Newer
Older
/*
Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration
*/
#include "LArRecUtils/LArAutoCorrTotalTool.h"
#include "GaudiKernel/ToolFactory.h"
#include "GaudiKernel/MsgStream.h"
#include "GaudiKernel/IIncidentSvc.h"
#include "LArElecCalib/LArConditionsException.h"
#include "StoreGate/StoreGateSvc.h"
#include "LArIdentifier/LArOnlineID.h"
#include "LArIdentifier/LArOnline_SuperCellID.h"
#include "LArCabling/LArCablingService.h"
#include "LArCabling/LArSuperCellCablingTool.h"
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
#include <cmath>
/////////////////////////////////////////////////////////////////////////////
LArAutoCorrTotalTool::LArAutoCorrTotalTool(const std::string& type,
const std::string& name,
const IInterface* parent)
: AthAlgTool(type, name, parent),
m_Nminbias(0),m_MCSym(false),
m_useMixedOFCOpt(false),
m_cablingService(NULL),
m_larmcsym("LArMCSymTool"),m_adc2mevTool("LArADC2MeVTool"),
m_keyShape("LArShape"), m_keyAutoCorr("LArAutoCorr"),
m_keyNoise("LArNoise"), m_keyfSampl("LArfSampl"),
m_keyMinBias("LArMinBias"), m_keyPedestal("LArPedestal"),
m_isMC(true),
m_cacheValid(false),m_loadAtBegin(true),m_deltaBunch(1),m_nsamples(5),m_firstSample(0),m_isSC(false)
{
declareInterface<ILArAutoCorrTotalTool>(this);
declareProperty("keyShape",m_keyShape);
declareProperty("keyAutoCorr",m_keyAutoCorr);
declareProperty("keyNoise",m_keyNoise);
declareProperty("keyPedestal",m_keyPedestal);
declareProperty("keyMinBias",m_keyMinBias);
declareProperty("keyfSampl",m_keyfSampl);
declareProperty("NMinBias",m_Nminbias);
declareProperty("MCSym",m_MCSym);
declareProperty("IsMC",m_isMC);
declareProperty("LoadAtBegin",m_loadAtBegin);
declareProperty("ADC2MeVTool",m_adc2mevTool);
declareProperty("deltaBunch",m_deltaBunch,"Delta between filled bunches in 25 ns units");
declareProperty("NSamples",m_nsamples,"Max number of samples to use");
declareProperty("firstSample",m_firstSample,"First sample to use for in-time event on the full pulse shape");
declareProperty("UseMixedOFCOpt",m_useMixedOFCOpt);
declareProperty("IsSuperCell",m_isSC);
}
/////////////////////////////////////////////////////////////////////////////
StatusCode LArAutoCorrTotalTool::initialize()
{
MsgStream log( msgSvc(), name() );
log << MSG::DEBUG << "LArAutoCorrTotalTool initialize() begin" << endreq;
if ( !m_isSC ) {
const LArOnlineID* laron;
StatusCode sc = detStore()->retrieve(laron,"LArOnlineID");
if (sc.isFailure()) {
log << MSG::ERROR << "Unable to retrieve LArOnlineID from DetectorStore" << endreq;
return StatusCode::FAILURE;
} else m_lar_on_id = (LArOnlineID_Base*) laron;
ToolHandle<LArCablingService> larcab("LArCablingService");
if(larcab.retrieve().isFailure()){
log << MSG::ERROR << "Unable to get CablingService" << endreq;
return StatusCode::FAILURE;
} else m_cablingService = (LArCablingBase*) &(*larcab);
} else {
const LArOnline_SuperCellID* laron;
StatusCode sc = detStore()->retrieve(laron,"LArOnline_SuperCellID");
if (sc.isFailure()) {
