Forked from
atlas / athena
2904 commits behind the upstream repository.
-
Frank Winklmeier authoredFrank Winklmeier authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ActsCaloTrackingVolumeBuilder.cxx 29.90 KiB
/*
Copyright (C) 2002-2025 CERN for the benefit of the ATLAS collaboration
*/
#include "ActsGeometry/ActsCaloTrackingVolumeBuilder.h"
#include "ActsInterop/Logger.h"
#include "StoreGate/ReadHandle.h"
#include "CaloDetDescr/CaloDetDescrManager.h"
#include "CaloDetDescr/CaloDetDescrElement.h"
#include "CaloDetDescrUtils/CaloDetDescrBuilder.h"
#include "Acts/Geometry/TrackingVolume.hpp"
#include "Acts/Geometry/VolumeBounds.hpp"
#include "Acts/Geometry/GlueVolumesDescriptor.hpp"
// ACTS
#include "Acts/Geometry/GenericCuboidVolumeBounds.hpp"
#include "Acts/Geometry/CutoutCylinderVolumeBounds.hpp"
#include "Acts/Geometry/CylinderVolumeBounds.hpp"
//#include "Acts/Utilities/IVisualization.hpp"
#include "Acts/Utilities/Helpers.hpp"
#include "Acts/Geometry/TrackingVolumeArrayCreator.hpp"
#include "Acts/Utilities/BinnedArrayXD.hpp"
#include "Acts/Geometry/CylinderVolumeHelper.hpp"
#include <fstream>
using Box = Acts::Volume::BoundingBox; // shortcut
using CVBBV = Acts::CylinderVolumeBounds::BoundValues;
using CCVBBV = Acts::CutoutCylinderVolumeBounds::BoundValues;
ActsCaloTrackingVolumeBuilder::ActsCaloTrackingVolumeBuilder(const std::string& type,
const std::string& name,
const IInterface* parent)
: base_class(type, name, parent)
{
}
StatusCode
ActsCaloTrackingVolumeBuilder::initialize()
{
m_caloMgr = detStore()->tryConstRetrieve<CaloDetDescrManager>(caloMgrStaticKey);
if(!m_caloMgr) {
std::unique_ptr<CaloDetDescrManager> caloMgrPtr = buildCaloDetDescrNoAlign(serviceLocator()
, Athena::getMessageSvc());
ATH_CHECK(detStore()->record(std::move(caloMgrPtr), caloMgrStaticKey));
ATH_CHECK(detStore()->retrieve(m_caloMgr, caloMgrStaticKey));
}
return StatusCode::SUCCESS;
}
std::shared_ptr<Acts::TrackingVolume>
ActsCaloTrackingVolumeBuilder::trackingVolume(
const Acts::GeometryContext& gctx,
std::shared_ptr<const Acts::TrackingVolume> insideVolume,
std::shared_ptr<const Acts::VolumeBounds> /*outsideBounds*/) const
{
// generate the calo cell volume description
std::vector<std::unique_ptr<Acts::Volume>> cells;
cells = cellFactory();
ATH_MSG_VERBOSE("Collected " << cells.size() << " calo cells");
// we need to turn the cells into boundary boxes
std::vector<std::unique_ptr<Box>> boxStore;
std::vector<Box*> prims;
for (const auto& cell : cells) {
boxStore.push_back(
std::make_unique<Box>(cell->boundingBox({0.1, 0.1, 0.1})));
prims.push_back(boxStore.back().get());
}
ATH_MSG_VERBOSE("Generated Bounding Boxes");
ATH_MSG_VERBOSE("Figure out dimensions of wrapping volume");
std::shared_ptr<Acts::CutoutCylinderVolumeBounds> caloVolBounds
= makeCaloVolumeBounds(boxStore, insideVolume);
// build a BVH octree for the bounding boxes
// but only AFTER we've built the calo volume bounds
// Box* top;
// top = Acts::make_octree(boxStore, prims, 1, 0.1);
// Create Tracking Volume that coutains the Calo
// This needs to own the Abstract Volumes (cells), but we
// need to up-cast them to Volume, since that's what TrackingVolume can own
std::vector<std::unique_ptr<const Acts::Volume>> cellVols;
cellVols.reserve(cells.size());
for(auto& cell : cells) {
std::unique_ptr<const Acts::Volume> up;
// release, up-cast, then immediately pack again
up = std::unique_ptr<const Acts::Volume>(dynamic_cast<const Acts::Volume*>(cell.release()));
cellVols.push_back(std::move(up));
}
// This was removed in https://github.com/acts-project/acts/pull/3029
// To be reimplemented using new geometry model instead of explicit TrackingVolume content
(void)gctx; // suppress compiler warning
throw std::runtime_error{"Calo building for ACTS currently disabled"};
/***** TODO START *****
std::shared_ptr<Acts::TrackingVolume> calo;
// = Acts::TrackingVolume::create(Acts::Transform3::Identity(),
// caloVolBounds,
// std::move(boxStore),
// std::move(cellVols),
// top,
// nullptr, // no material for now
// "Calo");
// We need to interglue all the volumes together
std::shared_ptr<Acts::TrackingVolume> mutInsideVolume
= std::const_pointer_cast<Acts::TrackingVolume>(insideVolume);
auto idBounds = dynamic_cast<const Acts::CylinderVolumeBounds*>(&insideVolume->volumeBounds());
if (idBounds == nullptr) { // protection against nullptr
ATH_MSG_ERROR("Unable to dynamic cast volume bounds to Acts::CylinderVolumeBounds");
throw std::runtime_error("Error casting to CylinderVolumeBounds");
}
// we want gap volumes at pos and neg xy face, and at outer cyl cover
// which will include the solenoid area
auto trackingVolumeArrayCreator
= std::make_shared<const Acts::TrackingVolumeArrayCreator>(
Acts::TrackingVolumeArrayCreator::Config{},
makeActsAthenaLogger(this, std::string("TrkVolArrCrtr"), std::string("ActsTGSvc")));
Acts::CylinderVolumeHelper::Config cvhCfg;
cvhCfg.trackingVolumeArrayCreator = trackingVolumeArrayCreator;
Acts::CylinderVolumeHelper cvh(cvhCfg, makeActsAthenaLogger(this, std::string("ACaloTrkVB"), std::string("CylVolHlp")));
std::vector<double> lPos = {};
std::vector<std::shared_ptr<Acts::TrackingVolume>> noVolumes;
ATH_MSG_VERBOSE("Creating gap volume to extend ID");
// positive xy gap
auto idGapPosXY = cvh.createGapTrackingVolume(gctx,
noVolumes,
nullptr,
idBounds->get(CVBBV::eMinR),
idBounds->get(CVBBV::eMaxR),
idBounds->get(CVBBV::eHalfLengthZ),
caloVolBounds->get(CCVBBV::eHalfLengthZcutout),
lPos,
false,
"ID::PositiveGap"
);
// negative xy gap
auto idGapNegXY = cvh.createGapTrackingVolume(gctx,
noVolumes,
nullptr,
idBounds->get(CVBBV::eMinR),
idBounds->get(CVBBV::eMaxR),
-caloVolBounds->get(CCVBBV::eHalfLengthZcutout),
-idBounds->get(CVBBV::eHalfLengthZ),
lPos,
false,
"ID::NegativeGap"
);
// outer cover gap
auto idGapCylOuter = cvh.createGapTrackingVolume(gctx,
noVolumes,
nullptr,
idBounds->get(CVBBV::eMaxR),
caloVolBounds->get(CCVBBV::eMedR),
-caloVolBounds->get(CCVBBV::eHalfLengthZcutout),
+caloVolBounds->get(CCVBBV::eHalfLengthZcutout),
lPos,
false,
"ID::CylOutGap"
);
ATH_MSG_VERBOSE("Create container volume to contain ID and gap volumes");
auto idContainerZ = cvh.createContainerTrackingVolume(gctx, {idGapNegXY, mutInsideVolume, idGapPosXY});
auto idContainer = cvh.createContainerTrackingVolume(gctx, {idContainerZ, idGapCylOuter});
ATH_MSG_VERBOSE("Begin volume glueing");
const Acts::GlueVolumesDescriptor& gvd
= idContainer->glueVolumesDescriptor();
// let's see what the GVD says is on the inner cover of the ID
const auto& tVolArrPos = gvd.glueVolumes(Acts::positiveFaceXY);
const auto& tVolArrNeg = gvd.glueVolumes(Acts::negativeFaceXY);
std::cout << "POSITIVE: " << std::endl;
for(const auto& subvol : tVolArrPos->arrayObjects()) {
std::cout << subvol->volumeName() << std::endl;
std::cout << *subvol << std::endl;
}
std::cout << "NEGATIVE: " << std::endl;
for(const auto& subvol : tVolArrNeg->arrayObjects()) {
std::cout << subvol->volumeName() << std::endl;
std::cout << *subvol << std::endl;
}
using BoundarySurface = Acts::BoundarySurfaceT<Acts::TrackingVolume>;
// Glue outer radial cover of ID to inner cover of Calo cutout
auto idOutVolArray = gvd.glueVolumes(Acts::tubeOuterCover);
// Attach that volume array to the calo inner cover
ATH_MSG_VERBOSE("Glueing " << calo->volumeName() << " inner cover to " << idOutVolArray->arrayObjects().size() << " volumes");
std::const_pointer_cast<BoundarySurface>(calo->boundarySurfaces().at(Acts::tubeInnerCover))
->attachVolumeArray(idOutVolArray, Acts::Direction::Backward);
// Loop through the array and attach their boundary surfaces to the calo
for(const auto& idVol : idOutVolArray->arrayObjects()){
ATH_MSG_VERBOSE("Glueing outer cover of " << idVol->volumeName()
<< " to inner cover of " << calo->volumeName());
std::const_pointer_cast<BoundarySurface>(idVol->boundarySurfaces().at(Acts::tubeOuterCover))
->attachVolume(calo.get(), Acts::Direction::Forward);
}
// Glue positive XY face of ID to inner positive XY face of Calo.
// ID has multiple, Calo has only one
auto idPosXYVolArray = gvd.glueVolumes(Acts::positiveFaceXY);
ATH_MSG_VERBOSE("Glueing " << calo->volumeName() << " positive inner cutout disc to "
<< idPosXYVolArray->arrayObjects().size() << " volumes");
std::const_pointer_cast<BoundarySurface>(calo->boundarySurfaces().at(Acts::index5))
->attachVolumeArray(idPosXYVolArray, Acts::Direction::Backward);
// Other way round, attach ID volumes to calo
for(const auto& idVol : idPosXYVolArray->arrayObjects()){
ATH_MSG_VERBOSE("Glueing positive XY face of " << idVol->volumeName()
<< " to positive inner coutout disc of " << calo->volumeName());
std::const_pointer_cast<BoundarySurface>(idVol->boundarySurfaces().at(Acts::positiveFaceXY))
->attachVolume(calo.get(), Acts::Direction::Forward);
}
// Glue negative XY face of ID to inner negative XY face of Calo.
// ID has multiple, Calo has only one
auto idNegXYVolArray = gvd.glueVolumes(Acts::negativeFaceXY);
ATH_MSG_VERBOSE("Glueing " << calo->volumeName() << " negative inner cutout disc to "
<< idNegXYVolArray->arrayObjects().size() << " volumes");
std::const_pointer_cast<BoundarySurface>(calo->boundarySurfaces().at(Acts::index4))
->attachVolumeArray(idNegXYVolArray, Acts::Direction::Forward);
// Other way round, attach ID volumes to calo
for(const auto& idVol : idNegXYVolArray->arrayObjects()){
ATH_MSG_VERBOSE("Glueing negative XY face of " << idVol->volumeName()
<< " to negative inner coutout disc of " << calo->volumeName());
std::const_pointer_cast<BoundarySurface>(idVol->boundarySurfaces().at(Acts::negativeFaceXY))
->attachVolume(calo.get(), Acts::Direction::Backward);
}
// For navigational purposes we need to create three pseudo container cylinders.
// One for the middle, which includes the central part of the Calo and the ID, and
// two that fit cleanly at the +- XY face that then only include the Calo
// Construct track vol array for use in positive and negative pseudocontainer.
// This will only contain the calo
double caloRMin = caloVolBounds->get(CCVBBV::eMinR);
double caloRMed = caloVolBounds->get(CCVBBV::eMedR);
double caloRMax = caloVolBounds->get(CCVBBV::eMaxR);
double caloDZ1 = caloVolBounds->get(CCVBBV::eHalfLengthZ);
double caloDZ2 = caloVolBounds->get(CCVBBV::eHalfLengthZcutout);
Acts::Vector3 caloChokeRPos
= {caloRMin + (caloRMax - caloRMin)/2., 0, 0};
std::vector<Acts::TrackingVolumeOrderPosition> tVolOrdPosNeg;
tVolOrdPosNeg.push_back(std::make_pair(calo, caloChokeRPos));
std::vector<float> posNegBoundaries
= {float(caloRMin), float(caloRMax)};
auto binUtilityPosNeg = std::make_unique<const Acts::BinUtility>(posNegBoundaries,
Acts::open, Acts::BinningValue::binR);
auto tVolArrPosNeg
= std::make_shared<const Acts::BinnedArrayXD<Acts::TrackingVolumePtr>>(
tVolOrdPosNeg, std::move(binUtilityPosNeg));
double chokeZOffset = caloDZ2 + (caloDZ1 - caloDZ2)/2.;
Acts::Transform3 posTrf(Acts::Translation3(Acts::Vector3::UnitZ() * chokeZOffset));
Acts::Transform3 negTrf(Acts::Translation3(Acts::Vector3::UnitZ()* -1 *chokeZOffset));
auto posNegCylBounds = std::make_shared<Acts::CylinderVolumeBounds>(
caloRMin, caloRMax, (caloDZ1 - caloDZ2) / 2.);
// they share the same bounds and tvol array
auto posContainer = std::make_shared<Acts::TrackingVolume>(
posTrf,
posNegCylBounds,
nullptr, nullptr,
tVolArrPosNeg,
Acts::MutableTrackingVolumeVector{});
ATH_MSG_VERBOSE("Built positive container " << *posContainer);
ATH_MSG_VERBOSE(" - containing: " << calo->volumeName());
auto negContainer = std::make_shared<Acts::TrackingVolume>(
negTrf,
posNegCylBounds,
nullptr, nullptr,
tVolArrPosNeg,
Acts::MutableTrackingVolumeVector{});
ATH_MSG_VERBOSE("Built negative container " << *negContainer);
ATH_MSG_VERBOSE(" - containing: " << calo->volumeName());
// now build the central pseudocontainer
std::vector<Acts::TrackingVolumeOrderPosition> tVolOrderedCtr;
tVolOrderedCtr.push_back(std::make_pair(idContainer, Acts::Vector3(caloRMed / 2., 0, 0)));
tVolOrderedCtr.push_back(std::make_pair(calo,
Acts::Vector3(caloRMed +
(caloRMax- caloRMed) / 2., 0, 0)));
std::vector<float> ctrBoundaries = {0, float(caloRMed), float(caloRMax)};
auto binUtilityCtr
= std::make_unique<const Acts::BinUtility>(
ctrBoundaries,
Acts::open, Acts::BinningValue::binR);
auto tVolArrCtr
= std::make_shared<const Acts::BinnedArrayXD<Acts::TrackingVolumePtr>>(
tVolOrderedCtr, std::move(binUtilityCtr));
auto ctrContainer = std::make_shared<Acts::TrackingVolume>(Acts::Transform3::Identity(),
std::make_shared<Acts::CylinderVolumeBounds>(
caloRMin, caloRMax, caloDZ2),
nullptr, nullptr,
tVolArrCtr,
Acts::MutableTrackingVolumeVector{}
);
ATH_MSG_VERBOSE("Built central container " << *ctrContainer);
ATH_MSG_VERBOSE("- containing: " << idContainer->volumeName() << ", " << calo->volumeName());
// and now combine those together into another one
Acts::TrackingVolumeArrayCreator tvac{Acts::TrackingVolumeArrayCreator::Config{}};
auto mainContainer = std::make_shared<Acts::TrackingVolume>(Acts::Transform3::Identity(),
std::make_shared<Acts::CylinderVolumeBounds>(
caloRMin, caloRMax, caloDZ1),
nullptr, nullptr,
tvac.trackingVolumeArray(gctx, {negContainer, ctrContainer, posContainer},
Acts::BinningValue::binZ),
Acts::MutableTrackingVolumeVector{}
);
ATH_MSG_VERBOSE("Built main container: " << *mainContainer);
return mainContainer;
***** TODO END *****/
}
std::shared_ptr<Acts::CutoutCylinderVolumeBounds>
ActsCaloTrackingVolumeBuilder::makeCaloVolumeBounds(const std::vector<std::unique_ptr<Box>>& boxStore,
std::shared_ptr<const Acts::TrackingVolume> insideVolume) const
{
using namespace Acts::VectorHelpers;
// determine the dimensions of the
double rmin_at_center = std::numeric_limits<double>::max();
double rmin_at_choke = std::numeric_limits<double>::max();
double rmax = std::numeric_limits<double>::lowest();
double zmin = std::numeric_limits<double>::max();
double zmax = std::numeric_limits<double>::lowest();
double cutout_zmin_abs = std::numeric_limits<double>::max();
// We need to figure out what the size of the inner cutout cylinder is
// so we can make sure everything worked fine!
// We check what the min radius at small z, and then we turn it around and
// check z bounds at lower radii.
for (const auto& box : boxStore) {
Acts::Vector3 vmin = box->min().cast<double>();
Acts::Vector3 vmax = box->max().cast<double>();
double vrmin = perp(vmin);
double vrmax = perp(vmax);
rmin_at_choke = std::min(rmin_at_choke, std::min(vrmin, vrmax));
rmax = std::max(rmax, std::max(vrmin, vrmax));
zmin = std::min(zmin, std::min(vmin.z(), vmax.z()));
zmax = std::max(zmax, std::max(vmin.z(), vmax.z()));
if (std::abs(vmin.z()) < 100) {
rmin_at_center = std::min(vrmin, rmin_at_center);
}
if (std::abs(vmax.z()) < 100) {
rmin_at_center = std::min(vrmax, rmin_at_center);
}
}
for (const auto& box : boxStore) {
Acts::Vector3 vmin = box->min().cast<double>();
Acts::Vector3 vmax = box->max().cast<double>();
double vrmin = perp(vmin);
double vrmax = perp(vmax);
if (vrmin < rmin_at_center * 0.9) {
cutout_zmin_abs = std::min(cutout_zmin_abs, std::abs(vmin.z()));
}
if (vrmax < rmin_at_center * 0.9) {
cutout_zmin_abs = std::min(cutout_zmin_abs, std::abs(vmax.z()));
}
}
double dz1 = (zmax - zmin) / 2.;
double dz2 = cutout_zmin_abs;
// envelopes
double envZ = 5;
double envR = 5;
dz1 += envZ;
dz2 -= envZ;
rmax += envR;
if(rmin_at_choke > envR) rmin_at_choke -= envR;
rmin_at_center -= envR;
ATH_MSG_VERBOSE("rmin_at_center: " << rmin_at_center
<< " rmin at choke: " << rmin_at_choke
<< " rmax: " << rmax << " zmin: " << zmin << " zmax: " << zmax
<< " coutout_zmin_abs: " << cutout_zmin_abs);
// Ok now let's analyse what we're wrapping the calo around: the ID
// The ID will have to be built already.
// We need to figure out the dimensions of the ID.
// Assuming the wrapping volume is a cylinder.
auto idCylBds
= dynamic_cast<const Acts::CylinderVolumeBounds*>(&insideVolume->volumeBounds());
if (idCylBds == nullptr) { // protection against nullptr
ATH_MSG_ERROR("Unable to dynamic cast volume bounds to Acts::CylinderVolumeBounds");
throw std::runtime_error("Error casting to CylinderVolumeBounds");
}
double idRMax = idCylBds->get(CVBBV::eMaxR);
double idRMin = idCylBds->get(CVBBV::eMinR);
double idHlZ = idCylBds->get(CVBBV::eHalfLengthZ);
ATH_MSG_VERBOSE("ID volume bounds:\n" << *idCylBds);
ATH_MSG_VERBOSE("Inside volume transform: \n" << insideVolume->transform().matrix());
if (!insideVolume->transform().isApprox(Acts::Transform3::Identity())) {
ATH_MSG_VERBOSE("Inside volume transform is not unity.");
// transformation matrix is NOT unity. Let's check:
// - Rotation is approximate unity
// - Translation is only along z axis
const auto& trf = insideVolume->transform();
Acts::RotationMatrix3 rot = trf.rotation();
bool unityRot = rot.isApprox(Acts::RotationMatrix3::Identity());
ATH_MSG_VERBOSE("\n" << rot);
// dot product with Z axis is about 1 => ok
const Acts::Vector3 trl = trf.translation();
bool transZOnly = std::abs(1 - std::abs(Acts::Vector3::UnitZ().dot(trl.normalized()))) < 1e-6;
ATH_MSG_VERBOSE("TRL "<< trl.transpose());
ATH_MSG_VERBOSE("TRL "<< trl.normalized().dot(Acts::Vector3::UnitZ()));
if(!unityRot || !transZOnly) {
ATH_MSG_ERROR("The ID appears to be shifted from the origin. I cannot handle this.");
ATH_MSG_ERROR("(I'm not building the Calo!)");
throw std::runtime_error("Error building calo");
}
else {
ATH_MSG_VERBOSE("Checked: non unitarity is ONLY due to shift along z axis: that's ok");
double prevIdHlZ = idHlZ;
idHlZ += std::abs(trl.z());
ATH_MSG_VERBOSE("Modifying effective half length of ID cylinder: " << prevIdHlZ << " => " << idHlZ);
}
}
// make sure we can fit the ID inside the calo cutout
if (idRMax > rmin_at_center || idHlZ > dz2 || (idRMin > rmin_at_choke && idRMin != 0.)) {
ATH_MSG_ERROR("Cannot fit ID inside the Calo");
ATH_MSG_ERROR("This can be because the ID overlaps into the calo volume");
ATH_MSG_ERROR("Or because the Calo choke radius is SMALLER than the ID inner radius");
ATH_MSG_ERROR("Currently, I can only make the choke radius smaller, I can not make it larger");
ATH_MSG_ERROR("nor can I manipulate the ID volume bounds at this point.");
ATH_MSG_ERROR("ID rMax: " << idRMax << " Calo rMin@center: " << rmin_at_center);
ATH_MSG_ERROR("ID hlZ: " << idHlZ << " Calo inner Z hl: " << dz2);
ATH_MSG_ERROR("ID rMin: " << idRMin << " Calo rMin@choke: " << rmin_at_choke);
ATH_MSG_ERROR("(I'm not building the Calo!)");
throw std::runtime_error("Error building calo");
}
// Let's harmonize the sizes, so we have a exact wrap of the ID
// Choke is now exactly as wide as space inside the ID.
// We can fit the beam pipe in there later.
rmin_at_choke = idRMin;
std::shared_ptr<Acts::CutoutCylinderVolumeBounds> volBds = nullptr;
volBds = std::make_shared<Acts::CutoutCylinderVolumeBounds>(
rmin_at_choke, rmin_at_center, rmax, dz1, dz2);
ATH_MSG_VERBOSE(*volBds);
return volBds;
}
namespace {
double
eta_to_theta(double eta)
{
return 2 * std::atan(std::exp(-eta));
}
}
Acts::Volume
ActsCaloTrackingVolumeBuilder::build_endcap(double z,
double dz,
double eta,
double deta,
double phi,
double dphi) const
{
double eta_max = eta + deta * 0.5;
double eta_min = eta - deta * 0.5;
double theta_max = eta_to_theta(eta_max);
double theta = eta_to_theta(eta);
double theta_min = eta_to_theta(eta_min);
double phi_max = phi + dphi * 0.5;
double phi_min = phi - dphi * 0.5;
double z_min = z - dz;
double z_max = z + dz;
double r_min, r_max;
// inner face
r_min = std::tan(theta_min) * z_min;
r_max = std::tan(theta_max) * z_min;
Acts::Vector3 p1(r_min * std::cos(phi_min), r_min * std::sin(phi_min), z_min);
Acts::Vector3 p2(r_min * std::cos(phi_max), r_min * std::sin(phi_max), z_min);
Acts::Vector3 p3(r_max * std::cos(phi_max), r_max * std::sin(phi_max), z_min);
Acts::Vector3 p4(r_max * std::cos(phi_min), r_max * std::sin(phi_min), z_min);
// outer face
r_min = std::tan(theta_min) * z_max;
r_max = std::tan(theta_max) * z_max;
Acts::Vector3 p5(r_min * std::cos(phi_min), r_min * std::sin(phi_min), z_max);
Acts::Vector3 p6(r_min * std::cos(phi_max), r_min * std::sin(phi_max), z_max);
Acts::Vector3 p7(r_max * std::cos(phi_max), r_max * std::sin(phi_max), z_max);
Acts::Vector3 p8(r_max * std::cos(phi_min), r_max * std::sin(phi_min), z_max);
double r_mid = std::tan(theta) * z_min;
Acts::Vector3 center;
center.x() = r_mid * std::cos(phi);
center.y() = r_mid * std::sin(phi);
center.z() = z;
Acts::Transform3 glob2vol = Acts::Transform3::Identity();
glob2vol *= Acts::AngleAxis3(-phi, Acts::Vector3::UnitZ());
glob2vol *= Acts::AngleAxis3(
-theta, Acts::Vector3::UnitZ().cross(center).normalized());
glob2vol
*= Acts::Translation3(-(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) / 8.);
p1 = glob2vol * p1;
p2 = glob2vol * p2;
p3 = glob2vol * p3;
p4 = glob2vol * p4;
p5 = glob2vol * p5;
p6 = glob2vol * p6;
p7 = glob2vol * p7;
p8 = glob2vol * p8;
auto globalToLocal = glob2vol.inverse();
auto cubo = std::make_shared<Acts::GenericCuboidVolumeBounds>(
std::array<Acts::Vector3, 8>({{p1, p2, p3, p4, p5, p6, p7, p8}}));
Acts::Volume vol(globalToLocal, std::move(cubo));
return vol;
}
Acts::Volume
ActsCaloTrackingVolumeBuilder::build_barrel(double r,
double dr,
double eta,
double deta,
double phi,
double dphi) const
{
// std::cout << "build barrel" << std::endl;
double eta_max = eta + deta * 0.5;
double eta_min = eta - deta * 0.5;
double theta = eta_to_theta(eta);
double theta_max = eta_to_theta(eta_max);
double theta_min = eta_to_theta(eta_min);
double phi_max = phi + dphi * 0.5;
double phi_min = phi - dphi * 0.5;
double r_min = r - dr;
double r_max = r + dr;
double z_min, z_max;
// inner face
z_min = r_min / std::tan(theta_min);
z_max = r_min / std::tan(theta_max);
Acts::Vector3 p1(r_min * std::cos(phi_min), r_min * std::sin(phi_min), z_min);
Acts::Vector3 p2(r_min * std::cos(phi_min), r_min * std::sin(phi_min), z_max);
Acts::Vector3 p3(r_min * std::cos(phi_max), r_min * std::sin(phi_max), z_max);
Acts::Vector3 p4(r_min * std::cos(phi_max), r_min * std::sin(phi_max), z_min);
// outer face
z_min = r_max / std::tan(theta_min);
z_max = r_max / std::tan(theta_max);
Acts::Vector3 p5(r_max * std::cos(phi_min), r_max * std::sin(phi_min), z_min);
Acts::Vector3 p6(r_max * std::cos(phi_min), r_max * std::sin(phi_min), z_max);
Acts::Vector3 p7(r_max * std::cos(phi_max), r_max * std::sin(phi_max), z_max);
Acts::Vector3 p8(r_max * std::cos(phi_max), r_max * std::sin(phi_max), z_min);
Acts::Vector3 center;
center.x() = r * std::cos(phi);
center.y() = r * std::sin(phi);
center.z() = r / std::tan(theta);
Acts::Transform3 glob2vol = Acts::Transform3::Identity();
glob2vol *= Acts::AngleAxis3(-phi, Acts::Vector3::UnitZ());
glob2vol *= Acts::AngleAxis3(
-theta, Acts::Vector3::UnitZ().cross(center).normalized());
glob2vol
*= Acts::Translation3(-(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) / 8.);
p1 = glob2vol * p1;
p2 = glob2vol * p2;
p3 = glob2vol * p3;
p4 = glob2vol * p4;
p5 = glob2vol * p5;
p6 = glob2vol * p6;
p7 = glob2vol * p7;
p8 = glob2vol * p8;
auto globalToLocal = glob2vol.inverse();
auto cubo = std::make_shared<Acts::GenericCuboidVolumeBounds>(
std::array<Acts::Vector3, 8>({{p1, p2, p3, p4, p5, p6, p7, p8}}));
Acts::Volume vol(globalToLocal, std::move(cubo));
return vol;
}
Acts::Volume
ActsCaloTrackingVolumeBuilder::build_box(double x, double dx, double y, double dy, double z, double dz) const
{
// std::cout << "build box" << std::endl;
double x_min, x_max, y_min, y_max, z_min, z_max;
x_min = x - dx;
x_max = x + dx;
y_min = y - dy;
y_max = y + dy;
z_min = z - dz;
z_max = z + dz;
// inner face
Acts::Vector3 p1(x_min, y_min, z_min);
Acts::Vector3 p2(x_min, y_max, z_min);
Acts::Vector3 p3(x_max, y_max, z_min);
Acts::Vector3 p4(x_max, y_min, z_min);
// outer face
Acts::Vector3 p5(x_min, y_min, z_max);
Acts::Vector3 p6(x_min, y_max, z_max);
Acts::Vector3 p7(x_max, y_max, z_max);
Acts::Vector3 p8(x_max, y_min, z_max);
Acts::Transform3 glob2vol = Acts::Transform3::Identity();
glob2vol
*= Acts::Translation3(-(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) / 8.);
p1 = glob2vol * p1;
p2 = glob2vol * p2;
p3 = glob2vol * p3;
p4 = glob2vol * p4;
p5 = glob2vol * p5;
p6 = glob2vol * p6;
p7 = glob2vol * p7;
p8 = glob2vol * p8;
auto globalToLocal = glob2vol.inverse();
auto cubo = std::make_shared<Acts::GenericCuboidVolumeBounds>(
std::array<Acts::Vector3, 8>({{p1, p2, p3, p4, p5, p6, p7, p8}}));
Acts::Volume vol(globalToLocal, std::move(cubo));
return vol;
}
std::vector<std::unique_ptr<Acts::Volume>>
ActsCaloTrackingVolumeBuilder::cellFactory() const
{
//Acts::ply_helper<double> ply_lar;
//Acts::ply_helper<double> ply_tile;
//Acts::ply_helper<double> ply_fcal;
//float x, y, z, r, phi_raw, eta_raw, dphi, deta, dr, dx, dy, dz;
float z, dz, eta_raw, deta, phi_raw, dphi, r, dr, x, y, dx, dy;
size_t calosample;
float scale;
// storage of cells we will produce
std::vector<std::unique_ptr<Acts::Volume>> cells;
cells.reserve(m_caloMgr->element_size()); // about 180k
for(auto it = m_caloMgr->element_begin();it < m_caloMgr->element_end();++it) {
const CaloDetDescrElement* cde = *it;
z = cde->z();
dz = cde->dz();
eta_raw = cde->eta_raw();
deta = cde->deta();
phi_raw = cde->phi_raw();
dphi = cde->dphi();
r = cde->r();
dr = cde->dr();
x = cde->x();
y = cde->y();
dx = cde->dx();
dy = cde->dy();
calosample = cde->getSampling();
scale = 1.;
if (calosample >= 12 && calosample <= 20) {
scale = 0.5;
}
//Acts::ply_helper<double>* ply;
//if (calosample <= 11) {
//ply = &ply_lar;
//} else if (calosample <= 20) {
//ply = &ply_tile;
//} else {
//ply = &ply_fcal;
//}
switch (calosample) {
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:
case 11:
case 17:
dz *= scale;
cells.push_back(std::make_unique<Acts::Volume>(
build_endcap(z, dz, eta_raw, deta, phi_raw, dphi)));
break;
case 0:
case 1:
case 2:
case 3:
case 12:
case 13:
case 14:
case 15:
case 16:
case 18:
case 19:
case 20:
dr *= scale;
cells.push_back(std::make_unique<Acts::Volume>(
build_barrel(r, dr, eta_raw, deta, phi_raw, dphi)));
break;
case 21:
case 22:
case 23:
scale = 1.;
dx *= scale;
dy *= scale;
// dz *= scale;
cells.push_back(std::make_unique<Acts::Volume>(
build_box(x, dx, y, dy, z, dz)));
break;
default:
std::stringstream ss;
ss << "Unkown calo sample " << calosample;
std::runtime_error(ss.str());
}
//cells.back()->boundingBox({0.1, 0.1, 0.1}).draw(*ply);
//auto cvb = dynamic_cast<const
//Acts::GenericCuboidVolumeBounds*>(&cells.back()->volumeBounds());
//cvb->draw(*ply, cells.back()->transform());
}
//std::ofstream os("lar.ply");
//os << ply_lar << std::flush;
//os.close();
//os = std::ofstream("tile.ply");
//os << ply_tile << std::flush;
//os.close();
//os = std::ofstream("fcal.ply");
//os << ply_fcal << std::flush;
//os.close();
return cells;
}