Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
inference
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
HH
tools
inference
Commits
008fbd34
Commit
008fbd34
authored
Feb 11, 2022
by
Marcel Rieger
Browse files
Options
Downloads
Patches
Plain Diff
Fix multi limit plots with mixed unblinding flags.
parent
54353181
No related branches found
No related tags found
No related merge requests found
Pipeline
#3559430
passed
Feb 12, 2022
Stage: docs
Changes
3
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
dhi/plots/limits.py
+13
-11
13 additions, 11 deletions
dhi/plots/limits.py
dhi/tasks/gof.py
+3
-1
3 additions, 1 deletion
dhi/tasks/gof.py
dhi/tasks/limits.py
+17
-21
17 additions, 21 deletions
dhi/tasks/limits.py
with
33 additions
and
33 deletions
dhi/plots/limits.py
+
13
−
11
View file @
008fbd34
...
...
@@ -347,6 +347,7 @@ def plot_limit_scans(
def
check_values
(
values
):
_values
=
[]
for
v
in
values
:
if
v
is
not
None
:
if
isinstance
(
v
,
np
.
ndarray
):
v
=
{
key
:
v
[
key
]
for
key
in
v
.
dtype
.
names
}
assert
"
limit
"
in
v
...
...
@@ -363,7 +364,7 @@ def plot_limit_scans(
if
observed_values
:
assert
len
(
observed_values
)
==
n_graphs
observed_values
=
check_values
(
observed_values
)
has_obs
=
True
has_obs
=
any
(
v
is
not
None
for
v
in
observed_values
)
scan_values
=
expected_values
[
0
][
scan_parameter
]
has_thy
=
theory_values
is
not
None
has_thy_err
=
False
...
...
@@ -441,8 +442,8 @@ def plot_limit_scans(
scan_values
.
min
(),
scan_values
.
max
())
# observed graph
if
has_obs
:
ov
=
observed_values
[
i
]
if
ov
is
not
None
:
obs_mask
=
~
np
.
isnan
(
ov
[
"
limit
"
])
obs_limit_values
=
ov
[
"
limit
"
][
obs_mask
]
obs_scan_values
=
ov
[
scan_parameter
][
obs_mask
]
...
...
@@ -645,6 +646,7 @@ def plot_limit_points(
x_max_value
=
max
(
x_max_value
,
max
(
d
[
"
expected
"
]))
if
"
observed
"
in
d
:
assert
isinstance
(
d
[
"
observed
"
],
(
float
,
int
))
if
not
np
.
isnan
(
d
[
"
observed
"
])
and
d
[
"
observed
"
]
is
not
None
:
has_obs
=
True
x_min_value
=
min
(
x_min_value
,
d
[
"
observed
"
])
x_max_value
=
max
(
x_max_value
,
d
[
"
observed
"
])
...
...
@@ -819,7 +821,7 @@ def plot_limit_points(
fmt
=
lambda
v
:
"
{{:.{}f}} {{}}
"
.
format
(
get_digits
(
v
)).
format
(
v
,
xsec_unit
)
else
:
fmt
=
lambda
v
:
"
{{:.{}f}}
"
.
format
(
get_digits
(
v
)).
format
(
v
)
if
obs
is
None
:
if
obs
is
None
or
np
.
isnan
(
obs
[
0
])
:
return
y_label_tmpl
%
(
label
,
fmt
(
exp
))
else
:
return
y_label_tmpl_obs
%
(
label
,
fmt
(
exp
),
fmt
(
obs
[
0
]))
...
...
...
...
This diff is collapsed.
Click to expand it.
dhi/tasks/gof.py
+
3
−
1
View file @
008fbd34
...
...
@@ -294,7 +294,9 @@ class PlotMultipleGoodnessOfFits(PlotGoodnessOfFit, POIMultiTask, MultiDatacardT
def
requires
(
self
):
return
[
MergeGoodnessOfFit
.
req
(
self
,
datacards
=
datacards
,
toys
=
t
,
toys_per_branch
=
tpb
,
**
kwargs
)
for
datacards
,
t
,
tpb
,
kwargs
in
zip
(
self
.
multi_datacards
,
self
.
toys
,
self
.
toys_per_branch
,
self
.
get_multi_task_kwargs
())
for
datacards
,
t
,
tpb
,
kwargs
in
zip
(
self
.
multi_datacards
,
self
.
toys
,
self
.
toys_per_branch
,
self
.
get_multi_task_kwargs
(),
)
]
def
output
(
self
):
...
...
...
...
This diff is collapsed.
Click to expand it.
dhi/tasks/limits.py
+
17
−
21
View file @
008fbd34
...
...
@@ -662,14 +662,12 @@ class PlotMultipleUpperLimits(PlotUpperLimits, POIMultiTask, MultiDatacardTask):
names
=
[
names
[
i
]
for
i
in
self
.
datacard_order
]
# prepare observed values
obs_values
=
None
if
self
.
unblinded
:
obs_values
=
[
{
self
.
scan_parameter
:
_limit_values
[
self
.
scan_parameter
],
"
limit
"
:
_limit_values
[
"
observed
"
],
}
for
_limit_values
in
limit_values
}
if
mkwargs
[
"
unblinded
"
]
else
None
for
_limit_values
,
mkwargs
in
zip
(
limit_values
,
self
.
get_multi_task_kwargs
())
]
# call the plot function
...
...
@@ -807,14 +805,12 @@ class PlotMultipleUpperLimitsByModel(PlotUpperLimits, POIMultiTask, MultiHHModel
names
=
[
names
[
i
]
for
i
in
self
.
hh_model_order
]
# prepare observed values
obs_values
=
None
if
self
.
unblinded
:
obs_values
=
[
{
self
.
scan_parameter
:
_limit_values
[
self
.
scan_parameter
],
"
limit
"
:
_limit_values
[
"
observed
"
],
}
for
_limit_values
in
limit_values
}
if
mkwargs
[
"
unblinded
"
]
else
None
for
_limit_values
,
mkwargs
in
zip
(
limit_values
,
self
.
get_multi_task_kwargs
())
]
# call the plot function
...
...
@@ -992,11 +988,11 @@ class PlotUpperLimitsAtPoint(UpperLimitsBase, POIPlotTask, POIMultiTask, MultiDa
# load limit values
names
=
[
"
limit
"
,
"
limit_p1
"
,
"
limit_m1
"
,
"
limit_p2
"
,
"
limit_m2
"
]
if
self
.
unblinded
:
if
any
(
self
.
unblinded
)
:
names
.
append
(
"
observed
"
)
limit_values
=
np
.
array
(
[
self
.
load_limits
(
coll
[
"
collection
"
][
0
],
unblinded
=
self
.
unblinded
)
self
.
load_limits
(
coll
[
"
collection
"
][
0
],
unblinded
=
any
(
self
.
unblinded
)
)
for
coll
in
self
.
input
()
],
dtype
=
[(
name
,
np
.
float32
)
for
name
in
names
],
...
...
@@ -1051,7 +1047,7 @@ class PlotUpperLimitsAtPoint(UpperLimitsBase, POIPlotTask, POIMultiTask, MultiDa
"
expected
"
:
record
.
tolist
()[:
5
],
"
theory
"
:
thy_value
and
thy_value
[
0
].
tolist
()[
1
:],
}
if
self
.
unblinded
:
if
any
(
self
.
unblinded
)
:
entry
[
"
observed
"
]
=
float
(
record
[
5
])
data
.
append
(
entry
)
...
...
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment