
JETDEF WITH THE STRAW MAN MENU

P SHERWOOD

Introduction

JetDef is code used to configure the jet slice trigger chains. This note describes the version
of JetDef which runs with the straw man menu.

The input to the program is a dictionary of data issued by the central trigger menu code
(CTM). The output is either a ChainDef or and ErrorChainDef instance. These instances
convey jet trigger configuration data for a single trigger chain to the CTM.

Each ChainDef object is identified by a unique string label or chain name.

Under normal running conditions, the sequence information carried by ChainDef objects
include instances of python classes which configure ATLAS C++ algorithms. At the time
of writing, not all of these C++ configuration classes exist. JetDef is organized such that
the algorithms are specified by JetDef Algorithms for most of the processing. These have
natural types as attributes. JetDef uses the JetDef Algorithms to optionally instantiate the
C++ configuration Algorithms after determing the chain configuration. Thus, handling
the ATLAS C++ configuration objects is handled independently from determining the jet
slice configuration information.

For development purposes, and in the absence of the existence of the necessary configu-
ration classes, the JetDef Algorithm instances are not converted to th C++ configuration
instances.

The ChainDef instances produced by JetDef contain sequences that perform the following
tasks:

• unpack the trigger towers and run a clustering algorithm. Optionally, run a hypo.
• run L2 reconstruction algorithms and hypo
• run the EF reconstruction algorithms and hypo

Date: 20 Febriary 2014.

1



2 P SHERWOOD

• run the 2015 partial scan algorithms
• run the 2015 jet reconstruction and hypo algorithms

The arguments of the algorithms depend on the chain name. Which algorithms are run can
depend on the combination of sequences present in the chain. Not all sequence combinations
are legal.

1. Program flow

A dictionary of data is received from the caller code. This is re-arranged to reflect the
structure of the JetDef calculation. The incoming information provides information only
about the last sequence in the chain. Extra information which will determine which other
sequences are to be configured is injected into the data flow at this point. This information
is packed into a ChainConfig object, which is sent to the JetSequenceAnalyser. This exam-
ines the ChainConfig to determine which sequences are needed. The JetSequenceAnalyser
builds the sequences using a combination of data present in the ChainConfig object, and
hard-coded knowledge.

The sequences are returned. A ChainDef object is instantiated, and is given the sequences.
The signatures are added to the ChainDef (a signature is added for each sequence). If the
L1 seed has been provided by the central menu software, it is added, otherwise a default
L1 seed for the chain name is provided. The ChainDef object is returned to the caller.
If an error is encountered during processing, an exception is raised with an explanatory
string. JetDef catches the exception and returns an ErrorChainDef which contains the
explanatory string


