1 pyTRAIN - a modern TRAIN implementation

Michi Hostettler, Xavier Buffat, Tobias Persson, Tatiana Pieloni, Jorg Wenninger
CERN, Geneva, Switzerland

Abstract

The TRAIN code, developed in 1995 as a post-processor for second-order transport maps
from MAD, has been used extensively at the LEP and the LHC to study self-consistent
closed orbits, tunes and chromaticities of bunch trains under the presence of beam-beam
long-range (BBLR) and PACMAN effects..

This paper presents a modern re-implementation of the TRAIN concept in Python using
well-known numeric libraries (numpy, scipy) and an optional link to MAD-X via cpymad.
This greatly improves the usability, maintainability and extensibility of the code. New func-
tionality includes the support for arbitrary particle types, an arbitrary number and distri-
bution of beam-beam interaction points, and the extrapolation of the beam-beam induced
closed-orbit effects to arbitrary points in the machine. The code is benchmarked against the
classic TRAIN code, and simulation results are compared to observations from LHC physics
operation.

Introduction

In a collider with two beams of many tightly spaces bunches (“bunch trains”) which share a common
vacuum chamber at least in part of the machine, every bunch encounters multiple bunches of the counter-
rotating beam in different points of the machine. These encounters can be at a separation (“long-range”)
or head-on. Since each bunch encounters a different set of bunches in the other beam, this yields different
closed orbits for each bunch. As the beam-beam force encountered by each bunch itself depends on the
separation to (and hence, on the closed orbits of) all encountered bunches along the ring, a self-consistent
treatment is required to resolve these effects.

The TRAIN code [1] has been developed at LEP for simulation of self-consistent bunch-by-bunch
orbits in the many bunch case under the presence of beam-beam effects. It has since been applied
to other multi-bunch machines, in particular the LHC, where it predicted the clear advantage of the
horizontal-vertical alternating crossing scheme due to self-compensation of the beam-beam long-range
tune shift [2].

TRAIN does not implement any element transport code (except for beam-beam deflections). In-
stead, it takes second-order transport maps (“‘sector maps”) between the beam-beam interaction points
and the machine geometry (“survey”) for both beams of the collider as inputs, which have to be generated
by another accelerator physics code such as MAD-X [3] or Xsuite [4]. A second order map M is given
by it’s zeroth (Kj;), first (R;;), and second order (7;;;) components as [5]

(Mx)l = Ki + Rij:cj + Tijka:jxk (1)

Initially, for each of the two beams, TRAIN builds the second order one-turn map O without beam-
beam interactions as the concatenation of all input maps, and performs an initial search for the closed
orbit z as its fixed point. This initial closed orbit is later used as the starting point for the iterative process
of finding the bunch-by-bunch closed orbit under the presence of beam-beam effects. At this stage,
TRAIN also establishes the beam-beam interaction schedule, determining which bunches encounter at
which beam-beam interaction points considering the bunch filling scheme and the machine geometry.

The closed-orbit problem for all bunches under the presence of beam-beam effects is then solved
iteratively:

1. For each bunch b of beam 1, at each beam-beam interaction point ¢, insert a second order map
BB(z2|V,i] — z1[b,]) describing the coherent beam-beam force [6, 7] exercised by the bunch b’
of the counter-rotating beam encountered at this point at a distance given by difference in closed
orbits z; and zo of the two bunches, assuming a Gaussian charge distribution for both bunches.

2. For each bunch b of beam 1, build the one-turn map O [b] (including the added beam-beam maps)
and solve for the closed orbit z; [b].

3. For each bunch b of beam 2, at each beam-beam interaction point ¢, insert a second order beam-
beam map BB(z1[b',i] — z2[b, i]) for the encounter with bunch b’ in beam 1.

4. For each bunch b of beam 2, build the one-turn map O[] and solve for the closed orbit 22 [b].

5. If convergence is reached, i.e. the closed orbits z1 [b], z2[b] of all bunches in both beams did not
change significantly during the last iteration, the problem is solved. Otherwise, loop to step 1.

In the nominal LHC physics case (~2400 proton bunches, ~1.6 - 10! protons per bunch, 4 inter-
action points with long-range beam-beam encounters), convergence at a 102 m level in closed orbits is
typically reached within 4-5 iterations. Once the closed-orbit problem is solved, the resulting second or-
der maps for each bunch can be further analyzed to obtain bunch-by-bunch coherent tunes, chromaticities
and optics functions (5, D).

