Newer
Older
/*
Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration
*/

Zach Marshall
committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
// -------------------------------------------------------------
// File: CosmicGenerator/CosmicGenerator.cxx
// Description:
// The output will be stored in the transient event store so it can be
// passed to the simulation.
//
// AuthorList:
// W. Seligman: Initial Code 08-Nov-2002,
// based on work by M. Shapiro and I. Hinchliffe
//
// Modification for increasing efficiency of muon hitting the detector:
// H. Ma. March 17, 2006
// Property: ExzCut:
// if true, the method exzCut(...) will be called to apply a
// energy dependent position cut on the surface.
// This rejects low energy muons at large distance.
// Property: RMax
// Used by exzCut to reject non-projective muons, which are
// too far out on the surface
// Modifications to accomodate Pixel EndCap C Cosmic Test needs
// Marian Zdrazil June 7, 2006 mzdrazil@lbl.gov
//
// Modifications to accomodate replacement of Pixel EndCap C by a Pixel EndCap A
// Marian Zdrazil November 24, 2006 mzdrazil@lbl.gov
//
// Description:
// ------------
// It is easier and actually more useful to leave the EndCap A
// in the vertical position (the way it is positioned in the ATLAS detector)
// instead of rotating it clockwise by 90deg which corresponds to the
// placement during the Pixel EndCap A cosmic test in SR1 in November 2006.
// This is why we will generate cosmic muons coming from the positive Z-axis
// direction better than rotating the whole setup in PixelGeoModel.
// Modifications July 3rd 2007, Rob McPherson
// - Fix mu+/mu- bug (always present in Athena versions)
// - Fix sign of Py (since tag CosmicGenerator-00-00-21, muons only upward-going)
// Optimize selection of events passed to Geant4 for full simulation:
// - cut on energy based on pathlength in rock
// - reweighting of generated cosmic rays
// - geometrical cut in plane of pixel detector
//
// Juerg Beringer November 2007 JBeringer@lgl.gov
// Robert Cahn November 2007 RNCahn@lbl.gov
#include "CosmicGenerator/CosmicGenerator.h"
#include "CosmicGenerator/CosmicGun.h"
#include "CosmicGenerator/CosmicEventParser.h"
#include "CLHEP/Vector/ThreeVector.h"
#include "CLHEP/Geometry/Normal3D.h"
#include "CLHEP/Units/PhysicalConstants.h"
#include "CLHEP/Random/RandFlat.h"
#include <limits>
#include <cmath>
#include <vector>
#include <string>
#include <fstream>
// Pointer On AtRndmGenSvc
IAtRndmGenSvc* CosmicGenerator::p_AtRndmGenSvc = 0;
extern "C" float cosmicrndm_(int* /*dummy*/)
{
CLHEP::HepRandomEngine* engine = CosmicGenerator::p_AtRndmGenSvc->GetEngine("COSMICS");
return CLHEP::RandFlat::shoot(engine);
}
//--------------------------------------------------------------------------
CosmicGenerator::CosmicGenerator(const std::string& name,
ISvcLocator* pSvcLocator)
: GenModule(name,pSvcLocator)
, m_stopped_tminus(0.)
, m_stopped_tplus(0.)

Zach Marshall
committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
//--------------------------------------------------------------------------
{
//
// Migration to MeV and mm units: all conversions are done in this interface
// to the CosmicGun. The CosmicGun itself uses GeV units internally - to call
// the fortran code.
