diff --git a/CMakeLists.txt b/CMakeLists.txt
index 1bb9eacf7713affc03f3f02ab2dd92c2473c98ca..941dc0a2de8649cc6046d168ebb3c3d1dafe57ba 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -11,7 +11,7 @@
 
 cmake_minimum_required(VERSION 3.15)
 
-project(Vetra VERSION 2.0
+project(Vetra VERSION 4.5
         LANGUAGES CXX)
 
 # Definition of path for ut
diff --git a/UTEmuAlgorithms/CMakeLists.txt b/UTEmuAlgorithms/CMakeLists.txt
index 12c3ac170734f16b9c7ee1cebdc1bc61058d3e9f..a3c65cd521b2b4bc9258f6c94516d79a661d3dcf 100644
--- a/UTEmuAlgorithms/CMakeLists.txt
+++ b/UTEmuAlgorithms/CMakeLists.txt
@@ -16,12 +16,15 @@ VP/VPEmu
 gaudi_add_library(UTEmuLib
     SOURCES
     src/UTEmuRawDataMonitorAlgorithm.cpp
+    src/UTEmuStepMonitorAlgorithm.cpp    
     src/UTEmuTrimDAC.cpp
     src/UTEmuPedestalCalculator.cpp
+    src/UTEmuPedestalCalculatorStep.cpp
     src/UTEmuPedestalSubtractor.cpp
     src/UTEmuPedestalCalculatorDataMonitorAlgorithm.cpp
     src/UTEmuPedestalSubtractorDataMonitorAlgorithm.cpp
-    src/UTEmuCommonModeSubtractor.cpp    
+    src/UTEmuCommonModeSubtractor.cpp 
+    src/UTEmuPulseShape.cpp        
     LINK
     PUBLIC
     Gaudi::GaudiKernel
diff --git a/UTEmuAlgorithms/include/UTEmu/UTEmuPedestalCalculator.h b/UTEmuAlgorithms/include/UTEmu/UTEmuPedestalCalculator.h
index 924a9b4713634bd8e5acc02d6d60a9dc3e01159c..e527165987179d6e174f8ba4879e1a26ca624488 100644
--- a/UTEmuAlgorithms/include/UTEmu/UTEmuPedestalCalculator.h
+++ b/UTEmuAlgorithms/include/UTEmu/UTEmuPedestalCalculator.h
@@ -61,6 +61,7 @@ namespace UTEmu {
     void calculatePedestals();
     void findBadChannels();
     void saveThresholdsToCsv();
+    void saveDisabledToCsv();
     
     // properties
     Gaudi::Property<std::string> m_runNumber{ this, "RunNumber", "00000000" };
@@ -70,7 +71,7 @@ namespace UTEmu {
     mutable std::map<std::string, int> Pedestal_Max;
     mutable std::map<std::string, Gaudi::Accumulators::SigmaCounter<>>  SigmaNoiseAv;
     mutable std::map<std::string, Gaudi::Accumulators::SigmaCounter<>>  PedestalAv;
-
+    mutable std::vector<std::string> disabledASICs;
     mutable std::map<unsigned int, bool> BadChannels;    
 
 
diff --git a/UTEmuAlgorithms/include/UTEmu/UTEmuPedestalCalculatorStep.h b/UTEmuAlgorithms/include/UTEmu/UTEmuPedestalCalculatorStep.h
new file mode 100644
index 0000000000000000000000000000000000000000..50672c1bb09080f36865d593c353e4ac26f227f5
--- /dev/null
+++ b/UTEmuAlgorithms/include/UTEmu/UTEmuPedestalCalculatorStep.h
@@ -0,0 +1,79 @@
+/*****************************************************************************\
+* (c) Copyright 2000-2023 CERN for the benefit of the LHCb Collaboration      *
+*                                                                             *
+* This software is distributed under the terms of the GNU General Public      *
+* Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING".   *
+*                                                                             *
+* In applying this licence, CERN does not waive the privileges and immunities *
+* granted to it by virtue of its status as an Intergovernmental Organization  *
+* or submit itself to any jurisdiction.                                       *
+\*****************************************************************************/
+
+/*
+ * UTEmuPedestalCalculatorStep.h
+ *
+ *  Created on: August, 2023
+ *      Author: Wojciech Krupa (wokrupa@cern.ch)
+ */
+
+#pragma once
+#include "Event/ODIN.h"
+#include "Event/UTDigit.h"
+#include "Kernel/IEventCounter.h"
+#include "Kernel/IUTReadoutTool.h"
+#include "Kernel/UTDAQBoard.h"
+#include "Kernel/UTDAQDefinitions.h"
+#include "Kernel/UTDAQID.h"
+#include "LHCbAlgs/Consumer.h"
+#include "UTDAQ/UTADCWord.h"
+#include "UTDAQ/UTCoordinatesMap.h"
+#include "UTDAQ/UTHeaderWord.h"
+#include "UTEmu/UTEmuVetraHelper.h"
+#include "TCanvas.h"
+#include "TFile.h"
+#include "TH1D.h"
+#include "TH2D.h"
+#include "TKey.h"
+#include <fstream>
+#include <map>
+#include <math.h>
+
+using namespace LHCb;
+
+namespace UTEmu {
+
+  class PedestalCalculatorStep : public LHCb::Algorithm::Consumer<void( const LHCb::ODIN& ),
+                                                              LHCb::DetDesc::usesBaseAndConditions<GaudiHistoAlg>> {
+  public:
+    PedestalCalculatorStep( const std::string& name,   // algorithm instance name
+                        ISvcLocator*       pSvcLocator ) // service locator
+        : Consumer{ name,
+                    pSvcLocator,
+                    { { "ODINLocation", LHCb::ODINLocation::Default } } } {}
+
+    StatusCode initialize() override;
+    StatusCode finalize() override;
+    void       operator()( const LHCb::ODIN& ) const override;
+
+    void savePedestalsToCsv();
+    void saveBadChannelsToCsv();
+    void saveSigmaNoiseToCsv();
+    void calculatePedestals();
+    void findBadChannels();
+    void saveThresholdsToCsv();
+    
+    // properties
+    Gaudi::Property<std::string> m_runNumber{ this, "RunNumber", "00000000" };
+    mutable std::map<std::string, Gaudi::Accumulators::Histogram<2>> m_2d_ADCCounter;
+    mutable std::map<unsigned int, float> Pedestal;
+    mutable std::map<unsigned int, float> SigmaNoise;    
+    mutable std::map<std::string, int> Pedestal_Max;
+    mutable std::map<std::string, Gaudi::Accumulators::SigmaCounter<>>  SigmaNoiseAv;
+    mutable std::map<std::string, Gaudi::Accumulators::SigmaCounter<>>  PedestalAv;
+
+    mutable std::map<unsigned int, bool> BadChannels;    
+    UTCoordinatesMap UTMap;
+
+  private:
+  };
+} // namespace UTEmu
\ No newline at end of file
diff --git a/UTEmuAlgorithms/include/UTEmu/UTEmuPulseShape.h b/UTEmuAlgorithms/include/UTEmu/UTEmuPulseShape.h
new file mode 100644
index 0000000000000000000000000000000000000000..0dcc352728ca793aed78a7912530f83d5cba95a9
--- /dev/null
+++ b/UTEmuAlgorithms/include/UTEmu/UTEmuPulseShape.h
@@ -0,0 +1,61 @@
+/*****************************************************************************\
+* (c) Copyright 2000-2023 CERN for the benefit of the LHCb Collaboration      *
+*                                                                             *
+* This software is distributed under the terms of the GNU General Public      *
+* Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING".   *
+*                                                                             *
+* In applying this licence, CERN does not waive the privileges and immunities *
+* granted to it by virtue of its status as an Intergovernmental Organization  *
+* or submit itself to any jurisdiction.                                       *
+\*****************************************************************************/
+
+/*
+ *  UTEmuPulseShape.h
+ *
+ *  Created on: August, 2023
+ *      Author: Wojciech Krupa (wokrupa@cern.ch)
+ */
+
+#pragma once
+
+#include "Event/ODIN.h"
+#include "Event/UTDigit.h"
+#include "GaudiAlg/GaudiTupleAlg.h"
+#include "GaudiKernel/IEventProcessor.h"
+#include "Kernel/IEventCounter.h"
+#include "Kernel/IUTReadoutTool.h"
+#include "Kernel/UTDAQID.h"
+#include "LHCbAlgs/Consumer.h"
+#include "UTDAQ/UTCoordinatesMap.h"
+#include "UTDet/DeUTDetector.h"
+#include "UTEmu/UTEmuVetraHelper.h"
+
+using namespace LHCb;
+
+namespace UTEmu {
+
+  class PulseShape
+      : public LHCb::Algorithm::Consumer<void( UTDigits const&, const LHCb::ODIN&, DeUTDetector const& ),
+                                         LHCb::DetDesc::usesBaseAndConditions<GaudiHistoAlg, DeUTDetector>> {
+  public:
+    /// constructer
+    PulseShape( const std::string& name, ISvcLocator* svcloc )
+        : Consumer{ name,
+                    svcloc,
+                    { { "DigitLocation", UTEmu::UTDigitLocation::UTDigits },
+                      { "ODINLocation", LHCb::ODINLocation::Default },
+                      { "UTLocation", DeUTDetLocation::location() } } } {}
+
+    StatusCode initialize() override;
+    void       operator()( const UTDigits&, const LHCb::ODIN&, DeUTDetector const& ) const override;
+
+    mutable UTCoordinatesMap UTMap;
+
+    mutable std::map<std::string, Gaudi::Accumulators::Histogram<2>> m_2d_ch;
+
+    Gaudi::Property<unsigned int> m_layer{ this, "Layer", 0 };
+
+  private:
+    void fillHistograms( const LHCb::UTDigit*, DeUTDetector const&, const LHCb::ODIN& ) const;
+  };
+} // namespace UTEmu
\ No newline at end of file
diff --git a/UTEmuAlgorithms/include/UTEmu/UTEmuStepMonitorAlgorithm.h b/UTEmuAlgorithms/include/UTEmu/UTEmuStepMonitorAlgorithm.h
new file mode 100644
index 0000000000000000000000000000000000000000..5c80c6425973f7f2028a7a369c9bddfefa6db3da
--- /dev/null
+++ b/UTEmuAlgorithms/include/UTEmu/UTEmuStepMonitorAlgorithm.h
@@ -0,0 +1,65 @@
+/*****************************************************************************\
+* (c) Copyright 2000-2023 CERN for the benefit of the LHCb Collaboration      *
+*                                                                             *
+* This software is distributed under the terms of the GNU General Public      *
+* Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING".   *
+*                                                                             *
+* In applying this licence, CERN does not waive the privileges and immunities *
+* granted to it by virtue of its status as an Intergovernmental Organization  *
+* or submit itself to any jurisdiction.                                       *
+\*****************************************************************************/
+
+/*
+ *  UTEmuStepMonitorAlgorithm.h
+ *
+ *  Created on: October, 2024
+ *      Author: Wojciech Krupa (wokrupa@cern.ch)
+ */
+
+#pragma once
+
+#include "Event/ODIN.h"
+#include "Event/UTDigit.h"
+#include "GaudiAlg/GaudiTupleAlg.h"
+#include "GaudiKernel/IEventProcessor.h"
+#include "Kernel/IEventCounter.h"
+#include "Kernel/IUTReadoutTool.h"
+#include "Kernel/UTDAQID.h"
+#include "LHCbAlgs/Consumer.h"
+#include "UTDAQ/UTCoordinatesMap.h"
+#include "UTDet/DeUTDetector.h"
+#include "UTEmu/UTEmuVetraHelper.h"
+
+using namespace LHCb;
+
+namespace UTEmu {
+
+  class StepMonitorAlgorithm
+      : public LHCb::Algorithm::Consumer<void( UTDigits const&, const LHCb::ODIN&,
+                                               std::vector<std::pair<unsigned int, int>> const&, DeUTDetector const& ),
+                                         LHCb::DetDesc::usesBaseAndConditions<GaudiHistoAlg, DeUTDetector>> {
+  public:
+    /// constructer
+    StepMonitorAlgorithm( const std::string& name, ISvcLocator* svcloc )
+        : Consumer{ name,
+                    svcloc,
+                    { { "DigitLocation", UTEmu::UTDigitLocation::UTDigits },
+                      { "ODINLocation", LHCb::ODINLocation::Default },
+                      { "InputBankData", UTEmu::UTDigitLocation::UTBanks },
+                      { "UTLocation", DeUTDetLocation::location() } } } {}
+
+    ToolHandle<IUTReadoutTool> readoutTool{ this, "ReadoutTool", "UTReadoutTool" };
+    Gaudi::Property<float>     m_events{ this, "Events", 100 };
+    Gaudi::Property<float>     m_steps{ this, "Steps", 100 };
+
+    StatusCode initialize() override;
+    void       operator()( const UTDigits&, const LHCb::ODIN&, const std::vector<std::pair<unsigned int, int>>&,
+                     DeUTDetector const& ) const override;
+
+    mutable UTCoordinatesMap UTMap;
+
+    mutable std::map<std::string, Gaudi::Accumulators::Histogram<2>> m_2d_ADCCounter;
+  private:
+    void fillHistograms( const LHCb::UTDigit*, DeUTDetector const&, const LHCb::ODIN& ) const;
+  };
+} // namespace UTEmu
\ No newline at end of file
diff --git a/UTEmuAlgorithms/src/UTEmuCommonModeSubtractor.cpp b/UTEmuAlgorithms/src/UTEmuCommonModeSubtractor.cpp
index 8f3da68fc2dcc0aead2dc4422c1da0e338b58bad..8014a4c3372548bfc7b33eae9fe82a0e4f2cb47a 100644
--- a/UTEmuAlgorithms/src/UTEmuCommonModeSubtractor.cpp
+++ b/UTEmuAlgorithms/src/UTEmuCommonModeSubtractor.cpp
@@ -60,7 +60,7 @@ void CommonModeSubtractor::makeCMSNoisePlots() const {
     auto        module_y    = std::get<1>( tuple );
     std::string module_name = std::get<4>( tuple );
     std::string type        = std::get<5>( tuple );
-    if ( type == "D" ) type = "C";
+    if ( type == "D" ) type = "C"; //C & D goes together
 
     // CMSNoise 1D plots mean
     auto title_CMSNoise  = "CMSNoiseMean_" + UTEmu::UT_layers[channelID.layer()] + "_" + module_name;
diff --git a/UTEmuAlgorithms/src/UTEmuPedestalCalculator.cpp b/UTEmuAlgorithms/src/UTEmuPedestalCalculator.cpp
index c4ef9fe5ee5a0f006d01fa80c0135294577e67aa..61a5f003dc8f42b10e5edfec0bc7800fdc07abf0 100644
--- a/UTEmuAlgorithms/src/UTEmuPedestalCalculator.cpp
+++ b/UTEmuAlgorithms/src/UTEmuPedestalCalculator.cpp
@@ -45,10 +45,19 @@ void PedestalCalculator::calculatePedestals() {
 
   // Description of method: read 2D histogram and after removing outliers from the projection for each bin (channel) get
   // the mu.
+
   for ( const auto& module : UTMap.getModulesNames() ) {
 
     TH2D* hist2D = dynamic_cast<TH2D*>( f2->Get( module.c_str() ) );
     if ( hist2D ) {
+
+      for ( int asic = 0; asic < UTEmu::UTNumbers::nASICs; ++asic ) {
+        int  start_bin   = asic * UTEmu::UTNumbers::nStripsPerASIC + 1; // ROOT bins start at 1
+        int  end_bin     = ( asic + 1 ) * UTEmu::UTNumbers::nStripsPerASIC;
+
+        TH1D* projection = hist2D->ProjectionY( "Projection", start_bin, end_bin, "" );
+        if ( projection->GetEntries() == 0 ) { disabledASICs.push_back( module + ".Chip" + std::to_string( asic ) ); }
+      }
       for ( unsigned int bin = 1; bin <= hist2D->GetNbinsX(); bin++ ) {
 
         TH1D* projection = hist2D->ProjectionY( "Projection", bin, bin, "" );
@@ -78,7 +87,6 @@ void PedestalCalculator::calculatePedestals() {
 
         delete projection;
       }
-
     } else {
       info() << "Very serious Problem" << endmsg;
     }
@@ -129,14 +137,23 @@ void PedestalCalculator::saveThresholdsToCsv() {
   fout.open( input_path.c_str(), std::ios::out | std::ios::trunc );
 
   for ( const auto& sigmaNoise : SigmaNoiseAv ) {
-    float zs_th = std::ceil( 5 * sigmaNoise.second.mean() );
-    if ( zs_th == 3 ) zs_th = 4; // this is very temporary
+    float zs_th = std::ceil( 5 * sigmaNoise.second.mean() ) - 1; // Tomasz optimistic version
     fout << sigmaNoise.first << ", " << zs_th << "\n";
   }
-
   info() << "Saving zs_threshold file" << endmsg;
 };
 
+void PedestalCalculator::saveDisabledToCsv() {
+
+  std::fstream fout;
+
+  std::string input_path = std::string( UTEMU_PATH ) + "/disabled_" + m_runNumber + ".csv";
+  fout.open( input_path.c_str(), std::ios::out | std::ios::trunc );
+
+  for ( const auto& asic : disabledASICs ) { fout << asic << "\n"; }
+  info() << "Saving disabled asics file" << endmsg;
+};
+
 void PedestalCalculator::savePedestalsToCsv() {
 
   // file pointer
@@ -157,7 +174,9 @@ void PedestalCalculator::saveSigmaNoiseToCsv() {
   std::string input_path = std::string( UTEMU_PATH ) + "/sigmaNoise_" + m_runNumber + ".csv";
   fout.open( input_path.c_str(), std::ios::out | std::ios::trunc );
 
-  for ( const auto& sigmaNoise : SigmaNoise ) { fout << sigmaNoise.first << ", " << sigmaNoise.second << "\n"; }
+  for ( const auto& sigmaNoise : SigmaNoise ) {
+    fout << sigmaNoise.first << ", " << Pedestal[sigmaNoise.first] << ", " << sigmaNoise.second << "\n";
+  }
 
   info() << "Saving sigma of sigmaNoise file" << endmsg;
 };
@@ -170,5 +189,7 @@ StatusCode PedestalCalculator::finalize() {
   findBadChannels();
   saveBadChannelsToCsv();
   saveThresholdsToCsv();
+  saveDisabledToCsv();
+
   return StatusCode::SUCCESS;
 }
diff --git a/UTEmuAlgorithms/src/UTEmuPedestalCalculatorDataMonitorAlgorithm.cpp b/UTEmuAlgorithms/src/UTEmuPedestalCalculatorDataMonitorAlgorithm.cpp
index c291ea3a31d30505e79967085c82aa586d40286f..c9e6ef6ac07f4a43a3041404f9224597bc1db6d7 100644
--- a/UTEmuAlgorithms/src/UTEmuPedestalCalculatorDataMonitorAlgorithm.cpp
+++ b/UTEmuAlgorithms/src/UTEmuPedestalCalculatorDataMonitorAlgorithm.cpp
@@ -45,8 +45,8 @@ StatusCode PedestalCalculatorDataMonitorAlgorithm::makePedestalsPlots() {
     if ( type == "D" ) type = "C";
 
     // Pedestal 1D plots
-    auto title_pedestal  = "Pedestals_" + UTEmu::UT_layers[channelID.layer()] + "_" + module_name;
-    auto title_pedestal_ = "Pedestals_" + UTEmu::UT_layers[channelID.layer()] + "_" + module_name + ";Channel;ADC";
+    auto title_pedestal  = "MeanADC_" + UTEmu::UT_layers[channelID.layer()] + "_" + module_name;
+    auto title_pedestal_ = "MeanADC_" + UTEmu::UT_layers[channelID.layer()] + "_" + module_name + ";Channel;ADC";
 
     plot1D( channelID.strip(), title_pedestal, title_pedestal_, 0, UTEmu::UTNumbers::nStrips, UTEmu::UTNumbers::nStrips,
             pedestal.second );
@@ -56,10 +56,10 @@ StatusCode PedestalCalculatorDataMonitorAlgorithm::makePedestalsPlots() {
 
     Pedestal_Av.at( current_asic_name ) += pedestal.second;
 
-    plot1D( pedestal.second, "Projection_Pedestal", "Projection_Pedestal", -31, 31, 62 );
-    if(type == "A") plot1D( pedestal.second, "Projection_Pedestal_A", "Projection_Pedestal_A", -31, 31, 62 );
-    if(type == "B") plot1D( pedestal.second, "Projection_Pedestal_B", "Projection_Pedestal_B", -31, 31, 62 );
-    if(type == "C") plot1D( pedestal.second, "Projection_Pedestal_C", "Projection_Pedestal_C", -31, 31, 62 );
+    plot1D( pedestal.second, "Projection_MeanADC", "Projection_MeanADC", -31, 31, 62 );
+    if(type == "A") plot1D( pedestal.second, "Projection_MeanADC_A", "Projection_MeanADC_A", -31, 31, 62 );
+    if(type == "B") plot1D( pedestal.second, "Projection_MeanADC_B", "Projection_MeanADC_B", -31, 31, 62 );
+    if(type == "C") plot1D( pedestal.second, "Projection_MeanADC_C", "Projection_MeanADC_C", -31, 31, 62 );
 
   };
 
@@ -82,7 +82,7 @@ StatusCode PedestalCalculatorDataMonitorAlgorithm::makePedestalsPlots() {
 
     if ( type == "D" ) type = "C";
 
-    auto title_layer = "PedestalAverage_" + UTEmu::UT_layers[channelID.layer()];
+    auto title_layer = "MeanADCAverage_" + UTEmu::UT_layers[channelID.layer()];
 
     // Let's include mirroring! Probably it could be done better
     if ( ( channelID.face() == 1 && y < 0 && x < 0 ) || ( channelID.face() == 0 && y > 0 && x < 0 ) ||
@@ -245,7 +245,7 @@ StatusCode PedestalCalculatorDataMonitorAlgorithm::initialize() {
 
     for ( unsigned int i = 0; i < UTEmu::UTNumbers::nASICs; i++ ) {
       auto chip_name = module + "_" + std::to_string( i );
-      auto title     = "PedestalAv_" + chip_name;
+      auto title     = "MeanADCAv_" + chip_name;
       vector_emplace( Pedestal_Av, chip_name, this, title );
       title = "SigmaNoiseAv_" + chip_name;
       vector_emplace( SigmaNoise_Av, chip_name, this, title );
@@ -291,6 +291,8 @@ StatusCode PedestalCalculatorDataMonitorAlgorithm::getSigmaNoise() {
 
