diff --git a/Root/VLQ_Analysis_Data2015.cxx b/Root/VLQ_Analysis_Data2015.cxx
index 1f595a19d13c7885a6e48fa26d78c07553c8dee0..f36838b61f5b5c71237191fec3049ec159691a4f 100644
--- a/Root/VLQ_Analysis_Data2015.cxx
+++ b/Root/VLQ_Analysis_Data2015.cxx
@@ -1272,6 +1272,7 @@ bool VLQ_Analysis_Data2015::Terminate()
 
   delete m_outMngrHist;
   delete m_outMngrTree;
+  delete m_outMngrHBSMTree;
 
   delete m_weightMngr;
   delete m_TRFMngr;
diff --git a/python/apply_rescaling_trf_samples.py b/python/apply_rescaling_trf_samples.py
new file mode 100755
index 0000000000000000000000000000000000000000..3b5a444ccdcf0a60254829c70e2a8433e5720a46
--- /dev/null
+++ b/python/apply_rescaling_trf_samples.py
@@ -0,0 +1,170 @@
+#!/bin/env python
+
+description = """
+Given an input file it rescales each histogram based on the sample name and region to match the total yields in direct tagging vs TRF.
+A few things to be changed by hand.
+"""
+
+usage = """
+    %prog norm_factors.txt in.root
+
+Rescaled histograms are over-written to in.root.
+
+The rescaling factors are collected in norm_factors.txt.
+
+Example:
+$ %prog --generate-config > norm_factors.txt
+
+# Edit norm_factors.txt
+# If needed, print all the normalisation factors you are using
+$ %prog --print-norm 
+
+# then
+$ %prog norm_factors.txt  
+
+# to check the significance of the DT/TRF correction
+$ %prog --print-sig
+
+nicolaorlandowork@gmail.com
+Feb 2018
+"""
+
+import collections
+import optparse
+import os
+import sys
+import ROOT as R
+from subprocess import call
+
+R.gROOT.SetBatch(1)
+
+#--To be changed by hand 
+samples_to_rescale=['ttbarlight','ttbarcc','ttbarbb','uHbW','uHcW']
+
+#--To be changed by hand 
+histograms_to_rescale=['c1lep4jex2bex_FcncDiscriminant','c1lep4jex3bex_FcncDiscriminant','c1lep4jex4bin_FcncDiscriminant','c1lep5jex2bex_FcncDiscriminant','c1lep5jex3bex_FcncDiscriminant','c1lep5jex4bin_FcncDiscriminant','c1lep6jin2bex_FcncDiscriminant','c1lep6jin3bex_FcncDiscriminant','c1lep6jin4bin_FcncDiscriminant']
+
+#--To be changed by hand 
+dt_nominal_folder = '/nfs/at3/scratch2/orlando/fcnc/output/VLQAnalysisOutputs_new_dis_feb_run_1'
+trf_nominal_folder = '/nfs/at3/scratch2/orlando/fcnc/output/VLQAnalysisOutputs_new_dis_feb_trf_run_1'
+
+#--To be changed by hand 
+files_to_be_modified = '/nfs/at3/scratch2/orlando/fcnc/output/VLQAnalysisOutputs_new_dis_feb_run_1_trf_all/'
+files_to_be_written = '/nfs/at3/scratch2/orlando/fcnc/output/VLQAnalysisOutputs_new_dis_feb_run_1_trf_all_rescaled_signals'
+
+def main():
+
+    parser = optparse.OptionParser(description=description, usage=usage)
+    parser.add_option('-g', '--generate-config', action='store_true', help='print an example merge configuration')
+    parser.add_option('-p', '--print-norm', action='store_true', help='print the norm factors')
+    parser.add_option('-s', '--print-sig', action='store_true', help='print the significance of the correction')
+    (opts, args) = parser.parse_args()
+    
+    if opts.generate_config:
+        print derive_normalisation_factors(dt_nominal_folder,trf_nominal_folder)
+        return
+    elif opts.print_norm:
+        if len(args)<1 : parser.error('provide an input file')
+        print '\n Using normalisation factors %s'%(input_file_string)
+        return
+    elif opts.print_sig:
+        print_significance(dt_nominal_folder,trf_nominal_folder)
+        return
+
+    input_file_string = args[0]
+    input_folder = files_to_be_modified
+    
+    call(["mkdir", files_to_be_written])
+
+    for file_name in os.listdir(input_folder) :
+        #--Skipping non interesting files
+        if not skip_files(file_name) :
+            print 'Opening file %s '%(file_name)
+            #--Output file
+            output_file_name=files_to_be_written+'/'+file_name
+            output_file = R.TFile.Open(output_file_name, 'recreate')
+            output_file.cd()
+            #--Avoid strange things to happen, e.g. .sh or ~ files in the input file folder 
+            if file_name.endswith(".root") :
+                input_root_file=input_folder+'/'+file_name
+                file_to_rescale = R.TFile.Open(input_root_file)
+                file_to_rescale.cd()
+                key_list = R.gDirectory.GetListOfKeys()
+                
+                for key in key_list : 
+                    obj_histo = key.ReadObj()
+                    histo_name_prefix = obj_histo.GetName().split("_")[0]
+                    #print 'Opening histogram %s '%obj_histo.GetName()
+                    #print histo_name_prefix
+                    normalisation_correction=grab_normalisation_correction(file_name,histo_name_prefix)
+                    #print 'Grabbed normalisation correction %s'%(normalisation_correction)
+                    obj_histo.Scale(float(normalisation_correction))
+                    output_file.cd()
+                    new_histo = obj_histo.Clone()
+                    #new_histo.Smooth()
+                    new_histo.SetDirectory(output_file)
+                    new_histo.Write()
+            
+                output_file.Close()
+
+#--Derive normalisation factors based
+def derive_normalisation_factors(dt_nominal_folder,trf_nominal_folder):
+        for sample in samples_to_rescale:
+            dt_input_file_name = dt_nominal_folder+'/'+sample+'.root'
+            trf_input_file_name = trf_nominal_folder+'/'+sample+'.root'
+            dt_file = R.TFile.Open(dt_input_file_name)
+            trf_file = R.TFile.Open(trf_input_file_name)
+            for histogram in histograms_to_rescale: 
+                h_dt = dt_file.Get(histogram)
+                h_trf = trf_file.Get(histogram)
+                histogram_prefix=histogram.split("_")[0]
+                print '%s %s %f'%(sample,histogram_prefix,h_dt.Integral()/h_trf.Integral())
+        print '\n'
+
+#--Skip files you don't want to renormalise to DT, e.g. V+jets
+def skip_files(input_file):
+    skip_files_action=True
+    for sample in samples_to_rescale : 
+        if sample in input_file :
+            skip_files_action=False
+    return skip_files_action
+
+#--Open text file with stored values of the non-closure correction factors 
+def grab_normalisation_correction(input_file,histogram_prefix):
+    #--Each line contains three strings separated by a space, the first is the sample, the second is the region, the last is the DT/TRF correction factor
+    normalisation_factors_file=open('norm_factors.txt', 'r') 
+    normalisation_factors_file_all=normalisation_factors_file.readlines() 
+    #--Loop over the normalisation factors 
+    for correction in normalisation_factors_file_all : 
+        if correction.split(" ")[0] in input_file : 
+            if correction.split(" ")[1] in histogram_prefix :
+                return correction.split(" ")[2]
+    #--Return 1. is the region is not found in the list, e.g. 4jin2bin / might want to fix this eventually .. 
+    return 1.
+
+#--Print the significance of the correction
+def print_significance(dt_nominal_folder,trf_nominal_folder):
+        for sample in samples_to_rescale:
+            print '--'
+            dt_input_file_name = dt_nominal_folder+'/'+sample+'.root'
+            trf_input_file_name = trf_nominal_folder+'/'+sample+'.root'
+            dt_file = R.TFile.Open(dt_input_file_name)
+            trf_file = R.TFile.Open(trf_input_file_name)
+            for histogram in histograms_to_rescale: 
+                h_dt = dt_file.Get(histogram)
+                h_trf = trf_file.Get(histogram)
+                #--Only working for FCNC 
+                bin_edge_low=h_dt.FindBin(0.0)
+                bin_edge_high=h_dt.FindBin(1.0)
+                error_dt=R.Double(0)
+                h_dt.IntegralAndError(bin_edge_low,bin_edge_high,error_dt)
+                significance = abs(h_dt.Integral(bin_edge_low,bin_edge_high)-h_trf.Integral(bin_edge_low,bin_edge_high))/error_dt
+                histogram_prefix=histogram.split("_")[0]
+                if significance < 2: 
+                    print '%s %s %f %f'%(sample,histogram_prefix,h_dt.Integral(bin_edge_low,bin_edge_high)/h_trf.Integral(bin_edge_low,bin_edge_high),significance)
+                else: 
+                    print '---> Significant: %s %s %f %f'%(sample,histogram_prefix,h_dt.Integral(bin_edge_low,bin_edge_high)/h_trf.Integral(bin_edge_low,bin_edge_high),significance)
+        print '\n'
+
+if __name__=='__main__':
+    main()