//
m_GeV = 1000;
m_mm = 10;
m_readfile = false;
m_activeStore = 0;
m_events = 0;
m_rejected = 0;
m_accepted = 0;
m_selection = 0;
declareProperty("eventfile", m_infile = "NONE" );
declareProperty("emin", m_emin =10.*m_GeV );
declareProperty("emax", m_emax =100*m_GeV );
declareProperty("xvert_low", m_xlow =0. *m_mm);
declareProperty("xvert_hig", m_xhig =10.*m_mm );
declareProperty("zvert_low", m_zlow =0. *m_mm);
declareProperty("zvert_hig", m_zhig =10.*m_mm );
declareProperty("yvert_val", m_yval = 81*m_mm );
declareProperty("tmin", m_tmin =0. );
declareProperty("tmax", m_tmax =0. );
declareProperty("IPx", m_IPx =0. );
declareProperty("IPy", m_IPy =0. );
declareProperty("IPz", m_IPz =0. );
declareProperty("Radius", m_radius =0. );
declareProperty("ExzCut", m_exzCut = false );
declareProperty("OptimizeForCavern", m_cavOpt = false );
declareProperty("OptimizeForSR1", m_srOneOpt = 0);
declareProperty("OptimizeForSR1PixelEndCap", m_srOnePixECOpt = false);
declareProperty("SwapYZAxis", m_swapYZAxis = false);
declareProperty("OptimizeForMuonEndCap", m_muonECOpt = false);
declareProperty("ctcut", m_ctcut =0.35 );
declareProperty("PrintEvent", m_printEvent=10);
declareProperty("PrintMod", m_printMod=100);
declareProperty("RMax", m_rmax = 10000000. );
declareProperty("ThetaMin", m_thetamin = 0.);
declareProperty("ThetaMax", m_thetamax = 1.);
declareProperty("PhiMin", m_phimin = -1*M_PI);
declareProperty("PhiMax", m_phimax = M_PI);
declareProperty("Zposition", m_zpos = 14500);
// Job options for new optimzation options (November 2007)
declareProperty("doPathLengthCut",m_doPathlengthCut = false);
declareProperty("doAimedAtPixelsCut",m_doAimedAtPixelsCut = false);
declareProperty("doReweighting",m_doReweighting = false);
declareProperty("energyCutThreshold",m_energyCutThreshold = 1.0);
declareProperty("ysurface",m_ysurface = 81*m_mm);
declareProperty("rvert_max",m_rvertmax = 300*m_mm); // replaces rectangle in case of reweighting
declareProperty("pixelplane_maxx",m_pixelplanemaxx = 1150);
declareProperty("pixelplane_maxz",m_pixelplanemaxz = 1650);
}
//--------------------------------------------------------------------------
CosmicGenerator::~CosmicGenerator()
//--------------------------------------------------------------------------
{}
//---------------------------------------------------------------------------
StatusCode CosmicGenerator::genInitialize() {
//---------------------------------------------------------------------------
// Initialize event count.
m_events = 0;
m_accepted=0;
m_rejected=0;
if(m_infile=="NONE")
{
// Get the random number service
CosmicGenerator::p_AtRndmGenSvc = &(GenModule::atRndmGenSvc());
CosmicGun* gun = CosmicGun::GetCosmicGun();
gun->SetEnergyRange(m_emin/m_GeV,m_emax/m_GeV);
gun->SetCosCut(m_ctcut);
gun->PrintLevel(m_printEvent, m_printMod);
float flux_withCT = gun->InitializeGenerator();
ATH_MSG_INFO( "Initialisation cosmic gun done." );
ATH_MSG_INFO( "Accepted diff flux after E and cos(theta) cuts = " << flux_withCT << " /cm^2/s" );
if (! m_doReweighting) {
// The following is only correct w/o reweighting
ATH_MSG_INFO( "Accepted total flux after E and cos(theta) cuts = " <<
flux_withCT*(m_xhig-m_xlow)/m_mm*(m_zhig-m_zlow)/m_mm << " /s" );
}
}
else
{
ATH_MSG_INFO( "Cosmics are read from file " << m_infile );
m_ffile.open(m_infile.c_str());
if(!m_ffile)
{
ATH_MSG_FATAL( "Could not open input file - stop! " );
return StatusCode::FAILURE;
}
m_readfile = true;
}
m_center=CLHEP::Hep3Vector(m_IPx, m_IPy, m_IPz);
return StatusCode::SUCCESS;
}
CLHEP::HepLorentzVector CosmicGenerator::generateVertex(void) {
// Get the pointer to the engine of the stream named SINGLE. If the
// stream does not exist is created automaticaly
CLHEP::HepRandomEngine* engine = CosmicGenerator::p_AtRndmGenSvc->GetEngine("COSMICS");
// Generate a random number according to the distribution.