     unsigned int channelID = atof( line.substr( 0, line.find( delimiter ) ).c_str() );
     line.erase( 0, line.find( delimiter ) + 1 );
+    auto pedestal      = atof( line.c_str() );
+    line.erase( 0, line.find( delimiter ) + 1 );    
     auto noise_sigma      = atof( line.c_str() );
     SigmaNoise[channelID] = noise_sigma;
   }
diff --git a/UTEmuAlgorithms/src/UTEmuPedestalCalculatorStep.cpp b/UTEmuAlgorithms/src/UTEmuPedestalCalculatorStep.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..b0391d55773e95725264149d24f21c66b1cccedd
--- /dev/null
+++ b/UTEmuAlgorithms/src/UTEmuPedestalCalculatorStep.cpp
@@ -0,0 +1,183 @@
+/*****************************************************************************\
+* (c) Copyright 2000-2023 CERN for the benefit of the LHCb Collaboration      *
+*                                                                             *
+* This software is distributed under the terms of the GNU General Public      *
+* Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING".   *
+*                                                                             *
+* In applying this licence, CERN does not waive the privileges and immunities *
+* granted to it by virtue of its status as an Intergovernmental Organization  *
+* or submit itself to any jurisdiction.                                       *
+\*****************************************************************************/
+
+/*
+ * UTEmuPedestalCalculatorStep.cpp
+ *
+ *  Created on: August, 2023
+ *      Author: Wojciech Krupa (wokrupa@cern.ch)
+ */
+
+#include "UTEmu/UTEmuPedestalCalculatorStep.h"
+
+using namespace LHCb;
+using namespace UTEmu;
+
+StatusCode PedestalCalculatorStep::initialize() { return StatusCode::SUCCESS; }
+
+void PedestalCalculatorStep::operator()( const LHCb::ODIN& odin ) const {}
+
+void PedestalCalculatorStep::calculatePedestals() {
+
+  TFile* f1 =
+      TFile::Open( ( std::string( UTEMU_PATH ) + "/ut_step_nzs_" + std::string( m_runNumber ) + ".root" ).c_str() );
+
+  if ( !f1 ) {
+    std::cerr << "Error: ut_step_nzs.root file does not exist." << std::endl;
+    exit( -1 );
+  }
+  static TString classname_th2( "TH2D" );
+
+  TDirectory* f2 = (TDirectory*)f1->Get( "UTStepMonitor" );
+
+  if ( f2 == nullptr ) {
+    std::cerr << "Error: UTStepMonitor directory not found in the file." << std::endl;
+    exit( -1 );
+  }
+
+  // Description of method: read 2D histogram and after removing outliers from the projection for each bin (channel) get
+  // the mu.
+  for ( const auto& module : UTMap.getModulesNames() ) {
+      for ( unsigned int step = 0; step < 100; step++ ) {
+        TH2D* hist2D = dynamic_cast<TH2D*>( f2->Get( ( module + ".Step" + std::to_string( step ) ).c_str() ) );
+        if ( hist2D ) {
+          debug() << module << " " << std::to_string( step ) << endmsg;
+
+          for ( unsigned int bin = 1; bin <= hist2D->GetNbinsX(); bin++ ) {
+
+            TH1D* projection = hist2D->ProjectionY( "Projection", bin, bin, "" );
+            float mean       = projection->GetMean();
+            float rms        = projection->GetRMS();
+
+            // Filter out outliers
+            for ( Int_t bin = 1; bin <= projection->GetNbinsX(); ++bin ) {
+              if ( TMath::Abs( projection->GetBinCenter( bin ) - mean ) > 3 * rms ) {
+                projection->SetBinContent( bin, 0 );
+              }
+            }
+
+            int channel = UTMap.getChannel( module ) + ( bin - 1 );
+
+            if ( step == 0 ) {
+              Pedestal[channel]   = projection->GetMean();
+              SigmaNoise[channel] = projection->GetRMS();
+            }
+
+            // Detector::UT::ChannelID channelID( UTMap.getChannel( module ) + ( bin - 1 ) );
+            // This code finds maximum pedestal in the direction of pulse
+            if ( ( ( module.find( "W" ) != std::string::npos ) ) || ( ( module.find( "E" ) != std::string::npos ) ) ) {
+              if ( Pedestal[channel] < projection->GetMean() ) Pedestal[channel] = projection->GetMean();
+              if ( SigmaNoise[channel] < projection->GetRMS() ) SigmaNoise[channel] = projection->GetRMS();
+            } else {
+              if ( Pedestal[channel] > projection->GetMean() ) Pedestal[channel] = projection->GetMean();
+              if ( SigmaNoise[channel] > projection->GetRMS() ) SigmaNoise[channel] = projection->GetRMS();
+            }
+
+            delete projection;
+          }
+
+        } else {
+          // info() << "Very serious Problem" << endmsg;
+        }
+        delete hist2D;
+      }
+  }
+}
+
+void PedestalCalculatorStep::findBadChannels() {
+
+  // bad channels
+  for ( const auto& ped : Pedestal ) {
+
+    Detector::UT::ChannelID channelID( ped.first );
+
+    auto tuple =
+        UTMap.getTuple( channelID.module(), channelID.face(), channelID.stave(), channelID.side(), channelID.sector() );
+
+    std::string module_name = std::get<4>( tuple );
+
+    std::string current_asic_name = UTEmu::UT_layers[channelID.layer()] + "_" + module_name + "_" +
+                                    std::to_string( int( channelID.strip() / UTEmu::UTNumbers::nStripsPerASIC ) );
+
+    float zs_th = std::ceil( 4.5 * SigmaNoiseAv[current_asic_name].mean() );
+    if ( std::round( std::abs( ped.second ) ) > zs_th )
+      BadChannels[ped.first] = 1;
+    else
+      BadChannels[ped.first] = 0;
+  }
+}
+
+void PedestalCalculatorStep::saveBadChannelsToCsv() {
+
+  // file pointer
+  std::fstream fout;
+
+  // opens an existing csv file or creates a new file.
+  std::string input_path = std::string( UTEMU_PATH ) + "/above_thresholds_"  + m_runNumber + ".csv";
+  fout.open( input_path.c_str(), std::ios::out | std::ios::trunc );
+
+  for ( const auto& channel : BadChannels ) { fout << channel.first << ", " << channel.second << "\n"; };
+  info() << "Saving channels above threshold file" << endmsg;
+}
+
+void PedestalCalculatorStep::saveThresholdsToCsv() {
+
+  std::fstream fout;
+
+  std::string input_path = std::string( UTEMU_PATH ) + "/zs_th_mcms_" + m_runNumber + ".csv";
+  fout.open( input_path.c_str(), std::ios::out | std::ios::trunc );
+
+  for ( const auto& sigmaNoise : SigmaNoiseAv ) {
+    float zs_th = std::ceil( 5 * sigmaNoise.second.mean() ) - 1; // Tomasz optimistic version
+    fout << sigmaNoise.first << ", " << zs_th << "\n";
+  }
+  info() << "Saving zs_threshold file" << endmsg;
+};
+
+
+void PedestalCalculatorStep::savePedestalsToCsv() {
+
+  // file pointer
+  std::fstream fout;
+
+  // opens an existing csv file or creates a new file.
+  std::string input_path = std::string( UTEMU_PATH ) + "/pedestals_"  + m_runNumber + ".csv";
+  fout.open( input_path.c_str(), std::ios::out | std::ios::trunc );
+
+  for ( const auto& ped : Pedestal ) { fout << ped.first << ", " << std::round( ped.second ) << "\n"; };
+  info() << "Saving pedestal file" << endmsg;
+}
+
+void PedestalCalculatorStep::saveSigmaNoiseToCsv() {
+
+  std::fstream fout;
+
+  std::string input_path = std::string( UTEMU_PATH ) + "/sigmaNoise_" + m_runNumber + ".csv";
+  fout.open( input_path.c_str(), std::ios::out | std::ios::trunc );
+
+  for ( const auto& sigmaNoise : SigmaNoise ) {
+    fout << sigmaNoise.first << ", " << Pedestal[sigmaNoise.first] << ", " << sigmaNoise.second << "\n";
+  }
+
+  info() << "Saving sigma of sigmaNoise file" << endmsg;
+};
+
+StatusCode PedestalCalculatorStep::finalize() {
+
+  calculatePedestals();
+  savePedestalsToCsv();
+  saveSigmaNoiseToCsv();
+  findBadChannels();
+  saveBadChannelsToCsv();
+  saveThresholdsToCsv();
+
+  return StatusCode::SUCCESS;
+}
diff --git a/UTEmuAlgorithms/src/UTEmuPulseShape.cpp b/UTEmuAlgorithms/src/UTEmuPulseShape.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..a71a9bdc5faa78d11327a3371dd0bb9d5a5ebdf9
--- /dev/null
+++ b/UTEmuAlgorithms/src/UTEmuPulseShape.cpp
@@ -0,0 +1,61 @@
+/*****************************************************************************\
+* (c) Copyright 2000-2023 CERN for the benefit of the LHCb Collaboration      *
+*                                                                             *
+* This software is distributed under the terms of the GNU General Public      *
+* Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING".   *
+*                                                                             *
+* In applying this licence, CERN does not waive the privileges and immunities *
+* granted to it by virtue of its status as an Intergovernmental Organization  *
+* or submit itself to any jurisdiction.                                       *
+\*****************************************************************************/
+
+/*
+ *  UTEmuPulseShape.cpp
+ *
+ *  Created on: August, 2023
+ *      Author: Wojciech Krupa (wokrupa@cern.ch)
+ */
+
+#include "UTEmu/UTEmuPulseShape.h"
+
+using namespace LHCb;
+using namespace UTEmu;
+
+StatusCode PulseShape::initialize() {
+  return Consumer::initialize().andThen( [&] {
+    for ( const auto& module : UTMap.getModulesNames() ) {
+      for ( unsigned int i = 0; i < 512; i++ ) {
+        auto title = module + ".Chip" + std::to_string( i / 128 ) + ".Ch" + std::to_string( i % 128 );
+        if ( title.find( UTEmu::UT_layers[m_layer] ) != std::string::npos ) {
+          Utility::map_emplace( m_2d_ch, title, 0, this, title, { 128, 0, 128 }, { 64, -32.5, 31.5 } );
+        }
+      }
+    }
+    return StatusCode::SUCCESS;
+  } );
+}
+
+void PulseShape::operator()( const UTDigits& digitsCont, const LHCb::ODIN& odin, DeUTDetector const& det ) const {
+
+  // fill histos for each digit
+  for ( const auto& d : digitsCont ) fillHistograms( d, det, odin );
+}
+
+void PulseShape::fillHistograms( const LHCb::UTDigit* aDigit, DeUTDetector const&, const LHCb::ODIN& odin ) const {
+
+  auto tuple = UTMap.getTuple( aDigit->module(), aDigit->face(), aDigit->stave(), aDigit->side(), aDigit->sector() );
+
+  auto        x           = std::get<0>( tuple );
+  auto        y           = std::get<1>( tuple );
+  std::string module_name = std::get<4>( tuple );
+  std::string type        = std::get<5>( tuple );
+  if ( type == "D" ) type = "C";
+
+  Detector::UT::ChannelID channelID = aDigit->channelID();
+
+  auto title_charge = UTEmu::UT_layers[aDigit->layer()] + "_" + module_name + ".Chip" +
+                      std::to_string( aDigit->strip() / 128 ) + ".Ch" + std::to_string( aDigit->strip() % 128 );
+  if ( title_charge.find( UTEmu::UT_layers[m_layer] ) != std::string::npos ) {
+    ++m_2d_ch.at( title_charge )[{ odin.calibrationStep(), aDigit->depositedCharge() }];
+  }
+}
diff --git a/UTEmuAlgorithms/src/UTEmuStepMonitorAlgorithm.cpp b/UTEmuAlgorithms/src/UTEmuStepMonitorAlgorithm.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..196bc6c4e9dc97ae4c1d868e818d86b039355265
--- /dev/null
+++ b/UTEmuAlgorithms/src/UTEmuStepMonitorAlgorithm.cpp
@@ -0,0 +1,83 @@
+/*****************************************************************************\
+* (c) Copyright 2000-2023 CERN for the benefit of the LHCb Collaboration      *
+*                                                                             *
+* This software is distributed under the terms of the GNU General Public      *
+* Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING".   *
+*                                                                             *
+* In applying this licence, CERN does not waive the privileges and immunities *
+* granted to it by virtue of its status as an Intergovernmental Organization  *
+* or submit itself to any jurisdiction.                                       *
+\*****************************************************************************/
+
+/*
+ *  UTEmuStepMonitorAlgorithm.cpp
+ *
+ *  Created on: October, 2024
+ *      Author: Wojciech Krupa (wokrupa@cern.ch)
+ */
+
+#include "UTEmu/UTEmuStepMonitorAlgorithm.h"
+
+using namespace LHCb;
+using namespace UTEmu;
+
+StatusCode StepMonitorAlgorithm::initialize() {
+
+  return Consumer::initialize().andThen( [&] {
+    for ( const auto& module : UTMap.getModulesNames() ) {
+      for ( unsigned int i = 0; i < m_steps; i++ ) {
+        auto title = module + ".Step" + std::to_string( i );
+        Utility::map_emplace( m_2d_ADCCounter, title, 0, this, title, { 512, 0, 512 }, { 64, -32.5, 31.5 } );
+      }
+    }
+    return StatusCode::SUCCESS;
+  } );
+}
+
+void StepMonitorAlgorithm::operator()( const UTDigits& digitsCont, const LHCb::ODIN& odin,
+                                       const std::vector<std::pair<unsigned int, int>>& bank_types,
+                                       DeUTDetector const&                              det ) const {
+
+  // fill histos for each digit
+  for ( const auto& d : digitsCont ) fillHistograms( d, det, odin );
+}
+
+void StepMonitorAlgorithm::fillHistograms( const LHCb::UTDigit* aDigit, DeUTDetector const&,
+                                           const LHCb::ODIN&    odin ) const {
+
+  // aDigit (channelID) .stave() / module() = software side
+
+  // Let's see where we are
+  auto tuple = UTMap.getTuple( aDigit->module(), aDigit->face(), aDigit->stave(), aDigit->side(), aDigit->sector() );
+  auto x     = std::get<0>( tuple );
+  auto y     = std::get<1>( tuple );
+  std::string module_name = std::get<4>( tuple );
+  std::string type        = std::get<5>( tuple );
+  if ( type == "D" ) type = "C";
+
+  unsigned int asic = aDigit->asic() % UTEmu::UTNumbers::nASICs;
+
+  Detector::UT::ChannelID channelID = aDigit->channelID();
+  UTDAQID                 daqID     = readoutTool->channelIDToDAQID( channelID );
+  auto                    board_ID  = daqID.board();
+
+  // Digits occupancy plots
+  if ( aDigit->strip() == 0 ) {
+    debug() << " Stave: " << aDigit->stave() << " Side: " << aDigit->side() << " Module: " << aDigit->module()
+            << " Sector: " << aDigit->sector() << " Face: " << aDigit->face() << " Module name: " << module_name << " "
+            << "Type: " << type << " Stave_x: " << x << " Module_y: " << y << endmsg;
+  }
+
+  auto title_layer = "Occupancy_" + UTEmu::UT_layers[aDigit->layer()];
+
+  // Let's include mirroring! Probably it could be done better
+  if ( ( aDigit->face() == 1 && y < 0 && x < 0 ) || ( aDigit->face() == 0 && y > 0 && x < 0 ) ||
+       ( aDigit->face() == 0 && y < 0 && x > 0 ) || ( aDigit->face() == 1 && y > 0 && x > 0 ) )
+    asic = ( 3 - asic ) % 4;
+
+  // Raw ADC vs channel
+  auto title_charge  = UTEmu::UT_layers[aDigit->layer()] + "_" + module_name + ".Step" + std::to_string( odin.calibrationStep() );
+  auto title_charge_ = UTEmu::UT_layers[aDigit->layer()] + "_" + module_name + ".Step" + std::to_string( odin.calibrationStep() ); ";Channel;ADC";
+
+  ++m_2d_ADCCounter.at( title_charge )[{ aDigit->strip(), aDigit->depositedCharge() }];
+}
diff --git a/UTEmuAlgorithms/src/modules.cpp b/UTEmuAlgorithms/src/modules.cpp
index d085d4f614d09957db9fc4332bc9f09d467f9283..ed963f70767e298b69b3942af75c3fdda8b3632f 100644
--- a/UTEmuAlgorithms/src/modules.cpp
+++ b/UTEmuAlgorithms/src/modules.cpp
@@ -11,16 +11,22 @@
 
 #include <UTEmu/UTEmuCommonModeSubtractor.h>
 #include <UTEmu/UTEmuPedestalCalculator.h>
+#include <UTEmu/UTEmuPedestalCalculatorStep.h>
 #include <UTEmu/UTEmuPedestalCalculatorDataMonitorAlgorithm.h>
 #include <UTEmu/UTEmuPedestalSubtractor.h>
 #include <UTEmu/UTEmuPedestalSubtractorDataMonitorAlgorithm.h>
 #include <UTEmu/UTEmuRawDataMonitorAlgorithm.h>
+#include <UTEmu/UTEmuStepMonitorAlgorithm.h>
 #include <UTEmu/UTEmuTrimDAC.h>
+#include <UTEmu/UTEmuPulseShape.h>
 
 DECLARE_COMPONENT( UTEmu::RawDataMonitorAlgorithm )
+DECLARE_COMPONENT( UTEmu::StepMonitorAlgorithm )
 DECLARE_COMPONENT( UTEmu::TrimDACAlgorithm )
 DECLARE_COMPONENT( UTEmu::PedestalCalculator )
+DECLARE_COMPONENT( UTEmu::PedestalCalculatorStep )
 DECLARE_COMPONENT( UTEmu::PedestalSubtractor )
 DECLARE_COMPONENT( UTEmu::PedestalCalculatorDataMonitorAlgorithm )
 DECLARE_COMPONENT( UTEmu::PedestalSubtractorDataMonitorAlgorithm )
 DECLARE_COMPONENT( UTEmu::CommonModeSubtractor )
+DECLARE_COMPONENT( UTEmu::PulseShape )
diff --git a/UTEmuOptions/options/UT_Emulation_NoiseComponents.py b/UTEmuOptions/options/UT_Emulation_NoiseComponents.py
index 861b0802989a0c10cb753e1b576a9f1c38899508..f95cabbd0dd97345ab2c1f3d312c565484167a2d 100644
--- a/UTEmuOptions/options/UT_Emulation_NoiseComponents.py
+++ b/UTEmuOptions/options/UT_Emulation_NoiseComponents.py
@@ -58,8 +58,7 @@ EventSelector().PrintFreq = 100
 
 # -------------------------------------------------------------------------------
 # Setup input -------------------------------------------------------------
-
-run_number = "0000297288" 
+run_number = "0000310462" 
 input_path = '/hlt2/objects/UT/' + run_number + '/'
 
 data = []
@@ -76,7 +75,7 @@ IOHelper("MDF").inputFiles(data)
 
 # Multithreading -------------------------------------------------------------
 # -------------------------------------------------------------------------------
-evtslots = 12 
+evtslots = 12
 threads = 10
 
 # Event Loop Manager -----------------------------------------------------------
diff --git a/UTEmuOptions/options/UT_PedestalCalculation.py b/UTEmuOptions/options/UT_PedestalCalculation.py
index 48369a3f34aef8f11db339d4d3608cfd01554916..e03adfbc3748f239ee2b243def449d65d392e5e8 100644
--- a/UTEmuOptions/options/UT_PedestalCalculation.py
+++ b/UTEmuOptions/options/UT_PedestalCalculation.py
@@ -58,9 +58,8 @@ EventSelector().PrintFreq = 1
 
 # -------------------------------------------------------------------------------
 # Setup input -------------------------------------------------------------
-run_number = "0000297288" 
+run_number = "0000310465" 
 input_path = '/hlt2/objects/UT/' + run_number + '/'
-
 # Algorithms ----------------------------------------------------------
 # Declare the algorithms we want to run. We set the output level to INFO
 
