
Red Hat Enterprise MRG 1.1

Messaging User Guide
Use, configuration and tuning information for MRG Messaging

Lana Brindley

Messaging User Guide

Red Hat Enterprise MRG 1.1 Messaging User Guide
Use, configuration and tuning information for MRG Messaging
Edition 1

Author Lana Brindley lbrindle@redhat.com
Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version of the OPL is
presently available at http://www.opencontent.org/openpub/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588 Research Triangle Park, NC 27709 USA

This book discusses the use, tuning and configuration of the MRG Messaging component of the Red
Hat Enterprise MRG distributed computing platform. For installation instructions, see the Messaging
Installation Guide. To learn how to program MRG Messaging applications, see the Messaging Tutorial.

mailto:lbrindle@redhat.com
http://www.opencontent.org/openpub/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vii
1.3. Notes and Warnings ... viii

2. We Need Feedback! ... viii

1. MRG Messaging Concepts 1
1.1. The basis of MRG Messaging ... 1
1.2. How MRG Messaging operates ... 1
1.3. Exchange Types .. 2

2. Management Tools 7
2.1. MRG Management Console .. 7
2.2. Command Line Tools .. 8

2.2.1. Using qpid-config ... 8
2.2.2. Using qpid-tool ... 11
2.2.3. Using qpid-queue-stats ... 14

3. Queues 17

4. Sessions 23

5. Transactions 25

6. Persistence 27
6.1. Persistent Queues .. 28

6.1.1. Estimating Resources .. 28

7. Clustering and federation 33
7.1. Messaging Clusters .. 33
7.2. Federation .. 36

8. Authentication 43
8.1. User Authentication .. 43
8.2. Authorization .. 44
8.3. Encryption using SSL ... 48

9. Optimization 53

10. More Information 57

A. Revision History 59

iv

v

Preface

Red Hat Enterprise MRG
This book contains information on the use, tuning and configuration for the MRG Messaging
component of Red Hat Enterprise MRG. Red Hat Enterprise MRG is a high performance distributed
computing platform consisting of three components:

1. Messaging — Cross platform, high performance, reliable messaging using the Advanced Message
Queuing Protocol (AMQP) standard.

2. Realtime — Consistent low-latency and predictable response times for applications that require
microsecond latency.

3. Grid — Distributed High Throughput (HTC) and High Performance Computing (HPC).

All three components of Red Hat Enterprise MRG are designed to be used as part of the platform, but
can also be used separately.

MRG Messaging
MRG Messaging is an open source, high performance, reliable messaging distribution that implements
the Advanced Message Queuing Protocol (AMQP) standard. MRG Messaging is based on Apache
Qpid1, but includes persistence options, additional components, Linux kernel optimizations, and
operating system services not found in the Qpid implementation. We have worked closely with
companies that rely heavily on high performance messaging, and created a system to meet their real-
world needs.

This guide shows you how to use, configure and tune MRG Messaging. For installation instructions,
see the Messaging Installation Guide. If you want to write your own applications for use with MRG
Messaging, look at the Messaging Tutorial.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts2 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

1 http://cwiki.apache.org/qpid/
2 https://fedorahosted.org/liberation-fonts/

http://cwiki.apache.org/qpid/
http://cwiki.apache.org/qpid/
https://fedorahosted.org/liberation-fonts/
http://cwiki.apache.org/qpid/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl-Alt-F1 to switch to the first virtual terminal. Press Ctrl-Alt-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Pull-quote Conventions

vii

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();

Preface

viii

 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A Note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring Important boxes won't cause data loss but may cause irritation and frustration.

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product Red Hat Enterprise MRG.

When submitting a bug report, be sure to mention the manual's identifier: Messaging_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

MRG Messaging Concepts

1.1. The basis of MRG Messaging

Advanced Message Queuing Protocol
AMQP is an open-source messaging protocol. It offers increased flexibility and interoperability across
languages, operating systems, and platforms. AMQP is the first open standard for high performance
enterprise messaging. More information about AMQP is available at the AMQP website1. The full
protocol specification is also available for download2.

Apache Qpid
Qpid is an Apache Incubator project that implements the AMQP protocol. It is a multi-platform
messaging implementation that delivers transaction management, queuing, distribution, security and
management. Development on MRG Messaging is also contributed back upstream to the Qpid project.
More information can be found on the Apache Qpid website3.

Red Hat Enterprise MRG Messaging
MRG Messaging is an open source messaging distribution that uses the AMQP protocol. MRG
Messaging is based on Qpid, but includes persistence options, additional components, Linux kernel
optimizations, and operating system services not found in the Qpid implementation.

1.2. How MRG Messaging operates
MRG Messaging was designed to provide a way to build distributed applications in which programs
exchange data by sending and receiving messages. A message can contain any kind of data.
Middleware messaging systems allow a single application to be distributed over a network and
throughout an organization without being restrained by differing operating systems, languages,
or network protocols. Sending and receiving messages is simple, and MRG Messaging provides
guaranteed delivery and extremely good performance.

In MRG Messaging a message producer is any program that sends messages. The program that
receives the message is referred to as a message consumer. If a program both sends and receives
messages it is both a message producer and a message consumer.

The message broker is the hub for message distribution. It receives messages from message
producers and uses information stored in the message's headers to decide where to send it on to.
The broker will normally attempt to send a message until it gets notification from a consumer that the
message has been received.

Within the broker are exchanges and queues. Message producers send messages to exchanges,
message consumers subscribe to queues and receive messages from them.

The message headers contain routing information. The routing key is a string of text that the exchange
uses to determine which queues to deliver the message to. Message properties can also be defined
for settings such as message durability.

1 http://www.amqp.org/
2 http://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
3 http://cwiki.apache.org/qpid/

http://www.amqp.org/
http://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
http://cwiki.apache.org/qpid/
http://www.amqp.org/
http://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
http://cwiki.apache.org/qpid/

Chapter 1. MRG Messaging Concepts

2

A binding defines the relationship between an exchange and a message queue. A queue must
be bound to an exchange in order to receive messages from it. When an exchange receives a
message from a message producer, it examines its active bindings, and routes the message to the
corresponding queue. Consumers read messages from the queues to which they are subscribed.
Once a message is read, it is removed from the queue and discarded.

In the following diagram, a producer sends messages to an exchange. The exchange reads the active
bindings and places the message in the appropriate queue. Consumers then retrieve messages from
the queues.

1.3. Exchange Types
Every message is sent through an exchange, which determines how to distribute the message. In
MRG Messaging there are three standard exchanges and a custom exchange type:
• Fanout

• Direct

• Topic

• Custom Exchange

Exchange Types

3

The fanout exchange will distribute messages to every queue. Any routing information provided by the
producer is ignored.

Chapter 1. MRG Messaging Concepts

4

In a direct exchange the broker will search for matches between the message's routing key and the
queues' binding keys. If the broker finds an exact match, it will deliver the message to that queue.

Exchange Types

5

A topic exchange uses multi-part keys to find matches between routing keys and binding keys. Topic
exchanges can also use wildcard characters to find matches.

Chapter 1. MRG Messaging Concepts

6

This example demonstrates the use of multi-part keys in a topic exchange

A message producer creates four messages concerning news and weather in the United States of
America and Europe. The producer creates four different routing keys for the messages, each of which
contains two parts. The two parts of the routing keys are separated with a . (period) character:
1. usa.news

2. usa.weather

3. europe.news

4. europe.weather

There are currently four queues bound to the topic exchange. The four queues collect information on:
1. Everything related to the USA

2. All news

3. All weather

4. Everything related to Europe

These are defined as a two-part binding key, with the # (pound) character as a wildcard:
1. usa.#

2. #.news

3. #.weather

4. europe.#

So, in this example, the message with the routing key of usa.weather will be delivered to two
queues - usa.# and #.weather. Similarly, the message with the routing key of europe.news will be
delivered to the queues with the binding keys europe.# and #.news

Example 1.1. Using multi-part keys with a topic exchange

Custom Exchange Types
Exchange types that do not fit the standard set of exchanges are referred to as custom exchanges.
MRG Messaging provides a custom exchange that operates with the Extensible Markup Language
XML.

The custom XML exchange sends messages written in XML. The messages contain bindings written
in the XML query language XQuery. It is implemented as an optional module in MRG Messaging.

Chapter 2.

7

Management Tools
There are a variety of management tools available for MRG Messaging. The MRG Management
Console is a web-based tool that can be used to manage brokers, queues and messages within
a graphical interface. The command-line tools are lightweight management and diagnostic tools
designed for use at the shell prompt.

2.1. MRG Management Console
If you already have the Red Hat Enterprise MRG yum repository installed on your system, running
the yum groupinstall "MRG Management" command will install the correct packages for the
MRG Management Console. For comprehensive installation information, see the MRG Management
Console Installation Guide.

Register New Brokers
To begin using the MRG Management Console you will need to register some brokers.

1. Select Register New Brokers from the main window.

2. Enter the name of the new broker and its host name or IP address. Click on Submit to save your
information and return to the Brokers screen. You should be able to see your new broker listed.

3. From the main screen you can select the name of your new broker to edit its properties, or select
brokers to perform actions.

Chapter 2. Management Tools

8

2.2. Command Line Tools
MRG Messaging contains a number of command line utilities for monitoring and configuring
messaging brokers. http://cwiki.apache.org/qpid/mgmtc.html

qpid-config
Display and configure exchanges, queues, and bindings in the broker

qpid-tool
Access configuration, statistics, and control within the broker

qpid-queue-stats
Monitor the size and enqueue/dequeue rates of queues in a broker

perftest
Measures throughput on a variety of scenarios, using adjustable parameters

The command line utilities are included in the python client library package. Follow the installation
instructions in the Messaging Installation Guide and install the python-qpid and amqp packages.

