
VCL
C++ vector class library

© 2012–2016 Agner Fog, Gnu public license
Version 1.22. www.agner.org/optimize

Table of Contents
Introduction...2

How it works...3
Features..3
Instruction sets supported..4
Platforms supported..4
Compilers supported...4
Intended use...4
How VCL uses metaprogramming..4
Availability...6
License..6

The basics...6
How to compile...6
Overview of vector classes...7
Constructing vectors and loading data into vectors...10
Reading data from vectors...13
Arrays of vectors...16
Using a namespace..17

Operators..17
Arithmetic operators..17
Logic operators...19
Integer division..22

Functions...25
Integer functions...25
Floating point simple mathematical functions...28
Floating point categorization functions...33
Floating point control word manipulation functions..36
Floating point mathematical functions..38
Permute, blend, lookup and gather functions...51
Number ↔ string conversion functions..57

Boolean operations and per-element branches..61
Internal representation of boolean vectors...62
Functions for use with booleans...63

Conversion between vector types...65
Conversion between boolean vector types..72

Random number generator...74
Special applications..79

3-dimensional vectors...79
Complex number vectors..81

http://www.agner.org/optimize

Quaternions..85
Instruction sets and CPU dispatching...89
Performance considerations...93

Comparison of alternative methods for writing SIMD code..............................93
Choice of compiler and function libraries...95
Choosing the optimal vector size and precision...96
Putting data into vectors...96
When the data size is not a multiple of the vector size....................................98
Using multiple accumulators...102
Using multiple threads..103

Error conditions...103
Runtime errors..103
Compile-time errors..104
Link errors...105

Implementation-dependent behavior..105
File list...106
Examples..108

Introduction
The VCL vector class library is a tool that allows C++ programmers to make their
code much faster by handling multiple data in parallel. Modern CPU’s have
“Single Instruction Multiple Data” (SIMD) instructions for handling vectors of
multiple data elements in parallel. The compiler may be able to use SIMD
instructions automatically in simple cases, but a human programmer is often able
to do it better by organizing data into vectors that fit the SIMD instructions. The
VCL library is a tool that makes it easier for the programmer to write vector code
without having to use assembly language or intrinsic functions. Let us explain this
with an example:

// Example 1a. Calculations on arrays
float a[8], b[8], c[8]; // declare arrays
... // put values into arrays
for (int i = 0; i < 8; i++) { // loop for 8 elements
 c[i] = a[i] + b[i]*1.5f; // operations on each element
}

The vector class library allows you to write this code as vectors:

// Example 1b. Same code using vectors
#include "vectorclass.h" // use vector class library
float a[8], b[8], c[8]; // declare arrays
... // put values into arrays
Vec8f avec, bvec, cvec; // define vectors
avec.load(a); // load array a into vector
bvec.load(b); // load array b into vector
cvec = avec + bvec * 1.5f; // do operations on vectors

cvec.store(c); // save result in array c

Example 1b does the same as example 1a, but more efficiently because it
utilizes SIMD instructions that do eight additions and/or eight multiplications in a
single instruction. Modern microprocessors have these instructions which may
give you a throughput of eight floating point additions and eight multiplications
per clock cycle. A good optimizing compiler may actually convert example 1a
automatically to use the SIMD instructions, but in more complicated cases you
cannot be sure that the compiler is able to vectorize your code in an optimal way.

How it works

The type Vec8f in example 1b is a class that encapsulates the intrinsic type
__m256 which represents a 256-bit vector register holding 8 floating point
numbers of 32 bits each. The overloaded operators + and * represent the SIMD
instructions for adding and multiplying vectors. These operators are inlined so
that no extra code is generated other than the SIMD instructions. All you have to
do to get access to these vector operations is to include "vectorclass.h" in your
C++ code and specify the desired instruction set (e.g. SSE2 or AVX) in your
compiler options.

The code in example 1b can be reduced to just 4 machine instructions if the
instruction set AVX or higher is enabled. The SSE2 instruction set will give 8
machine instructions because the maximum vector register size is half as big for
instruction sets prior to AVX. The code in example 1a will generate approximately
44 instructions if the compiler does not automatically vectorize the code.

Features

• vectors of 8-, 16-, 32- and 64-bit integers, signed and unsigned
• vectors of single and double precision floating point numbers
• total vector size 128, 256 or 512 bits
• defines almost all common operators
• boolean operations and branches on vector elements
• many arithmetic functions
• standard mathematical functions
• permute, blend, gather and table look-up functions
• fast integer division
• can build code for different instruction sets from the same source code
• CPU dispatching to utilize higher instruction sets when available
• uses metaprogramming to find the best implementation for the selected

instruction set and parameter values of a given operator or function
• includes several extra header files for special purposes and applications

Instruction sets supported

Since 1997, each new CPU model has extended the x86 instruction set with
more SIMD instructions. The VCL library requires the SSE2 instruction set as a
minimum, and supports SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2,
AVX512, XOP, FMA3 and FMA4.

Platforms supported

Windows, Linux and Mac, 32-bit and 64-bit, with Intel, AMD or VIA x86 or x86-64
instruction set processor. The AVX and later instruction sets require one of the
following operating system versions or later: Windows 7 SP1, Windows Server
2008 R2 SP1, Linux kernel version 2.6.30, Apple OS X Snow Leopard 10.6.8.

A special version of the vector class library for the Intel Knights Corner
coprocessor has been developed at CERN. It is available from
https://bitbucket.org/veclibknc/vclknc.git

Compilers supported

The vector class library works with Microsoft, Intel, Gnu and Clang C++
compilers. It is recommended to use the newest version of the compiler if the
newest instruction sets are used.

The forthcoming AVX512 instruction set requires at least Gnu compiler version
5.1, with binutils version 2.24 or later, or Intel compiler version 14.0. Microsoft
and Clang compilers do not yet have sufficient support for AVX512 (December
2015). Gnu compilers for Windows may have a problem with alignment of vectors
bigger than 128 bits.

Intended use

This vector class library is intended for experienced C++ programmers. It is
useful for improving code performance where speed is critical and where the
compiler is unable to vectorize the code automatically in an optimal way.
Combining explicit vectorization by the programmer with other kinds of
optimization done by the compiler, it has the potential for generating highly
efficient code. This can be useful for optimizing library functions and critical
innermost loops (hotspots) in CPU-intensive programs. There is no reason to use
it in less critical parts of a program.

How VCL uses metaprogramming

The vector class library uses metaprogramming extensively to resolve as much
work as possible at compile time rather than at run time. Especially, it uses

https://bitbucket.org/veclibknc/vclknc.git

metaprogramming to find the optimal instructions and algorithms, depending on
constants in the code and the selected instruction set.

The C++ language does not have very good metaprogramming features, but the
VCL makes the best use of the available features. Three methods are used for
metaprogramming:

1. preprocessing directives.
2. templates.
3. if and switch statements with constant conditions to be optimized away.

The if and switch statements are actually seen when debugging the code, but the
compiler will optimize them away in the optimized version of the code.

All three metaprogramming methods rely on expressions that can be computed
at compile time. The C++ syntax requires that expressions such as template
parameters can be recognized as compile-time constants. A compile-time
constant is typically just a number, such as 5, but it may also contain operators,
preprocessing macros and template parameters. It may not contain function
calls, loops, etc. It may contain ?: branches, but not if-else branches. Later
versions of C++ allow constexpr for generating compile-time constants.

An optimizing compiler may be able to resolve more calculations than these at
compile time, but the syntax requires that the above rules be obeyed where a
compile-time constant is required. Several of the functions in VCL require
compile-time constants for certain parameters, especially where templates are
used.

The following cases illustrate the use of metaprogramming in VCL:
• Compiling for different instruction sets. If you are using a bigger vector

size than supported by the instruction set then the VCL code will split the
big vector into multiple smaller vectors. If you are multiplying vectors of
32-bit integers with an instruction set that supports only 16-bit
multiplication then the VCL code will calculate the 32-bit product using
multiple 16-bit multiplications. If you compile the same code again for a
higher instruction set then you will get a more efficient program.

• Permute, blend and gather functions. There are many different machine
instructions that move data between different vector elements. Some of
these instructions can only do very specific data permutations. The VCL
uses quite a lot of metaprogramming to find the instruction or sequence of
instructions that best fits the specific permutation pattern specified. Often,
the higher instruction sets give more efficient results.

• Integer division. Integer division can be done faster by a combination of
multiplication and bit-shifting. The VCL can use metaprogramming to find
the optimal division method and calculate the multiplication factor and shift
count at compile time if the divisor is a known constant. See page 22 for
details.

• Raising to a power. Calculating x8 can be done faster by squaring x three

times rather than by a loop that multiplies seven times. The VCL can
determine the optimal way of raising floating point vectors to an integer or
rational power in the functions pow_const and pow_rational.

Availability

The newest version of the vector class library is available from
http://www.agner.org/optimize/vectorclass.zip

There is a discussion board for the vector class library at
http://www.agner.org/optimize/vectorclass/

License

The VCL vector class library has a dual license system. You can use it for free in
open source software, or pay for using it in proprietary software.

You are free to copy, use, redistribute and modify this software under the terms of
the GNU General Public License as published by the Free Software Foundation,
version 3 or any later version. See the file license.txt.

Commercial licenses are available on request.

The basics

How to compile

Copy the header files (*.h) from vectorclass.zip to the same folder as your C++
source files. The header files in the sub-archive named special.zip should only be
included if needed.

Include the header file vectorclass.h in your C++ source file:

include "vectorclass.h"
Several other header files will be included automatically.

Set your compiler options to the desired instruction set. The instruction set must
be at least SSE2. See page 90 for a list of compiler options. You may compile
multiple versions for different instruction sets as explained in the chapter starting
at page 89.

If you are using the Gnu compiler version 3.x or 4.x then you must set the ABI
version to 4 or more, or 0 for a reasonable default. For example:

g++ -mavx -fabi-version=0 -O3 myfile.cpp

http://www.agner.org/optimize/vectorclass/
http://www.agner.org/optimize/vectorclass.zip

The following simple C++ example may help you get started:

// Simple vector class example C++ file
#include <stdio.h>
#include "vectorclass.h"

int main() {
 // define and initialize integer vectors a and b
 Vec4i a(10,11,12,13);
 Vec4i b(20,21,22,23);

 // add the two vectors
 Vec4i c = a + b;

 // Print the results
 for (int i = 0; i < c.size(); i++) {
 printf(" %5i", c[i]);
 }
 printf("\n");

 return 0;
}

Overview of vector classes

The vector class library supports vectors of 8-bit, 16-bit, 32-bit and 64-bit signed
and unsigned integers, 32-bit single precision floating point numbers, and 64-bit
double precision floating point numbers. A vector contains multiple elements of
the same type to a total size of 128, 256 or 512 bits. The vector elements are
indexed, starting at 0 for the first element.

The constant MAX_VECTOR_SIZE indicates the maximum vector size. The default
maximum vector size is 256 in the current version and possibly larger in future
versions. You can get access to 512-bit vectors by defining
 #define MAX_VECTOR_SIZE 512
before including the vector class header files.

The vector class also defines boolean vectors. These are mainly used for
conditionally selecting elements from vectors.

The following vector classes are defined:

Integer vector classes:
vector
class

integer
size, bits

signed elements
per vector

total bits recommen-
ded

instruction
set

Vec16c 8 signed 16 128 SSE2

Vec16uc 8 unsigned 16 128 SSE2

Vec8s 16 signed 8 128 SSE2

Vec8us 16 unsigned 8 128 SSE2

Vec4i 32 signed 4 128 SSE2

Vec4ui 32 unsigned 4 128 SSE2

Vec2q 64 signed 2 128 SSE2

Vec2q 64 unsigned 2 128 SSE2

Vec32c 8 signed 32 256 AVX2

Vec32uc 8 unsigned 32 256 AVX2

Vec16s 16 signed 16 256 AVX2

Vec16us 16 unsigned 16 256 AVX2

Vec8i 32 signed 8 256 AVX2

Vec8ui 32 unsigned 8 256 AVX2

Vec4q 64 signed 4 256 AVX2

Vec4uq 64 unsigned 4 256 AVX2

Vec16i 32 signed 16 512 AVX512

Vec16ui 32 unsigned 16 512 AVX512

Vec8q 64 signed 8 512 AVX512

Vec8uq 64 unsigned 8 512 AVX512

Note that vectors of 8-bit and 16-bit integers are not available as 512 bit vectors
in the AVX512 instruction set, but they may be available in a future AVX512BW
instruction set.

Floating point vector classes:
vector class precision elements per

vector
total bits recommen-

ded instruc-
tion set

Vec4f single 4 128 SSE2

Vec2d double 2 128 SSE2

Vec8f single 8 256 AVX

Vec4d double 4 256 AVX

Vec16f single 16 512 AVX512

Vec8d double 8 512 AVX512

Boolean vector classes:
Boolean
vector

for use with elements
per vector

total bits recommen-
ded instruc-

tion set

Vec128b 128 128 SSE2

Vec16cb Vec16c, Vec16uc 16 128 SSE2

Vec8sb Vec8s, Vec8us 8 128 SSE2

Vec4ib Vec4i, Vec4ui 4 128 SSE2

Vec2qb Vec2q, Vec2uq 2 128 SSE2

Vec256b 256 256 AVX2

Vec32cb Vec32c, Vec32uc 32 256 AVX2

Vec16sb Vec16s, Vec16us 16 256 AVX2

Vec8ib Vec8i, Vec8ui 8 256 AVX2

Vec4qb Vec4q, Vec4uq 4 256 AVX2

Vec512b 512 512 AVX512

Vec16ib Vec16i, Vec16ui 16 16 or 512 AVX512

Vec8qb Vec8q, Vec8uq 8 8 or 512 AVX512

Vec4fb Vec4f 4 128 SSE2

Vec2db Vec2d 2 128 SSE2

Vec8fb Vec8f 8 256 AVX

Vec4db Vec4d 4 256 AVX

Vec16fb Vec16f 16 16 or 512 AVX512

Vec8db Vec8d 8 8 or 512 AVX512

Constructing vectors and loading data into vectors

There are many ways to create vectors and put data into vectors. These methods
are listed here.

method default constructor

defined for all vector classes

description the vector is created but not initialized. The value is
unpredictable

efficiency good
Example:

Vec4i a; // creates a vector of 4 signed integers

method constructor with one parameter

defined for all vector classes except bit vectors Vec128b, Vec256b,
Vec512b

description all elements get the same value

efficiency good
Examples:

Vec4i a(5); // all four elements = 5

method assignment to scalar

defined for all vector classes except bit vectors Vec128b, Vec256b,
Vec512b

description all elements get the same value

efficiency good
Examples:

Vec4i a = 5; // all four elements = 5

method constructor with one parameter for each vector element

defined for all vector classes except bit vectors Vec128b, Vec256b,
Vec512b

description each element gets a specified value. The parameter for

element number 0 comes first

efficiency good for constant. Medium for variables as parameters
Examples:

Vec4i a(10,11,12,13); // a = (10,11,12,13)
Vec4i b = Vec4i(20,21,22,23); // b = (20,21,22,23)

method constructor with one parameter for each half vector

defined for all vector classes bigger than 128 bits.

description Concatenates two 128-bit vectors into one 256-bit vector.
Concatenates two 256-bit vectors into one 512-bit vector.

efficiency good
Example:

Vec4i a(10,11,12,13);
Vec4i b(20,21,22,23);
Vec8i c(a, b); // c = (10,11,12,13,20,21,22,23)

method insert(index, value)

defined for all vector classes except bit vectors Vec128b, Vec256b,
Vec512b

description changes the value of element number (index) to (value).
The index starts at 0.

efficiency medium, depending on instruction set
Example:

Vec4i a(0);
a.insert(2, 9); // a = (0,0,9,0)

method load(const pointer)

defined for all integer and floating point vector classes

description loads all elements from an array

efficiency good, except immediately after inserting elements
separately into the array.

This is the preferred way of putting values into a vector, except immediately after
values have been put into the array one by one (see page 96).

Example:

int list[8] = {10,11,12,13,14,15,16,17};
Vec4i a, b;
a.load(list); // a = (10,11,12,13)

b.load(list+4); // b = (14,15,16,17)

method load_a(const pointer)

defined for all integer and floating point vector classes

description loads all elements from an aligned array

efficiency good, except immediately after inserting elements
separately into the array.

This method does the same as the load method (see above), but requires that
the pointer points to an address divisible by 16 for 128-bit vectors, by 32 for 256-
bit vectors, or by 64 for 512 bit vectors. If you are not certain that the array is
properly aligned then use load instead of load_a. There is hardly any
difference in efficiency between load and load_a on newer microprocessors.

method load_partial(int n, const pointer)

defined for all integer and floating point vector classes

description loads n elements from an array into a vector. Sets
remaining elements to 0. 0 ≤ n ≤ (vector size).

efficiency medium
Example:

float list[3] = {1.0f, 1.1f, 1.2f};
Vec4f a;
a.load_partial(2, list); // a = (1.0, 1.1, 0.0, 0.0)

method cutoff(int n)

defined for all integer and floating point vector classes

description leaves the first n elements unchanged and sets the
remaining elements to zero. 0 ≤ n ≤ (vector size).

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
a.cutoff(2); // a = (10, 11, 0, 0)

method set_bit(index, value)

defined for all integer vector classes smaller than 512 bits

description changes a single bit to 0 or 1. index starts at bit 0 of

element 0 and ends with the last bit of the last element.
value = 0 or 1.

efficiency medium
Example:

Vec4i a(10);
a.set_bit(34, 1); // a = (10,14,10,10)

method gather<indexes>(array)

defined for floating point vector classes and integer vector classes with
32-bit and 64-bit elements

description gather non-contiguous data from an array.

efficiency medium
Example:

int list[8] = {10,11,12,13,14,15,16,17};
Vec4i a = gather4i<0,2,1,6>(list);
// a = (10,12,11,16)

Reading data from vectors

There are many ways to extract elements or parts of a vector. These methods
are listed here.

method store(pointer)

defined for all integer and floating point vector classes

description stores all elements into an array

efficiency good
This is the preferred way of getting the individual elements of a vector.

Example:

Vec4i a(10,11,12,13);
Vec4i b(20,21,22,23);
int list[8];
a.store(list);
b.store(list+4); // list contains (10,11,12,13,20,21,22,23)

method store_a(pointer)

defined for all integer and floating point vector classes

description stores all elements into an aligned array

efficiency good
This method does the same as the store method (see above), but requires that
the pointer points to an address divisible by 16 for 128-bit vectors, by 32 for 256-
bit vectors, or by 64 for 512-bit vectors. If you are not certain that the array is
properly aligned then use store instead of store_a.

method store_partial(int n, pointer)

defined for all integer and floating point vector classes

description stores the first n elements into an array. 0 ≤ n ≤ (vector
size).

efficiency medium
Example:

float list[3] = {9.0f, 9.0f, 9.0f};
Vec4f a(1.0f, 1.1f, 1.2f, 1.3f);
a.store_partial(2, list); // list contains (1.0, 1.1, 9.0)

method extract(index)

defined for all integer, floating point and boolean vector classes

description gets a single element from a vector

efficiency medium
Example:

Vec4i a(10,11,12,13);
int b = a.extract(2); // b = 12

method operator []

defined for all integer, floating point and boolean vector classes

description gets a single element from a vector

efficiency medium
The operator [] does exactly the same as the extract method. Note that you can
read a vector element with the [] operator, but not write an element.

