
Red Hat Enterprise MRG 1.1

Messaging Tutorial
AMQP Programming Tutorial for C++, Java, Python, and C#

Jonathan Robie

Messaging Tutorial

Red Hat Enterprise MRG 1.1 Messaging Tutorial
AMQP Programming Tutorial for C++, Java, Python, and C#
Edition 1.1

Author Jonathan Robie
Editor Lana Brindley
Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version of the OPL is
presently available at http://www.opencontent.org/openpub/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588 Research Triangle Park, NC 27709 USA

This book shows you how to write programs for the MRG Messaging component of the Red Hat
Enterprise MRG distributed computing platforming using the Apache Qpid API. It also gives basic
information on downloading and installing MRG Messaging. For more complete information on how to
download and install MRG Messaging see the MRG Messaging Installation Guide.

http://www.opencontent.org/openpub/

iii

Preface vii
1. Document Conventions .. vii

1.1. Typographic Conventions .. viii
1.2. Pull-quote Conventions .. ix
1.3. Notes and Warnings ... x

2. We Need Feedback! ... x

1. Initial Concepts 1
1.1. Fanout Exchange ... 2
1.2. Direct Exchange ... 3
1.3. Topic Exchange .. 4
1.4. Custom Exchange Types .. 5

2. Examples Overview 7

3. Installing MRG Messaging 9
3.1. Installing MRG Messaging on Red Hat Enterprise Linux 5 .. 9
3.2. Installing MRG Messaging on Red Hat Enterprise Linux 4 ... 10
3.3. Starting the Broker ... 10

4. Using MRG Messaging with Python 13
4.1. Creating and Closing Sessions ... 13
4.2. Writing Direct Applications in Python. .. 14

4.2.1. Running the Direct Examples ... 14
4.2.2. Declaring and Binding a Queue .. 15
4.2.3. Publishing Messages to a Direct Exchange ... 16
4.2.4. Reading Messages from the Queue .. 16
4.2.5. Reading Messages from a Queue using a Listener .. 17

4.3. Writing Fanout Applications in Python .. 18
4.3.1. Running the Fanout Examples ... 18
4.3.2. Consuming from a Fanout Exchange .. 19
4.3.3. Publishing Messages to the Fanout Exchange ... 20

4.4. Writing Publish/Subscribe Applications in Python .. 20
4.4.1. Running the Publish-Subscribe Examples ... 20
4.4.2. The Topic Publisher ... 22
4.4.3. The Topic Subscriber ... 23

4.5. Writing Request/Response Applications in Python .. 25
4.5.1. Running the Request/Response Examples .. 25
4.5.2. The Server Application ... 26
4.5.3. The Client Application .. 28

4.6. XML-based Routing in Python ... 29
4.6.1. Running the XML-based Routing Examples ... 29
4.6.2. Declaring an XML Exchange, Declaring and Binding a Queue 30
4.6.3. Publishing to an XML Exchange ... 31
4.6.4. Reading from the Message Queue ... 32

4.7. Durable Queues and Durable Messages in Python ... 32
4.8. Using Transactions in Python .. 33
4.9. Logging in Python client applications ... 33

5. Using MRG Messaging with C++ 35
5.1. Creating and Closing Sessions ... 35
5.2. Writing Direct Applications in C++ ... 37

5.2.1. Running the Direct Examples ... 37
5.2.2. Declaring and Binding a Queue .. 38

Messaging Tutorial

iv

5.2.3. Publishing Messages to a Direct Exchange ... 38
5.2.4. Reading Messages from the Queue .. 39

5.3. Writing Fanout Applications in C++ .. 40
5.3.1. Running the Fanout Examples ... 40
5.3.2. Consuming from a Fanout Exchange .. 42
5.3.3. Publishing Messages to the Fanout Exchange ... 43

5.4. Writing Publish/Subscribe Applications in C++ .. 43
5.4.1. Running the Publish-Subscribe Examples ... 44
5.4.2. Publishing Messages to a Topic Exchange .. 45
5.4.3. Reading Messages from the Queue .. 46

5.5. Writing Request/Response Applications in C++ .. 49
5.5.1. Running the Request/Response Examples .. 49
5.5.2. The Client Application .. 50
5.5.3. The Server Application ... 52

5.6. XML-based Routing in C++ ... 53
5.6.1. Running the XML-based Routing Examples ... 54
5.6.2. Declaring an XML Exchange, Declaring and Binding a Queue 55
5.6.3. Publishing to an XML Exchange ... 55
5.6.4. Reading from the Message Queue ... 56

5.7. Durable Queues and Durable Messages in C++ ... 57
5.8. Using Transactions in C++ .. 58
5.9. Optimizing message transfer with asynchronous sessions in C++ 58
5.10. Handing Failover in C++ Connections .. 59

5.10.1. Sending MEssages in a FailoverManager::Command 60
5.10.2. Receiving Messages with a FailoverManager::Command 61
5.10.3. Choosing Brokers for Reconnect .. 62

5.11. Using logging in C++ .. 62

6. Using MRG Messaging with Java JMS 65
6.1. Java JMS Client Compatibility and Interoperability .. 65
6.2. Creating and Closing Connections and Sessions with JNDI ... 66

6.2.1. Basic JNDI Programming for MRG Messaging ... 66
6.2.2. JNDI Properties for MRG Messaging .. 67
6.2.3. Connection URLs .. 68
6.2.4. Binding URLs .. 68

6.3. Creating and Closing Connections and Sessions with AMQP .. 69
6.4. Writing Direct Applications in Java JMS ... 70

6.4.1. Running the Direct Examples ... 70
6.4.2. JNDI Properties ... 72
6.4.3. Publishing Messages to a Queue ... 72
6.4.4. Reading Messages from the Queue with a Message Consumer 73
6.4.5. Reading Messages from the Queue using a Message Listener 75

6.5. Writing Fanout Applications in Java JMS ... 77
6.5.1. Running the Fanout Examples ... 77
6.5.2. JNDI Properties ... 78
6.5.3. Reading Messages from a Queue with a Message Consumer 79
6.5.4. Reading Messages from the Queue using a Message Listener 80
6.5.5. Publishing Messages to a Fanout Exchange ... 83

6.6. Writing Publish/Subscribe Applications in Java JMS ... 84
6.6.1. Running the Publish/Subscribe Examples .. 84
6.6.2. JNDI Properties ... 86
6.6.3. Publishing Messages to a Topic ... 86

v

6.6.4. Reading Messages from the Queue .. 88
6.7. Writing Request/Response Applications in Java JMS .. 90

6.7.1. JNDI Properties ... 91
6.7.2. Running the Request/Response Examples .. 91
6.7.3. Client .. 92
6.7.4. The Server .. 94

6.8. Durability and Persistence in Java JMS ... 95
6.9. Using Transactions in Java JMS ... 96
6.10. Logging in Java clients ... 96

7. Using MRG Messaging with .NET 99
7.1. Creating and Closing Sessions ... 99
7.2. Writing Direct Applications in .NET .. 100

7.2.1. Running the Direct Examples ... 100
7.2.2. Reading Messages from the Queue ... 102
7.2.3. Publishing Messages to a Direct Exchange .. 103

7.3. Writing Fanout Applications .. 104
7.3.1. Running the Fanout Examples ... 104
7.3.2. Consuming from a Fanout Exchange ... 105
7.3.3. Publishing Messages to the Fanout Exchange .. 107
7.3.4. Writing Publish/Subscribe Applications ... 107
7.3.5. Running the Publish-Subscribe Examples .. 107

A. Revision History 115

vi

vii

Preface
This tutorial will teach you how to write MRG Messaging applications in C++, Python, Java (using
the JMS API), and C# (for .NET). To run the programs in this tutorial, you will need to download and
install MRG Messaging and be able to start the broker and run a sample application. These steps
are described in Chapter 3, Installing MRG Messaging, and described in more depth in the MRG
Messaging Installation Guide.

MRG Messaging is an open source, high performance, reliable messaging distribution that implements
the Advanced Message Queuing Protocol (AMQP) standard. MRG Messaging is based on Apache
Qpid1, but includes persistence, additional components, Linux kernel optimizations, and operating
system services not found in the Qpid implementation. We have worked closely with companies that
rely heavily on high performance messaging, and created a system to meet their real-world needs.

• MRG Messaging is flexible. It easily supports most common messaging paradigms, including store-
and-forward, distributed transactions, publish-subscribe, content-based routing, and market data
distribution.

• MRG Messaging is interoperable. It implements the Advanced Message Queuing Protocol (AMQP),
which is a free and open standard for messaging.

• MRG Messaging supports clients written in many languages, including Java (JMS), C++, Python,
and C# (for .Net). Perl, and Ruby clients will be available soon.

• MRG Messaging supports many platforms, including Linux, Windows, and Unix.

• MRG Messaging is fast. MRG Messaging delivers the highest performance and reliability available.

• MRG Messaging is designed for Linux. The C++ broker (which is fully compatible with the Java
broker) can integrate directly with the Linux kernel. MRG Messaging is optimized to take full
advantage of the Linux kernel, and track Linux kernel developments that might be leveraged for
further optimization. And the C++ broker can be directly integrated with the cluster executive as a
native cluster service.

• MRG Messaging is reliable, providing guaranteed delivery of messages.

• MRG Messaging is based on proven technology. AMQP is already being used in production
systems, where it is serving very high message volumes; for example, one bank has a worldwide
deployment that delivers over 100 million messages per day in a 7 hour trading window.

• MRG Messaging supports advanced features including multiple direct-write, persistence, and
integration with operating system clustering facilities.

• MRG Messaging is open source. You can see the code, change it, and learn from it.

• MRG Messaging can be used as a standard Linux service. It can be used to support features like
virtualization, security, grid computing, and distributed operating system services.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

1 http://cwiki.apache.org/qpid/

http://cwiki.apache.org/qpid/
http://cwiki.apache.org/qpid/
http://cwiki.apache.org/qpid/

Preface

viii

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts2 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl-Alt-F1 to switch to the first virtual terminal. Press Ctrl-Alt-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-

2 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Pull-quote Conventions

ix

click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

Preface

x

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A Note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring Important boxes won't cause data loss but may cause irritation and frustration.

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product Red Hat Enterprise MRG.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

We Need Feedback!

xi

When submitting a bug report, be sure to mention the manual's identifier: Messaging_Tutorial

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

xii

Chapter 1.

1

Initial Concepts

The AMQP Model
MRG Messaging implements the AMQP specification1, which was written to create an open standard
for interoperable messaging. AMQP defines both a wire level protocol (the transport layer) and
higher level semantics for messaging (the functional layer). It is completely free to use and is being
developed by the AMQP Working Group. AMQP is currently in draft and will be submitted to a
standards body once it is completed.

In AMQP, a connection represents a network connection, and a session represents the interface
between a client and a broker. A session uses a connection for communication. Sessions may be
synchronous or asynchronous.

The following diagram shows how the MRG Messaging broker is used by producer-consumer
applications. Message producers write to exchanges, exchanges route messages to queues, and
message consumers read from queues.

The AMQP Model: Message producers write messages to exchanges, message consumers read
messages from queues

1 http://www.amqp.org

http://www.amqp.org
http://www.amqp.org

Chapter 1. Initial Concepts

2

A message producer creates a message, fills it with content, gives the message a routing key, and
sends it to an exchange (for one kind of exchange, the fanout exchange, a routing key is optional).
The routing key is simply a string that the exchange can use to determine to which queues the
message should be delivered. The way the routing key is used depends on the exchange type,
and is discussed later in this chapter. Before delivering a message, the message producer can also
set various message properties in the message; for instance, one property determines whether
the message is durable. A MRG Messaging broker does not lose durable messages. Even if the
broker suffers a hardware failure, all durable messages are delivered when the broker is restarted.
Another property can be used to specify message priority; the broker gives higher priority messages
precedence.

An exchange accepts messages from message producers and routes them to message queues if
the message meets the criteria expressed in a binding. A binding defines the relationship between
an exchange and a message queue, specifying which messages should be routed to a given queue.
For instance, a binding might state that all messages with a given routing key should be sent to a
particular queue. If a queue is not bound to an exchange, it does not receive any messages from that
exchange.

A message queue holds messages and delivers them to the message consumers that subscribe to
the queue. A message consumer can create, subscribe to, share, use, or destroy message queues
(as long as they have permission to do so). A message queue may be durable, which means that the
queue is never lost; even if the MRG Messaging Broker were to suffer a hardware failure, the queue
would be restored when the broker is restarted. A message queue may be exclusive, which means
only one client can consume messages from it. A message queue may also be auto-delete, which
means that the queue will disappear from the server when the last client unsubscribes from the queue.

A message producer can use transactions to ensure that a group of messages are all received.
In a transaction, messages and acknowledgments are batched together, and all messages in the
transaction succeed or fail as a unit.

1.1. Fanout Exchange
The simplest exchange type is a Fanout exchange, which sends each message to every queue bound
to the exchange.

Direct Exchange

3

A Fanout exchange sends messages to every queue bound to the exchange.

1.2. Direct Exchange
A message producer can specify a routing key for a message. A routing key is simply a string that
indicates a kind of message. In a Direct exchange, a binding specifies a binding key, and an exchange
delivers a message to a bound queue if the message's routing key is identical to the queue's binding
key.

Chapter 1. Initial Concepts

4

A Direct exchange sends a message to a queue if the message's routing key is identical to the binding
key for the queue.

1.3. Topic Exchange
A Topic exchange is similar to a Direct exchange, but uses keys that contain multiple words separated
by a “.” delimiter. A message producer might create messages with routing keys like usa.news,
usa.weather, europe.news, and europe.weather.

Binding keys for a Topic exchanges can include wildcard characters: a “#” matches one or more
words, a “*” matches a single word. Typical bindings use binding keys like #.news (all news items),
usa.# (all items in the USA), or usa.weather (all USA weather items).

The exchange routes messages to the relevant queue or queues, depending on matches between the
routing and binding keys.

Custom Exchange Types

5

A Topic exchange can use multi-part routing keys and bindings that include wildcards. A topic
exchange sends a message to a queue if the message's routing key matches the binding key for the
queue, using wildcard matching.

1.4. Custom Exchange Types
AMQP allows implementations to provide exchange types that are not defined in the standard. These
exchange types are referred to as custom exchange types.

MRG Messaging provides an XML Exchange, which can route XML messages based on their content.
The bindings for an XML Exchange use an XQuery, which is applied to the content and headers of
each message to determine whether the message should be routed.

6

Chapter 2.

7

Examples Overview
This tutorial consists of a series of examples in Python, C++, Java JMS, and C# (for .NET), using the
three most commonly used exchange types in MRG Messaging - Direct, Fanout and Topic exchanges.
These examples show how to write applications that use the most common messaging paradigms.
This chapter contains descriptions of each of the paradigms used throughout the examples. After
these examples, there are a few brief sections that show how to enable durable queues and
messages, and how to use transactions.

Overview of the C++, Python, Java JMS, and C# (for .NET) E xamples
Direct

In the direct examples, a message producer writes to the direct exchange, specifying a routing
key. A message consumer reads messages from a named queue. A separate configuration
program binds the queues, determining which routing keys are associated with each queue. This
illustrates clean separation of concerns - message producers need to know only the exchange
and the routing key, message consumers need to know only which queue to use on the broker.
By changing the bindings in the configuration program, messages can be routed in different ways
without affecting message producers or message consumers.

Fanout
The fanout examples use a fanout exchange and do not use routing keys. Each binding specifies
that all messages for a given exchange should be delivered to a given queue.

Publish/Subscribe
In the publish/subscribe examples, a publisher application writes messages to an exchange,
specifying a multi-part key. A subscriber application subscribes to messages that match the
relevant parts of these keys, using a private queue for each subscription.

Request/Response
In the request/response examples, a simple service accepts requests from clients and sends
responses back to them. Clients create their own private queues and corresponding routing keys.
When a client sends a request to the server, it specifies its own routing key in the reply-to field
of the request. The server uses the client's reply-to field as the routing key for the response.

Durability
MRG Messaging provides guaranteed delivery unless the server crashes. Durable queues and
durable messages are stored using persistent storage on the server, and restored when the broker
is restarted, providing guaranteed delivery even if there is a crash. This section shows how to
make queues and messages durable.

Transactions
This section shows how to use local server transactions, which buffer published messages and
acknowledgements and process them upon commit, guaranteeing that they will all succeed or fail
as a unit.

XML Exchange
This section shows how to declare an XML Exchange and use it to route XML messages based
on their content, using XQuery. Because the XML Exchange can not currently be declared in a
pure Java JMS or C# (for .NET) program, this example is shown only for C++ and Python clients.
(Java JMS programs can declare an exchange and an XQuery binding using Python or C++, then

Chapter 2. Examples Overview

8

use the corresponding exchange and queues using Java JMS. There is also a low level Java API
which supports custom exchanges, but this API is not yet documented.)

Chapter 3.

9

Installing MRG Messaging
In order to install MRG Messaging you will need to have registered your system with Red Hat
Network1. This table lists the Red Hat Enterprise MRG channels available on Red Hat Network for
MRG Messaging.

Channel Name Operating System Architecture

Red Hat MRG Messaging RHEL-4 AS 32bit, 64bit

Red Hat MRG Messaging RHEL-4 ES 32bit, 64bit

Red Hat MRG Messaging RHEL-5 Server 32bit, 64bit

Red Hat MRG Messaging Non-Linux 32bit

Red Hat MRG Messaging Base RHEL-4 AS 32bit, 64bit

Red Hat MRG Messaging Base RHEL-4 ES 32bit, 64bit

Red Hat MRG Messaging Base RHEL-5 Server 32bit, 64bit

Table 3.1. Red Hat Enterprise MRG Channels Available on Red Hat Network

Important
Before you install Red Hat Enterprise MRG check that your hardware and platform
is supported. A complete list is available on the Red Hat Enterprise MRG Supported
Hardware Page2.

3.1. Installing MRG Messaging on Red Hat Enterprise Linux
5
1. Install the MRG Messaging group using the yum command.

yum groupinstall "MRG Messaging"

2. You can check the installation location and that the components have been installed successfully
by using the rpm -ql command with the name of the package you installed. For example:

rpm -ql rhm
/etc/qpidd.conf
/usr/lib/qpiddlibbdbstore.so.0
...

Note
If you find that yum is not installing all the dependencies you require, make sure that you
have registered your system with Red Hat Network3.

1 https://rhn.redhat.com/help/about.pxt

https://rhn.redhat.com/help/about.pxt
https://rhn.redhat.com/help/about.pxt
http://www.redhat.com/mrg/hardware/
http://www.redhat.com/mrg/hardware/
https://rhn.redhat.com/help/about.pxt
https://rhn.redhat.com/help/about.pxt

Chapter 3. Installing MRG Messaging

10

3.2. Installing MRG Messaging on Red Hat Enterprise Linux
4
1. Install the MRG Messaging components using the up2date command.

up2date python-qpid qpid-java-client qpidc-devel rhm rhm-docs

2. You can check the installation location and that the components have been installed successfully
by using the rpm -ql command with the name of the package you installed. For example:

rpm -ql rhm
/etc/rhmd.conf
/usr/lib/qpiddlibbdbstore.so.0
/usr/lib/qpidd/libbdbstore.so.0.1.0
...

Note
If you find that up2date is not installing all the dependencies you require, make sure that
you have registered your system with Red Hat Network4.

3.3. Starting the Broker
1. By default, the broker is installed in /usr/sbin/. If this is not on your path, you will need to type

the whole path to start the broker:

/usr/sbin/qpidd -t
[date] [time] info Loaded Module: libbdbstore.so.0
[date] [time] info Locked data directory: /var/lib/qpidd
[date] [time] info Management enabled
[date] [time] info Listening on port 5672

The -t or --trace option enables debug tracing, printing messages to the terminal.

2. To stop the broker, type CTRL+C at the shell prompt

[date] [time] notice Shutting down.
[date] [time] info Unlocked data directory: /var/lib/qpidd

3. For production use, MRG Messaging is usually run as a service. To start the broker as a service,
run the following command as the root user:

service qpidd start
Starting qpidd daemon: [OK]

4. You can check on the status of the service using the service status command and stop the
broker with service stop.

https://rhn.redhat.com/help/about.pxt

Starting the Broker

11

service qpidd status
qpidd (pid PID) is running...

service qpidd stop
Stopping qpidd daemon: [OK]

Note
For more detail on downloading, installing and starting the broker, including
troubleshooting information, refer to the MRG Messaging Installation Guide

12

Chapter 4.

13

Using MRG Messaging with Python
This section shows how to write direct, fanout, publish/subscribe, request/response, and XML-based
routing programs in Python. These concepts are explained in Chapter 2, Examples Overview. It then
shows how to use important features like persistence and transactions with MRG Messaging. This
chapter does not try to teach the entire MRG Messaging Python API, and it is not encyclopedic in its
coverage of AMQP. For more detailed information on the Python API for MRG Messaging, use pydoc.
For instance, to see all available classes, use the command:

$ pydoc qpid

To see the methods for the session object, use the command:

$ pydoc qpid.session

For more detailed information on the AMQP model, see the AMQP specification at http://
www.amqp.org.

The instructions in this section assume you have installed the client libraries and started a broker
using the instructions shown in Chapter 3, Installing MRG Messaging.

4.1. Creating and Closing Sessions
All of the examples in this section use the same code to initialize the program, create a session, and
clean up before exiting. They also use the same imported modules. The following skeleton can be
used as the basis to write a wide variety of MRG Messaging applications in Python.

import qpid
import sys
import os
from qpid.util import connect
from qpid.connection import Connection
from qpid.datatypes import Message, RangedSet, uuid4
from qpid.queue import Empty

additional imports for a given example go here

#----- Functions and Classes ----------------------------

Any functions and classes needed for a given example
go here.

#----- Initialization -----------------------------------

Set parameters for login

host="127.0.0.1"
port=5672
user="guest"
password="guest"

Chapter 4. Using MRG Messaging with Python

14

Create a connection and a session. The constructor for a session
requires a UUID to uniquely identify the session.

socket = connect(host, port)
connection = Connection (sock=socket, username=user, password=password)
connection.start()
session = connection.session(str(uuid4()))

#----- Main Body of Program --------------------------------

Main body of each example goes here

#----- Cleanup ---

Close the session before exiting so there are no open threads.
session.close(timeout=10)

4.2. Writing Direct Applications in Python.
The following programs work together to implement direct messaging using a Direct exchange:

• declare_queues.py creates a queue on the broker, then exits.

• direct_producer.py publishes messages to the direct exchange.

• direct_consumer.py reads messages from the queue.

• listener.py reads messages from the queue using a listener.

4.2.1. Running the Direct Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/python/
direct. To run these programs, do the following:

1. Make sure that a qpidd broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. Declare a message queue and bind it to an exchange by running declare_queues.py, as
follows:

$ python declare_queues.py

This program has no output. After this program has been run, all messages sent to the
amq.direct exchange using the routing key routing_key are sent to the queue named
message_queue.

Declaring and Binding a Queue

15

3. Publish a series of messages to the amq.direct exchange by running direct_producer.py,
as follows:

$ python direct_producer.py

This program has no output; the messages are routed to the message queue, as instructed by the
binding.

4. Read the messages from the message queue using direct_consumer.py or listener.py,
as follows:

$ python direct_consumer.py

or

$ python listener.py

You should see the following output:

message 0
message 1
message 2
message 3
message 4
message 5
message 6
message 7
message 8
message 9
That's all, folks!

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 4.1, “Creating and Closing Sessions”.

4.2.2. Declaring and Binding a Queue
declare_queues.py creates a queue on the broker. The main body of this program consists of
only two lines of code. The first line creates the queue and names it message_queue. The second
line determines which messages are routed to the queue, by instructing the broker to route all
messages sent to the amq.direct exchange with the routing key routing_key to the queue named
message_queue.

session.queue_declare(queue="message_queue")
session.exchange_bind(exchange="amq.direct", queue="message_queue",
 binding_key="routing_key")

Chapter 4. Using MRG Messaging with Python

16

4.2.3. Publishing Messages to a Direct Exchange
direct_producer.py publishes a series of messages to the amq.direct exchange. It uses a
simple loop to create ten messages, then signals that no more messages are expected by publishing
a message with the content “That's all, folks!”. The routing key is specified in the delivery properties for
the message. Here is the main body for this program.

Create some messages and put them on the broker.
props = session.delivery_properties(routing_key="routing_key")

for i in range(10):
 session.message_transfer(destination="amq.direct",
 message=Message(props,"message " + str(i)))

session.message_transfer(destination="amq.direct",
 message=Message(props,"That's all, folks!"))

Note that the last message sent is That's all, folks!. The consumer looks for this text to
determine when all messages have been received.

4.2.4. Reading Messages from the Queue
direct_consumer.py creates a local queue, subscribes it to the message queue on the
server, reads messages, and prints them out. We start by creating a local client queue using
session.incoming():

local_queue_name = "local_queue"
local_queue = session.incoming(local_queue_name)

Next, we subscribe this queue to the server-side queue named message_queue and call start() to
begin message delivery:

session.message_subscribe(queue="message_queue",
 destination=local_queue_name)
local_queue.start()

Finally, we read the messages from the local queue, acknowledging each message so it can be
removed from the server-side queue:

final = "That's all, folks!" # In a message body, signals the last
 message
content = "" # Content of the last message read

message = None
while content != final:
 message = local_queue.get(timeout=10)
 content = message.body
 session.message_accept(RangedSet(message.id)) # acknowledge message
 receipt
 print content

Reading Messages from a Queue using a Listener

17

4.2.5. Reading Messages from a Queue using a Listener
listener.py receives messages using a message listener. The program provides a method that is
called whenever a message is received. Here is the listener class:

class Receiver:
 def __init__ (self):
 self.finalReceived = False

 def isFinal (self):
 return self.finalReceived

 def Handler (self, message):
 content = message.body
 session.message_accept(RangedSet(message.id))
 print content
 if content == "That's all, folks!":
 self.finalReceived = True

To use this class in our program, we will register the Handler method with a local queue so that it is
called whenever a new message is transferred to this queue. First, we must subscribe the local queue
to the server-side queue, as we did in the previous section:

local_queue_name = "local_queue"
local_queue = session.incoming(local_queue_name)

session.message_subscribe(queue="message_queue",
 destination=local_queue_name)
local_queue.start()

Once this is done, we create a receiver and register the Handler method as a message listener for the
local queue:

receiver = Receiver()
local_queue.listen (receiver.Handler)

The Handler method acknowledges each message and prints it out when it is received. It also looks
for the final message and signals that it is finished by setting self.finalReceived to true. Any
Python callable that is called with one Message as a parameter may be used as a message listener
callback. Now the code that instructs the handler to finish:

Add this to the imports in the skeleton
from time import sleep

Wait for the receiver to signal that it is done.

while not receiver.isFinal() :
 sleep (1)

Chapter 4. Using MRG Messaging with Python

18

4.3. Writing Fanout Applications in Python
The following programs work together to implement a fanout pattern, where exchanges deliver
messages to all queues bound to the exchange.

• declare_queues.py creates a queue on the broker, binding it to the fanout exchange.

• fanout_producer.py publishes messages to the fanout exchange.

• fanout_consumer.py reads messages from the queue.

• listener.py reads messages from the queue using a listener.

4.3.1. Running the Fanout Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/python/
fanout. To run these programs, do the following:

1. Make sure that a qpidd broker is running:

 $ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If no
broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. In separate windows, start two or more fanout consumers or fanout listeners as follows:

$ python fanout_consumer.py

or

$ python listener.py

These programs each create a private queue, bind it to the amq.fanout exchange, and wait for
messages to arrive on their queue.

3. In a separate window, publish a series of messages to the amq.fanout exchange by running
fanout_producer.py, as follows:

$ python fanout_producer.py

This program has no output; the messages are routed to the message queue, as instructed by the
binding.

4. Go to the windows where you are running consumers or listeners. You should see the following
output for each listener or consumer:

message 0
message 1
message 2
message 3
message 4

Consuming from a Fanout Exchange

19

message 5
message 6
message 7
message 8
message 9
That's all, folks!

Now let's take a look at the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 4.1, “Creating and Closing Sessions”.

4.3.2. Consuming from a Fanout Exchange
fanout_consumer.py creates a private queue, binds it to the fanout exchange, and reads
messages delivered to that queue. If multiple instances of fanout_consumer.py are run, each one
has its own private queue. Since each session has a unique session name, using the session name as
the name of the server-side queue guarantees that it is unique:

server_queue_name = session.name
session.queue_declare(queue=server_queue_name)
session.exchange_bind(queue=server_queue_name, exchange="amq.fanout")

It then creates a local queue and subscribes it to the server-side queue. Unlike the server-side queue,
there is no need to use a globally unique name, since the name of the local queue is meaningful only
within the local session. We call the start() method to begin delivery to the local queue:

local_queue_name = "local_queue"
local_queue = session.incoming(local_queue_name)

session.message_subscribe(queue=server_queue_name,
 destination=local_queue_name)
local_queue.start()

Now we read messages from the local queue, finishing when we receive a message that contains the
string “That's all, folks!”:

Initialize 'final' and 'content', variables used to identify the last
 message.
final = "That's all, folks!" # In a message body, signals the last
 message
content = "" # Content of the last message read

Read the messages - acknowledge each one
message = None
while content != final:
 message = local_queue.get(timeout=10)
 content = message.body
 session.message_accept(RangedSet(message.id))
 print content

Chapter 4. Using MRG Messaging with Python

20

4.3.3. Publishing Messages to the Fanout Exchange
The message producer publishes its messages to the amq.fanout exchange. There is no need for a
routing key, but iot will still be shown in message logs and on the message received by a client, where
it can be useful for identifying the sender for debugging purposes.

delivery_properties =
 session.delivery_properties(routing_key="routing_key")

for i in range(10):
 session.message_transfer(destination="amq.fanout",
 message=Message(delivery_properties,"message " + str(i)))

session.message_transfer(destination="amq.fanout",
 message=Message(delivery_properties, "That's all, folks!"))

4.4. Writing Publish/Subscribe Applications in Python
This section describes two sample programs that implement a Publish/Subscribe application using a
topic exchange. Topic exchanges deliver messages based on multi-part routing keys and binding keys
that may contain wildcards.

• topic_publisher.py publishes messages to the topic exchange.

• topic_subscriber.py reads messages from the queue.

In this example, the publisher creates messages for topics like news, weather, and sports that happen
in regions like Europe, Asia, or the United States. A given consumer may be interested in all weather
messages, regardless of region, or it may be interested in news and weather for the United States,
but uninterested in items for other regions. In this example, each consumer sets up its own private
queues, which receive precisely the messages that particular consumer is interested in.

4.4.1. Running the Publish-Subscribe Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/python/
pubsub. To run these programs, do the following:

1. Make sure that a qpidd broker is running:

 $ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If no
broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. In separate windows, start one or more topic subscribers by running topic_subscriber.py, as
follows:

$ python topic_subscriber.py

You will see output similar to this:

Queues created - please start the topic producer

Running the Publish-Subscribe Examples

21

Subscribing local queue 'local_news' to news-53408183-
fcee-4b92-950b-90abb297e739'
Subscribing local queue 'local_weather' to weather-53408183-
fcee-4b92-950b-90abb297e739'
Subscribing local queue 'local_usa' to usa-53408183-
fcee-4b92-950b-90abb297e739'
Subscribing local queue 'local_europe' to europe-53408183-
fcee-4b92-950b-90abb297e739'
Messages on 'news' queue:

Each topic consumer creates a set of private queues, and binds each queue to the amq.topic
exchange together with a binding that indicates which messages should be routed to the queue.

3. In another window, start the topic publisher, which publishes messages to the amq.topic
exchange, as follows:

$ python topic_publisher.py

This program has no output; the messages are routed to the message queues for each
topic_consumer as specified by the bindings the consumer created.

4. Go back to the window for each topic consumer. You should see output like this:

Messages on 'news' queue:
usa.news 0
usa.news 1
usa.news 2
usa.news 3
usa.news 4
europe.news 0
europe.news 1
europe.news 2
europe.news 3
europe.news 4
That's all, folks!
Messages on 'weather' queue:
usa.weather 0
usa.weather 1
usa.weather 2
usa.weather 3
usa.weather 4
europe.weather 0
europe.weather 1
europe.weather 2
europe.weather 3
europe.weather 4
That's all, folks!
Messages on 'usa' queue:
usa.news 0
usa.news 1
usa.news 2

Chapter 4. Using MRG Messaging with Python

22

usa.news 3
usa.news 4
usa.weather 0
usa.weather 1
usa.weather 2
usa.weather 3
usa.weather 4
That's all, folks!
Messages on 'europe' queue:
europe.news 0
europe.news 1
europe.news 2
europe.news 3
europe.news 4
europe.weather 0
europe.weather 1
europe.weather 2
europe.weather 3
europe.weather 4
That's all, folks!

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 4.1, “Creating and Closing Sessions”.

4.4.2. The Topic Publisher
topic_publisher.py publishes messages to the topic exchange, providing multi-part routing keys
like usa.news, usa.weather, europe.news, and europe.weather. The publisher has no idea
what bindings have been made by subscribers, it simply sends its messages to the topic exchange.

This program defines a function that sends a set of five messages to the topic exchange, using the
same routing key for each:

def send_msg(routing_key):
 props = session.delivery_properties(routing_key=routing_key)
 for i in range(5):
 session.message_transfer(destination="amq.topic",
 message=Message(props,routing_key + " " + str(i)))

In the main body of the program we use this function to send messages with four different routing
keys:

usa.news
send_msg("usa.news")

usa.weather
send_msg("usa.weather")

europe.news
send_msg("europe.news")

The Topic Subscriber

23

europe.weather
send_msg("europe.weather")

When we are finished sending these messages, we send a message using the routing key control,
indicating that we are done:

Signal termination
props = session.delivery_properties(routing_key="control")
session.message_transfer(destination="amq.topic",
 message=Message(props,"That's all, folks!"))

4.4.3. The Topic Subscriber
topic_subscriber.py sets up its own queues, binding them to the topic exchange with binding
keys that identify interesting messages. It sets up queues for news, weather, usa, and europe, then
binds these to the topic exchange using binding keys that contain wildcards. For instance, the news
queue is bound using the binding key #.news, and the usa queue is bound using the binding key
usa.#. If a message is published to the amq.topic exchange using the routing key usa.news, it
matches both binding keys, and is delivered to both the usa and news queues.

Since we will be using four queues, print the contents of a queue in a function so that it can be reused:

def dump_queue(queue):

 content = "" # Content of the last message read
 final = "That's all, folks!" # In a message body, signals the last
 message
 message = 0

 while content != final:
 try:
 message = queue.get(timeout=10)
 content = message.body
 session.message_accept(RangedSet(message.id))
 print content
 except Empty:
 print "No more messages!"
 return

You can also write a function to subscribe to a queue:

def subscribe_queue(server_queue_name, local_queue_name):

 print "Subscribing local queue '" + local_queue_name + "' to " +
 server_queue_name + "'"

 queue = session.incoming(local_queue_name)

 session.message_subscribe(queue=server_queue_name,
 destination=local_queue_name)
 queue.start()

Chapter 4. Using MRG Messaging with Python

24

 return queue

Because we are using private server-side queues, we need to use unique names for these queues in
the main body of the program. We do this using the session name:

declare queues on the server

news = "news-" + session.name
weather = "weather-" + session.name
usa = "usa-" + session.name
europe = "europe-" + session.name

session.queue_declare(queue=news, exclusive=True)
session.queue_declare(queue=weather, exclusive=True)
session.queue_declare(queue=usa, exclusive=True)
session.queue_declare(queue=europe, exclusive=True)

Now the queues can be bound using wildcard matching. The message producer uses routing keys that
contain multiple words separated by the “.” delimiter: usa.news, usa.weather, europe.news, and
europe.weather. Binding keys can include wildcard characters: a “#” matches one or more words,
a “*” matches a single word. In this example we use binding keys like #.news (all news items) and
usa.# (all items in the USA) to match these routing keys:

Routing keys may be "usa.news", "usa.weather", "europe.news", or
 "europe.weather".

The '#' symbol matches one component of a multipart name, e.g. "#.news"
 matches
"europe.news" or "usa.news".

session.exchange_bind(exchange="amq.topic", queue=news,
 binding_key="#.news")
session.exchange_bind(exchange="amq.topic", queue=weather,
 binding_key="#.weather")
session.exchange_bind(exchange="amq.topic", queue=usa, binding_key="usa.#")
session.exchange_bind(exchange="amq.topic", queue=europe,
 binding_key="europe.#")

When the topic publisher is finished, it sends a message using the control routing key. In the topic
subscriber, we need to be able to identify the last message published to each queue, so we route the
control binding queue to all four queues. AMQP guarantees the order of messages posted to a
given queue will be maintained, so we know that when we get the final message, we are finished with
the queue. Here is the code in topic_subscriber.py that binds the control routing key to each
queue:

Bind each queue to the 'control' binding key so we know when to stop

session.exchange_bind(exchange="amq.topic", queue=news,
 binding_key="control")

Writing Request/Response Applications in Python

25

session.exchange_bind(exchange="amq.topic", queue=weather,
 binding_key="control")
session.exchange_bind(exchange="amq.topic", queue=usa,
 binding_key="control")
session.exchange_bind(exchange="amq.topic", queue=europe,
 binding_key="control")

Finally, the topic subscriber creates local queues, subscribes them to its private queues on the server,
and dumps the content of each queue to show what messages have arrived:

Subscribe local queues to server queues

local_news = "local_news"
local_weather = "local_weather"
local_usa = "local_usa"
local_europe = "local_europe"

local_news_queue = subscribe_queue(news, local_news)
local_weather_queue = subscribe_queue(weather, local_weather)
local_usa_queue = subscribe_queue(usa, local_usa)
local_europe_queue = subscribe_queue(europe, local_europe)

Call dump_queue to print messages from each queue

print "Messages on 'news' queue:"
dump_queue(local_news_queue)

print "Messages on 'weather' queue:"
dump_queue(local_weather_queue)

print "Messages on 'usa' queue:"
dump_queue(local_usa_queue)

print "Messages on 'europe' queue:"
dump_queue(local_europe_queue)

4.5. Writing Request/Response Applications in Python
This section describes two sample programs that implement a Request/Response application using a
Direct exchange.

• server.py receives messages, converts them to upper case, and sends them back to the original
client.

• client.py sends requests to the server as messages, receives responses and prints them to the
screen.

4.5.1. Running the Request/Response Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/python/
request-response. To run these programs, do the following:

Chapter 4. Using MRG Messaging with Python

26

1. Make sure that a qpidd broker is running:

 $ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. Run the server.

$ python server.py

You should see the following output:

Request server running - run your client now.
(Times out after 100 seconds ...)

3. In a separate window, start a client:

$ python client.py

You should see the following output:

Request: Twas brillig, and the slithy toves
Request: Did gyre and gimble in the wabe.
Request: All mimsy were the borogroves,
Request: And the mome raths outgrabe.
Messages on queue: reply_to:db0f862e-6b36-4e0f-a4b2-ad049eb435ce
Response: TWAS BRILLIG, AND THE SLITHY TOVES
Response: DID GYRE AND GIMBLE IN THE WABE.
Response: ALL MIMSY WERE THE BOROGROVES,
Response: AND THE MOME RATHS OUTGRABE.
No more messages!

Now let's take a look at the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 4.1, “Creating and Closing Sessions”.

4.5.2. The Server Application
Now let's look at the code for these two applications, which are each based on the skeleton shown
at Section 4.1, “Creating and Closing Sessions”. In this application, both programs send and receive
messages. The server sets up a queue called request, and binds it to the amq.direct exchange
with the binding key request. Clients post all requests to the amq.direct exchange using the
routing key request. Each client creates its own private response queue and a corresponding routing
key, which it places in the reply-to property of each request it writes to the exchange.

server.py creates a request queue, which is used for all clients, reads requests from this queue,
and sends responses to the client who made each request. Here is the code that creates the request
queue and subscribes to it:

session.queue_declare(queue="request", exclusive=True)

The Server Application

27

session.exchange_bind(exchange="amq.direct", queue="request",
 binding_key="request")

local_queue_name = "local_queue"

session.message_subscribe(queue="request", destination=local_queue_name)

queue = session.incoming(local_queue_name)
queue.start()

The server then creates a local queue, using the destination used in the above subscription, and waits
for messages to arrive. If a message arrives, it calls the respond() function:

queue = session.incoming(local_queue_name)

If we get a message, send it back to the user (as indicated in the
ReplyTo property)

while True:
 try:
 request = queue.get(timeout=100)
 respond(session, request)
 session.message_accept(RangedSet(request.id))
 except Empty:
 print "No more messages!"
 break;

In the respond function, the server takes the body of the message, converts it to upper case, and
writes the result to the amq.direct exchange using a routing key specified by the client using the
message's reply_to property, which contains a routing_key property:

def respond(session, request):

 # The routing key for the response is the request's reply-to
 # property. The body for the response is the request's body,
 # converted to upper case.

 message_properties = request.get("message_properties")
 reply_to = message_properties.reply_to
 if reply_to == None:
 raise Exception("This message is missing the 'reply_to' property,
 which is required")

 props =
 session.delivery_properties(routing_key=reply_to["routing_key"])
 session.message_transfer(destination=reply_to["exchange"],
 message=Message(props, request.body.upper()))

Chapter 4. Using MRG Messaging with Python

28

4.5.3. The Client Application
client.py creates a private queue for the server's responses and binds to it using a unique routing
key. To guarantee uniqueness, it uses the session name for both the name of the queue and the
routing key::

reply_to = "reply_to:" + session.name
session.queue_declare(queue=reply_to, exclusive=True)
session.exchange_bind(exchange="amq.direct", queue=reply_to,
 binding_key=reply_to)

It also creates a local queue, from which it reads the server's responses. It subscribes this queue to its
private server-side queue and calls start() to start receiving messages:

local_queue_name = "local_queue"
queue = session.incoming(local_queue_name)

session.message_subscribe(queue=reply_to, destination=local_queue_name)
queue.start()

Next, it sends some lines of poetry to the server, one line at a time, using the routing key for its private
queue in the reply-to property:

lines = ["Twas brilling, and the slithy toves",
 "Did gyre and gimble in the wabe.",
 "All mimsy were the borogroves,",
 "And the mome raths outgrabe."]