2.2.1. Using qpid-config
1. View the full list of commands by running the qpid-config --help command from the shell

prompt:

Using qpid-config

9

$ qpid-config --help

Usage: qpid-config [OPTIONS]
qpid-config [OPTIONS] exchanges [filter-string]
qpid-config [OPTIONS] queues [filter-string]
qpid-config [OPTIONS] add exchange <type> <name> [AddExchangeOptions]
qpid-config [OPTIONS] del exchange <name>
..[output truncated]...

2. View a summary of all exchanges and queues by using the qpid-config without options:

$ qpid-config

Total Exchanges: 6
 topic: 2
 headers: 1
 fanout: 1
 direct: 2
 Total Queues: 7
 durable: 0
 non-durable: 7

3. List information on all existing queues by using the queues command:

$ qpid-config queues

 Store Size
Durable AutoDel Excl Bindings (files x file pages) Queue Name
===
 N N N 1 pub_start
 N N N 1 pub_done
 N N N 1 sub_ready
 N N N 1 sub_done
 N N N 1 perftest0
 N Y N 2 mgmt-3206ff16-
fb29-4a30-82ea-e76f50dd7d15
 N Y N 2 repl-3206ff16-
fb29-4a30-82ea-e76f50dd7d15
 N Y N 2 mgmt-
df06c7a6-4ce7-426a-9f66-da91a2a6a837
 N Y N 2 repl-
df06c7a6-4ce7-426a-9f66-da91a2a6a837

4. Add new queues with the add queue command and the name of the queue to create:

Chapter 2. Management Tools

10

$ qpid-config add queue queue_name

5. To delete a queue, use the del queue command with the name of the queue to remove:

$ qpid-config del queue queue_name

Note
For more information on using qpid-config to manage queues, see Chapter 3,
Queues.

6. List information on all existing exchanges with the exchanges command. Add the -b option to
also see binding information:

$ qpid-config -b exchanges

Exchange '' (direct)
 bind pub_start => pub_start
 bind pub_done => pub_done
 bind sub_ready => sub_ready
 bind sub_done => sub_done
 bind perftest0 => perftest0
 bind mgmt-3206ff16-fb29-4a30-82ea-e76f50dd7d15 => mgmt-3206ff16-
fb29-4a30-82ea-e76f50dd7d15
 bind repl-3206ff16-fb29-4a30-82ea-e76f50dd7d15 => repl-3206ff16-
fb29-4a30-82ea-e76f50dd7d15
Exchange 'amq.direct' (direct)
 bind repl-3206ff16-fb29-4a30-82ea-e76f50dd7d15 => repl-3206ff16-
fb29-4a30-82ea-e76f50dd7d15
 bind repl-df06c7a6-4ce7-426a-9f66-da91a2a6a837 => repl-
df06c7a6-4ce7-426a-9f66-da91a2a6a837
 bind repl-c55915c2-2fda-43ee-9410-b1c1cbb3e4ae => repl-
c55915c2-2fda-43ee-9410-b1c1cbb3e4ae
Exchange 'amq.topic' (topic)
Exchange 'amq.fanout' (fanout)
Exchange 'amq.match' (headers)
Exchange 'qpid.management' (topic)
 bind mgmt.# => mgmt-3206ff16-fb29-4a30-82ea-e76f50dd7d15

7. Add new exchanges with the add exchange command. Specify the type (direct, topic or fanout)
along with the name of the exchange to create. You can also add the --durable option to make
the exchange durable:

$ qpid-config add exchange direct exchange_name --durable

8. To delete a queue, use the del exchange command with the name of the exchange to remove:

Using qpid-tool

11

$ qpid-config del exchange exchange_name

2.2.2. Using qpid-tool
1. The qpid-tool creates a connection to a broker, and commands are run within the tool, rather

than at the shell prompt itself. To create the connection, run the qpid-tool at the shell prompt
with the name or IP address of the machine running the broker you wish to view. You can also
append a TCP port number with a : character:

$ qpid-tool localhost

Management Tool for QPID
qpid:

2. If the connection is succesful, qpid-tool will display a qpid: prompt. Type help at this prompt to
see the full list of commands:

qpid: help
Management Tool for QPID

Commands:
list - Print summary of existing objects by class
list <className> - Print list of objects of the specified class
list <className> all - Print contents of all objects of specified
 class
...[output truncated}...

3. qpid-tool uses the word objects to refer to queues, exchanges, brokers and other such
devices. To view a list of all existing objects, type list at the prompt:

qpid: list
Management Object Types:
ObjectType Active Deleted
================================
qpid.binding 21 0
qpid.broker 1 0
qpid.client 1 0
qpid.exchange 6 0
qpid.queue 13 0
qpid.session 4 0
qpid.system 1 0
qpid.vhost 1 0

4. You can choose which objects to list by also specifying a class:

Chapter 2. Management Tools

12

qpid: list qpid.system
Objects of type qpid.system
ID Created Destroyed Index
==================================
1000 21:00:02 - host

5. To view details of an object class, use the schema command and specify the class:

qpid: schema queue
Schema for class 'qpid.queue':
Element Type Unit Access Notes
 Description
===
vhostRef reference ReadCreate index
name short-string ReadCreate index
durable boolean ReadCreate
autoDelete boolean ReadCreate
exclusive boolean ReadCreate
arguments field-table ReadOnly
 Arguments supplied in queue.declare
storeRef reference ReadOnly
 Reference to persistent queue (if durable)
msgTotalEnqueues uint64 message
 Total messages enqueued
msgTotalDequeues uint64 message
 Total messages dequeued
msgTxnEnqueues uint64 message
 Transactional messages enqueued
msgTxnDequeues uint64 message
 Transactional messages dequeued
msgPersistEnqueues uint64 message
 Persistent messages enqueued
msgPersistDequeues uint64 message
 Persistent messages dequeued
msgDepth uint32 message
 Current size of queue in messages
msgDepthHigh uint32 message
 Current size of queue in messages (High)
msgDepthLow uint32 message
 Current size of queue in messages (Low)
byteTotalEnqueues uint64 octet
 Total messages enqueued
byteTotalDequeues uint64 octet
 Total messages dequeued
byteTxnEnqueues uint64 octet
 Transactional messages enqueued

Using qpid-tool

13

byteTxnDequeues uint64 octet
 Transactional messages dequeued
bytePersistEnqueues uint64 octet
 Persistent messages enqueued
bytePersistDequeues uint64 octet
 Persistent messages dequeued
byteDepth uint32 octet
 Current size of queue in bytes
byteDepthHigh uint32 octet
 Current size of queue in bytes (High)
byteDepthLow uint32 octet
 Current size of queue in bytes (Low)
enqueueTxnStarts uint64 transaction
 Total enqueue transactions started
enqueueTxnCommits uint64 transaction
 Total enqueue transactions committed
enqueueTxnRejects uint64 transaction
 Total enqueue transactions rejected
enqueueTxnCount uint32 transaction
 Current pending enqueue transactions
enqueueTxnCountHigh uint32 transaction
 Current pending enqueue transactions (High)
enqueueTxnCountLow uint32 transaction
 Current pending enqueue transactions (Low)
dequeueTxnStarts uint64 transaction
 Total dequeue transactions started
dequeueTxnCommits uint64 transaction
 Total dequeue transactions committed
dequeueTxnRejects uint64 transaction
 Total dequeue transactions rejected
dequeueTxnCount uint32 transaction
 Current pending dequeue transactions
dequeueTxnCountHigh uint32 transaction
 Current pending dequeue transactions (High)
dequeueTxnCountLow uint32 transaction
 Current pending dequeue transactions (Low)
consumers uint32 consumer
 Current consumers on queue
consumersHigh uint32 consumer
 Current consumers on queue (High)
consumersLow uint32 consumer
 Current consumers on queue (Low)
bindings uint32 binding
 Current bindings
bindingsHigh uint32 binding
 Current bindings (High)
bindingsLow uint32 binding
 Current bindings (Low)
unackedMessages uint32 message
 Messages consumed but not yet acked

Chapter 2. Management Tools

14

unackedMessagesHigh uint32 message
 Messages consumed but not yet acked (High)
unackedMessagesLow uint32 message
 Messages consumed but not yet acked (Low)
messageLatencySamples delta-time nanosecond
 Broker latency through this queue (Samples)
messageLatencyMin delta-time nanosecond
 Broker latency through this queue (Min)
messageLatencyMax delta-time nanosecond
 Broker latency through this queue (Max)
messageLatencyAverage delta-time nanosecond
 Broker latency through this queue (Average)

6. To exit the tool and return to the shell, type quit at the prompt:

qpid: quit
Exiting...

2.2.3. Using qpid-queue-stats
1. View the full list of commands by running the qpid-queue-stats --help command from the

shell prompt:

$ qpid-queue-stats --help
usage: qpid-queue-stats [options]

options:
-h, --help show this help message and exit
-a BROKER_ADDRESS, broker-addr is in the form: [username/password@]
...[output truncated]...

2. View the statistics for all queues in the local broker by using the qpid-queue-stats alone:

$ qpid-queue-stats
Queue Name Sec Depth Enq Rate Deq Rate
===
mgmt-localhost.localdomain.12531 10.00 3 1.40 1.20
mgmt-localhost.localdomain.12531 10.00 3 0.50 0.50
mgmt-localhost.localdomain.12531 10.00 5 0.70 0.50
mgmt-localhost.localdomain.12531 10.00 3 1.50 1.70
mgmt-localhost.localdomain.12531 10.00 2 0.50 0.60
mgmt-localhost.localdomain.12531 10.00 4 0.60 0.40
message_queue 10.00 11 0.37 0.00
mgmt-localhost.localdomain.12531 10.00 2 1.10 1.30
message_queue 10.00 0 0.00 1.10

Using qpid-queue-stats

15

3. To view the statistic for a particular broker, use the qpid-view-stats command and specify
the broker. Brokers can be specified in a number of different ways. If the broker requires
authentication, specify the username and password separated by a / character and followed by
the @ character. The broker itself can be specified by either hostname or IP address, which can be
followed by a port number separated by a : character. The format for brokers is:

[username]/[password]@[hostname]|[IP Address]:[port]

Some valid examples are:
• localhost

• 10.1.1.7:10000

• broker-host:10000

• guest/guest@localhost

16

Chapter 3.

17

Queues
Queues are bound to one or more exchanges. Messages that are published to the exchanges are
routed to queues where the routing and binding keys match. Queues then store messages until they
are consumed by clients.

Every queue is bound to the default exchange, which provides a simple and direct method of
publishing messages. Other methods are discussed in Chapter 1, MRG Messaging Concepts.

Clients receive messages by subscribing to the queue that contains the messages they want to see.
These subscribers can browse through messages without acquiring them, leaving messages on the
queue for other subscribers to browse. Alternatively, clients can consume the messages, permanently
removing them from the queue once they are read. This creates competition for messages. Once they
have been removed from the queue, they are no longer available for other consumers to read.

Exclusive queues
Exclusive queues can only be used in one session at a time. When a queue is declared with the
exclusive property set, that queue is not available for use in any other session until the session that
declared the queue has been closed.

If the server receives a declare, bind, delete or subscribe request for a queue that has been
declared as exclusive, an exception will be raised and the requesting session will be ended.

Deleting Queues
When a queue is deleted the queue and any messages it contains are destroyed, and all bindings that
refer to the queue are removed. When the broker receives a queue delete command for a particular
queue, the following checks are made before the deletion occurs:

1. If ACL is enabled, the broker will check that the user who initiated the deletion has permission to
do so

2. If the ifEmpty flag is passed the broker will raise an exception if the queue is not empty

3. If the ifUnused flag is passed the broker will raise an exception if the queue has subscribers

4. If the queue is exclusive the broker will check that the user who initiated the deletion owns the
queue

Once the queue has been deleted, the management object associated with the queue will remain.
This makes it possible to see the deleted queue using qpidd-tool or the MRG Management
Console. These tools will show the queue with a timestamp of when it was deleted.

Automatically deleted queues
When a queue is created, its lifecycle can be limited by marking it to be automatically deleted. This
can be achieved by setting the auto-delete field. Auto-delete is handled differently for exclusive and
non-exclusive queues:

• An exclusive, auto-deleted queue is deleted when the session that declared it ends

• A non-exclusive auto-deleted queue will be deleted once the last subscriber is cancelled. It will not
not be deleted until at least one session has subscribed and then cancelled that subscription.

Chapter 3. Queues

18

Rejected and orphaned messages
Messages can be rejected by a subscribed client. Once a message has been rejected by a client, it
will not be re-delivered. Messages can also be orphaned if they are left on a queue when that queue is
deleted.

For both rejected and orphaned messages, the system can be configured to handle them using an
alternate-exchange. An alternate exchange is specified when the queue is declared. Any rejected
or orphaned messages will automatically be routed to the alternate exchange, to be re-routed to other
bound queus or deleted if necessary. If no alternate exchange is specified, all rejected and orphaned
messages will be automatically deleted.

Controlling queue size
A size limit can be set on a queue by specifying values for qpid.max_count and qpid.max_size
when declaring the queue. By default, an exception will be raised when published messages exceed
this limit.

The default behaviour can be controlled by changing the qpid.policy_type option. The possible
values for this option are:
reject

The publisher of a message that exceeds the limit receives an exception. This is the default
behavior for all non-durable queues

flow_to_disk
The content of messages that exceed the limit is freed from memory and held on disk. This occurs
for both persistant and non-persistant messages and is the default behavior for durable queues

ring
The oldest messages are removed to make room for newer messages

ring_strict
Similar to the ring policy, but will not remove messages that have not yet been accepted by a
client. If the limit is exceeded and the oldest message has not been accepted, the publisher will
receive an exception.

Ignoring locally published messages
Under the AMQP model, exclusive, auto-deleted queues are often bound to an exchange that enables
the queue owner to subscribe to messages for consumption. In this case, a queue owner might send
itself messages using that exchange, but have no need to receive those messages.

To ignore locally published messages, a no-local key can be specified in the arguments to the
declare used to create the queue. The value of this key is irrelevant, its presence alone will cause the
correct behavior. This key will cause the queue to discard any messages that were published by the
same connection as that of the session that owns the queue.

Last value queues
The last value queue type causes logically updated versions of previous messages to appear to
overwrite the older messages.

The last value queue uses the value of the qpid.LVQ_key to determine whether a newly published
message is an update to an existing message on the queue. If this is the case, the new message will

19

appear to overwrite the older message. A subscriber that requests messages after this has occurred
will see only the newer message.

There are two types of Last Value Queue:

• LVQ

• LVQ NO BROWSE

LVQ uses a header as a key. If the key matches it replaces the message in the queue, unless:
• the message with the matching key has been acquired

• the message with the matching key has been browsed

In these cases the message is placed into the queue in FIFO. If another message with the same key
is received the message that has not been accessed will be replaced. These two exceptions protect
the consumer from missing the last update if a consumer or browser has accessed a message.

LVQ NO BROWSE also uses a header for a key. If the key matches it replaces the message in the
queue unless the message with the matching key has been acquired. In this case browsed messaged
are not invalidated, so updates to messages already browsed on a key will be missed. If a new
subscription is created the latest values will be seen.

To use this feature, add a qpid.last_value_queue or qpid.last_value_queue_no_browse
key to the arguments of queue declare. The value of the key is user-selected and used only for key
matching. Messages published to the queue then need to specify a value for the qpid.LVQ_key in
the headers of messages they publish.

This example demonstrates the use of LVQ.

{
#include "qpid/client/QueueOptions.h"

QueueOptions qo;
qo.setOrdering(LVQ);

session.queueDeclare(arg::queue=queue, arg::arguments=qo);

.....
string key;
qo.getLVQKey(key);

....

For each message, set the into application headers before transfer

message.getHeaders().setString(key,"RHT");
}

Example 3.1. Setting the LVQ

Chapter 3. Queues

20

Durable queues
Queues can be defined as durable. A durable queue is stored in memory, and can survive a restart
of the broker. However, messages on the queue must also be declared as persistent for them to be
recovered..

There are other options that can be used with durable queues to control the sizing and tuning of the
journal used to record queue state on disk. For more information, see Chapter 6, Persistence.

Enforcing persistence on the last node in a cluster
PersistLastNode is used if a cluster fails down to a single node. In this situation, a queue would
treat all transient messages as persistent until additional nodes in the cluster are restored.

This mode will not be triggered if a cluster is started with only one node. It will only be triggered if
active nodes fail until there is only one node remaining.

If this mode is used, queues must be configured to be durable, otherwise it will fail to persist.

This example demonstrates the use of Persist Last Node

#include "qpid/client/QueueOptions.h"

QueueOptions qo;
qo.clearPersistLastNode();

session.queueDeclare(arg::queue=queue, arg::durable=true,
rg::arguments=qo);

Example 3.2. Using Persist Last Node

Configuring queue options
This section explains how to set queue options from the shell prompt using the qpid-config tool.

Note
Information on obtaining and using the qpid-config tool is in Section 2.2.1, “Using
qpid-config”.

1. List information on all existing queues by using the queues command:

$ qpid-config queues

 Store Size
Durable AutoDel Excl Bindings (files x file pages) Queue Name
===
 N N N 1 pub_start
 N N N 1 pub_done
 N N N 1 sub_ready
 N N N 1 sub_done

21

 N N N 1 perftest0
 N Y N 2 mgmt-3206ff16-
fb29-4a30-82ea
 N Y N 2 repl-3206ff16-
fb29-4a30-82ea
 N Y N 2 mgmt-
df06c7a6-4ce7-426a-9f66
 N Y N 2 repl-
df06c7a6-4ce7-426a-9f66

2. Queues are created using a command with this syntax:

$ qpid-config [options] add queue queue_name [add queue options]

The possible options are:
--durable

Makes the queue durable (see Chapter 6, Persistence for more information about durable
queues

--cluster-durable
Makes the queue durable if there is only one functioning cluster node

--file-count NUMBER
Set the number of files in the persistence journal for the queue. Defaults to 8

--file-size NUMBER
Set the number of pages in the file (each page is 64KB). Defaults to 24

--max-queue-size NUMBER
Maximum queue size in bytes.

--max-queue-count NUMBER
Maximum queue size in number of messages

--policy-type TYPE
Action to take when queue limit is reached. TYPE can be:
• reject

• flow_to_disk

• ring

• ring_strict

--last-value-queue
Enable last value queue behavior on the queue

3. To delete a queue, use the del queue command with the name of the queue to remove:

$ qpid-config del queue queue_name

Chapter 3. Queues

22

Creating queues from within applciations
Applications create queues using AMQPs queue declare command. This command allows the
durable, exclusive, auto-delete and alternate-exchange properties to be specified. Any qpidd specific
options can be passed in the arguments field. See the MRG Messaging API documentation for the
client language you wish to use for more details.

Chapter 4.

23

Sessions
Sessions are a uniquely identified conversation between a client and the broker. Multiple distinct
sessions can share the same connection to the broker. An application process can also have multiple
connections open to a broker.

Completion of commands issued by a client
All the interaction with a broker is done by issuing commands on a session. The valid commands are
defined by the AMQP specification and include operations for declaring a queue and transferring a
message. The broker can also be asked to indicate when it completes commands. This allows clients
to confirm successful execution.

