Charm D02KsHH HLT2 Lines
Untagged, Prompt tagged, SL single and double tagged lines, as well as some low bias untagged and prompt tagged lines for Charm D02Kshh lines using Thor functors.
The untagged lines can be used in analysis such as yCP in D0->KsKK decays which don't require any flavour tagging. Therefore these untagged lines will help boost the statistics in such analysis which at present are statistically limited.
Untagged
D0 -> pi+ pi- (KS -> pi+ pi-), with low bias
D0 -> K+ K- (KS -> pi+ pi-), with low bias
D0 -> pi+ K- (KS -> pi+ pi-) and its charge conjugate, with low bias
Prompt tagged
D*(2010)+ -> (D0 -> pi+ pi- (KS -> pi+ pi-))pi+, with low bias
D*(2010)+ -> (D0 -> K+ K- (KS -> pi+ pi-))pi+, with low bias
D*(2010)+ -> (D0 -> pi+ K- (KS -> pi+ pi-))pi+ and its charge conjugate, with low bias
SL single tagged
B -> (D0 -> pi+ pi- (KS -> pi+ pi-))pi+) mu- X
B -> (D0 -> K+ K- (KS -> pi+ pi-))pi+) mu- X
B -> (D0 -> pi+ K- (KS -> pi+ pi-))pi+) mu- X and its charge conjugate
SL double tagged
B -> (D*(2010)+ -> (D0 -> pi+ pi- (KS -> pi+ pi-))pi+) mu- X
B -> (D*(2010)+ -> (D0 -> K+ K- (KS -> pi+ pi-))pi+) mu- X
B -> (D*(2010)+ -> (D0 -> pi+ K- (KS -> pi+ pi-))pi+) mu- X and its charge conjugate
There are separate lines for each of the above for when the KS is reconstructed with long pions and with down pions.
Rates
Hlt2Charm_B2D0MumX_D0ToKsKmKp_DD_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2D0MumX_D0ToKsKmKp_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2D0MumX_D0ToKsKmPip_DD_Line #=14983 Sum=1 Eff=|(0.006674231 +- 0.00667401)%|
Hlt2Charm_B2D0MumX_D0ToKsKmPip_LL_Line #=14983 Sum=1 Eff=|(0.006674231 +- 0.00667401)%|
Hlt2Charm_B2D0MumX_D0ToKsKpPim_DD_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2D0MumX_D0ToKsKpPim_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2D0MumX_D0ToKsPimPip_DD_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2D0MumX_D0ToKsPimPip_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2DstpMumX_DstpToD0Pip_D0ToKsKmKp_DD_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2DstpMumX_DstpToD0Pip_D0ToKsKmKp_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2DstpMumX_DstpToD0Pip_D0ToKsKmPip_DD_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2DstpMumX_DstpToD0Pip_D0ToKsKmPip_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2DstpMumX_DstpToD0Pip_D0ToKsKpPim_DD_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2DstpMumX_DstpToD0Pip_D0ToKsKpPim_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2DstpMumX_DstpToD0Pip_D0ToKsPimPip_DD_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_B2DstpMumX_DstpToD0Pip_D0ToKsPimPip_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_D0ToKsKmKp_DD_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_D0ToKsKmKp_DD_LowBias_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_D0ToKsKmKp_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_D0ToKsKmKp_LL_LowBias_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_D0ToKsKmPip_DD_Line #=14983 Sum=2 Eff=|(0.01334846 +- 0.00943816)%|
