
Analysis of the ROOT Persistence I/O Memory Footprint in
LHCb

Ivan Valenčík
ivan.valencik@cern.ch

Supervisor

Markus Frank
markus.frank@cern.ch

September 26, 2012

Abstract
A ROOT conversion service that provides persistence in the GAUDI framework has a number of opti-

mization parameters. LHCb produces smaller events with higher frequency than other LHC experiments,
thus optimization done for them is not always relevant. In order to measure performance of various set-
tings we introduce a new service and tools to analyze them. We explore the parameter space and based
on the gathered data we come to an optimization decision.

1 Introduction
The GAUDI data processing framework [1] used by the LHCb experiment uses ROOT I/O to persist data
resulting from particle collisions in the LHC collider. The ROOT I/O mechanism for event data offers var-
ious parameters, which have to be optimized depending on the structure of the data. This optimization has
substantial influence on both event data writing and reading for further analysis. Varying these parameters
affects memory usage, required processor time and the data file size. In this paper we present a performed
analysis of the parameter space with LHCb event data and tools developed to obtain the measurements.

The paper is structured as follows. Section 2 contains an overview of ROOT Conversion Service. In
section 3 we present a developed system resource usage monitoring service. In section 4 is described a
methodology of the measuring. In section 5 are obtained results and in section 6 we analyze them and
come to an optimization decision. In section 7 is given conclusion.

2 ROOT Conversion Service
Data persistence in GAUDI framework is provided by conversion services. The ROOT conversion service
allows persistence of event data to ROOT files. This service allows to modify multiple parameters and
hence to optimize the performance of the ROOT I/O mechanism. A basket size represents an initial amount
of memory given to the ROOT. This memory is reevaluated during the run after 10th processed event. The
default value is 40 MB. A splitting level indicates whether data of one event should be written to the disk
together or rather divided to more primitive parts. The default value is 99, e.g. do as much splitting as
possible. The tree branch buffer size sets the amount of memory used by one single branch in a ROOT tree.
The default value is 32 kB. These parameters can be set only when the tree is being written to the disk and
they are used implicitly by ROOT also when the data are read back.

1



3 ROOT Performance Monitor
When optimizing we are interested in the following features: memory usage, processor time, resulting
file size and the behavior in the presence of multiple streams. In order to measure these quantities we
developed a performance monitoring service that collects these data and persists them in a ROOT file. The
measurements are done always in the beginning of the event processing and one measurement is done in
the in stop and finalize methods of the service to get an idea about FSR.

The following observables are measured in every record:

• virtual memory size (vsize)

• resident set size (rss)

• processor time scheduled in user mode

• processor time scheduled in kernel mode

• elapsed time

• file sizes

The service can be added to any service using RootCnv for data persistence just by adding the python
module to the execution line, e.g. python ‘which gaudirun.py‘ stripping.py RootPerfMon.py.

4 Performance Test
In order to explore the whole parameter space we performed a sweep over the parameter space. To do
this we created a python module PerfTest that executes a number of copy and read jobs with various
parameters. A series of computations should be always run on one computer at once or in one batch job,
because various computers can differ significantly in their computational power. It has been observed that
it is not uncommon for some computers to require twice the time to finish the job.

In the test setup we were copying 10 000 events per stream and then reading back all copied events. In
comparison, a stripping job has 14 streams which are typically copying only fraction or a few percents of
the reconstructed data. When running the copy job with various fractions of the copied data we could see
that it is not necessary to copy all data to reach maximum memory usage, as it depends only marginally on
the fraction of the copied data.

The python module PerfTest should be executed with a help of provided bash script perftest.sh. The
usage of the module is described in its help which can be accessed by the command ./perftest.sh help.
In the module it is possible to choose the number of events, the number of output streams in one job, the
used basket size, the tree branch buffer size and the split level. The test can be run also only for reading or
copying.

5 Measurements
We performed a number of sweeps. In table 1 is depicted the memory usage before and after writing File
Summary Records (FSR), runtime and output file size. These values were observed in one specific job;
however the differences and trends were consistent in all executions of the sweeps. The values cannot be
averaged because of the different computers and their loads during the tests. In table 2 shows the same
measurements for 2 simultaneous streams. We executed these sweeps also for 5 and 10 streams to confirm
that the effects of adding 1 stream are the same. The obtained data confirmed this premise.

The table 3 provides a closer look of the behavior when using small a small value for the basket size
and the tree buffer size. Table 4 shows the memory usage and the time consumption of read jobs performed
in the sweep. While the memory usage is very consistent among the various measurements, the duration of
job varies a lot and it is not possible deduce a conclusion from the values shown in the table.

6 Results
Looking at the table 1 and 2 we can see that 1 stream costs more than 60 MB when current settings are
used, i.e. 40 MB basket size, 32 kB tree branch buffer and splitting is on. Another 40 MB are necessary

2



Table 1: Memory usage and runtime of 1 copying stream.

