Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tree_maker
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ABP Computing
ABP Computing Sandbox
tree_maker
Commits
dceeae38
Commit
dceeae38
authored
3 years ago
by
Hamish Graham
Browse files
Options
Downloads
Patches
Plain Diff
update
parent
425da988
Branches
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#3019293
passed
3 years ago
Stage: test
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
tree_maker/monitoring_sim.py
+109
-0
109 additions, 0 deletions
tree_maker/monitoring_sim.py
tree_maker/pandas_skeleton.py
+155
-0
155 additions, 0 deletions
tree_maker/pandas_skeleton.py
with
264 additions
and
0 deletions
tree_maker/monitoring_sim.py
0 → 100644
+
109
−
0
View file @
dceeae38
import
pandas_skeleton
as
ps
import
tree_maker
as
tm
from
pandas
import
DataFrame
from
bokeh.layouts
import
column
from
bokeh.models
import
ColumnDataSource
,
Slider
,
WheelZoomTool
,
BoxZoomTool
,
Button
,
PanTool
from
bokeh.plotting
import
figure
from
bokeh.themes
import
Theme
from
bokeh.io
import
show
,
output_notebook
from
bokeh.models
import
Select
def
bkapp
(
doc
,
root
,
last_key
,
my_dict
):
"""
This creates an interactive plot showing a tree of jobs in a
'
flower
'
shape.
"""
global
my_df
global
source
global
this_df
global
my_df_plot
try
:
ps
.
create_tree
(
root
)
except
:
raise
Exception
(
'
Sorry, I need a root of a tree!
'
)
x_values
,
y_values
,
path
=
ps
.
create_xypath
(
root
)
my_colors
=
ps
.
create_color
(
root
)
angles
=
ps
.
create_tree_cartesian
(
root
)
my_df
=
ps
.
create_df
(
root
,
path
,
x_values
,
y_values
,
my_colors
)
del
my_df
[
'
handle
'
]
my_df_plot
=
my_df
this_df
=
my_df
.
copy
()
final_status
=
my_dict
[
'
status
'
][
-
1
]
def
callback
(
attr
,
_
,
index_list
):
global
my_df
global
my_df_selected
global
my_df_plot
source
.
data
=
ColumnDataSource
.
from_df
(
my_df_plot
)
my_df_selected
=
my_df_plot
.
loc
[
index_list
]
def
initialise
():
global
my_df_plot
global
my_df
my_df_plot
=
ps
.
update_color
(
this_df
,
my_dict
,
my_df
)
my_df
=
ps
.
update_color
(
this_df
,
my_dict
,
my_df
)
def
my_function
(
this_df
,
my_dict
):
return
my_dict
[
'
color
'
][
my_dict
[
'
status
'
].
index
(
this_df
[
'
status
'
])]
def
update_color
():
global
my_df_plot
global
my_df
ps
.
update_status
(
root
)
this_df
[
'
status
'
]
=
ps
.
create_status
(
root
)
this_df
[
'
color
'
]
=
this_df
.
apply
(
lambda
x
:
my_function
(
x
,
my_dict
),
axis
=
1
)
my_df
=
this_df
my_df_plot
=
this_df
def
update_color2
():
global
my_df_plot
global
my_df
ps
.
update_status
(
root
)
this_df
[
'
status
'
]
=
ps
.
create_status
(
root
)
this_df
[
'
color
'
]
=
this_df
.
apply
(
lambda
x
:
my_function
(
x
,
my_dict
),
axis
=
1
)
my_df
=
this_df
my_df_plot
=
this_df
source
.
data
=
ColumnDataSource
.
from_df
(
my_df_plot
)
update_color
()
source
=
ColumnDataSource
(
data
=
my_df_plot
)
TOOLTIPS
=
[
(
'
index
'
,
"
@index
"
),
(
'
status
'
,
"
@status
"
),
(
'
path
'
,
"
@path
"
)
]
plot
=
figure
(
plot_width
=
400
,
plot_height
=
400
,
tools
=
"
lasso_select
"
,
title
=
"
Select Here
"
,
tooltips
=
TOOLTIPS
)
plot
.
