diff --git a/Reconstruction/tauRec/python/TauAlgorithmsHolder.py b/Reconstruction/tauRec/python/TauAlgorithmsHolder.py index 53b70a48cd3aac514f9c0281630a6344ce4f7c14..e6b2aa6ff55693f4ad54138ae6a7cb47a22e47b5 100644 --- a/Reconstruction/tauRec/python/TauAlgorithmsHolder.py +++ b/Reconstruction/tauRec/python/TauAlgorithmsHolder.py @@ -93,10 +93,9 @@ def getEnergyCalibrationLC(correctEnergy=True, correctAxis=False, postfix=''): from tauRecTools.tauRecToolsConf import TauCalibrateLC TauCalibrateLC = TauCalibrateLC(name = _name, - calibrationFile = "TES_MC16a_prelim.root", + calibrationFile = tauFlags.tauRecCalibrateLCConfig(), doPtResponse = True, - Key_vertexInputContainer = _DefaultVertexContainer - ) + Key_vertexInputContainer = _DefaultVertexContainer) cached_instances[_name] = TauCalibrateLC return TauCalibrateLC @@ -697,7 +696,7 @@ def getMvaTESEvaluator(): _name = sPrefix + 'MvaTESEvaluator' from tauRecTools.tauRecToolsConf import MvaTESEvaluator MvaTESEvaluator = MvaTESEvaluator(name = _name, - WeightFileName = 'MvaTES_20170207_v2_BDTG.weights.root') #update config? + WeightFileName = tauFlags.tauRecMvaTESConfig()) cached_instances[_name] = MvaTESEvaluator return MvaTESEvaluator @@ -707,7 +706,7 @@ def getCombinedP4FromRecoTaus(): _name = sPrefix + 'CombinedP4FromRecoTaus' from tauRecTools.tauRecToolsConf import CombinedP4FromRecoTaus CombinedP4FromRecoTaus = CombinedP4FromRecoTaus(name = _name, - WeightFileName = 'CalibLoopResult_v04-04.root') #update config? + WeightFileName = tauFlags.tauRecCombinedP4Config()) cached_instances[_name] = CombinedP4FromRecoTaus return CombinedP4FromRecoTaus @@ -884,23 +883,23 @@ def getTauWPDecoratorEleBDT(): # -def getTauJetRNNEvaluator(_n, NetworkFile0P="", NetworkFile1P="", NetworkFile3P="", OutputVarname="RNNJetScore", MaxTracks=10, MaxClusters=6, MaxClusterDR=1.0, InputLayerScalar="scalar", InputLayerTracks="tracks", InputLayerClusters="clusters", OutputLayer="rnnid_output", OutputNode="sig_prob"): - _name = sPrefix + _n +def getTauJetRNNEvaluator(): + _name = sPrefix + 'TauJetRNN' from tauRecTools.tauRecToolsConf import TauJetRNNEvaluator - myTauJetRNNEvaluator = TauJetRNNEvaluator(name=_name, - NetworkFile0P=NetworkFile0P, - NetworkFile1P=NetworkFile1P, - NetworkFile3P=NetworkFile3P, - OutputVarname=OutputVarname, - MaxTracks=MaxTracks, - MaxClusters=MaxClusters, - MaxClusterDR=MaxClusterDR, - VertexCorrection=True, - InputLayerScalar=InputLayerScalar, - InputLayerTracks=InputLayerTracks, - InputLayerClusters=InputLayerClusters, - OutputLayer=OutputLayer, - OutputNode=OutputNode) + myTauJetRNNEvaluator = TauJetRNNEvaluator(name = _name, + NetworkFile0P = "", + NetworkFile1P = tauFlags.tauRecTauJetRNNConfig()[0], + NetworkFile3P = tauFlags.tauRecTauJetRNNConfig()[1], + OutputVarname = "RNNJetScore", + MaxTracks = 10, + MaxClusters = 6, + MaxClusterDR = 1.0, + VertexCorrection = True, + InputLayerScalar = "scalar", + InputLayerTracks = "tracks", + InputLayerClusters = "clusters", + OutputLayer = "rnnid_output", + OutputNode = "sig_prob") cached_instances[_name] = myTauJetRNNEvaluator return myTauJetRNNEvaluator @@ -928,28 +927,22 @@ def getTauIDVarCalculator(): cached_instances[_name] = myTauIDVarCalculator return myTauIDVarCalculator -def getTauEleRNNEvaluator(_n, - NetworkFile1P="", NetworkFile3P="", - OutputVarname="RNNEleScore", MaxTracks=10, - MaxClusters=6, MaxClusterDR=1.0, InputLayerScalar="scalar", - InputLayerTracks="tracks", InputLayerClusters="clusters", - OutputLayer="rnneveto_output", OutputNode="sig_prob"): - - _name = sPrefix + _n +def getTauEleRNNEvaluator(): + _name = sPrefix + 'TauEleRNN' from tauRecTools.tauRecToolsConf import TauJetRNNEvaluator - tool = TauJetRNNEvaluator(name=_name, - NetworkFile1P=NetworkFile1P, - NetworkFile3P=NetworkFile3P, - OutputVarname=OutputVarname, - MaxTracks=MaxTracks, - MaxClusters=MaxClusters, - MaxClusterDR=MaxClusterDR, - VertexCorrection=True, - InputLayerScalar=InputLayerScalar, - InputLayerTracks=InputLayerTracks, - InputLayerClusters=InputLayerClusters, - OutputLayer=OutputLayer, - OutputNode=OutputNode) + tool = TauJetRNNEvaluator(name = _name, + NetworkFile1P = tauFlags.tauRecTauEleRNNConfig()[0], + NetworkFile3P = tauFlags.tauRecTauEleRNNConfig()[1], + OutputVarname = "RNNEleScore", + MaxTracks = 10, + MaxClusters = 6, + MaxClusterDR = 1.0, + VertexCorrection = True, + InputLayerScalar = "scalar", + InputLayerTracks = "tracks", + InputLayerClusters = "clusters", + OutputLayer = "rnneveto_output", + OutputNode = "sig_prob") cached_instances[_name] = tool return tool diff --git a/Reconstruction/tauRec/python/TauRecRunner.py b/Reconstruction/tauRec/python/TauRecRunner.py index 8af178600538c49e3c8a40051f30ced3bbdc64be..3bdf712bfb02afd2e0ed6acd4036930a6b74493c 100644 --- a/Reconstruction/tauRec/python/TauRecRunner.py +++ b/Reconstruction/tauRec/python/TauRecRunner.py @@ -63,15 +63,9 @@ class TauRecRunner ( TauRecRunConfigured ) : if tauFlags.doRunTauDiscriminant(): tools.append(taualgs.getTauIDVarCalculator()) - tools.append(taualgs.getTauJetRNNEvaluator("TauJetRNN", - NetworkFile1P="rnnid_mc16d_config_1p.json", - NetworkFile3P="rnnid_mc16d_config_3p.json", - OutputVarname="RNNJetScore", MaxTracks=10, MaxClusters=6)) + tools.append(taualgs.getTauJetRNNEvaluator()) tools.append(taualgs.getTauWPDecoratorJetRNN()) - tools.append(taualgs.getTauEleRNNEvaluator("TauEleRNN", - NetworkFile1P="rnneveto_mc16d_config_1p.json", - NetworkFile3P="rnneveto_mc16d_config_3p.json", - OutputVarname="RNNEleScore", MaxTracks=10, MaxClusters=6)) + tools.append(taualgs.getTauEleRNNEvaluator()) tools.append(taualgs.getTauWPDecoratorEleRNN()) tools.append(taualgs.getTauDecayModeNNClassifier()) diff --git a/Reconstruction/tauRec/python/tauRecFlags.py b/Reconstruction/tauRec/python/tauRecFlags.py index 72490b28b994d73115b487d48c9a180be97c6d08..877dcbbd8857619e13057a9b60bd25209b522006 100644 --- a/Reconstruction/tauRec/python/tauRecFlags.py +++ b/Reconstruction/tauRec/python/tauRecFlags.py @@ -108,6 +108,41 @@ class tauRecDecayModeNNClassifierConfig(JobProperty): allowedTypes=['string'] StoredValue='NNDecayModeWeights-20200625.json' +class