@@ -76,7 +75,7 @@ unpacker = LHCb__UnpackRawEvent(
 odin = createODIN(RawBanks="DAQ/RawBanks/ODIN")
 
 pedestals = UTEmu__PedestalCalculator(
-    'UTDigitsToPedestals', OutputLevel=DEBUG, RunNumber = run_number)
+    'UTDigitsToPedestals', OutputLevel=INFO, RunNumber = run_number)
 
 monSeq.Members = [unpacker, odin, iovProd, pedestals]
 
diff --git a/UTEmuOptions/options/UT_PedestalCalculationStep.py b/UTEmuOptions/options/UT_PedestalCalculationStep.py
new file mode 100644
index 0000000000000000000000000000000000000000..0f29f655efbcef9e576d75a7695840fe47e03673
--- /dev/null
+++ b/UTEmuOptions/options/UT_PedestalCalculationStep.py
@@ -0,0 +1,105 @@
+###############################################################################
+# (c) Copyright 2020 CERN for the benefit of the LHCb Collaboration           #
+#                                                                             #
+# This software is distributed under the terms of the GNU General Public      #
+# Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING".   #
+#                                                                             #
+# In applying this licence, CERN does not waive the privileges and immunities #
+# granted to it by virtue of its status as an Intergovernmental Organizatiodn #
+# or submit itself to any jurisdiction.                                       #
+###############################################################################
+
+import sys, os, glob
+from Gaudi.Configuration import  MessageSvc, VERBOSE, DEBUG, INFO, ERROR, WARNING
+from Gaudi.Configuration import ApplicationMgr
+from Configurables import LHCbApp,GaudiSequencer
+from Configurables import LoKiSvc
+from Configurables import AlgResourcePool, CPUCrunchSvc, HiveSlimEventLoopMgr, HiveWhiteBoard, AvalancheSchedulerSvc
+from Configurables import UTRawBankToUTNZSDigitsAlg,  UTEmu__PedestalCalculatorStep,  UTEmu__PedestalCalculatorDataMonitorAlgorithm
+from Configurables import Gaudi__Histograming__Sink__Root as RootHistoSink
+from Configurables import Gaudi__Monitoring__MessageSvcSink as MessageSvcSink
+from Configurables import LHCb__Det__LbDD4hep__IOVProducer as IOVProducer
+from Configurables import createODIN, LHCb__UnpackRawEvent, EventSelector
+from Configurables import LHCbTimingAuditor, LHCbSequencerTimerTool, TimingAuditor, AuditorSvc, SequencerTimerTool
+from GaudiConf import IOHelper
+from DDDB.CheckDD4Hep import UseDD4Hep
+
+# -------------------------------------------------------------------------------
+app = LHCbApp()
+app.DataType = "Upgrade"
+app.Simulation = False
+app.EvtMax = 1 
+
+# -------------------------------------------------------------------------------
+# DD4hep -------------------------------------------------------------
+
+if UseDD4Hep:
+    # Prepare detector description
+    from Configurables import LHCb__Det__LbDD4hep__DD4hepSvc as DD4hepSvc
+    dd4hepsvc = DD4hepSvc()
+    dd4hepsvc.VerboseLevel = 1
+    dd4hepsvc.GeometryLocation = "${DETECTOR_PROJECT_ROOT}/compact"
+    dd4hepsvc.GeometryVersion = "run3/trunk"
+    dd4hepsvc.GeometryMain = "LHCb.xml"
+    dd4hepsvc.DetectorList = ["/world", "UT"]
+    iovProd = IOVProducer("ReserveIOVDD4hep", ODIN='DAQ/ODIN')
+
+else:
+    # DetDesc case
+    LHCbApp().DataType = "Upgrade"
+    LHCbApp().DDDBtag = 'upgrade/UTv4r2-newUTID'
+    LHCbApp().CondDBtag = "master"
+    LHCbApp().Simulation = False
+    iovProd = IOVProducer()
+
+LoKiSvc().Welcome = False
+MessageSvc().OutputLevel = INFO
+EventSelector().PrintFreq = 1
+
+# -------------------------------------------------------------------------------
+# Setup input -------------------------------------------------------------
+run_number = "0000309677" 
+input_path = '/hlt2/objects/UT/' + run_number + '/'
+# Algorithms ----------------------------------------------------------
+# Declare the algorithms we want to run. We set the output level to INFO
+
+monSeq = GaudiSequencer("UTSequence")
+monSeq.IgnoreFilterPassed = True
+
+unpacker = LHCb__UnpackRawEvent(
+    'UnpackRawEvent',
+    BankTypes=['ODIN'],
+    RawBankLocations=['/Event/DAQ/RawBanks/ODIN'
+                      ])
+
+odin = createODIN(RawBanks="DAQ/RawBanks/ODIN")
+
+pedestals = UTEmu__PedestalCalculatorStep(
+    'UTDigitsToPedestals', OutputLevel=INFO, RunNumber = run_number)
+
+monSeq.Members = [unpacker, odin, iovProd, pedestals]
+
+# Application Manager ----------------------------------------------------------
+# We put everything together and change the type of message service
+
+appMgr = ApplicationMgr(
+    EvtMax=-1,
+    TopAlg=[monSeq],
+    ExtSvc=[
+        MessageSvcSink(),
+        #RootHistoSink(FileName="./Vetra/ut_data_pedestals_"+run_number+".root"),
+    ],
+)
+
+# Some extra stuff for timing table
+ApplicationMgr().ExtSvc += ['ToolSvc', 'AuditorSvc']
+ApplicationMgr().AuditAlgorithms = True
+AuditorSvc().Auditors += ['TimingAuditor']
+SequencerTimerTool().OutputLevel = 4
+
+# No error messages when reading MDF
+#IODataManager().DisablePFNWarning = True
+
+
+
+
diff --git a/UTEmuOptions/options/UT_PedestalMonitoring.py b/UTEmuOptions/options/UT_PedestalMonitoring.py
index 12da0a59a705ab999d65a8a079171af9df96fd3c..cadbdd9b4422bf42edeb9588946851b0c00b7672 100644
--- a/UTEmuOptions/options/UT_PedestalMonitoring.py
+++ b/UTEmuOptions/options/UT_PedestalMonitoring.py
@@ -59,7 +59,7 @@ EventSelector().PrintFreq = 100
 
 # -------------------------------------------------------------------------------
 # Setup input -------------------------------------------------------------
-run_number = "0000297288" 
+run_number = "0000310462" 
 input_path = '/hlt2/objects/UT/' + run_number + '/'
 
 data = []
@@ -117,7 +117,7 @@ odin = createODIN(RawBanks="DAQ/RawBanks/ODIN")
 
 decoder = UTRawBankToUTNZSDigitsAlg("UTRawToDigits", OutputLevel=INFO, Type="", OutputDigitData = '/Event/UT/Digits', OutputBankData = '/Event/UT/Banks')
 
-pedestal_monitor = UTEmu__PedestalCalculatorDataMonitorAlgorithm('UTPedestalMonitor', RunNumber = run_number, OutputLevel=INFO)
+pedestal_monitor = UTEmu__PedestalCalculatorDataMonitorAlgorithm('UTMeanADCMonitor', RunNumber = run_number, OutputLevel=INFO)
 
 monSeq.Members = [unpacker, odin, iovProd, decoder, pedestal_monitor]
 
diff --git a/UTEmuOptions/options/UT_PedestalSubtraction.py b/UTEmuOptions/options/UT_PedestalSubtraction.py
index d0166f7c775d4b5b04ffea7b46c1ede88494d292..134a8482378ec21bd04a982ecd9e7b6c282f9723 100644
--- a/UTEmuOptions/options/UT_PedestalSubtraction.py
+++ b/UTEmuOptions/options/UT_PedestalSubtraction.py
@@ -60,7 +60,7 @@ EventSelector().PrintFreq = 100
 # -------------------------------------------------------------------------------
 # Setup input -------------------------------------------------------------
 
-run_number = "0000297288" 
+run_number = "0000310462" 
 input_path = '/hlt2/objects/UT/' + run_number + '/'
 
 data = []
diff --git a/UTEmuOptions/options/UT_PulseShape.py b/UTEmuOptions/options/UT_PulseShape.py
new file mode 100644
index 0000000000000000000000000000000000000000..1fc2992e7da1a66b2350642897cac6e6f0810ef9
--- /dev/null
+++ b/UTEmuOptions/options/UT_PulseShape.py
@@ -0,0 +1,149 @@
+###############################################################################
+# (c) Copyright 2020 CERN for the benefit of the LHCb Collaboration           #
+#                                                                             #
+# This software is distributed under the terms of the GNU General Public      #
+# Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING".   #
+#                                                                             #
+# In applying this licence, CERN does not waive the privileges and immunities #
+# granted to it by virtue of its status as an Intergovernmental Organizatiodn #
+# or submit itself to any jurisdiction.                                       #
+###############################################################################
+
+
+import sys, os, glob
+from Gaudi.Configuration import  MessageSvc, VERBOSE, DEBUG, INFO, ERROR, WARNING
+from Gaudi.Configuration import ApplicationMgr
+from Configurables import LHCbApp,GaudiSequencer
+from Configurables import LoKiSvc
+from Configurables import AlgResourcePool, CPUCrunchSvc, HiveSlimEventLoopMgr, HiveWhiteBoard, AvalancheSchedulerSvc
+from Configurables import UTEmu__PulseShape, UTRawBankToUTNZSDigitsAlg
+from Configurables import Gaudi__Histograming__Sink__Root as RootHistoSink
+from Configurables import Gaudi__Monitoring__MessageSvcSink as MessageSvcSink
+from Configurables import LHCb__Det__LbDD4hep__IOVProducer as IOVProducer
+from Configurables import createODIN, LHCb__UnpackRawEvent, EventSelector
+from Configurables import LHCbTimingAuditor, LHCbSequencerTimerTool, TimingAuditor, AuditorSvc, SequencerTimerTool
+from GaudiConf import IOHelper
+from DDDB.CheckDD4Hep import UseDD4Hep
+
+# -------------------------------------------------------------------------------
+app = LHCbApp()
+app.DataType = "Upgrade"
+app.Simulation = False
+app.EvtMax = -1
+# -----------------------------------------------------------------------------
+# DD4hep -------------------------------------------------------------
+
+if UseDD4Hep:
+    # Prepare detector description
+    from Configurables import LHCb__Det__LbDD4hep__DD4hepSvc as DD4hepSvc
+    dd4hepsvc = DD4hepSvc()
+    dd4hepsvc.VerboseLevel = 1
+    dd4hepsvc.GeometryLocation = "${DETECTOR_PROJECT_ROOT}/compact"
+    dd4hepsvc.GeometryVersion = "run3/trunk"
+    dd4hepsvc.GeometryMain = "LHCb.xml"
+    dd4hepsvc.DetectorList = ["/world", "UT"]
+    iovProd = IOVProducer("ReserveIOVDD4hep", ODIN='DAQ/ODIN')
+
+else:
+    # DetDesc case
+    LHCbApp().DataType = "Upgrade"
+    LHCbApp().DDDBtag = 'upgrade/UTv4r2-newUTID'
+    LHCbApp().CondDBtag = "master"
+    LHCbApp().Simulation = False
+    iovProd = IOVProducer()
+
+LoKiSvc().Welcome = False
+MessageSvc().OutputLevel = INFO
+EventSelector().PrintFreq = 100
+
+# -------------------------------------------------------------------------------
+# Setup input -------------------------------------------------------------
+run_number = "0000307556" 
+input_path = '/swdev/wokrupa/DATA/CalibRuns/' + run_number + '/'
+
+
+data = []
+if os.path.exists(input_path):
+    data = glob.glob('/' + input_path + '*.mdf')
+else:
+    print("Input directory doesn't exist!")
+    sys.exit()
+if data == []:
+    print("Input data doesn't exist!")
+    sys.exit()
+
+IOHelper("MDF").inputFiles(data)
+
+# Multithreading -------------------------------------------------------------
+# -----------------------------------------------------------------------------
+evtslots = 7
+threads = 6
+
+# Event Loop Manager -----------------------------------------------------------
+# It's called slim since it has less functionalities overall than the good-old
+# event loop manager. Here we just set its outputlevel to DEBUG.
+
+whiteboard = HiveWhiteBoard("EventDataSvc", EventSlots=evtslots)
+slimeventloopmgr = HiveSlimEventLoopMgr(
+    SchedulerName="AvalancheSchedulerSvc", OutputLevel=INFO
+)
+
+# ForwardScheduler -------------------------------------------------------------
+# We just decide how many algorithms in flight we want to have and how many
+# threads in the pool. The default value is -1, which is for TBB equivalent
+# to take over the whole machine.
+
+scheduler = AvalancheSchedulerSvc(ThreadPoolSize=threads, OutputLevel=INFO)
+
+# Algo Resource Pool -----------------------------------------------------------
+# Nothing special here, we just set the debug level.
+AlgResourcePool(OutputLevel=INFO)
+
+CPUCrunchSvc(shortCalib=True)
+
+# Algorithms ----------------------------------------------------------
+# Declare the algorithms we want to run. We set the output level to INFO
+
+monSeq = GaudiSequencer("UTSequence")
+monSeq.IgnoreFilterPassed = True
+
+unpacker = LHCb__UnpackRawEvent(
+    'UnpackRawEvent',
+    BankTypes=['ODIN'],
+    RawBankLocations=['/Event/DAQ/RawBanks/ODIN'
+                      ])
+
+odin = createODIN(RawBanks="DAQ/RawBanks/ODIN")
+
+decoder = UTRawBankToUTNZSDigitsAlg("UTRawToDigits", OutputLevel=INFO, Type="", OutputDigitData = '/Event/UT/Digits', OutputBankData = '/Event/UT/Banks')
+
+#0-4
+layer = 3
+pulse = UTEmu__PulseShape(
+    "UTPulseShape", OutputLevel=INFO, Layer = layer)
+
+monSeq.Members = [unpacker, odin, iovProd, decoder, pulse]
+
+# Application Manager ----------------------------------------------------------
+# We put everything together and change the type of message service
+
+appMgr = ApplicationMgr(
+    EvtMax=-1,
+    TopAlg=[monSeq],
+    HistogramPersistency="ROOT",
+    EventLoop=slimeventloopmgr,    
+    ExtSvc=[
+        MessageSvcSink(),
+        whiteboard, 
+        RootHistoSink(FileName="./Vetra/ut_data_pulse_"+run_number+"_Layer"+str(layer)+".root"),
+    ],
+)
+
+# Some extra stuff for timing table
+ApplicationMgr().ExtSvc += ['ToolSvc', 'AuditorSvc']
+ApplicationMgr().AuditAlgorithms = True
+AuditorSvc().Auditors += ['TimingAuditor']
+SequencerTimerTool().OutputLevel = 4
+
+# No error messages when reading MDF
+#IODataManager().DisablePFNWarning = True
diff --git a/UTEmuOptions/options/UT_RawADC_Run.py b/UTEmuOptions/options/UT_RawADC_Run.py
index 9005cfc38fe579fe8bc0415faf82ee699ff6b772..82b7c37d0a202cb9478e2f939cdf42b75c725979 100644
--- a/UTEmuOptions/options/UT_RawADC_Run.py
+++ b/UTEmuOptions/options/UT_RawADC_Run.py
@@ -26,11 +26,11 @@ from GaudiConf import IOHelper
 from DDDB.CheckDD4Hep import UseDD4Hep
 
 # -------------------------------------------------------------------------------
-app = LHCbApp()
+app = LHCbApp() 
 app.DataType = "Upgrade"
 app.Simulation = False
-app.EvtMax = 1000
-# -------------------------------------------------------------------------------
+app.EvtMax = 10000
+# -----------------------------------------------------------------------------
 # DD4hep -------------------------------------------------------------
 
 if UseDD4Hep:
@@ -58,8 +58,8 @@ EventSelector().PrintFreq = 100
 
 # -------------------------------------------------------------------------------
 # Setup input -------------------------------------------------------------
-run_number = "0000299973" 
-input_path = '/group/ut/ONLINE/DATA/' + run_number + '/'
+run_number = "0000310465"
+input_path = '/hlt2/objects/UT/' + run_number + '/'
 
 data = []
 if os.path.exists(input_path):
@@ -114,10 +114,10 @@ unpacker = LHCb__UnpackRawEvent(
 
 odin = createODIN(RawBanks="DAQ/RawBanks/ODIN")
 