log << MSG::ERROR << "Unable to retrieve LArOnlineID from DetectorStore" << endreq;
return StatusCode::FAILURE;
} else m_lar_on_id = (LArOnlineID_Base*) laron;
ToolHandle<LArSuperCellCablingTool> larcab("LArSuperCellCablingTool");
if(larcab.retrieve().isFailure()){
log << MSG::ERROR << "Unable to get CablingService" << endreq;
return StatusCode::FAILURE;
} else m_cablingService = (LArCablingBase*) &(*larcab);
}
//retrieves helpers for LArCalorimeter
m_calo_id_man = CaloIdManager::instance();
if ( m_isSC ) {
m_lar_em_id = m_calo_id_man->getEM_SuperCell_ID();
m_lar_hec_id = m_calo_id_man->getHEC_SuperCell_ID();
m_lar_fcal_id = m_calo_id_man->getFCAL_SuperCell_ID();
} else {
m_lar_em_id = m_calo_id_man->getEM_ID();
m_lar_hec_id = m_calo_id_man->getHEC_ID();
m_lar_fcal_id = m_calo_id_man->getFCAL_ID();
}
if (m_MCSym) {
if (m_larmcsym.retrieve().isFailure()){
log << MSG::ERROR << "Unable to get LArMCSym Tool " << endreq;
return StatusCode::FAILURE;
}
}
if (m_adc2mevTool.retrieve().isFailure())
{
log << MSG::ERROR << "Unable to find tool for LArADC2MeVTool" << endreq;
return StatusCode::FAILURE;
}
else
log << MSG::DEBUG << " -- ILArADC2MeVTool retrieved" << endreq;
if (StatusCode::SUCCESS==detStore()->regFcn(&ILArAutoCorrTotalTool::LoadCalibration,
dynamic_cast<ILArAutoCorrTotalTool*>(this),m_dd_shape,m_keyShape)) {
log << MSG::INFO << "Registered callback for key: " <<m_keyShape << endreq;
} else {
log << MSG::ERROR << "Cannot register testCallback function for key " << m_keyShape << endreq;
}
if (StatusCode::SUCCESS==detStore()->regFcn(&ILArAutoCorrTotalTool::LoadCalibration,
dynamic_cast<ILArAutoCorrTotalTool*>(this),m_dd_autocorr,m_keyAutoCorr)) {
log << MSG::INFO << "Registered callback for key: " << m_keyAutoCorr << endreq;
} else {
log << MSG::ERROR << "Cannot register testCallback function for key " << m_keyAutoCorr << endreq;
}
m_NoPile=false;
if(m_Nminbias<=0) m_NoPile=true;
if(!m_NoPile)
{
if(m_isMC){
if (StatusCode::SUCCESS==detStore()->regFcn(&ILArAutoCorrTotalTool::LoadCalibration,
dynamic_cast<ILArAutoCorrTotalTool*>(this),m_dd_noise,m_keyNoise)) {
log << MSG::INFO << "Registered callback for key: " << m_keyNoise << endreq;
} else {
log << MSG::ERROR << "Cannot register testCallback function for key " << m_keyNoise << endreq;
}
}else{
if (StatusCode::SUCCESS==detStore()->regFcn(&ILArAutoCorrTotalTool::LoadCalibration,
dynamic_cast<ILArAutoCorrTotalTool*>(this),m_dd_pedestal,m_keyPedestal)) {
log << MSG::INFO << "Registered callback for key: " << m_keyPedestal << endreq;
} else {
log << MSG::ERROR << "Cannot register testCallback function for key " << m_keyPedestal << endreq;
}
}
if (StatusCode::SUCCESS==detStore()->regFcn(&ILArAutoCorrTotalTool::LoadCalibration,
dynamic_cast<ILArAutoCorrTotalTool*>(this),m_dd_fSampl,m_keyfSampl)) {
log << MSG::INFO << "Registered callback for key: " << m_keyfSampl << endreq;
} else {
log << MSG::ERROR << "Cannot register testCallback function for key " << m_keyfSampl << endreq;
}
if (StatusCode::SUCCESS==detStore()->regFcn(&ILArAutoCorrTotalTool::LoadCalibration,