Example:

Vec4i a(10,11,12,13);

int b = a[2]; // b = 12
a[3] = 5; // not allowed!

method get_bit(index)

defined for all integer vector classes smaller than 512 bits

description reads a single bit. index starts at bit 0 of element 0 and
ends with the last bit of the last element.

efficiency medium
Example:

Vec4i a(10);
int b = a.get_bit(34); // b = 0

method get_low()

defined for all vector classes of 256 bits or more

description gets the lower half of a 256-bit vector as a 128-bit vector.
gets the lower half of a 512-bit vector as a 256-bit vector.

efficiency good
Example:

Vec8i a(10,11,12,13,14,15,16,17);
Vec4i b = a.get_low(); // b = (10,11,12,13)

method get_high()

defined for all vector classes of 256 bits or more

description gets the upper half of a 256-bit vector as a 128-bit vector.
gets the upper half of a 512-bit vector as a 256-bit vector.

efficiency good
Example:

Vec8i a(10,11,12,13,14,15,16,17);
Vec4i b = a.get_high(); // b = (14,15,16,17)

method size()

defined for all vector classes

description static member function indicating the number of elements
that the vector can contain

efficiency good
Example:

Vec8f a;
int s = a.size(); // a = 8

Arrays of vectors

If you make an array of vectors, this should preferably have fixed size. For
example:

const int datasize = 1024; // size of data set
Vec8f mydata[datasize/8]; // array of fixed size
...
for (int i = 0; i < datasize/8; i++) {
 mydata[i] = mydata[i] * 0.1f + 2.0f;
}

If you need an array of a size that is determined at runtime, then you will have a
problem with alignment. Each vector needs to be stored at an address divisible
by 16, 32 or 64 bytes, according to its size. The compiler can do this when
defining a fixed-size array, as in the above example, but not necessarily with
dynamic memory allocation. If you create an array of dynamic size by using new,
malloc or an STL container, or any other method, then you may not get the
proper alignment for vectors and the program will very likely crash when
accessing a misaligned vector. The C++ standard says "It is implementation-
defined if new-expression, [...] support over-aligned types". Possible solutions are
to use posix_memalign, _aligned_malloc, std::aligned_storage,
std::align, etc. depending on what is supported by your compiler, but the
method may not be portable to all platforms.

I would recommend to make an array of scalars instead of an array of vectors in
order to avoid these complications. If datasize in the above example is variable,
then the code could be implemented in this way:

int datasize = 1024; // size of dataset, variable
float *mydata = new float[datasize]; // dynamic array
...
Vec8f x;
for (int i = 0; i < datasize; i += 8) {
 x.load(mydata+i);
 x = x * 0.1f + 2.0f;
 x.store(mydata+i);
}
...
delete[] mydata;

See page 98 for discussion of the case where the data size is not a multiple of
the vector size.

http://en.cppreference.com/w/cpp/language/object

Using a namespace

In general, there is no need to put the vector class library into a separate
namespace. Therefore, the use of a namespace is optional. You can give the
vector class library a namespace with a name of your choosing by defining
VCL_NAMESPACE, for example:

#define VCL_NAMESPACE vcl
#include "vectorclass.h"

using namespace vcl;

// your vector code here...

Operators

Arithmetic operators

operator +, ++, +=

defined for all integer and floating point vector classes

description addition

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec4i c = a + b; // c = (30, 32, 34, 36)

operator -, --, -=, unary -

defined for all integer and floating point vector classes

description subtraction

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec4i c = a - b; // c = (-10, -10, -10, -10)

operator *, *=

defined for all integer and floating point vector classes

description multiplication

efficiency good for vectors of float, double, and 16-bit integers,
poor for vectors of 8-bit integers and 64-bit integers,
good for vectors of 32-bit integers if SSE4.1 or higher
instruction set

Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec4i c = a * b; // c = (200, 231, 264, 299)

operator /, /= (floating point)

defined for all floating point vector classes

description division

efficiency medium or poor
Example:

Vec4f a(1.0f, 1.1f, 1.2f, 1.3f);
Vec4f b(2.0f, 2.1f, 2.2f, 2.3f);
Vec4f c = a / b; // c = (0.500f, 0.524f, 0.545f, 0.565f)

operator /, /= (integer vector divided by scalar)

defined for all classes of 8-bit, 16-bit and 32-bit integers, signed and
unsigned. Not available for 64-bit integers.

description division by scalar. Results are truncated to integer. All
elements are divided by the same divisor. See page 22 for
explanation

efficiency poor
Example:

Vec4i a(10, 11, 12, 13);
int b = 3;
Vec4i c = a / b; // c = (3, 3, 4, 4)

operator /, /= (integer vector divided by constant)

defined for all classes of 8-bit, 16-bit and 32-bit integers, signed and
unsigned. Not available for 64-bit integers.

description division by compile-time constant. All elements are divided
by the same divisor. See page 22 for explanation

efficiency poor, but better than division by scalar variable. Good if

divisor is a power of 2
Example:

// signed
Vec4i a(10, 11, 12, 13);
Vec4i b = a / const_int(3); // b = (3, 3, 4, 4)
// unsigned
Vec4ui c(10, 11, 12, 13);
Vec4ui d = c / const_uint(3); // d = (3, 3, 4, 4)

Logic operators

operator <<, <<=

defined for all integer vector classes

description logical shift left. All vector elements are shifted by the same
amount.

Shifting left by n is a fast way of multiplying by 2
n

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b = a << 2; // b = (40, 44, 48, 52)

operator >>, >>=

defined for all integer vector classes

description shift right. All vector elements are shifted by the same
amount.
Unsigned integers use logical shift, signed integers use
arithmetic shift (i. e. sign bit is copied)

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b = a >> 2; // b = (2, 2, 3, 3)

operator ==

defined for all integer and floating point vector classes

description test if equal. Result is a boolean vector

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(14, 13, 12, 11);
Vec4ib c = a == b; // c = (false, false, true, false)

operator !=

defined for all integer and floating point vector classes

description test if not equal. Result is a boolean vector

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(14, 13, 12, 11);
Vec4ib c = a != b; // c = (true, true, false, true)

operator >

defined for all integer and floating point vector classes

description test if bigger. Result is a boolean vector

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(14, 13, 12, 11);
Vec4ib c = a > b; // c = (false, false, false, true)

operator >=

defined for all integer and floating point vector classes

description test if bigger or equal. Result is a boolean vector

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(14, 13, 12, 11);
Vec4ib c = a >= b; // c = (false, false, true, true)

operator <

defined for all integer and floating point vector classes

description test if smaller. Result is a boolean vector

efficiency good

Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(14, 13, 12, 11);
Vec4ib c = a < b; // c = (true, true, false, false)

operator <=

defined for all integer and floating point vector classes

description test if smaller or equal. Result is a boolean vector

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(14, 13, 12, 11);
Vec4ib c = a <= b; // c = (true, true, true, false)

operator &, &=

defined for all vector classes

description bitwise and

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec4i c = a & b; // c = (0, 1, 4, 5)

operator |, |=

defined for all vector classes

description bitwise or

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec4i c = a | b; // c = (30, 31, 30, 31)

operator ^, ^=

defined for all vector classes

description bitwise exclusive or

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec4i c = a ^ b; // c = (30, 30, 26, 26)

operator ~

defined for all integer and boolean vector classes

description bitwise not

efficiency good
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b = ~a; // b = (-11, -12, -13, -14)

operator !

defined for all integer and floating point vector classes

description logical not. Result is a boolean vector

efficiency good
Example:

Vec4i a(-1, 0, 1, 2);
Vec4ib b = !a; // b = (false,true,false,false)

Integer division

There are no instructions in the x86 instruction set extensions that are useful for
integer vector division, and such instructions would be quite slow if they existed.
Therefore, the vector class library is using an algorithm for fast integer division.
The basic principle of this algorithm can be expressed in this formula:

a / b ≈ a * (2n / b) >> n

This calculation goes through the following steps:

1. find a suitable value for n
2. calculate 2n / b
3. calculate necessary corrections for rounding errors
4. do the multiplication and shift-right and apply corrections for rounding

errors

This formula is advantageous if multiple numbers are divided by the same divisor
b. Steps 1, 2 and 3 need only be done once while step 4 is repeated for each
value of the dividend a. The mathematical details are described in the file
vectori128.h. (See also T. Granlund and P. L. Montgomery: Division by Invariant
Integers Using Multiplication, Proceedings of the SIGPLAN 1994 Conference on
Programming Language Design and Implementation)

The implementation in the vector class library uses various variants of this
method with appropriate corrections for rounding errors to get the exact result
truncated towards zero.

The way to use this in your code depends on whether the divisor b is a variable
or constant, and whether the same divisor is applied to multiple vectors. This is
illustrated in the following examples:

// Division example A:
// A variable divisor is applied to one vector
Vec4i a(10, 11, 12, 13);// dividend is an integer vector
int b = 3; // divisor is an integer variable
Vec4i c = a / b; // result c = (3, 3, 4, 4)

// Division example B:
// The same divisor is applied to multiple vectors
int b = 3; // divisor
Divisor_i divb(b); // this object contains the results
 // of calculation steps 1, 2, and 3
for (...) { // loop through multiple vectors
 Vec4i a = ... // get dividend
 a = a / divb; // do step 4 of the division
 ... // store results
}

// Division example C:
// The divisor is a constant, known at compile time
Vec4i a(10, 11, 12, 13); // dividend is integer vector
Vec4i c = a / const_int(3); // result c = (3, 3, 4, 4)

Explanation:
The class Divisor_i in example B takes care of the calculation steps 1, 2 and
3 in the algorithm described above. The overloaded / operator takes a vector on
the left hand side and an object of class Divisor_i on the right hand side. This
object is created before the loop with the divisor as parameter to the constructor.
We are saving time by doing this time-consuming calculation only once while
step 4 in the calculation is done multiple times inside the loop by a = a /
divb;.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556

In example A, we are also creating an object of class Divisor_i, but this is
done implicitly. The compiler sees an integer on the right hand side of the /
operator where it needs an object of class Divisor_i, and therefore converts
the integer b to such an object by calling the constructor Divisor_i(int).

The following divisor classes are available:
Dividend vector type Divisor class required

Vec16c, Vec32c Divisor_s

Vec16uc, Vec32uc Divisor_us

Vec8s, Vec16s Divisor_s

Vec8us, Vec16us Divisor_us

Vec4i, Vec8i, Vec16i Divisor_i

Vec4ui, Vec8ui, Vec16ui Divisor_ui

If the divisor is a constant and the value is known at compile time, then we can
use the method in example C. The implementation here uses macros and
templates to do the calculation steps 1, 2 and 3 at compile time rather than at
execution time. This makes the code even faster. The expression to put on the
right-hand side of the / operator looks as follows:

Dividend vector type Divisor expression

Vec16c, Vec32c const_int

Vec16uc, Vec32uc const_uint

Vec8s, Vec16s const_int

Vec8us, Vec16us const_uint

Vec4i, Vec8i, Vec16i const_int

Vec4ui, Vec8ui, Vec16ui const_uint

The compiler will generate an error message if the parameter to const_int or
const_uint is not a valid compile-time constant. (A valid compile time constant
can contain integer literals and operators, as well as macros that are expanded
to compile time constants, but not function calls).

A further advantage of the method in example C is that the code is able to use
different methods for different values of the divisor. The division is particularly fast
if the divisor is a power of 2. Make sure to use const_int or const_uint on
the right hand side of the / operator if you are dividing by 2, 4, 8, 16, etc.

Division is faster for vectors of 16-bit integers than for vectors of 8-bit or 32-bit

integers. There is no support for division of vectors of 64-bit integers. Unsigned
division is faster than signed division.

Functions

Integer functions

function horizontal_add

defined for all integer and floating point vector classes

description calculates the sum of all vector elements

efficiency medium
Example:

Vec4i a(10, 11, 12, 13);
int b = horizontal_add(a); // b = 46

function horizontal_add_x

defined for all 8-bit, 16-bit and 32-bit integer vector classes

description calculates the sum of all vector elements. The sum is
calculated with a higher number of bits to avoid overflow

efficiency medium (slower than horizontal_add)
Example:

Vec4i a(10, 11, 12, 13);
int64_t b = horizontal_add_x(a); // b = 46

function add_saturated

defined for all 8-bit, 16-bit and 32-bit integer vector classes

description same as operator +. Overflow is handled by saturation
rather than wrap-around

efficiency fast for 8-bit and 16-bit integers. Medium for 32-bit integers
Example:

Vec4i a(0x10000000, 0x20000000, 0x30000000, 0x40000000);
Vec4i b(0x30000000, 0x40000000, 0x50000000, 0x60000000);
Vec4i c = add_saturated(a, b);
// c = (0x40000000, 0x60000000, 0x7FFFFFFF, 0x7FFFFFFF)
Vec4i d = a + b;
// d = (0x40000000, 0x60000000, -0x80000000, -0x60000000)

function sub_saturated

defined for all 8-bit, 16-bit and 32-bit integer vector classes

description same as operator -. Overflow is handled by saturation
rather than wrap-around

efficiency fast for 8-bit and 16-bit integers. Medium for 32-bit integers
Example:

Vec4i a(-0x10000000,-0x20000000,-0x30000000,-0x40000000);
Vec4i b(0x30000000, 0x40000000, 0x50000000, 0x60000000);
Vec4i c = sub_saturated(a, b);
// c = (-0x40000000,-0x60000000,-0x80000000,-0x80000000)
Vec4i d = a - b;
// d = (-0x40000000,-0x60000000,-0x80000000, 0x60000000)

function max

defined for all integer vector classes

description returns the biggest of two values

efficiency fast for Vec16uc, Vec32uc, Vec8s, Vec16s,
medium for other integer vector classes

Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(14, 13, 12, 11);
Vec4i c = max(a, b); // c = (14, 13, 12, 13)

function min

defined for all integer vector classes

description returns the smallest of two values

efficiency fast for Vec16uc, Vec32uc, Vec8s, Vec16s,
medium for other integer vector classes

Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(14, 13, 12, 11);
Vec4i c = min(a, b); // c = (10, 11, 12, 11)

function abs

defined for all signed integer vector classes

description calculates the absolute value

efficiency medium
Example:

Vec4i a(-1, 0, 1, 2);
Vec4i b = abs(a); // b = (1, 0, 1, 2)

function abs_saturated

defined for all signed integer vector classes

description calculates the absolute value. Overflow saturates to make
sure the result is never negative when the input is INT_MIN

efficiency medium (slower than abs)
Example:

Vec4i a(-0x80000000, -1, 0, 1);
Vec4i b = abs_saturated(a); // b=(0x7FFFFFFF,1,0,1)
Vec4i c = abs(a); // c=(-0x80000000,1,0,1)

function vector = rotate_left(vector, int)

defined for all integer vector classes

description rotates the bits of each element. Use a negative count to
rotate right

efficiency medium
Example:

Vec4i a(0x12345678, 0x0000FFFF, 0xA000B000, 0x00000001);
Vec4i b = rotate_left(a, 8);
// b = (0x34567812, 0x00FFFF00, 0x00B000A0, 0x00000100)

function vector shift_bytes_up(vector, int)
vector shift_bytes_down(vector, int)

defined for Vec16c, Vec32c

description shifts the bytes of a vector up or down and inserts zeroes
at the vacant places

efficiency medium. (you may use permute functions instead if the
shift count is a compile-time constant)

Example:
Vec16c a(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25);
Vec16c b = shift_bytes_up(a,5);
// b = (0,0,0,0,0,10,11,12,13,14,15,16,17,18,19,20)

Floating point simple mathematical functions

function horizontal_add

defined for all floating point vector classes

description calculates the sum of all vector elements

efficiency medium
Example:

Vec4f a(1.0, 1.1, 1.2, 1.3);
float b = horizontal_add(a); // b = 4.6

function max

defined for all floating point vector classes

description returns the biggest of two vallues

efficiency good
Example:

Vec4f a(1.0, 1.1, 1.2, 1.3);
Vec4f b(1.4, 1.3, 1.2, 1.1);
Vec4f c = max(a, b); // c = (1.4, 1.3, 1.2, 1.3)

function min

defined for all floating point vector classes

description returns the smallest of two vallues

efficiency good
Example:

Vec4f a(1.0, 1.1, 1.2, 1.3);
Vec4f b(1.4, 1.3, 1.2, 1.1);
Vec4f c = min(a, b); // c = (1.0, 1.1, 1.2, 1.1)

function abs

defined for all floating point vector classes

description gets the absolute value

efficiency good
Example:

Vec4f a(-1.0, 0.0, 1.0, 2.0);
Vec4f b = abs(a); // b = (1.0, 0.0, 1.0, 2.0)

function change_sign<i0, i1, ...>(vector)

defined for all floating point vector classes

description changes sign of vector elements

efficiency good
Each template parameter is 1 for changing sign of the corresponding element,
and 0 for no change. Example:

Vec4f a(10.0f, 11.0f, 12.0f, 13.0f);
Vec4f b = change_sign<0,1,1,0>(a); // b = (10,-11,-12,13)

function sqrt

defined for all floating point vector classes

description calculates the square root

efficiency poor
Example:

Vec4f a(0.0, 1.0, 2.0, 3.0);
Vec4f b = sqrt(a); // b = (0.000, 1.000, 1.414, 1.732)

function square

defined for all floating point vector classes

description calculates the square

efficiency good
Example:

Vec4f a(0.0, 1.0, 2.0, 3.0);
Vec4f b = square(a); // b = (0.0, 1.0, 4.0, 9.0)

function pow(vector x, int n)

defined for all floating point vector classes

description raises all vector elements to the same integer power.
Will generate a compiler error if n is floating point and
vectormath_exp is not included, or in general if n is not of
type int.
See page 41 for pow with floating point exponent.

precision slightly imprecise for extreme values of n due to
accumulation of rounding errors

efficiency medium

Example:

Vec4f a(0.0, 1.0, 2.0, 3.0);
int b = 3;
Vec4f c = pow(a, b); // c = (0.0, 1.0, 8.0, 27.0)

function pow_const(vector x, const int n)

defined for all floating point vector classes

description raises all vector elements to the same integer power n,
where n is a compile-time constant

precision slightly imprecise for extreme values of n due to
accumulation of rounding errors

efficiency medium, often better than pow(vector, int)
Example:

Vec4f a(0.0, 1.0, 2.0, 3.0);
Vec4f b = pow_const(a, 3);
// b = (0.0, 1.0, 8.0, 27.0)

function round

defined for all floating point vector classes

description round to nearest integer (even value if two values are
equally near). The value is returned as a floating point
vector. See also round_to_int and round_to_int64 on page
67.

efficiency good if SSE4.1 instruction set
Example:

Vec4f a(1.0, 1.4, 1.5, 1.6)
Vec4f b = round(a); // b = (1.0, 1.0, 2.0, 2.0)

function truncate

defined for all floating point vector classes

description truncates number towards zero. The value is returned as a
floating point vector. See also truncate_to_int and
truncate_to_int64 on page 68.

efficiency good if SSE4.1 instruction set
Example:

Vec4f a(1.0, 1.5, 1.9, 2.0)
Vec4f b = truncate(a); // b = (1.0, 1.0, 1.0, 2.0)

function floor

defined for all floating point vector classes

description rounds number towards -∞. The value is returned as a
floating point vector

efficiency good if SSE4.1 instruction set
Example:

Vec4f a(-0.5, 1.5, 1.9, 2.0)
Vec4f b = floor(a); // b = (-1.0, 1.0, 1.0, 2.0)

function ceil

defined for all floating point vector classes

description rounds number towards +∞. The value is returned as a
floating point vector

efficiency good if SSE4.1 instruction set
Example:

Vec4f a(-0.5, 1.1, 1.9, 2.0)
Vec4f b = ceil(a); // b = (0.0, 2.0, 2.0, 2.0)

function approx_recipr

defined for Vec4f, Vec8f, Vec16f

description fast approximate calculation of reciprocal. Relative
accuracy better than 2-11

efficiency good
Example:

Vec4f a(0.5, 1.0, 2.0, 3.0)
Vec4f b = approx_recipr(a); // b = (2.0, 1.0, 0.5, 0.333)

function approx_rsqrt

defined for Vec4f, Vec8f, Vec16f

description fast approximate calculation of value to the power of -0.5.
Relative accuracy better than 2-11

efficiency good
Example:

Vec4f a(1.0, 2.0, 3.0, 4.0)

Vec4f b = approx_rsqrt(a); // b = (1.0,0.707,0.577,0.500)

function exponent

defined for all floating point vector classes

description extracts the exponent part of a floating point number.
Result is an integer vector.
exponent(a) = floor(log2(abs(a))), except for a = 0

efficiency medium
Example:

// single precision:
Vec4f a(1.0, 2.0, 3.0, 4.0);
Vec4i b = exponent(a); // b = (0, 1, 1, 2)
// double precision:
Vec2d a(1.0, 2.0);
Vec2q b = exponent(a); // b = (0, 1)

function fraction

defined for all floating point vector classes

description extracts the fraction part of a floating point number.
a = pow(2, exponent(a)) * fraction(a), except for a = 0

efficiency medium
Example:

Vec4f a(2.0, 3.0, 4.0, 5.0);
Vec4f b = fraction(a); // b = (1.00, 1.50, 1.00, 1.25)

function exp2

defined for all floating point vector classes

description calculates integer powers of 2. The input is an integer
vector, the output is a floating point vector. Overflow gives
+INF, underflow gives zero. This function will never
produce subnormals, and never raise exceptions

efficiency medium
Example:

// single precision:
Vec4i a(-1, 0, 1, 2);
Vec4f b = exp2(a); // b = (0.5, 1.0, 2.0, 4.0)
// double precision:
Vec2q a(-1, 0);
Vec2d b = exp2(a); // b = (0.5, 1.0)

function mul_add
nmul_add
mul_sub
mul_sub_x

defined for all floating point vector classes

description mul_add(a,b,c) = a*b+c
nmul_add(a,b,c) = -a*b+c
mul_sub(a,b,c) = a*b-c
mul_sub_x(a,b,c) = a*b-c
These functions use fused multiply-and-add (FMA)
instructions if available. Some compilers use FMA
automatically for expressions like a*b+c. Use these
functions for optimal performance on all compilers or to
specify calculation order, etc.

precision The intermediate product a*b is calculated with infinite
precision if the FMA or FMA4 instruction set is enabled.
mul_sub_x has extra precision even if FMA or FMA4 is not
available, just slightly less precise.

efficiency mul_add, nmul_add, mul_sub: better than a*b+c, etc.
mul_sub_x: good if FMA or FMA4 enabled, medium
otherwise

Floating point categorization functions

function sign_bit

defined for all floating point vector classes

description returns a boolean vector with true for elements that have
the sign bit set, including -0.0, -INF and -NAN.

efficiency good
Example:

// single precision:
Vec4f a(-1.0, 0.0, 1.0, 2.0);
Vec4fb b = sign_bit(a); // b = (true, false, false, false)
// double precision:
Vec2d a(-1.0, 0.0);
Vec2db b = sign_bit(a); // b = (true, false)

function sign_combine(vector a, vector b)

defined for all floating point vector classes

description Returns the value of a, with the sign inverted if b has its
sign bit set.
Corresponds to select(sign_bit(b), -a, a)

efficiency good

function is_finite

defined for all floating point vector classes

description returns a boolean vector with true for elements that are
normal, subnormal or zero, false for INF and NAN

efficiency medium
Example:

Vec4f a(0.0, 1.0, 2.0, 3.0);
Vec4f b(-1.0, 0.0, 1.0, 2.0);
Vec4f c = a / b;
Vec4fb d = is_finite(c); // d = (true, false, true, true)

function is_inf

defined for all floating point vector classes

description returns a boolean vector with true for elements that are
+INF or -INF, false for all other values, including NAN

efficiency good
Example:

Vec4f a(0.0, 1.0, 2.0, 3.0);
Vec4f b(-1.0, 0.0, 1.0, 2.0);
Vec4f c = a / b;
Vec4fb d = is_inf(c); // d = (false, true, false, false)

function is_nan

defined for all floating point vector classes

description returns a boolean vector with true for all types of NAN,
false for all other values, including INF

efficiency medium
Example:

Vec4f a(-1.0, 0.0, 1.0, 2.0);

Vec4f b = sqrt(a);
Vec4fb c = is_nan(b); // c = (true, false, false, false)

function is_subnormal
is_zero_or_subnormal

defined for all floating point vector classes

description returns a boolean vector with true for subnormal
(denormal) vector elements, false for normal numbers, INF
and NAN.
is_zero_or_subnormal also returns true for elements that
are zero.

efficiency is_subnormal: medium
is_zero_or_subnormal: good

Example:

Vec4f a(1.0, 1.0E-10, 1.0E-20, 1.0E-30);
Vec4f b = a * a; // b = (1., 1.E-20, 1.E-40, 0.)
Vec4fb c = is_subnormal(b); // c = (false,false,true,false)

function infinite4f, infinite8f, infinite16f,
infinite2d, infinite4d, infinite8d

defined for all floating point vector classes

description returns positive infinity

efficiency good
Example:

Vec4f a = infinite4f(); // a = (INF, INF, INF, INF)

function nan4f(unsigned int n)
nan8f(unsigned int n)
nan16f(unsigned int n)
nan2d(unsigned int n)
nan4d(unsigned int n)
nan8d(unsigned int n)

defined for all floating point vector classes

description returns not-a-number (NAN).
The optional parameter n may be used for error tracing.
The maximum value of n is 0x003FFFFF for single
precision, unlimited for double precision. This parameter
can be retrieved later by the function nan_code (page 51).

efficiency good
Example:

Vec4f a = nan4f(); // a = (NAN, NAN, NAN, NAN)

Floating point control word manipulation functions

MXCSR is a control word that controls floating point exceptions, rounding mode
and subnormal numbers. There is one MXCSR for each thread.

The MXCSR has the following bits:
bit index meaning

0 Invalid Operation Flag

1 Denormal (subnormal) Flag

2 Divide-by-Zero Flag

3 Overflow Flag

4 Underflow Flag

5 Precision Flag

6 Denormals (subnormals) Are Zeros

7 Invalid Operation Mask

8 Denormal (subnormal) Operation Mask

9 Divide-by-Zero Mask

10 Overflow Mask

11 Underflow Mask

12 Precision Mask

13-14 Rounding control:
00: round to nearest or even
01: round down towards -infinity
10: round up towards +infinity
11: round towards zero (truncate)
If the rounding mode is temporarily changed then
it must be set back to 00 for the vector class
library to work correctly.

15 Flush to Zero

Please see programming manuals from Intel or AMD for further explanation.

function get_control_word

description reads the MXCSR control word

efficiency medium
Example:

int m = get_control_word(); // default value m = 0x1F80

function set_control_word

description writes the MXCSR control word

efficiency medium
Example:

set_control_word(0x1980); // overflow and divide by zero
 // exceptions

function reset_control_word

description sets the MXCSR control word to the default value

efficiency medium
Example:

reset_control_word();

function no_subnormals

description Disables the use of subnormal (denormal) values.
Floating point numbers with an absolute value below
1.18∙10-38 for single precision or 2.22∙10-308 for double
precision are represented by subnormal numbers. The
handling of subnormal numbers is extremely time-
consuming on many CPUs. The no_subnormals function
sets the "denormals are zeros" and "flush to zero" mode to
avoid the use of subnormal numbers. It is recommended to
call this function at the beginning of each thread in order to
improve the speed of mathematical calculations if very low
numbers are likely to occur.

efficiency medium
Example:

no_subnormals();

Floating point mathematical functions

Mathematical functions such as logarithms, exponential functions, power,
trigonometric functions, etc. are available either as inline code or through
external function libraries. These functions all take vectors as input and produce
vectors as output.

The use of vector math functions is straightforward. Example:

#include <stdio.h>
#include "vectorclass.h"
#include "vectormath_trig.h" // trigonometric functions

int main() {
 Vec4f a(0.0, 0.5, 1.0, 1.5);// define vector
 Vec4f b = sin(a); // sine function
 // b = (0.0000, 0.4794, 0.8415, 0.9975)

 // output results:
 for (int i = 0; i < b.size(); i++) {
 printf("%6.4f ", b[i]);
 }
 printf("\n");
 return 0;
}

Inline mathematical functions
The inline mathematical functions are made available by including the
appropriate header file, e. g. vectormath_exp.h for powers, logarithms and
exponential functions, and vectormath_trig.h for trigonometric functions. An
advantage of the inline version is that the compiler can optimize the code across
function calls, eliminate common sub-expressions, etc. The disadvantage is that
you may get multiple instances of the same function taking up space in the code
cache.

The speed of the inline functions is similar to or better than external vector
function libraries in most cases and many times faster than standard (scalar)
math function libraries.

The precision is good. The calculation error is typically below 1 ULP (Unit in the
Last Place = least significant bit) on the output. (The relative value of one ULP is

2-52 for double precision and 2-23 for single precision). Cases where the error can
exceed 2 ULP are mentioned under the specific function.

The functions do not generate exceptions or set errno when an input is out of
range. This would be inefficient and it would be problematic for the error handler
to detect which vector element caused the error. Instead, the functions just return

INF (infinity) or NAN (not a number) in case of error. Generally, an overflow will
produce INF. A negative overflow produces -INF. An underflow towards zero
returns 0. Other errors produce NAN. An efficient way of detecting errors is to let
the INF and NAN codes propagate through the calculations and detect the error
at the end of a series of calculations. It is possible to include an error code in a
NAN and detect it with the function nan_code on page 51.

There are a few cases, though, where INF and NAN codes do not propagate. For
example, dividing a nonzero number by INF produces zero. Error codes cannot
propagate through integer and boolean vectors. For example:

Vec4d a, b;
...
b = select(a > 1.0, a, 0.5);

Now, if an element of a is NAN then the boolean vector element in a > 1.0 will be
either true or false because a boolean can have no other values. Whether it is
true of false is implementation-dependent. If it happens to be false then the
corresponding element in b will be 0.5, and the error is not propagated to b.
Therefore, you have to check for errors before making a boolean expression.
This can be done like this:

Vec4d a, b;
…
if (! horizontal_and (is_finite (a))) {
 // handle error
 …
}
b = select(a > 1.0, a, 0.5);

It is not recommended to unmask floating point exceptions. It is not guaranteed
that this will generate exceptions in case of errors in these functions.

Note that many of the inline math functions do not support subnormal numbers.
Subnormal numbers may be treated as zero by the logarithm, exponential, power
and root functions. It is recommended to set the “denormals are zero” and “flush
to zero” flags by calling the function no_subnormals() first (see above). This will
speed up some calculations and give more consistent results.

A description of each mathematical function is given below.

Using an external library for mathematical functions

As an alternative to the inline mathematical functions, you can use an external
function library. Include the header file vectormath_lib.h for this. Set the
define VECTORMATH to one of the following values to specify which external

library you are using:

VECTORMATH
value

Function library

0 Uses the standard math library that is included with the
compiler. You do not have to include any extra libraries. The
library function is called once for each vector element. This is
slow (especially for the Gnu library).
Use this option for testing purposes or where performance is
not critical.

1 AMD LIBM library. The LIBM library is available for 64-bit
Linux and 64-bit Windows, but not for 32-bit systems. File
name: amdlibm.lib or libamdlibm.a.
Performance is good for AMD processors with FMA4, but
inferior for processors without FMA4. Currently, the FMA4
instruction set is supported only in AMD processors.

2 Use Intel SVML library (Short Vector Math Library) with any
compiler. The SVML library is available for all platforms
relevant to the vector class library. It is included with Intel C++
compilers but can be used with other compilers as well. File
name: svml_dispmt.lib or libsvml.a. Be sure to choose the 32-
bit version or 64-bit version according to the platform you are
compiling for.
Performance is good on Intel processors. Performance may
be inferior on other brands of processors unless you replace
Intel's own CPU dispatch function. Link in the library
libircmt.lib to use Intel's own CPU dispatch function for Intel
processors, or use an object file from the asmlib library under
"inteldispatchpatch" for best performance on all brands of
processors. See my blog and my C++ manual for details.

3 Use Intel SVML library with an Intel compiler. You do not have
to link in any extra libraries. The Intel compiler gives access to
different versions with different precision. Performance is
good on Intel processors, but inferior on other brands of
processors unless you link in the dispatch patch from the
asmlib library as described above.

The value of VECTORMATH can be defined on the compiler command line or by a
define statement:

#define VECTORMATH 2
#include "vectormath_lib.h"

The chosen function library must be linked into your project if the value of

http://www.agner.org/optimize/#asmlib
http://www.agner.org/optimize/#manual_cpp
http://www.agner.org/optimize/blog/read.php?i=49
http://www.agner.org/optimize/#asmlib
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
http://developer.amd.com/libraries/LibM/Pages/default.aspx

VECTORMATH is 1 or 2.

Details about range, error handling and precision must be sought in the
documentation for the specific library.

If you want to use both inline and library math functions then you have to include
the header files for the inline functions before vectormath_lib.h. This will
give you the library version for functions that are not available as inline versions.

List of mathematical functions

The available vector math functions are listed below. The efficiency is listed as
poor because mathematical functions take more time to execute than most other
functions, but they are still faster than most alternatives. The details listed apply
to the inline version. Details for the library versions may be sought in the
documentation for the specific library.

Powers, exponential functions and logarithms:

function pow(vector, vector)
pow(vector, scalar)

defined for all floating point vector classes

inline version vectormath_exp.h

library versions all values of VECTORMATH have pow(vector, vector)

description pow(a,b) = ab
See also faster alternatives below for integer and rational
powers.

range Subnormal numbers are treated as zero. The result is NAN
if a is negative and b is not an integer. pow(0,0) = 1.
pow(NAN,0) is NAN or 1, depending on the imple-
mentation.

precision better than (0.1*abs(b)+1) ULP

efficiency poor
Example:

Vec4f a(1.0, 2.0, 3.0, 4.0);
Vec4f b(0.0, -1.0, 0.5, 2.0);
Vec4f c = pow(a, b);
// c = (1.0000, 0.5000, 1.7321, 16.0000)
Vec4f d = pow(a, 2.4f);
// d = (1.0000, 5.2780, 13.9666, 27.8576)

function pow(vector, int)

defined for all floating point vector classes

inline version no extra header file required

library versions not available

description see page 29.

efficiency medium

function pow_const(vector x, const int n)

defined for all floating point vector classes

inline version no extra header file required

library versions not available

description see page 30.

efficiency medium, often better than pow(vector, int)

function pow_ratio(vector x, const int a, const int b)

defined for all floating point vector classes

inline version vectormath_exp.h

library versions not available

description Raises all elements of x to the rational power a/b.
a and b must be compile-time constant integers.
For example pow_ratio(x, -1, 2) gives the reciprocal square
root of x.
x may be zero only if a and b are positive. x may be
negative only if b is odd. The result when x is infinite is
implementation dependent.

range subnormal numbers are treated as zero in some cases

precision slightly imprecise for extreme values of a due to
accumulation of rounding errors. the precision is similar to
the pow function when b is not 1, 2, 3, 4, 6 or 8.

efficiency Quite good for b = 1, 2, 4, or 8. Reasonable for b = 3 or 6.
No better than pow for other values of b.

function exp

defined for all floating point vector classes

inline version vectormath_exp.h

library versions all values of VECTORMATH

description exponential function e
x

range double: abs(x) < 708.39. float: abs(x) < 87.3

efficiency poor

function expm1

defined for all floating point vector classes

inline version vectormath_exp.h

library versions all values of VECTORMATH, except 0 for some libraries

description e
x
-1. Useful to avoid loss of precision if x is close to 0

range double: abs(x) < 708.39. float: abs(x) < 87.3

efficiency poor

function exp2

defined for all floating point vector classes

inline version vectormath_exp.h

library versions all values of VECTORMATH, except 0 for some libraries

description 2
x

range double: abs(x) < 1022. float: abs(x) < 126.

efficiency poor

function exp10

defined for all floating point vector classes

inline version vectormath_exp.h

library versions all values of VECTORMATH

description 10
x

range double: abs(x) < 307.65. float: abs(x) < 37.9.

efficiency poor

function log

defined for all floating point vector classes

inline version vectormath_exp.h

library versions all values of VECTORMATH

description natural logarithm

range The input must be a normal number. Subnormal numbers
are treated as zero.

efficiency poor

function log1p

defined for all floating point vector classes

inline version vectormath_exp.h

library versions all values of VECTORMATH, except 0 for some libraries

description log(1+x)
Useful to avoid loss of precision if x is close to 0

efficiency poor

function log2

defined for all floating point vector classes

inline version vectormath_exp.h

library versions all values of VECTORMATH

description logarithm base 2

efficiency poor

function log10

defined for all floating point vector classes

inline version vectormath_exp.h

library versions all values of VECTORMATH

description logarithm base 10

efficiency poor

function cbrt

defined for all floating point vector classes

inline version vectormath_exp.h

library versions VECTORMATH = 1, 2, 3

description cube root

range input must be a normal number. Subnormal numbers are
treated as zero

efficiency faster than pow

function cexp

defined for all floating point vector classes

inline version not available

library versions VECTORMATH = 0, 2, 3

description complex exponential function. Even-numbered vector
elements are real part, odd-numbered vector elements are
imaginary part.

efficiency poor

Trigonometric functions (angles in radians):
function sin(x)

defined for all floating point vector classes

inline version vectormath_trig.h

library versions all values of VECTORMATH

description sine function.

range Defined for abs(x) < 1.7∙109. 0 otherwise

efficiency poor

function cos(x)

defined for all floating point vector classes

inline version vectormath_trig.h

library versions all values of VECTORMATH

description cosine function.

range Defined for abs(x) < 1.7∙109. 1 otherwise

efficiency poor

function sincos(x)

defined for all floating point vector classes

inline version vectormath_trig.h

library versions all values of VECTORMATH, may not be available for
Vec16f and Vec8d

description sine and cosine computed simultaneously.

range Defined for abs(x) < 1.7∙109. 0 and 1 otherwise

efficiency poor
Example:

Vec4f a(0.0, 0.5, 1.0, 1.5);
Vec4f s, c;
s = sincos(&c, a);
// s = (0.0000, 0.4794, 0.8415, 0.9975)
// c = (1.0000, 0.8776, 0.5403, 0.0707)

function tan(x)

defined for all floating point vector classes

inline version vectormath_trig.h

library versions all values of VECTORMATH

description tangent function.
tan(π/2) will not produce infinity because the value of π/2
cannot be represented exactly as a floating point number.
The output will be big, though, when the input is as close to
π/2 as possible.

range Defined for abs(x) < 1.7∙109. 0 otherwise

efficiency poor

Inverse trigonometric functions (angles in radians)
function asin

defined for all floating point vector classes

inline version vectormath_trig.h

library versions VECTORMATH = 0, 2, 3

description inverse sine function

efficiency poor

function acos

defined for all floating point vector classes

inline version vectormath_trig.h

library versions VECTORMATH = 0, 2, 3

description inverse cosine function

efficiency poor

function atan

defined for all floating point vector classes

inline version vectormath_trig.h

library versions VECTORMATH = 0, 2, 3

description Inverse tangent.
Results between -π/2 and π/2.

efficiency poor

function atan2

defined for all floating point vector classes

inline version vectormath_trig.h

library versions VECTORMATH = 0, 2, 3

description Inverse tangent with two parameters, x and y, gives the
angle to a point in the (x,y) plane.
Results between -π and π.
The result of atan2(0,0) is 0 by convention.

efficiency poor

Hyperbolic functions and inverse hyperbolic functions:

function sinh

defined for all floating point vector classes

inline version vectormath_hyp.h

library versions VECTORMATH = 0, 2, 3

description hyperbolic sine

range double: abs(x) < 709.7. float: abs(x) < 89.

efficiency poor

function cosh

defined for all floating point vector classes

inline version vectormath_hyp.h

library versions VECTORMATH = 0, 2, 3

description hyperbolic cosine

range double: abs(x) < 709.7. float: abs(x) < 89.

efficiency poor

function tanh

defined for all floating point vector classes

inline version vectormath_hyp.h

library versions VECTORMATH = 0, 2, 3

description hyperbolic tangent

efficiency poor

function asinh

defined for all floating point vector classes

inline version vectormath_hyp.h

library versions VECTORMATH = 2, 3

description inverse hyperbolic sine

precision The error is less than 3 ULP for double and 4 ULP for float

efficiency poor

function acosh

defined for all floating point vector classes

inline version vectormath_hyp.h

library versions VECTORMATH = 2, 3

description inverse hyperbolic cosine

precision The error is less than 5 ULP for double and 4 ULP for float

efficiency poor

function atanh

defined for all floating point vector classes

inline version vectormath_hyp.h

library versions VECTORMATH = 2, 3

description inverse hyperbolic tangent

efficiency poor

Error function, etc.:

function erf

defined for all floating point vector classes

inline version not available

library versions VECTORMATH = 2, 3, and some libraries VECTORMATH
= 0

description error function

efficiency poor

function erfc

defined for all floating point vector classes

inline version not available

library versions VECTORMATH = 2, 3, and some libraries VECTORMATH
= 0

description error function complement

efficiency poor

function erfinv

defined for all floating point vector classes

inline version not available

library versions VECTORMATH = 2, 3

description inverse error function

efficiency poor

function cdfnorm

defined for all floating point vector classes

inline version not available

library versions VECTORMATH = 2, 3

description cumulative normal distribution function

efficiency poor

function cdfnorminv

defined for all floating point vector classes

inline version not available

library versions VECTORMATH = 2, 3

description inverse cumulative normal distribution function

efficiency poor

Miscellaneous:

function Vec4i nan_code(Vec4f)
Vec8i nan_code(Vec8f)
Vec16i nan_code(Vec16f)
Vec2q nan_code(Vec2d)
Vec4q nan_code(Vec4d)
Vec8q nan_code(Vec8d)

defined for all floating point vector classes

inline version vectormath_exp.h

library versions not available

description Extracts an error code hidden in a NAN. This code can be
generated with the functions nan4f etc. (page 35) and
propagated through a series of calculations. When two
NANs are combined (e. g. NAN+NAN), current processors
propagate the first one. It has been suggested that future
processors should OR the two values. NANs produced by
CPU instructions, such as 0./0. or sqrt(-1.) do not have a
code. NANs cannot propagate through integer and boolean
vectors.
The return value is (0x00400000 + code) for single
precision and (0x0008000000000000 + code) for double.
The sign bit is ignored.
The return value is 0 for inputs that are not NAN.

efficiency medium

Permute, blend, lookup and gather functions

Permute functions:

function permute..<i0, i1, ...>(vector)

defined for all integer and floating point vector classes

description permutes vector elements

efficiency depends on parameters and instruction set

The permute functions can move any element of a vector into any position, copy
the same element to multiple positions, and set any element to zero.

The name of the permute function is "permute" + the vector type suffix, for
example permute4i for Vec4i. The permute function for a vector of n elements
has n indexes, which are entered as template parameters in angle brackets.
Each index indicates the desired contents of the corresponding element in the
result vector. An index i in the interval 0 ≤ i ≤ n-1 indicates that element number i
from the input vector should be placed in the corresponding position in the result
vector. An index i = -1 gives a zero in the corresponding position. An index i =
-256 means don't care (i. e. use whatever implementation is fastest, regardless of
what value it puts in this position). The value you get with "don't care" may be
different for different implementations or different instruction sets.

Example:
Vec4i a(10, 11, 12, 13);
Vec4i b = permute4i<2,2,3,0>(a); // b = (12, 12, 13, 10)
Vec4i c = permute4i<-1,-1,1,1>(a); // c = (0, 0, 11, 11)

The indexes in angle brackets must be compile-time constants, they cannot
contain variables or function calls. If you need variable indexes then use the
lookup functions instead (see page 54).

The permute functions contain a lot of metaprogramming code which is used for
finding the best implementation for the given set of indexes and the specified
instruction set. This metaprogramming produces a lot of extra code when
compiling in debug mode, but it is reduced out when compiling for release mode
with optimization on. The call to a permute function is reduced to just one or a
few machine instructions in favorable cases. But in unfavorable cases where the
selected instruction set has no machine instruction that matches the desired
permutation pattern, it may produce many machine instructions.

The performance is generally good when the instruction set SSSE3 or higher is
enabled. The performance for permuting vectors of 16-bit integers is medium,
and the performance for permuting vectors of 8-bit integers is poor for instruction
sets lower than SSSE3.

Blend functions:

function blend..<i0, i1, ...>(vector, vector)

defined for all integer and floating point vector classes

description permutes and blends elements from two vectors

efficiency depends on parameters and instruction set

The blend functions are similar to the permute functions, but with two input
vectors. An index i in the interval 0 ≤ i ≤ n-1 indicates that element number i from
the first input vector should be placed in the corresponding position in the result
vector. An index i in the interval n ≤ i ≤ 2*n-1 indicates that element number i-n
from the second input vector should be placed in the corresponding position in
the result vector. An index i = -1 gives a zero in the corresponding position. An
index i = -256 means don't care.

Example:
Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec4i c = blend4i<4,0,4,3>(a, b); // c = (20, 10, 20, 13)

If you want to blend input from more than two vectors, there are three different
methods you can use:

1. A binary tree of blend calls, where unused values are set to don't care (-256).
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec4i c(30, 31, 32, 33);
Vec4i d(40, 41, 42, 43);
Vec4i r = blend4i<0,5,-256,-256>(a, b);// r = (10,21,?,?)
Vec4i s = blend4i<-256,-256,2,7>(c, d);// s = (?,?,32,43)
Vec4i t = blend4i<0,1,6,7>(r, s); // t = (10,21,32,43)

2. Set unused values to zero, and OR the results. Example:
Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec4i c(30, 31, 32, 33);
Vec4i d(40, 41, 42, 43);
Vec4i r = blend4i<0,5,-1,-1>(a, b);// r = (10,21,0,0)
Vec4i s = blend4i<-1,-1,2,7>(c, d);// s = (0,0,32,43)
Vec4i t = r | s; // t = (10,21,32,43)

3. If the input vectors are stored sequentially in memory then use the lookup
functions shown below.

Lookup functions:

function Vec16c lookup16(Vec16c, Vec16c)
Vec32c lookup32(Vec32c, Vec32c)
Vec8s lookup8(Vec8s, Vec8s)
Vec16s lookup16(Vec16s, Vec16s)
Vec4i lookup4(Vec4i, Vec4i)
Vec8i lookup8(Vec8i, Vec8i)
Vec16i lookup16(Vec16i, Vec16i)
Vec4q lookup4(Vec4q, Vec4q)
Vec8q lookup8(Vec8q, Vec8q)

defined for Vec16c, Vec32c, Vec8s, Vec16s, Vec4i, Vec8i, Vec16i,
Vec4q, Vec8q

description permutation with variable indexes. The first input vector
contains the indexes, the second input vector is the data
source. Each index must be in the range 0 ≤ i ≤ n-1 where
n is the number of elements in a vector.

efficiency good for AVX2, medium for lower instruction sets

function Vec16c lookup32(Vec16c, Vec16c, Vec16c)
Vec8s lookup16(Vec8s, Vec8s, Vec8s)
Vec4i lookup8(Vec4i, Vec4i, Vec4i)
Vec4i lookup16(Vec4i, Vec4i, Vec4i, Vec4i, Vec4i)

defined for Vec16c, Vec8s, Vec4i

description blend with variable indexes. The first input vector contains
the indexes, the following two or four input vectors contain
the data source. Each index must be in the range 0 ≤ i ≤ n-
1 where n is the number indicated by the name.

efficiency good for AVX2, medium for lower instruction sets

function Vec4f lookup4(Vec4i, Vec4f)
Vec8f lookup8(Vec8i, Vec8f)
Vec16f lookup16(Vec16i, Vec16f)
Vec2d lookup2(Vec2q, Vec2d)
Vec4d lookup4(Vec4q, Vec4d)
Vec8d lookup8(Vec8q, Vec8d)

defined for all floating point vector classes

description permutation of floating point vectors with integer indexes.
Each index must be in the range 0 ≤ i ≤ n-1 where n is the
number of elements in a vector.

efficiency good for AVX2, medium for lower instruction sets

function Vec4f lookup8(Vec4i, Vec4f, Vec4f)
Vec2d lookup4(Vec2q, Vec2d, Vec2d)

defined for Vec4f, Vec2d

description blend of floating point vectors with integer indexes. Each
index must be in the range 0 ≤ i ≤ 2*n-1 where n is the
number of elements in a vector.

efficiency medium

function Vec16c lookup<n>(Vec16c index, void const * table)
Vec32c lookup<n>(Vec32c index, void const * table)
Vec8s lookup<n>(Vec8s index, void const * table)
Vec16s lookup<n>(Vec16s index, void const * table)
Vec4i lookup<n>(Vec4i index, void const * table)
Vec8i lookup<n>(Vec8i index, void const * table)
Vec16i lookup<n>(Vec16i index, void const * table)
Vec4q lookup<n>(Vec4q index, void const * table)
Vec8q lookup<n>(Vec8q index, void const * table)
Vec4f lookup<n>(Vec4i index, float const * table)
Vec8f lookup<n>(Vec8i const & index, float const * table)
Vec16f lookup<n>(Vec16i const & index, float const * table)
Vec2d lookup<n>(Vec2q index, double const * table)
Vec4d lookup<n>(Vec4q const & i, double const * table)
Vec8d lookup<n>(Vec8q const & i, double const * table)

defined for all floating point and signed integer vector classes

description permute, blend, table lookup or gather data from array with
an integer vector of indexes.
Each index must be in the range 0 ≤ i ≤ n-1, where n is

indicated as a template parameter (n must be a positive
compile-time constant).

efficiency good for AVX2, medium for lower instruction sets

The lookup functions are similar to the permute and blend functions, but with
variable indexes. They cannot be used for setting an element to zero, and there
is no "don't care" option. The lookup functions can be used for several purposes:

1. permute with variable indexes
2. blend with variable indexes
3. blend from more than two sources
4. table lookup
5. gather non-contiguous data from an array

The index is always an integer vector. The input can be one or more vectors or
an array. The result is a vector of the same type as the input. All elements in the
index vector must be in the specified range. The behavior for an index out of
range is implementation-dependent and may give any value for the
corresponding element. The function may in some cases read up to one vector
size past the end of the table for the sake of efficient permutation.

The lookup functions are not defined for unsigned integer vector types, but the
corresponding signed versions can be used. You don't have to worry about
overflow when converting unsigned integers to signed here, as long as the result
vector is converted back to unsigned.

Example of permutation with variable indexes:
Vec4f a(1.0, 1.1, 1.2, 1.3);
Vec4i b(2, 3, 3, 0);
Vec4f c = lookup4(b, a); // c = (1.2, 1.3, 1.3, 1.0)

Example of blending with variable indexes:
Vec4f a(1.0, 1.1, 1.2, 1.3);
Vec4f b(2.0, 2.1, 2.2, 2.3);
Vec4i c(4, 3, 2, 7);
Vec4f d = lookup4(c,a,b); // d = (2.0, 1.3, 1.2, 2.3)

Example of blending from more than two sources:
float sources[12] = {
1.0,1.1,1.2,1.3,2.0,2.1,2.2,2.3,3.0,3.1,3.2,3.3};
Vec4i i(11, 0, 5, 5);
Vec4f c = lookup<12>(i, sources); // c = (3.3,1.0,2.1,2.1)

A function with a limited number of possible input values can be replaced by a
lookup table. This is useful if table lookup is faster than calculating the function.
This example has a table of the function y = x2 - 1

// table of the function x*x-1
int table[6] = {-1,0,3,8,15,24};
Vec4i x(4,2,0,5);
Vec4i y = lookup<6>(table); // y = (15, 3, -1, 24)

Example of gathering non-contiguous data from an array:

float x[16] = { ... };
Vec4i i(0,4,8,12);
Vec4f y = lookup<16>(i, x); // y = (x[0],x[4],x[8],x[12])

Gather functions:

function Vec4i gather4i<indexes>(void const * table)
Vec8i gather8i<indexes>(void const * table)
Vec16i gather16i<indexes>(void const * table)
Vec2q gather2q<indexes>(void const * table)
Vec4q gather4q<indexes>(void const * table)
Vec8q gather8q<indexes>(void const * table)
Vec4f gather4f<indexes>(void const * table)
Vec8f gather8f<indexes>(void const * table)
Vec16f gather16f<indexes>(void const * table)
Vec2d gather2d<indexes>(void const * table)
Vec4d gather4d<indexes>(void const * table)
Vec8d gather8d<indexes>(void const * table)

defined for Vec4i, Vec8i, Vec16i, Vec2q, Vec4q, Vec8q,
Vec4f, Vec8f, Vec16f, Vec2d, Vec4d, Vec8d

description Load non-contiguous data from table. Indexes cannot be
negative. There is no option for zeroing or don't care. If you
need variable indexes, use the lookup functions instead.
(If all indexes are smaller than the vector size, the function
may read a full vector and permute it)

efficiency medium
Example:

int tab[8] = {10,11,12,13,14,15,16,17};
Vec4i a = gather4i<6,4,4,0>(tab);
// a = (16, 14, 14, 10);

Number ↔ string conversion functions

These functions require the header file "decimal.h" from the sub-archive named
"special.zip".

Binary to binary-coded-decimal (BCD) conversion:

function vector bin2bcd(vector)

defined for All unsigned integer vector types

description Each vector element is converted to BCD code.
The behavior in case of overflow is implementation
dependent.

efficiency medium.
Example:

#include "decimal.h"
 ...
Vec4ui a(100,101,102,103);
Vec4ui b = bin2bcd(a); // b = (0x100, 0x101, 0x102, 0x103)
// (maximum value without overflow = 99999999)

Binary to decimal ASCII string conversion:

function int bin2ascii (vector a, char * string, int fieldlen, int numdat,
bool signd, char ovfl, char separator, bool term)

defined for Vec16c, Vec32c, Vec8s, Vec16s, Vec4i, Vec8i

description Makes an ASCII string of numbers, where each vector
element is converted to a human-readable decimal ASCII
representation, right-justified in a field of specified length.

parameters a Vector of signed or unsigned integers to convert

string Character array that will receive the string. Must
be big enough to contains the worst-case string
length, including separators and terminating
zero.

fieldlen Desired length of each field in the output string.
(default = 2, 4, or 8 depending on vector type)

numdat Number of vector elements to convert.
(default = number of elements in a)

signd Each number will be interpreted as signed if
signd = true, unsigned if false.
(default = true)

ovfl Specifies how to handle cases where a number
is too big to fit into a field of length fieldlen.
ovfl = 0: the size of the field will be made big
enough to hold the number (max 11 characters).
ovfl = ASCII character: the field will be filled with
this character if the number is too big to fit into
the field. (default = '*')

separator Specifies an ASCII character to insert between

fields (but not after the last field).
0 for no separator. (default = ',')

term Writes a zero-terminated ASCII string if term is
true. The string has no terminator if term is
false. (default = true)

return
value

The returned value is the length of the string
written. The terminating zero is not included in
the count.

efficiency poor, but better than alternatives. Improved by instruction
sets SSSE3, SSE4.1, AVX2.

Example:
#include "decimal.h"
 ...
Vec4ui a(123, 123456, 0, -78);
char text[50];
bin2ascii(a, text, 5, 4, true, '*', ',', true);
// text = " 123,*****, 0, -78"

Binary to hexadecimal ASCII string conversion:

function int bin2hex_ascii (vector a, char * string, int numdat, char
separator, bool term)

defined for All signed integer vector types

description Makes an ASCII string of hexadecimal numbers, where
each vector element is converted to an unsigned
hexadecimal ASCII representation in a field of 8, 4 or 2
characters, depending on the vector type.

parameters a Vector of integers to convert

string Character array that will receive the string. Must
be big enough to contains the string length,
including separators and terminating zero.

numdat Number of vector elements to convert.
(default = number of elements in a)

separator Specifies an ASCII character to insert between
fields (but not after the last field).
0 for no separator. (default = ',')

term Writes a zero-terminated ASCII string if term is
true. The string has no terminator if term is
false. (default = true)

return
value

The returned value is the length of the string
written. The terminating zero is not included in

the count.

efficiency Medium. Improved by instruction sets SSSE3, AVX2.
Example:

#include "decimal.h"
 ...
Vec4ui a(256, 0x1234abcd, 0, -1);
char text[50];
bin2hex_ascii(a, text, 4, ',', true);
// text = "00000100,1234ABCD,00000000,FFFFFFFF"

Decimal ASCII string to binary number conversion:

function Vec4i ascii2bin(Vec32c string)

defined for Vec32c

description The input vector contains an ASCII string, organized as
four fields of 8 characters each. Each field contains a
decimal number. There are no separator or terminator
characters. Each number must be right-justified in its field.
Spaces and a minus sign are allowed to the left of each
number. No other characters are allowed.
The function returns a vector of four signed integers. A
syntax error is indicated by the value 0x80000000, which
cannot occur otherwise.

efficiency medium.