Hlt2Charm_D0ToKsKmPip_DD_LowBias_Line #=14983 Sum=1 Eff=|(0.006674231 +- 0.00667401)%|
Hlt2Charm_D0ToKsKmPip_LL_Line #=14983 Sum=2 Eff=|(0.01334846 +- 0.00943816)%|
Hlt2Charm_D0ToKsKmPip_LL_LowBias_Line #=14983 Sum=1 Eff=|(0.006674231 +- 0.00667401)%|
Hlt2Charm_D0ToKsKpPim_DD_Line #=14983 Sum=2 Eff=|(0.01334846 +- 0.00943816)%|
Hlt2Charm_D0ToKsKpPim_DD_LowBias_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_D0ToKsKpPim_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_D0ToKsKpPim_LL_LowBias_Line #=14983 Sum=1 Eff=|(0.006674231 +- 0.00667401)%|
Hlt2Charm_D0ToKsPimPip_DD_Line #=14983 Sum=7 Eff=|(0.04671962 +- 0.0176542)%|
Hlt2Charm_D0ToKsPimPip_DD_LowBias_Line #=14983 Sum=2 Eff=|(0.01334846 +- 0.00943816)%|
Hlt2Charm_D0ToKsPimPip_LL_Line #=14983 Sum=5 Eff=|(0.03337115 +- 0.0149215)%|
Hlt2Charm_D0ToKsPimPip_LL_LowBias_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_DstpToD0Pip_D0ToKsKmKp_DD_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_DstpToD0Pip_D0ToKsKmKp_DD_LowBias_Line #=14983 Sum=1 Eff=|(0.006674231 +- 0.00667401)%|
Hlt2Charm_DstpToD0Pip_D0ToKsKmKp_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_DstpToD0Pip_D0ToKsKmKp_LL_LowBias_Line #=14983 Sum=4 Eff=|(0.02669692 +- 0.0133467)%|
Hlt2Charm_DstpToD0Pip_D0ToKsKmPip_DD_Line #=14983 Sum=2 Eff=|(0.01334846 +- 0.00943816)%|
Hlt2Charm_DstpToD0Pip_D0ToKsKmPip_DD_LowBias_Line #=14983 Sum=2 Eff=|(0.01334846 +- 0.00943816)%|
Hlt2Charm_DstpToD0Pip_D0ToKsKmPip_LL_Line #=14983 Sum=3 Eff=|(0.02002269 +- 0.0115589)%|
Hlt2Charm_DstpToD0Pip_D0ToKsKmPip_LL_LowBias_Line #=14983 Sum=3 Eff=|(0.02002269 +- 0.0115589)%|
Hlt2Charm_DstpToD0Pip_D0ToKsKpPim_DD_Line #=14983 Sum=2 Eff=|(0.01334846 +- 0.00943816)%|
Hlt2Charm_DstpToD0Pip_D0ToKsKpPim_DD_LowBias_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_DstpToD0Pip_D0ToKsKpPim_LL_Line #=14983 Sum=0 Eff=|( 0.000000 +- 0.00000 )%|
Hlt2Charm_DstpToD0Pip_D0ToKsKpPim_LL_LowBias_Line #=14983 Sum=1 Eff=|(0.006674231 +- 0.00667401)%|
Hlt2Charm_DstpToD0Pip_D0ToKsPimPip_DD_Line #=14983 Sum=9 Eff=|(0.06006808 +- 0.0200167)%|
Hlt2Charm_DstpToD0Pip_D0ToKsPimPip_DD_LowBias_Line #=14983 Sum=1 Eff=|(0.006674231 +- 0.00667401)%|
Hlt2Charm_DstpToD0Pip_D0ToKsPimPip_LL_Line #=14983 Sum=12 Eff=|(0.08009077 +- 0.0231110)%|
Hlt2Charm_DstpToD0Pip_D0ToKsPimPip_LL_LowBias_Line #=14983 Sum=5 Eff=|(0.03337115 +- 0.0149215)%|
(Rates in kHz are obtained by by multiplying the efficiency in % by 10)
Current exclusive rates (see !1316 (merged) )
< moore #=14983 Sum=1056 Eff=|( 7.047988 +- 0.209104)%|
> moore #=14983 Sum=1088 Eff=|( 7.261563 +- 0.212005)%|
I.e. this MR adds around 2.1 kHz.
Edited by Marian Stahl