-decoder = UTRawBankToUTNZSDigitsAlg("UTRawToDigits", OutputLevel=INFO, Type="", OutputDigitData = '/Event/UT/Digits', OutputBankData = '/Event/UT/Banks')
+decoder = UTRawBankToUTNZSDigitsAlg("UTRawToDigits", OutputLevel=ERROR, Type="", OutputDigitData = '/Event/UT/Digits', OutputBankData = '/Event/UT/Banks')
 
 monitor = UTEmu__RawDataMonitorAlgorithm(
-    "UTDigitMonitor", OutputLevel=INFO, Events = app.EvtMax)
+    "UTDigitMonitor", OutputLevel=ERROR, Events = app.EvtMax)
 
 monSeq.Members = [unpacker, odin, iovProd, decoder, monitor]
 
diff --git a/UTEmuOptions/options/UT_Step_Run.py b/UTEmuOptions/options/UT_Step_Run.py
new file mode 100644
index 0000000000000000000000000000000000000000..a898b477c2df92e3bcc1a0eefe59b144df937c2c
--- /dev/null
+++ b/UTEmuOptions/options/UT_Step_Run.py
@@ -0,0 +1,146 @@
+###############################################################################
+# (c) Copyright 2020 CERN for the benefit of the LHCb Collaboration           #
+#                                                                             #
+# This software is distributed under the terms of the GNU General Public      #
+# Licence version 3 (GPL Version 3), copied verbatim in the file "COPYING".   #
+#                                                                             #
+# In applying this licence, CERN does not waive the privileges and immunities #
+# granted to it by virtue of its status as an Intergovernmental Organizatiodn #
+# or submit itself to any jurisdiction.                                       #
+###############################################################################
+
+
+import sys, os, glob
+from Gaudi.Configuration import  MessageSvc, VERBOSE, DEBUG, INFO, ERROR, WARNING
+from Gaudi.Configuration import ApplicationMgr
+from Configurables import LHCbApp,GaudiSequencer
+from Configurables import LoKiSvc
+from Configurables import AlgResourcePool, CPUCrunchSvc, HiveSlimEventLoopMgr, HiveWhiteBoard, AvalancheSchedulerSvc
+from Configurables import UTEmu__StepMonitorAlgorithm, UTRawBankToUTNZSDigitsAlg
+from Configurables import Gaudi__Histograming__Sink__Root as RootHistoSink
+from Configurables import Gaudi__Monitoring__MessageSvcSink as MessageSvcSink
+from Configurables import LHCb__Det__LbDD4hep__IOVProducer as IOVProducer
+from Configurables import createODIN, LHCb__UnpackRawEvent, EventSelector
+from Configurables import LHCbTimingAuditor, LHCbSequencerTimerTool, TimingAuditor, AuditorSvc, SequencerTimerTool
+from GaudiConf import IOHelper
+from DDDB.CheckDD4Hep import UseDD4Hep
+
+# -------------------------------------------------------------------------------
+app = LHCbApp() 
+app.DataType = "Upgrade"
+app.Simulation = False
+app.EvtMax = 10000
+# -----------------------------------------------------------------------------
+# DD4hep -------------------------------------------------------------
+
+if UseDD4Hep:
+    # Prepare detector description
+    from Configurables import LHCb__Det__LbDD4hep__DD4hepSvc as DD4hepSvc
+    dd4hepsvc = DD4hepSvc()
+    dd4hepsvc.VerboseLevel = 1
+    dd4hepsvc.GeometryLocation = "${DETECTOR_PROJECT_ROOT}/compact"
+    dd4hepsvc.GeometryVersion = "run3/trunk"
+    dd4hepsvc.GeometryMain = "LHCb.xml"
+    dd4hepsvc.DetectorList = ["/world", "UT"]
+    iovProd = IOVProducer("ReserveIOVDD4hep", ODIN='DAQ/ODIN')
+
+else:
+    # DetDesc case
+    LHCbApp().DataType = "Upgrade"
+    LHCbApp().DDDBtag = 'upgrade/UTv4r2-newUTID'
+    LHCbApp().CondDBtag = "master"
+    LHCbApp().Simulation = False
+    iovProd = IOVProducer()
+
+LoKiSvc().Welcome = False
+MessageSvc().OutputLevel = INFO
+EventSelector().PrintFreq = 100
+
+# -------------------------------------------------------------------------------
+# Setup input -------------------------------------------------------------
+run_number = "0000310472" 
+input_path = '/hlt2/objects/UT/' + run_number + '/'
+
+data = []
+if os.path.exists(input_path):
+    data = glob.glob('/' + input_path + '*.mdf')
+else:
+    print("Input directory doesn't exist!")
+    sys.exit()
+if data == []:
+    print("Input data doesn't exist!")
+    sys.exit()
+
+IOHelper("MDF").inputFiles(data)
+
+# Multithreading -------------------------------------------------------------
+# -----------------------------------------------------------------------------
+evtslots = 6
+threads = 5
+
+# Event Loop Manager -----------------------------------------------------------
+# It's called slim since it has less functionalities overall than the good-old
+# event loop manager. Here we just set its outputlevel to DEBUG.
+
+whiteboard = HiveWhiteBoard("EventDataSvc", EventSlots=evtslots)
+slimeventloopmgr = HiveSlimEventLoopMgr(
+    SchedulerName="AvalancheSchedulerSvc", OutputLevel=INFO
+)
+
+# ForwardScheduler -------------------------------------------------------------
+# We just decide how many algorithms in flight we want to have and how many
+# threads in the pool. The default value is -1, which is for TBB equivalent
+# to take over the whole machine.
+
+scheduler = AvalancheSchedulerSvc(ThreadPoolSize=threads, OutputLevel=INFO)
+
+# Algo Resource Pool -----------------------------------------------------------
+# Nothing special here, we just set the debug level.
+AlgResourcePool(OutputLevel=INFO)
+
+CPUCrunchSvc(shortCalib=True)
+
+# Algorithms ----------------------------------------------------------
+# Declare the algorithms we want to run. We set the output level to INFO
+
+monSeq = GaudiSequencer("UTSequence")
+monSeq.IgnoreFilterPassed = True
+
+unpacker = LHCb__UnpackRawEvent(
+    'UnpackRawEvent',
+    BankTypes=['ODIN'],
+    RawBankLocations=['/Event/DAQ/RawBanks/ODIN'
+                      ])
+
+odin = createODIN(RawBanks="DAQ/RawBanks/ODIN")
+
+decoder = UTRawBankToUTNZSDigitsAlg("UTRawToDigits", OutputLevel=ERROR, Type="", OutputDigitData = '/Event/UT/Digits', OutputBankData = '/Event/UT/Banks')
+
+monitor = UTEmu__StepMonitorAlgorithm(
+    "UTStepMonitor", OutputLevel=ERROR, Steps = 100, Events = app.EvtMax)
+
+monSeq.Members = [unpacker, odin, iovProd, decoder, monitor]
+
+# Application Manager ----------------------------------------------------------
+# We put everything together and change the type of message service
+
+appMgr = ApplicationMgr(
+    EvtMax=-1,
+    TopAlg=[monSeq],
+    HistogramPersistency="ROOT",
+    EventLoop=slimeventloopmgr,    
+    ExtSvc=[
+        MessageSvcSink(),
+        whiteboard, 
+        RootHistoSink(FileName="./Vetra/ut_step_nzs_"+run_number+".root"),
+    ],
+)
+
+# Some extra stuff for timing table
+ApplicationMgr().ExtSvc += ['ToolSvc', 'AuditorSvc']
+ApplicationMgr().AuditAlgorithms = True
+AuditorSvc().Auditors += ['TimingAuditor']
+SequencerTimerTool().OutputLevel = 4
+
+# No error messages when reading MDF
+#IODataManager().DisablePFNWarning = True
diff --git a/UTEmuOptions/options/UT_trimDAC.py b/UTEmuOptions/options/UT_TrimDAC.py
similarity index 100%
rename from UTEmuOptions/options/UT_trimDAC.py
rename to UTEmuOptions/options/UT_TrimDAC.py
diff --git a/UTScripts/BadChannels/UTBadChannels.py b/UTScripts/BadChannels/UTBadChannels.py
index ab2478d8341834e73238242ff5bc62b599733d00..0d81c5f607586642d60c45359a71a5c949f966c1 100644
--- a/UTScripts/BadChannels/UTBadChannels.py
+++ b/UTScripts/BadChannels/UTBadChannels.py
@@ -5,7 +5,7 @@ import re
 import yaml
 from collections import OrderedDict
 
-run = "0000294135"
+run = "0000307299"
 
 # Code to convert channelID to online name + channel
 strip_mask = 0x1ff
@@ -27,6 +27,9 @@ max_side_number = 1
 side_names = ("C", "A")
 layer_names = ("aX", "aU", "bV", "bX")
 
+def remove_duplicates_from_list(lst):
+    return list(set(lst))
+
 def get_online_name(aChan):
     det_type, side, layer, stave, face, module, sector, _ = extract_bits(aChan)
     assert det_type == det_type_ut
@@ -96,77 +99,73 @@ def get_last(t):
     return t[-1]
 
 # import data
-data = pd.read_csv("/swdev/wokrupa/stack2/Vetra/CMS_noise_" + run + ".csv")
+data = pd.read_csv("/swdev/wokrupa/stack3/Vetra/CMS_noise_" + run + ".csv")
 columns_name = ['channel_ID', 'mean', 'sigma', 'N']
 data.columns = columns_name
 
-data = data[data['N'] > 50]
-
-# get online name and channel
+# Extract online name and channel
 data['name'] = data['channel_ID'].apply(get_online_name)
-m = data['channel_ID'].apply(extract_bits)
-
-df = pd.DataFrame(m)
-
-# Calculate last_value from channel_ID
-df['last_value'] = df['channel_ID'].apply(get_last)
-data['channel'] = df['last_value']
+data['channel'] = data['channel_ID'].apply(extract_bits).apply(get_last)
 data['chip'] = (data['channel'] // 128).astype(int)
 
-# Compute the mean and std of the noise (sigma) of each chip without outliers
-mean_noise = data.groupby(['name', 'chip'])['sigma'].apply(
-    mean_wo_outliers).reset_index()
-std_noise = data.groupby(['name', 'chip'])[
-    'sigma'].apply(compute_ci).reset_index()
+# Compute the mean and std of noise (sigma) for each chip without outliers
+mean_noise = data.groupby(['name', 'chip'])['sigma'].apply(mean_wo_outliers).reset_index()
+std_noise = data.groupby(['name', 'chip'])['sigma'].apply(compute_ci).reset_index()
 
-# Merge dataframes
-merged_df2 = pd.merge(data, mean_noise, on=[
-                      'name', 'chip'], how='inner', suffixes=('', '_mean'))
-merged_df2 = pd.merge(merged_df2, std_noise, on=[
-                      'name', 'chip'], how='inner', suffixes=('', '_std'))
+# Merge dataframes - calculate mean and std of sigma per chip
+merged_df = pd.merge(data, mean_noise, on=['name', 'chip'], suffixes=('', '_mean'))
+merged_df = pd.merge(merged_df, std_noise, on=['name', 'chip'], suffixes=('', '_std'))
+
+#Save all
+merged_df.to_csv('all_' + run + '.csv', index=False)
 
 # Select noisy channels
-condition = (merged_df2['sigma'] >
-             merged_df2['sigma_mean'] + 10 * merged_df2['sigma_std'])
-condition_n = (
-    merged_df2['sigma'] < merged_df2['sigma_mean'] - 10 * merged_df2['sigma_std'])
-condition0 = (merged_df2['mean'] > 2.5 * merged_df2['sigma'])
-condition0_n = (merged_df2['mean'] < -2.5 * merged_df2['sigma'])
-
-result_df2 = merged_df2.loc[condition | condition_n |
-                            condition0 | condition0_n, ['channel', 'name']]
-
-# selection of bad channels
-condition2 = merged_df2['sigma'] > 2*merged_df2['sigma_mean']
-condition20 = merged_df2['sigma'] < 0.5*merged_df2['sigma_mean']
-result_df = pd.DataFrame({
-    'channel': merged_df2.loc[condition2 | condition20, 'channel'],
-    'name': merged_df2.loc[condition2 | condition20, 'name']
-})
-
-# Convert the list in the correct format
+condition = (merged_df['sigma'] > merged_df['sigma_mean'] + 10 * merged_df['sigma_std']) | \
+            (merged_df['sigma'] < merged_df['sigma_mean'] - 10 * merged_df['sigma_std']) | \
+            (merged_df['mean'] > 2.5 * merged_df['sigma']) | \
+            (merged_df['mean'] < -2.5 * merged_df['sigma'])
+
+result_df = merged_df.loc[condition, ['channel', 'name']]
+
+# Select bad channels based on sigma thresholds
+condition_high = merged_df['sigma'] > 2 * merged_df['sigma_mean']
+condition_low = merged_df['sigma'] < 0.5 * merged_df['sigma_mean']
+
+result_df2 = merged_df.loc[condition_high | condition_low, ['channel', 'name']]
+
+# Convert the list in the correct format 
 result_df['chip'] = result_df['channel'] // 128
 result_df['chip'] = result_df['chip'].astype(int)
 
+# Convert the list in the correct format 
+result_df2['chip'] = result_df2['channel'] // 128
+result_df2['chip'] = result_df2['chip'].astype(int)
+
 # Group by name and chip, aggregate channels as lists
-tot = result_df.groupby(['name', 'chip'])['channel'].agg(list).reset_index()
-tot['nBadC'] = tot['channel'].apply(lambda x: [(i % 128) for i in x])
+combined_df = pd.concat([result_df, result_df2], ignore_index=True)
 
-# Print noisy channels
-print("Noisy channels")
-print(tot)
+tot_n = combined_df.groupby(['name', 'chip'])['channel'].agg(list).reset_index()
+
+tot_n['nBadC'] = tot_n['channel'].apply(lambda x: [(i % 128) for i in x])
 
 # Calculate positions
-tot['pos'] = tot['nBadC'].apply(lambda x: [num // 8 for num in x])
+tot_n['pos'] = tot_n['nBadC'].apply(lambda x: [num // 8 for num in x])
+# Verify the lengths are the same
+assert all(tot_n['nBadC'].apply(len) == tot_n['pos'].apply(len)), "Mismatch in lengths of 'nBadC' and 'pos'"
+# Print noisy channels
 
-# Open a file for writing
-file = open('bad_ch_list_' + run + '.txt', 'w')
+# Apply the function to the relevant columns
+tot_n['nBadC'] = tot_n['nBadC'].apply(remove_duplicates_from_list)
+tot_n['pos'] = tot_n['pos'].apply(remove_duplicates_from_list)
+tot_n['channel'] = tot_n['channel'].apply(remove_duplicates_from_list)
+
+print("CMS_based")
+print(tot_n)
 