Each field must be exactly 8 characters wide. The number must have one or
more digits '0' - '9'. Spaces and one minus sign are allowed to the left of the
number. Nothing is allowed to the right of the number. No other characters than
digits, spaces and minus sign are allowed. The syntax of the input string can be
defined with the following EBNF description:

<string> ::= <field> <field> <field> <field>
<field> ::= { <space> } [<minus>] { <space> } <digit> { <digit> }
<space> ::= ' '
<minus> ::= '-'
<digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

A syntax error in a field will set the corresponding number to INT_MIN =
0x80000000. This will not affect the other numbers. It is OK to input a string
where only part of the string contains valid numbers and ignore the rest because
there is no performance penalty for syntax errors.

The error-value 0x80000000 = -2147483648 cannot occur with a correct input
because it requires more than eight digits to represent. The numbers cannot be

bigger than 99999999 or smaller than -9999999 because they have to fit into
eight characters.

The following example has a syntax error in the last field because there are
spaces to the right of the number:

#include "decimal.h"
 ...
char str[] = " 123 -45678 - 0004 5 ";
Vec32c string = Vec32c().load(str);
Vec4i a = ascii2bin(string);
// a = (123, -45678, -4, 0x80000000)

Boolean operations and per-element branches

Consider this piece of C++ code:

int a[4], b[4], c[4], d[4];
 ...
for (int i = 0; i < 4; i++) {
 d[i] = (a[i] > 0 && a[i] < 10) ? b[i] : c[i];
}

We can do this with vectors in the following way:

Vec4i a, b, c, d;
 ...
d = select(a > 0 & a < 10, b, c);

The select function is similar to the ? : operator. It has three vector
parameters: the first parameter is a boolean vector that chooses between the
elements of the second and third vector parameter. The relational operators >,
>=, <, <=, ==, != produce boolean vectors, which accept the boolean operations
&, |, ^, ~ (and, or, exclusive or, not). In the above example, the expressions a >
0 and a < 10 are boolean vectors of type Vec4ib. The boolean vectors must
have the same number of elements as the vectors they are used with. There is a
table on page 9 showing which boolean vector class to use for each vector type.

The vector elements that are not selected are calculated anyway because
normally all parts of a vector are calculated. For example:

Vec4f a(-1.0f, 0.0f, 1.0f, 2.0f);
Vec4f b = select(a >= 0.0f, sqrt(a), 0.0f);

Here, we will be calculating the squareroot of -1 even though we are not using it.
This could possibly generate an exception if floating point exceptions are not
masked. A better solution would therefore be:

Vec4f a(-1.0f, 0.0f, 1.0f, 2.0f);
Vec4f b = sqrt(max(a, 0.0f));

Likewise, the & and | operators are calculating both input operands, even if the
second operand is not used. The following examples illustrates this:

// array version:
float a[4] = {0.0f, 1.0f, 2.0f, 3.0f};
float b[4];
for (int i = 0; i < 4; i++) {
 if (a[i] > 0.0f && 1.0f/a[i] != 4.0f)
 b[i] = a[i];
 else
 b[i] = 1.0f;
}

and the vector version of the same:

// vector version:
Vec4f a(0.0f, 1.0f, 2.0f, 3.0f);
Vec4f b = select(a > 0.0f & 1.0f/a != 4.0f, a, 1.0f);

In the array version, we will never divide by zero because the && operator does
not evaluate the second operand when the first operand is false. But in the vector
version we are indeed dividing by zero because the & operator always evaluates
both operands. The vector class library defines the operators && and || as
synonyms to & and | for convenience, but they are still doing a bitwise AND or
OR operation, so & and | are actually more representative of what these
operators really do. This example should, of course, be changed to:

Vec4f a(0.0f, 1.0f, 2.0f, 3.0f);
Vec4f b = select(a > 0.0f & a != 0.25f, a, 1.0f);

Internal representation of boolean vectors

The way boolean vectors are stored depends on the instruction set. For all data
vectors of 128 bit and 256 bit size, the boolean vectors are stored as integer
vectors with the same element size as the integer or floating point vectors they
are used for. For example, the boolean vector class Vec4fb is stored as a vector
of four 32-bit integers because it is used with vectors Vec4f of four single
precision floating point numbers, using 32 bits each. The boolean vector class
Vec4db is stored as a vector of four 64-bit integers because it is used with
vectors Vec4d of four double precision floating point numbers, using 64 bits
each. Note that the integer representation of true in a boolean vector element is
not 1, but -1. The representation of false is 0. Any other values than 0 and -1 will

most likely produce wrong and inconsistent results that depend on the instruction
set.

The AVX512 instruction set allows boolean vectors to be stored internally as
compact bitfields with a single bit for each vector element. This method is used in
boolean vectors for use with 512 bit data vectors when compiling for AVX512 or
higher instruction sets. The old method is used when compiling for AVX2 and
lower instruction sets, even for 512 bit vectors.

If you want your code to be compatible with multiple instruction sets, then you
should make no assumption about how a boolean vector is stored. For example,
the boolean vector Vec16ib uses 16 bits of storage when compiling for AVX512,
but 512 bits of storage when compiling for AVX2.

Boolean vectors for use with floating point and integer vectors are in principle
identical when they have the same number of bits per element. For example, the
boolean vector types Vec8fb and Vec8ib are both vectors of 8 boolean
elements, using 32 bits each. These types can easily be converted to each other,
but it is still recommended to choose Vec8fb for use with Vec8f and Vec8ib for
use with Vec8i because this helps the compiler select the fastest
implementation in each case. See page 72 for conversion of boolean vectors.

Functions for use with booleans

function vector select(boolean vector s, vector a, vector b)

defined for all integer and floating point vector classes

description branch per element.
result[i] = s[i] ? a[i] : b[i]

efficiency good
Example:
Vec4i a(-1, 0, 1, 2);
Vec4i b = select(a>0, a+10, a-10); // b = (-11,-10,11,12)

function vector if_add(boolean vector f, vector a, vector b)

defined for all integer and floating point vector classes

description conditional addition.
result[i] = f[i] ? a[i] + b[i] : a[i]

efficiency good
Example:
Vec4i a(-1, 0, 1, 2);
Vec4i b = if_add(a < 0, a, 100); // b = (99,0,1,2)

function vector if_mul(boolean vector f, vector a, vector b)

defined for all floating point vector classes

description conditional multiplication.
result[i] = f[i] ? a[i] * b[i] : a[i]

efficiency good

function vector andnot(vector, vector)

defined for all boolean vector classes

description andnot(a,b) = a & ~ b

efficiency good (better than a & ~ b)

function bool horizontal_and(boolean vector)

defined for all boolean vector classes

description The output is the AND combination of all elements

efficiency medium. Better if SSE4.1 enabled
Example:
Vec4i a(-1, 0, 1, 2);
bool b = horizontal_and(a > 0); // b = false

function bool horizontal_or(boolean vector)

defined for all boolean vector classes

description The output is the OR combination of all elements

efficiency medium. Better if SSE4.1 enabled
Example:
Vec4i a(-1, 0, 1, 2);
bool b = horizontal_or(a > 0); // b = true

function int horizontal_find_first(boolean vector)

defined for all boolean vector classes, except Vec128b, Vec256b,
Vec512b

description Returns an index to the first element that is true.
Returns -1 if all elements are false

efficiency medium
Example:

Vec4i a(1, 2, 3, 4);
Vec4i b(0, 2, 3, 0);
Vec4ib c = a == b;
int d = horizontal_find_first(c); // d = 1

function unsigned int horizontal_count(boolean vector)

defined for all boolean vector classes, except Vec128b, Vec256b,
Vec512b

description counts the number of elements that are true

efficiency medium if SSE4.2 enabled
Example:
Vec4i a(1, 2, 3, 4);
Vec4i b(0, 2, 3, 0);
Vec4ib c = a == b;
int d = horizontal_count(c); // d = 2

Conversion between vector types
Below is a list of methods and functions for conversion between different vector
types, vector sizes or precisions.

method conversion between vector class and intrinsic vector type

defined for all vector classes

description conversion between a vector class and the corresponding
intrinsic vector type __m128, __m128d, __m128i, __m256,
__m256d, __m256i, __m512, __m512d, __m512i can be
done implicitly or explicitly.
Boolean vectors can be converted to their internal
representation, which is either an integer vector or a single
integer, depending on the size and instruction set.

efficiency good
Example:

Vec4i a(0,1,2,3);
__m128i b = a; // b = 0x00000003000000020000000100000000
Vec4i c = b; // c = (0,1,2,3)

method conversion from scalar to vector

defined for all integer and floating point vector classes

description conversion from a scalar (single value) to a vector can be
done explicitly by calling a constructor, or implicitly by
putting a scalar where a vector is expected. All vector
elements get the same value.

efficiency good for constant. Medium for variable as parameter
Example:

Vec4i a, b;
a = Vec4i(5); // explicit conversion. a = (5,5,5,5)
b = a + 3; // implicit conversion to Vec4i.
 // b = (8,8,8,8)

Implicit conversion is convenient in the example b = a + 3, which adds 3 to all
elements of the vector. Use explicit conversion where there is ambiguity about
the desired vector type.

method conversion between signed and unsigned integer vectors

defined for all integer vector classes

description signed ↔ unsigned conversion can be done implicitly or
explicitly. Overflow and underflow wraps around

efficiency good
Example:

Vec4i a(-1,0,1,2); // signed vector
Vec4ui b = a; // implicit conversion to unsigned.
 // b = (0xFFFFFFFF,0,1,2)
Vec4ui c = Vec4ui(a); // same, with explicit conversion
Vec4i d = c; // convert back to signed

method conversion between different integer vector types

defined for all integer vector classes

description conversion can be done implicitly or explicitly between all
integer vector classes with the same total number of bits.
This conversion does not change any bits, just the
grouping of bits into elements is changed

efficiency good
Example:

Vec8s a(0,1,2,3,4,5,6,7);
Vec4i b = Vec4i(a); // b = (0x1000, 0x3002, 0x5004, 0x7006)

method reinterpret_d, reinterpret_f, reinterpret_i

defined for all integer and floating point vector classes

description reinterprets a vector as a different type without changing
any bits (bit casting).
reinterpret_d is used for converting to Vec2d or Vec4d,
reinterpret_f is used for converting to Vec4f or Vec8f,
reinterpret_i is used for converting to any integer vector
type

efficiency good
Example

Vec4f a(1.0f, 1.5f, 2.0f, 2.5f);
Vec4i b = reinterpret_i(a);
// b = (0x3F800000, 0x3FC00000, 0x40000000, 0x40200000)

method Vec4i round_to_int(Vec4f)
Vec4i round_to_int(Vec2d)
Vec4i round_to_int(Vec2d, Vec2d)
Vec8i round_to_int(Vec8f)
Vec16i round_to_int(Vec16f)
Vec4i round_to_int(Vec4d)
Vec8i round_to_int(Vec8d)

defined for all floating point vector classes

description rounds floating point numbers to nearest integer and
returns integer vector. (where two integers are equally
near, the even integer is returned)

efficiency medium
Example:

Vec4f a(1.0f, 1.5f, 2.0f, 2.5f);
Vec4i b = round_to_int(a); // b = (1,2,2,2)

method Vec2q round_to_int64(Vec2d x)
Vec4q round_to_int64(Vec4d x)
Vec8q round_to_int64(Vec8d x)
Vec2q round_to_int64_limited(Vec2d x)
Vec4q round_to_int64_limited(Vec4d x)
Vec8q round_to_int64_limited(Vec8d x)

defined for Vec2d, Vec4d, Vec8d

description rounds floating point numbers to nearest integer and

returns integer vector. (where two integers are equally
near, the even integer is returned).
The _limited versions are limited to abs(x) < 231. Outside of
this range, the result is implementation dependent.

efficiency round_to_int64: poor
round_to_int64_limited: medium

Example:

Vec4d a(1.0, 1.5, 2.0, 2.5);
Vec4q b = round_to_int64(a); // b = (1,2,2,2)

method Vec4i truncate_to_int(Vec4f)
Vec4i truncate_to_int(Vec2d, Vec2d)
Vec8i truncate_to_int(Vec8f)
Vec16i truncate_to_int(Vec16f)
Vec4i truncate_to_int(Vec4d)
Vec8i truncate_to_int(Vec8d)

defined for all floating point vector classes

description truncates floating point numbers towards zero and returns
signed integer vector.

efficiency medium
Example:

Vec4f a(1.0f, 1.5f, 2.0f, 2.5f);
Vec4i b = truncate_to_int(a); // b = (1,1,2,2)

method Vec2q truncate_to_int64(Vec2d x)
Vec4q truncate_to_int64(Vec4d x)
Vec8q truncate_to_int64(Vec8d x)
Vec2q truncate_to_int64_limited(Vec2d x)
Vec4q truncate_to_int64_limited(Vec4d x)
Vec8q truncate_to_int64_limited(Vec8d x)

defined for Vec2d, Vec4d, Vec8d

description truncates floating point numbers towards zero and returns
signed integer vector.
The _limited versions are limited to abs(x) < 231. Outside of
this range, the result is implementation dependent.

efficiency truncate_to_int64: poor
truncate_to_int64_limited: medium

Example:

Vec4d a(1.0, 1.5, 2.0, 2.5);

Vec4q b = truncate_to_int64(a); // b = (1,2,2,2)

method Vec4f to_float(Vec4i)
Vec8f to_float(Vec8i)
Vec16f to_float(Vec16i)

defined for Vec4i, Vec8i, Vec16i

description converts signed integers to single precision float

efficiency medium
Example:

Vec4i a(0, 1, 2, 3);
Vec4f b = to_float(a); // b = (0.0f, 1.0f, 2.0f, 3.0f)

method Vec4d to_double(Vec4i)
Vec8d to_double(Vec8i)

defined for Vec4i, Vec8i

description converts signed 32-bit integers to double precision float

efficiency medium
Example:

Vec4i a(0, 1, 2, 3);
Vec4d b = to_double(a); // b = (0.0, 1.0, 2.0, 3.0)

method Vec2d to_double(Vec2q x)
Vec4d to_double(Vec4q x)
Vec8d to_double(Vec8q x)
Vec2d to_double_limited(Vec2q x)
Vec4d to_double_limited(Vec4q x)
Vec8d to_double_limited(Vec8q x)

defined for Vec2q, Vec4q, Vec8q

description converts signed 64-bit integers to double precision float.
The _limited versions are limited to abs(x) < 231. Outside of
this range, the result is implementation dependent.

efficiency to_double: poor
to_double_limited: medium

Example:

Vec2q a(0, 1);
Vec2d b = to_double(a); // b = (0.0, 1.0)

method Vec2d to_double_low(Vec4i)
Vec2d to_double_high(Vec4i)

defined for Vec4i

description converts signed 32-bit integers to double precision float

efficiency medium
Example:

Vec4i a(0, 1, 2, 3);
Vec2d b = to_double_low(a); // b = (0.0, 1.0)
Vec2d c = to_double_high(a); // c = (2.0, 3.0)

method concatenating vectors

defined for all 128-bit and 256-bit vector classes and corresponding
boolean vector classes

description two 128-bit vectors can be concatenated into one 256-bit
vector of the corresponding type by calling a constructor.
two 256-bit vectors can be concatenated into one 512-bit
vector of the corresponding type by calling a constructor.

efficiency good
Example:

Vec4i a(10,11,12,13);
Vec4i b(20,21,22,23);
Vec8i c(a, b); // c = (10,11,12,13,20,21,22,23)

method get_low, get_high

defined for all 256-bit and 512-bit vector classes

description one big vector can be split into two vectors of half the size
by calling the methods get_low and get_high

efficiency good
Example:

Vec8i a(10,11,12,13,14,15,16,17);
Vec4i b = a.get_low(); // b = (10,11,12,13)
Vec4i c = a.get_high(); // c = (14,15,16,17)

method extend_low, extend_high

defined for Vec16c, Vec16uc, Vec8s, Vec8us, Vec4i, Vec4ui,

Vec32c, Vec32uc, Vec16s, Vec16us, Vec8i, Vec8ui, Vec16i,
Vec16ui

description extends integers to a larger number of bits per element.
Unsigned integers are zero-extended, signed integers are
sign-extended.

efficiency good
Example:

Vec8s a(-2, -1, 0, 1, 2, 3, 4, 5);
Vec4i b = extend_low(a); // b = (-2, -1, 0, 1)
Vec4i c = extend_high(a); // c = (2, 3, 4, 5)

method extend_low, extend_high

defined for Vec4f, Vec8f, Vec16f

description extends single precision floating point numbers to double
precision

efficiency good
Example:

Vec4f a(1.0f, 1.1f, 1.2f, 1.3f);
Vec2d b = extend_low(a); // b = (1.0, 1.1)
Vec2d c = extend_high(a); // c = (1.2, 1.3)

method compress

defined for Vec8s, Vec8us, Vec4i, Vec4ui, Vec2q, Vec2uq
Vec16s, Vec16us, Vec8i, Vec8ui, Vec4q, Vec4uq, Vec16i,
Vec16ui, Vec8q, Vec8uq

description reduces integers to a lower number of bits per element.
Overflow and underflow wraps around

efficiency medium
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec8s c = compress(a, b); // c = (10,11,12,13,20,21,22,23)

method compress

defined for Vec2d, Vec4d, Vec8d

description reduces double precision floating point numbers to single
precision

efficiency medium
Example:

Vec2d a(1.0, 1.1);
Vec2d b(2.0, 2.1);
Vec4f c = compress(a, b); // c = (1.0f, 1.1f, 2.0f, 2.1f)

method compress_saturated

defined for Vec8s, Vec8us, Vec4i, Vec4ui, Vec2q, Vec2uq
Vec16s, Vec16us, Vec8i, Vec8ui, Vec4q, Vec4uq, Vec16i,
Vec16ui, Vec8q, Vec8uq

description reduces integers to a lower number of bits per element.
Overflow and underflow saturates

efficiency medium (worse than compress in most cases)
Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(20, 21, 22, 23);
Vec8s c = compress_saturated(a, b);
// c = (10,11,12,13,20,21,22,23)

Conversion between boolean vector types

method to_bits

defined for all boolean vectors, except Vec128b, Vec256b, Vec512b

description converts a boolean vector to an integer with one bit per
element.

