
Red Hat Enterprise MRG 1.1

Realtime Tuning Guide
Advanced tuning procedures for the Realtime

component of Red Hat Enterprise MRG

Lana Brindley

Realtime Tuning Guide

Red Hat Enterprise MRG 1.1 Realtime Tuning Guide
Advanced tuning procedures for the Realtime component of Red
Hat Enterprise MRG
Edition 2

Author Lana Brindley lbrindle@redhat.com
Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version of the OPL is
presently available at http://www.opencontent.org/openpub/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588 Research Triangle Park, NC 27709 USA

This book contains advanced tuning procedures for the MRG Realtime component of the Red Hat
Enterprise MRG distributed computing platform. For installation instructions, see the MRG Realtime
Installation Guide.

mailto:lbrindle@redhat.com
http://www.opencontent.org/openpub/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions ... vi
1.2. Pull-quote Conventions .. vii
1.3. Notes and Warnings ... viii

2. We Need Feedback! ... viii

1. Before you start tuning your MRG Realtime system 1

2. General System Tuning 3
2.1. Using the Tuna Interface .. 3
2.2. Setting persistent tuning parameters ... 9
2.3. Interrupt and Process Binding ... 10
2.4. Filesystem determinism tips .. 14
2.5. gettimeofday speedup .. 15
2.6. Don't run extra stuff .. 16
2.7. Swapping and Out Of Memory Tips ... 17
2.8. Network determinism tips .. 18
2.9. syslog tuning tips ... 19
2.10. The PC Card Daemon .. 21
2.11. Reduce TCP performance spikes .. 21
2.12. Reducing the TCP delayed ack timeout ... 22

3. Realtime-Specific Tuning 23
3.1. Setting Scheduler Priorities ... 23
3.2. MRG Realtime Specific gettimeofday speedup .. 25
3.3. Using kdump and kexec with the MRG Realtime kernel ... 26
3.4. TSC timer synchronization on Opteron CPUs ... 30
3.5. Infiniband ... 31
3.6. Non-Uniform Memory Access .. 31
3.7. Using the ftrace Utility for Tracing Latencies ... 32
3.8. Latency Tracing Using trace-cmd ... 36
3.9. Using sched_nr_migrate to limit SCHED_OTHER processes. 38

4. Application Tuning and Deployment 39
4.1. Signal Processing in Realtime Applications .. 39
4.2. Using sched_yield and Other Synchronization Mechanisms 40
4.3. Mutex options .. 40
4.4. TCP_NODELAY and Small Buffer Writes ... 42
4.5. Setting Realtime Scheduler Priorities ... 43
4.6. Dynamic Libraries Loading .. 44

5. More Information 47
5.1. Reporting Bugs .. 47
5.2. Further Reading ... 48

A. Revision History 49

iv

v

Preface
Red Hat Enterprise MRG
This book contains basic installation and tuning information for the MRG Realtime component of Red
Hat Enterprise MRG. Red Hat Enterprise MRG is a high performance distributed computing platform
consisting of three components:

1. Messaging — Cross platform, high performance, reliable messaging using the Advanced Message
Queuing Protocol (AMQP) standard.

2. Realtime — Consistent low-latency and predictable response times for applications that require
microsecond latency.

3. Grid — Distributed High Throughput (HTC) and High Performance Computing (HPC).

All three components of Red Hat Enterprise MRG are designed to be used as part of the platform, but
can also be used separately.

MRG Realtime
Many industries and organizations need extremely high performance computing and may require
low and predictable latency, especially in the financial and telecommunications industries. Latency,
or response time, is defined as the time between an event and system response and is generally
measured in microseconds (μs). For most applications running under a Linux environment, basic
performance tuning can improve latency sufficiently. For those industries where latency not only
needs to be low, but also accountable and predictable, Red Hat have now developed a 'drop-in' kernel
replacement that provides this. MRG Realtime is distributed as part of Red Hat Enterprise MRG and
provides seamless integration with Red Hat Enterprise Linux 5.2. MRG Realtime offers clients the
opportunity to define, measure, configure and record latency times across their organization.

About The MRG Realtime Tuning Guide
This book is laid out in three main sections: General system tuning, which can be performed on a Red
Hat Enterprise Linux 5.2 kernel and MRG Realtime specific tuning, which should be performed on a
MRG Realtime kernel in addition to the standard Red Hat Enterprise Linux 5.2 tunes. The third section
is for developing and deploying your own MRG Realtime programs.

You will need to have the MRG Realtime kernel installed before you begin the tuning procedures in
this book. If you have not yet installed the MRG Realtime kernel, or need help with installation issues,
read the MRG Realtime Deployment Guide.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl-Alt-F1 to switch to the first virtual terminal. Press Ctrl-Alt-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Pull-quote Conventions

vii

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Preface

viii

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A Note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring Important boxes won't cause data loss but may cause irritation and frustration.

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product Red Hat Enterprise MRG.

When submitting a bug report, be sure to mention the manual's identifier: Realtime_Tuning_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Before you start tuning your MRG
Realtime system
MRG Realtime is designed to be used on well-tuned systems for applications with extremely high
determinism requirements. Kernel system tuning offers the vast majority of the improvement in
determinism. For example, in many workloads thorough system tuning improves consistency of results
by around 90%. This is why we typically recommend that customers first perform the Chapter 2,
General System Tuning of standard Red Hat Enterprise Linux before using MRG Realtime.

Things to remember while you are tuning your MRG Realtime kernel
1. Be Patient

Realtime tuning is an iterative process; you will almost never be able to tweak a few variables
and know that the change is the best that can be achieved. Be prepared to spend days or weeks
narrowing down the set of tunings that work best for your system.

Additionally, always make long test runs. Changing some tuning parameters then doing a five
minute test run is not a good validation of a set of tunes. Make the length of your test runs
adjustable and run them for longer than a few minutes. Try to narrow down to a few different
tuning sets with test runs of a few hours, then run those sets for many hours or days at a time, to
try and catch corner-cases of max latencies or resource exhaustion.

2. Be Accurate

Build a measurement mechanism into your application, so that you can accurately gauge how a
particular set of tuning changes affect the application's performance. Anecdotal evidence (e.g.
"The mouse moves more smoothly") is usually wrong and varies from person to person. Do hard
measurements and record them for later analysis.

3. Be Methodical

It is very tempting to make multiple changes to tuning variables between test runs, but doing so
means that you do not have a way to narrow down which tune affected your test results. Keep the
tuning changes between test runs as small as you can.

4. Be Conservative

It is also tempting to make large changes when tuning, but it is almost always better to make
incremental changes. You will find that working your way up from the lowest to highest priority
values will yield better results in the long run.

5. Be Smart

Use the tools you have available. The Tuna graphical tuning tool makes it easy to change
processor affinities for threads and interrupts, thread priorities and to isolate processors for
application use. The taskset and chrt command line utilities allow you to do most of what Tuna
does. If you run into performance problems, the ftrace facility in the trace kernel can help locate
latency issues.

6. Be Flexible

Chapter 1. Before you start tuning your MRG Realtime system

2

Rather than hard-coding values into your application, use external tools to change policy, priority
and affinity. This allows you to try many different combinations and simplifies your logic. Once you
have found some settings that give good results, you can either add them to your application, or
set up some startup logic to implement the settings when the application starts.

How Tuning Improves Performance
Most performance tuning is performed by manipulating processors (Central Processing Units or
CPUs). Processors are manipulated through:

Interrupts:
In software, an interrupt is an event that calls for a change in execution.

Interrupts are serviced by a set of processors. By adjusting the affinity setting of an interrupt we
can determine on which processor the interrupt will run.

Threads:
Threads provide programs with the ability to run two or more tasks simultaneously.

Threads, like interrupts, can be manipulated through the affinity setting, which determines on
which processor the thread will run.

It is also possible to set scheduling priority and scheduling policies to further control threads.

By manipulating interrupts and threads off and on to processors, you are able to indirectly manipulate
the processors. This gives you greater control over scheduling and priorities and, subsequently,
latency and determinism.

MRG Realtime Scheduling Policies
Linux uses three main scheduling policies:

SCHED_OTHER (sometimes called SCHED_NORMAL)
This is the default thread policy and has dynamic priority controlled by the kernel. The priority
is changed based on thread activity. Threads with this policy are considered to have a realtime
priority of 0 (zero).

SCHED_FIFO (First in, first out)
A realtime policy with a priority range of from 1 - 99, with 1 being the lowest and 99 the highest.
SCHED_FIFO threads always have a higher priority than SCHED_OTHER threads (for example, a
SCHED_FIFO thread with a priority of 1 will have a higher priority than anySCHED_OTHER thread).
Any thread created as a SCHED_OTHER thread has a fixed priority and will run until it is blocked or
preempted by a higher priority thread.

SCHED_RR (Round-Robin)
SCHED_RR is an optimization of SCHED_FIFO. Threads with the same priority have a quantum and
are round-robin scheduled amongst all equal priority SCHED_RR threads. This policy is rarely used.

Chapter 2.

3

General System Tuning
This section contains general tuning that can be performed on a standard Red Hat Enterprise Linux
installation. It is important that these are performed first, in order to better see the benefits of the MRG
Realtime kernel.