1 stream split level 0 99
buffer size 2 kB 32 kB 2 kB 32 kB

basket size
2 MB

vsize (MB) 660 660 662 681
+FSR (MB) 660 688 665 708

time (s) 373 395 790 773
file size (MB) 84.0 83.7 96.9 96.8

basket size
20 MB

vsize (MB) 687 685 687 702
+FSR (MB) 687 712 687 726

time (s) 322 486 384 405
file size (MB) 80.4 80.4 84.9 84.9

basket size
40 MB

vsize (MB) 709 714 709 727
+FSR (MB) 709 735 709 747

time (s) 342 343 401 400
file size (MB) 80.2 80.2 84.4 84.5

Table 2: Memory usage and runtime of 2 copying streams.

2 streams split level 0 99
buffer size 2 kB 32 kB 2 kB 32 kB

basket size
2 MB

vsize (MB) 678 678 682 703
+FSR (MB) 679 747 705 772

time (s) 546 608 1542 1480
file size (MB) 84.0 96.9 83.7 96.8

basket size
20 MB

vsize (MB) 731 727 735 746
+FSR (MB) 731 796 746 811

time (s) 458 430 569 570
file size (MB) 80.4 84.9 80.4 84.9

basket size
40 MB

vsize (MB) 776 778 772 788
+FSR (MB) 776 842 791 850

time (s) 488 458 544 639
file size (MB) 80.2 84.4 80.2 84.5

Table 3: Memory usage and runtime of 1 copy stream with small settings.

1 stream split level 0 99
buffer size 1 kB 2 kB 4 kB 1 kB 2 kB 4 kB

basket size
1 MB

vsize (MB) 657 657 657 660 661 661
+FSR (MB) 657 657 657 660 665 684

time (s) 634 576 593 1705 1679 1539

basket size
2 MB

vsize (MB) 659 660 659 662 662 663
+FSR (MB) 659 660 659 662 664 683

time (s) 550 691 836 1032 1158 1181

basket size
4 MB

vsize (MB) 663 663 664 664 665 666
+FSR (MB) 663 663 664 664 667 686

time (s) 653 746 763 987 1008 944

3



Table 4: Memory Usage and Runtime of 1 Copying Stream

1 stream split level 0 99
buffer size 2 kB 32 kB 2 kB 32 kB

basket size
2 MB

vsize (MB) 463 463 465 467
time (s) 23 27 28 30

basket size
20 MB

vsize (MB) 489 491 490 485
time (s) 25 36 27 24

basket size
40 MB

vsize (MB) 507 510 513 507
time (s) 20 23 26 28

to write FSR with these settings. This configuration is marked with a blue triangle in figure 6. This figure
depicts memory and processor time required by various configurations of parameters tested in the sweep.

The cost of 1 stream is only about 19 MB when we use low basket size, low tree branch buffer and
no splitting. This configuration is depicted in figure 6 in the green circle. Another advantage of this
configuration is that the increase of memory for writing FSR is negligible.

This difference gives us the potential to save 40 MB per stream even without writing FSR. Despite big
decrease in needed memory processing time and output file sizes are slightly smaller than those obtained
with the current settings. The current settings are very bad for writing FSRs, which consists only of one
record in the tree, thus allocating a lot of memory in ROOT, which is absolutely unnecessary.

We can see that splitting branches requires a lot of memory, processing time and results in larger output
files. Giving ROOT more memory by increasing the basket size does not decrease the processing time
significantly and it makes output files a little smaller. The possible gain of memory can be explained by the
fact that LHCb produces smaller events with much higher frequency than other LHC experiments, thus the
optimization done in ROOT may not always be relevant.

Figure 1: A relation between memory usage and processor time. The point in the blue square represents the current
settings and the points in the green circle represent the ideal settings.

We can also see that switching to the new settings has a positive impact on the memory needed for
reading and no obvious or dramatical change of the read time. It is very clear that for reading the basket

4



size has the biggest effect on the memory needed. Big basket sizes are unnecessary.
A significant reduction in memory usage with no drawbacks in processor time or file size in copying

and reading suggests that the parameters should be changed. In table 3 we explore parameter space with
low values of basket and tree branch buffer sizes. We can see there that splitting in combination with low
basket size has a catastrophic effect on the runtime. Although a configuration with basket size of 1 MB
requires even less memory than the one with 2 MB, the best compromise in respect to runtime seems to be
a basket size around 2 MB. This value is best combined with a tree branch buffer size of 1 kB.

7 Conclusion
In this paper we explained optimization possibilities in ROOT conversion service and introduced a new
service for monitoring performance in applications using this service. We also observed real stripping jobs
and introduced a test environment that enables to do sweeps over the parameter space. The jobs executed
in these sweeps were simulating stripping and further analysis by copying and reading back event data in
ROOT files. The performed analysis of the memory footprint indicates a possible gain of 40 MB per output
stream without negative effects. This analysis has been done as a part of a Summer Student Programme
assignment.

References
[1] Frank M. et. al. Data persistency solution for lhcb. In Proceedings of CHEP 2000, 2000.

5


