Forked from
te-abt-ec / anomaly-detection-mki-2019
374 commits ahead of the upstream repository.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
config_mki.yaml 3.35 KiB
load_data:
type: JSON
preprocess:
task: MKI
time_intervals:
- '2017-05-01 00:00:00.000'
- '2017-05-02 00:00:00.000'
features:
# json here cause of several arrays, csv takes less space but doesn't allow these
dataformat: json
timestamps:
- "MKI.UA23.IPOC.AB1"
- AnalyserResults
systems:
IPOC:
- "MKI.UA%.IPOC.%B_"
- "AnalyserResults"
SCSS:
- "MKI.UA%.GEN"
- "%"
BEAM:
- "LHC.BCTFR.A6R4.B_"
- Acquisition
BUNCH:
- "BQMLHC_"
- AcquisitionResults
KITS:
- "MKI.UA%.F3.CONTROLLER"
- Logging
drop_columns:
IPOC:
- __record_timestamp__
- acquisitionStamp
- __record_version__
SCSS:
- __record_timestamp__
- acquisitionStamp
- __record_version__
BEAM:
- __record_timestamp__
- acquisitionStamp
- __record_version__
BUNCH:
- __record_timestamp__
- acquisitionStamp
- __record_version__
# below arrays with dim 3564, do not contain any useful info for this model
- bunchMeans
- bunchIntensities
- bunchLengths
- bunchPeaks
fourier:
IPOC:
SCSS:
mki_parameters:
beam: 1
host: localhost
sliding_window: 0
filename_train: ''
filename_test: ''
parallel: False
grid_search:
time_interval:
- '2017-01-01 00:00:00.000'
- '2017-12-31 00:00:00.000'
check_constant_columns: True
variance_threshold: 1e-20
max_runtime: 10000