efficiency good for Vec8qb, Vec16ib, Vec8db, Vec16fb when AVX512
used. Medium otherwise

Example:

Vec4i a(10, 11, 12, 13);
Vec4i b(12, 11, 10, 9);
Vec4ib f = a > b; // (false, false, true, true)
uint8_t g = to_bits(f); // = 0x0C (1100 binary)

(The order is not reversed, but in the comments above, the vector elements are
listed in little endian order, while the binary number is written in big endian order)

method to_Vec4ib, to_Vec8ib, to_Vec16ib,
to_Vec2qb, to_Vec4qb, to_Vec8qb,
to_Vec4fb, to_Vec8fb, to_Vec16fb,
to_Vec2db, to_Vec4db, to_Vec8db

defined for all boolean vectors for 32-bit and 64-bit integers, float and
double

description converts an integer bit-field to a boolean vector

efficiency good for Vec8qb, Vec16ib, Vec8db, Vec16fb when AVX512
used. Medium or poor otherwise

Example:

uint8_t a = 0xC2; // 11000010 binary
Vec8qb b = to_vec8qb(a);
// = false, true, false, false, false, false, true, true

(The order is not reversed, but in the comments above, the vector elements are
listed in little endian order, while the binary number is written in big endian order)

method conversion between boolean vectors of same size and
element size

defined for Vec4ib ↔ Vec4fb
Vec8ib ↔ Vec8fb
Vec16ib ↔ Vec16fb
Vec2qb ↔ Vec2db
Vec4qb ↔ Vec4db
Vec8qb ↔ Vec8db

description Boolean vectors for use with different types of vectors with
the same bit size can be converted to each other.

efficiency good
Example:

Vec4i a(0,1,2,3);
Vec4i b(4,3,2,1);
Vec4ib f = a > b; // f = (false,false,false,true)
Vec4fb g = Vec4fb(f); // g = (false,false,false,true)

method conversion from boolean vectors to integer vectors of the
same size and element size

defined for Vec16cb → Vec16c
Vec32cb → Vec32c
Vec8sb → Vec8s
Vec16sb → Vec16s
Vec4ib, Vec4fb → Vec4i
Vec8ib, Vec8fb → Vec8i
Vec2qb, Vec2db → Vec2q
Vec4qb, Vec4db → Vec4q
Not defined for vectors bigger than 256 bits.

description Boolean vectors can be converted to integer vectors of the
same size and bit size. The result will be -1 for true and 0
for false.

efficiency good
Example:

Vec4i a(0,1,2,3);
Vec4i b(4,3,2,1);
Vec4ib f = a > b; // f = (false,false,false,true)
Vec4i g = Vec4i(f); // g = (0, 0, 0, -1)

Conversion the other way, e.g. from Vec4i to Vec4ib is possible for vector
types smaller than 512 bits if the input vector contains -1 for true and 0 for false,
but the result is implementation dependent and possibly wrong and inconsistent if
the input vector contains any other values than 0 and -1. To prevent errors, it is
recommended to use a comparison instead for converting an integer vector to a
boolean vector. For example:

Vec4i a(-1,0,1,2);
Vec4ib f = (a != 0); // f = (true,false,true,true)

Random number generator
The files ranvec1.h and ranvec1.cpp define a high quality pseudo-random
number generator with vector output. These files are contained in the sub-archive
named "special.zip". This generator is useful for producing random numbers for
simulation and other Monte Carlo applications. Add the file ranvec1.cpp to your
project and compile for the appropriate instruction set. This example shows a
simple use of the random number generator:

// Example for random number generator
// Remember to link ranvec1.cpp into the project

#include <stdio.h>

#include "vectorclass.h"
#include "ranvec1.h"

int main() {
 // Arbitrary seed
 int seed = 1;
 // Create an instance of Ranvec1 class with type 3
 Ranvec1 ran(3);
 // Initialize with seed
 ran.init(seed);
 // Generate a vector of 8 random integers below 100
 Vec8i ri = ran.random8i(0,99);
 // Generate a vector of 8 random floats
 Vec8f rf = ran.random8f();
 int i;
 // Output the 8 random integers
 printf("\nRandom integers in interval 0 - 99\n");
 for (i=0; i<ri.size(); i++) printf("%3i ", ri[i]);
 // Output the 8 random floats
 printf("\nRandom floats in interval 0 - 1\n");
 for (i=0; i<rf.size(); i++) printf("%7.4f ", rf[i]);
 printf("\n");
 return 0;
}

The optional parameter for the constructor of the class Ranvec1 defines the type
of random number generator to use:

Parameter for constructor Generator type

1 MWC. Multiply-With-Carry Generator. Use this for
small applications where speed is important.
(cycle length > 4∙1019)

2 MTGP. A variant of Mersenne Twister. Use this for
applications with multiple threads.
(cycle length > 103375)

3 MWC + MTGP combined. Use this for the best
possible randomness and for large applications with
many threads.
(cycle length > 103395)

It is necessary to initialize the random number generator with a seed, using either
the function init or initByArray. The generator will produce only zeroes if it
has not been initialized with any of the init functions.

The random number sequence depends on the seed. A different seed will
produce a different sequence of random numbers. You can reproduce a random
number sequence exactly after initializing again with the same seed. You may

use simple values like 1, 2, 3,... for seeds in a series of simulations if you want to
be able to reproduce the results later. If you want a non-reproducible sequence
then you need a seed from some source of genuine randomness. The function
PhysicalSeed in the asmlib library is useful for this purpose.

If the application has multiple threads then it is necessary to make a separate
instance of the class Ranvec1 for each thread that uses random numbers. It is
not safe to access the same Ranvec1 object from more than one thread. The
separate objects must have different seeds. Applications with many threads or
many random number streams may specify generator type 3 for the constructor
and use the init function with two seeds, one for the MWC generator and one
for the MTGP generator. At least the second seed must be different for each
instance. A theoretical discussion of this is given in the theory article cited below.

The generator can produce vector outputs with different vector sizes. The best
performance is obtained when the vector size fits the instruction set: SSE2 or
higher for 128 bit vectors. AVX2 or higher for 256 bit vectors. AVX512 or higher
for 512 bit vectors. The define MAX_VECTOR_SIZE determines whether the higher
vector sizes are available. Depending on details of the application, it may or may
not be possible to reproduce a simulation result exactly when the vector size is
changed.

The theory of the Ranvec1 package including the different generators,
multiprocessing and vector processing is described in the article:
Fog, Agner: “Pseudo-Random Number Generators for Vector Processors and
Multicore Processors.” Journal of Modern Applied Statistical Methods vol. 14, no.
1, 2015, article 23. http://digitalcommons.wayne.edu/jmasm/vol14/iss1/23/

Member functions for class Ranvec1:

constructor Ranvec1(int gtype)

description Constructor for Ranvec1 class. See the table above for
values of the generator type gtype.

efficiency medium

method void init(int seed)

description Initialization with one seed. Any value is allowed for seed.
Use a different value of seed each time to get a different
random number sequence.

efficiency poor

method void init(int seed1, int seed2)

http://digitalcommons.wayne.edu/jmasm/vol14/iss1/23/
http://www.agner.org/optimize/#asmlib

description Initialization with two seeds. The random number sequence
depends on both seeds. If the generator type is 3 then
seed1 is used for the MWC generator and seed2 is used
for the MTGP generator. The value of seed2 should be
different for each thread in multithreaded applications.

efficiency poor

method void initByArray(int const seeds[], int numSeeds)

description Initialization with multiple seeds. The seeds array must
contain numSeed integers. The random number sequence
depends on all these integer seeds. This can be useful for
security applications in order to make it difficult to guess
the seeds. The best security is obtained with generator
type 3. The generators are not guaranteed to be
cryptographically safe.

efficiency poor

method uint32_t random32b()
uint64_t random64b()

description Returns an integer of 32 or 64 random bits

efficiency medium

method Vec4ui random128b()
Vec8ui random256b()
Vec16ui random512b()

description Returns an integer vector of 128, 256 or 512 random bits
(MAX_VECTOR_SIZE determines which of these functions
are available)

efficiency medium

method int random1i(int min, int max)
Vec4i random4i(int min, int max)
Vec8i random8i(int min, int max)
Vec16i random16i(int min, int max)

description Returns a random integer or a vector of random integers
with uniform distribution in the interval min ≤ x ≤ max.
(The distribution may be slightly inaccurate when the
interval size is large and not a power of 2. See below for a
more accurate version. MAX_VECTOR_SIZE determines

which of these functions are available)

efficiency medium

method int random1ix(int min, int max)
Vec4i random4ix(int min, int max)
Vec8i random8ix(int min, int max)
Vec16i random16ix(int min, int max)

description Same as above, but accurate.
(The accurate version of these functions use a rejection
method as described in the theory article mentioned above.
To reproduce a sequence, the same function with the same
vector size must be called. MAX_VECTOR_SIZE
determines which of these functions are available)

efficiency somewhat slower than the above

method float random1f()
Vec4f random4f()
Vec8f random8f()
Vec16f random16f()

description Returns a random floating point number or a vector of
random floating point numbers with uniform distribution in
the interval 0 ≤ x < 1. The resolution is 2-24.
(A value in the interval 0 < x ≤ 1 can be obtained as 1 - x.
MAX_VECTOR_SIZE determines which of these functions
are available)

efficiency medium

method double random1d()
Vec2d random2d()
Vec4d random4d()
Vec8d random8d()

description Returns a random double precision number or a vector of
random double precision numbers with uniform distribution
in the interval 0 ≤ x < 1. The resolution is 2-52.
(A value in the interval 0 < x ≤ 1 can be obtained as 1 - x.
MAX_VECTOR_SIZE determines which of these functions
are available)

efficiency medium

Special applications

3-dimensional vectors

The header file "vector3d.h" in the sub-archive named "special.zip" defines 3-
dimensional vectors for use in geometry and physics.

Vector classes defined in vector3d.h:
vector class precision elements per

vector
total bits recommended

instruction set

Vec3f single 3 128 SSE3

Vec3d double 3 256 AVX

These vector classes are actually using vector registers that can hold 4 floats or
4 doubles, respectively. The last element in the vector register is not used.

Most operators and functions are similar to those of Vec4f and Vec4d. A
constructor with the three coordinates is defined:

method constructor with 3 elements as parameter

defined for Vec3f, Vec3d

description contents is initialized with x, y, z coordinates

Note that some operators and functions inherited from Vec4f and Vec4d make
little or no sense. For example, the > operator will make a not very useful
element-by-element comparison rather than comparing vector lengths:

Vec3f a(10,11,12);
Vec3f b(12,11,10);
Vec4fb c = a > b; // c = (false,false,true,false)
bool d = vector_length(a) > vector_length(b); // d = false

Member functions:

member function get_x(), get_y(), get_z()

defined for Vec3f, Vec3d

description extract a single coordinate

member function extract(index)

defined for Vec3f, Vec3d

description extracts coordinate x, y or z for index = 0, 1 or 2,
respectively

Arithmetic operators:

operators +, -, *, /

defined for Vec3f, Vec3d

description element-by-element operation

Comparison operators:

operators ==, !=

defined for Vec3f, Vec3d

description returns a boolean telling if vectors are equal or not equal.
The unused fourth element is ignored.

There are several different ways to multiply 3-dimensional vectors:

operator vector * vector

defined for Vec3f, Vec3d

description element-by-element multiplication

operator vector * scalar, scalar * vector

defined for Vec3f, Vec3d

description all elements are multiplied by the scalar

function dot_product(vector, vector)

defined for Vec3f, Vec3d

description returns the dot-product as a scalar

function cross_product(vector, vector)

defined for Vec3f, Vec3d

description returns the cross-product as a vector perpendicular to the
two input vectors

Other functions:

function vector_length(vector)

defined for Vec3f, Vec3d

description returns the length as a scalar

function normalize_vector(vector)

defined for Vec3f, Vec3d

description returns a vector with unit length and same direction as the
input vector

function rotate(vector c0, vector c1, vector c2, vector a)

defined for Vec3f, Vec3d

description rotates vector a by multiplying with the matrix defined by
the columns (c0,c1,c2). (If the rotation matrix is defined by
rows then it must first be transposed to get the column
vectors, see page 108 for an example).

Example:

Vec3f a(11,22,33);
Vec3f c0(0,1,0), c1(0,0,1), c2(1,0,0);
Vec3f b = rotate(c0, c1, c2, a); // b = (22,33,11)

function to_single

defined for Vec3d

description converts to Vec3f

function to_double

defined for Vec3f

description converts to Vec3d

Complex number vectors

The header file "complexvec.h" in the sub-archive named "special.zip" defines
classes for complex numbers and complex vectors for use in mathematics and
electronics.

Classes defined in complexvec.h:
vector class precision complex

numbers per
vector

total bits recommended
instruction set

Complex2f single 1 128 SSE2

Complex4f single 2 128 SSE2

Complex8f single 4 256 AVX

Complex2d double 1 128 SSE2

Complex4d double 2 256 AVX
The class Complex2f uses the lower half of a 128-bit register, while the upper
half of the register is unused. The other complex classes use a full 128-bit or
256-bit register.

The minimum instruction set is SSE2. The performance of multiplication is
improved by compiling for the SSE3 instruction set. The performance of
multiplication and division is improved by compiling for the FMA3 or FMA4
instruction set.

Constructors:

method default constructor

defined for all complex classes

description contents is not initialized

method constructor with real and imaginary parts

defined for all complex classes

description all elements are initialized with real and imaginary parts
Example:

Complex4f a(1.0f, 2.0f, 3.0f, 4.0f);
// a = (1+2i, 3+4i)

method constructor with one real and one imaginary part

defined for all complex classes

description all elements are initialized with the same (real,imaginary)
pair

method constructor with one real part only

defined for all complex classes

description all elements are initialized with the same real number. The
imaginary parts are set to zero

method constructor with one Complex2f or Complex2d

defined for Complex4f, Complex8f, Complex4d

description all elements are initialized with the same (real,imaginary)
pair

method constructor with two Complex4f or four Complex2f

defined for Complex8f

description vectors are concatenated

Member functions:

method load

defined for all complex classes

description all elements are initialized from a float or double array
containing alternating real and imaginary parts

Example:

double x[4] = {1.0, 2.0, 3.0, 4.0};
Vec4d a;
a.load(x); // a = (1+2i, 3+4i)

method get_low, get_high

defined for Complex4f, Complex8f, Complex4d

description get lower or upper half or the vector as a Complex2f,
Complex4f, Complex2d, respectively

method extract(index)

defined for all complex classes

description extract a single real or imaginary part. index = 0 gives real
part of first element, index = 1 gives imaginary part of first
element, etc.

Operators:

operators +, +=, -, -=, unary minus, *, *=, /, /=

defined for all complex classes

description arithmetic functions between two complex numbers:
(a+i*b) + (c+i*d) = ((a+c) + i*(b+d))
(a+i*b) - (c+i*d) = ((a-c) + i*(b-d))
(a+i*b) * (c+i*d) = ((a*c-b*d) + i*(a*d+b*c))
(a+i*b) / (c+i*d) = ((a*c+b*d)+i*(b*c-a*d))/(c2+d2)

Operators combining complex and real
operators +, +=, -, -=, *, *=, /, /=

defined for all complex classes

description arithmetic functions between a complex number and a real:
(a+ib) + c = ((a+c) + i*b)
(a+ib) - c = ((a-c) + i*b)
(a+ib) * c = ((a*c) + i*(b*c))
(a+ib) / c = ((a/c) + i*(b/c))
c / (a+ib) = ((a*c) - i*(b*c))/(a2+b2)

Complex conjugate:

operators ~

defined for all complex classes

description complex conjugate of all vector elements:
~(a+i*b) = (a-i*b)

Comparison operators:

operators ==, !=

defined for all complex classes

description returns a boolean for Complex2f and Complex2d.
returns a boolean vector for Complex4f, Complex8f,
Complex4d. The output can be used in the select function

Functions:

function abs

defined for all complex classes

description abs(a+i*b) = sqrt(a*a+b*b)

function sqrt

defined for all complex classes

description square root of complex number

function select

defined for all complex classes

description selects between the elements of two vectors
Example:

Complex4f a(1,2,3,4);
Complex4f b(1,2,5,6);
Complex4f c = select(a == b, Complex4f(0), b);
// c = (0+i*0, 5+i*6)

function to_single

defined for Complex2d, Complex4d

description converts to Complex2f, Complex4f

function to_double

defined for Complex2f, Complex4f

description converts to Complex2d, Complex4d

function cexp

defined for all complex classes

description complex exponential function:
cexp(a+i*b) = exp(a)*(cos(b)+i*sin(b))
For best performance, include vectormath.h before
complexvec.h and use Intel SVML library as explained on
page 40.

Quaternions

The header file "quaternion.h" in the sub-archive named "special.zip" defines
classes for quaternions (hypercomplex numbers) for use in mathematics and
geometry.

Classes defined in quaternion.h:
vector class precision quaternions

per vector
total bits recommended

instruction set

Quaternion4f single 1 128 SSE2

Quaternion4d double 1 256 AVX

Constructors:
method default constructor

defined for Quaternion4f, Quaternion4d

description contents is not initialized

method constructor with real and imaginary parts

defined for Quaternion4f, Quaternion4d

description initialized with real and imaginary parts
Example:

Quaternion4f a(1.0f, 2.0f, 3.0f, 4.0f);
// a = (1 + 2*i + 3*j + 4*k)

method constructor with one real part only

defined for Quaternion4f, Quaternion4d

description initialized with the real number. The imaginary parts are set
to zero

method constructor with two Complex2f or two Complex2d

defined for Quaternion4f, Quaternion4d

description The quaternion is constructed from two complex numbers:
Quaternion((a+b*i),(c+d*i)) = (a+b*i) + (c+d*i)*j
= a+b*i+c*j+d*k

method constructor with vector

defined for Quaternion4f(Vec4f), Quaternion4d(Vec4d)

description The four vector elements go into the real part and the three
imagniary parts

method constructor from 3-dimensional vector

defined for Quaternion4f(Vec3f), Quaternion4d(Vec3d)

description (x,y,z) is converted to (x*i+y*j+z*k). Conversion from
quaternion to 3-dimensional vector is also possible. The
cross_product function for Vec3f and Vec3d corresponds to
the operator * for Quaternion4f and Quaternion4d.
Note that these conversions are only available if vector3d.h
is included before quaternion.h

Member functions:

method load(pointer)

defined for Quaternion4f, Quaternion4d

description The quaternion is read from a float or double array
containing the real part followed by the imaginary parts

method store(pointer)

defined for Quaternion4f, Quaternion4d

description The quaternion is stored as four values in a float or double
array

method get_low(), get_high()

defined for Quaternion4f, Quaternion4d

description Split the quaternion into two complex numbers.
q = q.get_low() + q.get_high()*j

method real()

defined for Quaternion4f, Quaternion4d

description Get the real part as a float or double

method imag()

defined for Quaternion4f, Quaternion4d

description Get the imaginary parts, with the real part set to zero

method extract(index)

defined for Quaternion4f, Quaternion4d

description extract a single real or imaginary part. index = 0 gives real
part of first element, index = 1 gives first imaginary part,
etc.

method to_vector()

defined for Quaternion4f, Quaternion4d

description Convert to a vector Vec4f or Vec4d containing the real part
and the imaginary parts.