 # Tag saturation with pedestal value
 # Import pedestals
-ped = pd.read_csv("/swdev/wokrupa/stack2/Vetra/pedestals_" + run + ".csv")
-columns_name_ped = ['channel_ID', 'pedestal']
-ped.columns = columns_name_ped
+ped = pd.read_csv("/swdev/wokrupa/stack3/Vetra/pedestals_" + run + ".csv")
+ped.columns = ['channel_ID', 'pedestal']
 ped['name'] = ped['channel_ID'].apply(get_online_name)
 m_ped = ped['channel_ID'].apply(extract_bits)
 
@@ -175,69 +174,148 @@ df_ped['last_value'] = df_ped['channel_ID'].apply(lambda x: get_last(x))
 ped['channel'] = df_ped['last_value']
 ped['chip'] = (ped['channel'] // 128).astype(int)
 
-merged_df_p = pd.merge(merged_df2, ped, on=[
-                       'name', 'chip', 'channel_ID', 'channel'], how='inner', suffixes=('', ''))
+# Select bad channels based on saturation condition
+condition_p = np.abs(ped['pedestal']) > 25
+result_df_p = ped.loc[condition_p, ['channel', 'name']]
 
-# selection of bad channels due to saturation
-condition_p = np.abs(merged_df_p['pedestal']) > 25
+# Calculate chip numbers
+result_df_p['chip'] = (result_df_p['channel'] // 128).astype(int)
 
-result_df_p = pd.DataFrame({
-    'channel': merged_df_p.loc[condition_p, 'channel'],
-    'name': merged_df_p.loc[condition_p, 'name']
-})
+# Group channels by name and chip
+tot_p = result_df_p.groupby(['name', 'chip'])['channel'].agg(list).reset_index()
 
-result_df_p['chip'] = result_df_p['channel']/128
-result_df_p['chip'] = result_df_p['chip'].astype(int)
-
-tot_p = result_df_p.groupby(['name', 'chip'])[
-    'channel'].agg(list).reset_index()
+# Calculate positions
 tot_p['nBadC'] = tot_p['channel'].apply(lambda x: [(i % 128) for i in x])
 tot_p['pos'] = tot_p['nBadC'].apply(lambda x: [num // 8 for num in x])
-print("Pedestal")
+
+# Verify equal lengths
+assert all(tot_p['nBadC'].apply(len) == tot_p['pos'].apply(len)), "Mismatch in lengths of 'nBadC' and 'pos'"
+
+# Apply the function to the relevant columns
+tot_p['nBadC'] = tot_p['nBadC'].apply(remove_duplicates_from_list)
+tot_p['pos'] = tot_p['pos'].apply(remove_duplicates_from_list)
+tot_p['channel'] = tot_p['channel'].apply(remove_duplicates_from_list)
+
+print("Pedestal_based")
 print(tot_p)
 
+# Tag disabled channels
+# Import total noise not biased by CMS
+
+# import data
+data = pd.read_csv("/swdev/wokrupa/stack3/Vetra/sigmaNoise_" + run + ".csv")
+columns_name = ['channel_ID', 'mean', 'sigma']
+data.columns = columns_name
+
+# Extract online name and channel
+data['name'] = data['channel_ID'].apply(get_online_name)
+data['channel'] = data['channel_ID'].apply(extract_bits).apply(get_last)
+data['chip'] = (data['channel'] // 128).astype(int)
+
+# Compute the mean and std of noise (sigma) for each chip without outliers
+mean_noise = data.groupby(['name', 'chip'])['sigma'].apply(mean_wo_outliers).reset_index()
+std_noise = data.groupby(['name', 'chip'])['sigma'].apply(compute_ci).reset_index()
+
+# Merge dataframes - calculate mean and std of sigma per chip
+merged_df = pd.merge(data, mean_noise, on=['name', 'chip'], suffixes=('', '_mean'))
+merged_df = pd.merge(merged_df, std_noise, on=['name', 'chip'], suffixes=('', '_std'))
+
+#Save all
+merged_df.to_csv('all2_' + run + '.csv', index=False)
+
+# Select noisy channels
+condition = (merged_df['sigma_mean'] > 0 )
+condition2 = (merged_df['sigma'] == 0 )
+
+result_df = merged_df.loc[condition & condition2, ['channel', 'name']]
+
+# Convert the list in the correct format 
+result_df['chip'] = result_df['channel'] // 128
+result_df['chip'] = result_df['chip'].astype(int)
+
+tot_s = result_df.groupby(['name', 'chip'])['channel'].agg(list).reset_index()
+tot_s['nBadC'] = tot_s['channel'].apply(lambda x: [(i % 128) for i in x])
+
+# Calculate positions
+tot_s['pos'] = tot_s['nBadC'].apply(lambda x: [num // 8 for num in x])
+
+# Verify the lengths are the same
+assert all(tot_s['nBadC'].apply(len) == tot_s['pos'].apply(len)), "Mismatch in lengths of 'nBadC' and 'pos'"
+
+# Apply the function to the relevant columns
+tot_s['nBadC'] = tot_s['nBadC'].apply(remove_duplicates_from_list)
+tot_s['pos'] = tot_s['pos'].apply(remove_duplicates_from_list)
+tot_s['channel'] = tot_s['channel'].apply(remove_duplicates_from_list)
+
+print("TotSig_based")
+print(tot_s)
+
 # merging bad channels from noise and from pedestal distributions
-all_bad_ch = pd.concat([tot, tot_p])
+all_bad_ch = pd.concat([tot_n, tot_p, tot_s])
 
 # Define a function to merge lists
 def merge_lists(series):
-    return list(set(x for sublist in series for x in sublist))
-
-# Group by 'channel' and 'name' and apply the merge_lists function
-result1 = all_bad_ch.groupby(['chip', 'name'])[
-    'nBadC'].agg(merge_lists).reset_index()
-result2 = all_bad_ch.groupby(['chip', 'name'])[
-    'pos'].agg(merge_lists).reset_index()
-result3 = all_bad_ch.groupby(['chip', 'name'])[
-    'channel'].agg(merge_lists).reset_index()
-
-final_list = pd.merge(result1, result2,  on=['chip', 'name'], how='inner')
-final_list = pd.merge(final_list, result3,  on=['chip', 'name'], how='inner')
+    return [x for sublist in series for x in sublist]
+
+# Group by 'chip' and 'name' and apply the merge_lists function
+result1 = all_bad_ch.groupby(['chip', 'name'])['nBadC'].agg(merge_lists).reset_index()
+result2 = all_bad_ch.groupby(['chip', 'name'])['pos'].agg(merge_lists).reset_index()
+result3 = all_bad_ch.groupby(['chip', 'name'])['channel'].agg(merge_lists).reset_index()
+
+# Merge the results
+final_list = pd.merge(result1, result2, on=['chip', 'name'], how='inner')
+final_list = pd.merge(final_list, result3, on=['chip', 'name'], how='inner')
+
+# Apply the function to the relevant columns
+final_list['nBadC'] = final_list['nBadC'].apply(remove_duplicates_from_list)
+final_list['channel'] = final_list['channel'].apply(remove_duplicates_from_list)
+
+#trick to have repetition but only when needed!
+final_list['pos'] = final_list['nBadC'].apply(lambda x: [num // 8 for num in x])
+
+
 tot = final_list
+print("Total")
+print(tot)
+tot.to_csv('total_list_1_' + run + '.txt', index=False)
+
+# Open a file for writing
+file = open('bad_ch_list_' + run + '.txt', 'w')
+
+exclusions = ["UTbV_1AT_S1E.Chip3.Ch104", "UTaU_2AT_M2.Chip3.Ch18", "UTbV_9CT_S3.Chip0.Ch90",] 
 
