Skip to content
Snippets Groups Projects
README.md 7.25 KiB
Newer Older
<div align="center">

Daniel Murnane's avatar
Daniel Murnane committed

<img src="docs/media/acorn_logo_1.png" width="400px">
[![Static Badge](https://img.shields.io/badge/documentation-blue)](https://atlas-gnn-tracking.docs.cern.ch/)  [![pipeline status](https://gitlab.cern.ch/gnn4itkteam/commonframework/badges/dev/pipeline.svg)](https://gitlab.cern.ch/gnn4itkteam/commonframework/-/commits/dev) [![coverage report](https://gitlab.cern.ch/gnn4itkteam/commonframework/badges/dev/coverage.svg)](https://gitlab.cern.ch/gnn4itkteam/commonframework/-/commits/dev)

This repository contains the framework used for developing, testing and presenting the GNN-based ITk track reconstruction project GNN4ITk.
Daniel Murnane's avatar
Daniel Murnane committed
---

Related work can be found here:
1. https://arxiv.org/abs/2103.06995
2. https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03047/epjconf_chep2021_03047.html
3. https://cds.cern.ch/record/2815578?ln=en.
Daniel Murnane's avatar
Daniel Murnane committed

**This repository is still under development and may be subject to breaking changes.**

## Get Started

Sylvain Caillou's avatar
Sylvain Caillou committed
To get started, run the setup commands (Install instructions section below), then take a look at the examples in the `examples` directory. Instructions and further details about the framework are available under the subdirectory of interest - `examples`, `acorn/stages` or `acorn/core`.
Daniel Murnane's avatar
Daniel Murnane committed
## Install

**IMPORTANT! Please use the `dev` branch to run all Examples: it is the latest version and is fully supported!**

Xiangyang Ju's avatar
Xiangyang Ju committed
To install ACORN, assuming GPU capability with **cuda version >= 12.2**, run the following commands. 
Xiangyang Ju's avatar
Xiangyang Ju committed
```bash
git clone --recurse-submodules ssh://git@gitlab.cern.ch:7999/gnn4itkteam/acorn.git && cd acorn
conda create --name acorn python=3.10 && conda activate acorn
pip install torch==2.1.0 && pip install --no-cache-dir -r requirements.txt
Sylvain Caillou's avatar
Sylvain Caillou committed
```

Xiangyang Ju's avatar
Xiangyang Ju committed
### Advanced Installation & Troubleshooting

To check if the installation is successful, run `python check_acorn.py`. If you see (approximately) the following output, you are good to go!
```text
python interpreter:  path-to-conda-env/bin/python
torch:  2.1.1+cu121
torch cuda:  True
torch cuda device count:  1
torch cuda device name:  NVIDIA A100-PCIE-40GB
torch cuda device capability:  (8, 0)
torch distributed     : True
pytorch_lightning:  2.1.2
pyg:  2.4.0
frnn found
cugraph:  23.12.00
cudf:  23.12.01
torch_scatter:  2.1.2
Test scatter_max in cuda.
out: tensor([[0, 0, 4, 3, 2, 0],
        [2, 4, 3, 0, 0, 0]], device='cuda:0')
argmax: tensor([[5, 5, 3, 4, 0, 1],
        [1, 4, 3, 5, 5, 5]], device='cuda:0')
```

-----

For NERSC Perlmutter HPC users, the default `cudatoolkit` is 11.7 as of writing (12/13/2023). Please switch it to 12.2 by running `module load cudatoolkit/12.2`, then run the following commands.

-----

It is optional to install `FRNN` for faster (~3x) GPU nearest neighbor search. To do so, run
```bash
pip install git+https://github.com/asnaylor/prefix_sum.git
pip install git+https://github.com/xju2/FRNN.git
```

**Note: If you got this error message:**
```bash
error: command /usr/bin/gcc failed with exit code 1 
```
**It might be necessary to go into the installation script of FRNN and change the cpp flag from c++14 to c++17**

Sylvain Caillou's avatar
Sylvain Caillou committed
**IMPORTANT! On December 2, 2023 a major refactoring of the code was merged on `dev`**

If you have previously installed a version of 'acorn' (formerly known as 'gnn4itk_cf' or GNN4ITK CommonFramework) prior to December 2, 2023, it's important to update your setup. Follow the steps below:

```
git checkout dev
git pull dev
conda create --name acorn --clone gnn4itk
conda activate acorn
pip uninstall gnn4itk_cf
pip install -e .
```
Sylvain Caillou's avatar
Sylvain Caillou committed

Sylvain Caillou's avatar
Sylvain Caillou committed
You may temporarily retain the existing 'gnn4itk' conda environment for branches still in development with the previous version. If you have any active development branches from the previous setup, swiftly switch them to the 'dev' branch for updates
Sylvain Caillou's avatar
Sylvain Caillou committed