It is recommended that you read these sections first. They contain background information on how to
modify tuning parameters and will help you perform the other tasks in this book:
• Section 2.1, “Using the Tuna Interface”

• Section 2.2, “Setting persistent tuning parameters”

When are you ready to begin tuning, perform these steps first, as they will provide the greatest benefit:
• Section 2.3, “Interrupt and Process Binding”

• Section 2.4, “Filesystem determinism tips”

When you are ready to start some fine-tuning on your system, then try the other sections in this
chapter:
• Section 2.5, “gettimeofday speedup”

• Section 2.6, “Don't run extra stuff”

• Section 2.7, “Swapping and Out Of Memory Tips”

• Section 2.8, “Network determinism tips”

• Section 2.9, “syslog tuning tips”

• Section 2.10, “The PC Card Daemon”

• Disabling the pcscd Daemon

• Section 2.11, “Reduce TCP performance spikes”

• Section 2.12, “Reducing the TCP delayed ack timeout”

When you have completed all the tuning suggestions in this chapter, move on to Chapter 3, Realtime-
Specific Tuning

2.1. Using the Tuna Interface
Throughout this book, instructions are given for tuning the MRG Realtime kernel directly. The Tuna
interface is a tool that assists you with making changes. It has a graphical interface, or can be run
through the command shell.

Tuna can be used to change attributes of threads (scheduling policy, scheduler priority and processor
affinity) and interrupts (processor affinity). The tool is designed to be used on a running system, and
changes take place immediately. This allows any application-specific measurement tools to see and
analyze system performance immediately after the changes have been made.

Although changes made in Tuna take immediate effect, changes will not be persistent across reboots.
For making persistent changes, see Section 2.2, “Setting persistent tuning parameters”

Chapter 2. General System Tuning

4

Installing Tuna Using Yum
1. Install Tuna using the yum command.

yum install tuna

2. Although Tuna can be run as an unprivileged user, not all processes will be available for
configuration. For this reason, in most cases you will need to run Tuna as the root user:

tuna

Using Tuna from the shell prompt
1. Use the --help option to see all the available options. These are also listed at Table 2.1, “Tuna

Options”:

tuna --help
Usage: tuna [OPTIONS]
-h, --help Give this help list
-g, --gui Start the GUI
...[output truncated]...

2. Use the --show_threads command to view the current policies and priorities:

tuna --threads 7861 --show_threads
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 7861 FIFO 50 0xff 31251 15915 IRQ-4 serial

To change policy and priority information on threads, use the --priority=[POLICY]:RTPRIO
command:

tuna --threads 7861 --priority=RR:40

Use the --show_threads command to check the changes:

tuna --threads 7861 --show_threads
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 7861 RR 40 0xff 33318 16957 IRQ-4 serial

3. When passing commands to Tuna using the command line, it is possible to pass multiple
commands in one line. In this case, Tuna will process the commands sequentially. For example,

Using the Tuna Interface

5

using the commands from the previous step, instead of typing each command individually, they
could be passed on a single line, and Tuna will process them in order:

tuna --threads 7861 --show_threads --priority FIFO:50 --show_threads
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 7861 RR 40 0xff 55504 28254 IRQ-4 serial
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 7861 FIFO 50 0xff 55508 28256 IRQ-4 serial

Tuna Options

--help Display the help list

--gui Start the graphical user interface

--cpus=CPU-LIST The CPUs to be controlled by Tuna

--affect_children Operation will affect children threads as well as
the parent threads

--filter Filter the display to only show the affected
entities

--isolate CPU-LIST Move all threads away from the specified CPUs

--include CPU-LIST Allow all threads to run on the specified CPUs

no_kthreads Operation will not effect kernel threads

--move CPU-LIST Move selected entities to the specified CPUs

--priority=[POLICY]:RTPRIO Set the thread to have the specified scheduler
policy and priority

--show_threads Show the thread list

--save=FILE NAME Used to specify a file name to save the kernel
threads scheduler policy, RT priority and
processor affinity. This information is saved in the
same format used in /etc/groups

--sockets=CPU-SOCKET-LIST The CPU sockets to be controlled by Tuna. This
option takes into account the CPU topology, such
as the cores that share a single processor cache,
and that are on the same physical chip.

--threads=THREAD-LIST The threads to be controlled by Tuna

--no_uthreads Operation will not affect user threads

--spread Spread the specified threads evenly between the
selected CPUs

--what_is To see further help on selected entities

Table 2.1. Tuna Options

Chapter 2. General System Tuning

6

The main Tuna window is divided into three sections. The window can be resized and the sections are
divided by grab bars for adjustment. As values change, entries are shown in bold.

1. The CPU List

This list shows all online CPUs and their current usage.

The check-box beside the name of the CPU is used to filter the task list at the bottom of the
window. Only tasks that belong to checked CPUs will be displayed.

Right-click on a CPU to display isolation options. Selecting Isolate CPU will cause all tasks
currently running on that CPU to move to the next available CPU. This can be chosen on one or
more CPUs simultaneously, depending on how many CPUs are available on your system.

2. The IRQ List

This list shows all the active Interrupt Requests (IRQs), their process ID (PID) and policy and
priority information.

The IRQ list has a right-click menu. The Refresh IRQ list option is provided as IRQs affinity
changes may not occur until the next interrupt. Select Set IRQ Attributes to open the IRQ
Attributes dialog box.

3. The Task List

This list shows all tasks except kernel threads.

Using the Tuna Interface

7

When a process is threaded, the task list shows the original thread with all the other threads
collapsed below it. Click on the arrow to the left of the process to expand the thread.

The right-click menu on the task list is similar to that of the IRQ list. Use Refresh task list will
refresh the list with any changes and the Set process attributes will open the Set Process
Attributes dialog box.

Important
Any IRQ with a PID of 0 (zero) is a NODELAY IRQ and is not implemented as a kernel
thread. Setting the scheduling policy and priority for NODELAY IRQs will have no effect.

Right click on an IRQ and select Set IRQ Attributes to open the IRQ Attributes dialog box.

The IRQ Attributes dialog shows current information about the IRQ. It has three adjustable attributes:

1. Scheduling Policy

A drop down list of the available policies.

2. Scheduler Priority

A drop down list of the available priorities. This attribute will be disabled if the selected IRQ cannot
have a set priority.

Chapter 2. General System Tuning

8

3. Affinity

A numeric list of CPUs on which the IRQ can be run. This entry can be in the form of a comma-
delimited list of CPU numbers, a range using square brackets, or a combination of both. For
example: 0, [2-4], 7, 8. This would instruct the IRQ to run on CPUs 0, 2, 3, 4, 7 and 8.

Right click on a task and select Set Process Attributes to open the Process Attributes dialog box.

The Process Attributes dialog shows current information about the task. It allows you to set scheduling
policy, scheduler priority, and CPU affinity for a task or set of tasks.

1. Thread Selection

Just the selected thread is selected by default. If the task has more than one thread, use All
threads of the selected process to make changes to all of the threads for that task. To use a
regular expression (regex) to search for tasks, select All command lines matching the regex
below:. This will activate the Command line regex: field and you can enter the regex. This field
supports the * and ? wildcards, and will match the entire command line. The task list will update to
show only those tasks that match the regex.

2. Policy, Priority and Affinity

The Policy drop down box contains the available scheduling policy options.

The Scheduler Priority drop down box contains the available priorities. This attribute will be
disabled if the selected tasks cannot have a set priority.

Setting persistent tuning parameters

9

The Affinity field contains a numeric list of CPUs on which the selected tasks can be run.
This entry can be in the form of a comma-delimited list of CPU numbers, a range using square
brackets, or a combination of both.

3. Task List

This shows a list of the the tasks currently being adjusted based on the thread and regex
selections made.

Using Tuna - An Example
Suppose you have a system with 4 or more processors, and two applications - Foo and Bar. You want
to run the applications on dedicated processors and choose processor 1 for Foo and processor 2 for
Bar.

1. The first thing to do is move everything off the chosen processors. Right-click on CPU 1 in the
CPU list and select Isolate CPU from the menu. Repeat for CPU 2. The task list shows you that
none of the tasks are running on those processors now.

2. Suppose that Foo is a single task with several threads, and you want the task and all its threads
running on CPU 1. Find Foo in the process list, right-click on it and choose Set process
attributes from the menu. In the Set Process Attributes dialog, select the radio button for All
threads of the selected process. In the Affinity text box, change the text to 1. You can also
choose to change the scheduling policy and scheduler priority at this time. Click on OK to save
your changes and close the dialog box.

3. Suppose that Bar is an application that has --none as its first command line argument. Right-
click anywhere in the task list and choose Set process attributes from the menu. In the dialog,
select the radio-button for All command lines matching the regex below:. Type bar --none *
in the Command line regex text box. You will see the task list in the dialog box update to include
all the matching processes (including all threads). Change the Affinity to 2. Make any changes
you want for the scheduler and priority. Click on OK to save your changes and close the dialog
box.

2.2. Setting persistent tuning parameters
This book contains many examples on how to specify kernel tuning parameters. Unless stated
otherwise, the instructions will cause the parameters to remain in effect until the system reboots or
they are explicitly changed. This approach is effective for establishing the initial tuning configuration.

Once you have decided what tuning configuration works for your system, you will probably want
those parameters to be persistent across reboots. Which method you choose depends on the type of
parameter you are setting.

Editing the /etc/sysctl.conf file
For any parameter that begins with /proc/sys/, including it in the /etc/sysctl.conf file will
make the parameter persistent.

1. Open the /etc/sysctl.conf file in your chosen text editor

2. Remove the /proc/sys/ prefix from the command and replace the central / character with a .
character.

Chapter 2. General System Tuning

10

For example: the command echo 2 > /proc/sys/kernel/vsyscall64 will become
kernel.vsyscall64.

3. Insert the new entry into the /etc/sysctl.conf file with the required parameter

Enable gettimeofday(2)
kernel.vsyscall64 = 2

4. Run # sysctl -p to refresh with the new configuration

sysctl -p
...[output truncated]...
kernel.vsyscall64 = 2

Editing files in the /etc/sysconfig/ directory
Files in the /etc/sysconfig/ directory can be added for most other parameters. As files in this
directory can differ significantly, instructions for these will be explicitly stated where appropriate.

Alternatively, check the Red Hat Enterprise Linux Deployment Guide available from the Red Hat
Documentation website1 for information on the /etc/sysconfig/ directory.