 # write the bad channels in the correct format
 for i in range(len(tot)):
-
+    exc = 1
     mask_list = ['0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00',
                  '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00']
     sum_dict = {}
     prova = []
     mask_dict = {}
     for val1, val2 in zip(tot.iloc[i]['nBadC'], tot.iloc[i]['pos']):
+        name = tot.iloc[i]['name'] + ".Chip" + str(tot.iloc[i]['chip']) + ".Ch" + str(val1)
+        print(name)
+        if name in exclusions:
+            exc = 0
+            print("Exclusion! ", name)
+            continue
         if val2 not in mask_dict:
             mask_dict[val2] = 0
         mask_dict[val2] |= (1 << val1 % 8)
-
     mask_list2 = list(mask_dict.values())
     mask = [hex(0x00 | element) for element in mask_list2]
-
     no_rep_pos = list(set(tot.iloc[i]['pos']))
     no_rep_pos.sort()
-
-    if tot.iloc[i]['nBadC']:
-        for jj in range(len(no_rep_pos)):
-            mask_list[no_rep_pos[jj]] = mask[jj]
-    line = '--- {}.{} {}\n'.format(tot.iloc[i]
-                                   ['name'], tot.iloc[i]['chip'], mask_list)
-    file.write(line)
-
+    if(exc):
+        if tot.iloc[i]['nBadC']:
+            for jj in range(len(no_rep_pos)):
+                mask_list[no_rep_pos[jj]] = mask[jj]
+        line = '--- {}.{} {}\n'.format(tot.iloc[i]
+                                    ['name'], tot.iloc[i]['chip'], mask_list)
+        file.write(line)
+
+# extra stuff for extra studies
+
+tot_p.to_csv('bad_ch_list_1_' + run + '.txt', index=False)
+tot_n.to_csv('bad_ch_list_2_' + run + '.txt', index=False)
+tot_s.to_csv('bad_ch_list_3_' + run + '.txt', index=False)
diff --git a/UTScripts/BadChannels/UTBadChannels_Wojtek.py b/UTScripts/BadChannels/UTBadChannels_Wojtek.py
deleted file mode 100644
index 19d514afa1732efa32a5b334ad6f0d5fb261e1e2..0000000000000000000000000000000000000000
--- a/UTScripts/BadChannels/UTBadChannels_Wojtek.py
+++ /dev/null
@@ -1,241 +0,0 @@
-import pandas as pd
-import numpy as np
-import matplotlib.pyplot as plt
-import re
-import yaml
-from collections import OrderedDict
-
-run = "0000294165"
-
-# Code to convert channelID to online name + channel
-strip_mask = 0x1ff
-sector_mask = 0x200
-module_mask = 0x1c00
-face_mask = 0x2000
-stave_mask = 0x3c000
-layer_mask = 0xc0000
-side_mask = 0x100000
-det_type_mask = 0x600000
-det_type_ut = 2
-max_strip_number = 511
-max_sector_number = 1
-max_module_number = 7
-max_face_number = 1
-max_stave_number = 8
-max_layer_number = 3
-max_side_number = 1
-side_names = ("C", "A")
-layer_names = ("aX", "aU", "bV", "bX")
-
-def get_online_name(aChan):
-    det_type, side, layer, stave, face, module, sector, _ = extract_bits(aChan)
-    assert det_type == det_type_ut
-    side_str = side_names[side]
-    layer_str = layer_names[layer]
-    stave_str = str(stave + 1)  # Convert stave to string
-
-    # Determine module_str
-    if stave == 0:
-        if face == 0:
-            module_str = f"B_S{4 - module}" if module < 4 else f"T_M{module - 3}"
-        elif face == 1:
-            module_str = f"B_M{4 - module}" if module < 4 else f"T_S{module - 3}"
-    else:
-        if face == 0:
-            module_str = f"B_S{3 - module}" if module < 4 else f"T_M{module - 3}"
-        elif face == 1:
-            module_str = f"B_M{4 - module}" if module < 4 else f"T_S{module - 4}"
-
-    # Determine sector_str
-    if stave < 2 and face == 0 and 2 <= module < 5:
-        sector_str = "W" if sector == 0 else "E"
-    elif stave < 2 and face == 1 and 2 < module <= 5:
-        sector_str = "W" if sector == 0 else "E"
-    else:
-        assert sector == 0
-        sector_str = ""
-
-    name = f"UT{layer_str}_{stave_str}{side_str}{module_str}{sector_str}"
-    return name
-
-def extract_bits(aChan):
-    binary_aChan = bin(aChan)[2:]  # Convert to binary string
-    strip = int(binary_aChan, 2) & strip_mask
-    sector = (int(binary_aChan, 2) & sector_mask) >> 9
-    module = (int(binary_aChan, 2) & module_mask) >> 10
-    face = (int(binary_aChan, 2) & face_mask) >> 13
-    stave = (int(binary_aChan, 2) & stave_mask) >> 14
-    layer = (int(binary_aChan, 2) & layer_mask) >> 18
-    side = (int(binary_aChan, 2) & side_mask) >> 20
-    det_type = (int(binary_aChan, 2) & det_type_mask) >> 21
-    return det_type, side, layer, stave, face, module, sector, strip
-
-def compute_ci(x, confidence=0.68):
-    intervallo = np.percentile(
-        x, [100*(1-confidence)/2, 100*(1-(1-confidence)/2)])
-    return (intervallo[1] - intervallo[0]) / 2
-
-
-def compute_min(x, confidence):
-    intervallo = np.percentile(
-        x, [100*(1-confidence)/2, 100*(1-(1-confidence)/2)])
-    return intervallo[0]
-
-def compute_max(x, confidence):
-    intervallo = np.percentile(
-        x, [100*(1-confidence)/2, 100*(1-(1-confidence)/2)])
-    return intervallo[1]
-
-def mean_wo_outliers(x):
-    minimo = compute_min(x, 0.98)
-    maximo = compute_max(x, 0.98)
-    a_sel = np.array(x)[(x > minimo) & (x < maximo)]
-    return np.mean(a_sel)
-
-def get_last(t):
-    return t[-1]
-
-# import data
-data = pd.read_csv("/swdev/wokrupa/stack2/Vetra/total_noise_" + run + ".csv")
-columns_name = ['channel_ID', 'mean', 'sigma']
-data.columns = columns_name
-
-# get online name and channel
-data['name'] = data['channel_ID'].apply(get_online_name)
-m = data['channel_ID'].apply(extract_bits)
-
-df = pd.DataFrame(m)
-
-# Calculate last_value from channel_ID
-df['last_value'] = df['channel_ID'].apply(get_last)
-data['channel'] = df['last_value']
-data['chip'] = (data['channel'] // 128).astype(int)
-
-# Compute the mean and std of the noise (sigma) of each chip without outliers
-mean_noise = data.groupby(['name', 'chip'])['sigma'].apply(
-    mean_wo_outliers).reset_index()
-std_noise = data.groupby(['name', 'chip'])[
-    'sigma'].apply(compute_ci).reset_index()
-
-# Merge dataframes
-merged_df2 = pd.merge(data, mean_noise, on=[
-                      'name', 'chip'], how='inner', suffixes=('', '_mean'))
-merged_df2 = pd.merge(merged_df2, std_noise, on=[
-                      'name', 'chip'], how='inner', suffixes=('', '_std'))
-
-# Select noisy channels
-condition = (merged_df2['sigma'] >
-             merged_df2['sigma_mean'] + 10 * merged_df2['sigma_std'])
-condition_n = (
-    merged_df2['sigma'] < merged_df2['sigma_mean'] - 10 * merged_df2['sigma_std'])
-condition0 = (merged_df2['mean'] > 2.5 * merged_df2['sigma'])
-condition0_n = (merged_df2['mean'] < -2.5 * merged_df2['sigma'])
-
-result_df2 = merged_df2.loc[condition 
-                            condition0 | condition0_n, ['channel', 'name']]
-
-# selection of bad channels
-condition2 = merged_df2['sigma'] > 2*merged_df2['sigma_mean']
-condition20 = merged_df2['sigma'] < 0.5*merged_df2['sigma_mean']
-result_df = pd.DataFrame({
-    'channel': merged_df2.loc[condition2 | condition20, 'channel'],
-    'name': merged_df2.loc[condition2 | condition20, 'name']
-})
-
-# Convert the list in the correct format
-result_df['chip'] = result_df['channel'] // 128
-result_df['chip'] = result_df['chip'].astype(int)
-
-# Group by name and chip, aggregate channels as lists
-tot = result_df.groupby(['name', 'chip'])['channel'].agg(list).reset_index()
-tot['nBadC'] = tot['channel'].apply(lambda x: [(i % 128) for i in x])
-
-print("Noisy channels")
-with pd.option_context("display.max_rows", None, "display.max_columns", None):
-    print(tot)
-
-# Calculate positions
-tot['pos'] = tot['nBadC'].apply(lambda x: [num // 8 for num in x])
-
-# Open a file for writing
-file = open('bad_ch_list_' + run + '.txt', 'w')
-
-# Tag saturation with pedestal value
-# Import pedestals
-ped = pd.read_csv("/swdev/wokrupa/stack2/Vetra/pedestals_" + run + ".csv")
-columns_name_ped = ['channel_ID', 'pedestal']
-ped.columns = columns_name_ped
-ped['name'] = ped['channel_ID'].apply(get_online_name)
-m_ped = ped['channel_ID'].apply(extract_bits)
-
-df_ped = pd.DataFrame(m_ped)
-df_ped['last_value'] = df_ped['channel_ID'].apply(lambda x: get_last(x))
-ped['channel'] = df_ped['last_value']
-ped['chip'] = (ped['channel'] // 128).astype(int)
-
-merged_df_p = pd.merge(merged_df2, ped, on=[
-                       'name', 'chip', 'channel_ID', 'channel'], how='inner', suffixes=('', ''))
-
-# selection of bad channels due to saturation
-condition_p = np.abs(merged_df_p['pedestal']) > 25
-
-result_df_p = pd.DataFrame({
-    'channel': merged_df_p.loc[condition_p, 'channel'],
-    'name': merged_df_p.loc[condition_p, 'name']
-})
-
-result_df_p['chip'] = result_df_p['channel']/128
-result_df_p['chip'] = result_df_p['chip'].astype(int)
-
-tot_p = result_df_p.groupby(['name', 'chip'])[
-    'channel'].agg(list).reset_index()
-tot_p['nBadC'] = tot_p['channel'].apply(lambda x: [(i % 128) for i in x])
-tot_p['pos'] = tot_p['nBadC'].apply(lambda x: [num // 8 for num in x])
-print("Pedestal")
-print(tot_p)
-
-# merging bad channels from noise and from pedestal distributions
-all_bad_ch = pd.concat([tot, tot_p])
-
-# Define a function to merge lists
-def merge_lists(series):
-    return list(set(x for sublist in series for x in sublist))
-
-# Group by 'channel' and 'name' and apply the merge_lists function
-result1 = all_bad_ch.groupby(['chip', 'name'])[
-    'nBadC'].agg(merge_lists).reset_index()
-result2 = all_bad_ch.groupby(['chip', 'name'])[
-    'pos'].agg(merge_lists).reset_index()
-result3 = all_bad_ch.groupby(['chip', 'name'])[
-    'channel'].agg(merge_lists).reset_index()
-
-final_list = pd.merge(result1, result2,  on=['chip', 'name'], how='inner')
-final_list = pd.merge(final_list, result3,  on=['chip', 'name'], how='inner')
-tot = final_list
-
-# write the bad channels in the correct format
-for i in range(len(tot)):
-
-    mask_list = ['0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00',
-                 '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00']
-    sum_dict = {}
-    prova = []
-    mask_dict = {}
-    for val1, val2 in zip(tot.iloc[i]['nBadC'], tot.iloc[i]['pos']):
-        if val2 not in mask_dict:
-            mask_dict[val2] = 0
-        mask_dict[val2] |= (1 << val1 % 8)
-
-    mask_list2 = list(mask_dict.values())
-    mask = [hex(0x00 | element) for element in mask_list2]
-
-    no_rep_pos = list(set(tot.iloc[i]['pos']))
-    no_rep_pos.sort()
-
-    if tot.iloc[i]['nBadC']:
-        for jj in range(len(no_rep_pos)):
-            mask_list[no_rep_pos[jj]] = mask[jj]
-    line = '--- {}.{} {}\n'.format(tot.iloc[i]
-                                   ['name'], tot.iloc[i]['chip'], mask_list)
-    file.write(line)
-
diff --git a/UTScripts/BadChannels/UTBadChannels_Basem.py b/UTScripts/BadChannels/UTBadChannels_alt.py
similarity index 100%
rename from UTScripts/BadChannels/UTBadChannels_Basem.py
rename to UTScripts/BadChannels/UTBadChannels_alt.py
diff --git a/UTScripts/NoisyChannels/UTNoisyASICs.py b/UTScripts/NoisyChannels/UTNoisyASICs.py
new file mode 100644
index 0000000000000000000000000000000000000000..b9321173fc345dbe5bcb2386c69534cbf64158d0
--- /dev/null
+++ b/UTScripts/NoisyChannels/UTNoisyASICs.py
@@ -0,0 +1,55 @@
+import os
+import sys
+import importlib
+import ROOT  # Assuming you have ROOT installed
+
+class UTSEUCheck:
+    def __init__(self, hist_path):
+        self.hist_name = ["UTOnlineBSMonitor/Average_hitRate_UCaU", "UTOnlineBSMonitor/Average_hitRate_UCaX",
+                          "UTOnlineBSMonitor/Average_hitRate_UCbX", "UTOnlineBSMonitor/Average_hitRate_UCbV",
+                          "UTOnlineBSMonitor/Average_hitRate_UAaU", "UTOnlineBSMonitor/Average_hitRate_UAaX",
+                          "UTOnlineBSMonitor/Average_hitRate_UAbX", "UTOnlineBSMonitor/Average_hitRate_UAbV"
+                          ]
+        self.hist_path = hist_path
+        self.root_file = ROOT.TFile.Open(hist_path)
+        self.hists = {}
+        noisy = {}
+
+        if os.path.exists('/hist/Reference/UTZSMon'):
+            sys.path.append('/hist/Reference/UTZSMon')
+            try:
+                importlib.import_module('ut_dict')
+                print(f"UT Module 'ut_dict' imported successfully!")
+                from ut_dict import UT_dict
+            except ImportError:
+                print(f"UT Error: Module 'ut_dict' not found.")
+        else:
+            print(f"UT Error: Directory '/hist/Reference/UTZSMon' not found.")
+
+        # Open the output text file
+        with open("noisy_chips.txt", "w") as output_file:
+            for hist_name in self.hist_name:
+                self.hists[hist_name] = self.root_file.Get(hist_name)
+
+            for hist_name, hist in self.hists.items():
+                print(f"UT - found {hist_name}")
+                try:
+                    bins = hist.GetXaxis().GetNbins()
+                except AttributeError:
+                    continue
+
+                for checkedBin in range(1, bins + 1):
+                    binContent = hist.GetBinContent(checkedBin)
+                    if binContent > 0.1:
+                        ch = checkedBin - 1 + hist.GetBinLowEdge(1) + 0.5
+                        output_line = f"{UT_dict[ch]} Hitrate: {binContent}\n"
+                        
+                        # Save to the text file
+                        output_file.write(f"{UT_dict[ch]}\n")
+                        
+                        # Also print to console
+                        print(output_line.strip())
+
+if __name__ == "__main__":
+    hist_path = "/hist/Savesets/2024/UT/UTBSMon/11/07/UTBSMon-310209-20241107T174311.root"
+    UTSEUCheck(hist_path)
diff --git a/UTScripts/NoisyChannels/UTNoisyChannels.py b/UTScripts/NoisyChannels/UTNoisyChannels.py
new file mode 100644
index 0000000000000000000000000000000000000000..8fbc976d70285d756ab5729ef047c2dd8bb94c05
--- /dev/null
+++ b/UTScripts/NoisyChannels/UTNoisyChannels.py
@@ -0,0 +1,48 @@
+import os
+import sys
+import importlib
+import ROOT  # Assuming you have ROOT installed
+
+class UTSEUCheck:
+    def __init__(self, hist_path):
+        self.hist_name = ["UTOnlineBSMonitor/hitRateChannels_UA", "UTOnlineBSMonitor/hitRateChannels_UC"]
+        self.hist_path = hist_path
+        self.root_file = ROOT.TFile.Open(hist_path)
+        self.hists = {}
+        noisy = {}
+
+        if os.path.exists('/hist/Reference/UTZSMon'):
+            sys.path.append('/hist/Reference/UTZSMon')
+            try:
+                importlib.import_module('ut_dict')
+                print(f"UT Module 'ut_dict' imported successfully!")
+                from ut_dict import UT_dict
+            except ImportError:
+                print(f"UT Error: Module 'ut_dict' not found.")
+        else:
+            print(f"UT Error: Directory '/hist/Reference/UTZSMon' not found.")
+
+        for hist_name in self.hist_name:
+            self.hists[hist_name] = self.root_file.Get(hist_name)
+
+        for hist_name, hist in self.hists.items():
+            print(f"UT - found {hist_name}")
+            try:
+                bins = hist.GetXaxis().GetNbins()
+            except AttributeError:
+                continue
+
+            for checkedBin in range(1, bins + 1):
+                binContent = hist.GetBinContent(checkedBin)
+                if binContent > 0.05:
+                    if hist_name == "UTOnlineBSMonitor/hitRateChannels_UC": 
+                        ch=checkedBin+268288-1
+                        print(UT_dict[int(ch/128)]+".Ch"+str(ch%128), "Hitrate: ", binContent)
+                    else:
+                        ch=checkedBin-1
+                        print(UT_dict[int(ch/128)]+".Ch"+str(ch%128), "Hitrate: ", binContent)
+               
+if __name__ == "__main__":
+    hist_path = "/hist/Savesets/2024/UT/UTBSMon/11/07/UTBSMon-310205-20241107T173911-EOR.root"
+    UTSEUCheck(hist_path)
+
diff --git a/UTScripts/References/overlay_center_natural_asic_UTaU.root b/UTScripts/References/overlay_center_natural_asic_UTaU.root
index 2e7753fd05a67c651444d406932ec2b2b8962469..754447cc9b873963444fdaa459d928ba6d135286 100644
Binary files a/UTScripts/References/overlay_center_natural_asic_UTaU.root and b/UTScripts/References/overlay_center_natural_asic_UTaU.root differ
diff --git a/UTScripts/References/overlay_center_natural_asic_UTaX.root b/UTScripts/References/overlay_center_natural_asic_UTaX.root
index 59f8d8b66c2d0624091cdb7f9d93eb0f3d0d6e6f..d0cc0704a1dc8be461726c481006678d9fcdec64 100644
Binary files a/UTScripts/References/overlay_center_natural_asic_UTaX.root and b/UTScripts/References/overlay_center_natural_asic_UTaX.root differ
diff --git a/UTScripts/References/overlay_center_natural_asic_UTbV.root b/UTScripts/References/overlay_center_natural_asic_UTbV.root
index 7631d8e0a9dd091d33513d4a49bb100311e300c0..018971551ae90ea5f5f16101520e8a87da996b05 100644
Binary files a/UTScripts/References/overlay_center_natural_asic_UTbV.root and b/UTScripts/References/overlay_center_natural_asic_UTbV.root differ
diff --git a/UTScripts/References/overlay_center_natural_asic_UTbX.root b/UTScripts/References/overlay_center_natural_asic_UTbX.root
index feebcdbefe632e8392cee2c3c8fc2e71d62bd0f8..6339d142deee73634808235ad95d6edb05cebdb6 100644
Binary files a/UTScripts/References/overlay_center_natural_asic_UTbX.root and b/UTScripts/References/overlay_center_natural_asic_UTbX.root differ
diff --git a/UTScripts/References/overlay_tell40A0.root b/UTScripts/References/overlay_tell40A0.root
index 8b0e84e18a41ae474fc61a8cbd57455518a7c54a..f2baa7ca694c0be77ac3c23fb5cf3bc8ffe1ecd3 100644
Binary files a/UTScripts/References/overlay_tell40A0.root and b/UTScripts/References/overlay_tell40A0.root differ
diff --git a/UTScripts/References/overlay_tell40A1.root b/UTScripts/References/overlay_tell40A1.root
index ddae94730798c8d1d05d68e5032192d470ce1c61..99afb0c1a692b2bd5df2460824eaea709025482e 100644
Binary files a/UTScripts/References/overlay_tell40A1.root and b/UTScripts/References/overlay_tell40A1.root differ
diff --git a/UTScripts/References/overlay_tell40C0.root b/UTScripts/References/overlay_tell40C0.root
index fa1e7265cb95771f1eb8a3664e6d72f62c83da2e..374014fddb050ea1f042579a48f3bdb8c32f137d 100644
Binary files a/UTScripts/References/overlay_tell40C0.root and b/UTScripts/References/overlay_tell40C0.root differ
diff --git a/UTScripts/References/overlay_tell40C1.root b/UTScripts/References/overlay_tell40C1.root
index e511cee8713f661a62c1703bf416e3ef45c619c8..56222ba9ab8bfab13418470b8fab3696f80f7b99 100644
Binary files a/UTScripts/References/overlay_tell40C1.root and b/UTScripts/References/overlay_tell40C1.root differ
diff --git a/UTScripts/Subtract_MCM.py b/UTScripts/Subtract_MCM.py
new file mode 100644
index 0000000000000000000000000000000000000000..15019986c55d6beb37aa7565af159952bfa8b13d
--- /dev/null
+++ b/UTScripts/Subtract_MCM.py
@@ -0,0 +1,34 @@
+import pandas as pd
+
+#This simple script allows to subtract MCM from pedestal file.
+
+# Read the input CSV file (adjust the filename as needed)
+input_filename = '/swdev/wokrupa/stack3/Vetra/pedestals_0000309677_test_3.csv'
+df = pd.read_csv(input_filename, header=None, names=['channel', 'value'])
+
+# Calculate the average for each group of channels (128 channels in your case)
+group_size = 128
+num_groups = len(df) // group_size
+
+for group_num in range(num_groups):
+    start_idx = group_num * group_size
+    end_idx = (group_num + 1) * group_size
+    group_values = df.loc[start_idx:end_idx - 1, 'value']
+    
+    # Initial average calculation
+    initial_avg = group_values.mean()
+    
+    # Identify non-outliers (values within the ±5 range of initial average)
+    non_outliers = group_values[abs(group_values - initial_avg) <= 5]
+    
+    # Recalculate average excluding outliers
+    adjusted_avg = int(non_outliers.mean())
+    
+    # Adjust only the non-outliers
+    df.loc[non_outliers.index, 'value'] -= adjusted_avg
+
+# Save the modified data to a new CSV file
+output_filename = '/swdev/wokrupa/stack3/Vetra/pedestals_0000309677_test_4.csv'
+df.to_csv(output_filename, index=False)
+
+print(f"Modified data saved to {output_filename}")
diff --git a/UTScripts/Vetra_Plotter_EmuNoiseComponents.cpp b/UTScripts/Vetra_Plotter_EmuNoiseComponents.cpp
index 1ee53a12211fff3949352c2dc93091fe08f9b8e5..6fc7b8200c776691d212606f44fdff588ba14786 100644
--- a/UTScripts/Vetra_Plotter_EmuNoiseComponents.cpp
+++ b/UTScripts/Vetra_Plotter_EmuNoiseComponents.cpp
@@ -449,7 +449,7 @@ void plot_histos_noise_stave( TDirectory* f3, TDirectory* f4, unsigned int layer
 void Vetra_Plotter_EmuNoiseComponents() {
 
