Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*
Copyright (C) 2002-2018 CERN for the benefit of the ATLAS collaboration
*/
/**
@class AsgElectronChargeIDSelectorTool
@brief Electron selector tool to select objects in Asgena using an underlying pure ROOT tool.
@author Karsten Koeneke
@date October 2012
09-APR-2014, convert to ASGTool (Jovan Mitrevski)
22-AUG-2016, copied from AsgElectronLikelihoodTool (Kazuya Mochizuki)
*/
// Include this class's header
#include "ElectronPhotonSelectorTools/AsgElectronChargeIDSelectorTool.h"
// STL includes
#include <string>
#include <cstdint>
#include <cmath>
//EDM includes
#include "xAODEgamma/Electron.h"
#include "xAODTracking/Vertex.h"
#include "xAODTracking/VertexContainer.h"
#include "xAODCaloEvent/CaloCluster.h"
#include "xAODEventInfo/EventInfo.h"
#include "TROOT.h"
#include "TKey.h"
#include "TClass.h"
#include "TEnv.h"
#include "TFile.h"
#include "TObjString.h"
#include "TObjArray.h"
#include "AsgDataHandles/ReadHandle.h"
#include "AsgTools/CurrentContext.h"
#include "PathResolver/PathResolver.h"
//=============================================================================
// Standard constructor
//=============================================================================
AsgElectronChargeIDSelectorTool::AsgElectronChargeIDSelectorTool(const std::string& myname) :
AsgTool(myname) //,m_cutOnBDT(0)//,m_configFile("")//,m_rootTool(0)
{
// Declare the needed properties
declareProperty("WorkingPoint",m_WorkingPoint="","The Working Point");
//declareProperty("ConfigFile",m_configFile="","The config file to use");
declareProperty("usePVContainer", m_usePVCont=true, "Whether to use the PV container");
declareProperty("nPVdefault", m_nPVdefault = 0, "The default number of PVs if not counted");
//declareProperty("primaryVertexContainer", m_primVtxContKey="PrimaryVertices", "The primary vertex container name" );
declareProperty("TrainingFile", m_trainingFile="", "The input ROOT file name holding training" );
declareProperty("CutOnBDT",m_cutOnBDT=0,"Cut on BDT discriminant");
m_pid_name=myname.data();
}
//=============================================================================
// Standard destructor
//=============================================================================
AsgElectronChargeIDSelectorTool::~AsgElectronChargeIDSelectorTool()
{
for (auto bdt: m_v_bdts) if (bdt) delete bdt;
}
//=============================================================================
// Asgena initialize method
//=============================================================================
StatusCode AsgElectronChargeIDSelectorTool::initialize()
{
m_pid_name.ToLower(); //KM: List of 97% OPs with different PIDs below
std::string op_name="loose";
bool op_isUserSpecified=false;
if (m_cutOnBDT==0) { //when cutOnBDT is unmodified, adjust it to the 97% OP in each PID menu
if (m_pid_name.Contains("tight") ) op_name="tight" , m_cutOnBDT=-0.109249;//Tight (with data): -0.109249
else if (m_pid_name.Contains("medium")) op_name="medium", m_cutOnBDT=-0.257081;//Medium (with data): -0.257081
else m_cutOnBDT=-0.337671;//Loose (with data): -0.337671
}
else op_isUserSpecified=true;
m_pid_name="loose";//Now only one training is provided, using loose PID but OP varies for differnt PID
std::string display= op_isUserSpecified ? "user specified":"97% signal-eff";
ATH_MSG_INFO("OP to use: " << op_name <<", with cut on BDT: "<<m_cutOnBDT<<", which corresponds to "<<display<<" working point.");
std::string TrainingFile;
if (!m_trainingFile.empty()) { //If the property was set by the user, take that.
TrainingFile= PathResolverFindCalibFile( m_trainingFile );
if(TrainingFile==""){//Error if it cant find the conf
ATH_MSG_ERROR("Could not locate " << m_trainingFile );
return StatusCode::FAILURE;
}
else ATH_MSG_INFO("trainingfile loaded from: " << TrainingFile );
}
else {
ATH_MSG_ERROR("Could not find configuration file: \""<< m_trainingFile<<"\"");
return StatusCode::FAILURE;
}
unsigned nfold=1;
TFile* bdtfile = TFile::Open(TrainingFile.data());
if (!bdtfile) {
ATH_MSG_ERROR("Input file found to be empty!! "<< TrainingFile);
return StatusCode::FAILURE;
}
else {
TIter next(bdtfile->GetListOfKeys());
TKey *key;
while ((key = (TKey*)next())) {
TClass *clas = gROOT->GetClass(key->GetClassName());
if (!clas->InheritsFrom("TDirectoryFile")) continue;
TDirectory *td = (TDirectoryFile*)key->ReadObj();
std::string dirName =td->GetName();
if (dirName.find(m_pid_name)!=std::string::npos) {
std::string foldconf=dirName.substr(dirName.rfind("_")+1,-1);
// std::string f_index=foldconf.substr(0,foldconf.find("o"));
std::string s_nfold=foldconf.substr(foldconf.find("o")+1,-1);
nfold=atoi(s_nfold.data());
break;
}
}
}
ATH_MSG_INFO("ECIDS nfold configuration: "<<nfold);
TObjArray* toa= (TObjArray*) bdtfile->Get("/ECIDS_"+m_pid_name+TString::Format("_0o%d",nfold)+"/variables");
std::string commaSepVars="";
if (toa) {
TObjString *tos= 0;
if (toa->GetEntries()>0) tos= (TObjString*) toa->At(0);
commaSepVars=tos->GetString().Data();
ATH_MSG_INFO("Variables for ECIDS= "<<commaSepVars);
}
else ATH_MSG_FATAL("Cannot access the list of input variables @"<<bdtfile->GetName()<<":/ECIDS_"+m_pid_name+TString::Format("_0o%d",nfold)+"/variables");
//prepare m_inputVars
m_inputVars.clear();
while (commaSepVars.find(",")!=std::string::npos) {
m_inputVars.push_back(commaSepVars.substr(0,commaSepVars.find(",")));
commaSepVars.erase(0,commaSepVars.find(",")+1);
}
m_inputVars.push_back(commaSepVars.substr(0,-1));//push back the last element
for (unsigned i_fold=0; i_fold<nfold; i_fold++) {
TString treename="/ECIDS_"+m_pid_name+TString::Format("_%do%d",i_fold,nfold)+"/BDT";
//std::cout<<"Trying to access a ttree with name: "<<treename<<std::endl;
TTree* tree = (TTree*)bdtfile->Get(treename);
m_v_bdts.push_back(new MVAUtils::BDT(tree));
}
///-----------End of text config----------------------------
// Setup primary vertex key handle
ATH_CHECK( m_primVtxContKey.initialize(m_usePVCont) );
m_cutPosition_bdt = m_acceptInfo.addCut( "bdt", "pass bdt" );
return StatusCode::SUCCESS ;
}
//=============================================================================
// The main accept method: the actual cuts are applied here
//=============================================================================
asg::AcceptData AsgElectronChargeIDSelectorTool::accept(const xAOD::Electron* el, double mu ) const
{
//Backwards compatibility
return accept(Gaudi::Hive::currentContext(), el, mu );
}
asg::AcceptData AsgElectronChargeIDSelectorTool::accept(const EventContext& ctx, const xAOD::Electron* eg, double mu ) const
{
double bdt=calculate(ctx,eg,mu);
ATH_MSG_VERBOSE("\t accept( ctx, el, mu ), bdt="<<bdt);
asg::AcceptData acceptBDT(&m_acceptInfo);
acceptBDT.clear();
acceptBDT.setCutResult(m_cutPosition_bdt,bdt>m_cutOnBDT);
return acceptBDT;
}
//=============================================================================
// Accept method for EFCaloLH in the trigger; do full LH if !CaloCutsOnly
//=============================================================================
asg::AcceptData AsgElectronChargeIDSelectorTool::accept(const xAOD::Egamma* eg, double mu ) const
{
//Backwards compatibility
return accept(Gaudi::Hive::currentContext(), eg, mu );
}
asg::AcceptData AsgElectronChargeIDSelectorTool::accept(const EventContext& ctx, const xAOD::Egamma* eg, double mu) const
{
double bdt=calculate(ctx,eg,mu);
ATH_MSG_VERBOSE("\t accept( ctx, eg, mu ), bdt="<<bdt);
asg::AcceptData acceptBDT(&m_acceptInfo);
acceptBDT.clear();
acceptBDT.setCutResult(m_cutPosition_bdt,bdt>m_cutOnBDT);
return acceptBDT;
}
//=============================================================================
// The main result method: the actual likelihood is calculated here
//=============================================================================
double AsgElectronChargeIDSelectorTool::calculate( const EventContext& ctx, const xAOD::Electron* eg, double mu ) const
{
ATH_MSG_VERBOSE("\t AsgElectronChargeIDSelectorTool::calculate( &ctx, *eg, mu= "<<(&ctx)<<", "<<eg<<", "<<mu<<" )");
if ( !eg ) {
ATH_MSG_ERROR ("Failed, no egamma object.");
return -1;
}
const xAOD::CaloCluster* cluster = eg->caloCluster();
if ( !cluster ) {
ATH_MSG_ERROR ("Failed, no cluster.");
return -1;
}
const double energy = cluster->e();
const float eta = cluster->etaBE(2);
if ( fabs(eta) > 300.0 ) {
ATH_MSG_ERROR ("Failed, eta range.");
return -1;
}
double et = 0.;// transverse energy of the electron (using the track eta)
if (eg->trackParticle() )
et = ( cosh(eg->trackParticle()->eta()) != 0.) ? energy/cosh(eg->trackParticle()->eta()) : 0.;
else et = ( cosh(eta) != 0.) ? energy/cosh(eta) : 0.;
// number of track hits and other track quantities
uint8_t nSCT(0);
float trackqoverp(0.0);
float trackqoverpsig(0.0);
int charge(0.0);
int lifeSign(0.0);
float trackchi2(0.0);
float avgCharge_SCTw(0.0);
float d0(0.0);
float z0(0.0);
float phi0(0.0);
float theta(0.0);
float EoverP(0.0);
float d0sigma(0.0);
double dpOverp(0.0);
float TRT_PID(0.0);
//double trans_TRT_PID(0.0);
float deltaPhi1=0, deltaPhi2=0;
float deltaPhiFromLM=0;
float deltaPhiRescaled2=0;//deltaEta=0,
//double rTRT(0.0);
TVector2 el_cluster; el_cluster.SetMagPhi(cluster->energyBE(2)/cosh(eta),cluster->phiBE(2));
bool allFound = true;
// retrieve associated TrackParticle
const xAOD::TrackParticle* t = eg->trackParticle();
if (t) {
trackqoverp = t->qOverP();
charge= t->charge();
d0 = t->d0();
if(std::find(m_inputVars.begin(),m_inputVars.end(), "z0sinTheta" )!= m_inputVars.end()) {
z0 = t->z0();
theta = t->theta();
}
if(std::find(m_inputVars.begin(),m_inputVars.end(), "chi2oftrackfit" )!= m_inputVars.end())
trackchi2 = t->chiSquared();
phi0 = t->phi() + (d0>=0? M_PI/2 : -M_PI/2);
TVector2 d0_direction; d0_direction.SetMagPhi(fabs(d0),phi0);
float inner_product = el_cluster.X()*d0_direction.X() + el_cluster.Y()*d0_direction.Y();
lifeSign = inner_product>=0? 1 : -1;
EoverP = energy * fabs(t->qOverP());
if(std::find(m_inputVars.begin(),m_inputVars.end(), "d0Err" )!= m_inputVars.end() or
std::find(m_inputVars.begin(),m_inputVars.end(), "d0Sig" )!= m_inputVars.end()) {
float vard0 = t->definingParametersCovMatrix()(0,0);
if (vard0 > 0) {
d0sigma=sqrtf(vard0);
}
}
//KM: calculation of SCT-weighted charge
float charge = 0, SCT = 0;
for (unsigned TPit = 0; TPit < eg->nTrackParticles(); TPit++) {
uint8_t temp_NSCTHits;
if(eg->trackParticle(TPit)) {
eg->trackParticle(TPit)->summaryValue(temp_NSCTHits, xAOD::numberOfSCTHits);
SCT += temp_NSCTHits;
charge += temp_NSCTHits*eg->trackParticle(TPit)->charge();
}
else ATH_MSG_WARNING("This electron has no track particle associated!!! Assigning #SCT-hits= 0!!! " );
}
avgCharge_SCTw= SCT!=0 ? eg->charge()*charge/SCT : 0;
const std::vector<float>&cov= t->definingParametersCovMatrixVec();
trackqoverpsig= cov[14];
if(std::find(m_inputVars.begin(),m_inputVars.end(), "nSctHits" )!= m_inputVars.end() )
allFound = allFound && t->summaryValue(nSCT, xAOD::numberOfSCTHits);
//Transform the TRT PID output for use in the LH tool.
double fEpsilon = 1.0e-30; // to avoid zero division
double pid_tmp = TRT_PID;
if (pid_tmp >= 1.0) pid_tmp = 1.0 - 1.0e-15; //this number comes from TMVA
else if (pid_tmp <= fEpsilon) pid_tmp = fEpsilon;
if(std::find(m_inputVars.begin(),m_inputVars.end(), "deltaPoverP" )!= m_inputVars.end() ) {
unsigned int index;
if( t->indexOfParameterAtPosition(index, xAOD::LastMeasurement) ) {
double refittedTrack_LMqoverp =
t->charge() / sqrt(std::pow(t->parameterPX(index), 2) +
std::pow(t->parameterPY(index), 2) +
std::pow(t->parameterPZ(index), 2));
dpOverp = 1 - trackqoverp/(refittedTrack_LMqoverp);
}
}
}
else {
allFound=false;
ATH_MSG_WARNING ( "Failed, no track particle: et= " << et << "eta= " << eta );
}
float Rphi(0);//float Reta(0), Rphi(0), Rhad1(0), Rhad(0), ws3(0), w2(0), f1(0), Eratio(0), f3(0);
allFound = allFound && eg->showerShapeValue(Rphi, xAOD::EgammaParameters::Rphi);// rphi e233/e237
// allFound = allFound && eg->trackCaloMatchValue(deltaEta, xAOD::EgammaParameters::deltaEta1);
// difference between the cluster phi (sampling 2) and the eta of the track extrapolated from the last measurement point.
allFound = allFound && eg->trackCaloMatchValue(deltaPhiRescaled2, xAOD::EgammaParameters::deltaPhiRescaled2);
//if(m_map_inputs.find("deltaphi1" )!= m_map_inputs.end())
if(std::find(m_inputVars.begin(),m_inputVars.end(), "deltaphi1" )!= m_inputVars.end() )
allFound = allFound && eg->trackCaloMatchValue(deltaPhi1, xAOD::EgammaParameters::deltaPhi1);
// if(m_map_inputs.find("deltaphi2" )!= m_map_inputs.end() or
// m_map_inputs.find("deltaDeltaPhiFirstAndLM")!= m_map_inputs.end())
if(std::find(m_inputVars.begin(),m_inputVars.end(), "deltaphi2" )!= m_inputVars.end() or
std::find(m_inputVars.begin(),m_inputVars.end(), "deltaDeltaPhiFirstAndLM")!= m_inputVars.end() )
allFound = allFound && eg->trackCaloMatchValue(deltaPhi2, xAOD::EgammaParameters::deltaPhi2);
//if(m_map_inputs.find("deltaDeltaPhiFirstAndLM")!= m_map_inputs.end())
if(std::find(m_inputVars.begin(),m_inputVars.end(), "deltaDeltaPhiFirstAndLM" )!= m_inputVars.end() )
allFound = allFound && eg->trackCaloMatchValue(deltaPhiFromLM, xAOD::EgammaParameters::deltaPhiFromLastMeasurement);
// Get the number of primary vertices in this event
// double ip = static_cast<double>(m_nPVdefault);
// if(mu < 0) // use npv if mu is negative (not given)
// ip = static_cast<double>(m_usePVCont ? this->getNPrimVertices() : m_nPVdefault);
// else ip = mu;
if (!allFound) ATH_MSG_FATAL("Missing input variable for ECIDS BDT calculation");
const xAOD::EventInfo* eventInfo = nullptr;
if (evtStore()->retrieve(eventInfo,"EventInfo").isFailure()) ATH_MSG_WARNING ( " Cannot access to event info " );
// lumiBlock = eventInfo->lumiBlock(), runNumber = eventInfo->runNumber(), eventNumber=eventInfo->eventNumber();
//ATH_MSG_DEBUG("event_num%bdt_size="<<eventInfo->eventNumber()<<"%"<<unsigned(m_v_bdts.size())<<"= "<<eventInfo->eventNumber()%unsigned(m_v_bdts.size()));
unsigned bdt_index=eventInfo->eventNumber()%unsigned(m_v_bdts.size());
std::vector<float> v_inputs;
for (auto var: m_inputVars) {
if (var == "pt" ) v_inputs.push_back(et );
if (var == "eta" ) v_inputs.push_back(eta );
if (var == "abs_eta" ) v_inputs.push_back(fabs(eta) );
if (var == "avgCharge_SCTw" ) v_inputs.push_back(avgCharge_SCTw );
if (var == "d0" ) v_inputs.push_back(d0 );
if (var == "ld0" ) v_inputs.push_back(lifeSign*d0 );
if (var == "cd0" ) v_inputs.push_back(charge*d0 );
if (var == "EoverP" ) v_inputs.push_back(EoverP );
if (var == "deltaphi1" ) v_inputs.push_back(deltaPhi1 );
if (var == "deltaphiRes" ) v_inputs.push_back(deltaPhiRescaled2 );
if (var == "Rphi" ) v_inputs.push_back(Rphi );
if (var == "qoverpSig" ) v_inputs.push_back(trackqoverpsig );
if (var == "nSctHits" ) v_inputs.push_back(nSCT );
if (var == "z0sinTheta" ) v_inputs.push_back(z0*sin(theta) );
if (var == "d0Err" ) v_inputs.push_back(d0sigma );
if (var == "d0Sig" ) v_inputs.push_back(d0/d0sigma );
if (var == "deltaphi2" ) v_inputs.push_back(deltaPhi2 );
if (var == "chi2oftrackfit" ) v_inputs.push_back(trackchi2 );
if (var == "deltaPoverP" ) v_inputs.push_back(dpOverp );
if (var == "deltaDeltaPhiFirstAndLM") v_inputs.push_back(deltaPhi2-deltaPhiFromLM);
}
ATH_MSG_VERBOSE("\t\t event# " <<eventInfo->eventNumber() <<std::endl<<
"xAOD variables: pt = "<< et <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"pt" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: eta = "<< eta <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"eta" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: abs_eta = "<< fabs(eta) <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"abs_eta" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: avgCharge_SCTw = "<< avgCharge_SCTw <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"avgCharge_SCTw" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: d0 = "<< d0 <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"d0" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: ld0 = "<< lifeSign*d0 <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"ld0" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: cd0 = "<< charge*d0 <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"cd0" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: EoverP = "<< EoverP <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"EoverP" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: deltaphi1 = "<< deltaPhi1 <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"deltaphi1" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: deltaphiRes = "<< deltaPhiRescaled2 <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"deltaphiRes" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: Rphi = "<< Rphi <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"Rphi" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: qoverpSig = "<< trackqoverpsig <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"qoverpSig" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: nSctHits = "<< unsigned(nSCT) <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"nSctHits" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: z0sinTheta = "<< z0*sin(theta) <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"z0sinTheta" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: d0Err = "<< d0sigma <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"d0Err" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: d0Sig = "<< d0/d0sigma <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"d0Sig" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: deltaphi2 = "<< deltaPhi2 <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"deltaphi2" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: chi2oftrackfit = "<< trackchi2 <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"chi2oftrackfit" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: deltaPoverP = "<< dpOverp <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"deltaPoverP" )!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: deltaDeltaPhiFirstandLM = "<< deltaPhi2-deltaPhiFromLM <<",\t isRequested= "<<(std::find(m_inputVars.begin(),m_inputVars.end(),"deltaDeltaPhiFirstAndLM")!=m_inputVars.end() )<<std::endl<<
"\t\t xAOD variables: AllFound = "<<allFound );
////KM: dumping variables, only variables used by BDT
// std::cout<<"\t\t event# "<<eventInfo->eventNumber()<<std::endl;
// unsigned i=0;
// for (auto inputVar: m_inputVars) {
// std::cout<<"\t kmdebug: "<<inputVar<<"\t = "<<v_inputs[i]<<std::endl; i++;
// }
//double bdt_output = m_v_bdts.at(bdt_index)->GetGradBoostMVA(m_v_bdts.at(bdt_index)->GetPointers());
double bdt_output = m_v_bdts.at(bdt_index)->GetGradBoostMVA(v_inputs);
ATH_MSG_DEBUG("ECIDS-BDT= "<<bdt_output);
//std::cout<<"\t kmdebug: \t ECIDS-BDT= "<<bdt_output<<std::endl;
return bdt_output;
}
//=============================================================================
// Calculate method for EFCaloLH in the trigger; do full LH if !CaloCutsOnly
//=============================================================================
double AsgElectronChargeIDSelectorTool::calculate( const xAOD::Egamma* eg, double mu ) const
{
//Backward compatibility
return calculate(Gaudi::Hive::currentContext(), eg, mu);
}
double AsgElectronChargeIDSelectorTool::calculate( const EventContext& ctx, const xAOD::Egamma* eg, double mu ) const
{
ATH_MSG_VERBOSE("AsgElectronChargeIDSelectorTool::calculate( &ctx ="<<(&ctx)<<", *eg "<<eg<<", mu= "<<mu<< " )");
ATH_MSG_WARNING("Method not implemented for egamma object! Reurning -1!!");
return -9;
}
//=============================================================================
asg::AcceptData AsgElectronChargeIDSelectorTool::accept(const xAOD::IParticle* part) const
{
//Backward compatibility
return accept(Gaudi::Hive::currentContext(), part);
}
asg::AcceptData AsgElectronChargeIDSelectorTool::accept(const EventContext& ctx, const xAOD::IParticle* part) const
{
if(part->type() == xAOD::Type::Electron){
const xAOD::Electron* el = static_cast<const xAOD::Electron*>(part);
return accept(ctx, el);
}
ATH_MSG_ERROR("Input is not an electron");
return asg::AcceptData(&m_acceptInfo);
}
double AsgElectronChargeIDSelectorTool::calculate(const xAOD::IParticle* part) const
{
//Backward compatibility
return calculate(Gaudi::Hive::currentContext(), part);
}
double AsgElectronChargeIDSelectorTool::calculate(const EventContext& ctx, const xAOD::IParticle* part) const
{
if(part->type() == xAOD::Type::Electron){
const xAOD::Electron* el = static_cast<const xAOD::Electron*>(part);
return calculate(ctx, el);
}
ATH_MSG_ERROR ( "Input is not an electron!!" );
return -19;
}
//=============================================================================
// Helper method to get the number of primary vertices
// We don't want to iterate over all vertices in the event for each electron!!!
//=============================================================================
unsigned int AsgElectronChargeIDSelectorTool::getNPrimVertices(const EventContext& ctx) const
{
unsigned int nVtx(0);
SG::ReadHandle<xAOD::VertexContainer> vtxCont (m_primVtxContKey, ctx);
for ( unsigned int i = 0; i < vtxCont->size(); i++ ) {
const xAOD::Vertex* vxcand = vtxCont->at(i);
if ( vxcand->nTrackParticles() >= 2 ) nVtx++;
}
return nVtx;
}