dynamic_cast<ILArAutoCorrTotalTool*>(this),m_dd_minbias,m_keyMinBias)) {
log << MSG::INFO << "Registered callback for key: " << m_keyMinBias << endreq;
} else {
log << MSG::ERROR << "Cannot register testCallback function for key " << m_keyMinBias << endreq;
}
// force calling first callback function of LArADC2MeV, and then callback of LArAutoCorrTotalTool
if (StatusCode::SUCCESS==detStore()->regFcn(&ILArADC2MeVTool::LoadCalibration,&(*m_adc2mevTool),
&ILArAutoCorrTotalTool::LoadCalibration,dynamic_cast<ILArAutoCorrTotalTool*>(this))) {
log << MSG::INFO << "Registered callback for LArAutoCorrTool/LArADC2MeVTool" << endreq;
} else {
log << MSG::ERROR << "Cannot register testCallback function for LArAutoCorrTotalTool/LArAdc2MeVTool" << endreq;
}
}
if (m_loadAtBegin) {
log << MSG::DEBUG << "Setting callback function to load calibration at begin of run" << endreq;
// Incident Service:
IIncidentSvc* incSvc;
StatusCode sc = service("IncidentSvc", incSvc);
if (sc.isFailure()) {
log << MSG::ERROR << "Unable to retrieve pointer to IncidentSvc "
<< endreq;
return sc;
}
//start listening to "BeginRun". The incident should be fired AFTER the IOV callbacks and only once.
//const long priority=std::numeric_limits<long>::min(); //Very low priority
// FIXME.. somehow this class can not be a listener.
// incSvc->addListener(this, "BeginRun", priority ,false,true); //single-shot incident
}
//
log << MSG::DEBUG << "LArAutoCorrTotalTool initialize() end" << endreq;
return StatusCode::SUCCESS;
}
/////////////////////////////////////////////////////////////////////////////
StatusCode LArAutoCorrTotalTool::finalize()
{
return StatusCode::SUCCESS;
}
/////////////////////////////////////////////////////////////////////////////
// *** retrieves needed data from the DB ***
StatusCode LArAutoCorrTotalTool::LoadCalibration(IOVSVC_CALLBACK_ARGS_K(keys))
{
MsgStream log( msgSvc(), name() );
log << MSG::DEBUG << "in LoadCalibration " << endreq;
log << MSG::DEBUG << "Callback invoked for " << keys.size() << " keys" << endreq;
m_cacheValid = false;
return StatusCode::SUCCESS;
}
/////////////////////////////////////////////////////////////////////////////
// *** compute some terms of the calculation of the autocorr function ***
StatusCode LArAutoCorrTotalTool::getTerms()
{
MsgStream log( msgSvc(), name() );
log << MSG::DEBUG << "in getAutoCorrTotal" << endreq;
log << MSG::INFO << " Bunch spacing (25 ns units ) " << m_deltaBunch << endreq;
log << MSG::INFO << " N(MB)/bunch crossing " << m_Nminbias << endreq;
// get HWIdentifier iterator
std::vector<HWIdentifier>::const_iterator it =m_lar_on_id->channel_begin();
std::vector<HWIdentifier>::const_iterator it_e =m_lar_on_id->channel_end();
int ngains = (m_isSC ? 1 : 3 );
// resize vector to #(gain) = 3
m_terms.resize(ngains);
int count = 0;
int count2 = 0;
// loop over em Identifiers
log << MSG::DEBUG << "start loop over cells in getAutoCorrTotal" << endreq;
for(;it!=it_e;++it)
{
count ++;
const HWIdentifier id = *it;
