BandQ: Optimise the existing Lb2LcDs(h)(h) lines (with MVA)
The BDT is applied to select a detached \Lambda_c samples.
For the training samples:
- The signal is the simulated events for both \Lambda_b\to \Lambda_c D_{s} K^+ K^- (\pi^+ \pi^-)
- The background sample is the NoBias data in Spruce24c4 (with m(\Lambda_c) \in [2310,2340]~MeV)
Preselections are required for the training samples:
| p, K, π selection | |
|---|---|
| p_T | >200 MeV |
| P | >2.5 GeV |
| \chi_{IP}^2 | >4 |
| PID | |
| p |
DLL_p>0 and ISMUON==0
|
| K | DLL_K>0 |
| \pi | DLL_{\pi}>0 |
| Charm hadron | |
|---|---|
| p_T | |
| D_s^- | >900 MeV |
| \Lambda_c^+ | >1000 MeV |
| ∑p_T | |
| D_s^- | >1.4 GeV |
| \Lambda_c^+ | >1.45 GeV |
| ρ_{PV} | >0.1 mm |
| DIRA | >0.995 |
| \chi_{DOCA}^2 | <12 |
| max[DOCA] | <0.18 mm |
| \chi_{vtx}^2 /n_{dof} | <9 |
| \chi_{IP}^2 | >3 |
| average \chi_{IP}^2 (p,K,π) | >8 |
| \chi_{FD}^2 | >30 |
| \tau_{OWNPV} | >0.2 ps |
| m(D_s^-) | (1910, 2025) MeV/c^2 |
| m(\Lambda_c^+) | (2230, 2340) MeV/c^2 |
5 varialbles are used as the features of the BDT:
- log(p_T) for \Lambda_c
- \chi^{2}_{vtx}/n_{dof} of \Lambda_c
- \chi^2_{IP} of p_{\Lambda_c}
-
F.MAXDOCAfor \Lambda_c - \chi^2_{FD} for \Lambda_c
Good seperation for each variables:
And no over-training found:
Go with lhcb-datapkg/ParamFiles!129 (merged)
FYI @jfu
Edited by Kunpeng Yu