circle
(
'
x
'
,
'
y
'
,
source
=
source
,
alpha
=
0.6
,
size
=
15
,
line_color
=
"
black
"
,
color
=
'
color
'
)
plot
.
add_tools
(
BoxZoomTool
(),
WheelZoomTool
(),
PanTool
())
source
.
selected
.
on_change
(
'
indices
'
,
callback
)
select
=
Select
(
title
=
"
Option:
"
,
value
=
"
plot
"
,
options
=
[
"
full_df
"
,
f
"
{
last_key
}
"
,
f
"
not
{
last_key
}
"
])
def
callback1
(
attr
,
old
,
new
):
global
my_df_plot
if
new
==
"
full_df
"
:
my_df_plot
=
my_df
.
copy
()
if
new
==
f
"
{
last_key
}
"
:
my_df_plot
=
my_df
[
my_df
.
status
==
last_key
].
copy
()
if
new
==
f
"
not
{
last_key
}
"
:
my_df_plot
=
my_df
[
my_df
.
status
!=
last_key
].
copy
()
my_df_plot
.
reset_index
(
drop
=
True
,
inplace
=
True
)
source
.
data
=
ColumnDataSource
.
from_df
(
my_df_plot
)
select
.
on_change
(
'
value
'
,
callback1
)
button
=
Button
(
label
=
"
Update
"
,
button_type
=
"
success
"
)
button
.
on_click
(
update_color2
)
doc
.
add_root
(
column
(
plot
,
button
,
select
))
\ No newline at end of file
This diff is collapsed.
Click to expand it.
tree_maker/pandas_skeleton.py
0 → 100644
+
155
−
0
View file @
dceeae38
import
tree_maker
as
tm
import
numpy
as
np
import
math
import
random
from
anytree
import
AnyNode
,
RenderTree
import
numpy
as
np
import
json
import
pandas
as
pd
def
create_tree
(
node
):
"""
Creates a tree with the shape of a
'
flower
'
. The nodes that have attributes; x, y, ragius, short_path, angle, min_angle, max_angle and color.
"""
if
node
.
is_leaf
:
pass
else
:
if
node
.
is_root
:
node
.
x
=
0
node
.
y
=
0
node
.
radius
=
0
#node.min_x = -2
#node.max_x = 2
node
.
short_path
=
'
/
'
.
join
(
node
.
path
.
split
(
'
/
'
)[
-
3
:])
node
.
angle
=
2
*
math
.
pi
node
.
min_angle
=
0
node
.
max_angle
=
2
*
math
.
pi
node
.
color
=
'
black
'
for
my_child
,
my_angle
in
zip
(
node
.
children
,
np
.
linspace
(
node
.
min_angle
,
node
.
max_angle
,
(
len
(
node
.
children
)
+
1
))):
#my_child.min_x = xx - (node.max_x - node.min_x)/len(node.children)/2
#my_child.max_x = xx + (node.max_x - node.min_x)/len(node.children)/2
my_child
.
color
=
"
black
"
my_child
.
short_path
=
'
/
'
.
join
(
my_child
.
path
.
split
(
'
/
'
)[
-
3
:])
my_child
.
angle
=
my_angle
my_child
.
min_angle
=
my_angle
-
(
node
.
max_angle
-
node
.
min_angle
)
/
len
(
node
.
children
)
/
2
my_child
.
max_angle
=
my_angle
+
(
node
.
max_angle
-
node
.
min_angle
)
/
len
(
node
.
children
)
/
2
my_child
.
radius
=
node
.
radius
+
1
my_child
.
x
=
my_child
.
radius
*
math
.
cos
(
my_angle
)
my_child
.
y
=
my_child
.
radius
*
math
.
sin
(
my_angle
)
create_tree
(
my_child
)
def
create_xypath
(
node
):
"""
Creates a list for x_values and y_values for the nodes of a tree.
"""
x_values
=
[
node
.
x
]
y_values
=
[
node
.
y
]
path
=
[
node
.
short_path
]
for
descendant
in
node
.
descendants
:
x_values
.
append
(
descendant
.
x
)
y_values
.
append
(
descendant
.
y
)
path
.
append
(
descendant
.
short_path
)
return
x_values
,
y_values
,
path
def
get_status
(
handle
):
"""
Returns last key, the status of the job, from
'
log_file
'
. Incase of an empty log_file,
'
None
'
is returned.
