Skip to content

BandQ: Optimise the existing Lb2LcDs(h)(h) lines (with MVA)

The BDT is applied to select a detached \Lambda_c samples.

For the training samples:

  • The signal is the simulated events for both \Lambda_b\to \Lambda_c D_{s} K^+ K^- (\pi^+ \pi^-)
  • The background sample is the NoBias data in Spruce24c4 (with m(\Lambda_c) \in [2310,2340]~MeV)

Preselections are required for the training samples:

p, K, π selection
p_T >200 MeV
P >2.5 GeV
\chi_{IP}^2 >4
PID
p DLL_p>0 and ISMUON==0
K DLL_K>0
\pi DLL_{\pi}>0
Charm hadron
p_T
D_s^- >900 MeV
\Lambda_c^+ >1000 MeV
∑p_T
D_s^- >1.4 GeV
\Lambda_c^+ >1.45 GeV
ρ_{PV} >0.1 mm
DIRA >0.995
\chi_{DOCA}^2 <12
max[DOCA] <0.18 mm
\chi_{vtx}^2 /n_{dof} <9
\chi_{IP}^2 >3
average \chi_{IP}^2 (p,K,π) >8
\chi_{FD}^2 >30
\tau_{OWNPV} >0.2 ps
m(D_s^-) (1910, 2025) MeV/c^2
m(\Lambda_c^+) (2230, 2340) MeV/c^2

5 varialbles are used as the features of the BDT:

  • log(p_T) for \Lambda_c
  • \chi^{2}_{vtx}/n_{dof} of \Lambda_c
  • \chi^2_{IP} of p_{\Lambda_c}
  • F.MAXDOCA for \Lambda_c
  • \chi^2_{FD} for \Lambda_c

Good seperation for each variables:

And no over-training found:

Go with lhcb-datapkg/ParamFiles!129 (merged)

FYI @jfu

Edited by Kunpeng Yu

Merge request reports

Loading