float x_val = CLHEP::RandFlat::shoot(engine, m_xlow, m_xhig);
float z_val = CLHEP::RandFlat::shoot(engine, m_zlow, m_zhig);
// Generate a random number for time offset
float t_val = m_tmin; // Assign defined value
if(m_tmin < m_tmax){
t_val = CLHEP::RandFlat::shoot(engine, m_tmin, m_tmax);
}
else if(m_tmin == m_tmax){
t_val = m_tmin;
}
else ATH_MSG_FATAL("You specified m_tmin = " << m_tmin << " and m_tmax " << m_tmax);
CLHEP::HepLorentzVector p(x_val,m_yval,z_val, t_val*CLHEP::c_light);
return p;
}
CLHEP::HepLorentzVector CosmicGenerator::generateVertexReweighted(void) {
// Get the pointer to the engine of the stream named SINGLE. If the
// stream does not exist is created automaticaly
CLHEP::HepRandomEngine* engine = CosmicGenerator::p_AtRndmGenSvc->GetEngine("COSMICS");
// Generate non-uniform distribution of vertices to reflect azimuthal
// angle subtended by the sphere of radiusm m_radius
// Inside m_radius, the density of vertices is proportional to 2 pi r dr
// Outside m_radius, the density is proportional to 2r arcsin (m_radius/r)
// We approximate the latter by its maximum: m_radius * pi
// We generate vertices out to m_rvertmax.
// Integrating the approximated distribution gives
// pi r**2 for r < m_radius and pi m_radius r for r> m_radius
// So with ran in (0,1) we take r=max_r * ran for ran>m_radius/max_r
// and r= sqrt(m_radius*max_r*ran) for ran<m_radius/max_r
// for r>m_radius we use acceptance/rejection by comparing
// m_radius * pi * new_ran with 2r arcsin (m_radius/r)
int accept=0;
float max_r = m_rvertmax;
float r_val = 0.;
while(accept==0){
float ran_one = CLHEP::RandFlat::shoot(engine,0.,1.);
if(ran_one>(m_radius/max_r)){
r_val = ran_one*max_r;
float ran_two = CLHEP::RandFlat::shoot(engine,0.,1.);
if(m_radius*M_PI*ran_two<2*r_val*asin(m_radius/r_val)){
accept=1;
}
}
else
{
r_val = sqrt(m_radius*max_r*ran_one);
accept=1;
}
}
float ran_three= CLHEP::RandFlat::shoot(engine, 0.,2*M_PI);
float x_val = r_val*cos(ran_three);
float z_val = r_val*sin(ran_three);
// Generate a random number for time offset
float t_val = m_tmin; // Assign defined value
if(m_tmin < m_tmax){
t_val = CLHEP::RandFlat::shoot(engine, m_tmin, m_tmax);
}
else if(m_tmin == m_tmax){
t_val = m_tmin;
}
else ATH_MSG_FATAL( " You specified m_tmin = " << m_tmin << " and m_tmax " << m_tmax );
CLHEP::HepLorentzVector p(x_val,m_yval,z_val, t_val*CLHEP::c_light);
return p;
}
//---------------------------------------------------------------------------
StatusCode CosmicGenerator::callGenerator() {
//---------------------------------------------------------------------------
++m_events;
ATH_MSG_DEBUG( "Event #" << m_events);
CLHEP::HepRandomEngine* engine = CosmicGenerator::p_AtRndmGenSvc->GetEngine("COSMICS");
// clear up the vectors
m_fourPos.clear();
m_fourMom.clear();
m_polarization.clear();
m_pdgCode.clear();
if(m_readfile)
{
if(!m_ffile.eof())
{
CosmicEventParser evt;
m_ffile >> evt;
ATH_MSG_VERBOSE( evt );
double polx = 0;
double poly = 0;
double polz = 0;
HepMC::Polarization thePolarization;
thePolarization.set_normal3d(HepGeom::Normal3D<double>(polx,poly,polz));
m_polarization.push_back(thePolarization);
//
// units are already converted to MeV's and mm.