Subscriptions and received messages
To receive messages from the broker, the client subscribes to a queue. The broker will then deliver
available messages for that subscription.

Message acquisition and acceptance
Message acquisition and acceptance occurs as a transfer of ownership of a message.

By acquiring a message, a subscriber is given the option to take ownership of that message. A
message can be acquired by only one subscriber at any time. While a message is acquired by a
subscriber, the broker can not give it to any other. The subscriber can then confirm that it wishes
to accept ownership of any acquired message by accepting that message. At this point the broker
relinquishes ownership and permanently removes the message from the queue.

A subscriber might choose not to take ownership of an acquired message. In this case, the message
is released. This allows the broker to re-deliver the message to any other available subscriber - this
can include the subscriber that just released the message.

Acquired messages can also be rejected. This tells the broker that the message is not valid for further
delivery and should be dead-lettered or discarded. See Rejected and orphaned messages for more
information on rejected messages.

The default acquire mode for a subscription is the pre-acquired mode. In this mode, delivered
messages are implicitly acquired by the subscriber that receives them. Alternatively, a subscriber can
use the not-acquired mode. This allows the subscriber to request that it is sent messages that are
on the queue without acquiring them. Messages can then be acquired explicitly.

In addition to the acquire mode, a subscription can also set an accept mode. In the explicit mode,
ownership of a message is transferred to the acquiring subscriber only when the message has
been explicitly accepted. Alternatively, if the accept mode is set to none, messages are considered
accepted as soon as they are acquired. This mode is less reliable, but is often suitable where
message loss on session failure poses no risk to the system.

Flow control and completion of messages sent to the broker
A subscriber can control the flow of messages from a subscribed queue by allocating credit to the
broker for a particular number of messages or a total size of message content. As the broker delivers
messages it spends this credit by decrementing the message credit by one and decrementing the size

Chapter 4. Sessions

24

credit by the size of the content of the message. The broker cannot send a message to a subscription
for which it does not have sufficient credit.

There are two modes of credit allocation defined by the AMQP specification:
• In credit mode, credit must be explicitly re-issued by the subscriber before the broker can

recommence sending messages

• In window mode, the credit is automatically reissued for received messages. In this mode, the
client indicates that a message has been received by informing the broker of the completion of the
transfer. Though completion is essentially a form of acknowledgement, it should not be confused
with acceptance which is an confirmation of ownership transfer.

In both modes, unlimited credit can be allocated for the message count and the total content size.

Chapter 5.

25

Transactions
A transaction is an atomic group of published or accepted messages. It can be viewed as a set of
enqueue and dequeue operations on one or more queue. Enqueues occur when messages are
published on one or more queues. Dequeues occur when a message is accepted.

The atomicity of the group of operations within a transaction means that they will either all succeed
or all fail. In these terms, success indicates that the published messages all become available on
their respective queues, and the accepted messages are permanently removed from their respective
queues. Failure indicates that the published messages are discarded, the acceptances are ignored
and the messages remain unaccepted.

A message published under a transaction will not become available to subscribers on any queue until
the transaction is committed. A message that is accepted under a transaction will not be dequeued
until the transaction is committed.

If a transaction is rolled-back then all messages published under that transaction will be discarded.
All messages accepted under it will remain unaccepted. This means that they will not be returned to
the queue or re-delivered unless it has been explicitly requested. The API used will determine the
expected behavior. If a transactional session ends without committing a transaction, the transaction
itself will be automatically rolled-back.

Both local and distributed transactions are supported by qpidd. In a local transaction the only
atomic operations are those that occur on the broker to which the transactional session is connected.
Distributed transactions use two-phase commit to achieve atomicity across multiple services.

26

Chapter 6.

27

Persistence
A persistence library allows MRG Messaging to store messages and queue configuration, ready to
be reloaded in the event of machine or network failure. When the persistent store module is loaded, it
allows messages and other persistent state information to be recovered when a broker is restarted.

When a transaction occurs, a journal called the Transaction Prepared List (or TPL) is initialized. This
journal stores the state of the transaction in the broker as it occurs. If the broker then crashes or is
stopped for any reason, the journal can restore the information to the broker when it is restarted. In
this way, any in-progress transactions that were either prepared or committed when the broker failed
will be recovered.

For storage of the broker itself, and for exchange and binding information, the Berkeley Database1 is
used to store and recover information.

When adjusting parameters for persistence, there are three settings specific to the TPL. This allows
alternate settings for those messages that are recovered.

In order for messages to be stored the persistence store must be loaded. The --store-dir
command specifies the directory used for for the persistence store and any configuration information.
The default directory is /var/lib/qpidd. See Table 6.1, “Persistence Options” for options on how to
change this behavior.

Important
If the persistence module is not loaded, messages and the broker state will not be stored
to disk, even if the queue and messages sent to it are marked persistent.

Important
Only one running broker can access a data directory at a time. If another broker
attempts to access the data directory it will fail with an error stating: Exception: Data
directory is locked by another process.

In addition to loading the persistence store, queues and messages also need to be identified as
durable. This can be done in the client application or by using the qpid-config command line tool.
See the MRG Messaging Tutorial for more information about creating client applications.

It is important to set the store journal size to match the anticipated persistent message queue size.
The store uses a fixed-size circular file buffer, so it is possible for the store to run out of space to
queue messages if consumers are slow or messages are very large.

Each queue that is marked persistent will cause the broker to create an instance of the store together
with its files. The broker will stop accepting persistent messages when approximately 80% of the
capacity is reached. Consuming of messages (dequeueing), however will be allowed to continue.
Once the dequeued messages have cleared sufficient space, message queuing will continue as
normal. As a rule of thumb, the journal capacity should be about double the size expected to be stored
on the disk at any one moment in time.

1 http://www.oracle.com/technology/products/berkeley-db/index.html

http://www.oracle.com/technology/products/berkeley-db/index.html
http://www.oracle.com/technology/products/berkeley-db/index.html

Chapter 6. Persistence

28

Warning
A totally full condition on the journal (in which there is no more write space in the circular
buffer) is a fatal condition. It is possible to read the messages in a full journal, but not to
dequeue them, as dequeueing requires the ability to write dequeue records. To prevent
this, message queuing is disabled at 80% capacity.

Persistence Options

--store-dir DIRECTORY Specifies the directory used for storage of
persistence configuration information. The
default is /var/lib/qpidd.

--num-jfiles NUMBER Set the number of files for each instance of the
persistence journal. The default is 8.

--jfile-size-pgs NUMBER Set the size of each journal file in multiples of
64KB. The default is 24.

--wcache-page-size NUMBER The size (in KB) of the pages in the write page
cache. Allowable values must be powers of 2 (1,
2, 4, ... 128). Lower values will decrease latency
but also decrease throughput. The default is 32.

--tpl-num-jfiles NUMBER Set the number of files for each instance of the
TPL journal. The default is 8.

--tpl-jfile-size-pgs NUMBER Set the size of each TPL journal file in multiples
of 64KB. The default is 24.

--tpl-wcache-page-size NUMBER The size (in KB) of the pages in the TPL write
page cache. Allowable values must be powers
of 2 (1, 2, 4, ... 128). Lower values will decrease
latency but also decrease throughput. The
default is 32.

Table 6.1. Persistence Options

6.1. Persistent Queues
When a broker creates persistent queues, the store module is used to create, write and maintain the
queue journal files on disk for as long as the queue exists. However, opening a number of persistent
queues at the same time can cause system resource limitations. This section discusses some
considerations to avoid reaching default limits or exhausting system resources.

6.1.1. Estimating Resources

Estimate the number of simultaneous persistent queues
Determine the number of simultaneous persistent queues that will be required. This number is the
primary value that determines resource consumption, so it will be helpful to estimate typical, best and
worst case scenarios.

Estimating Resources

29

Estimate the required number of file handles
Once the likely range of simultaneous persistent queues is known, it is possible to estimate the
number of file handles that will be consumed. This calculation is effected by the broker store settings.

The broker store parameter --num-jfiles (or the equivalent setting in the broker configuration file)
sets the default number of files used for all persistent queues that will be created on that broker – and
thus determines the rate at which file handles will be consumed. This parameter defaults to 8 files.

Note
The MRG Management Console may be used to override these defaults and create
individual queues that have file geometry parameters (including the number of files) that
differ from this setting.

The store uses a single journal instance for storing transaction boundaries. This journal is called
the Transaction Prepared List (TPL). The TPL is initialized when the first transaction occurs on any
persistent queue, and has its own geometry parameters, separate from the other journal instances.
The --tpl-num-jfiles parameter (or the equivalent setting in the broker configuration file) has little
effect on overall file handle consumption and can be ignored in the calculation.

The broker opens one write file handle for each file. It will also open one for the read pipeline on
initialization. Other file handles are opened temporarily during recovery, but are closed again. Once
normal operations begin, the read pipeline will eventually be invalidated by overwrite, and the read
handle closed and released. However, if flow-to-disk is initiated on a queue the read pipeline may be
reinitialized, and a read file handle will be opened for that queue until it is invalidated by overwrite once
again.

Note
When using default settings, expect to consume nine file handles per queue with no
transactions.

This example uses the formulas given above to calculate the required number of file handles.

Using the default settings, 6,144 simultaneous persistent queues requires 6,144 * 9 = 55,296 file
handles.

Example 6.1. Calculating the number of file handles

Estimate the required number of AIO event handles
The store reserves one AIO (Asynchronous Input/Output) event handle for each page of the journal
memory cache for both read and write pipelines. Since the overall size of each of these caches is fixed
at 1MB, the size of the pages will directly affect the number of pages and hence the number of AIO
event handles being reserved on queue creation. The broker parameter --wcache-page-size sets
the journal write cache page size. The total number of pages is obtained by dividing the total cache
size by the page size. The journal read cache page size is not adjustable because it is used internally
only to keep the cache full for read operations.