The pyTRAIN code

The classic TRAIN program was developed in FORTRAN-77 at LEP [1]. While it has later been ex-
tended to the LHC case [2,8—12], its extensibility and applicability to new scenarios was limited and the
usage was error-prone due to its legacy code.

To overcome these limitations, the pyTRAIN code [13] is a complete re-implementation of the
TRAIN concept in python. It uses well tested and established numerical primitives from the numpy [14]
and scipy [15] numeric libraries for matrix operations and the numeric evaluation of the beam-beam
force (Faddeeva function). All operations are implemented in python code, with the exception of the
concatenation routine for second-order maps, which is implemented in Cython [16] and compiled to
native machine code for efficiency.

The pyTRAIN code exposes a python API and data classes to prepare the inputs, call the solver,
and post-process the outputs. In addition to the bunch-by-bunch closed orbits, coherent tunes and chro-
maticities, pyTRAIN also calculates the bunch-by-bunch Twiss parameters (/3 functions and dispersions)
under the presence of beam-beam effects from the second-order maps.

To treat external systems correcting part of the beam-beam effects (e.g. an orbit feedback system
correcting for the average beam-beam kicks) in a self-consistent way, hooks are provided within the
solver’s iteration loop to call custom code after establishing the beam-beam maps (steps 1 and 3). This
code can add or modify bunch-by-bunch second order maps prior to finding the closed orbits (steps 2
and 4)

Application to LHC Data

The pyTRAIN code was applied to predict the impact of beam-beam effects in the LHC during proton
physics operation in 2023 and 2024. The two beams of LHC are typically filled with ~2400 bunches
spaced by 25 ns each during proton physics operation. For most part of the 27 km ring, they circulate
in different vacuum chambers. In the inner part of the straight sections 165 m around each of the 4

interaction points (IPs), the beams enter a common vacuum chamber, resulting in up to 45 parasitic long-
range beam-beam encounters per IP side, in addition to the 4 head-on (or, in case of offset levelling,
partially separated) encounters at each of the 4 IPs [17,18].

Benchmarking and Validation

For validation, the pyTRAIN code has been benchmarked against the classic TRAIN code for typical
LHC physics scenarios. Figure 1 gives an example of a benchmark run for a bunch filling pattern and
machine configuration used during physics operation in 2023. The differences in closed orbits are at the
level of the convergence limit for the iterative solver (10~ m). During this benchmarking, a problem
was identified in the classic TRAIN code in the handling of bunch filling patterns which are different for
the two beams; this case is treated correctly in the pyTRAIN code.

El 1 iN “’ i | “u “u i i Hﬂ | — TRAIN
:1 0.5 7; W ~ Eﬂ T |ﬁ Nﬁ ‘\ MpyTRAIN
e 1L B[RRI VN VAR NN T VI T
= [‘HHQ noafAh T i N MITTY R RIRYE M”\‘Aﬂi{iw I Ly bh Y
R l"elw““\ L IR R it S WMW lﬂﬂw:ﬂ
“ “ i ‘ [[
3 - v'"%ﬁm TR BRI
S -1s- A R L A -
T,
T o | W \u\ Wﬂ\]\u W lm W \\u Wﬂ\ \u\{)M u\\ W\ ‘u\\ | M&\ MM\
- '] \ i ik \\\\ il
R o002 4
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
25ns Bunch Slot Number
—0.5 —
= o I (N A
§ —1.5 w‘ﬂ' \EM‘H' “ "m“"!w‘?'ﬂ“ T b ["mlh ﬂﬂw’w“ﬂ, ”'" o
B W | ¥ a ‘,‘ﬂ” AP MO G b W M ' bl .ﬁ‘u \7 il K\ ‘
S el e O
IR R (L | R R L A LA S AL
g 2.5
— 0.004
E AR A
BRI T T T MR L
=
0

I I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
25ns Bunch Slot Number

Fig. 1. Closed orbits of beam 1 at IP5 in a typical 2023 LHC physics scenario, predicted by the classic TRAIN and
pYTRAIN codes. The results for the other beams, and in other points of the machine, are similar. The differences
are at the level of 10~ m.

Beam Separations from Luminosity Scans

Beam separation scans in the two high-luminosity experiments ATLAS (IP1) and CMS (IP5) are reg-
ularly performed in LHC physics operation. To assess the transverse beam sizes [18] and the stability
of the experiments luminosity calibration using the Van-der-Meer method [19, 20], the two beams are
separated in steps at the scanned IP, the change in the bunch-by-bunch luminosity signal from the experi-
ment is recorded. For each bunch pair colliding at the IP, a Gaussian distribution is fitted to the measured
luminosity with respect to the introduced separation. From these fits, apart from the beam overlap width,
the bunch-by-bunch closed orbit separation can be derived. This is equivalent to the difference in closed
orbits of the two bunches encountering at the IP [18].