//
m_fourPos.push_back(evt.Vertex());
m_fourMom.push_back(evt.Momentum());
m_pdgCode.push_back(evt.pdgID());
}
else
{
ATH_MSG_FATAL( "End of file reached - stop " );
exit(1);
return StatusCode::FAILURE;
}
}
else
{
bool accepted=false;
CLHEP::HepLorentzVector pp;
CosmicGun* gun = CosmicGun::GetCosmicGun();
CLHEP::HepLorentzVector vert;
CLHEP::Hep3Vector vert3;
double theta1;
double phi1;
double mag1;
while(!accepted){
if (m_doReweighting && m_cavOpt) {
// The code here doesn't make sense without the sphere cut in the
// cavern optimization that is selected by OptimizeForCavern=True
vert = generateVertexReweighted();
vert3 = CLHEP::Hep3Vector(vert.x(),vert.y(),vert.z());
double vert_radius=sqrt(vert3.x()*vert3.x() + vert3.z()*vert3.z());
pp = gun->GenerateEvent();
theta1=pp.theta();
phi1=pp.phi();
mag1=pp.rho();
if (vert_radius>m_radius) {
phi1=atan2(vert.z(),vert.x())+M_PI;
float delta_phi=asin(m_radius/vert_radius);
phi1=phi1+CLHEP::RandFlat::shoot(engine, -delta_phi, delta_phi);
}
pp.setX(mag1*sin(theta1)*cos(phi1));
pp.setY(mag1*sin(theta1)*sin(phi1));
} else {
vert = generateVertex();
vert3 = CLHEP::Hep3Vector(vert.x(),vert.y(),vert.z());
pp = gun->GenerateEvent();
theta1=pp.theta();
phi1=pp.phi();
mag1=pp.rho();
}
CLHEP::Hep3Vector pp_corr(mag1*sin(theta1)*cos(phi1),
-mag1*cos(theta1),
mag1*sin(theta1)*sin(phi1));
CLHEP::Hep3Vector direction(pp_corr.x(),pp_corr.y(), pp_corr.z());
// if optimization activated, check for the direction of the generated muon
if(m_cavOpt) {
CLHEP::Hep3Vector center_dir=m_center-vert3;
double beta=direction.angle(center_dir);
double alpha=asin(m_radius/center_dir.r());
if(fabs(beta)<alpha) {
if(m_exzCut) {
// Old optimization code - is it still useful?
CLHEP::HepLorentzVector pp2(pp_corr.x(),pp_corr.y(), pp_corr.z(), pp.e());
if( exzCut(vert3,pp2) ) {
accepted=true;
}
} else {
accepted = true;
ATH_MSG_DEBUG( "x0 = " << vert3.x()
<< ", y0 = " << vert3.y()
<< ", z0 = " << vert3.z()
<< ", theta = " << pp.theta()
<< ", phi = " << pp.phi()
<< ", energy = " << pp.e()*m_GeV );
if (m_doPathlengthCut) {
double path = pathLengthInRock(vert3.x(),vert3.y(),vert3.z(),pp.theta(),pp.phi());
double energyLoss = 2.33e-3 * 244. * path; //FIXME Hardcoded values!
ATH_MSG_DEBUG( "Energy loss is " << energyLoss
<< " --> " << (energyLoss>pp.e()*m_GeV ? "REJECTED" : "ACCEPTED") << " by pathlength cut");
if (energyLoss-m_energyCutThreshold > pp.e()*m_GeV) accepted = false;
}
if (m_doAimedAtPixelsCut) {
bool aimedAtPixels = pointsAtPixels(vert3.x(),vert3.y(),vert3.z(),pp.theta(),pp.phi());
ATH_MSG_DEBUG( (aimedAtPixels ? "AIMED AT PIXELS" : "NOT AIMED AT PIXELS") );
if (!aimedAtPixels) accepted = false;
}
// FOR DEBUGGING ONLY
if (accepted) {
ATH_MSG_VERBOSE("The following event has been accepted for simulation:");
ATH_MSG_VERBOSE( "x0 = " << vert3.x() << ", y0 = " << vert3.y() << ", z0 = " << vert3.z()
<< ", theta = " << pp.theta() << ", phi = " << pp.phi() << ", energy = " << pp.e()*m_GeV );
if (m_doPathlengthCut) {
double path = pathLengthInRock(vert3.x(),vert3.y(),vert3.z(),pp.theta(),pp.phi());
double energyLoss = 2.33e-3 * 244. * path;
ATH_MSG_VERBOSE( "Energy loss is " << energyLoss
<< " --> " << (energyLoss>pp.e()*m_GeV ? "REJECTED" : "ACCEPTED") << " by pathlength cut" );
}
if (m_doAimedAtPixelsCut) {
bool aimedAtPixels = pointsAtPixels(vert3.x(),vert3.y(),vert3.z(),pp.theta(),pp.phi());
ATH_MSG_VERBOSE( (aimedAtPixels ? "AIMED AT PIXELS" : "NOT AIMED AT PIXELS") );
}
}
}
}
if(accepted) {
m_accepted++;
} else {
ATH_MSG_VERBOSE("Rejected muon due to cavern optimization request!");
m_rejected++;
}
}
else if(m_srOneOpt == 1) {
CLHEP::Hep3Vector srOneVec(direction.x(), direction.y(), direction.z());
if(mag1 < 0) // Check if momentum vector is flipped.
