Skip to content
Snippets Groups Projects

SIGMON-53 adapt all notebooks to refactoring

Merged Thibaud Marie Eric Buffet requested to merge dev into master
Files
19
+ 1
1
%% Cell type:markdown id: tags:
<h1><center>Analysis of an FPA in an IPD Circuit</center></h1>
Superconducting beam separation dipoles of four different types are required in the Experimental Insertions (IR 1, 2, 5 and 8) and the RF insertion (IR 4). Single aperture dipoles D1 (MBX) and twin aperture dipoles D2 (MBRC) are utilized in the Experimental Insertions. They bring the two beams of the LHC into collision at four separate points then separate the beams again beyond the collision point. In the RF Insertions two types of twin aperture dipoles, each type with two different aperture spacings are used: D3 (MBRS) and D4 (MBRB). The D3 and D4 magnets increase the separation of the beams in IR 4 from the nominal spacing 194 mm to 420 mm. D2 and D4 are the twin apertures magnets with common iron core for both apertures. D3 is a twin apertures magnet with independent iron cores for each aperture.
The MBRC dipole consists of two individually powered apertures assembled in a common yoke structure.
- MBX – D1
Single aperture of the magnet powered with one power supply.
- MBRC – D2
- MBRB – D4
Apertures B1 and B2 of the magnet are powered in series with one power supply.
- MBRS - D3
Apertures B1 and B2 of the magnet are powered in series with one power supply but series connection done in the DFBA.
|Magnets in the Circuit|Temperature|Position|General information|
|----------------------|-----------|--------|-------------------|
|MBX (D1)|1.9 K| RD1.R2, RD1.R8|I Nominal: 5800A, I_Ultimate: 6100A|
| | | |L tot: 26 mH, L per aperture: 26 mH|
| | | |max(di/dt): 17.453 A/s|
|MBRC (D2)|4.5 K| RD2.L1, RD2.R1, RD2.L5, RD2.R5|I Nominal: 4400A, I_Ultimate: 4670A|
| | | RD2.L2, RD2.R2, RD2.L8, RD2.R8|I Nominal: 6000A, I_Ultimate: 6500A|
| | | |L tot: 52 mH, L per aperture: 26 mH|
| | | |max(di/dt): 18.147 A/s|
|MBRS (D3)|4.5 K| RD3.L4, RD3.R4|I Nominal: 5520A, I_Ultimate: 6000A|
| | | |L tot: 26 mH, L per aperture: 26 mH|
| | | |max(di/dt): 18.147 A/s|
|MBRB (D4)|4.5 K| RD4.L4, RD4.R4|I Nominal: 5520A, I_Ultimate: 6000A|
| | | |L tot: 26 mH, L per aperture: 26 mH|
| | | |max(di/dt): 18.147 A/s|
%% Cell type:markdown id: tags:
# Analysis Assumptions
- We consider standard analysis scenarios, i.e., all signals can be queried. If a signal is missing, an analysis can raise a warning and continue or an error and abort the analysis.
- It is recommended to execute each cell one after another. However, since the signals are queried prior to analysis, any order of execution is allowed. In case an analysis cell is aborted, the following ones may not be executed (e.g. I\_MEAS not present).
# Plot Convention
- Scales are labeled with signal name followed by a comma and a unit in square brackets, e.g., I_MEAS, [A].
- If a reference signal is present, it is represented with a dashed line.
- If the main current is present, its axis is on the left. Remaining signals are attached to the axis on the right. The legend of these signals is located on the lower left and upper right, respectively.
- The grid comes from the left axis.
- The title contains timestamp, circuit name, and signal name allowing to re-access the signal.
- The plots assigned to the left scale have colors: blue (C0) and orange (C1). Plots presented on the right have colors red (C2) and green (C3).
- Each plot has an individual time-synchronization mentioned explicitly in the description.
- If an axis has a single signal, then the color of the label matches the signal's color. Otherwise, the label color is black.
%% Cell type:markdown id: tags:
# 0. Initialise Working Environment
%% Cell type:code id: tags:
``` python
# External libraries
print('Loading (1/12)'); import pandas as pd
print('Loading (2/12)'); import sys
print('Loading (3/12)'); from IPython.display import display, Javascript, clear_output, HTML
# Internal libraries
print('Loading (4/12)'); import lhcsmapi
print('Loading (5/12)'); from lhcsmapi.Time import Time
print('Loading (6/12)'); from lhcsmapi.Timer import Timer
print('Loading (7/12)'); from lhcsmapi.analysis.IpdCircuitQuery import IpdCircuitQuery
print('Loading (8/12)'); from lhcsmapi.analysis.IpdCircuitAnalysis import IpdCircuitAnalysis
print('Loading (9/12)'); from lhcsmapi.analysis.expert_input import get_expert_decision
print('Loading (10/12)'); from lhcsmapi.analysis.report_template import apply_report_template
print('Loading (11/12)'); from lhcsmapi.gui.DateTimeBaseModule import DateTimeBaseModule
print('Loading (12/12)'); from lhcsmapi.gui.pc.FgcPmSearchModuleMediator import FgcPmSearchModuleMediator
clear_output()
lhcsmapi.get_lhcsmapi_version()
lhcsmapi.get_lhcsmhwc_version('../__init__.py')
```
%% Cell type:markdown id: tags:
# 1. Select FGC Post Mortem Entry
%% Cell type:markdown id: tags:skip_cell
In order to perform the analysis of a FPA in an IPD circuit please:
1. Select circuit name (e.g., RD1.L2)
2. Choose start and end time
3. Choose analysis mode (Automatic by default)
Once these inputs are provided, click 'Find FGC PM entries' button. This will trigger a search of the PM database in order to provide a list of timestamps of FGC events associated with the selected circuit name for the provided period of time. Select one timestamp from the 'FGC PM Entries' list to be processed by the following cells.
**Note that 24 hours is the maximum duration of a single PM query for an event. To avoid delays in querying events, please restrict your query duration as much as possible.**
%% Cell type:code id: tags:
``` python
circuit_type = 'IPD'
fgc_pm_search = FgcPmSearchModuleMediator(DateTimeBaseModule(start_date_time='2021-02-03 00:00:00+01:00',
end_date_time='2021-02-04 00:00:00+01:00'), circuit_type=circuit_type)
```
%% Cell type:markdown id: tags:
# 2. Query All Signals Prior to Analysis
%% Cell type:code id: tags:skip_output
``` python
with Timer():
circuit_name = fgc_pm_search.get_fgc_circuit()
timestamp_fgc = fgc_pm_search.get_fgc_timestamp()
author = fgc_pm_search.get_author()
is_automatic = fgc_pm_search.is_automatic_mode()
query = IpdCircuitQuery(circuit_type, circuit_name, max_executions=8)
# PC
i_meas_df, i_a_df, i_ref_df, i_earth_df, i_earth_pcnt_df = query.query_pc_pm(timestamp_fgc, timestamp_fgc, signal_names=['I_MEAS', 'I_A', 'I_REF', 'I_EARTH', 'I_EARTH_PCNT'])
# PIC
timestamp_pic = query.find_timestamp_pic(timestamp_fgc, spark=spark)
# QDS
source_timestamp_qds_df = query.find_source_timestamp_qds_board_ab(timestamp_fgc, duration=[(2, 's'), (2, 's')])
timestamp_qds = float('nan') if source_timestamp_qds_df.empty else source_timestamp_qds_df.loc[0, 'timestamp']
signal_names = ['U_1_B1', 'U_2_B1', 'U_RES_B1'] if query.circuit_type == 'IPD2_B1B2' else ['U_1', 'U_2', 'U_RES']
u_1_df, u_2_df, u_res_df = query.query_qds_pm(timestamp_qds, timestamp_fgc, signal_names=signal_names)
# QH
u_hds_dfss = query.query_qh_pm(source_timestamp_qds_df.drop_duplicates('source') if not source_timestamp_qds_df.empty else pd.DataFrame(), signal_names=['U_HDS'])
u_hds_dfs = u_hds_dfss[0] if u_hds_dfss else []
# # Reference
u_hds_ref_dfss = query.query_qh_pm(source_timestamp_qds_df.drop_duplicates('source') if not source_timestamp_qds_df.empty else pd.DataFrame(), signal_names=['U_HDS'], is_ref=True)
u_hds_ref_dfs = u_hds_ref_dfss[0] if u_hds_ref_dfss else []
# LEADS
u_hts_dfs = query.query_leads(timestamp_fgc, source_timestamp_qds_df.drop_duplicates('source') if not source_timestamp_qds_df.empty else pd.DataFrame(), system='LEADS', signal_names=['U_HTS'], spark=spark, duration=[(300, 's'), (900, 's')])
u_res_dfs = query.query_leads(timestamp_fgc, source_timestamp_qds_df.drop_duplicates('source') if not source_timestamp_qds_df.empty else pd.DataFrame(), system='LEADS', signal_names=['U_RES'], spark=spark, duration=[(300, 's'), (900, 's')])
# Results Table
results_table = query.create_report_analysis_template(timestamp_fgc=timestamp_fgc, init_file_path='../__init__.py', author=author)
analysis = IpdCircuitAnalysis(query.circuit_type, results_table)
timestamp_dct = {'FGC': timestamp_fgc, 'PIC': timestamp_pic,
'QDS_A':source_timestamp_qds_df.loc[0, 'timestamp'] if len(source_timestamp_qds_df) > 0 else float('nan'),
'QDS_B':source_timestamp_qds_df.loc[1, 'timestamp'] if len(source_timestamp_qds_df) > 1 else float('nan')}
```
%% Cell type:markdown id: tags:
# 3. Timestamps
The analysis for MP3 consists of checking the existence of PM file and of consistency of the PM timestamps (PC, QPS). The criterion of passing this test described in detail in 600APIC2.
In short the following criteria should be checked:
- The PC timestamp (51_self) is QPS timestamp +-20 ms.
- The difference between QPS board A and B timestamp = 1ms.
If one or more of these conditions are not fulfilled, then an in-depth analysis has to be performed by the QPS team.
%% Cell type:code id: tags:
``` python
analysis.create_timestamp_table(timestamp_dct)
```
%% Cell type:markdown id: tags:
# 4. PC
## 4.1. Main Current
*ANALYSIS*:
- calculation of the ramp rate
- calculation of the time constant
- calculation of the duration of a plateau prior to a quench
- calculation of DCCT MIIts
*GRAPHS*:
- t = 0 s corresponds to the FGC timestamp
%% Cell type:code id: tags:
``` python
import matplotlib as mpl
mpl.rcParams['savefig.dpi'] = 80
mpl.rcParams['figure.dpi'] = 80
%matplotlib notebook
tau_ipd = analysis.calculate_i_meas_tau([i_meas_df], duration_decay=(0, 2))
print('Time constant = %4.3f s.' % (tau_ipd))
analysis.plot_i_meas_pc(circuit_name, timestamp_fgc, [i_meas_df, i_a_df, i_ref_df], xlim=(-10, 3*tau_ipd))
```
%% Cell type:code id: tags:
``` python
analysis.plot_i_meas_pc(circuit_name, timestamp_fgc, [i_meas_df, i_a_df, i_ref_df], xlim=(-0.1, 0.2), ylim=(i_meas_df.max().values[0]-1500, i_meas_df.max().values[0]+500))
```
%% Cell type:code id: tags:
``` python
t_quench = analysis.find_start_end_quench_detection(u_res_df)[0]
analysis.calculate_current_slope(i_meas_df, col_name=['Ramp rate', 'Plateau duration'])
analysis.calculate_current_miits_i_meas_i_a(i_meas_df, i_a_df, t_quench, col_name='MIITS_circ')
analysis.calculate_quench_current(i_meas_df, t_quench, col_name='I_Q_circ')
```
%% Cell type:markdown id: tags:
## 4.2. Earth Current
*GRAPHS*:
- t = 0 s corresponds to the FGC timestamp
%% Cell type:code id: tags:
``` python
analysis.plot_i_earth_pcnt_pc(circuit_name, timestamp_fgc, i_earth_pcnt_df)
```
%% Cell type:code id: tags:
``` python
analysis.plot_i_earth_pc(circuit_name, timestamp_fgc, i_earth_df)
analysis.calculate_max_i_earth_pc(i_earth_df, col_name='I_Earth_max')
```
%% Cell type:markdown id: tags:
# 5. Quench Protection System
The signal names used for quench detection are shown in the figure below (*please run a cell below to display a QPS circuit schematic corresponding to the circuit name under analysis*).
**Quench Detector Type**
DQQDC - current leads quench detector
DQAMG - controller attached to global protection
**Current Leads:**
- Typical resistance for U_RES: 7 uOhm
- Threshold for U_HTS: 3 mV, 1s
- Polarity convention: Arrows show how signals are measured. If I > 0, LD1: U_RES > 0, LD2: U_RES < 0
- PM file
- Buffer range 0 to 250, event at point 50
- Time range: -10 to 40 s
- Frequency: 5 Hz (dt = 200 ms)
**Magnet:**
- See polarity convention in the circuit schematics
- U_RES_B1 = U_1_B1 + U_2_B1
- Threshold on U_RES_B1: 100 mV, 10 ms
- U_RES_B2, U_1_B2, U_2_B2 and U_INDUCT_B2 are given for diagnostics only
- Signals are measured with -2.5 V offset and with the gain factor = 0.0012
- *Attention: B1 signals and B2 singals can be shifted by 4 ms from each other*
- If pure inductive signal and di/dt < 0:
- U_1_B1 = L di/dt < 0
- U_2_B1 = -L di/dt < 0
- PM file
- Buffer range 501 to 1500, event at point 1000
- Time range: -2 to 2 s
- Frequency: 250 Hz (dt = 4 ms)
%% Cell type:code id: tags:
``` python
from lhcsmapi.gui.pc.fgc_pm_event_select.IpdFgcPmEventSelectBaseModule import IpdFgcPmEventSelectBaseModule
IpdFgcPmEventSelectBaseModule('IPD').display_qps_circuit_schematic(circuit_name)
```
%% Output
%% Cell type:markdown id: tags:
## 5.1. Resistive Voltage
*ANALYSIS*:
- Initial voltage slope of U_RES signal. The slope is calculated as a ratio of the voltage change from 50 to 200 mV and the corresponding time change.
- Origin of a quench, i.e., name of the first magnet for which the U_RES voltage exceeded the 100 mV threshold.
*GRAPHS*:
t = 0 s corresponds to the FGC timestamp
%% Cell type:code id: tags:
``` python
t_quench = analysis.find_start_end_quench_detection(u_res_df)[0]
u_res_slope_df = analysis.calculate_u_res_slope(u_res_df[u_res_df.index < t_quench], col_name='dU_QPS/dt')
if u_res_slope_df is not None:
analysis.plot_u_res_u_res_slope_u_1_u_2(circuit_name, timestamp_qds, u_res_df, u_res_slope_df, u_1_df, u_2_df, xlim=(u_res_slope_df.index[0]-0.2, u_res_slope_df.index[1]+0.1))
```
%% Cell type:markdown id: tags:
## 5.2. Current Leads
*CRITERIA*:
- quench detection for U_HTS for 2 consecutive datapoints above the threshold of 3 mV
- detection for U_RES for 2 consecutive datapoints above the threshold of 100 mV
*GRAPHS*:
- t = 0 s corresponds to the FGC timestamp.
%% Cell type:code id: tags:
``` python
analysis.analyze_leads_voltage(u_hts_dfs, circuit_name, timestamp_qds, signal='U_HTS', value_min=-0.003, value_max=0.003)
```
%% Cell type:code id: tags:
``` python
analysis.analyze_leads_voltage(u_res_dfs, circuit_name, timestamp_qds, signal='U_RES', value_min=-0.1, value_max=0.1)
```
%% Cell type:code id: tags:
``` python
if not fgc_pm_search.is_automatic_mode():
analysis.results_table['FPA Reason'] = get_expert_decision('Reason for FPA: ', ['QPS trip', 'Converter trip', 'EE spurious opening', 'Spurious heater firing', 'Busbar quench', 'Magnet quench', 'HTS current lead quench' ,'RES current lead overvoltage', 'No quench', 'Unknown'])
analysis.results_table['Type of Quench'] = get_expert_decision('Type of Quench: ', ['Training', 'Heater-provoked', 'Beam-induced', 'GHe propagation', 'QPS crate reset', 'Single Event Upset' ,'Short-to-ground', 'EM disturbance', 'No quench', 'Unknown'])
analysis.results_table['QDS trigger origin'] = get_expert_decision('QDS trigger origin: ', ['QPS', 'HTS current lead', 'RES current lead','Busbar', 'No quench'])
```
%% Cell type:markdown id: tags:
## 5.3. Quench Heaters
*CRITERIA*:
- all characteristic times of an exponential decay calculated with the 'charge' approach for voltage is +/- 5 ms from the reference ones
- the initial voltage should be between 810 V and 1000 V
- the final voltage should be between 0 V and 10 V
*GRAPHS*:
- t = 0 s corresponds to the start of the pseudo-exponential decay
Voltage view (linear and log)
- the queried and filtered quench heater voltage on the left axis (actual signal continuous, reference dashed), U_HDS
%% Cell type:code id: tags:
``` python
if u_hds_dfs:
analysis.analyze_qh(circuit_name, timestamp_qds, u_hds_dfs, u_hds_ref_dfs)
analysis.analyze_single_qh_voltage_with_ref(circuit_name, timestamp_qds, u_hds_dfs, u_hds_ref_dfs)
else:
print('No Quench Heater discharges!')
```
%% Cell type:markdown id: tags:
# 6. Analysis Comment
%% Cell type:code id: tags:
``` python
if not fgc_pm_search.is_automatic_mode():
analysis.results_table['Comment'] = input('Comment: ')
```
%% Cell type:markdown id: tags:
# 7. Final Report
%% Cell type:code id: tags:
``` python
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
analysis_start_time = Time.get_analysis_start_time()
date_time_fgc = Time.to_datetime(timestamp_fgc).strftime("%Y-%m-%d-%Hh%M")
!mkdir -p /eos/project/m/mp3/IPD/$circuit_name/FPA
file_name = "{}_FPA-{}-{}".format(circuit_name, date_time_fgc, analysis_start_time)
full_path = '/eos/project/m/mp3/IPD/{}/FPA/{}.csv'.format(circuit_name, file_name)
mp3_results_table = analysis.create_mp3_results_table()
display(HTML(mp3_results_table.T.to_html()))
mp3_results_table.to_csv(full_path, index=False)
print('MP3 results table saved to (Windows): ' + '\\\\cernbox-smb' + full_path.replace('/', '\\'))
apply_report_template()
full_path = '/eos/project/m/mp3/IPD/{}/FPA/{}.html'.format(circuit_name, file_name)
print('Compact notebook report saved to (Windows): ' + '\\\\cernbox-smb' + full_path.replace('/', '\\'))
display(Javascript('IPython.notebook.save_notebook();'))
Time.sleep(5)
file_name_html = file_name + '.html'
!{sys.executable} -m jupyter nbconvert --to html $'AN_IPD_FPA.ipynb' --output /eos/project/m/mp3/IPD/$circuit_name/FPA/$file_name_html --TemplateExporter.exclude_input=True --TagRemovePreprocessor.remove_all_outputs_tags='["skip_output"]' --TagRemovePreprocessor.remove_cell_tags='["skip_cell"]'
```
%% Cell type:code id: tags:
``` python
```
Loading