Newer
Older
###############################################################################
# (c) Copyright 2000-2022 CERN for the benefit of the LHCb Collaboration #
# #
# This software is distributed under the terms of the GNU General Public #
# Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING". #
# #
# In applying this licence, CERN does not waive the privileges and immunities #
# granted to it by virtue of its status as an Intergovernmental Organization #
# or submit itself to any jurisdiction. #
###############################################################################
import GaudiPython as GP
from GaudiConf.reading import decoder, unpack_rawevent, hlt_decisions
from Configurables import (ApplicationMgr, LHCbApp, IODataManager,
EventSelector, createODIN, LHCb__UnpackRawEvent,
HltDecReportsDecoder)
from GaudiConf import IOHelper
from PyConf.application import configured_ann_svc
import operator
from collections import Counter
import json
import argparse
import csv

Luke Grazette
committed
from PRConfig.bandwidth_helpers import FileNameHelper, parse_yaml
When running production-stream config, returns:
Per line (in form of single HTML table):
1. Inclusive retention
2. Inclusive rate
3. Exclusive retention
4. Exclusive rate
5. Average DstData bank size
6. DstData bandwidth
7. Average event size (all banks in particular stream)
8. Bandwidth
Per stream in Turbo/Full/Turcal
1. Inclusive retention
2. Inclusive rate
3. Average DstData bank size
4. DstData bandwidth
5. Average event size (all banks in particular stream)
6. Bandwidth
When running wg-stream config, returns same figures as above (both per line and per stream)
When running streamless-stream config, returns just the per-line information.
'''
LHCb = GP.gbl.LHCb
RAW_BANK_TYPES = [(i, LHCb.RawBank.typeName(i))
for i in range(LHCb.RawBank.LastType)]
def rawbank_sizes(rawevent, lst):
"""Return (name, size) for each raw bank type."""
if rawevent:
def size(i):
return sum(bank.totalSize() for bank in rawevent.banks(i))
else:
def size(i):
return 0
return [(name, size(i)) for i, name in lst]
def processing_events_per_line_and_stream(evt_max, lines, process):
Returns, per line:
i) How many events triggered on
ii) How many unique events triggered on
iii) Average DstData size of all events
iv) Average size of all events
Returns, per stream:
i) How many events triggered on
ii) Average DstData size of all events
iii) Average size of all events
'''
# Per file (stream) information
events_file = 0
raw_size_all = 0
dst_size_all = 0
# Per line information
# Stores how many events each line fired on
event_stats = {
line: []
for line in [line + 'Decision' for line in list(lines)]
}
# Stores whole event size size
raw = {line: 0 for line in [line + 'Decision' for line in list(lines)]}
# Stores DstData bank size
dst = {line: 0 for line in [line + 'Decision' for line in list(lines)]}
exclusive = {}
# Loop over all events
analysed = 0
while analysed < evt_max:
analysed += 1
exclusive.update({analysed: 0})
# Run an event
appMgr.run(1)
report = evt[f'/Event/{process.capitalize()}/DecReports']
rawevent = evt['/Event/DAQ/RawEvent']
evtsize = sum(
bank[1] for bank in rawbank_sizes(rawevent, RAW_BANK_TYPES))
dstsize = sum(
bank[1] for bank in rawbank_sizes(rawevent, [(60, 'DstData')]))
# Will quit running if there are no more events in the input file
if report:
# Count per file/stream
events_file += 1
raw_size_all += evtsize
dst_size_all += dstsize
for line in event_stats.keys():
# Count per line
if report.decReport(line):
if report.decReport(line).decision() == 1:
event_stats[line].append(analysed)
exclusive[analysed] += 1
raw[line] += evtsize
dst[line] += dstsize
else:
break
# First three variables per stream/file, last four for lines
return events_file, raw_size_all, dst_size_all, event_stats, exclusive, raw, dst
def rates_per_line(event_stats, exclusive, raw, dst, input_rate,
output_file_path):
data = []
# Compute exclusive rate
sort = dict(
sorted(
{k: v
for (k, v) in exclusive.items() if v > 0}.items(),
key=operator.itemgetter(1),
reverse=True))
unique_events = [key for key, value in sort.items() if value == 1]
for line, val in event_stats.items():
events_all = val + unique_events
num_events = len(event_stats[line])
row_values = (
line,
num_events / LHCbApp().EvtMax * 100
if num_events else 0, # Inclusive Retention (expressed as %)
num_events / LHCbApp().EvtMax * input_rate
if num_events else 0, # Inclusive Rate (in kHz)
len([
key for key, value in Counter(events_all).items() if value > 1
]) / LHCbApp().EvtMax * 100
if num_events else 0, # Exclusive retention (expressed as %)
len([
key for key, value in Counter(events_all).items() if value > 1
if num_events else 0, # Exclusive rate (in kHz)
raw[line] / num_events * 1e-3
if num_events else 0, # Average event size (in kB)
(num_events / LHCbApp().EvtMax * raw[line] / num_events) *
input_rate / 1e6 if num_events else 0, # Event bandwidth (in GB/s)
dst[line] / len(event_stats[line]) * 1e-3
if num_events else 0, # Average DstData size (in kB)
(num_events / LHCbApp().EvtMax * dst[line] / num_events) *
input_rate / 1e6 if num_events else 0
) # DstData Bandwidth (in GB/s)
data.append(row_values)
with open(output_file_path, 'w') as f:
csv_out = csv.writer(f)
for tup in data:
csv_out.writerow(tup)
return
def rates_per_stream(events, raw_size, dst_size, streamname, input_rate,
output_file_path):
data = []
row_values = (
streamname,
events / LHCbApp().EvtMax * 100
if events else 0, # Inclusive Retention (expressed as %)
if events else 0, # Inclusive Rate (in kHz)
raw_size / events * 1e-3
if events else 0, # Average event size (in kB)
(events / LHCbApp().EvtMax * raw_size / events) * input_rate / 1e6
if events else 0, # Event bandwidth (in GB/s)
dst_size / events * 1e-3
if events else 0, # Average DstData size (in kB)
(events / LHCbApp().EvtMax * dst_size / events) * input_rate / 1e6
if events else 0) # DstData Bandwidth (in GB/s)
data.append(row_values)
with open(output_file_path, 'w') as f:
csv_out = csv.writer(f)
for tup in data:
csv_out.writerow(tup)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Inspect Moore output')
parser.add_argument(
'-c',
'--config',
type=str,
required=True,
help='Path to yaml config file defining the input.')
parser.add_argument('-s', '--stream', type=str, required=True)
help='Compute for Hlt1, Hlt2 or Sprucing lines',
choices=['hlt1', 'hlt2', 'spruce'],
required=True)
parser.add_argument(
help='Choose production, per-WG or streamless stream configuration',
choices=['streamless', 'production', 'wg'],
required=True)
args = parser.parse_args()
fname_helper = FileNameHelper(args.process)

Luke Grazette
committed
n_events = int(parse_yaml(fname_helper.input_nevts_json())['n_evts'])
input_config = parse_yaml(args.config)
if args.process == "spruce" and args.stream_config != "wg":
'"production" and "streamless" stream configs are not defined for sprucing. Please use "wg".'
if args.process == "hlt1" and args.stream_config != "streamless":
raise RuntimeError(
'"production" and "wg" stream configs are not defined for hlt1. Please use "streamless".'
)
LHCbApp(DataType="Upgrade", Simulation=True, EvtMax=n_events)
EventSelector().PrintFreq = 10000
IODataManager(DisablePFNWarning=True)
# we have to configure the algorithms manually instead of `do_unpacking`
# because we need to set `input_process='Hlt2'` in `unpack_rawevent`
# to read MDF output from Sprucing
algs = []
with open(fname_helper.stream_config_json_path(args.stream_config)) as f:
lines = json.load(f)[args.stream]
IOHelper("MDF").inputFiles(
[fname_helper.mdf_fname_for_reading(args.stream_config, args.stream)])
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Hlt1 requires different unpacking than hlt2/sprucing.
if args.process == "hlt1":
unpacker = LHCb__UnpackRawEvent(
"UnpackRawEvent",
RawBankLocations=["DAQ/RawBanks/HltDecReports"],
BankTypes=["HltDecReports"])
decDec = HltDecReportsDecoder(
"HltDecReportsDecoder/Hlt1DecReportsDecoder",
OutputHltDecReportsLocation="/Event/Hlt1/DecReports",
SourceID="Hlt1",
DecoderMapping="TCKANNSvc",
RawBanks=unpacker.RawBankLocations[0])
appMgr = ApplicationMgr(TopAlg=[unpacker, decDec])
appMgr.ExtSvc += [configured_ann_svc(name='TCKANNSvc')]
else:
unpack = unpack_rawevent(
bank_types=['ODIN', 'HltDecReports', 'DstData', 'HltRoutingBits'],
configurables=True)
hlt2 = [
hlt_decisions(source="Hlt2", output_loc="/Event/Hlt2/DecReports")
]
if args.process == 'spruce':
spruce = [
hlt_decisions(
source="Spruce", output_loc="/Event/Spruce/DecReports")
]
else:
spruce = []
decoder = decoder(input_process=args.process.capitalize())
algs = [unpack] + hlt2 + spruce + [decoder
] + [createODIN(ODIN='myODIN')]
appMgr = ApplicationMgr(TopAlg=algs)
appMgr.ExtSvc += [
configured_ann_svc(json_file=fname_helper.tck(args.stream_config))
]
appMgr = GP.AppMgr()
evt = appMgr.evtsvc()

Luke Grazette
committed
i_rate = int(input_config['input_rate'])
evts_all, rawbanks_all, dst_all, event_stats, exclusive, raw, dst = processing_events_per_line_and_stream(
LHCbApp().EvtMax, lines, args.process)
# Calculate key quantities per stream
rates_per_stream(

Luke Grazette
committed
evts_all, rawbanks_all, dst_all, args.stream, i_rate,
fname_helper.tmp_rate_table_per_stream_path(args.stream_config,
args.stream))
# Calculate key quantities per line
rates_per_line(

Luke Grazette
committed
event_stats, exclusive, raw, dst, i_rate,
fname_helper.tmp_rate_table_per_line_path(args.stream_config,
args.stream))