srOneVec *= -1;
if( (srOneVec.phi() >= -2.25) && (srOneVec.phi() <= -1.7) &&
(srOneVec.theta() >= 0.85) && (srOneVec.theta() <= 2.25) ) { //FIXME Hardcoded values!
accepted = true;
m_accepted++;
ATH_MSG_DEBUG("Muon accepted by SR1 SCT/TRT optimization!");
} else {
ATH_MSG_DEBUG("Rejected muon due to SR1 SCT/TRT optimization request!");
m_rejected++;
}
}
else if(m_srOneOpt == 2) {
CLHEP::Hep3Vector srOneVec(direction.x(), direction.y(), direction.z());
if(mag1 < 0) // Check if momentum vector is flipped.
srOneVec *= -1;
if( (srOneVec.phi() >= -1.68) && (srOneVec.phi() <= -1.08) &&
(srOneVec.theta() >= 0.29) && (srOneVec.theta() <= 0.72) ) { //FIXME Hardcoded values!
accepted = true;
m_accepted++;
ATH_MSG_DEBUG("Muon accepted by SR1 SCT/TRT EndCapC optimization!");
} else {
ATH_MSG_DEBUG("Rejected muon due to SR1 SCT/TRT EndcapC optimization request!");
m_rejected++;
}
}
else if(m_srOnePixECOpt) {
CLHEP::Hep3Vector srOneVec(direction.x(), direction.y(), direction.z());
if(mag1 < 0) // Check if momentum vector is flipped.
srOneVec *= -1;
if( (srOneVec.phi() >= m_phimin) && (srOneVec.phi() <= m_phimax) &&
(srOneVec.theta() >= m_thetamin) && (srOneVec.theta() <= m_thetamax) ) {
accepted = true;
m_accepted++;
ATH_MSG_DEBUG("Muon accepted by SR1 Pixel EndCap optimization!");
} else {
ATH_MSG_DEBUG("Rejected muon due to SR1 Pixel EndCap optimization request!");
m_rejected++;
}
}
else if (m_muonECOpt) {
double coor_x, coor_y, coor_z;
coor_z = m_zpos; // defined in jobOpt.
coor_x = direction.x()*(coor_z - vert.z())/direction.z() +vert.x();
coor_y = direction.y()*(coor_z - vert.z())/direction.z() +vert.y();
if( ((coor_x)*(coor_x) + (coor_y)*(coor_y)) <= m_radius*m_radius ) {
accepted = true;
m_accepted++;
} else {
coor_z = -m_zpos;
coor_x = direction.x()*(coor_z - vert.z())/direction.z() +vert.x();
coor_y = direction.y()*(coor_z - vert.z())/direction.z() +vert.y();
if( ((coor_x)*(coor_x) + (coor_y)*(coor_y)) <= m_radius*m_radius ) {
accepted = true;
m_accepted++;
} else {
ATH_MSG_DEBUG("Rejected muon due to Muon EndCap optimization request!");
m_rejected++;
}
}
}
else accepted=true; // if no opt required accept the first muon
}
pp.setX(pp.x()*m_GeV);
pp.setY(pp.y()*m_GeV);
pp.setZ(pp.z()*m_GeV);
pp.setT(pp.t()*m_GeV);
// Get the mass of the particle to be generated
int charge = gun->GetMuonCharge();
// m_pdgCode.push_back(charge*13);
m_pdgCode.push_back(charge*-13);
const HepPDT::ParticleData* particle = particleData(abs(m_pdgCode.back()));
if (particle==nullptr){
ATH_MSG_FATAL( "Particle with PDG ID=" << abs(m_pdgCode.back()) << " returned a nullptr" );
return StatusCode::FAILURE;
}

Zach Marshall
committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
double mass = particle->mass().value();
// Compute the kinematic values. First, the vertex 4-vector:
double x = vert.x();
double y = vert.y();
double z = vert.z();
double t = vert.t();
// Do we need to swap Y- and Z-axis for the PixelEndCap A Cosmic test ?
// if not...do nothing...if so, invert position of y- and z- coordinate
//
// but not only that...change also the direction of the incoming cosmic muon(s),
// they must go towards the pixel endcap A, i.e. y -> -y
//
if(!m_swapYZAxis)
m_fourPos.push_back(CLHEP::HepLorentzVector(x,y,z,t));
else
m_fourPos.push_back(CLHEP::HepLorentzVector(x,z,y,t));
// Set the polarization. Realistically, this is going to be zero
// for most studies, but you never know...
double polx = 0;
double poly = 0;
double polz = 0;
//m_polarization.set_normal3d(HepGeom::Normal3D<double>(polx,poly,polz));
HepMC::Polarization thePolarization;
// Do we need to swap Y- and Z-axis for the PixelEndCap C Cosmic test ?
// if not...do nothing...if so, invert position of y- and z- coordinate
//
// well and don't forget about the direction of the incoming cosmic muon(s) either
// that means: y -> -y
//
if(!m_swapYZAxis){
// thePolarization.set_normal3d(HepGeom::Normal3D<double>(polx,-poly,polz));
thePolarization.set_normal3d(HepGeom::Normal3D<double>(polx,poly,polz));
}
else
thePolarization.set_normal3d(HepGeom::Normal3D<double>(polx,polz,-poly));
m_polarization.push_back(thePolarization);
// The method of calculating e, theta, and phi depends on the user's
// commands. Let the KinematicManager handle it.
double e = pp.e();
double theta = pp.theta();
double phi = pp.phi();
// At this point, we have e, theta, and phi. Put them together to
// get the four-momentum.
double p2 = e*e - mass*mass;
if ( p2 < 0 )
{
ATH_MSG_ERROR( "Event #" << m_events
<< " E=" << e << ", mass=" << mass
<< " -- you have generated a tachyon! Increase energy or change particle ID." );
return StatusCode::FAILURE;
}
double p = sqrt(p2);
double px = p*sin(theta)*cos(phi);
double pz = p*sin(theta)*sin(phi);
double py = -p*cos(theta);
// Do we need to swap Y- and Z-axis for the PixelEndCap C Cosmic test ?
// if not...do nothing...if so, invert position of y- and z- coordinate
//
// well and don't forget about the direction of the incoming cosmic muon(s) either
// that means: y -> -y
//
if(!m_swapYZAxis) {
// Line below corrupted py sign and forces muons to be upwards, not downwards.
// m_fourMom.push_back(CLHEP::HepLorentzVector(px,-py,pz,pp.e()));
m_fourMom.push_back(CLHEP::HepLorentzVector(px,py,pz,pp.e()));
}
else
m_fourMom.push_back(CLHEP::HepLorentzVector(px,pz,-py,pp.e()));
ATH_MSG_DEBUG(
" (x,y,z,t) = ("
<< m_fourPos.back().x() << ","
<< m_fourPos.back().y() << ","
<< m_fourPos.back().z() << ","
<< m_fourPos.back().t() << "), (Px,Py,Pz,E) = ("
<< m_fourMom.back().px() << ","
<< m_fourMom.back().py() << ","
<< m_fourMom.back().pz() << ","
<< m_fourMom.back().e() << ")" );
ATH_MSG_DEBUG(
" (theta,phi) = (" << theta << "," << phi << "), "
<< "polarization(x,y,z) = ("
<< m_polarization.back().normal3d().x() << ","
<< m_polarization.back().normal3d().y() << ","
<< m_polarization.back().normal3d().z() << ")" );
}
return StatusCode::SUCCESS;
}
//---------------------------------------------------------------------------
StatusCode CosmicGenerator::genFinalize() {
//---------------------------------------------------------------------------
// Get the KinematicManager.