Editing the /etc/rc.d/rc.local file
Use this option only as a last resort!

1. Adjust the command as per the Editing the /etc/sysctl.conf file intructions.

2. Insert the new entry into the /etc/rc.d/rc.local file with the required parameter

2.3. Interrupt and Process Binding
Realtime environments need to minimize or eliminate latency when responding to various events.
Ideally, interrupts (IRQs) and user processes can be isolated from one another on different dedicated
CPUs.

Interrupts are generally shared evenly between CPUs. This can delay interrupt processing through
having to write new data and instruction caches, and often creates conflicts with other processing
occurring on the CPU. In order to overcome this problem, time-critical interrupts and processes can be
dedicated to a CPU (or a range of CPUs). In this way, the code and data structures needed to process
this interrupt will have the highest possible likelihood to be in the processor data and instruction
caches. The dedicated process can then run as quickly as possible, while all other non-time-critical
processes run on the remainder of the CPUs. This can be particularly important in cases where the
speeds involved are in the limits of memory and peripheral bus bandwidth available. Here, any wait for
memory to be fetched into processor caches will have a noticeable impact in overall processing time
and determinism.

1 http://redhat.com/docs

http://redhat.com/docs
http://redhat.com/docs
http://redhat.com/docs

Interrupt and Process Binding

11

In practice we have found that optimal performance is entirely application specific. For example, in
tuning applications for different companies which perform similar functions, the optimal performance
tunings were completely different. For one firm, isolating 2 out of 4 CPUs for operating system
functions and interrupt handling and dedicating the remaining 2 CPUs purely for application handling
was optimal. For another firm, binding the network related application processes onto a CPU which
was handling the network device driver interrupt yielded optimal determinism. Ultimately, tuning is
often accomplished by trying a variety of settings to discover what works best for your organization.

Important
For many of the processes described here, you will need to know the CPU mask for a
given CPU or range of CPUs. The CPU mask is typically represented as a 32-bit bitmask
(on 32-bit machines), but can also be expressed as a decimal or hexadecimal number. For
example: The CPU mask for CPU 0 only is 00000000000000000000000000000001 as
a bitmask, 1 as a decimal, and 0x00000001 as a hexadecimal. The CPU mask for both
CPU 0 and 1 is 00000000000000000000000000000011 as a bitmask, 3 as a decimal,
and 0x00000003 as a hexadecimal.

Disabling the irqbalance daemon
This daemon is enabled by default and periodically forces interrupts to be handled by CPUs in an
even, fair manner. However in realtime deployments, applications are typically dedicated and bound to
specific CPUs, so the irqbalance daemon is not required.

1. Check the status of the irqbalance daemon

service irqbalance status
irqbalance (pid PID) is running...

2. If the irqbalance daemon is running, stop it using the service command.

service irqbalance stop
Stopping irqbalance: [OK]

3. Use chkconfig to ensure that irqbalance does not restart on boot.

chkconfig irqbalance off

Partially Disabling the irqbalance daemon
An alternative approach to is to disable irqbalance only on those CPUs that have dedicated
functions, and enable it on all other CPUs. This can be done by editing the /etc/sysconfig/
irqbalance file.

1. Open /etc/sysconfig/irqbalance in your preferred text editor and find the section of the file
titled FOLLOW_ISOLCPUS.

Chapter 2. General System Tuning

12

...[output truncated]...
FOLLOW_ISOLCPUS
Boolean value. When set to yes, any setting of
 IRQ_AFFINITY_MASK above
is overridden, and instead computed to be the same mask that is
 defined
by the isolcpu kernel command line option.
#
#FOLLOW_ISOLCPUS=no

2. Enable FOLLOW_ISOLCPUS by removing the # character from the beginning of the line and
changing the value to yes.

...[output truncated]...
FOLLOW_ISOLCPUS
Boolean value. When set to yes, any setting of
 IRQ_AFFINITY_MASK above
is overridden, and instead computed to be the same mask that is
 defined
by the isolcpu kernel command line option.
#
FOLLOW_ISOLCPUS=yes

3. This will make irqbalance operate only on the CPUs not specifically isolated. This is most
effective for machines with more than two processors, but works just as well on a dual-core
machine.

Manually Assigning CPU Affinity to Individual IRQs
1. You can see which IRQ your devices are on by viewing the /proc/interrupts file.

cat /proc/interrupts

This file contains a list of IRQs. Each line shows the IRQ number, the number of interrupts that
happened in each CPU, followed by the IRQ type and a description.

CPU0 CPU1
0: 26575949 11 IO-APIC-edge timer
1: 14 7 IO-APIC-edge i8042
...[output truncated]...

2. To instruct an IRQ to run on only one processor, echo the CPU mask (as a decimal number) to /
proc/interrupts. In this example, we are instructing the interrupt with IRQ number 142 to run
on CPU 0 only.

Interrupt and Process Binding

13

echo 1 > /proc/irq/142/smp_affinity

3. This change will only take effect once an interrupt has occurred. To test the settings, generate
some disk activity, then check the /proc/interrupts file for changes. Assuming that you have
caused an interrupt to occur, you should see that the number of interrupts on the chosen CPU
have risen, while the numbers on the other CPUs have not changed.

Binding Processes to CPUs using the taskset utility
The taskset utility uses the process ID (PID) of a task to view or set the affinity, or can be used to
launch a command with a chosen CPU affinity. In order to set the affinity, taskset requires the CPU
mask expressed as either a decimal or hexadecimal number.

1. To set the affinity of a process that is not currently running, use taskset and specify the CPU
mask and the process. In this example, my_embedded_process is being instructed to use only
CPU 4 (using the decimal version of the CPU mask).

taskset 8 /usr/local/bin/my_embedded_process

2. It is also possible to set the CPU affinity for processes that are already running by using the -
p (--pid) option with the CPU mask and the PID of the process you wish to change. In this
example, the process with a PID of 7013 is being instructed to run only on CPU 0.

taskset -p 1 7013

Note
The taskset utility will only work if Non-Uniform Memory Access (NUMA) is not enabled
on the system. See Section 3.6, “Non-Uniform Memory Access” for more information on
this.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• chrt(1)

• taskset(1)

• nice(1)

• renice(1)

• sched_setscheduler(2)

For a description of the Linux scheduling scheme

Chapter 2. General System Tuning

14

2.4. Filesystem determinism tips
Journal activity can introduce latency through ordering changes and committing data and metadata.
Often, journaling filesystems can do things in such a way that they slow the system down.

The most common filesystem for use on Linux machines is the third extended filesystem, or ext3,
which is a journaling filesystem. Its predecessor - ext2 - is a non-journaling filesystem that is almost
completely compatible with ext3. Unless your organization specifically requires journaling, consider
using ext2. In many of our best benchmark results, we utilize the ext2 filesystem and consider it one of
the top initial tuning recommendations.

If using ext2 is not a suitable solution for your system, consider disabling atime under ext3 instead.
There are very few real-world situations where atime is neccesary, however it is enabled by default
in Red Hat Enterprise Linux for longstanding legacy reasons. By disabling atime journal activity is
avoided where it is not neccesary. It can also help with reducing power consumption as the disk is not
required to do as many needless writes, giving the disk more opportunities to enter a low-power state.

Disabling atime
1. Open the /etc/fstab file using your chosen text editor and locate the entry for the root mount

point.

LABEL=/ / ext3 defaults 1 1
...[output truncated]...

2. Edit the options sections to include the terms noatime and nodiratime. noatime prevents
access timestamps being updated when a file is read and nodiratime will stop directory inode
access times being updated.

LABEL=/ / ext3 noatime,nodiratime 1 1

3. The tmpwatch file on Red Hat Enterprise Linux is set by default to clean files in /tmp based on
their atime. If this is the case on your system, then the instructions above will result in users' /
tmp/* files being emptied every day. This can be resolved by starting tmpwatch with the --
mtime option.

--- /etc/cron.daily/tmpwatch.orig +++ /etc/cron.daily/tmpwatch @@ -3,6
 +3,6 @@
/usr/sbin/tmpwatch 720 /var/tmp
for d in /var/{cache/man,catman}/{cat?,X11R6/cat?,local/cat?}; do
 if [-d "$d"]; then
- /usr/sbin/tmpwatch -f 720 "$d" + /usr/sbin/tmpwatch --mtime -f 720
 "$d"
 fi

gettimeofday speedup

15

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• bdflush(2)

• mkfs.ext2(8)

• mkfs.ext3(8)

• mount(8) - for information on atime, nodiratime and noatime

• chattr(1)

2.5. gettimeofday speedup
Many application workloads (especially databases and financial service applications) perform
extremely frequent gettimeofday or similar time function calls. Optimizing the efficiency of this calls
can provide major benefits.

A Virtual Dynamic Shared Object (VDSO), is a shared library that allows application in user space to
perform some kernel actions without as much overhead as a system call. The VDSO is often used to
provide fast access to the gettimeofday system call data.

Enabling the VDSO instructs the kernel to use it's definition of the symbols in the VDSO, rather than
the ones found in any user-space shared libraries, particularly the glibc. The effects of enabling the
VDSO are system-wide - either all processes use it or none do.

When enabled, the VDSO overrides the glibc definition of gettimeofday with it's own. This
removes the overhead of a system call, as the call is made direct to the kernel memory, rather than
going through the glibc.

The VDSO boot parameter has three possible values:
0

Provides the most accurate time intervals at μs (microsecond) resolution, but also produces the
highest call overhead, as it uses a regular system call

1
Slightly less accurate, although still at μs resolution, with a lower call overhead

2
The least accurate, with time intervals at the ms (millisecond) level, but offers the lowest call
overhead

Enable gettimeofday with VDSO
There is a Virtual Dynamic Shared Object (VDSO) implemented in the glibc runtime library. The
VDSO maps some of the kernel code, which is necessary to read gettimeofday in the user-space.
Standard Red Hat Enterprise Linux 5.2 allows the gettimeofday function to be performed entirely in
user-space, removing the system call overhead.