unsigned int id32 = id.get_identifier32().get_compact();
if(m_cablingService->isOnlineConnected(id))
{
if(m_MCSym) {
HWIdentifier id2 = m_larmcsym->symOnline(id);
if (id2 != id) continue;
}
count2++;
// mixed OFC optimization: force no pileup in EMB and EMEC-OW
if (m_useMixedOFCOpt) {
const bool isEMB = m_lar_on_id->isEMBchannel(id);
const bool isEMECOW = m_lar_on_id->isEMECOW(id);
if (isEMB || isEMECOW ) {
log << MSG::DEBUG << "No Pileup AutoCorr for ChID 0x" << MSG::hex << id << MSG::dec << endreq;
m_NoPile = true;
} else {
log << MSG::DEBUG << "Using Pileup AutoCorr for ChID 0x" << MSG::hex << id << MSG::dec << endreq;
m_NoPile = false;
}
}
static std::vector<float> empty;
// the Shape is a function of gain
for(int igain=0;igain<ngains;igain++)
{
//:::::::::::::::::::::::::::::::
ILArShape::ShapeRef_t Shape = m_dd_shape->Shape(id,igain);
int nsamples_shape=(int)(Shape.size());
if (nsamples_shape==0)
{
m_terms[igain][id32] = empty;
continue;
}
ILArAutoCorr::AutoCorrRef_t AC = m_dd_autocorr->autoCorr(id,igain);
if (AC.size()==0) {
m_terms[igain][id32] = empty;
continue;
}
m_nsamples_AC_OFC=AC.size()+1;
if (m_nsamples_AC_OFC > m_nsamples) m_nsamples_AC_OFC=m_nsamples;
// fix HEC first sample +1 if the firstSample is 0 and nsamples 4
unsigned int ihecshift=0;
if(m_lar_on_id->isHECchannel(id) && m_nsamples_AC_OFC == 4 && m_firstSample == 0) {
ihecshift=1;
//log << MSG::DEBUG << "Using firstSample +1 for HEC ChID 0x" << MSG::hex << id << MSG::dec << endreq;
}
//:::::::::::::::::::::::::::::::
//NB:
// nsamples_shape = number of samples of the Shape function (e.g 32)
// m_nsamples_AC_OFC = size of AC matrix & OFC vector (e.g 5 in Atlas)
//:::::::::::::::::::::::::::::::
float fSigma2=0.;
if(!m_NoPile)
{
float SigmaNoise;
if(m_isMC)
SigmaNoise = m_dd_noise->noise(id,igain);
else
{
float RMSpedestal =
m_dd_pedestal->pedestalRMS(id,igain);
if(RMSpedestal>(1.0+LArElecCalib::ERRORCODE))
SigmaNoise = RMSpedestal;
else
SigmaNoise = 0.;//(we will have the ERROR message below)
}
float fSampl = m_dd_fSampl->FSAMPL(id);
float MinBiasRMS = m_dd_minbias->minBiasRMS(id);
if(fSampl!=0) MinBiasRMS/=fSampl;
const std::vector<float> *
polynom_adc2mev = &(m_adc2mevTool->ADC2MEV(id,igain));
float Adc2MeV=0.;
if (polynom_adc2mev->size()>0) {
Adc2MeV=(*polynom_adc2mev)[1];
}
if(SigmaNoise!=0 && Adc2MeV!=0)
fSigma2 = pow(MinBiasRMS/(SigmaNoise*Adc2MeV),2);
if(fSampl==0 || SigmaNoise==0 || Adc2MeV==0)
{
if (m_isMC) {
log << MSG::ERROR
<< m_lar_em_id
->show_to_string(m_cablingService->cnvToIdentifier(id))
<< "fSampl ("<<fSampl<<"), SigmaNoise ("
<<SigmaNoise<<") or Adc2MeV ("<<Adc2MeV<<") null "
<<"=> AutoCorrTotal = only AutoCorr elect. part "
<< endreq;
}
fSigma2=0.;
}
//warning: MinBiasRMS is in MeV (at the scale of the hits)
// SigmaNoise is in ADC counts
// so MinBiasRMS/fScale and SigmaNoise*Adc2MeV are the same scale
// (MeV at the scale of the cells)
}//end if m_NoPile
// get in vTerms all the possible non trivial N(N-1)/2 terms of the autocorrelation matrix