if(m_cavOpt){
ATH_MSG_INFO("********************************************");
ATH_MSG_INFO("** you have run CosmicGenerator with some ");
ATH_MSG_INFO("** optimizations for cavern simulation");
ATH_MSG_INFO("** "<<m_accepted<<" muons were accepted");
ATH_MSG_INFO("** "<<m_rejected<<" muons were rejected");
ATH_MSG_INFO("********************************************");
}
if(m_srOneOpt == 1){
ATH_MSG_INFO("**********************************************");
ATH_MSG_INFO("** you have run CosmicGenerator with some ");
ATH_MSG_INFO("** optimizations for SR1 SCT/TRT simulation");
ATH_MSG_INFO("** "<<m_accepted<<" muons were accepted");
ATH_MSG_INFO("** "<<m_rejected<<" muons were rejected");
ATH_MSG_INFO("**********************************************");
}
if(m_srOneOpt == 2){
ATH_MSG_INFO("**********************************************");
ATH_MSG_INFO("** you have run CosmicGenerator with some ");
ATH_MSG_INFO("** optimizations for SR1 SCT/TRT EndcapC simulation");
ATH_MSG_INFO("** "<<m_accepted<<" muons were accepted");
ATH_MSG_INFO("** "<<m_rejected<<" muons were rejected");
ATH_MSG_INFO("**********************************************");
}
if(m_srOnePixECOpt){
ATH_MSG_INFO("***************************************************");
ATH_MSG_INFO("** you have run CosmicGenerator with some ");
ATH_MSG_INFO("** optimizations for SR1 Pixel EndCap simulation");
ATH_MSG_INFO("** "<<m_accepted<<" muons were accepted");
ATH_MSG_INFO("** "<<m_rejected<<" muons were rejected");
ATH_MSG_INFO("***************************************************");
if(m_swapYZAxis){
ATH_MSG_INFO("***************************************************");
ATH_MSG_INFO(" You have swapped Y- and Z-axis, i.e. muons are ");
ATH_MSG_INFO(" not coming from the top any more !!! ");
ATH_MSG_INFO("***************************************************");
}
}
if(m_muonECOpt) {
ATH_MSG_INFO("***************************************************");
ATH_MSG_INFO("** you have run CosmicGenerator with some " );
ATH_MSG_INFO("** filters for cosmic muon simulation" );
ATH_MSG_INFO("** "<<m_accepted<<" muons were accepted" );
ATH_MSG_INFO("** "<<m_rejected<<" muons were rejected" );
ATH_MSG_INFO("***************************************************");
}
return StatusCode::SUCCESS;
}
//---------------------------------------------------------------------------
StatusCode CosmicGenerator::fillEvt(HepMC::GenEvent* event) {
//---------------------------------------------------------------------------
// loop over generated vertices
if(m_fourMom.size()==m_fourPos.size()&&m_fourMom.size()==m_polarization.size()){
for(std::size_t v=0;v<m_fourMom.size();++v){
// Note: The vertex and particle are owned by the event, so the
// event is responsible for those pointers.
// Create the particle, and specify its polarization.
HepMC::GenParticle* particle = new HepMC::GenParticle( m_fourMom[v], m_pdgCode[v], 1);
particle->set_polarization( m_polarization[v] );
// Create the vertex, and add the particle to the vertex.
HepMC::GenVertex* vertex = new HepMC::GenVertex(m_fourPos[v]);
vertex->add_particle_out( particle );
// Add the vertex to the event.
event->add_vertex( vertex );
}
event->set_event_number(m_events); // Set the event number
if (event->weights().empty()){
event->weights().push_back(1.0);
}
return StatusCode::SUCCESS;
} else {
ATH_MSG_ERROR("Wrong different number of vertexes/momenta/polaritazions!");
return StatusCode::FAILURE;
}
}
// Energy dependent position cut on the surface.
bool CosmicGenerator::exzCut(const CLHEP::Hep3Vector& pos,const CLHEP::HepLorentzVector& p)
{
// p is in GeV...
double r =0;
bool cut = false;
if(pos.z()<0){
r = sqrt((pow(pos.x(),2)+pow(pos.z()+28000,2))) ; //FIXME Hardcoded values!
double e = 0.45238*r+5000 ; //FIXME Hardcoded values!
cut = p.e()*m_GeV>e;
}
else
{
r = sqrt((pow(pos.x(),2)+pow(pos.z()-20000,2))) ; //FIXME Hardcoded values!
if(r<15000) { //FIXME Hardcoded values!
cut = true;
} else
{
double e = 0.461538*(r-15000)+10000 ; //FIXME Hardcoded values!
cut = p.e()*m_GeV>e;
ATH_MSG_VERBOSE("z>0 r , e, p.e = "<<r <<" " <<e <<" " <<p.e()*m_GeV);
}
}
cut = cut && r < m_rmax ;
return cut;
}
// Estimate pathlength in rock towards the pixel detector, taking into account both
// the PX14 and PX16 shafts. The shaft positions are currently hard-coded.
double CosmicGenerator::pathLengthInRock(double xgen, double ygen, double zgen, double theta, double phi) {
// y is vertical direction, z along beam, major shaft has z>0
// Definition of shafts and cavern
double p14_x = 1700; //FIXME Hardcoded values!
double p14_z = 13500; //FIXME Hardcoded values!
double p14_radius = 9000.; //FIXME Hardcoded values!
double p16_x = 1700; //FIXME Hardcoded values!
double p16_z = -20000; //FIXME Hardcoded values!
double p16_radius = 6300.; //FIXME Hardcoded values!
double y1 = 26400; // ! mm cavern height above IP //FIXME Hardcoded values!