1. VDSO behavior is enabled by default. The value used to enable the VDSO affects the behavior
of gettimeofday. It can be enabled by echoing the desired value to /proc/sys/kernel/
syscall64.

Chapter 2. General System Tuning

16

echo 1 > /proc/sys/kernel/syscall64

2. In addition to the above, the MRG Realtime kernel includes a further gettimeofday performance
optimization. See Section 3.2, “MRG Realtime Specific gettimeofday speedup”.

Important
Currently the gettimeofday speed up is implemented only for 64 bit architectures
(AMD64 and Intel 64) and is not available on x86 machines.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• gettimeofday(2)

2.6. Don't run extra stuff
This is a common tool for improving performance, yet one that is often overlooked. Some 'extra stuff'
to look for:

• Graphical desktop

Do not run graphics there they are not absolutely required, especially on servers. To avoid running
the desktop software, open the /etc/inittab file with your preferred text editor and locate the
following line:

id:5:initdefault:
...[output truncated]...

This setting changes the runlevel that the machine automatically boots into. By default, the runlevel
is 5 - full multi-user mode, using the graphical interface. By changing the number in the string to 3,
the default runlevel will be full multi-user mode, but without the graphical interface.

id:3:initdefault:
...[output truncated]...

• Sendmail

Unless you are actively using Sendmail on the system you are tuning, disable it. If it is required,
ensure it is well tuned or consider moving it to a dedicated machine.

• Remote Procedure Calls (RPCs)

• Network File System (NFS)

Swapping and Out Of Memory Tips

17

• Mouse Services

If you are not using Gnome, then you probably won't need a mouse either. Remove the hardware
and uninstall gpm.

Remember to also check your third party applications, and any components added by external
hardware vendors.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• rpc(3)

• nfs(5)

• gpm(8)

2.7. Swapping and Out Of Memory Tips

Memory Swapping
Swapping pages out to disk can introduce latency in any environment. To ensure low latency, the best
strategy is to have enough memory in your systems so that swapping is not necessary. Always size
the physical RAM as appropriate for your application and system. Use vmstat to monitor memory
usage and watch the si (swap in) and so (swap out) fields. They should remain on zero as much as
possible.

Out of Memory (OOM)
Out of Memory (OOM) refers to a computing state where all available memory, including swap space,
has been allocated. Normally this will cause the system to panic and stop functioning as expected.
There is a switch that controls OOM behavior in /proc/sys/vm/panic_on_oom. When set to 1 the
kernel will panic on OOM.A setting of 0 instructs the kernel to call a function named oom_killer on
an OOM. Usually, oom_killer can kill rogue processes and the system will survive.

1. The easiest way to change this is to echo the new value to /proc/sys/vm/panic_on_oom.

cat /proc/sys/vm/panic_on_oom
1

echo 0 > /proc/sys/vm/panic_on_oom

cat /proc/sys/vm/panic_on_oom
0

2. It is also possible to prioritize which processes get killed by adjusting the oom_killer score. In
/proc/PID/ there are two tools labelled oom_adj and oom_score. Valid scores for oom_adj
are in the range -16 to +15. This value is used to calculate the 'badness' of the process using
an algorithm that also takes into account how long the process has been running, amongst

Chapter 2. General System Tuning

18

other factors. To see the current oom_killer score, view the oom_score for the process.
oom_killer will kill processes with the highest scores first.

This example adjusts the oom_score of a process with a PID of 12465 to make it less likely that
oom_killer will kill it.

cat /proc/12465/oom_score
79872

echo -5 > /proc/12465/oom_adj

cat /proc/12465/oom_score
78

3. There is also a special value of -17, which disables oom_killer for that process. In the example
below, oom_score returns a value of O, indicating that this process would not be killed.

cat /proc/12465/oom_score
78

echo -17 > /proc/12465/oom_adj

cat /proc/12465/oom_score
0

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• swapon(2)

• swapon(8)

• vmstat(8)

2.8. Network determinism tips

Transmission Control Protocol (TCP)
TCP can have a large effect on latency. TCP adds latency in order to obtain efficiency, control
congestion, and to ensure reliable delivery. When tuning, consider the following points:

• Do you need ordered delivery?

• Do you need to guard against packet loss?

Packet loss is not always bad. Transmitting the packet again can cause greater delays.

syslog tuning tips

19

• If you must use TCP, consider disabling the Nagle buffering algorithm by using TCP_NODELAY on
your socket. The Nagle algorithm collects small outgoing packets to send all at once, and can have
a detrimental effect on latency.

Network Tuning
There are numerous tools for tuning the network. Here are some of the more useful:

Interrupt Coalescing
To reduce network traffic, packets can be collected and a single interrupt generated.

Use the -C (--coalesce) option with the ethtool command to enable.

Congestion
Often, I/O switches can be subject to back-pressure, where network data builds up as a result of
full buffers.

Use the -A (--pause) option with the ethtool command to change pause parameters and avoid
network congestion.

Infiniband (IB)
Infiniband is a type of communications architecture often used to increase bandwidth and provide
quality of service and failover. It can also be used to improve latency through Remote Direct
Memory Access (RDMA) capabilities.

Network Protocol Statistics
Use the -S (--statistics) option with the netstat command to monitor network traffic.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• ethtool(8)

• netstat(8)

2.9. syslog tuning tips
syslog forwards log messages from any number of programs over a network. The less often this
occurs, the larger the pending transaction is likely to be. If the transaction is very large an I/O spike
can occur. To prevent this, keep the interval reasonably small.

Using syslogd for system logging.
The system logging daemon, called syslogd, is used to collect messages from a number of different
programs. It also collects information reported by the kernel from the kernel logging daemon klogd.
Typically, syslogd will log to a local file, but it can also be configured to log over a network to a
remote logging server.

1. To enable remote logging, you will first need to configure the machine that will receive the logs.
syslogd uses configuration settings defined in the /etc/sysconfig/syslog and /etc/
syslog.conf files. To instruct syslogd to receive logs from remote machines, open /etc/
sysconfig/syslog in your preferred text editor and locate the SYSLOGD_OPTIONS= line.

Chapter 2. General System Tuning

20

Options to syslogd
-m 0 disables 'MARK' messages.
-r enables logging from remote machines
-x disables DNS lookups on messages recieved with -r
See syslogd(8) for more details

SYSLOGD_OPTIONS="-m 0"

...[output truncated]...

2. Append the -r parameter to the options line:

SYSLOGD_OPTIONS="-m 0 -r"

3. Once remote logging support is enabled on the remote logging server, each system that will send
logs to it must be configured to send its syslog output to the server, rather than writing those logs
to the local filesystem. To do this, edit the /etc/syslog.conf file on each client system. For
each of the various logging rules defined in that file, you can replace the local log file with the
address of the remote logging server.

Log all kernel messages to remote logging host.
kern.* @my.remote.logging.server

The example above will cause the client system to log all kernel messages to the remote machine
at @my.remote.logging.server.

4. It is also possible to configure syslogd to log all locally generated system messages, by adding a
wildcard line to the /etc/syslog.conf file:

Log all messages to a remote logging server:
. @my.remote.logging.server

Important
Note that syslogd does not include built-in rate limiting on its generated network traffic.
Therefore, we recommend that remote logging on MRG Realtime systems be confined to
only those messages that are required to be remotely logged by your organization. For
example, kernel warnings, authentication requests, and the like. Other messages should
be locally logged instead.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

The PC Card Daemon

21

• syslog(3)

• syslog.conf(5)

• syslogd(8)

2.10. The PC Card Daemon
The pcscd daemon is used to manage connections to PC and SC smart card readers. Although
pcscd is usually a low priority task, it can often use more CPU than any other daemon. This additional
background noise can lead to higher pre-emption costs to realtime tasks and other undesirable
impacts on determinism.

Disabling the pcscd Daemon
1. Check the status of the pcscd daemon

service pcscd status
pcscd (pid PID) is running...

2. If the pcscd daemon is running, stop it using the service command.

service pcscd stop
Stopping PC/SC smart card daemon (pcscd): [OK]

3. Use chkconfig to ensure that pcscd does not restart on boot.

chkconfig pcscd off

2.11. Reduce TCP performance spikes
In order to reduce a performance spike with relation to timestamps generation, change the values of
the TCP related entries with the sysctl command.

1. Use sysctl to change the value of net.ipv4.neigh.default.unres_qlen from 3 to 100.
The -w option will make the change persistent between reboots:

/sbin/sysctl -w net.ipv4.neigh.default.unres_qlen=100

2. Make the same change for net.ipv4.neigh.eth0.unres_qlen:

/sbin/sysctl -w net.ipv4.neigh.eth0.unres_qlen=100

Chapter 2. General System Tuning

22

2.12. Reducing the TCP delayed ack timeout
Some applications that send small network packets can experience latencies due to the TCP delayed
acknowledgement timeout. This value defaults to 40ms. To avoid this problem, try reducing the
tcp_delack_min timeout value. This changes the minimum time to delay before sending an
acknowledgement systemwide.

1. Write the desired minimum value, in microseconds, to /proc/sys/net/ipv4/
tcp_delack_min:

echo 1 > /proc/sys/net/ipv4/tcp_delack_min

Chapter 3.

23

Realtime-Specific Tuning
Once you have completed the tunes in Chapter 2, General System Tuning you are ready to start MRG
Realtime specific tuning. You must have the MRG Realtime kernel installed for these procedures.

Important
Do not attempt to use the tools in this section without first having completed Chapter 2,
General System Tuning. You will not see a performance improvement.