We will use the same reply_to and routing key
for each message

message_properties = session.message_properties()
message_properties.reply_to = session.reply_to("amq.direct", reply_to)
delivery_properties = session.delivery_properties(routing_key="request")

for line in lines:
 print "Request: " + line
 session.message_transfer(destination="amq.direct",
 message=Message(message_properties, delivery_properties, line))

Finally, we call the dump_queue() function to see the responses we have received from the server:

]
dump_queue(reply_to)

Here is the definition of the dump_queue() function:

def dump_queue(queue_name):

 print "Messages on queue: " + queue_name

XML-based Routing in Python

29

 message = 0

 while True:
 try:
 message = queue.get(timeout=10)
 content = message.body
 session.message_accept(RangedSet(message.id))
 print "Response: " + content
 except Empty:
 print "No more messages!"
 break
 except:
 print "Unexpected exception!"
 break

4.6. XML-based Routing in Python
The following programs work together to implement XML-based routing using an XML Exchange:

• declare_queues.py creates a queue on the broker, declares an XML Exchange, subscribes the
queue to the XML Exchange using an XQuery in the binding, then exits.

• xml_producer.py publishes messages to the XML Exchange.

• xml_consumer.py reads messages from the queue.

• listener.py reads messages from the queue using a listener.

4.6.1. Running the XML-based Routing Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/python/
xml-exchange. To run these programs, do the following:

1. Make sure that a qpidd broker is running:

 $ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. Declare an XML exchange and a message queue, then bind the queue to the exchange by
running declare_queues.py, as follows:

$ python declare_queues.py

This program has no output. After this program has been run, all messages sent to the xml
exchange using the routing key weather are sent to the queue named message_queue if they
satisfy the conditions specified in the following XQuery, which is used in the binding:

 let $w := ./weather
 return $w/station = 'Raleigh-Durham International Airport (KRDU)'

Chapter 4. Using MRG Messaging with Python

30

 and $w/temperature_f > 50
 and $w/temperature_f - $w/dewpoint > 5
 and $w/wind_speed_mph > 7
 and $w/wind_speed_mph < 20

3. Publish a series of messages to the xml exchange by running xml_producer.py, as follows:

$ python xml_producer.py

The messages are routed to the message queue, as prescribed by the binding. Each message
represents a weather report, such as this one:

<weather>
 <station>Raleigh-Durham International Airport (KRDU)</station>
 <wind_speed_mph>16</wind_speed_mph>
 <temperature_f>70</temperature_f>
 <dewpoint>35</dewpoint>
</weather>

4. Read the messages from the message queue using direct_consumer.py or listener.py,
as follows:

$ python xml_consumer.py

or

$ python listener.py

You should see the following output:

<weather><station>Raleigh-Durham International Airport (KRDU)</
station><wind_speed_mph>16</wind_speed_mph><temperature_f>70</
temperature_f><dewpoint>35</dewpoint></weather>

Now we will look at the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 4.1, “Creating and Closing Sessions”.

4.6.2. Declaring an XML Exchange, Declaring and Binding a Queue
Now we will declare an XML exchange named xml, a queue named message_queue, and a binding
that routes messages based on an XQuery.

An XML Exchange differs from a direct exchange in two significant ways. The first is that there is no
predeclared XML exchange, because it is not an exchange type defined in the AMQP specification.
Therefore, you have to declare an XML exchange, whose type is "xml":

session.exchange_declare(exchange="xml", type="xml")

Publishing to an XML Exchange

31

The second difference is that an XML Exchange uses an XQuery to determine whether to route the
message, based on the XML content of the message or message properties, as shown in the following
code:

session.queue_declare(queue="message_queue")

binding = {}
binding["xquery"] = """
 let $w := ./weather
 return $w/station = 'Raleigh-Durham International Airport (KRDU)'
 and $w/temperature_f > 50
 and $w/temperature_f - $w/dewpoint > 5
 and $w/wind_speed_mph > 7
 and $w/wind_speed_mph < 20 """

session.exchange_bind(exchange="xml", queue="message_queue",
 binding_key="weather", arguments=binding)

Any number of bindings can be created for a given binding key, using a different query for each. This
makes it possible for many clients to each subscribe to the weather events that interest them.

4.6.3. Publishing to an XML Exchange
Publishing to an XML Exchange is very similar to publishing to a direct exchange — you publish to the
exchange using a routing key, which the binding associates with an XQuery:

props = session.delivery_properties(routing_key="weather")

for i in range(10):
 print report(i)
 session.message_transfer(destination="xml", message=Message(props,
 report(i)))

In the above code, report(i) is a function that creates the XML messages used in this program.
Each XML message represents a simplified weather report:

station = ("Raleigh-Durham International Airport (KRDU)",
 "New Bern, Craven County Regional Airport (KEWN)",
 "Boone, Watauga County Hospital Heliport (KTNB)",
 "Hatteras, Mitchell Field (KHSE)")
wind_speed_mph = (0, 2, 5, 10, 16, 22, 28, 35, 42, 51, 61, 70, 80)
temperature_f = (30, 40, 50, 60, 70, 80, 90, 100)
dewpoint = (35, 40, 45, 50)

def pick_one(list, i):
 return str(list [i % len(list)])

def report(i):
 return ("<weather>"
 + "<station>" + pick_one(station,i) + "</station>"

Chapter 4. Using MRG Messaging with Python

32

 + "<wind_speed_mph>" + pick_one(wind_speed_mph,i) + "</
wind_speed_mph>"
 + "<temperature_f>" + pick_one(temperature_f,i) + "</
temperature_f>"
 + "<dewpoint>" + pick_one(dewpoint,i) + "</dewpoint>"
 + "</weather>")

4.6.4. Reading from the Message Queue
xml_consumer.py and listener.py simply read from a message queue and print the messages
they receive. This code is identical to the code used to do the same in the direct exchange examples.
For instance, here is the body of xml_consumer.py:

local_queue_name = "local_queue"
local_queue = session.incoming(local_queue_name)

session.message_subscribe(queue="message_queue",
 destination=local_queue_name)
local_queue.start()

message = None
while True:
 try:
 message = local_queue.get(timeout=10)
 session.message_accept(RangedSet(message.id))
 content = message.body
 print content
 except Empty:
 print "No more messages!"
 break

4.7. Durable Queues and Durable Messages in Python
By default, the message queue will remain active in the broker as long as the broker is running, even
though the program that created the queue has terminated. Should the broker crash, however, the
queue and any messages would be lost. In order to avoid accidental loss as a result of machine
failure, both queues and mesages can be made durable.

If a queue is durable, the queue survives a server crash, as well as any durable messages that have
been placed on the queue. However, a queue may also be declared autoDelete, which means the
queue is deleted automatically when the last client unsubscribes to the queue or terminates. If a queue
is both durable and autoDelete, it is still deleted when the last client unsubscribes or terminates. To
make a queue durable, specify durable="true" when you declare the queue:

session.queue_declare(queue="message_queue", durable="true")

To make a message durable, specify delivery_mode=session.delivery_mode.persistent in
the message_transfer() function:

Using Transactions in Python

33

session.message_transfer(destination="amq.direct", content=request,
 delivery_mode=session.delivery_mode.persistent)

4.8. Using Transactions in Python
This section shows how to use local server transactions, which buffer published messages and
acknowledgements and process them upon commit, guaranteeing that they will all succeed or fail
as a unit. You can easily do this by making the session transactional. Once you do this, all message
transfers and acknowledgements are queued until a commit or rollback is done on the session. After
a commit or rollback, the session remains transactional, so operations continue to be queued until the
next commit or rollback.

To make a session transactional, call tx_select():

session.tx_select()

To commit all operations pending on a transactional session, call tx_commit():

session.tx_commit()

To roll back all operations pending on a transactional session, call tx_rollback():

session.tx_rollback()

Transactions are used primarily to ensure that delivery is kept consistent in a messaging system.
For instance, if you want to make sure that messages are properly forwarded, you can make a
session transactional, subscribe to one queue, and publish received messages to another queue,
acknowledging the initial delivery and doing a commit. If you do this, the publish and consume are
atomic, and will both succeed or fail as a unit.

4.9. Logging in Python client applications
The MRG Messaging Python client library supports logging using the standard Python logging module.
The easiest way to do logging is to use the basicConfig(), which reports all warnings and errors:

from logging import basicConfig
basicConfig()

MRG Messaging also provides a convenience method that makes it easy to specify the level of
logging desired. For instance, the following code enables logging at the DEBUG level:

from qpid.log import enable, DEBUG
enable("qpid.io", DEBUG)

For more information on Python logging, see http://docs.python.org/lib/node425.html. For more
information on MRG Messaging logging, use $ pydoc qpid.log.

http://docs.python.org/lib/node425.html

34

Chapter 5.

35

Using MRG Messaging with C++
This chapter shows how to write direct, fanout, publish/subscribe, request/response, and XML-
based routing programs in C++. These concepts are explained in Chapter 2, Examples Overview. It
then shows how to use important features like persistence and transactions with MRG Messaging.
This chapter does not try to teach the entire MRG Messaging C++ API, and it is not encyclopedic
in its coverage of AMQP. For more detailed information on the C++ API for MRG Messaging, see
the Doxygen documentation installed at /usr/share/doc/qpidc-devel-0.2svn/html/
index.html (where svn is a number identifying a release). For more detailed information on the
AMQP model, see the AMQP specification at http://www.amqp.org.

The instructions in this section assume you have installed the client libraries and started a broker
using the instructions shown in Chapter 3, Installing MRG Messaging.

Before running the examples, you need to compile the files using the make command.

$ make filename

The binaries created by the make command are standard Linux binaries, and can be run from the
command line using ./ before the name of the executable:

$./filename

In order to use make, you must have write privileges for the working directory. This generally means
that you should copy the /usr/share/doc/rhm-0.3 directory to a place where you can modify the
code and create subdirectories as part of the compilation process.

Note
For more information on downloading, installing and starting the broker refer to the MRG
Messaging Installation Guide

5.1. Creating and Closing Sessions
All of the examples in this section have been written using the Apache Qpid C++ API, which is the C+
+ API for MRG Messaging. The examples use the same skeleton code to open a connection, create a
session, and clean up before exiting:

#include <qpid/client/Connection.h>
#include <qpid/client/Session.h>

#include <unistd.h>
#include <cstdlib>
#include <iostream>

using namespace qpid::client;
using namespace qpid::framing;

Chapter 5. Using MRG Messaging with C++

36

using std::string;

int main(int argc, char** argv) {

 char * host = "127.0.0.1";
 int port = 5672;

 Connection connection;

 try {
 connection.open(host, port);
 Session session = connection.newSession();

 //--------- Main body of program
 --

 //---

 connection.close();
 return 0;
 } catch(const std::exception& error) {
 std::cout << error.what() << std::endl;
 }
 return 1;

}

Use a ConnectionSettings object if you need more control over the parameters used in a connection.

#include <qpid/client/ConnectionSettings.h>
#include <qpid/client/Connection.h>
#include <qpid/client/Session.h>

using namespace qpid::client;

int main(int , char**) {

 ConnectionSettings connectionSettings;
 connectionSettings.host = "localhost";
 connectionSettings.port = 5672;
 connectionSettings.tcpNoDelay = true;
 connectionSettings.maxFrameSize = 65535;
 connectionSettings.bounds = 4;

 Connection connection;
 try {
 connection.open(connectionSettings);

Writing Direct Applications in C++

37

 Session session = connection.newSession();
 ...

5.2. Writing Direct Applications in C++
This section describes three programs that implement direct messaging using a Direct exchange:

• declare_queues.cpp binds a queue to the amq.direct exchange, so that messages sent to
the direct exchange with the routing key value routing_key are delivered to the queue named
message_queue.

• direct_producer.cpp publishes messages to the amq.direct exchange, using the routing key
routing_key.

• listener.cpp uses a message listener to receive messages from the queue named
message_queue.

5.2.1. Running the Direct Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/cpp/
direct. To run these programs, do the following:

1. Make sure that a qpidd broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. In the direct directory, build the examples using make.

$ make

3. Declare a message queue and bind it to an exchange by running declare_queues, as follows:

$./declare_queues

This program has no output. After this program has been run, all messages sent to the
amq.direct exchange using the routing key “routing_key” are sent to the queue named
“message_queue”.

4. Publish a series of messages to the amq.direct exchange by running direct_producer, as
follows:

$./direct_producer

This program has no output; the messages are routed to the message queue, as instructed by the
binding.

5. Read the messages from the message queue using direct_consumer or listener, as
follows:

Chapter 5. Using MRG Messaging with C++

38

$./direct_consumer

or

$./listener

You should see the following output:

Message: Message 0
Message: Message 1
Message: Message 2
Message: Message 3
Message: Message 4
Message: Message 5
Message: Message 6
Message: Message 7
Message: Message 8
Message: Message 9
Message: That's all, folks!
Shutting down listener for message_queue

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 5.1, “Creating and Closing Sessions”.

5.2.2. Declaring and Binding a Queue
The first program in the direct example, declare_queues.cpp, adds only a few lines to the basic
skeleton. It creates a queue named message_queue, then binds it to the amq.direct exchange
using the binding key routing_key.

session.queueDeclare(arg::queue="message_queue");
session.exchangeBind(arg::exchange="amq.direct",
 arg::queue="message_queue", arg::bindingKey="routing_key");

The queue created by this program continues to exist after the configuration program exits, and
any message whose routing key matches the key specified in the binding will be routed to the
corresponding queue by the broker.

Note that the configuration program could easily bind other queues using the same routing key, so that
multiple queues would receive the same message, or change the queues to which messages with a
given routing key are sent. This can be done without affecting producers or consumers.

5.2.3. Publishing Messages to a Direct Exchange
The second program in the direct example, direct_producer.cpp, publishes messages to the
amq.direct exchange using the routing key routing_key. This program uses the Message class
and std:stringstream, so we'll add the following includes to the skeleton:

Reading Messages from the Queue

39

#include <qpid/client/Message.h>

#include <sstream>
using std::stringstream;

First, create a message and set a routing key. The same routing key will be used for each message
we send, so you only need to set this property once.

Message message;
message.getDeliveryProperties().setRoutingKey("routing_key");

Now send some messages:

for (int i=0; i<10; i++) {
 stringstream message_data;
 message_data << "Message " << i;

 message.setData(message_data.str());
 session.messageTransfer(arg::content=message,
 arg::destination="amq.direct");
}

Send a final message to indicate termination.

message.setData("That's all, folks!");
session.messageTransfer(arg::content=message,
 arg::destination="amq.direct");

5.2.4. Reading Messages from the Queue
The third program in the direct example, listener.cpp, is a message listener that
receives messages from a queue. It uses both the Message, MessageListener, and
SubscriptionManager classes, so we'll add the following includes to the skeleton:

#include <qpid/client/Message.h>
#include <qpid/client/MessageListener.h>
#include <qpid/client/SubscriptionManager.h>

To create a message listener, create a class derived from MessageListener, and override the
received method, providing the code that should be executed when a message is received. This
listener uses a subscription manager, part of the MRG Messaging library, to subscribe to and receive
messages from a queue.

class Listener : public MessageListener {
 private:
 SubscriptionManager& subscriptions;
 public:
 Listener(SubscriptionManager& subscriptions);
 virtual void received(Message& message);

Chapter 5. Using MRG Messaging with C++

40

};

Define a constructor that initializes the listener's subscriptions.

Listener::Listener(SubscriptionManager& subs) : subscriptions(subs)
{}

The main body of the program creates a subscription manager for the session; creates a listener for
the subscription; subscribes the subscription manager to a message queue; and runs the subscription
manager to receive messages from the queue.

SubscriptionManager subscriptions(session);

// Create a listener and subscribe it to the queue named "message_queue"
Listener listener(subscriptions);
subscriptions.subscribe(listener, "message_queue");

// Deliver messages until the subscription is cancelled
// by Listener::received()
subscriptions.run();

The MessageListener's received() function is called whenever a message is received. In this
example the message is printed and tested to see if it is the final message. Once the final message is
received, the subscription to the queue is cancelled.

void Listener::received(Message& message) {
 std::cout << "Message: " << message.getData() << std::endl;
 if (message.getData() == "That's all, folks!") {
 std::cout << "Shutting down listener for " <<
 message.getDestination()
 << std::endl;
 subscriptions.cancel(message.getDestination());
 }
}

5.3. Writing Fanout Applications in C++
This section describes two programs that illustrate the use of a Fanout exchange.

• listener.cpp makes a unique queue private for each instance of the listener, and binds that
queue to the fanout exchange. All messages sent to the fanout exchange are delivered to each
listener's queue.

• fanout_producer.cpp publishes messages to the fanout exchange. It does not use a routing
key, which is not needed by the fanout exchange.

5.3.1. Running the Fanout Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/cpp/
fanout. To run these programs, do the following:

Running the Fanout Examples

41

1. Make sure that a qpidd broker is running:

 $ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. In the fanout directory, build the examples using make.

$ make

3. In separate windows, start two or more fanout listeners as follows:

$./listener

The listener creates a private queue, binds it to the amq.fanout exchange, and waits for
messages to arrive on the queue. When the listener starts, you will see the following message:

Listening

4. In a separate window, publish a series of messages to the amq.fanout exchange by running
fanout_producer, as follows:

$./fanout_producer

This program has no output; the messages are routed to the message queue, as prescribed by the
binding.

5. Go to the windows where you are running listeners. You should see the following output for each
listener:

Message: Message 0
Message: Message 1
Message: Message 2
Message: Message 3
Message: Message 4
Message: Message 5
Message: Message 6
Message: Message 7
Message: Message 8
Message: Message 9
Message: That's all, folks!
Shutting down listener for 5ce43b63-83be-4bd3-8545-c16f94d7febf

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 5.1, “Creating and Closing Sessions”.

Chapter 5. Using MRG Messaging with C++

42

5.3.2. Consuming from a Fanout Exchange
The first program in the fanout example, listener.cpp, creates a private queue, binds it to the
amq.fanout exchange, and waits for messages to arrive on the queue, printing them out as they
arrive. This program uses the Message and SubscriptionManager classes, so we'll add the
following includes to the skeleton:

#include <qpid/client/Message.h>
#include <qpid/client/MessageListener.h>
#include <qpid/client/SubscriptionManager.h>

This program uses a Listener class that is identical to the one used in the direct example:

class Listener : public MessageListener{
 private:
 SubscriptionManager& subscriptions;
 public:
 Listener(SubscriptionManager& subscriptions);
 virtual void received(Message& message);
};

Listener::Listener(SubscriptionManager& subs) : subscriptions(subs)
{}

void Listener::received(Message& message) {
 std::cout << "Message: " << message.getData() << std::endl;
 if (message.getData() == "That's all, folks!") {
 std::cout << "Shutting down listener for " <<
 message.getDestination()
 << std::endl;
 subscriptions.cancel(message.getDestination());
 }
}

The listener creates a private queue to receive its messages and binds it to the fanout exchange:

 std::string myQueue=session.getId().getName();
 session.queueDeclare(arg::queue=myQueue, arg::exclusive=true,
 arg::autoDelete=true);

 session.exchangeBind(arg::exchange="amq.fanout",
 arg::queue=myQueue, arg::bindingKey="my-key");

In the last line of the code shown above, the binding key is optional, and has no effect on behavior, but
it appears in logs and can be helpful for debugging purposes.

Now we create a listener and subscribe it to the queue:

 SubscriptionManager subscriptions(session);
 Listener listener(subscriptions);

Publishing Messages to the Fanout Exchange

43

 subscriptions.subscribe(listener, myQueue);

After we subscribe to the queues, we call session.sync() to ensure that all queues and bindings
are in place before we run the subscription manager:

 session.sync();

Then we run the subscription manager. Whenever a message is received, the message listener is
invoked to print out the message. The call to subscriptions.run() terminates when the message
listener calls subscriptions.cancel() to indicate that it is finished.

 std::cout << "Listening" << std::endl;
 subscriptions.run();

5.3.3. Publishing Messages to the Fanout Exchange
The second program in this example, fanout_producer.cpp, writes messages to the fanout
exchange. It uses the Message and std:stringstream classes, so we'll add the following includes
to the skeleton:

#include <qpid/client/Message.h>

#include <sstream>
using std::stringstream;

Here is the main body of the program:

// Send some messages ...
Message message;

for (int i=0; i<10; i++) {
 stringstream message_data;
 message_data << "Message " << i;

 message.setData(message_data.str());
 session.messageTransfer(arg::content=message,
 arg::destination="amq.fanout");
}

// And send a final message to indicate termination.

message.setData("That's all, folks!");
session.messageTransfer(arg::content=message,
 arg::destination="amq.fanout");

5.4. Writing Publish/Subscribe Applications in C++
This section describes two programs that implement Publish/Subscribe messaging using a topic
exchange.

Chapter 5. Using MRG Messaging with C++

44

• topic_publisher.cpp sends messages to the amq.topic exchange, using the multipart routing
keys usa.news, usa.weather, europe.news, and europe.weather.

• topic_listener.cpp creates private queues for news, weather, usa, and europe, binding
them to the amq.topic exchange using bindings that match the corresponding parts of the
multipart routing keys.

Note
The topic_listener program reads only messages published after it begins running.
Run topic_publisher after starting topic_listener to send messages to the
subscriber.

In this example, the publisher creates messages for topics like news, weather, and sports that happen
in regions like Europe, Asia, or the United States. A given consumer may be interested in all weather
messages, regardless of region, or it may be interested in news and weather for the United States,
but uninterested in items for other regions. In this example, each consumer sets up its own private
queues, which receive precisely the messages that particular consumer is interested in.

5.4.1. Running the Publish-Subscribe Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/cpp/
pub-sub. To run these programs, do the following:

1. Make sure that a qpidd broker is running:

 $ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. In the pub-sub directory, build the examples using make.

