MC request for SL analysis (8 background, 1 signal channel)
See MR!505 for details.
potential background for tau and double charm decays
-
\bar{B}^0 \rightarrow D^0(\rightarrow K^- \pi^+) \pi^+ \tau^-(\rightarrow \mu^- \bar{\nu}_{\mu}\nu_\tau)\bar{\nu}_\tau
(11674010) -
B^- \rightarrow D^+(\rightarrow K^{-} \pi^{+}\pi^+) \pi^{-} \tau^-(\rightarrow \mu^{-} \bar{\nu}_{\mu}\nu_\tau)\bar{\nu}_\tau
(12675030) -
\bar{B}_s^0 \rightarrow D_s^{+}(\rightarrow \pi^{+} K^{-} K^{+}) \pi^0 \tau^-(\rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_\tau)\bar{\nu}_\tau
(13674410) -
B_s^0 \rightarrow D^0(\rightarrow K^{-} \pi^{+}) K^+ \tau^-(\rightarrow \mu^-\bar{\nu}_\mu \nu_\tau)\bar{\nu}_\tau
(13674020) -
\bar{B}^0\rightarrow D^0(\rightarrow K^-\pi^+)\bar{D}^0(\rightarrow \pi^+\ell^-\bar{\nu}_{\ell})
(11674000) -
B^- \rightarrow D^0 (\rightarrow K^-\pi^+)D^-(\rightarrow \pi^+\pi^- \ell^- \bar{\nu}_\mu)
(12675020) -
\bar{B}_s^0 \rightarrow D^0(\rightarrow K^{-} \pi^{+}) \bar{D}^0 (\rightarrow K^+ \ell^- \bar{\nu}_\ell)
(13674010) -
\bar{B}_s^0 \rightarrow D_s^+ (\rightarrow \pi^+K^-K^+) D^- (\rightarrow \pi^0 \ell^- \bar{\nu}_\mu)
(13674400)
I am also adding one more signal mode
-
\bar{B}_s^0 \rightarrow D^0(\rightarrow K^{-} \pi^{+}) K^+ \ell^- \bar{\nu}_\ell
(13574005)