int nsize_tot = (m_nsamples_AC_OFC-1)*(m_nsamples_AC_OFC)/2;
std::vector<float> vTerms;
vTerms.resize(2*nsize_tot+m_nsamples_AC_OFC,0.);
//:::::::::::::::::::::::::::::::
for (int j1=0;j1<m_nsamples_AC_OFC-1;j1++) {
for (int j2=j1+1;j2<m_nsamples_AC_OFC;j2++) {
int l=abs(j2-j1)-1;
int index = j1*m_nsamples_AC_OFC- j1*(j1+1)/2 + j2 - (j1+1);
vTerms[index] = AC[l];
}
}
//2nd terms :
for(int j1=0;j1<m_nsamples_AC_OFC-1;++j1) {
for (int j2=j1+1;j2<m_nsamples_AC_OFC;j2++) {
int index = j1*m_nsamples_AC_OFC- j1*(j1+1)/2 + j2 - (j1+1);
float Rij=0;
for(int k=0;k<nsamples_shape;++k) {
if ((j2-j1+k)>=0 && (j2-j1+k)< nsamples_shape) {
int ibunch=0;
if ((j1+m_firstSample+ihecshift-k)%m_deltaBunch == 0) ibunch=1;
Rij += Shape[k] * Shape[j2-j1+k] *ibunch;
}
}
vTerms[nsize_tot+index]= fSigma2*Rij;
}
}
//3rd term : RMS of pileup per samples (multiplied by fSigma2)
for (int j1=0;j1<m_nsamples_AC_OFC;j1++) {
float Rms2i=0;
for(int k=0;k<nsamples_shape;++k) {
int ibunch=0;
if ((j1+m_firstSample+ihecshift-k)%m_deltaBunch == 0) ibunch=1;
Rms2i += pow(Shape[k],2) *ibunch;
}
vTerms[2*nsize_tot+j1]=fSigma2*Rms2i;
}
//storage
m_terms[igain][id32] = vTerms;
}//(loop on gains)
}
else//unconnected
for(unsigned int igain=0;igain<3;igain++)
{
unsigned nsize_tot=(m_nsamples-1)*(m_nsamples)+m_nsamples;
m_terms[igain][id32] = std::vector<float>(nsize_tot, 0.);
}
}
log << MSG::INFO << "LArAutoCorrTotal Ncell " << count << endreq;
log << MSG::INFO << "LArAutoCorrTotal Nsymcell " << count2 << endreq;
log << MSG::DEBUG << "end of loop over cells " << endreq;
m_cacheValid = true;
return StatusCode::SUCCESS;
}
/////////////////////////////////////////////////////////////////////////////
// *** compute AutoCorrTotal (nsamples-1 coeffs) for a given cell ***
const std::vector<double>
LArAutoCorrTotalTool::computeAutoCorr(const std::vector<float>& terms,
float Nminbias) const
{
/*
Rij (elec) + Nminbias*fSigma^2 * sum(k=0->32or800)[G(i-k)G(j-k)]
Rij(total) = ------------------------------------------------------------------
1 + Nminbias*fSigma^2 * sum(k=0->32or800)[G(k)^2]
with: o fSigma = Sigma(E minimum-bias) / Sigma(electronic noise)
o G the Shape function
o Nminbias = number of minimum-bias events per bunch-crossing
(= L/Lo)
if nsamples==5, we need only R01, R02, R03, R04 (for example) (ROO=1)
*/
MsgStream log( msgSvc(), name() );
if(Nminbias<0) Nminbias=m_Nminbias;// takes the value in the property
std::vector<double> vResult;
int tsize = int(sqrt(terms.size()));
int nsize_tot = (tsize-1)*(tsize)/2;
for (int i1=0;i1<tsize-1;i1++) {
for (int i2=i1+1;i2<tsize;i2++) {
int index = i1*tsize - i1*(i1+1)/2 + i2 - (i1+1);
vResult.push_back( (terms[index]+Nminbias*terms[nsize_tot+index])
/ sqrt((1.+Nminbias*terms[2*nsize_tot+i1])*(1.+Nminbias*terms[2*nsize_tot+i2])) );
}
}
return (vResult);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
const std::vector<double>
LArAutoCorrTotalTool::computeRMS(const std::vector<float>& terms,
float Nminbias) const
{
if (Nminbias<0) Nminbias = m_Nminbias;
std::vector<double> vResult;
