxmjMvDFNygMAAAAAAABcrkJDQ7Vu3brmXgYAXFZK80odksdhDRaPPvqo0tPTJUne3t5avHhxjZh77rlHaWlpeuGFF3Tttdc6qjQAAAAAAAAAAAAAAAAAAAAAALiEZCVnKXN3Zo37j397XGaTud75lRWVyj+er+//9b18w3wdsiaHNFjs2bNH77zzjgwGgywWi7p3715rnJubm7Zt26brrrtOb775ph577DFHlAcAAAAAAAAAAAAAAAAAAAAAAJeQg6sOasucLTXuT5qfpKT5SQ3OY7FYNOD+AQ5Zk5MjkqxcuVKSNGDAACUlJWn//v21xn3wwQf65ptvFBERoSeffFI//PCDI8oDAAAAAAAAAAAAAAAAAAAAAIBLjMViqfZV2322vtz93TVo1iANe36YQ9bjkB0stmzZojZt2ig+Pl4eHh51xhkMBo0cOVLbt29Xt27d9NZbb2nJkiWOWAIAAAAAAAAAAAAAAAAAAAAAALhExDwWo6hpURfusEhvdXxLY+aNUdebu9qcazAY5OLpIs8gT4euySENFgcPHtT06dNtNldUFRwcrGnTpmnFihWOKA8AAAAAAAAAAAAAAAAAAAAAAC4h7n7ucvdzr3G/Z5Cn/Nv7//oLkoMaLM6cOaOOHTvaNadbt27KyspyRHkAAAAAAAAAAAAAAAAAAAAAAHCJmxo3VcHdg5utvkMaLLy8vFRUVGTXnKKiogbveAEAAAAAAAAAAAAAAAAAAAAAAC5vHa7p0Kz1nRyRpFOnTlqxYoVdc/773/+qU6dOjigPAAAAAAAAAAAAAAAAAAAAAABaoL3L9upvrn9zSC6HNFjccMMN2r59u5544glVVlbajDWbzXrqqae0bds2jR071hHlAQAAAAAAAAAAAAAAAAAAAABAC2QxW2SptDgkl9ERSWbNmqW3335bc+fO1cqVKzVp0iRFR0crLCxM7u7uKi0tVXp6un744Qd98sknSk1Nlb+/vx599FFHlAcAAAAAAAAAAAAAAAAAAAAAAJe4L+75wu45Z46ecVh9hzRYBAQE6LPPPtPYsWN1/PhxvfLKK3XGWiwWubq66rPPPlNAQIAjygMAAAAAAAAAAAAAAAAAAAAAgEvc7oW7ZTAY7JpjsVjsnlMXhzRYSNLIkSO1ZcsWTZ8+XQcPHqwzrkePHvrwww8VHR3tqNIAAAAAAAAAAAAAAAAAAAAAAOAy4BHoIVcv11rHzJVmlRWUqaygTJLk7ucud393h9V2WIOFJF155ZXav3+/NmzYoPXr1+vw4cM6e/asfHx81KlTJ40aNUojR450ZEkAAAAAAAAAAAAAAAAAAAAAAHCZGDNvjHpP7m0zpjCrUIc+P6Sdb+3U8DnD1WNCD4fUdmiDxXkjR46kkQIAAAAAAAAAAAAAAAAAAAAAADicd6i3Bt4/UN1u7qb3B78vv/Z+ahvdtsl5L0qDRUNkZ2fr4MGDGjp0aHMtAQAAAAAAAAAAAAAAAPjVFOcUa//y/Try9RFl7spUYVahDE4GeYd6q+2VbdX7rt7qMraLDAZDvblObDuh7975TmkJaSo6VSSvYC+FDQ5T9EPR6jCsQ4PWYzaZlbggUXuX7lXOoRyZykzya+enrjd3VcysGHm39m7iGQMAAFy+ioqKGj03KytLDzzwgBITEzVgwAC9++67Cg0NtTuPl5dXo9cA/FY9c/YZGd0b3ubg3dpbfaf1VcLfE3T7qtubXL/ZGiy++eYb3X333aqsrGyuJQAAAAAAAAAAAAAAAAC/im+e+Ebf/9/3MpWa5Bnsqd539lZg50BZLBYdizumAysOaP9n+xUxIkITl0+URyuPOnPFz4lX/AvxMrob1W9GP4X0ClHOwRwlLUjSgeUHFPtkrEa9NsrmeopzivXx2I+VsTNDQd2CdNXTV8nV21Upa1K09ZWt2vX+Lt224ja1H9re0d8KAABwmWhsg8Hl0lzg7e2YZtT169crMjKyUXMtFotD1gD8lrh6udo9x7+9v3741w8Oqd9sDRYAAAAAAAAAAAAAAABAS5G8NFmmUpPaX9Ned3xxh9z93K1jVz58pX766id98rtPlLopVcvGLdP0b6fL4FRzJ4sf3v1Bm2dvltHdqLs33a2wQWHWsT5T+ujDqz/Utte3ySvES7FPxNa6FrPJrE/Hf6qMnRkKjw3XlA1T5OLhIkmKfihaG5/dqISXE/TJzZ9oxnczFNg50MHfDQAAcDlwRIMBzQUAHCH3cK7KCsocksuuBouvv/5a//73vzVz5kzdeOON1vs7duxod+GmbIsDAAAAAAAAAAAAAAAAVLVs3LJmq3265HSD4pyMThq/eHy15orzuoztov4z+ivxvUSd2HZC+z/br1539KoWU5RdpPVPrpckDZo1qFpzhSS16ddGsU/EKv6FeMX9JU697ugl3zDfGrUSFyQqLSFNMkjjFoyzNlecN+yFYTqw/IByD+fqmz9+o0mrJzXo/AAAAFqSwsLCRs8dP368Nm3apMrKSjk7O2vEiBFatWqVA1cHtBzHvz2u7//ve/m183NIPrsaLO666y7l5uZq69atys7Ott5/7NixRhU3GGp22QMAAAAAAAAAAAAAAACXo9ZRrW1+6Kf7rd2V+F6iJOmn1T/VaLDY+dZOlReWS5L6z+hfa47+M/orfk68TKUmbXtzm8bMHVNt3GKxKOHlBElSu6vaKbhHcI0czi7O6jutr+L+HKefvvpJmXsy1bpv64afKAAAaBEa22BwuTQXeHl5NXrukiVLNG3aNH3//feKjo7WwoULm5QPuJx8cc8X9caYK8wqzStV9sFs5aXmSZIGPjjQIfXtarCIjIzU6dOna92x4uqrr7ZrJ4ujR48qISHBnvIAAAAAAAAAAAAAAADAJenWZbfKM9DTZox/e3/rcX5afo3xAysOnIvr4K9WnVrVmsM3zFdB3YKUczBHB1cc1Oh/jK52EdT0HekqOFEgSYoYGVHnWiJHRSruz3Hn6i4/QIMFAACoobENATQXSKGhoVq3bl1zLwP4Tdq9cHeDN3KwWCySpPDYcF393NUOqW9Xg8XXX3+tjRs36tprr60xdv/992vy5MkNzvXRRx/RYAEAAAAAAAAAAAAAAIAWIWJ43c0M55XmlVqPXbxcqo0VZBTo9I+nJZ3bCcOWNv3aKOdgjgrSC5SbkqvALoHWsdRNqdZjW3lC+4bK4GSQxWypNgcAAKCpaC4AUB+PQA+5ernWOe5kdJKbn5uCugapy7gu6nlbTxmcGtaUUR+7Gix2796tr776SmvWrNGLL76oNm3aNKn4+Y4RAAAAAAAAAAAAAAAAoKU7k3rGetx+aPtqY6f2nbIe+4b72sxTdfzU/lPVGiyy92Vbj/3C/erMYXQzyjPYU0VZRcren11nHICWbdm4Zc1af9LqSc1aHwAAXBxj5o1R78m9m6W2kz3BH3zwgRYuXKj169ervLzcer/ZbLZr9wpJuvPOO2U2m+2aAwAAAAAAAAAAAAAAAFyuDq06JEkyuhsVNS2q2ljesTzrsVeol808VcerzrM3j3eotySprKBMJWdKbMYCAAAAwOXArgaLHTt2aNiwYTp69Kjat7/QJT9nzhzt27fP4YsDAAAAAAAAAAAAAAAAfmvMlWZVVlRav8ympl9ktOhUkX784kdJ0uAnBsvnCp9q4+VnL1wM1ehutJnLxcOl1nmSVHa2rMF5jB4Xxn+ZBwAAAAAuhlmps9Ttd92arb5dDRYnT57UbbfdJqOx+our559/XsnJyXYV3rBhg0aMGGHXHAAAAAAAAAAAAAAAAKC55R7O1ZGvj1i/jsUfa3LO9U+ul6nUpDb922jon4fWGK8oqbAeO7s628xVdbyiuKLamKnE5JA8AAAAAHAx+Lf3l4unS/2BF4ntNvRfqKioUHm5Y7rRs7KyFB8f75BcAAAAAAAAAAAAAAAAwK+lVadWCugYYL2dW5orNeFjMMlLk7Vn8R55hXjptv/eJqNbzY/0VN2VorK80ma+quO//GBS1V0pmpIHAAAAAH4NJ7af0PEtx5WXmqfys+Vy9XGVf4S/2g9tr/DB4Q6vZ1eDRXh4uD7//HM9+uijDl8IAAAAAAAAAAAAAAAAcClwcnaSqmz+4GRyanSu41uOa/XM1XLzddPktZPl38G/1jhXH1frsanUVGvMeVV3u6g6T5LcfNwanKfqbhe/zAMAAACgbp9P+1x7Fu2xa07Xm7vqjs/vsN7OO5antyLeatDc6IejdcM7N9iMMZvMSlyQqL1L9yrnUI5MZSb5tfNT15u7KmZWjLxbe9u13ostNS5V636/TjkHc+qMCeoepBveuUEdhnVwWF27GixGjRqld999V/3799fw4cPl5+dnHVu5cqUOHz7c4Fx79tj3hAEAAAAAAAAAAAAAAAAuJxnfZWjZuGVydnXWXV/fpSsGXFFnbNXGi6KsIpt5q47/smHDv4O/0nekW+N82/rWmacwq1CS5ObrJo8AD5s1AQAAADSNV6jXRctdnFOsj8d+rIydGQrqFqSrnr5Krt6uSlmToq2vbNWu93fpthW3qf3Q9hdtDfb44d0ftPaRtZJFslgsdcZlH8jW4pGLdcP/3aCB9w90SG27GiyeeeYZffrpp9q9e3eNBolVq1Zp1apVDlkUAAAAAAAAAAAAAAAAcDn7OfFnLR29VBaLRVO+maKwmDCb8SG9QqzHBScKbMYWpF8YD+kZUm0suFew9Tj/RL7a9G9Taw5TmUnF2cXn5vQMrjUGAAAAgG0PH3y43pilY5Yq/3i+oqZF1To+4u8j1H18d5s53APc6xwzm8z6dPynytiZofDYcE3ZMEUuHi6SpOiHorXx2Y1KeDlBn9z8iWZ8N0OBnQPrXfPFlPF9htY+slYWs0Xeod7q+ruuatO/jXzb+srobpSp1KSCjAKdTDqpQ6sOqehUkdY9sk5XDLhCVwysu2m9oexqsAgLC9POnTv13HPPadOmTTp9+rQsFosMBoPNzpC6GAwGu+cAAAAAAAAAAAAAAAAAl7KTu05qyaglMpvMuuvru+ptrpAk37a+CuwSqNM/nVbm7kzb+ZNOnpsT5qtWnVtVG4sYEaE4xUmSMndnqtvN3WrNkbUnSxazxToHAAAAgP2CugXZHD+x7YTyj+crpHeIwgeH1xrj08an3jy2JC5IVFpCmmSQxi0YZ22uOG/YC8N0YPkB5R7O1Td//EaTVk9qdC1H2Pb6NlnMFl35+ys16tVRMrrX3fIwZu4YrX9qvb575zttfW2rJn42scn1neydEBkZqU8++USnTp1SZWWlzGazLBaLli5dKrPZ3OCvxYsXN3nxAAAAAAAAAAAAAAAAwKUkKzlLS0YtUWV5pe5cd6fCY2t+iGrzC5s1f+D8Gvf3mNhDkpR3LE9njp6pNX9BRoFyDuVIkrpP6F7jAqhhMWHyDfOVJKVuTK1znUc3HK1RFwAAAEDDBHULUvtr2tcblzg/UZI04L4BF2UdFotFCS8nSJLaXdVOwT1q7k7n7OKsvtP6SpJ++uonZe6x3dB9saV9m6YO13TQ9W9db7O5QpKM7kZd//b1an91ex3fctwh9e1qsMjOztaWLVu0ZcsWlZSUNKlwY3e9AAAAAAAAAAAAAAAAAC5Fp/ad0uJrF8tUYtKda+9UuyHtao3LS83TycSTNe4f9OgguXq7SpKS/pNU69xd7++SLOc+aBT7eGyNcYPBoCHPDpEkpSWkWZsxqjKbzNq9cLckqfONndW6b+sGnR8A4NdVVFTUqK+jR4/quuuuU2BgoK677jodPXq0UXkAAHUb8qchmrZ5ms2Y0vxSHVh+QC6eLuozpc9FWUf6jnQVnCiQJEWMrHtnushRkdbjA8sPXJS1NFRpXqm63VL7Tnt16T6hu0rzSh1S33ZLxy/84x//0GuvvSZJ2rt3r3r0ONed/uGHHyo2tuYLMltiY2P14Ycf2jUHAAAAAAAAAAAAAAAAuBRlH8jW4msXqzinWEP/OlQWs0XHNh+rNbYws7DW+71CvDTq9VFa8+Aa7Zi7Q93Gd1Pb6LbW8cw9mdr62lZJ0vC/DbfuVPFLA2YO0L6P9yktIU2rZ67WXd/cJRcPF+v45uc3KzclV+7+7ho9d3QjzxgAcLF5e3s3Ocf69esVGRlZf2AtuMg2ADRN8pJkVRRXKGp6lNz93Bs0x2wyy1RmkquXa4PiUzdd2LWudVTdjdOhfUNlcDLIYrZUm9McvEK9qr0+aQgXDxd5Bnk6pL5dDRabNm1ScHCwPvzwQ3Xu3Nl6//DhwxUcXHO7EFsiIiIUEVF3FwwAAAAAAAAAAAAAAABwOTCVmrT42sUqOnXuat9b5mzRljlbGpVr4AMDVZhVqC1ztmjR8EXqP6O/gnsGK+dQjpIWJKmiqEKDnxis2Cfqvliqk9FJt6+6XR+P/VhpCWmaP2C+oqZHydXLVSlrU5SyJkWeQZ6auGKiAjsHNmqdAAAAAGxLWnBuV7oB9w2wGXdq/yn9d/J/lZaQprM/n5Wl0iIXTxeFxYSp91291XdKXzkZnWqdm70v23rsF+5XZw2jm1GewZ4qyipS9v7sOuN+DREjIpS+I139Z/Rv8Jz0nekKjw13SH27GiyOHTumRx99VNdff321+yMiIrRkyRJNnjy5wblSU1P17bff6u6777ZnCQAAAAAAAAAAAAAAAMAlxVRqqnNXisYYNnuYIkdFaufbO3VgxQEV/7tYnkGeirwuUtEPRytieP0XPfUM8tQ9CfcocUGikpckK+HlBFWWVcqvnZ9in4pVzGMx8mnj47A1AwAcr7Cwcb9bxo8fr02bNqmyslLOzs4aMWKEVq1a5eDVAQBsSd+RrqzkLIX2CVVYTJjN2O1vbFdgl0Bd+ciVCuoepMqySh3fclxJC5KUuilVSfOTdNvK22r9/3vesTzrsVeol8063qHeKsoqUllBmUrOlMgjwKNR59ZUsU/G6oPYD9RnSh91uKZDvfFpCWnau3Sv7t7omL4Euxoszpw5o9DQ0Br3N2abp23btmn69Ok0WAAAAAAAAAAAAAAAAOCy5u7vrtmW2Q7NGR4b3uQrtDoZnRT9YLSiH4x20KoAAL8mLy/bH5Sty5IlSzRt2jR9//33io6O1sKFCxudCwBaClOZSZVlldbb5WfLm5QvcX6iJKn/ffXv0tD91u665aNbZHS78NH/HhN6KGp6lBYNW6T0HelaNm6Z7tl6T7UYSSo7W2Y9Nrrbbh0welwYLz9b3mwNFsHdg3Xbf2/Tqimr1GVcF/W8radCe4fKPcBdBoNBFotFpXmlOrXvlA4sP6DdH+7W9f+8vnl2sAgICNDevXsdUhgAAAAAAAAAAAAAAAAAAAC/rtDQUK1bt665lwEAl5SElxMU/0K89Xa+8hudq6ygTPs/3S8XTxf1uatPnXG+Yb6alTpLPm195OziXGO8Tb82GvrXoVr/xHqdTDypH979QTGzYqrFmEpM1mNn15o5qqo6XlFc0dDTabQ5znPqjUl8N1GJ7ybWG/fV/V/pqwe+0l9Nf23yuuxqsBg4cKDee+89dezYUSNGjJCfn59194rTp08rLS2twblycnLsWykAAAAAAAAAAAAAAAAAAAAAAL+yIc8M0eA/DrbezsjI0NwecxuVK3lpsiqKKxQ1PUrufu51xjkZneTfwd9mrn7T+2n9k+sli7T7g901Giyq7kpRWV75y+nVVB138XSxGesI5/sQHMUgg0Py2NVg8cgjj2jdunX64x//WGPsscce02OPPeaQRdkjJydHb731llatWqVjx47J1dVVXbt21aRJk/TAAw/I1dXV4TVPnjyp7t27Kz//XOeRox9cAAAAAAAAAAAAAAAAAAAAAMBvg9HNKKPbhY/euxY0/jPqifPP7cgw4P4BTV6XRysPBXQM0JkjZ5S1N0vlheVy9b6wNjcfN+uxqdRUW4oL41V2u3D1cfxn8GvT/ZbuCukd0uQ8p5JP6dDnhxywIjsbLK6//nq9+eab+vOf/6ySkpJqY41pMjAYmtYl8t133+l3v/udTp48qVGjRunBBx9USUmJFi1apFmzZmnhwoX66quvdMUVVzSpzi89/PDD1uYKAAAAAAAAAAAAAAAAAAAAAADqk74zXVl7shTaN1Rhg8IcktMrxEtnjpyRLFJhVqFaebeyjvl38Ff6jnRJUlFWkXzb+taZpzCrUJLk5usmjwAPh6ytPt1v6a7ek3s3OU/yR8nN02AhSX/4wx80ffp0bdu2TadPn1ZlZaXuuece3X///YqJiak/wf+3fft2LViwwN7yVmlpaRo7dqyys7P12GOPae7cC1us/P73v9f111+vuLg43XTTTdq6davc3NxsZGu4//73v1q1apVDcgEAAAAAAAAAAAAAAAAAAAAAWgbr7hX3NX33ivMs5gsbJTg5O1UbC+4VbD3OP5GvNv3b1JrDVGZScXbxuTk9g2uNcTT/9v7VdttoCldvV/m183NILrsbLCTJ399fN9xwg/X2Pffco6uvvlqTJ09ueGGjsUkNFk8++aSys7PVrl07vfLKK9XG3NzctGDBAnXt2lWJiYl655139Pjjjze61nl5eXn6/e9/r7CwMIWEhCgpKanJOQEAAAAAAAAAABxl2bhlzb0EAAAAAAAAAEAtygrKtP/T/XLxdFGfu/rUG7/lxS0K6R2ibjd3sxlXmHlu5wmDk0FeIV7VxiJGRChOcZKkzN2ZdebK2pNlbdSIGBFR79ocYVbqLIfl6nZzt3q/Tw3lVH9I/a655hqFhobaNSc0NFRDhw5tVL2UlBQtX75cknT33XfXujtFZGSkhg8fLkl69dVXZTKZGlWrqieffFInT57U//3f/8nHx6fJ+QAAAAAAAAAAAAAAAAAAAAAAl7/kj5JVUVShnnf0lJtvzc+//1LcX+L0w79/sBlz9uRZ5R/PlyS16d9GLp4u1cbDYsLkG+YrSUrdmFpnnqMbjlqPe0zsUe/afmuObjiqRSMWOSSXQxos4uLidO2119o1Z+TIkYqLi2tUvRUrVshisVjz1GXUqFGSpOzsbG3evLlRtc6Lj4/X+++/rwkTJuimm25qUi4AAAAAAAAAAAAAAAAAAAAAQMuRtCBJkjTw/oENnnNi2wmVFZTVOf7DuxcaMPrf17/GuMFg0JBnh0iS0hLSlHMop0aM2WTW7oW7JUmdb+ys1n1bN3h9vxWFWYU6Hn/cIbmMDsnyK9u0aZP1OCoqqs64fv36VZtjqxnDltLSUs2cOVN+fn765z//2agcAAAAAAAAAAAAAAAAAAAAAICWJ+P7DGXuylRo31C1vbJtg+eVny3X6vtWa/zi8XJ2da42duSbI9r66lZJUvuh7dVver/aUmjAzAHa9/E+pSWkafXM1brrm7vk4nFhp4vNz29Wbkqu3P3dNXru6EacXeOYK806tfeUQnqFyMl4Yd+IPYv32J3rxLYTDluXXQ0WHTt2rHb7wQcf1JNPPtng+ePGjdPatWuttw0Gg0wmkz1LkCTt27dPkuTj4yM/P78648LDw63H+/fvt7vOeS+88IJSUlI0f/58tW596XXkAAAAAAAAAAB+Wz6f9rn2LLLvDYKuN3fVHZ/fYb2ddyxPb0W81aC50Q9H64Z3brAZYzaZlbggUXuX7lXOoRyZykzya+enrjd3VcysGHm39rZrvQAAAAAAAAAA4JzE+YmSpAH3D2jwnNC+ocrak6X9n+7XycST6nlHTwV0DFBFUYWObT6mgysPShap0/WddMtHt1RrUqjKyeik21fdro/Hfqy0hDTNHzBfUdOj5OrlqpS1KUpZkyLPIE9NXDFRgZ0DHXK+DfHZLZ/pp69+UqcxnTR5zWTr/Z9P+1wGg+FXW8cv2dVgcezYMXXr1k2hoaGSpICAALuKjRw5UkFBQZLONTwkJibaNV+SysrKlJmZKUnWddSl6vixY8fsriVJe/bs0RtvvKGhQ4dqxowZjcoBAAAAAAAAAEBTeYV6XbTcxTnF+njsx8rYmaGgbkG66umr5OrtqpQ1Kdr6ylbten+Xbltxm9oPbX/R1gAAAAAAAAAAwOWo7GyZ9n+yXy5eLupzZ58Gz3tg9wNK35muQ58f0omtJ5Q0P0klZ0rk7OIs79be6j25t/pM6aNOozvVm8szyFP3JNyjxAWJSl6SrISXE1RZVim/dn6KfSpWMY/FyKeNT1NO027H4o/JYrEobWtajTGLxWJ3Pkc1ZdjVYCFJf/7znzV58uRq96Wl1Typ89q1a2c9njVrlvX4zTffbFSDxdmzZ63H7u7uNmM9PDxqnddQlZWVuvfee+Xs7Kz58+c77Juen5+v3Nxc6203Nze5ubk5JHd9zAbzr1IHvz0Wg0UWWWQxWGRW8z0PGrNrDS4PJpNJZrOZ5wCaDc9BNDezmf+HtWS8Bmg+zflzn9894DkAngMtG48/Gvoa4OGDD9cbs3TMUuUfz1fUtKhax0f8fYS6j+9uM4d7QN1/TzebzPp0/KfK2Jmh8NhwTdkwxbo1ePRD0dr47EYlvJygT27+RDO+m/GrXr3qUnXmzBl5enpab/Ma4Lfnt/I3c9SPx+rSwWN1aeHxunTwWF06LAb7P/yDy0dzvg/Q0l2qr4H4+e44Le3vb/zdEY3FcweNxXOnbvZ8T9x83PTM2WcaVSdsUJjCBoU1au4vORmdFP1gtKIfjHZIvqa67o3rtPPtnbrykStrjI2ZN0Zdb+7a4FyHVh3SN49/45B12d1gUZsOHTrU2XxQWVnpiBJWJSUl1mNXV1ebsVXHi4uL7a41d+5cJSYm6m9/+5u6dm34A1SfqKioarenTp2qadOmOSy/LbltcusPwmXJIotKfEqUq1wZ1Hzb5iQkJDRbbTQvs9lsbchzcqp9GyrgYuI5iOZ2+vTp5l4CmhGvAZpPc/7/k9894DkAngMtG48/GvoaIKhbkM3xE9tOKP94vkJ6hyh8cHitMT5tfOrNY0vigkSlJaRJBmncgnHW5orzhr0wTAeWH1Du4Vx988dvNGn1pEbXain69Kl+BTJeA/z2/Fb+Zo768VhdOnisLi08XpcOHqtLx9kS+y/8ictHc74P0NJdqq+B+PnuOC3ts0j83RGNxXMHjcVzp25VG2zROP1n9Ff/Gf1rHfMM8pR/e/8G5/IM9qw/qIEc0mDx17/+VQaDQUVFRXrjjTc0ZcoUdezY0RGpa6i6K0V5ebnN2KrjVa8U1RCpqamaPXu2evbsqaefftq+RdZj9+7dCg+/8EbYr9m1nvGPjF+lDn57LAaLcpWrVpmtZLA03wuzIUOGNFttNK/z3ZqxsbEyGh3y6wewC89BNDdbu77h8sdrgObTnP//5HcPeA6A50DLxuOP+l4DBHULUvtr2tebJ3H+uZ2gB9w3wCHr+iWLxaKEl899EKHdVe0U3CO4Royzi7P6TuuruD/H6aevflLmnky17tv6oqzncpGcnKy2bdtab/Ma4Lfnt/I3c9SPx+rSwWN1aeHxunTwWF1CSuoPweWrOd8HaOku1ddA/Hx3nJb2WST+7ojG4rmDxuK5U7f09PTmXsJl65rZ1yi0T6hdc0L7hGroX4c6pL5DnunPP/+8pHNX5HrjjTc0depUjRgxwhGpa/Dx8bEel5aW2oytuttF1XkNcd9996m0tFQLFiyQi4tL/RPs4Ofnp1atWjk0Z0M5Wegea6nMMssggwwWQ7M+D/gF27I5OTnJaDTyPECz4TmI5kQXf8vGa4Dm09w/8/ndA54D4DnQsvH4t2z1vQYY8qchGvIn2x8AKM0v1YHlB+Ti6aI+U/rYjG2s9B3pKjhRIEmKGBlRZ1zkqEjF/TlOknRg+QEaLOoREBDAa4DfuN/K38xRPx6rSweP1aWFx+vSwWN16eAD0i1bc74P0NJdqj8b+fnuOC3xb2/83RGNxXMHjcVzp3Z8Py4eg8GggysP6uDKg2od1Vpdb+pa75zQ3qEK7W1fU0ZdLrlH1s3NTa1bt1ZmZqaysrJsxlYd79ChQ4NrLF68WBs2bNCUKVPUuXNn5eTk1IipqKiwHlcdd3FxkZ+fX4NrAQAAAAAAAABQm+QlyaoorlDU9Ci5+7k3aI7ZZJapzCRXL9cGxaduSrUet46qu2kitG+oDE4GWcyWanMAAAAAAAAAAAAcafPzm2UwGGSxWBQ1LapBDRaOdMk1WEhSr169lJmZqbNnzyo/P7/OhoaqW6/07Nmzwfk3bdokSVqyZImWLFlSb3xw8IUt06+55hpt3ry5wbUAAAAAAAAAAKhN0oIkSdKA+wbYjDu1/5T+O/m/SktI09mfz8pSaZGLp4vCYsLU+67e6julr5yMtV8NM3tftvXYL7zuiwcZ3YzyDPZUUVaRsvdn1xkHAAAAAAAAAADQVD5tfTThkwm6IvqKX732JdlgMWLECG3YsEGStHv3bl1zzTW1xiUlJVWb01BPPfWU7rrrLpsxjz/+uJKTkyVJ69evt94fEBDQ4DpAS7Rs3LJmrT9p9aRmrQ8AAAAAAAA0RPqOdGUlZym0T6jCYsJsxm5/Y7sCuwTqykeuVFD3IFWWVer4luNKWpCk1E2pSpqfpNtW3iafNj415uYdy7Mee4V62azjHeqtoqwilRWUqeRMiTwCPBp1bgAAAAAAAAAAAHUxuhs1aNYghceGN0/9ZqnaRBMmTNBzzz0ni8WijRs31tlgcb4JIygoSMOGDWtw/h49eqhHjx42Y6o2UowcObLBuQEAAIDG+ObJb7T9je2SpGtmX6Nhzw+rd86JbSf03TvfKS0hTUWniuQV7KWwwWGKfihaHYZ1aFBds8msxAWJ2rt0r3IO5chUZpJfOz91vbmrYmbFyLu1dxPOCgAAALh8mMpMqiyrtN6uKKxoUr7E+YmSpP739a83tvut3XXLR7fI6HbhT/49JvRQ1PQoLRq2SOk70rVs3DLds/WeajGSVHa2zHpsdLf9loHR48J4+dlyGiwAAAAAAAAAAIDD+YX7yc3Xrdnq174nuA0Gg8EhMU3RuXNnTZw4UZK0ZMkSlZeX14g5evSoNm3aJEl6+umnZTRWf2No37596tKli8LCwrRly5aLul4AAACgKU4mndSOuTvsmhM/J14fXv2hfvziR3Ub303X//N69ZjYQ4fXHdai4Yu0/qn19eYozinWB0M+0NqH1qokt0RXPX2VRr02SgERAdr6ylb9u8+/dXzL8caeFgAAAHBZSXg5Qa/4vWL9+nfffzc6V1lBmfZ/ul8uni7qc1efOuN8w3w1K3WWbl12a43GCUlq06+Nhv51qCTpZOJJ/fDuDzViTCUm67Gzq7PNdVUdryhuWgMJAAAAAAAAAABAbTqP7azj8fZ9Jin5o2TNcZ7jkPp272Dx2GOP6bnnnqt1zGw2S5LuvPNOubu728xTUFBgb+lqXn/9dcXFxenYsWN69tln9cYbb1jHysrKdN9996myslIDBgzQI488UmP+Sy+9pJSUFEnSn/70J23btq1J6wEAAAAuBrPJrC9nfClLpaXBc3549wdtnr1ZRnej7t50t8IGhVnH+kzpow+v/lDbXt8mrxAvxT4RW2fdT8d/qoydGQqPDdeUDVPk4uEiSYp+KFobn92ohJcT9MnNn2jGdzMU2DmwaScKAAAAXOKGPDNEg/842Ho7LS1Nc3vPbVSu5KXJqiiuUNT0KLn71f23diejk/w7+NvM1W96P61/cr1kkXZ/sFsxs2KqjVfdlaKyvPKX06upOu7i6WIzFgAAAAAAAAAAoDGGPD1E8wfM18FVB9V9fPdfvb7dDRY5OTnKzs6uc9xgMCgzM7NBuZqy00W7du20evVqjR8/Xm+++ab27dunm266SSUlJVq0aJH27t2rqKgoffnll7U2e5xvBpEki6VhH1ZbunSp9TgrK6vW+0eNGqXQ0NDGnBIAAABQw7Y3tylzV6a63txVP37xY73xRdlF5z48JWnQrEHVmiukc1ewjX0iVvEvxCvuL3HqdUcv+Yb51siTuCBRaQlpkkEat2CctbnivGEvDNOB5QeUezhX3/zxG01aPanxJwkAAABcBoxuxmq7SLh4N74BIXF+oiRpwP0Dmrwuj1YeCugYoDNHzihrb5bKC8vl6u1qHXfzubDFtqnUVFuKC+NVdrtw9XG1EQkAAAAAAAAAANA4plKTbvrgJq2esVrJS5LVY2IPhfQMkZuvmwxOtfcfFOcUO6y+3Q0WgYGB8vLyanLhgoIC5eXlNSnHoEGDlJycrHnz5mnVqlV66qmn5OLioi5dumjevHl68MEH5epa+5s8zz33nJKSklRSUqJXX321QfWmTJlS7/1xcXE0WAAAAMAhco/kKv6FeF0RfYWu/P2VDWqw2PnWTpUXlkuS+s/oX2tM/xn9FT8nXqZSk7a9uU1j5o6pNm6xWJTwcoIkqd1V7RTcI7hGDmcXZ/Wd1ldxf47TT1/9pMw9mWrdt7W9pwgAAADgF9J3pitrT5ZC+4bWaJhuLK8QL505ckaySIVZhWrl3co65t/BX+k70iVJRVlF8m1bswH7vMKsQkmSm6+bPAI8HLI2AAAAAAAAAACAquZ1mGfdyKEgvaBBn5lyJLsbLObNm6fJkyc3ufAbb7yhp59+usl5goKC9OKLL+rFF1+0a16fPn2UkpJi15yG7nQBAAAAOMJX930lc4VZ4xaMU+mZ0gbNObDigKRzH5Jq1alVrTG+Yb4K6haknIM5OrjioEb/Y3S13eXSd6Sr4ESBJCliZESdtSJHRSruz3Hn6i4/QIMFfpOWjVvWbLXNBrPa/rFts9UHAACXJuvuFfc1ffeK8yzmC3/bdnJ2qjYW3OtCQ3X+iXy16d+m1hymMpOKs89d/Sm4Z80mbAAAAAAAAAAAAEdpzOf2q37+qSnsbrBwFEedAAAAAHA5Sno/SambUnXV01epdd/WOrb5WL1zCjIKdPrH05Kk1lG2mx3a9GujnIM5KkgvUG5KrgK7BFrHUjelWo9t5QntGyqDk0EWs6XaHAAAAACNU1ZQpv2f7peLp4v63NWn3vgtL25RSO8Qdbu5m824wsxzO08YnAzyCqm+Q3XEiAjF6VzjdObuzDpzZe3JsjZqRIyouxEbAAAAAAAAAACgqQbcP0BhMQ3f6Tt9e7qSFiQ5pLZdDRavv/66BgxwzFWzhg0bptdee80huQAAAIDLSWFmodY/uV4BkQG6ZvY1DZ53at8p67FvuK/N2Krjp/afqtZgkb0v23rsF+5XZw6jm1GewZ4qyipS9v7sOuMAAAAANEzyR8mqKKpQ1D1RcvN1qzc+7i9xihwdabPB4uzJs8o/ni9JatO/jVw8XaqNh8WEyTfMVwXpBUrdmKphs4fVmufohqPW4x4TezTgbAAAAAAAAAAAABqn/dXt1Xty7wbHOxmdHNZg4VR/yAWPP/64unbt6pDCAwYM0OOPP+6QXAAAAMDlZO0ja1V6plRj3xsrFw+X+if8f3nH8qzHXqFedQf+YrzqPHvzeId6Szp3pd2SMyUNWygAAACAWp3/w//A+wc2eM6JbSdUVlBW5/gP7/5gPe5/X/8a4waDQUOeHSJJSktIU86hnBoxZpNZuxfuliR1vrGzWve1vWMeAAAAAAAAAABAY7W7ql2NHbnr0yqylfre3dch9e1qsAAAAADQMKYyk8oKyqxfFYUVDZp36ItDOvjfg4qaFqWO13a0q2b52XLrsdHd9mZ1VRs3qs6TpLKzFz6cVV8eo8eF8V/mAQAAANBwGd9nKHNXpkL7hqrtlW0bPK/8bLlW37daleWVNcaOfHNEW1/dKklqP7S9+k3vV2uOATMHqN2QdpJFWj1ztSpKqr9+2fz8ZuWm5Mrd312j546246wAAAAAAAAAAADsM/3b6eo40r7PTYXFhOnmD292SH3bn5YCAAAA0CgJLyco/oV46+18p/x655QVlGntw2vlGeyp6968zu6aVT8E5ezqbDO26nhFcfUPT5lKTA7JAwAAAKDhEucnSpIG3D+gwXNC+4Yqa0+W9n+6XycTT6rnHT0V0DFAFUUVOrb5mA6uPChZpE7Xd9ItH90iJ2Pt11xyMjrp9lW36+OxHystIU3zB8xX1PQouXq5KmVtilLWpMgzyFMTV0xUYOdAh5wvAAAAAAAAAABAbfYs3qP2Q9vLv4N/vbH/7v1vWSwWDbh/gAb9fpBD6tNgAQAAAFwEQ54ZosF/HGy9nZaWprm959qcs/6p9TqbcVa3fHyLPFp52F2z6q4UtV29tqqq4y6eLtXGqu5K0ZQ8AAAAABqm7GyZ9n+yXy5eLupzZ58Gz3tg9wNK35muQ58f0omtJ5Q0P0klZ0rk7OIs79be6j25t/pM6aNOozvVm8szyFP3JNyjxAWJSl6SrISXE1RZVim/dn6KfSpWMY/FyKeNT1NOEwAAAAAAAAAAoF5fTP9C45eMb1CDhYuni37+4Wd9/djXcvdzV9+7+za5Pg0WAAAAwEVgdDPK6Hbhv9su3rabD45/e1yJ8xPVaUwn9Z7Uu1E1XX1crcemUpONyOq7XVSdJ0luPm4NzlN1t4tf5gEAAADQMG4+bnrm7DONmhs2KExhg8Icsg4no5OiH4xW9IPRDskHAAAAAAAAAABgL4vF0uDYGTtn6OzPZ/Xp+E/13T+/c0iDRe37gQMAAAD41VSWV2r1zNVydnXW8L8NV3FOcY2v0vxSa3xFcUW1scqKc7tIVO3aLsoqslmz6vgvu73tyVOYVShJcvN1k0eA/btuAAAAAAAAAAAAAAAAAEBj+Vzho6jpUco9nOuQfOxgAQAAADSzsz+f1ekfT0uSFkQvqDd+2+vbtO31bdbbU+OmqsOwDgrpFWK9r+BEgc0cBekXxkN6hlQbC+4VbD3OP5GvNv3b1JrDVGZScXbxuTk9g2uNAQAAAAAAAAAAAADgYikqsn3RwLpkZWXpgQceUGJiogYMGKB3331XoaGhdufx8vJqVH0AgGPlHslVZXmlQ3LRYAEAAAA0M+/W3pqyforNmMw9mVr/xHpJUp8pfaptZxfa99wfeXzb+iqwS6BO/3RambszbeY7mXTy3JwwX7Xq3KraWMSICMUp7lzd3ZnqdnO3WnNk7cmSxWyxzgEAAAAAAAAAAAAA4Nfk7e3d5Bzr169XZGRko+ZaLJYm1weAluzQF4f04xc/1rg/cX6ijm44Wu98c4VZecfzlL49XaF97G+Uqw0NFgAAAEAzM7ob1XFkR5sxTkYn63FAx4A643tM7KFvX/pWecfydOboGQV0DKgRU5BRoJxDOZKk7hO6y2AwVBsPiwmTb5ivCtILlLoxVcNmD6u1VtUXMT0m9rC5fgAAAAAAAAAAAAC43PzauyeYTCaVlJSoqKhIRqOR3RMAAJe8zN2Z2r1wd43PL6V9m6a0b9MalON8s9uVj17pkDXRYAEAAABcRgY9Okg739qp8sJyJf0nSdf+/doaMbve3yVZzjV2xD4eW2PcYDBoyLNDtPahtUpLSFPOoRwFdQuqFmM2mbV74W5JUucbO6t139YX5XwAAAAAAAAAAAAA4LeK3ROaX2FhYaPmjR8/Xps2bVJlZaWcnZ01YsQIrVq1ysGrAwDUx93fXf7t/avdl3c8Tx6BHnL1crU92SC5eLoosEug+k7tq243d3PImmiwAAAAAC4jXiFeGvX6KK15cI12zN2hbuO7qW10W+t45p5MbX1tqyRp+N+GyzfMt9Y8A2YO0L6P9yktIU2rZ67WXd/cJRcPF+v45uc3KzclV+7+7ho9d/TFPSkAAAAAAAAAAAAAAGrR2F08lixZomnTpun7779XdHS0Fi5cyI4gANAMYmbFKGZWTLX7XnB6QWPmjVHvyb2bZU00WAAAAAC/UVnJWcpKzpIkZR/MrnZ/8tJkSZJXqJciR1W/msnABwaqMKtQW+Zs0aLhi9R/Rn8F9wxWzqEcJS1IUkVRhQY/MVixT9TcveI8J6OTbl91uz4e+7HSEtI0f8B8RU2PkquXq1LWpihlTYo8gzw1ccVEBXYOvAhnDwAAAAAAAAAAAAC/bb/27gkmk0nbtm1TbGysjEY+/tkUoaGhWrduXXMvAwDwG8RvWAAAAOA36uDKg4p/Ib7G/YdWHdKhVYckSe2vaV+jwUKShs0epshRkdr59k4dWHFAxf8ulmeQpyKvi1T0w9GKGB5Rb33PIE/dk3CPEhckKnlJshJeTlBlWaX82vkp9qlYxTwWI582Pk0/UQAAAAAAAAAAAAC4BP3auyeYTCZ5eHjIy8uLBgtIkoqKihoUZzKZVFJSoqKiIhmNRmVlZemBBx5QYmKiBgwYoHfffVehoaF212fXDwAXw2zz7Gatz29YAAAA4Ddq2PPDNOz5YY2eHx4brvDY8CatwcnopOgHoxX9YHST8gAAAAAAAAAAAAAAzmH3BDiKt7d3k3OsX79ekZE1L+zYEBaLpcn1AeC3hgYLAAAAAAAAAAAAAAAAAAAAAADwm1CYWajK8kpJkleol4xuF9oeco/kKv75eGXuyZSbr5t6Teql6IeiZTAYHFKbBgsAAAAAAAAAAAAAAAAAAADgElNYWNigOJPJpG3btik2NlZGo1Hjx4/Xpk2bVFlZKWdnZ40YMUKrVq26yKsFgIYpyS3RWxFvWRss7lx3pyKvO7fTTvbBbL0f877KC8utu+ikb09X+vZ03bL0FofUp8ECAAAAAAAAAAAAAAAAAAAAuMR4eXk1KM5kMsnDw0NeXl4yGo1asmSJpk2bpu+//17R0dFauHBhg3MBwMV2YMUBmcpM8gzyVP+Z/RXSK8Q69r9Z/1PZ2TJJ0hUDrpDPFT46vuW49i3bp96Te6vzDZ2bXJ8GCwAAAAAAAAAAAAAAAAAAAKCFCA0N1bp165p7GQBQqyPfHJGbr5vuT7pfvmG+1vtzD+fq6IajMhgMin44Wte/ff25+4/kakH0Au3+cLdDGiycmpwBAAAAAAAAAAAAAAAAAAAAAACgiU4mnVTUtKhqzRXSuZ0tJMnF00UjXhxhvb9VZCv1vrO3Mr7LcEh9GiwAAAAAAAAAAAAAAAAAAAAAAECzKzxZqOAewTXu//GLH2UwGNTtd93k5utWbSy4e7CKThU5pD4NFgAAAAAAAAAAAAAAAAAAAAAAoNkZnAyqrKisdl9BRoF1h4oeE3vUnONscFh9GiwAAAAAAAAAAAAAAAAAAAAAAECz8w3z1cnEk9Xu2/X+LlksFrl4uihydGSNOWeOnpFHoIdD6tNgAQAAAAAAAAAAAAAAAAAAAAAAml37a9pr3yf7dHDlQVUUV+jw/w5r2xvbZDAY1G18NxndjNXiTaUm7V26V8E9gh1S31h/CAAAAAAAAAAAAAAAAAAAAAAAwMUV84cY7Vm0R8snLrfeZ7FY5GR0UuyTsdb7inOKlb4zXVvmbFFhZqGiH452SH12sAAAAAAAAAAAAAAAAAAAAAAAAM0uuHuwbvnoFrl4uchischiscjobtQN79yg0N6h1rgdb+3QsnHLlPF9hiSp5209HVKfHSwAAAAAAAAAAAAAAAAAAAAAAMBvQo8JPdRxVEcd33JcFrNFba9sK582PtVjbu2hVp1aSZLcfNysx01FgwUAAAAAAAAAAIADfT7tcwV6BDb3MgAAAAAAAAAAuGS5+7mr67iudY63jmqt1lGtHV7XyeEZAQAAAAAAAAAAAAAAAAAAAAAAfgVZe7MUPyfeIblosAAAAAAAAAAAAAAAAAAAAAAAAJekrOQsxb/gmAYLo0OyAAAAAAAAAAAAAAAAAAAAAAAANEF+Wr7dc4pzih1WnwYLAC3KsnHLmrX+pNWTmrU+AAAAAAAAAAAAAAAAAAAA0Nzi/xav7W9uV8xjMRr2/DDr/fM6zJPBYGi2dTk1W2UAAAAAAAAAAAAAAAAAAAAAANDibHt9m8oKyrT9H9trjFksFru/HIUdLAAAAAAAAAAAAAAA/4+9e4+zuqr3x/+aYYYBhpvcUUAQb3njoiigGVpkF7WsqDQ17auWdrHTt04eT+dbdjrHOp2T1fF884Qdr4kdLb9FWscbYngXVAS8YIJcAgSROwwMs39/8HM7EzMDDIPDMM/n48Hjsfastd5rffisx569Zu/3XgAAAADwjjnyk0fmmf96JkdMOGK7umM/f2wGjB6w07EWPbYoMybOaJZ5SbAAAAAAAAAAAAAAAADeMWdef2bG/8v4dOzRcbu6A999YI4+5+idjlVaVtpsCRalzRIFAAAAAAAAAAAAAABgJ9WXXDH4PYNT2bdyl+J07ts5B558YLPMyQkWAAAAAAAAAAAAAABAi/vslM/ucp+D3ndQDnrfQc0yvhMsAAAAAAAAAAAAAACANs8JFgAAAAAAAAAAAOyySWdMaukpAADstW4cd2Nem/raDtuVV5bnynVXNtpm4aML8+S1T2bBtAVZ//r6VPauzIAxAzLqslEZPG7wTs2nprom0ydOz/O3Pp8VL65IdVV1ug3qlsM+clhGXz46nft13qk4e1p1VXUWTFuQJTOWZMPyDalaU5WKbhWp7F2Z/Y/bPwPHDky79u322PgSLAAAAAAAAAAAAAAAYC809btTM/WqqSnrUJYRF41In6P6ZMULKzJj4ozMuWNOxn5jbMb/y/hGY2xYsSG3nX5bFj+xOL0O75UTv3li2ndun7l3z80j338kz/zimXzyzk/mwJMPfIeuantr/7I2D//Tw3nuxudSvam6wXZlHcsy4nMjctLfnZQu/bs0+zwkWAAAAAAAAAAAAAAAQDPbf9T+OevmsxptU1Ja0mDd09c9nYe+/VDKOpTl/AfPz4ATBhTrjjnvmNzw7hvy6A8fTWWfyoz9+th6Y9RU1+RXZ/0qi59YnIFjB+a8+89LecfyJMmoy0blgSsfyLSrp+X2j9yei568KD0P6dmEK909L/3upfzm3N9ky/otKRQKjbbdsmFLnvqPp/Lsjc/m47d9PIeefmizzkWCBQAAwB42+eLJ6dWhV0tPAwAAAAAAAACAd1B5p/L0OrxpnxlZv3x97vvGfUmSEy4/oU5yRZL0H9E/Y78+NlOvmpop/zAlR336qHQd0HW7ONMnTs+CaQuSkuSMiWcUkyveMu6qcZlzx5ysfGVl7v3avTl78tlNmm9TzfzlzPy/z/6/pJAUCoWUlJak9xG90294v3Ts2THtO7fP5rWbs2HFhix9ZmlWvLQihZpCNq/bnNs/envOuuWsHH320c02HwkWAAAAAAAAAAAAAACwF3niJ09k87rNSZKRF42st83Ii0Zm6nenpnpTdR79t0fzgWs+UKe+UChk2tXTkiSDThyU3kf03i5Gu/J2GXbBsEz51pS8/PuXs/S5pek3rF8zX039ls9Znt9//vcp1BTScb+OGfuNsRl50ch06tWpwT7rlq3LjIkz8tiPHsumVZvy+0t+n37D+tV7bU1R2ixRAAAAAAAAAAAAAACAZjHnzjlJku6Du6fHwT3qbdN1QNfiCRkv3PlCCoVCnfpFjy/KmoVrkiRD3jekwbGGjh/69rh3zNmtee+K+75xX7Zs2JKBYwfm0ucvzUlXnNRockWSdO7bOSd/6+R84bkv5IDjD8jm9ZuLJ300BwkWAAAAAAAAAAAAAACwh1WtrUqhprDDdmsWr8kbL72RJOk3vPHTJPqP6L+tz6I1WTl3ZZ26eQ/OK5Ybi9N3WN+UlJZs12dPen3265n7h7npdXivnHP3Oemyf5dd6t9tYLd85g+fSc9DeuaVP76S5XOWN8u8ypolCgAAAAAAAAAAAAAAULRlw5ZM/e7UzLlzTt7885vZsmFLSkpL0vOwnjnkw4dkzN+MqTex4PVZrxfLXQd2bXSM2vWvz349PQ/tWXy8fNbbSQfdBnZrMEZZRVk69e6U9cvWZ/ns5klU2JGXJ7+ckpKSnHbNaenQrUOTYnTcr2NOu+a03Hb6bXnpdy+l9xG9d3teTrAAAAAAAAAAAAAAAIBm9pen/pJpV0/LoHcPykdu+EjO/v3Zed+/vC+FrYU89q+P5drDr81Lv3tpu36r5q8qliv7VjY6Ru362v12NU7nvp2TJFVrqrLxzY2Ntm0OC/60ID0P7ZmDTzt4t+Ic8qFD0vOQnnnt4deaZV5OsAAAAAAAAAAAAAAAgAZUV1Vna9XW4uPNazfvVL/KPpX57JTP1jlZ4dAPH5rjv3R8Jp0xKa/e92rumHBHPjvlsxk4dmC98cs6NP6R//KO5Q3Oq2pt1U7HKev4dv3mtZvTcb+OjbbfXW+8/EaGfmBos8Q6aPxBeeWPrzRLLAkWAAAAAAAAAAAAAADQgGlXT8vUq6YWH6/O6h32+cTtn0i7inb1JiqUVZTlozd+ND856CfZWrU193zpnnx+xueL9Vs2bimW27Vv1+g4teu3bNhSp656Y3WzxNkTNryxIfsdtF+zxNpv6H7ZuLJ5Tt2QYAEAAAAAAAAAAAAAAA046e9OypivjSk+Xrx4ca454ppG+3Tu17nR+i77d8nBHzg4L/32pSx9ZmmWPLMk/Uf0T1L3VIqtm7c2FGK7+vJO5XXqap9KsTtx9oSq1VXp1LNTs8Tq1LNTqtZU7bjhTpBgAQAAAAAALeDGcTfmtamv7bBdeWV5rlx3ZaNtFj66ME9e+2QWTFuQ9a+vT2XvygwYMyCjLhuVweMG79R8aqprMn3i9Dx/6/NZ8eKKVFdVp9ugbjnsI4dl9OWjd/hGEAAAAAAA7KvKKspSVvH2R+/br2nfLHH3P27/vPTbl5Js+1v/WwkW7bu8Hb96U3W9fd9S+7SL2v2SpKJLxU7HqX3axV/H2RMKhUJKy0qbJVZJu5Kk0CyhJFgAAADAnvL8pOez+EeLU1ponj8I7KqzJ5/dIuMCAO+sqd+dmqlXTU1Zh7KMuGhE+hzVJyteWJEZE2dkzh1zMvYbYzP+X8Y3GmPDig257fTbsviJxel1eK+c+M0T075z+8y9e24e+f4jeeYXz+STd34yB5584Dt0VQAAAAAAsO+r7FNZLK9buq5Y7j64e7G8ftn6RmPUrq/d763Hix5fVGzX9YCuDcZZt2zb+BVdK9Jxv447nHuzKHlnhtkVEiwAAAAAAKCF7D9q/5x181mNtikpbfjdhaevezoPffuhlHUoy/kPnp8BJwwo1h1z3jG54d035NEfPprKPpUZ+/Wx9caoqa7Jr876VRY/sTgDxw7MefefVzx6fNRlo/LAlQ9k2tXTcvtHbs9FT16Unof0bMKVAgAAAAAAf61Q8/axC6Xt3v7yxj5H9SmW1yxc02iMNYveru9zZJ86db2P6l0sr164Ov1H9q83RnVVdTYs37Ctz5G9622zJ/zPV/8nD/79g7sdZ8v6LTtutJMkWAAAAAAAQAsp71SeXof3alLf9cvX575v3JckOeHyE+okVyRJ/xH9M/brYzP1qqmZ8g9TctSnj0rXAdt/M9X0idOzYNqCpCQ5Y+IZxeSKt4y7alzm3DEnK19ZmXu/dq9TsgAAAAAAYAdemvxSlj23LO/++3enpKThL1KqfWpF5/6di+WuB3RNz0N75o2X38jSZ5c2OtaSGUu29RnQNT0O6VGnbsipQzIlU5IkS59dmsM/cni9MZY9t6yY7DHk1CGNjtecNqzYkMLywo4b7oTG/p93RemOmwAAAAAAAHubJ37yRDav25wkGXnRyHrbjLxoZFKSVG+qzqP/9uh29YVCIdOunpYkGXTioPQ+YvtvpWpX3i7DLhiWJHn59y9n6XONv5EDAAAAAABt3Qu/fiFT/mFK1i9b32i7RY8vKpYHnTSoTt0RE45Ikqyavypvvvpmvf3XLF6TFS+uSJK86xPv2i7JYMDoAcUvX5r3wLwG5/Hq/a9uN+47oWPPjul+YPfd/tepV6dmm5MTLAAAAAAAoBWac+ecJEn3wd3T4+Ae9bbpOqBreh3eKyteWJEX7nwhp/3otDpvrix6fFHxaPEh72v4G6mGjh+aKd/a9g1Xc+6Yk37D+jXXZQAAAAAAwD5r7h/mZsSFI+qte2PuG8XEhoFjB6bPkX3q1J/wlROKX7Y04/oZee8/v3e7GM/84pmkkJR1KMvY/z12u/qSkpKcdOVJueeye7Jg2oKseHHFdidr11TX5Nkbn02SHPLhQ97R9wA+8OMP5Ohzjt7tODNvnZn/99n/t/sTihMsAAAAAABgr1G1tqp4BHdj1ixekzdeeiNJ0m9442909B/Rf1ufRWuycu7KOnXzHnz726oai9N3WN+UlJZs1wcAAAAAAGjYA3/3QN54+Y3tfr5x5cb8+uxfp7C1kPJO5fngtR/crk1ln8qM/+H4JMnj1zyexU8trlO/9LmleeRfHkmSnPKPpxRPqvhrx1587LbTMQrJ5IsnZ8vGLXXqH/rOQ1k5d2U6dO+Q0645rUnX2eJKdtxkZznBAgAAAAAAWsiWDVsy9btTM+fOOXnzz29my4YtKSktSc/DeuaQDx+SMX8zJl3277Jdv9dnvV4sdx1Y/xsm9dW/Pvv19Dy0Z/Hx8lnLi+VuA7s1GKOsoiydenfK+mXrs3z28gbbAQAAAAAASe8jRpSSrAABAABJREFUeqe0vDTrl63PdcOvy1GfPir7j9o/7dq3y4oXVuS5m5/LhuUbUtm3Mp/41SeKX5b01477wnFZt2xdHv7uw7nplJsy8qKR6X1k76x4cUVmTJyRLeu3ZMzXx2Ts17c/veItpWWl+dRdn8ptp9+WBdMW5OfH/jzDLxye9pXtM/eeuZl799x06tUpE+6ckJ6H9GwwTnM77ZrTsv9x+zdLrP2P2z/v/9H7myWWBAsAAAAAAGghf3nqL3n9+dcz/HPDc/K3Tk55Zfm2N0V+PiOP/etjmf6f0/OxWz+Ww848rE6/VfNXFcuVfSsbHaN2fe1+uxqnc9/OWb9sfarWVGXjmxvTcb+OjV8cAAAAAAC0USf+7YkZdv6wvPCbF/Lqfa/mtYdfy+xfzc7WLVvTcb+O6XtM3xx6+qEZ8b9GpKJLRaOxxn17XIaOH5onfvpE5tw5Jxt+tiGdenXK0PcPzagvjsqQU4bscD6denXK56Z9LtMnTs/MW2Zm2tXTsrVqa7oN6paxfzs2o786Ol36b/+FT3vS6MtHN1usXof1Sq/DejVLLAkWAAAAAACwm6qrqrO1amvx8ZZ1Wxpp/bbKPpX57JTPpvcRvYs/O/TDh+b4Lx2fSWdMyqv3vZo7JtyRz075bAaOHVhss3nt5mK5rEPjf+ov71heb78kqVpbtdNxyjq+Xb957WYJFgAAAAAA0IjO/Tpn1GWjMuqyUbsda+DYgXXeJ2iK0rLSjLp0VEZduvvz2ZdJsAAAAAAAgN007eppmXrV1OLj1aWrd9jnE7d/Iu0q2tWbqFBWUZaP3vjR/OSgn2Rr1dbc86V78vkZny/Wb9n4dgJHu/btGh2ndv2WDXUTP6o3VjdLHAAAAAAAgH2BBAsAAAAAANhNJ/3dSRnztTHFxwsWLMg1R1/TaJ/O/To3Wt9l/y45+AMH56XfvpSlzyzNkmeWpP+I/knqnkqxdfPWhkJsV1/eqbxOXe1TKXYnDgAAAAAAwL6gtKUnAAAAAAAArV1ZRVkqulYU/5V3bp4EhP2P279YXvjowmK5fZf2xXL1puo0pvZpF7X7JUlFl4qdjlP7tIu/jgMAAAAAALAvkGABAAAAAAB7qco+lcXyuqXriuXug7sXy+uXrW80Ru362v12Nc66ZdvGr+hakY77dWy0LQAAAAAAQGskwQIAAAAAAPZShZpCsVza7u0/6fc5qk+xvGbhmkZjrFn0dn2fI/vUqet9VO9iefXC1Q3GqK6qzoblG7b1ObJ3g+0AAAAAAABaMwkWAAAAAADwDntp8kt5+HsPp1AoNNqu9qkVnft3Lpa7HtA1PQ/tmSRZ+uzSRmMsmbFkW58BXdPjkB516oacOqRYbizOsueWFZM9avcBAAAAAADYl0iwAAAAAACAd9gLv34hU/5hStYvW99ou0WPLyqWB500qE7dEROOSJKsmr8qb776Zr391yxekxUvrkiSvOsT70pJSUmd+gGjB6TrgK5JknkPzGtwHq/e/+p24wIAAAAAAOxrylp6AgBtyaQzJrXo+GdPPrtFxwcAAACgrrl/mJsRF46ot+6NuW8UExsGjh2YPkf2qVN/wldOyBM/eSKb123OjOtn5L3//N7tYjzzi2eSQlLWoSxj//fY7epLSkpy0pUn5Z7L7smCaQuy4sUV6XV4rzptaqpr8uyNzyZJDvnwIek3rF9TLhUAAAAAAGCvJ8ECAAAAAABayAN/90AGnTgoPQ/tWefnG1duzK/P/nUKWwsp71SeD177we36VvapzPgfjs/dl96dx695PIefdXgOGHVAsX7pc0vzyL88kiQ55R9PKZ5U8deOvfjYzLptVhZMW5DJF0/Oufeem/KO5cX6h77zUFbOXZkO3TvktGtOa47LBgCANq9QKOSp/3gq919xf7as35LPTvlsBo8bvNP9Fz66ME9e+2QWTFuQ9a+vT2XvygwYMyCjLhu103FqqmsyfeL0PH/r81nx4opUV1Wn26BuOewjh2X05aPTuV/npl0cAABAKybBAgAAAAAA3mG9j+id0vLSrF+2PtcNvy5Hffqo7D9q/7Rr3y4rXliR525+LhuWb0hl38p84lefSP8R/euNc9wXjsu6Zevy8Hcfzk2n3JSRF41M7yN7Z8WLKzJj4oxsWb8lY74+JmO/vv3pFW8pLSvNp+76VG47/bYsmLYgPz/25xl+4fC0r2yfuffMzdy756ZTr06ZcOeE9DykZ4NxAACAnbPyzyvzu8/9Lq89/FqT+k/97tRMvWpqyjqUZcRFI9LnqD5Z8cK2PcCcO+Zk7DfGZvy/jG80xoYVG3Lb6bdl8ROL0+vwXjnxmyemfef2mXv33Dzy/UfyzC+eySfv/GQOPPnAJs0RAACgtZJgAQAAAAAA77AT//bEDDt/WF74zQt59b5X89rDr2X2r2Zn65at6bhfx/Q9pm8OPf3QjPhfI1LRpaLRWOO+PS5Dxw/NEz99InPunJMNP9uQTr06Zej7h2bUF0dlyClDdjifTr065XPTPpfpE6dn5i0zM+3qadlatTXdBnXL2L8dm9FfHZ0u/bs01+UDAECbVPvUitJ2pRkwekAWPb5ol2I8fd3TeejbD6WsQ1nOf/D8DDhhQLHumPOOyQ3vviGP/vDRVPapbDDRuqa6Jr8661dZ/MTiDBw7MOfdf17xFLtRl43KA1c+kGlXT8vtH7k9Fz15kURrAACgTZFgAQAAAAAALaBzv84ZddmojLps1G7HGjh2YAaOHbhbMUrLSjPq0lEZdenuzwcAANje1Ku2nTwx9LShOWPiGXnmF8/sUoLF+uXrc9837kuSnHD5CXWSK5Kk/4j+Gfv1sZl61dRM+YcpOerTR6XrgK7bxZk+cXoWTFuQlCRnTDyjmFzxlnFXjcucO+Zk5Ssrc+/X7s3Zk8/e9YsFAABopUpbegIAAAAAAAAAALCvKxQKOeP6M3LuH89Nt4Hddrn/Ez95IpvXbU6SjLxoZL1tRl40MilJqjdV59F/e7TeOUy7elqSZNCJg9L7iN7btWlX3i7DLhiWJHn59y9n6XNLd3muALQN69evb/K/V199Ne9///vTs2fPvP/978+rr77apDgA0NycYAEAAAAAAAAAAHvYuO+MS0lJSZP7z7lzTpKk++Du6XFwj3rbdB3QNb0O75UVL6zIC3e+kNN+dFqdMRc9vihrFq5Jkgx535AGxxo6fmimfGvKtnHvmJN+w/o1ed4A7Ls6d+7cLHHuu+++DB06tEl9C4VCs8wBAN7iBAsAAAAAAAAAANjDdie5Ys3iNXnjpTeSJP2GN57s0H9E/219Fq3Jyrkr69TNe3BesdxYnL7D+qaktGS7PgAAAPs6J1gAAAAAAAAAAMBe7PVZrxfLXQd2bbRt7frXZ7+enof2LD5ePmt5sdxtYLcGY5RVlKVT705Zv2x9ls9e3mA7ANq2devWNbnvWWedlQcffDBbt25Nu3btcuqpp+auu+5qxtkBQNNIsAAAAAAAAAAAgL3YqvmriuXKvpWNtq1dX7vfrsbp3Ldz1i9bn6o1Vdn45sZ03K/jTs8XgLahsrLx3yWNueWWW3LBBRfkqaeeyqhRo3LjjTfuVjwAaC4SLFrA5Isnp1eHXi09DQAAAAAAAAAAmqBma00KNYW3H1fX7NHxNq/dXCyXdWj84z7lHcvr7ZckVWurdjpOWce36zev3SzBAoBm1bdv3/zhD39o6WkAwHYkWAAAAAAAAAAAwC5Y+crKrJy7svh4dVbv0fG2bNxSLLdr367RtrXrt2zYUqeuemN1s8QBAADYV0mwAAAAAAAAAACAXdDj4B7Z76D9io9XblqZTN1z49U+lWLr5q2Ntq1dX96pvE5d7VMpdicOAADAvqq0pSewu1asWJF/+Id/yFFHHZXOnTunR48eGTNmTH76059m8+bNOw7QiEKhkD/96U+5/PLLM2rUqOy3334pLy9Pz549M2bMmHz729/OX/7yl2a6EgAAAAAAAAAAWoPSdqVpV96u+K+0bM9+BKd9l/bFcvWm6kZa1j3tona/JKnoUrHTcWqfdvHXcQAAAPZVrTrB4sknn8wxxxyT733ve9l///3zgx/8IFdeeWXWrVuXyy+/PKNHj25yAsSMGTMyfPjwnHzyyfnpT3+aXr165X//7/+d6667Ll/84hezZMmSfPe7381hhx2WX/7yl818ZQAAAAAAAAAAsE33wd2L5fXL1jfatnZ97X67GmfdsnVJkoquFem4X8edmygAAEArV7bjJnunBQsW5PTTT8/y5cvz1a9+Nddcc02x7stf/nI++MEPZsqUKTnzzDPzyCOPpKKiopFo23vyySczc+bMlJSU5Ne//nXOOuusOvVXXHFFTj/99EyZMiXnn39+evTokQ9+8IPNcm0AAAAAAAAAAPCWPkf1KZbXLFzTaNs1i96u73Nknzp1vY/qXSyvXrg6/Uf2rzdGdVV1NizfsK3Pkb3rbQMAALAvarUnWHzjG9/I8uXLM2jQoHz/+9+vU1dRUZGJEyemXbt2mT59eq699tomj3PRRRdtl1yRJJ06dcpNN92U8vLy1NTU5G/+5m+aPAYAAAAAAAAAADSk6wFd0/PQnkmSpc8ubbTtkhlLtvUZ0DU9DulRp27IqUOK5cbiLHtuWQo1he36AAAA7OtaZYLF3Llzc8cddyRJzj///HpPpxg6dGhOOeWUJMkPfvCDVFdXN2msj3zkIw3WDRw4MKNGjUqSvPTSS5k7d26TxgAAAAAAAAAAgMYcMeGIJMmq+avy5qtv1ttmzeI1WfHiiiTJuz7xrpSUlNSpHzB6QLoO6JokmffAvAbHevX+V7cbFwAAoC1olQkWd955ZwqFbVny73vf+xpsN378+CTJ8uXL89BDD+3SGB/+8Ifzhz/8oZik0ZADDzywWF6wYMEujQEAAAAAAAAAADvjhK+ckPad2ydJZlw/o942z/zimaSQlHUoy9j/PXa7+pKSkpx05UlJkgXTFhSTMWqrqa7Jszc+myQ55MOHpN+wfs10BQAAAHu/spaeQFM8+OCDxfLw4cMbbDdixIg6fRpLxvhrAwcOzMCBA3fYbtWqVcVyZWXlTscHaAmTzpjUYmPXlNTkgK8d0GLjAwAAAAAAALRmlX0qM/6H43P3pXfn8Wsez+FnHZ4DRr39HuzS55bmkX95JElyyj+eUjyp4q8de/GxmXXbrCyYtiCTL56cc+89N+Udy4v1D33noaycuzIdunfIadectmcvCgAAYC/TKhMsZs2alSTp0qVLunXr1mC72gkSs2fP3iNzmTdvXnEujSV7AAAAAAAAAADQts28dWaxvGzmsmL5z/f9OWsWrUmSVPatzNDxQ+vtf9wXjsu6Zevy8Hcfzk2n3JSRF41M7yN7Z8WLKzJj4oxsWb8lY74+JmO/vv3pFW8pLSvNp+76VG47/bYsmLYgPz/25xl+4fC0r2yfuffMzdy756ZTr06ZcOeE9DykZzNdOQAAQOvQ6hIsqqqqsnTp0iRJ3759G21bu37+/PnNPpeXXnopL774YpLkwgsvTIcOHZp9DAAA2pYNKzZk9h2z8+f/+XOWPrM065atS0lpSTr37ZwDjj8gR597dA49/dCUlJTsMNbCRxfmyWufzIJpC7L+9fWp7F2ZAWMGZNRlozJ43OCdmk9NdU2mT5ye5299PiteXJHqqup0G9Qth33ksIy+fHQ69+u8m1cMAAAAAABtx13n3VXvz6f987Ri+cD3HNhggkWSjPv2uAwdPzRP/PSJzLlzTjb8bEM69eqUoe8fmlFfHJUhpwzZ4Tw69eqUz037XKZPnJ6Zt8zMtKunZWvV1nQb1C1j/3ZsRn91dLr077LrFwgAANDKtboEi7Vr1xbLO0po6NixY739mst//ud/Jkl69OiRb33rWzvdb2P1xqyrXld8XF5anvJ25Y30gN1XKCmkkEIKJYXUpKalp0MbVCgppKamJtXV1S09Fdqo6upqa5AWVVOz49+/93793jz1H0+lelN1OvXulKM/c3R6HtIzhUIh86fMz5w752T2f8/OkFOHZMIdE9KxR8cGY0397tRMvWpqyjqUZcRFI9LnqD5Z8cK2b6+ac8ecjP3G2Iz/l/GNzmfDig257fTbsviJxel1eK+c+M0T075z+8y9e24e+f4jeeYXz+STd34yB5584C7/f7Q19gBt097wGtzvvZbl9QfWQNvm/rMzewD2XRu2bkhFdUXxsT3A3mdveL3OznGvWg/3qnVxv1oP96r1KJQUdqrdtwvfbpbxBo4dmIFjB+5WjNKy0oy6dFRGXTqqWebUlq1evTorV64sPq6oqEhFRUUjPfYdNSWem5rC83vzaWt/f/N3R5rK2qGprJ2G+T/Zd7W6BIuNGzcWy+3bt2+0be36DRs2NOs8Xnjhhfzf//t/kyTXXXddevfuvdN9v/nQN+s8/sDID+RDx32oWecHf62QQjZ22ZiVWZmS7Pgbr6G5FVJI9YJtLyhKS0tbeDa0RTU1NVmwYEESa5CW8cYbb+ywzcxbZ6Z6U3UOfM+B+fRvP50O3d5OKD7+i8fn5d+/nNs/envmPTgvk86YlAv/dGFKSrf/vf70dU/noW8/lLIOZTn/wfMz4IQBxbpjzjsmN7z7hjz6w0dT2aeywSPCa6pr8quzfpXFTyzOwLEDc97956W847YPA426bFQeuPKBTLt6Wm7/yO256MmLHBG+A/YAbdPe8Bp82rRpO27EHuP1B9ZA2+b+szN7APZd9gB7v73h9To7x71qPdyr1sX9aj3cq9Zj7cbm/+JPWo/hw4fXefzZz342F1xwQYvM5Z22sv/KHTdiO57fm09bey/E3x1pKmuHprJ2GlY7wZZ9S6tLsKh9KsXmzZsbbVu7vlOnTs02hw0bNuTss89OVVVV/vZv/zYTJkzYpf4/GPeD7Ndhv+Lj8tLylC/xzVXsWYWSQlZmZXos7ZGSgo0Z77xCSSH7D9o/Y8eOTVlZq/v1wz7grYxha5CW8tZmc0dKy0pz1s1n1UmueMuhpx+akReNzPT/nJ6Fjy7M7P+enaM+fVSdNuuXr89937gvSXLC5SfUSa5Ikv4j+mfs18dm6lVTM+UfpuSoTx+VrgO6bjfW9InTs2DagqQkOWPiGcXkireMu2pc5twxJytfWZl7v3Zvzp589k5dX1tlD9A27Q2vwU866aQWGZdtvP7AGmjb3H92dg/AvskeYO+3N7xeZ+e4V62He9W6uF+th3vVimzccRP2Xc8++2wGDnz7RJG2dILF4h8tbukptEqe35tPW3svxN8daSprh6aydhq2aNGilp4Ce0irW+ldunQpljdt2tRo29qnXdTutzuqq6tz9tln57nnnst5552X73//+7sco2NZx3Qu61z3hzt3UiQ0WU1qUpKSlBRKUlqQRcg7ryY1KS0tTVlZmRdatBhrkJa0s1n8/Yb3S7dB3Rqsf9fH35Xp/zk9SfLy5Je3S7B44idPZPO6bYnGIy8aWW+MkReNzNTvTk31puo8+m+P5gPXfKBOfaFQyLSrt33Ty6ATB6X3Eduf1tauvF2GXTAsU741JS///uUsfW5p+g3rt1PX2BbZA7RNe8NrcL/zWp7XH1gDbZv737b5Jq+2rVO7TvYAe7m94fU6O8e9aj3cq9bF/Wo93KvWwwek27Zu3bqlR48eLT2NFuG5qWk8vzeftvi3N393pKmsHZrK2qmf/499V6t7dVZRUZF+/bZ9cGvZsmWNtq1dP3jw4N0eu6amJhdccEF+97vf5ZxzzskNN9yQkhIbZAAAmsfHJ308Z/7izEbbdD+we7G8esHq7ern3DlnW7vB3dPj4Pr/kN91QNf0OrxXkuSFO19IoVD3Uz6LHl+UNQvXJEmGvG9Ig3MZOn7o2+PeMafReQMAAAAAAAAAAOztWmXqzFFHHZWlS5dm7dq1Wb16dbp1q/8bfmsfvXLkkUfu1pg1NTW58MIL88tf/jKf/vSnc/PNN6ddu3a7FRMAAGobckrDyQxv2bTq7VPcyivL69StWbwmb7z0RpJtJ2E0pv+I/lnxwoqsWbQmK+euTM9Dexbr5j04r1huLE7fYX1TUlqSQk2hTh9g7zHpjEktPYWcPfnslp4CAAAAAAAAAMBOaXUnWCTJqaeeWiw/++yzDbabMWNGvX12VaFQyMUXX5ybb745EyZMyK233iq5AgCAFvHmvDeL5QNPPrBO3euzXi+Wuw7s2mic2vWvz369Tt3yWcuL5W4D609mTpKyirJ06t1pW5/ZyxtsBwAAAAAAAAAA0Bq0ygSLT3ziEykpKUmSPPDAAw22u//++5MkvXr1yrhx45o0VqFQyOc///n813/9Vz7+8Y/ntttu2y65YsmSJTnuuOPy85//vEljAADAznrxrheTJGUdyjL8guF16lbNX1UsV/atbDRO7fra/XY1Tue+nZMkVWuqsvHNjY22BQAAAAAAAAAA2Ju1ygSLQw45JBMmTEiS3HLLLdm8efN2bV599dU8+OCDSZJvfvObKSsrq1M/a9asHHrooRkwYEAefvjhBsf64he/mIkTJ+ajH/1oJk2atF2cJKmqqsr06dPzl7/8ZXcuCwCAfUh1VXWq1lQV/21Zt2W3Y65/fX1e+u1LSZIxXx+TLvt3qVO/ee3br4vLOmz/urW28o7l9fZLkqq1VTsdp6zj2/V/HQcAAAAAAAAAAKA1afzTUnuxH/7wh5kyZUrmz5+fK6+8Mv/6r/9arKuqqsoll1ySrVu35thjj82XvvSl7fr/0z/9U+bOnZskueKKK/Loo49u1+bLX/5yfvazn+Xggw/OZZddlkceeaTeuSxdurSZrgoAgH3FtKunZepVU4uPV5eu3u2Y933jvlRvqk7/kf1z8rdO3q5+y8a3kzjatW+3XX1tteu3bKib/FG9sbpZ4gAAAAAAAAAAALQmrTbBYtCgQZk8eXLOOuus/Nu//VtmzZqVM888Mxs3bsxNN92U559/PsOHD8/vfve7dOjQYbv+NTU1xXKhUNiu/sc//nGuvfbaJMkrr7yS97///XvuYgAA2Oec9HcnZczXxhQfL1iwINccfU2T4828dWaeu/m5VPapzCd//cmUVWz/Ur72qRRbN29tNF7t+vJO5XXqap9KsTtxAAAAAAAAAAAAWpNWm2CRJCeccEJmzpyZH//4x7nrrrvyt3/7tykvL8+hhx6aH//4x7n00kvTvn37evv+/d//fWbMmJGNGzfmBz/4wXb18+fP38OzBwBgX1ZWUVYnCaK8c9OTD157+LVMvnhyKrpW5Jx7zkn3wd3rbde+y9uvfas3Vdfb5i21T7uo3S9JKrpU7HSc2qdd/HUcAAAAAAAAAACA1qRVJ1gkSa9evfK9730v3/ve93ap3zHHHJO5c+c2WP/jH/84P/7xj3dzdgAAsHsWP7k4k86YlHbt2+Xc/zk3+x+7f4NtayderF+2vtG4tev/OmGj++DuWfT4omK7rgd0bTDOumXrkiQVXSvScb+OjY4JAAAAAAAAAACwNytt6QkAAAD1+8v0v+TW025NoVDIuf9zbgaMHtBo+z5H9SmW1yxc02jbNYveru9zZJ86db2P6l0sr164usEY1VXV2bB8w7Y+R/ZusB0AAAAAAAAAAEBrIMECAAD2QkueWZJbxt+SmuqanPvHHSdXJEnXA7qm56E9kyRLn13aePwZS7b1GdA1PQ7pUaduyKlDiuXG4ix7blkKNYXt+gAAAAAAAAAAALRGEiwAAGAvs2zmstwy/pZs3bw1n/nDZzJw7MDt2jx01UP5+XE/3+7nR0w4Ikmyav6qvPnqm/XGX7N4TVa8uCJJ8q5PvCslJSV16geMHpCuA7omSeY9MK/Beb56/6vbjQsAAAAAAAAAANBaSbAAAIC9yOuzXs/N77051Rur85l7PpNBJw2qt92qeauyZPqS7X5+wldOSPvO7ZMkM66fUW/fZ37xTFJIyjqUZez/HrtdfUlJSU668qQkyYJpC4rJGLXVVNfk2RufTZIc8uFD0m9Yv526PgAAAAAAAAAAgL2VBAsAANhLLJ+zPDe/9+ZsWLEhY74+JoWaQuY/NL/ef+uWrqs3RmWfyoz/4fgkyePXPJ7FTy2uU7/0uaV55F8eSZKc8o+nFE+q+GvHXnzstuSOQjL54snZsnFLnfqHvvNQVs5dmQ7dO+S0a07b3UsHAAAAAAAAAABocWUtPQEAACCp3lSdm997c9a/vj5J8vB3H87D3324SbGO+8JxWbdsXR7+7sO56ZSbMvKikel9ZO+seHFFZkyckS3rt2TM18dk7Ne3P73iLaVlpfnUXZ/KbafflgXTFuTnx/48wy8cnvaV7TP3nrmZe/fcdOrVKRPunJCeh/Rs0jwBAAAAAAAAAAD2JhIsAABgL1C9qbrBUymaYty3x2Xo+KF54qdPZM6dc7LhZxvSqVenDH3/0Iz64qgMOWXIDmN06tUpn5v2uUyfOD0zb5mZaVdPy9aqrek2qFvG/u3YjP7q6HTp36XZ5gwAAAAAAAAAANCSJFgAAMBeoEP3Dvl24dvNGnPg2IEZOHbgbsUoLSvNqEtHZdSlo5ppVgAAAAAAAAAAAHsnCRYAAAAAAAAAAAAAANDMNqzYkNl3zM6f/+fPWfrM0qxbti4lpSXp3LdzDjj+gBx97tE59PRDU1JSUm//VfNX5SdDfrJTY4364qh86NoPNdqmprom0ydOz/O3Pp8VL65IdVV1ug3qlsM+clhGXz46nft13uVr3NdIsAAAAAAAAAAAAAAAgGZ079fvzVP/8VSqN1WnU+9OOfozR6fnIT1TKBQyf8r8zLlzTmb/9+wMOXVIJtwxIR17dNyj89mwYkNuO/22LH5icXod3isnfvPEtO/cPnPvnptHvv9InvnFM/nknZ/MgScfuEfnsbeTYAEAAAAAAAAAAAAAAM1o5q0zU72pOge+58B8+refToduHYp1x3/x+Lz8+5dz+0dvz7wH52XSGZNy4Z8uTElp/SdZnPrPp+ZdZ72r0fE67Nehwbqa6pr86qxfZfETizNw7MCcd/95Ke9YniQZddmoPHDlA5l29bTc/pHbc9GTF6XnIT2bcMX7htKWngAAAAAAAAAAAAAAAOxrSstKc9bNZ9VJrnjLoacfmpEXjUySLHx0YWb/9+wG43Tp3yW9Du/V6L/OfTs32H/6xOlZMG1BUpKcMfGMYnLFW8ZdNS49Du6RTas25d6v3du0i91HOMECAAAAAAAAAAAAaHUmnTGpRcc/e/LZLTo+AHu/fsP7pdugbg3Wv+vj78r0/5yeJHl58ss56tNHNfscCoVCpl09LUky6MRB6X1E7+3atCtvl2EXDMuUb03Jy79/OUufW5p+w/o1+1xaAydYAAAAAAAAAAAAAABAM/r4pI/nzF+c2Wib7gd2L5ZXL1i9R+ax6PFFWbNwTZJkyPuGNNhu6PihxfKcO+bskbm0Bk6wAAAAAAAAAAAAAACAZjTklIaTGd6yadWmYrm8snyn4tZU16S6qjrtK9vvVPt5D84rlvsNb/hUir7D+qaktCSFmkKdPm2NBAsAAAAAAGghG1ZsyOw7ZufP//PnLH1madYtW5eS0pJ07ts5Bxx/QI4+9+gcevqhKSkpqbf/qvmr8pMhP9mpsUZ9cVQ+dO2HGm1TU12T6ROn5/lbn8+KF1ekuqo63QZ1y2EfOSyjLx+dzv067/I1AgAAAAAA9Xtz3pvF8oEnH9hgu9dnv55fn/PrLJi2IGv/sjaFrYWUdyrPgNEDcvS5R2fYecNSWlZab9/ls5YXy90GdmtwjLKKsnTq3Snrl63P8tnLG2y3r5NgAcA75vlJz2fxjxantFD/L/E97ezJZ7fIuAAAAAD1uffr9+ap/3gq1Zuq06l3pxz9maPT85CeKRQKmT9lfubcOSez/3t2hpw6JBPumJCOPTru0flsWLEht51+WxY/sTi9Du+VE795Ytp3bp+5d8/NI99/JM/84pl88s5PNvoGDwAAAADAO2X9+vVN6rds2bJ84QtfyPTp03PsscfmuuuuS9++fXc5TmVlZZPGh9pevOvFJElZh7IMv2B4g+0e+9fH0vPQnjn+S8en17t6ZWvV1rz28GuZMXFG5j04LzN+PiOf/M0n06V/l+36rpq/qliu7Nv4uu3ct3PWL1ufqjVV2fjmxnTcb8++N7E3kmABAAAAAAAtYOatM1O9qToHvufAfPq3n06Hbh2Kdcd/8fi8/PuXc/tHb8+8B+dl0hmTcuGfLkxJaf0nWZz6z6fmXWe9q9HxOuzXocG6muqa/OqsX2XxE4szcOzAnHf/eSnvuO0o8lGXjcoDVz6QaVdPy+0fuT0XPXlReh7SswlXDAAAAADQfDp33v0Td++7774MHTq0SX0LhcJuj0/rUV1Vna1VW4uPN6/dvNsx17++Pi/99qUkyZivj0mX/bdPjnjLuz7+rnzslx9LWcXbH/8/4hNHZPiFw3PTuJuy6PFFmXTGpHzukc/VaZMkVWuriuWyDo2nD5R1fLt+89rNEiwAAAAAAIB3TmlZac66+aw6yRVvOfT0QzPyopGZ/p/Ts/DRhZn937Nz1KePqjdOl/5d0uvwXk2ex/SJ07Ng2oKkJDlj4hnF5Iq3jLtqXObcMScrX1mZe792r5NCAQAAAABoU6ZdPS1Tr5pafLw6q3c75n3fuC/Vm6rTf2T/nPytk+tt03VA11w+7/J0OaBL2pW3266+/4j+Ofn/nJz7vn5flkxfkqevezqjLx9dp031xupiuV377WPUVrt+y4Ytu3I5+4zSlp4AAAAAAAC0Vf2G90u3Qd0arH/Xx98+leLlyS/vkTkUCoVMu3pakmTQiYPS+4je27VpV94uwy4Ytm0ev385S59bukfmAgAAAACws9atW9ekf+PHj0+7dts+RN6uXbuMHz++SXFoW076u5Nyxeoriv++NOdLuxVv5q0z89zNz6WyT2U++etPbnfqxFtKy0rTfXD3epMr3jLiwhHJ/38A9rP/9ex29bVPpdi6eet29bXVri/vVN5Iy32XEywAAAAAAKAFfHzSx9OpZ6dG23Q/sHuxvHrB7n8bVn0WPb4oaxauSZIMed+QBtsNHT80U741JUky54456Tes3x6ZDwAAAADAzqisrGxSv1tuuSUXXHBBnnrqqYwaNSo33nhjk2PRdpRVlNVJgmi/pn2TY7328GuZfPHkVHStyDn3nJPug7vv1tw69uiY/Q7aL2/++c0se35ZNq/bnPad355fRZeKYrl6U3V9Id6ur3XaRfsuTb/G1kyCBQAAAAAAtIAhpzSczPCWTas2FcvllTv3TVE11TWprqpO+8qde+Nj3oPziuV+wxtOmug7rG9KSktSqCnU6QMAAAAA0Jr07ds3f/jDH1p6GrRRi59cnElnTEq79u1y7v+cm/2P3b9Z4lb2qcybf34zKSTrlq1Lj849inXdB3fPoscXJUnWL1ufrgd0bTDOumXbTmep6FqRjvt1bJa5tTYSLAAAAAAAYC/15rw3i+UDTz6wwXavz349vz7n11kwbUHW/mVtClsLKe9UngGjB+Toc4/OsPOGpbSstN6+y2ctL5a7DezW4BhlFWXp1LtT1i9bn+WzlzfYDgAAAAAA2N5fpv8lt552awqFQs6797wMGD2g2WIXagrFcmm7uu8H9D6qd7G8euHq9B/Zv94Y1VXV2bB8w7Y+R/aut01bUP+7KQAAAAAAwE6rrqpO1Zqq4r8t67Y0S9wX73oxSVLWoSzDLxjeYLvH/vWxLJm+JMd/6fh86q5PZcIdEzLif43IwkcX5nef+11uePcNWbtkbb19V81fVSxX9q1sdD6d+3ZOklStqcrGNzfu2sUAAAAAAEAbteSZJbll/C2pqa7JuX88d6eTKx7+3sN58bcv7rDduqXbTp4oKS1JZZ+6f+sfcurbJ2ovfXZpgzGWPbesmKhRu09b4wQLAAAAYI+ZdMakFh3/7Mlnt+j4ALQd066elqlXTS0+Xl26erdjrn99fV767UtJkjFfH5Mu+3dpsO27Pv6ufOyXH0tZxdt/9j/iE0dk+IXDc9O4m7Lo8UWZdMakfO6Rz9VpkyRVa6uK5bIOjb9tUNbx7frNaze32ePBAQAAAABgZy2buSy3jL8lWzdvzbl/PDcDxw7crs1DVz2Ulye/nEuevqTOz6f8w5QMPW1oDv/I4Q3GX7tkbVa/tu19if4j+6e8U3md+gGjB6TrgK5Zs2hN5j0wL+O+Pa7eOK/e/2qxfMSEI3b28vY5TrAAAAAAAIDddNLfnZQrVl9R/Hfpc5fudsz7vnFfqjdVp//I/jn5WyfX26brgK65fN7l+fikj2+XOJEk/Uf0z8n/Z1vfJdOX5Onrnt6uTfXG6mK5Xft2jc6pdv2WDc1zSgcAAAAAAOyrXp/1em5+782p3lidz9zzmQw6aVC97VbNW5Ul05fUW7fw0YWpWlNVb12SOn/7H3nJyO3qS0pKctKVJyVJFkxbkBUvrtiuTU11TZ698dkkySEfPiT9hvVrcLx9nRMsAGgzWvrbkxPfoAwAAAD7qrKKsjoJDuWdyxtpvWMzb52Z525+LpV9KvPJX3+y3uSJJCktK033wd0bjTXiwhG57xv3JYXk2f96NqMvH1137rVOpdi6eWujsWrX//U3YAEAAAAAAG9bPmd5bn7vzdmwYkNO/j8np1BTyPyH5tfbdt3SdQ3G2bx2cyZfMjln3XzWdl+U9Od7/5xHfvBIkuTAkw/MiAtH1Bvj2IuPzazbZmXBtAWZfPHknHvvuSnv+Pbf+R/6zkNZOXdlOnTvkNOuOW0Xr3TfIsECAAAAAAD2Iq89/FomXzw5FV0rcs495+wwgWJHOvbomP0O2i9v/vnNLHt+WTav25z2ndsX6yu6VBTL1Zuq6wvxdn2t0y7ad2nfSEsAAAAAAGi7qjdV5+b33pz1r69Pkjz83Yfz8Hcf3uU4fYf1zbLnlmX2r2ZnyfQlOfLTR2a/g/bLlvVbMv+h+XnhNy8kheTgDx6cj/3yYyktK603TmlZaT5116dy2+m3ZcG0Bfn5sT/P8AuHp31l+8y9Z27m3j03nXp1yoQ7J6TnIT1369pbOwkWAAAAAACwl1j85OJMOmNS2rVvl3P/59zsf+z+zRK3sk9l3vzzm0khWbdsXXp07lGs6z64exY9vihJsn7Z+nQ9oGuDcdYt2/YNWhVdK9Jxv47NMjcAAAAAANjXVG+qbvRUip31hWe/kEVPLMqL/+/FLHxkYWb8fEY2vrkx7crbpXO/zjn6nKNzzHnH5ODTDt5hrE69OuVz0z6X6ROnZ+YtMzPt6mnZWrU13QZ1y9i/HZvRXx2dLv277PacWzsJFgAAAAAAsBf4y/S/5NbTbk2hUMh5956XAaMHNFvsQk2hWC5tV/fbq3of1btYXr1wdfqP7F9vjOqq6mxYvmFbnyN719sGAAAAAABIOnTvkG8Xvt0ssQacMCADTmie9wxKy0oz6tJRGXXpqGaJty+q/wwQAAAAAADgHbPkmSW5Zfwtqamuybl/PHenkyse/t7DefG3L+6w3VvfklVSWpLKPpV16oacOqRYXvrs0gZjLHtuWTFRo3YfAAAAAACAfYUECwAAAAAAaEHLZi7LLeNvydbNW/OZP3wmA8cO3K7NQ1c9lJ8f9/Ptfj7lH6bk6Z893Wj8tUvWZvVrq5Mk/Uf2T3mn8jr1A0YPSNcBXZMk8x6Y12CcV+9/tVg+YsIRjY4JAAAAAADQGkmwAAAAAACAFvL6rNdz83tvTvXG6nzmns9k0EmD6m23at6qLJm+pN66hY8uTNWaqgbHePq6txMwRl4ycrv6kpKSnHTlSUmSBdMWZMWLK7ZrU1Ndk2dvfDZJcsiHD0m/Yf0aHA8AAAAAAKC1kmABAAAAAAAtYPmc5bn5vTdnw4oNGfP1MSnUFDL/ofn1/lu3dF2DcTav3ZzJl0zO1s1bt6v7871/ziM/eCRJcuDJB2bEhSPqjXHsxcduS+4oJJMvnpwtG7fUqX/oOw9l5dyV6dC9Q0675rTduGoAAAAAAIC9V1lLTwAAAAAAANqa6k3Vufm9N2f96+uTJA9/9+E8/N2HdzlO32F9s+y5ZZn9q9lZMn1Jjvz0kdnvoP2yZf2WzH9ofl74zQtJITn4gwfnY7/8WErL6v/epdKy0nzqrk/lttNvy4JpC/LzY3+e4RcOT/vK9pl7z9zMvXtuOvXqlAl3TkjPQ3ru1rUDAAAAAADsrSRYAAAAAADAO6x6U3Wjp1LsrC88+4UsemJRXvx/L2bhIwsz4+czsvHNjWlX3i6d+3XO0eccnWPOOyYHn3bwDmN16tUpn5v2uUyfOD0zb5mZaVdPy9aqrek2qFvG/u3YjP7q6HTp32W35wwAAAAAALC3kmABAAAA7LMmnTGpxcauKanJAV87oMXGB2Dv1qF7h3y78O1miTXghAEZcMKAZolVWlaaUZeOyqhLRzVLPAAAAAAA9pz169c3qd+yZcvyhS98IdOnT8+xxx6b6667Ln379t2uXXV1dTZu3Jj169enrGz7j51XVlY2aXzYm0mwAAAAAAAAAAAAAABoZTp37rzbMe67774MHTq0SX0LhcJujw97m9KWngAAAAAAAAAAAAAAAEBLc4IFAAAAAAAAAAAAAEArs27duib1O+uss/Lggw9m69atadeuXU499dTcdddd27Wrrq7Oo48+mrFjx6aszMfOaRusdAAAAAAAAAAAgFZo0hmTWnoKAEALqqysbFK/W265JRdccEGeeuqpjBo1KjfeeGO9saqrq9OxY8dUVlZKsKDNsNIBAAAAAAAAAAAAANqIvn375g9/+ENLTwP2SqUtPQEAAAAAAAAAAAAAAICWJsECAAAAAAAAAAAAAABo8yRYAAAAAAAAAAAAAAAAbZ4ECwAAAAAAAAAAAAAAoM2TYAEAAAAAAAAAAAAAALR5EiwAAAAAAAAAAAAAAIA2r6ylJwAAvHMmnTGpRcc/e/LZLTo+AAAAAAAAAAAAQEOcYAEAAAAAAAAAAAAAALR5TrAAAAAA2EOen/R8Fv9ocUoLLfMdF04QAwAAAAAAAICdJ8ECAN5Bk86Y1NJTAAAAAAAAAAAAgN22fv36JvVbtmxZvvCFL2T69Ok59thjc91116Vv3767HKeysrJJ40NjJFgAAAAAAAAAAAAAALBLOnfuvNsx7rvvvgwdOrRJfQuFwm6PD3+ttKUnAAAAAAAAAAAAAAAA0NKcYAEAAAAAAAAAAAAAwC5Zt25dk/qdddZZefDBB7N169a0a9cup556au66665mnh00jQQLAAAAAAAAAAAAAAB2SWVlZZP63XLLLbngggvy1FNPZdSoUbnxxhubHAuamwQLAAAAAAAAAAAAAADeEX379s0f/vCHlp4G1Ku0pScAAAAAAAAAAAAAAADQ0pxgAQAAALCPmnTGpBYd/+zJZ7fo+AAAAAAAAACwK5xgAQAAAAAAAAAAAAAAtHlOsAAA3jEt+Q3KNSU1OeBrB7TY+AAAAAAAAADAvuWd/hxETUlNVvZfmcU/WpzSQst/v7aTrAHYF7X8b1gAAAAAAAAAAAAAAIAW5gQLAAAAAAAAAAAAAFqdd/oUkb/mFA+AfY8TLAAAAAAAAAAAAAAAgDbPCRYAAAAA7BG+NQoAAAAAAACA1kSCBQAAAAAAAAAAAAC7pKW/aAkA9oTSlp4AAAAAAAAAAAAAAABAS3OCBQDAO6Slv7nh7Mlnt+j4AAAAAAAAAAAAsDeTYAEAtBnPT3o+i3+0OKUFh3gBAAAAAAAAAAAAdUmwAAAAAGCf1NIniNWU1OSArx3QonMAAAAAAAAAYOf5+mYAAAAAAAAAAAAAAKDNc4IFAAAAAOwhz096Pot/tDilhZb5npOzJ5/dIuMCAAAAAAAAtEZOsAAAAAAAAAAAAAAAANo8CRYAAAAAAAAAAAAAAECbV9bSEwAAoG2YdMaklp5Czp58dktPAQDgHdXSr8G8/gIAAAAAAPYU74Ps+f+DmpKarOy/Mot/tDilhe2/139v+D+A5ibBAgCgjWjpTSUAAAAAAAAAAM1nZz8LsqMPyTeVD9fT0p9HsgbZE5rvWRIAAAAAAAAAAAAAAKCVkmABAAAAAAAAAAAAAAC0eWUtPQEAAAAAYN/kWGgAAAAAAACgNZFgAQBAm9GSH/BbsWlFi40NANBWteTrv5qSmhzwtQNabHwAAAAAAABg10mwAAAAAAAAAAAAAIBd1NInObc019+2rx/2Va0+wWLFihX5yU9+krvuuivz589P+/btc9hhh+Xss8/OF77whbRv375Zxrnnnnty3XXXZfr06XnjjTfSv3//jBs3Ll/+8pczcuTIZhkDAADesmHFhjz+k8fz4l0vZtX8VWnXvl16HdYrR519VI77wnFp175dS08RAABoRvYAAADQttgDAABA22IP0Hq06gSLJ598Mh/96EezZMmSjB8/Ppdeemk2btyYm266KZdffnluvPHG/P73v8/+++/f5DFqamryhS98IRMnTkyPHj1yySWXZMiQIXn66adz00035dZbb82//du/5Stf+UozXhkAAG3Z4icX5/aP3p51S9bloPEH5bhLj0v1xuo8d9Nz+ePlf8yzNz6bc35/Trrs36WlpwoAQCOen/R8Fv9ocUoLpS0y/tmTz26RcWtr6W/v2hv+D3aGPQAAALQt9gAAANC22AO0Lq02wWLBggU5/fTTs3z58nz1q1/NNddcU6z78pe/nA9+8IOZMmVKzjzzzDzyyCOpqKho0jhXXnllJk6cmF69euWxxx7LwQcfnCS55JJL8rGPfSwf/vCH89WvfjX9+/fPhAkTmuXaAABou1YvWJ3bTr8tG5ZvyAlfPSEfuOYDxbrjv3x8fvnBX2b+lPmZdOakfO6Rz6WsotW+pAcAYA9r6eQGdo49AAAAtC32AAAA0LbYA7Q+LfPVac3gG9/4RpYvX55Bgwbl+9//fp26ioqKTJw4Me3atcv06dNz7bXXNmmM2bNn54c//GGS5B//8R+LyRVv+cAHPpDzzjsvhUIhX/7yl7N+/fqmXQwAAPz/7vvGfdmwfEO6DeqW933/fXXqyirKcsbEM1LSriRLpi/Jk9c+2UKzBAAAmos9AAAAtC32AAAA0LbYA7Q+rTLFZe7cubnjjjuSJOeff369p1MMHTo0p5xySu6///784Ac/yOWXX56ysl273Kuvvjo1NTXp2LFjPvOZz9Tb5uKLL85NN92UZcuW5frrr8/ll1++6xcEAABJ3pj7RmbfMTtJcsz5x9Sbkd5jaI8MOWVIXr3/1Tzyg0cy+vLRKS1rtXnTAACwR7XkKR4rNq3YYRt7AAAAaFvsAQAAoG2xB2idWuX//p133plCoZAked/73tdgu/HjxydJli9fnoceemiXxqiqqsrkyZOTJCeccEK6dOlSb7sxY8akc+fOSVJM+mjI5s2bkyRbarbs0lygOWzZuiX3PH1Ptmy1/mgZ1iAtzRqkpb31GvCt14T1mXPnnGTby9wc9L6DGmx30PhtdRuWb8j8h+Y32xxpfvYAbZvfPVgDWANtm/uPPQDs3TxPtx7uVevhXrUu7lfr4V7tW+wB9j1v7fka2/tBfTy/01TWDk1l7dBU1s7usQdonVplgsWDDz5YLA8fPrzBdiNGjKi3z854+umns2bNmh2OUVpammOOOSZJ8thjj2Xjxo0Ntq2qqkqSVNdU79JcoDlsqdmSP874ow/30WKsQVqaNUhLe+s14FuvCesz/8H5xXK/4f0abNdvxNt18x6ct/uTY4+xB2jb/O7BGsAaaNvcf+wBYO/mebr1cK9aD/eqdXG/Wg/3at9iD7DveWvP19jeD+rj+Z2msnZoKmuHprJ2do89QOvUKhMsZs2alSTp0qVLunXr1mC7gQMHFsuzZ89u0hh/HaexcWpqavLiiy/u0jgAAPCW12e9niRp36V9OnTr0GC7bgPffg28fPbyPT4vAABgz7AHAACAtsUeAAAA2hZ7gNaprKUnsKuqqqqydOnSJEnfvn0bbVu7fv78+bs0Tu32uzpO7ZMzAABgZ1RXVWfd0nVJks59OzfatrJvZbG8av6qPTktAABgD7EHAACAtsUeYN/2h6/8IbM6z9pxQwAA2gx7gNar1SVYrF27tlju0KHhTJ4k6dixY739WmqcmpqaJMnS9Uvr/LystCzlpeW7ND/YVRu3bkxpaWnerHozm6o3tfR0aIOsQVqaNcg7rWZrTVJ4+/Gb69/c9vP//zXhX9u8dnOxXNah8Zfp5R3ffu1YtdaR03sze4C2ze8erAGsgbbN/W977AFI3r7ff1n/l2zYuqH4c3uAvY/n6dbDvWo93KvWxf1qPdyrvddf7wFWbVq17ef2AG2K9wFoKs/vNJW1Q1NZOzTV3r52dvUL+HdHzZaabK3aWny8dNm214D2APueVpdgsXHjxmK5ffv2jbatXb9hw4ZGWr4z47z55rY31K556ppdmgs0p29O+WZLT4E2zhqkpVmDtLS3XhP+tS0btxTL7dq3azRG7fotG7Y00pKWZg9A4ncP1gDWQFvn/mMP0LYsW7YsSXL141e38EzYWZ6nWw/3qvVwr1oX96v1cK9aj2XLlmXQoEHb/dweYN/kfQB2l+d3msraoamsHZpqb107XxnylZaegj3APqjVJVjUPi1i8+bNjbSsW9+pU6cWH2f06NH505/+lP322y+lpaXFn1dUVOwwiQMAgNalenN1aqrezlCvqanJ8lXLM+qEUfW2r52JvnXz1nrb1Fdf3sm3H+3N7AEAANoOewCSZMSIEfYAAABtREN7gBEjRtTb3h5g3+R9AACAtsMeoO1odQkWXbp0KZY3bWr8qJnap1DU7tdS45SVleWkk07apXkAALDvODgHN1jXvsvbf2Sv3lTdaJzaGe4VXSp2f2LsMfYAAABtmz1A22MPAADQttkDtD32AAAAbZs9wL6pdMdN9i4VFRXp169fkreP2m5I7frBgwfv0ji12+/JcQAAIEnKKsrSuV/nJMm6Zesabbt+2fpiufvg7ntyWgAAwB5iDwAAAG2LPQAAALQt9gCtV6tLsEiSo446Kkmydu3arF69usF2ixYtKpaPPPLIJo2RJAsXLmy07VvjlJaW5vDDD9+lcQAA4C19juqTJNm8dnM2rW74FLU1i9YUy72P7L3H5wUAAOwZ9gAAANC22AMAAEDbYg/QOrXKBItTTz21WH722WcbbDdjxox6++yM4447Ll26dNnhGDU1NXnuueeSJGPGjEnHjh13aRwAAHjL4FMHF8tLn13aYLslM5YUy0NOHbInpwQAAOxB9gAAANC22AMAAEDbYg/QOrXKBItPfOITKSkpSZI88MADDba7//77kyS9evXKuHHjdmmMioqKnHnmmUmSJ554IuvW1X80y+OPP16smzBhwi6NAQAAtR3xiSOSbS9zM++BeQ22e/X+V5MknXp1yuBxg9+BmQEAAHuCPQAAALQt9gAAANC22AO0Tq0yweKQQw4pJjPccsst2bx583ZtXn311Tz44INJkm9+85spKyurUz9r1qwceuihGTBgQB5++OF6x7niiitSWlqajRs35rbbbqu3zfXXX58k6du3by666KImXxMAAPQ8pGeOnHBkkmTmLTOzdfPW7dq8+eqbmffgtg3Xid88MaVlrfIlPQAAEHsAAABoa+wBAACgbbEHaJ1a7R344Q9/mN69e2f+/Pm58sor69RVVVXlkksuydatW3PsscfmS1/60nb9/+mf/ilz587N4sWLc8UVV9Q7xlFHHZVvfOMbSZJvfetbefXVV+vU33vvvbnpppuSJP/+7/+eysrK5rg0AADasPE/HJ9OvTtl1fxVeeDKuqe1VVdVZ/Ilk1PYWkj/Y/vn+C8d30KzBAAAmos9AAAAtC32AAAA0LbYA7Q+JYVCodDSk2iqJ554ImeddVaWLFmS0047LWeeeWY2btyYm266Kc8//3yGDx+eu+++O/vvv/92fT/1qU/lv//7v5Mko0ePzmOPPVbvGDU1Nfn85z+f66+/Pj179sznP//5DB48ONOnT88NN9yQmpqa/Ou//msuv/zyPXqtAAC0HYueWJRfnfWrrFuyLkNPG5rDzjwsWzZuyXM3PZfXn389/Yb3yzl3n5Mu+3dp6akCAADNwB4AAADaFnsAAABoW+wBWpdWnWCRJCtWrMiPf/zj3HXXXXnttddSXl6eQw89NOecc04uvfTStG/fvt5+M2fOzMc//vFs3Lgxt912W04++eRGx7nnnnvys5/9LE8//XTefPPN9OvXL+95z3ty+eWXZ+TIkXvi0gAAaMM2rNiQx3/8eF6868Wsem1V2pW3S89De+aoc47KqEtHpV37di09RQAAoBnZAwAAQNtiDwAAAG2LPUDr0eoTLAAAAAAAAAAAAAAAAHZXaUtPAAAAAAAAAAAAAAAAoKVJsAAAAAAAAAAAAAAAANo8CRYAAAAAAAAAAAAAAECbJ8ECAAAAAAAAAAAAAABo8yRYAAAAAAAAAAAAAAAAbZ4ECwAAAAAAAAAAAAAAoM2TYAEAAAAAAAAAAAAAALR5EiwAAAAAAAAAAAAAAIA2T4IFAAAAAAAAAAAAAADQ5kmwAAAAAAAAAAAAAAAA2jwJFgAAAAAAAAAAAAAAQJsnwQIAAAAAAAAAAAAAAGjzJFgAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzZNgAQAAAAAAAAAAAAAAtHkSLAAAAAAAAAAAAAAAgDZPggUAAAAAAAAAAAAAANDmSbAAAAAAAAAAAAAAAADaPAkWAAAAAAAAAAAAAABAmyfBAgAAAAAAAAAAAAAAaPMkWAAAAAAAAAAAAAAAAG2eBAsAAAAAAAAAAAAAAKDNk2ABAAAAAAAAAAAAAAC0eRIsAAAAAAAAAAAAAACANk+CBQAAAAAAAAAAAAAA0OZJsAAAAAAAAAAAAAAAANo8CRYAAAAAAAAAAAAAAECbJ8ECAAAAAAAAAAAAAABo8yRYAAAAAAAAAAAAAAAAbZ4ECwAAAAAAAAAAAAAAoM2TYAEAAAAAAAAAAAAAALR5EiwAAAAAAAAAAAAAAIA2T4IFAAAAAAAAAAAAAADQ5kmwAAAAAAAAAAAAAAAA2jwJFgAAAAAAAAAAAAAAQJsnwQIAAAAAAAAAAAAAAGjzJFgAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzZNgAQAAAAAAAAAAAAAAtHkSLAAAAAAAAAAAAAAAgDZPggUAAAAAAAAAAAAAANDmlbX0BNqS6urqPPPMM+nbt29KS+W2AAC0JTU1NVm2bFlGjBiRsjIvw9sKewAAgLbLHqBtsgcAAGi77AHaJnsAAIC2yx5g3+VuvoOeeeaZHH/88S09DQAAWtCTTz6ZUaNGtfQ0eIfYAwAAYA/QttgDAABgD9C22AMAAGAPsO+RYPEO6tu3b5Lksccey4ABA1p4NrQ11dXVmTFjRkaOHClTjhZhDdLSrEFa2qJFizJmzJjia0LaBnuAts3vHqwBrIG2zf3HHqBteut+P/nkk+nfv38Lz4bGeJ5uPdyr1sO9al3cr9bDvWo9lixZkuOPP94eoI3xPgBN5fmdprJ2aCprh6aydhpmD7DvstLfQW8dBdivXz+bKt5x1dXVmT9/fgYMGOCXHC3CGqSlWYO0tOrq6iRxPHQbYw/QtvndgzWANdC2uf/YA7RNb93v/v372wPs5TxPtx7uVevhXrUu7lfr4V61PvYAbYv3AWgqz+80lbVDU1k7NJW1s2P2APsedxQAAAAAAAAAAAAAAGjzJFgAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzZNgAQAAAAAAAAAAAAAAtHkSLAAAAAAAAAAAAAAAgDZPggUAAAAAAAAAAAAAANDmlbX0BAAAAAAAAAAAAAAAYF9VKBTy1H88lfuvuD9b1m/JZ6d8NoPHDW60z1UlV+3yOJ+661M5/KOH1/nZQ995KFOvmrpT/S9+6uLsf9z+jbZZ9dqqPP7jx/PKPa9k9cLVad+5ffoc2SfDPjssw84flpLSkl2e995EggUAAAAAAAAAAAAAAOwBK/+8Mr/73O/y2sOv7fGxKvtW7tH4L9/9cn5zzm9StbYqR3ziiIz+m9HZ8MaGzJg4I7+98LeZeevMfOquT6WiS8UenceeJMECAAAAAAAAAAAAAACaUe1TK0rblWbA6AFZ9PiiXYpx+EcPz3uvfm+jbZbMWJLffOY36XlYzwwcM7DBdl984Ys7HK/74O6NjnPHhDtSvbE6p/34tIy+fHSxbtRlo3LDu2/IvAfm5Tfn/CZnTz57h2PtrSRYAAAAAAAAAAAAAABAM5p61dRMvWpqhp42NGdMPCPP/OKZXU6wqOhWkV6H92q0zWM/eixJcuwlxzbabkdxduTuy+5O9cbqHHDCAXWSK5Kk434d86FrP5SbTrkpL//+5cz59Zwc8fEjdmu8llLa0hMAAAAAAAAAAAAAAIB9SaFQyBnXn5Fz/3huug3stsv9D3zPgTtMiti8bnNmTZqVdhXtMuyzw5o61R169f5Xs/iJxUmSkRePrLfN4HGD0+OQHkmSP33vT3tsLnvaPpFgUSgUcu2116Zz584pKSnJQw891Oxj3HPPPTnzzDNzwAEHpEOHDhkyZEguvPDCzJgxo9nHAgAAAAAAAAAAAACg9Rr3nXEZ+b/qT0bYGRc8dEFOuuKkRts8f9vz2bxuc474+BHp1LNTk8fakdl3zC6WD3rfQQ22e6tu6bNLs/KVlXtsPntSq0+w+POf/5xx48bly1/+ctavX9/s8WtqanLJJZfkwx/+cB555JGcf/75+elPf5rx48fntttuywknnJCf/vSnzT4uAAAAAAAAAAAAAACtU0lJyR4fY/rPpydJjv38sbvUb/P6zdm6ZetOt5//4PwkSYfuHdL9wO4Ntus3ol+xPO/Bebs0p71FWUtPoKkKhUL+4z/+I1dccUXatWuX0aNH5/HHH2/2ca688spMnDgxvXr1ymOPPZaDDz44SXLJJZfkYx/7WD784Q/nq1/9avr3758JEyY0+/gAAAAAAAAAAAAAAFDbkmeWZMn0Jel1eK8cePKBO2z/7E3P5pnrn8nyOcuzceXGJEmXA7pkyKlDMvqro9N/ZP96+23ZuCVvvvpmkqTrwK6NjtFtYLdi+fXZr+/spexVWu0JFldddVW+/OUv56STTsqsWbNy2mmnNfsYs2fPzg9/+MMkyT/+4z8Wkyve8oEPfCDnnXdeCoXCHjtBAwAAAAAAAAAAAAAAapv+n9tOrxh5ycidav/bC36bTr065f3/9v6cc/c5OWPiGel1WK/MvGVmfn7czzPl21Pq7bd6weoUagpJks59Ozc6RmXfyrf7zV+9U/Pa27TaBItCoZDrr78+f/zjHzNw4MA9MsbVV1+dmpqadOzYMZ/5zGfqbXPxxRcnSZYtW5brr79+j8wDAAAAAAAAAAAAAICWUV1Vnao1VcV/m9dubtH5bF6/Oc/f9nzaVbTLsPOH7bB9SbuSfPz2j+dTd30qwy8YnkM+dEhGXjQy5z9wfk7+h5OTQvLwdx/Oo//66PZj1brWsg5ljY5T3rG8WK5aW7ULV7T3aPwK92Lf+c53UlJSssfiV1VVZfLkyUmSE044IV26dKm33ZgxY9K5c+esW7cud9xxRy6//PI9NicAAAAAAAAAAAAAAN5Z066elqlXTS0+Xp2WPZ1h1qRZ2bx2c47+zNHp1LNTo21Hf3V0jv38senSv/7Pw4/7zri89LuXsuy5ZZnyf6bkmHOPSed+b59UsWXjlmK5Xft2jY5Vu37Lhi2NtNx7tdoTLPZkckWSPP3001mzZk2SZPjw4Q22Ky0tzTHHHJMkeeyxx7Jx48Y9Oi8AAAAAAAAAAAAAAN45J/3dSbli9RXFf1+a86UWnc/0n09Pkhx7ybE7bNuhe4cGkyuSpKS0JMMvGJ4kqd5YnecnPV+nvvapFFs3b210rNr15Z3KG2m592q1CRZ72qxZs4rlgQMHNtr2rfqampq8+OKLe3ReAAAAAAAAAAAAAAC8c8oqylLRtaL4r32X9i02l6XPLs1fnvpLeh3eKweefGCzxNz/uP2L5UWPLqpTV/taqzdVNxqn9mkXFV0qmmVu77Sylp7A3mr+/PnFct++fRttW7t+/vz5GTFiRKPta2pqsnVr49k70Ny2bt1aXHt7+gQYqI81SEuzBmlpNTU1LT0FWpA9QNvkdw/WANZA2+b+Yw/Qtm3dutUeYC/nebr1cK9aD/eqdXG/Wg/3qvXw+q9t8z4Au8rzO01l7dBU1g5NZe00rCVf/z39n08nSY79/I5Pr9hZlX0qi+V1S9fVqes2qFtKSktSqClk3bJ1f921jvXL1r/db3C3ZpvfO0mCRQPWrl1bLHfo0KHRth07dqy3X0Mee+yxvPTSS8XH7dq1S1mZW8GeVVNTk4ULF6ampialpQ6v4Z1nDdLSrEFa2htvvNHSU6AF2QO0TX73YA1gDbRt7j/2AG3bI488kv3226/42B5g7+N5uvVwr1oP96p1cb9aD/eq9XjzzTdbegq0IO8DsKs8v9NU1g5NZe3QVNZOw1pqD7B5/ebMum1WyjqUZdj5w5otbqGmUCyXtKubTFPesTz7HbRfVr6yMmsWrmk0zppFb9f3ObJPs83vneSVfAM2btxYLLdv3/gRLrXrN2zYsMPY1113XZ1N1LBhwzJ8+PBdnyTsgkKhkNWrVyeJLEJahDVIS7MGaWlr1jS+uWDfZg/QNvndgzWANdC2uf/YA7RtP/vZz+wB9nKep1sP96r1cK9aF/er9XCvWo+d+UJO9l3eB2BXeX6nqawdmsraoamsnYa11B5g1u2zUrWmKsece0w69ui4w/bLZi7LS797Kcece0y6D+7eYLvap1Z06d9lu/rBpw7OyldWZtOqTVn12qp0P7D+WEtmLCmWh5w6ZIfz2xtJsGhA7VMpNm/e3Gjb2vWdOnXaYeyf/vSnGTBgQPFxRUVFKioqmjDL1ueOT97RouNP+O8JLTp+S6qurs5jjz2WMWPG+JYEWoQ1SEuzBmlpCxYsyOWXX97S06CFtOQewGvwluN3D9YA1kDb5v5jD9C2/fu//3sOOOCA4uO29D5Aa+F5uvVwr1qPveVe+VvIztlb7hc75l61HosXL85XvvKVlp4GLaQtfxaorWvqa49CSSElfUtStqwsJYXd+7Bqa3n9QfPw2oCmsnZoKmunYS21B5jx8xlJkpGXjNyp9ktmLMmUf5iSHgf3aDTBYtHji4rlgScN3K7+yAlHFsee98C8jPjciHrjzHtgXpKk3/B+6XFwj52a497GSm9Aly5vZ95s2rSp0ba1T7uo3a8h++23X3r37t30ybVi7Wratej4bXnz+tbxkxUVFX7J0SKsQVqaNUhLKy8vb+kp0IJacg/gNXjL8bsHawBroG1z/7EHaNt69erVZt8HaC08T7ce7lXrsbfcK38L2Tl7y/1ix9yr1qN9+/YtPQVaUFv+LFBb19TXHjUlNSlNaUprSlNaKN2tObSW1x80D68NaCprh6aydhrWEnuAZTOXZfGTi9PrXb1y4LsP3KW+r/zhlRz16aPqrdu6eWue+cUzSZL2XdrX2+6g9x2UA044IIufWJwZ18+oN8HitYdfyxsvv5Ekefffv3uX5rc32b1XZ/uwwYMHF8vLli1rtG3t+tr9AAAAAAAAAAAAAABgdz39n08nSY695Nhd7jvzlzPzwm9e2O7nNVtrcvcX787KV1YmSd7/r+9Pp56d6o3x4f/74ZR1LMuixxblyWufrFO3adWm3PPFe5Ikh55+aI74xBG7PMe9hVSiBhx11NuZNwsXLmy07aJF245EKS0tzeGHH75H5wUAAAAAAAAAAAAAwN5v5q0zi+VlM9/+Uv8/3/fnrFm0JklS2bcyQ8cPbTTOlg1b8vwvn09Zh7IMO3/YTo/fbVC3dNivQza9uSn//Yn/ziEfPCRD3jckHffrmDWL1mTW7bOyfPbylJaX5v3/9v5Gkzf6j+yfCf89Ib/5zG/yh6/8IQv+tCCDTx2cjW9szIyJM7Jq/qoMOXVIPnbbx3Z6fnsjCRYNOO6449KlS5esXbs2zz77bIPtampq8txzzyVJxowZk44dO75DMwQAAAAAAAAAAAAAYG9113l31fvzaf88rVg+8D0H7jDBYtavZqVqdVWOOfeYdOyx859XH3LqkHxt8dfy8uSXM/eeuVkyY0mmfmdqtmzYkvZd2qfH0B458Zsn5rhLj0v3A7vvMN6hpx+aLzz3hTz+48cz9+65eel3L6W8sjx9juqTk//PyRn+2eEpKS3Z6fntjSRYNKCioiJnnnlmfvnLX+aJJ57IunXr0rlz5+3aPf7441m3bl2SZMKECe/0NAEAAAAAAAAAAAAA2At9u/DtZokz4sIRGXHhiCb1Le9YniM/eWSO/OSRzTKX7oO75wM//kA+8OMPNEu8vU1pS0+gpcyaNSuHHnpoBgwYkIcffrjeNldccUVKS0uzcePG3HbbbfW2uf7665Mkffv2zUUXXbTH5gsAAAAAAAAAAAAAAOw5bTbB4p/+6Z8yd+7cLF68OFdccUW9bY466qh84xvfSJJ861vfyquvvlqn/t57781NN92UJPn3f//3VFZW7tlJAwAAAAAAAAAAAAAAe0RZS09gd9x6663F8syZM4vl++67L4sWLUqy7WSJ8ePHb9e3pqamWC4UCg2O8c///M954403cv311+f444/P5z//+QwePDjTp0/PDTfckNLS0vzoRz/KhAkTmuOSAAAAAAAAAAAAAACAFtCqEyzOO++8en/+z//8z8Xye97znnoTLP7+7/8+M2bMyMaNG/ODH/ygwTFKS0szceLEnHXWWfnZz36W//qv/8qbb76Zfv365dOf/nQuv/zyjBw5cvcvBgAAAAAAAAAAAAAAaDGtOsGisZMnduSYY47J3Llzd7r9hz70oXzoQx9q8ngAAAAAAAAAAAAAAMDeq7SlJwAAAAAAAAAAAAAAANDSJFgAAAAAAAAAAAAAAABtXllLTwAAAAAAAACA3TfpjEktNnZNSU0O+NoBLTY+AAAAADQHJ1gAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzZNgAQAAAAAAAAAAAAAAtHllLT0BAABge4VCIU/9x1O5/4r7s2X9lnx2ymczeNzgne6/8NGFefLaJ7Ng2oKsf319KntXZsCYARl12aidjlNTXZPpE6fn+Vufz4oXV6S6qjrdBnXLYR85LKMvH53O/TrvVJxVr63K4z9+PK/c80pWL1yd9p3bp8+RfTLss8My7PxhKSkt2enrAgAAAAAAAAAA2FMkWAAAwF5m5Z9X5nef+11ee/i1JvWf+t2pmXrV1JR1KMuIi0akz1F9suKFFZkxcUbm3DEnY78xNuP/ZXyjMTas2JDbTr8ti59YnF6H98qJ3zwx7Tu3z9y75+aR7z+SZ37xTD555ydz4MkHNhrn5btfzm/O+U2q1lbliE8ckdF/Mzob3tiQGRNn5LcX/jYzb52ZT931qVR0qWjStQIAAAAAAAAAADQXCRYAALCXqH1qRWm70gwYPSCLHl+0SzGevu7pPPTth1LWoSznP3h+BpwwoFh3zHnH5IZ335BHf/hoKvtUZuzXx9Ybo6a6Jr8661dZ/MTiDBw7MOfdf17KO5YnSUZdNioPXPlApl09Lbd/5PZc9ORF6XlIz3rjLJmxJHdMuCPVG6tz2o9Py+jLRxfrRl02Kje8+4bMe2BefnPOb3L25LN36ToBAAAAAAAAAACaW2lLTwAAANhm6lVT84cv/yGDThqUS2ddmqGnDd2l/uuXr89937gvSXLC5SfUSa5Ikv4j+heTKqb8w5SsWbSm3jjTJ07PgmkLkpLkjIlnFJMr3jLuqnHpcXCPbFq1Kfd+7d4G53P3ZXenemN1DjjhgDrJFUnScb+O+dC1H0qSvPz7lzPn13N26VoBAAAAAAAAAACamxMsAABgL1EoFHLG9Wdk5P8a2aT+T/zkiWxetzlJMvKi+mOMvGhkpn53aqo3VefRf3s0H7jmA9vNYdrV05Ikg04clN5H9N4uRrvydhl2wbBM+daUvPz7l7P0uaXpN6xfnTav3v9qFj+xeNuYF9c/l8HjBqfHIT2ycu7K/Ol7f8oRHz9i1y4YAAAAgL3K85Oez+IfLU5pwff8AQAAANA6+csWAADsJcZ9Z1yTkyuSZM6d206B6D64e3oc3KPeNl0HdE2vw3slSV6484UUCoU69YseX5Q1C7edbDHkfUMaHGvo+LdP15hzx/anT8y+Y3axfND7Dmowzlt1S59dmpWvrGywHQAAAAAAAAAAwJ7mBAsAANhLlJSUNLnvmsVr8sZLbyRJ+g3v12jb/iP6Z8ULK7Jm0ZqsnLsyPQ/tWayb9+C8YrmxOH2H9U1JaUkKNYU6fd4y/8H5SZIO3Tuk+4HdG4zTb8TbY8x7cF6DiSEAAAAAO2PSGZNadPyzJ5/douMDAAAAALvHCRYAALAPeH3W68Vy14FdG21bu/712a/XqVs+a3mx3G1gtwZjlFWUpVPvTtv6zF5ep27Lxi1589U3d2outcf467kAAAAAAAAAAAC8kyRYAADAPmDV/FXFcmXfykbb1q6v3W9X43Tu2zlJUrWmKhvf3Fj8+eoFq1OoKdRpszNzWT1/daNtAQAAAAAAAAAA9qSylp4AAADsi6qrqrO1amvx8ZZ1W/boeJvXbi6Wyzo0/jK/vGN5vf2SpGpt1U7HKev4dv3mtZvTcb+OuzWX2mMDAAAAAAAAAAC80yRYAADAHjDt6mmZetXU4uPVpXv2dIYtG99O4GjXvl2jbWvXb9lQN/GjemP1bsdprrkAAEBbUigU8tR/PJX7r7g/W9ZvyWenfDaDxw1utM9VJVft8jifuutTOfyjh9f52UPfeajO/qUxFz91cfY/bv9G26x6bVUe//HjeeWeV7J64eq079w+fY7sk2GfHZZh5w9LSWnJLs8bAAAAAADgnSDBAgAA9oCT/u6kjPnamOLjBQsW5Jqjr9lj49U+CWLr5q2NtKxbX96pvE5d7VMpmhqnueYCAABtxco/r8zvPve7vPbwa3t8rMq+lXs0/st3v5zfnPObVK2tyhGfOCKj/2Z0NryxITMmzshvL/xtZt46M5+661Op6FKxR+cBAAAAAADQFBIsAABgDyirKEtZxdsvt8s779nkgfZd2hfL1ZuqG2lZ94SJ2v2S1PmQ047i1D7tonacps7FB6wAAGhrap9aUdquNANGD8iixxftUozDP3p43nv1extts2TGkvzmM79Jz8N6ZuCYgQ22++ILX9zheN0Hd290nDsm3JHqjdU57cenZfTlo4t1oy4blRvefUPmPTAvvznnNzl78tk7HAsAAAAAAOCdJsECAAD2AbU/5LR+2fpG29au/+sPR3Uf3L34ga71y9an6wFdG4yzbtm6JElF14p03K9j8efdBnVLSWlJCjWFYpudmUu3wd0abQsAAPuaqVdNzdSrpmboaUNzxsQz8swvntnlBIuKbhXpdXivRts89qPHkiTHXnJso+12FGdH7r7s7lRvrM4BJxxQJ7kiSTru1zEfuvZDuemUm/Ly71/OnF/PyREfP2K3xgMAAAAAAGhupS09AQAAYPf1OapPsbxm4ZpG265Z9HZ9nyP71KnrfVTvYnn1wtUNxqiuqs6G5Ru29Tmyd5268o7l2e+g/XZ7LgAAsK8rFAo54/ozcu4fz023gbuecHzgew7cYVLE5nWbM2vSrLSraJdhnx3W1Knu0Kv3v5rFTyxOkoy8eGS9bQaPG5weh/RIkvzpe3/aY3MBAAAAAABoKidYAADAPqDrAV3T89CeeePlN7L02aWNtl0yY8m2PgO6Fj/c9JYhpw7JlExJkix9dmkO/8jh9cZY9tyyFGoKxT5/bfCpg7PylZXZtGpTVr22Kt0P7N7oXBqKAwAA+7Jx3xmXkpKSJve/4KELdtjm+duez+Z1m3P0OUenU89OTR5rR2bfMbtYPuh9BzXY7qD3HZSVc1dm6bNLs/KVlelxcI8G2wIAQFty7zfuzWP/uu30ufd8+z0Z951xO+yz8NGFefLaJ7Ng2oKsf319KntXZsCYARl12agMHjd4p8atqa7J9InT8/ytz2fFiytSXVWdboO65bCPHJbRl49O536dd+OqAAAAWh8nWAAAwD7iiAlHJElWzV+VN199s942axavyYoXVyRJ3vWJd233Ya4Bowek64CuSZJ5D8xrcKxX7391u3FrO3LCkcVyY3Hequs3vJ8PVgEA0ObsTnLFzpr+8+lJkmM/f+wu9du8fnO2btm60+3nPzg/SdKhe4cGE6yTpN+IfsXyvAcb3isAAEBbsmTGkjx+zeO71Gfqd6fmhnffkJd++1IOP+vwfPDfP5gjJhyRV/7wSm465abc97f37TDGhhUb8l8n/VfuueyebFy5MSd+88SM/5fx2W/Ifnnk+4/kZ8f8LK89/FpTLwsAAKBVcoIFAADsI074ygl54idPZPO6zZlx/Yy895/fu12bZ37xTFJIyjqUZez/HrtdfUlJSU668qTcc9k9WTBtQVa8uCK9Du9Vp01NdU2evfHZJMkhHz4k/Yb12y7OQe87KAeccEAWP7E4M66fkRGfG7Fdm9cefi1vvPxGkuTdf//uplwyAADQiCXPLMmS6UvS6/BeOfDkA3fY/tmbns0z1z+T5XOWZ+PKjUmSLgd0yZBTh2T0V0en/8j+9fbbsnFLMcm768CujY7RbWC3Yvn12a/v7KUAAMA+q6a6Jr+76HcpbC3sdJ+nr3s6D337oZR1KMv5D56fAScMKNYdc94xueHdN+TRHz6ayj6VGfv17d8LeGvcX531qyx+YnEGjh2Y8+4/L+Udy5Mkoy4blQeufCDTrp6W2z9yey568qL0PKTn7l0oAABAK+EECwAA2EdU9qnM+B+OT5I8fs3jWfzU4jr1S59bmkf+5ZEkySn/eErxpIq/duzFx2bQSYOSQjL54snZsnFLnfqHvvNQVs5dmQ7dO+S0a05rcD4f/r8fTlnHsix6bFGevPbJOnWbVm3KPV+8J0ly6OmH5ohPbH8KBgAAsHum/+e20ytGXjJyp9r/f+zde1jUZf7/8dfAMJzP5wQF8awJaiSaGlqmldZmWVmZHazttGvn2tq22mqrbdtst93vrtaWZVpZmplaeUAUTS1R8SweEQIEEVDOw8zvD3+OTMBwVESej+viuu6Z+32/3/eHmYiRec+98K6F8gjy0FVvX6XbFt+m8TPHK6hnkNI+SdOMS2Yo6cWkOtcVZRTJajn1ZjCvUC+HNTxDPc+sO1TUqH0BAAAAF7J1b69TzuYc9by+Z6PiS/JKtOypU6dTDJ422K65QpLCB4TbmiqSXkhScWZxnXk2zdykjJQMySCNnzne1lxxWuLLiQroFqDywnL98PgPTbwqAAAAAGi/OMECAAAAOI+kzU6zjXPTcm3j/cv22/4I4hnqqZjRMXWuv+SBS3Qy96RW/3m1Zo2cpYFTByq4b7Dyd+crdWaqqkqqNOTJIfV+YpUkORmddMuCWzRn3BxlpGRoxqAZirs7TiZPk9KXpCt9cbo8gjw08cuJDj+xKnxguCZ+MVHzb5+vpb9fqow1GYoaFaWyY2VKnZmqwkOFih4VrQlzJjT12wQAAACcd8wVZlVXVNtuV52schB99lWWVGrbnG1ydnVW7J2xDcYbnA2a8OkE9buln939A6cOVNKfkrT6ldVa/efVcvV2rfV6ovJEpW1sdHP8Z4eab9qqOFHRmEsBAKBdmTt+bpvWn7RoUpvWB9A0BfsLlPxysi6Kv0iX/u5S7Vm4p8E1p0+ylk79vl6XgVMHKvnPyTKXm7Xu7XUa+85Yu3mr1aqU11MkSZ0v66zgPsG1cji7OCv2rlgl/TFJe7/dq5ytOXWeaA0AAAAAFxoaLAAAAIDzyILJC+q8P+UvKbZxl8u71NtgIUmJLyYqZnSMNvxjg3Z+uVOl/1cqjyAPxVwVo/iH4xU9MrrBfXgEeeielHu0aeYmpX2SppTXU1RdUS3fzr4a+vRQJTyaIO9w7wbz9BjXQw9sfUDrp69X+uJ07flmj1w8XRTSL0Qj/jRCcVPiZHAyNJgHAAAAON+lvJ6i5JeTbbeLnNr2dIbtc7er8kSlLr79YnkEejiMTXg0QYN+O6je3/ETX0rUnm/2KHdrrpL+lKT+d/SXV9iZkypqnnrnbHJ2WKvmfFVp2zahAAAAAG3t2/u/laXKovEzx6v8eHmj1uz8cqckyS/KTwHdAuqM8YnwUVCvIOXvyteuL3dpzN/HyGA482/xmeszVXzk1Ic6RV9Z/98MYkbHKOmPp06y2zlvJw0WAAAAADoEGiwAAACA88iL1hdbJU/k0EhFDo1sUQ4no5PiH4xX/IPxLcrjF+WnsdPHauz0sQ0HAwAAAO3UsD8M05DHh9huZ2Rk6J2L32mz/WyasUmSNOj+QQ3Guvm5yc3Prd55g5NBcXfF6fvHvpe5zKxtc7dpyGNnrrXmqRTVldV1pahz3sXDxUEkAAAAcGFL/SBVB1ce1GXPXKaw2DAdWnWowTXFWcU6tueYJCksznGzQ/iAcOXvyldxZrEK0gsU2OPMidQHVx60jR3lCY0NlcHJIKvFarcGAAAAAC5kTm29AQAAAAAAAAAA2jujq1GuPq62LxevtmseyNmSo19++kVBvYLUZUSXVsl50SUX2caZ6zLt5kzeJtvYXG52mKfmaReu3q6tsjcAAACgvTmZc1LLnlom/xh/Xf7i5Y1ed3T7UdvYJ9LHYWzN+aM7jtrN5W3Ps419I33rzWF0Ncoj+NSJeHk78uqNAwAAAIALCQ0WAAAAAAAAAABcQH7+78+SpEG/bfj0isbyDPG0jU/mnLSb8+3sK4OT4dRcrv3cr5XklpxZF1X/G7kAAACAC9mSR5ao/Hi5xv13nN2JcA0pPFRoG3uGetYf+Kv5muuamscr1EuSVFFcobLjZY3bKAAAAAC0YzRYAAAAAAAAAABwgagsqdT2OdtldDMq9s7YVstrtVhtY4OzwW7Oxd1F/l39JUnFR4od5inOPDMf0jek1fYHAAAAnGvmCrMqiitsX5UnKhu1bvfC3dr11S7F3RWnrld0bVLNmjWMbkaHsTUbN369t4oTFY3OY3Q/M9/YawQAAACA9szxqyQAAAAAAAAAANBubP9suyqKK9T/jv5yD3BvMD43LVd7vtmj/nf0l1+UX71xNU+t8A73rjUfNSpKBfsKVF5YrsLDhfLrUneu7NRs2zh6VHSD+wMAAADOVymvpyj55WTb7SIVNbimorhCSx5eIo9gD1319lVNrllVVmUbO5ucHcbWnK8qrbKbM5eZWyUPAAAAAFyIaLBAhzJ3/Nw2rT9p0aQ2rQ8AAAAAAADgwpY6I1WSNPD+gY2Kz07NVtILSQroFuCwwSJzfaZtHDksstZ834l9bbUPrjioAfcMqDPPwRUHJUlhcWEK6BbQqD0CAAAA56NhfximIY8Psd3OysrSO33ecbhm2dPLdCLrhCbMmdCohuhfq3kqRXVltcPYmvMuHi52czVPpWhJHgAAAAC4EDm19QYAAAAAAAAAAEDL5ablKmtjloJ6B6nL8C5NWrtv6b5656orq7X5g82SJJO3Sf1u7VcrpuuVXdVpcCdJUur7qXXmObz6sI7tPSZJGv788CbtDwAAADjfGF2NcvVxtX2ZvE0O4w+vOaxNMzap29huunjSxc2qWbOGudzsINL+tItf783V27XReWqedtHQNQIAAADAhYAGCwAAAAAAAAAALgA///dnSdKg+wc1eW3ap2naNX9Xrfst1RYtfnixCvYVSJKu+ttV8gj0qDPHtf++VkZ3ozJ/zNTG9zbazZUXlmvJw0skST3G9VCfm/o0eY8AAABAe1VdWa1F9y2Ss8lZI18ZqdL80lpf5UXltviq0iq7ueqqU6dI1Dx1riS3xGHNmvO/Pq2uKXlO5p6UJLn6uMrdv+mnbgAAAABAe2NsOAQAAAAAAAAAAJwNabPTbOPctFzbeP+y/SrOLJYkeYZ6KmZ0jMM8VaVV2vbpNhndjIq9M7bR9X07+8rN303lx8v1xU1fqPvV3RV9ZbTc/d1VnFms7Z9tV96OPDm5OOmqt69y2LwRPjBcE7+YqPm3z9fS3y9VxpoMRY2KUtmxMqXOTFXhoUJFj4rWhDkTGr0/AGhv5o6f29ZbAACch078ckLH9pw6zW1m/MwG49e9tU7r3lpnuz0laYqiEqMU0i/Edl/xkWKHOU6/npCkkL4hdnPB/YJt46IjRQofGF5nDnOFWaV5pafW9A2uMwYAAAAALjQ0WAAAAAAAAAAA0EYWTF5Q5/0pf0mxjbtc3qXBBovtn29XRVGF+t/RX+4Bjf9U2ehR0Xo863HtXbRX6UvSlZ2areSXklVVWiWTt0kBMQG67JnLdMmDl8ivi1+D+XqM66EHtj6g9dPXK31xuvZ8s0cuni4K6ReiEX8aobgpcTI4GRq9PwAAAOBC4BXmpcnLJjuMydmao2VPLpMk9Z/c365xOjQ2VJLk08lHgT0CdWzvMeVsyXGYLzs1+9SaCB8FdA+wm4seFa0kJZ2quyVHva7vVWeO3K25slqstjUAAAAA0BHQYAEAAAAAAAAAQBt50fpiq+QZcPcADbh7QLPWuri7qO/NfdX35r6tshe/KD+NnT5WY6ePbZV8AAAAQHtndDOq65VdHcY4GZ1sY/+u/vXG95nYR2teW6PCQ4U6fuC4/Lv614opzipW/u58SVLvm3rLYLBvco5IiJBPhI+KM4t1cMVBJb6YWGetA8sP2NUFAAAAgI7AqeEQAAAAAAAAAAAAAAAAAG1t8O8Hy+RlkiSlvp9aZ8zmDzZL1lONHUOfGFpr3mAwaNhzwyRJGSkZtmaMmixmi7Z8tEWS1P3a7gqLDWulKwAAAACA8xsNFgAAAAAAAAAAAAAAAEA74BniqdFvjZYkrX9nvbJ+yrKbz9mao7V/XStJGvnKSPlE+NSZZ9B9g9R5WGfJKi26b5Gqyqrs5le9tEoF6QVy83PTmHfGnIUrAQAAAIDzk7GtNwAAAAAAAAAAAAAAAAB0NLlpucpNy5Uk5e3Ks7s/bXaaJMkz1FMxo2Ps1l3ywCU6mXtSq/+8WrNGztLAqQMV3DdY+bvzlTozVVUlVRry5BANfbL26RWnORmddMuCWzRn3BxlpGRoxqAZirs7TiZPk9KXpCt9cbo8gjw08cuJCuweeBauHgAAAADOTzRYAAAAAAAAAAAAAAAAAOfYrvm7lPxycq37dy/Yrd0LdkuSulzepVaDhSQlvpiomNEx2vCPDdr55U6V/l+pPII8FHNVjOIfjlf0yOgG63sEeeielHu0aeYmpX2SppTXU1RdUS3fzr4a+vRQJTyaIO9w75ZfKAAAAAC0IzRYAAAAAAAAAAAAAAAAAOdY4kuJSnwpsdnrI4dGKnJoZIv24GR0UvyD8Yp/ML5FeQAAAADgQuHU1hsAAAAAAAAAAAAAAAAAAAAAAABoazRYAAAAAAAAAAAAAAAAAAAAAACADs/Y1hsAAAAAAAAAAAAAAAAtN3f83EbFWQwWFYQXKOvvWXKytt7nMk5aNKnVcgEAAAAAALQFGiwAAAAAAAAAAAAAAAAAAAAAADhLrFarfvrXT1r+7HJVlVRpStIURSVGOVxTeKhQ70a/26j88Q/H65r3rnEYYzFbtGnmJm2bvU35u/NlrjDLt7Ovel7fUwnTEuQV5tWoWoWHC7V++nrtW7JPRUeKZPIyKaRviGKnxCr2zlgZnAyNynO+osECAAAAAAAAAAAAAAAAAAAAAICzoGB/gb655xsdXn24zfZQml+qOePmKGtDloJ6BemyZy6Tycuk9MXpWvvGWm3+YLNu/vJmdRnRxWGevYv3av5t81VxokJ9buqjhMcSVHqsVKkzU7Xw7oVKm52mWxbcIldv13N0Za2PBgsAAAAAAAAAAAAAAAAAAAAAAFpRzVMrnJydFJEQocz1mU3OM+ovo9T7ht4OY9z83eqds5gt+vyGz5W1IUuRQyM1eflkubi7SJLiH4rXiudWKOX1FH12/WeaunGqArsH1pknOzVb8ybOk7nMrDHTxyhhWoJtLv6heH04/EMdXHFQ82+br0mLJjX5Os8XTm29AQAAAAAAAAAAAAAAAAAAAAAALiTJLydr6e+WqvOwznpw+4OKGRPTrDze4d4K6hXk8Msr1Kve9ZtmblJGSoZkkMbPHG9rrjgt8eVEBXQLUHlhuX54/Id68yx+aLHMZWZ1GtzJrrlCktz93XXNe9dIkvZ+u1c7v9rZrGs9H9BgAQAAAAAAAAAAAAAAAAAAAABAK7JarRr//njd8d0d8o30bbM9pLyeIknqfFlnBfcJrhXj7OKs2LtiJZ1qjsjZmlMr5sDyA8rakCVJGnjfwDprRSVGKaB7gCRpzatrWmX/bYEGCwAAAAAAAAAAAAAAAAAAAAAAWlHiS4kaeG/dzQjnSub6TBUfKZYkRV8ZXW9czOgzp2vsnFf79Ikd83bYxl2v7FpvntNzOVtyVLCvoMn7PR8Y23oDAAAAAAAAAAAAAC4Mc8fPbdV8FoNFBeEFyvp7lpysfHYcAAAAAAAA2g+DwdDqOS1mi8wVZpk8TY2KP7jyoG0cFhdWb1xobKgMTgZZLVa7NacdWnlIkuTm5ya/Ln715gkbcKbGwZUHFdAtoFH7PJ/QYAEAAAAAAAAAAAAAAAAAAAAAwHno6I6j+uq2r5SRkqETv5yQtdoqFw8XRSRE6OI7Llbs5Fg5Gev+cJK87Xm2sW+kb701jK5GeQR7qCS3RHk78uzmqsqqdPzAcUmST6SPw73WrHF0x9EGr+18RIMFAAAAAAAAAAAAAAAAAAAAAADnoR//9qMCewTq0kcuVVDvIFVXVOvw6sNKnZmqgysPKnVGqm6ef7O8w71rrS08VGgbe4Z6OqzjFeqlktwSVRRXqOx4mdz93SVJRRlFslqsthhHatYoOlTU2Es8r9BgAQAAAAAAAAAAAAAAAAAAAABAPcwVZlVXVNtuV56oPGe1e9/YWxM+nSCj65m3/ve5qY/i7o7TrMRZylyfqbnj5+qetffYxUhSxYkK29jo5rh1wOh+Zr7yRKWtwaLmtTaUw8Xdpc7a7QkNFgAAAAAAAAAAAAAAAAAAAAAA1CPl9RQlv5xsu12ks386g0+Ej6YdnCbvTt5ydnGuNR8+IFwj/jRCy55cpuxN2fr5Pz8rYVqCXYy5zGwbO5tq56ip5nxVadWZcVlVnTFNydGeOLX1BgAAAAAAAAAAAAAAAAAAAAAAOF8N+8MwPVv0rO3rkZ2PnPWaTkYn+UX51dlccdqAuwdIhlPjLf/bUmu+5qkU1ZXVteZrqjnv4nHmJIqap1I0N0d7QoMFAAAAAAAAAAAAAAAAAAAAAAD1MLoa5erjavsyeZvaekuSJPcAd/l39Zck5W7LVeXJSrt5V29X29hcbpYjNU+7qHl9NccN5ah52kXN2u0JDRYAAAAAAAAAAAAAAAAAAAAAALRDniGepwZW6WTuSbs5vyg/27gkt8RhntNrXX1c5e7vbrvft7OvDE4Gu5j61KzhG+Xb4N7PRzRYAAAAAAAAAAAAAAAAAAAAAADQDlktVtvYydm+PSC4X7BtXHSkqN4c5gqzSvNKT63pG2w35+LuYjslo/hIscO9FGeemQ/pG9LAzs9PNFgAAAAAAAAAAAAAAAAAAAAAAHAeWf3qau1euLvBuJM5p06VMDgZzpxm8f9Fj4q2jXO25NSbI3drrq1Ro+aa06JGRUmSygvLVXi4sN482anZddZuT2iwAAAAAAAAAAAAAAAAAAAAAADgPJL0QpJ+/r+fHcacyD6hosOnTqYIHxguFw8Xu/mIhAj5RPhIkg6uOFhvngPLD9jGfSb2qTXfd2Jf29hRntNzYXFhCugW4HDv5ysaLAAAAAAAAAAAAAAAAAAAAAAAOM8cWXdEFcUV9c7//J8zDRgD7x9Ya95gMGjYc8MkSRkpGcrfnV8rxmK2aMtHWyRJ3a/trrDYsFoxXa/sqk6DO0mSUt9PrXMvh1cf1rG9xyRJw58fXu+ez3c0WAAAAAAAAAAAAAAAAAAAAAAAcJ6pPFGpRfcvUnVlda25/T/s19o310qSuozoogF3D6gzx6D7BqnzsM6SVVp03yJVlVXZza96aZUK0gvk5uemMe+MqXcv1/77Whndjcr8MVMb39toN1deWK4lDy+RJPUY10N9bqp9CkZ7YWzrDQAAAAAAAAAAAAAAAAAAAAAAcKFJm51mG+em5drG+5ftV3FmsSTJM9RTMaNjaq0NjQ1V7tZc7fh8h7I3ZavvrX3l39VfVSVVOrTqkHbN3yVZpW5Xd9OETyfIyVj32QtORifdsuAWzRk3RxkpGZoxaIbi7o6TydOk9CXpSl+cLo8gD038cqICuwfWey3hA8M18YuJmn/7fC39/VJlrMlQ1KgolR0rU+rMVBUeKlT0qGhNmDOhud+u8wINFgAAAAAAAAAAAAAAAAAAAAAAtLIFkxfUeX/KX1Js4y6Xd6mzweKBLQ8oc0Omdn+9W0fWHlHqjFSVHS+Ts4uzvMK8dPFtF6v/5P7qNqZbg/vwCPLQPSn3aNPMTUr7JE0pr6eouqJavp19NfTpoUp4NEHe4d4N5ukxroce2PqA1k9fr/TF6drzzR65eLoopF+IRvxphOKmxMngZGgwz/mMBgsAAAAAAAAAAAAAAAAAAAAAAFrZi9YXW7Q+YnCEIgZHtMpenIxOin8wXvEPxrcoj1+Un8ZOH6ux08e2yr7ONzRYdDBzx89t6y0AAAAAAAAAAAAAAAAAAAAAAHDecWrrDQAAAAAAAAAAAAAAAAAAAAAAALQ1GiwAAAAAAAAAAAAAAAAAAAAAAECHR4MFAAAAAAAAAAAAAAAAAAAAAADo8GiwAAAAAAAAAAAAAAAAAAAAAAAAHZ6xrTcAAAAAAAAAAAAAAADav7nj57Zp/UmLJrVpfQAAAAAA0P61+xMs8vPz9cILL6hfv37y8vJSQECAhgwZon/84x+qrKxslRq7d+/W73//e/Xv31/e3t5ycXFRSEiIrrjiCv3rX/9SWVlZq9QBAAAAAAAAAAAAAAAAAAAAAABto103WGzcuFH9+/fXq6++qosuukhvvvmmnnvuOZ08eVLTpk1TQkKCfvnllxbV+Ne//qX+/fvrn//8p5ydnfXkk0/qn//8pyZNmqSffvpJjzzyiOLi4nTgwIFWuioAAAAAAAAAAAAAAAAAAAAAAHCuGdt6A82VkZGhcePGKS8vT48++qjeeecd29zvfvc7XX311UpKStJ1112ntWvXytXVtck1vv/+ez3yyCOSpNtuu02zZs2S0XjmW/b4448rPj5ee/fu1bhx47R161a5uLi0/OIAAAAAAAAAAAAAAAAAAAAAAMA51W5PsHjqqaeUl5enzp0764033rCbc3V11cyZM+Xs7KxNmzbpvffea1aNv/71r5IkFxcXvfvuu3bNFZLUpUsX/fGPf5Qk7dq1S19//XWz6gAAAAAAAAAAAAAAAAAAAAAAgLbVLhss0tPTNW/ePEnSnXfeWefpFDExMRo5cqQk6c0335TZbG5ynZ9++smWKygoqM6YSy+91Db+8ccfm1wDAAAAAAAAAAAAAAAAAAAAAAC0vXbZYPHll1/KarVKkq688sp640aPHi1JysvL06pVq5pcp7KyUpLk7u5eb4yHh4dtXFJS0uQaAAAAAAAAAAAAAAAAAAAAAACg7RnbegPNsXLlSts4Li6u3rgBAwbYrXHUjFGX2NhYbdy4Ufv27ZPZbJbRWPvbtWvXLtu4e/fuTcoPAAAAAAAAAAAAAAAuDHPHz231nBaDRQXhBcr6e5acrA1/huakRZNafQ8AAAAAAHQk7bLBYvv27ZIkb29v+fr61hsXGRlpG+/YsaPJdZ5++mnddNNNOnHihP75z3/qscces5uvrq7Wm2++KUny8vLS7bff3uQaAAAAAAAAAAAAAAAAreFsNHk0BQ0eAAAAAID2rt01WFRUVCgnJ0eSFBoa6jC25vyhQ4eaXOvGG2/UrFmz9PDDD+upp55SVlaWbr75ZoWEhGj37t3685//rM2bNysoKEhz5sxReHh4k2sAAAAAAAAAAGC1WvXTv37S8meXq6qkSlOSpigqMcrhmsJDhXo3+t1G5Y9/OF7XvHeNwxiL2aJNMzdp2+xtyt+dL3OFWb6dfdXz+p5KmJYgrzCvRtUqPFyo9dPXa9+SfSo6UiSTl0khfUMUOyVWsXfGyuBkaFQeAAAAAAAAAACAc63dNVicOHHCNnZzc3MY6+7uXue6prjzzjs1ZswY/eEPf9D06dP19ttv2+ZCQ0P16quv6p577mlSc0VRUZEKCgpst11dXeXq6tqs/TWVxWA5J3VQN7PZ3Ka1LRZLm+4BHRvPQbQ1noNoaxYLv4d1ZB35NUBH/rnL/3vAcwA8Bzo2Hn805TVAwf4CfXPPNzq8+vBZ3JFjpfmlmjNujrI2ZCmoV5Aue+YymbxMSl+crrVvrNXmDzbr5i9vVpcRXRzm2bt4r+bfNl8VJyrU56Y+SngsQaXHSpU6M1UL716otNlpumXBLXL1Pje/D7eV48ePy8PDw3b7XL4GQOPwc/rsae3XoVaDVVZZZTVYZRH/vnI+47FqXy7Ux6utf66fjX+La2+PVVs/Bm2pI1872vbvAGhbzf3Z35o/3/n507HwehbNxXMHzcVzp358Ty5c7a7BoqyszDY2mUwOY2vOl5aWNqvexx9/rKefflq5ubm68cYb9Zvf/EYBAQE6fPiw/ve//2n69OkqLCzUH//4R/n6+jYqZ1xcnN3tKVOm6K677mrW/pqqILyg4SCcNSkpKW1W22KxKCMjQ5Lk5OTUZvtAx8VzEG2N5yDa2rFjx9p6C2hDHfk1QFv+DtzW+H8PeA6A50DHxuOPxrwGqHlqhZOzkyISIpS5PrPJtUb9ZZR639DbYYybf/0fWGQxW/T5DZ8ra0OWIodGavLyyXJxd5EkxT8UrxXPrVDK6yn67PrPNHXjVAV2D6wzT3ZqtuZNnCdzmVljpo9RwrQE21z8Q/H6cPiHOrjioObfNl+TFk1q8nW2J/3797e7fS5fA6Bx+Dl99rT261CrrCrzLlOBCmQQJ+Ccz3is2pcL9fFq63+LOhv/FtfeHqu2fgzaUs0316Pjacu/A6BtNfdnf2v+fO/IP3s7Il7Porl47qC5eO7Uj9cAF65212BR81SKyspKh7E152t+UlRjTZ8+XY899pgk6d///rcefPBBu/n7779ft912m/72t79p4cKFWrVqlS666KIG827ZskWRkZG22+eyaz3r71nnpA7qNmzYsDarfbpTbujQoTIa291/+rgA8BxEW+M5iLZ2+sUmOqaO/BqgLX8Hbmv8vwc8B8BzoGPj8UdjXgMkv5ys5JeTFTMmRuNnjtfmDzY3q8HCO9xbQb2CmrNNSdKmmZuUkZIhGaTxM8fbmitOS3w5UTvn7VTBvgL98PgP9TZHLH5oscxlZnUa3MmuuUKS3P3ddc1712jWyFna++1e7fxqp/rc2KfZez7fpaWlqVOnTrbbfHrt+Yef02dPa78OtRqsKlCBAnICZLCe/28s7sh4rNqXC/Xxaut/izob/xbX3h6rtn4M2lJmZtN/l8eFoy3/DoC21dyf/a35870j/+ztiHg9i+biuYPm4rlTP14DXLja3TPd29vbNi4vL3cYW/O0i5rrGiMzM1NPP/20pFO/hP66uUKSnJ2d9Z///EeLFy9Wenq67r33Xi1durTB3L6+vgoICGjSflqLk5XusbbU1v9zcXJyktFobPN9oOPiOYi2xnMQbYku/o6tI78G6Og/c/l/D3gOgOdAx8bj37E15jWA1WrV+PfHa+C9A8/BjurfQ8rrpz7psvNlnRXcJ7hWjLOLs2LvilXSH5O099u9ytmao7DYMLuYA8sPKGvDqTeVDLyv7uuJSoxSQPcAFaQXaM2ray7oBgt/f/82ew2AxuPn9NnR2q9DLbLIIIMMVkObv8aFYzxW7cuF+ni19c/0s/G9bG+PVVs/Bm2pI1872vbvAGhbzf3Z3Jo/3/n50/HwehbNxXMHzcVzp258Py5c5/+r719xdXVVWNipP9zk5uY6jK05HxUV1aQ68+bNU1VVlSTphhtuqDfO399fiYmJkqTvvvtO+/fvb1IdAAAAAAAAAEDHlPhSYps2V0hS5vpMFR8pliRFXxldb1zM6BjbeOe8nbXmd8zbYRt3vbJrvXlOz+VsyVHBPo5PBwAAAAAAAAAA55d212AhSf369ZMknThxQkVFRfXG1Tx6pW/fvk2qsXfvXtu4S5cuDmNrNm9s2bKlSXUAAAAAAAAAAB2TwWBo9ZwWs0WVJZWNjj+48qBtHBYXVm9caGyoDE6GWmtOO7TykCTJzc9Nfl386s0TNuBMjbryAAAAAAAAAAAAtKV2eTbJqFGjtHz5ckmnGhouv/zyOuNSU1Pt1jRFzePbrVarw1iLxWIbV1dXN6kOAAAAAAAAAAAtcXTHUX1121fKSMnQiV9OyFptlYuHiyISInTxHRcrdnKsnIx1f95S3vY829g30rfeGkZXozyCPVSSW6K8HXl2c1VlVTp+4LgkySfSx+Fea9Y4uuNog9cGAAAAAAAAAABwLrXLEyxuuukm2yd7rVixot64000YQUFBSkxMbFKNrl3PHGG+f/9+h7E15zt37tykOgAAAAAAAAAAtMSPf/tR2Zuydekjl+qWBbdo4ryJGnDvAB1Zd0Tf3PONPhz+oU5kn6hzbeGhQtvYM9TTYR2vUC9JUkVxhcqOl9nuL8ooktVitYupT80aRYfqP6EaAAAAAAAAAACgLbTLBovu3btr4sSJkqRPPvlElZW1jzs/cOCAVq5cKUl65plnZDTaH9axfft29ejRQxEREVq9enWt9ddee62tiWPevHn17iU3N1fJycmSpJCQEMXHxzfvogAAAAAAAAAA7Za5wqyK4grbV9XJqnNWu/eNvfVA2gO67OnL1HN8T/W5qY+u/sfVumfdPXL1cVXm+kzNHT9X5gpzrbUVJypsY6Ob40Ovje5n5itPVNY5biiHi7tLnbUBAAAAAAAAAADOB+2ywUKS3nrrLQUHB+vQoUN67rnn7OYqKip0//33q7q6WoMGDdIjjzxSa/1rr72m9PR0ZWVl6dlnn60136tXL917772SpE2bNum1116rFVNRUaG77rpLFRUVtpzOzs6tcXkAAAAAAAAAgHYk5fUUveH7hu3r/2L/76zX9Inw0bSD03Tj3BtldK3d2BA+IFwj/jRCkpS9KVs//+fnWjHmsjNNF84mx/++XXO+qvRMA0lVWVWdMU3JAQAAAAAAAAAAcD5w/FFS57HOnTtr0aJFuuGGG/T2229r+/btuu6661RWVqZZs2Zp27ZtiouL0zfffCM3N7da6y0Wi21stVrrrPGvf/1LZWVl+vTTT/XHP/5R33//va6//noFBATo8OHD+uSTT3TgwAEZjUa98sormjp16lm7XgAAAAAAAADA+WvYH4ZpyONDbLczMjL0zsXvnNWaTkYn+UX5OYwZcPcALXtqmWSVtvxvixKmJdjN1zyVorqy2mGumvMuHmdOoqh5KkVzcwAAAAAAAAAAAJwP2m2DhSQNHjxYaWlpmj59uhYsWKCnn35aLi4u6tGjh6ZPn64HH3xQJpOpzrXPP/+8UlNTVVZWpjfffLPOGJPJpNmzZ+u3v/2tPvroI/3444966aWXVFZWJm9vb8XExOiJJ57Qfffdp549e57NSwUAAAAAAAAAnMeMrka7UyRcvM6P5gH3AHf5d/XX8f3HlbstV5UnK2XyOvPv5q7erraxudxcV4oz8zVOuzB5m+ocN5Sj5mkXNWsDAAAAAAAAAACcD9p1g4UkBQUF6dVXX9Wrr77apHX9+/dXenp6o2KHDx+u4cOHN2d7AAAAAAAAAAC0Kc8QTx3ff1yySidzTyrAK8A25xflp8z1mZKkktwS+XTyqTfPydyTkiRXH1e5+7vb7vft7CuDk0FWi9UWU5+S3JIz66J8m3U9AAAAAAAAAAAAZ4tTW28AAAAAAAAAAACcPVaL1TZ2crb/s0Bwv2DbuOhIUb05zBVmleaVnlrTN9huzsXdRf5d/SVJxUeKHe6lOPPMfEjfkAZ2DgAAAAAAAAAAcG7RYAEAAAAAAAAAQDu0+tXV2r1wd4NxJ3NOnSphcDLIM8TTbi56VLRtnLMlp94cuVtzbY0aNdecFjUqSpJUXliuwsOF9ebJTs2uszYAAAAAAAAAAMD5gAYLAAAAAAAAAADaoaQXkvTz//3sMOZE9gkVHT51MkX4wHC5eLjYzUckRMgnwkeSdHDFwXrzHFh+wDbuM7FPrfm+E/vaxo7ynJ4LiwtTQLcAh3sHAAAAAAAAAAA412iwAAAAAAAAAACgnTqy7ogqiivqnf/5P2caMAbeP7DWvMFg0LDnhkmSMlIylL87v1aMxWzRlo+2SJK6X9tdYbFhtWK6XtlVnQZ3kiSlvp9a514Orz6sY3uPSZKGPz+83j0DAAAAAAAAAAC0FWNbbwAAAAAAAAAAADRP5YlKLbp/kW74+AY5m5zt5vb/sF9r31wrSeoyoosG3D2gzhyD7huk7XO2KyMlQ4vuW6Q7frhDLu5nTrpY9dIqFaQXyM3PTWPeGVPvXq7997X637D/KfPHTG18b6MufeRS21x5YbmWPLxEktRjXA/1uan2KRgAAAAAADTV3PFz23oLAAAAaEO5abnyCvOSZ4hnq+WkwQIAAAA4z1jMFm39ZKt2frFTOVtyVHqsVM4mZ/lE+KjLiC665MFLFD4gvME8R9Yd0cb3NiojJUMlR0vkGeypiCERin8oXlGJUY3ey6aZm7Rt9jbl786XucIs386+6nl9TyVMS5BXmFcLrxYAAADo2NJmp9nGuWm5tvH+ZftVnFksSfIM9VTM6Jhaa0NjQ5W7NVc7Pt+h7E3Z6ntrX/l39VdVSZUOrTqkXfN3SVap29XdNOHTCXIy1n2otZPRSbcsuEVzxs1RRkqGZgyaobi742TyNCl9SbrSF6fLI8hDE7+cqMDugfVeS/jAcE38YqLm3z5fS3+/VBlrMhQ1Kkplx8qUOjNVhYcKFT0qWhPmTGjutwsAAAAAAAAAAFzgFt6zUIN+O0gRgyMajP3ixi90/MBx9fpNL90w+wa7D5BqLhosAAAAgPPIyZyTmnPtHGWnZsvZ5KzYKbEKjQ1VRVGF9n+/X6kzU7X5g826/KXLdfkLl9ebJ/nPyUp+OVlGN6MGTB2gkH4hyt+Vr9SZqdo5b6eGPjVUo/862uFeSvNLNWfcHGVtyFJQryBd9sxlMnmZlL44XWvfWKvNH2zWzV/erC4jurT2twEAAADoMBZMXlDn/Sl/SbGNu1zepc4Giwe2PKDMDZna/fVuHVl7RKkzUlV2vEzOLs7yCvPSxbddrP6T+6vbmG4N7sMjyEP3pNyjTTM3Ke2TNKW8nqLqimr5dvbV0KeHKuHRBHmHezeYp8e4Hnpg6wNaP3290hena883e+Ti6aKQfiEa8acRipsSJ4OTocE8AAAAAAAAAACgY9ry0RZ1vbJroxosul3dTQeWHdDur3cr5fUUjfzzyBbXp8ECAAAAOE9YrVZ9ceMXyk7NltHNqHvW3WN3UsXw54Zr+bPLtfbNtVr1p1Xyj/ZX/zv618rz839+1qoXV8noZtSdK++0e7HRf3J/fTj8Q617a508Qzw19Mmhde7FYrbo8xs+V9aGLEUOjdTk5ZNtHd7xD8VrxXMrlPJ6ij67/jNN3TjV4afYAgAAAKjfi9YXW7Q+YnBEo/7A0BhORifFPxiv+AfjW5THL8pPY6eP1djpY1tlXwAAAAAAAAAAAHW5+h9XS5K+mvSVds7b2SoNFnWfBw4AAADgnMtIydCRdUckSZc8eIldc8VpiS8nyivMS5KU8npKrfmSvBIte2qZJGnwtMG13mgVPiDc1lSR9EKSijOL69zLppmblJGSIRmk8TPH1zo+L/HlRAV0C1B5Ybl+ePyHJl0nAAAAAAAAAAAAAAAAALSWqFFRKsooapVcNFgAAAAA54lffvrFNu40uFOdMUZXo0JjQyVJeTvzVFFcYTe/4d0NqjxZKUkaOHVgnTkGTh0oGSRzuVnr3l5Xa95qtdqaNzpf1lnBfYJrxTi7OCv2rlhJ0t5v9ypna05DlwcAAAAAAAAAAAAAAAAADTM0PtRcYda+pfvkbHJuldLGVskCAAAAoMWqK6tt41+fGFGTi8eZucqSSrn6uNpu7/xypyTJL8pPAd0C6lzvE+GjoF5Byt+Vr11f7tKYv4+RwXDmVUnm+kwVHzl1skX0ldH17iNmdIyS/ph0qu68nQqLDXN0eQAAAAAAAAAAAAAAAABgs/7d9drw7oZa93//6Pda+fzKBtdbqiwqOVoii9mi6Cvqf59TU9BgAQAAAJwnTp9MIUl5u/LU87qedcbl78qXJLn6uMozxNN2f3FWsY7tOSZJCotz3OwQPiBc+bvyVZxZrIL0AgX2CLTNHVx50DZ2lCc0NlQGJ4OsFqvdGgAAAAAAAAAAAAAAAABoSHlhuQoPFda6vySvRMprfB6Tp0mJLye2yp5osAAAAADOEzFXxSgsLkw5W3K08Z8bdenDl8rkZbKL2bVgl/J3n2qwGDB1gJycnWxzR7cftY19In0c1qo5f3THUbsGi7ztZ16d+Eb61pvD6GqUR7CHSnJLlLejCa9oAAAAAAAAAAAAAAAAAHR4YXFhipsSZ3fflllb1GV4F/l39Xe82CC5eLgosEeg+tzUR94XebfKnmiwAAAAAM4TTs5Ouv272/X1nV9r/w/7NfPSmRr16iiFxYWporhC6UvStfqV1ZKkvrf01RWvXWG3vmY3t2eopxypOf/rLvCm5PEK9VJJbokqiitUdrxM7v7uDuMBAAAAAMDZNXf83LbeAgAAAAAAAAA0Sq/re6nX9b3s7tsya4sG/XaQLr7t4jbZEw0WAAAAwFlgrjCruqLadrvqZFWj1nmFeun2727Xrq92afmzy/XFjV/Yzfe8rqcG3jdQPcb1qLW28kSlbWx0c/yrvou7S53rJKniREWj8xjdz8xXnqikwQIAAAAAAAAAAAAAAABAs0VdHtXgh8KeTTRYAAAAAGdByuspSn452Xa7yKmoUetOZJ/QkoeXaPfXu+Ud7q1Rr41SaP9QVVdW69CqQ9r8v80qO14mZ1dnxYyOsVtbVXamicPZ5OywTs35qlL75g9zmblV8gAAAAAAAAAAAAAAAABAU0xJmtKm9WmwAAAAAM6CYX8YpiGPD7HdzsjI0DsXv+NwTVlBmT4c9qGOHziu4D7Bumv1XfII9LDN957QW/0n99dHIz7S7Ktma/RbozX0yaG2+ZqnUlRXVsuRmvMuHi52czVPpWhJHgAAAAAAAAAAAAAAAAA42w4sP6A1f1mjKStb3pzh1Ar7AQAAAPArRlejXH1cbV8uXg03H6z840odP3BckjT2H2PtmitO6xTfSQmPJUiSlj29TEd+PGKbM3mbbGNzubnW2ppqnnZRc50kuXq7NjpPzdMufp0HAAAAAAAAAAAAAAAAAM62k7kndTj5cKvk4gQLAAAA4DxgtVi1/bPtkiRXH1dFj4quN7b3hN5KeT1Fsko///tnRQ6JlCT5RfnZYkpySxzWqzlfc93p25nrM21xPp186s1zMvekbc/u/u4OawIAAAAAAAAAAAAAAABAY1RXVisjJUN5u/JUUVQhi9lSb2zu1txWq0uDBQAAAHAeKMkrUfnxckmSb2dfGQyGemNrNkTkbMmxjUP6hdjGxUeKHdYrzjwzH9I3xG4uuF+wbVx0pEjhA8PrzGGuMKs0r/TUmr7BdcYAAAAAAAAAAAAAAAAAQFOkfpCq5U8vV3lh+Tmv7XTOKwIAAACoxeB0pqHCarU6jLVazsxbqs90Zvt08lFgj0BJ9o0XdclOzT61JsJHAd0D7OZqnp7hKE/u1lzbXhyduAEAAAAAAAAAAAAAAAAAjbFrwS4tum+Ryo6XyWq1NvqrtXCCBQAAAHAe8Aj0kKuPqyqKK1R4qFCWaoucnOvuhy7YX2Ab+3b2tZvrM7GP1ry2RoWHCnX8wHH5d/Wvtb44q1j5u/MlSb1v6l3rtIyIhAj5RPioOLNYB1ccVOKLiXXu48DyA3Z1AQAAAAAAAAAAAAAAAKAl1v99vSTp4tsu1oB7Byi4T7Dc/d3lbHKud03a7DR9PeXrVqlPgwUAAABwHjA4GdT92u7aPne7qkqqlL4kXT3H96wzdsfnO2zj7td2t5sb/PvB2vDuBlWerFTq+6m64i9X1Fq/+YPNklUyuhk19ImhtfdiMGjYc8O05KElykjJUP7ufAX1CrKLsZgt2vLRFtsewmLDmnrJAAAAAAAAAAAAAAAAQIdgtVr1079+0vJnl6uqpEpTkqYoKjGqwXXZqdna8cUO23t4KooqZPIyyb+rv6JGRmnQbwcpsHugwxyrXlql5JeTG7XP+366TxddcpHDmMLDhVo/fb32LdmnoiNFMnmZFNI3RLFTYhV7Z6wMTgaH6xuSm5ar3jf01oTZExq/yKBWO8Wi7o/EBQAAAHDOXf7i5XLxdJEkfTftOxVnFteKObD8gH7690+SpIBuARp03yC7ec8QT41+a7Qkaf0765X1U5bdfM7WHK3961pJ0shXRsonwqfOvQy6b5A6D+ssWaVF9y1SVVmV3fyql1apIL1Abn5uGvPOmGZcLQAAAAAAAAAAAAAAAHDhK9hfoFmJs7T0d0tVVVLV8AJJhYcK9eHwDzVj0AytffPUe30ufeRSXfufazXkySEyV5j149s/6t99/611f1t3NrdvZ+/ivfpP//9ow7sbFBobqjF/H6PB0wbr+MHjWnj3Qn1y1SeqOFHRohpWi1Xdru7WpDW9b+itaQentajuaZxgAQAAAJwngnoGadKiSfrq1q9UeLBQ/+73b8VOiVXoxaGqrqrW4eTD2vnlTlmrrQq5OES3LrxVRrfav9Jf8sAlOpl7Uqv/vFqzRs7SwKkDFdw3WPm785U6M1VVJVUa8uQQDX2y9ukVpzkZnXTLgls0Z9wcZaRkaMagGYq7O04mT5PSl6QrfXG6PII8NPHLiQ12wQMAAAAAAAAAAAAAAAAdTc1TK5ycnRSREKHM9ZmNWpu/O18ZKRmSpDHTxyhhWoLd/LBnh+nrO7/WtjnbtOypZTJ5m3TJby9xmPPhXQ83WNcvyq/euezUbM2bOE/mMnOtPcU/FK8Ph3+ogysOav5t8zVp0aQGa9UnsEegzBXmJq1x8XCRXxe/ZtesiQYLAAAA4DwSPTJaD+9+WFs+3KL0xena8dkO/fx/P8vJ2UkewR7qMa6Het/YW/1u6Sdnk3O9eRJfTFTM6Bht+McG7fxyp0r/r1QeQR6KuSpG8Q/HK3pkdIN78Qjy0D0p92jTzE1K+yRNKa+nqLqiWr6dfTX06aFKeDRB3uHerXn5AAAAAAAAAAAAAAAAwAUh+eVkJb+crJgxMRo/c7w2f7C50Q0Wp3Ud3bVWc4UkOTk7adyMcdr3/T6VHSvTimdXKG5KXJ0f1npaUK+gJl9DTYsfWixzmVmdBneqtSd3f3dd8941mjVylvZ+u1c7v9qpPjf2aVaduLvjtHv+bl368KWNXpO5PlObZmzS9f+7vlk1a6LBAgAAADjPuPu7a8jjQzTk8SEtyhM5NFKRQyNblMPJ6KT4B+MV/2B8i/IAAAAAAAAAAAAAAAAAHYnVatX498dr4L0Dm52j5/U9650zeZrUbUw3bZuzTeWF5Tq85rBiRsc0u5YjB5YfUNaGLEnSwPvqvp6oxCgFdA9QQXqB1ry6ptkNFvEPx+vgioNa/PBijX5ztExepgbXFOwv0NZZW2mwAAAAAAAAAAAAAAAAAAAAAADgfJP4UqIMBkOz1l50yUW6fentuij+Iodxvl18beOijKJm1WqMHfN22MZdr+xab1zXK7uqIL1AOVtyVLCvQAHdAppca/UrqxUaG6rNH2xW2sdp6nJ5FwX2DJSrt6sMTnV/P3O35ja5Tn1osAAAAAAAAAAAAAAAAAAAAAAAoBU1t7lCkjyCPNRtbLcG48oLy21jk2fDJz2cVllSKWeTs5xdnBsVf2jlIUmSm5+b/Lr41RsXNiDMNj648mCzGixWvbTK9r2zWq3at3Sf9i3d1+Q8zUWDBQAAAAAAAAAAAAAAAAAAAAAA7UzhwcJTA4MUeVmkw9gts7Zo8/ublbczT2UFZZIk707eih4VrYRHExQ+MLzOdVVlVTp+4LgkySfSx2EN38gzJ2oc3XG0kVdRm9VqrXPsSEsaWmqiwQIAAAAAAAAAAAAAAAAAAAAAgHakvKhch1YdkiT1HN/TrrmhLgvvWqhev+mlq96+Sp4hnjrxywltn7tdaZ+kKW12mka8MEIjXx5Za11RRpGsllNNDl6hXg5reIZ6nll3qKiJV3TGhNkTdPFtFzc6Pm12mr6e8nWz69VEgwUAAAAAAAAAAAAAAAAAAAAAAPUwV5hVXVFtu115orINd3PK1llbZS43y9nkrCveuMJhrMHZoAmfTlC/W/rZ3T9w6kAl/SlJq19ZrdV/Xi1Xb1cNfXKoXUzNazW6OW4/cHF3sY0rTlQ09lJaztD4ky4aQoMFAAAAAAAAAAAAAAAAAAAAAAD1SHk9RckvJ9tuF6n5pzO0hpKjJVr9ympJ0qjXRim4d3C9sQmPJmjQbwfJO9y7zvnElxK155s9yt2aq6Q/Jan/Hf3lFXbmpIqqsirb2Nnk7HBfNeerSqscRNZv/MzxihgS0aQ1MaNjNCVpSrPq/RoNFgAAAAAAAAAAAAAAAAAAAAAA1GPYH4ZpyONDbLezsrL0Tp932mQvlmqLFty5QKX5pep3az8NeWKIw3g3Pze5+bnVO29wMijurjh9/9j3MpeZtW3uNg157EzOmqdSVFdW15WiznkXDxcHkfUbeO/AJq/xDPGUZ4hns+r9mlOrZAEAAAAAAAAAAAAAAAAAAAAA4AJkdDXK1cfV9mXyNrXZXpb+fqn2f79f0VdE6/qPrpfBYGhxzosuucg2zlyXaTdX81rN5WaHeWqeduHq7drifTVW5oZMLbp/UavkosECAAAAAAAAAAAAAAAAAAAAAIDz3PI/LNfP//5ZUSOjdOvCW2V0NbZK3pqnP5zMOWk359vZVwanU00cJ3Pt536tJLfkzLoo31bZW2MU7CvQ5g82t0qu1vmOAgAAAAAAAAAAAAAAAAAAAACAs2LlCyu19o216nJ5F9327W1y8XBptdxWi9U2Njjbn4jh4u4i/67+KthXoOIjxQ7zFGeemQ/pG9KsvRxefbjJa/J35TerVl1osADOobnj57ZZbYvBok6Pd2qz+gAAAAAAAAAAAAAAAAAAAACabtVLq7Tm1TXqPLyzblvc+OaK3LRc7flmj/rf0V9+UX71xtU8tcI73LvWfNSoKBXsK1B5YbkKDxfKr0vdubJTs23j6FHRjdrjr32U+JEMBkPDgWeJU5tVBgAAAAAAAAAAAAAAAAAAAAAA9Vr92molv5ysyMsidfuS22XyNNWKmXHJDK16eVWt+7NTs5X0QpIy12c6rFFzPnJYZK35vhP72sYHVxysN8/pubC4MAV0C3BY0xGr1drkr9bCCRYAAAAAAAAAAAAAAAAAAAAAAJxnUt5MUdIfkxQxJEK3L71dJq/azRWSlL0pWyH9QurNs2/pPvW7tV+dc9WV1dr8wWZJksnbVGdc1yu7qtPgTsrakKXU91M14J4BtWIOrz6sY3uPSZKGPz+8wWtzZPjzw9X1yq51zlmrraoorlD+nnzt/WavijKKNOadMfII9mhRzdNosAAAAAAAAAAAAAAAAADOsvLCcu1dvFcHVxxUzuYcHT94XJUnK2XyMimwe6Cir4xW/IPx8u3s22CuI+uOaON7G5WRkqGSoyXyDPZUxJAIxT8Ur6jEqEbtx2K2aNPMTdo2e5vyd+fLXGGWb2df9by+pxKmJcgrzKuFVwwAAACgJda9vU4rnl0hj2APDXt2mLI3ZTc7V9qnaep5fU/1ntDb7n5LtUWLH16sgn0FkqSr/naVPALrblS49t/X6n/D/qfMHzO18b2NuvSRS21z5YXlWvLwEklSj3E91OemPs3eqyQF9w5W1OVRDcYNe2aY0manKelPSZq6fmqLap5GgwUAAAAAAAAAAAAAAABwFh1Zd0SzRs1SdUW1ZJB639Bb/Sb1k6uPqwr2FWjrx1u19o212viPjbr+w+vV9+a+9eZK/nOykl9OltHNqAFTByikX4jyd+UrdWaqds7bqaFPDdXov452uJ/S/FLNGTdHWRuyFNQrSJc9c5lMXialL07X2jfWavMHm3Xzlzery4gurf2tAAAAADqUtNlptnFuWq5tvH/ZfhVnFkuSPEM9FTM6xm7d7q93a9mTyyRJpXml+uz6z5pV37ezr9z83VR+vFxf3PSFul/dXdFXRsvd313FmcXa/tl25e3Ik5OLk656+yoNun9QvbnCB4Zr4hcTNf/2+Vr6+6XKWJOhqFFRKjtWptSZqSo8VKjoUdGaMGdCs/Z62tX/vFqdLu3U6Pj+d/TXgeUHtPq11Rr9puPXQo1BgwUAAAAAAAAAAAAAAABwFlUUV6i6oloGZ4NuX3p7rTdPjfjjCH044kMd3XZUCyYvUMjFIQruHVwrz8//+VmrXlwlo5tRd668UxGDI2xz/Sf314fDP9S6t9bJM8RTQ58cWudeLGaLPr/hc2VtyFLk0EhNXj5ZLu4ukqT4h+K14rkVSnk9RZ9d/5mmbpyqwO6BrfidAAAAADqWBZMX1Hl/yl9SbOMul3ep9Rqh8FBhq9SPHhWtx7Me195Fe5W+JF3ZqdlKfilZVaVVMnmbFBAToMueuUyXPHiJ/Lr4NZivx7geemDrA1o/fb3SF6drzzd75OLpopB+IRrxpxGKmxIng5OhRXu+9OFLGw76lc7DO2vtG2tpsAAAAAAAAAAAAAAAAADai7i74mq9cUqS3PzcNPqt0fp07KeqrqxW6vupGvP2GLuYkrwSLXvq1CfYDp422K65QpLCB4Rr6JNDlfxyspJeSFK/W/vJJ8KnVq1NMzcpIyVDMkjjZ463NVeclvhyonbO26mCfQX64fEfNGnRpBZeNQAAANBxvWh9sVnrEh5NUMKjCa2yBxd3F/W9ua/Dk/Kawi/KT2Onj9XY6WNbJV9rqCqpsp0I0lJOrZIFAAAAAAAAAAAAAAAAQJ3c/NzUaXAn9bmpT70xFw26yDbO35Vfa37DuxtUebJSkjRw6sA6cwycOlAySOZys9a9va7WvNVqVcrrpz4pt/NlnRXcp/YpGc4uzoq9K1aStPfbvcrZmuPgygAAAACgbVVXVSvtkzSZvE2tko8TLAAAAAAAAAAAAAAAAICzKCIhQlPXT3UY4+Jx5iQJo2vtt/Ts/HKnpFOfFhvQLaDOHD4RPgrqFaT8Xfna9eUujfn7GBkMBtt85vpMFR859amu0VdG17uXmNExSvpj0qm683YqLDbM4d4BAAAAoLUcXn24wZjqqmqVF5Yrf1e+ts/drvzd+er1m16tUp8GCwAAAAAAAAAAAAAAAKCNZf2UZRtHjYqymyvOKtaxPcckSWFxjpsdwgeEK39Xvoozi1WQXqDAHoG2uYMrD9rGjvKExobK4GSQ1WK1WwMAAAAAZ9tHiR/ZNYo3xGq1ysXdRZe/eHmr1HdqlSwAAAAAAAAAAAAAAAAAmsVcbtbK51ZKkkIuDtHAqQPt5o9uP2ob+0T6OMxVc/7ojqN2c3nb82xj30jfenMYXY3yCPY4tWZHXr1xAAAAAHA2WK3WRn0ZnAyKuSpGd6fcrdD+oa1SmxMsAAAAAAAAAAAAAABAuzd3/Ny23gLQaOYKs8oLy1V2rExH1h3R+nfWK29nnvre3FfjZoyTi7uLXXzhoULb2DPU02HumvM11zU1j1eol0pyS1RRXKGy42Vy93d3fFEAAAAA0EqGPz9cXa/sWu+8k9FJbr5uCugWIKNb67ZE0GABAAAAAAAAAAAAAAAANIG5wqzqimrb7coTlU1av33udi28e6Httm9nX034dIL6Teong8FQK75m/obePFSzOePX+6o4UdHoPEb3M/OVJyppsAAAAABwzgT3DlbU5VFtUpsGCwAAAAAAAAAAAAAAAKAJUl5PUfLLybbbRSpq0vqYMTGavGyyKksqVZBeoG1ztmn+7fO16sVVGvvuWHW/prtdfFVZlW3sbHJ2mLvmfFVpld2cuczcKnkAAAAA4Gy5/MXLFdo/tM3q02ABAAAAAAAAAAAAAAAANMGwPwzTkMeH2G5nZWXpnT7vNHq9d7i3vMO9bbeHPDFEy59ZrnVvrdOccXN0/YfXK25KnG2+5qkU1ZXVcqTmvIuHi91czVMpWpIHAAAAAM6WxBcT27S+U5tWBwAAAAAAAAAAAAAAANoZo6tRrj6uti+Tt6lF+QwGg65880qFDwyXrNLiBxfrZM5J23zN/OZyc10pbGqedvHrfbl6uzY6T83TLlp6fQAAAADQEqXHSpW1MUv7l+1X1sYslR4rPWu1OMECAAAAAAAAAIA2ZrVa9dO/ftLyZ5erqqRKU5KmKCoxqsF12anZ2vHFDmWkZCh/d74qiipk8jLJv6u/okZGadBvBymwe6DDHKteWqXkl5Mbtc/7frpPF11ykcOYwsOFWj99vfYt2aeiI0UyeZkU0jdEsVNiFXtnrAxOhkbVAgAAADoag8Ggi2+/WNmp2TKXmbVt7jYNeezUKRl+UX62uJLcEod5as7XXHf6dub6TFucTyefevOczD3V4OHq4yp3f/emXAoAAAAAtIots7Zow7sblLs1t9ZcaGyoEh5NUOydsa1akwYLAAAAAAAAAADaUMH+An1zzzc6vPpwo9cUHirUgskLlJGSIUmKvCxSlz5yqXwifXQy56S2z92uH9/+URv+sUFX/OUKDX1y6Nnavp29i/dq/m3zVXGiQn1u6qOExxJUeqxUqTNTtfDuhUqbnaZbFtxi96m5wIVk7vi5bb0FAADQzgX2PNMgfXTbUds4pF+IbVx8pNhhjuLMM/MhfUPs5oL7BdvGRUeKTp2YUQdzhVmleac+ETa4b3CdMQAAAABwtlSWVGrexHna//1+Sac+qOrXcrfmauHdC7X9s+26+cub5eLh0iq1abAAAAAAAAAAAKAN1Dy1wsnZSREJEbZPkm1I/u58W3PFmOljlDAtwW5+2LPD9PWdX2vbnG1a9tQymbxNuuS3lzjM+fCuhxus++tPv60pOzVb8ybOk7nMXGtP8Q/F68PhH+rgioOaf9t8TVo0qcFaAAAAwIUkfWm6XDxcFHV5lMM4J2cn29hittjGPp18FNgjUMf2HlPOlhyHObJTs0+tifBRQPcAu7noUdFKUpIkKWdLjnpd36vOHLlbc2W1WG1rAAAAAOBc+mrSV9r33T5JkouHi0IvDpVPhI+M7kaZy8wqzizW0e1HVVlSqf3f79dXk77SrQtvbZXaNFgAAAAAAAAAANAGkl9OVvLLyYoZE6PxM8dr8webG91gcVrX0V1rNVdIp96UNW7GOO37fp/KjpVpxbMrFDclTka3+v8sENQrqMnXUNPihxbLXGZWp8Gdau3J3d9d17x3jWaNnKW93+7Vzq92qs+NfVpUDwAAAGhPFj+4WCYvkx7a/pDDuIJ9Bbaxb2dfu7k+E/tozWtrVHioUMcPHJd/V/9a64uzipW/O1+S1Pum3jIYDHbzEQkR8onwUXFmsQ6uOKjEFxPr3MeB5Qfs6gIAAADAubJn0R7t/XavvMO9deVfr1Sfm/rI6Fr77xvmCrN2frlTy59err3f7tXeb/eqx7geLa7v1HAIAAAAAAAAAABobVarVePfH687vrtDvpG+DS+oQ8/re9Y7Z/I0qduYbpKk8sJyHV5zuFk1GuPA8gPK2pAlSRp438A6Y6ISo2yfnrvm1TVnbS8AAADA+Sp/V74KDxXWO2+1WrX146222z3G278xaPDvB8vkZZIkpb6fWmeOzR9slqyS0c2ooU8MrTVvMBg07LlhkqSMlAxbM0ZNFrNFWz7aIknqfm13hcWGObwuAAAAAGhNW2dtlbu/u+798V71v71/nc0VkmR0Nar/7f1174/3ys3PTVs+3NIq9TnBAgAAAAAAAACANpD4UmKtT5NtrIsuuUi3L71dF8Vf5DDOt8uZxo2ijKJm1WqMHfN22MZdr+xab1zXK7uqIL1AOVtyVLCvQAHdAs7angAAAHDuzR0/t03rT1o0qU3rN8RqsWrB5AWaOG+ivMK8as19//j3+uWnXyRJ/Sb1U8TgCLsYzxBPjX5rtBY/uFjr31mvXjf0Uqf4Trb5nK05WvvXtZKkka+MlE+ET537GHTfIG2fs10ZKRladN8i3fHDHXJxd7HNr3pplQrSC+Tm56Yx74xplWsHAAAAgMbKXJ+puHviap3qVx/fzr6KuydO2+dub5X6NFgAAAAAAAAAANAGmttcIUkeQR7qNrZbg3HlheW2scnT1Oj8lSWVcjY5y9nFuVHxh1YekiS5+bnJr4tfvXFhA8588u3BlQdpsAAAAECHERYbpqLDRcpIydA/Yv6hvrf2VVCvIHkEeqgoo0g7vtih/F2nTpOIvTNW42aMqzPPJQ9copO5J7X6z6s1a+QsDZw6UMF9g5W/O1+pM1NVVVKlIU8O0dAna59ecZqT0Um3LLhFc8bNUUZKhmYMmqG4u+Nk8jQpfUm60henyyPIQxO/nKjA7oFn5fsBAAAAAPUpzS9VcJ/gJq0J7h2s0vzSVqlPgwUAAAAAAAAAABeowoOFpwYGKfKySIexW2Zt0eb3NytvZ57KCsokSd6dvBU9KloJjyYofGB4neuqyqp0/MBxSZJPZN2fkHuab+SZT5s6uuNoI68CAAAAaP9uXXirjm4/ql0LdiljTYYOLDug7XO3y1JlkcnbJP9of8U/Eq/YO2PtTqWoS+KLiYoZHaMN/9ignV/uVOn/lcojyEMxV8Uo/uF4RY+MbnA/HkEeuiflHm2auUlpn6Qp5fUUVVdUy7ezr4Y+PVQJjybIO9y7tS4fAAAAABrN5GVqcrNE6bFSmbwa/0FTjtBgAQAAAAAAAADABai8qFyHVh2SJPUc39OuuaEuC+9aqF6/6aWr3r5KniGeOvHLCW2fu11pn6QpbXaaRrwwQiNfHllrXVFGkawWqyTJK9TLYQ3PUM8z6w4VNfGKAAAAgPYtpF+IQvqFtEquyKGRihzquIm6IU5GJ8U/GK/4B+NbZU8AAAAA0BqCegVp+9ztGvrEUBmcGj4N3Gqxavuc7QrqFdQq9Z1aJQsAAAAAAAAAAB2YucKsiuIK21fVyaq23pK2ztoqc7lZziZnXfHGFQ5jDc4G3fjZjbplwS2KuytO3a/proFTB+rOFXdqxAsjJKu0+s+rte5v62qtrTxRaRsb3Rx/rpOLu4ttXHGioolXBAAAAAAAAAAALnS9ftNLOVtyNP+O+SovLHcYW15Urvm3z1duWq563dCrVepzggUAAAAAAAAAAC2U8nqKkl9Ott0ucmrb0xlKjpZo9SurJUmjXhul4N7B9cYmPJqgQb8dJO9w7zrnE19K1J5v9ih3a66S/pSk/nf0l1fYmZMqqsrONJM4m5wd7qvmfFVp2zehAAAAAAAAAACA80v8Q/Ha8O4G7fh8h9KXpKvHtT10UfxF8u7kLRd3F5nLzSrOLNYvP/+i9MXpqiiukHcnb8U/1Dqn89FgAQAAAAAAAABACw37wzANeXyI7XZGRobeufidNtmLpdqiBXcuUGl+qfrd2k9DnhjiMN7Nz01ufm71zhucDIq7K07fP/a9zGVmbZu7TUMeO5Oz5qkU1ZXVDmvVnHfxcHEQCQAAAAAAAAAAOiIXDxfd+s2t+viKj1VeWK7tn23X9s+21xlrtVrl7u+uSYsm2f29oiWcWiULAAAAAAAAAAAdmNHVKFcfV9uXi1fbNQ8s/f1S7f9+v6KviNb1H10vg8HQ4pwXXXKRbZy5LtNuzuRtso3N5WaHeWqeduHq7drifQEAAAAAAAAAgAtP+IBw/Xbzb9VtbDdZrdZ6v7pf3V33p96vsNiwVqvNCRYAAAAAAAAAAFwglv9huX7+98+KGhmlWxfeKqNr6/wZwDPE0zY+mXPSbs63s68MTgZZLVadzD3566V2SnJLzqyL8m2VvQEAAAAAAAAAgAuPXxc/3b7kdhXsK9CB5Qd0LP2YKk9UyuRtUkC3AHW9sqsCuwe2et2z2mBRWFiot99+W1u3bpWPj48mTZqka6+99myWBAAAAAAAAACgQ1r5wkqtfWOtulzeRbd9e5tcPFrvFA2rxWobG5ztT8RwcXeRf1d/FewrUPGRYod5ijPPzIf0DWm1/QEAAAAAAAAAgAtTQLcABXQLOGf1nFqyuKSkRL6+vnJ2dpazs7N++OEH21xmZqb69eunv/zlL1q8eLHmzp2r6667Ts8++2yLNw0AAAAAAAAAAM5Y9dIqrXl1jToP76zbFje+uSI3LVerX12twkOFDuNqnlrhHe5daz5qVJQkqbywXIWH68+VnZptG0ePim7UHgEAAAAAAAAAAM6VFjVYLFiwQCdOnJCrq6tuvfVWxcTE2OYef/xx/fLLL7JarQoNDVW/fv3k5OSkt956S2vXrm3xxgEAAAAAAAAAgLT6tdVKfjlZkZdF6vYlt8vkaaoVM+OSGVr18qpa92enZivphSRlrs90WKPmfOSwyFrzfSf2tY0PrjhYb57Tc2FxYef006YAAAAAAAAAAED7cfzgceWm5So3LVdHdxytMybt0zTtX7a/1Wu3qMHiu+++k6urq9atW6dPP/3U1mCRlZWl+fPny2AwaOLEiTp8+LC2bt2qlJQUubu7a8aMGa2yeQAAAAAAAAAAOrKUN1OU9MckRQyJ0O1Lb5fJq3ZzhSRlb8pW4cHCevPsW7qv3rnqympt/mCzJMnkbVK/W/vViul6ZVd1GtxJkpT6fmqdeQ6vPqxje49JkoY/P7zeegAAAAAAAAAAoOOqKq3SjIEz9N8B/9V/B/xXHw7/sM649G/T9enYT/XR5R/pRPaJVqtvbMnin376SZMnT1ZcXJzd/V999ZUsFotMJpP+8Y9/yMXl1FHkgwcP1q233qrk5OSWlAUAAAAAAAAAoMNb9/Y6rXh2hTyCPTTs2WHK3pTd7Fxpn6ap5/U91XtCb7v7LdUWLX54sQr2FUiSrvrbVfII9Kgzx7X/vlb/G/Y/Zf6YqY3vbdSlj1xqmysvLNeSh5dIknqM66E+N/Vp9l4BAAAAAAAAAMCFa9f8XSovKpck9byu9t8uTrv49otVnFmsw2sOa/aY2brvp/tkdG1Re4SkFjZYZGZmasCAAbXuX7hwoQwGg6655hqFhobazcXGxmrOnDktKQsAAAAAAAAAwAUhbXaabZyblmsb71+2X8WZxZIkz1BPxYyOsVu3++vdWvbkMklSaV6pPrv+s2bV9+3sKzd/N5UfL9cXN32h7ld3V/SV0XL3d1dxZrG2f7ZdeTvy5OTipKvevkqD7h9Ub67wgeGa+MVEzb99vpb+fqky1mQoalSUyo6VKXVmqgoPFSp6VLQmzJnQrL0CAAAAAAAAAIAL377v9slgMOjGz25U34l9643rMa6HeozroR/f+VE/PPGDfvr3Txry2JAW129Rg4XFYpHBYLC7r6CgQGvWrJEk3XzzzbXWuLm5yWKxtKQsAAAAAAAAAAAXhAWTF9R5f8pfUmzjLpd3qdVgUXiosFXqR4+K1uNZj2vvor1KX5Ku7NRsJb+UrKrSKpm8TQqICdBlz1ymSx68RH5d/BrM12NcDz2w9QGtn75e6YvTteebPXLxdFFIvxCN+NMIxU2Jk8HJ0GAeoLnmjp/bqDiLwaKC8AJl/T1LTlans7wrAAAAAAAAAEBjZW/KVs/rejpsrqhpyGNDtG/JPu34fEfbN1iEh4drx44ddvd9/PHHMpvNcnV11bXXXltrTUZGhvz9/VtS1k5+fr7effddLViwQIcOHZLJZFLPnj01adIkPfDAAzKZTK1Sp7q6WnPnztW8efO0detW5eTkyMvLS+Hh4erXr58SExN1/fXXKywsrFXqAQAAAAAAAAAufC9aX2zWuoRHE5TwaEKr7MHF3UV9b+6rvjc37g8VDfGL8tPY6WM1dvrYVskHAAAAAAAAAAA6juKsYg24d0CT1nQd3VVrXlvTKvVb9JE8Q4cO1ezZs5WamipJ2rVrl15//XUZDAaNHTtW3t7edvEWi0Wff/65evbs2ZKyNhs3blT//v316quv6qKLLtKbb76p5557TidPntS0adOUkJCgX375pcV1du/erfj4eN15552qrq7W7373O/3rX//SI488ovLycn322Wd64IEH9OWXX7bCVQEAAAAAAAAAAAAAAAAAAAAA0PFUV1bLPcC9SWs8gjxUXVndKvVbdILF7373O82dO1fx8fEKDAxUQUGBLBaLDAaDnnjiCVtcdXW1du/erRdeeEH79+/XLbfc0uKNZ2RkaNy4ccrLy9Ojjz6qd955x25fV199tZKSknTddddp7dq1cnV1bVad/fv3a9SoUTp58qSSkpJ0+eWX280///zzuuqqq7Rq1aqWXA4AAAAAAAAAAAAAAAAAAAAAAB2aZ4injm4/2qQ1udty5RHs0Sr1W3SCxeDBg/X222/LyclJ+fn5tuaK5557TsOGDbPFvfTSS+rfv7++/vprSdKNN97Yok1L0lNPPaW8vDx17txZb7zxht2cq6urZs6cKWdnZ23atEnvvfdes2pYrVZNnjxZ2dnZ+u9//1uruUKSXFxc9MILLygwMFDu7k3rlAEAAAAAAAAAAAAAAAAAAAAAAKdEDonU5v9t1vEDxxsVf/zAcW35cIsih0S2Sv0WnWAhSY8++qiuvfZafffdd7JYLBo+fLgGDhxoFzNq1CgZjadKeXt7Ky4urkU109PTNW/ePEnSnXfeWefpFDExMRo5cqSWL1+uN998U9OmTbPtobHmzp2rH3/8Ud27d9ett95ab9yoUaOUn5/ftIsAAAAAAAAAAAAAAAAAAAAAAAA2cffEace8HfpgyAe64vUr1PeWvjJ5mmrFVZVWafvn27XyuZWqPFGpAfcOaJX6LW6wkKTu3bure/fu9c6PHDlSI0eObI1SkqQvv/xSVqtVknTllVfWGzd69GgtX75ceXl5WrVqlcPYusycOVOSNH78eBkMhuZvGAAAAAAAAAAAAAAAAAAAAAAAONRtTDf1uamPdn65U4vuW6QlDy9RYM9A+UT4yOhmlLncrOLMYh3bc0zVldWyWq3qO7GvYq6KaZX6rdJgca6tXLnSNnZ0GsaAAWe6UFauXNmkBou8vDytXr1akhQbG2s3V1ZWJicnpzpPzgAAAAAAAAAAAAAAAAAAAAAAAM1zw8c3yGK2aPfXu2WuMOvotqM6uu2oXczpAxt639Bbv/n4N61W26m1ElksFiUlJemNN97Qo48+qj179tjmkpKSZLFYWquUtm/fLkny9vaWr69vvXGRkZG28Y4dO5pUIzU11bbnzp0768CBA5o6dapCQ0Pl4eEhNzc3hYWFacqUKdq5c2czrgIAAAAAAAAAAAAAAAAAAAAAANRkdDPqlvm36Ma5NypyaKQMTgZZrVbbl8HJoMihkbrp85t081c3y+jaeudOtEqmL774Qk899ZQyMzNt91133XXq2bOnJOmqq65SRESE3nzzTd18880tqlVRUaGcnBxJUmhoqMPYmvOHDh1qUp1t27bZxt9//72mT5+uzp076/nnn1dMTIxycnL0wQcf6OOPP9bcuXP13//+V3fffXeTagAAAAAAAAAAAAAAAAAAAAAAgNr63dJP/W7pp8qTlTp+8LgqT1TK5G2Sf7S/TF6ms1KzxQ0Wf//73/XUU0/ZjtiQJIPBYBeTmJiolStXatKkSTp06JCefvrpZtc7ceKEbezm5uYw1t3dvc51jXH06JkjRN544w3Fx8dr1apV8vDwsN1/991369Zbb9W8efM0depURUdHKzExscHcRUVFKigosN12dXWVq6trk/bXXBZD650kgvbFarDKYrHIbDa39VbQQZnNZp6DaFM8B9HWWvNEN7Q/Hfk1QEf+ucv/e8BzADwHOjYef/AaoGM7fvy43d8TzuVrgI6usa+BrAarrLKe+rdz8d/r+YzHqv3gsWpfeLzaDx6rpmnL12C8/uvY2vLvAB1dW/8dpLla8+c7P386Fv7dEc3FcwfNxXOnfnxPzi2Tl0mhFzs+nKG1tKjBYvfu3Xr66adltVo1ZswYXXPNNfL29ta9995rF7ds2TLt2bNHEydO1PPPP6+rrrpKcXFxzapZVlZmG5tMjrtOas6XlpY2qU5xcbHd7ffee8/ujyGS5OTkpPfee0+LFi1SeXm5nnjiCW3atKnB3L++9ilTpuiuu+5q0v6aqyC8oOEgXJCsssqcceqHuZOTUxvvBh2RxWJRRkaGJJ6DaBs8B9HWjh071tZbQBvqyK8BUlJS2rR+W+L/PeA5AJ4DHRuPP3gN0LH179/f7va5fA3Q0TX2NZBVVpV5l6lABTLI0PACtBkeq/aDx6p94fFqP3ismqYt/z2y5pvr0fG05d8BOrq2/jtIc7Xmz/eO/LeYjoh/d0Rz8dxBc/HcqR+vAS5cLWqw+Oc//ymr1aq5c+fqlltukXTqj0Y1T7M4rWfPnkpKSlKPHj303nvv6f33329WzZqnUlRWVjqMrTn/6+aIhlRXV9vGXbp00aWXXlpnXEhIiEaNGqUlS5YoNTVVO3fuVJ8+fRzm3rJliyIjI223z2XXetbfs85JHZx/rAarLup8kYYOHSqjscWH1wBNdrpbk+cg2grPQbS10y820TF15NcAw4YNa9P6bYn/94DnAHgOdGw8/uA1QMeWlpamTp062W7z6bXnTmNfA1kNVhWoQAE5ATJYebPq+YzHqv3gsWpfeLzaDx6rpmnLf4/MzMxss9poe235d4COrq3/DtJcrfnzvSP/LaYj4t8d0Vw8d9BcPHfqx2uAC1eLnumrVq3ShAkTbM0VDQkMDNRdd92lb775ptk1vb29bePy8nKHsTVPu6i5rql1+vXr5zA2NjZWS5YskSRt3LixwQYLX19fBQQENGk/rcXJSvdYR2WRRU5OTjIajfxPDm2G5yDaGs9BtCW6+Du2jvwaoKP/zOX/PeA5AJ4DHRuPf8fGa4COzd/fv81eA3R0jX0NZJFFBhlksBra/HUTHOOxaj94rNoXHq/2g8eqadry9Rev/Tq2tvw7QEfXXn82tubPd37+dDz8uyOai+cOmovnTt34fly4WvTbWWZmpkaNGtWkNT179lRWVvM7h11dXRUWFiZJys3NdRhbcz4qKqpJdQIDA21jf39/h7FBQUG28dGjR5tUBwAAAAAAAAAAAAAAAAAAAAAAtL0WNVhUVVXJZDI1aU1ZWZmcnZ1bUtZ2osSJEydUVFRUb1zNo1f69u3bpBo146uqqhzGWq1W25hPJQMAAAAAAAAAAAAAAAAAAAAAoP1pUTfARRddpJ9++qlJa7799ltFRES0pKzdqRlbtmypNy41NbXONY0RHx8vg8EgScrJyXEYm5eXZxtfdNFFTaoDAAAAAAAAAAAAAAAAAAAAAADaXosaLEaOHKlZs2Y1usnivffe08qVK3XFFVe0pKxuuukmW/PDihUr6o1bvny5JCkoKEiJiYlNqtGpUyclJCRIOtXEYTab643dtGmTbTxixIgm1QEAAAAAAAAAAAAAAAAAAAAAAG2vRQ0W06ZNU1VVlRITE/X8889rx44dslgskmRrgDh69Ki+/vprjRs3TtOmTZOzs7N+//vft2jT3bt318SJEyVJn3zyiSorK2vFHDhwQCtXrpQkPfPMMzIajXbz27dvV48ePRQREaHVq1fXWeeJJ56QJBUVFWnhwoV1xhw5ckTJycmSpOuuu67Fp3MAAAAAAAAAAAAAAAAAAAAAAIBzr0UNFv369dMrr7yisrIyvfHGG+rfv78iIyNlMBj0m9/8Ru7u7goPD9eNN96opUuXymq16o033lCPHj1avPG33npLwcHBOnTokJ577jm7uYqKCt1///2qrq7WoEGD9Mgjj9Ra/9prryk9PV1ZWVl69tln66xx4403aty4cZKkxx57TJmZmbXq3HvvvaqqqlJAQICmT5/e4usCAAAAAAAAAAAAAAAAAAAAAADnnrHhEMf+8Ic/yMPDQ88884wqKytVWVkpg8GgkydPymq12uJMJpPefvttPfzwwy0tKUnq3LmzFi1apBtuuEFvv/22tm/fruuuu05lZWWaNWuWtm3bpri4OH3zzTdyc3Ortf70SRuS7Pb5a59//rkmTJig77//XnFxcbr33nvVs2dP5eTk6OOPP9aePXsUGRmphQsXKjo6ulWuDQAAAAAAAAAAAAAAAAAAAAAANOzA8gNa85c1mrJySotztbjBQpKmTZumm266Sf/5z3+0bNky7du3T8XFxfL29lb37t01evRoPfDAA+rUqVNrlLMZPHiw0tLSNH36dC1YsEBPP/20XFxc1KNHD02fPl0PPvigTCZTnWuff/55paamqqysTG+++Wa9NTw8PPTdd9/piy++0KxZs/Txxx/r2LFj8vb2Vt++ffXb3/5W999/vzw9PVv12gAAAAAAAAAAAAAAAAAAAAAAgGMnc0/qcPLhVsnVKg0WktSpUye98soreuWVV1orZaMEBQXp1Vdf1auvvtqkdf3791d6enqj42+++WbdfPPNTd0eAAAAAAAAAAAAAAAAAAAAAKADs1qt+ulfP2n5s8tVVVKlKUlTFJUY1ej1R9Yd0cb3NiojJUMlR0vkGeypiCERin8ovtF5LGaLNs3cpG2ztyl/d77MFWb5dvZVz+t7KmFagrzCvBqVp/BwodZPX699S/ap6EiRTF4mhfQNUeyUWMXeGSuDk6HR1+VIdWW1MlIylLcrTxVFFbKYLfXG5m7NbZWaUis2WAAAAAAAAAAAAAAAAAAAAAAAgDMK9hfom3u+0eHVzTthIfnPyUp+OVlGN6MGTB2gkH4hyt+Vr9SZqdo5b6eGPjVUo/862mGO0vxSzRk3R1kbshTUK0iXPXOZTF4mpS9O19o31mrzB5t185c3q8uILg7z7F28V/Nvm6+KExXqc1MfJTyWoNJjpUqdmaqFdy9U2uw03bLgFrl6uzbrWk9L/SBVy59ervLC8hblaY5z3mCxcOFCPfbYYzpw4MC5Lg0AAAAAAAAAAAAAAAAAAAAAwFlX89QKJ2cnRSREKHN9ZpNy/Pyfn7XqxVUyuhl158o7FTE4wjbXf3J/fTj8Q617a508Qzw19MmhdeawmC36/IbPlbUhS5FDIzV5+WS5uLtIkuIfiteK51Yo5fUUfXb9Z5q6caoCuwfWmSc7NVvzJs6TucysMdPHKGFagm0u/qF4fTj8Qx1ccVDzb5uvSYsmNek6a9q1YJcW3beoyesMhtY5OeOcN1icPHlShw83r/sGAAAAAAAAAAAAAAAAAACcMnf83Dat35I3TwIAcKFLfvnUyRMxY2I0fuZ4bf5gc5MaLErySrTsqWWSpMHTBts1V0hS+IBwDX1yqJJfTlbSC0nqd2s/+UT41MqzaeYmZaRkSAZp/MzxtuaK0xJfTtTOeTtVsK9APzz+Q73/f1/80GKZy8zqNLiTXXOFJLn7u+ua967RrJGztPfbvdr51U71ubFPo6+1pvV/Xy9Juvi2izXg3gEK7hMsd393OZuc612TNjtNX0/5uln1fq1VGiyys7O1dOlS7dq1S0VFRTKbzfXGcnIFAAAAAAAAAAAAAAAAAAAAAOBCZrVaNf798Rp478Bmrd/w7gZVnqyUJA2cWneOgVMHKvnPyTKXm7Xu7XUa+87YWntIeT1FktT5ss4K7hNcK4ezi7Ni74pV0h+TtPfbvcrZmqOw2DC7mAPLDyhrQ9apmvfVvZeoxCgFdA9QQXqB1ry6ptkNFrlpuep9Q29NmD2h8YsMp661NbS4weKFF17Qm2++qerq6kbFW63WVjt+AwAAALiQHdt7TJv/t1n7vtun4sxiVZVUyTPUU76dfRV5WaS6XtlVXa/oWu/6I+uOaON7G5WRkqGSoyXyDPZUxJAIxT8Ur6jEqEbtwWK2aNPMTdo2e5vyd+fLXGGWb2df9by+pxKmJcgrzKuVrhYAAAAAAAAAAAAAAAC4cCS+lNii983v/HKnJMkvyk8B3QLqjPGJ8FFQryDl78rXri93aczfx9jVzFyfqeIjxZKk6Cuj660VMzpGSX9MOlV33s5aDRY75u2wjbteWf/7lbpe2VUF6QXK2ZKjgn0F9e7bEavFqm5Xd2vSmt439Fbng52bXKsuLWqwmDlzpl577TXbbTc3N/n5+cnV1bXeNSUlJTp27FhLygIAAAAXvNWvrtbqV1bLM8RTfW/pq8AegTKXm5W1IUs7vtihjDUZSp2Zqqfzn65zffKfTx0xaHQzasDUAQrpF6L8XflKnZmqnfN2auhTQzX6r6Md7qE0v1Rzxs1R1oYsBfUK0mXPXCaTl0npi9O19o212vzBZt385c3qMqLL2fgWAAAAAAAAAAAAAAAAAO1WS5orirOKdWzPqffch8WFOYwNHxCu/F35Ks4sVkF6gQJ7BNrmDq48aBs7yhMaGyqDk0FWi9VuzWmHVh6SJLn5ucmvi1+9ecIGnKlxcOXBZjVYBPYIlLnC3KQ1Lh4uDvfVFC1qsJgxY4YMBoP+8Ic/6N5771V0dP1dLafNnj1bU6ZMaUlZAAAA4IK27JllWvfXdep3az9d98F1cvFwsZvvf2d/zblmTr3rf/7Pz1r14ioZ3Yy6c+WdihgccWbt5P76cPiHWvfWOnmGeGrok0PrzGExW/T5DZ8ra0OWIodGavLyyXJxP7WP+IfiteK5FUp5PUWfXf+Zpm6cqsDugXXmAeaOn9um9SctmtSm9QEAAAAAAAAAAAAAAJrq6PajtrFPpI/D2JrzR3cctWuwyNueZxv7RvrWm8PoapRHsIdKckuUtyPPbq6qrErHDxxv1F5q1ji646iDyPrF3R2n3fN369KHL230msz1mdo0Y5Ou/9/1zapZk1NLFu/atUtTpkzRq6++2qjmCulUJ47Vam1JWQAAAOCCte+7fVr313UK7hus33z8m1rNFZLUbUw3dR3dVR6BHrXmSvJKtOypZZKkwdMG2zVXSKc61k83VSS9kKTizOI697Fp5iZlpGRIBmn8zPG25orTEl9OVEC3AJUXluuHx39ozqUCAAAAAAAAAAAAAAAAqEPhoULb2DPU02Fszfma65qaxyvUS5JUUVyhsuNltvuLMopktVjtYhqzl6JDRQ5j6xP/cLxcfVy1+OHFqjxZ2ag1BfsLtHXW1mbV+7UWnWBhNBo1bNiwJq25/fbbdfvtt7ekLAAAAHBBslqt+u7R7yRJw54dJmcX53pj7/jujjrv3/DuBtsLi4FTB9YZM3DqQCX/OVnmcrPWvb1OY98ZW2sfKa+nSJI6X9ZZwX2Ca+VwdnFW7F2xSvpjkvZ+u1c5W3MUFuv4OEIAAAAAAAAAAAAAAACgPTJXmFVdUW27XXmicW/8b66a+Y1ujt/yX/ODU3+9r4oTFY3OY3Q/M195olLu/u4t2kvN2k2x+pXVCo0N1eYPNivt4zR1ubyLAnsGytXbVQYnQ51rcrfmNqtWXVrUYNGvXz8VF9f9ibcAAAAAmubw6sM6tueYDE4G9Rjfo1k5dn65U5LkF+WngG4Bdcb4RPgoqFeQ8nfla9eXuzTm72NkMJx58ZG5PlPFR079nh99Zf0n1cWMjlHSH5NO1Z23kwYLAAAAAAAAAAAAAAAAXJBSXk9R8svJtttFat7pDI1VVVZlGzub6v+Q1l/PV5VW2c2Zy8wtztNae2msVS+tsr2XyWq1at/Sfdq3dF+zcjWHU0sWP/TQQ/r0009ltVobvWb58uUaNWpUS8oCAAAAF6TTzRG+XXzl5utmu99qtariREWDv3cXZxXr2J5jkqSwOMfNDuEDwk+tySxWQXqB3dzBlQdtY0d5QmNDbV3hNdcAAAAAAAAAAAAAAAAAF5JhfximZ4uetX09svORs1qv5kkQ1ZXVDiLt5108XOzmap5K0dw8rbWXprBarbb3Sp0eN/TVWlp0gsVtt92m9evX67rrrtM//vEPRUfX/+m2p+Xm5io5ObnBOAAAAKCjyf45W5Lk29lXVotVmz/crM3vb9YvP/8ii9kiJ6OTwgeFK/bOWA28b6CcXew7wo9uP2ob+0T6OKxVc/7ojqMK7BFou523Pc829o30rTeH0dUoj2APleSWKG9HXr1xAAAAAAAAAAAAAAAAQHtmdDXK6HrmrfemYtNZrWfyPpPfXG52EGl/wkTNdZLk6u3a6Dw1T7uomae5e6lZu6kmzJ6gi2+7uNHxabPT9PWUr5tdr6YWNVjcc889kqQtW7aoW7du6t27t3r27Clvb285OdV9OMb+/ftbUhIAAAC4YOVuy5UkWS1WfXLVJzqUdEixd8VqyBND5GxyVsbaDG3850YteXiJ0j5J06RFk+QR5GFbX3io0Db2DPV0WKvmfM11Tc3jFeqlktwSVRRXqOx4mdz93Ru4SgAAAADAhWzu+LltvQUAAAAAAAAAaPf8ovxs45LcEoexNedrrjt9O3N9pi3Op1P9H9p6MvekJMnVx9XuPUC+nX1lcDLIarHaYhqzF9+o+j/YtdUZ1GqnWLSoweKjjz6SwWCQdGpDO3fu1K5duxyusVqttjUAAADAhcpcYVZ1xZkj76pOVjmIlqpKq1RVciomY02GJOmmL25S34l9bTE9r+upPjf10UcjPlLm+kx9eeuXmrxssu3368oTlbZYo5vjX/VrHt1Xc50kVZyoaHSemscIVp6opMECAAAAAAAAAAAAAAAAaKGQfiG2cfGRYoexxZln5kP6htjNBfcLto2LjhQpfGB4nTnMFWaV5pWeWtM32G7Oxd1F/l39VbCvoEV7aazxM8crYkhEk9bEjI7RlKQpzar3ay1qsJCkwMBAeXo6/lTbmkpKSnTs2LGWlgUAAADOaymvpyj55WTb7SKnIofxFcUVdre7Xd3NrrnitE7xnXTJQ5do/d/X6+CKg9q7aK96XtdTkv0Re84mZ4f1as5Xldo3f9Q87q8leQAAAAAAAAAAAAAAAAA0nU8nHwX2CNSxvceUsyXHYWx2avapNRE+CugeYDcXPSpaSUqSJOVsyVGv63vVmSN3a66sFqttza9FjYpSwb4ClReWq/Bwofy6+DncS315GmPgvQObvMYzxFOeIY3vaXDEqaUJpk+froMHDzb66+9//3tr7BsAAAA4rw37wzA9W/Ss7evBrQ86jLdUW+xu95nYp97Yfrf2s43TZqfZxjVPpaiurJYjNeddPFzs5mqeStGSPAAAAAAAAAAAAAAAAACa5/T7hwoPFer4geN1xhRnFSt/d74kqfdNvWUwGOzmIxIi5BPhI0k6uOJgvbUOLD9Qq25NNT8o1lGe03NhcWEK6BZQb1xzlBwt0bH0Yyo5WiKr1dqquWtqcYNFUxkMhrN6QQAAAMD5wOhqlKuPq+3Lxctx84Grt6vd7dCLQ+uNDe0fKv3/10JZG7Ns95u8Tbaxudz862V2ap52UXPdr/fSUJ6ap138Og8AAAAAAAAAAAAAAACA5hn8+8EyeZ16P07q+6l1xmz+YLNklYxuRg19YmiteYPBoGHPDZMkZaRk2JoxarKYLdry0RZJUvdruyssNqxWTNcru6rT4E4O93J49WEd23tMkjT8+eENXF3jHEo+pM8nfK43/d/U2+Fv61+9/qW3w9/WXwP+qi9u/EKHVx9ulTo1tajBYtmyZbriiiuatOaGG27QwYP1d60AAAAAHZHJyyRnk7Pttpu/W72xRlej7cVTydES2/1+UX62cUluya+X2ak5X3NdU/OczD0pSXL1cZW7v7vDWAAAAAAAAAAAAAAAAACN4xniqdFvjZYkrX9nvbJ+yrKbz9mao7V/XStJGvnKSNtJFb826L5B6jyss2SVFt23yO6DWSVp1UurVJBeIDc/N415Z0y9+7n239fK6G5U5o+Z2vjeRru58sJyLXl4iSSpx7ge6nNT7VMwmsJqserbB77Vx6M+1p6Fe1ReVC6r1Wr7Ki8q1+6vd2vWyFn69sFvZam2tKheTcaWLG5qc4UkeXh4qEuXLi0pCwAAAFxwDE4GBfUOUu7WXEmSpaqBX/qtZ9adFtIvxDYuPlLscHlx5pn5kL4hdnPB/YJt46IjRQofGF5nDnOFWaV5pafW9A2uMwYAAAAAAAAAAAAAAADoqNJmp9nGuWm5tvH+Zftt79/xDPVUzOiYOtdf8sAlOpl7Uqv/vFqzRs7SwKkDFdw3WPm785U6M1VVJVUa8uQQDX2y9ukVpzkZnXTLgls0Z9wcZaRkaMagGYq7O04mT5PSl6QrfXG6PII8NPHLiQrsHlhvnvCB4Zr4xUTNv32+lv5+qTLWZChqVJTKjpUpdWaqCg8VKnpUtCbMmdDUb1Mt3z7wrTZ/sFlW66k3SXmFesknwkdGd6PMZWYVZxbbPhg2dUaqrBarxv93fIvrSi1ssKjLsWPHtH//fhUVFcnX11cxMTEKDKz/Gw0AAADglE6XdrI1WJzMOamgXkF1xlWVVqmypFKS5H2Rt+1+n04+CuwRqGN7jylnS47DWtmp2afWRPgooHuA3Vz0qGglKUmSlLMlR72u71VnjtytubJarLY1AAAAAAAAAAAAAAAAAM5YMHlBnfen/CXFNu5yeZd6GywkKfHFRMWMjtGGf2zQzi93qvT/SuUR5KGYq2IU/3C8okc2/L4djyAP3ZNyjzbN3KS0T9KU8nqKqiuq5dvZV0OfHqqERxPkHe7dYJ4e43roga0PaP309UpfnK493+yRi6eLQvqFaMSfRihuSpzdB8Y2x+E1h5X6fqpMXiZd9sxlipsSV+fpHMWZxdoya4vW/XWdNr+/WbGTY0+d1NFCrdZgMWvWLL377rvaunVrrbnY2Fg9+uijuvPOO1urHAAAAHDB6XNTH6XOTJUkZf2UpajEqDrjsjdn206w6HK5/elwfSb20ZrX1qjwUKGOHzgu/67+tdYXZxUrf3e+JKn3Tb1lMNi/qIlIiJBPhI+KM4t1cMVBJb6YWOc+Diw/YFcXAAAAAAAAAAAAAAAAwBkvWl9slTyRQyMVOTSyRTmcjE6KfzBe8Q/GtyiPX5Sfxk4fq7HTx7YoT31SZ6TKxd1Fd6++W2FxYfXG+UT4aMTzI9Tj2h7632X/06b/bmqVBgunliYoKSnRNddco3vuuUdbt26V1Wqt9bV161bdfffduuaaa1RaWtriTQMAAAAXoq5XdlVobKgkadvsbbYj7n4t7ZMzRwf++gXP4N8PlsnLJElKfT+1zvWbP9gsWSWjm1FDn6h9PKDBYNCw54ZJkjJSMmzNGDVZzBZt+WiLJKn7td0VFlv/ixkAAAAAAAD8P/buPS7qMv///3NgOJ9UzgoewvMRMRLJTCvSNk2trKw09WsHbVv7tFa7bbuubpsddtds2099ZNvSXK20tEx384QYmlqgoqKGeUBIEERBzgwzvz/4OULAcBpF5HG/3bzdrpnX63pd19uZmzLDvOYCAAAAAAAA0BCnvjml8OnhNpsrqgoKD9KgaYN06ptTdlm/2Q0WkydP1n//+19ZLBa5ublp6NChuu+++/Too4/qvvvu09ChQ+Xu7i6LxaKvv/5akydPtse+AQAAgOuOwcGgu//3bjk6OyorOUvb/7S9Rs6PG3+sbJCQFPU/UQqOCK4W9wjwUMybMZKkXYt2KeO7jGrxzP2Z2vHGDknSqD+NqvX4PEka8viQyo5ui7Tu8XUqLy6vFt/2x23KTc2VaztXjV40umkXDAAAAAAAAAAAAAAAAABVFGYVKmhw477sNTgiWIVZhXZZ39icyevWrdNXX32l4OBgvfHGG7r//vvl4uJSI6+0tFSrV6/WCy+8oK+++kpfffWVxo4d25ylAQAAgOtSaHSo7v/kfq2Zukbb5m1T2jdp6nlPTxldjTq947SSlyfLUmHR0DlDrY0UP3fjUzeqIKtA2xds19JRSxUxM0L+/fyVcyRHSbFJKi8s17C5wxQ9t+bpFZc4GB304JoHtWLsCqUlpGnJkCUKnx4uZw9npW5IVer6VLn7uWvS6kny7eF7pf46AAAAgDbDYrHou398p82/2azywnI9FveYuo7s2uD5p3ee1p539igtIU2FZwvl4e+hkGEhipwd2eA6ZpNZibGJOrD8gHKO5MhUapJPZx/1Gt9LUXOi5Bnk2aA6F05d0K63dunYhmPKO50nZ09nBfQL0KDHBmnQ1EEyOBgafF0AAAAAAAAAAKBtMboaVVZQ1qg5ZQVlMro2qzXi8vrNmbx06VK1b99e3377rTp37lxnnouLix555BHdcsstGjx4sD744AMaLAAAAIA69J7QW0+nPK1diys/kLT1pa0yV5jlFeylQVMG6cbZN6pTZCebNUbOG6mwmDDtfnu3UlanqOjdIrn7uSvszjBFPh2pbqO61bsPdz93zUiYocTYRCV/lKyEhQmqKK2QT2cfRb8Qrahno+QV7GWvywYAAADarNwfc/XljC91anvTjq6OXxCv+PnxMroaNXjmYAX0D1DO4coG65RVKYp+Ploxb9TeoH1JUU6RVoxdoYzdGfLr7aebX7xZzp7OSl2fqh2v7dDe9/fqgdUPqMuILjbr/LD+B33+8OcqvViqvvf3VdT/RKnoXJGSYpP0xfQvlLw8WQ+ueVAuXjW/rAkAAAAAAAAAAKB9WHsd+fyIouZENXjOkc+PqH1Ye7us36wGi127dmnGjBk2myuq6ty5s2bMmKGVK1c2Z1kAAADguucd4q0737xTd755Z5NrhEaHKjQ6tFn7cDA6KHJWpCJnRTarDgAAAICaqp5a4eDooJCoEKXvSm9Uje/f+17b5m2T0dWoqVunKmRoiDU2cMpAfXDLB9r55k55BHjUeYqd2WTWJxM/UcbuDIVGh2rK5ilycnOSJEXOjtSWl7YoYWGCPh7/sWbumVnnKXZnks5o1aRVMhWbNPqt0dV+8RE5O1If3PKBTmw5oc8f/lyT101u1HUCAAAAAAAAAIC2ocfdPfTNK99o0wubdPvC2+Xg6FBnrsVs0ebfbFZaQppG/H6EXdave7UGyMnJUd++fRs1p0+fPsrJyWnOsgAAAAAAAAAAtHrx8+P1n2f+o87DO2vWwVkKGx3WqPmF2YXa9PwmSdLQOUOrNVdIUvDgYGtTRdzv45Sfnl9rncTYRKUlpEkGaVzsOGtzxSUj549Uh+4dVHKhRBuf21jnftbPXi9TsUmdhnaq8a1Sbu3d9It3fiFJ+uGrH5TyWUqjrhUAAAAAAAAAALQNUXOi5OLtom//+q3e6fmOtvxui46sPaKM7zJ09uBZ/fT9Tzqy9oi2vrxVf+/5d33712/l4uOiob8aapf1m3WChaenZ6ObJc6dOydPT8/mLAsAAAAAAAAAQKtnsVg07p/jFPH/Ipo0f/fi3SorKJMkRcysvUbEzAjFL4iXqcSknX/dqTGLxtTYQ8LCBElS55s7y7+vf40ajk6OGjRtkOJejtMPX/2gzP2ZChoUVC3n+ObjytidUbnm47XvpevIrurQo4NyU3P1zSvfqO99jfsCJwAAAAAAAAAAcP1z6+Cm+z+9XyvHrdSFkxe047UddeZaLBY5Ojtq0qeT5NbBzS7rN+sEi969e2vlypUym80NyjebzVqxYoV69+7dnGUBAAAAAAAAAGj1Rv5xZJObKyQpZXXlKRDturZTh+4das3xDvGWX28/SdLh1YdlsViqxdN3pSv/dOXJFt3u6FbnWmExl0/XSFlV8/SJQ6sOWcc33HFDnXUuxTL3ZSr3WG6deQAAAAAAAAAAoO0KiwnT9G+my6+PnywWS51//Pv6a/o3023+bqKxmnWCxYQJE/TCCy/o0Ucf1f/+7/+qXbt2debm5eXpqaeeUnJyst54443mLAsAAAAAAAAAQKtnMBiaPDc/I1/njp6TJAWFB9nMDR4crJzDOcpPz1duaq58e/paYye2nrCObdUJHBQog4NBFrOl2pxLTm49KUlybeeqdl3a1VknaPDlNU5sPVFnYwgAAAAAAAAAAGjbOkV20uyDs3V883Ed33xcuam5Kr1YKhcvF7Xv3l5hMWF2bay4pFkNFrNnz9bixYv1ySefaMOGDbr77rsVGRmpTp06yc3NTSUlJUpPT9f333+v9evXKz8/X506ddLs2bPttX8AjXBg5QFl/C1DDpZmHV7TLJPXTW6xtQEAAAAAAIDrxdmDZ61j71Bvm7lV42cPna3WYJF9MNs69gn1qbOG0cUod393FWYVKvtQdrVYeXG5zh8/36C9VF3j7KGzNjIBAAAAAAAAAAAqT8e+Eo0UdWlWg4W7u7u+/PJL3X777bpw4YI+/vhjffzxx7XmWiwWtW/fXuvWrZObm1tzlgUAAAAAAAAAoE27cPKCdewR6GEzt2q86rzG1vEM9FRhVqFK80tVfL5Ybu0r3+vPS8uTxWyx5jR0L3kn82zmAgAAAAAAAAAANERhdqFyDueoy4guza7V7K+xHzx4sPbu3asxY8bIYrHU+eeuu+5SUlKSBg0a1OxNAwAAAAAAAABwLTGVmlSaX2r9U15QfkXXK7tYZh0bXW1/l5KTm1Ot8ySp9GJpg+sY3S7Hq9Zp6l6qrg0AAAAAAAAAANBUP278UUtHLbVLrWadYHFJly5dtGHDBh07dkybN29WamqqLl68KC8vL3Xv3l133HGHevToYY+lAAAAAAAAAAC45iQsTFD8/Hjr7TyHK3s6Q3nx5QYOR2dHm7lV4+VF1Rs/TMWmZtex114AAAAAAAAAAABaml0aLC7p3r27unfvbs+SAAAAAAAAAABc84b/driGPTfMejstLU2LBiy6YutVPQmioqzCZm7VuJO7U7VY1VMpmlrHXnsBAAAAAAAAAABtx7Gvj+n7d79XxOMR6nl3T+v9i29Y3Oha5YX2+1InuzZYNERxcbGys7PVuXPnq700AAAAAAAAAABXhNHFKKPL5bfcnTyvbPOAs5ezdWwqMdnIrH7CRNV5kuTi5dLgOlVPu6hap6l7qbo2AAAAAAAAAABoW9Y8ukbFucU6veO0ns9+3nr/hZMXmlTPYDDYZV9XvcHi888/19SpU1VRYftbrAAAAAAAAAAAQO3adW1nHRdmFdrMrRqvOu/S7fRd6dY8707eddYpyCqQJLl4u8itvZv1fp/OPjI4GGQxW6w5DdmLT1cfm7kAAAAAAAAAAOD61T6svYrOFal9WPsasS63dFH7G2reX5fzx88rLSHNLvu66g0WAAAAAAAAAACgeQL6B1jH+afzbebmp1+OB/QLqBbz7+9vHeedzlNwRHCtNUylJhVlF1XO6edfLebk5qT2N7RX7rHcZu0FAAAAAAAAAAC0HY9+/ahObDmhbrd1qxEb8uQQDXh4QINrJf87+eo2WNx22212WUySsrKy7FYLAAAAAAAAAIC2yLuTt3x7+urcD+eUuS/TZu6ZpDOVc0K81aFHh2qxbrd1U5ziJEmZ+zLVe3zvWmtk7c+SxWyxzvm5rrd1Ve6xXJVcKNGFUxfUrks7m3upqw4AAAAAAAAAAGgbXH1c1efePnarZ7FY7FKnQQ0W27Ztk8FgaPail2oYDIZm1QEAAAAAAAAAoK3rO6mvvvnzN7pw8oLOHz9f61HZ+Rn5yjmSI0nqc3+fGu/Ph0SFyDvEW/np+Tqx5YRGzhtZ61rHNx+vtu7P9ZvUT0lLkiRJJ7ac0OAZg2utc2LLCUlSUHiQOnTvUGsOAAAAAAAAAABou+aZ5zV6zsBHBmrgIwPtsn6DGiwkqVevXgoMDGz2gllZWTp69Giz6wAAAAAAAAAA0JYN/dVQ7V68W2UFZUr6Z5Juf/X2Gjl7398rWSSjq1HRv46uETcYDBr+0nBtmL1BaQlpyjmSI7/eftVyzCaz9n24T5LU4+4eChoUVKPODXfcoE5DOyljd4aS/plUa4PFqe2ndO6Hc5KkW353S1MuGQAAAAAAAAAAXOfy0vLk7u8uJzenenO/nPmljK5GDf5/gxU8ONgu6ze4weLll1/Www8/3OwFly9frscee6zZdQAAAAAAAAAAaMs8AjwU82aM1s9ar12Ldqn3xN7qFNnJGs/cn6kdb+yQJI360yh5h3jXWmfI40N0cMVBpSWkad3j6/Toxker/dJi2x+3KTc1V67tXDV60eg693P3/96tfw3/l9K/Tdeed/bopl/eZI2VXCjRhqc3SJJ6ju2pvvfXPAUDAAAAAAAAAABgcbfFmvjRRA14eEC9uafiTyn3x1wlLknUtPhpCh0W2uz1G9xgYS8Gg0EWi+VqLwsAAAAAAAAAwDUneXmydZyVnGUd/7jpR+Wn50uSPAI9FBYTVuv8G5+6UQVZBdq+YLuWjlqqiJkR8u/nr5wjOUqKTVJ5YbmGzR2m6Lk1T6+4xMHooAfXPKgVY1coLSFNS4YsUfj0cDl7OCt1Q6pS16fK3c9dk1ZPkm8P3zrrBEcEa9Knk/T5I5/rP7/6j9K+SVPX27qq+FyxkmKTdOHkBXW7rZvuXXFvY/+aAAAAAAAAAABAG9GYXoNH/vuIfvruJ3393NeK/2O8Hv360Wav36AGixMnTsjf37/Zi0nSxIkTdeLECbvUAgAAAAAAAACgNVszZU2t9ye8mmAdd7m1S50NFpI0ct5IhcWEaffbu5WyOkVF7xbJ3c9dYXeGKfLpSHUb1a3efbj7uWtGwgwlxiYq+aNkJSxMUEVphXw6+yj6hWhFPRslr2Cveuv0HNtTT+1/Srve2qXU9ak6+uVROXk4KaB/gEb8YYTCHwuXwcFQbx0AAAAAAAAAAID6dAjroA5hHZSfka+db+60S80GNVh06dLFLotJkru7u13rAQAAAAAAAADQWs2zzLNLndDoUIVGN+/YawejgyJnRSpyVmSz6rTr2k5j3hqjMW+NaVYdAAAAAAAAAACAhiq5UGKXOg1qsLBlx44dOnfunCTJyclJd911V42ct956Sx4eHnrsscfk7Ozc3CUBAAAAAAAAAAAAAAAAAAAAAEArlpWcpcx9mTXuP/XNKZlN5nrnV5RXKO9Unr773+/kHeJtlz01q8Hi/PnziomJUWlpqSTJx8dHubm5NfJ2796tTz/9VH/5y1/0xRdfqHfv3s1ZFgAAAAAAAAAAAAAAAAAAAAAAtGKH1xzW9gXba9yftCRJSUuSGlzHYrFoyJND7LKnZjVYrF69WiUlJXJyctKsWbM0YcKEWvOeffZZOTo6auXKlbrzzjt14MAB+fj4NGdpAAAAAAAAAAAAAAAAAAAAAADQilkslgbdVxe39m4aOHWgRv5xpF3206wGi40bN8poNCouLk7R0dF15g0dOlRDhw7Vvffeq/vvv19vvfWW5s2b15ylAQAAAAAAAAAAAAAAAAAAAABAKxX1bJTCp4VfvsMiLb5hsca8NUa9xveyOddgMMjJ3Unufu523VOzGiz27t2rBx980GZzRVX33nuvJk6cqLVr19JgAQAAAAAAAAAAAAAAAAAAAABAG+Xq4ypXH9ca97v7uatdl3ZXf0OSHJozOTMzU0OGDGnUnOHDh+vYsWPNWRYAAAAAAAAAAAAAAAAAAAAAAFxnHot7TDfccUOLrd+sEyzMZrM8PT0bNcfLy0sVFRXNWRYAAAAAAAAAAAAAAAAAAAAAAFxnut7atUXXb9YJFsHBwfruu+8aNee7775TcHBwc5YFAAAAAAAAAAAAAAAAAAAAAADQgZUH9CfnP9mlVrMaLG655RYtW7ZMu3fvblD+nj17tHTpUo0YMaI5ywIAAAAAAAAAAAAAAAAAAAAAAMhitshSYbFLLWNzJs+ePVvLli3T7bffrueee05TpkxRjx49auQdO3ZMH330kf72t7+pvLxcs2bNas6yAAAAAAAAAAAAAAAAAAAAAADgOvPFjC8aPef88fN2W79ZDRY33XSTnnnmGf3973/Xn//8Z/35z3+Wt7e3OnXqJFdXV5WUlCgjI0P5+fmSJIvFol/96le66aab7LJ5AAAAAAAAAAAAAAAAAAAAAABwfdj34T4ZDIZGzbFYLI2eU5dmNVhI0qJFi+Tg4KDFixdLkvLy8qwNFVLlZi/5n//5H7355pvNXRIAAAAAAAAAAAAAAAAAAAAAAFyH3Hzd5OzhXGvMXGFWaX6pSvNLJUmuPq5ybedqt7Wb3WDh4OCgRYsWafLkyXr77be1efNmnT171hoPCAjQHXfcwckVAAAAAAAAAAAAAAAAAAAAAADApjFvjdGAhwfYzCnIKtCRtUe0e/FujVowSn3v72uXtZvdYHHJTTfdpOXLl0uSLl68qIsXL8rLy0teXl72WgIAAAAAAAAAAAAAAAAAAAAAALRxnoGeuvHJG9V7fG+9P+x9+XTxUafITs2ua7cGi6porAAAAAAAAAAAAAAAAACqK8op0qFVh/Tj1z8qc2+mCrIKZHAwyDPQU51u6qQBjw5Qz7E9ZTAY6q11eudp7Xlnj9IS0lR4tlAe/h4KGRaiyNmR6jqya4P2YzaZlRibqAPLDyjnSI5MpSb5dPZRr/G9FDUnSp5Bns28YgAAAABonN9e/K2Mrg1vc/AM8tSgaYOU8GqCHlzzYLPXvyINFgAAAAAAAAAAAAAAAAAu2zh3o777x3cylZjk7u+uAY8MkG8PX1ksFp2MO6mU1Sk69OkhdbutmyatmiS3Dm511opfEK/4+fEyuho1eOZgBfQPUM7hHCXFJillVYqin49WzBsxNvdTlFOkFWNXKGN3hvx6++nmF2+Ws6ezUtenasdrO7T3/b16YPUD6jKii73/KgAAAACgTs4ezo2e065LO33/v9/bZX0aLAAAAAAAAAAAAAAAAIArLHl5skwlJnW5tYse+uIhufq4WmM3PX2TfvjqB3084WOd2HpCK8et1PRvpsvgUPMki+/f+17b5m2T0dWoqVunKmRoiDU2cMpAfXDLB9r55k55BHgoem50rXsxm8z6ZOInytidodDoUE3ZPEVObk6SpMjZkdry0hYlLEzQx+M/1sw9M+Xbw9fOfxsAAAAAYD+5x3JVml9ql1o0WAAAAAAAAAAAAAAAAKDVWzluZYutfa74XIPyHIwOmrhsYrXmikt6ju2piJkRSvy/RJ3eeVqHPj2k/g/1r5ZTmF2oTc9vkiQNnTO0WnOFJAUPDlb03GjFz49X3O/j1P+h/vIO8a6xVmJsotIS0iSDNC52nLW54pKR80cqZVWKco/lauNzGzV53eQGXR8AAAAAXG2nvjml7/7xnXw6+9ilHg0WAAAAAAAAAAAAAAAAwFUQFB5k80M/fe7ro8T/S5Qk/bDuhxoNFrsX71ZZQZkkKWJmRK01ImZGKH5BvEwlJu38606NWTSmWtxisShhYYIkqfPNneXf179GDUcnRw2aNkhxL8fph69+UOb+TAUNCmr4hQIAAABAE30x44t6c8zlZpVcKFH24WxdOHFBknTjrBvtsj4NFgAAAAAAAAAAAAAAAMAVdt/K++Tu624zp12XdtZxXlpejXjK6pTKvK7t1KF7h1preId4y6+3n3IO5+jw6sMa/bfRMhgM1nj6rnTln86XJHW7o1udewmLCVPcy3GV665KocECAAAAwFWx78N91V7D2GKxWCRJodGhuuV3t9hlfRosAAAAAAAAAAAAAAAAgCus26i6mxkuKblQYh07eThVi+Vn5Ovc0XOSKk/CsCV4cLByDucoPz1fuam58u3pa42d2HrCOrZVJ3BQoAwOBlnMlmpzAAAAAOBKc/N1k7OHc51xB6ODXHxc5NfLTz3H9VS/B/rJ4NCwpoz60GABAAAAAAAAAAAAAAAAXAPOnzhvHXcZ0aVa7OzBs9axd6i3zTpV42cPna3WYJF9MNs69gn1qbOG0cUod393FWYVKvtQdp15ANq2leNWtuj6k9dNbtH1AQDAlTHmrTEa8PCAFlnboUVWBQAAAAAAAAAAAAAAAFDNkTVHJElGV6PCp4VXi104ecE69gj0sFmnarzqvMbW8Qz0lCSV5peq+HyxzVwAAAAAuB5wggUAAAAAAAAAAAAAAADQCOYKsyxmy+XbJnOzaxaeLdTRL45KkobNHSavjl7V4mUXy6xjo6vtj/w4uTnVOk+SSi+WNriO0e1yvOximdzau9nMBwAAAIDmmnNijjz8bTeDX0lXtMHi4sWLKigokI+Pj9zd3a/kUgAAAAAAAAAAAAAAAMBVkXssV7mpudbbecprds1Nz2+SqcSk4IhgjXh5RI14eXG5dezo7GizVtV4eVF5tZip2GSXOgAAAABwJbTr0q5F17d7g8XFixf16quvauXKlTp9+rT1/rCwME2bNk2//vWv5eLiYu9lAQAAAAAAAAAAAAAAgKuiQ/cOan9De+vt3JJcKb7p9ZKXJ2v/sv3yCPDQA589IKNLzY/0VD2VoqKswma9qnEnd6dqsaqnUjSnDgAAAABcDae/Pa1T20/pwokLKrtYJmcvZ7Xr1k5dRnRR6LBQu69n1waLzMxMjRgxQj/++KMsFku12LFjx/T73/9ea9as0datW+Xl5VVHFQAAAAAAAAAAAAAAAODa5eDoIFU5/MHB5NDkWqe2n9K6x9fJxdtFD294WO26tqs1z9nL2To2lZhqzbmk6mkXVedJkovX5S9Gra9O1dMufl4HAAAAQN3WTlur/Uv3N2pOr/G99NDah6y3L5y8oMXdFjdobuTTkfrFO7+wmWM2mZUYm6gDyw8o50iOTKUm+XT2Ua/xvRQ1J0qeQZ6N2u+VdiLuhP7zzH+Uczinzhy/Pn76xTu/UNeRXe22btNf3dXiueee07Fjx3Tfffdp06ZNOnPmjEpLS/XTTz/pv//9r8aOHavExEQtWLDAnssCAAAAAAAAAAAAAAAArU7GngytHLdSjs6OevTrR9VxSMc6c6s2XhRmFdqsWzX+84aNxtQpyCqQJLl4u8itvZvNXAAAAADN4xHoccVqF+UU6V/D/6UNszeoOLdYN794s2LeiFH7bu2147Udenfguzq1/dQVW7+xvn/ve30U85FyDufIYrHU+Sc7JVvL7lim7//ve7utbbcTLEwmk9asWaMnn3xS7777brVYUFCQgoKCdOedd2ry5MlatWqV3nzzTbusm5OTo8WLF2vNmjU6efKknJ2d1atXL02ePFlPPfWUnJ3t3z1/5swZ9enTR3l5eZJU47QOAAAAAAAAAAAAAAAAwJafEn/S8tHLZbFYNGXjFIVEhdjMD+gfYB3nn863mZuffjke0C+gWsy/v791nHc6T8ERwbXWMJWaVJRdVDmnn3+tOQAAAABse/rw0/XmLB+zXHmn8hQ+LbzW+G2v3qY+E/vYrOHa3rXOmNlk1icTP1HG7gyFRodqyuYpcnJzkiRFzo7Ulpe2KGFhgj4e/7Fm7pkp3x6+9e75Ssr4LkMbfrlBFrNFnoGe6jWhl4IjguXdyVtGV6NMJSblZ+TrTNIZHVlzRIVnC/WfX/5HHYd0VMcb625ab6gGNVg8++yzWrBggby9vevMuXDhgkpLSxUTE2OzVkxMjNasWdO4XdZhz549mjBhgs6cOaOYmBjNmjVLxcXFWrp0qebMmaMPP/xQX331lTp2bP5fVFVPP/20tbkCAAAAAAAAAAAAAAAAaIwze8/oo5iPZDaZ9ejXj9bbXCFJ3p285dvTV+d+OKfMfZm26yedqZwT4q0OPTpUi3W7rZviFCdJytyXqd7je9daI2t/lixmi3UOAAAAgMbz6+1nM35652nlncpTwIAAhQ4LrTXHK9ir3jq2JMYmKi0hTTJI42LHWZsrLhk5f6RSVqUo91iuNj63UZPXTW7yWvaw882dspgtuumZmxTzeoyMrnW3PIxZNEabXtikPe/s0Y43dmjSp5Oavb5DQ5Lefvtt9e7dW8uXL68zp3379nJ1ddWmTZts1tq4caOCgoIat8tapKWlaezYsTpz5oyeffZZbdy4UU8//bTmzp2r77//XqNGjdLevXt1zz33qLS0tNnrXfLZZ5/ZrUEEAAAAAAAAAAAAAAAAbUtWcpY+ivlIFWUVeuQ/jyg0uuaHqLbN36YlNy6pcX/fSX0lSRdOXtD54+drrZ+fka+cIzmSpD7395HBYKgWD4kKkXdI5Zesnthyos59Ht98vMa6AAAAABrGr7efutzapd68xCWJkqQhTwy5IvuwWCxKWJggSep8c2f59615Op2jk6MGTRskSfrhqx+Uud92Q/eVlvZNmrre2lV3Lb7LZnOFJBldjbrr7bvU5ZYuOrX9lF3Wb1CDxSuvvKL8/Hw99thjGjFihA4cOFAjx9HRURMmTNCSJUs0efJkxcXFKTs7WxUVFTp79qw2bdqkiRMnatWqVZo0qfmdIc8//7yys7PVuXNnvfbaa9ViLi4uio2NlaOjoxITE/XOO+80ez2p8pSOZ555RiEhIYqIiLBLTQAAAAAAAAAAAAAAALQNZw+e1bLbl8lUbNIjGx5R5+Gda827cOKCziSeqXH/0F8NlbOnsyQp6Z9Jtc7d+/5eyVL5QaPoX0fXiBsMBg1/abgkKS0hzdqMUZXZZNa+D/dJknrc3UNBg5r/ZaoAAABAWzL8N8M1bds0mzkleSVKWZUiJ3cnDZwy8IrsI31XuvJP50uSut1R98l0YTFh1nHKqpQrspeGKrlQot731n7SXl363N9HJRdK7LJ+gxosXnrpJR0+fFjjx49XQkKChgwZomeffVb5+fnV8v72t7+pW7du+uSTT3THHXcoKChIzs7OCg4O1pgxY/TFF18oPDxcf/jDH5q16dTUVK1atUqSNHXqVLm4uNTICQsL06hRoyRJr7/+ukwmU7PWlCqbOs6cOaN//OMf8vLyanY9AAAAAAAAAAAAAAAAtA3ZKdladvsyFeUUadjcYbKYLTq57WStfwoyC2qt4RHgoZg3YyRJuxbtUsZ3GdXimfszteONHZKkUX8aZT2p4ueGPD6ksrnDIq17fJ3Ki8urxbf9cZtyU3Pl2s5VoxeNbu6lAwAAAKhF8kfJKi8qV78H+8nVx7VBc8wms8oKyxq8xomtl0+tCwqvu3E6cFCgDA6GGnNagkegh5zcnBo1x8nNSe5+7nZZ3/aZGVWEhobq888/19dff61nnnlGb7/9tj799FO9/vrrmjJliiQpKChISUlJeuWVV/Txxx8rPT3dOj8sLExTp07V888/L1fXhj0B6rJ69WpZLBZJ0h133FFnXkxMjDZv3qzs7Gxt27bNZm594uPj9f777+v+++/XPffco7/97W9NrgUAAAAAAAAAAAAAAIC2w1Ri0rLbl6nwbKEkafuC7dq+YHuTat341I0qyCrQ9gXbtXTUUkXMjJB/P3/lHMlRUmySygvLNWzuMEXPrXl6xSUORgc9uOZBrRi7QmkJaVoyZInCp4fL2cNZqRtSlbo+Ve5+7pq0epJ8e/g2aZ8AAAAAbEuKrTyVbsgTQ2zmnT10Vp89/JnSEtJ08aeLslRY5OTupJCoEA14dIAGTRkkB2Pt5y5kH8y2jn1Cfepcw+hilLu/uwqzCpV9KLvOvKuh223dlL4rXREzIxo8J313ukKjQ+2yfoMbLC4ZPXq0Dh48qDfeeEMLFy7UtGnTFBsbq3/84x8aMGCAvL299cYbb+iNN95Qfn6+CgoK5O3tLU9PT7tsWJK2bt1qHYeHh9eZN3jw4GpzmtpgUVJSoscff1w+Pj76+9//3qQaAAAAAAAAAAAAAAAAaJtMJaY6T6VoipHzRiosJky7396tlNUpKnq3SO5+7gq7M0yRT0eq26hu9dZw93PXjIQZSoxNVPJHyUpYmKCK0gr5dPZR9AvRino2Sl7BXnbbMwAAAIDL0nelKys5S4EDAxUSFWIz99u/fCvfnr666Zc3ya+PnypKK3Rq+yklxSbpxNYTSlqSpAc+f6DWn98vnLxgHXsEethcxzPQU4VZhSrNL1Xx+WK5tXdr0rU1V/Tz0fpX9L80cMpAdb21a735aQlpOrD8gKZumWqX9RvdYCFJzs7OevnllzV16lT96le/0pdffqkhQ4Zo9uzZWrBggby9K48X9Pb2to7t6eDBg5IkLy8v+fjU3UkTGnq5C+XQoUNNXm/+/PlKTU3VkiVLFBRU99EoAAAAAAAAAAAAAAAAwM+5tnPVPMs8u9YMjQ5t9je0OhgdFDkrUpGzIu20KwAAAOD6ZCo1qaK0wnq77GJZs+olLkmUJEU8Uf8pDX3u66N7/32vjC6XP/rf9/6+Cp8erqUjlyp9V7pWjlupGTtmVMuRpNKLpdax0dV264DR7XK87GJZizVY+Pfx1wOfPaA1U9ao57ie6vdAPwUOCJRre1cZDAZZLBaVXCjR2YNnlbIqRfs+2Ke7/n5Xy51gUVXnzp21du1a/ec//9Ezzzyjt99+W59++qlef/11TZkyxS4b/LnS0lJlZmZKkgIDA23mVo2fPHmySevt379ff/nLXzRixAjNnDmzSTUAAAAAAAAAAAAAAAAAAAAAAK1TwsIExc+Pt97OU16Ta5Xml+rQJ4fk5O6kgY8OrDPPO8Rbc07MkVcnLzk6OdaIBw8O1og/jNCmuZt0JvGMvn/ve0XNiaqWYyo2WceOzjVrVFU1Xl5U3tDLabIFjgvqzUl8L1GJ7yXWm/fVk1/pq6e+0h9Mf2j2vprVYHHJXXfdpZSUFL322mt67bXXNG3aNMXGxuof//iHBgwYYI8lrC5evGgdu7q62sx1c7vcNVN1XkNVVFTo//2//ydHR0ctWbJEBoOh0TVqk5eXp9zcXOttFxcXubi42KV2fcwG81VZB9cei8EiiyyyGCwyq+WeByaTqf4kXJdMJpPMZjPPAbQYnoNoaWYzP4e1ZbwGaDkt+e8+//eA5wB4DrRtPP7gNUDbdv78ebm7u1tvX83XAC2ttbwGuVbeM0f9eKxaDx6r1oXHq/XgsWo9LAZLS28BLaglfw/Q1rWW1yA/x7/v9tPW3n/jfUc0Fc8dNBXPncuino9S5K8un/z2008/adGARU2qlbw8WeVF5QqfHi5Xn7o/D+9gdFC7ru1s1ho8fbA2Pb9Jskj7/rWvRoNF1VMpKsoqfj69mqpxJ3cnm7n2YLHY93WUQfb5rH+jGywsFotSU1N17tw5ubu7q0ePHnJ3d5ezs7P+8Ic/aOrUqXrmmWe0fv16DRkyRLNmzdKf/vQneXt722XDxcXF1rGzs7PN3KrxoqKiRq+1aNEiJSYm6k9/+pN69erV6Pl1CQ8Pr3b7scce07Rp0+xW35bc4Nz6k3BdssiiYq9i5SrXbv+ANEVCQkKLrY2WZTablZRiV0MAAQAASURBVJaWJklycHBo4d2gLeI5iJZ27ty5lt4CWhCvAVpOS/78yf894DkAngNtG48/eA3Qtg0cWP0bx67ma4CW1lpeg1wr75mjfjxWrQePVevC49V68Fi1HheLG//Fn7h+tOTvAdq61vIa5Of4991+2tpnkXjfEU3FcwdNxXOnblUbbBsrcUnliQxDnhzS7H24dXBT+xva6/yP55V1IEtlBWVy9rz8GXoXr8uNv6YS240yVU+7cPay/Tl9e+lzbx8FDAhodp2zyWd1ZO0RO+yoEQ0W+fn5+v3vf6+lS5dWOw3CwcFBd9xxh1599VUNHjxYXbt21bp16/TVV19pzpw5+vvf/65PP/1Ur7/+uqZOndrsDVc9laKsrMxmbtV41W+KaogTJ05o3rx56tevn1588cXGbbIe+/btU2hoqPX21exaz/hbxlVZB9cei8GiXOWqQ2YHGSwt98Js+PDhLbY2WtalDtbo6GgZjXY5QAloFJ6DaGmXXmyibeI1QMtpyZ8/+b8HPAfAc6Bt4/EHrwHatuTkZHXq1Ml6uy19e21reQ1yrbxnjvrxWLUePFatC49X68Fj1YoU15+C61dL/h6grWstr0F+jn/f7aetfRaJ9x3RVDx30FQ8d+qWnp7etHm705W1P0uBgwIVMjTELnvxCPDQ+R/PSxapIKtAHTw7WGPturZT+q7KvRZmFcq7U92HJhRkFUiSXLxd5Nberc48e+pzbx8NeHhAs+sk/zv56jZYnD9/XsOHD9eRI0dksVjk5OQkPz8/5eXlqaioSF9//bW2bdumDRs2aNSoUZKksWPHKiYmRq+++qrefPNNTZ8+XbGxsfrHP/5R45ubGsPLy8s6LikpsZlb9bSLqvMa4oknnlBJSYliY2Pl5GTfI058fHzUoUOH+hOvAAcL3WNtlVlmGWSQwWJo0ecB/8G2bQ4ODjIajTwP0GJ4DqIl0cXftvEaoOW09L/5/N8DngPgOdC28fi3bbwGaNvat2/fYq8BWlpreQ1yrbxnjvrxWLUePFatC49X68Fj1XrwAem2rSV/D9DWtdZ/G/n33X7a4ntvvO+IpuK5g6biuVO7pv59WE+veKL5p1dcYjFbrGMHx+o/W/j397eO807nKTgiuNYaplKTirKLKuf08681x97adWlX7bSN5nD2dJZPZx+71GrQIztv3jwdPnxYM2fO1DPPPKMBAy53ifz0009aunSpXn31VT3++OM6duyYNebi4qL58+dr2rRpeuaZZ7RhwwbdeOONmjVrlhYvXtykDbu4uCgoKEiZmZnKysqymVs13rVr1wavsWzZMm3evFlTpkxRjx49lJOTUyOnvLzcOq4ad3Jyko+PfR4cAAAAAAAAAACAxlg5bmVLbwEAAAAAAAAAUIvS/FId+uSQnNydNPDR+g8s2P7KdgUMCFDv8b1t5hVkVp48YXAwyCPAo1qs223dFKc4SVLmvsw6a2Xtz7I2anS7rVu9e7OHOSfm2K1W7/G96/17aqgGtb+uXbtWM2bM0JIlS6o1V0hSx44d9dvf/lbvvvuuTpw4oeTk5Brzu3Xrpq+++kpr1qxRp06d9M477zRr0/3795ckXbx4UXl5eXXmVT16pV+/fg2uv3XrVknSRx99JH9//1r/7Ny505pf9f7x48c39nIAAAAAAAAAAAAAAAAAAAAAANex5H8nq7ywXP0e6icXb5d68+N+H6fv3/3eZs7FMxeVd6ry8/TBEcFycneqFg+JCpF3iLck6cSWE3XWOb75uHXcd1Lfevd2rTm++biW3rbULrUadILF2bNnFR0dbTNn2LBhslgsOnv2bJ0548eP1+jRo/Xqq682bpc/c9ttt2nz5s2SpH379unWW2+tNS8pKananIZ64YUX9Oijj9rM+fWvf21tJtm0aZP1/vbt2zd4HQAAAAAAAAAAAAAAAAAAAADA9S8ptvKz7Tc+eWOD55zeeVql+aV1NmR8/97lBoyIJyJqxA0Gg4a/NFwbZm9QWkKaco7kyK+3X7Ucs8msfR/ukyT1uLuHggYFNXh/14qCrAKdij9ll1oNarDo1KmT1q9frxkzZtSZs27dOhkMBnXs2NFmLVdXVy1YsKBxu/yZ+++/X7/73e9ksVi0ZcuWOhssLjVh+Pn5aeTIkQ2u37dvX/Xta7vzpmojxR133NHg2gAAAAAAAAAAAAAAAAAAAACAtiPjuwxl7s1U4KBAdbqpU4PnlV0s07on1mnisolydHasFvtx44/a8foOSVKXEV00ePrgWmsMeXyIDq44qLSENK17fJ0e3fionNwun3Sx7Y/blJuaK9d2rhq9aHQTrq5pzBVmnT1wVgH9A+RgdLDev3/Z/kbXOr3ztN321aAGi4ceekgLFy7UL37xCz399NOKiIiQv7+/8vLylJqaqmXLlik2Nlb9+vWrtzHBHnr06KFJkybp008/1UcffaSXX35Zzs7O1XKOHz+urVu3SpJefPFFGY3VL/XgwYO69957VVRUpBUrVmjEiBFXfN8AAAAAAAAAAEjS2mlrtX9p435B0Gt8Lz209iHr7QsnL2hxt8UNmhv5dKR+8c4vbOaYTWYlxibqwPIDyjmSI1OpST6dfdRrfC9FzYmSZ5Bno/YLAAAAAAAAAAAqJS5JlCQNeXJIg+cEDgpU1v4sHfrkkM4knlG/h/qp/Q3tVV5YrpPbTurw54cli9T9ru6699/3VmtSqMrB6KAH1zyoFWNXKC0hTUuGLFH49HA5ezgrdUOqUtenyt3PXZNWT5JvD1+7XG9DfHrvp/rhqx/UfUx3Pbz+Yev9a6etlcFguGr7+LkGNVi8/PLLio+P13//+199/fXXNeIWi0Xt2rXTsmXL7L7Burz55puKi4vTyZMn9dJLL+kvf/mLNVZaWqonnnhCFRUVGjJkiH75y1/WmP/nP/9ZqampkqTf/OY32rlz51XbOwAAAAAAAAAAjeUR6HHFahflFGnF2BXK2J0hv95+uvnFm+Xs6azU9ana8doO7X1/rx5Y/YC6jOhyxfYAAAAAAAAAAMD1qPRiqQ59fEhOHk4a+MjABs97at9TSt+driNrj+j0jtNKWpKk4vPFcnRylGeQpwY8PEADpwxU99Hd663l7ueuGQkzlBibqOSPkpWwMEEVpRXy6eyj6BeiFfVslLyCvZpzmY12Mv6kLBaL0nak1YhZLJZG17NXU0aDGizc3Ny0bds2vfXWW/rXv/6lo0ePWjft7++v8ePH6w9/+INCQkLssqmG6Ny5s9atW6eJEyfqr3/9qw4ePKh77rlHxcXFWrp0qQ4cOKDw8HB9+eWXcnV1rTHfbDZbxw19AJYvX24dZ2Vl1Xp/TEyMAgMDm3JJAAAAAAAAAIA25unDT9ebs3zMcuWdylP4tPBa47e9epv6TOxjs4Zr+5rvk19iNpn1ycRPlLE7Q6HRoZqyeYr1aPDI2ZHa8tIWJSxM0MfjP9bMPTOv6rdXAQAAAAAAAADQ2rl4uei3F3/bpLkhQ0MUMtQ+n9F3MDooclakImdF2qVec935lzu1++3duumXN9WIjXlrjHqN79XgWkfWHNHGX2+0y74a1GAhSUajUXPnztXcuXNVVFSkCxcuyM3NTe3bt7fLRppi6NChSk5O1ltvvaU1a9bohRdekJOTk3r27Km33npLs2bNkrOzc61zf/e73ykpKUnFxcV6/fXXG7TelClT6r0/Li6OBgsAAAAAAAAAQIP49fazGT+987TyTuUpYECAQoeF1prjFexVbx1bEmMTlZaQJhmkcbHjrM0Vl4ycP1Ipq1KUeyxXG5/bqMnrJjd5LQAAAAAAAAAAAEmKmBmhiJkRtcbc/dzVrku7Btdy93e3064a0WBRbQPu7nJ3b/4m9u7dq8GDBzerhp+fn1555RW98sorjZo3cOBApaamNmpOU44aAQAAAAAAAADg5/x6+6nLrV3qzUtckihJGvLEkCuyD4vFooSFCZKkzjd3ln9f/xo5jk6OGjRtkOJejtMPX/2gzP2ZChoUdEX2AwAAAAAAAAAA2rZb592qwIGNO/AgcGCgRvxhhF3Wd7BLlQYym82Ki4vTnDlz1LVrV0VGXhvHiwAAAAAAAAAAcDUN/81wTds2zWZOSV6JUlalyMndSQOnDLwi+0jfla780/mSpG53dKszLywmzDpOWZVyRfYCAAAAAAAAAABgMBh0+PPDil8Qr6NfHm3QnMABgRo5b6Rd1m/SCRaNUVxcrP/+979au3at1q9fr/Pnz0uq/FYsb2/vK708AAAAAAAAAACtUvJHySovKlf49HC5+rg2aI7ZZJap1CRnD+cG5Z/YesI6Dgqv+1SKwEGBMjgYZDFbqs0BAAAAAAAAAACwp21/3CaDwSCLxaLwaeHqdU+vq7r+FWmwyMnJ0bp167R27Vpt3rxZJSUlslgskqTg4GCNGzdOEyZM0O23334llgcAAAAAAAAAoNVLik2SJA15YojNvLOHzuqzhz9TWkKaLv50UZYKi5zcnRQSFaIBjw7QoCmD5GCs/UDr7IPZ1rFPqE+daxhdjHL3d1dhVqGyD2XXmQcAAAAAAAAAANBcXp28dP/H96tjZMervrbdGixOnDihtWvXau3atdq5c6fMZrO1qaJXr14aP368JkyYoKioKHstCaAVWjluZYuuP3nd5BZdHwAAAAAAAGiI9F3pykrOUuDAQIVEhdjM/fYv38q3p69u+uVN8uvjp4rSCp3afkpJsUk6sfWEkpYk6YHPH5BXsFeNuRdOXrCOPQI9bK7jGeipwqxCleaXqvh8sdzauzXp2gAAAAAAAAAAAOpidDVq6JyhCo0ObZn1mzN579691qaKgwcPSpIsFosMBoMiIyM1YcIETZw4Ub16Xd1jOQAAAIDrzcbnN+rbv3wrSbp13q0a+ceR9c45vfO09ryzR2kJaSo8WygPfw+FDAtR5OxIdR3ZtUHrmk1mJcYm6sDyA8o5kiNTqUk+nX3Ua3wvRc2JkmeQZzOuCgAAALh+mEpNqiitsN4uLyhvVr3EJYmSpIgnIurN7XNfH93773tldLn8ln/f+/sqfHq4lo5cqvRd6Vo5bqVm7JhRLUeSSi+WWsdGV9u/MjC6XY6XXSyjwQIAAAAAAAAAANidT6iPXLxdWmz9RjVYmM1mxcfHa+3atfriiy90+vRpSZVNFc7Ozho5cqQmTJig8ePHKzg4+IpsGAAAAGhrziSd0a5Fuxo1J35BvOLnx8voatTgmYMV0D9AOYdzlBSbpJRVKYp+Ploxb8TYrFGUU6QVY1coY3eG/Hr76eYXb5azp7NS16dqx2s7tPf9vXpg9QPqMqJLcy4PAAAAuC4kLExQ/Px46+08h7wm1yrNL9WhTw7Jyd1JAx8dWGeed4i35pyYI69OXnJ0cqwRDx4crBF/GKFNczfpTOIZff/e94qaU/2UaVOxyTp2dK5Zo6qq8fKi5jWQAAAAAAAAAAAA1KbH2B46FX9KQx4f0uA5yf9O1tqpa/WHij80e/0GNVisWbNGa9eu1fr163X+/HlJlU0V3t7eGjNmjCZMmKC7775bXl41jxcHAAAA0HRmk1lfzvxSlgpLg+d8/9732jZvm4yuRk3dOlUhQ0OssYFTBuqDWz7Qzjd3yiPAQ9Fzo+tc95OJnyhjd4ZCo0M1ZfMUObk5SZIiZ0dqy0tblLAwQR+P/1gz98yUbw/f5l0oAAAA0MoN/+1wDXtumPV2WlqaFg1Y1KRaycuTVV5UrvDp4XL1ca0zz8HooHZd29msNXj6YG16fpNkkfb9a1+NBouqp1JUlFX8fHo1VeNO7k42cwEAAAAAAAAAAJpi+IvDtWTIEh1ec1h9Jva56us3qMHivvvuk8FgkMViUXBwsMaNG6cJEybo9ttvl5MTv0QBAAAArpSdf92pzL2Z6jW+l45+cbTe/MLswsoPT0kaOmdoteYKqfIbbKPnRit+frzifh+n/g/1l3eId406ibGJSktIkwzSuNhx1uaKS0bOH6mUVSnKPZarjc9t1OR1k5t+kQAAAMB1wOhilNHl8lvuTp5Nf+88cUmiJGnIkw3/Zqa6uHVwU/sb2uv8j+eVdSBLZQVlcvZ0tsZdvC4fsW0qMdVW4nK8ymkXzl7ONjIBAAAAAAAAAACaxlRi0j3/ukfrZq5T8kfJ6juprwL6BcjF20UGB0Otc4pyiuy2foMaLHr27KkJEyZowoQJioqKqn8CAAAAgGbL/TFX8fPj1TGyo2565qYGNVjsXrxbZQVlkqSImRG15kTMjFD8gniZSkza+dedGrNoTLW4xWJRwsIESVLnmzvLv69/jRqOTo4aNG2Q4l6O0w9f/aDM/ZkKGhTU2EsEAAAA8DPpu9OVtT9LgYMCazRMN5VHgIfO/3heskgFWQXq4NnBGmvXtZ3Sd6VLkgqzCuXdqWYD9iUFWQWSJBdvF7m1d7PL3gAAAAAAAAAAAKp6q+tbMhgqGyny0/Mb9Jkpe2pQg8WRI0eu9D4AAAAA/MxXT3wlc7lZ42LHqeR8SYPmpKxOkVT5IakO3TvUmuMd4i2/3n7KOZyjw6sPa/TfRltflEhS+q505Z/OlyR1u6NbnWuFxYQp7uW4ynVXpdBggWvSynErW2xts8GsTs91arH1AQBA62Q9veKJ5p9ecYnFbLGOHRwdqsX8+19uqM47nafgiOBaa5hKTSrKrvz2J/9+NZuwAQAAAAAAAAAA7MVisdSf9DNVP//UHA1qsAAAAABwdSW9n6QTW0/o5hdvVtCgIJ3cdrLeOfkZ+Tp39JwkKSjcdrND8OBg5RzOUX56vnJTc+Xb09caO7H1hHVsq07goEAZHAyymC3V5gAAAABomtL8Uh365JCc3J008NGB9eZvf2W7AgYEqPf43jbzCjIrT54wOBjkEeBRLdbttm6KU2XjdOa+zDprZe3PsjZqdLut7kZsAAAAAAAAAACA5hry5BCFRDX8pO/0b9OVFJtkl7VpsAAAAACuMQWZBdr0/Ca1D2uvW+fd2uB5Zw+etY69Q71t5laNnz10tlqDRfbBbOvYJ9SnzhpGF6Pc/d1VmFWo7EPZdeYBAAAAaJjkfyervLBc4TPC5eLtUm9+3O/jFDY6zGaDxcUzF5V3Kk+SFBwRLCd3p2rxkKgQeYd4Kz89Xye2nNDIeSNrrXN883HruO+kvg24GgAAAAAAAAAAgKbpcksXDXh4QIPzHYwOdmuwcKg/BQAAAMDVtOGXG1RyvkRj/2+snNyc6p/w/7tw8oJ17BHoUXfiz+JV5zW2jmegp6TKb9otPl/csI0CAAAAqNWlN/5vfPLGBs85vfO0SvNL64x//9731nHEExE14gaDQcNfGi5JSktIU86RnBo5ZpNZ+z7cJ0nqcXcPBQ2yfWIeAAAAAAAAAABAU3W+uXONE7nr0yGsgwZNHWSX9WmwAAAAAK4AU6lJpfml1j/lBeUNmnfkiyM6/NlhhU8L1w2339CoNcsullnHRlfbh9VVbdyoOk+SSi9e/nBWfXWMbpfjP68DAAAAoOEyvstQ5t5MBQ4KVKebOjV4XtnFMq17Yp0qyipqxH7c+KN2vL5DktRlRBcNnj641hpDHh+izsM7SxZp3ePrVF5c/fXLtj9uU25qrlzbuWr0otGNuCoAAAAAAAAAAIDGmf7NdN1wR+M+NxUSFaLxH4y3y/q2Py0FAAAAoEkSFiYofn689XaeQ169c0rzS7Xh6Q1y93fXnX+9s9FrVv0QlKOzo83cqvHyouofnjIVm+xSBwAAAEDDJS5JlCQNeXJIg+cEDgpU1v4sHfrkkM4knlG/h/qp/Q3tVV5YrpPbTurw54cli9T9ru6699/3ysFY+3cuORgd9OCaB7Vi7AqlJaRpyZAlCp8eLmcPZ6VuSFXq+lS5+7lr0upJ8u3ha5frBQAAAAAAAAAAqM3+ZfvVZUQXtevart7cdwe8K4vFoiFPDtHQZ4baZX0aLAAAAIArYPhvh2vYc8Ost9PS0rRowCKbcza9sEkXMy7q3hX3yq2DW6PXrHoqRW3fXltV1biTu1O1WNVTKZpTBwAAAEDDlF4s1aGPD8nJw0kDHxnY4HlP7XtK6bvTdWTtEZ3ecVpJS5JUfL5Yjk6O8gzy1ICHB2jglIHqPrp7vbXc/dw1I2GGEmMTlfxRshIWJqiitEI+nX0U/UK0op6NklewV3MuEwAAAAAAAAAAoF5fTP9CEz+a2KAGCyd3J/30/U/6+tmv5erjqkFTBzV7fRosAAAAgCvA6GKU0eXyj9tOnrabD059c0qJSxLVfUx3DZg8oElrOns5W8emEpONzOqnXVSdJ0kuXi4NrlP1tIuf1wEAAADQMC5eLvrtxd82aW7I0BCFDA2xyz4cjA6KnBWpyFmRdqkHAAAAAAAAAADQWBaLpcG5M3fP1MWfLuqTiZ9oz9/32KXBovbzwAEAAABcNRVlFVr3+Do5Ojtq1J9GqSinqMafkrwSa355UXm1WEV55SkSVbu2C7MKba5ZNf7zbu/G1CnIKpAkuXi7yK1940/dAAAAAAAAAAAAAAAAAICm8uropfDp4co9lmuXepxgAQAAALSwiz9d1Lmj5yRJsZGx9ebvfHOndr6503r7sbjH1HVkVwX0D7Del38632aN/PTL8YB+AdVi/v39reO803kKjgiutYap1KSi7KLKOf38a80BAAAAAAAAAAAAAAAAgCsp98dcVZRV2KUWDRYAAABAC/MM8tSUTVNs5mTuz9SmuZskSQOnDKx2nF3goEBJkncnb/n29NW5H84pc1+mzXpnks5UzgnxVoceHarFut3WTXGKq1x3X6Z6j+9da42s/VmymC3WOQAAAAAAAAAAAAAAAADQUEe+OKKjXxytcX/ikkQd33y83vnmcrMunLqg9G/TFTgw0C57osECAAAAaGFGV6NuuOMGmzkORgfruP0N7evM7zupr7758ze6cPKCzh8/r/Y3tK+Rk5+Rr5wjOZKkPvf3kcFgqBYPiQqRd4i38tPzdWLLCY2cN7LWtaq+iOk7qa/N/QMAAAAAAAAAAAAAAABAVZn7MrXvw301Pr+U9k2a0r5Ja1ANi6XyC2Jv+tVNdtkTDRYAAADAdWTor4Zq9+LdKisoU9I/k3T7q7fXyNn7/l7JUtnYEf3r6Bpxg8Gg4S8N14bZG5SWkKacIzny6+1XLcdsMmvfh/skST3u7qGgQUFX5HoAAAAAAAAAAAAAAAAAXJ9c27mqXZd21e67cOqC3Hzd5OzhbHuyQXJyd5JvT18NemyQeo/vbZc90WABAAAAXEc8AjwU82aM1s9ar12Ldqn3xN7qFNnJGs/cn6kdb+yQJI360yh5h3jXWmfI40N0cMVBpSWkad3j6/Toxkfl5OZkjW/74zblpubKtZ2rRi8afWUvCgAAAAAAAAAAAAAAAMB1J2pOlKLmRFW7b77DfI15a4wGPDygRfZEgwUAAABwjcpKzlJWcpYkKftwdrX7k5cnS5I8Aj0UFhNWbd6NT92ogqwCbV+wXUtHLVXEzAj59/NXzpEcJcUmqbywXMPmDlP03JqnV1ziYHTQg2se1IqxK5SWkKYlQ5YofHq4nD2clbohVanrU+Xu565JqyfJt4fvFbh6AAAAAAAAAAAAAAAAALi6aLAAAAAArlGHPz+s+PnxNe4/suaIjqw5IknqcmuXGg0WkjRy3kiFxYRp99u7lbI6RUXvFsndz11hd4Yp8ulIdRvVrd713f3cNSNhhhJjE5X8UbISFiaoorRCPp19FP1CtKKejZJXsFfzLxQAAAAAAAAAAAAAAAAAJM0zz2vR9WmwAAAAAK5RI/84UiP/OLLJ80OjQxUaHdqsPTgYHRQ5K1KRsyKbVQcAAAAAAAAAAAAAAAAArnU0WAAAAAAAAAAAAAAAAAAAAAAAgGtCQWaBKsoqJEkegR4yulxue8j9MVfxf4xX5v5MuXi7qP/k/oqcHSmDwWCXtWmwAAAAAAAAAAAAAAAAAAAAAAAALa44t1iLuy22Nlg88p9HFHZnmCQp+3C23o96X2UFZbJYLJKk9G/Tlf5tuu5dfq9d1newSxUAAAAAAAAAAAAAAAAAAAAAAIBmSFmdIlOpSW6+brr5NzcroH+ANfbfOf9V6cVSWSwWdRzSUb3G9ZKLt4sOrjyo1A2pdlmfEywAAAAAAAAAAAAAAAAAAAAAAECL+3Hjj3LxdtGTSU/KO8Tben/usVwd33xcBoNBkU9H6q6376q8/8dcxUbGat8H+9TjFz2avT4nWAAAAAAAAAAAAAAAAAAAAAAAgBZ3JumMwqeFV2uukCpPtpAkJ3cn3fbKbdb7O4R10IBHBihjT4Zd1qfBAgAAAAAAAAAAAAAAAAAAAAAAtLiCMwXy7+tf4/6jXxyVwWBQ7wm95eLtUi3m38dfhWcL7bI+DRYAAAAAAAAAAAAAAAAAAAAAAKDFGRwMqiivqHZffka+9YSKvpP61pzjaLDb+jRYAAAAAAAAAAAAAAAAAAAAAACAFucd4q0ziWeq3bf3/b2yWCxycndS2OiwGnPOHz8vN183u6xPgwUAAAAAAAAAAAAAAAAAAAAAAGhxXW7tooMfH9Thzw+rvKhcx/57TDv/slMGg0G9J/aW0cVYLd9UYtKB5Qfk39ffLusb608BAAAAAAAAAAAAAAAAAAAAAAC4sqL+J0r7l+7XqkmrrPdZLBY5GB0U/Xy09b6inCKl707X9gXbVZBZoMinI+2yPidYAAAAAAAAAAAAAAAAAAAAAACAFuffx1/3/vteOXk4yWKxyGKxyOhq1C/e+YUCBwRa83Yt3qWV41Yq47sMSVK/B/rZZX1OsAAAAAAAAAAAAAAAAAAAAAAAANeEvvf31Q0xN+jU9lOymC3qdFMneQV7Vc+5r686dO8gSXLxcrGOm4sGCwAAAAAAAAAAADtaO22tfN18W3obAAAAAAAAAAC0Wq4+ruo1rled8aDwIAWFB9l9XQe7VwQAAAAAAAAAAAAAAAAAAAAAALgKsg5kKX5BvF1q0WABAAAAAAAAAAAAAAAAAAAAAABapazkLMXPt0+DhdEuVQAAAAAAAAAAAAAAAAAAAAAAAJohLy2v0XOKcorstj4NFgDalJXjVrbo+pPXTW7R9QEAAAAAAAAAAAAAAAAAAICWFv+neH37128V9WyURv5xpPX+t7q+JYPB0GL7cmixlQEAAAAAAAAAAAAAAAAAAAAAQJuz882dKs0v1bd/+7ZGzGKxNPqPvXCCBQAAAAAAAAAAAAAAAAAAAAAAuGr6PdBPe/+1V30n9a0RG/LkEIVEhTS4Vvq36UqKTbLLvmiwAAAAAAAAAAAAAAAAAAAAAAAAV809/7xHMW/EyK2DW41Yl1u6aMDDAxpcy8HoYLcGCwe7VAEAAAAAAAAAAAAAAAAAAAAAAGig2porut7aVR6BHo2q4xnoqS4juthlT5xgAQAAAAAAAAAAAAAAAAAAAAAAWtxjcY81es4Nd9ygG+64wS7rc4IFAAAAAAAAAAAAAAAAAAAAAABo8zjBAgAAAAAAAAAAAAAAAADQaCvHrWzpLQAAAFyzPhz5oU7Fn6o3z8nDSS8VvGQz5/TO09rzzh6lJaSp8GyhPPw9FDIsRJGzI9V1ZNcG7cdsMisxNlEHlh9QzpEcmUpN8unso17jeylqTpQ8gzwbVOdKM5WalJaQpjNJZ1SUXaTS/FK5+LjIw99DHW/sqNDoUDk6O16x9WmwAAAAAAAAAAAAAAAAAAAAAADgGhS/IF7x8+NldDVq8MzBCugfoJzDOUqKTVLKqhRFPx+tmDdibNYoyinSirErlLE7Q369/XTzizfL2dNZqetTteO1Hdr7/l49sPoBdRnR5SpdVU0Xf7qo7X/erv0f7pepxFRnntHNqMEzBmv4b4fLK9jL7vugwQIAAAAAAAAAAAAAAAAAAAAAADvrGNlRE5dNtJljcDDUGfv+ve+1bd42GV2Nmrp1qkKGhlhjA6cM1Ae3fKCdb+6UR4CHoudG11rDbDLrk4mfKGN3hkKjQzVl8xQ5uTlJkiJnR2rLS1uUsDBBH4//WDP3zJRvD98mXGnzHP3yqD5/9HOVF5bLYrHYzC0vKtd3//hO+z7cp/tW3KeeY3vadS80WAAAAADAFbbu8XXyc/Vr6W0AAAAAAAAAAAAAAADgKnJyd5Jf76Z9ZqQwu1Cbnt8kSRo6Z2i15gpJCh4crOi50YqfH6+438ep/0P95R3iXaNOYmyi0hLSJIM0LnactbnikpHzRyplVYpyj+Vq43MbNXnd5Cbtt6mS/52stY+tlSySxWKRwcEg/77+CgoPkpuvm5w9nVV2sUxFOUXK3JupnKM5spgtKiso08cTPtbEjyZqwOQBdtsPDRYAAAAAAAAAAAAAAAAAAAAAAFxDdi/erbKCMklSxMyIWnMiZkYofkG8TCUm7fzrTo1ZNKZa3GKxKGFhgiSp882d5d/Xv0YNRydHDZo2SHEvx+mHr35Q5v5MBQ0KsvPV1C47JVtfPfmVLGaL3Nq7Kfr5aEXMjJC7n3udcwqyCpQUm6Rv//atSi6U6KsnvlLQoKBar60pHOxSBQAAAAAAAAAAAAAAAAAAAAAA2EXK6hRJUruu7dShe4dac7xDvK0nZBxefVgWi6VaPH1XuvJP50uSut3Rrc61wmLCLq+7KqVZ+26MTc9vUnlRuUKjQzXrwCwN/81wm80VkuQZ6KkRL4/QU/ufUqebOqmssMx60oc90GABAAAAAAAAAAAAAAAAAAAAAMAVVnqxVBazpd68/Ix8nTt6TpIUFG77NIngwcGVc9LzlZuaWy12YusJ69hWncBBgTI4GGrMuZLOHjqr1P+kyq+3nx5e/7C8Ono1ar5PqI8e+c8j8u3hq2P/PabslGy77MtolyoAAAAAAAAAAAAAAAAAAAAAAMCqvKhc8QvilbI6Red/PK/yonIZHAzy7eWrHnf30LD/GVZrY8HZg2etY+9Qb5trVI2fPXRWvj19rbezD15uOvAJ9amzhtHFKHd/dxVmFSr7kH0aFerzw7ofZDAYNHrRaLn6uDaphlt7N41eNForxq7Q0S+Pyr+vf7P3xQkWAAAAAAAAAAAAAAAAAAAAAADY2U/f/aSEhQnqfEtnjf9gvCZ/NVl3vHGHLBUWffuXb/VO73d09MujNeZdOHnBOvYI9LC5RtV41XmNreMZ6ClJKs0vVfH5Ypu59pD2TZp8e/qq++juzarT4xc95NvDV6e2n7LLvjjBAgAAAAAAAAAAAAAAAAAAAACAOphKTaoorbDeLrtY1qB5HgEeeizusWonK/S8u6du+uVNWjlupY5vOq5Vk1bpsbjHFBodWmt9o6vtj/w7uTnVua/Si6UNrmN0uxwvu1gmt/ZuNvOb69wP5xQ2JswutW6IuUHH/nvMLrVosAAAAAAAAAAAAAAAAAAAAAAAoA4JCxMUPz/eejtPefXOuf/j++Xo4lhro4LRxagJH07Q4hsWq6K0Qht+uUFPJj1pjZcXl1vHjs6ONtepGi8vKq8WMxWb7FLnSig6V6T2N7S3S632Ye1VnGufUzdosAAAAAAAAAAAAAAAAAAAAAAAoA7Dfztcw54bZr2dkZGhRX0X2ZzjGeRpM+7V0Uvdx3TX0S+OKnNvps7sPaPgwcGSqp9KUVFWUVeJGnEnd6dqsaqnUjSnzpVQmlcqd193u9Ry93VXaX5p/YkNQIMFAAAAAAAAAAAt4MORH+pU/Kl685w8nPRSwUs2c07vPK097+xRWkKaCs8WysPfQyHDQhQ5O1JdR3Zt0H7MJrMSYxN1YPkB5RzJkanUJJ/OPuo1vpei5kTV+4sgAAAAAAAAAACuV0YXo4wulz9675zvbJe6HW/sqKNfHJVU+V7/pQYLZ6/L9U0lplrnXlL1tIuq8yTJxculwXWqnnbx8zpXgsVikYPRwS61DI4GyWKXUjRYAAAAAABwpRxYeUAZf8uQg8U+bwg01uR1k1tkXQAAcHXFL4hX/Px4GV2NGjxzsAL6ByjncI6SYpOUsipF0c9HK+aNGJs1inKKtGLsCmXszpBfbz/d/OLNcvZ0Vur6VO14bYf2vr9XD6x+QF1GdLlKVwUAAAAAAAAAwPXPI8DDOi7ILLCO23VtZx0XZhXarFE1XnXepdvpu9Kted6dvOusU5BVub6Lt4vc2rvVu3e7MFydZRqDBgsAAAAAAAAAAFpIx8iOmrhsos0cg0Pdv134/r3vtW3eNhldjZq6dapChoZYYwOnDNQHt3ygnW/ulEeAh6LnRtdaw2wy65OJnyhjd4ZCo0M1ZfMU69HjkbMjteWlLUpYmKCPx3+smXtmyreHbxOuFAAAAAAAAAAA/JzFfPnYBQfHy1/eGNA/wDrOP51vs0Z++uV4QL+AajH//v7Wcd7pPAVHBNdaw1RqUlF2UeWcfv615lwJXz/7tbb+bmuz65QXltef1EA0WAAAAAAAAAAA0EKc3J3k19uvSXMLswu16flNkqShc4ZWa66QpODBwYqeG634+fGK+32c+j/UX94hNb+ZKjE2UWkJaZJBGhc7ztpcccnI+SOVsipFucdytfG5jZySBQAAAAAAAABAPY6uO6qs/Vm65Xe3yGCo+4uUqp5a4RnsaR17d/KWb09fnfvhnDL3Zdpc60zSmco5Id7q0KNDtVi327opTnGSpMx9meo9vnetNbL2Z1mbPbrd1s3mevZUlFMkS7al/sQGsPX33BgO9acAAAAAAAAAAIBrze7Fu1VWUCZJipgZUWtOxMwIySCZSkza+dedNeIWi0UJCxMkSZ1v7iz/vjW/lcrRyVGDpg2SJP3w1Q/K3G/7FzkAAAAAAAAAALR1hz87rLjfx6kwq9BmXvqudOu48/DO1WJ9J/WVJF04eUHnj5+vdX5+Rr5yjuRIkvrc36dGk0FIVIj1y5dObDlR5z6Obz5eY92rwc3XTe26tGv2H3c/d7vtiRMsAAAAAAAAAABohVJWp0iS2nVtpw7dO9Sa4x3iLb/efso5nKPDqw9r9N9GV/vlSvqudOvR4t3uqPsbqcJiwhT3cuU3XKWsSlHQoCB7XQYAAAAAAAAAANet1P+kavD0wbXGzqWeszY2hEaHKqBfQLX40F8NtX7ZUtI/k3T7q7fXqLH3/b2SRTK6GhX96+gacYPBoOEvDdeG2RuUlpCmnCM5NU7WNpvM2vfhPklSj7t7XNXfAYx5a4wGPDyg2XWSlydr7WNrm78hcYIFAAAAAAAAAADXjNKLpdYjuG3Jz8jXuaPnJElB4bZ/0RE8OLhyTnq+clNzq8VObL38bVW26gQOCpTBwVBjDgAAAAAAAAAAqNuW327RuR/O1bi/OLdYn03+TJYKi5zcnXTXO3fVyPEI8FDMmzGSpF2Ldinju4xq8cz9mdrxxg5J0qg/jbKeVPFzQx4fUnk6hkVa9/g6lReXV4tv++M25abmyrWdq0YvGt2k62xxhvpTGooTLAAAAAAAAAAAaCHlReWKXxCvlNUpOv/jeZUXlcvgYJBvL1/1uLuHhv3PMHl19Kox7+zBs9axd2jtvzCpLX720Fn59vS13s4+mG0d+4T61FnD6GKUu7+7CrMKlX0ou848AAAAAAAAAAAg+ff1l4OTgwqzCvVe+Hvq/1B/dYzsKEdnR+UcztH+ZftVlF0kj0AP3f/J/dYvS/q5G5+6UQVZBdq+YLuWjlqqiJkR8u/nr5wjOUqKTVJ5YbmGzR2m6Lk1T6+4xMHooAfXPKgVY1coLSFNS4YsUfj0cDl7OCt1Q6pS16fK3c9dk1ZPkm8P3zrr2NvoRaPV8caOdqnV8caOuvNvd9qlFg0WAAAAAAAAAAC0kJ+++0lnD5xV+IxwjXh5hJw8nCp/KbIkSd/+5Vsl/l+i7l1+r3rd06vavAsnL1jHHoEeNteoGq86r7F1PAM9VZhVqNL8UhWfL5ZbezfbFwcAAAAAAAAAQBt18ws3a9DUQTr8+WEd33Rcp7af0qFPDqmivEJu7d0UODBQPcf21OD/N1guXi42a42cN1JhMWHa/fZupaxOUdG7RXL3c1fYnWGKfDpS3UZ1q3c/7n7umpEwQ4mxiUr+KFkJCxNUUVohn84+in4hWlHPRskruOYXPl1JUXOi7FbLr5ef/Hr52aUWDRYAAAAAAAAAADSTqdSkitIK6+3ygnIb2Zd5BHjosbjH5N/X33pfz7t76qZf3qSV41bq+KbjWjVplR6Le0yh0aHWnLKLZdax0dX2W/1Obk61zpOk0oulDa5jdLscL7tYRoMFAAAAAAAAAAA2eAZ5KnJ2pCJnRza7Vmh0aLXfEzSFg9FBkbMiFTmr+fu5ntFgAQAAAAAAAABAMyUsTFD8/Hjr7TyHvHrn3P/x/XJ0cay1UcHoYtSEDydo8Q2LVVFaoQ2/3KAnk560xsuLLzdwODo72lynary8qHrjh6nYZJc6AAAAAAAAAAAA1wMaLAAAAAAAAAAAaKbhvx2uYc8Ns95OS0vTogGLbM7xDPK0Gffq6KXuY7rr6BdHlbk3U2f2nlHw4GBJ1U+lqCirqKtEjbiTu1O1WNVTKZpTBwAAAAAAAAAA4Hrg0NIbAAAAAAAAAACgtTO6GOXi7WL94+RpnwaEjjd2tI5P7zxtHTt7OVvHphKTbKl62kXVeZLk4uXS4DpVT7v4eR0AAAAAAAAAAIDrQatvsMjJydHvf/979e/fX56enurQoYOGDRumt99+W2VlZc2qbbFY9M0332jOnDmKjIxU+/bt5eTkJF9fXw0bNkzz5s3TTz/9ZKcrAQAAAAAAAACgOo8AD+u4ILPAOm7XtZ11XJhVaLNG1XjVeY2tU5BVub6Lt4vc2rvZzAUAAAAAAAAAAGiNWnWDxZ49ezRw4EC98sor6tixo15//XW99NJLKigo0Jw5cxQVFdXkBoikpCSFh4drxIgRevvtt+Xn56df//rXeu+99/T000/rzJkzWrBggXr16qV///vfdr4yAAAAAAAAAAAki9liHTs4Xn5LP6B/gHWcfzrfZo389MvxgH4B1WL+/f2t47zTeXXWMJWaVJRdVDmnn3+deQAAAAAAAAAAAK2ZsaU30FRpaWkaO3assrOz9eyzz2rRokXW2DPPPKO77rpLcXFxuueee7Rjxw65uLjYqFbTnj17lJycLIPBoM8++0wTJ06sFv/Nb36jsWPHKi4uTlOnTlWHDh1011132eXaAAAAAAAAAADXt6Prjiprf5Zu+d0tMhgMdeZVPbXCM9jTOvbu5C3fnr4698M5Ze7LtLnWmaQzlXNCvNWhR4dqsW63dVOc4iRJmfsy1Xt871prZO3PsjZ7dLutm831AAAAAAAAAAAAWqtWe4LF888/r+zsbHXu3FmvvfZatZiLi4tiY2Pl6OioxMREvfPOO01eZ+bMmTWaKyTJ3d1dS5culZOTk8xms/7nf/6nyWsAAAAAAAAAANqWw58dVtzv41SYVWgzL31XunXceXjnarG+k/pKki6cvKDzx8/XOj8/I185R3IkSX3u71OjmSMkKkTeId6SpBNbTtS5j+Obj9dYFwAAAAAAAAAA4HrTKk+wSE1N1apVqyRJU6dOrfV0irCwMI0aNUqbN2/W66+/rjlz5shobPzljh8/vs5YaGioIiMjtXPnTh09elSpqanq0aNHo9cA0HasHLeyRdefvG5yi64PAAAAAACA6lL/k6rB0wfXGjuXes7a2BAaHaqAfgHV4kN/NVS7F+9WWUGZkv6ZpNtfvb1Gjb3v75UsktHVqOhfR9eIGwwGDX9puDbM3qC0hDTlHMmRX2+/ajlmk1n7PtwnSepxdw8FDQpqyqUCAAAAAAAAAABc81rlCRarV6+WxVJ5FPkdd9xRZ15MTIwkKTs7W9u2bWvUGnfffbf+85//aNSoUTbzunTpYh2npaU1ag0AAAAAAAAAQNu25bdbdO6HczXuL84t1meTP5OlwiIndyfd9c5dNXI8AjwU82bl++C7Fu1SxncZ1eKZ+zO1440dkqRRfxplPani54Y8PqTydAyLtO7xdSovLq8W3/bHbcpNzZVrO1eNXjS6SdcJAAAAoDqLxaI97+zRq56var5hvk5uO9mo+ad3ntZnD3+mRZ0X6RXXV7QodJFWPbCqUXXMJrO+e/c7/evmf+kN3zf0quer+kfff2jzbzerILOgcRcEAAAAANeJVnmCxdatW63j8PDwOvMGD778rV9bt2612Yzxc6GhoQoNDa0378KFC9axh4dHg+sDAAAAAAAAANou/77+cnByUGFWod4Lf0/9H+qvjpEd5ejsqJzDOdq/bL+KsovkEeih+z+5X8GDg2utc+NTN6ogq0DbF2zX0lFLFTEzQv79/JVzJEdJsUkqLyzXsLnDFD235ukVlzgYHfTgmge1YuwKpSWkacmQJQqfHi5nD2elbkhV6vpUufu5a9LqSfLt4Xul/koAAACANiP3x1x9OeNLndp+qknz4xfEK35+vIyuRg2eOVgB/QOUc7jyNUDKqhRFPx+tmDdibNYoyinSirErlLE7Q369/XTzizfL2dNZqetTteO1Hdr7/l49sPoBdRnRxWYdAAAAALjetMoGi4MHD0qSvLy85OPjU2de1QaJQ4cOXZG9nDhxwroXW80eAAAAAAAAAABccvMLN2vQ1EE6/PlhHd90XKe2n9KhTw6porxCbu3dFDgwUD3H9tTg/zdYLl4uNmuNnDdSYTFh2v32bqWsTlHRu0Vy93NX2J1hinw6Ut1Gdat3P+5+7pqRMEOJsYlK/ihZCQsTVFFaIZ/OPop+IVpRz0bJK9jLXpcPAAAAtEkWi0Xf/eM7bf7NZjk4OigkKkTpu9IbVeP7977XtnnbZHQ1aurWqQoZGmKNDZwyUB/c8oF2vrlTHgEedTZam01mfTLxE2XszlBodKimbJ4iJzcnSVLk7EhteWmLEhYm6OPxH2vmnpk0WgMAAABoU1pdg0VpaakyMzMlSYGBgTZzq8ZPnjxp970cPXpUR44ckSRNnz5drq6udl8DAAAAAAAAAHB98gzyVOTsSEXOjmx2rdDoUIVG138qsy0ORgdFzopU5Kzm7wcAAABATfHzK0+eCBsdpnGx47T3/b2NarAozC7Upuc3SZKGzhlarblCkoIHByt6brTi58cr7vdx6v9Qf3mHeNeokxibqLSENMkgjYsdZ22uuGTk/JFKWZWi3GO52vjcRk1eN7nxFwsAAAAArVSra7C4ePGidVxfQ4Obm1ut8+zl//7v/yRJHTp00Msvv9zgeXl5ecrNzbXednFxkYuL7W8gsxezwXxV1sG1x2KwyCKLLAaLzOJ50FaZTKYWXdtsNrfoHtC28RxESzOb+f+3LSs2FavAVGC97eTgJCdHJxszcD24Fn4G5/+9lsXPH+A50Lbx+IPXAG1bUUWRXEyX3/fnNcC151r4eR0Nw2PVevBYtS48Xq0Hj1XrYTFY6s+xWDTun+MU8f8imrTG7sW7VVZQJkmKmFl7jYiZEYpfEC9TiUk7/7pTYxaNqbGHhIUJkqTON3eWf1//GjUcnRw1aNogxb0cpx+++kGZ+zMVNCioSXtuK1rys0Atjc8iNQ3/vttPW3v/jfcd0VQ8d9BUPHfqxt/J9avVNVgUFxdbx87OzjZzq8aLiorsuo/Dhw/rf//3fyVJ7733nvz9a77grEt4eHi124899pimTZtmx93VLTc4t/4kXJcssqjYq1i5ypVBhpbeDlpIQkJCi61tNpuVlpYmSXJwcGixfaDt4jmIlnbu3LmW3gJa0IvbXqx2e0zEGP3ixl+00G5wtVwLP4O35M9/4OcP8Bxo63j8wWuAto3XANe+a+HndTQMj1XrwWPVuvB4tR48Vq3HxeL6v/hz5B9HymBo+uOYsjpFktSuazt16N6h1hzvEG/59fZTzuEcHV59WKP/Nrramum70pV/Ol+S1O2ObnWuFRYTpriX4yrXXZVCg0U9WvKzQC2NzyI1Df++209b+10I7zuiqXjuoKl47tStaoMtri+trsGi6qkUZWVlNnOrxt3d3e22h6KiIk2ePFmlpaV64YUXNGnSpEbN37dvn0JDLx/VfjW71jP+lnFV1sG1x2KwKFe56pDZQQYLL8zaquHDh7fY2pe6NaOjo2U0trr/fnAd4DmIlnbpxSbaptdHvq72ru2tt50cnOR0hm+vvd5dCz+Dt+TPf+DnD/AcaOt4/MFrgLaN1wDXvmvh53U0DI9V68Fj1brweLUePFatSHH9Kc1prsjPyNe5o5WN3EHhtpsdggcHK+dwjvLT85Wbmivfnr7W2ImtJ6xjW3UCBwXK4GCQxWypNge1a8nPArU0PovUNPz7bj9t7XchvO+IpuK5g6biuVO39PT0lt4CrpBW90z38vKyjktKSmzmVj3touq85jCZTJo8ebL279+vKVOm6LXXXmt0DR8fH3XoUPs3CVxpDha6x9oqs8wyyCCDxcDzoA1r6R9wHBwcZDQaW3wfaLt4DqIl0cXftrkZ3eRp9Kx+Z/2nxaOVuxZ+Buf/vJbHzx/gOdC28fi3bbwGaNvcHd15DXCNuxZ+XkfD8Fi1HjxWrQuPV+vBY9V6XOkPSJ89eNY69g71tplbNX720NlqDRbZB7OtY59QnzprGF2Mcvd3V2FWobIPZdeZh0ot+Vmglsa/TU3Dv+/20xbfe+N9RzQVzx00Fc+d2vH3cf1qdT+dubi4KCiosoM+KyvLZm7VeNeuXZu9ttls1rRp0/Tll1/q4Ycf1gcffNCsbxcAAAAAAAAAAAAAAAAA6nPh5AXr2CPQw2Zu1XjVeY2t4xlY2TRcml+q4vMNOKIDAAAAAK4DrbJ1pn///srMzNTFixeVl5cnH5/aO+qrHr3Sr1+/Zq1pNps1ffp0/fvf/9ZDDz2kZcuWydHRsUm11j2+Tn6ufs3aDwAAAAAAAAAAAAAAAFqGucIsi/nyMWVmk/mKrld2scw6Nrra/riPk5tTrfMkqfRiaYPrGN0ux8sulsmtvVuD9goAAAAArVmrbLC47bbbtHnzZknSvn37dOutt9aal5SUVG1OU1ksFj3++ONatmyZJk2apOXLlze5uQIAAAAAAAAAAAAAAACtW+6xXOWm5lpv5ynviq5XXlxuHTs62/7MStV4eVF5tZip2GSXOgAAAABwvXJo6Q00xf333y+DwSBJ2rJlS515l5ow/Pz8NHLkyCatZbFY9OSTT+pf//qX7rvvPq1YsaJGc8WZM2d04403asmSJU1aAwAAAAAAAAAAAAAAAK1Hh+4dFDY6zPqn661dr+h6VU+lqCirsJlbNe7k7lQtVvVUiubUAQAAAIDrVatssOjRo4cmTZokSfroo49UVlZWI+f48ePaunWrJOnFF1+U0Vj9sI6DBw+qZ8+eCgkJ0fbt2+tc6+mnn1ZsbKwmTJiglStX1qgjSaWlpUpMTNRPP/3UnMsCAAAAAAAAAAAAAABAK+Dg6CBHJ0frHwfjlf0IjrOXs3VsKjHZyKx+2kXVeZLk4uXS4DpVT7v4eR0AAAAAuF7V7BZoJd58803FxcXp5MmTeumll/SXv/zFGistLdUTTzyhiooKDRkyRL/85S9rzP/zn/+s1NRUSdJvfvMb7dy5s0bOM888o3fffVfdu3fX7NmztWPHjlr3kpmZaaerAgAAAAAAAAAAAAAAAKpr17WddVyYVWgzt2q86rxLt9N3pVvzvDt511mnIKtAkuTi7SK39m6N3DEAAAAAtE6ttsGic+fOWrdunSZOnKi//vWvOnjwoO655x4VFxdr6dKlOnDggMLDw/Xll1/K1dW1xnyz2WwdWyyWGvG33npL77zzjiTp2LFjuvPOO6/cxQAAAAAAAAAAAAAAAAB1COgfYB3nn863mZuffjke0C+gWsy/v791nHc6T8ERwbXWMJWaVJRdVDmnn3+tOQAAAABwPbqy5xNeYUOHDlVycrJ+97vf6fTp03rhhRf0yiuvyM3NTW+99ZZ2796tjh071jr3d7/7nbp3765OnTrp9ddfrxE/efLkFd49AAAAAAAAAAAAAAAAUD/vTt7y7ekrScrcl2kz90zSmco5Id7q0KNDtVi327pZx7bqZO3PksVsqTEHAAAAAK53rfYEi0v8/Pz0yiuv6JVXXmnUvIEDByo1NbXO+FtvvaW33nqrmbsDAAAAAAAAAAAAAAAAmq/vpL765s/f6MLJCzp//Lza39C+Rk5+Rr5yjuRIkvrc30cGg6FaPCQqRN4h3spPz9eJLSc0ct7IWtc6vvl4tXUBAAAAoK1o9Q0WAICGWzluZYutbTaY1em5Ti22PgAAAAAAAAAAAAC0ZkN/NVS7F+9WWUGZkv6ZpNtfvb1Gzt7390oWyehqVPSvo2vEDQaDhr80XBtmb1BaQppyjuTIr7dftRyzyax9H+6TJPW4u4eCBgVdkesBAAAAgGuRQ0tvAAAAAAAAAAAAAAAAAIBtHgEeinkzRpK0a9EuZXyXUS2euT9TO97YIUka9adR8g7xrrXOkMeHqPPwzpJFWvf4OpUXl1eLb/vjNuWm5sq1natGLxp9Ba4EAAAAAK5dnGABAAAAAAAAAAAAAAAAXAXJy5Ot46zkLOv4x00/Kj89X5LkEeihsJiwWuff+NSNKsgq0PYF27V01FJFzIyQfz9/5RzJUVJsksoLyzVs7jBFz615esUlDkYHPbjmQa0Yu0JpCWlaMmSJwqeHy9nDWakbUpW6PlXufu6atHqSfHv42unKAQAAAKB1oMECAAAAuIYU5RTp0KpD+vHrH5W5N1MFWQUyOBjkGeipTjd10oBHB6jn2J4yGAz11jq987T2vLNHaQlpKjxbKA9/D4UMC1Hk7Eh1Hdm1Qfsxm8xKjE3UgeUHlHMkR6ZSk3w6+6jX+F6KmhMlzyDPZl4xAAAAAAAAAABtx5opa2q9P+HVBOu4y61d6mywkKSR80YqLCZMu9/erZTVKSp6t0jufu4KuzNMkU9HqtuobvXuw93PXTMSZigxNlHJHyUrYWGCKkor5NPZR9EvRCvq2Sh5BXs1/gIBAAAAoJWjwQIAAAC4Rmycu1Hf/eM7mUpMcvd314BHBsi3h68sFotOxp1UyuoUHfr0kLrd1k2TVk2SWwe3OmvFL4hX/Px4GV2NGjxzsAL6ByjncOW3V6WsSlH089GKeSPG5n6Kcoq0YuwKZezOkF9vP9384s1y9nRW6vpU7Xhth/a+v1cPrH5AXUZ0sfdfBQAAAAAAAAAA16V5lnl2qRMaHarQ6NBm1XAwOihyVqQiZ0XaZU8AAAAAcD2gwQIAAAC4RiQvT5apxKQut3bRQ188JFcfV2vspqdv0g9f/aCPJ3ysE1tPaOW4lZr+zXQZHGqeZPH9e99r27xtMroaNXXrVIUMDbHGBk4ZqA9u+UA739wpjwCPOo8IN5vM+mTiJ8rYnaHQ6FBN2TxFTm5OkqTI2ZHa8tIWJSxM0MfjP9bMPTM5IhwAAAAAAAAAAAAAAABAq+fQ0hsAAAAAcJmD0UETl02s1lxxSc+xPRUxM0KSdHrnaR369FCNnMLsQm16fpMkaeicodWaKyQpeHCwtaki7vdxyk/Pr3UfibGJSktIkwzSuNhx1uaKS0bOH6kO3Tuo5EKJNj63sdHXCQAAAAAAAAAAAAAAAADXGhosAAAAgGtIUHiQfDr71Bnvc18f6/iHdT/UiO9evFtlBWWSZG3G+LmImRGSQTKVmLTzrztrxC0WixIWJkiSOt/cWf59/WvkODo5atC0QZX7+OoHZe7PtHFVAAAAAAAAAAAAAAAAAHDtM7b0BgAAAABUum/lfXL3dbeZ065LO+s4Ly2vRjxldUplXtd26tC9Q601vEO85dfbTzmHc3R49WGN/ttoGQwGazx9V7ryT1eebNHtjm517iUsJkxxL8dVrrsqRUGDgmzuHcDVt3Lcypbegiavm9zSWwAAAAAAAAAAAAAAAGgQTrAAAAAArhHdRnVT4MBAmzklF0qsYycPp2qx/Ix8nTt6TlLlSRi2BA8OrpyTnq/c1NxqsRNbT1jHtuoEDgqUwcFQYw4AAAAAAAAAAAAAAAAAtEY0WAAAAACtyPkT563jLiO6VIudPXjWOvYO9bZZp2r87KGz1WLZB7OtY59QnzprGF2McvevPHEj+1B2nXkAAAAAAAAAAAAAAAAA0BrQYAEAAAC0IkfWHJEkGV2NCp8WXi124eQF69gj0MNmnarxqvMaW8cz0FOSVJpfquLzxTZzAQAAAAAAAAAAAAAAAOBaZmzpDQAAAADXI1OpSRWlFdbb5QXlza5ZeLZQR784KkkaNneYvDp6VYuXXSyzjo2utn/Ud3JzqnWeJJVeLG1wHaPb5XjZxTK5tXezmQ8AAAAAAAAAAAAAAAAA1yoaLAAAAIArIGFhguLnx1tv5znkNbvmpuc3yVRiUnBEsEa8PKJGvLz4chOHo7OjzVpV4+VF1Zs/TMUmu9QBAAAAAAAAAAAAAAAAgNaEBgsAAADgChj+2+Ea9tww6+20tDQtGrCoyfWSlydr/7L98gjw0AOfPSCjS80f5aueSlFRVlEjXlXVuJO7U7VY1VMpmlMHAAAAAAAAAAAAAAAAAFoTGiwAAACAK8DoYqzWBOHk2fTmg1PbT2nd4+vk4u2ihzc8rHZd29Wa5+zlbB2bSky15lxS9bSLqvMkycXLpcF1qp528fM6AAAAAAAAAAAAAAAAANCaOLT0BgAAAADULWNPhlaOWylHZ0c9+vWj6jikY525VRsvCrMKbdatGv95w0Zj6hRkFUiSXLxd5NbezWYuAAAAAAAAAAAAAAAAAFzLaLAAAAAArlE/Jf6k5aOXy2Kx6NGvH1VIVIjN/ID+AdZx/ul8m7n56ZfjAf0CqsX8+/tbx3mn8+qsYSo1qSi7qHJOP/868wAAAAAAAAAAAAAAAACgNaDBAgAAALgGndl7Rh/FfCSzyaxH/1t/c4UkeXfylm9PX0lS5r5M2/WTzlTOCfFWhx4dqsW63dbNOrZVJ2t/lixmS405AAAAAAAAAAAAAAAAANAa0WABAAAAXGOykrP0UcxHqiir0CP/eUSh0aE1crbN36YlNy6pcX/fSX0lSRdOXtD54+drrZ+fka+cIzmSpD7395HBYKgWD4kKkXeItyTpxJYTde7z+ObjNdYFAAAAAAAAAAAAAAAAgNaKBgsAAADgGnL24Fktu32ZTMUmPbLhEXUe3rnWvAsnLuhM4pka9w/91VA5ezpLkpL+mVTr3L3v75UsktHVqOhfR9eIGwwGDX9puCQpLSHN2oxRldlk1r4P90mSetzdQ0GDghp0fQAAAAAAAAAAAAAAAABwraLBAgAAALhGZKdka9nty1SUU6Rhc4fJYrbo5LaTtf4pyCyotYZHgIdi3oyRJO1atEsZ32VUi2fuz9SON3ZIkkb9aZT1pIqfG/L4kMrmDou07vF1Ki8urxbf9sdtyk3NlWs7V41eNLq5lw4AAAAAAAAAAAAAAAAALc7Y0hsAAAAAIJlKTFp2+zIVni2UJG1fsF3bF2xvUq0bn7pRBVkF2r5gu5aOWqqImRHy7+evnCM5SopNUnlhuYbNHabouTVPr7jEweigB9c8qBVjVygtIU1LhixR+PRwOXs4K3VDqlLXp8rdz12TVk+Sbw/fJu0TAAAAAAAAAAAAAAAAAK4lNFgAAAAA1wBTianOUymaYuS8kQqLCdPut3crZXWKit4tkrufu8LuDFPk05HqNqpbvTXc/dw1I2GGEmMTlfxRshIWJqiitEI+nX0U/UK0op6Nklewl932DAAAAAAAAAAAAAAAAAAtiQYLAAAA4Brg2s5V8yzz7FozNDpUodGhzarhYHRQ5KxIRc6KtNOuAAAAAAAAAAAAAAAAAODaRIMFAAAAAAAAAAAAAAAAAAAAAAB2VpRTpEOrDunHr39U5t5MFWQVyOBgkGegpzrd1EkDHh2gnmN7ymAw1Dr/wskLWtxtcYPWinw6Ur945xc2c8wmsxJjE3Vg+QHlHMmRqdQkn84+6jW+l6LmRMkzyLPR13i9ocECAAAAAAAAAAAAAAAAAAAAAAA72jh3o777x3cylZjk7u+uAY8MkG8PX1ksFp2MO6mU1Sk69OkhdbutmyatmiS3Dm5XdD9FOUVaMXaFMnZnyK+3n25+8WY5ezordX2qdrz2/7F35/FRVff/x98zmewJCSGQRLZABBGQ1cgi2kilWBUtKioqilYpbsW2brW2amtr+VqVtvotFVqhIGix8FUUrCBbwyKQgGERiWwhaQhLCCELSSYzvz/4MSQmmWQmE+7M3Nfz8cjjcZNz7jnnzj25954793PPem372zbd/sHt6n519zZth78jwAIAAAAAAAAAAAAAAAAAAAAAAB/KmZ8j+xm7un+nu+788E5FxEW40q549Art/Xiv3vvBezqw6oAWjluo+/9zvyzWxmeyGP270bp0/KVu64toH9FkmsPu0Pvj31fBFwXqOrKrJq2cpNDIUElS+iPp+vy5z5X5Sqbeu/k9Pbj5QXXo1cGLLQ4OVqMbAAAAAAAAAAAAAAAAAAAAAABAsLHarBr/j/H1givO6X1jbw15cIgk6fCGw9r1z11NlhObEqvEPoluf2KSYppcP2tWlvIy8ySLNG7WOFdwxTkZL2Uo4eIEnSk5o89++pl3GxskmMECAAAAAAAAAAAAAAAAAAAEnIXjFhpa/8SlEw2tHwDg/5IHJSuuW1yT6Zfeeqmy/polSdq7dK/639nf521wOp3KfCVTktTtym7q2LdjgzwhoSEaOHmgVj+/Wns/3qsjXx5R8sBkn7clEDCDBQAAAAAAAAAAAAAAAAAAAAAAPnTrwlt1099ucpsnvnu8a/lU3qk2aUf+pnyVHi6VJPW4tkeT+dLGpLmWdy/a3SZtCQTMYAEAAAAAAAAAgEEqjldo16Jd2vfvfTqy7YjKispksVoUkxSjzld01mX3XKbeN/aWxWJpdP2SgyX6Y48/tqiu9EfTdf2b17vN47A7lDUrSzvm79DxPcdlr7IrrlucLrn5Eg2fNlwxyU1PLw4AAAAAAAAAAM7rcU3TwQznnCk541oOjQ5tUbkOu0P2KrvCosNalP/AqgOu5eRBTc9KkTQwSRarRU6Hs946ZkOABQAAAAAAAAAABvjsyc+05a0tsp+xK6pjlC67+zJ16NVBTqdTB1cf1O4PdmvXP3epx+gemrBogiITItu0PRXHK7TgxgUq+KJAiX0SdeUzVyosJky5n+Rq/e/Xa9vftun2D25X96u7t2k7AAAAAAAAAAAwi5MHTrqW3d1/P7rrqP5117+Ul5mn0/89LWetU6FRoeoyvIsuu+cyDZw0UFabtdF1j+085lqO6xrXZB22cJuiOkapvKhcx3YdazJfsCPAAgBwwexYuEMFrxfI6mz8JN7WJi6daEi9AAAAAAAAjcmZnyP7Gbu6f6e77vzwTkXERbjSrnj0Cu39eK/e+8F7OrDqgBaOW6j7/3O/LNbGZ7IY/bvRunT8pW7ri2gf0WSaw+7Q++PfV8EXBeo6sqsmrZyk0Mizb8pKfyRdnz/3uTJfydR7N7+nBzc/qA69OnixxQAAAAAAAAAAoK49S/ZIkmwRNg2aPKjJfBv/sFEdenfQFY9docRLE1VbVatD6w4pe1a2Dqw6oOy3s3X74tsVmxLbYN2SgyWu5eikaLftiUmKUXlRuapKq1R5slKR7dv25U/+iAALAAAAAAAAAAAMYrVZNf4f4+sFV5zT+8beGvLgEGX9NUuHNxzWrn/uUv87+zdaTmxKrBL7JHrdjqxZWcrLzJMs0rhZ41zBFedkvJSh3Yt2q/ibYn320894kQUAAAAAAAAAwFTsVXbVVtW6fq8+Xd3qMsuPluvrD7+WJI14coRiL2oYHHHOpbdeqlvevUW28POP//e9ra8G3T9IczPmKn9TvhaOW6gH1j9QL48kVZ2uci3bItyHD9giz6dXn642ZYCFMa8QBwAAAAAAAAAASh6UrLhuTU/Hfemt52el2Lt0b5u0wel0KvOVTElStyu7qWPfjg3yhISGaODkgWfb8fFeHfnySJu0BQAAAAAAAAAAf5T5SqZ+H/d718+bfd9sdZkrnloh+xm7Uoak6Ornr240T7su7TTtwDTduvDWBoETkpQyOEVX/+rsuoVZhdo6c2uDPPZKu2s5JCzEbZvqptdU1LRoO4INARYAAAAAAAAAABjg1oW36qa/3eQ2T3z3eNfyqbxTbdKO/E35Kj1cKknqcW2PJvOljUlzLe9etLtN2gIAAAAAAAAAgD8a9fNRevbUs66fx3Y/1qrycubn6Mt/fKnoTtG6/V+3Nxo8IZ2dCTs+NV4hoU0HRgy+f7BkObu8/e/bG6TXnZWitrq2QXpdddNDo0Ld5Axe7uf4AAAAAAAAAAAAbaLHNU0HM5xzpuSMazk0umVfZDjsDtmr7AqLDmtR/gOrDriWkwclN5kvaWCSLFaLnA5nvXUAAAAAAAAAAAh2tnBbvSCIsNKW3YNvzKF1h7T0oaUKbxeuu5bdpfjU+Fa1LTIhUu17ttfJfSdVtKNI1WXVCos5377w2HDXsv2MvbEizqfXme0iLNb7bQxkBFgAAAAAAAAAAOCnTh446VrufnX3JvMd3XVU/7rrX8rLzNPp/56Ws9ap0KhQdRneRZfdc5kGThooq63xSa2P7TzmWo7rGtdkHbZwm6I6Rqm8qFzHdh1rMh8AAAAAAAAAAGhcweYCLRy3UCFhIbrn3/fooqEX+aTc6E7ROrnvpOSUyorKlBCT4EqLT41X/qZ8SVJ5UbnadW7XZDllRWWSpPB24YpsH+mTtgUaAiwAAAAAAAAAAPBTe5bskSTZImwaNHlQk/k2/mGjOvTuoCseu0KJlyaqtqpWh9YdUvasbB1YdUDZb2fr9sW3KzYltsG6JQdLXMvRSdFu2xOTFKPyonJVlVap8mSlab9cAQAAAAAAAADAU//N+q/mj50vp9OpSZ9NUpfhXXxWttPhdC1bQ+q/cKlj/46u5VOHTyllSEqjZdir7Ko4VnF2nX4dG81jBo2/rgoAAAAAAAAAALSYvcquqtIq109NWU2ryyw/Wq6vP/xakjTiyRGKvahhcMQ5l956qabmTNWVT1+pS8Zdor639dX3//R9PbDhAYW3C1f+pnwtHLdQ9qqGU39Xna5yLdsi3L+XyRZ5Pr36dLWnmwQAAAAAAAAAgCkVbivUvDHz5LA7dM+n97Q4uGLdy+u058M9zeYrO3J25gmL1aLoTvVfptRjdA/X8pHtR5oso+jLIlegRt11zIYZLAAAAAAAQJtZOG6hofVPXDrR0PoBAOaR+Uqm1r601vX7KeupVpe54qkVsp+xK2VIiq5+/upG87Tr0k7TDkxTbOdYhYSGNEhPGZyiq391tVY8uUKFWYXaOnOrhk8bXi+PvfJ80EVIWMMy6qqbXlPR+iASAAAAAAAAAACCXVFOkeaNmafa6lrd8+k96jqya4M8a15ao71L92rK1in1/r76l6uVNjZNfW7u02T5pwtP69Shs99LpAxJUWhUaL30LsO7qF2XdirNL9WBzw8o44WMRsvZv3K/a7nvhL4t3bygwwwWAAAAAAAAAAC00qifj9Kzp551/Tz85cOtKi9nfo6+/MeXiu4Urdv/dbts4Y2/L8lqsyo+Nb7R4IpzBt8/WLKcXd7+9+0N0uvOSlFbXeu2XXXTv/0FDQAAAAAAAAAAqO/ozqP6x3f/IXulXXcvu1vdRnVrNF/JgRIVZhU2mnZ4w2FVlVY1miZJW2dudS0PmTKkQbrFYtGo50ZJkvIy83R8z/EGeRx2h7bP2S5J6nVDLyUPTG6yvmDHDBYAANMw+u3JEm9QBgAAAAAgWNnCbfWCIEJjvA8+OLTukJY+tFTh7cJ117K7FJ8a36q2RSZEqn3P9jq576SKdhSpuqxaYTFhrvTw2HDXsv2MvbEizqfXme0iLDbMTU4AAAAAAAAAAMzt2O5j+sd3/6GK4xW6+ldXy+lw6uCag43mLTtS1mQ51aertXTKUo3/x/gGM1Hv+2yf1k9fL0nqfnX3sy9dasTQh4Zq54KdysvM09KHluqez+5RaOT57zLWvLhGxbnFioiP0Ng3xnq4pcGFAAsAAAAAAAAAAPxEweYCLRy3UCFhIbrn3/fooqEX+aTc6E7ROrnvpOSUyorKlBCT4EqLT41X/qZ8SVJ5UbnadW7XZDllRWe/4AlvF67I9pE+aRsAAAAAAAAAAMHGfsauf3z3Hyo/Wi5JWvfrdVr363Uel5M0MElFXxZp1/u7VJhVqH539lP7nu1VU16jg2sO6qvFX0lO6eLvX6xb3r1FVpu10XKsNqvuWHKHFty4QHmZeXp76NsadP8ghUWHKXdZrnI/yVVUYpQmfDBBHXp1aNW2BzoCLAAAAAAAAAAA8AP/zfqv5o+dL6fTqUmfTVKX4V18VrbT4XQtW0Pqf7nSsX9H1/Kpw6eUMiSl0TLsVXZVHKs4u06/jo3mAQAAAAAAAAAAZwMs3M1K0VJTt09V/hf52vN/e3R4/WFlv52typOVCgkNUUxyjC676zINmDRAF4+9uNmyohKj9EDmA8qalaWceTnKfCVTtVW1iusWp5FPj9TwJ4YrNiW21W0OdARYAAAAAAAAAABgsMJthZo3Zp4cdofu+fc9LQ6uWPfyOnW6rJP63NzHbb5zX+JYrBZFd4qul9ZjdA+t1mpJ0pHtR5osq+jLIlegRo/RPVrUPgAAAAAAAAAAzCgiPkIvOF/wSVldhnVRl2G+eSmT1WZV+sPpSn843SflBaPG5wABAAAAAAAAAAAXRFFOkeaNmafa6lrdvfxudR3ZtUGeNS+t0duXv93g76t/uVpb/7LVbfmnC0/r1KFTkqSUISkKjQqtl95leBe169JOknTg8wNNlrN/5X7Xct8Jfd3WCQAAAAAAAAAAEIgIsAAAAAAAAAAAwCBHdx7VP777D9kr7bp72d3qNqpbo/lKDpSoMKuw0bTDGw6rqrSqyTq2zjwfgDFkypAG6RaLRaOeGyVJysvM0/E9xxvkcdgd2j5nuySp1w29lDwwucn6AAAAAAAAAAAAAhUBFgAAAAAAAAAAGODY7mP6x3f/oYrjFRrx5Ag5HU4dXHOw0Z+yI2VNllN9ulpLpyxVbXVtg7R9n+3T+unrJUndr+6uwfcPbrSMoQ8NPRvc4ZSWPrRUNZU19dLXvLhGxbnFioiP0Ng3xrZiqwEAAAAAAAAAAPyXzegGAAAAAAAAAABgNvYzdv3ju/9Q+dFySdK6X6/Tul+v87icpIFJKvqySLve36XCrEL1u7Of2vdsr5ryGh1cc1BfLf5KckoXf/9i3fLuLbLaGn/vktVm1R1L7tCCGxcoLzNPbw99W4PuH6Sw6DDlLstV7ie5ikqM0oQPJqhDrw6t2nYAAAAAAAAAAAB/RYAFAAAAAAAAAAAXmP2M3e2sFC01dftU5X+Rrz3/t0eH1x9W9tvZqjxZqZDQEMUkx+iyuy7TgEkDdPHYi5stKyoxSg9kPqCsWVnKmZejzFcyVVtVq7hucRr59EgNf2K4YlNiW91mAAAAAAAAAAAAf0WABQAAAAAAAICgVF5e7tV6RUVFmjp1qrKysjR06FDNnDlTSUlJHpVht9u9qhvmEREfoRecL/ikrC7DuqjLsC4+Kctqsyr94XSlP5zuk/IAAAAAAG3LyPsfAAAAQDAiwAIAAAAAAAStheMWGla3w+JQ5592Nqx+AFJMTEyry1ixYoXS0tK8Wnf16tWtrh8AAAAAAMAdo+9/LLhxQavrBwAAAPyJ1egGAAAAAAAAAAAAAAAAAAAAAAAAGI0ZLAAAAAAAAAAEpbKyMq/WGz9+vFatWqXa2lqFhIRo9OjRWrJkiUdl2O12bdu2zav6AQAAAAAAWsrI+x+S9NGdH3lVPwAAAOCvCLAAAAAAAAAAEJSio6O9Wm/evHmaPHmytmzZovT0dM2ZM8fjsux2u1d1AwAAAAAAeMLbAIdbdIuOJhzVvpJ9SotP0y26hWAJAAAAQARYAAAAAAAAAEA9SUlJWr58udHNAAAAAAAAaDNx4XF6ZtgzRjcDAAAA8DsEWAAAAAAAAAAAAAAAAAAAAHiovLzcq/WKioo0depUZWVlaejQoZo5c6aSkpKaXc9ut6uyslLl5eWy2Wxez+ILAACaRoAFAAAAAAAAAAAAAAAAAACAh2JiYlpdxooVK5SWlubVuk6ns9X1AwCA+qxGNwAAAAAAAAAAAAAAAAAAAAAAAMBozGABAAAAAAAAAAAAAAAAAADgobKyMq/WGz9+vFatWqXa2lqFhIRo9OjRWrJkSbPr2e12bdiwQSNHjpTNxuOfAAC0Bc6wAAAAAAAAAAAAAAAAAAAAHoqOjvZqvXnz5mny5MnasmWL0tPTNWfOnBaVZbfbFRkZqejoaAIsAABoI5xhAQAAAAAAAAAAAAAAAAAALpCkpCQtX77c6GYAAIBGWI1uAAAAAAAAAAAAAAAAAAAAAAAAgNGYwQIAABN55/vveLXeqapT+tuOv+nAqQPqEddDP7zsh4oLj/O4nPuX3+9V/QAAAAAAAAAAAAAAAAAAAG2NAAsAAEzkgU8faHUZO4/v1E9W/8Srde8XARYAAAAAAAAAAASrM/YzXq3nqxc9RdgivKofAAAAAADgHAIsAAAAAAAA2siOhTtU8HqBrE6rIfVPXDrRkHoB4Jzy8nKv1isqKtLUqVOVlZWloUOHaubMmUpKSvK4nOjoaK/qBwAAgHeMftHTghsXtLp+AAAAAABgbgRYAABwAS0ct9DQ+v9+3d+9Wu/1ra9r94ndcjgdslqs6tuhr356+U993DoAAAAAQLCJiYlpdRkrVqxQWlqaV+s6nc5W1w8AAAAAAAAAAADzIMDCZJiSFQDMzdvj8KODH9XM7TO1r2Sf0uLTNHXQVI7pAAAAAAAAAAB8i9m/j+VFTwAAAAAAINARYGEyTMkKAPBGXHicnhn2jNHNAAAA8JiRD7Y4LA6v6gaAYFJWVubVeuPHj9eqVatUW1urkJAQjR49WkuWLPFx6wAAAHzP7N/H8qInAAAAAAAQ6AiwAAAAAAAAQcvoB1v+NOVPra4fAAJZdHS0V+vNmzdPkydP1pYtW5Senq45c+Z4XRYAAAD8Hy96AoDAZfbZmwCjlZeXe7VeUVGRpk6dqqysLA0dOlQzZ85UUlKSx+Vwzw4AEIwIsDAZpmQFAAAAAAAA4O+SkpK0fPlyo5sBAEDAYRY/4/F9LADAbIx+yY23514CPBAsYmJiWl3GihUrlJaW5tW6Tqez1fUDAOBvCLAwGaZkBQAAAACYiZEPtjgsDlWowqv6AQAAAMAbRj/gyCx+xn8f29IgG4fFoaqaKp2xn5HVaeUhUwBAwDL6+mfBjQtaXT8AAAD8S8AHWBw/flx//OMftWTJEh08eFBhYWG65JJLNHHiRE2dOlVhYWE+qWfZsmWaOXOmsrKydOLECaWkpCgjI0OPP/64hgwZ4pM6/FmwTMnKtISAuRl9DJA4Dhg5NaXdbveqbgBA6xh9/jX7uRfGPthCgAUAAAAAs6n7wL4nuA/vu+9jecgUAHChGT17ky/OfUAgKysr82q98ePHa9WqVaqtrVVISIhGjx6tJUuW+Lh1AAAEpoAOsNi8ebN+8IMfqLCwUGPGjNHDDz+syspKzZ07V9OmTdOcOXP08ccf66KLLvK6DofDoalTp2rWrFlKSEjQlClT1KNHD23dulVz587V/Pnz9dprr+nHP/6xD7cseBn9cBU3FGF2Zp8a3OhjgMRxwOipKVevXt3q+gHAG1X2Ko/Pw8ESYGD0+dfoc68/PFjirWDpg97y1YMtRveBheMWeryOL01cOtHQ+gEAAACzMXoWvwffedCr+uviPjzQOkZ/Jx+o94IAeM/o2ZuMDvAAjBYdHe3VevPmzdPkyZO1ZcsWpaena86cOV6XBQBAsAnYAIu8vDzdeOONOnbsmJ544gm98cYbrrTHH39c3//+97V69WrddNNNWr9+vcLDw72q57nnntOsWbOUmJiojRs36uKLL5YkTZkyRbfccotuuOEGPfHEE0pJSdGECRN8sm3BzOiHqwCz31A0+n+QqcEBAGb11JqnWrV+IAcYGM3oANOn3mndvpf8YwxEH/Se0X3A7J8/AACAGRl9H9xbTdXvsDg8Clw2+j680Z+/0bP4+YNA3Qe+0tKHTB0Wh04mn1T7I+1ldVqD5iFTs+9/yfjvA7kXAaClfPWSG6MDPIAL/aIjh8Wh4pRiFbxeIKvT6vWLjpKSkrR8+XIftw4AgOAQsAEWTz31lI4dO6Zu3brp97//fb208PBwzZo1S5dccomysrL05ptv6mc/+5nHdezatUuvvvqqJOk3v/mNK7jinOuuu06TJk3S3Llz9fjjj+v6668nitPPEbUObiiaG8cA4xn99jQAMCOjv1Q2+vxr9PUfAAAAAFxowTAOCuT78EZ//t5uv68ecHz1/lddD+x7wpf34QN1H/hKSx8MdVgcCg8NV4QtQlanNWgeMjV6/3t7L8zdvThPA80AAC3jq+sfGM/o78KMvmZiJmsAAHwvIAMscnNztWjRIknSvffe2+jsFGlpabrmmmu0cuVKTZ8+XdOmTZPN5tnmvvLKK3I4HIqMjNTdd9/daJ6HHnpIc+fOVVFRkWbPnq1p06Z5vkEmYvTDVUZHrRv99lx/YPSgxuyMfri9QhVe1e8rRh8DwNvTAJjXqxmvqkNEB4/WCZYAA28fKgiW868/PFjiLX9oQzAI5D4AAAAAz3EPHGZX94F9TwTLfYBAxkOmvmH0vTjJ+O/kjT4XcuwAcKF5e9xzWBw6Xnpcb298m2NfKxl9/jU6wBYAAPheQAZYfPDBB3I6nZKka6+9tsl8Y8aM0cqVK3Xs2DGtWbPGbd5vq6qq0tKlSyVJw4YNU2xsbKP5RowYoZiYGJWVlWnRokUtCrCosld5fHEdLDcTAvXhZl/dUDT6gv5PU/7U6vpby+jPwOgbikYz+uH2kzUnvXq7jtHHQL5UMB77AECgC7eFe3weMvoa2Gi+OvYbHmAaWhGwD5b4QxuCAQ8XAQAAmIvR98ClwL0P3lT9DotDJ5NPehW4bIRA/fyN5st7wOwDczN6//viPNBaRn8nf9fHd3lVf13+NotIS1XZq7yqG0Bg89Wxnwf8Ae8xiwcAwNcCMsBi1apVruVBgwY1mW/w4MH11vEkwGLr1q0qLS1ttg6r1aoBAwZow4YN2rhxoyorKxUZGem27KfWPNXidjTGjBfUPFjrG95OHRtMb84y+oZioL6xxVf/g0+907rjn2TOYyAAwJyCIcDAHxgdYOrtDF7+MAbyVRsC9RrYaP7QBwAAAAJRS68/HRZHvXvm3Ac3Psi3qfodFofXgctGCNTPP5iwD8zN6P3fFvfiLlSgWbDci/CHYEcAuNDMfh/e7N+FAQAA3wvIAIudO3dKkmJjYxUX1/RFXdeuXV3Lu3bt8qqOb5fjrh6Hw6E9e/bUC+wA6jL67bkPvvOgV/XXZdY3ZwXLLCYEGAAAYD5Gf6kcqILlC2V/wDWwufHWKAAAcKEZff0ZqPfAJePHQWYP8jb68wf7wOx8tf/b4l5coAWaGX0u9IdZRACYi7fHPYfFoVdzXlXuf3P94tgXqLMHSXwXZjSjvwcAAKAtBFyARVVVlY4cOSJJSkpKcpu3bvrBgwc9qqdufk/raS7A4tWMV9UhooNH7fGHG+toPaPfnusPGNSY26v3v+rV23WC6RgYqF/uBYvKykqVl5fLZvPsEqioqEhTp05VVlaWhg4dqpkzZzZ7feBLZq/fH9rgi/orKrx7iz1gFB4qAIKD0def3vJV/eXl5V63wRfnf7vdzjWowfVHR0e3QetaLlD3vy/bYPQ+8PY4wBgArVVlr/L4PBws599Ard9XuAduPKMfLiPIG4A3gulenNHnQiMDPIori/Xk2ie9qh+Br6KiwuMxqD+M/9F63h73HBaHJl0zSf/89z+1v2R/QI8DAvUaPJjOv0by9nsIyfh7AUZ/F3GhzwPf/s7C6POQ2ev3hza0tP7WfN/li/qbY/T3EAhOFqfT6TS6EZ44fvy4OnbsKEnq37+/duzY0WTeM2fOKDIyUpLUo0cP7d+/v8X1PPbYY3rrrbckSR988IFuvfXWJvM+++yzmj59uiRp7ty5uvfeexvNl5+fr65du2p6xnS1j2jv+nuoNVShIaFu23Oq6pT+uu2v2l+yXz3je+pHg38UkF8swDhOi1OFHQrVvqi9LE6LR+vO2DKjwc2kJ9Kf8KodgTgQ9CVvBxW+2gdGfv5Oi1PFycVKOJLgcR8MpmPgPUvvMbT++ePmG1q/kZwWpyZ9NMnoZgA6fPiwunTpYnQzcIG0ZgyAwNea659gwjWwsX3A6OtPwGg1NTWG1W232133Js3MyH0gSaGhxl9zMQYwl3NjABhn9vdntyif0+LUyaSTrnvmwXD9Gaw8va42+hrY7PdgjR4DoeXYX4GDfXVh+OL7yOLKYv145Y8ZA5iMP4wBzHz9Ech8eXw3+j78g8sf9Kp+XzHb/4C/XRsYPQYDACO/h8jPz1ePHj0YAwShgJvBorKy0rUcFhbmNm/ddE/fFtaW9Tyzpn7k63VDrtP1l1/f7HoPpp6/GK1VrYpV3Ow6wDlOOeWIdagitEIWeXZxfWeHO/Xu2neVdzRP3Tp1053fuVMVUd69ga9CvLnPG77aB0Z+/k45VRlbqWIVe9wHJY6BvlKcYt7PzamAiikFEGS8HQMgsLX2+sfsuAYG4AuZmZmG1e1w+MdsokYzch8AMKeKri27/vv2PfNguP4MVp5eV796/6te1TP7s9nK/W+u6+GyXhf10oPf8/xBseJQc9+DZQwUONhfgYN9deG09vvI05Wnfd0koEXM/B1wIPOH47uvxkFcg19Y/tB3AMCfGPk9RHGxuc5BZhJwARZ13/pWXV3tNm/d9KioKL+pp9G31xYa/yY1BDenxalieRe9nKAE/WLQL87/4dT//8EFEwz7oDV9MJi09A163+azN+gVmvcNek6LU/9z//8YPpOPN3xV/20Lb/Oq/ttuu02rV69WbW2tQkJCdM011+iDDz7wqixvGd0GX9Sfl5enAQMGtFEL4e8YA5gT1z+twzWwbxh9/ekto+v3VRucFqdSHknR8OHDPZ4yORiuf/yhfiOnhbbb7fr4448Dcv/7sg1GT81dUlLi1XqMAdBav7nqN4oPj3f9HmoNlS3E/bHA6PNfsNTf0vtf375WC4brz2B1oa6rf9zvx/prdZ03l/f7keKOB+ZMykbxhzEQWo79FTjYVwGksvksCF4bN25U586dXb+Hh4crPDzc7Tq+Gnt/POljj9eB8fzh+G70OIhrcO/4Q9+py9vvIaTguRcRKM9i2O12bdq0yXXP2uj70Gav3x/a0NL6v913LnT9zTHye4j8/HzD6kbbCrgAi9jYWNfymTPupzerOwtF3fWMrifSFqkYW0z9P/JSbbQxhxyyyCKL0yKr02p0c2BC9MGzokI8C/g759HBj2rm9pnaV7JPafFpmjpoqndlmfh845BDEaERigyJ9LgP+uzz95Kv6o+L8+5m1Pz58zV58mRt2bJF6enpmjNnjtdlecvoNviifk+vRxFcGAOYE9c/8Ic+YPj1p5eMrt9XbXBYHIqOjlZcXJzHN5yD4fonkOv3lUDd//7SBl8wchzEGMDc4sPi1SGig0frGH3+C5r6WzjW8odrNbTMhdpX7cPa69lhz9b/I2N3j/B/FVjYX4GDfRU4/OEhVxgnOTlZXbt29WgdX429OTYEJo7vXIN7y9/6TmvuHQTLvYhAeRbDbrfXu2dt9D1gs9fvD21oaf3f7jsXun5/5svPA/4l4PZseHi4kpOTdeTIERUVFbnNWzc9NTXVo3rq5m/LegAAaIm48Dg9M+wZo5thWkZ//kbXn5SUpOXLlxtWvz+0wej6AQC40Iy+/jC6fn9og9HXH2av32j+sP3+0AYjmX37YQyjzz1mrx8AAAC40Bh7AjA7o+8FGF2/0ecB6jf+PGx0G8xeP+BOwAVYSFL//v115MgRnT59WqdOnWoyYqnu1Cv9+vXzuI5zDh8+7DbvuXqsVqv69OnjUT0AAAAAAAAIXjsW7lDB6wWGvUls4tKJhtQLAAAAAAAAAAAAAIHI+DmivDB69GjX8vbt25vMl52d3eg6LXH55Ze7pnB3V4fD4dCXX34pSRoxYoQiIyM9qgcAAAAAAAAAAAAAAAAAAAAAABgvIAMsbrvtNlksFknS559/3mS+lStXSpISExOVkZHhUR3h4eG66aabJElffPGFysrKGs23adMmV9qECRM8qgMAAAAAAAAAAAAAAAAAAAAAAPgHm9EN8EavXr00YcIE/fOf/9S8efP0/PPPKywsrF6e/fv3a9WqVZKkZ555RjZb/U3duXOnbrnlFlVUVGjBggW6+uqrG9Tz7LPPauHChaqsrNSCBQs0ZcqUBnlmz54tSUpKStKDDz7oq00EAAAIOgvHLTS6CZq4dKLRTQAAALigjL4G4/oLAAAAAAAAAAC0Fb4HafvPwGFxqDilWAWvF8jqbPhef3/4DABfC8gAC0l69dVXtXr1ah08eFDPPfec/vCHP7jSqqqqNGXKFNXW1mro0KF67LHHGqz/29/+Vrm5uZLOBlJs2LChQZ7+/fvrqaee0vTp0/X888/r2muvVc+ePV3pn332mebOnStJ+vOf/6zo6GhfbyYAAIDPGD2oBAAAAAAAAAAAAAAAgO+09FmQ5h6S9xYP18Po55Hog2gLARtg0a1bNy1dulTjx4/Xa6+9pp07d+qmm25SZWWl5s6dqx07dmjQoEH66KOPFBER0WB9h8PhWnY6nU3W87vf/U4nTpzQ7NmzdcUVV+hHP/qRUlNTlZWVpXfeeUdWq1Wvv/66JkyY0CbbCQAAAAAAAAAAAAAAAAAAAAAA2l7ABlhI0rBhw5STk6MZM2ZoyZIlevrppxUaGqrevXtrxowZevjhhxUWFtbour/4xS+UnZ2tyspKTZ8+vck6rFarZs2apfHjx+svf/mL/v73v+vkyZNKTk7WnXfeqWnTpmnIkCFttYkAAAAAAAAAAAAAAAAAAAAAAOACCOgAC0lKTEzUyy+/rJdfftmj9QYMGKDc3NwW57/++ut1/fXXe9o8AAAAAAAAwLSYFhoAAAAAAAAAAABAIAn4AAsAAACgpYx8wO/4meOG1Q0AAGBWRl7/OSwOdf5pZ8PqBwAAAAAAAAAAbcvoF00BaBsEWAAAAAAAAAAAAAAAAAAAAAAeMvsD9mbffgDBiQALAAAAwA9VHK/Qpj9u0p4le1RysEQhYSFKvCRR/Sf21+VTL1dIWIjRTQQAAADgQ4wBAAAAAHNhDAAAAACYC2OAwEGABQAAAOBnCjYX6L0fvKeywjL1HNNTlz98ueyVdn0590t9Ou1TbZ+zXXd9fJdiL4o1uqkAAABwY8fCHSp4vUBWp9WQ+icunWhIvXUZ/fYyf/gMWoIxAAAAAGAujAEAAAAAc2EMEFgIsAAAAAD8yKm8U1pw4wJVHKvQsCeG6bo3rnOlXfH4FXr3++/q4OqDWnjTQj2w/gHZwrmkBwAAQOOMDm5AyzAGAAAAAMyFMQAAAABgLowBAo8xr04DAAAA0KgVT61QxbEKxXWL07W/v7Zemi3cpnGzxskSYlFhVqE2v7nZoFYCAAAA8BXGAAAAAIC5MAYAAAAAzIUxQOAhxAUAAADwEydyT2jXol2SpAH3Dmg0Ij0hLUE9rumh/Sv3a/309Ro+bbisNuKmAQAAgMYYOYvH8TPHm83DGAAAAAAwF8YAAAAAgLkwBghMfPoXUHV1tSSpxlFjcEtgRjW1NVq2dZlqaul/MAZ9EEajD8Jo564Bz10TNmb3B7sl59nlntf2bDJfzzFn0yqOVejgmoM+ayN8jzGAuXHuAX0A9AFzY/+DMQDg3zhOBw72VeBgXwUW9lfgYF8FF8YAwefcmM/d2A9oDMd3eIu+A2/Rd+At+k7rMAYITARYXEBVVVWSJLvDbnBLYEY1jhp9mv0pD/fBMPRBGI0+CKOduwY8d03YmIOrDrqWkwclN5kvefD5tAOrDrS+cWgzjAHMjXMP6AOgD5gb+x+MAQD/xnE6cLCvAgf7KrCwvwIH+yq4MAYIPufGfO7GfkBjOL7DW/QdeIu+A2/Rd1qHMUBgIsACAAAA8BNHdx6VJIXFhikiLqLJfHFd41zLx3Yda/N2AQAAAGgbjAEAAAAAc2EMAAAAAJgLY4DAZDO6AQAAAAAke5VdZUfKJEkxSTFu80YnRbuWSw6WtGWzAAAAALQRxgAAAACAuTAGCG7Lf7xcO2N2Gt0MAAAA+BHGAIGLAIsLyOFwSJJKzpQoKiTK4NbAbCpqKyRJJ8+cVFUIU1PiwqMPwmj0QVxojlqH5Dz/+8nyk2f//v+vCb+t+nS1a9kW4f4yPTQy1LVcdZr+7M8YA5gb5x7QB0AfMDf2v/kwBoB0fn+fPHPS4JagORynAwf7KnCwrwIL+ytwsK/817fHACVnSs7+nTGAqfA9ALzF8R3eou/AW/QdeMvf+05+fv4Fq8tebZej6vz1fuGRQkmMAYIRARYX0MmTZ79QeWXTKwa3BGb2zJpnjG4CTI4+CKPRB2G0c9eE31ZTWeNaDgkLcVtG3fSaiho3OWE0xgCQOPeAPgD6gNmx/8EYwFyKiookSb9a/yuDW4KW4jgdONhXgYN9FVjYX4GDfRU4ioqK1K1btwZ/ZwwQnPgeAK3F8R3eou/AW/QdeMtf+87jXR83ugmMAYIQARYX0PDhw7V582YlJSXJarUa3RwAAAC0oW9HrTscDh0rOab0YemN5q8biV5bXeu27LrpoVGhbnLCaIwBAAAAzIMxACRp8ODBjAEAAABMoqkxwODBgxvNzxggOPE9AAAAgHkwBjAPAiwuIJvNpvT0xr9MAwAAQPC7WBc3mRYWG+Zatp+xuy2nboR7eGx46xuGNsMYAAAAwNwYA5gPYwAAAABzYwxgPowBAAAAzI0xQHAidBoAAADwA7Zwm2KSYyRJZUVlbvOWF5W7luNT49uyWQAAAADaCGMAAAAAwFwYAwAAAADmwhggcBFgAQAAAPiJTv07SZKqT1frzKkzTeYrzS91LXfs17HN2wUAAACgbTAGAAAAAMyFMQAAAABgLowBAhMBFgAAAICfSB2d6lo+sv1Ik/kKswtdyz1G92jLJgEAAABoQ4wBAAAAAHNhDAAAAACYC2OAwESABQAAAOAn+t7WV7KcXT7w+YEm8+1fuV+SFJUYpdSM1AvQMgAAAABtgTEAAAAAYC6MAQAAAABzYQwQmAiwAAAAAPxEh14d1G9CP0lSzrwc1VbXNshzcv9JHVh1dsB15TNXymrjkh4AAAAIVIwBAAAAAHNhDAAAAACYC2OAwMQeAAAAAPzImFfHKKpjlEoOlujz5z6vl2avsmvplKVy1jqVMjRFVzx2hUGtBAAAAOArjAEAAAAAc2EMAAAAAJgLY4DAY3E6nU6jGwEAAADgvPwv8vX++PdVVlimtLFpuuSmS1RTWaMv536pozuOKnlQsu765C7FXhRrdFMBAAAA+ABjAAAAAMBcGAMAAAAA5sIYILAQYAEAAAD4oYrjFdo0Y5P2LNmjkkMlCgkNUYfeHdT/rv5KfzhdIWEhRjcRAAAAgA8xBgAAAADMhTEAAAAAYC6MAQIHARYAAAAAAAAAAAAAAAAAAAAAAMD0rEY3AAAAAAAAAAAAAAAAAAAAAAAAwGgEWAAAAAAAAAAAAAAAAAAAAAAAANMjwAIAAAAAAAAAAAAAAAAAAAAAAJgeARYAAAAAAAAAAAAAAAAAAAAAAMD0CLAAAAAAAAAAAAAAAAAAAAAAAACmR4AFAAAAAAAAAAAAAAAAAAAAAAAwPQIsAAAAAAAAAAAAAAAAAAAAAACA6RFgAQAAAAAAAAAAAAAAAAAAAAAATI8ACwAAAAAAAAAAAAAAAAAAAAAAYHoEWAAAAAAAAAAAAAAAAAAAAAAAANMjwAIAAAAAAAAAAAAAAAAAAAAAAJgeARYAAAAAAAAAAAAAAAAAAAAAAMD0CLAAAAAAAAAAAAAAAAAAAAAAAACmR4AFAAAAAAAAAAAAAAAAAAAAAAAwPQIsAAAAAAAAAAAAAAAAAAAAAACA6RFgAQAAAAAAAAAAAAAAAAAAAAAATI8ACwAAAAAAAAAAAAAAAAAAAAAAYHoEWAAAAAAAAAAAAAAAAAAAAAAAANMjwAIAAAAAAAAAAAAAAAAAAAAAAJgeARYAAAAAAAAAAAAAAAAAAAAAAMD0CLAAAAAAAAAAAAAAAAAAAAAAAACmR4AFAAAAAAAAAAAAAAAAAAAAAAAwPQIsAAAAAAAAAAAAAAAAAAAAAACA6RFgAQAAAAAAAAAAAAAAAAAAAAAATI8ACwAAAAAAAAAAAAAAAAAAAAAAYHoEWAAAAAAAAAAAAAAAAAAAAAAAANMjwAIAAAAAAAAAAAAAAAAAAAAAAJgeARYAAAAAAAAAAAAAAAAAAAAAAMD0CLAAAAAAAAAAAAAAAAAAAAAAAACmR4AFAAAAAAAAAAAAAAAAAAAAAAAwPQIsAAAAAAAAAAAAAAAAAAAAAACA6RFgAQAAAAAAAAAAAAAAAAAAAAAATI8ACwAAAAAAAAAAAAAAAAAAAAAAYHoEWAAAAAAAAAAAAAAAAAAAAAAAANMjwAIAAAAAAAAAAAAAAAAAAAAAAJgeARYAAAAAAAAAAAAAAAAAAAAAAMD0giLAwul06s0331RMTIwsFovWrFnj8zqWLVumm266SZ07d1ZERIR69Oih+++/X9nZ2T6vCwAAAAAAAAAAAAAAAAAAAAAAXFgBH2Cxb98+ZWRk6PHHH1d5ebnPy3c4HJoyZYpuuOEGrV+/Xvfee6/+9Kc/acyYMVqwYIGGDRumP/3pTz6vFwAAAAAAAAAAAAAAAAAAAAAAXDgWp9PpNLoR3nA6nXrrrbf07LPPKiQkRH379tWmTZskSatXr1ZGRoZP6nn22Wc1ffp0JSYmauPGjbr44otdaZ9++qluuOEGOZ1Ovf/++5owYYJP6gQAAAAAAAAAAAAAAAAAAAAAABdWwM5g8dJLL+nxxx/XqFGjtHPnTo0dO9bndezatUuvvvqqJOk3v/lNveAKSbruuus0adIkOZ3ONptBAwAAAAAAAAAAAAAAAAAAAAAAtL2ADbBwOp2aPXu2Pv30U3Xt2rVN6njllVfkcDgUGRmpu+++u9E8Dz30kCSpqKhIs2fPbpN2AAAAAAAAAAAAAAAAAAAAAACAtmUzugHeevHFF2WxWNqs/KqqKi1dulSSNGzYMMXGxjaab8SIEYqJiVFZWZkWLVqkadOmNVmm3W7Xtm3blJSUJKs1YGNbAAAA4AWHw6GioiINHjxYNlvAXobDQ4wBAAAAzIsxgDkxBgAAADAvxgDmxBgAAADAvBgDBK+A3ZttGVwhSVu3blVpaakkadCgQU3ms1qtGjBggDZs2KCNGzeqsrJSkZGRjebdtm2brrjiirZoLgAAAALE5s2blZ6ebnQzcIEwBgAAAABjAHNhDAAAAADGAObCGAAAAACMAYJPwAZYtLWdO3e6lrt27eo277l0h8OhPXv2aPDgwY3mS0pKkiRt3LhRXbp08VFLgZax2+3Kzs7WkCFDiJSDIeiDMBp9EEbLz8/XiBEjXNeEMAfGAObGuQf0AdAHzI39D8YA5nRuf2/evFkpKSkGtwbucJwOHOyrwMG+Cizsr8DBvgochYWFuuKKKxgDmAzfA8BbHN/hLfoOvEXfgbfoO01jDBC86OlNOHjwoGu5uY5fN/3gwYNNBlicmwqwU6dOfLGCC85utys+Pl4pKSmc5GAI+iCMRh80Xnl5udfrHj16VA8//LCysrI0dOhQ/eUvf1GnTp08Lic6OtrrNrRWdXW1JDE9tMkwBjA3zj2gD4A+YG7sf//g7TjEF2OQc+MPxgDmwhggcHCcDhzsq8DBvgos7K/Awb4KHLW1tZIYA5jNuf0dHR2tdu3aebRuMHz/Be9xfIe36Dv+x8h7kFLLzwP0HXiLvtM0xgDBi57ehNOnT7uWIyIi3OaNjIxsdL2mbNy4UV9//bXr95CQENMcdM49WOipkydP6rXXXtPevXvVu3dv/exnP1P79u09LicsLMyr+oOBw+HQ4cOH5XA4OJjDEA6HQ/v379eZM2c87oPBdAww+jjorWDYBxwHjfeb3/zG63VzcnJUXFwsSVq5cqWGDRumAQMGeFzOL3/5S6/b0FonTpwwrG4Yz8xjADPj3AP6gPHXv0aPAegDxvcBb/mifofDoaKiIlPvf3/g7TjEF2MQu93uVd0IDuvXr6933GAM4H84TwcO9lXgYF8FFvZX4GBfecbIcejJkye9qhvB4ZFHHvH4mj8Yvv+C93x5fDf6HpzR92HNhmsD/2PkPUip5ecB+g68Rd9pGmOA4MXd/CZUVla6lpu7CKybXlFR0WzZM2fOrDeoGjhwoAYNGuR5I71QU1Pj1XqlpaV65513dPDgQaWmpur+++/3OPJekhYsWOBV/XUvJrKysvTYY495dTFx3333eVV/MHA6nTp16pQkyWKxGNYOo/tgaGioV/Wj9ZxOpxYuXOjVur46Btx1111e1e+r/icZfxz0VjAch/3lOAjvlJaWuv29pfLy8nzRHK9422YEByPHADCOP5x7vL3+loLnGtzIMYjT6VRpaalqamo87gPB8vnPnTvXq/WMHgNIvusD5+4VmfUa1Og+4C1f1X/zzTdLMvd5IJDrd/c70Jy//OUvpv0ewOjrj5Zqq+t1oz9/KXD2QUv5w9jKE0b3ASP3v7/sK6P3gbcudP3fHrOabfsDqX5P7y8YfR4w+n/QyO/iCLKGp4Lh+y9/YPRxx1tOp1MFBQV67bXXAvrYJxn/LIbR574LzV+uu9F6F/o8QN+Bt+g7TWvJS/kRmCxOp9NpdCN84cUXX9RLL70kSVq9erUyMjJaVd5jjz2mt956S5L0wQcf6NZbb20y77PPPqvp06dLOvul8b333ttovvz8fHXt2lXZ2dnq0qWL6+/h4eEKDw9vVXtbyttpAc9NY1NXSEhIa5tzwev3djouX2nNdGCPPfaYsrOzNWTIEL355pseTwdmt9uVk5OjESNGGPqmNKP7oJn7QGv4qg9edNFFXtUfLMegQG5DMPwP2u12bdy40dDjoJmPAa11++23a82aNaqtrVVISIgyMjL0z3/+84LV74vPIC8vT4MHD9bhw4frXQsiuJ0bA6xfv77eebAlYwCj//eo3zfXP1988YWGDRvm8bnHV9vfms8sGM7/kvFjEG/x+QfPNfiSJUsMPQ54uw98JVD7gK/q//TTTw0dg7Rm/wfLPjh69KhX9ftiDMIYwJzOjQE2btyo5ORk198v5BjA22vAYLn+aKm2ulfkD+c+o/eBr++BeTq2Mvv1j7fnvmAZB0vGHwe9Rf3U76v6jTwOSOb+H3Q6na63+zIGMI/WfA8QDN9/SVx/tYbRbQiW+oNtDNScb193G/0/CO/7gK/OAy3tA/7w3AwCE32naQUFBUpLS2MMEIQIsGjCz3/+c/3+97+XJM2fP1933313k3mnTZumP/3pT5KkxYsXa/z48Y3mOzeo2rVrl7p37+5Re4qKijR16lRlZWVp6NChmjlzppKSkjwqQ5JiYmI8XseXysrKvFpv/PjxWrVqletiYvTo0VqyZImPW9e0YPn8ly1bppEjR3p8kvPV9kvGfwbe9sFg6QNG87YP+uoY4A+ff6AeB31Vv5EDe7vdrszMTI0aNcqwi32zR3G35rKzqKhIkydP1pYtW5Senq45c+Z4dRz2h33AoMpczo0BADMz+raDPxz7jWT0GMhbwTQGMJrZ+4CR9dvtdm3YsMHQezH8D3h/HvLFGOTgwYPq0aMHYwCTYQxg/LnHk4cK2uJekT9cf5r9GtzoPsj5FwCMZeR3cQUFBbrkkksYA5jMuTHAgQMHlJqa6tG6wfL9F9dfxjP6OQSj94HZx0BGbz+856vzQEv5w3MzCEz0naaduxZkDBB86OlNqDvoKSoqcpu3bnpLBkv9+vXztlmSpBUrVigtLc2rdY2+oPb2wdp58+Y1uJjwpixfXNC25vM32vXXX9/qMlq7/Ub3QV8M6gK5DxgtMjJS0dHRHl9o+eoYYHT/k4w/DnrL6PqBpKQkLV++3OhmAEDA8fb6R/LdNZC3b+3x1ZdrRl4Dtubh6mAZA3n7xY7RYwDJd30gPj7e6zb4gtn7gLd8Ub/dbjf8XozR/wOtYXT9jEEQyIy+B2b0uael22+321VZWany8nLZbLaguP48x+hrcKMFSh/8Nn/6Hwx0Ru8Db13o+r89ZjXb9gdS/Z7eXzD6OGD0/6CR38VFRUV5VTfMK1jGnma//vKW3W7Xd7/7XW3fvj2gj31S4O4D+EZrZhC50C9b8DfBch4AgGDEDBZNWL9+vUaNGiVJeuKJJ/TGG280mXfUqFFav369rFarysrKFBkZ2Wg+f3hzlZFvbPMHRkcMG/1gj9EPdUjG90Ez94HW8FUf3LZtW0BGsgbLMdDs7Ha7VqxYYfhMPt4IhmOA5B83Nby9ueOLz+DQoUPq168fUesm05pZ7ILlf9/M9fvDw/WtOfYGyzW4kWOQ1rzNxeyfvz/wVR/w9ho0WB6wC+Q+0Fp2u12hoaGGtsEfZpEL1Pp9gRkszOncGODrr79W586dPVrX6GvAYLn+MJrR98Al4/eBr++DB9qDxUb3ASPvf/nDOFgy/jjoLaPfXmu27Q+k+j29v2DkcUAK3P9BX+DttebUmhksfMXo/3uzX395y26366OPPtLbb7+trVu3BuyxrzWMvgYO1OcAvn3dbfT38EaPQSVz34f2RFvNQmD0/6DR/wNmwAwWTWMMELwIsGhCVVWVOnbsqNOnTysjI0OrV69uNJ/D4VBcXJzKysp05ZVXKjMzs8ky/eHhKrOfTIweVBp5M8kfHuqQjO+DZu4DrWH0w2WALwTyw03BcAwIdL74DHi4ypz8YWpwb1F/cDxc7w+MvrFu5G0Pf7gGDtQxULDwh+MAfcA4/nAvxsyfvz9gDGBOrflCLViuAY0+9wTqw12+FKjX4E39D5jlwWKjMQ42H38Ys6JlLtS+4v+w9Xi4ypz8IcDCW9x/MhbnYt8JtjFQc/yt7xj9+Uv+MRYPBG3Vd4zuA+z/tudvxx1/4ukYwOl0astbW7Ty2ZWqKa/RfavvU2pGqtt1XrK85HG77lhyh/r8oE+9v615cY3WvrS2Res/tOUhXXT5RW7zlBwq0aYZm/TNsm906vAphcWEqVO/Thp430ANvHegLFbjzw+tQU9vQnh4uG666Sa9++67+uKLL1RWVtboTflNmza53sQzYcKEFpUdFRXl8cW9r6ZkMzujp8Tzlq+mA4uMjFR0dLTHJzmjt9+XzN4HArV+BA8jo9btdrtXdfsDo/8Hja7fH/AZwAhG9zvqN3f9vhSos7gFi0AdA8F3xwH6gLG4FwPAE8FyDWj0uael15/ffuNnMF1/Buo1ONc/xjL6GGR0/QD4PwTMiOsvwFjBcu71dgwqGT8OBYALqXhfsT564CMdWneozeuKTmrba6q9n+zV4rsWq+p0lfre1lfDfzJcFScqlD0rWx/e/6Fy5ufojiV3KDw2vE3b0ZZMG2Cxc+dO3XLLLaqoqNCCBQt09dVXN8jz7LPPauHChaqsrNSCBQs0ZcqUBnlmz54t6ewFz4MPPthm7Q2WC6pAZfbP3+zbL/EZAL7iizcIrlixQmlpaV6tu2zZMsNn8gEAwGz4ci0wMQYCfcBYfP4AzOhCP9xlt9vrBcIF0/Un1+De4fwLAABwYXH9BV8J1CDzYNGacaPZx6HBgv9BwL26s1ZYQ6zqMryL8jfle1RGnx/00Xdf+a7bPIXZhVp892J1uKSDuo7o2mS+R796tNn64lPj3dazaMIi2SvtGjtjrIZPG+5KS38kXe9c9Y4OfH5Ai+9arIlLJzZbl78ybYDFb3/7W+Xm5ko6G0ixYcOGBnn69++vp556StOnT9fzzz+va6+9Vj179nSlf/bZZ5o7d64k6c9//jMndwAA/BxvjwUAIHDw5RoAAAAuJK4/+QwAAAAABCaCzAMX49DgYPb/wfLycq/XLSoq0tSpU5WVlaWhQ4dq5syZSkpK8ricQPzczGTtS2u19qW1ShubpnGzxmnb37Z5HGARHheuxD6JbvNsfH2jJGnolKFu8zVXTnM+eeQT2Svt6jysc73gCkmKbB+p69+8XnOvmau9H+/V7n/tVt9b+7aqPqMEdIDF/PnzXcs5OTmu5RUrVig//2znS0pK0pgxYxqs63A4XMtOp7PJOn73u9/pxIkTmj17tq644gr96Ec/UmpqqrKysvTOO+/IarXq9ddf14QJE3yxSQAABDUjo9btdru2bdvmVf0M6gEAAAAAAAAAAAAACB7B8hyAtw93B9OD3XwGgSlY/gdjYmJ8Us6KFSuUlpbm1brunoGG8ZxOp8bNHqchPxzi1frdv9O92aCI6rJq7Vy4UyHhIRp430Cv6mmJ/Sv3q+CLAknSkIca357UjFQl9EpQcW6x/vPyfwiwMMKkSZMa/fvvfvc71/J3vvOdRgMsfvGLXyg7O1uVlZWaPn16k3VYrVbNmjVL48eP11/+8hf9/e9/18mTJ5WcnKw777xT06ZN05Ah3nV6AADMxsiodbvd7lXdAAAAAAAAAAAAAAAA/sgXD3cH+oPdfAYA/FnGixmyWCxerz95zeRm8+xYsEPVZdW67K7LFNUhyuu6mrNr0S7Xcs9rezaZr+e1PVWcW6wj24+o+JtiJVyc0GZtaisBHWDRmhPTgAEDlJub2+L8119/va6//nqv6wMAAN4Llqh1AAAAAAAAAAAAAAAAAMGhrKzM63XHjx+vVatWqba2ViEhIRo9erSWLFniw9bBH7QmuKKlst7OkiQN/dFQj9arLq9WSFiIQkJDWpT/4KqDkqSI+AjFd49vMl/y4GTX8oFVBwiwAAAAAAAAAAAAAAAAAAAAQNvz9uHuYHqwm88ARoqOjvZ63Xnz5mny5MnasmWL0tPTNWfOnFaVB3Mq3FaowqxCJfZJVPeruzebf/vc7do2e5uO7T6myuJKSVJs51j1GN1Dw58YrpQhKY2uV1NZo5P7T0qS2nVt57aOuK5xruWju462dFP8CgEWAAAAAAAAAAAAAAAAAAAAAcbbh7GD6cFus38G5eXlLcpnt9tVWVmp8vJy2Ww2FRUVaerUqcrKytLQoUM1c+ZMJSUleVx/IH5m/iIpKUnLly83uhkIcFl/PTt7xZApQ1qU/8PJH6rPD/roe699T9GdonX6v6e1c+FO5czLUc78HF39y6t1zUvXNFjvVN4pOR1OSVJMUozbOqKTzh8XTh081dJN8SsEWAAAAAAAAAAAAAAAAAAAAJgED3YHz2cQE+P+QeeWWLFihdLS0rxa1+l0trp+IFDYq+yqrap1/V59utrA1kjV5dXasWCHQsJDNPDegc3mt4RYdMu7t6j/Hf3r/X3Ig0O0+lerte4367Tu1+sUHhuukU+OrF9XnW21RbgPPwiNDHUtV52uasmm+B0CLAAAAAAAAAAAAAAAAAAAAAAgwLR0FpNva+ksJt+e/eTbzDSLSeYrmVr70lrX76dk7OwMOxfuVPXpal1292WK6hDlNu/wJ4Zr6I+GKjYlttH0jBcz9PVHX6voyyKt/tVqDbhngGKSzwdw1VTWuJZDwkLc1lU3vaaixk1O/0WABQAAAAAAAAAAAAAAAAAAABBgysrKWpTPbrdrw4YNGjlypGw2m8aPH69Vq1aptrZWISEhGj16tJYsWdLGrUVbYBaTC2fUz0dpxE9HuH4vKCjQG33fMKw9WW9nSZKGThnabN6I+AhFxEc0mW6xWjRo8iD9+yf/lr3Srh0Ld2jET85va91ZKWqraxsrotH00KhQNzn9FwEWAAAAAAAAAAAAAAAAAAAAQIBp6ewBdrtdkZGRio6Ols1m07x58zR58mRt2bJF6enpmjNnjqlmIgC8YQu3yRZ+/tH7sNIww9pyZPsR/XfLf5XYJ1Hdr+7ukzIvuvwi13L+hnzpJ+fTwmLPb6v9jN1tOXVnuwiPDfdJ2y40AiwAAAAAAAAAAAAAAAAAAAAAk0hKStLy5cuNbgZ8oKWzmHxbS2cx+fbsJ/APW/+6VZI09EfNz17RUtGdzgdZlR2p36/iusXJYrXI6XCqrMh9nysvKj+/Xmqcz9p3IdHTAQAAAAAAAAAAAAAAAAAAACDAeDvzSEtnMfn27CcwXnV5tXYu2ClbhE0D7x3os3KdDqdr2RJiqZcWGhmq9j3bq/ibYpUeLnVbTmn++fRO/Tr5rH0XEj0dAAAAAAAAAAAAAAAAAAAAAEyCWUwC1873dqqqtEoD7hmgyITIZvMX5RTp64++1oB7Big+Nb7JfHVnrYhNiW2Qnjo6VcXfFOtMyRmVHCpRfPfGyyrMLnQt9xjdo9n2+SMCLHBBLRy30ND6Jy6daGj9AAAAwIXGNTgAAAAAADAT7oUAAIALydtrD4fFoeKUYhW8XiCr09qqNnD9AQCAuWS/nS1JGjJlSIvyF2YXavUvVyvh4gS3ARb5m/Jdy11HdW2Q3m9CP1fdBz4/oMEPDG60nAOfH5AkJQ9KVsLFCS1qo79p3dUZAAAAAAAAAAAAAAAAAAAAAABoU0U5RSrYXKDESxPV/aruHq37zfJvmkyrra7Vtr9tkySFxYap/539G+TpeW1PdR7WWZKUPTu70XIOrTukE3tPSJKu+sVVHrXPnxBgAQAAAAAAAAAAAAAAAAAAAACAH9v6162SpKFThnq8bs67Ofpq8VcN/u6odeiTRz9R8TfFkqTv/eF7iuoQ1WgZN/zvDbJF2pS/MV+b39xcL+1MyRkte3SZJKn3jb3V97a+HrfRX9iMbgAAAAAAAAAAAAAAAAAAAAAAeKK8vNyr9YqKijR16lRlZWVp6NChmjlzppKSkjwuJzo62qv6YS4583Ncy0U5Ra7lfSv2qTS/VJIUnRSttDFpbsupqajRjnd3yBZh08B7B7a4/rhucYpoH6EzJ8/on7f9U72+30s9ru2hyPaRKs0v1c73durYrmOyhlr1vde+5zZ4I2VIiib8c4IW371Yy3+8XHn/yVPq6FRVnqhU9qxslRwsUY/RPXTLglta3D5/RIAFAAAAAAAAAAAAAAAAAAAAgIASExPT6jJWrFihtDT3D7Y3xel0trp+BL8lk5Y0+vfM32W6lrt/p3uzARY739+pqlNVGnDPAEUmRLa4/h6je+inBT/V3qV7lbssV4XZhVr74lrVVNQoLDZMCWkJuvKZK3X5w5crvnt8s+X1vrG3pn45VZtmbFLuJ7n6+qOvFRodqk79O+nqX12tQfcNksVqaXH7/BEBFgAAAAAAAAAAAAAAAAAAAAAA+NgLzhd8Us7g+wdr8P2DvVo3NDJU/W7vp3639/NJW+JT43XdjOt03YzrfFKevyHAAgAAAAAAAAAAAAAAAAAAAEBAKSsr82q98ePHa9WqVaqtrVVISIhGjx6tJUsan2UAgPkQYAEAAAAAAAAAAAAAAAAAAAAgoERHR3u13rx58zR58mRt2bJF6enpmjNnjtdlAQg+BFgAAAAAAAAAAAAAAAAAAAAAMIWkpCQtX77c6GYA8FNWoxsAAAAAAAAAAAAAAAAAAAAAAABgNAIsAAAAAAAAAAAAAAAAAAAAAACA6RFgAQAAAAAAAAAAAAAAAAAAAAAATI8ACwAAAAAAAAAAAAAAAAAAAAAAYHo2oxsAAAAAAAAAAAAAAGi9heMWGla3w+JQ5592Nqx+AAAAAAAAwBeYwQIAAAAAAAAAAAAAAAAAAAAAAJgeARYAAAAAAAAAAAAAAAAAAAAAAMD0CLAAAAAAAAAAAAAAAAAAAAAAAACmZzO6AQAAAAAacjqd2vLWFq18dqVqymt03+r7lJqR2uL1D284rM1vblZeZp7Kj5YrumO0uozoovRH0ltcjsPuUNasLO2Yv0PH9xyXvcquuG5xuuTmSzR82nDFJMe0qJySQyXaNGOTvln2jU4dPqWwmDB16tdJA+8bqIH3DpTFamnxdgEAAAAAAAAAAAAAAABAWyHAAgAAAPAzxfuK9dEDH+nQukNerb/212u19qW1skXYNPjBwerUv5OOf3Vc2bOytXvRbo18aqTG/M8Yt2VUHK/QghsXqOCLAiX2SdSVz1ypsJgw5X6Sq/W/X69tf9um2z+4Xd2v7u62nL2f7NXiuxar6nSV+t7WV8N/MlwVJyqUPStbH97/oXLm5+iOJXcoPDbcq20FAAAAAAAAAAAAAAAAAF8hwAIAAADwE3VnrbCGWNVleBflb8r3qIytM7dqzQtrZIuw6d5V96rLsC6utAGTBuidq97Rhlc3KLpTtEY+ObLRMhx2h94f/74KvihQ15FdNWnlJIVGhkqS0h9J1+fPfa7MVzL13s3v6cHND6pDrw6NllOYXahFExbJXmnX2BljNXzacFda+iPpeueqd3Tg8wNafNdiTVw60aPtBAAAAAAAAAAAAAAAAABfsxrdAAAAAABnrX1prZY/vlzdRnXTwzsfVtrYNI/WLz9WrhVPrZAkDZs2rF5whSSlDE5xBVWs/uVqleaXNlpO1qws5WXmSRZp3KxxruCKczJeylDCxQk6U3JGn/30sybb88kjn8heaVfnYZ3rBVdIUmT7SF3/5vWSpL0f79Xuf+32aFsBAAAAAAAAAAAAAAAAwNeYwQIAAADwE06nU+Nmj9OQHw7xav0v/viFqsuqJUlDHmy8jCEPDtHaX6+V/YxdG17boOveuK5BGzJfyZQkdbuymzr27digjJDQEA2cPFCrn1+tvR/v1ZEvjyh5YHK9PPtX7lfBFwVn63yo8bakZqQqoVeCinOL9Z+X/6O+t/b1bIMBAAAAAADgV3Ys3KGC1wtkdfKePwAAAAAAAAQm7mwBAAAAfiLjxQyvgyskafcHZ2eBiE+NV8LFCY3madelnRL7JEqSvvrgKzmdznrp+ZvyVXr47MwWPa7t0WRdaWPOz66xe1HD2Sd2LdrlWu55bc8myzmXdmT7ERV/U9xkPgAAAAAAAAAAAAAAAABoa8xgAQAAAPgJi8Xi9bqlBaU68fUJSVLyoGS3eVMGp+j4V8dVml+q4txidejdwZV2YNUB17K7cpIGJslitcjpcNZb55yDqw5KkiLiIxTfPb7JcpIHn6/jwKoDTQaGAAAAAAAAtMTCcQsNrX/i0omG1g8AAAAAAACgdZjBAgAAAAgCR3cedS2369rObd666Ud3Ha2XdmznMddyXNe4JsuwhdsU1THq7Dq7jtVLq6ms0cn9J1vUlrp1fLstAAAAAAAAAAAAAAAAAHAhEWABAAAABIGSgyWu5eikaLd566bXXc/TcmKSYiRJVaVVqjxZ6fr7qbxTcjqc9fK0pC2nDp5ymxcAAAAAAAAAAAAAAAAA2pLN6AYAAAAAwcheZVdtVa3r95qymjatr/p0tWvZFuH+Mj80MrTR9SSp6nRVi8uxRZ5Prz5drcj2ka1qS926AQAAAAAAAAAAAAAAAOBCI8ACAAAAaAOZr2Rq7UtrXb+fsrbt7Aw1lecDOELCQtzmrZteU1E/8MNeaW91Ob5qCwAAAGAmTqdTW97aopXPrlRNeY3uW32fUjNS3a7zkuUlj+u5Y8kd6vODPvX+tubFNfXGL+48tOUhXXT5RW7zlBwq0aYZm/TNsm906vAphcWEqVO/Thp430ANvHegLFaLx+0GAAAAAAAAAAC4EAiwAAAAANrAqJ+P0oifjnD9npeXpzcue6PN6qs7E0Rtda2bnPXTQ6NC66XVnZXC23J81RYAAADALIr3FeujBz7SoXWH2ryu6KToNi1/7yd7tfiuxao6XaW+t/XV8J8MV8WJCmXPytaH93+onPk5umPJHQqPDW/TdgAAAAAAAAAAAHiDAAsAAACgDdjCbbKFn7/cDo1p2+CBsNgw17L9jN1NzvozTNRdT1K9h5yaK6fubBd1y/G2LTxgBQAAALOpO2uFNcSqLsO7KH9Tvkdl9PlBH333le+6zVOYXajFdy9Wh0s6qOuIrk3me/SrR5utLz413m09iyYskr3SrrEzxmr4tOGutPRH0vXOVe/owOcHtPiuxZq4dGKzdQEAAAAAAAAAAFxoBFgAAAAAQaDuQ07lReVu89ZN//bDUfGp8a4HusqLytWuc7smyykrKpMkhbcLV2T7SNff47rFyWK1yOlwuvK0pC1xqXFu8wIAAADBZu1La7X2pbVKG5umcbPGadvftnkcYBEeF67EPolu82x8faMkaeiUoW7zNVdOcz555BPZK+3qPKxzveAKSYpsH6nr37xec6+Zq70f79Xuf+1W31v7tqo+AAAAAAAAAAAAX7Ma3QAAAAAArdepfyfXcunhUrd5S/PPp3fq16leWsf+HV3Lpw6farIMe5VdFccqzq7Tr2O9tNDIULXv2b7VbQEAAACCndPp1LjZ43TPp/corqvnAcfdv9O92aCI6rJq7Vy4UyHhIRp430Bvm9qs/Sv3q+CLAknSkIeGNJonNSNVCb0SJEn/efk/bdYWAAAAAAAAAAAAbzGDBQAAABAE2nVupw69O+jE3hM6sv2I27yF2YVn1+nSzvVw0zk9RvfQaq2WJB3ZfkR9bu7TaBlFXxbJ6XC61vm21NGpKv6mWGdKzqjkUIniu8e7bUtT5QAAAADBLOPFDFksFq/Xn7xmcrN5dizYoeqyal1212WK6hDldV3N2bVol2u557U9m8zX89qeKs4t1pHtR1T8TbESLk5oMi8AAABgJp899Zk2/uHs7HPfeeE7yngxo9l1Dm84rM1vblZeZp7Kj5YrumO0uozoovRH0pWakdqieh12h7JmZWnH/B06vue47FV2xXWL0yU3X6Lh04YrJjmmFVsFAAAAAIGHGSwAAACAINF3Ql9JUsnBEp3cf7LRPKUFpTq+57gk6dLbLm3wMFeX4V3Urks7SdKBzw80Wdf+lfsb1FtXvwn9XMvuyjmXljwomQerAAAAYDqtCa5oqay3syRJQ3801KP1qsurVVtT2+L8B1cdlCRFxEc0GWAtScmDk13LB1Y1PVYAAAAAzKQwu1Cb3tjk0Tprf71W71z1jr7+8Gv1Gd9H3//z99V3Ql99s/wbzb1mrlY8vaLZMiqOV+jvo/6uZY8sU2Vxpa585kqN+Z8xat+jvdb/fr3+MuAvOrTukLebBQAAAAABiRksAAAAgCAx7MfD9MUfv1B1WbWyZ2fru7/7boM82/62TXJKtgibRv5sZIN0i8WiUc+N0rJHlikvM0/H9xxXYp/Eenkcdoe2z9kuSep1Qy8lD0xuUE7Pa3uq87DOKviiQNmzszX4gcEN8hxad0gn9p6QJF31i6u82WQAAAAAbhRuK1RhVqES+ySq+9Xdm82/fe52bZu9Tcd2H1NlcaUkKbZzrHqM7qHhTwxXypCURterqaxxBXm369rObR1xXeNcy0d3HW3ppgAAAABBy2F36KMHP5Kz1tnidbbO3Ko1L6yRLcKme1fdqy7DurjSBkwaoHeuekcbXt2g6E7RGvlkw+8CztX7/vj3VfBFgbqO7KpJKycpNDJUkpT+SLo+f+5zZb6Sqfdufk8Pbn5QHXp1aN2GAgAAAECAYAYLAAAAIEhEd4rWmFfHSJI2vbFJBVsK6qUf+fKI1v/PeknSNb+5xjVTxbcNfWiouo3qJjmlpQ8tVU1lTb30NS+uUXFusSLiIzT2jbFNtueG/71Btkib8jfma/Obm+ulnSk5o2WPLpMk9b6xt/re1nAWDAAAAACtk/XXs7NXDJkypEX5P5z8oaISo/S9176nuz65S+NmjVPiJYnKmZejty9/W6tfWN3oeqfyTsnpOPswWExSjNs6opOiz6938FSL2gUAAAAEsw2vbdCRbUd0yc2XtCh/+bFyrXjq7OwUw6YNqxdcIUkpg1NcQRWrf7lapfmljZaTNStLeZl5kkUaN2ucK7jinIyXMpRwcYLOlJzRZz/9zMOtAgAAAIDAxQwWAAAAgB/JmZ/jWi7KKXIt71uxz/UlSHRStNLGpDW6/uVTL1dZUZnW/Xqd5l4zV0MeHKKO/Trq+J7jyp6VrZryGo14ckSTb6ySJKvNqjuW3KEFNy5QXmae3h76tgbdP0hh0WHKXZar3E9yFZUYpQkfTHD7xqqUISma8M8JWnz3Yi3/8XLl/SdPqaNTVXmiUtmzslVysEQ9RvfQLQtu8fRjAgAAAPyOvcqu2qpa1+81ZTVucre96vJq7ViwQyHhIRp478Bm81tCLLrl3VvU/47+9f4+5MEhWv2r1Vr3m3Va9+t1Co8NbzCeqD5d7Vq2Rbj/2qHuQ1tVp6tasikAAASUheMWGlr/xKUTDa0fgGeK9xVr7UtrdVH6Rbri8Sv09YdfN7vOuZmspbPX640Z8uAQrf31WtnP2LXhtQ267o3r6qU7nU5lvpIpSep2ZTd17NuxQRkhoSEaOHmgVj+/Wns/3qsjXx5pdEZrAAAAAAg2BFgAAAAAfmTJpCWN/j3zd5mu5e7f6d5kgIUkZbyQobQxafriT19o9we7VfGXCkUlRinte2lKfzRdPa7p0Ww7ohKj9EDmA8qalaWceTnKfCVTtVW1iusWp5FPj9TwJ4YrNiW22XJ639hbU7+cqk0zNin3k1x9/dHXCo0OVaf+nXT1r67WoPsGyWK1NFsOAAAA4O8yX8nU2pfWun4/ZTV2doadC3eq+nS1Lrv7MkV1iHKbd/gTwzX0R0ObvMbPeDFDX3/0tYq+LNLqX63WgHsGKCb5/EwVdWe9CwkLcVtX3fSaCmODUAAAAACjfTzlYzlqHBo3a5zOnDzTonV2f7BbkhSfGq+EixMazdOuSzsl9knU8a+O66sPvtLY18fKYjl/Lz5/U75KD599qVOPa5v+ziBtTJpWP392Jrvdi3YTYAEAAADAFAiwAAAAAPzIC84XfFJO15Fd1XVk11aVYbVZlf5wutIfTm9VOfGp8bpuxnW6bsZ1zWcGAAAAAtSon4/SiJ+OcP2el5enNy57w7D2ZL2dJUkaOmVos3kj4iMUER/RZLrFatGgyYP075/8W/ZKu3Ys3KERPzm/rXVnpaitrm2siEbTQ6NC3eQEAAAAglv237J1YNUBXfnMlUoemKyDaw42u05pQalOfH1CkpQ8yH2wQ8rgFB3/6rhK80tVnFusDr3Pz0h9YNUB17K7cpIGJslitcjpcNZbBwAAAACCmdXoBgAAAAAAAAAAEOhs4TaFtwt3/YTGGBc8cGT7Ef13y3+V2CdR3a/u7pMyL7r8Itdy/ob8emlhsWGuZfsZu9ty6s52ER4b7pO2AQAAAIGm7EiZVjy1Qu3T2us7L3ynxesd3XnUtdyuazu3eeumH911tF7asZ3HXMtxXeOaLMMWblNUx7Mz4h3bdazJfAAAAAAQTAiwAAAAAAAAAAAgiGz961ZJ0tAfNT97RUtFd4p2LZcdKauXFtctThar5WxaUf20bysvKj+/XmrTD3IBAAAAwWzZY8t05uQZ3fjXG+vNCNeckoMlruXopOimM34rve56npYTkxQjSaoqrVLlycqWNRQAAAAAAhgBFgAAAAAAAAAABInq8mrtXLBTtgibBt470GflOh1O17IlxFIvLTQyVO17tpcklR4udVtOaf759E79OvmsfQAAAMCFZq+yq6q0yvVTfbq6Revt+XCPvvrXVxo0eZB6frenR3XWrcMWYXObt27gxrfbVnW6qsXl2CLPp7d0GwEAAAAgkLkfJQEAAAAAAAAAgICx872dqiqt0oB7BigyIbLZ/EU5Rfr6o6814J4Bik+NbzJf3VkrYlNiG6Snjk5V8TfFOlNyRiWHShTfvfGyCrMLXcs9Rvdotn0AAACAv8p8JVNrX1rr+v2UTjW7TlVplZY9ukxRHaP0vde+53GdNZU1ruWQsBC3eeum11TU1EuzV9p9Ug4AAABQXl7efKZGFBUVaerUqcrKytLQoUM1c+ZMJSUleVxOdLT7GdkAbxBgAVNZOG6hofVPXDrR0PoBAAAAAAAABLfst7MlSUOmDGlR/sLsQq3+5WolXJzgNsAif1O+a7nrqK4N0vtN6Oeq+8DnBzT4gcGNlnPg8wOSpORByUq4OKFFbQQAAAD80aifj9KIn45w/V5QUKA3+r7hdp0VT6/Q6YLTumXBLS0KiP62urNS1FbXus1bNz00KrReWt1ZKVpTDgAAABATE9PqMlasWKG0tDSv1nU6nc1nAjxkNboBAAAAAAAAAACg9YpyilSwuUCJlyaq+1XdPVr3m+XfNJlWW12rbX/bJkkKiw1T/zv7N8jT89qe6jyssyQpe3Z2o+UcWndIJ/aekCRd9YurPGofAAAA4G9s4TaFtwt3/YTFhrnNf+g/h5T1dpYuvu5iXTbxMq/qrFuH/YzdTc76s118u23hseEtLqfubBfNbSMAAAAABAMCLAAAAAAAAAAACAJb/7pVkjR0ylCP1815N0dfLf6qwd8dtQ598ugnKv6mWJL0vT98T1Edohot44b/vUG2SJvyN+Zr85ub66WdKTmjZY8ukyT1vrG3+t7W1+M2AgAAAIGqtrpWSx9aqpCwEF3zm2tUcbyiwc+ZU2dc+Wsqauql1dacnUWi7qxz5UXlbuusm/7t2eo8KaesqEySFN4uXJHtPZ91AwAAAMGtrKzMq58xY8YoJCREkhQSEqIxY8Z4VQ7QFmzNZwEAAAAAAAAAAG0hZ36Oa7kop8i1vG/FPpXml0qSopOilTbG/fToNRU12vHuDtkibBp478AW1x/XLU4R7SN05uQZ/fO2f6rX93upx7U9FNk+UqX5pdr53k4d23VM1lCrvvfa99wGb6QMSdGEf07Q4rsXa/mPlyvvP3lKHZ2qyhOVyp6VrZKDJeoxuoduWXBLi9sHAIFm4biFRjcBAOCHTv/3tE58fXY2t1nps5rNv+HVDdrw6gbX7/etvk+pGanq1L+T62+lh0vdlnFuPCFJnfp1qpfWsX9H1/Kpw6eUMiSl0TLsVXZVHKs4u06/jo3mAQAAgLlFR0d7td68efM0efJkbdmyRenp6ZozZ47XZQG+RoAFAAAAAAAAAAAGWTJpSaN/z/xdpmu5+3e6NxtgsfP9nao6VaUB9wxQZELL3yrbY3QP/bTgp9q7dK9yl+WqMLtQa19cq5qKGoXFhikhLUFXPnOlLn/4csV3j2+2vN439tbUL6dq04xNyv0kV19/9LVCo0PVqX8nXf2rqzXovkGyWC0tbh8AAAAQDGKSYzRpxSS3eY58eUQrnlwhSRowaUC9wOmkgUmSpHad26lD7w46sfeEjmw/4ra8wuzCs+t0aaeEXgn10nqM7qHVWn223u1H1OfmPo2WUfRlkZwOp2sdAAAAwFeSkpK0fPlyo5sBNIoACwAAAAAAAAAADPKC8wWflDP4/sEafP9gr9YNjQxVv9v7qd/t/XzSlvjUeF034zpdN+M6n5QHAAAABDpbhE09r+3pNo/VZnUtt+/Zvsn8fSf01X9++x+VHCzRyf0n1b5n+wZ5SgtKdXzPcUnSpbddKoulfpBzl+Fd1K5LO5Xml+rA5weU8UJGo3XtX7m/Xr0AAAAAYAbW5rMAAAAAAAAAAAAAAAAAMNqwHw9TWEyYJCl7dnajebb9bZvkPBvYMfJnIxukWywWjXpulCQpLzPPFYxRl8Pu0PY52yVJvW7opeSByT7aAgAAAADwbwRYAAAAAAAAAAAAAAAAAAEgulO0xrw6RpK06Y1NKthSUC/9yJdHtP5/1kuSrvnNNWrXpV2j5Qx9aKi6jeomOaWlDy1VTWVNvfQ1L65RcW6xIuIjNPaNsW2wJQAAAADgn2xGNwAAAAAAAAAAAAAAAAAwm6KcIhXlFEmSjn11rN7fc+bnSJKik6KVNiat3nqXT71cZUVlWvfrdZp7zVwNeXCIOvbrqON7jit7VrZqyms04skRGvlkw9krzrHarLpjyR1acOMC5WXm6e2hb2vQ/YMUFh2m3GW5yv0kV1GJUZrwwQR16NWhDbYeAAAAAPwTARYAAAAAAAAAAAAAAADABfbV4q+09qW1Df6+Z8ke7VmyR5LU/TvdGwRYSFLGCxlKG5OmL/70hXZ/sFsVf6lQVGKU0r6XpvRH09Xjmh7N1h+VGKUHMh9Q1qws5czLUeYrmaqtqlVctziNfHqkhj8xXLEpsa3fUAAAAAAIIARYAAAAAAAAAAAAAAAAABdYxosZyngxw+v1u47sqq4ju7aqDVabVekPpyv94fRWlQMAAAAAwcJqdAMAAAAAAAAAAAAAAAAAAAAAAACMRoAFAAAAAAAAAAAAAAAAAAAAAAAwPZvRDQAAAAAAAAAAAAAAAK23cNzCFuVzWBwqTilWwesFsjp9917GiUsn+qwsAAAAAAAAIxBgAQAAAAAAAAAAAAAAAAAAAABAG3E6ndry1hatfHalasprdN/q+5Sakep2nZKDJfpjjz+2qPz0R9N1/ZvXu83jsDuUNStLO+bv0PE9x2WvsiuuW5wuufkSDZ82XDHJMS2qq+RQiTbN2KRvln2jU4dPKSwmTJ36ddLA+wZq4L0DZbFaWlSOvyLAAgAAAAAAAAAAAAAAAAAAAACANlC8r1gfPfCRDq07ZFgbKo5XaMGNC1TwRYES+yTqymeuVFhMmHI/ydX636/Xtr9t0+0f3K7uV3d3W87eT/Zq8V2LVXW6Sn1v66vhPxmuihMVyp6VrQ/v/1A583N0x5I7FB4bfoG2zPcIsAAAAAAAAAAAAAAAAAAAAAAAwIfqzlphDbGqy/Auyt+U73E5o383WpeOv9Rtnoj2EU2mOewOvT/+fRV8UaCuI7tq0spJCo0MlSSlP5Kuz5/7XJmvZOq9m9/Tg5sfVIdeHRotpzC7UIsmLJK90q6xM8Zq+LThrrT0R9L1zlXv6MDnB7T4rsWauHSix9vpL6xGNwAAAAAAAAAAAAAAAAAAAAAAgGCy9qW1Wv74cnUb1U0P73xYaWPTvConNiVWiX0S3f7EJMU0uX7WrCzlZeZJFmncrHGu4IpzMl7KUMLFCTpTckaf/fSzJsv55JFPZK+0q/OwzvWCKyQpsn2krn/zeknS3o/3ave/dnu1rf6AAAsAAAAAAAAAAAAAAAAAAAAAAHzI6XRq3OxxuufTexTXNc6wNmS+kilJ6nZlN3Xs27FBnpDQEA2cPFDS2eCII18eaZBn/8r9KviiQJI05KEhjdaVmpGqhF4JkqT/vPwfn7TfCDajGwAAAAAAAAAAAAAgOCwct9Cn5TksDhWnFKvg9QJZnbw7DgAAAAAAAIEj48UMWSwWQ9uQvylfpYdLJUk9ru3RZL60MWla/fxqSdLuRbuVPDC5XvquRbtcyz2v7dlkOT2v7ani3GId2X5Exd8UK+HihNY03xDchQQAAAAAAAAAAAAAAAAAAAAAwIfaIrjCYXeoury6xfkPrDrgWk4elNxkvqSBSbJYLQ3WOefgqoOSpIj4CMV3j2+ynOTB5+torJxAwAwWAAAAAAAAAAAAAAAAAAAAAAD4oaO7jupfd/1LeZl5Ov3f03LWOhUaFaouw7vosnsu08BJA2W1NT7vwrGdx1zLcV3jmqzDFm5TVMcolReV69iuY/XSaiprdHL/SUlSu67t3La1bh1Hdx1tdtv8EQEWAAAAAAAAAAAAAAAAAAAAAAD4oY1/2KgOvTvoiseuUOKliaqtqtWhdYeUPStbB1YdUPbb2bp98e2KTYltsG7JwRLXcnRStNt6YpJiVF5UrqrSKlWerFRk+0hJ0qm8U3I6nK487tSt49TBUy3dRL9CgAUAAAAAAAAAAAAAAAAAAAAAAE2wV9lVW1Xr+r36dPUFq/vSWy/VLe/eIlv4+Uf/+97WV4PuH6S5GXOVvylfC8ct1APrH6iXR5KqTle5lm0R7kMHbJHn06tPV7sCLOpua3NlhEaGNlp3ICHAAgAAAAAAAAAAAAAAAAAAAACAJmS+kqm1L611/X5KbT87Q7su7TTtwDTFdo5VSGhIg/SUwSm6+ldXa8WTK1SYVaitM7dq+LTh9fLYK+2u5ZCwhmXUVTe9pqLm/HJlTaN5PCkjkFiNbgAAAAAAAAAAAAAAAAAAAAAAAP5q1M9H6dlTz7p+Htv9WJvXabVZFZ8a32hwxTmD7x8sWc4ub//79gbpdWelqK2ubZBeV9300KjzM1HUnZXC2zICCQEWAAAAAAAAAAAAAAAAAAAAAAA0wRZuU3i7cNdPWGyY0U2SJEUmRKp9z/aSpKIdRaouq66XHh4b7lq2n7HLnbqzXdTdvrrLzZVRd7aLunUHEgIsAAAAAAAAAAAAAAAAAAAAAAAIQNGdos8uOKWyorJ6afGp8a7l8qJyt+WcWze8Xbgi20e6/h7XLU4Wq6VenqbUrSMuNa7ZtvsjAiwAAAAAAAAAAAAAAAAAAAAAAAhATofTtWwNqR8e0LF/R9fyqcOnmizDXmVXxbGKs+v061gvLTQy1DVLRunhUrdtKc0/n96pX6dmWu6fCLAAAAAAAAAAAAAAAAAAAAAAAMCPrHt5nfZ8uKfZfGVHzs4qYbFazs9m8f/1GN3DtXxk+5Emyyj6ssgVqFF3nXNSR6dKks6UnFHJoZImyynMLmy07kAS8AEWx48f1y9/+Uv1799fMTExSkhI0IgRI/SnP/1J1dXVPqljz549+vGPf6wBAwYoNjZWoaGh6tSpk7773e/qrbfeUmVlpU/qAQAAAAAAAAAAAAAAAAAAAABg9S9Xa+tftrrNc7rwtE4dOjszRcqQFIVGhdZL7zK8i9p1aSdJOvD5gSbL2b9yv2u574S+DdL7TejnWnZXzrm05EHJSrg4wW3b/VVAB1hs3rxZAwYM0Msvv6yLLrpI06dP13PPPaeysjJNmzZNw4cP13//+99W1fHWW29pwIAB+vOf/6yQkBA9+eST+vOf/6yJEydqy5YteuyxxzRo0CDt37+/+cIAAAAAAAAAAAAAAAAAAAAAAGiBwxsOq6q0qsn0rTPPB2AMmTKkQbrFYtGo50ZJkvIy83R8z/EGeRx2h7bP2S5J6nVDLyUPTG6Qp+e1PdV5WGdJUvbs7EbbcmjdIZ3Ye0KSdNUvrmqyzf4uYAMs8vLydOONN6qwsFBPPPGEPvvsMz366KN68skntXXrVl1zzTXatm2bbrrpJlVVNd2p3Pn3v/+txx57TDU1Nbrrrru0ZcsWvfDCC5o6dar++Mc/aseOHerYsaP27t2rG2+8UTU1NT7eSgAAAAAAAAAAAAAAAAAAAACAGVWfrtbSKUtVW13bIG3fZ/u0fvp6SVL3q7tr8P2DGy1j6END1W1UN8kpLX1oqWoq6z/zvubFNSrOLVZEfITGvjG2ybbc8L83yBZpU/7GfG1+c3O9tDMlZ7Ts0WWSpN439lbf2xrOghEobEY3wFtPPfWUjh07pm7duun3v/99vbTw8HDNmjVLl1xyibKysvTmm2/qZz/7mcd1/M///I8kKTQ0VH/84x9ls9X/uLp3767nn39e06ZN01dffaX/+7//04QJE7zfKAAAAAAAAAAAAAAAAAAAAABAUMiZn+NaLsopci3vW7FPpfmlkqTopGiljUlrsG7SwCQVfVmkXe/vUmFWofrd2U/te7ZXTXmNDq45qK8WfyU5pYu/f7FuefcWWW2Nz71gtVl1x5I7tODGBcrLzNPbQ9/WoPsHKSw6TLnLcpX7Sa6iEqM04YMJ6tCrQ5PbkjIkRRP+OUGL716s5T9errz/5Cl1dKoqT1Qqe1a2Sg6WqMfoHrplwS3eflx+ISADLHJzc7Vo0SJJ0r333qvw8PAGedLS0nTNNddo5cqVmj59uqZNm9YgQKI5W7ZscZWVmJjYaJ4rrrjCtbxx40YCLAAAAAAAAAAAAAAAAAAAAAAAWjJpSaN/z/xdpmu5+3e6NxpgMXX7VOV/ka89/7dHh9cfVvbb2ao8WamQ0BDFJMfosrsu04BJA3Tx2IubbUdUYpQeyHxAWbOylDMvR5mvZKq2qlZx3eI08umRGv7EcMWmxDZbTu8be2vql1O1acYm5X6Sq68/+lqh0aHq1L+Trv7V1Rp03yBZrJZmy/FnARlg8cEHH8jpdEqSrr322ibzjRkzRitXrtSxY8e0Zs0at3kbU11dLUmKjIxsMk9UVJRruby83KPyAQAAAAAAAAAAAAAAAAAAAADB6QXnC61av8uwLuoyrItP2mK1WZX+cLrSH05vVTnxqfG6bsZ1um7GdT5pl78JyACLVatWuZYHDRrUZL7BgwfXW8fTAIuBAwdq8+bN+uabb2S32xudAeOrr75yLffq1cuj8o2wcNxCo5sAAAAAAAAAAAAAAAAAAAAAAIDfsRrdAG/s3LlTkhQbG6u4uLgm83Xt2tW1vGvXLo/refrppyVJp0+f1p///OcG6bW1tZo+fbokKSYmRnfffbfHdQAAAAAAAAAAAAAAAAAAAAAAAOMFXIBFVVWVjhw5IklKSkpym7du+sGDBz2u69Zbb9XcuXMVExOjp556Sk8++aQ2b96sgwcP6tNPP9VVV12lbdu2KTExUYsXL1ZKSorHdQAAAAAAAAAAAAAAAAAAAAAAAOPZjG6Ap06fPu1ajoiIcJs3MjKy0fU8ce+992rs2LH6+c9/rhkzZui1115zpSUlJenll1/WAw884FFwxalTp1RcXOz6PTw8XOHh4V61z1MOi+OC1IPG2e12Q+t2OByGtgHmRh+E0eiDMJrDwXWYmZl5DGDm4y7nHtAHQB8wN/Y/GAOY28mTJxUVFeX6/UKOAdAyHKfbjq/HoU6LU0455bQ45RDHVn/GvgosbbW/OK76HueswME+MjcjvweAsby9/vXluZjjj7lwbQBv0XfgLfpO0/hMglfABVhUVla6lsPCwtzmrZteUVHhVX3/+Mc/9PTTT6uoqEi33nqrfvCDHyghIUGHDh3S3//+d82YMUMlJSV6/vnnFRcX16IyBw0aVO/3++67T5MnT/aqfZ4qTiluPhPaTGZmpmF1OxwO5eXlSZKs1oCbvAZBgD4Io9EHYbQTJ04Y3QQYyMxjACOvgY3GuQf0AdAHzI39D8YA5jZgwIB6v1/IMQBahuN02/H1ONQppypjK1WsYllk8WnZ8C32VWBpq/1l5ntBbYVzVuCo+3A9zMfI7wFgLG+vf315Lub8ay5cG8Bb9B14i77TNMYAwSvgAizqzkpRXV3tNm/d9LpvimqpGTNm6Cc/+Ykk6X//93/18MMP10ufMmWK7rrrLv3hD3/Qhx9+qDVr1uiiiy5qttzt27era9eurt8vZNR6wesFF6QeNG7UqFGG1X0uUm7kyJGy2QLuXx9BgD4Io9EHYbRzg02Yk5nHAEZeAxuNcw/oA6APmBv7H4wBzC0nJ0edO3d2/c7ba/0Px+m24+txqNPiVLGKlXAkQRYnD+37M/ZVYGmr/WX0vag7Ft9haP1tgXNW4MjPzze6CTCQkd8DwFjenvt8eS4283cxZsS1AbxF34G36DtNYwwQvAKup8fGxrqWz5w54zZv3dku6q7XEvn5+Xr66aclnb0I/XZwhSSFhIRo5syZ+uSTT5Sbm6sf/vCHWr58ebNlx8XFKSEhwaP2+IrVSfSYkYw+uVitVtlsNsPbAfOiD8Jo9EEYiSh+czPzGMDsx1zOPaAPgD5gbux/c2MMYG7t27c3bAyAluM43TZ8PQ51yCGLLLI4LYaPceEe+yqwBOv+CtZjOueswMD+MTcjvweAsbw9j/ryXMzxx3y4NoC36DvwFn2ncXwewSvg7pSEh4crOTlZklRUVOQ2b9301NRUj+pZtGiRampqJEnjx49vMl/79u2VkZEhSfr000+1b98+j+oBAAAAAAAAAAAAAAAAAAAAAADGC7gAC0nq37+/JOn06dM6depUk/nqTr3Sr18/j+rYu3eva7l79+5u89YN3ti+fbtH9QAAAAAAAAAAAAAAAAAAAAAAAOMFZIDF6NGjXcvuAhqys7MbXacl6k7f7nQ63eZ1OByu5draWo/qAQAAAAAAAAAAAAAAAAAAAAAAxgvIAIvbbrtNFotFkvT55583mW/lypWSpMTERGVkZHhUR8+ePV3L+/btc5u3bnq3bt08qgcAAAAAAAAAAAAAAAAAAAAAABgvIAMsevXqpQkTJkiS5s2bp+rq6gZ59u/fr1WrVkmSnnnmGdlstnrpO3fuVO/evdWlSxetW7euwfo33HCDK4hj0aJFTbalqKhIa9eulSR16tRJ6enp3m0UAAAAAAAAAAAAAAAAAAAAAAAwjK35LP7p1Vdf1erVq3Xw4EE999xz+sMf/uBKq6qq0pQpU1RbW6uhQ4fqsccea7D+b3/7W+Xm5kqSnn32WW3YsKFeep8+ffTDH/5Qs2fPVlZWln7729/qF7/4Rb08VVVVmjx5sqqqqlxlhoSE+HpTAQAAAAAAAAAAAACAn1s4bqHPy3RYHCpOKVbB6wWyOpt/h+bEpRN93gYAAAAAAMwkYAMsunXrpqVLl2r8+PF67bXXtHPnTt10002qrKzU3LlztWPHDg0aNEgfffSRIiIiGqzvcDhcy06ns9E63nrrLVVWVurdd9/V888/r3//+9+6+eablZCQoEOHDmnevHnav3+/bDabfvOb3+jBBx9ss+0FAAAAAAAAAAAAAABwpy2CPDxBgAcAAAAAINAFbICFJA0bNkw5OTmaMWOGlixZoqefflqhoaHq3bu3ZsyYoYcfflhhYWGNrvuLX/xC2dnZqqys1PTp0xvNExYWpvnz5+tHP/qR5syZo40bN+rFF19UZWWlYmNjlZaWpp/97Gd66KGHdMkll7TlpgIAAAAAAAAAgpjT6dSWt7Zo5bMrVVNeo/tW36fUjFS365QcLNEfe/yxReWnP5qu69+83m0eh92hrFlZ2jF/h47vOS57lV1x3eJ0yc2XaPi04YpJjmlRXSWHSrRpxiZ9s+wbnTp8SmExYerUr5MG3jdQA+8dKIvV0qJyAAAAAAAAAAAALrSADrCQpMTERL388st6+eWXPVpvwIABys3NbVHeq666SldddZU3zQMAAAAAAAAAwK3ifcX66IGPdGjdIcPaUHG8QgtuXKCCLwqU2CdRVz5zpcJiwpT7Sa7W/369tv1tm27/4HZ1v7q723L2frJXi+9arKrTVep7W18N/8lwVZyoUPasbH14/4fKmZ+jO5bcofDY8Au0ZQAAAAAAAAAAAC0X8AEWAAAAAAAAAAAEorqzVlhDrOoyvIvyN+V7XM7o343WpeMvdZsnon1Ek2kOu0Pvj39fBV8UqOvIrpq0cpJCI0MlSemPpOvz5z5X5iuZeu/m9/Tg5gfVoVeHRsspzC7UogmLZK+0a+yMsRo+bbgrLf2RdL1z1Ts68PkBLb5rsSYunejxdgIAAAAAAAAAALQ1q9ENAAAAAAAAAADAjNa+tFbLH1+ubqO66eGdDyttbJpX5cSmxCqxT6Lbn5ikmCbXz5qVpbzMPMkijZs1zhVccU7GSxlKuDhBZ0rO6LOfftZkOZ888onslXZ1Hta5XnCFJEW2j9T1b14vSdr78V7t/tdur7YVAAAAAAAAAACgLRFgAQAAAAAAAACAAZxOp8bNHqd7Pr1HcV3jDGtD5iuZkqRuV3ZTx74dG+QJCQ3RwMkDJZ0Njjjy5ZEGefav3K+CLwokSUMeGtJoXakZqUrolSBJ+s/L//FJ+wEAAAAAAPD/2Lv3uKjL/P//z4HhfD6DgoB4PiJGIp5N0y3NTlpaZppuZW3W1rbttmXW7lbbt7I+bburHbRMK1vNTNvyiKKpJSoeExVFSFBEQDkPzO8Pf44QMBxm1JTH/Xbjdrvmfb2u1+t6A2njzGsuAABgTzRYAAAAAAAAAABwBQx+YbDiHqi7GeFyydySqcLjhZKk6GHR9cbFDL94usa+xbVPn9i7eK9l3HZY23rzXJjL3pmtvEN5Td4vAAAAAAAAAADApUSDBQAAAAAAAAAAV4DBYLB7zipTlcqLyhsdn7423TIOjQ2tNy6kZ4gMDoZaay44uvaoJMnV11W+kb715gntdbFGXXkAAAAAAAAAAACuJOOV3gAAAAAAAAAAAGi+k3tP6r8T/quM5Ayd/fmszJVmObk7KTwhXN3v7a6eE3vKwVj35y2d2nPKMvaJ8Km3htHFKPcgdxXlFOnU3lM15ipKKnTmyBlJkneEt9W9Vq9xcu/JBu8NAAAAAAAAAADgcqLBAgAAAAAAAACAq9j3/+97BXQI0PWPXq/AzoGqLKvUsQ3HlDI3Relr05UyJ0XjloyTV5hXrbX5R/MtY48QD6t1PEM8VZRTpLLCMpWcKZGbn5skqSCjQOYqsyXGmuo1Co4WNPYWAQAAAAAAAAAALgsaLAAAAAAAAAAAsJGpzKTKskrL44pzFZetduc7Ouv2T26X0eXiP/l3ubOLYifHav7g+crckqlFoxdpyqYpNWIkqexsmWVsdLX+koHR7eJ8+dlyS4NF+dnyRudwcnOqszYAAAAAAAAAAMCvAQ0WAAAAAAAAAADYKPnlZCXNSrI8LnC49KczeId7a0b6DHm19pKjk2Ot+bBeYRr4/ECtemqVTmw/oR///aMSZiTUiDGVmCxjR+faOaqrPl9RfLGBpKKkos6YpuQAAAAAAAAAAAD4NXC40hsAAAAAAAAAAOBq1/9P/fVMwTOWr4d3PXzJazoYHeQb5Vtnc8UFvSb3kgznxzs/2FlrvvqpFJXllbXmq6s+7+R+8SSK6qdSNDcHAAAAAAAAAADArwENFgAAAAAAAAAA2MjoYpSLt4vly8nz19E84ObvJr+2fpKknN05Kj9XXmPexcvFMjaVmmRN9dMunL2c6xw3lKP6aRfVawMAAAAAAAAAAPwa0GABAAAAAAAAAMA1zCPY4/zALJ3LOVdjzjfK1zIuyimymufCWhdvF7n5uVmu+7TxkcHBUCOmPtVr+ET5NLh3AAAAAAAAAACAy4kGCwAAAAAAAAAArmHmKrNl7OBY82WBoG5BlnHB8YJ6c5jKTCo+VXx+TdegGnNObk6WUzIKjxda3Uth5sX54K7BDewcAAAAAAAAAADg8qLBAgAAAAAAAACAq9CGv27QgWUHGow7l33+VAmDg+HiaRb/v+ih0ZZx9s7senPk7MqxNGpUX3NB1NAoSVJpfqnyj+XXm+dEyok6awMAAAAAAAAAAPwa0GABAAAAAAAAAMBVaN1z6/Tjv360GnP2xFkVHDt/MkVYXJic3J1qzIcnhMs73FuSlL4mvd48R1YfsYy7jO1Sa77r2K6WsbU8F+ZCY0Pl387f6t4BAAAAAAAAAAAuNxosAAAAAAAAAAC4Sh3ffFxlhWX1zv/474sNGHG/jas1bzAY1P/P/SVJGckZyj2QWyumylSlnfN2SpLa39xeoT1Da8W0HdZWrfu0liSlvJdS516ObTim0wdPS5IGPDug3j0DAAAAAAAAAABcKcYrvQEAAAAAAAAAANA85WfLtfy3y3XbR7fJ0dmxxtzh7w5r06ubJEmRAyPVa3KvOnP0ntZbexbuUUZyhpZPW657v7tXTm4XT7pY/8J65aXlydXXVSPeHFHvXm5+92Z90P8DZX6fqW3vbNP1j15vmSvNL9XKR1ZKkjqM6qAud9Y+BQMAAAAAgKZaNHrRld4CAAAArqCc1Bx5hnrKI9jDbjltarCYMmWKHnzwQfXp08de+wEAAABavCpTlXZ9vEv7Pt+n7J3ZKj5dLEdnR3mHeytyYKSue/g6hfUKazDP8c3Hte2dbcpIzlDRySJ5BHkovG+44qfHK2pwVKP3sn3udu1esFu5B3JlKjPJp42POo7pqIQZCfIM9bTxbgEAAICWLXVBqmWck5pjGR9edViFmYWSJI8QD8UMj6m1NqRniHJ25WjvZ3t1YvsJdb27q/za+qmiqEJH1x/V/iX7JbPU7jftdPsnt8vBWPeh1g5GB9219C4tHLVQGckZmtN7jmInx8rZw1lpK9OUtiJN7oHuGvvFWAW0D6j3XsLiwjT287Facs8SffPYN8rYmKGooVEqOV2ilLkpyj+ar+ih0bp94e3N/XYBAAAAAAAAAIBr3LIpy9T7wd4K7xPeYOznd3yuM0fOqNOtnXTbgttqfIBUc9nUYDFv3jwNHz6cBgsAAADATs5ln9PCmxfqRMoJOTo7quekngrpGaKygjId/vawUuamaMf7OzTohUEa9NygevMkvZikpFlJMroa1WtqLwV3C1bu/lylzE3RvsX7lPiHRA3/x3CreynOLdbCUQuVtTVLgZ0C1e+P/eTs6ay0FWna9Mom7Xh/h8Z9MU6RAyPt/W0AAAAAWoylE5fWeT3578mWceSgyDobLB7a+ZAyt2bqwJcHdHzTcaXMSVHJmRI5OjnKM9RT3Sd0V4+JPdRuRLsG9+Ee6K4pyVO0fe52pX6cquSXk1VZVimfNj5KfDpRCY8nyCvMq8E8HUZ10EO7HtKW2VuUtiJNP331k5w8nBTcLVgDnx+o2EmxMjgYGswDAAAAAAAAAABapp3zdqrtsLaNarBo95t2OrLqiA58eUDJLydryItDbK5vU4OFJD322GP68ccf9cADD6hLF470BgAAAJrLbDbr8zs+14mUEzK6GjVl85QaJ1UM+PMArX5mtTa9uknrn18vv2g/9bi3R608P/77R62fuV5GV6PuW3tfjScbPSb20IcDPtTm1zbLI9hDiU8l1rmXKlOVPrvtM2VtzVJEYoQmrp5o6fCOnx6vNX9eo+SXk/XpmE81ddtUq59iCwAAAKB+M80zbVof3ie8US8wNIaD0UHxD8cr/uF4m/L4Rvlq5OyRGjl7pF32BQAAAAAAAAAAUJffvP0bSdJ/x/9X+xbvs0uDRd3ngTdBaGio/vnPf6p79+7q37+/PvroI5WUlNi8MQAAAKClyUjO0PHNxyVJ1z18XY3migsGzxosz1BPSVLyy8m15otOFWnVH1ZJkvrM6FPrjVZhvcIsTRXrnlunwszCOveyfe52ZSRnSAZp9NzRtY7PGzxrsPzb+as0v1Tf/f67Jt0nAAAAAAAAAAAAAAAAANhL1NAoFWQU2CWXzQ0Wf/rTn5SZmalXX31VeXl5uv/++9WqVSs9+uij2rVrlz32CAAAALQIP//ws2Xcuk/rOmOMLkaF9AyRJJ3ad0plhWU15re+tVXl58olSXFT4+rMETc1TjJIplKTNr++uda82Wy2NG+06ddGQV2CasU4Ojmq5/09JUkHvz6o7F3ZDd0eAAAAAAAAAAAAAAAAADTM0PhQU5lJh745JEdnR7uUNtqyeNCgQQoJCVFgYKCeeuopPfXUU9q4caPmzp2rDz/8UP/6178UFxen3/72txo/frw8PT3tsmkAAADgWlRZXmkZ//LEiOqc3C/OlReVy8XbxfJ43xf7JEm+Ub7yb+df53rvcG8FdgpU7v5c7f9iv0a8MUIGw8VnJZlbMlV4/PzJFtHDouvdR8zwGK37y7rzdRfvU2jPUGu3BwAAAAAAAAAAAAAAAAAWW97aoq1vba11/dvHv9XaZ9c2uL6qokpFJ4tUZapS9A31v8+pKWw6wWLdunW64YYbalwbMGCAPvroI504cUJvv/22TCaTHnzwQYWFhWnatGnaurX2NwAAAACALCdTSNKp/afqjcvdnytJcvF2kUewh+V6YVahTv90WpIUGmu92SGsV9j5NZmFykvLqzGXvjbdMraWJ6RniAwOhlprAAAAAAAAAAAAAAAAAKAhpfmlyj+aX+NLkopOFdW6XtdXYVahKisq5eTupMGzBttlTzadYGGNt7e3HnnkET3yyCPasmWLJk2apA8++EAffPCBunXrpmnTpunee++Vr6/vpdoCAAAAcFWJuTFGobGhyt6ZrW3/t03XP3K9nD2da8TsX7pfuQfON1j0mtpLDo4Xe6ZP7jlpGXtHeFutVX3+5N6TCugQYHl8as/F5g6fCJ96cxhdjHIPcldRTpFO7a2/IQQAAAAAAAAAAAAAAAAAfik0NlSxk2JrXNs5f6ciB0TKr62f9cUGycndSQEdAtTlzi7yauVllz1dsgYLSUpPT9d7772nefPmKTs7W5JkNpu1e/duPfbYY3r66ad1xx136NFHH1WfPn0u5VYAAACAXz0HRwfd87979OV9X+rwd4c19/q5GvrXoQqNDVVZYZnSVqZpw0sbJEld7+qqG/5W8zS5Cx3ckuQR4iFrqs9XX9fUPJ4hnirKKVJZYZlKzpTIzc/NajwAAAAAALi0Fo1edKW3AAAAAAAAAACN0mlMJ3Ua06nGtZ3zd6r3g73VfUL3K7InmxospkyZogcffLBGc0RFRYWWLFmi9957T+vWrZPZbJbZbJYk+fn5aeLEiZo2bZqMRqPee+89ffzxx1q4cKFuv/12zZs3Tx4e1t/ABQAAAFwNTGUmVZZVWh5XnKto1DrPEE/d8797tP+/+7X6mdX6/I7Pa8x3vKWj4qbFqcOoDrXWlp8tt4yNrtb/V9/JzanOdZJUdras0XmMbhfny8+W02ABAAAAAAAAAAAAAAAAoNmiBkU1+KGwl5JNDRbz5s3TsGHD1KdPH+3fv9/SMHH69GlJsjRWDBo0SNOmTdMdd9whFxcXy/rXXntNf/vb3/T+++/r6aef1p/+9Ce9/fbbtmwJAAAA+FVIfjlZSbOSLI8LHAoate7sibNa+chKHfjygLzCvDT0b0MV0iNEleWVOrr+qHZ8sEMlZ0rk6OKomOExNdZWlFxs4nB0drRap/p8RXHN5g9TickueQAAAAAAAAAAAAAAAACgKSatm3RF69vUYCFJK1eu1Lvvvqvvv/9e0sWmiuDgYE2aNElTp05V+/bt613v7Oyshx9+WLm5uZozZw4NFgAAALgm9P9Tf/X9fV/L44yMDL3Z/U2ra0rySvRh/w915sgZBXUJ0v0b7pd7gLtlvvPtndVjYg/NGzhPC25coOGvDVfiU4mW+eqnUlSWV8qa6vNO7k415qqfSmFLHgAAAAAAAAAAAAAAAAC41I6sPqKNf9+oSWttb86wucFi0aJFks43VhgMBg0fPlzTpk3TrbfeKqOx8el9fX116tQpW7cDAAAA/CoYXYwyulz8/2Enz4abD9b+Za3OHDkjSRr59sgazRUXtI5vrYQnEpT8crJWPb1KEf0iFNE3QpLk7OVsiTOVmmqtra76aRfV10mSi9fFU+caylP9tItf5gEAAAAAAAAAAAAAAACAS+1czjkdSzpml1w2N1iYzWa1atVKkydP1tSpUxUZGdmk9aWlpVq0aJFee+01+fn52bodAAAA4KpkrjJrz6d7JEku3i6KHhpdb2zn2zsr+eVkySz9+O6PlgYL3yhfS0xRTpHVetXnq6+78DhzS6Ylzru1d715zuWcs+zZzc/Nak0AAAAAAAAAAAAAAAAAaIzK8kplJGfo1P5TKisoU5Wpqt7YnF05dqtrc4PF888/r+eff14ODg7NWp+VlaUHHnhAknTjjTfauh0AAADgqlR0qkilZ0olST5tfGQwGOqNrd4Qkb0z2zIO7hZsGRceL7RarzDz4nxw1+Aac0HdgizjguMFCosLqzOHqcyk4lPF59d0DaozBgAAAAAAAAAAAAAAAACaIuX9FK1+erVK80sve+3mdUVU06FDh2Y3V0hSTEyMSkpKVFJSohUrVti6HQAAAOCqZHC42FBhNputxpqrLs5XVV7szPZu7a2ADgGSajZe1OVEyonza8K95d/ev8Zc9dMzrOXJ2ZVj2Yu1EzcAAAAAAAAAAAAAAAAAoDH2L92v5dOWq+RMicxmc6O/7MWmEyzWrVunLl26NCp25MiRMhqN+u1vf6tbbrmlxpyLi4st2wAAAACueu4B7nLxdlFZYZnyj+arqrJKDo51NzLnHc6zjH3a+NSY6zK2izb+baPyj+brzJEz8mvrV2t9YVahcg/kSpI639m51mkZ4Qnh8g73VmFmodLXpGvwzMF17uPI6iM16gIAAAAAAAAAAAAAAACALba8sUWS1H1Cd/V6oJeCugTJzc9Njs6O9a5JXZCqLyd9aZf6NjVYDB06VB9//LEmTJjQYOyhQ4d05MgRffPNN/rqq690880321IaAAAAuKYYHAxqf3N77Vm0RxVFFUpbmaaOozvWGbv3s72Wcfub29eY6/NYH219a6vKz5Ur5b0U3fD3G2qt3/H+DsksGV2NSnwysfZeDAb1/3N/rZy+UhnJGco9kKvAToE1YqpMVdo5b6dlD6E9Q5t6ywAAAAAAAAAAAAAAAECLYDab9cM/f9DqZ1aroqhCk9ZNUtTgqAbXnUg5ob2f77W8h6esoEzOns7ya+unqCFR6v1gbwW0D7CaY/0L65U0K6lR+5z2wzS1uq6V1Zj8Y/naMnuLDq08pILjBXL2dFZw12D1nNRTPe/rKYODwer6huSk5qjzbZ11+4LbG7/IILudYlH3R+I2UlM2sWfPHm3evFnt27fXyy+/bEtZAAAA4Jo0aOYgOXk4SZL+N+N/KswsrBVzZPUR/fDuD5Ik/3b+6j2td415j2APDX9tuCRpy5tblPVDVo357F3Z2vSPTZKkIS8NkXe4d5176T2tt9r0byOZpeXTlquipKLG/PoX1isvLU+uvq4a8eaIZtwtAAAAAAAAAAAAAAAAcO3LO5yn+YPn65vffaOKooqGF0jKP5qvDwd8qDm952jTq+ff63P9o9fr5n/frL5P9ZWpzKTvX/9e73Z9V5v/3+ZLuf0aDq44qH/3+Le2vrVVIT1DNOKNEeozo4/OpJ/RssnL9PGNH6vsbJlNNcxVZrX7Tbsmrel8W2fNSJ9hU90LbDrBoilcXV2VkJCg3/3ud5o5c+blKgsAAABcNQI7Bmr88vH6793/VX56vt7t9q56TuqpkO4hqqyo1LGkY9r3xT6ZK80K7h6su5fdLaNr7f+lv+6h63Qu55w2vLhB84fMV9zUOAV1DVLugVylzE1RRVGF+j7VV4lP1T694gIHo4PuWnqXFo5aqIzkDM3pPUexk2Pl7OGstJVpSluRJvdAd439YmyDXfAAAAAAAAAAAAAAAABAS1P91AoHRweFJ4Qrc0tmo9bmHshVRnKGJGnE7BFKmJFQY77/M/315X1favfC3Vr1h1Vy9nLWdQ9eZzXnI/sfabCub5RvvXMnUk5o8djFMpWYau0pfnq8PhzwodLXpGvJhCUav3x8g7XqE9AhQKYyU5PWOLk7yTfSt9k1q7tsDRYXnD59WkVFRZe7LAAAAHBViB4SrUcOPKKdH+5U2oo07f10r378149ycHSQe5C7OozqoM53dFa3u7rJ0dmx3jyDZw5WzPAYbX17q/Z9sU/F/yqWe6C7Ym6MUfwj8YoeEt3gXtwD3TUleYq2z92u1I9TlfxysirLKuXTxkeJTycq4fEEeYV52fP2AQAAAAAAAAAAAAAAgGtC0qwkJc1KUsyIGI2eO1o73t/R6AaLC9oOb1uruUKSHBwdNGrOKB369pBKTpdozTNrFDspts4Pa70gsFNgk++huhXTV8hUYlLrPq1r7cnNz003vXOT5g+Zr4NfH9S+/+5Tlzu6NKtO7ORYHVhyQNc/cn2j12RuydT2Ods15oMxzapZXaMbLJKSkpSUlFTr+pIlS3To0KEG11dUVOjYsWP673//q7Zt2zZtlwAAAEAL4ubnpr6/76u+v+9rU56IxAhFJEbYlMPB6KD4h+MV/3C8TXkAAAAAAAAAAAAAAACAlsRsNmv0e6MV90Bcs3N0HNOx3jlnD2e1G9FOuxfuVml+qY5tPKaY4THNrmXNkdVHlLU1S5IUN63u+4kaHCX/9v7KS8vTxr9ubHaDRfwj8Upfk64Vj6zQ8FeHy9nTucE1eYfztGv+rsvbYLF+/Xq9+OKLta4vXbpUS5cubXRBs9msKVOmNDoeAAAAAAAAAAAAAAAAAAAAAICryeAXBstgMDRrbavrWumeb+5Rq/hWVuN8In0s44KMgmbVaoy9i/daxm2H1X/YQtthbZWXlqfsndnKO5Qn/3b+Ta614aUNCukZoh3v71DqR6mKHBSpgI4BcvFykcGh7u9nzq6cJtepT6MbLKTzzRGNuVYXd3d3dejQQZMmTdJjjz3WlLIAAAAAAAAAAAAAAAAAAAAAAFw1mttcIUnuge5qN7Jdg3Gl+aWWsbNHwyc9XFBeVC5HZ0c5Ojk2Kv7o2qOSJFdfV/lG+tYbF9or1DJOX5verAaL9S+st3zvzGazDn1zSIe+OdTkPM3V6AaLmTNnaubMmTWuOTg4aMGCBZowYYLdNwYAAAAAAAAAAAAAAAAAAAAAAOqWn55/fmCQIvpFWI3dOX+ndry3Q6f2nVJJXokkyau1l6KHRivh8QSFxYXVua6ipEJnjpyRJHlHeFut4RNx8USNk3tPNvIuaqt+CERjD4SwpaGluiadYAEAAAAAAAAAAAAAAAAAAAAAAK6s0oJSHV1/VJLUcXTHGs0NdVl2/zJ1urWTbnz9RnkEe+jsz2e1Z9EepX6cqtQFqRr43EANmTWk1rqCjAKZq843OXiGeFqt4RHicXHd0YIm3tFFty+4Xd0ndG90fOqCVH056ctm16vOpgaL9PR0BQUF2WUjAAAAAAAAAAAAAAAAAAAAAAD82pjKTKosq7Q8Lj9bfgV3c96u+btkKjXJ0dlRN7xyg9VYg6NBt39yu7rd1a3G9bipcVr3/DpteGmDNry4QS5eLkp8KrFGTPV7Nbpabz9wcnOyjMvOljX2VmxnaPxJFw2xqcEiMjKyyWt2796tpUuX6vnnn7elNAAAAAAAAAAAAAAAAAAAAAAAl1zyy8lKmpVkeVyg5p/OYA9FJ4u04aUNkqShfxuqoM71H5qQ8HiCej/YW15hXnXOD35hsH766ifl7MrRuufXqce9PeQZevGkioqSCsvY0dnR6r6qz1cUV1iJrN/ouaMV3je8SWtihsdo0rpJzar3Sw52ydIEqampmjVr1uUuCwAAAAAAAAAAAAAAAAAAAABAk/X/U389U/CM5evRfY9esb1UVVZp6X1LVZxbrG53d1PfJ/tajXf1da23uUKSDA4Gxd4fK0kylZi0e9HuGvPVT6WoLK+UNdXnndydrETWL+6BOPlF+zVpjUewh6IGRTWr3i/ZdIJFRkZGk9fk5ubaUhIAAAAAAAAAAAAAAAAAAAAAgMvG6GKU0eXiW++dC52v2F6+eewbHf72sKJviNaYeWNkMBhsztnqulaWcebmTOmJi3POXhfv1VRqspqn+mkXLl4uNu+rsTK3ZmrH+zs0es5om3M1qsHipZde0uuvv67HH39cL7zwguV6VFSUXX4gAAAAAAAAAAAAAAAAAAAAAACgfqv/tFo/vvujooZE6e5ld9do+rCFR7CHZXwu+1yNOZ82PjI4GGSuMutczrlfLq2hKKfo4rooH7vsrTHyDuVd3gaL1157TefOndMbb7xRo8FCksxmc5OL0pSBlmrR6EVXrHaVoUqtf9/6itUHAAAAAAAAAAAAAAAAAAAA0Dxrn1urTa9sUuSgSE34eoKc3J3slttcdbEnwOBY873+Tm5O8mvrp7xDeSo8Xmg1T2HmxfngrsHN2suxDceavCZ3f26zatWlUQ0W48aN0wcffKCxY8fWmnvwwQeVkJDQ6ILff/+95s6d2/gdAgAAAAAAAAAAAAAAAAAAAADQQq1/Yb02/nWj2gxoowkrGt9ckZOao5+++kk97u0h3yjfeuOqn1rhFeZVaz5qaJTyDuWpNL9U+cfy5RtZd64TKScs4+ih0Y3a4y/NGzzvih7o0KgGi/fee0//+Mc/5O/vX2tuwIABmjBhQuMLGo00WAAAAAAAAAAAAAAAAAAAAAAA0IANf9ugpFlJiugXoXtW3iNnD+daMXOum6MOozto8MzBNa6fSDmhdc+tk387f6sNFplbMi3jiP4Rtea7ju2qlDkpkqT0NenqNaVXnXnS16RLkkJjQ+XfrnbvQWOZzeaGg37BXk0ZjWqwkFRnc8WgQYMUEhLSpIIhISEaOHBgk9YAAAAAAAAAAAAAAAAAAAAAANCSJL+arHV/WafwvuG655t75OxZu7lCkk5sP6HgbsH15jn0zSF1u7tbnXOV5ZXa8f4OSZKzl3OdcW2HtVXrPq2VtTVLKe+l1NlgcWzDMZ0+eFqSNODZAQ3emzUDnh2gtsPa1jlnrjSrrLBMuT/l6uBXB1WQUaARb46Qe5C7TTUvaHSDRV1mzZolSdqwYYNCQ0PVoUOHBtcMGzZMw4YNs6UsAAAAAAAAAAAAAAAAcFUpzS/VwRUHlb4mXdk7snUm/YzKz5XL2dNZAe0DFD0sWvEPx8unjU+DuY5vPq5t72xTRnKGik4WySPIQ+F9wxU/PV5Rg6MatZ8qU5W2z92u3Qt2K/dArkxlJvm08VHHMR2VMCNBnqGeNt4xAAAAAFtsfn2z1jyzRu5B7ur/TH+d2H6i2blSP0lVxzEd1fn2zjWuV1VWacUjK5R3KE+SdOP/u1HuAXU3Ktz87s36oP8Hyvw+U9ve2abrH73eMleaX6qVj6yUJHUY1UFd7uzS7L1KUlDnIEUNimowrv8f+yt1QarWPb9OU7dMtanmBTY1WAwePNhylMakSZP0wQcf2GVTAAAAAAAAAAAAAAAAwLXi+Objmj90virLKiWD1Pm2zuo2vptcvF2UdyhPuz7apU2vbNK2t7dpzIdj1HVc13pzJb2YpKRZSTK6GtVrai8FdwtW7v5cpcxN0b7F+5T4h0QN/8dwq/spzi3WwlELlbU1S4GdAtXvj/3k7OmstBVp2vTKJu14f4fGfTFOkQMj7f2tAAAAAFqU1AWplnFOao5lfHjVYRVmFkqSPEI8FDM8psa6A18e0KqnVkmSik8V69Mxnzarvk8bH7n6uar0TKk+v/Nztf9Ne0UPi5abn5sKMwu159M9OrX3lBycHHTj6zeq929715srLC5MYz8fqyX3LNE3j32jjI0ZihoapZLTJUqZm6L8o/mKHhqt2xfe3qy9XvCb//uNWl/futHxPe7toSOrj2jD3zZo+KvWnws1hk0NFpLk6uqqZ599VqNHj7Z5MwAAAAAAAAAAAAAAAMC1pqywTJVllTI4GnTPN/fUevPUwL8M1IcDP9TJ3Se1dOJSBXcPVlDnoFp5fvz3j1o/c72Mrkbdt/Y+hfcJt8z1mNhDHw74UJtf2yyPYA8lPpVY516qTFX67LbPlLU1SxGJEZq4eqKc3JwkSfHT47Xmz2uU/HKyPh3zqaZum6qA9gF2/E4AAAAALcvSiUvrvJ7892TLOHJQZK3nCPlH8+1SP3potH6f9XsdXH5QaSvTdCLlhJJeSFJFcYWcvZzlH+Ovfn/sp+sevk6+kb4N5uswqoMe2vWQtszeorQVafrpq5/k5OGk4G7BGvj8QMVOipXBwWDTnq9/5PqGg36hzYA22vTKpivfYGE0GvXYY4/pz3/+s80bAQAAAAAAAAAAAAAAAK5lsffH1nrjlCS5+rpq+GvD9cnIT1RZXqmU91I04vURNWKKThVp1R/Of4Jtnxl9ajRXSFJYrzAlPpWopFlJWvfcOnW7u5u8w71r1do+d7sykjMkgzR67mhLc8UFg2cN1r7F+5R3KE/f/f47jV8+3sa7BgAAAFqumeaZzVqX8HiCEh5PsMsenNyc1HVcV6sn5TWFb5SvRs4eqZGzR9olnz1UFFVYTgSxlYMti0NCQtS+fXu7bAQAAAAAAAAAAAAAAAC4Frn6uqp1n9bqcmeXemNa9W5lGefuz601v/WtrSo/Vy5JipsaV2eOuKlxkkEylZq0+fXNtebNZrOSXz7/Sblt+rVRUJfap2Q4Ojmq5/09JUkHvz6o7F3ZVu4MAAAAAK6syopKpX6cKmcvZ7vks+kEi4EDB2r//v1NWrN69Wr9/e9/19q1a20pDQAAAAAAAAAAAAAAAFwVwhPCNXXLVKsxTu4XT5IwutR+S8++L/ZJOv9psf7t/OvM4R3urcBOgcrdn6v9X+zXiDdGyGAwWOYzt2Sq8Pj5T3WNHhZd715ihsdo3V/Wna+7eJ9Ce4Za3TsAAAAA2MuxDccajKmsqFRpfqly9+dqz6I9yj2Qq063drJLfZsaLJ588kmNHDlSDz30kGJiah9fWJecnBwlJSXZUhYAAAAAAAAAAAAAAAC4pmT9kGUZRw2NqjFXmFWo0z+dliSFxlpvdgjrFabc/bkqzCxUXlqeAjoEWObS16ZbxtbyhPQMkcHBIHOVucYaAAAAALjU5g2eV6NRvCFms1lObk4aNHOQXerb1GARFxenf//737rxxhs1Y8YMjR07VmFhYXbZGAAAAAAAAAAAAAAAQGMtGr3oSm8BaDZTqUlr/7xWkhTcPVhxU+NqzJ/cc9Iy9o7wtpqr+vzJvSdrNFic2nPKMvaJ8Kk3h9HFKPcgdxXlFOnU3lP1xgEAAADApWA2mxsV5+DooLY3tNUNL9+gkB4hdqltU4NF27ZtJUl5eXl64okn9MQTT8jHx0fe3t5ycHCoc01RUZEtJQEAAAAAAAAAAAAAAICrmqnMpNL8UpWcLtHxzce15c0tOrXvlLqO66pRc0bJyc2pRnz+0XzL2CPEw2ru6vPV1zU1j2eIp4pyilRWWKaSMyVy83OzflMAAAAAYCcDnh2gtsPa1jvvYHSQq4+r/Nv5y+hqU0tELTZlO3r0aK1r+fn5ys/Pt7quKUd2AAAAAAAAAAAAAAAAAL8mpjKTKssqLY/Lz5Y3af2eRXu0bPIyy2OfNj66/ZPb1W18tzrfV1M9f0NvHqrenPHLfZWdLWt0HqPbxfnys+U0WAAAAAC4bII6BylqUNQVqW1zu8aAAQMsJ1k0xpEjR5ScnGxrWQAAAAAAAAAAAAAAAOCKSH45WUmzkiyPC1TQpPUxI2I0cdVElReVKy8tT7sX7taSe5Zo/cz1GvnWSLW/qX2N+IqSCsvY0dnRau7q8xXFFTXmTCUmu+QBAAAAgEtl0MxBCukRcsXq29xg8eCDD2rChAmNjv/kk09osAAAAAAAAAAAAAAAAMBVq/+f+qvv7/taHmdlZenNLm82er1XmJe8wrwsj/s+2Ver/7ham1/brIWjFmrMh2MUOynWMl/9VIrK8kpZU33eyd2pxlz1UylsyQMAAAAAl8rgmYOvaH2Hy13Q09NTbdq0udxlAQAAAAAAAAAAAAAAALswuhjl4u1i+XL2crYpn8Fg0LBXhyksLkwySyseXqFz2ecs89Xzm0pNdaWwqH7axS/35eLl0ug81U+7sPX+AAAAAMAWxaeLlbUtS4dXHVbWtiwVny6+ZLVsOsGioqJCjo7Wjwv8pTFjxmjMmDG2lAUAAAAAAAAA4JpiNpv1wz9/0OpnVquiqEKT1k1S1OCoBtedSDmhvZ/vVUZyhnIP5KqsoEzOns7ya+unqCFR6v1gbwW0D7CaY/0L65U0K6lR+5z2wzS1uq6V1Zj8Y/naMnuLDq08pILjBXL2dFZw12D1nNRTPe/rKYODoVG1AAAAgJbGYDCo+z3ddSLlhEwlJu1etFt9nzh/SoZvlK8lriinyGqe6vPV1114nLkl0xLn3dq73jzncs43eLh4u8jNz60ptwIAAAAAdrFz/k5tfWurcnbl1JoL6RmihMcT1PO+nnataVODRVObKwAAAAAAAAAAQE15h/P01ZSvdGzDsUavyT+ar6UTlyojOUOSFNEvQtc/er28I7x1Lvuc9izao+9f/15b396qG/5+gxKfSrxU26/h4IqDWjJhicrOlqnLnV2U8ESCik8XK2VuipZNXqbUBam6a+ldNT41F7iWLBq96EpvAQAAXOUCOl5skD65+6RlHNwt2DIuPF5oNUdh5sX54K7BNeaCugVZxgXHC86fmFEHU5lJxafOfyJsUNegOmMAAAAA4FIpLyrX4rGLdfjbw5LOf1DVL+XsytGyycu059M9GvfFODm5O9mltk0NFs2xaNEiTZo0SeXl5Ze7NAAAAAAAAAAAvxrVT61wcHRQeEK45ZNkG5J7INfSXDFi9gglzEioMd//mf768r4vtXvhbq36wyo5eznrugevs5rzkf2PNFj3l59+W92JlBNaPHaxTCWmWnuKnx6vDwd8qPQ16VoyYYnGLx/fYC0AAADgWpL2TZqc3J0UNSjKapyDo4NlXGWqsoy9W3sroEOATh88reyd2VZznEg5cX5NuLf82/vXmIseGq11WidJyt6ZrU5jOtWZI2dXjsxVZssaAAAAALic/jv+vzr0v0OSJCd3J4V0D5F3uLeMbkaZSkwqzCzUyT0nVV5UrsPfHtZ/x/9Xdy+72y61L3uDRVVVlSorKy93WQAAAAAAAAAAflWSZiUpaVaSYkbEaPTc0drx/o5GN1hc0HZ421rNFdL5N2WNmjNKh749pJLTJVrzzBrFToqV0bX+lwUCOwU2+R6qWzF9hUwlJrXu07rWntz83HTTOzdp/pD5Ovj1Qe377z51uaOLTfUAAACAq8mKh1fI2dNZ0/dMtxqXdyjPMvZp41NjrsvYLtr4t43KP5qvM0fOyK+tX631hVmFyj2QK0nqfGdnGQyGGvPhCeHyDvdWYWah0teka/DMwXXu48jqIzXqAgAAAMDl8tPyn3Tw64PyCvPSsH8MU5c7u8joUvv1DVOZSfu+2KfVT6/Wwa8P6uDXB9VhVAeb69vUYDFlypQmrzly5EjDQQAAAAAAAAAAXOPMZrNGvzdacQ/ENTtHxzEd651z9nBWuxHttHvhbpXml+rYxmOKGR7T7FrWHFl9RFlbsyRJcdPqvp+owVHyb++vvLQ8bfzrRhosAAAA0OLk7s9V/tH8ek+GM5vN2vXRLsvjDqNrvjGoz2N9tPWtrSo/V66U91J0w99vqJVjx/s7JLNkdDUq8cnEWvMGg0H9/9xfK6evVEZyhnIP5NZqtq4yVWnnvJ2SpPY3t1doz9Am3ikAAAAANN+u+bvk5uemB75/oFbjeXVGF6N63NNDkQMi9Z9e/9HOD3de+QaLefPm1ep0b4jZbG7yGgAAAAAAAAAArjWDXxjc7H8vb3VdK93zzT1qFd/KapxP5MUXHgoyCppVqzH2Lt5rGbcd1rbeuLbD2iovLU/ZO7OVdyhP/u38L9meAAAAcPktGr3oitYfv3z8Fa3fEHOVWUsnLtXYxWPlGepZa+7b33+rn3/4WZLUbXw3hfcJrxHjEeyh4a8N14qHV2jLm1vU6bZOah3f2jKfvStbm/6xSZI05KUh8g73rnMfvaf11p6Fe5SRnKHl05br3u/ulZObk2V+/QvrlZeWJ1dfV414c4Rd7h0AAAAAGitzS6Zip8Raba6ozqeNj2KnxGrPoj12qW9Tg4UkBQQEyMPDo865yspKFRYWqrCwUJLk4+MjX19fW0sCAAAAAAAAAHDVs+XDiNwD3dVuZLsG40rzSy1jZw/nRucvLyqXo7OjHJ0cGxV/dO1RSZKrr6t8I33rjQvtdfGTb9PXptNgAQAAgBYjtGeoCo4VKCM5Q2/HvK2ud3dVYKdAuQe4qyCjQHs/36vc/bmSpJ739dSoOaPqzHPdQ9fpXM45bXhxg+YPma+4qXEK6hqk3AO5SpmbooqiCvV9qq8Sn6p9esUFDkYH3bX0Li0ctVAZyRma03uOYifHytnDWWkr05S2Ik3uge4a+8VYBbQPuCTfDwAAAACoT3FusYK6BDVpTVDnIBXnFtulvs0NFrNnz9aECROsxuTk5OjLL7/UW2+9pRdffFF33nmnrWUBAAAAAAAAAEAD8tPzzw8MUkS/CKuxO+fv1I73dujUvlMqySuRJHm19lL00GglPJ6gsLiwOtdVlFTozJEzkiTviLo/IfcCn4iLnzZ1cu/JRt4FAAAAcPW7e9ndOrnnpPYv3a+MjRk6suqI9izao6qKKjl7Ocsv2k/xj8ar5309a5xKUZfBMwcrZniMtr69Vfu+2KfifxXLPdBdMTfGKP6ReEUPiW5wP+6B7pqSPEXb525X6sepSn45WZVllfJp46PEpxOV8HiCvMK87HX7AAAAANBozp7OTW6WKD5dLGfPxn/QlDU2N1g0RkhIiB588EGNGTNGffv2VWRkpOLj4y9HaQAAAAAAAAAAWqTSglIdXX9UktRxdMcazQ11WXb/MnW6tZNufP1GeQR76OzPZ7Vn0R6lfpyq1AWpGvjcQA2ZNaTWuoKMApmrzJIkzxBPqzU8Qi6eiF1wtKCJdwQAAABc3YK7BSu4W7BdckUkRigi0XoTdUMcjA6Kfzhe8Q/zHh4AAAAAvx6BnQK1Z9EeJT6ZKINDw6eBm6vM2rNwjwI7BdqlvoMti8+ePau77rqr0fGhoaG6//779fe//92WsgAAAAAAAAAA/KqYykwqKyyzfFWcq7jSW9Ku+btkKjXJ0dlRN7xyg9VYg6NBd3x6h+5aepdi749V+5vaK25qnO5bc58GPjdQMksbXtygzf9vc6215WfLLWOjq/XPdXJyc7KMy86WNfGOAAAAAAAAAADAta7TrZ2UvTNbS+5dotL8UquxpQWlWnLPEuWk5qjTbZ3sUt+mEyw8PDwaDvqFyMhIvfvuu7aUBQAAAAAAAADgVyX55WQlzUqyPC5wuLKnMxSdLNKGlzZIkob+baiCOgfVG5vweIJ6P9hbXmFedc4PfmGwfvrqJ+XsytG659epx7095Bl68aSKipKLzSSOzo5W91V9vqL4yjehAAAAAAAAAACAX5f46fHa+tZW7f1sr9JWpqnDzR3UKr6VvFp7ycnNSaZSkwozC/Xzjz8rbUWaygrL5NXaS/HT7XM6n00NFs1x6NAhFRYWXu6yAAAAAAAAAABcMv3/1F99f9/X8jgjI0Nvdn/ziuylqrJKS+9bquLcYnW7u5v6PtnXaryrr6tcfV3rnTc4GBR7f6y+feJbmUpM2r1ot/o+cTFn9VMpKssrrdaqPu/k7mQlEgAAAAAAAAAAtERO7k66+6u79dENH6k0v1R7Pt2jPZ/uqTPWbDbLzc9N45ePr/F6hS0c7JKlkTZu3Kh//vOfatOmzeUsCwAAAAAAAADAJWV0McrF28Xy5eR55ZoHvnnsGx3+9rCib4jWmHljZDAYbM7Z6rpWlnHm5swac85ezpaxqdRkNU/10y5cvFxs3hcAAAAAAAAAALj2hPUK04M7HlS7ke1kNpvr/Wr/m/b6bcpvFdoz1G61bTrBYsqUKQ3GVFRUKD8/X/v371d6erok6eGHH7alLAAAAAAAAAAAqMPqP63Wj+/+qKghUbp72d0yutjnIGuPYA/L+Fz2uRpzPm18ZHAwyFxl1rmcc79cWkNRTtHFdVE+dtkbAAAAAAAAAAC49vhG+uqelfco71Cejqw+otNpp1V+tlzOXs7yb+evtsPaKqB9gN3r2vTKyrx58xr9yVdms1mSlJiYqGeffdaWsgAAAAAAAAAA4BfWPrdWm17ZpMhBkZrw9QQ5udvvFA1zldkyNjjWfF3Ayc1Jfm39lHcoT4XHC63mKcy8OB/cNdhu+wMAAAAAAAAAANcm/3b+8m/nf9nq2fzRVQEBAfLw8Kh33mg0ysfHRx07dtTo0aM1btw4OTg42FoWAAAAAAAAAAD8/9a/sF4b/7pRbQa00YQVjW+uyEnN0U9f/aQe9/aQb5RvvXHVT63wCvOqNR81NEp5h/JUml+q/GP58o2sO9eJlBOWcfTQ6EbtEQAAAAAAAAAA4HKxucFi9uzZmjBhgj32AgAAAAAAAAAAmmjD3zYoaVaSIvpF6J6V98jZw7lWzJzr5qjD6A4aPHNwjesnUk5o3XPr5N/O32qDReaWTMs4on9ErfmuY7sqZU6KJCl9Tbp6TelVZ570NemSpNDY0Mv6aVMAAAAAAAAAAODqcSb9jMrPlks6f7J2Xadip36SKo9gD8UMj7FrbY6SAAAAAAAAAADgKpX8arLW/WWdwvuG655v7pGzZ+3mCkk6sf2E8tPz681z6JtD9c5Vlldqx/s7JEnOXs7qdne3WjFth7VV6z6tJUkp76XUmefYhmM6ffC0JGnAswPqrQcAAAAAAAAAAFquiuIKzYmbo//0+o/+0+s/+nDAh3XGpX2dpk9GfqJ5g+bp7ImzdqtvU4NFenq6br31VjttpXlyc3P13HPPqVu3bvL09JS/v7/69u2rt99+W+Xl5XarU1lZqQULFmjMmDGKioqSq6urAgMD1b17d40fP17/+c9/lJ2dbbd6AAAAAAAAAABYs/n1zVrzzBq5B7mr/zP9dWL7CR1df7TOr4akfpKq/Uv217peVVmlFY+sUN6hPEnSjf/vRrkHuNeZ4+Z3b5bRzajM7zO17Z1tNeZK80u18pGVkqQOozqoy51dmni3AAAAAAAAAACgJdi/ZL9KC0plNpvVYXQHjZw9ss647vd0V0RihI5tPKYFIxbIVGayS32jLYsjIyPtsonm2rZtm2699VadOHFCw4cP18MPP6ySkhLNnz9fM2bM0Lx58/T111+rVatWNtU5cOCAJkyYoJ07d+qmm27S7373O/n6+ur48eP65JNP9Omnn+rTTz9VRUWFHn30UTvdHQAAAAAAAADgWpe6INUyzknNsYwPrzqswsxCSZJHSO3jrQ98eUCrnlolSSo+VaxPx3zarPo+bXzk6ueq0jOl+vzOz9X+N+0VPSxabn5uKsws1J5P9+jU3lNycHLQja/fqN6/7V1vrrC4MI39fKyW3LNE3zz2jTI2ZihqaJRKTpcoZW6K8o/mK3potG5feHuz9goAAAAAAAAAAK59h/53SAaDQXd8eoe6ju1ab1yHUR3UYVQHff/m9/ruye/0w7s/qO8TfW2ub1ODRXWVlZVauXKlNmzYoPT0dJ09e1ZeXl6Kjo7WwIEDddNNN8nR0dFe5ZSRkaFRo0bp1KlTevzxx/Xmm29a5n73u9/pN7/5jdatW6dbbrlFmzZtkouLS7PqHD58WEOHDtW5c+e0bt06DRo0qMb8s88+qxtvvFHr16+35XYAAAAAAAAAAC3Q0olL67ye/PdkyzhyUGStBov8o/l2qR89NFq/z/q9Di4/qLSVaTqRckJJLySporhCzl7O8o/xV78/9tN1D18n30jfBvN1GNVBD+16SFtmb1HaijT99NVPcvJwUnC3YA18fqBiJ8XK4GCwy96BuiwavahRcVWGKuWF5SnrjSw5mG068B0AAAAAAAAAYEcntp9Qx1s6Wm2uqK7vE311aOUh7f1s76+nweKLL77Q448/rhMnTtQ5/8YbbygsLExvvfWW7rjjDnuU1B/+8AedOnVKbdq00SuvvFJjzsXFRXPnzlXHjh21fft2vfPOO3ryySebXMNsNmvixIk6ceKEFi5cWKu5QpKcnJz03HPPaffu3XJzc2v2/QAAAAAAAAAAWp6Z5pnNWpfweIISHk+wyx6c3JzUdVxXdR3XuBcqGuIb5auRs0fWe2Q3AAAAAAAAAABAfQqzCtXrgV5NWtN2eFtt/NtGu9S3+SN5Xn75Zd111136+eefZTab6/36+eefNW7cuFrNEM2RlpamxYsXS5Luu+++Ok+niImJ0ZAhQyRJr776qkwmU5PrLFq0SN9//73at2+vu+++u94LdV5OAAEAAElEQVS4oUOHKjc3Vw888ECTawAAAAAAAAAAAAAAAAAAAAAAAKmyvFJu/k07+MA90F2V5ZV2qW/TCRYbN27UX/7yF5nNZrVv317jxo1TXFycWrduLVdXV5WWliorK0spKSn67LPPdOjQIT377LMaMGCA+vXr1+y6X3zxhcxmsyRp2LBh9cYNHz5cq1ev1qlTp7R+/XqrsXWZO3euJGn06NEyGDiyHAAAAAAAAAAAAAAAAAAAAACAS8Uj2EMn95xs0pqc3TlyD3K3S32bTrB44403ZDabNXPmTO3fv18vvfSSbrvtNl1//fXq0aOHrr/+et1222166aWXdODAAT3//PMym816/fXXbdr02rVrLePY2Nh643r1ung0SPU1jXHq1Clt2LBBktSzZ88acyUlJSorK2tSPgAAAAAAAAAAAAAAAAAAAAAAUL+IvhHa8cEOnTlyplHxZ46c0c4Pdyqib4Rd6tvUYLF582bdeOONmjlzphwcrKdycHDQCy+8oOHDh2vTpk22lNWePXskSV5eXvLx8ak3LiLi4jdp7969TaqRkpKiqqoqSVKbNm105MgRTZ06VSEhIXJ3d5erq6tCQ0M1adIk7du3rxl3AQAAAAAAAAAAAAAAAAAAAAAALoidEquywjK93/d97fhgh8qLyuuMqyiu0I4Pd+iDfh+o/Gy5ej3Qq864pjLasrigoECjR49u0ppbbrnFcjJEc5SVlSk7O1uSFBISYjW2+vzRo0ebVGf37t2W8bfffqvZs2erTZs2evbZZxUTE6Ps7Gy9//77+uijj7Ro0SL95z//0eTJk5tUAwAAAAAAAAAAAAAAAAAAAAAAnNduRDt1ubOL9n2xT8unLdfKR1YqoGOAvMO9ZXQ1ylRqUmFmoU7/dFqV5ZUym83qOrarYm6MsUt9mxosgoKC5Ozs3KQ1zs7ODTZGWHP27FnL2NXV1Wqsm5tbnesa4+TJk5bxK6+8ovj4eK1fv17u7u6W65MnT9bdd9+txYsXa+rUqYqOjtbgwYMbzF1QUKC8vDzLYxcXF7m4uDRpf81VZai6LHXw62M2mFVVVSWTyXSlt4IWymQy8TuIK4rfQVxpF05HQ8vUkp8DtOQ/d/m7B/wOgN+Blo2fP3gO0LKdOXOmxusJl/M5QEvX2OdAZoNZZpnP/9u5+O/114yf1dWDn9XVhZ/X1YOfVdNcyedgPP9r2a7k6wAt3ZV+HaS57PnnO3/+tCz8uyOai98dNBe/O/Xje3Jp3fbRbaoyVenAlwdkKjPp5O6TOrn7ZI0Ys9ksSep8W2fd+tGtdqttU4NFYmKiNm3apGnTpjV6zffff6+hQ4fWup6enq6NGzfqvvvus7q+pKTEMm6ouaP6fHFxcaP3KEmFhYU1Hr/zzjs1XgyRJAcHB73zzjtavny5SktL9eSTT2r79u0N5o6Nja3xeNKkSbr//vubtL/mygvLazgI1ySzzDJlnP/D3MHB4QrvBi1RVVWVMjIyJPE7iCuD30FcaadPn77SW8AV1JKfAyQnJ1/R+lcSf/eA3wHwO9Cy8fMHzwFath49etR4fDmfA7R0jX0OZJZZJV4lylOeDDJc4l3BFvysrh78rK4u/LyuHvysmuZK/ntk9TfXo+W5kq8DtHRX+nWQ5rLnn+8t+bWYloh/d0Rz8buD5uJ3p348B7i0jK5G3bXkLu35bI+2/d82ZW3NUlXlxcZUB0cHhfcJV58ZfdR1bFf71rZl8YwZMzRkyBBNnDhRN9xwQ4Px69ev15IlS7Rly5Zac5s3b9bkyZMbbLCofipFeXm51djq879sjmhIZWWlZRwZGanrr7++zrjg4GANHTpUK1euVEpKivbt26cuXbpYzb1z505FRERYHl/OrvWsN7IuSx38+pgNZrVq00qJiYkyGm36Tx9olgvdmvwO4krhdxBX2oUnm2iZWvJzgP79+1/R+lcSf/eA3wHwO9Cy8fMHzwFattTUVLVu3drymE+vvXwa+xzIbDArT3nyz/aXwcybVX/N+FldPfhZXV34eV09+Fk1zZX898jMzMwrVhtX3pV8HaClu9KvgzSXPf98b8mvxbRE/LsjmovfHTQXvzv14znA5dHtrm7qdlc3lZ8r15n0Myo/Wy5nL2f5RfvJ2dP6YQ3NZfMJFv/3f/+n0aNH67777tPdd9+t7t27y9/fXwaDQWazWWfOnNHu3bv1+eefa/ny5Vq6dKk6derU7JpeXl6WcWlpqdXY6qddVF/X1DrdunWzGtuzZ0+tXLlSkrRt27YGGyx8fHzk7+/fpP3Yi4OZ7rGWqkpVcnBwkNFo5C85XDH8DuJK43cQVxJd/C1bS34O0NL/zOXvHvA7AH4HWjZ+/i0bzwFaNj8/vyv2HKCla+xzoCpVySCDDGbDFX/eBOv4WV09+FldXfh5XT34WTXNlXz+xXO/lu1Kvg7Q0l2tfzba8893/vxpefh3RzQXvztoLn536sb34/Jy9nRWSPeQy1LLpp+so6OjJMlsNmvu3LmaO3dug2uGDRtmS0m5uLgoNDRU2dnZysnJsRpbfT4qKqpJdQICAixjPz8/q7GBgYGW8cmTJ5tUBwAAAAAAAAAAAAAAAAAAAAAAXHk2tb+azWaZzeYaY1u+GuvCiRJnz55VQUFBvXHVj17p2rVrk+6tenxFRYXV2Op751PJAAAAAAAAAAAAAAAAAAAAAAC4+th8Nsntt9+u7t2727yR1NRUffnll42KHTp0qFavXi1J2rlzpwYNGlRnXEpKSo01TREfHy+DwSCz2azs7GyrsadOnbKMW7Vq1aQ6AAAAAAAAAAAAAAAAAAAAAADgyrNLg8WECRNs3sgnn3zS6AaLO++8U88++6zMZrPWrFlTb4PFhSaMwMBADR48uEn7ad26tRISEvT9999r586dMplMMhrr/nZt377dMh44cGCT6gAAAAAAAAAAAAAAAAAAAAAAgCvPwZbFkZGR8vT0tMtGPD091aZNm0bFtm/fXmPHjpUkffzxxyovL68Vc+TIEa1du1aS9Mc//rFWc8SePXvUoUMHhYeHa8OGDXXWefLJJyVJBQUFWrZsWZ0xx48fV1JSkiTplltuUXh4eKPuAQAAAAAAAAAAAAAAAAAAAAAA/HrY1GCRnp6uW265xS4bGTNmjNLT0xsd/9prrykoKEhHjx7Vn//85xpzZWVl+u1vf6vKykr17t1bjz76aK31f/vb35SWlqasrCw988wzdda44447NGrUKEnSE088oczMzFp1HnjgAVVUVMjf31+zZ89u9P4BAAAAAAAAAAAAAAAAAAAAAMCvh7HhkF+nNm3aaPny5brtttv0+uuva8+ePbrllltUUlKi+fPna/fu3YqNjdVXX30lV1fXWuurqqosY7PZXG+dzz77TLfffru+/fZbxcbG6oEHHlDHjh2VnZ2tjz76SD/99JMiIiK0bNkyRUdHX5J7BQAAAAAAAAAAAAAAAAAAAAAAl9ZV22AhSX369FFqaqpmz56tpUuX6umnn5aTk5M6dOig2bNn6+GHH5azs3Oda5999lmlpKSopKREr776ar013N3d9b///U+ff/655s+fr48++kinT5+Wl5eXunbtqgcffFC//e1v5eHhcaluEwAAAAAAAAAAAAAAAAAAAAAAXGJXdYOFJAUGBuqvf/2r/vrXvzZpXY8ePZSWltbo+HHjxmncuHFN3R4AAAAAAAAAAAAAAAAAAAAAALgKOFzpDQAAAAAAAAAAAAAAAAAAAAAAADTHkdVHNH/ofLvkosECAAAAAAAAAAAAAAAAAAAAAABclc7lnNOxpGN2yWW0SxYAAAAAAAAAAAAAAAAAAAAAAFCL2WzWD//8QaufWa2KogpNWjdJUYOjGr3++Obj2vbONmUkZ6joZJE8gjwU3jdc8dPjG52nylSl7XO3a/eC3co9kCtTmUk+bXzUcUxHJcxIkGeoZ6Py5B/L15bZW3Ro5SEVHC+Qs6ezgrsGq+eknup5X08ZHAyNvi9rKssrlZGcoVP7T6msoExVpqp6Y3N25dilpkSDBQAAAAAAAAAAAAAAAAAAAAAAl0Te4Tx9NeUrHdvQvBMWkl5MUtKsJBldjeo1tZeCuwUrd3+uUuamaN/ifUr8Q6KG/2O41RzFucVaOGqhsrZmKbBToPr9sZ+cPZ2VtiJNm17ZpB3v79C4L8YpcmCk1TwHVxzUkglLVHa2TF3u7KKEJxJUfLpYKXNTtGzyMqUuSNVdS++Si5dLs+71gpT3U7T66dUqzS+1KU9z0GABAAAAAAAAAAAAAAAAAAAAAIAdVT+1wsHRQeEJ4crcktmkHD/++0etn7leRlej7lt7n8L7hFvmekzsoQ8HfKjNr22WR7CHEp9KrDNHlalKn932mbK2ZikiMUITV0+Uk5uTJCl+erzW/HmNkl9O1qdjPtXUbVMV0D6gzjwnUk5o8djFMpWYNGL2CCXMSLDMxU+P14cDPlT6mnQtmbBE45ePb9J9Vrd/6X4tn7a8yesMBvucnHHZGixSU1MVGhqq4ODgy1USAAAAAAAAAAAAAAAAAIBr1qLRi65ofVvePAkAwLUuadb5kydiRsRo9NzR2vH+jiY1WBSdKtKqP6ySJPWZ0adGc4UkhfUKU+JTiUqalaR1z61Tt7u7yTvcu1ae7XO3KyM5QzJIo+eOtjRXXDB41mDtW7xPeYfy9N3vv6v37/cV01fIVGJS6z6tazRXSJKbn5tueucmzR8yXwe/Pqh9/92nLnd0afS9VrfljS2SpO4TuqvXA70U1CVIbn5ucnR2rHdN6oJUfTnpy2bV+yUHWxZPmTJFW7dubVTsHXfcobCwMN1xxx0qKSmxpSwAAAAAAAAAAAAAAAAAAAAAAL9aZrNZo98brXv/d698InyavH7rW1tVfq5ckhQ3Na7OmLipcZJBMpWatPn1zXXuIfnlZElSm35tFNQlqFaMo5Ojet7fU5J08OuDyt6VXSvmyOojytqadb7mtLr3EjU4Sv7t/SVJG/+6saHbq1dOao4639ZZty+4XdFDouUZ4mm1uUKSZDh/r/Zg0wkW8+bN07Bhw9SnT58GY3/zm99o1apV+vLLL/Xyyy/rxRdftKU0AAAAcM07ffC0dnywQ4f+d0iFmYWqKKqQR4iHfNr4KKJfhNoOa6u2N7Std/3xzce17Z1tykjOUNHJInkEeSi8b7jip8cranBUo/ZQZarS9rnbtXvBbuUeyJWpzCSfNj7qOKajEmYkyDPU0053CwAAAAAAAAAAAAAAAFw7Br8wWAaDodnr932xT5LkG+Ur/3b+dcZ4h3srsFOgcvfnav8X+zXijRE1amZuyVTh8UJJUvSw6HprxQyP0bq/rDtfd/E+hfYMrTG/d/Fey7jtsPrfr9R2WFvlpeUpe2e28g7l1btva8xVZrX7Tbsmrel8W2e1SW/T5Fp1sanBoinefvttSdL48eO1ePFiGiwAAAAAKzb8dYM2vLRBHsEe6npXVwV0CJCp1KSsrVna+/leZWzMUMrcFD2d+3Sd65NePH/EoNHVqF5Teym4W7By9+cqZW6K9i3ep8Q/JGr4P4Zb3UNxbrEWjlqorK1ZCuwUqH5/7CdnT2elrUjTplc2acf7OzTui3GKHBh5Kb4FAAAAAAAAAAAAAAAAwFXLluaKwqxCnf7ptCQpNDbUamxYrzDl7s9VYWah8tLyFNAhwDKXvjbdMraWJ6RniAwOBpmrzDXWXHB07VFJkquvq3wjfevNE9rrYo30tenNarAI6BAgU5mpSWuc3J2s7qspLluDxQVDhw7VV199dbnLAgAAAFeNVX9cpc3/2Kxud3fTLe/fIid3pxrzPe7roYU3Lax3/Y///lHrZ66X0dWo+9bep/A+4RfXTuyhDwd8qM2vbZZHsIcSn0qsM0eVqUqf3faZsrZmKSIxQhNXT5ST2/l9xE+P15o/r1Hyy8n6dMynmrptqgLaB9SZB1g0etEVrT9++fgrWh8AAAAAAAAAAAAAAKCpTu45aRl7R3hbja0+f3LvyRoNFqf2nLKMfSJ86s1hdDHKPchdRTlFOrX3VI25ipIKnTlyplF7qV7j5N6TViLrFzs5VgeWHND1j1zf6DWZWzK1fc52jflgTLNqVudga4KmdNaUlZXpm2++kbOzs61lAQAAgGvSof8d0uZ/bFZQ1yDd+tGttZorJKndiHZqO7yt3APca80VnSrSqj+skiT1mdGnRnOFdL5j/UJTxbrn1qkws7DOfWyfu10ZyRmSQRo9d7SlueKCwbMGy7+dv0rzS/Xd779rzq0CAAAAAAAAAAAAAAAAqEP+0XzL2CPEw2ps9fnq65qaxzPEU5JUVlimkjMllusFGQUyV5lrxDRmLwVHC6zG1if+kXi5eLtoxSMrVH6uvFFr8g7nadf8Xc2q90uNPsHirbfe0ltvvVXr+uOPP65nn322wfUVFRU6efKkTCaTbrjhhqbtEgAAAGgBzGaz/vf4/yRJ/Z/pL0cnx3pj7/3fvXVe3/rWVssTi7ipcXXGxE2NU9KLSTKVmrT59c0a+ebIWvtIfjlZktSmXxsFdQmqlcPRyVE97++pdX9Zp4NfH1T2rmyF9rR+HCEAAAAAAAAAAAAAAABwNTKVmVRZVml5XH62cW/8b67q+Y2u1t/yX/2DU3+5r7KzZY3OY3S7OF9+tlxufm427aV67abY8NIGhfQM0Y73dyj1o1RFDopUQMcAuXi5yOBQ9+EQObtymlWrLo1usMjPz9fRo0drXT916pROnTpVe0E9PDw8NGvWrEbHAwAAAC3FsQ3HdPqn0zI4GNRhdIdm5dj3xT5Jkm+Ur/zb+dcZ4x3urcBOgcrdn6v9X+zXiDdG1DiZLnNLpgqPnz/ZInpYdL21YobHaN1f1p2vu3gfDRYAAAAAAAAAAAAAAAC4JiW/nKykWUmWxwVq3ukMjVVRUmEZOzrX/yGtv5yvKK6oMWcqMdmcx157aaz1L6y3vJfJbDbr0DeHdOibQ83K1RyNbrCIjY3VpEmTalybP3++BgwYoLZt21pdazAY5O7urg4dOujOO+9Uq1atmrdbAAAA4Bp2oTnCJ9JHrj6ulutms1nl58rl7OlcoxHilwqzCnX6p9OSpNBY680OYb3ClLs/V4WZhcpLy1NAhwDLXPradMvYWp6QniEyOBhkrjLXWAMAAAAAAAAAAAAAAABcS/r/qb/6/r6v5XFWVpbe7PLmJatX/SSIyvJKK5E1553cnWrMVT+Vorl57LWXpjCbzXWOrbH2vqqmaHSDxZgxYzRmzJga1+bPn68HH3xQEyZMsMtmAAAAgJbsxI8nJEk+bXxkrjJrx4c7tOO9Hfr5x59VZaqSg9FBYb3D1PO+noqbFidHp5od4Sf3nLSMvSO8rdaqPn9y78kaDRan9lw8oc4nwqfeHEYXo9yD3FWUU6RText/qh0AAAAAAAAAAAAAAABwNTG6GGV0ufjWe+dC50taz9nrYn5TqclKZM0TJqqvkyQXL5dG56l+2kX1PM3dS/XaTXX7gtvVfUL3RsenLkjVl5O+bHa96hrdYFGXQYMGKSQkxC4bAQAAAFq6nN05kiRzlVkf3/ixjq47qp7391TfJ/vK0dlRGZsytO3/tmnlIyuV+nGqxi8fL/dAd8v6/KP5lrFHiIfVWtXnq69rah7PEE8V5RSprLBMJWdK5Obn1sBdAgAAAACuZYtGL7rSWwAAAAAAAACAq55vlK9lXJRTZDW2+nz1dRceZ27JtMR5t67/Q1vP5ZyTJLl4u9R4D5BPGx8ZHAwyV5ktMY3Zi09U/R/saneGxp900RCbGizWrVtnl00AAAAA1xpTmUmVZRePvKs4V2ElWqoorlBF0fmYjI0ZkqQ7P79TXcd2tcR0vKWjutzZRfMGzlPmlkx9cfcXmrhqouV4u/Kz5ZZYo6v1/9WvfnRf9XWSVHa2rNF5qh8jWH62nAYLAAAAAAAAAAAAAAAAwEbB3YIt48LjhVZjCzMvzgd3Da4xF9QtyDIuOF6gsLiwOnOYykwqPlV8fk3XoBpzTm5O8mvrp7xDeTbtpbFGzx2t8L7hTVoTMzxGk9ZNala9X3KwS5YmWLZsmdq2bXu5ywIAAACXVfLLyXrF5xXL1796/stqfFlhWY3H7X7TrkZzxQWt41vruunXSZLS16Tr4PKDlrnqR+w5OjtarVd9vqK4ZvNH9eP+bMkDAAAAAAAAAAAAAAAAoOm8W3sroEOAJCl7Z7bV2BMpJ86vCfeWf3v/GnPRQ6MtY2t5cnblyFxlrrXmgqihUZKk0vxS5R/Lb3Av9eVpjLgH4uQX7dekNR7BHooaFNWser902Rsszp07p2PHjl3usgAAAMBl1f9P/fVMwTOWr4d3PWw1vqqyqsbjLmO71Bvb7e5ulnHqglTLuPqpFJXllbKm+ryTu1ONueqnUtiSBwAAAAAAAAAAAAAAAEDzXHj/UP7RfJ05cqbOmMKsQuUeyJUkdb6zswwGQ4358IRweYd7Szr/Ya71ObL6SK261VX/oFhreS7MhcaGyr+df71xzVF0skin006r6GSRzGazXXNXZ2w4RDp79qzWrFmjIUOGyMfHx3L9xRdfbHLBXbt2NXkNAAAAcLUxuhhldLn4v9tOntabD1y8XGo8DukeUm9sSI8QySDJLGVty7Jcd/ZytoxNpaY6Vl5U/bSL6ut+uZeG8lQ/7eKXeQAAAAAAAAAAAAAAAAA0T5/H+mjrW1tVfq5cKe+l6Ia/31ArZsf7OySzZHQ1KvHJxFrzBoNB/f/cXyunr1RGcoZyD+QqsFNgjZgqU5V2ztspSWp/c3uF9gytlaftsLZq3ae1srZmKeW9FPWa0qtWzLENx3T64GlJ0oBnBzTnlms5mnRUW9/aqqPrjqqssMxy3cXbRdFDo9VnRh9FDoy0S60LGtVgMWLECG3dulXx8fHasmWL5foLL7xQq8sFAAAAQNM5ezrL0dnRciKEq59rvbFGF6OcPZ1VfrZcRSeLLNd9o3wt46KcojpWqs756usuPM7ckmmJ827tXW+ecznnJJ1/0uLm52a1JgAAAAAAAAAAAAAAAIDG8Qj20PDXhmvFwyu05c0t6nRbJ7WOb22Zz96VrU3/2CRJGvLSEMtJFb/Ue1pv7Vm4RxnJGVo+bbnu/e5eObld/LDY9S+sV15anlx9XTXizRH17ufmd2/WB/0/UOb3mdr2zjZd/+j1lrnS/FKtfGSlJKnDqA7qcmftUzCawlxl1orpK5QyN+X841+cWFFaUKoDXx7QgS8PKO63cbrpnZvk4OhgU80LGtVgkZaWJrPZrCNHjtSaa87xGjRlAAAAADUZHAwK7ByonF05kqSqiirrC8wX110Q3C3YMi48Xmh1eWHmxfngrsE15oK6BVnGBccLFBYXVmcOU5lJxaeKz6/pGlRnDAAAAAAAAAAAAAAAANBSpS5ItYxzUnMs48OrDlvev+MR4qGY4TF1rr/uoet0LuecNry4QfOHzFfc1DgFdQ1S7oFcpcxNUUVRhfo+1VeJT9U+veICB6OD7lp6lxaOWqiM5AzN6T1HsZNj5ezhrLSVaUpbkSb3QHeN/WKsAtoH1JsnLC5MYz8fqyX3LNE3j32jjI0ZihoapZLTJUqZm6L8o/mKHhqt2xfe3tRvUy1fP/S1dry/w9Kr4BniKe9wbxndjDKVmFSYWWj5YNiUOSkyV5k1+j+jba4rNbLBYt68efrPf/6jadOm1ZpbsGCBJkyY0OiCCxYs0KRJkxq/QwAAAKCFaH19a0uDxbnsc7WO47ugorhC5UXlkiSvVl6W696tvRXQIUCnD55W9s5sq7VOpJw4vybcW/7t/WvMRQ+N1jqtkyRl78xWpzGd6syRsytH5iqzZQ0AAAAAAAAAAAAAAACAi5ZOXFrn9eS/J1vGkYMi622wkKTBMwcrZniMtr69Vfu+2KfifxXLPdBdMTfGKP6ReEUPafh9O+6B7pqSPEXb525X6sepSn45WZVllfJp46PEpxOV8HiCvMK8GszTYVQHPbTrIW2ZvUVpK9L001c/ycnDScHdgjXw+YGKnRRb4wNjm+PYxmNKeS9Fzp7O6vfHfoqdFFvn6RyFmYXaOX+nNv9js3a8t0M9J/ZUm/5tbKotNbLB4uabb9bNN99sczHp/OkVzTn1AgAAALjWdbmzi+VYu6wfshQ1OKrOuBM7TlhOsIgcFFkzx9gu2vi3jco/mq8zR87Ir61frfWFWYXKPZArSep8Z+daJ8yFJ4TLO9xbhZmFSl+TrsEzB9e5jyOrL55w12Wsbcf6AQAAAAAAAAAAAAAAANeameaZdskTkRihiMQIm3I4GB0U/3C84h+OtymPb5SvRs4eqZGzR9qUpz4pc1Lk5OakyRsmKzQ2tN4473BvDXx2oDrc3EEf9PtA2/+z3S4NFg62LP7www+VmFj/cSJ1SUxM1IcffmhLWQAAAOCa1HZYW4X0DJEk7V6wu97G5NSPLx4d+MsnPH0e6yNnT2dJUsp7KXWu3/H+DsksGV2NSnyy9v/PGwwG9f9zf0lSRnKGpRmjuipTlXbO2ylJan9ze4X2rP/JDAAAAAAAAAAAAAAAAAA0xrGNxxQ7OdZqc0V1obGh6nl/Tx3beMwu9W1qsJg0aZKioqKatCY6OlqTJk2ypSwAAABwTTI4GHTzuzfL0dlROak52vDShloxh787fL5BQlLCEwkKiwurMe8R7KHhrw2XJG15c4uyfsiqMZ+9K1ub/rFJkjTkpSF1Hp8nSb2n9T7f0W2Wlk9broqSihrz619Yr7y0PLn6umrEmyOad8MAAAAAAAAAAAAAAAAAUE1RTpFCezXtw17D4sJUlFNkl/pGu2RpgmXLlumJJ57QkSNHLndpAAAA4FcvIjFCd352p5bet1TrZ65XxsYMdbilg4yuRh3fdFypC1JlrjSrz4w+lkaKX7ruoet0LuecNry4QfOHzFfc1DgFdQ1S7oFcpcxNUUVRhfo+1VeJT9V/Gp2D0UF3Lb1LC0ctVEZyhub0nqPYybFy9nBW2so0pa1Ik3ugu8Z+MVYB7QMu1bcDAAAAaDHMZrN++OcPWv3MalUUVWjSukmKGhzV6PXHNx/Xtne2KSM5Q0Uni+QR5KHwvuGKnx7f6DxVpiptn7tduxfsVu6BXJnKTPJp46OOYzoqYUaCPEM9G5Un/1i+tszeokMrD6ngeIGcPZ0V3DVYPSf1VM/7esrgYGj0fQEAAAAAAAAAgJbF6GpU+bnyJq0pP1cuo6t9WiMue4PFuXPndOyYfY7fAAAAAK5FnW7tpEf2PaItb51/Q9LaP69VVWWVvMK81HNiT103/Tq1jm9tNcfgmYMVMzxGW9/eqn1f7FPxv4rlHuiumBtjFP9IvKKHRDe4D/dAd01JnqLtc7cr9eNUJb+crMqySvm08VHi04lKeDxBXmFe9rptAAAAoMXKO5ynr6Z8pWMbmvdv50kvJilpVpKMrkb1mtpLwd2Clbv/fIP1vsX7lPiHRA3/R90N2hcU5xZr4aiFytqapcBOger3x35y9nRW2oo0bXplk3a8v0PjvhinyIGRVvMcXHFQSyYsUdnZMnW5s4sSnkhQ8elipcxN0bLJy5S6IFV3Lb1LLl4uzbpXAAAAAAAAAABwbfOL8dOBJQeUMCOh0WsOLDkgvxg/u9S3S4PFiRMn9M0332j//v0qKCiQyWSqN5aTKwAAAICGeYd768bXbtSNr93Y7BwRiRGKSIywaR8ORgfFPxyv+IfjbcoDAAAAoLbqp1Y4ODooPCFcmVsym5Tjx3//qPUz18voatR9a+9TeJ9wy1yPiT304YAPtfm1zfII9qj3FLsqU5U+u+0zZW3NUkRihCaunignNydJUvz0eK358xolv5ysT8d8qqnbptZ7it2JlBNaPHaxTCUmjZg9osYLH/HT4/XhgA+VviZdSyYs0fjl45t0nwAAAAAAAAAAoGVof3N7bfzrRq16epVuePkGOTg61BtrrjJr9TOrlZGcoYHPDbRLfZsbLJ577jm9+uqrqqysbFS82WyWwcDx3wAAAAAAAACAli1p1vmTJ2JGxGj03NHa8f6OJjVYFJ0q0qo/rJIk9ZnRp0ZzhSSF9QpT4lOJSpqVpHXPrVO3u7vJO9y7Vp7tc7crIzlDMkij5462NFdcMHjWYO1bvE95h/L03e+/q7c5YsX0FTKVmNS6T+tanyrl5uemm965SfOHzNfBrw9q33/3qcsdXRp9rwAAAAAAAAAAoGVImJGgbW9v0/evf6/9/92vrnd3Vev41vJq7SUnNyeZSk0qzCzUzz/+rD2f7lF+er5cfFzU57E+dqlvU4PF3Llz9be//c3y2NXVVb6+vnJxqf9o76KiIp0+fdqWsgAAAAAAAAAAXPXMZrNGvzdacQ/ENWv91re2qvxcuSQpbmrdOeKmxinpxSSZSk3a/PpmjXxzZK09JL+cLElq06+NgroE1crh6OSonvf31Lq/rNPBrw8qe1e2QnuG1og5svqIsrZmna85re69RA2Okn97f+Wl5WnjXzfSYAEAAAAAAAAAAGpx83fTnZ/fqUWjFyn/aL42vbKp3liz2SxHZ0eN/Xys3Pzd7FK//vMyGmHOnDlycHDQzJkzdfToURUXF+vnn39Wenp6vV9vvPGGXTYOAAAAAAAAAMDVbPALg5vdXCFJ+77YJ0nyjfKVfzv/OmO8w70V2ClQkrT/i/0ym8015jO3ZKrweKEkKXpYdL21YobHXKy7eF+t+b2L91rGbYe1rTfPhbnsndnKO5RXbxwAAAAAAAAAAGi5YobHaPLGyQrsHCiz2VzvV1CXIE3eONnqaxNNZdMJFvv379f999+vmTNnNnqNwWCo9QIOAAAAAAAAAAAtjcFgaPbawqxCnf7p/GnRobGhVmPDeoUpd3+uCjMLlZeWp4AOAZa59LXplrG1PCE9Q2RwMMhcZa6x5oKja49Kklx9XeUb6VtvntBeF2ukr02vtzEEAAAAAAAAAAC0bK3jW2v6nuk6svqIjqw+ory0PJWdLZOLl4v82vkpZniMXRsrLrCpwcJoNCoxMbFJa+655x7dc889tpQF0Ey7F+1W1htZcjDbdHiNTcYvH3/FagMAAAAAAADXipN7TlrG3hHeVmOrz5/ce7JGg8WpPacsY58In3pzGF2Mcg9yV1FOkU7tPVVjrqKkQmeOnGnUXqrXOLn3pJVIAAAAAAAAAACA86djX4pGivrY9C7rbt26qbCw0F57AQAAAAAAAAAAjZB/NN8y9gjxsBpbfb76uqbm8QzxlCSVFZap5EyJ5XpBRoHMVeYaMY3ZS8HRAquxAAAAAAAAAAAAjVF0qkjHNhyzSy6bGiymT5+uTz75RGazudFrVq9eraFDh9pSFgAAAAAAAACAXxVTmUllhWWWr4pzFZe0XvnZcsvY6Gr9sGonN6c610lS2dmyRucxul2cr56nuXupXhsAAAAAAAAAAKC5Dn93WPOHzLdLLuuvdDRgwoQJ2rJli2655Ra9/fbbio6ObnBNTk6OkpKSbCkLAAAAAAAAAMCvSvLLyUqadfHfvgscLu3pDBUlFxs4HJ0drcZWn68ortn4YSox2ZzHXnsBAAAAAAAAAAC40hrVYDFlyhSr8zt37lS7du3UuXNndezYUV5eXnJwqPtwjMOHDzd9lwAAAAAAAAAA/Ir1/1N/9f19X8vjjIwMvdn9zUtWr/pJEJXllVZjq887uTvVmKt+KkVz89hrLwAAAAAAAAAAoOU49O0h/fivHxU3LU4dbu5guf5W27eanKuiyH4f6tSoBot58+bJYDBYjTGbzdq3b5/279/fYFxDuQAAAAAAAAAAuJoYXYwyulz8J3cnz0vbPODs5WwZm0pNViJrnjBRfZ0kuXi5NDpP9dMuqudp7l6q1wYAAAAAAAAAAC3L0nuXqiSvRMc3HdcfTv3Bcj3/aH6z8tmrR6FRDRaSFBAQIA8PD5sLFhUV6fTp0zbnAQAAAAAAAACgpfKN8rWMi3KKrMZWn6++7sLjzC2Zljjv1t715jmXc06S5OLtIjc/N8t1nzY+MjgYZK4yW2IasxefKB+rsQAAAAAAAAAA4NrlF+On4tPF8ovxqzUXOSBSfm1rX6/PmSNnlJGcYZd9NbrBYvbs2ZowYYLNBRcsWKBJkybZnAcAAAAAAAAAgJYquFuwZVx4vNBqbGHmxfngrsE15oK6BVnGBccLFBYXVmcOU5lJxaeKz6/pGlRjzsnNSX5t/ZR3KM+mvQAAAAAAAAAAgJbj3m/vVfqadEUPja411/vB3uo+oXujc6V+kmq3BgsHu2RpAoPBILPZfLnLAgAAAAAAAABwzfBu7a2ADgGSpOyd2VZjT6ScOL8m3Fv+7f1rzFV/0cJanpxdOTJXmWutuSBqaJQkqTS/VPnH8hvcS315AAAAAAAAAABAy+Dq46rOt3eWq6+rXfLZq0ehUQ0Wq1at0g033GCXgrfddpvS09PtkgsAAAAAAAAAgJaqy9gukqT8o/k6c+RMnTGFWYXKPZArSep8Z2cZDIYa8+EJ4fIO95Ykpa+p/9/uj6w+UqtudV3HdrWMreW5MBcaGyr/dv71xgEAAAAAAAAAgJZpZtXMJp1eIUk97umhmVUz7VK/UQ0WN9xwg0JCQuxS0N3dXZGRkXbJBQAAAAAAAABAS9XnsT5y9nSWJKW8l1JnzI73d0hmyehqVOKTibXmDQaD+v+5vyQpIznD0oxRXZWpSjvn7ZQktb+5vUJ7htaKaTusrVr3aW11L8c2HNPpg6clSQOeHdDA3QEAAAAAAAAAgJaoIKNAFSUVjYr9aupXWvnoSp3YcaLh4EZqVIMFAAAAAAAAAAD4dfEI9tDw14ZLkra8uUVZP2TVmM/ela1N/9gkSRry0hDLSRW/1Htab7Xp30YyS8unLa/1osX6F9YrLy1Prr6uGvHmiHr3c/O7N8voZlTm95na9s62GnOl+aVa+chKSVKHUR3U5c7ap2AAAAAAAAAAAAC8Ff2WDiw90KjYY0nH9MO7P+i9Pu/p+PfH7VLfaJcsAAAAAAAAAACgyVIXpFrGOak5lvHhVYdVmFkoSfII8VDM8Jg611/30HU6l3NOG17coPlD5ituapyCugYp90CuUuamqKKoQn2f6qvEp2qfXnGBg9FBdy29SwtHLVRGcobm9J6j2MmxcvZwVtrKNKWtSJN7oLvGfjFWAe0D6s0TFhemsZ+P1ZJ7luibx75RxsYMRQ2NUsnpEqXMTVH+0XxFD43W7Qtvb+q3CQAAAAAAAAAAtBBms7nRsff87x79/MPP+vb33yrphSTd++29NtenwQIAAAAAAAAAgCtk6cSldV5P/nuyZRw5KLLeBgtJGjxzsGKGx2jr21u174t9Kv5XsdwD3RVzY4ziH4lX9JDoBvfhHuiuKclTtH3udqV+nKrkl5NVWVYpnzY+Snw6UQmPJ8grzKvBPB1GddBDux7SltlblLYiTT999ZOcPJwU3C1YA58fqNhJsTI4GBrMAwAAAAAAAAAA0BD/GH/5x/irMKtQm1/bbJecNFgAAAAAAAAAAHCFzDTPtEueiMQIRSRG2JTDweig+IfjFf9wvE15fKN8NXL2SI2cPdKmPAAAAAAAAAAAAI1Vml9qlzw0WAAAAAAAAAAAAAAAAAAAAAAAgMsqJzVH2Tuza10/tvGYqkxVDa6vrKhUwbEC/fDuD/IO97bLnmiwAAAAAAAAAAAAAAAAAAAAAAAAl9X+pfu14cUNta6nzElRypyURucxm83q/WBvu+yJBgsAAAAAAAAAAAAAAAAAAAAAAHDZmc3mRl2rj5ufm3rc10ODXxhsl/3QYAEAAAAAAAAAAAAAAAAAAAAAAC6rhMcTFHt/7MULZumttm9p5OyR6jimo9W1BoNBTu5Ocg90t+ueaLAAAAAAAAAAAAAAAAAAAAAAAACXlauPq1x9XGtddw90l2+k7+XfkOzcYJGenq6tW7cqOztbt912myIjIyVJR44cUdu2be1ZCgAAAAAAAAAAAAAAAAAAAAAAXEMmrZukoM5BV6y+gz2SbN68Wf369VO7du10zz336Mknn9Thw4ct8506dVL//v31/fff26McAAAAAAAAAAAAAAAAAAAAAAC4xkQNipJHsMcVq29zg8Vnn32mwYMHa8uWLTKbzTKbzbVioqKitHnzZg0aNEiffPKJrSUBAAAAAAAAAAAAAAAAAAAAAAC0e9FuveT8kl1y2dRgkZmZqcmTJ8tkMqlTp0564oknNGvWrFpxBw8e1Lfffqvg4GBNmzatxukWAAAAAAAAAAAAAAAAAAAAAAAAzWGuMstcWfugiOYw2rL47bffVmlpqV555RU9/fTTkqTTp09r5syZtWKHDx+u5ORkde3aVW+//bbeeustW0oDAAAAAAAAAAAAAAAAAAAAAIBryLIpy5q85syRM3arb1ODxapVqzR8+HBLc0VDoqKiNGnSJK1evdqWsgAAAAAAAAAAAAAAAAAAAAAA4Bqzc95OGQyGJq0xm81NXlMfmxosjh49qsmTJzdpTffu3fXRRx/ZUhYAAAAAAAAAAAAAAAAAAAAAAFyD3ALc5OzhXOdcVWWVygrLVFZYJkly9XGVq6+r3Wrb1GBRUlIiLy+vJq2pqqpSVVWVLWUBAAAAAAAAAAAAAAAAAAAAAMA1aOTskeo+obvVmHM553TgywPa+tZWDXlxiLrc2cUutW1qsAgJCdGePXuatGbt2rUKCwuzpSwAAAAAAAAAAAAAAAAAAAAAAGihPEM8dd2D16nTmE56v+/78on0Uev41jbntanBon///nr//ff16KOPKjo6usH4ZcuW6csvv9T9999vS1kAAAAAAAAAAAAAAADgqlOcW6y9i/fq8LeHlb0jW+dyzsngYJBniKdaX99a3e/trg6jOshgMDSY6/jm49r2zjZlJGeo6GSRPII8FN43XPHT4xU1OKpR+6kyVWn73O3avWC3cg/kylRmkk8bH3Uc01EJMxLkGepp4x0DAAAAQNP86eyfZHRtfJuDZ6inet7fU8l/T9ZdS++yub5NDRbTp0/XokWLlJCQoL/+9a8aN26cZa76E72dO3fqvffe05w5cyRJDz/8sC1lAQAAAAAAAAAAAAAAgKvKd099px/++YNMpSa5B7mr+z3dFdA+QGazWUfXHdW+L/Zp7+d7FT00WmMXj5Wbv1u9uZJeTFLSrCQZXY3qNbWXgrsFK3d/rlLmpmjf4n1K/EOihv9juNX9FOcWa+GohcramqXAToHq98d+cvZ0VtqKNG16ZZN2vL9D474Yp8iBkfb+VgAAAABAvZw9nJu8xjfSVz+++6Nd6tvUYNGvXz9Nnz5d7777rh566CFNnz5dbdq0kSQ9+OCDcnR01PHjx1VSUiJJMpvNeuKJJ3TdddfZvnMAAAAAAAAAAAAAAADgKpG6IFWmUpMiB0Xq7mV3y9XH1TJ3/SPX6+DXB/XprZ8qfW26Fo1epMkbJ8vgUPskix///aPWz1wvo6tR9629T+F9wi1zPSb20IcDPtTm1zbLI9hDiU8l1rmXKlOVPrvtM2VtzVJEYoQmrp4oJzcnSVL89Hit+fMaJb+crE/HfKqp26YqoH2Anb8bAAAAAGA/eYfyVFZYZpdcNjVYSNLbb78tJycnvfXWW6qsrNTRo0dlMBh0+PBhSeebKi546qmn9Oqrr9paEgAAAAAAAAAAAAAAAKhh0ehFV6z26ZLTjYpzMDroto9uq9FccUGHUR0UNzVO2/+zXcc3H9fez/eq293dasQUnSrSqj+skiT1mdGnRnOFJIX1ClPiU4lKmpWkdc+tU7e7u8k73LtWre1ztysjOUMySKPnjrY0V1wweNZg7Vu8T3mH8vTd77/T+OXjG3V/AAAAAHC5Hdt4TD/88wf5tPGxSz6bGywcHBz05ptvasKECXr77be1evVq5eTkWOaDg4M1fPhwzZgxg5MrAAAAAAAAAAAAAAAA0GKFxoZafdNP5zs6a/t/tkuSDi4/WKvBYutbW1V+rlySFDc1rs4ccVPjlPRikkylJm1+fbNGvjmyxrzZbFbyy8mSpDb92iioS1CtHI5Ojup5f0+t+8s6Hfz6oLJ3ZSu0Z2jjbxQAAAAAmmnZlGUNxlRVVKk0v1Sn9p9Sfnq+JOm6h+3Tq2Bzg8UF8fHx+vjjjyVJ586dU2Fhoby8vOTl5WWvEgAAAAAAAAAAAAAAAMBV6Y5Fd8g9wN1qjG+kr2VckFFQa37fF/vOx0X5yr+df505vMO9FdgpULn7c7X/i/0a8cYIGQwGy3zmlkwVHi+UJEUPi653LzHDY7TuL+vO1128jwYLAAAAAJfFznk7azyHscZsNkuSIhIjNODZAXapb7cGi+o8PT3l6el5KVIDAAAAAAAAAAAAAAAAV53oIfU3M1xQml9qGTt5ONWYK8wq1OmfTks6fxKGNWG9wpS7P1eFmYXKS8tTQIcAy1z62nTL2FqekJ4hMjgYZK4y11gDANUtGr3oitYfv3z8Fa0PAAAuDbcANzl7ONc772B0kIuPiwI7BqrD6A7qOq6rDA6Na8poiE0NFrfffrueeOIJDRhgn24PAAAAAAAAAAAAAAAAoKU6k37GMo4cGFlj7uSek5axd4S31TzV50/uPVmjweLUnlOWsU+ET705jC5GuQe5qyinSKf2nqo3DgAAAADsbeTskeo+ofsVqe1gy+Ivv/xSx48ft9deAAAAAAAAAAAAAAAAgBbrwNIDkiSjq1Gx98fWmMs/mm8Ze4R4WM1Tfb76uqbm8QzxlCSVFZap5EyJ1VgAAAAAuBbYdIKFJG3cuFEmk6lJa5ycnOTv768ePXooLCzM1i0AAAAAAAAAAAAAAAAAl01VZZXMVeaLj01VNucsOlmkn5b9JEnq+1RfebXyqjFffrbcMja6Wn/Lj5ObU53rJKnsbFmj8xjdLs6Xny2Xm5+b1XgAAAAAsNWM9BnyCLLeDH4p2dxgMWfOHM2ZM6fZ6xMSEvTKK69owIABtm4FAAAAAAAAAAAAAAAAuOTyDuUpLy3P8rhABTbnXPWHVTKVmhQWF6aBfxlYa76ipMIydnR2tJqr+nxFcUWNOVOJqc64puYBAAAAgEvBN9L3ita3ucHCbDY3HGTF999/rxtuuEEffPCB7r33Xlu3AwAAAAAAAAAAAAAAAFxS/u385dfWz/I4rzRPSmp+vtQFqdr10S55BHto3H/HyehS+y091U+lqCyvtJqv+ryTu1ONueqnUtiSBwAAAAAuh+PfH9exDceUn56v8rPlcvZylm+0ryIHRiqib4Td69nUYJGenq4VK1ZoxowZGjx4sMaPH68ePXrIz89PRqNRlZWVOnPmjHbv3q1PP/1UO3fu1AcffKDOnTvr7Nmz+umnn7R06VJ99tln+u1vf6t+/fopOjraXvcGAAAAAAAAAAAAAAAA2J2Do4NU7fAHB5NDs3Md23BMy6ctl4u3iyasnCDfKN8645y9nC1jU6mpzpgLqp92UX2dJLl4uTQ6T/XTLn6ZBwAAAED9vrz/S+2av6tJazqO6ai7v7zb8jj/aL7ein6rUWvjH4nXTe/cZDWmylSl7XO3a/eC3co9kCtTmUk+bXzUcUxHJcxIkGeoZ5P2e6mlr0vXN7/7Rrn7c+uNCewcqJveuUlRg6PsVtemBovi4mI99dRTmjt3ru6///5643r37q37779fCxYs0OTJk7Vz505FR0erR48eGjt2rMaNG6c77rhD77zzjl5//XVbtgQAAAAAAAAAAAAAAABcFbK2ZWnR6EVydHbUvd/eq1a9W9UbW73xoiinyGre6vO/bNjwjfJV5pZMS5x3a+9685zLOSdJcvF2kZufm9WaAAAAAGzjEeJxyXIX5xZr4aiFytqapcBOger3x35y9nRW2oo0bXplk3a8v0PjvhinyIGRl2wPTfHjv3/UykdXSmbJbDbXG3dq3yl9NOwj3fTPm3Tdg9fZpbZNDRavvfaafvOb31htrqju3nvv1bJly/T3v/9d//d//2e5fuutt2rUqFFatWqVLdsBAAAAAAAAAAAAAAAArgo/b/9ZC0YskNls1sTvJio8IdxqfHC3YMu48Hih1djCzIvzwV2Da8wFdQuyjAuOFygsLqzOHKYyk4pPFZ9f0zWozhgAAAAA1j2y/5EGYxaMXKCCYwWKvT+2zvmhfx+qzrd1tprD1c+13rkqU5U+u+0zZW3NUkRihCaunignNydJUvz0eK358xolv5ysT8d8qqnbpiqgfUCDe76Usn7I0spHV8pcZZZniKc63tpRYXFh8m7tLaOrUaZSkwqzCnUi5YQOLD2gopNF+ubRb9Sqdyu1uq7+pvXGsqnBYt26dfrjH//YpDU33HBDnadUDB06VM8//7wt2wEAAAAAAAAAAAAAAAB+9U7sOKGPh3+sKlOV7v323gabKyTJu7W3AjoE6PTB08remW09f8qJ82vCveXf3r/GXPTQaK3TOklS9s5sdRrTqc4cObtyZK4yW9YAAAAAaLrAToFW549vPq6CYwUK7h6siL4RdcZ4hXk1mMea7XO3KyM5QzJIo+eOtjRXXDB41mDtW7xPeYfy9N3vv9P45eObXcseNr+2WeYqs67/3fUa/upwGV3rb3kY+eZIrXp6lba9s02b/rFJYz8fa3N9B1sWZ2dny8GhaSkMBoN+/vnnWte9vb1VXl5uy3YAAAAAAAAAAPj/2Lvz8Cir8//jn5lM9g3IDgkQ2fcARiBQBBXRCigqKAIKigsuRa1bta2Ctmpd0OqvtVCrLBItWLQotezQgKAmQIAARkkIiUlICBCyZzLz+yNfhsQkk2UGsr1f15XrOjPnPvc5DzMk88zM/RwAAAAAaNGyE7O1YsIKVZRVaOZ/ZioipuaXqLYt3KYlly+pcX//af0lSWdSz+j0sdO15s/PyFfukVxJUr9b+8lgMFTrDx8ZLr9wP0lSyuaUOtd5bNOxGvMCAAAAaJjAvoHqdmW3euPil8RLkobfN/yirMNqtSru5ThJUtfRXRXUv+budC6uLhoyZ4gk6fsvvlfWfvsF3Rdb2v/S1P3K7rr+7evtFldIksnDpOv/fL26/aKbju847pT5HSqw8Pb21pYtWxo1ZsuWLfLwqLkFSWZmpoKDg2sZAQAAAAAAAAAAAAAAALR+Jw+e1PKrl8tcbNbM9TPVdUzXWuPOpJxRZnxmjftH/GqE3HzcJEkJf0+odeze9/dK1sovGsX8OqZGv8Fg0Jhnx0iS0uLSbMUYVVnMFu37cJ8kqdcNvRQ6JLRBxwcAAACg0phnxmjOtjl2Y0rOlihpdZJcvVw1ePbgi7KO9N3pyj+RL0mKvKbunel6TOhhayetTrooa2mokjMl6ntz7Tvt1aXfrf1UcqbEKfM7VGAxbNgwrV69WitWrGhQ/LJly7R69WpdfvnlNfo+++wzhYZyMgYAAAAAAAAAAAAAAIC2JycpR8uvXq6i3CKNemKUrBarUrel1vpTkFVQaw7vYG9NeG2CJGn34t3K+DajWn/W/izt/NNOSdL4F8fbdqr4ueH3Dq8s7rBK6+5dp/Li8mr9217YprzkPHl08NDExRMdPXQAAAAAtUhckajyonINuG2APPxrbmBQG4vZorLCsgbPkbLlwq51oVF1f1c/ZEiIDEZDjTHNwTvEW66ero0a4+rpKq9AL6fMb3/PjHo89NBD2rRpk+bMmaMVK1ZoxowZGj58uDp37iwPDw+VlJQoIyND8fHxio2N1ZYtW2QwGPTwww/bcpw5c0bPPfec4uPjdffddzt8QAAAAAAAAAAAAAAAAEBLYi4xa/nVy1V4slCStGPRDu1YtKNJuS5/4HIVZBdox6IdWjZ+mYbNG6agAUHKPZKrhKUJKi8s16gnRinmiZq7V5xnNBl129rbtGrSKqXFpWnJ8CWKmhslN283Ja9PVvKXyfIK9NK0NdMU0CugSesEAAAAYF/C0spd6YbfN9xu3MlDJ/XpHZ8qLS5N5346J2uFVa5ergofGa5BswZpyOwhMppq33ch52COre0f4V/nHCZ3k7yCvFSYXaicQzl1xl0KkVdFKn13uobNG9bgMel70hURE+GU+R0qsLjxxht1//33629/+5s2b96szZs32423Wq164IEHNHnyZEnSoUOHNHToUJnNZhkMBk2aNKnRa8jNzdXbb7+ttWvXKjU1VW5uburTp49mzJihBx54QG5ubk06NnsyMzPVr18/nT17VlLlcQEAAAAAAAAAAAAAAAC1MZeY69yVoinGPT9OPSb00J4/71HSmiQV/bVIXoFe6nFtD0U/FK3I8ZH15vAK9NLdcXcrfmm8ElckKu7lOFWUVsi/q79inorRyEdHyjfM12lrBgAAAHBB+u50ZSdmK2RwiMJHhtuN/fr1rxXQO0BXPHyFAvsFqqK0Qsd3HFfC0gSlbElRwpIETf/X9Fpfv59JPWNre4d4253HJ8RHhdmFKs0vVfHpYnl29GzSsTkq5skY/SPmHxo8e7C6X9m93vi0uDQdWHlAd26+0ynzO1RgIUl//etf1b17dy1cuFAlJSV1xnl4eOiFF17QU089ZbsvMDBQL774oiQ1qcDim2++0U033aTMzExNmDBB8+fPV3FxsZYtW6YFCxboww8/1BdffKHOnTs37eDq8NBDD9mKKwAAAAAAAAAAAAAAAAB7PDp46Hnr807NGRET4fAVWo0mo6LnRyt6frSTVgUAAAC0TeZSsypKK2y3y86VOZQvfkm8JGnYffXv0tDvln66+aObZXK/8NX//rf2V9TcKC0bt0zpu9MVOzlWd++8u1qMJJWeK7W1TR72SwdMnhf6y86VNVuBRVC/IE3/dLrWzl6r3pN7a8D0AQoZFCKPjh4yGAyyWq0qOVOikwdPKml1kvZ9sE/Xv3N9y9jB4rynn35a8+bN08qVK/W///1Px44d07lz5+Tr66vLLrtMv/jFLzRr1iwFBFTfMjAkJERPP/10k+ZMS0vTpEmTlJOTo0cffVSLFy+29T3yyCO6/vrrtXXrVk2ZMkU7d+6Uu7u7Q8d43qeffqq1a9c6JRcAAAAAAAAAAAAAAAAAAAAAoGWLezlO2xdut90+q6ZfrL80v1SHPjkkVy9XDZ41uM44v3A/LUhZIN8uvnJxdanRHzY0TGN/P1Ybn9iozPhMfffedxq5YGS1GHOx2dZ2cauZo6qq/eVF5Q09nCZb5LKo3pj49+IV/158vXFf3P+FvnjgC/3e/HuH1+WUAgtJCggI0IIFC7RgwQJnpbTrySefVE5Ojrp27apXXnmlWp+7u7uWLl2qPn36KD4+Xu+++65+/etfOzznmTNn9Mgjjyg8PFzBwcFKSEhwOCcAAAAAAAAAAAAAAAAAAAAAoOUa85sxGvX4KNvtjIwMLe6/2M6IuiWuTFR5Ubmi5kbJw9+jzjijyagO3TvYzTV07lBtfHKjZJX2/WNfjQKLqrtSVJRV/Hx4NVX7Xb1c7cY6g9VqdWo+gwxOyeO0AotLKTk5WatXr5Yk3XnnnbXuTtGjRw+NHz9emzZt0quvvqoFCxbIZHLscJ988kllZmbq888/15tvvulQLgAAAAAAAAAAAAAAAAAAAABAy2dyN8nkfuG76G75bk3OFb+kckeG4fcPd3hdnp081fGyjjr942llH8hWWUGZ3HwurM3d98L37M0l5tpSXOivstuFm2/Tj68x+t3cT8GDgh3OczLxpI58dsQJK2qGAouPPvpId955pyoq7FfA2LNmzRpbxco111xTZ9yECRO0adMm5eTkaNu2bXZj67N9+3a9//77uvXWWzVlyhQKLAAAAAAAAAAAAAAAAAAAAAAADZa+J13Z+7MVMiRE4SPCnZLTO9hbp388LVmlguwCdfLpZOvr0L2D0nenS5IKswvl18WvzjwF2QWSJHc/d3l29HTK2urT7+Z+GnTHIIfzJH6U6LQCC6NTslxiW7ZssbWjoqLqjBs6dGitYxqrpKRE9957r/z9/fXOO+80OQ8AAAAAAAAAAAAAAAAAAAAAoH2y7V5xn+O7V5xntVhtbaNL9fKAoIFBtvbZE2frzGEuNasop6hyzICgOuOcqUO3DtV223CEm4+b/Lv6OyWXU3awKCsr0yeffKLt27frp59+UklJSZ2x2dnZDs938OBBSZKvr6/8/ev+h4iIiLC1Dx061OT5Fi5cqOTkZC1ZskShoaFNzgMAAAAAAAAAAHAxxU6Obe4lAAAAAAAAAABqUZpfqkOfHJKrl6sGzxpcb/yOl3YoeFCw+t7Y125cQVblzhMGo0Hewd7V+iKvitRWbZUkZe3LqjNX9v5sW6FG5FWR9a7NGRakLHBarr439q3336mhHC6w2Ldvn2666SadOHGi2v1W64VKGIPBUO3+qrcbq7S0VFlZWZKkkJAQu7FV+1NTU5s03/79+/X6669r7NixmjdvXpNyAAAAAAAAAAAAAAAAAAAAAADar8SPElVeWK6ou6Pk7udeb/zW321Vj4k97BYOnMs8p7PHK3emCBsWJlcv12r94SPD5Rfup/z0fKVsTtG458fVmufYpmO2dv9p/RtwNC3LsU3H9L8//k93bbnL4VwOFVicOnVK119/vbKzs+Xu7q4+ffrIx8dHu3bt0uDBg9WxY0dJ0rlz53TkyBEVFRUpNDRUffr0afKc586ds7U9PDzsxnp6etY6rqEqKip0zz33yMXFRUuWLHGoMKSqs2fPKi8vz3bb3d1d7u71/ydxBovBcknmQctjNVhllVVWg1UWNd/zwGw2N9vcaF5ms1kWi4XnAJoNz0E0N4uF12HtGecAzac5f+/ztwc8B8BzoH3j8QfnAO3b6dOn5eXlZbvNOUDL01LeM0f9eKxaDx6r1oXHq/XgsWo9rAZr/UFos5rzc4D2rrWeA/H73Xna2/tvvO+IpuK5g6biuVO3pvybJCxNkCRdfv/lDR5zYtcJleaX1lmQ8d1739naw+4bVqPfYDBozLNjtP7B9UqLS1PukVwF9g2sFmMxW7Tvw32SpF439FLokNAGr6+lKMgu0PHtx52Sy6ECi3feeUfZ2dmaPXu23n33Xfn6+io3N1fBwcF68803ddVVV9lii4qK9Nhjj2n16tVauXJlk+csLi62td3c3OzGVu0vKipq9FyLFy9WfHy8XnzxRYeKQn4uKiqq2u277rpLc+bMcVp+e/LC8uoPQptklVXFvsXKU54Mck6xUFPExcU129xoXhaLRWlpaZIko9HYzKtBe8RzEM3t1KlTzb0ENCPOAZpPc77+5G8PeA6A50D7xuOP+s4BPpvzmfYv29+onH1u7KPbP7vddvtM6hm9Hfl2g8ZGPxStX777S7sxFrNF8UvjdWDlAeUeyZW51Cz/rv7qc2MfjVwwUj6hPo1ab3s2eHD1rd05B2h5Wsp75qgfj1XrwWPVuvB4tR48Vq3HueLGX/gTbUdzfg7Q3rXWcyB+vztPe/suEu87oql47qCpeO7UrWqBbUNkfJuhrL1ZChkSoi5XdGnwuLJzZVp33zpNXT5VLm4u1fp+3PCjdr66U5LUbWw3DZ07tNYcw+8droOrDiotLk3r7l2nWRtmydXzwk4X217YprzkPHl08NDExRMbdVyOsFRYdPLASQUPDJbRdOH5tX954z4/kSoLUZzFoQKL9evXa8CAAfrggw9s/2nq2uXBy8tL7733nvbt26e33npLr732WpPmrLorRVlZmd3Yqv1VrxTVECkpKXr++ec1YMAAPf30041bZD327duniIgI2+1LWbWe8WbGJZkHLY/VYFWe8tQpq5MM1uY7MRszZkyzzY3mdb5aMyYmRiaTQ39+gCbhOYjmdv5kE+0T5wDNpzlff/K3BzwHwHOgfePxx8U4B/AO8XZ6zvOKcou0atIqZezJUGDfQI1+erTcfNyU/GWydr6yU3vf36vpa6ar29huF20NbUliYqK6dLnwARnnAC1PS3nPHPXjsWo9eKxaFx6v1oPHqhUprj8EbVdzfg7Q3rXWcyB+vztPe/suEu87oql47qCpeO7ULT09vVHx8UviJUnD7x/e4DEhQ0KUvT9bhz45pMz4TA24fYA6XtZR5YXlSt2WqsP/OixZpZ7X99TNH91crUihKqPJqNvW3qZVk1YpLS5NS4YvUdTcKLl5uyl5fbKSv0yWV6CXpq2ZpoBeAY06Lkf88+Z/6vsvvlfP63rqji/vsN3/2ZzP6qxJuBQceqYnJyfrV7/6VYMrkgwGg2666SatWrWqyQUWvr6+tnZJSYnd2Kq7XVQd1xD33XefSkpKtHTpUrm6utY/oBH8/f3VqVMnp+ZsKKOV6rH2yiKLDDLIYDU06/OAP7Dtm9FolMlk4nmAZsNzEM2JKv72jXOA5tPcv/P52wOeA+A50L7x+LdvDT0HeOjwQ/XGrLxupc4eP6uoOVG19l/1x6vUb2o/uzk8OnrU2WcxW/TJ1E+UsSdDETERmr1ptu3KVdEPRmvzs5sV93KcPr7xY837Zt4l/XClterYsSPnAC1cS3nPHPXjsWo9eKxaFx6v1oPHqvXgC9LtW3N+DtDetdbfjfx+d572+N4b7zuiqXjuoKl47tSuMf8epedKdejjQ3L1dtXgmYPrH/B/Htj3gNL3pOvIZ0d0YucJJSxJUPHpYrm4usgn1EeD7hikwbMHq+fEnvXm8gr00t1xdyt+abwSVyQq7uU4VZRWyL+rv2KeitHIR0fKN6xx37d3VOr2VFmtVqXtrHnRKqvV2uh8zirKcOiZXlhYqK5du1a773wxwunTp2sd06lTJ6WmpjZ5Tnd3d4WGhiorK0vZ2dl2Y6v2d+/evcFzLF++XJs2bdLs2bPVq1cv5ebm1ogpLy+3tav2u7q6yt/fv8FzAQAAAAAAAADar8C+gXb7T+w6obPHzyp4ULAiRkXUGuMb5ltvHnvil8YrLS5NMkiTl06uti24JI1bOE5Jq5OU90OeNjy+QTPWzWjyXAAAAAAAAAAAtDfuvu76zbnfNGls+IhwhY8Id8o6jCajoudHK3p+tFPyOera16/Vnj/v0RUPX1Gj77q3rlOfG/s0ONeRtUe04dcbnLIuhwosOnTooKysrGr3+fj4yMXFRUePHq11TGJiYrXihKYYOHCgsrKydO7cOZ09e7bOgoaqW68MGDCgwfm3bNkiSVqxYoVWrFhRb3xQUJCtfeWVV2rbtm0NngsAAAAAAAAA0P4E9g1Utyu71Rtn2zL8voZvGd4YVqtVcS/HSZK6ju6qoP5BNWJcXF00ZM4Qbf3tVn3/xffK2p+l0CGhF2U9AAAAAAAAAACgfRg2b5iGzRtWa59XoJc6dOvQ4FxeQV5OWpWDBRb9+vXTqlWr9Oyzz9q21DAajerdu7f+8pe/6KGHHqpW/JCUlKQPPvhAnTt3dmjRV111lTZt2iRJ2rdvn6688spa4xISEqqNaainnnpKs2bNshvz61//WomJiZKkjRs32u7v2LFjg+cBAAAAAAAAALRPY54ZozHPjLEbU3K2REmrk+Tq5arBsxu+ZXhjpO9OV/6JfElS5DWRdcb1mNBDW3+7VZKUtDqJAgsAAAAAAAAAAHBRXPn8lQoZHNKoMSGDQzT292OdMr9DBRbjx4/XokWLdMMNN+iPf/yjoqKiJEk33HCDXn/9dQ0YMEBz5sxReHi4jhw5ovfff1+lpaWaMGGCQ4u+9dZb9dxzz8lqtWrz5s11FlicL8IIDAzUuHHjGpy/f//+6t+/v92YqoUU11xzTYNzAwAAAAAAAADQEIkrElVeVK6ouVHy8Pdo0BiL2SJzqVlu3m4Nik/ZkmJrh0bVXTQRMiREBqNBVou12hgAAAAAAAAAAABnMhgMOvyvwzr8r8MKjQpVnyl96h0TMihEIYMaV5RRF6Mjg6dPny5J+uqrrzR8+HClpaVJkh5//HH5+/srMzNTL7/8sh566CG98847KiwslJeXl5566imHFt2rVy9NmzZNkrRixQqVlZXViDl27Ji2bNkiSXr66adlMlWvJTl48KB69+6t8PBw7dixw6H1AAAAAAAAAADgbAlLK3dpHn7fcLtxJw+d1Kd3fKrFXRfrJY+X9LLPy/qj9x+1/Orl2vvBXlnMljrH5hzMsbX9I/zrjDO5m2zba+ccyqkzDgAAAAAAAAAAwBHbXtim7Qu3a9sL23TksyOXfH6HCiz69++v7du3a+PGjdqwYYNCQyuvbhUaGqovvvhCnTt3ltVqtf106dJF69atU48ePRxe+GuvvaagoCClpqbq2WefrdZXWlqq++67TxUVFRo+fLgefvjhGuP/8Ic/KDk5WRkZGXrmmWccXg8AAAAAAAAAAM6Svjtd2YnZChkcovCR4XZjv379a2XGZ+qKh6/QbWtv07TV0zT0nqE6seuE/n33v/XBLz7QucxztY49k3rG1vYO8bY7j0+IjySpNL9UxaeLG3dAAAAAAAAAAAAADeTbxVd3x92tSX+bdMnnNtUfYt8vfvGLWu8fPXq0jh07pri4OGVlZSksLEyjR4+Wq6uro1NKkrp27ap169Zp6tSpeuONN3Tw4EFNmTJFxcXFWrZsmQ4cOKCoqCj9+9//lodHza3TLZYLV+yyWq0NmnPlypW2dnZ2dq33T5gwQSEhztleBGiLYifHNuv8M9bNaNb5AQAAAAAA0DaZS82qKK2w3S4vKHcoX/ySeEnSsPuG1Rvb75Z+uvmjm2Vyv/CWf/9b+ytqbpSWjVum9N3pip0cq7t33l0tRpJKz5Xa2iYP+x8ZmDwv9JedK5NnR88GHQsAAAAAAAAAAEBDmTxMGrFghCJiIppnfkcG79ixw9YODQ1V7969q/W7urpq/Pjxjkxh14gRI5SYmKi33npLa9eu1VNPPSVXV1f17t1bb731lubPny83N7daxz733HNKSEhQcXGxXn311QbNN3v27Hrv37p1KwUWAAAAcLoNT27Q169/LUm68vkrNe6FcfWOObHrhL559xulxaWp8GShvIO8FT4qXNEPRqv7uO4Nmtditih+abwOrDyg3CO5Mpea5d/VX31u7KORC0bKJ9THgaMCAAAA2o64l+O0feF22+2zxrNNzlWaX6pDnxySq5erBs8aXGecX7ifFqQskG8XX7m4utToDxsaprG/H6uNT2xUZnymvnvvO41cMLJajLnYbGu7uNXMUVXV/vIixwpIAAAAAAAAAAAAauMf4S93P/dmm9+hAotx48bJYDBIku666y794x//cMqiGiMwMFAvvfSSXnrppUaNGzx4sJKTkxs1pqE7XQAAAADOlJmQqd2LdzdqzPZF27V94XaZPEwaOm+oggcGK/dwrhKWJihpdZJinozRhD9NsJujKLdIqyatUsaeDAX2DdTop0fLzcdNyV8ma+crO7X3/b2avma6uo3t5sjhAQAAAG3CmN+M0ajHR9lup6WlafGgxU3KlbgyUeVF5YqaGyUP/5o7NJ9nNBnVoXsHu7mGzh2qjU9ulKzSvn/sq1FgUXVXioqyip8Pr6Zqv6uXc3arBgAAAAAAAAAAqKrXpF46vv24ht87vMFjEj9K1Gd3fqbfV/ze4fkdKrCQJA8PDz333HOaPHmyw4sBAAAAUJ3FbNG/5/1b1oqGF/t+99532vb8Npk8TLpzy50KHxFu6xs8e7A++MUH2vXaLnkHeyvmiZg65/1k6ifK2JOhiJgIzd40W66elV+gin4wWpuf3ay4l+P08Y0fa9438xTQK8CxAwUAAABaOZO7SSb3C2+5u/o0vQAhfkm8JGn4/Q3/4KAunp081fGyjjr942llH8hWWUGZ3Hwu7Pzs7nvhClDmEnNtKS70V9ntws239t2jAQAAAAAAAAAAHDHm6TFaMnyJDq89rH5T+13y+Y2ODDaZTPrVr36lZ599VoMGDXLWmgAAAAD8n11v7FLW3iz1ubFPg+ILcworr04racSCEdWKKyQpbGiYrahi6++2Kj89v9Y88UvjlRaXJhmkyUsn24orzhu3cJw69eykkjMl2vD4hkYeFQAAAIC6pO9JV/b+bIUMCanxer6pvIO9KxtWqSC7oFpf1R0wCrML7eY5P9bdz12eHT2dsjYAAAAAAAAAAICqzCVmTfnHFP330f/qk5s/0YHYA8pOzNaZ1DM6m3a21p+i3CKnze/QDhYhISHq1auXs9YCAAAAoIq8H/O0feF2dY7urCseuUJHPz9a75g9b+9RWUGZJGnYvGG1xgybN0zbF22XucSsXW/s0nWLr6vWb7VaFfdynCSp6+iuCuofVCOHi6uLhswZoq2/3arvv/heWfuzFDoktLGHCAAAAOBnbLtX3Of47hXnWS0XdsQzulS/7lLQwAuv98+eOKuwYWG15jCXmlWUU/nhRNCAmucIAAAAAAAAAAAAzvBW97dkMBgkSfnp+Q36zpQzOVRgMXbsWB0+fLhRYzZt2qQ//vGP2rJliyNTAwAAAG3eF/d9IUu5RZOXTlbJ6ZIGjUlakySp8iq0nXp2qjXGL9xPgX0DlXs4V4fXHNbENyfaTkokKX13uvJPVO5sEXlNZJ1z9ZjQQ1t/u7Vy3tVJFFigRYqdHNtsc1sMFnV5vEuzzQ8AAFqf0vxSHfrkkFy9XDV41uB643e8tEPBg4LV98a+duMKsip3njAYDRd2s/g/kVdFaqsqX9dn7cuqM1f2/mxboUbkVXWfJwAAAAAAAAAAADjKarXWH/QzVb//5AiHCix+/etf67rrrtMDDzygHj16NGhMdna2tm/f7si0AAAAQJuX8H6CUrakaPTToxU6JFSp21LrHZOfka9TR09JkkKj7Bc7hA0NU+7hXOWn5ysvOU8BvQNsfSlbUmxte3lChoTIYDTIarFWGwMAAACgaRI/SlR5Ybmi7o6Su597vfFbf7dVPSb2sFtgcS7znM4ePytJChsWJlcv12r94SPD5Rfup/z0fKVsTtG458fVmufYpmO2dv9p/RtwNAAAAAAAAAAAAE0z/P7hCh8Z3uD49K/TlbA0wSlzO1RgMWzYML333nu69tprtWDBAk2bNk1hYbVvHw4AAACgYQqyCrTxyY3q2KOjrnz+ygaPO3nwpK3tF+FnN7Zq/8lDJ6sVWOQczLG1/SP868xhcjfJK8hLhdmFyjmUU2ccAAAAgIY5/8b/5fdf3uAxJ3adUGl+aZ0FGd+9952tPey+YTX6DQaDxjw7RusfXK+0uDTlHslVYN/AajEWs0X7PtwnSep1Qy92rwMAAAAAAAAAABdVt19006A7BjU43mgytowCi8suu0ySlJeXp8cee0yPPfaY/P395efnJ6PRWOuYwsJCR6YEAAAA2rz1D69XyekSTVs9Ta6ervUP+D9nUs/Y2t4h3nZjq/ZXHdfYPD4hPirMLlRpfqmKTxfLs6Nng9cLAAAA4IKMbzOUtTdLIUNC1OWKLg0eV3auTOvuW6epy6fKxc2lWt+PG37Uzld3SpK6je2moXOH1ppj+L3DdXDVQaXFpWndves0a8Osauci217YprzkPHl08NDExRObcHQAAAAAAAAAAAAN03V0V3kH2//O0s916tFJQ+4c4pT5HSqwSE1NrXHfmTNndObMGbvjDAaDI9MCAAAALZ651KyK0grb7fKC8gaNO/L5ER3+9LCi5kTpsqsva9ScZefKbG2Th/2X+lW/LFV1nCSVnittcB6T54X+snNlFFgAAAAATRS/JF5S5ZbXDRUyJETZ+7N16JNDyozP1IDbB6jjZR1VXliu1G2pOvyvw5JV6nl9T9380c0ymmq/MJLRZNRta2/TqkmrlBaXpiXDlyhqbpTcvN2UvD5ZyV8myyvQS9PWTFNAr4BacwAAAAAAAAAAADjD3P/NbfSY8JHhCh8Z7pT5HSqwkKRf/OIXtp0sGuLYsWOKi4tzdFoAAACgRYt7OU7bF2633T5rPFvvmNL8Uq1/aL28grx07RvXNnrO8uILRRw/v3Ltz1XtLy+qXvxhLjY7JQ8AAACAhik9V6pDHx+Sq7erBs8c3OBxD+x7QOl70nXksyM6sfOEEpYkqPh0sVxcXeQT6qNBdwzS4NmD1XNiz3pzeQV66e64uxW/NF6JKxIV93KcKkor5N/VXzFPxWjkoyPlG+bryGECAAAAAAAAAADUa//y/eo2tps6dO9Qb+xfB/1VVqtVw+8frhGPjHDK/A4XWNx///264447Ghz/0UcfUWABAACANm/Mb8Zo1OOjbLfT0tK0eNBiu2M2PrVR5zLO6eZVN8uzU+N3gqi6K0VFWYWdyOr9rl6u1fqq7krhSB4AAAAADePu667fnPtNk8aGjwhX+AjnXJHJaDIqen60oudHOyUfAAAAAAAAAABAY30+93NNXTG1QQUWrl6u+um7n/TfR/8rD38PDblziMPz174f+EXk4+Ojrl27XuppAQAAgEvK5G6Su5+77cfVx37xwfH/HVf8knj1vK6nBs0Y1KQ53XzdbG1zidlOZPXdLqqOkyq/3NXQPFV3u/h5HgAAAAAAAAAAAAAAAABoDKvV2uDYeXvm6bETj6nz5Z31zTvfOGV+hwosysvLG7V7hSTdeOONSklJcWRaAAAAoE2pKKvQunvXycXNReNfHK+i3KIaPyVnS2zx5UXl1foqyit3kahatV2YXWh3zqr9P6/2bkyeguwCSZK7n7s8OzZ+1w0AAAAAAAAAAAAAAAAAaCrfzr6KmhulvB/ynJLP5MhgFxcXpywCAAAAaM/O/XROp46ekiQtjV5ab/yu13Zp12u7bLfv2nqXuo/rruCBwbb78k/k282Rn36hP3hAcLW+oIFBtvbZE2cVNiys1hzmUrOKcooqxwwIqjUGAAAAAAAAAAAAAAAAAC6mvB/zVFFW4ZRcDhVYVGWxWLR9+3bt2bNHWVlZmj9/vvr06SNJ2rp1q6688koZjQ5tmAEAAAC0ST6hPpq9cbbdmKz9Wdr4xEZJ0uDZgzXkziG2vpAhIZIkvy5+CugdoFPfn1LWviy7+TITMivHhPupU69O1foir4rUVm2tnHdflvre2LfWHNn7s2W1WG1jAAAAAAAAAAAAAAAAAKChjnx+REc/P1rj/vgl8Tq26Vi94y3lFp05fkbpX6crZHCIU9bklAKLf/7zn3ryySeVnp5uu2/KlCm2Aotrr71W4eHhevXVVzV9+nRnTAkAAAC0GSYPky675jK7MUbThWLljpd1rDO+/7T++t8f/qczqWd0+thpdbysY42Y/Ix85R7JlST1u7WfDAZDtf7wkeHyC/dTfnq+UjanaNzz42qdq+pJTP9p/e2uHwAAAAAAAAAAAAAAAACqytqXpX0f7qvx/aW0/6Up7X9pDcphtVZeIPaKX13hlDU5vKXEm2++qRkzZujEiROyWq22BVY1btw4paWlacaMGfrTn/7k6JQAAAAA6jDiVyPk5uMmSUr4e0KtMXvf3ytZKws7Yn4dU6PfYDBozLNjJElpcWm2YoyqLGaL9n24T5LU64ZeCh0S6qQjAAAAAAAAAAAAAAAAANAeeHTwUIduHeTf1d/2I0meAZ7V7qv1p5u/AvsFqu9NfXXb2tsUdVeUU9bk0A4WR44c0VNPPSWr1aqJEyfql7/8pXx9fXXPPfdUi9u4caOOHj2qadOm6bnnntO1116rqKgoR6YGAAAAUAvvYG9NeG2Cvpz/pXYv3q2+U/uqS3QXW3/W/izt/NNOSdL4F8fLL9yv1jzD7x2ug6sOKi0uTevuXadZG2bJ1dPV1r/thW3KS86TRwcPTVw88eIeFAAAAAAAAAAAAAAAAIA2Z+SCkRq5YGS1+xYaF+q6t67ToDsGNcuaHCqweOedd2S1WhUbG6vbbrtNknTq1Klad7Ho06ePtm7dqt69e+vdd9/V3//+d0emBgAAANq87MRsZSdmS5JyDudUuz9xZaIkyTvEWz0m9Kg27vIHLldBdoF2LNqhZeOXadi8YQoaEKTcI7lKWJqg8sJyjXpilGKeqLl7xXlGk1G3rb1NqyatUlpcmpYMX6KouVFy83ZT8vpkJX+ZLK9AL01bM00BvQIuwtEDAAAAAAAAAAAAAAAAwKXlUIHFtm3bdPPNN9uKK+oTEBCgOXPm6N///rcj0wIAAADtwuF/Hdb2hdtr3H9k7REdWXtEktTtym41Ciwkadzz49RjQg/t+fMeJa1JUtFfi+QV6KUe1/ZQ9EPRihwfWe/8XoFeujvubsUvjVfiikTFvRynitIK+Xf1V8xTMRr56Ej5hvk6fqAAAAAAAAAAAAAAAAAAIOl5y/PNOr9DBRbp6el6+OGHGzWmT58+ysjIcGRaAAAAoF0Y98I4jXthXJPHR8REKCImwqE1GE1GRc+PVvT8aIfyAAAAAAAAAAAAAAAAAEBL51CBRXl5udzc3Bo1pri4WC4uLo5MCwAAAAAAAAAAAAAAAAAAAAAA2qCCrAJVlFVIkrxDvGVyv1D2kPdjnra/sF1Z+7Pk7ueugTMGKvrBaBkMBqfM7VCBRefOnfXtt9/qnnvuafCYL774QuHh4Y5MCwAAAAAAAAAAAAAAAAAAAAAA2pjivGK9Hfm2rcBi5n9mqse1PSRJOYdz9P7I91VWUCar1SpJSv86Xelfp+vmlTc7ZX6jI4PHjx+vZcuW6dtvv21Q/LvvvqstW7bo6quvdmRaAAAAAAAAAAAAAAAAAAAAAADQxiStSZK51CzPAE+Nfma0ggcG2/q+WvCVSs+Vymq1qvPwzuozuY/c/dx1MPagktcnO2V+hwosFixYoPLyco0bN07PPfecDh06JIvFIkm2LTZOnjypzz77TJMmTdKCBQvk4uKiX/3qV46vHAAAAAAAAAAAAAAAAAAAAAAAtBk/bvhR7n7uuj/hfl39h6vl29lXkpT3Q56ObTomg8GgKx6+Qvd+e69u//x23fvdvXL3d9e+D/Y5ZX6HCiwGDhyoF198UcXFxXrllVc0ePBgRUREyGAw6KabbpKnp6fCwsJ0yy236D//+Y+sVqteeeUV9e7d2ymLBwAAAAAAAAAAAAAAAAAAAAAAbUNmQqai5kTJL9yv2v1Ja5IkSa5errrqpats93fq0UmDZg5SxjcZTpnfoQILSfrNb36jxYsXy9XVVVarVWVlZZKkgoIClZZWbr9htVrl6uqqd955R48//rjDiwYAAAAAAAAAAAAAAAAAAAAAAG1LQWaBgvoH1bj/6OdHZTAY1PemvnL3c6/WF9QvSIUnC50yv8kZSRYsWKBbb71V7733njZu3KgffvhB+fn58vX1Va9evTRhwgQ98MAD6tKlizOmAwAAAAAAAAAAAAAAAAAAAAAAbYzBaFBFeUW1+/Iz8m07VPSf1r/mGBeD0+Z3SoGFJHXp0kUvvviiXnzxRWelBAAAAAAAAAAAAAAAAAAAAAAA7YRfuJ8y4zOr3bf3/b2yWq1y83ZTj4k9aow5fey0PAM8nTK/0ZHBixYt0sGDB52yEAAAAAAAAAAAAAAAAAAAAAAA0H51u7KbDn58UIf/dVjlReX64asftOv1XTIYDOo7ta9M7tX3mDCXmHVg5QEF9Q9yyvwO7WDxwgsvqFevXho4cKBTFgMAAAAAAAAAAAAAAAAAAAAAANqnkY+N1P5l+7V62mrbfVarVUaTUTFPxtjuK8otUvqedO1YtEMFWQWKfijaKfM7tIOFVLmLxdtvv61Tp045Yz0AAAAAAAAAAAAAAAAAAAAAAKAdCuoXpJs/ulmu3q6yWq2yWq0yeZj0y3d/qZBBIba43W/vVuzkWGV8myFJGjB9gFPmd2gHC0k6c+aMHnvsMT399NOaMmWK7rnnHl177bUyGAzOWB8AAAAAAAAAAAAAAAAAAAAAAGgn+t/aX5dNuEzHdxyX1WJVlyu6yDfMt3rMLf3VqWcnSZK7r7ut7SiHCyzeeOMNDR48WH//+9/10Ucf6dNPP1WXLl00d+5czZkzR5GRkc5YJwAAAAAAAAAAQKvw2ZzPFOAZ0NzLAAAAAAAAAACg1fLw91CfyX3q7A+NClVoVKjT5zU6Mrhbt27y8fHRwIED9dZbb+mnn37Sxx9/rP79++sPf/iDevXqpWuuuUaxsbEqLS111poBAAAAAAAAAAAAAAAAAAAAAACUfSBb2xdtd0ouhwosUlJSNGXKFNttV1dXTZs2TV999ZVSU1P1+9//XseOHdPMmTMVFhamRx55RHv37nV40QAAAAAAAAAAAAAAAAAAAAAAANmJ2dq+sAUUWNgTHh5uK7DYuHGjBg4cqL/85S+6/PLLNWzYsIs1LQAAAAAAAAAAAAAAAAAAAAAAaIXOpp1t9E9RbpHT5jc5LVMtysvLtXbtWr3//vvatWuXJMlqtWr//v0Xc1oAqFPs5NhmnX/GuhnNOj8AAAAAAAAAAAAAAAAAAADQ3La/uF1fv/G1Rj46UuNeGGe7/63ub8lgMDTbuhzawWLRokU6ePBgjfsPHDigRx99VJ07d9aMGTO0adMmWSwWWa1WxcTE6O9//7sj0wIAAAAAAAAAAAAAAAAAAAAAgFZq12u7VJpfqq/f/LpGn9VqbfSPszi0g8ULL7ygnj17auDAgcrPz9eqVav0j3/8Q/Hx8ZJkW2hQUJDuvPNO3XPPPerbt6/jqwYAAAAAAAAAAAAAAAAAAAAAAK3SgOkDtPcfe9V/Wv8afcPvH67wkeENzpX+dboSliY4ZV0OFVhI0rfffquvvvpKn376qUpKSiRVFlYYjUZdd911uueeezRlyhSZTA5PBQAAAAAAAAAAAAAAAAAAAAAAWrkpf5+iCX+aIM9OnjX6uv2imwbdMajBuYwmY8spsPjzn/8s6cJuFZGRkZo7d67mzp2rLl26OJoeAAAAAAAAAAAAAAAAAAAAAAC0MbUVV3S/sru8Q7wblccnxEfdxnZzypocLrCwWq1yd3fX1KlTdc899+jqq6+2G5+SkqL//e9/uvPOOx2dGgAAAAAAAAAAAAAAAAAAAAAAtBF3bb2r0WMuu+YyXXbNZU6Z3+hogvnz5+unn37SqlWr6i2ukKRdu3Zp7ty5jk4LAAAAAAAAAAAAAAAAAAAAAADgNA7vYDF69Gh17NixQbFms1mHDx92dEoAAAAAAAAAAAAAAAAAQDOLnRzb3EsAAABosT4c96GObz9eb5yrt6ueLXjWbsyJXSf0zbvfKC0uTYUnC+Ud5K3wUeGKfjBa3cd1b9B6LGaL4pfG68DKA8o9kitzqVn+Xf3V58Y+GrlgpHxCfRqU52Izl5qVFpemzIRMFeUUqTS/VO7+7vIO8lbnyzsrIiZCLm4uF21+hwosUlJSFBQUVG/cN998o+XLl+uTTz5RXl6eI1MCAAAAAAAAAAAAAAAAAAAAANAubF+0XdsXbpfJw6Sh84YqeGCwcg/nKmFpgpJWJynmyRhN+NMEuzmKcou0atIqZezJUGDfQI1+erTcfNyU/GWydr6yU3vf36vpa6ar29hul+ioajr30znt+MMO7f9wv8wl5jrjTJ4mDb17qMb8Zox8w3ydvg6HCiy6dav7H/DEiRNasWKFVqxYoe+//952v9VqlcFgcGRaAAAAAGhV1t27ToEegc29DAAAAAAAAAAAAAAAAFxCnaM7a+ryqXZjDMa6v1v/3Xvfadvz22TyMOnOLXcqfES4rW/w7MH64BcfaNdru+Qd7K2YJ2JqzWExW/TJ1E+UsSdDETERmr1ptlw9XSVJ0Q9Ga/OzmxX3cpw+vvFjzftmngJ6BTThSB1z9N9H9a9Z/1J5YbmsVqvd2PKicn37/77Vvg/36ZZVt6j3pN5OXYtDBRY/V1hYqDVr1mjZsmXasWOH7eCqHmRgYKBOnTrlzGkBAAAAAAAAAAAAAAAAAAAAAGhRXL1cFdi3aRflLMwp1MYnN0qSRiwYUa24QpLChoYp5okYbV+4XVt/t1UDbx8ov3C/Gnnil8YrLS5NMkiTl062FVecN27hOCWtTlLeD3na8PgGzVg3o0nrbarEjxL12V2fSdb/28zBaFBQ/yCFRoXKM8BTbj5uKjtXpqLcImXtzVLu0VxZLVaVFZTp45s+1tQVUzVoxiCnrcfhAgur1apNmzZp+fLl+uyzz1RUVGS7/7yOHTvqjjvu0D333KODBw/qrrvucnRaAAAAAAAAAAAAAAAAAAAAAADapD1v71FZQZkkadi8YbXGDJs3TNsXbZe5xKxdb+zSdYuvq9ZvtVoV93KcJKnr6K4K6h9UI4eLq4uGzBmirb/dqu+/+F5Z+7MUOiTUyUdTu5ykHH1x/xeyWqzy7OipmCdjNGzeMHkFetU5piC7QAlLE/T1m1+r5EyJvrjvC4UOCa312JrC2NSBhw4d0tNPP62IiAhdd911WrVqlQoLC2W1Wm3FFQaDQX/4wx/0008/6Z133lFUVJQMBkO923YAAAAAAAAAAAAAAAAAAAAAANBeJa1JkiR16N5BnXp2qjXGL9zPtkPG4TWHa3xPP313uvJP5EuSIq+JrHOuHhN6XJh3dZJD626MjU9uVHlRuSJiIjT/wHyNeWaM3eIKSfIJ8dHY347VA/sfUJcruqissMy204czNKrAIicnR2+//baGDx+uwYMH6/XXX1dmZma1oooBAwboj3/8o7799ltZrVaNGDFC7u7uthwzZ86UxWJx2gEAAAAAAAAAAAAAAAAAAAAAANDSlZ4rldVS/2YF+Rn5OnX0lCQpNMr+bhJhQ8Mqx6TnKy85r1pfypYUW9tenpAhITIYDTXGXEwnD51U8n+SFdg3UHd8eYd8O/s2arx/hL9m/memAnoF6IevflBOUo5T1mVqSNCaNWu0bNkybdiwQWazWZKqVbeEh4drxowZmjlzpgYPHixJOnXqlFMWCAAAAAAAAAAAAAAAAAAAAABAa1NeVK7ti7YraU2STv94WuVF5TIYDQroE6BeN/TSqMdG1VpYcPLgSVvbL8LP7hxV+08eOqmA3gG22zkHLxQd+Ef415nD5G6SV5CXCrMLlXPIOYUK9fl+3fcyGAyauHiiPPw9mpTDs6OnJi6eqFWTVunov48qqH+Qw+tqUIHF9OnTZTAYqhVVdOzYUbfeeqvuuOMOXXnllQ4vBAAAAAAAAAAAAAAAAAAAAACAtuKnb3/SyQMnFXV3lMb+dqxcvV2VeyRXCUsS9PXrXyv+b/G6eeXN6jOlT7VxZ1LP2NreId5256jaX3VcY/P4hPioMLtQpfmlKj5dLM+OnvYPzkFp/0tTQO8A9ZzY06E8vX7ZSwG9AnR8x3GNeWaMw+tqUIGFVLljhcFgUEBAgN5++23deuutcnV1dXgBAAAAAAAAAAAAAAAAAAAAAAC0VOZSsypKK2y3y86VNWicd7C37tp6V7WdFXrf0FtXPHyFYifH6tjGY1o9bbXu2nqXImIias1v8rD/lX9Xzwvf6f/5ukrPlTY4j8nzQn/ZubKLXmBx6vtT6nFdD6fkumzCZfrhqx+ckqtBBRbr1q3T8uXLtW7dOuXm5ur+++/XV199pZkzZ+qaa66R0Wh0ymIAAAAAAAAAAAAAAAAAAAAAAGhJ4l6O0/aF2223z+psvWNu/fhWubi71FqoYHI36aYPb9Lbl72titIKrX94ve5PuN/WX15cbmu7uLnYnadqf3lRebU+c7HZKXkuhqJTRep4WUen5OrYo6OK84qdkqtBlRE33HCDPvnkE2VlZem9997T4MGDtWLFCl1//fXq3LmzFixYoD179jhlQQAAAAAAAAAAAAAAAAAAAAAAtBRjfjNGz5x9xvbzcNLD9Y7xCfWxuwuEb2df9byupyQpa2+WMvdm2vqq7kpRUVZRY2xVVftdvVyr9VXdlcKRPBdD6dlSeQV4OSWXV4CXSvNL6w9sgAbtYHGen5+f7rvvPt13331KSUnRsmXL9NFHH+mdd97Ru+++q8suu0wzZ87UHXfcoYCAAKcsEAAAAAAAAACAtujDcR/q+Pbj9ca5ervq2YJn7cac2HVC37z7jdLi0lR4slDeQd4KHxWu6Aej1X1c9watx2K2KH5pvA6sPKDcI7kyl5rl39VffW7so5ELRson1KdBeQAAAAAAAAAAaGtM7iaZ3C989d4t380peTtf3llHPz8qqfK9/rChYZX5fS/kN5eYax17XtXdLqqOkyR3X/cG56m628XP81wMVqtVRlOD9ouol8HFIFmdkqpxBRZVRUZG6oUXXtALL7yguLg4LV++XGvWrNGiRYv04osvqn///jIYDLJaq6909+7dWrJkif7xj384vHgAAAAAAFqyA7EHlPFmhoxW57wh0Fgz1s1olnkBAMCltX3Rdm1fuF0mD5OGzhuq4IHByj2cq4SlCUpanaSYJ2M04U8T7OYoyi3SqkmrlLEnQ4F9AzX66dFy83FT8pfJ2vnKTu19f6+mr5mubmO7XaKjAgAAAAAAAACg7fMO9ra1C7IKbO0O3TvY2oXZhXZzVO2vOu787fTd6bY4vy5+deYpyK6c393P3e7OG05luDTTNEaTCyyqGjNmjMaMGaN33nlHn3/+uZYtW6aNGzfKarXq5ptv1owZM3Tvvfdq+PDh+vHHH7Vs2TIKLAAAAAAAAAAA7V7n6M6aunyq3RiDse5PF7577ztte36bTB4m3bnlToWPCLf1DZ49WB/84gPtem2XvIO9FfNETK05LGaLPpn6iTL2ZCgiJkKzN822bT0e/WC0Nj+7WXEvx+njGz/WvG/mKaAXO1gDAAAAAAAAAOAMVsuFzQyMLhcu3hg8MNjWzj+RbzdHfvqF/uABwdX6ggYG2dpnT5xV2LCwWnOYS80qyimqHDMgqNaYi+G/j/5XW57b4nCe8sLy+oMayCkFFue5u7tr+vTpmj59unJycrRy5UqtWLFCS5Ys0dKlSzVo0CD17NnTmVMCAAAAAAAAANBquXq5KrBvYJPGFuYUauOTGyVJIxaMqFZcIUlhQ8MU80SMti/crq2/26qBtw+UX3jNK1PFL41XWlyaZJAmL51sK644b9zCcUpanaS8H/K04fEN7JIFAAAAAAAAAEA9jq47quz92frFc7+QwVD3hZSq7lrhE+Zja/t18VNA7wCd+v6UsvZl2Z0rMyGzcky4nzr16lStL/KqSG3VVklS1r4s9b2xb605svdn24o9Iq+KtDufMxXlFsmaY60/sAHs/Ts3hrH+kKYJCgrSY489poSEBB04cECPP/64cnNz9a9//etiTQkAAAAAAAAAQLux5+09KisokyQNmzes1phh84ZJBslcYtauN3bV6LdarYp7OU6S1HV0VwX1r3lVKhdXFw2ZM0SS9P0X3ytrv/0PcgAAAAAAAAAAaO8Of3pYW3+3VYXZhXbj0nen29pdx3St1td/Wn9J0pnUMzp97HSt4/Mz8pV7JFeS1O/WfjWKDMJHhtsuvpSyOaXOdRzbdKzGvJeCZ4CnOnTr4PCPV6CX09bk1B0s6jJgwAC99tprevXVV/XSSy9p4cKFl2JaAAAAAAAAAADarKQ1SZKkDt07qFPPTrXG+IX7KbBvoHIP5+rwmsOa+ObEah+upO9Ot20tHnlN3Vek6jGhh7b+tvIKV0mrkxQ6JNRZhwEAAAAAAAAAQJuV/J9kDZ07tNa+U8mnbIUNETERCh4QXK1/xK9G2C62lPD3BF39x6tr5Nj7/l7JKpk8TIr5dUyNfoPBoDHPjtH6B9crLS5NuUdya+ysbTFbtO/DfZKkXjf0uqSfAVz31nUadMcgh/MkrkzUZ3d95viCdBF3sKh1MqNRPXr0kNXqnG08AAAAAAAAAABoS0rPldq24LYnPyNfp46ekiSFRtn/oCNsaFjlmPR85SXnVetL2XLhalX28oQMCZHBaKgxBgAAAAAAAAAA1G3zbzbr1PenatxfnFesT2d8KmuFVa5errr+3etrxHgHe2vCaxMkSbsX71bGtxnV+rP2Z2nnn3ZKksa/ON62U8XPDb93eOXuGFZp3b3rVF5cXq1/2wvblJecJ48OHpq4eGKTjrPZGeoPaahLsoNFVVOnTlVKCh++AAAAAAAAAABQXlSu7Yu2K2lNkk7/eFrlReUyGA0K6BOgXjf00qjHRsm3s2+NcScPnrS1/SJq/8Cktv6Th04qoHeA7XbOwRxb2z/Cv84cJneTvIK8VJhdqJxDOXXGAQAAAAAAAAAAKah/kIyuRhVmF+q9qPc08PaB6hzdWS5uLso9nKv9y/erKKdI3iHeuvWTW20XS/q5yx+4XAXZBdqxaIeWjV+mYfOGKWhAkHKP5CphaYLKC8s16olRinmi5u4V5xlNRt229jatmrRKaXFpWjJ8iaLmRsnN203J65OV/GWyvAK9NG3NNAX0Cqgzj7NNXDxRnS/v7JRcnS/vrGvfvNYpuS55gYWXl5e6det2qacFAAAAAAAAAKDF+enbn3TywElF3R2lsb8dK1dv18oPRZYk6OvXv1b83+J188qb1WdKn2rjzqSesbW9Q7ztzlG1v+q4xubxCfFRYXahSvNLVXy6WJ4dPe0fHAAAAAAAAAAA7dTop0ZryJ1DdPhfh3Vs4zEd33Fchz45pIryCnl29FTI4BD1ntRbQ+8ZKndfd7u5xj0/Tj0m9NCeP+9R0pokFf21SF6BXupxbQ9FPxStyPGR9a7HK9BLd8fdrfil8Upckai4l+NUUVoh/67+inkqRiMfHSnfsJoXfLqYRi4Y6bRcgX0CFdgn0Cm5LnmBBQAAAAAAAAAAbY251KyK0grb7fKCcjvRF3gHe+uurXcpqH+Q7b7eN/TWFQ9fodjJsTq28ZhWT1utu7bepYiYCFtM2bkyW9vkYf+tfldP11rHSVLpudIG5zF5XugvO1dGgQUAAAAAAAAAAHb4hPoo+sFoRT8Y7XCuiJiIap8TNIXRZFT0/GhFz3d8PW0ZBRYAAAAAAAAAADgo7uU4bV+43Xb7rPFsvWNu/fhWubi71FqoYHI36aYPb9Lbl72titIKrX94ve5PuN/WX158oYDDxc3F7jxV+8uLqhd+mIvNTskDAAAAAAAAAADQFlBgAQAAAAAAAACAg8b8ZoxGPT7KdjstLU2LBy22O8Yn1Mduv29nX/W8rqeOfn5UWXuzlLk3U2FDwyRV35WioqyirhQ1+l29XKv1Vd2VwpE8AAAAAAAAAAAAbYGxuRcAAAAAAAAAAEBrZ3I3yd3P3fbj6uOcAoTOl3e2tU/sOmFru/m62drmErPsqbrbRdVxkuTu697gPFV3u/h5HgAAAAAAAAAAgLaAAgsAAAAAAAAAAFoo72BvW7sgq8DW7tC9g61dmF1oN0fV/qrjGpunILtyfnc/d3l29LQbCwAAAAAAAAAA0BpRYAEAAAAAAAAAQAtltVhtbaPLhbf0gwcG29r5J/Lt5shPv9AfPCC4Wl/QwCBb++yJs3XmMJeaVZRTVDlmQFCdcQAAAAAAAAAAAK0ZBRYAAAAAAAAAAFxiR9cd1Y6XdshqtdqNq7prhU+Yj63t18VPAb0DJElZ+7Ls5shMyKwcE+6nTr06VeuLvCrS1raXJ3t/tq3Yo+oYAAAAAAAAAACAtoQCCwAAAAAAAAAALrHDnx7W1t9tVWF2od249N3ptnbXMV2r9fWf1l+SdCb1jE4fO13r+PyMfOUeyZUk9bu1nwwGQ7X+8JHh8gv3kySlbE6pcx3HNh2rMS8AAAAAAAAAAEBbY2ruBQBAexI7ObZZ55+xbkazzg8AAAAAAIDqkv+TrKFzh9badyr5lK2wISImQsEDgqv1j/jVCO15e4/KCsqU8PcEXf3Hq2vk2Pv+XskqmTxMivl1TI1+g8GgMc+O0foH1ystLk25R3IV2DewWozFbNG+D/dJknrd0EuhQ0KbcqgAAAAAAAAAAAAtHgUWAAAAAAAAAAA0k82/2ayuo7sqoHdAtfuL84r16YxPZa2wytXLVde/e32Nsd7B3prw2gR9Of9L7V68W32n9lWX6C62/qz9Wdr5p52SpPEvjrftVPFzw+8droOrDiotLk3r7l2nWRtmydXT1da/7YVtykvOk0cHD01cPNEZhw0AAAC0e1arVd/+v2+16ZlNKi8s111b71L3cd0bPP7ErhP65t1vlBaXpsKThfIO8lb4qHBFPxjd4DwWs0XxS+N1YOUB5R7JlbnULP+u/upzYx+NXDBSPqE+TTs4AAAAAGjFKLAAAAAAAAAAAOASC+ofJKOrUYXZhXov6j0NvH2gOkd3loubi3IP52r/8v0qyimSd4i3bv3kVoUNDas1z+UPXK6C7ALtWLRDy8Yv07B5wxQ0IEi5R3KVsDRB5YXlGvXEKMU8UXP3ivOMJqNuW3ubVk1apbS4NC0ZvkRRc6Pk5u2m5PXJSv4yWV6BXpq2ZpoCegXUmQcAAABAw+T9mKd/3/1vHd9xvEnjty/aru0Lt8vkYdLQeUMVPDBYuYcrzwGSVicp5skYTfjTBLs5inKLtGrSKmXsyVBg30CNfnq03HzclPxlsna+slN739+r6Wumq9vYbk1aIwAAAAC0VhRYAAAAAAAAAABwiY1+arSG3DlEh/91WMc2HtPxHcd16JNDqiivkGdHT4UMDlHvSb019J6hcvd1t5tr3PPj1GNCD+358x4lrUlS0V+L5BXopR7X9lD0Q9GKHB9Z73q8Ar10d9zdil8ar8QViYp7OU4VpRXy7+qvmKdiNPLRkfIN83XW4QMAAADtUtVdK4wuRoWPDFf67vRG5fjuve+07fltMnmYdOeWOxU+ItzWN3j2YH3wiw+067Vd8g72rrPQ2mK26JOpnyhjT4YiYiI0e9Ns2y520Q9Ga/OzmxX3cpw+vvFjzftmHoXWAAAAANoVCiwAAAAAAAAAAGgGPqE+in4wWtEPRjucKyImQhExEQ7lMJqMip4frej5jq8HAAAAQE3bF1buPNFjYg9NXjpZe9/f26gCi8KcQm18cqMkacSCEdWKKyQpbGiYYp6I0faF27X1d1s18PaB8gv3q5Enfmm80uLSJIM0eelkW3HFeeMWjlPS6iTl/ZCnDY9v0Ix1Mxp/sAAAAADQShmbewEAAAAAAAAAAAAAAABAW2e1WjX575M166tZ8o/wb/T4PW/vUVlBmSRp2LxhtcYMmzdMMkjmErN2vbGr1jXEvRwnSeo6uquC+gfViHFxddGQOUMkSd9/8b2y9mc1eq0AAAAA0FpRYAEAAAAAAAAAAAAAAABcZONeGKdh99ReGNEQSWuSJEkdundQp56dao3xC/dTYN9ASdLhNYdltVqr9afvTlf+iXxJUuQ1kXXO1WNCjwvzrk5q8poBAAAAoLWhwAIAAAAAAAAAAAAAAAC4yAwGQ5PH5mfk69TRU5Kk0KhQu7FhQ8Mqx6TnKy85r1pfypYUW9tenpAhITIYDTXGAAAAAEBbR4EFAAAAAAAAAAAAAAAA0IKdPHjS1vaL8LMbW7X/5KGT1fpyDubY2v4R/nXmMLmb5BXkVTnmUE6dcQAAAADQ1lBgAQAAAAAAAAAAAAAAALRgZ1LP2NreId52Y6v2Vx3X2Dw+IT6SpNL8UhWfLm7YQgEAAACglTM19wLao3X3rlOgR2BzLwMAAAAAAAAAAAAAAABNYKmwyGqxXrhttlzU+crOldnaJg/7X/dx9XStdZwklZ4rbXAek+eF/rJzZfLs6NmgtQIAAABAa9bqCyxyc3P19ttva+3atUpNTZWbm5v69OmjGTNm6IEHHpCbm1uTc1utVsXFxWnNmjXatWuXfvjhBxUUFMjPz0+9e/fWtddeq/vvv1+dO3d24hEBAAAAAAAAAAAAAACgJcv7IU95yXm222d19qLOV15cbmu7uLnYja3aX15UXq3PXGx2Sh4AAAAAaKtadYHFN998o5tuukmZmZmaMGGC5s+fr+LiYi1btkwLFizQhx9+qC+++KJJBRAJCQmaO3euEhMTJUnXXXedbrzxRoWFhen48eNavny5Fi1apDfffFPvvfeeZs6c6ezDAwAAAAAAAAAAAAAAQAvUqWcndbyso+12XkmetP3izVd1V4qKsgq7sVX7Xb1cq/VV3ZXCkTwAAAAA0Fa12gKLtLQ0TZo0STk5OXr00Ue1ePFiW98jjzyi66+/Xlu3btWUKVO0c+dOubu7Nyr/N998o8TERBkMBn366aeaOnVqtf5nnnlGkyZN0tatW3XnnXeqU6dOuv76651ybAAAAAAAAAAAAAAAAGi5jC5GqcoGEEaz8aLO5+brZmubS8x2IqvvdlF1nCS5+174/kx9earudvHzPAAAAADQVl3cs7uL6Mknn1ROTo66du2qV155pVqfu7u7li5dKhcXF8XHx+vdd99t8jzz5s2rUVwhSV5eXlq2bJlcXV1lsVj02GOPNXkOAAAAAAAAAAAAAAAAoC4dunewtQuzC+3GVu2vOq6xeQqyCyRJ7n7u8uzo2bCFAgAAAEAr1yoLLJKTk7V69WpJ0p133lnr7hQ9evTQ+PHjJUmvvvqqzGb7Vfd1ufHGG+vsi4iIUHR0tCTp6NGjSk5ObtIcAAAAAAAAAAAAAAAAQF2CBwbb2vkn8u3G5qdf6A8eEFytL2hgkK199sTZOnOYS80qyimqHDMgqM44AAAAAGhrWmWBxZo1a2S1WiVJ11xzTZ1xEyZMkCTl5ORo27ZtjZrjhhtu0H/+8x9bkUZdunXrZmunpaU1ag4AAAAAAAAAAAAAAACgPn5d/BTQO0CSlLUvy25sZkJm5ZhwP3Xq1alaX+RVkba2vTzZ+7NltVhrjAEAAACAtq5VFlhs2bLF1o6KiqozbujQobWOaYiIiAhdd9118vLysht35swZW9vb27tRcwAAAAAAAAAAAAAAAAAN0X9af0nSmdQzOn3sdK0x+Rn5yj2SK0nqd2s/GQyGav3hI8PlF+4nSUrZnFLnXMc2HasxLwAAAAC0B6bmXkBTHDx4UJLk6+srf3//OuMiIiJs7UOHDl2UtaSkpNjWYq/YAwBagtjJsc02t8VgUZfHuzTb/AAAAAAAAAAAAADQmo341QjteXuPygrKlPD3BF39x6trxOx9f69klUweJsX8OqZGv8Fg0Jhnx2j9g+uVFpem3CO5CuwbWC3GYrZo34f7JEm9buil0CGhF+V4AAAAAKAlanU7WJSWliorq3KLwpCQELuxVftTU1OdvpajR4/qyJEjkqS5c+fKw8PD6XMAAAAAAAAAAAAAAAAA3sHemvDaBEnS7sW7lfFtRrX+rP1Z2vmnnZKk8S+Ot+1U8XPD7x2urmO6SlZp3b3rVF5cXq1/2wvblJecJ48OHpq4eOJFOBIAAAAAaLla3Q4W586ds7XrK2jw9PSsdZyz/O1vf5MkderUSb/97W8bPK7YXKwCc4HttqvRVa4urk5fH1CV1WCVVVZZDVZZZGnu5aAdshqsslgsMpvNzb0UtFNms5nnIJqVxcLf3/aMc4D2qSW8BufvXvPi9Qd4DrRvPP7gHKB9K6ookrvZ3Xabc4CWpyW8XkfD8Fi1HjxWrQuPV+vBY9V6WA3WBsUlrky0tbMTs23tHzf+qPz0fEmSd4i3ekzoUev4yx+4XAXZBdqxaIeWjV+mYfOGKWhAkHKP5CphaYLKC8s16olRinmi5u4V5xlNRt229jatmrRKaXFpWjJ8iaLmRsnN203J65OV/GWyvAK9NG3NNAX0CmjQcbV3Z8+eVV5enu22u7u73N3d7YxoOywGfjc1Bb/fnae9vf/G+45oKp47aCqeO3Xj36TtanUFFsXFxba2m5ub3diq/UVFRU5dx+HDh/WXv/xFkvTee+8pKCiowWOf3vZ0tdvXDbtOv7z8l05dH/BzVllV7FusPOXJIENzLwftkFVWmdMqX1AYja1uAyW0ARaLRWlpaZJ4DqJ5nDp1qkFxRblFOrT6kH7874/K2pulguwCGYwG+YT4qMsVXTRo1iD1ntRbBkP9f89P7Dqhb979RmlxaSo8WSjvIG+FjwpX9IPR6j6ue4PWYzFbFL80XgdWHlDukVyZS83y7+qvPjf20cgFI+UT6tOgPO0d5wDtU0t4DR4XF9cs86ISrz/Ac6B94/FHQ88B0DZxDtDytYTX62gYHqvWg8eqdeHxaj14rFqPc8UNu/Dn2tlra70/7o8X3svrdmW3OgssJGnc8+PUY0IP7fnzHiWtSVLRX4vkFeilHtf2UPRD0YocH1nvOrwCvXR33N2KXxqvxBWJins5ThWlFfLv6q+Yp2I08tGR8g3zbdAxQYqKiqp2+6677tKcOXOaZS2XWl5YXv1BqIHf787T3j4L4X1HNBXPHTQVz526VS2wRdvS6gosqu5KUVZWZje2ar+Xl5fT1lBUVKQZM2aotLRUTz31lKZNm9ao8a+Oe1UdPTrabrsaXeWayZWrcHFZDVblKU+dsjrJYOXEDJee1WBV566dFRMTI5Op1f35QRtwvmKY5yCay/mTTXs2PLFB3/6/b2UuMcsryEuDZg5SQK8AWa1WpW5NVdKaJB365yFFXhWpaaunybOTZ525ti/aru0Lt8vkYdLQeUMVPDBYuYcrr16VtDpJMU/GaMKfJthdT1FukVZNWqWMPRkK7Buo0U+PlpuPm5K/TNbOV3Zq7/t7NX3NdHUb263R/x7tDecA7VNLeA0+ZsyYZpkXlXj9AZ4D7RuPPxpyDoC2i3OAlq8lvF5Hw/BYtR48Vq0Lj1frwWPVihTXHyJJz1ufd8p0ETERioiJcCiH0WRU9PxoRc+Pdsqa2rN9+/YpIuLC49GedrDIeDOjuZfQKvH73Xna22chvO+IpuK5g6biuVO39PT05l4CLpJW90z39b1QHV9SUmI3tupuF1XHOcJsNmvGjBnav3+/Zs+erVdeeaXROTxNnvIx/exKvw3bKRJoMossMsggg9Ugo5UqQlx6FllkNBplMpl4oYVmw3MQzakhVfyJKxNlLjGr25XddPvnt8vD38PWd8VDV+j7L77Xxzd9rJQtKYqdHKu5/5srg7HmG67fvfedtj2/TSYPk+7ccqfCR4Tb+gbPHqwPfvGBdr22S97B3nVuEW4xW/TJ1E+UsSdDETERmr1ptlw9K78MFP1gtDY/u1lxL8fp4xs/1rxv5rFFeD04B2ifWsJrcP7mNT9ef4DnQPvG49++cSWv9s3LxYtzgBauJbxeR8PwWLUePFatC49X68Fj1XrwBen2zd/fX506dWruZTQLfjc1Db/fnac9vvfG+45oKp47aCqeO7Xj36PtanWvztzd3RUaGipJys7Othtbtb979+4Oz22xWDRnzhz9+9//1h133KEPPvhABgMnyAAAAHAeo8moqcunViuuOK/3pN4aNm+YJOnErhM69M9DNWIKcwq18cmNkqQRC0ZUK66QpLChYbaiiq2/26r89Pxa1xG/NF5pcWmSQZq8dLKtuOK8cQvHqVPPTio5U6INj29o9HECAAAAAAAAAAAAAAAAQEvT6gosJGngwIGSpHPnzuns2bN1xlXdemXAgAEOzWmxWDR37lx99NFHuv3227V8+XK5uLg4lBMAAAD4udCoUPl39a+zv98t/Wzt79d9X6N/z9t7VFZQJkm2YoyfGzZvmGSQzCVm7XpjV41+q9WquJfjJEldR3dVUP+gGjEuri4aMmdI5Tq++F5Z+7PsHBUAAAAAAAAAAAAAAAAAtHytcm+Sq666Sps2bZIk7du3T1deeWWtcQkJCdXGNJXVatW9996r5cuXa9q0aVq5ciXFFQAAAHC6W2JvkVeAl92YDt062Npn02oWGyetSaqM695BnXrWvhW1X7ifAvsGKvdwrg6vOayJb06stjNb+u505Z+o3Nki8prIOtfSY0IPbf3t1sp5VycpdEio3bUDuPRiJ8c29xI0Y92M5l4CAAAAAAAAAAAAAABAg7TKHSxuvfVW2xfANm/eXGfc+SKMwMBAjRs3rklzWa1W3X///frHP/6hW265RatWrapRXJGZmanLL79cS5YsadIcAAAAgCRFjo9UyOAQuzElZ0psbVdv12p9+Rn5OnX0lKTKnTDsCRsaVjkmPV95yXnV+lK2pNja9vKEDAmRwWioMQYAAAAAAAAAAAAAAAAAWqNWWWDRq1cvTZs2TZK0YsUKlZWV1Yg5duyYtmzZIkl6+umnZTJV36zj4MGD6t27t8LDw7Vjx44653rooYe0dOlS3XTTTYqNja2RR5JKS0sVHx+vn376yZHDAgAAAOp1OuW0rd1tbLdqfScPnrS1/SL87Oap2n/y0MlqfTkHc2xt/wj/OnOY3E3yCqrccSPnUE6dcQAAAAAAAAAAAAAAAADQGtSsFmglXnvtNW3dulWpqal69tln9frrr9v6SktLdd9996miokLDhw/Xww8/XGP8H/7wByUnJ0uSnnnmGe3atatGzCOPPKK//vWv6tmzpx588EHt3Lmz1rVkZWU56agAAAAA+46sPSJJMnmYFDUnqlrfmdQztrZ3iLfdPFX7q45rbB6fEB8VZheqNL9UxaeL5dnR0248AAAAAAAAAAAAAAAAALRUrbbAomvXrlq3bp2mTp2qN954QwcPHtSUKVNUXFysZcuW6cCBA4qKitK///1veXh41BhvsVhsbavVWqP/rbfe0rvvvitJ+uGHH3TttddevIMBAABAm2MuNauitMJ2u7yg3OGchScLdfTzo5KkUU+Mkm9n32r9Zecu7Oxm8rD/Ut/V07XWcZJUeq60wXlMnhf6y86VUWABAAAAAAAAAAAAAAAAoNVqtQUWkjRixAglJibqrbfe0tq1a/XUU0/J1dVVvXv31ltvvaX58+fLzc2t1rHPPfecEhISVFxcrFdffbVGf2pq6kVePQAAANqyuJfjtH3hdtvts8azDufc+ORGmUvMChsWprG/HVujv7z4QhGHi5uL3VxV+8uLqhd/mIvNTskDAAAAAAAAAAAAAAAAAK1Jqy6wkKTAwEC99NJLeumllxo1bvDgwUpOTq6z/6233tJbb73l4OoAAADQXo35zRiNenyU7XZaWpoWD1rc5HyJKxO1f/l+eQd7a/qn02Vyr/lSvuquFBVlFTX6q6ra7+rlWq2v6q4UjuQBAAAAAAAAAAAAAAAAgNak1RdYAAAAAC2Ryd1UrQjC1afpxQfHdxzXunvXyd3PXXesv0MduneoNc7N98LubeYSc60x51Xd7aLqOEly93VvcJ6qu138PA8AAAAAAAAAAAAAAAAAtCbG5l4AAAAAgLplfJOh2MmxcnFz0az/zlLn4Z3rjK1aeFGYXWg3b9X+nxdsNCZPQXaBJMndz12eHT3txgIAAAAAAAAAAAAAAABAS0aBBQAAANBC/RT/k1ZOXCmr1apZ/52l8JHhduODBwbb2vkn8u3G5qdf6A8eEFytL2hgkK199sTZOnOYS80qyimqHDMgqM44AAAAAAAAAAAAAAAAAGgNKLAAAAAAWqDMvZlaMWGFLGaLZn1Vf3GFJPl18VNA7wBJUta+LPv5EzIrx4T7qVOvTtX6Iq+KtLXt5cneny2rxVpjDAAAAAAAAAAAAAAAAAC0RhRYAAAAAC1MdmK2VkxYoYqyCs38z0xFxETUiNm2cJuWXL6kxv39p/WXJJ1JPaPTx07Xmj8/I1+5R3IlSf1u7SeDwVCtP3xkuPzC/SRJKZtT6lznsU3HaswLAAAAAAAAAAAAAAAAAK0VBRYAAABAC3Ly4Ektv3q5zMVmzVw/U13HdK017kzKGWXGZ9a4f8SvRsjNx02SlPD3hFrH7n1/r2SVTB4mxfw6pka/wWDQmGfHSJLS4tJsxRhVWcwW7ftwnySp1w29FDoktEHHBwAAAAAAAAAAAAAAAAAtFQUWAAAAQAuRk5Sj5VcvV1FukUY9MUpWi1Wp21Jr/SnIKqg1h3ewtya8NkGStHvxbmV8m1GtP2t/lnb+aackafyL4207Vfzc8HuHVxZ3WKV1965TeXF5tf5tL2xTXnKePDp4aOLiiY4eOgAAAAAAAAAAAAAAAAA0O1NzLwAAAACAZC4xa/nVy1V4slCStGPRDu1YtKNJuS5/4HIVZBdox6IdWjZ+mYbNG6agAUHKPZKrhKUJKi8s16gnRinmiZq7V5xnNBl129rbtGrSKqXFpWnJ8CWKmhslN283Ja9PVvKXyfIK9NK0NdMU0CugSesEAAAAAAAAAAAAAAAAgJaEAgsAAACgBTCXmOvclaIpxj0/Tj0m9NCeP+9R0pokFf21SF6BXupxbQ9FPxStyPGR9ebwCvTS3XF3K35pvBJXJCru5ThVlFbIv6u/Yp6K0chHR8o3zNdpawYAAAAAAAAAAAAAAACA5kSBBQAAANACeHTw0PPW552aMyImQhExEQ7lMJqMip4frej50U5aFQAAAAAAAAAAAAAAAAC0TBRYAAAAAAAAAAAAAAAAAAAAAADgZEW5RTq0+pB+/O+PytqbpYLsAhmMBvmE+KjLFV00aNYg9Z7UWwaDodbxZ1LP6O3Itxs0V/RD0frlu7+0G2MxWxS/NF4HVh5Q7pFcmUvN8u/qrz439tHIBSPlE+rT6GNsayiwAAAAAAAAAAAAAAAAAAAAAADAiTY8sUHf/r9vZS4xyyvIS4NmDlJArwBZrValbk1V0pokHfrnIUVeFalpq6fJs5PnRV1PUW6RVk1apYw9GQrsG6jRT4+Wm4+bkr9M1s5Xdmrv+3s1fc10dRvb7aKuo6WjwAIAAAAAAAAAAAAAAAAAAAAAACdKXJkoc4lZ3a7spts/v10e/h62viseukLff/G9Pr7pY6VsSVHs5FjN/d9cGYy172Rx1R+vUr+p/ezO59HRo84+i9miT6Z+oow9GYqIidDsTbPl6ukqSYp+MFqbn92suJfj9PGNH2veN/MU0CugCUfcNlBgAQAAAAAAAAAAAAAAAAAAWp3YybHNOv+MdTOadX4AQMtnNBk1dfnUasUV5/We1FvD5g1T/N/idWLXCR365yENvH1grXl8w3wV2DewyeuIXxqvtLg0ySBNXjrZVlxx3riF45S0Okl5P+Rpw+Mb2vXfOGNzLwAAAAAAAAAAAAAAAAAAAAAAgLYmNCpU/l396+zvd8uFXSm+X/f9RVmD1WpV3MtxkqSuo7sqqH9QjRgXVxcNmTOkch1ffK+s/VkXZS2tAQUWAAAAAAAAAAAAAAAAAAAAAAA40S2xt2jK+1PsxnTo1sHWPpt29qKsI313uvJP5EuSIq+JrDOux4QetnbS6qSLspbWwNTcCwAAAAAAAAAAoL0qyi3SodWH9ON/f1TW3iwVZBfIYDTIJ8RHXa7ookGzBqn3pN4yGAy1jj+TekZvR77doLmiH4rWL9/9pd0Yi9mi+KXxOrDygHKP5MpcapZ/V3/1ubGPRi4YKZ9Qn0YfIwAAAAAAAAAA7VHk+LqLGc4rOVNia7t6uzYor8VskbnULDdvtwbFp2xJsbVDo0LrjAsZEiKD0SCrxVptTHtDgQUAAAAAAAAAAM1gwxMb9O3/+1bmErO8grw0aOYgBfQKkNVqVerWVCWtSdKhfx5S5FWRmrZ6mjw7eV7U9RTlFmnVpFXK2JOhwL6BGv30aLn5uCn5y2TtfGWn9r6/V9PXTFe3sd0u6joAAAAAAAAAAGgvTqectrXtvf9+8tBJfXrHp0qLS9O5n87JWmGVq5erwkeGa9CsQRoye4iMJmOtY3MO5tja/hH+dc5hcjfJK8hLhdmFyjmUU2dcW0eBBQDgkjkQe0AZb2bIaK39j/jFNmPdjGaZFwAAAAAAoDaJKxNlLjGr25XddPvnt8vD38PWd8VDV+j7L77Xxzd9rJQtKYqdHKu5/5srg7H2nSyu+uNV6je1n935PDp61NlnMVv0ydRPlLEnQxExEZq9abZcPSuvlBX9YLQ2P7tZcS/H6eMbP9a8b+YpoFdAE44YAAAAAAAAAABUdWTtEUmSycOkqDlRdcZ9/frXCugdoCsevkKB/QJVUVqh4zuOK2FpglK2pChhSYKm/2u6fMN8a4w9k3rG1vYO8ba7Hp8QHxVmF6o0v1TFp4vl2fHiXvypJaLAAgAAAAAAAACAZmI0GTV1+dRqxRXn9Z7UW8PmDVP83+J1YtcJHfrnIQ28fWCteXzDfBXYN7DJ64hfGq+0uDTJIE1eOtlWXHHeuIXjlLQ6SXk/5GnD4xu4kAUAAAAAAAAAoF0xl5pVUVphu112rszhnIUnC3X086OSpFFPjJJv55rFEef1u6Wfbv7oZpncL3z9v/+t/RU1N0rLxi1T+u50xU6O1d07764WI0ml50ptbZOH/fIBk+eF/rJzZe2ywKJ5LiEOAAAAAAAAAAAUGhUq/651b8fd75YLu1J8v+77i7IGq9WquJfjJEldR3dVUP+gGjEuri4aMmdI5Tq++F5Z+7MuyloAAAAAAAAAAGiJ4l6O0yv+r9h+3u3/rsM5Nz65UeYSs8KGhWnsb8fWGuMX7qcFKQt0S+wtNQonJClsaJjG/r5ybGZ8pr5777saMeZis63t4uZid01V+8uLyht0HG0NBRYAAAAAAAAAADSDW2Jv0ZT3p9iN6dCtg619Nu3sRVlH+u505Z/IlyRFXhNZZ1yPCT1s7aTVSRdlLQAAAAAAAAAAtERjfjNGz5x9xvbzcNLDDuVLXJmo/cv3yzvYW9M/nV5r8YRUuRN2h+4d5OJad2HE0LlDJUNle98/9tXor7orRUVZRY3+qqr2u3q52olsu+zv8QEAAAAAAAAAAC6KyPF1FzOcV3KmxNZ29W7YBxkWs0XmUrPcvN0aFJ+yJcXWDo0KrTMuZEiIDEaDrBZrtTEAAAAAAAAAALR1JndTtSIIt/yGvQdfm+M7jmvdvevk7ueuO9bfoQ7dOzi0Ns9Onup4WUed/vG0sg9kq6ygTG4+F9bn7utua5tLzLWluNBfZbcLN9+mH2NrRoEFAAAAAAAAAAAt1OmU07Z2t7Hd6ow7eeikPr3jU6XFpencT+dkrbDK1ctV4SPDNWjWIA2ZPURGU+2bWucczLG1/SP865zD5G6SV5CXCrMLlXMop844AAAAAAAAAABQu4xvMhQ7OVYubi6a9d9Z6jy8s1Pyegd76/SPpyWrVJBdoE4+nWx9Hbp3UPrudElSYXah/Lr41ZmnILtAkuTu5y7Pjp5OWVtrQ4EFAAAAAAAAAAAt1JG1RyRJJg+TouZE1Rn39etfK6B3gK54+AoF9gtURWmFju84roSlCUrZkqKEJQma/q/p8g3zrTH2TOoZW9s7xNvuenxCfFSYXajS/FIVny5utx+uAAAAAAAAAADQWD/F/6SVE1fKarVq9obZCh8Z7rTcVovV1ja6VL/gUtDAIFv77ImzChsWVmsOc6lZRTlFlWMGBNUa0x5QYAEAAAAAAC6a2MmxzTr/jHUzmnV+AED7YS41q6K0wna7vKDc4ZyFJwt19POjkqRRT4ySb+eaxRHn9buln27+6OZq25P3v7W/ouZGadm4ZUrfna7YybG6e+fd1WIkqfRcqa1t8rD/sYHJ80J/2bkyCiwAAAAAAAAAAGiAzL2ZWjFhhSxmi2b9d1aDiyt2vLRDwYOC1ffGvnbjCrIqd54wGA3yDq5+MaXIqyK1VVslSVn7surMlb0/21aoEXlVZIPW1xbVvh84AAAAAAAAAABosLiX4/SK/yu2n78O+avDOTc+uVHmErPChoVp7G/H1hrjF+6nBSkLdEvsLTUKJyQpbGiYxv6+cmxmfKa+e++7GjHmYrOt7eLmYndNVfvLixwvIgEAAAAAAAAAoK3LTszWigkrVFFWoZn/mamImIgaMdsWbtOSy5fUuH/r77bqu7/WfG+/qnOZ53T2+FlJUtiwMLl6uVbrDx8ZLr9wP0lSyuaUOvMc23TM1u4/rb/dOdsyCiwAAAAAAAAAAHDQmN+M0TNnn7H9zN8/36F8iSsTtX/5fnkHe2v6p9NrLZ6QJKPJqA7dO8jFte7CiKFzh0qGyva+f+yr0V91V4qKsooa/VVV7f/5BzQAAAAAAAAAAKC6kwdPavnVy2UuNmvm+pnqOqZrrXFnUs4oMz6z1r4Tu06oNL+01j5J1S6uNOy+YTX6DQaDxjw7RpKUFpem3CO5NWIsZov2fbhPktTrhl4KHRJa53xtnf29vgEAaENiJ8c29xI0Y92M5l4CAAAAAAC4CEzupmpFEK4+TS8+OL7juNbdu07ufu66Y/0d6tC9g0Nr8+zkqY6XddTpH08r+0C2ygrK5ObjZut393W3tc0l5tpSXOivstuFm6+bnUgAAAAAAAAAANq3nKQcLb96uYpyizT292NltViVui211tiCrII685SdK9O6+9Zp6vKpNXai/nHDj9r56k5JUrex3SovulSL4fcO18FVB5UWl6Z1967TrA2z5Op54bOMbS9sU15ynjw6eGji4omNPNK2hQILAAAAAAAAAABaiIxvMhQ7OVYubi6a9d9Z6jy8s1Pyegd76/SPpyWrVJBdoE4+nWx9Hbp3UPrudElSYXah/Lr41ZmnILvyAx53P3d5dvR0ytoAAAAAAAAAAGhrzCVmLb96uQpPFkqSdizaoR2LdjQ6T8iQEGXvz9ahTw4pMz5TA24foI6XdVR5YblSt6Xq8L8OS1ap5/U9dfNHN8toMtaax2gy6ra1t2nVpFVKi0vTkuFLFDU3Sm7ebkpen6zkL5PlFeilaWumKaBXgEPH3tpRYAEAAAAAAAAAQAvwU/xPWjlxpaxWq2ZvmK3wkeFOy221WG1to0v1D1eCBgbZ2mdPnFXYsLBac5hLzSrKKaocMyCo1hgAAAAAAAAAAFBZYGFvV4qGemDfA0rfk64jnx3RiZ0nlLAkQcWni+Xi6iKfUB8NumOQBs8erJ4Te9abyyvQS3fH3a34pfFKXJGouJfjVFFaIf+u/op5KkYjHx0p3zBfh9fc2lFgAQAAAAAAAABAM8vcm6kVE1bIYrZo1n9nNbi4YsdLOxQ8KFh9b+xrN+78hzgGo0Hewd7V+iKvitRWbZUkZe3LqjNX9v5sW6FG5FWRDVofAAAAAAAAAADtkUcHDz1vfd4pucJHhCt8hHMuymQ0GRU9P1rR86Odkq8tqn0PEAAAAAAAAAAAcElkJ2ZrxYQVqiir0Mz/zFRETESNmG0Lt2nJ5Utq3L/1d1v13V+/s5v/XOY5nT1+VpIUNixMrl6u1frDR4bLL9xPkpSyOaXOPMc2HbO1+0/rb3dOAAAAAAAAAACA1ogCCwAAAAAAAAAAmsnJgye1/OrlMhebNXP9THUd07XWuDMpZ5QZn1lr34ldJ1SaX1rnHN+9d6EAY9h9w2r0GwwGjXl2jCQpLS5NuUdya8RYzBbt+3CfJKnXDb0UOiS0zvkAAAAAAAAAAABaKwosAAAAAAAAAABoBjlJOVp+9XIV5RZp1BOjZLVYlbottdafgqyCOvOUnSvTuvvWqaKsokbfjxt+1M5Xd0qSuo3tpqFzh9aaY/i9wyuLO6zSunvXqby4vFr/the2KS85Tx4dPDRx8UQHjhoAAAAAAAAAAKDlMjX3AgAAAAAAAAAAaG/MJWYtv3q5Ck8WSpJ2LNqhHYt2NDpPyJAQZe/P1qFPDikzPlMDbh+gjpd1VHlhuVK3perwvw5LVqnn9T1180c3y2iq/bpLRpNRt629TasmrVJaXJqWDF+iqLlRcvN2U/L6ZCV/mSyvQC9NWzNNAb0CHDp2AAAAAAAAAACAlooCCwAAAAAAAAAALjFzidnurhQN9cC+B5S+J11HPjuiEztPKGFJgopPF8vF1UU+oT4adMcgDZ49WD0n9qw3l1egl+6Ou1vxS+OVuCJRcS/HqaK0Qv5d/RXzVIxGPjpSvmG+Dq8ZAAAAAAAAAACgpaLAAgAAAAAAAACAS8yjg4eetz7vlFzhI8IVPiLcKbmMJqOi50cren60U/IBAAAAAAAAAAC0JhRYAAAAAACANit2cmyzzW0xWNTl8S7NNj8AAAAAAAAAAAAAAGgcY3MvAAAAAAAAAAAAAAAAAAAAAAAAoLlRYAEAAAAAAAAAAAAAAAAAAAAAANo9U3MvAAAAAAAAAAAAAAAAAADQeLGTY5t7CQAAAECbwg4WAAAAAAAAAAAAAAAAAAAAAACg3aPAAgAAAAAAAAAAAAAAAAAAAAAAtHsUWAAAAAAAAAAAAAAAAAAAAAAAgHaPAgsAAAAAAAAAAAAAAAAAAAAAANDuUWABAAAAAAAAAAAAAAAAAAAAAADaPQosAAAAAAAAAAAAAAAAAAAAAABAu0eBBQAAAAAAAAAAAAAAAAAAAAAAaPcosAAAAAAAAAAAAAAAAAAAAAAAAO2eqbkXAAAALp3YybHNOv+MdTOadX4AAAAAAAAAAAAAAAAAAIC6sIMFAAAAAAAAAAAAAAAAAAAAAABo99jBAgAAAAAA4CI5EHtAGW9myGhtnmtcsIMYAAAAAAAAAAAAAAANR4EFAACXUOzk2OZeAgAAAAAAAAAAAAAAAAAAAGrRPJdPBAAAAAAAAAAAAAAAAAAAAAAAaEEosAAAAAAAAAAAAAAAAAAAAAAAAO0eBRYAAAAAAAAAAAAAAAAAAAAAAKDdo8ACAAAAAAAAAAAAAAAAAAAAAAC0exRYAAAAAAAAAAAAAAAAAAAAAACAdo8CCwAAAAAAAAAAAAAAAAAAAAAA0O6ZmnsBAAAAAAAAuDhiJ8c26/wz1s1o1vkBAAAAAAAAAAAAAGgMCiwAAAAAAAAAAAAAAAAAAAAa6VJf6MhisCgvLE8Zb2bIaDVyoSMAAC4CCiwAAMAl05xXULYYLOryeJdmmx8AAAAAAAAAAAAAAMCZ2MkaAADnMzb3AgAAAAAAAAAAAAAAAAAAAAAAAJobO1gAAAAAAAAAAAAAAAAAAACg1WEXDwCAs7GDBQAAAAAAAAAAAAAAAAAAAAAAaPfYwQIAAAAAAAAXBVeNAgAAAAAAAACg7WruzwEAALgY2MECAAAAAAAAAAAAAAAAAAAAAAC0exRYAAAAAAAAAAAAAAAAAAAAAACAds/U3AsAAABoL5p7a8wZ62Y06/wAAAAAAAAAAAAAAAAAALRkFFgAAIB240DsAWW8mSGjlU28AAAA2oPmLnC1GCzq8niXZl0DAAAAAAAAAAAAAKDh+HYhAAAAAAAAAAAAAAAAAAAAAABo9yiwAAAAAAAAAAAAAAAAAAAAAAAA7Z6puRcAAAAAAAAAtFUHYg8o480MGa3Nc52TGetmNMu8AAAAAAAAAAAAANAasYMFAAAAAAAAAAAAAAAAAAAAAABo9yiwAAAAAAAAAAAAAAAAAAAAAAAA7Z6puRcAAACA9iF2cmxzL0Ez1s1o7iUAAABcUs39GozXXwAAAAAAAAAA4GLhc5CL/29gMViUF5anjDczZLTWvK5/S/g3AJyNAgsAAIB2orlPKgEAAAAAAAAAAAAAAOA8Df0uSH1fkm8qvlyP5v4+Es9BXAzO+y0JAAAAAAAAAAAAAAAAAAAAAADQSlFgAQAAAAAAAAAAAAAAAAAAAAAA2j1Tcy8AAAAAAAAAQNvU3NtCNyeLwaIuj3dp7mUAAAAAAAAAAAAAaAQKLAAAANBuNOcX/HJLcpttbgAAAAAAAAAAAAAAADhXe77QFNCWUWABAAAAAAAAAAAAAAAAAAAANFJ7/4J9ez9+AG1Tqy+wyM3N1dtvv621a9cqNTVVbm5u6tOnj2bMmKEHHnhAbm5uTpln/fr1eu+99xQfH69Tp04pLCxM48aN0yOPPKJhw4Y5ZQ4AAADgvKLcIu1+e7eOrD2iM6ln5OLmosA+gRo4Y6Auf+Byubi5NPcSAQAAADgR5wAAAABA+8I5AAAAANC+cA7QerTqAotvvvlGN910kzIzMzVhwgTNnz9fxcXFWrZsmRYsWKAPP/xQX3zxhTp37tzkOSwWix544AEtXbpUnTp10n333afIyEh99913WrZsmVauXKk33nhDv/rVr5x4ZAAAAGjPMr7J0Mc3fayCzAJdNuEyXT7/cpmLzdq/bL++WvCV9n24T3d8cYd8O/s291IBAABgx4HYA8p4M0NGq7FZ5p+xbkazzFtVc1+9rCX8GzQE5wAAAABA+8I5AAAAANC+cA7QurTaAou0tDRNmjRJOTk5evTRR7V48WJb3yOPPKLrr79eW7du1ZQpU7Rz5065u7s3aZ5nn31WS5cuVWBgoL7++mv17NlTknTffffp5ptv1g033KBHH31UYWFhmjZtmlOODQAAAO3X2bSzWjVplYpyijTi0RG6bvF1tr4rHrlCH13/kVK3pir2/7N35/FRlXf//98zmSRkIyQsSWRLCAKyhcVIQFSgIG5oseKCCoiCqG1p/Wq1vW2V1hZb77rVVm6DCj8UVBSqFOgtyBp2EvY1QCCEhkAIScieyczvD26GxCSTzBImk3k9H488uDLXejgnM+c6cz7nuneRpm6aKlOg157SAwAAoIl5OrgBjcMcAAAAAPAtzAEAAAAA38IcwPt45tFpbvDiiy/q/Pnz6tKli954440aeYGBgUpOTpafn59SU1P1/vvvO9XHgQMH9Oabb0qS/vCHP9iCK66444479Pjjj8tqtepnP/uZiouLndsYAAAA4P+senGVSs6XKLxLuEa/MbpGninQpHHJ42TwMyg7NVvb39/uoVECAAAAcBfmAAAAAIBvYQ4AAAAA+BbmAN7HK0Nc0tPTtXjxYknSpEmT6lydIj4+XiNHjtTq1av15z//WTNnzpTJ5Njmzp49WxaLRUFBQXr00UfrLDNt2jTNnz9fOTk5mjt3rmbOnOn4BgEAAACSLqRf0IHFByRJ/Sf1rzMiPTI+UnEj43Ri9Qlt+vMmJc1MktHktXHTAAAAQJPy5CoeuWW5DZZhDgAAAAD4FuYAAAAAgG9hDuCdvPJ//6uvvpLVapUkjR49ut5yY8aMkSSdP39e69atc6iP8vJyLVu2TJI0ZMgQhYWF1Vlu6NChCg0NlSRb0Ed9KioqJEmVlkqHxgK4Q2VVpVbsXKHKKo4/eAbHIDyNYxCeduUc8Mo5YV0OfnVQunyaq26ju9VbrtuYy3kl50t0ct1Jt40R7sccwLfx2QOOAXAM+Db2P5gDAM0b79Peg33lPdhX3oX95T3YVy0Lc4CW58qcz97cD6gL7+9wFscOnMWxA2dx7LiGOYB38soAizVr1tjSAwYMqLfcwIED66zTGDt37lRhYWGDfRiNRvXv31+StGXLFpWWltZbtry8XJJktpgdGgvgDpWWSv077d/c3AeP4RiEp3EMwtOunANeOSesy8k1J23p6AHR9ZaLHng1L2NNhuuDQ5NhDuDb+OwBxwA4Bnwb+x/MAYDmjfdp78G+8h7sK+/C/vIe7KuWhTlAy3Nlzmdv7gfUhfd3OItjB87i2IGzOHZcwxzAO3llgMX+/fslSWFhYQoPD6+3XOfOnW3pAwcOONXHD9ux14/FYtHhw4cd6gcAAAC44tz+c5KkgLAAtQpvVW+58M5Xz4HPHzjf5OMCAAAA0DSYAwAAAAC+hTkAAAAA4FuYA3gnk6cH4Kjy8nKdPXtWkhQVFWW3bPX8kydPOtRP9fKO9lN95QwAAACgMczlZhWdLZIkhUaF2i0bEhViS+efzG/KYQEAAABoIswBAAAAAN/CHKBlW/nzldofur/hggAAAPAZzAG8l9cFWFy6dMmWbtWq/kgeSQoKCqqznqf6sVgskqSzxWdrvG4ymuRv9HdofICjSqtKZTQadbH8osrMZZ4eDnwQxyA8jWMQ15qlyiJZr/5+sfji5df/75zwhyouVdjSplb2T9P9g66eO5ZfYsnp5ow5gG/jswccA+AY8G3sf9/DHADS1f39n+L/qKSqxPY6c4Dmh/dp78G+8h7sK+/C/vIe7Kvm64dzgPyy/MuvMwfwKXwPAGfx/g5ncezAWRw7cFZzP3YcfQC/KyyVFlWVV9l+P5tz+RyQOUDL43UBFqWlpbZ0QECA3bLV80tKSuyUvDb9XLx4+Qu1t3e87dBYAHd6ae1Lnh4CfBzHIDyNYxCeduWc8IcqSyttab8AP7ttVM+vLKm0UxKexhwAEp894BgAx4CvY/+DOYBvycnJkSTN3jrbwyNBY/E+7T3YV96DfeVd2F/eg33lPXJyctSlS5darzMHaJn4HgCu4v0dzuLYgbM4duCs5nrs/Dzu554eAnOAFsjrAiyqrxZRUVFhp2TN/ODgYI/3k5SUpI0bNyoiIkJGo9H2emBgYINBHAAAAPAu5gqzLOVXI9QtFovO559X4pDEOstXj0Svqqiqs0xd+f7BPP2oOWMOAAAA4DuYA0CSBg4cyBwAAADAR9Q3Bxg4cGCd5ZkDtEx8DwAAAOA7mAP4Dq8LsAgLC7Oly8rsLzVTfRWK6vU81Y/JZNLw4cMdGgcAAABaju7qXm9eQNjVi+zmMrPddqpHuAeGBbo+MDQZ5gAAAAC+jTmA72EOAAAA4NuYA/ge5gAAAAC+jTlAy2RsuEjzEhgYqOjoaElXl9quT/X82NhYh/qpXr4p+wEAAAAkyRRoUmh0qCSpKKfIbtninGJbuk1sm6YcFgAAAIAmwhwAAAAA8C3MAQAAAADfwhzAe3ldgIUk9e3bV5J06dIlFRQU1FsuKyvLlu7Tp49TfUjS6dOn7Za90o/RaFSvXr0c6gcAAAC4okPfDpKkiksVKiuofxW1wqxCW7p9n/ZNPi4AAAAATYM5AAAAAOBbmAMAAAAAvoU5gHfyygCLUaNG2dK7d++ut1xaWlqddRrjxhtvVFhYWIN9WCwW7dmzR5I0dOhQBQUFOdQPAAAAcEXsqFhb+uzus/WWy07LtqXjRsU15ZAAAAAANCHmAAAAAIBvYQ4AAAAA+BbmAN7JKwMsHnjgARkMBknS999/X2+51atXS5LatWunESNGONRHYGCg7r33XknStm3bVFRU99IsW7duteVNmDDBoT4AAACA6no/0Fu6fJqrjO8z6i13YvUJSVJwu2DFjoi9BiMDAAAA0BSYAwAAAAC+hTkAAAAA4FuYA3gnrwywuP76623BDAsWLFBFRUWtMidOnNCaNWskSS+99JJMJlON/P3796tHjx7q1KmTNmzYUGc/L7/8soxGo0pLS7Vw4cI6y8ydO1eSFBUVpaeeesrpbQIAAADaXt9WfSb0kSTtXbBXVRVVtcpcPHFRGWsuT7hufulmGU1eeUoPAAAAQMwBAAAAAF/DHAAAAADwLcwBvJPX7oE333xT7du318mTJ/Wb3/ymRl55ebmmT5+uqqoqDR48WD/96U9r1f/jH/+o9PR0nTlzRi+//HKdffTt21cvvviiJOmVV17RiRMnauR/9913mj9/viTpb3/7m0JCQtyxaQAAAPBhY94co+D2wco/ma/vf1NztTZzuVnLpi+TtcqqmMExuumnN3lolAAAAADchTkAAAAA4FuYAwAAAAC+hTmA9zFYrVarpwfhrG3btmn8+PHKzs7W2LFjde+996q0tFTz58/Xvn37NGDAAC1fvlzXXXddrboPPfSQvvzyS0lSUlKStmzZUmcfFotFTz/9tObOnau2bdvq6aefVmxsrFJTU/XJJ5/IYrHov//7vzVz5swm3VYAAAD4jqxtWfpi/Bcqyi5S/Nh49by3pypLK7Vn/h6d23dO0QOiNXH5RIVdF+bpoQIAAABwA+YAAAAAgG9hDgAAAAD4FuYA3sWrAywkKTc3V++8846WLl2qU6dOyd/fXz169NDEiRP1zDPPKCAgoM56e/fu1U9+8hOVlpZq4cKFuvXWW+32s2LFCn3wwQfauXOnLl68qOjoaN12222aOXOmBg0a1BSbBgAAAB9Wkluire9s1eGlh5V/Kl9+/n5q26Ot+k7sq8RnEuUX4OfpIQIAAABwI+YAAAAAgG9hDgAAAAD4FuYA3sPrAywAAAAAAAAAAAAAAAAAAAAAAABcZfT0AAAAAAAAAAAAAAAAAAAAAAAAADyNAAsAAAAAAAAAAAAAAAAAAAAAAODzCLAAAAAAAAAAAAAAAAAAAAAAAAA+jwALAAAAAAAAAAAAAAAAAAAAAADg8wiwAAAAAAAAAAAAAAAAAAAAAAAAPo8ACwAAAAAAAAAAAAAAAAAAAAAA4PMIsAAAAAAAAAAAAAAAAAAAAAAAAD6PAAsAAAAAAAAAAAAAAAAAAAAAAODzCLAAAAAAAAAAAAAAAAAAAAAAAAA+jwALAAAAAAAAAAAAAAAAAAAAAADg8wiwAAAAAAAAAAAAAAAAAAAAAAAAPo8ACwAAAAAAAAAAAAAAAAAAAAAA4PMIsAAAAAAAAAAAAAAAAAAAAAAAAD6PAAsAAAAAAAAAAAAAAAAAAAAAAODzCLAAAAAAAAAAAAAAAAAAAAAAAAA+jwALAAAAAAAAAAAAAAAAAAAAAADg8wiwAAAAAAAAAAAAAAAAAAAAAAAAPo8ACwAAAAAAAAAAAAAAAAAAAAAA4PMIsAAAAAAAAAAAAAAAAAAAAAAAAD6PAAsAAAAAAAAAAAAAAAAAAAAAAODzCLAAAAAAAAAAAAAAAAAAAAAAAAA+jwALAAAAAAAAAAAAAAAAAAAAAADg8wiwAAAAAAAAAAAAAAAAAAAAAAAAPo8ACwAAAAAAAAAAAAAAAAAAAAAA4PMIsAAAAAAAAAAAAAAAAAAAAAAAAD6PAAsAAAAAAAAAAAAAAAAAAAAAAODzCLAAAAAAAAAAAAAAAAAAAAAAAAA+jwALAAAAAAAAAAAAAAAAAAAAAADg8wiwAAAAAAAAAAAAAAAAAAAAAAAAPo8ACwAAAAAAAAAAAAAAAAAAAAAA4PMIsAAAAAAAAAAAAAAAAAAAAAAAAD6PAAsAAAAAAAAAAAAAAAAAAAAAAODzCLAAAAAAAAAAAAAAAAAAAAAAAAA+jwALAAAAAAAAAAAAAAAAAAAAAADg8wiwAAAAAAAAAAAAAAAAAAAAAAAAPo8ACwAAAAAAAAAAAAAAAAAAAAAA4PMIsAAAAAAAAAAAAAAAAAAAAAAAAD6PAAsAAAAAAAAAAAAAAAAAAAAAAODzCLAAAAAAAAAAAAAAAAAAAAAAAAA+jwALAAAAAAAAAAAAAAAAAAAAAADg8wiwAAAAAAAAAAAAAAAAAAAAAAAAPs/k6QH4ErPZrF27dikqKkpGI7EtAAAAvsRisSgnJ0cDBw6UycRpuK9gDgAAAOC7mAP4JuYAAAAAvos5gG9iDgAAAOC7mAO0XOzNa2jXrl266aabPD0MAAAAeND27duVmJjo6WHgGmEOAAAAAOYAvoU5AAAAAJgD+BbmAAAAAGAO0PIQYHENRUVFSZK2bNmiTp06eXg08DVms1lpaWkaNGgQkXLwCI5BeBrHIDwtKytLQ4cOtZ0TwjcwB/BtfPaAYwAcA76N/Q/mAL7pyv7evn27YmJiPDwa2MP7tPdgX3kP9pV3YX95D/aV98jOztZNN93EHMDH8D0AnMX7O5zFsQNncezAWRw79WMO0HJxpF9DV5YCjI6OZlKFa85sNuvkyZPq1KkTH3LwCI5BeBrHIDzNbDZLEstD+xjmAL6Nzx5wDIBjwLex/8EcwDdd2d8xMTHMAZo53qe9B/vKe7CvvAv7y3uwr7wPcwDfwvcAcBbv73AWxw6cxbEDZ3HsNIw5QMvDHgUAAAAAAAAAAAAAAAAAAAAAAD6PAAsAAAAAAAAAAAAAAAAAAAAAAODzCLAAAAAAAAAAAAAAAAAAAAAAAAA+jwALAAAAAAAAAAAAAAAAAAAAAADg80yeHgAAAAAAAAAAAAAAAAAAAAAAwLsUFxc7VS8nJ0czZsxQamqqBg8erDlz5igqKsrhdkJCQpzqH7CHAAsAAAAAAAAAAAAAAAAAAAAAgENCQ0NdbmPVqlWKj493qq7VanW5f+CHCLAAAAAAAAAAAAAAAAAAAAAAAKCJWK1W7fj7Dq1+ebUqiys1ee1kxY6ItVtnlmGWw/08tPQh9fpxrxqvrXttndbPWt+o+tN2TNN1N15nt0z+qXxtfWerjq04poLTBQoIDVCHPh2UMDlBCZMSZDAaHB53c0KABQAAAAAAAAAAAAAAAAAAAADAIUVFRU7VGz9+vNasWaOqqir5+flp1KhRWrp0qZtH13zkHc/Tt1O/1akNp5q8r5CokCZt/+jyo1oycYnKL5Wr9wO9lfTLJJVcKFFacpq+eeIb7f10rx5a+pACwwKbdBxNiQALAAAAAAAAAAAAAAAAAAAAAIBDQkKcu5l/wYIFmjJlinbs2KHExETNmzfP6baas+qrVhj9jOqU1ElZW7McaqPXj3vpR7N/ZLdMdlq2ljy6RG17tlXnoZ3rLffcoeca7K9NbBu7/SyesFjmUrPGvjNWSTOTbHmJzybqk1s+Ucb3GVoycYkeWfZIg301VwRYAAAAAAAAAAAAAAAAAAAAAACuiaioKK1cudLTw2hy62et1/pZ6xU/Nl7jksdp10e7HA6wCAwPVLte7eyW2fLWFknS4OmD7ZZrqJ2GLH92ucylZnUc0rFGcIUkBUUE6a7379L8kfN19F9HdfDrg+r9k94u9ecpRk8PAAAAAAAAAAAAAAAAAAAAAACAlsRqtWrc3HF67N+PKbxzuMP1u97WtcGgiIqiCu1ftF9+gX5KmJzg7FAbdGL1CZ3ZdkaSNGjaoDrLxI6IVeT1kZKkja9vbLKxNDVWsAAAAAAAAAAAAAAAAAAAAAAAwI1GvDZCBoPB6fpT1k1psMy+hftUUVShfhP7KbhtsNN9NeTA4gO2dLfR3eot1210N+Wl5+ns7rPKO5anyO6RTTampsIKFgAAAAAAAAAAAAAAAAAAAAAAuJErwRWNlfphqiRp8NODHapXUVyhqsqqRpc/ueakJKlVm1Zq07VNveWiB0bb0hlrMhwaU3PBChYAAAAAAAAAAAAAAAAAAAAAAHiR7F3Zyk7NVrte7dT11q4Nlt89f7d2zd2l8wfPqzSvVJIU1jFMcaPilPSLJMUMiqmzXmVppS6euChJat25td0+wjuH29LnDpxr7KY0KwRYAAAAAAAAAAAAAAAAAAAAAADgRVL/5/LqFYOmD2pU+W+mfKNeP+6l2/96u0I6hOjSfy5p/6L92rtgr/Z+ule3/vZWjZw1sla9gswCWS1WSVJoVKjdPkKiQq7WO1nQ2E1pVgiwAAAAAAAAAAAAAAAAAAAAAACgHuZys6rKq2y/V1yq8OBopIriCu1buE9+gX5KmJTQYHmDn0H3f3a/+j7Ut8brg54apLW/W6sNf9igDb/foMCwQA17YVjNvqptq6mV/fAD/yB/W7r8UnljNqXZIcACAAAAAAAAAAAAAAAAAAAAAIB6pMxO0fpZ622/F8izqzPsX7RfFZcq1O/RfgpuG2y3bNIvkjT46cEKiwmrM3/EayN05NsjytmTo7W/W6v+j/VXaPTVlSoqSyttab8AP7t9Vc+vLKm0U7L5Mnp6AAAAAAAAAAAAAAAAAAAAAAAANFfDfz1cLxe8bPv56cGfenQ8qR+mSpIGTx/cYNlWbVrVG1whSQajQQOmDJAkmUvN2rdoX4386qtSVFVUyZ7q+f7B/nZKNl8EWAAAAAAAAAAAAAAAAAAAAAAAUA9ToEmBrQNtPwFhAR4by9ndZ/WfHf9Ru17t1PXWrm5p87obr7OlszZn1cirvq3mMrPddqqvdhEYFuiWsV1rBFgAAAAAAAAAAAAAAAAAAAAAAOAFdv7PTknS4KcbXr2isUI6hNjSRWeLauSFdwmXwWi4nJdTM++HinOKr9aLDXfb+K4lAiwAAAAAAAAAAAAAAAAAAAAAAGjmKoortH/hfplamZQwKcFt7VotVlva4Geokecf5K+IbhGSpMLThXbbKcy6mt+hTwe3je9aIsACAAAAAAAAAAAAAAAAAAAAAIBmbv/n+1VeWK7eD/RWUGRQg+Vz9uZow+sblH8y32656qtWhMWE1cqPHRUrSSrLL1P+qfrbyk7LtqXjRsU1OL7myOTpAcC3LBq3yKP9P7LsEY/2DwAAAFxrnIMDAAAAAABfwrUQAABwLTl77mExWJQXk6czb52R0eraM5I5/wAAwLekfZgmSRo0fVCjymenZWvtb9cqsnuk2sS2qbdc1tYsW7rz8M618vtM6GPrO+P7DA2cOrDOdjK+z5AkRQ+IVmT3yEaNsblhBQsAAAAAAAAAAAAAAAAAAAAAAJqxnL05OrP9jNrd0E5db+nqUN1jK4/Vm1dVUaVdH+2SJAWEBajvw31rlek2ups6DukoSUqbm1ZnO6c2nNKFoxckSbf81y0Oja85IcACAAAAAAAAAAAAAAAAAAAAAIBmbOf/7JQkDZ4+2OG6ez/bq0NLDtV63VJl0fLnlivvWJ4k6fb/vl3BbYPrbOPuf9wtU5BJWVuytP397TXyyvLLtOK5FZKkHvf0UO8Hejs8xubC5OkBAAAAAAAAAAAAAAAAAAAAAADQ0uz9dK8tnbM3x5Y+vuq4CrMKJUkhUSGKHxNvt53Kkkrt+2yfTK1MSpiU0Oj+w7uEq1VEK5VdLNOXD3yp6++8XnGj4xQUEaTCrELt/3y/zh84L6O/Ubf/9Xa7wRsxg2I04csJWvLoEq38+UplbsxU7KhYlV4oVVpymvJP5ituVJzuX3h/o8fXHBFgAQAAAAAAAAAAAAAAAAAAAACAmy19fGmdr6f8KcWW7npb1wYDLPZ/sV/lBeXq/1h/BUUGNbr/uFFxev7M8zq67KjSV6QrOy1b619br8qSSgWEBSgyPlI3v3SzbnzmRrXp2qbB9nrc00Mz9szQ1ne2Kn15uo58e0T+If7q0LeDbv3drRoweYAMRkOjx9ccEWABAAAAAAAAAAAAAAAAAAAAAICbvWp91S3tDHxioAY+MdCpuv5B/urzYB/1ebCPW8bSJraN7njnDt3xzh1uaa+5MXp6AAAAAAAAAAAAAAAAAAAAAAAAAJ5GgAUAAAAAAAAAAAAAAAAAAAAAAPB5BFgAAAAAAAAAAAAAAAAAAAAAAACfR4AFAAAAAAAAAAAAAAAAAAAAAADweQRYAAAAAAAAAAAAAAAAAAAAAAAAn0eABQAAAAAAAAAAAAAAAAAAAAAA8HkEWAAAAAAAAAAAAAAAAAAAAAAAAJ9n8vQAAAAAAAAAAAAAAACuWzRukcf6thgs6vh8R4/1DwAAAAAAALgDK1gAAAAAAAAAAAAAAAAAAAAAAACfR4AFAAAAAAAAAAAAAAAAAAAAAADweSZPDwAAAABAbVarVTv+vkOrX16tyuJKTV47WbEjYhtd//Tm09r+/nZlpmSq+FyxQtqHqNPQTkp8NrHR7VjMFqUmp2rfp/uUezhX5nKzwruEq+d9PZU0M0mh0aGNaif/VL62vrNVx1YcU8HpAgWEBqhDnw5KmJyghEkJMhgNjd4uAAAAAAAAAAAAAAAAAGgqBFgAAAAAzUze8Tx9O/Vbndpwyqn663+/XutnrZeplUkDnxqoDn07KPdQrtKS03Rw8UENe3GYxvxljN02SnJLtPCehTqz7Yza9Wqnm1+6WQGhAUpfnq5Nb2zSro926cGvHlTXW7vabefo8qNaMnGJyi+Vq/cDvZX0yySVXChRWnKavnniG+39dK8eWvqQAsMCndpWAAAAAAAAAAAAAAAAAHAXAiwAAACAZqL6qhVGP6M6JXVS1tYsh9rYOWen1r26TqZWJk1aM0mdhnSy5fV/vL8+ueUTbX5zs0I6hGjYC8PqbMNituiL8V/ozLYz6jyssx5f/bj8g/wlSYnPJur733yvlNkp+vy+z/XU9qfU9vq2dbaTnZatxRMWy1xq1th3xippZpItL/HZRH1yyyfK+D5DSyYu0SPLHnFoOwEAAAAAAAAAAAAAAADA3YyeHgAAAACAy9bPWq+VP1upLsO76Jn9zyh+bLxD9YvPF2vVi6skSUNmDqkRXCFJMQNjbEEVa3+7VoVZhXW2k5qcqsyUTMkgjUseZwuuuGLErBGK7B6psvwyfff8d/WOZ/mzy2UuNavjkI41giskKSgiSHe9f5ck6ei/jurg1wcd2lYAAAAAAAAAAAAAAAAAcDcCLAAAAIBmwmq1atzccXrs348pvHO4w/W3vbtNFUUVkqRBTw2qs8ygpwZJBslcZtbmv26ucwwps1MkSV1u7qL2vdvXKuPn76eEKQmSLgdHnN1ztlaZE6tP6My2M5f7nFb3WGJHxCry+khJ0sbXNza0eQAAAAAAAAAAAAAAAADQpEyeHgAAAACAy0a8NkIGg8Hp+ge/urwKRJvYNorsHllnmdadWqtdr3bKPZSrQ18d0ti3xtboM2trlgpPX17ZIm50XL19xY+J19pX1l7ud/FBRSdE18g/sPiALd1tdLd62+k2upvy0vN0dvdZ5R3Lq3fcAAAAAAAAaP72LdqnM2+dkdHKc/4AAAAAAADgnbiyBQAAADQTrgRXFJ4p1IUjFyRJ0QOi7ZaNGRhzuU5WofLS82rkZazJsKXttROVECWD0VCrzhUn15yUJLVq00pturapt53ogVf7qKsdAAAAAAAAAAAAAAAAALhWWMECAAAAaAHO7T9nS7fu3Npu2er55w6cU9sebW2/n99/3pYO7xxebxumQJOC2werOKdY5w+cr5FXWVqpiycuNmos1fs4d+CcnZIAAAAAAAANWzRukUf7f2TZIx7tHwAAAAAAAIBrWMECAAAAaAHyT+bb0iFRIXbLVs+vXs/RdkKjQiVJ5YXlKr1Yanu9ILNAVou1RpnGjKXgZIHdsgAAAAAAAAAAAAAAAADQlFjBAgAAAGgC5nKzqsqrbL9XFlU2aX8VlypsaVMr+6f5/kH+ddaTpPJL5Y1uxxR0Nb/iUoWCIoJcGkv1vgEAAAAAAAAAAAAAAADgWiPAAgAAAGgCKbNTtH7WetvvBcamXZ2hsvRqAIdfgJ/dstXzK0tqBn6YS80ut+OusQAAAAAAAAAAAAAAAADAtUSABQAAANAEhv96uIY+P9T2e2Zmpt7u93aT9Vd9JYiqiio7JWvm+wf718irviqFs+24aywAAACAL7Fardrx9x1a/fJqVRZXavLayYodEWu3zizDLIf7eWjpQ+r14141Xlv32roaAeL2TNsxTdfdeJ3dMvmn8rX1na06tuKYCk4XKCA0QB36dFDC5AQlTEqQwWhweNwAAAAAAAAAAADXAgEWAAAAQBMwBZpkCrx6uu0f2rTBAwFhAba0ucxsp2TNFSaq15OkwLDARrdTfbWL6u04O5bqfQMAAAC+JO94nr6d+q1ObTjV5H2FRIU0aftHlx/VkolLVH6pXL0f6K2kXyap5EKJ0pLT9M0T32jvp3v10NKHOP8HAAAAAAAAAADNEgEWAAAAQAvQJraNLV2cU2y3bPX86vWu/J61NctWrnXH1vW2U5RTJEkKbB2ooIgg2+vhXcJlMBpktVhtZRozlvDYcLtlAQAAgJam+qoVRj+jOiV1sp2PN1avH/fSj2b/yG6Z7LRsLXl0idr2bKvOQzvXW+65Q8812N8P5xA/7GfxhMUyl5o19p2xSpqZZMtLfDZRn9zyiTK+z9CSiUv0yLJHGuwLAAAAAAAAAADgWiPAAgAAAGgBOvTtYEsXni60W7Yw62p+hz4dauS179veli44XaCYQTF1tmEuN6vkfMnlOn3a18jzD/JXRLcI5R3Lc2ksAAAAQEu3ftZ6rZ+1XvFj4zUueZx2fbTL4QCLwPBAtevVzm6ZLW9tkSQNnj7YbrmG2mnI8meXy1xqVschHWsEV0hSUESQ7nr/Ls0fOV9H/3VUB78+qN4/6e1SfwAAAAAAAAAAAO5m9PQAAAAAALiudcfWatujrSTp7O6zdstmp2VfrtOptSKvj6yRFzcqzpa2107OnhxZLdZada6IHRUrSSrLL1P+qfwGx1JfOwAAAEBLZrVaNW7uOD3278cU3tnxFd263ta1waCIiqIK7V+0X36BfkqYnODsUBt0YvUJndl2RpI0aNqgOsvEjoi1zUE2vr6xycYCAAAAAAAAAADgLFawAAAAAFqI3hN6a+MfNyr/ZL4unrioiG4RtcoUnilU7uFcSdIND9wgg8FQI79TUie17tRahVmFyvg+QyNeHVFnXydWn6jR7w/1mdBHaR+mSZIyvs/QwKkD62wn4/sMSVL0gGhFdo+sswwAAADQUo14bUStc3JHTFk3pcEy+xbuU0VRhfpN7KfgtsFO99WQA4sP2NLdRnert1y30d2Ul56ns7vPKu9YHvMAAAAA4P989+J32vLfl1efu+3V2zTitREN1jm9+bS2v79dmSmZKj5XrJD2Ieo0tJMSn01U7IjYRvVrMVuUmpyqfZ/uU+7hXJnLzQrvEq6e9/VU0swkhUaHurBVAAAAAOB9WMECAAAAaCGG/HyIAkIDJElpc9PqLLPro12SVTK1MmnY/xtWK99gMGj4b4ZLkjJTMm3BGNVZzBbtnrdbknT93dcrOiG6Vpluo7up45COdsdyasMpXTh6QZJ0y3/d0sDWAQAAAC2PK8EVjZX6YaokafDTgx2qV1FcoarKqkaXP7nmpCSpVZtWatO1Tb3logdenT9krMlwaEwAAABAS5Wdlq2tb291qM7636/XJ7d8oiPfHFGv8b1059/uVO8JvXVs5THNHzlfq361qsE2SnJL9PHwj7Xi2RUqzSvVzS/drDF/GaOIuAhtemOTPuj/gU5tOOXsZgEAAACAVyLAAgAAAGghQjqEaMybYyRJW9/eqjM7ztTIP7vnrDb9ZZMkaeQfRqp1p9Z1tjN42mB1Gd5FskrLpi1TZWlljfx1r61TXnqeWrVppbFvj613PHf/426ZgkzK2pKl7e9vr5FXll+mFc+tkCT1uKeHej9QexUMAAAAAK7J3pWt7NRstevVTl1v7dpg+d3zd+uTWz7RX9r+RbNDZ+v1gNf1Vqe3tHTSUmWnZddbr7K0UhdPXJQkte5c9zzjivDO4bb0uQPnGrklAAAAQMtlMVv07VPfylplbXSdnXN2at2r6+QX4KdJaybpznfv1OBpgzX2rbGasmGK/EP8tfnNzdr835vt9vvF+C90ZtsZdR7WWdPTpuvmX92sxGcTNXH5RA3/9XCVnC/R5/d9rgvpF9yxqQAAAADgFUyeHgAAAACAq/Z+uteWztmbY0sfX3VchVmFkqSQqBDFj4mvs/6NM25UUU6RNvx+g+aPnK9BTw1S+z7tlXs4V2nJaaosrtTQF4Zq2Au1V6+4wmgy6qGlD2nhPQuVmZKpDwd/qAFPDFBASIDSV6QrfXm6gtsFa8JXE9T2+rb1thMzKEYTvpygJY8u0cqfr1TmxkzFjopV6YVSpSWnKf9kvuJGxen+hfc7+t8EAAAAoBFS/+fy6hWDpg9qVPlvpnyjXj/updv/ertCOoTo0n8uaf+i/dq7YK/2frpXt/72Vo2cNbJWvYLMAlktl28GC40KtdtHSFTI1XonCxq7KQAAAECLtfmvm3V211n1vK+njnxzpMHyxeeLterFy6tTDJk5RJ2GdKqRHzMwRsNeGKb1s9Zr7W/Xqu/Dfet84FJqcqoyUzIlgzQueZz8g/xr5I+YNUIHFx9U3rE8fff8d3pk2SPObyQAAAAAeBECLAAAAIBmZOnjS+t8PeVPKbZ019u61htgIUkjXh2h+DHx2vbeNh386qBKPihRcLtgxd8er8TnEhU3Mq7BcQS3C9bUlKlKTU7V3gV7lTI7RVXlVQrvEq5hvxqmpF8kKSwmrMF2etzTQzP2zNDWd7YqfXm6jnx7RP4h/urQt4Nu/d2tGjB5gAxGQ4PtAAAAAM2dudysqvIq2++VRZV2Sje9iuIK7Vu4T36BfkqYlNBgeYOfQfd/dr/6PtS3xuuDnhqktb9bqw1/2KANv9+gwLDAWgHbFZcqbGlTK/tfO1S/aav8UnljNgUAAK+yaNwij/bPDdCAd8k7nqf1s9brusTrdNPPbmpUgMW2d7epoujyOfigp+oOph701CCt//16mcvM2vzXzbrj7Ttq5FutVqXMvvy9Q5ebu6h97/a12vDz91PClAStfWWtjv7rqM7uOavohGhHNxEAAAAAvA4BFgAAAEAz8qr1Vbe003lYZ3Ue1tmlNowmoxKfSVTiM4kutdMmto3ueOcO3fHOHQ0XBgAAALxUyuwUrZ+13vZ7gdGzqzPsX7RfFZcq1O/RfgpuG2y3bNIvkjT46cH1BlGPeG2Ejnx7RDl7crT2d2vV/7H+Co2+ulJFZenVYBK/AD+7fVXPryzxbBAKAAAA4Gn/mv4vWSotGpc8TmUXyxpV5+BXByVdvvYe2T2yzjKtO7VWu17tlHsoV4e+OqSxb42VwXD1YUdZW7NUePryqtlxo+t/KFP8mHitfWXt5X4XHyTAAgAAAIBPMHp6AAAAAAAAAAAAeLvhvx6ulwtetv08s+cZj44n9cNUSdLg6YMbLNuqTSu7K9QZjAYNmDJAkmQuNWvfon018quvSlFVUSV7quf7B/vbKQkAAAC0bGkfpSljTYaG/r+hjQ5cKDxTqAtHLkiSogfYrxMzMOZynaxC5aXn1cjLWJNhS9trJyohyrYKdfU6AAAAANCSEWABAAAAAAAAAICLTIEmBbYOtP34h3oueODs7rP6z47/qF2vdup6a1e3tHndjdfZ0lmbs2rkBYQF2NLmMrPddqqvdhEYFuiWsQEAAADepuhskVa9uEoR8RG67dXbGl3v3P5ztnTrzq3tlq2ef+7AuRp55/eft6XDO4fX24Yp0KTg9pdXxDt/4Hy95QAAAACgJSHAAgAAAAAAAACAFmTn/+yUJA1+uuHVKxorpEOILV10tqhGXniXcNtTbYtyaub9UHFO8dV6sfXfyAUAAAC0ZCt+ukJlF8t0z//cU2NFuIbkn8y3pUOiQuov+IP86vUcbSc0KlSSVF5YrtKLpY0bKAAAAAB4MQIsAAAAAAAAAABoISqKK7R/4X6ZWpmUMCnBbe1aLVZb2uBnqJHnH+SviG4RkqTC04V22ynMuprfoU8Ht40PAAAAuNbM5WaVF5bbfiouVTSq3uFvDuvQ14c0YMoAdftRN4f6rN6HqZXJbtnqgRs/HFv5pfJGt2MKuprf2G0EAAAAAG9mf5YEAAAAAAAAAAC8xv7P96u8sFz9H+uvoMigBsvn7M3RkW+PqP9j/dUmtk295aqvWhEWE1YrP3ZUrPKO5aksv0z5p/LVpmvdbWWnZdvScaPiGhwfAAAA0FylzE7R+lnrbb8XqKDBOuWF5Vrx3AoFtw/W7X+93eE+K0srbWm/AD+7ZavnV5ZU1sgzl5rd0g4AAAAAtEQEWMCnLBq3yKP9P7LsEY/2DwAAAAAAAKBlS/swTZI0aPqgRpXPTsvW2t+uVWT3SLsBFllbs2zpzsM718rvM6GPre+M7zM0cOrAOtvJ+D5DkhQ9IFqR3SMbNUYAAACgORr+6+Ea+vxQ2+9nzpzR273ftltn1a9W6dKZS7p/4f2NCoj+oeqrUlRVVNktWz3fP9i/Rl71VSlcaQcAAAAAWiKjpwcAAAAAAAAAAABcl7M3R2e2n1G7G9qp6y1dHap7bOWxevOqKqq066NdkqSAsAD1fbhvrTLdRndTxyEdJUlpc9PqbOfUhlO6cPSCJOmW/7rFofEBAAAAzY0p0KTA1oG2n4CwALvlT208pdQPU9X9ju7q90g/p/qs3oe5zGynZM3VLn44tsCwwEa3U321i4a2EQAAAABaAgIsAAAAAAAAAABoAXb+z05J0uDpgx2uu/ezvTq05FCt1y1VFi1/brnyjuVJkm7/79sV3Da4zjbu/sfdMgWZlLUlS9vf314jryy/TCueWyFJ6nFPD/V+oLfDYwQAAAC8VVVFlZZNWya/AD+N/MNIleSW1PopKyizla8sqayRV1V5eRWJ6qvOFecU2+2zev4PV6tzpJ2inCJJUmDrQAVFOL7qBgAAAAB4G1PDRQAAAAAAAAAAQFPY++leWzpnb44tfXzVcRVmFUqSQqJCFD8m3m47lSWV2vfZPplamZQwKaHR/Yd3CVeriFYqu1imLx/4Utffeb3iRscpKCJIhVmF2v/5fp0/cF5Gf6Nu/+vtdoM3YgbFaMKXE7Tk0SVa+fOVytyYqdhRsSq9UKq05DTln8xX3Kg43b/w/kaPDwC8zaJxizw9BABAM3TpP5d04cjl1dySE5MbLL/5zc3a/OZm2++T105W7IhYdejbwfZa4elCu21cmU9IUoc+HWrkte/b3pYuOF2gmEExdbZhLjer5HzJ5Tp92tdZBgAAAABaGgIsAAAAAAAAAADwkKWPL63z9ZQ/pdjSXW/r2mCAxf4v9qu8oFz9H+uvoMjGP1U2blScnj/zvI4uO6r0FenKTsvW+tfWq7KkUgFhAYqMj9TNL92sG5+5UW26tmmwvR739NCMPTO09Z2tSl+eriPfHpF/iL869O2gW393qwZMHiCD0dDo8QEAAAAtQWh0qB5f9bjdMmf3nNWqF1ZJkvo/3r9G4HRUQpQkqXXH1mrbo60uHL2gs7vP2m0vOy37cp1OrRV5fWSNvLhRcVqrtZf73X1Wve7rVWcbOXtyZLVYbXUAAAAAwBe0iAALq9Wqv//973r55ZdVXFystWvXasSIEW7tY8WKFZozZ45SU1N14cIFxcTEaMSIEfrZz36mQYMGubUvAAAAAAAAAIBveNX6qlvaGfjEQA18YqBTdf2D/NXnwT7q82Aft4ylTWwb3fHOHbrjnTvc0h4AAADg7UytTOo2upvdMkaT0ZaO6BZRb/neE3pr4x83Kv9kvi6euKiIbhG1yhSeKVTu4VxJ0g0P3CCDoWaQc6ekTmrdqbUKswqV8X2GRrw6os6+Tqw+UaNfAAAAAPAFxoaLNG/Hjx+3BToUFxe7vX2LxaLp06fr7rvv1qZNmzRp0iS99957GjNmjBYuXKghQ4bovffec3u/AAAAAAAAAAAAAAAAQHVDfj5EAaEBkqS0uWl1ltn10S7JejmwY9j/G1Yr32AwaPhvhkuSMlMybcEY1VnMFu2et1uSdP3d1ys6IdpNWwAAAAAAzZvXBlhYrVa9//77SkhI0O7du5WUlNQk/fzmN79RcnKy2rVrp23btmn27NmaPn26PvzwQ33zzTeyWCz6xS9+ocWLFzdJ/wAAAAAAAAAAAAAAAIAkhXQI0Zg3x0iStr69VWd2nKmRf3bPWW36yyZJ0sg/jFTrTq3rbGfwtMHqMryLZJWWTVumytLKGvnrXlunvPQ8tWrTSmPfHtsEWwIAAAAAzZPJ0wNw1qxZszRr1iyNHTtWycnJ+uijj7R161a39nHgwAG9+eabkqQ//OEP6t69e438O+64Q48//rjmz5+vn/3sZ7rrrrsUEhLi1jEAAAAAAAAAAAAAAACg5cnZm6OcvTmSpPOHztd4fe+neyVJIVEhih8TX6PejTNuVFFOkTb8foPmj5yvQU8NUvs+7ZV7OFdpyWmqLK7U0BeGatgLtVevuMJoMuqhpQ9p4T0LlZmSqQ8Hf6gBTwxQQEiA0lekK315uoLbBWvCVxPU9vq2TbD1AAAAANA8eW2AhdVq1dy5c/Xkk082WR+zZ8+WxWJRUFCQHn300TrLTJs2TfPnz1dOTo7mzp2rmTNnNtl4AAAAAAAAAAAAAAAA0DIcWnJI62etr/X64aWHdXjpYUlS19u61gqwkKQRr45Q/Jh4bXtvmw5+dVAlH5QouF2w4m+PV+JziYobGddg/8HtgjU1ZapSk1O1d8FepcxOUVV5lcK7hGvYr4Yp6RdJCosJc31DAQAAAMCLeG2AxWuvvSaDwdBk7ZeXl2vZsmWSpCFDhigsrO4J49ChQxUaGqqioiItXryYAAsAAAAAAAAAAAAAAAA0aMRrIzTitRFO1+88rLM6D+vs0hiMJqMSn0lU4jOJLrUDAAAAAC2F0dMDcFZTBldI0s6dO1VYWChJGjBgQL3ljEaj+vfvL0nasmWLSktLm3RcAAAAAAAAAAAAAAAAAAAAAADA/bx2BYumtn//flu6c2f70f5X8i0Wiw4fPqyBAwc26dgAAAAAAAAAAAAAAPihReMWNaqcxWBRXkyezrx1Rkar+57L+MiyR9zWFgAAAAAAgCcQYFGPkydP2tJRUVF2y1bPP3nyZIMBFhaLRVVVVS6Nz1tZDVZPD8GjPLnfq6qqbMdeU68AA9SFYxCexjEIT7NYLJ4eAjzIk3MAT5+D++rcR+KzBxwD4Bjwdez/5qG4uNipeufOndMzzzyj1NRUDR48WB988IE6dOjgUBuXLl1yqm+0DFVVVT59LuwNeJ/2Ho7uK0/Pg32Z1WCVVVbbv2jemmp/8fnnfnxmeQ+Of9/my/cC+Tpnzz/d+VnMsedbODeAszh2Wq6mvg5uNptVXFyswsJCmUy1bzsPCQlxqv+WwNHPYKvVqh1/36HVL69WZXGlJq+drNgRsXbr5J/M17tx7zaq/cTnEnXX+3fZLWMxW5SanKp9n+5T7uFcmcvNCu8Srp739VTSzCSFRoc2qq/8U/na+s5WHVtxTAWnCxQQGqAOfTooYXKCEiYlyGD07vcZAizqUf3Lr1atWtktGxQUVGe9+mzZskVHjhyx/e7n51fnm05LlBuT6+kheNT69es91rfFYtHp06dlsVhkNLrvKTRAY3EMwtM4BuFpFy5c8PQQ4EGenAN4+hzck+fAnsZnDzgGwDHg29j/zcMf/vAHp+rt3btXeXl5kqTVq1dryJAh6t+/v0NtmM1mp/pGy7Bp0yZFRETYfvel7wG8Be/T3sPRfeXpebBPM0iloaXKM+SJ+Aov0ET7y5evBTUVPrO8x8WLFz09BHiQL98L5OucPv9042cxn7++hXMDOItjp+Xy5HVwSfrtb3/rVP8tgSNzgLzjefp26rc6teFUE47IvpLcEi28Z6HObDujdr3a6eaXblZAaIDSl6dr0xubtOujXXrwqwfV9daudts5uvyolkxcovJL5er9QG8l/TJJJRdKlJacpm+e+EZ7P92rh5Y+pMCwwGu0Ze7HmXw9SktLbemAgAC7Zavnl5SUNNj2nDlzakyiEhISNGDAAMcH6YVKw0obLtSCZWZmeqxvq9WqgoICSSICFR7BMQhP4xiEpxUWFnp6CPAgT84BPH0O7slzYE/jswccA+AY8G3sf+/2w/N3zufhqA8++MBnvwfwFrxPew9H95Wn58G+rjKgUmrcgw7RDDTF/vLla0FNhc8s78Eqdr7Nl+8F8nWunH+667OYz1/fwrkBnMWxgx9y13VwX/4caswcoPqqFUY/ozoldVLW1iyH+xr1p1G6YfwNdsu0iqh/QQGL2aIvxn+hM9vOqPOwznp89ePyD/KXJCU+m6jvf/O9Uman6PP7PtdT259S2+vb1tlOdlq2Fk9YLHOpWWPfGaukmUm2vMRnE/XJLZ8o4/sMLZm4RI8se8Th7WwuCLCoR/VVKSoqKuyWrZ4fHBzcYNvvvfeeOnXqZPs9MDBQgYHeG6XjiMUPLvb0EDxqwh8neKxvs9msLVu2aOjQoTwlAR7BMQhP4xiEp2VmZmrmzJmeHgY8xJNzAE+fg3vyHNjT+OwBxwA4Bnwb+795uPfee52q9+CDD2rdunWqqqqSn5+fbrvtNn355ZcOtZGZmamBAwc61T+839/+9jd17NjR9rsvfQ/gLXif9h6O7itPz4N9mdVgVV5UniJzImWwcrNOc9dU+8uXrwU1FT6zvMeZM2f085//3NPDgIf48r1Avs7Z8093fhbz+etbODeAszh2Wq6mvg5uNpu1bds2DRkypM5jJyQkxKn+W4LGzAHWz1qv9bPWK35svMYlj9Ouj3Y5FWARFhOmdr3aOTtUpSanKjMlUzJI45LH2YIrrhgxa4QOLj6ovGN5+u757+oNjlj+7HKZS83qOKRjjeAKSQqKCNJd79+l+SPn6+i/jurg1wfV+ye9nR6zJ/EuWY+wsDBbuqyszG7Z6qtdVK9Xn4iICLVv3975wXkxP4ufp4fgUZ6cPF9ZfjIwMJATJHgExyA8jWMQnubv799wIbRYnpwDePoc3Je/QOKzBxwD4Bjwbez/5sHZc5HPPvtMU6ZM0Y4dO5SYmKh58+YpMjLSoTZY9cK3tWvXzme/B/AWvE97D0f3lafnwb7MYrDIKKOMFqOMVqOnh4MGNNX+8uVrQU2FzyzvERAQ4OkhwIN8+V4gX+fs+ac7P4v5/PUtnBvAWRw7LVdTXwc3m80KCwtTZGQkx84PNGYOYLVaNW7uOA16ctA1GFH9Y0iZnSJJ6nJzF7XvXfu81c/fTwlTErT2lbU6+q+jOrvnrKITomuUObH6hM5sOyNJGjSt7u2JHRGryOsjlZeep42vbyTAoqWJjY21pXNycuyWrZ5fvR4AAAAAAAAAwPtERUVp5cqVnh4GAAAAAAAAAABNguvg18aI10bIYPDsSp9ZW7NUePryQ6HiRsfVWy5+TLzWvrJWknRw8cFaARYHFh+wpbuN7lZvO91Gd1Neep7O7j6rvGN5iuzu2AOsmgMCLOrRt29fW/r06dN2y2ZlXV6qxWg0qlevXk06LgAAAAAAAAAAAKC5WjRukVvbsxgsyovJ05m3zrAqAgAAAAAAALxKUwRXWMwWmcvNCghp3Cp6GWsybOnoAdH1lotKiJLBaJDVYq1R54qTa05Kklq1aaU2XdvU2070wKt9ZKzJIMCiJbnxxhsVFhamS5cuaffu3fWWs1gs2rNnjyRp6NChCgoKukYjBAAAAAAAaN6Ki4udqpeTk6MZM2YoNTVVgwcP1pw5cxQVFeVwOyEhIU71706lpaUqLi52eMnklvR/AAAAAAAAAAAAAMB55w6c09cTv1ZmSqYu/eeSrFVW+Qf7q1NSJ/V7rJ8SHk+Q0VT3w0nO7z9vS4d3Dq+3D1OgScHtg1WcU6zzB87XyKssrdTFExclSa07t7Y71up9nDtwrsFta44IsKhHYGCg7r33Xn322Wfatm2bioqKFBoaWqvc1q1bVVRUJEmaMGHCtR4mAMDLcIMZfJmzx7/E3wAAAN6qrmspjlq1apXi4+Odqmu1Wl3u31V33XWXy2148/8BcyAAAAAAAAAAAADANVv+e4va9mirm356k9rd0E5V5VU6teGU0pLTlLEmQ2kfpunBJQ8qLCasVt38k/m2dEiU/e/OQqNCVZxTrPLCcpVeLFVQxOWFBwoyC2S1WG1l7KneR8HJgsZuYrPiswEW+/fv1/3336+SkhItXLhQt956a60yL7/8shYtWqTS0lItXLhQ06dPr1Vm7ty5kqSoqCg99dRTTT5uAIB34wYz+DJ3HP8SfwMAAACO8HSAA3MgAAAAAAAAoGl5+hogDzkBAPgKc7lZVeVVtt8rLlVcs75v+MkNuv+z+2UKvHrrf+8HemvAEwM0f8R8ZW3N0qJxizR109QaZSSp/FK5LW1qZT90wBR0Nb/iUoUtwKL6tjbUhn+Qf519exOfDbD44x//qPT0dEmXAyk2b95cq0zfvn314osv6s9//rNeeeUVjR49Wt26dbPlf/fdd5o/f74k6W9/+xsniwAaxKQWAAAAwLXk6TnIlVU/HTV+/HitWbNGVVVV8vPz06hRo7R06VKn2vK0FStWaNiwYTKZHLsM567/A08HOAAAAAAAfIunr0XwfSiAa63MXOZUPYvBotzCXH245UNlFGQoLjxOT/Z7UuGB4Q635elrgDzkBADgK1Jmp2j9rPW23wvU9KsztO7UWjMzZiqsY5j8/P1q5ccMjNGtv7tVq15YpezUbO2cs1NJM5NqlDGXmm1pv4DabVRXPb+ypPJqurSyzjKOtOFNvDrA4tNPP7Wl9+7da0uvWrVKWVlZki6vLDFmzJhadS0Wiy1t7yTvT3/6ky5cuKC5c+fqpptu0tNPP63Y2Filpqbqk08+kdFo1FtvvaUJEya4Y5MAtHBMasENZvAkT3+p4ezxL/E3AADezNOfP77+pbq3zkEWLFigKVOmaMeOHUpMTNS8efOc2pfOHn+Se45Bs9msoKAghYSEOBxg4a7/A09jDgQAAAAAvsVbr0UAgLOm/nuqW9rZn7tfv1z7S7e0BQAAmsbwXw/X0OeH2n4/c+aM3u79dpP2aTQZ1Sa2jd0yA58YqFUvrpKs0u6Pd9cKsKi+KkVVRdUPq9dQPd8/+OpKFNVXpXC2DW/i1QEWjz/+eJ2v/+lPf7Klb7vttjoDLP7rv/5LaWlpKi0t1Z///Od6+zAajUpOTtb48eP1wQcf6OOPP9bFixcVHR2thx9+WDNnztSgQYNc3xjAR3BzlW8rLS1VcXGxwzcWtaT97+wYWsrNVfAsb/5Sg78BAPBe3vz54w6ePgf2VlFRUVq5cqXL7bjj+JNcOwbXrl3rVD13/R94OsCBORAAAAAAX9IU34WazWanry+4awwAgObN09cAuRcIgC/z9MO+JN4HryVToEmmwKvzsoDCAA+O5qqgyCBFdIvQxeMXlbMvRxVFFQoIvTq2wLBAW9pcZq6riav51Va7CAgLqDPdUBvVV7uo3rc38eoAC1dukujfv7/S09MbXf6uu+7SXXfd5XR/1ZWUlDj8psobacvgyQmFKxfe3HkxzddvrvL0pNbT3PE+6s373xXuurkK8Fb8DQAAvJWnz4F9fQ4C7w1waCnnf56+FsO1QAAAAODa8vR3oe7CtQgAaLyP7/jYqXoWg0Vv7n1T6f9Jl8VqkdFgVO+2vfX8jc873JanrwEaDAan+q/OV+8FAeD9msPDvngfhCSFdAjRxeMXJatUlFOkyNBIW16b2DbK2polSSrOKVbrjq3rbaco5/KcLrB1oIIigmyvh3cJl8FokNVitZWpT3HO1Xulw2PDndoeT/PqAAtv1adPH5fq80bqvVrCBTVP9+/tPD2pBeDb+FIDAK49bqzl88fTfH0O4uzxJ7nnGDSbzdq1a5fTY/CklhLg4GmeDrLiWiAAXHuefnKr1DzmAQAA3+XpaxGe/CwuKSlxqm8A3q2VqZVT9SwGix4f+bi+/N8vdSL/hOLbxGvGgBlOt+cMrgECANByWC1XvxMy+hlr5LXv296WLjhdoJhBMXW2YS43q+T85XlN+z7ta+T5B/kroluE8o7lqfB0od2xFGZdze/Qp0PjNqCZIcACwDXFzVXOaSmT2hUrVmjYsGEO32Do6/sfLYenv2D39JcaAOCLPH1jrSs3l/P54x7eeg7cUuYgrhwz7jgGzWb7y+MCAICWpzk8aIkAOwDwnKb4LtRsNmvz5s1OXV9w1xiuBXddi2gOn8UA0Fitg1vrV0m/ktFqbLhwM8a9QAB8macf9oWWb8PrG9ShXwf1uq+X3XJFZy8fiwajQSEdan6nGTcqTmu1VpJ0dvfZetvK2ZNjC9SIGxVXKz92VKzyjuWpLL9M+afy1aZrmzrbyU7LrtG3NyLAwgMOHDigrl27OlSHN9KWwZMTClcuvLnz+PP1m6t8XVBQkEJCQhw+Btn/aCk8fVHf2S/XW8oNlhJPrgLge7x5SdqW8vnDObD3ainHIDzL00FWzp7/Sp4PtAMAwFll5jKn6hWUF+ijfR8poyBDceFxerLfkwoPDHe4nWv5xGGgLo39G7AYLCqvLFeZuUxGq9FtfwO+rim+CzWbzU5fX3DXGAAAsId7gQD4Mk8/7Ast39rfrlX82Hi7ARaXsi+p4FSBJClmUIz8g/1r5HdK6qTWnVqrMKtQGd9naMSrI+ps58TqE7Z07wm9a+X3mdBHaR+mSZIyvs/QwKkD62wn4/sMSVL0gGhFdo+sf+OaMQIsPCA4ONjhN0HeSFsGT04oXLnw1hyOP3fd2OKtT493F09uvytPbuXGJgDu4ukgFwDXnqfPfzx9Y627Aixw7XEODLQMnr4WYzAYHK5TF08E2gFwnq9fA/U0ntzqeVP/PdXlNvbn7tcv1/7SqboL71nocv/erPoN+45w5839vh7k4um/gSf0hMv9+6LmcB2gOYzBHTz5WXzmzBn17NnTqf4BOM/TcyA4r6V89gCAs3gfRGOd3nxa5YXlCmwdWGf+zjk7belB0wfVyjcYDBr+m+Fa8ewKZaZkKvdwrtr1alejjMVs0e55uyVJ1999vaITomu10210N3Uc0lFntp1R2ty0OgMsTm04pQtHL0iSbvmvWxq9jc0NARZegjdS3+bp/e/p/t3J0zfWevqmAk9v/9q1a13u3xXN4cKKr3/B7Ov4gh2AL/L0529zOP/x5I21LEkLAN6pJV2LAXDtefoc2NPXQBs7BzGbzSotLVVxcbFMJpPHA0zc+aAjT8/D4Nte/ORFl9tw5eZ+iSAXX+fp90C+B/I8T34WBwcHO9U3ANd4eg7EuQcAAGhqFZcqtGz6Mo3//8bLL8CvRt7x745r0583SZK63tpVA5+oe1WJwdMGa//C/cpMydSyacv02HePyT/o6koX615bp7z0PLVq00pj3x5b71ju/sfd+nj4x8rakqXt72/XTT+9yZZXll+mFc+tkCT1uKeHej9QexUMb0GABa4plmUG4EmevrAief4LZnhWc/iC3dd5Msjl1KlT6tOnj1P9A96sOXz+eiN33VjLkrQA4NsItAPgizw9B3H2+p87g+s8/X/g6RvMPr7jY6fqvbXzLR28cFAWq0VGg1G92/bW8zc+73A7fBfmeb6+Dxr7N2AxWHQx+qIizkbIaDW67W/A0zz9Hsj3QN6LQHcAAAAATWXvp3tt6Zy9Obb08VXHVZhVKEkKiQpR/Jjac9GohCjl7MnRgS8OKDs1W30e7qOIbhGqLK7UyXUndWjJIckqdb+zu+7/7H4ZTXWvKmo0GfXQ0oe08J6FykzJ1IeDP9SAJwYoICRA6SvSlb48XcHtgjXhqwlqe33berclZlCMJnw5QUseXaKVP1+pzI2Zih0Vq9ILpUpLTlP+yXzFjYrT/Qvvd/a/q1kgwALXlKeXpHX2oro7lyWGZ/n60+M9uf1ms1m7du1yqn/A13FR3314chXgezj/cV5L+fzx5JMrzWazU30DgLs0h0A7niAMXHuevgbq6b97wNmb258b+Jzm7J6j4/nHFd8mXjMGzHCqrYn/muhU/9W58l2YpwNc3nziTdsN+45w5839nv4+0tP7oLHHrcVgUaB/oFqZWsloNbrtbwAAgGvN03Ogbx/+1qn+AQCA71j6eN3nGCl/SrGlu97Wtc4Aixm7ZyhrW5YO//OwTm86rbQP01R6sVR+/n4KjQ5Vv4n91P/x/uo+tnuD4whuF6ypKVOVmpyqvQv2KmV2iqrKqxTeJVzDfjVMSb9IUlhMWIPt9Linh2bsmaGt72xV+vJ0Hfn2iPxD/NWhbwfd+rtbNWDyABmMhgbbac4IsIBP8fQF1Sf0hMv9wzW+/vR4T25/c7i5zNMXVuB5paWlKi4ulsnk2CkQN/agpdxkDN/k6ac2evrz19fPf+D5J1euXbvW5f4BwBPcdQ7s6fdhniAMX+Tpa6AGg+tfnLnyd9/YOYjZbNbmzZs1bNgwmUymFnUN0NPzsC8f+NKp/uubh1oMFpVXlqvMXNaom/advSE8PDBcLw15yam6uKr6DfuOaEk393v6Woyv/w14+j0QAHDteXoOBAAA0JBXra+6VL/TkE7qNKSTW8ZiNBmV+EyiEp9JdKmdNrFtdMc7d+iOd+5wy7iaGwIscE15ellmdwRYwDf5+o21LWX7ubCCu+66y+U2uLEHgLfxeJBxiHNBxp7+/G0p5z8AAABAY7WUc+DGzhvMZrOCgoIUEhIik8nk8TmIO3n6Oqin56GeXj3A09+FeSt33tzv6X3g638Dnubp90AAgPdoKXMgeH4lRc4ZAABoeQiw8DGLxi3yaP+eXpbZ0xdUAXgnLqwAAHDt8fkLd/HkkyvNZrN27drlVP8A0FLwBGHA93jr3z1zEP4P3MXT34WBfeBp3nqDI++BAAB4L1ZQBQAA7kaABbyCu55awwVVAPBtK1as0LBhw2QyOXYK5Okv+AHAFQQZw9d58smVZrPZqb4BoCXhCcLwVSUlJQ7fYOrpG0vdhb97uHseajFYdDH6oiLORshoNbp5tM2Hu74LKzOXOVWvoLxAH+37SBkFGYoLj9OT/Z5UeGC4Q21YDBan+m4u3LUPfP1aDDc4AgAAAAAAb0eABdAI7lyWGADgOUFBQQoJCXE4wIIv+AF4M4KMAefw5EoA8Czeh+Htevbs6VJ9X7yxlL/7lsPd81CLwaJA/0C1MrVq0QEW7jL131NdbmN/7n79cu0vnar73vT3XO7f23EtBgB8ky8HWQOe5q0rKQIAgOaLAAsAAIAG8AU/AFd58osVZxFkDAAAAAC4lpiHwte1lL8BbnAE4Kv69OnjUn1fDLIG3IWVFAEAgLsRYAEAAAAATcyTX6wsvGehS30DAAAAcNyRI0fUsWNHh+pwYykAd/j4jo+dqvfWzrd08MJBWawWGQ1G9W7bW8/f+LxDbVgMFpWoxKn+0XJwgyMAAPAWPGgRAADUhwALH1NmLnOqXkF5gT7a95EyCjIUFx6nJ/s9qfDAcIfbYRlbAPAsR5+efgXL0wIAAAAAADRecHCww9dBuLEUgDs4+13ccwOf05zdc3Q8/7ji28RrxoAZDrdFgAUkadG4RU7XnWSapElDJ0mS1jy1xqk2Hln2iNP9A4ArDhw4oK5duzpUhyBrAAAAoHkiwMLHTP33VJfb2J+7X79c+0un6vL0XADwrNDQUJfbYHlaAHCcJ79Y+fbhbx2uAwAAAODa48mZADwpPDBcLw15ydPDAADAaxFkDQAAALQcLgVYbNiwQTfccIPat2/vrvEAAAAAQIvDFysAAAAAAAAAAKA6gqwBAACA5smlAIuRI0fq008/1SOPsMymt/j4jo+dqvfWzrd08MJBWawWGQ1G9W7bW8/f+LybRwcAaGpFRUVO1XPXU9SLi4ud6j8nJ0czZsxQamqqBg8erDlz5igqKsqhNsxms1N9A4Cn8MUKAAAAAAAAAAAAAAAAcG25FGBhtVr11VdfqW/fvurXr5+7xoQm1MrUyql6zw18TnN2z9Hx/OOKbxOvGQNmON0WAMBznH3yubueom4wGJzqv7pVq1YpPj7eqbpr1651uX8AAAAAAAAAAAAAwGWefMie5Px34AAAAEB9XAqwkKSlS5fqn//8p2688UZNnz5dDz/8MCeuLVB4YLheGvKSp4cBAPAQnqIOAAAAAAAAAAAAAPih0NBQl9tw5SF7VqvV5f4BAACA6oyuNvDee+/prbfeUmlpqaZNm6aYmBg9/fTT2rlzpzvGBwAAWpCioiKnfsaMGSM/Pz9Jkp+fn8aMGeNwG/n5+Z7deAAAAAAAAAAAAAAAAAAA0Ky5vIJFZGSkJk6cqJkzZ2rr1q1KTk7WwoULNXfuXPXr10/Tp0/Xo48+qvDwcHeMFwAAeDFnV7lasGCBpkyZoh07digxMVHz5s1zuC2z2exU3wAAAAAAAAAAAI2xaNwit7dpMViUF5OnM2+dkdHa8DM0H1n2iNvHAAD2FBUVOVVv/PjxWrNmjaqqquTn56dRo0Zp6dKlbh4dAAAA4DiXAiwyMjLUvn172+9JSUlKSkrSu+++awuy+OlPf6oXX3xRDzzwgKZNm6bhw4e7PGgAAOBboqKitHLlSk8PAwAAAAAAAAAAoFlriiAPRxDgAfgeTz5kDwAAAGgKLgVYdO3atc7XQ0NDNX36dE2fPl179uzR3Llz9dlnn+nTTz9Vjx49NH36dE2aNElt27Z1pXsAAAAAAAAAAFoEq9WqHX/fodUvr1ZlcaUmr52s2BGxduvkn8zXu3HvNqr9xOcSddf7d9ktYzFblJqcqn2f7lPu4VyZy80K7xKunvf1VNLMJIVGhzaqr/xT+dr6zlYdW3FMBacLFBAaoA59p+VocQABAABJREFUOihhcoISJiXIYDQ0qh0AAAAAQMvFQ/YAAADQXDW8fqSLgoODFRQUJH9/f1mtVh09elQvvPCCOnbsqEceeUTff/99Uw8BAAAAAAAAAIBmK+94nuaPmK+VP1upyuJKj4yhJLdEHw//WCueXaHSvFLd/NLNGvOXMYqIi9CmNzbpg/4f6NSGUw22c3T5Uc3pP0fb3t2mqIQojX1rrIbMHKKLGRf1zRPfaMHtC1R+qfwabBEAAAAAAAAAAIDjXFrBYsOGDbrhhhvUvn37Gq+Xl5frq6++UnJysjZu3Cjp8tO3JKlt27aaPHmy/Pz8tGDBAn355Zfq2bOn3nzzTd19992uDAcAAAAAAAAAAK9RfdUKo59RnZI6KWtrlsPtjPrTKN0w/ga7ZVpFtKo3z2K26IvxX+jMtjPqPKyzHl/9uPyD/CVJic8m6vvffK+U2Sn6/L7P9dT2p9T2+rpXp85Oy9biCYtlLjVr7DtjlTQzyZaX+GyiPrnlE2V8n6ElE5fokWWPOLydAAAAAAAAAAAATc2lFSxGjhypVatW2X7ft2+ffv7zn+u6667TpEmTtHHjRltgxejRo/XFF1/ozJkzevPNN/XGG28oMzNTX3/9tcLDw3Xvvffq888/d21rAAAAAAAAAADwEutnrdfKn61Ul+Fd9Mz+ZxQ/Nt6pdsJiwtSuVzu7P6FRofXWT01OVWZKpmSQxiWPswVXXDFi1ghFdo9UWX6Zvnv+u3rbWf7scplLzeo4pGON4ApJCooI0l3v3yVJOvqvozr49UGnthUAAAAAAAAAAKApubSChdVq1aVLlzR37lwlJydr586dttclKSYmRk888YSefPJJxcXF1arv5+enH//4x7rvvvv04IMP6o033tDDDz/sypAAAAAAAAAAQJJUXFzsVL2cnBzNmDFDqampGjx4sObMmaOoqCiH2jCbzU71Dd9itVo1bu44DXpykEfHkDI7RZLU5eYuat+7fa0yfv5+SpiSoLWvrNXRfx3V2T1nFZ0QXaPMidUndGbbGUnSoGl1b0/siFhFXh+pvPQ8bXx9o3r/pLebtwYAAAAAAAAAAMA1LgVYSNKzzz5rS1utVhmNRt15552aNm2a7rnnHvn5+TXYhsFg0NixY7VixQpXhwMAAAAAAAAAkqTQ0Pqf2N9Yq1atUny8c6sKrF271uX+0bKNeG2EDAaDR8eQtTVLhacLJUlxo2s/KOmK+DHxWvvK5WP64OKDtQIsDiw+YEt3G92t3na6je6mvPQ8nd19VnnH8hTZPdKV4QMAAAAAAAAAALiVywEWV1ar6NKli6ZOnaqpU6eqU6dODrVRVlamb775RiaTy8MBAAAAAAAAAMArNEVwhcVskbncrICQgEaVz1iTYUtHD4iut1xUQpQMRoOsFmuNOlecXHNSktSqTSu16dqm3naiB17tI2NNBgEWAAAAAAAAAACgWXE5omHkyJF68cUXNXbsWKe+DMrMzFSPHj1UUVGhgQMHujocAAAAAAAAAJAkFRUVOVVv/PjxWrNmjaqqquTn56dRo0Zp6dKlDrVhNpu1a9cup/oHHHXuwDl9PfFrZaZk6tJ/LslaZZV/sL86JXVSv8f6KeHxBBlNxjrrnt9/3pYO7xxebx+mQJOC2werOKdY5w+cr5FXWVqpiycuSpJad25td6zV+zh34FyD2wYAAAAAAAAAAHAtuRxg8eSTT+qOO+5wun5ERITeffddSVL37t1dHQ4AAAAAAAAASJJCQkKcqrdgwQJNmTJFO3bsUGJioubNm+dwW2az2am+AWds+e8tatujrW766U1qd0M7VZVX6dSGU0pLTlPGmgylfZimB5c8qLCYsFp180/m29IhUfaP89CoUBXnFKu8sFylF0sVFBEkSSrILJDVYrWVsad6HwUnCxq7iQAAAAAAAAAAANeESwEWn3zyiYYNG+bSAMLCwvT000+71AYAAAAAAAAAuEtUVJRWrlzp6WHAy5jLzaoqr7L9XllUec36vuEnN+j+z+6XKfDqJf/eD/TWgCcGaP6I+cramqVF4xZp6qapNcpIUvmlclva1Mr+VwamoKv5FZcqbAEWFZcqGt2Gf5B/nX0DAAAAAAAAAAA0By4FWEyePLlR5Xbt2qVu3bopPLz+5cUBAAAAAAAAAPBWKbNTtH7WetvvBcamX52hdafWmpkxU2Edw+Tn71crP2ZgjG793a1a9cIqZadma+ecnUqamVSjjLn06morfgG126iuen5lydUAksrSyjrLONIGAAAAAAAAAABAc2B0pbLValX//v0VGRmpyMhIdevWrc5yf/nLX9SxY0e9+uqrqqqqqrMMAAAAAAAAAADeavivh+vlgpdtP8/seabJ+zSajGoT26bO4IorBj4xUDJcTu/+eHet/OqrUlRV2L9+Xz3fP/jqShTVV6Vwtg0AAAAAgHOKi4ud+jlx4oRuv/12tW3bVrfffrtOnDjhVDsAAABAS+PSCharVq3S/v37JUnt27fX6NGj6yw3YMAALVu2TK+//rqOHDmizz//3JVuAQAAAAAAAABoVkyBJpkCr15y9w9tHsEDQZFBiugWoYvHLypnX44qiioUEBpgyw8MC7SlzWXmupq4ml9ttYuAsIA60w21UX21i+p9AwAAAACcExoa6nIbq1atUnx8vFN1rVary/0DAAAAzYlLK1h8++23kqTnnntOp0+f1ocfflhnuZdeeknZ2dkaP368Fi9erK+//tqVbgEAAAAAAAAAQCOFdAi5nLBKRTlFNfLaxLaxpYtz7D959ErdwNaBCooIsr0e3iVcBqOhRpn6VO8jPDa8wbEDAAAAAAAAAABcSy6tYLFt2zYNGjRIf/vb3xosGxYWpi+++EJ9+vTR3Llz9ZOf/MSVrgEAAAAAAAAAQCNYLVefJmr0q/ncpfZ929vSBacLFDMops42zOVmlZwvuVynT/saef5B/oroFqG8Y3kqPF1odyyFWVfzO/Tp0LgNAAAAAADUq6jIfqB7fcaPH681a9aoqqpKfn5+GjVqlJYuXerm0QEAAADex6UVLI4dO6b77ruv0eX9/Pz08MMPKzU11ZVuAQAAAAAAAADweRte36DD3xxusFzR2cs32xiMhqurWfyfuFFxtvTZ3WfrbSNnT44tUKN6nStiR8VKksryy5R/Kr/edrLTsuvsGwAAAADgnJCQEKd+FixYoDFjxqht27YaM2aMFixY4FQ7AAAAQEvjUoBFcXGxOnbs6FCdLl26qKCgwJVuAQAAAAAAAADweWt/u1Y7P9hpt8yl7EsqOHX5mnzMoBj5B/vXyO+U1EmtO7WWJGV8n1FvOydWn7Cle0/oXSu/z4Q+trS9dq7kRQ+IVmT3SLtjBwAAAAA0naioKK1cuVK5ublauXKloqKiPD0kAAAAoFlwKcAiIiJCWVlZDtU5c+aM2rRp40q3AAAAAAAAAABA0unNp1VeWF5v/s45VwMwBk0fVCvfYDBo+G+GS5IyUzKVezi3VhmL2aLd83ZLkq6/+3pFJ0TXKtNtdDd1HHL5gUxpc9PqHMupDad04egFSdIt/3VLvWMGAAAAAAAAAADwFJMrlRMSEjR//ny9+OKLCgoKarB8aWmp5s+fr4SEBFe6BQAAAFo0i9miPQv26OCXB3V291mVXCiRX4CfWndqra63dtWNz9yomIExDbZzevNpbX9/uzJTMlV8rlgh7UPUaWgnJT6bqNgRsY0eS2pyqvZ9uk+5h3NlLjcrvEu4et7XU0kzkxQaHeri1gIAAABwRcWlCi2bvkzj/7/x8gvwq5F3/Lvj2vTnTZKkrrd21cAnBtbZxuBpg7V/4X5lpmRq2bRleuy7x+QfdHWli3WvrVNeep5atWmlsW+PrXcsd//jbn08/GNlbcnS9ve366af3mTLK8sv04rnVkiSetzTQ70fqL0KBgAAAAAAjlo0bpGnhwAAAAAPytmbo9DoUIV0CHFbmy4FWEyYMEFPP/20xo4dq48//ljdu3evt+zx48f15JNPKiMjQy+//LIr3QIAAAAtVtHZIi28e6Gy07LlF+CnhMkJikqIUnlBuY7/73GlJadp10e7dNtrt+m2395Wbzvrf79e62etl6mVSQOfGqgOfTso91Cu0pLTdHDxQQ17cZjG/GWM3bGU5JZo4T0LdWbbGbXr1U43v3SzAkIDlL48XZve2KRdH+3Sg189qK63dnX3fwMAAADgM/Z+uteWztmbY0sfX3VchVmFkqSQqBDFj4mvVTcqIUo5e3J04IsDyk7NVp+H+yiiW4Qqiyt1ct1JHVpySLJK3e/srvs/u19GU92LWhtNRj209CEtvGehMlMy9eHgDzXgiQEKCAlQ+op0pS9PV3C7YE34aoLaXt+23m2JGRSjCV9O0JJHl2jlz1cqc2OmYkfFqvRCqdKS05R/Ml9xo+J0/8L7nf3vAgAAAAAAAAAALdw3U7/R4KcHq9OQTg2W/fInX+riiYvq9eNeGv/p+BoPkHKWSwEWTzzxhN577z1t2rRJN9xwg2666SYlJiaqU6dOatWqlcrKypSVlaWdO3dq27Ztslgs6tOnj5544gmXBw4AAAC0NFarVV/+5Etlp2XL1MqkqZun1lip4pbf3KLVL6/Wpj9v0rrfrVNEXIT6P9a/Vjs75+zUulfXydTKpElrJtWYbPR/vL8+ueUTbX5zs0I6hGjYC8PqHIvFbNEX47/QmW1n1HlYZz2++nHbBCTx2UR9/5vvlTI7RZ/f97me2v6U3ZusAAAAANRv6eNL63w95U8ptnTX27rWGWAxY/cMZW3L0uF/HtbpTaeV9mGaSi+Wys/fT6HRoeo3sZ/6P95f3cfW/3CkK4LbBWtqylSlJqdq74K9SpmdoqryKoV3CdewXw1T0i+SFBYT1mA7Pe7poRl7ZmjrO1uVvjxdR749Iv8Qf3Xo20G3/u5WDZg8QAajocF2AAAAAAAAAACAb9o9b7e6je7WqACL7nd214lVJ3T4n4eVMjtFI38/0uX+XQqwMJlMWrZsmUaNGqWTJ09q69at2rp1a51lrVar4uLi9K9//Ut+fn51lgEAAAB8WWZKpk5vPi1JuvGZG2sEV1wxYtYI7Zm/R0Vni5QyO6VWgEXx+WKtenGVJGnIzCG1JhoxA2M07IVhWj9rvdb+dq36PtxXrTu1rtVPanKqMlMyJYM0LnlcrejuEbNG6ODig8o7lqfvnv9Ojyx7xIUtBwAAAHzXq9ZXXarfaUinRn3B0BhGk1GJzyQq8ZlEl9ppE9tGd7xzh+545w63jAsAAAAAAAAAAKAud753pyTp60e+1sHFB90SYFH3euAOiI2N1a5du/T0008rMDBQVqu11k9gYKCeeeYZpaWlqUuXLi4PGgAAAGiJ/rPjP7Z0xyEd6yxjCjQpKiFKknT+4HmVF5bXyN/27jZVFFVIkgY9NajONgY9NUgySOYyszb/dXOtfKvVqpTZl5+W2+XmLmrfu32tMn7+fkqYkiBJOvqvozq752xDmwcAAAAAAAAAAAAAAAAAbhc7KlYFmQVuaculFSyuCA8P1wcffKC//OUvSklJ0bFjx3Tp0iWFhYWpe/fuGj58uMLCGl46HAAAAPBlVRVVtvQPV4yozj/4al5FcYUCWwfafj/41UFJl58YG9k9ss76rTu1Vrte7ZR7KFeHvjqksW+NlcFgsOVnbc1S4elCSVLc6Lh6xxE/Jl5rX1l7ud/FBxWdEG1v8wAAAAAAAAAAAAAAAACgYYaGi1xhLjfr2Mpj8gvwc0vXbgmwuCIsLEx33nmnO5sEAAAAfMaVlSkk6fyh8+p5b886y+UeypUkBbYOVEiHENvrhWcKdeHIBUlS9AD7wQ4xA2OUeyhXhVmFykvPU9sebW15GWsybGl77UQlRMlgNMhqsdaoAwAAAAAAAAAAAAAAAAAN2fruVm17d1ut1//3F/+rNf+1psH6lkqLis8Vy2K2KO5H9T9I1hFuDbBojIyMDG3cuFGTJk261l0DAAAAzVr87fGKHhCts7vPavvftuum525SQGhAjTKHlh5S7uHLARYDnxooo5/Rlndu/zlbunXn1nb7qp5/7sC5GgEW5/eft6XDO4fX24Yp0KTg9sEqzinW+QPn6y0HAAAAAAAAAAAAAEBLVFxc7FS9nJwczZgxQ6mpqRo8eLDmzJmjqKiohiv+QEhISMOFAKAZK8svU/7J/FqvF58vlhy4HSkgJEAjZo1wy5iueYDF5s2b9cQTTxBgAQAAAPyA0c+oR//9qP456Z86/t1xJd+UrFGvj1L0gGiVF5YrfUW6NvxhgySpz0N99KM//qhG/eqTjZAo+xdRquf/cJLiSDuhUaEqzilWeWG5Si+WKigiyG55AAAAAAAAAAAAAABaitDQUJfbWLVqleLj452qa7VaXe4fADwpekC0BkweUOO13fN3q+stXRXRLcJ+ZYPkH+yvtj3aqvcDvRV2XZhbxuTWAIvi4mIVFBTIbDbXWyY3N9edXQIAAADNkrncrKryKtvvlUWVjaoXGhWqR//9qA59fUirX16tL3/yZY38nvf21KBpg9Tjnh616lZcqrClTa3sn+r7B/nXWU+Syi+VN7odU9DV/IpLFQRYAAAAAADgYYvGLfL0EAAAAAAAAACgUXrd10u97utV47Xd83dr8NOD1W9iP4+MyeUAi+zsbL3++utatmyZzpw5444xAQAAAF4vZXaK1s9ab/u9wFjQqHqXsi9pxXMrdPifhxUWE6ZRfxylqP5Rqqqo0sl1J7Xr410qvVgqv0A/xY+p+QSLytKrQRx+AX52+6meX1lSM/jDXGqus5yj7QAAAAAAAAAAAAAA0JIVFRU5VW/8+PFas2aNqqqq5Ofnp1GjRmnp0qVuHh0AeKfY22IVEhXisf5dCrA4efKkhg4dqnPnzjm0zJDBYHClWwAAAKDZG/7r4Rr6/FDb75mZmXq739t265TmleqT4Z/o4omLat+7vaZsmKLgtsG2/Bvuv0H9H++vebfO06e3f6oxb47RsBeG2fKrr0pRVVEle6rn+wf718irviqFK+0AAAAAAAAAAAAAAFqu4uJip+vm5ORoxowZSk1N1eDBgzVnzhxFRUU53E5IiOduwHWl/wULFmjKlCnasWOHEhMTNW/ePI9vCwA0F5PXTvZo/y4FWLz66qvKyclReHi47r33XvXu3VsREREKDAyst86WLVuUnJzsSrcAAABAs2cKNMkUePV02z+04eCDNa+s0cUTFyVJd7x3R43giis6JnZU0i+TlDI7Rat+tUqdb+6szkM7S5ICwgJs5cxl5lp1q6u+2kX1epIUGHb1fL6hdqqvdvHDdgAAAAAAAAAAAAAALVdoaKhb2lm1apXi4+OdquvIw8Gbk6ioKK1cudLTwwCAFuPE6hPa+KeNmrzG9eAMlwIsVq9ere7du2vz5s1q165d4zo0mQiwAAAAAH7AarFq/+f7JUmBrQMVNyqu3rI33H+DUmanSFZp5z922gIs2sS2sZUpzrH/pJDq+dXrXfk9a2uWrVzrjq3rbacop8g25qCIILt9AgAAAAAAAAAAAAAAAIC7FeUU6dT6U25py6UAiwsXLugXv/hFo4MrJKl///763e9+50q3AAAAQItTfL5YZRfLJEnhXcJlMBjqLVs9IOLs7rO2dIe+HWzpwtOFdvsrzLqa36FPhxp57fu2t6ULThcoZlBMnW2Yy80qOV9yuU6f9nWWAQAAAAAAAAAAAAC0TEVFRU7XHT9+vNasWaOqqir5+flp1KhRWrp0qRtHh2uhuNj+wx/rk5OToxkzZig1NVWDBw/WnDlzFBUV5XA7ISEhTvUPwDtUVVQpMyVT5w+dV3lBuSxmS71lc/bkuK1flwIsoqOjHQqukKR+/fqpX79+rnQLAAAAtDgG49WAioaWMLVaruZbqq5OHFp3bK22PdrqwtELNQIv6pKdln25TqfWirw+skZe3Kg4rdVaSZcDOHrd16vONnL25NjGYm/FDQAAAAAAAAAAAABAy+PKze0LFizQlClTtGPHDiUmJmrevHncLO+FQkNDXW5j1apVio+Pd6puQ/dXAPBeaR+lafWvVqssv+ya9210pfJdd92lXbt2OVTn/Pnz2rBhgyvdAgAAAC1OcNtgBbYOlCTln8yvETjxQ3nH82zp8C7hNfJ6T+hta+PiiYt11i88U6jcw7mSpBseuKHWahmdkjqpdafWkqSM7zPqHceJ1Sdq9QsAAAAAAAAAAAAAQEOioqK0cuVK5ebmauXKlU6tXgAAaJkOLT2kZdOWqfRiqaxWa6N/3MWlFSx+85vfaPjw4Xr44Yc1bNiwRtX57rvvNGnSJFVVVbnSNQAAANCiGIwGXX/39dq/aL8qiyuVviJdPcf1rLPsgS8O2NLX3319jbwhPx+ibe9uU0VRhdLmpulHf/pRrfq7PtolWSVTK5OG/b/a5/EGg0HDfzNcK55docyUTOUezlW7XjVXrrOYLdo9b7dtDNEJ0Y5uMgAAAAAAAAAAAAAA8GJFRUVO1Rs/frzWrFmjqqoq+fn5adSoUVq6dKnD7RQXFzvVf05OjmbMmKHU1FQNHjxYc+bMcSrIh1VXgKax9a2tkqR+E/tp4JMD1b53ewVFBMkvwK/eOns/3at/Tv6nW/p3KcDCYrFozpw5euyxx3TrrbfqnnvuUc+ePRUWFiajse7FMXJzc13pEgAAAGixbnv1Nh359ogqiyv175n/VszAGNtKElecWH1CO/6xQ5IU2T1Sg6cNrpEf0iFEY94co+XPLNfWt7eq1/he6pjY0ZZ/ds9ZbfrLJknSyD+MrNX+FYOnDdb+hfuVmZKpZdOW6bHvHpN/kL8tf91r65SXnqdWbVpp7Ntj3bL9AAAAAAAAAAAAAADAezgbYLBgwQJNmTJFO3bsUGJioubNm+dUWwaDwan+q1u1apXi4+OdquvOJ+aj5bNardrx9x1a/fJqVRZXavLayYodEdtgvey0bB348oDtIanlBeUKCA1QRLcIxY6M1eCnB6vt9W3ttrHutXVaP2t9o8Y5bcc0XXfjdXbL5J/K19Z3turYimMqOF2ggNAAdejTQQmTE5QwKUEGo2t/mzl7c3TD+Bt0/6f3N76SwX1/ky4FWMTGxtrenBYsWKAFCxa4ZVAAAACAL2rXs50eWfaIvn74a+Vn5Osfff+hhMkJiuoXparKKp1af0oHvzooa5VVHfp10MPfPCxTq9qn9DfOuFFFOUXa8PsNmj9yvgY9NUjt+7RX7uFcpSWnqbK4UkNfGKphL9S/Cp3RZNRDSx/SwnsWKjMlUx8O/lADnhiggJAApa9IV/rydAW3C9aEryY0OEkDAAAAAAAAAAAAgJboWj8932w2q7S0VMXFxTKZTDw9H40+Bn947Hh6BYeoqCitXLnSqbqAN8o7nqdvp36rUxtONbpO/sl8LX18qTJTMiVJnW/urJt+epNad26torNF2r9ov7b8dYu2vbdNP/rTj+zeB+ROR5cf1ZKJS1R+qVy9H+itpF8mqeRCidKS0/TNE99o76d79dDShxQYFuh0H1aLVd3v7O5QnRvG36AuGV2c7rM6lwIsJOciPdwRMQYAAAC0RHEj4/Tc4ee0+5PdSl+ergOfH9DOD3bK6GdUcPtg9binh274yQ3q+1Bfu8vejXh1hOLHxGvbe9t08KuDKvmgRMHtghV/e7wSn0tU3Mi4BscS3C5YU1OmKjU5VXsX7FXK7BRVlVcpvEu4hv1qmJJ+kaSwmDB3bj4AAAAAAAAAAAAAeI3Q0FCX2+Dp+XCFrx+DRUVFTtUbP3681qxZo6qqKvn5+WnUqFFaunSpm0cH1Fy1wuhnVKekTsramtWourmHc23BFWPfGaukmUk18oe/PFz/nPRP7Vu4T6teXKWAsADd+PSNdtt87tBzDfbbJrZNvXnZadlaPGGxzKXmWmNKfDZRn9zyiTK+z9CSiUv0yLJHGuyrPm17tJW53OxQHf9gf7Xp2sbpPqtzOcDi6aefVlJSUsMF/8+WLVuUnJzsarcAAABAixUUEaShzw/V0OeHutRO52Gd1XlYZ5faMJqMSnwmUYnPJLrUDgAAAAAAAAAAAAAAgDs5u4LGggULNGXKFO3YsUOJiYmaN28eK8KgSayftV7rZ61X/Nh4jUsep10f7Wp0gMUV3cZ0qxVcIUlGP6Pu+fAeHfvfYyq9UKrvX/5eAyYPkKlV/eEB7Xq1c3gbqlv+7HKZS83qOKRjrTEFRQTprvfv0vyR83X0X0d18OuD6v2T3k71M+CJATq85LBueu6mRtfJ2pql1A9Tdd/H9znVZ3UuB1jccsstmjhxYuM7NJkIsAAAAAAAAAAAAAAAAAAAAF7tWj8932w2a/PmzRo2bJhMJpdv/0QL0Nhj8IfHjq+v4BAVFaWVK1d6ehjwAVarVePmjtOgJwc53UbP+3rWmxcQEqDuY7tr38J9Kssv06mNpxQ/xrkVaRpyYvUJndl2RpI0aFrd2xM7IlaR10cqLz1PG1/f6HSAReJzicr4PkPLn1uuMX8eo4DQgAbr5B3P0575ezwfYHHzzTerQ4cODtWJj4/XpEmTXOkWAAAAAAAAAAAAAAAAAADAo6710/PNZrOCgoIUEhJCgAUkNf4Y/OGxwwoOwLUx4rURMhgMTtW97sbr9OjKR3Vd4nV2y4V3DbelCzILnOqrMQ4sPmBLdxvdrd5y3UZ3U156ns7uPqu8Y3mK7B7pcF8b/rBBUQlR2vXRLu39//aq621d1bZnWwWGBcpgrPv/M2dPjsP91MelT9iNGzc6XCcpKUlJSbWXKQEAAAAAAAAAAAAAAAAAAGjpeHo+PI1jELg2nA2ukKTgdsHqfkf3BsuV5ZfZ0gEhDa/0cEVFcYX8Avzk5+/XqPIn15yUJLVq00pturapt1z0wGhbOmNNhlMBFuteW2f7v7NarTq28piOrTzmcDvOIoQRAAAAAAAAAAAAAAAAAAAAAAAvk5+RfzlhkDrf3Nlu2d3zd2vX3F06f/C8SvNKJUlhHcMUNypOSb9IUsygmDrrVZZW6uKJi5Kk1p1b2+0jvPPVFTXOHTjXyK2ozWq11pm2x5WAlurcFmBx5MgRLVy4UNu2bdPZs2c1Z84c20oVr732miZOnKgePXq4qzub3Nxcvfvuu1q6dKlOnjypgIAA9ezZU4888ohmzJihgIDGR+LU5/Dhw/rHP/6hdevWKSMjQ2VlZYqIiFC/fv10//33a+rUqQoKCnLD1gAAAAAAAAAAAAAAAAAAAAAAYF9ZQZlOrjspSeo5rmeN4Ia6fDPlG/X6cS/d/tfbFdIhRJf+c0n7F+3X3gV7tffTvbr1t7dq5KyRteoVZBbIarkc5BAaFWq3j5CokKv1ThY4uEVX3f/p/eo3sV+jy+/9dK/+OfmfTvdXncsBFpWVlZo5c6Y+/PDDGtEhJSUltvQf//hHvf7663r66af19ttvuyXoQZK2b9+uH//4x8rOztaYMWP0zDPPqLS0VPPnz9fMmTM1b948/etf/9J1113ndB9///vf9ctf/lKVlZUaMGCAXnjhBUVFRenQoUP65JNPtGbNGr333ntauXKlunXr5pbtAgAAAAAAAAAAAAAAAAAAAAA0D+Zys6rKq2y/V1yq8OBoLtszf4/MZWb5BfjpR2/8yG5Zg59B9392v/o+1LfG64OeGqS1v1urDX/YoA2/36DAsEANe2FYjTLVt9XUyn74gX+Qvy1dfqm8sZviOkPjV7poiMsBFpMmTdKXX35ZY0A/XF7j1Vdf1SeffKI5c+YoJydHX331lavdKjMzU/fcc4/Onz+vX/ziF3r77bdteT/72c905513au3atbr33nu1adMmBQYGOtzH//7v/+qnP/2pJGnixImaP3++TKar/2XPP/+8EhMTdfToUd1zzz3as2eP/P3962sOAAAAAAAAAAAAAAAAAAAAAOBlUmanaP2s9bbfC+T86gzuUHyuWBv+sEGSNOqPo9T+hvb1lk36RZIGPz1YYTFhdeaPeG2Ejnx7RDl7crT2d2vV/7H+Co2+ulJFZWmlLe0X4Gd3XNXzK0sq7ZSs37jkceo0tJNDdeLHxGvy2slO9fdDRlcqf/fdd/riiy8UHh6u2bNna8+ePTpy5Eit6I9XXnlFhw4d0uOPP66lS5fq22+/dWnQkvTiiy/q/Pnz6tKli954440aeYGBgUpOTpafn59SU1P1/vvvO9XHX/7yF0mSv7+/3n333RrBFZLUtWtXvfLKK5KkQ4cO6Z///KdT/QAAAAAAAAAAAAAAAAAAAAAAmqfhvx6ulwtetv389OBPPTYWS5VFSyctVUluifo+3FdD/99Qu+VbtWlVb3CFJBmMBg2YMkCSZC41a9+ifTXyq69KUVVRJXuq5/sHO7dwwaAnBykiLsKhOiEdQhR7W6xT/f2QSwEWH3/8sUJDQ7Vlyxa99NJL6tevnyIjI+ssGxAQoLlz56pHjx76+OOPXelW6enpWrx4saTLK2jUtTpFfHy8Ro4cKUn685//LLPZ7HA/O3bssLXVrl27OsvcdNNNtvSWLVsc7gMAAAAAAAAAAAAAAAAAAMBRxcXFTv2cOHFCt99+u9q2bavbb79dJ06ccKodAPAlpkCTAlsH2n4CwgI8NpaVP1+p4/97XHE/itN98+6TwWBwuc3rbrzOls7anFUjr/q2msvs35NffbWLwLDa9/g3laxtWVo2fZlb2jI1XKR+W7du1ZQpU9SzZ8/GdWYy6aGHHlJycrIr3eqrr76yrZIxevToesuNGTNGq1ev1vnz57Vu3Tq7ZetSUVEhSQoKCqq3THBwsC3NCQMAAAAAAAAAAAAAAAAAALgWQkNDXW5j1apVio+Pd6rulfs4AQDXzupfr9bOf+xU7MhYPfzNwzIFuhQOYBPSIcSWLjpbVCMvvEu4DEaDrBarinKKfli1huKcq/fTh8eGu2VsjZF3LE+7PtqlcR+Oc7ktl/5Hz507pwEDBjhUp0uXLrpw4YIr3WrNmjW2tL3+Bw4cWKOOowEWCQkJ2r59u44dOyaz2SyTqfZ/16FDh2zp66+/3qH24XsWjVvksb4tBos6Pt/RY/0DAAAAAAAAAAAAAAAAAAAAcM6a367Rpjc2qettXTXxXxPlH+zvtratlqtBcwa/miti+Af5K6JbhPKO5anwdKHddgqzruZ36NPBqbGc2nDK4Tq5h3Kd6qsuLgVY+Pv7q6yszKE62dnZNVZ9cMb+/fslSWFhYQoPrz+ypXPnzrb0gQMHHO7nV7/6lR544AFdunRJf/vb3/TLX/6yRn5VVZX+/Oc/S7ocCfroo4863AcAAAAAAAAAAAAAAAAAAICjiorsP0W8PuPHj9eaNWtUVVUlPz8/jRo1SkuXLnXz6AAA7rTutXXa+PpGdbmliyYub3xwRc7eHB359oj6P9ZfbWLb1Fuu+qoVYTFhtfJjR8Uq71ieyvLLlH8qX2261t1Wdlq2LR03Kq5RY/yheSPmyWAwNFywiRhdqRwXF6cVK1Y0urzZbNZnn32m7t27O91neXm5zp49K0mKioqyW7Z6/smTJx3u6yc/+Ynmz5+v0NBQvfjii3rhhRe0fft2nTx5Uv/+9791yy23aNeuXWrXrp2WLFmimJgYh/sAAAAAAPz/7N15XNVl+v/x92HfQdkkQUFzX0CNRFwyi7RJcyxtcUkzW6zma03rVDNWU1MzTZM1zZK2mZaaTVqmTe4Lmlqg4pqoCMIIggjIzuGc3x/+PELA4cA5Ssrr+XjweHzOua/7uu4P53jkA+c6NwAAAAAAAAAAAICm8vb2btbXggULlJCQoMDAQCUkJGjBggXNygMAuDQ2v7pZm17apIjBEZq0apLcvN3qxMy9Zq42vrSxzv0nk09qw+83KHN7ptUaNccjhkTUGe81oZflOG1dWoN5zo+1i2mntle3tVrTGrPZ3OQvR7FrB4tbbrlFr7/+uv7+97/rN7/5jdXY0tJSzZgxQz/99JNefPHFZtc8e/as5djDw8NqrKenZ73zmuKee+7RyJEj9bvf/U5z5szRm2++aRkLDQ3VK6+8ounTpzepuaKwsFD5+fmW2+7u7nJ3d2/W+prKZDBdkjr45TEbzDKZTDIajS29FLRSRqOR5yBaFM9BtDSTiZ/DWrPWfA3Qml93+b8HPAfAc6B14/EH1wCt25kzZ2rt5n0prwFgmyv5dbqlrwMdzWwwyyzzub9z6Mo6tysNj9Xl5Up9vFr6df1ivAZfbo9VSz8GLak1nzta9u8Ard3l+vOvI1/fef1pXRx1PRsYGKgVK1bUyY0r15X8uxBcXDx3GnapvieJf07Uhhc2KHxQuCZ9O0luPnWbKyTpZNJJhfQOaTDPkW+PqPddvesdq66s1q4PdkmS3Hzd6o3rdGMntR/YXlk7spT8frL6Te9XJyZ9c7pOHz4tSRr6/NBGz82aoc8PVacbO9U7Zq42q6KoQnk/5enw14dVmFGokW+NlFewV73xTWVXg8Xjjz+uf/zjH3rssce0aNEiTZo0SVFR57bySEtL044dO5Senq5t27ZpyZIlOnXqlNq0adNoM4Y1ZWVllmM3t/qfIPWNl5aWNqveJ598oqefflo5OTm6/fbb9etf/1pt27ZVenq6PvzwQ82ZM0cFBQV64YUX5O/vb1POmJiYWrenTp2qadOmNWt9TZUflt94EK5IZpllzDj3Yu7kZNfmNUCzmEwmZWRkSOI5iJbBcxAt7fTp0y29BLSg1nwNkJiY2KL1WxL/94DnAHgOtG48/uAaoHXr27dvrduX8hoAtrmSX6db+jrQ0cwyq8y3TPnKl0GGll4OrOCxurxcqY9XS/8u6mK8Bl9uj1VLPwYtqeab6xtSXlCuwysPK21dmrJ3ZetM2hlVFlfKzcdNgV0CFXVjlGJnxsq/Q+PvPzmx7YR2vrtTGYkZKjlVIu9gb4UPClfsw7GKHB5p05pNRpOS5iVp78K9yjuUJ2OFUf4d/NVtbDfFzYqTTzsfm/KgZf8O0Npdrj//OvL1vTW/9rZGV/L1LC4unjtoLp47DbPlGsBe297cpnXPrpNXsJeGPDtEJ5NONjtXyqcp6ja2m3rc1qPW/aZqk1Y+slL5R86dz01/vUlegfU3Ktzyz1v04ZAPlfl9pna+u1PXPnqtZay8oFyrHlklSeo6uqt6ju/Z7LVKUnCPYEVeF9lo3JBnhihlYYo2/GGDZmyfYVfN8+xqsAgKCtLnn3+uW2+9VTt27NCOHTskSQaDQQ888ECtWLPZLHd3dy1dulQBAQHNrllzV4rKykqrsTXHa35SlK3mzJmjxx9/XJL0z3/+UzNnzqw1/sADD2jixIn661//qq+++kobN27UVVdd1Wje3bt3KyLiwtYpl7JrPetvWZekDn55zAazrupwleLj4+XiYtc/faBZzndr8hxES+E5iJZ2/mITrVNrvgYYMmRIi9ZvSfzfA54D4DnQuvH4g2uA1i0lJUXt27e33ObTa395ruTX6Za+DnQ0s8GsfOWrbXZbGcy//DcWt2Y8VpeXK/XxaunfRV2M1+DL7bFq6cegJWVmZlodP7HthOaPmK/qimrJIPUY10O97+4tdz935R/J155P9mjr61u1852dGvvRWPW6o1eDuTa9vEmbXtokFw8X9ZvRTyG9Q5R3ME/J85J1YOkBxT8Vr4S/JFhdT2leqT4b/ZmydmQpqHuQBj8zWG4+bkpdmaqtr2/Vrg926Y4v7lDHYR2b9f1obVry7wCt3eX6868jX99b82tva3QlX8/i4uK5g+biudOwxq4BzktZmGI5zknJsRwfXXNURZlFkiTvUG91Tuhca96h5Ye05sk1kqTS3FItHru4Wev07+AvjzYeKj9Trs/Hf64uN3dR1I1R8mzjqaLMIu1bvE+5+3Pl5Oqkm968SQMeGNBgrrD+YZrw+QR9OelLfft/3ypjS4YiR0Sq7HSZkuclq+B4gaJGROm2z25r1lrPu/nvN6v9te0bD/z/+k7uq2Nrj2nzq5uV8Gfr10K2sPuZftNNN2nLli2aPn269u/f32Bc79699dFHH2nAgIa/6bbw9fW1HJeXl1uNrbnbRc15tsjMzNTTTz8t6dwPoT9vrpAkZ2dn/fvf/9bKlSuVmpqq++67T99++22juf39/dW2bdsmrcdRnMx0j7VWJpnk5OQkFxcX/pNDi+E5iJbGcxAtiS7+1q01XwO09tdc/u8BzwHwHGjdePxbN64BWrc2bdq02DUAbHelvk639HWgo5lkkkEGGcyGK+7crjQ8VpeXK/XxaunX9IvxvbzcHquWfgxaUmPnXlFUoeqKahmcDZr07aQ6b54a9sIwfTTsI53ae0rLpixTSJ8QBfcIrpPnx3//qI2zN8rFw0X3rL9H4QPDLWN9p/TVR0M/0rY3tsk7xFvxT8bXuxaT0aQl45Yoa0eWIuIjNGXtFLl6ukqSYh+O1brn1inxtUQtHrtYM3bOUGCXwKZ+O1qdlvw7QGt3Obw21seRr++t+bW3tbpSr2dx8fHcQXPx3Kmfrd+PZVOW1Xt/4p8u7ELV8bqOda4RCo4XNHttNUWNiNJvs36rwysOK3VVqk4mn9SmFzepqrRKbr5uatu5rQY/M1jXzLxGAR0DGs3XdXRXPbTnIW2fs12pK1P109c/ydXbVSG9QzTsD8MUMzVGBif7GkivfeTaxoN+psPQDtr6+tZfRoOFJMXGxmrv3r1at26d1qxZoyNHjqioqEi+vr7q0qWLEhISdMMNNziilNzd3dWuXTtlZ2crJyfHamzN8cjIyCbVWbp0qaqqqiRJ48aNazCuTZs2Gj58uFauXKn//ve/Onr0qDp37txgPAAAAAAAAAAAAAAAAFqnmGkxdd44JUkeAR5KeCNBn476VNWV1Up+P1kj3xxZK6Ykt0Rrnjr3CbYDZw2s1VwhSWH9whT/ZLw2vbRJG36/Qb3v6i2/cL86tZLmJSkjMUMySGPmjbE0V5w3/KXhOrD0gPKP5Gv1b1fr7hV323nWAAAAQOs12zy7WfPiHotT3GNxDlmDq6eret3Ry+pOeU0REBmgUXNGadScUQ7J5whVJVWWHUHs5dBWohtuuMFhjRTW9O7dW9nZ2Tp79qwKCwvl7+9fb1zNrVd69WraE+Lw4cOW444drW93WLN5Y/fu3TRYAAAAAAAAAAAAAAAAwMIjwEPtB7ZXz/E9G4y5asBVluO8g3l1xne8vUOVxZWSpP4z+tebo/+M/tr08iYZy43a9uY2jXqr9huezGazEl8790m5HQZ3UHDPurtkOLs6K3patDa8sEGHvzms7D3ZahfdrvGTBAAAAIAWUF1VrZQFKXLzdXNIvku+V0tubq4OHjyoYcOGNTvHiBEjtHbtWknnGhquu+66euOSk5NrzWmKmtu3m81mq7Emk8lyXF1d3aQ6AAAAAAAAAAAAAAAAuLKFx4VrxvYZVmNcvS7sJOHiXvctPQe+OCDp3KfFtr26bb05/ML9FNQ9SHkH83Twi4Ma+beRMhgMlvHM7ZkqOnHuU12jboxqcC2dEzprwwsbztVdeoAGCwAAAACXTPrm9EZjqquqVV5QrryDedq3aJ/yDuWp+6+7O6T+JW+wWL16te655x67GhHGjx+v559/XmazWevWrWuwweJ8E0ZQUJCGDx/epBqdOnWyHB89etRqbM3xDh06NKkOAAAAAAAAAAAAAAAAkPVDluU4ckRkrbGirCKd/um0JKldjPVmh7B+Yco7mKeizCLlp+YrsGugZSxtfZrl2Fqe0OhQGZwMMpvMteYAAAAAwMX28fCPazWKN8ZsNsvV01XXza6/p6CpLnmDhSN06dJFEyZM0Oeff64FCxbohRdekJtb7S09jh07pvXr10uSnnnmGbm41D7Vffv26bbbblNpaak+++yzOjtq3HLLLXrqqadkNpu1dOlSPfPMM/WuJScnR5s2bZIkhYSEKDY21lGnCQAAAAAAAAAAAAAAbLRozKKWXgLQbMZyo9Y/d+59LiF9QtR/Rv9a46f2nbIc+0X4Wc1Vc/zU/lO1Gixy9+Vajv0j/BvM4eLuIq9gL5XklCh3f26DcQAAAABwMZjNZpvinJyd1OmGTrrhtRsU2jfUIbVtarD47rvv9K9//Uv333+/brnlFsv9NXd5sFVJSUmT59TnjTfe0IYNG3T8+HE999xz+utf/2oZq6io0AMPPKDq6moNGDBAjz76aJ35r776qlJTUyVJzz77rLZt21ZrvHv37rrvvvv0/vvvKykpSa+++qqef/75WjEVFRWaNm2aKioqLDmdnZ0dcn4AAAAAAAAAAAAAAAC4MhkrjCovKFfZ6TKd2HZC29/artwDuep1Ry+Nnjtarp6uteILjhdYjr1Dva3mrjlec15T8/iE+qgkp0QVRRUqO1Mmzzae1k8KAAAAABxk6PND1enGhnsVnFyc5OHvobZXt5WLh2P3nLAp2+TJk5Wfn6+tW7cqN/dCV/rx48ebVbQpW3Y0pEOHDlqxYoXGjRunN998U/v27dOtt96qsrIyzZ8/X3v37lVMTIy+/vpreXh41JlvMpksxw11uPzjH/9QWVmZPv30U73wwgv67rvvNHbsWLVt21bp6elasGCBjh07JhcXF/3xj3/UjBkz7D4vAAAAAAAAAAAAAAAA/LIZK4yqrqi23K48W9mk+fsW7dNX935lue3fwV+3fXqbet/du9731dTM39ibh2o2Z/x8XRVnK2zO4+J5YbzybCUNFgAAAAAumeAewYq8LrJFatvUYNG5c2edPn1anTt3rjM2dOjQJu1kcezYMSUmJtq+QisGDhyolJQUzZkzR8uWLdPTTz8tV1dXde3aVXPmzNHMmTPl5uZW79znn39eycnJKisr05///Od6Y9zc3LRw4UI9+OCD+vjjj/X999/rxRdfVFlZmXx9fdW5c2c98cQTuv/++9WtWzeHnBMAAAAAAAAAAAAAAAB+2RJfS9SmlzZZbheqsEnzO4/srClrpqiypFL5qfna+9lefTnpS22cvVGj3h6lLr/qUiu+qqzKcuzs5mw1d83xqtKqWmPGMqND8gAAAADAxXLd7OsU2je0xerb1GDx3Xffad26dRoxYkSdsQcffFATJ060ueCnn37qsAYLSQoKCtIrr7yiV155pUnz+vbtq9TUVJtihw4dqqFDhzZneQAAAAAAAAAAAAAAALjCDPndEA367SDL7aysLL3V8y2b5/uG+co3zNdye9ATg7T2mbXa9sY2fTb6M439aKxipsZYxmvuSlFdWS1rao67ernWGqu5K4U9eQAAAADgYhk+e3iL1neyJcjf31+33XabAgICHFLUbDY7JA8AAAAAAAAAAAAAAABwqbm4u8jdz93y5ebrZlc+g8GgG/98o8L6h0lmaeXMlSrOLraM18xvLDfWl8Ki5m4XP1+Xu6+7zXlq7nZh7/kBAAAAgD1KT5cqa2eWjq45qqydWSo9XXrRatm0g0VDTCZTk+dMmjRJkyZNsqcsAAAAAAAAAABXFLPZrB/+8YPWPrtWVSVVmrphqiKHRzY672TySe3/fL8yEjOUdyhPFYUVcvNxU5tObRR5faQGPDhAgV0CrebY+OJGbXppk03rvP+H+3XVNVdZjSlIL9D2Odt1ZNURFZ4olJuPm0J6hSh6arSi74mWwclgUy0AAACgtTEYDOozqY9OJp+UscyovYv2atDj53bJCIgMsMSV5JRYzVNzvOa887czt2da4vza+zWYpzjnXIOHu5+7PNt4NuVUAAC4ZEpKrP+/2JCcnBw99NBDSkpK0oABA/Tvf/9boaGhTc7j7e3drPoAANvsnr9bO97eoZw9OXXGQqNDFfdYnKLviXZoTbsaLAAAAAAAAAAAgH3yj+br6+lfK31zus1zCo4XaNmUZcpIzJAkRQyO0LWPXiu/CD8VZxdr36J9+v7N77XjnR264U83KP7J+Iu1/FoOrzysLyd+qYqzFeo5vqfiHo9T6elSJc9L1lf3fqWUhSm6c9mdtT41F7iSLBqzqKWXAAAALnOB3S40SJ/ae8pyHNI7xHJcdKLIao6izAvjIb1Cao0F9w62HBeeKDy3Y0Y9jBVGleae+0TY4F7B9cYAAPBL4OPjY3eONWvWqHPnzs2aazab7a4PAKirsqRSSycs1dHvjkqq//U2Z0+Ovrr3K+1bvE93fHGHXL1cHVLb7gaLtLQ0nT17VpLk7OysXr161Yn59NNPFRISooSEBHvLAQAAAAAAAABwRai5a4WTs5PC48ItnyTbmLxDeZbmipFzRipuVlyt8SHPDtHye5Zr72d7teapNXLzddM1D15jNecjBx9ptO7PP/22ppPJJ7V0wlIZy4x11hT7cKw+GvqR0tal6cuJX+ruFXc3WgsAAAC4kqR+mypXL1dFXhdpNc7J2clybDKaLMd+7f0U2DVQpw+fVvbubKs5TiafPDcn3E9tu7StNRY1IkobtEGSlL07W93Hdq83R86eHJlNZsscAAAAALiU/nP3f3Tkv0ckSa5ergrtEyq/cD+5eLrIWGZUUWaRTu07pcqSSh397qj+c/d/dNdXdzmktl0NFqWlperfv7+Kis51vvv7+ys/P79O3DfffKPPP/9cQ4YM0eLFixUWVn/3OwAAAAAAAAAArcWmlzZp00ub1HlkZ42ZN0a7Pthlc4PFeZ0SOtVprpDOvSlr9NzROvLdEZWdLtO6Z9cpZmqMXDwa/rNAUPegJp9DTSsfXiljmVHtB7avsybPNp761bu/0vzr5+vwN4d14D8H1PP2nnbVAwAAAC4nK2eulJuPmx7e97DVuPwjF95349/Bv9ZYzwk9teXVLSo4XqAzx86oTac2deYXZRUp71CeJKnH+B4yGAy1xsPjwuUX7qeizCKlrUvT8NnD613HsbXHatUFAOCXqri4uFnzxo0bp/Xr16u6ulrOzs4aMWKEli1b5uDVAQCa46cVP+nwN4flG+arG/9yo3qO7ykX97p/3zBWGHXgiwNa+/RaHf7msA5/c1hdR3e1u75T4yEN+/LLL1VYWCiz2awxY8Zozpw59cZNmjRJ8fHx2rJli0aOHKmKigp7ygIAAAAAAAAAcNkzm80a8/4YTf7vZPlH+Dc+oR7dxnZrcMzN201Xj7xaklReUK70LenNqmGLY2uPKWtHliSp//39642JHB5p+fTcLa9suWhrAQAAAH6p8g7mqeB4QYPjZrNZez7ZY7nddUztNwYN/L+BcvNxkyQlv59cb45dH+ySzJKLh4vin4ivM24wGDTkuSGSpIzEDEszRk0mo0m7P94tSepySxe1i25n9bwAAGhJ3t7ezfpasGCBEhISFBgYqISEBC1YsKBZeQAAjrdn/h55tvHUfd/fp76T+tbbXCFJLu4u6jupr+77/j55BHho90e7HVLfrh0s/vvf/8pgMGjx4sWaMGFCg3GjR4/W6NGj9dZbb+mJJ57QP//5Tz3++OP2lAYAAAAAAAAA4LI2/MXhdT5N1lZXXXOVJn07SVfFXmU1zr/jhcaNwozCZtWyxf6l+y3HnW7s1GBcpxs7KT81X9m7s5V/JF9tr2570dYEAACAS2/RmEUtWv/uFXe3aP3GmE1mLZuyTBOWTpBPO586Y9/99jv974f/SZJ6391b4QPDa8V4h3gr4Y0ErZy5Utvf2q7u47qrfWx7y3j2nmxt/ctWSdL1f7xefuF+9a5jwP0DtO+zfcpIzNCK+1do8urJcvV0tYxvfHGj8lPz5RHgoZFvjXTIuQMA8EsTGhqqb7/9tqWXAQCoR+b2TMVMj6mzq19D/Dv4K2Z6jPYt2ueQ+nY1WCQlJenWW2+12lxR0+OPP65Vq1ZpyZIlNFgAAAAAAAAAAFq15jZXSJJXkJeuHnV1o3HlBeWWYzdvN5vzV5ZUytnNWc6uzjbFH19/XJLkEeChgI4BDca163fhk2/T1qfRYAEAAIBWo110OxWmFyojMUPvdH5Hve7qpaDuQfIK9FJhRqH2f75feQfP7SYRfU+0Rs8dXW+eax66RsU5xdr88mbNv36++s/or+Bewco7lKfkecmqKqnSoCcHKf7JurtXnOfk4qQ7l92pz0Z/pozEDM0dMFcx98bIzdtNqatSlboyVV5BXprwxQQFdgm8KN8PAAAAAGhIaV6pgnsGN2lOcI9gleaVOqS+XQ0WWVlZuu+++5o0JyEhQa+++qo9ZQEAAAAAAAAAgA0K0grOHRikiMERVmN3z9+tXe/vUu6BXJXll0mSfNv7KmpElOIei1NY/7B651WVVenMsTOSJL+I+j8h9zz/iAufNnVq/ykbzwIAAAC4/N311V06te+UDi47qIwtGTq25pj2LdonU5VJbr5uahPVRrGPxir6nuhau1LUZ/js4eqc0Fk73tmhA18cUOm/SuUV5KXON3VW7COxiro+qtH1eAV5aXridCXNS1LKghQlvpao6opq+XfwV/zT8Yp7LE6+Yb6OOn0AAAAAsJmbj1uTmyVKT5fKzcf2D5qyxq4Gi8rKSrVt27RPlwoKClJlZaU9ZQEAAAAAAAAA+EUxVhhVXVFtuV1VXNWCqzmnvLBcxzcelyR1G9OtVnNDfb6a9pW6/7q7bnrzJnmHeOvs/85q36J9SlmQopSFKRr2+2G6/qXr68wrzCiU2WSWJPmE+lit4R3qfWHe8cImnhEAAABweQvpHaKQ3iEOyRURH6GIeOtN1I1xcnFS7MxYxc6MdciaAAAAAMARgroHad+ifYp/Il4Gp8Z3AzebzNr32T4FdQ9ySH27GixCQkK0b9++Js3Zu3evgoObtmUHAAAAAAAAAAC/ZImvJWrTS5sstwudWr55YM/8PTKWG+Xs5qwbXr/BaqzB2aDbPr1Nve/sXev+/jP6a8MfNmjzHzdr88ub5e7rrvgn42vFVJ698KFKLh7W/+zg6ulqOa44W2HrqQAAAAAAAAAAgFai+6+7a83Ta/Tl5C91yz9vkUeAR4Ox5YXlWvnQSuWk5OjGv9zokPp2NVgMGjRIH374oR599FF16tSp0fhjx47po48+0siRI+0pCwAAAAAAAADAL8qQ3w3RoN8OstzOyMjQW33earH1lJwq0eY/bpYkjXh1hIJ7NPzBR3GPxWnAgwPkG+Zb7/jwF4frp69/Us6eHG34wwb1ndxXPu0u7FRRVXZhtw5nN2er66o5XlXa8rt8AAAAAAAAAACAX5bYh2O14+0d2r9kv1JXparrLV11VexV8m3vK1dPVxnLjSrKLNL/fvyfUlemqqKoQr7tfRX7sGN253OyZ/L06dNVVFRkabQoKSmpN660tFQfffSRBg8erLNnz+q+++6zpywAAAAAAAAAAL8oLu4ucvdzt3y5+rg2PukiMVWbtOyeZSrNK1Xvu3pr0BODrMZ7BHg02FwhSQYng2KmxUiSjGVG7V20t9Z4zV0pqiurrdaqOe7q1XLfIwAAAAAAAAAA8Mvk6uWqu76+S+7+7qooqtC+xfu0+onV+s9d/9HisYv1xZ1faPUTq7Vv0T6VF5bLI8BDd6+4u9bfK+xh1w4WI0eO1Pjx4/XFF1/o/vvv1yOPPKJu3bopPDxcHh4eKi8vV2Zmpn766SdVVlbKbDZrwoQJuummmxyyeAAAAAAAAAAAUNu3//etjn53VFE3RGnsx2NlMBjsznnVNVdZjjO3ZUqPXxhz83WzHBvLjVbz1Nztwt3X3e51AQAAAAAAAACAK09YvzA9uOtBrZy5Ukf+e6TBuC43d9Gv/vkrBXQMcFhtuxosJOmTTz6R0WjU8uXLVVFRob1792rv3tqfXmU2myVJ48aN0yeffGJvSQAAAAAAAAAAUI+1v1urH//5oyKvj9RdX90lF3e7/wwgSfIO8bYcF2cX1xrz7+Avg5NBZpNZxTnFP59aS0nOhZ2w/SP9HbI2AAAAAAAAAABw5QnoGKBJqyYp/0i+jq09ptOpp1V5tlJuvm5qe3VbdbqxkwK7BDq8rt1/WfHw8NCXX36pJUuW6O9//7t27Nih6uoLW3w7Oztr4MCBmjVrliZMmGBvOQAAAAAAAAAAUI/1v1+vra9vVcfrOmriNxPl6uWYrbAlyWwyW44NzrV3xHD1dFWbTm2UfyRfRSeKrOYpyrwwHtIrxGHrAwAAAAAAAAAAV6a2V7dV26vbXrJ6jvnoKkl33nmn7rzzThUXFystLU1nz56Vr6+voqKi5OPj46gyAAAAAAAAAADgZza+uFFbXtmiDkM7aOJK25srclJy9NPXP6nv5L4KiAxoMK7mrhW+Yb51xiNHRCr/SL7KC8pVkF7Q4FbcJ5NPWo6jRkTZtEYAAAAAAAAAAIBLxcnRCX18fNSnTx/Fx8erT58+NFcAAAAAAAAAAHARbX51sza9tEkRgyM0adUkuXm71YmZe81cbXxpY537Tyaf1Ibfb1Dm9kyrNWqORwyJqDPea0Ivy3HaurQG85wfaxfT7pJ+2hQAAAAAAAAAALh8nEk7o5yUHOWk5OjU/lP1xqR8mqKja446vLbDGywas3btWo0YMeJSlwUAAAAAAAAA4IqT+OdEbXhhg8IHhWvSt5Pk5lO3uUKSTiadVEFaQYN5jnx7pMGx6spq7fpglyTJzddNve/qXSem042d1H5ge0lS8vvJ9eZJ35yu04dPS5KGPj+0wXoAAAAAAAAAAKD1qiqt0tz+c/Vev/f0Xr/39NHQj+qNS/0mVZ+O+lQfX/exzp4867D6Lg7LZKOcnBxt2rTpUpcFAAAAAAAAAOCKsu3NbVr37Dp5BXtpyLNDdDLpZLNzpXyaom5ju6nHbT1q3W+qNmnlIyuVfyRfknTTX2+SV6BXvTlu+ect+nDIh8r8PlM7392pax+91jJWXlCuVY+skiR1Hd1VPcf3bPZaAQAAAAAAAADAlevglwdVXlguSep2a92/XZzXZ1IfFWUWKX1LuhaOXKj7f7hfLu72t0fYlKG6ulp79+5V79695eJyYconn3zS5ILbtm1r8hwAAAAAAAAAAK5EKQtTLMc5KTmW46Nrjqoos0iS5B3qrc4JnWvNO7T8kNY8uUaSVJpbqsVjFzervn8Hf3m08VD5mXJ9Pv5zdbm5i6JujJJnG08VZRZp3+J9yt2fKydXJ9305k0a8MCABnOF9Q/ThM8n6MtJX+rb//tWGVsyFDkiUmWny5Q8L1kFxwsUNSJKt312W7PWCgAAAAAAAAAArnxH/ntEBoNBty++Xb0m9Gowruvoruo6uqu+f+t7rX5itX745w8a9Pggu+vb1GBx22236ZtvvtGoUaO0cuVKy/3Tpk2TwWCwexEAAAAAAAAAALRGy6Ysq/f+xD8lWo47XtexToNFwfECh9SPGhGl32b9VodXHFbqqlSdTD6pTS9uUlVpldx83dS2c1sNfmawrpl5jQI6BjSar+vornpoz0PaPme7Ulem6qevf5Krt6tCeodo2B+GKWZqjAxO/F0BF8+iMYtsijMZTMoPy1fW37LkZHa6yKsCAAAAAAAAANjqZNJJdbu1m9XmipoGPT5IR1Yd0f4l+y9dg8WmTZtkNpu1devWOmNms7nJRWnKAAAAAAAAAABAmm2e3ax5cY/FKe6xOIeswdXTVb3u6KVed9j2h4rGBEQGaNScURo1Z5RD8gEAAAAAAAAAgNajKKtI/e7r16Q5nRI6acurWxxS36YGi7/+9a9655139Oijj9YZmzNnjsaOHWtzwWXLlumJJ56wfYUAAAAAAAAAAAAAAAAAAAAAAOCKV11ZLc+2nk2a4xXkperKaofUt6nBYtKkSbrpppskSdXV1XJ2draMBQUFqWPHjjYXDA4ObuISAQAAAAAAAAAAAAAAAAAAAADAlc47xFun9p1q0pycvTnyCvZySH0nW4LeeOMNRUVFKSoqSj/99JPl/tmzZ6tv375NKti3b1/94Q9/aNoqAQAAAAAAAAAAAAAAAAAAAADAFS1iUIR2fbhLZ46dsSn+zLEz2v3RbkUMinBIfZsaLNauXSsfHx+9++67ioqKstw/e/Zs9e7du0kF+/Tpo9mzZzdtlQAAAAAAAAAAAAAAAAAAAAAA4IoWMz1GFUUV+mDQB9r14S5VllTWG1dVWqVdH+3Sh4M/VOXZSvW7r59D6rvYEnTkyBH95je/0cyZM2vd7+zsrAULFmjixIk2F8zNzdXBgwc1bNiwpq0UAAAAAAAAAAAAAAAAAAAAAABcsa4eebV6ju+pA18c0Ir7V2jVI6sU2C1QfuF+cvFwkbHcqKLMIp3+6bSqK6tlNpvVa0Ivdb6ps0Pq29Rgcfr0aXXq1KnO/WazuckFV69erXvuuUfV1dVNngsAAAAAAAAAAAAAAAAAAAAAAK5c4z4ZJ5PRpEPLD8lYYdSpvad0au+pWjHnexl6jOuhX3/ya4fVtqnBwsfHR0eOHHFYUQAAAAAAAAAAAAAAAAAAAAAAgJ9z8XDRnV/eqX1L9mnn33cqa0eWTNUmy7iTs5PCB4Zr4KyB6jWhl2Nr2xIUHR2tf/zjHxo4cKBGjBghX19fy5jBYHDoggAAAAAAAAAAAAAAAAAAAAAAQOvW+87e6n1nb1UWV+pM2hlVnq2Um6+b2kS1kZuP20WpaVODxYwZM7Rx40bddtttdcYmT56syZMnO3xhAAAAAAAAAAAAAAAAAAAAAACgdXPzcVNon9BLUsvJlqCJEyfqN7/5jSTJbDZbvn5+29YvAAAAAAAAAAAAAAAAAAAAAACAXxKbdrCQpLffflszZ87U+vXrdfr0aZlMJr300ksaN26c+vbta3PBlJQULV++vDlrBQAAAAAAAAAAAAAAAAAAAAAAuChsbrCQpO7du6t79+6W2y+99JJuv/12TZw40eYcn376KQ0WAAAAAAAAAAAAAAAAAAAAAADgF8XJlqBly5ZpxIgRuuGGG5Senm65v2PHjvLx8WlSQR8fH3Xo0KFpqwQAAAAAAAAAAAAAAAAAAAAAALiIbGqwWLRokTZu3KiSkhK5urpa7k9LS9Ott97apIJjx45VWlpa01YJAAAAAAAAAAAAAAAAAAAAAABwEdnUYJGcnKxx48Zp+/btuuqqqyz3T58+XTt27LhoiwMAAAAAAAAAAAAAAAAAAAAAALgUbGqwOHnypEaNGlXn/o8//lhHjx5tUsGvvvpKnTp1atIcAAAAAAAAAAAAAAAAAAAAAACAi8mmBgtJKioqckjB4uJipaenOyQXAAAAAAAAAAAAAAAAAAAAAACAI9jUYBEVFaVPP/1UlZWVF3s9AAAAAAAAAAAAAAAAAAAAAAAAl5yLLUG33HKL3njjDXXs2FHx8fHy9/e3jM2dO1dr1661ueCxY8eavkoAAAAAAAAAAAAAAAAAAAAAAICfObb2mLb8aYumrp9qdy6bGix+97vf6YsvvlBaWpqWL19ea2zLli3asmWLzQXNZrMMBkOTFgkAAAAAAAAAAAAAAAAAAAAAwOXIbDbrh3/8oLXPrlVVSZWmbpiqyOGRNs8/se2Edr67UxmJGSo5VSLvYG+FDwpX7MOxNucxGU1KmpekvQv3Ku9QnowVRvl38Fe3sd0UNytOPu18bMpTkF6g7XO268iqIyo8USg3HzeF9ApR9NRoRd8TLYPTpe8VKM4pVvqmdIfksqnBIiAgQDt37tQbb7yh9evX6/Tp0zKZTEpPT1dgYKC8vb1tLlhSUqLTp083e8EAAAAAAAAAAAAAAAAAAAAAAFwO8o/m6+vpXyt9c/MaADa9vEmbXtokFw8X9ZvRTyG9Q5R3ME/J85J1YOkBxT8Vr4S/JFjNUZpXqs9Gf6asHVkK6h6kwc8MlpuPm1JXpmrr61u164NduuOLO9RxWEereQ6vPKwvJ36pirMV6jm+p+Iej1Pp6VIlz0vWV/d+pZSFKbpz2Z1y93Vv1rnWVF1ZrYzEDOUezFVFYYVMRlODsTl7cuyud55NDRaSFBgYqNdff73WfU5OTpozZ44mTpxoc8GFCxdq6lT7t94AAAAAAAAAAAAAAAAAAAAAAOCXqOauFU7OTgqPC1fm9swm5fjx3z9q4+yNcvFw0T3r71H4wHDLWN8pffXR0I+07Y1t8g7xVvyT8fXmMBlNWjJuibJ2ZCkiPkJT1k6Rq6erJCn24Vite26dEl9L1OKxizVj5wwFdgmsN8/J5JNaOmGpjGVGjZwzUnGz4ixjsQ/H6qOhHyltXZq+nPil7l5xd5PO8+eSP0jW2qfXqryg3K48zeF0qQsaDAaZzeZLXRYAAAAAAAAAAAAAAAAAAAAAgEti00ub9O1vvlWHIR00c99MdR7ZuUnzS3JLtOapNZKkgbMG1mqukKSwfmGWpooNv9+gosyievMkzUtSRmKGZJDGzBtjaa44b/hLw9X26rYqLyjX6t+ubnA9Kx9eKWOZUe0Htq/VXCFJnm089at3fyVJOvzNYR34z4EmnWtNB5cd1Ir7V6jsTJnMZrPNX45i8w4W9dmwYYN69OjRpDkJCQnasGGDPWUBAAAAAAAAAAAAAAAAAGj1Fo1Z1KL17f10agAArmRms1lj3h+j/vf1b9b8HW/vUGVxpSSp/4z6c/Sf0V+bXt4kY7lR297cplFvjaqzhsTXEiVJHQZ3UHDP4Do5nF2dFT0tWhte2KDD3xxW9p5stYtuVyvm2NpjytqRda7m/fWvJXJ4pNp2aav81HxteWWLet7es2kn/P9t/9t2SVKfiX3U775+Cu4ZLM82nnJ2c25wTsrCFC2furxZ9X7OrgaL6667rslzQkJCFBISYk9ZAAAAoFU4ffi0dn24S0f+e0RFmUWqKqmSd6i3/Dv4K2JwhDrd2EmdbujU4PwT205o57s7lZGYoZJTJfIO9lb4oHDFPhyryOGRNq3BZDQpaV6S9i7cq7xDeTJWGOXfwV/dxnZT3Kw4+bTzcdDZAgAAAAAAAAAAAAAAAFeO4S8Ol8FgaPb8A1+c2wUiIDJAba9uW2+MX7ifgroHKe9gng5+cVAj/zayVs3M7ZkqOnFuZ4uoG6MarNU5obM2vHBuE4UDSw/UabDYv3S/5bjTjQ2/X6nTjZ2Un5qv7N3Zyj+S3+C6rclJyVGPcT1028LbbJ9kkMN2sbCrweLnKioqtGvXLmVnZys+Pt7SSFFaWiovLy9HlgIAAACuaJtf2azNf9ws7xBv9bqzlwK7BspYblTWjizt/3y/MrZkKHlesp7Oe7re+Zte3qRNL22Si4eL+s3op5DeIco7mKfkeck6sPSA4p+KV8JfEqyuoTSvVJ+N/kxZO7IU1D1Ig58ZLDcfN6WuTNXW17dq1we7dMcXd6jjsI4X41sAAAAAAAAAAAAAAAAAXLbsaa4oyirS6Z9OS5LaxbSzGhvWL0x5B/NUlFmk/NR8BXYNtIylrU+zHFvLExodKoOTQWaTudac846vPy5J8gjwUEDHgAbztOt3oUba+rRmNViYTWZdffPVTZrTY1wPdUjr0ORa9XFIg8XRo0f1hz/8Qf/5z39UVVUlSVqzZo1GjBghSWrXrp1uvfVWvfzyy+rUqeGOFQAAAADSmmfWaNtftqn3Xb116we3ytXLtdZ433v66rNffdbg/B///aM2zt4oFw8X3bP+HoUPDL8wd0pffTT0I217Y5u8Q7wV/2R8vTlMRpOWjFuirB1ZioiP0JS1U+TqeW4dsQ/Hat1z65T4WqIWj12sGTtnKLBLYL15AAAAAAAAAAAAAAAAADTNqX2nLMd+EX5WY2uOn9p/qlaDRe6+XMuxf4R/gzlc3F3kFeylkpwS5e7PrTVWVValM8fO2LSWmjVO7T9lJbJhgV0DZawwNmmOq5er1caPprC7wWLjxo0aO3asiouLLdtq/LzbxtnZWZ999plWrFihL7/8UjfccIO9ZQEAAIAr0pH/HtG2v2xTcK9g/fqTX8vZ1blOzNUjr1anhE4qSCuoM1aSW6I1T62RJA2cNbBWc4V0rmM9/sl4bXppkzb8foN639VbfuF1L3yS5iUpIzFDMkhj5o2xNFecN/yl4Tqw9IDyj+Rr9W9X6+4Vdzf/pHFFWzRmUYvW57kJAAAAAAAAAAAAAAAuNwXHCyzH3qHeVmNrjtec19Q8PqE+KskpUUVRhcrOlMmzjackqTCjUGaT2RJj61oKjxdajW1IzL0xOvTlIV37yLU2z8ncnqmkuUka++HYZtWsycmeyfn5+br99tt19uxZBQQEaNy4cZoxY0aduP/973967733ZDKZNGHCBGVnZ9tTFgAAALgimc1m/fex/0qShjw7pN7mivMm/3eyHv3p0Tr373h7hyqLKyVJ/Wf0r3du/xn9JYNkLDdq25vb6l1H4muJkqQOgzsouGdwnRhnV2dFT4uWJB3+5rCy9/AzPgAAAAAAAAAAAAAAAK5MxgqjKooqLF+VZysvar2a+V08rO+pUPODU3++roqzFTbncfG8MF4zT3PXUrN2U8Q+Eit3P3etfGSl5X1Qjck/mq898/c0q97P2bWDxd///nedOXNGM2fO1JtvvikPDw/l5eXp/fffrxXn6emp+++/XwMGDFBcXJz+/ve/69VXX7Vr4QAAAMCVJn1zuk7/dFoGJ4O6junarBwHvjggSQqIDFDbq9vWG+MX7qeg7kHKO5ing18c1Mi/jay1C13m9kwVnSiSJEXdGNVgrc4JnbXhhQ3n6i49oHbR7Zq1ZgAAAAAAAAAAAAAAAOCXLPG1RG16aZPldqGatzuDrarKqizHzm4Nf0jrz8erSqtqjRnLjHbncdRabLX5j5sVGh2qXR/sUsonKep4XUcFdguUu6+7DE6Geufk7MlpVq362NVg8e2332rgwIH6xz/+Ybmv5huzfq5///66++67tWrVKhosAAAAgJ853xzh39FfHv4elvvNZrMqiyvl5uNm9eftoqwinf7ptCSpXYz1ZoewfmHKO5inoswi5afmK7BroGUsbX2a5dhantDoUBmcDDKbzLXmAAAAAAAAAAAAAAAAAFeSIb8bokG/HWS5nZWVpbd6vnXR6tXcCaK6stpqbM1xVy/XWmM1d6Vobh5HrcVWG1/caHmPlNls1pFvj+jIt0ealas57GqwSE1N1XPPPdekOddcc42WL19uT1kAAADginTyx5OSJP8O/jKbzNr10S7ten+X/vfj/2QymuTk4qSwAWGKvida/e/vL2fX2h3hp/adshz7RfhZrVVz/NT+U7UaLHL35VqO/SP8G8zh4u4ir2AvleSUKHd/boNxAAAAAAAAAAAAAAAAwOXMxd1FLu4X3nrvVuR2Ueu5+V7Ibyw3WomsvcNEzXmS5O7rbnOemrtd1MzT3LXUrN1UZrO53mNrrH1wbVPY1WBRXFyswMDAxgNrcHNzU2VlpT1lAQAAgCtSzt5zW9WZTWYtuGmBjm84ruhp0Rr0xCA5uzkrY2uGdv59p1Y9skopC1J094q75RXkZZlfcLzAcuwd6m21Vs3xmvOamscn1EclOSWqKKpQ2ZkyebbxbOQsAQAAAAAAAAAAAAAAAFgTEBlgOS7JKbEaW3O85rzztzO3Z1ri/No3/KGtxTnFkiR3P/da7wHy7+Avg5NBZpPZEmPLWvwjG/5g18bctvA29ZnYx+b4lIUpWj51ebPr1WRXg0VQUJCOHGnadhvff/+9goOD7SkLAAAA/OIZK4yqrriw5V1VcZWVaKmqtEpVJediMrZkSJLGfz5evSb0ssR0u7Wbeo7vqY+HfazM7Zn64q4vNGXNFEv3deXZC43MLh7Wf9SvuXVfzXmSVHG2wuY8NbcRrDxbSYMFAAAAALRyi8YsauklAAAAAAAAAMBlL6R3iOW46ESR1diizAvjIb1Cao0F977wvv3CE4UK6x9Wbw5jhVGluaXn5vSq/V5/V09XtenURvlH8u1ay0VlsH2ni8Y42TN54MCB+uCDD3T69Gmb4nfs2KFFixZp8ODB9pQFAAAAfvESX0vU6/6vW77+Ff0vq/EVRRW1bl9989W1mivOax/bXtc8fI0kKW1dmg6vOGwZq7nFnrObs9V6NcerSms3f9Tc7s+ePAAAAAAAAAAAAAAAAACazq+9nwK7BkqSsndnW409mXzy3JxwP7Xt0rbWWNSIKMuxtTw5e3JkNpnrzDkvckSkJKm8oFwF6QWNrqWhPLYYM2+MwgeFN2lO54TOmrpharPq/ZxdDRbTp09XTk6Ohg4dqjVr1tQaO/8pupKUn5+vv/71r0pISJDRaNSMGTPsKQsAAAD84g353RA9W/is5WvmnplW403Vplq3e07o2WBs77t6W45TFqZYjmvuSlFdWS1rao67ernWGqu5K4U9eQAAAAAAAAAAAAAAAAA0z/n3DxUcL9CZY2fqjSnKKlLeoTxJUo/xPWq9h1+SwuPC5RfuJ+nch7k25NjaY3Xq1lTzg2Kt5Tk/1i6mndpe3bbBOGv639dfbaLaNGmOd4i3Iq+LbFa9n7OrwWL06NEaN26cDh06pFGjRikkJES33367JGn27Nm6+eab1bNnT4WGhuqZZ55RcXGx7rzzTt1www0OWTwAAADwS+Xi7iJ3P3fLl6uP9eYDd1/3WrdD+4Q2GBvaN1T6/9dCWTuzLPe7+bpZjo3lxp9Pq6Xmbhc15/18LY3lqbnbxc/zAAAAAAAAAAAAAAAAAGiegf83UG4+596Pk/x+cr0xuz7YJZklFw8XxT8RX2fcYDBoyHNDJEkZiRmWZoyaTEaTdn+8W5LU5ZYuahfdrk5Mpxs7qf3A9lbXkr45XacPn5YkDX1+aCNn13Qlp0p0OvW0Sk6VyGw2Ozz/eXY1WEjSp59+ql//+tcym83Ky8vTli1bZDAYtHXrVq1evVo//fSTqqurZTabNX78eH388ccOWDYAAABwZXHzcZOzm7PltkcbjwZjXdxdLBdPJadKLPcHRAZYjktySn4+rZaa4zXnNTVPcU6xJMndz12ebTytxgIAAAAAAAAAAAAAAACwjXeItxLeSJAkbX9ru7J+yKo1nr0nW1v/slWSdP0fr7fsVPFzA+4foA5DOkhmacX9K2p9MKskbXxxo/JT8+UR4KGRb41scD23/PMWuXi6KPP7TO18d2etsfKCcq16ZJUkqevoruo5vu4uGM1xfNNxLbltif7c5s96M+xN/aP7P/Rm2Jv6S9u/6PPbP1f65nSH1KnJxd4EHh4e+vLLL7V06VK988472r59u6qrqy3jzs7OiouL06xZszR+/Hh7ywEAAABXJIOTQUE9gpSzJ0eSZKoyWZ9gvjDvvJDeIZbjohNFVqcXZV4YD+kVUmssuHew5bjwRKHC+ofVm8NYYVRpbum5Ob2C640BAAAAAAAAAAAAAAAAWquUhSmW45yUHMvx0TVHLe/f8Q71VueEzvXOv+aha1ScU6zNL2/W/Ovnq/+M/gruFay8Q3lKnpesqpIqDXpykOKfrLt7xXlOLk66c9md+mz0Z8pIzNDcAXMVc2+M3LzdlLoqVakrU+UV5KUJX0xQYJfABvOE9Q/ThM8n6MtJX+rb//tWGVsyFDkiUmWny5Q8L1kFxwsUNSJKt312W1O/TXWYTWatfHilkued2y3j5ztWlBeW69DyQzq0/JD6P9Bfv3r3V3JytnvvCUkOaLA4b8KECZowYYJKSkqUlpamoqIi+fr6KioqSj4+Po4qAwAAAFyx2l/b3tJgUZxdrKDuQfXGVZVWqbKkUpLke5Wv5X6/9n4K7Bqo04dPK3t3ttVaJ5NPnpsT7qe2XdrWGosaEaUN2iBJyt6dre5ju9ebI2dPjswms2UOAAAAAAAAAAAAAAAAgAuWTVlW7/2Jf0q0HHe8rmODDRaSNHz2cHVO6Kwd7+zQgS8OqPRfpfIK8lLnmzor9pFYRV3f+Pt2vIK8ND1xupLmJSllQYoSX0tUdUW1/Dv4K/7peMU9FiffMN9G83Qd3VUP7XlI2+dsV+rKVP309U9y9XZVSO8QDfvDMMVMjan1gbHN9c1D32jXB7ssjRU+oT7yC/eTi6eLjGVGFWUWqTinWJKUPDdZZpNZY94bY3ddyYENFud5e3urd+/ejk4LAAAAXPF6ju9p6brO+iFLkcMj6407ueukZQeLjtd1rJ1jQk9teXWLCo4X6MyxM2rTqU2d+UVZRco7lCdJ6jG+hwyG2hc14XHh8gv3U1FmkdLWpWn47OH1ruPY2mO16gIAAAAAAAAAAAAAAAC4YLZ5tkPyRMRHKCI+wq4cTi5Oip0Zq9iZsXblCYgM0Kg5ozRqzii78jQkfUu6kt9PlpuPmwY/M1gxU2PkF+5XJ64os0i75+/Wtr9s0673dyl6SrQ6DOlgd33H7IMBAAAAwG6dbuyk0OhQSdLehXvrbG13XsqCC1sH/vyCZ+D/DZSbj5skKfn95Hrn7/pgl2SWXDxcFP9E3e0BDQaDhjw3RJKUkZhhacaoyWQ0affHuyVJXW7ponbR7Ro5OwAAAAAAAAAAAAAAAACwLnluslw9XXXv5ns17Plh9TZXSJJfuJ+GPT9M0zZNk4uHi5LeS3JIfRosAAAAgF8Ig5NBt/zzFjm7OSsnJUeb/7i5TszR1UfPNUhIins8TmH9w2qNe4d4K+GNBEnS9re2K+uHrFrj2XuytfUvWyVJ1//x+gYvQAbcP+BcR7dZWnH/ClWVVdUa3/jiRuWn5ssjwEMj3xrZvBMGAAAAAAAAAAAAAAAAgBrSt6Qr5t4YtYux7QNf28W0U/S0aKVvSXdIfReHZGlBeXl5evvtt7Vs2TIdP35cbm5u6tatm+6++2499NBDcnNzc0id6upqLVq0SEuXLtWePXuUnZ0tHx8fhYWFqXfv3ho+fLjGjh2rdu345F4AAAA0X0R8hMYvGa9l9yzTxtkblbElQ11v7SoXDxed2HpCKQtTZK42a+CsgZZGip+75qFrVJxTrM0vb9b86+er/4z+Cu4VrLxDeUqel6yqkioNenKQ4p+su3vFeU4uTrpz2Z36bPRnykjM0NwBcxVzb4zcvN2UuipVqStT5RXkpQlfTFBgl8CL9e0AAAAAAAAAAAAAAAAA0IqU5JSoXb+mvSc/rH+Ydn+42yH1L+sGi507d+rXv/61Tp48qYSEBM2cOVNlZWWaP3++Zs2apY8//ljffPONrrrqKrvqHDp0SBMnTtTu3bv1q1/9Sr/5zW8UEBCgEydO6NNPP9XixYu1ePFiVVVV6dFHH3XQ2QEAAKC16v7r7nrkwCPa/vZ2HVl1ROufWy9TtUm+Yb6KnhKtax6+Ru1j21vNMXz2cHVO6Kwd7+zQgS8OqPRfpfIK8lLnmzor9pFYRV0f1eg6vIK8ND1xupLmJSllQYoSX0tUdUW1/Dv4K/7peMU9FiffMF9HnTYAAADQqpnNZv3wjx+09tm1qiqp0tQNUxU5PNLm+Se2ndDOd3cqIzFDJadK5B3srfBB4Yp9ONbmPCajSUnzkrR34V7lHcqTscIo/w7+6ja2m+JmxcmnnY9NeQrSC7R9zrnrmcIThXLzcVNIrxBFT41W9D3RMjgZbD4vAAAAAAAAAADQurh4uKiyuLJJcyqLK+Xi4ZjWiMu2wSIjI0OjR49Wbm6uHnvsMb311luWsd/85je6+eabtWHDBt16663aunWr3N3dm1Xn6NGjGjFihIqLi7VhwwZdd911tcaff/553XTTTdq4caM9pwMAAADU4hfup5veuEk3vXFTs3NExEcoIj7CrnU4uTgpdmasYmfG2pUHAAAAQMPyj+br6+lfK31z87au3vTyJm16aZNcPFzUb0Y/hfQOUd7BczvYHVh6QPFPxSvhL/XvgHdeaV6pPhv9mbJ2ZCmoe5AGPzNYbj5uSl2Zqq2vb9WuD3bpji/uUMdhHa3mObzysL6c+KUqzlao5/ieins8TqWnS5U8L1lf3fuVUham6M5ld8rdt3m/swcAAAAAAAAAAFe2Np3b6NCXhxQ3K87mOYe+PKQ2nds4pL6TQ7K0gKeeekq5ubnq0KGDXn/99Vpj7u7umjdvnpydnZWUlKR33323WTXMZrOmTJmikydP6r333qvTXCFJrq6u+v3vf6/AwEB5eno2qw4AAAAAAAAAoPUxm83a+e5O/Tv638rena3wuPAm5/jx3z9q4+yNcnZz1j3r79HNb9+sAfcP0Mi/jdS0zdPk6u2qbW9s07a/bmswh8lo0pJxS5S1I0sR8RF6IPkBDX56sGIfjtXElRM15HdDVJpbqsVjF+t06ukG85xMPqmlE5aqoqhCI98aqQmfT9A1D12jYc8P04O7HlRwr2ClrUvTlxO/bPJ5AgAAAAAAAACA1qHLLV2UkZihNU+vkanaZDXWbDJrzdNrlJGYoa6juzqk/mXZYJGamqqlS5dKku655556d6fo3Lmzrr/+eknSn//8ZxmNxibXWbRokb7//nt16dJFd911V4NxI0aMUF5enu67774m1wAAAAAAAAAAtE6bXtqkb3/zrToM6aCZ+2aq88jOTZpfkluiNU+tkSQNnDVQ4QNrN2iE9QtT/JPxkqQNv9+gosyievMkzUtSRmKGZJDGzBsjV0/XWuPDXxqutle3VXlBuVb/dnWD61n58EoZy4xqP7B9nU+V8mzjqV+9+ytJ0uFvDuvAfw406VwBAAAAAAAAAEDrEDcrTu5+7vr+ze/1btd3te75dTq0/JCyfsjSqX2n9L8f/6dDyw9p/Qvr9feuf9f3b34vd393Dfy/gQ6pf1k2WHzxxRcym82SpBtvvLHBuISEc1ue5+bmauPGjU2uM2/ePEnSmDFjZDAYmr5QAAAAAAAAAAAaYDabNeb9MZr838nyj/Bv8vwdb+9QZXGlJKn/jP71xvSf0V8ySMZyo7a9WXcXC7PZrMTXEiVJHQZ3UHDP4Doxzq7Oip4WLelcc0T2nuw6McfWHlPWjqxzNe+vfy2RwyPVtktbSdKWV7Y0dnoAAAAAAAAAAKAV8mzrqfGfj5eTq5MKjhdo6+tb9fntn+uDuA/07+h/6/2B7+vz2z9X4muJOnPsjJxcnTTh8wnybOvpkPqXrMEiJSVFp06dckiu9evXW45jYmIajOvXr1+9c2yRm5urzZs3S5Kio6NrjZWVlamioqJJ+QAAAAAAAAAAqGn4i8PV/776mxFsceCLc7tABEQGqO3VbeuN8Qv3U1D3IEnSwS8OWj686LzM7ZkqOnFuZ4uoG6MarNU54cLuGgeW1t19Yv/S/ZbjTjd2ajDP+bHs3dnKP5LfYBwAAAAAAAAAAGi9Oid01r1b7lVQjyCZzeYGv4J7BuveLfda/dtEU9nVYDF9+nTt2LHDptjbb79dYWFhuv3221VWVmZPWe3bt0+S5OvrK3//hj/VKyIiwnK8f//+BuPqk5ycLJPJJEnq0KGDjh07phkzZig0NFReXl7y8PBQu3btNHXqVB04wFbmAAAAAAAAAICmsWfn5KKsIp3+6bQkqV1MO6uxYf3Czs3JLFJ+au2mhrT1aZZja3lCo0NlcDLUmXPe8fXHJUkeAR4K6BjQYJ52/S7UqC8PAAAAAAAAAACAJLWPba+H9z2sKaunaPDTg9VjXA91urGTeozrofin4jVl9RQ9vO9htY9t79C6LvZM/vjjj3XjjTdq4MCBjcbefPPNWrNmjZYvX67XXntNL7/8crNqVlRUKDv73PbjoaGhVmNrjh8/frxJdfbu3Ws5/u677zRnzhx16NBBzz//vDp37qzs7Gx98MEH+uSTT7Ro0SK99957uvfee5tUA7jU9i7aq6y/ZcnJfMk2r6nj7hV3t1htAAAAAAAA4Epxat+FHaP9IvysxtYcP7X/lAK7Blpu5+7LtRz7RzT8gUYu7i7yCvZSSU6Jcvfn1hqrKqvSmWNnbFpLzRqn9jtm12sAAAAAAAAAAHDl6nRjJ4fuUNEYuxosmuKdd96RJN19991aunRpsxsszp49azn28PCwGuvp6VnvPFucOnXhDzuvv/66YmNjtXHjRnl5eVnuv/fee3XXXXdp6dKlmjFjhqKiojR8+PBGcxcWFio//8KnhLm7u8vd3b1J62suk8F0Sergl8dsMMsss8wGs0xqueeB0WhssdpoWUajUSaTiecAWgzPQbS087ujoXXiGqDltOTrPv/3gOcAeA60bjz+uNjXAAXHCyzH3qHeVmNrjtec19Q8PqE+KskpUUVRhcrOlMmzzbnfwRdmFMpsMltibF1L4fFCq7GXszNnztT6e8KlvAZoaZfLNcgv5XfmaByP1eWDx+rywuN1+eCxapqW/n0gWq+W/DtAa3e5XIP83JX0+s7r36XF7x3RXDx30Fw8dxrG9+SXpSS3RHkH89RxWEe7c12yBovzRowYoa+//rrZ88vKyizHbm5uVmNrjpeWljapTlFRUa3b7777bq0/hkiSk5OT3n33Xa1YsULl5eV64oknlJSU1GjumJiYWrenTp2qadOmNWl9zZUflt94EK5IZplV5lumfOXLIEOLrSMxMbHFaqNlmUwmZWRkSDr3+glcajwH0dJOnz7d0ktAC+IaoOW05M+f/N8DngPgOdC68fi3PiajSabqC2+IyD99cX8OqzxbaTl28bD+q35XT9d650lSxdkKm/O4eF4YrzxbaWmwaO5aata+0vTt27fW7Ut5DdDSLpdrkF/K78zROB6ryweP1eWFx+vywWPVNC35+8Cab65H69OSfwdo7S6Xa5Cfu5Je33kv0KXF7x3RXDx30Fw8dxrGNcAvy9HVR7X8nuX6Q/Uf7M5ld4OFwWD7D3gVFRX69ttvG22MsKbmrhSVlZVWImuP/7w5ojHV1dWW444dO+raa6+tNy4kJEQjRozQqlWrlJycrAMHDqhnz55Wc+/evVsRERGW25eyaz3rb1mXpA5+ecwGs/KVr7bZbWUwt9yF2ZAhQ1qsNlrW+W7N+Ph4ubhc8v4+gOcgWtz5i020TlwDtJyW/PmT/3vAcwA8B1o3Hv/WZ/Mrm7X1la2W24VOF3d3hqqyKsuxs5uz1dia41WlVbXGjGXGeuOaksdRa7mSpKSkqH379pbbrenTay+Xa5Bfyu/M0Tgeq8sHj9Xlhcfr8sFj1TQt+fvAzMzMFquNlteSfwdo7S6Xa5Cfu5Je33kv0KXF7x3RXDx30Fw8dxrGNcCVy+Zn+ttvv6233367zv2PPfaYnn/++UbnV1VV6dSpUzIajbrhhhuatsoafH19Lcfl5eVWY2vudlFzXlPr9O7d22psdHS0Vq1aJUnauXNnow0W/v7+atu2bZPW4yhOZrrHWiuTTDLIIIPZ0KLPA/6Dbd2cnJzk4uLC8wAthucgWhJd/K0b1wAtp6Vf8/m/BzwHwHOgdePxb12G/W6YBv92sOV2RkaG3urz1kWrV3MniOrKaiuRtcddvVxrjdXclaK5eRy1litJmzZtWuwaoKVdLtcgv5TfmaNxPFaXDx6rywuP1+WDx6ppWvL6i2u/1q0l/w7Q2l2ur41X0us7r3+XHr93RHPx3EFz8dypH98P+x357oh+/NeP6n9/f3W9pavl/rc71e1ZaExVieM+1MnmR7agoEDHjx+vc39ubq5yc3NtLujt7a2XXnrJ5vifc3d3V7t27ZSdna2cnByrsTXHIyMjm1QnMDDQctymTRursUFBQZbjU6dONakOAAAAAAAAAODy5+LuIhf3C79yd/W5uM0Dbr4Xdoo2lhutRNbeYaLmPEly973wiaqN5am520XNPM1dS83aAAAAAAAAAACgdVk2eZnK8st0YusJPZX7lOX+guMFzcpnMDhmZzCbGyxiYmI0derUWvfNnz9fQ4cOVadOnazONRgM8vLyUteuXTV+/HhdddVVzVvt/9e7d29lZ2fr7NmzKiwslL+/f71xNbde6dWrV5Nq1IyvqrLe0WI2my3HfDIxAAAAAAAAAOBiC4gMsByX5JRYja05XnPe+duZ2zMtcX7t/RrMU5xTLEly93OXZxtPy/3+HfxlcDLIbDJbYmxZi39k/b/bBwAAAAAAAAAAV742nduo9HSp2nSuuxlCx6Ed1aaT9U0Sajpz7IwyEjMcsi6bGyzGjh2rsWPH1rpv/vz5evDBBzVx4kSHLMZWI0aM0Nq1ayVJu3fv1nXXXVdvXHJycq05TREbGyuDwSCz2azs7GyrsTV38LC3eQQAAAAAAAAAgMaE9A6xHBedKLIaW5R5YTykV0itseDewZbjwhOFCusfVm8OY4VRpbml5+b0Cq415urpqjad2ij/SL5dawEAAAAAAAAAAK3H5O8mK21dmqJGRNUZG/DgAPWZ2MfmXCmfpjiswcKu7Rauu+46hYaGOmQhTTF+/HjLFh7r1q1rMO58E0ZQUJCGDx/epBrt27dXXFycpHNNHEZjw9uaJyUlWY6HDRvWpDoAAAAAAAAAADSVX3s/BXYNlCRl77b+IUEnk0+emxPup7Zd2tYaq/lHC2t5cvbkyGwy15lzXuSISElSeUG5CtILGl1LQ3kAAAAAAAAAAEDr4OHvoR639ZBHgIdD8pnNZofksavBYsOGDbrhhhscspCm6NKliyZMmCBJWrBggSorK+vEHDt2TOvXr5ckPfPMM3Jxqb1Zx759+9S1a1eFh4dr8+bN9dZ54oknJEmFhYX66quv6o05ceKENm3aJEm69dZbFR4e3ryTAgAAAAAAAACgCXpO6ClJKjheoDPHztQbU5RVpLxDeZKkHuN7WD686LzwuHD5hftJktLWpTVY69jaY3Xq1tRrQi/LsbU858faxbRT26vbNhgHAAAAAAAAAABap9mm2U3avUKS+k7qq9mm2Q6pb1eDRXN89dVX6tSpk9153njjDQUHB+v48eN67rnnao1VVFTogQceUHV1tQYMGKBHH320zvxXX31VqampysrK0rPPPltvjdtvv12jR4+WJD3++OPKzMysU+e+++5TVVWV2rZtqzlz5th9XgAAAAAAAAAA2GLg/w2Um4+bJCn5/eR6Y3Z9sEsySy4eLop/Ir7OuMFg0JDnhkiSMhIzLM0YNZmMJu3+eLckqcstXdQuul2dmE43dlL7ge2triV9c7pOHz4tSRr6/NBGzg4AAAAAAAAAALRGhRmFqiqrsin26xlfa9Wjq3Ry18nGg210yRssiouLlZ6ebneeDh06aMWKFQoLC9Obb76pUaNG6Z///KfefPNNxcbGat26dYqJidHXX38tD4+624aYTCbLsbXtQJYsWaKRI0fqxIkTiomJ0TPPPKMPP/xQf/rTnxQdHa01a9YoIiJCa9euVVQU25kDAAAAAAAAAC4N7xBvJbyRIEna/tZ2Zf2QVWs8e0+2tv5lqyTp+j9eb9mp4ucG3D9AHYZ0kMzSivtX1PmjxcYXNyo/NV8eAR4a+dbIBtdzyz9vkYunizK/z9TOd3fWGisvKNeqR1ZJkrqO7qqe4+vuggEAAAAAAAAAAPB21Ns6tOyQTbHpm9L1wz9/0PsD39eJ7084pL6LLUFnz57VunXrdP3118vf399y/8svv9zkgnv27GnynIYMHDhQKSkpmjNnjpYtW6ann35arq6u6tq1q+bMmaOZM2fKzc2t3rnPP/+8kpOTVVZWpj//+c8N1vDy8tJ///tfff7555o/f74++eQTnT59Wr6+vurVq5cefPBBPfDAA/L29nbYeQEAAAAAAAAAWoeUhSmW45yUHMvx0TVHVZRZJEnyDvVW54TO9c6/5qFrVJxTrM0vb9b86+er/4z+Cu4VrLxDeUqel6yqkioNenKQ4p+su3vFeU4uTrpz2Z36bPRnykjM0NwBcxVzb4zcvN2UuipVqStT5RXkpQlfTFBgl8AG84T1D9OEzyfoy0lf6tv/+1YZWzIUOSJSZafLlDwvWQXHCxQ1Ikq3fXZbU79NAAAAAAAAAACglbC2ecLPTfrvJP3vh//pu99+p00vbtLk7ybbXd+mBouRI0dqx44dio2N1fbt2y33v/jiizIYDHYvwh5BQUF65ZVX9MorrzRpXt++fZWammpz/B133KE77rijqcsDAAAAAAAAAKBBy6Ysq/f+xD8lWo47XtexwQYLSRo+e7g6J3TWjnd26MAXB1T6r1J5BXmp802dFftIrKKub3z3Za8gL01PnK6keUlKWZCixNcSVV1RLf8O/op/Ol5xj8XJN8y30TxdR3fVQ3se0vY525W6MlU/ff2TXL1dFdI7RMP+MEwxU2NkcGrZvysAAAAAAAAAAIArQ9vObdW2c1sVZRVp2xvbHJLTpgaL1NRUmc1mHTt2rM5YUzpEzmvppgwAAAAAAAAAAH4JZptnOyRPRHyEIuIj7Mrh5OKk2Jmxip0Za1eegMgAjZozSqPmjLIrDwAAAAAAAAAAgK3KC8odksemBouPP/5Y7733nu6///46YwsXLtTEiRNtLrhw4UJNnTrV9hUCAAAAAAAAAAAAAAAAAAAAAIArSk5KjrJ3Z9e5P31LukxGU6Pzq6uqVZheqB/++YP8wv0csiabGixuueUW3XLLLQ4paDAYmrXrBQAAAAAAAAAAAAAAAAAAAAAAuDIcXHZQm1/eXOf+5LnJSp6bbHMes9msAQ8OcMiabGqwaMhHH32k+Pj4Js2Jj4/XRx99ZE9ZAAAAAAAAAAAAAAAAAAAAAABwmatv84ambOjg2cZTfe/pq+EvDnfIeuxqsJg6dWqT50RFRSkqKsqesgAAAAAAAAAAAAAAAAAAAAAA4DIW91icYqbFXLjDLL3d6W2NmjNK3cZ2szrXYDDI1ctVXkFeDl2TXQ0WzfHVV1/p8ccf17Fjxy51aQAAAAAAAAAAAAAAAAAAAAAA8Avg4e8hD3+POvd7BXkpoGPApV+QWqDBori4WOnp6Ze6LAAAAAAAAAAAAAAAAAAAAAAA+AWbumGqgnsEt1h9hzRYnDx5Ut9++60OHjyowsJCGY3GBmPZuQIAAAAAAAAAAAAAAAAAAAAAAPxc5HWRLVrf7gaL3//+9/rzn/+s6upqm+LNZrMMBoO9ZQEAAAAAAAAAAAAAAAAAAAAAQCu3d9FeLZ+6XL+v/L3duexqsJg3b55effVVy20PDw8FBATI3d29wTklJSU6ffq0PWUBAAAAAAAAAAAAAAAAAAAAAABkNpllrjY7JJddDRZz586Vk5OTfv/73+vee+9Vhw4dGp2zcOFCTZ061Z6yAAAAAAAAAAAAAAAAAAAAAADgCvPV9K+aPOfMsTMOq29Xg8XBgwc1bdo0zZ492+Y5BoNBZrNjukMAAAAAAAAAAAAAAAAAAAAAAMCVYffHu2UwGJo0x2w2N3lOQ+xqsHBxcVF8fHyT5kyaNEmTJk2ypywAAAAAAAAAAAAAAAAAAAAAALgCeQZ6ys3brd4xU7VJFUUVqiiqkCR5+HvII8DDYbXtarDo3bu3ioqKHLUWAAAAAAAAAAAAAAAAAAAAAADQio2aM0p9JvaxGlOcU6xDyw9px9s7dP3L16vn+J4Oqe1kz+SHH35Yn376qcxms81z1q5dqxEjRthTFgAAAAAAAAAAAAAAAAAAAAAAtFI+oT665sFrNHX9VK15ao2yfshySF67drCYOHGitm/frltvvVXvvPOOoqKiGp2Tk5OjTZs22VMWAAAAAAAAAAAAAAAAuOyU5pVq/9L9OvrdUWXvylZxTrEMTgb5hPqo/bXt1WdyH3Ud3VUGg6HRXCe2ndDOd3cqIzFDJadK5B3srfBB4Yp9OFaRwyNtWo/JaFLSvCTtXbhXeYfyZKwwyr+Dv7qN7aa4WXHyaedj5xkDAAAAQNP87uzv5OJhe5uDTzsfRU+LVuKfEnXnsjvtrm9T5enTp1sd3717t66++mr16NFD3bp1k6+vr5yc6t8c4+jRo01fJQAAAAAAAAAAAAAAAHAZW/3kav3wjx9kLDfKK9hLfSb1UWCXQJnNZh3fcFwHvjig/Z/vV9SIKE1YOkGebT0bzLXp5U3a9NImuXi4qN+MfgrpHaK8g3lKnpesA0sPKP6peCX8JcHqekrzSvXZ6M+UtSNLQd2DNPiZwXLzcVPqylRtfX2rdn2wS3d8cYc6Duvo6G8FAAAAADTIzdutyXMCOgbox3/+6JD6NjVYfPzxx412xpvNZh04cEAHDx5sNM6WLnsAAAAAAAAAAAAAAADgSpGyMEXGcqM6XtdRd311lzz8PSxj1z5yrQ5/c1iLf71YaevTtGjMIt275V4ZnOq+x+bHf/+ojbM3ysXDRfesv0fhA8MtY32n9NVHQz/Stje2yTvEW/FPxte7FpPRpCXjlihrR5Yi4iM0Ze0UuXq6SpJiH47VuufWKfG1RC0eu1gzds5QYJdAB383AAAAAMBx8o/kq6KowiG5bN47IzAwUN7e3nYXLCkp0enTp+3OAwAAAAAAAAAAAAAAAJy3aMyiFqt9usy298I4uThp3CfjajVXnNd1dFf1n9FfSe8l6cS2E9r/+X71vqt3rZiS3BKteWqNJGngrIG1miskKaxfmOKfjNemlzZpw+83qPddveUX7lenVtK8JGUkZkgGacy8MZbmivOGvzRcB5YeUP6RfK3+7WrdveJum84PAAAAAC619C3p+uEfP8i/g79D8tncYDFnzhxNnDjR7oILFy7U1KlT7c4DAAAAAAAAAAAAAAAAXE7axbSz+qafHrf3UNJ7SZKkwysO12mw2PH2DlUWV0qS+s/oX2+O/jP6a9PLm2QsN2rbm9s06q1RtcbNZrMSX0uUJHUY3EHBPYPr5HB2dVb0tGhteGGDDn9zWNl7stUuup3tJwoAAAAAzfTV9K8ajTFVmVReUK7cg7kqSCuQJF0z8xqH1Le5wcJRDAaDzGbzpS4LAAAAAAAAAAAAAAAAtJjbF90ur0AvqzEBHQMsx4UZhXXGD3xx4FxcZIDaXt223hx+4X4K6h6kvIN5OvjFQY3820gZDAbLeOb2TBWdKJIkRd0Y1eBaOid01oYXNpyru/QADRYAAAAALondH++udQ1jzfm+hIj4CA19fqhD6tvUYLFmzRr17t278UAbjBs3TmlpaQ7JBQAAAAAAAAAAAAAAAFwOoq5vuJnhvPKCcsuxq7drrbGirCKd/um0pHM7YVgT1i9MeQfzVJRZpPzUfAV2DbSMpa2/8L4da3lCo0NlcDLIbDLXmgMANS0as6hF69+94u4WrQ8AAC4Oz0BPuXm7NTju5OIkd393BXULUtcxXdXrjl4yONnWlNEYmxosbrjhBocUkyQvLy917NjRYfkAAAAAAAAAAAAAAACAK8GZtDOW447Dar+/5tS+U5Zjvwg/q3lqjp/af6pWg0XuvlzLsX+Ef4M5XNxd5BXspZKcEuXuz20wDgAAAAAcbdScUeozsU+L1HZqkaoAAAAAAAAAAAAAAAAAajm07JAkycXDRTHTYmqNFRwvsBx7h3pbzVNzvOa8pubxCfWRJFUUVajsTJnVWAAAAAC4Eti0gwUAAAAAAAAAAAAAAACAc0zVJplN5gu3jSa7c5acKtFPX/0kSRr05CD5XuVba7zybKXl2MXD+lt+XD1d650nSRVnK2zO4+J5YbzybKU823hajQcAAAAAe81KmyXvYOvN4BcTDRYAAAAAAAAAAAAAAABAE+QfyVd+ar7ldqEK7c655qk1MpYbFdY/TMNeGFZnvKqsynLs7OZsNVfN8arSqlpjxjKjQ/IAAAAAwMUQ0DGgRevTYAEAAAAAAAAAAAAAAAA0Qdur26pNpzaW2/nl+dKm5udLWZiiPZ/skXeIt+74zx1yca/7lp6au1JUV1ZbzVdz3NXLtdZYzV0p7MkDAAAAAJfCie9PKH1zugrSClR5tlJuvm4KiApQx2EdFTEowuH1aLAAAAAAAAAAAAAAAAAAmsDJ2UmqsfmDk9Gp2bnSN6drxf0r5O7nromrJiogMqDeODdfN8uxsdxYb8x5NXe7qDlPktx93W3OU3O3i5/nAQAAANCw5dOWa8/8PU2a021sN921/C7L7YLjBXo76m2b5sY+EqtfvfsrqzEmo0lJ85K0d+Fe5R3Kk7HCKP8O/uo2tpviZsXJp51Pk9Z7saVtSNO3v/lWeQfzGowJ6hGkX737K0UOj3RY3eZf3QEAAAAAAAAAAAAAAABotqydWVo0ZpGc3Zw1+bvJumrAVQ3G1my8KMkpsZq35vjPGzaakqc4p1iS5O7nLs82nlZjAQAAANjHO9T7ouUuzSvVh0M+1KqHV6ksv0yDnxmshL8kqE1UG219fav+1fdfSt+cftHqN9WP//5RCxIWKO9gnsxmc4NfuQdy9cmNn+jH9350WG12sAAAAAAAAAAAAAAAAAAusf8l/U8LRy6U2WzWlNVTFB4XbjU+pHeI5bjoRJHV2KLMC+MhvUJqjQX3DrYcF54oVFj/sHpzGCuMKs0tPTenV3C9MQAAAACse+TgI43GLBy1UIXphYqZFlPv+Ig/jVCPcT2s5vBo49HgmMlo0pJxS5S1I0sR8RGasnaKXD1dJUmxD8dq3XPrlPhaohaPXawZO2cosEtgo2u+mLJ+yNKqR1fJbDLLJ9RH3X7dTWH9w+TX3k8uHi4ylhtVlFWkk8kndWjZIZWcKtG3j36rqwZcpauuabhp3VY0WAAAAAAAAAAAAAAAAACX0MldJ7UgYYFMRpMmfze50eYKSfJr76fAroE6ffi0sndnW8+ffPLcnHA/te3SttZY1IgobdAGSVL27mx1H9u93hw5e3JkNpktcwAAAAA0XVD3IKvjJ7adUGF6oUL6hChiUES9Mb5hvo3msSZpXpIyEjMkgzRm3hhLc8V5w18argNLDyj/SL5W/3a17l5xd7NrOcK2N7bJbDLr2t9cq4Q/J8jFo+GWh1FvjdKap9do57s7tfUvWzXh8wl213eyOwMAAAAAAAAAAAAAAAAAm+Sk5GhBwgJVV1Zr0reTFBFf901UG1/aqLnXzK1zf88JPSVJBccLdObYmXrzF2UVKe9QniSpx/geMhgMtcbD48LlF+4nSUpbl9bgOo+tPVanLgAAAADbBHUPUsfrOjYalzQ3SZI04IEBF2UdZrNZia8lSpI6DO6g4J51d6dzdnVW9LRoSdLhbw4re4/1hu6LLWNLhiKvi9TNb99stblCklw8XHTzOzer49COSt+c7pD6Dm2wSEtL0+LFizVnzhylp19Y4LFjx6zMAgAAAAAAAAAAAAAAAK58p/ad0ic3fCJjmVGTVk1ShyEd6o0rSCvQyaSTde4f+H8D5ebjJklKfj+53rm7Ptglmc+90Sj+ifg64waDQUOeGyJJykjMsDRj1GQymrT7492SpC63dFG76HY2nR8AAACAc4Y8O0TTNk6zGlNeWK4DSw/I1ctVfaf0vSjryNyeqaITRZKkqBsb3pmuc0Jny/GBpQcuylpsVV5Qru631b/TXkN6jO+h8oJyh9R3SIPFtm3bNHjwYF199dWaNGmSnnjiCR09etQy3r17dw0ZMkTff/+9I8oBAAAAAAAAAAAAAAAAl5XcA7n65IZPVJpXqkFPDpLZZNbxjcfr/SrOLq43h3eItxLeSJAkbX9ru7J+yKo1nr0nW1v/slWSdP0fr7fsVPFzA+4fcK65wyytuH+Fqsqqao1vfHGj8lPz5RHgoZFvjbT31AEAAADUI2VBiqpKq9Trzl7y8PewaY7JaFJlSaXNNdLWX9i1rl1Mw43TodGhMjgZ6sxpCd6h3nL1dG3SHFdPV3kFeTmkvvU9M2ywZMkSTZkyRdXV1TKbzZJUZ2vByMhIbdu2Tdddd50++ugjTZo0yd6yAAAAAAAAAAAAAAAAwGXBWG7UJzd8opJTJZKkzS9v1uaXNzcr1zUPXaPinGJtfnmz5l8/X/1n9Fdwr2DlHcpT8rxkVZVUadCTgxT/ZN3dK85zcnHSncvu1GejP1NGYobmDpirmHtj5ObtptRVqUpdmSqvIC9N+GKCArsENmudAAAAAKxLnnduV7oBDwywGndq/yn9Z+J/lJGYobP/OytztVmuXq4KjwtXn8l9FD0lWk4u9e+7kLsv13LsH+HfYA0Xdxd5BXupJKdEuftzG4y7FKJGRClze6b6z+hv85zMHZmKiI9wSH27GiwyMzN17733ymg0qkePHho1apQCAgL04osv1oo7fPiw1qxZo3vvvVf333+/4uLi1Llz5/qTAgAAAAAAAAAAAAAAAFcQY7mxwV0pmmP47OHqnNBZO97ZoQNfHFDpv0rlFeSlzjd1VuwjsYq6PqrRHF5BXpqeOF1J85KUsiBFia8lqrqiWv4d/BX/dLziHouTb5ivw9YMAAAA4ILM7ZnKSclRaN9QhceFW439/q/fK7BroK599FoF9QhSdUW10jenK3lestLWpyl5brLu+PKOen9+LzheYDn2DvW2Wscn1EclOSWqKKpQ2ZkyebbxbNa52Sv+qXh9GP+h+k7pq8jrIhuNz0jM0N6Fe3XPunscUt+uBot33nlH5eXlev311/X0009Lkk6fPq3Zs2fXiU1ISFBiYqJ69eqld955R2+//bY9pQEAAAAAAAAAAAAAAIDLgkeAh2ab676fxh4R8RF2f0Krk4uTYmfGKnZmrINWBQAAAFyZjBVGVVdUW25Xnq20K1/S3CRJUv8HGt+locftPXTbp7fJxf3CW/97ju+pmHtjNH/4fGVuz9SiMYs0fev0WjGSVHG2wnLs4mG9dcDF88J45dnKFmuwCO4RrDv+c4eWTVmmrmO6qtcdvRTaJ1QebTxkMBhkNptVXlCuU/tO6cDSA9r90W7d/Pebfxk7WKxZs0YJCQmW5orGREZGaurUqVq7dq09ZQEAAAAAAAAAAAAAAAAAAAAAuCQSX0vUppc2WW4XqrDZuSqKKrR/yX65ermq7+S+Dcb5hftpVtos+bb3lbOrc53xsH5hGvaHYVrz5BqdTDqpH//9o+JmxdWKMZYZLcfObnVz1FRzvKq0ytbTabaXnV9uNCbp30lK+ndSo3HfPPiNvnnoG/3B+Ae71+Vkz+Tjx4/rlltuadKcPn36KD093Z6yAAAAAAAAAAAAAAAAAAAAAABcEkN+N0TPFj5r+Xr0wKPNzpWyMEVVpVXqdWcvefh7NBjn5OKkgMiAepsrzut3bz/JcO5494e764zX3JWiurK6znhNNcddvVytxjqC2Wx26JfMjlmXXTtYlJWVydfXt0lzTCaTTCaTPWUBAAAAAAAAAAAAAAAAAAAAALgkXNxd5OJ+4a33bkVuzc6VNPfcjgwDHhxg97o823qqTac2OnP0jHL25qiyuFJuPhfW5u7rbjk2lhvrS3FhvMZuF26+zT+/puhxWw+F9AmxO8+plFM6tPyQA1ZkZ4NFaGio9u3b16Q569evV1hYmD1lAQAAAAAAAAAAAAAAAAAAAAC4rGTuyFTOnhyFRocqfGC4Q3J6h3jrzNEzklkqzilWW5+2lrGAyABlbs+UJJXklMivvV+DeYpziiVJ7n7u8mzj6ZC1NabHbT3UZ2Ifu/OkfJrisAYLJ3smDxkyRB988IHS0tJsiv/qq6+0fPlyDR8+3J6yAAAAAAAAAAAAAAAAAAAAAABcViy7Vzxg/+4V55lNZsuxk3Pt9oDg3sGW48IThQ3mMFYYVZpbem5Or+AG4xwpoGNArd027OHm4yb/Dv4OyWXXDhYPP/ywFi1apLi4OL3yyiu64447LGMGg8FyvHv3br3//vuaO3euJGnmzJn2lAUAAAAAAAAAAEA9Fo1Z1NJLAAAAAAAAAADUo6KoQvuX7Jerl6v6Tu7baPzmVzYrpE+Iuo/tbjWuOPvczhMGJ4O8Q7xrjUWNiNIGbZAkZe/ObjBXzp4cS6NG1IioRtfmCLPSZjksV/ex3Rv9PtnKrh0sBg8erIcffli5ubl66KGHFBQUpGuvvVaS9OCDD6pHjx7y8fHRgAED9K9//UtGo1GPPfaYrrnmGocsHgAAAAAAAAAAAAAAAAAAAACAX7qUT1NUVVKlXnf1krufe6PxG36/QT/+60erMWdPnlVh+rmdKcL6h8nVy7XWeHhcuPzC/SRJaevSGsxzbO0xy3HPCT0bXdsvzbG1xzR/xHyH5LKrwUKS3nnnHc2aNUtms1nV1dU6fvy4DAaDjh49qsOHD6u0tFRms1lms1lPPvmk/vrXvzpi3QAAAAAAAAAAAAAAAAAAAAAAXBaS5yVLkq550PbNCk5sO6GKoooGx3/894UGjP4P9K8zbjAYNOS5IZKkjMQM5R3KqxNjMpq0++PdkqQut3RRu+h2Nq/vl6I4p1jpm9IdksvF3gROTk566623NHHiRL3zzjtau3atcnJyLOMhISFKSEjQrFmz2LkCAAAAAAAAAABJy6ct1575e5o0p9vYbrpr+V2W2wXHC/R21Ns2zY19JFa/evdXVmNMRpOS5iVp78K9yjuUJ2OFUf4d/NVtbDfFzYqTTzufJq0XAAAAAAAAAACck/VDlrJ3ZSs0OlTtr21v87zKs5Va8cAKjftknJzdnGuNHV19VFv/vFWS1HFYR/W7t1+9OQbcP0D7PtunjMQMrbh/hSavnixXzws7XWx8caPyU/PlEeChkW+NbMbZNY+p2qRTe08ppHeInFwu7Bux55Om/f1EOteI4ih2N1icFxsbqwULFkiSiouLVVRUJF9fX/n6+jqqBAAAAAAAAAAArZZ3qPdFy12aV6rPRn+mrB1ZCuoepMHPDJabj5tSV6Zq6+tbteuDXbrjizvUcVjHi7YGAAAAAAAAAACuVElzkyRJAx4cYPOc0OhQ5ezJ0f4l+3Uy6aR63dVLbTq1UVVJlY5vPK6DXx6UzNLVN1+t2z69rVaTQk1OLk66c9md+mz0Z8pIzNDcAXMVc2+M3LzdlLoqVakrU+UV5KUJX0xQYJdAh5yvLT6/7XMd/uawrh51tSaunGi5f/m05TIYDJdsHT/nsAaLmnx8fOTjwydZAQAAAAAAAABgzSMHH2k0ZuGohSpML1TMtJh6x0f8aYR6jOthNYdHG48Gx0xGk5aMW6KsHVmKiI/QlLVTLJ9cFftwrNY9t06JryVq8djFmrFzxiX94woAAAAAAAAAAJe7irMV2r94v1y9XdV3Ul+b5z20+yFl7sjUoeWHdGLrCSXPTVbZmTI5uzrLp52P+kzso75T+urqkVc3mssryEvTE6craV6SUhakKPG1RFVXVMu/g7/in45X3GNx8g27tBsrHN90XGazWRlbM+qMmc3mJudzVFOGXQ0Wt912mx5//HENHTrUIYsBAAAAAAAAAKA1CeoeZHX8xLYTKkwvVEifEEUMiqg3xjfMt9E81iTNS1JGYoZkkMbMG1NrW3BJGv7ScB1YekD5R/K1+rerdfeKu5tdCwAAAAAAAACA1sbd112/O/u7Zs0NHxiu8IHhDlmHk4uTYmfGKnZmrEPy2eumv96kHe/s0LWPXltnbNScUeo2tpvNuQ4tO6TVT6x2yLrsarBYvny5xo8f75CFAAAAAAAAAADQWgR1D1LH6zo2GmfZMvwB27cMbwqz2azE1xIlSR0Gd1Bwz+A6Mc6uzoqeFq0NL2zQ4W8OK3tPttpFt7so6wEAAAAAAAAAAK1D/xn91X9G/3rHvIK8FNAxwOZcXsFeDlqVnQ0WkrRlyxYZjcYmzXF1dVXbtm3Vt29fhYWF2bsEAAAAAAAAAAAuK0OeHaIhzw6xGlNeWK4DSw/I1ctVfafYvmV4U2Ruz1TRiSJJUtSNUQ3GdU7orA0vbJAkHVh6gAYLAAAAAAAAAABwUVw3+zqF9g1t0pzQvqEa9odhDqlvd4PF3LlzNXfu3GbPj4uL0+uvv66hQ4fauxQAAAAAAAAAAK4YKQtSVFVapZh7Y+Th72HTHJPRJGOFUW7ebjbFp61Psxy3i2m4aSI0OlQGJ4PMJnOtOQAAAAAAAAAAAI5kMBh08MuDOvjlQbWLaadut3ZrdE5on1CF9mlaU0ZD7G6wMJvNds3//vvvdcMNN+jDDz/U5MmT7V0OAAAAAAAAAABXhOR5yZKkAQ8MsBp3av8p/Wfif5SRmKGz/zsrc7VZrl6uCo8LV5/JfRQ9JVpOLk71zs3dl2s59o/wb7CGi7uLvIK9VJJTotz9uQ3GAQAAAAAAAAAA2GPjixtlMBhkNpsVMy3GpgYLR7KrwSItLU0rV67UrFmzNHz4cN19993q27ev2rRpIxcXF1VXV+vMmTPau3evFi9erN27d+vDDz9Ujx49dPbsWf30009atmyZlixZogceeECDBw9WVFTDW5ADAAAAAAAAANAaZG7PVE5KjkL7hio8Ltxq7Pd//V6BXQN17aPXKqhHkKorqpW+OV3J85KVtj5NyXOTdceXd8g3zLfO3ILjBZZj71Bvq3V8Qn1UklOiiqIKlZ0pk2cbz2adGwAAAAAAAAAAgDW+7X01fvF4XRV71SWvbVeDRWlpqZ588knNmzdP06ZNazBuwIABmjZtmhYuXKh7771Xu3fvVlRUlPr27asJEybojjvu0O233653331Xb775pj1LAvALt2jMohatf/eKu1u0PgAAAAAAAK5MxgqjqiuqLberiqvsypc0N0mS1P+B/o3G9ri9h2779Da5uF/4lX/P8T0Vc2+M5g+fr8ztmVo0ZpGmb51eK0aSKs5WWI5dPKz/ycDF88J45dlKGiwAAAAAAAAAAIDDuXi4aOCsgYqIj2iZ+vZMfuONN3TzzTdbba6oafLkyfrqq6/0pz/9SX//+98t9//617/W6NGjtWbNGnuWAwAAAFyxVj+1Wt//9XtJ0nWzr9PwF4c3OufEthPa+e5OZSRmqORUibyDvRU+KFyxD8cqcnikTXVNRpOS5iVp78K9yjuUJ2OFUf4d/NVtbDfFzYqTTzsfO84KAAAAuHIkvpaoTS9tstwudCpsdq6KogrtX7Jfrl6u6ju5b4NxfuF+mpU2S77tfeXs6lxnPKxfmIb9YZjWPLlGJ5NO6sd//6i4WXG1YoxlRsuxs1vdHDXVHK8qta+BBAAAAAAAAAAAoD7+Ef5y93NvsfpO9kzesGGDEhISmjTnhhtu0H//+986948YMULp6en2LAcAAAC4Ip1MPqntb21v0pxNL2/SR0M/0k9f/aTu47rr5r/frJ4TeurIt0c0//r5WvN0483NpXml+nDIh1r18CqV5Zdp8DODlfCXBLWJaqOtr2/Vv/r+S+mb+RkeAAAAkKQhvxuiZwuftXzN3DOz2blSFqaoqrRKve7sJQ9/jwbjnFycFBAZUG9zxXn97u0nGc4d7/5wd53xmrtSVFdW1xmvqea4q5er1VgAAAAAAAAAAIDm6DK6i9I3Ne09SSmfpuhl55cdUt+uHSyys7Pl5NS0Hg2DwaD//e9/de738/NTZWWlPcsBAAAArjgmo0lfz/ha5mqzzXN+/PeP2jh7o1w8XHTP+nsUPjDcMtZ3Sl99NPQjbXtjm7xDvBX/ZHyDdZeMW6KsHVmKiI/QlLVT5Op57g1UsQ/Hat1z65T4WqIWj12sGTtnKLBLoH0nCgAAAFzmXNxd5OJ+4Vfurj7Nb0BImpskSRrw4AC71+XZ1lNtOrXRmaNnlLM3R5XFlXLzcbOMu/te+AQoY7mxvhQXxmvsduHm62YlEgAAAAAAAAAAoHmGPDNEcwfM1cFlB9VjXI9LXt+uHSy8vb21fv36Js1Zv369PDzqfuLWyZMnFRISYs9yAAAAgCvOtje3KXtXtrqN7WZTfEluidY8dW53ioGzBtZqrpCksH5hlqaKDb/foKLMonrzJM1LUkZihmSQxswbY2muOG/4S8PV9uq2Ki8o1+rfrm7iWQEAAABoSOaOTOXsyVFodGidn+ebyzvE+9yBWSrOKa41FhAZYDkuySmxmuf8XHc/d3m28XTI2gAAAAAAAAAAAGoylht164e36rvHvtOS25Zo76K9yknJUcHxAhVmFNb7VZpX6rD6du1g0b9/fy1dulS33HKLpkyZ0mj8/PnztXTpUiUkJNQZW758udq1a2fPcgAAAIArSv7RfG16aZOuir1K1/7mWv301U+Nztnx9g5VFp/bGa7/jP71xvSf0V+bXt4kY7lR297cplFvjao1bjablfhaoiSpw+AOCu4ZXCeHs6uzoqdFa8MLG3T4m8PK3pOtdtH8PA8AAADYy7J7xQP2715xntl0YUc8J+fan7sU3PvCz/uFJwoV1j+s3hzGCqNKc8/9cSK4V91rBAAAAAAAAAAAAEeYEzlHBoNBklSUWWTTe6Ycya4Gi0ceeURr167VtGnTtGDBAt19990aMGCArrrqKnl4eKi8vFxZWVlKSkrSokWLtH79ehkMBj366KOWHAUFBXr++eeVlJSk6dOn231CAAAAwJXimwe+kanKpDHzxqj8TLlNcw58cUDSuU+hbXt123pj/ML9FNQ9SHkH83Twi4Ma+beRlosSScrcnqmiE+d2toi6MarBWp0TOmvDCxvO1V16gAYL/CItGrOoxWqbDCa1/237FqsPAAAuPxVFFdq/ZL9cvVzVd3LfRuM3v7JZIX1C1H1sd6txxdnndp4wOBku7Gbx/0WNiNIGnfu5Pnt3doO5cvbkWBo1okY0fJ0AAAAAAAAAAABgL7PZ3HjQz9R8/5M97GqwGDt2rB588EG99957WrdundatW2c13mw266GHHtKYMWMkSfv371e/fv1kNBplMBg0evRoe5YDAAAAXDGSP0hW2vo0DX5msNpFt9PxjccbnVOUVaTTP52WJLWLsd7sENYvTHkH81SUWaT81HwFdg20jKWtT7McW8sTGh0qg5NBZpO51hwAAAAAzZPyaYqqSqoUMz1G7n7ujcZv+P0GdR7Z2WqDxdmTZ1WYXihJCusfJlcv11rj4XHh8gv3U1FmkdLWpWn47OH15jm29pjluOeEnjacDQAAAAAAAAAAQPMMeHCAwuPCbY7P/D5TyfOSHVLbrgYLSfrXv/6lyMhIvfTSSyovb/hTdT08PPTiiy/q6aefttwXFBSkP/7xj5JEgwUAAADw/xVnF2vNU2vUpnMbXTf7Opvnndp3ynLsF+FnNbbm+Kn9p2o1WOTuy7Uc+0f4N5jDxd1FXsFeKskpUe7+3AbjAAAAANjm/C/+r3nwGpvnnNh2QhVFFQ02ZPz47x8tx/0f6F9n3GAwaMhzQ7Tq4VXKSMxQ3qE8BXUPqhVjMpq0++PdkqQut3Rh9zoAAAAAAAAAAHBRdRzaUX0m9rE53snF6ZfTYCFJzzzzjGbMmKGFCxdqy5YtOnbsmM6ePStfX1916tRJQ4cO1eTJkxUYGFhrXmhoqJ555hlHLAEAAAC4Yqx6dJXKz5RrwtIJcvV0bXzC/1dwvMBy7B3qbTW25njNeU3N4xPqo5KcElUUVajsTJk823javF4AAAAAF2T9kKXsXdkKjQ5V+2vb2zyv8mylVjywQuM+GSdnN+daY0dXH9XWP2+VJHUc1lH97u1Xb44B9w/Qvs/2KSMxQyvuX6HJqyfXuhbZ+OJG5afmyyPAQyPfGtmMswMAAAAAAAAAALBNh8Ed5B1i/T1LP9e2c1tF3xP9/9i77/ioqvz/4++ZTHoDkgCBJIBU6cUIRERQEV3BDoqIimLBhg0b64plV11dK7sq2AAhuuDXdVFWRWkGBDX0HgUMRBISAoT0TOb+/sgvQ2ImkzKTMpnX8/HIg5s59XLOTO6Zmc89bmnfLQEWkhQREaEZM2ZoxowZ7qoSAAAA8FjWIqtKi0rtv5fkltSq3J7P92j3p7s18OaBOuOCM+rUZvGpYvuxJcD5pX7FL0tVLCdJRaeKal2PJfB0evGpYgIsAAAAgHpKnpssqWzL69pqN6CdMrZmaOcnO3Uk+Yj6XNdHrc9orZK8Eh1cfVC7/2+3ZEjdLummqxZdJbPF7LAes8Wsaz+7VovHLVZqUqrmDpmrgVMHyi/YTynLU5TyZYqCIoM0YekERXSPcFgHAAAAAAAAAACAO0z9fmqdy8QMi1HMsBi3tO+2AAsAAAAApyU9n6Q1T6+x/37SfLLGMkU5RVp+93IFRQXpon9cVOc2SwpOB3H88c61f1QxvSS/cvCHtcDqlnoAAAAA1E7RqSLt/HinfIN91X9y/1qXu3PLnTq88bD2/GePDq07pE1zN6ngeIF8fH0U0j5E/a7vp/5T+qvb2G411hUUGaRbkm5R8rxkbVu4TUnPJ6m0qFThceFKeCRBw+4fptDoUFdOEwAAAAAAAAAAoEZbF2xVp5Gd1KpzqxrzvtXvLRmGoSF3DNHQe4e6pf1GD7BYtGiRbrzxRpWWltacGQAAAPBQIx4foeEPDrf/npqaqlf7veq0zIpHVuhU2ildtfgqBbap+04QFXelKC12fr1dMd03yLdSWsVdKVypBwAAAEDt+If66/FTj9erbMzQGMUMdc8dmcwWs+Knxyt+erxb6gMAAAAAAAAAAKirz6d+risXXlmrAAvfIF/9/vPv+vr+rxUQHqABNw5wuX3H+4F7kKysLD355JPq27evQkJC1KZNGw0fPlxvvPGGiouLG6TNI0eOqFWrVjKZTDKZTA3SBgAAADybxd8i/zB/+49viPPgg9++/03Jc5PV7eJu6jepX73a9Av1sx9bC61Oclbe7aJiOansy121rafibhd/rAcAAAAAAAAAAAAAAAAA6sIwjFrnnbZxmh449IA6nNVBP775o1vad8sOFsXFxfrkk0+0Zs0a/f777yosLKw2b0ZGhjualCT9+OOPuuKKK3TkyBGNGTNG06dPV0FBgebPn68ZM2boww8/1BdffKEOHTq4rU1Juvvuu3Xy5Em31gkAAADvVVpcqmW3LZOPn49GPzta+Vn5VfIUnjx9jV2SX1Ipj3+4v3x8fSpFbedl5Dlts2L6H6O9W3VupcMbDtvzhXUMq7ae3Izcsj6E+Suwdd133QAAAAAAAAAAAAAAAACA+grtEKqBUwfqu8e/c0t9LgdYbNmyRVdccYUOHTpU6fGKkSMVd3kwDMMtuz6kpqZq3LhxyszM1P33369XX33Vnnbvvffqkksu0apVq3TZZZdp3bp18vf3d1Jb7X366af67LPP3FIXAAAAIEmnfj+lY3uPSZLmxc+rMf/6l9Zr/Uvr7b/ftOomdR7VWW37trU/lnMox2kdOYdPp7ft07ZSWlTfKPvxyUMnFT042mEd1iKr8jPLAj2i+kQ5zAMAAAAAAAAAAAAAAAAADSn712yVFpe6pS6XAiyOHTumSy65RBkZGfL391fPnj0VEhKi9evXq3///mrdurUk6dSpU9qzZ4/y8/PVvn179ezZ0+WOz5w5U5mZmYqLi9MLL7xQKc3f31/z5s1Tz549lZycrDlz5uihhx5yuc0TJ07o3nvvVUxMjNq2batNmza5XCcAAAAQ0j5EU1ZMcZonfWu6Vjy8QpLUf0p/DbhxgD2t3YB2kqSwjmGK6BGhY/uOKX1LutP6jmw6UlYmJkxtureplNbl/C5apVVl7W5JV6/LezmsI2NrhgybYS8DAAAAAAAAAAAAAAAAALW15/M92vv53iqPJ89N1v5v99dY3lZi04nfTujwD4fVrn87t/TJpQCLN998UxkZGZoyZYrmzJmj0NBQZWVlqW3btnrllVd0/vnn2/Pm5+frgQce0JIlS/TRRx+51OmUlBQtWbJEknTjjTc63J2ia9euGj16tL799lu9+OKLmjFjhiwW1zbsmDlzpo4cOaLPP/9cr7zyikt1AQAAAOUsARadceEZTvOYLWb7ceszWlebv/eE3vr+r9/rxMETOr7/uFqf0bpKnpy0HGXtyZIknXnNmVV2mIsZFqOwmDDlHM7Rge8OaNRToxy2VXER03tCb6f9BwAAAAAAAAAAAAAAAICK0reka8uHW6p8fyn1+1Slfp9aqzoMo+wGsWffd7Zb+mSuOUv1li9frj59+uiDDz5QaGioJFU5uXJBQUF6++231b17d7322muuNKulS5fa/yMuvPDCavONGTNGkpSZmanVq1e71OaaNWv03nvv6ZprrtFll13mUl0AAABAQxl631D5hfhJkja963jHtc3vbZaMssCOhIcSqqSbTCaNeGKEJCk1KdUejFGRzWrTlg+3SJK6X9pd7Qe0d9MZAAAAAAAAAAAAAAAAAPAGAa0C1KpTK4XHhdt/JCkwIrDSYw5/OoUr8sxI9bqil6797FoNvGmgW/rk0pYOKSkpuu+++2Q21y5Ow2Qy6YorrtDixYv10ksv1bvdlStX2o8HDhxYbb5BgwZVKuMsGMOZwsJC3XbbbQoPD9ebb75ZrzoAAACAxhDcNlhjXhqjL6d/qQ2vblCvK3upY3xHe3r61nSt+/s6SdLoZ0crLCbMYT1DbhuiHYt3KDUpVctuW6YbvrlBvoG+9vTVs1crOyVbAa0CNPbVsQ17UgAAAAAAAAAAAAAAAABanGEzhmnYjGGVHnva/LQufu1i9bu+X5P0yaUAi7y8PMXFxVV6zNe37EtXx48fd1imTZs2OnjwoCvNaseOHZKk0NBQhYeHV5svNjbWfrxz5856t/f0008rJSVFc+fOVfv23JkXAAAAjSNjW4YytmVIkjJ3Z1Z6fNtH2yRJwe2C1XVM10rlzrrzLOVm5GrtM2s1f/R8DZ42WFF9opS1J0ub5m1SSV6Jhj88XAkPV929opzZYta1n12rxeMWKzUpVXOHzNXAqQPlF+ynlOUpSvkyRUGRQZqwdIIiukc0wNkDAAAAAAAAAAAAAAAAQONyKcCiVatWSk9Pr/RYSEiIfHx8tHfvXodltm3bppKSknq3WVRUZG+zXbt2TvNWTK9vUMfWrVv18ssva+TIkZo2bVq96gAAAADqY/f/7daap9dUeXzPZ3u057M9kqRO53WqEmAhSaOeGqWuY7pq4xsbtWvpLuW/la+gyCB1vair4u+OV5fRXWpsPygySLck3aLkecnatnCbkp5PUmlRqcLjwpXwSIKG3T9ModGhrp8oAAAAAAAAAAAAAAAAAEh6yvZUk7bvUoDFmWeeqcWLF+uJJ56QyWSSJJnNZvXo0UP/+te/dPfdd1faYWLXrl364IMP1KFDh3q3eerUKftxQECA07yBgYEOy9VWaWmpbr31Vvn4+Gju3Ln2c3TVyZMnlZ2dbf/d399f/v7+bqm7JjaTrVHaQfNjmAwZMmSYDNnkvfPAarU2dRe8ltVqlc1mYwzQZJiDaGo2W93//o6aPUqjZo+qd5uxCbGKTYitOaMTZotZ8dPjFT893qV6vB1rAO9kmAz+9ng5rj/AHPBujD/qswZAy3H8+HEFBQXZf2cN0PzwnrnnYKw8B2PlWRgvz8FYeQ7DZDR1F9CEmvJzAG/nqWsgXt/dx9vef+N9R9QXcwf1xdypHv8nLZdLARajR4/WM888o0svvVR/+9vfNHDgQEnSpZdeqpdffll9+vTRzTffrJiYGO3Zs0fvvfeeioqKNGbMmHq3WVBQYD/28/Nzmrdien5+fp3bevXVV5WcnKxnn31WPXv2rHP56pT/P5W76aabdPPNN7utfmeyo7NrzoQWyZChgtACZStbJrknWMgTJSUlNXUXvJbNZlNqaqqksmA8oLExB9HUjh071tRdQBNiDeCdDBmyppa9ocLfHu/E9QeYA96N8QdrAO/Wv3//Sr+zBmh+eM/cczBWnoOx8iyMl+dgrDzHqYK63/gTLUdTfg7g7Tx1DcTru/t423eBeN8R9cXcQX0xd6pXMcAW7pebnqvS4lJJUnC7YFn8T4c9ZP+arTWz1yh9a7r8w/zVd1Jfxd8V77bNFFwKsJg4caKeeeYZffXVV/r666914MABxcXF6cEHH9S8efN05MgRPf/88/b8hmEoODhYjzzySL3brLgrRXFxsdO8FdMr3imqNg4cOKCnnnpKffr00aOPPlq3TtZgy5Ytio09fSfhxoxaT3slrVHaQfNjmAxlK1tt0tvIZHjvwmzEiBFN3QWvVR6tmZCQIIvFpT8/QL0wB9HUyheb8E6sAbyTYTLUIa4Df3u8GNcfYA54N8YfrAG827Zt29SxY0f776wBmh/eM/ccjJXnYKw8C+PlORgrD1JQcxa0XE35OYC389Q1EK/v7uNt3wXifUfUF3MH9cXcqd7hw4ebugstVkF2gV7v8ro9wGLy/yar60VdJUmZuzP13rD3VJxbLMMo20nw8A+HdfiHw7rqo6vc0r5LM713795as2aNPZChffv29n+/+OILXXfddUpLO30R27FjRy1cuFBdu3atd5uhoaH248LCQqd5K+52UbFcbdx+++0qLCzUvHnz5OvrW7dO1iA8PFxt2rRxa521ZTaIHvNWNtlkkkkmw+TV84A/8E3LbDbLYrEwDmgyzEE0JaL4vRtrAO9kk42/PWAOgDng5Rh/78YawLu1bt2aNUAzx3vmnoOx8hyMlWdhvDwHY+U5+IK0d2vKzwG8nae+NvL67j7e+N4b7zuivpg7qC/mjmP8fzScXUt3yVpkVVBkkAbfNlht+7a1p3014ysVnSqSJHUY0kGhHUL129rftCNxh/pd30/d/9Td5fZdHtlzzz3X4ePnnHOO9u/fr6SkJKWnpys6OlrnnHOOy8EK/v7+at++vdLT05WRkeE0b8X0zp0717qNBQsW6Ntvv9WUKVPUvXt3ZWVlVclTUlJiP66Y7uvrq/Dw8Fq3BQAAAAAAAAAAAAAAAAAAAAAApF+/+VX+Yf66Y9MdCosJsz+e/Uu29n+7XyaTSfF3x+uSNy4pe/zXbM2Ln6ctH2xp+gCLtWvX2o/bt2+vHj16VEr39fXV6NGjXWnCob59+yo9PV2nTp3SyZMnqw1oqLj1Sp8+fWpd/8qVKyVJCxcu1MKFC2vMHxUVZT8+77zztHr16lq3BQAAAAAAAAAAAAAAAAAAAAAApCObjmjgzQMrBVdIZTtbSJJvkK/Of+58++NturZRv8n9tO+/+9zSvksBFqNGjZLJVLbF4U033aT333/fLZ2qyfnnn69vv/1WkrRlyxadd955DvNt2rSpUpnaeuSRR3TDDTc4zfPQQw9p27ZtkqQVK1bYH2/dunWt2wEAAAAAAAAAAAAAAAAAAAAAAGVyj+QqqndUlcf3fr5XJpNJva7oJf8w/0ppUWdGafO7m93SvksBFpIUEBCgWbNmafz48e7oT61cc801mjVrlgzD0HfffVdtgEV5EEZkZKRGjRpV6/p79+6t3r17O81TMZDiwgsvrHXdAAAAAAAAAAAAAAAAAAAAAACgKpPZpNKS0kqP5aTlKO3HNElS7wlVv+dv8jG5rX2zK4UtFovuu+8+PfHEE+rXr5+7+lSj7t27a8KECZKkhQsXqri4uEqe/fv3a+XKlZKkRx99VBZL5ViSHTt2qEePHoqJidHatWsbvtMAAAAAAAAAAAAAAAAAAAAAAKBaYTFhOpJ8pNJjm9/bLMMw5Bvkq65ju1Ypc3z/cQVGBLqlfZcCLNq1a6fu3bu7pSN19dJLLykqKkoHDx7UE088USmtqKhIt99+u0pLSzVkyBDdc889Vcr/9a9/VUpKitLS0vTYY481VrcBAAAAAAAAAAAAAAAAAAAAAIADnc7rpB0f79Du/9utkvwS/fLVL1r/8nqZTCb1urKXLP6VN16wFlq1/aPtiuod5Zb2LTVnqd7IkSO1e/fuOpX59ttv9be//c2+u0R9xcXFadmyZbryyiv1j3/8Qzt27NBll12mgoICzZ8/X9u3b9fAgQP13//+VwEBAVXK22w2+7FhGLVq86OPPrIfZ2RkOHx8zJgxateuXX1OCQAAAAAAAAAAAAAAAAAAAAAArzXsgWHaOn+rlkxYYn/MMAyZLWYlzEywP5afla/DGw9r7TNrlZueq/i7493SvksBFg899JAuvvhi3XnnneratepWG45kZGRozZo1rjRrN3ToUG3btk2vvfaaPvvsMz3yyCPy9fVVjx499Nprr2n69Ony8/NzWHbWrFnatGmTCgoK9OKLL9aqvSlTptT4+KpVqwiwAAAAAAAAAAAAAAAAAAAAAACgjqLOjNJVi67S57d8ruLcYkmSJcCii1+7WO36nf6e/obXN+j7v34vSTKZTOozsY9b2ncpwGLw4MF6++23ddFFF2nGjBmaMGGCoqOj3dKx2oqMjNRzzz2n5557rk7l+vfvr5SUlDqVqe1OFwAAAAAAAAAAAAAAAAAAAAAAoO56X9NbZ4w5Q7+t/U2GzVDHszsqNDq0cp6re6tNtzaSJP9Qf/uxq1wKsDjjjDMkSdnZ2XrggQf0wAMPKDw8XGFhYTKbzQ7L5OXludIkAAAAAAAAAABAs/afm/+jiMCIpu4GAAAAAAAAAAAeKyA8QD3H96w2vf3A9mo/sL3b23UpwOLgwYNVHjtx4oROnDjhtJzJZHKlWQAAAAAAAAAAAAAAAAAAAAAAAGVsz9Cez/bovL+c53JdLgVYSNK5555r38miNvbv36+kpCRXmwUAAAAAAAAAAAAAAAAAAAAAAF4uY1uG1jy9pnkEWNxxxx26/vrra51/0aJFBFgAAAAAAAAAAAAAAAAAAAAAAIBKTqaerHOZ/Kx8t7XvcoBFXYWEhCguLq6xmwUASVLi+MQmbX/SsklN2j4AAAAAAAAAAAAAAAAAAADQ1NY8u0Y//OMHDbt/mEbNHmV//LXOr8lkMjVZv8yuFC4pKanT7hWSdPnll+vAgQOuNAsAAAAAAAAAAAAAAAAAAAAAADzU+pfWqyinSD+88kOVNMMw6vzjLi7tYOHj4+OufgAAAAAAAAAAAAAAAAAAAAAAAC/QZ2IfbX5/s3pP6F0lbcgdQxQzLKbWdR3+4bA2zdvkln65FGBRkc1m05o1a7Rx40alp6dr+vTp6tmzpyRp1apVOu+882Q2u7RhBgAAAAAAAAAAAAAAAAAAAAAA8HCXvXuZxvx9jALbBFZJ63RuJ/W7vl+t6zJbzG4LsHBLxMO///1vdenSRRdeeKFmzZqlN998U2lpafb0iy66SF27dtW///1vdzQHAAAAAAAAAAAAAAAAAAAAAAA8mKPgis7ndVZwu+A61RPSLkSdRnZyS59c3sHilVde0cyZM2UYhv0xk8lUKc+oUaO0cuVKTZo0SQcPHtQjjzziarMAAAAAAAAAAAAAAAAAAAAAAKAFuWnVTXUuc8aFZ+iMC89wS/su7WCxZ88ePfLIIzIMQ2PHjtXrr7+u999/v0q+FStWaNeuXerTp49mzZqlLVu2uNIsAAAAAAAAAAAAAAAAAAAAAACAW7m0g8Wbb74pwzCUmJioa6+9VpJ07NixSrtZlOvZs6dWrVqlHj16aM6cOXr33XddaRoAAAAAAAAAAAAAAAAA0IQSxyc2dRcAAACarQ9Hfajf1vxWYz7fYF89kfuE0zyH1h/Sj3N+VGpSqvKO5ik4Klgxw2MUf1e8Oo/qXKv+2Kw2Jc9L1vaPtitrT5asRVaFx4Wr5+U9NWzGMIW0D6lVPQ3NWmRValKqjmw6ovzMfBXlFMk/3F/BUcHqcFYHxSbEysfPp8HadynAYvXq1brqqqvswRU1iYiI0M0336z//ve/rjQLAAAAAAAAAAAAAAAAAAAAAECLt+aZNVrz9BpZAiwaNG2Q2vZtq6zdWdo0b5N2LdmlhJkJGvP3MU7ryM/K1+Jxi5W2MU2RvSJ1zqPnyC/ETylfpmjdC+u0+b3Nmrh0ojqN7NRIZ1XVqd9Pae1f12rrh1tlLbRWm88SaNGgWwZpxOMjFBod6vZ+uBRgcfjwYd1zzz11KtOzZ0+lpaW50iwAAAAAeJRlty1TZEBkU3cDAAAAAAAAAAAAAAAAjahDfAddueBKp3lMZlO1aT+//bNWP7ValgCLblx5o2KGxtjT+k/prw/O/UDrX1qv4LbBSng4wWEdNqtNn1z5idI2pik2IVZTvp0i30BfSVL8XfH67onvlPR8kj6+/GNN+3GaIrpH1ONMXbP3v3v1fzf8n0rySmQYhtO8Jfkl+umfP2nLh1t09eKr1WNcD7f2xaUAi5KSEvn5+dWpTEFBgXx8Gm5LDgAAAAAAAAAAAAAAAAAAAAAAmppvkK8ie9Xvppx5mXlaMXOFJGnojKGVgiskKXpQtBIeTtCap9do1ZOr1Pe6vgqLCatST/K8ZKUmpUomafy88fbginKjnh6lXUt2KfuXbH3z4DeatGxSvfpbX9sWbdN/bvqPZEiGYchkNimqd5TaD2yvwIhA+YX4qfhUsfKz8pW+OV1Ze7Nk2AwV5xbr4ys+1pULr1S/Sf3c1h+XAiw6dOign376Sbfeemuty3zxxReKiYmpOSMAAAAAAAAAAAAAAAAAAAAAAF5o4+sbVZxbLEkaPG2wwzyDpw3WmmfWyFpo1fp/rNfFr15cKd0wDCU9nyRJijsnTlG9o6rU4eProwE3D9CqP6/Svi/2KX1rutoPaO/ms3Esc1emvrjjCxk2Q4GtA5UwM0GDpw1WUGRQtWVyM3K1ad4m/fDKDyo8Uagvbv9C7Qe0d3hu9WF2pfDo0aM1f/58/fTTT7XKP2fOHK1cuVIXXHCBK80CAAAAAAAAAAAAAAAAAAAAANBi7Vq6S5LUqnMrtenWxmGesJgw+w4Zu5fulmEYldIPbzisnEM5kqQuF3aptq2uY7qebnfJLpf6XRcrZq5QSX6JYhNiNX37dI14bITT4ApJCmkXopF/Hqk7t96pjmd3VHFesX2nD3dwKcBixowZKikp0ahRozRr1izt3LlTNptNkmQymSRJR48e1X/+8x+NGzdOM2bMkI+Pj+677z7Xew4AAAAAAAAAAAAAAAAAAAAAgIcoOlUkw2bUmC8nLUfH9h6TJLUf6Hw3iehB0WVlDucoOyW7UtqBlQfsx87qaTegnUxmU5UyDenozqNK+V+KIntF6vovr1doh9A6lQ+PDdfk/01WRPcI/fLVL8rclemWfllcKdy3b189++yzmjVrll544QW98MIL8vX1lclk0hVXXKHi4mIVFxfb8xuGoRdeeEE9evRwueMAAAAAAAAAAAAAAAAAAAAAADRXJfklWvPMGu1aukvHfz2ukvwSmcwmRfSMUPdLu2v4A8MdBhYc3XHUfhwWG+a0jYrpR3ceVUSPCPvvmTtOBx2Ex4ZXW4fF36KgqCDlZeQpc6d7AhVqsm/ZPplMJo19dawCwgPqVUdg60CNfXWsFo9brL3/3auo3lEu98ulHSwk6fHHH9err74qX19fGYZhD6jIzc1VUVGRDMOQYRjy9fXVm2++qQcffNDlTgMAAAAAAAAAAAAAAAAAAAAA0Jz9/tPvSno+SXHnxunyDy7XpC8m6cK/Xyij1NAPL/+gOb3maO9/91Ypd+LgCftxcLtgp21UTK9Yrq71hLQLkSQV5RSp4HiB07zukPp9qiJ6RKjb2G4u1dP9T90V0T1Cv639zS39cmkHi3IzZszQNddco7ffflsrVqzQL7/8opycHIWGhqp79+4aM2aM7rzzTnXs2NEdzQEAAAAAAAAAAAAAAAAAAAAA0CisRVaVFpXafy8+VVyrcsFtg3XTqpsq7azQ49IeOvues5U4PlH7V+zXkglLdNOqmxSbEOuwfkuA86/8+wb6VtuvolNFta7HEng6vfhUsQJbBzrN76pj+46p68Vd3VLXGWPO0C9f/eKWutwSYCFJHTt21LPPPqtnn33WXVUCAAAAAAAAAAAAAAAAAAAAANCkkp5P0pqn19h/P6mTNZa55uNr5OPv4zBQweJv0RUfXqHXz3hdpUWlWn7Pct2x6Q57eklBif3Yx8/HaTsV00vySyqlWQusbqmnIeQfy1frM1q7pa7WXVurINs9u26YXSn8zDPPaMeOHW7pCAAAAAAAAAAAAAAAAAAAAAAAzc2Ix0fosZOP2X/u2XVPjWVC2oc43QUitEOoul3cTZKUvjldRzYfsadV3JWitLi0StmKKqb7BvlWSqu4K4Ur9TSEopNFCooIcktdQRFBKsopqjljLbi0g8Xs2bPVvXt39e3b1y2dAQAAAAAAAADAW3w46kP9tua3GvP5BvvqidwnnOY5tP6Qfpzzo1KTUpV3NE/BUcGKGR6j+Lvi1XlU51r1x2a1KXlesrZ/tF1Ze7JkLbIqPC5cPS/vqWEzhimkfUit6gEAAAAAAAAAoKWx+Ftk8T/91Xu/HD+31NvhrA7a+/leSWXv9UcPii6rP/R0/dZCq8Oy5SrudlGxnCT5h/rXup6Ku138sZ6GYBiGzBaX9ouwM/mYJMMtVbkWYCGV7WJx9OhR3XDDDYqIiHBHnwAAAAAAaBG2J25X2itpMhvueUOgriYtm9Qk7QIAgMa15pk1WvP0GlkCLBo0bZDa9m2rrN1Z2jRvk3Yt2aWEmQka8/cxTuvIz8rX4nGLlbYxTZG9InXOo+fIL8RPKV+maN0L67T5vc2auHSiOo3s1EhnBQAAAAAAAABAyxfcNth+nJueaz9u1bmV/TgvI89pHRXTK5Yr//3whsP2fGEdw6qtJzejrH3/MH+nO2+4lalxmqkLlwMsTpw4oQceeECPPvqoLrvsMt1666266KKLZDI1w7MFAAAAAAAAAKAZ6RDfQVcuuNJpHpO5+vfbf377Z61+arUsARbduPJGxQyNsaf1n9JfH5z7gda/tF7BbYOV8HCCwzpsVps+ufITpW1MU2xCrKZ8O8W+9Xj8XfH67onvlPR8kj6+/GNN+3GaIrpzsyUAAAAAAAAAANzBsJ3edsHsc/rmjW37trUf5xzKcVpHzuHT6W37tK2UFtU3yn588tBJRQ+OdliHtciq/Mz8sjJ9ohzmaQhf3/+1Vs5a6XI9JXklNWeqJZcDLP7xj3+of//+evfdd7Vo0SJ9+umn6tixo6ZOnaqbb75ZXbp0cUc/AQAAAAAAAABocXyDfBXZK7JeZfMy87Ri5gpJ0tAZQysFV0hS9KBoJTycoDVPr9GqJ1ep73V9FRZT9c5UyfOSlZqUKpmk8fPG24Mryo16epR2Ldml7F+y9c2D37BLFgAAAAAAAAAANdi7bK8ytmbo3FnnOt24oOKuFSHRIfbjsI5hiugRoWP7jil9S7rTto5sOlJWJiZMbbq3qZTW5fwuWqVVkqT0LenqdXkvh3VkbM2wB3t0Ob/xvv+fn5UvI9OoOWMtuGuDCHPNWarXqVMnhYSEqG/fvnrttdf0+++/6+OPP1bv3r3117/+Vd27d9eFF16oxMREFRUVuaXDAAAAAAAAAABA2vj6RhXnFkuSBk8b7DDP4GmDJZNkLbRq/T/WV0k3DENJzydJkuLOiVNU76p3pfLx9dGAmwdIkvZ9sU/pW51/kAMAAAAAAAAAgLfb/elurXpylfIy8pzmO7zhsP04bkRcpbTeE3pLkk4cPKHj+487LJ+TlqOsPVmSpDOvObNKkEHMsBj7zZcOfHeg2n7s/3Z/lXYbQ2BEoFp1auXyT1BkkNv65NIOFgcOVP5P9vX11YQJEzRhwgQdPnxY77//vj788ENNnjxZrVq10uTJk3XLLbdo0KBBLnUaAAAAAAAAAABvt2vpLklSq86t1KZbG4d5wmLCFNkrUlm7s7R76W6NfWVspQ9XDm84bN9avMuF1d+RquuYrlr157I7XO1askvtB7R312kAAAAAAAAAANBipfwvRYOmOv7u/LGUY/bAhtiEWLXt07ZS+tD7htpvtrTp3U264G8XVKlj83ubJUOyBFiU8FBClXSTyaQRT4zQ8ruWKzUpVVl7sqrsrG2z2rTlwy2SpO6Xdm/UzwAufu1i9bu+n8v1bPtom/5z039c75Bc3MHCmZiYGP3lL3/R/v37tWLFCvXt21f/+te/dNZZZ2nwYMd30gIAAAAAAAAAwJsVnSqyb8HtTE5ajo7tPSZJaj/Q+Qcd0YOiy8oczlF2SnaltAMrT99IyVk97Qa0k8lsqlIGAAAAAAAAAABU77vHv9OxfceqPF6QXaBPJ30qo9SQb5CvLplzSZU8wW2DNealMZKkDa9uUNpPaZXS07ema93f10mSRj872r5TxR8NuW1I2e4YhrTstmUqKSiplL569mplp2QroFWAxr46tl7n2eRMNWepLZd2sKhJSUmJPvvsM7333ntav75s63HDMLR169aGbBYAAAAAAAAAAI9Qkl+iNc+s0a6lu3T81+MqyS+RyWxSRM8Idb+0u4Y/MFyhHUKrlDu646j9OCzW8QcmjtKP7jyqiB4R9t8zd2Taj8Njw6utw+JvUVBUkPIy8pS5M7PafAAAAAAAAAAAQIrqHSWzr1l5GXl6e+Db6ntdX3WI7yAfPx9l7c7S1gVblZ+Zr+B2wbrmk2vsN0v6o7PuPEu5Gbla+8xazR89X4OnDVZUnyhl7cnSpnmbVJJXouEPD1fCw1V3ryhntph17WfXavG4xUpNStXcIXM1cOpA+QX7KWV5ilK+TFFQZJAmLJ2giO4R1dbjbmNfHasOZ3VwS10dzuqgi165yC11uRRg8cwzz+iqq65S3759Kz2+fft2vffee1q0aJGys8vuhmUYZXfcSkhI0K233upKswAAAAAAAAAAtAi///S7jm4/qoG3DNTIP4+Ub7Bv2Yciczfph5d/UPI7ybrqo6vU87KelcqdOHjCfhzcLthpGxXTK5araz0h7UKUl5GnopwiFRwvUGDrQOcnBwAAAAAAAACAlzrnkXM04MYB2v1/u7V/xX79tvY37fxkp0pLShXYOlDt+rdTj3E9NOjWQfIP9Xda16inRqnrmK7a+MZG7Vq6S/lv5SsoMkhdL+qq+Lvj1WV0lxr7ExQZpFuSblHyvGRtW7hNSc8nqbSoVOFx4Up4JEHD7h+m0OiqN3xqSMNmDHNbXZE9IxXZM9ItdbkUYDF79mx169ZNffv2VU5OjhYvXqz3339fycnJkk4HVURFRenGG2/Urbfeql69erneawAAAAAAAAAAmhFrkVWlRaX230tyS5zkPi24bbBuWnWTonpH2R/rcWkPnX3P2Uocn6j9K/ZryYQlumnVTYpNiLXnKT5VbD+2BDh/q9830NdhOUkqOlVU63osgafTi08VE2ABAAAAAAAAAIATIe1DFH9XvOLvine5rtiE2EqfE9SH2WJW/PR4xU93vT8tmUsBFpL0008/6auvvtKnn36qwsJCSWWBFWazWRdffLFuvfVWXXbZZbJYXG4KAAAAAAAAAIBmKen5JK15eo3995PmkzWWuebja+Tj7+MwUMHib9EVH16h1894XaVFpVp+z3LdsekOe3pJwekADh8/H6ftVEwvya8c+GEtsLqlHgAAAAAAAAAAgJbA5aiHN954Q9Lp3Sq6dOmiqVOnaurUqerYsaOr1QMAAAAAAAAA0OyNeHyEhj843P57amqqXu33qtMyIe1DnKaHdghVt4u7ae/ne5W+OV1HNh9R9KBoSZV3pSgtLq2uiirpvkG+ldIq7krhSj0AAAAAAAAAAAAtgdnVCgzDkJ+fn6677jqtWLFCv/76q/785z9XG1xx4MABLViwwNVmAQAAAAAAAABoNiz+FvmH+dt/fEPcE4DQ4awO9uND6w/Zj/1C/ezH1kKrnKm420XFcpLkH+pf63oq7nbxx3oAAAAAAAAAAABaApcDLKZPn67ff/9dixcv1gUXXFBj/vXr12vq1KmuNgsAAAAAAAAAQIsX3DbYfpybnms/btW5lf04LyPPaR0V0yuWq2s9uRll7fuH+SuwdaDTvAAAAAAAAAAAAJ7I5QCLc845R61bt65VXqvVqt27d7vaJAAAAAAAAAAAXsGwGfZjs8/pt/Tb9m1rP845lOO0jpzDp9Pb9mlbKS2qb5T9+OShk9XWYS2yKj8zv6xMn6hq8wEAAAAAAAAAAHgylwIsDhw4oCuuuKLGfD/++KPuueceRUdH6/nnn3elSQAAAAAAAAAAPN7eZXu19rm1MgzDab6Ku1aERIfYj8M6himiR4QkKX1LutM6jmw6UlYmJkxtureplNbl/C72Y2f1ZGzNsAd7VCwDAAAAAAAAAADQkrgUYNGpUycFBQU5TDt06JD+9re/6cwzz9Tw4cP11ltvKTs7u8YPiwAAAAAAAAAAaOl2f7pbq55cpbyMPKf5Dm84bD+OGxFXKa33hN6SpBMHT+j4/uMOy+ek5ShrT5Yk6cxrzpTJZKqUHjMsRmExYZKkA98dqLYf+7/dX6VdAAAAAAAAAACAlsbizsry8vK0dOlSzZ8/X2vXnr7zVsWgisjISB07dsydzQKAx0gcn9ik7U9aNqlJ2wcAAAAAAEBlKf9L0aCpgxymHUs5Zg9siE2IVds+bSulD71vqDa+vlHFucXa9O4mXfC3C6rUsfm9zZIhWQIsSngooUq6yWTSiCdGaPldy5WalKqsPVmK7BVZKY/NatOWD7dIkrpf2l3tB7Svz6kCAAAAAAAAAAA0ey4HWBiGoW+//VYLFizQf/7zH+Xn59sfL9e6dWtdf/31uvXWW7Vjxw7ddNNNrjYLAAAAAAAAAIDH++7x7xR3TpwiekRUerwgu0CfTvpURqkh3yBfXTLnkiplg9sGa8xLY/Tl9C+14dUN6nVlL3WM72hPT9+arnV/XydJGv3saPtOFX805LYh2rF4h1KTUrXstmW64Zsb5Bvoa09fPXu1slOyFdAqQGNfHeuO0wYAAAC8nmEY+umfP+nbx75VSV6Jblp1kzqP6lzr8ofWH9KPc35UalKq8o7mKTgqWDHDYxR/V3yt67FZbUqel6ztH21X1p4sWYusCo8LV8/Le2rYjGEKaR9Sv5MDAAAAAA9W7wCLnTt3asGCBVq0aJGOHDkiqXJQhVR256vnnntODz74oPz9/e3l/pgPAAAAAAAAAABvEtU7SmZfs/Iy8vT2wLfV97q+6hDfQT5+PsranaWtC7YqPzNfwe2Cdc0n1yh6ULTDes668yzlZuRq7TNrNX/0fA2eNlhRfaKUtSdLm+ZtUkleiYY/PFwJD1fdvaKc2WLWtZ9dq8XjFis1KVVzh8zVwKkD5Rfsp5TlKUr5MkVBkUGasHSCIrpHVFsPAAAAgNrJ/jVb/73lv/pt7W/1Kr/mmTVa8/QaWQIsGjRtkNr2baus3WVrgF1LdilhZoLG/H2M0zrys/K1eNxipW1MU2SvSJ3z6DnyC/FTypcpWvfCOm1+b7MmLp2oTiM71auPAAAAAOCp6hRgkZmZqcWLF2vBggXasmWL/fGKARN9+vTR5MmTNWbMGMXHx2vo0KH24ApJmjx5siZPnux6zwEAAAAAAAAA8FDnPHKOBtw4QLv/b7f2r9iv39b+pp2f7FRpSakCWweqXf926jGuhwbdOkj+of5O6xr11Ch1HdNVG9/YqF1Ldyn/rXwFRQap60VdFX93vLqM7lJjf4Iig3RL0i1KnpesbQu3Ken5JJUWlSo8LlwJjyRo2P3DFBod6q7TBwAAALxSxV0rzD5mxQyL0eENh+tUx89v/6zVT62WJcCiG1feqJihMfa0/lP664NzP9D6l9YruG1wtYHWNqtNn1z5idI2pik2IVZTvp1i38Uu/q54fffEd0p6PkkfX/6xpv04jUBrAAAAAF6lVgEWS5cu1fz58/XNN9/IarVKqhxUERMTo0mTJmny5Mnq37+/JOnYsWMN0F0AAAAAAAAAAFqGkPYhir8rXvF3xbtcV2xCrGITYl2qw2wxK356vOKnu94fAAAAAFWtebps54muY7tq/Lzx2vze5joFWORl5mnFzBWSpKEzhlYKrpCk6EHRSng4QWueXqNVT65S3+v6KiwmrEo9yfOSlZqUKpmk8fPG24Mryo16epR2Ldml7F+y9c2D32jSskl1P1kAAAAA8FDm2mSaOHGili9frpKSEhmGIcMw1Lp1a912221atWqVUlNT9eKLL9qDKwAAAAAAAAAAAAAAAACcZhiGxr87Xjd8dYPCY8PrXH7j6xtVnFssSRo8bbDDPIOnDZZMkrXQqvX/WO+wD0nPJ0mS4s6JU1TvqCp5fHx9NODmAZKkfV/sU/rW9Dr3FQAAAAA8Va0CLKSyBZbJZFJkZKQWLVqk9PR0vfPOOzrvvPMasn8AAAAAAAAAAAAAAACAxxs1e5QG3+o4MKI2di3dJUlq1bmV2nRr4zBPWEyYIntFSpJ2L90twzAqpR/ecFg5h3IkSV0u7FJtW13HdD3d7pJd9e4zAAAAAHiaWgVYLFu2TBMmTJC/v7+ysrJ0xx13aNq0afrmm29ks9kauo8AAAAAAAAAAAAAAACARzOZTPUum5OWo2N7j0mS2g9s7zRv9KDosjKHc5Sdkl0p7cDKA/ZjZ/W0G9BOJrOpShkAAAAAaOlqFWBx6aWX6pNPPlF6errefvtt9e/fXwsXLtQll1yiDh06aMaMGdq4cWND9xUAAAAAAAAAAAAAAADwOkd3HLUfh8WGOc1bMf3ozqOV0jJ3ZNqPw2PDq63D4m9RUFRQWZmdmdXmAwAAAICWplYBFuXCwsJ0++23KykpSb/++quefPJJhYaG6s0331RCQoK6d++u2bNna9++fQ3VXwAAAAAAAAAAAAAAAMCrnDh4wn4c3C7Yad6K6RXL1bWekHYhkqSinCIVHC+oXUcBAAAAwMNZ6luwS5cumj17tmbPnq2kpCQtWLBAS5cu1TPPPKNnn31WvXv3lslkkmEYlcpt2LBBc+fO1fvvv+9y5z3VstuWKTIgsqm7AQAAAAAAAAAAAAAAgHqwldpk2E5/J8ZmtTVoe8Wniu3HlgDnX/fxDfR1WE6Sik4V1boeS+Dp9OJTxQpsHVirvgIAAACAJ6vTDhbVGTFihObOnasjR47o448/1sUXX6y9e/fKMAxdddVVuvPOO5WcnCxJ+vXXXzV//nx3NAsAAAAAAAAAAAAAAAA0uuxfsvXr17/afw6uOdig7ZUUlNiPffx8nOatmF6SX1IpzVpgdUs9AAAAANBS1XsHC0f8/f01ceJETZw4UZmZmfroo4+0cOFCzZ07V/PmzVO/fv3UrVs3dzYJAAAAAAAAAAAAAAAANKo23dqo9Rmt7b9nF2ZLaxquvYq7UpQWlzrNWzHdN8i3UlrFXSlcqQcAAAAAWiq37GDhSFRUlB544AFt2rRJ27dv14MPPqisrCz93//9X0M1CQAAAAAAAAAAAAAAADQ4s49ZPr4+9h+zpcG+giNJ8gv1sx9bC61Oclbe7aJiOUnyD/WvdT0Vd7v4Yz0AAAAA0FI17Oru/+vTp49eeuklpaamavbs2Y3RJAAAAAAAAAAAAAAAANAitOrcyn6cl5HnNG/F9Irl6lpPbkauJMk/zF+BrQNr11EAAAAA8HCNEmBhb8xsVteuXWUYRmM2CwAAAAAAAAAAAAAAAHistn3b2o9zDuU4zZtz+HR62z5tK6VF9Y2yH588dLLaOqxFVuVn5peV6RNVbT4AAAAAaGkaNcBCkq688kodOHCgsZsFAAAAAAAAAAAAAAAAPFJYxzBF9IiQJKVvSXea98imI2VlYsLUpnubSmldzu9iP3ZWT8bWDBk2o0oZAAAAAGjpGj3AIigoSJ06dWrsZgEAAAAAAAAAAAAAAACP1XtCb0nSiYMndHz/cYd5ctJylLUnS5J05jVnymQyVUqPGRajsJgwSdKB76q/Qer+b/dXaRcAAAAAvIGlqTsAAGg8ieMTm6xtm8mmjg92bLL2AQAAAAAAAAAAAMCTDb1vqDa+vlHFucXa9O4mXfC3C6rk2fzeZsmQLAEWJTyUUCXdZDJpxBMjtPyu5UpNSlXWnixF9oqslMdmtWnLh1skSd0v7a72A9o3yPkAAAAAQHPU6DtYAAAAAAAAAAAAAAAAAKib4LbBGvPSGEnShlc3KO2ntErp6VvTte7v6yRJo58dbd+p4o+G3DZEcSPiJENadtsylRSUVEpfPXu1slOyFdAqQGNfHdsAZwIAAAAAzRc7WAAAAAAAAAAAAAAAAACNYNtH2+zHGdsy7Me/rvhVOYdzJEnB7YLVdUxXh+XPuvMs5Wbkau0zazV/9HwNnjZYUX2ilLUnS5vmbVJJXomGPzxcCQ9X3b2inNli1rWfXavF4xYrNSlVc4fM1cCpA+UX7KeU5SlK+TJFQZFBmrB0giK6R7jpzAEAAADAMxBgAQAAADQj+Vn52rlkp379+lelb05XbkauTGaTQtqFqOPZHdXvhn7qMa6HTCZTjXUdWn9IP875UalJqco7mqfgqGDFDI9R/F3x6jyqc636Y7PalDwvWds/2q6sPVmyFlkVHheunpf31LAZwxTSPsTFMwYAAAAAAAAAwHt8NuUzh48n/S3JftzpvE7VBlhI0qinRqnrmK7a+MZG7Vq6S/lv5SsoMkhdL+qq+Lvj1WV0lxr7ERQZpFuSblHyvGRtW7hNSc8nqbSoVOFx4Up4JEHD7h+m0OjQup8gAAAAAHg4AiwAAACAZuKbh7/RT//8SdZCq4KigtRvcj9FdI+QYRg6uOqgdi3dpZ3/3qku53fRhCUTFNgmsNq61jyzRmueXiNLgEWDpg1S275tlbW77O5Vu5bsUsLMBI35+xin/cnPytficYuVtjFNkb0idc6j58gvxE8pX6Zo3QvrtPm9zZq4dKI6jezk7v8KAAAAAAAAAABapKeMp9xST2xCrGITYl2qw2wxK356vOKnx7ulTwAAAADQEhBgAQAAADQT2z7aJmuhVZ3O66TrPr9OAeEB9rSz7z5b+77Yp4+v+FgHVh5Q4vhETf1+qkzmqjtZ/Pz2z1r91GpZAiy6ceWNihkaY0/rP6W/Pjj3A61/ab2C2wZXu0W4zWrTJ1d+orSNaYpNiNWUb6fIN9BXkhR/V7y+e+I7JT2fpI8v/1jTfpzGFuEAAAAAAAAAAAAAAAAAPJ65qTsAAAAA4DSzxawrF1xZKbiiXI9xPTR42mBJ0qH1h7Tz3zur5MnLzNOKmSskSUNnDK0UXCFJ0YOi7UEVq55cpZzDOQ77kTwvWalJqZJJGj9vvD24otyop0epTbc2KjxRqG8e/KbO5wkAAAAAAAAAAAAAAAAAzQ0BFgAAAEAz0n5ge4XHhVebfubVZ9qP9y3bVyV94+sbVZxbLEn2YIw/GjxtsGSSrIVWrf/H+irphmEo6fkkSVLcOXGK6h1VJY+Pr48G3DygrB9f7FP61nQnZwUAAAAAAAAAAAAAAAAAzZ+lqTsAAAAAoMzViVcrKCLIaZ5WnVrZj0+mnqySvmvprrJ8nVupTbc2DusIiwlTZK9IZe3O0u6luzX2lbEymUz29MMbDivnUNnOFl0u7FJtX7qO6apVf15V1u6SXWo/oL3TvgNofInjE5u6C5q0bFJTdwEAAAAAAAAAAAAAAKBWPH4Hi6ysLD355JPq27evQkJC1KZNGw0fPlxvvPGGiouLXarbMAx9//33mjFjhuLj49W6dWv5+voqIiJCw4cP11NPPaXff//dTWcCAAAAb9dldBe169/OaZ7CE4X2Y99g30ppOWk5Orb3mKSynTCciR4UXVbmcI6yU7IrpR1YecB+7KyedgPayWQ2VSkDAAAAAAAAAAAAAAAAAJ7IowMsfvzxR/Xv31/PPfecOnTooBdffFFPPPGEcnNzNWPGDA0bNqzeARCbNm3SwIEDNXLkSL3xxhuKjIzUQw89pLffflt33323jhw5omeeeUY9e/bUokWL3HxmAAAAgGPHDxy3H3ca2alS2tEdR+3HYbFhTuupmH5059FKaZk7Mu3H4bHh1dZh8bcoKKpsx43MnZnV5gMAAAAAAAAAAAAAAAAAT2Bp6g7UV2pqqsaNG6fMzEzdf//9evXVV+1p9957ry655BKtWrVKl112mdatWyd/f/861f/jjz9q27ZtMplM+vTTT3XllVdWSn/sscc0btw4rVq1SjfeeKPatGmjSy65xC3nBgAAAFRnz2d7JEmWAIsG3jywUtqJgyfsx8Htgp3WUzG9Yrm61hPSLkR5GXkqyilSwfECBbYOdJofAAAAAAAAAAAAAAAAAJorj93BYubMmcrMzFRcXJxeeOGFSmn+/v6aN2+efHx8lJycrDlz5tS7nWnTplUJrpCkoKAgzZ8/X76+vrLZbHrggQfq3QYAAABaHmuRVUU5RfafktwSl+vMO5qnvZ/vlSQNf3i4QjuEVkovPlVsP7YEOI+l9g30dVhOkopOFdW6Hkvg6fQ/1gMAAAAAAAAAAAAAAAAAnsQjAyxSUlK0ZMkSSdKNN97ocHeKrl27avTo0ZKkF198UVartV5tXX755dWmxcbGKj4+XpK0d+9epaSk1KsNAAAAtDxJzyfphfAX7D9vDXjL5TpXzFwha6FV0YOjNfLPI6uklxScDuLw8fNxWlfF9JL8ysEf1gKrw3x1rQcAAAAAAAAAAAAAAAAAPIlHBlgsXbpUhmFIki688MJq840ZM0aSlJmZqdWrV9epjUsvvVT/+9//7EEa1enUqZP9ODU1tU5tAAAAoOUa8fgIPXbyMfvP9K3TXapv20fbtHXBVgW3DdbETyfK4l91Z4mKu1KUFpc6ra9ium+Qb6W0irtSuFIPAAAAAAAAAAAAAAAAAHiSqt/K8gArV660Hw8cOLDafIMGDapUxlkwxh/FxsYqNja2xnwnTpywHwcHB9e6fgAAALRsFn9LpSAI35D6Bx/8tvY3LbttmfzD/HX98uvVqnMrh/n8Qv3sx9ZC5zu4VdztomI5SfIPPb1DXE31VNzt4o/1AAAAAAAAAAAAAAAAAIAn8cgdLHbs2CFJCg0NVXh4eLX5KgZI7Ny5s0H6cuDAAXtfnAV7AAAAAPWR9mOaEscnysfPRzd8fYM6DOlQbd6KgRd5GXlO662Y/seAjbrUk5uRK0nyD/NXYOtAp3kBAAAAAAAAAAAAAAAAoDnzuACLoqIipaenS5LatWvnNG/F9IMHD7q9L3v37tWePXskSVOnTlVAQIDb2wAAAID3+j35d3009iMZhqEbvr5BMcNinOZv27et/TjnUI7TvDmHT6e37dO2UlpU3yj78clDJ6utw1pkVX5mflmZPlHV5gMAAAAAAAAAAAAAAAAAT2Bp6g7U1alTp+zHNQU0BAaevoNuxXLu8s4770iS2rRpoz//+c+1LldgLVCuNdf+u6/ZV74+vm7vH1CRYTJkyJBhMmSTram7Ay9kmAzZbDZZrdam7gq8lNVqZQ6iSdlsdfv7e2TzES0cs1A2q61WwRWSFNYxTBE9InRs3zGlb0l3Xv+mI2VlYsLUpnubSmldzu+iVVolSUrfkq5el/dyWEfG1gwZNsNeBtVjDeCduAYv481/e7n+AHPAuzH+qOsaAC1Lfmm+/K3+9t9ZAzQ/XK97DsbKczBWnoXx8hyMlecwTEZTdwFN6OTJk8rOzrb/7u/vL39/fyclWg6bidem+uD13X287f033ndEfTF3UF/Mnerxf9JyeVyARUFBgf3Yz8/Pad6K6fn5+W7tx+7du/Wvf/1LkvT2228rKqr2d+x9dPWjlX6/ePDF+tNZf3Jr/4A/MmSoILRA2cqWSaam7g68kCFD1tSyCwqz2eM2UEILYLPZlJqaKok5iKZx7NixWufN2JahhWMWqrS4VDd8dYNiE2Kr5Fn99GrtW7ZPt/98e6XHe0/ore//+r1OHDyh4/uPq/UZrauUzUnLUdaeLEnSmdecKZOp8rVBzLAYhcWEKedwjg58d0CjnhrlsJ/7v91fqV1UjzWAd+IavExSUlJTd6HJcP0B5oB3Y/xRlzUAWh7WAM0f1+ueg7HyHIyVZ2G8PAdj5TlOFbj/xp/wHAMHDqz0+0033aSbb765SfrS2LKjs2vOhCp4fXcfb/scgvcdUV/MHdQXc6d6FQNs0bJ4XIBFxV0piouLneatmB4UFOS2PuTn52vSpEkqKirSI488ogkTJtSp/IujXlTrgNNfdPM1+8r3CHeuQsMyTIayla026W1kMliYofEZJkMd4jooISFBFovH/flBC1AeMcwcRFMpX2zW5OiOo1pwwQJZC6ya/L/JihsR5zDfiQMndCT5SJXHh943VBtf36ji3GJteneTLvjbBVXybH5vs2RIlgCLEh5KqJJuMpk04okRWn7XcqUmpSprT5Yie0VWymOz2rTlwy2SpO6Xdlf7Ae1rdX7eijWAd+IavMyIESOaugtNhusPMAe8G+OP2q4B0DKxBmj+uF73HIyV52CsPAvj5TkYKw9SUHMWtFxbtmxRbOzpG2Z50w4Waa+kNXUXPBKv7+7jbZ9D8L4j6ou5g/pi7lTv8OHDTd0FNBCPm+mhoaH248LCQqd5K+52UbGcK6xWqyZNmqStW7dqypQpeuGFF+pcR6AlUCGWkMoPslMkGphNNplkkskwyWwQRYjGZ5NNZrNZFouFCy00GeYgmlJtovgzd2VqwQULlJ+Vr5F/GSnDZujg6oMO8+am5zp8PLhtsMa8NEZfTv9SG17doF5X9lLH+I729PSt6Vr393WSpNHPjlZYTJjDeobcNkQ7Fu9QalKqlt22TDd8c4N8A09/GWj17NXKTslWQKsAjX11bI3n5u1YA3gnrsHLePvfXa4/wBzwboy/d+NOXt4tyCeINUAzx/W652CsPAdj5VkYL8/BWHkOviDt3cLDw9WmTZum7kaT4LWpfnh9dx9vfO+N9x1RX8wd1BdzxzH+P1oujxtZf39/tW/fXunp6crIyHCat2J6586dXW7bZrPp5ptv1n//+19df/31+uCDD2QysUAGAACA66yFVi24YIHyjuZJktY+s1Zrn1lbr7rOuvMs5Wbkau0zazV/9HwNnjZYUX2ilLUnS5vmbVJJXomGPzxcCQ9X3b2inNli1rWfXavF4xYrNSlVc4fM1cCpA+UX7KeU5SlK+TJFQZFBmrB0giK6R9SrnwAAAAAAAAAAAAAAAADQnHhcgIUk9e3bV+np6Tp16pROnjyp8PBwh/kqbr3Sp08fl9q02WyaOnWqFi1apOuuu04LFiyQj4+PS3UCAAAA5ayF1mp3paiPUU+NUtcxXbXxjY3atXSX8t/KV1BkkLpe1FXxd8ery+guNdYRFBmkW5JuUfK8ZG1buE1JzyeptKhU4XHhSngkQcPuH6bQaPfsFAcAAAAAAAAAAAAAAAAATc0jAyzOP/98ffvtt5KkLVu26LzzznOYb9OmTZXK1JdhGLrtttu0YMECTZgwQR999BHBFQAAAHCrgFYBesp4yq11xibEKjYh1qU6zBaz4qfHK356vJt6BQAAAAAAAAAAAAAAAADNk0cGWFxzzTWaNWuWDMPQd999V22ARXkQRmRkpEaNGlWvtgzD0B133KH3339fV199tRYvXlwluOLIkSMaP368br/9dt1+++31agcAAAAAAAAAAAAAAAAAAAAA0HLkZ+Vr55Kd+vXrX5W+OV25GbkymU0KaReijmd3VL8b+qnHuB4ymUwOy584eEKvd3m9Vm3F3x2vP835k9M8NqtNyfOStf2j7crakyVrkVXhceHqeXlPDZsxTCHtQ+p8ji2Nuak7UB/du3fXhAkTJEkLFy5UcXFxlTz79+/XypUrJUmPPvqoLJbKsSQ7duxQjx49FBMTo7Vr11bb1t1336158+bpiiuuUGJiYpV6JKmoqEjJycn6/fffXTktAAAAAAAAAAAAAAAAAAAAAEAL8M3D3+jV2Fe1/K7lOrT+kHpd1UtjXxmrMS+NUfSQaO1auksfX/axFl64UAXZBQ3en/ysfL0/4n0tv2u5CrILdM6j52jM38eodZfWWvfCOr3V/y39tva3Bu9Hc+eRO1hI0ksvvaRVq1bp4MGDeuKJJ/Tyyy/b04qKinT77bertLRUQ4YM0T333FOl/F//+lelpKRIkh577DGtX7++Sp57771Xb731lrp166a77rpL69atc9iX9PR0N50VAAAAAAAAAAAAAAAAAAAAAMDTbftom6yFVnU6r5Ou+/w6BYQH2NPOvvts7ftinz6+4mMdWHlAieMTNfX7qTKZHe9kcf7fzteZV57ptL2A1gHVptmsNn1y5SdK25im2IRYTfl2inwDfSVJ8XfF67snvlPS80n6+PKPNe3HaYroHlGPM24ZPDbAIi4uTsuWLdOVV16pf/zjH9qxY4cuu+wyFRQUaP78+dq+fbsGDhyo//73vwoIqDpZbDab/dgwjCrpr732mubMmSNJ+uWXX3TRRRc13MkAAAAAAAAAAAAAAAAAAIA6SRyf2KTtT1o2qUnbBwA0f2aLWVcuuLJScEW5HuN6aPC0wUp+J1mH1h/Szn/vVN/r+jqsJzQ6VJG9Iuvdj+R5yUpNSpVM0vh54+3BFeVGPT1Ku5bsUvYv2frmwW+8+m+cuak74IqhQ4dq27ZtmjVrlg4dOqRHHnlEzz33nAIDA/Xaa69p48aN6tChg8Oys2bNUrdu3dSxY0e9+OKLVdIPHjzYwL0HAAAAAAAAAAAAAAAAAAAAALRU7Qe2V3hceLXpZ159eleKfcv2NUgfDMNQ0vNJkqS4c+IU1TuqSh4fXx8NuHlAWT++2Kf0rekN0hdP4LE7WJSLjIzUc889p+eee65O5fr376+UlJRq01977TW99tprLvYOAAAAAAAAAAAAAAAAAAAAAOBtrk68WkERQU7ztOrUyn58MvVkg/Tj8IbDyjmUI0nqcmGXavN1HdNVq/68SpK0a8kutR/QvkH609x5fIAFAAAAAAAAAACeKj8rXzuX7NSvX/+q9M3pys3IlclsUki7EHU8u6P63dBPPcb1kMlkclj+xMETer3L67VqK/7ueP1pzp+c5rFZbUqel6ztH21X1p4sWYusCo8LV8/Le2rYjGEKaR9S53MEAAAAAAAAAMAbdRldfTBDucIThfZj32DfWtVrs9pkLbLKL9ivVvkPrDxgP24/sPqgiXYD2slkNsmwGZXKeBsCLAAAAAAAAAAAaALfPPyNfvrnT7IWWhUUFaR+k/sponuEDMPQwVUHtWvpLu389051Ob+LJiyZoMA2gQ3an/ysfC0et1hpG9MU2StS5zx6jvxC/JTyZYrWvbBOm9/brIlLJ6rTyE4N2g8AAAAAAAAAALzF8QPH7cfO3n8/uvOoPr3+U6UmperU76dklBryDfJVzLAY9buhnwZMGSCzxeywbOaOTPtxeGx4tW1Y/C0KigpSXkaeMndmVpuvpSPAAgDQaLYnblfaK2kyG47/iDe0ScsmNUm7AAAAAAAAjmz7aJushVZ1Oq+Trvv8OgWEB9jTzr77bO37Yp8+vuJjHVh5QInjEzX1+6kymR3vZHH+387XmVee6bS9gNYB1abZrDZ9cuUnStuYptiEWE35dop8A8vulBV/V7y+e+I7JT2fpI8v/1jTfpymiO4R9ThjAAAAAAAAAABQ0Z7P9kiSLAEWDbx5YLX5fnj5B0X0iNDZ95ytyDMjVVpUqt/W/qZN8zbpwMoD2jR3kyb+30SFRodWKXvi4An7cXC7YKf9CWkXoryMPBXlFKngeIECWzfszZ+aIwIsAAAAAAAAAABoImaLWVcuuLJScEW5HuN6aPC0wUp+J1mH1h/Szn/vVN/r+jqsJzQ6VJG9Iuvdj+R5yUpNSpVM0vh54+3BFeVGPT1Ku5bsUvYv2frmwW+4kQUAAAAAAAAAwKtYi6wqLSq1/158qtjlOvOO5mnv53slScMfHq7QDlWDI8qdefWZumrRVbL4n/76f+9remvg1IGaP2q+Dm84rMTxibpl3S2V8khS0aki+7ElwHn4gCXwdHrxqWKvDLBomluIAwAAAAAAAAAAtR/YXuFx1W/HfebVp3el2LdsX4P0wTAMJT2fJEmKOydOUb2jquTx8fXRgJsHlPXji31K35reIH0BAAAAAAAAAKA5Sno+SS+Ev2D/mdN7jst1rpi5QtZCq6IHR2vkn0c6zBMWE6YZB2bo6sSrqwROSFL0oGiN/EtZ2SPJR/Tz2z9XyWMtsNqPffx8nPapYnpJfkmtzqOlIcACAAAAAAAAAIAmcHXi1brsvcuc5mnVqZX9+GTqyQbpx+ENh5VzKEeS1OXCLtXm6zqmq/1415JdDdIXAAAAAAAAAACaoxGPj9BjJx+z/9yz6x6X6tv20TZtXbBVwW2DNfHTiQ6DJ6SynbBbdW4lH9/qAyMGTR0kmcqOt7y/pUp6xV0pSotLq6RXVDHdN8jXSc6Wy/keHwAAAAAAAAAAoEF0GV19MEO5whOF9mPf4Np9kGGz2mQtssov2K9W+Q+sPGA/bj+wfbX52g1oJ5PZJMNmVCoDAAAAAAAAAEBLZ/G3VAqC8Mup3Xvwjvy29jctu22Z/MP8df3y69WqcyuX+hbYJlCtz2it478eV8b2DBXnFssv5HT//EP97cfWQqujKk6nV9jtwi+0/ufoyQiwAAAAAAAAAACgmTp+4Lj9uNPITtXmO7rzqD69/lOlJqXq1O+nZJQa8g3yVcywGPW7oZ8GTBkgs8XxptaZOzLtx+Gx4dW2YfG3KCgqSHkZecrcmVltPgAAAAAAAAAA4Fjaj2lKHJ8oHz8f3fD1DeowpINb6g1uG6zjvx6XDCk3I1dtQtrY01p1bqXDGw5LkvIy8hTWMazaenIzciVJ/mH+Cmwd6Ja+eRoCLAAAAAAAAAAAaKb2fLZHkmQJsGjgzQOrzffDyz8ookeEzr7nbEWeGanSolL9tvY3bZq3SQdWHtCmuZs08f8mKjQ6tErZEwdP2I+D2wU77U9IuxDlZeSpKKdIBccLvPbDFQAAAAAAAAAA6ur35N/10diPZBiGpnwzRTHDYtxWt2Ez7Mdmn8o3XIrqG2U/PnnopKIHRzusw1pkVX5mflmZPlEO83gDAiwAAAAAAECDSRyf2KTtT1o2qUnbBwB4D2uRVaVFpfbfS3JLXK4z72ie9n6+V5I0/OHhCu1QNTii3JlXn6mrFl1VaXvy3tf01sCpAzV/1Hwd3nBYieMTdcu6WyrlkaSiU0X2Y0uA848NLIGn04tPFRNgAQAAAAAAAABALRzZfEQLxyyUzWrTDV/fUOvgirXPrVXbfm3V6/JeTvPlppftPGEymxTctvLNlLqc30WrtEqSlL4lvdq6MrZm2AM1upzfpVb9a4kc7wcOAAAAAAAAAABqLen5JL0Q/oL9560Bb7lc54qZK2QttCp6cLRG/nmkwzxhMWGacWCGrk68ukrghCRFD4rWyL+UlT2SfEQ/v/1zlTzWAqv92MfPx2mfKqaX5LseRAIAAAAAAAAAQEuXsS1DC8csVGlxqSb/b7JiE2Kr5Fn99GrNPWtulcdXPblKP79V9b39ik4dOaWTv52UJEUPjpZvkG+l9JhhMQqLCZMkHfjuQLX17P92v/2494TeTttsyQiwAAAAAAAAAADARSMeH6HHTj5m/5m+dbpL9W37aJu2Ltiq4LbBmvjpRIfBE5JktpjVqnMr+fhWHxgxaOogyVR2vOX9LVXSK+5KUVpcWiW9oorpf/yABgAAAAAAAAAAVHZ0x1EtuGCBrAVWTV4+WXEj4hzmO3HghI4kH3GYdmj9IRXlFDlMk1Tp5kqDbx9cJd1kMmnEEyMkSalJqcrak1Ulj81q05YPt0iSul/aXe0HtK+2vZbO+V7fAAC0IInjE5u6C5q0bFJTdwEAAAAAADQAi7+lUhCEb0j9gw9+W/ublt22TP5h/rp++fVq1bmVS30LbBOo1me01vFfjytje4aKc4vlF+JnT/cP9bcfWwutjqo4nV5htwu/UD8nOQEAAAAAAAAA8G6ZuzK14IIFys/K18i/jJRhM3Rw9UGHeXPTc6utp/hUsZbdvkxXLriyyk7Uv37zq9a9uE6S1Glkp7KbLjkw5LYh2rF4h1KTUrXstmW64Zsb5Bt4+rOM1bNXKzslWwGtAjT21bF1PNOWhQALAAAAAAAAAACaibQf05Q4PlE+fj664esb1GFIB7fUG9w2WMd/PS4ZUm5GrtqEtLGntercSoc3HJYk5WXkKaxjWLX15GaUfcDjH+avwNaBbukbAAAAAAAAAAAtjbXQqgUXLFDe0TxJ0tpn1mrtM2vrXE+7Ae2UsTVDOz/ZqSPJR9Tnuj5qfUZrleSV6ODqg9r9f7slQ+p2STddtegqmS1mh/WYLWZd+9m1WjxusVKTUjV3yFwNnDpQfsF+SlmeopQvUxQUGaQJSycoonuES+fu6QiwAAAAAAAAAACgGfg9+Xd9NPYjGYahKd9MUcywGLfVbdgM+7HZp/KHK1F9o+zHJw+dVPTgaId1WIusys/MLyvTJ8phHgAAAAAAAAAAUBZg4WxXitq6c8udOrzxsPb8Z48OrTukTXM3qeB4gXx8fRTSPkT9ru+n/lP6q9vYbjXWFRQZpFuSblHyvGRtW7hNSc8nqbSoVOFx4Up4JEHD7h+m0OhQl/vs6QiwAAAAAAAAAACgiR3ZfEQLxyyUzWrTDV/fUOvgirXPrVXbfm3V6/JeTvOVf4hjMpsU3Da4UlqX87tolVZJktK3pFdbV8bWDHugRpfzu9SqfwAAAAAAAAAAeKOAVgF6ynjKLXXFDI1RzFD33JTJbDErfnq84qfHu6W+lsjxHiAAAAAAAAAAAKBRZGzL0MIxC1VaXKrJ/5us2ITYKnlWP71ac8+aW+XxVU+u0s9v/ey0/lNHTunkbyclSdGDo+Ub5FspPWZYjMJiwiRJB747UG09+7/dbz/uPaG30zYBAAAAAAAAAAA8EQEWAAAAAAAAAAA0kaM7jmrBBQtkLbBq8vLJihsR5zDfiQMndCT5iMO0Q+sPqSinqNo2fn77dADG4NsHV0k3mUwa8cQISVJqUqqy9mRVyWOz2rTlwy2SpO6Xdlf7Ae2rbQ8AAAAAAAAAAMBTEWABAAAAAAAAAEATyNyVqQUXLFB+Vr6GPzxchs3QwdUHHf7kpudWW0/xqWItu32ZSotLq6T9+s2vWvfiOklSp5GdNGjqIId1DLltSFlwhyEtu22ZSgpKKqWvnr1a2SnZCmgVoLGvjnXhrAEAAAAAAAAAAJovS1N3AAAAAAAAAAAAb2MttGrBBQuUdzRPkrT2mbVa+8zaOtfTbkA7ZWzN0M5PdupI8hH1ua6PWp/RWiV5JTq4+qB2/99uyZC6XdJNVy26SmaL4/sumS1mXfvZtVo8brFSk1I1d8hcDZw6UH7BfkpZnqKUL1MUFBmkCUsnKKJ7hEvnDgAAAAAAAAAA0FwRYAEAAAAAAAAAQCOzFlqd7kpRW3duuVOHNx7Wnv/s0aF1h7Rp7iYVHC+Qj6+PQtqHqN/1/dR/Sn91G9utxrqCIoN0S9ItSp6XrG0Ltynp+SSVFpUqPC5cCY8kaNj9wxQaHepynwEAAAAAAAAAAJorAiwAAAAAAAAAAGhkAa0C9JTxlFvqihkao5ihMW6py2wxK356vOKnx7ulPgAAAAAAAAAAAE9CgAUAAAAAAGixEscnNlnbNpNNHR/s2GTtAwAAAAAAAAAAAACAujE3dQcAAAAAAAAAAAAAAAAAAAAAAACaGgEWAAAAAAAAAAAAAAAAAAAAAADA61maugMAAAAAAAAAAAAAAAAAgLpLHJ/Y1F0AAAAAWhR2sAAAAAAAAAAAAAAAAAAAAAAAAF6PAAsAAAAAAAAAAAAAAAAAAAAAAOD1CLAAAAAAAAAAAAAAAAAAAAAAAABejwALAAAAAAAAAAAAAAAAAAAAAADg9QiwAAAAAAAAAAAAAAAAAAAAAAAAXo8ACwAAAAAAAAAAAAAAAAAAAAAA4PUIsAAAAAAAAAAAAAAAAAAAAAAAAF6PAAsAAAAAAAAAAAAAAAAAAAAAAOD1LE3dAQAA0HgSxyc2afuTlk1q0vYBAAAAAAAAAAAAAAAAAACqww4WAAAAAAAAAAAAAAAAAAAAAADA67GDBQAAAAAAQAPZnrhdaa+kyWw0zT0u2EEMAAAAAAAAAAAAAIDaI8ACAIBGlDg+sam7AAAAAAAAAAAAAAAAAAAAAAea5vaJAAAAAAAAAAAAAAAAAAAAAAAAzQgBFgAAAAAAAAAAAAAAAAAAAAAAwOsRYAEAAAAAAAAAAAAAAAAAAAAAALweARYAAAAAAAAAAAAAAAAAAAAAAMDrEWABAAAAAAAAAAAAAAAAAAAAAAC8HgEWAAAAAAAAAAAAAAAAAAAAAADA61maugMAAAAAAABoGInjE5u0/UnLJjVp+wAAAAAAAAAAAAAA1AUBFgAAAAAAAAAAAAAAAAAAAHXU2Dc6splsyo7OVtoraTIbZm50BABAAyDAAgAANJqmvIOyzWRTxwc7Nln7AAAAAAAAAAAAAAAA7sRO1gAAuJ+5qTsAAAAAAAAAAAAAAAAAAAAAAADQ1NjBAgAAAAAAAAAAAAAAAAAAAB6HXTwAAO5GgAUAAAAAAAAaBB9qAAAAAAAAAAAAAAA8CQEWAAAAAAAAAAAAAAAAAAAAqJOmvtESAAANwdzUHQAAAAAAAAAAAAAAAAAAAAAAAGhqBFgAAAAAAAAAAAAAAAAAAAAAAACvZ2nqDgAAAHiLpt4ac9KySU3aPgAAAAAAAAAAAAAAAAAAzRkBFgAAwGtsT9yutFfSZDbYxAsAAMAbNHWAq81kU8cHOzZpHwAAAAAAAAAAAAAAtce3CwEAAAAAAAAAAAAAAAAAAAAAgNcjwAIAAAAAAAAAAAAAAAAAAAAAAHg9S1N3AAAAAAAAAGiptiduV9oraTIbTXOfk0nLJjVJuwAAAAAAAAAAAADgidjBAgAAAAAAAAAAAAAAAAAAAAAAeD0CLAAAAAAAAAAAAAAAAAAAAAAAgNezNHUHAAAA0DgSxyc2dRea3KRlk5q6CwAAAI2qqa8Buf4CAAAAAAAAAAANhc9BGv7/wGayKTs6W2mvpMlsVL2vf3P4PwDcjQALAAAAAAAAAAAAAAAAAAAAwMPU9sv1NX1Jvr74cj0IckFL5L5XSQAAAAAAAAAAAAAAAAAAAAAAAA9FgAUAAAAAAAAAAAAAAAAAAAAAAPB6lqbuAAAAAAAAAICWqam3hW5KNpNNHR/s2NTdAAAAAAAAAAAAAFAHBFgAAADAazTlF/yyCrOarG0AAAAAAAAAAAAAAAC4lzffaApoyQiwAAAAAAAAAAAAAAAAAAAAAOrI279g7+3nD6Bl8vgAi6ysLL3++uv67LPPdPDgQfn5+alnz56aNGmS7rzzTvn5+bmlneXLl+vtt99WcnKyjh07pujoaI0aNUr33nuvBg8e7JY2AAAAgHL5Wfna8PoG7flsj04cPCEfPx9F9oxU30l9ddadZ8nHz6epuwgAAADAjVgDAAAAAN6FNQAAAADgXVgDeA6PDrD48ccfdcUVV+jIkSMaM2aMpk+froKCAs2fP18zZszQhx9+qC+++EIdOnSodxs2m0133nmn5s2bpzZt2uj2229Xly5d9PPPP2v+/Pn66KOP9I9//EP33XefG88MAAAA3iztxzR9fMXHyj2SqzPGnKGzpp8la4FVW+dv1VczvtKWD7fo+i+uV2iH0KbuKgAAAJzYnrhdaa+kyWyYm6T9ScsmNUm7FTX13cuaw/9BbbAGAAAAALwLawAAAADAu7AG8CweG2CRmpqqcePGKTMzU/fff79effVVe9q9996rSy65RKtWrdJll12mdevWyd/fv17tPPHEE5o3b54iIyP1ww8/qFu3bpKk22+/XVdddZUuvfRS3X///YqOjtaECRPccm4AAADwXidTT2rxuMXKz8zX0PuH6uJXL7annX3v2Vp0ySIdXHVQiZcl6pZ1t8ji77GX9AAAAGhgTR3cgNphDQAAAAB4F9YAAAAAgHdhDeB5mubWaW4wc+ZMZWZmKi4uTi+88EKlNH9/f82bN08+Pj5KTk7WnDlz6tXGzp079dJLL0mSnn32WXtwRbmLL75YU6ZMkWEYuvfee5WXl1e/kwEAAAD+vxUzVyg/M1/hceG68IULK6VZ/C0aP2+8TD4mHUk+oh/n/Hse3iEAAEtKSURBVNhEvQQAAADgLqwBAAAAAO/CGgAAAADwLqwBPI9HhrikpKRoyZIlkqQbb7zR4e4UXbt21ejRo/Xtt9/qxRdf1IwZM2Sx1O10n3/+edlsNgUGBmry5MkO89x2222aP3++MjIy9O6772rGjBl1PyEAAABA0rGUY9q5ZKckqf+N/R1GpLfp2kZdRnfR/m/3a92L6zRsxjCZLR4bNw0AAAA0qKbcxSOrMKvGPKwBAAAAAO/CGgAAAADwLqwBPJNH/u8vXbpUhmFIki688MJq840ZM0aSlJmZqdWrV9epjaKiIi1btkySNHToUIWGhjrMN3z4cIWEhEiSPeijOsXFxZKkEltJnfoCuENJaYmW/7xcJaXMPzQN5iCaGnMQTa38GrD8mtCRXUt3SWWXuTrjwjOqzXfGmLK0/Mx8HVx90G19hPuxBvBu/O0BcwDMAe/G+IM1ANC88TrtORgrz8FYeRbGy3MwVi0La4CWp3zN52ztBzjC6zvqi7mD+mLuoL6YO65hDeCZPDLAYuXKlfbjgQMHVptv0KBBDsvUxs8//6ycnJwa2zCbzerfv78k6YcfflBBQUG1eYuKiiRJVpu1Tn0B3KHEVqKvNn3Fl/vQZJiDaGrMQTS18mvA8mtCRw6uPGg/bj+wfbX52g86nXZg5QHXO4cGwxrAu/G3B8wBMAe8G+MP1gBA88brtOdgrDwHY+VZGC/PwVi1LKwBWp7yNZ+ztR/gCK/vqC/mDuqLuYP6Yu64hjWAZ/LIAIsdO3ZIkkJDQxUeHl5tvtjYWPvxzp0769XGH+tx1o7NZtOePXvq1A4AAABQ7uiOo5Ikv1A/BYQHVJsvPPb0NXDmzswG7xcAAACAhsEaAAAAAPAurAEAAAAA78IawDNZmroDdVVUVKT09HRJUrt27ZzmrZh+8ODBOrVTMX9d26m4cwYAAABQG9Yiq3LTcyVJIe1CnOYNbhdsPz5x8ERDdgsAAABAA2ENAAAAAHgX1gAt2//u+592hOyoOSMAAAC8BmsAz+VxARanTp2yHwcEVB/JI0mBgYEOyzVVOzabTZKUnpde6XGL2SJfs2+d+gfUVUFpgcxms44XHVehtbCpuwMvxBxEU2MOorHZSm2Scfr343nHyx7//9eEf1R8qth+bAlwfpnuG3j62rHoFFtON2esAbwbf3vAHABzwLsx/t6HNQCk0+P9e97vyi/Ntz/OGqD54XXaczBWnoOx8iyMl+dgrJqvP64BThSeKHucNYBX4XMA1Bev76gv5g7qi7mD+mruc6euN+B3ha3EptKiUvvv6Rll14CsAVoejwuwKCgosB/7+fk5zVsxPT8/30nOxmnn+PGyD9Re/enVOvUFcKdHVz3a1F2Al2MOoqkxB9HUyq8J/6ikoMR+7OPn47SOiukl+SVOcqKpsQaAxN8eMAfAHPB2jD9YA3iXjIwMSdLzG55v4p6gtnid9hyMledgrDwL4+U5GCvPkZGRobi4uCqPswZomfgcAK7i9R31xdxBfTF3UF/Nde7c1+W+pu4Ca4AWyOMCLCruFlFcXOwkZ+X0oKCgJm9n2LBh+v7779W6dWuZzWb74/7+/jUGcQAAAMCzWIutshWdjlC32WzKPJGp+KHxDvNXjEQvLS51mMdRum8Qdz9qzlgDAAAAeA/WAJCkQYMGsQYAAADwEtWtAQYNGuQwP2uAlonPAQAAALwHawDv4XEBFqGhofbjwkLnW81U3IWiYrmmasdisWjEiBF16gcAAABajm7qVm2aX+jpN9mthVan9VSMcPcP9Xe9Y2gwrAEAAAC8G2sA78MaAAAAwLuxBvA+rAEAAAC8G2uAlslcc5bmxd/fX+3bt5d0eqvt6lRM79y5c53aqZi/IdsBAAAAJMnib1FI+xBJUm5GrtO8eRl59uNWnVs1ZLcAAAAANBDWAAAAAIB3YQ0AAAAAeBfWAJ7L4wIsJKlv376SpFOnTunkyZPV5jt8+LD9uE+fPvVqQ5IOHTrkNG95O2azWb169apTOwAAAEC5tn3bSpKKTxWr8GT1u6jlHM6xH0f1iWrwfgEAAABoGKwBAAAAAO/CGgAAAADwLqwBPJNHBlicf/759uMtW7ZUm2/Tpk0Oy9TGWWedpdDQ0BrbsNls2rp1qyRp+PDhCgwMrJInKytLTz75pPr27auQkBC1adNGw4cP1xtvvKHi4uI69Qst36hRo2QymWr8CQkJqbGu9evX6/rrr1dcXJwCAgIUGxuriRMnavXq1bXuj9Vq1VtvvaVzzjlHERERCgkJUe/evfX4448rPT3dhTNFUzMMQ3PmzFFISIhMJlOd5oXUvObXb7/9pgceeEA9e/ZUUFCQ2rZtq9GjR+vDDz+UzWar03mh8dRnDh48eLBWr5Emk0n33HNPjfUxB71TVlaW3nrrLV1xxRXq1KmTAgICFBQUpC5duujaa6/VsmXLZBhGrepy92vhPevu0V/1V83RHD1414PVzsMjm47Yj7uc30US87C5YQ3QNLi+qWr58uW67LLL1LFjRwUEBKhLly6aOnVqpfWyp2vOr+vMgYZ34sQJLVq0SLfccosGDRqkVq1ayWKxqFWrVoqPj9fjjz+u1NTUWtXF+LcsM2fOtK8NZs+eXasyzAHP0xLeR+t8fmf7cfqWsjyOxv+aO67RZm2WTTb7GqAmLX384d3ceQ1YndWrV9f6faiXX37ZTWfWsrjzWq02eN2rv8YYK55TDa8+18C1wXOrYbhzvHh+eRZHawBHHH0OgMZTWFioTz/9VDfeeKPOPPNMhYaGyt/fX9HR0Ro7dqzefvtt5efn17o+1vmoiM+QvEdL/fwCTcfT3/dG49q3b58ee+wxDRw4UJGRkQoMDFTnzp01cuRIPf744/ruu++clmfuuA9rAA9leKB9+/YZJpPJkGQ8+eST1eYbM2aMIcmIjIw0SkpK6tzO5MmTDUlGYGCgcerUKYd51q1bZ0gyJBmvvfZalfSNGzca0dHRhiRjzJgxxpw5c4yXXnrJ6Nu3ryHJGDRokJGWllbnvqHlOu+88+xzytlPcHCw03qefvppw2w2G0FBQcZ9991nzJ0713jggQeMkJAQQ5Ixc+bMGvuSmZlpDB061JBk9OrVy3jxxReNf/7zn8af/vQnQ5IRFRVlrFmzxl2njkb0yy+/GCNHjqw0p1atWlXr8s1pfn3xxRdGWFiYYTKZjAkTJhhvvfWW8dxzzxmdOnUyJBkXXHCBkZOTU+tzQ+Oo7xw8cOBArV4jJRl3332307qYg97poYceMgICAuxjfP/99xv//Oc/jTlz5hhXX321YTabDUnG+eefbxw7dsxpXQ3xWviXmX8x/qQ/Gd3V3ek8XDBmgTFbs42/R/7dKC0pZR42M6wBmgbXN5WVlpYat912myHJaNOmjfHYY48Z77zzjnHbbbcZfn5+hsViMV5//fVa//80V839dZ050LDWrVtn+Pv7G5IMk8lkXHXVVcaLL75ovPXWW8ZDDz1kREVFGZKMoKAg45NPPnFaF+PfsiQnJxs+Pj72vwdPPfVUjWWYA56pJbyPlrUvy5htmm3M1mxj5ZMrqx3/yIBIQ5LRzbebcSL7hNO+eMv4w3u58xrQmVWrVtX6faiXXnrJjWfYMrjzWq0mvO65prHGiudUw6rPNXBNeG41HHePF88vz/LHNUB1/vg5ABrPRx99ZLRr186QZPj5+Rk333yz8fLLLxvz5s0z7r77bvta8YwzzjA2bdpUY32s81ERnyF5j5b6+QWajqe/743G9eyzzxp+fn5GTEyM8dBDDxnvvPOO8frrrxvXX3+9YbFYDElGREREteWZO+7FGsAzeWSAhWEYxsSJEw1JRufOnY2ioqIq6b/++qv9D4qjNwm2b99udO/e3ejYsWO1T9Lt27fbL2beeecdh3mmTp1qSDLatWtn5ObmVkr77bff7G863n///ZXSCgsLjdGjRxuSjCFDhhiFhYW1PXW0cOedd54RHx9v7N692+nP3r17q63jrbfeMiQZAQEBxoYNGyqlbdq0yQgODq7xDbSSkhJjxIgRhiQjISHByM/Pr5T++OOPG5KMVq1aGfv27XPtpNFobDab8eabbxrBwcFGWFiYMWzYsDp/AbE5za/k5GQjMDDQkKoGuWVnZxt9+vQxJBnjxo2r1bmh4bk6B8sDLP72t7/V+DqZnp5ebT3MQe9V/ob4eeedZ5w4UfVLScuWLbNfQyYkJBilpY4XLA35Wrhk4hJjtmYbF4Zf6HAeZv+abTzt87QxW7ONdS+tYx42M6wBGh/XN449+uijhlR2w4GUlJRKaf/73/8Ms9lsmEwm49///rfTepo7T3hdL8cccL///e9/hiTDx8fH+Oabb6qkHz9+3OjXr5/9w/Bdu3Y5rIfxb1lKSkqMQYMGVfoCUU0fNDEHPFdLeR+tfA3wUPRDDsc/+9ds4zHzY0aUohh/wHDfNWBNyr+sOn/+/BpfZ1wJ5Gip3HWtVhu87rmmscaK51TDqc81cG3w3GoYDTFePL88T/ka4LXOrxnWImuV9D9+DoDGde2119q/9OdoDffLL78YHTp0sH8x8fDhw9XWxTofFfEZkndpiZ9foOl4+vveaFyPPPKIIcm47rrrjLy8vCrpX331lWE2m6sNsGDuNAzWAJ7HYwMsKl50PvTQQ5XSCgsLjQsuuMB+0VlQUFCl/HXXXWf/YzN8+PBq2ylfpERFRRm//vprpbSvv/7aHoDhaJFSHgQSFxfn8ML3l19+sV8ovfzyy7U9dbRw5513nnHeeefVu/zRo0ftkYKPPvqowzxPPfWU/Y/goUOHHOb517/+ZUhldyvauXNnlfTi4mKjW7dufGHTw5SP/dixY43U1FT777X9AmJzm1/lUa5Dhw51mF7xjj1Lly6t8fzQ8Fydg+UBFh988IFL/WAOeq927doZFovF+O2336rNc8cdd9jHLTExsUp6Q78WnvjthPH3qL8bT+pJo0OrDpXmYUlhiTH/gvnGbM023hnyjlFSUMI8bGZYAzQ+rm+q2rFjh32t+tZbbznMc9NNNxmS45sFeBJPeF0vxxxwv/Ivgt16663V5vnqq6/s/18PPvhglXTG33PHvzovvPCCIcm4/PLLa/VBE3PAs+dAS3kfrXwN0FEdq4x/xTXAgz0eZPwBwz3XgLVR/ppbl53xcJo7rtVqg9c91zXWWPGcajh1vQauDZ5bDachxovnl+cpXwPM1mzj64e+rpTm6HMANK7yAItFixZVmycxMdH+HL7jjjuqzcc6HxXxGZJ3aYmfX6DpePr73mg85Wv8Pn36GMXFxdXmGzt2rNGjR48qjzN3Gg5rAM/jsQEWhmEYGzZssG+bNnbsWOOf//yn8fLLL9vvojJw4MBqt00rv2iVZAwbNqzaNkpLS41p06YZUlnk+RNPPGHMnTvXuOOOO+zb7P0xytwwDGPfvn2GyWQyJBl//vOfq63/wgvL7kwcFRVllJTwpIDrHwzPmjXLPrf/eOeCcocOHbLPzz9GxRtG2V2AY2NjDUnGiBEjqm3rueees7e1ZcuWevcZjecvf/mL8e6779p/r+sXEJvT/FqxYoU9veI5/VH37t3tfxPQ9Fydg+4IsGAOerd27doZZ511ltM833zzjX1sr7/++irpjfFaeGjDIePl6JeN83W+va0PH/zQ+Fe/fxmzNdt4e+DbRk5aDvOwmWEN0DS4vqlq8uTJhiQjMDCw2q3lk5KS7G05WtN6Ck95XS/HHHCvH374wRg6dKjxv//9r9o8mZmZ9vO85JJLqqQz/p47/o788ssvRmBgoBEfH298++23tfqgiTng2XOgJb2PtviNxfb0W/vcavz4zx+NdS+vq7IGYPwB91wD1gZfVnWNO67VaoPXPdc11ljxnGoY9bkGrg2eWw2jocaL55dnKv8cYLZmGwvHLqx2DYDGd+211xpms9k4efJktXny8/MNi8ViSDI6dOjgMA/rfFTEZ0jep6V9foGm4+nve6Px2Gw2o2fPnoYkY+HChfWqg7nTsFgDeBazPNjQoUO1bds2zZo1S4cOHdIjjzyi5557ToGBgXrttde0ceNGdejQwWHZWbNmqVu3burYsaNefPHFatswm82aN2+evvzySw0fPlzvv/++7r33Xn311Ve67rrrtHHjRs2YMaNKuaVLl8owDEnShRdeWG39Y8aMkSRlZmZq9erVdTh7wLGlS5dKkjp37qxu3bo5zBMTE6NevXrZ85fP1XIbNmzQoUOHJNVu/krSkiVLXOo3Gsfs2bN166231rt8c5pfFR9zVk952pYtW/TLL79Umw+Nw9U56A7MQe+WmJio9957z2meTp062Y9TU1OrpDfGa2HM0BhN3zZdV998tf2x+f+cL99AX419baymbZym0A6hzMNmhjVA0+D6pvJzuqioSMuWLZNUtmYODQ11WMfw4cMVEhJSbV88hae8rpdjDrjXsGHDtGHDBl188cXV5gkKCrIf+/v7V0ln/D13/B25/fbbVVJSonnz5snHx6dWZZgDLWsO1FVzGv/VO1bbjzsVddKKR1bo++e+r7IGYPwB91wDouG541qtJrzuuUdjjBUaTn2ugWvCc6vhNMR4wXOVfw5w7qxzlXMop9o1ABrf448/ru+++05hYWHV5gkMDFRUVJQk6ciRI7JarVXysM5HRXyG5H1a2ucXaDqe/r43Gs/atWu1d+9emc1mjR8/vl51MHcaFmsAz+LRARaSFBkZqeeee047d+5Ubm6ujh8/bg968PPzq7Zc//79lZKSosOHD2vkyJE1tvOnP/1Jy5Yt05EjR1RYWKiDBw9q/vz5Gjx4sMP8K1eutB8PHDiw2noHDRrksAxQ0alTp2Sz2WrMl5aWpr1790pyPu+k03Pv8OHDSklJqZRW2/k7YMAAmc3mKmXQfJlMpnqXbW7zq/yxVq1aVVp0VteX6upB43JlDlbHarUqLy+v1vmZg95t9OjR6t+/v9M8J06csB8HBwdXSmvM18KgyCDd+vat9nlYOLhQ0zZO07AZw+Tj51OpHuZh88AaoGlwfVO5np9//lk5OTk19sVsNttfD3/44QcVFBRUm7c586TXdYk50BR++ukn+/H5559fKY3xb1nj/95772nlypV66KGHNGDAgFqVYQ60rDlQzlPfR6s4/k+mPKkncp/Qo8cfrbIGYPwB168BXVFcXMxzxo2cXavVBq97jcfVsaoOzynX1OcauDZ4bjWMhhqv6vD88gxBkUE6/7nzddfOu6pdA6DxDRgwQKNGjaox38mTJyWVBR86+sIr63xUxGdI3qelfX6BptES3vdG4ykPjujUqZPCw8PtjxuGoVOnTlUJhPgj5k7jYA3gOTw+wKK52rFjhyQpNDS00ovVH8XGxtqPd+7c2eD9gmfIz8/XM888o/79+ys4OFhhYWHy9fVV7969NXPmTP3+++8Oy5XPO6ny3HLE2dyrbT3+/v72uzIwf1u+5jS/CgoKtH//fpf7As+1c+dOXX/99YqLi1NAQIBCQkIUHBysCy64QB988IHDu8SUYw6iJgcOHLAf/zEQl9dCOMMawPO0xOd0fc7JZrNpz549TvN6Mm97XWcOnFZYWKgnnnhCktSvXz9NmzatUjrj33LGPz09XTNnzlTXrl311FNP1bocc6BlzIGW8D4a4w+4n7NrwLpav369Lr/8cnXo0EEBAQEKCgpSq1atdOmll+qzzz6r8cNpOFbTtVpt8LrXONwxVhXxnHKP+l4D1wbPLfdryPGqiOcX0HgyMjKUn58vSTr33HOr3AiIdR7+iM+Q4IinfH6BptES3vdG4/r5558lSXFxcbLZbHrvvfc0fPhw+fn5KSwsTH5+fho2bJj+9a9/qaSkpEp55g5QGQEWDaCoqEjp6emSpHbt2jnNWzH94MGDDdkteJCffvpJzz//vM4991x98MEH+uKLL/T3v/9dpaWlevnll9WrVy/997//rVKu4hxyZe7Vp56cnBwdP37caV54tuY0v1JTU+13o+R11ju9/PLLSk5O1j333KPPPvtMS5Ys0a233qr169frlltu0bnnnqsjR444LMscRE0+++wzSVJAQIBuvvnmSmm8FqI6rAE8U0t8TrvrnFoSb3td9+Y5UFRUpIyMDO3atUvvvvuuhgwZovXr12vixIn6/vvvFRgYWCk/499yxv+ee+7R8ePH9c4771QZZ2eYAy1jDrSE99EYf8D9nF0D1tWsWbOUlpamxx57TMuWLVNiYqKuvPJKff3117rqqqt02WWX6dSpU27odctW12u12uB1r2E0xFhVxHPKPep7DVwbPLfcryHHqyKeX0DjKb/elKTp06dXSWedh4r4DAnV8ZTPL9A0WsL73mhc27dvl1QWbHnRRRfp9ttvV+/evZWYmKjPP/9cDz74oLZt26a7775bI0eOVFZWVqXyzB2gMktTd6AlqvimREBAgNO8Ff/48WYGyrVt21arVq1S79697Y9deumluueeezR+/HitWLFCEyZM0KpVq5SQkGDP466550o9rVu3dpofnqs5zS9eZ3H11Vdr0aJF8vf3tz92zTXXaOrUqRo1apQ2bNig8ePHa926dZXySMxBOHf06FF9/vnnkqSHH35YHTp0qJTOayGqw3h4ppb4nGYuVuaNr+vePAcSExM1depU++9xcXFatGiRJk2aVOUuglLz+D9n/F33+eef69NPP9XNN9+sCy64oE5lm8P/O3PAdS3hfbTm0BegJanpGrCu7rvvPr366qsym0/fs+y6667Tddddp3HjxumLL77Q9ddfr2XLlrnUTktX12u12uB1r2E0xFhVxHPKda5cA9cGzy33aujxqojnF9A4DMPQu+++K6ls94orrriiSh7WeaiIcYQjnvT5BRpfS3nfG40nPz9feXl5kqTvv/9ekvTvf/9bEyZMsOe57LLLdM0112jkyJHasGGDrrvuOq1YscK+1mfuAJWxg0UDKCgosB/7+fk5zVsxvXz7QHi3jz/+WHv27Kn0oXA5f39/ffjhh/L391dxcbHuueeeSunumnvMYTjSnOYXc9R7xcTE6MCBA0pMTKwSOCFJgwYN0l/+8hdJUnJyst5+++0qeZiDcGbmzJkqLCzU4MGD9ec//7lKOq+FqA7j4Zla4nOauViZN76ue/McGDt2rFasWKH//Oc/eumllxQREaHJkyerR48eWr58eZX8zen/vDn1xZPk5OTo7rvvVlRUlP7xj3/UuXxz+n9vTn3xJC3lfbTm1BegJajpGrC2hg0bpoMHD+q1116r9EXVcmPHjtWdd94pSfriiy/sX4yBY3W9VqsNXvcaRkOMlcRzyl1cvQauDZ5b7tMY4yXx/AIa24cffqjk5GSFhYXpgw8+cBiAyDoPFTGOcMSTPr9A42pJ73uj8eTk5FT6/ZJLLqkUXFEuPj5ed911lyTpu+++qxR8zdwBKiPAogFUjKoqLi52mrdielBQUIP1CZ6jffv2TiPxOnTooIsvvliStHnzZm3evNme5q65xxyGI81pfjFHvZfFYvl/7d17nE7l/v/x9z1H5iCnQanIKcdhkzJSdhlb5dgWkUbam0h9N4oSygglUtm2ZBI57Ip24iGhkuycchjH2EkoxzLOM8Icrt8f87tXM+Y+jbnnnvueeT0fj/vxWO51rWtd96xrLZ9rrfVZS9WrV1doaKjTMo8//rh1InPWrFl55tMH4cz8+fM1d+5cVapUSZ988onDJB6OhXCG7RGYiuM+TV/8Q0k9rpfkPnD99dcrPj5enTt31tChQ7V161YNGzZM+/fvV4cOHTRnzpxc5f3pb+5PbQkkzz33nI4ePaopU6aofPny+V7en/7u/tSWQFJczqP5U1uAQOdJDOipUqVKqVq1ai6f2P/3v//dmnZ0Hgp/yG+s5gmOe4WjMLaVxD7lLQWNgT3BvuU9vtheEvsXSq6MjAzZbLYCf95//32P17l3714NGjRIQUFB+ve//62aNWs6LMc4DzmxHXG1QLt+Ad8qTue94TuZmZm5/u0oucKuR48e1vT8+fOtafoOkBsJFoUgOjramr506ZLLsjmztXIuB7hy2223WdPr16+3pr3V9+jDcMSf+hd9FK6UL19eNWrUkCTt2rVLqampuebTB+HIf//7X/Xr109lypTR559/rurVqzssx7EQzrA9AlNx3Kfpi9lK8nGdPvAHm82m1157TU2bNpUxRk8++aROnDhhzfenv7k/tSVQfPvtt0pKStJ9992nnj17XlMd/vR396e2FDeBcB7Nn9oCBDJPY0BvatSokXUjTM5jDNxzF6t5guOeb3hjW3mKfco1b8TAnmDf8g5fbS9PsX8BBXfixAl17NhRFy5c0IwZM9ShQwenZRnnISe2I3IKxOsX8J3idt4bvnP1371Ro0ZOy8bGxlrJ2Zs2bXJYB30HIMGiUISHh6tKlSqSpF9//dVl2ZzzfXGyH8VDpUqVrOmcJ7Fz9qGC9L1rqadMmTIunxiIwOdP/evmm2+2XnHMcRaO2I+Txpg8fYQ+iKtt2rRJHTt2VFhYmFauXKlmzZo5LcuxEM4wBghMxXGf9tZvCmQl/bhOH8jNZrOpV69ekrJP0n744YfWPLZ/4G7/K1euqF+/fgoLC9PYsWOVkpKS53Pu3Dmr/MWLF3PNS09Pl0QfCOQ+kB+BcB6N7Q8UXH5iQG8KDg62niZ56tQpZWRk+GS9xYWrWM0THPd8p6DbylPsU855Kwb2BPtWwflye3mK/QvFUUhIiPbu3Vvgz4MPPuh2XSkpKWrbtq1++uknTZs2TX379nVZnnEecuIaEuwC9foFfKM4nveG70RFRSksLMz6t6vtEB4erqioKEnSb7/9Zn1P3wFyI8GikDRs2FCSdOHChVz/sV3tyJEj1nSDBg0KvV0oHrKysqzp4OBga9re7yTp8OHDLutw1fc8refy5cs6efKkwzpQ/PhT/ypdurT1hoKCtAXFl7PjpEQfRG5bt25Vu3btZIzRypUr1aJFC5flORbCFcYAgac47tPX8puCgoJUt25dl2UDBcd1+oAjt956qzW9a9cua5rtH7jb/9ixY/rhhx90+fJlNW/eXDExMXk+Xbp0scpPmjQp17x169ZJog8Ech/Ij0A4j8b2BwomvzGgt9mPMzabzbqJDp5zFqt5guOebxVkW+UH+5Rj3oqBPcG+VXC+3F75wf6F4qhu3boF/lx33XUu13H69GnFx8dr9+7d+te//qWBAwe6bRfjPFyNa0gI5OsX8I3ieN4bvhMUFKR69epZ/3aXtG2MsZazo+8AuTFqLiT33nuvNb19+3an5ZKTkx0ug5Jp6dKlGjdunPUfmDM5n7Z3/fXXW9NVq1ZVnTp1JLnud9Iffe/GG29U7dq1c83ztP/u2LHDOhFH/y3+/K1/2b87e/asfv75Z7dtcVYPAsu4ceO0ZMkSt+Xsx8mgoKBcTyuV6IP4w7Zt29S2bVtlZGRoxYoVHt2AwbEQrjAGCDzFcZ++7bbbrNenumpLVlaWduzYIUmKi4tT6dKlnZYNFBzXs5WkPrB8+XKtWbPGbbmcN1TnfEIn2z9wt3+VKlX05Zdfuvy8/vrrVvmEhIRc8xo3biyJPhDIfUAqfufR2P7AtbmWGNAT586d07hx49zGGunp6Tp9+rSk7DfmcLPqHwoaq3mC4553+GJbsU8VnLdiYE+wbxWcL7cX+xdQuM6cOaP4+Hjt2LFDU6ZM0VNPPeXxsozzkBPXkEq24nD9AoWvuJ73hu/cfvvt1nTO8+JXu3jxotLS0iRJN9xwg/U9fQe4ikGh2Ldvn7HZbEaSefHFF52Wa9u2rZFkKlasaNLT033YQvijxx57zEgyx48fd1muXbt2RpKRZHbv3p1r3siRI615P/30k8Pljxw5YvXPwYMH55mflZVlbrzxRiPJ3HXXXU7bMX78eGtd27dv9+AXwt+MHj3a2oarV692W96f+teXX35pzX/vvfec1lOnTh0jyTRp0sTt74Pv5bcPSjLt2rVzWebYsWNWnbfddlue+fRBGGPMjh07TIUKFUxkZKT59ttvHZZJTEw0zZo1y/M9x0I4wxjAPxDfGNOrVy8jyZQuXdpcuHDBYZl169ZZ63rrrbecritQcFzPraT0gWrVqpkGDRq4LTd16lTrt44cOTLXPLZ/4G5/d1avXm39xtGjRzstRx8I3D5Q3M6jsf2B/CtIDOjOwYMHjSTTv39/l+U2bNhg7U8PPfRQvtdTnHkjVvMEx72C88W2Yp/yDU9jYE+wbxU+b20v9i+g8Jw9e9bcdtttRpJ54403HJZZunSpadasmdmyZUueeYzzkBPXkEqu4nL9Av4hEM97w3dWrlxpbYuJEyc6Lbd27VqrXN++fXPNo+8AfyDBohB1797dSDLVq1c3ly9fzjP/p59+MsHBwUaSmTRpUhG0EP7GfmF41qxZTsvs27fP6jctW7bMM//XX381UVFRRpJ54YUXHNYxZswYI8mUKlXKHD582GGZt99+20gyNpvN7N27N8/89PR0U7t2bSPJtG/f3sNfCH+T3xsQ/a1/3XHHHUaSiYuLczh/zZo11u/7+OOP3f4++N61JFhER0ebc+fOOS3z0ksvWXUmJSU5LEMfLNl27dplKlasaCIiIsyaNWuclrP/v3w1joVwhTFA0SO+yT7OBQUFGUlmxowZDss8/vjjRpKpXLmySU1NddqeQMBxPa+S0geqVatmgoKCzMGDB52WycrKMs2bN7f+Zhs3bsw1n+0fuNvfHU8vNNEHArcPFMfzaGx/wHMFjQF37dplateubapWrepwefvNqrfccovJyMhwWn/v3r2t/fKLL764th9TTHkjVnO3nexlOO4VjC+2FfuUb3gaA7Nv+QdvbS/2L6BwnDt3ztx+++1uz+XPnj3b5bloxnnIiWtIJU9xu36Boheo573hG5mZmaZx48ZGkomNjTVZWVkOy/Xv39/qR1u3bs01j74D/IEEi0L0888/m5iYGCPJPPvss7nmXbp0ybRp08ZIMs2aNTO///57EbUS/sQeMFeuXNn88MMPeeafOnXKNGvWzEgyERERJjk52WE906dPt/4T27RpU65527dvN5GRkW4HZOnp6aZVq1ZGkmnVqpW5ePFirvn2bMWyZcuaffv2XcOvhT/I7w2IxvhX/9q6daspXbq0kWSmTp2aa96ZM2dMw4YNjSTToUMHj34bfO9aEiwkmYcfftjhSaeVK1ea8PBwI8ncfffdTp/qQR8sub7//ntTqVIlI8m89NJLZvXq1U4/9ifdOsKxEM4wBih6xDfZnn/+eSPJxMTE5Hm6yMqVK60LcgsXLnRZj7/juO5cSegD1apVs/7ejp5gn5mZaQYNGmQdE3r27OmwHrZ/8ZSfp8HSBwJTcTyPxvYHPOONGLBHjx7W/xOObnaz36wqyTzzzDMOL0i///771tP6nMUZJZk3YjV328mO417B+GJbsU/5hqcxMPuWf/DW9mL/Arzv/PnzJi4uzkgynTt3dhlv2o+Vzs5FM85DTlxDKlmK4/ULFL1APe8N31m3bp0JCwszksyYMWPyzF+5cqUJCQkxksyQIUMc1kHfAbKRYFHINm7caK6//nojybRr185MmzbNvP7666ZRo0ZGyn7F39GjR4u6mfATr732mgkNDTVS9usdH3/8cfP222+bmTNnmmeffdYaaFWuXNl88803LutKTEw0QUFBJjIy0gwaNMgkJSWZZ555xkRHRxtJZujQoW7bc/LkSeuJCvXq1TMTJ04006ZNM+3btzdS9isJ3bUD/mfevHnW58EHH7QC7xEjRljfu3tyjT/1r6VLl5oyZcoYm81munfvbt555x0zfvx4U716dSPJ3Hvvveb8+fMe/31Q+ArSB+2Z1pJMrVq1zKhRo8ysWbPM1KlTTdeuXa0LBPfff785ffq0y3bQB0ue33//3VSpUsXqQ55+nOFYCGcYA/ge8U1emZmZpm/fvkaSqVChghkxYoRJSkoy/fv3N2FhYSYkJCTgXxXPcZ0+0KlTJ2u7RkREmL/97W9m4sSJ5r333jOjR4829erVs+b37t3bXLp0yWldbP/iYceOHdZxf8SIEdb2f/DBB93+f0AfCDzF9Twa2x9wzVsxoP3JsZJMixYt8sw/efKkqVmzplWmSZMmZuzYsWb27NnmjTfeMG3btrXm9enTh5ufHPBGrOZuO9lx3CsYX2wr9qnCcy0xMPtW0SmM7cX+BXhf586d8x1vunrYD+M85MQ1pJKhOF+/gO8Vl/Pe8J1PP/3U2sbx8fHmn//8p0lKSjKPPfaY9aakQYMGuXwDHn0HIMHCJ06ePGlGjhxp6tevbyIjI03ZsmXN7bffbt566y2HT99GyXb8+HEzbdo006VLF1OzZk0TERFhQkNDTaVKlUybNm3Mm2++6fENkuvWrTMPP/ywqVq1qgkLCzM33HCD6dq1q/n66689bk96erp5++23TVxcnClXrpyJiIgwdevWNc8995w5duzYtf5MFCFPBm2tW7d2W48/9a+DBw+aQYMGmVq1aplSpUqZChUqmNatW5tZs2aZzMxMj+uBbxS0D27cuNEMHz7c3HXXXaZSpUomNDTUREREmBo1aphevXqZFStWeNwW+mDJcubMmXyfxHJ1IssYjoVwjjGAbxHfOLds2TLToUMHU6VKFRMeHm6qVatmevfuned1r4GI47pninMfMCb7Fesvv/yyadu2rbnppptM6dKlTUhIiClXrpxp2rSpefrpp/M8XccZtn/gy/kWo2v5/4A+EHiK63k0tj/gnLdiwB07dphatWqZqlWrmjVr1jhcV1ZWllm1apUZPHiwadGihalQoYIJCQkxUVFR5tZbbzV9+/Y1GzZsKOyfHNAKGqt5sp1y4rh37XyxrdinCse1xMDsW0WnsLYX+xfgXTkf+Obpx93blBnnISeuIRV/xf36BXyrOJ33hu8cPnzYDB061NSvX99ERUWZ0qVLmxo1apg+ffoE5HUzoCjYjDFGAAAAAAAAAAAAAAAAAAAAAAAAJVhQUTcAAAAAAAAAAAAAAAAAAAAAAACgqJFgAQAAAAAAAAAAAAAAAAAAAAAASjwSLAAAAAAAAAAAAAAAAAAAAAAAQIlHggUAAAAAAAAAAAAAAAAAAAAAACjxSLAAAAAAAAAAAAAAAAAAAAAAAAAlHgkWAAAAAAAAAAAAAAAAAAAAAACgxCPBAgAAAAAAAAAAAAAAAAAAAAAAlHgkWAAAAAAAAAAAAAAAAAAAAAAAgBKPBAsAAAAAAAAAAAAAAAAAAAAAAFDikWABAAAAAAAAAAAAAAAAAAAAAABKPBIsAAAAAAAAAAAAAAAAAAAAAABAiUeCBQAAAAAAAAAAAAAAAAAAAAAAKPFIsAAAAAAAAAAAAAAAAAAAAIBX9enTRzabLc/nvvvuK+qmFbq6des6/O2JiYlF3TQAgBskWABACeHpgMVZuVGjRl3Tejt37uywvoL65ptvHNZr/xw6dMjpsomJifkawFy5ckXXXXedbDabtm7dWuC2SwyiAAAA4B3FLc6XiPUBAAAAAAAAAJCkS5cuKSwsTDabTRMmTCjq5hTYvHnzrM9zzz1X1M0pdJMmTbJ+75tvvlnUzQEA5ENIUTcAAOB78+bNs6ZvuOGGXPP69++v+Ph4SdKQIUOUkpIiSZo2bZqee+45lSlTxuP17N69W0uXLrX+/cQTT+iuu+4qSNMt9erV07x583Tq1CkNHjxYkhQaGqqkpCSFhIQoJibG6bJ//etfVatWLW3ZskVTpkzR3/72N91zzz2KjY11WH7VqlU6f/68brrpJjVr1swr7Z80aZLOnTsnSUpJSdGQIUO8Ui8AAABKruIQ50vE+gAAAEAgGTx4sKZMmaLIyEhduHBBaWlpmj59uhYuXKgff/xR6enpqlu3rvr166f+/ft7LTEbAAAAKAmSk5OVnp4uSWrevHkRt6bgHn300aJugk917NjRmj506BDXCwAggJBgAQAlkKsBS1xcnOLi4iRJo0aNsm68Onv2rKZPn67nn3/e4/W8+uqrMsbkqttbg6XKlStbdc2aNUs7d+5Uenq6YmJi1L59e5fLxsbGKjY2Vl999ZWCgoI0duzYPDeg5bR48WJJ2U/p9RYGUQAAAPC24hDnS8T6AAAAQCDZsWOHJKl+/fratGmTevTokeetc8nJyXryySd19OhRjR07tghaCQAAAASmTZs2SZJsNpvXHhIEAADcCyrqBgAA/FutWrUUGhoqSXrzzTd16dIlj5Y7cOCAFixYoAYNGhRm8yRJCQkJ1nTOp/a6cvHiRX3yySeKj493ecOVMcZ6Om+XLl0K1E4AAADAXwRCnC8R6wMAAAD+bufOnZKky5cvq23btoqIiNC0adO0YcMGbdy4USNHjlRQUPYl6cmTJ+vChQtF2VwAAAAgoGzevFlS9jn9smXLFm1jAAAoQUiwAAC4VLVqVfXq1UuS9Ouvv2rWrFkeLffaa68pKipKTzzxRGE2T5LUq1cvBQcHS5KWLFmic+fOuV1m0aJFSk1N1WOPPeay3MaNG3X8+HGVK1dOrVu39kp7AQAAgKIWCHG+RKwPAAAA+LNffvlFp0+flpSdaNGpUydt375dAwcOVIsWLXTHHXdo3LhxGjBggCTp999/txIyAAAAgECxfv169evXT/Xr11d0dLSio6PVrFkzTZgwQWlpaXnKV6pUSTabTffdd5/bun/88UeFhobKZrPppZdesr6PiYmRzWbTBx98YJWz2Wy5Pj169JAkpaWlqXLlyrLZbKpRo4bS09MdruvSpUtq1aqVbDabwsPD9c0331jzatWqlad+Z59SpUopIyMjP39CAAACDgkWAOBlv/76qzWomDFjhs6fP6/x48frzjvvVExMjMLCwnTzzTfrySef1IkTJ4q6uR55/vnnrSdMTZo0ye1A6fjx45ozZ46eeuoplSlTptDbd/311ys+Pl5S9oDw448/drvM3LlzFR0d7fZJtYsXL5YktW/fXiEhIQVtKgAAAEoQfx8b+HucLxHrAwAAAP5sx44d1nSjRo00c+ZM6015Odljekm8wQIAAAAB4/z58+rdu7fuvPNOzZw5U3v37lVqaqpSU1OVnJysF154QbfffruOHj2aa7mGDRtKkvbs2eN2HSNHjlRGRoZiYmI0bNgwSdKxY8eUkpLidtnY2FhJUmRkpEaMGCFJOnjwoN5///08ZY0xSkhI0Lp162Sz2TRnzhz9+c9/lpQdox84cMDt+uwaNGjg9XPqGRkZeRI5qlevLknasGGDOnTooIoVK6ps2bKKi4vTRx99lGv55cuXq3Xr1rruuutUpkwZtWnTRmvWrCmy9QAAAh8JFgDgZdu3b7embTabateurVGjRmn9+vVKSUlRenq6Dh8+rHfeeUd33HGHjh07VnSN9VDdunXVuXNnSdKhQ4esDHlnXn/9ddlsNg0aNChf60lNTdWECRN0xx13qFy5cgoPD1fVqlXVuXNnLViwQFlZWU6XTUhIsKbnzp3rcj3Hjh3TqlWr1K1bN0VERLgsu2TJEklyeXPWxYsXNXnyZLVq1UoVKlRQaGioKlSooJYtW2ro0KFau3aty3UAAACgePL3sUEgxPlS0cX6xPkAAACAazkTLCZMmKBSpUo5LJfz5quyZcsWdrMAAACAAktNTVWbNm00b948SVLnzp21cOFCbd68WV9++aUef/xxSdlJFA899JCMMdayjRo1kiQdPnzYZYLxli1b9J///EeSNGrUKEVHR0uSypUrp127dlnzJGnKlCnatWtXrs/AgQOt+QMGDNDNN98sSRo/fryuXLmSa13PPvusVd+kSZOst19IUnh4uHbu3Jmn/pyfBx980CrfvXt3T/+MHgsODta8efM0b9483XXXXdb3CxYsUEJCguLi4jR27Fh16tRJGzduVM+ePTVmzBhJ0tSpUzVu3Dh17dpVo0ePVuPGjfX1118rPj5eX331VZGsBwBQDBgAgFdNmDDBSDKSTHR0tJFkunXrZpYsWWK2bt1qFixYYGJjY60y3bt390m7HnvsMWudnqpWrZpp3bq1McaYTZs2WcvXr1/fZGVlOVzm1KlTJioqygwcONAYY8zs2bOt5WbPnu10XVu3bjU33HCDkWTuvPNO88Ybb5iZM2eaYcOGmQoVKhhJ5p577jGnT592uHxaWpr197bZbObAgQNO1/Xaa68ZSeabb75x+fv37t1rJJlSpUqZ1NRUh2WSk5PNjTfeaCSZhg0bmldffdW8++67ZtSoUaZWrVrWb2/fvr3T9Rw8eNAqN3r0aJdtAgAAQODwxdiguMf5xhRNrO+NON8YYn0AAAAUbw899JCRZMqWLWsuX77stNzUqVOtuPi3337zYQsBAACAa/PAAw8YSSY4ONj8+9//dlhmwIABVpy7bNky6/ukpCTr+++++87pOtq0aWMkmRo1ajiMp+fNm2fV8+OPP7pt88yZM63y06dPt75/6623rO8HDx7stp6rDR8+3Fp++PDh+V4+v9cx7OXLlCljGjdubE6dOpVr/rhx46xts2zZMtOtWzeTmZlpzU9PTzf33nuvdX6/qNdjx/UCAAgsvMECALws5xObfv/9dy1cuFALFy5Up06d1LRpU3Xv3l1r165V5cqVJUmLFi3S2bNni6i1nmvevLnuvfdeSdkZ+IsXL3ZY7p///KcuXbqkoUOHelz3oUOHFB8fr2PHjmnw4MFau3athgwZor///e+aOHGidu3aperVq2v16tV65JFHcmX+20VERKhr166Ssl9taH+KgCNz585V9erVdffdd7ts16effiop+/XlkZGRDtvdpk0bHTlyRA899JC2bdum4cOHq2/fvho7dqz27NmjTp06SZKOHDni8d8DAAAAxUMgjA38Pc6XfB/rE+cDAAAAnrG/te+ee+5RWFiY03L2sVGVKlUUExPji6YBAAAA1+yDDz7Q559/Lin7TW2PPPKIw3KjRo2yplesWGFN299gIUl79+51uOyXX36pVatWSZLGjRvnMJ62x9vR0dGqWbOm23b36dNHderUkSS98sorunLlihYtWqRnnnlGktStWzdNnjzZbT05vfDCC5owYYIkafjw4Xr11VfztXxBnD9/XkOGDFH58uVzfd+vXz9JUmZmprp27aqJEycqKOiP22BDQkLUt29fSdLu3bv1008/+cV6AACBhQQLAPAy+wBHkiZOnKhu3brlKRMdHa2nn35akpSRkaFt27b5qnkFMnz4cGva0aApNTVVU6dO1cMPP6xbbrnF43qfeuopnTlzRjfeeKMmTpyYZ/71119vrW/FihX64osvHNaTkJBgTTu76Wrr1q36/vvvlZCQIJvN5rJd9pvLunTp4nD+k08+qTNnzig6OlozZszI9ZpzSQoNDdXMmTPzfA8AAICSIVDGBv4e50u+jfWJ8wEAAAD30tLSrBuImjRp4rKsfWzkrhwAAADgD+znsxs0aGAlJzhStWpVlSlTRpL0yy+/WN83bNjQOke9Z8+ePMsZY/TCCy9Ikpo2baoePXo4rN8eR8fGxro95y1JwcHBevnllyVJhw8f1sCBA9WrVy9lZWXp7rvv1rx583IlCLhTlMkVdu3bt8/zXaVKlVS2bFlJUs2aNVW9evU8ZerVq2dNO0tyKYr1AAACBwkWAOBFly5d0r59+yRJ9evX1z/+8Q+nZRs2bGhNp6SkFHrbvKFt27Zq1qyZJGnz5s366quvcs1/5513dObMGT3//PMe1/njjz9amf/dunVTaGiow3L333+/NT1//nyHZe655x7dfPPNkqT9+/dr/fr1ecrMnTtXktS7d2+X7Tp+/Lg2b96soKAgdezYMc/8ffv2WU8gaN++fZ5MdruYmBjde++9io6Odrk+AAAAFC+BNDbw9zhf8l2sT5wPAAAAeGbnzp3WW+j+9Kc/OS2XmZmp3bt3uy0HAAAA+INdu3ZZb2B76qmn3CYkXHfddZKU6xx4VFSUqlWrJslxgsXChQu1detWSdlvyHCWPGFvR34Slbt3726Vf++993Tp0iU1aNBAS5YsUXh4uMf1+ENyRdmyZVWxYkWH8+zn5mvXru1wvj3xRZLOnTvnF+sBAAQWEiwAwIt27dqlzMxMSdKAAQMUHBzstGy5cuWs6YiICBljdN1118lms3n0CQ4OVmpqaqH/pqvlfLrtK6+8Yk1fvnxZb7zxhtq3b5/rdYfu5Lx5q3bt2kpJSXH4SU9PV2RkpCTpu+++c1iXzWZTr169rH9f/WTbjIwMffjhh2rZsqVq1arlsl2LFy+WMUYtW7ZUpUqVXLa7efPmLutauXKlvv32W5dlAAAAULwUZGxQFPw5zpd8F+sT5wMAAACesd/sJbm+4et///ufLl265LYcAAAA4A9Wr15tTT/wwANuy58+fVpS9kN5crI/WOnqBIuMjAyNGjVKUvbDj9q2beuw3qNHj1oPZMpPHG2z2dSvXz/r35UqVdLy5cutNzF4wh+SKyS5fMCRPfHFWZmciTHp6el+sR4AQGAJKeoGAEBxkvOCQqdOnVyWPXHihDVduXJlpaamasiQIbnKHDt2TO+++65q1KihhISEXPPKlCmjqKgoL7Q6f/7617+qTp062rdvn1avXq3vvvtOd9xxh2bPnq3jx4/nujHLE/v377emBw4cqIEDB7pdJuff7moJCQnW4G7BggV66623rCz85cuX6+TJkxo3bpzbdSxevFiS1KVLF7ftvvHGG93WBwAAgJKlIGODouDvcb7km1ifOB8AAADwzPbt2yVJ5cuX10033eS2nESCBQAAAPzfzp07JWXfUG9/C4UzBw8eVFpamqS8sW6jRo302Wef6dChQ/r9999VunRpSVJSUpL2798vm81mJTE4kjOObty4scft//HHHzV69Gjr32lpaQH35go7d28P8bSMv6wHABBYSLAAAC+yD3AqVqzodqC1ceNGSVJ4eLjq1aunyMhIJSYm5irzwQcf6N1331W7du3yzCsqQUFBGjZsmJXx/sorr2jRokWaNGmSWrVqpTvvvDNf9Z0/f96aHjNmjFq2bOl2GWevR5SkevXq6bbbbtOWLVt05swZffbZZ+rataskae7cuQoPD1f37t3dtumbb76R5DzB4sKFC9Z0qVKl3LYZAAAAJUtBxgZFwd/jfMk3sT5xPgAAAOAZe1L5n/70J5fl7GOjyMhIt2+bAwAAAIqa/a0R5cuXd1v2iy++sKbvvvvuXPPsb7DIysrSDz/8oCZNmigtLU1jx46VJPXo0UNNmzZ1Wrc9jg4ODvb47dK//fab7rvvPqWkpKhChQo6deqU0tLSNH78eE2ZMsXt8v6UXAEAQFEjwQIAvMh+QcHdU2eNMfrss88kZQ+yIiMjHZZLTk6WJJeDqqLQu3dvJSYm6ujRo1q6dKlGjRqlAwcOaOrUqfmuK+dr9GrXrq34+HivtG/Lli2Ssm+06tq1q86ePaulS5eqc+fObl99uGzZMl25ckUNGzZUzZo13bbb/npzAAAAwM7bYwNf8Pc4397Gwoz1ifMBAAAA94wx2rVrlyT3b6Ww3xjWuHFjnvoKAAAAvxccHCxJunz5sstyWVlZmj59uqTse3rq1q2ba37OpIg9e/aoSZMmevPNN3XixAmFhYW5fRuz/RrDrbfe6tHDgNLS0tS+fXsdOHBAUVFR+uKLLzR27FgtXrxYM2bM0LPPPqubb77Z6fIkVwAAkBtnsQDAS4wx1qsCL1686LLsl19+qf3790uSHnvsMafltm3bJsn/EizCwsI0ZMgQSdm/e8KECYqNjdUDDzyQ77pq165tTf/8889eaV/Pnj0VGhoqSVq+fLlSUlK0YMECXb58Wb1793a7/OLFiyU5f3uFpFxP2jpy5EiB2gsAAIDipTDGBr7g73G+VPixPnE+AAAA4N7+/fuVlpYmyX2Chf3GMHflAAAAAH9wyy23SJJOnDih3377zWm5qVOnWrHu0KFD88yvW7eudS57z549OnXqlCZNmiRJGjBggGrUqOGyHT/88IMkqUGDBm7bnJGRoW7dumnLli0KCQnRwoUL1bRpU40ZM0Y2m02XL1/WmDFjnC5PcgUAAHmRYAEAXnLw4EGdP39eknT48GGlpqY6LHflyhUNGzZMUnamec+ePZ3WuW3bNoWFhVmvDvQn/fv3V7ly5ax/P//889dUT84n2a5fv95l2Xnz5ikkJMTtjWcVK1bUfffdJ0lKT0/Xhx9+qLlz56py5cpq166dy2WvXLmiFStWSHKdYJGz3fYn6DozdOhQ9ejRQ7/88ovLcgAAACgeCmNs4Cv+HOdLhR/rE+cDAAAA7tlvJJNcJ04cOXJEJ0+edFsOAAAA8Bf288+S9NZbbzks89FHH1lJFX/5y18cntsPDQ1VnTp1JGUnWIwfP17nz59XdHS0Ro0a5bYd9msMGRkZbssOGDBAy5cvlyRNnz5d999/vyQpNjZWXbt2lSTNmTNH+/bty7MsyRUAADhGggUAeEnOCwoZGRmaPHlynjKXL19Wnz59tHPnTgUHB2v69OlOX4l96NAhnTlzRg0aNFBYWFihtftaRUVF6emnn5aUncH/8MMPX1M9tWvXtp6I+8UXX+jw4cMOyxljlJSUpMzMTD3yyCNu68359No33nhD69ev1yOPPKKQkBCXy61atUrnz5/XTTfdpGbNmjktV6dOHWtQumzZMp05c8Zhuf3792vy5Mlau3atqlat6rbdAAAACHzeHhv4kr/H+VLhxvrE+QAAAIB7Dz30kIwxMsa4fEDU9u3brWkSLAAAABAI4uPjFRcXJ0l69dVX9cQTT2jVqlVKTk7WJ598ogcffFA9e/ZURkaGGjdurI8//thpXfZYecOGDXr77bclScOGDVNMTIzbdtjfcPHZZ5/pX//6l7Zs2aLdu3dr9+7dunDhglUuMTFR7733niTpxRdfVN++fXPVk5iYqKCgIGVmZurFF1/MNW/ChAlWckWXLl3Uq1cvax2OPkePHnXbbgAAigvXV54BAB6zXygoX768ypYtq8TERB0/flxdunRRuXLltH37dk2dOlXff/+9JGncuHG65557nNaXnJwsSWratGmht/1ajRkzRi+99JKCgoIKdDPY22+/raZNm+r06dNKSEjQZ599pqioKGu+MUYvvvii1q5dq3bt2rl9Mq0kdezYUWXLltXZs2d16NAhSfLoibiLFy+WJHXu3Nnjdp85c0ZPPvmk5s+fn+umrosXL1o3fyUmJio4ONhtnQAAAAh83h4b+Jo/x/lS4cf6xPkAAACAd9jHRsHBwWrUqFHRNgYAAADw0IIFCxQfH699+/bp3Xff1bvvvpunTLdu3TRjxgyVKVPGaT2NGjXSggULdOLECUlSlSpV9Mwzz3jUhiFDhmj16tVKT0/X//3f/+Wat3XrVjVt2lTvvfeexowZIyn7HPnLL7+cp54GDRqoe/fu+uijj/Txxx/rhRdesJKfFy5caJVbvHixdQ7dmREjRmj8+PEetf9aLF68WKmpqTpw4IAkKS0tTfPnz5ckPfroo0pLS9Onn35qzZOkAwcOaP78+apcubLatm2rAwcOaP369UpJSbHq3bBhg0JCQhQbG6vY2FifrQcAENhIsAAAL7E/pTY2NlYjRoxQx44dNWPGDM2YMSNXuZCQEL3yyisaNmyYy/qKKsFi586d2rlzp6TsgcKvv/5qDSRatmxpZclLks1mc/qUWPsyGzZssL6zDyaioqLUpUsX6/tq1arp66+/VqdOnbRmzRrVr19fvXv31i233KLjx49ryZIl2rJli1q2bKkPP/zQo98RHh6u7t27KykpSVL2dmncuLHLZYwxWrp0qSTlap8z1atX16pVq9SpUyctWLBAe/fu1SOPPKIKFSrowIEDmjNnjo4dO6ZBgwbleUoAAAAAii9vjw28objE+VLhx/rE+QAAAIB32BMs6tatq1KlShVtYwAAAAAP3XTTTdq8ebOmTJmi//znP9q/f7+CgoJUtWpVxcXFqXfv3h49NOnqJOOXXnpJkZGRHrWhQ4cOWr58uSZPnqwtW7bo7NmzMsYoNDRUDRs21Oeff64BAwZIyn7rhqMkELvRo0fr448/VmZmpkaOHKlly5YpIyNDe/bs8agtdoWdNDB48GD9/PPP1r9TUlKUkJAgKTvx4eTJk9a/7b799lt9++23at26tdq2bav//ve/evzxx3OVSUpKUlJSkkaPHq3Y2FifrQcAENhsxhhT1I0AgOKgevXq+vnnn/WPf/xDU6ZM0ebNm/Xqq69q/fr1Onv2rG644Qb95S9/0eDBg1W3bl239bVv316ff/65NmzYoBYtWhS4fX369NGcOXMkZd9c5ExiYqKV4X612bNnq0+fPh6tz2azOZ1XrVo160mzOV28eFHvvPOOFi1apD179ujChQsqW7asmjRpol69eikhISFfT4ddt26dWrVqJUl6/fXX9eyzz7osv2HDBrVs2VLlypXTb7/95vSmsqulpaVp+vTp+vTTT7V3715duHBBFSpUUIsWLfTUU0+pbdu2Lpc/dOiQbrnlFknZA9vExESP1gsAAAD/5O2xgSslMc6XfBPrFzTOl4j1AQAAULLVqlVLP/30k3r16mUlawMAAAAoWTy9jlHccb0AAAILb7AAAC84d+6cld1sz0Bv3ry5Fi1adM11JicnKzg42O2TWL0tMTHRK0H8tQyKIiIi9Mwzz3j8SkR37rzzzny1w/66w/bt23ucXCFJkZGRGjp0qIYOHZrfJgIAAKCYKYyxgTcUpzhf8k2sT5wPAAAAXLsLFy7owIEDkqQmTZoUbWMAAAAAAACAfCDBAgC8wP6aaynvK/6uxYkTJ3TixAk1aNBApUuXLnB98MySJUskSV26dCnahgAAACBgeXtsAO8g1gcAAAB8a8eOHVZSNAkWAAAAACQpJSXFmg4LC1OZMmWKsDWF7+zZs8rIyJAknTlzpohbAwDIDxIsAMALduzYIUmy2Wxq0KBBgetLTk6WJDVt2rTAdTlS0gYsnvrf//7ns3UxiAIAACievD02yA/ifOeI9QEAAADfatWq1TW9AQ8AAABA8RUTE2NNt2vXTitWrCjC1hS+Fi1a6IcffijqZgAArgEJFgDgBfan1NaoUUNRUVEFrm/btm2SCi/BoqQNWPwRgygAAIDiydtjg/wgzvcPxPoAAAAAAAAAAGR77rnn9Oijj+b5vmLFikXQGt+aPXu20tLS8nxfo0aNImgNACA/bIZHhwBAgTVr1kzJycnq0qWLPv3006JujkN79uzRsWPH8nxfsWJFXs9dBDZs2OB0EMVACgAAIHD5emxAnO9/iPUBAAAAAAAAAAAAIHDxBgsAKKCMjAx9//33kqRGjRoVcWucq1+/vurXr1/UzcD/FxcXV9RNAAAAgJcVxdiAON//EOsDAAAAAAAAAAAAQODiDRYAAAAAAAAAAAAAAAAAAAAAAKDECyrqBgAAAAAAAAAAAAAAAAAAAAAAABQ1EiwAAAAAAAAAAAAAAAAAAAAAAECJR4IFAAAAAAAAAAAAAAAAAAAAAAAo8UiwAAAAAAAAAAAAAAAAAAAAAAAAJR4JFgAAAAAAAAAAAAAAAAAAAAAAoMQjwQIAAAAAAAAAAAAAAAAAAAAAAJR4JFgAAAAAAAAAAAAAAAAAAAAAAIASjwQLAAAAAAAAAAAAAAAAAAAAAABQ4pFgAQAAAAAAAAAAAAAAAAAAAAAASjwSLAAAAAAAAAAAAAAAAAAAAAAAQIn3/wDGQCG2s8smVgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 3200x2400 with 32 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAADFgAAAk4CAYAAADm4+h6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9bXBc930n+P74ILP5kLABzhYJJrkbNrwPguQaCSCda1KpO6GA3JSLmCpZAGXvjjyMbQHUukpeq2xCerU1L27RoFNyrbdqTUCxVzvcskoCY20tUlHWgKjxWFSqQgD23EjQ7k7QVLwhIdW10A2bFJoJCNwXDCCBeCDQOER3A59PFcvuc87vf35iH3b36T7f8980PT09HQAAAAAAAAAAAAAAABvY5lI3AAAAAAAAAAAAAAAAUGoCFgAAAAAAAAAAAAAAwIYnYAEAAAAAAAAAAAAAAGx4AhYAAAAAAAAAAAAAAMCGJ2ABAAAAAAAAAAAAAABseAIWAAAAAAAAAAAAAADAhidgAQAAAAAAAAAAAAAAbHgCFgAAAAAAAAAAAAAAwIa3tdQNrCeTk5Pxs5/9LPbu3RubN8uuAACQnKmpqXj//ffjwQcfjK1bfYwvF84BAAC4W5wDlCfnAAAA3C3OAcqX8wAAAO4G5wDly7ORoJ/97Gfx6U9/utRtAACwjv31X/91HDp0qNRt8E+cAwAAcLc5BygvzgEAALjbnAOUH+cBAADcTc4Byo+ARYL27t0bERF/9Vd/Fb/9279d4m7gI5OTkzE0NBT19fVSbpQNxyXlyrFJufr7v//7+MxnPjP7mZPy4ByAhXgv4XaOCW7nmOB2jgkW4hygPM08H3/9138dNTU1Je6GlfBaW9k8f5XLc1e5PHeVy3NXuUZHR+PTn/60c4Ay5LcAkuR1miQ5nkiS44kkOZ6WxzlA+XLUJmhmGsB9+/Y5oaKsTE5Oxrvvvhu//du/7c2KsuG4pFw5NilXk5OTERGmni4zzgFYiPcSbueY4HaOCW7nmGAhzgHK08zzUVNT4xygwnitrWyev8rluatcnrvK5bmrfM4Byo/fAkiS12mS5HgiSY4nkuR4WhnnAOXHMwIAAAAAAAAAAAAAAGx4AhYAAAAAAAAAAAAAAMCGJ2ABAAAAAAAAAAAAAABseAIWAAAAAAAAAAAAAADAhidgAQAAAAAAAAAAAAAAbHgCFgAAAAAAAAAAAAAAwIYnYAEAAAAAAAAAAAAAAGx4AhYAAAAAAAAAAAAAAMCGJ2ABAAAAAAAAAAAAAABseAIWAAAAAAAAAAAAAADAhidgAQAAAAAAAAAAAAAAbHgCFgAAAAAAAAAAAAAAwIa3tdQNAAAAAAAAAAAAAAAAH8llc/FG5xsREVEYK0QhX4hMUyaOnDqyaE0hX4ifnv5pRETs2LMjxkbGorapNupa6kpeUynWTcCivb09Wltbo7GxcVXj5PP5OH36dERE7NmzJ0ZGRqKpqSlaWlqSaBMAAAAAAAAAAAAAABY1fH44rly6Es1dzXOWdzd0x2DXYDw18tS8mkK+EN0N3dHa0xo19TWzy3vbe+PKpSvR1NlUsppKsrnUDaxGNpuN7u7uaGhoiO7u7lWPl8/no6GhIR577LHo7OyMU6dORVdXV/T19UVHR0cCHQMAAAAAAAAAAAAAwMIK+UK8/dLbCwYVmp9vjlw2F73tvfPW9bT2xL0t984JPURENHc1x1D3UGT7syWrqSQVG7Do7u6eDT10dnYmMmZra2u0tLREfX39nOVdXV3R3d0d/f39iewHAAAAAAAAAAAAAABud3XgagyfH46+jr5562ZCDZf7L89ZnsvmItufjYPtBxccs+54XVzsvFiSmkpTsQGLtra26Onpiba2tqiurl71eNlsNvr7+6O9vX3B9cePH08syAEAAAAAAAAAAAAAALfbXr09UulU7NizY9FtUunUnMcDXQMREVGVqVpw++ra6sj2Z6OQL6x5TaWp2IBF0rq6uiIiIpPJLLi+trY2+vv7I5/Pr2FXAAAAAAAAAAAAAABsFDX1NdGR64gjp47MWzc6NBoREQcaD8xZ/t7Qe/NCFx83E4i4OnB1zWsqjYDFPxkaGop0Or3o+pngxcDAwBp1BAAAAAAAAAAAAAAAt/R39EdVpiqaOpvmLM9lc7G9evuidTOhiFw2t+Y1lWZrqRsoF9lsNqqrqxddPxO+yGazdxxramoqbt68mVRrsGo3b96cPS43bdpU6nYgIhyXlC/HJuVqamqq1C2wBOcAfJz3Em7nmOB2jglu55hgIc4BytvNmzedA1QYr7WVzfNXuTx3lctzV7k8d5XL58vy57cAkuB1miQ5nkiS44kkOZ4WNnljMm7e+Ojz5ER+YkX1uWwu3uh8I9KZdDze9/i89RNjE7OzRyxkJhRRyBfWvKbSCFj8k7GxsdlZKhYyE77I5/N3HOuv/uqv4v/8P//P2cdbtmyJrVv9VVM6U1NT8X//3/93TE1NxebNJq6hPDguKVeOTcrVBx98UOoWWIJzAD7Oewm3c0xwO8cEt3NMsBDnAOXt4sWLUVX10Q9IzgHKn9fayub5q1yeu8rluatcnrvKlctV7t1dNwq/BZAEr9MkyfFEkhxPJMnxtLC/+/d/F7/497+YfXx98vqy6obPD8eVS1cin81HOpOO2qbaBbdbbqDhww8+XPOaSuNT/j9ZTnAiYnk/ap09e3bOCdQ//+f/PB544IEiO4PVm56ejvHx8YgIaUDKhuOScuXYpFz96le/KnULLME5AB/nvYTbOSa4nWOC2zkmWIhzgPL2ve99zzlAhfFaW9k8f5XLc1e5PHeVy3NXuX7961+XugXuwG8BJMHrNElyPJEkxxNJcjwt4v8R8Tv/1e/MPvz1tV9H/PTOZXUtdVHXUjf7+FzTuRjsGozm55sjlU7djU43PAGLu+DYPceiKvXRnavu+dt7Yuvltfurbn25dc32RWWYnJyMv/qrv4rPfOYz7p5A2XBcUq4cm5SrX/ziF/G1r32t1G2wiFKfA0Q4Dygn3ku4nWOC2zkmuJ1jgoU4Byhv/8P/8D/Eb/3Wb80+3rZtW2zbtq2EHXEnXmsr20qfv57jPWvQ1dKcp9/i317l8txVLs9d5bpy5Uo89dRTpW6DJXz3u9+N3/7t35597DxgYyv2M+f0punYtHdTbH1/a2yaXt0Fpz5z4n2fJDmeSJLjaXmuXLkS/+3X/9sV17X2tEZnVWcU8oV4vO/x2eWpdGpZs0vs2LNjzWsqjaP2n6TT6WXNYrFnz547brNjy474jS2/MXfhVJGNFcHJG7ebmZZy27Zt3qwoG45LypVjk3J1zz33lLoFllDqc4AI5wHlxHsJt3NMcDvHBLdzTLAQ5wDl7Z/9s38W/8l/8p+Uug1WwGttZVvp87dlassadLU05+m3+LdXuTx3lctzV7k+8YlPlLoF7qCqqsp5ALOK/cw5tWkqNsfm2Dy1OTZPb15VDz5z4n2fJDmeSJLjaXmKPQdIpVNR11IXw+eHI9ufjUxjJiIitldvX7JuYmxitn7GWtVUmtV9SltHqqurl1w/NjYWEbeCGAAAAAAAAAAAAAAAkLRCvhC5bG7R9elMOiIiRvpGZpdVZapmww2LjTmz3VrXVBoBi3+SyWRmQxQLmZndIpPJrFFHAAAAAAAAAAAAAABsJJ1VnfHd2u/OhhVut2PPjoiIOev31e9bdPuImA1szMx4sZY1lUbA4p/U19fPhigWks1mIyKisbFxjToCAAAAAAAAAAAAAGAjSaVTUZWpilQ6teD6sZFbkwrsb9g/u+z+x+6PiIjRodEFa65eujov9LBWNZVGwOKfPPbYYxERMTQ0tOD6S5cuCVcAAAAAAAAAAAAAAHDX1LfVx+N9jy+6fvjl4UilU3Hf8ftml9XU10SmMRNvvfTWwjXnh+NIx5E5y9aqptJsqIBFPp+Pjo6O6O/vn7euvr4+Ghsb46WXXlqw9vz589HR0XG3WwQAAAAAAAAAAAAAYINq6myKNzrfiGx/dt66ntaeiIj44mtfnDfDRWtPa7xz/p15s0v0tvfG4VOHF5xZYq1qKsnWUjeQhGz21sGTz+eX3K67uzvOnDkT3d3dkcvl5q3v6emJhoaGeOyxx6K+vn52eXt7e5w6dcoMFgAAAAAAAAAAAAAA3FXNXc0xfH44elp7IlWdisJYIQr5Quyr3xdfu/y1eeGKiIhUOhVtg23R19EXqXQqduzZEWMjY1HbVBt1LXUL7metaipJxQYszp8/H11dXRERMTAwEBERTzzxxOyy1tbWaGtrm1PT2NgY6XQ6jh8/vuCY6XQ6BgcHo6OjI9LpdOzZsydGRkaiqakpWlpa7uJ/DQAAAAAAAAAAAAAA3FLXUrfiwEIqnYrmruayrKkUFRuwaGlpWXHoob6+fsGZKz4unU7PhjQAAAAAAAAAAAAAAICNYXOpGwAAAAAAAAAAAAAAACi1ip3BAgAAAAAAgI3txeYXl7Xd1KapGKsZiyvPXYnN08nff+wLvV9IfEwAAAAAANaeGSwAAAAAAAAAAAAAAIANT8ACAAAAAAAAAAAAAADY8LaWugEAAAAAAAAqz4vNL5a6BQAAAAAASJQZLAAAAAAAAAAAAAAAgA1PwAIAAAAAAAAAAAAAANjwBCwAAAAAAAAAAAAAAIANb2upGwAAAAAAgBnXr18vuvb999+PkydPxuDgYDQ0NMTZs2dj7969Kx5n586dRfcAsJG92PziXRl3atNUjNWMxZXnrsTmafePAwAAAADuHgELAAAAAGBDK/UF/ZOTk0Xvfz3atWtXIuP09fVFbW1tUbXT09OJ9AAAAAAAAEBlEbAAAAAAADa0crig//XXX0+kBwAAANaf4fPDUddSV+o2AAAANgQBCwAAAAAAysa1a9eKrn3kkUfiwoULcfPmzdiyZUscPXo0XnnllQS7AwAAWFuFfCF6WnviWNexuO/4fZFKp0rdEgAAwLomYAEAAAAAbGilvqB/cnIyfvaznxXdw3qzc+fOomvPnTsXJ06ciEuXLsWhQ4fihRdeWNV4AAAApZbL5iIi4s/b/zz+vP3Pl9y2tad1zkwXhXwhfnr6pxERsWPPjhgbGYvaptolZ8MopgYAAGA9EbAAAAAAADa0Ul/QPzk5WfT+mWvv3r3x6quvlroNAACAxOSyuajKVEVNfU2kqheevaIwVohcNjcvXNHd0B2tPa1RU18zu7y3vTeuXLoSTZ1N88cpogYAAGC9EbAAAAAAACiSC/oBAAC4m65cuhKP9z0eVZmqRbfp6+iLxs7GOct6Wnvi3pZ75wQlIiKau5qjs6ozaptqI9OYWXUNAADAerO51A0AAAAAAAAAAAALWypcMTo0GtW11XO2yWVzke3PxsH2gwvW1B2vi4udF+csK6YGAABgPTKDBQAAAMAGcP369aJr33///Th58mQMDg5GQ0NDnD17Nvbu3bvicXbu3Fl0DwAAAAAb0WKBhxkDXQPR3NU8b1nE4sGM6trqGOoeikK+EKl0qugaAACA9UjAAgAAAGAD2LVrVyLj9PX1RW1tbVG109PTifQAAES82PxiqVsAAGANLDV7RV9HXzR1Ns1b/t7Qe0uGIGbGvDpwNTKNmaJrAAAA1qPNpW4AAAAAAAAAAABYvtGh0aiurV4wFJHL5mJ79fZFa2dqctncqmoAAADWIzNYAAAAAGwA165dK7r2kUceiQsXLsTNmzdjy5YtcfTo0XjllVcS7A4AAABgY5m8MRk3b9ycffwPv/6HFdW/cfqNaO1pXXDdxNjEkjNfzAQpCvnCqmoAAADWIwELAAAAgA1g586dRdeeO3cuTpw4EZcuXYpDhw7FCy+8sKrxAAAAADa6N06/ET/5Nz+ZfTwe48uuHT4/HOlMetH1yw1BfPjBh6uqAQAAWI8ELAAAAABY0t69e+PVV18tdRsAAAAA68ZDzz4Un3n6M7OPr1y5Et+p+86yat84/UY0P998t1oDAADY0AQsAAAAAAAAAABgDW3dtjW2bvvosp1P/OoTy6rLZXMxOjQaNfU1i26TSqeWNSPFjj07VlUDG1lhcnmzvtxuatNU/PJXv4zuv+qOy+OX48DuA/HlT305dm/bnXCHAAAUS8ACAAAAAAAAAAAqwEDXQFRlqpbcZnv19iXXT4xNRMStUMVqamAj+9JffimRcd765Vvx9de/XlTtH8cfJ9IDAABzbS51AwAAAAAAAAAAwJ1d7r98x4BFVaZqNhCxkJmZKj4+TjE1AAAA65EZLAAAWNT169eLqnv//ffj5MmTMTg4GA0NDXH27NnYu3dvUWPt3LmzqDoAAAAAgIiIF5tfLHUL8YXeL5S6BWCdGB0ajbqWuiW32Ve/L7L92UXX57K5iIjINGZWVQMb2Q/+6AdF1U1tmopv/3+/Hf/x6n+Mqemp2Lxpc9TtqYunDz6dcIcAABRLwAIAgEXt2rVr1WP09fVFbW1t0fXT09Or7gEAgPIl1AsAySiHC8gBgLtrdGg0IiJS1aklt7v/sfvjzTNvxujQaNTU18xbf/XS1XlBiWJqYCNLbV363+FipjZNxeN/8Hi8/L+/HNl8NmrTtXHygZNFjwcAQPIELAAAAACAkhHqBQAAgOWZGJtY1nY19TWRaczEWy+9tWBYYvj8cDze9/iqa4Di/OaO34xT/89TsXl6c6lbAQBgAQIWAAAs6tq1a0XVPfLII3HhwoW4efNmbNmyJY4ePRqvvPJKwt0BAAAAAABsHLlsLiIiUuk73+m+tac1uhu64/7H7p8TmOht743Dpw4vOBtFMTVQCuUwI2o5KPbvIcLssAAASxGwAABgUcV+GXbu3Lk4ceJEXLp0KQ4dOhQvvPCCL9YAAFiQUC8AwN3xYvOLpW4hpjZNxW89/VulbgNg3dh/cH+k0qn4rUN3fm1NpVPRNtgWfR19kUqnYseeHTE2Mha1TbVR11KXWA2UQjnMiPrDYz9cdQ+rlcTfQ4TZYQEAbidgAUDJTExMxPXr12Pr1pW/HbmbApS3vXv3xquvvlrqNgAAFlTqO9xNTk4Wtf/1SqgXAAAAlqemviY6ch3L3j6VTkVzV/OK9lFMDQAAwHoiYAFAyXz2s59NZBx3UwAAyk2xQdJymZ48qT5c6Ey5Koc73L3++uur7mG1ig2aRJRH6F2oFwAAAGBjKocZUf+3z/9vRdUlqdi/hwizwwIALEXAYh0qh+l+IyK+0PuFUrcAAABQEkkESVd78XZSVtNHuQRZzVYAC0siaBIh9A4AAADA2jIj6i2r6X29/V0AACRJwAKAkvmLv/iLOHz48Irv7BzhbgoAAJWgXO6Ob7YCblfqO9xNTk7Gz372s6J6AADKU7nc/AoAAFicGVE/4u8CAGBxAhYAlMz27dtj586dRQUs1tvdFMrh4sNK/vsDgHJTbJC0XEKkSfVRLnfHh9uV+g53k5OTMTExEdevXy/qfCipc4BigyYR5fN6BQAAAAAAAJAkAQsAKtJ6u5tCOVx8OD09nUgPAEDxQdJyCZGWSx9JMVsBSUnyPOSzn/1sIuOU6hxgvb1OAAAAAAAAAEQIWACURLGzFSR1l9IIsxUAAJSjcgmRJtVHudwdvxxmK4D1plxer9aTcpjVJML3BQBA8v7mxb+JK89dic3Tm0vdCgAAAADckYAFQAkkMVvBau5SGmG2gnJTLhcfloNSB5BcAAlQvGJfwyOSex13UWh5Wc3zUQ53x3cBOXfTX/zFX8Thw4eLuph+vZ0DcEs5zGoSUfz5qZAHAMz1YvOLpW4BAAAAACiCgAUAlIFKv/gwSeUQQPqLv/iLkt85tpKfQ2DjSuI1PGJ1r+NCpOuHcMP6VA5BrIjy+Ky1ffv22LlzZ1GfOdfbOQDlpRzOybyfAwAAAAAAUCoCFrBBTExMFHWx8Hq7gKVcFHs3yCTvUlrqC5vMEpAcFx8mrxzuHOuCIgBgPSqHIFZE5X/Wcg6wPpXLrCZJ/TuldHrbe+OhjoeiKlO14PpCvhA/Pf3TiIjYsWdHjI2MRW1TbdS11C065lrVVJL/9cT/Gnu27yl1GwAAAAAAQMIELGCDSOJi4Y1+AUuSig2bJHmX0k2bNhVVd7vVHBevv/56Ij2wvpQ6gDQ5ORnpdLqoHpJU6hDUDOE4YCWKfQ2PSPbCUACoROUyq0mpz8lYndGh0RjqHoqD7QcXXF/IF6K7oTtae1qjpr5mdnlve29cuXQlmjqbSlYDAAAAAABQDgQs4C4rhwtkzRSwfrhLKRtBqQNIk5OTZXHnWHd3BirRakJZSV4YCpQvQSy4O5L8vqDU52SsTn9H/5Lre1p74t6We+eEHiIimruao7OqM2qbaiPTmClJDQAAAAAAQDkQsIC7rFwukC32YmEXsKxfpb6waXJyMn72s58V3QPcLskLisrlzrEAG4kgKevdxMREXL9+fcWfL9bbzFSCWLB+eS8vvcHuwahrrYtsf3bB9blsLrL92TjWdWzB9XXH6+Ji58U5wYe1qgEA1s5ybw43OTk551x2vZ2fAgAAACxGwAI2iGIvFnYBy/pV6gubzKzCepXURUWlDkFRWUaHRmOgayAKY4UYHRqNVDoVDe0N0dDWsGhNIV+In57+aURE7NizI8ZGxqK2qTbqWupKXgOwHn32s59d9RgbfWYqF28DLC6XzUVERFWmatFtBroGltymurY6hrqHopAvRCqdWtMaAGDtJHFzuI1+fgoAAACsbwIWcJeVwwWyq5kpYL1dwLLcu/IsxJ15PrLejgsoR6UOQVE5BrsHIyKiuat5dlm2Pxs9rT1xsfNitA22zbtoqZAvRHdDd7T2tEZNfc3s8t723rhy6Uo0dTbN289a1QAAACs30DUQTZ1Ni85eERHx3tB7SwYaZgIRVweuzs4usVY1AAAbVbG/XS71u+Xts4/cid8PAAAAYC4BC7jLyuECWTMFfCSJu/JEuDMPUN6EoDaOXDYXhXwhjpw6Mmd5pjETX3zti9Hd0B09rT3xeN/jc9b3tPbEvS33zgk9RNwKaXRWdUZtU+28C53WqgZgvfqLv/iLOHz48IpnFTQzFQB3Mnx+OA62H7zjdrlsLrZXb190/UwoYmY2jLWsAQDWznJvDjc5ORlvvvnm7Lms89O7w4wiAAAAUH4ELFjXymG2gtUELFwgCwAsZaBrIH7/2d9fcF1NfU1kGjOR7c9GLpubvUtsLpuLbH82jnUdW7Cu7nhdXOy8OCf4sFY1AOvZ9u3bY+fOnSsOWJiZCoClFPKFyGVzUddSd8dtJ8YmZs8LFjITiijkC2teAwB3W2Gy+Ped8Rvj8f2/+X5cHr8cB3YfiC9/6suxe9vuBLtbW8s9p5ycnJxzLuv8FAAAANgoBCxY18phtgJ3/Cgvy70rz0LcmQeAcnO5/3IMdQ/F1y5/bfYusB+3r35fZPuzMTo0OnuB00DXQETEohc8VddWx1D3UBTyhdkx16oGgPkE7wE2jskbk3Hzxs3Zx/947R/vWPPT0z+Nps6mZY2/3EDDhx98uOY1AHC3fekvv5TIOG/98q34+utfL6r2j+OPE+mhVJyf3h3F/na51O+Wt88+UgnK4caJEau7eSIAAADrR2WcTQMkZDVfirkzDwDlZnv19hgdGo1cNhc19TXLqnlv6L0lAw0zgYirA1dnZ5dYqxoAANjI3jj9Rvzk3/xk9vH45vElt8/2Z6O2qbibwgAAa+/F5hdL3UJERHyh9wulboGPKfa3xqV+t7x99pFKUA43Toxw80QAAABuqYyzaSiS2QrKSznceWQ1gQh35gGg3Dze93jksrlFZ4nIZ/MREXPCF7lsLrZXb190zJlQRC6bW/MaSEI5fOacnJwsugcAYON66NmH4jNPf2b28S9+8Yv4zqe+s+j2I30jy569IuLWZ/DlzC6xY8+ONa8BgLvtB3/0g6Jrnxt4LoY/GI6p6anYvGlz1O2pi6cPPp1gd7ByfrcEAACAu0fAgrum2AubymUKT7MVJK8c7jziriMAVIrJG5Nx88bN2cf/eO0fF9xusXBFRMTw+eGoqa+Zs83E2MSSNTOhiI9fELVWNZCEcvjMGRHx+uuvJ9IHALBxbN22NbZu++gr+3t23bPothfPXIzff/b3VzT+UgHoiFuf4SNizkx0a1UDAHdbamvx7ztfffCrcfbnZ2MkPxK16do4+cDJosYrTBb/Pdj4jfH4/t98Py6PX44Duw/Elz/15di9bXfR48HHlcMNS9w4ESpHObxmRKzueiAAALgTAQvumiQubCrlFJ7u+gEAzCjFl8X//v/z7+ON02/MPh7fNL6i/V48czEiIpqfb56zfLmBhg8/+HDNawAAgDvLZXORSqdWHFCoylTF1YGri66f+Qz/8aD0WtUAQDnbvW13dPxex6rH+dJffimBbiLe+uVb8fXXv150/R/HHyfSB+tHOdywZDW/67txIqytcnjNiHBzTQAA7i4BC2DNuPMIAJWqLL4sXsH3xKNDo9Hf0R+tPa1RU19T3P6gQpXDZ87Jycn42c9+VnQfAABLGR0ajeGe4RjuGZ63LpfNRURE7xO9szNJPN73eERE7KvfF9n+7KLjztRmGjOzy9aqBgDYWMrh7ucuwF8/3DgRAACApAlYcNcUe2GTC+nXr9V8UenOIwCwfD2tPXGs61jUtdTNW5dKp5Y1u8SOPTvWvAaSUA6fOScnJ4vuAQDgTupa6hb8rB8RMXx+OHpae6L5+eZ5Yev7H7s/3jzzZowOjS4YxL566eq80MNa1QDARvCDP/pB0bXPDTwXwx8Mx9T0VGzetDnq9tTF0wefTrC7tVUON7Rx5/OPlMMNS4DK4TWDhRQbnkwqOBkhPAkAJEvAgrum2A+uLqRnIe48wt3kZB+4k3L4svjv/u7v4r777rvjdj2tPdHQ3hANbQ0Lrp+5i+1iJsYmIuJWQGKta1gd72er5zMnALCe1dTXRKYxE2+99NaCwYfh88Ozs12sdQ0AbASprcV/D/bVB78aZ39+NkbyI1Gbro2TD5xc1XjwceVwwxKgcnjNYCFJhCdXE5yMEJ4EAJIlYEHZcVETsNac7N9SDlNyR1T+xbmsT+XwZfGOHXee6aGvoy/2H9ofR04dWXSbqkxVXB24uuj6mVknqjJVa17D6ng/AwAgl83N/u9C4YbWntbobuiO+x+7f8763vbeOHzq8IIzS6xVDQCwuN3bdkfH73WUuo3ElMMNbUiG3/aBlfCaAQBApRCwAAAiojym5I5wcS7rz1p9WTzYPRjVtdULzlxRyBdmZ4rYV78vsv3ZRceZuSDr4xc8rVUNAABQnN723shn87Mh594nemOwazD21e+Lps6m2e1S6VS0DbZFX0dfpNKp2LFnR4yNjEVtU23UtdQtOPZa1QAAG0c53NAGAEhOseFJwUkAoFwJWACw4TnZByrd8PnhiIgFwxW5bC5Gh0ZnL2K6/7H7480zb8bo0OiCd7S9eunqvNDDWtWwOt7PAAA2ruau5mVvm0qnVrT9WtYAkKzCZKHo2vEb4/H9v/l+XB6/HAd2H4gvf+rLsXvb7hWPM7VpqugeYCHufg4A5afYsKPgJABQrgQsANjwnOzfYkpuqEyjQ6MxMTaxYLgiIiLbn50TZKipr4lMYybeeumtBYMPw+eH4/G+x+csW6saVsf7GQAAAPBxX/rLLyUyzlu/fCu+/vrXi67/btt3E+kDAID1RXASAChXAhYAUKT1drJvSm6oPLlsLnpae+JA44G42n513vrCWCGy/dnoyHXMWd7a0xrdDd1x/2P3zwk/9Lb3xuFThxecWWKtalh76+39DAAAAADu5Pr160XXvv/++3Hy5MkYHByMhoaGOHv2bOzdu7eosfyWUl6KPS6SOiY+/PDDovYPAABAsgQsAIBVc3EulMa5pnORy+Yi151bdJuqTNW8Zal0KtoG26Kvoy9S6VTs2LMjxkbGorapNupa6hYcZ61qAAAAAEjGD/7oB0XXPjfwXAx/MBxT01OxedPmqNtTF08ffHrF40xtmooPwwXDlJ9du3YlMk5fX1/U1tYWXT89PZ1IHyQjieNitccEAAAApSdgAQAAFeqpkaeKrk2lU9Hc1VyWNQAAAACsXmprqujarz741Tj787Mxkh+J2nRtnHzgZFHjCVgAAAAAUGkELAAAAAAAAACYtXvb7uj4vY5StwF3zbVr14qufeSRR+LChQtx8+bN2LJlSxw9ejReeeWVBLujVIo9LpI6Jq5cuRL/xX/xXxTVAwAAAMkRsAAAAAAAAAAANoydO3cWXXvu3Lk4ceJEXLp0KQ4dOhQvvPDCqsajfBT7PCZ1TOzYsaOo/QMAAJAsAQsAAAAAAAAAgGXYu3dvvPrqq6VugzLimAAAAO6G0aHRGOgaiMJYIUaHRiOVTkVDe0M0tDUsuP1g92AM9wxHQ3tDZBozkUqnIpfNxejQaLz90tvx0LMPRU19zby6Qr4QPz3904iI2LFnR4yNjEVtU23UtdQt2lsxNZVEwAIAAAAAAAAAAAAAAMrAYPdgREQ0dzXPLsv2Z6OntScudl6MtsG2SKVTc2oK+UJk+7OR7c/OWZ5Kp6K1p3XRcEV3Q/e89b3tvXHl0pVo6mxKpKbSbC51AwAAAAAAAAAAAAAAsNHlsrko5AvzZqrINGbii699MXLZXPS09ixYe6zrWBw+dTjqWuqivq0+jnUdi45cR2QaMwtu39PaE/e23DsvfNHc1RxD3UPzwhrF1lQaM1gAAAAAAAAAcFfc+McbUZgsxObpld37b/zGeHz/b74fl8cvx4HdB+LLn/py7N62u6geUltTd94IAAAAoAwMdA3E7z/7+wuuq6mviUxjJrL92chlc1GVqZqz/r7j982b2WIxuWwusv3ZONZ1bMH1dcfr4mLnxTnhjGJqKpGABQAAAAAAABWpMFlY1nZTm6bmXeTt4m1YG9/8n7656jHe+uVb8fXXv150/Q+P/XDVPQAAAACshcv9l2Ooeyi+dvlrC4Yl9tXvi2x/NkaHRucFLFZioGsgImLRMaprq2OoeygK+cJsH8XUVCIBCwAAAAAAACrSl/7yS4mM4+JtAAAAAKAcbK/eHqNDo5HL5qKmvuau7ee9ofeWDEHMhCiuDlydnZGimJpKJGABAAAAAAAAwF3x7T/+dlS9VzU7e8xyPTfwXAx/MBxT01OxedPmqNtTF08ffPoudQkAAABQHh7vezxy2dyis0Tks/mIiCXDF6NDo3F14GrsP7h/0e1y2Vxsr96+6BgzQYpcNreqmkokYAEAAAAAAEBF+sEf/WBZ201tmorcvtyci7xdvM3dVJgsFF07fmM8vv8334/L45fjwO4D8eVPfTl2b9u94nFSWxe/m+Ba2nbPtkhtTa04YPHVB78aZ39+NkbyI1Gbro2TD5wsm/8mAAAAgJWavDEZN2/cnH38D7/+h0W3XSxcERExfH44auprFtwm25+NXDYXmcZMNLQ1xOjQaJxrOhdHOo7Mm1FiYmxiyf3MBCkK+Y++5yqmphIJWAAAAAAAAFCRlnux9dSmqXkXebt4m7vpS3/5pUTGeeuXb8XXX/96UbU/PPbDRHoold3bdkfH73WUug0AAACARLxx+o34yb/5yezj8Rhf8RgXz1yMiIjm55vnrZsJPhw5dWR2WU19TbT2tEZnVWe0DbbNmc1iuSGIDz/4cFU1lUjAAgAAAAAAgA3HxdvrV7GzRyQ1cwQAAAAA3O6hZx+Kzzz9mdnHV65cie/UfWfZ9aNDo9Hf0R+tPa1zghIz6lrqFqxLpVNR11IXPa098dTIUytvfAMSsAAAAAAAAIAKV2yoICK5YEG5zACSxOwRq5k5IiLiB3/0g6Jrnxt4LoY/GI6p6anYvGlz1O2pi6cPPl30eAAAAACU3tZtW2Prto8u3f/Erz6xovqe1p441nVs0SDFUvYf2h/D54cjl83NznSRSqeWNSPFjj07Zv9/MTWVSMBiHSqHL9ABAAAAAABYO0mECiJWFyz44bEfJtLDerCasMlXH/xqnP352RjJj0RtujZOPnCybMIrAABQjq5fv1507fvvvx8nT56MwcHBaGhoiLNnz8bevXtXPM7OnTuL7gEA7qSntSca2huioa2hqPpU+tZ3S6NDo7MBi+3V25esmRibmFNbbE0lqviART6fj9OnT0dExJ49e2JkZCSampqipaVlVWN2dNyaEnpsbCwiIg4dOhSnTp1afcNroBy+QI+I+OP440T6AAAAAAAAgOUqdvaIcpk5Yve23dHxex1rvl8AAKhUu3btSmScvr6+qK2tLap2eno6kR4A4HZ9HX2x/9D+OHLqyKLb9Lb3xuX+y/HUyFPLHrcqUxVXB64uun5mpoqZQEaxNZWoogMW+Xw+GhoaoqenJ+rr62eXt7e3x6VLl6Kzs3PFYw4NDUVXV1d0dnZGOp2eXX7+/PloaGiIwcHBJFoHAAAAAACAxBQbKohILlhwt2ZZn9o0FTf+8UYUJguxeXrzHccqdrYHM0cAAAAAUE4GuwejurZ6wZkrCvnCRzNTDIzOzh6xkJngQ019zeyyffX7ItufXbQml81FRESmMbOqmkpU0QGL1tbWaGlpmROuiIjo6uqKqqqqaGpqisbGxhWN2dHREX19ffOWt7S0xNjYWLS3t0dXV9eq+r7byuELdAAAAAAAgI2i2GDBUqGClVpNECCpYMF/9ef/VdE9fNxqZ1n/4bEfFlVn5ggAAKhM165dK7r2kUceiQsXLsTNmzdjy5YtcfTo0XjllVcS7A4AijN8fjgiYsFwRS6bi9Gh0ahrqYuIiAONB6Kts23Rsa5euhqpdGrOzBL3P3Z/vHnmzRgdGp0TvPh4ze1BiWJqKlHFBiyy2Wz09/cvGnY4fvx4dHZ2rihgMTQ0FJnM4k/qzJjlrhy+QI+IeLH5xaL7SMoXer9Q6hYAAAAAAIB17kt/+aVVj1GqUEGEYAEAAFDZdu7cWXTtuXPn4sSJE3Hp0qU4dOhQvPDCC6saDwCSMDp0a0aKhcIVERHZ/uycIMP9j90fg92Di4Yxhs8PR2tP65zlNfU1kWnMxFsvvbVgWGL4/HA83vf4qmsqUcUGLGaCFYsFImpra6O7uzvy+Xyk0+lljTkT2ljM2NjYsseqVL5ABwAAAAAAoBh3a5b1qU1TkduXi6r3qmLz9Oak2gWAijTYPRjDPcORSt+6WWY6k46mzqYFty3kC/HT0z+NiIgde3bE2MhY1DbVzt7lNqkagEq2d+/eePXVV0vdBgDMymVz0dPaEwcaD8TV9qvz1hfGCpHtz0ZH7qPrvWvqayLbn42LZy7GkVNH5ozV3dAdh08dXvAzfWtPa3Q3dMf9j90/JzDR294bh08dXnA2imJqKk3FBiyGhoaWDDvMBC8GBgaWPYtFfX19ZLPZaG1tjZ6ennnru7q64rHHHiuqXwAAAAAAANanYoMFS4UKKtHdmmV9atNUbLtnW6S2pgQsANiwCvlC/NuH/20caDww546wuWwu+jr65oUsCvlCdDd0R2tP67yLnq5curJgKKOYGgAAIFnnms5FLpuLXHdu0W2qMlXzlh05dSSy/dnobe+NwlghCvlCpNKp+OJrX1xwtomIiFQ6FW2DbdHX0RepdGpZIetiaipNxQYsstlsVFdXL7p+JnyRzWaXPWYmk4m2trbo7u6O2tra6Orqmg1n9Pf3Rz6fj87OzlX1DQAAAAAAwPpSbLBgqVDBRmOWdQBY2ky44vaQw5+3/3lcHbg6b3lPa0/c23LvvAupmruao7OqM2qbaufdWbaYGgAAIFlPjTxVdG2mMbPiz+ypdCqau5rvek0lqdiAxdjY2OwsFQuZCV/k8/kVjdvV1RW1tbXR0dERTU1N0dbWFrW1tVFfXx9dXV2raRkAAAAAAABmCRUAAMtx8czFyGVz0dbZNm9dKp2K/Qf3z1mWy+Yi25+NY13HFhyv7nhdXOy8OOfCq2JqAAAA1qOKDVgsNzjxwQcfrHjsU6dORTqdjvb29uju7o50Oh09PT3Lrp+YnIhrk9dmH9+z+Z64Z8s9K+6D1ZucnCx1C2VhcnIypqam/H1QVhyXlCvHJuVqamqq1C2whHI4B/C6VT68l3A7xwS3c0xwO8cEC3EOUN4+vPlhbJvcNvvY7wDlb3rTdEzHdExvmo6p8O+r0nj+Kpfnrvws9zOnz6iVy3NXuZZ6zt44/UbUt9UvuK61p3XesoGugYiIqMpULVhTXVsdQ91DUcgXIpVOFV2z0YyPj8fY2Njs423btsW2bduWqGA9m9pU3GebJD8fea3H+z5JcjyRJMfT8vj7KV8VG7C4mzo6OqK2tjamp6ejo6Mjzpw5MzubxXJmsej4d3PvNPRH9X8Unz342bvVLkt44403St1CWZiamopf/OIXERGxefPmEncDtzguKVeOTcpVMcFh1k45nAP47Fs+vJdwO8cEt3NMcDvHRPmZmJgoujaXy8Vzzz0X/9f/9X/Ff/6f/+fx9NNPR1XVwhcoLeXjF+1QfsrhHICVmY7pmPiNiRiLsdgUm0rdDivk+atcnrvys9zvkHxGrVyeu8q12DnA8PnhKOQLcf9j9y97rPeG3lsyBDETorg6cHV2RopiajaaBx54YM7jf/2v/3WcOHGiJL1QemM1xZ23J/n5yG9DeN8nSY4nkuR4Wh6/A5Svig1YpNPpZc1isWfPnhWN29TUFB0dHdHY2BgREZ2dnfHYY49Fa2trdHd3x9jY2B1ns+j8F51RlfroB7N7Nt8T94y6c1UpPPTQQ6VuoSzMpNwOHz4cW7dW7D971hnHJeXKsUm5mjnxpDyVwzmAz77lw3sJt3NMcDvHBLdzTJSfe+5J5rPc4OBg/Nf/9X+dyFiUl3I4B2BlpjdNx1iMRfV71bFp2kXelcbzV7k8d+Vnud8h+YxauTx3levv//7vF1z+9ktvR0RETX1NRESMDo3G1YGrsf/g/tllt8tlc7G9evui+5oJUuSyuVXVbDQ///nP43d+53dmH5vBYmO78tyVouqS/HzktyG875MkxxNJcjwtz2LnAJRexR611dXVS66fSfWk0+llj3nmzJmor6+fDVfMqK+vj5GRkWhvb4/u7u7o7++ft83Hbd+6PXZt3TV34fSy2yBBXpg/snnz5ti6dau/E8qK45Jy5dikHEn0l7dyOAfwmlVevJdwO8cEt3NMcDvHBFSWHVt2lPwcgJWZiqnYFJti0/Sm2DztHLvSeP4ql+eu/Kzk86bPqJXLc1cZJm9Mxs0bN2cfT01MLbjd6NDo7P+/eOZi1NTXRENbQ4wOjca5pnNxpOPIvBklJsYmZmecWMhMkKKQL6yqZqPZvXv3Ha9XYuMo9rNNkp+PvM4T4X2fZDmeSJLj6c783ZSvin1mMplMDAwMLLp+ZnaLTGb50xJ2dXXF4ODgkusHBgair69vyYAFAAAAAACV69q1a0XXPvLII3HhwoW4efNmbNmyJY4ePRqvvPLKisf5u7/7u7jvvvuK7gMAAChvb5x+I37yb34y+3g8xhfcbmJsIlLpVAx2D8aRU0dml9fU10RrT2v89wf++2jtaZ0TslhuCOLDDz5cVQ0AAMB6VLEBi/r6+ujv7190fTabjYhYURAim83eccaL9vb2JUMYAAAk6/r160XXvv/++3Hy5MkYHByMhoaGOHv2bOzdu3fF4+zcubPoHgAAgMqzmnOAc+fOxYkTJ+LSpUtx6NCheOGFF4oab8eOHUX3AAAAlL+Hnn0oPvP0Z2YfX7lyJb5T9515280EH2ZmkPi4VDoVmcZM/Hn7n8dTI0/dvWYBAAA2kIoNWDz22GNx5syZGBoaivr6+nnrL126tOJZJjKZTGSz2SVnvRgZGYmGhoYV9wsAQHF27dqVyDh9fX1RW1tbVO309HQiPQAAAOvf3r1749VXXy11GwAAQJnbum1rbN320WU7n/jVJxbcLpVORSFfmDNDxcdlmjIxfH44RodGo6a+Zk7NnezY81Gwu5gaAACA9ahiAxb19fXR2NgYL7300oIBi/Pnz0dfX9+85fl8Pk6fPh1NTU3zAhgtLS3R0dERPT09C+4zn8/H0NBQPPvss8n8RwAAAAAAAADAGnmx+cVlbTe1aSrGasbiynNXYvP05kR7+ELvFxIdD9a77dXbo5AvRCqdWnR9RMTVgauzAYuFZrv4uImxiYiIOWMWUwMAALAeJftNyBrr6emJ8+fPx9DQ0Jzl7e3tcerUqQVnsOju7o4zZ85Ea2vrvHWdnZ2z9fl8fs66oaGhaG1tjc7Ozkin04n9NwAAsLRr164V/aepqSm2bNkSERFbtmyJpqamosYBAAAAAAAohZnQxJ18fPaJqkzVbCBiqW2rMlWrqgEAAFiPKnYGi4iIdDodg4OD0dHREel0Ovbs2RMjIyPR1NQULS0tC9Y0NjZGOp2O48ePL7i+p6cn+vv744knnpizPJPJLDgjBgAAd9fOnTuLrj137lycOHEiLl26FIcOHYoXXnhhVeMBAAAAAACspf2H9sfw+eFFZ7GYCUV8PIixr35fZPuzi46Zy+YiIiLTmFlVDQAAwHpU0QGLiFshi66urmVvX19fH7lcbsltGhsbF5z9AgCAyrJ379549dVXS90GAAAAAABAUepa6qK/oz+y/dmoa6mbt35sZCwiIvYf3D+77P7H7o83z7wZo0OjC86AcfXS1XlBiWJqAAAA1qOKD1gAAAAAAAAAACzXi80vlrqFiIj4Qu8XSt0CFaAqUxV1LXXxxuk3FgxYvHP+nTh86vCc2S1q6msi05iJt156a8GwxPD54Xi87/E5y4qpAQAAWI82l7oBAAAAAAAAAABgYc3PN0chX4jB7sE5y3tae6IqUxVNnU3zalp7WuOd8+/E6NDonOW97b1x+NThBWejKKYGAABgvTGDBQAAAAAAAADAGrsbM2lMbZqKsZqxuPLcldg8fed7bppFozKk0qloG2yLn57+afS09kRERCFfiLrWumhoa1iypq+jL1LpVOzYsyPGRsaitql2wZkwiq0BAABYbwQsAAAAAAAAAACgjKXSqQVnqrhTTXNX812vAQAAWE/ufLsCAAAAAAAAAAAAAACAdU7AAgAAAAAAAAAAAAAA2PC2lroBAAAAAAAAAAAAFnf9+vWia99///04efJkDA4ORkNDQ5w9ezb27t274nF27txZdA8AAFApBCwAAAAAAAAAAADK2K5duxIZp6+vL2pra4uqnZ6eTqQHAAAoZwIWAAAAAAAAAAAAAABA2cu+lo1sXzZiU0R1bXXsP7g/9j2wL7HxBSwAAAAAAAAAAADK2LVr14qufeSRR+LChQtx8+bN2LJlSxw9ejReeeWVBLsDAIDknNlzJk59cGrR9ZmHM5F5OBOF8UJMjE1Etj8bA10D0dTZFNt+c9uq9y9gAQAAAAAAsAI3Jm9EYbKw4rrxG+Px/b/5flwevxwHdh+IL3/qy7F72+6iekhtTRVVBwAAVKadO3cWXXvu3Lk4ceJEXLp0KQ4dOhQvvPDCqsYrtRebXyx1CwAA3EXT09PL2i61OxWp3aloeKIhCuOF6Ovoi2PfO7bq/QtYAAAAAAAArMA3fvKNVY/x1i/fiq+//vWi63947Ier7gEAANgY9u7dG6+++mqp2wAAgGXZtGnTimtSu5O7KdHmxEYCAAAAAAAAAAAAAABYQ4XxQowOjCYylhksAAAAAAAAVuBP/l9/EtXbq1dc99zAczH8wXBMTU/F5k2bo25PXTx98Om70CEAAAAAAJSv/Lv5BZdPT0/fWv93+Yjppcco5AsxMTYRo0Oj8cbpN6LueF0ivQlYAAAAAAAArMC2rdsitXXl041/9cGvxtmfn42R/EjUpmvj5AMnixqnXBQmC0XXjt8Yj+//zffj8vjlOLD7QHz5U1+O3dt2r3icSv77AwAAAADYqK4OXo2rl65GLpuLbH82bozfmLP+u5nvLnus6enpyDRm4tj3jiXSm4AFAAAAAADAGti9bXd0/F5HImMVG25IKtgQEfGlv/xSUXW3e+uXb8XXX/96UbU/PPbDRHoAAAAAAGDt1D1aF3WPfjTjxOjQaPR39Ef2tWxs2rQp7n303mWNU5WpikxTJjIPZxLrTcACAAAAAACgwiQRblhNsAEAAAAAAJJSU18Tj/c9Hr3tvfHO+Xei9eXWkvUiYAEAAAAAAMCK/eCPflB07XMDz8XwB8MxNT0Vmzdtjro9dfH0wacT7A4AAAAAgErT3NUco4OjJe1BwAIAAAAAAKDCFBtuSDLYkNqaKqouIuKrD341zv78bIzkR6I2XRsnHzi5qvEAAAAAAFgfHnr2oaLq+p/tj8bTjavev4AFAAAAAABAhSk2jFAuwYbd23ZHx+91rPl+ASi9F5tfLHULAAAAQBmre7SuqLqh7iEBCwAAAAAAAJZPsAEAAAAAgEqRfzcfuWzujtuNDo1GIV9IZJ8CFgAAAAAAAAAAAAAAQFkY+tOh6O/oTyw0sRICFgAAAKt0Y/JGFCZXfkI3fmM8vv8334/L45fjwO4D8eVPfTl2b9t9FzoEAAAAAAAAAIDyl30tG71tvVGVqYq61rpIpVN3rBkdHI3LFy4nsn8BCwAAgFX65r/75qrHeOuXb8XXX/960fV/HH+86h4AAAAAAAAAAKCUXnvmtWjtaY26R+tWVHdmz5lE9r85kVEAAAAAAAAAAAAAAABWIVWVWnG4IiIifSCdyP7NYAEAALBK3/4X3449qT0rrntu4LkY/mA4pqanYvOmzVG3py6ePvj0XegQAAAAAAAAgLVy/fr1omvff//9OHnyZAwODkZDQ0OcPXs29u7dW9RYO3fuLLoPgFKpqa8pqq5toC2R/QtYAAAArNK2rdsitTW14rqvPvjVOPvzszGSH4nadG2cfOBkUeMAAAAAAAAAUD527dqVyDh9fX1RW1tbdP309HQifQCspUK+UNL9C1gAAACUyO5tu6Pj9zpK3QYAAAAAsEG92PxiqVuIL/R+odQtAAAAUEbqWuvinR+9E/d+7t4V1fU/2x+NpxtXvf/Nqx4BAAAAAAAAAAAAAIiIiGvXrhX9p6mpKbZs2RIREVu2bImmpqaixwKoRJmHMzE2Mhbv/OidFdUNdQ8lsn8zWAAAAAAAAAAAAABAQnbu3Fl07blz5+LEiRNx6dKlOHToULzwwgurGg+g0uTfzcd9rffF2z1vx/OHno8DjQeiurY6qjJVi9aMDo1GIV9IZP8CFgAAAAAAAAAAAABQBvbu3RuvvvpqqdsAKJmu+q64MX4jIiKmp6fj6uDV2LRp05rtX8ACAAAAAAAAAAAAAAAoue3V2yMi4r7j90UqnVpWzejgaFy+cDmR/QtYAAAAAAAAAAAAAAAAJVeVqYqHnnko6r9Sv6K6M3vOJLL/zYmMAgAAAAAAAAAAAAAAsApVmaqoylStuC59IJ3I/s1gAQAAAAAAAAAAAAAAlNyxs8eKqmsbaEtk/2awAAAAAAAAAAAAAAAANjwBCwAAAAAAAAAAAAAAoCIVxgvx5p+8mchYAhYAAAAAAAAAAAAAAEBFymVz8fZLbycy1tZERgEAAAAAAAAAAAAAAFiFyxcur7jmYufFKOQLiexfwAIAAAAAAAAAAAAAACi5l1tejhvjN1ZUMz09HdurtieyfwELAAAAAAAAAAAAAACg5LZX3wpK3Hf8vkilUwtuU8gXIpfNxdWBq5FpzMT+Q/sT27+ABQAAAAAAAAAAAAAAUHJVmap46JmHov4r9cva/uK3L8b2qu3L3v5ONicyCgAAAAAAAAAAAAAAwCpUZaqiKlO17O2PfPNIpKpScfnC5UT2L2ABAAAAAAAAAAAAAACU3LGzx+LA0QMrqql7tC5G+kYS2b+ABQAAAAAAAAAAAAAAsOEJWAAAAAAAAAAAAAAAABUrn80nMs7WREaBMvVi84ulbiG+0PuFUrcAAAAAAAAAAAAAbDDXr19f1naTk5MxMTER169fj61bt8b7778fJ0+ejMHBwWhoaIizZ8/G3r17i+ph586dRdUBrERhvBATuYlExhKwAAAAAAAAAAAAAIB1ZteuXaseo6+vL2pra4uun56eXnUPwMZy+cLlZW9byBcil83FYNdgNLQ3JLJ/AQsAAAAAAAAAAAAAAKDkXm55OW6M31j29tPT05FpzMThbxxOZP8CFgAAAAAAAAAAAACwzly7dm1Z201OTsabb74Zhw8fjq1bt8YjjzwSFy5ciJs3b8aWLVvi6NGj8corr9zlbgFu2V69PSIi7jt+X6TSqaW33bM9auprIvNwJrH9C1gAAAAAAAAAAAAAwDqzc+fOZW03OTkZ27dvj507d8bWrVvj3LlzceLEibh06VIcOnQoXnjhhWWPBbBaVZmqeOiZh6L+K/Ul2b+ABQAAAAAAAAAAAAAQERF79+6NV199tdRtABtUVaYqqjJVJdu/gAUAAAAAAAAAAJSpwe7BGO4Zjob2hsg0ZiKVTkUum4vRodF4+6W346FnH4qa+pp5dYV8IX56+qcREbFjz44YGxmL2qbaqGupW3RfxdQAAAAk6djZYyXdv4AFAAAAAAAAAACUqUK+ENn+bGT7s3OWp9KpaO1pXTRc0d3QPW99b3tvXLl0JZo6mxKpAQAA7o7RodEY6BqIwlghRodGI5VORUN7QzS0NSxas1Yh6/UezBawuAtuTN6IwmRhxXXjN8bj+3/z/bg8fjkO7D4QX/7Ul2P3tt0rHie1NbXiGgAAAAAAAAAAytOxrmMxNjIW+Ww+UtWp2N+wf8kLq3pae+LelnvnhS+au5qjs6ozaptqI9OYWXUNAACQvMHuwYi49Vl8RrY/Gz2tPXGx82K0DbZFKj33evG1ClmXIpidfzcfA10D8d7QezExNhHbq7dHOpOOg+0HY98D+xLfn4DFXfDNf/fNVY/x1i/fiq+//vWian947Ier3j8AAAAAAOUtl83FG51vREREYawQhXwhMk2ZOHLqyKI17l4FAACV6b7j9827gGoxuWwusv3ZONZ1bMH1dcfr4mLnxTlhiWJqAACA5OWyuSjkC/O+6880ZuKLr30xuhu6o6e1Jx7ve3zO+rUKWa91MLv/2f5488ybMT09PW/dUPdQ1LXWRXN3c2z7zW2J7VPAAgAAAAAAKszw+eG4cunKnLtXRUR0N3THYNdgPDXy1Lya9Xz3KgAA4CMDXQMREVGVqVpwfXVtdQx1D0UhX5gNbRRTAwAAJG+gayB+/9nfX3BdTX1NZBozke3PRi6bm/38vlYh67UMZhfGb/3WMDE2Efc+em/sP7R/9lykkC/ExAcTMTo4Gm+//HZk+7Pxtctfi22/kUzIQsDiLvj2v/h27EntWXHdcwPPxfAHwzE1PRWbN22Ouj118fTBp+9ChwAAAAAAVKpCvhBvv/R2tPa0zlvX/HxzdDd0R29777zwxXq9exUAADDXe0PvLRmCmLkI6+rA1dnP5sXUAAAAybvcfzmGuofia5e/tuBn9H31+yLbn43RodHZz+lrFbJey2B2T2tPZBozcezswmGOGYXxQvSd6ot/e/TfxhOXnljVPmdsTmQU5ti2dVuktqZW/OerD341PvXPPhW77tkVn/pnn4qvPvjVosYBAGBj6m3vjWx/dsltBrsH41zTuRg+PxyFfCEibqXLh88PR09rT4wOjS5YV8gXoq+jL/o6+uLimYvR294bw+eHl9xXMTUAAMCdXR24GsPnh6Ovo2/euplQw+X+y3OWz9xV6mD7wQXHnLmrVClqAACA5RsdGo3B7sFFv8+PuPW5fHv19kXXz1zolMvmVlUDAAAkb3v19ijkCyv67L2SwPRa1xRj8PnBqMpU3TFcERGR2p2K5q7mqGmoiaE/HVrVfmeYwaKM7N62Ozp+r6PUbQAAUEFmLl4a7Lr1Y8p9rfctuX0hX4hsf3ZeECOVTkVrT+u8O8zO1HQ3dM9b39veG1cuXYmmzqZEagAAgOXZXr09UulU7NizY9Ftbv+BYz3evQoAACrZ5I3JuHnj5uzjf/j1Pyy5fbY/G7lsLjKNmWhoa4jRodE413QujnQcmTejxMTYxKKfySNiNkgxcyOmYmsAAIDkPd73eOSyuUU/n+ez+YiIOdfjrFXIeq2C2Zf7L0fLSy0rqjl29lj8L//v/yXqv1K/qn1HCFgAAEDFGuwejGxfNjJNmWjsbIxzTeeWVXes61iMjYxFPpuPVHUq9jfsj4a2hkW372ntiXtb7p0Xvmjuao7Oqs6obaqd9+NNMTUAAMDy1NTXREdu4Zv1zNzF9kDjgTnLV3JXqZnP6mtVAwAAG9Ebp9+In/ybn8w+Ho/xRbed+Rx95NSR2WU19TXR2tManVWd0TbYNuf7+OWGID784MNV1QAAAMu3kpD1UuHn4fPDUVNfM2ebtQpZr1UwO1VV3A2a0gfSq9rvDAELAACoUA1tDbPBiKWmAr/dfcfvW/adYmdmyDjWtfCUe3XH6+Ji58U5F0YVUwMAACSjv6M/qjJV82aNW293rwIAgEr30LMPxWee/szs4ytXrsR36r6z4LZ1LXULLk+lU1HXUhc9rT3x1MhTd6VPAAAgGSsJWS/m4pmLERHR/HzznOVrFbJes2D2pjWuu42ABQAAsKiBroGIWDwZX11bHUPdQ1HIF2YvlCqmBgAAWJ1cNhdvdL4R6Uw6Hu97fN769Xb3KgAAqHRbt22Nrds+umznE7/6RFHj7D+0P4bPD0cum5v9LJ5Kp5b1mXvHnh2z/7+YGgAAYPlWErJeyOjQaPR39EdrT+ucGezWo8JYcb8h5LP5RPa/OZFRAACAdem9ofeWDEHM/FhzdeDqqmoAAGCjm7wxGTd+dWP2zz9e+8dl1Q2fH46+jr7o7+iPVDoV97Xet+B26+7uVQAAQER8NEvcx2e6XmpWuYhbweiP1xZbAwAALN/WbVtj229um/3zid9YWci6p7UnjnUdW3CGu7UKWa9VMDt9IB3vvPLOimre/JM3Y9+D+1a13xlmsAAAgA1qdGg0rg5cjf0H9y+abM9lc0v+qDLzQ0oum1tVDQAAbHTzpgbfvLypweta6ub8mHKu6VwMdg1G8/PNLnwCAIB1oLe9Ny73X46nRp5adk1VpmrJmxzNXBD18dnniqkBAADWRk9rTzS0N0RDW8OC69cqZL1WwezGbzXGdz/53YiIuPeRe++4/eDzg/HG6Tfi1AenVrXfGQIWAACwwWT7s5HL5iLTmImGtoYYHRqNc03n4kjHkcg0ZuZsOzE2seSPJTMnTh9PpxdTAwAAG93tU4P/4he/iO98avlTg89o7WmNzqrOKOQL8Xjf47PL19vdqwAAYKMYHRidvUhpITOfvz9+I6V99fsi259dtGbmBkgf/02gmBoAAODu6+voi/2H9seRU0cW3WatQtZrGcxufbk1ug92R+0f1kZdS13sP7h/NrhRyBdiYmwiRvpG4p3z70Qum4snBp5Y9T5nbE5sJAAAIDGTNybjxq9uzP75x2v/mMi4MycwR04dmf2xpaa+Jlp7WuNc07k5U4hHLD8E8eEHH66qBgAANrrbpwa/Z9c9RY2TSqeirqUusv3ZORdHrbe7VwEAwEZxoPFAdOQ6Fl1/9dLVSKVTcy5guv+x+yMi5n3n//Ga24MSxdQAAAB312D3YFTXVi8Yrvj49Tn76vcteb3OYiHrtagpVk19TbQNtMWH/78Po7etN7obuuO7td+N79Z+N7obuuNc07m42Hkxpqen41/9+F9FzYM1dx50mRINWFy4cCHJ4QAAYMN64/Qb8a3d35r9871//r1Exq1rqYu6lrp5y2cuwupp7UlkPwAAwN1TyBdmf6RYSDqTjoiIkb6R2WVVmapl3fX29jtRrUUNAACwuPsfuz8GuwcXXJfL5mL4/HA0P988Z3lNfU1kGjPx1ktvLVg3fH44jnQcWXUNAABw9wyfH46IiIa2hnnrctncnJssrVXIeq2D2TX1NdE22BbHzh6LfQ/si+np6dk/6QPpaOxsjKf+9qnIPJxsGDzRgEVTU1OSwwEAwIb10LMPxTPjz8z+efI/PHnX97n/0P7IZXNzLtRKpVPLmpFix54dq6oBAACWr7OqM75b+91FP3fPfNZe73evAgCAjaCmviYK+UJcPHNxzvJcNhfdDd1x+NThBW+s1NrTGu+cf2fehU+97b1x+NThBT+TF1MDAAAkb3RoNCbGJhYMV0REZPuzUVP/0YwNaxWyLlUwu6GtIdoG2+K/m/rvZv889bdPxZFv3p0Q+NYkB9u9e3f8N//NfxP/4//4PyY5LAAAbDhbt22Nrds++rh+z6577vo+U+lURNw6SZu5m+z26u1L1szcmXamttgaAABg+VLpVGyv3r7oZ+qxkbGIiNjfsH922f2P3R9vnnkzRodG5/zoMmOxO1GtRQ0AALC0I6eORLY/G73tvVEYK0QhX4hUOhVffO2LC37ujrh13tA22BZ9HX2RSqdix54dMTYyFrVNtQsGMoqtAQAAkpXL5qKntScONB6Iq+1X560vjBUi25+NjlzHnOWtPa3R3dAd9z92/5zzhDuFrNeiptIkGrDI5/PR1dUVIyMj0dnZGQ888ECSwwMAAKvQ294bl/svx1MjTy27pipTFVcH5p+szZi5M+1MIKPYGgAAYPnq2+rjYPvBRdcPvzwcqXQq7jt+3+yyj99VaqELsIbPD8fjfY/PWbZWNQAAwJ1lGjMrvlAplU5Fc1fzXa8BAACSc67pXOSyuch15xbdZqFrbtYqZL2WwezhPxuOoe6hmMhNROvLrZH+3fSc9bnLuejv6I/f+vRvxeFvHE5sv4kGLCIiurq64uGHH47+/v44ffp0NDU1xfHjx+M3f/M3k94VAACwAqMDo7OzRyxkJvjw8Yug9tXvi2x/dtGaXPbWydzHf9QppgYAAFi+ps6m6G3vjfta75v3ubqntSciIr742hfnzXDh7lUAAAAAAFDeVnLj1NutVch6LYLZ/c/2x/6D++PKpStxY/xGjA6NzgtYVB2oitaXWyP7Wjb6n+2PxtONiew70YBFV1dXfOUrX4mIiCeeeCKeeOKJ+NnPfhanTp2KTZs2RXt7u1ktAACgRA40Hoi2zrZF11+9dDVS6dSclPv9j90fb555M0aHRhe8++zVS1fnXRxVTA0AALAyzV3NMXx+OHpaeyJVnYrCWCEK+ULsq98XX7v8tXnhioj1efcqAAAq34vNL5a6hYiI+ELvF0rdAgAAABFx+cLlqMpURd2jdRHTt2aquPdz9y66febhW9chvfOjd5bcbrkSDVg88cQT85Y9+OCDcfbs2RgfH4+XX355dlaLmSAGAACwNu5/7P4Y7B6MhraGeety2VwMnx+O1p7WOctr6msi05iJt156a8GwxPD54Xi87/FV1wAAACtX11K34sDCerp7FQAAAAAAsP683fN2HPvesYiIZf8Oknk4E3/+5J8nErDYvOoRlmn37t3xxBNPxEsvvRQNDQ1x8uTJePLJJ+M//If/sFYtAADAupXL5iIiopAvLLpNTX1NFPKFuHjm4rza7obuOHzq8IInJa09rfHO+XdidGh0zvLe9t44fOrwgrNRFFMDAAAAAAAAAABscNOl3X2iM1gsV21tbdTW1sbp06eju7s7MplMdHR0mNUCAABWYPj8cAx2DUZExNWBqxER0ftE7+yyuta6ebNVHDl1JLL92eht743CWCEK+UKk0qn44mtfXHC2iYhbd55tG2yLvo6+SKVTsWPPjhgbGYvaptpFU+LF1AAAAAAAAAAAABtbIbf4DWaXks/mE9n/mgYsLly4EJ2dndHf3x8REdPT09HW1hbt7e0REXHy5MnYtGlTdHR0xO/+7u+uZWsAAFBx6lrqigorZBozK55BIpVORXNX812vAQAAAAAAAAAANq6xkbEV1xTGC/HhBx8msv9EAxYXLlyIo0ePzln2q1/9Krq7u6Orqyuy2WxMT0/PzljxxBNPzNn27NmzMT4+Ht3d3TE2NhbPPvts/OZv/uaS+8zn83H69OmIiNizZ0+MjIxEU1NTtLS0rPq/p7u7O3p6eiKdTkdERCaTic7OzlWPCwAAAAAAAAAAAAAAzHXf8fvi/GPno+Wl5ecBzh8/H/d//v5E9p9owKKpqSlu3rwZEbfCFl1dXXH+/PmYnp6OiJidreLBBx9cdIzdu3fHN7/5zRgfH4+vfOUrcebMmUVns8jn89HQ0BA9PT1RX18/u7y9vT0uXbpUdBgin8/Hww8/HI2NjdHX1ze7PJvNRkdHh5AFAAAAAAAAAAAAAAAk7MipI/HdT343zn/+fDQ/3xzbfmPbotu+9/P3oveJ3ijkC3H4G4cT2X+iAYvdu3fHf/af/WcREfNmqzh+/Hjs3r17RWO9/PLL8eSTT8b3vve9BbdpbW2NlpaWOeGKiIiurq6oqqqKpqamaGxsXPF/x0y44vYgRXt7ewwMDAhYAAAAAAAAAAAAUDIvNr9Y6hYiIuILvV8odQsAwDr0+I8fj+9+8rsx3DMcmaZMZBozkUqnYnv19pgYm4ixkbG43H85RodGY3p6OtqH2hPbd6IBi4iIkZGRiIhoaWmJZ599dsnZKpZjsVBGNpuN/v7+6OrqWnD98ePHo7Ozc8UBizNnzkQ2m10wRJFOp+PgwYMrGg8AAAAAAAAAAAAAAFieqkxVdIx1RE9rT4z8eCSyfdl520xPT0emMRPHuo5F1YGqxPadeMCivb09vvWtb61otorbjY+Px7e+9a1ob2+P8fHxBbeZCVZkMpkF19fW1kZ3d3fk8/lIp9PL3vfp06ejra1twXU9PT3LHgcAAAAAAAAAAAAAAFi5VDoVj/c9HtnXsjHcMxxXB65GIV+IVDoVVZmqaGhviMzDC2cJViPxgMX3vve9VY/x8ssvR2dnZ5w/fz46OjoW3GZoaGjJ4MRM8GJgYGDZs1icP38+8vl8PPbYYyvuGQAAAAAAAAAAAIDSun79etG177//fpw8eTIGBwejoaEhzp49G3v37l3xODt37iy6BwDmyjycuStBisUkGrA4fvx4YuOMjIzEoUOH4tFHH11wm2w2G9XV1YuOMRO+yGbnTweymJdeeikiIurr6yPiVohjYGAgDh48OLsMAAAAAAAAAAAAgPK0a9euRMbp6+uL2traomqnp6cT6QGAtbc5ycHOnj2byDi7d++Ob33rW4uGKyIixsbGlpzBYiZ8kc/nl73foaGh2f9/5syZGBsbi7a2toiIaGpqiv7+/mWPBQAAAAAAAAAAAAAAVI5EZ7CY8Wd/9mfR3d0duVwuXn755fjd3/3dOesvX74cHR0d8elPfzq+8Y1vFLWP5QYnPvjgg2WPORPa6O7ujlOnTs0ur6+vj56enjhw4ED09PREY2PjkuNMTE7Etclrs4/v2XxP3LPlnmX3wfoyOTlZ6hZicnIypqamyqIXmOG4pFw5NilXU1NTpW6BJZTDOYDXrfLhvYTbOSa4nWOC2zkmWIhzgPL24c0PY9vkttnHfgcof9ObpmM6pmN603RMhX9flcbzV7k8d5XLc1e5PHfFK/U5Wan3z52Nj4/H2NjY7ONt27bFtm3blqjgbpnaVLmvb+vxddrrV+n4XnFxK7kx9+1aWlri9ddfj5s3b8aWLVviD/7gD+L8+fMrHqfSnhfHE0lyPC2Pv5/ylXjA4tlnn42DBw/GpUuXYnx8PIaGhuYFLA4cOBAvv/xyvPbaa/Hss8/G6dOnk26jKDNvqjOzX3xcOp2OxsbGaG9vj5GRkSXH6fh3HXMe/1H9H8VnD342sT6pLG+88UapW4ipqan4xS9+ERERmzcnOnENFM1xSblybFKuVhIcZu2VwzlAOXzu5BbvJdzOMcHtHBPczjHBQpwDlLdyOAdgZaZjOiZ+YyLGYiw2xaZSt8MKef4ql+eucnnuKpfnrnil/o714xfuU54eeOCBOY//9b/+13HixImS9LLRjdVU7r+X9fg6XerXz43M94p3x5NPPhm/+tWv4v/4P/6P+C//y/8ynnzyyfjZz35W6rbuOscTSXI8LY9zgPKVaMDiwoULkclk4tFHH43p6em4fPlyfO5zn1t0+4cffjgiIn70ox8tud1C0un0slKGe/bsWfGYi81Q0dTUFOfPn4+hoaGor69fdJzOf9EZVamq2cf3bL4n7hl156qN6qGHHip1C7Mpt8OHD8fWrXdl4hpYMccl5cqxSbmaOfGkPJXDOUA5fO7kFu8l3M4xwe0cE9zOMcFCnAOUt3I4B2BlpjdNx1iMRfV71bFpen1cxLSReP4ql+eucnnuKpfnrnil/o717//+70u6f+7s5z//efzO7/zO7GMzWJTOleeulLqFoq3H1+lSv35uZL5XvHv+5b/8l6VuYc05nkiS42l5nAOUr0SP2p6envje974XEbemSVqOhx9+OJ588skVBywWmmXi42ZSPel0ekVj5vP5RWtm9jkwMLBkwGL71u2xa+uuuQunl90G60y5vDls3rw5tm7dWjb9QITjkvLl2KQcSfSXt3I4B/CaVV68l3A7xwS3c0xwO8cEt3MOUN52bNlR8nMAVmYqpmJTbIpN05ti87R/X5XG81e5PHeVy3NXuTx3xSv1+Vip98+d7d69+47XK7E2Kvn1bT2+Tnv9Ki3fK5IkxxNJcjzdmb+b8pXop7Tp6bX79SCTySw5NcrM7BaZTGbZYy4VmlhobAAAAAAAAAAAAAAAYH1INGCRy+WKqstmsyuuqa+vXzLoMDNmY2Pjssc8dOhQRCweoJgJdCw3iAEAAAAAAAAAAAAAAFSGRAMWIyMjK64ZHx+PDz74YMV1jz32WEREDA0NLbj+0qVLKwpXRES0tLRERER/f/+C62f++w4ePLiicQEAAAAAAAAAAAAAgPKWaMDi+PHjs8GHldR8/vOfX/G+6uvro7GxMV566aUF158/fz46OjrmLc/n89HR0bFgiCKTyURLS0ucPn160TFPnToV6XR6xf0CAAAAAAAAAAAAAADlK9GAxalTp2JwcDA+//nPx69//eslt/35z38ehw4dimw2G9/4xjeK2l9PT0+cP39+3iwW7e3tcerUqQVnsOju7o4zZ85Ea2vrgmM+//zzkc/no7u7e87y1tbWyGQy0dnZWVSvAAAAAAAAAAAAAABA+dqa9IA//vGP45Of/GT09PREU1NTNDY2Rjqdjurq6hgbG4uRkZHo7++PoaGhmJ6enheOWIl0Oh2Dg4PR0dER6XQ69uzZEyMjI9HU1BQtLS0L1sz0c/z48SXHPH369GwII5/PR2tra7S1tRXdKwAAAAAAAAAAAAAAkLz+Z/uj8fT8CRpWKvGARSaTibGxsWhtbY0f//jH0dfXN2+b6enpaGxsjK6urjhw4MCq9pdOp6Orq2vZ29fX10cul7vjmGaqAAAAAAAAAAAAAACA8jfUPVSeAYuIWwGFvr6+eO2116KnpycGBgYin89HOp2OTCYT7e3t8fDDD9+NXQMAAAAAAAAAAAAAABUu/24+ctmlJ1eIiBgdGo1CvpDIPu9KwGLGww8/LEgBAAAAAAAAAAAAAAAsy9CfDkV/R39ioYmVuKsBCwAAAAAAAAAAAAAAgOXIvpaN3rbeqMpURV1rXaTSqTvWjA6OxuULlxPZf1kELJ599tk4ffp0qdsAAAAAAAAAAAAAAABK5LVnXovWntaoe7RuRXVn9pxJZP+bExlllbq7u0vdAgAAAAAAAAAAAAAAUEKpqtSKwxUREekD6UT2f9dmsHj33Xcjm83ecbuhoaHI5/N3qw0AAAAAAAAAAAAAAKAC1NTXFFXXNtCWyP4TD1j86Z/+aXR0dAhNAAAAAAAAAAAAAOve9evXi659//334+TJkzE4OBgNDQ1x9uzZ2Lt37x3rJicnY2JiIq5fvx5bt966FHTnzp1F9wEA5aKQL5R0/4kGLF577bVoa2uLTCYTra2tkU6n71gzODgYFy5cSLINAAAAAAAAAAAAgDWxa9euRMbp6+uL2traouunp6cT6QMASqmutS7e+dE7ce/n7l1RXf+z/dF4unHV+080YPHMM89ET09PPProoyuq27NnT5JtAAAAAAAAAAAAAAAAFSbzcCYufvviikMWQ91D5RewqKqqWnG4IiLiwIEDSbYBAAAAAAAAAAAAsCauXbtWdO0jjzwSFy5ciJs3b8aWLVvi6NGj8corr9yxbnJyMt588804fPhwbN2a6KWgAFBS+XfzcV/rffF2z9vx/KHn40DjgaiurY6qTNWiNaNDo1HIFxLZf6LvqvX19UXVDQwMJNkGAAAAAAAAAAAAwJrYuXNn0bXnzp2LEydOxKVLl+LQoUPxwgsvLGu8ycnJ2L59e+zcuVPAAoB1pau+K26M34iIiOnp6bg6eDU2bdq0ZvtP9F01n88nORwAAAAAAAAAAADAurV379549dVXS90GAJSN7dXbIyLivuP3RSqdWlbN6OBoXL5wOZH9JxqwaG1tjR/96Efxuc99bkV1zz77bJw+fTrJVgAAADaUF5tfLHUL8YXeL5S6BQAAAAAAAAAAKlhVpioeeuahqP9K/Yrqzuw5k8j+Nycyyj95+OGHY2RkJH70ox+tqK67uzvJNgAAAAAAAAAAAAAAgApTlamKqkzViuvSB9KJ7D/RGSzefffdaG1tjZ6enjh06FA0NjZGbW1tZDKZRWuGhoYin88n2QYAAAAAAAAAAAAAAFBhjp09VlRd20BbIvtPNGBRX18f4+PjERExPT0dg4ODsWnTpiR3AQAAAAAAAAAAAAAAkLhEAxbV1dUREXH8+PFIp9PLqhkcHIwLFy4k2QYAAAAAAAAAAAAAAFDh8u/mY6BrIN4bei8mxiZie/X2SGfScbD9YOx7YF/i+0s0YJHJZOKZZ56Jr3zlKyuq27NnT5JtAAAAAAAAAAAAAAAAFaz/2f5488ybMT09PW/dUPdQ1LXWRXN3c2z7zW2J7TPxgEUmk1lx3YEDB5JsAwAAAAAAAAAAAAAAqECF8UJ0N3THxNhE3PvovbH/0P5IpVO31uULMfHBRIwOjsbbL78d2f5sfO3y12LbbyQTskg0YHH27Nmi6gYGBpJsAwAAAAAAAAAAAAAAqEA9rT2RaczEsbPHltyuMF6IvlN98W+P/tt44tITiex7cyKjLOFXv/pVvPvuu3d7NwAAAAAAAAAAAAAAQAUbfH4wqjJVdwxXRESkdqeiuas5ahpqYuhPhxLZ/10JWLz77rvx5JNPxpYtW6Kqqio++clPzll/+fLlOH78ePzpn/7p3dg9AAAAAAAAAAAAAFBi169fL/pPNpuNP/zDP4w9e/bEH/7hH0Y2my1qHKCyXO6/vKxwxccdO3sshnuGE9n/1kRG+ZgLFy5EY2NjRERkMpnIZDJx+fLlOdscOHAgXn755XjttdfiT/7kT+Ib3/hG0m0AAAAAAAAAAAAAACW0a9euRMbp6+uL2traomqnp6cT6QFYG6mqVFF16QPpRPafaMDi8uXL0dLSEm1tbdHR0REHDhyIiIhnnnlmwe0ffvjhyOfzceHChTh69GiSrQAAAAAAAAAAwLrW294bD3U8FFWZqgXXF/KF+Onpn0ZExI49O2JsZCxqm2qjrqVu0TGLqQEAAEjMpjWuu02iAYtnnnkmOjs744knnpizfNOmxbt99NFH48knnxSwAAAAAAAAAACAZRodGo2h7qE42H5wwfWFfCG6G7qjtac1auprZpf3tvfGlUtXoqmzKZEaAPi469evF137/vvvx8mTJ2NwcDAaGhri7NmzsXfv3hWPs3PnzqJ7IHnXrl0ruvaRRx6JCxcuxM2bN2PLli1x9OjReOWVVxLsDihHhbFCUXX5bD6R/ScasMjlcvPCFcth6h0AAAAAAAAAAFi+/o7+Jdf3tPbEvS33zglKREQ0dzVHZ1Vn1DbVRqYxs+oaAPi4Xbt2JTJOX19f1NbWFlXrmtTysprAy7lz5+LEiRNx6dKlOHToULzwwgsCNLABpA+k451X3ol7H7l32TVv/smbse/BfYnsf3Mio/yTTKa4E6hcLpdkGwAAAAAAAAAAsG4Ndg9GXWvdoutz2Vxk+7OLzm5Rd7wuLnZeXHUNAMDdtHfv3nj11Vfjl7/8Zbz66qtFzWgCVJ7GbzVG3zf74p1X3lnW9oPPD8Ybp9+Ixm81JrL/xGewKEY2m02yDQAAAAAAAAAAWJdy2VvX51RlqhbdZqBrYMltqmurY6h7KAr5QqTSqaJrAOB2165dK7r2kUceiQsXLsTNmzdjy5YtcfTo0XjllVcS7A6AStH6cmt0H+yO2j+sjbqWuth/cP/seUghX4iJsYkY6RuJd86/E7lsLp4YeCKxfScasKiqqorXX389/uAP/mDZNc8++2w8/PDDSbYBAAAAAAAAAADL9mLziyXd/wcTHyx724GugWjqbIps/+I3NH1v6L0lQxAzIYqrA1cj05gpugYAbrdz586ia8+dOxcnTpyIS5cuxaFDh+KFF15Y1XgAVK6a+ppoG2iL3id6o7etNzZt2jRvm+np6ajKVMW/+vG/ipoHaxLbd6IBi1OnTsUf/uEfxvPPP7+skMWf/MmfxPnz5+M//sf/mGQbAAAAAAAAAACw7gyfH46D7QfvuF0um4vt1dsXXT8TpJiZDaPYGgBI0t69e+PVV18tdRsAlIma+ppoG2yLwe7BGOwajNGfjc6uq8pURUN7Qxz55pHE95towCKTycTZs2fj4YcfjoMHD8Zjjz0WDz74YOTz+Xj33Xcjn8/H2NhYDA0NRVdXV2Sz2RgcHEyyBQAAAAAAAAAAWHcK+ULksrmoa6m747YTYxOzM04sZCZIUcgXVlUDAABwtzW0NURDW8Oa7S/RgEVERGNjY7z88svR1tYWp06dml3e3d09+/+np6cjk8nEwMBAPPDAA0m3AAAAAAAAAAAAZWvq5lRMT01/9Hhy6o41Pz3902jqbFrW+MsNQXz4wYerqgEAAFhvNt+NQVtaWmJsbCxOnz4dDzzwQExPT8/+OXDgQHR2dsbf/u3fxoMPPng3dg8AAAAAAAAAAGVr7G/HYuR/H5n98+5P3l1y+2x/NmqbatemOQAAgAr0zo/eSWScxGew+LhTp07NmcUCAAAAAAAAAAA2uupPVkdVpmr28VhhLOIni28/0jey7NkrIiJS6dSyZqTYsWfHqmoAAADKRe8TvXHv5+5d9Th3NWABAAAAAAAAAADMtXnL5ogtH3s8uXnRbS+euRi//+zvr2j87dXbl1w/MTYREbdCFaupAQAAKMZ7P38v9j2wb9F1KzExNhG5bG5ZgfHlKIuAxY9+9KP43Oc+V+o2AAAAAAAAAACgbOSyuUilUysONVRlquLqwNVF189cePTxWTSKqQGgvFy/fr2ouvfffz9OnjwZg4OD0dDQEGfPno29e/cWNdbOnTuLqgNg4+h/pj/e/PabUdNQE0/89RPz1v/PR//nuDF+owSd3VIWAYsnnnhCwAIAAAAAAAAAAD5mdGg0hnuGY7hneN66XDYXERG9T/TOzj7xeN/jERGxr35fZPuzi447U5tpzMwuK6YGgPKya9euVY/R19cXtbW1RddPT0+vugdIWrHhowgBJLgbctlcTE9PRyG38IwTM+c3DW0Ntx7vucNsex9MRG4kF+/86J1E+ltxwOLnP/95PPDAA4uuW4mxsbHIZrORz+dX2gYAAAAAAAAAAKxrdS11UddSt+C64fPD0dPaE83PN0dNfc2cdfc/dn+8eebNGB0anbcuIuLqpavzghLF1AAAVIIkwkcRAkiQlObnmyPTlFn0/KIqUxUPPfNQ1H+lfkXjntlzJon2VhaweOaZZ+Lb3/52NDQ0xF//9V/PW3/06NEYHx9PpDEAAAAAAAAAAGDlauprItOYibdeemvBsMTw+eHZ2S5WUwPwYvOLpW4hvtD7hVK3UDauXbtWVN0jjzwSFy5ciJs3b8aWLVvi6NGj8corryTcHQDcktqdioYnGhZdn2nKxP6D+1c8bvpAehVdfWRFAYtsNhvT09ORy+UWXF9dXR0REW1tbRERsWfPniXH++CDD2JkZCR+9KMfraQNqCjlcBIxtWkqfuvp3yp1GwAAAAAAAABAQnLZ3Oz/LhSIaO1pje6G7rj/sfvnrO9t743Dpw4veLfYYmoAKB87d+4squ7cuXNx4sSJuHTpUhw6dCheeOGFoseCclRs+ChCAAlK4cg3jxRV1zbQlsj+VxSweP7556OpqSkaGxsXXJ/JZOKZZ56Jr3zlKytq4k5BDAAAAAAAAAAA4FbYIZ/Nx9WBq7ceP9Ebg12Dsa9+XzR1Ns1ul0qnom2wLfo6+iKVTsWOPTtibGQsaptqo66lbsGxi6kBoPLt3bs3Xn311VK3AXfNagJDAkiw8awoYLF79+544oknFl3f1NQUBw8eXHETBw4cWHENAAAAAAAAAABsNM1dzcveNpVOrWj7YmsAANarJANI169fL6ru/fffj5MnT8bg4GA0NDTE2bNnY+/evUWNJRxSeXrbe+O+1vuWnE1usHswhnuGo6G9ITKNmUilU5HL5mJ0aDTefunteOjZhxac9a6QL8RPT/80ImLZ4epiapKWfS0b2b5sxKaI6trq2H9wf+x7YF9i468oYHEn3/zmN4uqGxgYSLINAAAAAAAAAAAAAICysWvXrlWP0dfXF7W1tUXXT09Pr7oH7r5cNhfZ/mwMdg3G6NBo3Nd635LbF/KFyPZnI9ufnbM8lU5Fa0/rouGK7obueet723vjyqUrc2bHW01NMc7sOROnPji16PrMw5nIPJyJwnghJsYmItufjYGugWjqbIptv7lt1ftPNGABAAAAAAAAAAAAAACs3GD3YGT7spFpykRjZ2Ocazq3rLpjXcdibGQs8tl8pKpTsb9hfzS0NSy6fU9rT9zbcu+88EVzV3N0VnVGbVPtvFkziqkpxnKDQKndqUjtTkXDEw1RGC9EX0dfHPvesVXv/64ELP7sz/4suru7I5fLxcsvvxy/+7u/O2f95cuXo6OjIz796U/HN77xjbvRAgAAAAAAAAAAAABAWbh27VpRdY888khcuHAhbt68GVu2bImjR4/GK6+8knB3lIuGtobZYMTo0Oiy6+47fl+k0qllbTszQ8axroXDCHXH6+Ji58U5YYliaoq1adOmFdekdi/vv305Nic20j959tlnIyLi0qVLMTg4GENDQ/O2OXDgQLz88svx4IMPzm4PAAAAAAAAAAAAALAe7dy5s6g/586di6amptizZ080NTXFuXPnih4LIiIGugYiIqIqU7Xg+ura6sj2Z6OQL6yqZi0VxgsxOrD8QMpSEp3B4sKFC5HJZOLRRx+N6enpuHz5cnzuc59bdPuHH344IiJ+9KMfLbkdAAAAAAAAAAAAAMBGs3fv3nj11VdL3QbryHtD7y0528VMiOLqwNXZGSmKqVlK/t38gsunp6dvrf+7fMT00mMU8oWYGJuI0aHReOP0G1F3vO6O+12ORAMWPT098b3vfS8iIlpaWpZV8/DDD8eTTz4pYAEAAAAAAAAAAAAAAEUaHRqNqwNXY//B/VFTX7PgNrlsLrZXb190jJkgRS6bW1XNUq4OXo2rl65GLpuLbH82bozfmLP+u5nvLmuciFuhjExjJo5979iya5aSaMBiJjECAAAAAAAAAAAAAABETN6YjJs3bs4+/odf/0Oi42f7s5HL5iLTmImGtoYYHRqNc03n4kjHkXkzSkyMTczOOLGQmSBFIV9YVc1S6h6ti7pHP5pxYnRoNPo7+iP7WjY2bdoU9z5677LGqcpURaYpE5mH7zxrxnIlGrDI5ZaXOLldNptNsg0AAAAAAAAAAAAAACgLb5x+I37yb34y+3g8xhMbeyb4cOTUkdllNfU10drTGp1VndE22DZnNovlhiA+/ODDVdWsRE19TTze93j0tvfGO+ffidaXW4saJwmJBixGRkZWXDM+Ph4ffPBBkm0AAAAAAAAAAAAk5sMPP4zr16+vqOb999+PkydPxuDgYDQ0NMTZs2dj7969Re1/586dRdUBAFAeHnr2ofjM05+ZfXzlypX4Tt13Ehm7rqVuweWpdCrqWuqip7Unnhp5KpF93W3NXc0xOjha0h4SDVgcP348HnvssXjppZdWVPP5z38+yTYAAAAAAAAAAAASc999962qvq+vL2pra4uun56eXtX+AQAora3btsbWbR9duv+JX31iTfa7/9D+GD4/HLlsbnami1Q6tawZKXbs2TH7/4upKdZDzz606jFWY3OSg506dSoGBwfj85//fPz6179ectuf//zncejQochms/GNb3wjyTYAAAAAAAAAAAAAAGBDS6VTERExOvTRrBDbq7cvWTMxNjGnttiaYtU9uvCMHGsl0RksIiJ+/OMfxyc/+cno6emJpqamaGxsjHQ6HdXV1TE2NhYjIyPR398fQ0NDMT09HUNDQ0m3AAAAAAAAAAAAkJi33347/tP/9D9dUc0jjzwSFy5ciJs3b8aWLVvi6NGj8corr9ylDgEA2Ih623vjcv/leGrkqWXXVGWq4urA1UXXz8xUMTPjRbE1a6kwXoih54fi8DcOr3qsxAMWmUwmxsbGorW1NX784x9HX1/fvG2mp6ejsbExurq64sCBA0m3AAAAAAAAAAAAkJgdO3bEzp07V1Rz7ty5OHHiRFy6dCkOHToUL7zwworHAACApYwOjM7OHrGQmeBDTX3N7LJ99fsi259dtCaXzUVExP+fvf+LjfO68wTvH2m6VVTSURU5A4tOZyYq9lyY1mDiot3vRFIDMzG53WiIFz1hSdALOJ2LNum+cfbNuxHjvlig92IUKoMEm1kgJj0D9MAN6LXJ7V6AwWbQpDOTteReRCTj3Tg0ZiYspz0R6WDHVaX8MUtpmXwvFNImWaT4p8iqYn0+QDBdz3l+5zmj57hYh6zvc9I96X3VHKZCrhA/fOmHtRmwiIhIJpMxOTkZr7zySoyNjcX09HQUi8VIJpORTqdjcHAwnnzyyYO4NAAAAAAAAAAAQNU99NBD8e1vf7vawwAA4Ag71XMqBoYHtmxfuLkQiWRi3c4Spy+ejteuvhaLs4vrghcfrtkYlNhLzV699Z23dl1zY/jGWphkvw4kYLHqySefFKQAAAAAAAAAAAAAAIAKO33xdMyMzkT3QPemtkKuEHPjc5Edy6473pHpiHRPOt546Y2yYYm58bl4avKpfdfs1cv9L8ed23d2VbOyshKtqdaKXP9AAxYAAAAAAAAAAAAAAMDuFHKFiIhtd2boyHREbioXN67eiLOXz66rHe0ejTOXz0RXf9emuuxYNka7R+P0xdPrAhMTgxNx5vKZsrtR7KVmL1rb7gUlHr3waCSSibLnlIqlKOQKsTB9b+eMh594uCLXjqiRgMWf/MmfxDe/+c1qDwMAAAAAAAAAAAAAAKpibnwuZkZmIiJiYXohIiImnp5YO9aV7dq0W8XZy2cjN5WLicGJKOVLUSqWIpFMxOde+VzZ3SYiIhLJRAzMDMTk0GQkkok43n488vP56OztLBvI2GvNXqTSqTj35XOR+ePMjs6/8dUb0Zpq3fH591MTAYuXX35ZwAIAAAAAAAAAAAAAgIbV1d+1p7BCuie96x0kEslE9I30HXjNbqXSqUilUzs+/+yXzsbc/zoXb33nrTj1mVP7vv6uAxavv/56fOpTn9p0/Pbt2/HKK6/segA3b96MYrG46zoAAAAAAAAAAAAAAODoOP/8+V3XdH22K6aemzrcgMUrr7wSg4OD8dZbb0VnZ2f85//8n9e1T09PR39/fzQ1Ne1qACsrK7uuAQAAAAAAAAAAAAAAqKQdBSxu374dIyMjMTIyEr29vXHixIlN57S1tUVExGc/+9l44oknIplM3rffYrEYP/rRj+Lf/Jt/s7tRAwAAAAAAAAAAAAAAREQxV6xIPzsKWLzyyivx3HPPxWOPPRaFQqFswCKdTkdTU1O8/PLLux7E2NjYrmsAAAAAAAAAAAAAAIDGVrpdiqXCUkX62lHA4ubNm/Ev/sW/iIgoG65YPb5V2/309PTsqQ4AAAAAAAAAAAAAADga3vrOWzs+t1QsRSFXiJmRmege7K7I9XcUsGhra4sf//jH8clPfnLb85qamvY0iL3segEAAAAAAAAAAAAAABwdL/e/HHdu39nx+SsrK5HuSceZ/+FMRa6/o4BFT09PjIyMxJUrVypy0Y1+9rOfxcc+9rED6RsAAAAAAAAAAAAAAKh9rW2tERHx6IVHI5FMbH9ue2t0ZDoi/WS6YtffUcDisccei2w2G88880z8w3/4Dyt28VWnTp2Kd999t+L9AgAAAAAAAAAAAAAA9SGVTsW5L5+LzB9nqnL95p2e+Pzzz0c6nY5/+2//bcUHsbKyUvE+AQAAAAAAAAAAAACA+pFKpyKVTlXt+jvawSIioqenJz772c/GwMBADAwMRCaTiXR6/VYaxWIxfu/3fm/HF8/n85HL5eL27ds7HzEAAAAAAAAAAAAAAHDknH/+fFWvv+OAxTPPPBO5XG5tt4mZmZmYmZnZdN7k5OSuB9HU1LTrGgAAAAAAAAAAAAAAgErZUcDi+9//fiSTyXjllVcim81Gb29vfOlLX9p0XltbW+Tz+V0NYHZ2Np544old1QAAAAAAQCNbnF2M6ZHpKOVLsTi7GIlkIroHu6N7oHvLmlKxFK9eeTUiIo63H4/8fD46ezujq7+r6jUAAAAAAABbKf64GIuzi7GUX4pUOhWpdCqSn0weyLV2FLB45ZVX4plnnokTJ07EX//1X2953l52oshkMnHixIld1wEAAAAAQCOaGb23u3TfSN/asdxULsayY3Fj+EYMzAxEIplYV1MqlmK0ezSyY9noyHSsHZ8YnIhbN29F73DvpuscVg0AAAAAAEA5b33nrfjW4LeikCtsauvo7oi+F/ri5D85WdFr7ihgsbKyEm1tbRW98IeNjY0dWN8AANAoJgYn4tHso5HuSW97nqfWAgBA/SrkClEqluLs5bPrjqd70vG5Vz4Xo92jMZYdi6cmn1rXPpYdi0f6H1kXeoi4F9IYTg1HZ2/nprXEYdUAAAAAAABsNH5xPObG52JlZSUiIlLpVERELOWXolQsxcL0QoxmRuPs0Nl48l8+WbHr7ihgkU6nY3p6Oj7zmc9U7MIf9uSTlfv/EAAANJJCrhC5qVzMjMzE4uxiPJp9dNvzPbUWAADq2/TIdPzuc79btq0j0xHpnnTkpnJRyBXW/tCwum44P3K+bF3Xha64MXxjXfDhsGoAAAAAAAA2mvryVMxPzseTX3kyuvq7InUqtemcxe8vxhv/vzfi+leuR2t7a5z5/56pyLWbd3JST09PDA8PV+SC5fyrf/WvDqxvAAA4qmZGZ2JqaCoiInqGe3ZUs93TZGdHZyM3lataDQAAcH9vTb0V//Op/zlKxVLZ9pOZe9tgL84urh2bHpmOiA+e7LRRW2db5KZy6/o8rBoAAAAAAIAPy72Si9xULr7w1hfi7JfOlg1XRER0PNYRvcO98eyPno3pb05H8W+LFbn+jgIWJ06ciFOnTsWf/umfVuSiG125cuVA+gUAgKOse6A7smPZ6B7ojta21vuev/o02ccHHy/bvvo02WrUAAAAO9Pa1hqlYikKucKOa96ZfScSycSW7auBiIXphUOvAQAAAAAA+LDZ0dn43Cufi8SJrf/m8GGpdCqyL2dj6vJURa7fstMTh4eH49SpUzE1NRWDg4Px5JNPRltb21r7yspKRET87d/+7dr/vRMzMzNRLBZ3PuINisXiWkCjvb095ufno7e3N/r7+/fcZzmDg4MxNDQU6bStywEAqE87eZrs7OhslIqltS9FHVYNAACwM09NPhWFXGHLz9vFXDEiYt1ucoVcYdtQ9urn8g+HNg6rBgAAAAAA4MNWVlZ2HK5Y1ZHp2FWGYTs7DlicOHEicrlcdHd3x9NPPx1NTU1lzzvMAEKxWIzu7u4YGxuLTCazdnxwcDBu3rwZw8PDFbnO7OxsjI6OxuDgYEX6AwCAatjN02TTPelDrQEAgEZ3987deP/O+2uv/+4Xf7fluVuFKyIi5sbnoiPTse6cpfzStjWroYhSsXToNQAAAAAAAB+23d8aDqJuox0HLCIikslkzM/Px/j4eExPT6/beWJlZSVeeOGFGBgY2NUAbt68Ga+//vqualZls9no7+9fF66IiBgZGYlUKhW9vb3R09Ozp74/bGhoaN99AABAtXlqLQAA1K7rV67Hd//su2uvbzff3nUfN67eiIiIvhf61h3faaDhvXffO/QaAAAAAACAdcrvA3FwdRvsKmCxqr+/P/r7+zcdHx8fj+eff37X/bW3t++6JpfLxdTUVIyMjJRtv3DhQgwPD+87YDE6OhrZbDampqb21Q8AAOzGbp5eu1OeWgsAALXr3HPn4tNf/PTa67fffju+/o+/vuP6xdnFmBqaiuxYNjoyHQcxRAAAAAAAgAOXSqei+ONiJD+Z3HHNnZ/d2faBsLuxp4DFVlZWVvZUl0rtfjuO1WBFOp0u297Z2Rmjo6NRLBYjmUzuaVy5XG7bawAAwEGpxNNrN/LUWgAAqF0tx1qi5dgHv7J/8KMP7qp+LDsW50fOR1d/16a2RDKxo8/px9uPH3oNAAAAAADAh3U/3R1TX56K3/3T341jHzu2o5rJy5PRe7W3ItevaMDihRde2FPdj370o13XzM7ObhucWA1FTE9P73kXi5GRkRgeHrZ7BQAAh26/T68FAAAax1h2LLoHu6N7oLts+/2e2LSUX4qIewGJw64BAAAAAAAaR/HHxR2d9+jFR+/9/eOZ7kid2nozh0KuED986YfRM9yz4zDG/VQ0YPHZz362kt1tK5fLRVtb25btq+GL1V0odmt8fDwGBwf3VAsAAPu136fXluOptQAAcPRMDk3Gw088HGcvn93ynFQ6FQvTC1u2r35+T6U/+APFYdUAAAAAAACNYyQzEndu39nRuSsrK5Gbun8WIJFMxPTIdPzuczvf8WI7FQ1YbOXLX/5yvPXWW5FOp6OzszPS6XQ8/vjj8bGPfWzPfebz+bVdKspZDV8Ui8Vd910sFiOXy0V/f/9ehwcAADXHU2sBAOBomRmdibbOtrI7V5SKpbXP3CczJ7f9A0QhV4iIiHTPB79zP6waAAAAAACgcbS2tUapWIqu/q77fsdoN0qFUvzw5R9G5o8z++5rxwGL119/PfL5fORyuZifn49cLhfFYjGSyWSk0+m4cuXKlrVf+cpXIiLirbfeitnZ2fjKV74SU1NT0dTUtBa6+Pf//t/vauA7DU68++67u+o3IuLKlSsxPDy867pVS3eX4hd3f7H2+sHmB+PBB/b/xGHYq5WmlVheXo67d+9Weyiw5u7du+YlNcncpFYtLy/vuw9PrT041gD3eO+8x88SNjIn2MicYCNzgnLutwaYG5+LiCgbrijkCrE4uxhd/V0REXH64ul47eprsTi7GB2Zjk3nL9xc2BR6OKyaevXe++/FsbsfPAWrUdcA9WSlaSVWYuXe78tj/2tsDpf7V7/cu/rl3tUv965+rTStVHsI3Mft27cjn8+vvT527FgcO7b/p+Oye8tN9fv+5n36YDTq79X8XpFKMp+oJPNpZxr13yeVTsW5L5+rSBDioOw4YPGZz3wmbt++HSsrK5HNZuPLX/5yPPbYY7u62KlTp+LUqVPx2c9+NnK5XGSz2fj+978fudz9t+44LFNTU9Hb27uvPob+49C617+f+f34g8f/YF99wn6sxErcffveG3Fzc3OVRwP3LC8vx9tvvx0R5iW1xdykVu0lOLyRp9YeHGuAe65fv17tIdQEP0vYyJxgI3OCjcwJytluDbA4uxhL+aWy4YqIiNxUbt3n7Y5MR6R70vHGS2+UDT7Mjc/FU5NPrTt2WDX1yhqg/qzESiz95lLkIx9N0VTt4bBL7l/9cu/ql3tXv9y7+vXzpZ9Xewjcx6c+9al1r//oj/4oPv/5z1dlLI0u35G//0k1yvv0wWjUv1H5vSKVZD5RSebTznw4vNtIUulUzT+UdccBi1UzMzO7DlaUk06nY2ZmJlKpVPzsZz/bdX0ymdzRLhbt7e276ndycnJfu1dERAz/s+FIJT648Q82PxgPLnpyFdWz0rQSD/+Dh+PMmTPR0rLr/+zhQKymL81Lao25Sa1aXXjuh6fWHhxrgHvOnTtX7SHUBD9L2MicYCNzgo3MCcrZag1QyBViLDsWp3pOxcLg5p3jSvlS5KZyMVRYHwDIjmVjtHs0Tl88ve5z+sTgRJy5fKbsZ/TDqqlH1gD1Z6VpJfKRj7Z32qJpxZeY6o37V7/cu/rl3tUv966OLVV7ANzP66+/Hp/4xCfWXtvBonpufe1WtYewZ96nD0aj/o3K7xWpJPOJSjKfduYnP/lJtYdQFeefP1/tIdzXrmbtwMBARcIVHzY8PBx/8id/suu6tra2bdtXUz3JZHLHfV69ejWee+65XY9lo9aW1vhoy0fXH7STI1W0HMvR3NwcLS0tflhRU8xLapW5SS2qRKLfU2sPjjXAPd43P+BnCRuZE2xkTrCROcFGW60BXux9MQq5QhRGC1vWlnvyUyKZiIGZgZgcmoxEMhHH249Hfj4fnb2d0dXfVbafw6qpR8cfOG4NUGeWYzmaoimaVpqiecVT8+qN+1e/3Lv65d7VL/eufvmide07ceLEfb+vxOGo5/c379MHo5F/p+b3ilSS+UQlmU/359+mdu3qzmSz2YoPoLe3d0916XQ6pqent2xf3d0ind7Z07ByuVwkk8ldBTIAAKBWFHL3vlxVKpa2Pc9TawEAoL49O//snmsTyUT0jfTVZA0AAAAAAMB+vPmXb8Yj/+KRffezq4DF448/Xvb4j3/84/vWfvKTnyx7/NSpU7GysvvHOmUymZiamtqyPZfLRURET0/PjvqbnZ2NsbGxGBsb27Kvp59+ei2JPjk5udshAwBARc2Nz8XMyExERCxML0RExMTTE2vHurJd0T3Qva7GU2sBAAAAAAAAAICjZuLpicMNWDQ1NcXHPvaxsm1jY2Px7rvvxtTUVHz/+99fO55Op6O/vz/a29tjYGBgy/q97Bpx8eLFuHr1aszOzkYmk9nUfvPmzR2HKyIi+vv7o7+/v2zb+Ph4ZLPZeOGFF8peCwAAqqGrv2tPYQVPrQUAAAAAgPpTyBXi+vD1iIgo5UtRKpYi3ZuOs5fPbllTKpbi1SuvRkTs+GFIe6kBAADYjXdefydOfurklm27sZRfikKuEKViqRJD290OFlv50pe+tPZ/Dw0NxVe/+tXIZrPx0ksv7ai+qalp19fMZDLR09MTL730UtnQw/j4eNldJorFYly5ciV6e3t3FcAAAAAAAAAAAIBqmBufi1s3b216sNFo92jMjMzEs/PPbqopFUsx2j0a2bFsdGQ61o5PDE7ErZu3one4tyI1AAAAuzH15al47auvRUd3Rzz9vac3tf+7z/y7uHP7ThVGdk9FAhYfNjw8HF/96ldjeHi40l1vMjY2Ft3d3XHx4sV1IYvBwcG4fPly2QDF6OhoXL16NUZHR6NQKOzoOrlcbu3/tYMFAAAAAAAAAACHpVQsxQ9f+mFkx7Kb2vpe6IvR7tGYGJzYFL4Yy47FI/2PrAtKRET0jfTFcGo4Ons7I92T3ncNAADAbhRyhVhZWYlSofyOE61trRER0T3Qfe91e+u2/S29uxSF+UK8+ZdvVmR8FQ9YREQkk8n45Cc/eRBdb7rOzMxMDA0NRTKZjPb29pifn4/e3t7o7+8vW9PT0xPJZDIuXLhw3/4HBwcjl8vF9PR0REQ8/fTTMTIyEplM5lACJAAAAAAAAAAANLaF6YWYG5+LyaHJTTtIrAYh3pp6a93xQq4QualcnB85X7bPrgtdcWP4xrqwxF5qAAAAdqvvhb5I96a3XFuk0qk49+Vzkfnj3W2McLX9aiWGdzABi6ampoPotqxkMhkjIyM7Pj+Tyex454rd9AsAAAAAAAAAAJXW2tYaiWQijrcf3/KcRDKx7vX0yL2HiabSqbLnt3W2xezobJSKpbXavdQAAADsVuJEIrqf7t6yPd2bjocff3jX/SZPJfcxqg8cSMACAAAAAAAAAADYv45MRwwVhsq2Lc4uRkTEqZ5T646/M/vOtiGI1RDFwvTC2lNj91IDAABQaWe/dHZPdQPTAxW5fnNFetmnYrFY7SEAAAAAAAAAAEBdmRqailQ6Fb3DveuOF3KFaG1r3bJuNUhRyBX2VQMAAHAQ3vzLN6P442JVrr3jHSxWVlbiH/2jfxTJZPK+5xaLxXjiiSd21K9wBQAAAAAAAAAAjWT5/eVYWV754PXd5V3VF3KFuD58PZLpZDw1+dSm9qX80tqOE+WsBilKxdK+agAAACrtW898K2ZfmI1EKhGX/9vlQ7/+jgMWERHz8/M7PndmZmbH5zY1Ne1mGAAAAAAAAAAAULfyP8pH/r/k117fjts7qpsbn4tbN29FMVeMZDoZnb2dZc/baQjivXff21cNAABApS3ll+LUk6eiI9NRlevvKmCRyWSip6cn2tvbK3Lxd999N2ZmZuI73/lORfoDAAAAAAAAAIBa1/bbbet2i8iX8hHfvX9dV39XdPV3rb1+sffFmBmZib4X+iKRTBzEUAEAAA5VKp2Knq/0VO36Ow5YNDU1xXe+85342Mc+VvFBPPDAAxXvEwAAAAAAAAAAalHzA80RH/q6TPPd5j31kx3LxnBqOErFUjw1+dTa8UQysaMdKY63H99XDQAAQKW1trdG8cfFSH4yuau6q+1X4/K7l/d9/R2vzlZWVg4kXBERceLEiQPpFwAAAAAAAAAAjqpEMhFd/V2Rm8pFbiq3dry1rXXbuqX80lr9fmoAAAAq7eyXzsbk5cl46ztv7apuZWWlItff8Q4Wr7zySkUueNh9AwAAAAAAAABAvSoVS7GUX4pUOlW2PZlORkTE/OR8pHvSERGRSqdiYXph2z5Xz1u1lxoAAICDkH05G6/9q9diZmQmHn7i4ejIdERrW+uWge/5yfm4c/tORa6944DFY489VpELHnbfAAAAAAAAAABQr4ZTwxERMVQYKvtlouPtxyPigwBERMTJzMl1O1psVMgVIiLWAhl7rQEAAKi0P2v+s2hqaoqIe7tSzI3PHer1dxywAAAAAAAAAAAADlcimdj2Sa35+XxERDzc/fDasdMXT8drV1+LxdnF6Mh0bKpZuLmwKSixlxoAAIBKS6VTUcgVoqu/K1rbWndUs3BzId55/Z2KXF/AAgAAAAAAAAAAalRmIBOPDz6+Zfvcy3ORSCbi0QuPrh3ryHREuicdb7z0RtmwxNz4XDw1+dS6Y3upAQAAqLRUOhXnvnwuMn+c2VXd1farFbl+c0V6AQAAAAAAAAAAKq53uDeuD1+P3FRuU9tYdiwiIj73yuc27XCRHcvGm+NvxuLs4rrjE4MTcebymbK7UeylBgAAoJJS6VSk0qld1yVS5Xf92y07WAAAAAAAAAAAQA3rG+mLufG5GMuORaItEaV8KUrFUpzMnIwvvPWFTeGKiIhEMhEDMwMxOTQZiWQijrcfj/x8Pjp7O6Orv6vsdfZSAwAAUEnnnz+/p7pnf/RsRa4vYAEAAAAAAAAAADWuq79r1yGHRDIRfSN9B14DAABwVAhYAAAAAAAAAAAAAAAANS/3Si5yk7mIpoi2zrZ4+PGH4+SnTlas/+aK9QQAAAAAAAAAAAAAALBHV9uvbtuefjIdPV/piXNfPhennjwVt27eim/9ybfizs/uVOT6drAAAAAAAAAAAAAAAACqbmVlZUfnJU4kInEiEd1Pd0fpdikmhybj/DfP7/v6drAAAAAAAAAAAAAAAACqrqmpadc1iROJil1fwAIAAAAAAAAAAAAAAKhLpdulWJxerEhfLRXpBah5P7j2g7j1tVvRvFK9XNWliUtVuzYAAAAAAAAAAAAAUH3FHxfLHl9ZWbnX/rfFiJXt+ygVS7GUX4rF2cW4fuV6dF3oqsjYBCwAAAAAAAAAAAAAAIBDsTCzEAs3F6KQK0RuKhd3bt9Z1/6N9Dd23NfKykqke9Jx/pvnKzI2AQsAAAAAAAAAAAAAAOBQdH22K7o++8GOE4uzizE1NBW5V3LR1NQUj3z2kR31k0qnIt2bjvST6YqNTcACAAAAAAAAAAAAAACoio5MRzw1+VRMDE7Em+NvRvblbNXG0ly1KwMAAAAAAAAAAAAAAERE30hfJE8lqzoGAQsAAAAAAAAAAAAAAKDqzj13rqrXb6nq1QEAAAAAAAAAAAAAACKi67Nd9z3nre+8FYVcIVLpVDz8+MNx7GPHKnZ9AQsAAAAAAAAAAAAAAKDqpr48FaXbpXXHzn/zfERElG6X4sWeF2NxdjFWVlYilU5FqVCK7Hg2Tv3zUxW5voAFAAAAAAAAAAAAAABQdd2D3fGNzm9E92B3dA90R8djHWttY9mxWJhZiLOXz0bPV3oiIqJULMXYhbFInUpF8pPJfV+/ed89AAAAAAAAAAAAAAAA7NM7338nsmPZOP/N8+vCFXP/61zkpnLxaPbRtXBFREQimYjsy9m4Pny9Ite3gwUAAAAAAAAAAAAAANSYicGJeDT7aKR70tueVyqW4tUrr0ZExPH245Gfz0dnb2d09XdVvWa3bt28FT1XejYd/+FLP4ympqY499y5TW2JZCISJxIVub6ABQAAAAAAAAAAAAAA1IBCrhC5qVzMjMzE4uxiPJp9dNvzS8VSjHaPRnYsGx2ZD3Z8mBiciFs3b0XvcG/VavZkpfzh3FQuIiJOfupk+ROaKnP55sp0AwAAAAAAAAAAAAAA7NXM6ExMDU1FRETP8OZdHMoZy47FI/2PrAs9RET0jfTF7OjsWjChGjV70dreuulY4a1ClIqlTdf+sFKxVJHrC1gAAAAAAAAAAAAAAECVdQ90R3YsG90D3dHatjlosNHqbhePDz5etr3rQlfcGL5RlZq9amravBXF3PhcRESc6jm1deEWO1/sloAFAAAAAAAAAAAAAADUmemR6YiISKVTZdvbOtsiN5Vbt7vDYdXs1Xv/7b2487M7647NjMxEU1NTnL54umzN1HNT0T3Yve9rRwhYAAAAAAAAAAAAAABA3Xln9p1IJBNbtq8GIhamFw69Zq/OPXcuxrJj8c7/9U688/o7MX5xPAq5QnT1d8XJT51cd+47r78Tf/F7fxHH249Hx2Md+752RERLRXoBAAAAAAAAAAAAAAAOTSFXiNa21i3bV0MRhVzh0Gv2KnEiEU9eeTJe/uzLa/09mn00+l/qXzvnW898K3JTubX23FQu3nv3vei50rPv6wtYAAAAAAAAAAAAAADAAbl75268f+f9tde/+vmvKtLvUn5pbfeIclZDEaVi6dBr9qMj0xHP/ujZKN0uReLE5p0zzg6djbNDZ8uOYb8ELAAAAAAAAAAAAAAA4IBcv3I9vvtn3117fTtuV6TfnQYa3nv3vUOvqYRy4YqIiNSprcMe+yVgAQAAAAAAAAAAAAAAB+Tcc+fi01/89NrrW7duxde7vl7FER09b/7lm/HIv3hk3/00V2AsAAAAAAAAAAAAAABAGS3HWuLYx46t/e83fvM3KtJvIpnY0e4Sx9uPH3rNYZt4eqIi/djBAgAAAAAAAAAAAAAA6kxrW+u27Uv5pYi4F5A47JrtvPP6O3HyUye3bNuNpfxSFHKFHQVAdkLAAgAAAAAAAAAAAAAA6kwqnYqF6YUt21dDB6l06tBrtjL15al47auvRUd3Rzz9vac3tf+7z/y7uHP7zn37OSgCFgAAAAAAAAAAAAAAUGdOZk5Gbiq3ZXshV4iIiHRP+tBrtjt3ZWUlSoXyO06s7pbRPdB973X7fXbPeHcpCvOFePMv37zvtXdCwAIAAAAAAAAAAAAAAOrM6Yun47Wrr8Xi7GJ0ZDo2tS/cXNgUejismq30vdAX6d70luen0qk49+VzkfnjzI76W3W1/equzt9Kc0V6AQAAAAAAAAAAAAAADk1HpiPSPel446U3yrbPjc/F2aGzVanZSuJEIrqf7o7UqVTZ9nRvOh5+/OEd9fVhyVPJXdeUYwcLAAAAAAAAAAAAtnWt71q1hwAA0FAKuUJERJSKpW3Py45lY7R7NE5fPL1ud4mJwYk4c/lM2Z0iDqtmL85+aWdBjY0Gpgcqcn0BCwAAAAAAAAAAAAAAqLK58bmYGZmJiIiF6YWIiJh4emLtWFe2K7oHutfVJJKJGJgZiMmhyUgkE3G8/Xjk5/PR2dsZXf1dZa9zWDX1SMACAAAAAAAAAAAAAACqrKu/a09hhUQyEX0jfTVZsxvFHxcjN5WL/Hw+irnivWu2JaKtsy06Mh1x6jOnDuzaqwQsAAAAAAAAAAAAAACAQ3fnZ3diZnQmrl+5HqVi6b7ndw92x9nLZyP5yeSBjEfAAgAAAAAAAAAAAADgiPvlL3+559qf/vSn8cwzz8TMzEx0d3fH888/Hw899NCm8+7evRtLS0vxy1/+MlpaNn9V/SMf+ciex8DRM/tvZuNbg9+KiIiVlZV1bYlkIlrbWmMpv7QueDH9/HTMjMzE2aGz8eS/fLLiYxKwAAAAoCKu9V2r9hDi0sSlag8BAAAAAAAAAGrSRz/60Yr0Mzk5GZ2dnXuq3fglehrX+MXxmBufi5WVlUj3pCPdm450Tzo6Husoe37pdilyU7mY/+v5mH1hNm4M34jcVC6e/t7TFR2XgAUAAAAAAAAAAAAAAHAo/uL3/iLmJ+ejq78reoZ7InUqdd+axIlEdH22K7o+2xV9I30xOTQZr331tXjhd16oaMhCwAIAAAAAAAAAAAAA4Ij7xS9+sefaP/zDP4zvfOc78f7778cDDzwQn/nMZ+Kv/uqvNp139+7deO211+LMmTPR0uKr6mx246s3Yn5yPvpG+yLzx5k999M73BudvZ3x4n/3Yrzyp6/Ek//yyYqMz6wFAAAAAAAAAAAAADjiPvKRj+y59sUXX4zPf/7zcfPmzXjiiSfiz//8z8v2d/fu3WhtbY2PfOQjAhZsUrpdiqmhqei92ruvcMWqdE86si9nY/zieHQPdEfyk8l992nWAgAAAAAAAAAAAACwpYceeii+/e1vV3sY1LmZ0ZnoyHTEmf/hTMX67OrvipOPnYy58bmK9NtcgTEBAAAAAAAAAAAAAABs6Ycv/TB+909/t+L9nvvyufjhSz+sSF8CFgAAAAAAAAAAAAAAwIEqvlWMdE+64v2me9NRyBUq0peABQAAAAAAAAAAAAAAcKBKxVIc+9ixivebOJGIUrFUkb4ELAAAAAAAAAAAAAAAgAN17ETlwxWV7lvAAgAAAAAAAAAAAAAAOFBNTU0137eABQAAAAAAAAAAAAAA0PAELAAAAAAAAAAAAAAAgIbXUu0BAAAAAAAAAAAAW1ucXYzpkeko5UuxOLsYiWQiuge7o3uge8uaUrEUr155NSIijrcfj/x8Pjp7O6Orv6uiNQAAADtVKpZqvm8BCwAAAAAAAAAAqFEzozMREdE30rd2LDeVi7HsWNwYvhEDMwORSCbW1ZSKpRjtHo3sWDY6Mh1rxycGJ+LWzVvRO9y76Tp7qQEAANiNlZWV+Nf/6F9HKp2qaL+FXKFifQlYAAAAAAAAAABADSrkClEqluLs5bPrjqd70vG5Vz4Xo92jMZYdi6cmn1rXPpYdi0f6H1kXlIi4F9IYTg1HZ29npHvS+64BAADYrfx8PvLz+Yr329TUVJF+BCwAAAAAAAAAAKAGTY9Mx+8+97tl2zoyHZHuSUduKheFXGHtCbCFXCFyU7k4P3K+bF3Xha64MXxjXVhiLzUAAAB7ke5JR7q3smuLhe8txJt/+WZF+hKwAAAAAAAAAACAGvTW1FsxOzobX3jrC5FIJja1n8ycjNxULhZnF9cCFtMj0xERa683autsi9nR2SgVS2t97qUGAABgt5qamuKpv37q/ifuwf/0wP9UkX6aK9ILAAAAAAAAAABQUa1trVEqlqKQK+y45p3Zd7YNQayGKBamF/ZVAwAAsFvHThyr+b7tYAEAAAAAAAAAADXoqcmnopArbLmzRDFXjIiIjkzH2rFCrhCtba1b9rkapPhwaGMvNQAAALv1uVc+V/N928ECAAAAAAAAAABq1FbhioiIufG56Mh0rDtnKb+07W4Uq0GKUrG0rxoAAIDd6nis4/4nVblvO1gAAAAAAAAAAMAhWn5/OVaWVz54fXd5133cuHojIiL6Xuhbd3ynIYj33n1vXzUAAABHkYAFAAAAAAAAAAAcovyP8pH/L/m117fj9q7qF2cXY2poKrJj2ejIHNwTYAEAABqNgAVwaK71Xav2EOLSxKVqDwEAAAAAAACABtf2222RSqfWXudL+Yjv7rx+LDsW50fOR1d/16a2RDKxox0pjrcf31cNAADAUSRgAQAAAAAAAAAAh6j5geaIBz70+m7zjmvHsmPRPdgd3QPdZdtb21q3rV/KL0XEvVDFfmoAAACOop2vzgAAAAAAAAAAgKqZHJqMh594OM5ePrvlOal0ai0QUc7qThUf3kFjLzUAAABHkYAFAAAAAAAAAADUuJnRmWjrbCsbrlgNQEREnMycXPd6o0KuEBER6Z70vmoAAACOIgELAAAAAAAAAACoYXPjcxER0T3QvamtkCtEbiq39vr0xdMREbE4u1i2r4WbC5uCEnupAQAAOIpaqj2A/SoWi3HlypWIiGhvb4/5+fno7e2N/v7+Pfc5OzsbIyMjkc/nY3Z2NpLJZAwODsbAwEClhg0AAAAAAAAAAPe1OLsYS/mlsuGKiIjcVG5d+KEj0xHpnnS88dIb0ZHp2HT+3PhcPDX51Lpje6kBAAA4iuo6YFEsFqO7uzvGxsYik8msHR8cHIybN2/G8PDwrvscHR2NiIiRkZG1Y1NTU5HNZmN4eDhmZmYimUzue+wAAAAAAAAAALCdQq4QY9mxONVzKhYGFza1l/KlyE3lYqgwtO54diwbo92jcfri6XWBiYnBiThz+UzZ3Sj2UgMAAHDU1HXAIpvNRn9//7pwRcS9cEQqlYre3t7o6enZcX+5XC6KxWJcvnx53fGenp545ZVXoru7O7LZbExOTlZk/AAAAAAAAAAAsJUXe1+MQq4QhdHCluek0qlNxxLJRAzMDMTk0GQkkok43n488vP56OztjK7+rrL97KUGAADgqKnbgEUul4upqal1O0182IULF2J4eHhXAYuRkZF47rnnyrZlMpno6emJqampyOVykU5L5QMAAAAAAAAAcHCenX92z7WJZCL6RvoOvAYAAOAoaa72APZqNVixVdChs7Mzpqamolgs7rjPqampOHXq1JY1qztlzM7O7mqsAAAAAAAAAAAAAABAbavbgMXs7Gwkk8kt21eDF9PT0zvus62tLYrFYuRyuf0ODwAAAAAAAAAAAAAAqCMt1R7AXuVyuWhra9uyfTV8sZuwxOTkZORyuS13xVjta3UnCwAAAAAAAAAAAAAA4Gio2x0s8vn8tjtYrIYvisXirvrdKlwRETE+Ph6ZTGbbcwAAAAAAAAAAAAAAgPpTtztY7DQ48e6771bkelevXo2IiBdeeOG+5y7dXYpf3P3F2usHmx+MBx94sCLjgL1YaVqJlViJlaaVWI7lag+nqu7evVvtIfBrd+/ejeXlZfeEmmNuUquWlxv7Z3itswaoHbXw/u1nCRuZE2xkTrCROUE51gC17b3334tjd4+tvbYGqH1+T17f3L/65d7VL/eufrl39WulaaXaQ+A+bt++Hfl8fu31sWPH4tixY9tUHD3LTd5X9sv79MFo1N+r+b0ilWQ+UUnm087496lddRuwOEyzs7MxNDQUY2Njkclk7nv+0H8cWvf69zO/H3/w+B8c1PDgvlZiJZZ+cynykY+maKr2cKrq+vXr1R4Cv7a8vBxvv/12REQ0N9fthkocQeYmtapSwWEOhjVA7aiFz3t+lrCROcFG5gQbmROUs9M1wMTgRDyafTTSPdvvvFwqluLVK69GRMTx9uORn89HZ29ndPV3Vb2mHlkD1B+/J69v7l/9cu/ql3tXv9y7+vXzpZ9Xewjcx6c+9al1r//oj/4oPv/5z1dlLNWS78jf/yS25X36YNTC34eqwe8VqSTziUoyn3bmw+FdakvdBiySyeSOdrFob2/f97Wy2WyMjIxEf3//js4f/mfDkUqk1l4/2PxgPLjoyVVUz0rTSuQjH23vtEXTSmMvzs6dO1ftIfBrq+nLM2fOREtL3f444ggyN6lVqwvPjWZGZ2JubC66B7sj3ZOORDIRhVwhFmcX44cv/TDOPXcuOjIdm+p8UaqyrAFqRy183vOzhI3MCTYyJ9jInKCcrdYAERGFXCFyU7mYGZmJxdnFeDT76LZ9lYqlGO0ejexYdt36YGJwIm7dvBW9w71Vq6lX1gD1x+/J65v7V7/cu/rl3tUv966OLVV7ANzP66+/Hp/4xCfWXjfiDha3vnar2kOoe96nD0Yt/H2oGvxekUoyn6gk82lnfvKTn1R7CGyhbmdtW1vbtu2rqZ5kMrmv62Sz2RgcHIyBgYEd17S2tMZHWz66/qCdHKmi5ViOpmiKppWmaF5p7DSgH9a1pbm5OVpaWtwXao65SS3aKtFfKpYiN5WL3FRu3fFEMrHpS00frvFFqcqyBqgdtfLe7WcJG5kTbGROsJE5wUZbrQFmRmciN5mLdG86eoZ74sXeF+/b11h2LB7pf2TT+qBvpC+GU8PR2du5aQeMw6qpV8cfOG4NUGf8nry+uX/1y72rX+5d/XLv6pcvWte+EydO3Pf7Sked95X98z59MBr5d2p+r0glmU9Ukvl0f/5talfdfkpLp9Pbbo2yurtFOr33P9YMDQ3FE088EZcvX95zHwAAcNDOj5yPM5fPRFd/V2QGMnF+5HwMFYa2/OLSdl96mh2d3RTW2GsNAABQed0D3ZEdy0b3QHe0trXe9/zV3S4eH3y8bHvXha64MXyjKjUAAAAAAAC1pm6jL5lMJqamprZsz+XufcGrp6dnT/2Pjo5GZ2dn2Z0risXivnfGAACASnn0wqORSCZ2dO7ql57Oj5wv2776pacPhzP2UgMAANSG6ZHpiIhIpVNl29s622J2dDZKxdLauuKwagAAAAAAAGpN3e5gcfHixYiImJ2dLdt+8+bNPYcrxsfHIyLKhityudy2wQ4AAKhlO/nSU24qF6ViaV81AABAbXhn9p1tAw2rn/MXphcOvQYAAAAAAKDW1G3AIpPJRE9PT7z00ktl28fHx2NoaGjT8WKxGENDQ1uGJGZnZyOfz5cNV0RETE1NRSaT2fvAAQCginxRCgAAGkshV4jWttYt21c/6xdyhUOvAQAAAAAAqDUt1R7AfoyNjUV3d3dcvHhxXehhcHAwLl++XHYHi9HR0bh69WqMjo5GobD+Dzm5XC6y2Wz09PTE4ODgptp8Ph9TU1Ob6gAAoBYszi7GwvRCPPz4w9GR6Sh7ji9KAQBAbbp75268f+f9tdd/94u/q0i/S/mlLXeji4i1z/of3pHusGoAAAAAAABqTV0HLJLJZMzMzMTQ0FAkk8lob2+P+fn56O3tjf7+/rI1PT09kUwm48KFC5vaent7I5fLxejo6JbXTKfTFRs/AABsZTdfrspN5aKQK0S6Jx3dA92xOLsYL/a+GGeHzka6Z/3nV1+UAgCA2nT9yvX47p99d+317ebbFel3p5/T33v3vUOvAQAAAKiEa33Xqj2EuDRxqdpDAAAqpK4DFhH3QhYjIyM7Pj+TyWy5A8X8/HylhgUAAPuy0y9XrQYfzl4+u3asI9MR2bFsDKeGY2BmYN1uFr4oBQAAtencc+fi01/89Nrrt99+O77+j79exREBAAAAAAA0nroPWAAAwFG00y9XdfV3la1PJBPR1d8VY9mxeHb+2QMbJwAAUBktx1qi5dgHv7J/8KMPVqTfRDKxo9D08fbjh14DAAAAAABQa5qrPQAAAGCzlmMtcexjx9b+t5cvVz38xMNRyBWikPtgBzdflAIAgMbS2ta6bftSfiki7n3uP+waAAAAAACAWiNgAQAAR9TqF5cWZxfXjvmiFAAANJZUOrX2mb2c1TB1Kp069BoAAAAAAIBaI2ABAAB1amJwIr7R+Y1d1fiiFAAANJaTmZPb7ki3uuNduid96DUAAAAAAAC1pqXaAwA4TNf6rlV7CBERcWniUrWHAMARsDi9uKPgQ0emY+3YyczJyE3ltqzZ6otSu60BAABqw+mLp+O1q6/F4uziurXBqoWbC5s+yx9WDQAAAAAAQK2xgwUAANSpUz2nYqgwtGX7ws2FSCQT63aWOH3xdERELM4ubllT7otSu60BAABqQ0emI9I96XjjpTfKts+Nz8XZobNVqQEAAAAAAKg1drAAAIA6dfri6ZgZnYnuge5NbYVcIebG5yI7ll13/MNfeir3VNm58bl4avKpfddAtdTCjmXLTcvx8S9+vNrDAAAawOpucqu7120lO5aN0e7ROH3x9LrP9BODE3Hm8pmygenDqgEAAAAAAKglAhYAAFCnOjIdkZvKxY2rN+Ls5Q+eBFvIFWK0ezTOXD4TXf1dm+p8UQoAAOrX3PhczIzMRETEwvRCRERMPD2xdqwr27UphJ1IJmJgZiAmhyYjkUzE8fbjkZ/PR2dvZ9k1w2HWAAAAAAAA1BIBCwAAqGNnL5+N3FQuJgYnopQvRalYikQyEZ975XNld5uI8EUpAACoZ139XXv6DJ5IJqJvpK8mawAAAAAAAGqFgAUAANS5dE961ztI+KIUAAAAAAAAAADAes3VHgAAAAAAAAAAAAAAAEC1CVgAAAAAAAAAAAAAAAANT8ACAAAAAAAAAAAAAABoeAIWAAAAAAAAAAAAAABAwxOwAAAAAAAAAAAAAAAAGp6ABQAAAAAAAAAAAAAA0PAELAAAAAAAAAAAAAAAgIbXUu0BAAAAAAAAAAAAAAAAETOjMzE3Nhfdg92R7klHIpmIQq4Qi7OL8cOXfhjnnjsXHZmOTXWlYilevfJqREQcbz8e+fl8dPZ2Rld/15bX2kvNUSdgAQAAAAAAAAAAAAAANaBULEVuKhe5qdy644lkIrJj2S3DFaPdo5vaJwYn4tbNW9E73FuRmkYgYAEAAAAAAAAAAAAAADXi/Mj5yM/no5grRqItEQ93PxzdA91bnj+WHYtH+h/ZFL7oG+mL4dRwdPZ2Rronve+aRiBgAQAAAAAAAAAAAAAANeLRC49GIpnY0bmFXCFyU7k4P3K+bHvXha64MXxjXVhiLzWNornaAwAAAAAAAAAAAAAAAHZvemQ6IiJS6VTZ9rbOtshN5aJULO2rplEIWAAAAAAAAAAAAAAAQB16Z/adbXe7WA1RLEwv7KumUQhYAAAAAAAAAAAAAABAjVmcXYyZ0ZlYnF3c8pxCrhCtba1btq8GKQq5wr5qGoWABQAAAAAAAAAAAAAAHJC7d+7GnZ/dWfvfr37+q23Pz03l4sbVGxER0T3QHRERL/a+GLmp3KZzl/JL2+5GsRqkKBVL+6ppFC3VHgAAAAAAAAAAAAAAABxV169cj+/+2XfXXt+O21uem0qnIiLi7OWza8c6Mh2RHcvGcGo4BmYGoiPTsda20xDEe+++t6+aRiFgAQAAAAAAAAAAAAAAB+Tcc+fi01/89NrrW7duxde7vl723K7+rrLHE8lEdPV3xVh2LJ6df/ZAxklEc7UHAAAAAAAAAAAAAAAAR1XLsZY49rFja//7jd/8jT318/ATD0chV4hCrrB2LJFM7GhHiuPtx/dV0yjsYAFQBdf6rlV7CHFp4lK1hwAAAAAAAAAAAADADiWSiYiIWJxdjFQ6FRERrW2t29Ys5ZfW1e61plHYwQIAAAAAAAAAAAAAAKpsYnAivtH5jV3VpNKptUBEOas7VawGMvZa0ygELAAAAAAAAAAAAAAAoMoWpxd3FHzoyHSsHTuZObl2vJxCrhAREeme9L5qGkVLtQcAAAAAR80Prv0gbn3tVjSvVO+5BpcmLlXt2gAAAAAAAADA7p3qORUDwwNbti/cXIhEMrFuZ4nTF0/Ha1dfi8XZxXXBiw/XbAxK7KWmUdjBAgAAAAAAAAAAAAAAquz0xdMxMzpTtq2QK8Tc+Fz0vdC37nhHpiPSPel446U3ytbNjc/F2aGz+65pFAIWAAAAAAAAAAAAAABQZR2ZjigVS3Hj6o11xwu5Qox2j8aZy2eiq79rU112LBtvjr8Zi7OL645PDE7Emctnyu5GsZeaRtBS7QEAAAAAAAAAAAD3NzE4EY9mH73vF51KxVK8euXViIg43n488vP56OztLPtFrP3UAAAAlXf28tnITeViYnAiSvlSlIqlSCQT8blXPhcdmY6yNYlkIgZmBmJyaDISycSOPtPvpaYRCFgAAAAAAAAAAECNKuQKkZvKxczITCzOLsaj2Ue3Pb9ULMVo92hkx7Lrvnw1MTgRt27eit7h3orUAAAAByfdk971DhKJZCL6RvoOvOaoa672AAAAAAAAAAAAgM1mRmdiamgqIiJ6hnt2VDOWHYtH+h/Z9GTbvpG+mB2djdxUriI1AAAAR5EdLAAAAAAAAAAAoAZ1D3RH90B3REQszi7e9/zV3S7Oj5wv2951oStuDN9Y9yTcvdQAsN61vmuHfs3lpuXId+Tj1tduRfPKvWdtX5q4dOjjAICjRsACAAAAAAAAAACOgOmR6YiISKVTZdvbOttidnQ2SsVSJJKJPdcAAMBe/fKXv9xz7U9/+tN45plnYmZmJrq7u+P555+Phx56aE99feQjH9nzODjaBCwAAAAAAAAAAOAIeGf2nW1DEKshioXphbUdKfZSAwAAe/XRj360Iv1MTk5GZ2fnnutXVlYqMg6OnuZqDwAAAAAAAAAAANi/Qq4QrW2tW7avBikKucK+agAAAI4qO1gAAAAAAAAAAMAhWn5/OVaWP3hi7vLd5Yr0u5RfWttxopzVIEWpWNpXDQAA7NUvfvGLPdf+4R/+YXznO9+J999/Px544IH4zGc+E3/1V39VwdGBgAUAAAAAAAAAAByq/I/ykf8v+bXXt+N2RfrdaQjivXff21cNAADs1Uc+8pE917744ovx+c9/Pm7evBlPPPFE/Pmf//m++oNyBCwAAAAAAAAAAOAQtf1227pdI/KlfMR3qzggAACoAw899FB8+9vfrvYwOOIELAAa1LW+a1W9/nLTcnz8ix+v6hgAAAAAAAAAqqH5geaIBz70+m5zRfpNJBM72pHiePvxfdUAAAAcVZVZnQEAAAAAAAAAAFXV2ta6bftSfiki7oUq9lMDAABwVAlYAAAAAAAAAADAEZBKp9YCEeWs7lSRSqf2VQMAAHBUtVR7AAAAAAAAAAAAwP6dzJyM3FRuy/ZCrhAREeme9L5qAKhN1/quVXsIcWniUrWHAAD7YgcLAAAAAAAAAAA4Ak5fPB0REYuzi2XbF24ubApK7KUGAADgqBKwAAAAAAAAAACAI6Aj0xHpnnS88dIbZdvnxufi7NDZfdcAAAAcVQIWAAAAAAAAAABQ4wq5QkRElIqlbc/LjmXjzfE3N+1IMTE4EWcunym7G8VeagAAAI6ilmoPAAAAAAAAAAAA2GxufC5mRmYiImJheiEiIiaenlg71pXtiu6B7nU1iWQiBmYGYnJoMhLJRBxvPx75+Xx09nZGV39X2evspQYAAOAoErAAAAAAAAAAAIAa1NXftaeAQyKZiL6RvgOvAQAAOGoELAAAAOAIutZ3rdpDiEsTl6o9BAAAAAAAAACAHWuu9gAAAAAAAAAAAAAAAACqTcACAAAAAAAAAAAAAABoeC3VHgAAAAAAAAAAAABbu9Z3rdpDAACAhmAHCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4LdUeAACN6wfXfhC3vnYrmleqm/e7NHGpqtcHAAAAAAAAAAAAoPrsYAEAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAAKDhCVgAAAAAAAAAAAAAAAANT8ACAAAAAAAAAAAAAABoeC3VHgAAAAAAAAAAAAAA9e9a37VqDyEuTVyq9hAAqGN2sAAAAAAAAAAAAAAAABqegAUAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAICG11LtAQAAAABH07W+a9UeQkREXJq4VO0hAAAAAAAAAAB1QMACgIZXC1/886U/AAAAAAAAAAAAgOpqrvYAAAAAAAAAAAAAAAAAqk3AAgAAAAAAAAAAAAAAaHgCFgAAAAAAAAAAAAAAQMMTsAAAAAAAAAAAAAAAABpeS7UHAAAAAAAAAAAAAACVcK3vWrWHEJcmLlV7CADskYAFAAAAcKRV+5foy03L8fEvfryqYwAAAAAAAAAA7q/uAxbFYjGuXLkSERHt7e0xPz8fvb290d/fX1N9AgAAAAAAAAAAAAAAtauuAxbFYjG6u7tjbGwsMpnM2vHBwcG4efNmDA8P10SfAAAAAAAAAAAAAABAbavrgEU2m43+/v51QYiIiJGRkUilUtHb2xs9PT1V7xMAAAAAAAAAAAAAAKhtzdUewF7lcrmYmpqKwcHBsu0XLlzY9W4TB9EnAAAAAAAAAAAAAABQ++p2B4uRkZGIiEin02XbOzs7Y3R0NIrFYiSTyar1CQAAAAAAAAAAAABQbdf6rh34NZabliPfkY9bX7sVzSub9wK4NHHpwMcA+1G3O1jMzs5uG3JYDUlMT09XtU8AAAAAAAAAAAAAAKD21e0OFrlcLtra2rZsXw1K5HK5qvYJADtxGMngeiGhDAAAAAAAAAAAAFRD3QYs8vn82o4S5awGJYrFYlX7BAAAAAAAAAAAAIDDttOHvi43LUe+Ix+3vnYrmleaKzoGD1ulVv3yl7/cU91Pf/rTeOaZZ2JmZia6u7vj+eefj4ceemjX/bz33nt7uj4Hr24DFjsNObz77ruH3ufS3aX4xd1frL1+sPnBePCBB3c8Dqi0laaVWImVWGlaieVYrvZwICLMS7Z29+7dql9/eXm56uOAjZaXvVfWMmsAPsznHDZaaVqJ//va/x0/+fpPommlqWrjuPiXF6t2bdbzmZONzAnKsQaobe+9/14cu3ts7bU1QO3zOb2+uX/1y72rX+5d/XLv6tdK00q1h8B93L59O/L5/NrrY8eOxbFjx7apqKzlJv9NHwXep6kk86m21crve3f68+Mg51Ot/Ftwz2F8prjffKqVOfHRj350331MTk5GZ2dnBUZDLanbgEUtG/qPQ+te/37m9+MPHv+DKo0GIlZiJZZ+cynykY+mqN6XeeDDzEu2cv369apef3l5Od5+++2IiGhurmwiH/ZjN8FhDp81AB/mcw4b1cqcqPbnLD7gMycbmROUYw1Q26wB6k+tfCZjb9y/+uXe1S/3rn65d/Xr50s/r/YQuI9PfepT617/0R/9UXz+858/tOvnO/L3P4ma532aSjKfalut/F1mpz8/DnI+1cK/xQ+u/aDaQ4iIiH986R9XewiH8pnifvOpFuYEbKduAxbJZHJHO060t7cfep/D/2w4UonU2usHmx+MBxc9uYrqWWlaiXzko+2dtqo+LRU+zLxkK+fOnavq9VcT0mfOnImWlrr9qMQRtPqFO2qTNQAf5nMOG9XKnKj25yw+4DMnG5kTlGMNUNusAepPrXwmY2/cv/rl3tUv965+uXd1bKnaA+B+Xn/99fjEJz6x9vqwd7C49bVbh3YtDo73aSrJfKpttfJ3mZ3+/DjI+VQL/xa18nO0Uf4t7jefauHfISJ29J3xcvr7++M//If/EO+//3488MAD8c//+T+P8fHxXfdz69atePTRR/c0Bg5W3f61rq2tbdv21S35ksnkoffZ2tIaH23ZsG2MnRypouVYjqZoiqaVpmhe8RREaoN5yVZq4ctEzc3N0dLSUhNjgVWeZFzbrAH4MJ9z2KhW5oTPNrXFZ042MifYyBqgth1/4Lg1QJ2plc9k7I37V7/cu/rl3tUv965++WJs7Ttx4sR9v1t0kPw3fTR4n6aSzKfaViu/693p3DjI+VQL/xa18t9Io/xb3G8+jf3h2IGPYScuTVzaU91f/MVfxOc///m4efNmPPHEE/Hnf/7nceLEiV338/Of28WuVlX/v9Q9SqfTMT09vWX7aqoonU5XtU8AAACAWnCt71q1h7DnX1ICAAAAAAAA1IKHHnoovv3tb1d7GByg2ohk7UEmk9l2a5ZcLhcRET09PVXtEwAAAAAAAAAAAAAAqH11G7C4ePFiRETMzs6Wbb958+augxAH0ScAAAAAAAAAAAAAAFD76jZgkclkoqenJ1566aWy7ePj4zE0NLTpeLFYjKGhoZiamqpYnwAAAAAAAAAAAAAAQH1rqfYA9mNsbCy6u7vj4sWLkclk1o4PDg7G5cuXy+42MTo6GlevXo3R0dEoFAoV6RMAqJxrfdeqev3lpuX4+Bc/XtUxAAAcVdX+rLfq0sSlag8BAAAAAACABlMrfysDtlfXAYtkMhkzMzMxNDQUyWQy2tvbY35+Pnp7e6O/v79sTU9PTySTybhw4ULF+gQAAAAAAAAAAAAAAOpbXQcsIu4FIkZGRnZ8fiaTKbtzxX76BACOlh9c+0Hc+tqtaF5prtoYPFUZAODgVPvpQHZNAwAAAAAAAKhNdR+wAAA4iqr9pb9Vgh4AAAAAAAAAALtTK9/7qAX+LYB6I2ABAAAAAIfMrmkAAAAAAAAAtUfAAgCALdXCUwR88Q8A4GDUwme9CJ/3AAAAAAAAgNohYAEAQE2rhS/++dIfAAAAAAAAAADA0ddc7QEAAAAAAAAAAAAAAABUmx0sAACgzpWKpXj1yqsREXG8/Xjk5/PR2dsZXf1dVR4ZAMD92bEM9sY6AAAAGos1AAAANBZrgOoRsAAAgDpWKpZitHs0smPZ6Mh0rB2fGJyIWzdvRe9wbxVHBwBQH6od8lhuWo6Pf/HjVR0D9cU6AAAAGos1AAAANBZrgOoSsAAAgPuo9hfuIiL+W+m/lT0+lh2LR/ofWbeYiojoG+mL4dRwdPZ2RronfRhDBABgH35w7Qdx62u3onmluarjsJtHfbAOAACAxmINAAAAjcUaoLoELAAAoE4VcoXITeXi/Mj5su1dF7rixvANCyoAAHasFsLFQh7bsw4AAIDGYg0AAACNxRqg+gQsKuhXv/pVRET83fLfVXkksN7fvf938b9P/+9x8eTFONZ8rNrDgYgwL6ld5ia1avUz5upnzoiI6ZHpiIhIpVNla9o622J2dDZKxVIkkomDH2QDsgagHD9L2MicYCNzgo3MifVqIeRRCxbfW4yI9WuACOsA2CvvtfXN/atf7l39cu/ql3t39FgDVN/qumzj+gz2wvs0lWQ+UUnmE5VkPu2PNUD1VXe/+SPmzp07ERFxd/lulUcC6/3d8t/Fv5/99774R00xL6lV5ia1avUz5upnzoiId2bf2XahtLrQWpheONjBNTBrAMrxs4SNzAk2MifYyJygnHJrgAjrANgr77X1zf2rX+5d/XLv6pd7d/RYA1Tf6rps4/oM9sL7NJVkPlFJ5hOVZD7tjzVA9dnBAgAA6lQhV4jWttYt21cXW4Vc4bCGBAAAHDDrAAAAaCzWALXj289+O9746BvVHgYAAEecNUD12cECAADq1FJ+advE+upiq1QsHdaQAACAA2YdAAAAjcUaAAAAGos1QPXZwaKClpeXIyKiWCrG8QeOV3k08IH33n8vIiIKpULcecCWldQG85JaZW5SK5bfX45Y+eB14Zf3Uuernzkjdr5Qeu/d9yo6Nj5gDUA5fpawkTnBRuYEG5kTROxsDRBhHVBtq/ejUPJksHrjvba+uX/1y72rX+5d/XLv6sfGNUCxVLx33Bqg5vhbAJXkfZpKMp+oJPOJSqqX+fS/9Pwvh3o9a4D6IWBRQYXCvT+oXPk/r1R5JFDe0H8cqvYQYBPzklplblKrVj9zUhusAdiOnyVsZE6wkTnBRuYE5VgD1Jaf/vSnERHxP974H6s8EvbKe219c//ql3tXv9y7+uXe1a+f/vSn8Q/+wT+o9jD4EH8L4CB4n6aSzCcqyXyiksynnbEGqD0CFhX0T//pP43vfe978dBDD0Vzc3O1hwMAQB27+6u7sXzng4T68vJy/D/F/yee+H89sXYskUzsKLV+vN3TlA6KNQAAAJWykzVAhHVAtT322GPWAAAAVMRWa4DHHnts3XnWANXnbwEAAFSCNUD9ELCooJaWlnjiiSfufyIAAOzBb8dvr3vd2ta67flL+aWIuLfw4mBYAwAAcJA2rgEirAOqzRoAAICDZA1Qm6wDAAA4KNYAtUmsGgAA6lQqnVpbNJWzmmZPpVOHNSQAAOCAWQcAAEBjsQYAAIDGYg1QfQIWAABQp05mTm67JWAhV4iIiHRP+rCGBAAAHDDrAAAAaCzWAAAA0FisAapPwAIAAOrU6YunIyJicXaxbPvCzQWLKQAAOGKsAwAAoLFYAwAAQGOxBqg+AQsAAKhTHZmOSPek442X3ijbPjc+F2eHzh7yqAAAgINkHQAAAI3FGgAAABqLNUD1CVgAAEAdy45l483xNzel1icGJ+LM5TMS6wAAcARZBwAAQGOxBgAAgMZiDVBdTSsrKyvVHgQAALB3pWIpJocmI5FMxPH245Gfz0dnb2d09XdVe2gAAMABsQ4AAIDGYg0AAACNxRqgegQsAAAAAAAAAAAAAACAhtdc7QEAAAAAAAAAAAAAAABUm4AFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8FqqPYCj5O7du/H9738/HnrooWhull0BAKBylpeX46c//Wk89thj0dLiY3ytsAYAAOCgWAPUJmsAAAAOijVA7bIOAADgIFgD1C53o4K+//3vx+/8zu9UexgAABxh3/ve9+KJJ56o9jD4NWsAAAAOmjVAbbEGAADgoFkD1B7rAAAADpI1QO0RsKighx56KCIi/uZv/iZ+67d+q8qjgQ/cvXs3ZmdnI5PJSLlRM8xLapW5Sa36yU9+Ep/+9KfXPnNSG6wBKMfPEjYyJ9jInGAjc4JyrAFq0+r9+N73vhcdHR1VHg274b22vrl/9cu9q1/uXf1y7+rX4uJi/M7v/I41QA3ytwAqyfs0lWQ+UUnmE5VkPu2MNUDtMmsraHUbwJMnT1pQUVPu3r0bP/7xj+O3fuu3/LCiZpiX1Cpzk1p19+7diAhbT9cYawDK8bOEjcwJNjIn2MicoBxrgNq0ej86OjqsAeqM99r65v7VL/eufrl39cu9q3/WALXH3wKoJO/TVJL5RCWZT1SS+bQ71gC1xx0BAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANDwBCwAAAAAAAAAAAAAAoOEJWAAAAAAAAAAAAAAAAA1PwAIAAAAAAAAAAAAAAGh4AhYAAAAAAAAAAAAAAEDDE7AAAAAAAAAAAAAAAAAanoAFAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAACAhidgAQAAAAAAAAAAAAAANLyWag8AAAAAAAAAAAAAAAD4QCFXiOvD1yMiopQvRalYinRvOs5ePrtlTalYilevvBoREcfbj0d+Ph+dvZ3R1d9V9Zp6cWQCFoODg5HNZqOnp2df/RSLxbhy5UpERLS3t8f8/Hz09vZGf39/JYYJAAAAAAAAAAAAAABbmhufi1s3b0XfSN+646PdozEzMhPPzj+7qaZULMVo92hkx7LRkelYOz4xOBG3bt6K3uHeqtXUk+ZqD2A/crlcjI6ORnd3d4yOju67v2KxGN3d3XHx4sUYHh6Oy5cvx8jISExOTsbQ0FAFRgwAAAAAAAAAAAAAAOWViqX44Us/LBtU6HuhLwq5QkwMTmxqG8uOxSP9j6wLPURE9I30xezobOSmclWrqSd1G7AYHR1dCz0MDw9XpM9sNhv9/f2RyWTWHR8ZGYnR0dGYmpqqyHUAAAAAAAAAAAAAAGCjhemFmBufi8mhyU1tq6GGt6beWne8kCtEbioXjw8+XrbPrgtdcWP4RlVq6k3dBiwGBgZibGwsBgYGoq2tbd/95XK5mJqaisHBwbLtFy5cqFiQAwAAAAAAAAAAAAAANmpta41EMhHH249veU4imVj3enpkOiIiUulU2fPbOtsiN5WLUrF06DX1pm4DFpU2MjISERHpdLpse2dnZ0xNTUWxWDzEUQEAAAAAAAAAAAAA0Cg6Mh0xVBiKs5fPbmpbnF2MiIhTPafWHX9n9p1NoYsPWw1ELEwvHHpNvRGw+LXZ2dlIJpNbtq8GL6anpw9pRAAAAAAAAAAAAAAAcM/U0FSk0qnoHe5dd7yQK0RrW+uWdauhiEKucOg19aal2gOoFblcLtra2rZsXw1f5HK5+/a1vLwc77//fqWGBvv2/vvvr83Lpqamag8HIsK8pHaZm9Sq5eXlag+BbVgD8GF+lrCROcFG5gQbmROUYw1Q295//31rgDrjvba+uX/1y72rX+5d/XLv6pfPl7XP3wKoBO/TVJL5RCWZT1SS+VTe3Tt34/07H3yeXCou7aq+kCvE9eHrkUwn46nJpza1L+WX1naPKGc1FFEqlg69pt4IWPxaPp9f26WinNXwRbFYvG9ff/M3fxP/6T/9p7XXDzzwQLS0+KemepaXl+O//tf/GsvLy9HcbOMaaoN5Sa0yN6lV7777brWHwDasAfgwP0vYyJxgI3OCjcwJyrEGqG03btyIVOqDPyBZA9Q+77X1zf2rX+5d/XLv6pd7V78Khfp9umuj8LcAKsH7NJVkPlFJ5hOVZD6V97f/x9/G2//H22uvf3n3lzuqmxufi1s3b0UxV4xkOhmdvZ1lz9tpoOG9d9879Jp641P+r+0kOBGxsz9qPf/88+sWUP/kn/yT+NSnPrXHkcH+raysxO3btyMipAGpGeYltcrcpFb97Gc/q/YQ2IY1AB/mZwkbmRNsZE6wkTlBOdYAte2b3/ymNUCd8V5b39y/+uXe1S/3rn65d/Xr5z//ebWHwH34WwCV4H2aSjKfqCTziUoyn7bwDyI+8f/+xNrLn//i5xGv3r+sq78ruvq71l6/2PtizIzMRN8LfZFIJg5ipA1PwOIAnH/wfKQSHzy56sEfPRgtbx3eP3X25eyhXYv6cPfu3fibv/mb+PSnP+3pCdQM85JaZW5Sq95+++34whe+UO1hsIVqrwEirANqiZ8lbGROsJE5wUbmBOVYA9S2f/2v/3V8/OMfX3t97NixOHbsWBVHxP14r61vu71/YxfGDmFU27NOv8d/e/XLvatf7l39unXrVjz77LPVHgbb+MY3vhG/9Vu/tfbaOqCx7fUz50rTSjQ91BQtP22JppX9feHUZ0783KeSzCcqyXzamVu3bsV////573ddlx3LxnBqOErFUjw1+dTa8UQysaPdJY63Hz/0mnpj1v5aMpnc0S4W7e3t9z3n+APH4zcf+M31B5f3OLA9sHhjo9VtKY8dO+aHFTXDvKRWmZvUqgcffLDaQ2Ab1V4DRFgH1BI/S9jInGAjc4KNzAnKsQaobX/v7/29+Pt//+9Xexjsgvfa+rbb+/fA8gOHMKrtWaff47+9+uXe1S/3rn79xm/8RrWHwH2kUinrANbs9TPnctNyNEdzNC83R/NK877G4DMnfu5TSeYTlWQ+7cxe1wCJZCK6+rtibnwuclO5SPekIyKita1127ql/NJa/arDqqk3+/uUdoS0tbVt257P5yPiXhADAAAAAAAAAAAAAAAqrVQsRSFX2LI9mU5GRMT85PzasVQ6tRZu2KrP1fMOu6beCFj8WjqdXgtRlLO6u0U6nT6kEQEAAAAAAAAAAAAA0EiGU8Pxjc5vrIUVNjrefjwiYl37yczJLc+PiLXAxuqOF4dZU28ELH4tk8mshSjKyeVyERHR09NzSCMCAAAAAAAAAAAAAKCRJJKJSKVTkUgmyrbn5+9tKvBw98Nrx05fPB0REYuzi2VrFm4ubAo9HFZNvRGw+LWLFy9GRMTs7GzZ9ps3bwpXAAAAAAAAAAAAAABwYDIDmXhq8qkt2+denotEMhGPXnh07VhHpiPSPel446U3yteMz8XZobPrjh1WTb1pqIBFsViMoaGhmJqa2tSWyWSip6cnXnrppbK14+PjMTQ0dNBDBAAAAAAAAAAAAACgQfUO98b14euRm8ptahvLjkVExOde+dymHS6yY9l4c/zNTbtLTAxOxJnLZ8ruLHFYNfWkpdoDqIRc7t7kKRaL2543OjoaV69ejdHR0SgUCpvax8bGoru7Oy5evBiZTGbt+ODgYFy+fNkOFgAAAAAAAAAAAAAAHKi+kb6YG5+LsexYJNoSUcqXolQsxcnMyfjCW1/YFK6IiEgkEzEwMxCTQ5ORSCbiePvxyM/no7O3M7r6u8pe57Bq6kndBizGx8djZGQkIiKmp6cjIuLpp59eO5bNZmNgYGBdTU9PTySTybhw4ULZPpPJZMzMzMTQ0FAkk8lob2+P+fn56O3tjf7+/gP8/w0AAAAAAAAAAAAAANzT1d+168BCIpmIvpG+mqypF3UbsOjv79916CGTyZTdueLDksnkWkgDAAAAAAAAAAAAAABoDM3VHgAAAAAAAAAAAAAAAEC11e0OFgAAAAAAADS2a33XdnTectNy5Dvycetrt6J5pfLPH7s0canifQIAAAAAcPjsYAEAAAAAAAAAAAAAADQ8AQsAAAAAAAAAAAAAAKDhtVR7AAAAAAAAANSfa33Xqj0EAAAAAACoKDtYAAAAAAAAAAAAAAAADU/AAgAAAAAAAAAAAAAAaHgCFgAAAAAAAAAAAAAAQMNrqfYAAAAAAAAAgPp3re/agfS73LQc+Y583PrarWhe8fw4AAAAAODg+A0kAAAAAAAAAAAAAADQ8AQsAAAAAAAAAACgRs2Nz1V7CAAAAA1DwAIAAAAAAAAAAGpQqViKsexYzIzORKlYqvZwAAAAjryWag8AAAAAAAAAAADYrJArRETEtwa/Fd8a/Na252bHstHV37X2ulQsxatXXo2IiOPtxyM/n4/O3s5152y0lxoAAICjRMACAAAAAAAAAABqUCFXiFQ6FR2Zjki0JcqeU8qXopArbApXjHaPRnYsGx2ZjrXjE4MTcevmregd7t3czx5qAAAAjhoBCwAAAAAAAAAAqEG3bt6KpyafilQ6teU5k0OT0TPcs+7YWHYsHul/ZF1QIiKib6QvhlPD0dnbGeme9L5rAAAAjprmag8AAAAAAAAAAAAob7twxeLsYrR1tq07p5ArRG4qF48PPl62putCV9wYvrHu2F5qAAAAjiIBCwAAAAAAAAAAqEFbBR5WTY9MR/dA96ZjEVsHM9o62yI3lYtSsbSvGgAAgKOopdoDAAAAAAAAYHeu9V2r9hAAADgE2+1eMTk0Gb3DvZuOvzP7TiSSifv2uTC9EOme9J5rAAAAjiI7WAAAAAAAAAAAQB1ZnF2Mts62sqGIQq4QrW2tW9au1hRyhX3VAAAAHEUCFgAAAAAAAAAAcIju3rkbd352Z+1/v/r5r3ZVf/3K9ege6C7btpRf2nY3itUgRalY2lcNAADAUdRS7QEAAAAAAAAAAEAjuX7lenz3z7679vp23N5x7dz4XCTTyS3bdxqCeO/d9/ZVAwAAcBQJWAAAAAAAAAAAwCE699y5+PQXP732+tatW/H1rq/vqPb6levR90LfQQ0NAACgoQlYAAAAAAAAAADAIWo51hItxz742s5v/Ow3dlRXyBVicXYxOjIdW56TSCZ2tCPF8fbj+6oBAAA4ipqrPQAAAAAAAAAAAOD+pkemI5VObXtOa1vrtu1L+aWIuBeq2E8NAADAUWQHCwAAAAAAAACOrGt916o9hLg0canaQwCOiLem3rpvwCKVTsXC9MKW7as7VXy4n73UAAAAHEV2sAAAAAAAAAAAgDqwOLt4310kTmZOrgUiyinkChERke5J76sGAADgKLKDBQAAAAAAANS5WnhCPwBwsBZnFyMiItG2fcDi9MXT8drV12JxdjE6Mh2b2hduLmwKSuylBgAA4CiygwUAAAAAAAAAANS4pfzSjs7ryHREuicdb7z0Rtn2ufG5ODt0dt81AAAAR5GABQAAAAAAAAAA1LhCrhAREYnk9jtYRERkx7Lx5viba7terJoYnIgzl8+U3Y1iLzUAAABHTUu1BwAAAAAAAABAZV3ru1btIcRy03J8/Isfr/YwAI6Mhx9/OBLJRHz8ifu/tyaSiRiYGYjJoclIJBNxvP145Ofz0dnbGV39XRWrAQAAOGoELAAAAAAAAAAAoMZ1ZDpiqDC04/MTyUT0jfTt6hp7qQEAADhKmqs9AAAAAAAAAAAAAAAAgGqzg8URVAvb/UZEXJq4VO0hAAAAAAAAAAAAAADAjghYAAAAAAAAwD7UysOvAAAAAADYn+ZqDwAAAAAAAAAAAAAAAKDaBCwAAAAAAAAAAAAAAICG11LtAQAAAAAAAABwNP3g2g/i1tduRfOKZ/8BAAAAUPsELAAAAAAAAAAq6FrftWoPAQAAAADYA48JAQAAAAAAAAAAAAAAGp4dLAAAAAAA4IiYGJyIc0PnIpVOlW0vFUvx6pVXIyLiePvxyM/no7O3M7r6u7bs87Bq6sn/9vn/Ldpb26s9DAAAAAAAoMIELAAAAAAA4AhYnF2M2dHZeHzw8bLtpWIpRrtHIzuWjY5Mx9rxicGJuHXzVvQO91atBgAAgP8/e/8XG/d534n+H6pyNRKaaIa6EbXob8Nh9kKUFmsP5QKRFPxOIzJdLMSLRhypAdZpgbXIFFi4QDcmrd9dL05laoMNmosTc5RzsesC/lnDZi+Yq3Dsc4JIvjgiJy5OTF9s+JVrVKSB33pm5BbmqFXE34UOaVEcUvwz4h/p9QIIe77P83meR5qvyPly5v19AACAnWDPdi8AAAAAAADYvNJQadX2Yr4YR/uOLgk9RET0jvRGuVCOpJRsWw0AAAAAAMBOIGABAAAAAAC73GRhMjrznSu2V5NqJKVkxd0tOs93xo3hG9tSAwAAAAAAsFPs3e4FAAAAmzNbno2JkYmoV+oxW56NVDoVXQNd0dXftWJNvVaPX1z+RUREHDh0ICrTlejo6YjOvpU/kLVVNQAAwPpUk2pERGSymRX7TIxMrNqntaM1yoVy1Gv1SKVTW1oDAAAAAACwUwhYAADALjZZmIyIiN6R3sVjSSmJYr4YN4ZvRP9k/7IPLdVr9Sh0FSJfzEdbrm3x+NjAWNy+eTt6hnuWzbNVNQAAwPpNjExEz3BPJKVkxT6flD9ZNdCwEIiYmZiJbHd2S2sAAAAAAAB2ij3bvQAAAGBjqkk16rX6sp0qst3Z+M4734lqUo1ivrisrpgvxtG+o0tCDxEPQhrlQrnhh7K2qgYAAFifqdGpODFw4rH9qkk19rfuX7F9IRSxsBvGVtYAAAAAAADsFAIWAACwS02MTCwLVyxoy7VFtjsbSSlZ9mGnpJSs+AGszvOdcWP4xpJjW1UDAACsT71Wj2pSXdwVYjVzlblVd5ZYCEXUa/UtrwEAAAAAANgpBCwAAGCXulW6FX/V/lcrfjDpcO5wRETMlmcXj02MTERErPgBrNaO1khKyZIxt6oGAACeZffu3ou7n91d/Prnf/znx9b84vIv4tTgqTWNv9bX3p9/+vmW1wAAAAAAAOwUe7d7AQAAwMbsb90fs+XZqCbVaMu1ranmk/Inq95NdiEQMTMxE9nu7JbWAADAs+z65evx87/4+eLjO3vurNo/KSXR0dPxpJcFADTJW71vbfcSIiLi22Pf3u4lAAAAAOxoAhYAALBLvTT+UlST6oq7RNSSWkTEkvBFNanG/tb9K465EIqoJtUtrwEAgGfZ6Uun42t//rXFxx9//HH84F//YMX+0+PT0TPcs+bxU+nUmnaXOHDowJbXAAAAAAAA7BQCFgAAsAPdu3svfnP3N4uP//kf/7lhv5XCFRERU6NT0ZZrW9JnrjK3as1CKOLhD0RtVQ0AADzL9u7bG3v3ffEr++d+57kV+964ciO+funr6xp/tQB0xIPX8BGxZCe6raoBAAAAAADYKQQsAABgB7p++Xr8/C9+vvj4zp4766q/ceVGRET0Xu1dcnytgYbPP/18y2sAAIDHqybVSKVT6w4oZLKZmJmYWbF94TX8w0HpraoBAAAAAADYKQQsAABgBzp96XR87c+/tvj4448/jh/86x+sqXa2PBuloVLki/loy7U9qSUCAADbYLY8G1PFqZgqTi1rqybViIgYuzi2uJPES+MvRUTE4dzhSErJiuMu1Ga7s4vHtqoGAAAAAABgpxCwAACAHWjvvr2xd98XL9ef+53n1lxbzBfj7MjZ6OzrXNaWSqfWtLvEgUMHtrwGAAB4vM6+zoav9SMipkanopgvRu/V3mVh6+MXjsd7V96L2fJswyD2zM2ZZaGHraoBAAAAAADYKfZs9wIAAIDmKeaL0TXQFV39XQ3bF+5iu5K5ylxEPAhIbHUNAADw5LTl2iLbnY1fvf2rhu1To1NxaujUttQAAAAAAADsFAIWAADwlBgfGo8jLx6JU4Mrf1gpk80shhsaWdh1IpPNbHkNAACwOdWkuuS/j8oX8/Hh6IcxW55dcnxsYCxODp5suLPEVtUAAAAAAADsBHu3ewEAAMDmTRYmo7WjteHOFfVafXGniMO5w5GUkhXHWfgg1sMfeNqqGgAAYGPGBsailtRiZmLmweOLYzE5MhmHc4ejZ7hnsV8qnYr+yf4YHxqPVDoVBw4diMp0JTp6OqKzr7Ph2FtVAwAAAAAAsBMIWAAAwC43NToVEdEwXFFNqjFbnl38ENPxC8fjvSvvxWx5Ntpybcv6z9ycWRZ62KoaAABgY3pHetfcN5VOrav/VtYAAAAAAABstz3bvQAAAGDjZsuzMVeZaxiuiIhISsmSgENbri2y3dn41du/ath/anQqTg2dWnJsq2oAAAAAAAAAAAC2kx0sAABgl6om1Sjmi9He3R4zAzPL2uuVeiSlJIaqQ0uO54v5KHQV4viF40vCF2MDY3Fy8GTDnSW2qgYAAAAAAAAAAGC7CFgAAMAu9WbPm1FNqlEtVFfsk8lmlh1LpVPRP9kf40PjkUqn4sChA1GZrkRHT0d09nU2HGeragAAAAAAAAAAALaLgAUAAOxSr0y/suHaVDoVvSO9O7IGAAAAAAAAAABgO+zZ7gUAAAAAAAAAAAAAAABsNwELAAAAAAAAAAAAAADgmbd3uxcAAAAAAAAAAAAAAAA8MFuejYmRiahX6jFbno1UOhVdA13R1d/VsP9kYTKmilPRNdAV2e5spNKpqCbVmC3PxgdvfxCnL52Otlzbsrp6rR6/uPyLiIg4cOhAVKYr0dHTEZ19nSuubSM1u4mABQAAAAAAAAAAAAAA7ACThcmIiOgd6V08lpSSKOaLcWP4RvRP9kcqnVpSU6/VIyklkZSSJcdT6VTki/kVwxWFrsKy9rGBsbh983b0DPc0pWa32bPdCwAAAAAAAAAAAAAAgGddNalGvVZftlNFtjsb33nnO1FNqlHMFxvWnh05GycHT0ZnX2fk+nNxduRsDFWHItudbdi/mC/G0b6jy8IXvSO9US6Ul4U1Nlqz29jBAgAAAAAAAAAAAAAAttnEyER8/dLXG7a15doi252NpJRENalGJptZ0n7s/LFlO1uspJpUIyklcXbkbMP2zvOdcWP4xpJwxkZqdiM7WAAAAAAAAAAAAAAAwDa7VboVf9X+V1Gv1Ru2H84djoiI2fLspuaZGJmIiFgW0ljQ2tEaSSlZso6N1OxGAhYAAAAAAAAAAAAAALDN9rfuj3qtHtWk+kTn+aT8yaq7XSyEKGYmZjZVsxvt3e4FAAAAAAAAAAAAAADAs+6l8ZeimlRX3CWiltQiIqIt17biGLPl2ZiZmIkjJ46s2K+aVGN/6/4Vx1gIUjwc9NhIzW5kBwsAAAAAAAAAAAAAAHhC7t29F3c/u7v49U//8E8r9l0pXBERMTU6FW25toZ9klISN67ciIiIrv6uiIh4s+fNSErJsr5zlblVd6NYCFLUa/VN1exGdrAAAAAAAAAAAAAAAIAn5Prl6/Hzv/j54uM7cWfdYyyEJ3qv9i5rWwhcnBo8tXisLdcW+WI+hjPD0T/Zv2Q3i7WGID7/9PNN1exGAhYAAAAAAAAAAAAAAPCEnL50Or72519bfHz79u34QecP1lw/W56N0lAp8sX8kqDEgs6+zoZ1qXQqOvs6o5gvxivTr6x/4c+gPdu9AAAAAAAAAAAAAAAAeFrt3bc39n153+LXb3/pt9dVX8wX4+zI2RWDFKs58uKRqCbVqCbVxWOpdGpNO1IcOHRgUzW7kYAFAAAAAAAAAAAAAADsQMV8MboGuqKrv2tD9al0KiIe7IKxYH/r/lVr5ipzS2o3WrMb7d3uBWxWrVaLy5cvR0TEoUOHYnp6Onp6eqKvr29TYw4NDUVERKVSiYiIF198MQYHBze/YAAAAAAAAAAAAAAAeIzxofE48uKRODV4asU+YwNjcat0K16ZfmXN42aymZiZmFmxfWGnikw2s6ma3WhXByxqtVp0dXVFsViMXC63eHxgYCBu3rwZw8PD6x6zXC7HyMhIDA8PRzqdXjw+OjoaXV1dMTk52YylAwAAAAAAAAAAAABAQ5OFyWjtaG24c0W9Vv9iZ4qJ2cXdIxpZCD605doWjx3OHY6klKxYU02qERGR7c5uqmY32rPdC9iMfD4ffX19S8IVEREjIyNRKBSiVCqte8yhoaEYGRlZEq6IiOjr64uBgYEYGBjYzJIBAAAAAAAAAAAAAGBFU6NTERENwxXVpLok6NDe3R5D1aEVx5q5OROpdGrJzhLHLxyPiIjZ8uyKNY8GJTZSsxvt2h0skiSJUqkUIyMjDdvPnz8fw8PD0d3dveYxy+VyZLMrP6kLY7I2b/W+td1LiG+PfXu7lwAAAAAAAAAA0BSThcmYKk4t3qk2nU1Hz3BPw771Wj1+cfkXERFx4NCBqExXoqOnIzr7OlccfyM1AABAc82WH+xI0ShcERGRlJIlQYbjF47HZGFyxTDG1OhU5Iv5Jcfbcm2R7c7Gr97+1ZKdLRZMjU7FS+MvbbpmN9q1AYuFYMVKgYiOjo4oFApRq9WW7UaxkoXQxkoqlcqaxwIAAAAAAAAAgGao1+rx3878t2jvbl/ygaVqUo3xofFlIYt6rR6FrkLki/klH3waGxiL2zdvNwxlbKQGAABormpSjWK+GO3d7TEzMLOsvV6pR1JKluxY0ZZri6SUxI0rN+LU4KklYxW6CnFy8GTD0HS+mI9CVyGOXzi+7Brg5ODJhrtRbKRmt9m1AYtyubxq2GEheDExMbHmXSxyuVwkSRL5fD6KxeKy9pGRkbhw4cKG1gsAAAAAAAAAABuxEK54NOTw04GfxszEzLLjxXwxjvYdXXZX2d6R3hjODEdHT8eyDz5tpAYAAGiuN3vejGpSjWqhumKfTDaz7NipwVORlJIYGxiLeqUe9Vo9UulUfOed7zTcbSIiIpVORf9kf4wPjUcqnVrTLnYbqdltdm3AIkmSaG1tXbF9IXyRJMmax8xms9Hf3x+FQiE6OjpiZGRkMZxRKpWiVqvF8PDwptYNAAAAAAAAAABrdePKjagm1egf7l/Wlkqn4siJI0uOVZNqJKUkzo6cbThe5/nOuDF8Y0lYYiM1AABA870y/cqGa7Pd2XW/Zk+lU9E70vvEa3aTXRuwqFQqi7tUNLIQvqjVausad2RkJDo6OmJoaCh6enqiv78/Ojo6IpfLxcjIyGaWDAAAAAAAAAAA63L98vXI9ecatuWL+WXHJkYmIqLxXW0jIlo7WqNcKC/e0XajNQAAAE+jXRuwWGtw4tNPP1332IODg5FOp2NgYCAKhUKk0+koFotrrp+7Nxf/eO8fFx8/t+e5eO63nlv3Oti8e/fubfcSdoR79+7F/fv3/X2wozgv2amcm+xU9+/f3+4lsIqdcA3g+9bO4WcJj3JO8CjnBI9yTtCIa4Cd7fPffB777u1bfOx9gJ1vvmU+5mM+5lvm437497XbeP52L8/dzrPW15xeo+5enrvda6XnbGp0Kuq1ehy/cHzNY31S/mTVEMRCiGJmYmbx7rYbqXnW3LlzJyqVyuLjffv2xb59+1ap4Gl2v2Vjr22a+frI93r83KeZnE80k/Npbfz97Fy7NmDxJA0NDUVHR0fMz8/H0NBQXLlyZXE3i7XsYjH0fw4tefxvc/82/t2Jf/eklssqrl+/vt1L2BHu378fH3/8cURE7NmzZ5tXAw84L9mpnJvsVBsJDrN1dsI1gNe+O4efJTzKOcGjnBM8yjlBI64BdradcA3A+szHfMx9aS4qUYmWaNnu5bBOnr/dy3O386z1d0heo+5enrvd6+EP7j/sg7c/iIiItlxbRETMlmdjZmImjpw4snjsUdWkGvtb968410KQoppUN1XzrHn++eeXPP7jP/7j+JM/+ZNtWQvbr9LW+N/s4zTz9ZH3hvBzn2ZyPtFMzqe1WekagO23awMW6XR6TbtYHDp0aF3j9vT0xNDQUHR3d0dExPDwcFy4cCHy+XwUCoWoVCqP3c1i+H8Zjkzqiy0Tn9vzXDw3685V2+H06dPbvYQdYSHldvLkydi7d9f+s+cp47xkp3JuslMtXHiyM+2EawCvfXcOP0t4lHOCRzkneJRzgkZcA+xsO+EagPWZb5mPSlSi9ZPWaJn3Ie/dxvO3e3nudp61/g7Ja9Tdy3O3e/393/99w+Oz5dnF/79x5Ua05dqiq78rZsuz8WbPm3Fq6NSyHSXmKnOLO040shCkqNfqm6p51rz//vvxu7/7u4uP7WDxbLv9X25vqK6Zr4+8N4Sf+zST84lmcj6tzUrXAGy/XXvWtra2rtq+kOpJp9NrHvPKlSuRy+UWwxULcrlcTE9Px8DAQBQKhSiVSsv6PGz/3v3xO3t/Z+nB+TUvgybyjfkLe/bsib179/o7YUdxXrJTOTfZiST6d7adcA3ge9bO4mcJj3JO8CjnBI9yTvAo1wA724HfOrDt1wCsz/24Hy3REi3zLbFn3r+v3cbzt3t57nae9bze9Bp19/Lc7Q737t6L39z9zeLj+3P3G/abq8xFKp2KycJknBo8tXi8LdcW+WI+/qr9ryJfzC8JWaw1BPH5p59vquZZc/Dgwcd+Xolnx0Zf2zTz9ZHv80T4uU9zOZ9oJufT4/m72bl27TOTzWZjYmJixfaF3S2y2eyKfR41MjISk5OTq7ZPTEzE+Pj4qgELAAAAAAAAAABYyfXL1+Pnf/Hzxcd34k7DfgvBh4UdJB6WSqci252Nnw78NF6ZfuXJLBQAAOAZs2tvE5LL5RZDFI0kSRIRsa4gRJIkj93xYmBgYNV5AQAAAAAAAABgNacvnY7X7ry2+PUfp/5jw36pdCoiYskOFQ/L9mSjmlRjtjy7pGYtO1IcOHRgUzUAAABPo10bsLhw4UJERJTL5YbtN2/eXPcuE9lsdjGYsZLp6eno6upa17gAAAAAAAAAALBg7769se/L+xa/fvtLv92w38LOFQtBi5XaZyZmlh1byVxlbtmYG6kBAAB4Gu3d7gVsVC6Xi+7u7nj77bcjl8stax8dHY3x8fFlx2u1Wly+fDl6enqWBTD6+vpiaGgoisViwzlrtVqUy+W4dOlSc/4QAAAAAAAAALBF3up9a0397rfcj0pbJW7/l9uxZ76592389ti3mzoePO3acm1RTaqP7ffw7hOZbGZJ4GKlvplsZlM1AAAAT6Ndu4NFRESxWIzR0dFlu1gMDAzE4OBgwx0sCoVCXLlyJfL5/LK24eHhxfparbakrVwuRz6fj+Hh4Uin0037MwAAAAAAAAAAQCNHXjwSEUsDFA9b2FmiLde2eOxw7vCK/SNiMbCR7c5uqgYAAOBptGt3sIiISKfTMTk5GUNDQ5FOp+PQoUMxPT0dPT090dfX17Cmu7s70ul0nD9/vmF7sViMUqkUFy9eXHI8m8023BEDAAAAAAAAAACehM6+zigNlSIpJdHZ17msvTJdiYiIIyeOLB47fuF4vHflvZgtzy4JXiyYuTmzLCixkRoAAICn0a4OWEQ8CFmMjIysuX8ul4tqdfWtE7u7uxvufgEAAAAAAAAAAFslk81EZ19nXL98vWHA4sPRD+Pk4MlIpVOLx9pybZHtzsav3v5Vw7DE1OhUvDT+0pJjG6kBAAB4Gu36gAUAAAAAAAAAwFq91fvWdi8hIiK+Pfbt7V4Cu0Tv1d4odBVisjAZXf1di8eL+WJkspnoGe5ZVpMv5qPQVYjjF44vCUyMDYzFycGTDXej2EgNAADA00bAAgAAAAAAAAAAdqhUOhX9k/3xi8u/iGK+GBER9Vo9OvOdSwIXjWrGh8YjlU7FgUMHojJdiY6ejoY7YWy0BgAA4GkjYAEAAAAAAAAAsMWexE4a91vuR6WtErf/y+3YM7/nsf3torF7pNKphjtVPK6md6T3idcAAAA8TR5/NQ0AAAAAAAAAAAAAAPCUE7AAAAAAAAAAAAAAAACeeQIWAAAAAAAAAAAAAADAM0/AAgAAAAAAAAAAAAAAeOYJWAAAAAAAAAAAAAAAAM+8vdu9AAAAAAAAAAAAAAAAgMdJ3kkiGU8iWiJaO1rjyIkjcfj5w00b3w4WAAAAAAAAAAAAAADAtrty6Mqq7dkz2eh+vTtOv3Y62s+0x+2bt+Onf/rTuPvZ3abMbwcLAAAAAAAAAAAAdoW3et/a7iUAAPAEzc/Pr6lf6mAqUgdT0XWxK+p36jE+NB5nf3R20/PbwQIAAAAAAAAAAAAAANh2LS0t665JHUw1bX4BCwAAAAAAAAAAAAAAYFeq36nH7MRsU8ba25RRAAAAAAAAAAAAAAAAHqP2Ua3h8fn5+Qftf1eLmF99jHqtHnOVuZgtz8b1y9ej83xnU9YmYAEAAAAAAAAAAAAAAGyJmcmZmLk5E9WkGkkpibt37i5p/2H2h2sea35+PrLd2Tj7o7NNWZuABQAAAAAAAAAAAAAAsCU6z3VG57kvdpyYLc9GaagUyTtJtLS0xNFzR9c0TiabiWxPNrJnsk1bm4AFAAAAAAAAAAAAAACwLdpybfHS+EsxNjAWH45+GPlr+W1by55tmxkAAAAAAAAAAAAAACAiekd6I92e3tY1CFgAAAAAAAAAAAAAAADb7vSl0xuqK10qNWX+vU0ZBQAAAAAAAADgMd7qfWu7lwAAAADsYJ3nOjdUVy6Uo/ty96bnF7AAAAAAAAAAAAAAAAB2lNpHtagm1cf2my3PRr1Wb8qcAhYAAAAAAAAAAAAAAMCOUP5xOUpDpaaFJtZDwAIAAAAAAAAAAAAAANh2yTtJjPWPRSabic58Z6TSqcfWzE7Oxq13bzVlfgELAAAAAAAAAAAAAABg273z2juRL+aj81znuuquHLrSlPn3NGUUAAAAAAAAAAAAAACATUhlUusOV0REpNvTTZlfwAIAAAAAAAAAAAAAANh2bbm2DdX1T/Q3ZX4BCwAAAAAAAAAAAAAAYNvVa/VtnX/vts4OAAAAAAAAAMC2eKv3re1eQnx77NvbvQQAAAB2kM58Z3z4kw/j6LeOrquudKkU3Ze7Nz2/HSwAAAAAAAAAAAAAAIBtlz2Tjcp0JT78yYfrqisXyk2Z3w4WAAAAAAAAAAAAAADAtqt9VItj+WPxQfGDuPri1Wjvbo/WjtbIZDMr1syWZ6NeqzdlfgELAAAAAAAAAAAAAABg243kRuLunbsRETE/Px8zkzPR0tKyZfMLWAAAAAAAAAAAAAAAANtuf+v+iIg4dv5YpNKpNdXMTs7GrXdvNWV+AQsAAAAAAAAAAAAAAGDbZbKZOP3a6ci9nFtX3ZVDV5oy/56mjAIAAAAAAAAAAAAAALAJmWwmMtnMuuvS7emmzG8HCwAAAAAAAAAAAAAAYNudfePshur6J/qbMr8dLAAAAAAAAAAAAAAAgGeegAUAAAAAAAAAAAAAALAr1e/U473vv9eUsQQsAAAAAAAAAAAAAACAXamaVOODtz9oylh7mzIKAAAAAAAAAAAAAADAJtx699a6a24M34h6rd6U+QUsAAAAAAAAAAAAAACAbXet71rcvXN3XTXz8/OxP7O/KfMLWAAAAAAAAAAAAAAAANtuf+uDoMSx88cilU417FOv1aOaVGNmYiay3dk48uKRps0vYAEAAAAAAAAAAAAAAGy7TDYTp187HbmXc2vqf+M/34j9mf1r7v84e5oyCgAAAAAAAAAAAAAAwCZkspnIZDNr7n/q1VORyqTi1ru3mjK/gAUAAAAAAAAAAAAAALDtzr5xNtq/0b6ums5znTE9Pt2U+QUsAAAAAAAAAAAAAACAZ56ABQAAAAAAAAAAAAAAsGvVklpTxtnblFFgh3qr963tXkJ8e+zb270EAAAAAAAAAAAAAICnUv1OPeaqc00ZS8ACAAAAAAAAAAAAAADYdrfevbXmvvVaPapJNSZHJqNroKsp8wtYAAAAAAAAAAAAAAAA2+5a37W4e+fumvvPz89HtjsbJ793sinzC1gAAAAAAAAAAAAAAADbbn/r/oiIOHb+WKTSqdX7Htofbbm2yJ7JNm1+AQsAAAAAAAAAAAAAAGDbZbKZOP3a6ci9nNuW+fdsy6wAAAAAAAAAAAAAAAAPyWQzkclmtm1+O1gAAAAAAAAAAMAONVmYjKniVHQNdEW2OxupdCqqSTVmy7PxwdsfxOlLp6Mt17asrl6rxy8u/yIiIg4cOhCV6Up09HREZ1/ninNtpAYAAKCZzr5xdlvnF7AAAAAAAAAAAIAdql6rR1JKIiklS46n0qnIF/MrhisKXYVl7WMDY3H75u3oGe5pSg0AAPBkzJZnY2JkIuqVesyWZyOVTkXXQFd09XetWLNVIeunPZgtYAEAAAAAAAAAADvY2ZGzUZmuRC2pRao1FUe6jqz6wapivhhH+44uC1/0jvTGcGY4Ono6Itud3XQNAADQfJOFyYh48Fp8QVJKopgvxo3hG9E/2R+pdGpJzVaFrLcjmF37qBYTIxPxSfmTmKvMxf7W/ZHOpuPEwIk4/Pzhps8nYAEAAAAAALtQNanG9eHrERFRr9SjXqtHticbpwZPrVjj7lUAALA7HTt/bNkHqFZSTaqRlJI4O3K2YXvn+c64MXxjSVhiIzUAAEDzVZNq1Gv1Zb/rz3Zn4zvvfCcKXYUo5ovx0vhLS9q3KmS91cHs0qVSvHflvZifn1/WVi6UozPfGb2F3tj35X1Nm1PAAgAAAAAAdpmp0am4ffP2krtXRUQUugoxOTIZr0y/sqzmab57FQAA8IWJkYmIiMhkMw3bWztao1woR71WXwxtbKQGAABovomRifj6pa83bGvLtUW2OxtJKYlqUl18/b5VIeutDGbX7zx4r2GuMhdHzx2NIy8eWbwWqdfqMffpXMxOzsYH1z6IpJTEn936s9j3peaELPY0ZRQAAAAAAGBL1Gv1+ODtDxoGFXqv9kY1qcbYwNiyttXuKlUulCMpJdtWAwAANM8n5U9WDUEsfAhrZmJmUzUAAEDz3Srdir9q/6uo1+oN2w/nDkdExGx5dvHYWgLTSSlZMuZW1WxUMV+MbHc2hipDkb+Wj1Ovnoqui13RdbErTr16Krpf746Xxl+KoepQHD13NP7bN/7bpudcIGABAABPibGBscd+UGmyMBlv9rwZU6NTixcz1aQaU6NTUcwXl1x8Paxeq8f40HiMD43HjSs3YmxgLKZGp1adayM1AADA481MzMTU6FSMD40va1sINdwq3VpyfOGuUicGTjQcc+GuUttRAwAArN1seTYmC5Mr/j4/4sHr8v2t+1dsXwhSVJPqpmoAAIDm29+6P+q1+rpee29VyHqrgtmTVycjk83E2Tca75TxsNTBVPSO9EZbV1uUf1ze1LwL9jZlFAAAYFssfHhpcuTBmynH8sdW7V+v1SMpJcuCGKl0KvLF/LI7zC7UFLoKy9rHBsbi9s3bDe+au5EaAABgbfa37o9UOhUHDh1Ysc+jb3Cs5a5S5UI56rX6Yu1W1QAAwLPo3t178Zu7v1l8/E//8E+r9k9KSVSTamS7s9HV3xWz5dl4s+fNODV0KrLd2SV95ypzK74mj4jFIMXDd5XdSA0AANB8L42/FNWkuuLr81pSi4hY8nmcrQpZb1Uw+1bpVvS93beumrNvnI2//oO/jtzLuU3NHSFgAQAAu9ZkYTKS8SSyPdnoHu6ON3veXFPd2ZGzUZmuRC2pRao1FUe6jkRXf9eK/Yv5YhztO7osfNE70hvDmeHo6OlY9ubNRmoAAIC1acu1xVB1qGHbwl1s27vblxxfz12lFl6rb1UNAAA8i65fvh4//4ufLz6+E3dW7LvwOvrU4KnFY225tsgX8zGcGY7+yf4lv49fawji808/31QNAACwdusJWa8Wfp4anYq2XNuSPlsVst6qYHYqs7EbNKXb05uad4GABQAA7FJd/V2LwYjVtgJ/1LHzx9Z8p9iFHTLOjjTecq/zfGfcGL6x5INRG6kBAACaozRUikw2s2zXuKft7lUAALDbnb50Or72519bfHz79u34QecPGvbt7OtseDyVTkVnX2cU88V4ZfqVJ7JOAACgOdYTsl7JjSs3IiKi92rvkuNbFbLesmB2yxbXPULAAgAAWNHEyERErJyMb+1ojXKhHPVaffGDUhupAQAANqeaVOP68PVIZ9Px0vhLy9qftrtXAQDAbrd3397Yu++Lj+389me/vaFxjrx4JKZGp6KaVBdfi6fSqTW95j5w6MDi/2+kBgAAWLv1hKwbmS3PRmmoFPlifskOdk+jemVj7yHUklpT5t/TlFEAAICn0iflT1YNQSy8WTMzMbOpGgAAeNbdu3sv7n52d/Hrn//xn9dUNzU6FeND41EaKkUqnYpj+WMN+z11d68CAAAi4otd4h7e6Xq1XeUiHgSjH67daA0AALB2e/ftjX1f3rf49dtfWl/IupgvxtmRsw13uNuqkPVWBbPT7en48L9/uK6a977/Xhx+4fCm5l1gBwsAAHhGzZZnY2ZiJo6cOLJisr2aVFd9U2XhjZRqUt1UDQAAPOuWbQ2+Z21bg3f2dS55M+XNnjdjcmQyeq/2+uATAAA8BcYGxuJW6Va8Mv3Kmmsy2cyqNzla+EDUw7vPbaQGAADYGsV8MboGuqKrv6th+1aFrLcqmN39enf88Ks/jIiIo3949LH9J69OxvXL12Pw08FNzbtAwAIAAJ4xSSmJalKNbHc2uvq7YrY8G2/2vBmnhk5Ftju7pO9cZW7VN0sWLpweTqdvpAYAAJ51j24N/vHHH8cP/vXatwZfkC/mYzgzHPVaPV4af2nx+NN29yoAAHhWzE7MLn5IqZGF198P30jpcO5wJKVkxZqFGyA9/J7ARmoAAIAnb3xoPI68eCRODZ5asc9Whay3Mpidv5aPwolCdHyzIzr7OuPIiSOLwY16rR5zlbmYHp+OD0c/jGpSjYsTFzc954I9TRsJAABomnt378Xdz+4ufv3zP/5zU8ZduIA5NXhq8c2Wtlxb5Iv5eLPnzSVbiEesPQTx+aefb6oGAACedY9uDf7c7zy3oXFS6VR09nVGUkqWfDjqabt7FQAAPCvau9tjqDq0YvvMzZlIpVNLPsB0/MLxiIhlv/N/uObRoMRGagAAgCdrsjAZrR2tDcMVD38+53Du8Kqf11kpZL0VNRvVlmuL/on++Pz/93mM9Y9FoasQP+z4Yfyw44dR6CrEmz1vxo3hGzE/Px///mf/PtpeaHv8oGskYAEAADvQ9cvX4/WDry9+/ejf/Kgp43b2dUZnX+ey4wsfwirmi02ZBwAAeHLqtfrimxSNpLPpiIiYHp9ePJbJZtZ019tH70S1FTUAAMDKjl84HpOFyYZt1aQaU6NT0Xu1d8nxtlxbZLuz8au3f9Wwbmp0Kk4Nndp0DQAA8ORMjU5FRERXf9eytmpSXXKTpa0KWW91MLst1xb9k/1x9o2zcfj5wzE/P7/4lW5PR/dwd7zy61cie6a5YfC9TR0NAABoitOXTsfX/vxri48//vjj+MG//sETnfPIi0dianQqqkl18cNOqXRqTTtSHDh0YPH/N1IDAACs3XBmOCIihqpDDXeCWHit/ejdqx5+s+VRK92JaitqAACAlbXl2iIpJXHjyo0ld62tJtUodBXi5ODJhjdWyhfzUegqxPELxxd3tI6IGBsYi5ODJxu+Jt9IDQAA0Hyz5dmYq8w1DFdERCSlZMnr84cD0w+/ll8wNToVL42/tOTYVtU0Q1d/14p/F0+CgAUAAOxAe/ftjb37vni5/tzvPPfE51z4YNZseXYxYLG/df+qNQt3pn34Q10bqQEAANYulU7F/tb9K76mrkxXIiLiSNeRxWPHLxyP9668F7Pl2YZveqx0J6qtqAEAAFZ3avBUJKUkxgbGol6pR71Wj1Q6Fd955zsNX3dHPLhu6J/sj/Gh8UilU3Hg0IGoTFeio6ejYSBjozUAAEBzVZNqFPPFaO9uj5mBmWXt9Uo9klISQ9WhJce3KmT9LASzBSwAAOAZMTYwFrdKt+KV6VfWXJPJZmJmYvnF2oKFO+IuBDI2WgMAAKxdrj8XJwZOrNg+dW0qUulUHDt/bPHY0373KgAAeNplu7Pr/qBSKp2K3pHeJ14DAAA0z5s9b0Y1qUa1UF2xT6PP3GxVyHorg9lTfzMV5UI55qpzkb+Wj/RX0kvaq7eqURoqxb/4vX8RJ793smnzClgAAMAzYnZidnH3iEYWgg8PfwjqcO5wJKVkxZpq8uBi7uE3dTZSAwAArF3PcE+MDYzFsfyxZa+ri/liRER8553vLNvhwt2rAAAAAABgZ1vPjVMftVUh660IZpculeLIiSNx++btuHvnbsyWZ5cFLDLtmchfy0fyThKlS6XovtzdlLkFLAAA4BnR3t0e/cP9K7bP3JyJVDq1JOV+/MLxeO/KezFbnm1499mZmzPLPhy1kRoAAGB9ekd6Y2p0Kor5YqRaU1Gv1KNeq8fh3OH4s1t/tixcEfF03r0KAIDd763et7Z7CRER8e2xb2/3EgAAAIiIW+/eikw2E53nOiPmH+xUcfRbR1fsnz3z4HNIH/7kw1X7rZWABQAAPCOOXzgek4XJ6OrvWtZWTaoxNToV+WJ+yfG2XFtku7Pxq7d/1TAsMTU6FS+Nv7TpGgAAYP06+zrXHVh4mu5eBQAAAAAAPH0+KH4QZ390NiJize+DZM9k46d/+tOmBCz2bHoEAABg21WTakRE1Gv1Ffu05dqiXqvHjSs3ltUWugpxcvBkw4uSfDEfH45+GLPl2SXHxwbG4uTgyYa7UWykBgAAAAAAAAAAeMbNb+/0W76DxbvvvhtJkkQ2m40TJ07El7/85a1eAgAAPBWmRqdicmQyIiJmJmYiImLs4tjisc5857LdKk4NnoqklMTYwFjUK/Wo1+qRSqfiO+98p+FuExEP7jzbP9kf40PjkUqn4sChA1GZrkRHT8eKKfGN1AAAAAAAAAAAAM+2enXlG8yuppbUmjJ/UwMWr732Wty5c2fJsR/96EcREXHnzp3o7u6Ocrkc8/Pzkc1mo1qtxujoaPz+7/9+M5cBAADPhM6+zg2FFbLd2XXvIJFKp6J3pPeJ1wAAAAAAAAAAAM+uynRl3TX1O/X4/NPPmzJ/UwMWAwMD0dHREQMDA9Hf3x8vvPDCYls+n4/JyckYHByM119/PSIiarVanD9/Ptrb2+MrX/nKhuas1Wpx+fLliIg4dOhQTE9PR09PT/T19W36z1MoFKJYLEY6nY6IiGw2G8PDw5seFwAAAAAAAAAAAAAAWOrY+WMxemE0+t5eex5g9PxoHP+j402Zv6kBi1/+8pdRLBbj3LlzS47/zd/8TZRKpcjn84vhioiIdDod165di0uXLi3udLEetVoturq6olgsRi6XWzw+MDAQN2/e3HAYolarxZkzZ6K7uzvGx8cXjydJEkNDQ0IWAAAAAAAAAAAAAADQZKcGT8UPv/rDGP2j0ei92hv7vrRvxb6fvP9JjF0ci3qtHie/d7Ip8zc1YHHz5s3F3SQe9vbbb0dLS0tcunRpWVs6nY6DBw9uaL58Ph99fX1LwhURESMjI5HJZKKnpye6u7vXPe5CuOLRIMXAwEBMTEwIWAAAAAAAAAAAALBt3up9a7uXEBER3x779nYvAQB4Cr30s5fih1/9YUwVpyLbk41sdzZS6VTsb90fc5W5qExX4lbpVsyWZ2N+fj4GygNNm7upAYv5+fmGx0ulUkREPP/88w3bW1pa1j1XkiRRKpViZGSkYfv58+djeHh43QGLK1euRJIkDUMU6XQ6Tpw4se61AgAAAAAAAAAAAAAAj5fJZmKoMhTFfDGmfzYdyXiyrM/8/Hxku7NxduRsZNozTZu7qQGLQ4cOLTt269atqNVq0dXVtWJdrVZb91wLwYpsNtuwvaOjIwqFQtRqtUin02se9/Lly9Hf39+wrVgsrnudAAAAAAAAAAAAAADA2qXSqXhp/KVI3kliqjgVMxMzUa/VI5VORSabia6BrsieaZwl2IymBiwa7UQxOjoaEbHqThIr7XyxmnK5vGpwYiF4MTExseZdLEZHR6NWq8WFCxfWvR4AAAAAAAAAAAAAAKB5smeyTyRIsZI9zRzsf/7P/xmfffbZkmMjIyPR0tKyYmjh0qVLMTAwsO65kiSJ1tbWFdsXwhdJsnw7kJW8/fbbERGRy+Ui4kGIo1AoRLlcXvf6AAAAAAAAAAAAAACA3aOpAYtLly5FPp+Pv/3bv433338/Lly4EEmSRF9fXzz//PNL+r7//vvxB3/wB3Ho0KF44YUX1j1XpVJZdQeLhfBFrVZb85gPBymuXLkSlUol+vv7IyKip6cnjK5A0gABAABJREFUSqXSutcJAAAAAAAAAAAAAADsfHubOdjBgwfj8uXLce7cucWdI/r6+hZ3hoiI+O53vxulUmmxvVQqxaeffhqXL19e11xrDU58+umnax5zIbRRKBRicHBw8Xgul4tisRjt7e1RLBaju7t71XHm7s3FP977x8XHz+15Lp77refWvA6eLvfu3dvuJcS9e/fi/v37O2ItsMB5yU7l3GSnun///nYvgVXshGsA37d2Dj9LeJRzgkc5J3iUc4JGXAPsbJ//5vPYd2/f4mPvA+x88y3zMR/zMd8yH/fDv6/dxvO3e3nudi/P3e7ludu47b4m2+75ebw7d+5EpVJZfLxv377Yt2/fKhU8Kfdbdu/3t6fx+7TvX9vH7xVpJucTzeR8Wht/PztXUwMWEQ/CCL/+9a/jzp07cfDgwWXtQ0NDMTQ0tOTYwm4T220htNFoPel0Orq7u2NgYCCmp6dXHWfo/1z65/u3uX8b/+7Ev2vaOtldrl+/vt1LiPv378fHH38cERF79jR14xrYMOclO5Vzk51qPcFhtt5OuAbYCa87ecDPEh7lnOBRzgke5ZygEdcAO9tOuAZgfeZjPua+NBeVqERLtGz3clgnz9/u5bnbvTx3u5fnbuO2+3esD39wn53p+eefX/L4j//4j+NP/uRPtmUtz7pK2+799/I0fp/e7u+fzzK/V6SZnE80k/NpbVwD7FxND1gsWAhXfPbZZ1GpVOIrX/lKRES0t7c3Zfx0Or2mXSwOHTq07jFX2qGip6cnRkdHo1wuRy6XW3Gc4f9lODKpzOLj5/Y8F8/NunPVs+r06dPbvYTFlNvJkydj794n9s8e1sV5yU7l3GSnWrjwZGfaCdcAO+F1Jw/4WcKjnBM8yjnBo5wTNOIaYGfbCdcArM98y3xUohKtn7RGy/zT8SGmZ4nnb/fy3O1enrvdy3O3cdv9O9a///u/39b5ebz3338/fvd3f3fxsR0sts/t/3J7u5ewYU/j9+nt/v75LPN7RZrJ+UQzOZ/WxjXAzvVEztqPPvoohoeHo1AoRERES0vLkm1Mbt26FUNDQ/HNb34zXn755Q3N8bhdLxZSPel0el1j1mq1FWsW5pyYmFg1YLF/7/74nb2/s/Tg/JqXwVNmp/xw2LNnT+zdu3fHrAcinJfsXM5NdiKJ/p1tJ1wD+J61s/hZwqOcEzzKOcGjnBM8yjXAznbgtw5s+zUA63M/7kdLtETLfEvsmffva7fx/O1enrvdy3O3e3nuNm67r8e2e34e7+DBg4/9vBJbYzd/f3sav0/7/rW9/F6RZnI+0UzOp8fzd7NzNf1V2rvvvhvZbDZGRkaivb09zpw5s2zXivb29rh27Vq0t7fH97///Q3Nk81mV90aZWF3i2w2u+YxVwtNNBobAAAAAAAAAAAAAAB4OjQ1YHHr1q3o6+uL/v7+mJ6ejl//+tfxs5/9LM6dO9ew/0L44t133133XLlcbtWgQ5IkERHR3d295jFffPHFiFg5QLEQ6FhrEAMAAAAAAAAAAAAAANgdmhqweO2112J4eDjeeOONJbtWtLS0rFhz7ty5KBaL657rwoULERFRLpcbtt+8eXNd4YqIiL6+voiIKJVKDdunp6cjIuLEiRPrGhcAAAAAAAAAAAAAANjZmhqwqFarcfHixXXXzc/Pr7sml8tFd3d3vP322w3bR0dHY2hoaNnxWq0WQ0NDDUMU2Ww2+vr64vLlyyuOOTg4GOl0et3rBQAAAAAAAAAAAAAAdq6mBiyy2eyG6qrV6obqisVijI6OLtvFYmBgIAYHBxvuYFEoFOLKlSuRz+cbjnn16tWo1WpRKBSWHM/n85HNZmN4eHhDawUAAAAAAAAAAAAAAHauvc0cbKNBiSRJNlSXTqdjcnIyhoaGIp1Ox6FDh2J6ejp6enqir6+vYU13d3ek0+k4f/78qmNevnx5MYRRq9Uin89Hf3//htYJAAAAAAAAAAAAAAA8GaVLpei+vHyDhvVqasAik8nE//F//B/x+7//+2uuuXTpUpw5c2bDc6bT6RgZGVlz/1wu99ggSDqdtlMFAAAAAAAAAAAAAADsAuVCeecFLAYHB+Ob3/xmXL16dU0hi+9///sxOjoa/+N//I9mLgMAAAAAAAAAAAAAANjFah/VopqsvrlCRMRseTbqtXpT5mxqwCKbzcYbb7wRZ86ciRMnTsSFCxfihRdeiFqtFh999FHUarWoVCpRLpdjZGQkkiSJycnJZi4BAAAAAAAAAAAAAADYpco/LkdpqNS00MR6NDVgERHR3d0d165di/7+/hgcHFw8XigUFv9/fn4+stlsTExMxPPPP9/sJQAAAAAAAAAAAAAAALtM8k4SY/1jkclmojPfGal06rE1s5OzcevdW02Zv+kBi4iIvr6+6OvriytXrsTbb78dv/zlLxfbstlsDAwMxKuvvvokpgYAAAAAAAAAAAAAAHahd157J/LFfHSe61xX3ZVDV5oy/xMJWCwYHBxcsosFAAAAAAAAAAAAAABAI6lMat3hioiIdHu6KfPvacooAAAAAAAAAAAAAAAAm9CWa9tQXf9Ef1Pm3xEBi0uXLm33EgAAAAAAAAAAAAAAgG1Ur9W3df4dEbAoFArbvQQAAAAAAAAAAAAAAGAbdeY748OffLjuutKlUlPm39uUURr46KOPIkmSx/Yrl8tRq9We1DIAAAAAAAAAAAAAAIBdIHsmGzf+84348CcfxtFvHV1zXblQju7L3Zuev+kBix//+McxNDQkNAEAAAAAAAAAAAAAAKxZ7aNaHMsfiw+KH8TVF69Ge3d7tHa0RiabWbFmtjwb9Vq9KfM3NWDxzjvvRH9/f2Sz2cjn85FOpx9bMzk5Ge+++24zlwEAAAAAAAAAAAAAAOwyI7mRuHvnbkREzM/Px8zkTLS0tGzZ/E0NWLz22mtRLBbj3Llz66o7dOhQM5cBAAAAAAAAAAAAAADsMvtb90dExLHzxyKVTq2pZnZyNm69e6sp8zc1YJHJZNYdroiIaG9vb+YyAAAAnjlv9b613UuIb499e7uXAAAAAAAAAADALpbJZuL0a6cj93JuXXVXDl1pyvx7mjLK/yOXW98fYsHExEQzlwEAAAAAAAAAAAAAAOwymWwmMtnMuuvS7emmzN/UHSxqtVozhwMAAAAAAAAAAAAAAJ4RZ984u6G6/on+pszf1B0s8vl8/OQnP1l33aVLl5q5DAAAAAAAAAAAAAAAgHVpasDizJkzMT09ve6QRaFQaOYyAAAAAAAAAAAAAACAXa72US1Kl0rx13/w13H1xavx13/w1/HTP/1pfPL+J09kvr3NHOyjjz6KfD4fxWIxXnzxxeju7o6Ojo7IZrMr1pTL5ajVas1cBgAAAAAAAAAAAAAAsIuVLpXivSvvxfz8/LK2cqEcnfnO6C30xr4v72vanE0NWORyubhz505ERMzPz8fk5GS0tLQ0cwoAAAAAAAAAAAAAAOApVb9Tj0JXIeYqc3H03NE48uKRSKVTD9pq9Zj7dC5mJ2fjg2sfRFJK4s9u/Vns+1JzQhZNDVi0trZGRMT58+cjnU6vqWZycjLefffdZi4DAAAAAAAAAAAAAADYhYr5YmS7s3H2jbOr9qvfqcf44Hj8t2/8t7h482JT5m5qwCKbzcZrr70WL7/88rrqDh061MxlAAAAAAAAAAAAAAAAu8zk1cnIZDOPDVdERKQOpqJ3pDd++t2fRvnH5ci9nNv0/Hs2PcJDstlsZLPZdde1t7c3cxkAAAAAAAAAAAAAAMAuc6t0a03hioedfeNsTBWnmjJ/U3eweOONNzZUNzEx0cxlAAAAAAAAAAAAAAAAu0wqk9pQXbo93ZT5mxqwAAAAAAAAAAAAtsbYwFicHjodmWymYXu9Vo9fXP5FREQcOHQgKtOV6OjpiM6+zhXH3EgNAABA07Rscd0jnmjA4qOPPoqRkZEol8tRqVSitbU1stlsDAwMxPPPP/8kpwYAAAAAAAAAgKfWbHk2yoVynBg40bC9XqtHoasQ+WI+2nJti8fHBsbi9s3b0TPc05QaAACAZqpX6huqqyW1psy/pymjNHDp0qXo6OiI4eHhGB8fj8nJyRgfH4+RkZHo6uqKP/qjP4rPPvvsSU0PAAAAAAAAAABPrdJQadX2Yr4YR/uOLglKRET0jvRGuVCOpJQ0pQYAAKCZ0u3p+PC/f7iumve+/14cfuFwU+Zv+g4Wd+7cia6urqhUKnHu3Ll48cUXI51OR0RErVaLTz/9NCYnJ+PatWtRKpXi1q1b8aUvfanZywAAAAAAAAAAgKfSZGEyOvOdKwYeqkk1klISZ0fONmzvPN8ZN4ZvRLY7u6kaAACAZut+vTt++NUfRkTE0T88+tj+k1cn4/rl6zH46WBT5m96wCKfz0d3d3e88cYbq/a7c+dODA4Oxje+8Y24efNms5cBAAAAAAAAAABPnWpSjYiITDazYp+JkYlV+7R2tEa5UI56rR6pdGrDNQAAAE9C/lo+CicK0fHNjujs64wjJ44sXofUa/WYq8zF9Ph0fDj6YVSTalycuNi0uZsasLh69Wpks9nHhisiIg4ePBgjIyPx3e9+N3784x/Hyy+/3MylAAAAAAAAAADAmrzV+9a2zv/p3Kdr7jsxMhE9wz0r7l4REfFJ+ZNVQxALIYqZiZnFHSk2UgMAAPAktOXaon+iP8YujsVY/1i0tLQs6zM/Px+ZbCb+/c/+fbS90Na0ufc0baSIKJVKawpXPOyNN96IYrHYzGUAAAAAAAAAAMBTZ2p0Kk4MnHhsv2pSjf2t+1dsXwhSLOyGsdEaAACAJ6Ut1xb9k/1x9o2zcfj5wzE/P7/4lW5PR/dwd7zy61cie6a5AfCm7mCRyay89eBq2tvbm7kMAAAAAAAAAAB4qtRr9agm1ejs63xs37nK3OKOE40sBCnqtfqmagAAAJ60rv6u6Orv2rL5mhqwaLT1xpOsAwAAAAAAAACA3eb+b+7H/P35Lx7fu//Yml9c/kX0DPesafy1hiA+//TzTdUAAAA8bZoasKhUKhuqS5KkmcsAAAAAAAAAAIAdq/LrSlT+xxefs7kTd1btn5SS6OjpeNLLAgAA2LU+/MmHcfRbRzc9zp4mrGVRe3t7/Pf//t/XVfP9738/XnjhhWYuAwAAAAAAAAAAdqzWr7ZGxx90LH595f/9lVX7T49PR7Y7u+bxU+nUmnakOHDowKZqAAAAdoqxi2NNGaepO1i8/vrr8dWvfjUiIv7wD//wsf2vXr0aly9fjk8//bSZywAAAAAAAAAAgB1rz2/tifithx7fW/keqTeu3IivX/r6usbf37p/1fa5ylxEPAhVbKYGAABgIz55/5M4/PzhFdvWY64yF9WkuqbA+Fo0NWAREXHt2rU4ceJEfPOb34y+vr44ceJEpNPpiIio1WpRqVRifHw8RkdHI0mSmJiYaPYSAAAAAAAAAABg16sm1UilU+sONWSymZiZmFmxfeGDR5lsZlM1AAAA61V6rRTv/ef3oq2rLS7+XxeXtf/Xb/zXuHvn7jas7IGmByxyuVxMTEzExYsXo7+/P1paWpb1mZ+fj2w2Gz/72c/ihRdeaPYSAAAAAAAAAABg15stz8ZUcSqmilPL2qpJNSIixi6OLe4+8dL4SxERcTh3OJJSsuK4C7XZ7uzisY3UAAAArFc1qcb8/HzUq413nFi4vunq73rw+NBjdtv7dC6q09X48CcfNmV9TQ9YRDwIWUxOTkahUIiRkZH45S9/udiWzWZjYGAgXn311ScxNQAAAAAAAAAAPBU6+zqjs6+zYdvU6FQU88Xovdobbbm2JW3HLxyP9668F7Pl2WVtEREzN2eWBSU2UgMAALBevVd7I9uTXfH6IpPNxOnXTkfu5dy6xr1y6EozlvdkAhYL+vv7o7+//0lOAQAAAAAAAAAAPKQt1xbZ7mz86u1fNQxLTI1OLe52sZkagLd639ruJcS3x7693UsAANYhdTAVXRe7VmzP9mTjyIkj6x433Z7exKq+8EQDFsDOuIi433I//sWf/4vtXgYAAAAAAAAA0CTVpLr430aBiHwxH4WuQhy/cHxJ+9jAWJwcPNnwbrEbqQEAAGimU6+e2lBd/0RzNobYEQGLS5cuxeXLl7d7GQAAAAAAAAAAsKONDYxFLanFzMTMg8cXx2JyZDIO5w5Hz3DPYr9UOhX9k/0xPjQeqXQqDhw6EJXpSnT0dERnX2fDsTdSAwAA8DTZEQGLQqEgYAEAAAAAAAAAAI/RO9K75r6pdGpd/TdaAwAAPBljA2NxLH9s1d3kJguTMVWciq6Brsh2ZyOVTkU1qcZseTY+ePuDOH3pdMNd7+q1evzi8i8iItYcrt5ITbMl7ySRjCcRLRGtHa1x5MSROPz84aaNv+aAxfvvv9+0SRdUKpVIkiRqtVrTxwYAAAAAAAAAAAAAgN2kmlQjKSUxOTIZs+XZOJY/tmr/eq0eSSmJpJQsOZ5KpyJfzK8Yrih0FZa1jw2Mxe2bt5fsjreZmo24cuhKDH46uGJ79kw2smeyUb9Tj7nKXCSlJCZGJqJnuCf2fXnfpudfc8DiG9/4Rty5c2fTEwIAAAAAAAAAAAAAAEtNFiYjGU8i25ON7uHueLPnzTXVnR05G5XpStSSWqRaU3Gk60h09Xet2L+YL8bRvqPLwhe9I70xnBmOjp6OZbtmbKRmI+bn59fUL3UwFamDqei62BX1O/UYHxqPsz86u+n51xywaG1tjYiI/v7+iIg4dOjQpif/9NNPY3p6On7yk59seiwAAAAAAAAAAAAAANituvq7FoMRs+XZNdcdO38sUunUmvou7JBxdqRxGKHzfGfcGL6xJCyxkZqNamlpWXdN6uDa/uxrseaARTabjddeey1efvnlpk2+oBlhDQAAAAAAAAAAAAAAYGUTIxMREZHJZhq2t3a0RrlQjnqtvhja2EjNVqrfqcfsxNoDKatZc8Ail8tFNrv5REkj7e3tT2RcAAAAAAAAAAAAAADggU/Kn6waglgIUcxMzCzuSLGRmtXUPqo1PD4/P/+g/e9qEfOrj1Gv1WOuMhez5dm4fvl6dJ7vfOy8a7HmgMXrr7/elAkbmZiYeGJjAwAAAAAAAAAAAADA0262PBszEzNx5MSRaMu1NexTTaqxv3X/imMsBCmqSXVTNauZmZyJmZszUU2qkZSSuHvn7pL2H2Z/uKZxIh6EMrLd2Tj7o7NrrlnNmgMWAAAAAAAAAAAAAADA+ty7ey9+c/c3i4//6R/+qanjJ6Ukqkk1st3Z6OrvitnybLzZ82acGjq1bEeJucrc4o4TjSwEKeq1+qZqVtN5rjM6z32x48RseTZKQ6VI3kmipaUljp47uqZxMtlMZHuykT3z+F0z1uqJBCz+5m/+JgqFQlSr1bh27Vp85StfWdJ+69atGBoait/7vd+L733ve09iCQAAAAAAAAAAAAAAsO2uX74eP/+Lny8+vhN3mjb2QvDh1OCpxWNtubbIF/MxnBmO/sn+JbtZrDUE8fmnn2+qZj3acm3x0vhLMTYwFh+Ofhj5a/kNjdMMe5o94KVLlyIi4ubNmzE5ORnlcnlZn/b29rh27Vq88MILi/0BAAAAAAAAAAAAAOBpc/rS6XjtzmuLX/9x6j82bezOvs7o7OtcdjyVTkVnX2cU88WmzfWk9Y70Rro9va1raOoOFu+++25ks9k4d+5czM/Px61bt+Jb3/rWiv3PnDkTERE/+clPVu0HAAAAAAAAAAAAAAC70d59e2Pvvi8+uv/bn/32lsx75MUjMTU6FdWkurjTRSqdWtOOFAcOHVj8/43UbNTpS6c3PcZmNHUHi2KxGBcvXoyIiL6+vnj11VcfW3PmzJkYHx9v5jIAAAAAAAAAAAAAAOCZlkqnIiJitjy7eGx/6/5Va+Yqc0tqN1qzUZ3nlu/GsZWaGrCYn59v5nAAAAAAAAAAAAAAAEADYwNj8cOOH66rJpPNLAYiGlnYqWJhx4uN1myl+p16vPf995oyVlMDFtVqdUN1SZI0cxkAAAAAAAAAAAAAAPBUm52YXVPwoS3XtnjscO7w4vFGqsmDTEC2O7upmq1UTarxwdsfNGWsvU0Z5f8xPT297po7d+7Ep59+2sxlAAAAAAAAAAAAAADAU629uz36h/tXbJ+5OROpdGrJzhLHLxyP9668F7Pl2SXBi4drHg1KbKRmo269e2vdNTeGb6waAFmPpgYszp8/HxcuXIi33357XTV/9Ed/1MxlAAAAAAAAAAAAAADAU+34heMxWZiMrv6uZW3VpBpTo1ORL+aXHG/LtUW2Oxu/evtXDcMSU6NT8dL4S5uu2ahrfdfi7p2766qZn5+P/Zn9TZm/qQGLwcHB+OpXvxp/9Ed/FFevXo0vfelLK/Z9//334+LFi1Gr1eJ73/teM5cBAAAAAAAAAAAAAAC7VjWpRkSsujNDW64tklISN67ciFODp5bUFroKcXLwZHT2dS6ryxfzUegqxPELx5cEJsYGxuLk4MmGu1FspGYj9rc+CEocO38sUulUwz71Wj2qSTVmJh7snHHkxSNNmTuiyQGLiIif/exn8dWvfjWKxWL09PREd3d3pNPpaG1tjUqlEtPT01EqlaJcLsf8/HyUy+VmLwEAAAAAAAAAAAAAAHaVqdGpmByZjIiImYmZiIgYuzi2eKwz37lst4pTg6ciKSUxNjAW9Uo96rV6pNKp+M4732m420RERCqdiv7J/hgfGo9UOhUHDh2IynQlOno6GgYyNlqzEZlsJk6/djpyL+fW1P/Gf74R+zP719z/cZoesMhms1GpVCKfz8fPfvazGB8fX9Znfn4+uru7Y2RkJNrb25u9BAAAAAAAAAAAAAAA2FU6+zo3FFbIdmfXvYNEKp2K3pHeJ16zXplsJjLZzJr7n3r1VEz9zVTcevdWtH9j89mEpgcsIiLS6XSMj4/HO++8E8ViMSYmJqJWq0U6nY5sNhsDAwNx5syZJzE1AAAAAAAAAAAAAACwC5194+y6azrPdUbpUmnnBiwWnDlzRpACAAAAAAAAAAAAAADY8fZs9wIAAAAAAAAAAAAAAAA2qpbUmjKOgAUAAAAAAAAAAAAAALAr1e/UY64615Sx9jZlFAAAAAAAAAAAAAAAgE249e6tNfet1+pRTaoxOTIZXQNdTZlfwAIAAAAAAAAAAAAAANh21/quxd07d9fcf35+PrLd2Tj5vZNNmV/AAgAAAAAAAAAAAAAA2Hb7W/dHRMSx88cilU6t3vfQ/mjLtUX2TLZp8wtYAAAAAAAAAAAAAAAA2y6TzcTp105H7uXctsy/Z1tmBQAAAAAAAAAAAAAAeEgmm4lMNrNt89vBAgAAAAAAAAAAAAAA2HZn3zi7rfPbwQIAAAAAAAAAAAAAAHjm2cECAAAAAAB2mdnybEyMTES9Uo/Z8myk0qnoGuiKrv6uFWvqtXr84vIvIiLiwKEDUZmuREdPR3T2dW57DQAAAAAAwEpqH9Vitjwbc5W5yGQzkclmIv2V9BOZS8ACAAAAAAB2kcnCZERE9I70Lh5LSkkU88W4MXwj+if7I5VOLamp1+pR6CpEvpiPtlzb4vGxgbG4ffN29Az3LJtnq2oAAAAAAAAaufXurfjpwE+jmlSXtbV1tUXv1d44/G8ON3VOAQsAAHhKjA2MxbH8sch2Z1ft5661AACwe1WTatRr9Tg1eGrJ8Wx3Nr7zznei0FWIYr4YL42/tKS9mC/G0b6jS0IPEQ9CGsOZ4ejo6Vh2LbFVNQAAAAAAAI8avTAaU6NTMT8/HxERmWwmIiLmKnNRr9VjZmImCrlCnBo6FWf+8kzT5t2SgMVHH30Ub7zxRty5c2fx2Pz8fLS0tERPT09861vf2oplAADAU6eaVCMpJTE5Mhmz5dk4lj+2an93rQUAgN1tYmQivn7p6w3b2nJtke3ORlJKoppUF99oWLhuODtytmFd5/nOuDF8Y0nwYatqAAAAAAAAHlV6rRTT49Nx5vUz0dnXGZn2zLI+s7+cjV/9f38V11+/HvsP7Y+T/+lkU+be05RRVvHd7343RkdH49KlS/GjH/1o8euNN96IH/3oR3Hw4MG4cOFCvPvuu096KQAA8FSZLExGaagUERHdw91rqlntbrLlQjmSUrJtNQAAwOPdKt2Kv2r/q6jX6g3bD+cebIM9W55dPDYxMhERX9zZ6VGtHa2RlJIlY25VDQAAAAAAwMOSd5JISkn82a0/i1OvnmoYroiIaHuhLXqGe+KVX78SEz+aiNrf1Zoy/5oCFp999tmGBv/TP/3TGBoaiu9973tx8ODBhn3OnDkTb7/9dkxOTgpZAADAOnT1d0W+mI+u/q7Y37r/sf0X7iZ7YuBEw/aFu8luRw0AALA2+1v3R71Wj2pSXXPNJ+VPIpVOrdi+EIiYmZjZ8hoAAAAAAICHlQvl+M4734nUwZXfc3hYJpuJ/LV8lAZLTZn/sQGLq1evRnt7e/zv//v/vq6Bf/zjH0dfX1+0t7evqf+rr74axWJxXXNERNRqtRgaGoqhoaG4cuVKDAwMxOjo6LrHeZyBgYFIEnfZBQBg93LXWgAA2P1eGn8pXpl+ZdlucQtqSS0iYkl7NamuGspeCEU8HNrYqhoAAAAAAICHzc/PrzlcsaAt1xbz8/NNmf+xAYuLFy9GX19fXLx4MX7v934v/u7v/m5NA1er1XjxxRfXtZh0Or2u/rVaLbq6uuLChQsxPDwcg4ODMTIyEuPj4zE0NLSusVZTLpejUChErVZr2pgAALDV3LUWAAB2rnt378Xdz+4ufv3zP/7zin1XCjNHREyNTkVbrm1Jn7nK3Kqv0RdCEQ+HoLeqBgAAAAAA4GGrvQ/yJOoetXctnUZGRiIi4p133olsNhtXrlyJ//Sf/tOqNd3d3XH58uW4fPnymhby2WefRbW6vrtW5fP56Ovri1wut2y9mUwmenp6oru7e11jNtLMsAYAAGwXd60FAICd6/rl6/Hzv/j54uM7e+6se4wbV25ERETv1d4lx9caaPj808+3vAYAAAAAAGCJli2ue8Rjd7BYMDIyEt3d3XHt2rX4X//X/zX+1b/6V/G3f/u3K/Z/4YUXYnp6Oi5duhT/8A//sOrYP/nJT+LMmTPx3e9+d80LT5IkSqVSDAwMNGw/f/58DA8Pr3m8lRQKhcjn85seBwAA1mM9d69dK3etBQCAnev0pdPx2p3XFr/+9G//dF31s+XZKA2VIl/MR1uu7QmtEgAAAAAA4MnKZDNR+6i2rpq7n91d9Yaw67GmHSwWdHR0RE9PT9y6dSsGBwfjhRdeiO9+97vxv/1v/1vD/teuXYt8Ph/pdDqy2WzkcrlobW2NiIhKpRJJkkS5XI50Oh3Xrl2L559/fs1rWdhVI5vNrrjWQqEQtVot0un0ev6Yi5IkWXUOAAB4Uppx99pHuWstAADsXHv37Y29+774lf1zv/PcuuqL+WKcHTkbnX2dy9pS6dSaXqcfOHRgy2sAAAAAAAAe1nWxK0qvleLr/5+vx74v71tTzfjgePRc6WnK/OsKWHR3d8fExER84xvfiJGRkRgYGIjz58/HoUOH4sc//nH84R/+4bKaYrEYSZLE8PBwTE5ORrFYjIgHoYVsNhtvvPFGXLx4cd0LXwhmrGQhFDExMRHd3d3rHj/iQYhjeHg4SqXShuoBAGCjTl86HV/7868tPv7444/jB//6B9u4IgAAYKcq5ovRNdAVXf1dDdsfd8emucpcRMSSnei2qgYAAAAAAHh2rHVnimMXjj14/+O7XZFpz6zYr5pU44O3P4ju4e41hzEeZ10BixdeeCG+//3vxze+8Y2IiMjlcvHrX/86rly5EufOnYvz58/H1atX40tf+tKSumw2u7jjRLMkSbK4G0YjC+GLhV0o1mt0dDQGBgY2VAsAAJu12bvXNuKutQAA8PQZHxqPIy8eiVODp1bsk8lmYmZiZsX2hdfvmewXb1BsVQ0AAAAAAPDsGMmNxN07d9fUd35+PpLS47MAqXQqJkYm4uuX1r7jxWrWFbCIiPj000+XHRscHIy+vr7I5/ORTqejUCjEf/gP/2HTi1tNpVJZ3KWikYXwRa1WW/fYtVotkiSJvr6+jS4PAAB2HHetBQCAp8tkYTJaO1ob7lxRr9UXX3Mfzh1e9Q2IalKNiIhs9xe/c9+qGgAAAAAA4Nmxv3V/1Gv16OzrfOxnjNajXq3HB9c+iNzLuU2Pta6Axa1bt1bcNSKbzcbk5GQUCoV49dVXY2RkJIrFYvzLf/kvN73IRtYanGgUCHmcy5cvx/Dw8LrrFszdm4t/vPePi4+f2/NcPPdbm7/jMGzUfMt83L9/P+7du7fdS4FF9+7dc16yIzk32anu37+/6THctfbJcQ3wgO+dD/hZwqOcEzzKOcGjnBM08rhrgKnRqYiIhuGKalKN2fJsdPZ1RkTE8QvH470r78VseTbacm3L+s/cnFkWetiqmt3q8998HvvufXEXrGf1GmA3mW+Zj/mYf/D78tj8NTZby/O3e3nudi/P3e7ludu95lvmt3sJPMadO3eiUqksPt63b1/s27f5u+Oyfvdbdu/3N9+nn4xn9fdqfq9IMzmfaCbn09o8q38/mWwmTr92uilBiCdlXQGLX/7yl9Hd3b1qn/7+/jh//nxcvHgxstlsDA0NxV/+5V9uapFbqVQqRU9Pz6bGGPo/h5Y8/re5fxv/7sS/29SYsBnzMR/3Pn7wjXjPnj3bvBp44P79+/Hxxx9HhPOSncW5yU61keDwo9y19slxDfDA9evXt3sJO4KfJTzKOcGjnBM8yjlBI6tdA8yWZ2OuMtcwXBERkZSSJa+323Jtke3Oxq/e/lXD4MPU6FS8NP7SkmNbVbNbuQbYfeZjPua+NBeVqERLtGz3clgnz9/u5bnbvTx3u5fnbvf6h7l/2O4l8BjPP//8ksd//Md/HH/yJ3+yLWt51lXaKo/vtEP5Pv1kPKvvUfm9Is3kfKKZnE9r83B491mSyWZ2/E1Z1xWwGB8fjx/96EeP7ZdOp6NYLEapVIrz589HsViM0dHR+Df/5t9seKGN5ljLLhaHDh1a17jj4+Ob2r0iImL4fxmOTOqLJ/65Pc/Fc7PuXMX2mW+ZjyP/ryNx8uTJ2Lt3Xf/s4YlZSF86L9lpnJvsVAsXnpvhrrVPjmuAB06fPr3dS9gR/CzhUc4JHuWc4FHOCRpZ6RqgmlSjmC9Ge3d7zAws3zmuXqlHUkpiqLo0AJAv5qPQVYjjF44veZ0+NjAWJwdPNnyNvlU1u5FrgN1nvmU+KlGJ1k9ao2Xeh5h2G8/f7uW52708d7uX524Xm9vuBfA477//fvzu7/7u4mM7WGyf2//l9nYvYcN8n34yntX3qPxekWZyPtFMzqe1+fu///vtXsK2OPvG2e1ewmOt+az96KOPoqOjI95///24efNmJMmDO9J2dHRENpuNEydOxJe//OUlNd3d3VGpVGJoaCheeOGF+O53vxuvv/76sn4b0draumr7QqonnU6vecwrV67EpUuXNrOsiIjYv3d//M7e31l60E6ObKP7cT/27NkTe/fu9cOKHcV5yU7l3GQnakai311rnxzXAA/4vvkFP0t4lHOCRzkneJRzgketdA3wZs+bUU2qUS1UV6xtdOenVDoV/ZP9MT40Hql0Kg4cOhCV6Up09HREZ19nw3G2qmY3OvBbB1wD7DL34360REu0zLfEnnl3zdttPH+7l+du9/Lc7V6eu93LB613voMHDz7280psjd38/c336SfjWf6dmt8r0kzOJ5rJ+fR4/m52rjU/M/39/YuhhRdeeCG6u7ujtbU1kiSJJElicHAwWlpaYmBgYNmWeMPDw3HhwoXo7++P9vb2+PGPfxx/+Id/uKmFZ7PZmJiYWLF9YXeLbHZtd8NKkiTS6fS6AhkAALBTVJMHH66q1+qr9nPXWgAA2N1emX5lw7WpdCp6R3p3ZA0AAAAAAMBmfPiTD+Pot45uepw1BSwuXboU+Xw+Ll68uKzthRdeiBdeeCHOnTsXERGvvfZaJEkS3/rWt5b0y+VyMTExEVeuXIlz587FN7/5zSgWi/GlL31pQwvP5XJRKpVWbF/YYaO7u3tN45XL5SgWi1EsFlcc6+LFi4tJ9PHx8fUuGQAAmmpqdComRyYjImJmYiYiIsYuji0e68x3Rld/15Iad60FAAAAAAAAAACeNmMXx7YmYPHLX/4yWltbG4YrGnn99dfjtddei1wuF1/5yleWtQ8ODkZ/f3/k8/lIp9NRKBTiP/yH/7DuhV+4cCGuXLkS5XI5crncsvabN2+uOVwREdHX1xd9fX0N20ZHRyOfz8fVq1cbzgUAANuhs69zQ2EFd60FAAAAAIDdp5pU4/rw9YiIqFfqUa/VI9uTjVODp1asqdfq8YvLv4iIWPPNkDZSAwAAsB6fvP9JHH7+8Ipt6zFXmYtqUo16rd6MpT0+YPHOO+/EwMDAuga9cOFClEqlePnllxu2p9PpGB8fj9HR0ejv74+RkZEoFovxL//lv1zzHLlcLrq7u+Ptt99uGHoYHR1tuMtErVaLy5cvR09Pz7oCGAAAAAAAAAAAsB2mRqfi9s3by25sVOgqxOTIZLwy/cqymnqtHoWuQuSL+WjLtS0eHxsYi9s3b0fPcE9TagAAANaj9Fop3vvP70VbV1tc/L+WbwLxX7/xX+PunbvbsLIHHhuwaG9vj4mJifjGN76x5kFv3boVXV1dj+3X19cXPT09MTg4GNlsNoaGhuIv//Iv1zxPsViMrq6uuHDhwpKQxcDAQAwODjYMUBQKhbhy5UoUCoWoVqtrmidJksX/2sECAAAAAAAAAICtUq/V44O3P4h8Mb+srfdqbxS6CjE2MLYsfFHMF+No39ElQYmIiN6R3hjODEdHT0dku7ObrgEAAFiPalKN+fn5qFcb7zixv3V/RER09T/II+w/tH/V8eY+nYvqdDU+/MmHTVnfYwMW586dixMnTsTf/M3frGmHiXfeeScuX74cN2/eXNMCDh48GCMjIzEwMBCFQmFNNQvS6XRMTk7G0NBQpNPpOHToUExPT0dPT0/09fU1rOnu7o50Oh3nz59/7PgDAwORJElMTExERMTFixdjZGQkcrlcDA8Pr2utAAAAAAAAAACwXjMTMzE1OhXjQ+PLdpBYCELcKt1acryaVCMpJXF25GzDMTvPd8aN4RtLwhIbqQEAAFiv3qu9ke3Jrnhtkclm4vRrpyP38vo2Rrhy6Eozlvf4gEVExLVr1+KFF16IF198MXp6eiKXy0Vra+tie5IkcfPmzSiVSlGr1RYDCeuRy+XijTfeWHddOp2OkZGRdc2z1p0r1jMuAAAAAAAAAAA02/7W/ZFKp+LAoQMr9kmlU0seT4w8+OxOJptp2L+1ozXKhXLUa/XF2o3UAAAArFfqYCq6Lnat2J7tycaRE0fWPW66Pb2JVX1hTQGLbDYbt27dir/8y7+MwcHBiIhoaWlZbJ+fn490Oh2XLl2KV199tSkLAwAAAAAAAACAZ11bri2GqkMN22bLsxER0d7dvuT4J+VPVg1BLIQoZiZmFu8au5EaAACAZjv16qkN1fVP9Ddl/jUFLCIiDh48GMPDwzE8PBy3bt2KJEkiSZLIZrORzWajvb398YMAAAAAAAAAAABNURoqRSabiZ7hniXHq0k19rfuX7FuIUhRTaqbqgEAAHgSPvzJh9GWa4v0V9JbPveaAxYPa29vj/b29jhz5kyz1wMAAAAAAAAAAE+1+7+5H/P35794fO/+uuqrSTWuD1+PdDYdL42/tKx9rjK3uONEIwtBinqtvqkaAACAZvvpd38a5avlSGVSMfg/B7d8/g0FLAAAAAAAAAAAgI2p/LoSlf9RWXx8J+6sqW5qdCpu37wdtaQW6Ww6Ono6GvZbawji808/31QNAABAs81V5qL9THu05dq2ZX4BCwAAAAAAAAAA2EKtX21dsltEpV6J+Pnj6zr7OqOzr3Px8Zs9b8bkyGT0Xu2NVDr1JJYKAACwpTLZTHS/3r1t8+/ZtpkBAAAAAAAAAOAZtOe39sRvPfdbi1979m7sIzz5Yj6mRqeimC8uOZ5Kp9a0I8WBQwc2VQMAANBs+w/tj9pHtXXXXTl0pSnzC1gAAAAAAAAAAMAulEqnorOvM5JSEkkpWTy+v3X/qnVzlbnF+s3UAAAANNupV0/F+OB43Hr31rrq5ufnmzL/3qaMAgAAAAAAAAAANF29Vo+5ylxkspmG7elsOiIipsenI9udjYiITDYTMxMzq4650G/BRmoAAACehPy1fLz3/fdicmQyjrx4JNpybbG/df+Kge/p8em4e+duU+YWsAAAAAAAAAAAgB1qODMcERFD1aGGHyY6cOhARHwRgIiIOJw7vGRHi0dVk2pExGIgY6M1AAAAzfYXe/4iWlpaIuLBrhRTo1NbOr+ABQAAAAAAAAAA7FCpdGrVO7VWpisREXGk68jiseMXjsd7V96L2fJstOXaltXM3JxZFpTYSA0AAECzZbKZqCbV6OzrjP2t+9dUM3NzJj55/5OmzC9gAQAAAAAAAAAAO1SuPxcnBk6s2D51bSpS6VQcO39s8Vhbri2y3dn41du/ahiWmBqdipfGX1pybCM1AAAAzZbJZuL0a6cj93JuXXVXDl1pyvx7mjIKAAAAAAAAAADQdD3DPXF9+HokpWRZWzFfjIiI77zznWU7XOSL+fhw9MOYLc8uOT42MBYnB0823I1iIzUAAADNlMlmIpPNrLsulWm869962cECAAAAAAAAAAB2sN6R3pganYpivhip1lTUK/Wo1+pxOHc4/uzWny0LV0REpNKp6J/sj/Gh8UilU3Hg0IGoTFeio6cjOvs6G86zkRoAAIBmOvvG2Q3VvfLrV5oyv4AFAAAAAAAAAADscJ19nesOOaTSqegd6X3iNQAAAE8LAQsAAAAAAAAAAAAAAGDHS95JIhlPIloiWjta48iJI3H4+cNNG39P00YCAAAAAAAAAAAAAADYoCuHrqzanj2Tje7Xu+P0a6ej/Ux73L55O376pz+Nu5/dbcr8drAAAAAAAAAAAAAAAAC23fz8/Jr6pQ6mInUwFV0Xu6J+px7jQ+Nx9kdnNz2/HSwAAAAAAAAAAAAAAIBt19LSsu6a1MFU0+YXsAAAAAAAAAAAAAAAAHal+p16zE7MNmWsvU0ZBdjx/u+3/u+4/V9ux5757ctVfXvs29s2NwAAAAAAAAAAAACw/Wof1Roen5+ff9D+d7WI+dXHqNfqMVeZi9nybFy/fD06z3c2ZW0CFgAAAAAAAAAAAAAAwJaYmZyJmZszUU2qkZSSuHvn7pL2H2Z/uOax5ufnI9udjbM/OtuUtQlYAAAAAAAAAAAAAAAAW6LzXGd0nvtix4nZ8myUhkqRvJNES0tLHD13dE3jZLKZyPZkI3sm27S1CVgAAAAAAAAAAAAAAADboi3XFi+NvxRjA2Px4eiHkb+W37a17Nm2mQEAAAAAAAAAAAAAACKid6Q30u3pbV2DgAUAAAAAAAAAAAAAALDtTl86va3z793W2QEAAAAAAAAAAAAAACKi81znY/vcevdWVJNqZLKZOHLiSOz78r6mzS9gAQAAAAAAAAAAAAAAbLvSa6Wo36kvOXb2R2cjIqJ+px5vdr8Zs+XZmJ+fj0w2E/VqPfKj+Wj//famzC9gAQAAAAAAAAAAAAAAbLuuga74YccPo2ugK7r6u6LthbbFtmK+GDOTM3Fq8FR0v94dERH1Wj2K54uRac9E+ivpTc+/Z9MjAAAAAAAAAAAAAAAAbNInv/wk8sV8nP3R2SXhiqm/mYqklMSx/LHFcEVERCqdivy1fFwfvt6U+e1gAQAAAAAAAAAAAAAAO8zYwFgcyx+LbHd21X71Wj1+cfkXERFx4NCBqExXoqOnIzr7Ore9Zr1u37wd3Ze7lx3/4O0PoqWlJU5fOr2sLZVORepgqinzC1gAAAAAAAAAAAAAAMAOUE2qkZSSmByZjNnybBzLH1u1f71Wj0JXIfLFfLTlvtjxYWxgLG7fvB09wz3bVrMh840PJ6UkIiIOP3+4cYeW5ky/pznDAAAAAAAAAAAAAAAAGzVZmIzSUCkiIrqHl+/i0EgxX4yjfUeXhB4iInpHeqNcKC8GE7ajZiP2H9q/7Fj1VjXqtfqyuR9Wr9WbMr+ABQAAAAAAAAAAAAAAbLOu/q7IF/PR1d8V+1uXBw0etbDbxYmBEw3bO893xo3hG9tSs1EtLcu3opganYqIiPbu9pULV9j5Yr0ELAAAAAAAAAAAAAAAYJeZGJmIiIhMNtOwvbWjNZJSsmR3h62q2ajP/+fncfezu0uOTY5MRktLSxy/cLxhTelSKboGujY9d4SABQAAAAAAAAAAAAAA7DqflD+JVDq1YvtCIGJmYmbLazbq9KXTUcwX45O//SQ+ef+TGL0wGtWkGp19nXH4+cNL+n7y/ifx13/w13Hg0IFoe6Ft03NHROxtyigAAAAAAAAAAAAAAMCWqSbV2N+6f8X2hVBENaluec1GpQ6m4szlM3Ht3LXF8Y7lj0Xf232LfX763Z9GUkoW25NSEp9/+nl0X+7e9PwCFgAAAAAAAAAAAAAA8ITcu3svfnP3N4uP/+kf/qkp485V5hZ3j2hkIRRRr9W3vGYz2nJt8cqvX4n6nXqkDi7fOePU0Kk4NXSq4Ro2S8ACAAAAAAAAAAAAAACekOuXr8fP/+Lni4/vxJ2mjLvWQMPnn36+5TXN0ChcERGRaV857LFZAhYAAAAAAAAAAAAAAPCEnL50Or72519bfHz79u34QecPtnFFT58Pf/JhHP3W0U2Ps6cJawEAAAAAAAAAAAAAABrYu29v7PvyvsWv3/7Sbzdl3FQ6tabdJQ4cOrDlNVtt7OJYU8axgwUAAAAAAAAAAAAAAOwy+1v3r9o+V5mLiAcBia2uWc0n738Sh58/vGLbesxV5qKaVNcUAFkLAQsAAAAAAAAAAAAAANhlMtlMzEzMrNi+EDrIZDNbXrOS0muleO8/vxdtXW1x8f+6uKz9v37jv8bdO3cfO86TImABAAAAAAAAAAAAAAC7zOHc4UhKyYrt1aQaERHZ7uyW16zWd35+PurVxjtOLOyW0dXf9eDxocfsnvHpXFSnq/HhTz587NxrIWABAAAAAAAAAAAAAAC7zPELx+O9K+/FbHk22nJty9pnbs4sCz1sVc1Keq/2RrYnu2L/TDYTp187HbmXc2sab8GVQ1fW1X8le5oyCgAAAAAAAAAAAAAAsGXacm2R7c7Gr97+VcP2qdGpODV0altqVpI6mIqui12Rac80bM/2ZOPIiSNrGuth6fb0umsasYMFAAAAAAAAAAAAq3qr963tXgIAwDOlmlQjIqJeq6/aL1/MR6GrEMcvHF+yu8TYwFicHDzZcKeIrarZiFOvri2o8aj+if6mzC9gAQAAAAAAAAAAAAAA22xqdComRyYjImJmYiYiIsYuji0e68x3Rld/15KaVDoV/ZP9MT40Hql0Kg4cOhCV6Up09HREZ19nw3m2qmY3ErAAAAAAAAAAAAAAAIBt1tnXuaGwQiqdit6R3h1Zsx61j2qRlJKoTFeiltQezNmaitaO1mjLtUX7N9qf2NwLBCwAAAAAAID/P3t/GBzXeR+G3n+AkLmk5HABthUhxU20aKYjSGktQGptUplJbSBJPcIHXwPkMK0cNbUItelVbz0NUeXD7eR+eBnQM/atbycR4DT1XKXhyOBc3yk8dt4CkuOR6HRCAHZfS/BkUqxjWQSkNtpd2pK4tCDg/UADFIAFCOwusGcXv98Mx95zzv/sX3se7J7nnOd/HgAAAAAAgD13/YfXY3p0Ol4892IUC8Vbbt892B0nzp6I9M+mdyUfBRYAAAAAAAAAAAAAAMCemvn9mfjK4FciImJ5eXnNulQ6FYfaDsW13LU1hRdTT0/F9Mh0nBg6ER/9/3y06jkpsAAAAKAqLvRdqHUKcXr8dK1TAAAAAAAAAADgFi6euhizF2djeXk5Mj2ZyPRmItOTifYH2ktuX7xajOxkNub+y1zMfGEmLg1fiuxkNh7/s8ermpcCCwAAAAAAAAAAAAAAYE/84S//YcxNzEVnf2f0DPdE6z2tt4xJHUlF5yc6o/MTndE30hcTQxPxzc98M77w975Q1SKL5qrtCQAAAAAAAAAAAAAAYBOXPnMp5ibmom+0Lwa+NLCt4opSeod749H/8mjMT83Hc7/1XNXyU2ABAAAAAAAAAAAAAADsquLVYkwOTUbv+d7o+lRXxfvL9GRi4EsDcWn4UhT+slB5gqHAAgAAAAAAAAAAAAAA2GXTo9PR3tUex//18arts7O/M449cCxmL85WZX8KLAAAAAAAAAAAAAAAgF318rMvxy/81i9Ufb8P/5uH4+VnX67KvhRYAAAAAAAAAAAAAAAAu6rwvUJkejJV32+mNxP5bL4q+1JgAQAAAAAAAAAAAAAA7KpioRgHf+pg1febOpKKYqFYlX0psAAAAAAAAAAAAAAAAHbVwSPVL66o9r4VWAAAAAAAAAAAAAAAALuqqakp8ftWYAEAAAAAAAAAAAAAAOx7CiwAAAAAAAAAAAAAAIB9r6XWCQAAAAAAAAAAAJtbmFmIqZGpKOaKsTCzEKl0KroHu6P7TPemMcVCMV4490JERBw+ejhyc7no6O2Izv7OqsYAAABsV7FQTPy+FVgAAAAAAAAAAEBCTY9OR0RE30jf6rLsZDbGBsbi0vClODN9JlLp1JqYYqEYo92jMTA2EO1d7avLxwfH48rlK9E73LvhfcqJAQAA2Inl5eX4v37u/4rWTGtV95vP5qu2LwUWAAAAAAAAAACQQPlsPoqFYpw4e2LN8kxPJj753CdjtHs0xgbG4tGJR9esHxsYi3v7711TKBFxo0hjuHU4Ono7ItOTqTgGAABgp3JzucjN5aq+36ampqrsR4EFAAAAAAAAAAAk0NTIVPzCU79Qcl17V3tkejKRncxGPptffQJsPpuP7GQ2Hhl5pGRc58nOuDR8aU2xRDkxAAAA5cj0ZCLTW92+xfyfzcd3/5/vVmVfCiwAAAAAAAAAACCBvjf5vZgZnYl/+b1/Gal0asP6Y13HIjuZjYWZhdUCi6mRqYiI1dfrtXW0xczoTBQLxdV9lhMDAACwU01NTfHof3n01huW4f848H9UZT/NVdkLAAAAAAAAAABQVYfaDkWxUIx8Nr/tmNdmXtuyCGKliGJ+ar6iGAAAgJ06eORg4vdtBgsAAAAAAAAAAEigRycejXw2v+nMEoVsISIi2rvaV5fls/k41HZo032uFFK8t2ijnBgAAICd+uRzn0z8vs1gAQAAAAAAAAAACbVZcUVExOzF2Wjval+zzbXctS1no1gppCgWihXFAAAA7FT7A+233qjG+zaDBQAAAAAAAAAA7KGld5dieWn55uvFpR3v49L5SxER0feFvjXLt1sE8fYbb1cUAwAA0IgUWAAAAAAAAAAAwB7K/fdc5P4it/r6alzdUfzCzEJMDk3GwNhAtHft3hNgAQAA9hsFFsCeudB3odYpxOnx07VOAQAAAAAAAIB9ru1vtUVrpnX1da6Yi/jG9uPHBsbikZFHorO/c8O6VDq1rRkpDh89XFEMAABAI1JgAQAAAAAAAAAAe6j5QHPEgfe8XmzeduzYwFh0D3ZH95nukusPtR3aMv5a7lpE3CiqqCQGAACgEW2/dwYAAAAAAAAAANTMxNBE3PXQXXHi7IlNt2nNtK4WRJSyMlPFe2fQKCcGAACgESmwAAAAAAAAAACAhJsenY62jraSxRUrBRAREce6jq15vV4+m4+IiExPpqIYAACARqTAAgAAAAAAAAAAEmz24mxERHSf6d6wLp/NR3Yyu/r6/lP3R0TEwsxCyX3NX57fUChRTgwAAEAjaql1ApUqFApx7ty5iIg4evRozM3NRW9vb/T395e9z5mZmRgZGYlcLhczMzORTqdjcHAwzpw5U620AQAAAAAAAADglhZmFuJa7lrJ4oqIiOxkdk3xQ3tXe2R6MvHSsy9Fe1f7hu1nL87GoxOPrllWTgwAAEAjqusCi0KhEN3d3TE2NhZdXV2rywcHB+Py5csxPDy8432Ojo5GRMTIyMjqssnJyRgYGIjh4eGYnp6OdDpdce4AAAAAAAAAALCVfDYfYwNjcU/PPTE/OL9hfTFXjOxkNobyQ2uWD4wNxGj3aNx/6v41BRPjg+Nx/OzxkrNRlBMDAADQaOq6wGJgYCD6+/vXFFdE3CiOaG1tjd7e3ujp6dn2/rLZbBQKhTh79uya5T09PfHcc89Fd3d3DAwMxMTERFXyBwAAAAAAAACAzTzT+0zks/nIj+Y33aY107phWSqdijPTZ2JiaCJS6VQcPno4cnO56OjtiM7+zpL7KScGAACg0dRtgUU2m43Jyck1M02818mTJ2N4eHhHBRYjIyPx1FNPlVzX1dUVPT09MTk5GdlsNjIZVfkAAAAAAAAAAOyeJ+eeLDs2lU5F30jfrscAAAA0kuZaJ1CulcKKzQodOjo6YnJyMgqFwrb3OTk5Gffcc8+mMSszZczMzOwoVwAAAAAAAAAAAAAAINnqtsBiZmYm0un0putXCi+mpqa2vc+2trYoFAqRzWYrTQ8AAAAAAAAAAAAAAKgjLbVOoFzZbDba2to2Xb9SfLGTYomJiYnIZrObzoqxsq+VmSwAAAAAAAAAAAAAAIDGULczWORyuS1nsFgpvigUCjva72bFFRERFy9ejK6uri23AQAAAAAAAAAAAAAA6k/dzmCx3cKJN954oyrvd/78+YiI+MIXvnDLba8tXos3F99cfX1b821x24HbqpIHlGO5aTmWYzmWm5ZjKZZqnU5NLS4u1joFfmJxcTGWlpYcExJH2ySplpb292940ukDJEcSvr/9lrCeNsF62gTraROUog+QbG+/+3YcXDy4+lofIPlcJ69vjl/9cuzql2NXvxy7+rXctFzrFLiFq1evRi6XW3198ODBOHjw4BYRjWepyfdKpXxP7479el3NdUWqSXuimrSn7fH5JFfdFljspZmZmRgaGoqxsbHo6uq65fZDfzK05vWvdP1KfOzBj+1WenBLy7Ec195/LXKRi6ZoqnU6NfXiiy/WOgV+YmlpKV555ZWIiGhurtsJlWhA2iZJVa3CYXaHPkByJOF8z28J62kTrKdNsJ42QSnb7QOMD47HfQP3RaZn65mXi4VivHDuhYiIOHz0cOTmctHR2xGd/Z01j6lH+gD1x3Xy+ub41S/Hrn45dvXLsatfP7r2o1qnwC188IMfXPP6137t1+Kxxx6rSS61kmvP3XojtuR7enck4f5QLbiuSDVpT1ST9rQ97y3eJVnqtsAinU5vaxaLo0ePVvxeAwMDMTIyEv39/dvafvgXh6M11br6+rbm2+K2BU+uonaWm5YjF7loe60tmpb3d+fs4YcfrnUK/MRK9eXx48ejpaVuf45oQNomSbXS8VxvenQ6Zsdmo3uwOzI9mUilU5HP5mNhZiFefvblePiph6O9q31DnIFS1aUPkBxJON/zW8J62gTraROsp01QymZ9gIiIfDYf2clsTI9Mx8LMQtw3cN+W+yoWijHaPRoDYwNr+gfjg+Nx5fKV6B3urVlMvdIHqD+uk9c3x69+OXb1y7GrX45dHbtW6wS4lW9/+9vxgQ98YPX1fpzB4spnr9Q6hbrne3p3JOH+UC24rkg1aU9Uk/a0Pa+++mqtU2ATddtq29ratly/UtWTTqcrep+BgYEYHByMM2fObDvmUMuhuKPljrULzeRIDS3FUjRFUzQtN0Xz8v6uBvRjnSzNzc3R0tLiuJA42iZJtFlFf7FQjOxkNrKT2TXLU+nUhkFN740xUKq69AGSIynf3X5LWE+bYD1tgvW0CdbbrA8wPTod2YlsZHoz0TPcE8/0PnPLfY0NjMW9/fdu6B/0jfTFcOtwdPR2bJgBY69i6tXhA4f1AeqM6+T1zfGrX45d/XLs6pdjV78MtE6+I0eO3HK8UqPzvVI539O7Yz9fU3NdkWrSnqgm7enWfDbJVbdnaZlMZsupUVZmt8hkyr9ZMzQ0FA899FCcPXu27H0AAMBue2TkkTh+9nh09ndG15mueGTkkRjKD206cGmrQU8zozMbijXKjQEAAKqv+0x3DIwNRPeZ7jjUduiW26/MdvHg4IMl13ee7IxLw5dqEgMAAAAAAJA0dVv60tXVFZOTk5uuz2ZvDPDq6ekpa/+jo6PR0dFRcuaKQqFQ8cwYAABQLfedvC9S6dS2tl0Z9PTIyCMl168MenpvcUY5MQAAQDJMjUxFRERrprXk+raOtpgZnYliobjar9irGAAAAAAAgKSp2xksTp06FRERMzMzJddfvny57OKKixcvRkSULK7IZrNbFnYAAECSbWfQU3YyG8VCsaIYAAAgGV6beW3LgoaV8/z5qfk9jwEAAAAAAEiaui2w6Orqip6ennj22WdLrr948WIMDQ1tWF4oFGJoaGjTIomZmZnI5XIliysiIiYnJ6Orq6v8xAEAoIYMlAIAgP0ln83HobZDm65fOdfPZ/N7HgMAAAAAAJA0LbVOoBJjY2PR3d0dp06dWlP0MDg4GGfPni05g8Xo6GicP38+RkdHI59feyMnm83GwMBA9PT0xODg4IbYXC4Xk5OTG+IAACAJFmYWYn5qPu568K5o72ovuY2BUgAAkEyL1xfj3evvrr5+5813qrLfa7lrm85GFxGr5/rvnZFur2IAAAAAAACSpq4LLNLpdExPT8fQ0FCk0+k4evRozM3NRW9vb/T395eM6enpiXQ6HSdPntywrre3N7LZbIyOjm76nplMpmr5AwDAZnYyuCo7mY18Nh+Znkx0n+mOhZmFeKb3mTgxdCIyPWvPXw2UAgCAZHrx3Ivxjd/+xurrq81Xq7Lf7Z6nv/3G23seAwAAAFANF/ou1DqFOD1+utYpAABVUtcFFhE3iixGRka2vX1XV9emM1DMzc1VKy0AAKjIdgdXrRQ+nDh7YnVZe1d7DIwNxHDrcJyZPrNmNgsDpQAAIJkefurh+PCnP7z6+pVXXonP/fznapgRAAAAAADA/lP3BRYAANCItju4qrO/s2R8Kp2Kzv7OGBsYiyfnnty1PAEAgOpoOdgSLQdvXrK/7Y7bqrLfVDq1raLpw0cP73kMAAAAAABA0jTXOgEAAGCjloMtcfCnDq7+K2dw1V0P3RX5bD7y2ZszuBkoBQAA+8uhtkNbrr+WuxYRN8779zoGAAAAAAAgaRRYAABAg1oZuLQws7C6zEApAADYX1ozravn7KWsFFO3Zlr3PAYAAAAAACBpFFgAAECdGh8cj893fH5HMQZKAQDA/nKs69iWM9KtzHiX6cnseQwAAAAAAEDStNQ6AYC9dKHvQq1TiIiI0+Ona50CAA1gYWphW4UP7V3tq8uOdR2L7GR205jNBkrtNAYAAEiG+0/dH988/81YmFlY0zdYMX95fsO5/F7FAAAAAAAAJI0ZLAAAoE7d03NPDOWHNl0/f3k+UunUmpkl7j91f0RELMwsbBpTaqDUTmMAAIBkaO9qj0xPJl569qWS62cvzsaJoRM1iQEAAAAAAEgaM1gAAECduv/U/TE9Oh3dZ7o3rMtn8zF7cTYGxgbWLH/voKdST5WdvTgbj048WnEM1EoSZixbalqKuz99d63TAAD2gZXZ5FZmr9vMwNhAjHaPxv2n7l9zTj8+OB7Hzx4vWTC9VzEAAAAAAABJosACAADqVHtXe2Qns3Hp/KU4cfbmk2Dz2XyMdo/G8bPHo7O/c0OcgVIAAFC/Zi/OxvTIdEREzE/NR0TE+OPjq8s6Bzo3FGGn0qk4M30mJoYmIpVOxeGjhyM3l4uO3o6SfYa9jAEAAAAAAEgSBRYAAFDHTpw9EdnJbIwPjkcxV4xioRipdCo++dwnS842EWGgFAAA1LPO/s6yzsFT6VT0jfQlMgYAAAAAACApFFgAAECdy/RkdjyDhIFSAAAAAAAAAAAAazXXOgEAAAAAAAAAAAAAAIBaU2ABAAAAAAAAAAAAAADsewosAAAAAAAAAAAAAACAfU+BBQAAAAAAAAAAAAAAsO8psAAAAAAAAAAAAAAAAPY9BRYAAAAAAAAAAAAAAMC+p8ACAAAAAAAAAAAAAADY91pqnQAAAAAAAAAAAAAAABAxPTods2Oz0T3YHZmeTKTSqchn87EwsxAvP/tyPPzUw9He1b4hrlgoxgvnXoiIiMNHD0duLhcdvR3R2d+56XuVE9PoFFgAAAAAAAAAAAAAAEACFAvFyE5mIzuZXbM8lU7FwNjApsUVo92jG9aPD47HlctXone4tyox+4ECCwAAAAAAAAAAAAAASIhHRh6J3FwuCtlCpNpScVf3XdF9pnvT7ccGxuLe/ns3FF/0jfTFcOtwdPR2RKYnU3HMfqDAAgAAAAAAAAAAAAAAEuK+k/dFKp3a1rb5bD6yk9l4ZOSRkus7T3bGpeFLa4olyonZL5prnQAAAAAAAAAAAAAAALBzUyNTERHRmmktub6toy2yk9koFooVxewXCiwAAAAAAAAAAAAAAKAOvTbz2pazXawUUcxPzVcUs18osAAAAAAAAAAAAAAAgIRZmFmI6dHpWJhZ2HSbfDYfh9oObbp+pZAin81XFLNfKLAAAAAAAAAAAAAAAIBdsnh9Ma7/8Prqvx//6Mdbbp+dzMal85ciIqL7THdERDzT+0xkJ7Mbtr2Wu7blbBQrhRTFQrGimP2ipdYJAAAAAAAAAAAAAABAo3rx3Ivxjd/+xurrq3F1021bM60REXHi7InVZe1d7TEwNhDDrcNxZvpMtHe1r67bbhHE22+8XVHMfqHAAgAAAAAAAAAAAAAAdsnDTz0cH/70h1dfX7lyJT7X+bmS23b2d5ZcnkqnorO/M8YGxuLJuSd3JU8immudAAAAAAAAAAAAAAAANKqWgy1x8KcOrv573/vfV9Z+7nrorshn85HP5leXpdKpbc1Icfjo4Ypi9gszWADUwIW+C7VOIU6Pn651CgAAAAAAAAAAAABsUyqdioiIhZmFaM20RkTEobZDW8Zcy11bE1tuzH5hBgsAAAAAAAAAAAAAAKix8cHx+HzH53cU05ppXS2IKGVlpoqVgoxyY/YLBRYAAAAAAAAAAAAAAFBjC1ML2yp8aO9qX112rOvY6vJS8tl8RERkejIVxewXLbVOAAAAABrNdy58J6589ko0L9fuuQanx0/X7L0BAAAAAAAAgJ27p+eeODN8ZtP185fnI5VOrZlZ4v5T98c3z38zFmYW1hRevDdmfaFEOTH7hRksAAAAAAAAAAAAAACgxu4/dX9Mj06XXJfP5mP24mz0faFvzfL2rvbI9GTipWdfKhk3e3E2TgydqDhmv1BgAQAAAAAAAAAAAAAANdbe1R7FQjEunb+0Znk+m4/R7tE4fvZ4dPZ3bogbGBuI7178bizMLKxZPj44HsfPHi85G0U5MftBS60TAAAAAAAAAAAAbm18cDzuG7jvlgOdioVivHDuhYiIOHz0cOTmctHR21FyIFYlMQAAQPWdOHsispPZGB8cj2KuGMVCMVLpVHzyuU9Ge1d7yZhUOhVnps/ExNBEpNKpbZ3TlxOzHyiwAAAAAAAAAACAhMpn85GdzMb0yHQszCzEfQP3bbl9sVCM0e7RGBgbWDP4anxwPK5cvhK9w71ViQEAAHZPpiez4xkkUulU9I307XpMo2uudQIAAAAAAAAAAMBG06PTMTk0GRERPcM924oZGxiLe/vv3fBk276RvpgZnYnsZLYqMQAAAI3IDBYAAAAAAAAAAJBA3We6o/tMd0RELMws3HL7ldkuHhl5pOT6zpOdcWn40pon4ZYTA8BaF/ou7Pl7LjUtRa49F1c+eyWal288a/v0+Ok9zwMAGo0ZLAAAAAAAAAAAoAFMjUxFRERrprXk+raOtshOZqNYKFYUAwAA0KgUWAAAAAAAAAAAQAN4bea1SKVTm65fKaKYn5qvKAYAAKBRKbAAAAAAAAAAAIAGkM/m41DboU3XrxRS5LP5imIAAAAalQILAAAAAAAAAADYQ0vvLsW777y7+m9pcakq+72Wu7blbBQrhRTFQrGiGAAAgEbVUusEAAAAAAAAAABgP8n991zk/iK3+vpqXK3KfrdbBPH2G29XFAMAANCoFFgAAAAAAAAAAMAeavtbbdGaaV19nSvmIr5Rw4QAAACICAUWAPvWhb4LNX3/paaluPvTd9c0BwAAAAAAAIBaaD7QHHHgPa8Xm6uy31Q6ta0ZKQ4fPVxRDAAAQKOqTu8MAAAAAAAAAACoqUNth7Zcfy13LSJuFFVUEgMAANCoFFgAAAAAAAAAAEADaM20rhZElLIyU0VrprWiGAAAgEbVUusEAAAAAAAAAACAyh3rOhbZyeym6/PZfEREZHoyFcUAkEwX+i7UOoU4PX661ikAQEXMYAEAAAAAAAAAAA3g/lP3R0TEwsxCyfXzl+c3FEqUEwMAANCoFFgAAAAAAAAAAEADaO9qj0xPJl569qWS62cvzsaJoRMVxwAAADQqBRYAAAAAAAAAAJBw+Ww+IiKKheKW2w2MDcR3L353w4wU44Pjcfzs8ZKzUZQTAwAA0Ihaap0AAAAAAAAAAACw0ezF2ZgemY6IiPmp+YiIGH98fHVZ50BndJ/pXhOTSqfizPSZmBiaiFQ6FYePHo7cXC46ejuis7+z5PuUEwMAANCIFFgAAAAAAAAAAEACdfZ3llXgkEqnom+kb9djAAAAGo0CCwAAAGhAF/ou1DqFOD1+utYpAAAAAAAAAABsW3OtEwAAAAAAAAAAAAAAAKg1BRYAAAAAAAAAAAAAAMC+11LrBAAAAAAAAAAAANjchb4LtU4BAAD2BQUWAAAAAAAAAAAACVZcLJYde/X61fgP3/kP8b2r34t7jtwT//Tn/2kcOXhkx/tJtaTKzgEAAOqFAgsAAAAAAAAAAIAE+/U//vWq7Oelv3op/tXX/1VZsX/0yB9VJQcAAEiy5lonAAAAAAAAAAAAAAAAUGtmsACgZr5z4Ttx5bNXonm5tvV+p8dP1/T9AQAAAAAAAGArf/Arf1B27GenPhuzb8zG0vJSNDc1R+fRzvj0g5+uYnYAN7311ltlx77++uvxxBNPxPT0dHR3d8fTTz8dd9555473c/vtt5edAwAosAAAAAAAAAAAAEiwVEuq7NjfeOA34ulvPx1zhbnoSHfEEx98oqL9AWzljjvuqMp+JiYmoqOjo6zY5eXlquQAwP6kwAIAAAAAAAAAAKBBHTl4JIb+/lCt0wAAgLqgwAIAAAAAAAAAAACAir355ptlx3784x+P559/Pt599904cOBAfOQjH4kvf/nLVcwOAG5NgQUAAAAAAAAAAAAAFbv99tvLjn3mmWfisccei8uXL8dDDz0UX/ziFyvaHwCUQ4EFAAAAwD7w1ltvlR37+uuvxxNPPBHT09PR3d0dTz/9dNx555073o+bIAAAAABQv4qLxbJjr16/Gv/hO/8hvnf1e3HPkXvin/78P40jB4+Uta9US6rsPIDdd6HvQkXxn2z5ZHzyw5+MiIjnP/V8Wfs4PX66ohwA2N8UWOyC64vXy+pQVKsjoRMBAFBdSRiQ+vbbb5edAwBERNxxxx1V2c/ExER0dHSUFbu8vFyVHAAAAKARlDtQeauxBUtNS3H9nRtjFpqXm2+5L+MLgJ349T/+9ars56W/ein+1df/Vdnxf/TIH1UlDwAAKEWBxS74zT/5zYr3UUlHQicCAKC6kjAgFQAAAACAxlKNgcoGKQMAAEB1KbAAAAAAGlq5MxFVaxaixcXFst6/2t58882yYz/+8Y/H888/H++++24cOHAgPvKRj8SXv/zlKmYHtVXrGcuS8j0BAAAAsJU/+JU/KDv2s1Ofjdk3ZmNpeSmam5qj82hnfPrBT1cxO6itcmemith6dqqt7HTmqt3IoRQzZN1Q6+vOK26//fay8wDYrxRY7ILP/OJn4mjq6I7jdCQAAJIpCQNSv//978d9991Xdh4AtXCh70KtU4iIiF/9yq9WvI9KZyH6+te/XnEOlarkAvozzzwTjz32WFy+fDkeeuih+OIXv+iCPA0lCTOWJeF7AgAA2FvlDlTeamzBUtNS5I/lo/W11ooHWgKsV8mg6d944Dfi6W8/HXOFuehId8QTH3zCIGwaSjVmpoqofHaqJORghqwbknDdOSJieXm5KnkA7CcKLHbBwZaDZXUAdCQAaiMJA/9Oj5+udQrAFpIwIPXw4cNl5wAAlbrzzjvja1/7Wq3ToEHVepYZAAB2V7lP1K3mE3QrUa083PellHLbxVZjC5aaluLgbTfGLCiwAJLkyMEjMfT3h2qdBgAA3JICiwTRkQAAaDwGpALUXrkzEVVrFqLFxcX41re+VVYOsB9U4ylelT7Bq9YzlvmeAAAa2W/+x9+seB9JeIpvpXl4ii/VZGwBACRPuTNTRWw9O9VWqjlzVbk5sLlaX3cGoHwKLAAAAICGVu5MRNWahWhxcbGs9wf2Tq1nLPM9AQDQ+IqLxbJjqzmbRxJm0kjCZ5GEzwEAaCyVnF9sNTvVVqo5c1W5ObC5Wl93BqB8CiwA9qlaX7xealoq+/0BIGmuL14v67e10W6OQ6MxCxHsjVrPMlOpRvuueOutt8qKe/311+OJJ56I6enp6O7ujqeffjruvPPOsvblRiEANJbP/JPPlPVE3aQ8Qbdaefz6H/96VfKpdDaPJMykkYTPIgmfAwDAiiTMTpWEHLip0a47A9QbBRbAvlLrooIVSRgAmYSL158/8/mq5EB1lDuIJsJAmkZmcBVsz2/+yW9WvI9GuDkOAOWo9SwzrHXHHXdUvI+JiYno6OgoO355ebniHACA5Cj3ibpJeYJuUvKolu3eK1tqWorr79x4qEjzcnNV75MBAFRbEsYD1fM5IgCwlgILYF9JQlFBhAGQJFM1BtFEGEhTLUkpeDG4CqA87x2AsBONVtQLsJs8wQsAkme3BjWtH+h9K/pDNyRhkFkls1kn5Qm61crjD37lD8qOreZsHtW4V1bpfbKkfBYAQONIwnggY4GS5ULfhVqnEKfHT9c6BQDKpMACYJ+q9cXrpaaleDveLjsH2E3Xrl2Lt956K1padn6qVK3ihqQUvADb85lf/EwcTR3dcZwbwo3rN/+jWU2SpNYX0ZealqLtn7WVdX5hVihgr7355ptlxX384x+P559/Pt599904cOBAfOQjH4kvf/nLVc4OgKRLwqCmCP2hFUk5HmazvqGSwp9Gm0UjCZ9FEgqQIhSEAQDslqSc7wFQn+q+wKJQKMS5c+ciIuLo0aMxNzcXvb290d/fn6h97qV6PzlwQYrdVOuigiSp9cXrJBVYlPu9mYTvzGoqdxBNROMNpPnYxz5Wlf00QnGDwVWwPQdbDpb129poN8eT0Bep58+PxlaN8wuzQgF7odxirGeeeSYee+yxuHz5cjz00EPxxS9+UWEXwB5LQp8M2B3VnM1ju/fKlpqWIn8sH62vtUbzcnNi7pNV67NISgGSgrAbkvIb5toi1I8k3OP3nZEsxgOxXhLO9/5J/JOq5EB1vPXWW2XHeiAa7D91XWBRKBSiu7s7xsbGoqura3X54OBgXL58OYaHhxOxz72WhJODanFBqrEk4cJYrYsKVtR7Zz8p03JXSxKmw05Cp6qSE3gDaaovKQUvBlfB7vKbWlolv6uVXECv1rnWUtNSfOaffGZ1AMJOuIgP7CU3E6imO++8M772ta/VOg2Afa3e+2Rb9YfWD/SuB0m4J5KEQWZJetgSN2z3/tBS01IcvO3GQ0Wal5sb7kEhJEsSfsMijC+AepKEe/xJ+M5IwjlnRDKKTZIyHghIrjvuuKMq+/FANNgf6rrAYmBgIPr7+9cUQkREjIyMRGtra/T29kZPT0/N90ntJKEj4YT7piRcGKukg1vNAZA6+zSaRhtI89WvfjWOHz8eLS07P1WqVnFDvRe8NFqbgHqQhALOJEjCOWdExOfPfH51AMJOuIjfuMo9vzArVOO6du1avPXWW2Wdc1aruMHNBAAq5Ro86+3WoKb1A73rQRL6p5XcB6hW/1SBReNotAeFJKEAKSmS8HueFLW+xnp98XpZ7w/sX0k454wo/3c1KUUejXaeww3O9wCoRN0WWGSz2ZicnIyRkZGS60+ePBnDw8M7KobYjX3WQr2fHFQzhyR0JJLyBN3r71yP4mJxxzceGu2iGJRS7t9pEr4z2R2HDh2K22+/vazBboobgFpJQgFnEvoi1eoD1Eo1L+In4ea4wW43lXt+kYRzi2oyY8JNH/vYx6qyn0qLGwCgEvV0Db7UdfKkDOapliT0ySqRhP6QeyI3GWRGo/OU65vq6fe8lKSNL6j0GiuwPUm4x1/uOedS01L81Q//Kkb/dLRhzjuT8P3pIaOs53yP9d58882yYz0QDfafui2wWCmCyGQyJdd3dHTE6OhoFAqFSKfTNdtnLdT7yUEScqimJFyQqpZGGHCXFEno7HNTud8xjfZ9RXUobgD2syT0RZJwzpmUp3MmoS+ShILziGQMditXo51bmDEhWdxMAKARJOG8N6L+n9jaaNc6kzDAKwn9U2B3KECqPr9hwE4l4R7/r37lV8uKW0+BGiSP873GVMnDtxrtgWgX+i7s+nssNS1Frj0XVz57peRDwU+Pn971HKASdVtgMTMzs2WRw0qRxNTU1LZnnNiNfdabJJwcVDOHJHQkdCJucmHspiR09qlcEr4zAWBFvRdwVut3NQnnnEkpsEiCpAx28+QqkuirX/1qHD9+vKxZ06pV3OBmAgCVcg3+piQM6K/kvNe1zupLQv8UYDuS8HteiSSML6jW55C7lot//Y1/XVYOwPY02nlvUs45a/39CbDbGu2BaMCt1W2BRTabjba2tk3XrxRKZLPZmu6T2kpCRyIJF6SWmpYifywfra+1lqwG3IscKtVondxy+Rwa115UBtcLFcoA5VHAWblGO9dKQl8kKYPdSA4zJtx06NChuP3228sqsEhCcYObCcB+d33xehQXizuOq+ZsBeVqtBkTtnveW+o6uSe2Nq56H+DVaP1TINmS8HueFLW+xnqw5WBZ7w/URrnnnEtNS/GZ/99n4i/m/6JhCtRq/f0JAFBtdVtgkcvlVmeUKGWlUKJQKNR0n9SvRnuC7sHbDkaqJbXjAgudGXbT9Xdu3IjeabuMSM6N4Gop54b8imp9Fkn4HCIi3nrrrbLiXn/99XjiiSdieno6uru74+mnn44777xzx/tZXFws6/3ZPeW2iYjqtQtPY6aRGbTRuJLQF0lCkQfJkpQZE+r9nFNxQ2O6du1avPXWW2UV3VSrbUYk49w3CX2ASlQrh7ffNiNWklXjycKVzlZQDY0wY8J2z1NLXSf3xNbGZYAXwN5wbfEGn8P+8fbbb++4z5qEfiq7o9zzxKWmpXj0HzwaX/r/fimyhey+Pu/0/Ql74z/+w/+4re1WHk4xd34umpebqzo26+TFk2XFRTTeuI9a36OK2JtxaktNS1uODUzKfYCktAuSp2l5eXm51kmUo6mpKbq6umJ6errk+pmZmeju7o6zZ8/G8PDwnuzz1VdfjQ984AMx/IvD0ZpqXV1+W/NtcduB27aVA+yG5ablyB3LRdtrbdG03FTrdCAibrTLR//zo7VOIyIi/rDvD2udQvzj8X9c6xQS8TlEJOOzeO655+L48eNlDWyi+m67rfbnUe+8806tU4hXXnklOjo64gc/+EH89E//dK3T4Sf0ASjF+Xd1XL1+NUa+NRLZQjYy6UwMPjC45093rpaktIlT/8+pmr130iTh/MI5J++1uLgYhw4dqnUaEZGMc98k/I0miT5Asqz0AbghKdeTtiMp52TrNdJ5725K6vHj1hy7+uXY1S/Hrn7lruXiyckn9QESKCn9gHo6/2ZzvqepJu0p2ZJyX8b11huScO07wvFImlq3i1dffTXuuecefYAEcgd3Fwz9ydrK2l/p+pX42IMfq1E2ELEcy3Ht/dciF7loCifTJMNyJKe+L9eeq3UKieBzuOmVV16JiIjm5p3PrkJjevHFF2udQrzxxhu1ToEt6APwXs6/q+dTP/up1f//brwbuajP85WktIkk/J5xk3NO3mtpaanWKazyXQHl6fm7PfHLXb98y+1+/7/8fvzF/F+szlbwc3f9XHzqlz51y7hqqmYOudvq5/wsKedkpTTKee9uSvLxY2uOXf1y7OqXY1e/fnTtR7VOgYRzP7cx+J6mmrSnZHOtNVl+7zd+r9YpkEC1/jvN5ZzfJVXdFlik0+koFAq33O7o0aN7vs+ST69dUHVG7Sw3LUcuVCuTLMtNy3H+n5yP1tdby2qX/+fl/zNm35hdvRHcebQz/reH/reyckkt1H6qzd//h79fdmy1PoskfA4Rsa3f4lL6+/vj61//erz77rtx4MCB+Af/4B/ExYsXd7yfxcXF+G//7b95mnCClNsmIqrXLpIwJeDKIEySSR+A93L+zXpJaRMPP/xwzd47aZxzkjSLi4vxla98JT70oQ+V1Saq1TYjknHum4Q+QCWqlcMrr7wSf+fv/J1dyJBqKNkH+Ktb9wGevO/JGPnxe2YruG8wjvzV3s5WkIQcaiEp52SUx/GrX45d/XLs6pdjV8eu1ToBbuVP//RP4+677159ffDgwTh48OCWMdXsp37l0a+UFUey+J6mmrSnZEvKfZntjklablqO/J351bFc1Ryb1X+hv6y4iOr9libld7TW96giIi6eLv+a+Xbbxfr2tF4S2kRE7e+JvPrqqzV9fzZXt3dw29ratly/UtWTTqf3fJ+HWg7FHS13rF2YnAe1sw8txVI0RVM0LTdF87InY5IMS7EUqdtScejAobLa5W888Bvx9LefjrnCXHSkO+KJDz4Rhw8cLi+ZBHxHl517VPGzSMDnEBFx5Eh5N/T/8A//MB577LG4fPlyPPTQQ/HFL36xrH0tLi5Gc3NztLS0GOyWEOW2iYjqtYsk8HTrZNMH4L2cf7NeUtqEc5ubnHOSRLfffnscOXKkrDbRSOe9EfXfB6hWDu9///t3ITuq5fCBw2X1AVrf1xr/5u//mx3HVVMScqiFpJyTUR7Hr345dvXLsatfjl39MjA2+Y4dOxYf+MAHdhRTzX6qv+nG4HuaatKeki0p1/+3O4ZoqWkprt12bXUsVzXHZiXhmm9S/kZqfY8qYm/Gqa1vT+t99R9/tewcPtH0ififbf9zNYdPNH2i7P2dHj9ddh7VkJTvCTaq2yOTyWRiampq0/UrVV6ZTKam+wRgdxw5eCSG/v5QrdNIBJ/FDXfeeWd87Wtfq3UaJIx2AQA3Xei7UOsUan6RslLOLUgqbfOmJHwWScgBAACAZNBHBKBeJWU8kt/SG5LyOSShXSQhBxpfMkqyytDV1bXlVDnZbDYiInp6emq6TwAAAAAAAAAAAAAAIPnqtsDi1KlTERExMzNTcv3ly5d3XAixG/sEAAAAAAAAAAAAAACSr24LLLq6uqKnpyeeffbZkusvXrwYQ0Mbp4ApFAoxNDQUk5OTVdsnAAAAAAAAAAAAAABQ31pqnUAlxsbGoru7O06dOhVdXV2rywcHB+Ps2bMlZ5sYHR2N8+fPx+joaOTz+arsEwCongt9F2r6/ktNS3H3p++uaQ4AAI2q1ud6K06Pn651CgAAAAAAAOwzSblXBmytrgss0ul0TE9Px9DQUKTT6Th69GjMzc1Fb29v9Pf3l4zp6emJdDodJ0+erNo+AQAAAAAAAAAAAACA+lbXBRYRNwoiRkZGtr19V1dXyZkrKtknANBYvnPhO3Hls1eiebm5Zjl4qjIAwO6p9dOBzJoGAAAAAAAAkEx1X2ABANCIaj3ob4VCDwAAAAAAAACAnUnKuI8k8FkA9UaBBQAAAADsMbOmAQAAAAAAACSPAgsAADaVhKcIGPgHALA7knCuF+F8DwAAAAAAAEgOBRYAACRaEgb+GfQHAAAAAAAAAADQ+JprnQAAAAAAAAAAAAAAAECtmcECAADqXLFQjBfOvRAREYePHo7cXC46ejuis7+zxpkBANyaGcugPPoBAACwv+gDAADA/qIPUDsKLAAAoI4VC8UY7R6NgbGBaO9qX10+PjgeVy5fid7h3hpmBwBQH2pd5LHUtBR3f/rumuZAfdEPAACA/UUfAAAA9hd9gNpSYAEAALdQ6wF3ERF/VfyrksvHBsbi3v5713SmIiL6RvpiuHU4Ono7ItOT2YsUAQCowHcufCeufPZKNC831zQPs3nUB/0AAADYX/QBAABgf9EHqC0FFlX04x//OCIi3ll6p8aZwFrvvPtOfHXqq3Hq2Kk42Hyw1ulARGiXJJe2SVKtnGOunHNGROSz+chOZuORkUdKxnSe7IxLw5d0qHaRPgCl+C1hPW2C9bQJ1ktSm0hCcXESJKHQZOVc8719gAj9AChXkr5r2TnHr345dvXLsatfjl3j0Qeovc36Z1AO39NUk/ZENWlPVJP2VBl9gNpTYFFF169fj4iIxaXFGmcCa72z9E788cwfx//yK/+LHysSQ7skqbRNkmrlHHPlnDMiYmpkKiIiWjOtJWPaOtpiZnQmioVipNKp3U9yH9IHoBS/JaynTbCeNsF62kTyJKHQ5Adv/iAi1vYBIvQDoFy+a+ub41e/HLv65djVL8eu8egD1N5Kv2x9/wzK4XuaatKeqCbtiWrSniqjD1B7tZ1vHgAAKNtrM69t2VFa6WjNT83vVUoAAMAu0w8AAID9RR8AAAD2F32A2jODBQAA1Kl8Nh+H2g5tun6ls5XP5vcqJQAAYJfpBwAAwP6iD5AcX3vya/HSHS/VOg0AABqcPkDtKbCooqWlpYiIKBQLcfjA4RpnAze9/e7bERGRL+bj+gFTVpIM2iVJpW2SFEvvLkUs33ydf+tGp2jlnDMi4lru2qbTAUbEamerWCjuTpLoA1CS3xLW0yZYT5tgPW2CiO31ASL0A2pt5Xjki25c1RvftfXN8atfjl39cuzql2NXP9b3AQrFwo3l+gCJ414A1eR7mmrSnqgm7Ylqqpf29Oqrr+7p+y3+eDGWrt883194bSEi9AGSSIFFFeXzN26onPuv52qcCZQ29CdDtU4BNtAuSSptk6RaOeeM2H5H6e033t6tdPY9fQC24reE9bQJ1tMmWE+boJT39gEi9ANq7fXXX4+IiP/90v9e40wol+/a+ub41S/Hrn45dvXLsatfr7/+evzNv/k3V1/rA9SeewHsBt/TVJP2RDVpT1RT0tvT//qB/7XWKUSEPkASKbCoog996EPxZ3/2Z3HnnXdGc3NzrdMBAKCOra9aX1paiv9Z+J/x0N9/qIZZsZ4+AAAA1aIPUB8eeOABfQAAAKpisz7AAw88UMOsKMW9AAAAqkEfoH4osKiilpaWeOghN7sAANgdfyv+1prXqXRqW1Xrh4+arnq36AMAALCb1vcBIvQDak0fAACA3aQPkEz6AQAA7BZ9gGRSVg0AAHXqUNuhLddfy12LiBsdLwAAoDHoBwAAwP6iDwAAAPuLPkDtKbAAAIA61ZppXe00lbJSzd6aad2rlAAAgF2mHwAAAPuLPgAAAOwv+gC1p8ACAADq1LGuY1tOCZjP5iMiItOT2auUAACAXaYfAAAA+4s+AAAA7C/6ALWnwAIAAOrU/afuj4iIhZmFkuvnL8/rTAEAQIPRDwAAgP1FHwAAAPYXfYDaU2ABAAB1qr2rPTI9mXjp2ZdKrp+9OBsnhk7scVYAAMBu0g8AAID9RR8AAAD2F32A2lNgAQAAdWxgbCC+e/G7G6rWxwfH4/jZ4yrWAQCgAekHAADA/qIPAAAA+4s+QG01LS8vL9c6CQAAoHzFQjEmhiYilU7F4aOHIzeXi47ejujs76x1agAAwC7RDwAAgP1FHwAAAPYXfYDaUWABAAAAAAAAAAAAAADse821TgAAAAAAAAAAAAAAAKDWFFgAAAAAAAAAAAAAAAD7ngILAAAAAAAAAAAAAABg31NgAQAAAAAAAAAAAAAA7HsKLAAAAAAAAAAAAAAAgH1PgQUAAAAAAAAAAAAAALDvKbAAAAAAAAAAAAAAAAD2PQUWAAAAAAAAAAAAAADAvqfAAgAAAAAAAAAAAAAA2PcUWAAAAAAAAAAAAAAAAPueAgsAAAAAAAAAAAAAAGDfU2ABAAAAAAAAAAAAAADsewosAAAAAAAAAAAAAACAfU+BBQAAAAAAAAAAAAAAsO8psAAAAAAAAAAAAAAAAPY9BRYAAAAAAAAAAAAAAMC+p8ACAAAAAAAAAAAAAADY9xRYAAAAAAAAAAAAAAAA+54CCwAAAAAAAAAAAAAAYN9TYAEAAAAAAAAAAAAAAOx7CiwAAAAAAAAAAAAAAIB9T4EFAAAAAAAAAAAAAACw7ymwAAAAAAAAAAAAAAAA9j0FFgAAAAAAAAAAAAAAwL6nwAIAAAAAAAAAAAAAANj3FFgAAAAAAAAAAAAAAAD7ngILAAAAAAAAAAAAAABg31NgAQAAAAAAAAAAAAAA7HsKLAAAAAAAAAAAAAAAgH1PgQUAAAAAAAAAAAAAALDvKbAAAAAAAAAAAAAAAAD2PQUWAAAAAAAAAAAAAADAvqfAAgAAAAAAAAAAAAAA2PcUWAAAAAAAAAAAAAAAAPueAgsAAAAAAAAAAAAAAGDfU2ABAAAAAAAAAAAAAADsey21TqBaBgcHY2BgIHp6eiraT6FQiHPnzkVExNGjR2Nubi56e3ujv7+/GmkCAAAAAAAAAAAAAAAJVNcFFtlsNiYnJ2NkZCRmZmZiYGCgov0VCoXo7u6OsbGx6OrqWl0+ODgYly9fjuHh4UpTBgAAAAAAAAAAAAAAEqi51gmUa3R0NIaGhiIiqlb4MDAwEP39/WuKKyIiRkZGYnR0NCYnJ6vyPgAAAAAAAAAAAAAAQLI0LS8vL9c6iUrNzMxEd3d3TExMRE9PT1n7yGaz0dHREXNzc5HJZDasHxwcjGw2GxMTE5WmCwAAAAAAAAAAAAAAJEzdzmBRbSMjIxERJYsrIiI6OjpicnIyCoXCHmYFAAAAAAAAAAAAAADsBQUWPzEzMxPpdHrT9SuFF1NTU3uUEQAAAAAAAAAAAAAAsFdaap1AUmSz2Whra9t0/UrxRTab3XSbxcXF+Na3vhV33nlnNDerXQEAoHqWlpbi9ddfjwceeCBaWpzGJ4U+AAAAu0UfIJn0AQAA2C36AMmlHwAAwG7QB0guR+Mncrnc6iwVpawUXxQKhU23+da3vhV/7+/9vWqnBgAAq/7sz/4sHnrooVqnwU/oAwAAsNv0AZJFHwAAgN2mD5A8+gEAAOwmfYDkUWDxE1sVTrzXG2+8sem6O++8MyIiPvShD62pJLrvvvvivvvuqyg/qMTy8nK8+eabcccdd0RTU1Ot04GI0C5JLm2TpHrzzTfjt37rt1bPOUkGfQBK8VvCetoE6yWlTSwuLpYd+6Mf/Sj+6I/+KH7wgx/EBz7wgfjVX/3VeP/731/WvpLwRJ5afxbLy8tRLBZr3ia46Utf+lLZsX/6p38a77777urrAwcOxIc//OEd72dxcTH+63/9r/oACaMPUL+S8vtLeRy/+uXY1S/Hrn45dvXrrbfeiqeeekofIIH0A6gm39NUk/ZENWlPVNOt2lMSrsFHRJw8ebLsPKpBHyC5an/3soGsTAP4u7/7u/HTP/3Tq8sPHjwYBw8erFVaEIuLi/Gnf/qn8eEPfzgRgxYgQrtMorfeeqvs2P/xP/5H/It/8S9iZmYmurq64t//+38ff+Nv/I2y9nX77beXnUc1aJsk1SuvvBK/9Vu/ZerphNEHoJSk/JYk4be91r/rSZGUNkFyJKVNVPI3+t4L13/+538e//bf/ts4cOBAWfuq5PuqWpLwWfzxH/9xzdsEN/2jf/SPyo49efJk/Mmf/Em8++67ceDAgfjFX/zFsm4WvfLKK/HAAw/oAyTMyvH4vd/7vbj77rtXl+sDJF9Sfn8pj+NXvxy7+uXY1S/Hrn5duXIlnnrqKX2ABHIvgGryPU01aU/JloR7dRHbv/6tPVFNt2pPSbgGH1H7+9n6AMnlW/An0un0tmaxOHr06C23aW1tjb/+1/96FbKC6jhw4EC0tLTEwYMHnfyQGNpl8qRSqars57nnnot777237Pjl5eWq5FEubXOtcjv8r7/+ejzxxBMxPT0d3d3d8fTTT5ddbV3rzkxS3HbbbbVOgS3oA/BeSfktScJv+5tvvln2+zbSb8mBAwfinXfeKesJ+Y30OURUdjOhkT6LpHxPvLcwoJb7S8JAhCR8FkloE9xUSbv8T//pP8Vjjz0Wly9fjoceeii++MUvRltb247388Mf/rDsHNh9f+2v/TV9gDqTlN9fyuP41S/Hrn45dvXLsStfre+JVDK7InvDvQCqwfc01aQ9JVsS7tVFbH8cjvZENd2qPSXhGnwSvO9976t1CmzCt+BP3OqPK5fLRcSNQgwAoLFdu3Yt3nrrrbI6jNW6iF7rQX8r7rjjjor3MTExER0dHWXH17roBoDyVeN3JKIxfks+9rGPVbyPSj+HJBS8aBPJUkmb+PjHPx7PP//86tOBPvKRj8SXv/zlsvZV6wEsEbX/LBYXF+Nb3/pW2TmQLHfeeWd87Wtfq3UaAJCIAufFxcWyr7c2UpF1kmy3Xaw/do12PJLw91GJrXLY6d+d43FTEu6JANuThOtJ5VpcXIz5+fn4h//wH8bMzExD3FMGYPuS8BtW778frsGzFxRY/EQmk4mpqalN16/MbpHJZPYoo/Il5eJDEnJIwg9BEo5HUi5eV6LRBiw7UbohCYPYK9Fox6PWA4pW1PrvY3FxsSoDICMqu4hu0B9Qj5Jw7luJRnvSXBJ+26s1mJ7qSEpxA8lRST/kmWee2fB0oHL319TUVHYeK2pZdFONzyIpvx0A0ChqfY2xUo1W4JyEHJJQcJ6E+wARyRhAnoTj4e/jJscDqEdJ+D2rlkrySMJ3eCUabcwFrJeEe3UkTxJ+w4xJgltrWm6Av5SVat6JiYno6ekpax9DQ0Nx/vz5Tb84zp8/H0NDQ1t+sbz66qvxgQ98IL73ve/Fz/7sz5aVRzVU46Z0o0hCR8KAomRJQpuISEa7qPVnsbi4aFag96j3n+PXX399w4Cicv8+/I7dUOu/0UpVs7PvYtgNf/mXfxn33HNP/OAHP4if/umfrnU6/ERS+gARyRg8koRznKT46le/GsePH6/bp3NW67e9kqKbJFw4rmbRzTe/+c2y2kQ1P4ck/I3W+82EJLSJauaRlPOsJPQBat0nW1xcjBdffDEefvhhU6+zSh8gmVb6AH/+538ed999947jk3K+10h28iT29b+/jXY8GrnofafnT0k494X1knLN198HbK7cv9NqXbO4cuVK/O2//bf1ARIoSfcCuCEJ15NIllpf36sV1xUbVzXH4WyX9rQ3kvAbthffmdrT9qycZ+oDJI8Ci3X7mJ6ejq6urg3rBwYGolAoxMTExKb7WGnoL7/8cvzMz/zMjnMwoB9g/2qAn+OqSUJHotxBsRGN98TvcttmLTr7jc7gqmRKSh8gIjnfGyRHvZ9fNFoB59e//vWyLiBW83NIQsFLEgp/IpLRJpIgKd8T5bbNRirqdaOBUvQBkmmlD5AESfker7Wk/K6XOyBTv5DdlIQCZwXnybPddrH+2DXa8UjC30cltsqhHovSknI8yu0bVuuahcFVyaXAInmScD2pXIuLi/HRj340vv3tbzfMPeUk2K99ZNcVqabdbE+N/FCIvZKE37CI7X8Wt+qX1Pq+TFLoAyTXviqwKBQKce7cuejt7S25XW9vb3R1dcXw8PCGdU1NTbfcf1JurCTl4kMSckhCRyIJxyMpF68r0WgDlmv99JOIZHwWSRjEXokkXLBtRLW+GLa4uBjf+ta3yu4wVusielIGBzTAqWLDMLgqmZLSB0iKJJz7VqKavyVJmKnLd/hNSfhdLbfAIikarXgyCW0iCer9e6KR2qUboWsl4WZbEvrp+gDJlKQ+QL1/j1eL33VKScI1+Eo0UoFzJec5jVZwnoT7MhHb//1Yf+wa7Xgk4e+jElvlsNO/O8cjOQyuSq6kFFjoL1cuCd8Zi4uL8Z//83+O0dHRmJqa2tezSBtzUTnXFamm3WxPrt/clIQHnSbheLi2eYM+QHI1RIHFxYsXY2BgIMbGxqK/v3/T7c6fPx9DQ0ORTqcjn89vWF8oFKK7uzvGxsbWzGIxODgY6XS6ZOHFeyXlxkolhzQJHQkX525qtIvXlahWHkloExG1f/pJRO0/i6QMYq9EEnLgpiR8Z1ZTrf9GVyThQpSLxTcYXJVMSekDRCRj8EgSzn0rUc3fkomJiZoXOCfhuysp6r2Ak+pLQpso90EI1czD90RyJKUfElH+30ejPYE9CZfN9QGSaaUP8Od//udx99137zi+0c73ktBn365Sv7+N9kCbRi563+n5UxKuwVciKXlUQ5LOc8q1X+9RJfXYNdLfx27Zy2PneFSXwVXJlZQCC4MhG0NSfmOT8B2elDEw9XxPuVR7SsL1vUrU8/FIqu22ifV970a75psUSfgtdU6RHPoAyVW3BRYXL16MkZGRiIiYmpqKQqEQ6XQ6HnzwwYiIGBgYiDNnzqyJmZmZiY9+9KNx8uTJ1dj1CoXCahHG0aNHY25uLnp7e7cs3Fix0tBffvnl+Jmf+Zkd/ze5OZ4sSehIVEtSOmf1rpHaRKWq8Vlol2vt185+EjVC22y076skdOwqGaBQrb/R73//+3HffffpVCVMUvoAEfU/eKSRNEKBMzc0WgEnlUtKm/Bd0XgqKc6LaLzihiRIwmVzBRbJVOkNryQMHmm074xyn8QekYzjkYR+YUQyzi+q+TR2ksOxq45a/I06dvXLsatfBlcllwKLm5Jwzyyivu9t+57eHUn4+6jF9aRS7SkJn0USJOH6XlIkoU008kMhdioJv2F78QCAWz0sIwmfQxLoAyRX3RZYJFGlHaokXLymMemckUTa5VpJ6Mw4JbhB20yeJPx9JIlOVbLoA1CK3xLW0yZYT5tgvcXFxbjttttqnUZiJOFmWxJu7iiwSKYk3fDSX76hkgKLJNAv3J6kHj9uzbGrX45d/XLs6leSzjVZKykFFkmYDSkJRdYR9X1v2/f07khCH7kWBUilBjAn5e+01pJQEJaEa4wRyfj7qOR7OwnXTpKQQ1Js97Pwe7c9+gDJpdUmyJ133hlf+9rXap0GAECiJGFwlYtQ7BZ9AAAgaco9/07KE7yeeeaZDTd3knIjExpREvrs9U6/EACA7dJfhs0loX9arXvKExMT0dHRUXZ8Eq7vVaKRjkdSisG22ybWF+wkpU0k4dpJEnJICp8F+4UCCwBIgCR09iGpknCxOAl/o9///vfjvvvuKzsPAACS7atf/eqmU2XfShKKG5IyUMPNHfaTJAyYSEKfHQAAuLVq9ZeTcM8MStE/vaner+8lJY9Gst3Pb3FxMQ4dOhS33357tLS0OBbAvqbAAgASQGcfdke1LhYn4W/08OHDZecAAEDyvffG1U4loV+osAH2Xr0PmPC9AQAA9ScJ98yg2uq5AGn9jAOVSEo/vZ6PR6NJSpsAqAUFFgBQ53RoINn8jQIAsNuccwI74TsDAACoBX0RGl0tCpDWzzjATQrCgEaRz+bjxeEXIyKimCtGsVCMTG8mTpw9sWlMsVCMF869EBERh48ejtxcLjp6O6Kzv7PmMfXCryoAAAAAAAAAAABADShAShbHA0iK2YuzceXylegb6VuzfLR7NKZHpuPJuSc3xBQLxRjtHo2BsYFo72pfXT4+OB5XLl+J3uHemsXUk+ZaJwAAAAAAAAAAAAAAANwoYHj52ZdLFir0faEv8tl8jA+Ob1g3NjAW9/bfu6boISKib6QvZkZnIjuZrVlMPVFgAQAAAAAAAAAAAAAACTA/NR+zF2djYmhiw7qVoobvTX5vzfJ8Nh/ZyWw8OPhgyX12nuyMS8OXahJTbxRYAAAAAAAAAAAAAABAAhxqOxSpdCoOHz286TapdGrN66mRqYiIaM20lty+raMtspPZKBaKex5TbxRYAAAAAAAAAAAAAABAArR3tcdQfihOnD2xYd3CzEJERNzTc8+a5a/NvLah6OK9Vgoi5qfm9zym3iiwAAAAAAAAAAAAAACAhJscmozWTGv0DveuWZ7P5uNQ26FN41aKIvLZ/J7H1BsFFgAAAAAAAAAAAAAAsEsWry/G9R9eX/334x/9eEfx+Ww+xgfHI51Jx5NzT25Yfy13bcuZJVaKIoqF4p7H1JuWWicAAAAAAAAAAAAAAACN6sVzL8Y3fvsbq6+vxtVtxc1enI0rl69EIVuIdCYdHb0dJbfbbkHD22+8vecx9UaBBQAAAAAAAAAAAAAA7JKHn3o4PvzpD6++vnLlSnyu83O3jOvs74zO/s7V18/0PhPTI9PR94W+LWeSoHwKLHbB+OPj8ddSf61m7396/HTN3hsAAPajWvcBIvQDAAAAYMWFvgu1TkE/HQCgwZV7zrnUtBS59lxc+eyVaF5urigH55wAUF9aDrZEy8GbQ/ff98P3lbWfgbGBGG4djmKhGI9OPLq6PJVObWt2icNHD+95TL2p7CwNAAAAAAAAAAAAAADYdal0Kjr7OyM7mY3sZHZ1+aG2Q1vGXctdW43f65h6o8ACAAAAAAAAAAAAAAASoFgoRj6b33R9OpOOiIi5ibnVZa2Z1tXihs32ubLdXsfUGwUWAAAAAAAAAAAAAACQAMOtw/H5js+vFiusd/jo4YiINeuPdR3bdPuIWC3YyPRk9jym3iiwAAAAAAAAAAAA2MLbb78db7311o7+ZbPZ+KVf+qU4evRo/NIv/VJks9kd72PlHwAA+0cqnYrWTGuk0qmS63NzuYiIuKv7rtVl95+6PyIiFmYWSsbMX57fUPSwVzH1pqXWCQAAAAAAAAAAACTZfffdV1H8xMREdHR0lB2/vLxc0fsDAFA/us50xYODD266fvZLs5FKp+K+kzfPUdu72iPTk4mXnn0p2rvaN8ZcnI1HJx5ds2yvYuqNGSwAAAAAAAAAAAAAACABeod748XhFyM7md2wbmxgLCIiPvncJzfMcDEwNhDfvfjdDbNLjA+Ox/Gzx0vOLLFXMfXEDBYAAAAAAAAAAABbePnll+NnfuZndhTz8Y9/PJ5//vl4991348CBA/GRj3wkvvzlL+9ShgAANJK+kb6YvTgbYwNjkWpLRTFXjGKhGMe6jsW//N6/3FBcERGRSqfizPSZmBiaiFQ6FYePHo7cXC46ejuis7+z5PvsVUw9UWABAAAAAAAAAACwhcOHD8ftt9++o5hnnnkmHnvssbh8+XI89NBD8cUvfnHH+wAAYP/q7O/cccFCKp2KvpG+RMbUCwUWAAAAAAAAAAAAVXbnnXfG1772tVqnAQAA7EBzrRMAAAAAAAAAAAAAAACoNTNYAAAAAAAAUJcu9F3Y1nZLTUuRa8/Flc9eiebl6j9/7PT46arvEwAAAACAvWcGCwAAAAAAAAAAAAAAYN9TYAEAAAAAAAAAAAAAAOx7LbVOAAAAAAAAgPpzoe9CrVMAAAAAAICqMoMFAAAAAAAAAAAAAACw7ymwAAAAAAAAAAAAAAAA9j0FFgAAAAAAAAAAAAAAwL7XUusEAAAAAAAAgPp3oe/Crux3qWkpcu25uPLZK9G87PlxAAAAAMDucQUSAAAAAAAAAAAAAADY9xRYAAAAAAAAAABAQs1enK11CgAAAPuGAgsAAAAAAAAAAEigYqEYYwNjMT06HcVCsdbpAAAANLyWWicAAAAAAAAAAABslM/mIyLiK4Nfia8MfmXLbQfGBqKzv3P1dbFQjBfOvRAREYePHo7cXC46ejvWbLNeOTEAAACNRIEFAAAAAAAAAAAkUD6bj9ZMa7R3tUeqLVVym2KuGPlsfkNxxWj3aAyMDUR7V/vq8vHB8bhy+Ur0Dvdu3E8ZMQAAAI1GgQUAAAAAAAAAACTQlctX4tGJR6M107rpNhNDE9Ez3LNm2djAWNzbf++aQomIiL6RvhhuHY6O3o7I9GQqjgEAAGg0zbVOAAAAAAAAAAAAKG2r4oqFmYVo62hbs00+m4/sZDYeHHywZEznyc64NHxpzbJyYgAAABqRAgsAAAAAAAAAAEigzQoeVkyNTEX3me4NyyI2L8xo62iL7GQ2ioViRTEAAACNqKXWCQAAAAAAALAzF/ou1DoFAAD2wFazV0wMTUTvcO+G5a/NvBapdOqW+5yfmo9MT6bsGAAAgEZkBgsAAAAAAAAAAKgjCzML0dbRVrIoIp/Nx6G2Q5vGrsTks/mKYgAAABqRAgsAAAAAAAAAANhDi9cX4/oPr6/++/GPfryj+BfPvRjdZ7pLrruWu7blbBQrhRTFQrGiGAAAgEbUUusEAAAAAAAAAABgP3nx3Ivxjd/+xurrq3F127GzF2cjnUlvun67RRBvv/F2RTEAAACNSIEFAAAAAAAAAADsoYefejg+/OkPr76+cuVKfK7zc9uKffHci9H3hb7dSg0AAGBfU2ABAAAAAAAAAAB7qOVgS7QcvDls530/fN+24vLZfCzMLER7V/um26TSqW3NSHH46OGKYgAAABpRc60TAAAAAAAAAAAAbm1qZCpaM61bbnOo7dCW66/lrkXEjaKKSmIAAAAakRksAAAAAAAAAGhYF/ou1DqFOD1+utYpAA3ie5Pfu2WBRWumNean5jddvzJTxXv3U04MAABAIzKDBQAAAAAAAAAA1IGFmYVbziJxrOvYakFEKflsPiIiMj2ZimIAAAAakRksAAAAAAAAoM4l4Qn9AMDuWphZiIiIVNvWBRb3n7o/vnn+m7EwsxDtXe0b1s9fnt9QKFFODAAAQCMygwUAAAAAAAAAACTctdy1bW3X3tUemZ5MvPTsSyXXz16cjRNDJyqOAQAAaEQKLAAAAAAAAAAAIOHy2XxERKTSW89gERExMDYQ37343dVZL1aMD47H8bPHS85GUU4MAABAo2mpdQIAAAAAAAAAVNeFvgu1TiGWmpbi7k/fXes0ABrGXQ/eFal0Ku5+6Nbfral0Ks5Mn4mJoYlIpVNx+OjhyM3loqO3Izr7O6sWAwAA0GgUWAAAAAAAAAAAQMK1d7XHUH5o29un0qnoG+nb0XuUEwMAANBImmudAAAAAAAAAAAAAAAAQK2ZwaIBJWG634iI0+Ona50CAAAAAAAAAAAAAABsiwILAAAAAAAAqEBSHn4FAAAAAEBlmmudAAAAAAAAAAAAAAAAQK0psAAAAAAAAAAAAAAAAPa9llonAAAAAAAAAEBj+s6F78SVz16J5mXP/gMAAAAg+RRYAAAAAAAAAFTRhb4LtU4BAAAAACiDx4QAAAAAAAAAAAAAAAD7nhksAAAAAACgQYwPjsfDQw9Ha6a15PpioRgvnHshIiIOHz0cublcdPR2RGd/56b73KuYevL/Pvb/xtFDR2udBgAAAAAAUGUKLAAAAAAAoAEszCzEzOhMPDj4YMn1xUIxRrtHY2BsINq72leXjw+Ox5XLV6J3uLdmMQAAAAAAAEnQXOsEAAAAAACAyk0OTW65fmxgLO7tv3dN0UNERN9IX8yMzkR2MluzGAAAAAAAgCRQYAEAAAAAAHVuenQ6Ogc6N12fz+YjO5nddHaLzpOdcWn4Uk1iAAAAAAAAkqKl1gkAAACVWZhZiKmRqSjmirEwsxCpdCq6B7uj+0z3pjHFQjFeOPdCREQcPno4cnO56OjtiM7+zQdk7VUMAACwM/lsPiIiWjOtm24zNTK15TZtHW0xMzoTxUIxUunUnsYAAAAAAAAkhQILAACoY9Oj0xER0TfSt7osO5mNsYGxuDR8Kc5Mn9kwaKlYKMZo92gMjA1Ee1f76vLxwfG4cvlK9A73bnifvYoBAAB2bmpkKnqHeyM7md10m9dmXtuyoGGlIGJ+aj4yPZk9jQEAAAAAAEiK5lonAAAAlCefzUexUNwwU0WmJxOffO6Tkc/mY2xgbEPc2MBY3Nt/75qih4gbRRozozMlB2XtVQwAALAzsxdn48HBB2+5XT6bj0NthzZdv1IUsTIbxl7GAAAAAAAAJIUCCwAAqFNTI1MbiitWtHe1R6YnE9nJ7IbBTtnJ7KYDsDpPdsal4Utrlu1VDAAAsDPFQjHy2fzqrBBbuZa7tuXMEitFEcVCcc9jAAAAAAAAkkKBBQAA1KnvTX4v/t09/27TgUnHuo5FRMTCzMLqsqmRqYiITQdgtXW0RXYyu2afexUDAAD72eL1xbj+w+ur/955851bxrxw7oU4cfbEtva/3XPvt994e89jAAAAAAAAkqKl1gkAAADlOdR2KBZmFiKfzUd7V/u2Yl6beW3Lp8muFETMT81HpiezpzEAALCfvXjuxfjGb39j9fXV5qtbbp+dzEZHb8dupwUAVMmFvgu1TiEiIk6Pn651CgAAAACJpsACAADq1KMTj0Y+m990lohCthARsab4Ip/Nx6G2Q5vuc6UoIp/N73kMAADsZw8/9XB8+NMfXn39yiuvxOd+/nObbj83MRe9w73b3n8qndrW7BKHjx7e8xgAAAAAAICkUGABAAAJtHh9Md69/u7q63fefKfkdpsVV0REzF6cjfau9jXbXMtd2zJmpSjivQOi9ioGAAD2s5aDLdFy8OYl+9vuuG3TbS+dvxS/8NQv7Gj/WxVAR9w4h4+INTPR7VUMAAAAAABAUiiwAACABHrx3Ivxjd/+xurrq81XdxR/6fyliIjo+0LfmuXbLWh4+4239zwGAAC4tXw2H6l0ascFCq2Z1pifmt90/co5/HsLpfcqBgAAAAAAICkUWAAAQAI9/NTD8eFPf3j19SuvvBKf+/nPbSt2YWYhJocmY2BsINq72ncrRQAAoAYWZhZidmw2ZsdmN6zLZ/MRETH++PjqTBKPTjwaERHHuo5FdjK76X5XYjM9mdVlexUDAAAAAACQFAosAAAggVoOtkTLwZun67fdcdu2Y8cGxuKRkUeis79zw7pUOrWt2SUOHz285zEAAMCtdfZ3ljzXj4iYvTgbYwNj0feFvg3F1vefuj++ef6bsTCzULIQe/7y/Iaih72KAQAAAAAASIrmWicAAABUz9jAWHQPdkf3me6S61eeYruZa7lrEXGjQGKvYwAAgN3T3tUemZ5MvPTsSyXXz16cjRNDJ2oSAwAAAAAAkBQKLAAAoEFMDE3EXQ/dFSfObj5YqTXTulrcUMrKrBOtmdY9jwEAACqTz+bX/O96A2MD8d2L342FmYU1y8cHx+P42eMlZ5bYqxgAAAAAAIAkaKl1AgAAQOWmR6ejraOt5MwVxUJxdaaIY13HIjuZ3XQ/KwOx3jvgaa9iAACA8owPjkchW4j5qfkbrx8fj+mR6TjWdSx6h3tXt0ulU3Fm+kxMDE1EKp2Kw0cPR24uFx29HdHZ31ly33sVAwAAAAAAkAQKLAAAoM7NXpyNiChZXJHP5mNhZmF1ENP9p+6Pb57/ZizMLER7V/uG7ecvz28oetirGAAAoDx9I33b3jaVTu1o+72MAQAAAAAAqLXmWicAAACUb2FmIa7lrpUsroiIyE5m1xQ4tHe1R6YnEy89+1LJ7WcvzsaJoRNrlu1VDAAAAAAAAAAAQC2ZwQIAAOpUPpuPsYGxuKfnnpgfnN+wvpgrRnYyG0P5oTXLB8YGYrR7NO4/df+a4ovxwfE4fvZ4yZkl9ioGAAAAAAAAAACgVhRYAABAnXqm95nIZ/ORH81vuk1rpnXDslQ6FWemz8TE0ESk0qk4fPRw5OZy0dHbEZ39nSX3s1cxAAAAAAAAAAAAtaLAAgAA6tSTc0+WHZtKp6JvpC+RMQAAAAAAAAAAALXQXOsEAAAAAAAAAAAAAAAAaq3uZ7AoFApx7ty5iIg4evRozM3NRW9vb/T391e0z6GhoYiIyOVyERHx0EMPxdmzZytPGAAAAAAAAAAAAAAASJy6LrAoFArR3d0dY2Nj0dXVtbp8cHAwLl++HMPDwzve58zMTIyMjMTw8HCk0+nV5RcvXozu7u6Ynp6uRuoAAAAAAAAAAAAAALDBwsxCTI1MRTFXjIWZhUilU9E92B3dZ7pLbj89Oh2zY7PRPdgdmZ5MpNKpyGfzsTCzEC8/+3I8/NTD0d7VviGuWCjGC+deiIiIw0cPR24uFx29HdHZ37lpbuXE1JO6LrAYGBiI/v7+NcUVEREjIyPR2toavb290dPTs6N9Dg0NxcTExIbl/f39kcvlYnBwMEZGRirKGwAAAAAAAAAAAAAA1psevTEhQN9I3+qy7GQ2xgbG4tLwpTgzfSZS6dSamGKhGNnJbGQns2uWp9KpGBgb2LS4YrR7dMP68cHxuHL5SvQO91Ylpt401zqBcmWz2ZicnIzBwcGS60+ePLnjGSxmZmYik8lsuv7kyZMxOTm5o30CAAAAAAAAAAAAAMCt5LP5KBaKG2aqyPRk4pPPfTLy2XyMDYyVjH1k5JE4fvZ4dPZ3RteZrnhk5JEYyg9Fpqf0+PixgbG4t//eDcUXfSN9MTM6s6FYo9yYelO3M1iszCKxWUFER0dHjI6ORqFQiHQ6va19rhRtbCaXy217XwAAAAAAAAAAAAAAsF1TI1PxC0/9Qsl17V3tkenJRHYyG/lsPlozrWvW33fyvg0zW2wmn81HdjIbj4w8UnJ958nOuDR8aU1xRjkx9ahuZ7CYmZnZsthhpfBiampq2/vs6uqKbDYbAwMDJdePjIzEqVOndpQnAAAAAAAAAAAAAADcyvcmvxf/7p5/F8VCseT6Y13HIiJiYWahoveZGrkxxn59kcaKto62yE5m1+RRTkw9qtsCi2w2G21tbZuuXym+yGa3P81IJpOJM2fOxMWLF6Ojo2PNbBaTk5NRKBTi7NmzZecMAAAAAAAAAAAAAAClHGo7FMVCMfLZ/K6+z2szr20528VKEcX81HxFMfWopdYJlCuXy63OUlHKSvFFoVDY0X5HRkaio6MjhoaGore3N86cORMdHR3R1dUVIyMjlaQMAAAAAAAAAAAAAAAlPTrxaOSz+U1niShkCxER0d7Vvuk+FmYWYn5qPu568K5Nt8tn83Go7dCm+1gppHhvoUc5MfWobgsstls48cYbb+x432fPno10Oh2Dg4MxOjoa6XQ6xsbGth1/bfFavLn45urr25pvi9sO3LbjPOrd4uJirVPgJxYXF2NpackxIVG0S5JK2ySplpaWap0CW0hCH8D3VnL4LWE9bYL1tAnW0yYoRR8g2d5+9+04uHhw9fV+vQ9QT5ablmM5lmO5aTmWwt9XvXH86pdjlzzbPed0jlq/HLv65Zgl39WrVyOXy62+PnjwYBw8eHCLCBrZUlN55zbVPD/yvYHffapJe6KatKfSFq8vxrvX3119fa1wbdNtNyuuiIiYvTgb7V3tJbfJTmYjn81HpicT3We6Y2FmIZ7pfSZODJ2ITM/aiQ2u5a5t+T4rhRTFQrGimHpUtwUWu2loaCg6OjpieXk5hoaG4vz586uzWWxnFouhPxla8/pXun4lPvbgx3Yr3cR68cUXa50CP7G0tBSvvPJKREQ0NzfXOBu4QbskqbRNkqqcwmH2ThL6AM6/k8NvCetpE6ynTbCeNkEp+gDJloQ+ADuzHMtx7f3XIhe5aIqmWqfDDjl+9cuxS57tXkNyjlq/HLv69d6B+yTTBz/4wTWvf+3Xfi0ee+yxmuRC7eXay/ubreb5kXtD+N2nmrQnqkl7Ku0v/+Qv4/vf+P7q67cW39rxPi6dvxQREX1f6NuwbqXw4cTZE6vL2rvaY2BsIIZbh+PM9Jk1s1lstwji7TferiimHtVtgUU6nd7WLBZHjx7d0X57e3tjaGgoenp6IiJieHg4Tp06FQMDAzE6Ohq5XO6Ws1kM/+JwtKZuVufc1nxb3Law/55c9fDDD9c6BX5ipQrw+PHj0dJSt3/2NBjtkqTSNkmqlY4nyZSEPoDz7+TwW8J62gTraROsp01Qij5AsiWhD8DOLDctRy5y0fZaWzQtG+Rdbxy/+uXYJc92ryE5R61fjl39evXVV2udArfw7W9/Oz7wgQ+svjaDxf525bNXyoqr5vmRe0P43aeatCeqSXsq7UMPfSjeffLmDBbz8/PxmZ//zLbjF2YWYnJoMgbGBtYUSqzo7O8sGZdKp6KzvzPGBsbiybknd574PlS3rbatrW3L9SuV/el0etv7PH/+fHR1da0WV6zo6uqKubm5GBwcjNHR0ZicnNywzXsdajkUd7TcsXbh8rbTaBi+FJOlubk5WlpaHBcSRbskqbRNkkhFf7IloQ/gOytZ/JawnjbBetoE62kTrKcPkGyHDxyueR+AnVmKpWiKpmhabormZX9f9cbxq1+OXfLs5HzTOWr9cuzqk+OVfEeOHLnleCX2j3LPbap5fuR7gwi/+1SX9kQ1aU8btbS0RNx+8/Whtw/tKH5sYCweGXlk00KKrdz10F0xe3E28tn86kwXqXRqWzNSHD56ePX/lxNTj+r2KlYmk9lyesSV2S0ymcy29zkyMhJPPfXUluu7urpiYmJi2/sEAAAAAAAAAAAAAIByjA2MRfdgd3Sf6S4rPpVORcSNWTBWHGrbusDjWu7amthyY+pR3RZYdHV1rRZRlJLNZiMitpxpolTMrWa8GBwc3PJ9AQAAAAAAAAAAAACgUhNDE3HXQ3fFibMnNt1mfHA8Pt/x+R3ttzXTuloQUcrKTBUrM16UG1OP6rbA4tSpUxERMTMzU3L95cuXd1RcEXFjtouVwozNzM3NRXd3edU/AAAAAAAAAAAAAABwK9Oj09HW0VayuGKlmCEiYmFqYVuFD+1d7avLjnUdW7OP9fLZfEREZHoyFcXUo7otsOjq6oqenp549tlnS66/ePFiDA0NbVheKBRiaGgoJicnN6zr7+8vGfPe2JmZmTh58mT5iQMAAAAAAAAAAAAAwCZmL85GRET3mY0TA+Sz+chO3pxU4J6ee2Iov/kY+PnL85FKp9bMLHH/qfsjImJhZmHTmPWFEuXE1KOWWidQibGxseju7o5Tp05FV1fX6vLBwcE4e/ZsyRksRkdH4/z58zE6Ohr5fH7NuuHh4RgYGIjBwcEYHh6OdDq9um5mZiaGhoY2LGdzF/ou1DqFOD1+utYpAAAAAAAAAABUxfTodMyOzUYqnYqIiHQmHb3DvSW3LRaK8cK5FyIi4vDRw5Gby0VHb0d09nduuv9yYgAAgOpamLkxI0Wp4oqIiOxkdk0hw/2n7o/p0elNizFmL87GwNjAmuXtXe2R6cnES8++tGZmixWzF2fj0YlHK46pR3VdYJFOp2N6ejqGhoYinU7H0aNHY25uLnp7e6O/v79kTE9PT6TT6U1noRgbG4vJycl4/PHH1yzPZDIxMTFR9f8GAAAAAAAAAADYSrFQjP/7o/933NNzz5oBS/lsPiaGJjYUWRQLxRjtHo2BsYE1A5/GB8fjyuUrJYsyyokBAACqK5/Nx9jAWNzTc0/MD85vWF/MFSM7mV0zY0V7V3tkJ7Nx6fylOHH2xJp9jXaPxvGzx0sWTQ+MDcRo92jcf+r+DX2A42ePl5yNopyYelPXBRYRN4osRkZGtr19V1fXhpkr1uvp6Sk5+wUAAAAAAAAAAOy1leKK9UUOXxn8SsxPzW9YPjYwFvf237vhqbJ9I30x3DocHb0dGwY+lRMDAABU1zO9z0Q+m4/86Obj3VszrRuWnTh7IrKT2RgfHI9irhjFQjFS6VR88rlPlpxtIiIilU7FmekzMTE0Eal0aluz2JUTU2/qvsACAAAAAAAAAAAa1aXzlyKfzceZ4TMb1qXSqbjrwbvWLMtn85GdzMYjI4+U3F/nyc64NHxpTbFEOTEAAED1PTn3ZNmxmZ7Mjs/ZU+lU9I307XpMPVFgAQAAAAAAAAAACfXiuRej60xXyXUDYwMblk2NTEVE6afaRkS0dbTFzOjM6hNty40BAABoRM21TgAAAAAAAAAAANho9uJsFAvFuP/U/duOeW3mtS2LIFaKKOan5iuKAQAAaEQKLAAAAAAAAAAAIIFefvbliIho72qPiIiFmYWYHp2OhZmFTWPy2Xwcaju06fqVQop8Nl9RDAAAQCNSYAEAAAAAAAAAAAn03kKKS+cvxbXcteg+0x0REc/0PhPZyeyGmGu5a1vORrFSSFEsFCuKAQAAaEQKLAAAAAAAAAAAYA8tXl+M6z+8vvrvxz/6ccntVgofpken48TZE5HpyUTEjRktBsYGYmxgbEORxXaLIN5+4+2KYgAAABpRS60TAAAAAAAAAACA/eTFcy/GN377G6uvr8bVktutFD6szCDxXql0KjI9mfjK4FfiybkndydRAACAfUaBBQAAAAAAAAAA7KGHn3o4PvzpD6++vnLlSnyu83MbtkulU1EsFFdnrlgv05uJ2YuzsTCzEO1d7WtibuXw0cMb3mcnMQAAAI2oudYJAAAAAAAAAADAftJysCUO/tTB1X/ve//7Sm63MnNFKp3acv381PyGZZu5lru2YZ/lxAAAADQiM1gAAAAAAAAAwD5woe/CtrZbalqKXHsurnz2SjQvV/e5jafHT1d1f9Do2rvaI5/N33K7984+0ZppXVNwsdm2rZnWimIAAAAakRksAAAAAAAAAAAgge566K6IWFtA8V4rM0u0d7WvLjvWdWzT7SNitWAj05OpKAYAAKARKbAAAAAAAAAAAIAE6uzvjIiI7GS25PrcXC4iIu568K7VZfefuj8iIhZmFkrGzF+e31AoUU4MAABAI1JgAQAAAAAAAAAACdSaaY3O/s548dyLJdd/9+J34/jZ45FKp1aXtXe1R6YnEy89+1LJmNmLs3Fi6MSaZeXEAAAANKKWWicAAAAAAAAAALBXLvRdqHUKERFxevx0rVOgTvR9oS9Gu0djenQ6us90ry4fGxiL1kxr9A73bogZGBuI0e7RuP/U/dHe1b66fHxwPI6fPV5yNopyYgAAABqNAgsAAAAAAAAAAEioVDoVZ6bPxAvnXoixgbGIiCgWitE50Lmm4KJUzMTQRKTSqTh89HDk5nLR0dsRnf2dVYsBAABoNAosAAAAAAAAAAD22G7MpLHUtBS59lxc+eyVaF5uvuX2ZtGoH6l0quRMFbeK6Rvp2/UYAACARnLr3jQAAAAAAAAAAAAAAECDU2ABAAAAAAAAAAAAAADsewosAAAAAAAAAAAAAACAfa+qBRbPP/98NXcHAAAAAAAAAAAAAACwJ6paYNHb21vN3QEAAAAAAAAAAAAAAOyJlmru7MiRI/HP//k/j9/93d+t5m4BAAAAAAAAAAAAAIB9LvtcNrIT2YimiLaOtrjrwbvi2AePVW3/VZ3BolAoxMjISPzyL/9yfPvb367mrgEAAAAAAAAAAAAAgAZ2/uj5LddnPpqJnt/piYf/zcNxz0fviSuXr8RX/tlX4voPr1fl/as6g0VExMjISHz0ox+NycnJOHfuXPT29sbJkyfjp37qp6r9VgAAAAAAAAAAAOwjF/ou1DoFAAB20fLy8ra2Sx1JRepIKrof747i1WJMDE3EI7/3SMXvX9UCi5GRkfjUpz4VERGPP/54PP744/Gtb30rzp49G01NTTE4OBgf/OAHq/mWAAAAAAAAAAAAAABAA2hqatpxTOpIqmrv31y1PcWNoor1HnjggXj66afjd37nd+Ly5ctx6tSp+P3f//1qvi0AAAAAAAAAAAAAALAPFa8WY2FqoSr7quoMFls5cuTImlktnnjiiWhqaoonnngi/u7f/bt7lQYAAAAAAAAAAAAAAFAjhb8slFy+vLx8Y/33CxHLW++jWCjGtdy1WJhZiBfPvRidJzurktueFVi8V0dHR3R0dMS5c+didHQ0MplMDA0Nxac+9alapAMAAAAAAAAAAAAAAOyB+en5mL88H/lsPrKT2bh+9fqa9Z/PfH7b+1peXo5MTyYe+b1HqpLbnhZYPP/88zE8PByTk5MRceM/5syZMzE4OBgRsTqrxdDQUPzsz/7sXqYGAAAAAAAAAAAAAADsss5PdEbnJ27OOLEwsxCTQ5ORfS4bTU1Nce8n7t3WflozrZHpzUTmo5mq5VbVAovnn38+PvKRj6xZ9sMf/jBGR0djZGQkstnsjQqRn8xY8fjjj6/Z9umnn46rV6/G6Oho5HK5eOqpp+KnfuqnqpkiAAAAAAAAAAAAAACQEO1d7fHoxKMxPjge37343Rj40kDNcqlqgUVvb2+8++67EXGj2GJkZCQuXrwYy8vLERGrs1U88MADm+7jyJEj8Zu/+Ztx9erV+NSnPhXnz583mwUAAAAAAAAAAAAAADSwvpG+WJheqGkOVS2wOHLkSPzcz/1cRMSG2SpOnjwZR44c2dG+vvSlL8U/+2f/LH7v936vmmkCAAAAAAAAADVwoe9CrVMAAAAAEuzhpx4uK27yqcnoOddT8fs3V7yHdebm5mJubi4+8YlPxPT0dPz3//7f4/HHH99RccV7lRsHAAAAAAAAAAAAAADUj85PdJYVNzM6U5X3r+oMFhERg4OD8Tu/8zsVFUZcvXo1fud3ficGBwfj6tWrVcwOAAAAAAAA/v/s/U9sXOedJ3r/qMijktBtVZEbUYN+r1nsd2HKg7aL8gCx1MBticwMBtJiIpZ0A4zTvZBIB+9FGug3FqV7V30XLVP2nWByFxap3MWMG8hI5LgXzCosqSeI5UVEMh7cmF50eKQEbdLAO64quhtmaVpRvQuFtCiSEv8c8Y/0+QBCVOd5fs/zRHVM1iHP9zwAAAAAAGx11dvVqCSVx/abHp+OWrWWypypByzefffddY9x9erV6Ovri6Ghoejt7U1hVQAAAAAAAAAAAAAAwFY3/sPxKPWWUgtNrEaqAYuTJ0+mNs7k5GS8+uqrceLEiVTGBAAAAAAAAAAAAAAAtq7kWhLD3cORy+eirdgWmWzmsTXTY9Nx6/qtVOZPNWBx6dKlR7Zfu3YtRkZGoqGhIVpbW+PgwYPx8ssvL+q3d+/eeOutt9JcGgAAAAAAAAAAAAAAsIVdO3ctioPFaDvRtqq6i00XU5k/1YBFU1NTfP7558u2Hz16NI4ePRozMzNRLpejVCpFf39/9PX1xfPPP5/mUgAAAAAAAAAAAAAAgG0kk8usOlwREZFtyaYyf6oBi3q9vqJ+e/fujb1798aZM2diZmYment74913301zKQAAAAAAAAAAAAAAwDbSXGheU133aHcq8+9IZZTfaWhoWHXN3r1701wCAAAAAAAAAAAAAACwDdWqtU2dP9UdLNZiZmYmRkdHN3sZAAAAAAAAAADPlB8d/9FmLyG+NfytzV4CAAAAW0hbsS0+ef+TePGbL66qrnS+FB0XOtY9/6oDFrdv317yeL1ej4iIX//61/N/X061Wo1yuRzj4+Nx4cKFOHny5GqXAQAAAAAAAAAAAAAAPEXyR/Nx4+0bqw5ZjA+Mb07AYmxsLG7evBlJkkSpVIqZmZkF7fl8fsVj1ev16OjoiHfffXe1ywAAAAAAAAAAAAAAAJ4i1dvVOFA8EB8PfhyXX70cLR0t0djaGLl8btma6fHpqFVrqcy/6oDFiRMn4sSJE/Ovx8fHo7e3N65duxYNDQ0L2h4ln89HZ2dnHD16dLVLAAAAAAAAAAAAAAAAnjL9hf64M3MnIu5v6DA1NhUNDQ0bNv+qAxYPKxQKMTIyEj09PTE0NBRXr15NY10AAAAAAAAAAAAAAMAzZHfj7oiIOHDyQGSymRXVTI9Nx63rt1KZf90Bizn9/f0xNjaW1nAAAAAAAAAAAAAAAMAzJJfPxeFzh6NwurCquotNF1OZf0cqo/zO+fPn0xwOAAAAAAAAAAAAAAB4RuTyucjlc6uuy7ZkU5k/tR0sIiJOnDiR5nAAAAAAAAAAAAAAAMAz4tilY2uq6x7tTmX+VHewWKv3339/s5cAAAAAAAAAAAAAAAA8w7ZEwOLMmTObvQQAAAAAAAAAAAAAAGCbqc3U4sN3PkxlrJ2rLfjoo4/i5ZdfXrZtNcrlciRJEtVqdbXLAAAAAAAAAAAAAAAAnnGVpBIfX/k4Xvvea+sea1UBi3PnzsXbb78d7e3t8fOf/3xR+5EjR2JmZmbdiwIAAAAAAAAAAAAAAJ4tt67fWnXNjb4bUavWUpl/VQGLJEmiXq9HpVJZsr2xsTEiIrq7uyMioqmp6ZHjff755zE5ORnvv//+apYBAAAAAAAAAAAAAAA8Za52XY07M3dWVVOv12N3bncq868qYHH58uXo7OyMjo6OJdvz+XycO3cuTp8+vapFPC6IAQAAAAAAAAAAAAAAPN12N94PShw4eSAy2cySfWrVWlSSSkyNTkW+Ix/7X92f2vyrCljs3bs3zpw5s2x7Z2dnHDx4cNWLaGlpWXUNAAAAAAAAAAAAAADw9Mjlc3H43OEonC6sqP+Nt2/E7tzuFfd/nB2pjPI7b775Zrz88surrhsdHU1zGQAAAAAAAAAAAAAAwDaTy+cil8+tuP+hNw9FJpeJW9dvpTJ/qgGLiIj3338/bt++nfawAAAAAAAAAAAAAADAU+zYpWPRcqRlVTVtJ9picmQylflTDVi88cYbUSwW4+DBg2kOCwAAAAAAAAAAAAAA8ETtTHOwcrkcR48ejUKhkOawAAAAAAAAAAAAAAAAS6om1VTGSTVgkc/n46233kpzSFiXHx3/0WYvIb41/K3NXgIAAAAAAAAAAAAAwFOpNlOL2cpsKmOlGrBoamqK27dvxwsvvLDqus8//zzNpQAAAAAAAAAAAAAAANvIreu3Vty3Vq1FJanEWP9YtPe0pzJ/qgGLN998M06ePBlvvPFGHDlyZMV19Xo9zWUAAAAAAAAAAAAAAADbzNWuq3Fn5s6K+9fr9ch35OO1772WyvypBiwiIq5evRrvvPNO9Pf3x6uvvhqFQiEaGxsjm80u2X9kZCRmZmbSXgYAAAAAAAAAAAAAALCN7G7cHRERB04eiEw28+i+TbujudAc+aP51OZPNWCxY8eOaGhoiIj7SZChoaE0hwcAAAAAAAAAAAAAAJ5SuXwuDp87HIXThU2ZP9WART6fjyRJoqurKxobG1dUc/Pmzfjoo4/SXAYAAAAAAAAAAAAAALDN5PK5yOVzmzZ/6gGLc+fOxenTp1dV19TUlOYyAAAAAAAAAADgqTA2MBYTgxPR3tMe+Y58ZLKZqCSVmB6fjo+vfByHzx+O5kLzorpatRY/u/CziIjY07QnypPlaO1sjbautmXnWksNAABAmo5dOrap86cesMjn86uuy+U2L2ECAAAAAAAAAABbVa1ai6SURFJKFhzPZDNRHCwuG64YaB9Y1D7cMxyf3vw0Ovs6U6kBAACejOnx6RjtH41auRbT49ORyWaivac92rvbl63ZqJD10x7MTjVgcenSpTXV/epXv0pzGQAAAAAAAAAA8NQ41n8sypPlqCbVyDRmYn/7/kfeWDVYHIwXu15cFL443n88+nJ90drZGvmO/LprAACA9I0NjEXE/c/ic5JSEoPFwbjRdyO6x7ojk80sqNmokPVmBLOrt6sx2j8an41/FrPl2djduDuy+Wwc7DkY+17el/p8qQYsAAAAAACAjVFJKvFB3wcREVEr16JWrUW+Mx+Hzh5atsbTqwAAYHs6cPLAohuollNJKpGUkjjWf2zJ9raTbXGj78aCsMRaagAAgPRVkkrUqrVFP+vPd+Tj29e+HQPtAzFYHIzXR15f0L5RIeuNDmaXzpfiw4sfRr1eX9Q2PjAebcW2OD5wPHY9vyu1OTc9YDEzMxOXL1+O733ve5u9FAAAAAAA2BYmhibi05ufLnh6VUTEQPtAjPWPxXcnv7uo5ml+ehUAAPCV0f7RiIjI5XNLtje2Nsb4wHjUqrX50MZaagAAgPSN9o/GH5//4yXbmgvNke/IR1JKopJU5j+/b1TIeiOD2bWZ+79rmC3PxosnXoz9r+6fvxapVWsx+/lsTI9Nx8dXP46klMSf3/rz2PX76YQsdqQyyjokSRJXrlzZ7GUAAAAAAMC2UKvW4uMrHy8ZVDh++XhUkkoM9wwvanvUU6XGB8YjKSWbVgMAAKTns/HPHhmCmLsJa2p0al01AABA+m6VbsV/aPkPUavWlmzfV9gXERHT49Pzx1YSmE5KyYIxN6pmrQaLg5HvyEdvuTeKV4tx6M1D0X6mPdrPtMehNw9Fx1sd8frI69Fb6Y0XT7wY/+nIf1r3nHNS3cHi+vXrq67p6+uLarWa5jIAAOCZNNwzHAeKBx6ZAh8bGIuJwYlo72mPfEc+MtlMVJJKTI9Px8dXPo7D5w8vugkq4v4NXD+78LOIiNjTtCfKk+Vo7WyNtq62ZedaSw0AAPB4U6NTMTE0ESO9I4tCFnOf52+Vbi04/jQ+vQoAAJ5F0+PTMTU6FfsP7l/y5/kR9z+X727cvewYc0GKSlJZVw0AAJC+3Y27Y3p8OipJZdnP/A9bTWB67ufzG1WzFmOXxyKXz8WxS0v/ruFBmb2ZON5/PH78xo9j/IfjUThdWPO8c1INWHR1dcXMzMyqaur1euRyS6dYAACAR5u7eWmsfyymx6fjQPHAI/vXqrVISsmiJ8ZmspkoDhaXDVcMtA8sah/uGY5Pb3665FNz11IDAACszO7G3ZHJZmJP055l+zz8C46VPFVqfGA8atXafO1G1QAAwLPo7p278ds7v51//T/+4X88sn9SSqKSVCLfkY/27vaYHp+O9zrfi0O9hxbduDRbnl32M3lEzAcpHnyq7FpqAACA9L0+8npUksqyn8+rSTUiYsH9OBsVst6oYPat0q3outK1qppjl47FX/+rv956AYvGxsaIiDh58mRks9kl+1Sr1UiSJEZHR6OjoyNeffXVNJcAAADPjLGBsUhGksh35qOjryPe63xvRXXH+o9FebIc1aQamcZM7G/fH+3d7cv2HywOxotdLy4KXxzvPx59ub5o7Wxd9MubtdQAAAAr01xojt5K75Jtc1uCt3S0LDj+tD29CgAAtrsPLnwQP/3Ln86/nonlH2g69zn60NlD88eaC81RHCxGX64vuse6F/w8fqUhiC8//3JdNQAAwMqtJmT9qPDzxNBENBeaF/TZqJD1RgWzM7m1PaAp25Jd17xzUg1Y5PP5OHfuXJw+fXpF/d9+++3I5XIr7g8AAHylvbt9PhgxdxPVShw4eWDFT4qd2yHjWP/SW+61nWyLG303FtwYtZYaAAAgHaXeUuTyuUW7xj1tT68CAIDt7vD5w/H1v/j6/OtPP/00vt/2/SX7tnW1LXk8k81EW1dbDBYH47uT330i6wQAANKxmpD1cm5cvBEREccvH19wfKNC1hsWzG7Y4LqH7EhnmPvy+Xzk8yu/SerNN9+MXC4X169fT3MZAABASkb7RyNi+WR8Y2tjJKVkwQXUWmoAAID1qSSVGO4Zjmw+u+SNVbPl2UcGrZd7EtVG1AAAwLNo566dsev5XfN//tnv/7M1jbP/1f1RSSoLQsyZbGZFn7n3NO1ZVw0AALByh88fjnMz5+b//K8T/+uq6qfHp6PUW4riYHHBDnZPo1p5bb9DqCbVVOZPNWBx6dKlOHLkyKpqTpw4ESMjI2kuAwAASMln45898uaouRDF1OjUumoAAOBZd/fO3bjzxZ35P//0j/+0orqJoYkY6R2JUm8pMtlMHCgeWLLfU/f0KgAAICK+2iXuwZ2uH7WrXMT9YPSDtWutAQAAVm69IevB4mAc6z+25A53GxWy3qhgdrYlG5/8zSerqvnwnQ9j3yv71jXvnJ2pjAIAAGw70+PTMTU6FfsP7l822V5JKo/8pcrcL1IefDLWWmoAAOBZt2hr8B0r2xq8rattwS9T3ut8L8b6x+L45eNufAIAgKfAcM9w3CrdWnKnuuXk8rlHPuRo7oaoB3eiXksNAACwMQaLg9He0x7t3e1Ltm9UyHqjgtkdb3XED/7wBxER8eK/ffGx/ccuj8UHFz6Is5+fXde8c7ZEwCJJks1eAgAAPDOSUhKVpBL5jny0d7fH9Ph0vNf5XhzqPRT5jvyCvrPl2Uf+smTuwunBdPpaagAA4Fl3+Pzh+PpffH3+9W9+85v4/r/4/qrHKQ4Woy/XF7VqLV4feX3++NP29CoAAHhWTI9Oz9+ktJS5z98PPkhpX2FfJKXl78WZewDSg78TWEsNAADw5I30jsT+V/fHobOHlu2zUSHrjQxmF68WY+DgQLR+ozXautpi/8H988GNWrUWs+XZmByZjE+GPolKUokzo2fWPeecHamNtEYzMzNRqXhyLQAAPOjunbtx54s783/+6R//KZVx5y5gDp09NP/LluZCcxQHi/Fe53sLthCPWHkI4svPv1xXDQAAPOse3hr8ud97bk3jZLKZaOtqi6SULLg56ml7ehUAADwrWjpaorfSu2z71M2pyGQzC25geunUSxERi37m/2DNw0GJtdQAAABP1tjAWDS2Ni4Zrnjw/px9hX2PvF9nuZD1RtSsVXOhObpHu+PL/9+XMdw9HAPtA/GD1h/ED1p/EAPtA/Fe53txo+9G1Ov1+Hc/+XfR/Erz4wddoVR3sLh+/fqK+1ar1UiSJPr7+6OnpyfNZQAAwLb3wYUP4qd/+dP51zM7ZlIZt62rbcnjczdhDRYHV7XNOAAAsPHmnsy03BOgsvlsRERMjkzO/xLjaXx6FQAAPAteOvVSjA2MRXt3+6K2SlKJiaGJKA4WFxxvLjRHviMfv7zyywU7W8yZGJpYsOPdWmsAAIAnZ2JoIiJi2WuB6fHp+fuAXjr1Unx48cOYHp9e8vP8ciHrjahZj+ZCc3SPdcfYwFiM9Y/F9C++CoTn8rlo72mPQ28uv7PHWqUasOjq6oqZmZXf+FWv16OjoyO+973vpbkMAADY9g6fPxxf/4uvz7/+zW9+E9//F99/onPuf3V/TAxNRCWpzN/slMlmVrQjxZ6mPfN/X0sNAACwcn25voiI6K30LrkTxNxn7YefXvXgjhYPW+5JVBtRAwAALK+50BxJKYkbF28seGptJanEQPtAvHb2tSUfrlQcLMZA+0C8dOqlBTc+DfcMx2tnX1vyM/laagAAgPRNj0/HbHl2yXBFRERSShZ8Pt+okPVmBbPbu9uX/bd4ElINWDQ2NkZExMmTJyObzT6yb1NTUxQKhTh69GiaSwAAgKfCzl07Y+eurz6uP/d7zz3xOeduzJoen54PWOxu3P3Imtny7ILatdYAAAArl8lmYnfj7mU/U5cnyxERsb99//yxp/XpVQAA8Cw4dPZQJKUkhnuGo1auRa1ai0w2E9++9u0lP3dH3L9u6B7rjpHekchkM7GnaU+UJ8vR2tn6yN2uV1sDAACkq5JUYrA4GC0dLTHVs3jH6Fq5Fkkpid5K74LjGxWyfhaC2akGLPL5fJw7dy5Onz6d5rAAAEAKhnuG41bpVnx38rsrrsnlczE1uvhibc7cE3HnAhlrrQEAAFau0F2Igz0Hl22fuDoRmWwmDpw8MH/saX96FQAAPO3yHflV36iUyWbieP/xJ14DAACk573O96KSVKIyUFm2z1L33GxUyHojg9kT/2UixgfGY7YyG8Wrxci+kF3QXrlViVJvKf75v/zn8dr3Xktt3tQDFvn89k+dAADA02h6dHp+94ilzAUfHrwJal9hXySlZNmaSnL/Yu7BX+qspQYAAFi5zr7OGO4ZjgPFA4s+Vw8WByMi4tvXvr1ohwtPrwIAAAAAgK1tNQ9OfdhGhaw3IphdOl+K/Qf3x6c3P407M3dienx6UcAi15KL4tViJNeSKJ0vRceFjlTmTjVgcenSpTSHAwAAUtTS0RLdfd3Ltk/dnIpMNrMg5f7SqZfiw4sfxvT49JJPn526ObXo5qi11AAAAKtzvP94TAxNxGBxMDKNmaiVa1Gr1mJfYV/8+a0/XxSuiHg6n14FAMD296PjP9rsJURExLeGv7XZSwAAACAibl2/Fbl8LtpOtEXU7+9U8eI3X1y2f/7o/fuQPnn/k0f2W6lUAxaboVqtxoULFyIioqmpKSYnJ6OzszO6urrWPfbAwEAMDg5GNpuNiPs7dPT19a17XAAA2AwvnXopxgbGor27fVFbJanExNBEFAeLC443F5oj35GPX1755ZJhiYmhiXh95PV11wAAAKvX1tW26sDC0/T0KgAAAAAA4Onz8eDHcezdYxERK/49SP5oPn78nR9vj4DF7du3Y3x8PMrlcuTz+cjn8/HCCy+kMna1Wo329vYYHByMQqEwf7ynpydu3ry55jBEtVqNo0ePRkdHR4yMjMwfT5Ikent7hSwAANhyKkklIiJq1dqyfZoLzZGUkrhx8UYcOntoQe1A+0C8dva1JS9KioPFGGgfiJdOvbQgMDHcMxyvnX1tyd0o1lIDAAAAAAAAAAA84+qbO/0TC1hcv349enp6IkmSRW3t7e1x+fLl+KM/+qN1zVEsFqOrq2tBuCIior+/P3K5XHR2dkZHR8eqx50LVzwcpOjp6YnR0VEBCwAAtoSJoYkY6x+LiIip0amIiBg+Mzx/rK3Ytmi3ikNnD0VSSmK4Zzhq5VrUqrXIZDPx7WvfXnK3iYj7T57tHuuOkd6RyGQzsadpT5Qny9Ha2bpsSnwtNQAAAAAAAAAAwLOtVln+AbOPUk2qqcz/RAIWp06diqGhoajX78dHstlsNDY2zoctRkdHo1AoRG9vb/zVX/3VmuZIkiRKpVL09/cv2X7y5Mno6+tbdcDi4sWLkSTJkiGKbDYbBw8eXNN6AQAgbW1dbWsKK+Q78qveQSKTzcTx/uNPvAYAAAAAAAAAAHh2lSfLq66pzdTiy8+/TGX+HamM8oDvfOc7MTg4GK+88kqMjIxEpVKJcrkcv/rVr+LevXtRqVTi6tWr8fLLL0dfX1/8n//n/7mmeeaCFfn80jeGtba2RqlUimq1uqpxL1y4EN3d3Uu2DQ4OxsjIyKrGAwAAAAAAAAAAAAAAHu/AyQMxdGpoVTVDJ4fipf/lpVTmTzVgce3atejv74+hoaEYHR2No0ePxt69exf02bt3b3R1dcXY2Fi8++67cfbs2fj1r3+96rnGx8cjm80u2z4XvBgdHV3xmENDQ1GtVuPUqVOrXg8AAAAAAAAAAAAAALB2h84eiqmxqRj6X4bizj/ceWTfzz76LC6/ejkqSSVe+95rqcy/M5VRfufixYsxMjISR48eXVH/uZ0izp49G1euXFnVXEmSRGNj47Ltc+GLJElWPObcGgqFQkTcD3GMjo7GwYMH548BAAAAAAAAAADAZvrR8R9t9hIiIuJbw9/a7CUAAE+h13/yevzgD38QE4MTke/MR74jH5lsJnY37o7Z8myUJ8txq3Qrpseno16vR894T2pzpxqwqNfrKw5XzOnu7o6hodVt4RERUS6X53epWMpc+KJara54zPHx8fm/X7x4MQqFQnR3d8f4+Hh0dnZGb29vdHR0rHqtAAAAAAAAAAAAAADA4+Xyuegt98ZgcTAmfzIZycjiTRfq9XrkO/JxrP9Y5Fpyqc2dasDiUYGHR1nL7hArDU58/vnnKx6zXC5HNpuNgYGBOHv27PzxQqEQg4OD0dLSEoODg48NWczenY1/vPuP86+f2/FcPPe151a8Dp4ud+/e3ewlxN27d+PevXtbYi0wx3nJVuXcZKu6d+/eZi+BR9gK1wC+bm0dvpfwMOcED3NO8DDnBEtxDbC1ffnbL2PX3V3zr/0eYOurN9SjHvWoN9TjXvjva7vx/m1f3rvty3u3fXnv1m6zr8k2e34eb2ZmJsrl8vzrXbt2xa5dux5RwZNyr2H7fn17Gr9O+/q1efxckTQ5n0iT82ll/Ps8XiabiddHXo/kWhITgxMxNToVtWotMtlM5PK5aO9pj/zRteUXHiXVgMVaNTQ0bPYSIuKr0Mbc7hcPymaz0dHRET09PTE5OfnIcXr/a++C1/+68K/j3xz8N6mtk+3lgw8+2OwlxL179+I3v/lNRETs2LFjk1cD9zkv2aqcm2xVqwkOs/G2wjXAVvjcyX2+l/Aw5wQPc07wMOcES3ENsLVthWsAVqce9Zj9/dkoRzkaYmv8XoqV8/5tX9677ct7t31579Zus3/G+uCN+2xNL7/88oLXf/qnfxp/9md/tilredaVm7fvfy9P49fpzf76+Szzc0XS5HwiTc6nlXENsHL5o/knEqRYTqoBi/b29rh9+3a88MILK66ZmZlZMtAw5/z583HhwoVFx7PZ7Ip2sWhqalrxWubGXG6His7OzhgaGorx8fFH7rrR9z/3RS7z1TYjz+14Lp6b9uSqZ9Xhw4c3ewnzKbfXXnstdu7cErkqcF6yZTk32armLjzZmrbCNcBW+NzJfb6X8DDnBA9zTvAw5wRLcQ2wtW2FawBWp95Qj3KUo/GzxmioPx03MT1LvH/bl/du+/LebV/eu7Xb7J+x/v3f//2mzs/jffTRR/EHf/AH86/tYLF5Pv33n272Etbsafw6vdlfP59lfq5ImpxPpMn5tDKuAbauVM/aM2fOxBtvvBEXL16M559/fkU1b7311pIBijkDAwNLtj8qlBHxVaonm82uaB1zY1ar1WVr5uYcHR19ZMBi987d8Xs7f2/hwfqKl8FTZqt8c9ixY0fs3Llzy6wHIpyXbF3OTbYiif6tbStcA/iatbX4XsLDnBM8zDnBw5wTPMw1wNa252t7Nv0agNW5F/eiIRqiod4QO+r++9puvH/bl/du+/LebV/eu7Xb7OuxzZ6fx9u7d+9j71diY2znr29P49dpX782l58rkibnE2lyPj2ef5utK9V35vbt21EsFqNYLMYbb7wRLS0ty/ZNkiT6+/ujt7c3PvrooyX73Lx5c9ldKvL5fIyOji47/lxdPr/y7UAKhUIkSfLYfivZOQMAAAAAAAAAAAAAANg+Ug1YFAqFmJmZiXq9HqVS6bH9V9pvubkeVTsXlOjo6FjxmK+++moMDQ0tu4vF3K4Yj9q9AgAAAAAAAAAAAAAA2H5SDVg0NjZGtVqNrq6uVLbEu3nz5rK7W5w6dSouXrwY4+PjSwYebt68uapwRUREV1dX9Pb2RqlUiq6urkXtk5OTERFx8ODBVY0LAAAAAAAAAAAAAABsbakGLPL5fJw7dy5Onz6d2phNTU1LHi8UCtHR0RFXrlxZMmAxNDQUIyMji45Xq9W4cOFCdHZ2Lgpg5PP56OrqigsXLiwZsBgaGoqzZ88uubsFAAAAAAAAAAAAAACwfe1Ic7B8Ph/5fD7NISOXyy3bNjg4GENDQzE+Pr7geE9PT5w9e3bJHSwGBgbi4sWLUSwWlxzz8uXLUa1WY2BgYMHxYrEY+Xw++vr61vD/AgAAAAAAAAAAAAAA2MpS3cHi0qVLaQ4XERG/+tWvlm3LZrMxNjYWvb29kc1mo6mpKSYnJ6Ozs3PJHSgiIjo6OiKbzcbJkycfOeaFCxfmQxjVajWKxWJ0d3ev//8QAAAAAAAAAAAAAACw5aQasNgM2Ww2+vv7V9y/UChEpVJ57Jh2qgAAAAAAAAAAAAAAgGfHjs1eAAAAAAAAAAAAAAAAwGYTsAAAAAAAAAAAAAAAAJ55AhYAAAAAAAAAAAAAAMC2VTpfSmUcAQsAAAAAAAAAAAAAAGDbGh8YT2WcnamMAgAAAAAAAAAAAAAAkJLq7WpUkspj+02PT0etWktlTgELAAAAAAAAAAAAAABgSxj/4XiUekuphSZWQ8ACAAAAAAAAAAAAAADYdMm1JIa7hyOXz0VbsS0y2cxja6bHpuPW9VupzC9gAQAAAAAAAAAAAAAAbLpr565FcbAYbSfaVlV3seliKvPvSGUUAAAAAAAAAAAAAACAdcjkMqsOV0REZFuyqcwvYAEAAAAAAAAAAAAAAGy65kLzmuq6R7tTmX9nKqOs0LVr12JkZCQaGhqitbU1Dh48GC+//PJGLgEAAAAAAAAAAAAAANiCatXaps6f6g4WTU1Nj2w/evRovPXWW3Hu3Lk4evRo3Lx5M77zne/EF198keYyAAAAAAAAAAAAAACAbaat2BafvP/JqutK50upzJ9qwKJer6+o3969e6OlpSXOnDkTb731VvT29qa5DAAAAAAAAAAAAAAAYJvJH81HebK86pDF+MB4KvPvTGWU32loaFh1zd69e9NcAgAAAAAAAAAAAAAAsA1Vb1fjQPFAfDz4cVx+9XK0dLREY2tj5PK5ZWumx6ejVq2lMn+qAYu1mJmZidHR0c1eBgAAAAAAAAAAAAAAsIn6C/1xZ+ZORETU6/WYGpta00YQa7XqgMXt27eXPF6v1yMi4te//vX835dTrVajXC7H+Ph4XLhwIU6ePLnaZQAAAAAAAAAAAAAAAE+R3Y27IyLiwMkDkclmVlQzPTYdt67fSmX+VQcsxsbG4ubNm5EkSZRKpZiZmVnQns/nVzxWvV6Pjo6OePfdd1e7DAAAAB7wo+M/2uwlxLeGv7XZSwAAAAAAAAAAYBvL5XNx+NzhKJwurKruYtPFVOZfdcDixIkTceLEifnX4+Pj0dvbG9euXYuGhoYFbY+Sz+ejs7Mzjh49utolAAAAAAAAAAAAAAAAT5lcPhe5fG7VddmWbCrzrzpg8bBCoRAjIyPR09MTQ0NDcfXq1TTWBQAAAAAAAAAAAAAAPEOOXTq2prru0e5U5t+RyigR0d/fHy0tLWkNBwAAAAAAAAAAAAAAsGHWvYPFg86fP5/mcAAAAAAAAAAAAAAAwDOqersao/2j8dn4ZzFbno3djbsjm8/GwZ6Dse/lfanPl2rA4sSJE2kOBwAAAAAAAAAAAAAAPINK50vx4cUPo16vL2obHxiPtmJbHB84Hrue35XanKkGLNbq/fffj29+85ubvQwAAAAAAAAAAAAAAGAT1WZqMdA+ELPl2XjxxIux/9X9kclm7rdVazH7+WxMj03Hx1c/jqSUxJ/f+vPY9fvphCy2RMDizJkzAhYAAAAAAAAAAAAAAPCMGywORr4jH8cuHXtkv9pMLUbOjsR/OvKf4szNM6nMveqAxUcffRQvv/zysm2rUS6XI0mSqFarq10GAAAAAAAAAAAAAADwFBm7PBa5fO6x4YqIiMzeTBzvPx4/fuPHMf7D8SicLqx7/lUFLM6dOxdvv/12tLe3x89//vNF7UeOHImZmZl1LwoAAAAAAAAAAAAAAHi23Crdiq4rXauqOXbpWPz1v/rrjQ9YJEkS9Xo9KpXKku2NjY0REdHd3R0REU1NTY8c7/PPP4/Jycl4//33V7MMAAAAAAAAAAAAAADgKZPJZdZUl23JpjL/qgIWly9fjs7Ozujo6FiyPZ/Px7lz5+L06dOrWsTjghgAAAAAAAAAAMBCwz3Dcbj3cOTyuSXba9Va/OzCzyIiYk/TnihPlqO1szXautqWHXMtNQAAAKlp2OC6h6wqYLF37944c+bMsu2dnZ1x8ODBVS+ipaVl1TUAAAAAAAAAAPCsmh6fjvGB8TjYs/S9OrVqLQbaB6I4WIzmQvP88eGe4fj05qfR2deZSg0AAECaauXamuqqSTWV+XekMsrvvPnmm/Hyyy+vum50dDTNZQAAAAAAAAAAwFOt1Ft6ZPtgcTBe7HpxQVAiIuJ4//EYHxiPpJSkUgMAAJCmbEs2PvmbT1ZV8+E7H8a+V/alMn+qAQsAAAAAAAAAAODJGhsYi7Zi27LtlaQSSSlZdneLtpNtcaPvxrprAAAA0tbxVkeMvDmy4pDF2OWx+ODCB9HxVkcq8+9MZZR1On/+fFy4cGGzlwEAAAAAAAAAAFtaJalEREQun1u2z2j/6CP7NLY2xvjAeNSqtchkM2uuAQAAeBKKV4sxcHAgWr/RGm1dbbH/4P7565BatRaz5dmYHJmMT4Y+iUpSiTOjZ1Kbe0sELAYGBgQsAAAAAAAAAADYFD86/qNNnf/z2c9X3He0fzQ6+zojKSXL9vls/LNHhiDmQhRTo1OR78ivuQYAAOBJaC40R/dodwyfGY7h7uFoaGhY1Kder0cun4t/95N/F82vNKc29xMLWNy+fTuSZPkLuTnj4+NRrVaf1DIAAAAAAAAAAOCpMDE0EQd7Dj62XyWpxO7G3cu2zwUp5nbDWGsNAADAk9JcaI7use4YGxiLsf6xmP7F9HxbLp+L9p72OPTmodTnTT1g8cMf/jB6e3uFJgAAAAAAAAAAICW1ai0qSSXautoe23e2PDu/48RS5oIUtWptXTUAAABPWnt3e7R3t2/YfKkGLK5duxbd3d2Rz+ejWCxGNpt9bM3Y2Fhcv349zWUAAAAAAAAAAMCWde+396J+r/7V67v3Hlvzsws/i86+zhWNv9IQxJeff7muGgAAgKdNqgGLc+fOxeDgYJw4cWJVdU1NTWkuAwAAAAAAAAAAtqzyr8pR/rvy/OuZmHlk/6SURGtn65NeFgAAwLb1yfufxIvffHHd46QasMjlcqsOV0REtLS0pLkMAAAAAAAAAADYshr/sDFy+dz863KtHPHT5ftPjkyuePeKiIhMNrOiHSn2NO1ZVw0AAMBWMXxmeOsFLAqFwprqRkdH01wGAAAAAAAAAABsWTu+tiPiaw+8vrtj2b43Lt6IPz7/x6saf3fj7ke2z5ZnI+J+qGI9NQAAAGvx2Uefxb6X9y3bthqz5dmoJJUVBcZXItWARbVaTXM4AAAAAAAAAAB4ZlWSSmSymVWHGnL5XEyNTi3bPnfj0YO7aKylBgAAYLVK50rx4dsfRnN7c5z5+ZlF7f/xyH+MOzN3NmFl96UasCgWi/H+++/HN7/5zVXVnT9/Pi5cuJDmUgAAAAAAAAAAYFubHp+OicGJmBicWNRWSSoRETF8Znh+94nXR16PiIh9hX2RlJJlx52rzXfk54+tpQYAAGC1Kkkl6vV61CpL7zgxd33T3t1+/3XTY3bb+3w2KpOV+OT9T1JZX6oBi6NHj8bbb7+96pDFwMCAgAUAAAAAAAAAADygrast2rralmybGJqIweJgHL98PJoLzQvaXjr1Unx48cOYHp9e1BYRMXVzalFQYi01AD86/qPNXkJ8a/hbm70EAGAVjl8+HvnO/LLXF7l8Lg6fOxyF04VVjXux6WIay1t5wOKjjz5aUb/Ozs4YGRmJV199NTo6OqK1tTXy+eUvrsbHx6Nara50GQAAAAAAAAAAwCM0F5oj35GPX1755ZJhiYmhifndLtZTAwAAsFqZvZloP9O+bHu+Mx/7D+5f9bjZluw6VvWVFQcsjhw5EjMzMyseuF6vx9jYWDQ0NKxpYfC02Aop7XsN9+Kf/8U/3+xlAAAAAAAAAAApqSSV+f9dKhBRHCzGQPtAvHTqpQXtwz3D8drZ15Z8WuxaagAAANJ06M1Da6rrHu1OZf4VBywaGxsjIuLkyZORzWZTmTwiYmxsLK5fv57aeAAAAAAAAAAA8LQa7hmOalKNqdGp+6/PDMdY/1jsK+yLzr7O+X6ZbCa6x7pjpHckMtlM7GnaE+XJcrR2tkZbV9uSY6+lBgAA4Gmy4oBFPp+Pc+fOxenTp1NfRFNTU+pjAgAAAAAAAADA0+Z4//EV981kM6vqv9YaAADgyRjuGY4DxQOP3E1ubGAsJgYnor2nPfId+chkM1FJKjE9Ph0fX/k4Dp8/vOSud7VqLX524WcRESsOV6+lJm3JtSSSkSSiIaKxtTH2H9wf+17el9r4qwpY5PNPZpu/lpaWJzIuAAAAAAAAAAAAAABsF5WkEkkpibH+sZgen44DxQOP7F+r1iIpJZGUkgXHM9lMFAeLy4YrBtoHFrUP9wzHpzc/XbA73npq1uJi08U4+/nZZdvzR/ORP5qP2kwtZsuzkZSSGO0fjc6+ztj1/K51z7/igMWlS5fWPdlyRkdHn9jYAAAAAAAAAAAAAACw1Y0NjEUykkS+Mx8dfR3xXud7K6o71n8sypPlqCbVyDRmYn/7/mjvbl+2/2BxMF7senFR+OJ4//Hoy/VFa2frol0z1lKzFvV6fUX9MnszkdmbifYz7VGbqcVI70gce/fYuudfccACAAAAAAAAAAAAAAB4Mtq72+eDEdPj0yuuO3DyQGSymRX1ndsh41j/0mGEtpNtcaPvxoKwxFpq1qqhoWHVNZm9K/v/vhI7UhsJAAAAAAAAAAAAAADYskb7RyMiIpfPLdne2NoYSSmJWrW2rpqNVJupxfToygMpj2IHCwAAAAAAAAAAAAAAeAZ8Nv7ZI3e7mAtRTI1Oze9IsZaaR6neri55vF6v32//dTWi/ugxatVazJZnY3p8Oj648EG0nWx77LwrIWABAAAAAAAAAAAAAADb3PT4dEyNTsX+g/ujudC8ZJ9KUondjbuXHWMuSFFJKuuqeZSpsamYujkVlaQSSSmJOzN3FrT/IP+DFY0TcT+Uke/Ix7F3j6245lEELAAAAAAAAAAAAAAA4Am5e+du/PbOb+df/49/+B+pjp+Ukqgklch35KO9uz2mx6fjvc734lDvoUU7SsyWZ+d3nFjKXJCiVq2tq+ZR2k60RduJr3acmB6fjlJvKZJrSTQ0NMSLJ15c0Ti5fC7ynfnIH338rhkrJWABAAAAAAAAAAAAAABPyAcXPoif/uVP51/PxExqY88FHw6dPTR/rLnQHMXBYvTl+qJ7rHvBbhYrDUF8+fmX66pZjeZCc7w+8noM9wzHJ0OfRPFqcU3jpEHAAgAAAAAAAAAAAAAAnpDD5w/H1//i6/OvP/300/h+2/dTGbutq23J45lsJtq62mKwOBjfnfxuKnM9acf7j8f02PSmrmHHps4OAAAAAAAAAAAAAABPsZ27dsau53fN//lnv//PNmTe/a/uj0pSiUpSmT+WyWZWtCPFnqY966pZq8PnD697jPUQsAAAAAAAAAAAAAAAgKdMJpuJiIjp8a92hdjduPuRNbPl2QW1a61Zq7YTS+/IsVEELAAAAAAAAAAAAAAAYJsZ7hmOH7T+YFU1uXxuPhCxlLmdKnL53LpqNlJtphYfvvNhKmM98YDFF198Ebdv337S0wAAAAAAAAAAAAAAwDNjenR6RcGH5kLz/LF9hX3zx5dSSSoREZHvyK+rZiNVkkp8fOXjVMbamcooD7l9+3b09fXFwMBAREQ0NDTE3bt359tv3boVvb298Y1vfCNOnz79JJYAAAAAAAAAAAAAAABPrZaOluju6162fermVGSymQU7S7x06qX48OKHMT0+vSB48WDNw0GJtdSs1a3rt1Zdc6PvxiMDIKuResDi+vXr0dHRERER+Xw+8vl83Lq18P9kS0tLXL16Na5duxbvvPNOfO9730t7GQAAAAAAAAAAAAAA8NR66dRLMTYwFu3d7YvaKkklJoYmojhYXHC8udAc+Y58/PLKL5cMS0wMTcTrI6+vu2atrnZdjTszd1ZVU6/XY3dudyrzpxqwuHXrVnR1dUV3d3f09vZGS0tLREScO3duyf5Hjx6NarUa169fjyNHjqS5FAAAAAAAAAAAAAAA2JYqSSUi4pE7MzQXmiMpJXHj4o04dPbQgtqB9oF47exr0dbVtqiuOFiMgfaBeOnUSwsCE8M9w/Ha2deW3I1iLTVrsbvxflDiwMkDkclmluxTq9aiklRiavT+zhn7X92fytwRKQcszp07F319fXHmzJkFxxsaGpatOXHiRHznO98RsAAAAAAAAAAAAAAA4Jk1MTQRY/1jERExNToVERHDZ4bnj7UV2xbtVnHo7KFISkkM9wxHrVyLWrUWmWwmvn3t20vuNhERkclmonusO0Z6RyKTzcSepj1RnixHa2frkoGMtdasRS6fi8PnDkfhdGFF/W+8fSN253avuP/jpBqwqFQqi8IVK1Gv19NcBgAAAAAAAAAAAAAAbCttXW1rCivkO/Kr3kEik83E8f7jT7xmtXL5XOTyuRX3P/TmoZj4LxNx6/qtaDnSsu75d6x7hAfk82vb1qNSqaS5DAAAAAAAAAAAAAAAYJs5dunYqoMSbSfaYnJkMpX5Uw1YrDUokSRJmssAAAAAAAAAAAAAAABYlVQDFrlcLv72b/92VTXnz5+Po0ePprkMAAAAAAAAAAAAAADgGVFNqqmMszOVUX7n7Nmz8Y1vfCMuX74cf/Inf/LY/u+8804MDQ3F3/3d36W5DAAAAAAAAAAAAAAA4BlQm6nFbGU2lbFSDVjk8/m4dOlSHD16NA4ePBinTp2KV155JarVaty+fTuq1WqUy+UYHx+P/v7+SJIkxsbG0lwCAAAAAAAAAAAAAACwDd26fmvFfWvVWlSSSoz1j0V7T3sq86casIiI6OjoiKtXr0Z3d3ecPXt2/vjAwMD83+v1euTz+RgdHY2XX3457SUAAAAAAAAAAAAAAADbzNWuq3Fn5s6K+9fr9ch35OO1772WyvypBywiIrq6uqKrqysuXrwYV65ciV/84hfzbfl8Pnp6euLNN998ElMDAAAAAAAAAAAAAADb0O7G3RERceDkgchkM4/u27Q7mgvNkT+aT23+JxKwmHP27NkFu1gAAAAAAAAAAAAAAAAsJZfPxeFzh6NwurAp8+9Ic7CPPvoo3n///TSHBAAAAAAAAAAAAAAAngG5fC5y+dymzZ9qwKKrqyt6e3vXVPvOO+9EU1NTfO1rX4umpqb4m7/5mzSXBgAAAAAAAAAAAAAAbGHHLh2LliMtmzZ/qgGLnp6e+Lu/+7tV1508eTJ6e3ujWCzG1atX4/Tp03H69On427/92zSXBwAAAAAAAAAAAAAAsKSdaQ5WLpdXXfOLX/wihoaGoqenJ959992IiDhx4kScOnUqTp06tabABgAAAAAAPM2mx6djtH80auVaTI9PRyabifae9mjvbl+2platxc8u/CwiIvY07YnyZDlaO1ujratt02sAAAAAAACWU71djenx6Zgtz0Yun4tcPhfZF7JPZK5UAxYHDx6M69evR0REX19fjI6ORrVajc7Ozujt7Y0/+ZM/WVRz5cqVaGhoiL6+vgXHC4VCdHd3x/vvvx/f/OY301wmAAAAAABsW2MDYxERcbz/+PyxpJTEYHEwbvTdiO6x7shkMwtqatVaDLQPRHGwGM2F5vnjwz3D8enNT6Ozr3PRPBtVAwAAAAAAsJRb12/Fj3t+HJWksqitub05jl8+Hvv+aF+qc6YasDhx4kR84xvfiGvXrkW9Xp8//pOf/CRGRkait7c3/uqv/mpBTalUikKhEM8///yi8d588804deqUgAUAAKzAcM9wHCgeiHxH/pH9PLUWAAC2r0pSiVq1FofOHlpwPN+Rj29f+3YMtA/EYHEwXh95fUH7YHEwXux6cUHoIeJ+SKMv1xetna2LriU2qgYAAAAAAOBhQ6eGYmJoYj6XkMvnIiJitjwbtWotpkanYqAwEId6D8XRvzqa2rypBixmZmZidHR0PhjxyiuvRETErVu3YmRkJM6dOxednZ0LdrJIkiROnTq17Ji5XC7NJQIAwFOlklQiKSUx1j8W0+PTcaB44JH9PbUWAAC2t9H+0fjj83+8ZFtzoTnyHflISklUksr8LxrmrhuO9R9bsq7tZFvc6LuxIPiwUTUAAAAAAAAPK50rxeTIZBx962i0dbVFrmVxpmD6F9Pxy//8y/jgrQ9id9PueO3/+1oqc+9IZZTfeeutt+LatWvx1ltvzYcrIiJaWlqiu7s7kiSJS5cuLaipVquRzWaXHbOhoSHNJQIAwFNjbGAsSr2liIjo6OtYUc2jniY7PjAeSSnZtBoAAODxbpVuxX9o+Q9Rq9aWbN9XuL8N9vT49Pyx0f7RiPjqyU4Pa2xtjKSULBhzo2oAAAAAAAAelFxLIikl8ee3/jwOvXloyXBFRETzK83R2dcZ3/3Vd2P03dGo/rqayvypBiwqlcqCYMXDstmsHSkAACAl7d3tURwsRnt3e+xu3P3Y/nNPkz3Yc3DJ9rmnyW5GDQAAsDK7G3dHrVqLSlJZcc1n459FJptZtn0uEDE1OrXhNQAAAAAAAA8aHxiPb1/7dmT2Lv87hwfl8rkoXi1G6WwplflTDVisJDxhRwoAANgcnloLAADb3+sjr8d3J7+7aLe4OdWkGhGxoL2SVB4Zyp4LRTwY2tioGgAAAAAAgAfV6/UVhyvmNBeao16vpzJ/qgGLer0e/+2//bdl27/44ov4/PPPVzXmavsDAABL89RaAADYuu7euRt3vrgz/+ef/vGflu27XJg5ImJiaCKaC80L+syWZx/5GX0uFPFgCHqjagAAAAAAAB70qN+DPIm6h+1MZZTf6e7ujoMHD8b//r//73HixIl44YUXIuJ+sOLq1avR29sbg4OD8/1/8YtfREREkiRLjvf+++/Hq6++muYSAQDgmeWptQAAsHV9cOGD+Olf/nT+9cyOmVWPcePijYiIOH75+ILjKw00fPn5lxteAwAAAAAAsEDDBtc9JNWART6fj7feeiveeOONOHv27KL2V155JcbHx6OxsTFu3rwZfX19USgUIiLi17/+dfxP/9P/NN93ZmYment7Y2xsLM0lAgDAtnD3zt347Z3fzr9+1NNrV2q2PPvIpPZyT6DdiBoAAHjWHT5/OL7+F1+ff/2b3/wmvv8vvr/i+unx6Sj1lqI4WIzmQvOTWCIAAAAAAMATl8vnonq7GtkXsiuuufPFnUc+EHY1dqQyygO6u7tjdHQ0jhw5EvV6Per1erS0tMSlS5didHQ0Tpw4Ef/5P//nGBsbi97e3hgdHY3e3t4oFArxf//f/3fcvn07rl+/HgcPHowTJ07E888/n/YSAQBgy/vgwgfx1t635v+8+0fvrntMT60FAICta+eunbHr+V3zf577vedWVT9YHIxj/ceirattUVsmm1nR5/Q9TXs2vAYAAAAAAOBB7WfaY/TSaNz54s6Ka0bOjsTBnoOpzJ/qDhZzCoVCjIyMLNnW0tISb7311qL+/f39cfLkyWhouL83x5kzZxb1AwCAZ8V6n14LAAA8OwaLg9He0x7t3e1Ltj/uiU2z5dmIuB+Q2OgaAAAAAADg2VG9XV1RvwOnDtz//ccb7ZFryS3br5JU4uMrH0dHX0fsen5XKmt8IgGLtejq6op79+7FtWvXIp/PR0tLy4rqqtVqXLhwISIimpqaYnJyMjo7O6OrqyvV9fX09ERvb2/k8/lUxwUAgKXs3LUzdu766uP6ap9euxRPrQUAgKfPSO9I7H91fxw6e2jZPrl8LqZGp5Ztn/v8nst/9QuKjaoBAAAAAACeHf2F/rgzs7KdKer1eiSl5LH9MtlMjPaPxh+f/+NUQhabErB444035neq6OzsjG9+85vzbUePHl3xONVqNdrb22NwcDAKhcL88Z6enrh582b09fWlst7x8fEYGBiInp6eVMYDAIDN4Km1AADwdBkbGIvG1sYld66oVWvzn7n3FfY98hcQlaQSERH5jq8eMLRRNQAAAAAAwLNjd+PuqFVr0dbV9th7jFajVqnFx1c/jsLpwuM7P8amBCwuXbo0//dr167FD3/4wzh9+vSqxykWi9HV1bUgXBER0d/fH7lcLjo7O6Ojo2Pd6+3t7V33GAAAsNk8tRYAAJ4eE0MTERFLhisqSSWmx6ejrastIiJeOvVSfHjxw5gen47mQvOi/lM3pxaFHjaqBgAAAAAAeHbk8rk4fO5wKkGIJ2XHZi/g6NGj0d/fv+q6JEmiVCotu6vEyZMnU9nBYmBgIIrF4rrHAQCAzbavsG8+3LCU5Z5AuxE1AADAyk2PT8dseXbJcEVERFJKFgQcmgvNke/Ixy+v/HLJ/hNDE3Go99CCYxtVAwAAAAAAPDty+dyWfyjrE9vB4qOPPookWX4r8HK5HNVqNa5cuRKNjY2rHn8ulJHPL31TVmtrawwMDES1Wo1sNrvq8SNifv3LzQEAANuJp9YCAMD2V0kqMVgcjJaOlpjqWbxzXK1ci6SURG9l4c7MxcFiDLQPxEunXlrwOX24ZzheO/vakp/RN6oGAAAAAAB4Nhy7dGyzl/BYqQcsbt++HZ2dnY8MVzyopaUlBgcHVz3P+Pj4I4MTc6GI0dHR6OjoWPX4EfdDHH19fVEqldZUDwAAW8mDT5NdKvgwMTQRr4+8vik1AADAyrzX+V5UkkpUBirL9lnqyU+ZbCa6x7pjpHckMtlM7GnaE+XJcrR2tkZbV9uS42xUDQAAAAAAwFaResCio6MjyuVynDhxIl599dXIZrMxODgYnZ2d84GIarUaIyMjkc1m4+rVq2uaJ0mSR+58MTfXSoMeDxsaGoqenp411QIAwEarJPdvrqpVa4/s56m1AACwvX138rtrrs1kM3G8//iWrAEAAAAAAFiPT97/JF785ovrHifVgMXly5cjn8/H2NhY7N27d0HbqVOn4vnnn59//eabb8atW7fi/PnzceHChVXPVS6X53epWMpc+KJara567Gq1GkmSRFdX16prIyJm787GP979x/nXz+14Lp772nNrGgvSUG+ox7179+Lu3bubvRSYd/fuXeclW5Jzk63q3r17i45NDE3EWP9YRERMjU5FRMTwmeH5Y23Ftmjvbl9Q46m1T4ZrgPt87bzP9xIe5pzgYc4JHuacYClLXQOwdXz52y9j191d86+f1WuA7aTeUI961O//vDz897XdeP+2L+/d9uW92768d9tXvaG+2UvgMWZmZqJcLs+/3rVrV+zatesRFTwp9xq279c3X6efjGf152p+rkianE+kyfm0Mv590jd8ZnjrBSyGhoZiaGhoQZAiIiKfz8fo6GgcOXJkwfGWlpbo7u6OH/7wh3H69OlVzbXS4MTnn3++qnEjIi5cuBB9fX2rrpvT+197F7z+14V/Hf/m4L9Z83iwXvWox93f3P9CvGPHjk1eDdx37969+M1vfhMRzku2FucmW9VSn2vbutrWFFbw1Nr0uQa474MPPtjsJWwJvpfwMOcED3NO8DDnBEtZy8+22TiuAbafetRj9vdnoxzlaIiGzV4Oq+T92768d9uX92778t5tX/8w+w+P7VNJKvFB3/2fw9bKtahVa5HvzMehs4eWralVa/GzCz+LiFjxw5DWUvMsePnllxe8/tM//dP4sz/7s01Zy7Ou3Fx+fKctytfpJ+NZ/R2VnyuSJucTaXI+rcyD4d1n0WcffRb7Xt63bNtqzJZno5JUolatpbG0dAMWLS0ti8IVEfd3k7h69eqigMVczeTkZJrLWJdSqRSdnZ3rGqPvf+6LXCY3//q5Hc/Fc9OeXMXmqTfUY///a3+89tprsXNnqv/Zw5rNpS+dl2w1zk22qrkLT7Ym1wD3HT58eLOXsCX4XsLDnBM8zDnBw5wTLMU1wNbmGmD7qTfUoxzlaPysMRrqbmLabrx/25f3bvvy3m1f3rttbPbRzRNDE/HpzU8XPdhooH0gxvrH4ruT311UU6vWYqB9IIqDxWguNM8fH+4Zjk9vfhqdfYvvj1lLzbPio48+ij/4gz+Yf20Hi83z6b//dLOXsGa+Tj8Zz+rvqPxckTQ5n0iT82ll/v7v/36zl7BpSudK8eHbH0Zze3Oc+fmZRe3/8ch/jDszdzZhZfeletbmcrklj7/yyivR3d0dFy5cSG2ubDa7ol0smpqaVjXuyMjIunaviIjYvXN3/N7O31t40E6ObKJ7cS927NgRO3fu9M2KLcV5yVbl3GQrkujf2lwD3Ofr5ld8L+Fhzgke5pzgYc4JHuYaYGvb87U9rgG2mXtxLxqiIRrqDbGj7r+v7cb7t31577Yv79325b3bvh51o3WtWouPr3wcxcHiorbjl4/HQPtADPcMLwpfDBYH48WuFxcEJSIijvcfj75cX7R2tka+I7/ummfF3r17o7GxcbOXQcS2/vrm6/ST8Sz/TM3PFUmT84k0OZ8e71n+t6kklajX61GrLL3jxO7G3RER0d7dfv910+5Hjjf7+WxUJivxyfufpLK+VN+Zen353x60t7fH3/zN38S//bf/dlFbkiSrnutxFyxz26Zks9kVj3nx4sU4f/78qtcCAAAAAAAAAABPwtToVEwMTcRI78iiHSTmghC3SrcWHK8klUhKSRzrP7bkmG0n2+JG340FYYm11AAAAKzW8cvHI9+ZX/baIpfPxeFzh6NwurCqcS82XUxjeZFqDLazszPef//9iIj44Q9/GKdOnYovvvgiIiK6urqiq6sr/vZv/3ZBzbVr19YUsMjn8/MhiqXM7W6Rz6/soi5Jkshms6sKZAAAAAAAAAAAwJO0u3F3ZLKZ2NO0Z9k+mWxmwevR/tGIuH9j0lIaWxsjKSVRq9bWVQMAALBamb2ZaD/THrmWpa898p352H9w/6rHzbZk17my+1LdweLo0aPx9ttvx9tvvx29vb3R0NAQnZ2dcfr06ejo6IgjR45ER0dHdHZ2xiuvvBJJksTQ0FD09/eveq5CoRClUmnZ9rnQRkdHx4rGGx8fj8HBwRgcHFx2rDNnzszvnDEyMrLaJQMAAAAAAAAAwKo0F5qjt9K7ZNv0+HRERLR0tCw4/tn4Z4tCFw+aC1FMjU7NPzV2LTUAAABpO/TmoTXVdY92pzJ/qgGLiIg333wzfvGLX8Sbb74ZMzMzcfLkyfm2oaGhOHLkSPzkJz+JkZGRqNfrUSgU4vTp06ue59SpU3Hx4sUYHx+PQmHx9h83b95ccbgi4qsdNpYyNDQUxWIxLl++vORcAAAAAAAAAACw0Uq9pcjlc9HZ17ngeCWpxO7G3cvWzQUpKkllXTUAAABPwifvfxLNhebIvpDd8LlTD1hERLzyyivxyiuvLDq+d+/eGBsbi6GhoSiVStHa2hrd3WtLihQKhejo6IgrV64sGXoYGhpacpeJarUaFy5ciM7OzlUFMAAAAAAAAAAAIA33fnsv6vfqX72+e29V9ZWkEh/0fRDZfDZeH3l9UftseXZ+x4mlzAUpatXaumoAAADS9uM3fhzjl8cjk8vE2f9+dsPnfyIBi8d51G4RqzE4OBjt7e1x6tSpBSGLnp6eOHv27JIBioGBgbh48WIMDAxEpbKyRH2SJPP/awcLAAAAAAAAAADWo/yrcpT/rjz/eiZmVlQ3MTQRn978NKpJNbL5bLR2ti7Zb6UhiC8//3JdNQAAAGmbLc9Gy9GWaC40b8r8qQcs3n///SgUCvHCCy+kPfQi2Ww2xsbGore3N7LZbDQ1NcXk5GR0dnYuG+Do6OiIbDYbJ0+efOz4PT09kSRJjI6ORkTEmTNnor+/PwqFQvT19aX6/wUAAAAAAAAAgGdD4x82LtgtolwrR/z08XVtXW3R1tU2//q9zvdirH8sjl8+Hpls5kksFQAAYEPl8rnoeGvxRgsbJdWAxRtvvBGXL1+OXC4X//2///c0h15WNpuN/v7+FfcvFAor3rliNeMCAAAAAAAAAMBK7PjajoivPfD67o41jVMcLEZfri9q1Vq8PvL6/PFMNrOiHSn2NO1ZVw0AAEDadjftjurtamRfyK6q7mLTxTj7+dl1z7+2q7NllMvlOHr0aJw+fTrNYQEAAAAAAAAAgIdksplo62qLpJREUkrmj+9u3P3Iutny7Hz9emoAAADSdujNQzFydiRuXb+1qrp6vZ7K/KnuYJHP5+Ott95Kc0gAAAAAAAAAAHhm1aq1mC3PRi6fW7I9m89GRMTkyGTkO/IREZHL52JqdOqRY871m7OWGgAAgCeheLUYH77zYYz1j8X+V/dHc6E5djfuXjbwPTkyGXdm7qQyd6oBi6amprh9+3a88MILq677/PPP01wKAAAAAAAAAABse325voiI6K30Lnkz0Z6mPRHxVQAiImJfYd+CHS0eVkkqERHzgYy11gAAAKTtL3f8ZTQ0NETE/V0pJoYmNnT+VAMWb775Zpw8eTLeeOONOHLkyIrr0tqOAwAAAAAAAAAAniaZbOaRT2otT5YjImJ/+/75Yy+deik+vPhhTI9PR3OheVHN1M2pRUGJtdQAAACkLZfPRSWpRFtXW+xu3L2imqmbU/HZR5+lMn+qAYuIiKtXr8Y777wT/f398eqrr0ahUIjGxsbIZrNL9h8ZGYmZmZm0lwEAAAAAAAAAANteobsQB3sOLts+cXUiMtlMHDh5YP5Yc6E58h35+OWVXy4ZlpgYmojXR15fcGwtNQAAAGnL5XNx+NzhKJwurKruYtPFVOZPNWCxY8eOBdtxDA0NpTk8AAAAAAAAAAA8Uzr7OmO4ZzgOFA8s2kFisDgYERHfvvbtRTtcFAeLMdA+EC+demlBYGK4ZzheO/vakrtRrKUGAAAgTbl8LnL53KrrMrmld/1brVQDFvl8PpIkia6urmhsbFxRzc2bN+Ojjz5KcxkAAAAAAAAAAPDUON5/PCaGJmKwOBiZxkzUyrWoVWuxr7Av/vzWny8KV0REZLKZ6B7rjpHekchkM7GnaU+UJ8vR2tkabV1tS86zlhoAAIA0Hbt0bE113/3Vd1OZP/WAxblz5+L06dOrqmtqakpzGQAAAAAAAAAA8FRp62pbdcghk83E8f7jT7wGAADgaZF6wCKfX/1WgLnc6rfwAAAAAAAAAAAAAAAAnh3JtSSSkSSiIaKxtTH2H9wf+17el9r4qQYsLl26tKa6X/3qV2kuAwAAAAAAAAAAAAAA2GYuNl2Ms5+fXbY9fzQf+aP5qM3UYrY8G0kpidH+0ejs64xdz+9a9/w71j3CY3zxxRdx+/btJz0NAAAAAAAAAAAAAACwjdXr9RX1y+zNRK4lF+1n2qPjrY4Y6R1JZf4nErC4fft2fOc734mvfe1rkcvl4g//8A8XtN+6dStOnjwZP/zhD5/E9AAAAAAAAAAAAAAAwDbT0NCw6prM3kxq86cesLh+/Xrk8/no7++PlpaWOHr0aLS0tCzo09LSElevXo2WlpZ455130l4CAAAAAAAAAAAAAADwDKjN1GJ6dDqVsXamMsrv3Lp1K7q6uqK7uzt6e3vngxXnzp1bsv/Ro0ejWq3G9evX48iRI2kuBXjI//Oj/yc+/fefxo76E9m4ZkW+NfytTZsbAAAAAAAAAAAAANh81dvVJY/X6/X77b+uRtQfPUatWovZ8mxMj0/HBxc+iLaTbamsLdWAxblz56Kvry/OnDmz4Pijtuk4ceJEfOc73xGwAAAAAAAAAAAAAACAp9zU2FRM3ZyKSlKJpJTEnZk7C9p/kP/Biseq1+uR78jHsXePpbK2VAMWlUplUbhiJeaSJgAAAAAAAAAAAAAAwNOr7URbtJ34aseJ6fHpKPWWIrmWRENDQ7x44sUVjZPL5yLfmY/80Xxqa0s1YJHPr21hlUolzWUAAAAAAAAAAAAAAADbQHOhOV4feT2Ge4bjk6FPoni1uGlr2ZHmYGsNSiRJkuYyAAAAAAAAAAAAAACAbeR4//HItmQ3dQ2pBixyuVz87d/+7apqzp8/H0ePHk1zGQAAAAAAAAAAAAAAwDZz+PzhTZ1/Z5qDnT17Nr7xjW/E5cuX40/+5E8e2/+dd96JoaGh+Lu/+7s0lwEAAAAAAAAAAAAAAGwzbSfaHtvn1vVbUUkqkcvnYv/B/bHr+V2pzZ9qwCKfz8elS5fi6NGjcfDgwTh16lS88sorUa1W4/bt21GtVqNcLsf4+Hj09/dHkiQxNjaW5hIAAAAAAAAAAAAAAIBtqHSuFLWZ2oJjx949FhERtZlavNfxXkyPT0e9Xo9cPhe1Si2KQ8Vo+ZOWVOZPNWAREdHR0RFXr16N7u7uOHv27PzxgYGB+b/X6/XI5/MxOjoaL7/8ctpLAAAAAAAAAAAAAAAAtpn2nvb4QesPor2nPdq726P5leb5tsHiYEyNTcWhs4ei462OiIioVWsxeHIwci25yL6QXff8O9Y9whK6urqiXC7HhQsX4uWXX456vT7/p6WlJfr6+uJXv/pVvPLKK09iegAAAAAAAAAAAAAAYJv57BefRXGwGMfePbYgXDHxXyYiKSVxoHhgPlwREZHJZqJ4tRgf9H2Qyvyp7mBx/fr1OHLkyPzrs2fPLtjFAgAAAAAAAAAAAAAAeLzhnuE4UDwQ+Y78I/vVqrX42YWfRUTEnqY9UZ4sR2tna7R1tW16zWp9evPT6LjQsej4x1c+joaGhjh8/vCitkw2E5m9mVTmTzVg0dnZGdVqNX7/938/zWEBAAAAAAAAAAAAAOCpV0kqkZSSGOsfi+nx6ThQPPDI/rVqLQbaB6I4WIzmwlc7Pgz3DMenNz+Nzr7OTatZk/rSh5NSEhER+17et3SHhnSm35HOMPft3bs3ent70xwSAAAAAAAAAAAAAACeemMDY1HqLUVEREff4l0cljJYHIwXu15cEHqIiDjefzzGB8bngwmbUbMWu5t2LzpWuVWJWrW2aO4H1aq1VOZPNWBRrVajv78/Xn311bh+/XqaQwMAAAAAAAAAAAAAwFOrvbs9ioPFaO9uj92Ni4MGD5vb7eJgz8El29tOtsWNvhubUrNWDQ2Lt6KYGJqIiIiWjpblC5fZ+WK1Ug1YRET09/dHqVSKycnJ+MY3vhHvvPNOfPHFF2lPAwAAAAAAAAAAAAAAz6zR/tGIiMjlc0u2N7Y2RlJKFuzusFE1a/Xlf/8y7nxxZ8Gxsf6xaGhoiJdOvbRkTel8Kdp72tc9d0TKAYv+/v44ffp07N27N86cORM/+clP4ujRo3H27Nk4deqUXS0AAAAAAAAAAAAAACAFn41/FplsZtn2uUDE1OjUhtes1eHzh2OwOBif/bfP4rOPPouhU0NRSSrR1tUW+17et6DvZx99Fn/9r/469jTtieZXmtc9d0TEzlRG+Z0zZ84sOvbKK6/EpUuXIiLi8uXLcenSpfiX//JfRnd3dzz//PNpTg8AAAAAAAAAAAAAAM+ESlKJ3Y27l22fC0VUksqG16xVZm8mjl44GldPXJ0f70DxQHRd6Zrv8+M3fhxJKZlvT0pJfPn5l9FxoWPd86casHicM2fOxJkzZ+IXv/hFnD17NhoaGuKNN96IP/qjP9rIZQAAAAAAAAAAAAAAwIa4e+du/PbOb+df/49/+B+pjDtbnp3fPWIpc6GIWrW24TXr0Vxoju/+6rtRm6lFZu/inTMO9R6KQ72HllzDem1owGJOa2trtLa2xoULF2JgYCAKhULcvHlzM5YCAAAAAAAAAAAAAABPzAcXPoif/uVP51/PxEwq46400PDl519ueE0algpXRETkWpYPe6zXhgYsrl+/Hv39/TE0NBQREfV6Pbq7u6Onp2cjlwEAAAAAAAAAAAAAABvi8PnD8fW/+Pr8608//TS+3/b9TVzR0+eT9z+JF7/54rrHSTVgcf369Thy5MiCY1988UUMDAzEhQsXolqtRr1ej0KhED09PXHmzJk0pwcAAAAAAAAAAAAAgC1l566dsXPXV7fu/7Mv/lkq42aymRXtLrGnac+G12y04TPDWy9g0dnZGb/97W8jYuFuFfV6PSJifreKV155Jc1pAQAAAAAAAAAAAADgmbK7cfcj22fLsxFxPyCx0TWP8tlHn8W+l/ct27Yas+XZqCSVFQVAViLVgMXevXvj1VdfjSRJ7FYBAAAAAAAAAAAAAABPSC6fi6nRqWXb50IHuXxuw2uWUzpXig/f/jCa25vjzM8XZwz+45H/GHdm7jx2nCcl1YBFRMTY2FhE2K0CAAAAAAAAAAAAAACelH2FfZGUkmXbK0klIiLyHfkNr3lU33q9HrXK0jtOzO2W0d7dfv9102N2z/h8NiqTlfjk/U8eO/dKpB6w6OnpiXfffTftYQEAAAAAAAAAAAAAgN956dRL8eHFD2N6fDqaC82L2qduTi0KPWxUzXKOXz4e+c78sv1z+VwcPnc4CqcLKxpvzsWmi6vqv5wdqYzyO9VqVbgCAAAAAAAAAAAAAACesOZCc+Q78vHLK79csn1iaCIO9R7alJrlZPZmov1Me+Racku25zvzsf/g/hWN9aBsS3bVNUtJdQeL7u7uNIcDAAAAAAAAAABgC/jR8R9t9hIAAJ4plaQSERG1au2R/YqDxRhoH4iXTr20YHeJ4Z7heO3sa0vuFLFRNWtx6M2VBTUe1j2aTpYh1YDFpUuX0hwOAAAAAAAAAAAAAACeCRNDEzHWPxYREVOjUxERMXxmeP5YW7Et2rvbF9RkspnoHuuOkd6RyGQzsadpT5Qny9Ha2RptXW1LzrNRNdtRqgGLtWpqaorPP/98s5cBAAAAAAAAAAAAAACboq2rbU1hhUw2E8f7j2/JmtWo3q5GUkqiPFmOalK9P2djJhpbG6O50BwtR1qe2NxztkTAol6vb/YSAAAAAAAAAAAAAACADXTnizsxNjAWH1z4IGrV2mP7t/e0x6GzhyL7QvaJrGfTAxbnzp2LmZmZzV4GAAAAAAAAAAAAAACwQcZ/OB4/7vlxRCzetCGTzcTuxt0xW55dELwYvTQaY/1jcaj3UBz9q6Opr2lTAhbXr1+P/v7+GBoa2ozpAQAAeAJ+dPxHm72E+NbwtzZ7CQAAAAAAAAAAPMbQqaGYGJqIer0e+Y585Dvzke/IR/MrzUv2r83UIiklMfmTyRi/PB43+m5EUkrizM/PpLquDQtYfPTRR3HlypUYGBiIarUaEV+lTBoaGjZqGQAAAAAAAAAAAAAAwCb563/11zE5MhltXW3R0dcRuZbcY2syezPRdqIt2k60xfH+4zHSOxIfvv1hXP6Xl1MNWTzRgMXt27djaGgo+vv7I0mSiPgqVNHR0RE9PT1Rr9fj1KlTT3IZAAAAAAAAAAAAAADAJrvx9o2YHJmM4wPHo3C6sOZxOvs6o7WzNd77xntx7X+7Fkf/6mgq60s9YPHFF1/E1atXo7+/P8bHxyPiq1BFPp+Pnp6e6O7ujr17987XPPh3AAAAAAAAAAAAAADg6VKbqUWptxSdFzvXFa6Yk+/IR/FqMYZODUV7d3tkX8iue8zUAhbvv/9+XLlyJYaGhiLiq1BFNpuNmZmZmJycjBdeeGHJ2sHBwbSWAQAAAAAAAAAAAAAAbDFjA2PRXGiO1773WmpjtnW1xb5X9sXE0EQq4+5YT/H169fjO9/5Tnzta1+LYrEYg4ODUa/XY+/evdHd3R1jY2NRLpdj7969y4YrIiKOHk1nOw4AAAAAAAAAAAAAAGDr+fjKx/HH/9sfpz7u4XOH4+MrH6cy1qp3sLh9+3b09/fHwMBAVKvViPhqt4qurq7o6elZFJhoaGhY/0oBAAAAAAAAAAAAAIBtqXqrGvmOfOrj5jvz8eOeH6cy1ooDFpcvX46LFy9GkiQR8VWooqOjI4rFYpw5cyaVBQEAAAAAAAAAAAAAAE+XWrUWu57flfq4mb2ZqFVrqYy14oDFyMhITE5ORkREa2tr9PT0xJkzZ2Lv3r2pLAQAAAAAAAAAAAAAAHg67dqbfrgi7bF3rLTj1atX4969e3Hp0qVoaWmJmzdvxtjYWCqLAAAAAAAAAAAAAAAAnl4NDQ1bfuwVByzmdHd3x09+8pMYGBiIsbGx+MY3vhHf+c534qOPPkplQQAAAAAAAAAAAAAAABtt1QGLOXv37o0333wzfvKTn8TZs2fjP//n/xyvvvpqnD9/Pm7fvp3iEpYOTRoAAQAASURBVAEAAAAAAAAAAAAAAJ6snWkM0tLSEm+99VZERPziF7+It956K27duhWdnZ1x5syZNKYAAAAAAAAAAIBn0vT4dIz2j0atXIvp8enIZDPR3tMe7d3ty9bUqrX42YWfRUTEnqY9UZ4sR2tna7R1taVaAwAAsFK1am3Lj51KwOJBr7zySly6dCkiIv7Lf/kvcebMmajX6/HDH/4wTp8+vWTNO++8E9/73vfSXgoAAAAAAAAAAGxrYwNjERFxvP/4/LGklMRgcTBu9N2I7rHuyGQzC2pq1VoMtA9EcbAYzYXm+ePDPcPx6c1Po7Ovc9E8a6kBAABYjXq9Hv/X//v/ilw+l+q4laSS2lipBywedOLEiThx4kTMzMzE1atX4xvf+Ebkcrno6emJI0eORETErVu3ore3V8ACAAAAAAAAAAAeUEkqUavW4tDZQwuO5zvy8e1r346B9oEYLA7G6yOvL2gfLA7Gi10vLghKRNwPafTl+qK1szXyHfl11wAAAKxWebIc5cly6uM2NDSkMs4TDVjM2bt3b5w5cybOnDkTMzMzMTAwEG+99VY0NDREqVTaiCUAAAAAAAAAAMC2Mto/Gn98/o+XbGsuNEe+Ix9JKYlKUpl/AmwlqURSSuJY/7El69pOtsWNvhsLwhJrqQEAAFiLfEc+8p3pXltM/XwqPnn/k1TG2pCAxYP27t0bb775Zrz55ptRKpXi5z//eXzxxRcbvQwAAAAAAAAAANjSbpVuxfjAePz5rT+PTDazqH1fYV8kpSSmx6fnAxaj/aMREfOvH9bY2hjjA+NRq9bmx1xLDQAAwGo1NDTE6z95/fEd1+D/+Nr/kco4O1IZZY06OjpicHBwM5cAAAAAAAAAAABb0u7G3VGr1qKSVFZc89n4Z48MQcyFKKZGp9ZVAwAAsFq79u7a8mNv+A4WD+vo6Ii9e/du9jIAAAAAAAAAAGBLeX3k9agklWV3lqgm1YiIaC40zx+rJJXY3bh72THnghQPhjbWUgMAALBa37727S0/9qbuYDHn2rVrm70EAAAAAAAAAADYcpYLV0RETAxNRHOheUGf2fLsI3ejmAtS1Kq1ddUAAACsVvMrzY/vtMljb/oOFhERr7zyymYvAQAAAAAAAAAANsS9396L+r36V6/v3lv1GDcu3oiIiOOXjy84vtIQxJeff7muGgAAgKfRlghYAAAAAAAAAADAs6L8q3KU/648/3omZlZVPz0+HaXeUhQHi9FceHJPgAUAAHjWCFgAG+ZHx3+02UuIbw1/a7OXAAAAAAAAAMAzrvEPGyOXz82/LtfKET9def1gcTCO9R+Ltq62RW2ZbGZFO1LsadqzrhoAAICnkYAFAAAAAAAAAABsoB1f2xHxtQde392x4trB4mC097RHe3f7ku27G3c/sn62PBsR90MV66kBAAB4Gq386gwAAAAAAAAAANg0I70jsf/V/XHo7KFl++TyuflAxFLmdqp4cAeNtdQAAAA8jQQsAAAAAAAAAABgixsbGIvG1sYlwxVzAYiIiH2FfQteP6ySVCIiIt+RX1cNAADA00jAAgAAAAAAAAAAtrCJoYmIiGjvbl/UVkkqkZSS+dcvnXopIiKmx6eXHGvq5tSioMRaagAAAJ5GAhYAAAAAAAAAALBFTY9Px2x5dslwRUREUkqiudA8/7q50Bz5jnz88sovl+w/MTQRh3oX7oKxlhoAAICn0c7NXgAAAAAAAAAAALBYJanEYHEwWjpaYqpnalF7rVyLpJREb6V3wfHiYDEG2gfipVMvLQhfDPcMx2tnX1tyN4q11AAAADxtBCwAAAAAAAAAAGALeq/zvagklagMVJbtk8vnFh3LZDPRPdYdI70jkclmYk/TnihPlqO1szXautqWHGctNQAAAE8bAQsAAAAAAAAAANiCvjv53TXXZrKZON5//InXAAAAPE12bPYCAAAAAAAAAAAAAAAANpuABQAAAAAAAAAAAAAA8MwTsAAAAAAAAAAAAAAAAJ55AhYAAAAAAAAAAAAAAMAzT8ACAAAAAAAAAAAAAAB45u3c7AUAAAAAAABrM9wzHAeKByLfkX9kv1q1Fj+78LOIiNjTtCfKk+Vo7WyNtq62Ta8BAAAAAADYKgQsAABgGxsbGIuJwYlo72mPfEc+MtlMVJJKTI9Px8dXPo7D5w9Hc6F5UZ0bpQAAYPuqJJVISkmM9Y/F9Ph0HCgeeGT/WrUWA+0DURwsLrg+GO4Zjk9vfhqdfZ2bVgMAAAAAALCVCFgAAMA2VqvWIiklkZSSBccz2cyim5oerHGjFAAAbE9jA2ORjCSR78xHR19HvNf53mNrBouD8WLXi4uuD473H4++XF+0drYu2gFjo2oAAAAAAAC2EgELAADY5o71H4vyZDmqSTUyjZnY374/2rvbl+3vRikAANi+2rvb5z/vT49PP7b/3G4Xx/qPLdnedrItbvTdWPB5fqNqAAAAAAAAthoBCwAA2OYOnDwQmWxmRX3dKAUAAM+W0f7RiIjI5XNLtje2Nsb4wHjUqrX564qNqgEAAAAAANhqdmz2AgAAgI2zkpueklIStWptXTUAAMDW8Nn4Z48MNMx9zp8andrwGgAAAAAAgK1m2+9gUa1W48KFCxER0dTUFJOTk9HZ2RldXV1rHnN8fDz6+/ujXC7H+Ph4ZLPZ6Onpie7u7rSWDQAAm2I1Nz3N7UixlhoAAGBrqCSV2N24e9n2uc/6laSy4TUAAAAAAABbzbYOWFSr1Whvb4/BwcEoFArzx3t6euLmzZvR19e36jEHBgYiIqK/v3/+WKlUimKxGH19fTE2NhbZbHbdawcAgLRNj0/H1OhU7D+4P5oLzUv2caMUAABsTXfv3I3f3vnt/Ot/+sd/SmXc2fLssrvRRcT8Z/0Hd6TbqBoAAAAAAICtZlsHLIrFYnR1dS0IV0TcD0fkcrno7OyMjo6OFY+XJElUq9U4e/bsguMdHR1x7dq1aG9vj2KxGCMjI6msHwAAlrOam6uSUhKVpBL5jny0d7fH9Ph0vNf5XhzqPbRoRwk3SgEAwNb0wYUP4qd/+dP51zM7ZlIZd6Wf07/8/MsNrwEAAABIw4+O/2izlxDfGv7WZi8BAEjJtg1YJEkSpVJpwU4TDzp58mT09fWtKmDR398f58+fX7KtUChER0dHlEqlSJIk8vn8kv0AACANK725ai74cOjsofljzYXmKA4Woy/XF91j3Qt2s3CjFAAAbE2Hzx+Or//F1+df/+Y3v4nv/4vvb+KKAAAAAAAAnj07NnsBazUXrFgu6NDa2hqlUimq1eqKxyyVStHS0rJszdxOGePj46taKwAArNbh84fj3My5+T/f+W/fWbJfW1dbtHW1LTqeyWairastBouDT3qpAABACnbu2hm7nt81/+e533sulXEz2cyKQtN7mvZseA0AAAAAAMBWs20DFuPj45HNZpdtnwtejI6OrnjMxsbGqFarkSTJepcHAADrksbNVftf3R+VpBKVpDJ/zI1SAADwbNnduPuR7bPl2Yi4/7l/o2sAAAAAAAC2mm0bsEiSJBobG5dtnwtfrCYsMTIyEpOTk/M7VSw1Z0Qs2w4AAFvJ3I1L0+PT88fcKAUAAM+WXD43/5l9KXNh6lw+t+E1AAAAAAAAW83OzV7AWpXL5fldKpYyF76oVqurGvdRYw4NDUWhUHhkn4iI2buz8Y93/3H+9XM7novnvpbOdu6wFvWGetSjHvWGetyLe5u9nE119+7dzV4Cv3P37t24d++e94Qtx7nJVnXv3uLv4cM9w3GrdCu+O/ndFY+Ty+dianRq2fblbpRabc2zxjXA1rEVvn77XsLDnBM8zDnBw5wTLGWpa4C12FfYF0lp+QcRze14l+/46ufeG1WznX352y9j191d869dA2x9fk6+vXn/ti/v3fblvdu+vHfbV72hvtlL4DFmZmaiXC7Pv961a1fs2rXrERVPn3sNvq6sl6/TT6/N+NmenyuSJucTaXI+rYx/n61r2wYsVhqc+Pzzz1OZ7+LFixERcfny5cf27f2vvQte/+vCv45/c/DfpLIOWIt61GP292ejHOVoiIbNXs6mevf/8+5mLyEiIv7Ft/7FZi9h0927dy9+85vfRETEjh3bdkMlnkLOTbaqpT7XTo9Or+gJsc2F5vljbpR6MlwDbB0ffPDBZi/B9xIWcU7wMOcED3NOsJS0frb90qmX4sOLH8b0+PSCa4M5UzenFn2W36ia7cw1wPbj5+Tbm/dv+/LebV/eu+3Le7d9/cPsP2z2EniMl19+ecHrP/3TP40/+7M/25S1bJZyc/nxnXgkX6efXpvxOyo/VyRNzifS5HxamQfDu2wt2zZgsZHGx8ejt7c3BgcHo1AoPLZ/3//cF7nMV0/vfW7Hc/HctCdXsXnqDfUoRzkaP2uMhrqLs63g8OHDm72ETTeXvnzttddi507fjtg6nJtsVXMXng9q6WiJ7r7uZWumbk5FJptZsLOEG6WeDNcAW8dW+JzlewkPc07wMOcED3NOsJSlrgHWornQHPmOfPzyyi+X/Dw/MTQRr4+8vik125lrgO3Hz8m3N+/f9uW92768d9uX924bW/55SmwRH330UfzBH/zB/OtncQeLT//9p5u9hG3P1+mn12b8jsrPFUmT84k0OZ9W5u///u83ewksY9uetdlsdkW7WDQ1Na17rmKxGP39/dHV1bWi/rt37o7f2/l7Cw/ayZFNdC/uRUM0REO9IXbUpQG3Ah8a7tuxY0fs3LnTvwdbjnOTrWipRP9Lp16KsYGxaO9uX9RWSSoxMTQRxcHiguNulHoyXANsHYP/dnCzlxD3Gu7FP/+Lf+57CQv4fMHDnBM8zDnBw1byVK+53eTmdq9bTnGwGAPtA/HSqZcWfKYf7hmO186+tmRgeqNqtqs9X9vjGmCb8XPy7c37t31577Yv79325b3bvtxovfXt3bs3GhsbN3sZm8rXlfXzdfrptVk/1/NzRdLkfCJNzqfH82+zdW3bd+ZxFyxz26Zks9l1zVMsFqOnpye6u5d/MjAAAGyG5kJzJKUkbly8EYfOHpo/XkkqMdA+EK+dfS3autoW1blRCgAAtq+JoYkY6x+LiIip0amIiBg+Mzx/rK3YtiiEnclmonusO0Z6RyKTzcSepj1RnixHa2frktcMG1kDAAAAAACwlWzbgEU+n4/R0dFl2+d2t8jn136jV29vb7z66qtx9uzZNY8BAABP0qGzhyIpJTHcMxy1ci1q1Vpkspn49rVvL7nbRIQbpQAAYDtr62pb02fwTDYTx/uPb8kaAAAAAACArWLbBiwKhUKUSqVl25MkiYiIjo6ONY0/MDAQra2tS+5cUa1W170zBgAApCXfkV/1DhJulAIAAAAAAAAAAFhox2YvYK1OnToVERHj4+NLtt+8eXPN4YqhoaGIiCXDFUmSPDLYAQAAAAAAAAAAAAAAbD/bNmBRKBSio6Mjrly5smT70NBQ9Pb2LjperVajt7d32ZDE+Ph4lMvlJcMVERGlUikKhcLaFw4AAAAAAAAAAAAAAGw5Ozd7AesxODgY7e3tcerUqQWhh56enjh79uySO1gMDAzExYsXY2BgICqVyoK2JEmiWCxGR0dH9PT0LKotl8tRKpUW1QEAAAAAAAAAAAAAANvbtg5YZLPZGBsbi97e3shms9HU1BSTk5PR2dkZXV1dS9Z0dHRENpuNkydPLmrr7OyMJEliYGBg2Tnz+Xxq6wcAAAAAAAAAAAAAALaGbR2wiLgfsujv719x/0KhsOwOFJOTk2ktCwAAAAAAAAAA/v/s/W9sXOd5IHxfopho9KfRkOqCptN9UA2zKEw725i00o3sArsyme0TiB8ck3KNhbNqE4vKBnARoxFjYPdDsQsoVIoE2wU2ItP0MVYPKthU4werIupb0vIGttwX5R8HbxwGxVYjb7YSLTwxZ5RK1iihyPeDQ9oU/4gcHnJmOL8fILRzzrnuc8Xn5sy5Z+7r3AAAAFSQmlInAAAAAAAAAAAAAAAAUGoKLAAAAAAAAAAAAAAAgKpXW+oEAAAAAAAAAAAAAACAiNH+0RgfGI/W7tbItGUilU5FLpuLibGJ+NELP4pHnnskGlsaF8QV8oV49firERGxY8+OmLw4GU3tTdHc2bzkuYqJ2ewUWAAAAAAAAAAAAAAAQBko5AuRHcpGdig7b3sqnYquga4liyv6W/sX7D/bfTYuD1+O9t72RGKqgQILAAAAAAAAAAAAAAAoEwf7DsbkxcnIZ/ORqk/Fva33RuuR1iWPH+gaiPs671tQfNHR1xG9db3R1N4UmbbMmmOqgQILAAAAAAAAAAAAAAAoE/cfuj9S6dSKjs1lc5EdysbBvoOL7m8+1BwXei/MK5YoJqZa1JQ6AQAAAAAAAAAAAAAAYPVG+kYiIqIuU7fo/vqm+sgOZaOQL6wpploosAAAAAAAAAAAAAAAgAr09tjby652MVtEcWXkyppiqoUCCwAAAAAAAAAAAAAAKDMTYxMx2j8aE2MTSx6Ty+Zie/32JffPFlLksrk1xVQLBRYAAAAAAAAAAAAAALBOpm5Nxa2f3Zr79/N//Pmyx2eHsnHhxIWIiGg90hoREafaT0V2KLvg2JuTN5ddjWK2kKKQL6wpplrUljoBAAAAAAAAAAAAAADYrF47/lp8/4++P/f6Wlxb8ti6TF1ERDx87OG5bY0tjdE10BW9db1xZPRINLY0zu1baRHEu++8u6aYaqHAAgAAAAAAAAAAAAAA1skjzz0Sn3r2U3OvL1++HN9s/uaixzZ3Ni+6PZVORXNncwx0DcQzF59ZlzyJqCl1AgAAAAAAAAAAAAAAsFnVbquNbR/ZNvfvw7/y4aLauXffvZHL5iKXzc1tS6VTK1qRYseeHWuKqRZWsAAogdMdp0udQjx59slSpwAAAAAAAAAAAADACqXSqYiImBibiLpMXUREbK/fvmzMzcmb82KLjakWVrAAAAAAAAAAAAAAAIASO9t9Nv6k6U9WFVOXqZsriFjM7EoVswUZxcZUCwUWAAAAAAAAAAAAAABQYhMjEysqfGhsaZzbdk/LPXPbF5PL5iIiItOWWVNMtagtdQIAAACw2fzw9A/j8jcuR81M6Z5r8OTZJ0t2bgAAAAAAAABg9fa27Y0jvUeW3H9l+Eqk0ql5K0s88MQD8fqJ12NibGJe4cUHY+4slCgmplpYwQIAAAAAAAAAAAAAAErsgSceiNH+0UX35bK5GD8zHh3f7pi3vbGlMTJtmXjzhTcXjRs/Mx4P9zy85phqocACAAAAAAAAAAAAAABKrLGlMQr5Qlw4cWHe9lw2F/2t/bH/2P5o7mxeENc10BU/PvPjmBibmLf9bPfZ2H9s/6KrURQTUw1qS50AAAAAAAAAAABwd2e7z8b9XfffdaJTIV+IV4+/GhERO/bsiMmLk9HU3rToRKy1xAAAAMl7+NjDkR3Kxtnus1GYLEQhX4hUOhWfe/lz0djSuGhMKp2KI6NHYrBnMFLp1Iru6YuJqQYKLAAAAAAAAAAAoEzlsrnIDmVjtG80JsYm4v6u+5c9vpAvRH9rf3QNdM2bfHW2+2xcHr4c7b3ticQAAADrJ9OWWfUKEql0Kjr6OtY9ZrOrKXUCAAAAAAAAAADAQqP9ozHUMxQREW29bSuKGegaiPs671vwZNuOvo4Y6x+L7FA2kRgAAIDNyAoWAAAAAAAAAABQhlqPtEbrkdaIiJgYm7jr8bOrXRzsO7jo/uZDzXGh98K8J+EWEwPAfKc7Tm/4Oae3TMdk42Rc/sblqJl571nbT559csPzAIDNxgoWAAAAAAAAAACwCYz0jURERF2mbtH99U31kR3KRiFfWFMMAADAZqXAAgAAAAAAAAAANoG3x96OVDq15P7ZIoorI1fWFAMAALBZKbAAAAAAAAAAAIBNIJfNxfb67Uvuny2kyGVza4oBAADYrBRYAAAAAAAAAADABpq+PR23f3F77t/01HQi7d6cvLnsahSzhRSFfGFNMQAAAJtVbakTAAAAAAAAAACAajL595Mx+T8n515fi2uJtLvSIoh333l3TTEAAACblQILAAAAAAAAAADYQPUfq4+6TN3c68nCZMT3S5gQAAAAEaHAAqBqne44XdLzT2+Zjo8++9GS5gAAAAAAAABQCjVbayK2fuD1VE0i7abSqRWtSLFjz441xQAAAGxWyYzOAAAAAAAAAACAktpev33Z/Tcnb0bEe0UVa4kBAADYrBRYAAAAAAAAAADAJlCXqZsriFjM7EoVdZm6NcUAAABsVrWlTgAAAAAAAAAAAFi7e1ruiexQdsn9uWwuIiIybZk1xQBQnk53nC51CvHk2SdLnQIArIkVLAAAAAAAAAAAYBN44IkHIiJiYmxi0f1Xhq8sKJQoJgYAAGCzUmABAAAAAAAAAACbQGNLY2TaMvHmC28uun/8zHg83PPwmmMAAAA2KwUWAAAAAAAAAABQ5nLZXEREFPKFZY/rGuiKH5/58YIVKc52n439x/YvuhpFMTEAAACbUW2pEwAAAAAAAAAAABYaPzMeo32jERFxZeRKREScffrs3LbmruZoPdI6LyaVTsWR0SMx2DMYqXQqduzZEZMXJ6OpvSmaO5sXPU8xMQAAAJuRAgsAAAAAAAAAAChDzZ3NRRU4pNKp6OjrWPcYAACAzUaBBQAAAGxCpztOlzqFePLsk6VOAQAAAAAAAABgxWpKnQAAAAAAAAAAAAAAAECpKbAAAAAAAAAAAAAAAACqXm2pEwAAAAAAAAAAAGBppztOlzoFAACoClawAAAAAAAAAAAAAAAAqp4CCwAAAAAAAAAAAAAAoOopsAAAAAAAAAAAAAAAAKpebakTAKB6/fD0D+PyNy5HzUxp6/2ePPtkSc8PAAAAAAAAAAAAQOlZwQIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqldb6gQAAAAAAAAAAAAAqHynO06XOoV48uyTpU4BgApmBQsAAAAAAAAAAAAAAKDqKbAAAAAAAAAAAAAAAACqngILAAAAAAAAAAAAAACg6tWWOgEAAABgczrdcbrUKURExJNnnyx1CgAAAAAAAABABVBgAUDVK4eJfyb9AQAAAAAAAAAAAJRWTakTAAAAAAAAAAAAAAAAKDUFFgAAAAAAAAAAAAAAQNVTYAEAAAAAAAAAAAAAAFQ9BRYAAAAAAAAAAAAAAEDVqy11AgAAAAAAAAAAAACQhNMdp0udQjx59slSpwBAkRRYAAAAAJtaqb9En94yHR999qMlzQEAAAAAAAAAuLuaUicAAAAAAAAAAAAAAABQagosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKpXW+oEAAAAAAAAAAAAAABYX6c7Tq/7Oaa3TMdk42Rc/sblqJlZuBbAk2efXPccYC2sYAEAAAAAAAAAAAAAAFQ9K1gAQBnYiMrgSqFCGQAAAAAAAAAAACgFBRYAAAAAAAAAAAAAsMms9KGv01umY7JxMi5/43LUzNQkmoOHrQKVRoEFAAAAwDr74ekfrssX0qvhy2sAAAAAAAAAWJ4CCwAAAAAAAAAAAABgU1rpSh7rzQPRoDKU7rGJAAAAAAAAAAAAAAAAZcIKFgAAAAAAAAAAAAAArDsrilDuFFgAAAAAVIFy+KLSl5QAAAAAAAAAlLOaUicAAAAAAAAAAAAAAABQagosAAAAAAAAAAAAAACAqldb6gQAAD7odMfpkp5/est0fPTZj5Y0BwAAAAAAAAAAAGDjKbAAAAAAYEOUuph21pNnnyx1CgAAAAAAAFSZcvmtDFheTakTAAAAAAAAAAAAAAAAKDUrWAAA3OGHp38Yl79xOWpmSleL6qnKAADrp9RPB5reMh0fffajJc0BAAAAAAAAgIUUWAAAlKFST/qbpdADAAAAAAAAAGB1ymXeRznw3wKoNAosAAAAAGCDWTUNAAAAAAAAoPwosAAAYEnl8BQBE/8AANZHOdzrRbjfAwAAAAAAAMqHAgsAAMpaOUz8M+kPAAAAAAAAAABg86spdQIAAAAAAAAAAAAAAAClVvErWOTz+Th+/HhEROzZsycuXrwY7e3t0dnZWVZtAgDAeinkC/Hq8VcjImLHnh0xeXEymtqbormzucSZAQDcnRXLoDjGAQAAUF2MAQAAoLoYA5RORRdY5PP5aG1tjYGBgWhpaZnb3t3dHcPDw9Hb21sWbQIAwHop5AvR39ofXQNd0djSOLf9bPfZuDx8Odp720uYHQBAZSh1kcf0lun46LMfLWkOVBbjAAAAqC7GAAAAUF2MAUqrogssurq6orOzc14hREREX19f1NXVRXt7e7S1tZW8TQAAKlupJ9xFRPy08NNFtw90DcR9nffNG0xFRHT0dURvXW80tTdFpi2zESkCALAGPzz9w7j8jctRM1NT0jys5lEZjAMAAKC6GAMAAEB1MQYorYotsMhmszE0NBR9fX2L7j906FD09vauqhhirW3+/Oc/j4iIX0z/YsXnhI3wi9u/iO+NfC+euOeJ2FazrdTpQETol5QvfZNyNXuPOXvPGRGRy+YiO5SNg30HF41pPtQcF3ovGFCtI2MAFuOzhDvpE9xJn+BO5dQnyqG4uByUQ6HJ7L3mB8cAEcYBUKxyeq9l9Vy/yuXaVS7XrnK5dpuPMUDpLTU+g2J4nyZJ+hNJ0p9Ikv60NsYApVexBRazRRCZzOKdo6mpKfr7+yOfz0c6nd6QNm/duhUREVPTUys6H2yUX0z/Iv5q7K/is7/zWR9WlA39knKlb1KuZu8xZ+85IyJG+kYiIqIuU7doTH1TfYz1j0UhX4hUOrX+SVYhYwAW47OEO+kT3Emf4E76RPkph0KT/339f0fE/DFAhHEAFMt7bWVz/SqXa1e5XLvK5dptPsYApTc7LrtzfAbF8D5NkvQnkqQ/kST9aW2MAUqvtOvNr8HY2NiyhROzRRIjIyMlbRMAANbL22NvLztQmh1oXRm5slEpAQAA68w4AAAAqosxAAAAVBdjgNKr2BUsstls1NfXL7l/tlAim82WtE0AAFgvuWwuttdvX3L/7GArl81tVEoAAMA6Mw4AAIDqYgxQPs49cy7e3PVmqdMAAGCTMwYovYotsJicnJxbUWIxs4US+Xx+w9qcnp6OiIi3b7w9b3ttTW18qOZDK84Dknbz9s2oqamJ3K1cFKYKpU4HIkK/pHzpm5SL6dvTETPvv87deG9QNHvPGRFxc/LmkssBRsTcYKuQ15fXizEAi/FZwp30Ce6kT3AnfYKIlY0BIowDSm32ely5cSXevf3u3HZjgPLnvbayuX6Vy7WrXK5d5XLtKsedY4B8If/edmOAsuO3AJLkfZok6U8kSX8iSZXSn956660NPd/0L6bj9q3bc6/fvvre/aUxQPmp2AKLlRZOvPPOOxvWZi733g9e3xz+5orPCRup55WeUqcAC+iXlCt9k3I1e88ZsfKB0rvvvHv3gyiKMQDL8VnCnfQJ7qRPcCd9gsV8cAwQYRxQalevXo2IiOP/3+MlzoRiea+tbK5f5XLtKpdrV7lcu8p19erV+D/+j/9j7rUxQOn5LYD14H2aJOlPJEl/Iknl3p+e2ftMqVOICGOAclSxBRbl6F/8i38Rr776atTV1UVNTc3c9m3btsWHP/zhEmYGAEClmfr5VEzfer9CfXp6Ov7f/P8b+35rXwmz4k7GAAAAJMUYoDI8+OCDxgAAACRiqTHAgw8+WMKsWIzfAgAASIIxQOWo2AKLdDq9ohUn9uzZs2Ft1tbWxiOPPLLi8wEAwGp8LD4273UqnVpR1fqOPTvWK6WqZwwAAMB6unMMEGEcUGrGAAAArCdjgPJkHAAAwHoxBihPNXc/pDzV19cvu39ycjIi3iuaKGWbAACwXrbXb192/83JmxHx3sALAADYHIwDAACguhgDAABAdTEGKL2KLbDIZDJzBQ+LmV2JIpPJlLRNAABYL3WZurlB02Jmq9nrMnUblRIAALDOjAMAAKC6GAMAAEB1MQYovYotsGhpaZkreFhMNpuNiIi2traStgkAAOvlnpZ7ll0SMJfNRUREpk2BMAAAbBbGAQAAUF2MAQAAoLoYA5RexRZYPPHEExERMTY2tuj+4eHhVRdCrEebAACwXh544oGIiJgYm1h0/5XhKwZTAACwyRgHAABAdTEGAACA6mIMUHoVW2DR0tISbW1t8cILLyy6/8yZM9HT07Ngez6fj56enhgaGkqsTQAAKIXGlsbItGXizRfeXHT/+JnxeLjn4Q3OCgAAWE/GAQAAUF2MAQAAoLoYA5TelpmZmZlSJ1GsfD4fra2tMTAwEC0tLXPbu7u7I51OR29v74KYEydORE9PT6TT6cjlcom0CQAApVLIF6K/tT+6BrqisaVxbvvZ7rORSqeivbe9hNkBAADrwTgAAACqizEAAABUF2OA0qroAouI91ekSKfTsWfPnrh48WK0t7dHZ2fnosePjY3Fo48+GocOHYq+vr5E2gQAgFIq5Asx2DMYqXQqduzZEZMXJ6OpvSmaO5tLnRoAALBOjAMAAKC6GAMAAEB1MQYonYovsAAAAAAAAAAAAAAAAFirmlInAAAAAAAAAAAAAAAAUGoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqqfAAgAAAAAAAAAAAAAAqHoKLAAAAAAAAAAAAAAAgKqnwAIAAAAAAAAAAAAAAKh6CiwAAAAAAAAAAAAAAICqp8ACAAAAAAAAAAAAAACoegosAAAAAAAAAAAAAACAqldb6gQ2k6mpqXjjjTeioaEhamrUrgAAkJzp6em4evVqPPjgg1Fb6za+XBgDAACwXowBypMxAAAA68UYoHwZBwAAsB6MAcrXprka3d3d0dXVFW1tbWtqJ5/Px/HjxyMiYs+ePXHx4sVob2+Pzs7Ou8a+8cYb8clPfnJN5wcAgOX87d/+bezbt6/UafBLxgAAAKw3Y4DyYgwAAMB6MwYoP8YBAACsJ2OA8lPRBRbZbDaGhoair68vxsbGoqura03t5fP5aG1tjYGBgWhpaZnb3t3dHcPDw9Hb27tsfENDQ0RE/M3f/E382q/92ppygSRNTU3F2NhYtLS0qHKjbOiXlCt9k3L1D//wD/GpT31q7p6T8mAMwGJ8lnAnfYI76RPcSZ9gMcYA5Wn2evzt3/5tNDY2ljgbVsN7bWVz/SqXa1e5XLvK5dpVromJifjkJz9pDFCG/BZAkrxPkyT9iSTpTyRJf1oZY4DyVbG9tr+/PwYHB6O9vT16e3ujvb19zW12dXVFZ2fnvOKKiIi+vr6oq6uL9vb2ZVfImF0G8J577jGgoqxMTU3FW2+9Fb/2a7/mw4qyoV9SrvRNytXU1FREhKWny4wxAIvxWcKd9AnupE9wJ32CxRgDlKfZ69HY2GgMUGG811Y2169yuXaVy7WrXK5d5TMGKD9+CyBJ3qdJkv5EkvQnkqQ/rY4xQPmp2Cty5MiRGBgYiCNHjkR9ff2a25tdDaO7u3vR/YcOHbrrChYAAAAAAAAAAAAAAEBlUhb0S319fRERkclkFt3f1NQU/f39kc/nI51Ob2BmAAAAAABspBs3bhQde/Xq1Th69GiMjo5Ga2trnDx5sqjlvd99992icwAAAAAAAKA4Cix+aWxsbNnCidnCi5GRkWhra9ugrAAAAAAA2Gi7du1KpJ3BwcFoampKpC0AAAAAAADWnwKLX8pms1FfX7/k/tnii2w2e9e2pqen4/bt20mlBmt2+/btuX65ZcuWUqcDEaFfUr70TcrV9PR0qVNgGcYAfJDPEu6kT3AnfYI76RPlZ+vWrUXHLnZfWEx7MzMzxgFl7Pbt28YAFcZ7bWVz/SqXa1e5XLvK5dpVLveX5c9vASTB+zRJ0p9Ikv5EkvSnlXFvWb4UWPzS5OTk3CoVi5ktvsjn83dt62/+5m/i7/7u7+Zeb926NWpr/aemdKanp+N//+//HdPT01FTU1PqdCAi9EvKl75JuXrnnXdKnQLLMAbgg3yWcCd9gjvpE9xJnyg/f/mXf1l07L//9/8+3njjjbnr+eCDD8Z/+k//adXtTE5Oxr/5N/+m6DxYXxcuXIi6urq518YA5c97bWVz/SqXa1e5XLvK5dpVrlwuV+oUuAu/BZAE79MkSX8iSfoTSdKfVsYYoHy5y/+llRRORKxsYtvJkyfnDaB+8zd/Mz7xiU8UmRms3czMTFy7di0iQjUgZUO/pFzpm5Srn/3sZ6VOgWUYA/BBPku4kz7BnfQJ7qRPbC5PPfVU/PznP49Lly7F3r1746mnnoq333571e0YA5S3b33rW8YAFcZ7bWVz/SqXa1e5XLvK5dpVrn/8x38sdQrchd8CSIL3aZKkP5Ek/Ykk6U8rYwxQvhRYrIM/+ZM/iV/7tV+be71t27bYtm1bCTOi2k1NTcXf/M3fxKc+9SlPT6Bs6JeUK32TcvWTn/wk/uAP/qDUabAEYwA+yGcJd9InuJM+wZ30ic3n6NGja27DGKC8/Zf/8l/iox/96NxrY4Dy5722srl+lcu1q1yuXeVy7SrX5cuX45lnnil1GizDbwEkwfs0SdKfSJL+RJL0p5UxBihfeu0vpdPpFa1isWfPnrseU1dXF//kn/yTBLKCZMwuS7lt2zYfVpQN/ZJypW9Srj70oQ+VOgWWYQzAB/ks4U76BHfSJ7iTPsFijAHK26/+6q8aA1QY77WVzfWrXK5d5XLtKpdrV7k+/OEPlzoF7sJvASTB+zRJ0p9Ikv5EkvSnlTEGKF81pU6gXNTX1y+7f3JyMiLeK8QAAAAAAAAAAAAAAAA2FwUWv5TJZOaKKBYzu7pFJpPZoIwAAAAAAAAAAAAAAICNosDil1paWuaKKBaTzWYjIqKtrW2DMgIAAAAAAAAAAAAAADaKAotfeuKJJyIiYmxsbNH9w8PDiisAAAAAAAAAAAAAAGCTqi11Ahspn8/H8ePHo729fUGxREtLS7S1tcULL7wQLS0tC2LPnDkTg4ODG5UqAAAAAAAAAAAAAABVKpfNxWu9r0VERGGyEIV8ITLtmXj42MNLxhTyhXj1+KsREbFjz46YvDgZTe1N0dzZXPKYSrEpCiyy2WxEvFdAsZz+/v44ceJE9Pf3Ry6XW7B/YGAgWltb44knnphXZNHd3R3Hjh2zggUAAAAAAAAAAAAAAOtq/Mx4XB6+HB19HfO297f2x2jfaDxz8ZkFMYV8Ifpb+6NroCsaWxrntp/tPhuXhy9He297yWIqSU2pEyjWmTNnor29Pdrb2+Ppp5+OiIinn356blt/f/+CmLa2tkin03Ho0KFF20yn0zE6Ohp9fX3R09MTJ06ciO7u7mhvb4/e3t51/d8DAAAAAAAAAAAAAEB1K+QL8aMXfrRooULHtzsil83F2e6zC/YNdA3EfZ33zSt6iIjo6OuIsf6xyA5lSxZTSSp2BYvOzs7o7OxcVUxLS8uiK1d8UDqdjr6+vrWkBgAAAAAAAAAAAAAAq3Zl5EqMnxmPwZ7BBUUWs0UNl4Yuzduey+YiO5SNg30HF22z+VBzXOi9EJm2zIbHVJqKLbAAAKA63Lhxo+jYq1evxtGjR2N0dDRaW1vj5MmT0dDQsOp2du7cWXQOAAAAAAAAAAAAK7W9fnuk0qnYsWfHksek0ql5r0f6RiIioi5Tt+jx9U31MdY/FoV8YS52o2IqjQILAADK2q5duxJpZ3BwMJqamoqKnZmZSSQHAAAAAAAAAACA5TS2NEZPrmfRfRNjExERsbdt77ztb4+9vWxBw2xBxJWRK3OrS2xUTKWpKXUCAAAAAAAAAAAAAADA8oZ6hqIuUxftve3ztueyudhev33JuNmiiFw2t+ExlcYKFgAAlLXr168XHfvYY4/F+fPn4/bt27F169Y4cOBAvPTSSwlmBwAAAAAAAAAAsLypW1Nx+9btudc//8efryo+l83Fa72vRTqTjqcGn1qw/+bkzbnVIxYzWxRRyBc2PKbSKLAAAKCs7dy5s+jYU6dOxeHDh2N4eDj27dsXzz///JraAwAAAAAAAAAAWK3Xjr8W3/+j78+9vhbXVhQ3fmY8Lg9fjnw2H+lMOpramxY9bqUFDe++8+6Gx1QaBRYAAGxaDQ0Nce7cuVKnAQAAAAAAAAAAVLFHnnskPvXsp+ZeX758Ob7Z/M27xjV3NkdzZ/Pc61Ptp2K0bzQ6vt0RqXRqXXKtdgos1sHZp8/Gr6Z+tWTnf/LskyU7NwAAVKNSjwEijAMoTzdu3Cg69urVq3H06NEYHR2N1tbWOHnyZDQ0NBTVltWLAACgupzuOF3qFIzTAQA2uWLvOae3TMdk42Rc/sblqJmpWVMO7jkBoLLUbquN2m3vT93/8M8+XFQ7XQNd0VvXG4V8IZ4afGpueyqdWtHqEjv27NjwmEqjwAIAAABYF7t27UqkncHBwWhqWnyZ05WYmZlJJA/WTtENAAAAAAAAQPFS6VQ0dzbH+JnxyA5lI9OWiYiI7fXbl427OXlzLn7WRsVUGgUWAFAGymGimUlmAADr5+bNm3Hjxo2orV3dVzGbrahA0Q0AAAAAsBkUpu7+1ObFTG+Zjp/+7KfR/zf9cenapdi7e298/uOfj93bdiecIQBQyQr5QtycvBl1mbpF96cz6YiIuDh4ca7Aoi5TF1dGrizb5uxxszYqptIosACAMlAOE81MMgMAknb9+vWiYx977LE4f/583L59O7Zu3RoHDhyIl156KcHsNtZnPvOZNbehqAAAAAAAoDz8/l/9fiLtvPnTN+PLr3y5qNjfi99LJAcAoPz01vVGRERPrmfRlSB27NkREe8XM0RE3NNyT2SHsku2mcvmIiLmCjI2MqbSKLAAAAAA1sVaVkw4depUHD58OIaHh2Pfvn3x/PPPl8UKDKxNuRTdFLuCXFIrikxNTRV1fgAAAAAAAGDzS6VTsb1++6LFFRERkxcnIyLi3tZ757Y98MQD8fqJ12NibCIaWxoXxFwZvrKg6GGjYiqNAguoEjdv3owbN25Ebe3q/uyTmjwSsbbJVWxOxfbLiM3XN8tlohkAQLloaGiIc+fOlTqNxHzve9+L/fv3r/red7Pd65VL0c2WLVuKzmPWWlcUeeWVV9acAwAAAABQGn/2O39WVNz0lun4+v/v6/E/r/zPmJ6ZjpotNdG8pzmefejZhDMEACpZy5GWeKj7oSX3j784Hql0Ku4/dP/ctsaWxsi0ZeLNF95ctPBh/Mx4PDX41LxtGxVTaRRYQJX4zGc+s+Y21jp5ZGZmZs05sLkk0S8jNkffLJeJZgAArI/t27fHzp07V11g4V7vfZut6AYAAAAAqFyp2sWfJn0301um46l/9VS8+P95MbL5bDSlm+LoJ44W3R4AsDm197bH2e6zcX/X/QtWgxjoGoiIiM+9/LkFK1x0DXRFf2t/PPDEA/OKH852n439x/YvurLERsVUEgUWAFS9GzduFBVXLqtomGiWvHJYXaVcJk5W+t8HAFQ693rro9gV5JJaUWRqaipef/1195wAAAAAUIU+suMjcexfHIuamZpSpwIAlLGOvo4YPzMeA10DkapPRWGyEIV8Ie5puSf+4NIfLCiuiIhIpVNxZPRIDPYMRiqdih17dsTkxcloam+K5s7mRc+zUTGVRIEFVInvfe97sX///lVP3Ehq8ggspth+GZFs39y1a1dRcR+0GVbR4H3lsLpKufQJfx8AwGZUbGFBUiuKTE1NuecEAAAAAAAAltXc2bzqgoVUOhUdfR1lGVMpFFhAldi+fXvs3Llz1RPZk5o8ElH8U9AjPJ1zsyq2X0Yk2zcBADYj99+QPCuKwMbwGQYAAABwd+XwHUqE71EAgM1HgQWss3IYzExNTRWdQ5KTR5J4CnrE5ng6Z7H9wgD3fUn2zevXrxcVZ4WXzatcVlcpB/4+gEpT6fffSXL/DeWtHO45y+E9M6Lyx6ckz2cYAAAAwN2Vw3coEb5HAQA2HwUWsM7KZTDzyiuvJJIHyUiiXxjgJqfYyTxW0di8rK7yPn8fQKUpl/vv733ve3Hjxo1Vf5YkOWEZKG/lcM+5ZcuWVccsxvgUgFI63XF6RcdNb5mOycbJuPyNy1EzU5N4Hk+efTLxNgEAAAAA2HgKLIANU+xT0CM8CZ3ylOQqGmwe+sV7/HcAqt1nPvOZNbex1gnL7r9h83KvxWbnMwwAAABYTrErs262hxz5DgUAYH0osGBTK3ZAFZHcoKocBjNTU1PxxhtvFJ1HUtby5PLN9iT0YvtFkgPcUv99TE1NFX1+1kep+8SsSv7bBqD0yuX+O51OF51HUtx/A3dTDu+ZvO/mzZtFrX4UsfnGZD7DAACguviNClitJFazXutDjv784J+vOYe18h0KAMD6UGDBppbEgCpibYOqmZmZos+b1GBmM0xk32xP5yx2UJrkAHfLli1Fxd1pLX8fr7zySiI5kIxyeM+MWNv7JgCUw48JU1NT8b3vfS/279+/6kmy5TJhebPdfwOLK4f3TN6XxOpHEcZkPsNgY53uOF3qFACATcBvVAAbz3coAABLU2ABZcxghjvpE1A9PK0JYOMlea+1ffv22Llz56oLLExYBipFku+Zxd77uu8FAAAAqE7Frsya5EOO/vvv/vei4gAAKH8KLNjUih1QRZTPk2NhvZT672NqaireeOONonMgeaXuE8znaU0A1UlBLVCNkrj33Qz3vcWufhRhTAYAAFQ2v1EBq1XswzI85AgAgJVQYMGmtpZBkEEVm12p/z6mpqaKPj/ro9R9AgAAoJoVu/pRhDEZAABQ2fxGBWwUDzkCAGAlFFjAEgyqYGn+PriTPpE8T2sCKtGNGzeKjr169WocPXo0RkdHo7W1NU6ePBkNDQ2rbsePpyym2L6ZVL9UXAzLK/be133v+4zJACgXpztOr0u701umY7JxMi5/43LUzNSsyzkAqEzGQwAAACRNgQVQVcph0l+EiX/A3XlaE1CJdu3alUg7g4OD0dTUVFTszMxMIjmwuSTRN9fSLyMiXnnllTXnAJtVsfeq7nvXR6mL0iJ8bwIAAAAAAEDpKLAAqko5TPqLMPEPWF+e1gTVqRwmQwLARkryvrfUD2Qop5VuyqEozfcmAAAA842fGY/mzuZSpwEAAFAVFFiwbsphgpen3QEAUC3KYTLk9evXi4597LHH4vz583H79u3YunVrHDhwIF566aWi24MPKrZvJtUvp6am4o033igqhySVegJ5hHE65ascHshgpRuAyuY3EQAqle8L3lfqz/N333130e2FfCEGugbiYN/BuP/Q/ZFKp4rKEwAAgJVRYMG6KYcJXp52x51M+gMAWD9r+SH01KlTcfjw4RgeHo59+/bF888/XzY/rFL5iu1LSfXLcnkyfTlMIDdOh/JX6qI0gErlNxEAKpXvC95XDp/ni8llcxER8Zfdfxl/2f2Xyx7bNdA1b6WLQr4Qrx5/NSIiduzZEZMXJ6OpvWnZ1TCKiQGqW6kL1CLKp1gPANgcFFgAVcWkPyh/pf7ypVwmQAKsVqVPhmxoaIhz585t+HlhOfolVI9SP5ChXFa6iSh9URoAAADz5bK5qMvURWNLY6TqF1+9ojBZiFw2t6C4or+1P7oGuqKxpXFu+9nus3F5+HK097YvbKeIGIByKFArl2I9AGBzUGDBuqn0CV5wJ5OrYGOUw5cvr7zyyppzANhoJkMCd1PqCeRQzkr9QIbNUOjtexOoToWpQtGx125di+/88Dtx6dql2Lt7b3z+45+P3dt2J5jdfNNbpuPWL25FYaoQNTM1iefgNxEAKpXvC95X6s/zy5cvx2/8xm8s3D58OZ4afCrqMnVLxg72DEZbb9u8bQNdA3Ff533zCiUiIjr6OqK3rjea2psi05ZZcwwAAMBmo8CCdWOCFwAAlD+TIaF6lHoCOWxWPkuBavb7f/X7ibTz5k/fjC+/8uVE2ipVDr+38/eKinOfBVAaxa6mHZHcitoRaxurJ8X3Be8r9RyHHTt2LLlvueKKibGJqG+qn3dMLpuL7FA2DvYdXDSm+VBzXOi9MK9YopgYgIjSF6gBACRNgQVlx4/SANWt1F++TE1NxRtvvFFUDgAAm5WxOgCUn2InhiY5KZS1S/I+q1wmC5eDYldX2eiVVaBalcP7VRKraUesfUXtmZmZRPIoFd8XvGe9/zs81P3QsvtH+kaio69jwbaIpQsz6pvqY6x/LAr5QqTSqaJjACJKX6AGAJA0BRYAQFkp9ZcvU1NTRZ0fAAAAYCMlMTF0rZNC/+x3/qzo2G+MfCPG3xmP6ZnpqNlSE817muPZh54tur27md4yHbl7clH3dl3UzNSUJIf1Vg6Thf/84J8nksNaJbG6ylpXNTl041DRseVQ8JJUDr5vZTHl8H4FlWS51SsGewajvbd9wfa3x95etghits0rI1fmVqQoJgZgLRTqAQDlSoEFALAp+PIFAAAAYGOlaot/cvGXHvxSnPzBybiYvxhN6aY4+omja2rvbqa3TMe2D22LVG1qrsBio3OgumymCeRrzeGVV15JMBtIRrGraUckt6I2rNXE2ETUN9UvWhSRy+Zie/32JWNnY3LZ3JpiAAAANiMFFgAAAAAAABWm2NUjymXVht3bdkfPb/Vs+HnLLYcklcNk4Rc7Xyw6h2u3rsV3fviduHTtUuzdvTc+//HPx+5tuyPivQKZW7+4FYWpwlyBzHLK4e8jiVU0YLMqh/erYlfTjkhuRW2YujUVt2/dnnv983/8+ariXzv+WnQNdC267+bkzWVXvpgtpCjkC2uKAQAA2IwUWAAAAAAAAFSYYldasGrD5lUOk4WTKip486dvxpdf+XLR8X9+8M+Likvy76McJpCvRVI5TE1NxRtvvLEOGVLJyuH9ai2sqE1SXjv+Wnz/j74/9/paXFtx7PiZ8Uhn0kvuX2kRxLvvvLumGAAAgM1IgQUAAAAAAECV2GyrNpAMk4Xfk+TfR6VPIE8qh6mpqXXIjmrm/YrN5JHnHolPPfupudeXL1+ObzZ/c0Wxrx1/LTq+3bFeqQEAAFQ1BRab0I0bN4qOvXr1ahw9ejRGR0ejtbU1Tp48GQ0NDUW1ZRlUAGCzKIf7q3ff9UQoAAAAoLz92e/8WdGx3xj5Roy/Mx7TM9NRs6Ummvc0x7MPPRsREdNbpiN3Ty7q3q6LmpmapNItW+UwgbwccgDY7Gq31Ubttven7Xz4Zx9eUVwum4uJsYlobGlc8phUOrWiFSl27NmxphgAAIDNSIHFJrRr165E2hkcHIympqai42dmZhLJAwCg1Mrl/goAAACgnKVqU0XHfunBL8XJH5yMi/mL0ZRuiqOfODrX3vSW6dj2oW2Rqk1VRYEFm1M5PMRlNaampuLmzZtx48aNqK2t9aA+KCMjfSNRl6lb9pjt9duX3X9z8mZEvFdUsZYYAACAzUiBBQAAAAAAwCq8++67RU2ULcUEWagUu7ftjp7f6il1GmxS/9f/+X8VHXvt1rX4zg+/E5euXYq9u/fG5z/++di9bfeq2/n9v/r9onP4oHJ4iIsH9UFpXRq6dNcCi7pMXVwZubLk/tmVKj7YTjExAAAAm5ECi03o+vXrRcc+9thjcf78+bh9+3Zs3bo1Dhw4EC+99FKC2QEAVJ5yuL/6X//rf8X9999fdB4AAAAk5zd+4zfW3MZaJ6f++cE/X3MOABvhg6sgrEaSRWlJFTe8+dM348uvfDmRtiCi+JVNlvv7uHP1kbuxokjlmRibiObO5mWPuaflnsgOZZfcn8vmIiIi05ZZUwwAAMBmpMBiE1rLFyCnTp2Kw4cPx/DwcOzbty+ef/55X6gAAFWvHO6vduzYUXQOAAAAwOZ3uuN0qVOARX3mM59ZcxvlsGrDWpXDQ1xWY2pqKl5//fXYv39/1NbWelDfOtm1a9ea27CiSHWZGJuIiIhUfWrZ4x544oF4/cTrMTE2EY0tjQv2Xxm+sqBQopgYAACAzUiBBfM0NDTEuXPnSp0GAMCm4f4KAABg8/m7v/u7+OhHP7rquCQnp/733/3vRcUBVKM/+50/Kzr2GyPfiPF3xmN6ZjpqttRE857mePahZ1fdTjk8xGU1pqamYvv27bFz586ora31oD4oEzcnb67ouMaWxsi0ZeLNF95ctFhi/Mx4PDX41JpjAAAANiMFFgAAAAAAAKuwY8eOoiaVmpwKVKPvfe97c6sgrEa5FKV96cEvxckfnIyL+YvRlG6Ko584Gqna5Z8cn7RyeIhLOeSwGRW7sslyfx93rj7C5pLL5iIiIpW++/tQ10BX9Lf2xwNPPDCvYOJs99nYf2z/oqtRFBMDAACw2RhNAwAAAAAAbACTU4GNdLrjdKlTiOkt0/HRZz86twrCapRLUdrubbuj57d6Nvy8VIdi+/Ryfx93rj7C5nLvQ/dGKp2Kj+67+2pqqXQqjoweicGewUilU7Fjz46YvDgZTe1N0dzZnFgMAADAZmM0DQAAAAAAAEBZUZQGS/P3Ub0aWxqjJ7fyoq9UOhUdfR2rOkcxMQAAAJtJTakTAAAAAAAAAAAAAAAAKDUrWGxC5bDcb0TEk2efLHUKAAAAAAAAAAAAAACwIgosAAAAAAAAYA3K5eFXAACwnm7cuFF07NWrV+Po0aMxOjoara2tcfLkyWhoaCiqrZ07dxadBwAA3I0CCwAAAAAAAAAAAJa1a9euRNoZHByMpqamouNnZmYSyQMAABZTU+oEAAAAAAAAAAAAAAAASs0KFgAAAAAAAACsix+e/mFc/sblqJnx7D8AqHTXr18vOvaxxx6L8+fPx+3bt2Pr1q1x4MCBeOmllxLMDgAAkqHAAgAAAAAAACBBpztOlzoFAIDE7dy5s+jYU6dOxeHDh2N4eDj27dsXzz///JraAwCA9aLAAgAAAAAAAAAAgHXT0NAQ586dK3UaAABwVwosAAAAAABgkzjbfTYe6Xkk6jJ1i+4v5Avx6vFXIyJix54dMXlxMpram6K5s3nJNjcqppL8P4f/n9izfU+p0wAAAAAAABKmwAIAAAAAADaBibGJGOsfi4e6H1p0fyFfiP7W/uga6IrGlsa57We7z8bl4cvR3tteshgAAAAAAIByUFPqBAAAAAAAgLUb6hladv9A10Dc13nfvKKHiIiOvo4Y6x+L7FC2ZDEAAAAAAADlQIEFAAAAAABUuNH+0Wjual5yfy6bi+xQdsnVLZoPNceF3gsliQEAAAAAACgXtaVOAAAAWJuJsYkY6RuJwmQhJsYmIpVORWt3a7QeaV0yppAvxKvHX42IiB17dsTkxcloam+K5s6lJ2RtVAwAALA6uWwuIiLqMnVLHjPSN7LsMfVN9THWPxaFfCFS6dSGxgAAAAAAAJQLBRYAAFDBRvtHIyKio69jblt2KBsDXQNxofdCHBk9smDSUiFfiP7W/uga6IrGlsa57We7z8bl4cvR3tu+4DwbFQMAAKzeSN9ItPe2R3You+Qxb4+9vWxBw2xBxJWRK5Fpy2xoDAAAAAAAQLmoKXUCAABAcXLZXBTyhQUrVWTaMvG5lz8XuWwuBroGFsQNdA3EfZ33zSt6iHivSGOsf2zRSVkbFQMAAKzO+JnxeKj7obsel8vmYnv99iX3zxZFzK6GsZExAAAAAAAA5UKBBQAAVKiRvpEFxRWzGlsaI9OWiexQdsFkp+xQdskJWM2HmuNC74V52zYqBgAAWJ1CvhC5bG5uVYjl3Jy8uezKErNFEYV8YcNjAAAAAAAAykVtqRMAAACKc2noUoz1j8UfXPqDRScw3dNyT2SHsjExNjE34WqkbyQiYskJWPVN9THWPxaFfGGuzY2KqWS3pm5FYWr1E8Su3boW3/nhd+LStUuxd/fe+PzHPx+7t+1ehwwBACh3U7em4vat23Ovf3H9F3eNefX4q9He276i9lda0PDuO+9ueAwAAAAAAEC5UGABAAAVanv99pgYm4hcNheNLY0rinl77O1lCxpmCyKujFyJTFtmQ2Mq2Vf+x1fW3MabP30zvvzKl4uO/734vTXnAABA6bx2/LX4/h99f+71tZpryx6fHcpGU3vTeqcFACTkdMfpUqcQERFPnn2y1CkAAAAAlDUFFgAAUKGeGnwqctnckqtE5LP5iIh5xRe5bC62129fss3ZoohcNrfhMQAAUM0eee6R+NSzn5p7/ZOf/CS++fFvLnn8xcGLK169IuK9e/CVrC6xY8+ODY8BAAAAAAAoFwosAACgDE3dmorbt27Pvf7F9V8setxSxRUREeNnxqOxpXHeMTcnby4bM1sU8cEJURsVU8m+/i+/HntSe1Yd942Rb8T4O+MxPTMdNVtqonlPczz70LPrkCEAAOWudltt1G57/yv7D+360JLHXjhxIX77ud9eVfvLFUBHvHcPHxHzVqLbqBgAAAAAAIByocACAADK0GvHX4vv/9H3515fq7m2qvgLJy5ERETHtzvmbV9pQcO777y74TGVbFvttkjVrn6C2Jce/FKc/MHJuJi/GE3ppjj6iaNFtQMAQPXIZXORSqdWXaBQl6mLKyNXltw/ew//wULpjYoBAAAAAAAoFwosAACgDD3y3CPxqWc/Nff6Jz/5SXzz499cUezE2EQM9QxF10BXNLY0rleKJGD3tt3R81s9pU4DAIAKMjE2EeMD4zE+ML5gXy6bi4iIs0+fnVtJ4qnBpyIi4p6WeyI7lF2y3dnYTFtmbttGxQAAAHB3N27cKDr26tWrcfTo0RgdHY3W1tY4efJkNDQ0rLqdnTt3Fp0DAABUCgUWAABQhmq31Ubttvdv1z+060Mrjh3oGoiDfQejubN5wb5UOrWi1SV27Nmx4TEAAMDdNXc2L3qvHxExfmY8BroGouPbHQuKrR944oF4/cTrMTE2sWgh9pXhKwuKHjYqBgAAgLvbtWtXIu0MDg5GU1NTUbEzMzOJ5AAAAOVMgQUAAGwiA10D0drdGq1HWhfdP/sU26XcnLwZEe8VSGx0DAAAsH4aWxoj05aJN194c9HCh/Ez43OrXWx0DAAAAMBaWOEFAEiSAgsAANgkBnsG495998bDxx5e8pi6TF1cGbmy5P7ZVSfqMnUbHgMAAKxNLpub+7+LFTd0DXRFf2t/PPDEA/P2n+0+G/uP7V90ZYmNigEAAGB5169fLzr2sccei/Pnz8ft27dj69atceDAgXjppZcSzA5KywovAECSFFgAAMAmMNo/GvVN9YuuXFHIF+ZWirin5Z7IDmWXbGd2QtYHJzxtVAwAAFCcs91nI5/NzxU5n336bIz2jcY9LfdEe2/73HGpdCqOjB6JwZ7BSKVTsWPPjpi8OBlN7U3R3Nm8aNsbFQMAAMDy1vJ0/FOnTsXhw4djeHg49u3bF88//7yn7QMAwBIUWAAAQIUbPzMeEbFocUUum4uJsYm5SUwPPPFAvH7i9ZgYm1j0ibZXhq8sKHrYqBgAAKA4HX0dKz42lU6t6viNjAEAAGB9NDQ0xLlz50qdBqwbK7wAAElSYAEAABVsYmwibk7eXLS4IiIiO5SdV8jQ2NIYmbZMvPnCm4sWPoyfGY+nBp+at22jYgAAAAAAAABWywovAECSFFgAAECFymVzMdA1EHvb9saV7isL9hcmC5EdykZPrmfe9q6Bruhv7Y8HnnhgXvHD2e6zsf/Y/kVXltioGAAAAAAAAICNYoUXAOBOCiwAAKBCnWo/FblsLnL9uSWPqcvULdiWSqfiyOiRGOwZjFQ6FTv27IjJi5PR1N4UzZ3Ni7azUTEAAAAAAAAAAAClosACAAAq1DMXnyk6NpVORUdfR1nGAAAAAAAAAAAAlEJNqRMAAAAAAAAAAAAAAAAoNQUWAAAAAAAAAAAAAABA1astdQIAAAAAAAAAAAAAAMB7JsYmYqRvJAqThZgYm4hUOhWt3a3ReqR10eNH+0djfGA8WrtbI9OWiVQ6FblsLibGJuJHL/woHnnukWhsaVwQV8gX4tXjr0ZExI49O2Ly4mQ0tTdFc2fzkrkVE1NJFFgAAAAAAAAAAAAAAEAZGO0fjYiIjr6OuW3ZoWwMdA3Ehd4LcWT0SKTSqXkxhXwhskPZyA5l521PpVPRNdC1ZHFFf2v/gv1nu8/G5eHL0d7bnkhMpakpdQIAAAAAAAAAAAAAAFDtctlcFPKFBStVZNoy8bmXPxe5bC4GugYWjT3YdzD2H9sfzZ3N0XKkJQ72HYyeXE9k2jKLHj/QNRD3dd63oPiio68jxvrHFhRrFBtTaaxgAQAAAAAAAAAAAAAAJTbSNxK//dxvL7qvsaUxMm2ZyA5lI5fNRV2mbt7++w/dv2Bli6XksrnIDmXjYN/BRfc3H2qOC70X5hVnFBNTiaxgAQAAAAAAAAAAAAAAJXZp6FL8573/OQr5wqL772m5JyIiJsYm1nSekb6RiIgFRRqz6pvqIzuUnZdHMTGVqOJXsMjn83H8+PGIiNizZ09cvHgx2tvbo7Ozc01t9vT0RETE5ORkRETs27cvjh07tvaEAQAAAAAAAAAAAADgDtvrt8fE2ETksrlobGlct/O8Pfb2sqtdzBZRXBm5MrciRTExlaiiCyzy+Xy0trbGwMBAtLS0zG3v7u6O4eHh6O3tXXWbY2Nj0dfXF729vZFOp+e2nzlzJlpbW2N0dDSJ1AEAAAAAAAAAAAAAYM5Tg09FLptbcpWIfDYfEbFs8cXE2ERcGbkS9z5075LH5bK52F6/fck2ZgspctncmmIqUU2pE1iLrq6u6OzsnFdcERHR19cX/f39MTQ0tOo2e3p6oq+vb15xRUREZ2dndHd3R3d391pSBgAAAAAAAAAAAACgikzdmopbP7s19+/n//jzJY9dqrgiImL8zHg0tjQuekx2KBsXTlyIiIjWI60REXGq/VRkh7ILjr05eXPZ1ShmCykK+cKaYipRxa5gkc1mY2hoKPr6+hbdf+jQoejt7Y22trYVtzk2NhaZzNLLkcy2CQAAAAAAAAAAAAAAK/Ha8dfi+3/0/bnX1+LaqtuYLZ7o+HbHgn2zBRcPH3t4bltjS2N0DXRFb11vHBk9Mm81i5UWQbz7zrtriqlEFVtgMVtYsVRBRFNTU/T390c+n1+wGsVSZos2ljI5ObnitgAAAAAAAAAAAAAA4JHnHolPPfupudeXL1+ObzZ/c8XxE2MTMdQzFF0DXfMKJWY1dzYvGpdKp6K5szkGugbimYvPrD7xKlRT6gSKNTY2tmyxw2zhxcjIyIrbbGlpiWw2G11dXYvu7+vriyeeeGJVeQIAAAAAAAAAAAAA1e3GjRtF/ctms/HpT3869uzZE5/+9Kcjm80W3RalU7utNrZ9ZNvcvw//yodXFT/QNRAH+w4uWUixnHv33Ru5bC5y2dzctlQ6taIVKXbs2bGmmEpUsStYZLPZqK+vX3L/bPFFNptdcZuZTCaOHDkS/f390dTUFH19fdHW1hYREUNDQ5HP56O3t3dNeQMAAAAAAAAAAAAA1WXXrl1rbmNwcDCampqKjp+ZmVlzDmy8ga6BaO1ujdYjrUXFp9KpiHhvFYy6TF1ERGyv375szM3Jm/Nii42pRBVbYDE5OTm3SsViZosv8vn8qtrt6+uLpqam6Onpifb29jhy5Eg0NTVFS0tL9PX1raiNm1M34/rU9bnXH6r5UHxo64dWlcdmMDU1VeoU+KWpqamYnp52TSgr+iXlSt+kXE1PT5c6BZZRDmMA71vlw2cJd9InuJM+wZ30CRZjDFDe3r39bmyb2jb3ulp/B6gkM1tmYiZmYmbLTEyHv69K4/pVLteu/Kz0ntM9auVy7SqXa1b+rl27FpOTk3Ovt23bFtu2bVsmgs1sektx9zZJ3h9538DnPknSn6rHRlxj/WllVvrfZ7BnMO7dd288fOzhJY852302Lg1dimcuPrPi89dl6uLKyJUl98+uVDFbkFFsTCWq2AKLlRZOvPPOO6tu+9ixY5FOp6O7uzv6+/sjnU7HwMDAiuN7/kfPvNe/0/I78ZmHPrPqPCrda6+9VuoU+KXp6en4yU9+EhERNTU1Jc4G3qNfUq70TcpVMfe1bJxyGAO4/y4fPku4kz7BnfQJ7qRPsBhjgPJWDmMAVmcmZuLmr9yMyZiMLbGl1OmwSq5f5XLtys9Kv0Nyj1q5XLvK9cGJ+5SnT3ziE/Ne/9t/+2/j8OHDJcmF0ptsLO5vNsn7I78N4XOfJOlPG+N73/teUXH/4T/8h3jjjTdieno6ampq4sEHH4z/+B//Y1FtbcTnh/60MisZA4z2j0Z9U/2iK1cU8oX3V6YYmZhbPWIxs4UPjS2Nc9vuabknskPZJWNy2VxERGTa3l8QoZiYSlSxBRbrqaenJ5qammJmZiZ6enrixIkTc6tZrGQVi95/2Rt1qfcrbz5U86H40ET1PbnqkUceKXUK/NJsldv+/fujttafPeVBv6Rc6ZuUq9mBJ+WpHMYA7r/Lh88S7qRPcCd9gjvpEyzGGKC8lcMYgNWZ2TITkzEZ9W/Xx5YZk7wrjetXuVy78rPS75Dco1Yu165y/cM//EOpU+AufvCDH8Q//af/dO61FSyq2+VvXC4qLsn7I78N4XOfJOlP5e2f//N/Hp///OdjZGQkHnroofjOd74TDQ0NpU5rSfrTytxtDDB+ZjwiYtHiilw2FxNjE9Hc2RwREXvb9saR3iNLtnVl+Eqk0ql5K0s88MQD8fqJ12NibGJe4cUHY+4slCgmphJVbK9Np9MrWsViz549q2q3vb09enp6oq2tLSIient744knnoiurq7o7++PycnJu65msb12e+yq3TV/48yq0tgUBh5b+aof6+XJs0+WOoWyUVNTE7W1tT6sKCv6JeVK36Qcqegvb+UwBvCeVV58lnAnfYI76RPcSZ/gTsYA5W3H1h0lHwOwOtMxHVtiS2yZ2RI1M/6+Ko3rV7lcu/KzmvtN96iVy7WrTCu9XqP9ozE+MD73pNp0Jh3tve2LHlvIF+LV469GRMSOPTti8uJkNLU3zU3CSiqmWuzevTvq6+tLnQZloth7myTvj7zPE+Fzn2StV3+6ceNG0bFXr16No0ePxujoaLS2tsbJkyeLKizYuXNn0TmUg49+9KPxV3/1V6VOY1W8P93dcv9tJsbeW5FiseKKiIjsUHZeIcMDTzwQo/2jSxZjjJ8Zj66BrnnbG1saI9OWiTdfeHPRYonxM+Px1OBTa46pRIn22vPnz8eBAweSbHJJdxuwzC6bkk6nV9zmiRMnoqWlZa64YlZLS0tcvHgxuru7o7+/P4aGhhYcAwAAAAAAAAAA66GQL8R/e/S/xd62vfMmLOWyuRjsGVxQZFHIF6K/tT+6BrrmTXw62302Lg9fXrQoo5gYAIC72bVr190PWoHBwcFoamoqKvb69etFnzepIo+Iyi/0YGPksrkY6BqIvW1740r3lQX7C5OFyA5loyfXM7etsaUxskPZuHDiQjx87OF5bfW39sf+Y/sXLZruGuiK/tb+eOCJBxaMAfYf27/oahTFxFSaRAss2tvb4/bt20k2uaRMJhMjIyNL7p9d3SKTWflF6uvri9HR0WX3j4yMxODg4LIFFrembkVhqrDi8866dutafOeH34lL1y7F3t174/Mf/3zs3rZ71e2kalOrjgEAAAAAAAAAoDzNFlfcWeTwl91/GVdGrizYPtA1EPd13rfgqbIdfR3RW9cbTe1NCyY+FRMDAFAJyqHIIyJiZsYyuNzdqfZTkcvmItefW/KYukzdgm0PH3s4skPZONt9NgqThSjkC5FKp+JzL39u0dUmIiJS6VQcGT0Sgz2DkUqnVrSKXTExlSbRAovdu3fHv/t3/y7+63/9r0k2u6iWlpYYGhpacn82m42IWNVKE9ls9q4rXnR3dy9bhBER8ZX/8ZUVn3Mpb/70zfjyK18uKvbPD/75ms8PAAAAAAAAAEDpXThxIXLZXBzpPbJgXyqdinsfunfetlw2F9mhbBzsO7hoe82HmuNC74V5xRLFxAAArMRaVo947LHH4vz583H79u3YunVrHDhwIF566aVVt5NUgQVshGcuPlN0bKYts+p79lQ6FR19HeseU0kSLbDI5/PR19cXFy9ejN7e3vjEJz6RZPPzPPHEE3HixIkYGxuLlpaWBfuHh4dXVVwR8d5qF9lsdtlVLy5evBitra2rzhcAAAAAAAAAAFbrteOvRcuRhXNjIiK6BroWbBvpG4mIxZ9qGxFR31QfY/1jc0+0LTYGAGAldu7cWXTsqVOn4vDhwzE8PBz79u2L559/vqj2yqHIA6gciRZYRET09fXFo48+GkNDQ3H8+PFob2+PQ4cOxUc+8pFEz9PS0hJtbW3xwgsvLFpgcebMmRgcHFywPZ/Pz+V1ZwFGZ2dn9PT0xMDAwKLnzOfzMTY2Fs8999yyuX39X3499qT2rOJ/zXu+MfKNGH9nPKZnpqNmS00072mOZx96dtXtAAAAAAAAAABQ+cbPjEchX4gHnnhgxTFvj729bBHEbBHFlZErc0+3LSYGAGC9NTQ0xLlz59bcTjkUeQCVoybJxvr6+uILX/hC7N27N55++ul44YUXorW1NY4dOxZf/OIX4wc/+EGSp4uBgYE4c+ZMjI2Nzdve3d0dx44dW3QFi/7+/jhx4kR0dS2s4O/t7Z2Lz+fz8/aNjY1FV1dX9Pb2RjqdXjavbbXbIlWbWvW/Lz34pfj4r348dn1oV3z8Vz8eX3rwS0W1AwAAAAAAAABA5fvRCz+KiIjGlsaIiJgYm4jR/tGYGJtYMiaXzcX2+u1L7p8tpMhlc2uKAQCoBrNFHj/96U/j3Llz0dDQUOqUgHWW6AoWTz/99IJtDz74YJw8eTKuXbsWL7744tzqEV/4whfWfL50Oh2jo6PR09MT6XQ69uzZExcvXoz29vbo7OxcNKatrS3S6XQcOnRo0f0DAwMxNDS04H9LJpNZdEWMJO3etjt6fqtnXc8BAAAAAAAAAEBl+GAhxYUTF6KxpTFaj7TGxNhEnGo/FQ/3PLxgRYmbkzfnVpxYzGwhRSFfWFMMAADAZpRogcVydu/eHU8//XQ8/fTT8cYbb8TRo0djy5YtcfTo0fjN3/zNottNp9PR19e34uNbWloil1u+mr6trW3R1S8AAAAAAAAAAGCtpm5Nxe1bt+de//wff77ocTcnb0YqnYrR/tF4+NjDc9sbWxqja6Ar/vPe/xxdA13ziixWWgTx7jvvrikGAACKcePGjaJjr169GkePHo3R0dFobW2NkydPFr2qyM6dO4vOg81twwosPqipqSmampri+PHj0d/fH5lMJnp6ehJZ1QIAAAAAAAAAAMrZa8dfi+//0ffnXl+La4seN1v4MLuCxAel0qnItGXiL7v/Mp65+Mz6JAoAAAnbtWtXIu0MDg5GU1NT0fEzMzOJ5MHms6EFFufPn4/e3t4YGhqKiPc65pEjR6K7uzsiYm5Vi56envj1X//1jUwNAAAAAAAAAAA2xCPPPRKfevZTc68vX74c32z+5oLjUulUFPKFeStUfFCmPRPjZ8ZjYmwiGlsa58XczY49OxacZzUxAAAAm1GiBRbnz5+PAwcOzNv2s5/9LPr7+6Ovry+y2WzMzMzMrVjx9NNPzzv25MmTce3atejv74/Jycl47rnn4iMf+UiSKQIAAAAAAAAAQEnVbquN2m3vT9v58M8+vOhx2+u3RyFfiFQ6teT+iIgrI1fmCiwWW+3ig25O3oyImNdmMTEAAFCM69evFx372GOPxfnz5+P27duxdevWOHDgQLz00ksJZgcJF1i0t7fH7du3I+K9You+vr44c+bM3BIqs6tVPPjgg0u2sXv37vjKV74S165diy984Qtx4sQJq1kAAAAAAAAAwBqd7ji9ouOmt0zHZONkXP7G5aiZqUk0hyfPPploe7DZNbY0Ri6bu+txH1x9oi5TF1dGrtz12LpM3ZpiAACgGDt37iw69tSpU3H48OEYHh6Offv2xfPPP7+m9mAxiRZY7N69O/7ZP/tnERELVqs4dOhQ7N69e1Vtvfjii/HFL34xvvWtbyWZJgAAAAAAAAAAlL17990b42fGl1zFYnZlidnVKyIi7mm5J7JD2SXbnC3YyLRl1hQDAAAbraGhIc6dO1fqNNjkkn3URERcvHgxLl68GI8//niMjo7G3//938fTTz+9quKKDyo2DgAAAAAAAAAAKllzZ3NExJLFD5MXJyMi4t6H7p3b9sATD0RExMTYxKIxV4avLCiUKCYGAFjajRs3iv6XzWbj05/+dOzZsyc+/elPRzabLbotAFYv0RUsIiK6u7vja1/72poKI65duxZf+9rXoru7O65du5ZgdgAAAAAAAAAAUBnqMnXR3Nkcrx1/ba7Y4oN+fObHsf/Y/nmrWzS2NEamLRNvvvDmvJUtZo2fGY+nBp+at62YGABgabt27UqkncHBwWhqaio6fmZmJpE8AKpJ4gUW3/rWt9bcxosvvhi9vb1x5syZ6OnpSSArAAAAAAAAAICI0x2nS51CREQ8efbJUqdAhej4dkf0t/bHaP9otB5pnds+0DUQdZm6aO9tXxDTNdAV/a398cATD8wrmDjbfTb2H9u/6GoUxcQAAABsNokWWBw6dCixdi5evBj79u2Lxx9/PJE2AQAAAAAAAACg0qTSqTgyeiRePf5qDHQNREREIV+I5q7meQUXi8UM9gxGKp2KHXt2xOTFyWhqb1p0JYxiYwCAxV2/fr3o2MceeyzOnz8ft2/fjq1bt8aBAwfipZdeSjA7AJaTaIHFyZMnE2ln9+7d8bWvfS2RtgAAAAAAAAAAys16rKQxvWU6Jhsn4/I3LkfNTM1dj7eKRuVIpVOLrlRxt5iOvo51jwEAFtq5c2fRsadOnYrDhw/H8PBw7Nu3L55//vk1tQfA6iRaYDHrL/7iL6K/vz9yuVy8+OKL8eu//uvz9l+6dCl6enrik5/8ZPzhH/7heqQAAAAAAAAAAAAAABWloaEhzp07V+o02KRu3LhRdOzVq1fj6NGjMTo6Gq2trXHy5MloaGhYcNzU1FTcvHkzbty4EbW1C6eqKxii3CVeYPHcc8/FQw89FMPDw3Ht2rUYGxtbUGCxd+/eePHFF+Pll1+O5557Lo4fP550GgAAAAAAAAAAAAAA/NKuXbsSaWdwcDCampqKip2ZmUkkB1gviRZYnD9/PjKZTDz++OMxMzMTly5dis9+9rNLHv/oo49GRMR3v/vdZY8DAAAAAAAAAAAAAABYT4kWWAwMDMS3vvWtiIjo7OxcUcyjjz4aX/ziFxVYAAAAAAAAAAAAAACsk+vXrxcd+9hjj8X58+fj9u3bsXXr1jhw4EC89NJLC46bmpqK119/Pfbv3x+1tYlOVYcNkWivtWQLAAAAAAAAAAAAAJTejRs3VnTc1NRU3Lx5M27cuBG1tbVx9erVOHr0aIyOjkZra2ucPHkyGhoaisph586dRcWxPtZyPU6dOhWHDx+O4eHh2LdvXzz//POLtjc1NRXbt2+PnTt3KrCgIiXaa3O5XFFx2Ww2yTQAAAAAAAAAAAAAqEIrLSpYTFKFBeVSVLBr1641tzE4OBhNTU1Fx3t4++bR0NAQ586dK3UaENmXs5EdzEZsiahvqo97H7o37vnEPYm1n2iBxcWLF1cdc+3atXjnnXeSTAMAAAAAAAAAAACAKpREUUHE2goLFBUAFO/EnhNx7J1jS+7PPJqJzKOZKFwrxM3Jm5EdysZI30i097bHto9sW/P5Ey2wOHToUDzxxBPxwgsvrCrmd3/3d5NMAwAAAAAAAAAAgE3odMfpUqcAUDGuX7++ouOmpqbi9ddfj/3790dtbW089thjcf78+bh9+3Zs3bo1Dhw4EC+99NI6ZwvwnpUWqaV2pyK1OxWtT7dG4VohBnsG4+C3Dq75/IkWWBw7diw+9rGPxe/+7u/Gt7/97fiVX/mVJY/9wQ9+EE8//XTk8/n4wz/8wyTTAAAAAAAAAAAAAKAKrbSoYDGbrbBg586dKzpuamoqtm/fHjt37oza2to4depUHD58OIaHh2Pfvn3x/PPPr7gtgLXasmXLqmNSu1OJnT/RAouIiL/+67+Oj33sYzEwMBDt7e3R1tYW6XQ66uvrY3JyMi5evBhDQ0MxNjYWMzMzMTY2lnQKAAAAAAAAAAAAAFShtRQCKCx4T0NDQ5w7d67UaQCsWOFaISZGJhJpK/ECi0wmE5OTk9HV1RV//dd/HYODgwuOmZmZiba2tujr64u9e/cmnQIAAAAAAAAAAAAArIrCAoCNkX8rv+j2mZmZ9/b/r3zEzPJtFPKFuDl5MybGJuK1469F86HmRHJLvMAiIiKdTsfg4GC8/PLLMTAwECMjI5HP5yOdTkcmk4nu7u549NFH1+PUAAAAAAAAAAAAiXr33Xfjxo0bq4q5evVqHD16NEZHR6O1tTVOnjwZDQ0NRZ2/Gp+eDgDA5nVl9EpcGb4SuWwuskPZuHXt1rz9f5L5kxW3NTMzE5m2TBz81sFEcluXAotZjz76qEIKAAAAAAAAAACgot1///1rih8cHIympqai42ef5AsAAJtB8+PN0fz4+ytOTIxNxFDPUGRfzsaWLVvivsfvW1E7dZm6yLRnIvNoJrHc1rXAAgAAAAAAAAAAAAAAYCmNLY3x1OBTcbb7bPz4zI+j68WukuVSU7Izf8Bzzz1X6hQAAAAAAAAAAAAW9aMf/SiuX7++qn/t7e2xdevWiIjYunVrtLe3r7qN2X8AAFANOvo6Ir03XdIcymIFi/7+/jh+/Hip0wAAAAAAAAAA1tHpjtOlTgGgKDt27IidO3euKubUqVNx+PDhGB4ejn379sXzzz+/6jYAAKDaPPLcI0XFDT03FG3H29Z8/nUrsHjrrbcim83e9bixsbHI5/PrlQYAAAAAAAAAAMCGa2hoiHPnzpU6DQAAqCjNjzcXFTfWP1aeBRZ/+qd/Gj09PYomAAAAAAAAAAAAAACAouTfykcum7vrcRNjE1HIFxI5Z6IFFi+//HIcOXIkMplMdHV1RTqdvmvM6OhonD9/Psk0AAAAAAAAAAAAAACACjT2p2Mx1DOUWNHEaiRaYPHVr341BgYG4vHHH19V3J49e5JMAwAAAAAAAAAAAAAAqDDZl7Nx9sjZqMvURXNXc6TSqbvGTIxOxKXzlxI5f6IFFnV1dasuroiI2Lt3b5JpAAAAAAAAAAAAAFSVGzduFBV39erVOHr0aIyOjkZra2ucPHkyGhoaimpr586dRcUBwKyXv/pydA10RfPjzauKO7HnRCLnT7TAoqWlpai4kZGRJNMAAAAAAAAAAAAAqCq7du1acxuDg4PR1NRUdPzMzMyacwCguqXqUqsuroiISO9NJ3L+mkRa+aV8Pp9kcwAAAAAAAAAAAAAAQJVobGksKu7IyJFEzp9ogUVXV1d897vfXXXcc889l2QaAAAAAAAAAAAAAFXl+vXrRf1rb2+PrVu3RkTE1q1bo729vei2AGCtCvlCSc9fm2Rjjz76aHz961+P7373u/HZz352xXH9/f1x/PjxJFMBAAAAAAAAAGAZpztOlzqFePLsk6VOAQA2jZ07dxYVd+rUqTh8+HAMDw/Hvn374vnnny+6LQBYq+au5vjxd38c9332vlXFDT03FG3H29Z8/kQLLN56663o6uqKgYGB2LdvX7S1tUVTU1NkMpklY8bGxiKfzyeZBgAAAAAAAAAAAAAr0NDQEOfOnSt1GgAQERGZRzNx4esXVl1kMdY/Vn4FFi0tLXHt2rWIiJiZmYnR0dHYsmVLkqcAAAAAAAAAAAAAAAA2ofxb+bi/6/740cCP4tv7vh172/ZGfVN91GXqloyZGJuIQr6QyPkTLbCor6+PiIhDhw5FOp1eUczo6GicP38+yTQAAAAAAAAAAAAAAIAK09fSF7eu3YqI9xZ9uDJ6ZUMXfUi0wCKTycRXv/rV+MIXvrCquD179iSZBgAAAAAAAAAAAAAAUGG212+PiIj7D90fqXRqRTEToxNx6fylRM6feIFFJpNZddzevXuTTAMAAAAAAAAAAABgQ9y4caPo2KtXr8bRo0djdHQ0Wltb4+TJk9HQ0HDXuKmpqbh582bcuHEjamvfmwq6c+fOovMAgHJRl6mLR776SLR8oWVVcSf2nEjk/IkWWJw8ebKouJGRkSTTAAAAAAAAAAAAANgQu3btSqSdwcHBaGpqKjp+ZmYmkTwAoJTqMnVRl6lbdVx6bzqR8ydaYLGYn/3sZzE5ORm//uu/vt6nAgAAAAAAAAAAAAAAKtTBkweLijsyciSR89ck0sod3nrrrfjiF78YW7dujbq6uvjYxz42b/+lS5fi0KFD8ad/+qfrcXoAAAAAAAAAAACADXH9+vWi/7W3t8fWrVsjImLr1q3R3t6+orh8Ph/f+973Ip/Pz20DANYu8RUszp8/H21tbRERkclkIpPJxKVLl+Yds3fv3njxxRfj5Zdfjj/+4z+OP/zDP0w6DQAAAAAAAAAAAIB1t3PnzqJjT506FYcPH47h4eHYt29fPP/88ytqb2pqKrZv3x47d+6M2trEp4ICQEUpXCvE2LfHYv8f7l9zW4muYHHp0qXo7OyMI0eOxMWLF+Pv//7v46//+q/j8ccfX/T4Rx99NPbu3Rvnz59PMg0AAAAAAAAAAACAstfQ0BDnzp2Ln/70p3Hu3LloaGgodUoAUHFy2Vz86IUfJdJWomWLX/3qV6O3tzeefvrpedu3bNmyZMzjjz8eX/ziF+PAgQNJpgIAAAAAAAAAAAAAAFSQS+cvrTrmQu+FKOQLiZw/0QKLXC63oLhiJWZmZpJMAwAAAAAAAAAAAAAAqDAvdr4Yt67dWlXMzMxMbK/bnsj5Ey2wyGQyRcXlcrkk0wAAAAAAAAAAAAAAACrM9vr3CiXuP3R/pNKpRY8p5AuRy+biysiVyLRl4t599yZ2/sRXsChGNptNMg0AAAAAAAAAAAAANtiNGzeKjr169WocPXo0RkdHo7W1NU6ePBkNDQ2rbmfnzp1F5wBA6dVl6uKRrz4SLV9oWdHxF75+IbbXbV/x8XeTaIFFXV1dvPLKK/Gv/tW/WnHMc889F48++miSaQAAAAAAAAAAAACwwXbt2pVIO4ODg9HU1FRU7MzMTCI5AFAadZm6qMvUrfj4h7/ycIz/xXhcOn8p9h7Yu+bz16y5hQ84duxYPP300/HKK6+s6Pg//uM/jjNnzsTXvva1JNMAAAAAAAAAAAAAAAAqzMGTB1ddKNH8eHNcHLyYyPkTXcEik8nEyZMn49FHH42HHnoonnjiiXjwwQcjn8/HW2+9Ffl8PiYnJ2NsbCz6+voim83G6OhokikAAAAAAAAAAAAAUALXr18vOvaxxx6L8+fPx+3bt2Pr1q1x4MCBeOmllxLMDgDuLtECi4iItra2ePHFF+PIkSNx7Nixue39/f1z///MzExkMpkYGRmJT3ziE0mnAAAAAAAAAAAAAMAG27lzZ9Gxp06disOHD8fw8HDs27cvnn/++TW1B0B1yWfzibSTeIFFRERnZ2d0dnbGiRMn4oUXXog33nhjbl8mk4nu7u74yle+sh6nhnlOd5wudQrx5NknS50CAAAAAAAAAAAAlLWGhoY4d+5cqdMAoAIVrhXiZu5mIm2tS4HFrGPHjs1bxQIAAAAAAAAAAAAAAGAxl85fWvGxhXwhctlcjPaNRmt3ayLnX9cCCwAAAAAAAAAAAAAAgJV4sfPFuHXt1oqPn5mZiUxbJvb/4f5Ezl8WBRbf/e5347Of/Wyp0wAAAAAAAAAAAAAAAEpke/32iIi4/9D9kUqnlj92z/ZobGmMzKOZxM5fFgUWTz/9tAILAAAAAAAAAAAAAACoYnWZunjkq49EyxdaSnL+VRdY/OAHP4hPfOITS+5bjcnJychms5HP51ebBgAAAAAAAAAAAAAAsInUZeqiLlNXsvOvqsDiq1/9anz961+P1tbW+Nu//dsF+w8cOBDXrl1LLDkAAAAAAAAAAKhmo/2jMT4wHq3drZFpy0QqnYpcNhcTYxPxoxd+FI8890g0tjQuiCvkC/Hq8VcjImLHnh0xeXEymtqbormzeclzFRMDAACQpIMnD5b0/KsqsMhmszEzMxO5XG7R/fX19RERceTIkYiI2LNnz7LtvfPOO3Hx4sX47ne/u5o0AAAAAAAAAACgKhTyhcgOZSM7lJ23PZVORddA15LFFf2t/Qv2n+0+G5eHL0d7b3siMQAAwPqYGJuIkb6RKEwWYmJsIlLpVLR2t0brkdYlYzaqyHqzF2avqsDi29/+drS3t0dbW9ui+zOZTHz1q1+NL3zhC6tK4m6FGAAAAAAAAAAAUK0O9h2MyYuTkc/mI1Wfintb7112YtVA10Dc13nfguKLjr6O6K3rjab2psi0ZdYcAwAAJG+0fzQi3rsXn5UdysZA10Bc6L0QR0aPRCqdmhezUUXWpSjMzr+Vj5G+kXh77O24OXkzttdvj3QmHQ91PxT3fOKexM+3qgKL3bt3x9NPP73k/vb29njooYdWncTevXtXHQMAAAAAANUsl83Fa72vRUREYbIQhXwhMu2ZePjYw0vGeHoVAABUpvsP3b9gAtVSctlcZIeycbDv4KL7mw81x4XeC/OKJYqJAQAAkpfL5qKQLyz4rj/TlonPvfy56G/tj4GugXhq8Kl5+zeqyHqjC7OHnhuK10+8HjMzMwv2jfWPRXNXc3T0d8S2j2xL7JyrKrC4m6985StFxY2MjCSZBgAAAAAAbGrjZ8bj8vDleU+viojob+2P0b7ReObiMwtiNvPTqwAAgPeN9L03D6cuU7fo/vqm+hjrH4tCvjBXtFFMDAAAkLyRvpH47ed+e9F9jS2NkWnLRHYoG7lsbu7+faOKrDeyMLtw7b3fGm5O3oz7Hr8v7t1379xYpJAvxM13bsbE6ET86MUfRXYoG39w6Q9i268kU2RRk0grAAAAAADAhijkC/GjF360aKFCx7c7IpfNxdnuswv2LfdUqbH+scgOZUsWAwAAJOftsbeXLYKYnYR1ZeTKmmIAAIDkXRq6FP9573+OQr6w6P57Wu6JiIiJsYm5bSspmM4OZee1uVExxRroGohMWyZ6Jnui68WuePgrD0fr063R+nRrPPyVh6Pta23x1OBT0ZPrifsevy/+24H/tuZzzlqXAou/+Iu/iH/9r/91fPKTn4y33nprwf5Lly7FoUOH4o//+I/X4/QAAFCVznafvetEpdH+0TjVfirGz4zPDWZy2VyMnxmPga6BeYOvDyrkCzHYMxiDPYNx4cSFONt9NsbPjC97rmJiAACAu7syciXGz4zHYM/ggn2zRQ2Xhi7N2z77VKmHuh9atM3Zp0qVIgYAAFi5ibGJGO0fXfL7/Ij37su3129fcv9sIUUum1tTDAAAkLzt9dujkC+s6t57o4qsN6owe/Tbo1GXqYuDJxdfKeODUrtT0dHXEY2tjTH2p2NrOu+s2kRa+YDnnnsuHnrooRgeHo5r167F2NhY/Pqv//q8Y/bu3RsvvvhivPzyy/Hcc8/F8ePHk04DAACqwuzkpdG+935Mub/r/mWPL+QLkR3KLijESKVT0TXQteAJs7Mx/a39C/af7T4bl4cvL/rU3GJiAACAldlevz1S6VTs2LNjyWPu/IFjJU+VGusfi0K+MBe7UTEAAFCNpm5Nxe1bt+de//wff77s8dmhbOSyuci0ZaL1SGtMjE3EqfZT8XDPw5Fpy8w79ubkzSXvySNirpDig0+VLSYGAABI3lODT0Uum1vy/jyfzUdEzJuPs1FF1htVmH1p6FJ0vtC5qpiDJw/G//2v/+9o+ULLms4dkXCBxfnz5yOTycTjjz8eMzMzcenSpfjsZz+75PGPPvpoRER897vfXfY4AABgodH+0cgOZiPTnom23rY41X5qRXEH+w7G5MXJyGfzkapPxb2t90brkdYljx/oGoj7Ou9bUHzR0dcRvXW90dTetODHm2JiAACAlWlsaYyeXM+i+2afYru3be+87at5qtTsvfpGxQAAQDV67fhr8f0/+v7c62txbcljZ++jHz728Ny2xpbG6Broit663jgyemTe9/ErLYJ495131xQDAACs3GqKrJcrfh4/Mx6NLY3zjtmoIuuNKsxO1RX3gKb03vSazjsr0QKLgYGB+Na3vhUREZ2dK6saefTRR+OLX/yiAgsAAFil1iOtc4URyy0Ffqf7D92/4ifFzq6QcbBv8SX3mg81x4XeC/MmRhUTAwAAJGOoZyjqMnULVo3bbE+vAgCASvfIc4/Ep5791Nzry5cvxzebv7nosc2dzYtuT6VT0dzZHANdA/HMxWfWJU8AACAZqymyXsqFExciIqLj2x3ztm9UkfWGFWZv2eC4OyRaYDEzM5NkcwAAQImN9I1ExNKV8fVN9THWPxaFfGFuolQxMQAAwNrksrl4rfe1SGfS8dTgUwv2b7anVwEAQKWr3VYbtdven7bz4Z99uKh27t13b4yfGY9cNjd3L55Kp1Z0z71jz465/7+YGAAAYOVWU2S9mImxiRjqGYquga55K9htRoXJ4n5DyGfziZy/JpFWfimXK+6JU9lsNsk0AACAhLw99vayRRCzP9ZcGbmyphgAAKh2U7em4tbPbs39+8X1X6wobvzMeAz2DMZQz1Ck0qm4v+v+RY/bdE+vAgAAIuL9VeI+uNL1cqvKRbxXGP3B2GJjAACAlavdVhvbPrJt7t+Hf2V1RdYDXQNxsO/goivcbVSR9UYVZqf3puPHL/14VTGv//Hrcc+D96zpvLMSXcHi4sWLq465du1avPPOO0mmAQAArMDE2ERcGbkS9z5075KV7blsbtkfVWZ/SMll3y+2LiYGAACq3YKlwWtWtjR4c2fzvB9TTrWfitG+0ej4doeJTwDA/5+9/4ut6szzRO+fKTJsUHfY29xgRn2mvF3vRRxGE7bhSAW0dCrYqdEILqbwho40qW7pBLtKr5SW+q3YYc7FUZ+LIaaiLp06F4VNzsW8GSkN9mQu3DcnNvQpVchFYbvSmoojnYoXdKmxI72TvTfpVrwzTbHfC9oOxjb4z8J/Px8Jhb2e5/c8D+wVs5e9vusBtoDBzsG4NXwrXpt4bck1uXzusQ85mrkh6uHd51ZSAwAArI3+Yn+0dLZES0fLgu1rFbJeq2B265ut8dNv/TQiIp77t889sf/o5dH44MIH0fV516rmnZFqwOLMmTNx9uzZuHLlyrJq/uiP/ijNZQAAAI+RDCdRTsqRb81HS0dLTI1NxTtt78Sx7mORb83P6Ttdmn7sD0tmLpweTqevpAYAALa7R7cG/+1vfxs/+ZdL3xp8RrG/GD25nqhWqvHK0Cuzx7fa06sAAGC7mBqZmr1JaSEzn78ffpDS/sL+SIaTRWtmHoD08M8EVlIDAAA8fUPdQ3HgyIE41nVs0T5rFbJey2B28Wox+g73RdNLTdHc3hwHDh+YDW5UK9WYLk3HxNBEfDLwSZSTcpwbObfqOWfsSG2kiOjq6orR0dH4oz/6o/j7v//7x/b96KOP4siRI5EkSfzoRz9KcxkAALDp3fvqXnz1xVezv/7xH/4xlXFnLmCOdR2b/WFLQ6Ehiv3FeKftnTlbiEcsPQTx5edfrqoGAAC2u0e3Bn/m955Z0TiZbCaa25sjGU7m3By11Z5eBQAA20Vja2N0l7sXbZ+8ORmZbGbODUwHzx6MiJj3Pf+Hax4NSqykBgAAeLpG+0ajvql+wXDFw/fn7C/sf+z9OouFrNeiZqUaCg3RMdIRX/7/vozBjsHoa+mLnzb9NH7a9NPoa+mLd9reiRs9N6JWq8W/e//fRcOhhicPukSp7mAREfH+++/Ht771rejv74+2trZobW2NbDYb9fX1USqVYmJiIoaHh2NsbCxqtVqMjY2lvQQAANj0PrjwQfz8z38++/rujrupjNvc3rzg8ZmbsPqL/cvaZhwAAFh7M09mWuwJUNl8NiIiJoYmZn+IsRWfXgUAANvBwbMHY7RvNFo6Wua1lZNyjA+MR7G/OOd4Q6Eh8q35+PWVX8/Z2WLG+MD4nB3vVloDAAA8PeMD4xERi14LTI1Nzd4HdPDswfjw4ocxNTa14Of5xULWa1GzGg2FhugY7YjRvtEY7R2NqV99HQjP5XPR0tkSx15ffGePlUo9YJHP56NUKkWxWIz3338/hoaG5vWp1WrR2toavb290djYmPYSAABg0zt+/nh8+8++Pfv6t7/9bfzkX/7kqc554MiBGB8Yj3JSnr3ZKZPNLGlHij379sz+fiU1AADA0vXkeiIiorvcveBOEDOftR99etXDO1o8arEnUa1FDQAAsLiGQkMkw0ncuHhjzlNry0k5+lr64mjX0QUfrlTsL0ZfS18cPHtwzo1Pg52DcbTr6IKfyVdSAwAApG9qbCqmS9MLhisiIpLhZM7n87UKWa9XMLulo2XRv4unIfWARURENpuNoaGhuHbtWvT398fIyEhUKpXIZrORz+ejs7MzTpw48TSmBgCALWHnrp2xc9fXH9ef+b1nnvqcMzdmTY1NzQYsdtfvfmzNdGl6Tu1KawAAgKXLZDOxu373op+pSxOliIg40HJg9thWfXoVAABsB8e6jkUynMRg52BUS9WoVqqRyWbi+9e+v+Dn7ogH1w0dox0x1D0UmWwm9uzbE6WJUjS1NT12t+vl1gAAAOkqJ+XoL/ZHY2tjTHbO3zG6WqpGMpxEd7l7zvG1Cllvh2D2UwlYzDhx4oQgBQAAbBCDnYNxa/hWvDbx2pJrcvlcTI7Mv1ibMfNE3JlAxkprAACApSt0FOJw5+FF28evjkcmm4nnzzw/e2yrP70KAAC2unxrftk3KmWymTjVe+qp1wAAAOl5p+2dKCflKPeVF+2z0D03axWyXstg9vh/Ho+xvrGYLk9H8Woxst/Mzmkv3yrHcPdw/PP/8Z/H0R8dTW3epxqwAAAANo6pkanZ3SMWMhN8ePgmqP2F/ZEMJ4vWlJMHF3MP/1BnJTUAAMDStfW0xWDnYDxffH7e5+r+Yn9ERHz/2vfn7XDh6VUAAAAAALCxLefBqY9aq5D1WgSzh88Px4HDB+LOzTvx1d2vYmpsal7AIteYi+LVYiTXkhg+PxytF1pTmXtDBCx++MMfxs9+9rP1XgYAAGxpja2N0dHTsWj75M3JyGQzc1LuB88ejA8vfhhTY1MLPn128ubkvJujVlIDAAAsz6neUzE+MB79xf7I1GeiWqpGtVKN/YX98ae3/nReuCJiaz69CgCAze/dU++u9xIiIuLlwZfXewkAAABExK3rtyKXz0Xz6eaI2oOdKp773nOL9s+feHAf0ifvffLYfku1IQIWV69eFbAAAICn7ODZgzHaNxotHS3z2spJOcYHxqPYX5xzvKHQEPnWfPz6yq8XDEuMD4zHK0OvrLoGAABYvub25mUHFrbS06sAAAAAAICt5+P+j+Pkz05GRCz55yD5E/n4qx/+1foELD766KN44YUX5h2/e/duXLt2bdkLuHnzZlQqlWXXAQAAXysn5YiIqFaqi/ZpKDREMpzEjYs34ljXsTm1fS19cbTr6IIXJcX+YvS19MXBswfnBCYGOwfjaNfRBXejWEkNAAAAAAAAAACwzdXWd/olByyuXbsWnZ2dcevWrWhqaor/5//5f+a0j4yMRHt7e9TV1S1rAbVabdk1AADAg50gRntHIyJicmQyIiIGzw3OHmsuNs/breJY17FIhpMY7ByMaqka1Uo1MtlMfP/a9xfcbSLiwZNnO0Y7Yqh7KDLZTOzZtydKE6VoamtaNCW+khoAAAAAAAAAAGB7q5YXf8Ds41SSSirzLylgcffu3ejt7Y3e3t5oa2uLvXv3zutTX18fERGnT5+OI0eORDabfeK4lUolPv3003j77beXt2oAACCa25tXFFbIt+aXvYNEJpuJU72nnnoNAAAAAAAAAACwfZUmSsuuqd6txpeff5nK/EsKWFy7di3Onz8fhw4dinK5vGDAIp/PR11dXVy9enXZi+jv7192zYxKpRIXLlyIiIh9+/bFxMREtLW1RXt7+4rHnNHX1xf9/f2zYZF8Ph89PT2rHhcAAAAAAAAAAAAAAJjr+TPPx8DZgWi/svQ8wMCZgTj4RwdTmX9JAYubN2/G9773vYiIBcMVM8cXa3uS1tbWFdVVKpVoaWmJ/v7+KBQKs8c7Ozvj5s2bKw5DVCqVOHHiRLS2tsbQ0NDs8SRJoru7W8gCAAAAAAAAAAAAAABSdqzrWPz0Wz+NgT8aiFOXT8Wu39+1aN/PPvosBs8NRrVSjaM/OprK/EsKWNTX18ft27fjm9/85mP71dXVrWgRK9n1IiKiWCxGe3v7nHBFRERvb2/kcrloa2tbUXhjJlzxaJCis7MzRkZGBCwAAAAAAAAAAABYN++eene9lxARES8PvrzeSwAAtqBX3n8lfvqtn8Z4/3jk2/KRb81HJpuJ3fW7Y7o0HaWJUtwavhVTY1NRq9Wic6wztbmXFLBobW2N3t7euHDhQmoTP+yLL76IZ599dlk1SZLE8PBw9Pb2Lth+5syZ6OnpWXbA4uLFi5EkyYIhimw2G4cPH17WeAAAAAAAAAAAAAAAwNLk8rnoLnVHf7E/Jt6fiGQomdenVqtFvjUfJ3tPRq4xl9rcSwpYHDp0KIrFYvzgBz+If/Ev/kVqk89obGyMzz//fFk1M8GKfD6/YHtTU1P09fVFpVKJbDa75HEvXLgQHR0dC7b19/cva40AAAAAAAAAAAAAAMDyZLKZeGXolUiuJTHePx6TI5NRrVQjk81ELp+Lls6WyJ9YOEuwGksKWEREXLp0KfL5fPT19cX//D//z6kuolarLbtmbGzsscGJmeDFyMjIknexGBgYiEqlEmfPnl32egAAAAAAAAAAAAAAgPTkT+SfSpBiMUsOWLS2tsbp06ejo6MjOjo6olAozNs9olKpxHe/+90lT14qlSJJkrh79+7SV/xPkiSJ+vr6RdtnwhdJMn87kMVcuXIlIiIKhUJEPAhxjIyMxOHDh2ePAQAAAAAAAAAAAAAAW8+SAxY/+MEPIkmS2d0mRkdHY3R0dF6/oaGhZS+irq5u2TWlUmlewONhM+GLSqWy5DHHxsZmf3/x4sUoFArR0dERY2Nj0dbWFt3d3UveDQMAAAAAAAAAAAAAANg8lhSw+NWvfhXZbDauXbsWxWIx2tra4vXXX5/Xr76+Pkql0rIWMDY2FkeOHFlWTcTSgxOff/75kscslUqRzWajr68vurq6Zo8XCoXo7++PxsbG6O/vf2LIYvredPzDvX+Yff3MjmfimW88s+R1sLXcu3dvvZcQ9+7di/v372+ItcAM5yUblXOTjer+/fvrvQQeYyNcA/i6tXH4t4RHOSd4lHOCRzknWIhrgI3ty999Gbvu7Zp97ecAG1+trha1qEWtrhb3w/9fm433b/Py3m1e3rvNy3u3cut9Tbbe8/Nkd+/enXNf1K5du2LXrl2PqeBpuV+3eb++bcWv075+rR/fVyRNzifS5HxaGn8/G9eSAhbXrl2LH/zgB7F37954//33F+23kp0oCoVC7N27d9l1T8NMaGNm94uHZbPZaG1tjc7OzpiYmHjsON3/d/ec1/+68K/j3xz+N6mtk83lgw8+WO8lxP379+O3v/1tRETs2LFjnVcDDzgv2aicm2xUywkOs/Y2wjXARvjcyQP+LeFRzgke5ZzgUc4JFuIaYGPbCNcALE8tajH9+9NRilLUxfJ/nsX68v5tXt67zct7t3l571Zuvb/HutwHmrL2XnjhhTmv//iP/zj+5E/+ZF3Wst2VGjbv/y9b8ev0en/93M58X5E0OZ9Ik/NpaVwDbFxLCljUarUFQwdp6e/vX3ZNNptd0i4W+/btW/aYi+1Q0dbWFgMDAzE2NhaFQmHRcXr+p57IZXKzr5/Z8Uw8M+XJVdvV8ePH13sJsym3o0ePxs6dS/rfHp465yUblXOTjWrmwpONaSNcA2yEz5084N8SHuWc4FHOCR7lnGAhrgE2to1wDcDy1OpqUYpS1H9WH3W1rXET03bi/du8vHebl/du8/Lerdx6f4/17/7u79Z1fp7so48+ij/4gz+YfW0Hi/Vz5y/urPcSVmwrfp1e76+f25nvK5Im5xNpcj4tjWuAjWtJZ20+n4+RkZF48cUXn8oiTpw4seyaJwU+ZlI92Wx2WWNWKpVFa2bmHBkZeWzAYvfO3fF7O39v7sHakpfBFrNR/nHYsWNH7Ny5c8OsByKcl2xczk02Ion+jW0jXAP4mrWx+LeERzkneJRzgkc5J3iUa4CNbc839qz7NQDLcz/uR13URV2tLnbU/P+12Xj/Ni/v3eblvdu8vHcrt97XY+s9P0+2d+/ep/qAWpZuM39924pfp339Wl++r0ianE+kyfn0ZP5uNq4lfUprbW2Nnp6ep7aIt956a9k1+Xz+sVujzOxukc/nlzzm40ITC40NAAAAAAAAAAAAAABsDUsKWOzduzcaGxvj3//7f/9UFnHhwoVl1xQKhccGHZIkiYgH4ZClOnLkSEQsHqCYCXQsNYgBAAAAAAAAAAAAAABsDkveW6SnpycaGxtjeHg4Ojs748SJE3O2vavVHux9/bd/+7ezv1+K0dHRFe0Icfbs2bh48WKMjY0tGHi4efPmssIVERHt7e3R3d0dw8PD0d7ePq99YmIiIiIOHz687PUCAAAAAAAAAAAAAAAb15IDFnv37o0kSaKlpSXOnTsXdXV1C/bL5/OpLe5xCoVCtLa2xpUrVxYMWAwMDMTQ0NC845VKJS5cuBBtbW3zAhj5fD7a29vjwoULCwYsBgYGoqurK7LZbGp/DgAAAAAAAAAAAAAAYP0tOWAREZHNZmNiYiIGBgZiZGRkzs4TtVotLl++HB0dHctawM2bN+Ojjz5aVs2M/v7+aGlpibNnz84JWXR2dkZXV9eCO1j09fXFxYsXo6+vL8rl8rz2y5cvR0tLS/T19c35sxSLxcjn89HT07OitQIAAAAAAAAAAAAAABvXsgIWM9rb2xfd4eHSpUvLHm/fvn0rWUZks9kYHR2N7u7uyGazsW/fvpiYmIi2trYF1xcR0draGtlsNs6cOfPYMS9cuBDFYjEiHux6USwWlx0eAQAAAAAAAAAAAAAAnq7h88PRemH+Bg3LtaKAxWJqtdqK6nK53IrnzGaz0dvbu+T+hUJhwZ0rHh3TThUAAAAAAAAAAAAAALDxjfWNbbyAxeXLl1dU9+mnn6a5DAAAAAAAAAAAAAAAYBOr3K5EOXn85goREVNjU1GtVFOZM9WAxenTp+cd++KLL6JUKsU3v/nNNKcCAAAAAAAAAAAAAAC2mLG3x2K4ezi10MRypBqwmHH79u3o6emJvr6+iIioq6uLe/fuzbbfunUruru746WXXopXX331aSwBAAAAAAAAAAAAAADYRJJrSQx2DEYun4vmYnNkspkn1kyNTsWt67dSmT/1gMX169ejtbU1IiLy+Xzk8/m4dWvuYhsbG+Pq1atx7dq1eOutt+JHP/pR2ssAAAAAAAAAAAAAAAA2kWtvXItifzGaTzcvq+7ivoupzL8jlVH+ya1bt6K9vT06OjpiYmIiPv3003j//ffj9OnTC/Y/ceJENDY2xvXr19NcBgAAAAAAAAAAAAAAsMlkcpllhysiIrKN2VTmTzVg8cYbb0RPT09cunQpGhsbZ4/X1dUtWnP69Ono7+9PcxkAAAAAAAAAAAAAAMAm01BoWFFdx0hHKvOnGrAol8tx7ty5ZdfVarU0lwEAAAAAAAAAAAAAAGwy1Up1XedPNWCRz+dXVFcul9NcBgAAAAAAAAAAAAAAsMk0F5vjk/c+WXbd8PnhVOZPfQeLlUiSJM1lAAAAAAAAAAAAAAAAm0z+RD5KE6VlhyzG+sZSmX9nKqP8k1wuF3/9138d3/nOd5Zcc/78+Thx4kSaywAAAAAAAAAAAAAAADaZyu1KPF98Pj7u/zguH7kcja2NUd9UH7l8btGaqbGpqFaqqcyfasCiq6srXnrppbh8+fKSQhZvvfVWDAwMxG9+85s0lwEAAAAAAAAAAAAAAGwyvYXe+OruVxERUavVYnJ0Murq6tZs/lQDFvl8Pi5duhQnTpyIw4cPx9mzZ+PQoUNRqVTi9u3bUalUolQqxdjYWPT29kaSJDE6OprmEgAAAAAAAAAAAAAAgE1od/3uiIh4/szzkclmllQzNToVt67fSmX+VAMWERGtra1x9erV6OjoiK6urtnjfX19s7+v1WqRz+djZGQkXnjhhbSXAAAAsO28e+rd9V5CvDz48novAQAAAAAAAACATSyXz8XxN45H4dXCsuou7ruYyvw7UhnlEe3t7VEqleLChQvxwgsvRK1Wm/3V2NgYPT098emnn8ahQ4eexvQAAAAAAAAAAAAAAMAmk8vnIpfPLbsu25hNZf7Ud7B4WFdX15xdLAAAAAAAAAAAAAAAABZy8tLJFdV1jHSkMv9T2cECAAAAAAAAAAAAAABgM3mqO1gAAAAAAAAAAAAAAACsROV2JUZ6R+Kzsc9iujQdu+t3RzafjcOdh2P/C/tTn0/AAgAAAAAAAAAAAAAA2FCGzw/Hhxc/jFqtNq9trG8smovNcarvVOx6dldqcwpYAAAAAAAAAAAAAAAAG0L1bjX6WvpiujQdz51+Lg4cORCZbOZBW6Ua059Px9ToVHx89eNIhpP401t/Grt+P52QhYAFAAAAAAAAAAAAAACwIfQX+yPfmo+Tl04+tl/1bjWGuobi//vi/zfO3TyXytw7UhkFAAAAAAAAAAAAAABgFUYvj0Yun3tiuCIiIrM3E6d6T0VDS0OMvT2WyvwCFgAAAAAAAAAAAAAAwLq7NXxrSeGKh528dDLG+8dTmV/AAgAAAAAAAAAAAAAAWHeZXGZFddnGbCrz70xlFAAAAAAAAAAAYE0Ndg7G8e7jkcvnFmyvVqrxiwu/iIiIPfv2RGmiFE1tTdHc3rzomCupAQAASE3dGtc9QsACAAAAAAAAAAA2mamxqRjrG4vDnYcXbK9WqtHX0hfF/mI0FBpmjw92Dsadm3eiractlRoAAIA0VUvVFdVVkkoq8+9IZRQAAAAAAAAAAGDNDHcPP7a9v9gfz7U/NycoERFxqvdUjPWNRTKcpFIDAACQpmxjNj75L58sq+bDtz6M/Yf2pzL/mu5gce3atRgaGoq6urpoamqKw4cPxwsvvLCWSwAAAAAAAAAAgE1ttG80movNiwYeykk5kuEkTvaeXLC9+Uxz3Oi5EfnW/KpqAAAA0tb6Zmv89Fs/jYiI5/7tc0/sP3p5ND648EF0fd6VyvypBiz27dsXn3/++aLtJ06ciBMnTsTdu3ejVCrF8PBw9Pb2Rk9PTzz77LNpLgUAAAAAAAAAALacclKOiIhcPrdon5Hekcf2qW+qj7G+sahWqpHJZlZcAwAA8DQUrxaj73BfNL3UFM3tzXHg8IHZ65BqpRrTpemYGJqITwY+iXJSjnMj51KbO9WARa1WW1K/vXv3xt69e+PcuXNx9+7d6O7ujp/97GdpLgUAAAAAAAAAAJbk3VPvruv8n08v/kDTR430jkRbT9uiu1dERHw29tljQxAzIYrJkcnZHSlWUgMAAPA0NBQaomOkIwbPDcZgx2DU1dXN61Or1SKXz8W/e//fRcOhhtTmTjVgsdDCn2Tv3r1pLgEAAAAAAAAAALak8YHxONx5+In9ykk5dtfvXrR9JkgxsxvGSmsAAACeloZCQ3SMdsRo32iM9o7G1K+mZtty+Vy0dLbEsdePpT5vqgGLlbh7926MjIys9zIAAAAAAAAAAGDDqlaqUU7K0dze/MS+06Xp2R0nFjITpKhWqquqAQAAeNpaOlqipaNlzeZbdsDi9u3bCx6v1WoREfG3f/u3s79fTKVSiVKpFGNjY3HhwoU4c+bMcpcBAAAAAAAAAACb0v3f3Y/a/a/vr7l/7/4Ta35x4RfR1tO2pPGXGoL48vMvV1UDAACw1Sw7YDE6Oho3b96MJElieHg47t69O6c9n88veaxarRatra3xs5/9bLnLAAAAAAAAAACATan0aSlKvynNvr4bdx/TOyIZTqKprelpLwsAAGDT+uS9T+K57z236nGWHbA4ffp0nD59evb12NhYdHd3x7Vr16Kurm5O2+Pk8/loa2uLEydOLHcJAAAAAAAAAACwadV/qz5y+dzs61K1FPHzxftPDE0sefeKiIhMNrOkHSn27NuzqhoAAICNYvDc4PoELB5VKBRiaGgoOjs7Y2BgIK5evbrqRQEAAAAAAAAAwFa14xs7Ir7x0Ot7Oxbte+PijfjD83+4rPF31+9+bPt0aToiHoQqVlMDAACwEp999Fnsf2H/om3LMV2ajnJSXlJgfClWHbCY0dvbG6Ojo2kNBwAAAAAAAAAA21o5KUcmm1l2qCGXz8XkyOSi7TM3Hj28i8ZKagAAAJZr+I3h+PDHH0ZDS0Oc++W5ee3/8cX/GF/d/WodVvZAagGLiIjz58+nORwAAAAAAAAAAGxbU2NTMd4/HuP94/Paykk5IiIGzw3O7j7xytArERGxv7A/kuFk0XFnavOt+dljK6kBAABYrnJSjlqtFtXywjtOzFzftHS0PHi97wm77X0+HeWJcnzy3ieprC/VgMXp06fTHA4AAAAAAAAAALat5vbmaG5vXrBtfGA8+ov9ceryqWgoNMxpO3j2YHx48cOYGpua1xYRMXlzcl5QYiU1AO+eene9lxAvD7683ksAAJbh1OVTkW/LL3p9kcvn4vgbx6PwamFZ417cdzGN5cWOVEZZpffee2+9lwAAAAAAAAAAAFtCQ6Eh8q35+PWVXy/YPj4wHse6j626BgAAYLkyezPRcq4lco25Bdvzbfk4cPjAssfNNmZXubIHUt3BYqXOnTsX3/ve99Z7GfBUbISU9v26+/HP/+yfr/cyAAAAAAAAAICUlJPy7H8X2nGi2F+Mvpa+OHj24Jz2wc7BONp1dMGnxa6kBgAAIE3HXl9ZsLtjpCOV+ZcdsPjoo4/ihRdeWLRtOUqlUiRJEpVKZbnLAAAAAAAAAACAbWewczAqSSUmRyYfvD43GKO9o7G/sD/aetpm+2WymegY7Yih7qHIZDOxZ9+eKE2UoqmtKZrbmxcceyU1AAAAW8myAhZvvPFG/PjHP46Wlpb45S9/Oa/9xRdfjLt376a2OAAAAAAAAAAA4Gunek8tuW8mm1lW/5XWAAAAT8dg52A8X3z+sbvJjfaNxnj/eLR0tkS+NR+ZbCbKSTmmxqbi4ysfx/Hzxxfc9a5aqcYvLvwiImLJ4eqV1KQtuZZEMpRE1EXUN9XHgcMHYv8L+1Mbf1kBiyRJolarRblcXrC9vr4+IiI6Oh5sr7Fv377Hjvf555/HxMREvPfee8tZBgAAAAAAAAAAAAAAbDnlpBzJcBKjvaMxNTYVzxeff2z/aqUayXASyXAy53gmm4lif3HRcEVfS9+89sHOwbhz886c3fFWU7MSF/ddjK7PuxZtz5/IR/5EPqp3qzFdmo5kOImR3pFo62mLXc/uWvX8ywpYXL58Odra2qK1tXXhxebz8cYbb8Srr766rEU8KYgBAAAAAAAAAAAAAABb2WjfaCRDSeTb8tHa0xrvtL2zpLqTvSejNFGKSlKJTH0mDrQciJaOlkX79xf747n25+aFL071noqeXE80tTXN2zVjJTUrUavVltQvszcTmb2ZaDnXEtW71RjqHoqTPzu56vmXFbDYu3dvnDt3btH2tra2OHz48LIX0djYuOwaAAAAAAAAAAAAAADYKlo6WmaDEVNjU0uue/7M85HJZpbUd2aHjJO9C4cRms80x42eG3PCEiupWam6urpl12T2Lu3PvhQ7UhspIl5//fV44YUXll03MjKS5jIAAAAAAAAAAAAAAIBHjPQ+uHc/l88t2F7fVB/JcBLVSnVVNWupercaUyNLD6Q8zrJ2sAAAAAAAAAAAAAAAADanz8Y+e+xuFzMhismRydkdKVZS8ziV25UFj9dqtQftf1uJqD1+jGqlGtOl6Zgam4oPLnwQzWeanzjvUmyIgMX58+fjwoUL670MAAAAAAAAAAAAAADYlKbGpmJyZDIOHD4QDYWGBfuUk3Lsrt+96BgzQYpyUl5VzeNMjk7G5M3JKCflSIaT+OruV3Paf5r/6ZLGiXgQysi35uPkz04uueZxNkTAoq+vT8ACAAAAAAAAAAAAAIAt595X9+J3X/1u9vV///v/nur4yXAS5aQc+dZ8tHS0xNTYVLzT9k4c6z42b0eJ6dL07I4TC5kJUlQr1VXVPE7z6eZoPv31jhNTY1Mx3D0cybUk6urq4rnTzy1pnFw+F/m2fORPPHnXjKV6agGL27dvR5IkT+w3NjYWlUrlaS0DAAAAAAAAAAAAAADWzQcXPoif//nPZ1/fjbupjT0TfDjWdWz2WEOhIYr9xejJ9UTHaMec3SyWGoL48vMvV1WzHA2Fhnhl6JUY7ByMTwY+ieLV4orGSUPqAYu33347uru7hSYAAAAAAAAAAAAAANj2jp8/Ht/+s2/Pvr5z5078pPknqYzd3N684PFMNhPN7c3RX+yP1yZeS2Wup+1U76mYGp1a1zWkGrC4du1adHR0RD6fj2KxGNls9ok1o6Ojcf369TSXAQAAAAAAAAAAAAAAG8LOXTtj566vb93/Z1/8szWZ98CRAzE+MB7lpDy700Umm1nSjhR79u2Z/f1Kalbq+Pnjqx5jNVINWLzxxhvR398fp0+fXlbdvn370lwGAAAAAAAAAAAAAABsa5lsJiIipsamZgMWu+t3P7ZmujQ9p3alNSvVfHrhHTnWyo40B8vlcssOV0RENDY2prkMAAAAAAAAAAAAAADY0gY7B+OnTT9dVk0un5sNRCxkZqeKmUDGSmvWUvVuNT5868NUxko1YFEoFFZUNzIykuYyAAAAAAAAAAAAAABgS5samVpS8KGh0DB7bH9h/+zxhZSTckRE5Fvzq6pZS+WkHB9f+TiVsXamMso/qVQqaQ4HAAAAAAAAAAAAAAAsoLG1MTp6OhZtn7w5GZlsZs7OEgfPHowPL34YU2NTc4IXD9c8GpRYSc1K3bp+a9k1N3puPDYAshypBiyKxWK899578b3vfW9ZdefPn48LFy6kuRQAAAAAAAAAAAAAANiyDp49GKN9o9HS0TKvrZyUY3xgPIr9xTnHGwoNkW/Nx6+v/HrBsMT4wHi8MvTKqmtW6mr71fjq7lfLqqnVarE7tzuV+VMNWJw4cSJ+/OMfLztk0dfXJ2ABAAAAAAAAAAAAAADxICAREY/dmaGh0BDJcBI3Lt6IY13H5tT2tfTF0a6j0dzePK+u2F+Mvpa+OHj24JzAxGDnYBztOrrgbhQrqVmJ3fUPghLPn3k+MtnMgn2qlWqUk3JMjjzYOePAkQOpzB2xjIDFRx99tKR+bW1tMTQ0FEeOHInW1tZoamqKfH7xv6yxsbGoVCpLXQYAAAAAAAAAAAAAAGw54wPjMdo7GhERkyOTERExeG5w9lhzsXnebhXHuo5FMpzEYOdgVEvVqFaqkclm4vvXvr/gbhMREZlsJjpGO2Koeygy2Uzs2bcnShOlaGprWjCQsdKalcjlc3H8jeNReLWwpP43fnwjdud2L7n/kyw5YPHiiy/G3bt3lzxwrVaL0dHRqKurW9HCAAAAAAAAAAAAAABgu2hub15RWCHfml/2DhKZbCZO9Z566jXLlcvnIpfPLbn/sdePxfh/Ho9b129F44uNq55/yQGL+vr6iIg4c+ZMZLPZVU88Y3R0NK5fv57aeAAAAAAAAAAAAAAAwOZz8tLJZdc0n26O4fPDaxuwyOfz8cYbb8Srr7666kkftW/fvtTHBAAAAAAAAAAAAAAAWKodS+2Yz+cjn1/etiFL1di4+qQIAAAAAAAAAAAAAACw/VSSSirjLHkHi0uXLqUy4UJGRkae2tgAAAAAAAAAAAAAAMDWVL1bjenydCpjLTlgAQAAAAAAAAAAAAAA8LTcun5ryX2rlWqUk3KM9o5GS2dLKvMLWAAAAAAAAAAAAAAAAOvuavvV+OruV0vuX6vVIt+aj6M/OprK/AIWAAAAAAAAAAAAAADAuttdvzsiIp4/83xkspnH9923OxoKDZE/kU9tfgELAAAAAAAAAAAAAABg3eXyuTj+xvEovFpYl/l3rMusAAAAAAAAAAAAAAAAD8nlc5HL59ZtfjtYAAAAAAAAAAAAAAAA6+7kpZPrOr8dLAAAAAAAAAAAAAAAgG3PDhYAAAAAALDJTI1NxUjvSFRL1Zgam4pMNhMtnS3R0tGyaE21Uo1fXPhFRETs2bcnShOlaGpriub25nWvAQAAAAAAWEzldiWmxqZiujQduXwucvlcZL+ZfSpzCVgAAAAAAMAmMto3GhERp3pPzR5LhpPoL/bHjZ4b0THaEZlsZk5NtVKNvpa+KPYXo6HQMHt8sHMw7ty8E209bfPmWasaAAAAAACAhdy6fiv+qvOvopyU57U1tDTEqcunYv+/2p/qnAIWAACwRQx2Dsbzxecj35p/bD9PrQUAgM2rnJSjWqnGsa5jc47nW/Px/Wvfj76Wvugv9scrQ6/Mae8v9sdz7c/NCT1EPAhp9OR6oqmtad61xFrVAAAAAAAAPGrg7ECMD4xHrVaLiIhcPhcREdOl6ahWqjE5Mhl9hb441n0sTvyHE6nN+9QDFl988UWUSqX45je/+bSnAgCAbaeclCMZTmK0dzSmxqbi+eLzj+3vqbUAALC5jfSOxB+e/8MF2xoKDZFvzUcynEQ5Kc/+oGHmuuFk78kF65rPNMeNnhtzgg9rVQMAAAAAAPCo4TeGY2JoIk68eSKa25sj15ib12fqV1Px67/8dXzw5gexe9/uOPr/OZrK3DtSGeURt2/fjh/+8IfxjW98I3K5XHzrW9+a037r1q04c+ZMvP32209jegAA2BZG+0ZjuHs4IiJae1qXVPO4p8mO9Y1FMpysWw0AAPBkt4Zvxf/e+L9HtVJdsH1/4cE22FNjU7PHRnpHIuLrJzs9qr6pPpLhZM6Ya1UDAAAAAADwsORaEslwEn9660/j2OvHFgxXREQ0HGqItp62eO3T12LkZyNR+dtKKvOnHrC4fv165PP56O3tjcbGxjhx4kQ0NjbO6dPY2BhXr16NxsbGeOutt9JeAgAAbAstHS1R7C9GS0dL7K7f/cT+M0+TPdx5eMH2mafJrkcNAACwNLvrd0e1Uo1yUl5yzWdjn0Umm1m0fSYQMTkyueY1AAAAAAAADxvrG4vvX/t+ZPYu/jOHh+XyuSheLcZw13Aq86casLh161a0t7dHR0dHTExMxKeffhrvv/9+nD59esH+M+GL69evp7kMAABgAZ5aCwAAm98rQ6/EaxOvzdstbkYlqUREzGkvJ+XHhrJnQhEPhzbWqgYAAAAAAOBhtVptyeGKGQ2FhqjVaqnMn2rA4o033oienp64dOnSnF0r6urqFq05ffp09Pf3p7kMAABgAZ5aCwAAG9e9r+7FV198NfvrH//hHxftu1iYOSJifGA8GgoNc/pMl6Yf+xl9JhTxcAh6rWoAAAAAAAAe9rifgzyNukftTGWUf1Iul+PcuXPLrksrLQIAACzOU2sBAGDj+uDCB/HzP//57Ou7O+4ue4wbF29ERMSpy6fmHF9qoOHLz79c8xoAAAAAAIA5Ft/b4enUPSLVgEU+n19RXbnsxioAAHjYva/uxe+++t3s68c9vXappkvTj01qL/YE2rWoAQCA7e74+ePx7T/79uzr3/72t/GTf/mTJddPjU3FcPdwFPuL0VBoeBpLBAAAAAAAeOpy+VxUblci+83skmu++uKrxz4QdjlS38FiJZIkSXMZAACw6aXx9NpHeWotAABsXDt37Yydu77+lv0zv/fMsur7i/1xsvdkNLc3z2vLZDNL+py+Z9+eNa8BAAAAAAB4WMu5lhh+Yzj+8N//Yex6dteSaoa6hqLtYlsq86casMjlcvHXf/3X8Z3vfGfJNefPn48TJ06kuQwAANj0Vvv0WgAAYPvoL/ZHS2dLtHS0LNj+pCc2TZemI+JBQGKtawAAAAAAgO2jcruypH7Pn33+wc8/ftASucbcov3KSTk+vvJxtPa0LjmM8SSpBiy6urripZdeisuXLy8pZPHWW2/FwMBA/OY3v0lzGQAAsOmt9um1C/HUWgAA2HqGuofiwJEDcazr2KJ9cvlcTI5MLto+8/k9l//6BxRrVQMAAAAAAGwfvYXe+OruV0vqW6vVIhlOntgvk83ESO9I/OH5pe948TipBizy+XxcunQpTpw4EYcPH46zZ8/GoUOHolKpxO3bt6NSqUSpVIqxsbHo7e2NJElidHQ0zSUAAACL8NRaAADYWkb7RqO+qX7BnSuqlersZ+79hf2P/QFEOSlHRES+NT97bK1qAAAAAACA7WN3/e6oVqrR3N78xHuMlqNarsbHVz+OwquFVY+VasAiIqK1tTWuXr0aHR0d0dXVNXu8r69v9ve1Wi3y+XyMjIzECy+8sKr5KpVKXLhwISIi9u3bFxMTE9HW1hbt7e2rGvdRnZ2d0d3dHfm8H/wAALA5eWotAABsHeMD4xERC4Yrykk5psamorm9OSIiDp49GB9e/DCmxqaiodAwr//kzcl5oYe1qgEAAAAAALaPXD4Xx984nkoQ4mnZ8TQGbW9vj1KpFBcuXIgXXngharXa7K/Gxsbo6emJTz/9NA4dOrSqeSqVSrS0tMTZs2ejp6cnurq6ore3N4aGhqK7uzulP03E2NhY9PX1RaVSSW1MAABYa/sL+2fDDQtZ7Am0a1EDAAAs3dTYVEyXphcMV0REJMPJnIBDQ6Eh8q35+PWVXy/Yf3xgPI51H5tzbK1qAAAAAACA7SOXz234h7I+lYDFjK6urhgdHY379+/P/vr000/j9ddfT2X8YrEY7e3tUSjMTbD09vZGX19fDA8PpzJPmmENAABYLwfPHoyIBzdjLWSxJ9CuRQ0AALA05aQc/cX+mBydjMHOwXm/+ov9Mdw9PO+HE8X+Ynwy8Mm8z+mDnYNxtOvogp/R16oGAAAAAADYHk5eOhmNLzau9zIea2eag3300UeRJEl873vfS3PYBSVJEsPDw9Hb27tg+5kzZ6KnpydaW1tXNU9fX18Ui8XUwhoAALBeHn6a7MNPs50xPjAerwy9si41AADA0rzT9k6Uk3KU+8qL9lnoyU+ZbCY6RjtiqHsoMtlM7Nm3J0oTpWhqa4rm9uYFx1mrGgAAAAAAgI0i1YBFe3t71NXVrShg8dZbb8WFCxeiUqlENpuNt99+O/7tv/23i/afCVbk8ws/7aqpqSn6+vpmx1uJJEkeOwcAAGwU5eTBzVXVSvWx/Yr9xehr6YuDZw/OCT886Qm0a1EDAAA82WsTr624NpPNxKneUxuyBgAAAAAAYDU+ee+TeO57z616nFQDFp2dnfH6668vu+7MmTPxn//zf45z585FW1tb/PKXv4xXX301stlsfOc731mwZmxs7LHBiZlQxMjIyIp3sejt7Y2enh67VwAAsCGND4zHaO9oRERMjkxGRMTgucHZY83F5mjpaJlT46m1AAAAAAAAAADAVjN4bnDjBSxKpdKya371q1/FwMBAdHZ2xs9+9rOIiDh9+nScPXs2zp49G7/5zW8WrEuSJOrr6xcddyZ8MbMLxXLNrAkAADaq5vbmFYUVPLUWAAAAAAA2n3JSjg96PoiIiGqpGtVKNfJt+TjWdWzRmmqlGr+48IuIiCU/DGklNQAAAMvx2Uefxf4X9i/athzTpekoJ+WoVqppLC3dgMXhw4fj+vXrERHR09MTIyMjUalUoq2tLbq7uxfcjeLKlStRV1cXPT09c44XCoXo6OiI9957L773ve/NqyuVSrO7VCxkJnxRqVSW/eeoVCqRJEm0t7cvuxYAAAAAAAAAANI0PjAed27emfdgo76WvhjtHY3XJl6bV1OtVKOvpS+K/cVoKDTMHh/sHIw7N+9EW09bKjUAAADLMfzGcHz44w+joaUhzv3y3Lz2//jif4yv7n61Dit7INWAxenTp+Oll16Ka9euRa1Wmz3+/vvvx9DQUHR3d8d/+A//YU7N8PBwFAqFePbZZ+eN9/rrr8fZs2cXDFgsNTjx+eefL+8PEREXLlyYF/hYjul70/EP9/5h9vUzO56JZ77xzIrHg9Wq1dXi/v37ce/evfVeCsy6d++e85INybnJRnX//v31XgKP4RrgAV87H/BvCY9yTvAo5wSPck6wENcAG9uXv/sydt3bNft6u14DbCa1ulrUovbg++Xh/6/Nxvu3eXnvNi/v3eblvdu8anW1RduqlWp8fOXjKPYX57Wdunwq+lr6YrBzcF74or/YH8+1PzcnKBERcar3VPTkeqKprSnyrflV12wXd+/ejVKpNPt6165dsWvXrsdU8LTcr9u8X998nX46tuv31XxfkTQ5n0iT82lptvPfTzkpR61Wi2p54R0ndtfvjoiIlo6WB6/37X7seNOfT0d5ohyfvPdJKutLNWBx9+7dGBkZmQ1GHDp0KCIibt26FUNDQ/HGG29EW1vbnJ0skiSJs2fPLjpmLpdLc4lPNDw8HG1tq0vbd//f3XNe/+vCv45/c/jfrGpMWI1a1OLebx98Id6xY8c6rwYeuH//fvz2t7+NCOclG4tzk41qJcFh1o5rgAc++OCD9V7ChuDfEh7lnOBRzgke5ZxgIa4BNjbXAJtPLWox/fvTUYpS1EXdei+HZfL+bV7eu83Le7d5ee82r7+f/vtF2yZHJmN8YDyGuofm7SAxE4S4NXxrzvFyUo5kOImTvScXHLP5THPc6LkxJyyxkprt5IUXXpjz+o//+I/jT/7kT9ZlLdtdqaH05E4blK/TT8d2/RmV7yuSJucTaXI+Lc3D4d3t5tTlU5Fvyy96bZHL5+L4G8ej8GphWeNe3HcxjeWlG7B4880349q1a7PBihmNjY3R0dERZ86cic7OzjkBi0qlEtlsdtEx6+oW/iCZzWaXtIvFvn37lrT2GUNDQ6vavSIioud/6olc5utgyDM7nolnpjy5ivVTq6vFgf/hQBw9ejR27kz1f3tYsZn0pfOSjca5yUY1c+HJxuQa4IHjx4+v9xI2BP+W8CjnBI9yTvAo5wQLcQ2wsbkG2HxqdbUoRSnqP6uPupqbmDYb79/m5b3bvLx3m5f3bhObXrxpd/3uyGQzsWffnkX7ZLKZOa9Hekci4sGNSQupb6qPsb6xqFaqs7UrqdlOPvroo/iDP/iD2dd2sFg/d/7iznovYcV8nX46tuvPqHxfkTQ5n0iT82lp/u7v/m69l7BuMnsz0XKuZdH2fFs+Dhw+sOxxs43ZVazqa6meteVyeV644mHZbDa1HSnq6+sf2z6T6nlceONRFy9ejPPnz69mWRERsXvn7vi9nb839+DiOznCU3c/7seOHTti586d/rFiQ3FeslE5N9mIJPo3NtcAD/i6+TX/lvAo5wSPck7wKOcEj3INsLHt+cYe1wCbzP24H3VRF3W1uthR8//XZuP927y8d5uX927z8t5tXo+70bqh0BDd5e4F26bGpiIiorG1cc7xz8Y+e2wIYiZEMTkyOfvU2JXUbCd79+594v1KrI3N/PXN1+mnYzt/T833FUmT84k0OZ+ezN/N4o69fmxFdR0jHanMn+qntKWEJxbbkWK58vn8Y7dGmdndIp9f2gVdkiSRzWaXFcgAAAAAAAAAAID1Mtw9HLl8Ltp62uYcLyfl2F2/e9G6mSBFOSmvqgYAAOBp+OS9T6Jyu7Iuc6cafanVavE3f/M38a/+1b9asP2LL76Izz//fFljLta/UCjE8PDwonVJkkRERGtr65LmGRsbi/7+/ujv7190rHPnzs0m0YeGhpY0LgAAAAAAAAAAPOz+7+5H7f7X26Ddv3d/WfXlpBwf9HwQ2Xw2Xhl6ZV77dGl6dseJhcwEKaqV6qpqAAAA0vZXP/irGLs8FplcJrr+W9eaz59qwKKjoyMOHz4c/8v/8r/E6dOn45vf/GZEPAhWXL16Nbq7u+cEGH71q19FxNcBhke99957ceTIkQXbzp49GxcvXoyxsbEoFArz2m/evLnkcEVERHt7e7S3ty/YNjAwEMViMS5fvrzgXAAAAAAAAAAAsFSlT0tR+k1p9vXduLukuvGB8bhz805Ukkpk89loamtasN9SQxBffv7lqmoAAADSNl2ajsYTjdFQaFiX+VMNWOTz+XjzzTfjBz/4QXR1zU+LHDp0KMbGxqK+vj5u3rwZPT09s4GFv/3bv41/8S/+xWzfu3fvRnd3d4yOji44V6FQiNbW1rhy5cqCoYeBgYEFd5moVCpx4cKFaGtrW1YAAwAAAAAAAAAA0lD/rfo5u0WUqqWInz+5rrm9OZrbm2dfv9P2Toz2jsapy6cik808jaUCAACsqVw+F61vrt99/jvSHrCjoyNGRkbixRdfjFqtFrVaLRobG+PSpUsxMjISp0+fjr/8y7+M0dHR6O7ujpGRkeju7o5CoRD/5//5f8bt27fj+vXrcfjw4Th9+nQ8++yzi87V398fAwMDMTY2Nud4Z2dndHV1LRig6Ovri4sXL0axWFzyn2lmh43FdtoAAAAAAAAAAICl2vGNHfGNZ74x+2vHzpXdwlPsL8b4wHj0F/vnHM9kM0vakWLPvj2rqgEAAEjb7n27o3K7suy6i/supjJ/qjtYzCgUCgvuHhER0djYGG+++ea8/r29vXHmzJmoq6uLiIhz587N6/eobDY7G9TIZrOxb9++mJiYiLa2tmhvb1+wprW1NbLZbJw5c+aJf47Ozs5IkiRGRkZm19Tb2xuFQiF6enqeWA8AAAAAAAAAAE9LJpuJ5vbmGB8Yj2Q4iXxrPiIidtfvfmzddGl6tn7GSmoAAADSduz1Y9F/pj8O/+BwNL7YuOS6Wq2WyvxPJWCxEu3t7XH//v24du1a5PP5aGxc2l9GNpuN3t7eJc9TKBSiXC4vqe9yxgUAAAAAAAAAgLRVK9WYLk1HLp9bsD2bz0ZExMTQxGzAIpfPxeTI5GPHnOk3YyU1AAAAT0PxajE+fOvDGO0djQNHDkRDoSF21+9eNPA9MTQRX939KpW51yVg8YMf/GB2p4q2trb43ve+N9t24sSJ9VgSAAAAAAAAAABsOD25noiI6C53L3gz0Z59eyLi6wBERMT+wv5IhpNFxywnDx5OOhPIWGkNAABA2v58x5/PZg1qtVqMD4yv6fzrErC4dOnS7O+vXbsWb7/9drz66qvrsRQAAAAAAAAAANiwMtnMY5/UWpooRUTEgZYDs8cOnj0YH178MKbGpqKh0DCvZvLm5LygxEpqAAAA0pbL56KclKO5vTl21+9eUs3kzcn47KPPUpl/XQIWDztx4kQcOXJEwAIAAAAAAAAAAB5R6CjE4c7Di7aPXx2PTDYTz595fvZYQ6Eh8q35+PWVXy8YlhgfGI9Xhl6Zc2wlNQAAAGnL5XNx/I3jUXi1sKy6i/supjL/UwtYfPTRR5Eki28bWCqVolKpxJUrV6K+vv5pLQMAAAAAAAAAADattp62GOwcjOeLz8/bQaK/2B8REd+/9v15O1wU+4vR19IXB88enBOYGOwcjKNdRxfcjWIlNQAAAGnK5XORy+eWXZfJLbzr33KlHrC4fft2tLW1PTZc8bDGxsbo7+9PexkAAAAAAAAAALAlnOo9FeMD49Ff7I9MfSaqpWpUK9XYX9gff3rrT+eFKyIiMtlMdIx2xFD3UGSymdizb0+UJkrR1NYUze3NC86zkhoAAIA0nbx0ckV1r336Wirzpx6waG1tjVKpFKdPn44jR45ENpuN/v7+aGtri2w2GxERlUolhoaGIpvNxtWrV9NeAgAAAAAAAAAAbCnN7c3LDjlkspk41XvqqdcAAABsFakGLC5fvhz5fD5GR0dj7969c9rOnj0bzz777Ozr119/PW7duhXnz5+PCxcupLkMAAAAAAAAAAAAAABgi0muJZEMJRF1EfVN9XHg8IHY/8L+1MbfkdpIETEwMBADAwPzwhX5fD5GRkbm9W9sbIyOjo54++2301wGAAAAAAAAAAAAAACwyVzcd/Gx7fkT+Wh9szWOv3E8Gk80xp2bd+KvfvhX8dUXX6Uyf6oBi8bGxjm7VMyor6+PoaGhRWsmJibSXAYAAAAAAAAAAAAAALDJ1Gq1JfXL7M1ErjEXLedaovXN1hjqXjivsFypBixyudyCxw8dOhTDw8NpTgUAAAAAAAAAAAAAAGwhdXV1y67J7M2kNn+qAYvHpUVaWlriv/yX/7JgW5IkaS4DAAAAAAAAAAAAAADYBqp3qzE1MpXKWDtTGeWftLW1xXvvvRff+9734u23346hoaG4fPlyPPvss9He3h7f/e53Y3h4OL7zne/M1ly7dk3AAtbAf333v8adv7gTO2qp5qqW5eXBl9dtbgAAAAAAAAAAAABg/VVuVxY8PrPhQ+VvKxGL7/0QERHVSjWmS9MxNTYVH1z4IJrPNKeytlQDFidOnIgf//jH8eMf/zi6u7ujrq4u2tra4tVXX43W1tZ48cUXo7W1Ndra2uLQoUORJEkMDAxEb29vmssAAAAAAAAAAAAAAAA2oMnRyZi8ORnlpBzJcBJf3f1qTvtP8z9d8li1Wi3yrfk4+bOTqawt1YBFRMTrr78ev/rVr+L111+Pu3fvxpkzZ2bbBgYG4sUXX4z3338/hoaGolarRaFQiFdffTXtZQAAAAAAAAAAAAAAABtM8+nmaD799Y4TU2NTMdw9HMm1JOrq6uK5088taZxcPhf5tnzkT+RTW1vqAYuIiEOHDsWhQ4fmHd+7d2+Mjo7GwMBADA8PR1NTU3R0dDyNJQAAAAAAAAAAAAAAABtcQ6EhXhl6JQY7B+OTgU+ieLW4bmt5KgGLJ2lvb4/29vb1mBoAAAAAAAAAAAAAANhgTvWeiqnRqXVdw460B3zvvffi9u3baQ8LAAAAAAAAAAAAAABsYcfPH1/X+VPdweIHP/hBXL58OXK5XPy3//bf0hwaAAAAAAAAAAAAAADYwppPNz+xz63rt6KclCOXz8WBwwdi17O7Ups/1YBFqVSKEydORKFQSHNYAAAAAAAAAAAAAABgixt+Yziqd6tzjp382cmIiKjercY7re/E1NhU1Gq1yOVzUS1XozhQjMbvNKYyf6oBi3w+H2+++WaaQwIAAAAAAAAAAAAAANtAS2dL/LTpp9HS2RItHS3RcKhhtq2/2B+To5NxrOtYtL7ZGhER1Uo1+s/0R64xF9lvZlc9/45Vj/CQffv2xe3bt1dUBwAAAAAAAAAAAAAAbF+f/eqzKPYX4+TPTs4JV4z/5/FIhpN4vvj8bLgiIiKTzUTxajE+6PkglflT3cHi9ddfjzNnzsQPfvCDePHFF5dcV6vV0lwGAAAAAAAAAAAAAABsaoOdg/F88fnIt+Yf269aqcYvLvwiIiL27NsTpYlSNLU1RXN787rXLNedm3ei9ULrvOMfX/k46urq4vj54/PaMtlMZPZmUpk/1YBFRMTVq1fjrbfeit7e3jhy5EgUCoWor6+PbDa7YP+hoaG4e/du2ssAAAAAAAAAAAAAAIBNpZyUIxlOYrR3NKbGpuL54vOP7V+tVKOvpS+K/cVoKHy948Ng52DcuXkn2nra1q1mRRbZuyEZTiIiYv8L+xfuUJfO9KkGLHbs2BF1dQ9WVqvVYmBgIM3hAQAAAAAAAAAAAABgSxrtG41kKIl8Wz5ae1rjnbZ3nljTX+yP59qfmxN6iIg41XsqenI90dTWNG8HjLWqWYnd+3bPO1a+VY5qpRoHWg4sWletVFc9d0TKAYt8Ph9JkkR7e3vU19cvqebmzZvx0UcfpbkMAAAAAAAAAAAAAADYVFo6WqKloyUiIqbGpp7Yf2a3i5O9Jxdsbz7THDd6bswJPqxVzUrNbPjwsPGB8YiIaGxtXLxwkZ0vliv1gMUbb7wRr7766rLq9u3bl+YyAAAAAAAAAAAAAABgSxvpHYmIiFw+t2B7fVN9jPWNRbVSjUw2s6Y1K/Xlf/syvvriq9j17K7ZY6O9o1FXVxcHzx5csGb4/HC0dLasat4ZO1IZ5Z/k8/nI55efOsnlFv6LBgAAAAAAAAAAAAAA5vts7LPHBhpmAhGTI5NrXrNSx88fj/5if3z2N5/FZx99FgNnB6KclKO5vTn2v7B/Tt/PPvos/tN3/1Ps2bcnGg41rHruiJR3sLh06dKK6j799NM0lwEAAAAAAAAAAAAAAFtaOSnH7vrdi7bPhCLKSXnNa1YqszcTJy6ciKunr86O93zx+Wi/0j7b569+8FeRDCez7clwEl9+/mW0Xmhd9fypBiwW8sUXX0SpVIpvfvObT3sqAAAAAAAAAAAAAADYUO59dS9+99XvZl//97//76mMO12ant09YiEzoYhqpbrmNavRUGiI1z59Lap3q5HZO3/njGPdx+JY97EF17BaTyVgcfv27ejp6Ym+vr6IiKirq4t79+7Ntt+6dSu6u7vjpZdeildfffVpLAEAAAAAAAAAAAAAANbdBxc+iJ//+c9nX9+Nu6mMu9RAw5eff7nmNWlYKFwREZFrXDzssVqpByyuX78era0PttbI5/ORz+fj1q1bc/o0NjbG1atX49q1a/HWW2/Fj370o7SXAQAAAAAAAAAAAAAA6+74+ePx7T/79uzrO3fuxE+af7KOK9p6Pnnvk3jue8+tepwdKaxl1q1bt6K9vT06OjpiYmIiPv3003j//ffj9OnTC/Y/ceJENDY2xvXr19NcBgAAAAAAAAAAAAAAbAg7d+2MXc/umv31z37/n6UybiabWdLuEnv27VnzmrU2eG4wlXFS3cHijTfeiJ6enjh37tyc43V1dYvWnD59On74wx/Giy++mOZSAAAAAAAAAAAAAABgy9pdv/ux7dOl6Yh4EJBY65rH+eyjz2L/C/sXbVuO6dJ0lJPykgIgS5FqwKJcLs8LVyxFrVZLcxkAAAAAAAAAAAAAALCl5fK5mByZXLR9JnSQy+fWvGYxw28Mx4c//jAaWhri3C/nZw/+44v/Mb66+9UTx3laUg1Y5PP5FdWVy+U0lwEAAAAAAAAAAAAAAFva/sL+SIaTRdvLyYP79POtX9/nv1Y1j+tbq9WiWl54x4mZ3TJaOloevN73hN0zPp+O8kQ5PnnvkyfOvRSp72CxEkmy+F82AAAAAAAAAAAAAAAw18GzB+PDix/G1NhUNBQa5rVP3pycF3pYq5rFnLp8KvJt+UX75/K5OP7G8Si8WljSeDMu7ru4rP6L2ZHKKP8kl8vFX//1Xy+r5vz583HixIk0lwEAAAAAAAAAAAAAAFtaQ6Eh8q35+PWVXy/YPj4wHse6j61LzWIyezPRcq4lco25Bdvzbfk4cPjAksZ6WLYxu+yahaS6g0VXV1e89NJLcfny5fjOd77zxP5vvfVWDAwMxG9+85s0lwEAAAAAAAAAAECK3j317novAQBgWykn5YiIqFaqj+1X7C9GX0tfHDx7cM7uEoOdg3G06+iCO0WsVc1KHHt9aUGNR3WMdKQyf6oBi3w+H5cuXYoTJ07E4cOH4+zZs3Ho0KGoVCpx+/btqFQqUSqVYmxsLHp7eyNJkhgdHU1zCQAAAAAAAAAAAAAAsOmMD4zHaO+D++snRyYjImLw3ODsseZic7R0tMypyWQz0THaEUPdQ5HJZmLPvj1RmihFU1tTNLc3LzjPWtVsRqkGLCIiWltb4+rVq9HR0RFdXV2zx/v6+mZ/X6vVIp/Px8jISLzwwgtpLwEAAAAAAAAAAAAAADaV5vbmFYUVMtlMnOo9tSFrlqNyuxLJcBKliVJUksqDOeszUd9UHw2Fhmh8sfGpzT0j9YBFRER7e3u0t7fHxYsX48qVK/GrX/1qti2fz0dnZ2e8/vrrT2NqAAAAAAAAAAAAAABgE/jqi69itG80PrjwQVQr1Sf2b+lsiWNdxyL7zexTWU+qAYvr16/Hiy++OPu6q6trzi4WAAAAAAAAAAAAAAAAY2+PxV91/lVERNRqtTltmWwmdtfvjunS9JzgxcilkRjtHY1j3cfixH84kfqaUg1YtLW1RaVSid///d9Pc1gAAAA2gXdPvbveS4iXB19e7yUAAAAAAAAAAPAEA2cHYnxgPGq1WuRb85Fvy0e+NR8NhxoW7F+9W41kOImJ9ydi7PJY3Oi5EclwEud+eS7Vde1Ic7C9e/dGd3d3mkMCAAAAAAAAAAAAAABbxH/67n+Kj/s/judOPxevTbwWr7z/Shx7/dii4YqIiMzeTDSfbo5Tvafif73/v8a3f/TtmByZjMv/4+VU15ZqwKJSqURvb28cOXIkrl+/nubQAAAAAAAAAAAAAADAJnbjxzdiYmgiTvWdiuLVYuQacysap62nLV55/5WYHJmMa//+WmrrSzVgERHR29sbw8PDMTExES+99FK89dZb8cUXX6Q9DQAAAAAAAAAAAAAAsElU71ZjuHs42i62ReHVwqrHy7fmo3i1GDd6bkTldmX1C4yUAxa9vb3x6quvxt69e+PcuXPx/vvvx4kTJ6KrqyvOnj1rVwsAAAAAAAAAAAAAANiGRvtGo6HQEEd/dDS1MZvbm2P/of0xPjCeynipBizOnTs379ihQ4fi0qVLceXKlZiYmIgzZ87Y1QIAAAAAAAAAAAAAALaRj698HH/47/8w9XGPv3E8Pr7ycSpjpRqweJJz587F1atXZ3e1+OEPfxh/8zd/s5ZLAAAAAAAAAAAAAAAA1ljlViXyrfnUx8235aOclFMZa00DFjOampqiqakprly5EoVCIY4cObIeywAAAAAAAAAAAAAAANZAtVKNXc/uSn3czN5MVCvVVMbamcooS3T9+vXo7e2NgYGBiIio1WrR0dERnZ2da7kMAAAAAAAAAAAAAABgDe3am364Iu2xUw1YXL9+PV588cU5x7744ovo6+uLCxcuRKVSiVqtFoVCITo7O+PcuXNpTg8AAAAAAAAAAAAAAGxAdXV1G37sVAMWbW1t8bvf/S4i5u5WUavVIiJmd6s4dOhQmtMCAAAAAAAAAAAAAACsSqoBi71798aRI0ciSRK7VQAAAAAAAAAAAAAAAJtGqgGLiIjR0dGIsFsFAAAAAAAAAACkYWpsKkZ6R6JaqsbU2FRksplo6WyJlo6WRWuqlWr84sIvIiJiz749UZooRVNbUzS3N6daAwAAsFTVSnXDj516wKKzszN+9rOfpT0sAAAAAAAAAABsO6N9Dx52eqr31OyxZDiJ/mJ/3Oi5ER2jHZHJZubUVCvV6Gvpi2J/MRoKDbPHBzsH487NO9HW0zZvnpXUAAAALEetVov/4//1f0Qun0t13HJSTm2sVAMWlUpFuAIAAAAAAAAAAFJQTspRrVTjWNexOcfzrfn4/rXvR19LX/QX++OVoVfmtPcX++O59ufmBCUiHoQ0enI90dTWFPnW/KprAAAAlqs0UYrSRCn1cevq6lIZJ9WARUdHR5rDAQAAAAAAAADAtjXSOxJ/eP4PF2xrKDREvjUfyXAS5aQ8+wTYclKOZDiJk70nF6xrPtMcN3puzAlLrKQGAABgJfKt+ci3pXttMfnLyfjkvU9SGSvVgMWlS5fSHA4AAAAAAAAAALatW8O3YqxvLP701p9GJpuZ176/sD+S4SSmxqZmAxYjvSMREbOvH1XfVB9jfWNRrVRnx1xJDQAAwHLV1dXFK++/8uSOK/C/feN/S2WcHamMskr79u1b7yUAAAAAAAAAAMCGsrt+d1Qr1Sgn5SXXfDb22WNDEDMhismRyVXVAAAALNeuvbs2/Nip7mCxUrVabb2XAAAAAAAAAAAAG8orQ69EOSkvurNEJalERERDoWH2WDkpx+763YuOOROkeDi0sZIaAACA5fr+te9v+LHXfQeLN954I+7evbveywAAAAAAAAAAgA1nsXBFRMT4wHg0FBrm9JkuTT92N4qZIEW1Ul1VDQAAwHI1HGp4cqd1HntddrC4fv169Pb2xsDAwHpMDwAAAAAAAAAA6+b+7+5H7X7t69f37i97jBsXb0RExKnLp+YcX2oI4svPv1xVDQAAwFa0ZgGLjz76KK5cuRJ9fX1RqVQiIqJWe3ChWFdXt1bLAAAAAAAAAACAdVX6tBSl35RmX9+Nu8uqnxqbiuHu4Sj2F6Oh8PSeAAsAALDdPNWAxe3bt2NgYCB6e3sjSZKI+DpU0draGp2dnVGr1eLs2bNPcxnABvHuqXfXewnx8uDL670EAAAAAAAAALa5+m/VRy6fm31dqpYifr70+v5if5zsPRnN7c3z2jLZzJJ2pNizb8+qagAAALai1AMWX3zxRVy9ejV6e3tjbGwsIr4OVeTz+ejs7IyOjo7Yu3fvbM3DvwcAAAAAAAAAgK1sxzd2RHzjodf3diy5tr/YHy2dLdHS0bJg++763Y+tny5NR8SDUMVqagAAALai1AIW7733Xly5ciUGBgYi4utQRTabjbt378bExER885vfXLC2v78/rWUAAAAAAAAAAMCWNNQ9FAeOHIhjXccW7ZPL52JyZHLR9pmdKh7eQWMlNQAAAFvR0uPvC7h+/Xr88Ic/jG984xtRLBajv78/arVa7N27Nzo6OmJ0dDRKpVLs3bt30XBFRMSJEydWswwAAAAAAAAAANjSRvtGo76pfsFwxUwAIiJif2H/nNePKifliIjIt+ZXVQMAALAVLTtgcfv27Th//nzs27cv2traoq+vL2q1WtRqtWhvb4+hoaEolUpx6dKlOHToUERE1NXVpb5wAAAAAAAAAADYDsYHxiMioqWjZV5bOSlHMpzMvj549mBEREyNTS041uTNyXlBiZXUAAAAbEU7l9rx8uXLcfHixUiSBxdktVotIiJaW1ujWCzGuXPnns4KAQAAAAAAAABgm5oam4rp0vSC4YqIiGQ4mRN+aCg0RL41H7++8utoKDTM6z8+MB6vDL0y59hKagAAALaiJQcshoaGYmJiIiIimpqaorOzM86dOxd79+59aosDAAAAAAAAAIDtqpyUo7/YH42tjTHZOTmvvVqqRjKcRHe5e87xYn8x+lr64uDZg3MCE4Odg3G06+iCu1GspAYAAGCrWXLA4urVqxER0dfXFwMDA3Hz5s0oFArx4osvPrXFAQAAAAAAAADAdvVO2ztRTspR7isv2ieXz807lslmomO0I4a6hyKTzcSefXuiNFGKpramaG5vXnCcldQAAABsNUsOWMzo6OiIjo6OuHv3bvT19cWbb745u6PFCy+88BSWCAAAAAAAAAAA289rE6+tuDaTzcSp3lNPvQYAAGAr2bHSwr1798brr78e77//fnR1dcVf/uVfxpEjR+L8+fNx+/btFJcIAAAAAAAAAAAAAADwdC17B4uFNDY2xptvvhkREb/61a/izTffjFu3bkVbW1ucO3cujSkAAAAAAAAAAAAAAACemhXvYLGYQ4cOxaVLl+L/+r/+r2hsbIxz585FrVaLt99+e9Gat956K+1lAAAAAAAAAAAAAAAALFnqAYuHnT59Oq5evRq3bt2KWq0WL730Upw9ezauX78+2+fWrVvR3d39NJcBAAAAAAAAAAAAAADwWE81YDFj7969ce7cuXj//fejr68vRkdH46WXXorvfve78a1vfWstlgAAAAAAAAAAAAAAALConWs94d69e+P111+P119/PYaHh+OXv/xlfPHFF2u9DAAAAAAA2PQGOwfj+eLzkW/NP7ZftVKNX1z4RURE7Nm3J0oTpWhqa4rm9uZ1rwEAAAAAANgo1jxg8bDW1tbo7++P7373u+u5DAAA2LRG+0ZjvH88WjpbIt+aj0w2E+WkHFNjU/HxlY/j+Pnj0VBomFfnRikAANi8ykk5kuEkRntHY2psKp4vPv/Y/tVKNfpa+qLYX5xzfTDYORh3bt6Jtp62dasBAAAAAADYSNY1YBHxIGSxd+/e9V4GAABsStVKNZLhJJLhZM7xTDYz76amh2vcKAUAAJvTaN9oJENJ5Nvy0drTGu+0vfPEmv5ifzzX/ty864NTvaeiJ9cTTW1N83bAWKsaAAAAAACAjWTdAxYREdeuXVvvJQAAwKZ1svdklCZKUUkqkanPxIGWA9HS0bJofzdKAQDA5tXS0TL7eX9qbOqJ/Wd2uzjZe3LB9uYzzXGj58acz/NrVQMAAAAAALDRbIiAxaFDh9Z7CQAAsGk9f+b5yGQzS+rrRikAANheRnpHIiIil88t2F7fVB9jfWNRrVRnryvWqgYAAAAAAGCj2bHeCwAAANbOUm56SoaTqFaqq6oBAAA2hs/GPntsoGHmc/7kyOSa1wAAAAAAAGw0AhYAALCNuFEKAAC2l3JSjt31uxdtn/msX07Ka14DAAAAAACw0exc7wWsVqVSiQsXLkRExL59+2JiYiLa2tqivb19xWOOjY1Fb29vlEqlGBsbi2w2G52dndHR0ZHWsgEAIHVTY1MxOTIZBw4fiIZCw4J93CgFAAAb072v7sXvvvrd7Ot//Id/TGXc6dL0orvRRcTsZ/2Hd6RbqxoAAAAAAICNZlMHLCqVSrS0tER/f38UCoXZ452dnXHz5s3o6elZ9ph9fX0REdHb2zt7bHh4OIrFYvT09MTo6Ghks9lVrx0AAB5nOTdXJcNJlJNy5Fvz0dLRElNjU/FO2ztxrPtY5Fvzc/q6UQoAADamDy58ED//85/Pvr67424q4y71c/qXn3+55jUAAAAAaXj31LvrvYR4efDl9V4CAJCSTR2wKBaL0d7ePidcEfEgHJHL5aKtrS1aW1uXPF6SJFGpVKKrq2vO8dbW1rh27Vq0tLREsViMoaGhVNYPAACLWerNVTPBh2Ndx2aPNRQaothfjJ5cT3SMdszZzcKNUgAAsDEdP388vv1n3559/dvf/jZ+8i9/so4rAgAAAAAA2H42bcAiSZIYHh6es9PEw86cORM9PT3LClj09vbG+fPnF2wrFArR2toaw8PDkSRJ5PP5BfsBAEAalnpzVXN784L1mWwmmtubo7/YH69NvPbU1gkAAKRj566dsXPX19+yf+b3nkll3Ew2s6TQ9J59e9a8BgAAAAAAYKPZsd4LWKmZYMViQYempqYYHh6OSqWy5DGHh4ejsbFx0ZqZnTLGxsaWtVYAAFiunbt2xq5nd83+WsnNVQeOHIhyUo5yUp495kYpAADYXnbX735s+3RpOiIefO5f6xoAAAAAAICNZtMGLMbGxiKbzS7aPhO8GBkZWfKY9fX1UalUIkmS1S4PAADW3cyNS1NjU7PH3CgFAADbSy6fm/3MvpCZMHUun1vzGgAAAAAAgI1m0wYskiSJ+vr6RdtnwhfLCUsMDQ3FxMTE7E4VC80ZEYu2AwDAWhrsHIyfNv10WTVulAIAgO1lf2H/Y3ekm9nxLt/69W7Ra1UDAAAAAACw0exc7wWsVKlUmt2lYiEz4YtKpbKscR835sDAQBQKhcf2ATa2d0+9u95LiIiIlwdfXu8lALAFTI1MLSn40FBomD22v7A/kuHFQ8iL3Si13BoAAGBjOHj2YHx48cOYGpuac20wY/Lm5LzP8mtVAwAAAAAAsNFs2oDFUoMTn3/+eSrzXbx4MSIiLl++/MS+0/em4x/u/cPs62d2PBPPfOOZVNYBK1Grq0UtalGrq8X9uL/eyyEi7t27t95LWHf37t2L+/fv+7tgw3FuslHdvz//3/DG1sbo6OlYtGby5mRkspk5O0u4UerpcA2wcWyEr9/+LeFRzgke5ZzgUc4JFrLQNcBKNBQaIt+aj19f+fWCn+fHB8bjlaFX1qVmM/vyd1/Grnu7Zl+7Btj4fJ98c/P+bV7eu83Le7d5ee82r1pdbb2XwBPcvXs3SqXS7Otdu3bFrl27HlOx9dyv83VltXyd3rrW43t7vq9ImpxPpMn5tDT+fjauTRuwWEtjY2PR3d0d/f39USgUnti/+//unvP6Xxf+dfybw//maS0PnqgWtZj+/ekoRSnqom69l0NEfPDBB+u9hHV3//79+O1vfxsRETt27Fjn1cDXnJtsVAsFhw+ePRijfaPR0tEyr62clGN8YDyK/cU5x90o9XS4Btg4fvb//tl6LyFqUYtnv/1sRPi3hAd8vuBRzgke5ZxgIUt5eNDMbnIzu9ctpthfjL6Wvjh49uCcz/SDnYNxtOvogoHptarZrFwDbD6+T765ef82L+/d5uW927y8d5vX30///XovgSd44YUX5rz+4z/+4/iTP/mTdVnLeik1lJ7cicfydXrrWo97gXxfkTQ5n0iT82lpHg7vsrFs2oBFNptd0i4W+/btW/VcxWIxent7o729fUn9e/6nnshlvn5K8DM7nolnpjy5ivVTq6tFKUpR/1l91NVcnG0Ex48fX+8lrLuZ9OXRo0dj585N+88RW5Bzk41q5sLzYQ2FhkiGk7hx8UYc6zo2e7yclKOvpS+Odh2N5vbmeXVulEqfawAeVqurxYH/4YB/S5jl8wWPck7wKOcEC1noGiDiQcB5tHc0IiImRyYjImLw3ODsseZi87wQdiabiY7RjhjqHopMNhN79u2J0kQpmtqaFrxmWMuazco1wObj++Sbm/dv8/LebV7eu83Le7eJTa/3AniSjz76KP7gD/5g9vV23MHizl/cWe8lbHq+Tm9d63EvkO8rkibnE2lyPi3N3/3d3633EljEpj1r6+vrH9s+k+rJZrOrmqdYLEZnZ2d0dHQsuWb3zt3xezt/b+5BOzmyju7H/aiLuqir1cWOmjTgRuBDwwM7duyInTt3+vtgw3FushEtlug/1nUskuEkBjsHo1qqRrVSjUw2E9+/9v0Fd5uIcKPU0+AagIfdj/v+LWEe5wSPck7wKOcEj1rsGqC5vXlFn8Ez2Uyc6j21IWs2oz3f2OMaYJPxffLNzfu3eXnvNi/v3eblvdu83Gi98e3du/eJ9yttdb6urJ6v01vXen1fz/cVSZPziTQ5n57M383GtWnfmXw+HyMjI4u2z+xukc+v/Em63d3dceTIkejq6lrxGAAA8LTlW/PL3kHCjVIAAAAAAAAAAABzbdoYbKFQmA1RLCRJkoiIaG1tXdH4fX190dTUtGC44nHzAgAAAAAAAAAAAAAAm8+mDVicPXs2IiLGxsYWbL958+aKwxUDAwMREdHR0TGvLUmSGB4eXtG4AAAAAAAAAAAAAADAxrRpAxaFQiFaW1vjypUrC7YPDAxEd3f3vOOVSiW6u7sXDUmMjY1FqVRaMFwRETE8PByFQmHlCwcAAAAAAAAAAAAAADacneu9gNXo7++PlpaWOHv27JzQQ2dnZ3R1dS24g0VfX19cvHgx+vr6olwuz2lLkiSKxWK0trZGZ2fnvNpSqRTDw8Pz6gAAAAAAAAAAAAAAgM1tUwcsstlsjI6ORnd3d2Sz2di3b19MTExEW1tbtLe3L1jT2toa2Ww2zpw5M6+tra0tkiSJvr6+RefM5/OprR8AAAAAAAAAAAAAANgYNnXAIuJByKK3t3fJ/QuFwqI7UExMTKS1LAAAAAAAAAAAAAAAYBPZsd4LAAAAAAAAAAAAAAAAWG+bfgcLAAAAAAAAAAAAAADYCkb7RmO8fzxaOlsi35qPTDYT5aQcU2NT8fGVj+P4+ePRUGiYV1etVOMXF34RERF79u2J0kQpmtqaorm9edG5VlKz1QlYAAAAAAAAAAAAAADABlCtVCMZTiIZTuYcz2QzUewvLhqu6Gvpm9c+2DkYd27eibaetlRqtgMBCwAAAAAAAAAAAAAA2CBO9p6M0kQpKkklMvWZONByIFo6Whbt31/sj+fan5sXvjjVeyp6cj3R1NYU+db8qmu2AwELAAAAAAAAAAAAAADYIJ4/83xkspkl9S0n5UiGkzjZe3LB9uYzzXGj58acsMRKaraLHeu9AAAAAAAAAAAAAAAAYPlGekciIiKXzy3YXt9UH8lwEtVKdVU124WABQAAAAAAAAAAAAAAbEKfjX322N0uZkIUkyOTq6rZLgQsAAAAAAAAAAAAAABgg5kam4rRvtGYGptatE85Kcfu+t2Lts8EKcpJeVU124WABQAAAAAAAAAAAAAAPCX3vroXX33x1eyv//73//2x/ZPhJG5cvBERES0dLRER8U7bO5EMJ/P6TpemH7sbxUyQolqprqpmu9i53gsAAAAAAAAAAAAAAICt6oMLH8TP//zns6/vxt1F++byuYiIONZ1bPZYQ6Ehiv3F6Mn1RMdoRzQUGmbblhqC+PLzL1dVs10IWAAAAAAAAAAAAAAAwFNy/Pzx+PaffXv29Z07d+InzT9ZsG9ze/OCxzPZTDS3N0d/sT9em3jtqayTiB3rvQAAAAAAAAAAAAAAANiqdu7aGbue3TX765/9/j9b0TgHjhyIclKOclKePZbJZpa0I8WefXtWVbNd2MECYB28e+rd9V5CvDz48novAQAAAAAAAAAAAIAlymQzERExNTYVuXwuIiJ21+9+bM10aXpO7Uprtgs7WAAAAAAAAAAAAAAAwDob7ByMnzb9dFk1uXxuNhCxkJmdKmYCGSut2S4ELAAAAAAAAAAAAAAAYJ1NjUwtKfjQUGiYPba/sH/2+ELKSTkiIvKt+VXVbBc713sBAAAAsNX813f/a9z5izuxo7Z+zzV4efDldZsbAAAAAAAAAFi+xtbG6OjpWLR98uZkZLKZOTtLHDx7MD68+GFMjU3NCV48XPNoUGIlNduFHSwAAAAAAAAAAAAAAGCdHTx7MEb7RhdsKyflGB8Yj1OXT8053lBoiHxrPn595dcL1o0PjMex7mOrrtkuBCwAAAAAAAAAAAAAAGCdNRQaolqpxo2LN+YcLyfl6Gvpi6NdR6O5vXleXbG/GJ8MfBJTY1Nzjg92DsbRrqML7kaxkprtYOd6LwAAAAAAAAAAAHiywc7BeL74/BNvdKpWqvGLC7+IiIg9+/ZEaaIUTW1NC96ItZoaAAAgfce6jkUynMRg52BUS9WoVqqRyWbi+9e+Hw2FhgVrMtlMdIx2xFD3UGSymSV9pl9JzXYgYAEAAAAAAAAAABtUOSlHMpzEaO9oTI1NxfPF5x/bv1qpRl9LXxT7i3NuvhrsHIw7N+9EW09bKjUAAMDTk2/NL3sHiUw2E6d6Tz31mq1ux3ovAAAAAAAAAAAAmG+0bzSGu4cjIqK1p3VJNf3F/niu/bl5T7Y91XsqxvrGIhlOUqkBAADYiuxgAQAAAAAAAAAAG1BLR0u0dLRERMTU2NQT+8/sdnGy9+SC7c1nmuNGz405T8JdSQ0Ac7176t01n/N+3f0oNZTizl/ciR21B8/afnnw5TVfBwBsNXawAAAAAAAAAACALWCkdyQiInL53ILt9U31kQwnUa1UV1UDAACwVQlYAAAAAAAAAADAFvDZ2GeRyWYWbZ8JUUyOTK6qBgAAYKsSsAAAAAAAAAAAgC2gnJRjd/3uRdtnghTlpLyqGgAAgK1KwAIAAAAAAAAAANbQ/d/dj9/94+9mf92/dz+VcadL04/djWImSFGtVFdVAwAAsFXtXO8FAAAAAAAAAADAdlL6tBSl35RmX9+Nu6mMu9QQxJeff7mqGgAAgK1KwAIAAAAAAAAAANZQ/bfqI5fPzb4uVUsRP1/HBQEAABARAhYA29a7p95d1/nv192Pf/5n/3xd1wAAAAAAAACwHnZ8Y0fENx56fW9HKuNmspkl7UixZ9+eVdUAAABsVelcnQEAAAAAAAAAAOtqd/3ux7ZPl6Yj4kGoYjU1AAAAW5WABQAAAAAAAAAAbAG5fG42ELGQmZ0qcvncqmoAAAC2qp3rvQAAAAAAAAAAAGD19hf2RzKcLNpeTsoREZFvza+qBoCN6d1T7673EuLlwZfXewkAsCp2sAAAAAAAAAAAgC3g4NmDERExNTa1YPvkzcl5QYmV1AAAAGxVAhYAAAAAAAAAALAFNBQaIt+aj19f+fWC7eMD43Gs+9iqawAAALYqAQsAAAAAAAAAANjgykk5IiKqlepj+xX7i/HJwCfzdqQY7ByMo11HF9yNYiU1AAAAW9HO9V4AAAAAAAAAAAAw3/jAeIz2jkZExOTIZEREDJ4bnD3WXGyOlo6WOTWZbCY6RjtiqHsoMtlM7Nm3J0oTpWhqa4rm9uYF51lJDQAAwFYkYAEAAAAAAAAAABtQc3vzigIOmWwmTvWeeuo1AAAAW42ABQAAAGxB7556d72XEC8PvrzeSwAAAAAAAAAAWLId670AAAAAAAAAAAAAAACA9SZgAQAAAAAAAAAAAAAAbHs713sBAAAAAAAAAAAALO7dU++u9xIAAGBbsIMFAAAAAAAAAAAAAACw7QlYAAAAAAAAAAAAAAAA256ABQAAAAAAAAAAAAAAsO3tXO8FALB9/dd3/2vc+Ys7saO2vnm/lwdfXtf5AQAAAAAAAAAAAFh/drAAAAAAAAAAAAAAAAC2PQELAAAAAAAAAAAAAABg2xOwAAAAAAAAAAAAAAAAtj0BCwAAAAAAAAAAAAAAYNvbud4LAAAAAAAAAAAAAGDze/fUu+u9hHh58OX1XgIAm5gdLAAAAAAAAAAAAAAAgG1PwAIAAAAAAAAAAAAAANj2BCwAAAAAAAAAAAAAAIBtb+d6LwAAAADYmt499e56LyEiIl4efHm9lwAAAAAAAAAAbAICFgBsexvhxj83/QEAAAAAAAAAAACsrx3rvQAAAAAAAAAAAAAAAID1JmABAAAAAAAAAAAAAABse///9u7nt7EsPwz9V4WOxza8uKraeDCAgaa8iREgGKrrPS+8axLIIrMxyCoMkCz84CJ3XnghooD31gVqYSNLqv6AQRW5mgGSwOQgD5gEeIAkbsZJVrrjIOjJDJKW7uLZ3eOZKb5FvcvRD0qk+PNS+nwAobv46x7xfO/ROefe7zkSLAAAAAAAAAAAAAAAgEdPggUAAAAAAAAAAAAAAPDofbLpAgAAAAAAAAAAAADAMnzvO9/bdBHiuz/47qaLAMCcJFgAAAAAD9qmJ9E/7HyIb/3ltzZaBgAAAAAAAABguiebLgAAAAAAAAAAAAAAAMCmSbAAAAAAAAAAAAAAAAAePQkWAAAAAAAAAAAAAADAoyfBAgAAAAAAAAAAAAAAePQ+2XQBAAAAAAAAAAAAAABYre9953srP8aHnQ9x/s3z+OKvvogno5t7AXz3B99deRlgEXawAAAAAAAAAAAAAAAAHj07WABAAawjM3hbyFAGAAAAAAAAAAAANkGCBQAAAAAAAAAAAAA8MLMu+vph50Ocf/M8vvirL+LJ6MlSy2CxVWDbSLAAAAAAWLEff+/HK5mQvg+T1wAAAAAAAABwNwkWAAAAAAAAAAAAAMCDNOtOHqtmQTTYDptbNhEAAAAAAAAAAAAAAKAg7GABAAAAAAAAAAAAAMDK2VGEopNgAQAAAPAIFGGi0iQlAAAAAAAAAEX2ZNMFAAAAAAAAAAAAAAAA2DQJFgAAAAAAAAAAAAAAwKP3yaYLAABw2fe+872NHv/Dzof41l9+a6NlAAAAAAAAAAAAANZPggUAAAAAa7HpZNrcd3/w3U0XAQAAAAAAgEemKNfKgLs92XQBAAAAAAAAAAAAAAAANs0OFgAA1/z4ez+OL/7qi3gy2lwuqlWVAQBWZ9OrA33Y+RDf+stvbbQMAAAAAADA6mz6WgQA85NgAQBQQEUZaEv0AAAAAAAAAABgXkW5BwZgVhIsAAAAAGDN7JoGAAAAAAAAUDwSLAAAuFURVhFw4x8AwGoUoa8Xob8HAAAAAAAAFIcECwAACq0IN/656Q8AAAAAAAAAAODhe7LpAgAAAAAAAAAAAAAAAGza1u9gkWVZvHnzJiIinj17FmdnZ1GtVqNWqxXqMwEAYFW+zr6OH735UURE/O6z343zs/PYq+7FH9X+aMMlAwCYzo5lMB/jAAAAeFyMAQAA4HExBticrU6wyLIs9vf3o9vtRrlcHj/ebDbj+Pg42u12IT4TAABW5evs6zjaP4p6tx7fLH9z/PgPmj+IL46/iGq7usHSAQBsh00neXzY+RDf+stvbbQMbBfjAAAAeFyMAQAA4HExBtisrU6wqNfrUavVriRCRER0Op3Y3d2NarUalUpl458JAMB22/QNdxER/+vr/zXx8W69G/+09k+vDKYiIr7T+U60d9uxV92LUqW0jiICALCAH3/vx/HFX30RT0ZPNloOu3lsB+MAAAB4XIwBAADgcTEG2KytTbBI0zQGg0F0Op2Jz7948SLa7fa9kiEW/cx//Md/jIiIX3745czHhHX45a9/Gf/25N/Gy99/Gd948o1NFwciQlxSXGKTosr7mHmfMyLiIr2IdJDGv+z8y4nv+aMXfxT/qf2fDKhWyBiASfwt4ToxwXViguuKFBNFSC4ugiIkmuR9zctjgAjjAJhXkdpa7k/9bS91t73U3fZSdw+PMcDm3TY+g3lop1km8cQyiSeWSTwtxhhg87Y2wSJPgiiVJgfH3t5eHB0dRZZlkSTJWj7zF7/4RURE/OrDr2Y6HqzLLz/8Mv798N/Hn/6LP/XHisIQlxSV2KSo8j5m3ueMiDjpnERExG5pd+J7nu49jeHRML7Ovo7fTn579YV8hIwBmMTfEq4TE1wnJrhOTBRPERJN/vv/+98j4uoYIMI4AOalrd1u6m97qbvtpe62l7p7eIwBNi8fl10fn8E8tNMsk3himcQTyySeFmMMsHmb3W9+AcPh8M7EiTxJ4uTkZKOfCQAAq/Kz4c/uHCjlA62fnvx0XUUCAABWzDgAAAAeF2MAAAB4XIwBNm9rd7BI0zSePn166/N5okSaphv9TAAAWJWL9CJ+5+nv3Pp8Pti6SC/WVSQAAGDFjAMAAOBxMQYojn/3F/8u/vb3/nbTxQAA4IEzBti8rU2wOD8/H+8oMUmeKJFl2do+88OHDxER8bO//9mVxz958kn8kyf/ZOZywLJ99euv4smTJ3Hxi4v4+ldfb7o4EBHikuISmxTFh19/iBj95t8Xf/9xUJT3OSMivjr/6tbtACNiPNj6OhPLq2IMwCT+lnCdmOA6McF1YoKI2cYAEcYBm5bXx0///qfxD7/+h/HjxgDFp63dbupve6m77aXutpe62x7XxwDZ19nHx40BCse1AJZJO80yiSeWSTyxTNsST3/3d3+31uN9+OWH+PUvfj3+989+/rF/aQxQPFubYDFr4sSXX365ts+8uPh4weuvj/965mPCOrX+Q2vTRYAbxCVFJTYpqrzPGTH7QOkfvvyH6S9iLsYA3MXfEq4TE1wnJrhOTDDJ5TFAhHHApv385z+PiIg3/8+bDZeEeWlrt5v6217qbnupu+2l7rbXz3/+8/iDP/iD8b+NATbPtQBWQTvNMoknlkk8sUxFj6e/+PQvNl2EiDAGKKKtTbAooj/+4z+OH/3oR7G7uxtPnjwZP/6Nb3wjfuu3fmuDJQMAYNv86h9/FR9+8ZsM9Q8fPsT/zP5nPP/fn2+wVFxnDAAAwLIYA2yHb3/728YAAAAsxW1jgG9/+9sbLBWTuBYAAMAyGANsj61NsEiSZKYdJ549e7a2z/zkk0/iT/7kT2Y+HgAA3Mcfxh9e+fdvJ789U9b67z773VUV6dEzBgAAYJWujwEijAM2zRgAAIBVMgYoJuMAAABWxRigmJ5Mf0kxPX369M7nz8/PI+Jj0sQmPxMAAFbld57+zp3Pf3X+VUR8HHgBAAAPg3EAAAA8LsYAAADwuBgDbN7WJliUSqVxwsMk+U4UpVJpo58JAACrslvaHQ+aJsmz2XdLu+sqEgAAsGLGAQAA8LgYAwAAwONiDLB5W5tgUS6XxwkPk6RpGhERlUplo58JAACr8vvl379zS8CL9CIiIkoVCcIAAPBQGAcAAMDjYgwAAACPizHA5m1tgsXLly8jImI4HE58/vj4+N6JEKv4TAAAWJV/9vKfRUTE/xj+j4nP//T4pwZTAADwwBgHAADA42IMAAAAj4sxwOZ9sukCzKtcLkelUol3795FuVy+8Xyv14t+v3/j8SzL4s2bN1GtVm8kS8zzmfnnRUQ8e/Yszs7OolqtRq1WW+TXg7Gjo6PodrvRbDajUqlEkiSRpmkMh8N49+5dvH79emK8zhOb4pm7NJvNqNfrUxPN1hV74pXcLLGpLWVdhsNhdDqdOD8/j+FwGEmSRLPZjEajcet7Fo2z//aH/y3+/P/48/iz//PPbrznv/T+S/zr/r+e+zhM5rvcTg+hLyP2lmMTbXXR3sNNaZpGu92OiIjz8/PIsiyq1WocHBzc+p4i17G4WJ1msxmtVitKpcmT1kWuY3Exv6KNKb9Z/maUKqX423d/G98sf/PGe9733sef/V9/dufvJB7YdvP06e4y73nOfObpe02jXVuPZdedc2+zpvVtp3Hebc4idee8207XxwDXXb4WwGKKPHfI9lLf3EW7wzoUZV6b7ZSPIZIkiYiIUqk0nhu4TiwtjzFAAYy22MXFxahUKo1OT0+vPN5oNEYHBwcT39Nut0cRMUqSZOHPnOf4cF95zF7/SZJk1O/3J75nntgUz0xydnY26nQ6o3K5PIqIW2Mut67YE6/cNza1paxDp9MZdTqdK4/1+/1RkiSjUqk0uri4uPGeZcTZVxdfjf5N6d+M/tWf/qsr7/l+4/ujvzn4m7mPw2S+y+3ykPoyYm85NtVWF+k93NTtdid+X+VyeVQqlSa+p8h1LC5W5/T0dBQRN77bXJHrWFwspohjynwc8F//7/965T35OEA88JDN06ebZp7znPnM0/eaRru2HquoO+fe5kzr207jvNucRevOebe98jHAT09/euXxy9cCWEyR5w7ZXuqbu2h3WIeizGuzfS4uLkblcvlGnZ6dnU2sZ7G0fMYAm7XVCRaj0ccTLD+Z2u32qNFojLrd7q2vPz09HSVJMmo0Ggt/ZqVSufUkNgHBsrTb7VGn0xkdHByMarXaqNFo3OhcXzdPbIpnrut0OqNarTbqdDqjfr8/002J64o98fq4zROb2lJW7ezsbNRutyc+l09YVCqVG88tK86+uvhq9P3G90e/943fG/31n//16PuN74/+c/c/L3QcJvNdbo+H1pcRe4vbdFtdlPdw1cXFxahWq018Lo+LSXNIRa5jcbE6lUrlzgtRRa5jcbGYoo4pv7r4avTPv/XPRy/+txej/9j+jzfGAeKBh2jePt0085zn3N+8fa9ptGurt6q6c+5tzrS+7Szvd95txqJ157zbbvm1gL85+JuJYwDmV/S5Q7aX+uY22h3WpSjz2myfSckVo9HH+p+0wL1YWg1jgM3Z+gSLTTk7OxtFxOjs7Gzi841GY65JfLiu3W7fa8WteWJTPDNNPni7q9OyrtgTr1w2S2yORtpSVu/g4ODOGMsnLS7Hh3Zz+/gut9e292XE3nI8tLZaXCxHnoB12+RtRNxYjbfIdSwuVidfTe62C1FFrmNxsbiijinFA4/RPH26Wdz3PGc+8/S9ptGurccq6m40cu5tyrS+7TTOu81ZtO5GI+cd3KbIc4dsL/XNXbQ7rENR5rXZPu12e2ISxWg0GtVqNXPVPApPgrl0Op2IiCiVShOf39vbi8FgEFmWrbFUMF9simeWYV2xJ15ZB7HJfQ0Gg/j0009vrd9yuRwREcPhcPyYdnP7+C4ftiKfk2JvOR5aWy0uluPp06eRJEk8e/bs1tckSXLl30WuY3GxGmmaRsTt32tEsetYXKxfketWPLDt5unTURzz9L2m0a6txyrqjs2YpW87jfNuM5ZRd8Dtijx3yPZS39xFu8OqFWlem+3z5s2baDQaE5/rdrvR7/evPCaWeIgkWMxpOBzeOVGYn/QnJydrKhF8NE9simeWYV2xJ15ZB7HJfT19+jSyLBtPUsxCu7l9fJcPW5HPSbG3HA+trRYXy1Eul+Pi4iIODg5uPJdfuKpUKjceL2odi4vV6HQ6t15IyBW5jsXF+hW5bsUD226ePh3FMU/faxrt2nqsou7YjFn6ttM47zZjGXUH3K7Ic4dsL/XNXbQ7rFqR5rXZLr1eL7Isi5cvX878HrHEQ/TJpguwrdI0jadPn976fH7im+RnmYbDYZycnMRnn302zlS+bp7YFM8sw7piT7yyKG0pq9Dv9yNN01sz6/N6vxxz2s3t47t82Ip8Toq95XhobbW4WL1WqxWlUina7faVx4tcx+Ji+Xq9XjSbzamvK3Idi4vlKtKYUjzwGM3Tp7uvWc5zlu+2vtc02rXNm7furnPurd6sfdtpnHfrt6y6u855B79R5LlDtpf65i7aHVapaPPabJd3795FxNWddIoyJw7rZAeLOZ2fn9+ZPZWf+LanYRkGg0EcHh5GRIwzS6vVagwGgxuvnSc2xTPLsK7YE6/MS1vKqt21tWav14tyuXzlNdrN7eO7fNiKfE6KveV5SG21uFidNE2j2WxGqVSKs7OzG88XuY7FxXLlK8jd1XbkilzH4mI5ijimFA88Vvft083qPuc5yzOt7zWNdm1zFq27nHNvPe7Tt53Gebdey6y7nPMOJivq3CHbS30zjXaHVSjivDbbJd+pMiLi8PAwzs/PCzMnDutkB4s5zXrSfvnll6stCA9e3tm5vO1yuVyObrcbu7u7cXp6eiUzcJ7YFM8sw7piT7wyD20pm5RfqHr79u2Vx7Wb28d3+bAV+ZwUe6u3jW21uFi+Xq8Xx8fH4wsP1Wp14uuKXMfiYrnevHkz80rMRa5jcbG4oo4pxQNcdVufbhb3Pc9Z3Kx9r2m0a+u3rLqLcO6t0336ttM479ZrmXUX4byDeWx67pDtpb6Zl3aHRRRxXpvtkic+HB0dTRw3fPrpp9HtdqNSqYyfE0s8RBIsoOBqtdrEx5MkiVqtFvV6faGVgQAeA20pmzIcDqPVakW323VRCqCgtNXkarXalX5jtVqNTqcTb9++vXMFHR6mwWCw0M2CPCzGlFB8i/bpnOfrp++1vZZZd8699dC33V6rqDvnHdyPuUNg3bQ7LELfn2XIEx/yHSQuS5IkKpVKNJtN4wYevCebLsC2SpJkpgyqZ8+erb4wPFrPnz+PNE0jTdPxY/PEpnhmGdYVe+KVZdOWskr1ej06nc7Ei1baze3ju3zYinxOir3V2ta2WlysXrfbjV6vF/V6/crjRa5jcbE8/X7/yupL0xS5jsXFam1yTCke4Dfu6tMtatJ5zvLd1veaRru2efPW3TTOveW5b992Gufd+iy77qZx3rFNsiyb++c+ijB3yPZS38xDu8MiijqvzXbJF0+4LZaq1WqkaRrD4fDKe8QSD40EizlNys667Pz8PCJ+09jAKuTxdfmP1TyxKZ5ZhnXFnnhl2bSlrEq9Xo9msxmNRmPi89rN7eO7fNiKfE6KvdXZ5rZaXKxe8v+v3jkYDGIwGIwfL3Idi4vlODw8jNevX9/rPUWuY3GxWpscU4oH+Ghan25Rk85zlu+2vtc02rXNm7fuZvncCOfeoubp207jvFuPVdTdNM47tkWr1Yrd3d25f3Z2dmY6TlHmDtle6pv70u6wiCLPa7Nd8jq+rQ7z509OTm48dhuxxDaSYDGnUqk0PoEnyTOrSqXSmkrEQ9RsNmNvb+9e75knNsUzy7Cu2BOv3Je2lE1otVrx/PnzODg4uPU12s3t47t82Ip8Toq91dj2tlpcLEeWZXeuzJl/f/1+/8pjRa1jcbG4NE0jSZJ7T9gXuY7FxWKKPKYUDzBbn26aec5z5jNP32sa7dp6rKLunHurN2/fdhrn3eqtqu6cdzwU7XY7RqPRQj/TFGnukO2lvrkP7Q6LKPq8NtulXC7P9LrLu0+IJR4iCRZzKpfLd25Pk08yrnPLTh6ek5OTmf6IXP6jNk9simeWYV2xJ165L20p63Z0dBR7e3sTJ78ux4h2c/v4Lh+2Ip+TYm/5HkJbLS6WY3d3N/b29m79LvNth8XF4zEcDqPb7Ua1Wr3x02w2IyLi1atX48dyRa5jcbGYIo8pxQOP3ax9umnmOc+Zzzx9r2m0a+uxirpz7q3evH3baZx3q7equnPewWyKNnfI9lLfzEq7w6KKPq/Ndnn+/HlE3D7Gz8cU7rPioZNgMaeXL19GxO3bYx4fHzuxWVilUomLi4tbnz8+Po4kSa5k6c0Tm+KZZVhX7IlX7ktbyjr1er2IiInbtqZpGoPBYPxv7eb28V0+bEU+J8Xecj2UtlpcLEfeD7xtVaezs7OIiNjf3x8/VuQ6FheLq9Vq0e/3J/602+2IiHj79u34sVyR61hcLKbIY0rxwGN2nz7dNPOc58xnnr7XNNq19VhF3Tn3Vm/evu00zrvVW1XdOe9guiLOHbK91Dez0O6wDEWf12a71Gq1iIhb59fyOYDPPvts/JhY4kEaMbdKpTI6ODiY+FxEjPr9/ppLxENzeno66nQ6E587OzsbRcSo2+3eeG6e2BTP3OX09HSmOFhX7IlXcrPEpraUdbkr1kaj0ajT6YzOzs6uPKbd3D6+y+30EPoyYm85HlpbLS4Wd3BwcKPOL0uSZJQkyeji4uLK40WuY3GxOt1udxQRo9PT04nPF7mOxcX8ij6mFA88RvP06S4uLkYHBwcT43ve85z7m7fvdVf9jUbatXVYRd059zZrWt/WeVdci9Sd8w7uVuS5Q7aX+uYu2h3WoSjz2myXWq02KpfLE58rlUoT618s8dBIsFjAxcXFqFQq3fjj02g0bj3p4b7a7fao3W5feezs7GyUJMmtcTZPbIpn7pJ3tqdNqq4r9sQruVljU1vKqp2dnY1KpdKo0WhM/KnVaqMkSW68T7u5fXyX2+kh9GXE3uIeYlstLpaj0WhMnKDNY2LSRYci17G4WJ12u33n35Mi17G4WEyRx5Tigcdm3j5d3oZPei5//r7nOfOZp+81rf60a+uxirpz7m3OtL6t8664Fq075x1MVvS5Q7aX+uY22h3WpSjz2myXvI6vJ4HVarVRpVK58z1iiYdiZzQajRbbA+Nxy7IsWq1WJEkSz549i7Ozs6hWq+NtcmAZBoNBdLvdOD8/jyzLIkmSeP36dZTL5VvfM09simcu6/V60el0IiLi5ORkHHv59l71en3iFoXrij3x+njNG5vaUlZpb28v0jS98zWlUmm8VeJl2s3t47vcDg+xLyP2FvNQ22pxsRy9Xi/evXsXT58+HfcXy+VyvH79OpIkmfieItexuFiuZrMZaZre+HtSLpfH26vnilzH4mIxRR5Tigcek3n7dMPhMD7//PN48eLFeJxw3TznOfO5b99rlvrTrq3HKurOubdes/ZtnXfFs8y6c97BTdswd8j2Ut9Mot1h1Yo4r812ybIs3rx5M26rsiy79Rr75feIJR4KCRYAAAAAAAAAAAAAAMCj92TTBQAAAAAAAAAAAAAAANg0CRYAAAAAAAAAAAAAAMCjJ8ECAAAAAAAAAAAAAAB49CRYAAAAAAAAAAAAAAAAj54ECwAAAAAAAAAAAAAA4NGTYAEAAAAAAAAAAAAAADx6EiwAAAAAAAAAAAAAAIBHT4IFAAAAAAAAAAAAAADw6EmwAAAAAAAAAAAAAAAAHj0JFgBEr9eLnZ2dKz9Zlm26WFuv2Wwu/BmtVutKvezu7i6hZAAAPGT696uhfw8AAAAAAMvz2K5nuEYAsD0kWAAQERFJksTp6en4J0mSTRdpqw0Ggzg6Olr4c16/fj2uk3a7vYSSAQDwGOjfL5f+PQAAAAAALN9jup7hGgHA9pBgAUBERDx9+jTK5fL4J5emaezu7t7IGE/TdO5j7e3t3cjI7vV6C5W/2WzG7u7ujZ+dnZ04PDyc6TOyLBuX5/L757mRqtvtRq1Wu/f7rkuSZGK9AADAXfTv9e8BAAAAAKDobrue8RC5RgCwPSRYAHCnUqkUFxcXMRqNolarjTv4nU5nrs8bDAZRKpXGnz0ajeLi4mLhm5U6nU5cXFxEt9uNLMsiy7KoVCoxGo3i4OBgps9IkiQuLi7is88+iyzLotFoxMXFRTQajXuX5+joKF6+fHnv9wEAwCrp3+vfAwAAAAAAAHA7CRYAzOz58+fRbDYjIuZa9TUiot/vR7VajYhYSTZ2pVKJSqUy9/uTJIl6vR61Wi3a7fZcWw8OBoOIiKWscAsAAKuifz8b/XsAAAAAAIqi1+sttCs1ADCdBAsAZpYkSXz22WdRKpUiy7IYDocLfd7Tp0+XVLKr8pvEer3eXO8/PT2Ndrs99/E7nY6brwAAKDz9+9no3wMAAAAAUBTHx8ebLgIAPHgSLAC4t/wGp06nc6/39Xq9ePny5SqKdEWtVhuvTDvPSrxpmkapVJr7+L1eb/wdAQBA0enf303/HgAAAACAorB7BQCsngQLAO6t0WhERMT79+/v9b5+vx/lcnkVRbrhxYsXEXH/m8SOjo6iXq/PfdxerxdJkkSlUpn7MwAAYJ3072+nfw8AAAAAQJEMBoNNFwEAHjwJFgDcW36DUZZl0ev1ZnpPlmWxt7e34pL9Rr7C7HA4vFf2frfbHd9gNo93796Nb/4CAIBtoH9/O/17AAAAAACKYjgcRpZlmy4GADx4EiwAmEu+Cuy7d+9mev3R0dFCNzbdV7lcjlKpFBGzr3Kbpun4PfPq9XoLrZALAACboH8/mf49AADMJsuyqNfrsb+/H/v7+zEcDq88f3h4GNVqNarVauzv70e9Xr9X8jQAABDRarU2XQQAeBQkWAAwl/xmql6vN1N2/NnZWSRJstpCXZMPLI+OjmZ6fafTGa+MO49erzde/RcAALaJ/v1N+vcAADC7er0e7XY7Tk9P4+nTp7G/vx9ZlsVwOIz9/f0ol8vR7/ej3+/H6elpDIfD2Nvbs/ouAADMqNlsxmAw2HQxAOD8fGOhAAAROElEQVRRkGABsGTNZjOq1Wrs7e1Fr9cbP55lWTSbzajX61GtVh/E6ky1Wi0iIt6/f3/n69I0jf39/bmOkabp+HvLv9tZv7sXL15ExMfvfpZB5mAwiHK5PFc5Iz7ewJUfcxaHh4fjlbqazabBMADAA7YN4wT9+6v07wEAYDbD4TBKpdJ4B7n8v61WK169ehU//OEPbyQu5+OPWROoAQCgSFqt1pW54Hq9PrFv22w2Y2dnJ3Z3d8c/Ozs7E+eOj46OYmdnZ/z6/HW9Xi/29/evzN3v7+9f+czd3d3xc9Vq9cZzOzs7N+bh0zS9crz8dUVx+brK7u7uuPyDwSCazWa0Wq3xDnmXr7tcfk3+Gfv7+3fO16/zWABsBwkWAEuUD5r6/X7UarWo1+sxHA5jMBhEvV6PVqsV3W43+v1+PH/+PPb29m5sk71N8tVgO53Ona/rdDrjFXHvYzAYjG+46na70el0ot/vzzwgSZJkfJGm3W5PPdbLly/vXcZcfpPXLCvkpmkae3t7cXx8HKenp+PfrdPpRJqmtnQEAHhgtmWcoH//G/r3AAAwuzdv3lzpO+c3I71//z5++MMfTtz97tmzZxERcXx8vJYyAgDAMuQ7sT1//vzKXHC3243T09OoVqtXdmnrdDoxGo3ixYsXkWVZlEqlGI1GE3dObjQa4/n5Fy9exMXFRVQqlajVanF6ehoXFxfjOfL835d/cv1+Py4uLuLt27eRZVlkWRbdbnecCJ0rlUpxcHAQERGVSiW63W6MRqNlf2Vzq9frUa/X4/z8fPydHh4eRpZl0el0ot1uR7/fj9evX19JcLn8mvw6RJ78cD05YhPHAmA7SLAAWJIsyyJN0/EgaG9vLyI+dsLzTvTlwcrBwUEkSRL1en0j5V2GSqUSSZLEcDhc+iq7vV4vqtVqdDqdGwPLRqMRL168iGq1OvW4+UWdwWBw51bj894klnv//n0kSTJ1hdwsy2Jvby/K5XJ0u90bzzcajXj+/LmBFgDAA7FN4wT9+9/QvwcAgNmlaXql75wnT799+3ZickVExNnZWUREPH36dOXlAwCAZRgOh7G/vx/tdnuc6HBZp9OJUqk0cQfoPHFi2hz4ixcvolwuR6fTubUvPatarTY+7rt37ya+JsuyaLfb0e12JyZ9bFKlUhlfP4j4eJ2hVCrd+O5rtVqUSqVotVoxGAwmvqbRaESpVIpXr15t/FgAbAcJFgBLcnR0dOUmqPziwPn5+cQbbSI+ZoOnaXplddp8y7m9vb3Y39+ParV662P7+/vjxze1KurlwcUk+Sq19/Xq1asol8u3DuDy33fayrX5TWIRt281nt+YtcjgtNvtznQDVx4jb9++nfh8r9eLV69eTV01GACA7bCsccK66N9/pH8PAACzu9wfvjyOmXTTWS5Pwph08xkAABTRq1evxjtK3KbT6cT5+fnEe3gajcZ49+TbvH//fuo8+X00Go2o1WrR6/VuzKkPh8NIkmS8i0VR5XP97969u/W7r1Qq42SR215TLpfHi2IV4VgAFJsEC4Al6ff745uRIn5zceCugU9+48/JyUlEfMxUPzk5iXa7HWdnZ3F6ehr9fj/6/X4kSRJpmka32x0/dnp6Gqenp5EkyXg77XXLV5C97Yahfr9/7yz3fAu9ly9f3vqaUqkUpVLp1puqLstvjLqtjEdHR3cea5p8ADztMwaDQQwGgys3hV2XpmlkWRbn5+dzlwcAgOJYxjhhnfTv9e8BAOC+Ju1ecde44fKNRpfHSwAAUFRHR0cxHA5n2n26UqnE4eHhjZvrp82/R8RKdpLodrtRKpWi2WyOE6KzLIs3b94sNZlj1e76XvI5+rt2pc53z7trd+xNHAuAYpJgAbAk7Xb7yk01+aDkrk53PpjKO9S9Xi/evn07McN5OByObzq6LEmSePny5Y3H16VcLi99hd18a8K7BiMRMf6dpw1I8kHqbWW8K/N8Fu/fv49SqTS1vPkKxXet+HtwcBDdbvfW1YwBANguyxgnrJP+vf49AAAsot/vR8Td/eQ8CaNUKi208xwAAKxLnhTx2WefTX3t8+fPr7wnVy6Xo1wuR6/XmzgPPhwO59pBehZ5P71er0eWZfHq1atbd2Yuqr29vamvyb/7bToWAMX0yaYLAPBQTFqhKUmSWxMfLmeq5685OzubuPXetBWfkiSZevPPKjWbzWi1WtHpdK4MEHu93lwrx+Y3SeW7ddwm/w7Pz8/vvAhTKpWiUqnEYDC4UcbhcLhw9n+n05npBq58BeJpF4wWuRkMAIBiWcY4Yd307/XvAQBgXvm4565+cD4uWPbKvAAAsCr5PPcsCcL5ayYtENRsNqPZbMbR0dGN+4M6nc7KdpQolUrR7XajXq/Hp59+Gj/84Q+3Ltl5lmsmy/qd1nksAIpJggXACuQXB+7a2jq/yBDx8aarNE1jf3//zs+7LVP97OwsGo3GvMVdWK1Wi1arFe/fv79yc9Px8fFCNxO1Wq07By33GVg2m80YDAZxdHR0pYydTidardbcZcyyLIbD4Uwr0uYrEORbAQIA8LjMM07YBP17/XsAAJjHLEnll1+3qtV5AQCgCM7Pz2881mg0otlsxps3b24kWExbfGhRtVptvHjRycnJRhdyBYCie7LpAgA8RLNcHMhvriqVSlEqlSLLsltvtMqz2m8b3Gz6IkSpVIpyuRxZlo1/9yzL4tmzZwt97qQtEed1+UawXq83/v80TRdaGfjo6Ghch9PkA+FJg2gAAB6+ecYJm6B/r38PAADzmGVniizLxrvX2cECAIBtM8s897TFeRqNxpX594iPc9PNZnOhsl3+vEnSNI0kSaJcLkez2Zy4wwYA8JEEC4AVyAchd10cyG8CyldXLZfLt2aiDwaDO1d8KsJFiHygl68e+/79+7lXt81/z2XfqJTv8vHmzZuI+DhArdfrC33mu3fvZh7k5r/X2dnZQscEAGA7zTNO2BT9++n07wEA4KpZksrz15RKpZWuzgsAAMt0n3nuL7/88sp7rrs+/x7xMVl50Xt/8oTn27Rareh2u+MdnO8zn350dBS7u7uxv79/Jclk09cyAGBVJFgALNksFweOjo7Gr8lvCrrNLDdhFUG++0Z+Q9jZ2dncK8fmg8lZsuXzla7u+7lpmka32536/U879nA4nPlGs/z401YNyD8bAICHY9njhFXTv5/9+Pr3AADw0SzXM969ezf1NQAAUDT5fPC0JIaI3/SLb1vMp1wuR7lcjl6vF1mWxXA4jOfPn9+rPNd30pi2s0az2Yx2ux0RH69BdLvdSNN0piSLXq8X7XY7Xrx4EVmWxeeffx5ZlsXh4eG9yw0A20KCBcCS5YOp224+yrJsnMGdZ4XfZZYVn9Yly7Jbs/GTJBlfEGm1WrG3tzf3cQ4ODqJUKl3J1r/NfbLhy+XyuF5ardbcN4jler3elc+cplKpRKVSieFwOPXmMln+AAAPy7LHCcugf3+V/j0AAMwvv5Zx127cl19XhGseAAAwq3yeO1+U6DZZlsVgMIharRblcvnW1+XJF0dHR9HpdGZePOi2nTTOz89vncc/PDyMer1+pZ9eq9Xi4OAger1eHB4e3nnMfr8fZ2dn0el04uzsLN6+fRutViu+/PLLuXe+BoCik2ABsGT5xYGTk5OJz9fr9ciyLLrd7p2DqVx+I1YRVnP68ssv78x6zweAh4eH4xVv73LX1ol5tvxdA7nBYHDvizB5GXu93q2rBcyq0+nEy5cv7/2eiIhXr17d+prBYCDLHwDggVn2OGEZ9O+v0r8HAID5PX36NJIkGa+KO0mapuMxSBGueQAAwH10Op1I03S8G/UkrVYrkiSJt2/f3vlZeULFmzdvIiJu3fn6unwO/fqiP4PBID777LMbr+/1enF8fDyx/91ut6NcLker1bpzEaHriyclSTK1719kd13L2OZjAbBcEiwAliwfdLx9+/bGVnrNZjNOTk6i3+/PnMU9GAymrvi0DoPBIA4PD+8cWOW/U61Wu3Pwd3x8HBE3B3yXlcvlOD09jU6nM3G1116vF8PhcOYs/lz++lKptNCNa2maRpqm9z5+qVSK09PTyLIsqtXqjRvaBoNB9Pv9ODg4mLtsAAAUz7LHCYvSv79K/x4AABZTLpfj4uLizj51nnheLpdnvoEMAACKolKpxOnpabRarYmLCeVz/T/5yU9m6u82Go3IsuxeiwflOyu/efNmPB+dZVmcnp5emSNP0zSazeaN6xGTPi8i4vPPP5+6U3PEx+sAvV5vrckVebnuKt8sr0nT9Mp/N30sAIpNggXAEuUXB0qlUtRqtXj58mXs7+9HtVqN/f39SJIkfvKTn8y8MlPeGd/kSk5pmsbOzs44Cz5N09jf34+dnZ2Jr280GhMHf8PhMHZ3d2N3d3e8ZWKapjceu6xcLsfZ2VlEROzv70e9Xo9msxnNZjOSJJnrJqUkSaJWqy1lddt5LwLlv1e1Wo3PP/88qtXq+PfKsmxrs/wBAJhs2eOERejfT6Z/DwAAq1ekHbsBAGAeeWLxl19+eWUuOJ/vPz09nXmeudlsRrlcvvfiQf1+P168eBGff/55NJvNaLVaV+ahd3d3Y29vb7zTRr7A0XW9Xm+cKJJlWezv78fu7u7ERZIiPl7rODk5WduCQnl58mssrVbrRvnmeU2z2VzK58x7LAC2w85oNBptuhAAD0Wepd5oNG5skTePo6OjaDab0W63VzpA6fV60Wq1xjc7Md3e3l60Wq17r3C7iMFgEPV6PS4uLtZ2TAAAFrfsccI0+vf3p38PAACrt7u7G1mWRb/fl2QBAABbpNfrRZIkS+/HP+brGa4RABSbHSwAlijPQM5Xg12U1ZyKKU3TSNM0Xrx4semiAACwBZY9TmC59O8BAGD10jSNLMsiwjUPAADYJoeHh1EqlW7044+OjiJN0w2VCgBWS4IFwBLlW+rdd/u+2+Q3Yi3r81iOTqcTlUpl5m0dAQB43JY9TmC59O8BAGD1er1eRBgXAQDANjk6Oorj4+MbiRSDwSC63W6USqUNlQwAVkuCBcCS5MkQSZIsZQAxHA4jyzIXGwqo1+tFvV7fdDEAANgCyx4nsHz69wAAsHp27AYAgO0yHA7j9PQ03r59G8fHx7G7uxvNZjPq9XrU6/XodDqbLiIArMwnmy4AwEOxjIsDvV4v3r17F1mWxcnJSUR83Da7Wq1GkiRRrVaj0WgspbzMZzgcRpqm8eLFi00XBQCALeAmomLTvwcAgPUolUpRKpXi9evXmy4KAAAwg3fv3o2TKNrtdkR83NGiVCrF6empRaUAeNAkWAAsQZZl4+2tF1Gr1aJWqy2hRKzKu3fvolKpRJIkmy4KAAAFt6xxAqujfw8AAOthdVsAANgueVLF5X9ffwwAHqonmy4AwLbb3d2N3d3dOD8/j4iPu1Ds7OzE7u7uhkvGKhwdHUWz2dx0MQAAKDjjhO2gfw8AAAAAAADAZRIsABZ0cXERo9Fo/N/85+LiYtNFu5c0TWNnZ2f8k2XZpotUOMPhMLIsW+suI61Wa1wn1Wp1bccFAGAxmx4n6N9Pp38PAAAAAACb9ZiuZ7hGALA9dkaj0WjThQBgs7IsizRNrzxWLpc3VJriGg6HMRgM4uDgYG3HVDcAANyXPuRs9O8BAAAAAGBzHtuc+WP7fQG2mQQLAAAAAAAAAAAAAADg0Xuy6QIAAAAAAAAAAAAAAABsmgQLAAAAAAAAAAAAAADg0ZNgAQAAAAAAAAAAAAAAPHoSLAAAAAAAAAAAAAAAgEdPggUAAAAAAAAAAAAAAPDoSbAAAAAAAAAAAAAAAAAePQkWAAAAAAAAAAAAAADAoyfBAgAAAAAAAAAAAAAAePQkWAAAAAAAAAAAAAAAAI/e/wcySWs8NbArsQAAAABJRU5ErkJggg==",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAADFgAAAk4CAYAAADm4+h6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVjVZf7/8deBw74psogCLrhv4IIKWqJmTlPmWFq2qC1q0960TdPyK9vLaaqpmWm0pixHa3TanLTSQgzXEhVxi9wQEhRRkZ3DOb8/+HoEgcN2gAM8H9fFdd3n3O97Ocfbc87nfM77cxssFotFAAAAAAAAAAAAAAAAAAAAAAAA7ZhTS08AAAAAAAAAAAAAAAAAAAAAAACgpZFgAQAAAAAAAAAAAAAAAAAAAAAA2j0SLAAAAAAAAAAAAAAAAAAAAAAAQLtHggUAAAAAAAAAAAAAAAAAAAAAAGj3SLAAAAAAAAAAAAAAAAAAAAAAAADtHgkWAAAAAAAAAAAAAAAAAAAAAACg3SPBAgAAAAAAAAAAAAAAAAAAAAAAtHskWAAAAAAAAAAAAAAAAAAAAAAAgHbP2NITaE9MJpN27Nih4OBgOTmR2wIAAIDGM5vNysrK0tChQ2U08vHe0XFMAAAAAHvjmKD14bgAAAAA9sZxQevCMQEAAADsjWMC++IZbEY7duzQyJEjW3oaAAAAaIO2bdum6Ojolp4GasExAQAAAJoKxwStB8cFAAAAaCocF7QOHBMAAACgqXBMYB8kWDSj4OBgSdLmzZsVGhrawrMByplMJiUlJWnYsGFkrcFhsC7hqFibcETp6emKiYmxftaEY+OYABfjvQUXY03gYqwJXIw1gYtxTND6nP+32rZtm0JCQlp4NmhNeA+AI2E9wpGwHuEoWnItHj9+XCNHjuS4oJXgXAHsifdB2BPrCfbEeoK9sJbqhmMC+2KlNaPz2/p17tyZAyQ4DJPJpCNHjig0NJQ3HzgM1iUcFWsTjshkMkkSW0i3EhwT4GK8t+BirAlcjDWBi7EmcDGOCVqf8/9WISEhHBegXngPgCNhPcKRsB7hKBxhLXJc0DpwrgD25AivPWg7WE+wJ9YT7IW1VD8cE9gHzyIAAAAAAAAAAAAAAAAAAAAAAGj3SLAAAAAAAAAAAAAAAAAAAAAAAADtHgkWAAAAAAAAAAAAAAAAAAAAAACg3SPBAgAAAAAAAAAAAAAAAAAAAAAAtHskWAAAAAAAAAAAAAAAAAAAAAAAgHaPBAsAAAAAAAAAAAAAAAAAAAAAANDukWABAAAAAAAAAAAAAAAAAAAAAADaPRIsAAAAAAAAAAAAAAAAAAAAAABAu0eCBQAAAAAAAAAAAAAAAAAAAAAAaPeMLT0BAAAAAAAAAADQtAqyC7RnxR4d/OagMndkKi8rTwYng7yDvdV1ZFcNvnmw+lzVRwaDoda+jm06pm1vb1NaYpryT+TLK9BLoTGhir4rWt3jutdpPmaTWdsXb9fupbuVvT9bpmKT/ML91HdqX42+f7S8O3s38hEDAAAAAAAAAADUHwkWAAAAAAAAAAC0Yd8+/K1+/NuPMhWZ5BnoqcE3DVan3p1ksVh0JP6I9q7cqz3/2aMeE3poxooZ8vD3qLGvhGcTlLAgQUZ3o4bOHaqgQUHK3petpMVJ2rtir2IfidWkVyfZnE9BdoGWXbVMGVszFNAvQGP+OEau3q5K/SpVG1/eqB3v7dB1K69Tt0u72fupAAAAAAAAAAAAsMmppSdgDxaLRW+//ba8vb1lMBi0fv16u4+xevVqXX311eratavc3d3Vo0cP3XrrrUpKSrL7WAAAAAAAAAAA2Evy0mSZikzqNq6b7k29V795/TeKvitaI+8eqetWXqeZX8yUwdmgw98f1vIpy2UxW6rt56d3ftL6p9fL2dVZs7+frSvevELD5w3X5L9M1i0bbpGLl4s2LdykTX/eVONczCazPpn2iTK2ZigsNkzzk+ZrzKNjFH1XtG786kaN/dNYFZws0MdTP9ap1FNN9ZQAAAAAAAAAAABUq9XvYHHw4EHddttt2rBhQ5P0bzab9fvf/16LFy+Wv7+/5s+frx49euinn37SkiVLtHTpUr322mu67777mmR8AAAAwJ4sFot+/NuPWvfYOpXml2pO/Bx1j+terz4OfHlAKctTlLEtQ+eOn5PRzSjvzt4K6BegbnHd1PfqvurYo2ON7c0ms7Yv3q7dS3cre3+2TMUm+YX7qe/Uvhp9/2h5d/Zu5KMEAAAAcDEno5OmfThN7n7uVer6XNVHw+YO0/Z/btexTce05z97NGjmoEox+SfztfaRtZKkUfePUuio0Er1IUNDFPtwrBIWJCj+qXgNmjlIvqG+Vcbavni70hLTJIM0ZfEUuXi4VKqPWxCnvSv2KueXHH374Le6YdUNjXzkAAAAAKpz6udT2vGvHfrl61+Um56r0vxSeQV7yS/cT2FjwtTzsp7qObFnje2PbTqmbW9vU1pimvJP5Msr0EuhMaGKviu63ucdAAAAAMCRtNodLM7vWhEZGamdO3dq9OjRTTLO448/rsWLFysgIEBbt27VSy+9pPnz52vRokX64osvZDab9cADD2jFihVNMj4AAABgLzkHc7QkbonW3LtGpfml9W5/7vg5fTjxQ3089WOd+/Wchs0bpiveukKxj8TK6GHU/s/365sHvtGPf/uxxj4Ksgv0r7H/0uq7Vqswp1Bj/jhGk16dpI49Omrjyxv1jyH/0NENRxvzMAEAAABUo3NUZ/mF+9VY3//a/tbyz6t+rlK/9c2tKskrkSQNmzus2j6GzR0mGSRTkUmbXqu6i4XFYlHiS4mSpPAx4QocEFglxtnFWZG3RJbP438/K3NXpo1HBQAAAKAhNjy/Qf8Y/A/t/vdu9byspya+OFGXvXKZwseEK31zuja+vFErr19ZY/uEZxP0/iXv68AXB9RvWj9d8dYVGjBjgH5Z84uWjF+itY+ubcZHAwAAAAD21Wp3sFiwYIEWLFigyZMna/HixXrvvfe0ZcsWu46xZ88eLVy4UJL03HPPqVevXpXqf/Ob32jWrFlasmSJ7r33Xv32t7+Vl5eXXecAAAAANFbFXSucnJ0UOjpU6VvS69VHwakCfXTZRzr18ylN/2S6Bl43sFL9JY9fok9v/lS7/727xj7MJrM+mfaJMrZmKCw2TLPWzbJerTb6rmh99/h3SnwpUR9P/Vhzt81Vp96d6v9gAQAAAFRx7fJr5dnJ02ZMh24drOWzaWer1O9dubc8rnsH+ffyr7YP31BfBfQLUPa+bO1buU+T/zJZBoPBWp++JV25x3IlST0u61HjXCImRSj+yfjycVfsVefIzjbnDgAAAKDu1v5xrTa9ukmDZg7S1e9dLRfPyrvKDZk9RMt+u6zG9j+985PWP71eRnejZn8/u9LudkNmDdH7l7yvTQs3ySvIS7EPxzbZ4wAAAACAptKqd7B499139fXXXyssLKxJxnjppZdkNpvl4eGhm266qdqYefPmSZKysrL07rvvNsk8AAAAgMZIWJCgNfeuUfjYcN2ZcqciJkfUu4/Vd6/Wyb0nFfdsXJXkivPGPT1OHp085OLlUm399sXblZaYJhmkKYunWJMrzotbECf/Xv4qOlOkbx/8tt5zBAAAAFC9HuN7KHhIsM2YojNF1vLFn+lzM3J16sApSeU7YdgSMjSkvE16rnJScyrVHf7+sLVsq5/gyGAZnAxV2gAAAABonF++/kWbXt2kwIGB+t2Hv6uSXCFJvSb3Us9JPatN0s4/ma+1j5TvTjHq/lGVkiuk8uOB80kV8U/FKzc9twkeBQAAAAA0rVabYPHMM8/o9ttvb7L+i4uLtWrVKknSqFGj5OPjU21cTEyMvL29JUkrVqxosvkAAAAADWWxWDTl3Sm6+eub5RfmV+/2xzYd055P9sjVx1WjHxhdY1yn3p30aPajGr9gfLVzSHwpUZIUPiZcgQMCq8Q4uzgr8pZISdLP//tZmbsy6z1XAAAAAA1z+vBpa7nbpd0q1Z1IOWEt+4b52uynYv2JPScq1Z1MOWkt2zo2MboZ5RlY/mOuk3tO1hgHAAAAoO4sFou+fuBrSdLYx8bK2cW5xtibv75Z9xy4p8r9W9/cqpK8EknSsLnDqm07bO4wySCZikza9NomO8wcAAAAAJpXq02wqLiteFP46aeflJtbnkkfFRVVY5yTk5OGDBkiSdq8ebMKCwubdF4AAABAfcU9E6dht1d/oqMukhYnSZIiJkVU2XWirtK3pCv3WPnn6x6X9agxLmLShd019q7Y26CxAAAAANTf/s/2S5KM7kZF3RJVqe7MkTPWslewl81+KtZXbFfffryDyy9sVJxbrMLTfO8OAAAANNbRDUd16sApGZwM6jOlT4P62Luy/Hv7Dt07yL+Xf7UxvqG+CugXIEnat3KfLBZLwyYMAAAAAC2k1SZYNLWUlBRrOSwszGbs+Xqz2az9+/c36bwAAACA+mpMcrLFbNG+z/ZJkoIjgyvVmYpNKi0orVM/h78/bC13jupcY1xwZLAMToYqbQAAAAA0nfwT+TrwxQFJUszDMfLpUnlH55JzJday0d1os6+KSdkV20lS8bniOvdj9LhQf3E/AAAAAOrvfHKEXzc/ufu5W++3WCwqPldcayJEbkauTh04Jcn29/ySFDI0pLxNeq5yUnMaM20AAAAAaHa2z2C0Y0eOHLGWg4ODaw68qP7IkSMaOnSozXiz2ayysrJGzQ+wl7KyMuuabOqdYYC6Yl3CUbE24YjMZnOT9n8q9ZSKz5b/CMov3E95WXlKfDlR+/67z7ojhXtHd/WY0EOxD8cqdHRotf2cTDlpLfuF+dU4ntHNKM9AT+Vn5evknpM1xrV2HBPgPN5bcDHWBC7GmsDFWBMwFZtUVnzhs2TR2aJG97n2kbUyFZkUMixElz55aZX60sILidXOrs42+6pYf3FCtqnQZJd+2oqysjKOC1AvvAfAkbAe4UhYj3AULbkW6/K58vhPxyWVf9dvMVu04/0d2vHuDv36068ym8xyMjopZHiIImdHati8YXJ2qfyZ/UTKCWvZN8zX5lgV60/sOaFOfTrV5+G0G5wrgD3wPgh7Yj3BnlhPsBfWUt3wudK+SLCowblz56xld3d3G5GSh4dHte1qsnnzZh04cMB629nZWUYj/xRoGWazWceOHZPZbJaTE5vawDGwLuGoWJtwRKdOnWrS/k/svnDCJHNnpr558Bu5eLho5H0jFTQwSEVnirT737u177/7tO+/+zT+ufHV/iDrzJEz1rJXsJfNMb2DvZWfla/i3GIVni6UR0cPm/GtEccEOI/3FlyMNYGLsSZwMdYEjm44qrQNadbb+eb8RvWXvDRZuz7cJa8gL1333+tkdKv6ubTirhRlJbZP0lSsd/F0qVRXcVeKxvTTVmzcuFEdO3a03ua4ALXhPQCOhPUIR8J6hKNoybV4+vTpWmOydmdJKt+5+qPLP9KR+COKvCVSMQ/FyNnVWWkb07TtrW1affdqJX+UrBtW3SDPAE9r+/p8z1+xvmI7VMa5AtgD74OwJ9YT7In1BHthLdVNXY4JUHd8Kq9BYWGhtezq6moztmJ9QUFBrX2/8847lQ6IIiMjFRUVVf9JAnZgsVh09uxZSSK7Dw6DdQlHxdqEI7CYLbKYL2zTXZcE38bIP3Hhx1pb39yqDj06aO6WufIKunByZMjNQ/TNQ99oy1+2KP6pePmF+ylydmSlforPFVvLRnfbhyEVf3RVcq6kTSZYcEyA83hvwcVYE7gYawIXY01A4VLYjWHWm+fOnZMSGtbV0Q1HtWreKrn5uunG1TeqQ/cO1ca5+lz4DtxUZKo25ryKu11UbCdJbj5ude6n4m4XF/fTVvzjH//guAD1wnsAHAnrEY6E9QhH0Zxrscq5gjzb5wpKC0pVml/+WT3th/KE7en/ma6BMwZaY/pe3VcDpg/QB5d+oPQt6Vo5c6VmrZ1lfSwl50qssbV9z18xSbtiO1TGuQLYA++DsCfWE+yJ9QR7YS3VTVP/fqi9IcGiBhV3pSgpsX2wV7He09PTRmS5v/71rwoNDbXednNzk5ubm40W9rXiuhXNNlZNZvxnRktPAf/HZDJp8+bNiomJ4UoIcBisSzgq1iYcwQ8v/aCNL2603j7rdLZJxyvOLa50+7KXL6uUXHHexBcnKmV5ivKO52ndY+s08PqBla58W/HHUc6uzlXaV1SxvrSg1EZk68UxQTmOC3hvQVWsCVyMNYGLsSZwsbS0ND3w4AP1bpexLUPLpyyXs6uzbv7mZnUZ3qXG2IqJF/lZtnfMqFh/ccJGh+4dlL4l3Rrn29W3xn7ysvIkSW6+bm0y6VqS3nrrLXXt2tV6u7mPC9D68B4AR8J6bH6O8H2Oo36Xw3qEo2jOtVjlXIHF9rmCi7/r73VFr0rJFed1je6qEXeN0Ja/bNHh7w7r51U/q+/VfSVVTqbme377aOlzBWgbeB9su1ri85/FYJEh2CBjllEGi8FhP/+hdeD1CfbCWqqbjIwM3XfffS09jTaDlVYDHx8fa7moqMhmbMXdLiq2q0nHjh0VGBjY8Mk1krPZ9oFuc+CA0HGc32LSzc2NNx84DNYlHBVrE44g7k9xuuTBS6y309LS9Prg15tsPHOZ2Vp2dnW2nki5mNHNqH7T+umnv/+kvON5OvzdYfX+be8L9RV2pSgrKbM5ZsV6F08XG5GtF8cE5Tgu4L0FVbEmcDHWBC7GmsDFXFzq/5n51+2/aunkpbJYLJr17SyFjg61GR80KMhazj2WazM2N/1CfdDAoEp1gYMufAY+e+ysQoaFVNuHqdikgpPlu0UHDmy5z81NLSAgoEWPC9D68B4AR8J6bH6O8H2Oo36Xw3qEo2jOtXjxuYKMjAy9PqDmcwUVv+uXpAEzBtQYO2jmIG35yxZJUvLSZOt5gYq7UvA9v3209LkCtA28D7ZdLfH5z2wwy0lOcjI7ycni5LCf/9A68PoEe2Et1Y2ra9vcCbqlOLX0BBxV9+7dreWsrCybsRXrK7YDAAAA7M3oZpSbr5v1z8W7aU9MuPlc+NLMv7e/zW2/O0d2tpYztmXU2I+pyCRbKu524erDASAAAABgT8d3HNdHkz6S2WTWzV/fXGtyhST5dvVVpz6dJEmZOzNt9590vLxNqK/8e/tXqusxoYe1bKufrF1ZspgtVdoAAAAAKHfxuYLavkuv+B29JAUPDq4xNnhIsGQoL1f8rr/iGLV9z19xtwu+5wcAAADQ2pBgUYNBgwZZy8eOHbMZm55evqW5k5OT+vXr16TzAgAAAJqTRyePC+WOHjYiJc8AT2s5/0R+pboO3TtcqMuqXHexvKw8SZKbr1utYwIAAACou6zkLH006SOVlZTppjU3KSw2rErM+gXrtWjEoir3n7/C7ZkjZ3T60Olq+8/NyFX2/mxJUv/p/WUwGCrVh44OlW+oryTp8HeHa5znoXWHqowLAAAAoOFcvV3l7HrhSujuHd1rjDW6GeXqXZ4UUfG7/vp8z1+xvmI7AAAAAGgNSLCowYgRI+Tj4yNJ2rlzZ41xZrNZu3btkiTFxMTIw4MfgAEAAKDtCBoYZC2Xldre8ttisVjLBqfKP6QKHHRhi+uzx87W2Iep2KSCkwXlbQayLTYAAABgLydSTujDiR/KVGjSTatvUvjY8Grjzhw+o+Pbj1e5f9R9o6w/skp6N6natjve2yFZJKO7UbEPxVapNxgMGvv4WElSWmKaNRmjIrPJrJ0f7JQk9b6yd6Wd8gAAAAA0jMHJoID+Adbb5lKz7QaWC+3OCxp04XxB7rFcm81z0y/UVzzPAAAAAACtAQkWNXBzc9PVV18tSdq6davy8vKqjduyZYu1bsaMGc02PwAAAKA5BA4ItP6IKi+z+s/E551PjJAkny4+lep6TOhhLWfuzKyxj6xdWbKYLVXaAAAAAGi4k3tP6sOJH6ogu0AxD8fIYrboyPoj1f7V9LnfK8hLkxZOkiRteX2LMn7MqFSfuStTG1/dKEka/9x4604VFxs+b3h5codFWjVvlUoLSyvVr39mvXJSc+TewV2TX5/c2IcOAAAA4P90HdnVWrb1fX9pQalK8kskVf6u37errzr16STJ9vf8knQ8qTxp2zfUV/69/Rs8ZwAAAABoCcaWnkBLSUlJ0TXXXKOCggItW7ZMl156aZWYxx57TMuXL1dhYaGWLVum+fPnV4l59913JUnBwcGaO3duk88bAAAAaE7Ors7qM6WPUpan6GzaWeWfyJdXkFe1sb9u/9Va7jauW6W60NGh8g31VW56rg5/d1hxT8dV28ehdYes5QEzBjT+AQAAAADtnKnIpA8nfqj8E/mSpA3PbtCGZzc0qK8Rvx+hvKw8bXh2g5aMX6Jhc4cpcGCgsvdnK2lxkkrzSxXzcIxiH666e8V5TkYnXf/Z9Vp21TKlJaZp0fBFiro1Sq5erkpdnarUr1LlGeCpGStnqFPvTg2aJwAAAICqBkwfoKTF5bvRZfyYoe5x3auNO77juHUHi4u/6x8wY4B+eOEHnTlyRqcPnVbHnh2rtM/NyLXuVtd/en8ZDIYqMQAAAADgyNrtDhYvvPCCUlNTlZGRoccee6zamEGDBumRRx6RJD355JM6dOhQpfpvv/1WS5YskSS99dZb8vKq/odmAAAAQGsW82CMZJBkkXZ9tKvamJK8Eu3/bL8kKTgyWGGxYZXqDQaDxj4+VpKUlphmPblSkdlk1s4PdkqSel/ZW50jO9vvQQAAAADtlKnIVOtudPUR93Scbv3hVvW5qo/2rtyrNfes0Z6P9yji8gjN/n62Ll94ea19eAZ46rbE2/Tbv/9W7h3clfhSotY+slanD55W7KOx+n3y79V9XHe7zRkAAACA1POyngqODJYk7V66WxaLpdq45I+SreXoO6Mr1Y26b5R11+ukd5Oqbb/jvR2SRTK6GxX7UM3J1wAAAADgqFr1DhZLly61lpOTLxzgrV27Vunp6ZLKd5aYNGlSlbZms9larumgUZJefPFFnTp1Su+++65GjhypO+64Q927d9f27dv1/vvvy8nJSX/5y180Y8YMezwkAAAAwOF0GdFF0XdF68e//agNz21QxOURCh4cbK23mC1ac+8aFZ4qlLObs6YsmlLtFamGzxuulGUpSktM06p5q3TztzfLxcPFWr/+mfXKSc2Rewd3TX59crM8NgAAAKCtc+/grqctT9u1z7DYsCpJ1fXlZHRS9J3RVX6wBQAAAKBpGJwMuvLvV2rJ+CXKSs7Shuc2aNz/G1cp5uC3B8sTJCSN/sNohQwLqVTvFeSlSQsn6as7v9KW17eo37R+6hrd1VqfuStTG1/dKEka/9x4+Yb6NvGjAgAAAAD7a9UJFrNmzar2/hdffNFaHjduXLUJFk888YSSkpJUWFioV155pcYxnJyctHjxYk2bNk3/+Mc/9K9//UunT59W586dNXPmTN1///0aNmxY4x8MAAAA0ISSl15ISM5KzrKWD649qNz0XEmSV7CXIiZFVNv+N2/+RqX5pdr5wU69N/o9Rd0Wpc5RnVV0pkgpy1N0fPtxuXd01/RPpqvryK7V9uFkdNL1n12vZVctU1pimhYNX6SoW6Pk6uWq1NWpSv0qVZ4BnpqxcoY69e5kx0cPAAAAAACA+lo+ZXmNdWaDWTkhOcr4S4acLE5NNocbVt3QZH0DQHsUFhum6Z9M12ezP9P6p9cr7Yc09bm6j4zuRh3beEzJS5NlKbNo1P2jNGlh1d/aSNKI349QXlaeNjy7QUvGL9GwucMUODBQ2fuzlbQ4SaX5pYp5OEaxD7N7BQAAAIDWqVUnWNjaeaI2Q4YMUWpqap3jf/vb3+q3v/1tg8cDAAAAWtJnsz6r9v7EFxOt5W7jutWYYOHk7KSp70/VoBsGKWlxkg58fkBJi5Jk9DCqU59OilsQp5H3jJSHv4fNeXgGeOq2xNu0ffF2JX+UrMSXElVWXCa/cD/FPhqr0Q+Mlk+IT4MfJwAAAAAAAAAAqFm/3/XT3Xvv1pY3t+iX1b/o+8e/l7nMLJ8QH0XOitSIu0ZU2pWiOnFPxyliUoS2/nWr9q7cq4J/FMgzwFMRl0co+u5o9Rjfo5keDQAAzcNWAnpzIQEdAJpPq06wAAAAAFA3T1uetks/EZdHKOLy6pMw6srJ6KToO6MVfWe0XeYEAAAAAAAAAADqzjfUV5cvvFyXL7y8wX2ExYYpLDbMjrMCAAAAAMfQdPu1AgAAAAAAAAAAAAAAAAAAAAAAtBIkWAAAAAAAAAAAAAAAAAAAAAAAgHaPBAsAAAAAAAAAAAAAAAAAAAAAANDukWABAAAAAAAAAAAAAAAAAAAAAADaPRIsAAAAAAAAAAAAAAAAAAAAAABAu0eCBQAAAAAAAAAAAAAAAAAAAAAAaPdIsAAAAAAAAAAAAAAAAAAAAAAAAO2esaUnAAAAAAAAAAAAAAAAAAAAAAAAms4HcR/oaMLRWuNcvFz0eN7jNmOObTqmbW9vU1pimvJP5Msr0EuhMaGKvita3eO622nGLYMECwAAAAAAAAAAAAAAAAAAAAAAUKuEZxOUsCBBRnejhs4dqqBBQcrel62kxUnau2KvYh+J1aRXJ7X0NBuMBAsAAAAAAAAAAAAAAAAAAAAAANq4LtFdNO3DaTZjDE6GGut+eucnrX96vYzuRs3+frZCR4Va64bMGqL3L3lfmxZukleQl2IfjrXbvJsTCRYAAAAAAAAAAAAAAAAAAAAAALRxLp4uCugX0KC2+SfztfaRtZKkUfePqpRcIUkhQ0MU+3CsEhYkKP6peA2aOUi+ob6NnnNzc2rpCQAAAAAAAAAAAAAAAAAAAAAAAMe19c2tKskrkSQNmzus2phhc4dJBslUZNKm1zY15/TshgQLAAAAAAAAAAAAAAAAAAAAAABQo70r90qSOnTvIP9e/tXG+Ib6WnfI2LdynywWS7PNz15IsAAAAAAAAAAAAAAAAAAAAAAAoJ0pPlcsi7n2JIjcjFydOnBKktQ5qrPN2JChIeVt0nOVk5rT+Ek2M2NLTwAAAAAAAAAAAAAAcMHyKctbegoAAAAAAABog0oLSpXwbIL2rtyr0wdPq7SgVAYngzr17aTeV/ZWzB9i5NPFp0q7EyknrGXfMF+bY1SsP7HnhDr16WS/B9AMSLAAAAAAAAAAAAAAAAAAAAAAAKCN+/XHX3Vi9wlF3RalS5+8VC5eLsren62kRUna/OfN2v7P7bpm6TXqe3XfSu3OHDljLXsFe9kco2J9xXatBQkWAAAAAAAAAAAAAAAAAAAAAAC0AqZik8qKy6y3S86V1LmtV5CX5sTPUeCAQOt9fa7so5H3jNTyKct1aO0hrZixQnPi5ygsNqzaMYzutlMQXDxcGjQ3R0GCBQAAAAAAAAAAAAAAAAAAAAAArUDiS4lKWJBgvX1WZ+vUbvrH0+Xs5iyPjh5V6oxuRv3ug9/pzZ5vqqy4TKvvWa07ku6w1pcWllrLzq7ONsepWF9aUGoj0jGRYAEAAAAAAAAAAAAAAAAAAAAAQCsw9k9jFfNgjPV2RkaGXh/weq3tvDt726z36eKjXr/ppQNfHFDmjkwd33FcIUNDJFXelaKspKymLqrUu3i62Ih0TE4tPQEAAAAAAAAAAAAAAAAAAAAAAFA7o5tRbr5u1j9XH1e79d1lRBdr+dimY9ZyxTFMRSabfVTc7cKec2suJFgAAAAAAAAAAAAAAAAAAAAAANDOeQV5Wct5mXnWcofuHazl/Kx8m31UrK/YrrUgwQIAAAAAAAAAAAAAAAAAAAAAgHbOYrZYy07OF1INggYFWcu5x3Jt9pGbfqE+aGCQjUjHZGzpCQAAAAAAAAAAAAAA4IiWT1ne0lMAAAAAAABotAOrDihrV5YueeISGQyGGuMq7lrhHeJtLft29VWnPp106udTytyZaXOs40nHy9uE+sq/t38jZ9782MECAAAAAAAAAAAAAAAAAAAAAIA2at9/9yn+qXjlZ+XbjEvfkm4th48Nr1Q3YMYASdKZI2d0+tDpatvnZuQqe3+2JKn/9P42kzkcFQkWAAAAAAAAAAAAAAAAAAAAAAC0calrUmusO5V6SofWHZIkhcWGKWhgUKX6UfeNkqu3qyQp6d2kavvY8d4OySIZ3Y2KfSjWTrNuXiRYAAAAAAAAAAAAAAAAAAAAAADQxn33p+906udTVe4vzCnUf2/4ryxlFrl4uuiKt6+oEuMV5KVJCydJkra8vkUZP2ZUqs/clamNr26UJI1/brx8Q32b4BE0PWNLTwAAAAAAAAAAAAAAAAAAAAAAADSNwAGBcnJxUn5Wvt6JekeDZg5Sl+gucnZ1Vva+bO36cJcKThbIK9hL0z+ZrpChIdX2M+L3I5SXlacNz27QkvFLNGzuMAUODFT2/mwlLU5SaX6pYh6OUezDrXP3CokECwAAAAAAAAAAAAAAAAAAADig5VOWt/QUAKBNGPPoGEXOjtS+T/fp0NpDOrrhqPZ8skdlpWXy6Oih4CHB6nNVHw29fajcfNxs9hX3dJwiJkVo61+3au/KvSr4R4E8AzwVcXmEou+OVo/xPZrpUTUNEiwAAAAAAAAAAAAAAAAAAAAAAGjDvDt7K/quaEXfFd3ovsJiwxQWG2aHWTkep5aeAAAAAAAAAAAAAAAAAAAAAAAAQEsjwQIAAAAAAAAAAAAAAAAAAAAAALR7JFgAAAAAAAAAAAAAAAAAAAAAAIB2jwQLAAAAAAAAAAAAAAAAAAAAAADQ7pFgAQAAAAAAAAAAAAAAAAAAAAAA2j0SLAAAAAAAAAAAAAAAAAAAAAAAQLtHggUAAAAAAAAAAAAAAAAAAAAAAGj3SLAAAAAAAAAAAAAAAAAAAAAAAADtHgkWAAAAAAAAAAAAAAAAAAAAAACg3SPBAgAAAAAAAAAAAAAAAAAAAAAAtHvGlp4AAAAAAAAAAABoPhaLRT/+7Uete2ydSvNLNSd+jrrHdbfZZoFhQb3Huf6z69Xvd/0q3bf+mfVKWJBQp/bzfpynLiO61HtcAAAAAAAAAACAhiLBAgAAAAAAAACAdiLnYI6+vO1LHd1wtMnH8gr2avIxAAAAAAAAAAAA7IkECwAAAKAdaciVamtSkl+ifwz6h84cOSNJuv/w/erQvUOt7cwms7Yv3q7dS3cre3+2TMUm+YX7qe/Uvhp9/2h5d/Zu0HwAAAAA1KzisYCTs5NCR4cqfUt6vfro97t+mvjSRJsxx5OO69ObPlWnvp0UFhNWY9zd++6udby6HF8AAAAAAAAAAADYEwkWAAAAQDth7yvVfv/k99bkiroqyC7QsquWKWNrhgL6BWjMH8fI1dtVqV+lauPLG7XjvR26buV16nZpN7vMEQAAAEC5hAUJSliQoIjJEZqyeIp2vLej3gkWbn5uCugXYDNm8182S5KGzx9uM662fgAAAAAAAAAAAFoCCRYAAABAG2ePK9VeLOPHDG17a1u92phNZn0y7RNlbM1QWGyYZq2bJRcPF0lS9F3R+u7x75T4UqI+nvqx5m6bq069OzVqjgAAAAAusFgsmvLuFA27fViD2ncb163WpIiSvBKlLE+Rs5uzIudENmgcAAAAAAAAAACAluTU0hMAAAAA0LQSFiRozb1rFD42XHem3KmIyRGN6q+stEyr5q6Si4eLekzoUed22xdvV1pimmSQpiyeYk2uOC9uQZz8e/mr6EyRvn3w20bNEQAAAEBlcc/ENTi5QpJuWX+Lxj421mbM7mW7VZJXogHXDpBnJ88GjwUAAAAAAAAAANBSSLAAAAAA2rjzV6q9+eub5Rfm1+j+Nr66UVnJWZrw4gT5hvnWeQ6JLyVKksLHhCtwQGCVGGcXZ0XeUn6V25//97Myd2U2eq4AAAAAyhkMhiYfY/ui7ZKk4XcMr1e7kvwSlZWWNcWUAAAAAAAAAAAA6sXY0hMAAAAA0LTinomz24+pTv18Sj88/4O6juyqkXeP1Be3fVGndulb0pV7LFeS1OOymne9iJgUofgn4yVJe1fsVefIzo2fNAAAAIAmd3zHcR3fflwB/QLU7dJutcbvXLJTO97doZN7T6owp1CS5NPVRz0m9NDoB0YrZFhIU08ZAAAAAAAAAACgChIsAAAAgDbOXskVFotFq+atkrnMrCnvTpHBqe79Hv7+sLXcOarmpIngyGAZnAyymC2V2gAAAABwbNv/Wb57xbD5w+oU/8UtX6jf7/rp8tcul1eQl879ek4py1OU/FGykpcm69KnLtX4BeObcsoAAAAAAAAAAABVkGABAAAAoE62L9quoxuOauzjYxU8OLhebU+mnLSW/cL8aowzuhnlGeip/Kx8ndxzssY4AAAAAI6jJL9Eu5ftlrObsyJnR9Yab3A26Jp/X6NB1w+qdP+wucMU///iteG5Ddrw7Aa5+bgp9uHYppo2AAAAAAAAAABAFU4tPQEAAAAAju/cr+e07o/r5N/bX+OeGlfv9meOnLGWvYK9bMZ6B3tLkopzi1V4urDeYwEAAABtmanYpOLcYutfaV5pS09JKctTVHKuRAOmD5BnJ0+bsaMfGK0/HPtDleSK8+KeiVNwZHlCd/z/i1deZp7d5wsAAAAAAAAAAFATdrAAAAAAUKvVd69W8dlizfx8pozu9T+MKD5XbC3X1t7ocaG+5FyJPDp61Hs8AAAAoK1KfClRCQsSrLfPOp1twdmU275ouyRp+Pzhtca6d3CXewf3GusNTgZF3RKlb/7wjUyFJu1evlsxf4ix21wBAAAAAAAAAABsIcECAAAAaEVMxSaVFZdZbzfH1Wr3rtyr/Z/v19Dbh6p7XPcG9WEqNFnLzq7ONmMr1pcWtPzVeAEAAABHMvZPYxXz4IWEg7S0NL0++PUWm0/mzkz9+uOvCugXoG6XdrNLn11GdLGW0zelS3+wS7cAAAAAAAAAAAC1IsECAAAAaEWa+2q1RWeKtObeNfIK9tKkhZMa3E/FXSnKSspsRFaud/F0afCYAAAAQFtkdDPK6Hbh87WLd8t+Zv7pnz9JkobfUfvuFXXlFeRlLedl5tmtXwAAAAAAAAAAgNqQYAEAAAC0Is19tdpvH/5WeZl5uvbja+XR0aPB/bj5uFnLpiKTjcjKu124+rg2eEwAAAAATaskv0Qpy1JkdDcqcnak3fq1mC3WssHZYLd+AQAAAAAAAAAAakOCBQAAANCKNOfVao8kHNGOf+1Qt3Hd1HNiTxVkF1SJKSu+sNtE4elCuXqXJ0QYnA2VEjI6dO+g9C3pkqT8rHz5dvWtcdy8rPIr1Lr5ujUqqQMAAABA00r5OEXFucUacvMQefjX/tk9KzlLB748oCE3D1GH7h1qjKu4a4VPiI89pgoAAAAAAAAAAFAnJFgAAAAAqNaR+COSRTqacFQLAxfWGr9o2CJr2a+bnx448oD1duCgQGv57LGzChkWUm0fpmKTCk6WJ3IEDgysNgYAAACAY0halCRJGjZ/WJ3ijycdV/xT8fLv5W8zweJ8crYkhY0Na9QcAQAAAAAA6mv5lOUtPQUAANCCSLAAAAAAUK3I2ZEKHxtuM2bTwk06+O1BSdK0pdPkHewtSTJ6VD7U6DGhh+IVL0nK3JmpflP7Vdtf1q4sWcwWaxsAAAAAjikrOUsZ2zIU0D9A3S7pVq+2v6z5RYNmDqq2rqykTDve2yFJcvVxrTEOAAAAAAAAAACgKZBgAQAAAKBaHXt2VMeeHW3GJC9NtpbDx4TXeBXa0NGh8g31VW56rg5/d1hxT8dVG3do3SFrecCMAfWeMwAAAIDm8dM/f5IkDZ8/vN5tk/+drL5T+6r/Nf0r3W8uM+uru79Szi85kqTL/3y5PDt5Nn6yAAAAAAAAAAAAdUSCBQAAAIAmZzAYNPbxsVp912qlJaYpe3+2AvoFVIoxm8za+cFOSVLvK3urc2TnFpgpAAAA0HZVTJDOSs6ylg+uPajc9FxJklewlyImRdjsp7SgVLv/vVtGd6MiZ0fWeXy/cD+5d3RX0eki/Wf6f9T7it7qcVkPeXT0UG56rlI+TtHJPSfl5OKky1+7vEHJGwAAAAAAAAAAAI1BggUAAACAZjF83nClLEtRWmKaVs1bpZu/vVkuHi7W+vXPrFdOao7cO7hr8uuTW3CmAAAAQNv02azPqr0/8cVEa7nbuG61JlikfJKi4rPFGnLzEHn4e9R5/B4TeujBjAf186qflbo6VceTjivhmQSVFpTK1cdV/hH+GvPHMRpx5wh16Nahzv0CAAAAAAAAAADYCwkWAAAAQDtgryvVStL+z/erJK9EknT60OlK93sGeEqSwmLD1LFnx0rtnIxOuv6z67XsqmVKS0zTouGLFHVrlFy9XJW6OlWpX6XKM8BTM1bOUKfenRr+YAEAAABU62nL03bpZ+itQzX01qENauvi4aKB1w3UwOsG2mUuAAAAAAAAAAAA9kSCBQAAANAO2OtKtZL09QNf6+zRs1Xu/+YP31jLU9+fWiXBQpI8Azx1W+Jt2r54u5I/SlbiS4kqKy6TX7ifYh+N1egHRssnxKcuDwkAAAAAAAAAAAAAAAAA7IoECwAAAKAdsNeVaiXpgSMPNKq9k9FJ0XdGK/rOaPtMCAAAAAAAAAAA2PRB3Ac6mnC01jgXLxc9nve4zZhjm45p29vblJaYpvwT+fIK9FJoTKii74pW97judpoxAAAAALQMEiwAAAAAAAAAAAAAAAAA1Crh2QQlLEiQ0d2ooXOHKmhQkLL3ZStpcZL2rtir2EdiNenVSS09TQAAAABoMBIsAAAAAAAAAAAAAAAAgDauS3QXTftwms0Yg5Ohxrqf3vlJ659eL6O7UbO/n63QUaHWuiGzhuj9S97XpoWb5BXkpdiHY+02bwAAAABoTiRYAAAAAAAAAAAAAAAAAG2ci6eLAvoFNKht/sl8rX1krSRp1P2jKiVXSFLI0BDFPhyrhAUJin8qXoNmDpJvqG+j5wwAaDnLpyxv6SkAANAinFp6AgAAAAAAAAAAAAAAAAAc19Y3t6okr0SSNGzusGpjhs0dJhkkU5FJm17b1JzTAwAAAAC7IcECAAAAAAAAAAAAAAAAQI32rtwrSerQvYP8e/lXG+Mb6mvdIWPfyn2yWCzNNj8AAAAAsBcSLAAAAAAAAAAAAAAAAIB2pvhcsSzm2pMgcjNyderAKUlS56jONmNDhoaUt0nPVU5qTuMnCQAAAADNzNjSEwAAAAAAAAAAAAAAAADQtEoLSpXwbIL2rtyr0wdPq7SgVAYngzr17aTeV/ZWzB9i5NPFp0q7EyknrGXfMF+bY1SsP7HnhDr16WS/BwAAAAAAzYAECwAAAAAAAAAAAAAAAKCN+/XHX3Vi9wlF3RalS5+8VC5eLsren62kRUna/OfN2v7P7bpm6TXqe3XfSu3OHDljLXsFe9kco2J9xXYAAAAA0FqQYAEAAAAAAAAAAAAAAAC0cV5BXpoTP0eBAwKt9/W5so9G3jNSy6cs16G1h7RixgrNiZ+jsNgwa0zJuRJr2ehu+6dGLh4u1bYDAAAAgNbCqaUnAAAAAAAAAAAAAAAAAKBuTMUmFecWW//qksgw/ePpunv/3ZWSK84zuhn1uw9+J2c3Z5WVlGn1Pasr1ZcWllrLzq7ONsepWF9aUGojEgAAAAAcEztYAAAAAAAAAAAAAAAAAK1E4kuJSliQYL19VmdrbePd2dtmvU8XH/X6TS8d+OKAMndk6viO4woZGiKp8q4UZSVlNvupWO/i6WIjEgAAAAAcU6vfwSI7O1tPPfWUBg0aJG9vb/n7+ysmJkZ//etfVVJin60G9+/fr/vuu09DhgyRj4+PXFxcFBQUpIkTJ+pvf/ubCgsL7TIOAAAAAAAAAAAAAAAAYMvYP43VY2cfs/7ds/ceu/TbZUQXa/nYpmPWsquPq7VsKjLZ7KPibhcV2wEAAABAa9GqEyy2bdumIUOG6Pnnn1eXLl30yiuv6PHHH1deXp7uv/9+jR49Wr/++mujxvjb3/6mIUOG6K233pKzs7MefvhhvfXWW7rhhhv0448/6p577lFUVJQOHTpkp0cFAAAAAAAAAAAAAAAAVM/oZpSbr5v1z16JDF5BXtZyXmaetdyhewdrOT8r32YfFesrtgMAAACA1sLY0hNoqLS0NF111VU6efKkHnjgAb3++uvWunvvvVdXXHGF4uPjdfXVV2vjxo1yc3Or9xjffPON7rmnPMv/xhtv1JIlS2Q0XnjKHnzwQUVHR+vnn3/WVVddpV27dsnFhe0NAQAAAAAAAAAAAAAA0LpYzBZr2cn5wjVbgwYFWcu5x3Jt9pGbfqE+aGCQjUgAAAAAcEytdgeLRx55RCdPnlR4eLhefvnlSnVubm5avHixnJ2dtX37dr399tsNGuPVV1+VJLm4uOjNN9+slFwhSd26ddOTTz4pSdq3b58+//zzBo0DAAAAAAAAAAAAAAAANIUDqw5ow/MbZLFYbMZV3LXCO8TbWvbt6qtOfTpJkjJ3Ztrs43jS8fI2ob7y7+3f0CkDAAAAQItplQkWqampWrFihSRp9uzZ1e5OERERofHjx0uSXnnlFZlMpnqP8+OPP1r7CggIqDZm5MiR1vLmzZvrPQYAAAAAAAAAAAAAAADQVPb9d5/in4pXfla+zbj0LenWcvjY8Ep1A2YMkCSdOXJGpw+drrZ9bkausvdnS5L6T+8vg8HQmGkDAAAAQItolQkWK1eutGbVX3bZZTXGTZo0SZJ08uRJrV+/vt7jlJSUSJI8PDxqjPH09LSW8/NtH4gCAAAAAAAAAAAAAAAALSF1TWqNdadST+nQukOSpLDYMAUNDKpUP+q+UXL1dpUkJb2bVG0fO97bIVkko7tRsQ/F2mnWAAAAANC8WmWCxffff28tR0VF1Rg3dOjQatvUVWRkpCTpl19+qXEHjH379lnLvXv3rvcYAAAAAAAAAAAAAAAAQFP77k/f6dTPp6rcX5hTqP/e8F9Zyixy8XTRFW9fUSXGK8hLkxaWX+h0y+tblPFjRqX6zF2Z2vjqRknS+OfGyzfUtwkeAQAAAAA0PWNLT6AhUlJSJEk+Pj7y8/OrMS4sLMxa3rNnT73HefTRRzV9+nSdO3dOb731lv7whz9Uqi8rK9Mrr7wiSfL29tZNN91U7zEAAAAAAAAAAAAAOIblU5a39BQAALC7wAGBcnJxUn5Wvt6JekeDZg5Sl+gucnZ1Vva+bO36cJcKThbIK9hL0z+ZrpChIdX2M+L3I5SXlacNz27QkvFLNGzuMAUODFT2/mwlLU5SaX6pYh6OUezD7F4BAAAAoPVqdQkWxcXFyszMlCQFBwfbjK1Yf+TIkXqPde2112rJkiW6++679cgjjygjI0PXXXedgoKCtH//fj377LPasWOHAgICtGzZMoWEVH+ACQAAAAAAAAAAAAAAALSEMY+OUeTsSO37dJ8OrT2koxuOas8ne1RWWiaPjh4KHhKsPlf10dDbh8rNx81mX3FPxyliUoS2/nWr9q7cq4J/FMgzwFMRl0co+u5o9Rjfo5keFQAAAAA0jVaXYHHu3Dlr2d3d3Wash4dHte3qY/bs2Zo8ebL+9Kc/6Y033tBrr71mrQsODtbzzz+v2267rV7JFWfPnlVOTo71tpubm9zcbB+g2pPZYG62sWpiMplaegr4PyaTSWazmX8TOBTWJRwVaxOOyGxu+c92qD+OCcrxesp7C6piTeBirAlcjDWBi3FM0HqdPn1anp6e1tvNfVyA1of3gObhKMfMjs5isMgiiywGi8xquufMEdY7a+ICR/j3qA6vj3AULbkW6zKmd2dvRd8Vrei7ohs9XlhsmMJiwxrdT3vX0ucK0DbwPtg02utnwOb6nI+GaW3/z3l9gr2wluqG58e+Wl2CRWFhobXs6upqM7ZifUFBQYPG+/DDD/Xoo48qKytL1157rX73u9/J399fR48e1b/+9S+98cYbOnPmjJ588kn5+fnVqc+oqKhKt+fMmaNbbrmlQfNriJyQnNqDmlhiYmJLTwH/x2w2Ky0tTZLk5OTUwrMByrEu4ahYm3BEp06daukpoAE4JijHcQHvLaiKNYGLsSZwMdYELsYxQes1ZMiQSreb+7gArQ/vAc3DUY6ZHZ1FFhX6FCpHOTLI0GTjOMJ3B6yJCxzh36M6vD7CUbTkWqz4I320Hi19rgBtA++DTaO9fgZsrs/5aBhH/Txek7b++rR7+e6WnoIG3zC4pafQLNr6WrIXjgnsq9UlWFTclaKkpMRmbMX6ileBqqs33nhDf/jDHyRJf//733XnnXdWqp8/f75uvPFG/fnPf9YXX3yh9evXq0uXLrX2u3PnToWFXcjkb+4M9Iy/ZDTbWDUZO3ZsS08B/+d81lpsbKyMxlb3koA2inUJR8XahCM6fxCJ1oVjgnIcF/DegqpYE7gYawIXY03gYhwTtF7Jycnq2rWr9TZXq0VteA9oHo5yzOzoLAaLcpQj/0x/GSxN98MrR/jugDVxgSP8e1SH10c4ipZci+np6c06Huyjpc8VoG3gfbBptNfPgM31OR8N46ifx2vS1l+fHOF1orWtiYZq62vJXjgmsK9Wt9J8fHys5aKiIpuxFXe7qNiuLtLT0/Xoo49KKn8Ruji5QpKcnZ31zjvv6KuvvlJqaqpuv/12rVmzpta+/fz85O/vX6/52JOTpeUzuHiRcyxOTk4yGo38u8ChsC7hqFibcDRk57dOHBOU47W0HO8tuBhrAhdjTeBirAlUxDFB69WxY8cWPS5A68R7QNNzlGNmR2eWWQYZZLAYmvQ5c4S1zpq4wBH+PWrC6yMcRUutRdZ+69TS5wrQdvA+aH/t9TNgc33OR8O0xv/jbfn1yRH+j7TF57UmbXkt2QvPjX21/P/wenJzc1Pnzp0lSVlZWTZjK9Z37969XuOsWLFCpaWlkqRp06bVGNexY0fFxcVJkr7++msdPHiwXuMAAAAAAAAAAAAAAAAAAAAAAICW1+oSLCRp0KBBkqRz587p7NmzNcZV3O5k4MCB9Rrj559/tpa7detmM7Zi8sbOnTvrNQ4AAAAAAAAAAAAAAAAAAAAAAGh5rTLBYsKECdayrYSGpKSkatvURcVt1S0Wi81Ys9lsLZeVldVrHAAAAAAAAAAAAAAAAAAAAAAA0PJaZYLF9OnTZTAYJEnfffddjXHr1q2TJAUEBCguLq5eY/Ts2dNaPnjwoM3YivXh4eH1GgcAAAAAAAAAAAAAAAAAAAAAALS8Vplg0bt3b82YMUOS9NFHH6mkpKRKzKFDh/T9999Lkv74xz/KaDRWqk9JSVGfPn0UGhqqDRs2VGl/5ZVXWpM4VqxYUeNcsrKylJCQIEkKCgpSdHR0wx4UAAAAAAAAAAAAAAAAAAAAAABoMa0ywUKSFi5cqMDAQB05ckSPP/54pbri4mLNnz9fZWVlGj58uO65554q7V944QWlpqYqIyNDjz32WJX6fv366fbbb5ckbd++XS+88EKVmOLiYt1yyy0qLi629uns7GyPhwcAAAAAAAAAAAAAAAAAAAAAAJqRsfYQxxQeHq5Vq1Zp2rRpeu2115SSkqKrr75ahYWFWrJkiXbv3q2oqCh9+eWXcnd3r9LebDZbyxaLpdox/va3v6mwsFD//ve/9eSTT+qbb77R1KlT5e/vr6NHj+qjjz7SoUOHZDQa9dxzz2nu3LlN9ngBAAAAAAAAAAAAAAAAAAAAAEDTabUJFpI0atQoJScn64033tBnn32mRx99VC4uLurTp4/eeOMN3XnnnXJ1da227RNPPKGkpCQVFhbqlVdeqTbG1dVVS5cu1R133KEPPvhAmzdv1jPPPKPCwkL5+PgoIiJCDz30kObNm6e+ffs25UMFAAAAAAAAAAAAAAAAAAAAAABNqFUnWEhSQECAnn/+eT3//PP1ajdkyBClpqbWKfaSSy7RJZdc0pDpAQAAAAAAAAAAAAAAAAAAAACAVsCppScAAAAAAAAAAAAAAAAAAAAAAADQ0kiwAAAAAAAAAAAAAAAAAAAAAAAA7Z6xpScAAAAAAAAAAAAAAMDFlk9Z3tJTAAAAAAAAQDvDDhYAAAAAAAAAAAAAAAAAAAAAAKDdI8ECAAAAAAAAAAAAAAAAAAAAAAC0eyRYAAAAAAAAAAAAAAAAAAAAAACAds/Y0hMAAAAAAAAAAAAAAAAAAAAAAADN79tHvtXmP2+WJI17epzinomrtc2xTce07e1tSktMU/6JfHkFeik0JlTRd0Wre1z3pp1wBVnJWfLu7C2vIC+79UmCBQAAAAAAAAAA7YjFYtGPf/tR6x5bp9L8Us2Jn1PryY4zR87ozR5v1qn/6Luj9du3f2szxmwya/vi7dq9dLey92fLVGySX7if+k7tq9H3j5Z3Z++6PhwAAAAAAAAAANBAx5OOa8vrW+rVJuHZBCUsSJDR3aihc4cqaFCQsvdlK2lxkvau2KvYR2I16dVJDZ7TF7d9oeF3DFfoqNBaY/9z7X90+tBp9ftdP01bOk0uHi4NHvc8EiwAAAAAAAAAAGgncg7m6MvbvtTRDUdbbA4F2QVadtUyZWzNUEC/AI354xi5ersq9atUbXx5o3a8t0PXrbxO3S7t1mJzBAAAAAAAAACgrTObzPpy7peylFnq3Oand37S+qfXy+hu1OzvZ1dKghgya4jev+R9bVq4SV5BXop9OLZB89r5wU71vKxnnRIsel3RS4fWHtL+z/cr8aVEjX92fIPGrIgECwAAAKAdaciVaqXybPU9/9mjtMQ0Ze/PVvHZYrl6u6pjz47qPr67ht8xXJ16d6rTHLhSLQAAAND8Kh4LODk7KXR0qNK3pNe7nwkvTlD/af1txrh3dK+xzmwy65Npnyhja4bCYsM0a90s69Wkou+K1nePf6fElxL18dSPNXfb3DofZwAAAAAAAAAAgPrZ9NomZe7IVN+pfXXgiwO1xuefzNfaR9ZKkkbdP6pKAkTI0BDFPhyrhAUJin8qXoNmDpJvqG+TzP28K/56hSTpvzf8V3tX7LVLgoVTo3sAAAAA0CrkHMzRkrglWnPvGpXml9apzZkjZ/T+Je9r0fBF2vjKRknSyHtG6sp3rlTMwzEyFZu0+bXN+vvAv2vTnzfV2l9BdoH+NfZfWn3XahXmFGrMH8do0quT1LFHR218eaP+MeQfLXolXQAAAKCtSliQoDX3rlH42HDdmXKnIiZHNKgfnxAfBfQLsPnnHVxz0vT2xduVlpgmGaQpi6dU2ao7bkGc/Hv5q+hMkb598NsGzREAAAAAAAAAANiWczBHCQsS1CW6i0beO7JObba+uVUleSWSpGFzh1UbM2zuMMkgmYpM2vRa7b8lspfuE7rrbNpZu/RFggUAAADQxlksFm17e5veiXxHmTszFTq69u3zzsven13+4ydJk9+YrNsSb1PcM3EadvswXfrEpfr9rt9r8I2DZS41a+0ja/XTP3+qsa+Lr1Q7P2m+xjw6RtF3RevGr27U2D+NVcHJAn089WOdSj3V6McNAAAA4AKLxaIp707RzV/fLL8wvxabQ+JLiZKk8DHhChwQWCXG2cVZkbdESpJ+/t/PytyV2axzBAAAAAAAAACgPfjf/P/JXGrWlMVT5ORct5SCvSv3SpI6dO8g/17+1cb4hvoqoF+AJGnfyn2yWCwNm6Ch7qGmYpN+WfOLnF2dGzbWRYx26QUAAACAw0pYkKCEBQmKmByhKYunaMd7O5S+Jb1effSc1FOj7x9d5X4nZyddtegq/fLNLyo8VajvHvtOUXOiZHSveqhRlyvV7l2xVzm/5OjbB7/VDatuqNccAQAAANQs7pk4GQz1OBvRBNK3pCv3WK4kqcdlPWqMi5gUofgn4yVJe1fsVefIzs0yPwAAAAAAAAAA2oOk95J0+PvDGvPHMeoc2VlH1h+ptU1uRq5OHSi/YGrnKNvf24cMDVH2vmzlpucqJzVHnfp0qjF2y5tbtPXNrVXu/+aBb/T9E9/XOi9zqVn5J/JlNpnVY2LN5x7qgwQLAAAAoI07f6XaYbdXvzVfXfSd2rfGOlcvV/Wa3Eu7l+1W0ZkiHf3hqCImRVSZQ12vVBv/ZLz1SrX8kAoAAACwj6ZIrjCbzDIVm+Tq5Vqn+MPfH7aWbZ18CY4MlsHJIIvZUqkNAAAAAAAAAABonLzMPK19ZK06RnTUuKfH1bndiZQT1rJvmK/N2Ir1J/acsJlgUXSmSGeOnKlyf/7JfOlknacnVy9XxS2Iq3sDG0iwAAAAANq4xlyptsuILrppzU3qEt3FZpxfNz9r+Wza2Sr1XKkWAAAAaBtO7Dmh/974X6Ulpuncr+dkKbPIxdNFoaNDNfjmwYqcFSknY/VbiZ9MuXAmxC/Mr9oYSTK6GeUZ6Kn8rHyd3FOPsycAAAAAAAAAAMCm1fesVtHpIs1YMUMuHi51blcxCcIr2MtmbMX66pInKuoc1VlRc6Iq3bdzyU51u6SbOvbsaHtSBsnF00Wd+nTSgOkD5NPFx3Z8HZFgAQAAALRxjblSrWeAp3r9pletcUVniqzl6q5ey5VqAQAAgLZh8583q1OfThp5z0gF9A9QWXGZjm44qqTF5duJJy1K0nWfXiefkKonMepz8sU72Fv5Wfkqzi1W4elCeXT0sPdDAQAAAAAAAACgXdn/xX7t++8+Rd0SpZ4Te9arbcm5EmvZ6G47BaFi4kbFdtXpN7Wf+k3tV+m+nUt2avgdwzX4xsH1mqO9kGABAAAAoNHOHD5TXjBIYWPCqtRzpVoAAADAPkzFJpUVl1lvl+aVNuv4/a/tr2v+fY2MbhdOLwyYPkBRt0ZpSdwSpW9J1/Ipy3XbxtsqxUhS8blia7m2ky9Gjwv1JedKSLAAAAAAAAAAAOD/XHyuoLYkBkkqzi3W6rtXyzPQU5e/dnm9xywtvHA+wtnV2WZsxfrSgvqfx+g+rnutF2pqSiRYAAAAAGiUorNFOrL+iCSp75S+1SZQcKVaAAAAwD4SX0pUwoIE6+2zTmebZVzfUF/df/h++XT1kbNL1RMnIUNDdOn/u1RrH16r49uP66d3ftLo+0dXijEVmqzlpj75AgAAAAAAAABAW1XlXIFqP1ew9tG1OpdxTtcsu0Ye/vX/LU7FXSnKSspsRFaud/F0sRFZvTnxc+rdxp5IsAAAAABakZa+Wm11di3ZJVORSc6uzpr48sRqY7hSLQAAAGAfY/80VjEPxlhvp6Wl6fXBrzf5uE5GJ3Xo3sFmzNBbh2rtI2sli7TzXzurJFhU/Kzf1CdfAAAAAAAAAABoqy4+V5CRkaHXB9R8ruDoD0e1fdF29fpNLw2+YXCDxnT1cbWWTUUmG5GVd7uo2K4pHVp3SD+8+IPmfN/45AwSLAAAAIBWpKWuVluT/BP52vDcBknShBcmKLB/YLVxXKkWAAAAsA+jm1FGtwtf7bt4O07ygYe/hzr27KjTB08ra3eWSvJK5Op94cSJm4+btVzbyZeKxxDNdfIFAAAAAAAAAIDW4OJzBa65NX+PXlZSplXzVsnZ1VnjnxuvguyCKjFFZ4us5dKC0koxbn5ucnZxrnQRpvysfJvzq1hf28Wb7CUvK09HE47apS8SLAAAAIBWpKWuVlsdc5lZn83+TAXZBRo0c5BiHoqpMZYr1QIAAADtg1eQl04fPC1Zyk9m+Hv7W+s6dO+g9C3pkspPrvh29a2xn7ysPEmSm68bu9oBAAAAAAAAANBA5349p1MHTkmSFkcvrjV+08JN2rRwk/X2nPg56h7XXUGDgqz35R7LtdlHbvqF+qCBQTYibSsrKVNaYppO7jup4rPFMpvMNcZm7cpq8DgXI8ECAAAAaEUc6Wq1a+5bo4PfHFSPiT009YOpMhgMNcZypVoAAACgfbCYLdayk7NTpbrAQRd2vDt77KxChoVU24ep2KSCk+VXxwocWP0ueQAAAAAAAAAAoHbenb01a+0smzGZuzK19uG1kqQhs4YocnaktS44MliS5NvVV536dNKpn08pc2emzf6OJx0vbxPqK//e/jZja5L0XpLWPbpORWeKag+2MxIsAAAAANTbuj+t009//0ndx3fXzC9mVkr6qA5XqgUAAABatw3Pb1DQ4CD1m9rPZlxeZvnneYOTQV5BXpXqekzooXjFS5Iyd2bW2FfWrixrokaPCT0aO3UAAAAAAAAAANoto7tRPS/raTPGyXjhgkkde3asMX7AjAH64YUfdObIGZ0+dFode3asEpObkavs/dmSpP7T+9u8YGtN9n22T6vmrap3u4aMVR0SLAAAAADUy/dPfa+NL29Ut3HddOP/bpSLZ+27aHClWgAAAKB1i38qXhGTI2wmWJw7fk5nj56VJIUMC6lyrBA6OlS+ob7KTc/V4e8OK+7puGr7ObTukLU8YMaAxk8eAAAAAAAAAAA02qj7Rmnrm1tVkleipHeTNPHFiVVidry3Q7KUJ3bEPhTboHG2/GWLJGnwjYM19PahChwQKI+OHnJ2da6xTfLSZH0+5/MGjXcxp9pDAAAAAKDc+mfW64fnf1D4JeG68au6JVdIla86a2ubQK5UCwAAADiuY5uOqTi3uMb6n975yVoeNn9YlXqDwaCxj4+VJKUlplmvYFWR2WTWzg92SpJ6X9lbnSM7N3LWAAAAAAAAAADAHryCvDRp4SRJ0pbXtyjjx4xK9Zm7MrXx1Y2SpPHPjZdvqG+DxslKzlL/af11zdJr1GN8D3kHe9tMrpAkGSSLxdKg8S5GggUAAACAOtnwwgYlLEhQ2Jgw3bT6Jrl6uVaJWTRikdYvWF/l/vNXqpWkw98drnEMrlQLAAAAOK6ScyVaNX+VykrKqtQd/PagNr5SftKk26XdNPTWodX2MXzecIWPDZcs0qp5q1RaWFqpfv0z65WTmiP3Du6a/Ppk+z8IAAAAAAAAAACgrOQsJS9NVvLSZB1ce7DW+88b8fsRGvfMOJWVlGnJ+CX6+oGvtX3xdn3z0Dd6/5L3VZpfqpiHYxT7cMN2r5Aki9miXlf0qleb/tP66/7D9zd4zIqMdukFAAAAQJuW+Eqi4p+MV2hMqG5ac5NcvasmV0jS8e3HFTQoqMr9569Uu/qu1dYr1Qb0C6gUw5VqAQAAgKaVvDTZWs5KzrKWD649qNz0XEmSV7CXIiZFVGkbHBmsrF1Z2vPJHh3fflwDZw5Ux54dVZpfqiPrj2jfp/ski9Tril665t/XyMlY/fWdnIxOuv6z67XsqmVKS0zTouGLFHVrlFy9XJW6OlWpX6XKM8BTM1bOUKfenez8DAAAAAAAAAAAAEna9+k+JSxIqHL//s/2a/9n+yVJ3cZ1q/acQdzTcYqYFKGtf92qvSv3quAfBfIM8FTE5RGKvjtaPcb3aNTcOvXpJFOxqV5tXDxd1KFbh0aNex4JFgAAAABs2vTaJn332HfyDPTU2MfG6vj24w3qZ/i84UpZlqK0xDStmrdKN397s1w8XKz1XKkWAAAAaFqfzfqs2vsTX0y0lms6WfL7nb9X+tZ07f98v45tPKakRUkqPF0oZxdneXf21uAbB2vIrCHqNbn2K0p5BnjqtsTbtH3xdiV/lKzElxJVVlwmv3A/xT4aq9EPjJZPiE/DHygAAAAAAAAAALAp7pk4xT0T1+D2YbFhCosNs9+EKoi6NUr7P92vkXePrHOb9C3p2r5ou6b+a2qjxyfBAgAAAGgHGnql2v2f79fah9dKkgpOFujjqR83eA5cqRYAAABoWU9bnm5U+9BRoQodFWqXuTgZnRR9Z7Si74y2S38AAAAAAAAAAKBtiL47Woe/O6yv7v5Kk16ZJFdv11rb5BzM0a4lu0iwAAAAAFA3Db1S7ZkjZ+w6D65UCwAAAAAAAAAAAAAAAKAmG57boODIYO14b4eSP0xWt3Hd1KlvJ7n5uMngZKi2TdaurGrvbwgSLAAAAIB2oKFXqh39wGiNfmC0XefClWoBAAAAAAAAAAAAAAAAVGf9M+tlMJQnUlgsFv2y5hf9suaXZhufBAsAAAAAAAAAAAAAAAAAAAAAAOAQLBZLtWVbzidlNBYJFgAAAAAAAAAAAAAAAAAAAAAAwCFcs/QaDb5xcJ3jk5cm6/M5n9tlbCe79AIAAAAAAAAAAAAAAAAAAAAAANDcDHXf6aI2JFgAAAAAAAAAAAAAAAAAAAAAAIAWN2XxFIXGhNarTcSkCM2Jn2OX8Y126QUAAAAAAAAAAAAAAAAAAAAAAKARht0+rN5tvIK85BXkZZfx2cECAAAAAAAAAAAAAAAAAAAAAAC0Sulb07Vq/iq79EWCBQAAAAAAAAAAAAAAAAAAAAAAaJVyfsnRjvd22KUvo116AQAAAAAAAAAAAAAAAAAAAAAAaISjG47Wu032vmy7jU+CBQAAAAAAAAAAAAAAAAAAAAAAaHEfxH0gg8HQYuOTYAEAAAAAAAAAAAAAAAAAAAAAAByCxWKpdxt7JWWQYAEAAAAAAAAAAAAAAAAAAAAAABzCJU9cop6X9ay2zlJmUXFusbIPZOvnL3/W2bSzmvz6ZHkGetplbBIsAAAAAAAAAAAAAAAAAAAAAACAQwjsH6ju47rXGjf2j2OVvDRZ8f8vXnO3zLXL2E526QUAAAAAAAAAAAAAAAAAAAAAAKARrnjrCnUd2bXO8UNuHqKuI7tqwwsb7DI+CRYAAAAAAAAAAAAAAAAAAAAAAKDFjbx7pPx7+derTfgl4dr/6X67jE+CBQAAAAAAAAAAAAAAAAAAAAAAaJVK80uVm55rl75IsAAAAAAAAAAAAAAAAAAAAAAAAK1OWWmZkj9KlquPq136M9qlFwAAAAAAAAAAAAAAAAAAAAAAgEY4uuForTFlpWUqOlOk7H3ZSlmeouz92er3u352GZ8ECwAAAAAAAAAAAAAAAAAAAAAA0OI+iPtABoOhzvEWi0UuHi4a9/Q4u4xPggUAAAAAAAAAAAAAAAAAAAAAAHAIFoulTnFOzk7qObGnJr40UcFDgu0yNgkWAAAAAAAAAAAAAAAAAAAAAADAIVzyxCXqeVnPGuudjE5y93OXfy9/Gd3tmxJBggUAAAAAAAAAAAAAAADQTn37yLfa/OfNkqRxT49T3DNxtbY5tumYtr29TWmJaco/kS+vQC+FxoQq+q5odY/r3rQTBgAAANDmBfYPVPdx3VtkbBIsAAAAAAAAAAAAAAAAgHboeNJxbXl9S73aJDyboIQFCTK6GzV07lAFDQpS9r5sJS1O0t4VexX7SKwmvTqpiWYMAAAAoK0b9/Q4BQ8JbrHxSbAAAAAAAAAAAAAAAAAA2hmzyawv534pS5mlzm1+eucnrX96vYzuRs3+frZCR4Va64bMGqL3L3lfmxZukleQl2Ifjm2KaQMAAABo4+KejmvR8Z1adHQAAAAAAAAAAAAAAAAAzW7Ta5uUuSNTfaf2rVN8/sl8rX1krSRp1P2jKiVXSFLI0BBrUkX8U/HKTc+174QBAAAAtFsFpwqUsS1DB9ceVMa2DBWcKmiysdjBAgAAAAAAAAAAAAAAAGhHcg7mKGFBgrpEd9HIe0fqwBcHam2z9c2tKskrkSQNmzus2phhc4cp4dkEmYpM2vTaJv3m9d/Ydd4AAAAA2pedS3Zq65tblbUrq0pdcGSwRj8wWpGzI+06JjtYAAAAAAAAAAAAAAAAAO3I/+b/T+ZSs6YsniIn57r9fGjvyr2SpA7dO8i/l3+1Mb6hvgroFyBJ2rdynywWi30mDAAAAKBdKckv0b9/+299eduXytqVJYvFUuUva1eWvrj1C/37t/9WaUGp3cYmwQIAAAAAAAAAAAAAAABoJ5LeS9Lh7w8r5qEYdY7sXKc2uRm5OnXglCSpc5TtNiFDQ8rbpOcqJzWncZMFAAAA0C7994b/6pevf5HFYpHRw6jQUaEacO0ADbl5iAZcO0Cho0Ll4ukii8Wig98c1H9v+K/dxjbarScAAAAAAAAAAAAAAAAADisvM09rH1mrjhEdNe7pcXVudyLlhLXsG+ZrM7Zi/Yk9J9SpT6f6TxQAAABAu3Vg1QH9/L+f5RPio8tevUwDpg+Q0a1q2oOp2KS9K/dq3aPr9PP/ftbP//tZfa7q0+jx2cECAAAAAAAAAAAAAAAAaAdW37NaRaeLdNU/r5KLh0ud2505csZa9gr2shlbsb5iOwAAAACoi11Ldsmjo4du33y7htw0pNrkCkkyuhk15KYhun3z7XLv4K6d7++0y/gkWAAAAAAAAAAAAAAAAABt3P4v9mvff/cp6pYo9ZzYs15tS86VWMtG9+p/3HRexcSNiu0AAAAAoC7St6Qr6rYo+YX71SneL9xPUbdFKX1rul3Gt33EAwAAAAAAAAAAAAAAAMBhmIpNKisus96uSxJDcW6xVt+9Wp6Bnrr8tcvrPWZpYam17OzqbDO2Yn1pQamNSAAAAACoqiC7QIEDAuvVJrB/oAqyC+wyPgkWAAAAAAAAAAAAAAAAQCuR+FKiEhYkWG+f1dla26x9dK3OZZzTNcuukYe/R73HrLgrRVlJmY3IyvUuni42IgEAAACgKldv13onSxScKpCrt6tdxifBAgAAAAAAAAAAAAAAAGglxv5prGIejLHezsjI0OsDXq8x/ugPR7V90Xb1+k0vDb5hcIPGdPW58EMlU5HJZmzF3S4qtgMAAACAugjoF6CU5SmKfShWBidDrfEWs0Upy1IU0C/ALuM72aUXAAAAAAAAAAAAAAAAAE3O6GaUm6+b9c9WEkNZSZlWzVslZ1dnjX9uvAqyC6r8FZ0tssaXFpRWqisrLd+NokP3DtaY/Kx8m/OrWF+xHQAAAADURb/f9VPmzkx9evOnKjpTZDO26GyRPr3pU2UlZ6nftH52GZ8dLAAAAAAAAAAAAAAAAIA26Nyv53TqwClJ0uLoxbXGb1q4SZsWbrLenhM/R93juitoUJD1vtxjuTb7yE2/UB80MMhGJAAAAFq75VOWN2n/ZoNZOSE5yvhLhpws1e8rcMOqG5p0Dmh+0XdFa+ubW7Xnkz1KXZ2qPlf2UZfoLvLp6iMXDxeZikzKTc/Vrz/9qtSvUlWcWyyfrj6KvivaLuPbJcFiwoQJeuKJJzRx4kR7dAcAAAAAAAAAAAAAAACgkbw7e2vW2lk2YzJ3ZWrtw2slSUNmDVHk7EhrXXBksCTJt6uvOvXppFM/n1Lmzkyb/R1POl7eJtRX/r39GzN9AAAAAO2Qi6eLZn45Ux9O/FBFZ4qU8nGKUj5OqTbWYrHIo6OHblh1g1w8XOwyvl0SLNavX685c+bYoyu0E02dsVYXZKwBAAAAAAAAAAAAAIC2zOhuVM/LetqMcTJeuBJwx54da4wfMGOAfnjhB505ckanD51Wx54dq8TkZuQqe3+2JKn/9P4yGAyNmD0AAACA9ipkaIju2HGHvrrzK/3y9S81xvW+ord++/ffqkO3DnYb2y4JFpI0f/58ffnll5o3b54mT57MARIAAAAAAAAAAAAAAADQRoy6b5S2vrlVJXklSno3SRNfnFglZsd7OyRLeWJH7EOxLTBLAAAAAG1Fh24ddNPqm5TzS44OrTukU6mnVHKuRK4+rvLv5a+el/VUp96d7D6u3RIsYmNjtXHjRn3++ecKDQ3V7bffrltvvVVhYWH2GgIAAAAAAAAAAAAAAABAC/AK8tKkhZP01Z1facvrW9RvWj91je5qrc/clamNr26UJI1/brx8Q31baqoAAAAA2hD/Xv7y7+XfbOM51R5SN/PmzVN6ero++eQT9e/fX88++6x69uypq666Sl988YXKysrsNRQAAAAAAAAAAAAAAACABspKzlLy0mQlL03WwbUHa73/vBG/H6Fxz4xTWUmZloxfoq8f+FrbF2/XNw99o/cveV+l+aWKeThGsQ+zewUAAACA1skuO1jMmTNHERERMhqNmj59uqZPn660tDS9++67+uCDDzRt2jR17txZt956q26//Xb17NnTHsMCAAAAAAAAAIB6slgs+vFvP2rdY+tUml+qOfFz1D2ue63tjicd157/7FFaYpqy92er+GyxXL1d1bFnR3Uf313D7xhe61bc659Zr4QFCXWa57wf56nLiC51igUAAABQP/s+3VftZ/P9n+3X/s/2S5K6jeumiEkRVWLino5TxKQIbf3rVu1duVcF/yiQZ4CnIi6PUPTd0eoxvkeTzx8AAABA23b68GmVnCuRJBmcDQoaGFQlJvnfyfIK8qr2uKUx7JJg8f7771e5Lzw8XM8++6yeeeYZrVmzRosXL9bChQv1yiuvKC4uTvPnz9e0adPk4uJijykAAAAAqIOG/pDqvGObjmnb29uUlpim/BP58gr0UmhMqKLviq5zP2aTWdsXb9fupbuVvT9bpmKT/ML91HdqX42+f7S8O3s37MEBAAAAqFXOwRx9eduXOrrhaJ3bnDlyRp/N+kxpiWmSpLAxYRp5z0j5hvkqLzNPKctTtPm1zdr6162a+OJErlQLAAAAtAJxz8Qp7pm4BrcPiw1TWGyY/SYEAAAAAP+ntKBUi4YtUnFusSTJzc9Nf8z5Y5W41P+las9/9ih8bLiu/fha+YT42GV8uyRY2OLk5KQrr7xSV155pfbs2aNrrrlG8fHxio+Pl7+/v+bMmaPbb79d/fv3b+qpAAAAAO1aQ35IVVHCswlKWJAgo7tRQ+cOVdCgIGXvy1bS4iTtXbFXsY/EatKrk2z2UZBdoGVXLVPG1gwF9AvQmD+Okau3q1K/StXGlzdqx3s7dN3K69Tt0m4NmiMAAACA6lVMtnZydlLo6FClb0mvU9vs/dnW5IrJb0zW6PtHV6of+9hYfT77c+1etltrH1krVx9XjbhjhM0+7953d63jdujeoU7zAwAAAAAAAAAAbce+T/ep6GyRJKnv1X3V/5rq8wwG3zRYuem5OvrDUS2dvFTzfpwno1vj0yOcGt1DHaxfv1433XSToqOj9csvv8hischisSgvL09///vfNWjQII0dO1affPJJc0wHAAAAaFcsFou2vb1N70S+o8ydmQodHVrvPn565yetf3q9nF2dNfv72brizSs0fN5wTf7LZN2y4Ra5eLlo08JN2vTnTTX2YTaZ9cm0T5SxNUNhsWGanzRfYx4do+i7onXjVzdq7J/GquBkgT6e+rFOpZ5qzEMGAAAAcJGEBQlac+8ahY8N150pdypicv23y+45qWeV5ApJcnJ20lWLrpJHJw9J0nePfSdTkclmXwH9Amr9M7o3+TWiAAAAAAAAAACAg/nl619kMBg0/ZPpmvn5TEXOjqw2rs9VfXTrD7fq8tcu14mUE/rx7z/aZXy7JFhMmDBB3333XaX7srKy9Morr6hPnz6aOHGiPv74YxUVFclisah///76y1/+ooyMDB0/flx//etfVVBQoBtuuEGjR4/WiRMn6jx2dna2nnrqKQ0aNEje3t7y9/dXTEyM/vrXv6qkpMQeD0+SVFZWpqVLl2rq1Knq3r273N3dFRAQoMGDB+uGG27QP//5T2VmZtptPAAAAMBeGvtDqvyT+Vr7yFpJ0qj7Ryl0VOUEjZChIYp9OFaSFP9UvHLTc6vtZ/vi7eVXvTVIUxZPkYuHS6X6uAVx8u/lr6IzRfr2wW/rNUcAAAAAtlksFk15d4pu/vpm+YX5NaiPvlP71ljn6uWqXpN7SZKKzhTp6A8N2zkPAAAAAAAAAAC0b8e3H1ffq/tq4IyBdYqP+UOMek7sqT2f7LHL+HZJsFi/fr2ysrJksVi0Zs0aXXvttQoPD9fjjz9u3bHCw8NDc+bMUWJiovbs2aMHHnhA/v7+8vPz0913362kpCR99dVXOnz4sB555JE6jbtt2zYNGTJEzz//vLp06aJXXnlFjz/+uPLy8nT//fdr9OjR+vXXXxv9+Pbv36/o6GjNnj1bZWVluvfee/W3v/1N99xzj4qKivTxxx/r97//vVauXNnosQAAAAB7a+wPqba+uVUleeXJy8PmDqs2ZtjcYZJBMhWZtOm1qrtYWCwWJb6UKEkKHxOuwAGBVWKcXZwVeUt5xvnP//tZmbtIYAYAAADsJe6ZOA27vfrP87XpMqKLblpzkwbNHGQzzq/bheONs2lnGzQWAAAAAAAAAABo33IzchU2JqxebXpO6qnsfdl2Gd9u+2t/+OGH+tOf/qT09HRJ5T+gkqSoqCjNmzdPN910k3x9fW32ccUVV+jRRx/VwoULax0vLS1NV111lU6ePKkHHnhAr7/+urXu3nvv1RVXXKH4+HhdffXV2rhxo9zc3Br0uA4ePKgJEyYoLy9P8fHxGjduXKX6J554QpdffrnWr1/foP4BAACAphb3TJwMBkOD2+9duVeS1KF7B/n38q82xjfUVwH9ApS9L1v7Vu7T5L9MrjRm+pZ05R4r39mix2U9ahwrYlKE4p+MLx93xV51juzc4HkDAAAAuKAxxwSeAZ7q9ZtetcYVnSmyll29XOvcf0l+iZxdneXs4tyg+QEAAAAAAAAAgLajrKRMHv4e9WrjGeCpspIyu4xvtwSLtWvXWpMqfHx8NHPmTM2bN08jRoyoVz9ms1lnzpypNe6RRx7RyZMnFR4erpdffrlSnZubmxYvXqy+fftq+/btevvtt/XQQw/Vax5SeZLIrFmzdPz4cS1btqxKcoUkubi46KmnntLu3bvl4VG/f0gAAACgOTTmh1S5Gbk6deCUJKlzlO1kh5ChIcrel63c9FzlpOaoU59O1rrD3x+2lm31ExwZLIOTQRazpVIbAAAAAI7vzOEz5QWDar2y1M4lO7Xj3R06ufekCnMKJUk+XX3UY0IPjX5gtEKGhTTxbAEAAAAAAAAAgCPyCvLSiZQT9WqTtTtLnoGedhnfbgkWFotFI0eO1Lx58zRz5kx5eXnVq31eXp4WLlyot956S4GBgTZjU1NTtWLFCknS7Nmzq92dIiIiQuPHj9e6dev0yiuv6P7775fRWL+Hu3z5cm3evFm9e/fWzJkza4ybMGGCsrPts6UIAAAA4EgqHqz4htneka5i/Yk9JyolWJxMOWkt+4X51diH0c0oz0BP5Wfl6+SekzXGAQAAAHAsRWeLdGT9EUlS3yl9bX7ul6QvbvlC/X7XT5e/drm8grx07tdzSlmeouSPkpW8NFmXPnWpxi8Y3wwzBwAAdbV8yvKWnoJuWHVDS08BAAAAAAA0sbCYMO341w6NvGekOvbsWGv86UOntfP9neo1ufbduOvCyS69SHrrrbe0ZcsW3X777fVOrpCkU6dOadGiRXJzc9P48bZPmqxcudK6W8Zll11WY9ykSZMkSSdPntT69evrPafFixdLkqZMmdKoq/4CAAAArdWZI2esZa9g25/zK9ZXbFfffryDvSVJxbnFKjxdWLeJAgAAAO2Eqdik4txi619pXmlLT0mStGvJLpmKTHJ2ddbElyfajDU4G3Ttx9fq+s+uV9QtUer9294aNneYZn83W5c+dalkkTY8u0Gb/rypmWYPAAAAAAAAAAAcRdRtUSrOLdZ7Me9px792qCS/pNq40oJS7Xh/h/415l8qOVeiobcPtcv4dtnBolu3bgoLs73dd136OH78eJ1iv//+e2s5KiqqxrihQy88Sd9//73NZIyLnTx5Uhs2bJAkRUZGVqorLCyUk5NTtTtnAAAAAG1JybkLByhGd9uHDy4eLtW2k6Tic8V17sfocaG+5FyJPDp61GmuAAAAQHuQ+FKiEhYkWG+fdTrbgrMpl38iXxueK/8+fcILExTYv+Zdqkc/MFrD7xgunxCfauvjnonTgS8PKGtXluL/X7yG3DxE3p29m2TeAAAAAAAAAADA8fSa3EsDpg/Q3pV7tWreKq2+e7U69e0k31BfGd2NMhWZlJueq1MHTqmspEwWi0UDZwxUxOURdhnfLgkWhw8ftkc3dZaSkiJJ8vHxkZ9fzduMV0z62LNnT73GSEpKktlsliSFh4fr0KFDevHFF7Vq1SqdOHFCkhQcHKzJkyfrj3/8owYMGFDfhwEAAADUm6nYpLLiMuvtpr5abWnhhf6dXZ1txlasLy2oPC9Tocku/QAAAADt3dg/jVXMgzHW22lpaXp98OstNh9zmVmfzf5MBdkFGjRzkGIeirEZ797BXe4d3GusNzgZFHVLlL75wzcyFZq0e/luxfzBdp8AAAAAAAAAAKBtmfbhNJlNZu3/fL9MxSad2H1CJ3afqBRjsVgkSf2n9dfvPvyd3ca2S4KFJP3nP/9RZmamJMnNzU133HFHlZgnnnhCBoNB999/vwIDa76ClS3FxcXWcYKDg23GVqw/cuRIvcbZvXu3tfzNN9/ojTfeUHh4uJ544glFREQoMzNT7733nj788EMtX75c//znP3XrrbfWawwAAACgvpr7arUVd6UoKymzEVm53sXTpVJdxV0pGtMPAAAA0N4Z3Ywyul34fO3i3bKfmdfct0YHvzmoHhN7aOoHU2UwGBrdZ5cRXazl9E3p0h8a3SUAAAAAAAAAAGhFjO5GXf/p9Ur5JEXb3tqmjK0ZMpeZrfVOzk4KHRWqUfeP0sAZA+07tj06+fXXX3XzzTerrKx8i40OHTpUm2Bx6NAhffLJJ1q0aJE+/fRTjR07tt5jnTt3zlp2d6/5KleS5OHhUW27uji/S4Ukvfzyy4qOjtb69evl6elpvf/WW2/VzJkztWLFCs2dO1c9evRQXFxcrX2fPXtWOTk51ttubm5yc3Or1/waw2ww1x7UDphMptqD2gGTySSz2czzAYfCuoSjYm3CEYx+ZLSi74u23j527Jhej2q6q9W6+rhay6Yi22u/4m4XFdtJkpvPhc+7tfVTcbeLi/tpKzgmKMfrKe8tqIo1gYuxJnAx1gQudn4n5paw7k/r9NPff1L38d0184uZlRI/GsMryMtazsvMs0ufjuj06dOVzjk093EBWh/eA5qHoxwzOzqLwSKLLLIYLDKL5wzNp7rXQF4f4Shaci2y/lunlj5XgLaB98Gm0V6PC/ic79ha2//ztv765AivE47y3Db1c1GX1yZHeS5aUlt+DgZdP0iDrh+kkrwSnT58WiXnSuTq46qOPTrK1btpfldkl7MdK1eulMlkkp+fn55++mldffXV1ca98MILioiI0Guvvaarr75ae/bsUUhISL3GKiwstJZdXW0/KRXrCwoK6jVObm5updtvv/12pRMdkuTk5KS3335bq1atUlFRkR566CFt37691r6joqIq3Z4zZ45uueWWes2vMXJCcmoPagcSExNbegoOwWw2Ky0tTVL5mgYcAesSjoq1CUd06tSpJu2/Q/cO1nJ+Vr7N2Ir1Fdudv52+Jd0a59vVt8Z+8rLKf0Dl5usmj44eNca1ZhwTlOMzOe8tqIo1gYuxJnAx1gQu1tTHBDX5/qnvtfHljeo2rptu/N+Ndt19zmK2WMsG58bviOGohgwZUul2cx8XoPXhPaB5OMoxs6OzyKJCn0LlKEcGtd3Xajie6r5P4vURjqIl12LFH+mj9WjpcwVoG3gfbBrt9biAz/mOrbWdW23rr0+O8DrhKGuiqZ+Lurw2Ocpz0ZLawzGBq7erggcHN8tYdkmwWLdunTw8PPTjjz+qV69eNcb17NlTzz//vK688kqNGzdOr732mv785z/Xa6yKu1KUlJTYjK1Yf3FyRG3Kysqs5W7dumnkyJHVxgUFBWnChAlavXq1kpKStHfvXg0YMMBm3zt37lRYWJj1dnNnoGf8JaPZxnJkDdlBpS06n7UWGxsro9E+V5gDGot1CUfF2oQjOv+FRFMJGhRkLecey7URKeWmX6gPGhhUqS5wUKC1fPbYWYUMqz7R2lRsUsHJ8uTowIGB1ca0BRwTlOMzOe8tqIo1gYuxJnAx1gQu1tTHBNVZ/8x6/fD8Dwq/JFw3flX35Iqs5Cwd+PKAhtw8pEpSdkUVd63wCfFp7HQdVnJysrp27Wq9zdVqURveA5qHoxwzOzqLwaIc5cg/018GCz+8QvOp7vskXh/hKFpyLaanpzfreLCPlj5XgLaB98Gm0V6PC/ic79ha27nVtv765AivE46yJpr6uajLa5OjPBctiWMC+7LLq1ZycrJmzZplM7miopiYGN1www1avXp1vRMsfHwunEwpKiqyGVtxt4uK7eo7zqBBg2zGRkZGavXq1ZKkbdu21Zpg4efnJ39//3rNx56cLG0vG7Ah2uKbdkM5OTnJaDTynMChsC7hqFibcDRNfaUH366+6tSnk079fEqZOzNtxh5POl7eJtRX/r0rf97tMaGH4hUvScrcmal+U/tV20fWrizr1Wp7TOjR2Ok7LI4JyvFaWo73FlyMNYGLsSZwMdYEKmruq79teGGDEhYkKGxMmG5afZNcvaruNL1oxCL1mdJHcU/HVbr/eNJxxT8VL/9e/jYTLM7vfidJYWPDaoxr7Tp27NiixwVonZryPWD5lOV277O+blh1Q0tPwWGOmR2dWWYZZJDBYuA5Q7Oq6fWPz8hwFC21Fln7rVNLnytA28H7oP2118+4fM53bK3x/3hbfn1yhP8jjvK8NvVzUZfXJkd5LloSz4F92WVVnzhxQoMHD65XmxEjRujIkSP1HsvNzU2dO3eWJGVlZdmMrVjfvXv3eo3TqVMna7ljx442YwMCAqzlEydO1GscAAAAwNENmFGeQHzmyBmdPnS62pjcjFxl78+WJPWf3l8GQ+WrBoSODpVvqK8k6fB3h2sc69C6Q1XGBQAAAOAYEl9JVPyT8QqNCdVNa26Sq3fV5ApJOr79uM4cPlNjP7+s+aXGurKSMu14b4ckydXHVYNm2r4AEgAAAAAAAAAAgD3ZJcHifJZZfbi6ujb4ylrnd5Q4d+6czp49W2Ncxe1OBg4cWK8xKsaXlpbajLVYLNZyc18tDAAAAGhqo+4bZf3hVNK7SdXG7Hhvh2SRjO5GxT4UW6XeYDBo7OPlWzKmJaZZkzEqMpvM2vnBTklS7yt7q3NkZzs9AgAAAACNtem1Tfruse/kGeipsY+N1fHtx3Vk/ZFq/2qT/O9k7ft0X5X7zWVmfXX3V8r5JUeSdPmfL5dnJ097PxQAAAAAAAAAAIAa2WU/kNDQUCUkJOiOO+6oc5uEhASFhoY2aLwJEyZo3bp1kqSdO3dq3Lhx1cYlJSVValMf0dHRMhgMslgsyszMtBl78uRJa7lLly71GgcAAABwdF5BXpq0cJK+uvMrbXl9i/pN66eu0V2t9Zm7MrXx1Y2SpPHPjbfuVHGx4fOGK2VZitIS07Rq3ird/O3NcvFwsdavf2a9clJz5N7BXZNfn9y0DwoAAABoh5KXJlvLWckXdoA+uPagctNzJUlewV6KmBRRqd3+z/dr7cNrJUkFJwv08dSPGzS+X7if3Du6q+h0kf4z/T/qfUVv9bishzw6eig3PVcpH6fo5J6TcnJx0uWvXa7h84c3aBwAAAAAAAAAAICGskuCxYQJE7Ro0SJdf/31mjp1aq3xX375pVasWKH58+c3aLzp06friSeekMVi0XfffVdjgsX5JIyAgADFxcXVa4yuXbtq9OjR2rx5s3bu3CmTyVTjLh3bt2+3li+99NJ6jQMAAAA0h4b+kOq8Eb8fobysPG14doOWjF+iYXOHKXBgoLL3ZytpcZJK80sV83CMYh+uunvFeU5GJ13/2fVadtUypSWmadHwRYq6NUquXq5KXZ2q1K9S5RngqRkrZ6hT7052euQAAAAAzvts1mfV3p/4YqK13G1ctyrHBWeOnLHL+D0m9NCDGQ/q51U/K3V1qo4nHVfCMwkqLSiVq4+r/CP8NeaPYzTizhHq0K2DXcYEAAAAAAAAAACoD7skWNx3331avHixpv9/9u48rsoy///4+8BhF1DZRMENd1ERJZQxt6SsUUvTvqWp2dhimzVle1lNNdOqNc3UZI25lE1ZWrZrKi6kpqiooJmKKAmKiAjIfn5/+PMIAgcO3Gz6ej4ePB73ua/PdX2ug7dwbu77c1/jx+uWW27R5MmTFRERoebNm1tjMjMztXXrVi1atEiffPKJTCaTHnjggRrl69y5syZMmKDPPvtMixYt0tNPPy1nZ+cyMQcPHtTq1aslSY899li54ojdu3dr3Lhxys3N1SeffFJhYcTDDz+s8ePH6/Tp0/rqq6904403los5cuSIYmJiJEljxoyp8aocAAAAQF2q6Y1UpQ2dPVQh0SHa/PZmJSxNUO67uXL3dVfI1SGKuDdCHYZ1qHIe7r7uun3D7do2b5viF8Vrw983qDi/WN5tvRX1aJQGPDhAnoGe9r9BAAAAAFWabZldo34DHhygAQ8OMGQOTm5O6nlTT/W8qach4wEAAAAAAAAAABjJkAKLbt266aWXXtLjjz+ujz/+WB9//LEkyc3NTa6ursrLy9PZs2et8RaLRa+88oq6du1a45yvvfaa1qxZo6SkJD355JN6/fXXrW35+fm68847VVxcrH79+um+++4r1/+ll17S/v37JUmPP/64YmNjy8XceOONGjVqlL755hs99NBDioyMLFNAkZ+fr7/85S8qLCxUy5YtNXfu3Bq/HwAAAKAu1fRGqosFRwUrOCq4VmM4mB0UMSNCETMiDJkTAAAAAAAAAAAAAAAAABjBkAILSXr00Ufl4uKixx57TAUFBZKk3Nxc5ebmlolzdnbWq6++WuPVK85r27atVqxYobFjx+qNN97Q7t27NWbMGJ09e1YLFizQrl27FBYWpq+//lqurq7l+peUlFi3LRZLpXn+97//ady4cfrxxx8VFhamv/zlL+ratatSU1O1cOFC7du3T8HBwfrqq6/UoUPVT+wFAAAAAAAAAAAAAAAAAAAAAACNj2EFFpI0c+ZM3XjjjXrvvfe0cuVK/f777zpz5ow8PT3VqVMnRUdH6+677y6zCkRtREZGKj4+XnPnztWyZcv06KOPysnJSV26dNHcuXM1Y8YMOTs7V9j3qaeeUlxcnM6ePatXXnml0hzu7u764Ycf9Nlnn2nBggVauHChTp48KU9PT/Xs2VN33XWX7rzzTnl4eBjyngAAAAAAAAAAAAAAAAAAAAAAQPUcXHVQ619er6mrp9Z6LEMLLCQpKChIL774ol588UWjh66Qr69vjfL17t1b+/fvr3b8TTfdpJtuusne6QEAAAAAAAAAAAAAAAAAAAAAgDqSnZatwzGHDRnL8AILAAAAAAAAAAAAAAAAAAAAAACAmiouKFbyhmSdSDyh/NP5KikqqTQ2bWeaYXkbrMDiq6++0kMPPaSDBw821BQAAAAAAAAAAAAAAAAAAAAAAEAjEvdhnFY9ukp5mXn1nrvBCiyys7N1+LAxy3A0NSvuWCFfV9+GngYAAAAAAAAAAAAAAAAAAAAAAI1G4rJErbhjhd39TCaTIfkNLbA4duyYvv/+eyUmJur06dMqKiqqNJaVKwAAAAAAAAAAAAAAAAAAAAAAwHmb3twkSeo1sZf6/qWv/Hr4ya2FmxydHSvtE784XsunLjckv2EFFs8884xeeeUVFRcXVyveYrEYViUCAAAAAAAAAAAAAAAAAAAAAACatrT4NHUf213jFo+rfifTufoEIxhSYDFv3jy99NJL1teurq5q3ry5XFxcKu2Tk5OjkydPGpEeAAAAAAAAAAAAAAAAAAAAAABUIC8zT799+5sO/XxIqdtTderQKRVkF8i5mbN8Ovuow4gOipgRIe+23lWOdST2iLa8s0XJG5KVczxHHn4eChoYpIh7ItR+aPtaz9VSYlGnazvZ1af72O5qe6htrXNLBhVYvP/++zKZTHriiSf0l7/8RR06dKiyz+LFizV16lQj0gMAAAAAAAAAAAAAAAAAAAAAgIsciT2iBcMXqDi/WDKdK0YIvSVULl4uyvg9QzsX7tTGf2zUlre36Pr516vnTT0rHSvmhRjFPB8js6tZfaf3lX+ov9IT0xU3L04JnycoalaUol+NrtV8fbr4qCi/yK4+Tu5Oat6uea3ynmdIgUViYqKmTp2qF198sdp9TCaTYctwAAAAAAAAAAAAAAAAAAAAAACAsvKz8lWcXyyTo0mTvp+kkOiQMu2Dnx6s+YPn6/iu41o2eZn8e/nLr7tfuXG2vrdVa2evldnVrCmrpygoMsja1ntyb82/cr5iX4uVh7+Hoh6JqvF8w6aFae+Xe3XFvVdUu8/RTUe17f1tuv6/19c473kOtR5Bktls1qBBg+zqM2nSJJWUlBiRHgAAAAAAAAAAAAAAAAAAAAAAVCLstrByxRWS5NrcVdGvnVt1origWHEfxJWLyTmRo5WzVkqSImdGlimukKTAvoHWooo1z6xR1tGsGs8z4t4IuXi56Nt7v1VBdkG1+mQcyNDOBTtrnLM0Q1awCA0NVVZWzb8JAAAAAAAAAAAAAAAAAAAAAADAWK7NXdUmso16jO9RaUzrfq2t2+mJ6eXaN7+12VrsED49vMIxwqeHK+aFGBXlFSn2jViNnDOyRvNd97d1CugToO0fblf8wni1G9JOPl195OLpIpODqcI+aTvTapSrIoYUWNxzzz2aM2eOZs6cKZOp4klfbNWqVXr55Ze1evVqI6YAAAAAAAAAAAAAAAAAAAAAAABKCRoQpOmbptuMcXJ3sm6bXcqXGCQsTZAkNW/fXC07taxwDK8gL/l281V6YroSlybqmjevqXZtQWlrn1tr7WexWPT797/r9+9/t3ucmnIwYpCJEydq4MCBGjNmjA4dOlStPmlpaYqJiTEiPQAAAAAAAAAAAAAAAAAAAAAAqIGUX1Os2+2Hty/TlpWSpZP7TkqSWoW1sjlOYN/Ac32OZiljf0aN52OxWGSxWMpsV/VlFENWsLj99tslSTt27FCnTp3UvXt3de3aVZ6ennJwqLiG48CBA0akBgAAAAAAAAAAAAAAAAAAAAAANVCUV6TVT66WJPn38lf49PAy7cd3H7duewV72RyrdPvxPcfl08WnRnMat3icek3sVe34+MXxWj51eY1yXcyQAouPPvqozDIcCQkJSkxMtNnHYrHUaMkPAAAAAAAAAAAAAAAAAAAAAABgv6L8IuVl5unsybM6EntEm+Zs0omEE+p5U0+Nen+UnNycysRnJmVatz0CPGyOXbq9dL86Z5Jhq1gYUmAhST4+PvLwsP0NKy0nJ0cnT540Kj0AAAAAAAAAAAAAAAAAAAAAALBh95Ld+mraV9bX3m29Ne7jcQq9JbTCBRQKzhRYt82utssPShdnlO5nj9HzRitoYJBdfUKiQzR1zdQa5buYYQUWc+fO1cSJE6sdv3jxYk2dasybAAAAAAAAAAAAAAAAAAAAAADgUleUX6Ti/GLra3sLGUKuCdHklZNVkFOgjP0Z2vXJLn056Uutnb1WI98aqc7XdS4TX3i20Lrt6Oxoc+zS7YW5hTYiKxf+l3C7+3j4e8jDv/qLRdhiWIGFvUwmk2HLcAAAAAAAAAAAAAAAAAAAAACoG0tGL6l2bImpRBmBGUp5M0UOFgdD53HLilsMHQ9Nnz3HZl2p7+Nyw983KOb5GOvr0zptV3/PQE95BnpaXw98eKBWPbZKsa/F6pNRn+j6+dcrbGqYtb30qhTFBcWypXS7k7uTjUj75RzPUd7pPLl6u8rdz73C1TaMYEiBxcqVKxUaGmpXn7Fjx+rQoUNGpAcAAAAAAAAAAAAAAAAAAAAA4JI36IlBGvjXgdbXKSkpmtNjTo3HM5lMGvHKCB36+ZCOxR3TtzO+VadrOqlZq2aSJGdPZ2tsUV6RzbFKr3ZRul9NJcUkafNbm5W0Jkn5WfnW/S5eLuowvIMiZ0aq3eB2tc5TmiFlYVdddZUCAgLs6uPu7q527Yx9MwAAAAAAAAAAAAAAAAAAAAAAXKrMLma5eLlYv4woZDCZTOo1qZckqehskXYt2WVta96+uXU7Jy3H5jil20v3s5elxKJv7v5GC4cv1L6v9invdJ4sFov1K+90nvYu36sFwxbomxnfqKS4pMa5LmbIChYXy8/P1/bt25WamqqoqCj5+/tLknJzc+Xu7l4XKQEAAAAAAAAAAAAAAAAAAAAAQA34dPWxbh/fddy67R/qb93OOpJlc4ysoxfa/Xv624i07Zu7v9H2D7fLYrFIkpoFNJNXkJfMbmYVnS1S1tEsZadlS5Li3o+TpcSi0f8ZXeN8pRlaYHHgwAE9++yz+uKLL1RYeG55j5UrV2r48OGSpFatWmnMmDF64YUX1LFjRyNTAwAAAAAAAAAAAAAAAAAAAACAUvZ/v19O7k5qP6S9zTgHRwfrdknRhRUhvNp4yaeLj07+dlKpO1JtjnEs7ti5PkFeatm5ZY3me3j9YcV9ECfnZs7602N/UtjUMHkFeZWLyzqapR0Ldij21Vht/2C7+kzuo7aD2tYoZ2kOVYdUz9q1axUeHq5PP/1UBQUF1mqR0hwdHfXJJ5+ob9+++vnnn41KDQAAAAAAAAAAAAAAAAAAAAAALvLtjG/13b3fVRmX8XuGddu7rXeZth4TekiSMpMydergqQr7Z6VkKX1vuiSp+/juMplMNZpv3PtxcnJz0rR10zT4qcEVFldI54o4Bj81WLfF3Cazq1nb/rOtRvkuZkiBRUZGhm688UadOXNGzZs319ixYzV9+vRycX/88Yf+85//qKSkRBMmTFBqqu0KFgAAAAAAAAAAAAAAAAAAAAAAUHPpienKTMqstN1isWjnwp3W111GdynTHvlApJybOUuS4j6Iq3CM7R9ulyyS2dWsqIejajzXw+sPK2xamFqFtapWfKuwVupzWx8dXn+4xjlLM6TA4p///KdOnTqlGTNmKCUlRV988YVefvnlcqtYuLm56Y477lBMTIyys7P1z3/+04j0AAAAAAAAAAAAAAAAAAAAAACgApYSi5ZNXqbs1OwK23586Ef98esfkqTQW0IVFBlUJsbD30PRr0VLkjbN2aSUX1PKtKfuTNXGVzdKkob9bVilq05UR05ajlr1rV5xxXmB4YHKScupcc7SzEYM8v333ysyMlL/+te/rPtsLekRHh6uW265Rd99951eeuklI6YAAAAAAAAAAAAAAAAAAAAAAABKadWnlU4fPq3kDcl6O+Rt9by5p3y7+crdx12nk09rz2d7lJ6YLknqM6WPRr0/qsJx+t/dX9lp2Vr3wjotGLZA4dPD5dfTT+l70xU3L06FOYUa+MhART1S89UrpHMrYBRkF9jVpyC7QGZXQ0ojjCmw2L9/v5588km7+vTv31/Lly83Ij0AAAAAAAAAAAAAAAAAAGjiloxe0tBTAADgknPzVzfr+O7jSlyWqOT1yTq48qB2L9mtksISOXs6q0WHFoq4L0J9pvRRm4g2NscaOnuoQqJDtPntzUpYmqDcd3Pl7uuukKtDFHFvhDoM61Dr+bYIaaG9X+7VgJkDqt1n75d71SKkRa1zSwYVWGRnZ8vHx8euPs7OzioosK+yBAAAAAAAAAAAAAAAAAAAAAAAVJ9/qL/8Q/0NGSs4KljBUcGGjFWRzn/urPUvrtfKR1fqqr9fJQdHh0pjLSUWrXp8lZI3JGvwM4MNyW9IgYWvr69+//13u/r88ssv8vPzMyI9AAAAAAAAAAAAAAAAAAAAAABo4gbMHKAtb2/RL2/8osQvEtXz5p5qE9FGnm085eTmpKK8ImUdzdIfW//Q7k93K/NQply8XRT5QKQh+Q0psIiMjNSHH36ohx56qForWWzevFlLlizRuHHjjEgPAAAAAAAAAAAAAAAAAAAAAACaOLeWbhr/2XgtGb1EmUmZ2viPjZXGWiwWOTo7asJnE+TW0s2Q/JWvl2GH22+/XWlpabryyiu1cuXKMm0mk8m6nZGRoddff13R0dEqKirS9OnTjUgPAAAAAAAAAAAAAAAAAAAAAAAuASHRIZq2fpp8u/vKYrFU+uXXw0/T1k9TxxEdDcttyAoWo0aN0tixY7Vs2TKNHDlSPj4+6tGjhyRp9uzZevXVV3X48GHt379fJSUlslgsuvnmm3XVVVcZkR4AAAAAAAAAAAAAAAAAAAAAAFwi2kS00T2779HBVQd1cNVBZezPUP6ZfLl4uqhFpxYKiQ4xtLDiPEMKLCTp448/1sSJE7V8+XKlp6dr/fr1MplM2rjxwpIcFotFkjR+/Hh99NFHRqUGAAAAAAAAAAAAAAAAAAAAAACXmI4jOtZJIUVlDCuwcHV11ZdffqnPP/9cb7/9tjZt2qTi4mJru6OjowYMGKCZM2dq/PjxRqUFAAAAAAAAAAAAcAlYMnpJQ08BAAAAAAAAQBOUcyJH6Ynpaje4Xa3HMqzA4rwJEyZowoQJysnJ0aFDh5SVlSVPT0916NBBzZo1MzodAAAAAAAAAAAAAAAAAAAAAAC4TB346YCWT1muZ4ufrfVYhhdYnOfh4aHQ0NC6Gh4AAAAAAAAAAAAAAAAAAAAAAMAwdVZgUZVVq1bp5Zdf1urVqxtqCgAAAAAAAAAAAAAAAAAAAAAAoJ79/uPv2vruVoXfEa4uf+5i3f9Wx7fsHqswp9CweTVYgUVaWppiYmIaKj0AAAAAAAAAAAAAAAAAAAAAAGgAy25dprMZZ3Vk4xHNOjHLuj8zKbNG45lMJkPmZVeBRXFxsXbt2qXQ0FCZzRe6Lly40O7EsbGxdvcBAAAAAAAAAAC1Y7FY9Ou/ftWqx1epMKdQU9dMVfuh7avd/0jsEW15Z4uSNyQr53iOPPw8FDQwSBH3RFR7nJKiEm2bt027Fu9S+t50FeUXybutt7pe31UDZg5Qs1bNavbmAAAAAAAAAABAk9AipIVyT+aqRUiLcm3trmynFh3L76/MqYOnlLwh2ZB52VVgMW7cOH3zzTcaOXKkvv32W+v+2267zbCKDwAAAAAAAAAAUDcyDmTo69u/1uF1h2vUP+aFGMU8HyOzq1l9p/eVf6i/0hPTFTcvTgmfJyhqVpSiX422OUZueq4+GfWJUjanyLebr/702J/k3MxZ+7/dr43/2KjtH27XTUtvUrvB7Wo0RwAAAAAAAAAA0Pjd+uOtOvTzIXUY3qFcW7+7+qnXxF7VHiv+4/iGKbCIiYmRxWLRxo0by7VZLBa7k1OUAQAAANSfkqIS7Vy0UwmfJSh1R6pyT+bK0dlRXkFeaje4nfrP6K/AvoFVjmPE02oBAAAA1K/Sq1Y4ODooaECQjm46atcYW9/bqrWz18rsataU1VMUFBlkbes9ubfmXzlfsa/FysPfQ1GPRFU4RklRif439n9K2Zyi4KhgTV41WU5uTpKkiHsi9POTP2vD3zfo0+s/1fQt0+XT2afmbxoAAACAVV5mnn779jcd+vmQUren6tShUyrILpBzM2f5dPZRhxEdFDEjQt5tvasci+sEAAAAAIzg6u2q7uO6GzZeTeoZKmJXgcXrr7+ut99+W/fdd1+5trlz5+r666+v9ljLli3Tww8/bE96AAAAADWUnZqtT/78iY7FHZOjs6P6TO2jgD4Byj+drwM/HlDcvDht/3C7hjw3REOeGVLpOEY8rRYAAABA/Yt5/txn+ZBrQjR63mht/3C7XQUWOSdytHLWSklS5MzIMsUVkhTYN1BRj0Qp5vkYrXlmjUJvDpVXkFe5cbbN23buCVImafS80dbiivOGPj9UCZ8nKOP3DP301590y4pb7H+zAAAAAMo4EntEC4YvUHF+sWSSuo/trtBbQuXi5aKM3zO0c+FObfzHRm15e4uun3+9et7Us9KxuE4AAAAAoK7NLpltd5/ek3qr96TehuS3q8Bi+vTpmj59eoVtvr6+ateu+st1+/n52ZMaAAAAQA1ZLBZ9duNnOhZ3TGZXs26Pvb3MShVXPnmlVj2+Shtf2ai1z65Viw4t1PvW8iccRjytFgAAAEDDsFgsGv3BaIX/JbxG/Te/tVkF2QWSpPDpFY8RPj1cMS/EqCivSLFvxGrknJHl5rDh7xskSW3/1FZ+PcpfJ3B0clSf2/pozdNr9Ns3vyl1Z6pa9WlVozkDAAAAOCc/K1/F+cUyOZo06ftJCokOKdM++OnBmj94vo7vOq5lk5fJv5e//LqX/7zOdQIAAAAA9eF08mm5+7mXe0hTRb6e/vW5AvC/9C1zP1RtOBgxyOzZs9W7t30VH71799azzz5rRHoAAAAANiRvSNaR2COSpP4z+ld4MjH0+aFq1qqZJFlveCqtuk+rlaQ1z6xR1tEsI98CAAAAgFoa+tzQGhdXSFLC0gRJUvP2zdWyU8sKY7yCvOTbzVeSlLg0sdxS3Ec3HVXWkXPnCh1GdKg0V+mbvRI+T6jxnAEAAACUFXZbWLniCklybe6q6NfOrTpRXFCsuA/iysVwnQAAAABAfXmrw1vau2xvtWIPxxzWr//+VR9EfqAjvxwxJL9hBRahoaF29enVq5dmz7Z/+Q4AAAAA9vnj1z+s220i21QYY3YxK6BPgCTpRMIJ5Wfll2mv7tNqZZL1abUAAAAAGg+TyVTjvlkpWTq576QkqVWY7dUkzhd0Zx3NUsb+jDJth1Yfsm7bGiegT4BMDqZyfQAAAADUjGtzV7WJbKMe43tUGtO6X2vrdnpierl2rhMAAAAAqC8XP8DJlkk/TNKNn9wod193xTwXY0h+QwosqisvL68+0wEAAADQuadNnWdr6Twn9wttBTkFZdqMeFotAAAAgKbp+O7j1m2vYC+bsaXbj+85XqbtxO4T1m3vYO9KxzC7mOXu536uz54TlcYBAAAAqJ6gAUGavmm6Oo3sVGlM6WsEZhdzuXauEwAAAABojFqGtFTozaEa+PBApe5MNWRMwwosHnjgAY0bN07jxo3TlClTKoy5/fbbNWjQIP38889GpQUAAABQhfMrU0jSicTKb046/0QqFy8Xefh7WPcb9bRaAAAAAE1TZlKmddsjwKPywIvaS/ezd5xmAc0kSflZ+Tp76mz1JgoAAACgxlJ+TbFutx/evkwb1wkAAAAANAV5mcYsBlG+5LwGdu7cqXfeeUcmk0kWi0Xdu3evMM7FxUWxsbG6+uqr9cYbb+jBBx80Ij0AAAAAG0KuDlGrsFZK3ZGqLf/coivuvULOzZzLxCQuS1T63nMFFn2n95WD44Va7No8rdani48RbwEAAABAAyo4c2GFO7Or7csKpVfNK91PkvLP5Fd7HLPbhfaCMwVya+FWrbkCAAAAsF9RXpFWP7lakuTfy1/h08PLtHOdAAAAAEBdSYtPU+qO8itPHF5/WCVFJVX2Ly4s1unDp/Xrv3+VV5Dt85XqMqTA4ssvv5Qk9evXT++//77CwsIqjPvvf/+rSZMm6e6779asWbM0aNAg9e/f34gpAAAAAKiEg6ODJv0wScunLNeBnw5o3hXzNPzF4WoV1kr5Wfna/91+rfvbOklSz//rqateuqpMf6OeVgsAAACg9oryi1ScX2x9XZhdWOc5C89eyOHo7GgztnR7YW7ZuRWdLTJkHAAAAAC1U5RfpLzMPJ09eVZHYo9o05xNOpFwQj1v6qlR748qUzgtcZ0AAAAAQN1JXJaodS+sK7c/7v04xb0fV+1xLBaL+t3Vz5A5GVJgsW7dOgUGBiomJkZubpU/RcpkMmnEiBH65Zdf1K1bN7311ltatGiREVMAAAAALgs1vZmqWUAzTfphkhK/SNSqx1fpsxs/K9PedUxXhd8Rri6jupTra9TTagEAAADU3oa/b1DM8zHW16cdTtd5ztKf84sLim1Elm13ci97U1bpVSlqMw4AAABwubv4WoG9f4/fvWS3vpr2lfW1d1tvjft4nEJvCZXJZCoXz3UCAAAAAHXJYrFUa19l3Fq4qfeU3hr63FBD5mNIgUViYqKmTZtms7iiND8/P912221aunSpEekBAACAy0ZNb6Y6c+yMvrv3O+1dvleegZ4a/tJwBfQOUHFBsZLWJmn7f7fr7KmzcnRxVEh0SJm+Rj2tFgAAAEDtDXpikAb+daD1dXJysub0mlOnOZ09na3bRXlFNiLLnj+U7idJLp4u1R6n9GoXF48DAAAAXO7KXSuQfYXXIdeEaPLKySrIKVDG/gzt+mSXvpz0pdbOXquRb41U5+s6l4nnOgEAAACAujLgwQEKuy3swg6L9FbHtzRy7kh1vb6rzb4mk0lO7k5y93U3dE6GFFicOnVKHTt2tKtPt27dlJaWZkR6AAAA4LJRk5upzmac1fxB83Xq4Cn59fDTbetuk7vPhROL7uO6q/fk3vpo8EdafPViRb8WrahHoqztRj2tFgAAAEDtmV3MMrtc+NO+U7O6/9zdvH1z63ZOWo7N2NLtpfudf31001FrnFcbr0rHyU7LliS5eLnIrUX1Hu4EAAAAXC4uvlaQkpKiOT2qX3jtGegpz0BP6+uBDw/UqsdWKfa1WH0y6hNdP/96hU0Ns7ZznQAAAABAXXH1dpWrt2u5/e6+7mrernn9T0iSgxGDeHh4KCfH9kWVi+Xk5FR7xQsAAAAA55hdzHLxcrF+VedmqtVPr9apg6ckSSPfHlmmuOK8NhFtNOChAZKklY+u1JFfjljbjHpaLQAAAICmyT/U37qddSTLZmzW0Qvt/j39y7T5hfpZt08fqfwJu0X5Rco9kXuuT0+/SuMAAACAy9XF1wpq+/d4k8mkEa+MUGB4oGSRvp3xrbJTs63tXCcAAAAAUJ+mrpmqjiPsW/zBSIYUWHTq1ElLly61q88XX3yhTp06GZEeAAAAQCUsJRbt/nS3pHNPfu0wvEOlsd3Hdf//naSt/95q3W/U02oBAAAANE1ebbzk08VHkpS6I9Vm7LG4Y+f6BHmpZeeWZdpKn4/YGidtZ5osJZZyfQAAAADUHZPJpF6TekmSis4WadeSXdY2rhMAAAAAqE/th7SXh79Hg+U3pMDiuuuu0y+//KJHHnlExcW2lwIsKSnRo48+qtjYWI0aNcqI9AAAAAAqkXMiR3mn8iRJ3m29ZTKZKo0tfaGj9M1ORj2tFgAAAEDT1WNCD0lSZlKmdYW8i2WlZCl9b7okqfv47uXOP4IGBMkryEuSdOjnQ5XmOrjqYLm8AAAAAOqeT1cf6/bxXcet21wnAAAAANDY7VqyS39z/pshYxlSYDFz5kx5e3trzpw56ty5s5566iktX75cW7du1e7du7V161YtX75cTz/9tLp06aI33nhDzZs31wMPPGBEegAAAACVMDlcuKHJYrHYjD3/hFhJKikusW4b9bRaAAAAAE1X5AORcm7mLEmK+yCuwpjtH26XLJLZ1ayoh6PKtZtMJg16cpAkKXlDsrUYo7SSohLt+GiHJKnznzurVZ9WBr0DAAAA4PK1//v9SopJqjLOwfHCbUQlRVwnAAAAANB0WEosshTbvjequsxGDNKiRQt99tlnGjVqlA4fPqx//OMflcZaLBY5Ozvrs88+U4sWLYxIDwAAAKAS7j7ucvFyUX5WvjKTMlVSXFLmAklpGQcyrNvebb3LtPWY0EPrX1pvfVpti47lP8tX9bRaAAAAAE2Xh7+Hol+L1rczvtWmOZvUbWw3tYloY21P3Zmqja9ulCQN+9sw60oVF+t3Rz/t/mS3kjcka8UdK3TrT7fKyc3J2r72ubXK2J8h1+auumbONXX7pgAAAIDLxLczvpVzM2fds/sem3EZv3OdAAAAAEDD++r2r+zuU9nq2zVhSIGFJI0YMULr1q3TtGnTlJiYWGlcjx49NH/+fEVERBiVGgAAAEAlTA4mdf5zZ+1esluFOYXa/91+dR3dtcLYPf/bY93u/OfOZdoiH4jU5rc2qyC7QHEfxOmql68q17+qp9UCAAAAaFjxi+Ot22nxadbtAysPKOtoliTJI8BDIdEhFfbvf3d/Zadla90L67Rg2AKFTw+XX08/pe9NV9y8OBXmFGrgIwMV9Ujl5wMOZgf937L/0yejPlHyhmS93+99hU0Lk7OHs/Z/t1/7v90vd193TVg6QT6dfQx65wAAAADSE9OVmZSp5u2bV9husVi0c+FO6+suo7uUaec6AQAAAID6suOjHXYXbFssFsOKvA0rsJCkK664Qnv27NGqVau0cuVK/f777zpz5ow8PT3VqVMnRUdHa8SIEUamBAAAAFCFIbOHaN/X+1SYU6gfZv6gwL6B5Z4me3DVQf36718lSS07tVS/O/qVaTfqabUAAAAAGs6yycsq3L/h5Q3W7XZD2lVaYCFJQ2cPVUh0iDa/vVkJSxOU+26u3H3dFXJ1iCLujVCHYR2qnIe7r7tu33C7ts3bpvhF8drw9w0qzi+Wd1tvRT0apQEPDpBnoKf9bxAAAABApSwlFi2bvEwTPp+gZq2alWv78a8/6o9f/5Akhd4SqqDIoDIxXCcAAAAAUJ/cfNzk7OFcYVtJcYnys/KVn5UvSXL1dpVrc1fDchtaYHHeiBEjKKQAAAAAGgnfrr66ZcUt+uLmL5R5KFP/Dv23+kzto4BeASouLNbhmMNKWJogS7FF/r38dfNXN8vsWv5UwYin1QIAAABoOLMtsw0ZJzgqWMFRwbUaw8HsoIgZEYqYwWrXAAAAQF1r1aeVTh8+reQNyXo75G31vLmnfLv5yt3HXaeTT2vPZ3uUnpguSeozpY9GvT+qwnG4TgAAAACgvoycO1K9JvayGZOdlq29y/dq81ubNeyFYeoxvochueukwKI6Tpw4ocTERA0ePLihpgAAAABcNjoM66B7996rHfN3aP+3+7Xn0z3a+u5WOTg6yN3PXV1GdVH3G7sr9P9C5ejsWOk4RjytFgAAAAAAAAAA1J+bv7pZx3cfV+KyRCWvT9bBlQe1e8lulRSWyNnTWS06tFDEfRHqM6VPmVUpKsJ1AgAAAACNRbOAZup/V391u76bPhz4obzbeVd5TlMdDVZg8dNPP2nKlCkqLi5uqCkAAAAAlxW3Fm4a+NeBGvjXgbUax4in1QIAAAAAAAAAgPrjH+ov/1B/Q8biOgEAAACAuvTEmSdkdq1+mUOzVs3U57Y+2vDyBv3fsv+rdX6HWo8AAAAAAAAAAAAAAAAAAAAAAABQS84eznJwtK/MoXm75joSe8SQ/HatYPHjjz/q3Xff1R133KE///nP1v0dO3a0O3FOTo7dfQAAAAAAAAAAAAAAAAAAAAAAAM7L+D1D+Vn5hoxlV4HFrbfeqoyMDG3cuFEnTpyw7k9KSqpRcpPJVKN+AAAAAAAAAAAAAAAAAAAAAADg8nZ4/WH9+q9f5d3W25Dx7CqwCAkJ0cmTJytcseLKK6+0ayWLgwcPasOGDfakBwAAAAAAAAAAAAAAAAAAAAAAl6ivbv+qypiSwhLlZebpROIJZR7KlCT1n9HfkPx2FVj8+OOP+vnnn3XVVVeVa7vrrrs0ceLEao/18ccfU2ABAAAAAAAAAAAAAAAAAAAAAAAkSTs+2iGTyVStWIvFIkkKjgrWlU9daUh+uwosduzYoW+++UbffvutXnzxRQUGBtYq+fk3BAAAAAAAAAAAAAAAAAAAAAAA4ObjJmcP50rbHcwOcvF2kW9XX3UZ3UU9b+opk0P1ijKqYleBxX//+18tWrRIQUFBevbZZ637S0pK7E48adIkTZo0ye5+AAAAAAAAAAAAAAAAAAAAAADg0jRy7kj1mtirQXI72BO8adMmDR06VAcPHlS7du2s+1944QXt3r3b8MkBAAAAAAAAAAAAAAAAAAAAAADUB7sKLI4dO6abbrpJZnPZhS+ee+45xcfH25V41apVGj58uF19AAAAAAAAAAAAAAAAAAAAAADApWnmoZnqdkO3BstvrjrkgsLCQhUUFBiSOC0tTTExMYaMBQAAAAAAAAAAAAAAAAAAAAAAmrbm7Zo3aH67CiyCg4O1fPlyPfDAA3U1HwAAAAAAAAAAAAAAAAAAAAAAAB355YgOrzuszEOZKjhTIGdPZzXv0FztBrdT8MBgw/PZVWARHR2t9957T+Hh4Ro2bJi8vb2tbV9++aV+//33ao+1c+dOe1IDAAAAAAAAAAAAAAAAAAAAAIDLwKE1h/T9/d8rPTG90hjf7r667p3r1H5oe8Py2lVg8cQTT+h///ufduzYUa5AYtmyZVq2bJlhEwMAAAAAAAAAAAAAAAAAAHVvyeglDT0FAAAAq63vbdV3930nWSSLxVJp3ImEE1o4YqGu+9d16n9Xf0Ny21VgERQUpM2bN+upp57S6tWrdfLkSVksFplMJpsTr4zJZLK7z8XS09P11ltvadmyZUpKSpKzs7O6du2qW265RXfffbecnZ1rneNix44dU/fu3XX69GlJtv/RAAAAAAAAAAAAAAAAAAAAAABA1VJ+TdF3930nS4lFzQKaqesNXRUYHiivNl4yu5pVlFekrJQsHYs7pr3L9irneI6+v+97te7XWq37t651frsKLCQpJCREn376aZl9Dg4OWrx4sSZOnFjtcRYvXqypU6fam76MLVu26IYbbtCxY8cUHR2tGTNm6OzZs1qwYIFmzpypjz76SN98841at679N6q0e++911pcAQAAAAAAAAAAAAAAAAAAAAAAai/2tVhZSiy64v4rFP1KtMyulZc8jJwzUisfXakt72zRxlc3asJnE2qd364CixMnTigxMVGSFBERITc3txonrumqF+clJydr1KhROnHihB588EHNmTPH2nb//ffr2muv1Zo1azRmzBht3LhRLi4uNc5V2hdffKFly5YZMhYAAAAAXM4aw1LTt6y4paGnAAAAAAAAAAAAAAAAgP8veX2y2g9pr2vfurbKWLOrWde+fa3Sdqbp8LrDhuR3sCf4zTff1LBhwzRs2DAdOnTIun/+/PmKioqyK3FUVJTmz59vV5/SZs2apRMnTqht27b6xz/+UabNxcVF8+bNk6Ojo7Zt26Z33nmnxnlKy8zM1P3336+goCCFh4cbMiYAAAAAAAAAAAAAAAAAAAAAAJDyMvPUbVw3u/p0H99deZl5huS3q8Bi9erV8vPz0zfffKPOnTtb9w8bNkwBAQF2Je7QoYOmTp1qV5/z9u/fr88//1ySNGXKlApXpwgJCdGwYcMkSa+88oqKiopqlKu0WbNm6dixY/rXv/4lT0/PWo8HAAAAAAAAAAAAAAAAAAAAAADO8QjwkJObk119nNyc5O7rbkh+uwoskpKSdP/99+vaa6+Vk9OFSXfo0EHLli2zK/GhQ4e0cOFCu/qct3TpUlksFknSiBEjKo2Ljo6WJJ04cUJr166tUa7zYmJi9OGHH2r8+PEaM2ZMrcYCAAAAAAAAAAAAAAAAAAAAAABldRjeQUc3HbWrz9HNRxUcFWxIfrsKLE6dOlXhShXnix3sERsbq2nTptndTzq3ksZ5YWFhlcb17du3wj72ysvL0x133CFvb2/985//rPE4AAAAAAAAAAAAAAAAAAAAAACgYlGzopT4RaKSYpKqFZ+8IVm7Fu/SgAcHGJLfbE9wixYttGvXLkMS18bu3bslSZ6envL29q40Ljj4QhXKnj17apzv+eef1/79+/X++++rVatWNR4HAAAAAAAAAAAAAAAAAAAAAABUzK+7n2764iYtm7xMXUZ3Uc+beiqgV4BcW7jKZDLJYrEoLzNPx3cfV8LnCdoxf4eu/ee1hq1gYVeBRf/+/fWf//xHHTt21PDhw+Xt7W1dveLkyZNKTk6u9ljp6en2zfT/y8/PV2pqqiRVuJpGaaXbk5KSapRv586dev311zV48GBNnz69RmMAAAAAAAAAAAAAAAAAAAAAAIBzXnB8ocqYbe9t07b3tlUZ981d3+ibu7/Rs0XP1npedhVY3Hffffr+++/117/+tVzbgw8+qAcffLDWE6rKmTNnrNuurq42Y93c3CrsV13FxcX6y1/+IkdHR73//vsymUx2jwEAAAAAAAAAAAAAAAAAAAAAAC44v9CDUUwy5l5/uwosrr32Wr3xxht6+umndfbs2TJtNXmDNSlYKJ3X2dnZZmzp9tzcXLtzzZkzR9u2bdPf/vY3de3a1e7+lTlbdFbZRdnW104OTnJydDJsfFRPUVFRQ0+hUSgqKlJJSQnfDzQqHJdorDg20RiVlJQ09BRQA6dPn1ZGRob1tYuLi1xcXOotf4mJ4+a8hv6Zzu8WXIxjAhfjmMDFOCZwMc4Jmq5Tp07J3d3d+rq+zwvQ9NT17wDOFWEPi8kiiyyymCwqEccO6k9FPwP5jIzGoiGPRY7/pqmhrxXg0mDkzx7OCcDn/MatMfy+t+fnRF0eT03te1FXGsP3Qar770VT+dnU0P8eDZ2/NrqP6y7/Xv61Hud4/HHtXb7XgBnZWWAhSQ899JCmTZum2NhYnTx5UsXFxbr99tt11113acCAAdUe55dfftG8efPsTV9mVYqCggKbsaXbS1+kqI5Dhw5p9uzZ6tmzpx577DH7JlmFx9aWHW9k+Ehd1/86Q3Ogahs2bGjoKTQKJSUlSk5OliQ5ODg08GyAczgu0VhxbKIxOnnyZENPATUQFhZW5vXUqVN122231Vv+jMCMqoMuEw19XsDvFlyMYwIX45jAxTgmcDHOCZqu3r17l3ld3+cFaHrq+ncA54qwh0UWnfU8qwxlGPZkQKA6KvpbDp+R0Vg05LFY+iZ9NB0Nfa0AlwYjf/ZwTgA+5zduDX1dU7Lv50RdHk9N7XtRVxrD90Gq++9FU/nZ1ND/Hk35nKD7uO7qNbFXrceJ/zi+4QosJKl58+a67roLBQG33367rrzySk2cOLH6ic3mGhVYeHp6Wrfz8vJsxpZe7aJ0v+q48847lZeXp3nz5snJydjVJV4Z+opauLawvnZycJLTMVawqG+DBg1q6Ck0Cuer1qKiomQ21+hHAmA4jks0VhybaIzO/8EUTcuOHTsUHBxsfV3fT6VKeTOl3nI1dg19XsDvFlyMYwIX45jAxTgmcDHOCZqu+Ph4tWnTxvqap9WiKnX9O4BzRdjDYrIoQxlqmdpSJkvjvbkBl56K/pbDZ2Q0Fg15LB49erRe88EYDX2tAJcGI3/2cE4APuc3bg19XVOy7+dEXR5PTe17UVcaw/dBqvvvRVP52dTQ/x5N9Zygebvmcm7mbMhYzs2c5d3W25CxDDmjGzJkiAICAuzqExAQoMGDB9udy8XFRa1atVJqaqrS0tJsxpZub9++fbVzLFy4UKtWrdLkyZPVuXNnpaenl4spLCy0bpdud3Jykre37X8cN7Obmpmbld1pqfb0YBD+uHaBg4ODzGYz3xM0KhyXaKw4NtHY8ES2psnb21stW7ZssPwOFo6b8xrDz3N+t+BiHBO4GMcELsYxgdI4J2i6WrRo0aDnBWia6vJ3AOeKsEeJSmSSSSaLiWMH9aqyn398RkZj0VDHIsd+09TQ1wpw6TDqZw+f68Dn/MatMfy+t+e4qMvjqal9L+pKY/g+SHX/vWgqP5sa+t+jofPX1MxDMw0bq9v13dTt+m6GjGXId3PNmjV29xkxYoRGjBhRo3yhoaFKTU3VmTNndPr06UoLGkpX4/Ts2bPa469evVqStGjRIi1atKjKeD8/P+v2kCFDtHbt2mrnAgAAAAAAAAAAAAAAAAAAAAAANXNw1UGtf3m9pq6eWuuxmmS5yvDhw7Vq1SpJ55bLGzJkSIVxcXFxZfpU16OPPqpbb73VZszDDz+s+Ph4SdLKlSut+1u0aFHtPAAAAAAAAAAAAAAAAAAAAAAAoOay07J1OOawIWPZVWDRsWPHMq9nzJihWbNmVbv/6NGj9d1331lfm0wmFRUV2TMFSdL48eP11FNPyWKx6Oeff660wOJ8EYavr6+GDh1a7fF79OihHj162IwpXUhR05U4AAAAAAAAAAAAAAAAAAAAAAC43JQUl+j4ruPyD/WXg9nBun/nwp12j3Uk9ohh87KrwCIpKUndunVTQECAJPtXaxgxYoR8fX0lSXv27NG2bdvs6n9e586dNWHCBH322WdatGiRnn76aTk7O5eJOXjwoFavXi1Jeuyxx2Q2l32ru3fv1rhx45Sbm6tPPvlEgwcPrtFcAAAAAAAAAAAAAAAAAAAAAABA9X027jP99s1v6jSykyZ+O9G6f/lty2UymRpsXnYVWEjS008/rYkTJ5bZl5ycXGl827ZtrdszZ860br/xxhs1LrCQpNdee01r1qxRUlKSnnzySb3++uvWtvz8fN15550qLi5Wv379dN9995Xr/9JLL2n//v2SpMcff1yxsbE1ngsAAAAAAAAAAABQU0tGL6kypsRUoozADKW8mSIHi0OV8QAAAAAAAADQmCXFJMlisSh5Y/laBIvFYvd4RhVl2F1gUZH27dtXOqHi4mIjUpTTtm1brVixQmPHjtUbb7yh3bt3a8yYMTp79qwWLFigXbt2KSwsTF9//bVcXV3L9S8pKbFuV/cfYPHixdbttLS0CvdHR0dbV/gAAAAAAAAAAAAAAAAAAAAAAABlXf361dr89mZdcd8V5dpGzh2prtd3rfZYe5ft1U8P/2TIvAwpsHj22WdlMpmUk5Oj119/XZMnT1bHjh2NGNqmyMhIxcfHa+7cuVq2bJkeffRROTk5qUuXLpo7d65mzJghZ2fnCvs+9dRTiouL09mzZ/XKK69UK9/kyZOr3L9mzRoKLAAAAAAAAAAAAAAAAAAAAAAAqET49HCFTw+vsM3d113N2zWv9ljufu4GzcqgAovnnntOknTy5Em9/vrrmjp1qoYPH27E0FXy9fXViy++qBdffNGufr1799b+/fvt6lOTpUYAAAAAAAAAAAAAAAAAAAAAAEDVhsweooDe9i14ENA7QIOfHWxIfkMKLAAAAAAAAAAAAAAAAAAAAAAAAGrDZDIp8ctEJX6ZqFZhrdR1TNcq+wT0ClBAL/uKMipDgQUAAAAAAAAAAAAAAAAAAAAAAGhwa59bK5PJJIvForDbwqpVYGEkCiwAAAAAAAAAAAAAAAAAAAAAAECj4NnGU+M/Ha/WEa3rPTcFFgAAAAAAAAAAAAAAAAAAAAAAoMGZXc2KnBmp4KjgBsnvYG8Hk8lkSAwAAAAAAAAAAAAAAAAAAAAAAMB53sHecvFyabD8dq9g8eCDD+qpp56qsK2kpESSNGnSJLm6utocJysry97UAAAAAAAAAADATstvW66dC3ba1afr9V118/Kbra8zkzL1Voe3qtU34t4IXffOdXblAwAAAAAAAAAAdSs3PVd7Pt+jAz8eUOr2VGWnZcvkYFKzgGZqc0Ub9bq1l7qM6lKtxRaOxB7Rlne2KHlDsnKO58jDz0NBA4MUcU+E2g9tX6t5dh7VWYdjDqvfHf2q3Sf+43gtn7JczxY/W6vcUg0KLNLT03XixIlK200mk1JTU6s1FitdAAAAAPXv5G8ntf2/2/X7D78r62iWCnMK5RHgIe+23gr+U7A6juiojld1rLR/XZ4gAQAAAGgcPAI8GnoKAAAAAAAAAADAID898pN+/devKsorkrufu3pN6iWfzj6yWCxKWpOkhKUJ2vPZHnUY3kETPp8gt5ZulY4V80KMYp6PkdnVrL7T+8o/1F/piemKmxenhM8TFDUrStGvRtd4roMeG6T3+72vxGWJ6j62e43HqSm7Cyx8fHzk4VH7CytZWVnKzMys9TgAAAAAqm/di+u07m/r5OHvoZ7/11M+XXxUlFeklM0p2vPZHiWvT1bcvDg9mv5ohf3r+gQJAAAAQN25N/HeKmMWj1ys04dPK+y2sArbh788vMqLGa4tbK9wDQAAAAAAAAAA6lf84ngV5RWp3ZB2uvmrm+XqfeFv+Vfce4V+++Y3fXrDpzq0+pCWjF6iaeunyeRQfjGFre9t1drZa2V2NWvK6ikKigyytvWe3Fvzr5yv2Ndi5eHvoahHomo016K8Io357xitmL5C8Yvi1WNCD/n39JeLl0uFc5LOrc5hFLsLLObOnauJEyfWOvHrr7+uxx57rNbjAAAAAKielY+tVOyrsQq9OVRjPhwjJ3enMu29p/TWJ9d9Umn/+jhBAgAAAFB3fLv52mw/EntEpw+fln8vfwUPDK4wxjPQs8pxAAAAAAAAAABA4+NgdtDYhWPLFFec12VUF4VPD9e2/2zTkdgj2vPZHoXeHFomJudEjlbOWilJipwZWebeIUkK7BuoqEeiFPN8jNY8s0ahN4fKK8jL7nnObT9XJtO5Qoqso1na99U+u8eoDYd6zVbK+TcNAAAAoO79/sPvin01Vn49/XTDwhvKFVdIUqdrOqljdEe5+7iXa6vuCZIkrXlmjbKOZtXBuwAAAABQE77dfNVuSLsq47a9v02S1O/OfnU9JQAAAAAAAAAAUM9ahbWSd1vvStu733hhBevfVvxWrn3zW5tVkF0gSQqfHl7hGOHTwyXTuVUoYt+IrfFcLRaL3V9GsWsFi9dee039+hlzYWXo0KF69dVXDRkLAAAAQOUsFot+ePAHSdKgxwfJ0cmx0thbf7i1wv3VPUGKeSHGeoI0cs7IWs4cAAAAgBEGPT5Igx4fZDMm73SeEj5PkJO7k3pP7l1PMwMAAAAAAAAAAPXhxiU3VvjQ1dKat2tu3T6dfLpce8LShHNx7ZurZaeWFY7hFeQl326+Sk9MV+LSRF3z5jU1Wpih3139FDQgqOrA/+/oL0cVNy/O7jwVsavA4uGHHzYkqST169fPsGINAAAAAJU7vO6wTu47KZODSV1Gd6nRGPV5ggQAAACg/sUvildhbqHCpoVVuDR4RUqKSlSUXyRnD+c6nh0AAAAAAAAAAKiNDsM6VBmTl5ln3XbycCrTlpWSpZP7Tko6txKGLYF9A5WemK6so1nK2J8hny4+ds+33ZXt1Gtir2rHO5gdGqbAAgAAAEDTc744wrudd5kbpSwWiwqyC+TczNlmIUR9nyABAAAAqH/nLzr0u9P2g5GO7zmuLyZ+oeQNyTrzxxlZii1ycndS0IAg9bq1l/pM7iMHs0N9TBkAAAAAAAAAABjo1KFT1u12g9uVaTu++7h12yvYy+Y4pduP7zlu9/1Dbf/UVh7+Hnb1aRnSUn2m9LGrT2UosAAAAAAucce2HpMkebf1lqXEou3zt2v7B9v1x9Y/VFJUIgezgwL7BarPlD4KvyNcjk6OZfrX5wkSAAAAgPp3dNNRpcWnKaB3QJXLbf/y+i/y6eKjK+67Qr7dfVWcX6zD6w4rbl6cDq0+pLj343TTlzfJM9CznmYPAAAAAAAAAACMsHfZXkmS2dWssNvCyrRlJmVatz0CbBc/lG4v3a+6pq2fZnefoAFBVV7jqC4KLAAAAIBLXNquNEmSpcSiRVcvUtKaJPW5rY8GPjxQjs6OSt6YrC3/3KLv7v1O8YvidcuKW+Tu627tX58nSAAAAADq37b3t0mSwu8MrzK2+43dNe7jcTK7XLi80GN8D4VNC9OCoQt0dNNRLRm9RLdvvL1MDAAAAAAAAAAAMEZRfpGK84utrwvOFNR6zJzjOdr31T5J0sBHBsqzddkHKZXOYXa1/fd/JzenWs1t58Kdaje4nZq3b15l7Lu93pXFYlG/u/op8v5Iu3NVhKsbAAAAwCWsMLdQhTmFkqTk9cmSpPGfjVfPCT2tMV3HdFWP8T300eCPdHTTUS29eakmr5wsk8kkqX5PkAAAAADYdvFFk8LswlqNl5+Vrz3/2yMndyf1vrV3pXFeQV6aeWimPNt4llv1TpIC+wZq8LODtfKRlTq27Zi2vrdVA2YOqNXcAAAAAAAAAABAeRv+vkExz8dYX5/W6VqPuXLWShXlFSkwPFCDnx5crr3w7IXrEY7O5a8TlFa6vTDX/usYX037SmMXja1WgYWTu5P+2PqHfnzwR7l6u6rPlD5257sYBRYAAABAE2LvzVT5WfllXne6tlOZ4orz2kS0Uf97+mvTm5t06OdD+m3Fb+o6puu5HPV4ggQAAADAtnIXTRxqd9EkfnG8CnMLFTYtTK7erpXGOZgdqryQ0XdaX62ctVKySDv+u4MCCwAAAAAAAAAA6sCgJwZp4F8HWl+npKRoTo85NR4vfnG8di7cKQ9/D930xU0VrlBd+qGrxQXF5dpLK93u5O5kI7JiFoul2rHTN0/XmT/O6H9j/6ct/9xCgQUAAABwubH3ZqqS4pIyr3tM6FFpbOjNodr05iZJ506czhdY1OcJEgAAAADbLr5okpycrDm9an7RZNv72yRJ/e7qV+u5ubV0U4uOLXTqwCml7UpTQXaBnJs513pcAAAAAAAAAABwgdnFXKYIwjmr5n+LP7zusFbcsUIuXi6a+N3ESh+25Ox5IUdRXpHNMUs/zLV0v7ri2dpTYdPC9PMTPxsyHgUWAAAAQBNi781ULp4uZV4H9AqoNDagd4BkkmSRUrakWPc35hMkAAAA4HJz8UUTp2Y1L2w+uvmo0namKaBPgIIig4yYnjz8PXTqwCnJImWnZatls5aGjAsAAAAAAAAAAIyVsiVFS0YvkaOzo2798Va17te60tjShRc5aTk2xy3dXtXq2EbJOJBR5YNjq4sCCwAAAKAJsfdmKudmznJ0drSeQLi2cLU5tnMzZxWcKVDO8YpPdBrjCRIAAACAmrGuXnFn7VevOM9ScmHZbgdHB8PGBQAAAAAAAAAAxvlj2x9afM1iWSwWTf5psoIG2H4Qk3+ov3U760iWzdisoxfa/Xv624iU9n61V/u+2ldu/7b3t+ngqoM2+0pSSWGJMg9n6ugvR889XNYAFFgAAAAAlzCTg0m+3X2VtjNN0rmTCpssF/qdV1cnSAAAAAAaTn5Wvvb8b4+c3J3U+9beVcave3Gd/Hv5q9v13WzGZadmSzp3TuHh72HIXAEAAAAAAAAAgHGObT+mRdGLVFJUolt/vLXK4gpJ8mrjJZ8uPjr520ml7ki1PX7csXN9grzUsrPtla5Td6Rqx0c7ZDKZyuxPXp+s5PXJVc5LkiyWczc8XfHAFdWKrwoFFgAAAMAlrs0VbawFFtmp2fLt5lthXGFuoQpyCiRJnq09rfvr6gQJAAAAQMOJ/zhehTmFCrs9TC5eLlXGr3lmjUKuCbFZYHHm2BmdPnxakhQYHignd9sr7gEAAAAAAAAAgPqVFp+mRdGLVFxQrFt/uFXBUcHlYtY+v1a/rfhNd269s8z+HhN6aP1L65WZlKlTB0+pRccW5fpmpWQpfW+6JKn7+O7lCicu5trcVc3bNS+zL/Nwptx83OTs4Wz7zZgkJ3cn+XTxUZ+pfap8SFR1UWABAAAAXOJ6jO+huHlxkqSUX1PUfmj7CuOObT9mXcGi3ZB2ZceogxMkAAAAAA3n/DlC/7v6V7vPkdgjys/Kr7QgY+t7W63b4XeG126CAAAAAAAAAADAUMd3H9fCqxaq6GyRJn0/SW0Hta0wLvNQpo5tO1Zuf+QDkdr81mYVZBco7oM4XfXyVeVitn+4XbJIZlezoh6OqnJOA2YO0ICZA8rse97heY2cO1K9Jvaq5jszlkODZAUAAABQbzqO6KiAPgGSpF2Ld1mXxbtY/KJ463bEjIgybZEPRMq52bmq8LgP4irsb+8JEgAAAICGkfJrilK3pyqgT4DaXNGm2v0KzhRoxZ0rVFxQXK7twE8HtPGVjZKkdoPbqe+0vobNFwAAAAAAAAAA1M6JhBNaeNVC5abnauAjA2UpsShpbVKFX9mp2RWO4eHvoejXoiVJm+ZsUsqvKWXaU3emauOr564VDPvbMHkFedXtm6ojrGABAAAAXOJMDib9+d9/1oJhC5QWn6Z1f1unIc8OKRNz4KcD5wokJA14aIACwwPLtJ8/Qfp2xrfaNGeTuo3tpjYRF27EulROkAAAAIDLwbb3t0mS+t3Vr9p9AvoEKG1nmvb8b4+ObTumnjf3VIuOLVSYU6iktUlK/DJRskidru2kcR+Pk4OZ5zsBAAAAAAAAANAYFOUVaeFVC5VzPEeStO6FdVr3wroajdX/7v7KTsvWuhfWacGwBQqfHi6/nn5K35uuuHlxKswp1MBHBirqkZo/nHV2yewa9zUCBRYAAADAZSA4Kljj/zdey6Ys09rZa5W8PlldxnSR2dWsIxuPKH5xvCzFFkXOjLRWml+sPk6QAAAAANSt/DP52vPpHjl5OKn3pN7V7nf3jrt1dPNR7V2+V0c2HlHc+3E6e+qsHJ0c1axVM/Wa2Eu9J/dWp2s61eHsAQAAAAAAAACAvYryiipdlaImhs4eqpDoEG1+e7MSliYo991cufu6K+TqEEXcG6EOwzoYlqshUGABAAAAXCa63dBN9ybcq01vbdLv3/2u1U+uVklxiTwDPdVnch/1v6d/mVUpKnKpnyABAAAAlzoXTxc9ceaJGvUNigxSUGSQwTMCAAAAAAAAAAB1ybW5q2ZbjF0VIjgqWMFRwYaOWVp2araKC4olSR4BHjK7XCh7yDiQoZjnYpS6M1UuXi4KvSVUEfdEyGQyGZKbAgsAAADgMuIV5KWrX7taV792dY3HqOsTJAAAAAAAAAAAYLzc9Fzt+XyPDvx4QKnbU5Wdli2Tg0nNApqpzRVt1OvWXuoyqku1bko6EntEW97ZouQNyco5niMPPw8FDQxSxD0Raj+0fd2/GQAAAACXrLMZZ/VWh7esBRaTvp+kkKtDJEknEk/owwEfqiC7QBaLRZJ09JejOvrLUY1bPM6Q/BRYAAAAAAAAAAAAAAAAAJewnx75Sb/+61cV5RXJ3c9dvSb1kk9nH1ksFiWtSVLC0gTt+WyPOgzvoAmfT5BbS7dKx4p5IUYxz8fI7GpW3+l95R/qr/TEdMXNi1PC5wmKmhWl6Fej6/HdAQAAALiUJCxNUFF+kdx93RV+R7j8Q/2tbT/M/EH5Z/IlSa37tZZna08dXndYu5fsVq+JvdT5us61zk+BBQAAAAAAAAAAAAAAAHAJi18cr6K8IrUb0k43f3WzXL1drW1X3HuFfvvmN316w6c6tPqQloxeomnrp8nkUH4li63vbdXa2WtldjVryuopCooMsrb1ntxb86+cr9jXYuXh76GoR6Lq5b0BAAAAuLQc+OmAXLxcdFfcXfIK8rLuz/g9QwdXHZTJZFLEvRG69u1rz+0/kKF5EfO0Y/4OQwosHGo9AgAAAAAAAAAAAAAAAIBGzcHsoLELx5Yprjivy6guCp8eLkk6EntEez7bUy4m50SOVs5aKUmKnBlZprhCkgL7BlqLKtY8s0ZZR7OMfgsAAAAALgPH4o4p7LawMsUV0rmVLSTJyd1Jw18cbt3fMqSlek3qpZQtKYbkp8ACAAAAAAAAAAAAAAAAuMS1Cmsl77belbZ3v7G7dfu3Fb+Va9/81mYVZBdIkrUY42Lh08Mlk1SUV6TYN2JrOWMAAAAAl6PsY9ny6+FXbv++r/bJZDKp2w3d5OLlUqbNr7ufco7nGJKfAgsAAAAAAAAAAAAAAADgEnbjkhs15sMxNmOat2tu3T6dfLpc+/mnxTZv31wtO7WscAyvIC/5dvOVJCUuTZTFYqnhjAEAAABcrkwOJhUXFpfZl5WSZV2hoseEHuX7OJoMy0+BBQAAAAAAAAAAAAAAAHAJ6zCsgwJ6B9iMycvMs247eTiVactKydLJfSclnVsJw5bAvoHn+hzNUsb+jJpMFwAAAMBlzCvIS8e2HSuzb/uH22WxWOTk7qSQa0LK9Tl18JTcfNwMyU+BBQAAAAAAAAAAAAAAAHCZO3XolHW73eB2ZdqO7z5u3fYK9rI5Tun243uO24gEAAAAgPLaDWmn3Z/uVuKXiSrMLdTvP/yu2NdjZTKZ1G1sN5ldzGXii/KKtGvxLvn18DMkv7nqEAAAAAAAAAAAAAAAAACXsr3L9kqSzK5mhd0WVqYtMynTuu0R4GFznNLtpfsBqNyS0Utq1K/EVKKMwAylvJkiBwvPWgYAAJeGAQ8N0M4FO/X5hM+t+ywWixzMDoqaFWXdl5ueq6Obj2rdC+uUnZqtiHsjDMlPgQUAAAAA4LJV0wsWRikxlajNX9s06BwAAAAAAAAAIOd4jvZ9tU+SNPCRgfJs7VmmveBMgXXb7Gr7diMnN6cK+wEAAABAdfh199O4j8fpq9u/UkH2uXMKs6tZI+eOVECvAGvcprc2af1L6yVJJpNJPW/qaUh+CiwAAAAAAAAAAAAAAACAJqIov0jF+cXW10YUMayctVJFeUUKDA/U4KcHl2svPFto3XZ0drQ5Vun2wtxCG5EAAAAAULEe43uoY3RHHV53WJYSi9pc0UaegWULwXvc2EMtO7WUJLl4uli3a4sCCwAAAAAAAAAAAAAAAKCJ2PD3DYp5Psb6+rRO12q8+MXx2rlwpzz8PXTTFzfJ7FL+dqLSq1IUFxSXay+tdLuTu5ONSAAAAAConKu3q7qO7lppe6uwVmoV1srwvBRYAAAAAAAAAAAAAAAAAE3EoCcGaeBfB1pfp6SkaE6POTUa6/C6w1pxxwq5eLlo4ncT1bx98wrjnD2drdtFeUU2xyy92kXpfgAAAABQV9J2pWnvsr0a8uyQWo/lYMB8AAAAAAAAAAAAAAAAANQDs4tZLl4u1q+aFjGkbEnRktFL5OjsqFt/vFWt+7WuNLZ04UVOWo7NcUu3V1awAQAAAABGSotPK7PSX22wggUAAAAAAAAAAAAAAABwGflj2x9afM1iWSwWTf5psoIGBNmM9w/1t25nHcmyGZt19EK7f09/G5EAAAAAUN7p5NN298lNzzUsPwUWAAAAAAAAAAAAAAAAwGXi2PZjWhS9SCVFJbr1x1urLK6QJK82XvLp4qOTv51U6o5U2+PHHTvXJ8hLLTu3NGTOAAAAAC49MX+L0S9v/KIBDw7Q0OeGWvfPbT9XJpOpwebl0GCZAQAAAAAAAAAAAAAAANSbtPg0LYpepOKCYk36fpKCo4LLxax9fq3e7/9+uf09JvSQJGUmZerUwVMVjp+VkqX0vemSpO7juzfoTVEAAAAAGrfY12KVn5WvX978pVybxWKx+8sorGABAAAAAAAAAAAAAAAAXOKO7z6uhVctVNHZIk36fpLaDmpbYVzmoUwd23as3P7IByK1+a3NKsguUNwHcbrq5avKxWz/cLtkkcyuZkU9HGX4ewAAAABw6eh5U09t/+92azF3af3u6let1fbOO/rLUcXNizNkXhRY4LK1ZPSShp6CJOmWFbc09BQAAAAAAAAAAAAAAMAl7ETCCS28aqFy03M1+NnBspRYlLQ2qcLY7NTsCvd7+Hso+rVofTvjW22as0ndxnZTm4g21vbUnana+OpGSdKwvw2TV5CX4e8DAAAAwKVjzAdjFP1qtNxaupVra3dlO/Wa2KvaYzmYHSiwAAAAAAAAAAAAAAAAAGBbUV6RFl61UDnHcyRJ615Yp3UvrKvRWP3v7q/stGyte2GdFgxboPDp4fLr6af0vemKmxenwpxCDXxkoKIeYfUKAAAAAFWrqLii/ZD28gjwsGucZgHN1G5wO0PmRIEFAAAAAAAAAAAAAAAAcIkqyiuqdFWKmhg6e6hCokO0+e3NSliaoNx3c+Xu666Qq0MUcW+EOgzrYFguAAAAAJefqWum2t2n44iO6jiioyH5KbAAAAAAAAAAAAAAAAAALlGuzV012zLb0DGDo4IVHBVs6JgAAAAA0BhQYAEAAAAAAAAAAAAAAAAAAAAAABpcUX6Rkjck61jcMeWeyFV+Vr5cvF3k4eeh1v1bKzgqWI7OjnWWnwILAAAAAAAAAAAAAAAAAAAAAADQYM78cUbrXlqnnR/tVFFeUaVxZjez+t7eV4OeGCTPQE/D50GBBQAAAAAAAAAAAAAAAAAAAAAAaBD7vt6nL2/9UoU5hbJYLDZjC3ML9eu/ftWOj3boxk9uVJdRXQydCwUWAAAAAAAAAAAAAAAAAAAAAACg3sV/HK/lU5dLFsliscjkYJJfDz+1CmslNx83OTdzVsGZAuWm5yp1e6rS96XLUmJRQXaBPr3hU41dNFa9bull2HwosAAAAAAAAAAAAAAAAAAAAAAAAPXqRMIJfXPXN7KUWOTWwk1Rs6IUPj1c7r7ulfbJTstW3Lw4/fLmL8rLzNM3d36jVn1aya+HnyFzosACAAAAAAAAAAAAAAAAAAAAAJqIJaOXNPQUAEOsnLVShbmFCo4K1oTPJsiztWeVfZoFNNPgpwerz9Q++nzC50rZkqKVs1Zq4rcTDZmTgyGjAAAAAAAAAAAAAAAAAAAAAAAAVMPxPce1//v98u3mq4nfTqxWcUVp3sHemvT9JPl09tHvP/yuEwknDJkXBRYAAAAAAAAAAAAAAAAAAAAAAKDe/LbiN5lMJl0z5xq5ervWaAy3Fm66Zs41slgs2vf1PkPmRYEFAAAAAAAAAAAAAAAAAAAAAACoN8nrk+XTxUedrulUq3E6X9dZPp19dHjdYUPmRYEFAAAAAAAAAAAAAAAAAAAAAACoNyd/O6kOIzoYMlbH6I46+dtJQ8aiwAIAAAAAAAAAAAAAAAAAAAAAANSb3JO5atGxhSFjtQhpobMZZw0ZiwILAAAAAAAAAAAAAAAAAAAAAABQb/JP58vdx92Qsdx93JWflW/IWBRYAAAAAAAAAAAAAAAAAAAAAACAemOxWORgNqacweRokiyGDCWzMcMAAAAAAKprxR0r5Ovq29DTAAAAAAAAAAAAAAAAABqOqaEnUB4FFgAAAAAAAAAAAAAAAAAAAAAAoF79+OCPWv3U6lqPU5hTaMBszqHAAgAAAAAAAAAAAAAAAAAAAAAA1Kvc9FxZTlgMGctkMmY5DAosAAAAAAAAAAAAAAAAAAAAAABAvXLzcZOzh3OtxynIKdDZk2cNmBEFFgAAAAAAAAAAAAAAAAAAAAAAoJ6NnDtSvSb2qvU48YvjtXzq8tpPSJKDIaMAAAAAAAAAAAAAAAAAAAAAAADUN5NxQ1FgAQAAAAAAAAAAAAAAAAAAAAAA6s01c65R6/6tDRmrdf/WuvrNqw0Zy2zIKAAAAAAAAAAAoNH6aOhHOhxzuMo4Jw8nPZn9pM2YI7FHtOWdLUrekKyc4zny8PNQ0MAgRdwTofZD2xs0YwAAAAAAAAAAcCkbMHOAYWP5dvWVb1dfQ8aiwAIAAAC4jP006yf98vovkqQhs4do6HNDq+zDzVQAAADA5SvmhRjFPB8js6tZfaf3lX+ov9IT0xU3L04JnycoalaUol+NbuhpAgAAAAAAAAAA1AgFFgAAAMBl6ljcMW2as8muPtxMBQAAADRdrSNaa+zCsTZjTA6mStu2vrdVa2evldnVrCmrpygoMsja1ntyb82/cr5iX4uVh7+Hoh6JMmzeAAAAAAAAAAAA9YUCCwAAAOAyVFJUoq+nfy1LsaXafbiZCgAAAGjanNyd5NutZstj55zI0cpZKyVJkTMjy5wPSFJg30BFPRKlmOdjtOaZNQq9OVReQV61njMAAAAAAAAAAEB9cmjoCQAAAACof7FvxCp1e6q6Xt+1WvHVvZlKktY8s0ZZR7OMnTAAAACABrX5rc0qyC6QJIVPD68wJnx6uGSSivKKFPtGbH1ODwAAAAAAAAAAwBAUWAAAAACXmYwDGYp5PkatI1rrivuvqFYfbqYCAAAALm8JSxMkSc3bN1fLTi0rjPEK8rKukJG4NFEWS/VXzAMAAAAAAAAAAGgMmnyBRXp6up555hmFhoaqWbNmatmypQYOHKi3335bBQUFtRrbYrFo/fr1mjlzpiIiItSiRQs5OTnJx8dHAwcO1OzZs/XHH38Y9E4AAACA+vHNnd+opLBEo+eNloNj9U4JuJkKAAAAuPTkn8mXpaTqz+1ZKVk6ue+kJKlVWCubsYF9A8/1OZqljP0ZtZ8kAAAAAAAAAABAPTI39ARqY8uWLbrhhht07NgxRUdHa8aMGTp79qwWLFigmTNn6qOPPtI333yj1q1b2z12XFycpk2bpvj4eEnSyJEjdf311yswMFCHDx/WwoUL9cILL+jNN9/Ue++9p0mTJhn99gAAAADDxX0Yp0OrD+lPj/1Jrfq0UtLapCr72HszVXpiuvVmKp8uPkZMGwAAAIABCnMLFfNCjBKWJujUgVMqzC2UycEkn64+6vznzhr40EB5tvYs1+/47uPWba9gL5s5Srcf33OccwIAAAAAAAAAANCkNNkCi+TkZI0aNUonTpzQgw8+qDlz5ljb7r//fl177bVas2aNxowZo40bN8rFxcWu8bds2aL4+HiZTCZ98cUXGjt2bJn2xx9/XKNGjdKaNWs0ZcoUtWzZUtdee60h7w0AAACoC9mp2Vo5a6VahLTQkNlDqt2Pm6kAAACAS8Mfv/6h47uOK+z2MA1+erCcPJyUvjddce/H6ZfXf9G2/2zTuMXj1HVM1zL9MpMyrdseAR42c5RuL90PAAAAAAAAAACgKXBo6AnU1KxZs3TixAm1bdtW//jHP8q0ubi4aN68eXJ0dNS2bdv0zjvv1DjP9OnTyxVXSJK7u7sWLFggJycnlZSU6KGHHqpxDgAAAKA+fHffd8o7ladR/xklJzenavfjZioAAACg8SjKL1J+Vr71qzC7sNp9Pfw9dOe2O/Xnf/1ZPW/qqS5/7qKoh6N0d/zd6hjdUQVnCvT5hM91JPZImX4FZwqs22ZX289tKn2uUbofAAAAAAAAAABAU9AkCyz279+vzz//XJI0ZcqUClenCAkJ0bBhwyRJr7zyioqKimqU6/rrr6+0LTg4WBEREZKkffv2af/+/TXKAQAAAFRXTW+m2vvVXiV+kaiw28LU8aqOduXkZioAAACg8djw9w36h/c/rF/v9nm3Wv3Gfzpe9+69V349/Mq1mV3MuuGjG+To4qjigmJ9d993ZdoLz14473B0drSZp3R7YW71iz8AAAAAAAAAAAAaA9t3RzVSS5culcVikSSNGDGi0rjo6GitWrVKJ06c0Nq1a23GXuzPf/6zvv/+ew0ePNhmXLt27RQbGytJSk5OVufOnaudAwAAALDXhr9vUMzzMdbXpx1OV9knPytf3937ndz93HX1G1fbnZObqQAAAIDGY9ATgzTwrwOtr5OTkzWn15wq+zVr1cxmu2drT3Ua2Un7vtqn1O2pOrb9mAL7BkoqW0hdXFBsc5zS7U7u1V85DwAAAAAAAAAAoDFokgUWq1evtm6HhYVVGte3b98yfewpsAgODlZwcHCVcZmZmdZtDw+Pao8PAAAA1ERNbqZa+ehKnUk5o3GfjJNbSze7c3IzFQAAANB4mF3MMrtc+NO+UzPjPne37t9a+77aJ0k6EnvEWmDh7OlsjSnKs71adOkC7dL9AAAAAAAAAAAAmoImWWCxe/duSZKnp6e8vb0rjStdILFnz546mcuhQ4esc7FV7AEAAAAYwd6bqQ6vP6xt729Tp5Gd1OuWXjXKyc1UAAAAwOXBw//CQ4SyU7Ot283bN7du56Tl2ByjdHvpfgAAAAAAAAAAAE1BkyuwyM/PV2pqqiQpICDAZmzp9qSkJMPnsm/fPu3du1eSNG3aNLm6uhqeAwAAAKip4oJirbhjhRydHTXsb8OUm55bLibvdJ51uzC3sEyMi7eLHJ0cuZkKAAAAuExYSizWbQdHB+u2f6i/dTvrSJbNMbKOXmj37+lvIxIAAAAAgMZhyeglDT0FAIAd+LkNoK41uQKLM2fOWLerKmhwc3OrsJ9R/vOf/0iSWrZsqaefftrw8QEAAIDaOPPHGZ3cd1KSNC9iXpXxsa/FKva1WOvrqWumqv3Q9txMBQAAADRx+1bsU9rONF351JUymUyVxpVetaJZYDPrtlcbL/l08dHJ304qdUeqzVzH4o6d6xPkpZadW9Zy5gAAAAAAAAAAAPWryRVYnD171rrt7OxsM7Z0e25u+af11kZiYqL+/e9/S5Lee+89+fn5Vbvv2aKzyi66cKHKycFJTo5Ohs4PTUdRUVGD5y8pKWnweQClcVyiseLYRGNUUlJSaVuzVs00eeVkm/1Td6Zq5SMrJUm9J/dWnyl9rG0Bfc6tCMfNVMbjnADnWUwWfregDD5v4GIcE7gYxwQuZuuc4LzELxK1c8FOhU8PV7NWzSqNO7rpqHW77aC2Zdp6TOih9S+tV2ZSpk4dPKUWHVuU65+VkqX0vemSpO7ju9ss5oB06tQpubu7W1+7uLjIxcWlAWeEhlRiqvr/ssVkkUWWc+cRqjoeqEscj2goFX0O5jMyGouGPBY5/pum06dPKyMjw/qac4KGU53P440Vn8tgJI6nxq0x/L635+clxxOM0lSOpYb+P9rQ+S81Ta7AovSqFAUFBTZjS7eXvkhRW7m5ubrllluUn5+vRx99VBMmTLCr/2NrHyvzemT4SF3X/zrD5oemZcOGDQ2av6SkRMnJyZIkBweHBp0LcB7HJRorjk00RidPnqy0zexqVscRHW32dzBfOJZbdGxRaTw3UxmLcwKcZ5FFRcnn/tDB7xZIfN5AeRwTuBjHBC5m65zgYvu/36++0/pWPM7+kzq46qAkKTgquNyKdJEPRGrzW5tVkF2guA/idNXLV5UbY/uH2yXLuXORqIej7HgXl6fevXuXeT116lTddtttDTMZNLiMwIwqYyyy6KznWWUoQyZxzo2GxfGIhlLRtVU+I6OxaMhjsfRN+mg6wsLCyrzmnKDhVOfzeGPF5zIYieOpcWvo+wwl+35ecjzBKE3lWGro/6OcExiryRVYeHp6Wrfz8vJsxpZe7aJ0v9ooKirSLbfcop07d2ry5Mn6xz/+YfcYrwx9RS1cL9yQ5uTgJKdjPK32cjVo0KAGzX++ai0qKkpmc5P7kYBLFMclGiuOTTRG5y/W1DVupjIW5wQ4z2KyqHXb1vxugRWfN3AxjglcjGMCF7PnnODnJ35W2z+1lU8XnzL7z2ac1Re3fCFLsUVO7k669p1ry/X18PdQ9GvR+nbGt9o0Z5O6je2mNhFtrO2pO1O18dWNkqRhfxsmryCvGr6jy0d8fLzatLnwPeRptZe3lDdTqoyxmCzKUIZapraUydJ4Lybj8sDxiIZS0bVVPiOjsWjIY/Ho0aNVB6HR2bFjh4KDg62vOSdoONX5PN5Y8bkMRuJ4atwa+j5Dyb6flxxPMEpTOZYa+v8o5wTGanJ/XXBxcVGrVq2UmpqqtLQ0m7Gl29u3b1/r3CUlJbrtttv09ddfa+LEiZo/f36NnsrrZnZTM/NFy7Bbaj09NFGN4Y98Dg4OMpvNjWIuwHkcl2isODbR2NTXU7C4mcpYnBPgvBKV8LsF5XBM4GIcE7gYxwRKq845gV8PPzk4OSgnLUfvhb2n0JtD1TqitRydHZWemK6dC3cq90SuPAI8NP5/4xXYN7DCcfrf3V/Zadla98I6LRi2QOHTw+XX00/pe9MVNy9OhTmFGvjIQEU9QsF1dbRo0UItW7Zs6GmgkXCwVP1/uUQlMskkk8VUrXigLnE8oqFU9hmYz8hoLBrqWOTYb5q8vb05J2gkmvLnGT6XwUgcT41bY/h9b89xwfEEozSVY6mh/482dP5LTZP8boaGhio1NVVnzpzR6dOn5e3tXWFc6Wqcnj171ipnSUmJpk2bpo8//lg333yzFi5cKEdHx1qNCQAAADSEtPg0pcWfK0Y+kXiizP74xfGSJI8AD4VEh5Tpx81UAAAAQNP0p0f/pD5T+ijxy0QdXHlQh9cd1p7/7VFxYbHcWrgpoHeAuozqor5/6SsXT9tPSx06e6hCokO0+e3NSliaoNx3c+Xu666Qq0MUcW+EOgzrUE/vCjDGktFLGnoKAAAAAAAAAIBGpEkWWAwfPlyrVq2SdG65vCFDhlQYFxcXV6ZPTVksFt1xxx1auHChJkyYoMWLF1NcAQAAgCYr8ctExTwfU27/3mV7tXfZXklSuyHtyhVYSNxMBQAAADRVzVo1U8Q9EYq4J6LWYwVHBSs4KtiAWQEAAAAAAAAAADQuTbLAYvz48XrqqadksVj0888/V1pgcb4Iw9fXV0OHDq1RLovForvuukv//e9/deONN+qTTz4pV1xx7NgxjR49WnfeeafuvPPOGuUBAAAA6svQ54Zq6HNDa9yfm6kAAAAAAAAAAAAAAAAAXIocGnoCNdG5c2dNmDBBkrRo0SIVFBSUizl48KBWr14tSXrsscdkNpetJdm9e7e6dOmioKAgrVu3rtJc9957r+bNm6cbbrhBS5YsKTeOJOXn52vbtm36448/avO2AAAAAAAAAAAAAAAAAAAAAABAA2mSK1hI0muvvaY1a9YoKSlJTz75pF5//XVrW35+vu68804VFxerX79+uu+++8r1f+mll7R//35J0uOPP67Y2NhyMffff7/effddderUSffcc482btxY4VxSU1MNelcAAAAAAAAAAAAAAAAAAAAAAKAhNNkCi7Zt22rFihUaO3as3njjDe3evVtjxozR2bNntWDBAu3atUthYWH6+uuv5erqWq5/SUmJddtisZRrnzt3rt555x1J0u+//66rr7667t4MAAAAAAAAAAAAAAAAAAAAAABoUE22wEKSIiMjFR8fr7lz52rZsmV69NFH5eTkpC5dumju3LmaMWOGnJ2dK+z71FNPKS4uTmfPntUrr7xSrj0pKamOZw8AAAAAAAAAAAAAAAAAAAAAABqLJl1gIUm+vr568cUX9eKLL9rVr3fv3tq/f3+l7XPnztXcuXNrOTsAAAAAAAAAAAAAAAAAAAAAANAUODT0BAAAAAAAAAAAAAAAAAAAAAAAABoaBRYAAAAAAAAAAAAAAAAAAAAAAOCyZ27oCQCXuyWjlzRo/hJTidr8tU2DzgEAAAAAAAAAAAAAAAAAAAAAGhorWAAAAAAAAAAAAAAAAAAAAAAAgMseK1gAAAAAAAAAAAAAAAAAAAAAAHCZsFgs+vVfv2rV46tUmFOoqWumqv3Q9tXufyT2iLa8s0XJG5KVczxHHn4eChoYpIh7IuwapzGiwAIAAAAAAAAAAAAAAAAAAABopJaMXtLQUwBwCck4kKGvb/9ah9cdrlH/mBdiFPN8jMyuZvWd3lf+of5KT0xX3Lw4JXyeoKhZUYp+NdrgWdcfCiwAAAAAAAAAAAAAAAAAAAAAALiElV61wsHRQUEDgnR001G7xtj63latnb1WZlezpqyeoqDIIGtb78m9Nf/K+Yp9LVYe/h6KeiTK6LdQLxwaegIAAAAAAAAAAAAAAAAAAAAAAKDuxDwfo+/v/15tB7XVjN0zFHJNiF39c07kaOWslZKkyJmRZYorJCmwb6C1qGLNM2uUdTTLmInXMwosAAAAAAAAAAAAAAAAAAAAAAC4hFksFo3+YLRu/eFWeQd7291/81ubVZBdIEkKnx5eYUz49HDJJBXlFSn2jdhazbehUGABAAAAAAAAAAAAAAAAAAAAAMAlbOhzQxX+l4oLI6ojYWmCJKl5++Zq2allhTFeQV7y7eYrSUpcmiiLxVLjfA2FAgsAAAAAAAAAAAAAAAAAAAAAAC5hJpOpxn2zUrJ0ct9JSVKrsFY2YwP7Bp7rczRLGfszapyzoVBgAQAAAAAAAAAAAAAAAAAAAAAAKnR893Hrtlewl83Y0u3H9xy3Edk4UWABAAAAAAAAAAAAAAAAAAAAAAAqlJmUad32CPCwGVu6vXS/psLc0BMAAAAAAAAAAAAAAAAAAAAAAABVK8ovUnF+sfV1wZmCOs9ZOofZ1XYJgpObU4X9mgoKLAAAAAAAAAAAAAAAAAAAAAAAaAI2/H2DYp6Psb4+rdN1nrPwbKF129HZ0WZs6fbC3EIbkY0TBRYAAAAAAAAAAAAAAADAZcJisejXf/2qVY+vUmFOoaaumar2Q9tXu/+R2CPa8s4WJW9IVs7xHHn4eShoYJAi7omwaxwAAAAANTPoiUEa+NeB1tcpKSma02NOneYsvSpFcUGxjciy7U7uTjYiGycKLAAAAAAAAAAAAAAAAIDLQMaBDH19+9c6vO5wjfrHvBCjmOdjZHY1q+/0vvIP9Vd6Yrri5sUp4fMERc2KUvSr0QbPGgAAAEBpZhezzC4XygCcs5zrPKez54UcRXlFNmNLr3ZRul9TQYEFAAAAAAAAAAAAAABo9JaMXlJuX4mpRBmBGUp5M0UOFod6mcctK26plzyAkUqvWuHg6KCgAUE6uumoXWNsfW+r1s5eK7OrWVNWT1FQZJC1rffk3pp/5XzFvhYrD38PRT0SZfRbAAAAANCAmrdvbt3OScuxGVu6vXS/pqJ+/roAAAAAAAAAAAAAAAAAoEHEPB+j7+//Xm0HtdWM3TMUck2IXf1zTuRo5ayVkqTImZFliiskKbBvoLWoYs0za5R1NMuYiQMAAABoFPxD/a3bWUdsf94vfT7g39PfRmTjRIEFAAAAAAAAAAAAAAAAcAmzWCwa/cFo3frDrfIO9ra7/+a3Nqsgu0CSFD49vMKY8OnhkkkqyitS7BuxtZovAAAAgMbFq42XfLr4SJJSd6TajD0Wd+xcnyAvtezcss7nZjQKLAAAAAAAAAAAAAAAAIBL2NDnhir8LxUXRlRHwtIESVLz9s3VslPFN0h5BXnJt5uvJClxaaIsFkuN8wEAAABofHpM6CFJykzK1KmDpyqMyUrJUvredElS9/HdZTKZ6m1+RqHAAgAAAAAAAAAAAAAAALiE1eampqyULJ3cd1KS1Cqslc3YwL6B5/oczVLG/owa5wQAAADQ+EQ+ECnnZs6SpLgP4iqM2f7hdskimV3Nino4qj6nZxgKLAAAAAAAAAAAAAAAAABU6Pju49Ztr2Avm7Gl24/vOW4jEgAAAEBT4+HvoejXoiVJm+ZsUsqvKWXaU3emauOrGyVJw/42TF5Bts8fGitzQ08AAAAAAAAAAAAAAAAAQOOUmZRp3fYI8LAZW7q9dD8AAAAAjUP84njrdlp8mnX7wMoDyjqaJenc5/qQ6JAK+/e/u7+y07K17oV1WjBsgcKnh8uvp5/S96Yrbl6cCnMKNfCRgYp6pGmuXiFRYAEAAAAAAAAAAAAAAAA0GUX5RSrOL7a+LjhTUKf5So9vdrV9q5GTm1OF/QAAAAA0DssmL6tw/4aXN1i32w1pV2mBhSQNnT1UIdEh2vz2ZiUsTVDuu7ly93VXyNUhirg3Qh2GdTB83vWJAgsAAAAAAAAAAAAAAACgidjw9w2KeT7G+vq0TtdpvsKzhdZtR2dHm7Gl2wtzC21EAgAAAGgIsy2zDRknOCpYwVHBhozV2FBgAQAAAAAAAAAAAAAAADQRg54YpIF/HWh9nZKSojk95tRZvtKrUhQXFNuILNvu5O5kIxIAAAAAGicKLAAAAAAAAAAAAAAAAIAmwuxiltnlwi0/zlnOdZrP2fPC+EV5RTZjS692UbofAAAAADQVDg09AQAAAAAAAAAAAAAAAACNU/P2za3bOWk5NmNLt5fuBwAAAABNBQUWAAAAAAAAAAAAAAAAACrkH+pv3c46kmUzNuvohXb/nv42IgEAAACgcaLAAgAAAAAAAAAAAAAAAECFvNp4yaeLjyQpdUeqzdhjccfO9QnyUsvOLet8bgAAAABgNAosAAAAAAAAAAAAAAAAAFSqx4QekqTMpEydOniqwpislCyl702XJHUf310mk6ne5gcAAAAARqHAAgAAAAAAAAAAAAAAAEClIh+IlHMzZ0lS3AdxFcZs/3C7ZJHMrmZFPRxVn9MDAAAAAMNQYAEAAAAAAAAAAAAAAACgUh7+Hop+LVqStGnOJqX8mlKmPXVnqja+ulGSNOxvw+QV5FXvcwQAAAAAI5gbegIAAAAAAAAAAAAAAAAA6lb84njrdlp8mnX7wMoDyjqaJUnyCPBQSHRIhf37391f2WnZWvfCOi0YtkDh08Pl19NP6XvTFTcvToU5hRr4yEBFPcLqFQAAAACaLgosAAAAAAAAAAAAAAAAgEvcssnLKty/4eUN1u12Q9pVWmAhSUNnD1VIdIg2v71ZCUsTlPturtx93RVydYgi7o1Qh2EdDJ83AAAAANQnCiwAAACAy0Bueq72fL5HB348oNTtqcpOy5bJwaRmAc3U5oo26nVrL3UZ1UUmk6nKsY7EHtGWd7YoeUOyco7nyMPPQ0EDgxRxT4TaD21f928GAAAAgN1qe06QmZSptzq8Va1cEfdG6Lp3rjNy+gAAAAAMMNsy25BxgqOCFRwVbMhYAAAAANDYUGABAAAAXOJ+euQn/fqvX1WUVyR3P3f1mtRLPp19ZLFYlLQmSQlLE7Tnsz3qMLyDJnw+QW4t3SodK+aFGMU8HyOzq1l9p/eVf6i/0hPPLf2d8HmComZFKfrV6Hp8dwAAAACqYuQ5AQAAAAAAAAAAwKWMAgsAAADgEhe/OF5FeUVqN6Sdbv7qZrl6u1rbrrj3Cv32zW/69IZPdWj1IS0ZvUTT1k+TyaH8U2u3vrdVa2evldnVrCmrpygoMsja1ntyb82/cr5iX4uVh7+Hoh6Jqpf3BgAAAKBqRp0TSNLwl4er+9juNvO5tnC12Q4AAAAAAAAAANBYOTT0BAAAAADUPQezg8YuHFvmRqrzuozqovDp4ZKkI7FHtOezPeVick7kaOWslZKkyJmRZYorJCmwb6C1qGLNM2uUdTTL6LcAAAAAoBZqe05wnmegp3y7+dr8ahbQrM7eBwAAAAAAAAAAQF2iwAIAAAC4DLQKayXvtt6Vtne/8cITaH9b8Vu59s1vbVZBdoEkWW+8ulj49HDJJBXlFSn2jdhazhgAAACAkWp7TgAAAAAAAAAAAHA5MDf0BAAAAADUrRuX3Ch3H3ebMc3bNbdun04+Xa49YWnCubj2zdWyU8sKx/AK8pJvN1+lJ6YrcWmirnnzGplMpppPHAAAAIAhjDgnAAAAAAAAAAAAuBxQYAEAAABc4joM61BlTF5mnnXbycOpTFtWSpZO7jsp6dxTb20J7Buo9MR0ZR3NUsb+DPl08anBjAEAAAAYqbbnBJUp+X/s3Xmc1XW9P/DXDMO+yQ4KCOK+sSgqZIYl2YalaTfLpcVMW67e0rbbvWW7Wdl2b/3UStKkrpYVN61cEMI1QUVUlFRECJBVZGeY+f3BZWBgZhiGA+cM83w+Hjz8nvNZvu9z5uM538855/35VFalcn1l2nRs0+TYKJ4J4yYUO4ScO/HcYocAAAAAAAC1SLAAAACy/MXlNccHnnJgrbJXZr5Sc9xlQJcG+9m2/JWnXpFgAQAAzURDc4JtvfLUK/nt+36buVPn5rV/vpbqTdVp3aF1+p/UP8ecd0yGnj805RXleyNkAAAA9gGlkPwNAADbkmABAABk1u2zkiQV7Soy7APDapWtmLOi5rhjn44N9rNt+bbtgPo9OeHJzP/e/JRXF++HiFYOBgAamhNs68HvPJgeh/bICZ84IT2P6JlN6zflpSkvZfr10/PivS9m+nXT857fvSed+3XeS5EDAAAAAAAUjgQLAABo4Va/sjrP/uHZJMmoK0al8/61fwi14bUNNccV7RqeQrRu37rOdgAAQGFUrq/MpvWbam5vXLVxt/vc2ZxgW0e8+4ic9auzUtF269zgyLOPzLAPDsv4MeMz76F5mTBuQj50/4dq1QEAAAAAAGgOfLsBAADNyJ74MdVdV96VynWV6TeiX0754ik7lG9cu/Ucrdq0arCvbcs3rtn92AAAgNqmfnNqJl81ueb2q+Wv7nafO5sTJEmX/l1y2YuXpfMBndOq9Y7zgn7D++WU/zwld11xVxZMW5BHf/poTrrspN2ODQAAAAAAYG+SYAEAAM1IoX9MNePmGXnil0+kY++Oec9v31PnCrPb7kqxacOmHcq3tW156w6tG6gJAAA0xcmfPzmjPjWq5vbcuXNz7THXNrm/xswJkqS8ojz7Ddqvwb6Gf3B47rryrqQ6efznj0uwAAAAAAAAmh0JFgAA0IwU8sdUL015KRM/MjFtu7TN++54X70/lmrTuU3NceW6ygb73Ha3i23bAQAAhVHRtqJWEkTrTk1PbG7snKCx2ndvn24Hdcvy55dn0ZOLsmHVhrTpZF4AAAAAAAA0H+XFDgAAAGi8irYVadulbc2/pv6Yav4j8zNh3IS0atMq5/3lvOx/3P711t32R1arF61usN9ty3f3x1kAAMCesytzgl3RsXfHzQfVyapFqwrSJwAAAAAAwN4iwQIAAFqYf077Z24+/eZUV1fnvL+cl/4n9W+wfu+je9ccr3x5ZYN1V87bWt77qN4N1AQAAIplV+cEu6K6qrrmuLyVryAAAAAAAIDmpWLnVQAAgH3FgscW5KaxN6WqsqrRP6TqckCX9Di0R5Y+tzQLH1/YcP/TF2xu079Luh/SvSAxA3vehHETih1CkuTciecWOwQA2Oc1ZU6QJFO+NiW9j+mdw995eIP1Vi3cvGtFWXnZ1t0sAAAAAAAAmgnLRwEAQAuxaMai3DT2pmzasCnvv/P9GTB6wA517rvqvlx3/HU73H/kOUcmSVbMWZHlLyyvs/+V81dmyawlSZIjzj4iZWVlBYweAADYXbszJ5j0H5Py6E8ebbD/1xa8lldfejVJ0m9Ev7Tu0LowgQMAAAAAAOwldrAA8uSEJzP/e/NTXl28nCsr1QLAnvXKzFfyyzf9MpVrK/P+O9+fgScPrLPeihdXZMG0BTvcf+K/npiHf/BwNqzakOk3TM+bvvGmHeo89rPHkuqkol1FRn96dMEfAwAA0HS7OydIkpcfeDnrV65P2y5t6yx/9KdbEzBGXDxi94MGAAAAAADYyyRYAADAPm7x04vzyzf9MmuWrMkp/3lKqquqM+e+OXXWXbVwVZ33d+zdMWOvGZs/XfqnPHTtQzn8zMNzwMgDasoXPrEw93/7/iTJqV89NV36dyn44wAAAJqmEHOCJNnw2oZMvHhizvzlmWnVplWtsuf/+nzuv3rznODAUw7M8A8OL1j8AAAAAAAAe4sECwAA2IdVrqvML9/0y6x+ZXWSZMpXpmTKV6Y0qa/jLzk+qxatypSvTMn4U8dnxEUj0uuoXlkya0mmXz89G1dvzKgrRmX0FXavAACAUlGoOUGfoX2y6IlFeeo3T2XBtAU56r1HpdtB3bJx9cbMuW9OnvndM0l1cvBbD85Zvzor5RXF2y0XAAAAAACgqSRYAADAPqxyXWWDK9DuqjFfGpMhY4fk4R8+nKdvezprfrImHXp2yJA3D8nIj4/M4FMHF+xcAADA7ivUnOCSxy/JvIfnZdbvZ+Xl+1/O9OumZ+3ytWnVulU69e2UY953TI49/9gcfPrBBYgaAAAAAACgOCRYAADAPqzdfu3ypeovFbTPAaMHZMDoAQXtEwAA2DMKOSfof2L/9D+xf0H6AgAAAAAAKEX26AYAAAAAAAAAAAAAAFo8O1gAJWHCuAnFDiHnTjy32CEAAAAAAAAAAAAAAEViBwsAAAAAAAAAAAAAAKDFk2ABAAAAAAAAAAAAAAC0eBIsAAAAAAAAAAAAAACAFk+CBQAAAAAAAAAAAAAA0OJJsAAAAAAAAAAAAAAAAFo8CRYAAAAAAAAAAAAAAECLJ8ECAAAAAAAAAAAAAABo8SRYAAAAAAAAAAAAAAAALV5FsQMAAAAAAABoaX7/gd+nR/sexQ4DAGiCCeMmFDuEknDuxHOLHQIAAAAUnB0sAAAAAAAAAAAAAACAFk+CBQAAAAAAAAAAAAAA0OJJsAAAAAAAAAAAAAAAAFq8imIHAFAqJoybUOwQkiTnTjy32CEAAAAAAAAAAAAAQItjBwsAAAAAAAAAAAAAAKDFk2ABAAAAAAAAAAAAAAC0eM0+wWLJkiX5j//4jxx99NHp1KlTunfvnlGjRuWHP/xhNmzYULDz3HHHHTnjjDNywAEHpF27dhk8eHA++MEPZvr06QU7BwAAAAAAAAAAAAAAUBwVxQ5gdzzyyCN517velQULFmTs2LG59NJLs3bt2owfPz6XXXZZbrzxxvzv//5v9t9//yafo6qqKpdcckmuv/76dO/ePRdffHEGDx6cRx99NOPHj8/NN9+c7373u/nXf/3XAj4yAAAAAACAfduEcROKHQIAAAAAANTSbBMs5s6dm3e84x1ZvHhxLr/88lx77bU1ZZ/85Cfz1re+NZMmTcoZZ5yR+++/P23btm3Seb7whS/k+uuvT8+ePfPggw/m4IMPTpJcfPHFOeuss/L2t789l19+efr165dzzjmnII8NAAAAAAAAAAAAAADYu8qLHUBTXXnllVm8eHEGDhyYb33rW7XK2rZtm+uvvz6tWrXKtGnT8uMf/7hJ53jqqadyzTXXJEm++tWv1iRXbPGWt7wl559/fqqrq/PJT34yq1evbtqDAQAAAAAAAAAAAAAAiqpZJljMnj07t956a5LkggsuqHN3iiFDhuTUU09Nklx99dWprKzc5fN885vfTFVVVdq3b5/3v//9ddb5yEc+kiRZtGhRbrjhhl0+BwAAAAAAAAAAAAAAUHzNMsHitttuS3V1dZLktNNOq7fe2LFjkySLFy/Offfdt0vnWL9+fSZOnJgkOfHEE9O5c+c6640aNSqdOnVKkpqkDwAAAAAAAAAAAAAAoHlplgkW9957b83xsGHD6q03fPjwOts0xqOPPpqVK1fu9Bzl5eU59thjkyQPPvhg1q5du0vnAQAAAAAAAAAAAAAAiq9ZJljMnDkzSdK5c+d07dq13noDBgyoOX7qqaeadI7t+2noPFVVVZk1a9YunQcAAAAAAAAAAAAAACi+ZpdgsX79+ixcuDBJ0qdPnwbrbls+Z86cXTrPtvX35HkAAAAAAAAAAAAAAIDiqyh2ALvqtddeqzlu165dg3Xbt29fZ7tin2d95fqsq1y3S/G8uv7V/OzJn+XFV1/M4K6D8+FjPpyubevfvWNPKIUYSiWOfSmGqrKqrN+4eUyWV+96ztW+9FyUSgyrV69uUrtFixblkksuybRp03Lcccflpz/96U4TxPaEQsRRWVmZtWvXZvXq1amo2PW3qlJ4LsRQWnEUKobdGZuFfB46duzYpHaF1NTXqqRwz0UpPA/QVE2ZEyT73nWPGFyPb8+1sGvhfSmGQsVRWVm5h6LbNaVw/bc7SiGGQsVRKmMiad6v2/vaHI3myXcFzT+OvR1DXfOHlvg8lHIcLSmGnc1nW9JzIYbix9HYz1dK4bkQw75r9erVTfpcp1BzkzVr1uxyGygVTfm+JCmN17NSiKGqrCpLVi7JdQ9e1+Kfi1KIoVTiaGoMu/u9VSFiKKRSiKFU4ihGDNuPp5b6PJRqHM0phkK+NjU1Blqesurq6upiB7ErXn755QwcODBJMmLEiEybNq3eulVVVWnVqlWSzbtMbNn5ojE+/OEP5+c//3mS5I9//GPGjRtXb93//M//zFe/+tUkyU9+8pNccsklddabN29eBgwY0OgYAADqsnHjxmKHkNatWxc7hJJ4HkrB3LlzM2TIkLz88svp379/scNhJ8wJAGiKe+65J6NHj25S0k2hlML1H1uVwphIjIstij03MSdofswLAIB9RbGvhUtJqcyPzAuahy1zgscff7zW3KBt27Zp27ZtESMrjlL5/wcAYHcUe340b968DB482JygQJrdDhbb7haxYcOGButuW96hQ4eSPA8AwK6aOnVqsUMoCZ6HzZYuXVrsEACAPWzu3LlJkvLywq7KQ/NlTJSWYs9NzAkAACiWYl8LQ3M3bNiwWrcvvPDCfOADHyhKLAAA7J5iz4+WLVtW1PPva5pdgkXnzp1rjteta3iLuLVr19bZrtjn+crrv5JubbvV3G5d3joVrRr+U3z/79/P00ufTlV1VcrLynNkjyNz+cjLd3quQiqFGEoljn0phuqy6izvszzdFnVLWXVZ0eLYHftaDGdPOLtp7c4+O5MmTcqmTZvSqlWrnHrqqbntttua1NfuKEQclZWVeeihh3LSSSc1aTXOUnguxFBacRQqht0Zm4V8Hjp27NikdoW0YsWKJrct1HNRCs9DKdjy4zqal6bMCZJ977pHDK7HSzGGpl6PJ4W7Fv75lT83Jv6P+dHmMfHEE08UfbeCUrj+2x2lEEOh4iiVMZE0fVyUwt9jX5qjmRM0X199/VezX9v9am77rqD5xbG3Y6hr/tASn4dSjqMlxbCz+WxLei7EUPw4Gvv5Sik8F/taDCeffHJhg2vGVqxY0aTvkQo1N5k/f36OOuqoXW5HcdnBYrMb3npDk9rta6+pTVVdVp3vPPGdzP7n7Bb/XJRCDKUSR1Nj2N3vrQoRQyGVQgylEkcxYth+PLXU56FU42hOMRTytampMTRGsedH8+bNK+r59zVl1dXV1cUOYlf169cvCxcuTOfOnbNy5cp6682aNStHHHFEkuSMM87IH/7wh0af4//9v/+XSy65JEny3e9+N5/61Kfqrfve9743v/nNb5Ik06dPz/Dhw+ust2WLvx+e9sP0bNez0bEkyavrX81PH/9pnl/xfIbsNySXDLskXdt23aU+dlcpxFAqcexLMVSVVWVZv2XpvqB7yqt3fdXDfem5EMNW5048t8lxLFq0KB/4wAfy97//PSNHjsyNN96YPn367FIflZWVmTp1ak4++eQm/VikEDHsLjGUVhyFimF3xmYpPA+lwnNRWHPmzLHFXzOyO3OCZN+75hCD6/FSjKEUroV/8vGfGBP/p6l/j1K53iiF+VEpKIW/RynEUKg4jIl9J4ZCMSdofrbMC370ph+lR/seu9R2X3uvb+5x7O0Y6po/tMTnoZTjaEkx7Gw+25KeCzEUP47Gfr5SCs/FvhbD7nyOsi9qynytUHOTLdeY5gXNw5a/14svvphBgwYVO5yimzBuQpPa7WuvqU1VVVaVOV3n5H/+8j95YcULLfq5KIUYSiWOpsawu99bFSKGQiqFGEoljmLEsP14aqnPQ6nG0ZxiKORrU1NjaIxiz4/MCQqrWSZYjB07NnfffXeSzasAdO1a92C+++67M3bs2CTJ5z//+XzjG99o9Dnuv//+mmyiyy+/PNdee229dU8++eTcf//9KS8vz6pVq9K+ffs66+3uj6lgT9iTbz40X8V+s98XfizCvsnYpBT5MVXzYk7A9lyPl55SuBbenQSLfU2x/x6lwDUo2zMm2J45QfOzOwkWtGzmD5QS45FSYjwWj3l7bcWcr/kxVfMiwaK2piZYsJn3QQrJeKKQjCcKpbmMpWLPj8wJCqt0R1oD3vjGN9YcP/744/XWmz59ep1tGuP4449P586dd3qOqqqqPPHEE0mSUaNG1ZtcAQAAAAAAAAAAAAAAlK5mmWBx9tlnp6ysLElyzz331Ftvyy4XPXv2zJgxY3bpHG3bts0ZZ5yRJHn44YezatWqOus99NBDNWXnnHPOLp0DAAAAAAAAAAAAAAAoDc0yweKQQw6pSWa46aabsmHDhh3qvPDCC7n33nuTJJ/97Gd32H5x5syZOfTQQ9O/f/9MmTKlzvN87nOfS3l5edauXZtbbrmlzjo33HBDkqRPnz656KKLmvyYAAAAAAAAAAAAAACA4qnYeZXSdM0112TSpEmZM2dOvvCFL+Q73/lOTdn69etz8cUXZ9OmTTnuuOPyiU98Yof2X//61zN79uwkmxMpHnjggR3qHH300bnyyitz9dVX54tf/GJOO+20HHTQQTXlf/3rXzN+/PgkyY9+9KN07Nix0A8TAAAAAAAAAIASNmHchFSVVWVZv2WZ/735Ka/eu+udLl27dK+eDwAAYF/WbBMsBg4cmIkTJ+bMM8/Md7/73cycOTNnnHFG1q5dm/Hjx+fJJ5/MsGHD8sc//jHt2rXboX1VVVXNcXV1db3n+cY3vpGlS5fmhhtuyAknnJCPfvSjGTRoUKZNm5Zf/OIXKS8vz/e+972aHTUA9gUTxk0o6vmryqpywKcOKGoMAAAAAAAAAAAAALQszTbBIklOPPHEzJgxI9///vdz++235zOf+Uxat26dQw89NN///vdz6aWXpk2bNnW2/fd///dMnz49a9euzdVXX13vOcrLy3P99dfnzDPPzE9+8pP8/Oc/z/Lly9O3b9+8973vzWWXXZYRI0bsqYcIAAAA0GIVO/k7Sc6deG6xQwAAAAAAAABgL2nWCRZJ0rNnz3zta1/L1772tV1qd+yxx2b27NmNrv+2t70tb3vb23Y1PAAAAAAAAAAAAAAAoBlo9gkWAAAAAIVS7B0Tqsqqkn5FDQEAAAAAAAAAWqzyYgcAAAAAAAAAAAAAAABQbBIsAAAAAAAAAAAAAACAFq+i2AEAAAB7z5ola/LQDx7KrNtnZcWcFWnVplV6HtYzR597dI6/5Pi0atOq2CECQEmZMG5CUc9fVVaVAz51QFFjAPYt5gQAAIB5AQAAtGzmBA2TYAEAAC3E/Efm59fv+nVWLViVg8YelOMvPT6VayvzxPgn8ufL/pzHb3w87/vf96Xz/p2LHSoAALAHmBMAAADmBQAA0LKZE+ycBAsAAGgBXp37am55xy1Zs3hNTrz8xLzl2rfUlJ3wyRPyq7f+KnMmzcmEMybkQ/d/KBVtTRUAgK2KvZPHFudOPLfYIbCNUhgXxkTjmRMAAADmBQAA0LKZEzROebEDAAAA9ry7rrwraxavSdeBXXPat06rVVbRtiLjrh+XslZlWTBtQR758SNFihIAANhTzAkAAADzAgAAaNnMCRqnZaaVAEAjlMJKnElprMZZCs9FKTwP0Fwtnb00T936VJLk2AuOrTO7vPuQ7hl86uC8cPcLuf/q+3PSZSelvEI+NgAA7AvMCQAAAPMCAABo2cwJGq/lPeIi2rBhQ5JkY9XGIkcCW23ctDF3PHpHNm4yLikdGzdtzI033pj169cXOxSoZf369cYmJWfLNeaW/9bl6dueTqo3Hx902kH11jto7OayNYvXZM59cwoWI1uZE7A91+Nsz5hge+ZHbM+8hO2ZE0DL4VqRUmI8UkqMR0pFqY9F84LS0Zh5HDRWqb/20LwYTxSS8UShGEuFY07QeBIs9qItX3pWVlUWORLYamPVxvx5+p/9yI+SsrFqY8aPH+/HIpSc9evXG5uUnC3jsaFxOefeOTXHfYf1rbde3+Fby16898XdD44dmBOwPdfjbM+YYHvmR2zPvITtmRNAy+FakVJiPFJKjEdKRamPRfOC0tGYeRw0Vqm/9tC8GE8UkvFEoRhLhWNO0Hg77u0BACXit+//bTpVdCp2GEU3YdyEYodQEkrheVhVuSpJ8cfmuRPPLdq5tyiFv0cpPA/NxSszX0mStOncJu26tqu3XtcBXWuOFz+1eI/HBQCwq0rhOrTYtsxL2KwUxkRzmJuYEwAAAOYFAADQspkTNJ4dLAAAYB9Wub4yqxZu/hFepz4NJwZ17NOx5njFnBV7MiwAAGAvMScAAADMCwAAoGUzJ9g1drDYi6qqqpIkK9atSIdWHYocDWy2ZtOaJMnydcuzvpXtJykNxiWlqlTG5rx584p27i2Wrl1a7BBK4nkohsoNlalaX1Vze/6L85Nsvdbc3obXNtQcV7Rr+PK/dfvWNcfrX/P6uyeYE7C9UnlvoXQYE2xvy5iYP39+1qxZU7Q4SuH6j81KZUwkxsUWe3tuYk7Q/G35Wy1ft7zIkdDcuFaklBiPlBLjsXha6uf0dVm6duleHYtVm6qS6q23V6xbsfl+84JmYcvf6ZVXXvH/UXy+sLu8D1JIxhOFZDxRKM1lLBX7u4IFCxckMScoFAkWe9Hy5Zu/LPnmQ98sciSwo8/e99lihwA7MC4pVcUem58c8Mminr9UeB5q23Ktub2NazfWHLdq06rBPrYt37hmYwM1aSpzAupT7PcWSo8xwfaOPfbYYodAiTEmSkepzE3MCZqPRYsWJUn+8/7/LHIkNFeuFSklxiOlxHjc+0rlWrjUFHMsLlq0KAMHDtzhfvOC0rJl/nbaaacVORL2Jd4HKSTjiUIyniiUUh9LpTI/MicoDAkWe9FJJ52URx55JH369El5eXmxwwEAoBnaPgO9qqoqi1cszsgTR9ZZf9us8k0bNjXY97blrTu0bqAmTWVOAADA7jInATjr9gABAABJREFUaP6GDx9uXgAAwG6pb14wfPjwOuubF5QW3xUAALC7zAn2LAkWe1FFRUVGjqz7Sy4AAGiqg3NwvWVtOrepOa5cV9lgP9tmq7ft3Hb3A2MH5gQAAOwJ5gTNi3kBAAB7gnlB82FOAADAnmBOUDjSoAEAYB9W0bYinfp2SpKsWrSqwbqrF62uOd5v0H57MiwAAGAvMScAAADMCwAAoGUzJ9g1EiwAAGAf1/vo3kmSDa9tyLpX19Vbb+W8lTXHvY7qtcfjAgAA9g5zAgAAwLwAAABaNnOCxpNgAQAA+7hBbxxUc7zw8YX11lswfUHN8eA3Dt6TIQEAAHuROQEAAGBeAAAALZs5QeNJsAAAgH3ckWcfmZRtPn7xnhfrrffC3S8kSTr07JBBYwbthcgAAIC9wZwAAAAwLwAAgJbNnKDxJFgAAMA+rschPXLUOUclSWbcNCObNmzaoc7yF5bnxXs3T55e99nXpbzCVAEAAPYV5gQAAIB5AQAAtGzmBI3XMh81AAC0MGOvGZsOvTpkxZwVuecL99Qqq1xfmYkXT0z1pur0O65fTvjECUWKEgAA2FPMCQAAAPMCAABo2cwJGqesurq6uthBAAAAe968h+flN2f+JqsWrMqQ04fksDMOy8a1G/PE+CfyypOvpO+wvnnfn96Xzvt3LnaoAADAHmBOAAAAmBcAAEDLZk6wcxIsAACgBVmzZE0e+v5DmXX7rKx4aUVatW6VHof2yNHvOzojLx2ZVm1aFTtEAABgDzInAAAAzAsAAKBlMydomAQLAAAAAAAAAAAAAACgxSsvdgAAAAAAAAAAAAAAAADFJsECAAAAAAAAAAAAAABo8SRYAAAAAAAAAAAAAAAALZ4ECwAAAAAAAAAAAAAAoMWTYAEAAAAAAAAAAAAAALR4EiwAAAAAAAAAAAAAAIAWT4IFAAAAAAAAAAAAAADQ4kmwAAAAAAAAAAAAAAAAWjwJFgAAAAAAAAAAAAAAQIsnwQIAAAAAAAAAAAAAAGjxJFgAAAAAAAAAAAAAAAAtngQLAAAAAAAAAAAAAACgxZNgAQAAAAAAAAAAAAAAtHgSLAAAAAAAAAAAAAAAgBZPggUAAAAAAAAAAAAAANDiSbAAAAAAAAAAAAAAAABaPAkWAAAAAAAAAAAAAABAiyfBAgAAAAAAAAAAAAAAaPEkWAAAAAAAAAAAAAAAAC2eBAsAAAAAAAAAAAAAAKDFk2ABAAAAAAAAAAAAAAC0eBIsAAAAAAAAAAAAAACAFk+CBQAAAAAAAAAAAAAA0OJJsAAAAAAAAAAAAAAAAFo8CRYAAAAAAAAAAAAAAECLJ8ECAAAAAAAAAAAAAABo8SRYAAAAAAAAAAAAAAAALZ4ECwAAAAAAAAAAAAAAoMWTYAEAAAAAAAAAAAAAALR4EiwAAAAAAAAAAAAAAIAWT4IFAAAAAAAAAAAAAADQ4kmwAAAAAAAAAAAAAAAAWjwJFgAAAAAAAAAAAAAAQIsnwQIAAAAAAAAAAAAAAGjxKoodQEtSWVmZxx57LH369El5udwWAAB2X1VVVRYtWpThw4enosLlfakzJwAAoNDMCZof8wIAAArNvKB5MScAAKDQzAkKyzO4Fz322GM54YQTih0GAAD7oEceeSQjR44sdhjshDkBAAB7ijlB82FeAADAnmJe0DyYEwAAsKeYExSGBIu9qE+fPkmSBx98MP379y9yNLBZZWVlpk+fnhEjRshao2QYl5QqY5NSNG/evIwaNarmWpPSZk7A9ry3sD1jgu0ZE2zPmGB75gTNz5a/1SOPPJJ+/foVORqaE+8BlBLjkVJiPFIqijkWFyxYkBNOOMG8oJnwXQGF5H2QQjKeKCTjiUIxlhrHnKCwjLS9aMu2fn379jVBomRUVlZmzpw56d+/vzcfSoZxSakyNilFlZWVSWIL6WbCnIDteW9he8YE2zMm2J4xwfbMCZqfLX+rfv36mRewS7wHUEqMR0qJ8UipKIWxaF7QPPiugEIqhdce9h3GE4VkPFEoxtKuMScoDM8iAAAAAAAAAAAAAADQ4kmwAAAAAAAAAAAAAAAAWjwJFgAAAAAAAAAAAAAAQIsnwQIAAAAAAAAAAAAAAGjxJFgAAAAAAAAAAAAAAAAtngQLAAAAAAAAAAAAAACgxZNgAQAAAAAAAAAAAAAAtHgSLAAAAAAAAAAAAAAAgBZPggUAAAAAAAAAAAAAANDiVRQ7AAAAAAAAYM9as2RNnrr1qTz/l+ez8LGFWbVoVcrKy9KpT6cccMIBOea8Y3LoOw5NWVnZTvt6+YGX88iPH8ncqXOz+pXV6dirY/qP6p+RHxuZQWMGNSqeqsqqTLt+Wp68+cksmbUklesr03Vg1xz2zsNy0mUnpVPfTrv5iAEAAAAAAHadBAsAAAAAANiH/fWKv+bv//X3VK6rTIdeHXLM+49Jj0N6pLq6OnMmzcnTtz2dp/7nqQx+4+Ccc+s5ad+9fb19Tf7K5Ey+anIq2lVk+EXD0/vo3lnyzJJMv356nr716Yy+cnTGfntsg/GsWbImt7zjlsx/eH56Ht4zr/vs69KmU5vM/tPs3P+t+/PYzx7Le257Tw485cBCPxUAAAAAAAANkmABAAAtSHV1df7+X3/P3Z+7OxtXb8yFky5s9AqzWzz7x2czc8LMzH9kfl5b8Foq2lakU99O6Xl4zxw45sAcdsZh6Ta4W73trVQLAAB714ybZ6RyXWUOfMOBee8f3pt2XdvVlJ3w8RPy3P8+l1+/69d58d4XM2HchHzwbx9MWfmOO1k8+tNHc9+X7ktFu4pccO8F6X9i/5qyY88/Nr94/S/ywDUPpGPvjhl9xeg6Y6mqrMpvzvxN5j88PwNGD8j5d5+f1u1bJ0lGfmxk7vnCPZn6zan59Tt/nYseuSg9DulR4GcDAABIkqXPLc1jP38s//jzP7Jy3spsXL0xHft0TNeBXTPgdQNy0GkH5aA3HVRv+0LsbAcAAFCKyosdAAAAsHcse35Zxo8Znzs/eWc2rt64y+1fW/BafvmmX+bX7/x1XvvnaxnxkRF564/emtFXjk5F+4rM+v2s/OXyv+Tv//X3evtYs2RNfn7yz3PHx+7I2mVr87rPvi5jvz023QZ3y/3fuj8/OfYneWnKS7vzMAEAgDqUV5TnzF+eWSu5YotD33FoRlw0IsnmH0k99T9P7VBn9eLVuevKu5IkJ152Yq3kiiTpN7xfTVLFpP+YlJXzVtYZx7Trp2Xu1LlJWTLu+nE1yRVbjLlqTLof3D3rVqzLXz/1111+nAAAwM5N+dqU/OSYn+TJXz2Zg047KG/6xpty2tWnZeDrBmbeg/Ny/7fuz23/clu97Sd/ZXJ+8fpf5Nk/PJvDzzw8b/3RW3PkOUfmH3f+I+NPHZ+7PnPXXnw0AAAAhWUHCwAA2Mdtu2tFeavy9D+pf+Y9NG+X+lizdE1uOu2mLH1uac7+zdk56j1H1Sp//Rden9+d97s8+asn6+3DSrUAAFA8fYf1TdeBXestP+LdR2Ta/5uWJHlu4nM5+r1H1yp/+AcPZ8OqDUlSk4yxvREXjcjkr0xO5brKPPDdB/KWa99Sq7y6ujpTvzk1STLwdQPT68heO/TRqnWrDP3A0Ez64qQ897/PZeETC9N3aN/GP1AAAKBBd332rjzw7Qdy9HuPzhk/OyOtO9ROej72gmNzy9tuqbd9IXa2AwAAKGX7xA4W1dXV+fGPf5xOnTqlrKws9913X8HPcccdd+SMM87IAQcckHbt2mXw4MH54Ac/mOnTpxf8XAAAUEiTr5qcOz95ZwaePDCXzrw0Q04fsst93PHxO7L46cUZ85UxOyRXbPGGL70h7Xu0T+uOresst1ItAAAUx7snvDtn/OyMBuvsd+B+Ncevzn11h/Knb3t6c71B+6X7wd3r7KNL/y7peXjPJMkztz2T6urqWuXzHpqXlS9v3tli8GmD641lyNitc5anb326wbgBAIDG+8ef/5EHvv1Aeh3VK+/65bt2SK5IkoNPPzgHjT0oHXp02KGsUDvbAQAAlLJmn2Dx/PPPZ8yYMfnkJz+Z1atXF7z/qqqqXHzxxXn729+e+++/PxdccEF++MMfZuzYsbnlllty4okn5oc//GHBzwsAAIVSXV2dcTeMy3l/Pi9dB9S/Ym19Xn7g5Tz1m6fSpnObnHT5SfXW63FIj3xmyWdy6lWn1hlDY1eqTVKzUi0AALD7Bp86OH2O7dNgnXUr1tUcb580vXL+yix9dmmSzTthNKTf8H6b28xbmWWzl9Uqe/HeF2uOG+qnz9A+KSsv26ENAADQdNXV1fnz5X9Okpz8uZPTqnWreuue9+fz8olnP7HD/Y3d2S5lqdnZDgAAoLlptgkWW3atGDp0aB5//PGcdFL9P/TaHV/4whdy/fXXp2fPnnn44YfzzW9+MxdffHGuu+66/OEPf0hVVVUuv/zy3HrrrXvk/AAAsLvGfHlMRny47i86GmP69Zt3bRsydsgOu040lpVqAQCgtC1/cXnN8YGnHFir7JWZr9QcdxnQpcF+ti1/5alXapUtnrm45rih5O+KthXp0GvzarmLn1pcbz0AAKDxXpryUpY+uzRl5WU5dNyhTeqjEDvbAQAAlLpmm2Bx1VVX5ZOf/GROPvnkzJw5M6effnrBz/HUU0/lmmuuSZJ89atfzcEHH1yr/C1veUvOP//8VFdX77EdNAAAYHeVlZU1uW11VXWeuf2ZJJtXkd1W5frKbFyzsVH9WKkWAABK26zbZyVJKtpVZNgHhtUqWzFnRc1xxz4dG+xn2/Jt2+1qP536dEqSrF+5PmuXr22wLgAAsHNbkiO6Htg17bq2q7m/uro6619bv9NEiELtbAcAAFDqKoodQFNVV1fnhhtuyIc//OE9do5vfvObqaqqSvv27fP+97+/zjof+chHMn78+CxatCg33HBDLrvssj0WDwAA7G1LZy/N+lfXJ0m6DuyaVYtWZeq3puaZ3z5TsyNFu27tMviNgzP6itHpf1L/OvvZ1ZVqVy9abaVaAACoQ+X6ymxav6nm9sZVjUt6bsjqV1bn2T88myQZdcWodN6/c63yDa9tqDmuaNfw1wrb7nq3bbskWf/a+kb3U9F+a/mG1zakfbf2DdYHAAAatuDRBUk2f9ZfXVWdx37xWB674bH889F/pqqyKuUV5el3XL8MvWBoRnxkRFq1blWr/e7sbNfj0B4FfCQAAAB7VrNNsPjyl7+8Wyvx7sz69eszceLEJMmJJ56Yzp0711lv1KhR6dSpU1atWpVbb71VggUAAPuUV57c+oXJwscX5i+f+ktat2+dE/71hPQ+qnfWrViXJ3/1ZJ757TN55rfP5NSvnppTvnjKDv3s6kq1qxetrlmp1g+pAABgq6nfnJrJV02uuf1q+au73eddV96VynWV6TeiX53X8xvXbk3iaNWm1Q7l29q2fPsd7yrXVhakHwAAYNctenJRks07V9/05psyZ9KcDP3A0Iz69Ki0atMqc++fm0d+9Eju+PgdmXHTjJw78dx06Nmhpn2hdrYDAAAodc02wWJPJlckyaOPPpqVKzevyDts2LB665WXl+fYY4/NAw88kAcffDBr165N+/Z+AAYAwL5h9Sura44f/sHD2W/wfrnooYvSsffWL0eOPe/Y/OXTf8lD33sok/5jUroO7JqhFwyt1Y+VagEAoDBO/vzJGfWpUTW3586dm2uPubbJ/c24eUae+OUT6di7Y97z2/ekou2O1+vb7kqxacOmHcq3tW156w6ta5Vte62/O/0AAAC7ZuOajdm4enPi8ty/zU2SnP0/Z+eoc46qqXPYGYflyLOPzI2n3Jh5D83Lbe+9LeffdX7N73MKtbMdAABAqSsvdgClaubMmTXHAwYMaLDulvKqqqrMmjVrj8YFAEDLVrm+MutXrq/5t3HVnl3Jdf3K9bVun/at02olV2zxpm+8KZ36dUqS3P25u1O5vrJWuZVqAQCgMCraVqRtl7Y1/1p3anrywUtTXsrEj0xM2y5t87473pf9Bu1XZ702ndvUHFeuq6yzzhbb7naxbbskadu5baP72XYOsX0/AADQ0m3/XcHOkhi2/6z/4LceXCu5YosDRh6Q4z92fJLkxXtezHMTn6spK9TOdgAAAKWu2e5gsafNmTOn5rhPnz4N1t22fM6cORk+fHiD9auqqrJpU8Orc+1JvznzN0U79xb/cvu/FDsE/s+mTZtqxuSe3hkGGsu4pFQZm5SCKd+ckr997W81t18te3WPnq9qU1XNcas2rXLYGYfVWa+ibUUOP/PwPPrfj2bVglV58Z4Xc8jbDtlabqXaWswJNjMv8N7CjowJtmdMsD1jgu1VVVXtvFId5j8yPxPGTUirNq1y3l/Oy/7H7V9v3W0TL1YvWl1vve3Lt0/Y2G/Qfpn30Lyael0O6FJvP6sWrUqStO3Sdp/d1W7Tpk1FnRfQ/HgPoJQYj3tfKXyeU6qf5RiPlIq9ORZ3+K6guuHvCrb9rD9JjjznyHrrHv3eo/PQ9x5KsnnHuy3fCxRqZzu2KvZ3BewbvA/uu4px/VdVVpVlfZdl3rXzUl5dXrLXfzQPXp8oFGOpcVxXFpYEi3q89tprNcft2rVrsG779lu/3Nm2XX0efPDBPPvsszW3W7VqlYqKvfenWNJvyV47V30mT55c7BD4P1VVVXn55ZdTVVWV8nKb2lAajEtKlbFJKagaXZVRE0fV3F62bFly3p4737YrzHY/pHuD2373Hdq35nj+I/NrJVhYqbY2c4LNzAu8t7AjY4LtGRNsz5hge0uXLt3lNv+c9s/cfPrNqa6uzvl/PT/9T+rfYP3eR/euOV758soG666ct7W891G9a5X1OrpXzfGrL7+afiP61dlH5frKrFm8ZnObo3rVWWdfcP/996dbt241t/f2vIDmx3sApcR43PtK4fOcUv0sx3ikVOzNsbj9dwUrlq9I3l9//W0/o0+SPsfUv9Bon2P7JGVJqjd/1r9FoXa2Y6tif1fAvsH74L6rKNd/ZcnaTmuzrGxZUl261380D16fKBRjqXGWL19e7BD2Ka7K67F27dqa4zZtGp7sbVu+Zs2anfb905/+tNaEaOjQoRk2bNiuB9lEazuv3XmlPWzu3LnFDoH/U11dnVdf3byahew+SoVxSakyNilFK1c2/OOm3dW+x9Zk4p2tGtuhZ4ea49Wv1F7V1kq1tZkTbGZe4L2FHRkTbM+YYHvGBNvb1TnBgscW5KaxN6Wqsirn/eW8nSZXJEmXA7qkx6E9svS5pVn4+MKG+5++YHOb/l3S/ZDutcoGv3FwJmVSkmTh4wtz+DsPr7OPRU8sSnVVdU2bfdVPfvKTos4LaH68B1BKjMe9rxQ+zynVz3KMR0pFMcfizhYDbdOpTVq1aVWzs0S7bvUvNFrRtiJtOrXJhtc21Pqsv1A727FVsb8rYN/gfXDfVazrv41tNiadNh+X6vUfzYPXJwrFWGqcxmwQQONJsKjHtrtSbNiwocG625Z36NChgZqb/fCHP0z//lu/tGrbtm3atm3bQIvCuvU9t+61c9XnnK+fU+wQ+D+VlZV58MEHM2rUKCshUDKMS0qVsUkpmjt3bi677LI91v+2K85u2tjwdoLV1dU1x2XltSe1VqqtzZxgM/MC7y3syJhge8YE2zMm2N6uzAkWzViUm8belE0bNuW8P5+XAaMH7FDnvqvuy3MTn8vFj15c6/4jzzkyf/v637Jizoosf2F5uh3UbYe2K+evzJJZm1dXPOLsI3b4sqv/Sf3TpX+XrJy3Mi/e82LGfGlMnXG+cPcLtc67r/rRj36UAw44oOb23p4X0Px4D6CUGI97Xyl8nlOqn+UYj5SKYo7F+fPn51//9V/rLS8rL0vPI3pm0ROLkiRVG6sa7rB6a7stCrWzHVsV+7sC9g3eB/ddxbj+qy6rzrI+y9J9UfeUVZeV7PUfzYPXJwrFWGqcnc0J2DVGWj06d+5cc7xu3boG626728W27erTrVu39OpVvB+LtapqVbRzb2FCWDq2bDHZtm1bbz6UDOOSUmVsUopat269R/vvdWSvzStVrdqQVQtXNVh3S2JEknTev/Z1sZVqazMn2My8wHsLOzIm2J4xwfaMCbbX2DnBKzNfyS/f9MtUrq3M++98fwaePLDOeiteXJEF0xbscP+J/3piHv7Bw9mwakOm3zA9b/rGm3ao89jPHkuqk4p2FRn96dE7lJeVleXkL5ycOz52R+ZOnZsls5ak5+E9a9WpqqzK4zc+niQ55O2HpO/Qvo16fM1Rz549izovoPnxHkApMR73vlL4PKdUP8sxHikVxRyLbdq02WmdA044oCbBYtXCVTtci2+xcc3GbFi9eaHRbT/rL9TOdmxV7O8K2Dd4H9x3FeP6r6qsKuUpT3lVecqry0v2+o/mwesThWIsNU5j5gQ0XnmxAyhVgwYNqjletGhRg3W3Ld+2HQAANHet2rTKoeMOTZK8OvfVWtuBb++f0/5Zc3zgGw6sVbZlpdokefGeF+vto6WsVAsAAHvT4qcX55dv+mXWLFmTUVeMSnVVdebcN6fOf/UlVnfs3TFjrxmbJHno2ocy/+/za5UvfGJh7v/2/UmSU796as31//aO+8hxm5M7qpOJH5mYjWs31iq/78v3ZdnsZWm3X7ucfu3pu/vQAQCA/3Pk2Vs/c9/+en5bCx5bULODxfaf9W/53H7LznZ12dnOdgAAAKVOKk89jj766Jrjl19+ucG68+bNS5KUl5fn8MPrXokXAACaq1GfGpWZv56ZVCdP3PREnSvRbli1IbNun5Uk6TO0TwaMHlCr3Eq1AABQHJXrKvPLN/2yJll6ylemZMpXpjSpr+MvOT6rFq3KlK9MyfhTx2fERSPS66heWTJrSaZfPz0bV2/MqCtGZfQVO84ZtiivKM+/3P4vueUdt2Tu1Lm57rjrMuyDw9KmY5vMvmN2Zv9pdjr07JBzbjsnPQ7p0aQ4AQCAHR102kHpM7RPFj2xKE/e/GRGXzG6zuSHGTfNqDkeeenIWmWF2NkOAACg1NnBoh7HH398OnfevNXh448/Xm+9qqqqPPHEE0mSUaNGpX379nsjPAAA2Gv2P37/jPzY5i9Rpnx1ShY9WXuHt+qq6tz5yTuzdunatGrbKuOuG1fnlzJWqgUAgL2vcl1lvbtSNMWYL43JB//2wRz6jkPz9G1P585P3Jmnfv1Uhrx5SC6494K8+Zo377SPDj075ENTP5S3/ffb0m6/dpn6zam568q7svz55Rn9mdG5ZMYlGfSGQQWLGQAASMrKy/L2/357WrVplUUzFmXKV3dMvH7+r89vTpBIctK/nZR+I/rVKi/UznYAAAClzA4W9Wjbtm3OOOOM/OpXv8rDDz+cVatWpVOnTjvUe+ihh7Jq1eYvp84555y9HSYAADTKjJu3rji1aMbWBInn73o+K+etTJJ07NMxQ8YOqbP9W37wlmxcvTGP3/h4fnbSzzLsQ8PSd1jfrFuxLjMnzMyCaQvSrlu7nP2bs3PACQfU2YeVagEAYO9rt1+7fKn6SwXtc8DoATvsWreryivKM/LSkTusiAtA6ZgwbkK9ZVVlVVnWb1nmf29+yqv33Jp+5048d4/1DdASDRg9IGf/5uzcfsHtue9L92Xu3+bm0DMOTUW7irx8/8uZcfOMVG+qzomXnViTSLG9QuxsBwAAUMpabILFzJkzc9ZZZ2XNmjW55ZZbcsopp+xQ53Of+1wmTJiQtWvX5pZbbsnFF1+8Q50bbrghSdKnT59cdNFFezxuAABoitvPv73O+6d+Y2rN8YFvOLDeBIvyVuV55y/emaPPPTrTr5+eZ3//bKZfNz0V7SvS49AeGXPVmJzwiRPSvnvDO7ptWal22vXTMuOmGZn6zanZtH5Tug7smtGfGZ2TLj8pnft1bvLjBAAAAAAA6nf4uw7Px5/+eB76wUP5xx3/yL1fuDdVm6rSuV/nDD1/aI7/2PE5YGTdCyltMeZLYzJk7JA8/MOH8/RtT2fNT9akQ88OGfLmIRn58ZEZfOrgvfRoAGDvaCgBfW+RgA6w97TYBIuvf/3rmT17dpLNiRQPPPDADnWOPvroXHnllbn66qvzxS9+MaeddloOOuigmvK//vWvGT9+fJLkRz/6UTp27Lh3ggcAgF1UqBVrh7x5SIa8ue4kjMayUi0AAAAAABRPl/5d8uZr3pw3X/PmJvdRiJ3tAAAASlGzTrC4+eaba45nzJhRc3zXXXdl3rx5STbvLDF27I7bFlZVVdUcV1dX13uOb3zjG1m6dGluuOGGnHDCCfnoRz+aQYMGZdq0afnFL36R8vLyfO9738s555xTiIcEAAAAAAAAAAAAAAAUQbNOsDj//PPrvP8b3/hGzfEb3vCGOhMs/v3f/z3Tp0/P2rVrc/XVV9d7jvLy8lx//fU588wz85Of/CQ///nPs3z58vTt2zfvfe97c9lll2XEiBG7/2AAAAAAAAAAAAAAAICiadYJFg3tPLEzxx57bGbPnt3o+m9729vytre9rcnnAwAAAAAAAAAAAAAASld5sQMAAAAAAAAAAAAAAAAoNgkWAAAAAAAAAAAAAABAiyfBAgAAAAAAAAAAAAAAaPEkWAAAAAAAAAAAAAAAAC1eRbEDAAAAAAAAAAAAAAAA9pwbx9yYlya/tNN6rTu2zhdWfaHBOi8/8HIe+fEjmTt1bla/sjode3VM/1H9M/JjIzNozKACRVwcEiwAAAAAAAAAAAAAAICdmvyVyZl81eRUtKvI8IuGp/fRvbPkmSWZfv30PH3r0xl95eiM/fbYYofZZBIsAAAAAAAAAAAAAABgH7f/yP1z5i/PbLBOWXlZvWWP/vTR3Pel+1LRriIX3HtB+p/Yv6bs2POPzS9e/4s8cM0D6di7Y0ZfMbpgce9NEiwAAAAAAAAAAAAAAGAf17pD6/Q8vGeT2q5evDp3XXlXkuTEy06slVyRJP2G98voK0Zn8lWTM+k/JuXo9x6dLv277HbMe1t5sQMAAAAAAAAAAAAAAABK18M/eDgbVm1Ikoy4aESddUZcNCIpSyrXVeaB7z6wN8MrGAkWAAAAAAAAAAAAAABAvZ6+7ekkyX6D9kv3g7vXWadL/y41O2Q8c9szqa6u3mvxFYoECwAAAAAAAAAAAAAAaGHWv7Y+1VU7T4JYOX9llj67NEnSd1jfBuv2G95vc5t5K7Ns9rLdD3Ivqyh2AAAAAAAAAABsNWHchGKHAAAAAMA+aOOajZn8lcl5+rans/z55dm4ZmPKysvS47AeOeTth2TUv41K5/0779DulZmv1Bx3GdClwXNsW/7KU6+kx6E9CvcA9gIJFgAAAAAAAAAAAAAAsI/759//mVeefCXDPjQsp3zxlLTu2DpLZi3J9Oum58HvPJhp/29azrr5rBx2xmG12q2Ys6LmuGOfjg2eY9vybds1FxIsAAAAAAAAAAAAAABgH9exd8dcOOnC9DqyV819h7790JzwiRMyYdyEvHDXC7n1nFtz4aQLM2D0gJo6G17bUHNc0a7hFITW7VvX2a65KC92AAAAAAAAAAAAAAAAwM5Vrq/M+pXra/41Nonh7F+fnY/P+nit5IotKtpW5F03viut2rbKpg2bcscn7qhVvnHtxprjVm1aNXiebcs3rtnYQM3SZAcLAAAAAAAAAAAAAABoBqZ+c2omXzW55varebVR7Tr17dRgeef9O+fgtxycZ//wbBY+tjALHluQfsP7Jam9K8WmDZsa7Gfb8tYdWjdQszRJsAAAAAAAAAAAAAAAgGbg5M+fnFGfGlVze/78+bn2yGsL0vf+x++fZ//wbJLk5QderkmwaNO5TU2dynWVDfax7W4X27ZrLiRYAAAAAAAAAAAAAABAM1DRtiIVbbemAbRZWbgkho69O9Ycr1q4quZ4v0H71RyvXrS6wT62Ld+2XXNRXuwAAAAAAAAAAAAAAACA4qquqq45Lm+1NdWg99G9a45XvryywT5Wztta3vuo3g3ULE0SLAAAAAAAAAAAAAAAYB/17MRnM+VrU1JdXd1gvW13rejUr1PNcZcDuqTHoT2SJAsfX9hgHwumL9jcpn+XdD+ke1NDLpqKnVcBAAAAAAAAgJZnwrgJxQ4BAAAAYLc989tn8sT4JzLiohHp1LdTvfXmPTSv5njgyQNrlR15zpH529f/lhVzVmT5C8vT7aBuO7RfOX9llsxakiQ54uwjUlZWVqBHsPfYwQIAAAAAAAAAAAAAAPZxs++cXW/Z0tlL88LdLyRJBowekN5H9a5VfuK/npg2ndokSabfML3OPh772WNJdVLRriKjPz26QFHvXRIsAAAAAAAAAAAAAABgH3fP5+/J0ueW7nD/2mVr89tzf5vqTdVp3aF13vrjt+5Qp2Pvjhl7zdgkyUPXPpT5f59fq3zhEwtz/7fvT5Kc+tVT06V/lz3wCPa8imIHAAAAAAAAAAAAAAAA7Bm9juyV8tblWb1odX467Kc5+r1HZ/+R+6dVm1ZZ8sySPPHLJ7Jm8Zp07NMxZ//m7PQb3q/Ofo6/5PisWrQqU74yJeNPHZ8RF41Ir6N6ZcmsJZl+/fRsXL0xo64YldFXNM/dKxIJFgAAAAAAAAAAAACUoAnjJhQ7BIB9wus+87oMvWBonvndM3nhrhfy0pSX8tRvnsqmjZvSvlv79Dm2Tw59x6EZ/uHhadu5bYN9jfnSmAwZOyQP//DhPH3b01nzkzXp0LNDhrx5SEZ+fGQGnzp4Lz2qPUOCBQAAAAAAAAAAAAAA7MM69e2UkR8bmZEfG7nbfQ0YPSADRg8oQFSlp7zYAQAAAAAAAAAAAAAAABSbBAsAAAAAAAAAAAAAAKDFk2ABAAAAAAAAAAAAAAC0eBIsAAAAAAAAAAAAAACAFk+CBQAAAAAAAAAAAAAA0OJJsAAAAAAAAAAAAAAAAFo8CRYAAAAAAAAAAAAAAECLJ8ECAAAAAAAAAAAAAABo8SRYAAAAAAAAAAAAAAAALZ4ECwAAAAAAAAAAAAAAoMWTYAEAAAAAAAAAAAAAALR4FcUOAAAAAAAA2Huqq6vz9//6e+7+3N3ZuHpjLpx0YQaNGdRgm6vKrtrl8/zL7f+Sw991eK377vvyfZl81eRGtf/I3z+S/Y/ff5fPCwAAAAAA0FQSLAAAAAAAoIVY9vyy/PFDf8xLU17a4+fq2KfjHj8HAAAAAABAIUmwAACAFqQpK9XWZ8PqDfnJ0T/JijkrkiSXvXhZ9hu0307bVVVWZdr10/LkzU9myawlqVxfma4Du+awdx6Wky47KZ36dmpSPAAAQP22nQuUtypP/5P6Z95D83apj8PfdXje9M03NVhnwfQF+d37f5ceh/XIgFED6q338Wc+vtPzNWZ+AQAAAAAAUEgSLAAAoIUo9Eq1937x3prkisZas2RNbnnHLZn/8Pz0PLxnXvfZ16VNpzaZ/afZuf9b9+exnz2W99z2nhx4yoEFiREAANhs8lWTM/mqyRly+pCMu35cHvvZY7ucYNG2a9v0PLxng3Ue/N6DSZLjLj6uwXo76wcAAAAAAKAYJFgAAMA+rhAr1W5v/t/n55EfPbJLbaoqq/KbM3+T+Q/Pz4DRA3L+3eendfvWSZKRHxuZe75wT6Z+c2p+/c5f56JHLkqPQ3rsVowAAMBW1dXVGXfDuIz48IgmtT/wDQfuNCliw6oNmTlhZlq1bZWhFw5t0nkAAAAAAACKqbzYAQAAAHvW5Ksm585P3pmBJw/MpTMvzZDTh+xWf5s2bsrEiyamdfvWGfzGwY1uN+36aZk7dW5Sloy7flxNcsUWY64ak+4Hd8+6Fevy10/9dbdiBAAAahvz5TFNTq5Ikg/c94Gc/LmTG6zz5C1PZsOqDTny3UemQ48OTT4XAAAAAABAsUiwAACAfdyWlWrP+/N56Tqg6273d/+378+iGYvyxm+8MV0GdGl0DFO/OTVJMvB1A9PryF471GnVulWGfmDzKrfP/e9zWfjEwt2OFQAA2KysrGyPn2PaddOSJMd99Lhdardh9YZs2rhpT4QEAAAAAACwSyqKHQAAALBnjfnymIL9mGrpc0vzt6/9LQeccEBO+PgJ+cOH/tCodvMempeVL69Mkgw+rf5dL4aMHZJJX5yUJHn61qfTd2jf3Q8aAADY4xY8tiALpi1Iz8N75sBTDtxp/cfHP57Hbngsi59enLXL1iZJOh/QOYPfODgnXX5S+o3ot6dDBgAAAAAA2IEECwAA2McVKrmiuro6Ez8yMVWbqjLuhnEpK298vy/e+2LNcd9h9SdN9BnaJ2XlZamuqq7VBgAAKG3T/t/m3StGXDyiUfX/8IE/5PB3HZ43f/fN6di7Y17752uZOWFmZtw0IzNunpFT/uOUnHrVqXsyZAAAAAAAgB1IsAAAABpl2nXT8tKUl3LyF05On2P67FLbxTMX1xx3HdC13noVbSvSoVeHrF60OoufWlxvPQAAaKkq11dm0/pNNbc3rtpYxGg227B6Q5685cm0atsqQy8YutP6Za3KctavzsrR/3J0rftHXDQik/5zUqZ8dUqmfGVK2nZum9FXjN5TYQMAAAAAAOxAggUAALBTr/3ztdz92bvT/ZDuecN/vGGX26+Ys6LmuGOfjg3W7dSnU1YvWp31K9dn7fK1ad+t/S6fDwAA9lVTvzk1k6+aXHP71fJXixjNZjMnzMyG1zbkmPcfkw49OjRY96TLT8pxHz0unft1rrN8zJfH5Nk/PptFTyzKpP+clGPPOzad+nbaE2EDAAAAAADsQIIFAAA0I8VarfaOj9+R9a+uz3t//95UtNv1acT619bXHO+sfUX7reUbXtsgwQIAALZx8udPzqhPjaq5PXfu3Fx7zLVFjGjzbndJctzFx+20brv92qXdfu3qLS8rL8uwDwzLX/7tL6lcW5knJzyZUf82qt76AAAAAAAAhSTBAgAAmpFirFb79G1PZ9bvZ2X4h4dn0JhBTeqjcm1lzXGrNq0arLtt+cY1eyeBBAAAmouKthWpaLv1o/3WnVoXMZpk4eML88+//zM9D++ZA085sCB97n/8/jXH8x6Yl/xbQboFAAAAAADYKQkWAADQjOzt1WrXrViXOz95Zzr26Zix14xtcj/b7kqxacOmBmrWLm/dobg/FgMAABr26P97NEly3Ed3vntFY3Xs3bHmeNXCVQXrFwAAAAAAYGckWAAAQDOyt1er/esVf82qhavy7l+/O+27tW9yP207t605rlxX2UDN2rtdtOncpsnnBAAA9qwNqzdk5i0zU9GuIkMvGFqwfqurqmuOy1qVFaxfAAAAAACAnSkvdgAAAEBpmjN5Th77+WM58A0H5qA3HZQ1S9bs8G/T+q27Taxdvrbm/rXL19bqa79B+9Ucr160usHzrlq0eYXatl3a7lZSBwAAsGfN/PXMrF+5PkeefWTad9/5tfuiGYsy5WtTsmLOigbrbbtrRed+nXc3TAAAAAAAgEazgwUAAFCnOZPmJNXJS5NfyjW9rtlp/etGXFdz3PXArrl8zuU1t3sd3avm+NWXX02/Ef3q7KNyfWXWLF6zuc1RveqsAwAAlIbp101Pkoy4eESj6i+YviCT/mNSuh/cvVYS9vbmPTSv5njAyQN2K0YAAACAXTVh3IRihwAAFJEECwAAoE5DLxiagScPbLDOA9c8kOf/+nyS5Mybz0ynPp2SJBXta081Br9xcCZlUpJk4eMLc/g7D6+zv0VPLEp1VXVNGwAAoDQtmrEo8x+Zn55H9MyBrz9wl9r+485/5Oj3Hl1n2aYNm/LYzx5LkrTp3KbeegAAAAAAAHuCBAsAAKBO3Q7qlm4HdWuwzoybZ9QcD3zdwHpXoe1/Uv906d8lK+etzIv3vJgxXxpTZ70X7n6h5vjIc47c5ZgBAIC949H/92iS5LiLj9vltjN+NSOHvfOwHHHWEbXur9pUlT99/E9Z9o9lSZI3f+fN6dCjw+4HCwAAAAAA0EgSLAAAgD2urKwsJ3/h5NzxsTsyd+rcLJm1JD0P71mrTlVlVR6/8fEkySFvPyR9h/YtQqQAALDv2jZBetGMRTXHz9/1fFbOW5kk6dinY4aMHdJgPxvXbMyTv3oyFe0qMvSCoY0+f9eBXdOuW7usW74u/3P2/+SQtx6SwacNTvtu7bNy3srM/PXMLH5qccpbl+fN331zk5I3AAAAAAAAdocECwAAYK847iPHZeYtMzN36txM/MjEnPfX89K6feua8vu+fF+WzV6Wdvu1y+nXnl7ESAEAYN90+/m313n/1G9MrTk+8A0H7jTBYuZvZmb9q+tz7HnHpn339o0+/+A3Ds6n5n8qz018LrPvmJ0F0xdk8pcnZ+OajWnTuU26D+me1332dTn+0uOz34H7NbpfAAAAAACAQpFgAQAALUChVqpNklm/n5UNqzYkSZa/sLzW/R16dkiSDBg9IN0O6larXXlFef7l9n/JLe+4JXOnzs11x12XYR8cljYd22T2HbMz+0+z06Fnh5xz2znpcUiPpj9YAACgTl+q/lJB+hn+weEZ/sHhTWrbun3rHPWeo3LUe44qSCwAAAAAAACFJMECAABagEKtVJskf778z3n1pVd3uP8v//aXmuN3/uKdOyRYJEmHnh3yoakfyrTrp2XGTTMy9ZtTs2n9pnQd2DWjPzM6J11+Ujr369yYhwQAAAAAAAAAAFBQEiwAAKAFKNRKtUly+ZzLd6t9eUV5Rl46MiMvHVmYgAAAAAAAgAbdOObGvDT5pZ3Wa92xdb6w6gsN1nn5gZfzyI8fydypc7P6ldXp2Ktj+o/qn5EfG5lBYwYVKGIAAIDikGABAAAAAAAAAADs1OSvTM7kqyanol1Fhl80PL2P7p0lzyzJ9Oun5+lbn87oK0dn7LfHFjtMAACAJpNgAQAAAAAAAAAA+7j9R+6fM395ZoN1ysrL6i179KeP5r4v3ZeKdhW54N4L0v/E/jVlx55/bH7x+l/kgWseSMfeHTP6itEFixsAAGBvkmABAAAAAAAAAAD7uNYdWqfn4T2b1Hb14tW568q7kiQnXnZireSKJOk3vF9GXzE6k6+anEn/MSlHv/fodOnfZbdjBqB4JoybUOwQAKAoyosdAAAAAAAAAAAAULoe/sHD2bBqQ5JkxEUj6qwz4qIRSVlSua4yD3z3gb0ZHgAAQMFIsAAAAAAAAAAAAOr19G1PJ0n2G7Rfuh/cvc46Xfp3qdkh45nbnkl1dfVeiw8AAKBQJFgAAAAAAAAAAEALs/619amu2nkSxMr5K7P02aVJkr7D+jZYt9/wfpvbzFuZZbOX7X6QAAAAe1lFsQMAAAAAAAAAAAD2rI1rNmbyVybn6duezvLnl2fjmo0pKy9Lj8N65JC3H5JR/zYqnffvvEO7V2a+UnPcZUCXBs+xbfkrT72SHof2KNwDAAAA2AskWAAAAAAAAAAAwD7un3//Z1558pUM+9CwnPLFU9K6Y+ssmbUk06+bnge/82Cm/b9pOevms3LYGYfVardizoqa4459OjZ4jm3Lt20HAADQXEiwAAAAAAAAAACAfVzH3h1z4aQL0+vIXjX3Hfr2Q3PCJ07IhHET8sJdL+TWc27NhZMuzIDRA2rqbHhtQ81xRbuGf2rUun3rOtsBAAA0F+XFDgAAAAAAAAAAAGicyvWVWb9yfc2/xiQynP3rs/PxWR+vlVyxRUXbirzrxnelVdtW2bRhU+74xB21yjeu3Vhz3KpNqwbPs235xjUbG6gJAABQmuxgAQAAAAAAAAAAzcTUb07N5Ksm19x+Na/utE2nvp0aLO+8f+cc/JaD8+wfns3CxxZmwWML0m94vyS1d6XYtGFTg/1sW966Q+sGagIAAJQmCRYAAAAAAAAAANBMnPz5kzPqU6Nqbs+fPz/XHnntbve7//H759k/PJskefmBl2sSLNp0blNTp3JdZYN9bLvbxbbtAAAAmgsJFgAAAAAAAAAA0ExUtK1IRdutP/lps7IwiQwde3esOV61cFXN8X6D9qs5Xr1odYN9bFu+bTsAAIDmorzYAQAAAAAAAAAAAMVVXVVdc1zeautPinof3bvmeOXLKxvsY+W8reW9j+rdQE0AAIDSJMECAAAAAAAAAAD2Uc9OfDZTvjYl1dXVDdbbdteKTv061Rx3OaBLehzaI0my8PGFDfaxYPqCzW36d0n3Q7o3NWQAAICikWABAAAAAAAAAAD7qGd++0wm/cekrF60usF68x6aV3M88OSBtcqOPOfIJMmKOSuy/IXldbZfOX9llsxakiQ54uwjUlZWtjthAwAAFIUECwAAAAAAAAAA2MfNvnN2vWVLZy/NC3e/kCQZMHpAeh/Vu1b5if96Ytp0apMkmX7D9Dr7eOxnjyXVSUW7ioz+9OgCRQ0AALB3SbAAAAAAAAAAAIB93D2fvydLn1u6w/1rl63Nb8/9bao3Vad1h9Z564/fukOdjr07Zuw1Y5MkD137UOb/fX6t8oVPLMz9374/SXLqV09Nl/5d9sAjAAAA2PMqih3A7lqyZEl+8IMf5Pbbb8+cOXPSpk2bHHbYYTn33HNzySWXpE2bNrt9jlmzZuW///u/c9999+XFF1/MunXr0q1btxxzzDE566yz8qEPfSjt27cvwKMBAAAAAAAAimXCuAnFDgEACq7Xkb1S3ro8qxetzk+H/TRHv/fo7D9y/7Rq0ypLnlmSJ375RNYsXpOOfTrm7N+cnX7D+9XZz/GXHJ9Vi1ZlylemZPyp4zPiohHpdVSvLJm1JNOvn56Nqzdm1BWjMvoKu1cAAADNV7NOsHjkkUfyrne9KwsWLMjYsWNz6aWXZu3atRk/fnwuu+yy3Hjjjfnf//3f7L///k0+x3/913/l3/7t37Jx48YMGzYsV1xxRfr06ZNnnnkmv/jFL3Lvvffmhz/8Ye68884cdNBBBXx0AAAAAAAAAACwe173mddl6AVD88zvnskLd72Ql6a8lKd+81Q2bdyU9t3ap8+xfXLoOw7N8A8PT9vObRvsa8yXxmTI2CF5+IcP5+nbns6an6xJh54dMuTNQzLy4yMz+NTBe+lRAQAA7BnNNsFi7ty5ecc73pHFixfn8ssvz7XXXltT9slPfjJvfetbM2nSpJxxxhm5//7707ZtwxPAuvzlL3/JJz7xiSTJ+973vowfPz4VFVufsk996lMZOXJknnvuubzjHe/IE088kdatW+/+gwMAAAAAAAAAgALp1LdTRn5sZEZ+bORu9zVg9IAMGD2gAFEBAACUnmabYHHllVdm8eLFGThwYL71rW/VKmvbtm2uv/76HHbYYZk2bVp+/OMf59Of/vQun+Pb3/52kqR169b5wQ9+UCu5IkkOPPDAfPGLX8xll12WZ555Jr///e9zzjnnNP1BAQAAAAAAAAAAAAAla8K4CcUOIedOPLfYIcA+q7zYATTF7Nmzc+uttyZJLrjggjp3pxgyZEhOPfXUJMnVV1+dysrKXT7P3//+95q+evbsWWedE044oeb4wQcf3OVzAAAAAAAAAAAAAAAAxdcsEyxuu+22VFdXJ0lOO+20euuNHTs2SbJ48eLcd999u3yeDRs2JEnat29fb50OHTrUHK9evXqXzwEAAAAAAAAAAAAAABRfs0ywuPfee2uOhw0bVm+94cOH19mmsYYOHZok+cc//lHvDhjPPPNMzfEhhxyyy+cAAAAAAAAAAAAAAACKr1kmWMycOTNJ0rlz53Tt2rXeegMGDKg5fuqpp3b5PJ/5zGeSJK+99lp+9KMf7VC+adOmXH311UmSTp065f3vf/8unwMAAAAAAAAAAAAAACi+ZpdgsX79+ixcuDBJ0qdPnwbrbls+Z86cXT7Xu9/97owfPz6dOnXKlVdemSuuuCKPPPJI5syZkz//+c95/etfn8ceeyw9e/bM7373u/Tr12+XzwEAAAAAAAAAAAAAABRfRbED2FWvvfZazXG7du0arNu+ffs62+2KCy64IKeffno+//nP5/vf/36++93v1pT16dMnX/va1/KhD31ol5IrXn311Sxbtqzmdtu2bdO2bdsmxdcUVWVVe+1c9amsrCx2CPyfysrKVFVV+ZtQUoxLSpWxSSmqqir+tR27zpxgM6+n3lvYkTHB9owJtmdMsD1zguZr+fLl6dChQ83tvT0voPnxHrB3lMqcudRVl1WnOtWpLqtOVfbcc1YK492Y2KoU/h518fpIqSjmWDT+m6dif1fAvsH74J7RUq8B99Z1Pk3T3P4/39dfn0rhdWJffW63t6+PpULx/BRWs0uwWLt2bc1xmzZtGqy7bfmaNWuadL5f/vKX+cxnPpNFixbl3e9+d971rnele/fueemll/Lzn/883//+97NixYp88YtfTNeuXRvV57Bhw2rdvvDCC/OBD3ygSfE1xbJ+y3ZeaQ+bOnVqsUPg/1RVVWXu3LlJkvLyZrepDfso45JSZWxSipYuXVrsEGgCc4LNzAu8t7AjY4LtGRNsz5hge+YEzdexxx5b6/benhfQ/HgP2DtKZc5c6qpTnbWd12ZZlqUsZXvsPKXw2YExsVUp/D3q4vWRUlHMsbjtj/RpPor9XQH7Bu+De0ZLvQbcW9f5NE2pXo/XZ19/fSqF14nmNiaaal8fS4ViTlBYzS7BYttdKTZs2NBg3W3Lt10FqrG+//3v59/+7d+SJP/93/+dSy+9tFb5xRdfnPe97335zne+kz/84Q+57777sv/++++038cffzwDBgyoub23M9Dnf2/+XjtXfU4++eRih8D/2ZK1Nnr06FRUNLuXBPZRxiWlytikFG2ZRNK8mBNsZl7gvYUdGRNsz5hge8YE2zMnaL5mzJiRAw44oOa21WrZGe8Be0epzJlLXXVZdZZlWbov7J6y6j33w6tS+OzAmNiqFP4edfH6SKko5licN2/eXj0fhVHs7wrYN3gf3DNa6jXg3rrOp2lK9Xq8Pvv661MpvE40tzHRVPv6WCoUc4LCanYjrXPnzjXH69ata7DutrtdbNuuMebNm5fPfOYzSTa/CG2fXJEkrVq1yk9/+tP86U9/yuzZs/PhD384d95550777tq1a7p3775L8RRSeXXxM7i8yJWW8vLyVFRU+LtQUoxLSpWxSamRnd88mRNs5rV0M+8tbM+YYHvGBNszJtiWOUHz1a1bt6LOC2ievAfseaUyZy51ValKWcpSVl22R5+zUhjrxsRWpfD3qI/XR0pFscaisd88Ffu7AvYd3gcLr6VeA+6t63yapjn+P74vvz6Vwv8j++LzWp99eSwViuemsIr/f/guatu2bfr27ZskWbRoUYN1ty0fNGjQLp3n1ltvzcaNG5MkZ555Zr31unXrljFjxiRJ/vznP+f555/fpfMAAAAAAAAAAAAAAADF1+wSLJLk6KOPTpK89tprefXVV+utt+12J0cdddQuneO5556rOT7wwAMbrLtt8sbjjz++S+cBAAAAAAAAAAAAAACKr1kmWLzxjW+sOW4ooWH69Ol1tmmMbbdVr66ubrBuVVVVzfGmTZt26TwAAAAAAAAAAAAAAEDxNcsEi7PPPjtlZWVJknvuuafeenfffXeSpGfPnhkzZswuneOggw6qOX7++ecbrLtt+cCBA3fpPAAAAAAAAAAAAAAAQPFVFDuApjjkkENyzjnn5H/+539y00035Ytf/GLatGlTq84LL7yQe++9N0ny2c9+NhUVtR/qzJkzc9ZZZ2XNmjW55ZZbcsopp9Qqf/vb354rr7wy1dXVufXWW/PZz362zlgWLVqUyZMnJ0l69+6dkSNHFuphAgAAAAAAALRYE8ZNKHYIAAAAALQwzXIHiyS55ppr0qtXr8yZMydf+MIXapWtX78+F198cTZt2pTjjjsun/jEJ3Zo//Wvfz2zZ8/O/Pnz87nPfW6H8sMPPzwf/vCHkyTTpk3L17/+9R3qrF+/Ph/4wAeyfv36mj5btWpViIcHAAAAAAAAAAAAAADsRc1yB4skGThwYCZOnJgzzzwz3/3udzNz5sycccYZWbt2bcaPH58nn3wyw4YNyx//+Me0a9duh/ZVVVU1x9XV1XWe47/+67+ydu3a/OpXv8oXv/jF/OUvf8k73/nOdO/ePS+99FJuuummvPDCC6moqMhXv/rVXHTRRXvs8QIAAAAAAAAAAAAAAHtOs02wSJITTzwxM2bMyPe///3cfvvt+cxnPpPWrVvn0EMPzfe///1ceumladOmTZ1t//3f/z3Tp0/P2rVrc/XVV9dZp02bNrn55pvz0Y9+NDfeeGMefPDBfPnLX87atWvTuXPnDBkyJJ/+9KfzkY98JIcddtiefKgAAAAAAAAAAAAAAMD/WTRjUTr17ZSOvTsWrM9mnWCRJD179szXvva1fO1rX9uldscee2xmz57dqLqvf/3r8/rXv74p4QEAAAAAQEmprq7O3//r77n7c3dn4+qNuXDShRk0ZlCDbVbMWZEfDP5Bo/of+fGReduP39ZgnarKqky7flqevPnJLJm1JJXrK9N1YNcc9s7DctJlJ6VT306NfTgAAAAAAMBu+OuVf82D33kwSfKGL70hY748ZqdtXn7g5Tzy40cyd+rcrH5ldTr26pj+o/pn5MdG7vQ7h535w4f+kOM+elz6n9h/p3X/593/k+UvLM/h7zo8Z958Zlq3b71b506S8t3uAQAAAAAAaBaWPb8s48eMz52fvDMbV28sSgxrlqzJz0/+ee742B1Zu2xtXvfZ12Xst8em2+Buuf9b9+cnx/4kL015qSixAQAAAABAS7Jg+oI8dO1Du9Rm8lcm5xev/0We/cOzOfzMw/PWH701R55zZP5x5z8y/tTxueszd+1WTI/f+HiWP7+8UXUPfuvB6XFoj8z6/axM/ebU3TrvFs1+BwsAAKDxmrJSbbJ5MvXU/zyVuVPnZsmsJVn/6vq06dQm3Q7qlkGnDspxHz0uPQ7p0agYrFQLAAB737ZzgfJW5el/Uv/Me2jeLvfzxm+8MUeceUSDddp1a1dvWVVlVX5z5m8y/+H5GTB6QM6/+/ya1aRGfmxk7vnCPZn6zan59Tt/nYseuajR8wwAAAAAAGDXVFVW5Y8X/THVm6ob3ebRnz6a+750XyraVeSCey+otcvEsecfm1+8/hd54JoH0rF3x4y+YvSeCLuWt/7wrUmS35772zx969M59Sun7nafdrAAAIAWoikr1a6YsyK/eP0vct1x1+X+q+9PkpzwiRPy9p++PaOuGJXK9ZV58LsP5r+P+u888J0HdtqflWoBAKA4Jl81OXd+8s4MPHlgLp15aYacPqRJ/XTu1zk9D+/Z4L9OfepPmp52/bTMnTo3KUvGXT9uh626x1w1Jt0P7p51K9blr5/6a5NiBAAAAAAAdu6B7z6QhY8tzGHvPKxR9VcvXp27rty8O8WJl51YK7kiSfoN71eTVDHpPyZl5byVhQ24AYPeOCivzn21IH1JsAAAgH1cdXV1HvnxI/np0J9m4eML0/+k/jtv9H+WzFqy+cdPSU7//un50NQPZcyXx2TEh0fklH8/JZc8cUmOed8xqdpYlbuuvCuP/r9H6+1r+5VqL55+cV73mddl5MdG5n1/el9O/vzJWbN4TX79zl9n6eylu/24AQCAraqrqzPuhnE578/npeuArkWLYcv23ANfNzC9juy1Q51WrVtl6AeGJkme+9/nsvCJhXs1RgAAAAAAaAmWPb8sk6+anP1H7p8TPnlCo9o8/IOHs2HVhiTJiItG1FlnxEUjkrKkcl1lHvjuzhdrrVdZ46tWrq/MP+78R1q1adX0822joiC9AAAAJWvyVZMz+arJGXL6kIy7flwe+9ljmffQvF3q46CxB+Wky07a4f7yVuV5x3XvyD/+8o+sXbo293zungy7cFgq2u041WjMSrVP3/p0lv1jWf76qb/m3Inn7lKMAABA/cZ8eUzKynbh24g9YN5D87Ly5c2rVQ0+bXC99YaMHZJJX5yUJHn61qfTd2jfvRIfAAAAAAC0FP978f+mamNVxl0/LuuWr2tUm6dvezpJst+g/dL94O511unSv0t6Ht4zS55Zkmdueyanf+/0Br+feOgHD+XhHzy8w/1/ufwvufff791pTFUbq7L6ldWpqqzK4DfV/93DrrCDBQAA7OMKsVJtQ1sBtunYJgeffnCSZN2KdXnpby/VGYOVagEAoHj2RHJFVWVVNqze0Oj6L977Ys1x32H1J030GdonZeVlO7QBAAAAAAB23/SfTc+L976YUZ8e1ehFjlbOX5mlzy5N0vBn/EnSb3i/zW3mrcyy2csarLtuxbqsmLOi1r8kWb149Q731/Vv5fyV2bRxU1p3aJ0xV41p1GPZGTtYAADAPm53Vqrd//j98/4735/9R+7fYL2uB25N3Hh17qs7lFupFgAA9g2vPPVKfvu+32bu1Ll57Z+vpXpTdVp3aJ3+J/XPMecdk6HnD015Rd1rOy2eubjmuKHk74q2FenQq0NWL1qdxU8trrceAAAAAACwa1YtXJW7rrwr3YZ0yxu+9IZGt3tl5is1x10GdGmw7rblrzz1Snoc2qPeun2H9c2wC4fVuu/x8Y/nwNcfmG4HdWs4qLKkdYfW6XFojxx59pHpvH/nhus3kgQLAADYx+3OSrUdenbIwW85eKf11q3YulVgm45tdijf1ZVqq6uqrVQLAAAl6MHvPJgeh/bICZ84IT2P6JlN6zflpSkvZfr1m1e7mn7d9Lznd+9J5347fomxZdWpJOnYp2OD5+nUp1NWL1qd9SvXZ+3ytWnfrX2hHwoAAAAAALQ4d3zijqxbvi7n3HpOWrdv3eh2u/IZ/7bl27ary+HvPDyHv/PwWvc9Pv7xHPfR43LM+45pdHyFJMECAADYbSteXLH5oCwZ8LoBO5RbqRYAAPYNR7z7iJz1q7NS0Xbr1wtHnn1khn1wWMaPGZ95D83LhHET8qH7P1SrTpKsf219zXFFu4a/nqhov7V8w2sbJFgAAAAAAMD/qVxfmU3rN9Xc3vDahka1m/WHWXnmt89k2AeG5aA3HbRL59z2HDv7jH/bxI3GxratQW8YtNMkjj1JggUAALBb1r26LnPum5MkOWzcYXUmUFipFgAACmP7L002rtq4V87bpX+XXPbiZel8QOe0at1qh/J+w/vllP88JXddcVcWTFuQR3/6aE667KRadSrXVtYct2qzYx/b2rZ845q98xgBAAAAAKA5mPrNqZl81eSa26/m1Z22Wb9yfe74+B3p0KtD3vzdN+/yOTeu3fpZ/Z7+jP/CSRfucptCkmABAADslifGP5HKdZVp1aZV3vStN9VZx0q1AABQGDt8aVK+8y9NCqG8ojz7DdqvwTrDPzg8d115V1KdPP7zx3dIsNj2Wn/Thk3bN69l2/LWHRq/RTkAAAAAAOzrTv78yRn1qVE1t+fPn59rj7y2wTZ3feauvDb/tZx1y1lp333Xf4uz7a4UpfgZ/wt3v5C/feNvufDe3U/OkGABAADNSLFWq63P6ldWZ8pXpyRJ3vj1N6bXEb3qrGelWgAAKIztvzSZO3durj2m4S9N9pb23dun20Hdsvz55Vn05KJsWLUhbTq1qSlv27ltzXHlusq6uthavs0cok3nNg3UBAAAAACAlqWibUUq2m5NA2izsuHP0V/620uZdt20HPyWg3PMucc06Zzbfla/s8/4t93tYm99xr9q0aq8NPmlgvQlwQIAAJqRYq1WW5eqTVW5/YLbs2bJmhz93qMz6tOj6q1rpVoAACiM7b80ad2ptK6ZO/bumOXPL0+qN3+Z0b1T95qy/Qbtl3kPzUuSrF60Ol0O6FJvP6sWrUqStO3S1q52AAAAAADQRJs2bMrEj0xMqzatcupXT82aJWt2qLPu1XU1xxvXbKxVp23XtmnVulWtXa5XL1rd4Dm3Ld/Z7tg7i33u1LlZ/MzirH91faoqq+qtu+iJRU0+z/YkWAAAQDNSSqvV3vmvd+b5vzyfwW8anHfe+M6UlZXVW9dKtQAA0DJUV1XXHJe3Kq9V1uvorTvevfryq+k3ol+dfVSur8yaxZu/vOl1VN275AEAAAAAADv32j9fy9JnlyZJrh95/U7rP3DNA3ngmgdqbl846cIMGjMovY/uXXPfypdXNtjHynlby3sf1buBmvWb/rPpufszd2fdinU7r1xgEiwAAKAZKZXVau/+/N159L8fzaBTB+W9f3hvrZjqYqVaAABo3qZ8bUp6H9M7h7/z8AbrrVq4+Xq+rLwsHXt3rFU2+I2DMymTkiQLH19Yb1+LnlhUk6gx+I2Ddzd0AAAAAABosTr17ZTz7zq/wToLn1iYu664K0ly7PnHZugFQ2vK+gztkyTpckCX9Di0R5Y+tzQLH1/YYH8Lpi/Y3KZ/l3Q/pHuDdevyzO3PZOJHJu5yu4YWh90VEiwAAIBdcu9/3Jv7v3V/DnzDgXnf/74vrTvsPMnDSrUAANC8TfqPSRly+pAGEyxeW/BaXn3p1SRJvxH9dpgr9D+pf7r075KV81bmxXtezJgvjamznxfufqHm+Mhzjtz94AEAAAAAoIWqaFeRg047qME65RVbd6TudlC3eusfec6R+dvX/5YVc1Zk+QvL0+2gbjvUWTl/ZZbMWpIkOeLsI5qU9PDQ9x5KkhzzvmMy/MPD0+vIXmnfrX1atWlVb5sZN8/I7y/8/S6fqy7lO68CAACw2X1fvi9/+9rfMvD1A/O+PzUuuSKpvepsQ1nsVqoFAIDS9fIDL2f9yvX1lj/600drjkdcPGKH8rKyspz8hZOTJHOnzq35gmVbVZVVefzGx5Mkh7z9kPQd2nc3owYAAAAAAArhxH89MW06tUmSTL9hep11HvvZY0n15sSO0Z8e3aTzLJqxKEeceUTOuvmsDD51cDr16dRgckWSpCyprq5u0vm2J8ECAABolClfn5LJV03OgNcNyPvveH/adGyzQ53rjr8u91113w73b1mpNklevOfFes9hpVoAAChdG17bkIkXT8ymDZt2KHv+r8/n/qvvT5IceMqBGf7B4XX2cdxHjsvAkwcm1cnEj0zMxrUba5Xf9+X7smz2srTbr11Ov/b0wj8IAAAAAACgSTr27pix14xNkjx07UOZ//f5tcoXPrEw939783cFp3711JrfCu2q6qrqHPzWg3epzRFnHpHLXrysSefbXkVBegEAAPZpU6+emklfnJT+o/rn/Xe+vyYbfXsLpi1I76N773D/lpVq7/jYHTUr1fY8vGetOlaqBQCAPWvGzTNqjhfNWFRz/Pxdz2flvJVJko59OmbI2CE7tO0ztE8WPbEoT/3mqSyYtiBHvfeodDuoWzau3pg5983JM797JqlODn7rwTnrV2fV2k58W+UV5fmX2/8lt7zjlsydOjfXHXddhn1wWNp0bJPZd8zO7D/NToeeHXLObeekxyE9CvwMAAAAAAAAyebvCbZ8V7D4mcW17t/yfUJd3xkcf8nxWbVoVaZ8ZUrGnzo+Iy4akV5H9cqSWUsy/frp2bh6Y0ZdMSqjr2ja7hVJ0uPQHqlcX7lLbVp3aJ39DtyvyefclgQLAACgQQ9894Hc87l70qFXh5z8uZOzYNqCJvVz3EeOy8xbZmbu1LmZ+JGJOe+v56V1+9Y15VaqBQCAPev282+v8/6p35hac3zgGw6sM8HikscvybyH52XW72fl5ftfzvTrpmft8rVp1bpVOvXtlGPed0yOPf/YHHz6zleU6tCzQz409UOZdv20zLhpRqZ+c2o2rd+UrgO7ZvRnRueky09K536dm/5AAQAAAACABj3zu2cy+arJO9w/6/ZZmXX7rCT1f2cw5ktjMmTskDz8w4fz9G1PZ81P1qRDzw4Z8uYhGfnxkRl86uDdim3YB4dl1u9m5YSPn9DoNvMempdp103LO3/+zt06dyLBAgAAWoSmrlQ76/ezctcVdyVJ1ixek1+/89dNjsFKtQAAUFxfqv7SbrXvf2L/9D+xf0FiKa8oz8hLR2bkpSML0h8AAAAAANB4Y748JmO+PKbJ7QeMHpABowcULqBtjPz4yLx4z4v508f/lLFXj02bTm122mbZ88vyxPgnJFgAAACN09SValfMWVHQOKxUCwAAAAAAAAAA1GfKV6ekz9A+eexnj2XGL2fkwDccmB6H9Ujbzm1TVl5WZ5tFTyyq8/6mkGABAAAtQFNXqj3p8pNy0uUnFTQWK9UCAAAAAAAAAAB1ue/L96WsbHMiRXV1df5x5z/yjzv/sdfOL8ECAAAAAAAAAAAAAAAoCdXV1XUeN2RLUsbukmABAAAAAAAAAAAAAACUhLNuPivHvO+YRtefcfOM/P7C3xfk3OUF6QUAAAAAAAAAAAAAAGBvK2v8Thc7I8ECAAAAAAAAAAAAAAAounHXj0v/Uf13qc2QsUNy4aQLC3L+ioL0AgAAAAAAAAAAAAAAsBtGfHjELrfp2LtjOvbuWJDz28ECAAAAAAAAAAAAAABoluY9PC8TL55YkL4kWAAAAAAAAAAAAAAAAM3Ssn8sy2M/e6wgfVUUpBcAAAAAAAAAAAAAAIDd8NKUl3a5zZJnlhTs/BIsAAAAAAAAAAAAAACAortxzI0pKysr2vklWAAAAAAAAAAAAAAAACWhurp6l9sUKilDggUAAAAAAAAAAAAAAFASXv/vr89Bpx1UZ1n1puqsX7k+S55dkuf++FxenftqTr/29HTo1aEg55ZgAQAAAAAAAAAAAAAAlIReR/TKoDcM2mm9kz97cmbcPCOT/nNSLnroooKcu7wgvQAAAAAAAAAAAAAAAOyGt/7orTnghAMaXf/Y847NAScckClfn1KQ80uwAAAAAAAAAAAAAAAAiu6Ej5+Q7gd336U2A18/MLN+N6sg55dgAQAAAAAAAAAAAAAANEsbV2/MynkrC9KXBAsAAAAAAAAAAAAAAKDZ2bRxU2bcNCNtOrcpSH8VBekFAAAAAAAAAAAAAABgN7w05aWd1tm0cVPWrViXJc8sycwJM7Nk1pIc/q7DC3J+CRYAAAAAAPx/9u48Lspy///4e2DYBUR2BTfcRUWUVDJ300pNy0pzrWyx5dgprXPqlO3rKbM6y0/rlEvZYqmpZWkqbrkkKi5o7ggJiggIyH7//vDrCLIIzLCor+fjweNxz1yf6/pcM93NzO19f+4LAAAAAAAAAAAAqHWf9/lcJpOpwvGGYcjBxUG9p/e2SX4KLAAAAAAAAAAAAAAAAAAAAAAAQJ1gGEaF4uzs7dS8f3P1f7O//Dv62yQ3BRYAAAAAAAAAAAAAAAAAAAAAAKBOuOn5m9R8QPMy2+3MdnL2dFaDFg1kdrZtSQQFFgAAAAAAAAAAAAAAAAAAAAAAoE7wbeurpr2b1kpuCiwAAAAAAAAAAAAAAACA69Qv037Rb//8TZLUe3pv9XmpzxX7nNh0Qls/3qq4DXHKPJUpN183BfUIUsSjEWrap2n1ThgAAADANa339N7y7+hfa/kpsAAAAAAAAAAAAAAAAACuQyejT2rzjM2V6hP1SpSiXo6S2dmszpM6yy/UT8mxyYqeHa193+5T5LRIDXxnYDXNGAAAAMC1rs/0PrWanwILAAAAAAAAAAAAAAAA4DpTmF+oHyb9IKPAqHCf3//7u9ZOXyuzs1njV49XULcgS1vHcR312U2fadO7m+Tm56bIqZHVMW0AAAAA16GsM1k6e/isstOy5ezpLK8QL7l6u1ZLLgosAAAAAAAAAAAAAAAAgOvMpvc2KXFHolrf3loHlhy4Ynzm6UytnLZSktRtSrdixRWSFNg5UJFTIxX1cpTWvLBGoaNC5RHkUS1zBwAAAHB92Dlnp7bM3KKkXUkl2vw7+av7k93VaXwnm+a0s+loAAAAAAAAAAAAAAAAAOq0lMMpino5Sg0jGuqGJ26oUJ8tM7coNyNXkhQ+KbzUmPBJ4ZJJys/O16b3NtlsvgAAAACuL7mZufri1i/0w/0/KGlXkgzDKPGXtCtJS+5boi9u/UJ5WXk2y02BBQAAAAAAAAAAAAAAAHAdWfbQMhXmFWro7KGys6/Y5UP7Fu6TJNVvWl8NWjQoNcYjyEM+bXwkSbELY2UYhm0mDAAAAOC68t3o73RoxSEZhiGzi1lB3YLU7s526ji2o9rd2U5B3YLk4OogwzB0+OfD+m70dzbLbbbZSAAAAAAAAAAAAAAAAADqtOhPo3V09VHd+OyNCugUoGNrj12xT3pCus4cOCNJCggLKDc2sHOgkmOTlR6frpSDKfJu5W2LaQMAAAC4ThxYekB/LPtD7oHuGvDOALUb2U5mp5JlD/k5+dq3cJ9WPbNKfyz7Q38s+0OthrSyOj8rWAAAAAAAAAAAAAAAAADXgYzEDK2ctlJeIV7qPb13hfud2nPKsu0R7FFubNH2U3tPlRMJAAAAACXtmrNLLl4ueuC3B9RxTMdSiyskyexkVscxHfXAbw/Iub6zdn620yb5KbAAAAAAAAAAAAAAAAAArgM/Pv6jss9ma8j/GyIHF4cK90s9lmrZdvN3Kze2aHvRfgAAAABQEfGb4xV2f5g8G3tWKN6zsafC7g9T/JZ4m+QvvZwDAAAAAAAAAAAAAAAAQJ2Tn5OvgpwCy+Pcc7kV6rd/yX7FfhersIlhat6/eaVyFs1hdi7/cqOihRsVnRsAAAAAXJSVnCXfdr6V6uPb1ldZyVk2yU+BBQAAAAAAAAAAAAAAAHCV2PDmBkW9HGV5nKa0K/bJSc/Rj4/9KFdfV9383s2Vzpl3Ps+ybe9oX25s0fa8rLxyIgEAAACgJMd6jpUulsg6kyXHeo42yU+BBQAAAAAAAAAAAAAAAHCV6Pn3nurxVA/L44SEBM1oN6PcPiufWalzCed0x5d3yKWBS6VzFl2VoiC3oJzI4u0Org7lRAIAAABAST5tfLRnwR5FPh0pk53pivFGoaE9X+6RTxsfm+S3s8koAAAAAAAAAAAAAAAAAKqd2cksJw8ny5+je/l3aT2+/ri2z9quFoNbqMPoDlXKWTRHfnZ+ubFFV7u40twAAAAA4HJthrdR4s5EfT/2e2WnZpcbm52Wre/HfK+kmCS1GdHGJvlZwQIAAAAAAAAAAAAAAAC4BhXkFmjpg0tl72ivvq/2VVZyVomY7LRLFyzlZeUVi3HydJK9g73qN61veS4zKbPcnEXbi/YDAADAtWfB0AXVOn6hqVApgSlKeD9Bdkbp6wqMXjq6WueAmhfxaIS2zNyivV/v1cEfD6rVba3UMKKh3Bu5y8HFQfnZ+UqPT9efv/+pg8sPKic9R+6N3BXxaIRN8lNgAQAAAAAAAAAAAAAAAFyDzv15TmcOnJEkzY6YfcX4Te9u0qZ3N1keT1gzQU37NJVfqJ/lufQT6eWOkR5/qd2vvV85kQAAAABQkoOrg0b9MEpz+89Vdmq29ny1R3u+2lNqrGEYcvFy0eilo+Xg4mCT/BRYoFZUd8VaRVCxBgAAAAAAAAAAAAAArmX1Aupp3Mpx5cYk7krUyqkrJUkdx3VUp/GdLG3+nfwlSR6NPOTdyltn/jijxJ2J5Y53MvrkhT5BHmrQsoE10wcAAABwnQrsHKiHdzys5ZOX69CKQ2XGtbylpW79962q36S+zXJTYAEAAAAAAAAAAAAAAABcg8zOZjUf0LzcGDuznWXbq7lXmfHt7mqn9a+vV+qxVJ09clZezb1KxKQnpCt5f7Ikqe3ItjKZTFbMHgAAAMD1rH6T+hrz4xilHErRkVVHdObgGeWey5Wju6MatGig5gOay7ult83zVmuBRWpqqt577z3t2rVLHh4eGj16tG677bbqTAkAAAAAAAAAAAAAAADAxrr9pZu2zNyi3IxcRX8Srf5v9C8Rs+PTHZJxobAj8unIWpglAAAAgGtNgxYN1KBFza2OZ3flkLJlZmbK09NT9vb2sre31y+//GJpi4+PV2hoqN544w0tX75cCxYs0LBhw/S3v/3N6kkDAAAAAAAAAAAAAAAAqDlufm4a+O5ASdLmGZuVsC2hWHvirkRtfGejJKnvq33lEeRR43MEAAAAAGtZtYLFokWLdO7cOTk7O2vEiBEKCQmxtD311FP6888/JUkBAQHy9fXVvn379O6772ro0KG68cYbrZs5AAAAAAAAAACoNMMwtO1f27Tqb6uUl5mnCWsmqGmfplfsdzL6pPZ+s1dxG+KUvD9ZOWk5cqznKK/mXmrat6m6PNzliktxr31praJejqrQPB/c9qAadm1YoVgAAAAAlZMUk6SkmCRJ0unY08Wej5kfI0ly83dTyMCQYv26PtJVGUkZWvfKOs3pO0fhk8Ll295XyfuTFT07WnmZeeoxtYcip7J6BQAAAICqO3v0rHLP5UqSTPYm+bX3KxET80WM3PxKHrdYy6oCixUrVsjJyUmbNm1SWFiY5fmEhAR9//33MplMGjlypObPny8HBwdt2bJF/fv316xZsyiwAAAAAAAAAACghqUcTtEP9/+g4+uOV7hP6rFULRq3SHEb4iRJwTcG64bHb5BHsIcyEjO0Z8Ee/fbeb9ry4Rb1f6M/F1IBAAAAV4HY72NLLX7ev2i/9i/aL0lq0rtJqRcq9ZneRyEDQ7Tlwy3at3Cfsv6TJVcfV4XcHKKIxyLUrG+zap8/AAAAgGtXXlaeZoXPUk56jiTJydNJz6Y8WyLu4LKD2vvNXjXu2Vh3fnWn3APdbZLfqgKLbdu2ady4ccWKKyTpu+++U2FhoRwdHfXhhx/KwcFBktStWzeNGjVKUVEVuzsVAAAAANuq6p1qLzqx6YS2frxVcRvilHkqU26+bgrqEaSIRyMqPE5hfqG2z96u3fN3K3l/svJz8uXZ2FOtb2+t7lO6q15Avaq9OAAAAABlKnosYGdvp6DuQYrfHF+hvsn7ky3FFYM+GKTuU7oXa+/5t55aPH6xdn+5WyunrZSju6O6Pty13DEfi33sinnrN61fofkBAAAAqLw+L/VRn5f6VLl/cGSwgiODbTchAAAAAPg/sd/HKjstW5LUelhrtb2jbalxHcZ0UHp8uo6vP675g+brwW0PyuxkVXmEJCsLLOLj49W5c+cSzy9ZskQmk0m33nqr/P39i7V16tRJX375pTVpAQAAAFRBVe5UW1TUK1GKejlKZmezOk/qLL9QPyXHXljye9+3+xQ5LVID3xlY7hhZyVn6csiXStiSIJ82Prrx2RvlWM9RB5cf1Ma3NmrHpzt098K71aRXkyrNEQAAAEDpol6+8Hs+ZFCIhs4eqh2f7qhwgcVFzQc2L1FcIUl29nYaMmuIDv18SOfPnNevf/tVYRPCZHYu+xSETxufSr8GAAAAAAAAAABw7Tu04pBMJpPu/OpOtb+rfZlxrYa0UqshrfTbjN/0y9O/aNu/t6nHX3tYnd/Oms6FhYUymUzFnktJSdH69eslSXfffXeJPs7OziosLLQmLQAAAIBKMAxDWz/eqv92+q8SdyYqqHtQpcf4/b+/a+30tbJ3tNf41eN1y8xb1OXBLhr0/iBNXDdRDm4O2vTuJm3656YyxyjML9TXI75WwpYEBUcG66Hoh3TjMzcq4tEI3bv8XvX8e09lnc7SV7d/pTMHz1jzkgEAAABcxjAMDf1kqMauGCvPYM8qjdH69tZltjm6OarFoBaSpOzUbB1fX7XCbgAAAAAAAAAAcH07uf2kWg9rXW5xRVE9/tpDzfs3196v99okv1UFFoGBgdq7t/hE5s6dq/z8fDk6Ouq2224r0ScuLk5eXl7WpAUAAABQCVEvR+mnJ35S456NNXnPZIUMCqlU/8zTmVo5baUkqduUbgrqVrxAI7BzoCKnRkqS1rywRunx6aWOs332dsVtiJNM0tDZQ+Xg4lCsvc/LfdSgRQNlp2brl6d+qdQcAQAAAJSvz0t9FP5AeJX6NuzaUGN+GqPQUaHlxnk2uVS4kRaXVqVcAAAAAAAAAADg+paekK7gG4Mr1af5wOZKjk22SX6rCiwiIyM1f/58RUdHS5JiY2P15ptvymQyafDgwXJ3dy8WX1hYqK+//lqtW5d9lysAAAAAtmXtnWq3zNyi3IxcSVL4pNIvyAqfFC6ZpPzsfG16r+QqFoZhaMObGyRJjW9sLN92viVi7B3s1WliJ0nSH8v+UOKuxErPFQAAAEDpLl+NujJcfVzVYnALuXq7lhuXnZpt2XZ0c6zw+LmZuSrIK6jy/AAAAAAAAAAAwLWjILdALg1cKtXH1cdVBbm2OddgtqbzE088oQULFigiIkLe3t5KSUlRYWGhTCaTnn76aUtcQUGB9u/frxdeeEGHDx/WPffcY/XEAQAAAFRMn5f6WHUx1b6F+yRJ9ZvWV4MWDUqN8QjykE8bHyXHJit2YawGvT+oWM74zfFKP3FhZYtmA5qVmStkYIjW/GPNhbzf7lNAp4AqzxsAAABAzUo9mnphw6Qr3llq55yd2vHJDp3ed1rnU85LktwbuatZv2bq/mR3BYYHVvNsAQAAAAAAAABAXeTm56ZTe05Vqk/S7iS5+pZ/o6iKsqrAolu3bnrvvfc0bdo0JSdfWFLDZDLpueeeU8+ePS1xL730kt544w0ZhiGTyaQ777zTulkDAAAAqDBriivSE9J15sAZSVJAWPnFDoGdA5Ucm6z0+HSlHEyRdytvS9vR1Uct2+WN49/JXyY7k4xCo1gfAAAAAHVbdlq2jq09JklqPbT1FVfPWzJxidoMb6Ob37tZbn5uOvfnOe1ZsEcx82IUMz9GvV7opb4v962BmQMAgIpaMHRBbU9Bo5eOru0pAAAAAACAahbcI1g7/rdDNzx+g7yae10x/uyRs9r52U61GNTCJvmtKrCQpCeffFK33XabVqxYocLCQt10000KDw8vFtOvXz+ZzRdSubu7KywszNq0AAAAAGpA0Wpwj2CPcmOLtp/ae6pYgcXpPact2+VdaGV2MsvV11WZSZk6vfd0mXEAAAAA6pZdc3YpPztf9o726v9W/3JjTfYm3fHFHQq9J7TY8+GTwrXmxTVa9+o6rXtlnZzcnRQ5NbI6pw0AAAAAAAAAAOqYsPvDtPfbvfq0x6fq/2Z/tb+nvRzdHEvE5WXlac/Xe7T6udXKPZerzg90tkl+qwssJKlly5Zq2bJlme19+/ZV377caQoAAAC42qQeS7Vsu/m7lRtbtL1ov8qOU8+/njKTMpWTnqPzZ8/LxculwvMFAAAArnX5OfkqyCmwPM7LyKvF2VyQeSpT615dJ0nq93o/+bb1LTO2+5Pd1eXhLnIPdC+1vc9LfXTghwNK2pWkNS+uUcexHVUvoF61zBsAAAAAAAAAANQ9LQa1ULuR7bRv4T4tfXCpfnzsR3m39pZHkIfMzmblZ+crPT5dZw6cUUFugQzDUPu72ivk5hCb5LdJgQUAAACAmlHTF1Plnsu1bJudyz98cHBxKLWfJOWcy6nwOGaXS+2553IpsAAAAACK2PDmBkW9HGV5nGaXVouzkQoLCrVo/CJlJWcpdFSoejzdo9x45/rOcq7vXGa7yc6ksIlh+vmvPyv/fL52L9itHn8tf0wAAAAAAAAAAHBtGTF3hArzC7V/8X7l5+Tr1O5TOrX7VLEYwzAkSW1HtNXwucNtlttmBRaFhYWKiorSli1blJiYqMmTJ6t169aSpDVr1qh3796ys7OzVToAAADgulTTF1Plnb9UwGHvaF9ubNH2vKzihR/55/NtMg4AAABwvev5957q8dSlgoO4uDjN6DCj1ubz019+0uGfD6tZ/2a6/fPbZTKZrB6zYdeGlu34TfHSX60eEgAAAAAAAAAAXEXMzmbd8/092vP1Hm39aKsStiSosKDQ0m5nb6egbkHqNqWb2t/V3ra5bTHIN998o2nTpik+Pt7y3LBhwywFFjfffLOCgoL09ttv6+6777ZFSgAAAOC6VNMXUxVdlaIgt6CcyOLtDq4OxdqKrkphzTgAAADA9c7sZJbZ6dLva4d6tfebedXfV+n3f/+upn2batSSUcXmZQ03PzfLdkZihk3GBAAAAAAAAAAAV5/Qe0IVek+ocjNydfboWeWey5Wju6O8mnnJsZ5jteS0+mzH+++/r2nTplmW2JBU4g5Vffr00erVqzV69GgdO3ZMzzzzjLVpAQAAgOtSTV9M5eh+6UAkPzu/nMjiq10U7SdJTu5OFR6n6GoXl48DAAAAoG5Y/cJqbXxro5r0bqJ7l91r0+Joo7DI+QZ761fEAAAAAAAAAAAAVzfHeo7y7+BfI7nsrOm8f/9+PfPMMzIMQ4MGDdLMmTP1v//9r0TcypUrtW/fPrVv317PP/+8du7caU1aAAAAADWkftP6lu3MpMxyY4u2F+1X2XEyki7codbJw0kuXi4VmygAAACAGrP2pbVa/9p6Nb6pse5dXvHiiqSYJK17bZ1Sj6WWG1d01Qr3QHdrpgoAAAAAAAAAAFApVq1g8dFHH8kwDC1YsED33HOPJOnMmTPFVrO4qHXr1lqzZo1atWqljz/+WJ988ok1qS2Sk5M1c+ZMLVq0SMeOHZOjo6Nat26t0aNH65FHHpGjo23ueFtQUKAFCxbo22+/1a5du5SYmKh69eopMDBQoaGh6tOnj26//XYFBATYJB8AAABQF/iF+lm200+klxubHn+p3a+9X7E231Bfy3baiTQFhgeWOkZ+Tr6yTmdd6NPet9QYAAAAALVn3evrFPVylIJvDNaYH8fI0a3kv8HP6jpLrYa2Up/pfYo9fzL6pNa8sEYNWjQoUZRdVPzmeMt2cM9gW00dwBUsGLqgtqeg0UtH1/YUAAAAAAAAAFznrFrBYu3atbrjjjssxRVX4u3trYkTJyoqKsqatBZbt25Vx44d9dprr6lhw4Z6++239dxzzykjI0NTpkxR9+7d9eeff1qdZ//+/YqIiND48eNVUFCgJ554Qv/617/0+OOPKzs7W1999ZUeeeQRLVy40AavCgAAAKg7PBp5yLuVtyQpcWdiubEno09e6BPkoQYtGxRra9avmWW7vHGSdiXJKDRK9AEAAABQ+za8vUFr/rFGQT2CNOanMXKsV/oNjk5uP6nUo6lljnPop0NlthXkFmjHpzskSY7ujgodFWrVnAEAAAAAAAAAACrDqhUs4uPj9fjjj1eqT+vWrZWQkGBNWklSXFychgwZotOnT+vJJ5/UjBkzLG1PPPGEbrnlFq1Zs0bDhg3Txo0b5eTkVKU8hw8fVr9+/ZSRkaE1a9aod+/exdqff/553XzzzVq7dq01LwcAAACos9rd1U7rX1+v1GOpOnvkrLyae5WISU9IV/L+ZElS25FtZTKZirUHdQ+SR5CH0uPTdfTXoyXuZHvRkVVHiuUFAAAAUDdsem+Tfv3br3L1dVXPv/XUye0nqzxWzBcxan17a7W9o22x5wsLCrX8seVKOZQiSbr5nzfL1dvVqnkDAAAAAAAAAABUhlUFFnl5eXJ0LP0OVWU5f/687O3trUkrSZo2bZpOnz6txo0b66233irW5uTkpNmzZ6t169bavn27Pv74Yz399NOVzmEYhsaNG6eTJ0/qyy+/LFFcIUkODg564YUXtHv3brm4uFT59QAAAAB1Vbe/dNOWmVuUm5Gr6E+i1f+N/iVidny6QzIks7NZkU9Hlmg3mUzq+VxP/fjoj4rbEKfk/cnyaeNTLKYwv1A7P98pSWp5W0sFdAqoltcDAAAAXK9i5sdYtpNikizbh1ceVnp8uiTJzd9NIQNDivXbv3i/Vk5dKUnKOp2lr27/qkr5PRt7ytnLWdlns/XNyG/U8paWajagmVy8XJQen649X+3R6b2nZedgp5vfu1ldHupSpTwAAAAAAAAAAABVZVWBRcOGDbVt2zY98MADFe6zbNkyBQUFWZNWBw8e1LfffitJGj9+fKmrU4SEhKhv375atWqV3n77bU2ZMkVmc+Ve7oIFC/Tbb7+pZcuWGjVqVJlx/fr1U3JycuVeBAAAAHCVcPNz08B3B2r55OXaPGOz2oxoo0YRjSztibsStfGdjZKkvq/2lUeQR6njdHmwi/Z8uUdxG+K09MGlGvvLWDm4OFja1760VikHU+Rc31mDZgyq3hcFAAAAXIcWjVtU6vMb3thg2W7Su0mJAovUY6k2yd+sXzM9lfCU/lj6hw7+eFAno08q6qUo5WXlydHdUQ1CGujGZ29U18ldVb9JfZvkBAAAAAAAAAAAqAyrCiz69u2rOXPm6IEHHlBERMQV4z/++GOtXr1akydPtiatFi5cKMMwJEkDBgwoM27gwIFatWqVTp8+rbVr15YbW5rZs2dLkoYOHSqTyVT1CQMAAAC1rKp3qr2o6yNdlZGUoXWvrNOcvnMUPilcvu19lbw/WdGzo5WXmaceU3socmrJ1SsusjPb6Z5F9+jLIV8qbkOcZnWZpbD7wuTo5qiDPx7UweUH5erjqrsW3iXvlt42euUAAAAALppuTK9Sv+5Pdlf3J7vbZA4OLg5qf3d7tb+7vU3GAwAAAAAAAAAAsCWrCiymTJmizz77TH369NGTTz6pe++9V35+fpJkKUg4deqUNm3apE8++UQ//fST7O3t9Ze//MWqSa9evdqyHRYWVmZc586di/WpTIHF6dOntW7dOklSp06dirWdP39ednZ2pa6cAQAAANRFVb1TbVF9pvdRyMAQbflwi/Yt3Kes/2TJ1cdVITeHKOKxCDXr2+yK83D1cdX9G+7X9tnbFTMvRhve3KCCnAJ5NvZU5DOR6v5kd7kHulf+BQIAAAAAAAAAAAAAAACAlawqsAgNDdWrr76q559/Xm+99ZbeeustOTg4yGQyafjw4crNzVVubq4l3jAMvfXWW2rVqpVVk96zZ48kyd3dXZ6enmXGBQcHW7b37t1bqRzR0dEqLCyUJDVu3FhHjhzRG2+8oaVLl+rUqVOSJH9/fw0aNEjPPvus2rVrV9mXAQAAANSYqt6p9nLBkcEKjgy+cmA57Mx2ipgcoYjJV14FDwAAAAAAAAAAAAAAAABqip21A/z973/XjBkz5ODgIMMwLAUVGRkZysnJkWEYMgxDDg4O+uijj/TUU09ZlS8nJ0eJiYmSLhQ4lKdo+7FjxyqVZ/fu3Zbtn3/+We3bt9f69ev1/PPPa9myZfrkk0/UvHlzzZ07V2FhYfrss88qNT4AAAAAAAAAAAAAAAAAAAAAALDOkVVHNKffHJuMZdUKFhdNmTJFI0eO1H//+1+tXLlShw4dUnp6utzd3dWyZUsNHDhQjzzyiBo1amR1rnPnzlm2nZ2dy411cXEptV9FXFylQpLeeustRUREaO3atXJ1dbU8f99992nUqFH69ttvNWnSJDVr1kx9+vS54thpaWlKSUmxPHZycpKTk1Ol5meNQlNhjeWqy/Lz82t7CnVCfn6+CgsLeT9Qp7Bfoq5i30RddHHVNVxdOCa4gM9TvltQEvsELsc+gcuxT+ByHBNcvc6ePVvsnENNHxfg6lPd3wF14VixLny/1YX34WpgmAwZMmSYDBWK9ww1p7TPCX4jo66ozX2R/f/qVNvnCnBt4HuwelyvxwX8zq/brrb/z6/1z6e68DlRV97b6n4vKvLZVFfei9rEeyBlJGXoeNRxm4xlkwILSWrUqJFeffVVvfrqq7YaslTnz5+3bDs6OpYbW7Q9KyurUnnS09OLPf7444+LneiQJDs7O3388cdaunSpsrOz9fTTT2v79u1XHDssLKzY4wkTJmjixImVmp81UgJTrhx0HdiwYUNtT6FOKCwsVFxcnKQL+zRQF7Bfoq5i30RddObMmdqeAqqAY4IL+E3OdwtKYp/A5dgncDn2CVyOY4KrV8eOHYs9runjAlx9qvs7oC4cK9aF48S68D5cDQwZOu9+XilKkUmm2p4OriOlfU7wGxl1RW3ui0Uv0sfVo7bPFeDawPdg9bhejwv4nV+31YVj5sq41j+f6sLnRF3ZJ6r7vajIZ1NdeS9q07V6TFCQW6C4DXE6HXtaOWk5Kswvu6AnaVeSzfLarMCiphRdlSI3N7fc2KLtlxdHXElBQYFlu0mTJrrhhhtKjfPz81O/fv30448/Kjo6Wvv27VO7du3KHXvnzp0KDg62PK7pCvSE9xNqLFdd1rNnz9qeQp1wsWotMjJSZvNV95GAaxT7Jeoq9k3URRf/QQJXF44JLuA3Od8tKIl9Apdjn8Dl2CdwOY4Jrl4xMTHFVv7mbrW4kur+DqgLx4p14TixLrwPVwPDZChFKWqQ2EAmgwuvUHNK+5zgNzLqitrcF+Pj42s0H2yjts8V4NrA92D1uF6PC/idX7fVhWPmyrjWP5/qwudEXdknqvu9qMhnU115L2rTtXhMEP1ptFY9s0rZqdk1nrvGP7WWLFmiv/71rzpy5EiV+ru7u1u2s7PLf8OKrnZRtF9l84SGhpYb26lTJ/3444+SpK1bt16xwGLd1HXycfap1HxsyU7XXjVgVVyLX9pVZWdnJ7PZzHuCOoX9EnUV+ybqmmvxTg/XA09PTzVo0KDW8tsZdWO/4bP0Ar5bcDn2CVyOfQKXY59AURwTXL28vLxq9bgAV6fq/A6oC8eKdeG7rS68D1eDQhXKJJNMhon3DDWqrM8JfiOjrqitfZF9/+pU2+cKcO3ge9D2rtffuPzOr9uuxv/Hr+XPp7rw/0hdeV+r+72oyGdTXXkvatO19h7ELorV0geXVrqfyWSbAsEafzczMjJ0/PjxKvd3cnJSQECAEhMTlZRU/lIeRdubNm1aqTze3t6WbS8vr3JjfXwuFUucOnWqUnkAAAAAAAAAAAAAAAAAAAAAAIC0+f3NkqQO93ZQ5wc6y7edr1y8XGTvaF9mn5j5MVo8YbFN8tukwOLkyZP66aefFBsbq7S0NMvSPqWp6soVRYWGhioxMVHnzp1TWlqaPD09S40rutxJ+/btK5WjaHxeXl65sYZhWLa5WxgAAAAAAAAAAAAAAAAAAAAAAJWXFJOktiPa6o75d1S8k6n4Nf3WsLrA4oUXXtDbb7+tgoKCCsUbhmH18hv9+vXTqlWrJEk7d+5U7969S42Ljo4u1qcyIiIiZDKZZBiGEhMTy409ffq0Zbthw4aVygMAAAAAAAAAAAAAAAAAAAAAACSj0FCLW1pUqk/bEW3V+Ghjm+S3qsBi9uzZev311y2PnZ2dVb9+fTk5OZXZJzMzU2fOnLEmrUaOHKnnn39ehmHo119/LbPA4mIRho+Pj/r06VOpHI0aNVL37t3122+/aefOncrPz5fZXPrbtX37dst2r169KpUHAAAAAAAAAAAAAAAAAAAAAIDqkp2arT+W/6Gjvx5V4o5EnT16VrkZuXKs5yjvlt5qNqCZIiZHyLOx5xXHOrHphLZ+vFVxG+KUeSpTbr5uCuoRpIhHI9S0T1Or5+rdylv5OfmV6uPg6qD6TepbnVuS7KzpPGvWLJlMJj333HM6fPiwsrKy9Oeff+ro0aNl/r3//vtWT7ply5a66667JEnz5s1Tbm5uiZgjR45o9erVkqRnn322RHHEnj171KpVKwUFBWndunWl5nn66aclSWlpaVqyZEmpMSdOnFBUVJQkadiwYQoKCqraiwIAAAAAAAAAAAAAAAAAAAAAwIZObDqhfwb8U4vGLtLOz3fKq7mXbnruJt368a0KnxSu1OOp2vjWRv2r7b+095u95Y4V9UqUPrvpMx1YckBtRrTRLR/donZ3tdOhnw5pTt85WvnMSqvnG3ZfmPZ/v79SfeI3x2vJ/aVf719ZVhVYxMbGasKECXrttdfUrFmzCvUxmUwyDMOatJKkd999V76+vjp27Jiee+65Ym05OTl66KGHVFBQoC5duujxxx8v0f/111/XwYMHlZCQoL/97W+l5rjzzjs1ZMgQSdJf//pXxcfHl8jzwAMPKC8vTw0aNNAHH3xg9esCAAAAAAAAAAAAAAAAAAAAAMAWctJzVJBTIJO9SWN/Hqu7v7tbNz5zo7o+0lU3//NmPfHHE/Lr4Ke8rDwtGrdIp2NPlzrO7//9XWunr5W9o73Grx6vW2beoi4PdtGg9wdp4rqJcnBz0KZ3N2nTPzdZNd+IxyLk5OGk5Y8tV25GyYUYSpNyOEW75uyyKu9F5iuHlNPZbFbPnj0r1WfMmDEaM2aMNWklSY0bN9bSpUs1YsQIvffee9qzZ4+GDRum8+fPa86cOdq9e7fCwsL0ww8/yNnZuUT/wsJCy3Z5BR9ff/217rjjDv38888KCwvTAw88oNatWysxMVFz587VgQMHFBwcrCVLllS4yAQAAAAAAAAAAAAAAAAAAAAAgJoSNjFMIQNDSjzvXN9ZA98dqC8Gf6GC3AJFfxKtQe8NKhaTeTpTK6ddWJ2i25RuCuoWVKw9sHOgIqdGKurlKK15YY1CR4XKI8ijSvNc9+o6+Xfy145Pdyhmboya9G4i79becnJ3ksnOVGqfpF1JVcpVGqsKLEJDQ5Wenm6ruVRat27dFBMTow8++ECLFi3SM888IwcHB7Vq1UoffPCBJk+eLEdHx1L7Pv/884qOjtb58+f19ttvl5nD1dVVK1as0DfffKM5c+Zo7ty5OnPmjNzd3dW+fXs9/PDDeuihh+Tm5lZdLxMAAAAAAAAAAAAAAAAAAAAAgEpzru+sRt0aqd3IdmXGNOzS0LKdHJtcon3LzC2W1STCJ4WXOkb4pHBFvRKl/Ox8bXpvkwbPGFyl+a59aa1MpguFFIZh6NBPh3Top0NVGqsqrCqwePTRRzVjxgxNmTLF8iKuZNWqVXrjjTe0evVqa1Jb+Pj46LXXXtNrr71WqX4dO3bUwYMHKxx/99136+67767s9AAAAAAAAAAAAAAAAAAAAAAAqBVB3YM0afOkcmMcXB0s22ankiUG+xbukyTVb1pfDVo0KHUMjyAP+bTxUXJssmIXxmrQ+4MqXGNwOcMwSt0uT1VzXc6qAot7771Xmzdv1rBhw/Thhx+qWbNmV+yTlJSkqKgoa9ICAAAAAAAAAAAAAAAAAAAAAAAbSNiWYNlu2q9psbb0hHSdOXBGkhQQFlDuOIGdA5Ucm6z0+HSlHEyRdyvvKs3njvl3qMO9HSocHzM/RosnLK5SrstZVWBx//33S5J27typFi1aqG3btmrdurXc3d1lZ2dXap/Dhw9bkxIAAAAAAAAAAAAAAAAAAAAAANhAfna+Vj+3WpLk18FP4ZPCi7Wf2nPKsu0R7FHuWEXbT+09VeUCi0ozVXyliyuxqsDi888/tyylYRiG9u3bp9jY2HL7GIZhs+U3AAAAAAAAAAAAAAAAAAAAAABAxeTn5Cs7NVvnz5zXiU0ntHnGZp3ed1rt726vIbOGyMHFoVh86rFUy7abv1u5YxdtL9qvMobOHqqgHkGV6hMyMEQT1kyoUr7LWVVgIUne3t5ycyv/jSoqMzNTZ86csTYtAAAAAAAAAAAAAAAAAAAAAADXlfycfBXkFFge557LrVT/PQv2aMl9SyyPPRt76o4v7lDo6NBSF1IoOr7Zufzyg6LFGZWd10XhD4RfOegybn5ucvOreE1DeawusPjggw907733Vjh+/vz5mjDBNtUhAAAAAAAAAAAAAAAAAAAAAKrXgqELKhxbaCpUSmCKEt5PkJ1hZ9N5jF462qbj4epXmX2zutT0frnhzQ2KejnK8jhNaZXqHzIoRONWjlNuZq5SDqZo95e79f2Y77V2+loNnjlYLW9tWSw+73yeZdve0b7csYu252XllRNZeZmnMpWdli1nT2e5+rqWWgxiC1YXWFSWyWSSYRg1nRYAAAAAAAAAAAAAAAAAAAAAgKtaz7/3VI+nelgeJyQkaEa7GRXu7x7oLvdAd8vjHk/30KpnV2nTu5v05ZAvdftntytsQpilveiqFAW5BSpP0XYHV4dyIivmWNQxbZm5RcfWHFNOeo7leScPJzXr10zdpnRTk15NrM5TlFUFFitXrlRoaGil+owYMUJHjx61Ji0AAAAAAAAAAAAAAAAAAAAAANcds5NZZqdLZQCO6Y5WjWcymTTg7QE6+utRnYw+qeWTl6vFoBaqF1Dvwvjul8bPz84vd6yiq10U7VdZRqGh5Y8uV/Ts6AuPL1vgITstW/sX79f+xfsV/lC4bv34VtnZ22bFHKtG6d+/v/z9/SvVx9XVVU2a2LZKBAAAAAAAAAAAAAAAAAAAAAAAVJ7JZFKHMR0kSfnn87V7wW5LW/2m9S3bmUmZ5Y5TtL1ov8pa9sgyRc+OlmEYMgxD9fzrqWGXhmrcs7Eadmmoev71LG3Rs6K1/NHlVc51OatWsCjNmTNndPjwYaWlpcnT01MhISHy9va2dRoAAAAAAAAAAAAAAAAAAAAAAGAD3q0vXfN/avcpy7ZfqJ9lO/1EerljpMdfavdr71dOZNmOrz+u6E+i5VjPUTc+e6PCJoTJI8ij1Fw75+zUpnc2accnO9RpXCc17tm4SjmLss06GJLmzJmj8PBw+fn5qUePHho8eLB69OghPz8/hYeHa+7cubZKBQAAAAAAAAAAAAAAAAAAAAAAruDgTwd1LOrYFePs7C+VFhTmF1q2PRp5yLvVheKLxJ2J5Y5xMvrkhT5BHmrQskEVZitFz4qWg4uD7lt3n3o936vU4oqLOXo930sToybK7GzW9v+3vUr5Lmd1gUVmZqZuvfVW3X///dq1a5dlqY2if7t27dJ9992nW2+9VVlZWbaYNwAAAAAAAAAAAAAAAAAAAAAAKMfyycv142M/XjEu5VCKZduzsWextnZ3tZMkpR5L1dkjZ0vtn56QruT9yZKktiPbymQyVWm+x9cfV9h9YQoIC6hQfEBYgDpN7KTj649XKd/lrC6wGD16tFasWCHDMOTi4qJu3brpzjvv1NixY3XnnXeqW7ducnV1lWEY+vnnnzV69GhbzBsAAAAAAAAAAAAAAAAAAAAAAFxBcmyyUo+lltluGIZ2zd1ledxqaKti7d3+0k2O9RwlSdGfRJc6xo5Pd0iGZHY2K/LpyCrPNTMpUwGdK1ZccVFgeKAykzKrnLMoqwosli5dqmXLlikwMFDz5s3TmTNn9Ntvv+nbb7/V3Llz9e233+q3335TcnKy5s2bp4CAAC1btkzLli2zyeQBAAAAAAAAAAAAAAAAAAAAAEDZjEJDi8YtUkZiRqltP//1Z/257U9JUujoUAV1CyoW4+bnpoHvDpQkbZ6xWQnbEoq1J+5K1MZ3NkqS+r7aVx5BHlWeq9nZrNyM3Er1yc3IldnZXOWcxfJb03nOnDny8vLSb7/9psaNG5cZ5+TkpDFjxuimm25S586d9dlnn2nIkCHWpAYAAAAAAAAAAAAAAAAAAAAAAOUI6BSgtONpitsQpw9DPlT7Ue3l08ZHrt6uSotL095v9io5NlmS1Gl8Jw2ZVfp1/l0f6aqMpAyte2Wd5vSdo/BJ4fJt76vk/cmKnh2tvMw89ZjaQ5FTq756hSR5hXhp//f71X1K9wr32f/9fnmFeFmV9yKrCiw2b96s+++/v9ziiqIaN26s+++/XwsWLLAmLQAAAAAAAAAAAAAAAAAAuMYsGMq1hQAA2NqoJaN0as8pxS6KVdz6OB1ZeUR7FuxRYV6hHN0d5dXMSxGPR6jT+E5qFNGo3LH6TO+jkIEh2vLhFu1buE9Z/8mSq4+rQm4OUcRjEWrWt5nV8215W0utf229Vj6zUv3f7C87e7syY41CQ6v+tkpxG+LU64VeVueWrCywSE5OVrt27SrVp23btkpOTrYmLQAAAAAAAAAAAAAAAAAAAAAAqAC/UD/5hfrZZKzgyGAFRwbbZKzSdJ/SXVs/3Krf3vtNsd/Fqv2o9moU0Ujujdzl4OKg/Ox8pcen68/f/9Ser/Yo9WiqnDyd1O0v3WyS36oCi3r16lW6WOLMmTOqV6+eNWkBAAAAAAAAAAAAAAAAAAAAAMA1xqWBi0Z+M1ILhi5Q6rFUbXxrY5mxhmHI3tFed31zl1wauNgkf9nrZVRAmzZttGDBAhUWFlYovrCwUF9++aXatGljTVoAAAAAAAAAAAAAAAAAAAAAAHANChkYovvW3yeftj4yDKPMP992vrpv/X1qPqC5zXJbtYLF8OHD9cwzz2js2LH697//rfr165cZm5aWpkceeUQxMTF65513rEkLAAAAAAAAAAAAAAAAAAAAAACuUY0iGunRPY/qyKojOrLqiFIOpijnXI6c3J3k1cJLIQNDbFpYcZFVBRaPPvqoZs6cqa+//lo//vijbrvtNkVERKhRo0ZycXFRdna24uPj9fvvv2v58uVKT09Xo0aN9Oijj9pq/gAAAAAAAAAAAAAAAAAAAAAA4BrUfEDzaimkKItVBRaurq764Ycf1L9/f6Wmpuqrr77SV199VWqsYRjy8vLS0qVL5eLiYk1aAAAAAAAAAAAAAAAAAAAAAAAAZZ7OVHJsspr0amL1WFYVWEhS586dtWPHDk2ePFkrVqwoM+6WW27Rv//9bzVpYv2kAQAAAAAAAAAAAFxbFgxdUNtTAAAAAAAAAHAVOvzLYS0ev1gvFrxo9VhWF1hIUpMmTfTjjz/q0KFDWrVqlQ4ePKhz587J3d1dLVq00IABA9SyZUtbpAIAAAAAAAAAAAAAAAAAAAAAALA5mxRYXNSiRQu1aNHClkMCAAAAAAAAAAAAAAAAAAAAAIBryKGfD+n3//yu8AfD1eq2VpbnZzafWemx8jLzbDYvmxZYVMT58+d1+vRpNW7cuKZTAwAAAAAAAAAAAAAAAAAAAACAWrZo7CKdTzmvExtPaNrpaZbnU4+lVmk8k8lkk3nVeIHF999/r/Hjx6ugoKCmUwMAAAAAAAAAAAAAAAAAAAAAgFrmFeKlrDNZ8grxKtHW5KYm8mpe8vmynD1yVnEb4mwyrxovsAAAAAAAAAAAALXHMAxt+9c2rfrbKuVl5mnCmglq2qdphfuf2HRCWz/eqrgNcco8lSk3XzcF9QhSxKMRFR6nML9Q22dv1+75u5W8P1n5OfnybOyp1re3Vvcp3VUvoF7VXhwAAAAAAAAAALgqjP15rI7+elTN+jUr0dbl4S7qcG+HCo8V80VMzRZY9OvXzybJJCkpKclmYwEAAACouML8Qu2at0v7vtmnxJ2JyjqTJXtHe3kEeahJrybqOrmrAjsHXnEcW1xMBQAAAKB2pBxO0Q/3/6Dj645XqX/UK1GKejlKZmezOk/qLL9QPyXHJit6drT2fbtPkdMiNfCdgeWOkZWcpS+HfKmELQnyaeOjG5+9UY71HHVw+UFtfGujdny6Q3cvvFtNejWp0hwBAAAAlJSdmq0/lv+ho78eVeKORJ09ela5GblyrOco75beajagmSImR8izsecVx+I8AQAAAABbcPZ0Vts72tpsPMMwbDJOhQos1q5dK5PJZHXSi2OYTCarxgEAAABQORmJGfryti91Mvqk7B3t1WlCJ/l38ldOWo4O/3xY0bOjtePTHer9Um/1fqF3mePY4mIqAAAAADWv6KoVdvZ2CuoepPjN8ZUa4/f//q6109fK7GzW+NXjFdQtyNLWcVxHfXbTZ9r07ia5+bkpcmpkqWMU5hfq6xFfK2FLgoIjgzVu1Tg5uDhIkiIejdCvz/2qDW9u0Fe3f6VJWyfJu6V31V80AAAAAEkXCiLm9JujgpwCySS1HdFWoaND5eThpJRDKdo1d5c2vrVRWz/cqts/u13t725f5licJwAAAABQ3aYXTq90n45jOqrjmI42yV+hAgtJat26tfz9/a1OmJSUpAMHDlg9DgAAAICKMQxD39z5jU5Gn5TZ2az7N91fbKWKm567Sav+tkob396otS+ulVczL3UcW/KAwxYXUwEAAACoHVEvX7gIKmRQiIbOHqodn+6oVIFF5ulMrZy2UpLUbUq3YscDkhTYOVCRUyMV9XKU1rywRqGjQuUR5FFinO2zt19YotskDZ091FJccVGfl/to37f7lHIoRb889YtGLx1d+RcLAAAAoJic9BwV5BTIZG/SmJ/GKGRgSLH2Xv/opc96faZTu09p0bhF8uvgJ9+2viXG4TwBAAAAgJqQFpcmV1/XEucQSvPDpB8uFIA/0LnY9VDWqHCBxT/+8Q/de++9ViecP3++JkyYYPU4AAAAACombkOcTmw6IUnqOrlrqQcTfV7uo11zdikjMUMb3txQosDCVhdTAQAAAKgdhmFo6CdDFf5AeJX6b5m5RbkZuZKk8EmljxE+KVxRr0QpPztfm97bpMEzBpeYw4Y3N0iSGt/YWL7tSl6wZe9gr04TO2nNP9boj2V/KHFXogI6BVRpzgAAAACKC5sYVqK4QpKc6ztr4LsD9cXgL1SQW6DoT6I16L1BxWI4TwAAAACgpsxsNlMj5o1Qh3s7XDH2eNRxpRxO0fZZ2zUxaqKCewRbnd/O6hEqyWQyyTCMmk4LAAAAXLf+3PanZbtRt0alxpidzPLvdGHFutP7TisnPadYe0UvppJJloupAAAAANQdfV7qU+XiCknat3CfJKl+0/pq0KJBqTEeQR7yaeMjSYpdGFviXED85niln0iXJDUb0KzMXEUv+Nr37b4qzxkAAADABc71ndWoWyO1G9muzJiGXRpatpNjk0u0c54AAAAAQE2pTK3BmBVjdOeXd8rVx1VRL0XZJH+FCiyOHj2q4cOH2yThiBEjdPToUZuMBQAAAODKCnILLNvlLZ3n4HqpLTczt1ibLS6mAgAAAFB7TCZTlfumJ6TrzIEzkqSAsPJXk7i4Yl56fLpSDqYUazu6+tK5gfLG8e/kL5OdqUQfAAAAAFUT1D1IkzZPUovBLcqMKXqOwOxkLtHOeQIAAAAAdVGDkAYKHRWqHk/3UOKuRJuMWaECiyZNmsjV1dUmCV1dXdWkSRObjAUAAADgyi6uTCFJp2NPlxl38Y5UTh5OcvNzszxvq4upAAAAAFydTu05Zdn2CPYoN7Zo+6m9p4q1nd5z6XjEM9izzDHMTma5+l44J3F6b9nHMAAAAABsJ2FbgmW7ab+mxdo4TwAAAADgapCdmm2TcUqWnFfSxo0bdebMhYMoBwcH3XLLLSViPvjgA7m5uWnChAlydHS0NiUAAACASgi5OUQBYQFK3JmorR9t1Q2P3SDHesV/l8cuilXy/gsFFp0ndZad/aVabGsupvJu5W2LlwAAAACgFqUeS7Vsu/m7lR14WXvRfpUdp55/PWUmZSonPUfnz56Xi5dLhecLAAAAoHLys/O1+rnVkiS/Dn4KnxRerJ3zBAAAAACqS1JMkhJ3llx54vj64yrML7xi/4K8AqUdT9O2f2+TR1D5xysVZVWBxdmzZzVw4EDl5ORIkjw9PZWSUrL6fMuWLfrmm2/0z3/+U0uWLFGbNm2sSQsAAACgEuzs7TRmxRgtHr9Yh385rNk3zFa/1/opICxAOek5OvjjQa17dZ0kqf097dX/9f7F+tvqYioAAAAA1svPyVdBToHlcV5GXrXnzD2Xa9k2O5d/WsHBxaHUfpKUcy6nwuOYXS61557LpcACAAAAsKH8nHxlp2br/JnzOrHphDbP2KzT+06r/d3tNWTWkGK/6yXOEwAAAACoPrGLYrXulXUlno+eFa3oWdEVHscwDHV5uItN5mRVgcXChQuVnZ0tBwcHTZ48WcOHDy817sknn5S9vb0WLFigm2++Wbt375anZ9nLfwMAAACwrXr+9TRmxRjFfherVX9bpW/u/KZYe+thrRX+YLhaDWlVoq+tLqYCAAAAYL0Nb25Q1MtRlsdpdmnVnjPv/KUiDntH+3Jji7bnZRUv/sg/n2+TcQAAAABYZ8+CPVpy3xLLY8/GnrrjizsUOjpUJpOpRDznCQAAAABUJ8MwKvRcWVy8XNRxfEf1eamPTeZjVYHFL7/8IrPZrDVr1igyMrLMuG7duqlbt2664447NHLkSH3wwQeaPn26NakBAACA61JV71Z77uQ5/fjYj9q/eL/cA93V7/V+8u/or4LcAh1be0w7/rdD58+el72TvUIGhhTra6uLqQAAAABYr+ffe6rHUz0sj+Pi4jSjw4xqzVn0AqmC3IJyIou3O7gWv+tt0VUprBkHAAAAuN5dfq6gsoUMIYNCNG7lOOVm5irlYIp2f7lb34/5Xmunr9XgmYPV8taWxeI5TwAAAACgunR/srvCJoZdesKQZjafqcEfDFbr21uX29dkMsnB1UGuPq42nZNVBRY7duzQPffcU25xRVF33HGHRowYocWLF1NgAQAAAFRBVe5Wez7lvD7r+ZnOHjkr33a+mrhuoly9Lx1YtL2jrTqO66jPe32u+TfP18B3Bypy6qXf+La6mAoAAACA9cxOZpmdLv3TvkO96v/d7ejuaNnOz84vJ7L4hVdF+0mSk7tThccputrF5eMAAAAA17sS5wpUuZXt3APd5R7obnnc4+keWvXsKm16d5O+HPKlbv/sdoVNCLO0c54AAAAAQHVx9nSWs6dzieddfVxVv0n9mp+QrCywSExMVJcuXSrVp2fPnvrll1+sSQsAAABct6pyt9rV/1its0fOSpIGfzi4WHHFRY0iGqn7X7trw5sbtPKZlQq+MVjBPYIl2e5iKgAAAABXp/pN61u2M5Myy40t2l6038XH8ZvjLXEejTzKHCcjKUOS5OThJBcvl0rOGAAAALi2XX6uICEhQTPaVX1lO5PJpAFvD9DRX4/qZPRJLZ+8XC0GtVC9gHqSOE8AAAAAoGZNWDNBvm19ay2/nTWdCwsLVa9evUr1cXd3V0FB+dXsAAAAAEpndjLLycPJ8nelu9UahYb2fLVH0oULk5r1a1ZmbNs72v5fJ+n3f/9ued5WF1MBAAAAuDr5hfpZttNPpJcbmx5/qd2vvV+xNt/QSydD0k6UfYfd/Jx8ZZ3OutCnfe2dQAEAAADqqsvPFdiikMFkMqnDmA6SLqwot3vBbksb5wkAAAAA1KSmvZvKzc+t1vJbVWARGBiobdu2VarPtm3bFBgYaE1aAAAAABWUeTpT2WezJUmejT1lMpnKjC16oiNxZ6Jl21YXUwEAAAC4Onk08pB3K29JxY8VSnMy+uSFPkEeatCyQbG2ogXf5Y2TtCtJRqFRog8AAACA6uXd2tuyfWr3Kcs25wkAAAAA1HW7F+zWq46v2mQsqwosbrrpJs2dO1dbtmypUPzWrVs1Z84c9erVy5q0AAAAACrIZHepoMIwjHJjL17AJEmFBYWWbVtdTAUAAADg6tXurnaSpNRjqTp75GypMekJ6UrenyxJajuybYkC76DuQfII8pAkHf31aJm5jqw6UiIvAAAAgKo7+NNBHYs6dsU4O/tLlxEV5nOeAAAAAMDVwyg0ZBSUf21URZmt6fzoo49q7ty56t+/v5566imNGzdOLVu2LBF36NAhzZs3T++//77y8vI0efJka9ICAAAAqCBXb1c5eTgpJz1HqcdSVVhQWOwESVEph1Ms256NPYu1tburnda/vt5yMZVXc68S/a90MRUAAACAq1e3v3TTlplblJuRq+hPotX/jf4lYnZ8ukMyJLOzWZFPR5ZoN5lM6vlcT/346I+K2xCn5P3J8mnjUyymML9QOz/fKUlqeVtLBXQKqJbXAwAAAFxPlk9eLsd6jnp0z6PlxqUc4jwBAAAAgNq35P4lle5T1s2hqsKqAosbbrhBTzzxhD766CO9/vrrev311+Xh4aFGjRrJ2dlZ2dnZSkhIUHr6heX/DMPQX/7yF91www02mTwAAACA8pnsTGp5W0vtWbBHeZl5OvjjQbUe2rrU2L1f77Vst7yteOG0LS6mAgAAAHD1cvNz08B3B2r55OXaPGOz2oxoo0YRjSztibsStfGdjZKkvq/2taxUcbkuD3bRni/3KG5DnJY+uFRjfxkrBxcHS/val9Yq5WCKnOs7a9CMQdX7ogAAAIDrSHJsslKPpap+0/qlthuGoV1zd1ketxraqlg75wkAAAAA1JSdn++sdMG2YRg2K/K2qsBCkmbMmCE7OzvNnDlTkpSWlmYpqJAuTPaiv/71r3r33XetTQkAAACgEnpP760DPxxQXmaeVkxZocDOgSUudjqy6oi2/XubJKlBiwbq8mCXYu22upgKAAAAQO2JmR9j2U6KSbJsH155WOnxF/5d383fTSEDQ0rt3/WRrspIytC6V9ZpTt85Cp8ULt/2vkren6zo2dHKy8xTj6k9FDm17Aup7Mx2umfRPfpyyJeK2xCnWV1mKey+MDm6Oergjwd1cPlBufq46q6Fd8m7pbeNXjkAAAAAo9DQonGLdNe3d6leQL0SbT8/9bP+3PanJCl0dKiCugUVi+E8AQAAAICa5OLtIkc3x1LbCgsKlZOeo5z0HEmSs6eznOs72yy31QUWdnZ2mjFjhkaPHq0PP/xQq1at0qlTpyztfn5+GjBgACtXAAAAALXEp7WPRi8dre9GfafUo6n6d+i/1WlCJ/l38FdBXoGORx3XvoX7ZBQY8uvgp1FLRsnsXPJQwRYXUwEAAACoPYvGLSr1+Q1vbLBsN+ndpMwCC0nqM72PQgaGaMuHW7Rv4T5l/SdLrj6uCrk5RBGPRahZ32ZXnIerj6vu33C/ts/erph5Mdrw5gYV5BTIs7GnIp+JVPcnu8s90L3yLxAAAABAqQI6BSjteJriNsTpw5AP1X5Ue/m08ZGrt6vS4tK095u9So5NliR1Gt9JQ2YNKXUczhMAAAAAqCmDPxisDvd2KDcmIylD+xfv15aZW9T3lb5qN7KdTXJbXWBx0Q033KD58+dLks6dO6dz587J3d1d7u6cBAEAAABqW7O+zfTY/se087OdOrj8oPZ+tVe//+d32dnbydXXVa2GtFLbO9sq9J5Q2TvalzmOLS6mAgAAAFA7phvTbTJOcGSwgiODrRrDzmyniMkRipgcYZM5AQAAACjbqCWjdGrPKcUuilXc+jgdWXlEexbsUWFeoRzdHeXVzEsRj0eo0/hOxValKA3nCQAAAADUFfX866nrw13V5vY2+rTHp/Js4nnFY5qKsFmBRVEUVgAAAAB1j4uXi3o81UM9nuph1Ti2uJgKAAAAAAAAAADUHL9QP/mF+tlkLM4TAAAAAKhOfz/3d5mdK17mUC+gnjpN7KQNb2zQPYvusTq/ndUjAAAAAAAAAAAAAAAAAAAAAAAAWMnRzVF29pUrc6jfpL5ObDphk/wUWAAAAAAAAAAAAAAAAAAAAAAAgKtSyqEU5aTn2GQsCiwAAAAAAAAAAAAAAAAAAAAAAMBV5/j649r2r23ybOxpk/HMNhkFAAAAAAAAAAAAAAAAAAAAAADACkvuX3LFmMK8QmWnZut07GmlHk2VJHWd3NUm+SmwAAAAAAAAAAAAAAAAAAAAAAAAtW7n5ztlMpkqFGsYhiQpODJYNz1/k03yU2ABAAAAAAAAAAAAAAAAAAAAAADqBBdvFzm6OZbZbme2k5Onk3xa+6jV0FZqf3d7mewqVpRxJRRYAAAAAAAAAAAAAAAAAAAAAACAOmHwB4PV4d4OtZLbrlayAgAAAAAAAAAAAAAAAAAAAAAA1CGsYAEAAAAAAAAAAAAAAAAAAAAAAGrdlKNT5ObrVmv5q7XA4ty5c8rIyJCnp6dcXV2rMxUAAAAAAAAAAAAAAAAAAAAAALiK1W9Sv1bz27zA4ty5c3rjjTe0YMECnThxwvJ8SEiIJk6cqKefflpOTk62TgsAAAAAAAAAAAAAAAAAAAAAAK4hJ347oePrjiv1aKpyz+XK0d1R9ZvVV5NeTRTcI9jm+WxaYJGYmKhevXrp8OHDMgyjWNuhQ4f0wgsvaNGiRVq9erXc3d1tmRoAAAAAAAAAAAAAAAAAAAAAAFwDjq45qp+e+EnJscllxvi09dGtH9+qpn2a2iyvnc1GkvTUU0/p0KFDuvPOO7Vy5UqdPHlSOTk5+vPPP7VixQoNGTJE27dv1yuvvGLLtAAAAAAAAAAAAAAAAAAAAAAA4Brw+39/17yB85QcmyzDMMr8O73vtOYOmKvf/9/vNsttsxUs8vPztWjRIj388MP6z3/+U6wtICBAAQEBuvnmmzV69Gh9++23evfdd22VGgAAAAAAAAAAAAAAAAAAVNGCoQtqewoAAACSpIRtCfrx8R9lFBqq519PrYe3VmB4oDwaecjsbFZ+dr7SE9J1Mvqk9i/ar8xTmfrp8Z/UsEtDNeza0Or8FSqwePLJJ/XKK6/Iw8OjzJjU1FTl5ORo4MCB5Y41cOBALVq0qHKzBAAAAAAAAAAAAAAAAAAAAAAA17RN726SUWjohidu0MC3B8rsXHbJw+AZg7XymZXa+vFWbXxno+765i6r89tVJOjDDz9UmzZtNH/+/DJjvLy85OzsrJUrV5Y71i+//KKAgIDKzRIAAAAAAAAAAAAAAAAAAAAAAFzT4tbHqWnvprpl5i3lFldIktnZrFs+vEVNbmqi4+uO2yR/hVaweO211/TGG29owoQJmjVrlv71r3+pQ4cOxWLs7e01fPhwzZo1S6mpqXrooYcUGhqqBg0a6MyZM9q1a5f+/e9/64cfftBTTz1lk8kDAAAAAK5edWGp6dFLR9f2FAAAAAAAAAAAAAAAAPB/slOz1eaONpXq03ZkW62cVv5CERVVoRUsnnvuOcXGxur222/Xhg0b1KVLFz355JNKT08vFvf++++rWbNm+vrrrzVgwAAFBATI0dFRgYGBGjx4sJYsWaKwsDC9+OKLNpk8AAAAAAAAAAAAAAAAAAAAAAC4Nrj5u8nBxaFSfRxcHOTq42qT/BUqsJCk4OBgff/99/rpp5/UtGlTffjhh2rTpo3mzZtniQkICFB0dLSmTp2qRo0ayTAMy1/z5s318ssva+PGjXJ3d7fJ5AEAAAAAAAAAAAAAAAAAAAAAwLWhWb9mit8cX6k+8VviFRwZbJP8FS6wuGjQoEHas2ePXnnlFaWlpWnixInq1auXdu/eLUny8PDQO++8o7i4OKWmpio+Pl7p6ek6ePCgXnjhBTk7O9tk4gAAAAAAAAAAAAAAAAAAAAAA4NoROS1Ssd/F6ljUsQrFx22I0+75u9X9ye42yV/pAgtJcnR01D/+8Q/FxsZq6NCh2rBhg7p06aInn3xS6enpljgPDw81bNhQ9erVs8lkAQAAAAAAAAAAAAAAAAAAAADAtcm3ra/u/u5uLRq3SMsfW65jUcd0PuW8DMOQJBmGofNnz+v4+uP66S8/6YtbvtAtH91isxUszNZ0bty4sRYvXqyffvpJTzzxhD788EN98803evvttzVu3DibTBAAAAAAAAAAAAAAAAAAAAAAAFw7XrF/5Yox2/+7Xdv/u/2KccseXqZljyzTi/kvWj2vKq1gcblbbrlF+/bt00svvaTU1FRNnDhRvXr10u7du20xPAAAAAAAAAAAAAAAAAAAAAAAuEYYhmHTPxm2mVelV7AwDEMHDx7UmTNn5OrqqpYtW8rV1VWOjo568cUXNX78eD3xxBNavny5unTposmTJ+vVV1+Vh4eHbWYMAAAAAAAAAAAAAAAAAAAAAACuam3vaCu/Dn5Wj3Mq5pT2L95vgxlVosAiPT1dL7zwgubMmaNz585Znrezs9OAAQP0xhtvqHPnzmratKmWLl2qZcuWacqUKfroo4/0zTff6O2339b48eNtMmkAAAAAAAAAAAAAAAAAAAAAAHD1antHW3W4t4PV48R8EWOzAgu7igSdPXtWPXr00Mcff6z09HSZzWYFBATIxcVFBQUF+vnnnxUZGak1a9ZY+gwZMkT79u3TCy+8oLS0NN1333266aabFBMTY5OJAwAAAAAAAAAAAAAAAAAAAACAq0/9JvXlWM/RJmM51nOUZ2NPm4xVoQKL6dOnKzY2Vg888IB27dqlnJwcJSQkKCMjQ/Hx8Xr99ddlNpv14IMPFuvn5OSkl19+WXv37tUtt9yijRs3qmvXrpoyZYpNJg8AAAAAAAAAAAAAAAAAAAAAAK4uU45OUethrW0yVpvb22jKUdvUKFSowGLx4sW6//77NWvWLHXoUHwJjoYNG+rvf/+7/vOf/+jo0aOlrlDRrFkzLVu2TIsWLVKjRo308ccf22TyAAAAAAAAAAAAAAAAAAAAAADg+nVk1RHN6TfHJmNVqMDi1KlTioyMLDemR48eMgxDp06dKjPm9ttvV2xsrJ5//vnKzRIAAAAAAAAAAAAAAAAAAAAAAOAyGUkZOh513CZjmSsS1KhRIy1fvlz3339/mTFLly6VyWRSw4YNyx3L2dlZr7zySuVmCQAAAAAAAAAAAAAAAAAAAAAArgmFBYU6tfuU/EL9ZGe+tG7Errm7Kj3WiU0nbDavChVYjBo1Sm+++aZuvfVWPfbYYwoPD5evr6/S0tJ08OBBzZ07V7Nnz1b79u3Vrl07m02uIpKTkzVz5kwtWrRIx44dk6Ojo1q3bq3Ro0frkUcekaOjo81znjx5Um3btlVaWpokyTAMm+cAAAAAAAAAAAAAAAAAAAAAAOBa9M0d3+iPZX+oxeAWunf5vZbnF09cLJPJVGvzqlCBxT/+8Q9FRUVpxYoV+vnnn0u0G4ah+vXra+7cuTafYHm2bt2q4cOH6+TJkxo4cKAmT56s8+fPa86cOZoyZYo+//xzLVu27IqralTWY489ZimuAAAAAAAAAAAAAKyxYOiCK8YUmgqVEpiihPcTZGfYXTEeAAAAAAAAAOqyY1HHZBiG4jbGlWirygIItirKqFCBhYuLi9auXasPPvhA//vf/3TgwAHLpH19fXX77bfrxRdfVFBQkE0mVRFxcXEaMmSITp8+rSeffFIzZsywtD3xxBO65ZZbtGbNGg0bNkwbN26Uk5OTTfJ+9913WrRokU3GAgAAAAAAAAAAAAAAAAAAAADgenPzP2/Wlg+36IbHbyjRNviDwWp9e+sKj7V/0X798vQvNplXhQosJMlsNmvq1KmaOnWqsrKylJqaKhcXF3l5edlkIpU1bdo0nT59Wo0bN9Zbb71VrM3JyUmzZ89W69attX37dn388cd6+umnrc6ZmpqqJ554QkFBQfLz81N0dLTVYwIAAAAAAAAAAAAAAAAAAAAAcD0JnxSu8Enhpba5+riqfpP6FR7L1dfVRrOSqrR+sKurqxo2bGh1ccWOHTuq1O/gwYP69ttvJUnjx48vdXWKkJAQ9e3bV5L09ttvKz8/v+oT/T/Tpk3TyZMn9a9//Uvu7u5WjwcAAAAAAAAAAAAAAAAAAAAAAC7oPb23/Dv6V6qPf0d/9Xqxl03yV6nAoqoKCwu1Zs0aTZkyRU2bNlVERESVxlm4cKEMw5AkDRgwoMy4gQMHSpJOnz6ttWvXVinXRVFRUfr00081cuRIDRs2zKqxAAAAAAAAAAAAAAAAAAAAAABAcSaTSbHfxyrqlSgd+OFAhfr4d/BXn+l9bJLfbJNRynH+/HmtWLFCixcv1vLly3X27FlJkmEY8vDwqNKYq1evtmyHhYWVGde5c+difcorxihPdna2HnzwQXl6euqjjz6q0hgAAAAAAAAAAAAAAAAAAAAAAKBsa19aK5PJJMMwFDYxTK2Hta7R/NVSYJGcnKylS5dq8eLFWrVqlbKzsy0rTgQGBmro0KEaPny4+vfvX6Xx9+zZI0lyd3eXp6dnmXHBwcGW7b1791YplyS9/PLLOnjwoGbNmqWAgIAqjwMAAAAAAAAAAAAAAAAAAAAAAMrm3shdI78aqYYRDWs8t80KLI4eParFixdr8eLF2rRpkwoLCy1FFa1bt9btt9+u4cOHq3v37lblycnJUWJioiTJ39+/3Nii7ceOHatSvl27dumf//ynevXqpUmTJlVpDAAAAAAAAAAAAAAAAAAAAAAAUD6zs1ndpnRTcGTwlYOrI781nXfs2GEpqri4qoRhGDKZTIqIiNDw4cM1YsQItW5tu2U5zp07Z9l2dnYuN9bFxaXUfhVVUFCgBx54QPb29po1a5ZMJlOlxyjN+fzzysjPsDx2sHOQg72DTcZGxeXn59f2FOqE/Px8FRYW8n6gTmG/RF3Fvom6qLCwsLangCpIS0tTSkqK5bGTk5OcnJxqLH+hif3motr+TOe7BZdjn8Dl2CdwOfYJXI5jgqvX2bNn5erqanlc08cFqFsqcpxmmAwZMmSYDBWK//dRu9gfUVtK+x3Mb2TUFbW5L7L/X51q+1wBrg22/Ozh/BH4nV+31YXv+8p8TlTn/nS1vRfVpS68D1L1vxdXy2dTbf/3qO38tuYZ7Cknj9r7bVypAovCwkJFRUVp8eLFWrJkiU6cOCHpQlGFo6Oj+vTpo+HDh+v2229XYGBgtUz4/Pnzlm1HR8dyY4u2Z2VlVTrXjBkztH37dr366qs2LRJ5du2zxR4PDh+sW7vearPxUTEbNmyo7SnUCYWFhYqLi5Mk2dnZ1fJsgAvYL1FXsW+iLjpz5kxtTwFVEBYWVuzxhAkTNHHixBrLnxKYcuWg60RtHxfw3YLLsU/gcuwTuBz7BC7HMcHVq2PHjsUe1/RxAeqWihynGTJ03v28UpQik2xzUzCgqtgfUVtK+7ccfiOjrqjNfbHoRfq4etT2uQJcG2z52cP5I/A7v26r7fOaUuU+J6pzf7ra3ovqUhfeB6n634ur5bOptv97VPSYICs5S3u/3avDPx9W4o5EZSRlyGRnUj3/emp0QyN1GNtBrYa0qtCiBCc2ndDWj7cqbkOcMk9lys3XTUE9ghTxaISa9mlq1etpOaSljkcdV5cHu1S4T8wXMVo8frFeLHjRqtxSBQssFi1apMWLF2v58uU6e/aspAtFFR4eHho8eLCGDx+u2267Te7u7lZP6EqKrkqRm5tbbmzR9qJ3gaqIo0ePavr06Wrfvr2effbZK3eohLf7vC0vZy/LYwc7BzmcZAWLmtazZ8/ankKdcLFqLTIyUmazVYvaADbDfom6in0TddHFfzDF1WXnzp0KDr60jGFN35Uq4f2EGstV19X2cQHfLbgc+wQuxz6By7FP4HIVOSZYPHGxds3ZValxW9/eWqMWj7I8Tj2WqpnNZlaob8RjEbr1Y24qdCUxMTFq1KiR5TF3q72+VeQ4zTAZSlGKGiQ2kMmouyeTcX1gf0RtKe3fcviNjLqiNvfF+Pj4Gs0H26jtcwW4Ntjys4fzR+B3ft1W2+c1pcp9TlTn/nS1vRfVpS68D1L1vxdXy2dTbf/3qMgxwS9Tf9G2f21Tfna+XH1d1WFMB3m39JZhGDq25pj2Ldynvd/sVbN+zXTXt3fJpYFLmWNFvRKlqJejZHY2q/OkzvIL9VNybLKiZ0dr37f7FDktUgPfGVjl19Pz2Z6a1WWWYhfFqu2ItlUep6oq9KvqzjvvlMlkkmEYCgwM1NChQzV8+HD1799fDg41WxhQtIgjOzu73Niiq11UtvjjoYceUnZ2tmbPnm3z1+hidlE9c73iTxo2TYEK4B/XLrGzs5PZbOY9QZ3Cfom6in0TdU1V7kRz5o8z2vG/HTq04pDS49OVl5knN383eTb2VPCNwWo+oLma929eZv/qrEC/Xnh6eqpBgwa1lt/O4E5+F9WFz3O+W3A59glcjn0Cl2OfQFHVdWdcN3+3ahkXl3h5edXqcQHqloocpxWqUCaZZDJMHNeh1rE/oraU9RuY38ioK2prX2TfvzrV9rkCXDts9dnD7zrwO79uqwvf95XZL6pzf7ra3ovqUhfeB6n634ur5bOptv97VCR/zPwY5Wfnq0nvJhq1ZJScPZ0tbTc8doP+WPaHvhr+lY6uPqoFQxfovvX3yWRXsqjl9//+rrXT18rsbNb41eMV1C3I0tZxXEd9dtNn2vTuJrn5uSlyamSVXk9+dr6G/W+Ylk5aqph5MWp3Vzv5tfeTk4dTqXOSLqzOYSsV+q/ZqlUrDR8+XMOHD1f37t1tlrwqnJycFBAQoMTERCUlJZUbW7S9adOmFc4xd+5crVq1SuPGjVPLli2VnJxcIiYvL8+yXbTdwcFBnp6eFc4FAAAA1KR1r63TulfXyc3PTe3vaS/vVt7Kz85XwpYE7f1mr+LWxyl6drSeSX6m1P7VXYEOAAAAoPo8FvvYFWPmD56vtONpCpsYVmp7vzf6XfFuUc5ezuW2AwAAAAAAAACAmmdnttOIuSOKFVdc1GpIK4VPCtf2/7ddJzad0N5v9ip0VGixmMzTmVo5baUkqduUbsWKKyQpsHOgIqdGKurlKK15YY1CR4XKI8ij0vP8oOkHMpkuFFKkx6frwJIDlR7DGhUqsNi/f391z6NSQkNDlZiYqHPnziktLa3Mgoaiy520b9++wuOvXr1akjRv3jzNmzfvivG+vr6W7d69e2vt2rUVzgUAAADUlJXPrtSmdzYpdFSohn06TA6uxVdq6zi+o7689csy+9dEBToAAACA6uPTxqfc9hObTijteJr8OvgpuEdwqTHuge5XHAcAAAAAAAAAANQ9AWEB8mxc9kICbe9sq+3/b7sk6Y+lf5QosNgyc4tyM3IlSeGTwksdI3xSuKJeiVJ+dr42vbdJg2cMrtJcDcOodJ+LRRnWqhvrw1RSv379tGrVKknSzp071bt371LjoqOji/WpqGeeeUZjx44tN+bpp59WTEyMJGnlypWW5728vCqcBwAAAKgph1Yc0qZ3Nsm3va+Gzx0uewf7EjEtBrVQ84HNlXo0tURbTVWgAwAAALA9nzY+atK7yRXjts+6cNKky0NdqntKAAAAAAAAAACgBt254E65eruWG1O/SX3LdlpcWon2fQv3XYhrWl8NWjQodQyPIA/5tPFRcmyyYhfGatD7g6pU+NDl4S4K6h505cD/E/9bvKJnR185sAKuygKLkSNH6vnnn5dhGPr111/LLLC4WITh4+OjPn36VHj8du3aqV27duXGFC2kGDBgQIXHBgAAAGqaYRha8eQKSVLPv/UstbjiorErSi80rskKdAAAAAC21fNvPdXzbz3LjclOy9a+b/fJwdVBHcd1rKGZAQAAAAAAAACAmtCsb7MrxmSnZlu2HdwcirWlJ6TrzIEzki6shFGewM6BSo5NVnp8ulIOpsi7lXel59vkpibqcG+HCsfbme1sVmBhZ5NRaljLli111113SZLmzZun3NzcEjFHjhzR6tWrJUnPPvuszObitSR79uxRq1atFBQUpHXr1lX/pAEAAIBacnzdcZ05cEYmO5NaDW1VpTEqU4EuSbELY6u0VB8AAACA2hEzL0Z5WXlqf097OXs6V6hPYX6hcjNL/vs8AAAAAAAAAAC4+pw9etay3aRX8ZWxT+05Zdn2CPYod5yi7af2nionsnSNb2wsNz+3SvVpENJAncZ3qnSu0lyVK1hI0rvvvqs1a9bo2LFjeu655/TPf/7T0paTk6OHHnpIBQUF6tKlix5//PES/V9//XUdPHhQkvS3v/1NmzZtqrG5AwAAADXpYnGEZxPPYhdKGYah3IxcOdZzLHcpvpquQAcAAABQ8y7e1anLQ13KjTu195S+u/c7xW2I07k/z8koMOTg6qCg7kHqMLaDOo3rJDvzVXlvJwAAAAAAAAAArmv7F+2XJJmdzQqbGFasLfVYqmXbzb/84oei7UX7VdR96++rdJ+g7kEK6h5U6X6luWoLLBo3bqylS5dqxIgReu+997Rnzx4NGzZM58+f15w5c7R7926FhYXphx9+kLNzybttFRYWWrYremfd+fPnW7aTkpJKfX7gwIHy9/evyksCAAAAqsXJ309Kkjwbe8ooNLTjsx3a8ckO/fn7nyrML5Sd2U6BXQLVaXwnhT8YLnsH+2L9ralAp8ACAAAAqPviN8crKSZJ/h39r3jy4bd//ibvVt664fEb5NPWRwU5BTq+7riiZ0fr6Oqjip4Vrbu/v1vuge41NHsAAAAAAAAAAGCtzFOZOrDkgCSpx9Qecm9Y/N/5c89dWtHa7Fx+CYKDi0Op/Spq19xdatKrieo3rX/F2P90+I8Mw1CXh7uo2xPdKp2rNFdtgYUkdevWTTExMfrggw+0aNEiPfPMM3JwcFCrVq30wQcfaPLkyXJ0dCy17/PPP6/o6GidP39eb7/9doXyjRs37orPr1mzhgILAAAA1ClJuy8UBxuFhubdPE/H1hxTp4md1OPpHrJ3tFfcxjht/WirfnzsR8XMi9HopaPl6uNq6V+TFegAAAAAypefk6+CnALL47yMPKvH3D5ruyQp/KHwK8a2vbOt7vjiDpmdLp1eaDeyncLuC9OcPnMUvzleC4Yu0P0b7y8WAwAAAAAAAAAAbOPycwVVKWK43MppK5Wfna/A8ED1+kevEu155y+dj7B3tC/RXlTR9rysyp/HWHLfEo2YN6JCBRYOrg768/c/9fOTP8vZ01mdxneqdL7LXfVnN3x8fPTaa6/ptddeq1S/jh076uDBg5XqU9GVLgAAAIDqUtmLqfKy8pSXeSEmbn2cJGnkNyPV/q72lpjWw1qr3ch2+rzX54rfHK+FoxZq3MpxMplMkmq2Ah0AAABA+Ta8uUFRL0dZHqfZpVk1Xk56jvZ+vVcOrg7qOLZjmXEeQR6acnSK3Bu5l1j1TpICOweq14u9tHLqSp3cflK///d3dZ/S3aq5AQAAAAAAAACAkkqcK5B15wpi5sdo19xdcvNz093f3V3qDZSKXhNUkFtQor2oou0Org7lRJauMtfsT9oySef+PKevR3ytrR9tpcACAAAAuN5U9mKqnPScYo9b3NKiWHHFRY0iGqnro121+f3NOvrrUf2x9A+1HtZaUs1WoAMAAAAoX8+/91SPp3pYHsfFxWlGhxlVHi9mfozysvIUdl+YnD2dy4yzM9td8U5Rne/rrJXTVkqGtPN/OymwAAAAAAAAAACgGlx+riAhIUEz2lXtXMHxdce19MGlcvJw0r0/3lvmuQBHd0fLdn52frljFr3WqGi/6uLe0F1h94Xp17//apPxKLAAAAAAriKVvZiqsKCw2ON2d7UrMzZ0VKg2v79Z0oWLrC4WWNRkBToAAACA8pmdzMXuHOVQz7rf3dtnbZckdXm4i1XjSJJLAxd5NffS2cNnlbQ7SbkZuXKsV/0nTgAAAAAAAAAAuJ5cfq7AMb1q/xafsDVBC4YukL2jvcb+PFYNuzQsM7Zo4UVmUma54xZtv9LNm2wl5XDKFa9rqigKLAAAAICrSGUvpnJydyr22L+Df5mx/h39JZMk48IB1EV1uQIdAAAAQNXFb4lX0q4k+XfyV1C3IJuM6ebnprOHz0qGlJGUoQb1GthkXAAAAAAAAAAAYDt/bv9T8wfNl2EYGvfLOAV1L/88gV+on2U7/UR6ubHp8Zfa/dr7lRMp7V+yXweWHCjx/PZZ23Vk1ZFy+0pSYV6hUo+nKv63+AvXPtkABRYAAADANcyxnqPsHe0tFdrOXs5lxpqdzHKs56jcc7nKPFV6JXldrEAHAAAAUDWW1Ssesn71iouMQsOybWdvZ7NxAQAAAAAAAACAbZzccVLzBs5TYX6hxv489orFFZLk0chD3q28deaPM0rcmVj++NEnL/QJ8lCDluXfiClxZ6J2fr5TJpOp2PNx6+MUtz7uivOSJMO4cG7ihr/cUKH4K6HAAgAAALiGmexM8mnro6RdSZIuVG2Xy7jU76LqqkAHAAAAUHty0nO09+u9cnB1UMexHa8Yv+61dfLr4Kc2t7cpNy4jMUPShWMKNz83m8wVAAAAAAAAAADYRlJMkuYNnKeC3AKNXTFWwZHBJWLWvrxWfyz9Qw/9/lCx59vd1U7rX1+v1GOpOnvkrLyae5Xom56QruT9yZKktiPbliicuJxzfWfVb1K/2HOpx1Pl4u0iRzfH8l+MSXJwdZB3K291mtDpiucwKooCCwAAAOAa1+iGRpYCi4zEDPm08Sk1Li8rT7mZuZIk94buluerqwIdAAAAQO2J+SJGeZl5Crs/TE4eTleMX/PCGoUMCin35MS5k+eUdjxNkhQYHigHVwebzRcAAAAAAAAAAFjn1J5Tmtt/rvLP52vMT2PUuGfjUuNSj6bq5PaTJZ7v9pdu2jJzi3IzchX9SbT6v9G/RMyOT3dIhmR2Nivy6cgrzqn7lO7qPqV7sedetntZgz8YrA73dqjgK7Mt1ucGAAAArnHtRrazbCdsSygz7uSOk5YVLJr0blJ8jLsujHGxAr00la1ABwAAAFB7omdHS5K6Pty1wn1ObDqhnPScMtt//+/vlu3wh8KrPjkAAAAAAAAAAGBTp/ed1tz+c5WVnKUeU3vIKDR0bO2xUv8urlZ9OTc/Nw18d6AkafOMzSWuQ0rclaiN72yUJPV9ta88gjyq90VVE1awAAAAAK5xzQc0l38nfyXtStLu+bsVOTWy1OKHmHkxlu2IyRHF2qqjAh0AAABA7UjYlqDEHYny7+SvRjc0qnC/3HO5WvrQUo2YO0L2jvbF2g7/clgb375w0qRJrybqfF9nm84ZAAAAAAAAAABUTX52vub2n6vMU5mSpHWvrNO6V9ZVaayuj3RVRlKG1r2yTnP6zlH4pHD5tvdV8v5kRc+OVl5mnnpM7aHIqVW/dmh64fQq97UFCiwAAACAa5zJzqTb/n2b5vSdo6SYJK17dZ16v9i7WMzhXw5fKJCQ1P2v3RUYHlis/WIF+vLJy7V5xma1GdFGjSIuXYh1rVSgAwAAANeD7bO2S5K6PNylwn0uFm3v/XqvTm4/qfaj2suruZfyMvN0bO0xxX4fKxlSi1ta6I4v7pCdmQW0AQAAAAAAAACoC/Kz88tclaIq+kzvo5CBIdry4RbtW7hPWf/JkquPq0JuDlHEYxFq1reZzXLVBgosAAAAgOtAcGSwRn49UovGL9La6WsVtz5OrYa1ktnZrBMbTyhmfoyMAkPdpnSzLOV3uZqoQAcAAABQvXLO5WjvV3vl4OagjmM6VrjfIzsfUfyWeO1fvF8nNp5Q9KxonT97XvYO9qoXUE8d7u2gjuM6qsWgFtU4ewAAAAAAAAAAUFnO9Z013bDtqhDBkcEKjgy26ZhFZSRmqCC3QJLk5u8ms9OlsoeUwymKeilKibsS5eThpNDRoYp4NEImk8kmuSmwAAAAAK4TbYa30WP7HtPmmZt16MdDWv3cahUWFMo90F2dxnVS10e7FluVojTXegU6AAAAcK1zcnfS38/9vUp9g7oFKahbkI1nBAAAAAAAAAAAcMn5lPOa2WympcBizE9jFHJziCTpdOxpfdr9U+Vm5MowDElS/G/xiv8tXnfMv8Mm+SmwAAAAAK4jHkEeuvndm3XzuzdXeYzqrkAHAAAAAAAAAAC2l5Wcpb3f7tXhnw8rcUeiMpIyZLIzqZ5/PTW6oZE6jO2gVkNaVeiuryc2ndDWj7cqbkOcMk9lys3XTUE9ghTxaISa9mla/S8GAAAAwDVr38J9ys/Jl6uPq8IfDJdfqJ+lbcWUFco5lyNJatilodwbuuv4uuPas2CPOtzbQS1vbWl1fgosAAAAAAAAAAAAAAAAgGvYL1N/0bZ/bVN+dr5cfV3VYUwHebf0lmEYOrbmmPYt3Ke93+xVs37NdNe3d8mlgUuZY0W9EqWol6Nkdjar86TO8gv1U3JssqJnR2vft/sUOS1SA98ZWIOvDgAAAMC15PAvh+Xk4aSHox+WR5CH5fmUQyk6suqITCaTIh6L0C0f3nLh+cMpmh0xWzs/20mBBQAAAAAAAAAAAAAAAIDyxcyPUX52vpr0bqJRS0bJ2dPZ0nbDYzfoj2V/6KvhX+no6qNaMHSB7lt/n0x2JVey+P2/v2vt9LUyO5s1fvV4BXULsrR1HNdRn930mTa9u0lufm6KnBpZI68NAAAAwLXlZPRJhU0MK1ZcIV1Y2UKSHFwd1O+1fpbnG4Q0UIcxHfTHD3/YJL+dTUYBAAAAAAAAAAAAAAAAUGfZme00Yu6IYsUVF7Ua0krhk8IlSSc2ndDeb/aWiMk8namV01ZKkrpN6VasuEKSAjsHWooq1rywRunx6bZ+CQAAAACuAxknM+TbzrfE8weWHJDJZFKb4W3k5OFUrM23ra8yT2XaJD8FFgAAAAAAAAAAAAAAAMA1LiAsQJ6NPctsb3tnW8v2H0tL3vl1y8wtys3IlSRLMcblwieFSyYpPztfm97bZOWMAQAAAFyPTHYmFeQVFHsuPSFdCVsTJEnt7mpXso99yRX4qooCCwAAAAAAAAAAAAAAAOAadueCOzXs02HlxtRvUt+ynRaXVqJ938J9F+Ka1leDFg1KHcMjyEM+bXwkSbELY2UYRhVnDAAAAOB65RHkoZPbTxZ7bsenO2QYhhxcHRQyKKREn7NHzsrF28Um+SmwAAAAAAAAAAAAAAAAAK5hzfo2k39H/3JjslOzLdsObg7F2tIT0nXmwBlJF1bCKE9g58ALfeLTlXIwpSrTBQAAAHAda9K7ifZ8tUex38cqLytPh1Yc0qZ/bpLJZFKbEW1kdjIXi8/Pztfu+bvl287XJvnNVw4BAAAAAAAAAAAAAAAAcC07e/SsZbtJrybF2k7tOWXZ9gj2KHecou2n9p6SdytvG80QuHYtGLqgSv0KTYVKCUxRwvsJsjO41zIAALg2dP9rd+2as0vf3vWt5TnDMGRntlPktEjLc1nJWYrfEq91r6xTRmKGIh6LsEl+flUBAAAAAAAAAAAAAAAA17n9i/ZLkszOZoVNDCvWlnos1bLt5u9W7jhF24v2AwAAAICK8G3rqzu+uEMObg4yDEOGYcjsbNatH98q/w6XVubbPHOzFgxdoIRtCZKk9ne3t0l+VrAAAAAAAFy3qnpHKFspNBWq0VONanUOAAAAAAAAAK4u+Tn5KsgpsDzOPZdr9ZiZpzJ1YMkBSVKPqT3k3tC9WHvRHGbn8i83cnBxsOncAAAAAFx/2o1sp+YDm+v4uuMyCg01uqGR3AOLH6e0u7OdGrRoIElycneybFuLAgsAAAAAAAAAAAAAAADgKrHhzQ2KejnK8jhNaVaPuXLaSuVn5yswPFC9/tGrRHve+TzLtr2jfbljFW3Py8orJxIAAAAAyubs6azWQ1uX2R4QFqCAsACb56XAAgAAAAAAAAAAAAAAALhK9Px7T/V4qoflcUJCgma0m1Hl8WLmx2jX3F1y83PT3d/dLbNTycuJiq5KUZBbUKK9qKLtDq4O5UQCAAAAgG0k7U7S/kX71fvF3laPZWeD+QAAAAAAAAAAAAAAAACoAWYns5w8nCx/ju6OVR7r+LrjWvrgUjl5OOneH+9V/ab1S40rmiM/O7/cMYuudmHN3AAAAACgopJikoqt9GcNVrAAAAAAAAAAAAAAAAAArjMJWxO0YOgC2Tvaa+zPY9WwS8MyY4sWXmQmZZY7btH2sgo2AAAAAKAsaXFple6TlZxls/wUWAAAAAAAAAAAAAAAAADXkT+3/6n5g+bLMAyN+2WcgroHlRvvF+pn2U4/kV5ubHr8pXa/9n7lRAIAAAC4nkW9GqXf3vtN3Z/srj4v9bE8/0HTD2QymWptXna1lhkAAAAAAAAAAAAAAABAjTq546TmDZynwvxCjV0x9orFFZLk0chD3q28JUmJOxPLHz/65IU+QR5q0LKB9RMGAAAAcE3a9O4m5aTn6Lf3fyvRZhhGpf9shRUsAAAAAAAAAAAAAAAAgOtAUkyS5g2cp4LcAo1dMVbBkcElYta+vFZ/LP1DD/3+ULHn293VTutfX6/UY6k6e+SsvJp7leibnpCu5P3JkqS2I9vW6l1nAQAAANRt7e9urx3/26F2d7Ur0dbl4S4VKga/KP63eEXPjrbJvCiwAAAAAAAAAAAAAAAAAK5xp/ac0tz+c5V/Pl9jfhqjxj0blxqXejRVJ7efLPF8t79005aZW5SbkavoT6LV/43+JWJ2fLpDMiSzs1mRT0fa/DUAAAAAuHYM+2SYBr4zUC4NXEq0NbmpiTrc26HCY9mZ7SiwAKy1YOiC2p6CJGn00tG1PQUAAAAAAAAAAAAAAHANO73vtOb2n6us5Cz1erGXjEJDx9YeKzU2IzGj1Ofd/Nw08N2BWj55uTbP2Kw2I9qoUUQjS3virkRtfGejJKnvq33lEeRh89cBAAAA4NpSWnFF095N5ebvVqlx6vnXU5NeTWwyJwosAAAAAAAAAAAAAAAAgGtUfna+5vafq8xTmZKkda+s07pX1lVprK6PdFVGUobWvbJOc/rOUfikcPm291Xy/mRFz45WXmaeekztociprF4BAAAAoGomrJlQ6T7NBzRX8wHNbZKfAgsAAAAAAAAAAAAAAADgGpWfnV/mqhRV0Wd6H4UMDNGWD7do38J9yvpPllx9XBVyc4giHotQs77NbJYLAAAAAGoaBRYAAAAAAAAAAAAAAADANcq5vrOmG9NtOmZwZLCCI4NtOiYAAAAASFJ+Tr7iNsTpZPRJZZ3OUk56jpw8neTm66aGXRsqODJY9o721ZafAgsAAAAAAAAAAAAAAAAAAAAAAFBrzv15TuteX6ddn+9SfnZ+mXFmF7M6399ZPf/eU+6B7jafBwUWAAAAAAAAAAAAAAAAAAAAAACgVhz44YC+H/u98jLzZBhGubF5WXna9q9t2vn5Tt355Z1qNaSVTedCgQUAAAAAAAAAAAAAAAAAAAAAAKhxMV/EaPGExZIhGYYhk51Jvu18FRAWIBdvFznWc1TuuVxlJWcpcUeikg8kyyg0lJuRq6+Gf6UR80aow+gONpsPBRYAAAAAAAAAAAAAAAAAAAAAAKBGnd53WsseXiaj0JCLl4sip0UqfFK4XH1cy+yTkZSh6NnR+u3935Sdmq1lDy1TQKcA+bbztcmcKLAAAAAAAAAAAAAAAAAAAAAAgKvEgqELansKgE2snLZSeVl5Co4M1l3f3CX3hu5X7FPPv556/aOXOk3opG/v+lYJWxO0ctpK3bv8XpvMyc4mowAAAAAAAAAAAAAAAAAAAAAAAFTAqb2ndPCng/Jp46N7l99boeKKojyDPTXmpzHybumtQysO6fS+0zaZFwUWAAAAAAAAAAAAAAAAAAAAAACgxvyx9A+ZTCYNmjFIzp7OVRrDxctFg2YMkmEYOvDDAZvMiwILAAAAAAAAAAAAAAAAAAAAAABQY+LWx8m7lbdaDGph1Tgtb20p75beOr7uuE3mRYEFAAAAAAAAAAAAAAAAAAAAAACoMWf+OKNmA5rZZKzmA5vrzB9nbDIWBRYAAAAAAAAAAAAAAAAAAAAAAKDGZJ3JkldzL5uM5RXipfMp520yFgUWAAAAAAAAAAAAAAAAAAAAAACgxuSk5ej/s3fncVqX9f74XzMM6wCyLwqK4pYSAooImWKFtmFZWllqy9dsNTul1bH6mrZYecq2882TdkwzqaMdT3myRRMxRFFBRQSUVGSRfXHYh2Hm9wc/b2dgZthmZZ7Px4NH1z3X9v7gFfO57vvzvq8uvbs0yFhdenfJ1rKtDTKWBAsAAAAAAAAAAAAAAKDJVFVVpbikYdIZitoVJVUNMlRKGmYYAAAA9tTdH787fTr1ae4wAAAAAAAAAACg+RQ1dwC7kmABAAAAAAAAAAAAAAA0qb9+/q+5/6v37/c42zZua4BodpBgAQAAAAAAAAAAAAAANKlNqzalamVVg4xVVNQwx2FIsAAAAAAAAAAAAAAAAJpU596d06G0w36PU76xPJtXb26AiCRYAAAAAAAAAAAAAAAATeytP3prXv/B1+/3OLNum5X/+fD/7H9ASYobZBQAAAAAAAAAAAAAAICmVtRwQ0mwAAAAAAAAAAAAAAAAmsxZ15+Vg086uEHGOvikg3PmD89skLFKGmQUAAAAAACgxfrV+F/lpSkv7bZd+9L2uXLDlfW2WTRtUR792aNZOHVhNq7YmNK+pRk0dlBGf3p0howf0kARAwAAAAAAB7JTLjulwcbqc0yf9DmmT4OMJcECAADasL9d8bc8/G8PJ0lOv+r0jP/G+N328TAVAAC0XVOumZIpV09JSaeSjLx4ZPoN65dVc1dl5o0zM+eOORl3xbhM+P6E5g4TAAAAAABgn0iwAACANmrpzKV55PpH9qqPh6kAAKD1Onj0wTnn1nPqbVNUXFRn3eM3PJ4HrnogJZ1KctH9F2XQmEGFuuEXDs/Nb7w5066bltJ+pRl3+bgGixsAAAAAAKCpSLAAAIA2qLKiMn+8+I+p2l61x308TAUAAK1b+y7t0+fYfTsee+PKjbn3inuTJGMuG1NjP5AkA0cOzLjLx2XK1VMy+euTM+wDw9J9UPf9jhkAAAAAAKApFTd3AAAAQNOb9oNpWfbEshzzrmP2qP2ePkyVJJO/Pjlli8saNmAAAKBZTf/x9JRvKE+SjLp4VK1tRl08KilKKrZUZNoPpjVleAAAAAAAAA1CggUAALQxa55fkylXT8nBow/OyZeevEd9PEwFAABt25w75yRJegzpkV5H9qq1TfdB3QsnZMy9c26qqvb8xDwAAAAAAICWQIIFAAC0Mf97yf+mcltlJt44McXt9mxL4GEqAAA48GxdvzVVlbu/by9bUpbVz65OkgwYMaDetgNHDtzRZ3FZ1sxfs/9BAgAAAAAANKGS5g4AAABoOjN/OTMv3v9i3vDlN2TACQOy4IEFu+2ztw9TrZq7qvAwVe+jezdE2AAAQAPYtmlbplwzJXPunJO1z6/Ntk3bUlRclN7H9M5R7zgqY/9lbLod3G2XfitmryiUuw/uXu8c1etXPLPCngAAAAAAAGhVJFgAAEAbsWHZhtx7xb3pObRnTr/q9D3u52EqAAA4MLz82MtZ8fSKjPjYiJz2tdPSvrR9Vs1blZm/mJmH/+3hzPiPGXnPbe/JMWcfU6PfugXrCuXS/qX1zlG9vno/AAAAAACA1kCCBQAAtBH3fPaebFm7JefdcV7ad26/x/08TAUAAAeG0n6l+fDkD6fvcX0LPzv6HUfn5M+enEkTJ+WFe1/IHefdkQ9P/nAGjxtcaFO+vrxQLulU/8cK1fca1fsBAAAAAAC0BsXNHQAAAND45v1hXub+fm5GfGREjnjzEXvV18NUAADQclRsrcjWsq2FP9s2bNujfuf+9tx8Zt5naiRXvKqkY0ne/at3p13Hdtlevj33fPaeGvXbNr82R7sO7eqdp3r9tk17FhsAAAAAAEBL4QQLAABoRSq2VmT71u2F13vyMNXWsq255zP3pEvfLjnzB2fu9ZwepgIAgJZj6rVTM+XqKYXXrxS/skf9ug7oWm99t4O75ci3Hpln//Bslj2xLEufWJqBIwcmqZlIvb18e11D7FLfvsuen5wHAAAAAADQEkiwAACAVmRfHqa690v3Zv2S9XnP7e9J516d93pOD1MBAEDLceq/npqxXxhbeL1w4cJc//rrG2Tsg086OM/+4dkkyaJpiwoJFh26dSi0qdhSUe8Y1RO0q/cDAAAAAABoDSRYAABAK7K3D1O99I+XMuMXM3LkW4/M689//T7N6WEqAABoOUo6lqSk42tv7bfv2nCJzaX9SgvlDcs2FMo9hvQolDcu31jvGNXrq/cDAAAAAABoDSRYAABAK7I3D1NtL9+euz9+d9p1aJczvnlGNq3atEubLa9sKZS3bdpWo03HgzqmXft2HqYCAIA2oqqyqlAubldcKPcb1q9QLltUVu8YZYtfq+93fL96WgIAAEDLMGnipOYOAYC94N9toLFJsAAAgAPU+pfXZ/Wzq5MkN46+cbftp103LdOum1Z4/eHJH86Q8UM8TAUAAK3cs3c/m+VPLc8bv/rGFBUV1dmu+qkVXQd2LZS7H9I9vY/undXPrc6yJ5fVO9fSmUt39BnUPb2O6rWfkQMAAAAAADQtCRYAAHCA6jqgay6898J62yx7alnuvfzeJMnwC4fnhItOKNT1P6F/Eg9TAQBAazf393Pz1C1PZdTFo9J1QNc62y1+ZHGhfOiph9aoO+684/KPb/8j6xasy9oX1qbnET136V+2pCyr5q1Kkrzu3NfVm8wBAAAAAADQEkmwAACAA1RJp5Ic8ZYj6m1TXFJcKPc8omed7T1MBQAArd/8P8/PyI+OrLVu9fzVeeG+F5Ikg8cN3uVEujGfG5PpP56e8g3lmXnTzLz5O2/eZYwnfvlEUrVjLzLui+Ma/gIAAAAAAAAaWfHumwAAAG3dmM+NSYeuHZIkM2+aWWsbD1MBAEDL9vd//XtWP7d6l59vXrM5vz//96naXpX2XdrnbT972y5tSvuVZsJ1E5Ikj1z/SJY8tqRG/bKnluWh7z+UJDnjm2ek+6DujXAFAAAAAAAAjcsJFgAAwG69+jDVnz71pzxy/SM59pxjc8joQwr1HqYCAICWq+9xfVPcvjgbl2/MDSNuyLAPDMvBow9Ouw7tsmruqjx161PZtHJTSvuX5tzfnZuBIwfWOs5JnzwpG5ZvyIPXPJhbzrgloy4elb7H982qeasy88aZ2bZxW8ZePjbjLpdwDQAAAAAAtE4SLAAAoI1ZPmt5ls9aniRZOXdljZ/Pum1WkqS0f2mGThhao5+HqQAAoHV6w5fekBMuOiFz/3tuXrj3hbz04Et55nfPZPu27encs3P6D++fo995dEb+n5Hp2K1jvWONv2p8hk4Ymuk/mZ45d87Jpp9vSpc+XTL0zKEZ/ZnROfyMw5voqqBhTJo4qblDAAAAAACgBZFgAQAAbczc/56bKVdP2eXn8+6al3l3zUuSHHb6YbskWCQepgIAgNaq64CuGf3p0Rn96dH7PdbgcYMzeNzgBogKAAAAAACgZZFgAQAAbcz4b4zP+G+M3+f+HqYCAAAAAAAAAAAORMXNHQAAAAAAAAAAAAAAAEBzk2ABAAAAAAAAAAAAAAC0eRIsAAAAAAAAAAAAAACANk+CBQAAAAAAAAAAAAAA0Oa1+gSLVatW5etf/3qGDRuWrl27plevXhk7dmx+8pOfpLy8fL/Grqqqyj/+8Y9cdtllGT16dHr27Jn27dund+/eGTt2bK666qq8/PLLDXQlAAAAAAAAAAAAAABAc2nVCRaPPvpohg8fnm9961s5+OCD873vfS9XXnllNmzYkMsuuyynnHLKPidAzJw5MyNGjMhpp52Wn/zkJ+nTp0+++MUv5oYbbshnPvOZLF26NNdcc02OOeaY/OY3v2ngKwMAAAAAAAAAAAAAAJpSSXMHsK8WLlyYd77znVm5cmU+//nP5/rrry/UXXrppXnb296WyZMn5+yzz85DDz2Ujh077tX4jz76aGbNmpWioqL8/ve/zznnnFOj/itf+Ure+c53ZvLkybnooovSq1evvO1tb2uQawMAAAAAAAAAAAAAAJpWqz3B4oorrsjKlStz6KGH5rvf/W6Nuo4dO+bGG29Mu3btMmPGjPzsZz/b53kuvvjiXZIrkqRLly655ZZb0r59+1RWVuZf/uVf9nkOAAAAAAAAAAAAAACgebXKEyzmz5+fO+64I0ly0UUX1Xo6xdChQ3PGGWfkvvvuy/e+971cdtllKSnZ+8t917veVWfd4MGDM3r06EybNi3PPvts5s+fn6OOOmqv56BtmzRxUrPOX1lUmUO+cEizxgAAAAAAAAAAAAAA0Nxa5QkWd955Z6qqqpIkb3nLW+psN2HChCTJypUr88ADD+zVHO94xzvy5z//OWeccUa97Q477LBCeeHChXs1BwAAAAAAAAAAAAAANKWqqqo8+rNH852u38nVRVdnwQML9qr/ommL8vsP/j7XH3p9vtXpW7l+8PW543137PU4LVGrPMHi/vvvL5RHjBhRZ7uRI0fW6FNfMsbOBg8enMGDB++23bp16wrl0tLSPR4fAAAAAAAAAAAAAHZn0sRJzR0CcABZ8/ya/PFjf8xLD760T/2nXDMlU66ekpJOJRl58cj0G9Yvq+auyswbZ2bOHXMy7opxmfD9CQ0cddNplQkWs2fPTpJ069YtBx10UJ3tqidIPPPMM40Sy4svvliIpb5kDwAAAAAAAAAAAAAAaA5VVVV57N8fy31fuS/F7Yoz6JRBWfzI4r0a4/EbHs8DVz2Qkk4luej+izJozKBC3fALh+fmN96caddNS2m/0oy7fFxDX0KTKG7uAPbW1q1bs2zZsiRJ//79621bvX7BggUNHsuzzz6befPmJUk++tGPplOnTg0+BwAAAAAAAAAAAAAA7I8pV0/Jny/9cw499dB8avanMvSsoXvVf+PKjbn3inuTJGMuG1MjuSJJBo4cWEiqmPz1ySlbXNYwgTexVneCxfr16wvl3SU0dO7cudZ+DeU//uM/kiS9evXK1772tT3ut7liczZUbCi8bl/cPu3btW/w+GBPVBVVpbKyMhUVFc0dChRUVFRYl7RI1iYtUWVlZXOHwD6wJ+BV7sfZmfsNdmZNsDNrgp3ZE7Rea9euTZcuXQqvO3bsmI4dOzZjRG1TZVHr+f9QVVFVqlK1Yx+R1hM3BybrkeZS232we2RaiuZci9Z/6/TKK69kzZo1hdf2BM2nNe0Ldua+jIZkPdGQrCcaSmtZS819T76n81dVVWXiTRMz6v+M2qd5pv94eso3lCdJRl1c+xijLh6VKddMScWWikz7wbS89fq37tNczanVJVhs3ry5UO7QoUO9bavXb9q0qUHjmDt3bv7f//t/SZIbbrghffv23eO+X37gyzVev3XUW/P2k97eoPHBnqpKVSoW7viHtbi41R1qwwGqsrIyCxcuTGJd0rJYm7REq1evbu4Q2Af2BLzK/Tg7c7/BzqwJdmZNsDN7gtZr+PDhNV5/+MMfzkc+8pHmCaYNWzNwze4btRBVqcrmbpuzJmtSlKLmDoc2znqkuUydOnWXn7lHpqVozrVY/SF9Wo8RI0bUeG1P0Hxa075gZ+7LaEjWEw3JeqKhtJa1VNt+tSnt6Z5g/DfGp6ho3/8e59w5J0nSY0iP9DqyV61tug/qnj7H9smquasy9865OeuHZ+3XnM2h1SVYVD+Vory8vN621eurfwvU/tq0aVPOP//8bN26NV/60pdy3nnn7VX/743/Xnp26ll43b64fdov9W21NI+qoqocfOjBGTduXEpKWt0/CRygXs2mtC5paaxNWqJXP6yhdbEn4FXux9mZ+w12Zk2wM2uCndkTtF6zZs3KIYccUnjt22qbx5IfLmnuEPZYVVFV1mRNei3rlaKq1vWBJAce65Hmcuqpp+7yM/fItBTNuRYXL17cpPPRMJ588skMHjy48NqeoPm0pn3BztyX0ZCsJxqS9URDaS1rqbb9alPa0z3B/iQ6lC0py+pnd3zp04ARA+ptO3DkwKyauypli8uyZv6a9D669z7P2xxa3bsL3bp1K5S3bNlSb9vqp11U77c/Kioqcv755+epp57KhRdemO9+97t7PUbnks7pWtK15g+rGiQ82GuVqUxxcXFKSkq84UiLYl3SUlmbtDS+ka11sifgVe7HqY01wc6sCXZmTVCdPUHr1bNnz/TqVfs3fNF0iqtaz/+HKlOZohSlqKqoVcXNgcl6pLnUdQ/sHpmWornWorXfOh100EH2BC1Ea76fcV9GQ7KeaEjWEw2ltayl5r4nb4r5V8xeUSh3H9y93rbV61c8s6LVJVi03JVWh44dO2bAgB1ZL8uXL6+3bfX6IUOG7PfclZWV+chHPpI//vGP+eAHP5ibb7651R1ZAgAAAAAAAAAAAAAAe2rdgnWFcmn/0nrbVq+v3q+1aHUJFkkybNiwJMn69evzyiuv1Nmu+nEnxx9//H7NWVlZmY9+9KP5zW9+kw984AO59dZb065du/0aEwAAAAAAAAAAAAAAWrLy9eWFckmn+k/MaN+5fa39WotWmWDxpje9qVB+8skn62w3c+bMWvvsraqqqnz84x/PrbfemvPOOy+33Xab5AoAAAAAAAAAAAAAAJpUxdaKbC3bWvjTFEkM2zZvK5Tbdaj/Ofrq9ds2baunZctUf/pIC3Xuuefmq1/9aqqqqvL3v/89p59+eq3t7rvvviRJnz59Mn78+H2aq6qqKp/4xCfyn//5n3nve9+b22+/fZfkiqVLl2bixIm55JJLcskll+zTPAAAAAAAAAAA0Niqqqry2L8/lvu+cl+2bdyWD0/+cIaMH7LH/RdNW5RHf/ZoFk5dmI0rNqa0b2kGjR2U0Z8evVfjAAAA+2bqtVMz5eophdev5JVGn7P6qRTby7fX27Z6ffsu7etp2TK1yhMsjjrqqJx33nlJkl//+tcpL9816+aFF17I/fffnyT58pe/nJKSmrkks2fPztFHH51BgwblwQcfrHOuz3zmM7nxxhvz7ne/O5MmTdplnCTZunVrZsyYkZdffnl/LgsAAAAAAAAAABrNmufX5Jbxt+TPl/452zbu/TfJTrlmSm5+48159g/P5thzjs3bfvq2HHfecfnnn/+ZW864Jfd+6d5GiBoAAKju1H89NV955SuFP5+d89lGn7NDtw6FcsWWinrbVj/tonq/1qJVnmCRJNddd10mT56cBQsW5Morr8y//du/Feq2bt2aSy65JNu3b8+JJ56Yz35210Xz7W9/O/Pnz0+SfOUrX8m0adN2aXPppZfm5z//eY488sh8+tOfzkMPPVRrLMuWLWugqwIAAAAAAAAAajNp4qRdflZZVJk1A9dkyQ+XpLiqab5j8vy7z2+SeaAhVT+1orhdcQadMiiLH1m8V2M8fsPjeeCqB1LSqSQX3X9RBo0ZVKgbfuHw3PzGmzPtumkp7VeacZePa+hLAAAA/n8lHUtS0vG1NIAOZY2fxNBjSI9CeePyjfW2rV5fvV9r0WoTLA499NDcfffdOeecc/KDH/wgs2fPztlnn53NmzfnlltuydNPP50RI0bkj3/8Yzp16rRL/8rKykK5qqpql/of/ehH+dnPfpYk+ec//5kzzzyz8S4GAAAAAAAAAAAayZSrp2TK1VMy9KyhmXjjxDzxyyf2KsFi48qNufeKHadTjLlsTI3kiiQZOHJgxl0+LlOunpLJX5+cYR8Ylu6DujfoNQAAAM2n37B+hXLZorJ625Ytfq2+3/H96mnZMjXN1zc0kjFjxmTWrFn56le/mkWLFuVLX/pSvvWtb6Vz58750Y9+lOnTp+fggw+ute9Xv/rVHHnkkTnkkEPyve99b5f6BQsWNHL0AAAAAAAAAADQ+KqqqjLxpom54C8X5KDBB+11/+k/np7yDeVJklEXj6q1zaiLRyVFScWWikz7wbT9ihcAAGhZuh/SPb2P7p0kWfbksnrbLp25dEefQd3T66hejR5bQ2u1J1i8qk+fPvnWt76Vb33rW3vVb/jw4Zk/f36d9T/60Y/yox/9aD+jAwAAAAAAAACA5jX+G+NTVFS0z/3n3DknSdJjSI/0OrL2B6S6D+qePsf2yaq5qzL3zrk564dn7decAABAy3LcecflH9/+R9YtWJe1L6xNzyN67tKmbElZVs1blSR53bmva5V7glZ9ggUAAAAAAAAAAFC//XmoqWxJWVY/uzpJMmDEgHrbDhw5cEefxWVZM3/NPs8JAAC0PGM+NyYdunZIksy8aWatbZ745RNJVVLSqSTjvjiuKcNrMBIsAAAAAAAAAACAWq2YvaJQ7j64e71tq9eveGZFPS0BAIDWprRfaSZcNyFJ8sj1j2TJY0tq1C97alke+v5DSZIzvnlGug+qf//QUpU0dwAAAAAAAAAAAEDLtG7BukK5tH9pvW2r11fvBwAAtAyzbptVKC+ftbxQfv7e51O2uCzJjvv6oROG1tr/pE+elA3LN+TBax7MLWfcklEXj0rf4/tm1bxVmXnjzGzbuC1jLx+bcZe3ztMrEgkWAAAAAAAAAABAHcrXlxfKJZ3qf9Sofef2tfYDAABahrsuvKvWn0/9ztRC+bDTD6szwSJJxl81PkMnDM30n0zPnDvnZNPPN6VLny4ZeubQjP7M6Bx+xuENHndTkmABAAAAAAAAAACtRMXWimzfur3wurETGbZt3lYot+vQrt621eu3bdpWT0sAAKA5XFV1VYOMM3jc4AweN7hBxmppJFgAAAAAAAAAAEArMfXaqZly9ZTC61fySqPOV/1Uiu3l2+tpWbO+fZf29bQEAABomSRYAAAAAAAAAABAK3Hqv56asV8YW3i9ZMmSXH/c9Y02X4duHQrlii0V9batftpF9X4AAACthQQLAAAAAAAAAABoJUo6lqSk42uP/HQoa9xEhh5DehTKG5dvrLdt9frq/QAAAFqL4uYOAAAAAAAAAAAAaJn6DetXKJctKqu3bdni1+r7Hd+vnpYAAAAtkwQLAAAAAAAAAACgVt0P6Z7eR/dOkix7clm9bZfOXLqjz6Du6XVUr0aPDQAAoKFJsAAAAAAAAAAAAOp03HnHJUnWLViXtS+srbVN2ZKyrJq3KknyunNfl6KioiaLDwAAoKFIsAAAAAAAAAAAAOo05nNj0qFrhyTJzJtm1trmiV8+kVQlJZ1KMu6L45oyPAAAgAYjwQIAAAAAAAAAAKhTab/STLhuQpLkkesfyZLHltSoX/bUsjz0/YeSJGd884x0H9S9yWMEAABoCCXNHQAAAAAAAAAAANC4Zt02q1BePmt5ofz8vc+nbHFZkqS0f2mGThhaa/+TPnlSNizfkAeveTC3nHFLRl08Kn2P75tV81Zl5o0zs23jtoy9fGzGXe70CgAAoPWSYAEAAAAAAAAAAAe4uy68q9afT/3O1EL5sNMPqzPBIknGXzU+QycMzfSfTM+cO+dk0883pUufLhl65tCM/szoHH7G4Q0eNwAAQFOSYAEAAAAAAAe4Tas25Zk7nsnzf30+y55Ylg3LN6SouChd+3fNIScfktdf8Poc/c6jU1RUVGv/dQvW5ceH/3iP5hr9mdF5+8/e3pDhAwAADeCqqqsaZJzB4wZn8LjBDTIWAABASyPBAgAA2oD9fZiqukXTFuXRnz2ahVMXZuOKjSntW5pBYwdl9KdHZ8j4IY1/MQAAwF752+V/y2P//lgqtlSkS98uef2HXp/eR/VOVVVVFkxekDl3zskz//VMDn/T4TnvjvPSuVfn5g4ZAAAAAACgWUiwAACAA1xDPkw15ZopmXL1lJR0KsnIi0em37B+WTV3VWbeODNz7piTcVeMy4TvT2jCqwMAAHZn1m2zUrGlIoedflg+8IcPpNNBnQp1J3/m5Dz3v8/lt+/+bV68/8VMmjgpH/3HR1NUXHvy9Zu+86a87pzX1Ttfp56d6q0HAAAAAABoqSRYAADAAa6hHqZ6/IbH88BVD6SkU0kuuv+iDBozqFA3/MLhufmNN2faddNS2q804y4f1yTXBgAA7JnikuKcc+s5NfYDrzr6nUdn1MWjMuM/ZmTRtEV55r+eybAPDKt1nG4Du6XPsX0aO1wAAAAAAIBmUdzcAQAAAI1vTx6mSlJ4mGpnG1duzL1X3JskGXPZmBrJFUkycOTAQlLF5K9PTtnisoa+BAAAYD8MGDEgBx16UJ31r3vva6dSPHf3c00REgAAAAAAQIsjwQIAANqA/X2YavqPp6d8Q3mSFJIxdjbq4lFJUVKxpSLTfjBtPyMGAAAaynsnvTdn//Lsetv0OKxHofzKwlcaOSIAAAAAAICWSYIFAAAc4BriYao5d87Z0W5Ij/Q6sletY3Qf1D19ju2TJJl759xUVVXtY8QAAEBDOvyMw9N/eP9622xZt6VQbl/afo/GrayoTPnG8v2KDQAAAAAAoCUpae4AAACAxnX4GYfvtk19D1OVLSnL6mdXJ9lxEkZ9Bo4cmFVzV6VscVnWzF+T3kf33oeIAQCAprb2xbWF8mGnHVZnuxXPrMjvP/j7LJy6MOtfXp+q7VVp36V9Bp0yKK+/4PU54cITUlziu51ag0kTJzV3CDn/7vObOwQAAKCZtYS9CQAAVCfBAgAAqPdhqhWzVxTK3Qd3r3ec6vUrnlkhwQL2wNOTns6SHy5JcVXzPYjowTYAYN5d85IkJZ1KMuIjI+ps9/C/PZzeR/fOyZ89OX1e1yfbt27PSw++lJk3zsyL97+Ymb+Ymff99/vSbWC3JoocAAAAAACg4UiwAAAA6n2Yat2CdYVyaf/SesepXl+9HwAA0HJtXLExz/7h2STJ2MvHptvBdSdHvO69r8t7fvOelHR87eOF4849LiM+OiK3jL8lix9ZnEkTJ+VjD32sRhsAAAAAAIDWwDndAADQilRsrcjWsq2FP9s2bNvvMXf3MFX5+vJCuaRT/Q9Ite/cvtZ+AABAw2iMPcG9V9ybii0VGThqYE772mm1tuk+qHsue/GyvHfSe2tNnBg4cmBO+787+i6dsTSP3/D4fscFAAAAAADQ1Hx9FAAAtCJTr52aKVdPKbx+pfiV/R5zdw9Tbdv82gNb7Tq0q3es6vXbNu3/g14AAEBNDb0nmHXbrDx161Mp7Vea9/3+fXWeOlFcUpweQ3rUO9bIj47MvVfcm1QlT/7nkznlslP2KzYAAAAAAICmJsECAABakVP/9dSM/cLYwuuFCxfm+tdfv8/j7cnDVNVPpdhevr3e8arXt+/Svp6WAADAvmjIPcFLD76Uuz9+dzp275gP3vPB3SZQ7E7nXp3T84ieWfv82ix/ennKN5SnQ9cO+zUmAAAAAABAU5JgAQAArUhJx5IaSRDtu+57EsOePkzVodtrD0RVbKmod8zqp11U7wcAADSMhtoTLHl0SSZNnJR2Hdrlgr9ekINPPLhB4ivtV5q1z69NqpINyzekV9deDTIuAAAAAABAUyhu7gAAAICmtzcPU1VPvNi4fGO941av399vvwUAABrHyzNezm1n3Zaqqqpc8NcLMuiUQQ02dlVlVaFc3M5HEAAAAAAAQOvi0w0AAGhj9vZhqn7D+hXKZYvK6m1btvi1+n7H96unJQAA0ByWPrE0v57w61RWVOaCv+x5csWD33ow8/4wb7ftNizbkCQpKi5Kab/S/YoVAAAAAACgqZXsvgkAAHCgqPEw1R5+U233Q7qn99G9s/q51Vn25LL6x5+5dEefQd3T66heDRIz0PgmTZzU3CEkSc6/+/zmDgEADmjLZy3Pryf8OtvLt+eCv1yQweMG79LmgasfyHN3P5dLHr+kxs8nf31yhp41NMe+69g6x1+/dH1eeemVJMnAUQPTvkv7hr0AAAAAAACARibBAsjTk57Okh8uSXFV8x1q40EqAGh8+/Mw1XHnHZd/fPsfWbdgXda+sDY9j+i5S9+yJWVZNW9VkuR1574uRUVFjXMhAADAXlsxe0VuffOtqdhckQ/9+UM59NRDa2237sV1WTpjaa11i6YtytayrenYvWOt9Y/f8HihPOqSUfsfNAAAAAAAQBNrvqepAQCAJlPjYap79v5hqjGfG5MOXTskSWbeNLPWvk/88omkKinpVJJxXxzXcMEDAAD7ZeWclbn1zbdm06pNGXv52FRVVmXBAwtq/bNh2YY6xylfX567L7k728u371L3/N+ez0PfeyhJcthph2XkR0c22vUAAAAAAAA0FidYAADAAa76w1Sn/d/TCg9T1aauh6lK+5VmwnUT8qdP/SmPXP9Ijj3n2Bwy+pBC/bKnluWh7+94mOqMb56R7oO6N/h1AAAAe69iS0VuffOt2bhiY5LkwWsezIPXPLjX4/Q/oX+WP7U8z/zumSydsTTHf+D49DyiZ7Zt3JYFDyzI3P+em1QlR77tyLznN+9JcYnvdwIAAAAAAFofCRYAAHAAa6iHqZLkpE+elA3LN+TBax7MLWfcklEXj0rf4/tm1bxVmXnjzGzbuC1jLx+bcZc7vQIAAFqKii0V9Z5Ksac++eQns3j64sz7n3lZ9NCizPzFzGxeuznt2rdL1wFd8/oPvj7DLxyeI886sgGiBgAAAAAAaB4SLAAA4ADWUA9TvWr8VeMzdMLQTP/J9My5c042/XxTuvTpkqFnDs3oz4zO4Wcc3mBzAQAA+69Tj065quqqBhlr0JhBGTRmUIOMBQAAAAAA0BJJsAAAgANYQz5M9arB4wZn8LjBDTomAAAAAAAAAABAcytu7gAAAAAAAAAAAAAAAACamxMsgBZh0sRJzR1Czr/7/OYOAQAAAAAAAAAAAABoJk6wAAAAAAAAAAAAAAAA2jwJFgAAAAAAAAAAAAAAQJsnwQIAAAAAAAAAAAAAAGjzJFgAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzZNgAQAAAAAAAAAAAAAAtHkSLAAAAAAAAAAAAAAAgDavpLkDAAAAAAAAaGv+5yP/k96dezd3GADAPpg0cVJzh9AinH/3+c0dAgAAADQ4J1gAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzZNgAQAAAAAAAAAAAAAAtHklzR0AQEsxaeKk5g4hSXL+3ec3dwgAAAAAAAAAAAAA0OY4wQIAAAAAAAAAAAAAAGjzJFgAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzZNgAQAAAAAAAAAAAAAAtHklzR0AAAAAAAAAbc+kiZOaOwQAAAAAAKjBCRYAAAAAAAAAAAAAAECbJ8ECAAAAAAAAAAAAAABo8yRYAAAAAAAAAAAAAAAAbZ4ECwAAAAAAAAAAAAAAoM2TYAEAAAAAAAAAAAAAALR5EiwAAAAAAAAAAAAAAIA2T4IFAAAAAAAAAAAAAADQ5pU0dwAAAAAASTJp4qTmDiHn331+c4cAAAAAAAAAADQTJ1gAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzStp7gAAqGnSxEnNHULOv/v85g4BAADarKcnPZ0lP1yS4irfi2FvAgAAAAAAAEBT8kk9AAAAAAAAAAAAAADQ5kmwAAAAAAAAAAAAAAAA2jwJFgAAAAAAAAAAAAAAQJsnwQIAAAAAAAAAAAAAAGjzJFgAAAAAAAAAAAAAAABtXklzBwAAAAAAAAAAAK3VpImTUllUmTUD12TJD5ekuKppv+909ebVTTofAADAgUyCBQC7mDRxUrPOX1lUmUO+cEizxgAAADS/5t6bJMn5d5/f3CEAAAAAAAAA0ESaNmUeAAAAAAAAAAAAAACgBZJgAQAAAAAAAAAAAAAAtHklzR0AAAAAQEsxaeKkZp2/sqgyGdisIQAAAAAAAABAm+UECwAAAAAAAAAAAAAAoM1r9SdYrFq1Kj/+8Y9z1113ZcGCBenQoUOOOeaYnH/++fnkJz+ZDh06NMg899xzT2644YbMmDEjq1evzsCBAzN+/PhceumlGTVqVIPMAQAAjW3Tqk155MePZN5d87Juwbq069AufY7pk2HnD8tJnzwp7Tq0a+4QAaBFaQmnmhzyhUOaNQbgwGJPAAAA2BcAAEDbZk9Qv1Z9gsWjjz6a4cOH51vf+lYOPvjgfO9738uVV16ZDRs25LLLLsspp5ySl19+eb/mqKyszCWXXJJ3vOMdeeihh3LRRRflJz/5SSZMmJDbb789Y8aMyU9+8pMGuiIAAGg8Sx5dkp8P/3n+8a1/pNvB3fKW770lb7zyjSnfUJ6/XPaX3HTKTVn/8vrmDhMAAGgk9gQAAIB9AQAAtG32BLvXak+wWLhwYd75zndm5cqV+fznP5/rr7++UHfppZfmbW97WyZPnpyzzz47Dz30UDp27LhP81x55ZW58cYb06dPnzz88MM58sgjkySXXHJJ3vOe9+Qd73hHPv/5z2fgwIE577zzGuTaAACgob2y8JXc/s7bs2nlpoz5/Ji89fq3FupOvvTk/OZtv8mCyQsy6exJ+dhDH0tJx1a7VQAAAGphTwAAANgXAABA22ZPsGda7VVfccUVWblyZQ499NB897vfrVHXsWPH3HjjjTnmmGMyY8aM/OxnP8sXv/jFvZ7jmWeeyXXXXZck+eY3v1lIrnjVW9/61lx44YW55ZZbcumll+btb397SktL9/2iAACgkdx7xb3ZtHJTDjr0oLzlu2+pUVfSsSQTb5yYnx3zsyydsTSP/uzRjPviuGaKFABoiSZNnNTcISRJzr/7/OYOgWpawrqwJvacPQEAAGBfAAAAbZs9wZ5plQkW8+fPzx133JEkueiii2o9nWLo0KE544wzct999+V73/teLrvsspSU7N3lXnvttamsrEznzp3zoQ99qNY2H//4x3PLLbdk+fLluemmm3LZZZft/QUB0CK1hAdFkpbxsEhL+LtoCX8P0Fqtnr86z9zxTJJk+EXDa80u7zW0Vw4/4/C8cN8Leeh7D+WUy05JcUlxU4cKAAA0AnsCAADAvgAAANo2e4I91yqv+M4770xVVVWS5C1veUud7SZMmJAkWblyZR544IG9mmPr1q25++67kyRjxoxJt27dam03duzYdO3aNUkKSR8AANCSzLlzTrLj9jlHvOWIOtsdMWFH3aaVm7LggQVNEBkAANAU7AkAAAD7AgAAaNvsCfZcq0ywuP/++wvlESNG1Nlu5MiRtfbZE48//njKysp2O0dxcXGGDx+eJHn44YezefPmOtuWl5cnSbZVbturWKAxbdu+Lfc8fk+2bbcuaTm2bd+WX/3qV9m6dWtzhwI1bN261dqkxXn1HvPV/63NgvsXFMoDRgyos92Aka/VvXj/i/sfHLuwJ2Bn7sfZmTXBzuyP2Jl9CTuzJ4C2w70iLYn1SEtiPdJStPS1aF/QcuzJPg72VEv/t4fWxXqiIVlPNBRrqeHYE+y5Xc/2aAVmz56dJOnWrVsOOuigOtsNHjy4UH7mmWf2aY6dx6lvnsrKysybN69GYkd1r37oWVFZsVexQGPaVrktf5n5l7znre9Jx+KOzR0OJNmxLm+55Za8Yfkb0rWka3OH0+wmTZzU3CG0CC3h72FDxYbc8pfmX5vn331+s839qpbw36Ml/D20BK/eY9b3gN2K2SuSJB26dUingzrV2e6gwa/dW698ZmUDRUh19gTszP04O7Mm2Nmr+6Mf/vCHKS0tbe5waAG2bt1qTVCDPQG0He4VaUmsR1oS65GWoqWvRfuClmNP9nGwp1r6vz20LtYTDcl6oqFYSw3HnmDPtboEi61bt2bZsmVJkv79+9fbtnr9ggUL9mqe6u33dp66EiwAAKCpVWytyIZlG5IkXfvXnxhU2v+1B/TWLVjXmGEBAOyTlpDo29w2VGxo7hBalJawJlp68rc9AQAAYF8AAABtmz3B3ilu7gD21vr16wvlTp3qzp5Jks6dO9faryXNAwAAjal8/WvHS5d0qj+/un3n9oXy1vW+NQkAAA4E9gQAAIB9AQAAtG32BHun1Z1gsXnz5kK5Q4cO9batXr9p06Zmn6eysjJJsmzjsho/LykuSfvi9rV1gUa3efvmFBcXZ+3WtdlSsaW5w4Ek1iUtV0tZm3t7MldjWLVlVXOH0CL+HppD5bbKbN+6vfB64fMLd/z8/7/X3Nm2zdsK5XYd2tU7dvX6bZu21dOSfWVPwM5ayu8WWg5rgp29uiYWLlyYsrKyZoujJdz/sUNLWROJdfGqpt6b2BO0fq/+t3p548vZtP21zxTsC9gd94q0JNYjLYn12Hza6vv0tVm1ZVWTrsXK7ZVJ1Wuv121Zt+Pn9gWtwqv/nf75z3/W+HnHjh13+4zSgcj7C/vH70EakvVEQ7KeaCitZS0192cFy5bveA7FnqBhtLoEi+qnRZSXl9fTsmZ9ly5dmn2etWvXJkmuf+z6vYoFmsKXJ3+5uUOAXViXtFTNvTY/d/jnmnX+lsLfQ02v3mvurHpW+fby7bW2qa2+fRcP9TQGewLq0ty/W2h5rAl2NnLkyOYOgRbGmmg5WsrexJ6g9Vi+fHmS5NpHrm3mSGit3CvSkliPtCTWY9NrKffCLU1zrsXly5fn0EMP3eXn9gUty6v7t/e85z3NHAkHEr8HaUjWEw3JeqKhtPS11FL2R/YEDaPVJVh069atUN6ypf5MpOqnUFTv11zznHLKKfnHP/6Rnj17pri4uPDztpqBDgDA3qsor0jl1teyzSsrK7Ny3cqMHjO61vYdur12n1mxpaLesatnq3fs1nE/I6U29gQAAOwve4LWb+TIkfYFAADsl7r2BXUl49sXtCw+KwAAYH/ZEzSuVpdg0bFjxwwYMCDLli0rfMtTXarXDxkyZK/mqd6+oeYpKSnJqaeeuldxAADA7hyZI+usK+lYkq4DumbDsg3ZsHxDveNsXL6xUO4xpEdDhUc19gQAADQGe4LWxb4AAIDGYF/QetgTAADQGOwJGk7x7pu0PMOGDUuSrF+/Pq+88kqd7RYvXlwoH3/88fs0R5IsWrSo3ravzlNcXJxjjz12r+YBAIDG1m9YvyRJ+frybHml7tPZyhaXFcp9j+/b6HEBAABNw54AAACwLwAAgLbNnmDPtcoEize96U2F8pNPPllnu5kzZ9baZ0+cdNJJ6dat227nqKyszFNPPZUkGTt2bDp37rxX8wAAQGMb8qYhhfKyJ5fV2W7pzKWF8uFvOrwxQwIAAJqQPQEAAGBfAAAAbZs9wZ5rlQkW5557boqKipIkf//73+tsd9999yVJ+vTpk/Hjx+/VHB07dszZZ5+dJJk+fXo2bKj9OJRHHnmkUHfeeeft1RwAANAUjjv3uGTH7XNe/PuLdbZ74b4XkiRd+nTJkPFDmiAyAACgKdgTAAAA9gUAANC22RPsuVaZYHHUUUcVkhl+/etfp7y8fJc2L7zwQu6///4kyZe//OWUlJTUqJ89e3aOPvroDBo0KA8++GCt83zlK19JcXFxNm/enNtvv73WNjfddFOSpH///rn44ov3+ZoAAKCx9D6qd44/7/gkyaxfz8r28u27tFn7wtq8eP+OzdMbvvyGFJe0yq0CAABQC3sCAADAvgAAANo2e4I912qv+rrrrkvfvn2zYMGCXHnllTXqtm7dmksuuSTbt2/PiSeemM9+9rO79P/2t7+d+fPnZ8mSJfnKV75S6xzDhg3LFVdckST52te+lhdeeKFG/d/+9rfccsstSZKf/vSnKS0tbYhLAwCABjfhugnp0rdL1i1Yl79fWfMUuIqtFbn7krtTtb0qA08cmJM/e3IzRQkAADQWewIAAMC+AAAA2jZ7gj1TVFVVVdXcQeyr6dOn55xzzsnSpUtz1lln5eyzz87mzZtzyy235Omnn86IESPypz/9KQcffPAufd///vfnv/7rv5Ikp5xySh5++OFa56isrMwnPvGJ3HTTTendu3c+8YlPZMiQIZkxY0ZuvvnmVFZW5t/+7d9y2WWXNeq1AgDA/lo8fXF+d87vsmHphgw9a2iOOfuYbNu8LU/d8lRWPL0iA0YMyAf/9MF0O7hbc4cKAAA0AnsCAADAvgAAANo2e4Lda9UJFkmyatWq/OhHP8pdd92Vl156Ke3bt8/RRx+dD37wg/nUpz6VDh061Npv1qxZee9735vNmzfn9ttvz2mnnVbvPPfcc09+/vOf5/HHH8/atWszYMCAnH766bnssssyatSoxrg0AABocJtWbcojP3ok8+6al3UvrUu79u3S++jeGfbBYRn9qdFp16Fdc4cIAAA0InsCAADAvgAAANo2e4L6tfoECwAAAAAAAAAAAAAAgP1V3NwBAAAAAAAAAAAAAAAANDcJFgAAAAAAAAAAAAAAQJsnwQIAAAAAAAAAAAAAAGjzJFgAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzZNgAQAAAAAAAAAAAAAAtHkSLAAAAAAAAAAAAAAAgDZPggUAAAAAAAAAAAAAANDmSbAAAAAAAAAAAAAAAADaPAkWAAAAAAAAAAAAAABAmyfBAgAAAAAAAAAAAAAAaPMkWAAAAAAAAAAAAAAAAG2eBAsAAAAAAAAAAAAAAKDNk2ABAAAAAAAAAAAAAP1zhU8AAQAASURBVAC0eRIsAAAAAAAAAAAAAACANk+CBQAAAAAAAAAAAAAA0OZJsAAAAAAAAAAAAAAAANo8CRYAAAAAAAAAAAAAAECbJ8ECAAAAAAAAAAAAAABo8yRYAAAAAAAAAAAAAAAAbZ4ECwAAAAAAAAAAAAAAoM2TYAEAAAAAAAAAAAAAALR5EiwAAAAAAAAAAAAAAIA2T4IFAAAAAAAAAAAAAADQ5kmwAAAAAAAAAAAAAAAA2jwJFgAAAAAAAAAAAAAAQJsnwQIAAAAAAAAAAAAAAGjzJFgAAAAAAAAAAAAAAABtngQLAAAAAAAAAAAAAACgzZNgAQAAAAAAAAAAAAAAtHkSLAAAAAAAAAAAAAAAgDZPggUAAAAAAAAAAAAAANDmSbAAAAAAAAAAAAAAAADaPAkWAAAAAAAAAAAAAABAm1fS3AG0JRUVFXniiSfSv3//FBfLbQEAYP9VVlZm+fLlGTlyZEpK3N63dPYEAAA0NHuC1se+AACAhmZf0LrYEwAA0NDsCRqWv8Em9MQTT+Tkk09u7jAAADgAPfrooxk9enRzh8Fu2BMAANBY7AlaD/sCAAAai31B62BPAABAY7EnaBgSLJpQ//79kyQPP/xwBg0a1MzRwA4VFRWZOXNmRo0aJWuNFsO6pKWyNmmJFi9enLFjxxbuNWnZ7AnYmd8t7MyaYGfWBDuzJtiZPUHr8+p/q0cffTQDBw5s5mhoTfwOoCWxHmlJrEdaiuZci0uXLs3JJ59sX9BK+KyAhuT3IA3JeqIhWU80FGtpz9gTNCwrrQm9eqzfgAEDbJBoMSoqKrJgwYIMGjTILx9aDOuSlsrapCWqqKhIEkdItxL2BOzM7xZ2Zk2wM2uCnVkT7MyeoPV59b/VwIED7QvYK34H0JJYj7Qk1iMtRUtYi/YFrYPPCmhILeHfHg4c1hMNyXqioVhLe8eeoGH4WwQAAAAAAAAAAAAAANo8CRYAAAAAAAAAAAAAAECbJ8ECAAAAAAAAAAAAAABo8yRYAAAAAAAAAAAAAAAAbZ4ECwAAAAAAAAAAAAAAoM2TYAEAAAAAAAAAAAAAALR5EiwAAAAAAAAAAAAAAIA2T4IFAAAAAAAAAAAAAADQ5kmwAAAAAAAAAAAAAAAA2ryS5g4AAAAAAABoXJtWbcozdzyT5//6fJY9sSwblm9IUXFRuvbvmkNOPiSvv+D1OfqdR6eoqGi3Yy2atiiP/uzRLJy6MBtXbExp39IMGjsooz89OkPGD9mjeCorKjPjxhl5+rans2reqlRsrchBhx6UY951TE657JR0HdB1P68YAAAAAABg70mwAAAAAACAA9jfLv9bHvv3x1KxpSJd+nbJ6z/0+vQ+qneqqqqyYPKCzLlzTp75r2dy+JsOz3l3nJfOvTrXOdaUa6ZkytVTUtKpJCMvHpl+w/pl1dxVmXnjzMy5Y07GXTEuE74/od54Nq3alNvfeXuWTF+SPsf2yRu+/IZ06Noh8/80Pw9996E88csn8r4735fDTjusof8qAAAAAAAA6iXBAgAAAAAADmCzbpuVii0VOez0w/KBP3wgnQ7qVKg7+TMn57n/fS6/ffdv8+L9L2bSxEn56D8+mqLiXU+yePyGx/PAVQ+kpFNJLrr/ogwaM6hQN/zC4bn5jTdn2nXTUtqvNOMuH1drLJUVlfndOb/LkulLMnjc4Fx434Vp37l9kmT0p0fn71f+PVOvnZrfvuu3ufjRi9P7qN4N/LcBAAAAAABQNwkWAADQhlRVVeWxf38s933lvmzbuC0fnvzhDBk/ZK/GePaPz2b2pNlZ8uiSrF+6PiUdS9J1QNf0ObZPDht/WI45+5j0PLxnnf0rKyoz48YZefq2p7Nq3qpUbK3IQYcelGPedUxOueyUdB3QdT+vEgAA2FlxSXHOufWcGskVrzr6nUdn1MWjMuM/ZmTRtEV55r+eybAPDKvRZuPKjbn3inuTJGMuG1MjuSJJBo4cmHGXj8uUq6dk8tcnZ9gHhqX7oO67zDXjxhlZOHVhUpRMvHFiIbniVeOvHp85d8zJmn+uyd++8Lecf/f5+3nlAABAbVY/tzpP/OcT+edf/pmyxWXZtnFbSvuX5qBDD8rgNwzOEW85Ike8+Yg6+y+atiiP/uzRLJy6MBtXbExp39IMGjsooz89eq8/dwAAAGhJips7AAAAoGmseX5Nbhl/S/586Z+zbeO2ve6/fun63PrmW/Pbd/02619en1EfH5W3/fRtGXfFuJR0Lsm8/5mXv37+r3ns3x+rc4xNqzblP0/9z9zz6Xuyec3mvOHLb8iE709Iz8N75qHvPpSfD/95Xnrwpf25TAAAoBYDRgzIQYceVGf96977ukL5ubuf26V++o+np3xDeZJk1MWjah1j1MWjkqKkYktFpv1g2i71VVVVmXrt1CTJoW84NH2P67tLm3bt2+WEj5ywI47/fS7LnlpWz1UBAAD74sFvPZifv/7nefo3T+eItxyRN3/nzXnL996SQ99waBY/vDgPffeh3Pn+O+vsP+WaKbn5jTfn2T88m2PPOTZv++nbctx5x+Wff/5nbjnjltz7pXub8GoAAAAa1gFxgkVVVVX+/d//PV/5yleycePGTJ48OePHj2/QOe65557ccMMNmTFjRlavXp2BAwdm/PjxufTSSzNqVO0fJgEAQEtQ/dSK4nbFGXTKoCx+ZPFejbFp9ab8+i2/zurnVufc352b4993fI36N175xvz3Bf+dp3/zdJ1jVFZU5nfn/C5Lpi/J4HGDc+F9Fxa+rXb0p0fn71f+PVOvnZrfvuu3ufjRi9P7qN57f7EAAMAu3jvpvenSu0u9bXoc1qNQfmXhK7vUz7lzzo52Q3qk15G9ah2j+6Du6XNsn6yauypz75ybs354VoqKigr1ix9ZnLJFZUmSw99yeJ2xDJ0wNJO/NnnHvHfMyYATBtQbOwAAsOfu/fK9mfb9aRn2gWE5+5dnp32XmqfKDb9oeG5/++119n/8hsfzwFUPpKRTSS66/6Iap9sNv3B4bn7jzZl23bSU9ivNuMvHNdp1AAAANJZWf4LF888/X0h02LhxY4OPX1lZmUsuuSTveMc78tBDD+Wiiy7KT37yk0yYMCG33357xowZk5/85CcNPi8AADSUKVdPyZ8v/XMOPfXQfGr2pzL0rKF7PcY9n7knK+eszPhrxu+SXPGq0686PZ17d0770va11s+4cUYWTl2YFCUTb5xYSK541firx6fXkb2yZd2W/O0Lf9vrGAEAgNodfsbh6T+8f71ttqzbUijvfE9ftqQsq59dnWTHSRj1GThy4I4+i8uyZv6aGnUv3v9ioVzfOP1P6J+i4qJd+gAAAPvnn3/5Z6Z9f1r6Ht8377713bskVyTJkWcdmSMmHFFrkvbGlRtz7xU7TqcYc9mYGskVyY79wKtJFZO/Pjlli8sa4SoAAAAaV6tNsKiqqsrPfvaznHDCCXnyySdzyimnNMo8V155ZW688cb06dMn06dPz7XXXptLLrkkv/jFL/KHP/whlZWV+fznP5877rijUeYHAID9VVVVlYk3TcwFf7kgBw0+aK/7L5q2KM/87pl06NYhp3y+7vvu3kf1zpdWfSlnXH1GrTFMvXZqkuTQNxyavsf13aVNu/btcsJHTkiSPPe/z2XZU8v2OlYAAGDfrH1xbaF82GmH1ahbMXtFodx9cPd6x6lev+KZFTXqVs5eWSjXtzcp6ViSLn13PMy18pmVdbYDAAD2XFVVVf7y+b8kSU79yqlp175dnW0v+MsF+eyzn93l59N/PD3lG8qTJKMuHlVr31EXj0qKkootFZn2g2kNEDkAAEDTarUJFldffXUuvfTSnHrqqZk9e3bOOuusBp/jmWeeyXXXXZck+eY3v5kjjzyyRv1b3/rWXHjhhamqqmq0EzQAAGB/jf/G+Iz6P7V/0LEnZt44M0kydMLQXU6d2FOLH1mcskU7vqnq8LccXme7oRNeO11jzh1z9mkuAABg7827a16SpKRTSUZ8ZESNunUL1hXKpf1L6x2nen31fns7Ttf+XZMkW8u2ZvPazfW2BQAAdu+lB1/K6mdXp6i4KEdPPHqfxphz54737XsM6ZFeR/aqtU33Qd3T59g+SZK5d85NVVXVvgUMAADQTFptgkVVVVVuuumm/OUvf8ngwYMbZY5rr702lZWV6dy5cz70oQ/V2ubjH/94kmT58uW56aabGiUOAADYH0VFRfvct6qyKnPvmpsk6X9C/xp1FVsrsm3Ttj0a58X7XyyUB4wYUGe7/if0T1Fx0S59AACAxrNxxcY8+4dnkyRjLx+bbgd3q1Ffvr68UC7pVFLvWNWTsqv3S5Kt67fu8TglnV+r33kcAABg772aHHHQYQel00GdCj+vqqrK1vVbd5sIUbakLKufXZ2k/vf5k2TgyIE7+iwuy5r5a/YnbAAAgCZX/ycYLdg3vvGN/XpQbHe2bt2au+++O0kyZsyYdOvWrdZ2Y8eOTdeuXbNhw4bccccdueyyyxotJgAAaGqr56/O1ld2PAR10KEHZcPyDZn63amZ+/u5hRMpOvXslMPfdHjGXT4ug04ZVOs4K2evLJQPGnxQnfOVdCxJl75dsnH5xqx8ZmWd7QAAoK2q2FqR7Vu3F15v27BnSc/1ufeKe1OxpSIDRw3MaV87bZf6bZtfm6Ndh3b1jlW9fueE7IrNFQ0yDgAAsPeWPr40yY73+qsqq/LEzU/kiZueyMuPv5zKisoUlxRn4IkDc8JFJ2TUx0elXfua9+wrZq8olLsP7l7vXNXrVzyzIr2P7t2AVwIAANC4Wm2CRWMmVyTJ448/nrKyHQ+MjRgxos52xcXFGT58eKZNm5aHH344mzdvTufOnRs1NgAAaCornn7tA5NlTy7LX7/w17Tv3D4nf+7k9Du+X7as25Knf/N05v5+bub+fm7O+OYZtT6QtW7BukK5tH9pvXN27d81G5dvzNayrdm8dnM693R/DQAAr5p67dRMuXpK4fUrxa/s13izbpuVp259KqX9SvO+378vJR13/dig+qkU28u371JfXfX69l3a16irfirF/owDAADsveVPL0+y4+TqX5/56yyYvCAnfOSEjP3i2LTr0C4LH1qYR3/6aO75zD2Z9etZOf/u89OlT5dC/715n796ffV+AAAArUGrTbBobLNnzy6UBw8eXG/bV+srKyszb968jBw5slFjAwCg7WqMb6utz8YVGwvl6T+enh6H98jFj1yc0n6vfTgy/ILh+esX/5pHfvhIJn99cg469KCccNEJNcbZun5roVzSqf5tSPWHrsrXl0uwAACAak7911Mz9gtjC68XLlyY619//T6N9dKDL+Xuj9+djt075oP3fDA9hvSotV2Hbh0K5YotFbW2eVX10y6q90uSjt067vE41U+72HkcAABo63b+rKB8fXm97bdt2pZtG3fcqy/8x8Ikybn/dW6OP+/4Qptjzj4mx517XH512q+y+JHFufMDd+bCey8sfAFq9Tl29z5/9STt3cUGAADQ0kiwqMOCBQsK5f79+9fbtnr9ggULWnyCxaSJk5o7hJx/9/nNHQIAQKvU0N9Wuztby7bWeP2W776lRnLFq978nTdn9qTZ2bB0Q+77yn05/v3H1/jm2+oPR7Xr0G6X/tVVr9+2qXETSNqqlrAnSOwLAAD2RUnHkhr32u277tvpDkseXZJJEyelXYd2ueCvF+TgEw+us231xIuNyzfW2W7n+p0TNnoM6ZHFjywutOt+SPc6x9mwfEOSpGP3jpKuASAt4/0c7+VAy7HLZwWp/7OCnd/rP/JtR9ZIrnjVIaMPyUmfPimP/PCRvPj3F/Pc3c/lmLOPSVIzmdr7/ACNrznu/yqLKrNm4Jos+eGSFFcVu/8DoM2SYFGH9evXF8qdOnWqt23nzq99uFO9X10qKyuzfXv9x583pqqiqmab+1XNef3UtH379sKafPWbJ6C5WZe0VNYmLcHYL43NyZedXHi9cOHCXD9i376tdk9Ubq8slNt1aFf4IGVnJR1Lcuw5x+bx//d4NizdkBf//mKOevtRr9VXO5Vie3n994LV69t32beHxVo6e4Id7Av8bmFX1gQ7sybYmTXBziorK3ffaCcvz3g5t511W6qqqnLh3y7MoFMG1du+37B+hXLZorJ625Ytfq2+3/H9atT1Hda3UH5l0SsZOGpgrWNUbK3IppWbdvQ5vm+tbQ4E27dvd0/MXvE7gJbEemx6LeH9nJb6e8t6pKVoyrW482cFS5Ysqfdku+rv9SfJcecdV2fbYR8Ylkd++EiSZNZtswqfC1Q/lcL7/A2juT8r4MDg9+CBqznu/6qKqlKVqsL/+jeK/eHfJxqKtbRn/JvdsCRY1GHz5s2FcocO9R8/Xr1+06ZNux374YcfzrPPPlt43a5du5SUNN1/ilUDVzXZXHWZMmXK7hvRJCorK7No0aJUVlamuLi4ucOBJNYlLZe1SUu0evXqRh2/Y7eOhXKvo3rVe+z3gBMGFMpLHl1SI8Gi+jgVWypSn+qnXXToVv+9eGtlT7CDfYHfLezKmmBn1gQ7sybY2d7uCZY+sTS/nvDrVFZU5oK/XrDb5Iok6X5I9/Q+undWP7c6y55cVv/4M5fu6DOoe3od1atG3eFvOjyTMzlJsuzJZTn2XcfWOsbyp5anqrKq0OdA9dBDD6Vnz56F1029L6D18TuAlsR6bHot4f2clvpejvVIS9Gca3Ht2rX11ld/jz5J+r++f51t+w/vnxQlqdrxXv+rqr9fv7v3+aufdnGgvs/fEJr7swIODH4PHria5f6vKNncdXPWFK1Jqlru/R+tg3+faCjW0p7Z3Z6AveOuvA7VT6UoLy+vt231+i5duux27BtuuKHGhuiEE07IiBEj9j7IfbS52+bdN2pkCxcubO4Q+P9VVVXllVd2HBcqu4+WwrqkpbI2aYnKyur/9tj91bn3a/fFnXt2rqdl0qXPa/fCG1dsrFHXY0iPLH5k8Y665RvT/ZDudY6zYfmGJEnH7h13O2drZU+wg32B3y3syppgZ9YEO7Mm2Nne7AmWz1qeX0/4dbaXb88Ff7kgg8cN3qXNA1c/kOfufi6XPH5JjZ8fd95x+ce3/5F1C9Zl7Qtr0/OInrv0LVtSllXzdnz4/7pzX7fLGh10yqB0H9Q9ZYvL8uLfX8z4q8bXGucL971QY94D1c9//vNm3RfQ+vgdQEtiPTa9lvB+Tkt9L8d6pKVozrW4fv36eus7dO2Qdh3aFU6W6NSzU51tSzqWpEPXDilfX17jvf4eQ3oUyhuXb6ylZ2qtr96Pmpr7swIODH4PHria6/5vW4dtSdcd5ZZ6/0fr4N8nGoq1tGd2tydg70iwqEO3bt0K5S1bttTbtvppF9X71eUnP/lJBg167VvBOnbsmI4dO9bTo2Hd8b47mmyuupz37fOaOwT+fxUVFXn44YczduxY34RAi2Fd0lJZm7RECxcuzGWXXdZo4/c7vl+hvH1b/ccJVlW9dkxtUXHNTW3fYX0L5VcWvZKBowbWOkbF1opsWrnjVLi+x/ettc2BwJ5gB/sCv1vYlTXBzqwJdmZNsLM93ROsmL0it7751lRsrsiH/vyhHHrqobW2W/fiuiydsXSXn4/53JhM//H0lG8oz8ybZubN33nzLm2e+OUTSVVS0qkk4744bpf6oqKinHrlqbnn0/dk4dSFWTVvVfoc26dGm8qKyjz5qyeTJEe946gaJ+UdaH7605/mkEMOKbxu6n0BrY/fAbQk1mPTawnv57TU93KsR1qK5lyLS5Ysyec+97k664uKi9LndX2y/KnlSZLKbZX1D1j1Wr9X9Rv22ucFZYvqT/QuW/xaffXPGaipuT8r4MDg9+CBqznu/6qKqrKm/5r0Wt4rRVVFLfb+j9bBv080FGtpz+xuT8DesdLqMGTIkEJ5+fLl9batXl+9X1169uyZvn2b72GxdpXtmm3uV9kQthyvHjHZsWNHv3xoMaxLWiprk5aoffv2jTp+3+P67vimqg3l2bBsQ71tX02MSJJuB9dMPD78TYdnciYnSZY9uSzHvuvYWsdY/tTyVFVWFfocqOwJdrAv8LuFXVkT7MyaYGfWBDvbkz3Byjkrc+ubb82mVZty2v89LVWVVVnwwIJa29Z131/arzQTrpuQP33qT3nk+kdy7DnH5pDRryUHLHtqWR76/kNJkjO+eUa6D6r91LoTP35iZt8+OwunLszdH787F/ztgrTv/No1PPCNB7Jm/pp06tEpZ11/1m6vrTXr06dPs+4LaH38DqAlsR6bXkt4P6elvpdjPdJSNOda7NChw27bHHLyIYUEiw3LNuyS7PyqbZu2pXxjeZKa7/V3P6R7eh/dO6ufW51lTy6rd66lM3ckbXcf1D29juq1R9fQFjX3ZwUcGPwePHA1x/1fZVFlilOc4sriFFcVt9j7P1oH/z7RUKylPbMnewL2nJVWh2HDhhXKixYtqrft4sWLkyTFxcU59tjaHxQDAIDWqF2Hdjl64tGZPWl2Xln4Sjau2JjSfqW1tn15xsuF8mGnH1ajbtApg9J9UPeULS7Li39/MeOvGl/rGC/c90KhfNx5x+3/BQAAQBtXsaUit7751mxcsTFJ8uA1D+bBax7cp7FO+uRJ2bB8Qx685sHccsYtGXXxqPQ9vm9WzVuVmTfOzLaN2zL28rEZd/mup1e8qrikOO+/6/25/Z23Z+HUhfnFib/IiI+OSIfSDpl/z/zM/9P8dOnTJefdeV56H9V7n+IEAAB2ddy5x2XmjTOTJEseW5Ih44fU2m7pE0sLJ1js/F7/cecdl398+x9Zt2Bd1r6wNj2P6LlL/7IlZVk1b1WS5HXnvi5FRUW7tAEAAGjJips7gJbqpJNOSrduOzLxn3zyyTrbVVZW5qmnnkqSjB07Np07d26K8AAAoMmM/cLYpChJVfLUr5+qtU35hvLMu2tekqT/Cf0zeNzgGvVFRUU59cpTkyQLpy4sfLhSXWVFZZ781ZNJkqPecVQGnDCg4S4CAADaqIotFbs9jW5vjL9qfD76j4/m6HcenTl3zsmfP/vnPPPbZzL0zKG56P6LcuZ1Z+52jC59uuRjUz+Wt/+/t6dTj06Zeu3U3HvFvVn7/NqM+9K4fHLWJzPk9CENFjMAAJAc8ZYj0v+E/kmSp297OlVVVbW2m/XrWYXy6E+NrlE35nNj0qHrjm/GnXnTzFr7P/HLJ5KqpKRTScZ9se7kawAAgJbKCRZ16NixY84+++z85je/yfTp07Nhw4Z07dp1l3aPPPJINmzY8eHUeeed19RhAgBAozv4pIMz+tOj89i/P5YHv/lghp45NP1f379QX1VZlT9f+udsXr057Tq2y8RfTKz1G6lO/PiJmX377CycujB3f/zuXPC3C9K+c/tC/QPfeCBr5q9Jpx6dctb1ZzXJtQEAwIGuU49OuarqqgYdc/C4wbskVe+t4pLijP7U6F0e2AIAABpHUXFR3vH/3pFbzrgly2ctz4PffDCn/9/Ta7R5/m/P70iQSHLKv5ySgaMG1qgv7VeaCddNyJ8+9ac8cv0jOfacY3PI6EMK9cueWpaHvv9QkuSMb56R7oO6N/JVAQAANLw2m2Axe/bsvOc978mmTZty++2357TTTtulzVe+8pVMmjQpmzdvzu23355LLrlklzY33XRTkqR///65+OKLGz1uAADYF7Nue+0bp5bPWl4oP3/v8ylbXJYkKe1fmqEThtba/60/fmu2bdyWJ3/1ZH55yi8z4mMjMmDEgGxZtyWzJ83O0hlL06lnp5z7u3NzyMmH1DpGcUlx3n/X+3P7O2/PwqkL84sTf5ERHx2RDqUdMv+e+Zn/p/np0qdLzrvzvPQ+qncDXj0AAAAAe2vSxEl11lUWVWbNwDVZ8sMlKa4qbrQYzr/7/EYbG6AtGjxucM793bm566K78sBVD2ThPxbm6LOPTkmnkix6aFFm3TYrVdurMuayMZlw3YRaxzjpkydlw/INefCaB3PLGbdk1MWj0vf4vlk1b1Vm3jgz2zZuy9jLx2bc5U6vAAAAWqc2m2Dx7W9/O/Pnz0+yI5Fi2rRpu7QZNmxYrrjiinzve9/L1772tbzlLW/JEUccUaj/29/+lltuuSVJ8tOf/jSlpaVNEzwAAOyluy68q9afT/3O1EL5sNMPqzPBorhdcd5187sy7PxhmXnjzDz7P89m5i9mpqRzSXof3Tvjrx6fkz97cjr36lxvHF36dMnHpn4sM26ckVm/npWp107N9q3bc9ChB2Xcl8bllM+fkm4Du+3zdQIAAAAAAHU79t3H5jNzPpNHfvxI/nnPP3P/lfencntlug3slhMuPCEnffqkGqdS1Gb8VeMzdMLQTP/J9My5c042/XxTuvTpkqFnDs3oz4zO4Wcc3kRXAwBNo74E9KYiAR2g6bTqBIvbbrutUJ4167Vv5L333nuzePHiJDtOlpgwYdes+srKykK5qqqqzjm+853vZPXq1bnpppty8skn5xOf+ESGDBmSGTNm5Oabb05xcXF++MMf5rzzzmuISwIAgEZxVdVVDTLO0DOHZuiZtSdh7KnikuKM/tTojP7U6AaJCQAAAAAA2HPdB3XPmdedmTOvO3Ofxxg8bnAGjxvcgFEBAAC0DK06weLCCy+s9eff+c53CuXTTz+91gSLr371q5k5c2Y2b96c733ve3XOUVxcnBtvvDHnnHNOfv7zn+c///M/s3bt2gwYMCAf+MAHctlll2XUqFH7fzEAAAAAAAAAAAAAAECzadUJFvWdPLE7w4cPz/z58/e4/dvf/va8/e1v3+f5AAAAAAAAAAAAAACAlqu4uQMAAAAAAAAAAAAAAABobhIsAAAAAAAAAAAAAACANk+CBQAAAAAAAAAAAAAA0OZJsAAAAAAAAAAAAAAAANo8CRYAAAAAAAAAAAAAAECbV9LcAQAAAAAAAAAAAAAAAI3nV+N/lZemvLTbdu1L2+fKDVfW22bRtEV59GePZuHUhdm4YmNK+5Zm0NhBGf3p0RkyfkgDRdw8JFgAAAAAAAAAAAAAAAC7NeWaKZly9ZSUdCrJyItHpt+wflk1d1Vm3jgzc+6Yk3FXjMuE709o7jD3mQQLAAAAAAAAAAAAAAA4wB08+uCcc+s59bYpKi6qs+7xGx7PA1c9kJJOJbno/osyaMygQt3wC4fn5jfenGnXTUtpv9KMu3xcg8XdlCRYAAAAAAAAAAAAAADAAa59l/bpc2yffeq7ceXG3HvFvUmSMZeNqZFckSQDRw7MuMvHZcrVUzL565Mz7APD0n1Q9/2OuakVN3cAAAAAAAAAAAAAAABAyzX9x9NTvqE8STLq4lG1thl18aikKKnYUpFpP5jWlOE1GAkWAAAAAAAAAAAAAABAnebcOSdJ0mNIj/Q6sletbboP6l44IWPunXNTVVXVZPE1FAkWAAAAAAAAAAAAAADQxmxdvzVVlbtPgihbUpbVz65OkgwYMaDetgNHDtzRZ3FZ1sxfs/9BNrGS5g4AAAAAAAAAgNdMmjipuUMAAAAA4AC0bdO2TLlmSubcOSdrn1+bbZu2pai4KL2P6Z2j3nFUxv7L2HQ7uNsu/VbMXlEodx/cvd45qteveGZFeh/du+EuoAlIsAAAAAAAAAAAAAAAgAPcy4+9nBVPr8iIj43IaV87Le1L22fVvFWZ+YuZefjfHs6M/5iR99z2nhxz9jE1+q1bsK5QLu1fWu8c1eur92stJFgAAAAAAAAAAAAAAEArULG1Itu3bi+8Ll9fvsd9S/uV5sOTP5y+x/Ut/Ozodxydkz97ciZNnJQX7n0hd5x3Rz48+cMZPG5wrXOUdKo/BaF95/b7FFtLIcECAAAAAAAAAAAAAABaganXTs2Uq6cUXr+SV/ao37m/PTftOrZL556dd6kr6ViSd//q3fnxET/O9q3bc89n78knZn6iUL9t87ZCuV2HdvXOU71+26Zt9bRsmSRYAAAAAAAAAAAAAABAK3Dqv56asV8YW3i9ZMmSXH/c9bvt13VA13rrux3cLUe+9cg8+4dns+yJZVn6xNIMHDkwSc1TKbaXb69riF3q23dpX0/Llqm4uQMAAAAAAAAAAAAAAAB2r6RjSTp271j406FbhwYb++CTDi6UF01bVChXn6NiS0W9Y1Q/7aIhY2sqEiwAAAAAAAAAAAAAAKCNK+1XWihvWLahUO4xpEehvHH5xnrHqF5fvV9rIcECAAAAAAAAAAAAAADauKrKqkK5uN1rqQb9hvUrlMsWldU7Rtni1+r7Hd+vnpYtU0lzBwAAAAAAAAAALdGkiZOaOwQAAACA/fbs3c9m+VPL88avvjFFRUV1tqt+akXXgV0L5e6HdE/vo3tn9XOrs+zJZfXOtXTm0h19BnVPr6N67WfkTc8JFgAAAAAAAAAAAAAAcICa+/u5mfz1ydm4fGO97RY/srhQPvTUQ2vUHXfecUmSdQvWZe0La2vtX7akLKvmrUqSvO7c19WbzNFSSbAAAAAAAAAAAAAAAIAD3Pw/z6+zbvX81XnhvheSJIPHDU6/4/vVqB/zuTHp0LVDkmTmTTNrHeOJXz6RVCUlnUoy7ovjGijqpiXBAgAAAAAAAAAAAAAADnB//9e/Z/Vzq3f5+eY1m/P783+fqu1Vad+lfd72s7ft0qa0X2kmXDchSfLI9Y9kyWNLatQve2pZHvr+Q0mSM755RroP6t4IV9D4Spo7AAAAAAAAAAAAAAAAoHH0Pa5vitsXZ+PyjblhxA0Z9oFhOXj0wWnXoV1WzV2Vp259KptWbkpp/9Kc+7tzM3DkwFrHOemTJ2XD8g158JoHc8sZt2TUxaPS9/i+WTVvVWbeODPbNm7L2MvHZtzlrfP0ikSCBQAAAAAAAAAAAAAt0KSJk5o7BIADwhu+9IaccNEJmfvfc/PCvS/kpQdfyjO/eybbt21P556d0394/xz9zqMz8v+MTMduHesda/xV4zN0wtBM/8n0zLlzTjb9fFO69OmSoWcOzejPjM7hZxzeRFfVOCRYAAAAAAAAAAAAAADAAazrgK4Z/enRGf3p0fs91uBxgzN43OAGiKrlKW7uAAAAAAAAAAAAAAAAAJqbBAsAAAAAAAAAAAAAAKDNk2ABAAAAAAAAAAAAAAC0eRIsAAAAAAAAAAAAAACANk+CBQAAAAAAAAAAAAAA0OZJsAAAAAAAAAAAAAAAANo8CRYAAAAAAAAAAAAAAECbJ8ECAAAAAAAAAAAAAABo8yRYAAAAAAAAAAAAAAAAbZ4ECwAAAAAAAAAAAAAAoM0rae4AAAAAAACAplNVVZXH/v2x3PeV+7Jt47Z8ePKHM2T8kHr7XF109V7P8/673p9j331sjZ898I0HMuXqKXvU/+OPfTwHn3TwXs8LAAAAAACwryRYAAAAAABAG7Hm+TX548f+mJcefKnR5yrtX9rocwAAAAAAADQkCRYAANCG7Ms31dalfGN5fj7s51m3YF2S5LIXL0uPIT1226+yojIzbpyRp297OqvmrUrF1oocdOhBOeZdx+SUy05J1wFd9ykeAACgbtX3AsXtijPolEFZ/MjivRrj2Hcfmzdf++Z62yyduTT//aH/Tu9jemfw2MF1tvvM3M/sdr492V8AAAAAAAA0JAkWAADQRjT0N9Xe/7X7C8kVe2rTqk25/Z23Z8n0JelzbJ+84ctvSIeuHTL/T/Pz0HcfyhO/fCLvu/N9Oey0wxokRgAAYIcpV0/JlKunZOhZQzPxxol54pdP7HWCRceDOqbPsX3qbfPwDx9Okpx4yYn1ttvdOAAAAAAAAM1BggUAABzgGuKbane25LElefSnj+5Vn8qKyvzunN9lyfQlGTxucC6878K079w+STL606Pz9yv/nqnXTs1v3/XbXPzoxel9VO/9ihEAAHhNVVVVJt40MaP+z6h96n/Y6YftNimifEN5Zk+anXYd2+WED5+wT/MAAAAAAAA0p+LmDgAAAGhcU66ekj9f+ucceuqh+dTsT2XoWUP3a7zt27bn7ovvTvvO7XP4mw7f434zbpyRhVMXJkXJxBsnFpIrXjX+6vHpdWSvbFm3JX/7wt/2K0YAAKCm8d8Yv8/JFUnykQc+klO/cmq9bZ6+/emUbyjPce89Ll16d9nnuQAAAAAAAJqLBAsAADjAvfpNtRf85YIcNPig/R7voe8/lOWzludN33lTug/uvscxTL12apLk0Dccmr7H9d2lTbv27XLCR3Z8y+1z//tclj21bL9jBQAAdigqKmr0OWb8YkaS5MRPnLhX/co3lmf7tu2NERIAAAAAAMBeKWnuAAAAgMY1/hvjG+xhqtXPrc4/vvWPHHLyITn5MyfnDx/7wx71W/zI4pQtKkuSHP6Wuk+9GDphaCZ/bXKSZM4dczLghAH7HzQAANDolj6xNEtnLE2fY/vksNMO2237J295Mk/c9ERWzlmZzWs2J0m6HdIth7/p8Jzy+VMycNTAxg4ZAAAAAABgFxIsAADgANdQyRVVVVW5++N3p3J7ZSbeNDFFxXs+7ov3v1goDxhRd9JE/xP6p6i4KFWVVTX6AAAALduM/9hxesWoS0btUfs/fOQPOfbdx+bMH5yZ0n6lWf/y+syeNDuzfj0rs26bldO+flrOuPqMxgwZAAAAAABgFxIsAACAPTLjFzPy0oMv5dQrT03/1/ffq74rZ68slA8afFCd7Uo6lqRL3y7ZuHxjVj6zss52AABAy1G+sTxP3/502nVslxMuOmG37YvaFeU9v3lPhr1/WI2fj7p4VCb/38l58JsP5sFrHkzHbh0z7vJxjRU2AAAAAADALoqbOwAAAKDlW//y+tz35fvS66heOf3rp+91/3UL1hXKpf1L623btX/XJMnWsq3ZvHbzXs8FAAAHsoqtFdlatrXwZ9uGbc0dUmZPmp3y9eU57tzj0qV3l3rbnvL5U/Ivi/5ll+SKV43/xvj0P2FHQvfk/zs5G5ZtaPB4AQAAAAAA6uIECwAAYLfu+cw92frK1nzgfz6Qkk57v43Yun5roby7/iWdX6svX1+ezj077/V8AABwoJp67dRMuXpK4fUrxa80YzQ7zPjFjCTJiZecuNu2nXp0SqceneqsLyouyoiPjMhf/+WvqdhckacnPZ2x/zK2wWIFAAAAAACojwQLAABoRSq2VmT71u2F103xbbVz7pyTef8zLyP/z8gMGT9kn8ao2FxRKLfr0K7ettXrt21q/m/jBQCAluTUfz01Y7/wWsLBwoULc/3rr2+2eJY9uSwvP/Zy+hzbJ4eddliDjHnwSQcXyounLU7+pUGGBQAAAAAA2C0JFgAA0Io09bfVblm3JX++9M8p7V+aCddN2Odxqp9Ksb18ez0ta9a379J+n+cEAIADUUnHkpR0fO3+un3X5r1nfvw/Hk+SnPiJ3Z9esadK+5UWyhuWbWiwcQEAAAAAAHZHggUAALQiTf1ttX+7/G/ZsGxD3vvb96Zzz877PE7Hbh0L5YotFfW0rHnaRYduHfZ5TgAAoHGVbyzP7Ntnp6RTSU646IQGG7eqsqpQLmpX1GDjAgAAAAAA7I4ECwAAaEWa8ttqF0xZkCf+84kcdvphOeLNR2TTqk27tNm+9bXTJjav3ZwOXXckRBS1K6qRkNFjSI8sfmRxkmTj8o3pfkj3OufdsHzHN9R27N5xv5I6AACAxjX7t7OztWxrhl8wPJ177f7effms5Xn2j89m+AXD02NIjzrbVT+1otvAbg0RKgAAAAAAwB6RYAEAANRqweQFSVXy0pSXcl3f63bb/hejflEoH3TYQfn8gs8XXvcd1rdQfmXRKxk4amCtY1RsrcimlTsSOfoe37fWNgAAQMsw8xczkySjLhm1R+2XzlyayV+fnF5H9qo3weLV5OwkGXzq4P2KEQAAAGBvTZo4qblDAACakQQLAACgVidcdEIOPfXQettMu25anv/b80mSc247J137d02SlHSuudU4/E2HZ3ImJ0mWPbksx77r2FrHW/7U8lRVVhX6AAAALdPyWcuz5NEl6fO6PjnsjYftVd9//vmfGfaBYbXWbS/fnid++USSpEO3DnW2AwAAAAAAaAwSLAAAgFr1PKJneh7Rs942s26bVSgf+oZD6/wW2kGnDEr3Qd1TtrgsL/79xYy/anyt7V6474VC+bjzjtvrmAEAgKbx+H88niQ58ZIT97rvrN/MyjHvOiave8/ravy8cntl/vSZP2XNP9ckSc78tzPTpXeX/Q8WAAAAAABgD0mwAAAAGl1RUVFOvfLU3PPpe7Jw6sKsmrcqfY7tU6NNZUVlnvzVk0mSo95xVAacMKAZIgUAgANX9QTp5bOWF8rP3/t8yhaXJUlK+5dm6ISh9Y6zbdO2PP2bp1PSqSQnXHTCHs9/0KEHpVPPTtmydkv+69z/ylFvOyqHv+XwdO7ZOWWLyzL7t7Oz8pmVKW5fnDN/cOY+JW8AAAAAAADsDwkWAABAkzjx4ydm9u2zs3Dqwtz98btzwd8uSPvO7Qv1D3zjgayZvyadenTKWdef1YyRAgDAgemuC++q9edTvzO1UD7s9MN2m2Ax+3ezs/WVrRl+wfB07tV5j+c//E2H5wtLvpDn7n4u8++Zn6Uzl2bKN6Zk26Zt6dCtQ3oN7ZU3fPkNOelTJ6XHYT32eFwAAAAAAICGIsECAADagIb6ptokmfc/81K+oTxJsvaFtTV+3qVPlyTJ4HGD0/OInjX6FZcU5/13vT+3v/P2LJy6ML848RcZ8dER6VDaIfPvmZ/5f5qfLn265Lw7z0vvo3rv+8UCAAC1uqrqqgYZZ+RHR2bkR0fuU9/2ndvn+Pcdn+Pfd3yDxAIAAAAAANCQJFgAAEAb0FDfVJskf/n8X/LKS6/s8vO//stfC+V33fyuXRIskqRLny752NSPZcaNMzLr17My9dqp2b51ew469KCM+9K4nPL5U9JtYLc9uSQAAAAAAAAAAIAGJcECAADagIb6ptok+fyCz+9X/+KS4oz+1OiM/tTohgkIAAAAAAAAAACgAUiwAAAAAAAAAACAA9ivxv8qL015abft2pe2z5Ubrqy3zaJpi/Lozx7NwqkLs3HFxpT2Lc2gsYMy+tOjM2T8kAaKGAAAoHlIsAAAAAAAAAAAAHZryjVTMuXqKSnpVJKRF49Mv2H9smruqsy8cWbm3DEn464Ylwnfn9DcYQIAAOwzCRYAAAAAAAAAAHCAO3j0wTnn1nPqbVNUXFRn3eM3PJ4HrnogJZ1KctH9F2XQmEGFuuEXDs/Nb7w5066bltJ+pRl3+bgGixuA5jFp4qTmDgEAmoUECwAAAAAAAAAAOMC179I+fY7ts099N67cmHuvuDdJMuayMTWSK5Jk4MiBGXf5uEy5ekomf31yhn1gWLoP6r7fMQMAADS14uYOAAAAAAAAAAAAaLmm/3h6yjeUJ0lGXTyq1jajLh6VFCUVWyoy7QfTmjI8AACABiPBAgAAAAAAAAAAqNOcO+ckSXoM6ZFeR/aqtU33Qd0LJ2TMvXNuqqqqmiw+AACAhiLBAgAAAAAAAAAA2pit67emqnL3SRBlS8qy+tnVSZIBIwbU23bgyIE7+iwuy5r5a/Y/SAAAgCZW0twBAAAAAAAAAAAAjWvbpm2Zcs2UzLlzTtY+vzbbNm1LUXFReh/TO0e946iM/Zex6XZwt136rZi9olDuPrh7vXNUr1/xzIr0Prp3w10AAABAE5BgAQAAAAAAAAAAB7iXH3s5K55ekREfG5HTvnZa2pe2z6p5qzLzFzPz8L89nBn/MSPvue09OebsY2r0W7dgXaFc2r+03jmq11fvBwAA0FpIsAAAAAAAAAAAgFaiYmtFtm/dXnhdvr58j/qV9ivNhyd/OH2P61v42dHvODonf/bkTJo4KS/c+0LuOO+OfHjyhzN43OBaxy/pVP+jRu07t9/ruAAAAFoSCRYAAAAAAAAAANBKTL12aqZcPaXw+pX8f+zdd3hUVf7H8c+kk0pISAiEQAi9FyMQQUKJyC6IDRWQIoKIDV0Rd1ddxO6ySlnXdUEFFEVFBUSwUAOhKiGEEpQegiQkhBBIL/P7gx9DQpJJJjNp8H49T57nzj3fc75nxuvMXO5877lQbp97v7hX9s72quddr0Sbg7OD7lx0p+a2mKuCnAKteWKNJkdPNrXnZeWZtu2d7M3mKdqel5lnJhIAAAAAaicKLAAAAAAAAAAAAAAAAIA6os/f+qj3X3qbHp8+fVqz288228e9kbvZdo/GHmp5e0v9tvI3Je5J1Jk9ZxTQLUBS8VUpCnILyhqiRLujq6OZSAAAAAConexqegIAAAAAAAAAAAAAAAAAKsbB2UHOns6mPycPJ5uM2/imxqbtU9tOmbaLjp+fnW92jKKrXdhqXgAAAABQnSiwAAAAAAAAAAAAAAAAAG5wbn5upu1LiZdM2/Wb1zdtZyRlmB2jaHvRfgAAAABQV1BgAQAAAAAAAAAAAAAAANzgjIVG07ad/dWfFPl19DNtp59KNztGesLVdr8OfmYiAQAAAKB2osACAAAAAAAAAAAAAAAAuE79tuo3bX5ts4xGo9m4oqtWuAe4m7Y9m3jKp7WPJCkxJtHsGGeiz1zuE+ipBq0aVHbKAAAAAFBjKLAAAAAAAAAAAAAAAAAArlNx38Rp40sblZGUYTYuYUeCaTuoT1CxtvYj2kuS0k6k6fyx86X2Tz+drpRDKZKkdve2k8FgsGbaAAAAAFAjKLAAAAAAAAAAAAAAAAAArnOHfzhcZtu5w+d0bN0xSVLTsKby6+BXrL3nUz3l5O4kSYr+MLrUMfZ8tEcySg4uDgp7NsxGswYAAACA6uVQ0xOwVkpKiubOnavly5frxIkTcnJyUps2bTRy5Eg9+uijcnJysjrHoUOH9P7772vTpk06fvy4srOz5e3trU6dOunuu+/WhAkTVK9ePRs8GwAAAAAAAAAAAAA1ZemwpTU9BQAAqsz6v61X0C1B8mntU2x/VmqWvhn5jYwFRjm6OmrIe0NK9HXzc1PErAitnrJaO2bvUNu72qpJaBNTe+LeRG3951ZJUv9X+8sz0LNqnwwAAAAAVJE6XWCxa9cu3XnnnTpz5owiIiI0ZcoUZWVlafHixZo6daoWLVqk77//Xo0bN650jv/85z965plnlJeXp65du2ratGny9/dXXFycFi5cqA0bNmjevHn64Ycf1KJFCxs+OwAAAAAAAAAAAAAAAMA6Dds3lJ2jnTKSMvRB1w/U8YGOahzaWPZO9kqJS9HeT/YqMzlTbv5uuvfLexXQLaDUcW569CZdSrqkza9s1uL+i9V9Ync17NBQKYdSFL0gWnkZeeo9rbfCprF6BQAAAIC6q84WWMTHx2vo0KFKTk7W008/rdmzZ5vannzySQ0ZMkQbN27UHXfcoa1bt8rZ2dniHD/99JOeeOIJSdKoUaO0ePFiOThcfcn+8pe/KDQ0VL///ruGDh2qvXv3ytHR0fonBwAAAAAAAAAAAAAAANjALdNvUZexXRT3bZyOrT2mk5tP6sCXB1SQV6B63vXk39lfrYe2VreHu8nZw/zva8JnhCskIkQ75+3Uwa8PKvO/mXL1dVXIbSEKfTxUwf2Dq+lZAQAAAEDVqLMFFs8995ySk5MVFBSkt956q1ibs7OzFixYoDZt2mj37t1677339Oyzz1qc45///KckydHRUXPnzi1WXCFJzZo104svvqipU6cqLi5OK1as0IgRIyr/pAAAAAAAAAAAAAAAAAAbc2/krtDHQhX6WKjVYzUNa6qmYU1tMCsAAIC6aemwpTU9BY1cNbKmpwBct+xqegKVcfjwYS1btkySNHbs2FJXpwgJCVH//v0lSW+//bby8/MtzvPLL7+YxvL19S015uabbzZtb9++3eIcAAAAAAAAAAAAAAAAAAAAAACg5tXJAouvv/5aRqNRkjRo0KAy4yIiIiRJycnJ2rRpk8V5cnNzJUn16tUrM8bV1dW0nZGRYXEOAAAAAAAAAAAAAAAAAAAAAABQ8+pkgcWGDRtM2127di0zrlu3bqX2qaguXbpIko4cOVLmChhxcXGm7VatWlmcAwAAAAAAAAAAAAAAAAAAAAAA1Lw6WWCxf/9+SZKHh4e8vLzKjGvatKlp+8CBAxbnmT59uiTp4sWL+ve//12ivaCgQG+//bYkyd3dXaNHj7Y4BwAAAAAAAAAAAAAAAAAAAAAAqHl1rsAiJydHiYmJkiR/f3+zsUXbT5w4YXGue+65R4sXL5a7u7uee+45TZs2Tbt27dKJEyf0448/qm/fvtqzZ498fX317bffKiAgwOIcAAAAAAAAAAAAAAAAAAAAAACg5tW5AouLFy+atl1cXMzG1qtXr9R+lhg7dqyOHDmisWPHas6cOerZs6eCg4M1ZMgQHTt2TK+99ppiY2MVERFRqfEBAAAAAAAAAAAAAAAAAAAAAEDNc6jpCVgqKyvLtO3k5GQ2tmh7ZmZmpfJ98sknmj59upKSknTPPffozjvvVIMGDXTy5El9/PHHmjNnjtLS0vTiiy/Ky8urQmNeuHBBqamppsfOzs5ydnau1Pwqo9BQWG25ypKfn1/TU8D/y8/PV2FhIf9NUKtwXKK24thEbVRYWPPf7WA5zgku4/2UzxaUxDGBa3FM4FocE7gW5wR11/nz5+Xq6mp6XN3nBah7+AyoHrXlnLm2MxqMMsooo8GoQlXda1YbjneOiatqw3+P0vD+iNqiJo9Fjv+6qaavFeD6wOdg1bhRvwNW1/d8VE5d+//8en9/qg3vE9fra3ut6/1YshVeH9uqcwUWRVelyM3NNRtbtL3oRYqKmjNnjp555hlJ0vvvv68pU6YUa3/kkUc0atQo/etf/9LKlSu1adMmNW7cuNxxu3btWuzxuHHjNH78eIvnV1mpAanlB1WxqKiomp4C/l9hYaHi4+MlSXZ2dW5RG1ynOC5RW3FsojY6d+5cTU8BlcA5wWWcF/DZgpI4JnAtjglci2MC1+KcoO7q3LlzscfVfV6AuofPgOpRW86ZazujjMryyFKqUmWQocry1IZ/O+CYuKo2/PcoDe+PqC1q8lgs+iN91B01fa0A1wc+B6vGjfodsLq+56Nyauv38bJc7+9PteF9oq4dE5V1vR9LtsI5gW3VuQILDw8P03Z2drbZ2KKrXRTtVxEJCQmaPn26JKlPnz4liiskyd7eXh988IFWr16tw4cP6+GHH9YPP/xQ7tgxMTFq2rSp6XF1V6Cffvd0teUqS58+fWp6Cvh/V6rWwsLC5OBQ594ScJ3iuERtxbGJ2ujKSSTqFs4JLuO8gM8WlMQxgWtxTOBaHBO4FucEdVdsbKyaNGlieszdalEePgOqR205Z67tjAajUpWqBokNZDBW3Q+vasO/HXBMXFUb/nuUhvdH1BY1eSwmJCRUaz7YRk1fK8D1gc/BqnGjfgesru/5qJza+n28LNf7+1NteJ+oa8dEZV3vx5KtcE5gW3XuSHN2dlajRo2UmJiopKQks7FF25s3b25RnmXLlikvL0+SdNddd5UZ5+3trfDwcK1evVo//vijjh49qpCQELNje3l5qUGDBhbNx5bsjDVfwcWbXO1iZ2cnBwcH/rugVuG4RG3FsYnahur8uolzgst4L72MzxZci2MC1+KYwLU4JlAU5wR1l7e3d42eF6Bu4jOg6tWWc+barlCFMsggg9FQpa9ZbTjWOSauqg3/PcrC+yNqi5o6Fjn266aavlaA6wefg7Z3o34HrK7v+aicuvj/+PX8/lQb/h+5Hl/XslzPx5Kt8NrYVs3/H14JHTt2lCRdvHhRFy5cKDOuaDVOhw4dLMrx+++/m7abNWtmNrZo8UZMTIxFeQAAAAAAAAAAAAAAAAAAAAAAQM2rkwUWAwYMMG2bK2iIjo4utU9FFL3rl9FoNBtbWFho2i4oKLAoDwAAAAAAAAAAAAAAAAAAAAAAqHl1ssDi3nvvlcFgkCStX7++zLh169ZJknx9fRUeHm5RjhYtWpi2jx49aja2aHtQUJBFeQAAAAAAAAAAAAAAAAAAAAAAQM1zqOkJVEarVq00YsQIffXVV/r000/14osvysnJqVjMsWPHtGHDBknS888/LweH4k91//79uvvuu5WZmanPP/9ct956a7H2P//5z3ruuedkNBq1bNkyPf/886XOJSkpSZGRkZIkPz8/hYaG2uppAgAAAAAAAAAAAMANa+mwpTU9BQAAAAAAANxg6uQKFpI0a9YsNWzYUCdOnNDf//73Ym05OTl65JFHVFBQoB49euiJJ54o0f/111/X4cOHdfr0af31r38t0d62bVs9/PDDkqTdu3fr9ddfLxGTk5Oj8ePHKycnxzSmvb29LZ4eAAAAAAAAAAAAAAAAAAAAAACoRnVyBQtJCgoK0qpVq3TXXXfpnXfe0f79+3XHHXcoKytLixcv1r59+9S1a1d99913cnFxKdG/sLDQtG00GkvN8Z///EdZWVn67LPP9OKLL+qnn37S8OHD1aBBA508eVKffvqpjh07JgcHB7366quaOHFilT1fAAAAAAAAAAAAAAAAAAAAAABQdepsgYUk9ezZU7GxsZozZ46WL1+u6dOny9HRUa1bt9acOXM0ZcoUOTk5ldr3hRdeUHR0tLKysvT222+XGuPk5KQlS5Zo8uTJWrRokbZv366XX35ZWVlZ8vDwUEhIiJ599llNmjRJbdq0qcqnCgAAAAAAAAAAAAAAAAAAAAAAqlCdLrCQJF9fX7322mt67bXXLOrXuXNnHT58uEKxffv2Vd++fSszPQAAAAAAAAAAAAAAAAAAAAAAaqWfn/tZ2/+1XZLUb0Y/hb8cXm6fU9tOadd7uxQfFa+Msxlya+imwN6BCn0sVM3Dm1fthItIik2SeyN3ufm52WxMqwosJkyYoMmTJ6tnz562mg8AAAAAAAAAAKhCRqNRv/znF6376zrlZeRp3MZx5V7sSDuRprnBcys0fujjofrTe38yG1OYX6jdC3Zr35J9SjmUovycfHkFeanN8DbqNbWX3Bu5V/TpAAAAAAAAAACASjoTfUY7Zu+wqE/kK5GKnBkpBxcHdZvYTX4d/ZQSl6LoBdE6uOygwp4LU8Q/Iyo9p5UTVqrH5B4K7BlYbuxX93yl88fOq+2dbXXXkrvkWM+x0nmvsLOm86JFi3Ts2DGrJwEAAAAAAAAAAKpe6tFULQ5frB+e/EF5GXk1MofMlEx93OdjrXlsjbJSs3TL87co4p8R8g721ta3tuq/nf+rk5tP1sjcAAAAAAAAAAC4URTmF+q7id/JWGCscJ9fP/hVm2Zskr2TvcZuGKshc4eox6QeGvzuYI3fPF6Obo7aNmubtv1rW6XnFbMoRuePnq9QbMshLeXT2keHVhxS1JtRlc5ZlFUrWEjSU089pV9//VUPP/yw2rdvb4s5AQAAAKgilblTrXS5Wv3AVwcUHxWvlEMpyrmQIyd3J3m38Fbz/s3VY3IP+bTyqdAcuFMtAAAAUP2KngvY2dspsFegEnYkWDzOgDcGqN1d7czGuHi7lNlWmF+oL+/6Uqd3nlbTsKYas26M6W5SoY+Fav3f1yvqzSh9MfwLTdw1scLnGQAAAAAAAAAAwDLb3tmmxD2JajO8jX5b+Vu58RnJGVr73FpJUs+pPUusMBHQLUBh08IUOTNSG1/aqI4PdJRnoGeVzP2KIfOGSJK+GfmNDi47qP6v9Ld6TKtWsJCkRo0a6T//+Y86deqkPn366JNPPlFWVpbVEwMAAABgW5W5U23aiTQt7LtQ83vM19a3t0qSbn7iZv35gz+r97Teys/J1/Z3tuv9Du9XqPKcO9UCAAAANSNyZqR+ePIHBfUJ0pT9UxQyOKRS43gEeMi3ra/ZP3f/soumdy/YrfioeMkgDVswrMRS3eEzw9WgZQNlp2Xr57/8XKk5AgAAAAAAAAAA81KPpipyZqQahzbWzU/eXKE+O+fuVO6lXElS94ndS43pPrG7ZJDys/O17Z3Kr2JhqeYDmutC/AWbjGV1gcXf/vY3JSQk6O2331ZqaqrGjx+vxo0b64knntDevXttMUcAAAAAVjAajdr13i590OUDJcYkKrBXYPmd/l/KoZTLP36SNHjOYE2ImqDwl8PV/eHuuvWFW/Xo3kfVaVQnFeYVau1za/Xr/34tc6xr71T7SPQjumX6LQp9LFSjVo9Sn7/1UWZypr4Y/oXOHT5n9fMGAAAAcJXRaNSwD4fpwR8flFdTrxqbw5XluYNuCVLD9g1LxNg72qvL+C6SpN+//12JexOrdY4AAAAAAAAAANwIvn/kexXmFWrYgmGys69YScHBrw9Kkuo3r68GLRuUGuMZ6Cnftr6SpLiv42Q0Gis3QUPFQ/Nz8nXkhyOyd7KvXK5rOFjTuV+/fvL395evr6+mTZumadOmacuWLVqwYIEWLlyo//73v+revbseeeQRjRw5Uu7uZd+1CgAAAEDViJwZqciZkQoZHKJhC4Zpz0d7lLAjwaIxWkS0UK+pvUrst7O309D5Q3XkpyPKOpel9X9dr67jusrBpeSpRkXuVHtw2UGlHknVz3/5WSNXjbRojgAAAADKFv5yuAwGC65GVIGEHQlKP5UuSQoeFFxmXEhEiDa+uFGSdHDZQTXq0qha5gcAAAAAAAAAwI0g+qNoHd9wXLc8f4sadWmkE5tOlNsn/XS6zv12+Yapjbqa/3f7gG4BSolLUXpCulIPp8qntU+ZsTvm7tDOuTtL7P/p6Z+04YUN5c6rMK9QGWczVJhfqOCBZV97sIRVK1hs3LhRAwcOLLavb9+++uSTT3TmzBnNmzdP+fn5mjx5sgICAjRp0iTt3FnyBQAAAABQdWxxp9o2w9uU2ebk5qSWg1tKkrLTsnVyy8lS58CdagEAAICaUxXFFYX5hcrNyK1w/PENx03b5i6++Hfxl8HOUKIPAAAAAAAAAACwzqXES1r73Fp5h3ir34x+Fe53dv9Z07ZnU0+zsUXbzx44ayby8m+N0k6kFfuTpIzkjBL7S/tLP52ugrwCObo6KnxmeIWfjzlWrWBhjqenpx5//HE9/vjj2rFjh8aNG6ePP/5YH3/8sTp27KhJkybpwQcfVP369atqCgAAAABk3Z1qG9/UWKN/GK3GoY3Nxnk1u1q4cSH+Qol27lQLAAAAXB/OHjirb0Z9o/ioeF3846KMBUY5ujoqsFegOj3YSV3GdJGdQ+n3dkren2zaNlf87eDsINeGrspIylDygeQy4wAAAAAAAAAAgGXWPLFG2eezNWLZCDnWc6xwvyuFD5Lk5u9mNrZoe9F+pWnUtZG6jutabF/M4hg169tM3i28zU/KIDm6OsqntY/a39teHo09zMdXUJUVWEjS8ePH9eGHH2rRokVKTLx891mj0ah9+/bpqaee0vTp03XPPffoiSeeUM+ePatyKgAAAMANy5o71br6uqrl7S3LjctOyzZtO7k5lWi39E61xkIjd6oFAAAAaqHt/9oun9Y+uvmJm+XbzlcFOQU6ufmkohdcXk48en607vv2PnkElLyIYcnFF3d/d2UkZSgnPUdZ57NUz7uerZ8KAAAAAAAAAAA3lEMrDynumzh1Hd9VLQa2sKhv7sWrK1o7uJgvQShauFG0X2naDm+rtsPbFtsXszhGPSb3UKdRnSyao62UfhupCpowYYJ27txZbF9eXp6+/PJLRUREqFWrVnrrrbd05swZGY1G1a9fX0899ZT27dunuLg4Pf7441q7dq3CwsI0YsQIZWRkWPVkAAAAANSMtONplzcMUtNbmpZot/ROtZK4Uy0AAABQivycfOWk55j+8i7lVWv+dve006Oxj+qW6beozbA2an9vew2ZN0QTtk2Qs6ezEnYkaOmwpcrPyS/RN+dijmm7vIsvDvWutpd38QUAAAAAAAAAgBvJtdcKKvLv6DnpOVrz+Bq5NnTVbe/cZnHOvKyr1yPsnezNxhZtz8u0/DpG837Ny71RU1WyagWLRYsWadCgQerZs6fi4uL04Ycf6tNPP9W5c+ckXV6tQpL69eunSZMm6Z577pGzs7Op/6xZs/T666/ro48+0vTp0/W3v/1N8+bNs2ZKAAAAAKpZ9oVsndh0QpLUZlibUgsouFMtAAAAYBtRb0Ypcmak6fEFuwvVktcz0FNTj0+VRxMP2TuWvHAS0C1At/7jVq2dtlZndp/Rrx/8ql5TexWLyc+6WnRR1RdfAAAAAAAAAAC4XpW4VqDyrxWsnb5WF09f1N2f3616DSz/LU7RVSkKcgvMxhZtd3R1NBNZunEbx1ncx5asKrCQpDVr1uj999/X9u3bJV0tqvDz89O4ceM0ceJEtWrVqsz+Tk5OmjJlilJSUjR//nwKLAAAAAAz8nPyVZBz9SSkuu9WW5q9i/cqPztf9k72GvjWwFJjrLlTLQUWAAAAwFV9/tZHvf/S2/Q4Pj5eszvNrvK8dg52qt+8vtmYbg9109rn1kpGKebjmBIFFkW/61f1xRcAAAAAAAAAAK5X114rOH36tGa3L/tawcktJ7V7/m61vL2lOo3sVKmcTh5Opu387JKrWBdVdLWLov2q0rF1x7TljS0at8H64gyrCyyWLl0q6XJhhcFgUEREhCZNmqQ777xTDg4VH75+/fpKTk62djoAAADAda2m7lZbloyzGdr86mZJ0oDXB6hhu4alxnGnWgAAAMA2HJwd5OB89d/eHd1rT/FBvQb15N3CW+ePnlfSviTlXsqVk/vVCyfOHldXuC7v4kvRc4jquvgCAAAAAAAAAEBdcO21Aqf0sv8dvSC3QKsmrZK9k736v9pfmSmZJWKyL2SbtvMy84rFOHs5y97RvthNmDKSMszOr2h7eTdvspVLSZd0MvKkTcayusDCaDSqcePGeuihhzRx4kQ1a9bMov7Z2dlaunSpZs2aJW9vb2unAwAAAFzXauputaUpLCjU8rHLlZmSqY4PdFTvZ3uXGcudagEAAIAbg5ufm84fPS8ZL1/MaODewNRWv3l9JexIkHT54opnE88yx7mUdEmS5OzpzKp2AAAAAAAAAABU0sU/Lurcb+ckSQtCF5Qbv23WNm2btc30eNzGcWoe3lx+Hf1M+9JPpZsdIz3hartfBz8zkeYV5BYoPipeyXHJyrmQo8L8wjJjk/YmVTrPtawusPjHP/6hf/zjH7Kzs6tU/9OnT+vhhx+WJN12223WTgcAAAC4rtWmu9X+8NQPOvrTUQUPDNbwRcNlMBjKjOVOtQAAAMCNwVhoNG3b2Re/btCw49UV7y6cuqCA7gGljpGfk6/M5Mt3x2rYofRV8gAAAAAAAAAAQPncG7lrzNoxZmMS9yZq7bS1kqTOYzqry9gupjb/Lv6SJM8mnvJp7aNzv59TYkyi2fHORJ+53CfQUw1aNTAbW5boj6K1bvo6Zadllx9sY1YXWLRu3brSxRWSFBISoqysrMuTcbB6OgAAAACqwbq/rdOv7/+q5v2b64GVDxQr+igNd6oFAAAA6rbNr22WXyc/tR3e1mzcpcTL3+cNdga5+bkVawseEKyN2ihJSoxJLHOspL1JpkKN4AHB1k4dAAAAAAAAAIAbloOLg1oMamE2xs7hai2AdwvvMuPbj2ivLa9vUdqJNJ0/dl7eLbxLxKSfTlfKoRRJUrt725m9YWtZ4pbHadWkVRb3q0yu0lhV0bBx40a1b9++QrG33367HBwc9Mgjj+iOO+4o1ubs7FxGLwAAAAC1zYaXNmjrW1vVrF8zjfp+lBxdy19FgzvVAgAAAHXbxpc2KmRwiNkCi4tnLurCyQuSpIDuASXOFQJ7Bcoz0FPpCek6vv64wmeElzrOsXXHTNvtR1TsGgQAAAAAAAAAAKhaPZ/qqZ1zdyr3Uq6iP4zWwDcGlojZ89EeyXi5sCPs2bBK5dnx7g5JUqdRndTt4W5q2L6h6nnXk72TfZl9YpfEasW4FZXKd63KLz0hacCAAVq7dm2FYo8cOaI1a9borrvu0urVq61JCwAAAKCGbHp5k7a8tkVBfYM0anXFiiuk4nedNbdMIHeqBQAAAGqvU9tOKSc9p8z2Xz/41bTd/ZHuJdoNBoP6/L2PJCk+Kt50B6uiCvMLFbMoRpLU6s+t1KhLIytnDQAAAAAAAAAAbMHNz00RsyIkSTtm79DpX04Xa0/cm6it/9wqSer/an95BnpWKk9SbJLa3dVOdy+5W8H9g+Xu7262uEKSZJCMRmOl8l3LqgILSyaxf/9+bdu2Ta1atdKbb75pTVoAAAAANWDz65sVOTNSTW9pqtFrRsvJzalEzPyb5mvTzE0l9l+5U60kHV9/vMwc3KkWAAAAqL1yL+Zq1SOrVJBbUKLt6M9HtfXtyxdNmt3aTN0e6lbqGD0m9VBQnyDJKK2atEp5WXnF2je9vEmph1PlUt9Fg2cPtv2TAAAAAAAAAAAASopNUuySWMUuidXRtUfL3X/FTY/epH4v91NBboEW91+sH5/+UbsX7NZPz/6khX0XKi8jT72n9VbYtMqtXiFJxkKjWg5paVGfdne109TjUyudsygHm4xSAS4uLurVq5eefPJJzZgxo7rSAgAAALCBqLejtPHFjQrsHajRP4yWk3vJ4gpJOrP7jPw6+pXYf+VOtWseW2O6U61vW99iMdypFgAAAKhasUtiTdtJsUmm7aNrjyo9IV2S5ObvppCIkBJ9/bv4K2lvkg58eUBndp9Rhwc6yLuFt/Iy8nRi0wnFfRsnGaWWQ1rq7s/ulp1D6fd3snOw0/3L79fnQz9XfFS85veYr64PdZWTm5MOrzmsw6sPy9XXVSO+HiGfVj42fgUAAAAAAAAAAIAkxX0bp8iZkSX2H1p+SIeWH5IkNevXrNRrBuEzwhUSEaKd83bq4NcHlfnfTLn6uirkthCFPh6q4P7BVs3Np7WP8nPyLerj6Oqo+s3qW5X3imorsLji3LlzysjIqO60AAAAACpp2zvbtP6v6+Xa0FV9/tpHZ3afqdQ4PSb10P7P9ys+Kl6rJq3Sgz8/KMd6jqZ27lQLAAAAVK3lY5aXuj/qjSjTdlkXSx6NeVQJOxN0aMUhndp6StHzo5V1Pkv2jvZyb+SuTqM6qfOYzmo5uPw7Srn6umpC1ATtXrBbsZ/GKurNKBXkFMgryEth08PU6+le8gjwqPwTBQAAAAAAAAAAZoW/HK7wl8Mr3b9pWFM1DWtquwkV0fWhrjr07SHd/PjNFe6TsCNBu+fv1vCPh1udv8IFFpGRkYqMLFml8u233+rIkSPl9s/Ly9PJkyf1zTffqEWLFpbNEgAAAIBVKnun2kMrDmnttLWSpMzkTH0x/ItKz4E71QIAAAA1a4bRutWlA3sGKrBnoE3mYudgp9ApoQqdEmqT8QAAAAAAAAAAwPUh9PFQHV9/XKsfX62ItyPk5O5Ubp/Uo6nau3hv9RZYbNq0Sa+88kqJ/cuXL9fy5aXf9ao0RqNREyZMqHA8AAAAAOtV9k61aSfSbDoP7lQLAAAAAAAAAAAAAAAAoCybX90s/y7+2vPRHsV+Eqtm/ZrJp42PnD2cZbAzlNonaW9Sqfsro8IFFtLl4oiK7CuNq6urWrdurXHjxumpp56yJC0AAAAAK1X2TrW9nu6lXk/3sulcuFMtAAAAAAAAAAAAAAAAgNJsenmTDIbLhRRGo1FHfjiiIz8cqbb8dhUNnDFjhgoLC4v9SdKSJUtK7C/t79KlS4qOjtbUqVNNTxgAAAAAAAAAAAAAAAAAAAAAAOAKo9FoWgjiynZ5f7Zi0QoWAAAAAAAAAAAAAAAAAAAAAAAAVeXuJXer06hOFY6PXRKrFeNW2CS3VQUWx48fV8OGDW0yEQAAAAAAAAAAAAAAAAAAAAAAAIsYZLNVLOys6dysWTO5urpa1Gffvn165ZVXrEkLAAAAAAAAAAAAAAAAAAAAAACuM8MWDFNg70CL+oREhGjcxnE2yW9VgUVlxMbGaubMmdWdFgAAAAAAAAAAAAAAAAAAAAAA1GLdH+4u72Bvi/q4+bmpeb/mNsnvYE3n+Ph4i/ukpKRYkxIAAAAAAAAAAAAAAAAAAAAAAECSlLAzQXs+2qNh84dZPVaFCixeffVVvfPOO3r66af18ssvm/Y3b95cBoPB6kkAAAAAAAAAAAAAAAAAAAAAAABYKvVIavUWWMyaNUuXLl3Su+++W6zAQpKMRqPFSSnKAAAAAAAAAAAAAAAAAAAAAAAARZ3cfNLiPilxKTbLX6ECi/vuu08ff/yxRowYUaJt8uTJ6tWrV4UTbt++XQsWLKj4DAEAAAAAAAAAAAAAAAAAAAAAwHVvUfiiGl3QoUIFFh9++KH++c9/qkGDBiXa+vbtq1GjRlU8oYMDBRYAAAAAAAAAAAAAAAAAAAAAAKAEo9FocR9bFWVUqMBCUqnFFf369ZO/v79FCf39/XXrrbda1AcAAAAAAAAAAAAAAAAAAAAAAFz/+r7QVy0GtSi1zVhgVE56jlJ+S9Hv3/2uC/EXNHj2YLk2dLVJ7goXWJRm5syZkqTNmzerUaNGat26dbl9Bg0apEGDBlmTFgAAAAAAAAAAAAAAAAAAAAAAXIcatmuo5v2alxvX5/k+il0Sq43/2KiJOybaJLedNZ3Dw8PVv39/9e/fX2+99ZZNJgQAAAAAAAAAAAAAAAAAAAAAAG48Q/49RE1ublLh+M4PdlaTm5to8+ubbZLfqgILSXJxcdGrr76qZ555xhbzAQAAAAAAAAAAAAAAAAAAAAAAN6CbH79ZDVo2sKhPUN8gHfr2kE3yO1jV2cFBTz31lP7+97/bZDIAAAAAAAAAAAAAAAAAAAAAAAAVlZeRp/SEdJuMZdUKFv7+/mrVqpVNJgIAAAAAAAAAAAAAAAAAAAAAAFBRBXkFiv00Vk4eTjYZz6oVLG699VbFxcVZ1GfdunV64403tGHDBmtSAwAAAAAAAAAAAAAAAAAAAACA68jJzSfLjSnIK1B2WrZS4lK0f+l+pRxKUds729okv1UFFs8++6xuv/12PfroowoJCalQn6SkJEVGRlqTFgAAAAAAAAAAAAAAAAAAAAAAXGcWhS+SwWCocLzRaJRjPUf1m9HPJvntrOncvXt3ffDBB7rttts0b948nTlzxiaTAgAAAAAAAAAAAAAAAAAAAAAANx6j0VihP4OdQSG3heihqIfk39nfJrmtWsGiRYsWkqTU1FQ988wzeuaZZ+Tl5SVPT0/Z2ZVeu5GRkWFNSgAAAAAAAAAAAAAAAAAAAAAAcJ3q+0JftRjUosx2Owc7uXi5qEHLBnJwsaokogSrRjtx4kSJfWlpaUpLSzPbz5IlOwAAAAAAAAAAAAAAAABUjZ+f+1nb/7VdktRvRj+Fvxxebp9T205p13u7FB8Vr4yzGXJr6KbA3oEKfSxUzcObV+2EAQAAAFz3GrZrqOb9mtdIbqvLNfr27WtayaIijh07pqioKGvTAgAAAAAAAAAAAAAAALDCmegz2jF7h0V9Il+JVOTMSDm4OKjbxG7y6+inlLgURS+I1sFlBxX2XJgi/hlRRTMGAAAAcL3rN6Of/Dv711h+qwssJk+erFGjRlU4/rPPPqPAAgAAAAAAAAAAAAAAAKhBhfmF+m7idzIWGCvc59cPftWmGZvk4OKgsRvGKrBnoKmt85jOWth3obbN2iY3PzeFTQurimkDAAAAuM6Fzwiv0fx21Z3Q3d1dQUFB1Z0WAAAAAAAAAAAAAAAAwP/b9s42Je5JVJvhbSoUn5GcobXPrZUk9Zzas1hxhSQFdAswFVVsfGmj0hPSbTthAAAAADeszHOZOr3rtI6uParTu04r81xmleWyagWLvLw82dvbW9Rn+PDhGj58uDVpAQAAAAAAAAAAAAAAAFRS6tFURc6MVOPQxrr5yZv128rfyu2zc+5O5V7KlSR1n9i91JjuE7sr8pVI5Wfna9s723T77NttOm8AAAAAN5aYxTHaOXenkvYmlWjz7+KvXk/3UpexXWya06oVLCwtrgAAAAAAAAAAAAAAAABQs75/5HsV5hVq2IJhsrOv2M+HDn59UJJUv3l9NWjZoNQYz0BP+bb1lSTFfR0no9FomwkDAAAAuKHkZuTqsz99pu8mfKekvUkyGo0l/pL2JmnlQyv12Z8+U15mns1yW1VgURlLly6Vk5NTdacFAAAAAAAAAAAAAAAAbnjRH0Xr+Ibj6v1sbzXq0qhCfdJPp+vcb+ckSY26mu8T0C3gcp+EdKUeTrVusgAAAABuSN+M/EZHfjwio9Eoh3oOCuwZqPb3tFfnBzur/T3tFdgzUI6ujjIajTr601F9M/Ibm+V2sNlIFVRYWKiCgoLqTgsAAAAAAAAAAAAAAADc0C4lXtLa59bKO8Rb/Wb0q3C/s/vPmrY9m3qajS3afvbAWfm09rF8ogAAAABuWL+t+k2/f/+7PAI8NOifg9T+3vZycC5Z9pCfk6+DXx/Uuunr9Pv3v+v3739X66Gtrc5vVYHFhAkTLO5z7Ngxa1ICAAAAAAAAAAAAAAAAqIQ1T6xR9vlsjVg2Qo71HCvcL+1Emmnbzd/NbGzR9qL9AAAAAKAi9i7eq3re9fTw9oflFeRVZpyDs4M6j+6sZn2b6X/d/qeYhTE1X2CxaNEiGQwGi/oYjUaL+wAAAAAAAAAAAAAAAACovEMrDynumzh1Hd9VLQa2sKhv7sVc07aDi/mfGxUt3CjaDwAAAAAqImFHgrpO6Gq2uKIoryAvdZ3QVfuX7rdJfqsKLCTJx8dHbm6lV6YXFBQoPT1d6enpkiQvLy/Vr1/f2pQAAAAAAAAAAAAAAADADSk/J18FOQWmxxUpYshJz9Gax9fItaGrbnvnNotz5mXlmbbtnezNxhZtz8vMMxMJAAAAACVlpmSqYfuGFvVp2K6hMlMybZLf6gKLOXPmaNSoUWZjkpKStGLFCs2dO1evvPKK7r33XmvTAgAAAAAAAAAAAAAAADecqDejFDkz0vT4gi6U22ft9LW6ePqi7v78btVrUM/inEVXpSjILTATWbzd0dXRTCQAAAAAlOTk7mRxsUTmuUw5uTvZJL/VBRYV4e/vr8mTJ2v48OHq3bu3mjVrptDQ0OpIDQAAAAAAAAAAAAAAAFw3+vytj3r/pbfp8enTpzW7/ewy409uOand83er5e0t1Wlkp0rldPK4+kOl/Ox8s7FFV7so2g8AAAAAKsK3ra/2L92vsGfDZLAzlBtvLDRq/+f75dvW1yb57azpfPHiRd1///0Vjm/UqJHGjx+vN954w5q0AAAAAAAAAAAAAAAAwA3JwdlBzp7Opj9zRQwFuQVaNWmV7J3s1f/V/spMySzxl30h2xSfl5lXrK0g7/JqFPWb1zfFZCRlmJ1f0fai/QAAAACgItre2VaJMYn69sFvlZ2WbTY2+0K2vh39rZJik9T2rrY2yW/VChZubm4W92nWrJnef/99a9ICAAAAAAAAAAAAAAAAKMfFPy7q3G/nJEkLQheUG79t1jZtm7XN9HjcxnFqHt5cfh39TPvST6WbHSM94Wq7Xwc/M5EAAACo65YOW1ql4xcaCpUakKrT756WnbH0dQVGrhpZpXNA9Qt9LFQ75+7UgS8P6PCaw2r959ZqHNpYHk085FjPUfnZ+UpPSNcfv/6hw6sPKyc9Rx5NPBT6WKhN8ltVYFEZR44cUXq6+RMtAAAAAAAAAAAAAAAAANZxb+SuMWvHmI1J3JuotdPWSpI6j+msLmO7mNr8u/hLkjybeMqntY/O/X5OiTGJZsc7E33mcp9ATzVo1cCa6QMAAAC4ATm6OuqB7x7QJwM/UXZatvZ/sV/7v9hfaqzRaFQ973oauWqkHOs52iR/tRZYbNmyRf/5z38UFBRUnWlRC1V1xVpFULEGAAAAAAAAAAAAAACuZw4uDmoxqIXZGDuHq3cC9m7hXWZ8+xHtteX1LUo7kabzx87Lu4V3iZj00+lKOZQiSWp3bzsZDAYrZg8AAADgRhXQLUCT90zW6imrdeTHI2XGtRrSSn96/0+q36y+zXJbVWAxYcKEcmPy8vKUlpamuLg4HT9+XJI0ZcoUa9ICAAAAAAAAAAAAAAAAqEY9n+qpnXN3KvdSrqI/jNbANwaWiNnz0R7JeLmwI+zZsBqYJQAAAIDrRf1m9TV6zWilHknVsXXHdO7wOeVezJWTh5MatGygFoNayKeVj83zWlVgsWjRogpXmhuNRklSWFiYXnjhBWvSAgAAAAAAAAAAAAAAAKhGbn5uipgVodVTVmvH7B1qe1dbNQltYmpP3Juorf/cKknq/2p/eQZ61tRUAQAAAFxHGrRsoAYtG1RbPqsKLCTJx8dHbm5uZSdwcJCXl5fatGmjYcOG6b777pOdnV2Z8QAAAAAAAAAAAAAAAACqTlJskpJikyRJyXHJxfbHLomVJLn5uykkIqRYv5sevUmXki5p8yubtbj/YnWf2F0NOzRUyqEURS+IVl5GnnpP662waaxeAQAAAKBusrrAYs6cORo1apQt5gIAAAAAAAAAAKqY0WjUL//5Rev+uk55GXkat3Gcmoc3L7ffmegzOvDVAcVHxSvlUIpyLuTIyd1J3i281bx/c/WY3KPcpbg3vbxJkTMjKzTPSb9MUuObGlcoFgAAAIBl4r6NK/W7+aHlh3Ro+SFJUrN+zUoUWEhS+IxwhUSEaOe8nTr49UFl/jdTrr6uCrktRKGPhyq4f3CVzx8AAADA9e388fPKvZgrSTLYG+TXwa9ETOxnsXLzK1kYbi2rCywAAAAA1B2V/SHVFae2ndKu93YpPipeGWcz5NbQTYG9AxX6WGiFxynML9TuBbu1b8k+pRxKUX5OvryCvNRmeBv1mtpL7o3cK/fkAAAAAJQr9WiqvpvwnU5uPlnhPmkn0rR8zHLFR8VLkpre0lQ3P3GzPJt66lLiJe1ful/b39munfN2auAbA7lTLQAAAFAHhL8crvCXwyvdv2lYUzUNa2q7CQEAAADA/8vLzNP87vOVk54jSXL2ctbzqc+XiDv8/WEd+OqAgvoE6Z4v7pFHgIdN8ltVYHH8+HE1bNjQJhMBAAAAULUq80OqoiJfiVTkzEg5uDio28Ru8uvop5S4y0t+H1x2UGHPhSninxFmx8hMydTnQz/X6Z2n5dvWV7c8f4uc3J10ePVhbX1rq/Z8tEf3fX2fmt3arFJzBAAAAFC6osXWdvZ2CuwVqIQdCRXqm3IoxVRcMXjOYPWa2qtYe5+/9tGKsSu07/N9WvvcWjl5OOmmyTeZHfPxuMfLzVu/ef0KzQ8AAAAAAAAAAFw/4r6NU/aFbElSmzvaqN3d7UqN6zS6k9IT0nVyy0ktGbxEk36ZJAdn69efsGqEZs340RMAAABQ21nzQ6orfv3gV22asUkOLg4au2GsAnsGmto6j+mshX0XatusbXLzcyvzbrWF+YX68q4vdXrnaTUNa6ox68bIsZ6jJCn0sVCt//t6Rb0ZpS+Gf6GJuybKp5VP5Z80AAAAgGIiZ14umA4ZHKJhC4Zpz0d7LD4vaBHRokRxhSTZ2dtp6PyhOvLTEWWdy9L6v65X13Fd5eBS9iUI37a+Fj8HAAAAAAAAAABw/Tvy4xEZDAbd88U96jCiQ5lxrYe2VuuhrbV99nb9/OzP+uX9X9T7md5W57ezeoT/V1BQoFWrVum5557Tvffeq8GDB+vee+/Vc889p1WrVqmgoMBWqQAAAABYIHJmpH548gcF9QnSlP1TFDI4xKL+GckZWvvcWklSz6k9ixVXSFJAtwBTUcXGlzYqPSG91HF2L9h9+a63BmnYgmGm4oorwmeGq0HLBspOy9bPf/nZojkCAAAAMM9oNGrYh8P04I8PyqupV6XGaDO8TZltTm5Oajm4pSQpOy1bJ7dUbuU8AAAAAAAAAABwYzuz+4za3NHGbHFFUb2f6a0WA1vowJcHbJLf+jUwJH399dd6+umndebMmVLb3333XQUEBGju3Lm65557bJESAAAAQAVd+SFV94e7V6r/zrk7lXspV5LUfWLpY3Sf2F2Rr0QqPztf297Zpttn315iDlFvRkmSgm4JUsP2DUuMYe9ory7ju2jjixv1+/e/K3Fvohp1aVSpOQMAAAAoLvzlcBkMhkr1bXxTY43+YbQahzY2G+fV7GrhxoX4C5XKBQAAAAAAAAAAbmzpp9PV7eFuFvVpEdFCW17fYpP8Vq9g8eabb+r+++/XH3/8IaPRWObfH3/8ofvuu09vvfWWLeYNAAAAoILCXw6vdHGFJB38+qAkqX7z+mrQskGpMZ6BnvJt6ytJivs6TkajsVh7wo4EpZ+6vLJF8KDgMnOFRFxdXePgsoOVnjMAAACA4ipbXCFJrr6uanl7S7n6uJqNy07LNm07uTlVePzcjFwV5LEKNgAAAAAAAAAAkApyC1SvQT2L+rj6uqog1zbXGqxawWLLli168cUXZTQa1apVK913333q3r27mjRpIhcXF2VnZ+v06dOKjo7Wl19+qSNHjuiFF15Q3759dcstt9jkCQAAAAAwz5ofUqWfTte5385Jkhp1Nb+aREC3AKXEpSg9IV2ph1Pl09rH1HZ8w3HTtrlx/Lv4y2BnkLHQWKwPAAAAgNov7Xja5Q2D1PSWpmZjYxbHaM+He5R8MFlZqVmSJI8mHgoeEKxeT/dSQPeAKp4tAAAAAAAAAACojdz83HR2/1mL+iTtS5JrQ/M3iqooqwos3n33XRmNRs2YMUMvvfSS7OxKXxDjrrvu0syZM/XKK6/olVde0TvvvEOBBQAAAFAHFD1Z8WzqaTa2aPvZA2eLFVgk7082bXs19SpzDAdnB7k2dFVGUoaSDySXGQcAAACgdsm+kK0Tm05IktoMa2P2e78krRy/Um3vbKvb3rlNbn5uuvjHRe1ful+xn8Yqdkmsbn3pVvWf2b8aZg4AACpq6bClNT0FjVw1sqanAAAAAAAAqljT3k215+M9uvmJm+Xdwrvc+PPHzitmYYxaDm5pk/xWFVhs27ZNt912m2bMmFFurJ2dnV5++WVt375dW7dutSYtAAAAgGqSdiLNtO3m72Y2tmh70X6WjuPu766MpAzlpOco63yW6nlbtuQfAAAAcD3Lz8lXQc7VJa7zLuXV4Gyu2rt4r/Kz82XvZK+Bbw00G2uwN+juz+5Wx/s7FtvffWJ3bfzHRm1+dbM2v7JZzh7OCpsWVpXTBgAAAAAAAAAAtUzXCV11YNkBfdT7Iw18c6A63N9BTm5OJeLyMvO0/8v92vD3Dcq9mKtuD3ezSX6rCiwuXLigYcOGWdTnjjvu0ObNm61JCwAAAKCa5F7MNW07uJg/fXCs51hqP0nKuZhT4XEc6l1tz72YS4EFAAAAUETUm1GKnBlpenzB7kINzuayjLMZ2vzq5X/3H/D6ADVs17DM2F5P91KPyT3kEeBRanv4y+H67bvflLQ3SRv/sVGdH+ws90buVTJvAAAAAAAAAABQ+7Qc3FLt722vg18f1KpJq7Tm8TXyaeMjz0BPObg4KD87X+kJ6Tr32zkV5BbIaDSqw4gOCrktxCb5rSqwaNiwoZycSlaDmOPk5CR/f39r0gIAAAA3rOq+W21e1tXx7Z3szcYWbc/LLD6v/Kx8m4wDAAAA3Oj6/K2Pev+lt+lxfHy8ZneaXWPzKSwo1PKxy5WZkqmOD3RU72d7m413qe8il/ouZbYb7AzqOr6rfnrmJ+Vn5Wvf0n3q/Yz5MQEAAAAAAAAAwPXlrk/uUmF+oQ6tOKT8nHyd3XdWZ/edLRZjNBolSe3uaqc7P7nTZrmtKrAICwvT1q1bNWnSpAr32b59uwYMGFBi//Hjx7VlyxaNHTvWmikBAAAA17Xqvltt0VUpCnILzEQWb3d0dSzWVnRVCmvGAQAAAG50Ds4OcnC++v3a0b1mvzP/8NQPOvrTUQUPDNbwRcNlMBisHrPxTY1N2wnbEqRnrB4SAAAAAAAAAADUIQ4uDrr/2/u1/8v92vXvXTq987QKCwpN7Xb2dgrsGaieU3uqw4gOts1tTeepU6eqf//+GjNmjAYOHFhu/KZNm/Ttt99qx44dJdq2bdumhx56iAILAAAAwIzqvlutk8fVFevys/PNRBZf7aJoP0ly9nCu8DhFV7u4dhwAAAAAtce6v63Tr+//qub9m+uBlQ8UK/ywhpufm2n7UuIlm4wJAAAAAAAAAADqno73d1TH+zsq91Kuzh8/r9yLuXLycJJ3sLec3Kvmd0VWr2Dx73//W8OGDdPYsWP1wAMPqFOnTmrQoIEMBoOMRqPOnz+vffv26auvvtKqVau0fPlytW3b1lbzBwAAAG4o1X232vrN65u2M5IyzMYWbS/a78rjhB0JpjjPJp5ljnMp6fIPqJw9nVXPu56FMwYAAABQHTa8tEFb39qqZv2aadT3o2y6+pyx0GjaNthbvyIGAAAAAAAAAACo25zcneTfyb9acllVYGFvby9JMhqNWrBggRYsWFBun0GDBlmTsoSUlBTNnTtXy5cv14kTJ+Tk5KQ2bdpo5MiRevTRR+XkZJvKlIKCAi1dulTLli3T3r17lZiYKHd3dwUEBKhjx44KDw/X8OHD1ahRI5vkAwAAAGoDv45+pu30U+lmY9MTrrb7dfAr1tawY0PT9oVTFxTQPaDUMfJz8pWZnHm5T4eGpcYAAAAAqFmbXt6kLa9tUVDfII1aXfHiiqTYJP323W/q/GDnEkXZRRVdtcIjwMPa6QIAAAAAAAAAAFSYVQUWRqOx1O3KMhgsuxPVrl27dOedd+rMmTOKiIjQlClTlJWVpcWLF2vq1KlatGiRvv/+ezVu3NiqeR06dEijRo1STEyM/vSnP+nJJ59U/fr1derUKX322Wf64osv9MUXXygvL09PPPGEVbkAAACA2sSziad8Wvvo3O/nlBiTaDb2TPSZy30CPdWgVYNibcEDgrVRGyVJiTGJaju89FXtkvYmme5WGzwg2NrpAwAAALCxza9vVuTMSDW9palGrxktJ7eSNzmaf9N8tR7WWuEzwovtPxN9Rhtf2qgGLRuYLbC4svqdJDXt09RWUwdQjqXDltb0FDRy1ciangIAAAAAAACAG5xVBRaSdPfdd6tTp05WTyQ2NlYrVqyocHx8fLyGDh2q5ORkPf3005o9e7ap7cknn9SQIUO0ceNG3XHHHdq6daucnZ0rNa+jR49qwIABunTpkjZu3Kh+/foVa3/hhRd02223adOmTZUaHwAAAKjt2o9ory2vb1HaiTSdP3Ze3i28S8Skn05XyqEUSVK7e9uVKJ4O7BUoz0BPpSek6/j64yV+aHXFsXXHiuUFAAAAUHtEvR2ljS9uVGDvQI3+YbSc3EtfQfrM7jPFVsO71pEfjqjjAx1LbSvILdCej/ZIkpw8nMqMAwAAAAAAAAAAqAo2KbAYNWqU1RP57LPPLCqweO6555ScnKygoCC99dZbxdqcnZ21YMECtWnTRrt379Z7772nZ5991uI5GY1GjRkzRmfOnNHnn39eorhCkhwdHfXSSy9p3759qlevnsU5AAAAgNqu51M9tXPuTuVeylX0h9Ea+MbAEjF7PtojGSUHFweFPRtWot1gMKjP3/tozWNrFB8Vr5RDKfJt61sspjC/UDGLYiRJrf7cSo26NKqS5wMAAADActve2ab1f10v14au6vPXPjqz+0ylx4r9LFZthrdRu7vbFdtfWFCo1Y+vVuqRVEnSbf+6Ta4+rlbNGwAAAAAAAAAAwBJWFVg0a9ZM7u7uNpmIu7u7goKCKhR7+PBhLVu2TJI0duzYUlenCAkJUf/+/bVu3Tq9/fbbmjp1qhwcLHu6S5cu1fbt29WqVSs98MADZcYNGDBAKSkpFo0NAAAA1BVufm6KmBWh1VNWa8fsHWp7V1s1CW1iak/cm6it/9wqSer/an95BnqWOk6PST20//P9io+K16pJq/Tgzw/KsZ6jqX3Ty5uUejhVLvVdNHj24Kp9UgAAAMANKHZJrGk7KTbJtH107VGlJ6RLktz83RQSEVKs36EVh7R22lpJUmZypr4Y/kWl8nsFecnF20XZ57P11b1fqdWQVgoeFKx63vWUnpCu/V/sV/KBZNk52um2d25Tj0d6VCoPAAAAAAAAAABAZVlVYHH8+HFbzUPDhw/X8OHDKxT79ddfy2g0SpIGDRpUZlxERITWrVun5ORkbdq0yWxsaRYsWCBJGjZsmAwGg0V9AQAAgNqksj+kuuKmR2/SpaRL2vzKZi3uv1jdJ3ZXww4NlXIoRdELopWXkafe03orbFrJ1SuusHOw0/3L79fnQz9XfFS85veYr64PdZWTm5MOrzmsw6sPy9XXVSO+HiGfVj42euYAAAAArlg+Znmp+6PeiDJtN+vXrMR5QdqJNJvkDx4QrL+c/ot+X/W7Dq85rDPRZxT5cqTyMvPk5OGkBiENdMvzt+imKTepfrP6NskJAAAAAAAAAABgCasKLGrKhg0bTNtdu3YtM65bt27F+lhSYJGcnKzNmzdLkrp06VKsLSsrS3Z2dqWunAEAAADURpX9IVVR4TPCFRIRop3zdurg1weV+d9Mufq6KuS2EIU+Hqrg/sHlzsPV11UToiZo94Ldiv00VlFvRqkgp0BeQV4Kmx6mXk/3kkeAh+VPEAAAAEC5ZhhnVKpfr6d7qdfTvWwyB8d6jupwXwd1uK+DTcYDAAAAAAAAAACwpTpZYLF//35JkoeHh7y8vMqMa9q0qWn7wIEDFuWIjo5WYWGhJCkoKEjHjh3TG2+8oVWrVuns2bOSJH9/fw0ePFjPP/+82rdvb+nTAAAAAKpNZX9Ida2mYU3VNKxp+YFm2DnYKXRKqEKnhNpkTgAAAAAAAAAAAAAAAABgC3Y1PQFL5eTkKDExUdLlAgdzirafOHHCojz79u0zbf/000/q0KGDtmzZohdeeEHff/+9PvzwQ7Vo0UKffPKJunbtqoULF1o0PgAAAAAAAAAAAAAAAAAAAAAAqD3q3AoWFy9eNG27uLiYja1Xr16p/SriyioVkvTWW28pNDRUmzZtkqurq2n/Qw89pAceeEDLli3TxIkTFRwcrPDwcIvyAAAAAAAAAAAAAAAAAAAAAACAyjm27pi2vLFF4zaMs3qsOldgkZWVZdp2cnIyG1u0PTMz06I86enpxR6/9957xYorJMnOzk7vvfeeVq1apezsbD377LPavXt3uWNfuHBBqamppsfOzs5ydna2aH7WKDQUVluu2iw/P7+mp1Ar5Ofnq7CwkNcDtQrHJWorjk3URoWFfLerizgnuIz3Uz5bUBLHBK7FMYFrcUzgWpwT1F3nz58vdt2hus8LUPdU9WdAbThXrA2fb7XhdagLjAajjDLKaDCqULxmqD6lvU/wHRm1RU0eixz/dVNNXyvA9YHPwapxo54X8D2/dqtr/59f7+9PteF9ora8tlX9WlTkvam2vBY1iddAupR0SScjT9pkrDpXYFF0VYrc3FyzsUXbry2OKE9BQYFpu1mzZrr55ptLjfPz89OAAQO0Zs0aRUdH6+DBg2rfvr3Zsbt27Vrs8bhx4zR+/HiL5meN1IDU8oNuAFFRUTU9hVqhsLBQ8fHxki4XDQG1AcclaiuOTdRG586dq+kpoBI4J7iM7+R8tqAkjglci2MC1+KYwLU4J6i7OnfuXOxxdZ8XoO6p6s+A2nCuWBvOE2vD61AXGGVUlkeWUpUqgww1PR3cQEp7n+A7MmqLmjwWi/5IH3VHTV8rwPWBz8GqcaOeF/A9v3arDefMlrje359qw/tEbTkmqvq1qMh7U215LWrS9XpOUJBboPioeCXHJSvnQo4K88su6Enam2SzvHWuwMLDw8O0nZ2dbTa26GoXRftZmqdjx45mY7t06aI1a9ZIknbt2lVugUVMTIyaNm1qelzdFein3z1dbblqsz59+tT0FGqFK1VrYWFhcnCoc28JuE5xXKK24thEbXTlHyRQt3BOcBnfyflsQUkcE7gWxwSuxTGBa3FOUHfFxsaqSZMmpsfcrRblqerPgNpwrlgbzhNrw+tQFxgNRqUqVQ0SG8hg5IdXqD6lvU/wHRm1RU0eiwkJCdWaD7ZR09cKcH3gc7Bq3KjnBXzPr91qwzmzJa7396fa8D5RW46Jqn4tKvLeVFtei5p0PZ4TRH8UrXXT1yk7zXy9QFWoc+9azs7OatSokRITE5WUZL7SpGh78+bNLcrj4+Nj2vb29jYb6+vra9o+e/ZsuWNvnrZZvi6+5cZVFTtdf9WAlXE9fmhXlp2dnRwcHHhNUKtwXKK24thEbXM93unhRuDl5aUGDRrUWH47Y+04bngvvYzPFlyLYwLX4pjAtTgmUBTnBHWXt7d3jZ4XoG6qys+A2nCuWBs+22rD61AXFKpQBhlkMBp4zVCtynqf4DsyaouaOhY59uummr5WgOsHn4O2d6N+x+V7fu1WF/8fv57fn2rD/yO15XWt6teiIu9NteW1qEnX22sQtzxOqyatsrifwWCbAsFqezVjY2PVqFEj+fn5WT1Wx44dlZiYqIsXL+rChQvy8vIqNa5oNU6HDh0sylE0Pi8vz2ys0Wg0bXMxCwAAAAAAAAAAAAAAAAAAAAAAy+14d4ckqdOoTur2cDc1bN9Q9bzryd7Jvsw+sUtitWLcCpvkt6oaYMKECdq5c2eFYu+55x4FBATonnvuUVZWljVpNWDAANN2TExMmXHR0dGl9qmI0NBQUxVLYmKi2djk5GTTduPGjS3KAwAAAAAAAAAAAAAAAAAAAAAApKTYJLW7q53uXnK3gvsHy93f3WxxhSTJUHzRBGtYtYLFokWLNGjQIPXs2bPc2CFDhmjt2rVasWKF3nzzTb3yyiuVznvvvffqhRdekNFo1Pr169WvX79S49atWydJ8vX1VXh4uEU5mjRpol69emn79u2KiYlRfn5+mcun7N6927R96623WpQHAAAAAAAAAAAAAAAAAAAAAICqkp2Wrd9X/67j648rcU+izh8/r9xLuXJyd5JPKx8FDwpW6JRQeQV5lTvWqW2ntOu9XYqPilfG2Qy5NXRTYO9AhT4Wqubhza2eq7HQqJZDWlrUp91d7RR0PMjq3JKVK1hYYt68eYqLi9N9992nZcuWWTVWq1atNGLECEnSp59+qtzc3BIxx44d04YNGyRJzz//fIniiP3796t169YKDAzU5s2bS83z7LPPSpIuXLiglStXlhpz6tQpRUZGSpLuuOMOBQYGVu5JAQAAAAAAAAAAAAAAAAAAAABgQ6e2ndK/Gv1Lyx9crphFMfJu4a2+f++rP733J3Wf2F1pJ9O09a2t+k+7/+jAVwfMjhX5SqQW9l2o31b+prZ3tdWQfw9R+xHtdeSHI1rcf7HWTl9r9Xx9WvsoPyffoj6Oro6q36y+1bmlaiywuGLAgAGKj4+3epxZs2apYcOGOnHihP7+978Xa8vJydEjjzyigoIC9ejRQ0888USJ/q+//roOHz6s06dP669//WupOe655x4NHTpUkvTMM88oISGhRJ6HH35YeXl5atCggebMmWP18wIAAAAAAAAAAAAAAAAAAAAAwBZy0nNUkFMgg71BD/70oO775j7dMv0W3fToTbrtX7fpyd+flF8nP+Vl5mn5mOVKjksudZxfP/hVm2Zskr2TvcZuGKshc4eox6QeGvzuYI3fPF6Obo7aNmubtv1rm1Xz7fpQVx369pBFfRJ2JGjlhNIXVLCU1QUWBoOhwrE5OTn64Ycf5OTkZG1aBQUFadWqVQoICNA777yj22+/Xe+//77eeecdhYaGav369eratau+++47ubi4lOhfWFho2jYajWXm+fLLLzV48GCdOnVKXbt21fPPP6+PP/5Yb7zxhrp06aK1a9eqadOmWrdunYKDg61+XgAAAAAAAAAAAAAAAAAAAAAA2FLX8V0VEhFSYr9LfRdFzIqQJBXkFij6w+gSMRnJGVr73OXVKXpO7anAnoHF2gO6BShsWpgkaeNLG5WekF7peYY+HipnT2etfny1ci/lVqhP6tFU7V28t9I5i3KoaODcuXM1d+7cEvuffvppvfDCC+X2z8vL09mzZ5Wfn6+BAwdaNssy9OzZU7GxsZozZ46WL1+u6dOny9HRUa1bt9acOXM0ZcqUMos5XnjhBUVHRysrK0tvv/12mTlcXV31448/6quvvtLixYv1ySef6Ny5c/Lw8FCHDh00efJkPfLII3Jzc7PJcwIAAAAAAAAAAAAAAAAAAAAAwBZc6ruoSc8man9v+zJjGvdobNpOiUsp0b5z7k5TsUP3id1LHaP7xO6KfCVS+dn52vbONt0++/ZKzXfzq5vl38Vfez7ao9hPYtWsXzP5tPGRs4ezDHalLw6RtDepUrlKU+ECi7S0NJ04caLE/uTkZCUnl74MSGnc3Nw0c+bMCseXx9fXV6+99ppee+01i/p17txZhw8frnD8fffdp/vuu8/S6QEAAAAAAAAAAAAAAAAAAAAAUCMCewVq4o6JZmMcXR1N2w7OJUsMDn59UJJUv3l9NWjZoNQxPAM95dvWVylxKYr7Ok6D3x0sg6H0gghzNr28ydTPaDTqyA9HdOSHIxaPU1kVLrDo2rWrxo0bV2zf4sWL1bdvX7Vo0cJsX4PBIFdXV7Vu3Vr33nuvGjdubDYeAAAAAAAAAAAAAAAAAAAAAABUvdO/nDZtNx/QvFhb+ul0nfvtnCSpUddGZscJ6BaglLgUpSekK/Vwqnxa+1RqPkajsdRtcypTzFGaChdYDB8+XMOHDy+2b/HixZo8ebJGjRplk8kAAAAAAAAAAAAAAAAAAAAAAIDqkZ+drw1/3yBJ8uvkp+4TuxdrP7v/rGnbs6mn2bGKtp89cLbSBRZ3L7lbnUZ1qnB87JJYrRi3olK5rlXhAovS9OvXT/7+/jaZCAAAAAAAAAAAAAAAAAAAAAAAqDr5OfnKTstW1rksndp2Sjtm71DywWR1uK+Dhs4fKsd6jsXi006kmbbd/N3Mjl20vWi/Kmeo+EoX5bGqwGLjxo02mQQAAAAAAAAAAAAAAAAAAAAAAKha+5fu18qHVpoeewV56e7P7lbHkR1lMBhKxOdezDVtO7iYLz8oWpxRtJ8lhi0YpsDegRb1CYkI0biN4yqV71p2NhnFAitXrlSLFi2qOy0AAAAAAAAAAAAAAAAAAAAAAHVafk6+ctJzTH+WFjKEDA7RmLVjdP+K+xUxK0L1fOrp29Hf6r3W7+nwmsMl4vOy8kzb9k72Zscu2p6XmWcmsmzdH+4u72Bvi/q4+bmpeb/mlcp3LatWsKiMS5cu6eTJk9WdFgAAAAAAAAAAAAAAAAAAAEAlLB22tMKxhYZCpQak6vS7p2VntO294EeuGmnT8VD3WXJsVpXqPi6j3oxS5MxI0+MLumBRf48AD3kEeJge9362t9Y9v07bZm3T50M/1/CFw9V1XFdTe9FVKQpyC8yOXbTd0dXRTKTlMs5mKPtCtly8XOTa0LXU1TZsoUIFFhcvXtT69evVv39/eXl5mfa/8sorFifcu3evxX0AAAAAAAAAAAAAAAAAAAAAALjR9flbH/X+S2/T49OnT2t2+9mVHs9gMGjQ24N0fP1xnYk+o9VTVqvl4JZyb+QuSXLycDLF5mfnmx2r6GoXRftV1onIE9o5d6dObDyhnPQc035nT2cFDwhWz6k91ezWZlbnKapCBRaDBw/Wzp07FRoaqh07dpj2v/zyy1VW+QEAAAAAAAAAAAAAAAAAAAAAAK5ycHaQg/PVMgCndOsLGQwGgzqN7qQz0WeUn5WvfUv3qfczl4s46jevb4rLSMowO07R9qL9LGUsNGr1Y6sVvSD68mOjsVh79oVsHVpxSIdWHFL3R7rrT+/9SXb2tlkxp0IFFocPH5bRaNSxY8dKtF072YqgKAMAAAAAAAAAAAAAAAAAAAAAgNrBp42PafvsvrOmbb+Ofqbt9FPpZsdIT7ja7tfBz0yked8/+r32fLTHVKvg7u8uz0BPOdRzUH5WvtIT0nUp6ZIkKXp+tIyFRg3737BK5yuqQgUWixYt0v/+9z9NmjSpRNuSJUs0atSoCidcsmSJxo0bV/EZAgAAAAAAAAAAAAAAAAAAAAAAix3+4bAcXR3VvF9zs3FFV4AozC80bXs28ZRPax+d+/2cEmMSzY5xJvrM5T6BnmrQqkGl5ntyy0lFfxgtJ3cn3fL8Leo6rqs8Az1LxKUnpCtmcYy2/XOb9ny4R13GdFFQn6BK5SyqQutg/PnPf9Z3332nYcOsr+owGAyVWvUCAAAAAAAAAAAAAAAAAAAAAABU3Oopq7Xm8TXlxqUeSTVtewV5FWtrP6K9JCntRJrOHztfav/00+lKOZQiSWp3bzsZDIZKzTd6frQc6znqoc0P6dYXbi21uEK6XMRx6wu3anzkeDm4OGj3/3ZXKt+1KlRgUZaFCxcqLCzMoj5hYWFauHChNWkBAAAAAAAAAAAAAAAAAAAAAEAFpMSlKO1EWpntRqNRez/Za3rceljrYu09n+opJ3cnSVL0h9GljrHnoz2SUXJwcVDYs5bVGBR1cstJdX2oqxp1bVSh+EZdG6nL+C46ueVkpXMWZVWBxbhx49S8eXOL+gQHB2vcuHHWpAUAAAAAAAAAAAAAAAAAAAAAABVgLDRq+ZjlupR4qdS2n575SX/88ockqePIjgrsGVgsxs3PTRGzIiRJO2bv0OlfThdrT9ybqK3/3CpJ6v9q/zJXnaiIjKQMNepWseKKKwK6BygjKaPSOYtysMkoFli5cqWeeeYZHTt2rLpTAwAAAAAAAAAAAAAAAAAAAABww2jUpZEunLyg+Kh4zQuZpw4PdJBvW1+5+rjqQvwFHfjqgFLiUiRJXcZ20dD5Q0sd56ZHb9KlpEva/MpmLe6/WN0ndlfDDg2VcihF0QuilZeRp97TeitsWuVXr5Aur4CReynXoj65l3Ll4GKb0ohqL7C4dOmSTp60zfIbAAAAAAAAAAAAAAAAAADg+rB02NKangIAANedB1Y+oLP7zypueZzit8Tr2Npj2r90vwrzCuXk4STvYG+FPhGqLmO7qEloE7Njhc8IV0hEiHbO26mDXx9U5n8z5errqpDbQhT6eKiC+wdbPV/vEG8d+vaQek3tVeE+h749JO8Qb6tzSzYqsDhz5ox++OEHxcXF6cKFC8rPzy8zlpUrAAAAAAAAAAAAAAAAAAAAAACoHn4d/eTX0c8mYzUNa6qmYU1tMlZpWv25lba8tkVrp6/VwDcHys7ersxYY6FR6/66TvFR8br1pVttkt/qAouXXnpJb7/9tgoKCioUbzQaZTAYrE0LAAAAAAAAAAAAAAAAAAAAAACuI72m9tKuebu0/Z3tivsmTh0e6KAmoU3k0cRDjvUclZ+dr/SEdP3x6x/a/8V+pR1Pk7OXs3o+1dMm+a0qsFiwYIFef/1102MXFxfVr19fzs7OZfbJyMjQuXPnrEkLAAAAAAAAAAAAAAAAAAAAAACuM/Ua1NO9X92rpcOWKu1Emra+tbXMWKPRKHsne434aoTqNahnk/xWFVjMnz9fdnZ2eumll/TQQw8pKCio3D5LlizRuHHjrEkLAAAAAAAAAAAAAAAAAAAAAACuQyERIXpoy0Na+dBKJR9MLjOuYfuGGr5wuJqENrFZbqsKLOLi4jR+/HjNmDGjwn0MBoOMRqM1aQEAAAAAAAAAAAAAAAAAAAAAwHWqSWgTPbb/MR1bd0zH1h1T6uFU5VzMkbOHs7xbeiskIkQtBrWweV6rCiwcHBwUFhZmUZ/Ro0dr9OjR1qQFAAAAAAAAAAAAAAAAAAAAAADXuRaDWlRJIUVZrCqw6Nixo9LT0201FwAAAAAAAAAAAAA3qKXDltb0FAAAAAAAAADUQRnJGUqJS1GzW5tZPZadNZ0fe+wxffbZZzIajRXus27dOg0YMMCatAAAAAAAAAAAAAAAAAAAAAAAADr681Et7r/YJmNZVWAxatQo9e7dW3fccYeOHz9eoT5JSUmKjIy0Ji0AAAAAAAAAAAAAAAAAAAAAAIBNOVQkaMKECWbbY2Ji1LJlS7Vr105t2rSRh4eH7OxKr904evSo5bMEAAAAAAAAAAAAAAAAAAAAAADXhSM/HdGv//1V3Sd1V+s/tzbtn9tirsVj5WXk2WxeFSqwWLRokQwGg9kYo9GogwcPKi4urty48sYCAAAAAAAAAAAAAAAAAAAAAADXp+UPLldWapZObT2l55KfM+1PO5FWqfFsVaNQoQILSfLx8ZGbm5vVCTMyMnTu3DmrxwEAAAAAAAAAAJYzGo365T+/aN1f1ykvI0/jNo5T8/DmFe5/atsp7Xpvl+Kj4pVxNkNuDd0U2DtQoY+FVnicwvxC7V6wW/uW7FPKoRTl5+TLK8hLbYa3Ua+pveTeyL1yTw4AAAAAAAAAANQJ3iHeyjyXKe8Q7xJtzfo2k3eLkvvLcv7YecVHxdtkXhUusJgzZ45GjRpldcIlS5Zo3LhxVo8DAAAAAAAAAAAsk3o0Vd9N+E4nN5+sVP/IVyIVOTNSDi4O6jaxm/w6+iklLkXRC6J1cNlBhT0Xpoh/RpgdIzMlU58P/Vynd56Wb1tf3fL8LXJyd9Lh1Ye19a2t2vPRHt339X1qdmuzSs0RAAAAAAAAAADUfg/+9KCOrz+u4AHBJdp6TO6hTqM6VXis2M9iq7/AwlYMBoOMRmN1pwUAAABueIX5hdr76V4d/OqgEmMSlXkuU/ZO9vIM9FSzW5vppik3KaBbQLnj2OJutQAAAACqV9FVK+zs7RTYK1AJOxIsGuPXD37Vphmb5ODioLEbxiqwZ6CprfOYzlrYd6G2zdomNz83hU0LK3WMwvxCfXnXlzq987SahjXVmHVj5FjPUZIU+lio1v99vaLejNIXw7/QxF0T5dPKp/JPGgAAAIBJdlq2fl/9u46vP67EPYk6f/y8ci/lysndST6tfBQ8KFihU0LlFeRV7lhcJwAAAABgCy5eLmp3dzubjWerGoUKFVisXbtWHTt2tEnCu+66S8ePH7fJWAAAAAAq5lLiJX3+5891JvqM7J3s1WVcF/l38VfOhRwd/emoohdEa89He9Tv5X7q91K/Msexxd1qAQAAAFS/yJmXv8uHDA7RsAXDtOejPRYVWGQkZ2jtc2slST2n9ixWXCFJAd0CFDYtTJEzI7XxpY3q+EBHeQZ6lhhn94Ldl+8gZZCGLRhmKq64InxmuA4uO6jUI6n6+S8/a+SqkZY/WQAAAADFnNp2SosHLFZBToFkkNrd1U4dR3aUs6ezUo+kau8ne7X1ra3aNW+Xhi8crg73dShzLK4TAAAAAKhqMwpnWNyn8+jO6jy6s03yV6jAYuDAgTZJJkmurq5q1oxlvQEAAIDqYjQa9dU9X+lM9Bk5uDhowrYJxVaq6Pv3vlr313Xa+vZWbfrHJnkHe6vzgyVPOGxxt1oAAAAANcNoNGrYh8PU/eHuleq/c+5O5V7KlSR1n1j6GN0ndlfkK5HKz87Xtne26fbZt5eYQ9SbUZKkoFuC1LB9wxJj2Dvaq8v4Ltr44kb9/v3vStybqEZdGlVqzgAAAAAuy0nPUUFOgQz2Bo3+YbRCIkKKtd/64q1aeOtCnd13VsvHLJdfJz81bFfy+zrXCQAAAABUhwvxF+Ta0LXETZpK893E7y4XgD/crdjvoaxhZ5NRAAAAANRa8VHxOrXtlCTppik3lXoyET4zXO6N3CXJ9IOnoip6t1pJ2vjSRqUnpNvyKQAAAACwUvjL4ZUurpCkg18flCTVb15fDVo2KDXGM9BTvm19JUlxX8eVWIo7YUeC0k9dPlcIHhRcZq6iP/Y6uOxgpecMAAAAoLiu47uWKK6QJJf6LoqYdXnViYLcAkV/GF0ihusEAAAAAKrL3OC5OrT8UIViT0ae1C/v/6IPe36oU9tP2SQ/BRYAAADAde6PX/4wbTfp2aTUGAdnB/l38ZckJR9MVk56TrH2it6tVgaZ7lYLAAAAoPYwGAyV7pt+Ol3nfjsnSWrU1fxqElcKutMT0pV6OLVY2/ENx03b5sbx7+Ivg52hRB8AAAAAleNS30VNejZR+3vblxnTuEdj03ZKXEqJdq4TAAAAAKgu197AyZzRP47WPZ/fI1dfV0W+HGmT/BRYAAAAANe5gtwC07a5pfMcXa+25WbkFmuzxd1qAQAAANRNZ/efNW17NvU0G1u0/eyBs8Xakvcnm7a9mnqVOYaDs4NcG7pe7nMgucw4AAAAABUT2CtQE3dMVMvbW5YZU/QagYOzQ4l2rhMAAAAAqI0ahDRQxwc6qvezvZW4N9EmY1JgAQAAAFznrqxMIUnJcWX/OOnKHamcPZ3l5udm2m+ru9UCAAAAqJvSTqSZtt383coOvKa9aD9Lx3H3d5ck5aTnKOt8VsUmCgAAAKDSTv9y2rTdfEDzYm1cJwAAAABQF2SnZdtknJIl5wAAAACuKyG3hahR10ZKjEnUrn/v0s2P3ywnd6diMXHL45Ry6HKBRbeJ3WRnf7UW25q71fq09rHFUwAAAABQg3IvXl3hzsHF/GWFoqvmFe0nSTkXcyo8jkO9q+25F3NVz7teheYKAAAAwHL52fna8PcNkiS/Tn7qPrF7sXauEwAAAACoKkmxSUqMKbnyxMktJ1WYX1hu/4K8Al04eUG/vP+LPAPNn69UFAUWAAAAwHXOzt5Oo38crRVjV+joz0e14OYFGvDaADXq2kg56Tk6vOawNr+6WZLU4f4OGvj6wGL9bXW3WgAAAADWy8/JV0FOgelx3qW8Ks+Zl3U1h72TvdnYou15mcXnlp+Vb5NxAAAAAFgnPydf2WnZyjqXpVPbTmnH7B1KPpisDvd10ND5Q4sVTktcJwAAAABQdeKWx2nzK5tL7I+eH63o+dEVHsdoNKrH5B42mRMFFgAAAEAdUtkfU7n7u2v0j6MV902c1v11nb6656ti7W3uaKPuk7qr9dDWJfra6m61AAAAAKwX9WaUImdGmh5fsLtQ5TmLfs8vyC0wE1m83dG1+I+yiq5KYc04AAAAwI3u2msFlv57/P6l+7XyoZWmx15BXrr7s7vVcWRHGQyGEvFcJwAAAABQlYxGY4X2laWedz11HttZ4S+H22Q+FFgAAAAAdUhlf0x18cxFrXl8jQ6tOCSPAA8NeH2A/Dv7qyC3QCc2ndCej/co63yW7J3tFRIRUqyvre5WCwAAAMB6ff7WR73/0tv0OD4+XrM7za7SnE4eTqbt/Ox8M5HFzx+K9pMkZw/nCo9TdLWLa8cBAAAAbnQlrhXIssLrkMEhGrN2jHIzcpV6OFX7Pt+nb0d/q00zNun2uber1Z9aFYvnOgEAAACAqtLr6V7qOr7r1R1GaW6Lubp9zu1qM7yN2b4Gg0GOro5y9XW16ZwosAAAAADqkMr8mCorNUsL+yzU+WPn1bB9Q43fPF6uPldPLNrd3U6dx3TWolsXacltSxQxK0Jh08JM7ba6Wy0AAAAA6zk4O8jB+eo/7Tu6V/337vrN65u2M5IyzMYWbS/a78rjhB0JpjjPJp5ljnMp6ZIkydnTWfW861k4YwAAAOD6du21gtOnT2t2+4oXXnsEeMgjwMP0uPezvbXu+XXaNmubPh/6uYYvHK6u47qa2rlOAAAAAKCquHi5yMXLpcR+V19X1W9Wv/onJMnOloMdP35cX3zxhebMmaOTJ0+a9h87dsyWaQAAAIAbloOzg5w9nU1/Ffkx1YYXN+j8sfOSpNvn3V6suOKKJqFN1OuZXpKktdPX6tT2U6Y2W92tFgAAAEDd5NfRz7SdfirdbGx6wtV2vw5+xdoadmxo2r5wquw77Obn5CszOfNynw4Ny4wDAAAAblTXXiuw9t/jDQaDBr09SAHdAySjtHrKal1KvGRq5zoBAAAAgOo0buM4tRjUosby26TAYtu2bbrlllvUsmVLjR49Ws8++6yOHj1qam/btq369Omj7du32yIdAAAAgAoyFhq1/4v9ki7f+TV4QHCZse3ubvf/naRf3//VtN9Wd6sFAAAAUDd5NvGUT2sfSVJiTKLZ2DPRZy73CfRUg1YNirUVPR8xN07S3iQZC40l+gAAAACoOgaDQZ1Gd5Ik5Wfla9/SfaY2rhMAAAAAqE7N+zWXm59bjeW3usDiyy+/VHh4uHbs2CGj0Sij0Vgipnnz5tq2bZv69eunzz77zNqUAAAAACooIzlD2eezJUleQV4yGAxlxha90FH0x062ulstAAAAgLqr/Yj2kqS0E2mmFfKulX46XSmHUiRJ7e5tV+L8I7BXoDwDPSVJx9cfLzPXsXVXV8W+khcAAABA1fNp42PaPrvvrGmb6wQAAAAAart9S/fpVadXbTKWVQUWCQkJeuihh5Sfn6+2bdvqmWee0cyZM0vE/f777/rpp5/k5+enSZMmFVvdAgAAAEDVMdhd/UFTacXQRV25Q6wkFRYUmrZtdbdaAAAAAHVXz6d6ysndSZIU/WF0qTF7PtojGSUHFweFPRtWot1gMKjP3/tIkuKj4k3FGEUV5hcqZlGMJKnVn1upUZdGNnoGAAAAwI3r8A+HdSLyRLlxdvZXf0ZUmM91AgAAAAB1h7HQKGOB+d9GVZSDNZ3nzZun7OxsvfXWW5o+fbok6dy5c5oxY0aJ2IiICEVFRalDhw6aN2+e5s6da01qAAAAABXg6uMqZ09n5aTnKO1EmgoLCotdICkq9WiqadsryKtYW/sR7bXl9S2mu9V6t/Au0b+8u9UCAAAAqLvc/NwUMStCq6es1o7ZO9T2rrZqEtrE1J64N1Fb/7lVktT/1f6mlSqu1WNSD+3/fL/io+K1atIqPfjzg3Ks52hq3/TyJqUeTpVLfRcNnj24ap8UAAAAcINYPWW1nNyd9Nj+x8zGpR7hOgEAAACAmrdywkqL+5S1+nZlWFVgsXbtWkVERJiKK8rTvHlzjRs3TuvWrbMmLQAAAIAKMtgZ1OrPrbR/6X7lZeTp8JrDajOsTamxB748YNpu9edWxdp6PtVTO+fuVO6lXEV/GK2Bbwws0b+8u9UCAAAAqFmxS2JN20mxSabto2uPKj0hXZLk5u+mkIiQUvvf9OhNupR0SZtf2azF/Rer+8TuatihoVIOpSh6QbTyMvLUe1pvhU0r+3zAzsFO9y+/X58P/VzxUfGa32O+uj7UVU5uTjq85rAOrz4sV19Xjfh6hHxa+djomQMAAABIiUtR2ok01W9ev9R2o9GovZ/sNT1uPax1sXauEwAAAACoLjGLYiwu2DYajTYr8raqwOLEiRN66KGHLOrTqVMnffLJJ9akBQAAAGCBfjP66bfvflNeRp5+nPqjAroFlLib7LF1x/TL+79Ikhq0bKAek3oUa7fV3WoBAAAA1JzlY5aXuj/qjSjTdrN+zcossJCk8BnhCokI0c55O3Xw64PK/G+mXH1dFXJbiEIfD1Vw/+By5+Hq66oJURO0e8FuxX4aq6g3o1SQUyCvIC+FTQ9Tr6d7ySPAw/InCAAAAKBMxkKjlo9ZrhHLRsi9kXuJtp/+8pP++OUPSVLHkR0V2DOwWAzXCQAAAABUp3o+9eTk5lRqW2FBoXLSc5STniNJcvFykUt9F5vltqrAIisrSx4ell3kKCwsVGFhoTVpAQAAAFjAt42vRq4aqW8e+EZpx9P0fsf31WVcF/l38ldBXoFORp7Uwa8PylhglF8nPz2w8gE5uJQ8VbDF3WoBAAAA1JwZxhk2GadpWFM1DWtq1Rh2DnYKnRKq0CmhNpkTAAAAgLI16tJIF05eUHxUvOaFzFOHBzrIt62vXH1cdSH+gg58dUApcSmSpC5ju2jo/KGljsN1AgAAAADV5fY5t6vTqE5mYy4lXdKhFYe0c+5O9X+lv9rf294mua0qsPD399f+/fst6rNhwwYFBARYkxYAAACAhYL7B+vxQ48rZmGMDq8+rANfHNCv//1VdvZ2cm3oqtZDW6vdPe3U8f6OsneyL3McW9ytFgAAAAAAAAAAVJ8HVj6gs/vPKm55nOK3xOvY2mPav3S/CvMK5eThJO9gb4U+EaouY7sUW5WiNFwnAAAAAFBbuPu766bJN6nt8Lb6qPdH8mrmVe45TUVYVWDRp08fffTRR3riiScUHFz+CdLKlSu1YsUKjR8/3pq0AAAAACqhnnc99f5Lb/X+S2+rxrHF3WoBAAAAAAAAAED18evoJ7+OfjYZi+sEAAAAAKrS3y7+TQ4uFS9zcG/kri7juyjqjSjdv/x+q/PbWdP5scceU3p6unr16qUFCxbowoULpjaDwWDajomJ0RNPPKERI0ZIkqZMmWJNWgAAAAAAAAAAAAAAAAAAAAAAcJ1xcnOSnb1lZQ71m9XXqW2nbJLfqhUsbrnlFj322GN6//339eijj+qxxx5TUFCQJGny5Mmyt7fXqVOnlJWVJUkyGo165plndNNNN1k/cwAAAAAAAAAAAAAAAAAAAAAAcENLPZKqnPQcm4xlVYGFJM2bN0+Ojo6aO3euCgoKdOLECRkMBh09elTS5aKKK6ZNm6a3337b2pQAAAAAAAAAAAAAAAAAAAAAAOAGd3LLSf3yn1/kFeRlk/GsLrCws7PT7NmzNWrUKM2bN0/r1q1TUlKSqd3Pz08RERGaOnUqK1cAAAAAAAAAAAAAAAAAAAAAAIBSrZywstyYwrxCZadlKzkuWWnH0yRJN02xTa2C1QUWV4SGhurTTz+VJF26dEnp6eny8PCQh4eHrVIAAAAAAAAAAAAAAAAAAAAAAIDrVMyiGBkMhgrFGo1GSVLTsKbq+0Jfm+S3WYFFUe7u7nJ3d6+KoQEAAAAAAAAAAAAAAAAAAAAAwHWqnk89Obk5ldlu52AnZy9n+bbxVethrdXhvg4y2FWsKKM8VhVY3H333XrmmWfUt69tqj0AAAAAAAAAAAAAAAAAAAAAAMCN6/Y5t6vTqE41ktvOms4rVqzQqVOnbDUXAAAAAAAAAAAAAAAAAAAAAACAGmHVChaStGXLFuXn51vUx9HRUQ0aNFDnzp0VEBBg7RQAAAAAAAAAAAAAAAAAAAAAAEAdN/X4VLk1dKux/FYXWMyfP1/z58+vdP9evXrprbfeUt++fa2dCgAAAAAAAAAAAAAAAAAAAAAAqKPqN6tfo/mtLrAwGo1W9d++fbsGDhyojz/+WA8++KC10wEAAAAAAAAAAAAAAAAAAAAAANeBU9tP6eTmk0o7nqbci7ly8nBS/eD6anZrMzXt3dTm+awqsDh+/LhWr16tqVOnKjw8XCNHjlTnzp3l7e0tBwcHFRQU6Pz589q3b5+++OILxcTE6OOPP1a7du108eJF/fbbb1q+fLm+/PJLPfLII7rlllsUHBxsq+cGAAAAAAAAAAAAAAAAAAAAAADqmOMbj+uHJ39QSlxKmTG+7Xz1p/f+pObhzW2W16oCi8zMTE2bNk0LFizQ+PHjy4zr0aOHxo8fryVLluihhx5STEyMgoOD1blzZ40YMUL33Xef7rnnHr333nt65513rJkSAAAAAAAAAAAAAAAAAACwwNJhS2t6CgAAACa/fvCr1jyxRjJKRqOxzLjkg8n6ZNAn+tN//qSbJt9kk9xWFVjMmjVLQ4YMMVtcUdSDDz6olStX6o033tC///1v0/4777xTQ4cO1dq1a62ZDgAAAAAAAAAAAAAAAAAAAAAAqKNO/3Jaa55YI2OhUe7+7mpzZxsFdA+QZxNPObg4KD87X+mn03Um+owOLT+kjLMZ+uGJH9S4R2M1vqmx1fmtKrDYuHGjnn/+eYv6DBw4sNRVKgYMGKB//OMf1kwHAAAAAAAAAAAAAAAAAAAAAADUUdtmbZOx0Kibn7xZEW9HyMGl7JKH22ffrrXT12rXe7u09Z9bNeKrEVbnt6rAIjExUXZ2dhb1MRgM+uOPP0rs9/T0VG5urjXTAQAAAADUIbVhqemRq0bW9BQAAAAAAAAAAAAAAADw/+K3xKt5v+YaMndIubEOLg4aMm+IkvYm6eTmkzbJb1l1xDXc3Ny0YcMGi/ps2LBBLi4uJfafOXNGfn5+1kwHAAAAAAAAAAAAAAAAAAAAAADUUdlp2Wp7d1uL+rS7t52y07Jtkt+qAovu3btr2bJl+vTTTysUv3jxYi1btkw33XRTibYVK1aoUaNG1kwHAAAAAAAAAAAAAAAAAAAAAADUUW7+bnKs52hRH8d6jnL1dbVJfqsKLB5//HEZjUaNHz9et912mxYuXKjY2FilpKTo0qVLSklJ0d69e/Xxxx8rIiJCEyZMkMFg0BNPPGEaIy0tTY8//rh2796tzp07W/2EAAAAAAAAAAAAAAAAAAAAAABA3RM8IFgJOxIs6pOwM0FNw5raJL+DNZ2HDx+uyZMn63//+5/Wr1+v9evXm403Go169NFHNWzYMEnSgQMH1K1bN+Xn58tgMGjo0KHWTAcAAAAAAAAAAAAAAAAAAAAAANRRYc+F6eOwj9V5TGc179e83Pj4qHjtW7JPY9ePtUl+qwosJOm///2vmjdvrpkzZyo7O7vMOBcXF7388suaPn26aZ+vr69effVVSaLAAgAAAAAAAAAAAAAAAAAAAACAG1jDdg113zf3afmY5Wo9rLU63NdB/p385eLtIoPBIKPRqOy0bJ3df1YHlx1UzMIYDfn3kNqxgsUVzz//vCZOnKglS5Zoy5YtOnbsmC5evCgPDw+1aNFCffv21YMPPigfH59i/fz9/fX888/bYgoAAAAAAAAAAAAAAAAAAAAAAKAOeMX+lXJjdn+wW7s/2F1u3PeTv9f3j36vf+T/w+p52aTAQpJ8fHw0depUTZ061VZDAgAAAAAAAAAAAAAAAAAAAACA64zRaLTpeAYZbDKOzQosAAAAAAAAAAAAAAAAAAAAAAAAKqLd3e3k18nP6nHOxp7VoRWHbDCjGiiw+OyzzzR27FgVFBRUd2oAAAAAAAAAAAAAAAAAAAAAAFALtLu7nTqN6mT1OLGfxdqswMLOJqMAAAAAAAAAAAAAAAAAAAAAAABUQP1m9eXk7mSTsZzcneQV5GWTsWyygkVubq6+/PJLRUZG6o8//lB2dnaZsUlJSbZICQAAAAAAAAAAAAAAAAAAAAAA6qCpx6fabKy2w9uq7fC2NhnL6gKLmJgY3XnnnTp16lSx/Uaj0bRtMBiK7S/6GAAAAAAAAAAAAAAAAAAAAAAAoDKOrTumLW9s0bgN46wey6oCi3PnzmnIkCFKSkqSs7Oz2rRpI3d3d23btk2dO3eWt7e3JOnixYs6dOiQMjMz1ahRI7Vp08bqiQMAAAAAAAAAAAAAAAAAAAAAgBvbpaRLOhl50iZjWVVg8e9//1tJSUkaM2aM3nvvPXl4eCglJUV+fn569913NWDAAFNsZmamnnnmGS1btkxLliyxeuJXpKSkaO7cuVq+fLlOnDghJycntWnTRiNHjtSjjz4qJycnm+W64syZM2rXrp0uXLggqfhqHQAAAAAAAAAAAAAAAAAAAAAAoGyFBYU6u++s/Dr6yc7BzrR/7yd7LR7r1LZTNpuXVQUWa9asUYcOHbRw4ULZ2V1+UgaDodRYV1dXffDBB4qJidGcOXM0a9Ysa1JLknbt2qU777xTZ86cUUREhKZMmaKsrCwtXrxYU6dO1aJFi/T999+rcePGVucq6vHHHzcVVwAAAAAAAAAAAAAAAAAAAAAAgIr76u6v9Pv3v6vl7S01avUo0/4V41eUWZNQHawqsDh8+LCeeuopU3FFeQwGg+688059/vnnVhdYxMfHa+jQoUpOTtbTTz+t2bNnm9qefPJJDRkyRBs3btQdd9yhrVu3ytnZ2ap8V3zzzTdavny5TcYCAAAAAAAAAAAAlg5bWm5MoaFQqQGpOv3uadkZK3ZtDgAAAAAAAABqqxORJ2Q0GhW/Nb5Em9FotHg8WxVlWFVgkZGRoaCgoGL7HB0dJUnnz58vtU+DBg104sQJa9JKkp577jklJycrKChIb731VrE2Z2dnLViwQG3atNHu3bv13nvv6dlnn7U6Z1pamp588kkFBgbKz89P0dHRVo8JAAAAAAAAAAAAAAAAAAAAAMCN5LZ/3aad83bq5iduLtF2+5zb1WZ4mwqPdWj5If387M82mZdVBRb169dXYmJisX3u7u6yt7fX/7F353Fa1vX++F8zzLAvsu+ioqiIiCiiZIolaqe0NPXkWh7NFjNbtDpWx1w6ZVback5+1fKgJpV2yuxkhamg4o6KAi6piCA7IvsyzP37g5/jAMMwMDfMjPN8Ph7z8Lrvz/a+ho8z12fu6319XnzxxRrbTJkyJevWravPsHn55Zdzxx13JEnOPvvsGnenGDhwYI466qjce++9ufrqq3PRRRelrKxep5tLLrkkc+bMyV133ZUf//jH9eoLAAAAAAAAAAAAAACao+HnDc/w84bXWNa2W9vsMmCXOvfVtnvbIkWV1Gv/4H333Te33377RltwlJaWZtCgQfnv//7vvP322xvVnzZtWm6++eb06dOnPsPmzjvvrBrz6KOP3mK9MWPGJEkWLFiQBx54oF5jTpgwIb/85S9z8skn54QTTqhXXwAAAAAAAAAAAAAAwMaOvOzI9Bzac5va9BzaM0f8xxFFGb9eCRZHHXVUpk+fng9/+MN55plnqt7/8Ic/nDfffDP77bdfvvWtb+X666/Pl770pYwcOTJr1qypSnzYXvfdd1/V8bBhw7ZY78ADD6yxzbZavXp1Pv3pT6dTp0752c9+tt39AAAAAAAAAAAAAAAANSspKcn0/52eCVdMyIt/erFObXru3zOjLxtdlPHL6tP41FNPzRVXXJG//vWv+dvf/pbXXnstu+66a77yla/kxhtvzJw5c/K9732vqn6hUEi7du3yta99rV5BP//880mSDh06pFOnTlus179//6rjqVOnbvd4l19+eV5++eXccMMN6dWr13b3AwAAAAAAAAAAAAAA1OyB7zyQkpKSFAqFDPvUsOx9wt47dfx6JVgMHjw4EyZMyNq1a5OkKvmgV69e+fOf/5xPfOITmT17dlX9vn375tZbb83AgQO3e8w1a9Zk7ty5SZKePWvf+qN6+YwZM7ZrvGeffTY//OEPc8QRR+S8887brj4AAAAAAAAAAAAAAICt69C3Q07+zcnpM6LPTh+7XgkWSfL+97+/xvff97735dVXX81DDz2UuXPnpnfv3nnf+96X8vLyeo23bNmyquPWrVvXWrdNmzY1tqur9evX59xzz02LFi1yww03pKSkZJv7AAAAAAAAAAAAAAAAtq6sdVlGXjQy/Uf1b5jx69N44sSJVce9evXKoEGDNiovLy/PUUcdVZ8hNrNq1aqq45YtW9Zat3r5ypUrt3msa6+9Nk899VSuvPLK7L138bYWWVWxKssrlle9Li8tT3mL+iWesO0qKioaOoRGoaKiIpWVlb4fNCrmJY2VuUljVFlZ2dAhsB3efvvtLF68uOp1q1at0qpVq502fmWJefOOhv6Z7ncLmzIn2JQ5wabMCTZlTdB0vfXWW2nbtm3V6529LqBxqcs6rVBSSCGFFEoKqYz/92lY5iMNpabrYNfINBYNORfN/6apoT8r4L2hmD97fH6E6/zGrTH8vt+WnxM7cj41te/FjtIYvg/Jjv9eNJWfTQ3979HQ4xdbp/6d0qpjw10b1yvBYvTo0VW7Onzyk5/Mr371q6IEVZvqu1KsXbu21rrVy6t/SFEXr732Wi677LLst99++frXv75tQW7F1x/YuL/jhh+Xfzn4X4o6Blv30EMPNXQIjUJlZWVmzpyZJCktLW3gaGAD85LGytykMVq0aFFDh8B2GDZs2EavP/nJT+ZTn/rUTht/ce/FW6/UTDT0usDvFjZlTrApc4JNmRNsqi5rgj9+6o95duyz29Tv3h/dO5/44yeqXi+ZsSQ/2f0ndWo74oIR+Zef+5v31gwdOnSj1zt7XUDjUpd1WiGFrOqwKouzOCWx6zoNy3ykodT0txzXyDQWDTkXq9+kT9PR0J8V8N5QzJ89Pj/CdX7j1tCfaybb9nNiR86npva92FEaw/ch2fHfi6bys6mh/z3quiZYuXBlpt4xNa/87ZXMfXpuls9bnpLSkrTv2T59D+mb/c/cP4M+MqgqP6A2b0x6I4///PHMfGhmVsxfkXbd26XfYf0y4vMjstvo3ep1Pnt9ZK+8PuH1HPTpg+rcZsqvp+SPZ/8x/7H+P+o1dlLPBIskad26db75zW/m+OOPr3cwddGhQ4eq49WrV9dat/puF9Xb1cX555+f1atX58Ybb0x5eXF3l7h69NXp3Lpz1evy0vKUz7GDxc52+OGHN3QIjcI7WWujRo1KWVm9fyRAUZiXNFbmJo3RO38w3RaLXlqUp3/1dP75139m6aylWbdiXdr1bJdOu3ZK//f1zx5H75E9PrjHFtvvyAVSc/HMM8+kf/93tzHc2U+lmv3j2TttrMauodcFfrewKXOCTZkTbMqcYFPbsyaoi3Y92+2QfnnXlClT0rdv36rXnlbbvNVlnVYoKWRxFqfL3C4pKTTeD5NpHsxHGkpNf8txjUxj0ZBzcdasWTt1PIqjoT8r4L2hmD97fH6E6/zGraE/10y27efEjpxPTe17saM0hu9DsuO/F03lZ1ND/3vUZU3w94v/nif+64lUrK5I2+5ts/8Z+6frXl1TKBQy4/4ZmXbntEz93dTs/oHdc8odp6RNlzZb7GvCFRMy4fIJKWtdlgPPOzA9hvTIwukLM/nGyZl2x7SMumRUxvxgzHafz+FfPzw3HHRDpv9hevY9cd/t7md71euqqqysLF/84hdz6aWXFiuerWrVqlV69eqVuXPnZt68ebXWrV6+22671XmMW265Jffee2/OOuus7LXXXlm4cOFmddatW1d1XL28vLw8nTp1qrX/NmVt0r6s/cZvFuocHkXij2vvKi0tTVlZme8JjYp5SWNlbtLYbOuTaCZeNTETr5yYdj3aZb9/3S9dB3VNxeqKzH5sdqb+bmpmPjgzk2+cnK8t/FqN7Xf0Aqm56NSpU7p06dJg45cWPMnvHY3h57nfLWzKnGBT5gSbMieoblvWBBdMv2CrdW477ra8/frbGfapYTWWf+A/P7DVDzNad25d55ias86dOzfouoDGpS7rtMpUpiQlKSmUWNfR4MxHGsqWroFdI9NYNNRcNPebpob+rID3jmL97HFdh+v8xq0x/L7flnmxI+dTU/te7CiN4fuQ7PjvRVP52dTQ/x51GX/KbVNSsboiA44ckE/c9Ym07vTu3/IPueCQvPTnl/Kbj/0mr933WsYdPy7nPHhOSko3T2p58von88BlD6SsdVnOvu/s9BvZr6ps6FlDc/P7b86kayalXY92GXXxqO06n4rVFTnhVyfk7vPuzpRbp2TwKYPTY78eadWxVY0xJRt25yiWev1r9uzZM3vttVexYqmzIUOGZO7cuVm2bFnefvvtLSY0VM/G2W+//erc/3333ZckufXWW3PrrbdutX737t2rjo888sg88MADdR4LAAB2lvFfH59JP5iUIZ8YkhN+eULK2268i9rQs4fm9n+5fYvtd8YCCQAA2HG67dOt1vI3Jr2Rt19/Oz3275H+h/WvsU6H3h222g8AAAAAAND4lJaV5sRbTtwoueIdgz4yKMPPG56n/t9TeWPSG5n6u6kZ8okhG9VZsWBFxl8yPkky8qKRG907lCS9D+ydURePyoTLJ+T+b9+fIZ8Yko79Om5znNftdl1KSjYkUiydtTQv3vXiNvdRH/VK5TniiCMyffr0bWpz77335gMf+EB9ht2o/TPPPLPFepMnT66xzdZ87Wtfy/jx42v9Gjp0aFX96u//6Ec/2raTAQCAneCff/1nJv1gUrrv1z0fu+VjmyVXJMmex+6ZPcbskbZd225WVtcFUpLc/+37s3TW0h1wFgAAwPbotk+3DDhywFbrPXXDU0mSg84/aEeHBAAAAAAA7GS9hvVKp11r3tggSfb9+Ls7WL9090ublT/2k8eydvnaJMnw84bX2Mfw84YnJRt2oZj0o0nbHWuhUNjmr2Kp1w4WX/3qV3Pcccfls5/9bAYOHFinNvPmzcuECRPqM2xOPvnkfPOb30yhUMg//vGPHHnkkTXWu/fee5Mk3bp1y+jRo+vc/+DBgzN48OBa63Tu3Lnq+Oijj65z3wAAsLMVCoX89Ut/TZIc/o3D06K8xRbrnvnXM2t8v64LpAlXTKhaIB137XH1jBwAACiGw79xeA7/xuG11ln99upMu2NaytuWZ+hZQ2utCwAAAAAANC0fH/fxGh+6Wt0uA3apOn575tublU+7c9qGervtki57dqmxj479OqbbPt2ycPrCTL9zeo798bFVu1Fsi4M+c1D6Hdpv6xX/f7MemZXJN07eesU6qFeCxfDhw3P99dfnmGOOyUUXXZRTTjklvXv3Lkpgtdlrr71yyimn5He/+11uvfXWfOtb30rLli03qvPqq6/mvvvuS5J8/etfT1nZxqf6/PPP56STTsrKlStz++2354gjjtjhcQMAQEN4feLrWfTiopSUlmTQ8YO2q4+duUACAAB2vim3Tsm6lesy7JxhNW4NXpPKispUrKlIy3Ytt14ZAAAAAABoMLsftftW66xesrrquLxd+UZlS2cvzaIXFyXZsBNGbXof2DsLpy/M0llLs/jlxek6qOs2xzvg/QOy/+n717l+aVlp40iw2GOPPZIkixcvzpe//OV8+ctfTqdOndKxY8eUlpbW2GbFihX1GbLKNddck/vvvz8zZszIpZdemh/+8IdVZWvWrMn555+f9evX56CDDsoXvvCFzdp/97vfzcsvv5wk+cY3vpFJk7Z/CxIAAGjM3kmO6DSg00Y3ShUKhaxdvjYt27esNRFiZy+QAACAne+dDx0OOv+gWuvNnzo/vz/995n50Mwse3NZCusLKW9bnn6H9sv+Z+6fA846IKVlNX8+AAAAAAAANF5vvfZW1fGAIwZsVDb/+flVxx37d6y1n+rl86fO3+b7h3Z9365p16PdNrXpMrBLDjj7gG1qsyX1SrCYMWPGZu8tWbIkS5YsqbVdMZ5iu+uuu+buu+/OiSeemB/96Ed5/vnnc8IJJ2TVqlUZO3ZsnnvuuQwbNix/+tOf0rr15k/bqqysrDouFAp1GvO2226rOp43b16N748ZMyY9e/bcnlMCAIAdYs6Tc5IknXbtlEJlIU/f/HSevunpvPnkm6msqExpWWl6H9Q7B5x9QIZ/enhalLfYqP3OXCABAAA736xHZ2XelHnpObTnVrfbfuSHj6TroK455AuHpNu+3bJ+zfq8PvH1TL5xcl6777VMvmFyTv3fU9Ohd4edFD0AAAAAAFAML/zhhSRJWeuyDPvUsI3KlsxYUnXcrmftyQ/Vy6u3q6tzHjxnm9v0O7TfVj/jqKt6JVgkyfvf//6qnSzq4tVXX81DDz1U32GTJCNHjsyUKVNy3XXX5Q9/+EO+9rWvpby8PIMGDcp1112Xz33uc2nZsuatyb/5zW9m8uTJWbVqVa6++uo6jXfWWWdt9f37779fggUAAI3KvOc2JAcXKgu59ZhbM+P+GTngUwfksK8elhYtW2TmwzPz+M8ez18u+Eum3Dolp919Wtp2a1vVfmcukAAAgJ3vqRueSpIMP3/4Vuvu+/F9c9KvT0pZq3c/Xhh88uAMO2dYxo4em1mPzsq448fl3x7+t43qAAAAAAAAjdeK+Svy4l0vJkkOu/iwdOiz8YOU1i5bW3Vc1rr2v/+XtymvsV1dPXvLsxlwxIDsstsuW637i/1/kUKhkIM+c1BGXjhym8eqSb0/3fjMZz6T008/vc71f/3rXxctwSJJunXrlquuuipXXXXVNrUbOnRoXn755W1qU9edLgAAoLFYt3Jd1q1YlySZ+eDMJMnJvzs5+52yX1WdvU/YO4NPHpz/OeJ/MuvRWbnzE3fmrPFnVe08tzMXSAAAQO0q1lRk/Zr1Va/XLV9Xr/7WLF2Tqb+dmvK25Rl65tAt1uvYr2Mueu2idOjbYbNd75Kk94G9c8R/HJHxF4/PnKfm5Mnrn8yhFx1ar9gAAAAAAIDNbfpZQTHu0Rl/yfhUrK5I7+G9c8S3jtisfN2qdz+PaNFy888Jqqtevm7ltn+Ocdc5d+XEW0+sU4JFedvyvPnkm/nbl/6W1p1a54CzD9jm8Ta10x8f1b59++y66647e1gAAHhP2NabqdYsXbPR6z0/tOdGyRXv6Duibw7+/MF59MeP5rV/vJaX7n4pe5+w94YxduICCQAAqN1D33soEy6fUPX67dK369XflNumZN3KdRl2zrC07tR6i/VKy0q3+kHGgeccmPGXjE8KyTO/ekaCBQAAAAAA7ACbfVaQ+n9W8Owtz6Zdj3Y59fen1rhDdfWHrq5fu36z8uqql5e3La+lZs22ZVOE8x47L8veXJbfnvjbPP6zxxs+wWLdunVp0aL2G6w29dGPfjQf/ehH6zMsAAA0W9t6M1Xl+sqNXg8+ZfAW6w75xJA8+uNHk2xYOL2TYLEzF0gAAEDtDv/3w3PYVw6rej1z5sxcu/+1293fUzc8lSQ56DMH1Tu2Nl3apPMenfPWK29l3nPzsnb52rRs37Le/QIAAAAAAO/a9LOC2bNn59rB2/dZwesTX8/dn747rTq2yul/OX2LD1tq2eHdv/dXrK6otc/qD3Ot3m5H6dCnQ4adMyz/+Pd/FKW/eiVYbGtyBQAAUD/bejNVqw6tNnrdc/+eW6zbc2jPpCRJIZn9+Oyq9xvzAgkAAJqbslZlGz05qrz99ic2z3psVuY9Oy89D+iZfiP7FSO8tOvRLm+98lZSSJbPW54u7bsUpV8AAAAAAGCDTT8raLl0++7Rmf347Iw7flxatGyRM/92Zvoc1GeLdasnXqyYt6LWfquXb2137GJZ/MrirT44tq7qlWBRXWVlZSZMmJDHHnssc+fOzec+97nsvfeGJ97ef//9OfLII1NaWlqs4QAAoFna1pupWrZvmRYtW1QtIFp3bl1r3y3bt8zaZWuzYn7NC53GuEACAAC2T9XuFefXf/eKdxQq3922u7SFzwQAAAAAAKAxevOpN3PbsbelUCjkrL+flX6H1v4gph5DelQdL31jaa11l856t7zHfj1qqZm8cNcLefGuFzd7/6kbnsqr975aa9skqVxXmSWvL8msR2ZteLhsERQlweJ3v/tdLrnkksyaNavqvRNOOKEqweKYY45Jv379cvXVV+fUU08txpAAAEAdlJSWpNu+3TLv2XlJNiwqalV4t907dtQCCQAAaDhrlq7J1N9OTXnb8gw9c+hW60+8amJ67N8j+3x0n1rrLZ+7PMmGNUW7Hu2KEisAAAAAAFA8c56ek1vH3JrKisqc+bczt5pckSQd+3ZM10Fds+ilRZn7zNza+588Z0Obfh3TZa/ad7qe+8zcPPM/z6SkpGSj92c+ODMzH5y51biSpFDYcMPTIV88pE71t6bej4/68Y9/nNNOOy1vvPFGCoVCVYDVjR49OjNnzsxpp52WH/zgB/UdEgAA2AZ9D+lbdfzOzU41WbdyXdauWJsk6dCnQ9X77yyQkhR1gQQAADScKb+eknUr1mW/T+yXVh1bbbX+/d++P0/+4sla6yybsyxvv/52kqT38N4pb1v7jnsAAAAAAMDONW/KvNw65tasX7s+Z9xzRvqP6r9ZnQcufyA3HHzDZu8PPmVwkmTJjCV569W3aux/6eylWfjCwiTJvifvu1nixKZa79I6uwzYJZ127VT1lSRturbZ6L0avwZ0Srd9u2Wfj+2Tf/3Dv2bYJ4dty7dii+q1g8ULL7yQr33taykUCjn22GPzL//yL+nQoUPOPffcjeqNHz8+L774Yk455ZR885vfzDHHHJNhw4bVZ2gAAKCOBp88OJNvnJwkmf3E7Ow2erca6815ek7VDhYDjhywcR+nDM6D332waoHUeY/Om7Xf1gUSAADQcN5ZIxz8mYPr3OaNSW9kzdI1W0zIePL6dxMwhp8/vH4BAgAAAAAARTX/+fm55YO3pGJVRc6454zseviuNdZb8tqSzHlqzmbvj/ziyDz2k8eydvnaTL5pcj74nx/crM7Tv3w6KSRlrcsy6qujthrToRcdmkMvOnSj9y4vvTzHXXdc9j99/zqeWXHVaweLn/3sZykUChk3blzuueeeXHjhhTn++ONr3MVi7733zv3335+OHTvm5z//eX2GBQAAtsEeR++Rngf0TJI8d9tzNV6vJ8mUW6dUHY/43IiNykZ+cWRatm+ZJJl80+Qa22/rAgkAAGgYs5+YnblPz03PA3putOPd1qxdtjZ3n3931q9dv1nZK39/JQ9f/XCSZMARA3LgOQcWLV4AAAAAAKB+FkxbkFs+eEtWLlyZwy4+LIXKQmY8MKPGr+Vzl9fYR7se7TLmmjFJkkevfTSzn5i9UfncZ+fm4R9s+KzgqCuPSsd+HXfsSe0g9drB4oEHHshJJ52Uf/3Xf61T/a5du+ZTn/pU/vSnP9VnWAAAYBuUlJbkw//94Yw9amzmTZmXiVdOzJH/ceRGdV75+ysbEiSSHPrlQ9N7eO+Nyt9ZIP3f5/4vj177aPY5cZ/0HfHujVjvlQUSAAA0B0/d8FSS5KDPHFTnNj0P6Jl5z87L1N9OzZyn5mS/T+yXznt0zroV6zLjgRmZ/r/Tk0Ky54f2zEm/PimlZfV6vhMAAAAAAFAkFasrcssHb8mK+SuSJBOvmJiJV0zcrr4O/uzBWT5veSZeMTFjjxqb4ecNT/f9umfhCwsz+cbJWbdiXQ67+LCMunj7H856WeVl2922GOqVYDFr1qx84Qtf2KY2e++9d2bPnr31igAAQNH0H9U/J//25Pzh7D/kgcseyMwHZ2bQCYNS1rosbzz8RqbcNiWF9YWMvGhkVab5pnbGAgkAANix1ixbk6m/mZryduUZesbQOrf77DOfzazHZuWFP76QNx5+I5NvmJxVb61Ki/IWad+rffY/ff8MPWto9jx2zx0YPQAAAAAAsK0qVldscVeK7TH6stEZOGZgHvvpY5l257Ss/MXKtO3WNgOPGZgRF4zI7kftXrSxGkK9EizWrVuXli1bblObVatWpUWLFvUZFgAA2A77fGyfXDDtgjz6k0fzz7/8M/ddel8q11emQ+8OOeCsA3Lw5w/eaFeKmrzXF0gAAPBe16pDq/z7sn/frrb9RvZLv5H9ihwRAAAAAACwI7XepXUuKxR3V4j+o/qn/6j+Re2zuuVzl2f92vVJknY926Ws1btpD4tfWZwJ35mQuc/OTauOrTLktCEZ8fkRKSkpKcrY9Uqw6NOnT5544omce+65dW7z5z//Of36+QAGAAAaQsd+HXPMNcfkmGuO2e4+dvQCCQAAAAAAKL6VC1dm6h1T88rfXsncp+dm+bzlKSktSfue7dP3kL7Z/8z9M+gjg+p0U9Ibk97I4z9/PDMfmpkV81ekXfd26XdYv4z4/IjsNnq3HX8yAADAe9aqxavyk91/UpVgccY9Z2TgMQOTJAumL8gvD/1l1i5fm0KhkCSZ9ciszHpkVk667aSijF+vBIujjjoqY8eOzbnnnpsRI0Zstf7Pf/7z3Hffffnc5z5Xn2EBAAAAAAAAAIA6+vvFf88T//VEKlZXpG33ttn/jP3Tda+uKRQKmXH/jEy7c1qm/m5qdv/A7jnljlPSpkubLfY14YoJmXD5hJS1LsuB5x2YHkN6ZOH0hZl84+RMu2NaRl0yKmN+MGYnnh0AAPBeMu3OaalYU5G23dpm+KeHp8eQHlVlf73or1mzbE2SpM9BfdKhT4e8PvH1PD/u+ex/+v7Z61/2qvf49UqwuOiii3LzzTdn9OjR+dKXvpTTTz89PXpsOIF3stnnz5+fSZMm5aabbso999yTFi1a5Itf/GK9AwcAAAAAAAAAALZuym1TUrG6IgOOHJBP3PWJtO7UuqrskAsOyUt/fim/+dhv8tp9r2Xc8eNyzoPnpKR0850snrz+yTxw2QMpa12Ws+87O/1G9qsqG3rW0Nz8/psz6ZpJadejXUZdPGqnnBsAAPDe8srfX0mrjq3ymcmfScd+HaveX/zPxXn13ldTUlKSEReMyId++qEN77+yODeOuDHP3PxMURIsSuvTeMiQIbnyyiuzatWqfP/738/QoUPTv3//lJSU5GMf+1jatGmT3r175+Mf/3juueeeFAqFfP/738+gQYPqHTgAAAAAAAAAAFA3pWWlOfGWEzdKrnjHoI8MyvDzhidJ3pj0Rqb+bupmdVYsWJHxl4xPkoy8aORGyRVJ0vvA3lVJFfd/+/4snbW02KcAAAA0A3Mmz8mwTw3bKLki2bCzRZKUty3PB676QNX7XQZ2yf5n7J/Zj88uyvj1SrBIkn//93/Ptddem/Ly8hQKhaxduzZJsnz58qxZsyaFQiGFQiHl5eX52c9+lq985Sv1DhoAAAAAAAAAAKi7XsN6pdOunbZYvu/H9606funulzYrf+wnj2Xt8g33Bb2TjLGp4ecNT0qSitUVmfSjSfWMGAAAaI6Wz1me7oO7b/b+i3e9mJKSkuzzsX3SqmOrjcq679s9K+avKMr49U6wSJKLLroor7zySr75zW/mkEMOSefOndOiRYt07tw5hxxySL75zW/mlVdeyQUXXFCM4QAAAAAAAAAAgDr6+LiP54RfnlBrnV0G7FJ1/PbMtzcrf+dpsbvstku67Nmlxj469uuYbvt0S5JMv3N6CoXCdkYMAAA0VyWlJVm/bv1G7y2dvbRqh4rBpwzevE2LkqKNX1asjvr27Zsrr7wyV155ZbG6BAAAAAAAAAAA6mn3o3bfap3VS1ZXHZe3K9+obOnspVn04qIkG3bCqE3vA3tn4fSFWTpraRa/vDhdB3XdjogBAIDmqmO/jpnz1JyN3nv6l0+nUCikZbuWGXjswM3avPXqW2nTtU1Rxq/XDhZXXHFFnn/++aIEAgAAAAAAAAAANIy3Xnur6njAEQM2Kpv//Pyq4479O9baT/Xy+VPn11ITAABgcwOOHJDnf/N8pv/v9KxbuS7//Os/M+mHk1JSUpJ9TtwnZa023mOiYnVFnrvtuXQf3L0o49drB4vvfOc72WuvvTJkyJCiBAMAAAAAAAAAAOx8L/zhhSRJWeuyDPvUsI3KlsxYUnXcrme7WvupXl69HbBl444ft13tKksqs7j34sz+8eyUFur1rGUAgEbj0C8fmmfHPps7Trmj6r1CoZDSstKMumRU1XsrF67MrMdmZeIVE7N87vKMuGBEUcavV4JFsmEXi/nz5+fMM89M16629AMAAKDp2N4PLIqlsqQyfb/St0FjAAAAAABYMX9FXrzrxSTJYRcflg59OmxUvnbZ2qrjsta1325U3qa8xnYAAAB10X3f7jnp1yflrn+7K2uXb1hTlLUuy3HXHZee+/esqvfoTx7Ng999MElSUlKS/U7dryjj1zvBYsmSJfnyl7+cr3/96znhhBNy7rnn5phjjklJSUkx4gMAAAAAAAAAAP5/FWsqsn7N+qrXxUhiGH/J+FSsrkjv4b1zxLeO2Kx83ap1VcctWraota/q5etWrqulJgAAQM0Gnzw4e4zZI69PfD2FykL6HtI3HXpvnAg++OOD02XPLkmSVh1aVR3XV70TLH70ox9l6NChuemmm/LrX/86v//979O3b9+cc845+dSnPpXdd9+9GHECAAAAAAAAAECz99D3HsqEyydUvX47b9ervym3Tcmztzybdj3a5dTfn5qyVpvfTlR9V4r1a9dvVl5d9fLytuW11AQAANiy1p1aZ+/j995iea9hvdJrWK+ij1tan8YDBgxI+/btM2TIkFx33XV5880385vf/CaDBw/Od7/73ey11145+uijM27cuKxZs6ZYMQMAAAAAAAAAQLN0+L8fnm+8/Y2qry9M+8J29/X6xNdz96fvTquOrXL6X07PLrvtUmO9lh1aVh1XrK6otc/qu11UbwcAALCjzHtuXiZcMWHrFeugXgkWr732Wk444YSq1+Xl5TnllFPy17/+NTNmzMh//Md/5NVXX80ZZ5yR3r1758ILL8zTTz9d76ABAAAAAAAAAKA5KmtVllYdW1V9bW8Sw+zHZ2fc8ePSomWLnPm3M9PnoD5brFs98WLFvBW19lu9fEsJGwAAAMU0b8q8jXb6q496JVjUpl+/flUJFuPHj8+QIUPy3//93zn44IMzfPjwHTUsAAAAAAAAAABQizefejO3HXtbCoVCzvzbmel3aL9a6/cY0qPqeOkbS2utu3TWu+U99utRS00AAIDNvT3z7W3+WrlwZdHGLytaTzVYt25d/vCHP+SXv/xlJk2alCQpFAp59tlnd+SwAAAAAAAAAABADeY8PSe3jrk1lRWVdUquSJKOfTum66CuWfTSosx9Zm7t/U+es6FNv47psleXosQMAAC890y4ckIe+dEjOfRLh2b0d0ZXvX/dbtelpKSkweKq1w4WV1xxRZ5//vnN3n/uuefypS99KX369Mlpp52We++9N5WVlSkUChk1alRuuumm+gwLAAAAAAAAAABso3lT5uXWMbdm/dr1OeOeM9J/VP/N6jxw+QO54eAbNnt/8CmDkyRLZizJW6++VWP/S2cvzcIXFiZJ9j153wa9KQoAAGjcJl0zKWuWrskjP35ks7JCobDNX8VSrx0svvOd72TPPffMkCFDsnTp0tx+++351a9+laeeeipJqgLt3r17zj777Jx77rnZZ5996h81AAAAAAAAAABQZ/Ofn59bPnhLKlZV5Ix7zsiuh+9aY70lry3JnKfmbPb+yC+OzGM/eSxrl6/N5Jsm54P/+cHN6jz9y6eTQlLWuiyjvjqq6OcAAAC8d+x36n55+ldPVyVzV3fQZw6q025775j1yKxMvnFyUeKqV4JFkjzxxBP561//mt///vdZvXp1kg2JFaWlpTnuuONy7rnn5oQTTkhZWb2HgqIad/y4hg4hSXLa3ac1dAgAAAAAAAAAwHvYgmkLcssHb8nKhStzxH8ckUJlITMemFFj3eVzl9f4frse7TLmmjH5v8/9Xx699tHsc+I+6Tuib1X53Gfn5uEfPJwkOerKo9KxX8einwcAAPDeccJNJ2TMD8akTZc2m5UNeP+A7H/6/nXuq7SstPEkWPz0pz9N8u5uFbvvvnvOOeecnHPOOenbt29tTQEAAAAAAAAAgB2oYnVFbvngLVkxf0WSZOIVEzPxionb1dfBnz04y+ctz8QrJmbsUWMz/Lzh6b5f9yx8YWEm3zg561asy2EXH5ZRF9u9AgAA2Lqakit2O3K3tOvZbpv6ad+zfQYcMaAoMdU7waJQKKRVq1Y58cQTc+655+aDH9x8+7/qXnvttTz44IM5++yz6zs0AAAAAAAAAABQi4rVFVvclWJ7jL5sdAaOGZjHfvpYpt05LSt/sTJtu7XNwGMGZsQFI7L7UbsXbSwAAKD5+eT9n9zmNnscvUf2OHqPooxf7wSLz33uc7nqqqvSuXPnOtWfNGlSzjnnHAkWAAAAAAAAAACwg7XepXUuK1xW1D77j+qf/qP6F7VPAACAxqDeCRbve9/76pxcUVFRkenTp9d3SAAAAAAAAAAAAAAA4D2mYk1FZj40M3Mmz8nKBSuzZumatOrUKu26t0ufg/uk/6j+adGyxQ4bv14JFq+99lq6d+++1XqPP/54brnllvz2t7/N4sWL6zMkAAAAAAAAAAAAAADwHrLszWWZ+N2JefZ/nk3F6oot1itrU5YD/+3AHP7vh6dD7w5Fj6NeCRYDBgzYYtkbb7yRW2+9NbfeemteeumlqvcLhUJKSkrqMywAAAAAAAAAAAAAAPAe8OKfXsz/nvm/WbdiXQqFQq11161clyf+64k88z/P5OO3fzyDPjKoqLHUK8FiUytWrMidd96ZsWPHZuLEiVUnV/0ku3XrlkWLFhVzWAAAAAAAAAAAAAAAoImZ8usp+eMn/5gU/v/NHEpL0n1w9/Qa1itturZJy/Yts3bZ2qxcuDJzn56bhS8uTKGykLXL1+Y3H/tNTrz1xOx/2v5Fi6feCRaFQiH33ntvbrnllvzxj3/MypUrq95/R+fOnXP66afn3HPPzfPPP59PfvKT9R0WAAAAAAAAAAAAAABoohZMW5A/f+bPKVQW0qZzm4y6ZFSGnzc8bbu13WKb5fOWZ/KNk/PIjx/J6iWr8+fz/5xeB/RK98HdixLTdidYTJ06Nbfcckt+/etfZ86cOUmy2XYcJSUlueqqq/KVr3wlrVq1qmq3tW07AAAAAAAAAAAAAADY3LjjxzV0CFAU4y8Zn3Ur16X/qP455XenpEOfDltt075n+xzxrSNywCcPyB2n3JHZj8/O+EvG5/T/O70oMZVuS+UFCxbkJz/5SQ466KAMHTo0P/zhDzNnzpwUCoWqpIn99tsv//mf/5knnngihUIhI0eOrEquSJIzzjgjlZWVRQkeAAAAAAAAAAAAAABoWuZPnZ+X73k53fbpltP/7/Q6JVdU16l/p5xxzxnpulfX/POv/8yCaQuKEleddrC48847M3bs2Pz9739PRUVFko13q+jXr19OO+20nHHGGRk6dGiSZNGiRUUJEAAAAAAAAAAAAAAAeO946e6XUlJSkmOvPTatO7Xerj7adG6TY689Nrd/5Pa8+KcX031w93rHVacEi1NPPTUlJSUbJVV07tw5J598ck4//fQceeSR9Q4EAAAAAAAAAAAAAAB475v54Mx0HdQ1ex67Z7362etf9krXvbrm9Ymv5/BvHF7vuOqUYJFs2LGipKQkXbt2zU9+8pOcfPLJKS8vr3cAAAAAAAAAAAAAAABA87HopUUZeNzAovS1x5g98s+//rMofZXWpdLdd9+dU045Ja1atcrChQvzmc98Juedd17+/ve/p7KysiiBAAAAAAAAAAAAAAAA730rF61M5z06F6WvzgM7Z9XiVUXpq04JFh/+8Ifz29/+NnPnzs3111+foUOH5tZbb82HPvSh9OnTJxdddFEee+yxogQEAAAAAAAAAAAAAAC8d615e03adm1blL7adm2bNUvXFKWvOiVYvKNjx445//zz89BDD+WVV17Jt7/97XTo0CE/+9nPMmrUqOy11175zne+k5deeqkowQEAAAAAAAAAAAAAAO8thUIhpWXblM6wRSUtSpJCUbpK2fY23H333fOd73wn3/nOd/LQQw/llltuyZ133pkrrrgiV155ZQYPHpySkpIUChtH+uijj+aGG27Ir371q3oHDwAA0BTd/em70611t4YOAwAAAAAAAAAAGk5JQwewue1OsKju8MMPz+GHH56f/exnueuuuzJ27NiMHz8+hUIhJ510Uk477bR8+tOfzkEHHZRXXnklY8eOlWABAAAAAAAAAAAAAADN1N++9Lfc98376t3PuhXrihDNBkVJsHhHq1atcuqpp+bUU0/NggULctttt+XWW2/NDTfckBtvvDH7779/9txzz2IOCQAAAAAAAAAAAAAANDErF65MYUGhKH2VlBRnO4yiJlhU171793z5y1/Ol7/85UydOjX/8z//k3HjxmXKlClFCx4AAAAAAAAAAAAAAGh62nRtk5btWta7n7Ur1mbVolVFiGgHJlhUt99+++Waa67J1VdfnauuuiqXX375zhgWAAAAAAAAAAAAAABohI677rjsf/r+9e5nym1T8sdP/rH+ASUpLUovdR2stDQDBw5MoVCcbTwAAAAAAAAAAAAAAIBmrKR4Xe3UBIskOfHEE/Paa6/t7GEBAAAAAAAAAAAAAIBG4Nhrj02fg/sUpa8+B/fJMT8+pih9lRWll23Qtm3bDBgwYGcPCwAAAAAAzdb/jP6fvD7h9a3WK29XnkuXX1prnTcmvZHHf/54Zj40Myvmr0i77u3S77B+GfH5Edlt9G5FihgAAAAAAHgvO/SiQ4vWV7e9u6Xb3t2K0tdOT7AAAAAaj79f8vc88sNHkiRHXnZkRn9n9FbbuJkKAACarwlXTMiEyyekrHVZDjzvwPQY0iMLpy/M5BsnZ9od0zLqklEZ84MxDR0mAAAAAADAdpFgAQAAzdScyXPy6LWPblMbN1MBAEDT1WdEn5x4y4m11ikpLdli2ZPXP5kHLnsgZa3LcvZ9Z6ffyH5VZUPPGpqb339zJl0zKe16tMuoi0cVLW4AAAAAAICdRYIFAAA0Q5UVlfnTeX9KYX2hzm3cTAUAAE1bedvydNtn+7bHXrFgRcZfMj5JMvKikRutB5Kk94G9M+riUZlw+YTc/+37M+QTQ9KxX8d6xwwAAAAAALAzlTZ0AAAAwM436UeTMvfpudn7o3vXqX5db6ZKkvu/fX+Wzlpa3IABAIAG9dhPHsva5WuTJMPPG15jneHnDU9KkorVFZn0o0k7MzwAAAAAAICikGABAADNzOJXFmfC5RPSZ0SfHHLhIXVq42YqAABo3qbdOS1Jsstuu6TLnl1qrNOxX8eqHTKm3zk9hULdd8wDAAAAAABoDCRYAABAM/Pn8/+cynWVOf7G41Paom5LAjdTAQDAe8+aZWtSqNz6dfvS2Uuz6MVFSZJew3rVWrf3gb03tJm1NItfXlz/IAEAAAAAAHaisoYOAAAA2Hkm/3JyXrvvtbzv6+9LrwN6ZcYDM7baZltvplo4fWHVzVRdB3UtRtgAAEARrFu5LhOumJBpd07LW6+8lXUr16WktCRd9+6avT68Vw778mHp0KfDZu3mPz+/6rhj/461jlG9fP7U+dYEAAAAAABAkyLBAgAAmonlc5dn/CXj03lg5xx52ZF1budmKgAAeG9484k3M/+5+Rn2b8NyxLeOSHm78ix8YWEm3zA5j/zwkTz1/57KSbedlL1P2HujdktmLKk6btezXa1jVC+v3g4AAAAAAKApkGABAADNxF++8Jesfmt1TrnjlJS3Ka9zOzdTAQDAe0O7Hu3yyfs/me6Du1e9N+jDg3LIFw7JuOPH5dXxr+aOU+7IJ+//ZPqP6l9VZ+2ytVXHZa1r/1ih+lqjejsAAAAAAICmoLShAwAAAOquYk1F1ixdU/W1bvm6OrV74a4XMv330zPsU8Oyxwf32KYx3UwFAACNx/auCU7+zcm54IULNkqueEdZq7J87H8+lhatWmT92vX5yxf+slH5ulXvjtGiZYtax6levm5l3WIDAAAAAABoLOxgAQAATchD33soEy6fUPX67dK3t9pmzdI1+csFf0nb7m1zzI+O2eYx3UwFAACNx/asCZKkfa/2tZZ36NMhex63Z16868XMfXpu5jw9J70P7J1k40Tq9WvX19pP9fLytnXfOQ8AAAAAAKAxkGABAABNyOH/fngO+8phVa9nzpyZa/e/ttY24782PstmL8tJt5+UNl3abPOYbqYCAIDGY3vWBHXV5+A+efGuF5Mkb0x6oyrBomWHllV1KlZX1NpH9QTt6u0AAAAAAACaAgkWAADQhJS1KktZq3cv48vb157E8PqDr+epG57Knsftmf1P23+7xnQzFQAANB7buibYFu16tKs6Xj53edXxLrvtUnW8Yt6KWvuoXl69HQAAAAAAQFMgwQIAAN6j1q9dn7s/fXdatGyRo648KisXrtyszuq3V1cdr1u5bqM6rTq1SovyFm6mAgCAZqJQWag6Lm1RWnXcY0iPquOlbyyttY+ls94t77Ffj1pqAgAAQOMw7vhxDR0CANvAz21gR5NgAQAA71HL3lyWRS8uSpLcOOLGrdafdM2kTLpmUtXrT97/yew2ejc3UwEAQBP34t0vZt6z8/L+b74/JSUlW6xXfdeK9r3bVx137NsxXQd1zaKXFmXuM3NrHWvO5Dkb2vTrmC57daln5AAAAAAAADuXBAsAAHiPat+rfc4af1atdeY+OzfjLx6fJBl61tAccPYBVWU9D+iZxM1UAADQ1E3//fQ8O/bZDD9veNr3ar/FerMenVV1vOvhu25UNviUwXnwuw9myYwleevVt9J5j86btV86e2kWvrAwSbLvyfvWmswBAAAAAADQGEmwAACA96iy1mXZ4+g9aq1TWlZaddx5j85brO9mKgAAaPpevuflHHjOgTWWLXp5UV6999UkSf9R/TfbkW7kF0fmsZ88lrXL12byTZPzwf/84GZ9PP3Lp5PChrXIqK+OKv4JAAAAAAAA7GClW68CAAA0dyO/ODIt27dMkky+aXKNddxMBQAAjds//v0fWfTSos3eX7V4VX5/2u9TWF9IedvyfOjnH9qsTrse7TLmmjFJkkevfTSzn5i9UfncZ+fm4R88nCQ56sqj0rFfxx1wBgAAAAAAADuWHSwAAICteudmqv/73P/l0WsfzT4n7pO+I/pWlbuZCgAAGq/ug7untLw0K+atyPXDrs+QTwxJnxF90qJliyycvjDP3vJsVi5YmXY92+Xk356c3gf2rrGfgz97cJbPW56JV0zM2KPGZvh5w9N9v+5Z+MLCTL5xctatWJfDLj4soy6WcA0AAAAAADRNEiwAAKCZmTdlXuZNmZckWTB9wUbvT7ltSpKkXc92GThm4Ebt3EwFAABN0/u+9r4ccPYBmf6/0/Pq+Ffz+sTXM/W3U7N+3fq06dwmPYf2zKCPDMqB5x6YVh1a1drX6MtGZ+CYgXnsp49l2p3TsvIXK9O2W9sMPGZgRlwwIrsftftOOisojnHHj2voEAAAAAAAaEQkWAAAQDMz/X+nZ8LlEzZ7/4U/vJAX/vBCkmTAkQM2S7BI3EwFAABNVfte7TPi8yMy4vMj6t1X/1H9039U/yJEBQAAAAAA0LhIsAAAgGZm9HdGZ/R3Rm93ezdTAQAAAAAAAAAA70WlDR0AAAAAAAAAAAAAAABAQ5NgAQAAAAAAAAAAAAAANHsSLAAAAAAAAAAAAAAAgGZPggUAAAAAAAAAAAAAANDsNfkEi4ULF+bb3/52hgwZkvbt26dLly457LDD8tOf/jRr166tV9+FQiEPPvhgLrrooowYMSKdO3dOeXl5unbtmsMOOyyXXXZZ3nzzzSKdCQAAAAAAAAAAAAAA0FCadILF448/nqFDh+aqq65Knz59cvXVV+fSSy/N8uXLc9FFF+XQQw/d7gSIyZMnZ9iwYTniiCPy05/+NN26dctXv/rVXH/99bngggsyZ86cXHHFFdl7773z61//ushnBgAAAAAAAAAAAAAA7ExlDR3A9po5c2Y+8pGPZMGCBfnSl76Ua6+9tqrswgsvzIc+9KHcf//9OeGEE/Lwww+nVatW29T/448/nilTpqSkpCS///3vc+KJJ25U/o1vfCMf+chHcv/99+fss89Oly5d8qEPfago5wYAAAAAAAAAAAAAAOxcTTbB4pJLLsmCBQuy66675vvf//5GZa1atcqNN96YvffeO0899VR+/vOf56tf/ep2jXPeeedtllyRJG3bts3YsWMzcODArFu3Ll/+8pclWLBdxh0/rkHHryypTN+v9G3QGAAAAAAAAAAAAAAAGlppQwewPV5++eXccccdSZKzzz67xt0pBg4cmKOOOipJcvXVV6eiomK7xvroRz+6xbL+/ftnxIgRSZIXX3wxL7/88naNAQAAAAAAAAAAAAAANKwmmWBx5513plAoJEmOPvroLdYbM2ZMkmTBggV54IEHtmmMD3/4w7nnnnuqkjS2ZMCAAVXHM2fO3KYxAAAAAAAAAAAAAABgZyoUCnn854/nP9v/Zy4vuTwzHpixTe3fmPRGfn/673PtrtfmqtZX5dr+1+aOU+/Y5n4ao7KGDmB73HfffVXHw4YN22K9Aw88cKM2tSVjbKp///7p37//VustWbKk6rhdu3Z17h8AAAAAAAAAAAAAtmbc8eMaOgTgPWTxK4vzp3/7U16f+Pp2tZ9wxYRMuHxCylqX5cDzDkyPIT2ycPrCTL5xcqbdMS2jLhmVMT8YU+Sod54mmWDx/PPPJ0k6dOiQTp06bbFe9QSJqVOn7pBYXnvttapYakv2AAAAAAAAAAAAAACAhlAoFPLEfz2Re79xb0pblKbfof0y69FZ29THk9c/mQcueyBlrcty9n1np9/IflVlQ88ampvff3MmXTMp7Xq0y6iLRxX7FHaK0oYOYFutWbMmc+fOTZL07Nmz1rrVy2fMmFH0WF588cW88MILSZJzzjknrVu3LvoYAAAAAAAAAAAAAABQHxMun5B7Lrwnux6+az73/Ocy8NiB29R+xYIVGX/J+CTJyItGbpRckSS9D+xdlVRx/7fvz9JZS4sT+E7W5HawWLZsWdXx1hIa2rRpU2O7Yvl//+//JUm6dOmSb33rW3Vut6piVZZXLK96XV5anvIW5UWPD+qiUFJIZWVlKioqGjoUqFJRUWFe0iiZmzRGlZWVDR0C28GagHe4HmdTrjfYlDnBpswJNmVN0HS99dZbadu2bdXrVq1apVWrVg0YUfNUWdJ0/h8qlBRSSGHDOiJNJ27em8xHGkpN18GukWksGnIumv9N09tvv53FixdXvbYmaDhNaV2wKddlFJP5RDGZTxRLU5lLDX1NXtfxC4VCjr/p+Aw/d/h2jfPYTx7L2uVrkyTDz6u5j+HnDc+EKyakYnVFJv1oUo679rjtGqshNbkEi1WrVlUdt2zZsta61ctXrlxZ1DimT5+e//7v/06SXH/99enevXud2379ga9v9Pq44cflXw7+l6LGB3VVSCEVMzf8YC0tbXKb2vAeVVlZmZkzZyYxL2lczE0ao0WLFjV0CGwHawLe4XqcTbneYFPmBJsyJ9iUNUHTNXTo0I1ef/KTn8ynPvWphgmmGVvce/HWKzUShRSyqsOqLM7ilKSkocOhmTMfaSgPPfTQZu+5RqaxaMi5WP0mfZqOYcOGbfTamqDhNKV1waZcl1FM5hPFZD5RLE1lLtW0Xt2Z6romGP2d0Skp2f7v47Q7pyVJdtltl3TZs0uNdTr265hu+3TLwukLM/3O6Tn2x8fWa8yG0OQSLKrvSrF27dpa61Yvr/4UqPpauXJlTjvttKxZsyZf+9rXcsopp2xT+6tHX53OrTtXvS4vLU/5HE+rpWEUSgrps2ufjBo1KmVlTe5HAu9R72RTmpc0NuYmjdE7H9bQtFgT8A7X42zK9QabMifYlDnBpqwJmq4pU6akb9++Va89rbZhzP7x7IYOoc4KJYUszuJ0mdslJYWm9YEk7z3mIw3l8MMP3+w918g0Fg05F2fNmrVTx6M4nnnmmfTv37/qtTVBw2lK64JNuS6jmMwnisl8oliaylyqab26M9V1TVCfRIels5dm0YsbHvrUa1ivWuv2PrB3Fk5fmKWzlmbxy4vTdVDX7R63ITS5vy506NCh6nj16tW11q2+20X1dvVRUVGR0047Lc8++2zOOuusfP/739/mPtqUtUn7svYbv1koSniwzSpTmdLS0pSVlfmDI42KeUljZW7S2HgiW9NkTcA7XI9TE3OCTZkTbMqcoDprgqarc+fO6dKl5id8sfOUFprO/0OVqUxJSlJSKGlScfPeZD7SULZ0Dewamcaioeaiud80derUyZqgkWjK1zOuyygm84liMp8olqYylxr6mnxnjD//+flVxx37d6y1bvXy+VPnN7kEi8Y707agVatW6dVrQ9bLvHnzaq1bvXy33Xar99iVlZX51Kc+lT/96U85/fTTc/PNNze5LUsAAAAAAAAAAAAAAKCulsxYUnXcrme7WutWL6/erqlocgkWSTJkyJAkybJly/L2229vsV717U7222+/eo1ZWVmZc845J7/+9a/ziU98IrfccktatGhRrz4BAAAAAAAAAAAAAKCuKtZUZM3SNVVfa5et3eFjVh+jrHXtO2aUtymvsV1T0ST3CPzABz6Qe++9N0nyzDPP5Mgjj6yx3uTJkzdqs70KhUI+/elP55Zbbskpp5yS2267TXIFAAAAAAAAAAAAAAA71UPfeygTLp9Q9frtbHnDgmJZt2pd1XGLlrXfR1+9fN3KdbXUbJyaZILFySefnG9+85spFAr5xz/+scUEi3eSMLp165bRo0dv11iFQiGf+cxn8qtf/Sof//jHc/vtt2+WXDFnzpwcf/zxOf/883P++edv1zgAAAAAAAAAALCjFQqFPPFfT+Teb9ybdSvW5ZP3fzK7jd6tzu3fmPRGHv/545n50MysmL8i7bq3S7/D+mXE50dsUz8AAMD2OfzfD89hXzms6vXs2bNz7eBrd+iY1XelWL92fa11q5eXty2vpWbjVNrQAWyPvfbaK6ecckqS5NZbb83atZtvHfLqq6/mvvvuS5J8/etfT1nZxrkkzz//fAYNGpR+/fpl4sSJWxzrggsuyI033piPfexjGTdu3Gb9JMmaNWvy1FNP5c0336zPaQEAAAAAAAAAwA6z+JXFGTt6bO658J6sW7HtT5KdcMWE3Pz+m/PiXS9mnxP3yYd+9qEMPmVw/nnPPzP2qLEZ/7XxOyBqAACgurJWZWnVsVXVV8sOLXf4mNXHqFhdUWvd6rtd7IzYiq1J7mCRJNdcc03uv//+zJgxI5deeml++MMfVpWtWbMm559/ftavX5+DDjooX/jCFzZr/93vfjcvv/xykuQb3/hGJk2atFmdCy+8ML/4xS+y55575vOf/3wefvjhGmOZO3dukc4KAAAAAAAAAKjJuOPHbfZeZUllFvdenNk/np3Sws55xuRpd5+2U8aBYqq+a0Vpi9L0O7RfZj06a5v6ePL6J/PAZQ+krHVZzr7v7PQb2a+qbOhZQ3Pz+2/OpGsmpV2Pdhl18ahinwIAANCAdtltl6rjFfNW1Fq3enn1dk1Fk02w2HXXXXP33XfnxBNPzI9+9KM8//zzOeGEE7Jq1aqMHTs2zz33XIYNG5Y//elPad269WbtKysrq44LhcJm5dddd11+/vOfJ0n++c9/5phjjtlxJwMAAAAAAAAAADvIhMsnZMLlEzLw2IE5/sbj8/Qvn96mBIsVC1Zk/CUbdqcYedHIjZIrkqT3gb0z6uJRmXD5hNz/7fsz5BND0rFfx6KeAwAA0HB6DOlRdbz0jaW11l06693yHvv1qKVm47RzHt+wg4wcOTJTpkzJN7/5zbzxxhv52te+lquuuipt2rTJddddl8ceeyx9+vSpse03v/nN7Lnnnunbt2+uvvrqzcpnzJixg6MHAAAAAAAAAIAdr1Ao5Pibjs+Zfz0znfp32ub2j/3ksaxdvjZJMvy84TXWGX7e8KQkqVhdkUk/mlSveAEAgMalY9+O6Tqoa5Jk7jNza607Z/KcDW36dUyXvbrs8NiKrcnuYPGObt265aqrrspVV121Te2GDh2al19+eYvl1113Xa677rp6RgcAAAAAAAAAAA1r9HdGp6SkZLvbT7tzWpJkl912SZc9a75BqmO/jum2T7csnL4w0++cnmN/fGy9xgQAABqXwacMzoPffTBLZizJW6++lc57dN6sztLZS7PwhYVJkn1P3rdJrgma9A4WAAAAAAAAAABA7epzU9PS2Uuz6MVFSZJew3rVWrf3gb03tJm1NItfXrzdYwIAAI3PyC+OTMv2LZMkk2+aXGOdp3/5dFJIylqXZdRXR+3M8IpGggUAAAAAAAAAAFCj+c/Przru2L9jrXWrl8+fOr+WmgAAQFPTrke7jLlmTJLk0WsfzewnZm9UPvfZuXn4Bw8nSY668qh07Ff7+qGxKmvoAAAAAAAAAAAAgMZpyYwlVcfterartW718urtAACAxmHKbVOqjudNmVd1/Mr4V7J01tIkG67rB44ZWGP7gz97cJbPW56JV0zM2KPGZvh5w9N9v+5Z+MLCTL5xctatWJfDLj4soy5umrtXJBIsAAAAAAAAAACgyahYU5H1a9ZXvV67bO0OHa96/2Wta7/VqLxNeY3tAACAxuEPZ/2hxvcf+s+Hqo4HHDlgiwkWSTL6stEZOGZgHvvpY5l257Ss/MXKtO3WNgOPGZgRF4zI7kftXvS4dyYJFgAAAAAAAAAA0EQ89L2HMuHyCVWv387bO3S8davWVR23aNmi1rrVy9etXFdLTQAAoCFcVrisKP30H9U//Uf1L0pfjY0ECwAAAAAAAAAAaCIO//fDc9hXDqt6PXv27Fw7+NodNl71XSnWr11fS82Ny8vbltdSEwAAoHGSYAEAAAAAAAAAAE1EWauylLV695aflktb7tDxWnZ4t/+K1RW11q2+20X1dgAAAE1FaUMHAAAAAAAAAAAANE677LZL1fGKeStqrVu9vHo7AACApkKCBQAAAAAAAAAAUKMeQ3pUHS99Y2mtdZfOere8x349aqkJAADQOEmwAAAAAAAAAAAAatSxb8d0HdQ1STL3mbm11p0zec6GNv06psteXXZ4bAAAAMUmwQIAAAAAAAAAANiiwacMTpIsmbEkb736Vo11ls5emoUvLEyS7HvyvikpKdlp8QEAABSLBAsAAAAAAAAAAGCLRn5xZFq2b5kkmXzT5BrrPP3Lp5NCUta6LKO+OmpnhgcAAFA0EiwAAAAAAAAAAIAtatejXcZcMyZJ8ui1j2b2E7M3Kp/77Nw8/IOHkyRHXXlUOvbruNNjBAAAKIayhg4AAAAAAAAAAADYsabcNqXqeN6UeVXHr4x/JUtnLU2StOvZLgPHDKyx/cGfPTjL5y3PxCsmZuxRYzP8vOHpvl/3LHxhYSbfODnrVqzLYRcfllEX270CAABouiRYAAAAAAAAAADAe9wfzvpDje8/9J8PVR0POHLAFhMskmT0ZaMzcMzAPPbTxzLtzmlZ+YuVadutbQYeMzAjLhiR3Y/avehxAwAA7EwSLAAAoBlYuXBlpt4xNa/87ZXMfXpuls9bnpLSkrTv2T59D+mb/c/cP4M+MiglJSVb7euNSW/k8Z8/npkPzcyK+SvSrnu79DusX0Z8fkR2G73bjj8ZAABgm9V3TbBkxpL8ZPef1GmsEReMyL/8/F+KGT4AAFAElxUuK0o//Uf1T/9R/YvSFwAAQGMjwQIAAN7j/n7x3/PEfz2RitUVadu9bfY/Y/903atrCoVCZtw/I9PunJapv5ua3T+we06545S06dJmi31NuGJCJlw+IWWty3LgeQemx5AeWTh9w9bf0+6YllGXjMqYH4zZiWcHAABsTTHXBAAAAAAAAO9lEiwAAOA9bsptU1KxuiIDjhyQT9z1ibTu1Lqq7JALDslLf34pv/nYb/Lafa9l3PHjcs6D56SkdPOn1j55/ZN54LIHUta6LGffd3b6jexXVTb0rKG5+f03Z9I1k9KuR7uMunjUTjk3AABg64q1JkiSD/znB7LvifvWOl7rzq1rLQcAAAAAAGisShs6AAAAYMcrLSvNibecuNGNVO8Y9JFBGX7e8CTJG5PeyNTfTd2szooFKzL+kvFJkpEXjdwouSJJeh/Yuyqp4v5v35+ls5YW+xQAAIB6qO+a4B0dendIt3261frVvmf7HXYeAAAAAAAAO5IECwAAaAZ6DeuVTrt22mL5vh9/9wm0L9390mblj/3ksaxdvjZJqm682tTw84YnJUnF6opM+tGkekYMAAAUU33XBAAAAAAAAM1BWUMHAAAA7FgfH/fxtO3attY6uwzYper47Zlvb1Y+7c5pG+rttku67Nmlxj469uuYbvt0y8LpCzP9zuk59sfHpqSkZPsDBwAAiqIYawIAAAAAAIDmQIIFAAC8x+1+1O5brbN6yeqq4/J25RuVLZ29NIteXJRkw1Nva9P7wN5ZOH1hls5amsUvL07XQV23I2IAAKCY6rsm2JLKispUrKlIy3Yttzs2Gs6448c1dAg57e7TGjoEAAAAAADYiAQLAAAgb732VtXxgCMGbFQ2//n5Vccd+3estZ/q5fOnzpdgAQAATURta4Lq5k+dn9+f/vvMfGhmlr25LIX1hZS3LU+/Q/tl/zP3zwFnHZDSstKdETIAAADvAY0h+RsAAKqTYAEAAOSFP7yQJClrXZZhnxq2UdmSGUuqjtv1bFdrP9XLq7cDtuy5cc9l9o9np7TQcDcienIwAFDbmqC6R374SLoO6ppDvnBIuu3bLevXrM/rE1/P5Bsn57X7XsvkGybn1P89NR16d9hJkQMAAAAAABSPBAsAAGjmVsxfkRfvejFJctjFh6VDn41vhFq7bG3VcVnr2pcQ5W3Ka2wHAAAUR8Waiqxfs77q9brl6+rd59bWBNXt+/F9c9KvT0pZq3fXBoNPHpxh5wzL2NFjM+vRWRl3/Lj828P/tlEdAAAAAACApsCnGwAA0ITsiJupxl8yPhWrK9J7eO8c8a0jNitft+rdMVq0bFFrX9XL162sf2wAAMDGHvreQ5lw+YSq12+Xvl3vPre2JkiSjv065qLXLkqHvh3SonzzdUHvA3vniP84IuMvHp85T83Jk9c/mUMvOrTesQEAAAAAAOxMEiwAAKAJKfbNVFNum5Jnb3k27Xq0y6m/P7XGJ8xW35Vi/dr1m5VXV728vG15LTUBAIDtcfi/H57DvnJY1euZM2fm2v2v3e7+6rImSJLSstLsstsutfZ14DkHZvwl45NC8syvnpFgAQAAAAAANDkSLAAAoAkp5s1Ur098PXd/+u606tgqp//l9C3eLNWyQ8uq44rVFbX2WX23i+rtAACA4ihrVbZREkR5++1PbK7rmqCu2nRpk857dM5br7yVec/Ny9rla9OyvXUBAAAAAADQdJQ2dAAAAEDdlbUqS6uOraq+tvdmqtmPz86448elRcsWOfNvZ6bPQX22WLf6TVYr5q2otd/q5fW9OQsAANhxtmVNsC3a9Wi34aCQLJ+3vCh9AgAAAAAA7CwSLAAAoJl586k3c9uxt6VQKOTMv52Zfof2q7V+jyE9qo6XvrG01rpLZ71b3mO/HrXUBAAAGsq2rgm2RaGyUHVc2sJHEAAAAAAAQNNStvUqAADAe8Wcp+fk1jG3prKiss43UnXs2zFdB3XNopcWZe4zc2vvf/KcDW36dUyXvboUJWZgxxt3/LiGDiFJctrdpzV0CADwnrc9a4IkmXjVxPTYv0f2+eg+tdZbPnfDrhUlpSXv7mYBAAAAAADQRHh8FAAANBPzpszLrWNuzfq163PGPWek/6j+m9V54PIHcsPBN2z2/uBTBidJlsxYkrdefavG/pfOXpqFLyxMkux78r4pKSkpYvQAAEB91WdNcP+378+Tv3iy1v6XzVmWt19/O0nSe3jvlLctL07gAAAAAAAAO4kdLIA8N+65zP7x7JQWGi7nypNqAWDHmv/8/NzywVtSsaoiZ9xzRnY9fNca6y15bUnmPDVns/dHfnFkHvvJY1m7fG0m3zQ5H/zPD25W5+lfPp0UkrLWZRn11VFFPwcAAGD71XdNkCRvTHoja5auSauOrWosf/L6dxMwhp8/vP5BAwAAAAAA7GQSLAAA4D1uwbQFueWDt2TlwpU54j+OSKGykBkPzKix7vK5y2t8v12PdhlzzZj83+f+L49e+2j2OXGf9B3Rt6p87rNz8/APHk6SHHXlUenYr2PRzwMAANg+xVgTJMnaZWtz9/l358RbTkyLli02Knvl76/k4as3rAkGHDEgB55zYNHiBwAAAAAA2FkkWAAAwHtYxeqK3PLBW7Ji/ookycQrJmbiFRO3q6+DP3twls9bnolXTMzYo8Zm+HnD032/7ln4wsJMvnFy1q1Yl8MuPiyjLrZ7BQAANBbFWhP0PKBn5j07L1N/OzVznpqT/T6xXzrv0TnrVqzLjAdmZPr/Tk8KyZ4f2jMn/fqklJY13G65AAAAAAAA20uCBQAAvIdVrK6o9Qm022r0ZaMzcMzAPPbTxzLtzmlZ+YuVadutbQYeMzAjLhiR3Y/avWhjAQAA9VesNcFnn/lsZj02Ky/88YW88fAbmXzD5Kx6a1ValLdI+17ts//p+2foWUOz57F7FiFqAAAAAACAhiHBAgAA3sNa79I6lxUuK2qf/Uf1T/9R/YvaJwAAsGMUc03Qb2S/9BvZryh9AQAAAAAANEb26AYAAAAAAAAAAAAAAJo9O1gAjcK448c1dAg57e7TGjoEAAAAAAAAAAAAAKCB2MECAAAAAAAAAAAAAABo9iRYAAAAAAAAAAAAAAAAzZ4ECwAAAAAAAAAAAAAAoNmTYAEAAAAAAAAAAAAAADR7EiwAAAAAAAAAAAAAAIBmT4IFAAAAAAAAAAAAAADQ7EmwAAAAAAAAAAAAAAAAmj0JFgAAAAAAAAAAAAAAQLNX1tABAAAAAAAANDd//NQf07VN14YOAwDYDuOOH9fQITQKp919WkOHAAAAAEVnBwsAAAAAAAAAAAAAAKDZk2ABAAAAAAAAAAAAAAA0exIsAAAAAAAAAAAAAACAZq+soQMAaCzGHT+uoUNIkpx292kNHQIAAAAAAAAAAAAANDt2sAAAAAAAAAAAAAAAAJo9CRYAAAAAAAAAAAAAAECzJ8ECAAAAAAAAAAAAAABo9soaOgAAAAAAAACan3HHj2voEAAAAAAAYCN2sAAAAAAAAAAAAAAAAJo9CRYAAAAAAAAAAAAAAECzJ8ECAAAAAAAAAAAAAABo9iRYAAAAAAAAAAAAAAAAzZ4ECwAAAAAAAAAAAAAAoNmTYAEAAAAAAAAAAAAAADR7EiwAAAAAAAAAAAAAAIBmT4IFAAAAAAAAAAAAAADQ7JU1dAAAAAAASTLu+HENHUJOu/u0hg4BAAAAAAAAAGggdrAAAAAAAAAAAAAAAACaPTtYAAAAADQiz417LrN/PDulBc/FsKMIAAAAAAAAADuTBAuARmbc8eMaOgQ3MQEAAAAAAAAAAADQ7HgUIgAAAAAAAAAAAAAA0OxJsAAAAAAAAAAAAAAAAJo9CRYAAAAAAAAAAAAAAECzJ8ECAAAAAAAAAAAAAABo9soaOgAAAAAAAAAAAGiqxh0/LpUllVnce3Fm/3h2Sgs793mni1Yt2qnjAQAAvJdJsABgM+OOH9eg41eWVKbvV/o2aAwAAAAAAAAAAAAANC8SLAAAAABolBo6+TtJTrv7tIYOAQAAAAAAAICdZOfuSQgAAAAAAAAAAAAAANAI2cECAAAA4P/X0DsmVJZUJr0bNAQAAAAAAAAAaLbsYAEAAAAAAAAAAAAAADR7EiwAAAAAAAAAAAAAAIBmr6yhA6ivhQsX5ic/+Un+8Ic/ZMaMGWnZsmX23nvvnHbaafnsZz+bli1bFmWcv/zlL7n++uvz1FNPZdGiRendu3dGjx6dCy+8MMOHDy/KGAAAsKOtXLgyj/7k0bzwhxeyZMaStGjZIt327pYhpw3JwZ89OC1atmjoEAGgURl3/LgGHb+ypDJ9v9K3QWMA3lusCQAAAOsCAABo3qwJatekd7B4/PHHM3To0Fx11VXp06dPrr766lx66aVZvnx5Lrroohx66KF588036zVGZWVlzj///Hz4wx/Oww8/nLPPPjs//elPM2bMmNx+++0ZOXJkfvrTnxbpjAAAYMeZ/fjs/GLoL/LgVQ+mQ58OOfrqo/P+S9+ftcvX5q8X/TU3HXpTlr25rKHDBAAAdhBrAgAAwLoAAACaN2uCrWuyO1jMnDkzH/nIR7JgwYJ86UtfyrXXXltVduGFF+ZDH/pQ7r///pxwwgl5+OGH06pVq+0a59JLL82NN96Ybt265ZFHHsmee+6ZJDn//PNz0kkn5cMf/nC+9KUvpXfv3jnllFOKcm4AAFBsb898O7d/5PasXLAyI780Msdde1xV2SG8IA/NAAEAAElEQVQXHpJff+jXmXH/jIw7YVz+7eF/S1mrJrtUAAB2gIbeyeMdp919WkOHQDWNYV6YE3VnTQAAAFgXAABA82ZNUDdNdgeLSy65JAsWLMiuu+6a73//+xuVtWrVKjfeeGNatGiRp556Kj//+c+3a4ypU6fmmmuuSZJceeWVVckV7zjuuONy1llnpVAo5MILL8yKFSu272QAAGAHG3/J+KxcsDKddu2Uo79/9EZlZa3KcvyNx6ekRUnmPDUnj//88QaKEgAA2FGsCQAAAOsCAABo3qwJ6qZJppW8/PLLueOOO5IkZ599do27UwwcODBHHXVU7r333lx99dW56KKLUla2baf7ve99L5WVlWnTpk3OOOOMGut8+tOfztixYzNv3rzcdNNNueiii7b9hABolBrDkziTxvE0zsbwvWgM3wdoqha9vChT75iaJBl69tAas8u7DOyS3Y/aPa/e+2oevvrhHHrRoSkta7L52AAAQDXWBAAAgHUBAAA0b9YEddckz/jOO+9MoVBIkhx99NFbrDdmzJgkyYIFC/LAAw9s0xhr1qzJ3XffnSQZOXJkOnToUGO9ww47LO3bt0+SqqSPLVm7dm2SZF3lum2KBXakdevX5S9P/iXr1puXNB7r1q/L//zP/2TNmjUNHQpsZM2aNeYmjc4715jv/Lcm0+6clmy4fM4eR++xxXp7jNlQtnLBysx4YEbRYuRd1gRsyvU4mzIn2JT1EZuyLmFT1gTQfLhWpDExH2lMzEcai8Y+F60LGo+6rOOgrhr7zx6aFvOJYjKfKBZzqXisCequSSZY3HfffVXHw4YN22K9Aw88sMY2dfHkk09m6dKlWx2jtLQ0Q4cOTZI88sgjWbVq1RbrvvOhZ0VlxTbFAjvSusp1+evkv7rJj0ZlXeW6jB071s0iNDpr1qwxN2l03pmPtc3LGffNqDruNazXFuv1OvDdstfue63+wbEZawI25XqcTZkTbMr6iE1Zl7ApawJoPlwr0piYjzQm5iONRWOfi9YFjUdd1nFQV439Zw9Ni/lEMZlPFIu5VDzWBHW3+d4eTcDzzz+fJOnQoUM6deq0xXr9+/evOp46dep2jbFpP7WNU1lZmRdeeGGjxA4Att/vz/h92pe1b+gwGty448c1dAiNQmP4PiyvWJ6k4efmaXef1mBjv6Mx/Hs0hu9DUzH/+flJkpYdWqZ1p9ZbrNep/7vX1gumLtjhcQEAADuHNQEAAGBdAAAAzZs1Qd01uQSLNWvWZO7cuUmSnj171lq3evmMGTO2aZzq9bd1HAkWAAA0FhVrKrJ87obkoPY9a08MatezXdXxkhlLdmRYAADbpTEk+ja0dxK/2aAxzInGnvxtTQAAAFgXAABA82ZNsG2aXILFsmXLqo5bt95y9kyStGnTpsZ2DTVOZWVlkmTuirkbvV9WWpby0vJtig+KZdX6VSktLc1ba97K6orVDR0OJDEvabway9zc1sTRHWHh6oUNHUKj+D40hMp1lVm/Zn3V65mvzNzw/v9/rbmptcvWVh2Xta798r+8zbvXpGuW2ZZ6R7AmYFON5XcLjYc5wabemRMzZ87M0qVLGyyOxnD9xwaNZU4k5sU7dvbaxJqg6Xvn3+rNFW9m5fqVVe9bF7A1rhVpTMxHGhPzseE017/T12Th6oU7dS5Wrq9MCu++XrJ6yYb3rQuahHf+nf75z39u9H6rVq3SsmXLhgipQfn7Qv34PUgxmU8Uk/lEsTSVudTQnxXMnbfhPhRrguJocgkWq1atqjre2qKievnKlStrqblzxnnrrbeSJNc+ce02xQI7w9fv/3pDhwCbMS9prBp6bn5x9y826PiNhe/Dxt651tzUulXrqo5btGxRax/Vy9etXFdLTbaXNQFb0tC/W2h8zAk2ZcdUNmVONB6NZW1iTdB0zJs3L0nyvUe/18CR0FS5VqQxMR9pTMzHna+xXAs3Ng05F+fNm5ddd911s/etCxqXd9ZvJ510UgNHwnuJ34MUk/lEMZlPFEtjn0uNZX1kTVAcTS7BovpuEWvXrq2l5sblbdu2bfBxDj300Dz44IPp3LlzSktLq95vrhnoAABsu4q1Falc8262eWVlZRYsWZARI0fUWL96Vvn6tetrrFNTeXlbT03dEawJAACoL2uCpu/AAw+0LgAAoF62tC7YUjK+dUHj4rMCAADqy5pgx2pyCRYdOnSoOl69uvatXqrvQlG9XUONU1ZWlsMPP3yb4gAAgK3ZM3tusaxlh3f/EF+xuqLWfqpnq7fq0Kr+gbEZawIAAHYEa4KmxboAAIAdwbqg6bAmAABgR7AmKJ7SrVdpXFq1apVevXoleXcb7S2pXr7bbrtt0zjV6+/IcQAAYEcqa1WW9r3aJ0mWz1tea90V81ZUHe+y2y47MiwAAGAnsSYAAACsCwAAoHmzJtg2TS7BIkmGDBmSJFm2bFnefvvtLdabNWtW1fF+++23XWMkyRtvvFFr3XfGKS0tzT777LNN4wAAwI7WY0iPJMnaZWuz+u0t7862dNbSquPu+3Xf4XEBAAA7hzUBAABgXQAAAM2bNUHdNckEiw984ANVx88888wW602ePLnGNnVx8MEHp0OHDlsdo7KyMs8++2yS5LDDDkubNm22aRwAANjRdvvAblXHc5+Zu8V6cybPqTre/QO778iQAACAnciaAAAAsC4AAIDmzZqg7ppkgsXJJ5+ckpKSJMk//vGPLda79957kyTdunXL6NGjt2mMVq1a5YQTTkiSPPbYY1m+vObtUB599NGqslNOOWWbxgAAgJ1h8MmDkw2Xz3ntH69tsd6r976aJGnbrW12G73bTogMAADYGawJAAAA6wIAAGjerAnqrkkmWOy1115VyQy33npr1q5du1mdV199Nffdd1+S5Otf/3rKyso2Kn/++eczaNCg9OvXLxMnTqxxnG984xspLS3NqlWrcvvtt9dY56abbkqS9OzZM+edd952nxMAAOwoXffqmv1O2S9JMuXWKVm/dv1mdd569a28dt+GxdP7vv6+lJY1yaUCAABQA2sCAADAugAAAJo3a4K6a7Jnfc0116R79+6ZMWNGLr300o3K1qxZk/PPPz/r16/PQQcdlC984Qubtf/ud7+bl19+ObNnz843vvGNGscYMmRILrnkkiTJt771rbz66qsblf/973/P2LFjkyQ/+9nP0q5du2KcGgAAFN2Ya8akbfe2WTJjSf5x6ca7wFWsqcjd59+dwvpCeh/UO4d84ZAGihIAANhRrAkAAADrAgAAaN6sCeqmpFAoFBo6iO312GOP5cQTT8ycOXNy7LHH5oQTTsiqVasyduzYPPfccxk2bFj+7//+L3369Nms7b/+67/md7/7XZLk0EMPzSOPPFLjGJWVlfnMZz6Tm266KV27ds1nPvOZ7Lbbbnnqqady8803p7KyMj/84Q9z0UUX7dBzBQCA+pr12Kz89sTfZvmc5Rl47MDsfcLeWbdqXZ4d+2zmPzc/vYb1yun/d3o69OnQ0KECAAA7gDUBAABgXQAAAM2bNcHWNekEiyRZuHBhrrvuuvzhD3/I66+/nvLy8gwaNCinn356Pve5z6Vly5Y1tpsyZUo+/vGPZ9WqVbn99ttzxBFH1DrOX/7yl/ziF7/Ik08+mbfeeiu9evXKkUcemYsuuijDhw/fEacGAABFt3Lhyjx63aN54Q8vZMnrS9KivEW6DuqaIacPyYjPjUiLli0aOkQAAGAHsiYAAACsCwAAoHmzJqhdk0+wAAAAAAAAAAAAAAAAqK/Shg4AAAAAAAAAAAAAAACgoUmwAAAAAAAAAAAAAAAAmj0JFgAAAAAAAAAAAAAAQLMnwQIAAAAAAAAAAAAAAGj2JFgAAAAAAAAAAAAAAADNngQLAAAAAAAAAAAAAACg2ZNgAQAAAAAAAAAAAAAANHsSLAAAAAAAAAAAAAAAgGZPggUAAAAAAAAAAAAAANDsSbAAAAAAAAAAAAAAAACaPQkWAAAAAAAAAAAAAABAsyfBAgAAAAAAAAAAAAAAaPYkWAAAAAAAAAAAAAAAAM2eBAsAAAAAAAAAAAAAAKDZk2ABAAAAAAAAAAAAAAA0exIsAAAAAAAAAAAAAACAZk+CBQAAAAAAAAAAAAAA0OxJsAAAAAAAAAAAAAAAAJo9CRYAAAAAAAAAAAAAAECzJ8ECAAAAAAAAAAAAAABo9iRYAAAAAAAAAAAAAAAAzZ4ECwAAAAAAAAAAAAAAoNmTYAEAAAAAAAAAAAAAADR7EiwAAAAAAAAAAAAAAIBmT4IFAAAAAAAAAAAAAADQ7EmwAAAAAAAAAAAAAAAAmj0JFgAAAAAAAAAAAAAAQLMnwQIAAAAAAAAAAAAAAGj2JFgAAAAAAAAAAAAAAADNngQLAAAAAAAAAAAAAACg2ZNgAQAAAAAAAAAAAAAANHsSLAAAAAAAAAAAAAAAgGZPggUAAAAAAAAAAAAAANDsSbAAAAAAAAAAAAAAAACavbKGDqA5qaioyNNPP52ePXumtFRuCwAA9VdZWZl58+blwAMPTFmZy/vGzpoAAIBisyZoeqwLAAAoNuuCpsWaAACAYrMmKC7fwZ3o6aefziGHHNLQYQAA8B70+OOPZ8SIEQ0dBlthTQAAwI5iTdB0WBcAALCjWBc0DdYEAADsKNYExSHBYifq2bNnkuSRRx5Jv379Gjga2KCioiKTJ0/O8OHDZa3RaJiXNFbmJo3RrFmzcthhh1Vda9K4WROwKb9b2JQ5wabMCTZlTrApa4Km551/q8cffzy9e/du4GhoSvwOoDExH2lMzEcai4aci3PmzMkhhxxiXdBE+KyAYvJ7kGIynygm84liMZfqxpqguMy0neidbf169eplgUSjUVFRkRkzZqRfv35++dBomJc0VuYmjVFFRUWS2EK6ibAmYFN+t7Apc4JNmRNsypxgU9YETc87/1a9e/e2LmCb+B1AY2I+0piYjzQWjWEuWhc0DT4roJgaw88e3jvMJ4rJfKJYzKVtY01QHL6LAAAAAAAAAAAAAABAsyfBAgAAAAAAAAAAAAAAaPYkWAAAAAAAAAAAAAAAAM2eBAsAAAAAAAAAAAAAAKDZk2ABAAAAAAAAAAAAAAA0exIsAAAAAAAAAAAAAACAZk+CBQAAAAAAAAAAAAAA0OxJsAAAAAAAAAAAAAAAAJo9CRYAAAAAAAAAAAAAAECzV9bQAQAAAAAAADvWyoUrM/WOqXnlb69k7tNzs3ze8pSUlqR9z/bpe0jf7H/m/hn0kUEpKSnZal9vTHojj//88cx8aGZWzF+Rdt3bpd9h/TLi8yOy2+jd6hRPZUVlnrrxqTx323NZ+MLCVKypSKddO2Xvj+6dQy86NO17ta/nGQMAAAAAAGw7CRYAAAAAAPAe9veL/54n/uuJVKyuSNvubbP/Gfun615dUygUMuP+GZl257RM/d3U7P6B3XPKHaekTZc2W+xrwhUTMuHyCSlrXZYDzzswPYb0yMLpCzP5xsmZdse0jLpkVMb8YEyt8axcuDK3f+T2zH5sdrrt0y3v+/r70rJ9y7z8fy/n4e8/nKd/+XROvfPUDDhiQLG/FQAAAAAAALWSYAEAAM1IoVDIE//1RO79xr1Zt2JdPnn/J+v8hNl3vPinF/P8uOcz+/HZWTZnWcpalaV9r/bptk+3DBg9IHufsHc67955i+09qRYAAHauKbdNScXqigw4ckA+cdcn0rpT66qyQy44JC/9+aX85mO/yWv3vZZxx4/LOQ+ek5LSzXeyePL6J/PAZQ+krHVZzr7v7PQb2a+qbOhZQ3Pz+2/OpGsmpV2Pdhl18agaY6msqMxvT/xtZj82O/1H9c9Z956V8jblSZIRnx+Rf1z6jzz0vYfym4/+Juc9fl667tW1yN8NAAAgSRa9tChP/+rp/POv/8zSWUuzbsW6tOvZLp127ZT+7+ufPY7eI3t8cI8tti/GznYAAACNUWlDBwAAAOwci19ZnLGjx+aeC+/JuhXrtrn9sjnLcssHb8lvPvqbLHtzWYZ/eng+9LMPZdQlo1LWpiwv/PGF/O1Lf8sT//XEFvtYuXBlfnX4r/KXz/8lqxavyvu+/r6M+cGYdN69cx7+/sP5xdBf5PWJr9fnNAEAgBqUlpXmxFtO3Ci54h2DPjIow88bnmTDTVJTfzd1szorFqzI+EvGJ0lGXjRyo+SKJOl9YO+qpIr7v31/ls5aWmMcT934VGY+NDMpSY6/8fiq5Ip3jL58dLrs2SWrl6zO37/y920+TwAAYOsmXjUxv9j/F3nu189lj6P3yAf/84M5+uqjs+v7ds2sR2bl4e8/nDv/9c4ttp9wxYTc/P6b8+JdL2afE/fJh372oQw+ZXD+ec8/M/aosRn/tfE78WwAAACKyw4WAADwHld914rSFqXpd2i/zHp01jb1sXLRytx69K1Z9NKinPzbk7PfqfttVP7+S9+f/z3zf/Pcr5/bYh+eVAsAAA2n17Be6bRrpy2W7/vxffPU/3sqSfLS3S9lyCeGbFT+2E8ey9rla5OkKhljU8PPG54JV0xIxeqKTPrRpBx37XEblRcKhTz0vYeSJLu+b9d0H9x9sz5alLfIAZ86IPd/6/689OeXMvfZuel1QK+6nygAAFCr8V8fn0k/mJQhnxiSE355Qsrbbpz0PPTsobn9X27fYvti7GwHAADQmL0ndrAoFAr5+c9/nvbt26ekpCQPPPBA0cf4y1/+khNOOCF9+/ZN69ats/vuu+ecc87J5MmTiz4WAAAU04TLJ+SeC+/Jrofvms89/7kMPHbgNvfxlwv+kgXTFmT0FaM3S654x5GXHZk2XdukvF15jeWeVAsAAA3j4+M+nhN+eUKtdXYZsEvV8dsz396sfNqd0zbU222XdNmzS419dOzXMd326ZYkmX7n9BQKhY3KZz06K0vf2LCzxe5H777FWAaOeXfNMu2OabXGDQAA1N0///rPTPrBpHTfr3s+dsvHNkuuSJI9j90ze4zZI227tt2srFg72wEAADRmTT7B4pVXXsno0aNz4YUXZsWKFUXvv7KyMueff34+/OEP5+GHH87ZZ5+dn/70pxkzZkxuv/32jBw5Mj/96U+LPi4AABRLoVDI8TcdnzP/emY69d/yE2u35I1Jb2Tqb6emZYeWOfRLh26xXte9uuZrC7+Woy4/qsYY6vqk2iRVT6oFAADqb/ejdk/PoT1rrbN6yeqq402TppfOXppFLy5KsmEnjNr0PrD3hjazlmbxy4s3Knvtvteqjmvrp+cBPVNSWrJZGwAAYPsVCoX89Ut/TZIc/o3D06K8xRbrnvnXM/OFF7+w2ft13dkuJana2Q4AAKCpabIJFu/sWnHAAQfkmWeeyaGHbvlGr/q49NJLc+ONN6Zbt2557LHH8r3vfS/nn39+brjhhtx1112prKzMl770pdxxxx07ZHwAAKiv0d8ZneHn1vxBR11MvnHDrm0DxwzcbNeJuvKkWgAAaNzeeu2tquMBRwzYqGz+8/Orjjv271hrP9XL50+dv1HZgucXVB3Xlvxd1qosbbtveFrugqkLtlgPAACou9cnvp5FLy5KSWlJBh0/aLv6KMbOdgAAAI1dk02wuPzyy3PhhRfm8MMPz/PPP59jjz226GNMnTo111xzTZLkyiuvzJ577rlR+XHHHZezzjorhUJhh+2gAQAA9VVSUrLdbQuVhUz/w/QkG54iW13FmoqsW7muTv14Ui0AADRuL/zhhSRJWeuyDPvUsI3KlsxYUnXcrme7WvupXl693bb2075n+yTJmqVrsuqtVbXWBQAAtu6d5IhOAzqldafWVe8XCoWsWbZmq4kQxdrZDgAAoLEra+gAtlehUMhNN92Uc889d4eN8b3vfS+VlZVp06ZNzjjjjBrrfPrTn87YsWMzb9683HTTTbnooot2WDwAALCzLXp5Uda8vSZJ0mnXTlk+b3ke+v5Dmf776VU7UrTu3Dq7f2D3jLp4VPod2q/Gfrb1SbUr5q3wpFoAAKhBxZqKrF+zvur1uuV1S3quzYr5K/LiXS8mSQ67+LB06NNho/K1y9ZWHZe1rv1jheq73lVvlyRrlq2pcz9lbd4tX7tsbdp0blNrfQAAoHZznpyTZMPf+guVhTx989N5+qan8+aTb6ayojKlZaXpfVDvHHD2ARn+6eFpUd5io/b12dmu66CuRTwTAACAHavJJlh85zvfqdeTeLdmzZo1ufvuu5MkI0eOTIcOHWqsd9hhh6V9+/ZZvnx57rjjDgkWAAC8p8x/7t0PTOY+Mzd/+8rfUt6mPP8fe3ceF3W1/3H8Pew7sioKbrivqOFCVqipt8VK01upaYvLNevaZnW73Wt2271tt/Vmm5aaaVlZdssVxa0SFckld4QEQVSUHWZ+f/hzBIFhYAYY8PV8PHg8zsz5nGXGrzPzne98zun7174K7Rqq/NP52rVgl/Z8uUd7vtyjQf8apKufurpcP9VdqTYnPce8Ui0/pAIAAAAuin8hXnGz48y3zzidsbnPlTNXqji/WGG9wyr8PF+UdzGJw9nNuVx9aaXrL93xrjiv2C79AAAAAKi+9F3pks7vXP3psE91ZO0R9byrpwY8MkDObs5K3pisn9/8WSumr1Dip4m6Y/kd8gr2Mre31852AAAAAODoGmyCRW0mV0jSr7/+quzs8yvyRkVFVRrn5OSkHj16aNOmTdq8ebPy8vLk6ckPwAAAANA45JzIMZe3vrFVTdo00aQtk+QdevHiSI/xPfTjIz9qy6tbtPYfa+Xf0l89J/Qs0w8r1QIAAAD2MfBvAzXg4QHm28nJyXqt+2s17i/xs0TtnL9T3qHe+vOXf5aLe/nP66V3pSgpLClXX1rpelcv1zJ1pT/r29IPAAAAgOopyi1SUc75xOXkDcmSpNFfjFbXMV3NMR1v6qguo7vok6s/UcqWFC29fanuXHmn+fc59trZDgAAAAAcnVN9T8BRJSUlmcsREREWYy/UG41G7d27t1bnBQAAgMtbcUGxCrILzH9F52p3JdeC7IIyt6998doyyRUXDHl+iHzCfCRJq55YpeKC4jL1rFQLAAAA2IeLu4vc/dzNf64+NU8+OLr+qJZPXi53P3eNXTFWTVo3qTDOzdfNXC7OL64w5oLSu12UbidJ7r7uVvdT+hzi0n4AAACAy92l1wqqSmK49Lv+dte1K5NccUGL6Ba64r4rJEmHVx/W78t/N9fZa2c7AAAAAHB0DXYHi9p25MgRc7lp06YWY0vXHzlyRL169bIYbzQaVVJieXWu2rR45OJ6G/uC25bdVt9TwP8rKSkxH5O1vTMMYC2OSzgqjk04gvUvrNeGZzeYb58xnKnV8YwlRnPZ2c1ZHW/qWGGci7uLOo3spF/f+VXnjp/T4dWH1f769hfrWam2DM4JzuO8gPcWlMcxgUtxTOBSHBO4lNForDqoAqk/p2rRiEVydnPW+B/Hq3mf5pXGlk68yEnPqTTu0vpLEzaatG6ilC0p5ji/Fn6V9nMu/Zwkyd3PvdHualdSUlKv5wVoeHgPgCPheKx7jvB9jqN+l8PxCEdRl8diuWsFJsvXCkp/1y9JXcZ0qTS22+3dtOXVLZLO73h34bqAvXa2w0X1fa0AjQPvg41XfXz+MxqMymqWpZTXUuRkcnLYz39oGHh9gr1wLFmHz5X2RYJFJc6ePWsue3h4WIz19Lx4cad0u8ps3rxZ+/btM992dnaWi0vd/VNkhmXW2ViViYuLq+8p4P8ZjUYdO3ZMRqNRTk5sagPHwHEJR8WxCUdgjDFqwPIB5ttZWVnS+Nobr/QKs4HtAy1u+92sZzNzOfXn1DIJFqxUWxbnBOdxXsB7C8rjmMClOCZwKY4JXOrkyZPVbvPHtj/02fDPZDKZdOdPdyq8f7jF+NBuoeZy9rFsi7HZKRfrQ7uGlqkL6RZiLp85dkZhvcMq7KO4oFi5Gbnn23QNqTCmMdi4caMCAgLMt+v6vAAND+8BcCQcj3XPEb7PcdTvcjge4Sjq8li89FrB6VOnpXGVx5f+jl6SmnavfKHRpj2aSgZJpvPf9V9gr53tcFF9XytA48D7YONVL5//DFKeT56yDFmSyXE//6Fh4PUJ9sKxZJ1Tp07V9xQaFT6VVyIvL89cdnOzfLJXuj43N7fKvt97770yJ0Q9e/ZUVFRU9SdZQ3m+eVUH1bLk5OT6ngL+n8lk0pkz51ezILsPjoLjEo6KYxOOKDvb8o+bbOUZdDGZuKpVY72CvczlnBNlV7VlpdqyOCc4j/MC3ltQHscELsUxgUtxTOBS1T0nOL79uD4d+qmMxUaN/3F8lckVkuTXwk9BHYJ08veTStuRZrn/hOPn24T7KbB9YJm6NoPbaK3WSpLSdqSp082dKuwjfWe6TEaTuU1j9e6779breQEaHt4D4Eg4HuueI3yf46jf5XA8wlHU57FY1WKgbj5ucnZzNu8s4RFQ+UKjLu4ucvNxU+HZwjLf9dtrZztcVN/XCtA48D7YeNXX578ityLJ53zZUT//oWHg9Qn2wrFkHWs2CID1SLCoROldKQoLCy3Glq738vKyEHnef/7zH4WHX7xo5e7uLnd3dwst7GvJn5fU2ViVGfPcmPqeAv5fcXGxNm/erAEDBrASAhwGxyUcFccmHFFycrJmzJhRa/2XXnG2pMjydoImk8lcNjiVPallpdqyOCc4j/MC3ltQHscELsUxgUtxTOBS1TknSE9M16dDP1VJYYnG/2+8ImIiysWsm71Ovy//XVN+nVLm/i5jumjDcxt0+shpnTp0SgFtA8q1zU7NVube86srdh7dudzFrvD+4fIL91N2SrYOrz6s2FmxFc7z0KpDZcZtrN588021aNHCfLuuzwvQ8PAeAEfC8Vj3HOH7HEf9LofjEY6iPo/F1NRU/fWvf6203uBkUHDnYKXvTJckGYuMljs0XWx3gb12tsNF9X2tAI0D74ONV318/jMZTMpqmqXA9EAZTAaH/fyHhoHXJ9gLx5J1qjonQPVwpFXC19fXXM7Pz7cYW3q3i9LtKhMQEKCQkPr7sZiz0bnexr6AE0LHcWGLSXd3d9584DA4LuGoODbhiFxdXWu1/5AuIedXqjpXqHNp5yzGXkiMkCTf5mU/F7NSbVmcE5zHeQHvLSiPYwKX4pjApTgmcClrzwlOJJ3Q/CHzVZxXrHE/jFPLgS0rjDt9+LSObzte7v5+f+2nrW9sVeG5QiV8kKAhzw8pF7P9w+2SSXLxcFHMIzHl6g0GgwY+OVAr7luh5PhkZe7NVHCn4DIxxmKjdnyyQ5LU/ob2atazmVWPryEKDg6u1/MCNDy8B8CRcDzWPUf4PsdRv8vheISjqM9j0c3NrcqYFn1bmBMszqWdK/dZ/IKi3CIV5pxfaLT0d/322tkOF9X3tQI0DrwPNl718fnPaDDKSU5yMjrJyeTksJ//0DDw+gR74ViyjjXnBLCeU31PwFG1bt3aXE5PT7cYW7q+dDsAAACgoXN2c1aHER0kSWeSz5TZDvxSf2z7w1xudU2rMnUXVqqVpMOrD1fax+WyUi0AAABQlzJ2Z2j+kPnKzczVgEcHyGQ06ci6IxX+VZZY7R3qraFzhkqStry2Ram/pJapT9uZpo0vb5QkDfrXIPPn/0v1mdznfHKHSVo+ebmK8orK1K97ep2y9mfJo4mHhr823NaHDgAAAOD/dRl98Tv3Sz/Pl3Z8+3HzDhaXftd/4Xv7CzvbVaSqne0AAAAAwNGRylOJbt26mcvHjh2zGJuSkiJJcnJyUqdOFa/ECwAAADRUAx4eoKTPkySTtPPTnRWuRFt4rlB7l+2VJDXt2VQRMRFl6lmpFgAAAKgfxfnFmj9kvjlZev0z67X+mfU16uuKv1yhc+nntP6Z9Zo3aJ56T+qtkK4hytybqYS5CSrKKdKARwco5tHy5wwXOLk46bZlt2nhjQuVHJ+s9/u8r6i7o+Tm7ab9K/Zr//f75RXspTFLxyiofVCN5gkAAACgvLbXtlXTnk2VvjNduz7bpZhHYypMfkj8NNFcjp4WXabOHjvbAQAAAICjYweLSlxxxRXy9T2/1eGOHTsqjTMajdq5c6ckacCAAfL09KyL6QEAAAB1pvkVzRV93/mLKOv/tV7pu8ru8GYymvTDAz8o72SenN2dNeL9ERVelGGlWgAAAKDuFecXV7orRU3EzorV3RvuVocbO2j30t364f4f9NvnvylyWKQmrJmgYXOGVdmHV7CX7om/R9e/c708mngo/oV4rZy5UqcOnlLMYzH6S+Jf1Pqa1nabMwAAAADJ4GTQDe/cIGc3Z6Unpmv9v8onXh/86eD5BAlJ/R/qr7DeYWXq7bWzHQAAAAA4MnawqIS7u7tuuukmLViwQFu3btW5c+fk4+NTLm7Lli06d+78xakxY8bU9TQBAAAAqyR+dnHFqfTEiwkSB1ceVHZKtiTJu6m3IodGVtj+T2/8SUU5RdrxyQ592P9DRd0TpWZRzZR/Ol9Ji5J0fNtxeQR4aPTi0WrRt0WFfbBSLQAAAFD3PJp4aJZpll37jIiJKLdrXXU5uTgpelp0uRVxAQCOY9GIRZXWGQ1GZYVlKfXVVDmZam9NvzuW31FrfQPA5SgiJkKjF4/WsgnLtG7WOiVvSFaHmzrIxcNFxzYeU+JniTKVmNRvRj9zIsWl7LGzHQAAAAA4sss2wSIpKUmjRo1Sbm6uFi5cqKuvvrpczBNPPKFFixYpLy9PCxcu1JQpU8rFfPDBB5Kkpk2batKkSbU+bwAAAKAmlt25rML745+PN5dbXdOq0gQLJ2cn3fzxzep2RzclzE3Qvq/3KeH9BLl4uiioQ5BiZ8eq7/195RloeUe3CyvVbpu7TYmfJir+hXiVFJTIv6W/Yh6LUf8H+8s3zLfGjxMAAAAAAAAAAFSu0y2dNH33dG15Y4sOrDigNU+ukbHEKN8wX/W8s6euuO8KtYiueCGlC2JnxSpyaKS2/merdi/drdx3c+UV7KXIYZGKnh6tNoPa1NGjAQAAAAD7u2wTLJ577jnt379f0vlEik2bNpWL6datm2bOnKmXXnpJTz31lK699lq1bdvWXP/TTz9p3rx5kqQ333xT3t7edTN5AAAAoJrstWJt5LBIRQ6rOAnDWqxUCwAAAAAAAABA/fEL99OwOcM0bM6wGvdhj53tAABoKCzt8FdX2OEPAOpOg06w+Oyzz8zlxMREc3nlypVKSUmRdH5niaFDy29baDQazWWTyVTpGM8//7xOnjypDz74QH379tXUqVPVunVrbdu2TR9//LGcnJz06quvasyYMfZ4SAAAAAAAAAAAAAAAAAAAAAAAoB406ASLO++8s8L7n3/+eXP5mmuuqTDB4u9//7sSEhKUl5enl156qdIxnJycNHfuXI0cOVLvvvuuPvroI506dUrNmjXT7bffrhkzZqh37962PxgAAAAAAAAAAAAAAAAAAAAAAFBvGnSChaWdJ6rSo0cP7d+/3+r466+/Xtdff32NxwMAAAAAAAAAAAAAAAAAAAAAAI7Lqb4nAAAAAAAAAAAAAAAAAAAAAAAAUN9IsAAAAAAAAAAAAAAAAAAAAAAAAJc9EiwAAAAAAAAAAAAAAAAAAAAAAMBljwQLAAAAAAAAAAAAAAAAAAAAAABw2XOp7wkAAAAAAAAAAAAAAAAAAAAAAIDa80nsJzoad7TKOFdvVz157kmLMcc2HdPPb/2s5Phk5ZzIkXeIt8IHhCv6vmi1jm1tpxnXDxIsAAAAAAAAAAAAAAAAAAAAAABAleKeiVPc7Di5eLio16ReCu0Wqsw9mUqYm6DdS3YrZmaMhr48tL6nWWMkWAAAAAAAAAAAAAAAAAAAAAAA0Mg1j26ukfNHWowxOBkqrfv1vV+1btY6uXi4aMKaCQrvF26u63FnD3181cfaNGeTvEO9FfNojN3mXZdIsAAAAAAAAAAAAAAAAAAAAAAAoJFz9XJVcKfgGrXNycjRypkrJUn9ZvQrk1whSWG9whTzaIziZsdp7T/Wqtvt3eQX7mfznOuaU31PAAAAAAAAAAAAAAAAAAAAAAAAOK6tb2xV4blCSVLvSb0rjOk9qbdkkIrzi7XplU11OT27IcECAAAAAAAAAAAAAAAAAAAAAABUavfS3ZKkJq2bKLBdYIUxfuF+5h0y9izdI5PJVGfzsxcSLAAAAAAAAAAAAAAAAAAAAAAAuMwUnC2QyVh1EkR2arZO7jspSWoW1cxibFivsPNtUrKVtT/L9knWMZf6ngAAAAAAAAAAAAAA4KJFIxbV9xQAAAAAAADQCBXlFinumTjtXrpbpw6eUlFukQxOBgV1DFL7G9prwEMD5Nvct1y7E0knzGW/CD+LY5SuP/HbCQV1CLLfA6gDJFgAAAAAAAAAAAAAAAAAAAAAANDI/fHLHzqx64Si7onS1U9dLVdvV2XuzVTC+wna/O/N2vbfbRr12Sh1vKljmXanj5w2l72belsco3R96XYNBQkWAAAAAAAAAAAAAAAAAAAAAAA0ct6h3pq4dqJCuoSY7+twQwf1vb+vFo1YpEMrD2nJmCWauHaiImIizDGFZwvNZRcPyykIrp6uFbZrKJzqewIAAAAAAAAAAAAAAAAAAAAAAKBqxQXFKsguMP9Zm8Qw+vPRmr53epnkigtc3F10yye3yNndWSWFJVpx/4oy9UV5Reays5uzxXFK1xflFlmIdEzsYAEAAAAAAAAAAAAAAAAAAAAAQAMQ/0K84mbHmW+f0Rmr2vk087FY79vcV+3+1E77vtmntO1pOr79uMJ6hUkquytFSWGJxX5K17t6uVqIdEwkWAAAAAAAAAAAAAAAAAAAAAAA0AAM/NtADXh4gPl2amqqXuvyml36bn5Fc+37Zp8k6dimY+YECzdfN3NMcX6xxT5K73ZRul1DQYIFAAAAAAAAAAAAAAAAAAAAAAANgIu7i1zcL6YBuGXbL4nBO9TbXD6Xds5cbtK6ibmck55jsY/S9aXbNRRO9T0BAAAAAAAAAAAAAAAAAAAAAABQv0xGk7ns5Hwx1SC0W6i5nH0s22If2SkX60O7hlqIdEwkWAAAAAAAAAAAAAAAAAAAAAAA0EjtW75P659dL5PJZDGu9K4VPmE+5rJfCz8FdQiSJKXtSLPYx/GE4+fbhPspsH1gTadcb1yqDgEAAAAAAAAAAAAA4PKzaMSi+p4CAAAAAACAzfZ8uUc75+1U70m95dPMp9K4lC0p5nLLgS3L1HUZ00Ubntug00dO69ShUwpoG1CufXZqtjL3ZkqSOo/uLIPBYKdHUHfYwQIAAAAAAAAAAAAAAAAAAAAAgEZu/w/7K607uf+kDq06JEmKiIlQaNfQMvX9/tpPbj5ukqSEDxIq7GP7h9slk+Ti4aKYR2LsNOu6RYIFAAAAAAAAAAAAAAAAAAAAAACN3Oq/rdbJ30+Wuz8vK09f3vGlTCUmuXq56rq3risX4x3qraFzhkqStry2Ram/pJapT9uZpo0vb5QkDfrXIPmF+9XCI6h9LvU9AQAAAAAAAAAAAAAAAAAAAAAAUDtCuoTIydVJOek5ei/qPXW7vZuaRzeXs5uzMvdkauf8ncrNyJV3U2+NXjxaYb3CKuznir9coXPp57T+mfWaN2ieek/qrZCuIcrcm6mEuQkqyinSgEcHKObRhrl7hUSCBQAAAAAAAAAAAAAAAAAAABzQohGL6nsKANAoXPnYleo5oaf2fLVHh1Ye0tH1R/Xb4t9UUlQizwBPNe3RVB1u7KBe9/aSu6+7xb5iZ8Uqcmiktv5nq3Yv3a3cd3PlFeylyGGRip4erTaD2tTRo6odJFgAAAAAAAAAAAAAAAAAAAAAANCI+TTzUfR90Yq+L9rmviJiIhQRE2GHWTkep/qeAAAAAAAAAAAAAAAAAAAAAAAAQH0jwQIAAAAAAAAAAAAAAAAAAAAAAFz2SLAAAAAAAAAAAAAAAAAAAAAAAACXPRIsAAAAAAAAAAAAAAAAAAAAAADAZY8ECwAAAAAAAAAAAAAAAAAAAAAAcNkjwQIAAAAAAAAAAAAAAAAAAAAAAFz2SLAAAAAAAAAAAAAAAAAAAAAAAACXPRIsAAAAAAAAAAAAAAAAAAAAAADAZY8ECwAAAAAAAAAAAAAAAAAAAAAAcNkjwQIAAAAAAAAAAAAAAAAAAAAAAFz2SLAAAAAAAAAAAAAAAAAAAAAAAACXPZf6ngAAAAAAAAAAAKg7JpNJv7z9i1Y9sUpFOUWauHaiWse2tthmtmF2tce5bdlt6nRLpzL3rXt6neJmx1nVfvIvk9X8iubVHhcAAAAAAAAAAKCmSLAAAAAAAAAAAOAykXUwS9/e862Orj9a62N5N/Wu9TEAAAAAAAAAAADsiQQLAAAA4DJSk5VqK1OYU6h3u72r00dOS5JmHJ6hJq2bVNnOWGzUtrnbtOuzXcrcm6nigmL5t/RXx5s7qv+M/vJp5lOj+QAAAACoXOlzASdnJ4X3D1fKlpRq9dHplk4a8sIQizHHE47rq3FfKahjkCIGRFQaN33P9CrHs+b8AgAAAAAAAAAAwJ5IsAAAAAAuE/ZeqXbNU2vMyRXWys3M1cIbFyp1a6qCOwXrysevlJuPm/Z/v18bX9yo7R9u15+X/lmtrm5llzkCAAAAOC9udpziZscpcnikRswdoe0fbq92goW7v7uCOwVbjNn86mZJUp8pfSzGVdUPAAAAAAAAAABAfSDBAgAAAGjk7LFS7aVSf0nVz2/+XK02xmKjFo9crNStqYqIidCdq+6Uq6erJCn6vmitfnK14l+I1+c3f65JP09SUPsgm+YIAAAA4CKTyaQRH4xQ73t716h9q2taVZkUUXiuUEmLkuTs7qyeE3vWaBwAAAAAAAAAAID65FTfEwAAAABQu+Jmx+mHB35Qy4EtNS1pmiKHR9rUX0lRiZZPWi5XT1e1GdzG6nbb5m5TcnyyZJBGzB1hTq64IHZ2rALbBSr/dL5+evgnm+YIAAAAoKzYp2NrnFwhSXetu0sDnxhoMWbXwl0qPFeoLrd2kVeQV43HAgAAAAAAAAAAqC8kWAAAAACN3IWVasf/b7z8I/xt7m/jyxuVnpiuwc8Pll+En9VziH8hXpLU8sqWCukSUi7G2dVZPe86v8rt79/9rrSdaTbPFQAAAMB5BoOh1sfY9v42SVKfqX2q1a4wp1AlRSW1MSUAAAAAAAAAAIBqcanvCQAAAACoXbFPx9rtx1Qnfz+pDc9uUIu+LdR3el99c883VrVL2ZKi7GPZkqQ211a+60Xk0EitfWqtJGn3kt1q1rOZ7ZMGAAAAUOuObz+u49uOK7hTsFpd3arK+B3zdmj7B9uVsTtDeVl5kiTfFr5qM7iN+j/YX2G9w2p7ygAAAAAAAAAAAOWQYAEAAAA0cvZKrjCZTFo+ebmMJUaN+GCEDE7W93t4zWFzuVlU5UkTTXs2lcHJIJPRVKYNAAAAAMe27b/nd6/oPaW3VfHf3PWNOt3SScNeGSbvUG+d/eOskhYlKfHTRCV+lqir/3G1Bs0eVJtTBgAAAAAAAAAAKIcECwAAAABW2fb+Nh1df1QDnxyopt2bVqttRlKGuewf4V9pnIu7i7xCvJSTnqOM3zIqjQMAAAAuV8UFxSopKDHfLjpXVI+zOa8wp1C7Fu6Ss7uzek7oWWW8wdmgUQtGqdtt3crc33tSb63951qt/9d6rX9mvdx93RXzaExtTRsAAAAAAAAAAKAcEiwAAAAAVOnsH2e16vFVCmwfqGv+cU21258+ctpc9m7qbTHWp6mPctJzVJBdoLxTefIM8Kz2eAAAAEBjFf9CvOJmx5lvn3E6U4+zOS9pUZIKzxaq+7ju8gryshjb/8H+6jO1j3zDfCusj306Vvu+3af0nela+8+16jG+h3ya+dTGtAEAAAAAAAAAAMohwQIAAABoQOprtdoV01eo4EyBbv/6drl4VP80ouBsgblcVXsXz4v1hWcLSbAAAAAAShn4t4Ea8PAA8+3k5GS91v21epzR+d3uJKnPlD5Vxno08ZBHE49K6w1OBkXdFaUfH/pRxXnF2rVolwY8NKDSeAAAAAAAAAAAAHsiwQIAAABoQOpjtdrdS3dr79d71eveXmod27pGfRTnFZvLzm7OFmNL1xfl1k0CCQAAANBQuLi7yMX94lf7rj6u9TgbKW1Hmv745Q8FdwpWq6tb2aXP5lc0N5dTNqVID9mlWwAAAAAAAAAAgCqRYAEAAAA0IHW9Wm3+6Xz98MAP8m7qraFzhta4n9K7UpQUlliILFvv6lW/PxYDAAAAYNmv//1VktRnatW7V1jLO9TbXD6Xds5u/QIAAAAAAAAAAFSFBAsAAACgAanr1Wp/evQnnUs7p1s/v1WeAZ417sfd191cLs4vthBZdrcLN1+3Go8JAAAAoHYV5hQqaWGSXDxc1HNCT7v1azKazGWDs8Fu/QIAAAAAAAAAAFTFqb4nAAAAAMAxHYk7ou0fbVera1qp7ZC2ys3MLfdXUnBxt4m8U3nm+/NO5ZXpq0nrJuZyTnqOxXHPpZ9fodbdz92mpA4AAAAAtSvp8yQVZBeoy+gu8gys+rN7emK61j+7XqePnLYYV3rXCt8wX1unCQAAAAAAAAAAYDV2sAAAAABQoSNrj0gm6WjcUc0JmVNl/Pu93zeX/Vv568EjD5pvh3QLMZfPHDujsN5hFfZRXFCs3Izc8226hlQYAwAAAMAxJLyfIEnqPaW3VfHHE45r7T/WKrBdYJkk7EulbEkxlyMGRtg0RwAAAAAAgOpaNGJRfU8BAADUIxIsAAAAAFSo54SeajmwpcWYTXM26eBPByVJIz8bKZ+mPpIkF8+ypxptBrfRWq2VJKXtSFOnmztV2F/6znSZjCZzGwAAAACOKT0xXak/pyq4c7BaXdWqWm0P/HBA3W7vVmFdSWGJtn+4XZLk5utWaRwAAAAAAAAAAEBtIMECAAAAQIUC2gYooG2AxZjEzxLN5ZZXtqx0Fdrw/uHyC/dTdkq2Dq8+rNhZsRXGHVp1yFzuMqZLtecMAAAAoG78+t9fJUl9pvSpdtvEBYnqeHNHdR7Vucz9xhKjvp/+vbIOZEmShv17mLyCvGyfLAAAAAAAAAAAgJVIsAAAAABQ6wwGgwY+OVAr7luh5PhkZe7NVHCn4DIxxmKjdnyyQ5LU/ob2atazWT3MFAAAAGi8SidIpyemm8sHVx5Udkq2JMm7qbcih0Za7Kcot0i7FuySi4eLek7oafX4/i395RHgofxT+fpi9Bdqf117tbm2jTwDPJWdkq2kz5OU8VuGnFydNOyVYTVK3gAAAAAAAAAAALAFCRYAAAAA6kSfyX2UtDBJyfHJWj55ucb/NF6unq7m+nVPr1PW/ix5NPHQ8NeG1+NMAQAAgMZp2Z3LKrw//vl4c7nVNa2qTLBIWpykgjMF6jG+hzwDPa0ev83gNno49WH9vvx37V+xX8cTjivu6TgV5RbJzddNgZGBuvLxK3XFtCvUpFUTq/sFAAAAAAAAAACwFxIsAAAAgMuAvVaqlaS9X+9V4blCSdKpQ6fK3O8V7CVJioiJUEDbgDLtnFycdNuy27TwxoVKjk/W+33eV9TdUXLzdtP+Ffu1//v98gr20pilYxTUPqjmDxYAAABAhWaZZtmln15391Kvu3vVqK2rp6u6/rmruv65q13mAgAAAAAAAAAAYE8kWAAAAACXAXutVCtJ/3vwfzpz9Ey5+3986Edz+eaPby6XYCFJXsFeuif+Hm2bu02JnyYq/oV4lRSUyL+lv2Iei1H/B/vLN8zXmocEAAAAAAAAAAAAAAAAAHZFggUAAABwGbDXSrWS9OCRB21q7+TipOhp0YqeFm2fCQEAAAAAAAAAAIs+if1ER+OOVhnn6u2qJ889aTHm2KZj+vmtn5Ucn6ycEznyDvFW+IBwRd8Xrdaxre00YwAAAACoHyRYAAAAAAAAAAAAAAAAAKhS3DNxipsdJxcPF/Wa1Euh3UKVuSdTCXMTtHvJbsXMjNHQl4fW9zQBAAAAoMZIsAAAAAAAAAAAAAAAAAAauebRzTVy/kiLMQYnQ6V1v773q9bNWicXDxdNWDNB4f3CzXU97uyhj6/6WJvmbJJ3qLdiHo2x27wBAAAAoC6RYAEAAAAAAAAAAAAAAAA0cq5ergruFFyjtjkZOVo5c6Ukqd+MfmWSKyQprFeYYh6NUdzsOK39x1p1u72b/ML9bJ4zAKD+LBqxqL6nAABAvXCq7wkAAAAAAAAAAAAAAAAAcFxb39iqwnOFkqTek3pXGNN7Um/JIBXnF2vTK5vqcnoAAAAAYDckWAAAAAAAAAAAAAAAAACo1O6luyVJTVo3UWC7wApj/ML9zDtk7Fm6RyaTqc7mBwAAAAD2QoIFAAAAAAAAAAAAAAAAcJkpOFsgk7HqJIjs1Gyd3HdSktQsqpnF2LBeYefbpGQra3+W7ZMEAAAAgDrmUt8TAAAAAAAAAAAAAAAAAFC7inKLFPdMnHYv3a1TB0+pKLdIBieDgjoGqf0N7TXgoQHybe5brt2JpBPmsl+En8UxStef+O2EgjoE2e8BAAAAAEAdIMECAAAAAAAAAAAAAAAAaOT++OUPndh1QlH3ROnqp66Wq7erMvdmKuH9BG3+92Zt++82jfpslDre1LFMu9NHTpvL3k29LY5Rur50OwAAAABoKEiwAAAAAAAAAAAAAAAAABo571BvTVw7USFdQsz3dbihg/re31eLRizSoZWHtGTMEk1cO1ERMRHmmMKzheayi4flnxq5erpW2A4AAAAAGgqn+p4AAAAAAAAAAAAAAAAAAOsUFxSrILvA/GdNIsPoz0dr+t7pZZIrLnBxd9Etn9wiZ3dnlRSWaMX9K8rUF+UVmcvObs4WxyldX5RbZCESAAAAABwTO1gAAAAAAAAAAAAAAAAADUT8C/GKmx1nvn1GZ6ps49PMx2K9b3NftftTO+37Zp/Stqfp+PbjCusVJqnsrhQlhSUW+yld7+rlaiESAAAAABwTCRYAAAAAAAAAAAAAAABAAzHwbwM14OEB5tupqal6rctrNvfb/Irm2vfNPknSsU3HzAkWbr5u5pji/GKLfZTe7aJ0OwAAAABoKEiwAAAAAAAAAAAAAAAAABoIF3cXubhf/MmPW7Z9Ehm8Q73N5XNp58zlJq2bmMs56TkW+yhdX7odAAAAADQUTrY0Xr9+vTIyMuw1FwAAAAAAAAAAAAAAAAD1wGQ0mctOzhd/UhTaLdRczj6WbbGP7JSL9aFdQy1EAgAAAIBjsinBYtCgQVq1apW95gIAAAAAAAAAAAAAAADAjvYt36f1z66XyWSyGFd61wqfMB9z2a+Fn4I6BEmS0nakWezjeMLx823C/RTYPrCmUwYAAACAemNTgoXJZNLSpUu1a9cue80HAAAAAAAAAAAAAAAAgJ3s+XKP1v5jrXLScyzGpWxJMZdbDmxZpq7LmC6SpNNHTuvUoVMVts9OzVbm3kxJUufRnWUwGGyZNgAAAADUC5sSLCRp2bJlioqKUr9+/fThhx8qJ8fyyRgAAAAAAAAAAAAAAACAurX/h/2V1p3cf1KHVh2SJEXERCi0a2iZ+n5/7Sc3HzdJUsIHCRX2sf3D7ZJJcvFwUcwjMXaaNQAAAADULZsTLP7zn//o1VdfVV5eniZPnqywsDBNnTpVv/76qz3mBwAAAAAAAAAAAAAAAMBGq/+2Wid/P1nu/rysPH15x5cylZjk6uWq6966rlyMd6i3hs4ZKkna8toWpf6SWqY+bWeaNr68UZI06F+D5BfuVwuPAAAAAABqn4utHQQGBmrs2LGaMWOGtmzZorlz52rhwoX64IMP1L17d02ZMkXjxo2Tv7+/PeZbTmZmpt544w0tW7ZMR44ckZubmzp27Kg77rhDf/nLX+Tm5mbzGHv37tU777yjdevW6fDhw8rPz1dAQIC6d++uUaNG6Z577pGnp6cdHg0AAAAAAAAAAACA+rJoxKL6ngIAAHYX0iVETq5OyknP0XtR76nb7d3UPLq5nN2clbknUzvn71RuRq68m3pr9OLRCusVVmE/V/zlCp1LP6f1z6zXvEHz1HtSb4V0DVHm3kwlzE1QUU6RBjw6QDGPsnsFAAAAgIbLpgSLw4cPKyQkxHy7f//+6t+/v9544w1zksX999+vmTNnavTo0Zo8ebIGDhxo86Qv+Pnnn3XLLbfo+PHjGjp0qKZNm6a8vDzNmzdPM2bM0CeffKLvvvtOzZs3r/EYb7/9th566CEVFRUpKipKjz76qJo2bao9e/bo448/1po1a/Sf//xHP/zwg9q2bWu3xwYAAAAAAAAAAAAAAADY6srHrlTPCT2156s9OrTykI6uP6rfFv+mkqISeQZ4qmmPpupwYwf1ureX3H3dLfYVOytWkUMjtfU/W7V76W7lvpsrr2AvRQ6LVPT0aLUZ1KaOHhUAAAAA1A6bEixatWpV4f0+Pj6aMmWKpkyZop07d+qDDz7QggUL9Nlnn6lDhw6aMmWKJkyYoKCgoBqPnZycrBtvvFEZGRl68MEH9dprr5nrHnjgAV133XVau3atbrrpJm3cuFHu7pZPACvy448/6v7775ckjR07VvPmzZOLy8Wn7OGHH1Z0dLR+//133Xjjjdq5c6dcXV1r/JgAAAAAAAAAAAAAAAAAe/Np5qPo+6IVfV+0zX1FxEQoIibCDrMCAAAAAMdjU4KFNby8vOTp6SlXV1eZTCb9/vvvevTRR/W3v/1NI0eO1KRJkzRkyJBq9ztz5kxlZGSoZcuWevHFF8vUubu7a+7cuerYsaO2bdumt956S4888ki1x3j55ZclSa6urnrjjTfKJFdI5xNMnnrqKc2YMUN79uzR119/rTFjxlR7HAAAAAAAAAAAAAAAAAAAAACOb9GIRfU9Bd2x/I76ngLQaDnZ0nj9+vXKyMgod39BQYEWLFig2NhYderUSa+88oo5LigoSA8//LAefPBBrV+/XsOGDVOXLl30/fffWz3u/v37tWTJEknShAkTKtydIjIyUoMGDZIkvfTSSyouLq724/vll1/MfQUHB1cY07dvX3N58+bN1R4DAAAAAAAAAAAAAAAAAAAAAADUP5sSLAYNGqSVK1eab+/atUt//etf1bx5c02YMEEbNmyQyWSSJF177bVavHixUlNTNWfOHL344otKTk7Wl19+KX9/f9100036/PPPrRp36dKlZfqtzNChQyVJGRkZWrduXbUfX2FhoSTJ09Oz0hgvLy9zOScnp9pjAAAAAAAAAAAAAAAAAAAAAACA+mdTgoXJZNLZs2f1wQcfqF+/foqKitLbb7+tU6dOyWQyqVmzZnryySd14MAB/fTTTxozZoxcXV3N7Z2dnXXLLbdo06ZNGjVqlF588UWrxl2zZo25HBUVVWlcr169KmxjrZ49e0qSDhw4UOkOGHv27DGX27dvX+0xAAAAAAAAAAAAAAAAAAAAAABA/XOxtYP77rvPXDaZTHJyctJ1112nyZMn68Ybb5Szs3OVfRgMBg0fPlwrVqywasykpCRJkq+vr/z9/SuNi4iIMJd/++03q/ou7bHHHtPo0aN19uxZvfnmm3rooYfK1JeUlOill16SJPn4+GjcuHHVHgMAAAAAAAAAAAAAAAAAAAAAANQ/mxMsTCaTJKlly5a65557dM899yg8PLxafeTn5+ubb76Ri0vV0ykoKFBaWpokqWnTphZjS9cfOXKkWnOSpFtvvVXz5s3T9OnTNXPmTKWmpurPf/6zQkNDtXfvXj3zzDPavn27goODtXDhQoWFhVV7DAAAAAAAAAAAAAAAAAAAAAAAUP9sTrAYNGiQZs6cqeHDh8tgMFS7fXJysjp06KDCwkL16tWryvizZ8+ayx4eHhZjPT09K2xXHRMmTNDw4cP1t7/9Ta+//rpeeeUVc13Tpk317LPP6p577qlWcsWZM2eUlZVlvu3u7i53d/caza8mjAZjnY1VmeLi4vqeAv5fcXGxjEYj/yZwKByXcFQcm3BERmP9f7ZD9XFOcB6vp7y3oDyOCVyKYwKX4pjApTgnaLhOnTolLy8v8+26Pi9Aw8N7QN1wlHNmR2cymGSSSSaDSUbV3nPmCMc7x8RFjvDvURFeH+Eo6vNY5PhvmOr7WgEaB94Ha8fl+hmwrj7no2Ya2v/zxv765AivE431ub1UYz+W7IXnx75sTrC499579ac//anG7QMCAvTGG29Iktq1a1dlfF5enrns5uZmMbZ0fW5ubo3mN3/+fD322GNKT0/XrbfeqltuuUWBgYE6evSoPvroI73++us6ffq0nnrqKfn7+1vVZ1RUVJnbEydO1F133VWj+dVEVlhW1UG1LD4+vr6ngP9nNBqVnJwsSXJycqrn2QDncVzCUXFswhGdPHmyvqeAGuCc4DzOC3hvQXkcE7gUxwQuxTGBS3FO0HD16NGjzO26Pi9Aw8N7QN1wlHNmR2eSSXm+ecpSlgyq/iJ81nKE7w44Ji5yhH+PivD6CEdRn8di6R/po+Go72sFaBx4H6wdl+tnwLr6nI+acdTP45Vp7K9PjvA60dCOiZpq7MeSvXBOYF82JVh8/PHHiomJsWkCvr6+mjp1qtXxpXelKCwstBhbur70KlDWev311/XQQw9Jkt555x1NmzatTP2UKVM0duxY/fvf/9Y333yjdevWqXnz5lX2u2PHDkVERJhv13UGeuqrqXU2VmUGDhxY31PA/7uQtRYTEyMXF5tzrgC74LiEo+LYhCO6cBKJhoVzgvM4L+C9BeVxTOBSHBO4FMcELsU5QcOVmJioFi1amG+zWi2qwntA3XCUc2ZHZzKYlKUsBaYFymCqvR9eOcJ3BxwTFznCv0dFeH2Eo6jPYzElJaVOx4N91Pe1AjQOvA/Wjsv1M2Bdfc5HzTjq5/HKNPbXJ0d4nWhox0RNNfZjyV44J7Avm460iRMnWhW3fft2tW3b1uodHizx9fU1l/Pz8y3Glt7tonQ7a6SkpOixxx6TdP5F6NLkCklydnbWe++9p++//1779+/Xvffeqx9++KHKvv39/RUYGFit+diTk6n+M7h4kXMsTk5OcnFx4d8FDoXjEo6KYxOOhuz8holzgvN4LT2P9xZcimMCl+KYwKU4JlAa5wQNV0BAQL2eF6Bh4j2g9jnKObOjM8oogwwymAy1+pw5wrHOMXGRI/x7VIbXRziK+joWOfYbpvq+VoDGg/dB+7tcPwPW1ed81ExD/D/emF+fHOH/SGN8XivTmI8le+G5sS+b/oebTCb16NFDgYGBCgwMVNu2bSuMe/nll9WiRQvNmjVLJSUltgwpd3d3NWvWTJKUnp5uMbZ0fevWras1zpIlS1RUVCRJGjlyZKVxAQEBio2NlST973//08GDB6s1DgAAAAAAAAAAAAAAAAAAAAAAqH82JVisXLlSSUlJOn36tFxdXXXttddWGBcVFSVJevbZZzVu3DhbhpQkdevWTZJ09uxZnTlzptK40tuddO3atVpj/P777+Zyq1atLMaWTt7YsWNHtcYBAAAAAAAAAAAAAAAAAAAAAAD1z6YEi2+//VaSNH36dB07dkzvv/9+hXGPP/64jh8/rpEjR2rJkiX68ssvbRlWgwcPNpctJTQkJCRU2MYapbdVN5lMFmONRqO5bOsOHQAAAAAAAAAAAAAAAAAAAAAAoO7ZlGCxdetW9e7dW2+++abc3Nwsxvr6+mrx4sVq3769PvjgA1uG1ejRo2UwGCRJq1evrjRu1apVkqTg4GDFxsZWa4y2bduaywcPHrQYW7q+ZcuW1RoHAAAAAAAAAAAAAAAAAAAAAADUPxdbGh84cEAPP/yw1fHOzs66/fbb9c4779gyrNq3b68xY8boiy++0KeffqqnnnqqXILHoUOHtGbNGknnd9BwcSn7UJOSkjRq1Cjl5uZq4cKFuvrqq8vU33DDDZo5c6ZMJpOWLFmixx9/vMK5pKenKy4uTpIUGhqq6Ohomx4bAAAAAAAAAAAAAEBaNGJRfU8BAAAAAAAAlxmbdrDIyclRixYtqtWmZcuWOnPmjC3DSpLmzJmjkJAQHTlyRE8++WSZuoKCAk2ZMkUlJSXq06eP7r///nLtn3vuOe3fv1+pqal64oknytV36tRJ9957ryRp27Zteu6558rFFBQU6K677lJBQYG5T2dnZ5sfGwAAAAAAAAAAAAAAAAAAAAAAqFs27WAREBCglJSUarVJTU1VkyZNbBlW0vlEjeXLl2vkyJF65ZVXlJSUpJtuukl5eXmaN2+edu3apaioKH377bfy8PAo195oNJrLJpOpwjHefvtt5eXlacGCBXrqqaf0448/6uabb1ZgYKCOHj2qTz/9VIcOHZKLi4v+9a9/adKkSTY/LgAAAAAAAAAAAAAAAAAAAAAAUPdsSrDo2bOn5s2bp5kzZ8rT07PK+AvJDz179rRlWLN+/fopMTFRr7/+upYtW6bHHntMrq6u6tChg15//XVNmzZNbm5uFbb9+9//roSEBOXl5emll16qMMbNzU2fffaZpk6dqk8++USbN2/W008/rby8PPn6+ioyMlKPPPKIJk+erI4dO9rlMQEAAAAAAAAAAAAAAAAAAAAAAMvSE9Pl08xH3qHeduvTpgSLMWPGaOrUqRo+fLg++ugjtWvXrtLYgwcP6t5779Xhw4f1xBNP2DJsGcHBwXr22Wf17LPPVqtdjx49tH//fqtir7rqKl111VU1mR4AAAAAAAAAAA7FZDLpl7d/0aonVqkop0gT105U69jWFtucPnJab7R5w6r+o6dH6/q3rrcYYyw2atvcbdr12S5l7s1UcUGx/Fv6q+PNHdV/Rn/5NPOx9uEAAAAAAAAAAAAb/DTzJ23+92ZJ0jWzrlHs07FVtjm26Zh+futnJccnK+dEjrxDvBU+IFzR90VXec2hKt/c8436TO2j8H7hVcZ+cesXOnXolDrd0kkjPxspV09Xm8aWbEywuPvuu/Wf//xHGzduVOfOndW3b19FR0crPDxcHh4eys/PV0pKin799Vdt3bpVRqNRXbt21d13323zxAEAAAAAAAAAQPVkHczSt/d8q6Prj9bbHHIzc7XwxoVK3Zqq4E7BuvLxK+Xm46b93+/Xxhc3avuH2/XnpX9Wq6tb1dscAQAAAAAAAAC4HBxPOK4tr22pVpu4Z+IUNztOLh4u6jWpl0K7hSpzT6YS5iZo95LdipkZo6EvD63xnHZ8skNtr21rVYJFu+va6dDKQ9r79V7FvxCvQc8MqvG4F9iUYOHi4qLly5dr8ODBOnLkiLZs2aItWyp+gk0mk9q0aaPvvvtOzs7OtgwLAAAAoIZqslKtdP5k6rcvflNyfLIy92aq4EyB3HzcFNA2QK0HtVafqX0U1D7IqjmwUi0AAABQ90qfCzg5Oym8f7hStqRUu5/Bzw9W55GdLcZ4BHhUWmcsNmrxyMVK3ZqqiJgI3bnqTvNqUtH3RWv1k6sV/0K8Pr/5c036eZLV5xkAAAAAAAAAAKB6jMVGfTvpW5lKTFa3+fW9X7Vu1jq5eLhowpoJZZIgetzZQx9f9bE2zdkk71BvxTwaUxvTLuO6/1wnSfryji+1e8luuyRYONnaQevWrbV9+3ZNnTpV7u7uMplM5f7c3d01bdo0JSQkqGXLljZPGgAAAED1ZR3M0rzYefrhgR9UlFNkVZvTR07r46s+1vt93tfGlzZKkvre31c3vHeDBjw6QMUFxdr8yma90/Udbfr3pir7y83M1UcDP9KK+1YoLytPVz5+pYa+PFQBbQK08cWNerfHu/W6ki4AAADQWMXNjtMPD/yglgNbalrSNEUOj6xRP75hvgruFGzxz6dp5UnT2+ZuU3J8smSQRswdUW6r7tjZsQpsF6j80/n66eGfajRHAAAAAAAAAABQtU2vbFLa9jR1vLmjVfE5GTlaOXOlJKnfjH7ldpgI6xVmTqpY+4+1yk7Jtu+ELWg9uLXOJJ+xS1827WBxgb+/v9599129/PLLio+P14EDB3T27Fn5+vqqXbt2GjhwoHx9fe0xFAAAAIBqsmWl2sy9med//CRp+OvD1X9G/zL1A58YqK8nfK1dC3dp5cyVcvN10xVTr6iwL1aqBQAAAOqPyWTSiA9GqPe9vet1DvEvxEuSWl7ZUiFdQsrFOLs6q+ddPbX2qbX6/bvflbYzTc16NqvrqQIAAAAAAAAA0KhlHcxS3Ow4NY9urr4P9NW+b/ZV2WbrG1tVeK5QktR7UsXXG3pP6q24Z+JUnF+sTa9s0p9e+1PNJmiwPrS4oFgHfjggZzfnmo11CbskWFzg6+ur6667zp5dAgAAALBR3Ow4xc2OU+TwSI2YO0LbP9xudYLFBW2Hti2XXCFJTs5OuvH9G3XgxwPKO5mn1U+sVtTEKLl4lD/VsGal2t1LdivrQJZ+evgn3bH8jmrNEQAAAEDlYp+OlcFQjasRtSBlS4qyj51frarNtW0qjYscGqm1T62VJO1espsECwAAAAAAAAAA7Oy7Kd/JWGTUiLkjlH8q36o2u5fuliQ1ad1Ege0CK4zxC/dTcKdgZe7J1J6lezT81eEWr09seWOLtr6xtdz9Pz74o9b8fU2VczIWGZVzIkfGYqPaDKn82kN1ONmll2o4fPiw5s+fX9fDAgAAAJetCyvVjv/fePlH+NeoD0tbAbp5u6nd8HaSpPzT+Tq64WiFc7B2pVpJ5pVqAQAAANhHbSRXGIuNKswptDr+8JrD5nKzqMqTJpr2bCqDk6FcGwAAAAAAAAAAYLuEDxN0eM1hDXhkgNWLHGWnZuvkvpOSLH/HL0lhvcLOt0nJVtb+LIux+afzdfrI6TJ/kpSTkVPu/or+slOzVVJUIlcvV8XOjrXqsVTFrjtYWGPTpk26++67NWHChLoeGgAAALgs2bJSbfMrmmvcD+PUPLq5xTj/VhcTN84knylXz0q1AAAAQONw4rcT+nLsl0qOT9bZP87KVGKSq5erwvuHq/v47up5Z085uVS8tlNGUoa5bCn528XdRV4hXspJz1HGbxmVxgEAAAAAAAAAgOo5l3ZOK2euVEBkgK6ZdY3V7U4knTCX/SL8LMaWrj/x2wkFdQiqNLZZVDNFTYwqc9+OeTvU6qpWCmgbYHlSBsnVy1VBHYLUZXQX+Tb3tRxvJbsmWOTk5OjMmTMqLi6uNCYzM9OeQwIAAACogi0r1XoFe6ndn9pVGZd/+uJWgW7ebuXqq7tSrcloYqVaAAAAwAFt/vdmBXUIUt/7+yq4c7BKCkp0dP1RJcw9v9pVwvsJ+vNXf5ZvWPmLGBdWnZIk76beFsfxaeqjnPQcFWQXKO9UnjwDPO39UAAAAAAAAAAAuOysuH+F8k/la8ySMXL1dLW6XXW+4y9dX7pdRTrd3Emdbu5U5r4d83aoz9Q+6j62u9XzsyebEyyOHz+uZ599VsuXL1dqaqo95gQAAACggTl9+PT5gkGKuDKiXD0r1QIAAACNQ+dbO2vUglFycb94eaHL6C6KujtK82LnKWVLihaNWKR7Nt5TJkaSCs4WmMsuHpYvT7h4XqwvPFtIggUAAAAAAAAAAP+vuKBYJQUl5tuFZwutarf3m73a8+UeRd0VpbZD2lZrzNJjVPUdf+nEDWvnVlrra1pXmcRRm2xKsDhy5IgGDBigEydOyGQyWd3OlhV0AQAAADiW/DP5OrLuiCSp44iOFSZQsFItAAAAYB+XXjQpOldUJ+P6hftpxuEZ8m3hK2dX53L1Yb3CdPU/r9bKR1fq+Lbj+vW9X9V/Rv8yMcV5F3e/dnYr30dppeuLcuvmMQIAAAAAAAAA0BDEvxCvuNlx5ttndKbKNgXZBVoxfYW8Qrw07JVh1R6zKO/id/W1/R3/xLUTq93GnmxKsJg1a5bS09Pl7++vm266SV26dFFAQIDc3d0rbbN582bNnTvXlmEBAAAAOJCd83aqOL9Yzm7OGvLikApjWKkWAAAAsI9yF02cqr5oYg9OLk5q0rqJxZhed/fSypkrJZO046Md5RIsSn/WLyksubR5GaXrXb2s36IcAAAAAAAAAIDGbuDfBmrAwwPMt1NTU/Val9cstln52EqdTT2rUQtHyTOw+r/FKb0rhSN+x39o1SFteH6DJq6xPTnDpgSLVatWqV27dtq0aZOCg4OtG9DFhQQLAAAAoIbqa7XayuScyNH6f62XJA1+brBCOodUGMdKtQAAAIB9XHrRJDk5Wa91t3zRpK54BnoqoG2ATh08pfRd6So8Vyg3HzdzvbvvxcWZivOLK+riYn2pcwg3XzcLkQAAAAAAAAAAXF5c3F3k4n4xDcAt2/L36Ec3HNW297ep3Z/aqfsd3Ws0Zunv6qv6jr/0bhd19R3/ufRzOhp31C592ZRgcfLkST344INWJ1dIUo8ePfTPf/7TlmEBAACAy1Z9rVZbEWOJUcsmLFNuZq663d5NAx4ZUGksK9UCAAAA9nHpRRNXH8f6zOwd6q1TB09JpvMXMwJ9As11TVo3UcqWFElSTnqO/Fr4VdrPufRzkiR3P3d2tQMAAAAAAAAAoIZKCku0fPJyObs5a9C/Bik3M7dcTP6ZfHO5KLeoTIy7v7ucXZ3L7HKdk55jcczS9VXtjl3V3JPjk5WxJ0MFZwpkLDZWGpu+M73G41zKpgSLZs2aVSu5QpK6d++u7t1rlvkCAAAAXO4cabXaH/76gw7+eFBthrTRzZ/cLIPBUGksK9UCAAAAlweT0WQuOzk7lakL6XZxx7szx84orHdYhX0UFxQrN+P8xZuQrhXvkgcAAAAAAAAAAKp29o+zOrnvpCRpbvTcKuM3zdmkTXM2mW9PXDtRrWNbK7RbqPm+7GPZFvvITrlYH9o11EJk5RI+TNCqx1Yp/3R+1cF2ZlOCxfXXX6/t27fr7rvvtrpNRkaG9uzZo6uvvtqWoQEAAIDLkqOsVrvqb6v06zu/qvWg1rr9m9vLzKkirFQLAAAANGzrn12v0O6h6nRzJ4tx59LOf543OBnkHepdpq7N4DZaq7WSpLQdaZX2lb4z3Zyo0WZwG1unDgAAAAAAAADAZcunmY/uXHmnxZi0nWla+ehKSVKPO3uo54Se5rqmPZtKkvxa+CmoQ5BO/n5SaTvSLPZ3POH4+TbhfgpsH2gxtiJ7lu3R8snLq93O0uKw1WFTgsWTTz6pgQMH6vbbb1dMTIxVbX766SdNmDBBJSUltgwNAAAAoJ6s+ccabXxxo1pd00pjvxsrV6+qkzxYqRYAAABo2Nb+Y60ih0daTLA4e/yszhw9I0kK6x1W7lwhvH+4/ML9lJ2SrcOrDyt2VmyF/Rxadchc7jKmi+2TBwAAAAAAAADgMuXi4aK217a1GOPkcnFH6oC2AZXGdxnTRRue26DTR07r1KFTCmgbUC4mOzVbmXszJUmdR3euUdLDlle3SJK6j+2uXvf2UkiXEHkGeMrZzbnSNomfJerriV9Xe6yKOFUdUjmj0aj33ntP48eP11133aWlS5dq165dOnLkiJKTkyv8y8zMtMvEAQAAANS9dU+v04ZnN6jlVS019nvrkiuksqvOWspiZ6VaAAAAwHEd23RMBdkFldb/+t6v5nLvKb3L1RsMBg18cqAkKTk+2XyBpTRjsVE7PtkhSWp/Q3s169nMxlkDAAAAAAAAAAB76PfXfnLzcZMkJXyQUGHM9g+3S6bziR0xj1i3gcOl0hPT1XlkZ436bJTaDGojn6Y+FpMrJEkGyWQy1Wi8S9m0g0Xr1q3NWSWffvqpPv30U7tMCgAAAIDjWf/cesXNjlPElREat2Kc3LzdysW8f8X76jCiQ7mVaFmpFgAAAGj4Cs8WavmU5Ro5f2S5CxkHfzqojS9tlCS1urqVet3dq8I++kzuo6SFSUqOT9byycs1/qfxcvW8mLi97ul1ytqfJY8mHhr+2vDaezAAAAAAAAAAAKBavEO9NXTOUH0/7XtteW2LOo3spBbRLcz1aTvTtPHl89cKBv1rkPzC/Wo0jsloUrvr2lWrTeeRndXycMsajXcpmxIspJpletRkqw8AAAAA9Sf+pXitfWqtwgeEa9wP48zZ6Jc6vu24QruFlrv/wkq1K+5bYV6pNrhTcJkYVqoFAAAAalfiZ4nmcnpiurl8cOVBZadkS5K8m3orcmhkubZNezZV+s50/bb4Nx3fdlxdb++qgLYBKsop0pF1R7Tnqz2SSWp3XTuNWjCqzHbipTm5OOm2Zbdp4Y0LlRyfrPf7vK+ou6Pk5u2m/Sv2a//3++UV7KUxS8coqH2QnZ8BAAAAAAAAAAAgnb9OcOFaQcaejDL3X7ieUNE1gyv+coXOpZ/T+mfWa96geeo9qbdCuoYoc2+mEuYmqCinSAMeHaCYR2u2e4UkBXUIUnFBcbXauHq5qkmrJjUeszSbEyymTp2q/v37Wx2/efNmzZ0719ZhAQAAANSRTa9s0uonVssrxEsDnxio49uO16gfVqoFAAAA6teyO5dVeH/88/HmcqtrWlWYYPGXHX9RytYU7f16r45tPKaE9xOUdypPzq7O8mnmo+5ju6vHnT3UbnjVK0p5BXvpnvh7tG3uNiV+mqj4F+JVUlAi/5b+inksRv0f7C/fMN+aP1AAAAAAAAAAAGDRnq/2KG52XLn79y7bq73L9kqq/JpB7KxYRQ6N1Nb/bNXupbuV+26uvIK9FDksUtHTo9VmUBub5hZ1d5T2frVXfaf3tbpNypYUbXt/m27+6GabxpbskGBx1VVXaezYsdYP6OJCggUAAABQx2q6Uu3er/dq5aMrJUm5Gbn6/ObPazwHVqoFAAAA6tcs0yyb2of3C1d4v3C7zMXJxUnR06IVPS3aLv0BAAAAAAAAAADrxT4dq9inY2vcPiImQhExEfabUCnR06N1ePVhfT/9ew19aajcfNyqbJN1MEs75+2s/wSLK6+8UqGhodVqExkZqQkTJtgyLAAAAIBqqulKtaePnLbrPFipFgAAAAAAAAAAAAAAAEBl1v9rvZr2bKrtH25X4vxEtbqmlYI6Bsnd110GJ0OFbdJ3pld4f03YlGCxYcOGarfp37+/+vfvb8uwAAAAAKqppivV9n+wv/o/aN/P76xUCwAAAAAAAAAAAAAAAKAi655eJ4PhfCKFyWTSgR8O6MAPB+psfJsSLAAAAAAAAAAAAAAAAAAAAAAAAOzFZDJVWLbkQlKGreyWYLFv3z4tXLhQW7duVVpamt577z3zThVPP/20xo4dqw4dOthrOAAAAAAAAAAAAAAAAAAAAAAA0MiM+myUuo/tbnV84meJ+nri13YZ28nWDoqKinTfffepa9euevbZZ7Vy5Urt2rVLubm55pjnnntOXbp00fTp01VYWGjrkAAAAAAAAAAAAAAAAAAAAAAAAJLB+p0uqmJzgsWECRP03//+V0ajUSaTqcKJzZo1S61atdJ7772nsWPH2jokAAAAAAAAAAAAAAAAAAAAAABoZEbMHaHwAeHVahM5NFIT1060y/g2JVj89NNPWrx4sfz9/fXCCy9o586d2rdvX7kki6eeekp79uzRnXfeqWXLlunbb7+1adIAAAAAAAAAAAAAAAAAAAAAAKBx6X1vbwW0CahWG+9Qb7W+prVdxrcpweKjjz6Sj4+PNm/erMcff1zdu3dXYGBghbFubm764IMP1KFDB3300Ue2DAsAAAAAAAAAAAAAAAAAAAAAAKCUrSlaPmW5XfqyKcFiy5Ytuuuuu9SxY0er4l1cXHTbbbfpl19+sWVYAAAAAAAAAAAAAAAAAAAAAAAAZR3I0vYPt9ulLxdbGp84cUJRUVHVatOyZUudPHnSlmEBAAAAAAAAAAAAAAAAAAAAAEAjc3T90Wq3ydyTabfxbUqwcHV1VX5+frXaHD9+XF5eXrYMCwAAAAAAAAAAAAAAAAAAAAAAGplPYj+RwWCot/GdbGncpk0brVixwur44uJiLViwQO3atbNlWAAAAAAAAAAAAAAAAAAAAAAA0AiZTKZq/9mLTTtY3HDDDXrxxRf15ptv6oEHHrAYm5ubq0mTJmnfvn16+umnbRkWAAAAAAAAAAAAAAAAAAAAAAA0Qlf9/Sq1vbZthXWmEpMKsguUuS9Tv3/7u84kn9Hw14bLK8TLLmPblGDx0EMP6e2339aDDz6oRYsWady4cWrTpo0k6fDhw9q6dauOHj2qTZs2afHixTpx4oQCAgKqTMYAAAAAAAAAAAAAAAAAAAAAAACXn5DOIWp9Tesq4wY+PlCJnyVq7T/XatKWSXYZ26YEi+DgYH3xxRe66aabtHXrVm3dulWSZDAYNGXKlDKxJpNJ7u7uWrJkiZo0aWLLsAAAAAAAAAAAAAAAAAAAAAAAoJG57s3r1KJvC6vje4zvoUOrDmn9c+s19KWhNo/vZGsHw4YN04YNG9SlSxeZTKZK/7p166b4+HgNGjTI5kkDAAAAAAAAAAAAAAAAAAAAAIDGpe/0vgpsF1itNi2vaqm9X+21y/g27WBxQXR0tHbt2qXVq1dr5cqVOnDggLKzs+Xr66v27dtr6NChGjJkiD2GAgAAAAAAAAAAAAAAAAAAAAAAkCQV5RQpOyXbLn3ZJcHigiFDhpBIAQAAAAAAAAAAAAAAAAAAAAAAal1JUYkSP02Um6+bXfqza4KFNTIyMrRnzx5dffXVdT00AAAAAAAAAAAAAAAAAAAAAABwUEfXH60ypqSoRPmn85W5J1NJi5KUuTdTnW7pZJfx6zzB4qefftKECRNUUlJS10MDAAAAAAAAAAAAAAAAAAAAAAAH9UnsJzIYDFbHm0wmuXq66ppZ19hl/DpPsAAAAAAAAAAAAAAAAAAAAAAAAKiIyWSyKs7J2Ulth7TVkBeGqGmPpnYZ26oEix9//FHvvvuuJk+erBtuuMF8f9u2bas9YE5OTrXbAAAAAAAAAAAAAAAAAAAAAACAxu+qv1+lttdWnqvg5OIkD38PBbYLlIuHffecsKq38ePHKysrSxs3blRGRob5/iNHjtRo0Ops2QEAAAAAAAAAAAAAAAAAAAAAAC4PIZ1D1Pqa1vUytlUJFpGRkTp58qQiIyPL1V111VXV2sni0KFDio+Pt36GAAAAAAAAAAAAAAAAAGrFTzN/0uZ/b5YkXTPrGsU+HVtlm2Objunnt35Wcnyyck7kyDvEW+EDwhV9X7Rax7au3QkDAAAAaNSumXWNmvZoWm/jW5Vg8eOPP2r16tUaPHhwubqpU6dq7NixVg+4YMECEiwAAAAAAAAAAAAAAACAenY84bi2vLalWm3inolT3Ow4uXi4qNekXgrtFqrMPZlKmJug3Ut2K2ZmjIa+PLSWZgwAAACgsYudFVuv41uVYOHv769Ro0bZbVCTyWS3vgAAAAAAAAAAAAAAAABUj7HYqG8nfStTifW/4/n1vV+1btY6uXi4aMKaCQrvF26u63FnD3181cfaNGeTvEO9FfNoTG1MGwAAAMBlKPdkrk4dPKX8M/ny8PdQQGSAvIK8amUsqxIsKmM0GqvdZty4cRo3bpwtwwIAAAAAAAAAAAAAAACwwaZXNilte5o63txR+77ZV2V8TkaOVs5cKUnqN6NfmeQKSQrrFaaYR2MUNztOa/+xVt1u7ya/cL9amTsAAACAy8OOeTu09Y2tSt+ZXq6uac+m6v9gf/Wc0NOuYzrZtTcAAAAAAAAAAAAAAAAADi3rYJbiZsepeXRz9X2gr1Vttr6xVYXnCiVJvSf1rjCm96TekkEqzi/Wplc22W2+AAAAAC4vhTmFWnD9An17z7dK35kuk8lU7i99Z7q+ufsbLbh+gYpyi+w2ts0JFocPH1ZiYqISExP122+/VRizYMECrVy50tahAAAAAAAAAAAAAAAAANjouynfyVhk1Ii5I+TkbN3Ph3Yv3S1JatK6iQLbBVYY4xfup+BOwZKkPUv3yGQy2WfCAAAAAC4rX97xpQ7874BMJpNcPF0U3i9cXW7toh7je6jLrV0U3i9crl6uMplMOvjjQX15x5d2G9vFlsa5ubnq3bu3srOzJUn+/v7KysoqF/fdd9/piy++0MCBA/X5558rLCzMlmEBAAAAAAAAAAAAAAAA1EDChwk6vOawrnz8SjXr2UxH1h2psk12arZO7jspSWoW1cxibFivMGXuyVR2Sray9mcpqEOQPaYNAAAA4DKxb/k+/f7d7/IN89W1L1+rLqO7yMW9fNpDcUGxdi/drVWPrdLv3/2u37/7XR1u7GDz+DbtYPHVV1/pzJkzMplMGjFihF5//fUK48aNG6eYmBht2LBBw4cPV0FBgS3DAgAAAAAAAAAAAAAAAKimc2nntHLmSgVEBuiaWddY3e5E0glz2S/Cz2Js6foTv52wEAkAAAAA5e2ct1OeAZ66d/O96jGuR4XJFZLk4u6iHuN66N7N98qjiYd2fLzDLuPblGDxv//9TwaDQYsXL9bXX3+tCRMmVBh34403asOGDXrllVeUlJSkd955x5ZhAQAAAAAAAAAAAAAAAFTTivtXKP9Uvm78741y9XS1ut3pI6fNZe+m3hZjS9eXbgcAAAAA1kjZkqKoe6Lk39Lfqnj/lv6KuidKKVtT7DK+TQkW27Zt00033aQxY8ZYFf/QQw9pyJAhWrx4sS3DAgAAAAAAAAAAAAAAAJel4oJiFWQXmP8KzxZa1W7vN3u158s9irorSm2HtK3WmKXHcPGoePXYC0onblg7NwAAAAC4IDczVyFdQqrVJqRziHIzc+0yvuUzniqkpqbq3nvvrVaboUOH6rnnnrNlWAAAAAAAAAAAAAAAAOCyFP9CvOJmx5lvn9GZKtsUZBdoxfQV8grx0rBXhlV7zKK8InPZ2c3ZYmzp+qLcIguRAAAAAFCem49btZMlck/mys3HzS7j25RgUVhYqMDAwGq1CQ4OVmEh2ekAAAAAAAAAAAAAAABAdQ3820ANeHiA+XZqaqpe6/KaxTYrH1ups6lnNWrhKHkGelZ7zNK7UpQUlliMLV3v6uVqIRIAAAAAygvuFKykRUmKeSRGBidDlfEmo0lJC5MU3CnYLuM72dI4NDRUSUlJ1Wqza9cuhYRUb8sOAAAAAAAAAAAAAAAAAJKLu4vc/dzNf26+lldpPbrhqLa9v03t/tRO3e/oXqMxS49RnF9sMbb0bhdVzQ0AAAAALtXplk5K25Gmr8Z/pfzT+RZj88/k66txXyk9MV2dRnayy/g27WAxYMAAffTRR7r//vvVtm3bKuMPHTqkjz/+WMOHD7dlWAAAAAAAAAAAAAAAAABVKCks0fLJy+Xs5qxB/xqk3MzccjH5Zy7+YKkot6hMjLu/u5xdndWkdRPzfTnpORbHLF1fuh0AAAAan0UjFtVq/0aDUVlhWUp9NVVOpor3Fbhj+R21OgfUvej7orX1ja36bfFv2r9ivzrc0EHNo5vLt4WvXD1dVZxfrOyUbP3x6x/a//1+FWQXyLeFr6Lvi7bL+DYlWNxzzz1asmSJBgwYoBdeeEG33XabvL29y8Xl5uZq8eLFevLJJ3X27Fnde++9tgwLAAAAAAAAAAAAAAAAoApn/zirk/tOSpLmRs+tMn7TnE3aNGeT+fbEtRPVOra1QruFmu/LPpZtsY/slIv1oV1DLUQCAAAAQHmuXq66/dvbNX/IfOWfzlfS50lK+jypwliTySTPAE/dsfwOuXq62mV8mxIshg8frtGjR2vp0qWaPHmypk+fro4dOyo8PFweHh7Kz89XSkqK9u3bp8LCQplMJo0ZM0bDhg2zy+TRcNV2xpo1yFgDAAAAAAAAAAAAAACNmU8zH9258k6LMWk707Ty0ZWSpB539lDPCT3NdU17NpUk+bXwU1CHIJ38/aTSdqRZ7O94wvHzbcL9FNg+0JbpAwAAALhMhfUK09TtU/X9tO914H8HKo1rf117Xf/O9WrSqondxrYpwUKS5s+fr+LiYn399dcqKCjQrl27tGvXrjIxJpNJkjRy5EjNnz/f1iEBAAAAAAAAAAAAAAAAVMHFw0Vtr21rMcbJxclcDmgbUGl8lzFdtOG5DTp95LROHTqlgLYB5WKyU7OVuTdTktR5dGcZDAYbZg8AAADgctakVRONWzFOWQeydGjVIZ3cf1KFZwvl5uumwHaBanttWwW1D7L7uDYnWHh4eOirr77S4sWL9eabb2rr1q0qKSkx1zs7O6tfv36aMWOGxowZY+twAAAAAAAAAAAAAAAAAOpYv7/209Y3tqrwXKESPkjQkOeHlIvZ/uF2yXQ+sSPmkZh6mCUAAACAxiawXaAC29Xd7ng2J1hccNttt+m2227TuXPndPjwYZ09e1a+vr5q06aNfHx87DUMAAAAAAAAAAAAAAAAgDrmHeqtoXOG6vtp32vLa1vUaWQntYhuYa5P25mmjS9vlCQN+tcg+YX71ddUAQAAAKDG7JZgcYGPj4+6d+9u724BAAAAAAAAAIAdmEwm/fL2L1r1xCoV5RRp4tqJah3busp2xxOO67cvflNyfLIy92aq4EyB3HzcFNA2QK0HtVafqX2q3Ip73dPrFDc7zqp5Tv5lsppf0dyqWAAAAADVk56YrvTEdElSxp6MMvcnfpYoSfJu6q3IoZFl2l3xlyt0Lv2c1j+zXvMGzVPvSb0V0jVEmXszlTA3QUU5RRrw6ADFPMruFQAAAABq7tThUyo8WyhJMjgbFNo1tFxM4oJEeYeWP2+xld0TLKqyatUqPf/881qzZk1dDw0AAAAAAAAAwGUt62CWvr3nWx1df9TqNqePnNayO5cpOT5ZkhRxZYT63t9XfhF+Opd2TkmLkrT5lc3a+p+tGvL8EH5IBQAAADQAe77aU2Hy895le7V32V5JUqtrWlX4Q6XYWbGKHBqprf/Zqt1Ldyv33Vx5BXspclikoqdHq82gNrU+fwAAAACNV1Fukd7v/b4KsgskSe7+7no86/Fycfu/26/fvvhNLQe21K2f3yrfMF+7jF/nCRbp6emKi7NudSoAAAAA9lXTlWovOLbpmH5+62clxycr50SOvEO8FT4gXNH3RVvdj7HYqG1zt2nXZ7uUuTdTxQXF8m/pr443d1T/Gf3l08ynZg8OAAAAQKVKnws4OTspvH+4UrakWNU2c2+mObli+OvD1X9G/zL1A58YqK8nfK1dC3dp5cyVcvN10xVTr7DY5/Q906sct0nrJlbNDwAAAED1xT4dq9inY2vcPiImQhExEfabEAAAAAD8vz1f7VH+mXxJUsebOqrzqM4VxnUf113ZKdk6uuGoPhv+mSb/Mlku7ranR1jVQ0lJiXbt2qVu3brJxeVik/nz51d7wE2bNlW7DQAAAADb1WSl2tLinolT3Ow4uXi4qNekXgrtFqrMPee3/N69ZLdiZsZo6MtDLfaRm5mrhTcuVOrWVAV3CtaVj18pNx837f9+vza+uFHbP9yuPy/9s1pd3apGcwQAAABQsbjZ5z/PRw6P1Ii5I7T9w+1WJ1hc0HZo23LJFZLk5OykG9+/UQd+PKC8k3la/cRqRU2MkotH5ZcggjsFV/sxAAAAAAAAAACAxu/A/w7IYDDo1s9vVdcxXSuN63BjB3W4sYM2v7ZZPz3yk3555xcNeGiAzeNblWAxatQofffdd/rTn/6k77//3nz/XXfdJYPBYPMkAAAAANQeW1aqveDX937Vulnr5OLhoglrJii8X7i5rsedPfTxVR9r05xN8g71VsyjMRX2YSw2avHIxUrdmqqImAjduepOuXq6SpKi74vW6idXK/6FeH1+8+ea9PMkBbUPqvmDBgAAAFCGyWTSiA9GqPe9vWvcR8ebO1Za5+btpnbD22nXwl3KP52voxuOKnJoZI3HAgAAAAAAAAAAl6fj246r400dLSZXlDbgoQE6sOKAflv8m10SLJysCYqLi5PJZNLGjRvL1ZlMpmr/AQAAAKg7cbPj9MMDP6jlwJaaljRNkcOr9yOnnIwcrZy5UpLUb0a/MskVkhTWK8ycVLH2H2uVnZJdYT/b5m5TcnyyZJBGzB1hTq64IHZ2rALbBSr/dL5+evinas0RAAAAgGWxT8fWOLmi+RXNNe6Hcep2ezeLcf6t/M3lM8lnajQWAAAAAAAAAAC4vGWnZiviyohqtWk7tK0y92TaZXyrEiz+/e9/q1u3bnr55ZfL1b3++us6fPiw1X+vvvqqXSYOAAAAwDoXVqod/7/x8o/wr7rBJba+sVWF5wolSb0nVfyDrN6TeksGqTi/WJte2VThHOJfiJcktbyypUK6hJSLcXZ1Vs+7ekqSfv/ud6XtTKv2XAEAAABUzJbdqL2CvdTuT+3kFeRlMS7/dL657ObtZnX/hTmFKikqqfH8AAAAAAAAAABA41FSWCLPQM9qtfEK9lJJoX2uNbhYEzRu3DgNGzZMklRSUiJnZ2dzXXBwsFq1amX1gCEh5X9IBQAAAKD2xD4da9OPqXYv3S1JatK6iQLbBVYY4xfup+BOwcrck6k9S/do+KvDy4yZsiVF2cfO72zR5to2lY4VOTRSa59ae37cJbvVrGezGs8bAAAAQN06ffj0+YJBVa4stWPeDm3/YLsydmcoLytPkuTbwldtBrdR/wf7K6x3WC3PFgAAAAAAAAAAOCLvUG+dSDpRrTbpu9LlFWJ5oShrWZVgMWfOHM2ePVuStGvXLnXp0kWSNGvWLPXo0aNaA/bo0UP//Oc/qzlNAAAAADVlS3JFdmq2Tu47KUlqFmU52SGsV5gy92QqOyVbWfuzFNQhyFx3eM1hc9lSP017NpXBySCT0VSmDQAAAADHln8mX0fWHZEkdRzRscrd87656xt1uqWThr0yTN6h3jr7x1klLUpS4qeJSvwsUVf/42oNmj2oDmYOAACstWjEovqegu5Yfkd9TwEAAAAAANSyiAER2v7RdvW9v68C2gZUGX/q0Cnt+HiH2g1vZ5fxrUqwWLVqlXx8fPTiiy+qTZuLq83OmjWr2gN2795d3bt3r3Y7AAAAAHWvdDa4X4SfxdjS9Sd+O1EmwSIjKcNctvRDKxd3F3mFeCknPUcZv2VUGgcAAADAseyct1PF+cVydnPWkBeHWIw1OBs0asEodbutW5n7e0/qrbX/XKv1/1qv9c+sl7uvu2IejanNaQMAAAAAAAAAAAcTdU+Uflvymz4c8KGGvDBEXW/rKjdvt3JxRblFSlqcpDVPrlHh2UL1ureXXca3KsHiwIEDeuCBBzRt2rQy9zs7O+vTTz/V2LFjrR4wIyNDe/bs0dVXX129mQIAAACoc6ePnDaXvZt6W4wtXV+6XXX78Wnqo5z0HBVkFyjvVJ48Azytni8AAADQ2BUXFKukoMR8u+hcUT3O5rycEzla/6/1kqTBzw1WSOeQSmP7P9hffab2kW+Yb4X1sU/Hat+3+5S+M11r/7lWPcb3kE8zn1qZNwAAAAAAAAAAcDzthrdTl9FdtHvpbi2fvFwrpq9QUMcg+YX7ycXDRcX5xcpOydbJfSdVUlgik8mkrmO6KnJYpF3GtyrB4uTJk2rbtm25+00mU7UH/OmnnzRhwgSVlJRUHQwAAACgjLr+MVXh2UJz2cXD8umDq6drhe0kqeBsgdX9uHherC88W0iCBQAAAFBK/AvxipsdZ759xulMPc5GMpYYtWzCMuVm5qrb7d004JEBFuM9mnjIo4lHpfUGJ4Oi7orSjw/9qOK8Yu1atEsDHrLcJwAAAAAAAAAAaFxGzh8pY7FRe7/eq+KCYp3YdUIndp0oE3Mhl6HzyM66Zf4tdhvbqgQLHx8fHThwwG6DAgAAAKiZuv4xVVHexQQOZzdni7Gl64tyyyZ+FOcV26UfAAAA4HI38G8DNeDhiwkHycnJeq37a/U2nx/++oMO/nhQbYa00c2f3CyDwWBzn82vaG4up2xKkR6yuUsAAAAAAAAAANCAuHi46LavblPS4iT9/ObPSt2aKmOJ0Vzv5Oyk8H7h6jejn7qO6Wrfsa0J6tmzp95++23169dPgwcPlq/vxa277XGxBAAAAIB16vrHVKV3pSgptLwLXel6Vy/XMnWld6WwpR8AAADgcufi7iIX94ufr1196u8z86q/rdKv7/yq1oNa6/Zvbi8zL1t4h3qby+fSztmlTwAAAAAAAAAA0PB0u62but3WTYXnCnXq8CkVni2Um6+bAtoEyM3HrVbGtOpqx6RJk7Ru3TqNGjWqXN348eM1fvx4u08MAAAAQHl1/WMqN9+LJyLF+cUWIsvudlG6nSS5+7pb3U/p3S4u7QcAAACAY1jzjzXa+OJGtbqmlcZ+N9auydEmo8lcNjizyBMAAAAAAAAAAJc7Nx83Ne3etE7GcrImaOzYsXrggQckSSaTyfx36W1r/wAAAAA0DE1aNzGXc9JzLMaWri/drrr9nEs/v0Ktu5+7PAM8rZsoAAAAgDqz7ul12vDsBrW8qqXGfm99ckV6YrrWP7tep4+cthhXetcK3zBfC5EAAAAAAAAAAAD2ZfV+3W+88YamTZumNWvW6OTJkzIajZo9e7ZGjhypHj16WD1gYmKivv7665rMtUKZmZl64403tGzZMh05ckRubm7q2LGj7rjjDv3lL3+Rm5t9VrwtKSnRokWLtGTJEu3cuVNpaWny8fFRWFiYunXrptjYWN18881q1qyZXcYDAAAAHEFot1BzOftYtsXY7JSL9aFdQ8vUhXQLMZfPHDujsN5hFfZRXFCs3Izc8226hlQYAwAAAKD+rH9uveJmxyniygiNWzFObt7lv4N//4r31WFEB8XOii1z//GE41r7j7UKbBdYLim7tJQtKeZyxMAIe00dAAAAAAAAAACgSlYnWEhSp06d1KlTJ/Pt2bNn69Zbb9XYsWOt7mPBggV2S7D4+eefdcstt+j48eMaOnSopk2bpry8PM2bN08zZszQJ598ou+++07Nmze3aZy9e/dq7Nix2rFjh66//no98MADatKkiY4dO6YFCxbo888/1+eff66ioiLdf//9dnlsAAAAgCPwa+GnoA5BOvn7SaXtSLMYezzh+Pk24X4KbB9Ypq7N4DZaq7WSpLQdaep0c6dy7SUpfWe6TEaTuQ0AAAAAxxH/UrzWPrVW4QPCNe6HcXLzqXiBo+PbjpdJ1r7UgR8OqNvt3SqsKyks0fYPt0uS3HzdKo0DYH+LRiyq7ynojuV31PcUAAAAAAAAAFzmrEqwWLZsmd58800ZDAZ99NFHatWqlSSpVatW8vHxqdaAPj4+atmyZfVneonk5GTdeOONysjI0IMPPqjXXnvNXPfAAw/ouuuu09q1a3XTTTdp48aNcnd3r9E4Bw8e1ODBg3Xu3DmtXbtW11xzTZn6v//97xo2bJjWrVtny8MBAAAAHFaXMV204bkNOn3ktE4dOqWAtgHlYrJTs5W5N1OS1Hl0ZxkMhjL14f3D5Rfup+yUbB1efbjcSrYXHFp1qMy4AAAAABzDplc2afUTq+UV4qWBTwzU8W3Ha9xX4oJEdby5ozqP6lzmfmOJUd9P/15ZB7IkScP+PUxeQV42zRsAAAAAAAAAAKA6rEqwWLRokdatW6e+ffvK1dXVfP/hw4erPeDNN9+sm2++udrtLjVz5kxlZGSoZcuWevHFF8vUubu7a+7cuerYsaO2bdumt956S4888ki1xzCZTLrzzjt1/PhxLVy4sFxyhSS5urrqH//4h3bt2iVPT88aPx4AAADAUfX7az9tfWOrCs8VKuGDBA15fki5mO0fbpdMkouHi2IeiSlXbzAYNPDJgVpx3wolxycrc2+mgjsFl4kxFhu145MdkqT2N7RXs57NauXxAAAAAJerxM8SzeX0xHRz+eDKg8pOyZYkeTf1VuTQyDLt9n69VysfXSlJys3I1ec3f16j8f1b+ssjwEP5p/L1xegv1P669mpzbRt5BngqOyVbSZ8nKeO3DDm5OmnYK8PUZ0qfGo0DAAAAAAAAAABQU1YlWCQkJGjkyJH68ssvy9x/zz33aOrUqerXr1+tTK4y+/fv15IlSyRJEyZMqHB3isjISA0aNEirVq3SSy+9pBkzZsjFxaqHa7Zo0SJt3rxZ7du31+23315p3ODBg5WZmVm9BwEAAAA0EN6h3ho6Z6i+n/a9try2RZ1GdlKL6Bbm+rSdadr48kZJ0qB/DZJfuF+F/fSZ3EdJC5OUHJ+s5ZOXa/xP4+XqeTGBe93T65S1P0seTTw0/LXhtfugAAAAgMvQsjuXVXh//PPx5nKra1qVS7A4feS0XcZvM7iNHk59WL8v/137V+zX8YTjins6TkW5RXLzdVNgZKCufPxKXTHtCjVp1cQuYwIAAAAAAAAAAFSHVRkHx48f1+OPP17u/k8++UTXXntttRIsvvnmGz300EM6dOiQ9bO8xNKlS2UymSRJ1157baVxQ4cO1apVq5SRkaF169ZZjK3I3LlzJUkjRoyQwWCo8XwBAACA+lbTlWovuOIvV+hc+jmtf2a95g2ap96Teiuka4gy92YqYW6CinKKNODRAYp5tPzuFRc4uTjptmW3aeGNC5Ucn6z3+7yvqLuj5Obtpv0r9mv/9/vlFeylMUvHKKh9kJ0eOQAAAIALZplm1ahd/wf7q/+D/e0yB1dPV3X9c1d1/XNXu/QHAAAAAAAAAABgT1Zv6ZCdnW2XAc+dO6ejR4/a1MeaNWvM5aioqErjevXqVaZNdRIsMjIytH79eklSz549y9Tl5eXJycmpwp0zAAAAAEdU05VqS4udFavIoZHa+p+t2r10t3LfzZVXsJcih0Uqenq02gxqU+U8vIK9dE/8Pdo2d5sSP01U/AvxKikokX9Lf8U8FqP+D/aXb5hv9R8gAAAAAAAAAAAAAAAAANjIqgSLNm3aaMGCBXrggQfk5uZW23OqUlJSkiTJ19dX/v7+lcZFRESYy7/99lu1xkhISJDRaJQktWzZUocOHdLzzz+v5cuX68SJE5Kkpk2bavjw4Xr88cfVpUuX6j4MAAAAoM7UdKXaS0XERCgiJqLqQAucXJwUPS1a0dOi7TInAAAAAAAAAAAAAAAAALAHqxIsbrjhBs2ZM0etWrVSTExMmaSG999/X6tWrbJ6wEOHDlV/lqUUFBQoLS1N0vkEB0tK1x85cqRa4+zatctc/vHHH/X666+rZcuW+vvf/67IyEilpaXpww8/1Pz587Vo0SL997//1d13312tMQAAAAAAAAAAAAAAAAAAAAAAQM0dWnVIG57foIlrJtrcl1UJFn/729+0dOlSHT58WF9//XWZug0bNmjDhg1WD2gymWQwGKo1ydLOnj1rLnt4eFiM9fT0rLCdNS7sUiFJL774oqKjo7Vu3Tp5eXmZ77/77rt1++23a8mSJZo0aZLatGmj2NjYKvs+c+aMsrKyzLfd3d3l7u5erfnZwmgw1tlYjqy4uLi+p+AQiouLZTQaeT7gUDgu4ag4NuGILuy6hoaFc4LzeD3lvQXlcUzgUhwTuBTHBC7FOUHDderUqTLXHOr6vAANT22/BzjCuaIjvL85wvPQEJgMJplkkslgklE8Z6g7Fb1O8BkZjqI+j0WO/4apvq8VoHHgfbB2XK7nBXzOd2wN7f95Y399coTXCUd5bmv7ubDmtclRnov6xHMgnUs/p6NxR+3Sl1UJFk2aNNHPP/+sOXPmaM2aNTp58qSMRqOOHj2qoKAgeXt7Wz1gTk6OTp48WeMJ5+Xlmctubm4WY0vX5+bmVmuc7OzsMrffeuutMhc6JMnJyUlvvfWWli9frvz8fD3yyCPatm1blX1HRUWVuT1x4kTddddd1ZqfLbLCsqoOugzEx8fX9xQcgtFoVHJysqTzxzTgCDgu4ag4NuGIbPlsjfrDOcF5fCbnvQXlcUzgUhwTuBTHBC7FOUHD1aNHjzK36/q8AA1Pbb8HOMK5oiOcJzrC89AQmGRSnm+espQlg2q+uB5QXRW9TvAZGY6iPo/F0j/SR8NR39cK0DjwPlg7LtfzAj7nOzZHOGeujsb++uQIrxOOckzU9nNhzWuTozwX9amxnhOUFJYoOT5ZGXsyVHCmQMbiyhN60nem221cqxIsJCkoKEgvvvhimfucnJz0+uuva+zYsVYP+Nlnn2nixJpvvVF6V4rCwkKLsaXrL02OqEpJSYm53KpVK/Xt27fCuNDQUA0ePFgrVqxQQkKCdu/erS5duljse8eOHYqIiDDfrusM9NRXU+tsLEc2cODA+p6CQ7iQtRYTEyMXF6tfEoBaxXEJR8WxCUd04QsJNCycE5zHZ3LeW1AexwQuxTGBS3FM4FKcEzRciYmJatGihfk2q9WiKrX9HuAI54qOcJ7oCM9DQ2AymJSlLAWmBcpg4odXqDsVvU7wGRmOoj6PxZSUlDodD/ZR39cK0DjwPlg7LtfzAj7nOzZHOGeujsb++uQIrxOOckzU9nNhzWuTozwX9akxnhMkfJigVY+tUv7p/Dofu85ftQwGg0wmU43b+/r6msv5+ZafsNK7XZRuV91xunXrZjG2Z8+eWrFihSTp559/rjLBYv2j6xXsEVyt+diTkxpfNmBNNMY37ZpycnKSi4sLzwkcCsclHBXHJhxNY1zp4XLg7++vwMDAehvfyeQYxw2vpefx3oJLcUzgUhwTuBTHBErjnKDhCggIqNfzAjRMtfke4Ajnio7w3uYIz0NDYJRRBhlkMBl4zlCnKnud4DMyHEV9HYsc+w1TfV8rQOPB+6D9Xa6fcfmc79ga4v/xxvz65Aj/Rxzlea3t58Ka1yZHeS7qU2N7DvYs26Plk5dXu53BYJ8EQZuezbVr16pz587VajN06FCtXbu2xmO6u7urWbNmSktLU3q65a08Ste3bt26WuMEBQWZywEBARZjg4MvJkucOHGiWuMAAAAAAAAAAAAAAAAAAAAAAABpy6tbJEndx3ZXr3t7KaRLiDwDPOXs5lxpm8TPEvX1xK/tMr5NCRbXXHNNtduEhoYqNDTUlmHVrVs3paWl6ezZszpz5oz8/f0rjCu93UnXrl2rNUbp+KKiIouxpXfkYLUwAAAAAAAAAAAAAAAAAAAAAACqLz0xXZ1Hdtaoz0ZZ38hQ9jf9trBrNkBBQYG2bNmir7/+usxODrm5ufYcRoMHDzaXd+zYUWlcQkJChW2sER0dbd4mJC0tzWJsRkaGudy8efNqjQMAAAAAAAAAAAAAAAAAAAAAACST0aR217WrVpvOIztrxuEZdhnfph0sLjh48KD++c9/6ssvvzTv9rBy5UpzUkOzZs1000036ZlnnlHbtm1tHm/06NH6+9//LpPJpNWrV1e6k8aqVaskScHBwYqNja3WGC1atFD//v21efNm7dixQ8XFxXJxqfjp2rZtm7l89dVXV2scAAAAAAAAAAAAAAAAAAAAAABqS/7pfP3+/e86vPqw0ran6dThUyo8Vyg3HzcFtQ9Sm2vbKHpatPxb+lfZ17FNx/TzWz8rOT5ZOSdy5B3irfAB4Yq+L1qtY1vbPNegDkEqLiiuVhtXL1c1adXE5rElO+xgsW7dOvXu3Vuff/65CgsLK9xaw9nZWQsXLlSvXr20evVqW4dU+/btNWbMGEnSp59+qsLCwnIxhw4d0po1ayRJjz/+eLnkiKSkJHXo0EHh4eFav359heM88sgjkqQzZ87om2++qTDm2LFjiouLkyTddNNNCg8Pr9mDAgAAAAAAAAAAAAAAAAAAAADAjo5tOqZ/N/u3lo1fph2f7FBA2wBd9eRVuv6t69V7Um+dPnpaG1/cqLc7v63fvvjNYl9xz8Tp46s+1r5v9qnTyE667s3r1GVMFx344YDmDZqnlY+ttHm+UXdHae9Xe6vVJmVLir65p+Lf+1eXTQkWWVlZuvXWW3X27Fk1adJEI0eO1KRJk8rF/fHHH/rvf/8ro9GoMWPGKC0tzZZhJUlz5sxRSEiIjhw5oieffLJMXUFBgaZMmaKSkhL16dNH999/f7n2zz33nPbv36/U1FQ98cQTFY5x66236sYbb5QkPfTQQ0pJSSk3zr333quioiIFBgbq9ddft/lxAQAAAAAAAAAAAAAAAAAAAABgDwXZBSopKJHB2aDxP47Xn7/8s6587Epd8ZcrNOzfw/TA7w8otHuoinKLtOzOZcrYk1FhP7++96vWzVonZzdnTVgzQde9cZ36TO6j4a8O113r75Krt6s2zdmkTf/eZNN8o6dHy93PXd9P/16F58pvxFCRrINZ2jlvp03jXuBSdUjl3nzzTZ06dUrTpk3TK6+8Ig8PD2VmZuqDDz4oE+fp6anJkyerT58+6t+/v958800999xzNk28ZcuWWr58uUaOHKlXXnlFSUlJuummm5SXl6d58+Zp165dioqK0rfffisPD49y7Y1Go7lc0a4bFyxevFijRo3Sjz/+qKioKN17773q2LGj0tLSNH/+fO3bt08RERH65ptv1KZNG5seEwAAAAAAAAAAAAAAAAAAAAAA9hZ1V5Qih0aWu9+jiYeGzhmqBX9aoJLCEiV8kKDhrwwvE5OTkaOVM8/vTtFvRj+F9wsvUx/WK0wxj8Yobnac1v5jrbrd3k1+4X41muf6f61X055Ntf3D7Uqcn6hW17RSUMcgufu6y+BkqLBN+s70Go1VEZsSLH744Qf169dPb7/9tvk+g6HiSUtS7969dccdd2jFihU2J1hIUr9+/ZSYmKjXX39dy5Yt02OPPSZXV1d16NBBr7/+uqZNmyY3N7cK2/79739XQkKC8vLy9NJLL1U6hpeXl/73v//piy++0Lx58zR//nydPHlSvr6+6tq1q6ZOnaopU6bI29vb5scDAAAAAAAAAAAAAAAA/B97dx5XZZn/f/x94LDIKoIgCm64i4goqWQuFS1TVpo6uWtZTdmMY+tMTWPanlOm9Z1pss2lrLRR20tTcSGXRCUVl1RESVBERECWA/fvD38eQXbOYdPX8/HwMfe5r891fa5D9+C5vO/PuQAAAADAXlybuqpV31bqNqJbuTEte7e0HqclpJVq3zJ3i3U3iYgpEWWOETElQjGzYmTJtSj29VjdMueWGs133XPrrDUJhmHot+9+02/f/VajsWrCpgKLgwcP6umnn65Wnz59+mjFihW2pC3Bz89PL7zwgl544YVq9QsLC9PBgwerHD9q1CiNGjWqutMDAAAAAAAAAAAAAAAAAAAAAKBeBPUL0pTNUyqMcXJzsh6bXUqXGOxdtleS1LRtUzXr0KzMMbyCvOTXxU9pCWlKWJagm9+4ucLNGypiGEaZxxWpaa7L2VRgkZWVJV9f32r1cXZ2Vn5+vi1pAQAAAAAAAAAAAAAAAAAAAACAHSRvS7Yet72+bYm2zORMnd5/WpLUIrxFheME9gpUWkKaMo9nKv1gunw7Va/W4KLhi4erx5geVY6PXxyvFRNX1CjX5Rxs6ezn56fffqvedhs///yzmjdvbktaAAAAAAAAAAAAAAAAAAAAAABgI0uuRWueXiNJ8u/hr4gpESXaT+4+aT32CvaqcKzi7Sf3nKwg0s5MVd/pojI2FVj07dtX77//vk6fPl2l+C1btmjJkiW69tprbUkLAAAAAAAAAAAAAAAAAAAAAACqyZJnUVZqlk7tPaW49+L0bu93dSz2mLqP6q7JGybLqYlTifiMxAzrsXuAe4VjF28v3q86hs4fqqD+QdXqExIdoolrJ9Yo3+XMtnS+9957tWLFCl133XWaO3euoqOjrW0mk8l6nJ6erg8++ECzZs2SxWLRlClTbEkLAAAAAAAAAAAAAAAAAAAAAMBVx5JnUWFeofV1/rn8avXfvWS3Vk5eaX3t3dpbwz8ertDRoSVqAMoa3+xacflB8eKM6s7rooj7IioPuoy7v7vc/Ssu/qgqmwosbr/9dg0bNkzLly/XLbfcIl9fX3Xr1k2SNGPGDL322ms6evSoDh48qKKiIhmGoXvuuUc33HCDXSYPAAAAAAAAAAAAAAAAAAAAoHYtGbqkyrFFpiKlB6Yr+Y1kORgOdp3H6K9G23U8NH7VuTZrS11flxtf3qiYmTHW12d1tlr9Q24O0fhV45Wfna/0g+n69ZNf9b+x/9O6Get0y9xb1PEPHUvEF5wvsB47OjtWOHbx9oKcggoiqy/7ZLZyz+bK1dtVbs3dyiwGsQebCiwk6eOPP9aYMWO0YsUKpaWlacOGDTKZTNq0aZM1xjAMSdKIESP00Ucf2ZoSAAAAAAAAAAAAAAAAAAAAAICrzoC/D1D/R/tbXycnJ2tOtzlV7u8Z6CnPQE/r6/6P9dfqp1YrdnasPrn9E9354Z0KnxhubS++K0VhfqEqUrzdyc2pgsiqSYxJ1Ja5W5S4NlF5mXnW8y5eLmp3fTv1ndZXbQa2sTlPcTaXhbm6uup///ufPvvsM1177bVycHCQYRjWPw4ODrr22mv1+eef6/PPP5ezs7M95g0AAAAAAAAAAAAAAAAAAAAAwFXF7GKWi5eL9Y+zp23P55tMJt346o0KjAiUDOmbh75RVkqWtb34+JZcS4VjFd/twpZ5GUWGvv7T11p4/ULtX7lfuWdzS9Qo5J7N1b4V+7RgyAJ9/dDXKiosqnGuy9m8g8VFI0eO1MiRI5Wdna0jR44oMzNTnp6eateunTw8POyVBgAAAAAAAAAAAAAAAAAAAAAA2InJZFKPsT10Iu6ELOct+nXJr+o//cIuGU3bNrXGZadmVzhO8fbi/arr6z99rR3v75BhGJIkjwAPeQV5ydzELMt5izKPZyor9UIRSNy7cTKKDA3979Aa5yvObgUWF7m7uys0NNTewwIAAAAAAAAAAAAAAAAAAAAAgFrg29nXenzy15PWY/9Qf+tx5rHMCsfIPH6p3b+7fwWR5Tu64aji3ouTs4ezrn3qWoVPDJdXkFeZuXYu2KnY12K1470d6jm+p1oPaF2jnMU52DwCAAAAAAAAAAAAAAAAAAAAAABocA5+d1CJMYmVxjk4XiotKLIUWY+9WnnJt9OF4ouUnSkVjnEi7sSFPkFeataxWQ1me2FHCqcmTpq8frIGPjOwzOKKizkGPjNQk2Imyexq1vb/bq9RvstRYAEAAAAAAAAAAAAAAAAAAAAAwBXom4e+0bdTv600Lv23dOuxd2vvEm3dRnaTJGUkZujM4TNl9s9MzlTavjRJUtcRXWUymWo036Mbjip8crhahLeoUnyL8BbqOamnjm44WqN8l6PAAgAAAAAAAAAAAAAAAAAAAACAK1RaQpoyEjPKbTcMQ7sW7rK+7jS0U4n2vn/pK2cPZ0lS3HtxZY6x4/0dkiGZXc2KeiyqxnPNTs1Wi15VK664KDAiUNmp2TXOWRwFFgAAAAAAAAAAAAAAAAAAAAAAXKGMIkPLxy9XVkpWmW0/TP9Bv2/7XZIUOjpUQX2DSsS4+7srena0JGnznM1K3pZcoj1lV4o2vbZJkjTk+SHyCvKq8VzNrmblZ+VXq09+Vr7MruYa5yyR3y6jAAAAAAAAAAAAAAAAAAAAAACABqVFzxY6e/SskjYmaV7IPHW/p7v8uvjJzddNZ5POas/ne5SWkCZJ6jmhp25/9/Yyx+nzpz7KSs3S+lnrtWDIAkVMiVDz7s2Vti9NcfPjVJBdoP6P91fU4zXfvUKSfEJ8tO9/+9RvWr8q99n3v33yCfGxKe9FFFgAAAAAAAAAAAAAAAAAAIB6t2TokvqeAgAAV5x7Vt6jk7tPKmF5gpI2JOnwqsPavWS3igqK5OzpLJ92Pop8JFI9J/RUq8hWFY41eMZghUSHaMu8Ldq7bK9y/pMjNz83hdwUosipkWo3pJ3N8+14W0dteGGDVj25Sje8fIMcHB3KjTWKDK3+22olbUzSwGcH2pxbosACAAAAAAAAAAAAAAAAAAAAAIArln+ov/xD/e0yVnBUsIKjgu0yVln6TeunrfO26ufXf1bCFwnqfk93tYpsJc9WnnJq4iRLrkWZxzP1+y+/a/enu5VxJEMu3i7q+5e+dslPgQUAAAAAAAAAAAAAAAAAAAAAAKh3TZo10YjPR2jJ0CXKSMzQplc2lRtrGIYcnR018vORatKsiV3yl79fhp3Fx8fr5MmTdZUOAAAAAAAAAAAAAAAAAAAAAAA0MiHRIZq8YbL8uvrJMIxy/zTv1lyTN0xW+xvb2y23TTtY3HvvvXrwwQfVt2/l22ncfffdOnz4sO666y4tXrxYTZrYp0IEAAAAAAAAAAAAAAAAAAAAAABcOVpFttLDux/W4dWHdXj1YaUfTFfeuTy5eLrIp4OPQqJD7FpYcZFNBRYfffSRbrzxxioVWNx6661atWqVVqxYoZdfflmzZs2yJTUAAAAAAAAAAAAAAAAAAAAAALiCtb+xfa0UUpTHoa4SzZs3TwkJCRo1apSWLl1aV2kBAAAAAAAAAAAAAAAAAAAAAMAVKvtUto6uP2qXsWzawaImrr/+en355Zd1nRYAAAAAAAAAAABAA7Zk6JL6ngIAAAAAAACARujQj4e0YsIK/bPwnzaPZfMOFiaTqcqxeXl5+u677+Ts7GxrWgAAAAAAAAAAAAAAAAAAAAAAALup8g4Wc+fO1dy5c0ud/+tf/6pnnnmm0v4FBQU6efKkLBaLbrjhhurNEgAAAAAAAAAAAAAAAAAAAAAAXBF+++E3/fKfXxRxf4Q63dbJen5u+9I1C5UpyC6w27yqXGCRkZGhxMTEUudPnTqlU6dOVTmhu7u7Zs6cWeV4AAAAAAAAAAAAAAAAAAAAAABw5Vg+brnOp5/XsU3H9MSpJ6znMxIzajSeyWSyy7yqXGARHh6uiRMnlji3YMECXXfddWrfvn2FfU0mk9zc3NSpUyeNGDFCLVu2rNlsAQAAAAAAAAAAAAAAAAAAAABAo+YT4qOc0znyCfEp1dbmujbyaV/6fHnOHD6jpI1JdplXlQss7rzzTt15550lzi1YsEAPPvigxowZY5fJAAAAAAAAAACA2mUYhrb93zat/ttqFWQXaOLaiWo7uG2V+x+LPaatb29V0sYkZZ/MlntzdwX1D1Lkw5FVHqfIUqTt87fr18W/Km1fmix5Fnm39lbnOzur37R+8mjhUbM3BwAAAAAAAAAAGoVxP4zTkZ+OqN317Uq19X6wt3qM6VHlseI/jq/7AouyDBo0SAEBAXaZCAAAAIDaVWQp0q5Fu7T3871K2ZminNM5cnR2lFeQl9oMbKM+D/VRYK/ASsexx8NUAAAAAOpH+qF0fXnvlzq6/miN+sfMilHMzBiZXc3qNaWX/EP9lZaQprj5cdq7dK+inohS9GvRFY6Rk5ajT27/RMlbkuXXxU/XPnWtnD2cdfCbg9r0yibteH+HRi0bpTYD29RojgAAAABKy83I1YFvDujIT0eUsiNFZ46cUX5Wvpw9nOXb0VftbmynyIci5d3au9KxuE8AAAAAwB5cvV3VdXhXu41nGIZdxrGpwGLt2rV2mQQAAACA2pWVkqVPbvtEJ+JOyNHZUT0n9lRAzwDlnc3ToR8OKW5+nHa8v0ODnhukQc8OKnccezxMBQAAAKDuFd+1wsHRQUH9gnR88/FqjfHLO79o3Yx1MruaNWHNBAX1DbK2hY0P04fXfajY2bFy93dX1ONRZY5RZCnSZ8M+U/KWZAVHBWv86vFyauIkSYp8OFI/Pf2TNr68UZ/e+ammbJ0i346+NX/TAAAAACRdKIhYcP0CFeYVSiap67CuCh0dKhcvF6X/lq5dC3dp0yubtHXeVt354Z3qPqp7uWNxnwAAAABAbZtRNKPafcLGhilsbJhd8ttUYFETK1eu1PTp03X48OG6Tg0AAABclQzD0Od3f64TcSdkdjXr3th7S+xUcd3T12n131Zr06ubtO6f6+TTzkdh40ovOOzxMBUAAACA+hEz88JDUCE3h2jo/KHa8f6OahVYZJ/K1qonVkmS+k7rW2I9IEmBvQIV9XiUYmbGaO2zaxV6T6i8grxKjbN9/vYLW3SbpKHzh1qLKy4aPHOw9i7dq/Tf0vXjoz9q9Fejq/9mAQAAAJSQl5mnwrxCmRxNGvvdWIVEh5RoH/iPgfpw4Ic6+etJLR+/XP49/NW8a/NS43CfAAAAAEBdOJt0Vm7N3UrdQyjLl1O+vFAAfl+vEs9D2cLBLqNUQ1ZWlo4erdnW4wAAAACqL2ljko7FHpMk9XmoT5mLicEzB8ujhYckaePLG0u1V/VhKkla++xaZR7PtOdbAAAAAGAjwzA09L2hGvf9OHkHe1e7/5a5W5SflS9JipgSUWZMxJQIySRZci2KfT22zDlcXG+0vra1mncr/cCWo5Ojek7qKUk68PUBpexKqfZcAQAAAJQtfFJ4qeIKSXJt6qro2Rd2nSjML1Tce3GlYrhPAAAAAKCuzG03V/uW76tS7NGYo9r27216r+97OvbzMbvkr9IOFufOndNPP/2kIUOGyNv70o2XWbNmVTvhrl27qt0HAAAAQM39vu1363Grvq3KjDG7mBXQM0BZKVk6tfeU8jLz5OLlYm2v6sNUMbNirA9T3TLnFju+CwAAAAC2GPzcYJlMphr337tsrySpadumatahWZkxXkFe8uvip7SENCUsS9DNb9xcIufxzceVeezCQ1btbmxXbq6Q6BCt/cfaC3mX7lWLni1qPG8AAAAAFwooWvVtpW4jupUb07J3S+txWkJaqXbuEwAAAACoK4ZhVDl27Pdj9fu23/XDoz8o5rkYjfthnM35q1RgcfPNN2vLli2KjIzU5s2breefe+45m27IAAAAAKh9hfmF1uOKts5zcrvUlp+dX6LAwh4PUwEAAACoP7Z8Ns9MztTp/aclSS3CKy52COwVqLSENGUez1T6wXT5dvK1th1Zc8R6XNE4AT0DZHIwySgySvQBAAAAUDNB/YI0ZfOUCmOK3yMwu5R+nIj7BAAAAAAaomYhzdQspJkykzMVO7v07to14VCVoIMHD8owDB0+fLhUm2EY1f4DAAAAoO4E9AywHp9KOFVu3MVvpHLxcpG7v7v1fHUfppJkfZgKAAAAQON3cvdJ67FXsFeFscXbT+45WaLt1O5L6xHvYG+Vx+xilltztwt99pS/hgEAAABgP8nbkq3Hba9vW6KN+wQAAAAAGoPcjFy7jFOlHSw++ugj/fe//9X9999fqm3x4sUaM2ZMlRMuXrxYEydOrPoMAQAAANgk5KYQtQhvoZSdKdr61lZdM/UaOXs4l4hJWJ6gtH0XCix6TeklB8dLtdi2PExV/NtqAQAAADROGYkZ1mP3APfyAy9rL96vuuN4BHgoOzVbeZl5On/mvJr4NKnyfAEAAABUjyXXojVPr5Ek+ffwV8SUiBLt3CcAAAAAUFtS41OVsjOl1PmjG46qyFJUaf/CgkKdPXpW2/69TV5BFa9XqqpKBRa33XabbrvtNrskNJlM7GIBAAAA1CEHRweN/X6sVkxYoUM/HtL8a+br+heuV4vwFsrLzNPBbw9q/fPrJUnd/9hdN7x4Q4n+9nqYCgAAAIDtLHkWFeYVWl8XZBXUes78c/nWY7NrxbcVnJo4ldlPkvLO5VV5HHOTS+355/IpsAAAAADsyJJnUW5Grs6fPq9jsce0ec5mndp7St1Hddft795e4nO9xH0CAAAAALUnYXmC1s9aX+p83Ltxins3rsrjGIah3g/2tsucqlRgUZ4PP/xQUVFR1eoTFRWlDz/80Ja0AAAAAKrJI8BDY78fq4QvErT6b6v1+d2fl2jvfEdnRdwfoU63dyrV114PUwEAAACw3caXNypmZoz19VmHs7Wes+D8pSIOR2fHCmOLtxfklCz+sJy32GUcAAAAALbZvWS3Vk5eaX3t3dpbwz8ertDRoTKZTKXiuU8AAAAAoDaVtXlDdTZ0aOLTRGETwjT4ucF2mY9NBRYTJ06sdp927dqpXbt2tqQFAAAArlo1/bbacyfO6dup32rfin3yDPTU9S9er4CwABXmFypxXaJ2fLBD58+cl6OLo0KiQ0r0tdfDVAAAAABsN+DvA9T/0f7W10lJSZrTY06t5iz+gFRhfmEFkSXbndxKfutt8V0pbBkHAAAAuNpdfq+guoUMITeHaPyq8crPzlf6wXT9+smv+t/Y/2ndjHW6Ze4t6viHjiXiuU8AAAAAoLb0+2s/hU8Kv3TCkOa2n6tb3rxFne/sXGFfk8kkJzcnufm52XVONhVY1MTKlSs1ffp0HT58uK5TAwAAAI1eTb6t9nz6eX044EOdOXxGzbs116T1k+Tme2lh0XV4V4WND9NHAz/S4psWK3p2tKIev7RTnb0epgIAAABgO7OLWWaXS/+07+RR+5+7nT2drceWXEsFkSUfvCreT5JcPF2qPE7x3S4uHwcAAAC42pW6V6Dq7WznGegpz0BP6+v+j/XX6qdWK3Z2rD65/RPd+eGdCp8Ybm3nPgEAAACA2uLq7SpXb9dS59383NS0TdO6n5DqocAiKytLR48ereu0AAAAwBWhJt9Wu+Yfa3Tm8BlJ0i3zbilRXHFRq8hW6je9nza+vFGrnlyl4GuDFdw/WJL9HqYCAAAA0Dg1bdvUepydml1hbPH24v0uvj6++bg1zquVV7njZKVmSZJcvFzUxKdJNWcMAAAAXNkuv1eQnJysOd1qvrOdyWTSja/eqCM/HdGJuBP65qFv1OHmDvJo4SGJ+wQAAAAA6tbEtRPVvGvzestvlwKLEydO6LvvvlNCQoLOnj0ri6X8xRQ7VwAAAAA1V91vqzWKDO3+dLekCw8mtbu+XbmxXYd31caXN0qG9Mu/f7EWWNjrYSoAAAAAjZN/qL/1OPNYZoWxmccvtft39y/R1jz00s2Qs8fOKjAisMwxLHkW5ZzKudCne/3dQAEAAAAaqsvvFThn2l7IYDKZ1GNsD52IOyHLeYt+XfKr+k+/UMTBfQIAAAAAdantoLb1mt/mAotnn31Wr776qgoLK94C8CLDMGQymWxNCwAAAKAKsk9lK/dMriTJu7V3hZ/Fi9/oSNmZYj2218NUAAAAABonr1Ze8u3kq9MHTpdYK5TlRNyJC32CvNSsY7MSbe2ub6e1Wivpwpqjy51dyhwjdVeqjCLD2gcAAABA3fDt7Gs9PvnrSesx9wkAAAAANHS/LvlVKyau0LP5z9o8loMtnefPn68XX3xRFotFhmHIxcVFAQEBat26dbl//Pz8bJ40AAAAgKoxOVwqqDAMo8LYiw8wSVJRYZH1+OLDVJJsepgKAAAAQOPVbWQ3SVJGYobOHD5TZkxmcqbS9qVJkrqO6FqqwDuoX5C8grwkSUd+OlJursOrL+2EfTEvAAAAgJo7+N1BJcYkVhrn4HjpMaIiC/cJAAAAADQeRpEho7DiZ6OqyqYdLN599105ODjo2Wef1eTJk9W6detK+yxevFgTJ060JS0AAACAKnLzdZOLl4vyMvOUkZihosKiEjdIiks/lG499m7tXaKt28hu2vDiBuvDVD7tfUr1r+xhKgAAAACNV9+/9NWWuVuUn5WvuPfidMNLN5SK2fH+DsmQzK5mRT0WVardZDJpwNMD9O3D3yppY5LS9qXJr0vJL2UqshRp50c7JUkdb+uoFj1b1Mr7AQAAAK4m3zz0jZw9nPXw7ocrjEv/jfsEAAAAAOrfyntXVrtPeV8OVRM2FVgkJCRo0qRJmjFjRpX7mEymSr85FwAAAIB9mBxM6nhbR+1eslsF2QU6+O1BdR7auczYPZ/tsR53vK1jiTZ7PEwFAAAAoPFy93dX9OxoffPQN9o8Z7O6DOuiVpGtrO0pu1K06bVNkqQhzw+x7lRxud7399buT3YraWOSvrr/K437cZycmjhZ29c9t07pB9Pl2tRVN8+5uXbfFAAAAHAVSUtIU0Zihpq2bVpmu2EY2rVwl/V1p6GdSrRznwAAAABAXdn50c5qF2wbhmG3Im+bCizMZrOioqq3IBo7dqzGjh1rS1oAAAAA1TBoxiDt/3K/CrIL9P207xXYK7DUw06HVx/Wtn9vkyQ169BMve/vXaLdXg9TAQAAAKg/8Yvjrcep8anW40OrDinzeKYkyT3AXSHRIWX27/OnPspKzdL6Weu1YMgCRUyJUPPuzZW2L01x8+NUkF2g/o/3V9Tj5d83cDA76I/L/6hPbv9ESRuT9G7vdxU+OVzO7s46+O1BHfzmoNz83DRy2Uj5dvS10zsHAAAAYBQZWj5+uUYuHSmPFh6l2n549Af9vu13SVLo6FAF9Q0qEcN9AgAAAAB1qYlvEzm7O5fZVlRYpLzMPOVl5kmSXL1d5drU1W65bSqwCA0NVWZmpr3mAgAAAKAW+HX20+ivRuuLe75QxpEM/Tv03+o5sacCegSosKBQR2OOau+yvTIKDfn38Nc9K++R2bX0UsEeD1MBAAAAqD/Lxy8v8/zGlzZaj9sMalNugYUkDZ4xWCHRIdoyb4v2LturnP/kyM3PTSE3hShyaqTaDWlX6Tzc/Nx078Z7tX3+dsUvitfGlzeqMK9Q3q29FfVklPr9tZ88Az2r/wYBAAAAlKlFzxY6e/SskjYmaV7IPHW/p7v8uvjJzddNZ5POas/ne5SWkCZJ6jmhp25/9/Yyx+E+AQAAAIC6csubt6jHmB4VxmSlZmnfin3aMneLhswaom4jutklt00FFg8//LDmzJmjadOmVXlLjdWrV+ull17SmjVrbEkNAAAAoBraDWmnqfumaueHO3Xwm4Pa8+ke/fKfX+Tg6CC35m7qdHsndb27q0L/GCpHZ8dyx7HHw1QAAAAA6scMY4ZdxgmOClZwVLBNYziYHRT5UKQiH4q0y5wAAAAAlO+elffo5O6TSlieoKQNSTq86rB2L9mtooIiOXs6y6edjyIfiVTPCT1L7EpRFu4TAAAAAGgoPAI81OfBPupyZxe93/99ebfxrnRNUxU2FViMGTNGmzdv1h133KF58+apXbvKF0mpqamKiYmxJS0AAACAGmji00T9H+2v/o/2t2kcezxMBQAAAAAAAAAA6o5/qL/8Q/3tMhb3CQAAAADUpr+f+7vMrlUvc/Bo4aGek3pq40sb9cflf7Q5f5Uy33vvvRW279y5Ux06dFDXrl3VuXNneXp6ysHBoczYQ4cOVX+WAAAAAAAAAAAAAAAAAAAAAADgiubs7lztPk3bNNUv//7FLvmrVGDx0UcfyWQyVRhjGIb27t2rhISESuMqGwsAAAAAAAAAAAAAAAAAAAAAAKAy6b+lKy8zzy5jVXnvDF9fX7m7u9ucMDs7W6dPn7Z5HAAAAAAAAAAAAAAAAAAAAAAAcPU6uuGotv3fNnm39rbLeFUusHjzzTc1ZswYmxMuXrxYEydOtHkcAAAAAAAAAAAAAAAAAAAAAABw5Vh578pKY4oKipSbkatTCaeUcSRDktTnoT52yV/lAgt7MZlMMgyjrtMCAAAAAAAAAAAAAAAAAAAAAIAGbOdHO2UymaoUe7EuITgqWNc9c51d8lepwGLVqlUKDQ21S8Jhw4bpyJEjdhkLAAAAAAAAAAAAAAAAAAAAAABcOZr4NpGzu3O57Q5mB7l4u8ivs586De2k7qO6y+RQtaKMylSpwOKGG26wSzJJcnNzU5s2bew2HgAAAAAAAAAAAAAAAAAAAAAAuDLc8uYt6jGmR73kdqiXrAAAAAAAAAAAAAAAAAAAAAAAAA1IlXawAAAAAAAAAAAAAAAAAAAAAAAAqE3TjkyTe3P3estPgQUAAAAAAAAAAAAAAAAAAAAAAKh3Tds0rdf8FFgAAAAAAAAAAAAAAAAAAAAAAIAG59jPx3R0/VFlHMlQ/rl8OXs6q2m7pmozsI2C+wfbPR8FFgAAAAAAAAAAAAAAAAAAAAAAoME4svaIvvvzd0pLSCs3xq+rn/7w9h/UdnBbu+V1sNtIAAAAAAAAAAAAAAAAAAAAAAAANvjlnV+0KHqR0hLSZBhGuX9O7T2lhTcu1C///cVuudnBAgAAAAAAAAAAAAAAAACAq9iSoUvqewoAAACSpORtyfr2kW9lFBnyCPBQ57s6KzAiUF6tvGR2NcuSa1FmcqZOxJ3QvuX7lH0yW9898p1a9m6pln1a2pyfAgsAAAAAAAAAAAAAAAAAAAAAAFDvYmfHyigydM2fr1H0q9Eyu5Zf8nDLnFu06slV2vr2Vm16bZNGfj7S5vwUWAAAAAAAAAAAAAAAAAAAAAAAgHqXtCFJbQe11a1zb6001uxq1q3zblXqrlQdXX/ULvntWmBx5MgRbdmyRSkpKRo2bJjatGkjSTp8+LDat29vz1QAAAAAgEauIWw1Pfqr0fU9BQAAAAAAAAAAAAAAAPx/uRm56jK8S7X6dB3RVaueWGWX/A72GCQ2NlbXXnutOnTooLFjx+qxxx7ToUOHrO1dunTRgAED9PPPP9sjHQAAAAAAAAAAAAAAAAAAAAAAuMK4B7jLqYlTtfo4NXGSm5+bXfLbXGDx2WefafDgwdq8ebMMw5BhGKVi2rZtq9jYWA0aNEgff/yxrSkBAAAAAAAAAAAAAAAAAAAAAMAVpt317XR88/Fq9Tm+5biCo4Ltkt+mAovjx49r8uTJslgs6tKli6ZPn66ZM2eWijtw4IB++OEH+fv76/777y+xuwUAAAAAAAAAAAAAAAAAAAAAAEDUE1FK+CJBiTGJVYpP2pikXxf/qn5/7WeX/DYVWMybN0+5ubl65ZVXtGfPHr3++ut6+OGHy9zFIjo6Whs3bpTJZNK8efNsSQsAAAAAAAAAAAAAAAAAAAAAAK4wzbs216gvRmn5+OX6Zuo3SoxJ1Pn089YaBcMwdP7MeR3dcFTf/eU7fXzrx7r1rVvttoOF2ZbOq1atUnR0tJ588skqxbdt21YTJ07U6tWrbUkLAAAAAAAAAAAAAAAAAAAAAAAaqVmOsyqN2f7Odm1/Z3ulcV8/+LW+/tPX+qflnzbPy6YdLBITE3XbbbdVq0+PHj109OhRW9ICAAAAAAAAAAAAAAAAAAAAAIBGyjAMu/6RYZ952bSDxfnz5+Xp6VmtPkVFRSoqKrIlLQAAAAAAAAAAAAAAAAAAAAAAaMS6Du8q/x7+No9zMv6k9q3YZ4cZ2VhgERAQoN27d1erz5o1axQYGGhLWgAAAAAAAAAAAAAAAAAAAAAA0Ih1Hd5VPcb0sHmc+I/j7VZg4WBL5wEDBuj999/XkSNHqhS/cuVKrVixQoMHD7YlLQAAAAAAAAAAAAAAAAAAAAAAaKSatmkqZw9nu4zl7OEs79bedhnLpgKLhx9+WJmZmerXr5/mz5+vs2fPWttMJpP1eOfOnXrkkUc0cuRISdJDDz1kS1oAAAAAAAAAAAAAAAAAAAAAANBITTsyTZ3v6GyXsbrc2UXTjkyzy1g2FVhce+21evjhh3Xq1Cn96U9/kp+fn6655hpJ0oMPPqiuXbvKw8NDvXv31n/+8x9ZLBb99a9/VZ8+fewyeQAAAAAAAAAAAAAAAAAAAAAAcPU6vPqwFly/wC5jmW0dYN68eXJyctLcuXNVWFioxMREmUwmHTp0SJJkGIY19vHHH9err75qa0oAAAAAAAAAAAAAAAAAAAAAAABlpWbpaMxRu4xlc4GFg4OD5syZozFjxmjevHlavXq1UlNTre3+/v6Kjo7WtGnT2LkCAAAAAAAAAAAAAAAAAAAAAICrXFFhkU7+elL+of5yMDtYz+9auKvaYx2LPWa3edlcYHFRZGSkFi1aJEnKyspSZmamPD095enpaa8UZUpLS9PcuXO1fPlyJSYmytnZWZ07d9bo0aP1pz/9Sc7OznbPeeLECXXt2lVnz56VVHKXDgAAAAAAAAAAAAAAAAAAAAAAUL7Ph3+uA18fUIdbOmjMN2Os51dMWiGTyVRv87JbgUVxHh4e8vDwqI2hS9i6davuuusunThxQtHR0XrooYd0/vx5LViwQNOmTdNHH32kr7/+Wi1btrRr3qlTp1qLKwAAAAAAAAAAAABbLBm6pNKYIlOR0gPTlfxGshwMh0rjAQAAAAAAAKAhS4xJlGEYStqUVKqtJhsg2Ksow6YCi+HDh2v69Om67rrr7DKZ6khKStLtt9+uU6dO6a9//avmzJljbfvzn/+sW2+9VWvXrtUdd9yhTZs2ycXFxS55v/jiCy1fvtwuYwEAAAAAAAAAAAAAAAAAAAAAcLW56V83acu8LbrmkWtKtd3y5i3qfGfnKo+1b/k+/fjYj3aZl00FFitWrNCIESPsMpHqeuKJJ3Tq1Cm1bt1ar7zySok2FxcXzZ8/X507d9b27dv19ttv67HHHrM5Z0ZGhv785z8rKChI/v7+iouLs3lMAAAAAAAAAAAAAAAAAAAAAACuJhFTIhQxJaLMNjc/NzVt07TKY7k1d7PTrGwssJCkDRs2yGKxVKuPk5OTmjVrprCwMAUGBlY758GDB7V06VJJ0oQJE8rcnSIkJERDhgzR6tWr9eqrr2ratGkym217u0888YROnDihlStX6o033rBpLAAAAAAAAAAAAAAAAAAAAAAAcMmgGYMUEBZQrT4BYQEa+M+Bdslvc4HFu+++q3fffbfG/fv166dXXnlF1113XZX7LFu2TIZhSJJuvPHGcuOio6O1evVqnTp1SuvWraswtjIxMTF6//33NWLECN1xxx0UWAAAAAAAAAAAAAAAAAAAAAAAYEcmk0kJ/0tQwv8S1CK8hTrf0bnSPgE9AhTQo3pFGeVxsHUAwzBs+vPzzz/rhhtu0OLFi6ucc82aNdbj8PDwcuN69epVZp/qys3N1f333y9vb2+99dZbNR4HAAAAAAAAAAAAAAAAAAAAAACUbd1z6xQzM0brnlunfSv21Xl+m3awOHLkiL755htNmzZNgwcP1ujRoxUWFiYfHx+ZzWYVFhbqzJkz+vXXX/Xpp59q586d+uCDD9S1a1edO3dO+/fv1/Lly/XZZ5/pgQce0LXXXqt27dpVmnf37t2SJE9PT3l7e5cbFxwcbD3es2dPjd/nzJkzdfDgQb377rtq0aJFjccBAAAAAAAAAAAAAAAAAAAAAADl82zlqRGfjlDLyJZ1ntumAoucnBw9/vjjmj9/viZNmlRuXO/evTVp0iQtXrxYkydP1s6dO9WuXTuFhYVp5MiRGjVqlO6++269/fbbev311yvMmZeXp5SUFElSQEDF23gUb09MTKzy+ypu165d+te//qWBAwdqypQpNRoDAAAAAAAAAAAAAAAAAAAAAABUzOxqVt9pfRUcFVx5cG3kt6Xz7Nmzdeutt1ZYXFHcuHHjtHLlSr300kt66623rOfvuusu3X777Vq1alWlY5w7d8567OrqWmFskyZNyuxXVYWFhbrvvvvk6Oiod999VyaTqdpjlOW85byyLFnW104OTnJydLLL2Kg6i8VS31NoECwWi4qKivh5oEHhukRDxbWJhqioqKi+p4AaOHv2rNLT062vXVxc5OLiUmf5i0xcNxfV9+90/m7B5bgmcDmuCVyOawKXY03QeJ05c0Zubm7W13W9LkDDUpV1mmEyZMiQYTJUJP6/j/rF9Yj6UtbnYD4jo6Goz2uR679xqu97Bbgy2PN3D/ePwOf8hq0h/H1fnd8TtXk9NbafRW1pCD8HqfZ/Fo3ld1N9//eo7/z25h3sLRev+vtsbFOBxdq1a/XUU09Vq88NN9xQ5i4V119/vf75z39W2v/8+fPWY2dn5wpji7fn5ORUY5YXzJkzR9u3b9fzzz+vzp07V7t/eZ5aV/JndkvELfpDnz/YbXxUzcaNG+t7Cg1CUVGRkpKSJEkODg71PBvgAq5LNFRcm2iITp8+Xd9TQA2Eh4eXeD1x4sQqF67bQ3pgeuVBV4n6XhfwdwsuxzWBy3FN4HJcE7gca4LGKywsrMTrul4XoGGpyjrNkKHznueVrnSZZJ8vBQNqiusR9aWsf8vhMzIaivq8Fos/pI/Go77vFeDKYM/fPdw/Ap/zG7b6vq8pVe/3RG1eT43tZ1FbGsLPQar9n0Vj+d1U3/89rrQ1QcfbO+pozFH1vr93lfvEfxyvFRNW6J+FldcjVMamAouUlJRqfzAzmUz6/fffS5338vJSfn5+pf2L70pRWXzx9uLfAlUVR44c0YwZM9S9e/dqF5FU5tXBr8rH1cf62snBSU4n2MGirg0YMKC+p9AgXKxai4qKktls068EwG64LtFQcW2iIbr4D6ZoXHbu3Kng4EvbGNb1t1Ilv5FcZ7kauvpeF/B3Cy7HNYHLcU3gclwTuFxV1gQrJq3QrgW7qjVu5zs7654V91hfZyRmaG67uVXqGzk1Un94my8Vqkx8fLxatWplfc231V7dqrJOM0yG0pWuZinNZDIa7s1kXB24HlFfyvq3HD4jo6Goz2vx+PHjdZoP9lHf9wpwZbDn7x7uH4HP+Q1bfd/XlKr3e6I2r6fG9rOoLQ3h5yDV/s+isfxuqu//HlVdE+Sk5WjP0j069MMhpexIUVZqlkwOJnkEeKjVNa3UY1wPdbq9k0ymyn/Wx2KPaevbW5W0MUnZJ7Pl3txdQf2DFPlwpNoObmvT+xnw1AC92/tdJSxPUNdhXW0aqyZs+lTl7u6uNWvW6IEHHqhynzVr1sjV1bXU+RMnTsjf37/S/p6entbj3NzcCmOL73ZRvF9VPPDAA8rNzdX8+fPl5GTf4ocm5ibyMHuUPGnYNQWqgH9cu8TBwUFms5mfCRoUrks0VFybaGhq8k00pw+c1o4Pdui3739T5vFMFWQXyD3AXd6tvRV8bbDa39he7W9oX27/2lwgXS28vb3VrFmzesvvYPBNfhc1hN/n/N2Cy3FN4HJcE7gc1wSKq61vxnUPcK+VcXGJj49Pva4L0LBUZZ1WpCKZZJLJMLGuQ73jekR9Ke8zMJ+R0VDU17XItd841fe9Alw57PW7h8914HN+w9YQ/r6vznVRm9dTY/tZ1JaG8HOQav9n0Vh+N9X3f4+q5P/x8R+17f+2yZJrkVtzN/UY20O+HX1lGIYS1yZq77K92vP5HrW7vp1GLh2pJs2alDtWzKwYxcyMkdnVrF5Tesk/1F9pCWmKmx+nvUv3KuqJKEW/Fl3j92PJteiOD+7QV1O+UvyieHUb2U3+3f3l4uUik0PZxR85aTk1znc5m/5rRkREaOnSpbrttts0fvz4SuMXLFigpUuXKjq69A9sxYoVatGiRaVjuLi4qEWLFkpJSVFqamqFscXb27ZtW+nYFy1cuFCrV6/W+PHj1bFjR6WlpZWKKSgosB4Xb3dycpK3t3eVcwEAAAB1af0L67X++fVy93dX9z92l28nX1lyLUrekqw9n+9R0oYkxc2P05NpT5bZv7YXSAAAAABqz9SEqZXGLL5lsc4ePavwSeFltl//0vWVfluUq0/pL1kCAAAAAAAAAAD1J35xvCy5FrUZ1Eb3rLxHrt6X/i3/mqnX6MDXB/TpXZ/qyJojWjJ0iSZvmFxmMcMv7/yidTPWyexq1oQ1ExTUN8jaFjY+TB9e96FiZ8fK3d9dUY9H1Wiub7Z907qLRubxTO1fub9G49SUTQUWU6dO1erVqzVp0iQtWrRIo0ePVu/evdWyZUu5uroqNzdXycnJ2r59u5YsWaI1a9bIZDLpkUcesY6RkZGhZ555Rtu3b9e9995bpbyhoaFKSUnRuXPndPbs2XILGopvd9K9e/cqv681a9ZIkhYtWqRFixZVGt+8eXPr8aBBg7Ru3boq5wIAAADqyqqnVin2tViF3hOqO96/Q05uJXdqC5sQpk/+8Em5/etigQQAAACg9vh18auw/VjsMZ09elb+PfwV3D+4zBjPQM9KxwEAAAAAAAAAAA2Pg9lBwxYOK1FccVGn2zspYkqEtv93u47FHtOez/co9J7QEjHZp7K16olVkqS+0/qWeHZIkgJ7BSrq8SjFzIzR2mfXKvSeUHkFedVoroZhVLvPxaIMW9lUYHHnnXfqwQcf1H//+1/99NNP+umnnyqMNwxDf/rTnzR06FBJ0p49e9SrVy9ZLBaZTCbdfvvtVcp7/fXXa/Xq1ZKknTt3atCgQWXGxcXFlehTVU8++aTGjRtXYcxjjz2m+Ph4SdKqVaus5318fKqcBwAAAKgrv33/m2Jfi1Xz7s1118K75OjkWCqmw80d1D66vTKOZJRqq8sFEgAAAAD78uvipzaD2lQat/3d7ZKk3g/0ru0pAQAAAAAAAACAOtYivIW8W5e9sYEkdb27q7b/98K9ggNfHShVYLFl7hblZ+VLkiKmRJQ5RsSUCMXMipEl16LY12N1y5xbajTX3g/2VlC/oMoD/7/jPx9X3Py4ygOrwKYCC0n6z3/+o7Zt22rmzJnKzc0tN87V1VXPPfecnnzySes5Pz8/Pf/885JUrQKLESNG6JlnnpFhGPrpp5/KLbC4WITh5+enwYMHV/EdSd26dVO3bt0qjCleSHHjjTdWeWwAAACgrhmGoe//+r0kacDfBpRZXHHRuO/LLjSuywUSAAAAAPsa8LcBGvC3ARXG5J7N1d6le+Xk5qSw8WF1NDMAAAAAAAAAAFAX7l5yt9x83SqMadqmqfX4bNLZUu17l+29ENe2qZp1aFbmGF5BXvLr4qe0hDQlLEvQzW/cXKOdJdpc10Y9xvSocryD2cFuBRYO9hjkqaee0rFjxzRnzhwNHz5c4eHhCgkJUXh4uIYPH645c+bo2LFjJYorJCkgIEBPPfWUnnrqKT355JNydCz/Qa/iOnbsqJEjR0qSFi1apPz8/FIxhw8f1po1a6zzM5tL1pLs3r1bnTp1UlBQkNavX1+Ttw0AAAA0CkfXH9Xp/adlcjCp09BONRqjOgskSUpYllCjrfoAAAAA1I/4RfEqyClQ9z92L3Nr8LIUWYqUn1363+cBAAAAAAAAAEDD0m5IOwWEBVQYk5txabMFJ3enEm2ZyZk6vf+0pAs7YVQksFfghT7HM5V+ML3ac219bWu5+7tXq0+zkGbqOaFntXOVxeYdLC7y9fXVtGnTNG3aNHsNWaHZs2dr7dq1SkxM1NNPP61//etf1ra8vDw98MADKiwsVO/evfXII4+U6v/iiy/q4MGDkqS//e1vio2NrZN5AwAAAHXtYnGEdxvvEg9KGYah/Kx8OXs4V1gpXt0FUlpCmnWB5NvJ1w7vAAAAAEBtu/itTr0f6F1h3Mk9J/XFmC+UtDFJ534/J6PQkJObk4L6BanHuB7qOb6nHMx2+W4nAAAAAAAAAABQh84cOWM9bjOwTYm2k7tPWo+9gr0qHKd4+8k9J6v9/NDkDZOrFS9JQf2CFNQvqNr9ymK3Aou61rp1a3311VcaNmyYXn/9de3evVt33HGHzp8/rwULFujXX39VeHi4vvzyS7m6lv62raKiIutxVb9Zd/Hixdbj1NTUMs9HR0crIKDi6h4AAACgLp345YQkybu1t4wiQzs+3KEd7+3Q77/8riJLkRzMDgrsHaieE3oq4v4IOTqV3FmuLhdIAAAAAOre8c3HlRqfqoCwgEpvPvz8r5/l28lX1zxyjfy6+qkwr1BH1x9V3Pw4HVlzRHHvxmnU/0bJM9CzjmYPAAAAAAAAAADsYd/yfZIks6tZ4ZPCS7RlJGZYj90DKt5donh78X5VtWvhLrUZ2EZN2zatNPY/Pf4jwzDU+8He6vvnvtXOVZY6L7D4+OOPNWHCBBUWFto8Vt++fRUfH68333xTy5cv15NPPiknJyd16tRJb775ph566CE5OzuX2feZZ55RXFyczp8/r1dffbVK+caPH1/p+bVr11JgAQAAgAYl9dcLxcFGkaFFNy1S4tpE9ZzUU/0f6y9HZ0clbUrS1re26tup3yp+UbxGfzVabn5u1v51uUACAAAAUDFLnkWFeZf+fb0gq8DmMbe/u12SFPFARKWxXe/uquEfD5fZ5dLthW4juil8crgWDF6g45uPa8nQJbp3070lYgAAAAAAAAAAgH1cfq8g/1y+zWNmn8zW/pX7JUn9H+8vz5Ylv0ipeA6za8X//u/UxMmmua2cvFLDFg2rUoGFk5uTfv/ld/3w1x/k6u2qnhN6Vjvf5Rr93Q0/Pz+98MILeuGFF6rVLywsTAcPHqxWn6rudAEAAADUluo+TFWQU6CC7AsxSRuSJEkjPh+h7iO7W2M639FZ3UZ000cDP9Lxzce17J5lGr9qvEwmk6S6XSABAAAAqNjGlzcqZmaM9fVZh7M2jZeXmac9n+2Rk5uTwsaFlRvnFeSlaUemybOVZ6ld7yQpsFegBv5zoFY9vkontp/QL+/8on7T+tk0NwAAAAAAAAAAUFqpewWy7V6BJK16YpUsuRYFRgRq4D8GlmovOH/pGSVH59L3CYor3l6QU/0viqrOM/tTtkzRud/P6bNhn2nrW1sbToFFfn6+PvvsM8XExOj3339Xbm5uubGpqan2SAkAAABclar7MFVeZl6J1x1u7VCiuOKiVpGt1OfhPtr8xmYd+emIDnx1QJ3v6CypbhdIAAAAACo24O8D1P/R/tbXSUlJmtNjTo3Hi18cr4KcAoVPDpert2u5cQ5mh0q/KarX5F5a9cQqyZB2frCTAgsAAAAAAAAAAGrB5fcKkpOTNaebbfcKdi3cJXd/d436YlSZO1QX/9LVwvzCUu3FFW93cnOqINI+PFt6KnxyuH76+092Gc/mAoudO3fqrrvu0rFjx0qcL145cvGbby+eL/4aAAAAQNVV92GqosKiEq+7jexWbmzoPaHa/MZmSRcWThcLLBryAgkAAAC42phdzCVubDh52Pa5e/u72yVJvR/sbdM4ktSkWRP5tPfRmUNnlPprqvKz8uXs4WzzuAAAAAAAAAAA4JLL7xU4Z9b83+KPrj+qr+7/Si5eLhrz7Zhyv2zJ2fNSDkuupcIxi3+Za/F+tSn9UHqlzzVVlU0FFqdPn9att96q1NRUubi4qHPnzvLw8FBsbKzCwsLk4+MjSTp37pz27dunnJwctWjRQp07d7bL5AEAAICrTXUfpnLxdCnxOqBHQLmxAWEBkkmSISVvTbaeb+gLJAAAAAA1c3zLcaXuSlVAzwAF9Q2yy5ju/u46c+iMZEhZqVlq5tHMLuMCAAAAAAAAAAD7St6arCVDl8jR2VHjfhinlr1blhtbvPAiOzW7wnGLt1e2O/a+lfu0f+X+Uue3v7tdh1cfrrCvJBUVFCnjaIaO/3z8wrNPdmBTgcVbb72l1NRUjR8/Xm+//bY8PT2VlpYmf39/vfHGG7r++uutsTk5OZo+fbqWLl2qxYsX2zxxAAAAAJVz9nCWo7OjtULb1ce13Fizi1nOHs7KP5ev7JNlL3TsuUACAAAAUL+su1c8YPvuFRcZRZd2t3ZwdLDbuAAAAAAAAAAAwH5+3/67Ft+8WIZhaPyP4xXUr+IvYvIP9bceZx7LrDA28/ildv/u/hVESik7U7Tzo50ymUwlzidtSFLShqQK+15kGBfuTVzzl2uqFF8Zmwosvv32W3Xv3l0ffvihHBwu3Ci5/M1d5ObmpnfeeUc7d+7Um2++qdmzZ9uSGgAAAEAVmBxM8uvqp9RdqZIuVG1XyLjU76LaWiABAAAAqD95mXna89keObk5KWxcWKXx619YL/8e/upyZ5cK47JSsiRdWFO4+7vbZa4AAAAAAAAAAMB+Tuw4oUXRi1RkKdK4H8ZVWlwhSV6tvOTbyVenD5xWys6UisePO3GhT5CXmnWseKdr16auatqmaYlzGUcz1MS3iZzdnSuelElycnOSbydf9ZzYs9J7GFVlU4HFwYMH9Ze//MVaXFEZk8mku+66S5988gkFFgAAAEAdaXVNK2uBRVZKlvy6+JUZV5BToPzsfEmSZ0tP6/naWiABAAAAqD/xH8erILtA4feGy8XLpdL4tc+uVcjNIRXenDh34pzOHj0rSQqMCJSTm5Pd5gsAAAAAAAAAAGyXGp+qRdGLVJhfqHHfj1NwVHCpmHUz1+nAVwf0wC8PlDjfbWQ3bXhxgzISM3Tm8Bn5tPcp1TczOVNp+9IkSV1HdC1384aL+k3rp37T+pU4N9Nhpm558xb1GNOjum/PLmzanzs7O1utW7cucc7J6cINkzNnzpTZp1mzZkpMTLQlLQAAAIBq6Daim/U4eVtyuXEndpyw7mDRZlCbkmOMvDDGxQVSWaq7QAIAAABQf+Lmx0mS+jzYp8p9jsUeU15mXrntv7zzi/U44oGImk8OAAAAAAAAAADY3cndJ7XwhoWynLdo7Ldj1XpA6zLjMo5k6MT2E6XO9/1LXzl7XNhVIu69uDL77nh/h2RIZlezoh6Lst/k65BNBRZNmzZVSkrJb7D18PCQo6Oj9u/fX2af+Ph4FRQU2JIWAAAAQDW0v7G9AnoGSJJ+XfyrDMMoMy5+Ubz1OPKhyBJtV8sCCQAAALgaJG9LVsqOFAX0DFCra1pVuV/+uXx99cBXKswvLNV26MdD2vTqJklSm4Ft1GtyL7vNFwAAAAAAAAAA2ObU3lNaeMNC5aTlqP/j/WUUGUpcl1jmn6yUrDLHcPd3V/TsaEnS5jmbS33Ra8quFG167cK9giHPD5FXkFeN5jqjaEa97V4hSWZbOnft2lWffPKJnn76aeu30zo4OKhTp07697//ralTp8rb29sav3fvXn344Ydq2bKlbbMGAAAAUGUmB5Nu+/dtWjBkgVLjU7X++fUa9M9BJWIO/XjoQoGEpH7T+ykwIrBE+8UF0jcPfaPNczary7AuahV56UEsey2QAAAAANS+7e9ulyT1frB3lfsE9AxQ6q5U7flsj05sP6Hu93SXT3sfFWQXKHFdohL+lyAZUodbO2j4x8PlYLbp+50AAAAAAAAAAICdWHItWnjDQmWfzJYkrZ+1Xutnra/RWH3+1EdZqVlaP2u9FgxZoIgpEWrevbnS9qUpbn6cCrIL1P/x/op6vPF+OatNBRZDhgzRrFmzdNttt+mll15SeHi4JOm2227Tv/71L3Xv3l2TJk1SUFCQ9u3bp/fff195eXmKjo62x9wBAAAAVFFwVLBGfDZCyycs17oZ65S0IUmd7ugks6tZxzYdU/zieBmFhvpO62utNL/c1bBAAgAAAK50eefytOfTPXJyd1LY2LAq9/vTzj/p+Jbj2rdin45tOqa4d+N0/sx5OTo5yqOFh3qM6aGw8WHqcHOHWpw9AAAAAAAAAACoLkuupdxdKWpi8IzBCokO0ZZ5W7R32V7l/CdHbn5uCrkpRJFTI9VuSDubc2SlZFl31HYPcJfZ5VLZQ/qhdMU8F6OUXSly8XJR6OhQRT4cad0wwlY2FViMGjVKs2bN0vfff68ffvhBR44cUevWrfXoo49q/vz5OnHihF5++WVrvGEYcnd315NPPmnzxAEAAABUT5e7umjq3qnaPHezfvv2N615eo2KCovkGeipnuN7qs/DfUrsSlGWulggAQAAAKg9Lp4u+vu5v9eob1DfIAX1DbLzjAAAAAAAAAAAQG1ybeqqGcYMu44ZHBWs4Khgu4550fn085rbbq61wGLsd2MVclOIJOlUwim93+995WflyzAMSdLxn4/r+M/HNXzxcLvkt6nAolu3boqJiVF+fr4kqUWLFtb//frrr3XPPfcoOTnZGt+qVSstWrRIISEhtqQFAAAAUENeQV66afZNumn2TTUeozYXSAAAAAAAAAAAoHbkpOVoz9I9OvTDIaXsSFFWapZMDiZ5BHio1TWt1GNcD3W6vVOVvvX1WOwxbX17q5I2Jin7ZLbcm7srqH+QIh+OVNvBbWv/zQAAAAC4Yu1dtleWPIvc/NwUcX+E/EP9rW3fT/teeefyJEkte7eUZ0tPHV1/VLuX7FaPMT3U8Q8dbc5vU4GFJF133XVlnr/22mt1+PBhbdy4USkpKQoMDNS1114rJycnW1MCAAAAAAAAAAAAAAAAqKIfH/9R2/5vmyy5Frk1d1OPsT3k29FXhmEocW2i9i7bqz2f71G769tp5NKRatKsSbljxcyKUczMGJldzeo1pZf8Q/2VlpCmuPlx2rt0r6KeiFL0a9F1+O4AAAAAXEkO/XhILl4uejDuQXkFeVnPp/+WrsOrD8tkMilyaqRunXfrhfOH0jU/cr52friz/gss1q9fbz1u0aKFOnXqVKLdyclJQ4YMsSUFAAAAAAAAAAAAAAAAABvEL46XJdeiNoPa6J6V98jV29Xads3Ua3Tg6wP69K5PdWTNES0ZukSTN0yWyaH0Tha/vPOL1s1YJ7OrWRPWTFBQ3yBrW9j4MH143YeKnR0rd393RT0eVSfvDQAAAMCV5UTcCYVPCi9RXCFd2NlCkpzcnHT9C9dbzzcLaaYeY3vowJcH7JLfwZbOgwcP1pAhQzRkyBC98sordpkQAAAAAAAAAAAAAAAAAPtyMDto2MJhJYorLup0eydFTImQJB2LPaY9n+8pFZN9KlurnlglSeo7rW+J4gpJCuwVaC2qWPvsWmUez7T3WwAAAABwFcg6kaXm3ZqXOr9/5X6ZTCZ1uauLXLxcSrQ179pc2Sez7ZLfpgILSXJ1ddXzzz+v6dOn22M+AAAAAAAAAAAAAAAAAOysRXgLebf2Lre9691drccHvir9za9b5m5Rfla+JFmLMS4XMSVCMkmWXItiX4+1ccYAAAAArkYmB5MKCwpLnMtMzlTy1mRJUreR3Ur3cSy9A19NmW3qbDbrL3/5i55++ml7zQcAAAAAAAAAAAAAAACAHd295G65+bpVGNO0TVPr8dmks6Xa9y7beyGubVM169CszDG8grzk18VPaQlpSliWoJvfuFkmk/0edAIAAABw5fMK8tKJ7SdKnNvx/g4ZhiFnd2eF3BxSqs+Zw2fUxLeJXfLbtINFQECAOnbsaJeJAAAAAAAAAAAAAAAAALC/dkPaKSAsoMKY3Ixc67GTu1OJtszkTJ3ef1rShZ0wKhLYK/BCn+OZSj+YXpPpAgAAALiKtRnURrs/3a2E/yWoIKdAv33/m2L/FSuTyaQuw7rI7FJyjwlLrkW/Lv5Vzbs1t0t+m3awGDhwoBISEqrVZ/Xq1XrppZe0Zs0aW1IDAAAAAAAAAAAAAAAAsJMzR85Yj9sMbFOi7eTuk9Zjr2CvCscp3n5yz0n5dvK10wyBK9eSoUtq1K/IVKT0wHQlv5EsB8Om71oGAABoMPpN76ddC3Zp6cil1nOGYcjB7KCoJ6Ks53LScnR8y3Gtn7VeWSlZipwaaZf8Nn2qeuyxx7RgwQIdOnSoyn1SU1MVExNjS1oAAAAAAAAAAAAAAAAAdrRv+T5JktnVrPBJ4SXaMhIzrMfuAe4VjlO8vXg/AAAAAKiK5l2ba/jHw+Xk7iTDMGQYhsyuZv3h7T8ooMelnfk2z92sJUOXKHlbsiSp+6judslv0w4WEREReuedd3TTTTdp2rRpGjlypAIDA+0yMQAAAAAAaltNvxHKXopMRWr1aKt6nQMAAAAAAACAxsWSZ1FhXqH1df65fJvHzD6Zrf0r90uS+j/eX54tPUu0F89hdq34cSOnJk52nRsAAACAq0+3Ed3UPrq9jq4/KqPIUKtrWskzsOQ6pdvd3dSsQzNJkouni/XYVjYVWLRv316SlJ6erunTp2v69Ony9vaWl5eXHBzK3hwjOzvblpQAAAAAAAAAAAAAAADAVWvjyxsVMzPG+vqszto85qonVsmSa1FgRKAG/mNgqfaC8wXWY0dnxwrHKt5ekFNQQSQAAAAAlM/V21Wdh3Yut71FeAu1CG9h97w2FVgkJiaWOpeRkaGMjIwK+5lMJlvSAgAAAAAAAAAAAAAAAFelAX8foP6P9re+Tk5O1pxuc2o8XvzieO1auEvu/u4a9cUomV1KP05UfFeKwvzCUu3FFW93cnOqIBIAAAAA7CP111TtW75Pg/45yOaxbCqwkKTrrrvOupNFVRw+fFgbN260NS0AAAAAAAAAAAAAAABw1TG7mEsUQThnOtd4rKPrj+qr+7+Si5eLxnw7Rk3bNi0zztnzUg5LrqXCMYvvdlG8HwAAAADUltT4VMXMjGkYBRYPPvigxowZU+X4jz/+mAILAAAAAAAAAAAAAAAAoB4lb03WkqFL5OjsqHE/jFPL3i3LjS1eeJGdml3huMXbyyvYAAAAAIDynE06W+0+OWk5dstvc4FFdXl4eKh169Z1nRYAAAAAAAAAAAAAAACApN+3/67FNy+WYRga/+N4BfULqjDeP9Tfepx5LLPC2Mzjl9r9u/tXEAkAAADgahbzfIx+fv1n9ftrPw1+brD1/Jtt35TJZKq3eTnY0rmgoKBau1dI0p133qkjR47YkhYAAAAAAAAAAAAAAABADZzYcUKLohepyFKkcd+Pq7S4QpK8WnnJt5OvJCllZ0rF48eduNAnyEvNOjazfcIAAAAArkixs2OVl5mnn9/4uVSbYRjV/mMvNu1g4ejoaK95AAAAAAAAAAAAAAAAAKhFqfGpWhS9SIX5hRr3/TgFRwWXilk3c50OfHVAD/zyQInz3UZ204YXNygjMUNnDp+RT3ufUn0zkzOVti9NktR1RNd6/dZZAAAAAA1b91HdteODHeo2sluptt4P9q5SMfhFx38+rrj5cXaZl00FFsUVFRUpJiZGW7ZsUUpKih566CF17txZkrR27VoNGjRIDg42bZgBAAAAAAAAAAAAAAAAoAZO7j6phTcslOW8RWO/G6vWA1qXGZdxJEMntp8odb7vX/pqy9wtys/KV9x7cbrhpRtKxex4f4dkSGZXs6Iei7L7ewAAAABw5bjjvTsU/Vq0mjRrUqqtzXVt1GNMjyqP5WB2aFgFFp9//rmeeOIJHT9+3HrujjvusBZY3HTTTQoKCtKrr76qUaNG2SMlYLMlQ5fU9xQkSaO/Gl3fUwAAAAAAAAAAAAAAAFewU3tPaeENC5WTlqOB/xwoo8hQ4rrEMmOzUrLKPO/u767o2dH65qFvtHnOZnUZ1kWtIltZ21N2pWjTa5skSUOeHyKvIC+7vw8AAAAAV5ayiivaDmor9wD3ao3jEeChNgPb2GVONhdYvPHGG3riiSdkGIb13OXb+w0ePFhr1qzR6NGjlZiYqCeffNLWtAAAAAAAAAAAAAAAAAAqYcm1aOENC5V9MluStH7Weq2ftb5GY/X5Ux9lpWZp/az1WjBkgSKmRKh59+ZK25emuPlxKsguUP/H+yvqcXavAAAAAFAzE9dOrHaf9je2V/sb29slv00FFvv27dOTTz4pwzB088036w9/+IM8PT113333lYhbtWqV9u/fr5EjR+qZZ57RTTfdpPDwcFtSAwAAAAAAAAAAAAAAAKiEJddS7q4UNTF4xmCFRIdoy7wt2rtsr3L+kyM3PzeF3BSiyKmRajeknd1yAQAAAEBds6nA4q233pJhGFqyZIn++Mc/SpJOnz5dYjeLizp37qy1a9eqU6dOevvtt/Xee+/ZkhoAAAAAAAAAAAAAAABAJVybumqGMcOuYwZHBSs4KtiuYwIAAACAJFnyLEramKQTcSeUcypHeZl5cvF2kXtzd7Xs01LBUcFydHastfw2FVisW7dOw4cPtxZXVMbX11eTJk3Sl19+aUtaAAAAAAAAAAAAAAAAAAAAAABwhTj3+zmtf3G9dn20S5ZcS7lx5iZm9bq3lwb8fYA8Az3tPg8HWzofP35c119/fbX6dO7cWcnJybakBQAAAAAAAAAAAAAAAAAAAAAAV4D9X+7X213e1vZ3tqvgfIEMwyj3T0FOgbb93za93fltHfj6gN3nYtMOFgUFBXJ2dq5Wn/Pnz8vRsfa25AAAAAAAAAAAAAAAAAAAAAAAAA1f/MfxWjFxhWRIhmHI5GBS827N1SK8hZr4NpGzh7Pyz+UrJy1HKTtSlLY/TUaRofysfH1616catmiYeozuYbf52FRg0bJlS23btk333Xdflft8/fXXCgoKsiUtAAAAAAAAAAAAAAAAAAAAAABoxE7tPaWvH/xaRpGhJj5NFPVElCKmRMjNz63cPlmpWYqbH6ef3/hZuRm5+vqBr9WiZws179bcLnOyqcBiyJAhWrBgge677z5FRkZWGv/2229rzZo1euihh2xJCwAAAAAAAAAAAAAAAAAAAABXpSVDl9T3FAC7WPXEKhXkFCg4KlgjPx8pz5aelfbxCPDQwH8MVM+JPbV05FIlb03WqidWacw3Y+wyJwdbOk+bNk0FBQUaPHiwnnnmGe3Zs0dFRUWSJJPJJEk6efKkVqxYodtvv13Tpk2To6Oj/vKXv9g+cwAAAAAAAAAAAAAAAAAAAAAA0Oic3HNSB787KL8ufhrzzZgqFVcU5x3srbHfjZVvR1/99v1vOrX3lF3mZVOBRWhoqJ5//nmdP39er7zyisLCwhQcHCyTyaS77rpLTZo0UWBgoO6++2599913MgxDr7zyijp16mSXyQMAAAAAAAAAAAAAAAAAAAAAgMblwFcHZDKZdPOcm+Xq7VqjMZr4NNHNc26WYRja/+V+u8zLpgILSfr73/+uOXPmyMnJSYZhKD8/X5KUlZWlvLw8GYYhwzDk5OSkt956S48++qjNkwYAAAAAAAAAAAAAAAAAAAAAAI1T0oYk+XbyVYebO9g0Tsc/dJRvR18dXX/ULvOyucBCkqZNm6ZDhw7pmWee0TXXXCMfHx85OjrKx8dH11xzjZ555hkdOnRIU6dOtUc6AAAAAAAAAAAAAAAAAAAAAADQSJ0+cFrtbmxnl7HaR7fX6QOn7TKW2S6jSGrVqpWef/55Pf/88/YaEgAAAAAAAAAAAAAAAAAAAAAAXGFyTufIp72PXcbyCfHR+fTzdhnLph0sZs2apd27d9tlIgAAAAAAAAAAAAAAAAAAAAAA4MqXdzZPbr5udhnLzddNeZl5dhnLpgKL5557Tr/++qtdJgIAAAAAAAAAAAAAAAAAAAAAAK58hmHIwWxTOYOVydEkGXYZSmZbB5g1a5ZOnjypcePGydfX1x5zAgAAAIAr2lf3fyU/V7/6ngYAAAAAAAAAAAAAAABQf0z1PYHSbC6wyMjI0PTp0/XUU0/pjjvu0H333aebbrpJJlMDfLcAAAAAAAAAAAAAAAAAAAAAAKDe/fDXH7TmmTU2j1OQXWCH2Vxgc4HF66+/rrCwML333nv6+OOP9cUXX6hVq1aaPHmyJk2apHbt2tljngAAAAAAAAAAAAAAAAAAAAAA4AqRk5Yj45Rhl7HstUGETQUWbdq0kYeHh0JDQ/Xmm29q9uzZWrFihd5//329+OKLevHFFzV48GDdd999Gj58uFxcXOwyaQAAAAAAAAAAAAAAAAAAAAAA0Hg18W0iZ3dnm8fJz87X+dPn7TAjGwssjhw5UuK1k5OTRo4cqZEjR+r48eP64IMP9NFHH2ns2LFq2rSpxo4dq3vvvVe9evWyadIAAAAAAAAAAAAAAAAAAAAAAKDxuuXNW9RjTA+bx4lfHK8VE1fYPiFJDnYZpQxBQUH65z//qcOHD2vVqlUKDQ3Vv//9b/Xp00cRERG1lRYAAAAAAAAAAAAAAAAAAAAAAFwtTPYbyqYdLCpTUFCg5cuX6/3331dsbKwkyTAM7dq1qzbTAgAAAAAAAAAAAAAAAAAAAACABurmOTerZZ+WdhmrZZ+WuumNm+wylk0FFrNmzdLw4cMVGhpa4vyvv/6q999/Xx9//LHS09MlXSiskKSoqCjdd999tqQFAAAAAAAAAAAAAAAAAAAAAACNVL9p/ew2ll9nP/l19rPLWDYVWDz33HPq0KGDQkNDlZmZqU8++UQffPCBtm/fLulSUUXz5s01YcIE3XffferSpYvtswYAAABgFz8+8aN+/tfPkqRBMwZp8HODK+1zLPaYtr69VUkbk5R9Mlvuzd0V1D9IkQ9Hqu3gtrU7YQAAAAA18tHgj3Q05milcU7uTno66+kKY1gTAAAAAAAAAACAK5VNBRaStG3bNn3//ff64osvlJubK+lCYYWDg4NuueUW3XfffbrjjjtkNtucCgAAAIAdnYg7oc1zNlerT8ysGMXMjJHZ1axeU3rJP9RfaQlpipsfp71L9yrqiShFvxZdSzMGAAAAUN9YEwAAAAAAAAAAgCuZzVUP8+bNk3Rpt4p27dpp8uTJmjx5slq1amXr8AAAAABqQZGlSF9O+VJGoVHlPr+884vWzVgns6tZE9ZMUFDfIGtb2PgwfXjdh4qdHSt3f3dFPR5VG9MGAAAAYIOWkS01bOGwCmNMDqZy21gTAAAAAAAAAACAK52DrQMYhiFnZ2fdc889WrVqlQ4dOqR//OMf5RZXHDlyRAsXLrQ1LQAAAAAbxL4eq5QdKep8Z+cqxWefytaqJ1ZJkvpO61viQSpJCuwVaH2Aau2za5V5PNO+EwYAAABgMyc3J/l18avwj28n3zL7siYAAAAAAAAAAABXA5sLLB566CH9/vvv+uSTT3TDDTdUGh8bG6vJkyfbmhYAAABADaUfSlfMzBi1jGypa/58TZX6bJm7RflZ+ZKkiCkRZcZETImQTJIl16LY12PtNl8AAAAA9Y81AQAAAAAAAAAAuBrYXGBx7bXXysfHp0qxFotFCQkJtqYEAAAAYIOvH/haRQVFGjp/qBwcq7Yk2LtsrySpadumatahWZkxXkFe8uviJ0lKWJYgwzDsM2EAAAAA9Y41AQAAAAAAAAAAuBrYVGBx5MgR3XXXXZXGbd26VY888ogCAwP18ssv25ISAAAAgA3i3o/TkTVH1P+x/mrRs0WV+mQmZ+r0/tOSpBbhFfcJ7BV4oc/xTKUfTLdtsgAAAABqVd65PBlFlRdBsCYAAAAAAAAAAABXC7Mtndu0aVNu27Fjx7Ro0SItWrRIBw4csJ43DEMmk8mWtAAAAABqICslS6ueWCWfEB8NmjGoyv1O7j5pPfYK9qowtnj7yT0n5dvJt/oTBQAAAFArCnIKFDMrRnuX7dWZQ2dUkFMgk4NJvp191fG2juo/vb88W3qW6seaAAAAAAAAAAAAXC1sKrC4XHZ2tpYtW6YFCxZo/fr11u2/i28D7ufnp9OnT9szLQAAAIAq+PaRb5V7Jlcjl46UUxOnKvfLSMywHrsHuFcYW7y9eD8AAAAA9e/3bb/r5K8nFX5vuAb+Y6Cc3J2Uti9Nce/G6ed//azt/92u4YuHq/MdnUv0Y00AAAAAAAAAAACuFjYXWBiGodWrV2vhwoVasWKFcnJyrOcv8vHx0ZgxY3Tfffdp9+7dmjhxoq1pAQAAAFTDvpX7lPBFgsInhav9De2r1Tf/XL712Oxa8RKieOFG8X4AAAAA7MOSZ1FhXqH1dUFWQZX7uvu7a+LaiWrerbn1XKfbOumaR67RkqFLdHjVYS0duVQT105UcFSwNYY1AQAAAAAAAAAAuFrUuMBiz549WrhwoT7++GOdOHFCUsmiCkkymUx64YUX9Oijj8rFxcXa7/I4AAAAAFVTk4ep8jLz9O3Ub+XW3E03vX5TtXMWnL+Uw9HZscLY4u0FOVV/0AsAAABA1Wx8eaNiZsZYX591OFulfiM+HSFHF0c18WlSqs3sYtZdH92lue3nqjCvUN8+8q0ejHvQ2s6aAAAAAAAAAAAAXC2qVWBx6tQpffLJJ1q4cKF27txpPV+8YKJ79+4aO3asoqOjFRkZqb59+1qLKyRp7NixGjt2rO0zBwAAAK5CNXmYatWTq3Qu+ZyGfzJcTZqVfpiqMsW/gbYwv7CCyJLtTm5OFUQCAAAAqIkBfx+g/o/2t75OSkrSnB5zKu3n0cKjwnbPlp7qcEsH7V+5Xyk7UnRixwkF9gqUxJoAAAAAAAAAAABcPapUYLFs2TItWLBAP/74oywWi6SSRRVBQUEaPXq0xo4dq7CwMEnS6dOna2G6AAAAwNWtug9THd1wVNvf3a4Ot3RQj9E9apTT2dPZemzJtVQYW/ybbYv3AwAAAGAfZhezzC6X/mnfycN+RQwt+7TU/pX7JUnHYo9ZCyxYEwAAAAAAAAAAgKtFlQosRo0aJZPJVKKowsfHRyNGjNCYMWM0aNCgWpsgAAAAgEuq8zBVYX6hvrr/Kzk6O2rI80OUk5ZTKib3bK71uCCnoESMi7eLHJ0c1bRtU+u57NTsCudXvL14PwAAAAANn7u/u/U4KyXLesyaAAAAAABwJVsydEl9TwEAUA383gZQ26pUYCFd2LHCZDLJ19dXc+fO1YgRI+TkxPbeAAAAQEN17vdzOr3/ws5y8yPnVxofOztWsbNjra8nrp2otoPbyj/U33ou81hmhWNkHr/U7t/dv4JIAAAAAA2NUXTpS5YcHB2sx6wJAAAAAAAAAADA1aJKBRZfffWVFi5cqK+++kppaWl68MEH9f3332vs2LG68cYb5eDgUPkgAAAAAOqURwsPjV81vsKYlF0pWvX4KklS2Pgw9ZzQ09oW0DNAkuTVyku+nXx1+sBppexMqXC8E3EnLvQJ8lKzjs1smT4AAAAAO9n/1X6l7krVdc9cJ5PJVG5c8V0rPAI9rMesCQAAAAAAAAAAwNWiSgUWt912m2677TZlZmbq008/1cKFC7Vo0SItXrxYzZs31x//+EeNGTNGffv2re35AgAAAKgis6tZ7W9sX2GMg/lSsbRPe59y47uN7KYNL25QRmKGzhw+I5/2PqViMpMzlbYvTZLUdUTXCh/cAgAAAFB3Er5I0K4FuxQxJUIeLTzKjTu++bj1uPWA1iXaWBMAAAAAAAAAAICrQbW2nvDy8tIDDzygjRs36tChQ3r22Wfl6empt956S1FRUerYsaOee+45HThwoLbmCwAAAKAe9P1LXzl7OEuS4t6LKzNmx/s7JONCYUfUY1F1OT0AAAAAVXDwu4Pltp0+eFqHVx+WJAVHBcu/u3+JdtYEAAAAAAAAAADgalCtAovi2rVrp+eee04HDx7U+vXrdd999+n06dOaNWuWunbtqsGDB8tkMskwjBL9Nm/erHvvvdfmiQMAAACoO+7+7oqeHS1J2jxns5K3JZdoT9mVok2vbZIkDXl+iLyCvOp8jgAAAAAq9tPff9LpA6dLnT+ffl5fjP5CRqEhJzcn3fr2raViWBMAAAAAAAAAAICrgdkegwwYMEADBgzQW2+9pZUrV2rBggVatWqVDMPQ8OHDNXr0aN1///3q3bu3Dh06pAULFuiDDz6wR2oAAAAA1ZQan6rU+FRJ0qmEUyXOxy+OlyS5B7grJDqkRL8+f+qjrNQsrZ+1XguGLFDElAg1795cafvSFDc/TgXZBer/eH9FPc431QIAAAANSfNuzeXg5KDs1Gy9E/6OQu8JVcvIlnJ0dlRaQpp2LdylnFM5cg9w14jPRiiwV2CZ47AmwJVoydAl9T0FAAAAAAAAAEADYpcCi4tcXFw0atQojRo1SqdOndLixYu1aNEivfvuu5o/f7569OihDh062DMlAAAAgGpK+F+CYmbGlDq/b/k+7Vu+T5LUZlCbUgUWkjR4xmCFRIdoy7wt2rtsr3L+kyM3PzeF3BSiyKmRajekXa3PHwAAAED1XPvkteo5oacS/pegw6sO6+j6o9rz2R4VFhSqiU8TBYQFqNPtndTrvl5y8XSpcCzWBAAAAAAAAAAA4Epm1wKL4po3b67p06dr+vTp2rNnjz766CMtWbJE8fHxMplMtZUWAAAAQCUGPzdYg58bXOP+wVHBCo4Ktt+EAAAAANQ6jxYeinw4UpEPR9o8FmsCAAAAAAAAAABwpXKoiyTdu3fX7NmzlZSUpOeee64uUgIAAAAAAAAAAAAAAAAAAAAAAFRZnRRYWJM5OCgkJESGYdRlWgAAAAAAAAAAAAAAAAAAAAAAgArVaYGFJA0bNkxHjhyp67QAAAAAAAAAAAAAAAAAAAAAAADlqvMCCzc3N7Vp06au0wIAAAAAAAAAAAAAAAAAAAAAAJSrzgss7C0tLU3PPvusQkND5eHhoWbNmql///6aN2+e8vPzbRrbMAxt2LBB06ZNU2RkpHx8fOTk5CRfX1/1799fM2bM0O+//26ndwIAAAAAAAAAAAAAAAAAAAAAAOpLoy6w2Lp1q8LCwvTCCy+oZcuWevXVV/X0008rKytL06ZNU79+/WpcABEXF6fw8HANHDhQ8+bNk5+fnx577DG98847mjp1qk6cOKFZs2apc+fO+vjjj+38zgAAAAAAAAAAAAAAAAAAAAAAQF0y1/cEaiopKUm33367Tp06pb/+9a+aM2eOte3Pf/6zbr31Vq1du1Z33HGHNm3aJBcXl2qNv3XrVsXHx8tkMumLL77QsGHDSrT/7W9/0+233661a9dqwoQJatasmW699Va7vDcAAAAAAAAAAAAAAAAAAAAAAFC3Gu0OFk888YROnTql1q1b65VXXinR5uLiovnz58vR0VHbt2/X22+/XeM8U6ZMKVVcIUlubm5asGCBnJycVFRUpOnTp9c4BwAAAAAAAAAAAAAAAAAAAAAAqF+NcgeLgwcPaunSpZKkCRMmlLk7RUhIiIYMGaLVq1fr1Vdf1bRp02Q2V//t3nnnneW2BQcHKzIyUrGxsdq/f78OHjyojh07VjsHrm5Lhi6p1/xFpiK1erRVvc4BAAAAAAAAAAAAAAAAAAAAAOpbo9zBYtmyZTIMQ5J04403lhsXHR0tSTp16pTWrVtXrRy33XabvvvuOw0ZMqTCuDZt2liPk5KSqpUDAAAAAAAAAAAAAAAAAAAAAIC6ZBiGtr69VS95vKSZpplKXJdYrf7HYo/pizFfaE7rOXrB9QXNCZ6jpaOWVnuchqhR7mCxZs0a63F4eHi5cb169SrRp6JijMsFBwcrODi40riMjAzrsbu7e5XHBwAAAAAAAAAAAAAAAAAAACqzZOiS+p4CgCtI+qF0fXnvlzq6/miN+sfMilHMzBiZXc3qNaWX/EP9lZaQprj5cdq7dK+inohS9GvRdp513WmUBRa7d++WJHl6esrb27vcuOIFEnv27KmVuRw5csQ6l4qKPQAAAAAAAAAAAAAAAAAAAAAAqA+GYWjb/23T6r+tloOjg4L6Ben45uPVGuOXd37RuhnrZHY1a8KaCQrqG2RtCxsfpg+v+1Cxs2Pl7u+uqMej7P0W6oRDfU+guvLy8pSSkiJJCggIqDC2eHtiYqLd57J//37t27dPkjR58mS5urraPQcAAAAAAAAAAAAAAAAAAAAAALaImRmj7/78nVoPaK2Hdj+kkJtDqtU/+1S2Vj2xSpLUd1rfEsUVkhTYK9BaVLH22bXKPJ5pn4nXsUZXYHHu3DnrcWUFDU2aNCmzn73897//lSQ1a9ZM//jHP+w+PgAAAAAAAAAAAAAAAAAAAAAAtjIMQ0PfG6px34+Td7B3tftvmbtF+Vn5kqSIKRFlxkRMiZBMkiXXotjXY22ab30x1/cEquv8+fPWY2dn5wpji7fn5OTYdR4JCQn697//LUl655131Lx58yr3PW85ryxLlvW1k4OTnByd7Do/oKoMk6GioiJZLJb6ngpgZbFYuC7RIHFtoiEqKiqq7ymgBlgT4CI+j+NyfN7A5bgmcDmuCVyONUHjdebMGbm5uVlfu7i4yMXFpR5ndHUqMjWe/w8ZJkOGjAvrCDWeeePKxPWI+lLW52A+I6OhqM9rkeu/cTp79qzS09Otr1kT1J/GtC64HJ/LYE9cT7AnrifYS2O5lur7M3lV8w9+brBMJlON8+xdtleS1LRtUzXr0KzMGK8gL/l18VNaQpoSliXo5jdutilnfWh0BRbFd6XIz8+vMLZ4e/GbFLbKycnR6NGjlZeXpyeffFIjR46sVv+n1j1V4vUtEbfoD33+YLf5AdVhyJAl6cIvVgeHRrepDa5QRUVFSkpKksR1iYaFaxMN0enTp+t7CqgB1gS4iM/juByfN3A5rglcjmsCl2NN0HiFhYWVeD1x4kRNmjSpfiZzFUsPTK88qIEwZOi853mlK10mNa4bkrjycD2ivmzcuLHUOT4jo6Goz2ux+EP6aDzCw8NLvGZNUH8a07rgcnwugz1xPcGeuJ5gL43lWiprvVqXqromsKXQITM5U6f3X7gn0SK8RYWxgb0ClZaQpszjmUo/mC7fTr41zlsfGl2Bhaenp/U4Nze3wtjiu10U72cLi8Wi0aNHa9euXRo/frxeeeWVao/x6uBX5ePqY33t5OAkpxN8Wy3qh2Ey1LJ1S0VFRclsbnS/EnCFulhNyXWJhoZrEw3RxZs1aFxYE+AiPo/jcnzewOW4JnA5rglcjjVB4xUfH69WrVpZX/NttfUj+Y3k+p5ClRkmQ+lKV7OUZjIZDfdmMq4OXI+oLwMGDCh1js/IaCjq81o8fvx4neaDfezcuVPBwcHW16wJ6k9jWhdcjs9lsCeuJ9gT1xPspbFcS2WtV+tSXawJTu4+aT32CvaqMLZ4+8k9JymwqG0uLi5q0aKFUlJSlJqaWmFs8fa2bdvanLuoqEiTJk3Sl19+qTFjxujDDz+sUSVPE3MTeZg9Sp40bJ4eUCNFKpKDg4PMZjP/4IgGhesSDRXXJhoavpGtcWJNgIv4PI6ycE3gclwTuBzXBIpjTdB4+fj4qFmzsrdQR91xMBrP/4eKVCSTTDIZpkY1b1yZuB5RX8r7DMxnZDQU9XUtcu03Tt7e3qwJGojG/HmGz2WwJ64n2BPXE+ylsVxL9f2ZvC7yZyRmWI/dA9wrjC3eXrxfY9Fwr7QKhIaGSpLOnTuns2fPlhtXvBqne/fuNuUsKirS5MmT9fHHH+uee+7RwoUL5ejoaNOYAAAAAAAAAAAAAAAAAAAAAAA0ZPnn8q3HZteKCzqcmjiV2a+xaJQFFtdff731eOfOneXGxcXFldmnugzD0P3336+FCxdq5MiRWrx4McUVAAAAAAAAAAAAAAAAAAAAAIA6ZcmzKC8zz/qnLooYCs4XWI8dnSt+jr54e0FOQQWRDVOj3CNwxIgReuaZZ2QYhn766ScNGjSozLjVq1dLkvz8/DR48OAa5TIMQw8++KA++OAD3X333frkk09KFVecOHFCQ4cO1QMPPKAHHnigRnkAAAAAAAAAAAAAAACA2mYYhrb93zat/ttqFWQXaOLaiWo7uG2V+x+LPaatb29V0sYkZZ/MlntzdwX1D1Lkw5HVGgcAAABAzWx8eaNiZsZYX5/V2VrPWXxXisL8wgpji7c7uTlVENkwNcodLDp27KiRI0dKkhYtWqT8/NJVN4cPH9aaNWskSU899ZTM5pK1JLt371anTp0UFBSk9evXl5tr6tSpmj9/vu666y4tWbKk1DiSlJeXp+3bt+v333+35W0BAAAAAAAAAAAAAAAAtSb9ULoWDF6g7/78nQqyq/9NsjGzYvThdR9q/8r96jKsi25961Z1G9lNv333mxYMWaBVT66qhVkDAAAAKG7A3wfob2f/Zv3zyN5Haj2ns6ez9diSa6kwtvhuF8X7NRaNcgcLSZo9e7bWrl2rxMREPf300/rXv/5lbcvLy9MDDzygwsJC9e7dW488UvqiefHFF3Xw4EFJ0t/+9jfFxsaWivnzn/+s//znP+rQoYMefvhhbdq0qcy5pKSk2OldAQAAAAAAAAAAAAAAAPZVfNcKB0cHBfUL0vHNx6s1xi/v/KJ1M9bJ7GrWhDUTFNQ3yNoWNj5MH173oWJnx8rd311Rj0fZ+y0AAAAA+P/MLmaZXS6VAThn1n4RQ9O2Ta3H2anZFcYWby/er7FotAUWrVu31ldffaVhw4bp9ddf1+7du3XHHXfo/PnzWrBggX799VeFh4fryy+/lKura6n+RUVF1mPDMEq1v/nmm3r77bclSb/99ptuuumm2nszAAAAAAAAAAAAAACgQkuGLil1rshUpPTAdCW/kSwHw6FO5jH6q9F1kgewp5iZMYqZGaOQm0M0dP5Q7Xh/R7UKLLJPZWvVExd2p+g7rW+J4gpJCuwVqKjHoxQzM0Zrn12r0HtC5RXkZdf3AAAAAKD++If6W48zj2VWGJt5/FK7f3f/CiIbprr514Va0rdvX8XHx+uZZ57RsWPH9OSTT+qFF15QkyZN9Oabb2rLli1q2bJlmX2feeYZdejQQa1atdKrr75aqj0xMbGWZw8AAAAAAAAAAAAAAADUPsMwNPS9oRr3/Th5B3tXu/+WuVuUn5UvSYqYElFmTMSUCMkkWXItin091qb5AgAAAGhYvFp5ybeTryQpZWdKhbEn4k5c6BPkpWYdm9X63Oyt0e5gcZGfn59eeOEFvfDCC9XqFxYWpoMHD5bb/uabb+rNN9+0cXYAAAAAAAAAAAAAAABA/Rr83GCZTKYa99+7bK8kqWnbpmrWoewHpLyCvOTXxU9pCWlKWJagm9+42aacAAAAABqWbiO7acOLG5SRmKEzh8/Ip71PqZjM5Eyl7UuTJHUd0bVRrgka9Q4WAAAAAAAAAAAAAAAAACpmy0NNmcmZOr3/tCSpRXiLCmMDewVe6HM8U+kH02ucEwAAAEDD0/cvfeXs4SxJinsvrsyYHe/vkAzJ7GpW1GNRdTk9u6HAAgAAAAAAAAAAAAAAAECZTu4+aT32CvaqMLZ4+8k9JyuIBAAAANDYuPu7K3p2tCRp85zNSt6WXKI9ZVeKNr22SZI05Pkh8gqqeP3QUJnrewIAAAAAAAAAAAAAAAAAGqaMxAzrsXuAe4WxxduL9wMAAADQMMQvjrcep8anWo8PrTqkzOOZki58rg+JDimzf58/9VFWapbWz1qvBUMWKGJKhJp3b660fWmKmx+nguwC9X+8v6Ieb5y7V0gUWAAAAAAAAAAAAAAAAAAoR/65fOux2bXiR42cmjiV2Q8AAABAw7B8/PIyz298aaP1uM2gNuUWWEjS4BmDFRIdoi3ztmjvsr3K+U+O3PzcFHJTiCKnRqrdkHZ2n3ddosACAAAAAAAAAAAAAAAAaCQseRYV5hVaX9d2IUPB+QLrsaOzY4WxxdsLcgoqiAQAAABQH2YYM+wyTnBUsIKjgu0yVkNDgQUAAAAAAAAAAAAAAADQSGx8eaNiZsZYX5/V2VrNV3xXisL8wgoiS7Y7uTlVEAkAAAAADRMFFgAAAAAAAAAAAAAAAEAjMeDvA9T/0f7W18nJyZrTbU6t5XP2dLYeW3ItFcYW3+2ieD8AAAAAaCwosAAAAAAAAAAAAAAAAAAaCbOLWWaXS4/8OGfWbiFD07ZNrcfZqdkVxhZvL94PAAAAABoLh/qeAAAAAAAAAAAAAAAAAICGyT/U33qceSyzwtjM45fa/bv7VxAJAAAAAA0TBRYAAAAAAAAAAAAAAAAAyuTVyku+nXwlSSk7UyqMPRF34kKfIC8169is1ucGAAAAAPZGgQUAAAAAAAAAAAAAAACAcnUb2U2SlJGYoTOHz5QZk5mcqbR9aZKkriO6ymQy1dn8AAAAAMBeKLAAAAAAAAAAAAAAAAAAUK6+f+krZw9nSVLce3Flxux4f4dkSGZXs6Iei6rL6QEAAACA3VBgAQAAAAAAAAAAAAAAAKBc7v7uip4dLUnaPGezkrcll2hP2ZWiTa9tkiQNeX6IvIK86nyOAAAAAGAP5vqeAAAAAAAAAAAAAAAAAIDaFb843nqcGp9qPT606pAyj2dKktwD3BUSHVJm/z5/6qOs1Cytn7VeC4YsUMSUCDXv3lxp+9IUNz9OBdkF6v94f0U9zu4VAAAAABovCiwAAAAAAAAAAAAAAACAK9zy8cvLPL/xpY3W4zaD2pRbYCFJg2cMVkh0iLbM26K9y/Yq5z85cvNzU8hNIYqcGql2Q9rZfd4AAAAAUJcosAAAAAAAAAAA4AqXk5ajPUv36NAPh5SyI0VZqVkyOZjkEeChVte0Uo9xPdTp9k4ymUxl9s9IzNDcdnOrlCtyaqT+HtkURQAAWBFJREFU8PYf7Dl9AAAAAHYww5hhl3GCo4IVHBVsl7EAAAAAoKGhwAIAAAC4Ctj6MFVxx2KPaevbW5W0MUnZJ7Pl3txdQf2DFPlwpNoOblv7bwYAAABAtfz4+I/a9n/bZMm1yK25m3qM7SHfjr4yDEOJaxO1d9le7fl8j9pd304jl45Uk2ZN6nvKAAAAAAAAAAAA9YICCwAAAOAKZ8+HqWJmxShmZozMrmb1mtJL/qH+SktIU9z8OO1duldRT0Qp+rXoOnx3AAAAACoTvzhellyL2gxqo3tW3iNXb1dr2zVTr9GBrw/o07s+1ZE1R7Rk6BJN3jBZJoeyi6+vf+l6dR3WtcJ8rj6uFbYDAAAAAAAAAAA0VBRYAAAAAFc4ez1M9cs7v2jdjHUyu5o1Yc0EBfUNsraFjQ/Th9d9qNjZsXL3d1fU41F18t4AAAAAVI2D2UHDFg4rsR64qNPtnRQxJULb/7tdx2KPac/nexR6T2iZ43gGesqvi19tTxcAAAAAAAAAAKBeONT3BAAAAADUvqo8TCXJ+jDV5bJPZWvVE6skSX2n9S1RXCFJgb0CrUUVa59dq8zjmfZ+CwAAAABs0CK8hbxbe5fb3vXuS7tSHPjqQF1MCQAAAAAAAAAAoMGhwAIAAAC4Ctj6MNWWuVuUn5UvSdZijMtFTImQTJIl16LY12P/X3v3HR9Ftf9//L2ppNJBelekhKZSRFAJFxQpiiCIIHrF7kUEVBAFFAuC7VqQoojojVjhiwqKiI2iUqRJEQFBejQQEkg/vz/4ZUzItpBNtr2ej8c+mOw5c+az2Q+Tc2bmzJQwYgAAAACe0j+pv/q80cdpnQr1KljLJ/adKOWIAAAAAAAAAAAAfBMTLAAAAIAA54mLqX798Ncz9epXUKXGley2EV87XlWaVpEkbftwm4wx5xgxAAAAAE9qcEUDVU+o7rROxvEMazk8JtytdvNy8pSVnlWi2AAAAAAAAAAAAHxJmLcDAAAAAFC6GlzRwGUdZxdTpR5I1V87/pJ05kkYztRoU0PJ25KV+meq/v7tb1U+v/I5RAwAAACgrKXsSbGW63Wp57De0a1H9dGNH2nfD/t08uBJmVyj8Ohw1e5QWy1vaqlWQ1spJIx7O/mDpN5J3g5BgxcP9nYIAAAAAAAAAAAUwgQLAAAAAE4vpjq65ai1HF8n3mk7BcuPbj3KBAvADZuTNuvA8wcUYrx3ISIXtgEAgO2fbJckhZULU+vhrR3WWz19tSqfX1mX3HuJqlxYRbmZufrjuz+0fvZ67fl6j9bPWq+BHw9UXI24MoocAAAAAODPfGHyNwAAAFAQEywAAAAAOL2Y6vje49ZyTPUYp+0ULC+4HgAAAADflX40XTsW7ZAkdRzTUXE1HU+OuLD/hbru3esUFvnP6YVm1zdT61taa97l8/Tnmj+V1DtJt668tVAdAAAAAAAAAAAAf8BzugEAAAA/kpOZo8zUTOuVnZZd4jZdXUyVdTLLWg4r5/wCqfCocLvrAQAAAPCM0hgTLBu7TDkZOarRtoa6TOhit0587XiN3DNS/ZP62504UaNNDXV57My6h9Yd0trX15Y4LgAAAAAAAAAAgLLG7aMAAAAAP/LD0z/o28nfWj+fCDlR4jZdXUyVffqfC7ZCI0KdtlWwPPtUyS/0AgAAAFCYp8cEm97ZpI1vb1RMtRgN/Gigw6dOhISFqEL9Ck7banNLGy0bu0wy0i9v/qIOIzuUKDYAAAAAAAAAAICyxgQLAAAAwI90HtdZHR/oaP28b98+vdDyhXNuz52LqQo+lSI3K9dpewXLw6PDndQEAAAAcC48OSb447s/tHjEYkXGR+rGz290OYHClahKUarYsKJSfk/Rkc1HlJWWpYjYiBK1CQAAAAAAAAAAUJaYYAEAAAD4kbDIsEKTIMJjz30Sg7sXU0XE/XNBVE5GjtM2Cz7touB6AAAAADzDU2OCAz8dUFLvJIVGhOqmL25SzXY1PRJfTLUYpfyeIhkp7UiaKsVW8ki7AAAAAAAAAAAAZSHE2wEAAAAAKHvFuZiq4MSL9CPpTtstWF7Su98CAAAAKB0H1x3UOz3ekTFGN31xk2p3qO2xtk2esZZDQjkFAQAAAAAAAAAA/AtnNwAAAIAgU9yLqaq1qGYtp+5PdVo39c9/yqs1r+akJgAAAABvOLThkOZ3n6+8nDzdtNT9yRXfTflO2xdtd1kv7XCaJMkWYlNMtZgSxQoAAAAAAAAAAFDWwlxXAQAAABAoCl1M5eadauNrxavy+ZX1186/dPiXw87bX3/ozDq141WpSSWPxAyg9CX1TvJ2CJKkwYsHezsEAAAC2pFNRzS/+3zlZuXqpqU3qU6nOkXqfDP5G+1cvFO3r7290PsrHl2hRj0aqWnfpg7bP3nopE78cUKSVKNtDYVHh3v2AwAAAAAAAAAAAJQyJlgA0OakzTrw/AGFGO891IYLqQAAKH0luZiq2YBm+v7J73V873Gl7E5RxYYVi6ybeiBVyduTJUkXXn+hbDZb6XwQAAAAAMV2dMtRvd3tbeWcztGQJUNUt3Ndu/WO7zmuQ+sO2S3bv2q/MlMzFRkfabd87etrreW2t7ctedAAAAAAAAAAAABlzHtXUwMAAAAoM4Uupvq8+BdTtf9Pe0XERkiS1s9Zb3fdDW9skIwUVi5MnUZ38lzwAAAAAErk2K/H9Ha3t3Uq+ZQ6jukok2e095u9dl9ph9MctpN1MkuLb1+s3KzcImW/f/m7Vk5dKUmq16We2tzSptQ+DwAAAAAAAAAAQGnhCRYAAABAgCt4MVWXx7pYF1PZ4+hiqphqMeo+rbs+u+szrXlhjZpe21S1Lq5llR/eeFgrnz1zMdUVT1yh+NrxHv8cAAAAAIovJyNHb3d7W+lH0yVJ3z3+nb57/Ltit1O9VXUd2XhEWxds1aF1h9R8UHNVbFhR2enZ2vvNXm37eJtkpMZXNdZ1716nkDDu7wQAAAAAAAAAAPwPEywAAACAAOapi6kk6aI7L1LakTR99/h3mnfFPLW9ra2qNq+q5O3JWj97vbLTs9VxTEd1GsPTKwAAAABfkZOR4/SpFO6685c79eePf2r7wu3av3K/1s9ar9MppxUaHqrY82LV8saWShiaoMY9GnsgagAAAAAAAAAAAO9gggUAAAAQwDx1MVW+yyderkbdG+nH//6oXz/8VadmnFJ0lWg1+lcjXXzPxWpwRQOPbQsAAABAyZWrUE4TzUSPtFW7fW3Vbl/bI20BAAAAAAAAAAD4IiZYAAAAAAHMkxdT5avTqY7qdKrj0TYBAAAAAAAAAAAAAAAAwNtCvB0AAAAAAAAAAAAAAAAAAAAAAACAt/EECwA+Ial3krdD0ODFg70dAgAAAAAAAAAAAAAAAAAAAAAv4QkWAAAAAAAAAAAAAAAAAAAAAAAg6DHBAgAAAAAAAAAAAAAAAAAAAAAABD0mWAAAAAAAAAAAAAAAAAAAAAAAgKDHBAsAAAAAAAAAAAAAAAAAAAAAABD0mGABAAAAAAAAAAAAAAAAAAAAAACCHhMsAAAAAAAAAAAAAAAAAAAAAABA0GOCBQAAAAAAAAAAAAAAAAAAAAAACHph3g4AAAAAAAAAAAAg2CwcvlCVoyp7OwwAAHAOknoneTsEnzB48WBvhwAAAAAAgMfxBAsAAAAAAAAAAAAAAAAAAAAAABD0mGABAAAAAAAAAAAAAAAAAAAAAACCHhMsAAAAAAAAAAAAAAAAAAAAAABA0GOCBQAAAAAAAAAAAAAAAAAAAAAACHph3g4AAHxFUu8kb4cgSRq8eLC3QwAAAAAAAAAAAAAAAAAAAACCDk+wAAAAAAAAAAAAAAAAAAAAAAAAQY8JFgAAAAAAAAAAAAAAAAAAAAAAIOgxwQIAAAAAAAAAAAAAAAAAAAAAAAS9MG8HAAAAAAAAAAAAgOCT1DvJ2yEAAAAAAAAAAFAIT7AAAAAAAAAAAAAAAAAAAAAAAABBjwkWAAAAAAAAAAAAAAAAAAAAAAAg6DHBAgAAAAAAAAAAAAAAAAAAAAAABD0mWAAAAAAAAAAAAAAAAAAAAAAAgKDHBAsAAAAAAAAAAAAAAAAAAAAAABD0mGABAAAAAAAAAAAAAAAAAAAAAACCHhMsAAAAAAAAAAAAAAAAAAAAAABA0AvzdgAAAAAAAACSlNQ7ydshaPDiwd4OAQAAAAAAAAAAAAAAeAlPsAAAAAAAAAAAAAAAAAAAAAAAAEGPCRYAAAAAAAAAAAAAAAAAAAAAACDohXk7AABAYUm9k7wdggYvHuztEAAAAICgtTlpsw48f0AhhvtiMDYBAAAAAAAAAAAAAJQlztQDAAAAAAAAAAAAAAAAAAAAAICgxwQLAAAAAAAAAAAAAAAAAAAAAAAQ9JhgAQAAAAAAAAAAAAAAAAAAAAAAgh4TLAAAAAAAAAAAAAAAAAAAAAAAQNBjggUAAAAAAAAAAAAAAAAAAAAAAAh6Yd4OAAAAAAAAAAAAAAAAAPBXSb2TlGfL0981/taB5w8oxJTt/U7/Ov1XmW4PAAAAAAIZEywAAEUk9U7y6vbzbHmq9UAtr8YAAAAAwPu8PTaRpMGLB3s7BAAAAAAAAAAAAABAGSnbKfMAAAAAAAAAAAAAAAAAAAAAAAA+iAkWAAAAAAAAAAAAAAAAAAAAAAAg6IV5OwAAAAAAAABfkdQ7yavbz7PlSTW8GgIAAAAAAAAAAAAAAEGLJ1gAAAAAAAAAAAAAAAAAAAAAAICg5/dPsEhOTtZLL72kTz75RHv37lVERIQuuOACDR48WHfeeaciIiI8sp3PP/9cr7/+utatW6e//vpLNWrU0OWXX6777rtPbdu29cg2AAAAgNJ2KvmU1ry0Rts/2a7je48rNCJUVS6oohaDW+iiOy9SaESot0MEAMCn+MJTTWo9UMurMQAILIwJAAAAADAuAAAAAIIbYwLn/PoJFj/99JMSEhI0ZcoU1axZU1OnTtX48eOVlpamkSNHqkOHDjp48GCJtpGXl6fbb79dvXr10sqVKzVs2DD997//Vffu3fW///1P7du313//+18PfSIAAACg9Bz46YBmJMzQ91O+V1zNOCVOTdRl4y9TVlqWlo5cqjkd5ujkwZPeDhMAAABAKWFMAAAAAIBxAQAAABDcGBO45rdPsNi3b5+uueYaHTt2TPfff79eeOEFq+y+++7TVVddpRUrVqhPnz5auXKlIiMjz2k748eP1+zZs1WlShWtXr1ajRs3liTdfvvtuu6669SrVy/df//9qlGjhgYMGOCRzwYAAAB42ol9J/S/a/6nU8dOqf397dXzhZ5W2SX3XaJ3r3pXe1fsVVKfJN268laFRfrtUAEAAACAHYwJAAAAADAuAAAAAIIbYwL3+O2nHjt2rI4dO6a6devqmWeeKVQWGRmp2bNn64ILLtC6dev0yiuvaPTo0cXextatWzVt2jRJ0hNPPGFNrsjXs2dPDR06VPPmzdN9992nq6++WjExMef+oQAAAIBSsmzsMp06dkrl65ZX4jOJhcrCIsPUe3ZvvXLBKzq07pB+euUndRrdyUuRAgAAX5TUO8nbIUiSBi8e7O0QUIAv5AU54T7GBAAAAAAYFwAAAADBjTGBe/xygsVvv/2mDz74QJI0bNgwu0+naNSoka644gp99dVXmjp1qkaOHKmwsOJ93Kefflp5eXmKiorSkCFD7NYZMWKE5s2bpyNHjmjOnDkaOXJk8T8QAMAn+cKFIpJvXCziC78LX/g9AP7qr9/+0tYPtkqSEoYl2J1dXqlRJTW4ooF2f7VbK6euVIeRHRQSFlLWoQIAAAAoBYwJAAAAADAuAAAAAIIbYwL3+eUn/vDDD2WMkSQlJiY6rNe9e3dJ0rFjx/TNN98UaxuZmZlavHixJKl9+/aKi4uzW69jx46KjY2VJGvSBwAAAOBLfv3wV+lM91kNExs6rNew+5myU8dOae83e8sgMgAAAABlgTEBAAAAAMYFAAAAQHBjTOA+v5xg8fXXX1vLrVu3dlivTZs2dtdxx9q1a5WamupyGyEhIUpISJAkrV69WqdPn3ZYNysrS5KUnZddrFiA0pSdm63P136u7FzyEr4jOzdbb731ljIzM70dClBIZmYmuQmfk9/HzP/Xnr1f77WWz2t9nsN657X5p2zP13tKHhyKYEyAs9Efx9nICZyN8RHOxrgEZ2NMAAQP+orwJeQjfAn5CF/h67nIuMB3uDOOA9zl6/se+BfyCZ5EPsFTyCXPYUzgvqLP9vADW7ZskSTFxcWpfPnyDuvVqVPHWt66des5bePsdpxtJy8vT9u3by80saOg/JOeOXk5xYoFKE3Zedlaun6prut5nSJDIr0dDiDpTF7OmzdPlx65VLFhsd4Ox+uSeid5OwSf4Au/h7ScNM1b6v3cHLx4sNe2nc8Xvg9f+D34gvw+prML7I5uOSpJioiLULny5RzWK1/nn771sa3HPBQhCmJMgLPRH8fZyAmcLX989PzzzysmJsbb4cAHZGZmkhMohDEBEDzoK8KXkI/wJeQjfIWv5yLjAt/hzjgOcJev73vgX8gneBL5BE8hlzyHMYH7/G6CRWZmpg4fPixJql69utO6Bcv37t1brO0UrF/c7TiaYAEAAACUtZzMHKUdTpMkxVZ3PjEopvo/F+gd33u8NMMCAAA4J74w0dfb0nLSvB2CT/GFnPD1yd+MCQAAAAAwLgAAAACCG2OC4gnxdgDFdfLkSWu5XDnHs2ckKSoqyu56vrQdAAAAoDRlnfzn8dJh5ZzPrw6PCreWM09y1yQAAAAgEDAmAAAAAMC4AAAAAAhujAmKx++eYHH69GlrOSIiwmndguWnTp3y+nby8vIkSYfTDxd6PywkTOEh4fZWAUrd6dzTCgkJUUpmijJyMrwdDiCJvITv8pXcLO6TuUpDckayt0Pwid+DN+Rl5yk3M9f6ed/v+868///7mmfLPp1tLYdGhDptu2B59qlsJzVxrhgT4Gy+8rcFvoOcwNnyc2Lfvn1KTU31Why+0P/DGb6SExJ5ka+sxyaMCfxf/nd1MP2gTuX+c06BcQFcoa8IX0I+wpeQj94TrMfp7UnOSC7TXMzLzZPMPz8fzzh+5n3GBX4h/3vatWtXofcjIyNdXqMUiDi+UDL8HYQnkU/wJPIJnuIvueTtcwWHj5y5DoUxgWf43QSLgk+LyMrKclKzcHl0dLTXt5OSkiJJeuHnF4oVC1AWHlrxkLdDAIogL+GrvJ2b/2nwH69u31fweygsv695toKzynOzcu3WsVceHs1FPaWBMQEc8fbfFvgecgJna9OmjbdDgI8hJ3yHr4xNGBP4jyNHjkiSnl7ztJcjgb+irwhfQj7Cl5CPZc9X+sK+xpu5eOTIEdWtW7fI+4wLfEv++O26667zciQIJPwdhCeRT/Ak8gme4uu55CvjI8YEnuF3Eyzi4uKs5YwM5zORCj6FouB63tpOhw4d9P3336tixYoKCQmx3g/WGegAAAAovpysHOVl/jPbPC8vT8eOH9PF7S+2Wz8i7p9+Zk5GjtO2C85Wj4yLLGGksIcxAQAAAEqKMYH/a9OmDeMCAAAAlIijcYGjyfiMC3wL5woAAABQUowJSpffTbCIjIzUeeedp8OHD1t3eXKkYHn9+vWLtZ2C9T21nbCwMHXu3LlYcQAAAACuNFZjh2VhkWGKPS9WaYfTlHYkzWk76UfSreUK9St4KjwUwJgAAAAApYExgX9hXAAAAIDSwLjAfzAmAAAAQGlgTOA5Ia6r+J4WLVpIkk6ePKkTJ044rPfnn39ay82bNz+nbUjS/v37ndbN305ISIiaNm1arO0AAAAApa1ai2qSpKyTWco44fjpbKl/plrLVZtXLfW4AAAAAJQNxgQAAAAAGBcAAAAAwY0xgfv8coLFlVdeaS3/8ssvDuutX7/e7jruuOiiixQXF+dyG3l5edq4caMkqWPHjoqKiipSJzk5WY8++qhatGih2NhYVapUSR07dtR///tfZWVlFSsuBK/LL79cNpvN5Ss2NtZlW6tWrdKNN96ounXrqly5cqpTp44GDhyob775xu14cnJyNGPGDF166aWqXLmyYmNj1axZM40bN06HDx8uwSeFLzLG6JVXXlFsbKxsNluxckXyrZz7448/NGrUKF1wwQWKjo5WtWrVdMUVV+itt95SXl6e6wbgU84lN/fu3evW/tRms+nee+912R65iXzJycmaMWOG+vXrp3r16qlcuXKKjo5WgwYNdMMNN2jx4sUyxrjVlqf3m/euvFdP6km9olf0wN0POMzNQ+sPWcsNrmwgidz0FMYEvoE+TVGff/65+vTpo1q1aqlcuXJq0KCBbrnllkLj6UDky/ts8qLsHT9+XO+++65uvfVWtWnTRhUqVFBYWJgqVKigiy++WOPGjdO+ffvcaot8CHxjx461xguTJk1yax3yIjD4+7G5+lfWt5YP//JP+dk50a5fO72lt7RBG1Tv8npuxxOMOQGUNk/2UYDSdC79I6AkPNkvAzxp586devjhh9W6dWtVqVJFUVFRql+/vrp06aJx48Zp+fLl3g7R4bjgbPbOFcC1jIwMffTRRxo2bJguvPBCxcXFKTIyUjVq1FCPHj30+uuv69SpU263xxgernDuKbgF6nkO+BZ/Px4O7ytpH5l88jzGBMVg/NDOnTuNzWYzksyjjz7qsF737t2NJFOlShWTnZ1d7O0MGTLESDJRUVHm5MmTduusXLnSSDKSzIsvvlik/McffzQ1atQwkkz37t3NK6+8YqZNm2ZatGhhJJk2bdqYAwcOFDs2BJ+uXbtauebsFRMT47SdyZMnm5CQEBMdHW3+85//mFmzZplRo0aZ2NhYI8mMHTvWZSzHjh0z7du3N5JM06ZNzdSpU82rr75qrr76aiPJVK1a1Xz77bee+ujwsl27dpkuXboUyrMVK1a4vb4v5dynn35q4uPjjc1mMwMGDDAzZswwU6ZMMfXq1TOSTLdu3Uxqaqrbnw3eda65uWfPHrf2p5LMPffc47QtchP5Ro8ebcqVK2d97/fff7959dVXzSuvvGL69+9vQkJCjCRz5ZVXmr/++stpW6Wx33xs7GPmal1tmqiJ09x8u/vbZpImmWerPGtys3PJTQ9hTOAb6NMUlpuba0aMGGEkmUqVKpmHH37YzJw504wYMcJERESYsLAw89JLL7n9+/Envr7PJi/K1sqVK01kZKSRZGw2m7nuuuvM1KlTzYwZM8zo0aNN1apVjSQTHR1tFixY4LQt8iHwrVu3zoSGhlp/RyZOnOhyHfIicPj7sbnknclmkm2SmaRJ5utHvzbG2M+J6xtdb8qr/JmcuJKcALzFk30UoDSdS/8IKClP9csAT3riiSdMRESEqV27thk9erSZOXOmeemll8yNN95owsLCjCRTuXJlb4dpd1xgz9nnCuDaO++8Y6pXr24kmYiICDN8+HAzffp0M3v2bHPPPfdYY76GDRua9evXu2yPMTxc4dxTcAvU8xzwLf5+PBzeV9I+MvlUOhgTuM8vJ1gYY8zAgQONJFO/fn2TmZlZpPz333+3dvDTpk0rUr5582bTpEkTU6tWLYf/QTZv3mx1OGbOnGm3zi233GIkmerVq5u0tLRCZX/88Yd1kPv+++8vVJaRkWGuuOIKI8m0a9fOZGRkuPvREaS6du1qLr74YrNt2zanrx07djhsY8aMGUaSKVeunFmzZk2hsvXr15uYmBiH/2fyZWdnm86dOxtJplOnTubUqVOFyseNG2ckmQoVKpidO3eW7EPDq/Ly8szLL79sYmJiTHx8vOnQoUOxL0b0pZxbt26diYqKMlLRCXF///23ad68uZFkrrnmGrc+G7ynpLmZP8HiqaeecrlPPXz4sMN2yE0UlH/QvGvXrub48eNFyhcvXmz1TTt16mRyc+0PPkpzv/nBwA/MJE0yieUT7ebm37//bSaHTjaTNMmsnLaS3PQQxgTeR5/GvoceeshIZ25I8NtvvxUqW7JkiQkJCTE2m828//77TtvxR/6wz85HXpS+JUuWGEkmNDTUfPnll0XKU1JSTMuWLa2T47/++qvddsiHwJednW3atGlT6IItVyeUyIvAEgjH5vLHBC/Wf9H8tOanIjmRPyZ4SA+ZBtUbkBOAF3mqjwKUpnPpHwGe4Il+GeBJDz74oJFkBg0aZNLT04uUL1261ISEhPjEBAtjCo8LcjJzipSffa4A7rnhhhusi/Tsjc937dplatasaV1I+OeffzpsizE8XOHcEwLxPAd8i78fD4f3lbSPTD6VLsYE7vHbCRYFO4ujR48uVJaRkWG6detmdRZPnz5dZP1BgwZZO/+OHTs63E7+gKNq1arm999/L1T2xRdfWBMw7A048ieB1K1b126HddeuXVZnZvr06e5+dASprl27mq5du57z+kePHrVm7z300EN260ycONH6w7R//367dV577TUjnblr1tatW4uUZ2VlmcaNG3PBZQDIz4cePXqYffv2WT+7ezGir+Vc/mzU9u3b2y1fsWKF9fk+/PBDl58P3lPS3MyfYDF37twSxUFuoqDq1aubsLAw88cffzisc8cdd1jfZVJSUpHy0t5vHv/juHm26rPmUT1qalaoWSg3szOyzbxu88wkTTIz28002aezyU0PYUzgffRpitqyZYs1lp0xY4bdOjfffLOR7N9MwN/5wz47H3lR+vIvXvz3v//tsM7SpUut398DDzxQpJx8CJx8cOaZZ54xkkzfvn3dOqFEXgReXgTCsbn8McEkTTJNazQtlBNnjwm++uIrcgLwIk/0UYDSVtz+EeApJe2XAZ6U/ze7efPmJisry2G9Hj16mPPPP78MI3Os4Ljgi9FfFCqzd64A7smfYPHuu+86rJOUlGT9zbzjjjsc1mMMD1c494RAPM8B3+Lvx8PhXSXtI5NPpY8xgXv8doKFMcasWbPGetxZjx49zKuvvmqmT59u3bWndevWDh93lt/ZlGQ6dOjgcBu5ubnmtttuM9KZWeTjx483s2bNMnfccYf1yLyzZ4wbY8zOnTuNzWYzksyECRMctp+YeOYOwlWrVjXZ2cGbiHCtpAcLH3nkESvnz747Qb79+/dbeXv2LHdjztz9t06dOkaS6dy5s8NtTZkyxdrWL7/8cs4xw7see+wxM2fOHOvn4l6M6Es5t2zZMqu84Gc6W5MmTay/H/BdJc1NT0ywIDdxturVq5uLLrrIaZ0vv/zS+r5vvPHGIuVlsd/cv2a/mV5jurlSV1rbeuuBt8xrLV8zkzTJvN76dZN6IJXc9BDGBL6BPk1RQ4YMMZJMVFSUw8fI//DDD9a27I15/Zm/7LPzkRela/Xq1aZ9+/ZmyZIlDuscO3bM+txXXXVVkXLyIXDywZFdu3aZqKgoc/HFF5uvvvrnonNnJ5TIi8DLi0A5Nrd/zX5ze6XbrfJHhjxiVk5fWWRMYAw5AXiTJ/ooQGk6l/4R4ClMsICvyMvLMxdccIGRZObPn+/tcIol/1zBJE0y83vMNz+9+pPDcQHcc8MNN5iQkBBz4sQJh3VOnTplwsLCjCRTs2ZNu3UYw8MVzj3BmMA7zwHf4u/Hw+Fdnugjk09lgzGBayHyY+3bt9emTZv0yCOPaP/+/XrwwQc1ZcoURUVF6cUXX9SPP/6omjVr2l33kUceUePGjVWrVi1NnTrV4TZCQkI0e/ZsffbZZ+rYsaPefPNN3XfffVq6dKkGDRqkH3/8USNHjiyy3ocffihjjCQpMTHRYfvdu3eXJB07dkzffPNNMT49UDwffvihJKl+/fpq3Lix3Tq1a9dW06ZNrfr5OZxvzZo12r9/vyT38lqSPvjggxLFDe+ZNGmS/v3vf5/z+r6UcwXfc9ZOftkvv/yiXbt2OawH7yppbnoCuYmzJSUl6Y033nBap169etbyvn37ipSXxX6zdvvaumvTXeo/vL/13rxX5yk8Klw9Xuyh2368TXE148hND2FM4Bvo0xT+v5mZmanFixdLOjOmjouLs9tGx44dFRsb6zAWf+Yv++x85EXp6tChg9asWaOePXs6rBMdHW0tR0ZGFiknHwInHxy5/fbblZ2drdmzZys0NNStdciLwM+L4vKVnKjdvrZyrsmxfs78OFPfT/m+yJig4DbICaDseaKPApSmc+kfAUCg+e6777Rjxw6FhISod+/e3g6nWPLPFVz2yGVK3Z+qZQ8uczgugHvGjRun5cuXKz4+3mGdqKgoVa1aVZJ06NAh5eTkFKnDGB6ucO4JUuCd54Bv8ffj4fAuT/SRyaeywZjANb+eYCFJVapU0ZQpU7R161alpaUpJSXFmvQQERHhcL2EhAT99ttv+vPPP9WlSxeX27n66qu1ePFiHTp0SBkZGdq7d6/mzZuntm3b2q3/9ddfW8utW7d22G6bNm3srgO44+TJk8rLy3NZ78CBA9qxY4ck5/ko/ZOTf/75p3777bdCZe7mdatWrRQSElJkHfgXm812zuv6Ws7lv1ehQoVCg0hHsThqB76hJLnpSE5OjtLT092uT27ibFdccYUSEhKc1jl+/Li1HBMTU6isLPeb0VWi9e/X/23lZkbbDN32423qMLKDQiNCC7VDbpYMYwLfQJ+mcDtr165Vamqqy1hCQkKs/drq1at1+vRph3X9jT/tsyXywhf8/PPP1vKVV15ZqIx8CPx8eOONN/T1119r9OjRatWqlVvrkBeBnxf5/PXY3HervpN0JiemnZqmh1IeKjImKBiLvXbICcD7nPVRgNJ0Lv0joLS52y8DPCn/wq969eqpfPny1vvGGJ08ebLIRV6+JrpKtK6ccqXu3nq3xqeNdzgugHtatWqlyy+/3GW9EydOSDozQdbeRauM4eEK554gBd55DviOQDgeDu8qaR+ZfCpbjAmc8/sJFr5qy5YtkqS4uLhCO4qz1alTx1reunVrqccF/3bq1Ck9/vjjSkhIUExMjOLj4xUeHq5mzZpp7NixOnjwoN318vNRKpxz9jjLSXfbiYyMtO68QF4HJ1/KudOnT2v37t0ljgWBZ+vWrbrxxhtVt25dlStXTrGxsYqJiVG3bt00d+5cu3eNyUdu4lzs2bPHWj57gi/7zcDEmMD/BeL/zXP5THl5edq+fbvTuoEm2PbZ5IVjGRkZGj9+vCSpZcuWuu222wqVkw+BnQ+HDx/W2LFj1ahRI02cONHt9ciLwM2LQDg2R04AgcFVHwUoLefaPwI87Vz7ZYAnrV27VpJUt25d5eXl6Y033lDHjh0VERGh+Ph4RUREqEOHDnrttdeUnZ3t5WjhC44cOaJTp05Jki677LIiNwdivAZ3cO4J7vKX8xzwHYFwPBzeV9I+MvkEX8IEi1KQmZmpw4cPS5KqV6/utG7B8r1795ZmWAgAP//8s55++mlddtllmjt3rj799FM9++yzys3N1fTp09W0aVP93//9X5H1CuZWSXLyXNpJTU1VSkqK07oIPL6Uc/v27bPuWsQ+GQVNnz5d69at07333qtPPvlEH3zwgf79739r1apVuvXWW3XZZZfp0KFDdtclN3EuPvnkE0lSuXLlNHz48EJl7DcDD2OCwBCI/zc99ZkCXbDts8mLf2RmZurIkSP69ddfNWfOHLVr106rVq3SwIED9f333ysqKqpQffIhsPPh3nvvVUpKimbOnFnku3eGvAjcvAiEY3PkBOCfittHAUrLufaPAE87134Z4EmbN2+WdObC9H/961+6/fbb1axZMyUlJWnRokV64IEHtGnTJt1zzz3q0qWLkpOTvRwxvC3/mKMk3XXXXUXKGa/BFc49oTj85TwHfEcgHA+H95W0j0w+wZeEeTuAQHTy5ElruVy5ck7rFvxjVHA9wJ5q1appxYoVatasmfVer169dO+996p3795atmyZBgwYoBUrVqhTp05WHU/lZEnaqVixotP6CCy+lHPsk+FI//799e677yoyMtJ67/rrr9ctt9yiyy+/XGvWrFHv3r21cuXKQnUkchPFd/ToUS1atEiSNGbMGNWsWbNQOfvNwMPvMTAE4v9NctO1YNxnkxf/SEpK0i233GL9XLduXb377rsaPHhwkbsKSr7xHZAPpWPRokX66KOPNHz4cHXr1q1Y6/rCd0FelI5AODbnC7EAKL7i9lGA0lCS/hHgaefaLwM85dSpU0pPT5ckff/995Kk999/XwMGDLDq9OnTR9dff726dOmiNWvWaNCgQVq2bBl/u4OUMUZz5syRdObpFf369StSh/EaXOG7hbv86TwHfEOgHA+Hd3mij0w+wZfwBItScPr0aWs5IiLCad2C5fmPAgTsee+997R9+/ZCBwrzRUZG6q233lJkZKSysrJ07733Fir3VE6S23CXL+UceYuz1a5dW3v27FFSUlKRiROS1KZNGz322GOSpHXr1un1118vUofcRHGNHTtWGRkZatu2rSZMmFCknP1m4OH3GBgC8f8muelaMO6zyYt/9OjRQ8uWLdPChQs1bdo0Va5cWUOGDNH555+vzz//vEh9X/oOfCkWf5eamqp77rlHVatW1XPPPVfs9X3pu/ClWPxdoByb86VYALivuH0UwNNK2j8CPKkk/TLAU1JTUwv9fNVVVxW6cCzfxRdfrLvvvluStHz5ci1evLhM4oPveeutt7Ru3TrFx8dr7ty5difaMF6DK3y3cJc/neeA9wXS8XB4lyf6yOQTfAkTLEpBwRlNWVlZTusWLI+Oji61mOD/zjvvPKez42rWrKmePXtKkjZs2KANGzZYZZ7KSXIb7vKlnCNvcbawsDDVr19f4eHhDuvccsst1oHNN998s0g5uYnieOedd/T222+rWrVq+uijj+xO7GG/GXj4PQaGQPy/SW46F6z7bPLiHzVq1FBiYqL69u2rMWPGaN26dRo7dqx27dqla665RvPmzStU35e+A1+Kxd89+OCDOnDggF566SVVqlSp2Ov70nfhS7H4u0A5NudLsQBwX3H7KICnlbR/BHhSSfplgKfk5uYW+tnehWP5Bg0aZC2/8847pRYT3JOTkyObzVbi11tvveX2Nrdt26aRI0cqJCRE7777rho1amS3HuM1uMJ3C3f423kOeF8gHQ+Hd3mij0w+wZcwwaIUxMXFWcsZGRlO6xacKVVwPeBcXHTRRdbyqlWrrGVP5SS5DXf5Us6RtzgXlSpVUsOGDSVJmzdvVlpaWqFychPu+u677zRixAjFx8fr888/V/369e3WY78ZePg9BoZA/L9JbjoWzPts8sIxm82mqVOnqm3btjLG6K677tLhw4etcl/6DnwpFn/2/fffa9asWerZs6cGDx58Tm340nfhS7EEA384NudLsQA4d676KIAneaJ/BJQ1R/0ywFPO7te2bNnSYd2EhATrpl4//fRTqcYF33P48GH17t1bJ0+e1MyZM3XNNdc4rMt4Da7w3cIVfzzPAe8KtOPh8C5P9JHJJ/gSJliUgsjISJ133nmSpCNHjjitW7DcUacGcFe1atWs5YInUwrmVkly8lzaiY+Pd3oXGQQmX8q5unXrKiQkpMSxIPjk71ONMUVyh9yEO3766Sf17t1bERER+uKLL9SuXTuHddlvBh7GBIEhEP9veuozBZpg32eTF87ZbDYNGTJE0pmDrElJSVYZ+RBY+ZCVlaURI0YoIiJCTzzxhJKTk4u8Tpw4YdU/depUobLs7GxJ5EWg5UVx+MOxOXICCBzO+iiAp3iqfwSUNUf9MsBTYmNjFRERYf3s7Hx4ZGSkYmNjJUlHjx4t9djgXFhYmLZt21bi17XXXutyW8nJyerevbt+//13vfrqq7rtttuc1me8Blc49wRn/PU8B7wnEI+Hw7s80Ucmn+BLmGBRSlq0aCFJOnnyZKE/NGf7888/reXmzZuXelwIbHl5edZyaGiotZyfj5K0f/9+p204y0l328nMzNSxY8fstoHg4Es5FxUVZT2JoCSxIPg42qdK5CZcW7dunXr06CFjjL744gt16NDBaX32m4GJMYH/C8T/m+fymUJCQtS0aVOndf0Z+2zywh0XXHCBtbx582ZrmXwIrHw4ePCgduzYoczMTF188cWqWrVqkVe/fv2s+tOmTStUtnLlSknkRaDlRXH4w7E5cgIILI76KICneKp/BJQ1Z8f3AU8ICQnRhRdeaP3sakKZMcZaD97XtGnTEr/Kly/vdBt///23EhMTtWXLFr3yyiu6++67XcbFeA3u4NwT7PHn8xzwnkA8Hg7v8kQfmXyCL2H0VkquvPJKa/mXX35xWG/9+vV21wEKWrx4saZMmWL9UXGk4B1YatSoYS3XqlVL559/viTn+Sj9k5O1a9dWkyZNCpW5m9cbN260DlyS18HJ13Iu/73jx4/rjz/+cBmLo3YQGKZMmaJFixa5rJe/Tw0JCSl0tyuJ3IRzGzZsUPfu3ZWTk6OlS5e6PIAlsd8MVIwJ/F8g/t+86KKLrEebOoslLy9PGzdulCR17NhRUVFRDuv6M/bZZwRzXixZskTffvuty3oFL8jJycmxlsmHwMqH8847T8uWLXP6mj59ulV/6NChhcpatWolibwItLyQAu/YHDkB+L6S9lEAT/FU/wjwlJL2ywBPuuSSS6xlZ09KOXXqlNLT0yVJNWvWLPW44H0pKSlKTEzUxo0b9dJLL+mee+5xe13Ga3CFc084WyCc54B3BOrxcHhXSfvI5BN8CRMsSsn1118vm80mSVq+fLnDel999ZUkqUqVKrr88svLIjT4oY8++kiPPvqoy8cVrVmzxlru3LlzobIBAwZIkvbu3avdu3fbXf/AgQPavn27pMI5nK9Dhw6qXbu2JPfyuuB2EXx8KecKvuesnfyy1q1bq3Hjxg7rwb89+uijmjFjhtM6hw4dsg5atm3bVtHR0YXKyU04smnTJnXv3l1ZWVlasmSJOnXqVKTO5MmTddFFFxV5n/1m4GFMEBgC7f9mZGSk+vTpI0n68ccflZaWZreNNWvWWGWB2qdnn/2PYM6Lu+66y62T3Lt27bKW69atW6iMfAicfChXrpwSExOdvtq1a2fVb9iwYaGygo+OJi8CJy+kwDs2R04Avs8TfRTAEzzZPwI8wRP9MsBTrr/+emv5559/dlhvw4YN1qSgrl27lnpc8K4TJ07oX//6lzZs2KDnn39e//nPf4rU+fTTT3XRRRdp3bp1RcoYr8EVzj2hoEA5zwHvCNTj4fAuT/SRySf4DINSM3DgQCPJ1K9f32RmZhYp//33301oaKiRZKZNm+aFCOEvbr75ZiPJvPnmmw7r7Ny508qnTp06FSk/cuSIiY2NNZLMuHHj7LYxefJkI8mUK1fO7N+/326d1157zUgyNpvNbNu2rUh5dna2adKkiZFkevXq5eYnhD+YOHGikWQkmRUrVris72s51759eyPJdOzY0W75t99+a32+Dz74wOXng+8obm5KMnFxcebEiRMO6zz22GNWm7NmzbJbh9zE2TZv3myqVKlioqOjzbfffuuwXv7f9bOx3wxMjAl8D32aM/urkJAQI8nMnDnTbp1bbrnFSDLVq1c3aWlpDuPxV+yziwrWvKhXr54JCQkxe/bscVgnLy/PXHzxxdbvcM2aNYXKyYfAyQd3rFixwvr9TZw40WE98iKw8iIQj82RE4Bv80QfBSgr7vaPAE/wRL8M8JTc3FzTqlUrI8kkJCSYvLw8u/XuuOMOaz+5bt26Mo4SZenEiRPmkksucXm8f+7cuU6PTzNegyuce4IxgXeeA77JX4+Hw3s80Ucmn+ArmGBRiv744w9TtWpVI8mMHj26UFlGRobp1q2bkWTatWtnTp8+7aUo4Q/yO7vVq1c3O3bsKFL+119/mXbt2hlJJjo62qxfv95uOzNmzLD+sPz000+Fyn755RcTExPjcoCVnZ1tOnfubCSZzp07m1OnThUqf+SRR4wkU6FCBbNz585z+LTwVcW9GNEY38q5devWmaioKCPJvPzyy4XKUlJSTIsWLYwkc80117j12eA7zmWChSRzww032D3g9MUXX5jIyEgjyXTp0sVkZ2fbbYfcREFbt2411apVM5LMY489ZlasWOHw1aNHD7sHsYxhvxmIGBP4Hvo0Zzz00ENGkqlatar5/fffC5V98cUX1sm3999/32k7/oh9tmPBmBf16tWzfv+HDh0qUp6bm2tGjhxp7TcGDx5stx3yIXgU5wJC8iJwBOKxOXIC8G2e6qMAZYEJFihLnuqXAZ6ycuVKExERYSSZyZMnFyn/4osvTFhYmJFkRo0a5YUIUVZSU1NNx44djSTTt29fp8cc88dRjo5PM16DK5x7QiCe54Bv8tfj4fAuT/SRySf4AiZYlLI1a9aYGjVqGEmmR48e5tVXXzXTp083LVu2NJJM69atzYEDB7wdJnzc1KlTTXh4uJFkoqKizC233GJee+01M2fOHDN69Ghr4FS9enXzzTffOG1r0qRJJiQkxMTExJiRI0eaWbNmmQceeMDExcUZSWbMmDEu4zl27Jh114QLL7zQPPvss+bVV181vXr1MpJMlSpVXMYB/zB//nzrde2111qd5vHjx1vvf/nll07b8KWcW7x4sYmPjzc2m80MHDjQvP766+bJJ5809evXN5LMlVdeaVJTU93+/cB7SpKb+TOlJZnGjRubCRMmmDfffNO8/PLLpn///sZmsxlJ5qqrrjJ///230zjITRhjzOnTp815551n5ZW7L0fYbwYexgTeR5+mqNzcXHPbbbcZSaZy5cpm/PjxZtasWeaOO+4wERERJiwszLz44osuY/E37LPJi7P16dPH+p6jo6PNrbfeap599lnzxhtvmIkTJ5oLL7zQKh82bJjJyMhw2Bb5ELg2btxo/b0YP368lRPXXnuty78j5EVgCNRjc+QE4Ls82UcBSkNJ+kdASXiyXwZ4yieffGL15xMTE81///tfM2vWLHPzzTdbd5AfOXKkycnJ8XaoKEV9+/Yt9jFHZzcAYrwGVzj3FLwC+TwHfEOgHA+Hd3mij0w+wduYYFEGjh07Zh555BHTrFkzExMTYypUqGAuueQS8+KLL9q9czZgz6FDh8yrr75q+vXrZxo1amSio6NNeHi4qVatmunWrZt54YUX3L7AceXKleaGG24wtWrVMhEREaZmzZqmf//+5uuvv3Y7nuzsbPPaa6+Zjh07mooVK5ro6GjTtGlT8+CDD5qDBw+e68eEj3FnENa1a1eX7fhSzu3Zs8eMHDnSNG7c2JQrV85UrlzZdO3a1bz55psmNzfX7XbgXSXNzTVr1piHH37YXHbZZaZatWomPDzcREdHm4YNG5ohQ4aYpUuXuh0LuYmUlJRiH8BydhDLGPabgYgxgXfRp3Hss88+M9dcc40577zzTGRkpKlXr54ZNmxYkUexBgr22e4JtrzYvHmzefzxx0337t1NnTp1TFRUlAkLCzMVK1Y0bdu2Nffee2+Ru+M4Qj4EpoJPPzqXvyPkRWAI1GNz5ATguzzZRwE8raT9I6AkPNkvAzxl//79ZsyYMaZZs2YmNjbWREVFmYYNG5rhw4fz9zpIFLzBmycmWBjDeA2uce4pOAX6eQ54XyAdD4d3eaKPTD7Bm2zGGCMAAAAAAAAAAAAAAAAAAAAAAIAgFuLtAAAAAAAAAAAAAAAAAAAAAAAAALyNCRYAAAAAAAAAAAAAAAAAAAAAACDoMcECAAAAAAAAAAAAAAAAAAAAAAAEPSZYAAAAAAAAAAAAAAAAAAAAAACAoMcECwAAAAAAAAAAAAAAAAAAAAAAEPSYYAEAAAAAAAAAAAAAAAAAAAAAAIIeEywAAAAAAAAAAAAAAAAAAAAAAEDQY4IFAAAAAAAAAAAAAAAAAAAAAAAIekywAAAAAAAAAAAAAAAAAAAAAAAAQY8JFgAAAAAAAAAAAAAAAAAAAAAAIOgxwQIAAAAAAAAAAAAAAAAAAAAAAAQ9JlgAAAAAAAAAAAAAAAAAAAAAAICgxwQLAAAAAAAAAAAAAAAAAAAAAAAQ9JhgAQAoYvjw4bLZbEVePXv2dKvehAkTzmm7ffv2tdteSX3zzTd2281/7d271+G6kyZNsrvOpEmT7NbPyspS+fLlZbPZtG7duhLHLklNmzYtVgwAAACAuwKt7y/R/wcAAAAAAAAAIJi4e64jEHFOAQBKR5i3AwAA+Lb58+dbyzVr1ixUdscddygxMVGSNGrUKCUnJ0uSXn31VT344IOKj493eztbtmzR4sWLrZ9vv/12XXbZZSUJ3XLhhRdq/vz5+uuvv3T//fdLksLDwzVr1iyFhYWpatWqDte97rrr1LhxY61du1YvvfSSbr31Vl1xxRVKSEiwW3/58uVKTU1VnTp11K5dO4/EP23aNJ04cUKSlJycrFGjRnmkXQAAAKCgQOj7S/T/AQAAAH92//3366WXXlJMTIxOnjyp9PR0zZgxQ++//75+++03ZWdnq2nTphoxYoTuuOMOj03UBgAAAIJVRkaG4uPjlZ2draeffloPP/ywt0MqEWfnOgIR5xQAoHQwwQIA4NRNN93ksKxjx47q2LGjJGnChAnWRVbHjx/XjBkz9NBDD7m9naefflrGmEJtO9t2cVSvXt1q680339SmTZuUnZ2tqlWrqlevXk7XTUhIUEJCgr766iuFhIToiSeecDoAW7hwoaQzd+T1lN69e1vLe/fuZTAEAACAUhEIfX+J/j8AAADgzzZu3ChJatasmX766ScNGjSoyFPo1q9fr7vuuksHDhzQE0884YUoAQAAgMCxfv16ZWdnS5IuvvhiL0dTcp483+APOKcAAKUjxNsBAAACR+PGjRUeHi5JeuGFF5SRkeHWert379aCBQvUvHnz0gxPkjR06FBrueCsdWdOnTqljz76SImJiU4vrjLGWHfi7devX4niBAAAAHyZP/T9Jfr/AAAAgL/ZtGmTJCkzM1Pdu3dXdHS0Xn31Va1evVpr1qzRI488opCQM6e4n3vuOZ08edKb4QIAAAB+76effpIk2Ww2jz2pGQAAf8cECwCAx9SqVUtDhgyRJB05ckRvvvmmW+tNnTpVsbGxuv3220szPEnSkCFDFBoaKklatGiR9Zg8Zz7++GOlpaXp5ptvdlpvzZo1OnTokCpWrKiuXbt6JF4AAADAF/lD31+i/w8AAAD4k3379unvv/+WdGaiRZ8+ffTLL7/o7rvvVocOHdS+fXtNmTJFd955pyTp9OnT1oQMAAAAAOfm559/lnTmxkoVKlTwbjAAAPgIJlgAgBcdOXJENptNNptNM2fOVGpqqp588kldeumlqlq1qiIiIlS3bl3dddddOnz4sLfDdctDDz1k3T1q2rRpysnJcVr/0KFDmjdvnu655x7Fx8eXenw1atRQYmKiJCkjI0MffPCBy3XefvttxcXFubwr7cKFCyVJvXr1UlhYWElDBQAAQJDz9fGCr/f9Jfr/AAAAgD/ZuHGjtdyyZUvNmTPHenJeQfl9fEk8wQIAAAABYdWqVRoxYoSaNWumuLg4xcXFqV27dnrmmWeUnp5epH61atVks9nUs2dPl23/9ttvCg8Pl81m02OPPWa9X7VqVdlsNv3vf/+z6uWfk8h/DRo0SJKUnp6u6tWry2azqWHDhsrOzra7rYyMDHXu3Fk2m02RkZH65ptvrLLGjRsXad/Rq1y5ci7POQAAUJqYYAEAXvTLL79YyzabTU2aNNGECRO0atUqJScnKzs7W/v379frr7+u9u3b6+DBg94L1k1NmzZV3759JUl79+61BmKOTJ8+XTabTSNHjizWdtLS0vTMM8+offv2qlixoiIjI1WrVi317dtXCxYsUF5ensN1hw4dai2//fbbTrdz8OBBLV++XAMGDFB0dLTTuosWLZIkpxdinTp1Ss8995w6d+6sypUrKzw8XJUrV1anTp00ZswY/fDDD063AQAAgODh6+MFf+j7S97r/9P3BwAAAIqn4ASLZ555RuXKlbNbr+AEZ+6wCwAAAH+WmpqqYcOG6dJLL9WcOXO0bds2paWlKS0tTevXr9e4ceN0ySWX6MCBA4XWa9GihSTp119/dbmNRx55RDk5OapatarGjh0r6cyx8OTkZJfrJiQkSJJiYmI0fvx4SdKePXv01ltvFalrjNHQoUO1cuVK2Ww2zZs3T5dffrmkMxOjd+/e7XJ7+Zo3b+7xGxvl5OQUmchRv359SdLq1at1zTXXqEqVKqpQoYI6duyo9957r9D6S5YsUdeuXVW+fHnFx8erW7du+vbbb722HQBA6WKCBQB4UcELpsaMGaOjR49qwIABWrRokdatW6cFCxZYg5V9+/Zp1KhRXoq0eMaNG2ctT506VcYYu/X+/vtvzZo1S7feequqVavmdvvr16/XBRdcoHHjxik8PFyPPfaYXnvtNQ0ZMkQrV67UoEGDlJiYqJSUFLvrX3vttYqLi5Mk/fDDD9qzZ4/Dbb3zzjvKy8vTsGHDnMa0fft27dixQ+XKlXN4h4ANGzboggsu0JgxY3TixAmNHTtWM2bM0N13361jx47pueee02WXXaZrrrnGzd8EAAAAApk/jBd8ve8veaf/T98fAAAAKL78CRYVKlQo9JSKs/3xxx/WcqNGjUo9LgAAAKA0pKWlqVu3bpo/f74kqW/fvnr//ff1888/a9myZbrlllsknZlEcf311xc6/t6yZUtJ0v79+50+1W3t2rX68MMPJUkTJkywjpVXrFhRmzdvtsok6aWXXtLmzZsLve6++26r/M4771TdunUlSU8++aSysrIKbWv06NFWe9OmTbOefiFJkZGR2rRpU5H2C76uvfZaq/7AgQPd/TW6LTQ0VPPnz9f8+fN12WWXWe8vWLBAQ4cOVceOHfXEE0+oT58+WrNmjQYPHqzJkydLkl5++WVNmTJF/fv318SJE9WqVSt9/fXXSkxM1FdffeWV7QAASpkBAHjN4MGDjSQjyYSFhZn333+/SJ3U1FRTvXp1q05KSkqpx3XzzTdbcbmrXr16pmvXrtbPV155pdXGxx9/bHediRMnmrCwMLN7925jjDFz58611pk7d67ddfbs2WMqVqxoJJn777+/SPnBgwdN/fr1jSTTs2dPk5eXZ7ed4cOHW9uaPHmyw8/VvHlzU79+fYft5HvqqaeMJHPNNde4jPv666832dnZhcqzsrJMnz59jCTTqlUrh9vZs2ePFffEiROdxgQAAAD/VhbjhWDo+xtTtv1/T/X989ui/w8AAIBg0bhxYyPJXHvttU7r3XbbbUaSOe+888ooMgAAAMDzrr76aiPJhIaGmnfffddunTvvvNM6RvzZZ59Z78+aNct6/8cff3S4jW7duhlJpmHDhiYzM7NI+fz58612fvvtN5cxz5kzx6o/Y8YM6/0XX3zRet/e8XxXHn74YWv9hx9+uNjrF/dcR379+Ph406pVK/PXX38VKp8yZYr13Xz22WdmwIABJjc31yrPzs62zo20aNHC69vJxzkFAPAcnmABAF5U8I60zz77rAYMGFCkTlxcnO69915JZx4jt2HDhrIKr0Qefvhha/npp58uUp6WlqaXX35ZN9xwgxo0aOB2u/fcc49SUlJUu3ZtPfvss0XKa9SoYW1v6dKl+vLLL+22M3ToUGs5/24AZ1u3bp22bt2qoUOHymazOY1r4cKFkqR+/frZLb/rrruUkpKiuLg4zZw5s8ijDMPDwzVnzhyPP+IQAAAA/stfxgu+3veXyrb/T98fAAAAKL709HT9/vvvkqTWrVs7rZs/VnJVDwAAAPBV//vf//T5559Lkp555hndeOONdutNmDDBWl66dKm1nP8EC0natm2b3XWXLVum5cuXS5KmTJmiiIiIInXy+9ZxcXFuPR1u+PDhOv/88yVJTz31lLKysvTxxx/rgQcekCQNGDBAzz33nMt2Cho3bpyeeeYZSWfON9g7z1BaUlNTNWrUKFWqVKnQ+yNGjJAk5ebmqn///nr22WcVEvLPpbZhYWG67bbbJElbtmyxxjLe3g4AwHOYYAEAXpKRkaGdO3dKkpo1a6b//Oc/Duu2aNHCWk5OTi712Dyhe/fuateunSTp559/LvKoutdff10pKSl66KGH3G7zt99+swaYAwYMUHh4uN16V111lbX8zjvv2K1zxRVXWI8u3LVrl1atWlWkzttvvy1JGjZsmNO4Dh06pJ9//lkhISHq3bt3kfKdO3daA91evXoVGTDlq1q1qq688krrkYwAAAAIXv40XvD1vr9Udv1/+v4AAADAudm0aZOMMZKkNm3aOKyXm5urLVu2uKwHAAAA+LL8mwo1b97cmpxgT61atRQfHy9J2rdvn/V+ixYtrBsF/frrr0XWM8Zo3LhxkqS2bdtq0KBBdtvPn2CRkJDg8sZDkhQaGqrHH39ckrR//37dfffdGjJkiPLy8tSlSxfNnz+/0AQBV7w5uSJfr169irxXrVo1VahQQZLUqFEj1a9fv0idCy+80Fp2NMnFG9sBAHgGEywAwEs2b96s3NxcSdKdd96p0NBQh3UrVqxoLUdHR8sYo/Lly8tms7n1Cg0NVVpaWql/prMVvJPtU089ZS1nZmbq+eefV69evQrNqnel4IVaTZo0UXJyst1Xdna2YmJiJEk//vij3bZsNpuGDBli/Xz2XWxzcnKUlJSkTp06qXHjxk7jWrhwoYwx6tSpk6pVq+Y07osvvthpW1988YW+//57p3UAAAAQ+EoyXvAGX+77S2XX/6fvDwAAAJybjRs3WsvOnkyxfft2ZWRkuKwHAAAA+KrNmzdb/d977rnH5YSE8uXLS1KhGxHFxsaqXr16kuxPsHj//fe1bt06SWeekOFo8kR+HMXpWw8cONCq/8YbbygjI0PNmzfXokWLFBkZ6XY7vjC5okKFCqpSpYrdsvwbJDVp0sRuef7EF0k6ceKET2wHAOA5Yd4OAACCVcGTBX369HFa9/Dhw9Zy9erVlZaWplGjRhWqc/DgQc2ePVsNGzbU0KFDC5XFx8crNjbWA1EXz3XXXafzzz9fO3fu1IoVK/Tjjz+qffv2mjt3rg4dOlToIix37Nq1y1q+++67dffdd7tcp+Dv7mxDhw61BmgLFizQiy++aA32lixZomPHjmnKlCkut7Fw4UJJUr9+/VzGXbt2bZftAQAAACUZL3iDr/f9pbLp/9P3BwAAAM5N/p1zK1WqpDp16risJzHBAgAAAP5pxYoV1vLVV1/tsv7ff/8t6cyTkQtq0aKF9u7dW2SCRU5OjiZMmCDpzBOou3fvbrfdAwcOWE/FLk7f2mazacSIEbrnnnsknXkKw5IlS6wnMbjDFyZXSHL6lOn8iS+O6hScGJOdne0T2wEAeA4TLADAS/JPAlSpUsWaVe7ImjVrJEmRkZG68MILFRMTo0mTJhWq87///U+zZ89Wjx49ipR5S0hIiMaOHasRI0ZIOnMn248//ljTpk1T586ddemllxarvdTUVGt58uTJ6tSpk8t1nD3C8MILL9RFF12ktWvXKiUlRZ9++qn69+8vSXr77bcVGRmpgQMHuozpm2++keR4gsXJkyet5XLlyrmMGQAAACjJeMEbfL3vL5VN/5++PwAAAHBu8ieZt2nTxmm9/LFSTEyMy6fPAQAAAL5o06ZNks5cUO/q+P+ePXuUnp4uqegkiJYtW+rTTz/V3r17dfr0aUVFRUmSZs2apV27dslms1mTGOwpOHm5VatWbsf/22+/aeLEidbP6enpfvfkinyunh7ibh1f2Q4AwHOYYAEAXpJ/ssDVHWaNMfr0008lSV26dFFMTIzdeuvXr5cktW3b1oNRltywYcM0adIkHThwQIsXL9aECRO0e/duvfzyy8Vuq+Bs7SZNmigxMdEj8a1du1bSmYuq+vfvr+PHj2vx4sXq27evyxn2n332mbKystSiRQs1atTIZdz5jy4HAAAAnPH0eKEs+HrfPz/G0uz/0/cHAAAAis8Yo82bN0tyfefc/IvAWrVqxQVIAAAA8Ev5T42oVKmSy7pffvmltdylS5dCZS1atJAk5eXlaceOHWrdurXS09P1xBNPSJIGDRrk9Bqi/L51aGioWrZs6VbsR48eVc+ePZWcnKzKlSvrr7/+Unp6up588km99NJLLtf3pckVAAA4w1EnAPACY4w1I/3UqVNO6y5btky7du2SJN18880O623YsEGS702wiIiI0KhRoySd+dzPPPOMEhIS3HrM4dmaNGliLf/xxx8eiW/w4MEKDw+XJC1ZskTJyclasGCBMjMzNWzYMJfrL1y4UJLjp1dIKnQXrT///LNE8QIAACDwlcZ4oSz4et9fKv3+P31/AAAAoPh27drl8K68Z8ufjO6qHgAAAOCrQkNDJUmZmZlO6+Xl5WnGjBmSzlwL1LRp00LlBSdF/Prrr5KkF154QYcPH1ZERISmTJnitP38vvUFF1zg1hOZ09PT1atXL+3evVuxsbH68ssvrWPlM2fO1L59+5yuz+QKAIA/YYIFAHjBnj17lJqaKknav3+/0tLS7NbLysrS2LFjJZ0Z0AwePNhhmxs2bFBERIQ1Q92X3HHHHapYsaL180MPPXRO7RS8a+2qVauc1p0/f77CwsJcXmRWpUoV9ezZU5KUnZ2tpKQkvf3226pevbp69OjhdN2srCwtXbpUkvMJFgXjzr9briNjxozRoEGDXA48AQAAELhKY7xQVny57y+Vfv+fvj8AAABQfPkXdknOJ078+eefOnbsmMt6AAAAgC9r0KCBJOnw4cM6evSow3ovv/yy1VceM2ZMkfKmTZtaNxT69ddf9ddff2natGmSpDvvvFMNGzZ0GseOHTskSc2bN3cZc05OjgYMGKC1a9cqLCxM77//vtq2bavJkyfLZrMpMzNTkydPdrg+kysAAP6GCRYA4AUFTxbk5OToueeeK1InMzNTw4cP16ZNmxQaGqoZM2Y4fNz13r17lZKSoubNmysiIqLU4j5XsbGxuvfeeyWdGSjecMMN59ROkyZNrLvffvnll9q/f7/desYYzZo1S7m5ubrxxhtdtlvwTrXPP/+8Vq1apRtvvFFhYWFO11u+fLlSU1NVp04dtWvXzmG9888/X1dddZUk6bPPPlNKSordert27dJzzz2nH374QbVq1XIZNwAAAAKTp8cLZcnX+/5S6fb/6fsDAAAAxXf99dfLGCNjjNObSP3yyy/WMhMsAAAA4K/ybwIkSS+++KLdOu+99541qeJf//qX3RsshYeH6/zzz5d0ZoLFk08+qdTUVMXFxWnChAku48i/0VNOTo7LunfeeaeWLFkiSZoxY4Z1HDwhIUH9+/eXJM2bN087d+4ssi6TKwAA/sj7Z94BIAjlnwSoVKmSGjZsqEmTJunOO+/U0qVL9eOPP2rmzJlq166dkpKSJElTpkzRFVdc4bC99evXSzrzSEBfNXnyZGVnZ2vXrl3W4w7PxWuvvaZKlSopMzNTQ4cOLXI3X2OMHn30Uf3www/q0aOHy7vQSlLv3r1VoUIFSWcmq0hy6+63CxculCT17dvXrbgrVqyo1NRU3XXXXUUGqKdOnbIu9Jo0aVKJfkcAAADwb54eL5Q1X+77S6Xf/6fvDwAAAJSO/LFSaGioWrZs6d1gAAAAgHOUmJiojh07SpKefvpp3X777Vq+fLnWr1+vjz76SNdee60GDx6snJwctWrVSh988IHDtvInKK9evVqvvfaaJGns2LGqWrWqyzjyn3Dx6aef6pVXXtHatWu1ZcsWbdmyRSdPnrTqTZo0SW+88YYk6dFHH9Vtt91WqJ1JkyYpJCREubm5evTRRwuVPfPMM9bkin79+mnIkCHWNuy9Dhw44DJuAADKgvNb8wEASkX+HWkTEhI0fvx49e7dWzNnztTMmTML1QsLC9NTTz2lsWPHOm3PWxMsNm3apE2bNkmS0tPTdeTIEb3zzjuSpE6dOhV63KDNZnN4R9j8dVavXm29t3r1aoWFhSk2Nlb9+vWz3q9Xr56+/vpr9enTR99++62aNWumYcOGqUGDBjp06JAWLVqktWvXqlOnTtYFZ65ERkZq4MCBmjVrlqQz30urVq2crmOM0eLFiyWpUHyO1K9fX8uXL1efPn20YMECbdu2TTfeeKMqV66s3bt3a968eTp48KBGjhxZZDAKAACA4OLp8YInBErfXyr9/j99fwAAAKB05E+waNq0qcqVK+fdYAAAAIASWLBggRITE7Vz507Nnj1bs2fPLlJnwIABmjlzpuLj4x2207JlSy1YsECHDx+WJJ133nl64IEH3Iph1KhRWrFihbKzs3XfffcVKlu3bp3atm2rN954Q5MnT5Z05kZFjz/+eJF2mjdvroEDB+q9997TBx98oHHjxllPnHv//fetegsXLrRuZOTI+PHj9eSTT7oV/7lYuHCh0tLStHv3bklnznfkn7e46aablJ6erk8++cQqk6Tdu3frnXfeUfXq1dW9e3ft3r1bq1atUnJystVu/nmOhIQEJSQklNl2AAClyAAAyly9evWMJPOf//zHGGPMTz/9ZK699lpTvXp1ExkZaRo0aGDuuOMOs23bNrfau/rqq40ks3r1ao/Ed/PNNxtJxtWfiYkTJ1r1zn7NnTvX7e05akOSqVevnt110tPTzXPPPWcuvfRSU7FiRRMWFmaqVKliEhMTzdy5c01OTk4xPrExP/zwg7XN6dOnu6y/atUqI8lUrFjRZGdnu72dtLQ0M23aNNOpUycr7urVq5u+ffuaL7/80uX6e/bsseKcOHGi29sFAACA//D0eMGZYOz7G1M2/f+S9v2Nof8PAAAAFNSoUSMjyQwZMsTboQAAAAAlduLECfP444+bhIQEEx0dbWJjY80FF1xghg8fbr7++mu32li0aFGh4+yvvfZasWJYunSp6d69u6lYsaKx2WxGkgkPDzeZmZnms88+M2FhYUaSSUxMNFlZWQ7b2bZtmwkNDTWSzNVXX22MMSY7O9tERkY6PS9w9uu9994rVvz53D3XkX/+xd7LmMLH5M9+de3a1RhjzNy5cx3WyT+OX1bbORvnFADAc2zGGON0BgYAwKNOnDihChUqSJJmz57tkTuW1qhRQ8eOHdPJkycVFRVV4vaGDx+uefPmSTpzp1YU9dBDD+nZZ5/VTTfdpPnz55fZdvfu3asGDRpIkiZOnKhJkyaV2bYBAABQ+kpjvOAMfX/30P8HAAAAvOvkyZMqX768jDGaNm2axowZ4+2QAAAAAPgIznWcwTkFAPCcEG8HAADBJv8R1tKZR/WV1OHDh3X48GE1bdrUI5Mr4J5FixZJkvr16+fdQAAAABBQPD1egGfQ/wcAAAC8a+PGjdaFUq1bt/ZuMAAAAAAAAAhoYd4OAACCzcaNGyVJNptNzZs3L3F769evlyS1bdu2xG3Zk5ycbC1HREQoPj6+VLbjb7Zv315m2zp+/LhycnIkSSkpKWW2XQAAAJQ9T48XioO+v2P0/wEAAADv6ty5c1DfiRYAAACAe4LtXAfnFACgdDDBAgDKWP4daRs2bKjY2NgSt7dhwwZJpTfBomrVqtZyjx49tHTp0lLZDhzr0KGDduzY4e0wAAAAUAY8PV4oDvr+voH+PwAAAAAAAAAA5ybYznVwTgEASofNcKsPAChT7dq10/r169WvXz998skn3g7Hrl9//VUHDx4s8n6VKlV49LYXrF69Wunp6UXeb9iwoRo2bOiFiAAAAFBaynq8QN/f99D/BwAAAAAAAADAfcF8roNzCgBQOphgAQBlKCcnR7GxscrMzNSjjz6qxx9/3NshAQAAAPARjBcAAAAAAAAAAAAAAPAuJlgAAAAAAAAAAAAAAAAAAAAAAICgF+LtAAAAAAAAAAAAAAAAAAAAAAAAALyNCRYAAAAAAAAAAAAAAAAAAAAAACDoMcECAAAAAAAAAAAAAAAAAAAAAAAEPSZYAAAAAAAAAAAAAAAAAAAAAACAoMcECwAAAAAAAAAAAAAAAAAAAAAAEPSYYAEAAAAAAAAAAAAAAAAAAAAAAIIeEywAAAAAAAAAAAAAAAAAAAAAAEDQY4IFAAAAAAAAAAAAAAAAAAAAAAAIekywAAAAAAAAAAAAAAAAAAAAAAAAQY8JFgAAAAAAAAAAAAAAAAAAAAAAIOgxwQIAAAAAAAAAAAAAAAAAAAAAAAS9/weyw879MVfTiwAAAABJRU5ErkJggg==\n",
       "text/plain": [
        "<Figure size 3200x2400 with 32 Axes>"
       ]
@@ -648,13 +987,13 @@
     "    CONFIG,\n",
     "    min_track_length=3,\n",
     "    whether_to_plot=True,\n",
-    "    allen_report=True,\n",
+    "    allen_report=False,\n",
     ")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
@@ -663,22 +1002,22 @@
      "text": [
       "INFO:------------ Step 6: Evaluating the track reconstruction performance ------------\n",
       "INFO:--------------------------- a) Loading labelled graphs ---------------------------\n",
-      "100%|██████████| 99/99 [00:01<00:00, 52.46it/s]\n",
+      "100%|██████████| 100/100 [00:01<00:00, 63.52it/s]\n",
       "INFO:--------------------- b) Calculating the performance metrics ---------------------\n",
-      "INFO:Number of reconstructed particles: 19447\n",
-      "INFO:Number of particles: 27380\n",
-      "INFO:Number of matched tracks: 19534\n",
-      "INFO:Number of tracks: 20330\n",
-      "INFO:Number of duplicate reconstructed particles: 87\n",
-      "INFO:Efficiency: 0.710\n",
-      "INFO:Fake rate: 0.039\n",
-      "INFO:Duplication rate: 0.004\n",
+      "INFO:Number of reconstructed particles: 20401\n",
+      "INFO:Number of particles: 23205\n",
+      "INFO:Number of matched tracks: 20519\n",
+      "INFO:Number of tracks: 21116\n",
+      "INFO:Number of duplicate reconstructed particles: 118\n",
+      "INFO:Efficiency: 0.879\n",
+      "INFO:Fake rate: 0.028\n",
+      "INFO:Duplication rate: 0.006\n",
       "INFO:------------------------------ c) Plotting results ------------------------------\n"
      ]
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAJGCAYAAABBU63LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDVUlEQVR4nO3dP2wjV4Lv+5/s9rbh3ZZK0s4u1pjG2sVs8aJid3Yzk5FTsgVMeiEyvS8h3dlkMpXclxaVD6AmU0esBl7wMokV3ZTlxnp3gAVWZLV6dsfGeFwvEKpMikWyKBX/6Oj7ARp2k6xTh4dH1K9PnTpnJ4qiSAAAAIABPtp0BQAAAIC8EG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbpG709NT7e/vT/0pFAoqFAqZH9/f31e9Xt/02wHwSPm+r3K5rGKx+Gi+j6rVqorFYvKdDDxEhFvkbjAYKAxDlUolvX37Vt9//71Go5EGg4EGg4H6/b7CMFQYhjo7O0seH41GGo1Gevv2rWq1msIw1OXl5abfDoBHyrZtNZtN2batMAw1HA43XaWVq9frqtfrCoJAYRhuujrAnRBukbsgCFSr1dTpdOQ4jizLmnjetu3U/485jqNWq6VWq8WXK4CNsSxLpVJJZ2dnc18XBIEKhYKq1eqaanY/8+pbKpVUq9XkOM4GanY/D+1zwOoQbpG74XCoVquV6bW3g++4RqORU40AzEMYmG/e95QkdbtdBUGgbreb63lX9blkqe/BwcFKzn0XWdthVZ8DHp4nm64AzHNwcLDwl0FWaSO7APIVBMGmq/Cg1Wo1DQYDFYvFXMtd1eeyqvquStZ2eGjvC6tDuEXu8gq2EuEWWAfC7f1YliXXdXMvd1Wfy6rquypZ2+GhvS+sDtMSkLs8L2cVCgV+8QIr5Hkec9u3EJ/LDdoBd0G4Re7ynCdWKpW2au4XYJqs8+OxXnwuN2gH3AXTEpC7UqmUW1kP8Y5d4KGo1+vyPG/T1cAtfC43aAfcFeEWW61arU6stxivodtsNmVZloIg0NHRkSqVytSx3W5XFxcXkpSsUfn69euZgbler+vy8lJhGCoIAkVRJOlmU4qrq6tk3V3btnV2djYxt7her+vNmzdTZX7//fdTc5CLxaJ835dlWQrDUJVKRZ1OZ+I1nufJdd2JUWvLsqZGMe7SPkEQyHVdFQqF5LirqysdHR3J8zyVSqXUNspap6yWae9Wq5XMv47rH/9/EAQqlUqZ6hEEQfK6uP3juqS9503UMWs736e/ttvtqfL29/cnzlkqlSbmL94+32g0migzCALV63UNh0MFQSDbttXv9zfenstoNpvyfV+2batQKOjq6kr1en3u3P/T01P1er2kXrfbZbz+i37m7vK5LPsdkKW+t4VhqHa7raurq+T9HBwcqNVqpR57375yl3ZY5n2t8nvg9s8aNiQCNkBSJCkaDAZzX9fv9yPXdSNJkW3b0Wg0iiqVShRFUTQajZJybms0GlGv15sqy7KsqFarzTxXp9OZKLNWq03VsVQqRZZlRaPRaKqMWq0WSZp5jpjjOJFt21G/30+tu+M4U+et1WqRbdsTjy/bPp1OJ3k+7byS7l2nrO7S3v1+P2o0GhPPj0ajyLKsme8r1ul0Uus6Go0ix3Gmyt1EHZf97O/bX+Pns/wq6PV6SV+TlFper9dLfgYcx5l6ft3tmVWv14ts245c1516rtFoJO877Xzxe7IsK7Vd7vozl/VzWfY7YFF9b5+/3+9HrVZr6vm4jE6nM/VcHn3ldj0Wyfq+1vU9gM0i3GIjsobbWBwGb4fGSqUy9WXU6XRSv3Dj5ySl/hKLxV+mjUYj9Uuq3+9HklK/8ONfJvO+rKPo5otxVoic1y62baeWnbV9Fn3xpgXuu9Ypq6zt3Wg0Zv6jYVEdXddd+N4dx5lZ/jrqeNd2vk9/HT8+q0qlMjc8RFGUObCssj2zis817zshDmHzwvSsdrnLz1wULf+5LPMdOa++t8+fdmws/j69PZCQ9RxRlL2vZDXvnOv6Hpj1s4b14YYyPAgHBwfJ7jPjOp3O1OWrXq+n4+Pj1Lla8aW5ecvFjF9SSru8FF+26vV6qcdWKhX5vi/f92eeYzgcTl3+CoJAp6enajQaMy+DxpdNb7+3LO0Tb3k8bwvR29M77lOnrLK29+npqer1emoZL1++lKTUOoRhqHq9rlqtNvdyYavVUrvdTv3cVl3H+7Tzffrrpqy6PZdRrVZl27ZqtdrM1zSbzYXlpN34epefubta5jsyfn0Wr1+/nvlcpVKRbdszP6NNmPW+1vk9sE0/a48V4RYPSpab1YbDocIwnBkubdvOtLxYuVxeeJ408S+DWQG62+2m/jKIf4HOO++LFy8kzf7ynNc+8ZdxtVqdubTO0dHRxJd2HnXKalF7S4tvMEx7X/F7ODo6mnts3HbHx8czX7PqOt6nne/aXzdpVe2Z1enpqYIgWBgw77piy11+5u4rzxt6pcXrllcqFQVBoHa7net587bO74Ft/Fl7bAi3eFCybOpwdnamTqczc/ve8RsI7nuuNI7jJDeHpJ3n/Pw89RdQHMbjEDOvTvOC+zyu68r3fe3v76tYLKrZbE6MfDmOM1FGHnXKalHd5z0/7xdwfKNfls/Tsiz5vj+zf6yqjuv47LfRqtozq/gfCvEo8Cos+zN3X+vuB/FI8baPVq7zewCbx2oJeFCy/EKLpwZISvYZv7i4mLjzOov7rK9br9eTFRTGL3f6vj/zF2lcr5OTEx0eHs4se/wu8tsWtU+tVpNt28klbt/3dXp6KulmBOb2nb551CmrRe191zAT/4LKcvzBwUFyR3TaiOGq6phHOz/E9aBX1Z5Zxe2+yvMs+zN3X+u+Uz/+DLd9s511fg9g8wi3MFK321Wz2Ux+qYyP4nqed+9RxkVqtZqazaZardZEuHVdN3X+2/gIwevXr1f6C6pUKqnf7ysMQ3mep4uLC3mep263K8/z1O/3Zdv2Wuu0Kne9ZL3Oy4omtDPmy/ozh9V4CN8DyBfTEmCcer2uarWqer2uXq+X+xy0rGq1moIgmHsD0LzH8haGobrd7sQ5K5WKWq2W+v2+er1ectPFuuq0auPvIcsvuPiX2TqDxra2c7vd3vrRuPuKP+dVbe+67M9cFtv2uWziZ0Zarh0ewvcA8kW4hVE8z1O73VapVJo55/b2l5vv+yv5ZRH/wopvLGu323N/icVTKS4vL3Ovi3TzhT1vlYh4UfzxML7qOq1D1vcQ39lu2/baf6mZ0M6xVQXFVYhvDFpVWLzLz9xDE2++sOhGrTTr7CsP4XsA+SHcwijxTl/VanXma27/Ihvf3SdPtm2rVCqp2+0qDEP1er25d37H0xXm/TKUlOw+dBeLfomWSqWJUY511GnVsr6H+IaTTexlvw3tfPtnIAzD1LmFi+YbPqSg1mg0ZFmWzs/P577uPv/oWPZn7rasn8uqLPpufPPmjRzHSV1xIs++ct92eAjfA8gP4RYblXeojO/cnVVut9udCpjD4XBll4bjIFKtVheObNi2Ldd1k3l4s5ycnNxrXcl54Sje1nTddbqvef0o3sq12+3OHaFrtVqqVCq5rTt626I6bqqdZ41eDgaD1J+LYrGY+vpYr9db2zSbPHQ6nYXrNC8KRNL8+ZnL/MzFlv1clpVlPqllWTo5OZn5/OnpqcIwnNo+PJZHX1m2HWa9r235HsCabHoXCTw+vV4v2aEs604utm1n2o0o3pbTsqyp1/Z6vajVaiW76sS7mN3ejcZxnJlbYsbnkBRZlpWp7nF9sop30UnbZS1tW+EoytY+g8Eg2Ro4bTemfr8fOY4zd2efZeqUVR7t3Wq1Fm57HL+H2+cZjUZRqVSae+y667hMO9+3bqPRKLJtOyqVSsljs7ZcjV9vzdj6ttFoRIPBINkCtdfrpfandbVnVvGWrGntW6vVku+MuP9kfU/3+Zlb9nPJ+h05r77jSqVS5Lpusr3vba7rztxdbfw93LevLNsOi97Xpr8HsB47URRFa0nReNSq1ap83082WBhnWVZyeWkwGEw8VygUJo6JX+s4zszRgjAMdXJyIs/z9OLFi+Rf9y9fvkz+Nd5ut+W6bvKvedu2VSwWJ6YoxOdyXVelUkm+76tarabW53a9x52enurq6mqpy1xBEKjVaikIgol5X/EKEHdpnyAIktUaPM9Lnk+bhnCfOmWVR3ufnp7Kdd2JkRjLsvTq1avU0bb4PQyHw2RHJ8uy9Pr169QpI5us46J2zrO/BkGQjAjbtq1CoTBzzrr06/SIuI5xH4pXe9jf35d0c1nasqxkXuYm2jOrIAiSEVbbtpMl2eLVTvb395O62LadrOs66z31+/1kzu19fuYWfS7LfkfOq+94veLVXuJ6uK6rw8NDXV1dKQzDhX0kdte+smw7ZH1fcXnr/h7AehFuAQAAYAzm3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIzxZNMV2Aa//PKL/vjHP+rZs2fa2dnZdHUAAABwSxRF+vDhgz7//HN99NHs8VnCraQ//vGPev78+aarAQAAgAV++OEH/fa3v535POFW0rNnzyTdNNbu7u6GawMAAIDbrq+v9fz58yS3zUK4lZKpCLu7u4RbAACALbZoCik3lAEAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiD7XcBAGsRRZF+/vln/fWvf910VQCs0UcffaRPPvlk4ba5eSHcAgBWKooijUYjhWGon376adPVAbABH3/8sZ49e6a9vT199tlnKz0X4RYAsFL/8R//odFopGfPnuk3v/mNnjx5srYRHACbFUWRfvnlF/3Xf/2Xrq+vFYahfvvb3+rZs2crOyfhFgCwMu/fv9doNNI//dM/ybKsTVcHwIb87d/+rX7zm9/oj3/8o/7t3/5N//zP/7yyEVxuKAMArMz19bU+++wzgi0A7ezs6PPPP9cnn3yi9+/fr+w8hFsAwErElyL/7u/+btNVAbAldnZ2tLu7qw8fPiiKopWcg3ALAFiJn3/+WVEU6dNPP910VQBskc8++0x//etf9Ze//GUl5RNuAQAr8csvv0i6WQYIAGIff/yxpF+/I/LGNw4AYKVYGQHAuFV/J7BaggG++Oa7XMp59+3XuZQDAACwKYzcAgAAwBiEWwAAABiDaQkAgK2Q1xSrbcS0L2B9CLcbYvKXOAAAwKYwLQEAAMAAYRiqXC6rUChoZ2dHYRhmPjY+bn9/X77vr66Sa0C4BQAAeGCq1aoKhcLEY5ZlqdPpqFKpLF1er9dTvV5fKhBvK8ItAAAwVrvdVhAEm67GUrLU2fd9BUEwFUYty1K5XL7TeUul0p2O2zaEWwAAYKzBYLDpKiwtS50Hg4FGo5Esy1p9hR4Ywi0AADCW53mbrsLSstaZYJuOcAsAAIwUBMGDuznqIdZ52xBuAQCAceKVAx6Sh1jnbcQ6twAAPGBhGKparSoIAgVBoCiK5HmefN9P5m66rjtxjO/7Oj8/V6FQUBiGGgwGqtfrchxnqvwgCNRqtSYugRcKBdVqtdS6nJycJOVeXV2lvna8zsPhUP1+X5LU7XYl3cwnDYJAnU4n9dL76elp8nh8Q5XjOAqCQLVaTe12e+LYarWqg4OD5Pher7dU292u79u3byfaqlqtyvd9DYdDtVqt1LZZ1I5Z6yzdLNs1qy63xe/Hsqzks75dj6yW6TebRLgFAOABsyxLvV5PzWZTp6en8jxPYRiq0WioXq+r3W5PhNv473GglG5CXrFYVKvVmlhGqtvtqtlsqtfrybbtidefnp6q0Wgkj3mep2azqbdv304Ep3a7rXK5PBHcbtc5vhQ/Xl6z2VSxWJy6uep2WbFisaijoyNJUq1WU61Wk+d5yevH679s28VLbJ2cnOj09HSqnE6no263q2q1mvYRZWrHrHWWboLu6empms1m6vOxdrutUqk00a5BEKhYLMp13aVWR1im32wa0xIAADBAfDm71+slQaPVak2M+Pm+r3q9rk6nM3GsZVlqNps6Pj5OHguCQNVqVa1WaypktdttNZvNZLmq+HJ6Wuis1WpyHGei7FgcRl3XnQhgklSv1xUEwcTNVfFc1LRRx1arNd0oGWVpO8uykvqmmRUUl2nHZWQJppZlTY2q2ratVqularWaeU3bZfrNNiDcAgBgkPGF/S3LmghBx8fHKpVKqSOCr169UhiGydSAZrMpy7JmjshZlpVcNj8+PpbjODNHGuv1urrd7swbpdLmmcZl3w5gnuelhsE81mid13aLzLrMv0w75m1W/SuVisIwXDjyG1um32wDwi0AAAZ58eLFzOd8358ZQONwdnFxkbx2VlmNRmNijdVutzv3vPE5z8/P5z6fVp/hcJg8FgfoYrGYBObb9bqPee/hrpZpx3VyHCfzkmPL9JttwJxbAAAMMisoxaOmQRCo3W6nvsZ13SSIBUGQ6UaheBR1UUCzLGvmyO0yI5f9fl/Hx8dqt9vJ+3AcR2dnZ/e+sWkVITNrO67bwcFBpiXHlu0324BwCwCAQWYFxTi4OY6Tejd/mjy3rQ3DcGIU9q7im7ukX1cCOD8/T26SyvLewjBMDbKrmh6QRzvOqvOq3aXfbBrTEgAAeATiy8pZg1a8tFbWcrPcnHTf0b04zMbilQD6/b4ajUbmOaRv3ry5Vz3SzHr/WdtxkbzrPBwOM40oL9tvtgHhFgCAR6JSqSy8FB3PwyyVSgrDcG5oHX/tvPmb8XOzlsrKKgzDmfN2W63WwvrGZdzVvJHTWeFvmXac5T51nsX3/cw3zC3Tb7YB4RYAgEfi7Oxsanmtcd1uN7k0Hy/0P2s0tN1uJ6N6ruvO3TY2XlM1jxUNZs37lG5GGccDaNqoYxAEM2+OWiRum7TpFbPadJl2zLvOs+rUbrdlWVbm5dOW6TfbgDm3SHzxzXe5lfXu269zKwsAsFg8ujccDmeOMMabFlSr1amdreIdtsaXrHr79q2++uorlcvlicfj4BUHLtu21el0VK1WpzYq6Ha7CoJAb9++napPHBLTwuK80crbG0hIN4GtXq9PPGbbthzHUafTSYK153lTx2ZpO+nX5cF6vd5EUB9fTWB8k4NY1nZcps6L5i+XSiUdHBxMBWPf99VqteZ+Hmnve5l+s2k7URRFm67Epl1fX2tvb0/v37/X7u7uWs6ZZ5DcRoRbAD/++KO+//57ffnll/r00083XR1jxVvDXl5eKgxD2bYt27bVbDZnjpSOr3FaKBRkWZZs2059/e3XxkEpLczEW8zG68VeXV3p8PAwNUyOb3sb1zneBCLezjYIAlmWpRcvXiSjw2EYynEcdbvdZEtZ6SYUptUpPpdt2yoUCiqVSkk4y7vtdnZ2kr/fXr1hmXacV2fp1+1347YrlUoTu9DFgbNUKiX/uIhdXV3p9evXUyH+dpm2bU9sYrHovS/jrt8NWfMa4VaE21Ug3AIg3AJIs+pwm9u0hHq9rmazOXNOSBiGOjk5kSQdHh5qMBhMDc9v6hgAAACYIZdw6/t+6lyXWBiGKhaL6nQ6E8Pq9XpdFxcXqROa13UMAAAAzJFLuF20rly1WlWlUplaT811Xe3v76tcLk/N11jXMQAAADDHvZcCa7fbc9eti5eOmDWq++rVq6kR1XUdAwAAALPcK9ymLWFxW3z33qzXFAoFeZ43seTHuo4BAACAWe4VbrPs4ez7/tw14+Iwenl5ufZjAAAAYJY7z7ntdrszpwCMC4Jg7q4VcSC9vRPHOo657fr6euLvT58+1dOnT2e+HgAAANvlTiO3YRhm3gpu0W4fcSAdny6wrmNue/78ufb29pI/8ZJiAAAAeBjuNHJ7cnKS+easrHNcr66u1n7MbT/88MPEosCM2gIAADwsS4dbz/NULpdXUZeN293dXdsOZQAAAMjf0tMSer3eUmvFju/7PM/h4eHajwEAAIBZlgq3p6enev369VInmHeTl3QzV1bSxHzZdR0DAAAAs2QOt0EQyLKspcOhbdtJsEwTj7aO35y2rmMAAABglsxzbn3fV6fTUafTmXouXl7r+Pg4GUHt9XqSJMdx5HnezHLjY8enOqzrGAAAAJgl88htpVJRr9dL/ROvnHB2dpY8Fjs6OpJ0E47TXFxcTAXOdR0DAAAAs9xrh7IsHMdRqVTS+fl56vPdblfNZnMjxwAAAMAsuYTb+JL/rN2/Op2Out3u1KhqvV5Xo9FIHVFd1zEAAAAwx52335VuQmMQBLq8vJR0M+fWdV05jjOxyYNlWer3+2o2m7IsS4eHhxoMBiqXy6pUKqllr+sYAMCW+P3epmuwOr9/v+kaAI/GvcKt67qZX2tZ1lKvX+cxAAAAMMPK59wCAABg+5TLZRUKBe3v789dceqhIdwCAAA8Qr1eT81mM9MOrw8J4RYAABir3W7PvOF9W62zzq9evVrLedaJcAsAAIw1GAw2XYWlPcQ6bxPCLQAAMNZDnEv6EOu8TQi3AADASEEQzNy5dFs9xDpvG8ItAAAwThiGKpfLm67GUh5inbfRvda5BQAAmxWGoarVqoIgUBAEiqJInufJ9/1k7ubt9d9939f5+bkKhYLCMNRgMFC9XpfjOFPlB0GgVqsly7KSxwqFgmq1WmpdTk5OknKvrq5SXzte5+FwqH6/L0nqdruSbuacBkGgTqczcd7Y6elp8nh8p7/jOAqCQLVaTe12e+LYarWqg4OD5Pher7dU292u79u3byfaqlqtyvd9DYdDtVqt1LZZ1I5Z6zxumc9RkprNpg4PDyVJV1dXevnypZG7txJuAQB4wCzLSpZ0Oj09led5CsNQjUZD9Xpd7XZ7ItzGf48DpXQT8orFolqt1sSOnt1uV81mU71eT7ZtT7z+9PRUjUYjeczzPDWbTb19+3YiwLXbbZXL5YngdrvO8aX48fKazaaKxeLUzVW3y4oVi0UdHR1Jkmq1mmq1mjzPS14/Xv9l286yLHU6HZ2cnOj09HSqnE6no263q2q1mvYRZWrHrHUeb9esn6Pv+6pWq+p0OhPB1/d9NZvNmed4qJiWAACAAeLL2b1eLwk2rVZrYsTP933V63V1Op2JYy3LUrPZ1PHxcfJYEASqVqtqtVpTIavdbqvZbCbLVcWX09NCZ61Wk+M4E2XH4jDquu5EsJWker2uIAgmbq6K56Kmjea2Wq3pRskoS9tZlpXUN82sEdBl2jGrZT5HSfrqq6/UbDanRnQdxzFyGgThFgAAgxQKheT/LcuaCF3Hx8cqlUqpI4KvXr1SGIbJ1IBmsynLsiZGAMdZlpVcNj8+PpbjODNHGuv1urrd7swbpdICVlz27Q0GPM9LDYN5XF6f13aLpAVuabl2zGrZzzEMw9SpEpJmTmF4yAi3AAAY5MWLFzOf831/ZgCNw9nFxUXy2lllNRoNjUaj5Jhutzv3vPE5z8/P5z6fVp/hcJg8FgfoYrGYBObb9bqPee/hrpZpx2XKzPo5ep5nZICdhzm3AAAYZFZQikdNgyBQu91OfY3rukkQC4IgUyiKR1EXBTTLsmaO3C4zctnv93V8fKx2u528D8dxdHZ2du8Qt2zIzCJrO2a17Ofo+76RN43NQ7gFAMAgs4JiHNwcx5l5ifq2PLeADcNwYhT2ruKbuyQlKxucn5+rWCzKdd1M7y0Mw9Qgu+z0gKzyaMe4znf5HB8bpiUAAPAIxJexswateGmtrOXenhub5r6X/eMwGyuVSmo0Gur3+2o0Gpnv/H/z5s296pFm1vvP2o6LxHVe9nO0bTuXf1Q8JIRbAAAeiUqlsnD3q3h1glKppDAM54bW8dfO2zI2fm7WUllZhWE4c95uq9VaWN+4jLuaN21hVthcph1nuX3ssp/jvNfepz22FeEWAIBH4uzsbGp5rXHdbje5NB9vODBrNLTdbiejiK7rzt021nVdlUqlXOZ+zppnKt2MUo4H0LRRziAI5q4fO0/cNmkjobPadJl2zFrnu3yOt2++W1Tvh4xwCwCAAeIRuHmXoONNC+IdtcbFO2yN3/z09u1bvXnzZioYxcErDly2bavT6SS7eI3rdrvJbmO3xXVNq/O8EcW0jRTa7bbq9frEY7Zty3GciXN7njcVsrO0nfTr8mC3dwsbX71gfFOFWNZ2zFrnZT7HeI5y2nq6nufp6uoqOc4UO1EURZuuxKZdX19rb29P79+/1+7u7lrO+cU3363lPJvy7tuvN10FABv2448/6vvvv9eXX36pTz/9dNPVMVa8Nezl5aXCMJRt27JtW81mc+ZIaRiGyUhioVCQZVmybTv19bdfGwextHVb4y1m4/Vir66udHh4OLVE1+1tb+M6x5tAxKEtCAJZlqUXL14ko8NhGMpxHHW7XVmWlQRT27ZT6xSfy7ZtFQoFlUqlJPjl3XY7OzvJ32+v3rBMO86rc9a6zHpt/Lq4HeNzxMfe3mFuFe763ZA1rxFuRbhdBcItAMItgDSrDrdMSwAAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwCAlWIjTADjVv2dQLgFAKzERx/d/Ir561//uuGaANgmP//8syTp448/Xkn5hFsAwEp88skn+uSTT/SnP/1p01UBsEXev3+vp0+f6smTJyspn3ALAFiJnZ0dPXv2TO/fv9ef//znTVcHwBYYjUb68OGDLMvSzs7OSs6xmsgMAICkv//7v9ef//xn/eu//qt2d3f17Nkzffzxxyv7pQZgu0RRpF9++UU//vij/vSnP+m///u/tb+/r/39/ZWdk3ALAFiZjz/+WM+fP9d//ud/6sOHDwrDcNNVArABH330kT777DN9/vnn2tvbW+m5CLcAgJX6+OOP9Y//+I/6h3/4B/3lL3/RL7/8sukqAVijjz76SE+ePEluMl01wi0AYC12dnb0N3/zN5uuBgDDEW6xEl98811uZb379uvcygIAAGZjtQQAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMZ7c5aAgCNRqtSRJw+FQYRiqXC6r0WjMPCYMQ52cnEiSDg8PNRgMVC6XValUNn7MQ/fu09/lUs4XP/4hl3IAAAA2Zelw2+12dXFxIdd1Jx4vFotyXVeDwWDqmDAMVSwW1el05DhO8ni9XtfFxUUSlDdxDAAAAMyx1LSEMAx1fn6eGhLPzs4UBIHq9frUc9VqVZVKZSJwSpLrumq32/I8b2PHAAAAwBxLhdvLy0t1u101m82p5+JAeTtABkEgz/NSQ68kvXr1aiosr+sYAAAAmGWpcHtwcCDLsnR4eDjzNZZlTfw9nr5g23bq6wuFgjzPUxiGaz8GAAAAZlkq3DqOo9FolHrjmO/7kqRSqTT1+O3AOy4Oo5eXl2s/BgAAAGa502oJaZrNpmzbTp0ucHBwMPO4OJAGQbD2Y267vr6e+PvTp0/19OnTma8HAADAdrn3OrfxTWS2baeulDAcDueOqMaBdHy6wLqOue358+fa29tL/sRLigEAAOBhuPPIbbwkWBAEsm1b5XI59XVZ57heXV2t/ZjbfvjhB+3u7iZ/Z9QWAADgYblzuK1UKhMbI5TLZbmuq7Ozs7kjqNtsd3d3Itw+NnltBiGxIQQAANiM3Obcdjod7e/vKwxD9Xq95HHLsjKNqo6vwLCuYwAAAGCWe8+5jVmWpUqlIs/zJta6nXeTl3QzVzY+ft3HAAAAwCxL71A2b7WBeLmt8ZFb27aTYDmrzPFj13kMAAAAzLJUuN3f31ehUJh5+T++5D/+vOM4c6cLxGF5fH3cdR0DAAAAsywVbi3Lkm3bMy/tx0uBFYvF5LGjoyNJv27ycNvFxcVU4FzXMQAAADDLUuG2VqtNTDm47c2bN7IsS69evUoecxxHpVJJ5+fnqcd0u101m82Jx9Z1DAAAAMyyVLhttVpqtVoTN4zFqtWqJOnt27dTI7udTkfdbndqVLVer6vRaKSOqK7rGAAAAJhj6aXAXNdVt9tVtVrVwcGBhsOhwjCU4zj6/vvvU6csWJalfr+vZrMpy7J0eHiowWCgcrk8sVbuJo4BAACAOXaiKIo2XYlNu76+1t7ent6/f7+2TRy++Oa73MrKc/OFvOS5icO7b7/OrSwAAPAwZc1rua1zCwAAAGwa4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjPFk0xWAmd59+rscS3ufY1kAAMBkjNwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIzxZNMVABb54pvvcivr3bdf51YWAADYPozcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDGebLoCj9W7T3+36SoAAAAYh5FbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwxpNlD/B9X67rajgcyvd9WZaler2uWq0285gwDHVyciJJOjw81GAwULlcVqVS2fgxAAAAMMdS4bbdbkuSXNdNHvM8T9VqVa1WS/1+X5ZlTRwThqGKxaI6nY4cx0ker9fruri4UKvVmjrPuo4BAACAWTJPSwiCQGEYTo3QlkolvX37VkEQqFqtTh1XrVZVqVQmAqd0E5Db7bY8z9vYMQAAADBL5nDruu7MqQeO46hUKsnzPAVBkDweBIE8z1O9Xk897tWrV1Mjqus6BgAAAObJHG49z9OXX36pMAxTn49HTH3fTx6Lpy/Ytp16TKFQkOd5E2Wu6xgAAACYJ3O4PTg4UBiGEyOzi8Q3nM0Sh9HLy8u1HwMAAADzZL6hrNfrKQiCmaOjcegdn/MaBIEODg5mlhkH0ttTGdZxTJrr6+uJvz99+lRPnz6dewwAAAC2x1Lr3M4KtpLU7XblOM7Ea4bD4dwR1TiQjk8XWNcxaZ4/f669vb3kT7ysGAAAAB6Gpde5TXN6eipJOjs7m3g86xzXq6urtR+T5ocfftDu7m7yd0ZtAQAAHpZ7h1vf99VsNqfWl32Idnd3J8ItAAAAHpZ7b79brVblum7qLmCWZWUaVT08PFz7MQAAADDPvcJttVqdu/XuvJu8pJu5spIm5suu6xgAAACY587httls6uXLl2o0GjNfY9t2EizTxKOt4zehresYAAAAmOdOc27b7bYKhULqiG0YhskIqeM4c7e9jZfmKpVKyWPrOgYPx7tPf5djae9zLAsAAGybpUduu92uJKUG23gb3NjR0ZGkyV3Lxl1cXEwFznUdAwAAAPMsFW5939dwOJw5x9bzvIkVExzHUalU0vn5eerru92ums3mxGPrOgYAAADm2YmiKMrywiAIVC6XZ46ADodDeZ6n0Wg08XgYhioWi1NLhdXrdVmWpVarNVXWuo6JXV9fa29vT+/fv1/fUmC/31vPeTDp90xLAADgIcqa1zKH20KhsHD7Wtu2NRgMph4Pw1DNZlOWZenw8FCDwUDlcjl1+bB1HyMRbh8Vwi0AAA9S7uHWZITbR4RwCwDAg5Q1r917EwcAAABgWxBuAQAAYAzCLQAAAIxxp00cgIfqi2++y62sd99+nVtZAAAgH4zcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMZ5sugLAQ/XFN9/lUs67b7/OpRwAAMDILQAAAAxCuAUAAIAxmJaAR+Xdp7/LrawvfvxDbmUBAIB8MHILAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjPNl0BYCH6t2nv8uppPc5lQMAABi5BQAAgDEItwAAADAG4RYAAADGuPOc23q9rmq1qlKpNPd1YRjq5OREknR4eKjBYKByuaxKpbLxYwAAAGCWpcJtEATyPE+u68r3fVWr1bmvD8NQxWJRnU5HjuMkj9frdV1cXKjVam3sGAAAAJgn87SEdrutZrMpSZnDYrVaVaVSmQickuS6rtrttjzP29gxAAAAMM9OFEXRsgf5vq9isaherzdzWkIQBCoUChoMBrJte+r5er2uIAjU6/XWfsxt19fX2tvb0/v377W7uzv3vefm93vrOQ+23hc//iG3st59+3VuZQEAsE2y5rWV3VDmuq4kpQZOSSoUCvI8T2EYrv0YAAAAmGll4db3fVmWNfP5OIxeXl6u/RgAAACYaWU7lAVBoIODg5nPx4E0CIK1HzPL9fX1xN+fPn2qp0+fLjwOAAAA22FlI7fD4XDuiGocSMenC6zrmFmeP3+uvb295E+8tBgAAAAehpWN3Gad43p1dbX2Y2b54YcfJiYoM2oLAADwsKws3D5Eu7u761stAQAAALlb2bQEy7IyjaoeHh6u/RgAAACYaWXhdt5NXtLNXFlJE/Nl13UMAAAAzLSycGvbdhIs08SjrePr067rGAAAAJhpZeHWcZy50wXipbnGdzhb1zEAAAAw08rC7dHRkaSbTRbSXFxcTAXOdR0DAAAAM6105LZUKun8/Dz1+W63q2azuZFjAAAAYKY7hdv4Uv+iVQo6nY663e7UqGq9Xlej0UgdUV3XMQAAADBP5nVuu92uXNeVJF1eXkqSjo+Pk8eq1apqtdrEMZZlqd/vq9lsyrIsHR4eajAYqFwuq1KppJ5nXccAAADAPDtRFEWbrsSmXV9fa29vT+/fv1/fJg6/31vPebD1vvjxD7mV9e7br3MrCwCAbZI1r61szi0AAACwboRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMbIvEMZgO33xTff5VYWG0IAAB4iRm4BAABgDMItAAAAjMG0BGDD3n36u9zK+uLHP+RWFgAADxEjtwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAYxBuAQAAYIwnm64AgO30xTff5VbWu2+/zq0sAADmIdwCBnn36e9yK+uLH/+QW1kAAKwL0xIAAABgDMItAAAAjEG4BQAAgDEItwAAADAG4RYAAADGINwCAADAGIRbAAAAGINwCwAAAGMQbgEAAGAMwi0AAACMwfa7AFbui2++y6Wcd99+nUs5AABzEW4BpHr36e9yK+uLH/+QW1kAAMzDtAQAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBkuBAXgw8lovV2LNXAAwFSO3AAAAMAbhFgAAAMYg3AIAAMAYzLkFsHJ5beXLNr4AgEUYuQUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDNa5BfBg5LVe7o33OZYFANgWhFsAj9IX33yXW1nvvv06t7IAAPfDtAQAAAAYg3ALAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxWC0BAO6JlRcAYHsQbgE8SnmumfvFj3/IrSwAwP0wLQEAAADGINwCAADAGIRbAAAAGIM5twCwRbg5DQDuh3ALAPfEzWkAsD2YlgAAAABjEG4BAABgDKYlAICh8pq/y9xdAA8JI7cAAAAwBiO3ALBFtvHmNFZwAPCQMHILAAAAYxBuAQAAYAymJQCAofKc4pCf95uuAADDEW4BAGvD/F0Aq0a4BQA8SARlAGkItwCAtdnG1SAAmMWYcBuGoU5OTiRJh4eHGgwGKpfLqlQqG64ZAGDbMQoMmMOIcBuGoYrFojqdjhzHSR6v1+u6uLhQq9XaYO0AAKuwraPAeQblvBC48ZgYEW6r1aoqlcpEsJUk13W1v7+vcrmsUqm0odpN++mnn3Ty//6o1//jqZ4+2dl0dR6Nn36OdPL//US7rxntvhm0+3LyCsp5tjvTLrL76aefdHJyotevX+vp06ebrs6jsM1tvhNFUbTpStxHEAQqFAoaDAaybXvq+Xq9riAI1Ov1ZpZxfX2tvb09vX//Xru7u6us7uT5vnmm3af80lmX658i7X37gXZfM9p9M2j3zdjWdjc9KP/y03/rh//nlZ7/rzf66Oln9yqLUe5s1p2dljnngx+5dV1XklKDrSQVCgW1222FYSjLstZYMwAAtsO2TuHIq17XO5H2JP2fT//nvf9R8cU3Ob4/gvJGPPhw6/v+3NAah97Ly8utmpoAAMBDtJ2bg+Qn1/f3+/yK0u/z2wAlj3nhv/z03znUZDUefLgNgkAHBwczn4+DbxAEM18Tz8z493//d11fXyePP336dCXzSOJzXP/0oGeEPDhxe9Pu60W7bwbtvhm0+2Y8hnb/v/7vTm5l/Z9P/+e9y7jeifRcmshNqxafa9GM2gcfbofD4cwpCZKS4BuG4czXfPjwQZL0L//yL7nWbZHn//tPaz0fbtDum0G7bwbtvhm0+2aY3e6vcitpL7eSpOfPn+dYWjYfPnzQ3t7sd/Hgw+280Dru6upq5nOff/65BoOBPvnkE+3s/DpXZ1UjtwAAAFhOFEX68OGDPv/887mve/DhNg8fffTR3NFfAAAAbN68EdvYR2uox0pZlpVp9Pbw8HD1lQEAAMBGPfhwO+9mMulmTq4klgEDAAB4BB58uLVtOwmwaeJRXaYdAAAAmO/Bh1vHceZOS4iXAGONWwAAAPM9+O13fd9XsVhUv9+X4zhTz1erVYVhOHf73bsKw1AnJyeSbub0DgYDlctlVSqVrSrTNHm3UbvdVqfTUb1eV6lUkmVZCoJAvu/r/Pxcr1+/Tu1bj1W9Xle1Wr33Pxjp68vJo93p69n5vi/XdTUcDpPNgur1umq12p3LpM8vlne70+ezC4JArVZL0s2UzjAMVS6X1Wg07lzmxvp8ZIBSqRQ1Go3U5yRFvV4v93OORqPItu2o3+9PPF6r1WbWZRNlmmYVbdRqtSJJU38sy1pJ33mIBoNB5Lpu5DhOLj9T9PVs8m53+no2rutGrutOPNbr9SLLsiLbtqPRaLR0mfT5xVbR7vT5bDqdTmo/dBwnsm37TmVuss8bEW430YDzAvVdf2hWUaZpVtFGrVYrcl03ajQaUaVSiWq12tQX7GPmum5UqVQi13WjXq+XS8iiry+2inanry82GAyiVquV+ly/348kRaVSaely6fPzrard6fOLjUajqFKppD4Xt32tVlu63E32eSPCbRTdfDhxmG21WlGtVos6nc5KzjUYDCJJ0WAwSH2+Vqst/UO4ijJNs6o2arVadxoReIziL7r7fCnR15eXR7tHEX09i0ajMbeNSqXS3P6bhj6/2CraPYro81nE/3iedwV82dHbTff5B39DWcyyLLmuq1arpUajIdd1Vzanw3VdSbNXYCgUCvI8L/Puaasq0zS0kRn4HLHNPM/Tl19+ObP/xfMzfd/PXCZ9frFVtDuyOTg4kGVZc/cDWHY51U33eWPC7TrFk9xniT/My8vLjZZpGtrIDHyO2GYHBwcKwzBZaScP9PnFVtHuyMZxHI1Go9Qbx+J/TCx7I+um+zzb795BEARzN4+IP9BlfkhXUaZp1tFGvu/r8vJSL1684A7aFaGvbwf6erper6cgCGaOOMX9cpk2o88vtop2v40+v7xmsynbtpNVFLLadJ9n5PYOhsPh3H+RxB/oMsPtqyjTNKtsI8/zdHp6KknJkjPlclme5y1dFuajr28WfX2xeZv+dLtdOY6z1MZA9Pls8m73GH1+eUEQqF6vy7ZtDQaDpY/fdJ9n5PYOsn4YV1dXGy3TNKtqo/jLcvySjOM46nQ62t/fn7mGMu6Gvr459PX7iQPS2dnZUsfR5+/nru0u0eeX1e12dXFxkYyil8vlO5Wz6T5PuMWjN+vGQ8uyVKlUVK1W7/QvV2Db0Nfvzvd9NZtNdTodwtAa3bfd6fPLqVQqE21WLpfluq7Ozs6Wvqlsk5iWcAeWZWX6V8m8Ow/XUaZpNtFGL1++VBAEj3ouXN7o69uJvj5ftVq98yo89Pm7u0+7L0KfX6zT6ajb7aparS513Kb7POH2DuZNkpZu5ppIyy2dsYoyTbOJNorLYvmZ/NDXtxN9fbZqtXqvLWDp83dz33ZfhD6/WDzC7XneUnOUN93nCbd3YNt28sGkif+1sszE91WUaZpVtFG9XlehULhv1bAE+vpm0Nfvptls6uXLl6nLJGVFn19eHu1On89m0RJscb/s9XqZy9x0nyfc3oHjOHOH2+NOssy6cKso0zSraKPLy8tMP4DMscsPfX0z6OvLa7fbKhQKqQFrmbu86fPLyavd6fPZ7O/vq1AozGzbeOrAQ+rzhNs7ODo6kjT7UsbFxcXSH9gqyjTNKtqoVCppNBrNfP7i4kKWZTGikiP6+mbQ15fT7XYlKfWSeBAES12ipc9nl2e70+ezidtg1hSB+Ia7YrGYucyN9/mVbexruFKpNHcf5rQ94EejUdRoNGbuD3+XMh+bvNu93+9Hruumlhfvjd3pdO5XaYP0+/1MfZG+nq882p2+nt28toqiKHJdNxoMBhOP0efvL+92p89n02g0ptp1nGVZkWVZ0Wg0mnh8m/s84faORqNRZNt21O/3Jx6v1WozP8xWqxVJiizLyq3Mx2YV7d5qtaJWqzXx2GAwiCzLot1v6XQ6mX4h0NfzlVe709cXGwwGkW3bUa1WS/1TqVRS25c+fz+ranf6fDa1Wi01bMbtfrvfRtF29/mdKIqi1Y0Lmy0MQzWbTVmWpcPDQw0GA5XL5ZlLlvi+r6+++kqvXr2S67q5lPkYraLdPc9Tp9PRcDhUGIayLEuvX79+9HOxpJvLhHG7XV5eJu3z4sULSTd3NN++hEhfv79VtTt9fb5CobBwaai0XZvo8/ezynanz2fT7XZ1fn6ug4ODpK0cx9Hr169Tpyxsc58n3AIAAMAY3FAGAAAAYxBuAQAAYAzCLQAAAIxBuAUAAIAxCLcAAAAwBuEWAAAAxiDcAgAAwBiEWwAAABiDcAsAAABjEG4BAABgDMItADwA3W5XOzs7E3/CMNx0tTaq2WxOtMf+/v6mqwRgCzzZdAUAANlYlqW3b99O/P0xe/36tY6OjiRJnufp5ORkwzUCsA0YuQWAB+Lg4ECO4yR/sgjDUO12W+VyWYVCQfv7+yoUCioWizo9PZ0a/fU8T91uN5f61ut17e/vT/3Z2dnR6elp5vrHo7Ljx7fbbVmWtXR7ADAf4RYADNVsNrW/v69Wq6Vqtap+v6/RaKTBYKB+vy/btvXVV19NhNl6vZ7b+V3X1Wg0UqfTURiGCsNQpVJJURSp0WhkKsOyLI1GI7148UJhGKpWq2k0GqlWq+VWTwBmYVoCABgmCAKVy2UFQaBOp6NKpZL6ukqlokqlonq9riAIZFmWgiDIvT6lUkmlUkme593peMuyVK1WZVmWWq1WzrUDYBpGbgHAIL7vq1AoaDgcajAYzAy241zX1WAwyHXU9ra47LtOeej3+wRbAJkQbgHAEGEY6quvvpIkdTod2bad+VjXdVd6g1qlUknKb7fbSx8fBMFS7wfA40W4BQBDHB8fKwxDVSoVlUqlpY8/OztbQa1+9erVK0k3QXoZ7XZb1Wp1FVUCYCDCLQAYwPf95JL/XS/fZ5nCcB/x1ATf95ea29vpdLiBDEBmhFsAMEC8xqtt2/e6fH+XEd+sHMdJ6pZ19JbpCACWRbgFAAPEKxHcd/R11Zf/m82mpOzzbl3XXemNbgDMQ7gF8OjU6/VkU4Pxu/fDMFS9Xle1WlW5XFa1Wl3J0lh5830/2Yzh5cuX9yqrVqstDMhBECTtFLdl1raK592GYZhpaTDP89igAcBSCLcAHpU4lPV6PVUqFVWrVfm+L8/zVK1W1Ww21el01Ov19PLlSxUKBfm+v+lqzzUcDpP/X/WWvJ7nJWG20+nIdV31ej2Vy2UVi8WFgdWyrCQ8L5ob7Hlesr0uAGRFuAXwaIRhqCAIknmlhUJB0s2l+Dikjc/vbDQayQYC22x8xPTg4GBl5+l2uyqXy3Jdd2pubq1W06tXr5LNI+aJpxl4nje1/e8413W5kQzA0gi3AB6N20tKDQYDSTcjn51OJ/UY27YVBMHE6G08paFQKKhYLKpcLs98rFgsJo/H803zNh5ox0dx83Z8fCzHcWbedBa/v0UjsqVSaeGat3HoXfVINADzEG4BPBq9Xi+Z8yn9ehPWvDAWh6zLy0tJN6Okl5eXarVaGgwG6vf76vV66vV6yfa18bSGXq+nfr+vfr8vy7J0eHi4kvc1HgDnjYTex+npqcIwnDtNIF6pIcvNYvGI7KxVE9rtNlMSANwJ4RbAo9FqtSaCYDwaO2/5q/gSexwau92uzs7OUm+68n0/dSkuy7J0dHS0siWtXrx4kfz/MiO38YjyrD/jI83n5+eStPDmrvg9LgrZ8dSE26Pi4+db9bq7AMz0ZNMVAIB1GQ9m8aitZVkzQ+f43NH4NYPBQI1GY+q1cXmzgrJlWSu76z9+D0EQqNfrZZ6nGk/LiFcuiKds1Gq1mf8QiEelZ4nbbDgczp1SYNu2SqWSPM+T67oTI7i+7690vV0AZiPcAniU4oA2Pk3htvE7/x3HURAEKhaLc8srl8upzw8Gg5XeHFWpVHR6epppea3b4hUMLMtSGIYql8szg2mz2Zw7Ar3M7mj1el2e56ndbk+EW9d1VzY/GYD5mJYA4FGKQ+CsMCr9GljjqQZhGM4Mw/HI5qzR2XnnycPr168lZV8/9q7ynNM7Pu1gfL1hdiUDcB+EWwCPUpb5tnHgikcRHceZOaLped7cKQ6rvsxuWVYyXWIVo57x+8p7NYZ4NDvePvj2ihYAsCzCLYBHJx7ZtG17ZliN7/i3bXvhdIIsQXkdWq2WHMeR7/s6PT1d+vh5o7LxDWBZNrRYZle38XLjlSZY2xbAfRBuATw649MN0oRhmIx+zlr/dlyWKQ7r8vbtW9m2rWazOXGpf5FFUxkajYZs2565dNe4ZUaOHcdJPodF83kBIAvCLYBHJw5y8dq1t1WrVYVhqE6nk2mFgzgsb3rkVrqZntDv9+U4TrKd8CJBEKjZbC4Mrp1OR0EQzB0VjrfnXUY8etvtdpP/B4C7ItwCeHTiS+tnZ2dT8zvr9bouLy/V6/Uyr7O6aL7tusUBt9Vq6fT0VPv7+zo9PZ2aLhAH1Wq1qrOzM9VqtbkB3XEc9fv9masZdLtd+b6/9LSC+PW2ba9suTQAjwdLgQF4VMbn28bhtVgs6uDgQMPhUKVSSd9//33mbV+3Zb5tmkajoVqtpjdv3qjT6ch1XQ2HQx0cHCRh/OjoSP1+Pzmm1+vNnXvrOI4Gg4GazaaKxaJs2062/61Wq6lrAC8SL0X28uXLpY8FgNsItwAeldtTCCqVyr12woqnNmxrMLMsS7VabanR1CzBfpn1bLPIMrcZALJgWgKARyXvm7+2ab4tAIBwC+CRWbTZwrLisMxcUQDYDoRbAI9GHETzuvnL932FYUiwBYAtwpxbAI9GHlMIut2uzs/PFYZhMt82CAKVy2VZlqVyucwmBACwQYRbAI9CGIZLbWowy31vQAMArBbTEgAYb39/X/v7+xoOh5JuRl93dna0v7+/4ZoBAPJGuAVgvNFopCiKkv/Gf0aj0aartpQgCLSzs5P8mbce7WPQbDaTttiGrY8BbIedKIqiTVcCADBfGIZTO4w99hvZaBMAaQi3AAAAMAbTEgAAAGAMwi0AAACMQbgFAACAMQi3AAAAMAbhFgAAAMYg3AIAAMAYhFsAAAAYg3ALAAAAY/z/es2GaQD3vksAAAAASUVORK5CYII=",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAJHCAYAAABmeht4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkkElEQVR4nOzdd1gUV/s38O9KLwIWQBQQFDsR0CQqYhTUGCOiYoktIgp5bLEFY02CpmjUxPIY9RELscRY0ShWNESxxkbUiBVQLASUJgK6Mu8f/HbeXXZnaYuUfD/XxXUNe87cc2Z22b05e+YcmSAIAoiIiIiISE2Nim4AEREREVFlxWSZiIiIiEgCk2UiIiIiIglMlomIiIiIJDBZJiIiIiKSwGSZiIiIiEgCk2UiIiIiIglMlomIiIiIJDBZJiIiIiKSwGS5Chg5ciRkMpnOf4iIqHoYM2aMxvf56OhoyX3u3LkDNzc31KtXD5GRkW+usW9Qbm4u+vTpA0tLS8ydO1djHU3XzcnJ6c029A0QBAHBwcGwsLDAJ598UtHNqVL0K7oBVHwdO3aEi4uLxrIrV64gNjYWAGBra4sPPvhAMs7PP/9cLu0jIiqO8PBwJCQkACjoDKiOicmb1qFDB+Tm5gIADh06hOTk5CL3CQ0NxV9//QWgINl+8OBBubYxOjpaTN67dOmCLl26lOvxAGDz5s347bffABSc77Bhw9Q+RwMCAgAAz58/x65du8q9TbpQmmt57NgxrF27FgAQFhaGjz76CF27di3HVlYfTJarkKCgIIwcOVJjWWhoqJgsN2/eHOHh4ZJxmCwTUUUKDw/HH3/8AaDgg57JctkFBASISV+XLl2KlSy/fv1a3JbL5eXWNoXo6GiV3t03kSwrn6Om3wGIn5cJCQlVKlku6bUsfO5v4jmvLjgMg4iI6F/oq6++QqtWrWBtbY2ffvqpoptTLj7++GP07NkTNWvWxIwZM9CsWbOKblKF6d69OwICAmBubo6PP/4Y77//fkU3qcpgzzIREdG/UPPmzXHt2rWKbka5MjU1xYEDByq6GZVCjRo1EB4ervWbZ9KMyXIV4OXlBQCS45VLSvFVHRERERFpx2S5CggKCkJQUJDO4vG/SiIiIqLi4Zjlf7mlS5dqnDYnNDQUAHD//n3MmDEDrq6usLKy0jol0Z07d7BkyRL06dMHjRo1gpmZGYyNjVG/fn306NEDS5YsQWZmptb29O3bV+v0R9HR0RgwYAAcHBxgZGQEW1tb+Pn5ISoqSmO8oqbdK/yPQ3R0tGRdqSmYrl27hqlTp6J169aoXbs2jIyMUL9+ffj4+GDhwoVIS0sr9fmePXsWI0eOROPGjWFiYqJ16r8rV65gwoQJcHNzg5WVFQwMDFC7dm288847GDt2LPbs2SPeLV+UQ4cOISAgAC4uLjA3N4eZmRmcnJzQv39//Pzzzzq5MWTPnj0az11xE+ujR48wbdo0NG3aFMbGxqhTpw569uyJQ4cOqcU6evQoevTogXr16sHU1BQtWrTAzJkzkZ6eXuz2CIKAPXv2YPjw4WjcuDHMzc1hbm6Oxo0bY/jw4dizZ4/W/d3d3TWej2LWh4iICHTr1g02NjYwNjZGs2bNMGPGDLXXx7NnzzB79my0atUKpqamqFu3Lj788EMcOXKk2OcCAImJiZg9ezbefvtt1K1bF4aGhrC1tUXHjh3x1Vdf4eHDh5L7Tp48Wevfy+XLlzFy5Eg4OzuLz0337t2xY8cOyZjh4eFiHMXNfQDg7e2tddquwu87MplM481MT5480fpepuzKlSsa6yripqenY968eXB1dYWZmRksLS3RuXNnbN26VS3WhQsX4O/vDwcHBxgbG6NRo0YYP348Hj16JHktyiImJgYff/wxGjZsCGNjY9ja2qJDhw5YsmQJnj9/XqwYXbp00fpalbJ//34MGTJEfF8wNDREvXr10KVLF8yaNQsxMTEQBEFln4SEBDG+8g1pc+fO1dqGsn42hYaGFus9vyivXr1CWFgYfHx8UL9+fRgZGaFBgwbo16+f1un2pN7bNWnevHmxXuOlvZbKf3tF/W1ocvz4cQQHB6NZs2awsLCAiYkJGjZsiP79+2PTpk1aPw90/ZleYQSqFr766isBgABA6Ny5c7H3O3z4sBAQECAEBAQIbm5uYoyvvvpKOHjwoGBlZSU0aNBA6Nevn+Dr6yvUrFlTrPP777+LcQICAsTHAQju7u6Cv7+/0Lt3b8HV1VV83MbGRjh+/Lhke5YtWya2x9bWVuVYX3zxhaCnpyd4eXkJQ4YMETp16iTo6emJdZYsWaIWLywsTAgICBBatGgh1nNychKPcfLkSZX6N27cEMvs7OwEAELPnj2FgIAA4caNGyp1X716JXz66adCjRo1BACCpaWl0KtXL2Hw4MHCu+++q/L4li1bSny+3377rVCjRg3hrbfeEgYNGiR06dJFkMlkYh1lM2fOFI9nZWUl+Pj4CIMHDxa6dOki1KpVS9zHyspK2Lp1q+T1T05OFnx8fMT6jo6OQv/+/YUBAwYITZs2FR93cXERrly5IhmnOC5evCiee8eOHcXYAQEBwrlz5wRbW1vB1dVVGDx4sNC9e3fB0NBQrPPjjz+KcWbPni1YWloKvXv3FgYNGiQ4OTmJ9Zo2bSr8888/Rbbl7t27wjvvvCPu5+zsLPTr10/w9/cXnJ2dxcffffddIT4+XmOML774QjwfMzMzcZ+7d+8Ko0aNEszMzIRevXoJH330kdC4cWOxvEmTJkJycrLYDkdHR6FNmzbC4MGDha5duwoGBgZi3aVLlxbr2n7zzTeCkZGRAEAwNTUV3n//ffFvRhHP2NhY+OGHHzTuv2XLFvFclNu6YcMG4X//+59gYGAgvP3228LgwYOFbt26iccCIEyaNEljzJMnT2p8rffo0UN8XPHz2WefifuNHTtWCAgIEHr06KH1PS49PV3yvaywxMREsW7huLdv3xZcXFyExo0bC4MGDRJ69eolmJubi3UmTpwoxlmzZo1gamoqfPDBB8LgwYNV3mdsbW2FmzdvFuv5Ko78/Hzh008/Fd8DatSoIXh6eoqvE2NjY6Fp06ZCXFyc0LlzZ43v0wrz58/X+FqVem1nZmaqXKeGDRsKPXv2FAYNGiS0a9dO5fl3cnIS/v77b3HflJQUjc+Lm5ub2vMeEBAgpKSkCIJQ9s+miIgIydewlPj4eJVzfPLkidCuXTtBX19f6NSpkzBkyBDBx8dH5W9y0KBBQm5urlos5fd25c9GTWbMmFGs13hpr6Xy315RfxuFj6fcpnr16gl+fn7CwIEDVV7rzZo1Ey5duqQxhq4/0ysKk+VqorTJslSMoUOHChYWFsKiRYuE169fi3Xi4+MFCwsLtTfhdu3aCQCExo0ba0yiLl26JHTo0EH88L58+XKR7VF+wx89erTQsGFD4a+//lKp8+eff4pvkvr6+moJrcJvv/2mkrC/fPlS67GzsrIEc3NzwcrKSnjx4oVa+evXr4VevXqJMT/55BPh+fPnKnWuX78utGzZUgAgyGQyYf369cU+3//85z+ClZWVcOTIEZU6u3fvVnvT/e9//6uSqGRnZ6udy/Tp04t8g3z8+LGYGOrr6wurV68W8vPzVers3btXfP5r1qwpxMbGaj2n4tqwYYPYvl69egn29vZq/2DcuHFDqFu3rng9z549K6xbt07o06ePkJmZKdaTy+XCmDFjxHgjR47Ueuy///5bsLGxERPITZs2qdXZvHmzmBAUJwlq2LChymu3U6dO4geXIBS8fiZOnCjW6dmzp5Cbmyu4ubkJBw8eVIn1119/CbVr1xYACAYGBsKtW7e0Hnvs2LFi3D59+gipqakq5ffv3xc6depU7A9M5Q/7wMBAoU6dOsIff/yhUufu3buCvb29WC8qKkprzKKSOU1+//33Yr/HKb+XFXV+ynHbtWsnvPXWW8L333+vUufRo0dCkyZNxHrbtm0Tjh49Knh6egpPnjxRqfvtt9+K9bp06VKscyuO8ePHi3FbtGihkpAKQkFi06tXL6FFixbC22+/Xezrq/xalUqW+/fvLwAQ9PT0hE2bNqm9LyQkJKi8H0odsyTPi9R+Jf1sEgTV13Bxk2V7e3vB29tbaNeundp1SUpKUvkHv2/fvlrbX1SyrFBer/HS7PfkyRPBxcVFfL9dtGiRIJfLVeocOnRIfG8yNzcXYmJitB5bl5/pbxqT5WpC18kyAJXeHWWBgYGSyXLhF76yjIwM8T/L9957r8j2KP9hyWQy4dy5cxrrzZo1S6wXEhKisY5cLhfq168v1tu1a5fWY69du1YAIIwbN05jeWhoqBird+/eknHu378v/uGbmpoKd+/elayrfL4AhH379mmsp0hoFRwdHcUkrvCHmLKhQ4dKvkHm5+er9CgvXrxYMs6ePXvEeq1atVJ7Ay0N5WQZgDBjxgyN9b7//nuVRLBt27Ya/5nJzs4WLC0tBQCCkZGRkJ6erjFeTk6O0KpVKzHm2rVrJduoeE0AEFq3bq2xN0lBOQGpWbOmxt7tnJwcsddfJpMJo0aNElasWKEx3jfffCPGmz59uuRxw8PDxXoeHh6S/xRmZmYKDg4OAlDQQ3nq1CnJmIV7xnbs2KGx3po1a8Q6AwYMkIwnCJU3WQYgDB48WGO9bdu2iXU8PT2Fd999Vy1RFoSCvyXlb2F08WF/+PBhMZ6JiYlw7949jfVyc3NVvsnTRbJ89+5dsXzQoEGScfLy8sT3pvJMlkv62SQIpUuWFe+pz54901j32bNn4rePAIR169ZJxq1qyXJ+fr7QtWtXsd6cOXMk4x09elSsV79+fZVOgcJ0+Zn+pnHMMmlkYGCAWbNmaSybOHEiNm3ahBYtWoiPBQUF4ccff8Rbb70lGdPCwgJ+fn4AgBMnTuDu3bvFbk/nzp3x7rvvaizr0aOHuB0TE6Oxjp6ensqCLopVjKQoyjXdWJmSkoLvv/9e/H3+/PmScRwcHMTjvnjxAkuWLNF6XIW2bdvC19dXY9mqVauwadMmAMDTp09x//59AICdnZ3kmDgA6N+/v2TZ/v37cfz4cTHOxIkTJev26dNHfJ6vX79e5FjekpLJZJLHV54XdO/evfD394eJiYlaPVNTU3Tq1AkAkJeXh3PnzmmMt3btWly/fh0A0KxZMwQGBkq2KzAwEE2bNgUA/PXXX1i/fn2xzmfo0KGwtrZWe9zY2BjvvfceAEAQBOzYsUPyRl7lFTlPnDihsc7Lly9V/ma//vprGBgYaKxbs2ZNTJ48GQCQn5+v9TWszNnZGQMGDNBYVpy/w6pg0qRJGh9Xfu2dPn0abm5usLW1Vasnk8lU6ko9XyWhPD519OjRcHZ21ljPyMgIc+bMKfPxlF2+fFncrl+/vmQ9Q0NDyfcsXSrpZ1NZTJ06FbVq1dJYVqtWLUydOlX8/euvv0Z+fr5OjlvRIiMjcezYMQAF9wzMmDFDsm63bt3QrVs3AAX3mSxatKhYxyjrZ/qbxmSZNPL09ETt2rU1lrm7u2P48OEqHxRBQUGYMmVKkXHt7OzE7TNnzhS7Pd27d5csU55S786dO5L1Ro8eLSaThw8fRlJSksZ6f//9N86ePQsPDw94eHiolW/YsAE5OTkAgBYtWqBVq1Za2668nKimG4Q00fah06NHDwwfPhxAwYej4pyuX78uJn6afPjhh4iPjxeTJGWrVq0St/v27SuZZCmU5pyKq1mzZiqvE2WFkwQfHx/JOI0aNRK3b9++rbHOypUrxW1/f3/UqCH9llijRg34+/uLvxd3EQdvb2/JMuXz8fT0hJGRkcZ6xTmXPXv2iDeVWVhYqHzgaKL8HB44cAAZGRla6wMQPxQ1UdygAxTcbJednV1kvMrG1NRU8gPcysoKVlZW4u9lfe0V1507d3D69Gnx9379+mmt7+vrq/V1XFLGxsbidmRkJF68eCFZd968eYiPj0f79u11dvzCSvrZVBaKzh0pyu8HCQkJkjeBVzXK74s9e/aEmZmZ1vrK/0D/73//K9YN4Lr4TH+TmCyTRkUlgFKys7Px22+/Yd68efj0008RGBiIkSNHij979+4V6z558qTYcRU9epoo/+ev7QO/UaNGYuKSn5+PDRs2aKyn6FUePXq0xnJFDywAtGvXTrrRSsdVePr0abE+PIt7/c3NzcVe3levXsHHxwcrV67UeFe8sbExnJycVD7wgYIlT0+ePCn+XtJzKsk/PcWhbT7xmjVrqvzepEkTyboWFhbitqbXxePHj3Hjxg3x97fffrvItinXuX79erGWFC7u+ZTlXADV12WbNm2gr699ZlDl5zA/Px/nz5/XWh/Q/ncok8lgaWlZZDsrs0aNGmlNNHX5fBVX4Z61Nm3aaK1vZmYm2fNcGm3bthX/Cbp9+zY8PT2xb98+jb2oVlZWcHJyUkmwda20n00lZWRkpPX1DhS8XpRf85WlF7QsCn8elPR9MSMjAxcvXixyH118pr9JnGeZNCqcUBUlNzcXX3/9NZYvX17s6YtK0vOk/IZUmPIb86tXr7TGCQoKEpOK9evXY86cOSpDF16+fIlNmzbB2NgYw4YN0xhDecWrixcvqgzv0CQrK0vl93v37mn9oAVKdv2XL1+O7t2749WrV/jnn38wfvx4TJs2DT179oSfnx969eqFOnXqSO6fkJCg8pxt2bIFv//+u9ZjKif8jx49Ql5enmSvaElpe64LJzLa6urp6YnbL1++VCsv3AtfnASjcJ3r168X2YtV3PMp7rlIvcaVX5eJiYlFvi6FQlN83bt3T2v9otoIqP4tarrmlV1R51ea56us1+HmzZvitoWFRbHeG+rUqVOiYW7a1KtXD19++SVmz54NAIiNjYWfnx9sbW3Rp08f+Pn5oWvXruWaICsr6WdTadWqVatYPfSOjo64evUqANXnqqoq/HlQ2vfFojpddPWZ/qYwWSaNivoaXlleXh4+/PBDMcFycXFBaGgovL29YWtrq/LBERoaKo6/K/xhXdr2aBunW5i/vz9q166NZ8+eISEhAVFRUSpfB+3ZswepqakYNmyY5Jvy06dPxe2rV6+Kb5TFVZy5f0ty/Tt37ozo6Gh8+umnuHTpEoCC8dG7du3Crl27oKenh65du2L8+PEav1ZUPh+gYM7ikkpPT9fZV59F9YiWtm5hhc/b3Ny8yH0K10lNTS1yn+K2sSznAqieT3x8POLj40u0vy5elyX5W6yM3tRrrySU5+EuzmsUgMZx/GUxa9Ys2NnZYc6cOeJQn+TkZKxZswZr1qyBubk5/P39MWXKFLi7u+v02IWV5L2xLIr7z7/yc/Ls2bPyas4b86beF3X1mf6mcBgGldnChQvFRLl+/fo4c+YMhg0bhvr166skypWBkZGRSo9x4Rv9tN3Yp8ns2bMhFMwqU+yfjz76SHcn9H88PT1x8eJFnDp1Cp9++qnKjTivX7/GkSNH0KdPH7z//vtaF0kBCpLlkp6TrhLlqqYyvqkDwLBhw0r8HE6fPr2im02VWGBgIOLj4xEREYGPPvpIJUF6/vw5Nm7ciLZt22LatGnV5ka3kqqs7wflrfB5V8frwGSZykw54RwzZgzq1q1bga0pWnBwsLi9Z88e8T/pxMREHDt2DI0bN0bnzp0l91ce0lB4iEVF8/T0xPLly5GUlISTJ09i3LhxKl93HT16FIMHD1bZp/AQjcp2TuWl8HkXZ/hQ4Trahre8aZX5dfmmVcUhIFKUx28Wd4ib4gZkXTM0NETfvn3x66+/IiUlBbt27YK/v7/Yy56fn4/FixerzBZUVeXl5RWrnvJzIjVzRnFVhtdtad4XC7/fVKb3RV1hskxlkp6eLk5dBhR980ll8NZbb+Gdd94B8P/HKAMFY5jz8/NVZs3QxNXVVdwu6Vfdb4pMJoOXlxd++uknJCYmqkyJduTIEZWhI05OTiq9RJX1nHRN+XkEinfehcf1vqmbjYqjKrwuy0L5a9uiEpmSLHNe2SlPg5aZmVnkN0OA+lfp5cHY2Bj+/v7YtWsX4uLiVGYR+fHHH0s0zK4ySktLK1YPeWJiorjdvHlzjXWUh+xoe+1WhtdtaT4PCr8vFn5vrQ6YLFOZ5Obmqvxe1Hiy4vaMlDflYRbr1q0TZ8fQ09NDQECA1n2Vp8+6cOFCsT4U9uzZA1dXV7Rt27bYPRbFkZWVhdWrV6vMhFCYpaUlwsLC0KxZM/Ex5Zvb9PX1VXrSizMrAlAwBMXV1bXIG8kqq3r16qkkuxcuXChyH+W7vFu1alWphp8ovy7j4uKK1bt8/vx5uLq6wtXVVXIqxfJQmq9pSzLDRHW40UrBy8tL5XfleY81efHihU7/Wbp58yZWr16NuLg4yTqNGzfGzp07xd9TU1M1zhRTlb6ez8vLK3Lmort37yIzM1P8vfBzpVDc125JXrfldS0Lfx6U9H3RysqqSnSalRSTZSqTunXrqty5WtSbS1Fv9G/KkCFDxLkjr127hnnz5uHBgwfo2bOn1on3AWDkyJEwNTUFUDD9WHHm1ly9ejWuX78Oe3t7nc0aART0II0dO7bIrz319PTg5uYm/l543szx48eL2wcOHFD5ANAkOztbPCfluFWN8nnv3r1ba09Sfn4+du/eLf4+YcKEcm1bSfXp0wf29vYACu4gV05epKxfvx7Xr1+Hnp6euO+boPye8fr1a5WyHTt2YOTIkVi8eLHK440aNRIThISEBLX9FLKzs3U+nWFFatSokbjADgCV16Am+/fv1+mY4TNnzmDs2LGIiIjQWs/BwQE2Njbi75rm5tX2vF+9ehUjR44s9v0ib8Jvv/2mtVz5mjg7O0sO3yvuvMElubm6PK+l8vviwYMHi5y5aseOHeL2f/7znzd28+ubxGSZykRfX1+lR2vdunWSH2IXL14sckqyN6VmzZoYNGiQ+PvXX38NoHg39tWtW1ecRgkAPv/8c629xXv37sXhw4chk8kwc+bMMrRa2smTJ7XOWy0IgtibrK+vr7ZoQM+ePcVVx7KysopcBWzOnDl49uwZrK2tVcaAVzWBgYHiPNU3b96UnHsbKEgsb926BQBo3bq11tX+KoKBgYHKP02hoaFav7K/cOGCuAqh1Ipo5UX5H9LCQwYiIyPx888/q83VamZmJvZY5eTk4NSpUxpjL1++vNzG7FaU0NBQ8R+F9evXIyEhQWO9ly9f4ptvvimXNuzcuVPrt2iPHz8Wn0s3Nze1OdEB7c/7xYsX8fPPPyMyMlJHLS67H3/8UXJoRFpaGn788Ufx96+++kpyqjnlf3aioqI01jlz5ozK/MZFKc9rqfx5kJ6ejgULFkjWjYqKElf7q1+/PkJCQkp1zMqOyTKVWWhoqDj84vLlywgMDFT7CvjChQvo169fpRrHppwY5+fno169eujVq1ex9p05c6a4etOFCxfg5+en9jV2fn4+wsPDMWTIEADAjBkzym1lq5ycHPTu3Vvj13jp6emYNGmSmCxPmjRJ4/LLmzdvFieK/+9//4uQkBC11bqeP3+OkJAQLF26FHp6eggPDy/2dFaVkbGxMXbu3CkOpxg/frw4hl3Zli1b8OmnnwIAbG1tsWPHDp1+Q6ArQ4cOFVdovH//Prp3746///5brd6+ffvQs2dPvHr1CkOGDCmXGVq0Uf66WvFBCwD//POP2JunWApc2SeffCJuT5s2TW2qrh07dmDRokXi31x14ePjI66QmpOTgw8//FBtWMTTp08xYMAAJCQkoGHDhjpvw6VLlzBy5EiN/4Ddu3cPQ4YMETtKFJ0PhSk/7ydPnhTn0H316hV+/vlnAJqf94pQu3Zt1KhRAx9++KHKuGSgYG55Pz8/PH78GADQv39/rcP3Ro0aJfa2Llu2TG260atXr+Kjjz4qUcdDeV9L5c+Db7/9FosXL1brCDty5Ij43mFubo7t27dX+hv8S0smVKbshUpk7dq14opBV65cQWxsLICCD/MPPvgAQEEvaOGvM5XFxcWJ/zUqx3BzcxPnyywqBvD/vzpVJFcWFhbw8vKClZUV7t69i/Pnz8PR0RGtW7fGvn371I6xePFi1K1bF3v27MGePXsAAIcOHRLHvfXo0QP16tVD8+bNxXXqlc9f8eYAQHzT8vLyKrKnuFWrVmIyMX36dK3/QRf2+vVrzJw5E0uWLIFcLoeenh7at28PR0dH5OTk4Pz583j06BEMDAwwZ84cfPnll2oxijrfos7j2bNn6Nq1K65cuQKgYBybu7s7mjRpAplMhsePH+PChQt48eIFZDIZPv30UyxZskSyB+Tp06cYMWIEDhw4AKDgDdDT0xPW1tZISUnBmTNnkJWVhbp162LdunVFLgerTWpqqtgLcefOHbGnsHHjxuIHgeJ1UdznWjmm1OtZEVNZfHw8Bg8eLI7XdnZ2FnsxL126JI4Bfffdd7Ft2zY4OTmpnY9yG3fu3Cl+ddm/f3+Ym5uXqo2lfY3/8MMP+PLLL8XnvU2bNnBxcYFcLsfly5dx7949yGQyjBkzBsuXL1f72jQmJkac5SYmJkZc4KJjx45wcXFReU9Qfg1rOm/lv1mFFy9eoE2bNuI/d56enqhXrx5OnjyJlJQUtGjRAn/++afaV/n5+fno16+fmFBbWFjgvffeg7m5Oa5evYr79+/j119/xfnz58X53JWva1BQkPjaUoy1f/LkCQ4fPgxA9b1zxowZaN68eYnOTxFT6vWsiFkagiDgs88+w9KlSyEIAmrUqIEOHTrA0dERqampOHnyJExMTPDrr7/iu+++wx9//AFA9b1k5cqVMDU1xYIFC8RkW9M5AUB4eDiAgkRsyJAhePjwIYCCfzDfffddNGjQALm5uXjw4AEuXbqE/Px8mJub46effsKIESMkz2PEiBHiP6RNmzaFm5sbYmNjcevWLZiZmeHs2bNwdXUt82eT8vOm6TUM/P/nQ/G8PX/+HLt27QIANGzYEHv27EHv3r3x5MkTeHp6okGDBvjnn39w8uRJceaKjz76CBs3boShoaHW52/x4sWYNm0agIJv97y8vFC/fn08ePAAZ86cwZdffolOnTqJq8wqvxal/s6Ley2V/56lrqXy34bC06dPMXz4cBw6dAhAwX0e7dq1g5GREa5duyZ+djZt2hS//vorPDw8tD4Pb+IzvdwIVGUFBAQIALT+NGzYUGuM33//vcwxFOLj44UpU6YIrVq1EszMzARDQ0PB1tZWeP/994WffvpJyM7OFr766iuNx4iPjxcEQZAsV/x07ty52OcfEBBQZJt/+OEHsf7NmzeLdZ6F3bp1S/j888+FNm3aCLVr1xb09fUFKysr4Z133hE+//xz4datW5L7FnW+xT2Py5cvC19//bXwwQcfCA0bNhRMTU0FPT09wcrKSmjTpo0wadIk4cqVK8U+p99//10ICgoSmjZtKtSsWVMwMDAQbGxshK5duwo//PCD8OzZs2LHkhIfH1/kuSteF8V9rksSs7D8/HwhIiJCGDJkiODs7CyYmpoKpqamgrOzszBkyBBh9+7dQn5+vuT5lEcby/Iaf/TokTB37lyhQ4cOgrW1taCvry9YWFgIbm5uwoQJE4TLly9L7rthw4ZivyeU5G9W2T///CN8+umngouLi2BkZCQYGhoKLi4uwpQpU7S+vuRyufC///1P6Nixo2BpaSkYGxsLLi4uwoQJE4S7d+9qbdOGDRvEOEU9B7///nuJz6+4Mcvi9OnTwvDhwwUHBwfB0NBQqF27tuDh4SHMmjVLePz4sSAIgtC5c2eNx09LS9NarvxT+JofPXpUmDp1qtCpUyehXr164nNmY2MjdO7cWfj222+FR48eFdn+V69eCQsXLhQ8PDwEMzMzQV9fX7CzsxOGDBkiXL9+XaxX1s+m4ry3Kp4PbbEzMjKE7777Tmjfvr1gbW0tGBgYCHZ2dkLfvn2FyMjI4j9xgiAcPXpU8PX1FePY29sL/fv3F06cOKH1nKX+zot7LYv6ey78t1HYsWPHhFGjRglNmjQRzM3NBSMjI8HBwUHo27ev8PPPPwuvXr0q9fOg68/08sKeZSIiIiIiCRyzTEREREQkgckyEREREZEEJstERERERBKYLBMRERERSWCyTEREREQkgckyEREREZGE6reAdwXLz8/Ho0ePULNmTXF5UiIiIiKqPARBQFZWFurXry+5UJcCk2Ude/ToERwcHCq6GURERERUhAcPHsDe3l5rHSbLOlazZk0ABRffwsKigltDRERERIVlZmbCwcFBzNu0YbKsY4qhFxYWFkyWiYiIiCqx4gyZ5Q1+REREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSuIIfEdG/hCAIkMvleP36dUU3hYio1PT09KCvr1+s1fd0gckyEVE1JwgC0tLSkJ6ejry8vIpuDhFRmRkZGcHKygq1atUq96SZyTIRUTWXnJyMtLQ01KxZE9bW1m+0R4aISJcU35BlZGQgOTkZL1++RL169cr1mEyWiYiqsYyMDKSlpcHOzg5WVlYV3RwiIp2oWbMm0tLS8OTJE5iYmMDS0rLcjsUb/IiIqrHMzEyYmpoyUSaiaqdWrVowNTVFZmZmuR6HyTIRUTWVn5+P7OxsmJubV3RTiIjKhbm5OV68eIH8/PxyOwaTZSKiakoul0MQBBgbG1d0U4iIyoWxsTHy8/Mhl8vL7RhMlomIqilFT0uNGnyrJ6LqSfH+xp5lIiIqNc58QUTV1Zt4f2OyTEREREQkgVPHUblxmhGps1gJC3rpLBYRERFRcbFnmYiIiIhIAnuWSYUue4OJiIiIqjr2LBMRERFVIxcuXICDgwNatmyJxMRElbKRI0dCJpOp/ERHR5f4GE5OTmpxqiv2LBMREYDq/80S732ontLT07F06VIAQN++feHu7l6h7SkvV65cwZ49ewAAkydP1roq588//4ykpCQAwK5duzB16lSx7D//+Q+6deuGGzdu4Lvvvit1e5YuXYrnz59j9+7diIiIKHWcqoDJMhEREVVZ6enpmDt3LoCC3s7qnCwrznPkyJFak+Xhw4cjIiICZmZm6Nu3r0pZhw4d0KFDB0RHR5cpWVbEvXPnDpNlIiIiIqo62rVrJ/YsU9lxzDIRERERkQQmy0REREREEpgsExERlZFcLlebGcDJyQkAcOnSJQwdOhT29vYwMDDQOANBfn4+Nm/ejA8++AC2trYwNDSEtbU1OnfujB9++AHZ2dlFtuHGjRsYN24cmjVrBjMzM5iYmKBhw4bo3bs3li1bhocPH0ruKwgCfv31V/Tu3Rt2dnbi8b29vbFixQrk5eWV6JzPnj2Lvn37wtbWFsbGxmjSpAlmzpyJ58+faz2HQ4cOwd/fH/b29jA0NIS5uTlcXV0xevRo7N69W6Ud0dHRkMlkcHZ2Fh8LDAxUa1NCQkKpn5/C+3Tp0kWtzXXr1i2yjrJXr14hLCwM3bt3h42NDQwMDGBlZYW3334b48ePx+HDh5Gfny/WDw0NhUwmQ2BgoPiYs7OzxnPR1OaRI0dqbY9Ceno6Zs6ciRYtWsDMzAy1atVCly5d8OuvvxZr/6Lo4jVeUThmmYiIqIz09PSwadMmAMCaNWtw8uRJAAUzEYwZMwYjRoxAaGgobt++jeXLlyM3N1fc9+nTp+jTpw9OnToFZ2dnjB8/Hg4ODnj06BG2bNmCkJAQLF++HPv27UPr1q01Hn/hwoWYNWsW8vPzMXDgQEyePBlyuRxXr17Fpk2bsH//foSEhGDTpk0YPHiwyr5Pnz6Fv78/Tpw4gXr16iEwMBCNGzfG48ePsXHjRnz66adYvnw59u/fj6ZNmxZ5ztu2bcPnn3+OwMBA+Pn54fbt2/jpp5+wYMECnDp1CtHR0ahRQ72vbsqUKVi6dClsbGzw8ccfo0mTJsjJycG5c+cQHh6O9evXo1WrVrh27RoAoEWLFti0aRNSU1MxZcoUAMAnn3yCTp06qcS1trYu9fOj2Ofbb79FXFycxmu/evVq5Obmaq2jkJCQgN69e+PatWtwcnLCuHHjYG9vj4cPH2Lv3r1YuXIlVq5cqXKe/v7+cHFxwcmTJ7FmzRoAwJIlS1C3bl0xrrm5uco1UVzP1NRUre1RePz4MUaNGoXGjRtj7NixMDIyQkxMDH755Rf88ccfiIyMRHh4OPT09IoVrzBdvMYrEpNlIiKiMpLJZBg+fDgAICoqCidPnkRaWhpCQkJw6tQplSTTwsICc+bMAVDQy/jhhx/i/Pnz6NixIw4fPgwzMzOx7ueffw5/f3/s378fH374IWJjY1GnTh2VYy9btgzTp09HjRo1sHPnTvj7+6uUh4SE4N1330VGRgaePHmiUqZ8/KZNm+LUqVMqSdhnn30GX19fHD9+HN7e3rhy5Qqsra21nvO8efNw/vx52NrainF8fHzw/vvv4+TJk9ixYwc++ugjlXYcP34cS5cuhampKc6fP4+GDRuqlA8fPhy9e/dW6Zm2tbXF8OHDkZCQICbLHTp0ENtUWGmeH8U+a9eulUyEBwwYUGQdoKDn1sfHB/Hx8fD09MSRI0dUnusvv/wSEyZMwMqVK1VuzmvdujVat24NuVwuJst9+/YVe5OVKa4JAMyZM6fYyfLkyZMxYcIEfPHFF+Jj//nPf+Dn54dBgwZh8+bNcHZ2xrx584oVT5kuXuMVjcMwiIiIykFmZiYmTpyokogBQO/evREQEIB69eph6dKlOH/+PGQyGcLCwlSSCAAwMDDA6tWroaenh4cPH2Lx4sUq5Q8ePMDnn38OABg8eLBaogwATZs2xVdffaWxjUuWLMH58+cBAD/99JNKogwAJiYmWLt2LfT19fHo0SOEhIQUec5Tp05VSZQBoHv37nBwcAAA7Nu3T22//fv3AyjoGS2cKANAr1690L59e63HLqniPD+6NHPmTMTHx6NGjRpYv3692nMtk8nw448/iv+MvEl16tTB7Nmz1R4fOHAgevfuDQBYsGBBqWbYKOtrvDJgskxERFROBg0apPZY69atER4ejubNm2P58uUAAHd3d7Ro0UJjjAYNGohfTSu+YldYvXo1Xr58CQAYMWKEZDv8/PxgaWkJIyMjlccVx7ezs0PXrl017uvs7Iz33nsPAPDLL78gJSVF8jgAxOSqsJYtWwIoGFtdmGKM7q1bt9R6vxVWr16Nn3/+WeuxS6qo50dXMjMzER4eDgB499130axZM431jIyM0KdPH1haWurs2MUxcOBAjUNjAGDo0KEACnqIS3P9y/oarwyYLBMREZUDS0tLNGjQQLL8xo0bYk9dy5YtkZqaKvmj6G18+PAhHj16JMY4evSouP3OO+9IHqtx48ZIT0/H2LFjVY6vuOnv7bff1rpcsSK2XC7HH3/8IVnPysoKNjY2Gstq1aoFAMjIyFAr69y5MwAgKysLnp6eWLduHbKyslTqtG7dWqynC0U9P7oUExMjjoPW9jwBQFhYmNoS1eXtrbfekixr06aNuH3ixIkSxdXFa7wyKFWynJ6eji1btmDUqFHw8PCAlZUV9PX1YWVlhXfeeQczZ87E/fv3JfdPSEhQu1tT6mfChAlFtkcul2PVqlXo2LEj6tSpA3Nzc7Rs2RIzZ86U/A9Vk8TEREyZMgXNmjWDqakpbGxs4O3tjfDwcJU7U4mIiIpiYWGhtfzOnTvi9pYtW2BtbS35c+TIEbGu8ueaIoaJiQlq165dovbdvn1b3C4qabS3t9fY7sJq1qwpWabo1ZbL5Wpl/fr1E8faxsfHIygoCDY2NvD19UVYWBiePn2qtX2lUdTzo0vK10z5WlYWin9kNFF+bcTHx5cori5e45VBiW/wO336NHx8fJCXlweZTIZ+/fphyJAhsLCwwJ07d7Bx40YsWLAAy5cvx4YNGzR+xaFLqamp8PX1xblz59C8eXNMnz4d5ubmiIyMxIIFC7Bu3Trs3LlT/ApJSmRkJIYOHYqsrCwMGDAAU6ZMwdOnTxEWFobAwEBs3rwZERERWt8IiIiIFKS+1lbIzMwUt/39/VV6fbVp1KiRuK3ofTU2Ni5x+5R7bk1MTLTWVS7X1DOsUNQ5a7Np0yYMHDgQy5YtQ3R0NHJzcxEZGYnIyEhMmDABAQEB+P7777UmdiVRlraWlPK1Ls1zVd60zXKh3N7Cvf1F0cVrvDIocbKcmZmJvLw86Onp4eDBg+jevbtK+Zw5c/Dee+/h6tWr+Pjjj/HWW29JjlH57rvv0K9fP63H0/ZHIZfL0a9fP5w7dw6enp6IiooS/6DHjRuHWbNmYf78+ejTpw/Onz+PJk2aaIxz6dIlDBw4EDk5OVi6dCkmTZoklo0bNw6dOnXCsWPHMHToUI03JhAREZWUcudL3bp10a1bt1LFSEtLU5mKrjTHL2r/nJwccbs8x9P6+fnBz88P//zzD/bu3Yvt27fj2LFjePnyJcLCwnD27FlcuHABhoaG5daG0nr9+rVkWUmudUXQ1nbl9pa0w1AXr/HKoNT/Vo0cOVItUQYKxistWrQIAPDy5UusXbtWMoadnR2aN2+u9afwHbXKwsLCEBMTI95hWfg/47lz58LFxQXp6emYOnWqZJxx48YhJycH7dq1U0mUgYJkfcWKFQAK7tbdtWuXZBwiIqLiUu7AKe0YVRcXFwAFyeyzZ89KtS+AImc5UC5X3q+82NjYIDg4GEePHsXNmzfFscpXr17V+U1+xaGvX9C3+OrVK8k6yr2ohZXkWleE9PR0yTLlxWyUF4ApDl28xiuDEifLVlZWaNeunTivoCZt27YVtzXd9aoLgiBg/vz5AICOHTuKd9kqMzAwEFeu2b9/P2JjY9XqREVF4dy5cwCA4OBgjcfq0qWL+IR/8803umg+ERH9y7Vo0UIcv/rnn39qHMurkJiYCENDQ7W5dZU7rS5cuCC5/927dzF48GDMnDlTfKxly5bieNQLFy5AEATJ/f/8808ABUmjLm+yU9i9e7f4mV5YkyZNEBERISashT/Ltd2YqCuK3nSppPL169e4e/eu5P5eXl7icAZtzxMAfP/99xg8eDAuXryo8nh5nqdiARRNLl26JG4XNaS1MF28xiuDEifL7du3x9mzZ/HBBx9I1jE1NRW3C09Toytnz57FgwcPAEBrt77yG8mOHTvUypUf0xZHUXblyhWtNzcQEREV18SJEwEAz549w+7duyXrrVmzBq9evcKQIUNUHh8zZow4JEHblFsbNmzAtm3bJI//+PFjHD9+XOO+iYmJ4iwIQ4cOLZd5gH/77TfMnj1bsnfWyspKzC0K35innHMo9/zeuXMHLi4uGDVqVJnbp5jq7d69e+JUfcqioqK0LtdsYWEhLld97tw5lZsrlWVmZmLevHn47bff1MbtSp3nli1b4OLigv/973/FP6FCdu7cKfnP0i+//AKg4B+lgICAEscu62u8MiiX0e2K/0CBglV7ikMul5doXXDlP2p3d3fJem5ubuIgfk1vBIrHrKysNE6EruDh4aHx2ERERKU1efJkcbGNSZMmaUyiDh48iIULF8LOzk5tURAHBwcsXLgQQEFSs3fvXrX9z5w5g8WLF6N27dqYPHmy2vHfffddAMCECRPUVnzLzc1FUFAQ5HI56tevX64LRgiCoHFhDKBgWerMzEzUqFEDAwcOVCmztrYW729S/qr/woULuHv3rk467RRzR+fm5uLXX39VKcvOzsbs2bO1DhsFCu7TcnZ2Rn5+PkaPHo0XL16olMvlcowaNQovXrzA1KlT1e7ZUl48Rfk8T548ibt378LKyqo0pwYAiIuLE19Hynbu3CneqzVz5sxSzeRR1td4ZaDz5a5zc3Mxa9YsAAXz9gUFBUnWvX79OoYOHYqYmBg8evQIr1+/hqmpKdq3b4/hw4fj448/Fr92KUz5KwPFqkCaGBkZwdraGsnJybh+/bpKWU5ODu7du1dkjMLlheMQERHt2bMHz58/Fz9XsrOzsXnzZgAFyxBrus/HwMAABw4cgL+/P6Kjo+Hh4YERI0bA3d0dWVlZOHXqFCIiImBnZ4fIyEiNywBPmjQJubm5mD17Nvz9/TFo0CB07twZL1++xIULF7B161aYmppi9+7dagmdoaEhDhw4gH79+uHkyZN46623MGrUKDRu3BiPHz/Gxo0bcevWLTRp0gT79+9X61XWds6KqeCOHj2K5ORkjXX69esHMzMzsbd4xYoVOHXqFPr06YMGDRogKysLZ8+eRUREBPT09PDjjz+qdF4pjBgxAsuWLcPKlSthZWUFmUyGxYsXQ09PD6NHjy7186PQoUMHfPTRR9i2bRv+85//4OLFi3B3d0dycjLWr1+PMWPG4LfffkNycjKSk5PFuP7+/mKPsJWVFY4fPw5fX1/xWgcEBKBBgwZ48OABtm7dilu3bmHAgAEaV1x0c3ODm5sbYmNjMXXqVIwdOxaJiYlYv3496tevD19fXyQnJ4tzbys6IO/du6fynJw5cwZ3795VGSa7YMECzJs3D7///jt8fX1haGiIkydPir3Kw4YNU2uT4nr+9ddf4mOK43h6eoo947p4jVc0maBtkFIx5OXlIT09HU+fPsXp06exZMkS/P333xg0aBDWrFmj8a7ZhIQEcZB406ZNMXr0aLRo0QJ5eXk4ceIEwsLCkJubi/bt22P37t2ws7NTi9GhQwecPXsWQMFgeW1zRLq5uYlP5rNnz8T/1m7evCmu0NOtWzeVyd0Lu3z5sjgxt5+fn8b/3oGCr1AsLS2RkZHxRudw1BWnGZEV3QSNEhb0qugmEFU5ubm5iI+Ph7Ozc7Gmq6qsf/+6Ut7vI05OTpI3MXXu3BnR0dGS+wqCgJ07d2Ljxo24cOECnj59ChMTEzRr1gx+fn6YMGFCkT2HN27cwPLly3Hs2DEkJSUhPz8fTk5O6NmzJ0JCQrR+TgqCgF9//RWbN2/GxYsX8ezZM9SsWROurq4YOHAggoODNfbQajtnRXrRpUsXyYVM4uPjxTGqJ06cwJ49e3D69Gncvn0bmZmZMDAwgKOjIzp37oxx48bBzc1NY5y8vDyEhoZi27ZtSEpKgpWVFVq3bo3Q0FB4eXkV2dainh+gYOjDDz/8gM2bN+POnTswMTFB27Zt8dlnn6Fnz54az/PBgwdqvbGvXr3Chg0bsH37dsTGxiI9PR2WlpZo27YtRo8erXXK3aSkJEyfPh1RUVFIS0uDnZ0dOnXqhG+//RYNGzZEdHQ0vL29JfcXBAEjR45Uu0ny999/R6NGjTB//nwcOXIEjx8/hoGBAdzd3TFmzBiNQyO0Xc8NGzaI94wpH7usr3FNSvo+p1CSfK3MyXJ4eLg4DgcAHB0dMX/+fAwZMkRyMLoiWe7fvz+2bNmi9gd4+fJldOnSBZmZmWjbti1OnTqlVsfV1VXs4U1NTdX6n0j79u3Fm/gSExPh6OgIoOArGsVKOr6+vlqnhYuLixOnwPP29pYciqG4+A8ePFC5+EZGRuU2fluXKuuHJZNlopIr7YcIEVFV8SaS5TKPWe7RoweOHj2KPXv2YNGiRahTpw6GDRuGpk2b4sCBAxr3sbe3R3x8PLZu3aoxgfTw8MCXX34JALh48SJWr16tVkd5zsei5ltULlceI6SLGFIcHBxgaWkp/kjd5UtERERElVeZk2U7Ozt069YNffr0QUhICC5evIhp06bhzp078PX11Tgfor6+PpycnGBgYCAZNzAwUOyZXr9+vVq58pzKmu5MVaZcrnw3qS5iSHnw4AEyMjLEH+XpeoiIiIioatD5bBgymQzff/892rRpA0EQMHbs2FKt8V27dm1xcPjVq1fx/PlzlfLSrjykvJ8uYkixsLBQ+akKQzCIiIiISFW5TB0nk8kwbNgwAAVJ5tatW0sVx8bGBkDBoPDk5GSVMuVJqwuXFaYot7CwUJmKxdHRUZxWrrgxCh+biIiIiKqvckmWgf8/gTdQ0DNcGvn5+eK2np6eSpmrq6u4rVicRJO8vDykpKQAAFq1aqVSZmJiIvZea4sBqC5PWTgOEREREVVPJU6WDx48KDkFjDLl5Lbw8obffPON5NRryhTDN2rUqCH2MisoL3Zy5coVyRixsbFi0q1pgRTFY+np6VrXLVde7rG4C60QERERUdVW4mR57NixGD9+fJH1lJeEVkzVpvDFF19g1apVWvd//PixmLy2adNG7aa69u3bi3MXHjt2TDJOVFSUuF141Z/Cj2mLoyhzd3eHi4uL1rYTERERUfVQqmEYN27cQEJCgmS5IAjYuHGj+LtimUhlp0+fllwDHoDKdHGffPKJWrlMJhNXCoyJiUFcXJxaHblcjvDwcABAr169NE5m3q1bN7Rr1w4AsHbtWo1tOXHiBG7dugUAkktxEhEREVH1U6pkOT8/Hx9//LHGWS7y8/MxZcoU/PnnnwCAIUOGiMmosqysLHzyyScap2w7cuQIvv/+ewDAe++9p7LoibLg4GB4eXlBEAQEBwerzFgBAKGhobh9+zasrKywZMkSyfNZuXIlTExMcObMGaxYsUKlLD09XexJ9/X1xYABAyTjEBEREVH1ol/SHdzc3JCYmIiYmBg0btwYgwcPRvPmzVGnTh3cv38f27dvF9cbHzFiBNasWaMxRmxsLLZt24aLFy9i8ODBaNSoEbKzsxEdHY3du3dDEAT07NkTW7Zsgb6+5mbq6+sjIiICvr6+iImJQdu2bREYGAgzMzMcOHAAkZGRqFu3Lnbu3IkmTZpInlObNm2wfft2DBs2DBMnTsTJkyfh4+ODp0+fIiwsDAkJCfDx8RHXSCciIiKif4dSLXd97do1RERE4OTJk4iLi0NqaipevXqFmjVrwtnZGZ6enhgxYoS4lLQm586dw549e3Dq1CncvHkTaWlpMDAwQL169dChQwd8/PHH6NGjR7HaI5fLERYWhk2bNiEuLg55eXlwdHSEn58fJk+eDDs7u2LFSUhIwNKlSxEZGYmkpCSYmZnB1dUVAQEBCAgIEKeZ06YkyydWRlzumqj64HLXRFTdvYnlrkuVLJM0Jsvlg8kyUckxWSai6u5NJMvlNs8yEREREVFVx2SZiIiIiEgCk2UiIiIiIglMlomIiIiIJDBZJiIiIiKSwGSZiIiIiEgCk2UiIiIiIglMlomIiIioWBISEiCTyVR+unTpUtHNKlclXu6aiIiqqVDLim5B+QrNqOgWUDlIT0/H0qVLAQB9+/aFu7t7hbanvFy5cgV79uwBAEyePBlWVlYV0g5ra2ts2rQJAPDtt98iLi6uQtrxJjFZJiIioiorPT0dc+fOBQA4OTlV62RZcZ4jR46ssGTZzMwMw4cPBwCsXbv2X5EscxgGEREREZEEJstERERERBI4DIOqBKcZkTqLlbCgl85iERERUfXGnmUiIqIyksvlajMEODk5AQAuXbqEoUOHwt7eHgYGBmJ5dHS0uH9+fj42b96MDz74ALa2tjA0NIS1tTU6d+6MH374AdnZ2UW24caNGxg3bhyaNWsGMzMzmJiYoGHDhujduzeWLVuGhw8fSu4rCAJ+/fVX9O7dG3Z2duLxvb29sWLFCuTl5ZXonM+ePYu+ffvC1tYWxsbGaNKkCWbOnInnz59rPYdDhw7B398f9vb2MDQ0hLm5OVxdXTF69Gjs3r1bpR3R0dGQyWRwdnYWHwsMDFRrU0JCQqmfn+LM+lC3bt0SzQzx6tUrhIWFoXv37rCxsYGBgQGsrKzw9ttvY/z48Th8+DDy8/PF+qGhoZDJZAgMDBQfc3Z21nguhSUkJGDSpElo0aIFzMzMYGZmBhcXF4wcORLnzp3T2k7F/p988gkaNmwIIyMj2NnZoXfv3jhy5EiR+1Yn7FkmIiIqIz09PXGGgDVr1uDkyZMAgF27dmHMmDEYMWIEQkNDcfv2bSxfvhy5ubnivk+fPkWfPn1w6tQpODs7Y/z48XBwcMCjR4+wZcsWhISEYPny5di3bx9at26t8fgLFy7ErFmzkJ+fj4EDB2Ly5MmQy+W4evUqNm3ahP379yMkJASbNm3C4MGDVfZ9+vQp/P39ceLECdSrVw+BgYFo3LgxHj9+jI0bN+LTTz/F8uXLsX//fjRt2rTIc962bRs+//xzBAYGws/PD7dv38ZPP/2EBQsW4NSpU4iOjkaNGup9dVOmTMHSpUthY2ODjz/+GE2aNEFOTg7OnTuH8PBwrF+/Hq1atcK1a9cAAC1atMCmTZuQmpqKKVOmAAA++eQTdOrUSSWutbV1qZ+f4sz6sHr1auTm5hZrZoiEhAT07t0b165dg5OTE8aNGwd7e3s8fPgQe/fuxcqVK7Fy5UqV8/T394eLiwtOnjyJNWvWAACWLFmCunXrinHNzc3VjrVx40Z88sknePXqFQYOHIhJkyZBJpPhzJkz+OWXX/Dzzz9jypQp+OGHHyCTydT2P3r0KPr164fs7Gy0aNECc+fOhbW1NeLi4jBkyBB8/vnnWs+1OpEJgiBUdCOqk8zMTFhaWiIjIwMWFhYV3ZwS0+Vwh8qKwzDo3yI3Nxfx8fFwdnaGsbFx0Ttw6jidGDlyJH7++WdYWFigdu3aOHz4sEqS+e2332LOnDn4/fff0bFjR3h5eeH8+fPo2LEjDh8+DDMzM7Huq1ev4O/vj/3796NBgwaIjY1FnTp1VI63bNkyTJ48GTVq1MCOHTvg7++vUn7r1i28++67yMjIwJIlSzB58mSV+IrjN23aFKdOnVJJwnJycuDr64vjx4+jfv36uHLlCqytrbWes729PY4fPw5bW1ux/OjRo3j//fcBAL/++is++ugjlf2PHz+Orl27wtTUFH///TcaNmyoUh4ZGYnevXvD0dERCQkJKmUJCQli7/KGDRswcuRItfZJtbWo50fRS9ylSxf88ccf6Ny5s8o3AsqKqpOeno42bdogPj4enp6eOHLkiMpzLQgCJkyYgJUrV8LS0hLp6ekq+4eHh4u9y/Hx8ZK9yQCwd+9e9O3bFzKZDLt27UK/fv1Uyk+cOIFu3brh1atXmD9/PmbMmKFSfu/ePbRu3RrZ2dl4//338dtvv8HIyEgsv3//Pry8vJCTk4PU1FSt16W8lfh97v+UJF/jMAwqNwnGQ3X2Q0RU1WRmZmLixIkqiRgA9O7dGwEBAahXrx6WLl2K8+fPQyaTISwsTCV5AgADAwOsXr0aenp6ePjwIRYvXqxS/uDBA7GHb/DgwWqJMgA0bdoUX331lcY2LlmyBOfPnwcA/PTTTyqJMgCYmJhg7dq10NfXx6NHjxASElLkOU+dOlUlUQaA7t27w8HBAQCwb98+tf32798PoKC3uHCiDAC9evVC+/bttR67pIrz/OjSzJkzER8fjxo1amD9+vVqz7VMJsOPP/6o8Z+Rknjx4gWCg4MBAIMGDVJLlAHgvffew6hRowAAX3/9NZ49e6ZSPn36dGRnZ0NPTw//+9//VBJlAHB0dMR3332H1NTUMrW1qmCyTEREVE4GDRqk9ljr1q0RHh6O5s2bY/ny5QAAd3d3tGjRQmOMBg0aiMMvFMMCFFavXo2XL18CAEaMGCHZDj8/P1haWqolPYrj29nZoWvXrhr3dXZ2xnvvvQcA+OWXX5CSkiJ5HKAg2dSkZcuWAArGVhemGKN769YtPHnyROP+q1evxs8//6z12CVV1POjK5mZmQgPDwcAvPvuu2jWrJnGekZGRujTpw8sLUv/LY/yczR0qHRn04cffgigILmOiIgQH09NTRUXP+nQoYNkD3b//v1haGhY6nZWJUyWiYiIyoGlpSUaNGggWX7jxg0kJSUBKEgkU1NTJX8UvY0PHz7Eo0ePxBhHjx4Vt9955x3JYzVu3Bjp6ekYO3asyvEVN/29/fbbGsetFo4tl8vxxx9/SNazsrKCjY2NxrJatWoBADIy1IfDdO7cGQCQlZUFT09PrFu3DllZWSp1WrduLdbThaKeH12KiYkRx0Fre54AICwsDImJiaU+lvJrwsnJSfI1pdyzrXyz35kzZyCXywEAbdu2lTyOiYkJXFxcSt3OqoQ3+BEREZWDosZB3rlzR9zesmULtmzZUqy4T548Qf369VVimJiYoHbt2iVq3+3bt8XtopJGe3t7cVu53YXVrFlTskzRq61IxJT169cPw4cPx+bNmxEfH4+goCBMmDABXbt2RZ8+feDv7682Vrus3uR9RcrXTPlalvex3NzcirWPcm/+vXv3xG3F60yK4h+g6o7JMhERUTnQNOODsszMTHHb399fpddXm0aNGonbit7XktzYVHhfoCDZ1ka5XFPPsEJR56zNpk2bMHDgQCxbtgzR0dHIzc1FZGQkIiMjMWHCBAQEBOD777/XWYJWlraWlPK1Ls1zVRLKr6s9e/aojY3WRPkfrZK0VV//35FG/jvOkoiIqJJR7oWtW7cuunXrVqoYaWlpKlPRleb4Re2fk5MjbpdlPG1R/Pz84Ofnh3/++Qd79+7F9u3bcezYMbx8+RJhYWE4e/YsLly4UCnHyr5+/VqyrCTXuqyUj/Xuu+/Czs6u1PsX1VZt51ydcMwyERFRBWjSpIm4Xdoxqooxozk5OWozGhR3XwDi2GkpyuVvYpyqjY0NgoODcfToUdy8eVMcq3z16lWd3+RXHIoe1FevXknWUe7RLawk17qsyvq6Uv7mQttCNgCQlpZW4vhVEZNlIiKiCtCiRQtx/Oqff/6pcSyvQmJiIgwNDdVmJujevbu4feHCBcn97969i8GDB2PmzJniYy1bthTHKl+4cAHall34888/ARQkjbq8yU5h9+7dmD9/vsayJk2aICIiQkxYY2NjVcq13ZioK4re9MJzHyu8fv0ad+/eldzfy8tLHNKg7XkCgO+//x6DBw/GxYsXVR4v7nkqvyZOnz6ttW5QUBD09fWxfv168bEOHTqI17pwG5Tl5uaqjHuvzpgsExERVZCJEycCAJ49e4bdu3dL1luzZg1evXqFIUOGqDw+ZswYcUhC4WnllG3YsAHbtm2TPP7jx49x/PhxjfsmJibixIkTAAqmIivrPMCa/Pbbb5g9e7Zk76yVlRVMTU0BqN+Yp3gcUO35vXPnDlxcXMT5hMtCMdXbvXv3xKn6lEVFRWldktzCwkJcUOTcuXOSSWZmZibmzZuH3377TaWHF5A+zy1btsDFxQX/+9//AKg+Rxs2bFBZOlvZ06dPsX37dhgbG6Nv377i43Xr1kWfPn0AFCxbHh8fr3H/PXv2aLwW1RGTZVLBhUSIiN6cyZMni4ttTJo0SWMSdfDgQSxcuBB2dnZqi4I4ODhg4cKFAArm1927d6/a/mfOnMHixYtRu3ZtldX7FMd/9913AQATJkxQW2QiNzcXQUFBkMvlqF+/vtqiKLokCAJmz56tsWzXrl3IzMxEjRo1MHDgQJUya2tr8aY/5WEHFy5cwN27d9Xmli4NxdzRubm5+PXXX1XKsrOzMXv2bLWFWAr77rvv4OzsjPz8fIwePRovXrxQKZfL5Rg1ahRevHiBqVOnqt3IqLx4ivJ5njx5Enfv3oWVlRWAgqR67dq1kMlkuHbtGqZPn672rcGLFy8wZMgQZGVlYc6cOWozqSxcuBBmZmZ4/fo1xowZo5YUP3z4ENOnT+cNfkRERFR8e/bswfPnz8Wpt7Kzs7F582YAgK2trcrX4woGBgY4cOAA/P39ER0dDQ8PD4wYMQLu7u7IysrCqVOnEBERATs7O0RGRmqcPm3SpEnIzc3F7Nmz4e/vj0GDBqFz5854+fIlLly4gK1bt8LU1BS7d+9WS+gMDQ1x4MAB9OvXDydPnsRbb72FUaNGoXHjxnj8+DE2btyIW7duoUmTJti/f79ar7K2cx4+fDiAgnl/k5OTNdbp168fzMzMxN7iFStW4NSpU+jTpw8aNGiArKwsnD17FhEREdDT08OPP/4IDw8PtWswYsQILFu2DCtXroSVlRVkMhkWL14MPT09jB49utTPj0KHDh3w0UcfYdu2bfjPf/6Dixcvwt3dHcnJyVi/fj3GjBmD3377DcnJyUhOThbj+vv7iz3CVlZWOH78OHx9fcVrHRAQgAYNGuDBgwfYunUrbt26hQEDBmhccdHNzQ1ubm6IjY3F1KlTMXbsWCQmJmL9+vWoX78+fH19xbp+fn7YvHkzgoKCsHjxYvzxxx8YMGAAateujbt372LTpk14+PAhxo0bJ64AqaxRo0aIiIhAv379cOTIEfF1aW1tjZs3b2LdunX48MMPcf/+ffzxxx8q59y3b1+Ym5tLXsuqSCZoG6REJVaStcYrpdDyu8u5LJxyf9FZrIQFvXQWi6gyy83NRXx8PJydnct9uioqWABC6oaqzp07Izo6WnJfQRCwc+dObNy4ERcuXMDTp09hYmKCZs2awc/PDxMmTBB7DqXcuHEDy5cvx7Fjx5CUlIT8/Hw4OTmhZ8+eCAkJ0TqXsiAI+PXXX7F582ZcvHgRz549Q82aNeHq6oqBAwciODhYYw+ttnNWpBddunSRXMgkPj5eHId94sQJ7NmzB6dPn8bt27eRmZkJAwMDODo6onPnzhg3bpzkvMF5eXkIDQ3Ftm3bkJSUBCsrK7Ru3RqhoaHw8vIqsq1FPT9AwdCHH374AZs3b8adO3dgYmKCtm3b4rPPPkPPnj01nueDBw/U5lV+9eoVNmzYgO3btyM2Nhbp6emwtLRE27ZtMXr0aI2rCiokJSVh+vTpiIqKQlpaGuzs7NCpUyd8++23GpcJT0pKwrJly3Do0CEkJCTg5cuXsLW1RYcOHTBmzBh4e3trPeeEhAR89913OHToEJ48eQILCwu0bt0agYGB+PjjjzWe8+3bt9/oYiWlfZ8rSb7GZFnHmCyXDybLRCXHZJmIqrs3kSxzzDIRERERkQQmy0REREREEpgsExERERFJYLJMRERERCSByTIRERERkQQmy0REREREEpgsExERERFJYLJMRERERCShVMlyeno6tmzZglGjRsHDwwNWVlbQ19eHlZUV3nnnHcycORP3798vVqzTp09j6NChcHR0hLGxMRwcHDBo0KAiV9JRJpfLsWrVKnTs2BF16tSBubk5WrZsiZkzZ+LJkyfFjpOYmIgpU6agWbNmMDU1hY2NDby9vREeHo78/PxixyEiIiKi6qHEK/idPn0aPj4+yMvLg0wmQ79+/dCuXTtYWFjgzp072LhxI1JSUmBqaooNGzZoXbZx3rx5mDt3LoyNjREUFARXV1fcuHEDYWFheP78OaZNm4aFCxdqbU9qaip8fX1x7tw5NG/eHIGBgTA3N0dkZCQOHDgAa2tr7Ny5E++9957WOJGRkRg6dCiysrIwYMAA+Pj44OnTpwgLC0NiYiK6du2KiIgI1KxZU2scruBXPriCH1HJcQU/IqruKuVy14cOHULPnj2hp6eHgwcPonv37irl6enpeO+993D16lUYGhriypUraNGihVqc1atXY+zYsTA2NkZ0dDTatWsnll2+fBmdOnVCdnY2Fi1ahJCQEI1tkcvl8Pb2RkxMDDw9PREVFQUTExOxfNasWZg/fz6srKxw/vx5NGnSRGOcS5cuwcvLCzk5OVi6dCkmTZoklqWlpaFTp064fv06fH19sW/fPq3Xh8ly+WCyTFRyig8RJycnlfdGIqLqIicnBwkJCZVzueuRI0eqJcoAYGVlhUWLFgEAXr58ibVr16rVSUlJwbRp0wAAkyZNUkmUAcDDw0NMkL/44gskJSVpbENYWBhiYmIgk8kQFham9mEwd+5cuLi4ID09HVOnTpU8l3HjxiEnJwft2rVTSZQBoFatWlixYgUAYP/+/di1a5dkHCKiyqRGjYK3eA4jI6LqSvH+pni/Kw8ljmxlZYV27dphwIABknXatm0rbt+4cUOtfNmyZXj+/DkAICgoSGOMoKAgyGQy5Obm4ocfflArFwQB8+fPBwB07NgRLVu2VKtjYGCAkSNHAihIdGNjY9XqREVF4dy5cwCA4OBgjW3p0qWL2Cv9zTffaKxDRFTZ6Ovro0aNGsjNza3ophARlYvc3FzUqFED+vr65XaMEifL7du3x9mzZ/HBBx9I1jE1NRW3jYyM1Mp37twJAHBycoKLi4vGGPb29mjevLlYv/BokbNnz+LBgwcAgG7dukm2Rbn3e8eOHWrlyo9pi6Mou3LlCu7cuSNZj4iosqhRowZMTU3Fzgkiourm+fPnMDU1rVw9y8Xx559/its+Pj4qZQ8fPsTNmzcBAO7u7lrjeHh4AACSkpJw+/ZtlbLjx4+L29riuLm5iRdQeZ/CcaysrNCwYcMi2yIVh4ioMrKwsMCLFy+QlpZW0U0hItKptLQ0vHjxotzvEdN5n3Vubi5mzZoFAHjrrbfUhllcu3ZN3HZwcNAaS7n8+vXraNq0aYnjGBkZwdraGsnJybh+/bpKWU5ODu7du1eqthARVQWWlpbIycnBkydPkJ2dDUtLS+jr60Mmk1V004iISkwQBMjlcmRkZCArKwu1atWCpWX5Tk5Q5mQ5Ly8P6enpePr0KU6fPo0lS5bg77//xqBBg7BmzRq1m+4SEhLEbVtbW62xlcuV9ytNnOTkZGRmZiItLQ21atUCANy/f18cGF6WthARVWa2trYwNDREenq65A3TRERViZGREWxtbcWcrjyVOVneunUrAgMDxd8dHR2xZcsWDBkyRGPPRVZWlrhd1BQfyom28n5ljaO4sLpqiyaZmZkqvxsZGWkcv01EVN5kMhlq166NWrVqQS6X4/Xr1xXdJCKiUtPT03uj35CVOVnu0aMHjh49iuzsbNy+fRu//PILhg0bhq+++grLli3Dhx9+qFI/JydH3DY0NNQaW7n8xYsXOo+jq7ZoUnhYx1dffYXQ0NAi9yMiKi8ymQwGBgYwMDCo6KYQEVUZZU6W7ezsYGdnJ/7+2WefYfr06Vi0aBF8fX2xYcMGBAQEiOXKPbQvX77UGlu5XHmGDV3F0VVbNHnw4IHKgHP2KhMRERFVPTqfDUMmk+H7779HmzZtIAgCxo4diydPnojlystFFzX3p3LPb+FlpnURR1dt0cTCwkLlh8kyERERUdVTLlPHyWQyDBs2DEBBkrl161axzMnJSdxOTk7WGke5XHm/0saxsLBQGQju6OgoTitXlrYQERERUfVUbjM4N2vWTNy+evWquO3q6ipuKxYVkaJ813arVq1UyoobJy8vDykpKRpjmJiYoFGjRmVuCxERERFVTyVOlg8ePIg//vijyHp6enritlwuF7cbNGggzpd85coVrTEuXboEoGA1P8Vy0wrKi51oixMbGytOD1d4gRTlx9LT05GYmFhkW6TiEBEREVH1U+JkeezYsRg/fnyR9ZSXhHZ0dFQpGzhwIICC+YoVi4IU9vDhQ8TFxQEABgwYoDY9SPv27WFvbw8AOHbsmGQ7oqKi1I6rqS1FxVGUubu7Sy7RTURERETVS6mGYdy4cUPrwhyCIGDjxo3i771791YpnzhxIszNzQEAa9eu1Rhj3bp1EAQBxsbG+Oyzz9TKZTKZuFJgTEyMmFgrk8vlCA8PBwD06tULbm5uanW6deuGdu3aaW3LiRMncOvWLQDA7NmzNdYhIiIioupHJgiCUJIdnJyckJiYCC8vL+zYsQP16tVTKc/Pz8fUqVOxbNkyAMCQIUPwyy+/qMVZvXo1xo4dC2NjY5w4cQLvvPOOWBYbG4uOHTsiOzsbixYtQkhIiMa2yOVyeHt7IyYmBl5eXjhy5IjKdHBz5szBt99+CysrK5w/f15tKIfCpUuX4OXlhZycHPz3v//FhAkTxLL09HR06tQJ165dg6+vL/bt26f1+mRmZsLS0hIZGRnlvlZ5uQgt3yUjK4XQjIpuAREREVWgkuRrJU6W+/Tpg99++w1AwXzDgwcPRvPmzVGnTh3cv38f27dvx40bNwAAI0aMwJo1aySnTZs7dy7mzZsHExMTBAUFoVWrVoiLi0NYWBiysrIQEhKCRYsWaW1PamoqfH19ce7cObRo0QKBgYEwMzPDgQMHEBkZibp162Lnzp3o3Lmz1jj79+/HsGHDkJWVhYEDB8LHxwdPnz5FWFgYEhIS4OPjgz179hQ5bRyT5SqAyTIREdG/WrkmywBw7do1RERE4OTJk4iLi0NqaipevXqFmjVrwtnZGZ6enhgxYoRKb7GU06dPY/ny5YiJiUFKSgrq1q2LDh06YPz48fD29i5We+RyOcLCwrBp0ybExcUhLy8Pjo6O8PPzw+TJk1UWTdEmISEBS5cuRWRkJJKSkmBmZgZXV1cEBAQgICBAnGZOGybLVQCTZSIion+1ck+WSRqT5SqAyTIREdG/WknytXKbZ5mIiIiIqKpjskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJKHUyXJqaipWrVqFvn37omHDhjA2NoapqSmcnZ3x0UcfYd++fRAEQXL/hIQEyGSyYv1MmDChyPbI5XKsWrUKHTt2RJ06dWBubo6WLVti5syZePLkSbHPKzExEVOmTEGzZs1gamoKGxsbeHt7Izw8HPn5+cWOQ0RERERVn35pdgoJCcFPP/2E3NxcWFtbY9iwYWjSpAkEQcDvv/+OnTt3Yvv27fDx8cGOHTtQu3ZtXbdbRWpqKnx9fXHu3Dk0b94c06dPh7m5OSIjI7FgwQKsW7cOO3fuxHvvvac1TmRkJIYOHYqsrCwMGDAAU6ZMwdOnTxEWFobAwEBs3rwZERERqFmzZrmeDxERERFVDjJBW/evhHr16iE5ORmdO3fG3r17YWlpqVK+f/9+9O3bF69fv4anpydOnjyJGjVUO7ETEhLg7OyM7777Dv369dN6vFq1asHW1lZjmVwuh7e3N2JiYuDp6YmoqCiYmJiI5bNmzcL8+fNhZWWF8+fPo0mTJhrjXLp0CV5eXsjJycHSpUsxadIksSwtLQ2dOnXC9evX4evri3379km2NTMzE5aWlsjIyICFhYXW86qUQi2LrlPVhWZUdAuIiIioApUkXyv1MAx9fX1s3LhRLVEGAF9fXwQFBQEATp8+je3bt0vGsbOzQ/PmzbX+SCXKABAWFoaYmBjIZDKEhYWpJMoAMHfuXLi4uCA9PR1Tp06VjDNu3Djk5OSgXbt2KokyUJCsr1ixAkDBPwK7du2SjENERERE1Uepk2V3d3c4OjpKlvfv31/c1tYTWxaCIGD+/PkAgI4dO6Jly5ZqdQwMDDBy5EgABYlubGysWp2oqCicO3cOABAcHKzxWF26dBF7pb/55htdNJ+IiIiIKrlSJctbt27FunXrtNZp2LChuH3//v3SHKZIZ8+exYMHDwAA3bp1k6zXvXt3cXvHjh1q5cqPaYujKLty5Qru3LlT4vYSERERUdVSqhv8vL29i6yTnp4ubpuZmRUrrlwuR15eXrHrHz9+XNx2d3eXrOfm5oYaNWogPz9fZZ/CcaysrFSS/MI8PDxU9nFxcSlWO4mIiIioaiq3eZbj4+PFbW2zUFy/fh1Dhw6Fo6MjjI2NYW5uDjMzM3Tt2hUbNmyAXC6X3PfatWvitoODg2Q9IyMjWFtbi8dTlpOTg3v37hUZo3B54ThEREREVP2Uqme5OCIiIgAAxsbG4phhTRYvXoymTZtiwoQJaNGiBfLy8nDixAmEhYXh+PHjWLNmDXbv3g07Ozu1fRMSEsRtbTcBKsqTk5ORmZmJtLQ01KpVC0DBEBHF/MnFiaHp2JpkZmaq/G5kZAQjIyOt+xARERFR5VIuPcv//PMP9u7dC6BgTub69etL1u3fvz/++usvfP755+jduzcGDBiA5cuX4/Tp07CwsMDZs2fRu3dv5OXlqe2blZUlbhsbG2ttk/IsGcr76SKGJg4ODrC0tBR/FDciEhEREVHVUS7J8rRp05Cbm4s2bdpgzpw5GuvY29sjPj4eW7du1djj6uHhgS+//BIAcPHiRaxevVqtTk5OjrhtaGiotU3K5S9evNBpDE0ePHiAjIwM8WfmzJla6xMRERFR5aPzZHnz5s3YuHEjbGxssGvXLsmhB/r6+nBycoKBgYFkrMDAQMhkMgDA+vXr1cqVe3pfvnyptV3K5aampjqNoYmFhYXKD4dgEBEREVU9Ok2WT5w4geDgYFhYWODAgQNwcnIqU7zatWujUaNGAICrV6/i+fPnKuXKy07n5uZqjaXcg6y8ny5iEBEREVH1pLNk+fz58+jduzcMDQ1x+PBhtG3bVidxbWxsABQsQJKcnKxSppyMFy4rTFFuYWEh3twHAI6OjuJS3MWNUfjYRERERFQ96SRZvnjxInr06AFBEHD48GG0b99eF2EBQJypAgD09PRUylxdXcVtxeIkmuTl5SElJQUA0KpVK5UyExMTsfdaWwwASEpKErcLxyEiIiKi6qfMyfLly5fRvXt3yOVyHDp0qNiJ8jfffCPOmKHNkydPAAA1atQQe5kVfHx8xO0rV65IxoiNjRWTbuV9CsdJT09HYmKiZJxLly5pPDYRERERVU9lSpb/+usvdO/eHS9fvsTBgwfh6empVmfu3Ll4++231R7/4osvsGrVKq3xHz9+LCavbdq0Ubuprn379rC3twcAHDt2TDJOVFSUuD1w4EC1cuXHtMVRlLm7u3P1PiIiIqJ/gVIny9euXUPXrl2Rk5ODAwcOwMvLS2O9+Ph4XLx4UWPZ6dOn1RbvUKY8Xdwnn3yiVi6TyTBr1iwAQExMDOLi4tTqyOVyhIeHAwB69eoFNzc3tTrdunVDu3btAABr167V2JYTJ07g1q1bAIDZs2dLtpmIiIiIqo9SJct///03unbtitTUVISEhCA/Px/R0dEafxTDKDTJysrCJ598onHKtiNHjuD7778HULBcdmBgoMYYwcHB8PLygiAICA4OVpmxAgBCQ0Nx+/ZtWFlZYcmSJZJtWblyJUxMTHDmzBmsWLFCpSw9PR3jx48HAPj6+mLAgAGScYiIiIio+pAJgiCUZIfc3Fw4OztrTYI1KXwYd3d3xMbGAgBcXFwwePBgNGrUCNnZ2YiOjsbu3bshCAJ69uyJLVu2qMxgUVhqaip8fX1x7tw5tGjRAoGBgTAzM8OBAwcQGRmJunXrYufOnejcubPWNu7fvx/Dhg1DVlYWBg4cCB8fHzx9+hRhYWFISEiAj48P9uzZo3XauMzMTFhaWiIjIwMWFhYluEKVRKhlRbeg/IVmVHQLiIiIqAKVJF8rcbKcnp6uNXGVoukw586dw549e3Dq1CncvHkTaWlpMDAwQL169dChQwd8/PHH6NGjR7Hiy+VyhIWFYdOmTYiLi0NeXh4cHR3h5+eHyZMnw87OrlhxEhISsHTpUkRGRiIpKQlmZmZwdXVFQEAAAgICxGnmpDBZrgKYLBMREf2rlWuyTNoxWa4CmCwTERH9q5UkX9N/Q20iqjScZkTqJE7Cgl46iUNERESVl06XuyYiIiIiqk6YLBMRERERSWCyTEREREQkgckyEREREZEEJstERERERBKYLBMRERERSWCyTEREREQkgckyEREREZEEJstERERERBKYLBMRERERSWCyTEREREQkgckyEREREZEEJstERERERBKYLBMRERERSWCyTEREREQkgckyEREREZEEJstERERERBKYLBMRERERSWCyTEREREQkgckyEREREZEEJstERERERBKYLBMRERERSWCyTEREREQkgckyEREREZEEJstERERERBKYLBMRERERSWCyTEREREQkgckyEREREZEE/YpuANGblmA8VEeRMnQUh4iIiCor9iwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRhFIny6mpqVi1ahX69u2Lhg0bwtjYGKampnB2dsZHH32Effv2QRCEYsU6ffo0hg4dCkdHRxgbG8PBwQGDBg1CdHR0sdsjl8uxatUqdOzYEXXq1IG5uTlatmyJmTNn4smTJ8WOk5iYiClTpqBZs2YwNTWFjY0NvL29ER4ejvz8/GLHISIiIqKqTyYUN6NVEhISgp9++gm5ubmwtrbGsGHD0KRJEwiCgN9//x0RERHIz8+Hj48PduzYgdq1a0vGmjdvHubOnQtjY2MEBQXB1dUVN27cQFhYGJ4/f45p06Zh4cKFWtuTmpoKX19fnDt3Ds2bN0dgYCDMzc0RGRmJAwcOwNraGjt37sR7772nNU5kZCSGDh2KrKwsDBgwAD4+Pnj69CnCwsKQmJiIrl27IiIiAjVr1pSMkZmZCUtLS2RkZMDCwkL7hayMQi0rugVVRygXJSEiIqqKSpKvlSpZrlevHpKTk9G5c2fs3bsXlpaqCdb+/fvRt29fvH79Gp6enjh58iRq1FDvxF69ejXGjh0LY2NjREdHo127dmLZ5cuX0alTJ2RnZ2PRokUICQnR2Ba5XA5vb2/ExMTA09MTUVFRMDExEctnzZqF+fPnw8rKCufPn0eTJk00xrl06RK8vLyQk5ODpUuXYtKkSWJZWloaOnXqhOvXr8PX1xf79u2TvDZMlv9FmCwTERFVSSXJ10o9DENfXx8bN25US5QBwNfXF0FBQQAKhlhs375drU5KSgqmTZsGAJg0aZJKogwAHh4eYoL8xRdfICkpSWM7wsLCEBMTA5lMhrCwMJVEGQDmzp0LFxcXpKenY+rUqZLnM27cOOTk5KBdu3YqiTIA1KpVCytWrABQ8I/Arl27JOMQERERUfVR6mTZ3d0djo6OkuX9+/cXtzX1xC5btgzPnz8HADGxLiwoKAgymQy5ubn44Ycf1MoFQcD8+fMBAB07dkTLli3V6hgYGGDkyJEAChLd2NhYtTpRUVE4d+4cACA4OFhjW7p06SL2Sn/zzTca6xARERFR9VKqZHnr1q1Yt26d1joNGzYUt+/fv69WvnPnTgCAk5MTXFxcNMawt7dH8+bNxfqFR4ycPXsWDx48AAB069ZNsi3du3cXt3fs2KFWrvyYtjiKsitXruDOnTuS9YiIiIioeihVsuzt7Y3WrVtrrZOeni5um5mZqZQ9fPgQN2/eBFDQQ62Nh4cHACApKQm3b99WKTt+/Li4rS2Om5ubOGZaeZ/CcaysrFSSfKm2SMUhIiIiouql3OZZjo+PF7cLz0Jx7do1cdvBwUFrHOXy69evlyqOkZERrK2tNcbIycnBvXv3ytwWIiIiIqp+yi1ZjoiIAAAYGxuLY4YVEhISxG1bW1utcZTLlfcrbZzMzEykpaWJj9+/f1+cP7ksbSEiIiKi6ke/PIL+888/2Lt3L4CCOZnr16+vUp6VlSVuGxsba42lPLuF8n5ljVOrVi2dtqWwzMxMld+NjIxgZGSkdR8iIiIiqlzKpWd52rRpyM3NRZs2bTBnzhy18pycHHHb0NBQayzl8hcvXug8jq7aUpiDgwMsLS3FH8WsHURERERUdei8Z3nz5s3YuHEjbGxssGvXLo29qco9tC9fvtQaT7nc1NRU53F01ZbCHjx4oDLJNXuViYiIiKoenSbLJ06cQHBwMCwsLHDgwAE4OTlprKe8XHRubq7WmMo9v4WXmdZFHF21pTALC4uquYIfEREREYl0Ngzj/Pnz6N27NwwNDXH48GG0bdtWsq5yEp2cnKw1rnJ54eS7NHEsLCzE8coA4OjoKE4rV5a2EBEREVH1o5Nk+eLFi+jRowcEQcDhw4fRvn17rfVdXV3FbcWiIlKUl7lu1apVqeLk5eUhJSVFYwwTExM0atSozG0hIiIiouqnzMny5cuX0b17d8jlchw6dKjIRBkAGjRogKZNmwIoWA1Pm0uXLgEoWM1Psdy0go+Pj7itLU5sbKw4PZzyPoXjpKenIzExsci2SMUhIiIiouqlTMnyX3/9he7du+Ply5c4ePAgPD091erMnTsXb7/9ttrjAwcOBFAwX7FiUZDCHj58iLi4OADAgAEDIJPJVMrbt28Pe3t7AMCxY8ck2xkVFaV2XE1tKSqOoszd3V1yiW4iIiIiqj5KnSxfu3YNXbt2RU5ODg4cOAAvLy+N9eLj43Hx4kW1xydOnAhzc3MAwNq1azXuu27dOgiCAGNjY3z22Wdq5TKZDLNmzQIAxMTEiIm1MrlcjvDwcABAr1694ObmplanW7duaNeunda2nDhxArdu3QIAzJ49W2MdIiIiIqpeSpUs//333+jatStSU1MREhKC/Px8REdHa/x58uSJxhg2NjZYtGgRAGDJkiX4888/VcpjY2OxcOFCAMDXX38t9iAXFhwcDC8vLwiCgODgYJUZKwAgNDQUt2/fhpWVFZYsWSJ5TitXroSJiQnOnDmDFStWqJSlp6dj/PjxAABfX18MGDBAy9UhIiIioupCJgiCUJIdcnNz4ezsLJkES5E6zNy5czFv3jyYmJggKCgIrVq1QlxcHMLCwpCVlYWQkBAxqZaSmpoKX19fnDt3Di1atEBgYCDMzMxw4MABREZGom7duti5cyc6d+6sNc7+/fsxbNgwZGVlYeDAgfDx8cHTp08RFhaGhIQE+Pj4YM+ePVqnjcvMzISlpSUyMjKq5tRxoZYV3YKqIzSjoltAREREpVCSfK3EyXJ6errK1GvFpe0wp0+fxvLlyxETE4OUlBTUrVsXHTp0wPjx4+Ht7V2s+HK5HGFhYdi0aRPi4uKQl5cHR0dH+Pn5YfLkybCzsytWnISEBCxduhSRkZFISkqCmZkZXF1dERAQgICAAHGaOSlMlv9FmCwTERFVSeWaLJN2TJb/RZgsExERVUklydd0tigJEREREVF1w2SZiIiIiEgCk2UiIiIiIglMlomIiIiIJDBZJiIiIiKSwGSZiIiIiEgCk2UiIiIiIglMlomIiIiIJDBZJiIiIiKSoF/RDSDdcJoRqZM4CcY6CUNERERULbBnmYiIiIhIApNlIiIiIiIJTJaJiIiIiCQwWSYiIiIiksAb/IhKSVc3VQJAwoJeOotFREREusOeZSIiIiIiCUyWiYiIiIgkMFkmIiIiIpLAZJmIiIiISAKTZSIiIiIiCUyWiYiIiIgkMFkmIiIiIpLAZJmIiIiISAKTZSIiIiIiCUyWiYiIiIgkMFkmIiIiIpLAZJmIiIiISAKTZSIiIiIiCUyWiYiIiIgkMFkmIiIiIpLAZJmIiIiISAKTZSIiIiIiCUyWiYiIiIgkMFkmIiIiIpLAZJmIiIiISAKTZSIiIiIiCfoV3QCiqirBeKgOo2XoMBYRERHpSpl7lgVBwIoVK2Bubg6ZTIbo6Ogi90lISIBMJivWz4QJE4qMJ5fLsWrVKnTs2BF16tSBubk5WrZsiZkzZ+LJkyfFPpfExERMmTIFzZo1g6mpKWxsbODt7Y3w8HDk5+cXOw4RERERVQ9lSpbv3r2LLl264NNPP0V2drau2lQiqamp8PLywrhx4/Ds2TNMnz4dCxcuhLOzMxYsWIDWrVvjxIkTRcaJjIxE69atsWzZMri5ueHHH3/EpEmTEB8fj8DAQLz//vvIysp6A2dERERERJVFqYZhCIKAn376CTNmzICenh7at2+Ps2fPljjOd999h379+mmtU6tWLckyuVyOfv364dy5c/D09ERUVBRMTEwAAOPGjcOsWbMwf/589OnTB+fPn0eTJk00xrl06RIGDhyInJwcLF26FJMmTRLLxo0bh06dOuHYsWMYOnQo9u3bV+LzJCIiIqKqqVQ9y3PnzsWnn34KLy8vXLt2DT169CjVwe3s7NC8eXOtP7a2tpL7h4WFISYmBjKZDGFhYWKirNxOFxcXpKenY+rUqZJxxo0bh5ycHLRr104lUQYKkvUVK1YAAPbv349du3aV6lyJiIiIqOopVbIsCALWrl2LQ4cOwcHBQddtKnYb5s+fDwDo2LEjWrZsqVbHwMAAI0eOBFCQ6MbGxqrViYqKwrlz5wAAwcHBGo/VpUsXsVf6m2++0UXziYiIiKgKKFWyHBoaitGjR+u6LSVy9uxZPHjwAADQrVs3yXrdu3cXt3fs2KFWrvyYtjiKsitXruDOnTslbi8RERERVT2lSpZlMpmu2wG5XF6imwSPHz8ubru7u0vWc3NzQ40aNdT2KRzHysoKDRs2lIzj4eGh8dhEREREVH1V6KIk169fx9ChQ+Ho6AhjY2OYm5vDzMwMXbt2xYYNGyCXyyX3vXbtmritbSiIkZERrK2txeMpy8nJwb1794qMUbi8cBwiIiIiqp4qNFlevHgxLl68iAkTJiAiIgI7duzA6NGjcfr0aYwaNQqdOnXC48ePNe6bkJAgbmu7CVC5PDMzE2lpaeLj9+/fF+dPLm6MwscmIiIiouqrQlfw69+/P7Zs2QIjIyPxsQEDBiAwMBBdunTB2bNn0bt3b5w6dUqlDgCVOY+NjY21Hkd5loysrCxxOrqyxChKZmamyu9GRkZq50BERERElVuF9Czb29sjPj4eW7du1ZhAenh44MsvvwQAXLx4EatXr1ark5OTI24bGhpqPZ5y+YsXL3QaQ4qDgwMsLS3FH8XMHURERERUdVRIsqyvrw8nJycYGBhI1gkMDBRvJFy/fr1auXJP78uXL7UeT7nc1NRUpzGkPHjwABkZGeLPzJkzi9yHiIiIiCqXCh2GoU3t2rXRqFEj3L17F1evXsXz589hbm4ultesWVPczs3N1RpLuQdZeT9dxJBiYWEBCwuLIuvpSoLx0Dd2LCIiIqJ/iwq9wa8oNjY2AAoWIElOTlYpc3JyErcLlxWmKLewsFBZPtvR0VGcVq64MQofm4iIiIiqr0qdLCtmqgAAPT09lTJXV1dxW7E4iSZ5eXlISUkBALRq1UqlzMTEBI0aNSoyBgAkJSWJ24XjEBEREVH1VCHJ8jfffIO9e/cWWe/JkycAgBo1aoi9zAo+Pj7i9pUrVyRjxMbGikm38j6F46SnpyMxMVEyzqVLlzQem4iIiIiqrwpJlr/44gusWrVKa53Hjx+LyWubNm3Ubqpr37497O3tAQDHjh2TjBMVFSVuDxw4UK1c+TFtcRRl7u7ucHFx0dp2IiIiIqoeKmwYxunTp9XmIlamPF3cJ598olYuk8kwa9YsAEBMTAzi4uLU6sjlcoSHhwMAevXqBTc3N7U63bp1Q7t27QAAa9eu1diWEydO4NatWwCA2bNnS7aZiIiIiKqXCkuWs7Ky8Mknn2icsu3IkSP4/vvvAQDvvfceAgMDNcYIDg6Gl5cXBEFAcHCwyowVABAaGorbt2/DysoKS5YskWzLypUrYWJigjNnzmDFihUqZenp6Rg/fjwAwNfXFwMGDCjReRIRERFR1VXqqeM2b94sbv/111/i9tGjR8Wb4WxtbdG9e3e1fd3c3BAbG4tt27bh4sWLGDx4MBo1aoTs7GxER0dj9+7dEAQBPXv2xJYtW6Cvr7mZ+vr6iIiIgK+vL2JiYtC2bVsEBgbCzMwMBw4cQGRkJOrWrYudO3eiSZMmkufSpk0bbN++HcOGDcPEiRNx8uRJ+Pj44OnTpwgLC0NCQgJ8fHzwyy+/lPZyEREREVEVJBMEQSjVjv+3YIg2nTt3RnR0tMayc+fOYc+ePTh16hRu3ryJtLQ0GBgYoF69eujQoQM+/vhj9OjRo1htkcvlCAsLw6ZNmxAXF4e8vDw4OjrCz88PkydPhp2dXbHiJCQkYOnSpYiMjERSUhLMzMzg6uqKgIAABAQEiNPMaZOZmQlLS0tkZGS80XmWEWr55o5FuheaUdEtICIi+tcoSb5W6mSZNGOyTKXhlKu7by0SFvTSWSwiIqLqqCT5WqWeZ5mIiIiIqCIxWSYiIiIiksBkmYiIiIhIApNlIiIiIiIJTJaJiIiIiCQwWSYiIiIiksBkmYiIiIhIApNlIiIiIiIJTJaJiIiIiCQwWSYiIiIiksBkmYiIiIhIApNlIiIiIiIJTJaJiIiIiCQwWSYiIiIiksBkmYiIiIhIApNlIiIiIiIJTJaJiIiIiCQwWSYiIiIikqBf0Q0gIiDBeKgOo2XoMBYREdG/G3uWiYiIiIgkMFkmIiIiIpLAZJmIiIiISAKTZSIiIiIiCUyWiYiIiIgkMFkmIiIiIpLAZJmIiIiISAKTZSIiIiIiCUyWiYiIiIgkMFkmIiIiIpLAZJmIiIiISAKTZSIiIiIiCUyWiYiIiIgkMFkmIiIiIpLAZJmIiIiISAKTZSIiIiIiCUyWiYiIiIgkMFkmIiIiIpJQ5mRZEASsWLEC5ubmkMlkiI6OLtH+p0+fxtChQ+Ho6AhjY2M4ODhg0KBBJYojl8uxatUqdOzYEXXq1IG5uTlatmyJmTNn4smTJ8WOk5iYiClTpqBZs2YwNTWFjY0NvL29ER4ejvz8/BKdFxERERFVfWVKlu/evYsuXbrg008/RXZ2don3nzdvHjp16oS9e/eiX79++O9//4uBAwfi4MGD8Pb2xueff15kjNTUVHh5eWHcuHF49uwZpk+fjoULF8LZ2RkLFixA69atceLEiSLjREZGonXr1li2bBnc3Nzw448/YtKkSYiPj0dgYCDef/99ZGVllfgciYiIiKjqkgmCIJR0J0EQ8NNPP2HGjBnQ09NDy5YtcfbsWQDA77//ji5duhQZY/Xq1Rg7diyMjY0RHR2Ndu3aiWWXL19Gp06dkJ2djUWLFiEkJERjDLlcDm9vb8TExMDT0xNRUVEwMTERy2fNmoX58+fDysoK58+fR5MmTTTGuXTpEry8vJCTk4OlS5di0qRJYllaWho6deqE69evw9fXF/v27dN6XpmZmbC0tERGRgYsLCyKvA46E2r55o5FlVtoRkW3gIiIqFIrSb5Wqp7luXPn4tNPP4WXlxeuXbuGHj16lGj/lJQUTJs2DQAwadIklUQZADw8PMQE+YsvvkBSUpLGOGFhYYiJiYFMJkNYWJhKoqxop4uLC9LT0zF16lTJ9owbNw45OTlo166dSqIMALVq1cKKFSsAAPv378euXbtKdK5EREREVHWVKlkWBAFr167FoUOH4ODgUOL9ly1bhufPnwMAgoKCNNYJCgqCTCZDbm4ufvjhB41tmD9/PgCgY8eOaNmypVodAwMDjBw5EkBBohsbG6tWJyoqCufOnQMABAcHa2xLly5dxF7pb775poizIyIiIqLqolTJcmhoKEaPHl3qg+7cuRMA4OTkBBcXF4117O3t0bx5c7F+4dEiZ8+exYMHDwAA3bp1kzxW9+7dxe0dO3aolSs/pi2OouzKlSu4c+eOZD0iIiIiqj5KlSzLZLJSH/Dhw4e4efMmAMDd3V1rXQ8PDwBAUlISbt++rVJ2/PhxcVtbHDc3N9SoUUNtn8JxrKys0LBhwyLbIhWHiIiIiKqfNz7P8rVr18TtooZwKJdfv369VHGMjIxgbW2tMUZOTg7u3btX5rYQERERUfX0xpPlhIQEcdvW1lZrXeVy5f1KGyczMxNpaWni4/fv3xfnTy5LW4iIiIioetJ/0wdUnqvY2NhYa13l2S0Kz3Fclji1atXSaVs0yczMVPndyMgIRkZGRe5HRERERJXHG+9ZzsnJEbcNDQ211lUuf/Hihc7j6Kotmjg4OMDS0lL8UczcQURERERVxxvvWVbuoX358qXWusrlpqamOo+jq7Zo8uDBA5VJrtmrTERERFT1vPFkuWbNmuJ2bm6u1rrKPb/K++kqjq7aoomFhcWbXcGP6P84zYjUWayEBb10FouIiKgqeuPDMJycnMTt5ORkrXWVy5X3K20cCwsLcbwyADg6OorTypWlLURERERUPb3xZNnV1VXcViwqIkV5metWrVqVKk5eXh5SUlI0xjAxMUGjRo3K3BYiIiIiqp7eeLLcoEEDNG3aFEDBanjaXLp0CUDBan6K5aYVfHx8xG1tcWJjY8Xp4ZT3KRwnPT0diYmJRbZFKg4RERERVT9vPFkGgIEDBwIomK9YsShIYQ8fPkRcXBwAYMCAAWqrBrZv3x729vYAgGPHjkkeKyoqSu24mtpSVBxFmbu7u+QS3URERERUvVRIsjxx4kSYm5sDANauXauxzrp16yAIAoyNjfHZZ5+plctkMsyaNQsAEBMTIybWyuRyOcLDwwEAvXr1gpubm1qdbt26oV27dlrbcuLECdy6dQsAMHv27CLOjoiIiIiqiwpJlm1sbLBo0SIAwJIlS/Dnn3+qlMfGxmLhwoUAgK+//lrsQS4sODgYXl5eEAQBwcHBKjNWAEBoaChu374NKysrLFmyRLI9K1euhImJCc6cOYMVK1aolKWnp2P8+PEAAF9fXwwYMKBkJ0tEREREVVapp47bvHmzuP3XX3+J20ePHhVvhrO1tUX37t017j9mzBgkJydj3rx58Pb2RlBQEFq1aoW4uDiEhYUhOzsbISEhCAkJkW68vj4iIiLg6+uLmJgYtG3bFoGBgTAzM8OBAwcQGRmJunXrYufOnWpjnpW1adMG27dvx7BhwzBx4kScPHkSPj4+ePr0KcLCwpCQkAAfHx/88ssvJb1MRERERFSFyQRBEEq1Y6ExxJp07twZ0dHRWuucPn0ay5cvR0xMDFJSUlC3bl106NAB48ePh7e3d7HaIpfLERYWhk2bNiEuLg55eXlwdHSEn58fJk+eDDs7u2LFSUhIwNKlSxEZGYmkpCSYmZnB1dUVAQEBCAgIEKeZ0yYzMxOWlpbIyMh4s/Msh1q+uWNRpeaUq7t/6jjPMhERVUclyddKnSyTZkyWqaIxWSYiItKuJPlahYxZJiIiIiKqCpgsExERERFJYLJMRERERCSh1LNhEFHllGA8VIfRMnQYi4iIqOphzzIRERERkQQmy0REREREEpgsExERERFJYLJMRERERCSByTIRERERkQQmy0REREREEpgsExERERFJYLJMRERERCSByTIRERERkQQmy0REREREEpgsExERERFJYLJMRERERCRBv6IbQESVl9OMSJ3FSljQS2exiIiI3hT2LBMRERERSWCyTEREREQkgckyEREREZEEJstERERERBKYLBMRERERSWCyTEREREQkgckyEREREZEEJstERERERBK4KAkRSUowHqrDaBk6jEVERPRmsGeZiIiIiEgCk2UiIiIiIglMlomIiIiIJDBZJiIiIiKSwGSZiIiIiEgCk2UiIiIiIglMlomIiIiIJHCeZSJ6I5xmROokTsKCXjqJQ0REVBzsWSYiIiIiksBkmYiIiIhIApNlIiIiIiIJTJaJiIiIiCRUaLLcpUsXyGSyIn/Mzc2LjHX69GkMHToUjo6OMDY2hoODAwYNGoTo6Ohit0cul2PVqlXo2LEj6tSpA3Nzc7Rs2RIzZ87EkydPynCmRERERFQVVYue5Xnz5qFTp07Yu3cv+vXrh//+978YOHAgDh48CG9vb3z++edFxkhNTYWXlxfGjRuHZ8+eYfr06Vi4cCGcnZ2xYMECtG7dGidOnHgDZ0NERERElUWFTx33zjvvYOPGjVrr1KghndOvXr0aX331FYyNjXH8+HG0a9dOLPv444/RqVMnLFq0CDY2NggJCdEYQy6Xo1+/fjh37hw8PT0RFRUFExMTAMC4ceMwa9YszJ8/H3369MH58+fRpEmTUpwpEREREVU1Fd6zbGpqiubNm2v9adq0qcZ9U1JSMG3aNADApEmTVBJlAPDw8BAT5C+++AJJSUka44SFhSEmJgYymQxhYWFioqwwd+5cuLi4ID09HVOnTi3rKRMRERFRFVHhPctlsWzZMjx//hwAEBQUpLFOUFAQ5s2bh9zcXPzwww9YsmSJSrkgCJg/fz4AoGPHjmjZsqVaDAMDA4wcORJz5szB/v37ERsbCzc3Nx2fDVH1lmA8VEeRMnQUh4iIqGgV3rNcFjt37gQAODk5wcXFRWMde3t7NG/eXKwvCIJK+dmzZ/HgwQMAQLdu3SSP1b17d3F7x44dZWo3EREREVUNlS5ZzsrKQn5+fpH1Hj58iJs3bwIA3N3dtdb18PAAACQlJeH27dsqZcePHxe3tcVxc3MTx04r70NERERE1VeFJ8svXrzAvHnz0Lp1a5iZmcHCwgIGBgZo2bIlpk2bhkePHmnc79q1a+K2g4OD1mMol1+/fr1UcYyMjGBtba0xBhERERFVTxWeLP/555+YP38+OnXqhA0bNmD//v1YuHAhXr9+jcWLF6N58+b47bff1PZLSEgQt21tbbUeQ7lceb/SxsnMzERaWprWupmZmSo/eXl5WusTERERUeVT4cmyjY0NLl68iJ9++gmDBg1Cr1698Nlnn+Gvv/5C9+7dkZWVhYEDB+L06dMq+2VlZYnbxsbGWo+hPLuF8n66jFOYg4MDLC0txR/FTYREREREVHVU6GwYv/76K4yMjFCrVi21MiMjI4SHh6NRo0bIy8vDhAkTcOnSJbE8JydH3DY0NNR6HOXyFy9eqJTpKk5hDx48gIWFhfi7kZGR1vpEVDxOMyJ1FithQS+dxSIiouqpQnuW69WrpzFRVqhfvz4++OADAMDly5dx+fJlsUy5l/fly5daj6NcbmpqqlKmqziFWVhYqPwwWSYiIiKqeip8GEZR3n77bXFbeShGzZo1xe3c3FytMZR7j5X302UcIiIiIqp+Kn2ybGNjI24/efJE3HZychK3k5OTtcZQLlfer7RxLCwstPaIExEREVH1UOmTZeU5l/X09MRtV1dXcVuxqIgU5WWuW7VqpVJW3Dh5eXlISUnRGIOIiIiIqqcKu8Fv3759iI2NxezZsyGTySTrKfcm29nZidsNGjRA06ZNcevWLVy5ckXrsRQ3Btrb26NJkyYqZT4+PuL2lStX0KdPH40xYmNjxcRdeR8ierN0t2w2wKWziYioKBXWs7xr1y588cUXRQ59OHv2rLjt5eWlUjZw4EAABXMl37t3T+P+Dx8+RFxcHABgwIABaol5+/btYW9vDwA4duyYZDuioqLUjktERERE1VuFD8M4ePCgZNnt27fFJNXT01Nt+MPEiRNhbm4OAFi7dq3GGOvWrYMgCDA2NsZnn32mVi6TyTBr1iwAQExMjJhYK5PL5QgPDwcA9OrVC25ubkWfGBERERFVeRWeLM+cORO3bt1Se/zZs2cYMmQIXr9+DVNTU6xYsUKtjo2NDRYtWgQAWLJkCf7880+V8tjYWCxcuBAA8PXXX4s9yIUFBwfDy8sLgiAgODhYZdYLAAgNDcXt27dhZWWFJUuWlOo8iYiIiKjqqbAxyy1btoSBgQGSk5Ph7u6OwYMH45133oGhoSFu3LiBjRs3IiUlBba2tti2bRs8PDw0xhkzZgySk5Mxb948eHt7IygoCK1atUJcXBzCwsKQnZ2NkJAQhISESLZFX18fERER8PX1RUxMDNq2bYvAwECYmZnhwIEDiIyMRN26dbFz5061Mc9EVHVxgRMiIiqKTBAEoaIO/uTJE+zevRtHjx7F1atX8fjxY7x69Qq1atXCW2+9BV9fX4wePbpYcxqfPn0ay5cvR0xMDFJSUlC3bl106NAB48ePh7e3d7HaI5fLERYWhk2bNiEuLg55eXlwdHSEn58fJk+erHKDoZTMzExYWloiIyNDZQW/chdq+eaORVRNOOX+orNYTJaJiKqOkuRrFZosV0dMlomqDibLRET/TiXJ1yp8zDIRERERUWXFZJmIiIiISAKTZSIiIiIiCRU2GwYRUUXjaoBERFQU9iwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSmCwTEREREUlgskxEREREJIHJMhERERGRBCbLREREREQSuCgJEZEOOM2I1FmshAW9dBaLiIjKhj3LREREREQSmCwTEREREUngMAwiIh1IMB6qw2gZOoxFRERlwZ5lIiIiIiIJ7FkmIqpkeLMgEVHlwZ5lIiIiIiIJTJaJiIiIiCQwWSYiIiIiksAxy0RElQxn1iAiqjzYs0xEREREJIHJMhERERGRBA7DICKqxnQ1DR2noCOifyv2LBMRERERSWDPMhFRNaa7mwV5oyAR/TuxZ5mIiIiISAKTZSIiIiIiCRyGQURERdLVjYIAbxYkoqqFyTIREb1RTLyJqCphskxEREXS7aqCusQbD4mofHHMMhERERGRBCbLREREREQSmCwTEREREUngmGUiIqqyeLMgEZU3JstERFRl6fLGQ6cZv+gsFhNvouqDybIGqampWLZsGSIiIpCQkABDQ0M0a9YMQ4YMwZgxY2BoaFjRTSQiIh3T7YwfnKWDqLqQCYIgVHQjKpPz58+jb9++ePz4Mbp3744+ffogJycHP//8M65duwYPDw/s378f9evX17h/ZmYmLC0tkZGRAQsLizfX8FDLN3csIiLSyilXN73U7KEmKh8lydeYLCu5f/8+3n77baSkpGDy5MlYsmSJWJaXl4eePXvi999/R9u2bXHq1CkYGRmpxWCyTEREuqKrpFvXmMRTVVeSfI3DMJRMmzYNKSkpcHR0xIIFC1TKjIyMEBYWhmbNmuHixYtYsWIFPvvsswpqKRER/RtwMRiiisdk+f/cvn0bO3bsAACMGDFCY69x48aN4e3tjaioKHz//feYNGkS9PV5CYmI6N+lMs5CUhnbRNUDM73/s3PnTihGpHTr1k2yXvfu3REVFYWUlBRER0drrfum5OXlYX50LmZ6GcFIX1bRzflXyJMLmB+Tx2v+hvG6Vwxe94pRma97ZZyFRFdtypMLsPLyhWX7QZDpG+gkpq5U5yQ+Ly8P8+fPx8yZMzV2WFYkJsv/5/jx4+K2u7u7ZD0PDw+VfSpLsjz3j5eY2sEIRnxG34i81+A1rwC87hWD171i/Fuue2UbapL3Gsg4tRX3O+2HhVHl+ielOg9/ycvLw9y5czF16lQmy5XVtWvXAAA1a9aEpaX0zXIODg7i9vXr18u9XUREREQAdHozf2W7eTQ/70VFN0ESk2UU/Dfz5MkTAICtra3WusrlCQkJ5dksIiIionJR2Xr0M2UCKuu8XkyWAWRlZYnbxsbGWuuamJho3E9BMe754cOHyMzMFB83MjIqt68VFMfJzOMsgG+K4lrzmr9ZvO4Vg9e9YvC6Vwxe94ohXnel3Klcj/d/xynODMqcZxnAgwcP4OjoCABo06YNLl68KFk3Pz8fenp6AAp6mRU90gpJSUkqQzXo/7V352FRXecfwL8DyK4igohaQJSIiorigiY/FYViEsUV4lIQY0w0mkhcaoxxibWxajTaGhVjm4omPGCjVaygxi0iSipuuKQRH0HijgWVyCDL+f1Buc44cwdmYyB+P88zz3P1nnvOmePL+M7l3HOIiIiI6qf8/Hy0adNGZxneWYb63eKnT5/qLKt63tHRUeN8q1atcO3aNTRq1AgKxbMHA8x5Z5mIiIiIak8IgcePH8vuyKyKyTKqHuqrplQqdZYtKSnRel01Kysr+Pr6mq5zRERERGRyuhZ0UGVl5n40CHZ2dmjZsiUA4O7duzrLqp738fExZ7eIiIiIyMKYLP9PQEAAgKqH9h4+lF/H8Oeff5aOO3fubPZ+EREREZHlMFn+n0GDBknH586dky135swZrdcYo6CgAAsXLkRAQACcnZ3h6uqKvn374s9//nONc6j1sW/fPkRERKB169awt7dH27ZtMWnSJLX39CIx57gfPXoUCoWiVq/PPvvMRO+o4RBCYP369XB2doZCocDRo0dN3gbjXZO5xp3xrqmgoAAbN27EiBEj4O3tDXt7ezg6OqJt27Z44403kJKSUqun8GuL8V6lLsad8a6uqKgIX3/9Nd588010794dLi4usLGxgYuLC3r16oX58+fjxo0bJmvPIrEuSAghxE8//SQUCoUAIBYuXChbLiwsTAAQbm5uoqyszOh2MzMzhaenpwAgwsLCxPr168WqVatEQECAACC6d+8ubt68aVQbFRUVYsqUKQKAcHV1FR9++KGIj48XU6ZMEba2tsLGxkasW7fO6PfSkJh73I8cOSIA1Oq1atUqE76z+i8nJ0f0799fbQyOHDlisvoZ79qZc9wZ7+pmz54t7O3tBQDh7u4u4uLixBdffCHWr18vRo8eLaysrAQAMWjQIPHgwQOj2mK8P1NX4854f+bEiRPCzs5OABAKhUKMGjVKrFixQmzcuFHMnj1buLu7CwDC0dFRJCUlGdWWJWOdybKKqKgoAUD4+PiI0tJSjfPXrl0T1tbWJvsByMvLkwIpLi5O7ZxSqRQhISECgAgKChJKpdLgdubNmycl+FevXlU7l5qaKqysrIRCoRDJyckGt9GQ1MW4V3+Ybt26VVy5ckXny9j/LBuKyspK8Ze//EU4OTmJJk2aiODgYLMky4x3dXUx7ox3dR4eHgKAGDBggCgqKtI4n5KSIv1f0q9fP1FRUWFwW4z3Z+pq3Bnvz6SmpgoAwtraWhw4cEDjfGFhoejSpYsAIGxtbcXly5cNbsuSsc5kWYVqEjV79my1c0qlUgwePFhKokpKSoxurzo59/Ly0pqU5eTkSD/Yn332mUFtXLx4Ufo2vXHjRq1lJk6cKAAIDw8PUVxcbFA7DUldjHv1h6kpk8CGbvHixQKACA8PFzdu3JD+bMpxYrxrqotxZ7yr8/DwEDY2NiIvL0+2zDvvvCP9OyQmJhrUDuNdXV2NO+P9mepkefLkybJl0tLSpDGfNWuWQe1YOtY5Z1mFl5cXUlJS4OnpidWrV2PIkCHYsGEDVq9ejV69euHQoUMIDAzEnj17atzpryZXr17Fjh07AAAxMTFa12Bu164dQkJCAAArVqxAeXm53u0sX74clZWVcHBwwIQJE7SWmTJlCoCqlT62bNmidxsNSV2NO2kSQmDLli1IS0sz28Y9jHdNdTHupCkwMFDa7Eqb0aNHS8cpKSkGtcF411QX407PuLi4oE+fPhgzZoxsmaCgIOn4ypUrBrVj6VhnsvycPn364MKFC1iwYAHy8/Px+9//HsuWLYODgwPWrl2LzMzMWi1gXZN//OMf0kMGoaGhsuXCwsIAAPfv39f7YZzS0lLpw6BPnz5a14UGgL59+8LZ2RkApETy16ouxp20W7JkCSZPnmy2+hnv2pl73ElTYmIi/vrXv+os4+3tLR0b8vAT411TXYw7qQsODsapU6cwZMgQ2TKqG7gZsjlbfYh1JstauLm5YdmyZbh06RKKi4tRWFiIzMxMzJw5E7a2tiZp4/Dhw9JxYGCgbLnu3btrvaY2Tp8+Le19rqsNKysrdO3aFQBw8uRJtY1Xfm3qYtzlPH369Fc9tjVR3dHSHBjv2pl73OW8yPEeEhIixZicoqIi6djJyUnvNhjvmupi3OW8yPFek3//+9/SsSGriNWHWGeybCEXL14EULULoK4dZFR/bXrp0iWD2ni+Hl3tVFZW4scff9SrnYakLsZdVUZGBoYPH45WrVpJSxi5uLjg9ddfx65du0y6dNSLjvFueYz32rt+/bp03L9/f72vZ7wbxthxV8V4r5lSqcRHH30EAOjSpQveeustveuoD7HOZNkCSktLcefOHQCAh4eHzrKq53Nzc/VqR7W8OdtpKOpq3FUtWLAAN2/exIcffoiUlBQkJiZi5MiR2L9/P0aNGoWIiAg8fvzY4PrpGca75THea2/Xrl0AAHt7e8TGxup9PePdMMaOuyrGu6bS0lLcvXsXly9fxpYtWxAUFISMjAxERUXh+PHjcHBw0LvO+hDrNiariWpN9YenpgcFVQNL3x+6umqnobDEeLz//vv4/PPPYWX17Hvp2LFjMXbsWAwdOhR79+7F+PHj+aCJCTDeLY/xXjv37t3D7t27AQBz5swx6DkYxrv+TDHuqhjvmhITEzFp0iTpz15eXvj6668xbtw4g6eE1YdY551lC1CdR1PTHGjV80+ePKmX7TQUdTkewcHByM3Nxdq1a9U+SKuFh4dj6tSpAIC9e/dKH+BkOMa75TDe9TN37lwolUr06NEDH3/8sUF1MN71Z4pxBxjvuoSHh+PgwYP45z//iVWrVqF58+aYMGECXnrpJezbt8+gOutDrDNZtgDVbz41bausel71idL61E5DUZfjYW9vD29vb53fpFVXKPjb3/6mdxukjvFuOYz32tu+fTsSEhLQokULfPvttwatDgAw3vVlqnEHGO+6eHp6IjQ0FMOHD8ecOXOQlZWFuXPnIicnB0OHDsXWrVv1rrM+xDqTZQtQXfZEqVTqLKv6jUpuuRRLt9NQ1Lfx6NKli/SBnZGRYZY2XiT17d+X1DHege+//x5TpkxBkyZNsG/fPvj4+BhcF+O99kw57rXFeK+iUCiwYsUK9OjRA0IITJs2TXp2qLbqQ6wzWbYAOzs7tGzZEkDV4tm6qJ7X9wdctbw522ko6mrca8va2hqurq4AgAcPHnDzEyMx3uu3Fz3ef/jhBwwbNgy2trbYv3+/2kYNhmC8146px722XvR4V6VQKKSNREpKSpCYmKjX9fUh1pksW0hAQACAqgnoDx8+lC33888/S8edO3c2qA0AyM/P11m2uh0rKyv4+/vr1U5DUhfjro/KykoAVR8m2ua+Ue0x3uu/FzXes7KyEB4eDiEE9u/fj+DgYKPrZLzXzBzjro8XNd616dChg3ScnZ2t17X1IdZf7H89C1JdmPvcuXOy5c6cOaP1mtro2bOn9GsIXW1UVlbi/PnzAKp2wDFkaZeGoi7G/eHDh1i2bBmOHTums1xZWRn++9//AgBatGjxwn+YGovxbhmMd93Onj2LsLAwlJeXIy0tzWQJG+NdN3ONO+NdXWpqao1jAVTdaa+m7132+hDrv85/vQZgzJgx0sMBhw4dki333XffAajaVXDgwIF6tWFnZ4eIiAgAQGZmJoqLi7WWO3XqlHQuMjJSrzYamroY98LCQixcuLDGXzVlZWWhrKwMAPDKK6/o1QZpYrxbBuNd3oULFxAWFoanT58iNTUV/fr10yjzySefoGfPnnrXzXiXZ85xZ7yrmzZtGqZPn15juZycHOnYy8tLrzbqRawLspioqCgBQPj4+IjS0lKN89euXRPW1tYCgFi1apXG+ezsbOHn5ydat24tjh07prWN7OxsYWVlJQCI+Ph4rWUmTZokAAgPDw9RXFxs3JtqAMw97tevXxcARNu2bUV5eblsP2JiYgQAAUAcOHDAuDfVAC1evFh6/0eOHKmxPOPdNEw97ox37bKzs4Wbm5twdHSUjVchhJg4caLQ9l8x490w5h53xrs6b29vYWVlJa5fvy5bprKyUvTq1Usaj1OnTqmdbwixzmTZgvLy8oS7u7sAIGbPnq12TqlUisGDBwsAIigoSJSUlGhcP3bsWCn4+vbtK9vOvHnzBADh7u4url27pnZu//79UgAmJyeb5o3Vc+Ye9+oPUwBi1qxZorKyUqPM3//+d6FQKAQAMW7cONO9uQZE36SN8W4aph53xrumS5cuiRYtWggAYtGiReLIkSOyr/DwcK1JG+Ndf3Ux7ox3dd7e3gKAeOWVV8Tt27c1zldUVIiZM2dKY6ZtPBpCrHMHPwvy8vJCSkoKRo4cidWrV+PixYuIiIhASUkJtm7diuzsbAQGBmLPnj1ad62pfngAgM496D/99FM8ePAAW7ZsQe/evfHOO+/Ax8cHWVlZ+Oqrr2BlZYU1a9a8ML+iM/e4Ozs7o127drh27RrWrFmDw4cPY/To0WjTpg0KCwuRmpqKgwcPAgBiY2OxceNG873Zemb79u3S8YULF6TjgwcPSg9meHh4ICwsTONaxrvhzDnujHd1SqUSgwcPxr179wAAS5cuxdKlS/Wuh/Gun7oad8a7um7duiEvLw/p6elo164dxo4dC39/fzRv3hw3btxAcnIyrly5AgCIiYnB5s2bNepoELFu8vSb9Hb//n2xYMEC0alTJ+Hk5CRcXFxE7969xdq1a7VOE6h2/vx50b59e52/ulD1r3/9SwwdOlS0bNlS2NnZCW9vbxETEyOysrJM+XYaDHOOe2VlpTh06JCIi4sTwcHBonnz5sLGxkY4OzuLDh06iLfeekucPHnSXG+t3sL/7h7oeg0YMEDrtYx3w5l73BnvzxQWFtZqvJ9/PY/xrp+6HHfGu7rs7GyxdOlSERYWJn7zm98IBwcHYWNjI5o1ayZ69OghZsyYIX744QfZ6xtCrCuE0JHGExERERG9wLgaBhERERGRDCbLREREREQymCwTEREREclgskxEREREJIPJMhERERGRDCbLREREREQymCwTEREREclgskxEREREJIPJMhERERGRDCbLREREREQymCwTEREREclgskxEREREJIPJMhERERGRDCbLRES/crGxsVAoFBqvIUOG1Or677//HnPnzkXv3r3RunVr2NnZwcnJCW3atMHAgQMxY8YMJCcn4/79+ybt99GjR7X2u/qVm5sre+2SJUu0XrNkyRIAgL+/v87zRETVbCzdASIiqjvbtm2Tjlu1aqWz7NmzZzFz5kwcP34crq6ueO211xAZGQk3NzeUlJQgJycH+/btw7Fjx/DFF1/A2toa/fv3x4YNG+Dv7290Xzt27Iht27bhwYMHiIuLAwA0atQImzdvho2NDdzd3WWvHTVqFNq3b4/Tp09j3bp1ePPNNxESEoKuXbsCAFatWoWHDx8CAAoKCvDBBx8Y3V8i+nVSCCGEpTtBRETmExsbi61btwIAavuRv2PHDkycOBElJSWIi4vDH/7wBzg7O2stu23bNrz99ttQKpUAgJSUFAwdOtQ0nf+fbt264cKFCwCAvXv34vXXX6/VdbGxsdi2bRvy8/Nlvxzk5uaibdu2AIDFixfz7jIRqeE0DCIiUnP06FGMGzcOJSUlWLRoET7//HPZRBkAoqOj1e5Ym0N0dLR0XNu2njx5gm+//RahoaE13kUnIpLDZJmIiCSPHj3CG2+8gYqKCgQEBGDRokW1um7MmDEYMGCA2fo1YcIEWFtbAwB2794tTaHQZefOnSguLsbEiRPN1i8i+vVjskxEZCJ3796VHhSLj4/Ho0eP8Mc//hEvv/wy3N3dYWtrCy8vL0ybNg137tyxdHe1Wr9+Pe7duwcAmDlzppSg1saECRPM1S14enoiNDQUAKBUKrFjx44ar0lISEDjxo0xYsQIs/WLiH79mCwTEZnIuXPnpGOFQgE/Pz98/PHHyMjIQEFBAcrKypCfn49NmzahT58+uHXrluU6K2PTpk3S8ciRI/W69ne/+x2uXLmCkJAQ2TLFxcX405/+hD59+qBZs2aws7ND69atMXz4cCQlJaGyslL2WtWpGAkJCTr7cuvWLRw6dAiRkZFwdHTU630QEaliskxEZCKqyfKcOXNw7949REZGYvfu3cjKykJSUpK0GsONGzfq3QoMV69eRX5+PgDA29sbzZs31+t6BwcH+Pv7w8nJSev5M2fOoEOHDpg/fz4aNWqERYsWYcOGDZgwYQJOnDiBsWPHIjQ0FIWFhVqvHzlyJBo3bgwASE9Px/Xr12X7sn37dlRWViImJkav90BE9Dwmy0REJnL+/HnpuKSkBMnJyUhOTkZERAR69OiBqKgopKenw8PDA0DVnNqioiIL9VZTVlaWdPzSSy+ZtO7c3FyEhobi1q1biIuLQ3p6Oj744ANMnjwZK1euRHZ2Nnx8fHDkyBGMHz9e66odjo6OGD16NICqVT10PeiXkJAAHx8f9O/f36Tvg4hePEyWiYhMRPXO8sqVKxEZGalRpnHjxpgxYwYAoLy8HGfPnq2r7tVIdVORJk2amLTu6dOno7CwEG3atMHKlSs1znt6emL58uUAgLS0NBw4cEBrPbVZFSMrKwuXLl1CdHQ0FAqFCXpPRC8yJstERCagVCrx008/AQA6deqE999/X7ZsQECAdFxQUGD2vtXWo0ePpGMHB4cay//yyy8oKCjQ+lJ19epV7Nu3DwAQGRmJRo0aaa3v1VdflY63b9+utUxISAi8vLwAADk5OcjIyNAoUz2fmVMwiMgUmCwTEZlAdnY2KioqAABTp07VuYpEs2bNpGNHR0cIIdC0aVOdWzurvqytrVFcXGzy96B6N7mkpKTG8vPmzYO7u7vWl6rvvvtOOvbz85NNsMvKyqT5zpmZmVrbVCgUaqtuPH93uby8HImJiejXrx/at29f85smIqoBt7smIjIB1fnKEREROsuqLhvn4eGB4uJijYf9bt26hS+//BK+vr5qUw+AqqRW1yYhhlJNcmszl/q9995TW5Zt9uzZ0i57qnJycqTjd999F++++26NdetaWi86OlqaspGUlIS1a9fCzs4OAJCamor79+9j2bJlNbZBRFQbTJaJiEyger6ym5sbvL29dZY9deoUAMDOzg4dO3aEk5OTxhbL33zzDb788kuEh4fX2fbLQUFB0vGPP/5YY/kOHTqgQ4cO0p9V75irUp3e8cknn6Bfv3411q1rrnHHjh3Rs2dPnD59GoWFhdi7d6/04F9CQgLs7OwQFRVVYxtERLXBZJmIyASq7yxXr3QhRwiBvXv3AgD69++vc5k1AOjRo4cJe6mbn58fvLy8cOPGDdy8eRO3b9+Gp6en0fVWL/dW3Ub15iLGiImJwenTpwFUJcijR49GUVERUlJSMHz4cLi4uBjdBhERwDnLRERGE0JI0w+ePHmis+zBgwelaQm6tmGuXiWjLpNloGq+dbXk5GST1Onn5ycd5+XlmaTOcePGSQ8KpqamoqCgAElJSSgtLeWDfURkUkyWiYiMdP36dWmqQX5+vuzDd0+fPsXcuXMBVE1hGDdunGydZ8+eha2trdrKGXVh+vTpaNGiBQBg3bp1tXrQryaqd5K1rV6hatu2bbCxsdH5RQKomu4yZMgQAEBZWRkSExORkJAADw8PhIeHG91nIqJqTJaJiIyk+nBfeXk5Vq9erVGmtLQUsbGxuHDhAqytrbFx40ZYWWn/CM7NzUVhYSE6d+4MW1tbs/VbmyZNmiApKQnW1ta4fv06Zs2aZXSdfn5+eO211wAABw4ckHYJfJ4QAps3b0ZFRQXGjx9fY72qd5DXrFmDjIwMjB8/HjY2nGFIRKbDZJmIyEjVD/e5urrC19cXS5YswdSpU5GWlobMzEzEx8cjKCgIiYmJAIBly5YhJCREtj5LzFdWNXDgQHzzzTewt7fHpk2bMHHiRDx48EC2fF5eHqZOnYr09HTZMhs2bICrqytKS0sRHR2tcfddCIGFCxciPT0d4eHhtbo7PGzYMGlucm5uLgDdU1uIiAzBr99EREaqvrPctWtXfPTRRxg2bBji4+MRHx+vVs7GxgaffvqpNBVDjqWTZQCIiopCu3bt8N577yEhIQG7du3Cq6++ip49e8LNzQ0lJSXIy8tDRkYGTpw4ASEEGjVqhMjISMyfP1+jPm9vbxw+fBgRERE4duwYOnXqhJiYGLRt2xa3b9/G7t27cfr0afTr10/6UlGT6lUvNm/eDKBq/Lt162bScSAiYrJMRGSk6jvLXbt2RVhYGI4fP47ly5cjIyMDRUVFaNWqFX77298iLi4O/v7+NdZnqYf7nhcUFISMjAwcPnwYe/bswbFjx3D06FEUFhbC1tYWTZs2hbe3N95++2383//9H4YOHYqmTZvK1tetWzdcuXIFmzZtws6dO7FhwwY8fvwYLi4uCAwMxFdffYXo6GidG7o8LyYmRkqW+WAfEZkDk2UiIiM8fPhQWuGhS5cuAIBevXph586dBtd55swZWFtb15u7pIMGDcKgQYNMUpejoyNmzZplkrnQAPDyyy9DCGGSuoiItOGcZSIiI1TfVQaeJcvGuHPnDu7cuQN/f384ODgYXR8RERmHd5aJiIxQPV9ZoVCgc+fORtdn7vnKBQUF0rGtrS2aNGlilnbqu6KiIpSXlwMACgsLLdwbIqrPmCwTERmh+s6yr68vnJ2dja7P3POV3d3dpePw8HCkpaWZpZ36Ljg4GP/5z38s3Q0iagAUgpO9iIgMFhQUhDNnzmDEiBHYtWuXpbuj1eXLl3Hr1i2Nv3dzc0NgYGDdd6geOHnyJH755ReNv/f19YWvr68FekRE9RXvLBMRGai8vByXLl0CYJr5yubSqVMndOrUydLdqFf69u1r6S4QUQPBO8tERERERDK4GgYRERERkQwmy0REREREMpgsExERERHJYLJMRERERCSDyTIRERERkQwmy0REREREMpgsExERERHJYLJMRERERCSDyTIRERERkQwmy0REREREMv4fDV/vnERdQbUAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 800x600 with 1 Axes>"
       ]
@@ -688,7 +1027,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAJGCAYAAABC5KPjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFQUlEQVR4nO3dz28b953/8ZfqwAEMxBpJt6IBrFF66WVjSup9q+HmkFtNSv0DYjLZ46IhrS+KYhEUUKj2sKdthsr+AfawuQXYhrT3viKZnHLYhmMXKXozOVIBAzHszvfgDqMfH1Iccij+0PMBCHGGnOGHMxzyxQ/f8/kshGEYCgAAAMApP5h0AwAAAIBpRFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGDw2qQbgKurVqspm80ab1teXj63rN1un1uWy+VUKpUufBzXdWXbtiQpCAJZltVdr1aryfO87v0ty1IQBCoWi911AADA1UNQxsQ4jqNOp6MgCLS+vi7f95XJZE6F1rOCIFCtVlOxWJTv+/J9v+9919fX5TjOuW1WKhWtr6/Ltm35vi/P806F4iAItLW1pYcPH8qyrJGfKwAAmD2UXmDiLMtSKpWSpAt7cC3LUiaTUavVUiqVUhAEPe+7vr6uVCol13VPLQ+CQNlsVs1mU7VaTQ8fPjz3uFtbW2o2m3rw4MFwT8rA932tra317EUHAADThaCMmVUqlXr2KO/v78v3fe3u7p67zbKsbjDO5XLGHmPHcWRZljY2NhJrb6VSke/7qlQqiW0Tk8cXH2B2cf7iIgRlzCzHcXrednh4KEndnuqzisWiJGlzc9N4e6lUUqfT6bn+MHK5nHK53Lkebsy2fuU/AKYb5y8uQo0yZlqvIBtdsHeRy7xYz7IsQvIc4oMWmF2cv7gIPcqYaZubm7zRYWJqtVrfOnkA04vzF4MgKGNmmGrJLrqgDxini4YmBDC9OH8xCEovMNP61SkPKwgCtdvtbvkGYynDJJ/Pq1arTboZAIbA+YtBEZQxEwZ5Q6tUKt2L9KJyjLW1NeN9o8lLtra2zk1uEoVkSSoUCn17HXzf746+cTJQn52sZH9/X9VqtTv2c6fT6VlDHU2QcrJdJydIieTzedXrdQVBIN/3FYZh97GePn2qIAhUr9dl27YODg4urNke5Lnk83njkHmPHz8+t/319XU1m83uBC4XjZF9VlKP5fu+XNfV2tpa97g+ffpUOzs7qtVqchwn1kWb5XL53LFYWlo6dbwcxzlVj57NZuX7fvfxW61Wd1Iby7Lk+752dnaUyWTOPV6lUulenBp9idvd3e3Z5qReF4PutyRfE4O+9ofZn8O+DgZtUxxxjlGpVOqef9FziP7t+74cxxmoLdH5HbU/2gf5fN74vCfRxst47xvm/D37eGffv33fVz6fV7vd7r5/NhqNie9PJCQEpkAmkwklhYVC4dTyTqcTVqvV0LbtMJPJDLw9x3HCfi9v13VDSWG1WjXe7nmesT1nt2FZVuh53rnbSqXSqeWNRiP0PC+0LCuUFHY6HeM2C4VCmEqlwlardWp5LpcLbds+tTzapqTuc83lcufWdRwntCyr52PGfS7R40i68JikUqnQtu2w0Wj0vV8/0WPlcrnYj+V5Xs82FgqFUNJIbbvodRZpNBrd15xt22Gn0+m2q9PpnDqGZ9t49jXaaDRCy7J67o8kXhfD7LdRjlO03Tiv/Tj7c9jXQZw2xTHMMWo0Gsb3R8uyLjwPPc8ztrfT6YSpVMr4PnfZbZzEe9+g52+1Wu2+3nq9f1er1e45kEqlzt1+2fsTySEoYypEQTn64LNtuxsqo7/LDMqtVqtvUI7e8EzBMgxfvZk5jnPuDTV6nqY32ugDu9eHr23bxjfg6LkWCgXjdhuNRigpLJVKiT2XKIw4jmNcJ5LL5UYKoicfy/TcL3qsi74gjBriB/2gjUQh8WyYzGQy515rnuf1PCbRMXNd98K2DfO6GGa/jXKchn3tD7o/h3k+w7YpjkGPUaFQ6PkF5KJ2Rl+C+z3/VCrVc/uX0cZJvffFPX/7vX9HLjoHLmN/IllczIepUigU1Gq11Gq11Ol0FIZhdxa+aREEge7evatUKmX8qVySVldXVavVzpWMnC3ziPi+r/39fRUKhZ410cVisTub4EknfwI0/Ywe7btqtZrYc4lmSKzVaheOOjLqsYseq9lsqtls9rxfu90+9VhBEHRLFXrp9ZzHZXl5uTtD40me5537KbVareru3bvGsqOo3f2GGxz2dTHsfhv2OI3y2h9kfw7zfEZpUxyDHqP9/X3l83njNqKx4E3tCIJA+Xy+58RKkVKppHK5bDxu427jpN77JmXc+xPJIyhj6kV1ZtOiXC4rCALt7Oz0vM/29vapqbkvEtVWp9PpnveJZgns9abfb11JxqAwynOJ3sR7hbVKpZLYrFfRDIv9Huvsh0r0IZTNZnuOjLKzszPQeNtJG+Qi1KhWvlfotG17oKER474uRtlvwxynJF77/fbnMM8niTbFcdExki7+wml6btHz6Hd+S9/vv7t37/a8z7jbeNnvfZM2rv2J5BGUMRP6vWFc9pvF/fv3JfWfrMR1XXU6nYFHzIjCUL8ps6Nt9QtOcY3yXBzHkW3bKpfLPbed1KgkqVRKqVSqG+wHfSzXddVsNrW0tKT19XUVi8VTvTCpVGoio5oM8pgHBwfyPE+FQsF4+8kLskZ9rLOG3W/DHKfLeO3HfT5JtCmOi9rf7/Z+X/SiiywHeQ1YlqVms9nzNTWuNk7qvW/SxrU/kTxGvcDM6PUNvFgsXuqMd9EHSZJvzlHP4N7enlZWVnre7+TV0Gf1KuvoZ9Tnks/nVSwWValUzo0w0Gt68GHl8/nuCAu5XK67vNls9nysXC4n27a7P902m03t7+9LevVz+yCjgYzDII8ZlTJIr/ZnNPrFyavhBzHM62KU/Rb3OCXx2r9of8Z9Pkm0KY6LjtGwr9Ho/B5k/eXl5e6IDKaOiXG1cVLvfZM2rv2J5BGUMTNOfuieNKmf1ZJ63JM9OLu7uxN5gxz2ueRyORWLRe3t7Z0Kyq7rdn+GT0r0WKVS6dRrwXXdvkMlOY6jRqOhIAhUq9V0eHioWq2mSqWiWq2mRqMxtT1S0ZCHUcg72btcq9US6c3sZdj9Fuc4XeZrf9DnMw3nYxKG/aXtMt9P52VfY75ReoGZd9mlF1E4SOpxJ/nhMOpz6XUBV/CPyVqSlsvl5Pt+34t6TrahUqmca2upVFKj0VC1Wu1e7JS0crk88tTq+Xxe2WxW+Xxe1Wp1LJPrmCSx3wY9Tpfx2o/7fOYlrJ18HoOc31FAvswvjdO6r5M4fzE/CMqYabVa7dJ7A6MSkGgSiCREvbH1ej2xbQ4iiedy9gKuJC/iO+vsBYTlcrlnYGu3231LcqJB+6fxyvFaraZyuSzHcXrWKJ8NP81mM5EP9yT2W5zjNO7X/jDPZ1LnY9IGfR7RyCC2bV/6++m87GuJi+vmFUEZM61UKvWcfW9cCoWCLMvqeRFbJE5vZfST9EW11tHsY0lJ4rlEF0JF20jyIr6zbNuW4ziqVCoKgkDVarXvhZ4XhWDHcRLp1Tr7ARkEwUh1k9Fsdf2+cJwNxSdnqhvVqPstznG6jNd+3OczqfMxaYM+j+iiv0nM9jYN+3rQ8/eic3oav3RjdARlzKyotnAS9aWe5134xr23t3fu9l71f7Zty3Xd7nPqt82kSwWGfS4nRbfl8/nEL+Lr9VjZbPbCYa9O3t8kmg52WFGP/NnQ2mq1Rgrg0Ze/XsG3UqmcC57tdjvRn7JH3W+DHqfLeu3HeT6TPB/j6vflKJoOuVKp9P21oVQqKZPJjG1c8YvaOKl9Hff8XV9fN94/Uq1WL62cCJdo0jOeAGH4auYlDTD9bRi+mrkomipUPWYnirbXawalaP1eM5tVq9ULZwOMpqQ2zd5nmvY5DF/NgKU+0yb3m0raNJ3xINuMZkyzLCvR53JWdDz6zVqVFMuy+j6fMPx+dsVcLmc8zo1GI0ylUiO1t9PphLZtn5qhsNFo9JwJLHpdXjSjVjRNrWVZ5+5brVa7x0QnZlQ8e+4M+7pIcr8Ncpwiw7z2B9mfozyfYdoURxLnbqlUuvC9M3oeptkUHcfpu+5lt/Ey3/vinr/9po8uFAphq9XqzihbrVaNr6nL2p9IzkIYhuEl5HHgnFqtpnw+f+7buWVZxp+4ogkYzjr5El5bWzt1v2hbnucplUp1h606uR3btpXP51UoFLqjDJxsk2VZ2tjY6DmzXbFYVL1el23b3XZHIxVE1tfXT/00HrWr0Wic64HwfV+lUkm+75/axqDbdF1XjuOo2Wwqm80a90er1Rr6ufSSz+fVbre7ZQPjtL+/r6dPn/b9qdj3/e5IC7Vardsu00/so/B9v9vTZdu21tbWztUV93pdplKpnvsrCALt7e2pVqtpY2Oj2+7Nzc1uz1+5XJbrut2eQ9u2R35dJLnfBjlOJw362o+zP0d9PoO2KY4kzt39/X25rnvuvWp7e9tYxhA9j3a73Z3R0LIs7e7uGstiJtnGy3zvG+T8PSl6n4zaGL2OolE7lpaWJL0q07AsS41GY2L7E8kgKANIRLlc1sbGxlRNNw4AwCioUQaQiEajQUgGAMwVgjKAkfm+373QBQCAeUFQBhCL6cr0Uqmk7e3tCbQGAIDxISgDGFixWFQ6ndb+/n53WdSbPK2zbAEAMKzXJt0AALNjc3NTtm13R12IrgC/jJEuAAC4bIx6kaC///3v+utf/6o33nhDCwsLk24OMBb/8R//cWrilH/7t3+jNxkAMDPCMNTf/vY3/fCHP9QPftC/uIKgnKC//OUvevPNNyfdDAAAAFzg22+/1Y9+9KO+96H0IkFvvPGGpFc7/ubNmxNuDQAAAM46Pj7Wm2++2c1t/RCUExSVW9y8eZOgDAAAMMUGKZNl1AsAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAGCOPXv+Qrfufa5b9z7Xs+cvJt2cmUJQBgAAAAxem3QDAAAAkLyo9/jZ85cnln3/7xvXiYEXYQ8BAADMoZ/8+o/nlm38ptb995OP373M5swkSi8AAAAAA3qUAQAA5tDXH70j6VW5RdSTXP+VoxvXr02yWTOFoAwAADCHTDXIN65fozY5BkovAAAAAAO+UgAAAMyxG9df48K9IdGjDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQCYcc+ev9Cte5/r1r3P9ez5i0k3B5gbBGUAAADA4LVJNwAAAAwn6j1+9vzliWXf//vGdT7mgVFwBgEAMKN+8us/nlu28Zta999PPn73MpsDzB1KLwAAAAADepQBAJhRX3/0jqRX5RZRT3L9V45uXL82yWYBc4OgDADAjDLVIN+4fo3aZCAhlF4AAAAABnzlBABgxt24/hoX7gFjQI8yAGBqMHEGgGlCUAYAAAAMKL0AAEwcE2cAmEa88wAAJo6JMwBMo5kPykEQaG9vT5K0srKiVquldDqtTCYz0jaLxaIkqd1uS5I2NzdVKBRGbzAAAABmwkwH5SAItL6+Ls/zlEqlusvz+bwODw9VKpVib7PZbMp1XZVKJVmW1V1eqVS0vr6uRqORRNMBACcwcQaAaTTTQTmbzSqTyZwKyZLkuq6WlpaUTqflOE6sbRaLRVWr1XPLM5mM2u228vm8XNcdqd0AgNOYOAPANJrZUS9831etVlM+nzfevr29HbtHudlsyrbtnrdvb2+rVqv1vB0AAADzY2a/qke9ur2C7dramsrlsoIgOFVC0U8Uvntpt9sDbwsAEB8TZwCYJjPbo9xsNvuG1ihA1+v1gbeZSqXk+76y2azxdtd1tbOzE6udAAAAmE0zG5R939fy8nLP26MQ7fv+wNu0bVu5XE6VSkVra2unepdrtZqCIGDkCwAAgCtiZksv2u1233riKEQHQRBru67ram1tTcViUel0WrlcTmtra0qlUgNfxHd8fHzq/19//XW9/vrrsdoBAACAyZrZHuVBA/DTp09jb7tQKHRDcblc7o7TPKg333xTi4uL3b+46wMAAGDyZjYoj1M02UgYhioUCgqCQOl0uucIG2d9++23Ojo66v7t7u6Os7kAgB6ePX+hW/c+1617n3enyQaAQc1sULYsa6Be5ZWVlVjbTafT3ZILSSqVSmo0GrJtW+VyueeFfifdvHnz1B9lFwAAALNnZoNyvwv5pO+nno4znNv+/r5SqdS5SUpSqZRarVb3Qj/GUgaA6fbs+Yt//L08sexldzkADGJmL+azbbvv0G9Rb3O/C/7Ocl237xTVruuqXq+rWq3GnvEPAHB5fvLrP55bFk2NLYmxmgEMZGZ7lFOpVN/Si2hYuDiB1vf9C3ug8/l87JE0AAAAMHtmtkd5Z2dH+/v7ajabSqVS524/PDyM3etr27Z83+/bC91qtbS+vh67vQCAy/P1R+9IelVuEfUk13/l6Mb1a5NsFoAZM9M9yo7j6P79+8bbK5VKd/SKk4IgULFYNNYZZzIZ4zon1202m9re3h6+4cAVxygEuAw3rr/2j79rJ5Zd6y4HgEHMbFCWJM/zVKlU1Gw2Ty3P5/MqFArGHuVyuaz9/X3j6BWlUqm7/tnyimazqWw2q1KpFOsCQQBXE18IAGD2zfTXasuy1Gg0VCwWZVmWVlZW1Gq1lE6nlclkjOs4jiPLsnr2Cnuep1qtprt3755abtu2qtVq4s8BuCqisHh2FIIIvXwYhxvXX+PCPQBDWwjDMJx0I+bF8fGxFhcXdXR0pJs3b066OcBUuXXv8763z0uYOfmFwFQbyxcCAJisOHmNd2wASBDDkgHA/CAoA7gUjEIAAJg1BGUAl8JUchCNQjBP+EIAAPNjvj6hAGDCrsoXAgC4CnjnBnCpGIUAADArCMoAMAZ8IQCA2TfTE44Ak8SEEgAAzDeCMgAAAGBA6QUQEzPMAQBwNfCJDsTEhBIAAFwNlF4AAAAABvQoAzExoQQAAFcDQRmIiQklAAC4Gii9AAAAAAzoAgOGxIQSAADMN3qUAcw0Jn4BAIwLQRlXCqEKAAAMitILADOJiV8AAOPGJwmuBELV/GHiFwDAuJEOcCUQqgAAQFwEZQAXevb8RffLxtcfvTMVPfBM/AIAGLfJf9oBl4BQNX+Y+AUAMG58ouBKIFQNh9puAMBVxqccgJ5mobabiV8AAONCUMaVQqgCAACDIigD6InabgDAVUZQBtATtd0AgKuMKawBAAAAA7qFAFyI2m4AwFVEjzIAAABgQFDG1Hv2/IVu3ftct+593h3XFwAAYNwIysCU4AsBAADThRplTC1mhQMAAJNE0sDUmoVZ4ZLAFwIAAKYTn8DAhF2VLwQAAMwagjKmFrPCAQAw3549f9HtMPr6o3em7lfU6WoNcMJVmRWOLwQAAEyn+UocwAy6Kl8IMJpp73UBgDhm5fqc6WgF0AezwgEAMF9m5focgjIwJfhCAJNZ6XUBgHm0EIZhOOlGzIvj42MtLi7q6OhIN2/enHRzcIXxM/38uHXv87638+UKwCw62Qlguj5nnJ9bcfIan54AAAC4VLNyfc50tQbASPiZfv4wKgoATA6fmsAcmZWLI6bVNJaszEqvC4BkTeP70ThM+/U5P5h0AwAAAIBpNJ9fT4Arip/phzMLJSvT3OtyVXq+gMswC+9HVwl7G5gj/Ew/HEpWAEwL3o+mC5+eAICh0PMFYN4xjnKCGEcZmE2THM9zljHGM5A83o/Gj3GUASAGSlYATAvej6YLex0AMBQuHgUw7wjKAPAP0zyyxDSi5wsYH96PpgPjKAMAAAAGfO0HAIyEni8A84oeZQAAAMCAoAwAAAAYEJQBAAAAA4IyEvfs+Qvduve5bt37vDtwOgAAwKwhKAMAAAAGjHqBxJycdvP7Zd//m7FVAQDALCG5IDE/+fUfzy2LZuuSxPBRAHDCs+cvuu+bX3/0Dp0JwBSi9AIAAAAw4OsrEvP1R+9IelVuEfUk13/l6Mb1a5NsFgBMFcrUgNnB2YjEmN7cb1y/xps+AJxAmRowOyi9AAAAAAwWwjAMJ92IeXF8fKzFxUUdHR3p5s2bk24OAGAKnSy9MJWp8SscMF5x8hpnIwAAl4gyNWB2UHoBAAAAGPD1FQCACbhx/TUu3AOmHD3KAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAFfMs+cvdOve57p17/PumL64GPsNuHoIypDEBwAAAMBZiQblR48eJbk5AECCnj1/8Y+/lyeWvewuhxn7Dbi6Eh1HOZ1O6+XLlxffEVPj5FSq3y/7/t/MFAXMj5/8+o/nlkVTKEtiTN8e2G/A1ZVoClpcXNS//uu/6j//8z+T3CzGiA8AAAAAs0SDchAEcl1XrVZLpVJJb7/9dpKbBwCM4OuP3pH06lej6Atx/VeObly/NslmTT32G3B1Jf67uuu62traUq1W097entLptLa3t3Xz5s2kHwoJ4AMAuDpMpVQ3rl+jxOoC7Dfg6kr0LHddV++9954k6e7du7p7966+/PJLFQoFLSwsKJ/P08s8ZfgAAAAAMFsIwzC8jAc6OjrSgwcPVKvVlE6nu4F62lQqFWUymaHWPT4+1uLioo6OjmauB/3Z8xfdeuWvP3qHoAwAAOZSnLx2aUH5pC+//FKu62phYUHvv/++/umf/umym2AUBIGWlpbkuq62t7dlWVas9Wc5KAMAgOHR4TQ74uS1iUw4sra2prW1Nd2/f1+pVEo//vGP9emnnw61rSAIVCwWVSwWtb+/r3w+r0qlMtS2fN+XJOXzeS0tLWlhYaHn37CPAQAAgNlwqV93Hj16pFKppFrt1UVjYRgql8spn89Lkt5//30tLCyoWCzq1q1bF24vCAKtr6/L8zylUqnu8nw+r8PDQ5VKpVjt831ftm0rlUppeXnZeJ92uy3f94cuzwAAAPOD+QjmW6KlF48ePdLPfvazU8uOj49VLpfluq5831cYhrJtW8ViUXfv3j23jaOjI5XLZbXbbe3u7vbtEk+n00qlUsZAvLS0JM/z5DjOwO0vFovK5/OybXuo+1B6AQDA1XLr3ud9b2c+gukTJ6+NbWa+R48eyXVdVSoVRVk86j2+fft2z20sLi7qww8/1NHRkd577z3t7+8be5d931etVpPrusbtbG9vq1QqxQrKkvqG5GazqbW1tb73AQAAwHxIfGa+H//4x5J0rvd4e3tbi4uLsbb14MEDffDBB/r9739/7vYoIPcKrWtrayqXywqCYOCL8qISkF5c1+0ZzAEAwNXDfATzLfHCmVarJUnKZDLa3d3t23s8iF7hutls9g3AUYCu1+sD9ypfVHIRt+YZAIBZw+gN8TAfwXxLfNSLfD6vTqejBw8eDB2Sj46OtLu7qydPnujo6Mh4H9/3e15wJ6kboqORLEYRlVwM2jN9fHx86u+7774buQ0AAAC4XIkH5d///vexSixMHjx4oFKppHQ6rfX1deN92u123+AaheggCEZqiyTt7e0pl8sNfP8333xTi4uL3b+9vb2R2wAAwDg9e/7iH3+nR2+IlqO/G9df05OP39WTj9+lN3mOJHokt7e3E9tOq9XS5uam7ty5Y7zPoAH46dOnI7WlUqnEvnjv22+/PXUV5euvvz5SGwAAGLeo3OKkqOZWYvQGXE2JBuVPPvkkke0sLi7q448/TmRbo9rb29PBwUGsdW7evMnwcAAAADNuLL8N/OEPf1C5XO7WKp8d3u3x48cqFov66U9/ql/+8pdDPYZlWQP1Kq+srAy1felVfXOz2Tw1mQkAAPOI0RuA8xKvUd7d3ZUkHR4eqtFoqNlsnrvP6upq92K/6P5x9buQT3pVwyxp4AvwTFzXZcxkAMCVcOP6a//4u3Zi2bXucuAqSvSV/+jRI9m2rTt37igMQz1+/Fg///nPe95/a2tLkvTZZ5/1vZ+Jbduq1+s9b496m0cJurVajaAMAABwRSXao+x5Xnda6kwmow8//PDCdba2tlStVmM/ViqV6lt6EQ0LF3dmvpMuGqsZAIB5w+gNwPcSDcrRVNWXYWdnR5KMpR3Sq9KPUUOydHGJBwAAAOZTokG50+kMtd4wk4KkUik5jqP79+8bb69UKioWi+eWB0GgYrGoWq1mWOt7UY0zAAAArqZEg3I0fXUcR0dHQ4917HmeKpXKuV7lfD6vQqFg7FEul8va399XNpvtu+0ovFN6AQAAcDUlPuHIzs5Oz17eXuv84he/GOrxLMtSo9FQsViUZVlaWVlRq9VSOp1WJpMxruM4jizLunBylI2NDVmWpc3NzaHaBgAAgNm2ECZcWPzWW29pY2NDBwcHeuONN3re76uvvtLdu3cVBIH+9Kc/JdmEiTk+Ptbi4qKOjo6YcAQAAGAKxclriV/O+sUXX+itt96S53lKp9PdHtzl5WW12221Wi3VajU1m02FYdjzYjwAAABgkhIPyrZtq91uK5vN6osvvjAO/RaGoRzHkeu6Wl1dTboJAAAAwMjGMkCiZVmqVqt6+PChPM9TvV5XEASyLEu2bSufz3cnGwEAAACmUeI1ylcZNcoAAADTLU5eS3R4OAAAgFnx7PkL3br3uW7d+1zPnr+YdHMwhaYiKO/u7k66CQAAAMApUxGUy+XypJsAAACuiGfPX/zj7+WJZS+7y4HIWC7mk6QnT54MNDV1s9lUEATjagYAAMApP/n1H88t2/hNrfvvJx+/e5nNwRRLPCh/+umnKhaLhF8AAADMtESD8sOHD5XL5WTbtrLZrCzLunCdRqOhR48eJdkMAACAnr7+6B1Jr8otop7k+q8c3bh+bZLNwhRKNCjfu3dPnufpzp07sdZbWVlJshkAAAA93bh+Pv7cuH7NuBxXW6IX8y0tLcUOyZKYnQ8AAABTJ9GvTqlUaqj16vV6ks0AAAC40I3rr3HhHvpKtEeZC/gAAAAwLxINytlsVp999lns9ZhwBAAAANMm0aC8tbWlVqsVOywz4QgAAACmTaI1yk+ePFE2m5Xnedrc3JTjOFpbW5Nt2z3XYcIRAAAATKPEL+Y7OjqSJIVhqEajoYWFhSQfAgAAALgUiQbl5eVlSdL29vZAk41ITDgCAACA6ZRoULZtW/fu3dN7770Xaz0mHAEAAMC0SfRiPtu2+9Yj98KEIwAAAJg2C2EYhpNuxLw4Pj7W4uKijo6OdPPmzUk3BwAAAGfEyWuJ9ij3asyTJ0/G/TAAAABAosYSlJ88eaIPPvhA165d09LSkt56661Ttz9+/Fjb29v69NNPx/HwAAAAwMgSD8qPHj2SbdtyXVerq6va2to6V4O8urqqBw8eaHV1Vb/73e+SbgIAAAAwskSD8uPHj5XJZJTL5dRqtfTNN9/oiy++0J07d4z3j0I0w8MBAABg2iQalO/du6dSqaRPPvnkVC9yv0lH7ty5I8/zkmwGAAAAMLJEg3Kn09Hdu3djr8fAGwAAAJg2iY+jPIxOp5NkMwAAAICRJd6jPAzf95NsBgAAADCyRIPy0tKS/ud//ifWOru7u9ra2kqyGQAAAMDIXktyY4VCQf/yL/+ig4MD/fM///OF9//d736nSqWiP/3pT0k2AwAAABhZokHZtm198skn2tra0sbGhnZ2dnT79m0FQaAnT54oCAK12201m025rivf99VoNJJsAgAAAJCIhXAMQ05UKhXlcjkdHR0Zbw/DULZty/M83b59O+mHn5g4c4cDAADg8sXJa2OZwjqTyajdbmtvb09vv/22wjDs/q2urqpUKumbb76Zq5AMAACA+TKWHuWrih5lAACA6TbxHmUAAABg1k1FUP7ss88m3QQAAADglKkIysNMew0AAACMU+zh4b766iu9/fbbPW+Lo91uy/d9BUEQtxkAAGAGPHv+Qj/59R8lSV9/9I5uXE90ZFpgrGK9Wu/du6ff/va3Wl9f1//+7/+eu/1nP/tZzyHhAAAAgFkSKyj7vq8wDNXpdIy3Ly8vS5JyuZwkaWVlpe/2nj59qlarRY0yAABz5tnzF//478sTy77/Nz3LmAWxXqUHBwdKp9NyHMd4u23bunfvnt57771YjbgoUAMAgNkSlVuctPGbWvffTz5+9zKbAwwlVlBeXFzse+FdOp3WxsZG7Easrq7GXgcAAFwt1DvjsiX6Cvvwww+HWq9eryfZDAAAMGFff/SOpFflFlFPcv1Xjm5cvzbJZgGx8FUMAAAkztTbe+P6taF6gal3xqSM5ZX1hz/8QeVyWZ1ORw8ePNCtW7dO3f748WMVi0X99Kc/1S9/+ctxNAEAAMwJ6p0xKYlPOLK7uytJOjw8VKPRULPZPHef1dVVPXjwQLdv3+7eHwAAzJ8b11/Tk4/f1ZOP36XnFzMn0Vfso0ePZNu27ty5ozAM9fjxY/385z/vef+trS1Jr6aw7nc/AABwdVHvjElJNCh7nqff//73kqRMJjPQOltbW/rggw8IygAAwCjJemcgjkRLL8IwTHJzAAAAwMQk+lWs14x9F/F9P8lmAACAORTVOwOXJdEe5VarFXudo6MjPX36NMlmAAAAACNLNChvb29rZ2cn9jq/+MUvkmwGAAAAMLJEg3KhUFCj0dAvfvEL/e1vf+t736+++kqbm5vyfZ+xlAEAADB1Er9c9IsvvtBbb70lz/OUTqflOI4sy9Ly8rLa7bZarZZqtZqazabCMDSOswwAAABMWuJB2bZttdttZbNZffHFF6pWq+fuE4ahHMeR67paXV1NugkAAADAyMYyAKFlWapWq3r48KE8z1O9XlcQBLIsS7ZtK5/PdycbAQAAAKbRQsjgx4k5Pj7W4uKijo6OdPPmzUk3BwAAAGfEyWuJXswHAAAAzIupCMoffPDBpJsAAAAAnDIVQfnBgweTbgIAAABwSuyL+b766iu9/fbb55YfHR3p4cOHsRtweHioIAhirwcAAACM08BB+eHDh8rn83r8+LHW1tb0f//3f6dur9frymQyWlhYiNWAMAxjrwMAAACM20BB+ejoSK7rynVdpdNpLS4unrvP8vKyJOnOnTva3NyUZVkXbjcIAn3zzTf69NNP47UaAAAAGLOBhof77LPPtLq6qtu3b+vo6MgYlI+OjrS8vKyXL1/GbkQ0a9+sY3g4AACA6Zb48HCHh4e6ffu2JBlDcrS8120XcRxnqPUAAACAcRkoKC8vL+vJkycX3m/YWmNGvQAAAMC0GSgoO44j13XH1ojj4+OxbRsAAAAYxkBB+fbt2/I8T3/+85/H0ojV1dWxbBcAAAAY1sATjnzyySeybVv/9V//lXgjBrieEAAAALhUA4+j7DiO7ty5o1wup1wup1QqJdu2T90nCAK98847Az94u92W7/s6OjoavMUAAADAJRg4KL///vvyfb/b+9toNNRoNM7dr1qtxm4EE44AAABg2gxUevHll1/Ksiw9fPhQjuOoVCrp73//+7k/y7KMy/v91ev1cT9HAAAAILaBepQfPnyo999/X4uLi/riiy963m+YnuFUKjX0+MsAAADAuAzUoxyGYXeK6nHwPG9s2wYAAACGMVBQtm17rCUSW1tbY9s2AAAAMIyBJxwplUpja8Tvfve7sW0bAAAAGMZAQXlxcVGrq6v6f//v/42lEXt7e2PZLgAAADCsgYeHK5VKWl1dVa1WUz6f19bW1qm65WjYuD//+c+xJhBpNBoKgmDwFgMAAACXYCGMkWqDIND6+roeP36c+NjHL1++THR7k3B8fKzFxUUdHR3p5s2bk24OAAAAzoiT1wbuUZYky7LUarVUqVRUr9dP9QSHYaiDgwPlcrlYjT08PNRXX30Vax0AAABg3GL1KF9kZWVFT58+vbT1pg09ygAAANNtbD3KFxk2cy8tLQ39mEEQdC8GXFlZUavVUjqdViaTGXqbkXK5LM/zZFmWpFfD5I1z9A8AAABMj0SD8sHBwVDrffPNN0OtF9VMe56nVCrVXZ7P53V4eDh0qA2CQFtbW3IcR9Vqtbvc930Vi0XCMgAAwBWQaOnFZUun00qlUsbgurS0JM/z5DhO7O2ur68bx45Op9Oq1+vqdDrG9Si9AAAAmG4TK73o5d69e3r8+LFs29ba2pps29bGxsZIYdL3fdVqNbmua7x9e3tbpVIpdlDe39+X7/vG8G1ZljY2NoZqLwAAAGbLwEH5q6++Urvdlu/7arVa8n1fQRDIsizZtt130pCPP/5YkvT48WM1m019/PHHqtVqWlhY6Ibn//7v/47V8Cgg27ZtvH1tbU3lcrnbxkHt7e31HLnD87xYbQQAAMDsGjgo/+xnP9PR0ZHCMFQ2m9W9e/d0+/btWA+2urqq1dVV3blzR77vK5vN6ssvv5Tv+7Eb3mw2+wbgKEDX6/WBe5UrlYqCINDOzk7s9gAAAGC+xC69aDQasQOyiW3bajQaWlpa0vHxcez1fd8/NTPgWVGIjhPC79+/L0ndCwObzabq9bo2NjZOXSx4kbPP5/XXX9frr78+8PoAAACYvB/EuXMul0skJJ807AgS7Xa7b49yFKLjTI/dbDa7/97f31e73e6WYaTTadVqtYG28+abb2pxcbH7168sBQAAANMpVo9yNptNvAHpdHqo9QYNwHEmMonCd7lcVqFQ6C5PpVLyPE+rq6sDjaTx7bffnrpQkd5kAACA2RMrKPca8eHJkycXrnvr1i3j8tXV1aEnKklaFL5NJR2WZclxHOXzebVarb7buXnzJsPDAQAAzLiBg/LCwkLP8Od5np4+faparaYvv/yyu9y2bWUyGa2srCiXy/VcP86oFCfXGaRXeWVlJfY2e/UYp9NpVSoVNZvNWDXLAAAAmD2JjKP84Ycfdv9dLBb129/+Vtlstntx3EUWFhZiP2a/C/mkV2UUUrwQvry83Hc4uegx6/U6QRkAAGDOxbqYbxDRxXnjnubZtu1uGDaJept7jbNsMmj4jXOBIAAAAGZT4kFZetWL26smOSmpVKpvYI2GhYszM9/m5qak3kE4Cub0JgMAAMy/sQTlYUop4oomBTk5pNtJh4eHsaevzmQyktRzGLjoIj6msQYAAJh/YwnKlyGVSslxnJ510JVKRcVi8dzyIAhULBaNYTi6+LDXuMeVSkWFQmGoiw8BAAAwW6YiKA9b8+t5XncUipPy+bwKhYKxR7lcLmt/f7/nmNAHBwcKgkDlcvnU8mw2K9u2x157DQAAgOkw8KgXYRjqxz/+8UC9qUEQdOt9B7nvsCzLUqPRULFYlGVZWllZUavVUjqd7pZRnOU4jizL0vb2dt9t7u3tdcN0EATKZrPdWfoAAAAw/xbCAWf7iIZOG0sjFhb08uXLsWz7Mh0fH2txcVFHR0dMOAIAADCF4uS1WOMoR3XBcSbx6Ofp06dqNBp69OhRItsDAAAAkhJrZr5Hjx6Npaf02rVriW8TAAAAGMXAF/OFYTi2coLFxcWxbBcAAAAY1sBB+eHDh2NrxDi3DQAAAAxj4KB8+/btsTVinNsGAAAAhjEV4ygDAAAA04agDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoz6tnzF7p173Pduve5nj1/MenmAAAAzB2CMgAAAGDw2qQbgHii3uNnz1+eWPb9v29c55ACAAAkgVQ1Y37y6z+eW7bxm1r3308+fvcymwMAADC3KL0AAAAADOhRnjFff/SOpFflFlFPcv1Xjm5cvzbJZgEAAMwdgvKMMdUg37h+jdpkAACAhFF6AQAAABjQDTmjblx/jQv3AAAAxogeZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwmPlxlIMg0N7eniRpZWVFrVZL6XRamUxmqO2Vy2V5nqd8Pi/HcWRZlnzfV7PZ1P3797W7u6tUKpXkUwAAAMAUmumgHASB1tfX5XneqfCaz+d1eHioUqk01DZrtZpqtdqp5ZZlnXscAAAAzK+ZDsrZbFaZTOZceHVdV0tLS0qn03IcJ/Z2XddVq9WS7/taXl7W+vq6crlcUs0GAADADJjZoOz7vmq1mlzXNd6+vb2tUqk0VFDe3t6WZVkjthAAAACzbGYv5osCsm3bxtvX1tZUq9UUBMEltgoAAADzYmaDcrPZ7NvrGwXoer1+SS0CAADAPJnZoBzVD/cShWjf94d+jGazqXK5rGazOfQ2AAAAMJtmNii32+2+PcpRiB6m9KJWq2l/f1+SuhfxpdPpcyNh9HJ8fHzq77vvvovdBgAAAEzWzAblQQPw06dPY203KtkoFArd0TRSqZQ8z1M6nR6od/nNN9/U4uJi9y8a5xkAAACzY2ZHvRiXXhOVWJalTCajbDarVqvVdxvffvutbt682f3/119/PdE2AgAAYPxmtkfZsqyBepVXVlYSe8zNzU35vn9h3fPNmzdP/RGUAQAAZs/MBuV+F/JJr2qYJSU6HnK0LS7uAwAAmH8zG5Rt2+6GYZOot7nXOMsm+Xxea2trozYNAAAAc2Bmg3IqlepbehGVR8SZma9erw8Uvs9OmQ0AAID5M7NBeWdnR1LvMojDw8PY01c7jqNOp9Pz9sPDQ1mWFauXGgAAALNpZoNyKpWS4zi6f/++8fZKpaJisXhueRAEKhaLxjGRd3Z2VC6XjdvzfV+VSkUHBwejNRwAAAAzYWaDsiR5nqdKpXKuVzmfz6tQKBh7lMvlsvb395XNZs/dFpVzRJONRHzf1/r6ugqFQs/h4wAAADBfZnocZcuy1Gg0VCwWZVmWVlZW1Gq1lE6newZax3FkWZa2t7eNtxcKBdVqNeXzebXbbQVBIMuy9PDhQ2qTAQAArpCFMAzDSTdiXhwfH2txcVFHR0enJhwBAADAdIiT12a69AIAAAAYF4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMoAAACAAUEZAAAAMCAoAwAAAAYEZQAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAAby7PkL3br3uW7d+1zPnr+YdHPGjqAMAAAAGLw26QYAAABgukW9x8+evzyx7Pt/37g+n5FyPp8VAAAAEvOTX//x3LKN39S6/37y8buX2ZxLQ+kFAAAAYECPMgAAAPr6+qN3JL0qt4h6kuu/cnTj+rVJNmvsCMoAAADoy1SDfOP6tbmtTY5QegEAAAAYzPfXAAAAACTmxvXX5vbCPRN6lAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQAAADAgKAMAAAAGBGUAAADAgKAMAAAAGBCUAQAAAAOCMgAAAGBAUAYAAAAMCMpT6rvvvtO///u/67vvvpt0U64sjsHkcQwmj2MweRyDyeMYTIdJHIeFMAzDS3u0OXd8fKzFxUUdHR3p5s2bU7MtDIdjMHkcg8njGEwex2DyOAbTIanjEGc79CgDAAAABgRlAAAAwOC1STdgnkRVLMfHxyNvK9pGEtvCcDgGk8cxmDyOweRxDCaPYzAdkjoO0fqDVB9To5ygv/zlL3rzzTcn3QwAAABc4Ntvv9WPfvSjvvchKCfo73//u/7617/qjTfe0MLCwqSbAwAAgDPCMNTf/vY3/fCHP9QPftC/CpmgDAAAABhwMR8AAABgQFAGAAAADAjKAAAAgAFBGQAAADBgHOUxC4JAe3t7kqSVlRW1Wi2l02llMpmp2uY8S3p/lctleZ6nfD4vx3FkWZZ831ez2dT9+/e1u7urVCqV5FOYG/l8XtlsVo7jjLQdzoHRJHEcOA+G02w25bqu2u22ms2mLMtSPp9XLpcbepucD/EkfQw4F4bj+75KpZIkqd1uKwgCpdNpFQqFobc5lnMhxNh0Op3Qtu2w0WicWp7L5cJCoTA125xn49hfpVIplHTuz7KssFqtJtHsudJqtULXdcNUKhVKGnkfcQ4MJ+njwHkQn+u6oeu6p5ZVq9XQsqzQtu2w0+nE3ibnQzzjOAacC/F5nmd8faZSqdC27aG2Oa5zgeHhxiidTiuVSnW/MZ20tLQkz/Ni9+iMY5vzbBz7a39/X5ZlqdVqyfd9LS8va319faQeoXlVLpdVrVaVTqdl27bS6bSq1epIr1HOgfjGcRw4D+LxfV+VSsXYW9ZsNrW+vi7HcVStVmNtl/NhcOM6BpwL8QRBoLt378rzvHO3Rcchl8vJdd1Y2x3buTB0xEZfrVYrlBS2Wi3j7blcLnQcZ+LbnGfj2l+lUmmoXoerrtFojNyTyTkwuiSOQxhyHsRVKBT67i/Hcfq+tk04H+IZxzEIQ86FuKrVaiipZy+vpNi9yuM8F7iYb0yib0K2bRtvX1tbU61WUxAEE93mPGN/zR+OKWZVrVbT6upqz9dmVMPabDYH3ibnQzzjOAaIb3l5WZZlaWVlped9LMuKtc1xngsE5TGJLhDoJTqY9Xp9otucZ+yv+cMxxaxaXl5WEATyfT+xbXI+xDOOY4D4UqmUOp1OzxIYSbFLJMZ5LjDqxZhEdUq9RAc0zgk7jm3Os8vYX81mU/V6XRsbG1zVfAk4B6YT58HFqtWqfN/v2eMVvWbj7D/Oh3jGcQzO4lwYTbFYlG3bxjrjfsZ5LtCjPCbtdrvvt5vogMb5GWAc25xn49xftVpN+/v7ktS9YCOdTqtWq8XeFgbHOTBdOA/i6RXQJKlSqSiVSvW9z1mcD/ElfQwinAuj8X1f+Xxetm2r1WrFXn+c5wI9ymMy6MF4+vTpRLc5z8a1v6I30ZM/G6VSKXmep6WlJTUaDXoSxoRzYHpwHiQnClgHBwex1uN8SM6wx0DiXBhFpVLR4eFht6c/nU4PtZ1xngsEZSCmXgOXW5alTCajbDY71DdiYJZwHiSj2WyqWCzK8zzC1ISMegw4F4aXyWRO7b90Oi3XdXVwcBD7gr5xofRiTCzLGugbTr+rPi9jm/NsEvtrc3NTvu9TEzgmnAOzgfNgcNlsVq7rDjVzGOdDMkY5BhfhXIjH8zxVKhVls9lY643zXCAoj0m/onLpVT2NFG8IlHFsc55NYn9F22J4ofHgHJgNnAeDyWazI02dzPkwulGPwUU4F+KJeuFrtVqs+u5xngsE5TGxbbt7YEyibz5xLhoYxzbn2Tj2Vz6f19ra2qhNw5A4B6YD58HoisWiNjc3jUNkDYrzYTRJHAPOhfguGqIver3GmSFxnOcCQXlMUqlU358BohdJnLECx7HNeTaO/VWv1wc6Gak1HA/OgenAeTCacrmstbU1Y0CLc1U+58PwkjoGnAvxLS0taW1tred+jsojpuVcICiPyc7OjqTeP7ccHh7GPmDj2OY8G8f+chxHnU6n5+2Hh4eyLIsenDHhHJgOnAfDq1QqkmT8qd/3/Vg/N3M+DCfJY8C5EF+0P3qVQUQXPq6vrw+8zbGeC0NNfI2BOI7Tdy7zarV6bnmn0wkLhYLxtmG3eZUlfQwajUbouq5xe9Fc857njdboOdVoNAZ6jXIOjFcSx4HzYDj99lsYhqHrumGr1Tq1jPMhWUkfA86F+AqFwrl9fJJlWaFlWWGn0zm1fFLnAkF5jDqdTmjbdthoNE4tz+VyPQ9mqVQKJYWWZSW2zatsHMegVCqFpVLp1LJWqxValsUx6MPzvIE+NDgHxiup48B5EE+r1Qpt2w5zuZzxL5PJGPc150NyxnUMOBfiy+VyxuAaHYOzr+cwnNy5sBCGYThcXzQGEQSBisWiLMvSysqKWq2W0ul0z2Foms2mtra2tL29Ldd1E9nmVTeOY1Cr1eR5ntrttoIgkGVZ2t3dpQ7tjEql0t2H9Xq9u682NjYkvbri/OzPn5wDyRvXceA8GNza2tqFQ4SZZiXjfEjOOI8B50J8lUpF9+/f1/Lycne/pVIp7e7uGssyJnUuEJQBAAAAAy7mAwAAAAwIygAAAIABQRkAAAAwICgDAAAABgRlAAAAwICgDAAAABgQlAEAAAADgjIAAABgQFAGAAAADAjKAAAAgAFBGQCukEqlooWFhVN/QRBMulkTVSwWT+2PpaWlSTcJwJR4bdINAABcLsuy9PDhw1P/f5Xt7u5qZ2dHklSr1bS3tzfhFgGYFvQoA8AVs7y8rFQq1f0bRBAEKpfLSqfTWltb09LSktbW1rS+vq79/f1zvdK1Wk2VSiWR9ubzeS0tLZ37W1hY0P7+/sDtj3qLT65fLpdlWVbs/QHgaiAoAwD6KhaLWlpaUqlUUjabVaPRUKfTUavVUqPRkG3b2traOhWM8/l8Yo/vuq46nY48z1MQBAqCQI7jKAxDFQqFgbZhWZY6nY42NjYUBIFyuZw6nY5yuVxi7QQwfyi9AAAY+b6vdDot3/fleZ4ymYzxfplMRplMRvl8Xr7vy7Is+b6feHscx5HjOKrVakOtb1mWstmsLMtSqVRKuHUA5hE9ygCAc5rNptbW1tRut9VqtXqG5JNc11Wr1Uq0N/msaNvDlnU0Gg1CMoCBEZQBAKcEQaCtrS1Jkud5sm174HVd1x3rxYGZTKa7/XK5HHt93/djPR8AVxtBGQBwyt27dxUEgTKZjBzHib3+wcHBGFr1ve3tbUmvQnkc5XJZ2Wx2HE0CMKcIygCArmaz2S1rGLZEYZAyjVFE5RfNZjNWLbTneVy8ByAWgjIAoCsaQ9i27ZFKFIbpiR5UKpXqtm3QXmVKLgAMg6AMAOiKRpQYtVd43CUOxWJR0uB1yq7rjvUiQwDziaAMAEPK5/PdCThOjsIQBIHy+byy2azS6bSy2exYhktLWrPZ7E4csrm5OdK2crnchWHb9/3ufor25aD7KqpTDoJgoOHiarUak4kAiI2gDABDiAJetVpVJpNRNptVs9lUrVZTNptVsViU53mqVqva3NzU2tqams3mpJvdV7vd7v573NNa12q1bjD2PE+u66parSqdTmt9ff3C8GtZVjeIX1RLXavVulNUA0AcBGUAiCkIAvm+363DXVtbk/Sq3CAKfCfrYQuFQneyi2l2sid3eXl5bI9TqVSUTqfluu65WuZcLqft7e3uRCf9RKUUtVrt3BTaJ7muy0V8AIZCUAaAmM4OM9ZqtSS96pH1PM+4jm3b8n3/VK9yVLaxtram9fV1pdPpnsvW19e7y6P63KSdDMcne5eTdvfuXaVSqZ4X/EXP76KeYsdxLhxTOQrQ4+4hBzCfCMoAEFO1Wu3WyErfXwDXL9hFga1er0t61Xtbr9dVKpXUarXUaDRUrVZVrVa7U0BHpRvValWNRkONRkOWZWllZWUsz+tkmOzXQzuK/f19BUHQtxQiGnFjkAv1op7iXqNflMtlyi4ADI2gDAAxlUqlU6Ey6iXuNyRaVEYQBdBKpaKDgwPjBW/NZtM4PJtlWdrZ2RnbMGcbGxvdf8fpUY56unv9newBv3//viRdeGFd9BwvCuxR+cXZ3vqTjzfucZ0BzK/XJt0AAJg1J0Ne1JtsWVbPAHuy1ja6T6vVUqFQOHffaHu9QrdlWWMbvSF6Dr7vq1qtDlzXG5WeRCNQRGUpuVyu55eKqLe8l2iftdvtvmUTtm3LcRzVajW5rnuqZ7nZbI51PGcA84+gDAAjiMLeyVKMs06O4JBKpeT7vtbX1/tuL51OG29vtVpjvTAtk8lof39/oCHXzopGorAsS0EQKJ1O9wy5xWKxb894nFkB8/m8arWayuXyqaDsuu7Y6rkBXA2UXgDACKJA2SvYSt+H36icIgiCnsE66nHt1Wvc73GSsLu7K2nw8YmHlWQN9MnSipPjWTMbH4BREZQBYASD1CdH4S3q3UylUj17Wmu1Wt8yjnGXEliW1S0JGUdvbPS8kh5VI+plj6bgPjsyCQAMg6AMAEOKelxt2+4ZfKORG2zbvrBkYpDQfRlKpZJSqZSazab29/djr9+vtzi6+G6QyVfizGZ4crvRiCGMnQxgVARlABjSyZIKkyAIur2yvcZXPmmQMo7L8vDhQ9m2rWKxeKqc4SIXlWsUCgXZtt1zOLeT4vRop1Kp7nG4qP4ZAAZFUAaAIUWhMBob+axsNqsgCOR53kAjVUTBe9I9ytKrEoxGo6FUKtWdkvsivu+rWCxeGII9z5Pv+317q6MpruOIepUrlUr33wAwCoIyAAwpKh84ODg4Vw+bz+dVr9dVrVYHHsf3ovrkyxaF5VKppP39fS0tLWl/f/9cSUQUerPZrA4ODpTL5fqG/VQqpUaj0XNUikqlomazGbt0Irq/bdtjG0IPwNXC8HAAMIST9clREF5fX9fy8rLa7bYcx9Hjx48Hnjp5WuqTTQqFgnK5nB48eCDP8+S6rtrttpaXl7vBfmdnR41Go7tOtVrtW6ucSqXUarVULBa1vr4u27a7U2hns1njGNMXiYan29zcjL0uAJgQlAFgCGfLJDKZzEgzwEXlG9Ma8izLUi6Xi9XLO8iXhDjjJQ9ikFpwABgUpRcAMISkL7ybpvpkAMArBGUAGMJFE4PEFQVvamsBYHoQlAEgpijUJnXhXbPZVBAEhGQAmDLUKANATEmUSVQqFd2/f19BEHTrk33fVzqdlmVZSqfTTJgBABNGUAaAGIIgiDUBRy+jXvwHABg/Si8AYEBLS0taWlpSu92W9KpXeGFhQUtLSxNuGQBgHAjKADCgTqejMAy7/43+Op3OpJsWi+/7WlhY6P71G+/4KigWi919MQ3ThwOYHgthGIaTbgQA4HIEQXBuZr2rfhEh+wRALwRlAAAAwIDSCwAAAMCAoAwAAAAYEJQBAAAAA4IyAAAAYEBQBgAAAAwIygAAAIABQRkAAAAwICgDAAAABv8f95lin16YV7sAAAAASUVORK5CYII=",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuYAAAJHCAYAAADc2ZMYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOuUlEQVR4nOzdd1RUx98G8Gfp0lUQsQA2bJio2DsKQaOxocYOscZY8zPW2GI0sUaNGjUauyaWxN4bGkvsDTUKKtgVFAHpZd4/eLnZla2wwK48n3P2cNk7d2Z2b9nvzs7MlQkhBIiIiIiIqECZFHQFiIiIiIiIgTkRERERkUFgYE5EREREZAAYmBMRERERGQAG5kREREREBoCBORERERGRAWBgTkRERERkABiYExEREREZAAbmREREREQGgIH5B+jatWuQyWR6e6xdu1ZjmaGhoRg+fDi8vLxgZ2cHS0tLuLm5oWnTppg2bRpu3bqlkD4pKQk///wzWrRoAScnJ1hYWMDZ2RkfffQRBg4ciD///BMAEBYWho8//hglS5bEvn378uLtykYIgYEDB8Le3h6DBg3KlzKJiIiIZEIIUdCVIP0KCwvDgAEDAGQGwOfPn89VfmvWrEFQUJDK9Tt27EDPnj2RlJQES0tLNGjQACVLlsS9e/dw9epVAEBgYKAU4EdGRqJly5YICQkBAFSvXh1Vq1ZFXFwcgoODkZycDCAzQO7duzc2bdoEAChTpgweP36cq9eijaNHj8LPz0/h/1atWuV5ufThuXbtGnbu3AkAqFmzJjp27Fig9SEi0rfg4GAEBwcDAFq0aIEWLVoUaH2MnVlBV4D0r2LFitJJEh4ejnLlyknrwsLC4O7urlU+/fv3x/r169WmefXqFfr27YukpCQ4Ozvj9OnT8PT0lNb/9NNPGD16tMI2Q4cOlYLyBQsWYNSoUdK6+/fvo27duoiOjgYApKenS+vS0tK0qnduyZeZn+XSh+fatWv47rvvAGR+OWVgTkQfmuDgYOk6B4CBeS6xK0shY2pqCjMzM60eMplMY37bt2/Hu3fvAAC9e/dWCMoBYNCgQfD390eNGjUAALGxsdixYwcAoHjx4hgxYoRC+goVKmDkyJHw9/cHAEydOhXVq1eHs7Mzli5dmuvXrw0/Pz8EBgbC1tYWffr0wSeffJIv5RIREVHhxhZzypXbt29Ly5UrV8623tbWFgcPHpT+v3fvntQCXalSJZiYZP9uOHXqVGm5SpUqUut6fjExMcHatWu16ltPREREpC8MzEmlIUOGoHXr1qhfv77KNPHx8dKypaWlxjx1TU9ERERUWDAwJ5Xq16+vNigHMgdo6oJjjYmIiIhUEPRBe/jwoQAgPR4+fKg2vbu7u8Z0U6dOVchT3ePEiRPZ6qDuERgYKIQQonnz5krXa6q/EEIkJCSIpUuXijZt2ojSpUsLCwsLYWNjIzw8PETbtm3Fjz/+KEJCQrJtt2bNGqVlTp06VWOZQghx4MAB0bdvX1GhQgVhY2MjrK2thbu7u+jcubNYu3atSE1NVbmtg4OD0rKFECI9PV2sXbtWNG/eXDg7OwtLS0vh7u4u+vXrJ+7du6dV3bJcvHhRDB8+XHh5eQlHR0dhbm4uihcvLurUqSMGDRok/vzzT/Hu3Tsp/YkTJ9Tur+bNm2crI+sYUrVvtaFq/8sfV/JU7Ttlx8yzZ8/Ed999Jxo3biyKFy8uzMzMhK2trahSpYro0aOH+O2338SrV690eFez0/Z4l38tO3bsUPu+RUZGiu+//17UqlVLFCtWTCHNmjVrFMp/+vSpWLZsmejatavw9PQUtra2wtzcXJQoUUI0a9ZMTJ8+Xbx8+VLtaxg5cqTS+mSVdeXKFREYGCg8PDyEpaWlKFasmPD19RVbt27V6j1KS0sTmzZtEh06dBBubm6iSJEiwsLCQpQqVUr4+fmJ6dOni8uXLytso24/qzrGVKVVdV6/evVKzJgxQzRu3FiUKFFCmJubCycnJ+Ht7S3GjBkj7t69q/I1LViwQG1ZERERYty4caJ69erZzvn3j2l9Hqc3b94UX3/9tahRo4YoWrSosLCwEK6ursLHx0fMnj1bvHnzRqt81ImOjlb62t3d3YUQQiQmJooFCxaI2rVrC1tbW2FjYyPq1q0rli5dKtLS0hTy+vfff0WfPn1EuXLlhKWlpShTpozo27ev2vdemfevd5aWlqJ06dKiTZs2YunSpSIhIUHltpqO/8uXL4sePXqIsmXLCnNzc1G6dGnRp08fcfv2bYV8UlJSxK+//irq1q0r7O3thZ2dnahfv7745Zdfsr1udeLi4sSCBQtEq1athKurqzA3NxdFixYVNWrUEMOGDRMXL15Uua2ma8uzZ8/E+PHjRdWqVYWNjY2ws7MT3t7eYs6cOSIxMVFpnrp8rstfhzt06KDys+59lStX1uozRwjNn6GrV68WjRo1Eo6OjsLKykp89NFH4ocffsh2DDx58kQMHTpUVKpUSVhaWgoXFxcREBAgLly4oGbv6BcD8w9cXgTmO3bsEIGBgSIwMFBUqFBByrtx48bS81mPO3fuiMjISOl/f39/Kb2Li0u29CtXrhRCCPHjjz9Kz9nY2Ghd/4MHD4pSpUpJ6WvVqiU+//xz0blzZ1GxYkWF96JBgwbizp070rZ///23VObHH3+s8QM8y8uXL0XLli2l9G5ubiIgIEB06dJFeHp6Ss9XrFhRXLt2TWkeQ4YMkcqWr+O7d+9EmzZthI2NjWjTpo3o3r27qFGjhrTexsZG/P3332rrJ4QQ8fHxonfv3kImkwkAwsHBQXz66aeiZ8+ewsfHR1hbW0t52tvbi++++04IIcSdO3dEYGCg+OyzzxTq1atXLxEYGCh+/PHHbGWNHj1aBAYGiqZNmwoAolKlSgr7VhtZ+79s2bJSmV5eXgrHlTz5fWdnZycAiK5du4rAwEARGRkppdu+fbu03tzcXDRu3Fh07dpVtG7dWri5uUllmZubi//9739a1/d9WXVp3LixlGeFChWyHe/yr+Xy5ctKtwsMDBSXLl0SpUuXFsWLFxefffaZ6Nixo3ByclIamE+ePFmYmppK66pUqSLat28vOnfuLGrVqiWts7W1FX/88YfK17Bp0yal5/maNWvEihUrhLm5uahTp47o3r278PX1FZaWllKakSNHqn1/nj17Jry9vaX0lStXFu3atRNdunQR3t7ewsTERFpXvXp1ERUVpbCffXx8pPVWVlbZrh/K9kWtWrWka0JgYKDYsWNHtrSrVq0S9vb20jHQvHlz0aNHD9GqVStRpEgRAUCYmpqKb775RqSnp2fb/tChQyqvIQcOHBCOjo6idOnSolOnTqJdu3bSsfh+YK6v4zQ1NVUMHz5cej8dHBxE27ZtRffu3UW9evUUnt+0aZPafaZJfHy89NoDAgIUAvOXL1+KunXrilKlSomAgADRsWNHhS+XnTp1koLUvXv3ChsbG+Hj4yN69OihcJzY2NiIM2fOaFWX3r17S9s5OjqKtm3bis8//1zUrl1ber506dLi8OHDSvNQd/z/+uuvwtLSUjRt2lT06NFD1KtXT1pfpEgRcfr0aSFEZiORr6+vcHd3F127dhXt27cXjo6OUtrOnTuLjIwMja9nz549wsXFRQAQJiYmokGDBqJHjx6iTZs20vEKQPTp00dpIK3u2nLu3DlRokQJUb58edG1a1fRoUMHUbx4cSlNw4YNRXx8fLY85T/X5Y/1jz/+WOl1Lus6vGjRIqWfdcqMHz8+W9ygKjBX9RkaHx8vPv30U1GsWDHRoUMH0aVLF4UYoUGDBtLru3jxoihWrJho1KiR6NGjh2jcuLF0jpiamort27dr3Ff6wMD8A5cXgbk8+ZPg/VY7ZeRbYFWdYKrqpKleW7ZsEWZmZgKA8PDwEOfPn8+W5sCBAwoXHWUfzkIo/iqgLjB//vy5KFeunAAgzMzMxPLly7NdaHft2iVdPO3s7MT169fVvl75/dW/f3/h5+cnXr9+rZBmxYoVUppy5cqJlJQUlfklJCSI+vXrS+n/97//Zbt4v3nzRvTq1Uvh4iovNTVVuLq6Suv/+usvta9BCCH69OkjAGjdgqrMzz//rPAlS5MHDx4ImUwmKleunG3d1atXpeOjWbNm4vnz5wrr09PTxfr166Uvgtoen+rIt/AG6vCLgfx2bdu2FaVLlxZff/21SE5OltJERUUJDw+PbOfe559/LgAIJyenbK2wQggRGhoq2rVrJ33I79+/X2N95M/zL774QhQvXlycPHlSIc39+/dFmTJlpHRHjx5Vmld6eroUyNjY2IhDhw5lS3Pz5k2FY/b98z4qKkpYWFhI61V94ZWX9SvMuXPnlK6fNWuWlF+jRo1EREREtjLlA05N+1P+GtKzZ09hb28v5s6dqxDQP3z4ULo2ZO0rfR2n6enpom3btlIdBg0apPBrmBBC3Lp1S1SrVk0AEDKZTKxevVrta9KW/OeOm5ub8PPzE8OHD1f41TAmJkY0atRISjd79mxx+/ZtUaNGjWy/BG7cuFFKV7FiRbW/PsbHx2e73iUlJSmkuXjxonTumJmZaQy43j/+S5cuLa5evaqQZuvWrVLDR/HixUV8fLzo06eP+P777xU+E968eaMQyK9du1Zt2Zs2bZK+TFeuXDnbr73x8fHiq6++kvJr2bKl2pb4968trq6u4ueff1ZIExcXJ/z8/KR0kyZNUltHbT8v36cpMM+ia9zw/mdoly5dFI79pKQkhXN5yJAh4tWrV6JKlSrZfnk4duyY1OhQtGhRvfy6pLH+eV4CFajCEpjfuXNH+qCytLTM1qIq7/Dhw3oJzDMyMhRayufNm6eyzJ07d0rpqlevrvbCKb+/SpYsKWJjY5Wmk/9Q27t3r8r8+vXrJ6Xr27evynTp6elSK/f7gbkQQkycOFHKp3Xr1irzESLzw6dIkSKiRIkSar80aPLmzRthZWUllft+14b3TZo0SQAQc+bMybYu64sCgGw/N8v79ddfDSowByACAgKUpvvuu+9UBua7d+9WmX9qaqr0y0v58uXVBjpCiGytUNu2bVOaLuu9AyC6dOmiNM2xY8ekNGPHjlVZZlRUlBS0Kjvvu3XrJuUzfPhwtfUPDQ0VMplMVK9eXen648ePSy1jZcqUEW/fvlWaLi0tTaEF9/fff1dZ5vtd/kaPHq003RdffKEQmOvrOJ02bZqUz2effaYyn0ePHkmt89bW1uL+/fsq02rr/c+dhg0bKm0ZPn/+vJTG3d1d+Pv7ixs3bijN09fXV0p74MABlWXLX+969+6tMt2tW7ekL3e2trZqu8m8f/wfPHhQabo2bdpIaQYMGCC6du2qNN3p06eldPXr11dZ7u3bt6VfM21tbdV+Lnfs2FHKU9kvmVnev7YMHTpUabp79+5JaVxcXJT+QpTFkANzDw+PbF/MhMj81S7rnLexsRHdu3dX+Tk6YMAAKb9ly5Zp9dpyg4H5B07XfmDaBvBZDCUwl//2O3jwYI151qlTJ9eB+e7du6U0rq6uGgNQ+S4o6lpo5PfDtGnTVKbLCsoAiPHjxytNc/PmTakVx8TERDx58kRtHffu3asyMH/48KFCXuqOkYULFwoAYty4cWrL00bPnj2l1zlkyBCV6dLS0kSZMmWEubm50v7TXl5eUj6qAi8hhHj9+rXBBeY3b95Umi40NFRs2LBBIZjatm2bmD59usb+qzNnzpTyV9W6nUX+PC9XrpzKdBEREVK6kiVLKk0zb948Kc3ChQvVlpvVhUrZsSb/Bbto0aIq+8IKkfmTOADx008/KV0vH2wvWbJEbZ3+/PNPKW2NGjVUppO/hpibm2f71SvL1atXxYYNG8SLFy+EEPo5Tl+9eiV1vQGgdEyNvOHDh0tphw0bpjatNt7/3FH1BSYjI0Oha4efn5/KPOWPmwkTJihN8/717tGjR2rrKR9wdevWTWU6+eNf2a9xWd4fY6Cq2016err0pdPExERlX/fOnTtLeX3zzTdqX8vly5eltE5OTirPh/evLequ41m/BgMQ//77r8p0hhyYq/uSIt8Fx9PTU2W67du3S+l69Oihsfzc4g2GCpmAgAAEBgaqfNjY2BR0FXX24sUL6aZFANClSxeN23To0AEuLi6wsrLKcbnLli2Tljt27Ahzc3O16Vu1aiUt//7771qV4efnp3JdxYoVpeWwsDClaX755RdpJpyGDRuidOnSasvz8fFBqVKl4OTklG2dh4cHfH19AQAZGRlYtWqVynxWrlwJmUyGgQMHqi1PGwMGDJCWN2/ejMTERKXpDh48iCdPnqBdu3YoUaJEtvXy+3rr1q0qyytWrBgePnyIP/74Ixe11h93d3d4eXkpXVexYkX07t0b5cuXl57r0qULJk+eDFNTU7X5urq6Ssvnzp3Tuj5Zx4AyZcuWlaZBffHihcL0qFnk98Off/6JjIwMlfmtXr0aDx8+RJkyZZTWw8PDAwAQHR2Nv/76S2keaWlpWLduHSwsLNCnT59s6y9cuIDLly8DAGQymcbrR8uWLaXlmzdvanWfhUaNGqFYsWJK19WsWRO9e/eGi4sLAP0cp2vWrJHOk6pVq6J69epq65eTa5MufHx8lD4vk8mkfQgovrfvkz/GQ0NDlaaRv97Vr18fZcuWVVsv+X39559/4uXLl2rTA6pfCwCFu2xbW1ujQYMGStOZmJhIrzsjIwMPHjzIlubFixfYuXOn9H/Xrl3V1qt27dooWrQoACAqKgpHjx5Vmx7IvJeI/Pv/Pm0+YwydtvtLXTptjj194nSJhcy8efPUnojBwcFKP0wN2YkTJxQ+3L29vTVuM2nSJEyaNCnHZaalpeHvv/+W/tc0rSSgeHJrGwi9fydVeVkXYQCIiYlRmubYsWPSsjbvi7W1NZ4+fapy/aBBg3DkyBEAmUHTtGnTYGameBk5ffo0bt26BV9fX1SoUEFjmZq0aNECFStWRFhYGGJiYrB9+3alAdZvv/0GAOjfv7/SfBo1aoRLly4BAIYOHYrQ0FCMGDFCadCn7hzJb5qCKlVSUlIQHByMy5cv48WLF4iLi1M4T+Q/aF+8eKF1vuqOSZlMBgcHB7x69QpA5nH5/pf9hg0bSst///03WrZsie+++w7NmzfPlp+Tk5PSL4lZZfXr1w9TpkwBkLn/e/bsmS3d/v378fz5c3Tp0kVpXsePH5eW3d3dpQBZFUdHRxQrVgxv3rwBkHkuq/rilEWXfaiP41T+Nel6bXr9+jVCQ0NRqVIlreusjp2dndr31M7OTlpWV6a9vb20rM31rk6dOhrrJp8mPT0dwcHB+Pzzz9VuIx+svk/+tZQvX17pDfSyaHo9wcHB0vlqZmaG2rVrq60XkBloRkdHA8g8Ltu1a6c2vbpzGdDuM8bQabu/cnvs6RMDczJ6t27dkpbt7e0VLiZ5JTw8HO/evZP+37RpE06cOKF2G/lv2s+ePUNycrLGmyw5ODioXCffspaSkpJtfWpqKu7duyf9r49gM+uXhpcvX+L58+fYs2cPOnXqpJDm119/BZAZxOtDVgA2ceJEAMCqVauyBeavXr3C3r17Ubp0abRu3VppPpMnT8a2bdvw/PlzpKamYu7cuZg/fz6aNGmCDh06oH379mov4gXF0dFRp/QZGRlYuHAhfvjhB7x+/VqrbXT5Mq7umAQ0H5e1a9fGwIEDsXLlSgDAyZMn0aJFC3h4eKBjx45o3749mjZtmu0LnzJffPEFpk2bhoyMDJw4cQIPHjxQCDIBSL/syP/yIk++xTs+Ph5BQUEay01KSpKWlbV2vk+XfaiP41T+NV2+fFnja4qLi1P4/8GDB3oLzOWDGmXkg1d1x5b8L0DaXO/kW0NVKV68OOzs7KTXL/9Zooq6Omr7WgDNr0d+H5qbm6s8fuU9efJEWtbmuMztuWwM9LG/NO0rfWNgTgrCw8MLugo6kw8+bG1t871MAFIrsi7evn2rsXVOXfcYmUymdtusFr0s+nhvzM3NERQUhNmzZwPIDMLlA/Po6Ghs374dJUqUQMeOHXNdXpagoCBMnjwZ6enpOHXqFO7du6fQ2rN27VqkpqYiKChIZRcOJycnXLhwAaNGjcJff/0FIQQyMjJw6tQpnDp1CqNHj8bHH3+MgQMHol+/fihSpIje6p8bmrpIva9Pnz7YvHkzAMDFxQXfffcdWrdujVKlSinktXbtWnzxxRcAoNONvzTVR9NxCQDLly9HxYoVMWvWLKmFLzw8HAsXLsTChQtRvHhxdO/eHV9//bXaX13KlCkDf39/HDhwAEII/Pbbb5g5c6a0/vnz59i/fz/c3NxUdguTP5cjIyOxbt06jfWX9/btW41pdNmH+jhO5V/TzZs3cfPmTa3LB7R7TdrS5gtWTtK+L6fXO1tbWykwj4qK0phe2zrm5rUAivswMTGxQI5Lbc5lQ5df+0uf2MecSA+OHDkCkTmYWuuHpqDcUA0cOFC6YB8+fFjhy9z69euRmJiIL774QueAUh1XV1d8+umn0v9Z3VayrF69WmpZV6dMmTLYvn07QkNDMX36dNSoUUNh/fXr1zFs2DDUqFED169f11v988uGDRukoNza2hqnT5/G4MGD4e7urtf9kVsmJiYYO3YsHj9+jI0bN+Kzzz5T+PXo9evXWLp0KapVq4affvpJbV7yLYlr165Fenq69P+aNWuQnp6OL774Qm23giyNGzfW+TyWH2uiL/o8Tr/99ludX5Om7hwfKkMNREuXLq3zPjxw4EBBV5tyiIE5Gb3ixYtLy/LdS/KrTCD7T8GG4P3BZvp6bypUqCAN0np/EKg+B32+Tz4AW7duHdLS0gBk9lO+e/cufHx8snVjUKVChQqYPHkybty4gbt37+K7775T6Opz//59tG7dWmrNNRZZ3UMAoHv37gbZNUeejY0NevXqhd27d+PVq1dYv349/Pz8pAApJSUFo0ePVjsg8bPPPpO+5D579kwKSIQQWL16NUxMTKRfBpSRP5cN7TzO6XFqyK8pr+T0eief7v3rekEqjPtQFWPtRpNTDMzJ6MkPvIqNjc32k2Ze8PDwUPip9OHDh3lepq7Mzc1RuXJl6X991lG+//jq1auRlpam90Gf72vbti1KlSoFAHj58iX27t0LQHMfYk08PT0xZcoUhIWFYcmSJVJQ+OLFC2zcuFEPNc8/N27ckJa1GSxmSOzt7dGnTx8cPnwYly9fVvhSMW/ePJXbmZubo2/fvtL/WcdDcHAw7t+/D19fX7i7u6vcXv76Ychd+XQ5TuVfkyFem/JCTq53r1+/Vgh6NQ3izU8F8bmW3+S7jyQnJ6tMp8+uVcaAgTmptGvXLnh5eeVq9pL84OPjo9CvOGvqM3V+++03DBgwADNmzMhRmWZmZgqzSFy4cEGr7b799lt4eXlpNcBMH+SnttPmfYmMjMSAAQMwYMAAhSDvfR07doSzszMASINA9T3o832mpqYIDAyU/l+1ahViY2Oxfft2FC1aNNsg1Pdt2rRJbaBtamqKoUOHKnSH0WYwmDr5/dO4/KBETV1X8uvXpfddunQJy5cvVzv7T61atbBmzRrpf037Qf5L2b59+/DixQspQFc1S08W+XMkNjYW//77r9r0APD06VN4eXnBy8tL63NfW/o4TuVf06VLl7QaQ7Bz5054eXnB29tbbZBkyN5/3ZrIpzE1NVU6M1BBef9zTZvjLDk5Gd7e3vDy8lKYajGv5fQ6p+1sJ3fv3s1R/saKgTmpFB0djVu3bimM9DZELi4uCAgIkP7fvn272vQZGRmYNGkSfvvtN8TGxua43KFDh0rL+/fv15hXfHw8li9fjlu3buHjjz/Ocbm6+Oqrr6SL5j///KM2GAKAbdu24bfffsOGDRvUzgFsYWGh8OVi3rx52L59O1xcXNChQwe91F2Z/v37S6/n4MGDmDt3LhISEtCrVy+Nc9J/++23GDx4sEIfZGXkp5XM7bz+8nV6v9znz58jKCgIQUFBemsRkp9ST9N8u1evXtVLmbrau3cvhgwZglOnTqlNp8t+8PT0RNOmTQFkTmW6cOFC/PXXXyhevLjGQch16tRBvXr1pP+1mcd7w4YNuHXrFl6+fImaNWtqTK8LfRynQUFBsLa2BpB5nAUHB2ssN+vaVKZMGY2zRRkq+evd+fPn8fjxY7Xpt23bJi136dLFoMb9vP+5ps1xuWPHDly5cgX37t1TmJY0r6m7zt28eRNBQUFKf9HUdp70nEyuYMwYmNMH4fvvv5e6lqxdu1btN+xffvkFL168gLm5uUJwras2bdrgk08+AZDZB1DTLwuTJk3Cmzdv4OzsnCd9sJWpVq2adEHMyMiQphxUJiYmRhpoFxQUpHHaSflBoGfPns2TQZ/vq1ChAlq0aAEg8wPghx9+AKB9N5aEhATs27dPbRr5GSyygr2cyup6A2Sfyefu3btYt24dNmzYoLdAqE2bNtLy5s2bVbaKP378GFu2bNFLmTklHxQpo+t+kD8G5s6di6SkJPTp0wcWFhYat503b57UOrlgwQK1XVoiIiKkWYm++eYbrfLXVW6PUycnJ3z77bfS/2PHjlXbCr5r1y4cOnQIMpkMEyZMyGGtC54u17s7d+5g/fr1ADJnZvn+++/zpY66kP9c27RpEy5evKgy7du3b6XX279//3z9kqHuOnf58mWsW7dO6fEsf9yquiHSuXPnFO4ZUhgwMC9kkpOTkZSUpNUjNTW1oKurNU9PT6xZswZmZmZISUlBmzZtsv2UmZ6ejl9//RWjR48GAMycOVNt31NtbNy4UZq2b/Hixfjmm2+QkJCgkObdu3f45ptvsHDhQpiammLt2rX5Nq0jAPz8889S68n69esxZsyYbB/SYWFh6NixI+7fv4+yZcvixx9/1JhvpUqVpCAZQJ4N+nyffACWkZEBb29vnX6B6N+/Pw4dOpTt+bS0NKxevVrqAlG/fn189tlnuapr7dq1pZbLixcvSv1Zs6b2AzJbbPU1NePYsWOl+XifPXuGzp07Szf7yRIWFoa2bdsW+I3EduzYgfHjx2c7X4DMWUeyuqCYm5tLNxFSp2vXrtJrz7oxi6ZuLFmaNm2K+fPnA8j8kt2qVSulNwE7c+YMfHx88PbtWzRt2lS6luSF3B6nEyZMQOfOnQFkdtlo3759tl8/MzIysHbtWvTo0QMAMH78eJV3qzQW8te7jRs34n//+59CFy8g8/349NNPkZqaCjMzM6xdu1Zv87brk6enJ9auXQszMzOkp6ejbdu2SgPcW7duoVWrVnj48CEqV66MOXPm5Gs9mzRpIi3//fffUuyQmpoqTfPYrFmzbNv169dP6me+aNGibNN63rx5E59//nm+NWQZCpnQZQJbMgphYWFS8JKUlITz58/nKr/AwECsXbtW+n/nzp1S/7XTp0/j/v37ADKnGpP/aWr8+PGoUqUKoqKi8M033wDIHKiU9WHj4uKicDOYJk2aSPWeNWuW1Ndz+/btUhAREBCg0DL+viNHjiAoKAjPnj0DkBkYVapUCdHR0QgJCcGzZ89gZmaGqVOnZmvhPn36tPRhd+3aNWkaso8//lj6uXrAgAEKFyEgs4Wgb9++2L9/P4DM1pdGjRrB2dkZkZGROHfuHOLi4uDk5ITffvsN7du3z1Zv+dcrP19tVp/qjh07Sj/Jf/PNN4iKilL5XiqrY2JiIgYPHoyNGzdCCAFHR0c0btwYNjY2ePDgAa5fv47U1FRUq1YNu3fv1nrw5u+//y7dbdHPzw+HDx/WarvcSEpKQqlSpaSZKJYtW4Yvv/xS43a9e/fG77//LgVt5cqVw8cffwxra2u8evUKN2/elG7J7ePjg23btullloYpU6ZIrXFly5ZFgwYNEBoaimvXrsHU1BQHDx6Er6+vwnkSFhaGM2fOAMj8lUB+fyo77uWdOnUKAQEB0pzMRYoUQZMmTeDs7IynT5/izJkzcHBwgL+/vzS1onwZWeet/Pmg7Dx3cnKSBmXKXxOUna9VqlTB+PHjpfWDBw+WBrPZ2dmhXr16KFmyJOLi4hAeHi6Nb3B2dsaGDRvg7++v1Xv91VdfSdMX1q9fH//8849W22XZtGkThg8fLh1b1atXR9WqVWFiYoJbt25Jfbk7d+6MdevWZfuC/e+//2LWrFkAVF9D5N83ZfR5nKanp2PChAlYsGAB0tLSYGpqigYNGsDNzQ2JiYm4cOECnj17BnNzc0yaNEmrL0DqZF2b3r17hz///BNAZjebLl26APjv2iR/bB08eFB6Pf7+/ihZsqTCe6Sv612TJk1ga2uL0NBQabxNqVKlsHbtWqVz3Oty/GtbR11et7yjR48iKChI6opYvnx5fPzxx7C0tERoaCiuXLkCIQSaNm2KrVu3omTJkgrba3NtmTdvHpycnBSOYVWf78quQX379sWGDRsAZH6h+Pjjj3H9+nXcu3cPNjY2+Oeff5QOrp03bx7GjBkDIHPsVpMmTVCqVCk8fvwY586dw5QpU9C0aVP4+Phke19VxQzqPkN1eX1Zeao6nuU/l/VK0Afn6tWrAoDeHoGBgQr5T506VavtTpw4IYQQ4uHDhzqX07x5c43pVUlISBBLly4VrVu3FqVKlRIWFhbCxsZGVKtWTQwbNkyEhIQo3W7NmjUay1yzZo3Kck+cOCEGDBggPD09hZ2dnTA3NxclSpQQrVq1EvPnzxdv3rxRua2m1zt16lQprbu7e47reOnSJTFs2DBRvXp14eDgINXR399frFq1SiQnJ6vcVpnk5GRRrFgxAUBs375dp21zY/jw4QKAKFKkiHj79q3W2z1+/FgsXbpUdO3aVVSpUkXY29sLU1NTYWtrKypXrix69+4t9u3bp/f6rly5UjRs2FAqz9nZWbRv316cOXNGSqPteaKNly9fismTJ4vatWtLx6KTk5No1qyZmDVrlnj9+rXK4z3rvNV0Pri7u0vlabomNG/eXKF+SUlJYteuXeKrr74SDRo0EM7OzsLCwkJYWFgIV1dX4efnJxYsWCCio6N1ep8vX74slfnrr7/qtG2W6OhoMXfuXNGiRQtRsmRJYW5uLmxtbUXVqlVFv379xMmTJ1Vue+LECY37T/59U0Xfx+m9e/fE2LFjRe3atUWxYsWEmZmZcHR0FHXr1hVjx44V9+7d0zovdbS9NulybOnzemdhYSFKlSol/P39xZIlS0RCQoLKbfOijrrk+b6EhASxbNky0aZNG+lzzdraWlSoUEH06NFD7NmzR2RkZCjdVptry8OHD4UQ2h3DyqSmpoo5c+aIWrVqCRsbG2FmZiZcXV1Fjx49xK1bt1S+LiGEOHLkiGjXrp1wdnYW5ubmokyZMiIgIECcOnVKbZ10iRmyPkN1eX26fC7rE1vMiSjHoqOj4erqiqJFi+LRo0cGdRMbIiIiY8M+5kSUYxs3bkRycnKeD/okIiIqDNhiTkQ5VrNmTdy4cQP3799HuXLlCro6RERERo0t5kSkVkxMDFq0aIEVK1YoPH/69Glcv34d/v7+DMqJiIj0gC3mRKRWVFQUnJ2dUbt2bVy4cAGmpqZITk5G8+bNcf78eZw4cUJh2kQiIiLKGbOCrgARGYcrV66gRo0aqFGjBi5cuIDw8HAEBQUxKCciItITtpgTkVoJCQn44osvcOnSJbx48QIymQzlypXDF198gREjRkg3iCAiIqLcYWBuZDIyMvDs2TPY2dlJt0MnIiIiIsMhhEBcXBxKlSoFExMdhnTmyezo+SgyMlJMmjRJVK9eXdjY2IiiRYuKBg0aiEWLFul8sxRV7t27J0aOHClq1Kgh7O3thZWVlfDw8BBBQUHi/PnzGrcPDAzU6sYhAERkZKTavB4/fqx1XnzwwQcffPDBBx98FNzj8ePHOsWcRv0b9IULF9CxY0c8f/4cfn5+GDJkCBITE7Fu3TqMHDkSa9euxd69e1GqVKkclzF37lxMmDAB6enpaNu2LQYOHAhLS0tcuHAB69evx/r16/Htt99i+vTpenxlqtnZ2QEAHj9+DHt7+3wpk4iIiIi0Fxsbi7Jly0pxm7aMtivLo0ePUKdOHURGRmLUqFFYsGCBtC45ORlt2rTBiRMn4O3tjTNnzsDS0lLnMhYtWoRRo0YBAH755RcMGTJEYf2ZM2fg6+uLpKQkLFiwQEr7vqCgIBw5cgTHjh3TWGalSpVgamqqcn1sbCwcHBwQExPDwJyIiIjIAOU0XjPawPzzzz/H1q1b4ebmhnv37mULvO/fv4/KlSsjPT0d8+bNw+jRo3XK/8WLF6hQoQISEhLQtGlTnDp1Smm6sWPHYu7cubCxscHdu3dRunTpbGmCgoIQHByM8PBwneqgDANzIiIiIsOW03jNKG8wFBoaim3btgEA+vbtq7Q1vEKFCvDx8QEAzJ49G2lpaTqV8ccffyAhIQEA0KNHD5XpevfuDQCIj4/H8uXLdSqDiIiIiCiLUQbm27dvR1ZDv6+vr8p0fn5+AIDIyEgEBwfrVMb58+elZS8vL5XpqlevLk0Xt3XrVp3KICIiIiLKYpSB+fHjx6XlmjVrqkxXq1Ytpdto4/Xr19Kyup8gTE1N4eDgAAC4d+8e3r59q1X+7969Q3p6uk51IiIiIqIPl1EG5iEhIQAyZyjJCoqVKVu2rLR869YtncqwtraWlpOSktSmTUlJkZZv376tNE1aWhoWLVqEunXrwsHBAXZ2djA3N0f58uUxZMgQhIaG6lQ/IiIiIvqwGF1gnpycjBcvXgAAXFxc1KaVX6/rwEtPT09p+f79+yrTvXnzBnFxcdL/8i3t8p4+fYrRo0ejWrVq+OWXX7Bv3z4sXrwYxYsXx/Lly1G9enWsWLFCpzoSERER0YfD6AJz+SDYyspKbdoiRYoo3U4b7dq1k5b379+vMt3BgwdV1k+etbU1jh8/jnXr1qFXr1749NNPMXToUJw/fx6BgYFITU3Fl19+KQ1q1SQ2NlbhkZycrNV2RERERGSYjC4wT0xMlJYtLCzUppVfnzXDiraaNWuGFi1aAAC2bNmCy5cvZ0sTFxeX7cZCWQNB5c2bNw/h4eFo1qxZtnUmJiZYunSp1Lo/cuRIjV1ngMxuOg4ODtLjxx9/1OZlEREREZGBMrrAXL4VXL5vtzLy6+X7jGtr8+bNqFy5MtLS0vDJJ59g6dKluH//Pp48eYJdu3ahSZMmePr0KZo3by5to2ygqJOTE5ydnVWWY2Njg+7duwMAnj9/jgMHDmis2+PHjxETEyM9JkyYoPPrIyIiIiLDYXSBufytTTW1LMu3rut6S1QAcHV1xfnz56WbEw0bNgwVK1ZE2bJl0bVrV3h4eODixYvw9vaWtlEXgKtTp04dafns2bMa09vb2ys8cnJnUyIiIiIyHNn7XRg4S0tLlCxZEi9evMDLly/VppVf7+HhkaPyHBwcMG/ePMyZMwd3795FZGQkbGxsUKlSJal1PDo6GkDm1InVqlXLUTklSpSQlrMGtxIRERFR4WF0gTmQecOfFy9eIC4uDjExMSqnTHzy5Im0XL169VyVaWJigqpVq6Jq1arZ1mXN2lKtWjWFrja6yMjIkJZNTU1zVkkiIiIiMlpG15UFAFq2bCktX7t2TWW6K1euKN1Gn1JTU3H16lUAQLdu3bKtP3XqFGbMmCG1qqsi30ru6uqq30oSERERkcEzysC8S5cukMlkAIBjx46pTHf06FEAmYMvs2ZY0cXFixc1DsQ8evQo4uLiYGFhgb59+2Zbf/z4cUyePBl3795Vm88///wjLTdp0kTnuhIRERGRcTPKwLxSpUro2rUrAGDDhg1KZ2d58OABjh8/DgAYN25ctmkMQ0JC4OnpiTJlyuDUqVNKy5k9ezY+/fRTPH/+XOn6jIwMzJw5EwAwevRouLm5qayzugD/zZs32Lp1KwDA3d0dn3zyicq0RERE2kpISYPH+H3wGL8PCSlpBV0dMjA8PgyPUQbmADB37lw4OzsjPDwcEydOVFiXnJyMQYMGIT09Hd7e3hg2bFi27WfOnInQ0FA8ffoU48ePV1vW+PHjIYRQeC4tLQ3Dhg3DmTNn0Lx5c0yZMkVtHvPnz1c620piYiL69OmD6OhomJiYYNmyZTA3N1ebFxERERF9eIxy8CcAuLm5Yc+ePejUqRPmz5+PkJAQtG/fHomJiVi3bh1u3ryJmjVrYvfu3UrvECo/2PL9oPt969evx507d9C5c2c4OzsjIiICW7Zswb1799CtWzesWrVK5V1IK1WqBGtra8THx6N58+bo3LkzmjZtChsbG9y/fx8bN25EREQE7OzssHr1arRp0yZ3bwwRERV6Wa2fCSnpcs/9t2xtYbQf/6QHPD4Ml0xoikoNXFRUFBYuXIgdO3YgIiIC5ubm8PT0RM+ePTFkyBCVdwe9ceMGAgICkJiYiM2bNyu9K2dISAh2796N4OBg3L9/X5p+0dXVFU2bNkWfPn3g4+OjsY5v377Fzp07cfDgQVy/fh1PnjxBUlISHB0dUblyZbRu3RqDBw/Wag702NhYODg4ICYmRunNjIiIiDzG71O7PnxW23yqCRkiHh95L6fxmtEH5oUNA3MiItKEgRepw+Mj7zEwLyQYmBMRkSbyXRXqzMicoezSJF9YW2TeJ4NdFQo3Hh95L6fxGt95IiKiD4yywMrawpQBFwHg8WHIjHZWFiIiIiKiDwm7shgZdmUhIiIiMmw5jdfYYk5EREREZAAYmBMRERERGQAG5kREREREBoCBORERERGRAWBgTkREhUpCSho8xu+Dx/h90nzORESGgIE5EREREZEB4EzyRERUKMjf7fC/5/5b5s1ViKig8SpERESFQrUph7I9l3U7cgAIn9U2P6tDRJQNu7IQERERERkAtpgTEVGhcHu6P4DM7itZLeWXJvnC2sK0IKtFRCRhYE5ERIWCsj7k1ham7FtORAaDXVmIiIiIiAwAmwmIiKhQsbYw40BPIjJIbDEnIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIyAAwMCciIiIiMgAMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIADAwJyIiIqJcSUhJg8f4ffAYvw8JKWkFXR2jxcCciIiIiMgAmBV0BYiIiIjIOGW1jiekpMs999+ytQVDTV3w3SIiIsqFhJQ0VJtyCABwe7o/AxEqVLKOfXl1ZhyVlsNntc3P6hg9dmUhIiIiIjIA/FpPRESUA/wJnyjzVyIg89jPaim/NMkX1hamBVkto8WrBhERUQ7wJ3wi5V9ArS1M+cU0h9iVhYiIiIjIAMiEEKKgK0Hai42NhYODA2JiYmBvb1/Q1SEiKrTku7Io+wmfLYZEhVdO4zVeNYiIiHKAP+HnHGeyIVKOXVmIiIiIiAwAv6ISERHlgrWFGQd6aokz2RCpxzOAiIiI8gVnsiFSj11ZiIiIiIgMAFvMiYiIKF/wZjRE6jEwJyIionzBmWyI1GNXFiIiIiIiA8CvqEREGnDOZd3xPSN1OJMNkXJsMSciIiIiMgBswiAiUoFzLuuO7xkRUc7JhBCioCtB2ouNjYWDgwNiYmJgb29f0NUh+qB5jN+ndj1/is+O7xkRUc7jNXZlISIiIiIyAGwxNzJsMSfKP/LdMpTNuWwI3TIMbZClMbxnRER5LafxGq+QREQqcM5l3fE9IyLKOV4piYiMEAdZEhF9eNiVxciwKwsRARxkSURkyDj4k4iIiIjIiPG3TiIiI3R7uj8A1YMsiYjI+DAwJyIyQhxkSUT04TH6rixRUVGYPHkyvLy8YGtri2LFiqFhw4b4+eefkZKSopcyQkNDMWrUKHz00UdwcHBAkSJFUK5cOXzxxRe4cOGC1vnEx8djzpw58Pb2hqOjIxwcHFCrVi3MnDkTsbGxeqkrERERERknox78eeHCBXTs2BHPnz+Hn58fOnTogMTERKxbtw4hISGoVasW9u7di1KlSuW4jLlz52LChAlIT09H27Zt4e/vD0tLS1y4cAHr169Heno6vv32W0yfPl1tPmFhYWjXrh3u3r2LunXromfPnjAxMcGWLVtw9uxZlCtXDnv27EH16tXV5sPBn/ShMrT5uImIiHIqx/GaMFIRERHC2dlZABCjRo1SWJeUlCR8fHwEAOHt7S2SkpJyVMbChQsFAAFA/PLLL9nWnz59WlhZWQkAYsGCBSrzefv2rfD09BQAREBAgEhLS5PWZWRkiF69egkAwt3dXURGRqqtU0xMjAAgYmJicvSaiAxVfHKqcB+3V7iP2yvik1MLujpEREQ5ltN4zWi7sowZMwaRkZFwc3PDrFmzFNZZWlpi5cqVMDU1xeXLl7FkyRKd83/x4gUmTpwIAGjatCmGDBmSLU3jxo0xfPhwAMCkSZPw9OlTpXn98MMPuHfvHmxtbbFs2TKYmv43OEsmk2Hx4sVwdHREREQEvvvuO53rSmTMElLS/v+hOB931vNERESFhVEG5qGhodi2bRsAoG/fvrC0tMyWpkKFCvDx8QEAzJ49G2lpun3A//HHH0hISAAA9OjRQ2W63r17A8jsP758+fJs6+Pi4rB48WIAQMeOHeHs7JwtTdGiRdGlSxcAwIoVKxAVFaVTXYmMWbUph1BtyiFpZhEAqDPjqPQ8ERFRYWGUgfn27dsh/r9rvK+vr8p0fn5+AIDIyEgEBwfrVMb58+elZS8vL5XpqlevDjOzzL6wW7duzbZ+7969SExM1Lquqamp2Llzp051JSIiIiLjZ5Sjq44fPy4t16xZU2W6WrVqKWyjLjB+3+vXr6VldZ32TU1N4eDggNevX+PevXt4+/YtHB0dc13XAQMGaF1XImPG+biJiIgyGWWLeUhICADAzs4ODg4OKtOVLVtWWr5165ZOZVhbW0vLSUlJatPKT8t4+/ZtpXV9vz7vy01diYyZtYXZ/z9M5Z4zlZ4nIiIqLIwuME9OTsaLFy8AAC4uLmrTyq8PDw/XqRxPT09p+f79+yrTvXnzBnFxcdL/8i3t8uWamZmhWLFiKvOxsrKSWuZ1rSsZloSUNHiM3weP8fs4eJGIiIi0ZnSBuXwQbGVlpTZtkSJFlG6njXbt2knL+/fvV5nu4MGDKusn/7+mugL/1ffdu3dSH3pVYmNjFR7Jycka8ycyZNYWZgif1Rbhs9qypZyIiAolowvMswZSAoCFhYXatPLrs2ZY0VazZs3QokULAMCWLVtw+fLlbGni4uKy3VgoayDo+/XVVFf5NBkZGRoD7bJly8LBwUF6/Pjjjxrzp7zFaf+IiIgoN4yuWUq+FVy+b7cy8uvl+4xra/PmzfDx8cHdu3fxySefYPr06WjdujUsLS1x+fJlTJkyBU+fPkXz5s1x8uRJANkHihYpUgTx8fEa6ypfXxMTE6VTQMp7/PixQlma0lPeUza1n/wUgOGz2uZndYiIiMjIGF2LuZ2dnbSsaVCmfOu6/HbacnV1xfnz5zF69GgAwLBhw1CxYkWULVsWXbt2hYeHBy5evAhvb29pm/fnKc8qV1Nd5etra2sLmUymNq29vb3Cg4E5ERERkXEzuhZzS0tLlCxZEi9evMDLly/VppVf7+HhkaPyHBwcMG/ePMyZMwd3795FZGQkbGxsUKlSJanFOjo6GkDm1InVqlVT2N7DwwMvXrxAWloa3rx5o3IAaFJSEmJjY3NVVypYnPaPiIiIcsPoWsyB/274ExcXh5iYGJXpnjx5Ii1Xr149V2WamJigatWqaNasGby9vRW6kWTN2lKtWjWFrjbydQUyu5/kR12pYOTVtH+c5YWIiKhwMMrAvGXLltLytWvXVKa7cuWK0m30KTU1FVevXgUAdOvWLdt6Q6orkT7xCwMREZF+GWVg3qVLF6kP9rFjx1SmO3o0szuBk5OTNMOKLi5evIgDBw6oTXP06FHExcXBwsICffv2zba+Xbt2Uiu6NnU1NzdHhw4ddK4rGQ59TfvHWV6I/sMvgkRUGBhlYF6pUiV07doVALBhwwalM548ePAAx48fBwCMGzcu2zSGISEh8PT0RJkyZXDq1Cml5cyePRuffvopnj9/rnR9RkYGZs6cCQAYPXo03NzcsqWxs7PD8OHDAQA7d+7MdgMiAIiJicH27dsBAIMGDco2gJQKp2pTDqHalEMKM7vUmXFUer6g8AsDERFR3jDKwBwA5s6dC2dnZ4SHh2PixIkK65KTkzFo0CCkp6fD29sbw4YNy7b9zJkzERoaiqdPn2L8+PFqyxo/fny2G/6kpaVh2LBhOHPmDJo3b44pU6ao3H7ixInw9PREXFwchgwZgoyMDGmdEALDhw9HdHQ03N3dMW3aNC1ePVHBMdQvDPRh4hdBIipMjG5Wlixubm7Ys2cPOnXqhPnz5yMkJATt27dHYmIi1q1bh5s3b6JmzZrYvXu30rtuvh8cq7N+/XrcuXMHnTt3hrOzMyIiIrBlyxbcu3cP3bp1w6pVq9Te2dPBwQH79u1D27ZtsW3bNjx69Ag9evSATCbD1q1bcebMGZQrVw579uyBk5NTzt8U+qBwlhci3h+AjF9CSpp0HN+e7s87G5NaMqEpKjVwUVFRWLhwIXbs2IGIiAiYm5vD09MTPXv2xJAhQ1TecfPGjRsICAhAYmIiNm/ejGbNmmVLExISgt27dyM4OBj379+Xpl90dXVF06ZN0adPH/j4+Ghd1/j4eCxZsgRbtmxBWFgYAKB8+fLo0qULRowYke3mRMrExsbCwcEBMTExWqUn42doF/WsVkpVXxgKun70YfEYv0/tegbmZOgM7RpO+SOn8ZrRB+aFDQPzwsdQL+qGWi/6sPCLIBkrHruFW07jNR4VRDDsIDNrlheiwkjZuZh1fwAiQ8ZuWJQTvLIRUY7wCwMREZF+MTCnQk3+p8b/nvtvma1yRIaBXwTJ2HAAP+UEow4q1ArbT42G3GWHiOhDwm5YlBNGO485EREREdGHhF/bqFArLD81sssOEVHBYDcs0gU/jalQKyw/NRa2LjtERETGiF1ZiIiIiIgMAG8wZGR4gyHKCd7ogoiIKP/wBkNEpFJh6bJDRHmHszoR5T12ZSEiIiIiMgD8uktUiHB2ACLSFWd1Iso/PJuIiIhIJc7qRJR/2JWFiIiIiMgAsMWciD44HKRGpD+F5UZsRIaAn1ZERESkEmd1Iso/PKvIKLFFlJThIDUiIjJm/JQiog8GB6kR5R3O6kSU9xiYk1FhiygRERF9qGRCCFHQlSDt5fQWrx8Kj/H71K5na07hJv/FTdkgNX5xIyKi/JDTeI2fUkT0weAgNSIiMmb8tCKjwmm7iIiI6EPFwJyMCltESRscpEZERMaId/4kIiIiIjIAbGYko8QWUSIiIvrQsMWciIiIiMgAMDAnIiIiIjIADMyJiIiIiAwAA3MionyUkJIGj/H74DF+n3RDJCIiIoCBORER/T9+aSAiKliclYWIKB9kBboJKelyz/23zLn4iYiInwRERPmg2pRD2Z7LunstgAKd/pNfGoiIDAOvtkREhZwhf2kgIipMGJgTEeWD29P9AWS2RGcFvZcm+cLawrQgq0VERAaEgTkRUT5Q1h3E2sLUILqJ8EsDEZFhKPhPBCIiKlCG/KWBiKgw4VWXiCgfWVuYsc82EREpxcCciIgA8EsDEVFB4w2GiIiIiIgMAANzIiIiIiIDwMCciIiIiMgAMDCnfJOQkgaP8fvgMX6fdKdBIiIiIsrEwJyIiIiIyABwVhbKc1mt4wkp6XLP/bfMuZKJiIiIGJhTPqg25VC257LuLgiA07MRERERgV1ZiIiIiIgMAlvMKc/dnu4PILP7SlZL+aVJvrC2MC3IahEREREZFAbmlOeU9SG3tjBl33IiIiIiOezKQkRERERkANhkSfnG2sKMAz2JiIiIVGCLORERERGRAWBgTkRERERkABiYExEREREZAAbmREREREQGwOgD86ioKEyePBleXl6wtbVFsWLF0LBhQ/z8889ISUnRSxn//vsvRowYgY8++gh2dnYwNzdHiRIl0KpVKyxduhSJiYlqtw8KCoJMJtPqERUVpZc6ExEREZFxMerA/MKFC/joo48wY8YMlCpVCrNnz8bEiRPx7t07jBw5Eg0aNMCzZ89yVcbSpUvx0UcfYfHixTA1NcU333yDxYsXo0ePHrh48SKGDRuGmjVr4sGDB3p6VURERERUGMmEEKKgK5ETjx49Qp06dRAZGYlRo0ZhwYIF0rrk5GS0adMGJ06cgLe3N86cOQNLS0udyzh06BBat24NAOjZsyfWrVsHM7P/ZpiMiIhA3bp1ERkZiapVq+L69eswNzfPlk9QUBCOHDmCY8eOaSyzUqVKMDVVfUfM2NhYODg4ICYmBvb29jq/JiIiIiLKWzmN14y2xXzMmDGIjIyEm5sbZs2apbDO0tISK1euhKmpKS5fvowlS5bkqIw5c+YAAMzNzbFo0SKFoBwA3N3dMWnSJADAnTt3sHPnTpV5mZubo0qVKhof6oJyIiIiIvpwGWVgHhoaim3btgEA+vbtq7Q1vEKFCvDx8QEAzJ49G2lpaTqXc/HiRSkvJycnpWnq1asnLZ87d07nMoiIiIiIACMNzLdv346sHji+vr4q0/n5+QEAIiMjERwcrHM5WYNHixQpojKNtbW1tBwfH69zGUREREREgJEG5sePH5eWa9asqTJdrVq1lG6jrY8//hgAEBYWprLF/c6dO9JypUqVtM773bt3SE9P17lORERERKS9hJQ0eIzfB4/x+5CQonsPivxklIF5SEgIAMDOzg4ODg4q05UtW1ZavnXrls7ljB07FgAQFxeHxYsXZ1ufnp6O2bNnAwBsbW3Rq1cvlXmlpaVh0aJFqFu3LhwcHKRpF8uXL48hQ4YgNDRU5/oRERER0YfD6ALz5ORkvHjxAgDg4uKiNq38+vDwcJ3LCggIwLp162Bra4sxY8bgm2++wYULFxAeHo6DBw+iadOmuHr1KpycnPDXX3/B1dVVZV5Pnz7F6NGjUa1aNfzyyy/Yt28fFi9ejOLFi2P58uWoXr06VqxYoXMdiYiIiCi7hJS0/3+kyz2XLj1viIxuusSoqCg4OzsDALy8vHDz5k2VaZOSkqT+4eXKlcvxXOMvX77EhAkTsH79eoXuJy4uLhg+fDj69eunNigPCgrCtm3bcODAATRr1kxhXUZGBvr164d169YBALZu3YquXbuqzCtr+p3Hjx8rTL9jaWmZoykhiYiIiD5EHuP3qV0fPqttnpVdaKZLlL/LpoWFhdq08usTEhJyVN769evx8ccfY82aNejYsSM2bNiAffv24ZdffkHZsmWxcOFC/PTTT4iJiVGZx7x58xAeHp4tKAcAExMTLF26VGrdHzlyJJKSkjTWq2zZsnBwcJAeP/74Y45eHxEREREZBjPNSQyL/AwpWbOmqCK/Xn72FG0tXLgQX3/9NQDgl19+wZAhQxTWDxo0CD179sS8efOwa9cuBAcHo1SpUtnyUTXVYhYbGxt0794dixYtwvPnz3HgwAF06tRJ7TbKWsyJiIiIKNPt6f4AMruv1JlxFABwaZIvrC0M954xemkxb9mypVZ3tdQHOzs7aVlTy7J867r8dtp48uSJNPizSZMm2YJyADA1NcXy5cthY2OD0NBQ9O/fX6cy5NWpU0daPnv2rMb09vb2Cg8G5kRERET/sbYw+/+HqdxzptLzhkgvgXlwcDCePHmij6w0srS0RMmSJQFk9v1WR369h4eHTuVs27YNqampAKC29bpo0aJo0aIFAODgwYO4f/++TuVkKVGihLScNbiViIiIiAoPvfUxHzRoEAICAnDw4EHk9XhSLy8vAJnTGKrr2y3/ZaF69eo6lXHv3j1p2d3dXW1a+aD/2rVrOpWTJSMjQ1o2NTXcn1iIiIiIjIm1hRnCZ7VF+Ky2BttSnkVvgXmjRo1w5swZtG3bFh4eHpg+fToeP36sr+wVtGzZUlpWFwhfuXJF6TbaMDH5763R9EVDPqh+/6ZBp06dwowZMxAdHa02D/lWcnUzvBARERHRh0lvgfnAgQPx5MkTbNmyBVWrVsX06dNRvnx5tGvXDrt27dLrXS67dOkCmUwGAGr7th89mtnR38nJSepuoq3y5ctLy5q6p8ivd3NzU1h3/PhxTJ48GXfv3lWbxz///CMtN2nSRJeqEhEREdEHQC+BeWBgICpUqAAzMzN06dIFBw8exIMHDzBhwgTcuHEDnTp1QtmyZfHtt9/meC5xeZUqVZLm+t6wYYPS2VkePHiA48ePAwDGjRsHMzPFny5CQkLg6emJMmXK4NSpU9m2b9u2rRT8b9u2TWVdXr58iZMnTwLI7Cdet25dpekOHDigMo83b95g69atADK7zXzyyScq0xIRERHRB0rksfT0dLF3717RoUMHYW5uLkxNTUWrVq3Eli1bREpKSo7zjYiIEM7OzgKAGD16tMK6pKQk0apVKwFAeHt7i8TExGzbd+/eXQAQAETDhg2VljFgwAApzYwZM7KtT0pKEq1bt5bSrFy5MluaqVOnCgDCxsZGnDlzJtv6hIQE8emnnwoAwsTEROzfv1/t646JiREARExMjNp0RERERFQwchqv5XkPeBMTE7Rt2xZt27bFrVu30LlzZ5w4cQInTpxAsWLFEBgYiP79+6Nq1ao65evm5oY9e/agU6dOmD9/PkJCQtC+fXskJiZi3bp1uHnzJmrWrIndu3fDysoq2/by/cKFij7kS5cuRWJiIjZt2oRJkybh0KFD6NChA4oVK4aIiAhs2LABDx48gJmZGb7//nsMGDAgWx6VKlWCtbU14uPj0bx5c3Tu3BlNmzaFjY0N7t+/j40bNyIiIgJ2dnZYvXo12rRpo9P7QEREREQfBplQFZXqUXBwMFauXIkdO3YgOTlZCoQtLS0hk8mQnJyMhg0bYvjw4fj88891yjsqKgoLFy7Ejh07EBERAXNzc3h6eqJnz54YMmSIyruD3rhxAwEBAUhMTMTmzZuV3pUzy99//421a9fi3LlzePz4MRITE2FnZ4cKFSqgRYsWGDhwICpXrqxy+7dv32Lnzp04ePAgrl+/jidPniApKQmOjo6oXLkyWrdujcGDB8PZ2Vnj683pLV6JiIiIKH/kNF7TS2DesmVLfPvtt2jVqpX03MuXL7F27Vr89ttv0uDIrKKqVq2KgQMHom/fvjA1NcXGjRvx22+/4dq1a6hXrx52796tMK83/YeBOREREZFhK9DA3MTEBBs3bkSPHj1w8OBBrFq1Cnv37kVaWpoUjFtbW6Nr164YOHAgGjVqpDSfAwcOICgoCK1bt8a6detyW60PEgNzIiIiIsNW4IH5J598gjt37kg39cnKtmbNmhg4cCB69eqlVcXmz5+PuXPn8u6XKjAwJyIiIjJsOY3X9Db488iRI1Iwbmdnh+7du2PgwIGoU6eOTvlkZGTg7du3+qoWEREREZFR0FtgLoRAvXr1MHDgQHTv3h02NjY6bf/u3TvMnTsXixcv1moQJBERERHRh0RvgfnixYsxdOjQHG//+vVr/Prrr7C0tISPj4++qkVERGQ0ElLSUG3KIQDA7en+sLbI81mNiciA6OWMd3d3R9myZXOdx/Pnz/VRHSIiIiIio6OXwPzhw4f6yIaIiKhQSkhJ+/+/6XLP/bfMlnOiwkFvZ/rWrVulmVQsLS0xePDgbGm+/fZbyGQyjBw5kv3IiYiI/l9W9xV5dWYclZbDZ7XNz+oQUQHRS2D+7Nkz9O7dG+np6RBCwNHRUWlg/uDBA2zZsgW//vor/vrrLzRp0kQfxRMRERERGT29BObbt29HWloaHBwcMHXqVLRv315pupkzZ6JChQqYP38+2rdvj1u3bsHV1VUfVSAiIjJat6f7A8jsvpLVUn5pki+sLUwLslpElM9M9JHJ0aNHUaRIEVy8eBGjRo1C+fLllaYrX748ZsyYgePHj+Pdu3eYP3++PoonIiIyatYWZv//MJV7zlR6nogKB70E5jdu3ECfPn1QsWJFrdI3bNgQPXr0wP79+/VRPBERERGR0dPL1/BXr16hRo0aOm1Tp04dbNu2TR/FExERfRCsLcw40JOoENNLi7mJiQnMzHSL8S0sLGBiopfiiYiIiIiMnl4i4zJlyuDkyZM6bXPy5EmUKVNGH8UTERERERk9vQTmLVu2xNatW7Fr1y6t0u/evRvbtm1Dq1at9FE8EREREZHR00tgPmLECMhkMnTp0gV9+/bFkSNH8PbtW4U0b9++xdGjRxEYGIiAgADIZDKMGDFCH8UTERERERk9mRBC6COjOXPmYPz48ZDJZNJzRYoUgZWVFZKSkpCYmCg9L4TA7NmzMWbMGH0UXajExsbCwcEBMTExsLe3L+jqEBEREdF7chqv6W1y1LFjx8LS0hLjxo1DSkoKACAhIQEJCQkK6SwsLDBnzhy2lhMRERERydFbi3mWJ0+eYPny5Thy5AjCwsIQFxcHOzs7VKxYEX5+fvjyyy856DMX2GJOREREZNhyGq/pPTCnvMXAnIiIiMiw5TRe40TiREREREQGoMAC8127dqF8+fIFVTwRERERkUEpsMD83bt3iIiIKKjiiYiIiIgMit5mZQGA58+f48CBA7hz5w5iYmKQlpamMu2DBw/0WTQRERERkVHTW2A+efJkzJ49G+np6VqlF0IozHlORERERFSY6SUwX7lyJWbOnCn9b2VlBUdHR1haWqrcJj4+Hq9fv9ZH8URERERERk8vgfmvv/4KmUyGCRMmoH///ihXrpzGbTZu3IjAwEB9FE9EREREZPT0EpjfuXMHgYGBmDFjhtbbyGQycAp1IiIiIqJMepmVxczMDE2aNNFpm169eiEjI0MfxRMRERERGT29BOZeXl6IjY3VR1ZERERERIWSXgLzr776Cps2bdKpa8rRo0fRsmVLfRRPRERERGT09BKY9+zZEw0bNkT79u3x8OFDrbZ5+fIlTp48qY/iiYiIiIiMnl4Gf/br1w8AcO3aNVSsWBFVq1ZF5cqVYWdnBxMT5bH//fv39VE05aGElDRUm3IIAHB7uj+sLfR6PyoiIiIikqOXSGvt2rXSzYKEELh9+zbu3LmjdhveYIiIiIiI6D96awItXrw4bGxstE7PGwwZroSUtP//my733H/LbDknIiIi0j+9RVgLFy5Ez549tU7PGwwZrqzuK/LqzDgqLYfPapuf1SEiIiIqFPQy+DMneIMhIiIiIqL/6KXF/MiRI/Dy8tJpm06dOmk9gwvlr9vT/QFkdl/Jaim/NMkX1hamBVktIiIiog+aXgLzVq1a6byNtbU13N3d9VE86ZmyPuTWFqbsW05ERESUh/KkK0tycjL++ecf7Ny5E69evZKeT0hIyIviiIiIiIiMnl4D8/v376NXr15wcHBA48aNERAQgJCQEGl9yZIl0bt3bzx48ECfxVIesbYwQ/istgif1Zat5URERER5TG+BeXBwMGrXro0//vgDKSkpSgd2mpqaYvPmzahVqxaOHTumr6KJiIiIiIyeXgLzN2/eICAgAHFxcXB0dESnTp0wYMCAbOmePXuGFStWICMjA127dsWLFy/0UTwRERERkdHTS2C+ePFiREdHY8iQIXj69Cn+/PNP/PDDD9lazYsUKYKBAwfi5MmTePfuHRYvXqyP4omIiIiIjJ5eAvMDBw6gfv36WLp0KaysrABkzlOuSu3atdGjRw/s379fH8UTERERERk9vQTmoaGh6NKli07b1KlTh4NAiYiIiIj+n14C83fv3qF48eI6bWNhYYGUlBR9FE9EREREZPT0Epg7OTkhLCxMp23OnTsHZ2dnfRRPRERERGT09BKY169fH7/99htev36tVfrz58/j999/R+PGjfVRPBERERGR0dNLYN6vXz+8fPkSTZs2xZEjRxTWyQ8CffPmDebNmwc/Pz+kpaUpnVKRiIiIiKgwkglldwLKgYCAAOzYsQMymQzFixdHtWrVcOrUKTRp0gQ2NjaIiIhAaGgoMjIyIIRA9+7dsXnzZn0UXajExsbCwcEBMTExsLe3L+jqEBEREdF7chqv6S0wT0pKQs+ePbFz587MjJVMl5hVVJcuXbBx40ZYWFjoo+hChYE5ERFR3klISUO1KYcAALen+8PawqyAa/QfQ64bKcppvKaXriwAYGVlhb/++gtbtmxB48aNYWJiAiGE9DAxMUHjxo2xdetWbN26lUE5EREREZEcvQXmWbp27Yq///4bb9++xY0bN3D69Glcv34d0dHR+Pvvv3We71yTqKgoTJ48GV5eXrC1tUWxYsXQsGFD/Pzzz3qbjvHff//FiBEj8NFHH8HOzg7m5uYoUaIEWrVqhaVLlyIxMVGrfOLj4zFnzhx4e3vD0dERDg4OqFWrFmbOnInY2Fi91JWIiIh0l5CS9v+PdLnn0qXnC5Ih1430S29dWQrChQsX0LFjRzx//hx+fn7o0KEDEhMTsW7dOoSEhKBWrVrYu3cvSpUqleMyli5diq+//hqpqamoWbMmOnbsCBcXF9y5cwdr1qxBXFwcPD09ceDAAZQvX15lPmFhYWjXrh3u3r2LunXromfPnjAxMcGWLVtw9uxZlCtXDnv27EH16tXV1oddWYiIiPTPY/w+tevDZ7XNp5pkZ8h1I+UKvI+5ro4ePYoffvgBx48fz9H2jx49Qp06dRAZGYlRo0ZhwYIF0rrk5GS0adMGJ06cgLe3N86cOQNLS0udyzh06BBat24NAOjZsyfWrVsHM7P/+nNFRESgbt26iIyMRNWqVXH9+nWYm5tnyycmJgb16tXDvXv3EBAQgC1btsDU1BRAZr/7Pn36YNOmTXB3d8elS5fg5OSksk4MzImIiPTPkINfQ64bKZfjeE0UkI0bNwoTE5Mcb9+tWzcBQLi5uYmkpKRs68PCwoSpqakAIObNm5ejMlq2bCkACHNzcxEZGak0zaJFiwQAAUBs3bpVaZqxY8cKAMLW1la8evUq2/o3b94IR0dHAUAMGzZMbZ1iYmIEABETE6P7CyIiIiKl4pNTRXxyqoiMSxLu4/YK93F7RWRckvQ860a6yGm8ptNw3vT0dNy8eRNeXl4KLcfr16/XJRsAwNmzZ3XeJktoaCi2bdsGAOjbt6/S1vAKFSrAx8cHR48exezZszFy5EiFOmvj4sWLUl6qWrHr1asnLZ87dw5du3ZVWB8XF4fFixcDADp27Kj0bqdFixZFly5dsGrVKqxYsQJTp05V22pORERE+qVshhNrC1ODmPnEkOtG+qXTHu3cuTP27t2L1q1bY9++/35WCQoKUjo9Yl7Zvn27NPWir6+vynR+fn44evQoIiMjERwcrDatMlmDR4sUKaIyjbW1tbQcHx+fbf3evXulwaGa6rpq1SqkpqZi586dvPkSERERUSGj06wsJ0+ehBACZ86cybZOyE2NqO0jp+T7pdesWVNlulq1aindRlsff/wxgMyBm2lpykc937lzR1quVKlStvX5VVciIiLKPWsLM4TPaovwWW0NrkXakOtG+qFTYD5v3jx4eXlhzpw52dYtXLgQDx8+1Prx008/5bjSISEhAAA7Ozs4ODioTFe2bFlp+datWzqXM3bsWACK3VHkpaenY/bs2QAAW1tb9OrVS2Vd36+PvutKRERERMZNp69bAwYMUNnFwsnJCe7u7lrnpayvtTaSk5Px4sULAICLi4vatPLrw8PDdS4rICAA69atw9ChQzFmzBg8ffoU3bp1Q4kSJfDvv/9i+vTpuHr1KpycnLB582a4urpmyyOrXDMzMxQrVkxlWVZWVrC3t0dsbGyO6kpERERExk0vv4NMnToVH330kU7bfPTRR5gyZYrOZcXFxUnLVlZWatPK9w2X304Xffv2hb+/PyZMmICFCxdi/vz50joXFxfMmDED/fr1UxqUy5erqa5Z9Y2NjcW7d+8ghFDbb//9GxJZWlrmaEpIIiIiIjIMegvMdVWjRg3UqFFD5+3k77JpYWGhNq38+oSEBJ3LAjJnnBk7dixevnyJgIAAdOzYEcWKFUNERARWr16NhQsX4u3bt5g0aZLSbjVZ9dVUV/k0GRkZSE5OVhvMv98tZurUqZg2bZoOr4yIiIiIDEm+jhxISkrSquVYHflW8KxZU1SRXy8/e4q2Fi5ciK+//hoA8Msvv2DIkCEK6wcNGoSePXti3rx52LVrF4KDg7PdZbRIkSKIj4/XWFf5+pqYmGhs/X78+LHChPVsLSciIiIybjoN/lRnxIgR6Ny5Mzp37oy+ffsqTdOvXz80adIEx44dy3E5dnZ20nJSUpLatPKt6/LbaePJkyfS4M8mTZpkC8oBwNTUFMuXL4eNjQ1CQ0PRv39/lfXVVFf5+tra2mqcftLe3l7hwcCciIiIyLjpJTC/fv06lixZgl27dmHnzp24fPmy0nSWlpY4e/YsPvnkEyxcuDBHZVlaWqJkyZIAgJcvX6pNK7/ew8NDp3K2bduG1NRUAECnTp1UpitatChatGgBADh48CDu37+vsD6r3LS0NLx580ZlPklJSVK/cV3rSkRERETGTy+B+V9//QUA8Pb2xpUrV1RO97d69WocPnwY5cqVw5gxY3Dp0qUclefl5QUgc2BlTEyMynRPnjyRlqtXr65TGffu3ZOWNc02Ix9IX7t2TWFdVl2BzO4nquSmrkRERERk/PQSmJ86dQqurq44efKk2pvoyGQy+Pr64ty5c7C3t8eiRYtyVF7Lli2l5fcDYXlXrlxRuo02TEz+e2s03QwpIyNDWk5PT1dYlx91JSIiIiLjp5fA/M6dO+jbt6/aW9fLc3Z2RlBQEE6dOpWj8rp06SL1wVbXX/3o0aMAMudYz+puoq3y5ctLy+93T3mf/Ho3NzeFde3atZPeF23qam5ujg4dOuhUVyIiIiIyfnoJzKOjoxUCWW1UqVJFYx9xVSpVqoSuXbsCADZs2KB0xpMHDx5It7YfN24czMwUJ6AJCQmBp6cnypQpo/QLQtu2baXgf9u2bSrr8vLlS5w8eRIAUKJECdStW1dhvZ2dHYYPHw4A2LlzJ16/fp0tj5iYGGzfvh1A5kwvOb35EhEREREZL70E5jY2NoiPj9dpm/j4eK1b2JWZO3cunJ2dER4ejokTJyqsS05OxqBBg5Ceng5vb28MGzYs2/YzZ85EaGgonj59ivHjx2dbX6VKFWmWlcuXL2PmzJnZ0iQnJyMoKAjJyclSnqamptnSTZw4EZ6enoiLi8OQIUMUur4IITB8+HBER0fD3d2dc5ETERERFVJ6mce8YsWK2L59O0aNGqX1Nn/++ScqVqyY4zLd3NywZ88edOrUCfPnz0dISAjat2+PxMRErFu3Djdv3kTNmjWxe/dupXOnvx8cK7N06VIkJiZi06ZNmDRpEg4dOoQOHTpINxjasGEDHjx4ADMzM3z//fcYMGCA0nwcHBywb98+tG3bFtu2bcOjR4/Qo0cPyGQybN26FWfOnEG5cuWwZ88eODk55fg9ISIiIiLjJROaRjZqYdq0afj+++/x9ddfY/bs2UpbjbNkZGRg/PjxmD9/PqZMmZKju4bKi4qKwsKFC7Fjxw5ERETA3Nwcnp6e6NmzJ4YMGaLyjps3btxAQEAAEhMTsXnzZjRr1kxlGX///TfWrl2Lc+fO4fHjx0hMTISdnR0qVKiAFi1aYODAgahcubLGusbHx2PJkiXYsmULwsLCAGT2Ze/SpQtGjBihcMMgVWJjY+Hg4ICYmBit0hMRERFR/sppvKaXwDw6OhoVKlRATEwM3N3d0aNHD9StWxdlypSBlZUVkpKS8OTJE1y6dAl//PEHHj58CEdHR4SFhaFo0aK5Lb5QYWBOREREZNgKNDAHMmcVadeunXRTHlWEELCwsMC+ffvQqlUrfRRdqDAwJyIiIjJsOY3X9DL4EwB8fX1x6tQpVKlSBUIIlY9q1arh77//ZlBORERERCRHL4M/s9SrVw+3bt3C0aNHceTIEYSFhSEuLg52dnaoWLEi/Pz84Ovrq88iiYiIiIg+CHrrykL5g11ZiIiIiAxbgXdl0VVkZGSO7/xJRERERPShKbDA/PDhw/Dx8Smo4omIiIiIDEqBBeZERERERPQfnQZ/Hjp0CMuWLcPAgQPRtm1b6fny5cvrXHB8fLzO2xARERERfah0Gvzp7OyMN2/eoFixYoiMjJSeNzHJWcO7TCZDenp6jrYtrDj4k4iIiMiw5TRe06nFvEKFCnj9+rXSFvKmTZvq1HL+4MEDnD59WpfiiYiIiIg+WDp3ZTl27JjSmwMNHjwYPXv21DqvTZs2MTAnIiKiXEtISUO1KYcAALen+8PaQq+3aSHKNzr1Qbl27Rr27t2L//3vf3j+/HmuC+cU6kREREREmXQKzFevXo21a9fiyJEjSElJkZ7PyMjQqbUcAHr16oWMjAydtiEiIiLKkpCS9v+PdLnn0qXniYyNToM/K1eujNKlS+Pw4cMwM/vvZ6Lp06ejc+fO8PLyypNK0n84+JOIiCiTx/h9ateHz2qrdj1RXsmXO38+f/4c3bp1UwjKAWDatGm4ceOGLlnh6NGjaNmypU7bEBERERF9qHQaHZGamqrQhSU3Xr58iZMnT+olLyIiIip8bk/3B5DZfaXOjKMAgEuTfGFtYVqQ1SLKMZ1azMuWLYudO3fmUVWIiIiItGdtYfb/D1O550yl54mMjU5HrZ+fH5YvX47atWvDx8cHDg4O0rq//voLYWFhWud1/fp1XYomIiIiIvqg6TT488mTJ6hZsybevHkDmUwmPS+EUPhfF7zzp244+JOIiIjIsOXL4M8yZcrg/Pnz6NatG4oXLw7gv6BcCKHzg4iIiIiIMukUmANAhQoV8Mcff+DVq1dIT09HRkYGhBDYuHEjMjIytH6sX78+L14PEREREZFR0qmPeWRkJO7cuQMAqFu3LooUKZLjgrNa2YmIiIiISMcW859++gk+Pj7w8fHBw4cPpefXrFmDRo0a6VRwo0aNsGbNGp22ISIiIiL6UOnUYn78+HE4OztjzZo1qFSpkvS8j48PnJ2ddSq4XLlyKFeunE7bEBERERF9qHRqMQ8PD8fw4cPRpk0bmJubS8+XK1cOO3bs0Knghw8fsp85EREREdH/0ykwj46OhouLS7bnc9JX/OzZs/jiiy903o6IiIiI6EOkU2BetGhR3Lx5M6/qQkRERERUaOnUx7xOnTpYsWIFypcvj5YtW8LBwUFqLX/9+jUePXqkdV5RUVG61ZSIiIiI6AOm050/Dxw4gLZt22a7yyfv/Jl/eOdPIiIiIsOWL3f+bNOmDebPnw8rK6tsd/DknT+JiIiIiHJOpxbzLG/fvsXZs2fx+vVrpKeno1+/fhg8eDAaNGigdR7nzp3DypUr2WKuI7aYExERERm2nMZrOvUxz+Lo6IhPP/1U+r9fv35o2rQpevbsqX3BZmZYuXJlToonIiIiIvrg6NSVRZXmzZsrnUZRHRcXFzRr1kwfxRMRERERGb0cdWWhgsOuLERERESGLV8GfxIRERERUd7QKTAvX768wmPu3Lk6FfbZZ5/B1NRUepiZ5aiLOxERERHRB0enyDg8PBxVqlSR+pMXLVpUp8J8fX3h5OQEALh16xYuX76s0/ZERERERB8qnZusJ02alG32FXV3/HRzc5OWR44cKS3Pnz+fgTkRERER0f/TS18SDw8PlXf+5DzlRERERESa6SUwnzJlCmQyGeLj4zFv3jz06dMH5cuX10fWRERERESFgl4C82nTpgEAXr9+jXnz5iEwMBAtW7bUR9ZERERERIUCp0skIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIyADoHJirmhZR1zRERERERPQfmRBCaJvYxMQEzs7OsLGxUbo+IyMDjx49QsmSJWFlZaU2r9jYWERHR3Oecx3FxsbCwcEBMTExsLe3L+jqEBEREdF7chqv6TxdYlRUFCIjI1Wul8lkePHihVZ5sWWdiIiIiCiTzoF58eLFVbaY6yI2NhZv377NdT5ERERERB8CnQPzhQsXomfPnrkueN68eRg3blyu8yEiIiIi+hAU2Kws7MZCRERERPQfnQLzuXPnwtvbWy8Ft2jRAnPmzNFLXkRERERExk6nWVmo4HFWFiIiIiLDltN4jTcYIiIiIiIyAEYfmEdFRWHy5Mnw8vKCra0tihUrhoYNG+Lnn39GSkpKjvMNDw+HTCbT+XHt2rVseQUFBWm9fVRUVC7eDSIiIiIyVkYdmF+4cAEfffQRZsyYgVKlSmH27NmYOHEi3r17h5EjR6JBgwZ49uxZvtVHJpPB2dk538ojIiIiog+HztMlGopHjx6hXbt2iIyMxKhRo7BgwQJp3fDhw9GmTRucOHEC7du3x5kzZ2BpaZmjcoYOHYphw4apTbNnzx6MHTsWfn5+KF26tNI0pUqVwrFjxzSWV7Ro0RzVk4iIiIiMm9EG5mPGjEFkZCTc3Nwwa9YshXWWlpZYuXIlKleujMuXL2PJkiUYPXp0jspxcnJClSpV1KYZMWIEAGDw4MEq05ibm2vMh4iIiIgKL6PsyhIaGopt27YBAPr27au0NbxChQrw8fEBAMyePRtpaWk6lWFlZYXmzZvDw8NDbbqHDx/i6NGjKFmyJNq3b69TGUREREREWYwyMN++fTuyZnn09fVVmc7Pzw8AEBkZieDgYJ3KKFmyJIKDgxEUFKQ23cqVKyGEQL9+/WBmZrQ/QBARERFRATPKwPz48ePScs2aNVWmq1WrltJt9CUtLQ1r1qyBiYkJBg4cqNO27969Q3p6ut7rRERERETGySgD85CQEACAnZ0dHBwcVKYrW7astHzr1i2912P37t148eIF/Pz8NHZ5SUtLw6JFi1C3bl04ODjAzs4O5ubmKF++PIYMGYLQ0FC914+IiIiIjIfRBebJycl48eIFAMDFxUVtWvn14eHheq/Lr7/+CkD9oM8sT58+xejRo1GtWjX88ssv2LdvHxYvXozixYtj+fLlqF69OlasWKH3OhIRERGRcTC6TtFxcXHSspWVldq0RYoUUbqdPkRERODIkSNwdXXFZ599pjG9tbU1Dhw4gGbNmik8P2TIEPTr1w/r1q3Dl19+iWLFiqFr164a84uNjVX439LSMsdTQhIRERFRwTO6FvPExERp2cLCQm1a+fUJCQl6rcfKlSuRkZGh1aDPefPmITw8PFtQDgAmJiZYunSp1Lo/cuRIJCUlaSy/bNmycHBwkB4//vhjzl4IERERERkEowvM5VvBU1JS1KaVX29tba23OsgP+hwwYIDG9E5OTmrvCGpjY4Pu3bsDAJ4/f44DBw5ozPPx48eIiYmRHhMmTND+BRARERGRwTG6wNzOzk5a1tSyLN+6Lr9dbu3ZswfPnj3DJ598onHQp7bq1KkjLZ89e1Zjent7e4UHu7EQERERGTejC8wtLS1RsmRJAMDLly/VppVfr68AGtBt0Ke2SpQoIS1nDW4lIiIiosLD6AJzAPDy8gKQOaAzJiZGZbonT55Iy9WrV9dL2RERETh8+DBcXV3Rrl07veQJABkZGdKyqamp3vIlIiIiIuNglIF5y5YtpeVr166pTHflyhWl2+TGqlWrkJGRgf79+2t1p89Tp05hxowZiI6OVptOvpXc1dU11/UkIiIiIuNilIF5ly5dIJPJAADHjh1Tme7o0aMAMgdftmjRItflpqen6zToE8i84+jkyZNx9+5dten++ecfablJkya5qicRERERGR+jDMwrVaokzfW9YcMGpbOzPHjwAMePHwcAjBs3LlvrdkhICDw9PVGmTBmcOnVKq3L37t2Lp0+fwt/fH+7u7jrVWd1MK2/evMHWrVsBAO7u7vjkk090ypuIiIiIjJ9RBuYAMHfuXDg7OyM8PBwTJ05UWJecnIxBgwYhPT0d3t7eGDZsWLbtZ86cidDQUDx9+hTjx4/XqsysQZ+DBg3Sub7z589XOttKYmIi+vTpg+joaJiYmGDZsmUwNzfXOX8iIiIiMm5Gd+fPLG5ubtizZw86deqE+fPnIyQkBO3bt0diYiLWrVuHmzdvombNmti9e7fSO4TKD7YUQmgs7/Hjxzh48CBKlSql06DPSpUqwdraGvHx8WjevDk6d+6Mpk2bwsbGBvfv38fGjRsREREBOzs7rF69Gm3atNE6byIiIiL6cMiENlGpAYuKisLChQuxY8cOREREwNzcHJ6enujZsyeGDBmi8u6gN27cQEBAABITE7F582ald+WUN3XqVEyfPh2TJk3C999/r1Md3759i507d+LgwYO4fv06njx5gqSkJDg6OqJy5cpo3bo1Bg8erPYmRFliY2Ph4OCAmJgY2Nvb61QPIiIiIsp7OY3XjD4wL2wYmBMREREZtpzGa0bbx5yIiIiI6EPCwJyIiIiIyAAwMCciIiIiMgAMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIADAwJyIiIiIyAAzMiYiIiIgMAANzIiIiIiIDwMCciIiIiMgAMDAnIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIyAAwMCciIiIiMgAMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIADAwJyIiIiIyAAzMiYiIiIgMAANzIiIiIiIDwMCciIiIiMgAMDAnIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIyAAwMCciIiIiMgAMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIADAwJyIiIiIyAAzMiYiIiIgMAANzIiIiIiIDwMCciIiIiMgAMDAnIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIyAAwMCciIiIiMgAMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIADAwJyIiIiIyAAzMiYiIiIgMAANzIiIiIiIDwMCciIiIiMgAMDAnIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIyAAwMCciIiIiMgAMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIABh9YB4VFYXJkyfDy8sLtra2KFasGBo2bIiff/4ZKSkpOc43PDwcMplM58e1a9dU5hkfH485c+bA29sbjo6OcHBwQK1atTBz5kzExsbmuK5EREREZPyMOjC/cOECPvroI8yYMQOlSpXC7NmzMXHiRLx79w4jR45EgwYN8OzZs3yrj0wmg7Ozs9J1YWFh8Pb2xrhx42Bqaopp06bh+++/h7W1NSZNmoSaNWvi1q1b+VZXIiIiIjIsMiGEKOhK5MSjR49Qp04dREZGYtSoUViwYIG0Ljk5GW3atMGJEyfg7e2NM2fOwNLSUqf8w8PDUa5cOQwdOhTDhg1Tm3bPnj0YO3YsPvnkExw6dCjb+piYGNSrVw/37t1DQEAAtmzZAlNTUwCAEAJ9+vTBpk2b4O7ujkuXLsHJyUllWbGxsXBwcEBMTAzs7e11ek1ERERElPdyGq8ZbYv5mDFjEBkZCTc3N8yaNUthnaWlJVauXAlTU1NcvnwZS5YsyXE5Tk5OqFKlitrHkSNHAACDBw9WmscPP/yAe/fuwdbWFsuWLZOCciCzlX3x4sVwdHREREQEvvvuuxzXlYiIiIiMl1EG5qGhodi2bRsAoG/fvkpbwytUqAAfHx8AwOzZs5GWlqZTGVZWVmjevDk8PDzUpnv48CGOHj2KkiVLon379tnWx8XFYfHixQCAjh07Ku3qUrRoUXTp0gUAsGLFCkRFRelUVyIiIiIyfkYZmG/fvh1ZPXB8fX1VpvPz8wMAREZGIjg4WKcySpYsieDgYAQFBalNt3LlSggh0K9fP5iZmWVbv3fvXiQmJmpd19TUVOzcuVOnuhIRERGR8TPKwPz48ePScs2aNVWmq1WrltJt9CUtLQ1r1qyBiYkJBg4cqDSNodSViIiIiAybUQbmISEhAAA7Ozs4ODioTFe2bFlpOS9mPNm9ezdevHgBPz8/lV1esur6fn3el9d1JSIiIiLDZnSBeXJyMl68eAEAcHFxUZtWfn14eLje6/Lrr78CUD3oU75cMzMzFCtWTGU6KysradRuXtSViIiIiAxb9k7RBi4uLk5atrKyUpu2SJEiSrfTh4iICBw5cgSurq747LPPVKbLKldTXYHM+sbGxuLdu3cQQkAmk6lM+/4NiSwtLXWeEpKIiIiIDIfRtZhnDaQEAAsLC7Vp5dcnJCTotR4rV65ERkaGykGfWbLqq6mu8mkyMjKQnJysNm3ZsmXh4OAgPX788Ucdak9EREREhsboWszlW8FTUlLUppVfb21trbc6yA/6HDBggNq0RYoUQXx8vMa6Av/V18TERGPr9+PHjxUmrGdrOREREZFxM7rA3M7OTlpOSkpSm1a+dV1+u9zas2cPnj17htatW2uc59zOzg7x8fEa6wr8V19bW1u13VgAwN7ennf+JCIiIvqAGF1XFktLS5QsWRIA8PLlS7Vp5ddrCqB1oc2gz/fLTUtLw5s3b1SmS0pKkvqN67OuRERERGQcjC4wBwAvLy8AmQMrY2JiVKZ78uSJtFy9enW9lB0REYHDhw/D1dUV7dq105g+q65AZvcTVfKirkRERERkPIwyMG/ZsqW0fO3aNZXprly5onSb3Fi1ahUyMjLQv39/tYM+lZWb33UlIiIiIuNhlIF5ly5dpD7Yx44dU5nu6NGjAAAnJye0aNEi1+Wmp6drPegzS7t27aQBq9rU1dzcHB06dMh1XYmIiIjIuBhlYF6pUiV07doVALBhwwalM548ePBAurX9uHHjsrVuh4SEwNPTE2XKlMGpU6e0Knfv3r14+vQp/P394e7urtU2dnZ2GD58OABg586deP36dbY0MTEx2L59OwBg0KBBcHZ21ipvIiIiIvpwGGVgDgBz586Fs7MzwsPDMXHiRIV1ycnJGDRoENLT0+Ht7Y1hw4Zl237mzJkIDQ3F06dPMX78eK3KzBr0OWjQIJ3qOnHiRHh6eiIuLg5DhgxBRkaGtE4IgeHDhyM6Ohru7u6YNm2aTnkTERER0YfB6KZLzOLm5oY9e/agU6dOmD9/PkJCQtC+fXskJiZi3bp1uHnzJmrWrIndu3crvevm+8GxJo8fP8bBgwdRqlQprQZ9ynNwcMC+ffvQtm1bbNu2DY8ePUKPHj0gk8mwdetWnDlzBuXKlcOePXvg5OSkU95ERERE9GEw2sAcAOrXr48bN25g4cKF2LFjB8aOHQtzc3N4enpi4cKFGDJkiMo7bn777be4cuUKEhMTMXv2bI1lZQ361HSnT1UqVqyIK1euYMmSJdiyZQsmT54MAChfvjy+//57jBgxgvOSExERERViMqFNczEZjNjYWDg4OCAmJoaBPBEREZEBymm8ZrR9zImIiIiIPiQMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIADAwJyIiIiIyAAzMiYiIiIgMAANzIiIiIiIDwMCciIiIiMgAMDAnIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIyAAwMCciIiIiMgAMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIADAwJyIiIiIyAAzMiYiIiIgMAANzIiIiIiIDwMCciIiIiMgAMDAnIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIyAAwMCciIiIiMgAMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIADAwJyIiIiIyAAzMiYiIiIgMAANzIiIiIiIDwMCciIiIiMgAMDAnIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIDEpCSho8xu+Dx/h9SEhJK+jq5BsG5kREREREBsCsoCtARERERARAah1PSEmXe+6/ZWuLDzt0/bBfHREREREZjWpTDmV7rs6Mo9Jy+Ky2+VmdfMeuLEREREREBoAt5kRERERkEG5P9weQ2X0lq6X80iRfWFuYFmS18g0DcyIiIiIyCMr6kFtbmH7wfcuzsCsLEREREZEBKBxfP4iIiIjIaFhbmH3wAz2VYYs5EREREZEBYGBORERERGQAGJgTERERERkABuZERERERAaAgTkRERERkQFgYE5EREREZAAYmBMRERERGQAG5kREREREBoCBORERERGRAWBgTkRERERkABiYExEREREZAAbmhVhycjKmTZuG5OTkgq5KocV9UPC4Dwoe90HB4z4wDNwPBa+g94FMCCEKpGTKkdjYWDg4OCAmJgb29vYGkxflDPdBweM+KHjcBwWP+8AwcD8UPH3tg5zmwxZzIiIiIiIDwMCciIiIiMgAmBV0BUg3WT2PYmNjc51XVh76yItyhvug4HEfFDzug4LHfWAYuB8Knr72Qdb2uvYYZx9zI/PkyROULVu2oKtBRERERBo8fvwYZcqU0To9A3Mjk5GRgWfPnsHOzg4ymaygq0NERERE7xFCIC4uDqVKlYKJifY9xxmYExEREREZAA7+JCIiIiIyAAzMiYiIiIgMAANzIxYVFYXJkyfDy8sLtra2KFasGBo2bIiff/4ZKSkpeitn//79aN++PUqXLg0rKyuUK1cOX3zxBa5cuaK3MoxZXu6H4OBgyGQyrR7z5s3T0ysyPkIILFmyBLa2tpDJZAgODtZ7GTwPNMur/cDzQL2oqCgsW7YMHTt2hLu7O6ysrGBtbY1y5crh888/x549e3SeGUIdngvZ5cc+4Hmg3tu3b7Fp0yb069cPtWrVgqOjI8zMzODo6Ii6detiwoQJePTokd7Ky7PzQJBROn/+vHB1dRUAhJ+fn1iyZImYO3eu8PLyEgBErVq1xNOnT3NVRnp6uhg4cKAAIIoVKybGjx8vVqxYIQYOHCgsLCyEmZmZWLRokZ5ekXHK6/1w4sQJAUCrx9y5c/X4yoxHWFiYaNasmcJ7ceLECb3lz/NAO3m5H3geqDZ69GhhZWUlAAhnZ2cxatQosXTpUrFkyRIREBAgTExMBADRsmVL8fr161yVxXNBufzaBzwPVDtz5oywtLQUAIRMJhOdO3cWs2fPFsuWLROjR48Wzs7OAoCwtrYWW7ZsyVVZeX0eMDA3QhEREdJBNmrUKIV1SUlJwsfHRwAQ3t7eIikpKcfljBs3TgAQTk5OIjQ0VGHdgQMHhImJiZDJZGLr1q05LsOY5cd+yLoQr1u3Tty5c0ftI7cfusYmIyNDLF68WNjY2Ah7e3vRoEGDPAnMeR6olx/7geeBai4uLgKAaN68uXj79m229Xv27BGmpqYCgGjUqJFIT0/PcVk8F5TLr33A80C1AwcOCADC1NRUHD58ONv66OhoUaNGDQFAWFhYiNu3b+e4rLw+DxiYG6Fu3boJAMLNzU1pwBcWFiZdBObNm5ejMkJCQqRv+cuWLVOaJjAwUAAQLi4u4t27dzkqx5jlx37IuhDrM9D8UEydOlUAEP7+/uLRo0fS//p8v3geaJYf+4HngWouLi7CzMxMREREqEwzePBgaZ/8/vvvOSqH54Jq+bUPeB6olhWY9+/fX2WagwcPSvvgf//7X47KyY/zgH3MjUxoaCi2bdsGAOjbty8sLS2zpalQoQJ8fHwAALNnz0ZaWprO5fz444/IyMhAkSJF0KtXL6VpBg4cCAB4+fIlVq1apXMZxiy/9gOpJoTAqlWrcPDgwTy76RbPA83yYz+QejVr1oSbm5vK9QEBAdLynj17clQGzwX18mMfkGqOjo6oX78+unTpojKNt7e3tHznzp0clZMf5wEDcyOzfft2aQCJr6+vynR+fn4AgMjISJ0HYCUnJ0sXjvr168POzk5puoYNG8LW1hYApCC1sMiP/UDqTZs2Df3798+z/HkeaCev9wOp9/vvv+O3335Tm8bd3V1azsngN54L6uXHPiD1GjRogH/++QetW7dWmcba2lpaVtaYpkl+nQcMzI3M8ePHpeWaNWuqTFerVi2l22jj0qVLiI2N1ViGiYkJPvroIwDAuXPnkJiYqFM5xiw/9oMqKSkpheq9ViWv73zL80A7BXUHYp4HmXx8fKTjT5W3b99KyzY2NjqXwXNBvfzYB6rwPNDexYsXpeWWLVvqvH1+nQcMzI1MSEgIAMDOzg4ODg4q08n/pHzr1q0clfF+PurKycjIwL///qtTOcYsP/aDvLNnz6JDhw4oVaqUNA2Xo6Mj2rZtix07duh1KjTKxPPA8PA8yJmHDx9Ky82aNdN5e54LuZfbfSCP54HukpKSMHHiRABAjRo1MGDAAJ3zyK/zgIG5EUlOTsaLFy8AAC4uLmrTyq8PDw/XqRz59HlZjrHKr/0g79tvv8XTp08xfvx47NmzB7///js6deqEQ4cOoXPnzmjfvj3i4uJynD9lx/PA8PA8yJkdO3YAAKysrBAUFKTz9jwXci+3+0AezwPNkpOT8fLlS9y+fRurVq2Ct7c3zp49i27duuHvv/9GkSJFdM4zv84DM51SU4GSP9GsrKzUppU/6HQ9QfOrHGNVEO/PiBEjsGDBApiY/Pddunv37ujevTvatWuHvXv3omfPnhxUpEc8DwwPzwPdvXr1Crt27QIAfPPNNyhVqpTOefBcyB197AN5PA80+/333/HFF19I/7u5uWHTpk3o0aNHjrvf5dd5wBZzIyLfT8nCwkJtWvn1CQkJBlmOscrP96dBgwYIDw/HwoULFS7CWfz9/fHll18CAPbu3Std/Cn3eB4YDp4HOTdmzBgkJSWhdu3amDRpUo7y4LmQO/rYBwDPA134+/vjyJEj2LlzJ+bOnYvixYujV69e8PT0xP79+3OUZ36dBwzMjYj8NzBNt3qXXy8/EtmQyjFW+fn+WFlZwd3dXe03fPkZMVavXq1zGaQczwPDwfMgZzZu3Ij169ejRIkS+PPPP3M0EwXAcyE39LUPAJ4HunB1dYWvry86dOiAb775BpcvX8aYMWMQFhaGdu3aYd26dTrnmV/nAQNzIyI/NU9SUpLatPLf7FRN6VPQ5RgrQ3t/atSoIV3sz549mydlFEaGtp9JPZ4Hik6dOoWBAwfC3t4e+/fvh4eHR47z4rmQM/rcB9rieaCcTCbD7NmzUbt2bQghMGTIEGmsmLby6zxgYG5ELC0tUbJkSQCZE9erI79e14uBfPq8LMdY5dd+0JapqSmKFSsGAHj9+jVvZKQnPA+MC8+D/1y4cAGfffYZLCwscOjQIYUbq+QEzwXd6XsfaIvngWoymUy6KVBiYiJ+//13nbbPr/OAgbmR8fLyApA5mCAmJkZluidPnkjL1atXz1EZAPD48WO1abPKMTExQZUqVXQqx5jlx37QRUZGBoDMC4+yvoekO54HxofnAXD58mX4+/tDCIFDhw6hQYMGuc6T54Ju8mIf6ILngWqVK1eWlm/evKnTtvl1HnCPGRn5SfGvXbumMt2VK1eUbqONOnXqSD+9qCsjIyMD169fB5B5p6ucTD9krPJjP8TExGDGjBk4efKk2nSpqal48+YNAKBEiRK8EOsJzwPDwPNAe1evXoWfnx/S0tJw8OBBvQWEPBe0l1f7gOeBegcOHND43gCZvyhk0fXXhPw6DwrHHvuAdOnSRRr4cezYMZXpjh49CgBwcnJCixYtdCrD0tIS7du3BwCcP38e7969U5run3/+kdZ17dpVpzKMXX7sh+joaEyePFnjz22XL19GamoqAKBJkyY6lUGq8TwwDDwPtHPjxg34+fkhJSUFBw4cQKNGjbKl+e6771CnTh2d8+a5oJ283Ac8D9QbMmQIhg4dqjFdWFiYtOzm5qZTGfl2HggyOt26dRMAhIeHh0hOTs62/v79+8LU1FQAEHPnzs22/ubNm6JSpUqidOnS4uTJk0rLuHnzpjAxMREAxIoVK5Sm+eKLLwQA4eLiIt69e5e7F2WE8no/PHz4UAAQ5cqVE2lpaSrr0bdvXwFAABCHDx/O3YsyYlOnTpXehxMnTmhMz/Mgb+h7P/A80OzmzZvCyclJWFtbqzyWhRAiMDBQKPvY57mQe3m9D3geqOfu7i5MTEzEw4cPVabJyMgQdevWld6ff/75R2G9oZwHDMyNUEREhHB2dhYAxOjRoxXWJSUliVatWgkAwtvbWyQmJmbbvnv37tKB2bBhQ5XljBs3TgAQzs7O4v79+wrrDh06JB2cW7du1c8LMzJ5vR+yLsQAxP/+9z+RkZGRLc3atWuFTCYTAESPHj309+KMkK4BIc+DvKHv/cDzQL1bt26JEiVKCABiypQp4sSJEyof/v7+SoNCngu5kx/7gOeBeu7u7gKAaNKkiXj+/Hm29enp6WLkyJHSe6js/TGU84B3/jRCbm5u2LNnDzp16oT58+cjJCQE7du3R2JiItatW4ebN2+iZs2a2L17t9K7U2UNDAEAIYTKcn744Qe8fv0aq1atQr169TB48GB4eHjg8uXLWLNmDUxMTPDTTz8Vyp8sgbzfD7a2tqhQoQLu37+Pn376CcePH0dAQADKlCmD6OhoHDhwAEeOHAEABAUFYdmyZXn3Yg3Uxo0bpeUbN25Iy0eOHJEG37i4uMDPzy/btjwP9Ccv9wPPA9WSkpLQqlUrvHr1CgAwffp0TJ8+Xed8eC7kXH7tA54H6n388ceIiIjA6dOnUaFCBXTv3h1VqlRB8eLF8ejRI2zduhV37twBAPTt2xe//vprtjwM5jzIUThPBiEyMlJ8++23olq1asLGxkY4OjqKevXqiYULFyrtWpHl+vXromLFimp/rpG3b98+0a5dO1GyZElhaWkp3N3dRd++fcXly5f1+XKMVl7uh4yMDHHs2DExatQo0aBBA1G8eHFhZmYmbG1tReXKlcWAAQPEuXPn8uqlGTz8f+uGukfz5s2VbsvzQH/yej/wPFAuOjpaq/f+/cf7eC7kXH7uA54H6t28eVNMnz5d+Pn5ibJly4oiRYoIMzMzUbRoUVG7dm0xbNgwceHCBZXbG8p5IBNCzdcCIiIiIiLKF5yVhYiIiIjIADAwJyIiIiIyAAzMiYiIiIgMAANzIiIiIiIDwMCciIiIiMgAMDAnIiIiIjIADMyJiIiIiAwAA3MiIiIiIgPAwJyIiIiIyAAwMCciIiIiMgAMzImIiIiIDAADcyIiIiIiA8DAnIiIiIjIADAwJyKiXAkKCoJMJsv2aN26tVbbnzp1CmPGjEG9evVQunRpWFpawsbGBmXKlEGLFi0wbNgwbN26FZGRkXqtd3BwsNJ6Zz3Cw8NVbjtt2jSl20ybNg0AUKVKFbXriYiUMSvoChAR0Ydjw4YN0nKpUqXUpr169SpGjhyJv//+G8WKFcOnn36Krl27wsnJCYmJiQgLC8P+/ftx8uRJLF26FKampmjWrBl++eUXVKlSJdd1rVq1KjZs2IDXr19j1KhRAABzc3P8+uuvMDMzg7Ozs8ptO3fujIoVK+LSpUtYtGgR+vXrBx8fH3z00UcAgLlz5yImJgYAEBUVha+//jrX9SWiD59MCCEKuhJERGS8goKCsG7dOgCAth8p27ZtQ2BgIBITEzFq1Ch8//33sLW1VZp2w4YNGDRoEJKSkgAAe/bsQbt27fRT+f/38ccf48aNGwCAvXv3om3btlptFxQUhA0bNuDx48cqv4iEh4ejXLlyAICpU6ey1ZyIVGJXFiIiylfBwcHo0aMHEhMTMWXKFCxYsEBlUA4Affr0UWiJzwt9+vSRlrUtKyEhAX/++Sd8fX01/jpARKQNBuZERJRvYmNj8fnnnyM9PR1eXl6YMmWKVtt16dIFzZs3z7N69erVC6ampgCAXbt2Sd1Q1Pnrr7/w7t07BAYG5lm9iKhwYWBORGQkXr58KQ0iXLFiBWJjYzFz5kw0btwYzs7OsLCwgJubG4YMGYIXL14UdHWVWrJkCV69egUAGDlypBQMa6NXr155VS24urrC19cXAJCUlIRt27Zp3Gb9+vWws7NDx44d86xeRFS4MDAnIjIS165dk5ZlMhkqVaqESZMm4ezZs4iKikJqaioeP36M5cuXo379+nj27FnBVVaF5cuXS8udOnXSadvevXvjzp078PHxUZnm3bt3mDVrFurXr4+iRYvC0tISpUuXRocOHbBlyxZkZGSo3Fa+O8v69evV1uXZs2c4duwYunbtCmtra51eBxGRKgzMiYiMhHxg/s033+DVq1fo2rUrdu3ahcuXL2PLli3SrCCPHj0yuJlAQkND8fjxYwCAu7s7ihcvrtP2RYoUQZUqVWBjY6N0/ZUrV1C5cmVMmDAB5ubmmDJlCn755Rf06tULZ86cQffu3eHr64vo6Gil23fq1Al2dnYAgNOnT+Phw4cq67Jx40ZkZGSgb9++Or0GIiJ1GJgTERmJ69evS8uJiYnYunUrtm7divbt26N27dro1q0bTp8+DRcXFwCZfaDfvn1bQLXN7vLly9Kyp6enXvMODw+Hr68vnj17hlGjRuH06dP4+uuv0b9/f8yZMwc3b96Eh4cHTpw4gZ49eyqdPcba2hoBAQEAMmeXUTcIdP369fDw8ECzZs30+jqIqHBjYE5EZCTkW8znzJmDrl27ZktjZ2eHYcOGAQDS0tJw9erV/KqeRvI3CLK3t9dr3kOHDkV0dDTKlCmDOXPmZFvv6uqKH3/8EQBw8OBBHD58WGk+2szOcvnyZdy6dQt9+vSBTCbTQ+2JiDIxMCciMgJJSUm4d+8eAKBatWoYMWKEyrReXl7SclRUVJ7XTVuxsbHScpEiRTSmj4+PR1RUlNKHvNDQUOzfvx8A0LVrV5ibmyvNr02bNtLyxo0blabx8fGBm5sbACAsLAxnz57Nliar/zm7sRCRvjEwJyIyAjdv3kR6ejoA4Msvv1Q7m0nRokWlZWtrawgh4ODgoPb28/IPU1NTvHv3Tu+vQb6VPDExUWP6cePGwdnZWelD3tGjR6XlSpUqqQzmU1NTpf7p58+fV1qmTCZTmP3l/VbztLQ0/P7772jUqBEqVqyo+UUTEenArKArQEREmsn3L2/fvr3atPJTJbq4uODdu3fZBoI+e/YMK1euRPny5RW6bwCZAbS6G/7klHxArU3f9+HDhytMRTh69Gjp7pzywsLCpOWvvvoKX331lca81U0n2adPH6nby5YtW7Bw4UJYWloCAA4cOIDIyEjMmDFDYxlERLpiYE5EZASy+pc7OTnB3d1dbdp//vkHAGBpaYmqVavCxsYm223gN2/ejJUrV8Lf3z/fbhHv7e0tLf/7778a01euXBmVK1eW/pf/JUCefBeZ7777Do0aNdKYt7q+4VWrVkWdOnVw6dIlREdHY+/evdKg0PXr18PS0hLdunXTWAYRka4YmBMRGYGsFvOsGVdUEUJg7969AIBmzZqpnVoQAGrXrq3HWqpXqVIluLm54dGjR3j69CmeP38OV1fXXOebNcVhVhlZNwrKjb59++LSpUsAMoPxgIAAvH37Fnv27EGHDh3g6OiY6zKIiN7HPuZERAZOCCF14UhISFCb9siRI1LXDnW3is+arSU/A3Mgs398lq1bt+olz0qVKknLEREResmzR48e0iDSAwcOICoqClu2bEFycjIHfRJRnmFgTkRk4B4+fCh113j8+LHKgZkpKSkYM2YMgMxuID169FCZ59WrV2FhYaEwg0t+GDp0KEqUKAEAWLRokVaDQDWRbyFXNouKvA0bNsDMzEztlxYgs8tQ69atAQCpqan4/fffsX79eri4uMDf3z/XdSYiUoaBORGRgZMf+JmWlob58+dnS5OcnIygoCDcuHEDpqamWLZsGUxMlF/iw8PDER0djerVq8PCwiLP6q2Mvb09tmzZAlNTUzx8+BD/+9//cp1npUqV8OmnnwIADh8+LN1d9H1CCPz6669IT09Hz549NeYr3zL+008/4ezZs+jZsyfMzNgLlIjyBgNzIiIDlzXws1ixYihfvjymTZuGL7/8EgcPHsT58+exYsUKeHt74/fffwcAzJgxAz4+PirzK4j+5fJatGiBzZs3w8rKCsuXL0dgYCBev36tMn1ERAS+/PJLnD59WmWaX375BcWKFUNycjL69OmT7VcFIQQmT56M06dPw9/fX6tW788++0zqSx4eHg5AffcgIqLc4td+IiIDl9Vi/tFHH2HixIn47LPPsGLFCqxYsUIhnZmZGX744QepO4sqBR2YA0C3bt1QoUIFDB8+HOvXr8eOHTvQpk0b1KlTB05OTkhMTERERMT/tXf3Ko2EURjHnxAMKOJYmMYmOFUYMQkEwQ9sBhIbERtLU1qHdF5B7kDExjuIaGU1GMSxkXQavIE4hZBIsAuMxZLsorsb2CQ7b+D/q4YpzhymenI480a+7+v+/l5hGGpmZkaHh4c6OTn5Vi+VSsnzPO3v76ter8txHJVKJa2srOj19VVXV1d6fHzU1tbW4AfMMP3TV87PzyX9eP/ZbHas7wEAfkUwBwDD9SfmmUxGhUJBd3d3qlar8n1fnU5Hy8vLKhaLKpfLSqfTQ+tF9eHnV/l8Xr7vy/M8XV9fq16v6/b2Vu12W4lEQpZlKZVK6fj4WDs7O9rb25NlWX+sl81m1Ww2dXZ2plqtptPTU3W7XS0uLiqXy+ni4kJHR0d//XOmr0ql0iCY89EngEkjmAOAwd7f3wcnjaytrUmS1tfXVavV/rlmo9FQPB43Zvrruq5c1x1Lrbm5OVUqlbHsrkvS9va2wjAcSy0AGIYdcwAwWH9aLv0M5qMIgkBBECidTmt2dnbkegCA8WFiDgAG6++Xx2Ixra6ujlxv0vvlb29vg+tEIqGFhYWJPMd0nU5HvV5PktRutyPuBsC0IJgDgMH6E3PbtjU/Pz9yvUnvlyeTycH17u6ubm5uJvIc021sbOjl5SXqNgBMmVjI8hwAGCufz6vRaOjg4ECXl5dRt/Nbz8/ParVa3+4vLS0pl8v9/4YM8PDwoI+Pj2/3bduWbdsRdARgGjAxBwBD9Xo9PT09SRrPfvmkOI4jx3GibsMom5ubUbcAYAoxMQcAAAAMwKksAAAAgAEI5gAAAIABCOYAAACAAQjmAAAAgAEI5gAAAIABCOYAAACAAQjmAAAAgAEI5gAAAIABCOYAAACAAQjmAAAAgAE+AcxUGLI592bFAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "<Figure size 800x600 with 1 Axes>"
       ]
@@ -700,6 +1039,22 @@
    "source": [
     "evaluated_events, reconstructed_particles, particles, matched_tracks, tracks = evaluate_candidates(CONFIG)"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "00"
+   ]
   }
  ],
  "metadata": {
diff --git a/LHCb_Pipeline/testing.py b/LHCb_Pipeline/testing.py
index 39a0430b..5b0934c0 100644
--- a/LHCb_Pipeline/testing.py
+++ b/LHCb_Pipeline/testing.py
@@ -6,6 +6,9 @@ from Scripts.Step_3_Train_GNN import train as train_gnn
 from Scripts.Step_4_Run_GNN import train as run_gnn_inference
 from Scripts.Step_5_Build_Track_Candidates import train as build_track_candidates
 from Scripts.Step_6_Evaluate_Reconstruction import evaluate as evaluate_candidates
+from Scripts.Step_6_Evaluate_Reconstruction_MonteTracko import (
+    evaluate as evaluate_candidates_montetracko
+)
 
 import sys
 from Scripts.utils.convenience_utils import get_example_data, plot_true_graph, get_training_metrics, plot_training_metrics, plot_neighbor_performance, plot_predicted_graph, plot_track_lengths, plot_edge_performance, plot_graph_sizes
@@ -39,3 +42,4 @@ run_gnn_inference(CONFIG)
 build_track_candidates(CONFIG)
 
 evaluated_events, reconstructed_particles, particles, matched_tracks, tracks = evaluate_candidates(CONFIG)
+_ = evaluate_candidates_montetracko(CONFIG)
diff --git a/gpu_environment.yaml b/gpu_environment.yaml
index 892c82e4..91cd24ff 100644
--- a/gpu_environment.yaml
+++ b/gpu_environment.yaml
@@ -25,4 +25,6 @@ dependencies:
     - selenium
     - geckodriver
     - firefox
-    
+    - ipywidgets
+    - tabulate
+    - black
diff --git a/installation.txt b/installation.txt
index a9c1fd11..7681f617 100644
--- a/installation.txt
+++ b/installation.txt
@@ -1,5 +1,11 @@
 - Install dependencies
 conda env create -f gpu_environment.yaml
 
+jupyter nbextension enable --py widgetsnbextension  # activate jupyter widgets
+
 - Export
-conda list --export > package-list.txt
\ No newline at end of file
+conda list --export > package-list.txt
+
+- Submodules
+git submodule init
+git submodule update
\ No newline at end of file
diff --git a/montetracko-setup.sh b/montetracko-setup.sh
deleted file mode 100755
index b61baa3f..00000000
--- a/montetracko-setup.sh
+++ /dev/null
@@ -1,32 +0,0 @@
-# Some instruction to be able to use MonteTracko
-
-# 1. Initialise the MonteTracko git sub-module
-# git submodule init
-# git submodule update
-
-# # 2. Install new required packages
-# conda activate ext4velo # don't forget to activate your environment!
-# mamba install -c conda-forge ipywidgets tabular black
-# jupyter nbextension enable --py widgetsnbextension  # activate jupyter widgets
-
-# # 3. Add MonteTracko to your PYTHONPATH
-currentdir=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
-montetracko_dir="$currentdir/montetracko"
-
-cd $CONDA_PREFIX
-mkdir -p ./etc/conda/activate.d
-mkdir -p ./etc/conda/deactivate.d
-touch ./etc/conda/activate.d/env_vars.sh
-touch ./etc/conda/deactivate.d/env_vars.sh
-
-cat <<EOF > ./etc/conda/activate.d/env_vars.sh
-#!/bin/sh
-
-export PYTHONPATH="$PYTHONPATH:$montetracko_dir"
-EOF
-
-cat <<EOF > ./etc/conda/deactivate.d/env_vars.sh
-#!/bin/sh
-
-unset PYTHONPATH
-EOF
\ No newline at end of file
-- 
GitLab


From 8364e1b12c4947baae1a84f04d9c1e8e97778afd Mon Sep 17 00:00:00 2001
From: Fotis Giasemis <Fotis.Giasemis@cern.ch>
Date: Fri, 24 Mar 2023 17:56:22 +0100
Subject: [PATCH 25/30] Prepare for merge with main

---
 LHCb_Pipeline/testing.py | 4 +++-
 1 file changed, 3 insertions(+), 1 deletion(-)

diff --git a/LHCb_Pipeline/testing.py b/LHCb_Pipeline/testing.py
index 5b0934c0..9799c168 100644
--- a/LHCb_Pipeline/testing.py
+++ b/LHCb_Pipeline/testing.py
@@ -1,3 +1,6 @@
+import sys
+sys.path.append('../montetracko')
+
 from Scripts.utils.convenience_utils import *
 from Scripts.utils.plotting_utils import plot_observable_performance
 from Scripts.Step_1_Train_Metric_Learning import train as train_metric_learning
@@ -10,7 +13,6 @@ from Scripts.Step_6_Evaluate_Reconstruction_MonteTracko import (
     evaluate as evaluate_candidates_montetracko
 )
 
-import sys
 from Scripts.utils.convenience_utils import get_example_data, plot_true_graph, get_training_metrics, plot_training_metrics, plot_neighbor_performance, plot_predicted_graph, plot_track_lengths, plot_edge_performance, plot_graph_sizes
 import yaml
 
-- 
GitLab


From e3623877f6545011ac244a5774f07b213b6a9916 Mon Sep 17 00:00:00 2001
From: Fotis Giasemis <Fotis.Giasemis@cern.ch>
Date: Fri, 24 Mar 2023 18:07:09 +0100
Subject: [PATCH 26/30] Import montetracko correctly

---
 .gitlab-ci.yml | 2 ++
 1 file changed, 2 insertions(+)

diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index 6f9dd393..fa70209b 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -6,6 +6,8 @@ stages:
 build-job:
   stage: build
   script:
+      - git submodule init
+      - git submodule update
       - eval "$(micromamba shell hook --shell=bash)"
       - micromamba env create -f gpu_environment.yaml
       - micromamba activate etx4velo
-- 
GitLab


From 203bf158c825e71964825b691afcdaf4f03317cd Mon Sep 17 00:00:00 2001
From: Fotis Giasemis <Fotis.Giasemis@cern.ch>
Date: Fri, 24 Mar 2023 18:11:23 +0100
Subject: [PATCH 27/30] Import montetracko correctly

---
 .gitlab-ci.yml | 5 +++--
 1 file changed, 3 insertions(+), 2 deletions(-)

diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index fa70209b..207fedd6 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -3,11 +3,12 @@ image: mambaorg/micromamba:git-bd1178c-focal-cuda-11.7.1
 stages:
   - build
 
+before_script:
+    - git submodule update --init
+
 build-job:
   stage: build
   script:
-      - git submodule init
-      - git submodule update
       - eval "$(micromamba shell hook --shell=bash)"
       - micromamba env create -f gpu_environment.yaml
       - micromamba activate etx4velo
-- 
GitLab


From be6a909af40413292794c4f11f9104608b934b8c Mon Sep 17 00:00:00 2001
From: Fotis Giasemis <Fotis.Giasemis@cern.ch>
Date: Fri, 24 Mar 2023 18:14:58 +0100
Subject: [PATCH 28/30] Import montetracko correctly

---
 .gitlab-ci.yml | 1 +
 1 file changed, 1 insertion(+)

diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index 207fedd6..aca4ad19 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -4,6 +4,7 @@ stages:
   - build
 
 before_script:
+    - apt-get update && apt-get install -y git
     - git submodule update --init
 
 build-job:
-- 
GitLab


From 99d31ff182d948c3e4871dd1ea4cb59c26611504 Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 18:18:51 +0100
Subject: [PATCH 29/30] use relative path for submodule

---
 .gitmodules | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/.gitmodules b/.gitmodules
index cf5c44ea..65ce140b 100644
--- a/.gitmodules
+++ b/.gitmodules
@@ -1,3 +1,3 @@
 [submodule "montetracko"]
 	path = montetracko
-	url = ssh://git@gitlab.cern.ch:7999/gdl4hep/montetracko.git
+	url = ../montetracko.git
-- 
GitLab


From 544f43436b7ff5750a577cbbd8294e63413e2a5b Mon Sep 17 00:00:00 2001
From: anthonyc <acorreia@lpnhe.in2p3.fr>
Date: Fri, 24 Mar 2023 18:19:29 +0100
Subject: [PATCH 30/30] use GIT_SUBMODULE_STRATEGY

---
 .gitlab-ci.yml | 5 ++---
 1 file changed, 2 insertions(+), 3 deletions(-)

diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index aca4ad19..6eac78fd 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -3,9 +3,8 @@ image: mambaorg/micromamba:git-bd1178c-focal-cuda-11.7.1
 stages:
   - build
 
-before_script:
-    - apt-get update && apt-get install -y git
-    - git submodule update --init
+variables:
+  GIT_SUBMODULE_STRATEGY: recursive
 
 build-job:
   stage: build
-- 
GitLab