tauRecCalibrateLCConfig(JobProperty): + """Config file for TauCalibrateLC + """ + statusOn=True + allowedTypes=['string'] + StoredValue='TES_MC16a_prelim.root' + +class tauRecMvaTESConfig(JobProperty): + """Config file for MvaTESEvaluator + """ + statusOn=True + allowedTypes=['string'] + StoredValue='MvaTES_20170207_v2_BDTG.weights.root' + +class tauRecCombinedP4Config(JobProperty): + """Config file for CombinedP4FromRecoTaus + """ + statusOn=True + allowedTypes=['string'] + StoredValue='CalibLoopResult_v04-04.root' + +class tauRecTauJetRNNConfig(JobProperty): + """Config files for TauJetRNNEvaluator jet ID + """ + statusOn=True + allowedTypes=[['string']] + StoredValue=[ 'rnnid_mc16d_config_1p.json', 'rnnid_mc16d_config_3p.json' ] + +class tauRecTauEleRNNConfig(JobProperty): + """Config files for TauJetRNNEvaluator eVeto + """ + statusOn=True + allowedTypes=[['string']] + StoredValue=[ 'rnneveto_mc16d_config_1p.json', 'rnneveto_mc16d_config_3p.json' ] + class tauRecSeedMinPt(JobProperty): """ minimum jet seed pt """ @@ -150,21 +185,6 @@ class doRunTauDiscriminant(JobProperty): allowedTypes=['bool'] StoredValue=True - -class useVertexBasedConvFinder(JobProperty): - """ switch for PhotonConversionVertex.cxx/h conversion veto - """ - statusOn=True - allowedTypes=['bool'] - StoredValue=False - -class useNewPIDBasedConvFinder(JobProperty): - """ switch for TauConversionTagger.cxx/h conversion veto - """ - statusOn=True - allowedTypes=['bool'] - StoredValue=True - class doPanTau(JobProperty): """ if pantau should run after tauRec """ @@ -229,7 +249,7 @@ class tauRecFlags(JobPropertyContainer): jobproperties.add_Container(tauRecFlags) # I want always the following flags in the Rec container -_list_tau=[Enabled,doTauRec,isStandalone,tauRecSeedJetCollection,tauRecToolsCVMFSPath,doTJVA,useLargeD0Tracks,removeDuplicateCoreTracks,tauRecMVATrackClassification,tauRecRNNTrackClassification,tauRecMVATrackClassificationConfig,tauRecRNNTrackClassificationConfig,tauRecDecayModeNNClassifierConfig,tauRecSeedMinPt,tauRecSeedMaxEta,tauRecMaxNTracks,tauRecToolsDevToolList,tauRecToolsDevToolListProcessor,doRunTauDiscriminant,useVertexBasedConvFinder,useNewPIDBasedConvFinder,doPanTau,doPi0,pi0EtCuts,pi0MVACuts_1prong,pi0MVACuts_mprong,shotPtCut_1Photon,shotPtCut_2Photons,useOldVertexFitterAPI] +_list_tau=[Enabled,doTauRec,isStandalone,tauRecSeedJetCollection,tauRecToolsCVMFSPath,doTJVA,useLargeD0Tracks,removeDuplicateCoreTracks,tauRecMVATrackClassification,tauRecRNNTrackClassification,tauRecMVATrackClassificationConfig,tauRecRNNTrackClassificationConfig,tauRecDecayModeNNClassifierConfig,tauRecCalibrateLCConfig,tauRecMvaTESConfig,tauRecCombinedP4Config,tauRecTauJetRNNConfig,tauRecTauEleRNNConfig,tauRecSeedMinPt,tauRecSeedMaxEta,tauRecMaxNTracks,tauRecToolsDevToolList,tauRecToolsDevToolListProcessor,doRunTauDiscriminant,doPanTau,doPi0,pi0EtCuts,pi0MVACuts_1prong,pi0MVACuts_mprong,shotPtCut_1Photon,shotPtCut_2Photons,useOldVertexFitterAPI] for j in _list_tau: jobproperties.tauRecFlags.add_JobProperty(j) del _list_tau