Operators:

operators +, +=, -, -=, unary minus, *, *=, /, /=

defined for Quaternion4f, Quaternion4d

description Arithmetic functions between two quaternions.
Multiplication is not commutative. Division of quaternions is
ambiguous. Here, devision is defined as
q / r = q * reciprocal(r).

Operators combining quaternion and real
operators +, +=, -, -=, *, *=, /, /=

defined for Quaternion4f, Quaternion4d

description Arithmetic functions between a quaternion and a real

Complex conjugate:

operators ~

defined for Quaternion4f, Quaternion4d

description The conjugate is defined as
~(a+b*i+c*j+d*k) = (a-b*i-c*j-d*k)

Comparison operators:

operators ==, !=

defined for Quaternion4f, Quaternion4d

description returns a boolean

Functions:

function abs

defined for Quaternion4f, Quaternion4d

description abs(a + b*i + c*j + d*k) = sqrt(a*a + b*b + c*c + d*d)

function select

defined for Quaternion4f, Quaternion4d

description selects between two quaternions

function to_single

defined for Quaternion4d

description converts Quaternion4d to Quaternion4f

function to_double

defined for Quaternion4f

description converts Quaternion4f to Quaternion4d

Instruction sets and CPU dispatching
Almost every new generation of microprocessors has a new extension to the
instruction set. Most of the new instructions relate to vector operations. We can
take advantage of these new instructions to make vector code more efficient. The
vector class library requires the SSE2 instruction set as a minimum, but it makes
more efficient code when a higher instruction set is used. The following table
indicates things that are improved for each successive instruction set extension.

Instruction
set

Year
introduced

Functions that are improved

SSE2 2001 minimum requirement for vector class library

SSE3 2004 floating point horizontal_add

SSSE3 2006 permute, blend and lookup functions, integer
horizontal_add, integer abs

SSE4.1 2007 select, blend, horizontal_and, horizontal_or, integer
max/min, integer multiply (32 and 64 bit), integer
divide (32 bit), 64-bit integer compare (==, !=), floating
point round, truncate, floor, ceil.

SSE4.2 2008 64-bit integer compare (>, >=, <, <=). 64 bit integer
max, min

AVX 2011 all operations on 256-bit floating point vectors: Vec8f,
Vec4d

XOP
AMD only

2011 on 128-bit integer vectors: compare,
horizontal_add_x, rotate_left, blend, lookup

FMA4
AMD only

2011 floating point code containing multiplication followed
by addition

FMA3 2012 floating point code containing multiplication followed
by addition

AVX2 2013 All operations on 256-bit integer vectors: Vec32c,
Vec32uc, Vec16s, Vec16us, Vec8i, Vec8ui, Vec4q,
Vec4uq. Gather.

AVX512f expected
2016

All operations on 512-bit integer and floating point
vectors: Vec16i, Vec16ui, Vec8q, Vec8uq

The vector class library makes it possible to compile for different instruction sets
from the same source code. Different versions are made simply by recompiling
the code with different compiler options. The desired instruction set can be
specified on the compiler command line as follows:

Instruction
set

Gnu and
Clang
compiler

Intel
compiler
Linux

Intel compiler
Windows

MS compiler

SSE2 -msse2 -msse2 /arch:sse2 /arch:sse2

SSE3 -msse3 -msse3 /arch:sse3 /arch:sse2
-D__SSE3__

SSSE3 -mssse3 -mssse3 /arch:ssse3 /arch:sse2
-D__SSSE3__

SSE4.1 -msse4.1 -msse4.1 /arch:sse4.1 /arch:sse2
-D__SSE4_1__

SSE4.2 -msse4.2 -msse4.2 /arch:sse4.2 /arch:sse2
-D__SSE4_2__

AVX -mavx
-fabi-version=0

-mavx /arch:avx /arch:avx

XOP -mavx
-mxop
-fabi-version=0

not available not available /arch:avx
-D__XOP__

FMA4 -mfma4 not available not available not available

FMA3 -mfma -mfma /Qfma not available

AVX2 -mavx2
-fabi-version=0

-mavx2 /arch:avx2 /arch:avx
-D__AVX2__

AVX512F -mavx512f -xMIC-
AVX512

/arch:MIC-
AVX512

not available

The Microsoft compiler supports only a few of the instruction sets, but other
instruction sets can be specified as defines which are detected in the
preprocessing directives of the vector class library.

The FMA3 and FMA4 instruction sets are not always handled directly by the code
in the vector class library, but by the compiler. The compiler may automatically
combine a floating point multiplication and a subsequent addition or subtraction
into a single instruction, unless you have specified a strict floating point model.

There is no advantage in using the biggest vector classes unless the
corresponding instruction set is specified, but it can be convenient to use these
classes anyway if the same source code is compiled for multiple versions with
different instruction sets. Each large vector will simply be split up into two or four
smaller vectors when compiling for a lower instruction set.

It is recommended to make an automatic CPU dispatcher that detects at run time
which instruction sets are supported by the actual CPU and operating system,
and selects the best version of the code accordingly. For example, you may

compile the code four times for four different instruction sets: SSE2, SSE4.1,
AVX2 and AVX512. The CPU dispatcher will then set a function pointer to point to
the appropriate version. You can use the function instrset_detect (see
below, page 92) to detect the supported instruction set. The file
dispatch_example.cpp shows an example of how to make a CPU dispatcher
that selects the appropriate code version. The critical part of the program is
called through a function pointer. This function pointer initially points to the CPU
dispatcher, which is activated the first time the function is called. The CPU
dispatcher changes the function pointer to point to the best version of the code,
and then continues in the selected code. The next time the function is called, the
call goes directly to the right version of the code without calling the CPU
dispatcher first. It is probably not necessary to make a branch for instruction sets
prior to SSE2 because old computers without SSE2 are rarely in use today, and
certainly not for demanding applications.

There is an important restriction when you are combining code compiled for
different instruction sets: Do not transfer any data as vector objects between
different pieces of code that are compiled for different instruction sets, because
the vectors may be represented differently under the different instruction sets. It
is recommended to transfer the data as arrays instead between different parts of
the program that are compiled for different instruction sets.

The following functions, defined in the file instrset_detect.cpp, can be used
for detecting at run time which instruction set is supported.

function int instrset_detect(void)

description returns one of these values:
0: 80386 instruction set
1: or above = SSE supported by CPU (not testing for O.S.
support)
2: or above = SSE2
3: or above = SSE3
4: or above = Supplementary SSE3 (SSSE3)
5: or above = SSE4.1
6: or above = SSE4.2
7: or above = AVX supported by CPU and O.S.
8: or above = AVX2
9: or above = AVX512F

efficiency poor

function bool hasFMA3(void)

description returns true if FMA3 is supported

efficiency poor

function bool hasFMA4(void)

description returns true if FMA4 is supported

efficiency poor

function bool hasXOP(void)

description returns true if XOP is supported

efficiency poor

Performance considerations

Comparison of alternative methods for writing SIMD code

The SIMD (Single Instruction Multiple Data) instructions play an important role
when software performance has to be optimized. Several different ways of writing
SIMD code are discussed below.

Assembly code
Assembly programming is the ultimate way of optimizing code. Almost everything
is possible in assembly code, but it is quite tedious and error-prone. There are far
more than a thousand different instructions, and it is quite difficult to remember
which instruction belongs to which instruction set extension. Assembly code is
difficult to document, difficult to debug and difficult to maintain.

Intrinsic functions
Several compilers support intrinsic functions that are direct representations of
machine instructions. A big advantage of using intrinsic functions rather than
assembly code is that the compiler takes care of register allocation, function
calling conventions and other details which are often difficult to keep track of
when writing assembly code. Another advantage is that the compiler can
optimize the code further by such methods as scheduling, interprocedural
optimization, function inlining, constant propagation, common subexpression
elimination, loop invariant code motion, induction variables, etc. Many of these
optimizations are rarely used in assembly code because they make the code

unwieldy and unmanageable. Consequently, the combination on intrinsic
functions and a good optimizing compiler can often produce more efficient code
than what a decent assembly programmer would do.

A disadvantage of intrinsic functions is that these functions have long names that
are difficult to remember and which make the code look awkward.

Intel vector classes
Intel has published a number of vector classes in the form of three C++ header
files named fvec.h, dvec.h and ivec.h. These are simpler to use than the
intrinsic functions, but unfortunately the Intel vector class files have not been
updated to support the AVX and later instruction sets, they provide only the most
basic functionality, and Intel has done very little to promote, support or develop
them. The Intel vector classes have no way of converting data between arrays
and vectors. This leaves us with no way of putting data into a vector other than
specifying each element separately - which pretty much destroys the advantage
of using vectors. The Intel vector classes work only with Intel and MS compilers.

The VCL vector class library
The present vector class library has several important features, listed on page 3.
It provides the same level of optimization as the intrinsic functions, but it is much
easier to use. This makes it possible to make optimal use of the SIMD
instructions without the need to remember the thousands of different instructions
or intrinsic functions. It also takes away the hassle of remembering which
instruction belongs to which instruction set extension and making different code
versions for different instruction sets.

Automatic vectorization
A good optimizing compiler is able to automatically transform linear code to
vector code in simple cases. Typically, a good compiler will vectorize an algorithm
that loops through an array and does some calculations on each array element.

Automatic vectorization is the easiest way of generating SIMD code, and I would
recommend to use this method when it works. Automatic vectorization may fail or
produce suboptimal code in the following cases:

• when the algorithm is too complex.
• when data have to be re-arranged in order to fit into vectors and it is not

obvious to the compiler how to do this or when other parts of the code
needs to be changed to handle the re-arranged data.

• when it is not known to the compiler which data sets are bigger or smaller
than the vector size.

• when it is not known to the compiler whether the size of a data set is a
multiple of the vector size or not.

• when the algorithm involves calls to functions that are defined elsewhere
or cannot be inlined and which are not readily available in vector versions.

• when the algorithm involves many branches that are not easily vectorized.
• when floating point operations have to be reordered or transformed and it

is not known to the compiler whether these transformations are
permissible with respect to precision, overflow, etc.

• when functions are implemented with lookup tables.

The present vector class library is intended as a good alternative when automatic
vectorization fails to produce optimal code for any of these reasons.

Choice of compiler and function libraries

The vector class library has support for the following four compilers:

Microsoft Visual Studio
This is a very popular compiler for Windows because it has a good and user
friendly IDE (Integrated Development Environment). Make sure you are
compiling for the "unmanaged" version, i. e. not using the .net framework.

The Microsoft compiler optimizes reasonably well, but not as good as the other
compilers, and it does not support all instruction sets.

Intel Studio / Intel Composer
This compiler optimizes very well. Intel also provides some of the best optimized
function libraries for mathematical and other purposes. Unfortunately, the Intel
compilers and some of the function libraries favor Intel CPUs, and often produce
code that runs slower than necessary on CPUs of any other brand than Intel. It is
possible to work around this limitation for the Intel function libraries and in some
cases also for the compiler. See my blog and my C++ manual for details. Intel's
compilers are available for Windows, Linux and Mac platforms.

Gnu C++ compiler
This compiler produced the best optimizations in my tests. The g++ compiler is
available for all x86 and x86-64 platforms. The math functions in the glibc library
are currently not fully optimized.

Clang C++ compiler
This compiler has now been developed to a stage where it is feasible for our
purpose. The performance is similar to the Gnu compiler and it supports the
same platforms. Unfortunately, the Clang developers are not very effective in
fixing reported bugs, so you may encounter problems. Compile with option
-std=c++0x or higher.

http://www.agner.org/optimize/#manual_cpp
http://www.agner.org/optimize/blog/read.php?i=49

Choosing the optimal vector size and precision

The time it takes to make a vector operation such as addition or multiplication
typically depends on the total number of bits in the vector rather than the number
of elements. For example, it takes the same time to make a vector addition with
vectors of eight single precision floats (Vec8f) as with vectors of four double
precision floats (Vec4d). Likewise, it takes the same time to add two integer
vectors whether the vectors have eight 32-bit integers (Vec8i) or sixteen 16-bit
integers (Vec16s). Therefore, it is advantageous to use the lowest precision or
resolution that fits the data. It may even be worthwhile to modify a floating point
algorithm to reduce loss of precision if this allows you to use single precision
rather than double precision. However, you should also take into account the
time it takes to convert data from one precision to another. Therefore, it is not
good to mix different precisions. The 8-bit and 16-bit integers can not be used
with vectors bigger than 256 bits.

The total vector size is 128 bits, 256 or 512 bits. Whether it is advantageous to
use the biggest vector size depends on the instruction set. The 256-bit floating
point vectors (Vec8f and Vec4d) are only advantageous when the AVX
instruction set is available and enabled. The 256-bit integer vectors (Vec32c,
Vec16s, Vec8i, Vec4q, etc.) are only advantageous under the AVX2 instruction
set. The 512-bit integer and floating point vectors (Vec16f, Vec8d, Vec16i,
Vec8q, etc.) will be available with the future AVX512F instruction set, expected in
2016.

Putting data into vectors

The different ways of putting data into vectors are listed on page 10. If the vector
elements are constants known at compile time, then the fastest way is to use a
constructor:

Vec4i a(1); // a = (1, 1, 1, 1)
Vec4i b(2, 3, 4, 5); // b = (2, 3, 4, 5)

If the vector elements are not constants then the fastest way is to load from an
array with the method load or load_a. However, it is not good to load data from
an array immediately after writing the data elements to the array one by one,
because this causes a "store forwarding stall" (see my microarchitecture
manual). This is illustrated in the following examples:

// Example 1. Make vector with constructor
int MakeMyData(int i); // make whatever data we need
void DoSomething(Vec4i & data); // handle these data
const int datasize = 1000; // total number data elements
 ...
for (int i = 0; i < datasize; i += 4) {
 Vec4i d(MakeMyData(i), MakeMyData(i+1),

http://www.agner.org/optimize/#manual_microarch
http://www.agner.org/optimize/#manual_microarch

 MakeMyData(i+2), MakeMyData(i+3));
 DoSomething(d);
}

// Example 2. Load from small array
int MakeMyData(int i); // make whatever data we need
void DoSomething(Vec4i & data); // handle these data
const int datasize = 1000; // total number data elements
 ...
for (int i = 0; i < datasize; i += 4) {
 int data4[4];
 for (int j = 0; j < 4; j++) {
 data4[j] = MakeMyData(i+j);
 }
 // store forwarding stall here!
 Vec4i d = Vec4i().load(data4);
 DoSomething(d);
}

// Example 3. Make array a little bigger
int MakeMyData(int i); // make whatever data we need
void DoSomething(Vec4i & data); // handle these data
const int datasize = 1000; // total number data elements
 ...
for (int i = 0; i < datasize; i += 8) {
 int data8[8];
 for (int j = 0; j < 8; j++) {
 data8[j] = MakeMyData(i+j);
 }
 Vec4i d;
 for (int k = 0; k < 8; k += 4) {
 d.load(data8 + k);
 DoSomething(d);
 }
}

// Example 4. Make array full size
int MakeMyData(int i); // make whatever data we need
void DoSomething(Vec4i & data); // handle these data
const int datasize = 1000; // total number data elements
 ...
int data1000[datasize];
int i;
for (i = 0; i < datasize; i++) {
 data1000[i] = MakeMyData(i);
}
Vec4i d;
for (i = 0; i < datasize; i += 4) {
 d.load(data1000 + i);
 DoSomething(d);
}

In example 1, we are combining four data elements into vector d by calling a
constructor with four parameters. This may not be the most efficient way because
it requires several instructions to combine the four numbers into a single vector.

In example 2, we are putting the four values into an array and then loading the
array into a vector. This is causing the so-called store forwarding stall. A store
forwarding stall occurs in the CPU hardware when doing a large read (here 128
bits) immediately after a smaller write (here 32 bits) to the same address range.
This causes a delay of 10 - 20 clock cycles.

In example 3, we are putting eight values into an array and then reading four
elements at a time. If we assume that it takes more than 10 - 20 clock cycles to
call MakeMyData four times then the first four elements of the array will have
sufficient time to make it into the level-1 cache while we are writing the next four
elements. This delay is sufficient to avoid the store forwarding stall.

In example 4, we are putting a thousand elements into an array before loading
them. This is certain to avoid the store forwarding stall.

Example 3 and 4 are likely to be the best solutions. A disadvantage of example 3
is that we need an extra loop. A disadvantage of example 4 is that the large array
takes more cache space.

When the data size is not a multiple of the vector size

It is obviously easier to vectorize a data set when the number of elements in the
data set is a multiple of the vector size. Here, we will discuss different way of
handling the situation when the data do not fit into an integral number of vectors.
We will use the simple example of adding 134 integers stored in an array.

1. handling the remaining data one by one
const int datasize = 134;
const int vectorsize = 8;
const int regularpart = datasize & (-vectorsize); // = 128
// (AND-ing with -vectorsize will round down to nearest
// lower multiple of vectorsize. This works only if
// vectorsize is a power of 2)
int mydata[datasize];
 ... // initialize mydata

Vec8i sum1(0), temp;
int i;
// loop for 8 numbers at a time
for (i = 0; i < regularpart; i += vectorsize) {
 temp.load(mydata+i); // load 8 elements

 sum1 += temp; // add 8 elements
}
int sum = 0;
// loop for the remaining 6 numbers
for (; i < datasize; i++) {
 sum += mydata[i];
}
sum += horizontal_add(sum1); // add the vector sum

2. handling the remaining data with a smaller vector size
const int datasize = 134;
const int vectorsize = 8;
const int regularpart = datasize & (-vectorsize); // = 128
int mydata[datasize];
 ... // initialize mydata

Vec8i sum1(0), temp;
int sum = 0;
int i;
// loop for 8 numbers at a time
for (i = 0; i < regularpart; i += vectorsize) {
 temp.load(mydata+i); // load 8 elements
 sum1 += temp; // add 8 elements
}
sum = horizontal_add(sum1); // sum of first 128 numbers
if (datasize - i >= 4) {
 // get four more numbers
 Vec4i sum2;
 sum2.load(mydata+i);
 i += 4;
 sum += horizontal_add(sum2);
}
// loop for the remaining 2 numbers
for (; i < datasize; i++) {
 sum += mydata[i];
}

3. use partial load for the last vector
const int datasize = 134;
const int vectorsize = 8;
int mydata[datasize];
 ... // initialize mydata

Vec8i sum1(0), temp;
// loop for 8 numbers at a time
for (int i = 0; i < datasize; i += vectorsize) {
 if (datasize - i >= vectorsize) {
 temp.load(mydata+i); // load 8 elements
 }

 else {
 // load the last 6 elements
 temp.load_partial(datasize-i, mydata+i);
 }
 sum1 += temp; // add 8 elements
}
int sum = horizontal_add(sum1); // vector sum

4. read past the end of the array and ignore excess data
const int datasize = 134;
const int vectorsize = 8;
int mydata[datasize];
 ... // initialize mydata

Vec8i sum1(0), temp;
// loop for 8 numbers at a time, reading 136 numbers
for (int i = 0; i < datasize; i += vectorsize) {
 temp.load(mydata+i); // load 8 elements
 if (datasize - i < vectorsize) {
 // set excess data to zero
 // (this is faster than load_partial)
 temp.cutoff(datasize - i);
 }
 sum1 += temp; // add 8 elements
}
int sum = horizontal_add(sum1); // vector sum

5. make array bigger and set excess data to zero
const int datasize = 134;
const int vectorsize = 8;
// round up datasize to 136
const int arraysize =
 (datasize + vectorsize - 1) & (-vectorsize);
int mydata[arraysize];
int i;
 ... // initialize mydata

// set excess data to zero
for (i = datasize; i < arraysize; i++) {
 mydata[i] = 0;
}

Vec8i sum1(0), temp;
// loop for 8 numbers at a time, reading 136 numbers
for (i = 0; i < arraysize; i += vectorsize) {
 temp.load(mydata+i); // load 8 elements
 sum1 += temp; // add 8 elements
}
int sum = horizontal_add(sum1); // vector sum

It is clearly advantageous to increase the array size to a multiple of the vector
size, as in case 5 above. Likewise, if you are storing vector data to an array, then
it is an advantage to make the result array bigger to hold the excess data. If this
is not possible then use store_partial to write the last partial vector to the
array.

It is usually possible to read past the end of an array, as in case 4 above, without
causing problems. However, there is a theoretical possibility that the array is
placed at the very end of the readable data area so that the program will crash
when attempting to read from an illegal address past the end of the valid data
area. To consider this problem, we need to look at each possible method of data
storage:

a) An array declared inside a function, and not static, is stored on the stack.
The subsequent addresses on the stack will contain the return address
and parameters for the function, followed by local data, parameters, and
return address of the next higher function all the way up to main. In this
case there is plenty of extra data to read from.

b) A static or global array is stored in static data memory. The static data
area is often followed by library data, exception handler tables, link tables,
etc. These tables can be seen by requesting a map file from the linker.

c) Data allocated with the operator new are stored on the heap. I have no
information of the size of the end node in a heap.

d) If an array is declared inside a class definition then case (a), (b) or (c)
above applies, depending on how the class instance (object) is created.

These problems can be avoided either by making the array bigger or by aligning
the array to an address divisible by 16 for 128-bit vectors or divisible by 32 for
256-bit vectors. The memory page size is at least 4 kbytes, and always a power
of 2. If the array is aligned by the vector size (16 or 32) then the page boundaries
are certain to coincide with vector boundaries. This makes sure that there is no
memory page boundary between the end of the array and the next vector-size
boundary. Therefore, we can read up to the next vector-size boundary without the
risk of crossing a boundary to an invalid memory page.

A further advantage of aligning the array by 16, 32 or 64 is that reading and
writing vectors from an aligned array may be faster. To align an array by 16 in
Windows, write:

__declspec(align(16)) int mydata[1000];

In Unix-like systems, write:

int mydata[1000] __attribute__((aligned(16)));

It is always recommended to align large arrays for performance reasons if the
code uses vectors. Unfortunately, it may be more complicated to align arrays

created with operator new.

Using multiple accumulators

Consider this function which adds a long list of floating point numbers:

double add_long_list(double const * p, int n) {
 int n1 = n & (-4); // round down n to multiple of 4
 Vec4d sum(0.0);
 int i;
 for (i = 0; i < n1; i += 4) {
 sum += Vec4d().load(p + i); // add 4 numbers
 }
 // add any remaining numbers
 sum += Vec4d().load_partial(n - i, p + i);
 return horizontal_add(sum);
}

In this example, we have a loop-carried dependency chain (see my C++ manual).
The vector addition inside the loop has a latency of typically 3 - 5 clock cycles. As
each addition has to wait for the result of the previous addition, the loop will take
3 - 5 clock cycles per iteration.

However, the throughput of floating point additions is typically one vector addition
per clock cycle. Therefore, we are far from fully utilizing the capacity of the
floating point adder. In this situation, we can double the speed by using two
accumulators:

double add_long_list(double const * p, int n) {
 int n2 = n & (-8); // round down n to multiple of 8
 Vec4d sum1(0.0), sum2(0.0);
 int i;
 for (i = 0; i < n2; i += 8) {
 sum1 += Vec4d().load(p + i); // add 4 numbers
 sum2 += Vec4d().load(p + i + 4); // 4 more numbers
 }
 if (n - i >= 4) {
 // add 4 more numbers
 sum1 += Vec4d().load(p + i);
 i += 4;
 }
 // add any remaining numbers
 sum2 += Vec4d().load_partial(n - i, p + i);
 return horizontal_add(sum1 + sum2);
}

Here, the addition to sum2 can begin before the addition to sum1 is finished. The
loop still takes 3 - 5 clock cycles per iteration, but the number of additions done

http://www.agner.org/optimize/#manual_cpp

per loop iteration is doubled. It may even be worthwhile to have three or four
accumulators in this case if n is very big.

In general, if we want to predict whether it is advantageous to have more than
one accumulator, we first have to see if there is a loop-carried dependency chain.
If the performance is not limited by a loop-carried dependency chain then there is
no need for multiple accumulators. Next, we have to look at the latency and
throughput of the instructions inside the loop. Floating point addition, subtraction
and multiplication all have latencies of typically 3 - 5 clock cycles and a
throughput of one vector addition or subtraction plus one vector multiplication per
clock cycle. Therefore, if the loop-carried dependency chain involves floating
point addition, subtraction or multiplication; and the total number of floating point
operations per loop iteration is lower than the maximum throughput, then it may
be advantageous to have two accumulators, or perhaps more than two.

There is rarely any reason to have multiple accumulators in integer code,
because an integer vector addition has a latency of just 1 or 2 clock cycles.

Using multiple threads

Performance can be improved by dividing the work between multiple threads on
processors with multiple CPU cores. This technique is outside the scope of the
present manual. The vector class library is thread-safe as long as the same
vector is not accessed from multiple threads simultaneously. The floating point
control word (see p. 36) is not shared between threads.

Error conditions

Runtime errors

The vector class library is generally not producing runtime error messages. An
index that is out of range produces behavior that is implementation-dependent.
This means that the output may be different for different instruction sets or for
different versions of the vector class library.

For example, an attempt to read a vector element with an index that is out of
range may result in various behaviors, such as producing zero, taking the index
modulo the vector size, giving the last element, or producing an arbitrary value.
Likewise, an attempt to write a vector element with an index that is out of range
may variously take the index modulo the vector size, write the last element, or do
nothing. This applies to functions such as insert, extract, load_partial,
store_partial, cutoff, permute, blend, lookup and gather. The same

applies to a bit-index that is out of range in functions like set_bit, get_bit,
rotate, and shift operators (<<, >>).

Boolean vectors for instruction sets lower than AVX512 are stored as integer
vectors. The only allowed values for boolean vector elements in this case are 0
(false) and -1 (true). The behavior for other values is implementation dependent
and possibly inconsistent. For example, the behavior of the select function
when the boolean selector input is a mixture of 0 and 1 bits depends on the
instruction set. For instruction sets prior to SSE4.1, it will select between the
operands bit-by-bit. For SSE4.1 and higher it will select integer vectors byte-by-
byte, using the leftmost bit of each byte in the selector input. For floating point
vectors under SSE4.1 and higher, it will use only the leftmost bit (sign bit) of the
selector. Boolean vectors for the biggest vector size compiled under the AVX512
instruction set have only one bit for each element.

An integer division by a variable that is zero will usually produce a runtime
exception.

A floating point overflow will usually produce infinity, floating point underflow
produces zero, and an invalid floating point operation may produce not-a-number
(NAN). Floating point exceptions can occur only if exceptions are unmasked.
Unmasking floating point exceptions does not guarantee that VCL floating point
functions will generate exceptions in case of error.

Mathematical functions will signal an error by producing INF or NAN, not by
raising exceptions or setting an errno variable.

A program crash may be caused by alignment errors. This can happen if a VCL
vector is stored in a dynamic array or an STL container or other data container
that does not have correct alignment. See page 16.

Compile-time errors

Integer vector division by a const_int or const_uint can produce a compile-
time error message when the divisor is zero or out of range. The error message
may not be as informative as we could wish, due to the limitations of template
metaprogramming. The error message may possibly contain the text
"Static_error_check<false>".

Combination of incompatible vector classes, or other syntax errors produce
compile-time error messages. These error messages may be quite long and
confusing due to overloading and templates, but generally indicating the line
number of the error.

"error C2719: formal parameter with __declspec(align('16')) won't be aligned".
The Microsoft compiler cannot handle vectors as function parameters. The

easiest solution is to change the parameter to a const reference, e. g.:
Vec4f my_function(Vec4f const & x) {
 ... }

"ambiguous call to overloaded function". Make sure all parameters have the
correct type, e.g.:

Vec4f a, b;
b = pow(a,0.8);
// this should be:
b = pow(a,0.8f);

The same can happen with operators, e.g.
Vec4ui a;
a >>= 2;
// this should be:
a >>= 2u;

Link errors

"unresolved external symbol __intel_cpu_indicator". This link error occurs when
you are using Intel's SVML library without including a CPU dispatcher. Link in the
library libircmt.lib to use Intel's own CPU dispatch function for Intel processors, or
use an object file from the asmlib library under "inteldispatchpatch" for best
performance on all brands of processors. See my blog and my C++ manual for
details.

Implementation-dependent behavior
A big advantage of the VCL library is that you can compile the same source code
for different instruction set extensions. A higher instruction set will generally give
faster code, but produce the same results. There may, however, be special cases
where the same code generates different results with different instruction sets or
different compilers. These cases include:

• An index out of range produces implementation-dependent results.
Functions such as insert, extract, load_partial,
store_partial, cutoff, permute, blend, lookup and gather may
produce different results for an index out of range depending on the
instruction set. No exception or error message is generated, only a
meaningless number.

• permute and blend functions allow a "don't care" index to be specified.
The result for a don't care element may depend on the instruction set.

• Negative zero. The floating point values of 0.0 and -0.0 should be
regarded as equal. Some functions may return 0.0 or -0.0 depending on
the instruction set, e.g. when rounding a negative number. The sign of a
zero can be detected by the functions sign_bit and sign_combine.

http://www.agner.org/optimize/#manual_cpp
http://www.agner.org/optimize/blog/read.php?i=49
http://www.agner.org/optimize/#asmlib

• NANs. An error code can be propagated through NAN (not-a-number)
values and retrieved by the function nan_code. When two NAN values
with different codes are combined, for example by adding them together,
the result may be either of the two values, or an OR-combination of the
two, depending on the compiler and the CPU. The sign of a NAN has no
meaning and may vary.

File list

file name purpose

VectorClass.pdf instructions (this file)

vectorclass.h top-level C++ header file. This will include several
other header files, according to the indicated
instruction set.

instrset.h detection of which instruction set the code is compiled
for, and various common definitions. Included by
vectorclass.h

vectori128.h defines classes, operators and functions for integer
vectors with a total size of 128 bits. Included by
vectorclass.h

vectori256.h defines classes, operators and functions for integer
vectors with a total size of 256 bits for the AVX2
instruction set. Included by vectorclass.h if
appropriate

vectori256e.h defines classes, operators and functions for integer
vectors with a total size of 256 bits for instruction sets
lower than AVX2. Included by vectorclass.h if
appropriate

vectori512.h defines classes, operators and functions for integer
vectors with a total size of 512 bits for the AVX512
instruction set. Included by vectorclass.h if
appropriate

vectori512e.h defines classes, operators and functions for integer
vectors with a total size of 512 bits for instruction sets
lower than AVX512. Included by vectorclass.h if
appropriate

vectorf128.h defines classes, operators and functions for floating
point vectors with a total size of 128 bits. Included by
vectorclass.h

vectorf256.h defines classes, operators and functions for floating

point vectors with a total size of 256 bits for the AVX
and later instruction sets. Included by vectorclass.h if
appropriate

vectorf256e.h defines classes, operators and functions for floating
point vectors with a total size of 256 bits for instruction
sets lower than AVX. Included by vectorclass.h if
appropriate

vectorf512.h defines classes, operators and functions for floating
point vectors with a total size of 512 bits for the
AVX512 and later instruction sets. Included by
vectorclass.h if appropriate

vectorf512e.h defines classes, operators and functions for floating
point vectors with a total size of 512 bits for instruction
sets lower than AVX512. Included by vectorclass.h if
appropriate

vectormath_lib.h optional header file for external mathematical vector
function libraries

vectormath_exp.h optional inline mathematical functions: power,
logarithms and exponential functions

vectormath_trig.h optional inline mathematical functions: trigonometric
and inverse trigonometric functions

vectormath_hyp.h optional inline mathematical functions: hyperbolic and
inverse hyperbolic functions

vectormath_common.h common definitions for vectormath_exp.h,
vectormath_trig.h and vectormath_hyp.h

special.zip/ranvec1.h random number generator header file

special.zip/ranvec1.cpp random number generator

special.zip/decimal.h optional header file for conversion of integer vectors
to decimal and hexadecimal ASCII number strings
and vice versa

special.zip/vector3d.h optional header file for 3-dimensional vectors

special.zip/complexvec.h optional header file for complex numbers and
complex vectors

special.zip/quaternion.h optional header file for quaternions

instrset_detect.cpp optional functions for detecting which instruction set is
supported at runtime

dispatch_example.cpp example of how to make automatic CPU dispatching

license.txt Gnu general public license

changelog.txt change log

Examples

This example calculates the polynomial x3 + 2∙x2 - 5∙x + 1 on a floating point
vector. The function parameter x is declared as a const reference in order to
avoid problems in the Microsoft compiler. The constants a, b and c are declared
static so that they don't need to be initialized at every function call. The order
of calculation is specified by parentheses in order to make shorter dependency
chains.

Vec4f polynomial (Vec4f const & x) {
 static const Vec4f a(2.0f), b(-5.0f), c(1.0f);
 return (a + x) * (x * x) + (b * x + c);
}

The next example transposes a 4x4 matrix.

void transpose(float matrix[4][4]) {
 Vec8f row01, row23, col01, col23;
 // load first two rows
 row01.load(&matrix[0][0]);
 // load next two rows
 row23.load(&matrix[2][0]);
 // reorder into columns
 col01 = blend8f<0,4, 8,12,1,5, 9,13>(row01, row23);
 col23 = blend8f<2,6,10,14,3,7,11,15>(row01, row23);
 // store columns into rows
 col01.store(&matrix[0][0]);
 col23.store(&matrix[2][0]);
}

or with AVX512:

void transpose(float matrix[4][4]) {
 Vec16f rows, columns;
 // load entire matrix as rows
 rows.load(&matrix[0][0]);
 // reorder into columns
 columns = permute16f<0,4,8,12,1,5,9,13,
 2,6,10,14,3,7,11,15>(rows);
 // store columns into rows
 columns.store(&matrix[0][0]);
}

The next example makes a matrix multiplication of two 4x4 matrixes.

void matrixmul(float A[4][4],float B[4][4],float M[4][4]){
 // calculates M = A*B
 Vec4f Brow[4], Mrow[4];
 int i, j;
 // load B as rows
 for (i = 0; i < 4; i++) {
 Brow[i].load(&B[i][0]);
 }
 // loop for A and M rows
 for (i = 0; i < 4; i++) {
 Mrow[i] = Vec4f(0.0f);
 // loop for A columns, B rows
 for (j = 0; j < 4; j++) {
 Mrow[i] += Brow[j] * A[i][j];
 }
 }
 // store M
 for (i = 0; i < 4; i++) {
 Mrow[i].store(&M[i][0]);
 }
}

The next example makes a table of the sin function and gets sin(x) and cos(x) by
table lookup.

#include <math.h>

#ifndef M_PI // define pi if not defined
#define M_PI 3.14159265358979323846
#endif

// length of table. Must be a power of 2.
#define sin_tablelen 1024
// the accuracy of table lookup is +/- pi/sin_tablelen

class SinTable {
protected:
 float table[sin_tablelen];
 float resolution;
 float rres; // 1./resolution
public:
 SinTable(); // constructor
 Vec4f sin(Vec4f const & x);
 Vec4f cos(Vec4f const & x);
};

SinTable::SinTable() { // constructor
 // compute resolution
 resolution = float(2.0 * M_PI / sin_tablelen);
 rres = 1.0f / resolution;
 // initialize table (no need to use vectors

 // here because this is calculated only once)
 for (int i = 0; i < sin_tablelen; i++) {
 table[i] = sinf((float)i * resolution);
 }
}

Vec4f SinTable::sin(Vec4f const & x) {
 // calculate sin by table lookup
 Vec4i index = round_to_int(x * rres);
 // modulo tablelen equivalent to modulo 2*pi
 index &= sin_tablelen - 1;
 // look up in table
 return lookup<sin_tablelen>(index, table);
}

Vec4f SinTable::cos(Vec4f const & x) {
 // calculate cos by table lookup
 Vec4i index = round_to_int(x * rres) + sin_tablelen/4;
 // modulo tablelen equivalent to modulo 2*pi
 index &= sin_tablelen - 1;
 // look up in table
 return lookup<sin_tablelen>(index, table);
}

int main() {
 SinTable sintab;
 Vec4f a(0.0f, 0.5f, 1.0f, 1.5f);
 Vec4f b = sintab.sin(a);
 // b = (0.0000 0.4768 0.8416 0.9973)
 // accuracy +/- 0.003
 ...
 return 0;
}

	Introduction
	How it works
	Features
	Instruction sets supported
	Platforms supported
	Compilers supported
	Intended use
	How VCL uses metaprogramming
	Availability
	License

	The basics
	How to compile
	Overview of vector classes
	Constructing vectors and loading data into vectors
	Reading data from vectors
	Arrays of vectors
	Using a namespace

	Operators
	Arithmetic operators
	Logic operators
	Integer division

	Functions
	Integer functions
	Floating point simple mathematical functions
	Floating point categorization functions
	Floating point control word manipulation functions
	Floating point mathematical functions
	Permute, blend, lookup and gather functions
	Number ↔ string conversion functions

	Boolean operations and per-element branches
	Internal representation of boolean vectors
	Functions for use with booleans

	Conversion between vector types
	Conversion between boolean vector types

	Random number generator
	Special applications
	3-dimensional vectors
	Complex number vectors
	Quaternions

	Instruction sets and CPU dispatching
	Performance considerations
	Comparison of alternative methods for writing SIMD code
	Choice of compiler and function libraries
	Choosing the optimal vector size and precision
	Putting data into vectors
	When the data size is not a multiple of the vector size
	Using multiple accumulators
	Using multiple threads

	Error conditions
	Runtime errors
	Compile-time errors
	Link errors

	Implementation-dependent behavior
	File list
	Examples