int tsize = int(sqrt(terms.size()));
vResult.reserve(tsize);
int nsize_tot = (tsize-1)*(tsize)/2;
for (int i=0;i<tsize;i++) {
vResult.push_back(sqrt(1.+Nminbias*terms[2*nsize_tot+i]));
}
return (vResult);
}
/////////////////////////////////////////////////////////////////////////////
// *** retrieve AutoCorrTotal (nsamples*(nsamples-1)/2 coeffs) for a given cell ***
const std::vector<double>
LArAutoCorrTotalTool::autoCorrTotal(const HWIdentifier& CellID,
int gain, float Nminbias) const
{
MsgStream log( msgSvc(), name() );
int thisgain = (m_isSC ? 0 : gain);
if(!m_cacheValid){
LArAutoCorrTotalTool* this2 = const_cast<LArAutoCorrTotalTool*>(this);
StatusCode sc = this2->getTerms();
if (sc.isFailure())
{
log << MSG::ERROR
<< "getTerms failed "
<< endreq;
throw LArConditionsException("Could not compute in LArAutoCorrTotalTool::autoCorrTotal");
}
}
HWIdentifier id;
if (m_MCSym)
id = m_larmcsym->symOnline(CellID);
else
id = CellID;
unsigned int id32 = id.get_identifier32().get_compact();
MAP::const_iterator it = (m_terms[thisgain]).find(id32) ;
if(it == (m_terms[thisgain]).end()){
log << MSG::DEBUG
<< "Unable to find ID = " << CellID << " in m_terms"
<< endreq;
static std::vector<double> empty;
return empty;
}
return ( this->computeAutoCorr((*it).second,Nminbias) );
}
/////////////////////////////////////////////////////////////////////////////
// *** retrieve AutoCorrTotal (4 coeffs) for a given cell ***
const std::vector<double>
LArAutoCorrTotalTool::autoCorrTotal(const Identifier& CellID,
int gain, float Nminbias) const
{
HWIdentifier id = m_cablingService->createSignalChannelID(CellID);
return this->autoCorrTotal(id, gain, Nminbias);
}
void LArAutoCorrTotalTool::handle(const Incident&) {
MsgStream log( msgSvc(), name() );
log << MSG::DEBUG << "In Incident-handle" << endreq;
if(!m_cacheValid){
StatusCode sc = this->getTerms();
if (sc.isFailure())
{
log << MSG::ERROR
<< "getTerms failed "
<< endreq;
throw LArConditionsException("Could not getTerms in LArAutoCorrTotalTool::handle ");
}
}
}
///////////////////////////////////////////////////////////////////////////
const std::vector<double>
LArAutoCorrTotalTool::samplRMS(const HWIdentifier& CellID,
int gain, float Nminbias) const
{
int thisgain = (m_isSC ? 0 : gain);
HWIdentifier id;
if (m_MCSym)
id = m_larmcsym->symOnline(CellID);
else
id = CellID;
unsigned int id32 = id.get_identifier32().get_compact();
MAP::const_iterator it = (m_terms[thisgain]).find(id32) ;
if(it == (m_terms[thisgain]).end()){
MsgStream log( msgSvc(), name() );
log << MSG::ERROR
<< "Unable to find ID = " << CellID << " in m_terms"
<< endreq;
static std::vector<double> empty;
return empty;
}
return ( this->computeRMS((*it).second,Nminbias) );
}
///////////////////////////////////////////////////////////
const std::vector<double>
LArAutoCorrTotalTool::samplRMS(const Identifier& CellID,
int gain, float Nminbias) const
{
HWIdentifier id = m_cablingService->createSignalChannelID(CellID);
return this->samplRMS(id, gain, Nminbias);
}