The write cache page size affects message storage latency for persistent queues and messages.
Smaller page sizes means that messages are written to disk more quickly, although this occurrs at the

Chapter 6. Persistence

30

expense of throughput and a greater number of pages and consumed AIO event handles. Conversely,
larger page sizes improve overall persistent message throughput and lowers the page count, at the
expense of message latency.

The kernel manages this resource on a system-wide basis. If any other processes use the AIO
system, then their AIO event handle usage must be added to any estimates.

Note
When using default settings, expect to consume 64 AIO event handles per queue with no
transactions.

The number of pages in the cache is obtained by dividing the page size by the fixed total cache size.

This example uses the formula given above to calculate the required number of AIO event handles.

Using the default settings, 6144 simultaneous queues requires 6,144 * 64 = 393,216 AIO handles.

Example 6.2. Calculating the number of AIO event handles

Estimate the required memory
There are two main memory allocations resulting from persistent queue declarations.

Journal cache: each persistent queue is allocated 1 MB for a journal write cache and 1 MB for a
journal read cache. The journal cache sizes cannot be adjusted, however the number of pages used
for the journal write cache can be adjusted.

Kernel: the kernel reserves space for expected events. This amount is then rounded up to the memory
page size (4KB). An overhead of 312 bytes for every AIO context is then added to the total.

Note
When using default settings, expect to consume about 2MB per queue. The kernel effects
are neglible.

This example uses the formulas given above to estimate the required memory.

Using the default settings, 5,000 simultaneous persistent queues will require about 10GB of cache
memory. If the average queue depth is 1,000 messages and the average message size is 1KB, the
broker will need 5,000 * 1,000 * 1 = 5,000,000KB (5GB) to keep the messages in the queues.

Example 6.3. Estimating the required memory

Changing the resource limits
1. Change the file handle limit by switching to the root user and opening the /etc/security/

limits.conf in your preferred text editor. Add the following line for the qpidd user to set both
the hard and soft limits:

qpidd - nofile 32768

Estimating Resources

31

2. Change the AIO handle limit by opening the /etc/sysctl.conf and adding the following line:

fs.aio-max-nr = 262144

3. Check that the system that will run the broker has sufficient memory to support the required
number of queues.

4. After making the changes, perform a reboot of the system to start using the new settings. Check
the appropriate files to ensure the changes have persisted before starting the broker.

Common errors
There are two errors that can occur as a result of resource problems.

jexception 0x0400 fcntl::clean_file() threw JERR_FCNTL_OPENWR: Unable to
 open file for write.
(open() failed: errno=24 (Too many open files))

This error occurs if the broker runs out of available file handles. Under typical default conditions, the
broker store will consume all available handles at around 110 queues.

jexception 0x0103 pmgr::initialize() threw JERR__AIO: AIO error.
(io_queue_init() failed: errno=11 (Resource temporarily unavailable))

This error occurs if the broker runs out of available AIO event handles.

32

Chapter 7.

33

Clustering and federation

7.1. Messaging Clusters
A Messaging Cluster is a group of brokers that act as a single broker. Changes on any broker are
replicated to all other brokers in the same Messaging Cluster, so if one broker fails, its clients can fail-
over to another broker without loss of state. The brokers in a Messaging Cluster may run on the same
host or on different hosts.

Messaging Clusters are implemented using using OpenAIS, which provides a reliable multicast
protocol, tools, and infrastructure for implementing replicated services. You must install and configure
OpenAIS to use MRG broker groups.

Messaging Clusters can be used together with Red Hat Clustering Services (RHCS) by starting
brokers with the --cluster-cman option

Message Clusters in MRG Messaging uses an Active/Active model. In this model, all possible brokers
are active at all times. Producers and consumers can be connected to any broker in the cluster.
Additionally, any broker can be killed and restarted, and the cluster will retain its operational state. This
model provides scalability and enhanced load-balancing.

Clustering requirements
1. The user that runs the broker must be a member of the group root and must have their primary

group set to ais. A user called 'qpidd' with the correct membership is created during installation.

Starting the AIS service
Clustering requires the Application Interface Specification (AIS) to be running. AIS requires the
openais package.

1. Ensure the openais service is not running:

service openais stop
Stopping OpenAIS daemon (aisexec): [OK]

2. Create a file at /etc/ais/openais.conf using the following information:

totem {
 version: 2
 secauth: off
 threads: 0
 interface {
 ringnumber: 0
 bindnetaddr: 192.168.1.0 # Modify for your network
 mcastaddr: 226.94.1.1
 mcastport: 5405
 }
}

Chapter 7. Clustering and federation

34

logging {
 to_syslog: yes
}

amf {
 mode: disabled
}

3. The bindnetaddr entry should be set to the subnet you will use for cluster multicast. Use
the same subnet for for all hosts in the cluster. You can find the subnet with /sbin/ifconfig. For
example:

/sbin/ifconfig eth0
 eth0 Link encap:Ethernet HWaddr 00:1E:37:88:72:8A
 inet addr:192.168.1.103 Bcast:192.168.1.255
 Mask:255.255.255.0

In this case the local address is 192.168.1.103 and the subnet mask is 255.255.255.0. The subnet
is the bitwise AND of the mask and the local address, 192.168.1.255.

4. Restart the openais service:

service openais start
Starting OpenAIS daemon (aisexec): [OK]

Setting up the redundant ring
OpenAIS supports a redundant ring protocol (RRP), which uses two physically separate networks for
cluster communication, so that the cluster can continue to operate if one network fails.

1. Choose the replication mode for your environment. RRP has 3 modes:

• active

Active replication can offer slightly lower latency in faulty network environments, however it can
reduce throughput

• passive

Passive replication can nearly double the speed from transmit to delivery, but also carries the
potential for the protocol to become bound to a single CPU

• none

Disables redundant ring.

2. To enable RRP make the following changes to openais.conf:

a. In the totem section, add rrp_mode=active or rrp_mode=passive

Messaging Clusters

35

b. Add a second interface section with a different bindnetaddr for your second network.

For more information about configuring openAIS see the openais.conf(5) man page.

Note
Make sure you run brokers that are members of a cluster as a user with primary group
"ais".

3. Once the cluster is running, you can view the active state from qpid-tool:

Object of type org.apache.qpid.cluster:cluster: (last sample time:
 15:07:23)
Type Element 110
===
property brokerRef 102
property clusterName test_cluster
property clusterID 1a911c67-6fcd-4ffa-8fc8-0dc74ec14ec0
property publishedURL amqp:tcp:10.16.18.96:5672
property clusterSize 2
property status ACTIVE
property members amqp:tcp:10.16.18.96:5672
 amqp:tcp:10.16.18.96:5673

You can also see this information from the MRG Management Console. See Section 2.1, “MRG
Management Console” for more information.

Options for clustering

--cluster-name NAME Name of the Messaging Cluster to join. A
Messaging Cluster consists of all brokers
started with the same cluster-name and openais
configuration.

--cluster-url URL An AMQP URL containing the local address
advertised to clients for fail-over connections.
This is different for each host. By default, all local
addresses are advertized. You only need to set
this if
1. Your host has more than one active network

interface.

2. You want to restrict client fail-over to a
specific interface or interfaces.

The URL is of the form
amqp:tcp:<host>:<port>[,tcp:<host>:<port> ...]
For example:
amqp:tcp:192.168.1.103:5672,tcp:192.168.1.105:5672

Chapter 7. Clustering and federation

36

Options for clustering

--cluster-cman CMAN protects against the "split-brain" condition,
in which a network failure splits the cluster into
two sub-clusters that cannot communicate with
each other. When "split-brain" occurs, each of
the sub-clusters can access shared resources
without knowledge of the other sub-cluster,
resulting in corrupted cluster integrity.

To avoid "split-brain", CMAN uses the notion of
a "quorum". If more than half the cluster nodes
are active, the cluster has quorum and can act.
If half (or fewer) nodes are active, the cluster
does not have quorum, and all cluster activity
is stopped. There are other ways to define the
quorum for particular use cases (e.g. a cluster of
only 2 members), see the CMAN documentation1

for more detail.

When enabled, the MRG broker will wait until it
belongs to a quorate cluster before accepting
client connections. It continually monitors the
quorum status and shuts down immediately if the
node it runs on loses touch with the quorum.

Table 7.1. Options for clustering

7.2. Federation
Federation is used to provide geographical distribution of brokers. A number of individual brokers, or
clusters of brokers, can be federated together. This allows client machines to see and interact with the
federation as though it were a single broker. Federation can also be used where client machines need
to remain on a local network, even though their messages have to be routed out.

http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Cluster_Suite_Overview/s2-clumembership-overview-CSO.html

Federation

37

Federation is used primarily for connecting disparate locations across a wide area network. Full
connectivity across an enterprise can be achieved while keeping local message traffic isolated to
a single location. Departmental brokers can be specified with individual policies that control inter-
departmental message traffic flow.

Some applications can benefit from having a broker co-resident with the client. This is good for
situations where the client produces data that must be delivered reliably but connectivity can not be
guaranteed. In this case, a co-resident broker provides queueing and durability that is not available in
the client on its own.

Federation bridges disjointed IP networks. Message brokers can be configured to allow message
connectivity between networks where there is no IP connectivity. For example, an isolated, private IP
network can have messaging connectivity to brokers in other outside IP networks.

Links and routes
Federation is configured through a series of links and routes.

A link is a connection between two brokers that allows messages to be passed between them. A link
is a transport level connection (using a protocol such as TCP, RDMA, or SSL) that is initiated by a
broker and accepted by another broker. The broker that initiates the link is considered the client in
the connection. The broker that receives that connection will not treat it any differently from any other
client connection, other than annotating it as being for federation.

Routes are the paths that messages take from one broker to another, and can run along one or more
links to the final destination. A route is associated with an AMQP session established over the link
connection. A route controls the flow of messages across the link between brokers, and multiple
routes can share the same link. Messages will flow over a single route in only one direction. For bi-
directional connectivity a pair of routes must be created, one for each direction of message flow.

Chapter 7. Clustering and federation

38

Routes always consist of a session and a subscription for consuming messages. Depending on the
configuration, a route can have a private queue on the source broker with a binding to an exchange on
that broker.

Routes can be configured from either the source broker or the destination broker. In most cases, they
are configured from the source broker. Sometimes it is more convenient to configure links and routes
from the destination broker. For instance, if brokers are co-resident with data sources, each source
can be configured to send data to the central broker.

Making connections
When a link is created on a broker, it will immediately attempt to establish a transport-level connection
to another broker. If the connection fails due to a communication error, it will continue trying. The retry
interval begins at 2 seconds and, as more attempts are made, grows out to 64 seconds. It will continue
to try to make the connection every 64 seconds until explicity told to stop trying. If the connection fails
due to an authentication problem, it will not continue to retry.

Durable links and routes
Links can be made durable by using the --durable option when creating it in the qpid-route tool.
Durable links will persist between broker restarts. When the broker starts again the link will be restored
and will begin establishing connectivity.

Routes can also be made durable with the --durable option, as long as they run over durable links.

Dynamic routing
Dynamic routing creates a set of distributed exchanges. All the brokers in a network collectively
behave in the same way as a single exchange in a single broker. Each client connects to its local
broker, where it can bind queues and publish messages to the distributed exchange.

When configuring dynamic routing, it is only necessary to define which pairs of brokers are connected
by a unidirectional route. Queue configuration and bindings are then handled automatically by the
brokers in the network.

When a consuming client binds a queue to the distributed exchange, information about that binding is
sent to the other brokers in the network. This ensures that any messages matching the binding will be
forwarded to the client's local broker. Messages published to the distributed exchange are forwarded
to other brokers only if there are remote consumers to receive the messages. The dynamic binding
protocol ensures that messages are routed only to brokers with eligible consumers. This includes
topologies where messages must make multiple hops to reach the consumer.

Exchange routes
An exchange route is like a dynamic route except that the exchange binding is statically set when it is
created, and does not dynamically track changes in the network. When an exchange route is created,
a private auto-delete, exclusive queue is created on the source broker. The queue is bound to the
exchange with the specified key and the destination broker subscribes to the queue with the specified
exchange. Only one exchange name is supplied, as exchange routes require that the source and
destination exchanges have the same name.

Federation

39

Queue routes
A queue route is created when the destination broker subscribes to a pre-existing queue on the source
broker. The queue does not need to be any particular exchange. Queue routes can be used to connect
exchanges of different names and types. They can also be used to distribute or balance traffic across
multiple destination brokers.

Using qpid-route to manage federation
The qpid-route utility provides the ability to configure and manage links and routes. If a route is
created and a link does not already exist, qpid-route will automatically create that link.

Note
The command line utilities are included in the python client library package. Follow the
installation instructions in the Messaging Installation Guide to install the python-qpid
and amqp packages.

1. Commands are entered at the shell prompt in the format

qpid-route [options] [command] [destination broker] [source broker]

When adding and deleting routes exchange and routing key information is also required.

2. Brokers can be specified in a number of different ways. If the broker requires authentication,
specify the username and password separated by a / character and followed by the @ character.
The broker itself can be specified by either hostname or IP address, which can be followed by a
port number separated by a : character. The format for brokers is:

[username]/[password]@[hostname]|[IP Address]:[port]

Some valid examples are:
• localhost

• 10.1.1.7:10000

• broker-host:10000

• guest/guest@localhost

3. To add links, use the link add command, specifying both the destination broker and the source
broker:

$ qpid-route -v link add destination-broker localhost

4. To delete links, use the link delete command, specifying both the destination broker and the
source broker of the link you wish to remove:

$ qpid-route -v link del destination-broker localhost

Chapter 7. Clustering and federation

40

5. To view a complete list of links to a particular broker, use the link list command, specifying
broker you wish to view:

$ qpid-route link list localhost:10001
Host Port Transport Durable State Last Error
===
localhost 10002 tcp N Operational
localhost 10003 tcp N Operational
localhost 10009 tcp N Waiting Connection
 refused

6. Create dynamic routes using the dynamic option. When creating a dynamic routing network, the
type and name of the exchange must be the same on each broker.

Note
Unless you intend all messaging to be federated, it is strongly recommended that
dynamic routes are not created using standard exchanges.

Firstly, create an exchange on each broker:

$ qpid-config -a localhost:10003 add exchange topic fed.topic
$ qpid-config -a localhost:10004 add exchange topic fed.topic

Now, create the dynamic routes:

$ qpid-route dynamic add localhost:10003 localhost:10004 fed.topic
$ qpid-route dynamic add localhost:10004 localhost:10003 fed.topic

7. To add static exchange routes, use the route add command. Specify both the destination broker
and the source broker. It also requires an exchange type (direct, fanout or topic) and a routing key:

$ qpid-route route add localhost:10001 localhost:10002 amq.topic
 global.#

Use # characters as wildcards when specifying the routing key for a topic exchange, to send to all
possible matches.

8. To view a complete list of the routes to a particular broker, use the route list command,
specifying the broker you wish to view:

$ qpid-route route list localhost:10003
localhost:10003 localhost:10004 fed.topic <dynamic>

Federation

41

9. To add static queue routes, firstly create a queue on the source broker:

$ qpid-config -a localhost:10002 add queue public

Now, create the queue route to the new queue:

$ qpid-route queue add localhost:10001 localhost:10002 amq.fanout public

10. A more comprehensive view of a network can be achieved using the route map command, with
a single broker name. qpid-route will then attempt to recursively find all of the brokers related to
the starting broker, and map the relationships it finds:

$ qpid-route route map localhost:10003

Finding Linked Brokers:
localhost:10003... Ok
localhost:10004... Ok

Dynamic Routes:

Exchange fed.topic:
localhost:10004 <=> localhost:10003

Static Routes:
none found

11. To remove all messages currently en-route to a particular broker, use the route list command,
specifying the broker you wish to flush:

$ qpid-route -v route flush localhost

Options for using qpid-route to Manage Federation

-v Verbose output.

-q Quiet output, will not print duplicate warnings.

-d Make the configuration change durable.

-e Delete link after deleting the last route on the link

Table 7.2. Options for using qpid-route to manage federation

42

Chapter 8.

43

Authentication
In MRG Messaging, authentication is provided by a Simple Authentication and Security Layer (SASL)
and authorization is managed by an Access Control List (ACL). Mozilla's Network Security Services
Library (SSL) provides encryption for secure password management.

8.1. User Authentication
MRG Messaging uses Simple Authentication and Security Layer (SASL) for identifying and authorizing
incoming connections to the broker, as mandated in the AMQP specification. SASL provides a variety
of authentication methods. While MRG Messaging clients primarily implement the PLAIN method, the
broker uses the Cyrus SASL library1 to allow for a full SASL implementation.

Important
The PLAIN authentication method sends passwords in cleartext. For complete security,
it is advised that SSL (Secure Socket Layer) is also used. See Section 8.3, “Encryption
using SSL”

Enabling and Using SASL Plain Authentication
To use the default SASL PLAIN authentication mechanism implemented by the MRG Messaging client
libraries, either use the default username and password of guest, which are included in the database
at /var/lib/qpidd/qpidd.sasldb on installation, or add your own accounts.

1. Add new users to the database by using the saslpasswd2 command. The User ID for
authentication and ACL authorization uses the form user-id@domain..

Ensure that the correct realm has been set for the broker. This can be done by editing the
configuration file or using the -u option. The default realm for the broker is QPID.

saslpasswd2 -f /var/lib/qpidd/qpidd.sasldb -u QPID new_user_name

2. Existing user accounts can be listed by using the -f option:

sasldblistusers2 -f /var/lib/qpidd/qpidd.sasldb

Note
The user database at /var/lib/qpidd/qpidd.sasldb is readable only by the
qpidd user. If you start the broker from a user other than the qpidd user, you will
need to either modify the configuration file, or turn authentication off.

3. To switch authentication on or off, use the auth yes|no option when you start the broker:

/usr/sbin/qpidd --auth yes

1 http://cyrusimap.web.cmu.edu/

http://cyrusimap.web.cmu.edu/
http://cyrusimap.web.cmu.edu/

Chapter 8. Authentication

44

/usr/sbin/qpidd --auth no

You can also set authentication to be on or off by adding the appropriate line to to the /etc/
qpidd.conf configuration file:

auth=no

auth=yes

4. The SASL configuration file is in /etc/sasl2/qpidd.conf for Red Hat Enterprise Linux 5 and
/usr/lib/sasl2/qpidd.conf for Red Hat Enterprise Linux 4.

For information on using a different configuration, use your web browser to view the Cyrus SASL
documentation at /usr/share/doc/cyrus-sasl-lib-2.1.22/index.html for Red Hat
Enterprise Linux 5 or /usr/share/doc/cyrus-sasl-2.1.19/index.html for Red Hat
Enterprise Linux 4.

8.2. Authorization
Authorisation in MRG Messaging is achieved through the use of an Access Control List (ACL). This is
a list that specifies which users are authorized to access the system.