$ make

3. In separate windows, start one or more topic subscribers by running topic_listener, as
follows:

$./topic_listener

You will see output similar to this:

Declaring queue: usa59ef73a3-6aad-4838-8bd7-15f373cd4cba
Subscribing to queue usa59ef73a3-6aad-4838-8bd7-15f373cd4cba
Declaring queue: europe59ef73a3-6aad-4838-8bd7-15f373cd4cba
Subscribing to queue europe59ef73a3-6aad-4838-8bd7-15f373cd4cba
Declaring queue: news59ef73a3-6aad-4838-8bd7-15f373cd4cba
Subscribing to queue news59ef73a3-6aad-4838-8bd7-15f373cd4cba
Declaring queue: weather59ef73a3-6aad-4838-8bd7-15f373cd4cba
Subscribing to queue weather59ef73a3-6aad-4838-8bd7-15f373cd4cba

Publishing Messages to a Topic Exchange

45

Listening for messages ...

Each topic listener creates a set of private queues, and binds each queue to the amq.topic
exchange together with a binding that indicates which messages should be routed to the queue.

4. In another window, start the topic publisher, which publishes messages to the amq.topic
exchange, as follows:

$./topic_publisher

This program has no output; the messages are routed to the message queues for each
topic_consumer as specified by the bindings the consumer created.

5. Go back to the window for each topic listener. You should see output like this:

Message 0 from usa59ef73a3-6aad-4838-8bd7-15f373cd4cba
Message: Message 0 from news59ef73a3-6aad-4838-8bd7-15f373cd4cba
Message: Message 1 from news59ef73a3-6aad-4838-8bd7-15f373cd4cba
Message: Message 1 from usa59ef73a3-6aad-4838-8bd7-15f373cd4cba
Message: Message 2 from news59ef73a3-6aad-4838-8bd7-15f373cd4cba
Message: Message 2 from usa59ef73a3-6aad-4838-8bd7-15f373cd4cba
Message: Message 3 from news59ef73a3-6aad-4838-8bd7-15f373cd4cba
...

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 5.1, “Creating and Closing Sessions”.

5.4.2. Publishing Messages to a Topic Exchange
The first program in the publish/subscribe example, topic_publisher.cpp, defines two new
functions: one that publishes messages to the topic exchange, and one that indicates that no more
messages are coming. This program uses the Message class and std:stringstream, so we'll add
the following includes to the skeleton:

#include <qpid/client/Message.h>

#include <sstream>
using std::stringstream;

The publish_messages() function publishes a series of five messages using the specified routing
key.

void publish_messages(Session& session, string routing_key)
{
 Message message;

 // Set the routing key once, we'll use the same routing key for all
 // messages.

Chapter 5. Using MRG Messaging with C++

46

 message.getDeliveryProperties().setRoutingKey(routing_key);
 for (int i=0; i<5; i++) {
 stringstream message_data;
 message_data << "Message " << i;

 message.setData(message_data.str());
 session.messageTransfer(arg::content=message,
 arg::destination="amq.topic");
 }
}

The no_more_messages() function signals the end of messages using the control routing key, which
is reserved for control messages.

void no_more_messages(Session& session)
{
 Message message;

 message.getDeliveryProperties().setRoutingKey("control");
 message.setData("That's all, folks!");
 session.messageTransfer(arg::content=message,
 arg::destination="amq.topic");
}

In the main body of the program, messages are published using four different routing keys, and then
the end of messages is indicated by a message sent to a separate routing key.

 publish_messages(session, "usa.news");
 publish_messages(session, "usa.weather");
 publish_messages(session, "europe.news");
 publish_messages(session, "europe.weather");

 no_more_messages(session);

5.4.3. Reading Messages from the Queue
The second program in the publish/subscribe example, topic_listener.cpp, creates a
local private queue, with a unique name, for each of the four binding keys it specifies: usa.#,
europe.#, #.news, and #.weather, and creates a listener. This program uses the Message,
MessageListener, and SubscriptionManager classes, so we'll add the following includes to the
skeleton:

#include <qpid/client/Message.h>
#include <qpid/client/MessageListener.h>
#include <qpid/client/SubscriptionManager.h>

To make it easier to manage our queue subscriptions, we can write a listener that can listen to multiple
queues. Here is the class declaration for the listener:

Reading Messages from the Queue

47

class Listener : public MessageListener {
 private:
 Session& session;
 SubscriptionManager subscriptions;
 public:
 Listener(Session& session);
 virtual void prepareQueue(std::string queue, std::string routing_key);
 virtual void received(Message& message);
 virtual void listen();
 ~Listener() { };
};

This listener is the heart of the program, and makes it possible for the rest of the program to be
extremely simple. It uses a subscription manager to keep track of the queue subscriptions. The
subscription manager constructor takes the session as an argument. It is initialized in the listener's
constructor:

Listener::Listener(Session& session) :
 session(session),
 subscriptions(session)
{
}

In this example, we use the subscription manager to subscribe to multiple queues, then run the
subscription manager to receive messages from all subscribed queues. The prepareQueue()
method creates a queue using a queue name and a routing key supplied as arguments:

listener.prepareQueue("usa", "usa.#");

The prepareQueue() method combines the requested queue name with the the session ID to
guarantee that the queue name is unique and will not clash with queues used by other clients that
subscribe to a given topic. It then subscribes to the queue in the subscription manager. The code for
prepareQueue() is:

void Listener::prepareQueue(std::string queue, std::string routing_key) {

 /* Create a unique queue name for this consumer by concatenating
 * the queue name parameter with the Session ID.
 */

 queue += session.getId().str();
 std::cout << "Declaring queue: " << queue << std::endl;

 /* Declare an exclusive queue on the broker
 */

 session.queueDeclare(arg::queue=queue, arg::exclusive=true,
 arg::autoDelete=true);

 /* Route messages to the new queue if they match the routing key.

Chapter 5. Using MRG Messaging with C++

48

 *
 * Also route any messages to with the "control" routing key to
 * this queue so we know when it's time to stop. A publisher sends
 * a message with the content "That's all, Folks!", using the
 * "control" routing key, when it is finished.
 */

 session.exchangeBind(arg::exchange="amq.topic", arg::queue=queue,
 arg::bindingKey=routing_key);
 session.exchangeBind(arg::exchange="amq.topic", arg::queue=queue,
 arg::bindingKey="control");

 /*
 * subscribe to the queue using the subscription manager.
 */

 std::cout << "Subscribing to queue " << queue << std::endl;
 subscriptions.subscribe(*this, queue);
}

The listener's listen() method listens to all subscribed queues by running the subscription
manager:

void Listener::listen() {
 subscriptions.run();
}

When a message is received, it will be printed. If the message signals termination, we cancel the
subscription to the queue the message came from. If no more subscriptions exist in the subscription
manager, we also stop the subscription manager to return control to the application:

void Listener::received(Message& message) {
 std::cout << "Message: " << message.getData() << " from " <<
 message.getDestination() << std::endl;

 if (message.getData() == "That's all, folks!") {
 std::cout << "Shutting down listener for " <<
 message.getDestination() << std::endl;
 subscriptions.cancel(message.getDestination());
 }
}

Note
In the Java and Python bindings, messages need to be explicitly acknowledged. In C++,
by default this is not needed, although the acknowledgement policy can be set to require
explicit message acknowledgement.

Now that we have the code for the listener, the code for the main program is simplified:

Writing Request/Response Applications in C++

49

// Create a listener for the session

Listener listener(session);

// Subscribe to messages on the queues we are interested in

listener.prepareQueue("usa", "usa.#");
listener.prepareQueue("europe", "europe.#");
listener.prepareQueue("news", "#.news");
listener.prepareQueue("weather", "#.weather");

// Wait for the broker to indicate that our queues have been created.
session.sync();

std::cout << "Listening for messages ..." << std::endl;

// Give up control and receive messages
listener.listen();

5.5. Writing Request/Response Applications in C++
In the request/response examples, we write a server that accepts strings from clients and converts
them to upper case, sending the result back to the requesting client. This example consists of two
programs.

• client.cpp is a client application that sends messages to the server.

• server.cpp is a service that accepts messages, converts their content to upper case, and sends
the result to the amq.direct exchange, using the request's reply-to property as the routing key
for the response.

Note
Start server before you start client, since the client only works if there is a running
server.

Insert the code from each example into the skeleton at Section 5.1, “Creating and Closing Sessions”.

5.5.1. Running the Request/Response Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/cpp/
request-response. To run these programs, do the following:

1. Make sure that a qpidd broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

Chapter 5. Using MRG Messaging with C++

50

2. In the request-response directory, build the examples using make.

$ make

3. Run the server.

$./server

You should see the following output:

$./server
Activating request queue listener for: request
Waiting for requests

4. In a separate window, start a client:

$./client

You should see the following output:

Activating response queue listener for: clientac27e517-1788-4d87-9a74-
da5cbc34ca51
Request: Twas brillig, and the slithy toves
Request: Did gire and gymble in the wabe.
Request: All mimsy were the borogroves,
Request: And the mome raths outgrabe.
Waiting for all responses to arrive ...
Response: TWAS BRILLIG, AND THE SLITHY TOVES
Response: DID GIRE AND GYMBLE IN THE WABE.
Response: ALL MIMSY WERE THE BOROGROVES,
Response: AND THE MOME RATHS OUTGRABE.
Shutting down listener for clientac27e517-1788-4d87-9a74-da5cbc34ca51

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 5.1, “Creating and Closing Sessions”.

5.5.2. The Client Application
The first program in the request-response example, client.cpp, sets up a private response queue
to receive responses from the server, then sends messages the server, listening to the response
queue for the server's responses. This program uses the Message, MessageListener, and
MessageListener classes and std:stringstream, so we'll add the following includes to the
skeleton:

#include <qpid/client/Message.h>
#include <qpid/client/MessageListener.h>
#include <qpid/client/SubscriptionManager.h>

The Client Application

51

#include <sstream>
using std::stringstream;

First, set up the private response queue and subscribe to it:

stringstream response_queue;
response_queue << "client" << session.getId().getName();

// Use the name of the response queue as the routing key

session.queueDeclare(arg::queue=response_queue.str());
session.exchangeBind(arg::exchange="amq.direct",
 arg::queue=response_queue.str(), arg::bindingKey=response_queue.str());

// Create a listener for the response queue and listen for response
 messages.
std::cout << "Activating response queue listener for: " <<
 response_queue.str() << std::endl;
SubscriptionManager subscriptions(session);
Listener listener(subscriptions);
subscriptions.subscribe(listener, response_queue.str());

Set some properties that will be used for all requests. The routing key for a request is request. The
reply-to property is set to the routing key for the client's private queue.

Message request;

request.getDeliveryProperties().setRoutingKey("request");
request.getMessageProperties().setReplyTo(ReplyTo("amq.direct",
 response_queue.str()));

Now send some requests...

string s[] = {
 "Twas brillig, and the slithy toves",
 "Did gire and gymble in the wabe.",
 "All mimsy were the borogroves,",
 "And the mome raths outgrabe."
};

for (int i=0; i<4; i++) {
 request.setData(s[i]);
 session.messageTransfer(arg::content=request,
 arg::destination="amq.direct");
 std::cout << "Request: " << s[i] << std::endl;
}

And wait for responses to arrive:

Chapter 5. Using MRG Messaging with C++

52

std::cout << "Waiting for all responses to arrive ..." << std::endl;
subscriptions.run();

5.5.3. The Server Application
The second program in the request-response example, server.cpp, uses the reply-to
property as the routing key for responses. This program uses the AsyncSession, Message,
MessageListener, and SubscriptionManager classes and std:stringstream, so we'll add
the following includes to the skeleton:

#include <qpid/client/AsyncSession.h>
#include <qpid/client/Message.h>
#include <qpid/client/MessageListener.h>
#include <qpid/client/SubscriptionManager.h>

#include <sstream>
using std::stringstream;

The main body of server.cpp creates an exclusive queue for requests, then waits for messages to
arrive.

string request_queue = "request";

session.queueDeclare(arg::queue=request_queue);
session.exchangeBind(arg::exchange="amq.direct", arg::queue=request_queue,
 arg::bindingKey=request_queue);

SubscriptionManager subscriptions(session);
Listener listener(subscriptions, session);
subscriptions.subscribe(listener, request_queue);

subscriptions.run();

This program uses a listener similar to those in other programs we have discussed, but with one
optimization: it uses an asynchronous session to send messages. An Asynchronous session does not
wait for acknowledgements when sending messages, which means it can be much faster. However,
using asynchronous sessions introduces some programming issues you should be aware of; these are
discussed in Section 5.9, “Optimizing message transfer with asynchronous sessions in C++”. Here is
the class declaration for the listener:

class Listener : public MessageListener{
 private:
 SubscriptionManager& subscriptions;
 AsyncSession asyncSession;
 public:
 Listener(SubscriptionManager& subscriptions, Session& session);
 virtual void received(Message& message);

XML-based Routing in C++

53

};

And here is the constructor:

Listener::Listener(SubscriptionManager& subs, Session& session)
 : subscriptions(subs), asyncSession(session)
{}

The listener's received() method converts the request's content to upper case, then sends a
response to the broker, using the request's reply-to property as the routing key for the response.

void Listener::received(Message& request) {

 Message response;
 string routingKey;

 if (request.getMessageProperties().hasReplyTo()) {
 routingKey =
 request.getMessageProperties().getReplyTo().getRoutingKey();
 } else {
 std::cout << "Error: " << "No routing key for request (" <<
 request.getData() << ")" << std::endl;
 return;
 }

 std::cout << "Request:: " << request.getData() << " (" << routingKey <<
 ")" << std::endl;

 // Transform message content to upper case
 std::string s = request.getData();
 std::transform (s.begin(), s.end(), s.begin(), toupper);
 response.setData(s);

 // Send it back to the user
 response.getDeliveryProperties().setRoutingKey(routingKey);
 asyncSession.messageTransfer(arg::content=response,
 arg::destination="amq.direct");

 if (request.getData() == "That's all, folks!")
 dispatcher.stop();
}

5.6. XML-based Routing in C++
The following programs work together to implement XML-based routing using an XML Exchange:

• declare_queues.cpp creates a queue on the broker, declares an XML Exchange, subscribes the
queue to the XML Exchange using an XQuery in the binding, then exits.

• xml_producer.cpp publishes messages to the XML Exchange.

Chapter 5. Using MRG Messaging with C++

54

• xml_consumer.cpp reads messages from the queue.

• listener.cpp reads messages from the queue using a listener.

5.6.1. Running the XML-based Routing Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/python/
xml-exchange. To run these programs, do the following:

1. Make sure that a qpidd broker is running:

 $ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. Declare an XML exchange and a message queue, then bind the queue to the exchange by
running declare_queues, as follows:

$./declare_queues

This program has no output. After this program has been run, all messages sent to the xml
exchange using the routing key content_feed are sent to the queue named message_queue if
they satisfy the conditions specified in the following XQuery, which is used in the binding:

declare variable $control external;
./message/id mod 2 = 1 or $control = 'end'

This query is true if the message ID is an odd number or if the message has an application header
of control='end'.

3. Publish a series of messages to the xml exchange by running xml_producer.py, as follows:

$./xml_producer

You will see the following output, which shows the messages that are produced:

Message data: <message><id>0</id></message>
Message data: <message><id>1</id></message>
Message data: <message><id>2</id></message>
Message data: <message><id>3</id></message>
Message data: <message><id>4</id></message>
Message data: <message><id>5</id></message>
Message data: <message><id>6</id></message>
Message data: <message><id>7</id></message>
Message data: <message><id>8</id></message>
Message data: <message><id>9</id></message>
>

4. Read the messages from the message queue using listener, as follows:

Declaring an XML Exchange, Declaring and Binding a Queue

55

$./listener

You should see the following output:

Message: <message><id>1</id></message>
Message: <message><id>3</id></message>
Message: <message><id>5</id></message>
Message: <message><id>7</id></message>
Message: <message><id>9</id></message>
Message: <end>That's all, folks!</end>
Shutting down listener for message_queue

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 5.1, “Creating and Closing Sessions”.

5.6.2. Declaring an XML Exchange, Declaring and Binding a Queue
Now we will declare an XML exchange named xml, a queue named message_queue, and a binding
that routes messages based on an XQuery.

An XML Exchange differs from a direct exchange in two significant ways. The first is that there is no
predeclared XML exchange, because it is not an exchange type defined in the AMQP specification.
Therefore, you have to declare an XML exchange, whose type is xml:

session.exchangeDeclare(arg::exchange="xml", arg::type="xml");

The second difference is that an XML Exchange uses an XQuery to determine whether to route the
message, based on the XML content of the message or message properties, as shown in the following
code:

FieldTable binding;
binding.setString("xquery", "declare variable $control external;"
 "./message/id mod 2 = 1 or $control = 'end'");

session.exchangeBind(arg::exchange="xml", arg::queue="message_queue",
 arg::bindingKey="content_feed", arg::arguments=binding);

In this particular example, only one binding uses this binding key, but you can create any number of
bindings for a given binding key with the XML Exchange. For instance, a second binding might route
even numbered messages to a different queue.

Note that this query has an external variable. Each application message header is bound to an
external variable with the same name and value as the header before the routing query is invoked.

5.6.3. Publishing to an XML Exchange
The next program, xml_producer.cpp, publishes XML messages to the XML exchange. This
program uses the AsyncSession and Message classes and std:stringstream, so we'll add the
following includes to the skeleton:

Chapter 5. Using MRG Messaging with C++

56

#include <qpid/client/AsyncSession.h>
#include <qpid/client/Message.h>

#include <sstream>
using std::stringstream;

Publishing to an XML Exchange is very similar to publishing to a direct exchange — you publish to
the exchange using a routing key, and any existing bindings for that routing key are used to route the
message. When publishing messages in a loop, we cast to an asynchronous session, which does
not wait for acknowledgements and is more efficient. This optimization is discussed in Section 5.9,
“Optimizing message transfer with asynchronous sessions in C++”.

 message.getDeliveryProperties().setRoutingKey("content_feed");
 message.getHeaders().setString("control","continue");

 // Now send some messages ...

 for (int i=0; i<10; i++) {
 stringstream message_data;
 message_data << "<message><id>" << i << "</id></message>";

 std::cout << "Message data: " << message_data.str() << std::endl;

 message.setData(message_data.str());
 async(session).messageTransfer(arg::content=message,
 arg::destination="xml");
 }

 // And send a final message to indicate termination.

 message.getHeaders().setString("control","end");
 message.setData("<end>That's all, folks!</end>");
 session.messageTransfer(arg::content=message,
 arg::destination="xml");

5.6.4. Reading from the Message Queue
listener.cpp is identical to the listener used for the direct exchange example—it simply reads
messages from the message queue. It uses the Message and SubscriptionManager classes, so
we will add these includes to the skeleton:

#include <qpid/client/Message.h>
#include <qpid/client/SubscriptionManager.h>

Here is the listener class for this program:

Durable Queues and Durable Messages in C++

57

class Listener : public MessageListener{
 private:
 SubscriptionManager& subscriptions;
 public:
 Listener(SubscriptionManager& subscriptions);
 virtual void received(Message& message);
};

Listener::Listener(SubscriptionManager& subs) : subscriptions(subs)
{}

void Listener::received(Message& message) {
 std::cout << "Message: " << message.getData() << std::endl;
 if (message.getHeaders().getString("control") == "end") {
 std::cout << "Shutting down listener for " <<
 message.getDestination()
 << std::endl;
 subscriptions.cancel(message.getDestination());
 }
}

And here is the main body of the program:

SubscriptionManager subscriptions(session);

// Create a listener and subscribe it to the queue named "message_queue"
Listener listener(subscriptions);
subscriptions.subscribe(listener, "message_queue");

// Deliver messages until the subscription is cancelled
// by Listener::received()
subscriptions.run();

5.7. Durable Queues and Durable Messages in C++
By default, the message queue will remain active in the broker as long as the broker is running, even
though the program that created the queue has terminated. Should the broker crash, however, the
queue and any messages would be lost. In order to avoid accidental loss as a result of machine
failure, both queues and messages can be made durable.

If a queue is durable, the queue survives a server crash, as well as any durable messages that have
been placed on the queue (non-durable messages on a durable queue may be lost if the server
crashes). However, a queue may also be declared autoDelete, which means the queue is deleted
automatically when the last client unsubscribes to the queue or terminates. If a queue is both durable
and autoDelete, it is still deleted when the last client unsubscribes or terminates. To make a queue
durable, specify durable=true when you declare the queue:

session.queueDeclare(arg::queue=name, arg::durable=true);

To make a message durable, set the delivery mode for the message to PERSISTENT:

Chapter 5. Using MRG Messaging with C++

58

message.getDeliveryProperties().setDeliveryMode(PERSISTENT);

5.8. Using Transactions in C++
This section shows how to use server local transactions, which buffer published messages and
acknowledgements and process them upon commit, guaranteeing that they will all succeed or fail as
a unit. In AMQP you can do this by making the session transactional. Once you do this, all message
transfers and acknowledgements are queued up until a commit or rollback is done on the session.
After a commit or rollback, the session remains transactional, so operations continue to be queued up
until the next commit or rollback.

To make a session transactional, call tx_select():

session.txSelect()

To commit all operations pending on a transactional session, call tx_commit():

session.txCommit()

To roll back all operations pending on a transactional session, call tx_rollback():

session.txRollback()

Transactions are used primarily to ensure that delivery is kept consistent in a messaging system.
For instance, if you want to make sure that messages are properly forwarded, you can make a
session transactional, subscribe to one queue, and publish received messages to another queue,
acknowledging the initial delivery and doing a commit. If you do this, the publish and consume are
atomic, and will both succeed or fail as a unit.

5.9. Optimizing message transfer with asynchronous
sessions in C++
When doing many message transfers, we can significantly improve our speed by using an
asynchronous session. With a synchronous session, every call to messageTransfer() waits
for confirmation before returning. An asynchronous session assumes that transfers succeed, and
returns without waiting for confirmation. In general, applications should use a synchronous session
for everything except for message transfer, because asynchronous sessions can cause a variety of
rather confusing programming errors, and there is little performance improvement except when doing
message transfer.For message transfer, cast the synchronous session to an asynchronous session to
improve speed, and use Session.sync() to wait for all pending operations to complete and detect
any errors before going on to do other operations:

#include <qpid/client/AsyncSession.h>

for (int i=0; i<10; i++) {
 stringstream message_data;
 message_data << "Message " << i;

 message.setData(message_data.str());

Handing Failover in C++ Connections

59

 async(session).messageTransfer(arg::content=message,
 arg::destination="amq.direct");
}

session.sync();

When using asynchronous sessions, many assumptions programmers generally make do not hold.
For instance:
• You cannot assume that a command is complete just because the function returns. Issue a sync()

on the session to be sure all commands are complete.

• You cannot assume the command will succeed just because the function returns without an
exception. The exception may arrive later.

• An exception from an async command may be thrown by a later function call on the session.
The exception response from the broker is processed in the background and puts the session in
exception mode; all subsequent calls on the session will fail by throwing the exception.

sync() allows you to wait for all commands issued so far to complete. You can also test the outcome
of individual commands by using the objects they return, see the Doxygen documentation for details.
Asynchronous sessions should be used for commands that are performance-critical, and these
sections should be thoroughly tested. Synchronous sessions obey the rules most programmers are
used to: they return only when the command is complete and throw an exception immediately if the
command failed.

5.10. Handing Failover in C++ Connections
The MRG Messaging broker can be run in clustering mode, which provides high reliability at-least-
once messaging. If one broker in a cluster fails, clients can choose another broker in the cluster and
continue their work.

A client designed to work with a cluster needs to respond appropriately when when a connection fails
in order to reconnect to another broker in the cluster. MRG Messaging provides several classes to
make this easier.

Instead of using a Connection object directly, you can use a FailoverManager to manage a
connection. A FailoverManager creates its own connection and sessions, and if a connection fails, it
reconnects to another broker in the same cluster.

The FailoverManager uses the Command design pattern. In your program, each command
is represented by a class derived from Failover::Command, and it implements an
execute() method that can contain any number of messaging operations. Your program calls
FailoverManager::execute(), passing a Command object as a parameter. For instance, if
sender is an object derived from Failover::Command, the following code executes the command:

#include <qpid/client/FailoverManager.h>
#include <qpid/client/ConnectionSettings.h>

ConnectionSettings settings;
FailoverManager connection(settings);
connection.execute(sender);

Chapter 5. Using MRG Messaging with C++

60

To execute the command, the FailoverManager creates a connection, creates a session for the
connection, and calls the sender's execute() method; if the connection is failed over to another
broker on the cluster, the FailoverManager creates a new connection and session, then calls the
sender's execute() method again, using a flag to indicate that the method is invoked because of a
failover.

Now we will show how to implement a FailoverManager::Command for sending or receiving
messages.

5.10.1. Sending MEssages in a FailoverManager::Command
We just showed an example that uses a sender object to send messages using a FailoverManager.
Here is the class declaration for the sender.

#include <qpid/client/FailoverManager.h>
#include <qpid/client/AsyncSession.h>
#include <qpid/client/Message.h>
#include <qpid/client/MessageReplayTracker.h>
#include <qpid/Exception.h>

class Sender : public FailoverManager::Command
{
 public:
 Sender(const std::string& queue, uint count);
 void execute(AsyncSession& session, bool isRetry);
 uint getSent();
 private:
 MessageReplayTracker sender;
 const uint count;
 uint sent;
 Message message;

};

The execute() method takes two parameters. The first parameter is the session object created
by the FailoverManager. The second parameter is a flag called isRetry, which is set to true if the
function is being called as a result of a broker failure. Here is the code for the execute() function in
the Sender class.

void Sender::execute(AsyncSession& session, bool isRetry)
{
 if (isRetry) sender.replay(session);
 else sender.init(session);
 while (sent < count) {
 stringstream message_data;
 message_data << ++sent;
 message.setData(message_data.str());
 message.getHeaders().setInt("sn", sent);

Receiving Messages with a FailoverManager::Command

61

 sender.send(message);
 if (count > 1000 && !(sent % 1000)) {
 std::cout << "sent " << sent << " of " << count << std::endl;
 }
 }
 message.setData("That's all, folks!");
 sender.send(message);
}

If the execute() function is called with isRetry=false, this method sends a set of messages.
If it is called with isRetry=true, it resends any messages that have not been acknowledged.
To do this, it uses a MessageReplayTracker to send messages. This class tracks message
acknowledgements, and can resend all messages that have not been acknowledged using
MessageReplayTracker::replay().

5.10.2. Receiving Messages with a FailoverManager::Command
A FailoverManager::Command can also set up a subscription and register a listener for incoming
messages.

FailoverManager connection(settings, &listener);

Here is an example of a listener class designed to be used in failover applications.

class Listener : public MessageListener,
 public FailoverManager::Command,
 public FailoverManager::ReconnectionStrategy
{
 public:
 Listener();
 void received(Message& message);
 void execute(AsyncSession& session, bool isRetry);
 void check();
 void editUrlList(std::vector<Url>& urls);
 private:
 Subscription subscription;
 uint count;
 uint skipped;
 uint lastSn;
 bool gaps;
};

This message listener is derived from FailoverManager::Command, so it is also a command.
When invoked as a command, it subscribes to the message queue and waits for messages. If a broker
failure has occurred, it prints a message to the screen before resubscribing.

void Listener::execute(AsyncSession& session, bool isRetry)

Chapter 5. Using MRG Messaging with C++

62

{
 if (isRetry) {
 std::cout << "Resuming from " << count << std::endl;
 }
 SubscriptionManager subs(session);
 subscription = subs.subscribe(*this, "message_queue");
 subs.run();
}

5.10.3. Choosing Brokers for Reconnect
In some environments, certain brokers may be preferable. For instance, a broker may be preferred
because it is on a local server or available via a faster network.

The MessageListener class we saw in the previous section is derived from
FailoverManager::ReconnectionStrategy, which allows applications to choose which brokers
should be tried first when reconnecting after a failure by implementing an editUrlList() method.
Here is an editUrlList() method for our Listener class.

void Listener::editUrlList(std::vector<Url>& urls)
{
 /**
 * A more realistic algorithm would be to search through the list
 * for prefered hosts and ensure they come first in the list.
 */
 if (urls.size() > 1) std::rotate(urls.begin(), urls.begin() + 1,
 urls.end());
}

The urls parameter is the set of urls available for reconnection in the cluster. The method can edit
this list to specify which brokers should be tried, and in what order.

5.11. Using logging in C++
Logging can give you a very detailed look at the interaction between an application and the broker,
which is extremely useful for debugging.

The Qpidd broker and C++ clients can both use environment variables to enable logging. The man
page for qpidd lists all available logging options, and shows the corresponding environment variables.
(The man page also shows how command line options and configuration files can be used to set
logging and other options for the broker.)

In general, use QPID_LOG_ENABLE to set the level of logging you are interested in (trace, debug, info,
notice, warning, error, or critical):

export QPID_LOG_ENABLE="warning+"

Use QPID_LOG_OUTPUT to determine where logging output should be sent. This is either a file name
or the special values stderr, stdout, or syslog:

Using logging in C++

63

export QPID_LOG_TO_FILE="/tmp/myclient.out"

64

Chapter 6.

65

Using MRG Messaging with Java JMS
This chapter shows how to write direct, publish/subscribe, and request/response programs in Java
JMS. These paradigms are explained in Chapter 2, Examples Overview. It then shows how to use
important features like persistence and transactions with MRG Messaging. Unlike Python and C+
+, Java has an established API standard for messaging called JMS (Java Message Service). This
chapter does not attempt to teach JMS programming. We suggest that you look at the Java JMS
Tutorial1 for an extensive tutorial on JMS.

This chapter focuses on using Java JMS that can work together with AMQP clients written in other
languages, even if these other clients use features not directly supported in Java JMS. In general,
we accomplish this by using JNDI (Java Naming and Directory Interface) to specify properties for
configuring queues and bindings.

The instructions in this section assume you have installed the client libraries and started a broker
using the instructions shown in Chapter 3, Installing MRG Messaging.

Running the Examples
The example code shown in this chapter is shipped as part of the rhm-docs package. Use rpm to see
where this code is installed on your system:

$ rpm -qal rhm-docs

By default, these examples are placed in /usr/share/doc/rhm-0.3/java. There is a script in that
directory that compiles and runs sample programs; it is called runSample.sh. This script takes the
name of the class to be run as an argument, for example:

$./runSample.sh org.apache.qpid.example.jmsexample.direct.Producer

Run this script in a directory where you have write permission. You might need to copy the entire /
usr/share/doc/rhm-0.3/java directory to a place where you can modify the code and create
subdirectories as part of the compilation process. If you do not intend to modify the code, you can
simply copy the script and run it from a directory where you have write privileges.

6.1. Java JMS Client Compatibility and Interoperability
The MRG Messaging Java JMS client library is compatible with both Java JMS and AMQP. However,
there are two limitations you will need to keep in mind:
1. Java JMS compatibility is defined only at the source code level, and

2. You will need to follow certain guidelines if you want your programs to work correctly with AMQP
clients written in other languages.

Java JMS is an Application Programming Interface (API), not a wire-level messaging standard.
Programs written using our Java JMS client library will interoperate with each other and programs
written with other AMQP-based Java JMS clients. If you program using only the Java JMS API, your
code can also be run on other Java JMS systems if you configure the environment properly using
JNDI.

1 java.sun.com/products/jms/tutorial/

java.sun.com/products/jms/tutorial/
java.sun.com/products/jms/tutorial/
java.sun.com/products/jms/tutorial/

Chapter 6. Using MRG Messaging with Java JMS

66

Interoperability with AMQP clients written in other languages is straightforward for simple applications,
but there are some issues that you should keep in mind, especially if these clients use features not
found in Java JMS:

• To declare AMQP queues and bindings for your Java JMS program, it is generally best to use JNDI.
This allows you to do many things not directly supported by the Java JMS API, including specifying
routing keys whose name differs from the queue name, binding to a given queue with multiple
routing keys, declaring properties for the queue, etc. This is discussed in detail in Section 6.2,
“Creating and Closing Connections and Sessions with JNDI”

• Declare your queues before using them. In Java JMS, a queue is created implicitly if you attempt to
read from it, but not if you attempt to publish to it. In AMQP, queues must be explicitly declared.

• Make sure the content of your message will make sense to clients written in other languages.
Serialized Java objects or maps are not easily processed in other languages.

• Make sure that the message-type of your message is correctly declared. By default, the Java JMS
client uses byte messages. Other message types are discussed in the Java JMS specification2.

6.2. Creating and Closing Connections and Sessions with
JNDI
The examples described in in this chapter create and close connections and sessions using a
connection factory that is parameterized using the Java Naming and Directory Interface (JNDI). This
section shows the code needed to work with JNDI in MRG Messaging programs, then shows the JNDI
properties used in MRG Messaging and the format of a Connection URL and a Binding URL.

6.2.1. Basic JNDI Programming for MRG Messaging
The following code establishes the initial JNDI context, which represents the JNDI configuration:

Hashtable<String, String> jndiEnvironment = new Hashtable<String,
 String>();

// set the factory class
jndiEnvironment.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.apache.qpid.jndi.PropertiesFileInitialContextFactory");

// set the connection factory name
jndiEnvironment.put("connectionfactory.ConnectionFactory",
 "amqp://username:password@clientid/test?brokerlist='tcp://
localhost:5672'");

// Set the provider URL that points to a property file
jndiEnvironment.put(Context.PROVIDER_URL, "myPRoviderURLPath");

// create the initial context
InitialContext initialContext = new InitialContext(jndiEnvironment);

Once the JNDI configuration has been created, we can get the connection factory as follows:

JNDI Properties for MRG Messaging

67

ConnectionFactory connectionFactory = (ConnectionFactory)
 initialContext.lookup("ConnectionFactory");

The connection factory is used to create a connection, and the connection is used to create a session,
as follows:

Connection connection = connectionFactory.createConnection("guest",
 "guest");
Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

Programs that use JNDI close both the connection and the JNDI context, as follows:

connection.close();
getInitialContext().close();

6.2.2. JNDI Properties for MRG Messaging
MRG Messaging supports the properties shown in the following table:

Property Purpose

connectionfactory.<jndiname> The Connection URL that the connection factory
will use to perform connections.

queue.<jndiname> A JMS queue, which is implemented as an
amq.direct exchange in MRG Messaging.

topic.<jndiname> A JMS topic, which is implemented as an
amq.topic exchange in MRG Messaging.

destination.<jndiname> Can be used for defining all amq destinations,
queues, topics and header matching, using a
Binding URL (see next table).

Table 6.1. JNDI Properties supported by MRG Messaging

These properties can be serialized to or loaded from a JNDI properties file, such as this one:

java.naming.factory.initial =
 org.apache.qpid.jndi.PropertiesFileInitialContextFactory

register some connection factories
connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?
brokerlist='tcp://localhost:5672'

Register an AMQP destination in JNDI
destination.[jniName] = [BindingURL]
destination.directQueue = direct://amq.direct//message_queue?
routingkey='routing_key'

Chapter 6. Using MRG Messaging with Java JMS

68

6.2.3. Connection URLs
In JNDI properties, a Connection URL specifies properties for a connection. The format for a
Connection URL is:

amqp://[<user>:<pass>@][<clientid>]<virtualhost>[?
<option>='<value>'[&<option>='<value>']]

For instance, the following Connection URL specifies a user name, a password, a client ID, a virtual
host ("test"), a broker list with a single broker, and a TCP host with the host name “localhost” using
port 5672:

amqp://username:password@clientid/test?brokerlist='tcp://localhost:5672'

MRG Messaging supports the following properties in Connection URLs:

Option Type Description

brokerlist see below The broker to use for this
connection. In the current
release, precisely one broker
must be specified.

maxprefetch -- The maximum number of
pre-fetched messages per
destination.

sync_persistence false When true, a sync command
is sent after every persistent
message to guarantee that it has
been received.

Table 6.2. Connection URL Properties

Broker lists are specified using a URL in this format:

brokerlist=<transport>://<host>[:<port>]

For instance, this is a typical broker list:

brokerlist='tcp://localhost:5672'

6.2.4. Binding URLs
In MRG Messaging JNDI properties, a Binding URL can specify the bindings that define the
relationship between a queue and an exchange. For instance, the following Binding URL specifies a
binding between a message queue named message_queue and the amq.direct exchange, using
the routing key routing_key:

direct://amq.direct//message_queue?routingkey="routing_key"

The format for a Binding URL is:

Creating and Closing Connections and Sessions with AMQP

69

[<Exchange Class>://<Exchange Name>/[<Queue>][?
<option>='<value>'[&<option>='<value>']]

MRG Messaging supports the following properties in Binding URLs:

Option Type Description

durable boolean true if queue is durable, false
if transient.

exclusive boolean true for a private queue, false
for a shared queue.

autodelete boolean true if queue is automatically
deleted when last subscription
finishes.

routingkey string (see below) Value to use as the routing key
for the destiniation.

bindingkey string (see below) One or more binding keys to be
bound to the destination.

clientid string Client ID.

subscription boolean true if a subscription should be
created for this queue, false
otherwise.

Table 6.3. Binding URL Properties

A routing key is used when publishing, a binding key is used when binding a queue to an exchange. In
JMS, a destination can play both roles, so the same destination can be used for both publishing and
consuming. A given binding key may have only one routing key, but it may have multiple binding keys.
For backwards compatibility, if no binding key is given and the destination is bound to an exchange,
the routing key is used as a binding key.

6.3. Creating and Closing Connections and Sessions with
AMQP
MRG Messaging can establish connections and sessions for use with Java JMS in two different ways.
Many programs use JNDI to set up the initial session, then rely on the Java JMS APIs in their program
code, as shown in the previous section. This is also the approach used in the examples in this chapter.

It is also possible to use the Qpid APIs to set up a session explicitly in your program, then use the
Java APIs for programming with that session. The following skeleton shows how to do that:

Connection connection = new AMQConnection(broker_server, broker_port,
 broker_login, broker_password, "clientid/test", "");

connection.start();
Session session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE);

// ---------- Your code goes here -------------------------

session.close();

Chapter 6. Using MRG Messaging with Java JMS

70

connection.close();

For instance, the following code can be inserted into the above framework to create a queue, send a
message, and read it back:

Destination destinationQueue = new AMQQueue("amq.direct","weather");

MessageProducer producerQueue = session.createProducer(destinationQueue);

TextMessage txtQueueMsg = session.createTextMessage();
txtQueueMsg.setText("Hello Queue");

producerQueue.send(txtQueueMsg);

MessageConsumer consumerQueue = session.createConsumer(destinationQueue);

Message msgQueue = consumerQueue.receive();
msgQueue.acknowledge();

6.4. Writing Direct Applications in Java JMS
This section describes three programs that implement direct messaging in Java JMS:

• Producer.java publishes messages to the queue associated with the routing key routing_key.

• Consumer.java uses a message consumer to receive messages from the queue associated with
the routing key age_queue.

• Listener.java uses a message listener to receive messages from the queue associated with the
routing key age_queue.

Unlike the C++ and Python examples, our Java JMS examples use JNDI to establish the server
environment instead of using a separate configuration program. The publisher and listener each look
for a queue with the correct name. The JMS library transparently creates destinations on the broker
when required.

6.4.1. Running the Direct Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/java/.
Copy this directory to a location where you have write privileges. To run these programs, do the
following:

1. Make sure that a qpidd broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. In the java directory, use runSample.sh to run the Consumer program:

$./runSample.sh org.apache.qpid.example.jmsexample.direct.Consumer

Running the Direct Examples

71

Using QPID_HOME: /usr/share/java/
Using QPID_SAMPLE: /usr/share/doc/rhm-0.3
Consumer: Setting an ExceptionListener on the connection as sample uses
 a MessageConsumer
Consumer: Creating a non-transacted, auto-acknowledged session
Consumer: Creating a MessageConsumer
Consumer: Starting connection so MessageConsumer can receive messages

3. In a separate window, use runSample.sh to run the Producer program:

$./runSample.sh org.apache.qpid.example.jmsexample.direct.Producer
Using QPID_HOME: /usr/share/java/
Using QPID_SAMPLE: /usr/share/doc/rhm-0.3
Producer: Creating a non-transacted, auto-acknowledged session
Producer: Creating a Message Producer
Producer: Creating a TestMessage to send to the destination
Producer: Sending message: 1
Producer: Sending message: 2
Producer: Sending message: 3
Producer: Sending message: 4
Producer: Sending message: 5
Producer: Sending message: 6
Producer: Sending message: 7
Producer: Sending message: 8
Producer: Sending message: 9
Producer: Sending message: 10
Producer: Closing connection
Producer: Closing JNDI context

4. Now go back to the window where the Consumer program is running. You should see the
following output:

Consumer: Received message: Message 1
Consumer: Received message: Message 2
Consumer: Received message: Message 3
Consumer: Received message: Message 4
Consumer: Received message: Message 5
Consumer: Received message: Message 6
Consumer: Received message: Message 7
Consumer: Received message: Message 8
Consumer: Received message: Message 9
Consumer: Received message: Message 10
Consumer: Received final message That's all, folks!
Consumer: Closing connection
Consumer: Closing JNDI context

Chapter 6. Using MRG Messaging with Java JMS

72

6.4.2. JNDI Properties
The examples in this section all use the following JNDI properties. The connection factory URL
includes the password, user name, and host address. The destination declares a queue bound to the
routing key routing_key.

java.naming.factory.initial =
 org.apache.qpid.jndi.PropertiesFileInitialContextFactory

register some connection factories
connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?
brokerlist='tcp://localhost:5672'

Register an AMQP destination in JNDI
destination.[jniName] = [BindingURL]
destination.directQueue = direct://amq.direct//message_queue?
routingkey='routing_key'

6.4.3. Publishing Messages to a Queue
This section describes Producer.java, which sends messages to the direct exchange. The
producer class is derived from BaseExample, which gives it access to the JNDI environment
described in the previous section.

Before we can publish messages, we must have an open connection, a session, and a destination
queue. First we get a connection factory using JNDI:

// Load JNDI properties
Properties properties = new Properties();
properties.load(this.getClass().getResourceAsStream("direct.properties"));

//Create the initial context
Context ctx = new InitialContext(properties);

// look up destination and connection factory
Destination destination = (Destination)ctx.lookup("directQueue");
ConnectionFactory conFac =
 (ConnectionFactory)ctx.lookup("qpidConnectionfactory");

Create the connection and the session using this connection factory:

Connection connection = conFac.createConnection();
Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

Create a MessageProducer and a message, using the Message object to send a series of
messages in a loop.

Reading Messages from the Queue with a Message Consumer

73

Note
In Java JMS, we do not need to start the connection in order to send a message. We do
need to start a connection in order to receive a message.

MessageProducer messageProducer = session.createProducer(destination);
TextMessage message;

// Send a series of messages in a loop
for (int i = 1; i < getNumberMessages() + 1; i++)
{
 message = session.createTextMessage("Message " + i);
 messageProducer.send(message, getDeliveryMode(),
 Message.DEFAULT_PRIORITY, Message.DEFAULT_TIME_TO_LIVE);
}

After sending the messages, send a final termination message:

message = session.createTextMessage("That's all, folks!");
messageProducer.send(message, getDeliveryMode(), Message.DEFAULT_PRIORITY,
 Message.DEFAULT_TIME_TO_LIVE);

Now we need only close the connection and the JNDI context.

connection.close();
getInitialContext().close();

6.4.4. Reading Messages from the Queue with a Message Consumer
In this section we will see how to read messages from the queue using a Message Consumer. The
code used in this section is taken from Consumer.java.

The first step is to get a connection and create a session. We also create an exception handler for the
connection:

// Load JNDI properties
Properties properties = new Properties();
properties.load(this.getClass().getResourceAsStream("direct.properties"));

//Create the initial context
Context ctx = new InitialContext(properties);

// look up destination and connection factory
Destination destination = (Destination)ctx.lookup("directQueue");
ConnectionFactory conFac =
 (ConnectionFactory)ctx.lookup("qpidConnectionfactory");

Connection connection = conFac.createConnection();

Chapter 6. Using MRG Messaging with Java JMS

74

connection.setExceptionListener(new ExceptionListener()
{
 public void onException(JMSException jmse)
 {
 System.err.println(CLASS + ": The sample received an exception
 through the ExceptionListener");
 System.exit(0);
 }
});

Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

Message consumers need to start the connection in order to receive messages. Create a
messageConsumer and start the connection:

MessageConsumer messageConsumer = session.createConsumer(destination);
connection.start();

Now we can read our messages and print them out, terminating when the final message is received:

Message message;
boolean end = false;
while (!end)
{
 message = messageConsumer.receive();
 String text;
 if (message instanceof TextMessage)
 {
 text = ((TextMessage) message).getText();
 }
 else
 {
 byte[] body = new byte[(int) ((BytesMessage)
 message).getBodyLength()];
 ((BytesMessage) message).readBytes(body);
 text = new String(body);
 }
 if (text.equals("That's all, folks!"))
 {
 System.out.println(CLASS + ": Received final message " + text);
 end = true;
 }
 else
 {
 System.out.println(CLASS + ": Received message: " + text);
 }
}

Once we have received all messages, we close the connection and the JNDI context before
terminating:

Reading Messages from the Queue using a Message Listener

75

connection.close();
getInitialContext().close();

6.4.5. Reading Messages from the Queue using a Message Listener
In the previous section, we read messages using a message consumer. In this section we read using
a message listener, which receives messages asynchronously. We create the connection, session,
and queue precisely as for the message consumer:

// Load JNDI properties
Properties properties = new Properties();
properties.load(this.getClass().getResourceAsStream("direct.properties"));

//Create the initial context
Context ctx = new InitialContext(properties);

// look up destination and connection factory
Destination destination = (Destination)ctx.lookup("directQueue");
ConnectionFactory conFac =
 (ConnectionFactory)ctx.lookup("qpidConnectionfactory");

Connection connection = conFac.createConnection();
connection.setExceptionListener(new ExceptionListener()
{
 public void onException(JMSException jmse)
 {
 System.err.println(CLASS + ": The sample received an exception
 through the ExceptionListener");
 System.exit(0);
 }
});

Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

The class we are implementing is the message listener class, we register it with the message
consumer object, then wait for messages to arrive. We use the flag _failed to indicate that an invalid
message has been received.

MessageConsumer messageConsumer = session.createConsumer(destination);

// Set the listener and start the connection
messageConsumer.setMessageListener(this);
connection.start();

// Wait for the messageConsumer to have received all the messages it needs
synchronized (_lock)
{
 while (!_finished && !_failed)
 {

Chapter 6. Using MRG Messaging with Java JMS

76

 _lock.wait();
 }
}
if (_failed)
{
 System.out.println(CLASS + ": ERROR: invalid message(s)");
}

// Once all messages have been received, close the connection and the JNDI
 context
connection.close();
getInitialContext().close();

A message listener implements an onMessage() method, which takes a Message as a parameter.
Our onMessage method prints the message, checks to see if it is the final message, and signals
termination if it is. If an exception is received, we set _failed to true before termination.

public void onMessage(Message message)
{
 try
 {
 String text;
 if (message instanceof TextMessage)
 {
 text = ((TextMessage) message).getText();
 }
 else
 {
 byte[] body = new byte[(int) ((BytesMessage)
 message).getBodyLength()];
 ((BytesMessage) message).readBytes(body);
 text = new String(body);
 }
 if (text.equals("That's all, folks!"))
 {
 System.out.println(CLASS + ": Received final message " + text);
 synchronized (_lock)
 {
 _finished = true;
 _lock.notifyAll();
 }
 }
 else
 {
 System.out.println(CLASS + ": Received message: " + text);
 }
 }
 catch (JMSException exp)
 {
 System.out.println(CLASS + ": Caught an exception handling a
 received message");

Writing Fanout Applications in Java JMS

77

 exp.printStackTrace();
 synchronized (_lock)
 {
 _failed = true;
 _lock.notifyAll();
 }
 }
}

6.5. Writing Fanout Applications in Java JMS
This section describes three programs that implement fanout messaging in Java JMS:

• Producer.java publishes messages to the amq.fanouteexchange.

• Consumer.java uses a message consumer to receive messages from the amq.fanout
exchange.

• Listener.java uses a message listener to receive messages from the queue named
message_queue.

Unlike the C++ and Python examples, our Java JMS examples use JNDI to establish the server
environment instead of using a separate configuration program. In this example, every message that
the producer writes to the fanout exchange is sent to the queues used by each listener or consumer.

6.5.1. Running the Fanout Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/java/.
Copy this directory to a location where you have write privileges. To run these programs, do the
following:

1. Make sure that a qpidd broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. In the java directory, use runSample.sh to run the Consumer or Listener program,
specifying a unique queue name, which must be “fanoutQueue1”, “fanoutQueue2”, or
“fanoutQueue3”:

$./runSample.sh org.apache.qpid.example.jmsexample.fanout.Consumer
 fanoutQueue1
Using QPID_HOME: /usr/share/java/
Using QPID_SAMPLE: /usr/share/doc/rhm-0.3
Consumer: Setting an ExceptionListener on the connection as sample uses
 a MessageConsumer
Consumer: Creating a non-transacted, auto-acknowledged session
Consumer: Creating a MessageConsumer
Consumer: Starting connection so MessageConsumer can receive messages

Chapter 6. Using MRG Messaging with Java JMS

78

You can do this in up to three windows, specifying a different name for each queue.

3. In a separate window, use runSample.sh to run the Producer program:

$./runSample.sh org.apache.qpid.example.jmsexample.fanout.Producer
Using QPID_HOME: /usr/share/java/
Using QPID_SAMPLE: /usr/share/doc/rhm-0.3
Producer: Creating a non-transacted, auto-acknowledged session
Producer: Creating a Message Producer
Producer: Creating a TestMessage to send to the destination
Producer: Sending message: 1
Producer: Sending message: 2
Producer: Sending message: 3
Producer: Sending message: 4
Producer: Sending message: 5
Producer: Sending message: 6
Producer: Sending message: 7
Producer: Sending message: 8
Producer: Sending message: 9
Producer: Sending message: 10
Producer: Closing connection
Producer: Closing JNDI context

4. Now go back to the window where the Listener program is running. You should see output like
this:

Consumer: Received message: Message 1
Consumer: Received message: Message 2
Consumer: Received message: Message 3
Consumer: Received message: Message 4
Consumer: Received message: Message 5
Consumer: Received message: Message 6
Consumer: Received message: Message 7
Consumer: Received message: Message 8
Consumer: Received message: Message 9
Consumer: Received message: Message 10
Consumer: Received final message That's all, folks!
Consumer: Closing connection
Consumer: Closing JNDI context

6.5.2. JNDI Properties
The fanout exchange routes every message to every queue that is bound to it. This application uses
the following JNDI properties file:

java.naming.factory.initial =
 org.apache.qpid.jndi.PropertiesFileInitialContextFactory

register some connection factories

Reading Messages from a Queue with a Message Consumer

79

connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?
brokerlist='tcp://localhost:5672'

Register an AMQP destination in JNDI
destination.[jniName] = [BindingURL]
destination.fanoutQueue1 = fanout://amq.fanout//message_queue1
destination.fanoutQueue2 = fanout://amq.fanout//message_queue2
destination.fanoutQueue3 = fanout://amq.fanout//message_queue3

for producer
destination.fanoutQueue = fanout://amq.fanout//message_queue

6.5.3. Reading Messages from a Queue with a Message Consumer
In this section we will see how to read messages from a queue using a Message Consumer. The code
used in this section is taken from Consumer.java. As you will see, this program is extremely similar
to the consumer used in for the direct example, differing only in the JNDI property file used and the
code used to ensure that each consumer has a queue with a unique name.

The first step is to get a connection and create a session. We also create an exception handler for the
connection:

// Load JNDI properties
Properties properties = new Properties();
properties.load(this.getClass().getResourceAsStream("fanout.properties"));

//Create the initial context
Context ctx = new InitialContext(properties);

// look up destination and connection factory
Destination destination = (Destination)ctx.lookup(queueName);
ConnectionFactory conFac =
 (ConnectionFactory)ctx.lookup("qpidConnectionfactory");

Connection connection = conFac.createConnection();
connection.setExceptionListener(new ExceptionListener()
{
 public void onException(JMSException jmse)
 {
 System.err.println(CLASS + ": The sample received an exception
 through the ExceptionListener");
 System.exit(0);
 }
});

System.out.println(CLASS + ": Creating a non-transacted, auto-acknowledged
 session");
Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

Chapter 6. Using MRG Messaging with Java JMS

80

Message consumers need to start the connection in order to receive messages. Create a
messageConsumer and start the connection:

MessageConsumer messageConsumer = session.createConsumer(destination);
connection.start();

Now we can read our messages and print them out, terminating when the final message is received:

Message message;
boolean end = false;
while (!end)
{
 message = messageConsumer.receive();
 String text;
 if (message instanceof TextMessage)
 {
 text = ((TextMessage) message).getText();
 }
 else
 {
 byte[] body = new byte[(int) ((BytesMessage)
 message).getBodyLength()];
 ((BytesMessage) message).readBytes(body);
 text = new String(body);
 }
 if (text.equals("That's all, folks!"))
 {
 System.out.println(CLASS + ": Received final message " + text);
 end = true;
 }
 else
 {
 System.out.println(CLASS + ": Received message: " + text);
 }
}

Once we have received all messages, we close the connection and the JNDI context before
terminating:

connection.close();
ctx.close();

6.5.4. Reading Messages from the Queue using a Message Listener
In the previous section, we read messages using a message consumer. In this section we read
using a message listener, which receives messages asynchronously. As you will see, this program is
extremely similar to the listener used in for the direct example, differing only in the JNDI property file
used and the code used to ensure that each listener has a queue with a unique name. We create the
connection, session, and queue precisely as for the message consumer:

Reading Messages from the Queue using a Message Listener

81

// Load JNDI properties
Properties properties = new Properties();
properties.load(this.getClass().getResourceAsStream("fanout.properties"));

// Create the initial context
Context ctx = new InitialContext(properties);

// Look up destination and connection factory
Destination destination = (Destination)ctx.lookup(queueName);
ConnectionFactory conFac =
 (ConnectionFactory)ctx.lookup("qpidConnectionfactory");

Connection connection = conFac.createConnection();
connection.setExceptionListener(new ExceptionListener()
{
 public void onException(JMSException jmse)
 {
 // The connection may have broken invoke reconnect code if
 available.
 System.err.println(CLASS + ": The sample received an exception
 through the ExceptionListener");
 System.exit(0);
 }
});

Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

The class we are implementing is the message listener class, we register it with the message
consumer object, then wait for messages to arrive. We use the flag _failed to indicate that an invalid
message has been received.

MessageConsumer messageConsumer = session.createConsumer(destination);

// Set the listener and start the connection
messageConsumer.setMessageListener(this);
connection.start();

// Wait for the messageConsumer to have received all the messages it needs
synchronized (_lock)
{
 while (!_finished && !_failed)
 {
 _lock.wait();
 }
}
if (_failed)
{
 System.out.println(CLASS + ": This sample failed as it received
 unexpected messages");
}

Chapter 6. Using MRG Messaging with Java JMS

82

// Once all messages have been received, close the connection and the JNDI
 context
connection.close();
ctx.close();

A message listener implements an onMessage() method, which takes a Message as a parameter.
Our onMessage method prints the message, checks to see if it is the final message, and signals
termination if it is. If an exception is received, we set _failed to true before termination.

public void onMessage(Message message)
{
 try
 {
 String text;
 if (message instanceof TextMessage)
 {
 text = ((TextMessage) message).getText();
 }
 else
 {
 byte[] body = new byte[(int) ((BytesMessage)
 message).getBodyLength()];
 ((BytesMessage) message).readBytes(body);
 text = new String(body);
 }
 if (text.equals("That's all, folks!"))
 {
 System.out.println(CLASS + ": Received final message " + text);
 synchronized (_lock)
 {
 _finished = true;
 _lock.notifyAll();
 }
 }
 else
 {
 System.out.println(CLASS + ": Received message: " + text);
 }
 }
 catch (JMSException exp)
 {
 System.out.println(CLASS + ": Caught an exception handling a
 received message");
 exp.printStackTrace();
 synchronized (_lock)
 {
 _failed = true;
 _lock.notifyAll();
 }
 }

Publishing Messages to a Fanout Exchange

83

}

6.5.5. Publishing Messages to a Fanout Exchange
This section describes Producer.java, which sends messages to a fanout exchange. The producer
class is derived from BaseExample, which gives it access to the JNDI environment described in the
previous section.

Before we can publish messages, we must have an open connection, a session, and a destination
queue. First we get a connection factory using JNDI:

// Load JNDI properties
Properties properties = new Properties();
properties.load(this.getClass().getResourceAsStream("fanout.properties"));

// Create the initial context
Context ctx = new InitialContext(properties);

Destination destination = (Destination)ctx.lookup("fanoutQueue");

// Declare the connection
ConnectionFactory conFac =
 (ConnectionFactory)ctx.lookup("qpidConnectionfactory");

Create the connection and the session using this connection factory:

Connection connection = conFac.createConnection();
Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

Create a MessageProducer and a message, using the Message object to send a series of
messages in a loop.

Note
In Java JMS, we do not need to start the connection in order to send a message. We do
need to start a connection in order to receive a message.

MessageProducer messageProducer = session.createProducer(destination);
TextMessage message;

// Send a series of messages in a loop
for (int i = 1; i < numMessages + 1; i++)
{
 message = session.createTextMessage("Message " + i);
 messageProducer.send(message, deliveryMode, Message.DEFAULT_PRIORITY,
 Message.DEFAULT_TIME_TO_LIVE);
}

After sending the messages, send a final termination message:

Chapter 6. Using MRG Messaging with Java JMS

84

message = session.createTextMessage("That's all, folks!");
messageProducer.send(message, deliveryMode, Message.DEFAULT_PRIORITY,
 Message.DEFAULT_TIME_TO_LIVE);

Now we need only close the connection and the JNDI context.

connection.close();
ctx.close();

6.6. Writing Publish/Subscribe Applications in Java JMS
This section describes two programs that implement Publish/Subscribe messaging:

• Publisher.java sends messages to the hierarchical topics usa.news, usa.weather,
europe.news, and europe.weather.

• Listener.java listens for messages sent to the topics #.news, #.weather, europe.#, and
usa.#.

In this example, the publisher creates messages for topics like news, weather, and sports that happen
in regions like Europe, Asia, or the United States. A given consumer may be interested in all weather
messages, regardless of region, or it may be interested in news and weather for the United States,
but uninterested in items for other regions. In this example, each consumer sets up its own private
queues, which receive precisely the messages that particular consumer is interested in.

6.6.1. Running the Publish/Subscribe Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/java/.
Copy this directory to a location where you have write privileges. To run these programs, do the
following:

1. Make sure that a qpidd broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. In the java directory, use runSample.sh to run the Listener program:

$./runSample.sh org.apache.qpid.example.jmsexample.pubsub.Listener
Using QPID_HOME: /usr/share/java/
Using QPID_SAMPLE: /usr/share/doc/rhm-0.3
Listener: Setting an ExceptionListener on the connection as sample uses
 a TopicSubscriber
Listener: Creating a non-transacted, auto-acknowledged session
Listener: Creating a Message Subscriber for topic usa
Listener: Creating a Message Subscriber for topic europe
Listener: Creating a Message Subscriber for topic news
Listener: Creating a Message Subscriber for topic weather

Running the Publish/Subscribe Examples

85

Listener: Starting connection so TopicSubscriber can receive messages

3. In a separate window, use runSample.sh to run the Publisher program:

$./runSample.sh org.apache.qpid.example.jmsexample.pubsub.Publisher
Using QPID_HOME: /usr/share/java/
Using QPID_SAMPLE: /usr/share/doc/rhm-0.3
Publisher: Creating a non-transacted, auto-acknowledged session
Publisher: Creating a TestMessage to send to the topics
Publisher: Creating a Message Publisher for topic usa.weather
Publisher: Sending message 1
Publisher: Sending message 2
Publisher: Sending message 3
Publisher: Sending message 4
Publisher: Sending message 5
Publisher: Sending message 6
Publisher: Creating a Message Publisher for topic usa.news
Publisher: Sending message 1
Publisher: Sending message 2
Publisher: Sending message 3
Publisher: Sending message 4
Publisher: Sending message 5
Publisher: Sending message 6
Publisher: Creating a Message Publisher for topic europe.weather
Publisher: Sending message 1
Publisher: Sending message 2
Publisher: Sending message 3
Publisher: Sending message 4
Publisher: Sending message 5
Publisher: Sending message 6
Publisher: Creating a Message Publisher for topic europe.news
Publisher: Sending message 1
Publisher: Sending message 2
Publisher: Sending message 3
Publisher: Sending message 4
Publisher: Sending message 5
Publisher: Sending message 6
Publisher: Closing connection
Publisher: Closing JNDI context

4. Now go back to the window where the Listener program is running. You should see output like
this:

Listener: Received message for topic: usa: message 1
Listener: Received message for topic: weather: message 1
Listener: Received message for topic: usa: message 2
Listener: Received message for topic: weather: message 2
Listener: Received message for topic: usa: message 3
Listener: Received message for topic: weather: message 3
Listener: Received message for topic: usa: message 4

Chapter 6. Using MRG Messaging with Java JMS

86

Listener: Received message for topic: weather: message 4
Listener: Received message for topic: usa: message 5
Listener: Received message for topic: weather: message 5
Listener: Received message for topic: usa: message 6
Listener: Received message for topic: weather: message 6
. . .
Listener: Shutting down listener for news
Listener: Shutting down listener for weather
Listener: Shutting down listener for usa
Listener: Shutting down listener for europe
Listener: Closing connection
Listener: Closing JNDI context

6.6.2. JNDI Properties
From a Java JMS perspective, we will be using topics, which are implemented using an AMQP topic
exchange in MRG Messaging. The following properties file creates the topics we need.

java.naming.factory.initial =
 org.apache.qpid.jndi.PropertiesFileInitialContextFactory

register some connection factories
connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?
brokerlist='tcp://localhost:5672'

register some topics in JNDI using the form
topic.[jndiName] = [physicalName]
topic.usa.weather = usa.weather,control
topic.usa.news = usa.news,control
topic.europe.weather = europe.weather,control
topic.europe.news = europe.news,control
topic.weather = #.weather,control
topic.news = #.news,control
topic.europe = europe.#,control
topic.usa = usa.#,control
topic.control = control

In the above JNDI file, note that we can map more than one key to a given topic. For instance,
topic.usa.weather = usa.weather,control places both messages with the routing key
usa.weather and the routing key control on topic.usa.weather.

6.6.3. Publishing Messages to a Topic
Publisher.java starts by creating a connection and a session, then creating a TextMessage
object from the session. We will also create an exception listener to handle any JMS exceptions we
receive:

Properties properties=new Properties();
properties.load(this.getClass().getResourceAsStream("pubsub.properties"));

Publishing Messages to a Topic

87

//Create the initial context
Context ctx=new InitialContext(properties);

// Declare the connection factory, create a connection and a session
ConnectionFactory conFac=(ConnectionFactory)
 ctx.lookup("qpidConnectionfactory");
TopicConnection connection= (TopicConnection) conFac.createConnection();
TopicSession session=connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

Now we create a text message from the session:

message=session.createTextMessage();

To publish a message to a particular topic, we first look up the topic, then create a TopicPublisher and
publish messages using it:

Topic topic = (Topic)ctx.lookup("usa.weather");

TopicPublisher messagePublisher=session.createPublisher(topic);
publishMessages(message, messagePublisher);

The publishMessages() method simply publishes a series of messages:

private void publishMessages(TextMessage message, TopicPublisher
 messagePublisher) throws JMSException
{
 for (int i = 1; i < getNumberMessages() + 1; i++)
 {
 message.setText("Message " + i);
 messagePublisher
 .send(message, getDeliveryMode(), Message.DEFAULT_PRIORITY,
 Message.DEFAULT_TIME_TO_LIVE);
 }
}

Now we send one final message to indicate termination:

 // send the final message
 message=session.createTextMessage("That's all, folks!");
 topic = (Topic)ctx.lookup("control");
 // Create a Message Publisher
 messagePublisher = session.createPublisher(topic);
 messagePublisher
 .send(message, DeliveryMode.PERSISTENT, Message.DEFAULT_PRIORITY,
 Message.DEFAULT_TIME_TO_LIVE);

And close the connection and the JNDI context:

Chapter 6. Using MRG Messaging with Java JMS

88

connection.close();
getInitialContext().close();

6.6.4. Reading Messages from the Queue
The second program in the publish/subscribe example, Listener.java listens for messages from
the wildcard topics usa.#, europe.#, #.news, and #.weather.

We start by creating a connection and a session as in the other examples:

Properties properties=new Properties();
properties.load(this.getClass().getResourceAsStream("pubsub.properties"));

Context ctx=new InitialContext(properties);

ConnectionFactory conFac=(ConnectionFactory)
 ctx.lookup("qpidConnectionfactory");
TopicConnection connection=(TopicConnection) conFac.createConnection();

connection.setExceptionListener(new ExceptionListener()
{
 public void onException(JMSException jmse)
 {
 System.err.println(CLASS + ": The sample received an exception
 through the ExceptionListener");
 System.exit(0);
 }
});

TopicSession session=connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

We write a function to create a message subscriber for a given topic:

private void createListener(Context ctx,TopicSession session,String
 topicName) throws Exception{
 // lookup the topic usa
 Topic topic=(Topic) ctx.lookup(topicName);
 // Create a Message Subscriber
 System.out.println(CLASS + ": Creating a Message Subscriber for topic "
 + topicName);
 javax.jms.TopicSubscriber
 messageSubscriber=session.createSubscriber(topic);

 // Set a message listener on the messageConsumer
 messageSubscriber.setMessageListener(new MyMessageListener(topicName));
}

Now we create a session for the connection,create listeners for each topic that interests us, and start
the connection:

Reading Messages from the Queue

89

System.out.println(CLASS + ": Creating a non-transacted, auto-acknowledged
 session");
TopicSession session=connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

createListener(ctx,session,"usa");
createListener(ctx,session,"europe");
createListener(ctx,session,"news");
createListener(ctx,session,"weather");

Now we start the connection to begin receiving messages, and wait until all messages have been
received:

connection.start();

// Wait for the messageConsumer to have received all the messages it needs
synchronized (_lock)
{
 while (_finished < 4 && !_failed)
 {
 _lock.wait();
 }
}

// If the MessageListener abruptly failed (probably due to receiving a non-
text message)
if (_failed)
{
 System.out.println(CLASS + ": This sample failed as it received
 unexpected messages");
}

Once all messages have been received, we close the connection and the JNDI context:

connection.close();
getInitialContext().close();

Here is the code for the MessageListener used in this example:

 private class MyMessageListener implements MessageListener
 {
 /* The topic this subscriber is subscribing to */
 private String _topicName;

 public MyMessageListener(String topicName)
 {
 _topicName=topicName;
 }

 public void onMessage(Message message)

Chapter 6. Using MRG Messaging with Java JMS

90

 {
 try
 {
 String text;
 if (message instanceof TextMessage)
 {
 text=((TextMessage) message).getText();
 }
 else
 {
 byte[] body=new byte[(int) ((BytesMessage)
 message).getBodyLength()];
 ((BytesMessage) message).readBytes(body);
 text=new String(body);
 }
 if (text.equals("That's all, folks!"))
 {
 System.out.println(CLASS + ": Shutting down listener
 for " + _topicName);
 synchronized (_lock)
 {
 _finished++;
 _lock.notifyAll();
 }
 }
 else
 {
 System.out.println(CLASS + ": Received message for
 topic: " + _topicName + ": " + text);
 }
 }
 catch (JMSException exp)
 {
 System.out.println(CLASS + ": Caught an exception handling
 a received message");
 exp.printStackTrace();
 synchronized (_lock)
 {
 _failed=true;
 _lock.notifyAll();
 }
 }
 }
 }
}

6.7. Writing Request/Response Applications in Java JMS
In the request/response examples, we write a server that accepts strings from clients and converts
them to upper case, sending the result back to the requesting client. This example consists of two
programs.

JNDI Properties

91

• Client.java is a client application that sends lines of poetry to the server.

• Server.java is a simple service that accepts messages, converts their content to upper case,
and sends the result to the amq.direct exchange, using the request's reply-to property as the
routing key for the response.

6.7.1. JNDI Properties
The JNDI properties for this example simply create a request queue.

java.naming.factory.initial =
 org.apache.qpid.jndi.PropertiesFileInitialContextFactory

register some connection factories
connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?
brokerlist='tcp://localhost:5672'

register some queues in JNDI using the form
queue.[jndiName] = [physicalName]
queue.requestQueue = request

6.7.2. Running the Request/Response Examples
The example programs discussed in this section are found in /usr/share/doc/rhm-0.3/java/.
Copy this directory to a location where you have write privileges. To run these programs, do the
following:

1. Make sure that a qpidd broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If
no broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. In the java directory, use runSample.sh to run the Server program:

$./runSample.sh
 org.apache.qpid.example.jmsexample.requestResponse.Server
Using QPID_HOME: /usr/share/java/
Using QPID_SAMPLE: /usr/share/doc/rhm-0.3
Server: Setting an ExceptionListener on the connection as sample uses a
 MessageConsumer
Server: Creating a non-transacted, auto-acknowledged session
Server: Creating a MessageConsumer
Server: Creating a MessageProducer
Server: Starting connection so MessageConsumer can receive messages

3. In a separate window, use runSample.sh to run the Client program:

Chapter 6. Using MRG Messaging with Java JMS

92

$./runSample.sh
 org.apache.qpid.example.jmsexample.requestResponse.Client
Using QPID_HOME: /usr/share/java/
Using QPID_SAMPLE: /usr/share/doc/rhm-0.3
Client: Setting an ExceptionListener on the connection as sample uses a
 MessageConsumer
Client: Creating a non-transacted, auto-acknowledged session
Client: Creating a QueueRequestor
Client: Starting connection
Client: Request Content= Twas brillig, and the slithy toves
Client: Response Content= TWAS BRILLIG, AND THE SLITHY TOVES
Client: Request Content= Did gire and gymble in the wabe.
Client: Response Content= DID GIRE AND GYMBLE IN THE WABE.
Client: Request Content= All mimsy were the borogroves,
Client: Response Content= ALL MIMSY WERE THE BOROGROVES,
Client: Request Content= And the mome raths outgrabe.
Client: Response Content= AND THE MOME RATHS OUTGRABE.
Client: Closing connection
Client: Closing JNDI context

6.7.3. Client
Client.java is the client application. It starts by creating a connection, a session, and a destination
queue, to which requests are sent. It also creates an exception listener for the connection so that any
message errors can be caught.

// Load JNDI properties
Properties properties=new Properties();
properties.load(this.getClass().getResourceAsStream("requestResponse.properties"));

//Create the initial context
Context ctx=new InitialContext(properties);

// Lookup the connection factory
ConnectionFactory conFac = (ConnectionFactory)
 ctx.lookup("qpidConnectionfactory");

// create the connection
QueueConnection connection = (QueueConnection) conFac.createConnection();
connection.setExceptionListener(new ExceptionListener()
{
 public void onException(JMSException jmse)
 {
 // The connection may have broken invoke reconnect code if
 available.
 System.err.println(CLASS + ": The sample received an exception
 through the ExceptionListener");
 System.exit(0);
 }

Client

93

});

The session for this example is a Java JMS QueueSession.

QueueSession session = connection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

Client uses a Java JMS QueueRequestor, a class that directly supports the kind of service request
that is at the heart of this example. We will use the request queue as our destination.

Queue destination = (Queue) ctx.lookup("requestQueue");
QueueRequestor requestor = new QueueRequestor(session, destination);

Now we start the connection so that we can receive responses to our requests.

connection.start();

We will use a function called sendReceive() to send a request and receive the response. Here is
the code that calls sendReceive(), which is described later.

TextMessage request;

String[] messages = {"Twas brillig, and the slithy toves",
 "Did gire and gymble in the wabe.",
 "All mimsy were the borogroves,",
 "And the mome raths outgrabe."};

for (String message : messages)
{
 request = session.createTextMessage(message);
 sendReceive(request, requestor);
}

After calling sendReceive(), we close down as in the other examples.

connection.close();
getInitialContext().close();

The sendReceive() function simply sends a request, receives the response, and prints it:

private void sendReceive(TextMessage request, QueueRequestor requestor)
 throws JMSException
{
 Message response;
 response=requestor.request(request);
 System.out.println(CLASS + ": \tRequest Content= " +
 request.getText());

Chapter 6. Using MRG Messaging with Java JMS

94

 String text;
 if (response instanceof TextMessage)
 {
 text=((TextMessage) response).getText();
 }
 else
 {
 byte[] body=new byte[(int) ((BytesMessage)
 response).getBodyLength()];
 ((BytesMessage) response).readBytes(body);
 text=new String(body);
 }
 System.out.println(CLASS + ": \tResponse Content= " + text);
}

6.7.4. The Server
Server.java is a server that converts the text of requests to upper case and returns the result to the
original sender. It starts by creating a connection and a session:

// Load JNDI properties
Properties properties=new Properties();
properties.load(this.getClass().getResourceAsStream("requestResponse.properties"));

//Create the initial context
Context ctx=new InitialContext(properties);

// Lookup the connection factory
ConnectionFactory conFac = (ConnectionFactory)
 ctx.lookup("qpidConnectionfactory");

// create the connection
QueueConnection connection = (QueueConnection) conFac.createConnection();
connection.setExceptionListener(new ExceptionListener()
{
 public void onException(JMSException jmse)
 {
 // The connection may have broken invoke reconnect code if
 available.
 System.err.println(CLASS + ": The sample received an exception
 through the ExceptionListener");
 System.exit(0);
 }
});

Session session=connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Next, it creates a Consumer to receive requests from the request queue, and a Producer to send
responses:

Queue destination = (Queue) ctx.lookup("requestQueue");

Durability and Persistence in Java JMS

95

MessageConsumer messageConsumer = session.createConsumer(destination);
MessageProducer messageProducer;

Now we start the connection so we can receive requests:

connection.start();

When a message is received, it is checked to see if it is a text message and has a ReplyTo field; if it
does, the request is converted to upper case and the response is sent:

Message requestMessage;
TextMessage responseMessage;
boolean end=false;
while (!end)
{
 requestMessage=messageConsumer.receive();

 String text;
 if (requestMessage instanceof TextMessage)
 {
 text=((TextMessage) requestMessage).getText();
 }
 else
 {
 byte[] body=new byte[(int) ((BytesMessage)
 requestMessage).getBodyLength()];
 ((BytesMessage) requestMessage).readBytes(body);
 text=new String(body);
 }

 if (requestMessage.getJMSReplyTo() != null)
 {
 responseMessage=session.createTextMessage();
 responseMessage.setText(text.toUpperCase());

 messageProducer=session.createProducer(requestMessage.getJMSReplyTo());
 messageProducer.send(responseMessage);
 }
}

Then we close the connection and the JNDI context:

connection.close();
getInitialContext().close();

6.8. Durability and Persistence in Java JMS
The Java JMS model of durability and persistence is somewhat different from the native AMQP model,
but MRG Messaging supports the Java JMS model natively on top of AMQP.

Chapter 6. Using MRG Messaging with Java JMS

96

In particular, we support durable subscribers, and messages are persistent by default. Persistence can
be disabled using standard Java JMS mechanisms.

6.9. Using Transactions in Java JMS
MRG Messaging supports standard Java JMS transacted sessions. When a session is created it can
be made transactional by setting the first parameter of createSession() to true:

Session transactedSession = connection.createSession(true,
 Session.SESSION_TRANSACTED);

Producers and consumers that are created by a transacted session are transactional, and are
governed by commits and rollbacks made to that session:

MessageConsumer transactedConsumer =
 transactedSession.createConsumer(queue);
MessageProducer transactedProducer =
 transactedSession.createProducer(topic);

For example, in the following code, either the messages received and sent are both committed, or they
are both rolled back:

receivedMessage = transactedConsumer.receive();
transactedProducer.send(receivedMessage);

if (_commit)
{
 transactedSession.commit();
}
else
{
 transactedSession.rollback();
}

6.10. Logging in Java clients
The Java client software supports logging using the Simple Logging Facade for Java (SLF4J), a
facade that supports popular logging systems like log4j version 1.2.x, JDK 1.4 logging, Simple logging,
and NOP.

This section discusses logging using log4j. Make sure your CLASSPATH contains
log4j.1.2.x.jar,e.g. by installing it with yum or by setting the variable by hand..

Log4j requires an initialization file, whose location should be specified as a URL using the
log4j.configuration system property, e.g:

-Dlog4j.configuration=file://home/fidget/java/log4j.xml

Let's look at log4j.xml, a log4j configuration file shipped in the java examples directory. This
property filedefines two output destinations, which log4j calls “appenders”. One of these writes to a file
called “qpid_messaging.log”, the other writes to standard output.

Logging in Java clients

97

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">
 <appender name="FileAppender" class="org.apache.log4j.FileAppender">
 <param name="File" value="qpid_messaging.log"/>
 <param name="Append" value="false"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%t %-5p %c{2} - %m%
n"/>
 </layout>
 </appender>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%
F:%L) - %m%n"/>
 </layout>
 </appender>
 <!-- continued below -->

This file also uses a separate logger for warning messages in the package org.apache, printing
messages at level warn and above. (log4j uses the following hierarchical set of logging levels: trace,
debug, info, warn, error and fatal.)

 <logger name="org.apache">
 <!-- Print only messages of level warn or above in the package
org.apache -->
 <level value="warn"/>
 </logger>
 <!-- continued below -->

In log4j, each enabled logging request for a given logger will be forwarded to all the appenders in
that logger as well as the appenders higher in the hierarchy. The root appender is at the root of the
hierarchy, so the following declaration ensures that all logging requests are printed to stdout:

 <root>
 <priority value="info"/>
 <appender-ref ref="STDOUT"/>
 <!-- <appender-ref ref="FileAppender"/> -->
 </root>
</log4j:configuration>

To ensure that all logging requests are also sent to the FileAppender, simply uncomment that
element.

More log4j documentation can be found at http://logging.apache.org/log4j/1.2/manual.html

http://logging.apache.org/log4j/1.2/manual.html

98

Chapter 7.

99

Using MRG Messaging with .NET
This chapter shows how to write direct, fanout, publish/subscribe, and request/response programs
in C# using the Apache Qpid .NET 0.10 API. These concepts are explained in Chapter 2, Examples
Overview. It then shows how to use important features like persistence and transactions with MRG
Messaging. This chapter does not try to teach the entire MRG Messaging C# API, and it is not
encyclopedic in its coverage of AMQP. For more detailed information on the AMQP model, see the
AMQP specification at http://www.amqp.org.

Before running the examples, you need to unzip the file Qpid.NET-net-2.0-M4.zip, which creates the
following tree:

<home>
 |-qpid
 |-lib (contains the required dlls)
 |-examples
 |- direct
 | |-example-direct-Listener.exe
 | |-example-direct-Producer.exe
 |- fanout
 | |-example-fanout-Listener.exe
 | |-example-fanout-Producer.exe
 |- pub-sub
 | |-example-pub-sub-Listener.exe
 | |-example-pub-sub-Publisher.exe
 |- request-response
 |-example-request-response-Client.exe
 |-example-request-response-Server.exe

Make sure your PATH contains the directory <home>/qpid/lib. The compiled examples are
available as .exe files and can be run from the command line:

$ cd <home>/qpid/examples/examplefolder
$ example-...-.exe [hostname] [portnumber]

where [hostname] is the qpid broker host name (default is localhost) and [portnumber] is the
port number on which the qpid broker is accepting connection (default is 5672).

7.1. Creating and Closing Sessions
All of the examples have been written using the Apache Qpid .NET 0.10 API, which is the C# API
for MRG Messaging. The examples use the same skeleton code to initialize the program, create a
session, and clean up before exiting:

using System;
using System.IO;
using System.Text;

Chapter 7. Using MRG Messaging with .NET

100

using System.Threading;
using org.apache.qpid.client;
using org.apache.qpid.transport;

...

 private static void Main(string[] args)
 {
 string host = args.Length > 0 ? args[0] : "localhost";
 int port = args.Length > 1 ? Convert.ToInt32(args[1]) : 5672;
 Client connection = new Client();
 try
 {
 connection.connect(host, port, "test", "guest", "guest");
 ClientSession session = connection.createSession(50000);

 //--------- Main body of program
 --

 connection.close();
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: \n" + e.StackTrace);
 }
 }
...

7.2. Writing Direct Applications in .NET
This section describes two programs that implement direct messaging using a Direct exchange:

• org.apache.qpid.example.direct.Producer, found in example-direct-producer
publishes messages to the amq.direct exchange, using the routing key routing_key.

• org.apache.qpid.example.direct.Listener, found in example-direct-Listener uses
a message listener to receive messages from the queue named message_queue.

7.2.1. Running the Direct Examples
To run the Direct examples, do the following:

1. Make sure that a qpidd broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command. If no
broker is running, see the instructions in Chapter 3, Installing MRG Messaging.

2. Start one or more instances of the direct listener. The listener waits for messages to be published,
as described in the next step, then reads messages from the queue.

Running the Direct Examples

101

To start the listener, first move to the directory that holds the examples, then start the program:

Then start the program:

• cygwin:

$ cd <home>/qpid/examples/direct
$./example-direct-Listener.exe [hostname] [portnumber]

• mono:

$ cd <home>/qpid/examples/direct
$ mono ./example-direct-Listener.exe [hostname] [portnumber]

3. Publish a series of messages to the amq.direct exchange by changing to the directory and
starting the program:

Then start the program:

• cygwin:

$ cd <home>/qpid/examples/direct
$./example-direct-Producer.exe [hostname] [portnumber]

• mono:

$ cd <home>/qpid/examples/direct
$ mono ./example-direct-Producer.exe [hostname] [portnumber]

This program has no output; the messages are routed to the message queue, as instructed by
the binding.

4. Go to the windows where you are running your listener. You should see the following output:

Message: Message 0
Message: Message 1
Message: Message 2
Message: Message 3
Message: Message 4
Message: Message 5
Message: Message 6
Message: Message 7
Message: Message 8
Message: Message 9

Chapter 7. Using MRG Messaging with .NET

102

Message: That's all, folks!

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 5.1, “Creating and Closing Sessions”.

7.2.2. Reading Messages from the Queue
The program listener.cs is a message listener that receives messages from a queue named
message_queue.

First it creates a queue named message_queue, then binds it to the amq.direct exchange using
the binding key routing_key.

// Create a queue named "message_queue", and route all messages whose
// routing key is "routing_key" to this newly created queue.
session.queueDeclare("message_queue");
session.exchangeBind("message_queue", "amq.direct", "routing_key");

The queue created by this program continues to exist after the program exits, and any message
whose routing key matches the key specified in the binding will be routed to the corresponding queue
by the broker. Note that the queue could have been be deleted using the following code:

session.queueDelete("message_queue");

To create a message listener, create a class derived from IMessageListener, and override the
messageTransfer method, providing the code that should be executed when a message is received.

public class MessageListener : IMessageListener
{

 public void messageTransfer(IMessage m)
 {

}

The main body of the program creates a listener for the subscription; attaches the listener to a
message queue; and subscribe to the queue to receive messages from the queue.

lock (session)
{
 // Create a listener and subscribe it to the queue named "message_queue"
 IMessageListener listener = new MessageListener(session);
 session.attachMessageListener(listener, "message_queue");

 session.messageSubscribe("message_queue");
 // Receive messages until all messages are received
 Monitor.Wait(session);

 Publishing Messages to a Direct Exchange

103

}

The MessageListener's messageTransfer() function is called whenever a message is received.
In this example the message is printed and tested to see if it is the final message. Once the final
message is received, the messages are acknowledged.

BinaryReader reader = new BinaryReader(m.Body, Encoding.UTF8);
byte[] body = new byte[m.Body.Length - m.Body.Position];
reader.Read(body, 0, body.Length);
ASCIIEncoding enc = new ASCIIEncoding();
string message = enc.GetString(body);
 Console.WriteLine("Message: " + message);
// Add this message to the list of message to be acknowledged
_range.add(m.Id);
if(message.Equals("That's all, folks!"))
{
 // Acknowledge all the received messages
 _session.messageAccept(_range);
 lock(_session)
 {
 Monitor.Pulse(_session);
 }
}

7.2.3. Publishing Messages to a Direct Exchange
The second program in the direct example, Producer.cs, publishes messages to the amq.direct
exchange using the routing key routing_key.

First, create a message and set a routing key. The same routing key will be used for each message
we send, so you only need to set this property once.

IMessage message = new Message();
// The routing key is a message property. We will use the same
// routing key for each message, so we'll set this property
// just once. (In most simple cases, there is no need to set
// other message properties.)
message.DeliveryProperties.setRoutingKey("routing_key");

Now send some messages:

// Asynchronous transfer sends messages as quickly as
// possible without waiting for confirmation.
for (int i = 0; i < 10; i++)
{
 message.clearData();
 message.appendData(Encoding.UTF8.GetBytes("Message " + i));

Chapter 7. Using MRG Messaging with .NET

104

 session.messageTransfer("amq.direct", message);
}

Send a final synchronous message to indicate termination:

// And send a syncrhonous final message to indicate termination.
message.clearData();
message.appendData(Encoding.UTF8.GetBytes("That's all, folks!"));
session.messageTransfer("amq.direct", "routing_key", message);
session.sync();

7.3. Writing Fanout Applications
This section describes two programs that illustrate the use of a Fanout exchange.

• Listener.cs makes a unique queue private for each instance of the listener, and binds that queue
to the fanout exchange. All messages sent to the fanout exchange are delivered to each listener's
queue.