Sylvain Caillou's avatar
Sylvain Caillou committed
The new setup introduces the following changes:
Sylvain Caillou's avatar
Sylvain Caillou committed

Sylvain Caillou's avatar
Sylvain Caillou committed
- Renames the conda environment from `gnn4itk` to `acorn`
- Updates the command line to use `acorn [train|infer|eval]`
- Old commands `g4i-train`, `g4i-infer`, and `g4i-eval` remain available for backward compatibility.
Sylvain Caillou's avatar
Sylvain Caillou committed

Daniel Murnane's avatar
Daniel Murnane committed
## Framework Structure & Examples
Daniel Murnane's avatar
Daniel Murnane committed

Daniel Murnane's avatar
Daniel Murnane committed
Please see the [documentation](https://atlas-gnn-tracking.docs.cern.ch/) for more details, examples and tutorials.
Daniel Murnane's avatar
Daniel Murnane committed
## Citing this work

If this work is useful for your research, please cite our vCHEP2021 and CTD2022 proceedings:

@ARTICLE{YourReferenceHere,
       author = {{Ju}, Xiangyang and {Murnane}, Daniel and {Calafiura}, Paolo and {Choma}, Nicholas and {Conlon}, Sean and {Farrell}, Steve and {Xu}, Yaoyuan and {Spiropulu}, Maria and {Vlimant}, Jean-Roch and {Aurisano}, Adam and {Hewes}, Jeremy and {Cerati}, Giuseppe and {Gray}, Lindsey and {Klijnsma}, Thomas and {Kowalkowski}, Jim and {Atkinson}, Markus and {Neubauer}, Mark and {DeZoort}, Gage and {Thais}, Savannah and {Chauhan}, Aditi and {Schuy}, Alex and {Hsu}, Shih-Chieh and {Ballow}, Alex},
        title = "{Performance of a Geometric Deep Learning Pipeline for HL-LHC Particle Tracking}",
      journal = {arXiv e-prints},
     keywords = {Physics - Data Analysis, Statistics and Probability, Computer Science - Machine Learning, High Energy Physics - Experiment},
         year = 2021,
        month = mar,
          eid = {arXiv:2103.06995},
        pages = {arXiv:2103.06995},
          doi = {10.48550/arXiv.2103.06995},
archivePrefix = {arXiv},
       eprint = {2103.06995},
 primaryClass = {physics.data-an},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2021arXiv210306995J},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
```

@article{YourReferenceHere,
	author = {{Biscarat, Catherine} and {Caillou, Sylvain} and {Rougier, Charline} and {Stark, Jan} and {Zahreddine, Jad}},
	title = {Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC},
	DOI= "10.1051/epjconf/202125103047",
	url= "https://doi.org/10.1051/epjconf/202125103047",
	journal = {EPJ Web Conf.},
	year = 2021,
	volume = 251,
	pages = "03047",
}
@techreport{YourReferenceHere,
      author        = "Caillou, Sylvain and Calafiura, Paolo and Farrell, Steven
                       Andrew and Ju, Xiangyang and Murnane, Daniel Thomas and
                       Rougier, Charline and Stark, Jan and Vallier, Alexis",
      collaboration = "ATLAS",
      title         = "{ATLAS ITk Track Reconstruction with a GNN-based
                       pipeline}",
      institution   = "CERN",
      reportNumber  = "ATL-ITK-PROC-2022-006",
      address       = "Geneva",
      year          = "2022",
      url           = "https://cds.cern.ch/record/2815578",
}

If you use this code in your work, please cite the gnn4itk framework:

@misc{YourReferenceHere,
author = {Atkinson, Markus Julian and Caillou, Sylvain and Clafiura, Paolo and Collard, Christophe and Farrell, Steven Andrew and Huth, Benjamin and Ju, Xiangyang and Liu, Ryan and Minh Pham, Tuan and Murnane, Daniel (corresponding author) and Neubauer, Mark and Rougier, Charline and Stark, Jan and Torres, Heberth and Vallier, Alexis},
title = {gnn4itk},
url = {https://github.com/GNN4ITkTeam/CommonFramework}
}
Jackson Carl Burzynski's avatar
Jackson Carl Burzynski committed

Daniel Murnane's avatar
Daniel Murnane committed
## Developing & Contributing
Jackson Carl Burzynski's avatar
Jackson Carl Burzynski committed

(Optional)

Pre-commit hooks are available for running linting and code formatting. To set them up, run
Jackson Carl Burzynski's avatar
Jackson Carl Burzynski committed
```
pre-commit install
pre-commit run
Daniel Murnane's avatar
Daniel Murnane committed
```

(If you are using a conda environment, you may need to run `pip install pre-commit` first)