// direction of trajectory
// x=x0 - t sinth cosphi; y=y0 + t costh; z=z0 - t sinth sinphi
double cosphi = cos(phi);
double sinphi = sin(phi);
double costh = cos(theta);
double sinth = sin(theta);
double y0 = m_ysurface;
double t = (ygen-y0)/costh;
double x0 = xgen + t*sinth*cosphi; // x position at y=0
double z0 = zgen + t*sinth*sinphi; // z position at y=0
// full path length ignoring shaft
double full_distance = (y0-y1)/costh;
// does trajectory intersect p14 cylinder?
double z_mid14 = (x0-p14_x)*sinphi-(z0-p14_z)*cosphi;
double min_dist14 = fabs(z_mid14); //minimum distance of line from center
double shaft_distance14 = 0.;
if (min_dist14<p14_radius) {
// z values at intersections
double z_plus14 = -cosphi*z_mid14+sinphi*sqrt(pow(p14_radius,2.)-pow(z_mid14,2.)) + p14_z;
double z_minus14 = -cosphi*z_mid14-sinphi*sqrt(pow(p14_radius,2.)-pow(z_mid14,2.)) + p14_z;
// y values at intersections
double y_plus14 = y0-costh*(z_plus14-z0)/sinth/sinphi;
double y_minus14 = y0-costh*(z_minus14-z0)/sinth/sinphi;
double y_great14 = y_plus14>y_minus14 ? y_plus14 : y_minus14;
double y_less14 = y_plus14>y_minus14 ? y_minus14 : y_plus14;
// top intersection must occur above bottom of shaft
if ( (y_great14>y1) && (y_less14<y0) ) {
double y_top14 = y_great14<y0 ? y_great14 : y0;
double y_bottom14 = y_less14>y1 ? y_less14 : y1;
shaft_distance14 = (y_top14-y_bottom14)/costh;
}
}
// does trajectory intersect p16 cylinder?
double z_mid16 = (x0-p16_x)*sinphi-(z0-p16_z)*cosphi;
double min_dist16 = fabs(z_mid16);
double shaft_distance16 = 0.;
if (min_dist16<p16_radius) {
// z values at intersections
double z_plus16 = -cosphi*z_mid16+sinphi*sqrt(pow(p16_radius,2.)-pow(z_mid16,2.)) + p16_z;
double z_minus16 = -cosphi*z_mid16-sinphi*sqrt(pow(p16_radius,2.)-pow(z_mid16,2.)) + p16_z;
// determine y values at intersections
double y_plus16 = y0-costh*(z_plus16-z0)/sinth/sinphi;
double y_minus16 = y0-costh*(z_minus16-z0)/sinth/sinphi;
double y_great16 = y_plus16>y_minus16 ? y_plus16 : y_minus16;
double y_less16 = y_plus16>y_minus16 ? y_minus16 : y_plus16;
// top intersection must occur above bottom of shaft
if ( (y_great16>y1) && (y_less16<y0) ) {
double y_top16 = y_great16<y0 ? y_great16 : y0;
double y_bottom16 = y_less16>y1 ? y_less16 : y1;
shaft_distance16 = (y_top16-y_bottom16)/costh;
}
}
double rock_distance = full_distance - shaft_distance14-shaft_distance16;
return rock_distance;
}
// Check if trajectory points towards a horizontal rectangle centered at the pixel detector
bool CosmicGenerator::pointsAtPixels(double xgen, double ygen, double zgen, double theta, double phi) {
// y is vertical direction, z along beam, major shaft has z<0
bool does = false;
// direction of trajectory
// x=xgen+ t sinth cosphi; y=ygen+t costh; z=zgen+t sinth sinphi
double cosphi = cos(phi);
double sinphi = sin(phi);
double costh = cos(theta);
double sinth = sin(theta);
double t = ygen/costh; //for parameterized trajectory
double x_pos = xgen + t*sinth*cosphi; //x position at y=0
double z_pos = zgen + t*sinth*sinphi; //z position at y=0
ATH_MSG_VERBOSE("x_pos = " << x_pos << ", z_pos = " << z_pos);
if((fabs(x_pos)<m_pixelplanemaxx)&&(fabs(z_pos)<m_pixelplanemaxz)){
does=true;
}
return does;
}