   /////////////////////////////////
-  const char* number = "0000297288";
+  const char* number = "0000310462";
   /////////////////////////////////
 
   std::string number_str( number );
@@ -480,7 +480,7 @@ void Vetra_Plotter_EmuNoiseComponents() {
     std::cerr << "Error: Failed to open file './Vetra/ut_data_pedestals_" << number << ".root'\n";
     exit( -1 );
   }
-  TDirectory* f4 = (TDirectory*)f0->Get( "UTPedestalMonitor" );
+  TDirectory* f4 = (TDirectory*)f0->Get( "UTMeanADCMonitor" );
 
   if ( f3 == nullptr ) {
     std::cerr << "Error: UTIncNoiseDigitMonitor directory not found in the file." << std::endl;
@@ -488,7 +488,7 @@ void Vetra_Plotter_EmuNoiseComponents() {
   }
 
   if ( f4 == nullptr ) {
-    std::cerr << "Error:     UTPedestalMonitor directory not found in the file." << std::endl;
+    std::cerr << "Error:     UTMeanADCMonitor directory not found in the file." << std::endl;
     exit( -1 );
   }
 
diff --git a/UTScripts/Vetra_Plotter_Pedestals.cpp b/UTScripts/Vetra_Plotter_MeanADC.cpp
similarity index 90%
rename from UTScripts/Vetra_Plotter_Pedestals.cpp
rename to UTScripts/Vetra_Plotter_MeanADC.cpp
index 095cc18523c536c5c85cf5981d9a9c425e202730..99b41ca8f3a4a6aef4cdb23dd7a1cf8373ef6eb4 100644
--- a/UTScripts/Vetra_Plotter_Pedestals.cpp
+++ b/UTScripts/Vetra_Plotter_MeanADC.cpp
@@ -10,7 +10,7 @@
 \*****************************************************************************/
 
 /*
- *  Vetra_Plotter_Pedestals.cpp
+ *  Vetra_Plotter_MeanADCs.cpp
  *
  *  Created on: September, 2023
  *      Author: Wojciech Krupa (wokrupa@cern.ch)
@@ -108,7 +108,7 @@ void plot2D( TDirectory* f2, std::string parameter, bool invertPalette, float ma
       gStyle->SetPalette( 57 );
       hist->SetFillStyle( 3001 );
       hist->SetStats( 0 );
-      hist->GetZaxis()->SetRangeUser( 0, max );
+      hist->GetZaxis()->SetRangeUser( 0, 6 );
 
       std::string title = hist->GetTitle();
       title             = title.substr( 0, title.size());
@@ -249,7 +249,7 @@ void plot_histos_stave( TDirectory* f2, std::string parameter, unsigned int laye
     hist->SetFillStyle( 3001 );
     hist->GetXaxis()->SetTitle( "Strip" );
     hist->GetYaxis()->SetTitle( "ADC" );
-    if ( parameter == "Pedestals_" )
+    if ( parameter == "MeanADC_" )
       hist->GetYaxis()->SetRangeUser( -31, 31 );
     else
       hist->GetYaxis()->SetRangeUser( 0, 3 );
@@ -262,12 +262,12 @@ void plot_histos_stave( TDirectory* f2, std::string parameter, unsigned int laye
   c_pedsub->SaveAs( path.c_str() );
 }
 
-// To run: root -l -b Vetra/Ut/UTScripts/Vetra_Plotter_Pedestals.cpp
+// To run: root -l -b Vetra/Ut/UTScripts/Vetra_Plotter_MeanADC.cpp
 
-void Vetra_Plotter_Pedestals() {
+void Vetra_Plotter_MeanADC() {
 
   /////////////////////////////////
-  const char* number = "0000297288";
+  const char* number = "0000310281";
   /////////////////////////////////
   std::string number_str( number );
 
@@ -283,21 +283,21 @@ void Vetra_Plotter_Pedestals() {
 
   if ( stat( dir_name.c_str(), &st ) == -1 ) { mkdir( dir_name.c_str(), 0755 ); }
 
-  TFile* f1 = TFile::Open( ( parentDir + '/' + "ut_data_pedestals_" + std::string( number ) + ".root" ).c_str() );
+  TFile* f1 = TFile::Open( ( parentDir + '/' + "ut_data_meanADC_" + std::string( number ) + ".root" ).c_str() );
 
   if ( !f1 ) exit( -1 );
 
-  TDirectory* f3 = (TDirectory*)f1->Get( "UTPedestalMonitor" );
+  TDirectory* f3 = (TDirectory*)f1->Get( "UTMeanADCMonitor" );
   for ( unsigned int layer = 0; layer < 4; layer++ )
     for ( unsigned int side = 0; side < 2; side++ )
       for ( unsigned int stave = 1; stave <= 9; stave++ ) {
-        plot_histos_stave( f3, "Pedestals_", layer, side, stave, number_str, parentDir );
-        plot_histos_stave( f3, "SigmaNoise_", layer, side, stave, number_str, parentDir );
+        //plot_histos_stave( f3, "MeanADC_", layer, side, stave, number_str, parentDir );
+        //plot_histos_stave( f3, "SigmaNoise_", layer, side, stave, number_str, parentDir );
       }
 
-  plot2D( f3, "PedestalAverage", 1, 4, number_str, parentDir );
+  plot2D( f3, "MeanADCAverage", 1, 4, number_str, parentDir );
   plot2D( f3, "SigmaNoiseAverage", 1, 2, number_str, parentDir );
-  plot2D( f3, "ZS_th", 1, 5, number_str, parentDir );
+  plot2D( f3, "ZS_th", 1, 4, number_str, parentDir );
 
   TCanvas* c_proj = new TCanvas( "Projections_SigmaNoise", "Projections_SigmaNoise", 1400, 1200 );
 
@@ -342,32 +342,32 @@ void Vetra_Plotter_Pedestals() {
 
   c_proj->SaveAs( ( parentDir + '/' + std::string( number_str ) + "/Projections_SigmaNoise.png" ).c_str() );
 
-  TCanvas* c_proj2 = new TCanvas( "Projections_Pedestals", "Projections_Pedestals", 1400, 1200 );
+  TCanvas* c_proj2 = new TCanvas( "Projections_MeanADC", "Projections_MeanADC", 1400, 1200 );
 
   // Plotting projections
   c_proj2->Divide( 2, 2 );
 
-  TH1F* h5 = (TH1F*)f3->Get( "Projection_Pedestal" );
+  TH1F* h5 = (TH1F*)f3->Get( "Projection_MeanADC" );
   if ( !h5 ) {
-    std::cerr << "Failed to get histogram Projection_Pedestal\n";
+    std::cerr << "Failed to get histogram Projection_MeanADC\n";
     return;
   }
 
-  TH1F* h6 = (TH1F*)f3->Get( "Projection_Pedestal_A" );
+  TH1F* h6 = (TH1F*)f3->Get( "Projection_MeanADC_A" );
   if ( !h6 ) {
-    std::cerr << "Failed to get histogram Projection_Pedestal_A\n";
+    std::cerr << "Failed to get histogram Projection_MeanADC_A\n";
     return;
   }
 
-  TH1F* h7 = (TH1F*)f3->Get( "Projection_Pedestal_B" );
+  TH1F* h7 = (TH1F*)f3->Get( "Projection_MeanADC_B" );
   if ( !h7 ) {
-    std::cerr << "Failed to get histogram Projection_Pedestal_B\n";
+    std::cerr << "Failed to get histogram Projection_MeanADC_B\n";
     return;
   }
 
-  TH1F* h8 = (TH1F*)f3->Get( "Projection_Pedestal_C" );
+  TH1F* h8 = (TH1F*)f3->Get( "Projection_MeanADC_C" );
   if ( !h8 ) {
-    std::cerr << "Failed to get histogram Projection_Pedestal_C\n";
+    std::cerr << "Failed to get histogram Projection_MeanADC_C\n";
     return;
   }
 
@@ -383,7 +383,7 @@ void Vetra_Plotter_Pedestals() {
   c_proj2->cd( 4 );
   h8->Draw();
 
-  c_proj2->SaveAs( ( parentDir + '/' + std::string( number_str ) + "/Projections_Pedestal.png" ).c_str() );
+  c_proj2->SaveAs( ( parentDir + '/' + std::string( number_str ) + "/Projections_MeanADC.png" ).c_str() );
 
   gPad->SetLogy();
   c_proj2->cd( 1 );
@@ -401,7 +401,7 @@ void Vetra_Plotter_Pedestals() {
   c_proj2->cd( 4 );
   h8->Draw();
 
-  c_proj2->SaveAs( ( parentDir + '/' + std::string( number_str ) + "/Projections_PedestalLog.png" ).c_str() );
+  c_proj2->SaveAs( ( parentDir + '/' + std::string( number_str ) + "/Projections_MeanADCLog.png" ).c_str() );
 
   gSystem->Exit( 0 );
 }
diff --git a/UTScripts/Vetra_Plotter_PedSub.cpp b/UTScripts/Vetra_Plotter_PedSub.cpp
index 64b8b6cd4409231edd0961827f7172cd40552c8b..4aa41c2bbdaad88a1eeeb49ee59f1f4f65ec80f0 100644
--- a/UTScripts/Vetra_Plotter_PedSub.cpp
+++ b/UTScripts/Vetra_Plotter_PedSub.cpp
@@ -1,4 +1,4 @@
-/*****************************************************************************\
+ /*****************************************************************************\
 * (c) Copyright 2000-2023 CERN for the benefit of the LHCb Collaboration      *
 *                                                                             *
 * This software is distributed under the terms of the GNU General Public      *
@@ -139,7 +139,7 @@ void plot_histos_stave( TDirectory* f2, unsigned int layer, unsigned int side, u
 void Vetra_Plotter_PedSub() {
 
   /////////////////////////////////
-  const char* number = "0000297288";
+  const char* number = "0000307299";
   /////////////////////////////////
 
   std::string number_str( number );
@@ -152,7 +152,7 @@ void Vetra_Plotter_PedSub() {
   // Setting up the directory
   std::string dir_name = parentDir + std::string( number );
 
-  struct stat st = { 0 };
+  struct stat st = { 0 };      
 
   if ( stat( dir_name.c_str(), &st ) == -1 ) { mkdir( dir_name.c_str(), 0755 ); }
 
diff --git a/UTScripts/Vetra_Plotter_PedestalRun.cpp b/UTScripts/Vetra_Plotter_PedestalRun.cpp
index 0290084f305db34187e8e15e543ca397306b5e84..93b373a06086c34ab26a53120fc3fee06948f5a0 100644
--- a/UTScripts/Vetra_Plotter_PedestalRun.cpp
+++ b/UTScripts/Vetra_Plotter_PedestalRun.cpp
@@ -492,12 +492,13 @@ void plot_histos_noise_stave( TDirectory* f3, unsigned int layer, unsigned side,
   }
 }
 
-// To run: root -l -b Vetra/Ut/UTScripts/Vetra_Plotter_PedestalRun.cpp
+// To run: root -l -b Vetra/Ut/UTScripts/Vetra_Plotter_
+Run.cpp
 
 void Vetra_Plotter_PedestalRun() {
 
   /////////////////////////////////
-  const char* number = "0000294162";
+  const char* number = "0000301203";
   /////////////////////////////////
 
   std::string number_str( number );
diff --git a/UTScripts/Vetra_Plotter_RawADC.cpp b/UTScripts/Vetra_Plotter_RawADC.cpp
index 7f1aad1a0041984b665ffb8cc8822e69f1e8afd0..357a4e0688c64843055925f95f7e607c0da20b73 100644
--- a/UTScripts/Vetra_Plotter_RawADC.cpp
+++ b/UTScripts/Vetra_Plotter_RawADC.cpp
@@ -316,7 +316,7 @@ void plot_histos_stave( TDirectory* f2, unsigned int layer, unsigned int side, u
 void Vetra_Plotter_RawADC() {
 
   /////////////////////////////////
-  const char* number = "0000297288";
+  const char* number = "0000310462";
   /////////////////////////////////
 
   std::string number_str( number );
@@ -349,7 +349,7 @@ void Vetra_Plotter_RawADC() {
   for ( unsigned int layer = 0; layer < NUM_LAYERS; layer++ )
     for ( unsigned int side = 0; side < NUM_SIDES; side++ )
       for ( unsigned int stave = 1; stave <= NUM_STAVES; stave++ ) {
-        // plot_histos_stave( f2, layer, side, stave, number_str, parentDir );
+         plot_histos_stave( f2, layer, side, stave, number_str, parentDir );
       }
 
   // MCMS
diff --git a/release.notes b/release.notes
index db843952b02c92759df9372ef3af856144455713..199b8209b44a526347ed8c5a9e29fe82f9ff9853 100644
--- a/release.notes
+++ b/release.notes
@@ -4,6 +4,11 @@
 ! Purpose     : Calibration and offline monitoring of the UT
 !-----------------------------------------------------------------------------
 
+!============================ UTEmu v4r5 2024-11 ===========================
+!  2024-06-7 - Wojciech Krupa
+ - Improving algorithms logic
+ - Adding new pedestal calculator (step)
+ 
 !============================ UTEmu v4r4 2024-03 ===========================
 !  2024-06-7 - Wojciech Krupa
  - Simplifying code
@@ -39,7 +44,6 @@
  - Script for initialisation of DB xml file 
  - Migration to Vetra repository
 
-
 !============================ UTEmu v2r1 2020-04 ===========================
 
 !  202-04 - Wojciech Krupa