Newer
Older
###############################################################################
# (c) Copyright 2000-2022 CERN for the benefit of the LHCb Collaboration #
# #
# This software is distributed under the terms of the GNU General Public #
# Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING". #
# #
# In applying this licence, CERN does not waive the privileges and immunities #
# granted to it by virtue of its status as an Intergovernmental Organization #
# or submit itself to any jurisdiction. #
###############################################################################
import GaudiPython as GP
from GaudiConf.reading import decoder, unpack_rawevent, hlt_decisions
from Configurables import (ApplicationMgr, LHCbApp, IODataManager,
from GaudiConf import IOHelper
from PyConf.application import configured_ann_svc
import operator
from collections import Counter
import json
import re
import argparse
import csv
Run snippet with 'python line-rates.py and [1] <MDF file name> [2] <TCK config file name> [3] <JSON file name specifying configuration>'
+ '--c' flag with 'five or 'sixteen' for 5 or 16 stream configuration
+ '--s' flag with 'line' or 'stream' to get calculate per stream or per line
Note: '--c sixteen --s line' is not a valid combination of arguments
When running 5-stream config, returns:
Per line (in form of single HTML table):
1. Inclusive retention
2. Inclusive rate
3. Exclusive retention
4. Exclusive rate
5. Average DstData bank size
6. DstData bandwidth
7. Average event size (all banks in particular stream)
8. Bandwidth
Per stream in Turbo/Full/Turcal/Monitoring/IFT
1. Inclusive retention
2. Inclusive rate
3. Average DstData bank size
4. DstData bandwidth
5. Average event size (all banks in particular stream)
6. Bandwidth
When running 16-stream config, returns same figures as above (only per stream)
'''
LHCb = GP.gbl.LHCb
RAW_BANK_TYPES = [(i, LHCb.RawBank.typeName(i))
for i in range(LHCb.RawBank.LastType)]
banks_all = [(16, 'ODIN'), (17, 'HltDecReports'), (53, 'HltRoutingBits'),
(56, 'HltLumiSummary'), (60, 'DstData')]
banks_turcal_ift = [(9, 'Rich'), (13, 'Muon'), (16, 'ODIN'),
(17, 'HltDecReports'), (21, 'EcalPacked'),
(35, 'HcalPackedError'), (53, 'HltRoutingBits'),
(56, 'HltLumiSummary'), (60, 'DstData'), (63, 'VP'),
(64, 'FTCluster'), (66, 'UT'), (73, 'VPRetinaCluster'),
(77, 'Calo'), (84, 'Plume')]
def rawbank_sizes(rawevent, lst):
"""Return (name, size) for each raw bank type."""
if rawevent:
def size(i):
return sum(bank.totalSize() for bank in rawevent.banks(i))
else:
def size(i):
return 0
return [(name, size(i)) for i, name in lst]
def processing_events_per_line(evt_max, all_banks, lines, process='Hlt2'):
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
'''
Return, per line:
i) How many events triggered on
ii) Average DstData size of all events
iii) Average size of all events
'''
# Stores how many events each line fired on
event_stats = {
line: []
for line in [line + 'Decision' for line in list(lines)]
}
# Stores whole event size size
raw = {line: 0 for line in [line + 'Decision' for line in list(lines)]}
# Stores DstData bank size
dst = {line: 0 for line in [line + 'Decision' for line in list(lines)]}
exclusive = {}
# Loop over all events
analysed = 0
while analysed < evt_max:
analysed += 1
exclusive.update({analysed: 0})
# Run an event
#print('Event: ', analysed, '\n')
appMgr.run(1)
report = evt['/Event/{}/DecReports'.format(process)]
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
rawevent = evt['/Event/DAQ/RawEvent']
if all_banks:
bank_sizes = rawbank_sizes(rawevent, banks_turcal_ift)
else:
bank_sizes = rawbank_sizes(rawevent, banks_all)
dst_sizes = rawbank_sizes(rawevent, [(60, 'DstData')])
evtsize = sum(bank[1] for bank in bank_sizes)
dstsize = sum(bank[1] for bank in dst_sizes)
# Will quit running if there are no more events in the input file
if report:
for line in event_stats.keys():
if report.decReport(line):
if report.decReport(line).decision() == 1:
event_stats[line].append(analysed)
exclusive[analysed] += 1
raw[line] += evtsize
dst[line] += dstsize
else:
break
return event_stats, exclusive, raw, dst
def processing_events_per_stream(evt_max, all_banks, process='Hlt2'):
'''
Returns number of events, cumulative event size
and cumulative dst size for specified stream
'''
events = 0
raw_size = 0
dst_size = 0
# Loop over all events
analysed = 0
while analysed < evt_max:
analysed += 1
# Run an event
appMgr.run(1)
report = evt['/Event/{}/DecReports'.format(process)]
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
rawevent = evt['/Event/DAQ/RawEvent']
if all_banks:
bank_sizes = rawbank_sizes(rawevent, banks_turcal_ift)
else:
bank_sizes = rawbank_sizes(rawevent, banks_all)
dst_sizes = rawbank_sizes(rawevent, [(60, 'DstData')])
evtsize = sum(bank[1] for bank in bank_sizes)
dstsize = sum(bank[1] for bank in dst_sizes)
if report:
events += 1
raw_size += evtsize
dst_size += dstsize
else:
break
return events, raw_size, dst_size
def rates_per_line(event_stats, exclusive, raw, dst, configname, streamname):
data = []
# Compute exclusive rate
sort = dict(
sorted(
{k: v
for (k, v) in exclusive.items() if v > 0}.items(),
key=operator.itemgetter(1),
reverse=True))
unique_events = [key for key, value in sort.items() if value == 1]
for line, val in event_stats.items():
events_all = val + unique_events
num_events = len(event_stats[line])
row_values = (
line,
num_events / LHCbApp().EvtMax * 100
if num_events else 0, # Inclusive Retention (expressed as %)
num_events / LHCbApp().EvtMax * 1e3
if num_events else 0, # Inclusive Rate (in kHz)
len([
key for key, value in Counter(events_all).items() if value > 1
]) / LHCbApp().EvtMax * 100
if num_events else 0, # Exclusive retention (expressed as %)
len([
key for key, value in Counter(events_all).items() if value > 1
]) / LHCbApp().EvtMax * 1e3
if num_events else 0, # Exclusive rate (in kHz)
raw[line] / num_events * 1e-3
if num_events else 0, # Average event size (in kB)
(num_events / LHCbApp().EvtMax * raw[line] / num_events) / 1e3
if num_events else 0, # Event bandwidth (in GB/s)
dst[line] / len(event_stats[line]) * 1e-3
if num_events else 0, # Average DstData size (in kB)
(num_events / LHCbApp().EvtMax * dst[line] / num_events) / 1e3
if num_events else 0) # DstData Bandwidth (in GB/s)
data.append(row_values)
with open(
f'tmp/Output/Inter/rates-all-lines-{configname}-{streamname}.csv',
'w') as f:
csv_out = csv.writer(f)
for tup in data:
csv_out.writerow(tup)
return
def rates_per_stream(events, raw_size, dst_size, configname, streamname):
data = []
row_values = (
streamname,
events / LHCbApp().EvtMax * 100
if events else 0, # Inclusive Retention (expressed as %)
events / LHCbApp().EvtMax * 1e3
if events else 0, # Inclusive Rate (in kHz)
raw_size / events * 1e-3
if events else 0, # Average event size (in kB)
(events / LHCbApp().EvtMax * raw_size / events) / 1e3
if events else 0, # Event bandwidth (in GB/s)
dst_size / events * 1e-3
if events else 0, # Average DstData size (in kB)
(events / LHCbApp().EvtMax * dst_size / events) / 1e3 if events else 0
) # DstData Bandwidth (in GB/s)
data.append(row_values)
with open(
f'tmp/Output/Inter/rates-per-stream-{configname}-{streamname}.csv',
'w') as f:
csv_out = csv.writer(f)
for tup in data:
csv_out.writerow(tup)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Inspect Moore output')
parser.add_argument(
'-i', '--input', type=str, help='MDF input file', required=True)
parser.add_argument(
'-n',
'--events',
default=-1,
type=lambda x: int(round(float(x))),
help='nb of events to process',
required=True)
parser.add_argument(
'-t',
'--tck',
type=str,
help='Manifest file for chosen MDF',
required=True)
parser.add_argument(
'-j',
'--json',
type=str,
help='Stream configuration specified as JSON',
required=True)
parser.add_argument(
'-c',
'--config',
type=str,
help='Choose 5 (five) or wg (per-WG) stream configuration',
choices=['five', 'wg'],
required=True)
parser.add_argument(
'-s',
'--setting',
type=str,
help='Choose line or stream',
choices=['line', 'stream'],
required=True)
parser.add_argument(
'-p',
'--process',
type=str,
help='Compute for Hlt2 or Sprucing lines',
choices=['Hlt2', 'Spruce'],
required=True)
args = parser.parse_args()
n_events = args.events
LHCbApp(
DataType="Upgrade",
Simulation=True,
DDDBtag="dddb-20171126",
CondDBtag="sim-20171127-vc-md100",
EvtMax=n_events)
EventSelector().PrintFreq = 10000
IODataManager(DisablePFNWarning=True)
# we have to configure the algorithms manually instead of `do_unpacking`
# because we need to set `input_process='Hlt2'` in `unpack_rawevent`
# to read MDF output from Sprucing
algs = []
unpack = unpack_rawevent(
bank_types=['ODIN', 'HltDecReports', 'DstData', 'HltRoutingBits'],
configurables=True)
hlt2 = [hlt_decisions(source="Hlt2", output_loc="/Event/Hlt2/DecReports")]
if args.process == 'Spruce':
spruce = [
hlt_decisions(
source="Spruce", output_loc="/Event/Spruce/DecReports")
]
else:
spruce = []
decoder = decoder(input_process=args.process)
algs = [unpack] + hlt2 + spruce + [decoder] + [createODIN(ODIN='myODIN')]
appMgr = ApplicationMgr(TopAlg=algs)
appMgr.ExtSvc += [configured_ann_svc(json_file=args.tck)]
file = args.input
# if no line is registered in one module,
# the output file won't be created.
# In this case we just create an empty file.
if not os.path.exists(file): os.system('touch {}'.format(file))
IOHelper("MDF").inputFiles([file])
with open(args.json) as f:
config = json.load(f)
if args.process == 'Hlt2':
# Three conditions for Hlt2 run:
# Use 5-stream config to compute rate/size/bandwidth per line
# Use 5-stream config to compute rate/size/bandwidth per stream
# Use 16-stream config to compute rate/size/bandwidth per stream
if args.config == 'five': configname = '5streams'
elif args.config == 'wg': configname = '16streams'
elif args.process == 'Spruce':
# Three conditions for Spruce run:
# Use wg-stream config to compute rate/size/bandwidth per line
# Use wg-stream config to compute rate/size/bandwidth per stream
if not args.config == 'wg': exit()
configname = 'wg-stream'
stream = str(re.search("-(?!.*-)(.*).mdf", file).group(
1)) # Finds string between last - and .mdf suffix = stream identifier
lines = config[stream]
take_all_banks = ['turcal', 'ift', 'pid', 'trackeff']
if stream in take_all_banks: all_banks = 1
else: all_banks = 0
appMgr = GP.AppMgr()
evt = appMgr.evtsvc()
# Calculate rates per-line for all lines in specified stream/file
event_stats, exclusive, raw, dst = processing_events_per_line(
LHCbApp().EvtMax, all_banks, lines, process=args.process)
rates_per_line(event_stats, exclusive, raw, dst, configname, stream)
# Calculate rates per stream
events, raw_size, dst_size = processing_events_per_stream(
LHCbApp().EvtMax, all_banks, process=args.process)
rates_per_stream(events, raw_size, dst_size, configname, stream)