When are you ready to begin MRG Realtime tuning, perform these steps first, as they will provide the
greatest benefit:
• Section 3.1, “Setting Scheduler Priorities”

When you are ready to start some fine-tuning on your system, then try the other sections in this
chapter:
• Section 3.2, “MRG Realtime Specific gettimeofday speedup”

• Section 3.3, “Using kdump and kexec with the MRG Realtime kernel”

• Section 3.4, “TSC timer synchronization on Opteron CPUs”

• Section 3.5, “Infiniband”

• Section 3.6, “Non-Uniform Memory Access”

This chapter also includes information on two performance monitoring tools:
• Section 3.7, “Using the ftrace Utility for Tracing Latencies”

• Section 3.8, “Latency Tracing Using trace-cmd”

Section 3.9, “Using sched_nr_migrate to limit SCHED_OTHER processes.”

When you have completed all the tuning suggestions in this chapter, move on to Chapter 4,
Application Tuning and Deployment

3.1. Setting Scheduler Priorities
The MRG Realtime kernel allows fine grained control of scheduler priorities. It also allows application
level programs to be scheduled at a higher priority than kernel threads. This can be useful but may
also carry consequences. It is possible that it will cause the system to hang and other unpredictable
behavior if crucial kernel processes are prevented from running as needed. Ultimately the correct
settings are workload dependent.

Priorities are defined in groups, with some groups dedicated to certain kernel functions:

Priority Threads Description

1 Low priority kernel threads Priority 1 is usually reserved for
those tasks that just want to be
above SCHED_OTHER

2 - 69 Available for use Range used for typical
application priorities

Chapter 3. Realtime-Specific Tuning

24

Priority Threads Description

70 - 79 Soft IRQs

80 NFS RPC, Locking and
Authentication threads for NFS

81 - 89 Hard IRQs Dedicated interrupt processing
threads for each IRQ in the
system

90 - 98 Available for use For use only by very high priority
application threads

99 Watchdogs and migration System threads that must run at
the highest priority

Table 3.1. Priority Map

Using rtctl to Set Priorities
1. Priorities are set using a series of levels, ranging from 0 (lowest priority) to 99 (highest priority).

The system startup script rtctl initializes the default priorities of the kernel threads. By
requesting the status of the rtctl service, you can view the priorities of the various kernel
threads.

service rtctl status
2 TS - [kthreadd]
3 FF 99 [migration/0]
4 FF 99 [posix_cpu_timer]
5 FF 50 [softirq-high/0]
6 FF 50 [softirq-timer/0]
7 FF 90 [softirq-net-tx/]
...[output truncated]...

2. The output is in the format:

[PID] [scheduler policy] [priority] [process name]

In the scheduler policy field, a value of TS indicates a policy of normal and FF indicates a
policy of FIFO (first in, first out).

3. The rtctl system startup script relies on the /etc/rtgroups file. To make changes, open the /
etc/rtgroups file in your preferred text editor.

kthreads:o:0:\[.*\]$
watchdog:f:99:\[watchdog.*\]
migration:f:99:\[migration\/.*\]
posix_cpu_timer:f:99:\[posix_cpu_timer\]
hardirq:f:95:\[IRQ-.*\]
...[output truncated]...

MRG Realtime Specific gettimeofday speedup

25

4. Each line represents a process. You can change the priority of the process by adjusting the
parameters. The entries in this file are in the format:

[group name]:[scheduler policy]:[scheduler priority]:[regular
 expression]

In the scheduler policy field, the following values are accepted:

o Sets a policy of other. If the policy is set to o,
the scheduler priority field will be set to
0 and ignored.

b Sets a policy of batch.

f Sets a policy of FIFO.

* If the policy is set to *, no change will be made
to to any matched thread policy.

The regular expression field matches the thread name to be modified.

5. After editing the file, you will need to restart the rtctl service to reload it with the new settings:

service rtctl stop

service rtctl start
Setting kernel thread priorities: done

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• rtctl(1)

• rtgroups(5)

3.2. MRG Realtime Specific gettimeofday speedup
In addition to the gettimeofday(2) speedup listed in Section 2.5, “gettimeofday speedup”, the
MRG Realtime kernel contains a further gettimeofday performance optimization. This method
caches the most recently used time value in a global system file. If another gettimeofday call
is performed within the ms (hz) then it is not necessary to re-read the hardware clock. As a result,
applications which do not require microsecond precision benefit.

Enable the MRG Realtime gettimeofday speedup
This setting is not enabled by default. When you start it, it needs to be enabled on a global basis.

1. Firstly you will need to append the line kernel.vsyscall64 = 2 to the /etc/sysctl.conf
file. This causes the gettimeofday function to be performed entirely in user-space, removing the
system call overhead.

Chapter 3. Realtime-Specific Tuning

26

echo "kernel.vsyscall64 = 2" >> /etc/sysctl.conf

2. To make the change effective immediately and persistent between reboots, use the -w option with
the sysctl command to update the setting:

/sbin/sysctl -w kernel.vsyscall64=2

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• sysctl(8)

• gettimeofday(2)

3.3. Using kdump and kexec with the MRG Realtime kernel
If kdump is enabled on your system, the standard boot kernel will reserve a small section of system
RAM and load the kdump kernel into the reserved space. When a kernel panic or other fatal error
occurs, kexec is used to boot into the kdump kernel. Kexec is a fastboot mechanism that allows the
kdump kernel to boot without going through BIOS. The kdump kernel boots up using only the reserved
RAM and sends an error message to the console. It will then write a dump of the boot kernel's address
space to a file for later debugging. Because kexec does not go through the BIOS, the memory of the
original boot is retained, and the crash dump is much more detailed. Once this is done, the kdump
kernel performs a reboot, which will reset the machine and bring the boot kernel back up.

Important
In Red Hat Enterprise Linux 5.2 there is no dedicated kdump kernel. It uses the main
kernel instead. The MRG Realtime kernel cannot be used as a kdump kernel, but it
supports the use of a seperate kdump kernel. It is recommended that you use the MRG
Realtime kernel as the boot kernel, and the Red Hat Enterprise Linux 5.2 kernel as the
kdump kernel.

There are three methods for enabling kdump under Red Hat Enterprise Linux 5.2. The first method
uses a tool called rt-setup-kdump. The second adds a command line to the boot kernel, and the
third uses the graphical system configuration tool included with Red Hat Enterprise Linux 5.2.

Creating a basic kdump kernel with rt-setup-kdump
1. The rt-setup-kdump tool is part of the rt-setup package, which can be installed using yum:

yum install rt-setup

Using kdump and kexec with the MRG Realtime kernel

27

2. Run the tool by invoking it at the shell prompt as the root user. This will set the Red Hat Enterprise
Linux 5.2.1 or Red Hat Enterprise Linux 5.2.2 kernel to be the kdump kernel:

rt-setup-kdump

Enabling kdump with grub.conf
1. Firstly, you will need to check that you have the kexec-tools package installed.

rpm -q kexec-tools
kexec-tools-1.101-194.4.el5

2. By default, the crash dump is saved in the /var/crash file. If you wish to change this, simply
uncomment and adjust the path value in the /etc/kdump.conf file. This can be a local file, or
on another server.

...[output truncated]...
#raw /dev/sda5
#ext3 /dev/sda3
#ext3 LABEL=/boot
#ext3 UUID=03138356-5e61-4ab3-b58e-27507ac41937
#net my.server.com:/export/tmp
#net user@my.server.com

path /path/to/file

#core_collector makedumpfile -c
#link_delay 60
#kdump_post /var/crash/scripts/kdump-post.sh
#extra_bins /usr/bin/lftp
#extra_modules gfs2
#default shell

3. Open the /etc/grub.conf file in your preferred text editor and add a crashkernel line to the
boot kernel. This line takes the form:

crashkernel=[MB of RAM to reserve]M@[memory location]M

A typical crashkernel line would reserve 128 megabytes (128M) at 16 megabytes (16M), which
is equivalant to the address 0x1000000:

crashkernel=128M@16M

Chapter 3. Realtime-Specific Tuning

28

A typical MRG Realtime /etc/grub.conf file would have the MRG Realtime kernel as the boot
kernel, and the crashkernel line added to the Red Hat Enterprise Linux kernel:

default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux (realtime) (2.6.24.7-81.el5rt)
 root (hd0,0)
 kernel /vmlinuz-2.6.24.7-81.el5rt ro root=/dev/HelpdeskRHEL5/Root rhgb
 quiet
 initrd /initrd-2.6.24.7-81.el5rt.img
title Red Hat Enterprise Linux Client (2.6.24.7-81.el5)
 root (hd0,0)
 kernel /vmlinuz-2.6.24.7-81.el5 ro root=/dev/HelpdeskRHEL5/Root rhgb
 quiet crashkernel=128M@16M
 initrd /initrd-2.6.24.7-81.el5.img

4. Once you have saved your changes, restart the system to set up the reserved memory space. You
can then turn on the kdump init script and start the kdump service:

chkconfig kdump on

service kdump status
Kdump is not operational

service kdump start
Starting kdump: [OK]

5. If you want to check that the kdump is working correctly, you can simulate a panic using sysrq:

echo "c" > /proc/sysrq-trigger

This will cause the kernel to panic and the system will boot into the kdump kernel. Once your
system has been brought back up with the boot kernel, you should be able to check the log file at
the location you specified.

Enabling kdump with system-config-kdump
1. Select the Kdump system tool from the System|Administration menu, or use the following

command from the command line:

system-config-kdump

Using kdump and kexec with the MRG Realtime kernel

29

2. Select the check box labeled Enable kdump and adjust the necessary settings for memory
reservation and dump file location. Click OK to save your changes.

Important
Always check the /etc/grub.conf file to ensure that the tool has adjusted the
correct kernel. The MRG Realtime kernel should be the default boot kernel and the
Red Hat Enterprise Linux kernel should be used as the crash kernel.

3. If you want to check that the kdump is working correctly, you can simulate a panic using sysrq:

Chapter 3. Realtime-Specific Tuning

30

echo "c" > /proc/sysrq-trigger

This will cause the kernel to panic and the system will boot into the kdump kernel. Once your
system has been brought back up with the boot kernel, you should be able to check the log file at
the location you specified.

Note
Some hardware needs to be reset during the configuration of the kdump kernel. If you
have any problems getting the kdump kernel to work, edit the /etc/sysconfig/kdump
file and add reset_devices=1 to the KDUMP_COMMANDLINE_APPEND variable.

Important
On IBM LS21 machines, the following warning message may occur when attempting to
boot the kdump kernel:

irq 9: nobody cared (try booting with the "irqpoll" option)
 handlers:
[<ffffffff811660a0>] (acpi_irq+0x0/0x1b)
turning off IO-APIC fast mode.

Some systems will recover from this error and continue booting, while some will freeze
after displaying the message. This is a known issue. If you see this error, add the line
acpi=noirq as a boot parameter to the kdump kernel. Only add this line if this error
occurs as it can cause boot problems on machines not affected by this issue.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• kexec(8)

• /etc/kdump.conf

3.4. TSC timer synchronization on Opteron CPUs
The current generation of AMD64 Opteron processors are susceptible to a large gettimeofday
skew when cpufreq is enabled while using the Time Stamp Counter (TSC). MRG Realtime provides
a method to prevent this on Opteron systems by forcing all processors to simultaneously change to the
same frequency. As a result, the TSC on a single processor never increments at a different rate than
the TSC on another processor.

Infiniband

31

Enabling TSC timer synchronization
1. Open the /etc/grub.conf file in your preferred text editor and add the line nohpet

nopmtimer powernow-k8.tscsync=1 to the MRG Realtime kernel. This forces the use of
TSC and enables simultaneous core processor frequency transitions.

...[output truncated]...
title Red Hat Enterprise Linux (realtime) (2.6.24.7-81.el5rt)
 root (hd0,0)
 kernel /vmlinuz-2.6.24.7-81.el5rt ro root=/dev/HelpdeskRHEL5/Root rhgb
 quiet nohpet nopmtimer powernow-k8.tscsync=1
 initrd /initrd-2.6.24.7-81.el5rt.img

2. You will need to restart your system for the changes to take effect.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• gettimeofday(2)

3.5. Infiniband
Infiniband is a type of communications architecture often used to increase bandwidth and provide
quality of service and failover. It can also be used to improve latency through Remote Direct Memory
Access (RDMA) capabilities.

Support for Infiniband under MRG Realtime does not differ from the support offered under Red Hat
Enterprise Linux 5.2

3.6. Non-Uniform Memory Access
Non-Uniform Memory Access (NUMA) is a design used to allocate memory resources to a specific
CPU. This can improve access time and results in fewer memory locks. Although this appears as
though it would be useful for reducing latency, NUMA systems have been known to interact badly with
realtime applications, as they can cause unexpected event latencies.

As mentioned in Binding Processes to CPUs using the taskset utility the taskset utility will only
work if NUMA is not enabled on the system. If you want to perform process binding in conjunction with
NUMA, use the numactl command instead of taskset.

For more information about the NUMA API, see Andi Kleen's whitepaper An NUMA API for Linux1.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• numactl(8)

1 http://www.halobates.de/numaapi3.pdf

http://www.halobates.de/numaapi3.pdf
http://www.halobates.de/numaapi3.pdf

Chapter 3. Realtime-Specific Tuning

32

3.7. Using the ftrace Utility for Tracing Latencies
One of the diagnostic facilities provided with the MRG Realtime kernel is ftrace, which is used by
developers to analyze and debug latency and performance issues that occur outside of user-space.
The ftrace utility has a variety of options that allow you to use the utility in a number of different
ways. It can be used to trace context switches, measure the time it takes for a high-priority task to
run, the length of time interrupts are diabled for, or list all the kernel functions executed during a given
period.

Some tracers, such as the function tracer, will produce exceedingly large amounts of data, which can
turn trace log analysis into a time-consuming task. However, it is possible to instruct the tracer to begin
and end only when the application reaches critical code paths.

The ftrace utility is not enabled in the production version of the MRG Realtime kernel as it creates
additional overhead. If you wish to use the ftrace utility you will need to download and install the
trace variant of the MRG Realtime kernel.

Note
For instructions on how to install kernel variants, see the MRG Realtime Installation
Guide.

Using the ftrace Utility
1. Once you are using the trace variant of the MRG Realtime kernel, you can set up the ftrace

utility. You will need to create a /debug directory and then mount it to use the debugfs file
system.

mkdir /debug

mount -t debugfs nodev /debug

2. In the /debugfs/tracing/ directory there is a file named available_tracers. This file
contains all the available tracers for the installed version of ftrace. To see the list of available
tracers, use the cat command to view the contents of the file:

cat /debugfs/tracing/available_tracers

events wakeup preemptirqsoff preemptoff irqsoff ftrace sched_switch none

events
Traces system events such as timers, system calls, interrupts, context switches, process wake
up and others

wakeup
Traces the maximum latency in between the highest priority process waking up and being
scheduled. Only RT tasks are considered by this tracer (SCHED_OTHER tasks are ignored as
of now).

Using the ftrace Utility for Tracing Latencies

33

preemptirqsoff
Traces the areas that disable pre-emption and interrupts and records the maximum amount of
time for which pre-emption or interrupts were disabled.

preemptoff
Similar to the preemptirqsoff tracer but traces only the maximum interval for which pre-
emption was disabled.

irqsoff
Similar to the preemptofftracer but traces only the maximum interval for which interrupts
were disabled.

ftrace
Records the kernel functions called during a tracing session. The ftrace utility can be run
simultaneously with any of the other tracers.

sched_switch
Traces context switches between tasks.

none
Disables tracing.

3. To manually start a tracing session, first select the tracer you wish to use from the list in
available_tracers and then use the echo to insert the name of the tracer into /debugfs/
tracing/current_tracer:

echo events > /debugfs/tracing/current_tracer

Important
When using the echo, ensure you place a space character in between the value
and the > character. At the shell prompt, using 0>, 1>, and 2> (without a space
character) refers to standard input, standard output and standard error. Using them by
mistake could result in severe unintended consequences.

4. To check if the ftrace utility is running, use the cat command to view the /proc/sys/kernel/
ftrace_enabled file. A value of 1 indicates that ftrace is running, and 0 indicates that it is not
running.

cat /proc/sys/kernel/ftrace_enabled
1

By default, the tracer is enabled. To turn the tracer on or off, echo the appropriate value to the /
debug/tracing/tracing_enabled file.

echo 0 > /proc/sys/kernel/ftrace_enabled

Chapter 3. Realtime-Specific Tuning

34

echo 1 > /proc/sys/kernel/ftrace_enabled

5. Adjust details and parameters of the tracers by changing the values for the various files in the /
debugfs/tracing/ directory. Some examples are:

Set the maximum latency to 0:

echo 0 > /debugfs/tracing/tracing_max_latency

Define the threshold above which latencies should be considered. This is defined in microseconds:

echo 200 > /debugfs/tracing/tracing_thresh

6. Start tracing:

echo 1 > /debugfs/tracing/tracing_enabled

7. Run the test application. A reasonable test might be:

/bin/ls -l

8. Stop tracing:

echo 0 > /debugfs/tracing/tracing_enabled

9. View the trace logs:

cat /debugfs/tracing/trace

cat /debugfs/tracing/latency_trace/

10. To store the trace logs, copy them to another file:

cat /debugfs/tracing/latency_trace > /tmp/lat_trace_log

11. There are a number of options available for changing the format of the output. These options are
stored in /debug/tracing/iter_ctrl:

--print-parent Show the parent of the functions.

--sym-offset Add the offset into the function.

Using the ftrace Utility for Tracing Latencies

35

--sym-addr Add the address of a symbol.

--verbose Increase the verbosity of the tracer output.

12. Use the cat command to view the current configuration:

cat /debug/tracing/iter_ctrl

To set a single option on the tracer output configuration, echo the option name to the /debug/
tracing/iter_ctrl file.

echo verbose > /debug/tracing/iter_ctrl

To disable a single option on the tracing output configuration, echo the option name with the test
no before it to the /debug/tracing/iter_ctrl file.

echo noverbose > /debug/tracing/iter_ctrl

Note
If you use a single > with the echo command, it will override any existing value in the
file. If you wish to append the value to the file, use >> instead.

13. The ftrace utility can be filtered by altering the settings in the /debug/tracing/
set_ftrace_filter file. If no filters are specified in the file, all processes are traced. Use the
cat to view the current filters:

cat /debug/tracing/set_ftrace_filter

14. To change the filters, echo the name of the process to be traced. The filter allows the use of a *
wildcard at the beginning or end of a search term. Some examples of filters are:

• Trace only the schedule process:

echo schedule > /debug/tracing/set_ftrace_filter

• Trace all processes that end with lock:

echo *lock > /debug/tracing/set_ftrace_filter

• Trace all processes that start with spin_:

Chapter 3. Realtime-Specific Tuning

36

echo spin_* > /debug/tracing/set_ftrace_filter

• Trace all processes with cpu in the name:

echo *cpu* > /debug/tracing/set_ftrace_filter

Note
The * wildcard for the tracer filter will only work at the beginning or end of a word. For
example: spin_* and *lock will work, but spin_*lock will not.

3.8. Latency Tracing Using trace-cmd
trace-cmd is a MRG Realtime function that traces all kernel function calls, and some special events.
It records what is happening in the system during a short period of time, providing information that can
be used to analyze system behavior.