Using ACL
1. The ACL module is loaded by default. You can check that it is loaded by running the qpidd --

help command and checking the output for ACL options:

$ qpidd --help
...[output truncated]...
ACL Options:
--acl-file FILE (policy.acl) The policy file to load from, loaded from
 data dir

2. To start using the ACL, you will need to specify the file to use. This is done by using the --acl-
file command with a path and filename. The filename should have a .acl extension:

$ qpidd --acl-file ./aclfilename.acl

You can now view the file with the cat command and edit it in your preferred text editor. If the path
and filename is not found, qpidd will fail to start.

3. These permissions can be used when creating the ACL file:
allow

Allow rule

Authorization

45

allow-log
Allow rule and log the action in the event log

deny
Deny rule

deny-log
Deny rule and log the action in the event log

4. The following actions are valid:
consume

Applied when subscriptions are created

publish
Applied on a per message basis on publish message transfers, this rule consumes the most
resources

create
Applied when an object is created, such as bindings, queues, exchanges, links

access
Applied when an object is read or accessed

bind
Applied when objects are bound together

unbind
Applied when objects are unbound

delete
Applied when objects are deleted

purge
Similar to delete but the action is performed on more than one object

update
Applied when an object is updated

5. The following object types are supported:
queue

A queue

exchange
An exchnage

broker
The broker

link
A federation or inter-broker link

method
Management or agent or broker method

Chapter 8. Authentication

46

6. Wild cards can be used on properties that are a string. The following properties are supported:
name

String. Object name, such as a queue name or exchange name.

durable
Boolean. Indicates the object is durable

routingkey
Sring. Specifies routing key

passive
Boolean. Indicates the presence of a passive flag

autodelete
Boolean. Indicates whether or not the object gets deleted when the connection is closed

exclusive
Boolean. Indicates the presence of an exclusive flag

type
String. Type of object, such as topic, fanout, or xml

alternate
String. Name of the alternate exchange

queuename
String. Name of the queue (used only when the object is something other than queue

schemapackage
String. QMF schema package name

schemaclass
String. QMF schema class name

When editing the ACL file, the following rules apply:
• A line starting with the # character is considered a comment and is ignored.

• Empty lines and lines that contain only whitespace are ignored

• All tokens are case sensitive. name1 is not the same as Name1 and create is not the same as
CREATE

• Group lists can be extended to the following line by terminating the line with the \ character

• Additional whitespace - that is, where there is more than one whitespace character - between and
after tokens is ignored. Group and ACL definitions must start with either group or acl and with no
preceding whitespace.

• All ACL rules are limited to a single line

• Rules are interpreted from the top of the file down until the name match is obtained; at which point
processing stops.

• The keyword all matches all individuals, groups and actions

Authorization

47

• The last line of the file - whether present or not - will be assumed to be acl deny all all. If
present in the file, all lines below it are ignored.

• Names and group names may contain only a-z, A-Z, 0-9, - and _

• Rules must be preceded by any group definitions they can use. Any name not defined as a group
will be assumed to be that of an individual.

• ACL rules must be on a single line and follow this syntax:

acl permission {<group-name>|<user-name>|"all"} {action|"all"}
 [object|"all"] [property=<property-value>]

ACL rules can also include a single object name (or the keyword all) and one or more property
name value pairs in the form property=value

Chapter 8. Authentication

48

This example demonstrates correctly formatted ACL entries.

Specifying groups:

group admin ted@QPID martin@QPID
group user-consume martin@QPID ted@QPID
group group2 kim@QPID user-consume rob@QPID
group publisher group2 \
tom@QPID andrew@QPID debbie@QPID

Specifying rules:

acl allow carlt@QPID create exchange name=carl.*
acl deny rob@QPID create queue
acl allow guest@QPID bind exchange name=amq.topic routingkey=stocks.rht.#
acl allow user-consume create queue name=tmp.*

acl allow publisher publish all durable=false
acl allow publisher create queue name=RequestQueue
acl allow consumer consume queue durable=true
acl allow fred@QPID create all
acl allow bob@QPID all queue
acl allow admin all
cl allow all consume queue
acl allow all bind exchange

Always include the last, default rule:

acl deny all all

Do not allow guest to access and log some QMF management methods:

group allUsers guest@QPID
....
acl deny-log allUsers create link
acl deny-log allUsers access method name=connect
acl deny-log allUsers access method name=echo

Example 8.1. An example ACL file

8.3. Encryption using SSL
Encryption and certificate management for qpidd is provided by Mozilla's Network Security Services
Library (SSL), through the ssl.co module. This module is installed by default in MRG Messaging.

Encryption using SSL

49

Enabling SSL for qpidd
1. You will need a certificate that has been signed by a Certification Authority (CA). This certificate

will also need to be trusted by your client. If you require client authentication, the client's certificate
will also need to be signed by a CA and trusted by the broker.

SSL is provided through the ssl.so module. This module is installed and loaded by default in
MRG Messaging. To enable the module, you will need to specify the location of the database
containing the certificate and key to use. This can be done using the ssl-cert-db option.

The database is created and managed by the Mozilla Network Security Services (NSS) certutil
tool. More information can be found on the Mozilla website2, including tutorials on setting up and
testing SSL connections.

Note
The certificate database will generally be password protected. The password can be
specified at the command prompt when starting qpidd. Alternatively, create a file
containing the password and direct qpidd at the file location using the ssl-cert-
password-file option.

2. Load the broker module:

$ qpidd --load-module /libs/ssl.so

3. The available SSL options are:
--ssl-use-export-policy

Use NSS export policy

ssl-cert-password-file PATH
File containing password to use for accessing certificate database

--ssl-cert-db PATH
Path to directory containing certificate database

--ssl-cert-name NAME
Name of the certificate to use

--ssl-port NAME
Port on which to listen for SSL connections

ssl-require-client-authentication
Forces clients to authenticate in order to establish an SSL connection

Also relevant is the --require-encryption broker option. This will cause qpidd to only
accept encrypted connections.

Enabling SSL
C++ clients:

1. SSL is provided through the sslconnector.so module. This module is installed and
loaded by default in MRG Messaging. To enable the module, you will need to specify the

http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

Chapter 8. Authentication

50

location of the database containing the certificate and key to use. This can be done using
the ssl-cert-db option in /etc/qpid/qpidc.conf or using the environment variable
QPID_SSL_CERT_DB.

2. If ssl-require-client-authentication is active on qpidd, the clients certificate will
also need to be verified. To do this, use --ssl-cert-name and, if necessary, --ssl-cert-
password-file.

3. To open an SSL enabled connection, the application will need to specify ssl as
the value for the protocol setting in the ConnectionSettings instance passed to
Connection::open().

Java clients:
1. For both server and client authentication, import the trusted CA to your trust store and

keystore and generate keys for them. Create a certificate request using the generated keys
and then create a certificate using the request. You can then import the signed certificate into
your keystore. Pass the following arguments to the client:

-Djavax.net.ssl.keyStore=/home/bob/ssl_test/keystore.jks
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=/home/bob/ssl_test/certstore.jks
-Djavax.net.ssl.trustStorePassword=password

2. For server side authentication only, import the trusted CA to your trust store and pass the
following arguments to the client:

-Djavax.net.ssl.trustStore=/home/bob/ssl_test/certstore.jks
-Djavax.net.ssl.trustStorePassword=password

.Net clients:
1. If the broker requires authentication, you will need a certificate signed by a CA, trusted by your

client.

2. Use the connectSSL method instead of the usual connect method for the client interface.
The string for the connectSSL signature is:

public void connectSSL(String host, int port,
String virtualHost, String username, String password,
String serverName, String certPath, bool rejectUntrusted)

For these values:
• host: Host name on which a Qpid broker is deployed

• port: Qpid broker port

• virtualHost: Qpid cirtual host name

• username: Username

Encryption using SSL

51

• password: Password

• serverName: Name of the SSL server

• certPath: Path to the X509 certificate to be used when the broker requires client
authentication

• rejectUnstrusted: When true the connection will not be established if the broker is not
trusted - the server certificate must be added in your truststore.

SSL Client Options for C++ clients

--ssl-use-export-policy Use NSS export policy

--ssl-cert-password-file PATH File containing password to use for accessing
certificate database

--ssl-cert-db PATH Path to directory containing certificate database

--ssl-cert-name NAME Name of the certificate to use

Table 8.1. SSL Client Options for C++ clients

52

Chapter 9.

53

Optimization
This section covers ways to optimize MRG Messaging applications to improve performance. Some
optimizations involve the structure of your code, others involve tuning parameters.

Benchmarks can be utilized to determine the expected throughput and latency of MRG Messaging
in your environment. Red Hat supplies a set of benchmark applications in the qpidc-perftest
package. This package contains:
• perftest for measuring throughput, and

• latencytest for measuring latency.

Each of these programs provide options for testing performance in different conditions. The can be
viewed by using the --help option at the shell prompt:

$ perftest --help

$ latencytest --help

You can use the benchmarking tools to determine how changing a setting affects performance in your
environment, so you can find the best settings to use in your program.

If these benchmarks perform significantly better than your application using the same configuration
and settings, it is quite likely that MRG Messaging is not the bottleneck.

Note
This section is still under development. If you have found any tricks for optimizing your
installation, why not let us know, and get it included in this document? Just follow the
instructions in Reporting a Bug.

Try these first
When you start optimizing your installation of MRG Messaging, try these things first:

1. Use asynchronous communication with the broker where possible. The Qpid APIs allow both
synchronous and asynchronous communication. When performing a large amount of message
transfers, asynchronous communication is much faster.
From C++

The Session interface will issue commands synchronously. The AsyncSession interface
will issue them asynchronously. You can convert from one to the other easily using
async(session) and sync(session). You can also synchronise at a specific point using
session.sync()

From Python
session.auto_sync = False will turn off the default synchronous behaviour. You can
synchronise explicitly using session.sync(timeout)

Chapter 9. Optimization

54

From Java JMS
All messaging is asynchronous in the Java JMS client, however persistent messaging offers
both synchronous and asynchronous publishing. Synchronous messaging publishing is more
reliable, but can be quite slow.

Synchronous publishing can be set by adding the -Dsync_persistence=true option as a
global property. This will make all publishing slower.

Synchronous publishing can also be set as a connection option. More information on doing
this is available from the MRG Messaging Tutorial

2. Accept messages in batches rather than one by one. This decreases network traffic, while still
guaranteeing delivery.
From C++

If you are using automatic acceptance, set the autoAck setting in SubscriptionSettings
to a value greater than 1 (the value is the size of the batch that will be accepted). If managing
accepts manually, do so in batches. For example:

//a batch of messages is identified by a SequenceSet containing
//the relevant Ids:
qpid::framing::SequenceSet batch;

//add message ids to the set:
batch.add(message.getId());

//etc
subscription.accept(batch);

//or
session.messageAccept(batch);

From Python

batch = RangedSet() ...

#add message ids to the set
batch.add(message.id)

#etc
session.message_accept(batch)

From Java JMS
Check the MRG Messaging Tutorial for instructions.

For exclusive, auto-delete queues there is often no real value to using the explicit accept
mode. Turning off the need to accept messages at all may also offer a performance
gain. In C++, this is achieved by specifying ACCEPT_MODE_NONE as the acceptMode
in SubscriptionSettings. In Python you would specify the accept mode when

55

issuing a subscription request: session.messageSubscribe(queue='q',
accept_mode=session.accept_mode.none). In JMS the queues used for topic subscriptions
will do this automatically.

3. Use pre-fetch. Pre-fetching instructs the broker to deliver messages to the client in anticipation of
them being consumed.
From C++

Pre-fetch is controlled through the flowControl setting on SubscriptionSettings.
The default is an unlimited pre-fetch which may overwhelm the client. For example, to set a
prefetch of 100 messages:

SubscriptionSettings settings;
settings.flowControl = FlowControl::messageWindow(100);

From Python
The default is an unlimited pre-fetch. For example, to reduce that to a prefetch window of 10
messages:

session.message_subscribe(destination="my-subscriber", queue="my-
queue") session.message_set_flow_mode(destination="my-subscriber",
 session.flow_mode.window) session.message_flow(destination="my-
subscriber", session.credit_unit.message, 100)
 session.message_flow(destination="my-subscriber",
 session.credit_unit.byte, 0xFFFFFFFF)

From Java JMS
Use either the DUPS_OK or AUTO_ACK acknowledgement mode. For compliance with the JMS
specification, the AUTO_ACK acknowledgement mode should always be used with a pre-fetch
value of 0. This ensures one message is received and acknowledged at a time, which results
in slow performance.

The maximum pre-fetch amount can be set by adding the -Dsync_prefetch=800 option as
a global property. The default value is 1000.

The maximum pre-fetch amount can also be set as a connection option. More information on
doing this is available from the MRG Messaging Tutorial

4. Consider enabling TCP-NODELAY. This will generally improve latency but can also impact
throughput. However if you are using very small transactions with a synchronous commit, this
option can also improve throughput.
From C++

Set the tcpNodelay option to true on the ConnectionSettings instance passed to
Connection::open().

#include <qpid/client/ConnectionSettings.h>

ConnectionSettings connectionSettings;

Chapter 9. Optimization

56

connectionSettings.host = "localhost";
 connectionSettings.port = 5672;
 connectionSettings.tcpNoDelay = true;

connection.open(connectionSettings);

5. Consider tuning the maximum frame size used. This will affect the degree to which the broker
tries to batch messages for delivery to clients. To improve latency, try reducing the value from the
default 64kb. This will not prevent messages larger than the max frame size being sent, but it will
impact the maximum size of the message headers. Picking a value that is large enough for the
majority of messages to fit in a single content frame is likely to be most optimal.
From C++

Set the maxFrameSize option on the ConnectionSettings instance passed to
Connection::open().

#include <qpid/client/ConnectionSettings.h>

ConnectionSettings connectionSettings;

connectionSettings.host = "localhost";
 connectionSettings.port = 5672;
 connectionSettings.maxFrameSize = 65535;

connection.open(connectionSettings);

From Java JMS
This option is not configurable under Java JMS

6. Consider using bounds to control the size of the outgoing message queue. This specifies the
maximum number of buffers that the outgoing message queue can hold.
From C++

Set the bounds property on the ConnectionSettings instance passed to
Connection::open().

#include <qpid/client/ConnectionSettings.h>

ConnectionSettings connectionSettings;

connectionSettings.host = "localhost";
 connectionSettings.port = 5672;
 connectionSettings.maxFrameSize = 65535;
connectionSettings.bounds = 4;

connection.open(connectionSettings);

7. Experiment with different options using the perftest tool, available from the qpidc-perftest
package.

Chapter 10.

57

More Information
Reporting a Bug
If you have found a bug in MRG Messaging, follow these instructions to enter a bug report:

1. You will need a Bugzilla1 account. You can create one at Create Bugzilla Account2.

2. Once you have a Bugzilla account, log in and click on Enter A New Bug Report3.

3. When submitting a bug report, you will need to identify the product (Red Hat Enterprise MRG),
the version (1.1), and whether the bug occurs in the software (component = messaging) or in the
documentation (component = Messaging_User_Guide).

Further Reading
• Red Hat Enterprise MRG and MRG Messaging Product Information

• http://www.redhat.com/mrg

• Red Hat Enterprise MRG and MRG Messaging Documentation

• http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG

• http://www.redhat.com/mrg/resources/

• MRG Messaging Users Mailing List

• Subscribe by sending an email to rhemrg-users-list@redhat.com with the word
Subscribe in the subject line.

https://bugzilla.redhat.com/index.cgi
https://bugzilla.redhat.com/createaccount.cgi
https://bugzilla.redhat.com/enter_bug.cgi
http://www.redhat.com/mrg
http://redhat.com/docs/en-US/Red_Hat_Enterprise_MRG
http://www.redhat.com/mrg/resources/
mailto:rhemrg-users-list@redhat.com

58

59

Appendix A. Revision History
Revision 1.1 Thu Apr 2 2009 Lana Brindley lbrindle@redhat.com

BZ #491173 - corrected error in SASL instructions

Revision 1.0 Thu Feb 12 2009 Lana Brindley lbrindle@redhat.com

BZ #478501 - Estimating Resources for large numbers of persistent queues

Revision 0.14 Wed Jan 21 2009 Lana Brindley lbrindle@redhat.com

BZ #480568 - Durable Queues

Revision 0.13 Mon Jan 19 2009 Lana Brindley lbrindle@redhat.com

Added links to product page

Revision 0.12 Tue Jan 13 2009 Lana Brindley lbrindle@redhat.com

BZ#452123 - PersistLastNode

Revision 0.11 Mon Jan 12 2009 Lana Brindley lbrindle@redhat.com

BZ#479423 - LVQ
BZ#477282 - Deleting Queues

Revision 0.10 Tue Nov 25 2008 Jonathan robie
jonathan.robie@redhat.com

Reworking of the cluster section.

Revision 0.9 Thu Nov 20 2008 Lana Brindley lbrindle@redhat.com

Minor updates prior to releasing document to Quality Engineering

Revision 0.8 Tue Nov 18 2008 Lana Brindley lbrindle@redhat.com

Minor updates to Clustering chapter arising from technical review
Minor updates to Optimization chapter arising from technical review
Minor updates to Concepts chapter arising from technical review

Revision 0.7 Mon Nov 17 2008 Lana Brindley lbrindle@redhat.com

Updated Clustering Information
Updated Optimization Information
Minor updates to Concepts chapter arising from technical review

Revision 0.6 Fri Nov 14 2008 Lana Brindley lbrindle@redhat.com

Updated Security Information - BZ #470378

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:jonathan.robie@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

Appendix A. Revision History

60

Minor updates to Concepts chapter arising from technical review

Revision 0.5 Fri Nov 14 2008 Lana Brindley lbrindle@redhat.com

Adding federation and clustering information arising from the technical review

Revision 0.4 Thu Nov 13 2008 Lana Brindley lbrindle@redhat.com

Changes arising from technical review

Revision 0.3 Tue Nov 4 2008 Lana Brindley lbrindle@redhat.com

Sessions - Bugzilla #465385
Queues - Bugzilla #465384
Transactions
Optimization/Tuning
Ethernet cards config - BZ#457922

Revision 0.2 Fri Oct 24 2008 Lana Brindley lbrindle@redhat.com

Updated Persistence chapter - Bugzilla #456498
Updated Federation chapter
Updated Security chapter
Updated Management Tools chapter

Revision 0.1 Wed Aug 6 2008 Lana Brindley lbrindle@redhat.com

Initial Document Creation

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

	Messaging User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. MRG Messaging Concepts
	1.1. The basis of MRG Messaging
	1.2. How MRG Messaging operates
	1.3. Exchange Types

	Chapter 2. Management Tools
	2.1. MRG Management Console
	2.2. Command Line Tools
	2.2.1. Using qpid-config
	2.2.2. Using qpid-tool
	2.2.3. Using qpid-queue-stats

	Chapter 3. Queues
	Chapter 4. Sessions
	Chapter 5. Transactions
	Chapter 6. Persistence
	6.1. Persistent Queues
	6.1.1. Estimating Resources

	Chapter 7. Clustering and federation
	7.1. Messaging Clusters
	7.2. Federation

	Chapter 8. Authentication
	8.1. User Authentication
	8.2. Authorization
	8.3. Encryption using SSL

	Chapter 9. Optimization
	Chapter 10. More Information
	Appendix A. Revision History