This measured closed orbit separation can then be compared to the prediction given by the py-
TRAIN code. An example from an LHC 2024 physics fill is given in figure 2. All structures predicted
by the simulation are observed in the measurement. The observed differences are primarily due to a non
perfect reproduction of beam separation in the simulation for the two LHC experiments levelled by beam
offsets using a luminosity feedback loop (IP2 and IP8).

2] =
—— Emittance Scan pyTRAIN

N‘

\ \ \ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500 1100 1150 1200

25ns Bunch Slot Number

Horizontal Separation [pm]
o
|

—— Emittance Scan

pyTRAIN

Vertical Separation [pm]
()
|
=
[

"W

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 1100 1150 1200

25ns Bunch Slot Number

Fig. 2. Parasitic separation of the colliding bunch pairs at LHC IP5, introduced by long-range beam-beam effects.
The right panels show a magnification of one bunch train structure. LHC proton physics fill 10066 (August 2024),
at 3* = 1.2 m with 1.6 - 10! protons per bunch.

Luminous Centroid Positions at the Collision Points

During collisions, the LHC experiments reconstruct the primary vertices of each recorded interaction
using their inner detector (tracker) data. The spatial distribution of the primary vertices gives the size
and position (“centroid”) of the luminous region. The position of the luminous region is determined by
the average closed orbit offset of the two beams relative to the detector reference system [21,22].

In regular proton physics data taking, only a small fraction of the detector read-out capacity is used
for reconstruction of the luminous region, which would not allow reconstructing the centroid bunch-by-
bunch with a statistical uncertainty low enough to resolve beam-beam orbit effects. However, during
special calibration runs, the ATLAS experiment (IP1) has recorded high-rate luminous region data [23]
which is compared to the beam-beam bunch orbits predicted by pyTRAIN in figure 3.

o ATLAS Preliminary Data

pyTRAIN
ol

T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 1050 1100 1150

Horizontal Luminous Centroid [pm]
(e
|

25ns Bunch Slot Number
g .
= + o ATLAS Preliminary Data pyYTRAIN
2 2 } ¢ L
g
5 t
2 +
2]
2 o- i
£ f
g
=
g 77 i
5
> T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 1050 1100 1150

25ns Bunch Slot Number

Fig. 3. Transverse luminous region position (centroid) of the bunch pairs colliding at LHC IP1, as predicted by
pyYTRAIN and measured by the ATLAS experiment. The right panels show a magnification of one bunch train
structure. LHC calibration transfer fill 9635 (May 2024), 3* = 30cm with 1.3 - 10! protons per bunch. The
preliminary reconstructed luminous region data is provided courtesy of the ATLAS collaboration [23].

Beam Positions from Wire Scans

The Wire Scanners, installed in LHC point 4, provide the reference beam size measurement at the LHC
[24]. The wire scan data provides bunch-by-bunch beam sizes and offsets for both beams and planes.
While the wire scanners can not be used on a full LHC physics beam at top energy (intensity limit due
to beam loss and wire damage thresholds), wire scans are regularly performed of the first bunch trains
injected into the LHC.

During injection, the two beams are separated at all interaction points with closed orbit bumps
of several millimetres. However, the bunches still experience beam-beam long-range encounters in the
vicinity of the IPs. This leads to closed-orbit distortions which can be observed using the wire scanners
and predicted by pyTRAIN.

Figure 4 shows bunch offsets measured by the wire scanners in comparison to the pyTRAIN orbit
prediction at the wire scanner location. It is worth noting that several wire scans show almost no closed
orbit distortion; these measurements were taken when only the first 12 bunches, but no longer bunch
trains, were circulating in one of the two beams of the machine.

E 100 -| —— Wire Scans — — - pyTRAIN g —— Wire Scans — — - pyTRAIN
S - O
=50 o = g
2 = £ 0 W
o 0 o v
T T —50
— [A4
Mm —50 an} ~100
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
25ns Bunch Slot Number 25ns Bunch Slot Number

200
——— Wire Scans — — - pyTRAIN 50 + —— Wire Scans — — - pyTRAIN

A

100 —+

B1 V Orbit [um]
(e
!
4\
B2 V Orbit [pum]
[en)
&

N/ —50

—100
T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

25ns Bunch Slot Number 25ns Bunch Slot Number

Fig. 4. Beam offsets measured at the LHC wire scanners during the filling periods in August 2024, and predicted
offsets from pyTRAIN considering the long-range beam-beam encounters.

Conclusions

The pyTRAIN code is a new, flexible and robust implementation of the TRAIN concept in python us-
ing well established libraries for scientific computing. It simulates self-consistent closed orbits for all
bunches in a collider with any number of beam-beam encounter points using a Soft-Gaussian iterative
approach. Between the beam-beam encounter points, second-order maps generated by an external code
such as MADX or Xsuite are used to describe the machine elements. Once closed-orbit problem for all
bunches is solved, the resulting second-order one-turn maps for each bunch can be further analyzed to
find tunes, chromaticities, and optical functions for each bunch.

The pyTRAIN code has been successfully benchmarked both against the classic TRAIN code, as
well as against measurements taken during LHC physics operation from different sources: beam sepa-
ration scans, luminous regions measured by the experiments, and wire scans. Results show a very good
agreement of the pyTRAIN predictions to the measurements taken at the LHC in different conditions and
with various bunch filling patterns.

In the future, a tighter integration with the Xsuite code can be envisaged. While Xsuite can already
be used to generate the second-order maps for pyTRAIN, future work could allow for a bi-directional
integration, re-using the self-consistent bunch-by-bunch orbits from pyTRAIN as a starting point for
tracking simulations using Xsuite.

References
[1] E. Keil, “Truly Self-Consistent Treatment of the Side Effects with Bunch Trains”, CERN, 1995.

[2] W. Herr, “Features and implications of different LHC crossing schemes”, LHC Project Report
628, CERN, 2003.

[3] The MAD-X project, https://madx.web.cern.ch/.

[4] G.ladarolaetal., “Xsuite: An Integrated Beam Physics Simulation Framework”, JACoW HB2023,
TUAZ2I1, 2024.

[5] W. Herr, E. Forest, “Non-linear Dynamics in Accelerators”, European Physical Journal C, 2017.

[6] X. Buffat, “Coherent BeamBeam Effects”, Proceedings of CAS-CERN Accelerator School: Inten-
sity Limitations in Particle Beams, CERN-2017-006-SP, 2017.

[7] M. Bassetti, G. Erskine, “Closed expression for the electrical field of a two-dimensional Gaussian
charge”, CERN ISR-TH/80-06, 1980.

[8] H. Grote, “Self-consistent Orbits for Beam-beam Interactions in the LHC”, CERN Report, 2003.

[9] T. Pieloni, “A Study of Beam-Beam Effects in Hadron Colliders with a Large Number of
Bunches”, PhD Thesis, EPFL, 2008.

[10] A. Gorzawski, “Luminosity Control and Beam Orbit Stability with Beta Star Leveling at LHC and
HL-LHC”, PhD Thesis, EPFL, 2016.

[11] M. Hostettler, “LHC Luminosity Performance”, PhD Thesis, University of Berne, 2018.
[12] A. Ribes-Metidieri, X. Buffat, “Studies of PACMAN Effects in the HL-LHC”, 2021.
[13] M. Hostettler, “pyTRAIN™, https://gitlab.cern.ch/mihostet/pytrain/.

[14] H. Harris et al., “Array Programming with NumPy”, Nature 585, 2020.

[

15] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”,
Nature Methods 17, 2020.

[16] S. Behnel et al., “Cython: The Best of Both Worlds”, Computing in Science & Engineering, 2011,
https://cython.org/.

[17] O. Brunig et al. (editors), “The LHC Design Report”, CERN, 2004.
[18] M. Hostettler et al., “Luminosity Scans for Beam Diagnostics”, Phys. Rev. Accel. Beams 21, 2018.

[19] S. van der Meer, “Calibration of the Effective Beam Height in the ISR”, CERN Report ISR-PO-
68-31, 1968.

[20] O. Karcheban et al., “Emittance Scans for CMS Luminosity Calibration”, in The LHCC Poster
Session, CERN, 2018.

[21] ATLAS Collaboration, “Reconstruction of Primary Vertices at the ATLAS Experiment in Run 1
ProtonProton Collisions at the LHC”, JINST 9, 2014.

[22] ATLAS Collaboration, “Development of ATLAS Primary Vertex Reconstruction for LHC Run 3%,
CERN, 2023.

[23] K. Moenig, W. Kozanecki, C. Bernius, private communication, 2024.

[24] F. Roncarolo et al., “Review of Beam Wire Scanners for LHC Runs 1 and 2, presented at Beam
Size Review, CERN, 2019.