The trace-cmd tool is not enabled in the production version of the MRG Realtime kernel as it creates
additional overhead. If you wish to use the trace-cmd tool you will need to download and install
either the trace or debug variants of the MRG Realtime kernel.

Note
For instructions on how to install kernel variants, see the MRG Realtime Installation
Guide.

1. Once you are using either the trace or debug variants of the MRG Realtime kernel, you can
install the trace-cmd tool using yum.

yum install trace-cmd

2. You will need to create a /debugfs directory and then mount it to use the debugfs file system.

mkdir /debugfs

mount -t debugfs debugfs /debugfs

3. You can choose to make the debugfs directory mount automatically on boot. You can do this by
opening the /etc/fstab file in your preferred text editor, and adding the following line:

/debugfs /debugfs debugfs defaults 0 0

Latency Tracing Using trace-cmd

37

4. To start the utility, type trace-cmd at the shell prompt, along with the options you require, using
the following syntax:

trace-cmd [-f] [command]

The use of the -f option sets Function Tracing and can be used with any other trace command.

The commands instruct trace-cmd to trace in specific ways.

Command Trace Type Description

-s Context switch Traces the context switches
between tasks.

-i Interrupts off Records the maximum time
that an interrupt is disabled.
When a new maximum is
recorded, it replaces the
previous maximum.

-p Pre-emption off Records the maximum time
that pre-emption is disabled.
When a new maximum is
recorded, it replaces the
previous maximum.

-b Pre-emption and interrupts off Records the maximum time
that pre-emption or interrupts
are disabled. When a new
maximum is recorded,
it replaces the previous
maximum.

-w Wakeup Traces and records the
maximum time for the highest
priority task to get scheduled
after it has been woken up.

-e Event tracing

-f Function tracing Can be used with any other
trace

-l Prints log in the
latency_trace format

Can be used with any other
trace

5. In this example, the trace-cmd utility will:
• Select the context switch tracing method

• Enable the latency tracer

• Run the ls -la command

• Turn the latency tracer off again

Chapter 3. Realtime-Specific Tuning

38

trace-cmd -s /bin/ls -la > /tmp/latency_log.txt

3.9. Using sched_nr_migrate to limit SCHED_OTHER
processes.
If a SCHED_OTHER task spawns a large number of other tasks, they will all run on the same CPU.
The migration task or softirq will try to balance these tasks so they can run on idle CPUs. The
sched_nr_migrate option can be set to specify the number of tasks that will move at a time.
Because realtime tasks have a different way to migrate, they are not directly affected by this, however
when softirq moves the tasks it locks the run queue spinlock that is needed to disable interrupts. If
there are a large number of tasks that need to be moved, it will occur while interrupts are disabled, so
no timer events or wakeups will happen simultaneously. This can cause severe latencies for realtime
tasks when the sched_nr_migrate is set to a large value.

Adjusting the value of the sched_nr_migrate variable
1. Increasing the sched_nr_migrate variable gives high performance from SCHED_OTHER threads

that spawn lots of tasks, at the expense of realtime latencies. For low realtime task latency at the
expense of SCHED_OTHER task performance, then the value should be lowered. The default value
is 8.

2. To adjust the value of the sched_nr_migrate variable, you can echo the value directly to /
proc/sys/kernel/sched_nr_migrate:

echo 2 > /proc/sys/kernel/sched_nr_migrate

3. As this is a kernel process, you can also use the sysctl command.

sysctl kernel.sched_nr_migrate=2

Chapter 4.

39

Application Tuning and Deployment
This page contains tips related to enhancing and developing MRG Realtime Applications.

Note
In general, try to use POSIX (Portable Operating System Interface) defined APIs. The
MRG Realtime developers are compliant with POSIX standards and latency reduction in
the MRG Realtime kernel is also based on POSIX.

Further Reading
For further reading on developing your own MRG Realtime applications, start by reading the RTWiki
Article1.

4.1. Signal Processing in Realtime Applications
Traditional UNIX™ and POSIX signals have their uses, especially for error handling, but they are not
suitable for use in realtime applications as an event delivery mechanism. The reason for this is that
the current Linux kernel signal handling code is quite complex, due mainly to legacy behavior and
the multitude of APIs that need to be supported. This complexity means that the code paths that may
be taken when delivering a signal are not always the optimal path and quite long latencies may be
experienced by applications.

The original motivation behind UNIX™ signals was to multiplex one thread of control (the process)
between different "threads" of execution. Signals behave somewhat like operating system interrupts -
when a thread is delivered to an application, the application's context is saved and it starts executing a
previously registered signal handler. Once the signal handler has completed, the application returns to
executing where it was when the signal was delivered. This can get complicated in practice.

Signals are too non-deterministic to trust them in a realtime application. A better option is to
use POSIX Threads (pthreads) to distribute your workload and communicate between various
components. You can coordinate groups of threads using the pthreads mechanisms of mutexes,
condition variables and barriers and trust that the code paths through these relatively new constructs
are much cleaner than the legacy handling code for signals.

Further Reading
For more information, or for further reading, the following links are related to the information given in
this section.

• RTWiki's Build an RT Application2

• Ulrich Drepper's Requirements of the POSIX Signal Model3

1 http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application

http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
http://people.redhat.com/drepper/posix-signal-model.xml
http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application

Chapter 4. Application Tuning and Deployment

40

4.2. Using sched_yield and Other Synchronization
Mechanisms
The sched_yield system call is used by a thread allowing other threads a chance to run. Often
when sched_yield is used, the thread can go to the end of the run queues, taking a long time to
be scheduled again, or it can be rescheduled straight away, creating a busy loop on the CPU. The
scheduler is better able to determine when and if there are actually other threads wanting to run. Avoid
using sched_yield on any RT task.

POSIX Threads (Pthreads) have abstractions that will provide more consistent behavior across kernel
versions. However, this can also mean that the system has less time to process networking packets,
leading to considerable performance loss. This type of loss can be difficult to diagnose as there are
no significant changes in the networking components of the system. It can also result in a change in
behavior of some applications.

For more information, see Arnaldo Carvalho de Melo's paper on Earthquaky kernel interfaces4.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• pthread.h(P)

• sched_yield(2)

• sched_yield(3p)

4.3. Mutex options

Standard Mutex Creation
Mutual exclusion (mutex) algorithms are used to prevent processes simultaneously using a common
resource. A fast user-space mutex (futex) is a tool that allows a user-space thread to claim a mutex
without requiring a context switch to kernel space, provided the mutex is not already held by another
thread.

Note
In this document, we use the terms futex and mutex to describe POSIX thread (pthread)
mutex constructs.

1. When you initialize a pthread_mutex_t object with the standard attributes, it will create a
private, non-recursive, non-robust and non priority inheritance capable mutex.

2. Under pthreads, mutexes can be initialized with the following strings:

pthread_mutex_t my_mutex;

4 http://vger.kernel.org/~acme/unbehaved.txt

http://vger.kernel.org/~acme/unbehaved.txt
http://vger.kernel.org/~acme/unbehaved.txt

Mutex options

41

pthread_mutex_init(&my_mutex, NULL);

3. In this case, your application may not be benefiting of the advantages provided by the pthreads
API and the MRG Realtime kernel. There are a number of mutex options that should be
considered when writing or porting an application.

Advanced Mutex Options
In order to define any additional capabilities for the mutex you will need to create a
pthread_mutexattr_t object. This object will store the defined attributes for the futex.

Important
For the sake of brevity, these examples do not include a check of the return value of the
function. This is a basic safety procedure and one that you should always perform.

1. Creating the mutex object:

pthread_mutex_t my_mutex;

pthread_mutexattr_t my_mutex_attr;

pthread_mutexattr_init(&my_mutex_attr);

2. Shared and Private mutexes:

Shared mutexes can be used between processes, however they can create a lot more overhead.

pthread_mutexattr_setpshared(&my_mutex_attr, PTHREAD_PROCESS_SHARED);

3. Realtime priority inheritance:

Priority inversion problems can be avoided by using priority inheritance.

pthread_mutexattr_setprotocol(&my_mutex_attr, PTHREAD_PRIO_INHERIT);

4. Robust mutexes:

Robust mutexes are released when the owner dies, however this can also come at a high
overhead cost. _NP in this string indicates that this option is non-POSIX or not portable.

pthread_mutexattr_setrobust_np(&my_mutex_attr, PTHREAD_MUTEX_ROBUST_NP);

5. Mutex initialization:

Once the attributes are set, initialize a mutex using those properties.

Chapter 4. Application Tuning and Deployment

42

pthread_mutex_init(&my_mutex, &my_mutex_attr);

6. Cleaning up the attributes object:

After the mutex has been created, you can keep the attribute object in order to initialize more
mutexes of the same type, or you can clean it up. The mutex is not affected in either case. To
clean up the attribute object, use the _destroy command.

pthread_mutexattr_destroy(&my_mutex_attr);

The mutex will now operate as a regular pthread_mutex, and can be locked, unlocked and
destroyed as normal.

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• futex(7)

• pthread_mutex_destroy(P)

For information on pthread_mutex_t and pthread_mutex_init

• pthread_mutexattr_setprotocol(3p)

For information on pthread_mutexattr_setprotocol and
pthread_mutexattr_getprotocol

• pthread_mutexattr_setprioceiling(3p)

For information on pthread_mutexattr_setprioceiling and
pthread_mutexattr_getprioceiling

4.4. TCP_NODELAY and Small Buffer Writes
As discussed briefly in Transmission Control Protocol (TCP), by default TCP uses Nagle's algorithm to
collect small outgoing packets to send all at once. This can have a detrimental effect on latency.

Using TCP_NODELAY and TCP_CORK to improve network latency
1. Applications that require lower latency on every packet sent should be run on sockets with

TCP_NODELAY enabled. It can be enabled through the setsockopt command with the sockets
API:

int one = 1;

setsockopt(descriptor, SOL_TCP, TCP_NODELAY, &one, sizeof(one));

Setting Realtime Scheduler Priorities

43

2. For this to be used effectively, applications must avoid doing small, logically related buffer writes.
Because TCP_NODELAY is enabled, these small writes will make TCP send these multiple buffers
as individual packets, which can result in poor overall performance.

If applications have several buffers that are logically related and that should be sent as one packet
it could be possible to build a contiguous packet in memory and then send the logical packet to
TCP, on a socket configured with TCP_NODELAY.

Alternatively, create an I/O vector and pass it to the kernel using writev on a socket configured
with TCP_NODELAY.

3. Another option is to use TCP_CORK, which tells TCP to wait for the application to remove the cork
before sending any packets. This command will cause the buffers it receives to be appended
to the existing buffers. This allows applications to build a packet in kernel space, which may be
required when using different libraries that provides abstractions for layers. To enable TCP_CORK,
set it to a value of 1 using the setsockopt sockets API (this is known as "corking the socket"):

int one = 1;

setsockopt(descriptor, SOL_TCP, TCP_CORK, &one, sizeof(one));

4. When the logical packet has been built in the kernel by the various components in the application,
tell TCP to remove the cork. TCP will send the accumulated logical packet right away, without
waiting for any further packets from the application.

int zero = 0;

setsockopt(descriptor, SOL_TCP, TCP_CORK, &zero, sizeof(zero));

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• tcp(7)

• setsockopt(3p)

• setsockopt(2)

4.5. Setting Realtime Scheduler Priorities
Using rtctl to set scheduler priorities is described at Using rtctl to Set Priorities. In the example
given in that chapter, some kernel threads have been given a very high priority. This is to have the
default priorities integrate well with the requirements of the Real Time Specification for Java (RTSJ).
RTSJ requires a range of priorities from 10-89, so many kernel thread priorities are positioned at 90
and above. This avoids unpredictable behavior if a long-running Java application blocks essential
system services from running.

Chapter 4. Application Tuning and Deployment

44

For deployments where RTSJ is not in use, there is a wide range of scheduling priorities below 90
which are at the disposal of applications. It is usually dangerous for user level applications to run at
priority 90 and above - despite the fact that the capability exists. Preventing essential system services
from running can result in unpredictable behavior, including blocked network traffic, blocked virtual
memory paging and data corruption due to blocked filesytem journaling.

Extreme caution should be used if scheduling any application thread above priority 89. If any
application threads are scheduled above priority 89 you should ensure that the threads only run a very
short code path. Failure to do so would undermine the low latency capabilities of the MRG Realtime
kernel.

Setting Real-time Priority for Non-privileged Users
Generally, only root users are able to change priority and scheduling information. If you require
non-privileged users to be able to adjust these settings, the best method is to add the user to the
Realtime group.

Important
You can also change user privileges by editing the /etc/security/limits.conf file.
This has a potential for duplication and may render the system unusable for regular users.
If you do decide to edit this file, exercise caution and always create a copy before making
changes.

Further Reading
For more information, or for further reading, the following links are related to the information given in
this section.

• There is a testing utility called signaltest which is useful for demonstrating MRG Realtime
system behavior. A whitepaper written by Arnaldo Carvalho de Melo explains this in more detail:
signaltest: Using the RT priorities5

4.6. Dynamic Libraries Loading
When developing your MRG Realtime program, consider resolving symbols at startup. Although it can
slow down program initialization, it is one way to avoid non-deterministic latencies during program
execution.

Dynamic Libraries can be instructed to load at system startup by setting the LD_BIND_NOW variable
with ld.so, the dynamic linker/loader.

The following is an example shell script. This script exports the LD_BIND_NOW variable with a non-null
value of 1, then runs a program with a scheduler policy of FIFO and a priority of 1.

#!/bin/sh

LD_BIND_NOW=1
export LD_BIND_NOW

http://rt.et.redhat.com/wiki/images/8/8e/Rtprio.pdf

Dynamic Libraries Loading

45

chrt --fifo 1 /opt/myapp/myapp-server &

Related Manual Pages
For more information, or for further reading, the following man pages are related to the information
given in this section.

• ld.so(8)

46

Chapter 5.

47

More Information

5.1. Reporting Bugs

Important
An up-to-date listing of known issues can be found on the MRG Realtime Wiki: Known
Bugs1. Always check this list before reporting a new bug.

Diagnosing a Bug
Before you a file a bug report, follow these steps to diagnose where the problem has been introduced.
This will greatly assist in rectifying the problem.

1. Try reproducing the problem with the standard kernel. Check that you have the latest version of
the Red Hat Enterprise Linux 5.2 kernel, then boot into it from the grub menu. Try reproducing
the problem. If the problem still occurs with the standard kernel, report a bug against Red Hat
Enterprise Linux 5.2 NOT MRG Realtime.

2. If the problem does not occur when using the standard kernel, then the bug is probably the result
of changes introduced in either:

a. The upstream kernel on which MRG Realtime is based. For example, Red Hat Enterprise
Linux 5.2 is based on kernel version 2.6.18 and MRG Realtime is based on version 2.6.24.7

b. MRG Realtime specific enhancements Red Hat has applied on top of the baseline (2.6.24.7)
kernel

To determine the problem, it is helpful to see if you can reproduce the problem on an unmodified
upstream 2.6.24.7 kernel. For this reason, in addition to providing the MRG Realtime kernel, we
also provide a vanilla kernel variant. The vanilla kernel is the unmodified upstream kernel
build without the MRG Realtime additions.

Reporting a Bug
If you have determined that the bug is specific to MRG Realtime follow these instructions to enter a
bug report:

1. You will need a Bugzilla2 account. You can create one at Create Bugzilla Account3.

2. Once you have a Bugzilla account, log in and click on Enter A New Bug Report4.

3. You will need to identify the product the bug occurs in. MRG Realtime appears under Red Hat
Enterprise MRG in the Red Hat products list. It is important that you choose the correct product
that the bug occurs in.

4. Continue to enter the bug information by designating the appropriate component and giving a
detailed problem description. When entering the problem description be sure to include details of
whether you were able to reproduce the problem on the standard Red Hat Enterprise Linux 5.2 or
the supplied vanilla kernel.

http://rt.et.redhat.com/page/RHEL-RT_KnownBugs
http://rt.et.redhat.com/page/RHEL-RT_KnownBugs
https://bugzilla.redhat.com/index.cgi
https://bugzilla.redhat.com/createaccount.cgi
https://bugzilla.redhat.com/enter_bug.cgi

Chapter 5. More Information

48

5.2. Further Reading
• Red Hat Enterprise MRG Product Information

• http://www.redhat.com/mrg

• MRG Realtime Installation Guide and other Red Hat Enterprise MRG documentation

• http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG

• Mailing List

• To post to the list, send mail to rhemrg-users-list@redhat.com

• Subscribe to the mailing list at: http://post-office.corp.redhat.com/mailman/listinfo/rhemrg-users-
list

http://www.redhat.com/mrg
http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG
mailto:rhemrg-users-list@redhat.com
http://post-office.corp.redhat.com/mailman/listinfo/rhemrg-users-list
http://post-office.corp.redhat.com/mailman/listinfo/rhemrg-users-list

49

Appendix A. Revision History
Revision 1.5 Mon Jan 19 2009 Lana Brindley lbrindle@redhat.com

Added links to product page

Revision 1.4 Mon Dec 8 2008 Lana Brindley lbrindle

BZ #472478

Revision 1.3 Fri Nov 21 2008 Lana Brindley lbrindle

Minor updates prior to releasing document to Quality Engineering

Revision 1.2 Thu 30 Oct 2008 Lana Brindley lbrindle@redhat.com

BZ #444837
BZ #450647
BZ #455259
BZ #456028

Revision 1.1 Thu 30 Oct 2008 Lana Brindley lbrindle@redhat.com

Updated for new build system

Revision 1.0 Thu Jun 5 2008 Lana Brindley lbrindle@redhat.com

Completed Revision for 1.0 Release

Revision 0.1 Mon Feb 18 2008 Lana Brindley lbrindle@redhat.com

Initial draft

mailto:lbrindle@redhat.com
mailto:lbrindle
mailto:lbrindle
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

50

	Realtime Tuning Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Before you start tuning your MRG Realtime system
	Chapter 2. General System Tuning
	2.1. Using the Tuna Interface
	2.2. Setting persistent tuning parameters
	2.3. Interrupt and Process Binding
	2.4. Filesystem determinism tips
	2.5. gettimeofday speedup
	2.6. Don't run extra stuff
	2.7. Swapping and Out Of Memory Tips
	2.8. Network determinism tips
	2.9. syslog tuning tips
	2.10. The PC Card Daemon
	2.11. Reduce TCP performance spikes
	2.12. Reducing the TCP delayed ack timeout

	Chapter 3. Realtime-Specific Tuning
	3.1. Setting Scheduler Priorities
	3.2. MRG Realtime Specific gettimeofday speedup
	3.3. Using kdump and kexec with the MRG Realtime kernel
	3.4. TSC timer synchronization on Opteron CPUs
	3.5. Infiniband
	3.6. Non-Uniform Memory Access
	3.7. Using the ftrace Utility for Tracing Latencies
	3.8. Latency Tracing Using trace-cmd
	3.9. Using sched_nr_migrate to limit SCHED_OTHER processes.

	Chapter 4. Application Tuning and Deployment
	4.1. Signal Processing in Realtime Applications
	4.2. Using sched_yield and Other Synchronization Mechanisms
	4.3. Mutex options
	4.4. TCP_NODELAY and Small Buffer Writes
	4.5. Setting Realtime Scheduler Priorities
	4.6. Dynamic Libraries Loading

	Chapter 5. More Information
	5.1. Reporting Bugs
	5.2. Further Reading

	Appendix A. Revision History