• Producer.cs publishes messages to the fanout exchange. It does not use a routing key, which is
not needed by the fanout exchange.

7.3.1. Running the Fanout Examples
1. Make sure your PATH contains the directory <home>/qpid/lib

2. Make sure that a qpid broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command.

3. In separate windows, start one or more fanout listeners as follows:

• cygwin

$ cd <home>/qpid/examples/direct
$./example-fanout-Listener.exe [hostname] [portnumber]

• mono:

$ cd <home>/qpid/examples/direct
$ mono ./example-fanout-Listener.exe [hostname] [portnumber]

The listener creates a private queue, binds it to the amq.fanout exchange, and waits for
messages to arrive on the queue. When the listener starts, you will see the following message:

 Consuming from a Fanout Exchange

105

Listening

This program is waiting for messages to be published, as described in the next step:

4. In a separate window, publish a series of messages to the amq.fanout exchange by running the
fanout producer, as follows:

• cygwin:

$ cd <home>/qpid/examples/direct
$./example-fanout-Producer.exe [hostname] [portnumber]

• mono:

$ cd <home>/qpid/examples/direct
$ mono ./example-fanout-Producer.exe [hostname] [portnumber]

This program has no output; the messages are routed to the message queue, as prescribed by the
binding.

5. Go to the windows where you are running listeners. You should see the following output for each
listener:

Message: Message 0
Message: Message 1
Message: Message 2
Message: Message 3
Message: Message 4
Message: Message 5
Message: Message 6
Message: Message 7
Message: Message 8
Message: Message 9
Message: That's all, folks!

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 5.1, “Creating and Closing Sessions”.

7.3.2. Consuming from a Fanout Exchange
The first program in the fanout example, Listener.cs, creates a private queue, binds it to the
amq.fanout exchange, and waits for messages to arrive on the queue, printing them out as they
arrive. It uses a Listener that is identical to the one used in the direct example:

Chapter 7. Using MRG Messaging with .NET

106

public class MessageListener : IMessageListener
 {
 private readonly ClientSession _session;
 private readonly RangeSet _range = new RangeSet();
 public MessageListener(ClientSession session)
 {
 _session = session;
 }

 public void messageTransfer(IMessage m)
 {
 BinaryReader reader = new BinaryReader(m.Body, Encoding.UTF8);
 byte[] body = new byte[m.Body.Length - m.Body.Position];
 reader.Read(body, 0, body.Length);
 ASCIIEncoding enc = new ASCIIEncoding();
 string message = enc.GetString(body);
 Console.WriteLine("Message: " + message);
 // Add this message to the list of message to be acknowledged
 _range.add(m.Id);
 if (message.Equals("That's all, folks!"))
 {
 // Acknowledge all the received messages
 _session.messageAccept(_range);
 lock (_session)
 {
 Monitor.Pulse(_session);
 }
 }
 }
 }

The listener creates a private queue to receive its messages and binds it to the fanout exchange:

string myQueue = session.Name;
session.queueDeclare(myQueue, Option.EXCLUSIVE, Option.AUTO_DELETE);
session.exchangeBind(myQueue, "amq.fanout", "my-key");

Now we create a listener and subscribe it to the queue:

lock (session)
{
 Console.WriteLine("Listening");
 // Create a listener and subscribe it to my queue.
 IMessageListener listener = new MessageListener(session);
 session.attachMessageListener(listener, myQueue);
 session.messageSubscribe(myQueue);
 // Receive messages until all messages are received
 Monitor.Wait(session);

 Publishing Messages to the Fanout Exchange

107

}

7.3.3. Publishing Messages to the Fanout Exchange
The second program in this example, Producer.cs, writes messages to the fanout queue. Unlike
topic exchanges and direct exchanges, a fanout exchange need not set a routing key.

IMessage message = new Message();
// Asynchronous transfer sends messages as quickly as
// possible without waiting for confirmation.
for (int i = 0; i < 10; i++)
{
 message.clearData();
 message.appendData(Encoding.UTF8.GetBytes("Message " + i));
 session.messageTransfer("amq.fanout", message);
}

And send a final message to indicate termination, synchronizing after the final transfer.

message.clearData();
message.appendData(Encoding.UTF8.GetBytes("That's all, folks!"));
session.messageTransfer("amq.fanout", message);
session.sync();

7.3.4. Writing Publish/Subscribe Applications
This section describes two programs that implement Publish/Subscribe messaging using a topic
exchange.

• Publisher.cs sends messages to the amq.topic exchange, using the multipart routing keys
usa.news, usa.weather, europe.news, and europe.weather.

• Listener.cs creates private queues for “news”, “weather”, “usa”, and “europe”, binding them to
the amq.topic exchange using bindings that match the corresponding parts of the multipart routing
keys.

In this example, the publisher creates messages for topics like news, weather, and sports that happen
in regions like Europe, Asia, or the United States. A given consumer may be interested in all weather
messages, regardless of region, or it may be interested in news and weather for the United States,
but uninterested in items for other regions. In this example, each consumer sets up its own private
queues, which receive precisely the messages that particular consumer is interested in.

7.3.5. Running the Publish-Subscribe Examples
1. Make sure your PATH contains the directory <home>/qpid/lib

2. Make sure that a qpid broker is running:

Chapter 7. Using MRG Messaging with .NET

108

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command.

3. In separate windows, start one or more topic subscribers as follows:

• cywin:

$ cd <home>/qpid/examples/direct
$./example-pub-sub--Listener.exe [hostname] [portnumber]

• mono:

$ cd <home>/qpid/examples/direct
$ mono ./example-pub-sub-Listener.exe [hostname] [portnumber]

You will see output similar to this:

Listening for messages ...
Declaring queue: usa
Declaring queue: europe
Declaring queue: news
Declaring queue: weather

Each topic consumer creates a set of private queues, and binds each queue to the amq.topic
exchange together with a binding that indicates which messages should be routed to the queue.

4. In another window, start the topic publisher, which publishes messages to the amq.topic
exchange, as follows:

• cygwin

$ cd <home>/qpid/examples/direct
$./example-pub-sub-Producer.exe [hostname] [portnumber]

• mono

$ cd <home>/qpid/examples/direct
$ mono ./example-pub-sub-Producer.exe [hostname] [portnumber]

This program has no output; the messages are routed to the message queues for each
topic_consumer as specified by the bindings the consumer created.

5. Go back to the window for each topic consumer. You should see output like this:

 Running the Publish-Subscribe Examples

109

Message: Message 0 from usa
Message: Message 0 from news
Message: Message 0 from weather
Message: Message 1 from usa
Message: Message 1 from news
Message: Message 2 from usa
Message: Message 2 from news
Message: Message 3 from usa
Message: Message 3 from news
Message: Message 4 from usa
Message: Message 4 from news
Message: Message 5 from usa
Message: Message 5 from news
Message: Message 6 from usa
Message: Message 6 from news
Message: Message 7 from usa
Message: Message 7 from news
Message: Message 8 from usa
Message: Message 8 from news
Message: Message 9 from usa
....
Message: That's all, folks! from weather
Shutting down listener for control
Message: That's all, folks! from europe
Shutting down listener for control

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 5.1, “Creating and Closing Sessions”.

7.3.5.1. Publishing Messages to a Topic Exchange
The first program in the publish/subscribe example, Publisher.cs, defines two new functions: one
that publishes messages to the topic exchange, and one that indicates that no more messages are
coming.

The publishMessages function publishes a series of five messages using the specified routing key.

private static void publishMessages(ClientSession session, string
 routing_key)
{
 IMessage message = new Message();
 // Asynchronous transfer sends messages as quickly as
 // possible without waiting for confirmation.
 for (int i = 0; i < 10; i++)
 {
 message.clearData();
 message.appendData(Encoding.UTF8.GetBytes("Message " + i));
 session.messageTransfer("amq.topic", routing_key, message);

Chapter 7. Using MRG Messaging with .NET

110

 }
}

The noMoreMessages function signals the end of messages using the control routing key, which is
reserved for control messages.

private static void noMoreMessages(ClientSession session)
{
 IMessage message = new Message();
 // And send a syncrhonous final message to indicate termination.
 message.clearData();
 message.appendData(Encoding.UTF8.GetBytes("That's all, folks!"));
 session.messageTransfer("amq.topic", "control", message);
 session.sync();
}

In the main body of the program, messages are published using four different routing keys, and then
the end of messages is indicated by a message sent to a separate routing key.

publishMessages(session, "usa.news");
publishMessages(session, "usa.weather");
publishMessages(session, "europe.news");
publishMessages(session, "europe.weather");

noMoreMessages(session);

7.3.5.2. Reading Messages from the Queue
The second program in the publish/subscribe example, Listener.cs, creates a local private queue,
with a unique name, for each of the four binding keys it specifies: usa.#, europe.#, #.news, and
#.weather, then creates a listener for those queues.

Console.WriteLine("Listening for messages ...");
// Create a listener
prepareQueue("usa", "usa.#", session);
prepareQueue("europe", "europe.#", session);
prepareQueue("news", "#.news", session);
prepareQueue("weather", "#.weather", session);

The prepareQueue() method creates a queue using a queue name and a routing key supplied as
arguments it then attaches a listener with the session for the created queue and subscribe for this
receiving messages from the queue:

// Create a unique queue name for this consumer by concatenating
// the queue name parameter with the Session ID.
Console.WriteLine("Declaring queue: " + queue);

 Running the Publish-Subscribe Examples

111

session.queueDeclare(queue, Option.EXCLUSIVE, Option.AUTO_DELETE);

// Route messages to the new queue if they match the routing key.
// Also route any messages to with the "control" routing key to
// this queue so we know when it's time to stop. A publisher sends
// a message with the content "That's all, Folks!", using the
// "control" routing key, when it is finished.

session.exchangeBind(queue, "amq.topic", routing_key);
session.exchangeBind(queue, "amq.topic", "control");

// subscribe the listener to the queue
IMessageListener listener = new MessageListener(session);
session.attachMessageListener(listener, queue);
session.messageSubscribe(queue);

7.3.5.3. Writing Request/Response Applications
In the request/response examples, we write a server that accepts strings from clients and converts
them to upper case, sending the result back to the requesting client. This example consists of two
programs.

• Client.cs is a client application that sends messages to the server.

• Server.cs is a service that accepts messages, converts their content to upper case, and sends
the result to the amq.direct exchange, using the request's reply-to property as the routing key
for the response.

7.3.5.4. Running the Request/Response Examples
1. Make sure your PATH contains the directory <home>/qpid/lib

2. Make sure that a qpid broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above command.

3. Run the server.

• cygwin

$ cd <home>/qpid/examples/direct
$./example-request-response-Server.exe [hostname] [portnumber]

• mono

$ cd <home>/qpid/examples/direct

Chapter 7. Using MRG Messaging with .NET

112

$ mono ./example-request-response-Server.exe [hostname] [portnumber]

You will see output similar to this:

Waiting for requests

4. In a separate window, start a client:

• cygwin

$ cd <home>/qpid/examples/direct
$./example-request-response-Client.exe [hostname] [portnumber]

• mono

$ cd <home>/qpid/examples/direct
$ mono ./example-request-response-Client.exe [hostname] [portnumber]

5. You will see output similar to this:

Activating response queue listener for: clientSystem.Byte[]
Waiting for all responses to arrive ...
Response: TWAS BRILLIG, AND THE SLITHY TOVES
Response: DID GIRE AND GYMBLE IN THE WABE.
Response: ALL MIMSY WERE THE BOROGROVES,
Response: AND THE MOME RATHS OUTGRABE.
Shutting down listener for clientSystem.Byte[]
Response: THAT'S ALL, FOLKS!

6. Go back to the server window, the output should be similar to this:

Waiting for requests
Request: Twas brillig, and the slithy toves
Request: Did gire and gymble in the wabe.
Request: All mimsy were the borogroves,
Request: And the mome raths outgrabe.
Request: That's all, folks!

Now we will examine the code for each of these programs. In each section, we will discuss only the
code that must be added to the skeleton shown in Section 5.1, “Creating and Closing Sessions”.

 Running the Publish-Subscribe Examples

113

7.3.5.5. The Client Application
The first program in the request-response example, Client.cs, sets up a private response queue to
receive responses from the server, then sends messages the server, listening to the response queue
for the server's responses.

First, let's create a response queue and bind it to the amq.direct exchange. We will use the session
id both as the name of the queue and as the routing key.

string response_queue = "client" + session.getName();

session.queueDeclare(response_queue);
session.exchangeBind(response_queue, "amq.direct", response_queue);

Now let's create a listenre for the response queue and listen for messagtes.

Console.WriteLine("Activating response queue listener for: " +
 response_queue);
IMessageListener listener = new ClientMessageListener(session);
session.attachMessageListener(listener, response_queue);
session.messageSubscribe(response_queue);

When we send requests, we will always send it to the request queue on the amq.direct exchange.
We will also place the routing key for our private queue in the reply-to field of the message. Let's set
those properties for a message:

IMessage request = new Message();
request.DeliveryProperties.setRoutingKey("request");
request.MessageProperties.setReplyTo(new ReplyTo("amq.direct",
 response_queue));

Now let's send some requests...

string[] strs = {
 "Twas brillig, and the slithy toves",
 "Did gire and gymble in the wabe.",
 "All mimsy were the borogroves,",
 "And the mome raths outgrabe.",
 "That's all, folks!"
 };
foreach (string s in strs)
{
 request.clearData();
 request.appendData(Encoding.UTF8.GetBytes(s));
 session.messageTransfer("amq.direct", request);
}

Chapter 7. Using MRG Messaging with .NET

114

And wait for responses to arrive:

Console.WriteLine("Waiting for all responses to arrive ...");
Monitor.Wait(session);

7.3.5.6. The Server Application
The second program in the request-response example, Server.cs, uses the reply-to property as the
routing key for responses.

The main body of Server.cs creates an exclusive queue for requests, then waits for messages to
arrive.

const string request_queue = "request";
// Use the name of the request queue as the routing key
session.queueDeclare(request_queue);
session.exchangeBind(request_queue, "amq.direct", request_queue);

lock (session)
{
 // Create a listener and subscribe it to the request_queue
 IMessageListener listener = new MessageListener(session);
 session.attachMessageListener(listener, request_queue);
 session.messageSubscribe(request_queue);

 // Receive messages until all messages are received
 Console.WriteLine("Waiting for requests");
 Monitor.Wait(session);
}

The listener's messageTransfer() method converts the request's content to upper case, then sends
a response to the broker, using the request's reply-to property as the routing key for the response.

BinaryReader reader = new BinaryReader(request.Body, Encoding.UTF8);
byte[] body = new byte[request.Body.Length - request.Body.Position];
reader.Read(body, 0, body.Length);
ASCIIEncoding enc = new ASCIIEncoding();
string message = enc.GetString(body);
Console.WriteLine("Request: " + message);

// Transform message content to upper case
string responseBody = message.ToUpper();

// Send it back to the user
response.clearData();
response.appendData(Encoding.UTF8.GetBytes(responseBody));
_session.messageTransfer("amq.direct", routingKey, response);

115

Appendix A. Revision History
Revision 1.1 Fri Sep 5 2008 Lana Brindley lbrindle@redhat.com

Fixed build error

Revision 1.0 Thu Sep 4 2008 Lana Brindley lbrindle@redhat.com

Updated document for new build system

mailto:lbrindle@redhat.com
mailto:lbrindle@redhat.com

116

	Messaging Tutorial
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Initial Concepts
	1.1. Fanout Exchange
	1.2. Direct Exchange
	1.3. Topic Exchange
	1.4. Custom Exchange Types

	Chapter 2. Examples Overview
	Chapter 3. Installing MRG Messaging
	3.1. Installing MRG Messaging on Red Hat Enterprise Linux 5
	3.2. Installing MRG Messaging on Red Hat Enterprise Linux 4
	3.3. Starting the Broker

	Chapter 4. Using MRG Messaging with Python
	4.1. Creating and Closing Sessions
	4.2. Writing Direct Applications in Python.
	4.2.1. Running the Direct Examples
	4.2.2. Declaring and Binding a Queue
	4.2.3. Publishing Messages to a Direct Exchange
	4.2.4. Reading Messages from the Queue
	4.2.5. Reading Messages from a Queue using a Listener

	4.3. Writing Fanout Applications in Python
	4.3.1. Running the Fanout Examples
	4.3.2. Consuming from a Fanout Exchange
	4.3.3. Publishing Messages to the Fanout Exchange

	4.4. Writing Publish/Subscribe Applications in Python
	4.4.1. Running the Publish-Subscribe Examples
	4.4.2. The Topic Publisher
	4.4.3. The Topic Subscriber

	4.5. Writing Request/Response Applications in Python
	4.5.1. Running the Request/Response Examples
	4.5.2. The Server Application
	4.5.3. The Client Application

	4.6. XML-based Routing in Python
	4.6.1. Running the XML-based Routing Examples
	4.6.2. Declaring an XML Exchange, Declaring and Binding a Queue
	4.6.3. Publishing to an XML Exchange
	4.6.4. Reading from the Message Queue

	4.7. Durable Queues and Durable Messages in Python
	4.8. Using Transactions in Python
	4.9. Logging in Python client applications

	Chapter 5. Using MRG Messaging with C++
	5.1. Creating and Closing Sessions
	5.2. Writing Direct Applications in C++
	5.2.1. Running the Direct Examples
	5.2.2. Declaring and Binding a Queue
	5.2.3. Publishing Messages to a Direct Exchange
	5.2.4. Reading Messages from the Queue

	5.3. Writing Fanout Applications in C++
	5.3.1. Running the Fanout Examples
	5.3.2. Consuming from a Fanout Exchange
	5.3.3. Publishing Messages to the Fanout Exchange

	5.4. Writing Publish/Subscribe Applications in C++
	5.4.1. Running the Publish-Subscribe Examples
	5.4.2. Publishing Messages to a Topic Exchange
	5.4.3. Reading Messages from the Queue

	5.5. Writing Request/Response Applications in C++
	5.5.1. Running the Request/Response Examples
	5.5.2. The Client Application
	5.5.3. The Server Application

	5.6. XML-based Routing in C++
	5.6.1. Running the XML-based Routing Examples
	5.6.2. Declaring an XML Exchange, Declaring and Binding a Queue
	5.6.3. Publishing to an XML Exchange
	5.6.4. Reading from the Message Queue

	5.7. Durable Queues and Durable Messages in C++
	5.8. Using Transactions in C++
	5.9. Optimizing message transfer with asynchronous sessions in C++
	5.10. Handing Failover in C++ Connections
	5.10.1. Sending MEssages in a FailoverManager::Command
	5.10.2. Receiving Messages with a FailoverManager::Command
	5.10.3. Choosing Brokers for Reconnect

	5.11. Using logging in C++

	Chapter 6. Using MRG Messaging with Java JMS
	6.1. Java JMS Client Compatibility and Interoperability
	6.2. Creating and Closing Connections and Sessions with JNDI
	6.2.1. Basic JNDI Programming for MRG Messaging
	6.2.2. JNDI Properties for MRG Messaging
	6.2.3. Connection URLs
	6.2.4. Binding URLs

	6.3. Creating and Closing Connections and Sessions with AMQP
	6.4. Writing Direct Applications in Java JMS
	6.4.1. Running the Direct Examples
	6.4.2. JNDI Properties
	6.4.3. Publishing Messages to a Queue
	6.4.4. Reading Messages from the Queue with a Message Consumer
	6.4.5. Reading Messages from the Queue using a Message Listener

	6.5. Writing Fanout Applications in Java JMS
	6.5.1. Running the Fanout Examples
	6.5.2. JNDI Properties
	6.5.3. Reading Messages from a Queue with a Message Consumer
	6.5.4. Reading Messages from the Queue using a Message Listener
	6.5.5. Publishing Messages to a Fanout Exchange

	6.6. Writing Publish/Subscribe Applications in Java JMS
	6.6.1. Running the Publish/Subscribe Examples
	6.6.2. JNDI Properties
	6.6.3. Publishing Messages to a Topic
	6.6.4. Reading Messages from the Queue

	6.7. Writing Request/Response Applications in Java JMS
	6.7.1. JNDI Properties
	6.7.2. Running the Request/Response Examples
	6.7.3. Client
	6.7.4. The Server

	6.8. Durability and Persistence in Java JMS
	6.9. Using Transactions in Java JMS
	6.10. Logging in Java clients

	Chapter 7. Using MRG Messaging with .NET
	7.1. Creating and Closing Sessions
	7.2. Writing Direct Applications in .NET
	7.2.1. Running the Direct Examples
	7.2.2. Reading Messages from the Queue
	7.2.3. Publishing Messages to a Direct Exchange

	7.3. Writing Fanout Applications
	7.3.1. Running the Fanout Examples
	7.3.2. Consuming from a Fanout Exchange
	7.3.3. Publishing Messages to the Fanout Exchange
	7.3.4. Writing Publish/Subscribe Applications
	7.3.5. Running the Publish-Subscribe Examples
	7.3.5.1. Publishing Messages to a Topic Exchange
	7.3.5.2. Reading Messages from the Queue
	7.3.5.3. Writing Request/Response Applications
	7.3.5.4. Running the Request/Response Examples
	7.3.5.5. The Client Application
	7.3.5.6. The Server Application

	Appendix A. Revision History