"""
keys
=
list
(
tm
.
from_json
(
handle
.
get_abs
(
'
path
'
)
+
'
/
'
+
handle
.
log_file
))
if
len
(
keys
)
>
0
:
return
keys
[
-
1
]
else
:
return
None
def
update_status
(
node
):
if
node
.
is_leaf
:
pass
else
:
if
node
.
is_root
:
node
.
status
=
get_status
(
node
)
for
my_child
in
node
.
children
:
my_child
.
status
=
get_status
(
my_child
)
update_status
(
my_child
)
def
create_status
(
node
):
my_status
=
[
node
.
status
]
for
descendant
in
node
.
descendants
:
my_status
.
append
(
descendant
.
status
)
return
my_status
def
update_color
():
global
my_df_plot
global
my_df
update_status
(
root
)
create_status
(
root
)
this_df
[
'
color
'
]
=
this_df
.
apply
(
lambda
x
:
my_function
(
x
,
my_dict
),
axis
=
1
)
my_df
=
this_df
my_df_plot
=
this_df
def
create_color
(
node
):
"""
Adds colors of nodes to an array.
"""
my_colors
=
[
node
.
color
]
for
descendant
in
node
.
descendants
:
my_colors
.
append
(
descendant
.
color
)
return
my_colors
def
create_tree_cartesian
(
node
):
"""
Adds the angle attribute to an array.
"""
angles
=
[
node
.
angle
]
for
descendant
in
node
.
descendants
:
angles
.
append
(
node
.
angle
)
return
angles
def
create_df
(
node
,
path
,
x_values
,
y_values
,
my_colors
):
"""
Creating a dataframe and its attributes. Here its attributes are; node, path, x_values, y_values and my_colors.
"""
my_df
=
pd
.
DataFrame
([
node
]
+
list
(
node
.
descendants
),
columns
=
[
'
handle
'
]).
copy
()
my_df
[
'
name
'
]
=
my_df
[
'
handle
'
].
apply
(
lambda
x
:
x
.
name
)
my_df
[
'
path
'
]
=
path
my_df
[
'
x
'
]
=
x_values
# to check the order
my_df
[
'
y
'
]
=
y_values
# to check the order
my_df
[
'
status
'
]
=
my_df
[
'
handle
'
].
apply
(
get_status
)
my_df
[
'
color
'
]
=
my_colors
return
my_df
def
update
(
my_df
,
last_key
,
my_color
,
status_df
):
"""
Filtering through the dataframe using the
'
last_key
'
. The color that is connected to this
'
last_key
'
, can also be chosen.
"""
new_df1
=
my_df
[(
my_df
.
status
==
last_key
)].
copy
()
#new_df1['color'] = new_df1.apply(my_function)
new_df1
[
'
color
'
]
=
'
green
'
new_df2
=
my_df
[(
my_df
.
status
!=
last_key
)].
copy
()
my_df
=
pd
.
concat
([
new_df1
,
new_df2
]).
sort_index
()
#print(status_df)
return
my_df
def
update2
(
my_df
,
status_df
):
"""
Filtering through the dataframe using the
'
last_key
'
. The color that is connected to this
'
last_key
'
, can also be chosen.
"""
#new_df1 = my_df[(my_df.status == last_key)].copy()
for
row
in
status_df
.
loc
[
0
:
len
(
status_df
)]:
my_df
[
'
color
'
]
=
status_df
.
loc
[
row
][
'
color
'
]
my_df
[
'
status
'
]
=
status_df
.
loc
[
row
][
'
color
'
]
return
my_df
def
my_function
(
my_df
,
my_dict
):
global
this_df
this_df
=
my_df
.
copy
()
return
my_dict
[
'
color
'
][
my_dict
[
'
status
'
].
index
(
this_df
[
'
status
'
])]
#def update_color(this_df, my_dict, my_df):
# this_df['color'] = this_df.apply(lambda x: my_function(x, my_dict), axis=1)
# my_df = this_df
# return my_df
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment